Android App-Hook
and Plug In Technology

Jiangiang Bao

Android App-Hook
and Plug-In Technology

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Android App-Hook
and Plug-In Technology

Jiangiang Bao

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business HZ Books

EERR

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by CRC Press, Taylor & Francis Group, 6000 Broken Sound Pkwy., NW, Suite 300, Boca Raton.,
FL 33487, under exclusive license granted by Beijing Huazhang Graphics & Information Co., Ltd./China
Machine Press for English language and throughout the world.

CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-367-20700-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com﻿﻿
http://www.crcpress.com﻿﻿﻿﻿

Contents

Acknowledgments, xvii
About the Author, xix
About the Translators, xxi

Introduction, xxiii

CHAPTER T = Plug-Ins from the Past to the Future 1
1.1 ANDROID PLUG-INS IN CHINA 1
1.2 HISTORY OF ANDROID PLUG-IN TECHNIQUES 2
1.3 USAGE OF PLUG-INS 8
1.4 ANOTHER CHOICE: REACT NATIVE 9
1.5 DO ALL COMPONENTS REQUIRE PLUG-INS? 10
1.6 DOUBLE-OPENING AND VIRTUAL MACHINE 10
1.7 FROM NATIVE TO HTML5 11
1.8 SUMMARY 12

CHAPTER 2 = The Underlying Knowledge of Android 13
2.1 OVERVIEW OF UNDERLYING ANDROID KNOWLEDGE 13
2.2 BINDER 15
2.3 AIDL 17
2.4 ACTIVITYMANAGERSERVICE 22
2.5 ACTIVITY WORKING PRINCIPLES 23

2.5.1 How to Launch an App 23
2.5.2 Starting the App Is Not So Simple 24

vi m Contents

2.6
2.7
2.8

2.5.2.1

2522

2.5.2.3

2.5.24
2.5.2.5
2.5.2.6

2.5.2.7

Click the App Icon in Launcher and
Send a Message to the AMS

The AMS Handles the Information
from the Launcher

The Launcher Goes to Sleep and Informs
the AMS Again

The AMS Creates a New Process
Start a New Process and Inform the AMS

The AMS Tells the New App Which
Activity to Launch

The Amazon App Starts an Activity

NAVIGATION IN APP
FAMILY OF CONTEXT

SERVICE

2.8.1 Start Service in a New Process

2.8.1.1

2.8.1.2
2.8.1.3
2.8.14

2.8.1.5

The App Sends a Message to the AMS to
Launch Service

The AMS Creates a New Process
Start a New Process and Inform the AMS

The AMS Sends Information to the
New Process

New Process to Launch Service

2.8.2 Starta Service in the Same Process

2.8.3 Bind a Service in the Same Process

2.8.3.1

2.8.3.2

2.8.3.3
2.8.34

2.8.3.5

The App Sends a Message to the AMS to
Bind a Service

The AMS Sends Two Messages to the
App Process

The App Receives the First Message

The App Receives the Second Message and
Sends a Binder Object to the AMS

AMS Informs the App

25

30

31
33
34

35
35
37
38
41
41

42
42

43
43
44
44

45

45
45

46
46

Contents ® vii

2.9 BROADCASTRECEIVER 47

2.9.1 Registration 48

2.9.2 Send a Broadcast 49

2.10 CONTENTPROVIDER 51

2.10.1 The Essence of the ContentProvider 54

2.10.2 The ASM 54
2.10.3 Communication between ContentProvider

and the AMS 56

2.11 THE PMS AND APP INSTALLATION PROCESS 57

2.11.1 PMS Introduction 57

2.11.2 App Installation Process 58

2.11.3 PackageParser 59

2.11.4 ActivityThread and PackageManager 60

2.12 CLASSLOADER 61

2.13 PARENT-DELECATION 63

2.14 MULTIDEX 63

2.15 A MUSIC PLAYER APP 65

2.15.1 A Music Player Based on Two Receivers 65

2.15.2 A Music Player Based on One Receiver 71

2.16 SUMMARY 77

CHAPTER 3 = Reflection 79

3.1 BASIC REFLECTION 79

3.1.1 Get the Class Using a String 80

3.1.1.1 Get the Class Using a String 80

3.1.1.2 Class.forName 80

3.1.1.3 Property class 80

3.1.1.4 Property TYPE 80

3.1.2 Get the Property and Method of the Class 81

3.1.2.1 Get the Constructor of the Class 81

3.1.2.2 Invoke a Private Method of the Class 83

viii m Contents

3.1.3
3.2 jOOR
3.2.1

3.2.2

3.2.3

3.1.2.3 Invoke a Private and Static Method of the

Class 84
3.1.2.4 Get a Private Field of the Class and Modify

Its Value 84
3.1.2.5 Get the Private Static Field of the Class

and Modify Its Value 85
Generics and Singleton<T> 86

88

Get a Class from a String 89
3.2.1.1 Get a Class from a String 89
3.2.1.2 Get a Class by Using on and get 89
Get the Property and Method of a Class 90
3.2.2.1 Get a Constructor of a Class 90
3.2.2.2 Get the Private Method of the Class 920
3.2.2.3 Get the Private and Static Method of

the Class 91
3.2.2.4 Get the Private Field of the Class 91
3.2.2.5 Get the Private and Static Field of the Class 91
Generics and Singleton<T> 91

3.3 ENCAPSULATED CLASSES OF THE BASIC REFLECTION 93

3.3.1
33.2
333
334
3.35

Get a Constructor 93
Invoke Instance Methods 94
Invoke Static Methods 95
Get the Field of the Class and Set Its Value 95
Handle Generics 96

3.4 FURTHER ENCAPSULATION OF THE REFLECTION 97

34.1

342
343

344

Reflect a Method with Only One Parameter or

without Parameters 97
Replace String with Class Type 100
Differences between the Static and

Instance Fields 101
Optimization of the Field Reflection 102

3.5 SUMMARY 103

Contents ® ix

CHAPTER 4 = Proxy Pattern 105
4.1 WHAT IS A PROXY PATTERN? 105
4.1.1 Remote Proxy 106
4.1.2 Write Log 108
4.2 STATIC-PROXY AND DYNAMIC-PROXY 109
43 A HOOK ON THE AMN 1M
4.4 A HOOK ON THE PMS 113
4.5 SUMMARY 114
CHaPTER 5 = Hooking startActivity() 115
5.1 INVOKE STARTACTIVITY() IN TWO WAYS 115
5.2 HOOKING STARTACTIVITY() OF THE ACTIVITY 116
5.2.1 Solution 1: Hooking the Method
startActivityForResult of Activity 118
5.2.2 Solution 2: Hooking the Field mInstrumentation
of Activity 118
5.2.3 Solution 3: Hooking the Method getDefault()
of AMN 121
5.2.4 Solution 4: Hooking the Field mCallback of H 125
5.2.5 Solution 5: Hooking Instrumentation Again 128
5.3 HOOKING THE METHOD STARTACTIVITY OF
CONTEXT 131
5.3.1 Solution 6: Hooking the Field mInstrumentation of
ActivityThread 131
5.3.2 Which Solution Is the Best? 133
5.4 LAUNCH AN ACTIVITY NOT DECLARED IN
ANDROIDMANIFEST.XML 133
5.4.1 How to Hook AMN 133
5.4.2 First Half of the Hook 135
5.4.3 Second Half of the Hook: Hooking the Field
mCallback of H 139
5.4.4 Second Half of the Hook: Hooking the
mlInstrumentation Field of ActivityThread 141
5.5 SUMMARY 143

x m Contents

CHaPTER 6 = The Basic Concepts of Plug-In Techniques 145
6.1 LOADING EXTERNAL DEX 145
6.2 INTERFACE-ORIENTED PROGRAMMING 148
6.3 PLUG-IN THINNING 151
6.4 DEBUGGING IN PLUG-INS 154
6.5 APPLICATION PLUG-IN SOLUTIONS 156
6.6 SUMMARY 158

CHAPTER 7 = Resources in Plug-In 159
7.1 HOW TO LOAD RESOURCES IN ANDROID 159

7.1.1 Types of Resources 159

7.1.2 Resources and AssetManager 160
7.2 PLUG-IN SOLUTIONS OF RESOURCES 161
7.3 SOLUTIONS FOR CHANGING SKINS 166
7.4 ANOTHER PLUG-IN SOLUTION FOR

CHANGING SKINS 178
7.5 SUMMARY 179

CHAPTER 8 = The Plug-In Solution of Four Components 181

8.1 THE SIMPLEST PLUG-IN SOLUTION 181
8.1.1 Pre-Declare Activity and Service of the Plug-In in
the HostApp’s AndroidManifest.xml 182
8.1.2 Combine the Dex 183
8.1.3 Start a Service of the Plug-In 184
8.1.4 Resources in Activity 185
8.2 A PLUG-IN SOLUTION FOR ACTIVITY 188
8.2.1 Launch an Activity of a Plug-In Not Declared in
the AndroidManifest.xml of the HostApp 188
8.2.2 Solution 1: Based on Dynamic-Proxy 193
8.2.2.1 The Process of Launching an Activity 193
8.2.2.2 Add a Plug-In Activity to the Cache 196
8.2.2.3 Solution 1 of Loading Class in a Plug-In:
Create DexClassLoader for Each
Plug-In apk 201
8.2.2.4 Hooking More Classes 202

Contents ®m xi

8.2.3 Solution 2: Merge All the Plug-In Dexes into One
Array 205
8.2.4 Plug-In Solution of Resources 208
8.2.5 Support LaunchMode in Plug-In 208
8.2.6 Solution 3: Hook ClassLoader 212
8.3 THE PLUG-IN SOLUTION FOR SERVICE 216
8.3.1 The Relationship Between Service and Activity 216
8.3.2 StubService 218
8.3.3 Plug-In Solution to startService() 220
8.3.4 Plug-In Solution of bindService 226
8.4 A PLUG-IN SOLUTION FOR BROADCASTRECEIVER 229
8.4.1 Receiver Overview 229
8.4.2 A Plug-In Solution for Dynamic Receiver 231
8.4.3 A Plug-In Solution for Static Receiver 231
8.4.4 A Final Plug-In Solution for Static Receiver 233
8.5 A PLUG-IN SOLUTION FOR CONTENTPROVIDER 239
8.5.1 'The Basic Concept of ContentProvider 239
8.5.2 A Simple Example of ContentProvider 239
8.5.3 A Plug-In Solution for ContentProvider 242
8.5.4 The Right Time to Install a ContentProvider
Plug-In 245
8.5.5 The Forwarding Mechanism of ContentProvider 246
8.6 SUMMARY 247
CHAPTER 9 = A Plug-In Solution Based on Static-Proxy 249
9.1 A PLUG-IN SOLUTION FOR ACTIVITY BASED ON
STATIC-PROXY 249
9.1.1 'The Idea of Static-Proxy 249
9.1.2 The Simplest Example of Static-Proxy 250
9.1.2.1 Jump from the HostApp to the Plug-In 251
9.1.2.2 Communication between ProxyActivity
and Plug-In Activity 252
9.1.2.3 The Logic of Activity in the Plug-In 255
9.1.3 Jump in the Plug-In 255

xii m Contents

9.1.4 Eliminate the Keyword “that” 256
9.1.5 Jump Out 259
9.1.5.1 Preparation for Jumping Out 259
9.1.5.2 Jump to Another Plug-In 260
9.1.5.3 Jump to the HostApp 260
9.1.6 Use Interface-Oriented Programming in Static-Proxy 261
9.1.7 Support for LaunchMode 267
9.1.7.1 Overview of LaunchMode 267
9.1.7.2 Plug-In Solutions for LaunchMode 269
9.2 THE PLUG-IN SOLUTION FOR SERVICE AND
BROADCASTRECEIVER BASED ON STATIC-PROXY 271
9.2.1 Static-Proxy in Service 271
9.2.1.1 Issuel 276
9.2.1.2 Issue?2 277
9.2.1.3 Issue 3 278
9.2.2 Support bindService() 278
9.2.3 StubService 280
9.2.4 The Last Solution for Service Plug-Ins: Integration
with Dynamic-Proxy and Static-Proxy 283
9.2.4.1 Parse Service in the Plug-In 283
9.2.4.2 Create a Service Object Using Reflection 285
9.2.4.3 ProxyService and ServiceManager 287
9.2.4.4 bindService() and unbindService() 294
9.2.5 Static-Proxy in BroadcastReceiver 301
9.3 SUMMARY 305
CHapTER 10 = Related Plug-In Techniques 307
10.1 RESOLVE THE CONFLICTS BETWEEN RESOURCES OF
THE PLUG-INS 307
10.1.1 The Process of App Packaging 307
10.1.2 Hook aapt 308
10.1.2.1 Modify and Generate a New aapt Command 308
10.1.2.2 Using This New aapt Command in
the Project 314

Contents m xiii

10.1.3 public.xml 316
10.1.4 Plug-In Uses Resources in the HostApp 318
10.2 A PLUG-IN FRAMEWORK BASED ON FRACMENT 320
10.2.1 AndroidDynamicLoader Overview 320
10.2.2 A Simple Plug-In Sample Based on Fragment 321
10.2.3 Jumping Between Fragments 322
10.2.4 Jump from the Plug-In 324
10.3 DOWNGRADE 326
10.3.1 From Activity to HTML5 328
10.3.2 From HTMLS5 to Activity 334
10.3.3 Support for the Backpress Button 340
10.4 PROGUARD FOR PLUG-INS 341
10.4.1 Basic Obfuse Rules for Plug-Ins 341
10.4.2 Obfuse Without a Common Library 342
10.4.3 Obfusing with a Common Library 345
10.4.3.1 Use MultiDex 346
10.4.3.2 Modify the ProGuard File 349

10.4.3.3 Remove Redundant Dexes from
pluginl.apk 350
10.5 INCREMENTAL UPDATE 352
10.5.1 The Basic Concept of an Incremental Update 352
10.5.2 Create an Incremental Package 353
10.5.3 Apply Permissions 353
10.5.4 Merge Incremental Package 354
10.6 A PLUG-IN SOLUTION FOR SO FILES 356
10.6.1 Write a Hello-World SO 356
10.6.1.1 Download NDK 356
10.6.1.2 Create a Project to Generate SO 357
10.6.2 Using SO 362
10.6.3 The Principle of Loading SO 363
10.6.3.1 Compiling SO 364

10.6.3.2 The Process of Loading SO 365

xiv ® Contents

10.6.3.3 Two Ways to Load SO 365
10.6.3.4 The Relationship between ClassLoader
and SO 368
10.6.4 A Plug-In Solution Based on System.load() 368
10.6.5 An SO Plug-In Solution Based on System.
loadLibrary() 372
10.7 HOOKING THE PACKAGING PROCESS 373
10.7.1 Gradle Plug-In Project 373
10.7.1.1 Create Gradle Plug-In Project 373
10.7.1.2 Extension 376
10.7.1.3 The Hook App Packaging Process 377
10.7.2 Modify resources.arsc 379
10.7.2.1 How to Find Resources in Android 379
10.7.2.2 Function of aapt 380
10.7.2.3 'The Principle of Gradle-Small 380
10.7.2.4 How to Use Gradle-Small 381
10.7.2.5 The Family of Plug-Ins Defined in
Gradle-Small 381
10.7.2.6 The Family of Editors Defined in
Gradle-Small 385
10.8 COMPATIBILITY WITH ANDROID O AND P 387
10.8.1 Compatibility with Android O 388
10.8.1.1 Refactor of AMN 388
10.8.1.2 'The Story of Element and DexFile 390
10.8.2 Compatibility with Android P 393
10.8.2.1 The Modification of the Class H 393
10.8.2.2 'The Refactoring of the Class Instrumentation 401
10.9 SUMMARY 404
CHAPTER 11 = Summary of Plug-In Technology 405
11.1 PLUG-IN ENGINEERING 405
11.2 CLASS LOADING IN THE PLUG-IN 405
11.3 WHICH CLASS OR INTERFACE CAN BE HOOKED? 406

Contents m xv

11.4 A PLUG-IN SOLUTION FOR ACTIVITY
11.5 A PLUG-IN SOLUTION FOR RESOURCES
11.6 USE FRAGMENT IN THE PLUG-IN

11.7 PLUG-IN SOLUTIONS FOR SERVICE,
CONTENTPROVIDER, AND BROADCASTRECEIVER

11.7.1 A Plug-In Solution for Service

11.7.2 A Plug-In Solution for BroadcastReceiver

11.7.3 A Plug-In Solution for ContentProvider
11.8 SUMMARY

APPENDIX A: SAMPLE CODE LIST, 411

INDEX, 415

407
407
408

409
409
409
410
410

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Acknowledgments

OWE A BIG THANKS to Yi Wu, the editor of this book in Chinese, for

helping me contact CRC Press to publish this book in English.

I thank Manyun Guo, my wife, for accompanying and encouraging me
during the period I spent writing.

Special thanks to my 21 friends from Android forums for helping me
translate this Chinese book into English.

I thank Yong Zhang, Yugang Ren, Lody, Guangliang Lin, Jian Huang,
and a lot of other friends. Without your endless support I wouldn’t have
been able to talk as deeply about this technique domain.

Xvii

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

About the Author

Jianqiang Bao is a senior Android app developer.
For more than 15 years, he has developed enterprise
solutions using Silverlight, ASP.NET, WP7, Android,
and i0S. He has worked at HP, Microsoft, Tuniu
and Qunar. He has a technique blog at http://www.
cnblogs.com/jax; his GitHub is https://github.com/
BaoBaoJianqgiang.

Xix

http://www.cnblogs.com/
http://www.cnblogs.com/
https://github.com/
https://github.com/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

About the Translators

ANY PEOPLE HAVE PARTICIPATED in this book’s translation from

Chinese to English, the list is as follows:

Chapter

[o =B e Y R S

10

11

Translator

Hongwei Cao

Chunfei Shi, Xuelong Wang, Xiaohui Li

Wenpeng Li
Xizhi Pan

Jian Feng
Xiaohui Li
Jinyu Guo
Tianhong Han
Guiming Zou
Xuelong Wang
Yupeng Wang
Sheng Li

Alan Pan T
Siyang Long
Shuaifeng Ma
Fangxiang Deng
Tong Peng
Zhaoyun
Zelong Gong
Hao Yang
Jinyu Guo
Jinyu Guo

Reviewer

Han Yan
Fangxiang Deng
Jiangiang Bao
Jinyu Guo
Guiming Zou
Zelong Gong
Tong Peng
Wenhan Xiao
Sheng Li

Jian Feng

Xizhi Pan

Tong Peng

Jian Feng
Fangxiang Deng
Siyang Long
Guiming Zou
Xizhi Pan

Siyang Long

xxi

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Introduction

ELCOME TO THE FIRST edition of Android App-Hook and Plug-In
Technology

WHAT THIS BOOK WILL TEACH YOU

This book will teach you everything you need to know to master Android
plug-in techniques.

This book introduces the Android plug-in technique. An app can be
downloaded as an apk file in a zip file from the remote server. We call this
zip file a plug-in. This app can invoke a class in this plug-in. This means
that we can update the content of the app without republishing it again.

Google Play has a strict app auditing strategy. It forbids any app from
downloading another app to prevent it from downloading malicious con-
tent or pornographic and violent content. Thus, we cannot publish an app
using this plug-in technique on Google Play.

This book will teach you the underlying knowledge of the Android sys-
tem, which help you master Android technique at a high level.

After reading this book, you will be familiar with several aspects of the
Android system, including the following content:

e Binder and AIDL mechanisms.

 The working mechanisms of Activity, Service, ContentProvider, and
BroadcastReceiver.

o Communication between ActivityManagerService and four
components.

o How to launch an app.
o LaunchMode.

o The families of Context and ClassLoader.

xxiii

xxiv ® Introduction

o MultiDex.
o How to load SO.

o PackageManagerService and how to install an app in the Android
system.

o Reflection.

o 'The Proxy.newProxylnstance() method for adding an external func-
tion to the original API.

WHO IS THIS BOOK FOR?
Don’t use the plug-in techniques introduced in this book on Google Play;
it’s forbidden.

This book introduces a lot of knowledge about the Android system
which is useful to app developers.

THE SAMPLE CODE

The sample code in this book is on my Github: https://github.com/
BaoBaoJiangiang/.

There are 74 demos in this book, and I list the address of each demo in
the corresponding chapter and section.

In Appendix A, I list all the demos with their corresponding chapter

and section.

THE BOOK’S STRUCTURE

This book consists of 11 chapters: chapters 1 to 5 introduces the basic
knowledge of plug-in techniques; chapters 6 to 10 introduces several solu-
tions for plug-in programming issues; Chapter 11 is an overall summary.

Below is a brief overview of the chapters.

Chapter 1 introduces the history of Android plug-in techniques.

Chapter 2 introduces the underlying Android system, including
Binder and AIDL, ActivityManagerService, PackageManagerService,
ActivityThread, LoadedApk, and so on. As this book is written for app
developers, I illustrate these concepts with a series of pictures rather than
code.

Chapter 3 introduces the syntax of reflection, and the encapsulation
of the reflection, including jOOR, a famous Java reflection framework.
Reflection is the basis of plug-in techniques.

https://github.com/
https://github.com/

Introduction m xxv

Chapter 4 introduces proxy patterns, including Static-Proxy and
Dynamic-Proxy, these two proxies generate two important plug-in
frameworks, DroidPlugin and DL. Proxy.newProxylnstance() is a widely
used plug-in, and we use this method to hook IActivityManager and
IPackageManager in this chapter.

Chapter 5 introduces how to start an Activity not declared in the
AndroidManifest.xml, based on the Proxy.newProxylnstance() introduced
in Chapter 4.

Chapter 6 introduces the basic knowledge of plug-ins, including
how to debug from the Hostapp to the plug-in, and interface-oriented
programming.

Chapter 7 introduces how to load Resources into plug-ins. AssetManager
and Resources are key points, especially the method addAssetPath() of
AssetManager. Based on this technique, we can dynamically change a skin.

Chapter 8 introduces plug-in solutions for Activity, Service,
BroadcastReceiver, and ContentProvider. A different mechanism of these
four components results in different plug-in solutions.

Chapter 9 introduces a plug-in framework based on Static-Proxy. The
creator of this framework invented a new keyword “that,” so this frame-
work is also called “That.” “That” is a very smart framework; it’s also well
known as Puppet.

Chapter 10 considers other related plug-in techniques. Including
how to resolve conflicts between the resource ID in plug-ins, how to use
fragments in plug-ins, how to replace HTML5 with Activity, how to use
ProGuard in plug-ins, how to reduce the size of plug-ins, how to download
a SO file dynamically, and how to support the Android O and P systems
with plug-ins.

Chapter 11 summarizes all the plug-in techniques mentioned in this
book.

CONTACTING THE AUTHORS

If you have suggestions, remarks, or questions on plug-in techniques and
sample code, please contact the author on: 16230091@qq.com.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 1

Plug-Ins from the
Past to the Future

OOGLE PLAY HAS A strict app auditing strategy. For example, it for-
bids any app to download another app to prevent it from download-
ing bad content, pornographic and violent content, for example.

In addition, Google Play forbids app developers from modifying
the original behavior of the API of the Android system, which is not
open to the app developers. For example, the method addAssetPath()
of the AssetManager, and the method currentActivityThread() of the
ActivityThread. Also, Android P launched a new mechanism named
the grey-list and black-list. If the developer modifies the APIs through
the two lists above, these APIs will print a warning or return null
directly.

The auditing strategy in the Chinese app market is less strict.
Downloading and launching are allowed and there are two main tech-
niques widely used in China; one is plug-in, the other one is hot-fix.

1.1 ANDROID PLUG-INS IN CHINA

The plug-in technique separates one app into a lot of small apps for dif-
ferent business purposes; the OTA* app, for example, consists of hotels,
flights, cars, and other domains. We can separate these domains into sev-
eral small apps, such as a hotel app, flight app, and car app, and all these
small apps are called plug-in apps. As all the businesses are separated into

* OTA: Online Travel Agent

2 =m Android App-Hook and Plug-In Technology

different plug-in apps, only the home page is left in the main app (and is
called the Hostapp). When users click the button in the Hostapp, it will
navigate to the small apps.

In traditional app coding strategy, all the code and logic should be in
one app. When we find bugs in the app, there is only one way to solve this
online bug; it is to package this app again and submit it to the Android app
market. However, the users must download the latest version of this app
to remedy the bugs. This is not a good solution; it’s not user-friendly. Most
users don’t want to waste time updating an app.

Android plug-ins are a very good solution to the problem above. If there
is a bug in one plug-in, we just need to package this plug-in app again, and
then put this new plug-in on the remote server. When the app user opens
the Hostapp, it will download this new plug-in in the background thread
automatically. When downloaded successfully, the user needs to restart
the app and the bugs will have been eliminated from the app.

The plug-in technique is not only used to fix bugs but is also suitable for
rapid software development. In traditional app development, you launch
a new version of the app every month. It is very common for a very big
company to have 100 product requirements needing to be coded within
one month. Any delay in development causes some products to launch
later than planned. By using the plug-in technique, the different apps can
be launched individually; there will be no time limit.

In China, the hot-fix technique was developed using similar ideas to
plug-ins. The hot-fix technique is useful for fixing online bugs. When app
developers find online bugs, they can fix the codes and then package the
code modification into a zip file; then upload this zip file to the remote
server, so that users can download this zip file dynamically. After the users
have downloaded the zip successfully, the app will decompose this zip file
and substitute the old code with the new code in the zip file.

The plug-in technique and hot-fix technique were developed using
very similar ideas. The plug-in technique loads outside the apps by hook-
ing the Android internal system APIL The hook occurs in the Java code,
where the hot-fix is happening in NDK, which means C++. A hot-fix
replaces the pointer of the old method with a pointer of the new method.

This book focuses on the plug-in technique.

1.2 HISTORY OF ANDROID PLUG-IN TECHNIQUES

On July 27, 2012, the first milestone in Android plug-in technology was
reached. Yimin Tu, who worked for Dianping.com, released the first

Plug-Ins from the Past to the Future m 3

Android plug-in open source project, AndroidDynamicLoader*, and the
Dianping.com app was based on this framework. This plug-in frame-
work is based on Fragment. The app has only one activity; all the pages
are implemented by fragments and loaded by this activity. Some fragment
pages are plug-ins, which can be downloaded dynamically. This plug-in
framework was the first time anyone used the method addAssetPath() of
the AssetManager to handle the Resources in the plug-in app.

In 2013, 23Code appeared. 23Code provides a container where plug-
ins can be dynamically downloaded and run. We can write a variety of
UserControls and run them in 23Code. It is an Android plug-in frame-
work, but without source code and not widely known.

On March 27, 2013, Bokui, the developer of the Taobao app, shared
technical information on Taobao’s plug-in framework. The name of this
plug-in framework is Atlas’. In this topic, he introduced a way to modify
the internal API of Android, incremental update, downgrade, compatibil-
ity, and so on. It’s a pity that this plug-in framework is not an open source
project. We can’t learn more from this topic.

At 8:20 on March 30, 2014, the second milestone of Android plug-in
technology was reached. Yugang Ren published an Android plug-in proj-
ect named dynamic-load-apk*, which was not the same as the other plug-
in projects. It did not modify the internal methods of the Android system,
but solved problems from the application layer of the app by creating a
class named ProxyActivity to distribute and start the activity of the plug-
in. Yugang Ren invented a keyword called “that” in this framework, it’s
also called the “That” framework in this book. In fact, the creator does not
like this nickname and named it DL for short. When he developed this
framework, there were so many difficulties, because there was not enough
information on Android plug-in technology that could be referred to,
especially before 2014.

The “That” framework only has the implementation of Activity at the
beginning. With the contribution of Xiao Tian and Siyu Song, the imple-
mentation of Service was available later. In April 2015, the “That” frame-
work was stable.

Atthesametime, Tao Zhangwasalso contributing to theimplementation
of plug-in technology. In May 2014, after reading all the source codes of DL,

* https://github.com/mmin18/AndroidDynamicLoader
 http://v.youku.com/v_show/id_XNTMzM;jYzMzM2.html
* https://github.com/singwhatiwanna/dynamic-load-apk

https://github.com/
http://v.youku.com/
https://github.com/

4 m Android App-Hook and Plug-In Technology

he released his first plug-in framework, CJFrameForAndroid*. This design
was similar to the “That” framework. In addition, the CJFrameForAndroid
framework provided a plug-in solution called LaunchMode, which was a
very important contribution to plug-in techniques.

In November 2014, Houkx released a plug-in project named android-
pluginmgr on GitHub'. This framework first proposed registering a
StubActivity in the AndroidManifest.xml to cheat the AMS but opened an
Activity in a plug-in. At the same time, Houkx also found that all the per-
missions should be declared in the AndroidManifest.xml of the plug-in in
advance.

On December 8, 2014, there was good news, Android Studio V1.0 was
available. Android developers began to gradually abandon Eclipse to use
Android Studio. Android Studio is compiled and packaged with Gradle,
which makes the design of plug-in frameworks much simpler, eliminating
the inconvenience of using Eclipse to run the Android SDK.

Then, though, 2015 was coming. Lody, an 18-year-old boy, began using
Android in 2015 when he was a senior high school student. He had studied
the source code of the Android system for 3 years. His first well-known
open source project was TurboDex*, which could quickly load dex with
high speed. This is a very useful plug-in framework because it usually
takes a long time to load all the plug-ins for initialization.

At the end of March 2015, Lody released the plug-in project: Direct-
Load-ApkS. This framework combined two thoughts mentioned earlier;
one was Static-Proxy, from Yugang Ren’s “That” framework, the other
one was to cheat the AMS, from Houkx’s pluginmgr framework. Direct-
Load-Apk is not widely known, because Lody had too much school
homework.

The legend of Lody wasn't finished yet; he spent a lot of time on
Virtual App. Virtual App is like a virtual machine on the Android system.
It can install and run other apps. We'll discuss VirtualApp in Section 1.6.

In May 2015, Limpoxe released the plug-in framework:
Android-Plug-in-Framework®.

* https://github.com/kymjs/CJFrameForAndroid
 https://github.com/houkx/android-pluginmgr

¥ https://github.com/asLody/TurboDex

S http://git.oschina.net/oycocean/Direct-Load-apk

¢ https://github.com/limpoxe/Android-Plugin-Framework

https://github.com/
https://github.com/
https://github.com/
http://git.oschina.net/
https://github.com/

Plug-Ins from the Past to the Future m 5

In July 2015, Kaedea released the plug-in framework: Android-
dynamical-loading*.

On August 27, 2015, the third milestone of Android plug-in technology
was reached, Yong Zhang’s plug-in framework DroidPlugin® came out.
Yong Zhang was a developer at Qihoo360, and DroidPlugin was used in
his team. The magic of this framework is that any app can be loaded into
the HostApp. You can write a Host App based on this framework, and then
load apps written by others as plug-ins.

DroidPlugin is a powerful plug-in framework, but its disadvantage is
obvious. It modifies too many internal APIs of the Android system. Due to
the lack of literature on the DroidPlugin framework, it is difficult to under-
stand. There are many articles about DroidPlugin on blogs and forums,
but the best one is written by WeiShu Tian*. He also worked at Qihoo360
and had the opportunity to talk about DroidPlugin with its creator. He
then wrote a series of articles about the DroidPlugin, including the prin-
ciples of Binder, AIDL and the plug-in mechanism for the Activity, Service,
BroadcastReceiver, and ContentProvider.

The year 2015 was the first year of Android plug-in development. Not
only the “that” framework and DroidPlugin but many other plug-in frame-
works were also born at that time.

The project OpenAtlas was released on GitHub in May and was later
renamed ACDD. It proposes modifying the command aapt so that the
resource ID of the plug-in is no longer a fixed value of 0x7f, but can be
modified to a value such as 0x71. aapt is a command line tool supplied
by Android. It’s used to generate resource IDs during the packaging pro-
cess of an Android app. This technique solves the problem of resource
ID conflict after merging the resources of the plug-in and the Hostapp
together.

OpenAtlas hooks the method execStartActivity() of Instrumentation to
load the Activity of the plug-in dynamically.

In addition, OpenAtlas also modifies ContextWrapper, and r