

Android App-Hook
and Plug-In Technology

Jianqiang Bao

http://taylorandfrancis.com

Android App-Hook and
Plug-In Technology

Android App-Hook and Plug-In Technology

Jianqiang Bao

Android App-Hook
and Plug-In Technology

Jianqiang Bao

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by CRC Press, Taylor & Francis Group, 6000 Broken Sound Pkwy., NW, Suite 300, Boca Raton.,
FL 33487, under exclusive license granted by Beijing Huazhang Graphics & Information Co., Ltd./China
Machine Press for English language and throughout the world.

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-367-20700-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com﻿﻿
http://www.crcpress.com﻿﻿﻿﻿

v

Contents

Acknowledgments, xvii

About the Author, xix

About the Translators, xxi

Introduction, xxiii

Chapter 1  ▪  Plug-Ins from the Past to the Future	 1
1.1	� ANDROID PLUG-INS IN CHINA	 1

1.2	� HISTORY OF ANDROID PLUG-IN TECHNIQUES	 2

1.3	� USAGE OF PLUG-INS	 8

1.4	� ANOTHER CHOICE: REACT NATIVE	 9

1.5	� DO ALL COMPONENTS REQUIRE PLUG-INS?	 10

1.6	� DOUBLE-OPENING AND VIRTUAL MACHINE	 10

1.7	� FROM NATIVE TO HTML5	 11

1.8	� SUMMARY	 12

Chapter 2  ▪  The Underlying Knowledge of Android	 13
2.1	 OVERVIEW OF UNDERLYING ANDROID KNOWLEDGE	 13

2.2	 BINDER	 15

2.3	 AIDL	 17

2.4	 ACTIVITYMANAGERSERVICE	 22

2.5	 ACTIVITY WORKING PRINCIPLES	 23

2.5.1	 How to Launch an App	 23
2.5.2	 Starting the App Is Not So Simple	 24

vi    ◾   ﻿ Contents

2.5.2.1	 Click the App Icon in Launcher and
Send a Message to the AMS	 25

2.5.2.2	 The AMS Handles the Information
from the Launcher	 30

2.5.2.3	 The Launcher Goes to Sleep and Informs
the AMS Again	 31

2.5.2.4	 The AMS Creates a New Process	 33
2.5.2.5	 Start a New Process and Inform the AMS	 34
2.5.2.6	 The AMS Tells the New App Which

Activity to Launch	 35
2.5.2.7	 The Amazon App Starts an Activity	 35

2.6	 NAVIGATION IN APP	 37

2.7	 FAMILY OF CONTEXT	 38

2.8	 SERVICE	 41

2.8.1	 Start Service in a New Process	 41
2.8.1.1	 The App Sends a Message to the AMS to

Launch Service	 42
2.8.1.2	 The AMS Creates a New Process	 42
2.8.1.3	 Start a New Process and Inform the AMS	 43
2.8.1.4	 The AMS Sends Information to the

New Process	 43
2.8.1.5	 New Process to Launch Service	 43

2.8.2	 Start a Service in the Same Process	 44
2.8.3	 Bind a Service in the Same Process	 44

2.8.3.1	 The App Sends a Message to the AMS to
Bind a Service	 45

2.8.3.2	 The AMS Sends Two Messages to the
App Process	 45

2.8.3.3	 The App Receives the First Message	 45
2.8.3.4	 The App Receives the Second Message and

Sends a Binder Object to the AMS	 46
2.8.3.5	 AMS Informs the App	 46

﻿Contents    ◾    vii

2.9	 BROADCASTRECEIVER	 47

2.9.1	 Registration	 48
2.9.2	 Send a Broadcast	 49

2.10	 CONTENTPROVIDER	 51

2.10.1	 The Essence of the ContentProvider	 54
2.10.2	 The ASM	 54
2.10.3	 Communication between ContentProvider

and the AMS	 56
2.11	 THE PMS AND APP INSTALLATION PROCESS	 57

2.11.1	 PMS Introduction	 57
2.11.2	 App Installation Process	 58
2.11.3	 PackageParser	 59
2.11.4	 ActivityThread and PackageManager	 60

2.12	 CLASSLOADER	 61

2.13	 PARENT-DELEGATION	 63

2.14	 MULTIDEX	 63

2.15	 A MUSIC PLAYER APP	 65

2.15.1	 A Music Player Based on Two Receivers	 65
2.15.2	 A Music Player Based on One Receiver	 71

2.16	 SUMMARY	 77

Chapter 3  ▪  Reflection	 79
3.1	 BASIC REFLECTION	 79

3.1.1	 Get the Class Using a String	 80
3.1.1.1	 Get the Class Using a String	 80
3.1.1.2	 Class.forName	 80
3.1.1.3	 Property class	 80
3.1.1.4	 Property TYPE	 80

3.1.2	 Get the Property and Method of the Class	 81
3.1.2.1	 Get the Constructor of the Class	 81
3.1.2.2	 Invoke a Private Method of the Class	 83

viii    ◾   ﻿ Contents

3.1.2.3	 Invoke a Private and Static Method of the
Class	 84

3.1.2.4	 Get a Private Field of the Class and Modify
Its Value	 84

3.1.2.5	 Get the Private Static Field of the Class
and Modify Its Value	 85

3.1.3	 Generics and Singleton<T>	 86
3.2	 jOOR	 88

3.2.1	 Get a Class from a String	 89
3.2.1.1	 Get a Class from a String	 89
3.2.1.2	 Get a Class by Using on and get	 89

3.2.2	 Get the Property and Method of a Class	 90
3.2.2.1	 Get a Constructor of a Class	 90
3.2.2.2	 Get the Private Method of the Class	 90
3.2.2.3	 Get the Private and Static Method of

the Class	 91
3.2.2.4	 Get the Private Field of the Class	 91
3.2.2.5	 Get the Private and Static Field of the Class	 91

3.2.3	 Generics and Singleton<T>	 91
3.3	 ENCAPSULATED CLASSES OF THE BASIC REFLECTION	 93

3.3.1	 Get a Constructor	 93
3.3.2	 Invoke Instance Methods	 94
3.3.3	 Invoke Static Methods	 95
3.3.4	 Get the Field of the Class and Set Its Value	 95
3.3.5	 Handle Generics	 96

3.4	 FURTHER ENCAPSULATION OF THE REFLECTION	 97

3.4.1	 Reflect a Method with Only One Parameter or
without Parameters	 97

3.4.2	 Replace String with Class Type	 100
3.4.3	 Differences between the Static and

Instance Fields	 101
3.4.4	 Optimization of the Field Reflection	 102

3.5	 SUMMARY	 103

﻿Contents    ◾    ix

Chapter 4  ▪  Proxy Pattern	 105
4.1	 WHAT IS A PROXY PATTERN?	 105

4.1.1	 Remote Proxy	 106
4.1.2	 Write Log	 108

4.2	 STATIC-PROXY AND DYNAMIC-PROXY	 109

4.3	 A HOOK ON THE AMN	 111

4.4	 A HOOK ON THE PMS	 113

4.5	 SUMMARY	 114

Chapter 5  ▪  Hooking startActivity()	 115
5.1	 INVOKE STARTACTIVITY() IN TWO WAYS	 115

5.2	 HOOKING STARTACTIVITY() OF THE ACTIVITY	 116

5.2.1	 Solution 1: Hooking the Method
startActivityForResult of Activity	 118

5.2.2	 Solution 2: Hooking the Field mInstrumentation
of Activity	 118

5.2.3	 Solution 3: Hooking the Method getDefault()
of AMN	 121

5.2.4	 Solution 4: Hooking the Field mCallback of H	 125
5.2.5	 Solution 5: Hooking Instrumentation Again	 128

5.3	 HOOKING THE METHOD STARTACTIVITY OF
CONTEXT	 131

5.3.1	 Solution 6: Hooking the Field mInstrumentation of
ActivityThread	 131

5.3.2	 Which Solution Is the Best?	 133
5.4	 LAUNCH AN ACTIVITY NOT DECLARED IN

ANDROIDMANIFEST.XML	 133

5.4.1	 How to Hook AMN	 133
5.4.2	 First Half of the Hook	 135
5.4.3	 Second Half of the Hook: Hooking the Field

mCallback of H	 139
5.4.4	 Second Half of the Hook: Hooking the

mInstrumentation Field of ActivityThread	 141
5.5	 SUMMARY	 143

x    ◾   ﻿ Contents

Chapter 6  ▪  The Basic Concepts of Plug-In Techniques	 145
6.1	 LOADING EXTERNAL DEX	 145

6.2	 INTERFACE-ORIENTED PROGRAMMING	 148

6.3	 PLUG-IN THINNING	 151

6.4	 DEBUGGING IN PLUG-INS	 154

6.5	 APPLICATION PLUG-IN SOLUTIONS	 156

6.6	 SUMMARY	 158

Chapter 7  ▪  Resources in Plug-In	 159
7.1	 HOW TO LOAD RESOURCES IN ANDROID	 159

7.1.1	 Types of Resources	 159
7.1.2	 Resources and AssetManager	 160

7.2	 PLUG-IN SOLUTIONS OF RESOURCES	 161

7.3	 SOLUTIONS FOR CHANGING SKINS	 166

7.4	 ANOTHER PLUG-IN SOLUTION FOR
CHANGING SKINS	 178

7.5	 SUMMARY	 179

Chapter 8  ▪  The Plug-In Solution of Four Components	 181
8.1	 THE SIMPLEST PLUG-IN SOLUTION	 181

8.1.1	 Pre-Declare Activity and Service of the Plug-In in
the HostApp’s AndroidManifest.xml	 182

8.1.2	 Combine the Dex	 183
8.1.3	 Start a Service of the Plug-In	 184
8.1.4	 Resources in Activity	 185

8.2	 A PLUG-IN SOLUTION FOR ACTIVITY	 188

8.2.1	 Launch an Activity of a Plug-In Not Declared in
the AndroidManifest.xml of the HostApp	 188

8.2.2	 Solution 1: Based on Dynamic-Proxy	 193
8.2.2.1	 The Process of Launching an Activity	 193
8.2.2.2	 Add a Plug-In Activity to the Cache	 196
8.2.2.3	 Solution 1 of Loading Class in a Plug-In:

Create DexClassLoader for Each
Plug-In apk	 201

8.2.2.4	 Hooking More Classes	 202

﻿Contents    ◾    xi

8.2.3	 Solution 2: Merge All the Plug-In Dexes into One
Array	 205

8.2.4	 Plug-In Solution of Resources	 208
8.2.5	 Support LaunchMode in Plug-In	 208
8.2.6	 Solution 3: Hook ClassLoader	 212

8.3	 THE PLUG-IN SOLUTION FOR SERVICE	 216

8.3.1	 The Relationship Between Service and Activity	 216
8.3.2	 StubService	 218
8.3.3	 Plug-In Solution to startService()	 220
8.3.4	 Plug-In Solution of bindService	 226

8.4	 A PLUG-IN SOLUTION FOR BROADCASTRECEIVER	 229

8.4.1	 Receiver Overview	 229
8.4.2	 A Plug-In Solution for Dynamic Receiver	 231
8.4.3	 A Plug-In Solution for Static Receiver	 231
8.4.4	 A Final Plug-In Solution for Static Receiver	 233

8.5	 A PLUG-IN SOLUTION FOR CONTENTPROVIDER	 239

8.5.1	 The Basic Concept of ContentProvider	 239
8.5.2	 A Simple Example of ContentProvider	 239
8.5.3	 A Plug-In Solution for ContentProvider	 242
8.5.4	 The Right Time to Install a ContentProvider

Plug-In	 245
8.5.5	 The Forwarding Mechanism of ContentProvider	 246

8.6	 SUMMARY	 247

Chapter 9  ▪  A Plug-In Solution Based on Static-Proxy	 249
9.1	 A PLUG-IN SOLUTION FOR ACTIVITY BASED ON

STATIC-PROXY	 249

9.1.1	 The Idea of Static-Proxy	 249
9.1.2	 The Simplest Example of Static-Proxy	 250

9.1.2.1	 Jump from the HostApp to the Plug-In	 251
9.1.2.2	 Communication between ProxyActivity

and Plug-In Activity	 252
9.1.2.3	 The Logic of Activity in the Plug-In	 255

9.1.3	 Jump in the Plug-In	 255

xii    ◾   ﻿ Contents

9.1.4	 Eliminate the Keyword “that”	 256
9.1.5	 Jump Out	 259

9.1.5.1	 Preparation for Jumping Out	 259
9.1.5.2	 Jump to Another Plug-In	 260
9.1.5.3	 Jump to the HostApp	 260

9.1.6	 Use Interface-Oriented Programming in Static-Proxy	 261
9.1.7	 Support for LaunchMode	 267

9.1.7.1	 Overview of LaunchMode	 267
9.1.7.2	 Plug-In Solutions for LaunchMode	 269

9.2	 THE PLUG-IN SOLUTION FOR SERVICE AND
BROADCASTRECEIVER BASED ON STATIC-PROXY	 271

9.2.1	 Static-Proxy in Service	 271
9.2.1.1	 Issue 1	 276
9.2.1.2	 Issue 2	 277
9.2.1.3	 Issue 3	 278

9.2.2	 Support bindService()	 278
9.2.3	 StubService	 280
9.2.4	 The Last Solution for Service Plug-Ins: Integration

with Dynamic-Proxy and Static-Proxy	 283
9.2.4.1	 Parse Service in the Plug-In	 283
9.2.4.2	 Create a Service Object Using Reflection	 285
9.2.4.3	 ProxyService and ServiceManager	 287
9.2.4.4	 bindService() and unbindService()	 294

9.2.5	 Static-Proxy in BroadcastReceiver	 301
9.3	 SUMMARY	 305

Chapter 10  ▪  Related Plug-In Techniques	 307
10.1	 RESOLVE THE CONFLICTS BETWEEN RESOURCES OF

THE PLUG-INS	 307

10.1.1	 The Process of App Packaging	 307
10.1.2	 Hook aapt	 308

10.1.2.1	 Modify and Generate a New aapt Command	 308
10.1.2.2	 Using This New aapt Command in

the Project	 314

﻿Contents    ◾    xiii

10.1.3	 public.xml	 316
10.1.4	 Plug-In Uses Resources in the HostApp	 318

10.2	 A PLUG-IN FRAMEWORK BASED ON FRAGMENT	 320

10.2.1	 AndroidDynamicLoader Overview	 320
10.2.2	 A Simple Plug-In Sample Based on Fragment	 321
10.2.3	 Jumping Between Fragments	 322
10.2.4	 Jump from the Plug-In	 324

10.3	 DOWNGRADE	 326

10.3.1	 From Activity to HTML5	 328
10.3.2	 From HTML5 to Activity	 334
10.3.3	 Support for the Backpress Button	 340

10.4	 PROGUARD FOR PLUG-INS	 341

10.4.1	 Basic Obfuse Rules for Plug-Ins	 341
10.4.2	 Obfuse Without a Common Library	 342
10.4.3	 Obfusing with a Common Library	 345

10.4.3.1	 Use MultiDex	 346
10.4.3.2	 Modify the ProGuard File	 349
10.4.3.3	 Remove Redundant Dexes from

plugin1.apk	 350
10.5	 INCREMENTAL UPDATE	 352

10.5.1	 The Basic Concept of an Incremental Update	 352
10.5.2	 Create an Incremental Package	 353
10.5.3	 Apply Permissions	 353
10.5.4	 Merge Incremental Package	 354

10.6	 A PLUG-IN SOLUTION FOR SO FILES	 356

10.6.1	 Write a Hello-World SO	 356
10.6.1.1	 Download NDK	 356
10.6.1.2	 Create a Project to Generate SO	 357

10.6.2	 Using SO	 362
10.6.3	 The Principle of Loading SO	 363

10.6.3.1	 Compiling SO	 364
10.6.3.2	 The Process of Loading SO	 365

xiv    ◾   ﻿ Contents

10.6.3.3	 Two Ways to Load SO	 365
10.6.3.4	 The Relationship between ClassLoader

and SO	 368
10.6.4	 A Plug-In Solution Based on System.load()	 368
10.6.5	 An SO Plug-In Solution Based on System.

loadLibrary()	 372
10.7	 HOOKING THE PACKAGING PROCESS	 373

10.7.1	 Gradle Plug-In Project	 373
10.7.1.1	 Create Gradle Plug-In Project	 373
10.7.1.2	 Extension	 376
10.7.1.3	 The Hook App Packaging Process	 377

10.7.2	 Modify resources.arsc	 379
10.7.2.1	 How to Find Resources in Android	 379
10.7.2.2	 Function of aapt	 380
10.7.2.3	 The Principle of Gradle-Small	 380
10.7.2.4	 How to Use Gradle-Small	 381
10.7.2.5	 The Family of Plug-Ins Defined in

Gradle-Small	 381
10.7.2.6	 The Family of Editors Defined in

Gradle-Small	 385
10.8	 COMPATIBILITY WITH ANDROID O AND P	 387

10.8.1	 Compatibility with Android O	 388
10.8.1.1	 Refactor of AMN	 388
10.8.1.2	 The Story of Element and DexFile	 390

10.8.2	 Compatibility with Android P	 393
10.8.2.1	 The Modification of the Class H	 393
10.8.2.2	 The Refactoring of the Class Instrumentation	 401

10.9	 SUMMARY	 404

Chapter 11  ▪  Summary of Plug-In Technology	 405
11.1	 PLUG-IN ENGINEERING	 405

11.2	 CLASS LOADING IN THE PLUG-IN	 405

11.3	 WHICH CLASS OR INTERFACE CAN BE HOOKED?	 406

﻿Contents    ◾    xv

11.4	 A PLUG-IN SOLUTION FOR ACTIVITY	 407

11.5	 A PLUG-IN SOLUTION FOR RESOURCES	 407

11.6	 USE FRAGMENT IN THE PLUG-IN	 408

11.7	 PLUG-IN SOLUTIONS FOR SERVICE,
CONTENTPROVIDER, AND BROADCASTRECEIVER	 409

11.7.1	 A Plug-In Solution for Service	 409
11.7.2	 A Plug-In Solution for BroadcastReceiver	 409
11.7.3	 A Plug-In Solution for ContentProvider	 410

11.8	 SUMMARY	 410

APPENDIX A: SAMPLE CODE LIST, 411

INDEX, 415

http://taylorandfrancis.com

xvii

Acknowledgments

I owe a big thanks to Yi Wu, the editor of this book in Chinese, for
helping me contact CRC Press to publish this book in English.
I thank Manyun Guo, my wife, for accompanying and encouraging me

during the period I spent writing.
Special thanks to my 21 friends from Android forums for helping me

translate this Chinese book into English.
I thank Yong Zhang, Yugang Ren, Lody, Guangliang Lin, Jian Huang,

and a lot of other friends. Without your endless support I wouldn’t have
been able to talk as deeply about this technique domain.

http://taylorandfrancis.com

xix

About the Author

Jianqiang Bao is a senior Android app developer.
For more than 15 years, he has developed enterprise
solutions using Silverlight, ASP.NET, WP7, Android,
and iOS. He has worked at HP, Microsoft, Tuniu
and Qunar. He has a technique blog at http://www.
cnblogs.com/jax; his GitHub is https://github.com/
BaoBaoJianqiang.

http://www.cnblogs.com/
http://www.cnblogs.com/
https://github.com/
https://github.com/

http://taylorandfrancis.com

xxi

About the Translators

Many people have participated in this book’s translation from
Chinese to English, the list is as follows:

Chapter Translator Reviewer

1 Hongwei Cao Han Yan
2 Chunfei Shi, Xuelong Wang, Xiaohui Li Fangxiang Deng
3 Wenpeng Li Jianqiang Bao
4 Xizhi Pan Jinyu Guo
5 Jian Feng Guiming Zou
6 Xiaohui Li Zelong Gong
7 Jinyu Guo Tong Peng
8 Tianhong Han

Guiming Zou
Xuelong Wang
Yupeng Wang
Sheng Li

Wenhan Xiao
Sheng Li
Jian Feng

9 Alan Pan T
Siyang Long

Xizhi Pan

10 Shuaifeng Ma
Fangxiang Deng
Tong Peng
Zhaoyun
Zelong Gong
Hao Yang
Jinyu Guo

Tong Peng
Jian Feng
Fangxiang Deng
Siyang Long
Guiming Zou
Xizhi Pan

11 Jinyu Guo Siyang Long

http://taylorandfrancis.com

xxiii

Introduction

Welcome to the first edition of Android App-Hook and Plug-In
Technology

WHAT THIS BOOK WILL TEACH YOU
This book will teach you everything you need to know to master Android
plug-in techniques.

This book introduces the Android plug-in technique. An app can be
downloaded as an apk file in a zip file from the remote server. We call this
zip file a plug-in. This app can invoke a class in this plug-in. This means
that we can update the content of the app without republishing it again.

Google Play has a strict app auditing strategy. It forbids any app from
downloading another app to prevent it from downloading malicious con-
tent or pornographic and violent content. Thus, we cannot publish an app
using this plug-in technique on Google Play.

This book will teach you the underlying knowledge of the Android sys-
tem, which help you master Android technique at a high level.

After reading this book, you will be familiar with several aspects of the
Android system, including the following content:

•	 Binder and AIDL mechanisms.

•	 The working mechanisms of Activity, Service, ContentProvider, and
BroadcastReceiver.

•	 Communication between ActivityManagerService and four
components.

•	 How to launch an app.

•	 LaunchMode.

•	 The families of Context and ClassLoader.

xxiv    ◾   ﻿ Introduction

•	 MultiDex.

•	 How to load SO.

•	 PackageManagerService and how to install an app in the Android
system.

•	 Reflection.

•	 The Proxy.newProxyInstance() method for adding an external func-
tion to the original API.

WHO IS THIS BOOK FOR?
Don’t use the plug-in techniques introduced in this book on Google Play;
it’s forbidden.

This book introduces a lot of knowledge about the Android system
which is useful to app developers.

THE SAMPLE CODE
The sample code in this book is on my Github: https://github.com/
BaoBaoJianqiang/.

There are 74 demos in this book, and I list the address of each demo in
the corresponding chapter and section.

In Appendix A, I list all the demos with their corresponding chapter
and section.

THE BOOK’S STRUCTURE
This book consists of 11 chapters: chapters 1 to 5 introduces the basic
knowledge of plug-in techniques; chapters 6 to 10 introduces several solu-
tions for plug-in programming issues; Chapter 11 is an overall summary.

Below is a brief overview of the chapters.
Chapter 1 introduces the history of Android plug-in techniques.
Chapter 2 introduces the underlying Android system, including

Binder and AIDL, ActivityManagerService, PackageManagerService,
ActivityThread, LoadedApk, and so on. As this book is written for app
developers, I illustrate these concepts with a series of pictures rather than
code.

Chapter 3 introduces the syntax of reflection, and the encapsulation
of the reflection, including jOOR, a famous Java reflection framework.
Reflection is the basis of plug-in techniques.

https://github.com/
https://github.com/

﻿Introduction    ◾    xxv

Chapter 4 introduces proxy patterns, including Static-Proxy and
Dynamic-Proxy, these two proxies generate two important plug-in
frameworks, DroidPlugin and DL. Proxy.newProxyInstance() is a widely
used plug-in, and we use this method to hook IActivityManager and
IPackageManager in this chapter.

Chapter 5 introduces how to start an Activity not declared in the
AndroidManifest.xml, based on the Proxy.newProxyInstance() introduced
in Chapter 4.

Chapter 6 introduces the basic knowledge of plug-ins, including
how to debug from the Hostapp to the plug-in, and interface-oriented
programming.

Chapter 7 introduces how to load Resources into plug-ins. AssetManager
and Resources are key points, especially the method addAssetPath() of
AssetManager. Based on this technique, we can dynamically change a skin.

Chapter 8 introduces plug-in solutions for Activity, Service,
BroadcastReceiver, and ContentProvider. A different mechanism of these
four components results in different plug-in solutions.

Chapter 9 introduces a plug-in framework based on Static-Proxy. The
creator of this framework invented a new keyword “that,” so this frame-
work is also called “That.” “That” is a very smart framework; it’s also well
known as Puppet.

Chapter 10 considers other related plug-in techniques. Including
how to resolve conflicts between the resource ID in plug-ins, how to use
fragments in plug-ins, how to replace HTML5 with Activity, how to use
ProGuard in plug-ins, how to reduce the size of plug-ins, how to download
a SO file dynamically, and how to support the Android O and P systems
with plug-ins.

Chapter 11 summarizes all the plug-in techniques mentioned in this
book.

CONTACTING THE AUTHORS
If you have suggestions, remarks, or questions on plug-in techniques and
sample code, please contact the author on: 16230091@qq.com.

http://taylorandfrancis.com

1

C h a p t e r 1

Plug-Ins from the
Past to the Future

Google Play has a strict app auditing strategy. For example, it for-
bids any app to download another app to prevent it from download-

ing bad content, pornographic and violent content, for example.
In addition, Google Play forbids app developers from modifying

the original behavior of the API of the Android system, which is not
open to the app developers. For example, the method addAssetPath()
of the AssetManager, and the method currentActivityThread() of the
ActivityThread. Also, Android P launched a new mechanism named
the grey-list and black-list. If the developer modifies the APIs through
the two lists above, these APIs will print a warning or return null
directly.

The auditing strategy in the Chinese app market is less strict.
Downloading and launching are allowed and there are two main tech-
niques widely used in China; one is plug-in, the other one is hot-fix.

1.1 � ANDROID PLUG-INS IN CHINA
The plug-in technique separates one app into a lot of small apps for dif-
ferent business purposes; the OTA* app, for example, consists of hotels,
flights, cars, and other domains. We can separate these domains into sev-
eral small apps, such as a hotel app, flight app, and car app, and all these
small apps are called plug-in apps. As all the businesses are separated into

*	 OTA: Online Travel Agent

Android App-Hook and Plug-In Technology Plug-Ins from the Past to the Future

2    ◾    Android App-Hook and Plug-In Technology﻿

different plug-in apps, only the home page is left in the main app (and is
called the Hostapp). When users click the button in the Hostapp, it will
navigate to the small apps.

In traditional app coding strategy, all the code and logic should be in
one app. When we find bugs in the app, there is only one way to solve this
online bug; it is to package this app again and submit it to the Android app
market. However, the users must download the latest version of this app
to remedy the bugs. This is not a good solution; it’s not user-friendly. Most
users don’t want to waste time updating an app.

Android plug-ins are a very good solution to the problem above. If there
is a bug in one plug-in, we just need to package this plug-in app again, and
then put this new plug-in on the remote server. When the app user opens
the Hostapp, it will download this new plug-in in the background thread
automatically. When downloaded successfully, the user needs to restart
the app and the bugs will have been eliminated from the app.

The plug-in technique is not only used to fix bugs but is also suitable for
rapid software development. In traditional app development, you launch
a new version of the app every month. It is very common for a very big
company to have 100 product requirements needing to be coded within
one month. Any delay in development causes some products to launch
later than planned. By using the plug-in technique, the different apps can
be launched individually; there will be no time limit.

In China, the hot-fix technique was developed using similar ideas to
plug-ins. The hot-fix technique is useful for fixing online bugs. When app
developers find online bugs, they can fix the codes and then package the
code modification into a zip file; then upload this zip file to the remote
server, so that users can download this zip file dynamically. After the users
have downloaded the zip successfully, the app will decompose this zip file
and substitute the old code with the new code in the zip file.

The plug-in technique and hot-fix technique were developed using
very similar ideas. The plug-in technique loads outside the apps by hook-
ing the Android internal system API. The hook occurs in the Java code,
where the hot-fix is happening in NDK, which means C++. A hot-fix
replaces the pointer of the old method with a pointer of the new method.

This book focuses on the plug-in technique.

1.2 � HISTORY OF ANDROID PLUG-IN TECHNIQUES
On July 27, 2012, the first milestone in Android plug-in technology was
reached. Yimin Tu, who worked for Dianping.com, released the first

Plug-Ins from the Past to the Future﻿    ◾    3

Android plug-in open source project, AndroidDynamicLoader*, and the
Dianping.com app was based on this framework. This plug-in frame-
work is based on Fragment. The app has only one activity; all the pages
are implemented by fragments and loaded by this activity. Some fragment
pages are plug-ins, which can be downloaded dynamically. This plug-in
framework was the first time anyone used the method addAssetPath() of
the AssetManager to handle the Resources in the plug-in app.

In 2013, 23Code appeared. 23Code provides a container where plug-
ins can be dynamically downloaded and run. We can write a variety of
UserControls and run them in 23Code. It is an Android plug-in frame-
work, but without source code and not widely known.

On March 27, 2013, Bokui, the developer of the Taobao app, shared
technical information on Taobao’s plug-in framework. The name of this
plug-in framework is Atlas†. In this topic, he introduced a way to modify
the internal API of Android, incremental update, downgrade, compatibil-
ity, and so on. It’s a pity that this plug-in framework is not an open source
project. We can’t learn more from this topic.

At 8:20 on March 30, 2014, the second milestone of Android plug-in
technology was reached. Yugang Ren published an Android plug-in proj-
ect named dynamic-load-apk‡, which was not the same as the other plug-
in projects. It did not modify the internal methods of the Android system,
but solved problems from the application layer of the app by creating a
class named ProxyActivity to distribute and start the activity of the plug-
in. Yugang Ren invented a keyword called “that” in this framework, it’s
also called the “That” framework in this book. In fact, the creator does not
like this nickname and named it DL for short. When he developed this
framework, there were so many difficulties, because there was not enough
information on Android plug-in technology that could be referred to,
especially before 2014.

The “That” framework only has the implementation of Activity at the
beginning. With the contribution of Xiao Tian and Siyu Song, the imple-
mentation of Service was available later. In April 2015, the “That” frame-
work was stable.

At the same time, Tao Zhang was also contributing to the implementation
of plug-in technology. In May 2014, after reading all the source codes of DL,

*	 https​://gi​thub.​com/m​min18​/Andr​oidDy​namic​Loade​r
†	 http:​//v.y​ouku.​com/v​_show​/id_X​NTMzM​jYzMz​M2.ht​ml
‡	 https​://gi​thub.​com/s​ingwh​atiwa​nna/d​ynami​c-loa​d-apk​

https://github.com/
http://v.youku.com/
https://github.com/

4    ◾    Android App-Hook and Plug-In Technology﻿

he released his first plug-in framework, CJFrameForAndroid*. This design
was similar to the “That” framework. In addition, the CJFrameForAndroid
framework provided a plug-in solution called LaunchMode, which was a
very important contribution to plug-in techniques.

In November 2014, Houkx released a plug-in project named android-
pluginmgr on GitHub†. This framework first proposed registering a
StubActivity in the AndroidManifest.xml to cheat the AMS but opened an
Activity in a plug-in. At the same time, Houkx also found that all the per-
missions should be declared in the AndroidManifest.xml of the plug-in in
advance.

On December 8, 2014, there was good news, Android Studio V1.0 was
available. Android developers began to gradually abandon Eclipse to use
Android Studio. Android Studio is compiled and packaged with Gradle,
which makes the design of plug-in frameworks much simpler, eliminating
the inconvenience of using Eclipse to run the Android SDK.

Then, though, 2015 was coming. Lody, an 18-year-old boy, began using
Android in 2015 when he was a senior high school student. He had studied
the source code of the Android system for 3 years. His first well-known
open source project was TurboDex‡, which could quickly load dex with
high speed. This is a very useful plug-in framework because it usually
takes a long time to load all the plug-ins for initialization.

At the end of March 2015, Lody released the plug-in project: Direct-
Load-Apk§. This framework combined two thoughts mentioned earlier;
one was Static-Proxy, from Yugang Ren’s “That” framework, the other
one was to cheat the AMS, from Houkx’s pluginmgr framework. Direct-
Load-Apk is not widely known, because Lody had too much school
homework.

The legend of Lody wasn’t finished yet; he spent a lot of time on
VirtualApp. VirtualApp is like a virtual machine on the Android system.
It can install and run other apps. We’ll discuss VirtualApp in Section 1.6.

In May 2015, Limpoxe released the plug-in framework:
Android-Plug-in-Framework¶.

*	 https​://gi​thub.​com/k​ymjs/​CJFra​meFor​Andro​id
†	 https​://gi​thub.​com/h​oukx/​andro​id-pl​uginm​gr
‡	 https://github.com/asLody/TurboDex
§	 http:​//git​.osch​ina.n​et/oy​cocea​n/Dir​ect-L​oad-a​pk
¶	 https​://gi​thub.​com/l​impox​e/And​roid-​Plugi​n-Fra​mewor​k

https://github.com/
https://github.com/
https://github.com/
http://git.oschina.net/
https://github.com/

Plug-Ins from the Past to the Future﻿    ◾    5

In July 2015, Kaedea released the plug-in framework: Android-
dynamical-loading*.

On August 27, 2015, the third milestone of Android plug-in technology
was reached, Yong Zhang’s plug-in framework DroidPlugin† came out.
Yong Zhang was a developer at Qihoo360, and DroidPlugin was used in
his team. The magic of this framework is that any app can be loaded into
the HostApp. You can write a HostApp based on this framework, and then
load apps written by others as plug-ins.

DroidPlugin is a powerful plug-in framework, but its disadvantage is
obvious. It modifies too many internal APIs of the Android system. Due to
the lack of literature on the DroidPlugin framework, it is difficult to under-
stand. There are many articles about DroidPlugin on blogs and forums,
but the best one is written by WeiShu Tian‡. He also worked at Qihoo360
and had the opportunity to talk about DroidPlugin with its creator. He
then wrote a series of articles about the DroidPlugin, including the prin-
ciples of Binder, AIDL and the plug-in mechanism for the Activity, Service,
BroadcastReceiver, and ContentProvider.

The year 2015 was the first year of Android plug-in development. Not
only the “that” framework and DroidPlugin but many other plug-in frame-
works were also born at that time.

The project OpenAtlas was released on GitHub in May and was later
renamed ACDD. It proposes modifying the command aapt so that the
resource ID of the plug-in is no longer a fixed value of 0x7f, but can be
modified to a value such as 0x71. aapt is a command line tool supplied
by Android. It’s used to generate resource IDs during the packaging pro-
cess of an Android app. This technique solves the problem of resource
ID conflict after merging the resources of the plug-in and the Hostapp
together.

OpenAtlas hooks the method execStartActivity() of Instrumentation to
load the Activity of the plug-in dynamically.

In addition, OpenAtlas also modifies ContextWrapper, and rewrites
the method getResources(). Because the Activity is the subclass of the
ContextWrapper, the Activity of the plug-in inherits the method getRe-
sources() to get the resources of the plug-in. We can’t use this method any-
more; we need to create a parent class named BasePluginActivity, all the

*	 https​://gi​thub.​com/k​aedea​/andr​oid-d​ynami​cal-l​oadin​g
†	 https://github.com/Qihoo360/DroidPlugin
‡	 Blog address: http://weishu.me

https://github.com/
https://github.com/
http://weishu.me

6    ◾    Android App-Hook and Plug-In Technology﻿

Activities of the plug-in should inherit BasePluginActivity and override the
method getResources() to fetch the resources of the plug-in.

Ctrip.com released their plug-in framework DynamicAPK* in October
2015, which was based on the OpenAtlas framework.

At the end of December 2015, Guangliang Lin published his plug-in
framework, Small†. At that time, he worked for a car trading platform and
his framework was used for this platform.

Small has a lot of interesting features:

•	 Merges all dex files of the plug-in into a dex array of the Hostapp.
This means the HostApp can load any class of plug-in.

•	 Declares StubActivity in the AndroidManifest.xml to cheat the AMS.
This solution is the same as the DroidPlugin.

•	 Pre-declares Service, Receiver, and ContentProvider of the plug-in in
the AndroidManifest.xml of the Hostapp to support the other three
components.

•	 Invokes the method addAssetPath() of the AssetManager, and all the
resources of the plug-in are merged into the resources of the Hostapp.
If a resource ID conflict occurs, Small modifies R.java and resource.
arsc in the packaging process. After these two files are generated,
Small will change the resource ID in these two files; for example,
from 0x7f to 0x71.

At the end of 2015, all the technical issues of plug-ins were resolved. That
year, the plug-in technology was very varied. A lot of open source plug-in
frameworks were born in 2015. These frameworks were almost all invented
by individuals. It was basically divided into two categories. Dynamic-
Hook was invented by Yong Zhang in DroidPlugin, and Static-Proxy was
invented by Yugang Ren in the “That” framework.

In 2015, Android hot-fix technology and React Native appeared in the
app developer’s world, which provided the same advantages as Android
plug-in technology. Android plug-in technology was no longer the only
choice for app developers.

*	 https​://gi​thub.​com/C​tripM​obile​/Dyna​micAP​K
†	 https://github.com/wequick/Small

https://github.com/
https://github.com/

Plug-Ins from the Past to the Future﻿    ◾    7

Since 2016, many internet companies have released their plug-in frame-
works. These frameworks focus on stability and compatibility to benefit
their millions of daily users.

Let us enumerate these frameworks in order:

•	 In August 2016, iReader published its plug-in framework named
ZeusPlugin*.

•	 In March 2017, Alibaba published its plug-in framework named Atlas†.

In June 26, 2017, Qihoo360 published its second plug-in framework named
RePlugin‡, which is different from DroidPlugin.

On June 29, 2017, Didi published its plug-in framework named
VirtualApk§.

All the plug-in frameworks published on github by internet companies
focus on:

•	 Plug-in compatibility, including the impact of the upgrade of the
Android system on the plug-in framework, and the impact of differ-
ent mobile phone ROMs.

•	 Plug-in stability, for example, crashes.

•	 Management of plug-ins, including installation and uninstallation.

In spite of the fact that a few years have passed, various plug-in frame-
works have gradually become stable. Developers who are now engaged in
plug-in technology only need to pay attention to the annual upgrade of
the Android system and add code to be compatible with the latest updates.

With the maturity of the plug-in framework, many authors of plug-in
technology have begun to change their focus. Some of them are still stick-
ing with Android; for example, Yugang Ren is still working in the Android
domain; and some of them have moved to Blockchain where they focus on
writing smart contracts with the Go language every day.

*	 https​://gi​thub.​com/i​Reade​rAndr​oid/Z​eusPl​ugin
†	 https://github.com/alibaba/atlas
‡	 https://github.com/Qihoo360/RePlugin
§	 https://github.com/didi/VirtualAPK

https://github.com/
https://github.com/
https://github.com/
https://github.com/

8    ◾    Android App-Hook and Plug-In Technology﻿

Thanks to those who have contributed to plug-in technology, including
the authors of plug-in frameworks, as well as the authors who have written
a series of articles to introduce this technique.

1.3 � USAGE OF PLUG-INS
Once upon a time, we naively thought that Android plug-ins were intended
to add new features.

It took a lot of time and effort, but after the project was implemented
with plug-in frameworks, we discovered that 80% of the usage of plug-ins
was to fix online bugs. At this point, it has the same capabilities as hot-fix
techniques such as AndFix* and Tinker†, and even better than these hot-fix
frameworks.

The app always releases a new version every two weeks. Generally, the
new feature goes online at this point. On the other hand, in some compa-
nies, the release strategy of Android app is affected by iOS app releases in
the App Store.

In the time before plug-in frameworks, we were scared to write bugs; if
a serious bug appeared, we had to release a new version to fix this bug. The
app users would have to update the app to the newest version, and it’s not
user‑friendly to have to make frequent downloads to keep the app running
smoothly.

With the plug-in framework, developers don’t have to worry about the
quality of the code—if something is wrong, you can release a new version
to fix it quickly. After the app is released, each plug-in will have one or two
new releases every day.

The Android plug-in framework has become a bug-fixing tool and this
is something that we don’t want to see.

In fact, the plug-in framework is more suitable for MMORPG games.
There will always be new skins, or a new hero role available every few days,
even for adjusting the attributes. All of these do not need to be released as
a new version.

There is another use for plug-in technology, which is the ABTest, but it
is not used widely. When the product manager wants to determine which
will be selected from two styles of design, there will be two strategies
which are made into the two plug-in packages; 50% of the users download
strategy A, the other 50% download strategy B. Checking the results after

*	 https://github.com/alibaba/AndFix
†	 https://github.com/Tencent/tinker

https://github.com/
https://github.com/

Plug-Ins from the Past to the Future﻿    ◾    9

a week, such as the page conversion rate, will tell you which strategy is bet-
ter. This is called a data-driven product.

In the previous section, the componentization of Android was men-
tioned. That is, with the independence of the business unit, the Android
and iOS teams are split into their own business and have their own organi-
zation relationships. Therefore, it is necessary to split the different services
of hotels and flights into different modules. In the componentization of
Android, modules are still dependent on the aar file; we can use Maven to
manage these aar files.

The componentized model of Android is only applicable to the develop-
ment stage. Once there is a bug in the online release, or new features are
to be released, all modules must be packaged together again to deploy the
new release.

Plug-in technology is the final solution based on Android componen-
tization. At this point, each service module is no longer an aar file, but
an apk file, placed in the folder assets of the Hostapp. In this way, after
a release, some modules are updated, only the code of this module is
packaged again, an incremental package is generated, and it is put on the
remote server for the app users to download.

1.4 � ANOTHER CHOICE: REACT NATIVE
In 2015, React Native was born. At that time, few people paid attention to
it because it was still immature with only a few basic functions. Then, with
the next iteration of the React Native project, the functions were much
improved. Although there has not been a release version 1.0 so far, we find
that it is a perfect “plug-in” framework to support both Android and iOS
systems.

React Native is written based on JavaScript, packaged, and put on the
remote server for Android and iOS apps to download and use.

For small-sized or medium-sized companies and startups, who don’t
have the human and financial resources to develop a plug-in framework,
generally adopt a relatively stable, open source, and continuous updated
plug-in framework. However, it seems that iOS has no technical frame-
work, especially after the jsPatch (a hot-fix solution) was forbidden by
the App Store. Their best choice is React Native. Once the JavaScript is
recruited, it will be able to quickly iterate and release.

On React Native, there are already some books available. This book
mainly introduces Android plug-in technology. This section shows some
points that Android plug-in is not as good a technique as React Native.

10    ◾    Android App-Hook and Plug-In Technology﻿

1.5 � DO ALL COMPONENTS REQUIRE PLUG-INS?
In Android, Activity, Service, ContentProvider, and BroadcastReceiver are
the four major components.

Do all four components need to convert to plug-ins? Over the years, I
have been working on plug-in technology with this question.

I have worked in OTA companies for several years. This kind of app
is similar to e-commerce ones, including a complete set of payment pro-
cesses, and Activity is the most used; 200 or 300 Activities are not surpris-
ing. The other three components are rarely used.

Most apps in China have the same situation.
According to the technology stack, the app is divided into four domains:

•	 Game App. People have their own online update process. Many of
them use scripts like Lua.

•	 Mobile assistants, mobile phone guards, and the use of such applica-
tions for Service, Receiver, and ContentProvider.

•	 Music, video, and live video applications are very dependent on
Service and Receiver, in addition to more Activities.

•	 E-Commerce, social, news, and reading apps use a lot of Activities.
The use of the other three major components is not enough.

Different plug-in frameworks are suitable for different requirements. If
an app uses a lot of the Service, BroadcastReciever, and ContentProvider
components, the plug-in framework for this app must support all four
components in Android, but this plug-in framework is hard to maintain.
Otherwise, a plug-in framework which only supports Activity is enough
for a simple app.

1.6 � DOUBLE-OPENING AND VIRTUAL MACHINE
Since plug-ins will be replaced by React Native in the following years, what
is the future of plug-ins? The answer is virtual machine technology.

Some engineers already have experience of installing a virtual
machine on a computer. If the computer’s memory is large enough, you
can open multiple virtual machines at the same time. On each virtual
machine, you can log into Twitter with a different account, and can
then chat with yourself. Of course, chatting with yourself doesn’t make
any sense.

Plug-Ins from the Past to the Future﻿    ◾    11

Can we support installing one or more virtual machines on an
Android system? Lody, a college student, is doing such work. He has a
very famous open source project, VirtualApp, which is now in commer-
cial operation*.

With such a virtual machine system, we can open two Twitter apps
with a different account in only one mobile phone and chat with ourselves.

The multiple instances of technology that opens an app at the same
time is called double-opening. Some mobile phone systems in China now
support double-opening technology. You can see this option in the set-
tings of Android phones.

The technology of double-opening and virtual machines is outside of
this book’s scope.

1.7 � FROM NATIVE TO HTML5
Through the immense prosperity of app technology, I got my first job

in 2004; when the computer assembly industry was transitioning from
CS (Client/Server) to BS (Browser/Server) architecture. For example, if you
installed MSN on your computer, you can chat with your friends through
this software. After the technology of the internet grew up, you started to
move the original system into the website. This is BS architecture.

Compared to CS, BS was a thin client; many features were not sup-
ported by BS. Designers came up with the concept of a SmartClient, which
is a CS pattern. Outlook is a good sample. You can read and write email
offline without a network; it sends a written email automatically.

Then, Flash became hot. Flash was the originator of the web-rich client.
Based on Flash, there is Flex, which is now being adopted by more and
more companies. At this time, Microsoft also created Silverlight, which
is like Flash but on the web. At the same time, JavaScript was also work-
ing hard and became the final winner in the rich client space. A book on
JavaScript was very popular at that time; it is called “JavaScript Design
Patterns.”

JavaScript was only used for web visual effects in 2004. From 2005
onward, JavaScript has experienced additions with Ajax, jQuery,
ECMAScript 1 to 6, and so on. The frameworks of Angular, React, and
Vue have become extremely powerful and have been packaged due to
JavaScript as an “object-oriented” language.

*	 https://github.com/asLody/VirtualApp

https://github.com/

12    ◾    Android App-Hook and Plug-In Technology﻿

Compared to web technology, the app is taking the same development
path. In the first five years of mobile development, app developers used
basic syntax to write each app. The experience was not user-friendly. The
networking speed was not fast and many white screens were found in the
apps, and there were a lot of bugs and crashes. Over the following five year
of mobile development, however, more and more mobile techniques were
invented by app developers, such as RxJava, ButterKnife, jsPatch, Tinker,
and a lot of plug-in frameworks. The next stage is the transition from CS
to BS. The hybrid technology is the above-mentioned BS, but there are
many defects, especially the bad performance of web browsers. Then there
is React Native. HTML5 is also slow, but you can translate HTML5 into
Native code. I don't know which techniques will appear in the next five
years, but the trend is obvious. Android and iOS technology will not die;
on the other hand, HTML5 will become the main method for app devel-
opment in the coming years.

1.8 � SUMMARY
In this chapter, we reviewed the history of Android plug-in technology,
which is basically divided into two parts, Dynamic-Proxy and Static-Proxy.
All plug-in frameworks are based on these two parts. After the history
review, we found that plug-in technology was not accomplished at one
stroke, but it has experienced a process of gradual improvement.

Plug-in technology is not only used to fix bugs and dynamically release
new features. In the process of researching plug-in technology, we have
developed the Android virtual machine and double-opening technology.
This is a new technology area that can bypass Android system limitations
and run the app faster.

React Native was also mentioned, which also fixes bugs and dynamically
releases new features, just like Android plug-in technology. Which technol-
ogy is selected depends on whether the R&D team is based on HTML5 or
Android and depends on whether it will be released on Google Play.

13

C h a p t e r 2

The Underlying
Knowledge of Android

This chapter is based on a series of articles I wrote in 2017:
“Underlying Android knowledge for app developers.” It’s necessary

to master this knowledge before we study plug-in technology.

2.1 � OVERVIEW OF UNDERLYING ANDROID KNOWLEDGE
As early as when I was a junior Android developer, I was puzzled about
a lot of concepts, and I could not find answers to questions such as “how
to install apks in Android” or “how to start an Activity in Android.” On
the other hand, AIDL is mentioned in many books, but I haven’t used this
technique in my apps. The Android system has four important compo-
nents declared in the AndroidManifest.xml, i.e. Activity, ContentProvider,
BroadcastReceiver, and Service, but I mostly use Activity. I haven’t used
any of the other three components, like ContentProvider. I can currently
only study these three components in Android development books.

Because I am working in an OTA company, I am familiar with app
development. For this kind of app, it basically consists of a list page and
a detail page. Activity is widely used in this app; what we need to do is to
capsulate the complex network communications.

Almost all app developers have the same experiences.
There are many books that introduce the underlying knowledge of

Android, but they are written for the Android ROM developers. They are
not suitable for app developers to read and study.

Android App-Hook and Plug-In Technology The Underlying Knowledge of Android

14    ◾    Android App-Hook and Plug-In Technology﻿

So, for the past few years, I have been looking for such a kind of knowl-
edge, which helps app developers write code more efficiently but spend less
time studying the underlying code in the Android system.

There are two types of knowledge:

•	 Type 1: knowing the concept but not needing to master it in detail,
such as Zygote, SurfaceFlinger, and WMS. In fact, app developers
needn’t study Zygote. It is enough to know that Zygote is the entry
point of the Android system.

•	 Type 2: knowing the principles but not needing to read its imple-
mentation, such as with Binder. There are thousands of hundreds
of articles that introduce Binder, but these articles are not suitable
for app developers. App developers should master the architecture of
Binder, such as Binder Client, Binder Server, and ServiceManager, but
don’t spend time studying code implementation.

Communication between the AMS and the four components, such as
Activity, is based on a Binder. App developers should master which classes
act as a Binder Server and which classes act as a Binder Client. Sometimes
AMS acts as a Binder Server and Activity acts as a Binder Client; some-
times Activity acts as a Binder Server and AMS acts as a Binder Client. It’s
useful for app developers to learn AIDL.

I will introduce the following concepts in this chapter.

•	 Binder

•	 AIDL

•	 ActivityManagerService

•	 The working Principle of Activity, Service, ContentProvider, and
BroadcastReceiver

•	 PackageManagerService

•	 The installation process of an app

•	 ClassLoader and Parent-Delegation

•	 The family of Context

The Underlying Knowledge of Android﻿    ◾    15

2.2 � BINDER
Binder is used for cross-process communication.

There are too many articles about Binder, and each article introduces
knowledge from the Java layer to the C++ layer. But this is not helpful for
app developers. I want to introduce Binder without code implementation
in this section.

	 1)	Binder is divided into two processes, Client and Server.

Client and Server are relative. Whoever sends the message will be the
Client. Whoever receives the message will be the Server.

For example, two processes A and B; they use Binder to communicate
with each other, A sends a message to B, at this time A is the Binder Client,
B is the Binder Server; and then B sends a message to A, at this time B is
the Binder Client, A is the Binder Server.

	 2)	Figure 2.1 shows the basic architecture of Binder.

In Figure 2.1, ServiceManager is a container, and Binder Server and Binder
Client are both registered in this container. Binder Driver is responsible for
the communication between Binder Server and Binder Client.

ServiceManager is like a telephone exchange. A telephone exchange has
an address book to store the telephone numbers for each person. When

FIGURE 2.1  Structure of Binder.

16    ◾    Android App-Hook and Plug-In Technology﻿

Tom wants to call Jerry, Tom will dial up Jerry’s phone number. The signal
will be transferred to the telephone exchange. The operator working in the
telephone exchange takes the role of a Binder Driver; he will search this
telephone number in the address book. Because Jerry’s telephone number
is registered in the telephone exchange, Jerry’s phone is called; without
registration, the telephone exchange would tell Tom that the phone num-
ber does not exist.

In contrast to the Android Binder mechanism, Tom is the Binder
Client, Jerry is the Binder Server, and the telephone exchange is the
ServiceManager. The operator working in the telephone exchange is busy
working on this process; it’s the Binder Driver in Figure 2.1.

	 3)	Let’s have a look at the process of Binder communication in
Figure 2.2.

The Binder Client can’t invoke the method add() of the Binder Server
directly. Because they are in different processes, we can use Binder to
finish this work. Binder Driver will create a new class Proxy to as the
wrapper of Binder Server. Binder Client can communicate with Proxy.

FIGURE 2.2  Communication in Binder.

The Underlying Knowledge of Android﻿    ◾    17

The communication has the following three steps; we use Server and Client
instead of Binder Server and Binder Client for short.

	 1)	The server is registered in ServiceManager.

	 2)	Binder Driver generates a class Proxy for the Server. Proxy is the
wrapper of the Server.

	 3)	The client invokes the method add() of Proxy; it will invoke the
method add() of the Server indirectly.

Binder Driver is working hard. But the app developers needn’t learn the
underlying implementation of the Binder Driver.

Up until now, I have introduced the knowledge of Binder. Based on this
knowledge, we go on to study AIDL and the AMS.

2.3 � AIDL
AIDL is an extension of Binder. AIDL is widely used in the Android sys-
tem, such as in the Clipboard.

We need to know the following classes in AIDL:

•	 IBinder

•	 IInterface

•	 Binder

•	 Proxy

•	 Stub

When we write an AIDL (such as MyAidl.aidl, which has a method sum(),
Android Studio will help us generate a class named MyAidl.java, shown
in Figure 2.3.

We split the class MyAidl into three files. It’s easy to read, and shown
as follows:

18    ◾    Android App-Hook and Plug-In Technology﻿

public interface MyAidl extends android.os.IInterface {
    �public int sum(int a, int b) throws android.
os.RemoteException;

}

public abstract class Stub extends android.os.Binder
implements jianqiang.com.hostapp.MyAidl {
    �private static final java.lang.String DESCRIPTOR =
"jianqiang.com.hostapp.MyAidl";

    �static final int TRANSACTION_sum = (android.
os.IBinder.FIRST_CALL_TRANSACTION + 0);

    /**
    * Construct the stub at attach it to the interface.
    */
    public Stub() {
        this.attachInterface(this, DESCRIPTOR);
    }

    /**
    �* Cast an IBinder object into an jianqiang.com.
hostapp.MyAidl interface,

    * generating a proxy if needed.
    */
    �public static jianqiang.com.hostapp.MyAidl
asInterface(android.os.IBinder obj) {

FIGURE 2.3  Class diagram of AIDL.

The Underlying Knowledge of Android﻿    ◾    19

        if ((obj == null)) {
            return null;
        }
        �android.os.IInterface iin = obj.queryLocalInterface

(DESCRIPTOR);
        �if (((iin != null) && (iin instanceof jianqiang.

com.hostapp.MyAidl))) {
            return ((jianqiang.com.hostapp.MyAidl) iin);
        }
        �return new jianqiang.com.hostapp.MyAidl.Stub.

Proxy(obj);
    }

    @Override
    public android.os.IBinder asBinder() {
        return this;
    }

    @Override
    �public boolean onTransact(int code, android.
os.Parcel data, android.os.Parcel reply, int flags)
throws android.os.RemoteException {

        switch (code) {
            case INTERFACE_TRANSACTION: {
                reply.writeString(DESCRIPTOR);
                return true;
            }
            case TRANSACTION_sum: {
                data.enforceInterface(DESCRIPTOR);
                int _arg0;
                _arg0 = data.readInt();
                int _arg1;
                _arg1 = data.readInt();
                int _result = this.sum(_arg0, _arg1);
                reply.writeNoException();
                reply.writeInt(_result);
                return true;
            }
        }

        return super.onTransact(code, data, reply, flags);
    }
}

20    ◾    Android App-Hook and Plug-In Technology﻿

class Proxy implements jianqiang.com.hostapp.MyAidl {
    private android.os.IBinder mRemote;

    Proxy(android.os.IBinder remote) {
        mRemote = remote;
    }

    @Override
    public android.os.IBinder asBinder() {
        return mRemote;
    }

    public java.lang.String getInterfaceDescriptor() {
        return DESCRIPTOR;
    }

    @Override
    �public int sum(int a, int b) throws android.
os.RemoteException {

        �android.os.Parcel _data = android.os.Parcel.
obtain();

        �android.os.Parcel _reply = android.os.Parcel.
obtain();

        int _result;
        try {
            _data.writeInterfaceToken(DESCRIPTOR);
            _data.writeInt(a);
            _data.writeInt(b);
            �mRemote.transact(Stub.TRANSACTION_sum, _data,

_reply, 0);
            _reply.readException();
            _result = _reply.readInt();
        } finally {
            _reply.recycle();
            _data.recycle();
        }
        return _result;
    }
}

There are one interface and two classes in MyAidl.java, Stub and Proxy
which implement the interface in MyAidl. Proxy is the inner class of Stub.

The Underlying Knowledge of Android﻿    ◾    21

Stub has two important methods, asInterface() and onTransact(). In
fact, Figure 2.3 is not the full picture of AIDL; it’s only a Binder Client. In
Figure 2.4, we can find both a Binder Server and Binder Client.

In Figure 2.4, Stub in the left rectangle is the Binder Client; Stub in the
right rectangle is the Binder Server. These two Stubs can’t communicate
with each other. They use Proxy to communicate with each other.

Let’s analyze this process step by step.

	 1)	Look at the Binder Client in Figure 2.4. We always write code as
follows:

  MyAidl.Stub.asInterface(xxx).sum(1, 2);  � ///xxx is an IBinder
object

The method asInterface() of Stub is used to judge if the IBinder object is
in the current process.

•	 If yes, convert this IBinder object and return directly.

•	 If no, return a Proxy object. Proxy is the wrapper of Stub. To invoke
the method sum() of Stub, will invoke the method sum() of Proxy
indirectly. The code is as follows:

  return new MyAidl.Stub.Proxy(obj);

FIGURE 2.4  Full picture of AIDL.

22    ◾    Android App-Hook and Plug-In Technology﻿

	 2)	The method sum() of Proxy prepares data, writes the name and param-
eters of the method sum() to the variable _data, and sends _data to the
Binder Server. It also declares a variable _reply to receive the return
value from the Binder Server, as shown in the code above. mRemote is
the parameter of the method asInterface(); it’s an IBinder object. The
method transact() of IBinder is used to send data to the Binder Server:

 � mRemote.transact(Stub.TRANSACTION_addBook, _data,
_reply, 0);

	 3)	Look at the Binder Server in Figure 2.4. Stub uses the method
onTransact() to receive data from the Binder Client, including the
name and parameters of the method. Stub will find the correspond-
ing method in the current process, execute this method, and return
the value to the Binder Client. All this logic is written in the method
onTransact() of Stub.

In Section 2.5, 2.8, 2.9, and 2.10, I will introduce the four components,
Activity, Service, BroadcastReceiver, and ContentProvider. The communi-
cation between these components and the ActivityManagerService (AMS
for short) is based on Binder. When Activity sends a message to the AMS,
AMS is the Binder Server and Activity is the Binder Client. When the AMS
notifies an Activity to do something; the roles are reversed.

For the task Activity, for example, we may have a question about which
class corresponds to Stub and which class corresponds to Proxy. I will
introduce this topic in Section 2.5.

2.4 � ACTIVITYMANAGERSERVICE
It so far seems that the AMS only communicates with Activity, but AMS
also communicates with the other three components. Don’t be confused
by its name.

Before writing this book, I had two questions for a long time:

	 1)	During the app installation process, why not extract the apk file into
the phone, As it’s easier to read the apk files directly? I will answer
this question in Section 2.11.

	 2)	There are two processes when AMS communicates with the four
components. One is the system process which hosts AMS logic, the

The Underlying Knowledge of Android﻿    ◾    23

other one is the app process which hosts Activity, written by the app
developer. We could hook logic in the app process, but we can’t hook
the logic in the system process. Why?

The AMS is one of the services that runs during Android system processes.
After we learn a bit about the AMS, we find it’s easy to understand. Take
the Clipboard in Android as an example. If we write some code in our own
app to modify the original function of Clipboard in the Android system
process, it will have effects on the other apps installed on the system. It’s a
virus! So, Android forbids the app from modifying system services such as
the AMS. We can only modify the behavior of Clipboard in the current app.

2.5 � ACTIVITY WORKING PRINCIPLES
Activity is widely used in apps. In this section, I will talk about how to
launch an app.

2.5.1 � How to Launch an App

Click an app icon in the Launcher of an Android system, for example,
the Amazon App, and we can see the home page (or guide page) of this
app. The action is simple, but the communication between Activity and the
AMS is very complex.

The Launcher is an app supplied by the Android system.
When we write an app, we must set the default Activity which is first

launched in the AndroidManifest.xml, shown as follows:

<activity android:name=".MainActivity">
   <intent-filter>
    � <action android:name="android.intent.action.

MAIN" />
          � <category android:name="android.intent.

category.LAUNCHER" />
      </intent-filter>
</activity>

When we install this app on a mobile phone, the PackageManagerService
will parse the AndroidManifest.xml and store three pieces of information
in the Launcher. Take Amazon as an example:

    action:android.intent.action.MAIN
    category: android.intent.category.LAUNCHER
   � cmp: package name of Amazon + first start Activity

24    ◾    Android App-Hook and Plug-In Technology﻿

When we click the app icon in the Launcher, it will find these three
pieces of information and start the first Activity of the Amazon app.

2.5.2 � Starting the App Is Not So Simple

In Section 2.5.1, we gave a quick overview of the process of starting an app.
But we find Launcher and Amazon are two different apps; they use differ-
ent processes, and they can’t communicate with each other directly. With
the help of Binder, one app sends a message to the AMS, and the AMS
notifies the other app.

Take the Amazon app as an example; the whole process is as follows*:

	 1)	When the user clicks on the app icon in Launcher, Launcher informs
the AMS, “I want to open Amazon, I will send an action and a cat-
egory, please help me open the Activity which is suitable for this
information.”

	 2)	The AMS informs the Launcher, “Your work is done.” At the same
time, the AMS records which activity to start.

	 3)	The current Activity of the Launcher invokes its method onPause(),
and informs the AMS, “I’m going to sleep, you can launch the
Amazon app.”

	 4)	The AMS checks whether the Amazon app has already been launched.
If yes, it wakes up the Amazon app; otherwise, the AMS must start a
new process for the Amazon app. The AMS creates an ActivityThread
object in the new process and executes the function main() to launch
the Amazon app.

	 5)	After the Amazon app starts, it will inform the AMS, “Hey, I am the
Amazon app, I’m ready to start.”

	 6)	The AMS fetches the action and category stored before, and sends
this information to the Amazon app, “Please launch the Activity
which is suitable to this information.”

	 7)	The Amazon app launches the Activity which is suitable for this
information, creates a Context object, and associates this object with
the Activity. Then it invokes the method onCreate() for the Activity.

*	 This process analysis is basically based on the Android 6.0 source code.

The Underlying Knowledge of Android﻿    ◾    25

Up until now, we have seen the whole process from when the user clicks the
Amazon App icon to the Activity of the Amazon app. From step 1 to 3, the
communication is between the Launcher and the AMS, from step 4 to 7,
the communication is between the Amazon app and the AMS.

This process involves a series of classes, as listed below. I will introduce
them in the following sections:

•	 Instrumentation

•	 ActivityThread

•	 H

•	 LoadedApk

•	 AMS

•	 ActivityManagerNative (AMN for short) and ActivityManagerProxy
(AMP for short)

•	 ApplicationThread (APT for short) and ApplicationThreadProxy
(ATP for short)

2.5.2.1 � Click the App Icon in Launcher and Send a Message to the AMS
In this section, we will introduce the process from when the user clicks on
the app icon in the Launcher to when the AMS receives the message from
the Launcher. There are six steps, shown in Figure 2.5.

FIGURE 2.5  Process of Launcher informs the AMS.

26    ◾    Android App-Hook and Plug-In Technology﻿

Step 1 User clicks on the App icon in Launcher
The user clicks on the app icon in the Launcher; it invokes the method
startActivitySafely(Intent intent) of Activity. The parameter is an Intent
object; it carries the following information:

    action = “android.intent.action.MAIN”
    category = “android.intent.category.LAUNCHER”
    cmp = “com.Amazon.activity.MainActivity”

Step 2 startActivity()
The method startActivitySafely() invokes the method startActiv-
ity() of Activity. There is a series of overload methods startActiv-
ity() defined in Activity. All these methods will invoke the method
startActivityForResult().

The method startActivityForResult() has two parameters. The first
parameter is an Intent object; we pass an Intent object into this parameter
with three pieces of information. The second parameter is the result of
launching Activity. The Launcher doesn’t care about whether the Amazon
app launches successfully or not. So, the second parameter is set to –1 in
this scenario. The code is as follows:

public void startActivity(Intent intent, @Nullable
Bundle options) {
        if (options != null) {
            startActivityForResult(intent, -1, options);
        } else {
            startActivityForResult(intent, -1);
        }
    }

Step 3 startActivityForResult()
Activity has a field mInstrumentation; its type is Instrumentation. In the
method startActivityForResult() of Activity, it will invoke the method exec-
StartActivity() of the object Instrumentation, shown as follows:

public void startActivityForResult(Intent intent, int
requestCode, @Nullable Bundle options) {
        // omit some codes
        Instrumentation.ActivityResult ar =

The Underlying Knowledge of Android﻿    ◾    27

                mInstrumentation.execStartActivity(
                    �this, mMainThread.getApplicationThread(),

mToken, this,
                    intent, requestCode, options);
    }

In the code above, there is a variable named mMainThread, and its type
is ActivityThread.

ActivityThread is the main thread and is also called the UI thread. It is
created when the app starts and it represents the app.

Someone may mistakenly believe that the class Application is the core
of the app. No, Application is a global class, although it’s also created
when the app is launched. Application is important in app development.
It’s open to the app developers, but ActivityThread is not open to the App
developers. That’s why app developers are familiar with Application but
don’t know ActivityThread.

ActivityThread has a secret. An Android app doesn’t have the function
main(). The function main() of each app is defined in ActivityThread.

Nearly all the applications have their own function main(), whether
the application is written in Python, C#, C++, or Objective-C. It’s the
entry point of the application. But an Android app doesn’t have the func-
tion main(). All the Apps share the same function main() defined in
ActivityThread, shown as follows:

public final class ActivityThread {
    public static void main(String[] args) {
        �Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER,

"ActivityThreadMain");
        SamplingProfilerIntegration.start();
        CloseGuard.setEnabled(false);
        Environment.initForCurrentUser();

        //omit some code
    }
}

An Android app doesn’t have the function main(), so it’s not a real
application. It’s only a package containing a lot of classes and resources.

Let’s come back and focus on the parameters of the method mInstru-
mentation.execStartActivity():

28    ◾    Android App-Hook and Plug-In Technology﻿

•	 mMainThread.getApplicationThread() is a Binder object and repre-
sents the process of Launcher.

•	 mToken is also a Binder object, represents the current Activity of
Launcher.

These two parameters will be passed to the AMS. The AMS can then
send the message back to the Launcher according to these two parameters.

Step 4 The Method execStartActivity() of Instrumentation
The method execStartActivity() of Instrumentation is used to launch a new
Activity, shown as follows:

public class Instrumentation {

    public ActivityResult execStartActivity(
            �Context who, IBinder contextThread, IBinder

token, Activity target,
            Intent intent, int requestCode, Bundle options) {
       
        //omit some code

        try {
            // omit some code

            int result = ActivityManagerNative.getDefault()
                �.startActivity(whoThread, who.

getBasePackageName(), intent,
                        �intent.resolveTypeIfNeeded(who.

getContentResolver()),
                        �token, target != null ? target.mEmbeddedID :

null,
                        requestCode, 0, null, options);

          // omit some code

        } catch (RemoteException e) {
              � throw new RuntimeException("Failure from

system", e);
        }
        return null;
    }
}

The Underlying Knowledge of Android﻿    ◾    29

It invokes the method ActivityManagerNative.getDefault().startActivity().

Step 5: The AMN’s getDefault Method
ActivityManagerNative (AMN) is widely used in the communication
between the AMS and the four components, like Activity.

ServiceManager is a container. AMN.getDefault() obtains an
object from the ServiceManager and then wraps this object into an
ActivityManagerProxy object (AMP). The AMP is the proxy of the AMS.

The method getDefault() of the AMN returns an IActivityManager
object. IActivityManager is an interface that implements IInterface, which
defines all the lifecycle methods of the four components.

Both the AMN and the AMP implement the interface IActivityManager.
The AMS inherits from AMN. Refer to Figure 2.6 for detail.

Step 6: startActivity() of the AMP
The AMP acts as the Proxy of AIDL, as introduced in Section 2.3. The
method startActivity() of the AMP writes data to the AMS process and
waits for the result from the AMS.

Then, the Launcher sends a message to the AMS and tells the AMS
which app and which Activity to launch.

FIGURE 2.6  Class diagram of the AMN/AMP.

30    ◾    Android App-Hook and Plug-In Technology﻿

2.5.2.2 � The AMS Handles the Information from the Launcher
First, let’s have a look at the implementation of the method startActivity()
of the AMP, shown as follows:

class ActivityManagerProxy implements IActivityManager
{
    �public int startActivity(IApplicationThread caller,
String callingPackage, Intent intent,

            �String resolvedType, IBinder resultTo, String
resultWho, int requestCode,

            �int startFlags, ProfilerInfo profilerInfo, Bundle
options) throws RemoteException {

        Parcel data = Parcel.obtain();
        Parcel reply = Parcel.obtain();
        �data.writeInterfaceToken(IActivityManager.

descriptor);
        �data.writeStrongBinder(caller != null ? caller.

asBinder() : null);
        data.writeString(callingPackage);

        �mRemote.transact(START_ACTIVITY_TRANSACTION, data,

reply, 0);
        reply.readException();
        int result = reply.readInt();
        reply.recycle();
        data.recycle();
        return result;
    }
}

The AMS is a system process. App developers have no permissions to
modify code in the AMS. So, we don’t spend much time in the AMS. Let’s
have a quick look what happens in the AMS.

	 1)	AMS receives the message from the AMN/AMP in the app process; it
will check whether this Activity is declared in the AndroidManifest.
xml. If not found, it will throw an ActivityNotFoundException. App
developers are familiar with this exception when they forget to
declare the Activity in the AndroidManifest.xml.

	 2)	The AMS sends a message to the Launcher, “Well, I got it. It’s none
of your business. Good Night.” Now the AMS is a Binder Client, and
the Launcher is the Binder Server.

The Underlying Knowledge of Android﻿    ◾    31

When the Launcher sends a message to the Anonymous Shared Memory
(ASM), the Launcher also send itself to the AMS. The AMS saves it as an
ActivityRecord object.

ActivityRecord has an internal field; this field is an ApplicationThreadProxy
object.

ApplicationThreadProxy(ATP for short) is a proxy; it’s used to send data
to the app process.

In the App process, the ApplicationThread (APT for short) is used to
receive messages from the AMS.

Now the AMS can send a message back to the corresponding Launcher.
Refer to Figure 2.7.

2.5.2.3 � The Launcher Goes to Sleep and Informs the AMS Again
After the APT receives a message from the AMS, it calls the method send-
Thread() of ActivityThread and sends a PAUSE_ACTIVITY message to the
message queue of the ActivityThread, shown as follows (Figure 2.8). Let's
focus on ActivityThread, as it's the main (UI) thread. Observe the follow-
ing method SendMessage():

FIGURE 2.7  Class diagram of IApplication Thread.

32    ◾    Android App-Hook and Plug-In Technology﻿

    �private void sendMessage(int what, Object obj, int
arg1, int arg2, boolean async) {

        if (DEBUG_MESSAGES) Slog.v(
            �TAG, "SCHEDULE " + what + " " +

mH.codeToString(what)
            + ": " + arg1 + " / " + obj);
        Message msg = Message.obtain();
        msg.what = what;
        msg.obj = obj;
        msg.arg1 = arg1;
        msg.arg2 = arg2;
        if (async) {
            msg.setAsynchronous(true);
        }
        mH.sendMessage(msg);
    }

In the code above, there is a variable mH. The type of mH is H. The class
H inherits from the class Handler. H is used to dispatch messages to the
corresponding method. The name of H is easy to remember.

H inherits from Handler, so it must implement the method handleMes-
sage() of Handler. This method is a switch statement, which is used to han-
dle different types of messages. PAUSE_ACTIVITY is one of these types.

All the messages sent to the four components will go through the
method handleMessage() of H, shown as follows:

FIGURE 2.8  Launcher informs the AMS again.

The Underlying Knowledge of Android﻿    ◾    33

public final class ActivityThread {
  private class H extends Handler {

  //omit some code
  public void handleMessage(Message msg) {
         if (DEBUG_MESSAGES)
   � Slog.v(TAG, ">>> handling: " + codeToString(msg.

what));
 
   switch (msg.what) {
   case PAUSE_ACTIVITY:
   � Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_

MANAGER, "activityPause");
   � handlePauseActivity((IBinder)msg.obj, false,

(msg.arg1&1) != 0, msg.arg2, (msg.arg1&2) != 0);
    maybeSnapshot();
    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                   break;
   };
   // omit some code
  }
}

When the method handleMessage() of H handles the PAUSE_
ACTIVITY message, it will invoke the method handlePauseActivity() of
the ActivityThread. This method executes the following logic:

•	 Get the current Activity of the Launcher and execute its method
onPause(). In the ActivityThread there is a collection named mActivi-
ties; this collection stores all the open Activities. The current Activity
is in this collection.

•	 Inform the AMS, “I have fallen asleep.”

2.5.2.4 � The AMS Creates a New Process
The second time the AMS receives a message from the Launcher it will try
to open the Amazon app.

If the Amazon app is already open, but in the background, the AMS
will notify the Amazon app to wake up and become visible to the user.

If the Amazon app is not open, the AMS needs to create a new process.
It invokes the method Process.start() to create a new process.

34    ◾    Android App-Hook and Plug-In Technology﻿

After the new process is created, the AMS will invoke the function
main() to launch the Amazon app, which is the entry point to the app,
shown as follows:

int pid = Process.start(“android.app.ActivityThread”,
  � mSimpleProcessManagement ? app.processName : gid,

debugFlags, null);

2.5.2.5 � Start a New Process and Inform the AMS
When the AMS creates a new process, it will create an ActivityThread for
this process (Figure 2.9).

After the AMS creates the UI thread, it will execute the function main()
of the ActivityThread, including two logics:

	 1)	Create MainLooper. Loopers are used to handle messages in the
Android system. MainLooper is a special looper. Each app has only
one MainLooper, which is an endless loop to receive messages from
the system.

	 2)	Create an Application. Application is created during this step. That is
why the methods onCreate() and attach() are executed earlier than
the other methords of Activity, and why we usually initialize global
variables in these two methods.

After receiving the BIND_APPLICATION message, the UI thread creates a
LoadedApk object (which stores the information for the current apk), then

FIGURE 2.9  Invoke the function main() and inform the AMS.

The Underlying Knowledge of Android﻿    ◾    35

creates a ContextImpl object, and then uses reflection grammar to cre-
ate Application and invoke the method attach() of Application and finally
invokes the method onCreate() of Application to initialize some variables.

Lastly, the new process informs the AMS, “I’m ready,” and sends itself
as a parameter to the AMS.

2.5.2.6 � The AMS Tells the New App Which Activity to Launch
AMS receives the token from the new process; in this scenario, the new
process is used for the Amazon app.

During the previous steps, the AMS stores the information about which
app and which Activity is to be launched. Now it’s time to use this information.

The AMS fetches this information and sends it to the new process.

2.5.2.7 � The Amazon App Starts an Activity
This is the final step of the whole process (refer to Figure 2.10).

The new process, in this scenario the Amazon app, receives a message
from the AMS by ApplicationThread and handles this message with the
method handleMessage() of H; the logic is in the switch statement. In this
scenario, the type of message is LAUNCH_ACTIVITY, shown as follows:

public final class ActivityThread {
   private class H extends Handler {

   //omit some code
   public void handleMessage(Message msg) {

FIGURE 2.10  Launch a new Activity in the Amazon app.

36    ◾    Android App-Hook and Plug-In Technology﻿

  � if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " +
codeToString(msg.what));

 
   switch (msg.what) {
     case LAUNCH_ACTIVITY: {
      � Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_

MANAGER, "activityStart");
      � final ActivityClientRecord r =

(ActivityClientRecord) msg.obj;

       r.packageInfo = getPackageInfoNoCheck(
      � r.activityInfo.applicationInfo,

r.compatInfo);
       handleLaunchActivity(r, null);
      � Trace.traceEnd(Trace.

TRACE_TAG_ACTIVITY_MANAGER);
     } break;
     // omit some code
   }
}

Let’s have a look at the method getPackageInfoNoCheck() in the code
above. This method is used to fetch all the resources of an apk and put it
into an r.packageInfo. The type of packageInfo is LoadedApk. In the plug-in
technique, we can replace it with our own object.

ActivityThread doesn’t handle the message directly. It sends all the
messages to H. H is responsible for dispatching messages to the different
methods of the ActivityThread. Refer to Figure 2.11.

FIGURE 2.11  Interaction between ActivityThread and H.

The Underlying Knowledge of Android﻿    ◾    37

Now let’s have a look at the logic in the method handleLaunchActivity():

	 1)	Invoke the method newActivity() of Instrumentation to create an
instance of the Activity to be launched.

	 2)	Create a Context object and associate it with this Activity.

	 3)	Invoke the method callActivityOnCreate() of Instrumentation to
execute the method onCreate() of this Activity.

Up until now, the home page of the Amazon app has been accessed
by the user. There are many handshakes in this process. The Launcher
and the Amazon app communicates frequently with the AMS based on
Binder.

2.6 � NAVIGATION IN APP
Navigation from ActivityA to ActivityB is the same as the mechanism I
introduced in Section 2.5.

If ActivityA and ActivityB are running in the same process, the whole
process will be simpler, because the AMS doesn’t need to create a new
process for ActivityB. There is a total of five steps in this process, as follows:

	 1)	ActivityA sends a message to the AMS, “I want to launch ActivityB.”

	 2)	AMS saves the information of ActivityB, and then informs the app,
“Got it.”

	 3)	ActivityA invokes its method onPause(), and informs the AMS, “I’m
sleeping.”

	 4)	The AMS finds that ActivityA and ActivityB are in the same process,
and the AMS notifies the app to launch ActivityB directly.

	 5)	The app launches ActivityB.

Refer to Figure 2.12 for details.

38    ◾    Android App-Hook and Plug-In Technology﻿

2.7 � FAMILY OF CONTEXT
Activity, Service, and Application have the same “ancestor;” they are a fam-
ily, as shown in Figure 2.13.

FIGURE 2.13  Context Family.

FIGURE 2.12  Launch a new Activity in the same process.

The Underlying Knowledge of Android﻿    ◾    39

Because Activity needs Theme, Activity inherits from the
ContextThemeWrapper directly, ContextThemeWrapper inherits from
ContextWrapper. Service and Application also inherit from ContextWrapper.

ContextWrapper is a wrapper class without logic. The real logic is inside
ContextImpl.

The number of Contexts in an app is equal to the number of Services +
number of Activities + 1 (Application itself).

Take Activity as an example to have a look at the relationships and dif-
ferences between Activity and Context.

For example, to jump from one Activity to another Activity, the code is
shown as follows:

btnNormal.setOnClickListener(new View.
OnClickListener() {
      @Override
      public void onClick(View view) {
           Intent intent = new Intent(Intent.Action.VIEW);
           intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
          � intent.setData(Uri.parse("https://www.baidu.com"));
           startActivity(intent);
      }
});

Another way of jumping from one Activity to another Activity is to
invoke the method getApplicationContext() to get a Context object, and
then invoke the method startActivity() of this Context object, shown as
follows:

btnNormal.setOnClickListener(new View.
OnClickListener() {
      @Override
      public void onClick(View view) {
     Intent intent = new Intent(Intent.Action.VIEW);
        intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
       �    intent.setData(Uri.parse("https://www.baidu.com"));
        getApplicationContext().startActivity(intent);
      }
});

The differences between these two methods are shown in Figure 2.14.

https://www.baidu.com
https://www.baidu.com

40    ◾    Android App-Hook and Plug-In Technology﻿

The method startActivity() of Context, invokes the method execStartAc-
tivity() of mInstrumentation, mInstrumentation is a field of ActivityThread.

We invoke the method getApplicationContext() to get a Context Object;
its method startActivity() is defined in ContextImpl, and it invokes the
method execStartActivity() of mInstrumentation of ActivityThread too,
shown as follows:

class ContextImpl extends Context {
      @Override
     � public void startActivity(Intent intent, Bundle

options) {
           warnIfCallingFromSystemProcess();
          � if ((intent.getFlags()&Intent.FLAG_ACTIVITY_

NEW_TASK) == 0) {
                throw new AndroidRuntimeException(
                       � "Calling startActivity() from outside of

an Activity "
                       � + " context requires the FLAG_ACTIVITY_

NEW_TASK flag."
                       � + " Is this really what you want?");
          }
         � mMainThread.getInstrumentation().

execStartActivity(

FIGURE 2.14  Two kinds of startActivity().

The Underlying Knowledge of Android﻿    ◾    41

                  � getOuterContext(), mMainThread.
getApplicationThread(), null,

                   (Activity) null, intent, -1, options);
    }
}

2.8 � SERVICE
Service has two processes, one is a launching process, and the other is a
binding process. All app developers are familiar with these two mecha-
nisms, as shown in Figure 2.15.

2.8.1 � Start Service in a New Process

Let’s have a look at the Service launching process. Suppose the Service to
be launched is in a new process, it’s divided into five steps:

	 1)	The app sends a message to the AMS, “I want to launch a Service in a
new process.”

FIGURE 2.15  Launching and binding process of Service.

42    ◾    Android App-Hook and Plug-In Technology﻿

	 2)	The AMS checks whether this Service is already launched. If no, the
AMS saves the information of this Service and then creates a new
process to launch this Service.

	 3)	The new process informs the AMS, “I am ready.”

	 4)	The AMS notifies the new process to launch this Service.

	 5)	The new process launches this Service.

Let’s begin step by step.

2.8.1.1 � The App Sends a Message to the AMS to Launch Service
The process of launching Service is similar to an Activity launching pro-
cess; we won’t spend too much time to repeating the same process. In
Figure 2.16, I replace the method startActivity() with startService().

2.8.1.2 � The AMS Creates a New Process
When the AMS receives the message from the app process (AMN/AMP),
the AMS will check whether this Service is declared in the AndroidManifest.
xml. If no, the AMS will throw an exception to the app process; otherwise,
the AMS will create a new process to launch this Service.

In the AMS, each Service is saved as a ServiceRecord object.

FIGURE 2.16  App sends a message to the AMS to launch Service.

The Underlying Knowledge of Android﻿    ◾    43

2.8.1.3 � Start a New Process and Inform the AMS
After the new process is created, it will create a new ActivityThread object,
and then pass this object to the AMS by AMN/AMP. It informs the AMS,
“I’m ready. Can I help you?”

2.8.1.4 � The AMS Sends Information to the New Process
When the AMS receives the ActivityThread object, the AMS will convert
this object into an ApplicationThreadProxy(ATP for short) object.

During the previous steps, the AMS stores the information about which
Service is to be launched. Now it’s time to use this information.

The AMS fetches this information and sends it to the new process.

2.8.1.5 � New Process to Launch Service
The new process receives the AMS information by ApplicationThread.
With the help of ActivityThread and H, the method onCreate() of this
Service will be executed (Figure 2.17).

The new process will create a Context object and associate it with this
Service.

Let’s focus on the method handleCreateService() of ActivityThread,
shown as follows:

  �private void handleCreateService(CreateServiceData
data) {

        LoadedApk packageInfo = getPackageInfoNoCheck(
                data.info.applicationInfo, data.compatInfo);
        Service = null;
        try {

FIGURE 2.17  Launch a new Service.

44    ◾    Android App-Hook and Plug-In Technology﻿

            �java.lang.ClassLoader cl = packageInfo.
getClassLoader();

            �service = (Service) cl.loadClass(data.info.name).
newInstance();

        }

        //omit some code
    }

We will find that these codes are similar to the method handleLaunchAc-
tivity() introduced earlier. First, fetch package information using the PMS,
then create a LoadedApk object and get its own ClassLoader, finally use
this ClassLoader to load a Service.

Now we have launched a Service in a new process.

2.8.2 � Start a Service in the Same Process

If we want to launch a Service in the current process, the launching pro-
cess will be simplified in the following three steps:

	 1)	The app sends a message to the AMS to launch a Service.

	 2)	The AMS checks if this Service is declared in the AndroidManifest.
xml. If no, it will throw an exception; otherwise, the AMS will inform
the app process to launch the Service directly.

	 3)	The app launches the Service.

2.8.3 � Bind a Service in the Same Process

Let’s have a look at the Service binding process in the current process. The
process has the following five steps:

	 1)	The app sends a message to the AMS, “I want to bind a Service.”

	 2)	The AMS checks if this Service is declared in the AndroidManifest.
xml. If yes, the AMS will inform the app process to launch this
Service, and then bind this Service later. The AMS will send two mes-
sages to the app.

	 3)	The app receives the first message from the AMS and launches this
Service.

	 4)	The app receives the second message from the AMS; it will bind this
Service and send a Binder object to the AMS.

The Underlying Knowledge of Android﻿    ◾    45

	 5)	When the AMS receives the Binder object from the app process, it
will send the Binder object back to the app process.

Although we want to launch and bind a Service in the current app pro-
cess, the current app process still needs to communicate with the AMS
frequently.

Let’s study this process step by step.

2.8.3.1 � The App Sends a Message to the AMS to Bind a Service
The process in Figure 2.18 is the same as Section 2.8.1.1, so we won’t
spend much time on it. I simply replace the method startService() with
bindService().

We pass the ServiceConnection object as a parameter into the method
bind() of the Service. If the binding is successful, the method onService-
Connected() of this ServiceConnection object will be invoked.

2.8.3.2 � The AMS Sends Two Messages to the App Process
The process is the same as in Section 2.8.1.2.

2.8.3.3 � The App Receives the First Message
The process is the same as Section 2.8.1.5.

FIGURE 2.18  App sends a message to the AMS.

46    ◾    Android App-Hook and Plug-In Technology﻿

2.8.3.4 � The App Receives the Second Message and
Sends a Binder Object to the AMS

The AMS will send two messages to the app process; the second message
is used to bind the Service. The method bind() of Service returns a Binder
object. The app client will send this Binder object to the AMS (Figure 2.19).

2.8.3.5 � AMS Informs the App
The AMS informs the app process to establish if the binding is successful.
It’s also based on AIDL, shown in Figure 2.20.

As shown in Section 2.8.1, when the binding is successful, the method
onServiceConnected() of this ServiceConnection object will be invoked.

FIGURE 2.19  Handle the second message in the app process.

FIGURE 2.20  The AMS informs the app to establish the binding is successful.

The Underlying Knowledge of Android﻿    ◾    47

For the last step in Figure 2.20, the method connect() of ServiceDispatcher
is invoked. It will invoke the method onServiceConnected() of
ServiceConnection.

2.9 � BROADCASTRECEIVER
BroadcastReceiver is a broadcaster; it’s also called Receiver for short.

Many app developers say that they haven’t used a Receiver. In fact, Receiver
and Service are widely used in music player apps. When the user clicks on
the play button, it will notify the background process to play music.

On the other hand, when music plays to the end of a song, and another
song begins to play, the background process will send a message to the app
process, that’s why the app switches the description of the song from one
to another.

So, the principle of the music app is the communication between
Activity and Service in different processes, shown in Figure 2.21.

The Receiver has two types, one is a Static Receiver, and the other one is
a Dynamic Receiver.

Static Receiver must be declared in the AndroidManifest.xml, shown as
follows:

<receiver android:name=".Receiver1">
   <intent-filter>
     <action android:name="baobao" />
   </intent-filter>
</receiver>

FIGURE 2.21  Two Receivers for a music player.

48    ◾    Android App-Hook and Plug-In Technology﻿

We can also register a Dynamic Receiver in code, shown as follows:

Receiver2 receiver2 = new Receiver2();
IntentFilter filter = new IntentFilter();
filter.addAction("UpdateActivity");
registerReceiver(receiver2, filter);

We can send a broadcast, shown as follows:

Intent intent = new Intent("UpdateActivity");
sendBroadcast(intent);

These two types have the same function. So, we can change all the Static
Receivers to Dynamic Receivers.

But there is a small difference between these two types. We can send
a broadcast to a Static Receiver even if the app is not launched. But this
feature is not suitable for a Dynamic Receiver.

Now we have a look at the process where the Receiver communicates
with the AMS. It consists of two parts. One is the registration; the other is
a broadcast.

Let’s take the music player app as an example. We register Receiver in
Activity and send a broadcast in Service. When Service plays the next song,
it will notify Activity to modify the name of the current song.

2.9.1 � Registration

Figure 2.22 shows the process of registration.

FIGURE 2.22  Process of register Receiver.

The Underlying Knowledge of Android﻿    ◾    49

	 1)	Register the Receiver and notify the AMS.

In Activity, we can invoke the method registerReceiver() of Context; it will
pass the Receiver and its IntentFilter onto the AMS via AMN/AMP.

When we create a Receiver, we need to specify a IntentFilter for this
Receiver. IntentFilter is the character of Receiver; it is used to find which
Receiver (one or more) is suitable to the broadcast.

In the method registerReceiver() of Context, it uses PMS to get the infor-
mation of the apk, which is a LoadedApk object. The method getReceiver-
Dispatcher() of this LoadedApk object, encapsulates Receiver as a Binder
object which implements the interface IIntentReceiver.

	 2)	After the AMS receives the message including the Receiver and
IntentFilter, the AMS will store this information in a list. This list
contains all the Dynamic Receivers.

But when does the Static Receiver register with the AMS? The answer is
upon app installation. During the installation of the app, PMS will parse
the four components declared in the AndroidManifest.xml, including
Static Receiver. PMS will save all the Static Receivers in a list.

Dynamic Receiver and Static Receiver exist in the different lists. When
someone sends a broadcast, these two lists will be merged together into a
new list. The ASM iterates this new list to find which Receiver is suitable
for the broadcast.

2.9.2 � Send a Broadcast

The process of sending a broadcast is as follows:

	 1)	In Service or Activity, send a broadcast with an IntentFilter to the
AMS via the AMM/AMP, as shown in Figure 2.23.

	 2)	When the AMS receives this broadcast, the AMS will find the corre-
sponding Receivers in the Receiver list. The AMS puts all the Receivers
into the broadcast queue and sends a message to the message queue.

When the Android system handles this message in the message queue,
the AMS will find the suitable Receivers in the broadcast queue and send a
broadcast to these Receivers.

Why do we need two queues? Because the sending messages and the
receiving messages are asynchronous. Each time the AMS receives a

50    ◾    Android App-Hook and Plug-In Technology﻿

broadcast, it will throw the broadcast into a broadcast queue. But the AMS
doesn’t care about whether the message is sent successfully or not.

The AMS sends a broadcast to the app. It’s also based on AIDL.

	 3)	When the app receives the broadcast from the AMS, it doesn’t send
the broadcast to the Receiver directly. The app encapsulates the
broadcast as a message and sends this message to the message queue
of the ActivityThread. When this message is handled in the mes-
sage queue, it will send a broadcast to the corresponding Receiver, as
shown in Figure 2.24.

FIGURE 2.23  Service sends a broadcast to the AMS.

FIGURE 2.24  App handles a broadcast.

The Underlying Knowledge of Android﻿    ◾    51

2.10 � CONTENTPROVIDER
ContentProvider is also called CP for short. App developers are not famil-
iar with ContentProvider.

ContentProvider is used to transfer large data (size > 1M). So
ContentProvider is widely used in Android ROM development to trans-
fer large data from one process to another. But in an app, large data is
stored in the remote server; we can invoke the remote API to fetch this
data rather than ContentProvider.

There is an exception to everything. Sometimes the app will read
the data of the Address Book or SMS. At this moment we need to use
ContentProvider. The data of the Address Book or SMS is provided in the
form of ContentProvider.

Let’s have a quick review of how to use ContentProvider in an app, as
shown in Figure 2.25.

We need to write code in both app1 and app2, as follows:

	 1)	Define ContentProvider in app1

Define a ContentProvider in app1: give it the name MyContentProvider,
and declare MyContentProvider in the AndroidManifest.xml. We need to

FIGURE 2.25  App2 accesses the ContentProvider provided by app1.

52    ◾    Android App-Hook and Plug-In Technology﻿

implement four methods, insert(), update(), delete(), and query(), for the
ContentProvider, shown as follows:

<provider
    android:name=".MyContentProvider"
            android:authorities="baobao"
            android:enabled="true"
            android:exported="true"></provider>

public class MyContentProvider extends ContentProvider {
    public MyContentProvider() {
    }

    @Override
    public boolean onCreate() {
        //Omit some code
    }

    @Override
    public String getType(Uri uri) {
        //Omit some code
    }

    @Override
    public Uri insert(Uri uri, ContentValues values) {
        // Omit some code
    }

    @Override
    �public Cursor query(Uri uri, String[] projection,
String where, String[] whereArgs, String sortOrder){

        // Omit some code
    }

    @Override
    �public int delete(Uri uri, String where, String[]
whereArgs) {

        // Omit some code
    }

The Underlying Knowledge of Android﻿    ◾    53

    @Override
    �public int update(Uri uri, ContentValues values,
String where, String[] whereArgs){

        // Omit some code
    }
}

	 2)	Use ContentProvider in App2

In app2, we access the ContentProvider defined in app1 using
ContentResolver; it also provides four methods: insert(), update(), delete(),
and query(), which is used to access the ContentProvider defined in app1:

public class MainActivity extends Activity {
    ContentResolver contentResolver;
    URI uri;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        uri = Uri.parse("content://baobao/");
        contentResolver = getContentResolver();
    }

    public void delete(View source) {
        �int count = contentResolver.delete(uri, "delete_

where", null);
        �Toast.makeText(this, "delete uri:" + count, Toast.

LENGTH_LONG).show();
    }

    public void insert(View source) {
        ContentValues values = new ContentValues();
        values.put("name", "jianqiang");
        Uri newUri = contentResolver.insert(uri, values);
        �Toast.makeText(this, "insert uri:" + newUri,

Toast.LENGTH_LONG).show();
    }

    public void update(View source) {
        ContentValues values = new ContentValues();

54    ◾    Android App-Hook and Plug-In Technology﻿

        values.put("name", "jianqiang2");
        �int count = contentResolver.update(uri, values,

"update_where", null);
        �Toast.makeText(this, "update count:" + count,

Toast.LENGTH_LONG).show();
    }
}

How to debug ContentProvider? Run app1 and app2 both in debug
mode, and we can debug from app2 to app1.

Each ContentResolver has its own URI, which is declared in the
AndroidManifest.xml, shown as follows:

<provider
    android:name=".MyContentProvider"
            android:authorities="baobao"
            android:enabled="true"
            android:exported="true"></provider>

URI is the identity of the ContentProvider; it’s unique. When we want
to invoke the CRUD methods of this ContentProvider, we need to specify
URI as follows:

  uri = Uri.parse("content://baobao/");

In the next section, I will talk about the communication mechanism
between the CRUD methods of ContentResolver and the AMS.

2.10.1 � The Essence of the ContentProvider

ContentProvider is the engine of the SQLite database.
Different data sources have different data formats and different API,

such as SMS and the Address Book. But users want to view this data in
the same format. So we write a ContentProvider to encapsulate the differ-
ent data sources. ContentProvider always provides four methods, insert(),
update(), delete(), and query(), also called CRUD for short.

2.10.2 � The ASM

ContentProvider reads data using Anonymous Shared Memory (ASM or
Ashmem for short), refer to Figure 2.26 for details. The Server provides
data; the Client uses data.

The Underlying Knowledge of Android﻿    ◾    55

Figure 2.27 shows communication between the Client and the Server.

The process is as follows:

	 1)	There is a CursorWindow object inside the Client. The Client sends
the request to the Server; the request carries a CursorWindow object.
Now this object is empty.

FIGURE 2.26  Structure of the ASM.

FIGURE 2.27  Class diagram of the ASM.

56    ◾    Android App-Hook and Plug-In Technology﻿

	 2)	The Server receives the request, collects the data, and puts the data
into the CursorWindow object.

	 3)	The Client reads its internal CursorWindow object and gets the data.

Thus, this CursorWindow object is the ASM.
For example, each house has a mailbox. The postman throws mail into

the mailbox; we fetch mail in the mailbox. The mailbox is the ASM.

2.10.3 � Communication between ContentProvider and the AMS

Now let’s have a look at the communication between a ContentProvider
and the AMS.

Here I use some pictures rather than thousands of lines of code to make
this section more comprehensible.

For example, app2 wants to use the method insert() of a ContentProvider
defined in app1, shown as follows:

  ContentResolver = getContentResolver ();
  URI uri = Uri.parse(“content://baobao/”);
 
  ContentValues values = new ContentValues();
  values.put(“name”, “jianqiang”);
  URI newUri = contentResolver.insert(uri, values);

The whole process is shown in Figure 2.28.

FIGURE 2.28  Communication between ContentProvider and the AMS.

The Underlying Knowledge of Android﻿    ◾    57

Let’s analyze this process step by step:

	 1)	App2 sends a message to the AMS, “I want to access ContentProvider
in app1.”

	 2)	The AMS checks whether the ContentProvider in app1 has been
started. If not, it will start a new process to launch app1, start a
ContentProvider, wrap this ContentProvider to a proxy object, and
finally return a proxy object to app2.

	 3)	App2 gets the proxy object of a ContentProvider, whose type is
IContentProvider. The app then invokes the CRUD methods of this
proxy object and will transfer data or modify data from the ASM.

Up to now, I have introduced the underlying knowledge of
ContentProvider.

2.11 � THE PMS AND APP INSTALLATION PROCESS
2.11.1 � PMS Introduction

PMS (PackageManagerService) is used to obtain the information of an apk.
In the previous sections, we analyzed the communication between the

four components and the AMS; as we have shown, the AMS uses the PMS
to load information from an apk, and encapsulate this information into a
LoadedApk object, and then we can fetch all the components declared in
the AndroidManifest.xml.

During the process of app installation, the apk will be stored in the
folder Data/App.

I always wondered why the app is not unzipped during app installa-
tion. It’s easy to find any resource in the resource folder. In fact, reading
resources from apk directly is quicker. We can find the implementation of
this logic in the Android system. It’s written in C++.

Every time an app reads resources from the apk; it will parse resources.
arsc in the apk.resources.arsc stores all the information of resources,
including the address, size, and other properties of the resources. It
also stores the mapping between resource ID and the real name of the
resource. Which means the app can fetch the resource using the resource
ID quickly.

58    ◾    Android App-Hook and Plug-In Technology﻿

2.11.2 � App Installation Process

Android system uses the PMS to parse the AndroidManifest.xml in this
apk, including the following content:

•	 Information of all the components, such as Static Receivers.

•	 Assign userId and userGroupId to this app.

•	 At the end of the app installation process, the above information is
stored in an XML file. This file will be reused for the next installation.

The Android system has an interesting feature in that the PMS will
install all the apps again when the Android system reboots. There are four
steps to this, as shown in Figure 2.29.

FIGURE 2.29  App installation process.

The Underlying Knowledge of Android﻿    ◾    59

2.11.3 � PackageParser

After the Android system reboots, all the apps in the Android system will
be reinstalled by the PMS again.

The first time the app is installed in the Android system, this work is
also completed by the PMS.

The PMS is the system process in the Android system.
Now I will introduce an important class, PackageParser. It’s an impor-

tant class in this book because the PMS uses PackageParser to parse the
information in the AndroidManifest.xml.

The method parsePackage() of PackageParser has a parameter apkFile.
We can use the current apk file or an external apk file as the parameter for
this method.

Unfortunately, PackageParser is not open to app developers; we must
use reflection to invoke the method parsePackage() of PackageParser to get
the components declared in the AndroidManifest.xml.

The return value of parsePackage() is a Package object, which stores
information of the four components in the AndroidManifest.xml. This
class is of no use to us. So we always convert it to a PackageInfo object
using the method generatePackageInfo() of PackageParser.

Now let’s have a look at the relationships in the PMS family, as shown
in Figure 2.30.

FIGURE 2.30  Class diagram of PackageParser.

60    ◾    Android App-Hook and Plug-In Technology﻿

2.11.4 � ActivityThread and PackageManager

All roads lead to Rome. App developers also use the method getPackage-
Manager() of Context to get information about the current app.

The concrete logic of the method getPackageManager() of ContextImpl,
shown as follows:

class ContextImpl extends Context {
      private PackageManager mPackageManager;
     
      @Override
      public PackageManager getPackageManager() {
          if (mPackageManager != null) {
                return mPackageManager;
          }
 
          �IPackageManager pm = ActivityThread.

getPackageManager();
          if (pm != null) {
                �// Doesn't matter if we make more than one

instance.
               � return (mPackageManager = new

ApplicationPackageManager(this, pm));
          }
 
          return null;
      }
}

The method getPackageManager() returns an ApplicationPackage
Manager object, which is a subclass of PackageManager.

ApplicationPackageManager is the decorator of the object pm; pm is the
return value of the method getPackageManager() of the ActivityThread.
The real logic is in the method getPackageManager() of the ActivityThread,
shown as follows:

public final class ActivityThread {
private static ActivityThread sCurrentActivityThread;
 
      static IPackageManager sPackageManager;
 
      public static IPackageManager getPackageManager() {
          if (sPackageManager != null) {

The Underlying Knowledge of Android﻿    ◾    61

                return sPackageManager;
          }
          IBinder b = ServiceManager.getService("package");
          �sPackageManager = IPackageManager.Stub.

asInterface(b);
          return sPackageManager;
      }
}

In Section 2.2, we introduced the ServiceManager, which is a dictionary
storing various system services. For example, Clipboard is a system service
stored in ServiceManager, its key is “clipboard”; the PMS is also a system
service in ServiceManager, its key is “package.”

IPackageManager is an AIDL file. Refer to Figure 2.30 for details.
ApplicationPackageManager doesn’t communicate with Binder directly.

It has a field, mPM, and the type of mPM is IPackageManager. Refer to the
concept of AIDL (Section 2.3). mPM is the Stub of the IPackageManager.

According to the introduction in Section 2.3, we find that the following
statements return the same object:

•	 The method getPackageManager() of Context.

•	 The method getPackageManager() of ActivityThread.

•	 The field sPackageManager of ActivityThread.

•	 The field mPM of ApplicationPackageManager.

All these statements are the proxy object of the PMS in the app process.
We can use these statements to retrieve information about the current
app, especially the information of the four components.

2.12  �CLASSLOADER
It’s time to introduce the family of ClassLoader. The class ClassLoader is
the ancestor of this family, as shown in Figure 2.31.

Let’s focus on PathClassLoader, DexClassLoader, and their parent class,
BaseDexClassLoader.

DexClassLoader is a simple class, and it has only one constructor,
shown as follows.

62    ◾    Android App-Hook and Plug-In Technology﻿

public class DexClassLoader extends BaseDexClassLoader {
      �public DexClassLoader(String dexPath, String

optimizedDirectory,
              String librarySearchPath, ClassLoader parent) {
          �super(dexPath, new File(optimizedDirectory),

librarySearchPath, parent);
      }
}

In this constructor, it invokes its parent constructor directly. The sec-
ond parameter of the constructor is the path of the dex/apk.

PathClassLoader is also a simple class, and it has only two constructors,
shown as follows.

public class PathClassLoader extends BaseDexClassLoader {
      �public PathClassLoader(String dexPath, ClassLoader

parent) {
          super(dexPath, null, null, parent);
      }
 
      �public PathClassLoader(String dexPath, String

librarySearchPath, ClassLoader parent) {
          super(dexPath, null, librarySearchPath, parent);
      }
}

FIGURE 2.31  Family of ClassLoader.

The Underlying Knowledge of Android﻿    ◾    63

This constructor invokes its parent constructor directly. It passes null
as the second parameter.

So we should use DexClassLoader to load a dex/apk file, but
PathClassLoader is only used in the Android system.

2.13  �PARENT-DELEGATION
Parent-Delegation is based on the family ClassLoader.

Let’s have a look at the class ClassLoader, which is the ancestor in this
family. The constructor of ClassLoader is as follows:

ClassLoader(ClassLoader parentLoader, boolean
nullAllowed) {
    if (parentLoader == null && !nullAllowed) {
        �throw new NullPointerException("parentLoader ==

null && !nullAllowed");
    }
    parent = parentLoader;
}

The first parameter of the constructor is still a ClassLoader object. This
parameter will be passed to the internal field named Parent of the current
ClassLoader.

When DexClassLoader loads a class, firstly, it will delegate its parent
BaseDexClassLoader to load this class, and then BaseDexClassLoader will
delegate its parent ClassLoader to load this class. If BaseDexClassLoader
and ClassLoader can’t load this class, DexClassLoader will load this class
by itself.

It will improve the performance of loading a class. If the parent
ClassLoader has loaded the class before, the Android system will use the
parent ClassLoader to load this class directly. Parent-Delegation is widely
used in plug-in frameworks. We use DexClassLoader to load the class of
plug-ins.

2.14 � MULTIDEX
If the version of the Android system is less than 5.0, app developers always
meet the following issues:

Conversion to Dalvik format failed: Unable to execute
dex: method ID not in [0, 0xffff]: 65536

64    ◾    Android App-Hook and Plug-In Technology﻿

This issue is also called 65536. It occurs when the count of methods in
an app is more than 65536.

We can write so many methods into an app, but we always use the third
party SDK and compile it into the app. These SDKs have a lot of features
with tens of thousands of methods, but we only use one or two methods in
our app. That’s why the count of methods exceeds 65536.

We can use ProGuard to reduce unused methods. The number of meth-
ods in an app will be less than 65,536, but we only use ProGuard in release
mode. We must face this issue in debug mode.

The root cause of 65536 is in the older version of Android systems, such
as 4.4, and there is a variable to define the count of methods in the dex file.
This variable is 16-bits. 2 1̂6 = 65536.

Later Google released a solution to resolve this issue, MultiDex.
MultiDex splits the original dex file into multiple dex files. The number

of methods in each dex does not exceed 65536, as shown in Figure 2.32.

classes.dex is also called the main dex and is loaded automatically by
the app. The app uses PathClassLoader to load the main dex.

The other dexes such as classes2.dex, classes3.dex, and so on, will be
loaded by DexClassLoader after the app is launched.

MultiDex is not only used to resolve the 65536 issues but also can be
used to improve the performance of the launching app.

The Android system will take a lot of time to load a large dex file, so we
must take action to reduce the loading time.

We find classes.dex doesn’t need so many classes. For example, an OTA
app has Flight, Hotel, and other modules. We can separate Flight, Hotel,
and other modules from classes.dex into different dex files. We only keep

FIGURE 2.32  Split dex into multiple dexes.

The Underlying Knowledge of Android﻿    ◾    65

the home page in the classes.dex. classes.dex will be reduced to a minimal
size. Which means we can load classes.dex as soon as possible.

We will introduce how to use MultiDex in plug-in solutions in Section
10.4.

2.15 � A MUSIC PLAYER APP
Most app developers are not familiar with programming in Service and
BroadcastReceiver. In this section, I will write a music player app to show
you how to use these two components.

2.15.1 � A Music Player Based on Two Receivers*
A music player app has many interesting features:

	 1)	Once we open a music player app and play music, if we open another
app the music still plays because we use a Service to play the music in
a background process.

The activity of the music player app is responsible for displaying the infor-
mation of the current song. There are two buttons “play” and “stop.” No
matter which button is clicked, Activity will send a broadcast to the back-
ground Service to play or stop the music.

On the other hand, whenever the background Service finishes playing
music, it will notify the Activity, so while the background Service plays
the next song, it will send another broadcast to the Activity. Activity will
change the name and author of the song.

In this scenario, a music player app requires one Service and two
BroadcastReceivers. The code is shown as follows.

	 1)	Declare Activity and Service in the AndroidManifest.xml:

<activity android:name=".MainActivity">
            <intent-filter>
                 � <action android:name="android.intent.action.

MAIN" />

                 � <category android:name="android.intent.
category.LAUNCHER" />

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/
ReceiverTestBetweenActivityAndService1

https://github.com/

66    ◾    Android App-Hook and Plug-In Technology﻿

            </intent-filter>
</activity>
<service android:name=".MyService" />

2)When the user clicks the play or stop button in MainActivity, it will send
a broadcast to the Service:

public class MainActivity extends Activity {
      TextView tvTitle, tvAuthor;
      ImageButton btnPlay, btnStop;
 
      Receiver1 receiver1;
 
      //0x11: stopping; 0x12: playing; 0x13:pausing
      int status = 0x11;
 
      @Override
      �protected void onCreate(Bundle savedInstanceState) {
          super.onCreate(savedInstanceState);
          setContentView(R.layout.activity_main);
 
          tvTitle = (TextView) findViewById(R.id.tvTitle);
          �tvAuthor =(TextView) findViewById(R.id.tvAuthor);
 
          �btnPlay = (ImageButton) this.findViewById

(R.id.btnPlay);
          �btnPlay.setOnClickListener(new View.

OnClickListener() {
              @Override
              public void onClick(View v) {
                  //send message to receiver in Service
                  Intent intent = new Intent("UpdateService");
                  intent.putExtra("command", 1);
                  sendBroadcast(intent);
              }
          });
 
          �btnStop = (ImageButton) this.findViewById

(R.id.btnStop);
          �btnStop.setOnClickListener(new View.

OnClickListener() {

The Underlying Knowledge of Android﻿    ◾    67

              @Override
              public void onClick(View v) {
                  //send message to receiver in Service
                  Intent intent = new Intent("UpdateService");
                  intent.putExtra("command", 2);
                  sendBroadcast(intent);
              }
          });
 
          //register receiver in Activity
          receiver1 = new Receiver1();
          IntentFilter filter = new IntentFilter();
          filter.addAction("UpdateActivity");
          registerReceiver(receiver1, filter);
 
          //start Service
          �Intent intent = new Intent(this, MyService.

class);
          startService(intent);
      }
 
      public class Receiver1 extends BroadcastReceiver {
          @Override
          �public void onReceive(Context context, Intent

intent) {
              status = intent.getIntExtra("status", -1);
              �int current = intent.getIntExtra("current",

-1);
              if (current >= 0) {
                  �tvTitle.setText(MyMusics.musics[current].

title);
                  �tvAuthor.setText(MyMusics.musics[current].

author);
              }
 
              switch (status) {
                  case 0x11:
                      btnPlay.setImageResource(R.drawable.play);
                      break;
                  case 0x12:
                      btnPlay.setImageResource(R.drawable.pause);
                      break;

68    ◾    Android App-Hook and Plug-In Technology﻿

                  case 0x13:
                      btnPlay.setImageResource(R.drawable.play);
                      break;
                  default:
                      break;
              }
          }
      }
  }

The relationship between Receiver1 and Receiver2 is shown in Figure 2.33.

	 3)	In the background, when one song finishes playing and the next song
is beginning, Service sends a broadcast to Activity, shown as follows:

public class MyService extends Service {
 
      Receiver2 receiver2;
      AssetManager am;
 
      MediaPlayer mPlayer;
      int status = 0x11;
      int current = 0;
 
      @Override
      public IBinder onBind(Intent intent) {
          return null;
      }
 
      @Override
      public void onCreate() {

FIGURE 2.33  Two Receivers in a music player.

The Underlying Knowledge of Android﻿    ◾    69

          am = getAssets();
 
          //register receiver in Service
          receiver2 = new Receiver2();
          IntentFilter filter = new IntentFilter();
          filter.addAction("UpdateService");
          registerReceiver(receiver2, filter);
 
          mPlayer = new MediaPlayer();
          �mPlayer.setOnCompletionListener(new

OnCompletionListener() {
              @Override
              public void onCompletion(MediaPlayer mp) {
                  current++;
                  if (current >= 3) {
                      current = 0;
                  }
                  �prepareAndPlay(MyMusics.musics[current].name);
 
                  //send message to receiver in Activity
                  �Intent sendIntent = new

Intent("UpdateActivity");
                  sendIntent.putExtra("status", -1);
                  sendIntent.putExtra("current", current);
                  sendBroadcast(sendIntent);
              }
          });
          super.onCreate();
      }
 
      private void prepareAndPlay(String music) {
          try {
              AssetFileDescriptor afd = am.openFd(music);
              mPlayer.reset();
              mPlayer.setDataSource(afd.getFileDescriptor()
                      , afd.getStartOffset()
                      , afd.getLength());
              mPlayer.prepare();
              mPlayer.start();
          } catch (IOException e) {
              e.printStackTrace();
          }
      }
 

70    ◾    Android App-Hook and Plug-In Technology﻿

      public class Receiver2 extends BroadcastReceiver {
          @Override
          �public void onReceive(final Context context,

Intent intent) {
              �int command = intent.getIntExtra("command",

-1);
              switch (command) {
                  case 1:
                      if (status == 0x11) {
                          �prepareAndPlay(MyMusics.musics[current].

name);
                          status = 0x12;
                      }
                      else if (status == 0x12) {
                          mPlayer.pause();
                          status = 0x13;
                      }
                      else if (status == 0x13) {
                          mPlayer.start();
                          status = 0x12;
                      }
                      break;
                  case 2:
                      if (status == 0x12 || status == 0x13) {
                          mPlayer.stop();
                          status = 0x11;
                      }
              }
 
              //send message to receiver in Activity
              �Intent sendIntent = new

Intent("UpdateActivity");
              sendIntent.putExtra("status", status);
              sendIntent.putExtra("current", current);
              sendBroadcast(sendIntent);
          }
      }
  }

Figure 2.34 shows the relationship between 0x11 (stopping), 0x12 (play-
ing), and 0x13 (pausing).

The Underlying Knowledge of Android﻿    ◾    71

2.15.2 � A Music Player Based on One Receiver*
In Section 2.15.1, I introduced the first implementation of the music player
app. This solution is based on two Receivers, one Receiver is registered in
Activity, and the other Receiver is registered in Service.

In fact, we find almost all the music player apps only have one Receiver,
which is Receiver1 introduced in Section 2.15.1 and registered in Activity.
After a song ends, the background Service will send a broadcast to Receiver1
and update the UI of Activity.

On the other hand, we use the method onBind() of Service to obtain the
Binder object defined in the Service. When the user clicks the button to play
or stop the music in Activity, it will invoke the methods play() or stop() of
this Binder object to operate the background Service. Refer to Figure 2.35.

*	 This section example code, please refer to https://github.com/Baobaojianqiang/ReceiverTest
BetweenActivityAndService2

FIGURE 2.34  State machine of a music player.

FIGURE 2.35  Class diagram of a music player.

https://github.com/

72    ◾    Android App-Hook and Plug-In Technology﻿

In order to decouple the relationship between Activity and Service,
do not use the MyBinder object in Activity directly, because MyBinder is
defined in Service.

Based on Interface-Oriented programming, we need to create an inter-
face IServiceInterface, shown as follows:

public interface IServiceInterface {
    public void play();
    public void stop();
}

The code in Activity is as follows:

public class MainActivity extends Activity {
    TextView tvTitle, tvAuthor;
    ImageButton btnPlay, btnStop;

    //0x11: stopping; 0x12: playing; 0x13:pausing
    int status = 0x11;

    Receiver1 receiver1;

    IServiceInterface myService = null;

    �ServiceConnection mConnection = new
ServiceConnection() {

        �public void onServiceConnected(ComponentName name,
IBinder binder) {

            myService = (IServiceInterface) binder;
            Log.e("MainActivity", "onServiceConnected");
        }

        �public void onServiceDisconnected(ComponentName

name) {
            Log.e("MainActivity", "onServiceDisconnected");
        }
    };

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);

The Underlying Knowledge of Android﻿    ◾    73

        setContentView(R.layout.activity_main);

        tvTitle = (TextView) findViewById(R.id.tvTitle);
        tvAuthor = (TextView) findViewById(R.id.tvAuthor);

        �btnPlay = (ImageButton) this.findViewById(R.

id.btnPlay);
        �btnPlay.setOnClickListener(new View.

OnClickListener() {
            @Override
            public void onClick(View v) {
                myService.play();
            }
        });

        �btnStop = (ImageButton) this.findViewById(R.

id.btnStop);
        �btnStop.setOnClickListener(new View.

OnClickListener() {
            @Override
            public void onClick(View v) {
                myService.stop();
            }
        });

        //register receiver in Activity
        receiver1 = new Receiver1();
        IntentFilter filter = new IntentFilter();
        filter.addAction("UpdateActivity");
        registerReceiver(receiver1, filter);

        //bind Service
        Intent intent = new Intent(this, MyService.class);
        �bindService(intent, mConnection, Context.

BIND_AUTO_CREATE);
    }

    public class Receiver1 extends BroadcastReceiver {
        @Override
        �public void onReceive(Context context, Intent

intent) {
            status = intent.getIntExtra("status", -1);

74    ◾    Android App-Hook and Plug-In Technology﻿

            int current = intent.getIntExtra("current", -1);
            if (current >= 0) {
                �tvTitle.setText(MyMusics.musics[current].

title);
                �tvAuthor.setText(MyMusics.musics[current].

author);
            }

            switch (status) {
                case 0x11:
                    btnPlay.setImageResource(R.drawable.play);
                    break;
                case 0x12:
                    btnPlay.setImageResource(R.drawable.pause);
                    break;
                case 0x13:
                    btnPlay.setImageResource(R.drawable.play);
                    break;
                default:
                    break;
            }
        }
    }
}

The code in Service is as follows:

public class MyService extends Service {

    AssetManager am;

    MediaPlayer mPlayer;
    int status = 0x11;
    int current = 0;

    �private class MyBinder extends Binder implements
IServiceInterface {

        @Override
        public void play() {
            if (status == 0x11) {
                prepareAndPlay(MyMusics.musics[current].name);

The Underlying Knowledge of Android﻿    ◾    75

                status = 0x12;
            } else if (status == 0x12) {
                mPlayer.pause();
                status = 0x13;
            } else if (status == 0x13) {
                mPlayer.start();
                status = 0x12;
            }

            sendMessageToActivity(status, current);
        }

        @Override
        public void stop() {
            if (status == 0x12 || status == 0x13) {
                mPlayer.stop();
                status = 0x11;
            }

            sendMessageToActivity(status, current);
        }
    }

    MyBinder myBinder = null;

    @Override
    public void onCreate() {
        myBinder = new MyBinder();
        am = getAssets();
        mPlayer = new MediaPlayer();
        �mPlayer.setOnCompletionListener(new

OnCompletionListener() {
            @Override
            public void onCompletion(MediaPlayer mp) {
                current++;
                if (current >= 3) {
                    current = 0;
                }
                prepareAndPlay(MyMusics.musics[current].name);

                sendMessageToActivity(-1, current);

76    ◾    Android App-Hook and Plug-In Technology﻿

            }
        });
        super.onCreate();
    }

    @Override
    public IBinder onBind(Intent intent) {
        return myBinder;
    }

    @Override
    public boolean onUnbind(Intent intent) {
        myBinder = null;
        return super.onUnbind(intent);
    }

    �private void sendMessageToActivity(int status1, int
current1) {

        Intent sendIntent = new Intent("UpdateActivity");
        sendIntent.putExtra("status", status1);
        sendIntent.putExtra("current", current1);
        sendBroadcast(sendIntent);
    }

    private void prepareAndPlay(String music) {
        try {
            AssetFileDescriptor afd = am.openFd(music);
            mPlayer.reset();
            mPlayer.setDataSource(afd.getFileDescriptor()
                    , afd.getStartOffset()
                    , afd.getLength());
            mPlayer.prepare();
            mPlayer.start();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

The Underlying Knowledge of Android﻿    ◾    77

2.16 � SUMMARY
This chapter describes the underlying knowledge of the Android system
in detail. I don’t list as much code in this chapter, so I have drawn over 30
pictures to illustrate these concepts.

The content of this chapter is the foundation of plug-in techniques.
Please study it in detail.

http://taylorandfrancis.com

79

C h a p t e r 3

Reflection

This chapter introduces the most powerful technique in Java:
reflection.

The original grammar of reflection is complex and hard to understand,
so we can encapsulate it into the class Utils for convenience, including the
class, constructor, method, and field.

jOOR is a well-known open source library used to encapsulate reflec-
tion syntax. However, jOOR is not suitable for the fields marked as final
in Android. As the author of jOOR noted, jOOR is designed for Java only,
and not fully supported in Android.

Another difficulty with reflection is to how to handle a generics class,
which is widely used in Android plug-in techniques.

3.1 � BASIC REFLECTION*
Reflection consists of the following three techniques:

•	 Get an object from the class using a string.

•	 Get all the fields and methods (public, private, or static) of the class.

•	 Get a generics class.

Compared to the other languages, such as C#, the grammar of reflection
in Java is very difficult to understand; we’ll introduce the usage of reflec-
tion through the three points given above.

*	 For the example code in this section, please refer to Https://github.com/Baobaojianqiang/
TestReflection

Android App-Hook and Plug-In Technology Reflection

80    ◾    Android App-Hook and Plug-In Technology﻿

3.1.1 � Get the Class Using a String
3.1.1.1 � Get the Class Using a String
We can get class using string, as follows:

String str = “abc”;
Class c1 = str.getClass();

3.1.1.2 � Class.forName
Class.forName is widely used in Android.

We can get an object from a string; the string consists of the namespace
and its name.

We can also obtain the parent class using getSuperclass():

try {
    Class c2 = Class.forName("java.lang.String");
    Class c3 = Class.forName("android.widget.Button");

    //Each Class have this method: getSuperclass().
    Class c5 = c3.getSuperclass(); //Achieve TextView
} catch (ClassNotFoundException e) {
    e.printStackTrace();
}

3.1.1.3 � Property class
Each class has a property named class, as follows:

Class c6 = String.class;
Class c7 = java.lang.String.class;
Class c8 = MainActivity.InnerClass.class;
Class c9 = int.class;
Class c10 = int[].class;

3.1.1.4 � Property TYPE
Primitive types, such as BOOLEAN, have a property named TYPE, as
follows:

Class c11 = Boolean.TYPE;
Class c12 = Byte.TYPE;
Class c13 = Character.TYPE;
Class c14 = Short.TYPE;
Class c15 = Integer.TYPE;

Reflection﻿    ◾    81

Class c16 = Long.TYPE;
Class c17 = Float.TYPE;
Class c18 = Double.TYPE;
Class c19 = Void.TYPE;

In the following chapters, these primitive types are widely used in
Proxy.newProxyinstance() as parameters.

3.1.2 � Get the Property and Method of the Class
3.1.2.1 � Get the Constructor of the Class
Now, let’s get all the constructors of the class, whether they are marked
private, protected, or public, with parameters or not.

For example, TestClassCtor has a lot of constructors:

    public TestClassCtor() {
        name = "baobao";
    }

    public TestClassCtor(int a) {

    }

    public TestClassCtor(int a, String b) {
        name = b;
    }

    private TestClassCtor(int a, double c) {

    }

3.1.2.1.1 � Get All the Constructors of the Class
By using the method getDeclaredConstructors(), we get all the construc-
tors of the class, whether public or private, with parameters or not, and we
can iterate each constructor in a loop.

TestClass r = new TestClass();
Class temp = r.getClass();
�String className = temp.getName(); �// Gets the name of

the specified class

Log.v("baobao", "Gets all constructors of the class,
no matter public or private------------------------");

82    ◾    Android App-Hook and Plug-In Technology﻿

�//Gets all constructors of the class, no matter public
or private
try {
        �Constructor[] theConstructors = temp.

getDeclaredConstructors();

        for (int i = 0; i < theConstructors.length; i++) {
            �int mod = theConstructors[i].getModifiers();

// Get labels and it’s name of a constructor
            �Log.v("baobao", Modifier.toString(mod) + " " +

className + "(");

    � //Gets the collection parameters of the

specified constructor
            �Class[] parameterTypes = theConstructors[i].

getParameterTypes();
            �for (int j = 0; j < parameterTypes.length; j++) {

// Printout parameter list
                Log.v("baobao", parameterTypes[j].getName());
                if (parameterTypes.length > j + 1) {
                    Log.v("baobao", ", ");
                }
            }
            Log.v("baobao", ")");
      }
    } catch (Exception e) {
        e.printStackTrace();
    }

If we want to get all the public constructors of the class, but with-
out private constructors, we can use GetConstructors() instead of
getDeclaredConstructors().

3.1.2.1.2 � Get a Constructor of a Class
Get a constructor without parameters:

Constructor c1 = temp.getDeclaredConstructor();

Get a constructor with an integer parameter:

Class[] p2 = {int.class};
Constructor c2 = temp.getDeclaredConstructor(p2);

Reflection﻿    ◾    83

Get a constructor with two parameters—one is an integer and the other
is a string:

Class[] p3 = {int.class, String.class};
Constructor c3 = temp.getDeclaredConstructor(p3);

It is important to get the constructor of a class as it is a crucial step in
the following process:

•	 Get a class using a string.

•	 Get the constructor of this class.

•	 Get an instance of the class by executing the constructor.

•	 Get all the fields and methods of the instance using reflection.

3.1.2.1.3 � Call a Constructor
We can use the method newInstance() to get an instance of the class:

Class r = Class.forName("jianqiang.com.testreflection.
TestClassCtor");

//Containing parameters
Class[] p3 = {int.class, String.class};
Constructor ctor = r.getDeclaredConstructor(p3);
Object obj = ctor.newInstance(1, "bjq");

// without parameters
Constructor ctor2 = r.getDeclaredConstructor();
Object obj2 = ctor2.newInstance();

3.1.2.2 � Invoke a Private Method of the Class
TestClassCtor has a private method named doSomething:

    private String doSomething(String d) {
        Log.v("baobao", "TestClassCtor, doSomething");
        return "abcd";
    }

84    ◾    Android App-Hook and Plug-In Technology﻿

Invoke this method by reflection, as follows:

    �Class r = Class.forName("jianqiang.com.
testreflection.TestClassCtor");

    Class[] p3 = {int.class, String.class};
    Constructor ctor = r.getDeclaredConstructor(p3);
    �Object obj = ctor.newInstance(1, "bjq");

    // Call a private method like this:
    Class[] p4 = {String.class};
    �Method = r.getDeclaredMethod("doSomething", p4); //

Gets the specified method in the specified class
    method.setAccessible(true);

    �Object argList[] = {"jianqiang"}; //As a parameter

needed in the method
    Object result = method.invoke(obj, argList);

3.1.2.3 � Invoke a Private and Static Method of the Class
TestClassCtor has a private and static method named work:

    private static void work() {
        Log.v("baobao", "TestClassCtor, work");
    }

Invoke this method by reflection, as follows:

Class r = Class.forName("jianqiang.com.testreflection.
TestClassCtor");
// To Call this method, do as following :
Method = r.getDeclaredMethod("work"); //Get the
specified method in the specified class
method.setAccessible(true);
method.invoke(null);

3.1.2.4 � Get a Private Field of the Class and Modify Its Value
TestClassCtor has a private field named “name”:

public class TestClassCtor {
    private String name;

    public String getName() {
        return name;
    }
}

Reflection﻿    ◾    85

Get this field and modify its value, as follows:

//Get a class instance from its name by inflection
Class r = Class.forName("jianqiang.com.testreflection.
TestClassCtor");
Class[] p3 = {int.class, String.class};
Constructor ctor = r.getDeclaredConstructor(p3);
Object obj = ctor.newInstance(1, "bjq");

//Get the private field: name
Field = r.getDeclaredField("name");
field.setAccessible(true);

Object fieldObject = field.get(obj);

//Effective only to obj
field.set(obj, "jianqiang1982");

The modification in the above code is only effective for the current
object, and if we create another instance of TestClassCtor, the value of its
"name" field will be null, rather than "jianqiang1982."

TestClassCtor = new TestClassCtor(100);
testClassCtor.getName(); // Return Null instead of
jianqiang1982

3.1.2.5 � Get the Private Static Field of the Class and Modify Its Value
TestClassCtor has a static and private field named “address”:

public class TestClassCtor {
    private static String address;
}

Get this static private field and modify its value, as follows:

//Get a class instance from its name by inflection
Class r = Class.forName("jianqiang.com.testreflection.
TestClassCtor");

//Get the private static field: address
Field = r.getDeclaredField("address");
field.setAccessible(true);

86    ◾    Android App-Hook and Plug-In Technology﻿

//the parameter is null when the field is static
Object fieldObject = field.get(null);

field.set(fieldObject, "ABCD");

// As static field, modification is effective once
modified to another instance of the class
TestClassCtor.printAddress();

Once we use reflection to modify the value of a static field, it will take
effect forever. Next time we visit this static field, it will be the new value.

3.1.3 � Generics and Singleton<T>
Generics, such as the class Singleton, are widely used in the source code
of Android.

public abstract class Singleton<T> {
    private T mInstance;

    protected abstract T create();

    public final T get() {
        synchronized (this) {
            if (mInstance == null) {
                mInstance = create();
            }
            return mInstance;
        }
    }
}

Singleton is a generics class, and we can get the mInstance field of
Singleton, as follows:

Class<?> Singleton = Class.forName("jianqiang.com.
testreflection.Singleton");
Field mInstanceField = singleton.
getDeclaredField("mInstance");
mInstanceField.setAccessible(true);

Singleton is also an abstract class, which has an abstract method named
create.

Reflection﻿    ◾    87

Let’s look at the ActivityManagerNative class; it is also called AMN for
short.

AMN is usually associated with Singleton as follows:

public class AMN {
    �private static final Singleton<ClassB2Interface>
gDefault = new Singleton<ClassB2Interface>() {

        protected ClassB2Interface create() {
            ClassB2 b2 = new ClassB2();
            b2.id = 2;
            return b2;
        }
    };

    static public ClassB2Interface getDefault() {
        return gDefault.get();
    }
}

The method getDefault is a static private field of AMN, and its return
type is Singleton, so it must implement the create method, and return an
instance of ClassB2.

Now, let’s get this object by reflection.
First, we get the field gDefault of AMN, which is a static and private

field:

Class<?> activityManagerNativeClass = Class.
forName("jianqiang.com.testreflection.AMN");
Field gDefaultField = activityManagerNativeClass.
getDeclaredField("gDefault");
gDefaultField.setAccessible(true);
Object gDefault = gDefaultField.get(null);

Second, we get the object rawB2Object from gDefault, as follows:

// The original B2 object inside the gDefault object
of AMN
Object rawB2Object = mInstanceField.get(gDefault);

rawB2Object is an instance of ClassB2.
However, we find that rawB2object is not the object that we need, so we

convert it into the object proxy, whose type is ClassB2Mock.

88    ◾    Android App-Hook and Plug-In Technology﻿

ClassB2Mock is a dynamic-proxy for rawB2Object. We use the method
Proxy.newProxyInstance() to create this relationship between ClassB2Mock
and rawB2Object, as follows:

// Create a proxy object for this instance
Classb2mock, and then replace this field, then our
agents can help work
Class<?> classB2Interface = Class.forName("jianqiang.
com.testreflection.ClassB2Interface");
Object proxy = Proxy.newProxyInstance(
    Thread.currentThread().getContextClassLoader(),
    new Class<?>[] { classB2Interface },
    new ClassB2Mock(rawB2Object));
mInstanceField.set(gDefault, proxy);

The last line of code above is to set the field mInstance of gDefault to
proxy, which is created by the method Proxy.newProxyInstance().

We call the above process a hook. After a hook has taken place, AMN.
getDefault().doSomething() will execute the logic of the ClassB2Mock.

The behavior of the ActivityManagerService in the source code of
Android is the same as we discuss in this chapter. We use ClassB2 and
ClassB2Mock to simulate a real scenario in the Android system.

3.2 � jOOR*
The grammar in the above example is based on Java syntax, which is very
complex and inconvenient.

It is much more convenient to replace it with a simple and object-ori-
ented grammar, so we have jOOR.†

jOOR only has two classes, Reflect.java and ReflectException.java, so we
can directly drag them to our project instead of relying on Gradle.

Reflect.java is the soul of jOOR. It has six core methods:

•	 on: wrap a class or an object. When we wrap a class, the parameter
may be a class type or a string, as follows:

  Reflect r1 = on(Object.class);

*	 Code sample: https//github.com/Baobaojianqiang/TestReflection2
†	 jOOR address: https://github.com/jOOQ/jOOR

https://github.com/
https://github.com/

Reflection﻿    ◾    89

•	 create: invoke the constructor of the class or object wrapped using
“on” syntax, with parameters or not, as follows:

  Reflect = on("android.widget.Button").create();

•	 call: call a method, take the method’s name and parameters as its
parameters. If the calling method has a return value, we could use
get() to get its value, as follows:

  reflect.call("doSomething", "param1").get()

•	 get: get a field or the return value of the method, support type con-
version. It is usually used with the call method, as follows:

  Object obj1 = obj.get("name");

•	 set: set the value of a field of the object, as follows:

  obj.set("name", "jianqiang");

We use jOOR to refactor the sample code seen in Section 3.1.

3.2.1 � Get a Class from a String
3.2.1.1 � Get a Class from a String
We can get a class using a string, as follows:

String str = "abc";
Class c1 = str.getClass();

3.2.1.2 � Get a Class by Using on and get
When we are using jOOR, we generally import its Reflect.on method so
that we can use “on” directly in the code to make the code simpler.

import static jianqiang.com.testreflection.joor.
Reflect.on;

// The following three lines of code are equivalent
Reflect r1 = on(Object.class);
Reflect r2 = on("java.lang.Object");
Reflect r3 = on("java.lang.Object", ClassLoader.
getSystemClassLoader());

90    ◾    Android App-Hook and Plug-In Technology﻿

// The following two lines of code are equivalent,
achieving an Object and getting Object.class
Object o1 = on(Object.class).<Object>get();
Object o2 = on("java.lang.Object").get();

String j2 = on((Object)"abc").get();
int j3 = on(1).get();

// Equivalent to Class.forName()
try {
  � Class j4 = on("android.widget.Button").type();
} catch (ReflectException e) {
   e.printStackTrace();
}

3.2.2 � Get the Property and Method of a Class
3.2.2.1 � Get a Constructor of a Class
Let’s get all the constructors of the class, whether marked private, pro-
tected, or public, with parameters or not.

jOOR doesn’t support getting or invoking a constructor directly, but we
can use the method create() to instantiate an object:

TestClassCtor r = new TestClassCtor();
Class temp = r.getClass();
String className = temp.getName(); �// Get the name of

the specified class

//Public Constructor
Object obj = on(temp).create().get();   � //without

parameters
Object obj2 = on(temp).create(1, "abc").get();   
//Having parameters

//Private Constructor
TestClassCtor obj3 = on(TestClassCtor.class).create
(1, 1.1).get();
String a = obj3.getName();

3.2.2.2 � Get the Private Method of the Class
Get the private instance method of the class and invoke this method:

// The following four lines of code are used to get an
object

Reflection﻿    ◾    91

TestClassCtor r = new TestClassCtor();
Class temp = r.getClass();
Reflect = on(temp).create();

//Invoke a method
String a1 = reflect.call("doSomething", "param1").
get();

3.2.2.3 � Get the Private and Static Method of the Class
Get the private and static method of the class and invoke this method:

// The following four lines of code are used to get an
object
TestClassCtor r = new TestClassCtor();
Class temp = r.getClass();
Reflect reflect = on(temp).create();

//Invoke a static method
on(TestClassCtor.class).call("work").get();

3.2.2.4 � Get the Private Field of the Class
Get the private field of the class and modify its value:

Reflect obj = on("jianqiang.com.testreflection.
TestClassCtor").create(1, 1.1);
obj.set("name", "jianqiang");
Object obj1 = obj.get("name");

3.2.2.5 � Get the Private and Static Field of the Class
Get the private and static field of the class and modify its value:

on("jianqiang.com.testreflection.TestClassCtor").
set("address", "avcccc");
Object obj2 = on("jianqiang.com.testreflection.
TestClassCtor").get("address");

3.2.3 � Generics and Singleton<T>
It’s easy to handle generics in jOOR:

// Obtaining gDefault which is static and Singleton in
AMN
Object gDefault = on("jianqiang.com.testreflection.
AMN").get("gDefault");

92    ◾    Android App-Hook and Plug-In Technology﻿

// gDefault is an android.util.Singleton object; we
obtain the mInstance field in Singleton.
// mInstance is the original ClassB2Interface object
Object mInstance = on(gDefault).get("mInstance");

// Create a proxy object for this instance
Classb2mock, and then replace this field, then our
agents can help work
Class<?> classB2Interface = on("jianqiang.com.
testreflection.ClassB2Interface").type();
Object proxy = Proxy.newProxyInstance(
    Thread.currentThread().getContextClassLoader(),
    new Class<?>[] { classB2Interface },
    new ClassB2Mock(mInstance));

on(gDefault).set("mInstance", proxy);

jOOR doesn’t fully support Android, for example, for reflecting a final
field.

There are two final fields in the User class: one is marked final and static
and the other is marked final only.

public class User {
    private final static int userId = 3;
    private final String name = "baobao";
}

Let’s use jOOR to reflect these two fields:

//Final field
Reflect obj = on("jianqiang.com.testreflection.User").
create();
obj.set("name", "jianqiang");
Object newObj = obj.get("name");

//Static field
Reflect obj2 = on("jianqiang.com.testreflection.
User");
obj2.set("userId", "123");
Object newObj2 = obj2.get("userId");

It will throw up a NoSuchFieldException when we execute the set
method in the code above. The root cause of this is that the set method

Reflection﻿    ◾    93

in jOOR will try to reflect the modifier field of the Field class. The modi-
fier field exists in the Java environment but doesn’t exist in the Android
environment.

3.3 � ENCAPSULATED CLASSES OF THE BASIC REFLECTION*
Considering the limitations of jOOR, we need to find another way to sup-
port final. We try to encapsulate the basic Java reflection grammar into a
lot of simple methods by ourselves, as follows:

•	 Reflect a constructor and invoke it.

•	 Call a static method.

•	 Call an instance method.

•	 Get a field and set its value.

•	 Handle generics.

3.3.1 � Get a Constructor

Define the createObject method in the RefInvoke class:

public static Object createObject(String className,
Class[] pareTyples, Object[] pareVaules) {
        try {
            Class r = Class.forName(className);
            �Constructor ctor = r.getDeclaredConstructor

(pareTyples);
            ctor.setAccessible(true);
            return ctor.newInstance(pareVaules);
        } catch (Exception e) {
            e.printStackTrace();
        }

        return null;
  }

*	 Code sample: https//github.com/Baobaojianqiang/TestReflection3

https://github.com/

94    ◾    Android App-Hook and Plug-In Technology﻿

Use the createObject method as follows:

  Class r = Class.forName(className);

//With parameters
Class[] p3 = {int.class, String.class};
Object[] v3 = {1, "bjq"};
Object obj = RefInvoke.createObject(className, p3, v3);

// without parameters
Object obj2 = RefInvoke.createObject(className, null,
null);

3.3.2 � Invoke Instance Methods

Define the invokeInstanceMethod method in the RefInvoke class:

public static Object invokeInstanceMethod(Object obj,
String methodName, Class[] pareTyples, Object[]
pareVaules) {
        if(obj == null)
            return null;

        try {
    //Call a private method
    //Get the specified method in the specified class
            �Method = obj.getClass().

getDeclaredMethod(methodName, pareTyples);
            method.setAccessible(true);
            return method.invoke(obj, pareVaules);

        } catch (Exception e) {
            e.printStackTrace();
        }

        return null;
    }

Use the invokeInstanceMethod method as follows:

Class[] p3 = {};
Object[] v3 = {};
RefInvoke.invokeStaticMethod(className, "work", p3, v3);

Reflection﻿    ◾    95

3.3.3 � Invoke Static Methods

Define the invokeStaticMethod method in the RefInvoke class:

public static Object invokeStaticMethod(String
className, String method_name, Class[] pareTyples,
Object[] pareVaules) {
        try {
            Class obj_class = Class.forName(className);
            �Method = obj_class.getDeclaredMethod(method_name,

pareTyples);
            method.setAccessible(true);
            return method.invoke(null, pareVaules);
        } catch (Exception e) {
            e.printStackTrace();
        }

        return null;
}

Use the invokeStaticMethod method as follows:

Class[] p4 = {String.class};
Object[] v4 = {"jianqiang"};
Object result = RefInvoke.invokeInstanceMethod(obj,
"doSomething", p4, v4);

3.3.4 � Get the Field of the Class and Set Its Value

Define the getFieldObject and setFieldObject methods in the RefInvoke
class:

public static Object getFieldObject(String className,
Object obj, String fieldName) {
   try {
    Class obj_class = Class.forName(className);
       �Field = obj_class.getDeclaredField(fieldName);
          field.setAccessible(true);
          return field.get(obj);
      } catch (Exception e) {
          e.printStackTrace();
      }
 
      return null;
}
 

96    ◾    Android App-Hook and Plug-In Technology﻿

public static void setFieldObject(String classname,
Object obj, String fieldName, Object fieldVaule) {
   try {
             Class obj_class = Class.forName(classname);
            � Field field = obj_class.

getDeclaredField(fieldName);
             field.setAccessible(true);
             field.set(obj, fieldVaule);
      } catch (Exception e) {
             e.printStackTrace();
      }
}

Use the getFieldObject and setFieldObject methods as follows:

//Get a field
Object fieldObject = RefInvoke.
getFieldObject(className, obj, "name");
RefInvoke.setFieldObject(className, obj, "name",
"jianqiang1982");
 
//Get a field labeled static
Object fieldObject = RefInvoke.
getFieldObject(className, null, "address");
RefInvoke.setFieldObject(className, null, "address",
"ABCD");

3.3.5 � Handle Generics

Up until now, we have encapsulated five methods in the RefInvoke class;
now it’s time to introduce how to implement generics, as follows:

//Obtaining gDefault which is static and Singleton
in AMN
Object gDefault = RefInvoke.getFieldObject("jianqiang.
com.testreflection.AMN", null, "gDefault");
 
// gDefault is an android.util.Singleton object;
we obtain the mInstance field in Singleton.
Object rawB2Object = RefInvoke.getFieldObject(
          "jianqiang.com.testreflection.Singleton",
          gDefault, "mInstance");
 

Reflection﻿    ◾    97

// Create a proxy object for this instance
ClassB2Mock, and then replace this field, then our
proxy can help Class<?> classB2Interface = Class.
forName("jianqiang.com.testreflection.
ClassB2Interface");
Object proxy = Proxy.newProxyInstance(
          Thread.currentThread().getContextClassLoader(),
          new Class<?>[] { classB2Interface },
          new ClassB2Mock(rawB2Object));
 
// Replaced mInstance in Singleton with Proxy
RefInvoke.setFieldObject("jianqiang.com.
testreflection.Singleton", gDefault, "mInstance",
proxy);

This code is simple to understand and use in our project.

3.4 � FURTHER ENCAPSULATION OF THE REFLECTION*
In Section 3.3, we introduced a new class named RefInvoke, which has five
methods. Then we encapsulated a complex reflection logic into these five
methods, but in practice we find it is not convenient in some scenarios.
Let’s resolve these small issues in this section.

3.4.1 � Reflect a Method with Only One
Parameter or without Parameters

Sometimes we create an object using a constructor without parameters,
but we still need to set its parameter to null in the createObject method,
as follows:

Class r = Class.forName(className);
 
//With parameters
Class[] p3 = {int.class, String.class};
Object[] v3 = {1, "bjq"};
Object obj = RefInvoke.createObject(className, p3, v3);
 
//without parameters
Object obj2 = RefInvoke.createObject(className, null,
null);

*	 Code sample: https://github.com/Baobaojianqiang/TestReflection4

https://github.com/

98    ◾    Android App-Hook and Plug-In Technology﻿

Sometimes we find the constructor has only one parameter, but we still
need convert this parameter into an array, or it doesn’t make sense, as
follows:

//With only one parameter
Class[] p3 = {int.class};
Object[] v3 = {1};
Object obj = RefInvoke.createObject(className, p3, v3);

We want to make the code simple, so we supply a series of overload
methods createObject() , as follows:

// without parameters
public static Object createObject(String className) {
      Class[] pareTyples = new Class[]{};
      Object[] pareVaules = new Object[]{};
 
      try {
             Class r = Class.forName(className);
             return createObject(r, pareTyples, pareVaules);
      } catch (ClassNotFoundException e) {
             e.printStackTrace();
      }
 
      return null;
}
 
//with one parameter
public static Object createObject(String className,
Class pareTyple, Object pareVaule) {
      Class[] pareTyples = new Class[]{ pareTyple };
      Object[] pareVaules = new Object[]{ pareVaule };
 
      try {
             Class r = Class.forName(className);
             return createObject(r, pareTyples, pareVaules);
      } catch (ClassNotFoundException e) {
             e.printStackTrace();
      }
 
    return null;
}
 

Reflection﻿    ◾    99

//multiple parameters
public static Object createObject(String className,
Class[] pareTyples, Object[] pareVaules) {
   try {
     Class r = Class.forName(className);
     return createObject(r, pareTyples, pareVaules);
   } catch (ClassNotFoundException e) {
     e.printStackTrace();
   }
 
   return null;
}
 
//multiple parameters
public static Object createObject(Class clazz, Class[]
pareTyples, Object[] pareVaules) {
      try {
           � Constructor ctor = clazz.getDeclaredConstructor

(pareTyples);
            ctor.setAccessible(true);
            return ctor.newInstance(pareVaules);
      } catch (Exception e) {
            e.printStackTrace();
      }
 
      return null;
}

Now we can create an object with less code, as follows:

//With only one parameter
Object obj = RefInvoke.createObject(className, int.
class, 1);
//without parameters
Object obj2 = RefInvoke.createObject(className);

Actually, the constructor is a method, which means we also
need supply a series of overload methods invokeStaticMethod() and
invokeInstanceMethod().

100    ◾    Android App-Hook and Plug-In Technology﻿

3.4.2 � Replace String with Class Type

Up until now, we have obtained a class by using its full name, as follows:

public static Object createObject(String className,
Class[] pareTyples, Object[] pareVaules) {
      try {
            Class r = Class.forName(className);
            Constructor ctor = r.getConstructor(pareTyples);
            return ctor.newInstance(pareVaules);
      } catch (Exception e) {
            e.printStackTrace();
      }
 
      return null;
}

However, sometimes we have the class type rather than a string, so we
don’t need to use Class.forName(className) anymore; we can use the class
type directly, as follows:

//multiple parameters
public static Object createObject(String className,
Class[] pareTyples, Object[] pareVaules) {
      try {
          Class r = Class.forName(className);
          return createObject(r, pareTyples, pareVaules);
      } catch (ClassNotFoundException e) {
          e.printStackTrace();
      }
 
      return null;
}
 
//multiple parameters
public static Object createObject(Class clazz, Class[]
pareTyples, Object[] pareVaules) {
      try {
          Constructor ctor = clazz.getConstructor(pareTyples);
          return ctor.newInstance(pareVaules);
      } catch (Exception e) {
          e.printStackTrace();
      }
 
      return null;
}

Reflection﻿    ◾    101

All the methods in RefInvoke have two forms, one is a string, and the
other one is a class type.*

3.4.3 � Differences between the Static and Instance Fields

When we get or set a field by reflection, we find that the grammar is nearly
the same, whether it’s a static field or instance field. There is only one dif-
ference between these two fields, as follows:

//Get a common Field
Object fieldObject = RefInvoke.
getFieldObject(className, obj, "name");
RefInvoke.setFieldObject(className, obj, "name",
"jianqiang1982");
 
//Get a static field
Object fieldObject = RefInvoke.
getFieldObject(className, null, "address");
RefInvoke.setFieldObject(className, null, "address",
"ABCD");

The static field doesn’t need the parameter obj, so we set it to null instead.
We don’t want to see the null value in our code, so we encapsulate the

reflection logic of the static method into two new methods, getstaticfiel-
dobject and setstaticfieldobject, as follows:

public static Object getStaticFieldObject(String
className, String fieldName) {
      return getFieldObject(className, null, fieldName);
}
 
public static void setStaticFieldObject(String
classname, String fieldName, Object fieldVaule) {
      �setFieldObject(classname, null, fieldName,

fieldVaule);
}

Now we can write a simple code as follows:

Object fieldObject = RefInvoke.
getFieldObject(className, null, "address");
RefInvoke.setStaticFieldObject(className, "address",
"ABCD");

*	 Sample code: https://github.com/BaoBaoJianqiang/TestReflection4

https://github.com/

102    ◾    Android App-Hook and Plug-In Technology﻿

3.4.4 � Optimization of the Field Reflection

Let’s continue to demonstrate the encapsulation of the instance field, as
follows:

public static Object getFieldObject(Class clazz,
Object obj, String fieldName) {
      try {
          Field = clazz.getDeclaredField(fieldName);
          field.setAccessible(true);
          return field.get(obj);
      } catch (Exception e) {
          e.printStackTrace();
      }
 
  return null;
}

We find that the type of the second parameter obj is mostly equal to the
first parameter clazz, which means we can omit the first parameter clazz
from the method getFieldObject, as follows:

public static Object getFieldObject(Object obj, String
fieldName) {
  � return getFieldObject(obj.getClass(), obj,

fieldName);
}
 
public static void setFieldObject(Object obj, String
fieldName, Object fieldVaule) {
  � setFieldObject(obj.getClass(), obj, fieldName,

fieldVaule);
}

Now we can write a simple code as follows:

Object fieldObject = RefInvoke.
getFieldObject(className, "address");
RefInvoke.setStaticFieldObject(className, "address",
"ABCD");

Sometimes the type of obj is not equal to clazz, and we are unable to
omit the first parameter clazz anymore.

Reflection﻿    ◾    103

3.5 � SUMMARY
This chapter shows three ways to use reflection:

	 1)	Use traditional reflection grammar.

	 2)	Use jOOR.

	 3)	Encapsulate the basic reflection grammar.

jOOR doesn’t fully support Android, and we usually use the third solution
in our Android projects.

In this book, we use the third solution in all the demos.

http://taylorandfrancis.com

105

C h a p t e r 4

Proxy Pattern

To understand what a plug-in is, we must first look at the proxy pat-
tern, which is one of 23 software design patterns. There are two ways to

implement a proxy pattern, one is Static-Proxy, and the other is Dynamic-
Proxy. In plug-in technology, these two patterns are applied to hook
Instrumentation and AMN. I will introduce them in detail in this chapter.

4.1 � WHAT IS A PROXY PATTERN?
Proxy patterns appear everywhere in our software projects. Every class
with the suffix “Proxy” usually makes use of the proxy pattern, such as
ActivityManagerProxy

The definition of a proxy pattern in GOF23 is: a wrapper or agent object
that is called by the client to access the real serving object behind the scenes.

A UML diagram of the proxy pattern is shown in Figure 4.1.

Android App-Hook and Plug-In Technology Proxy Pattern

FIGURE 4.1  Class diagram of a proxy pattern.

106    ◾    Android App-Hook and Plug-In Technology﻿

In Figure 4.1, realSubject and Proxy are both subclasses of Subject.
A Proxy class has a field named realSubject whose type is realSubject. The
Proxy class also has a method Request; its implementation is to invoke
realSubject’s Request method. The code is shown as follows:

abstract public class Subject {
    abstract public void Request();
}

public class realSubject : Subject {
    public override void Request()
    {
        //Do Something
    }
}

public class Proxy : Subject {
    private realSubject realSubject;

    public override void Request()
    {
        //Below is the key statement
        realSubject.Request();
    }
}

In the next section, I will describe the usage of the proxy pattern, and
you will discover for yourselves its power.

4.1.1 � Remote Proxy

WebService, a very popular technology around 2004, is implemented in
Remote Proxy. We could transfer data from the Java server to the .NET
server. WebService creates mapping between XML and the entity class in
Java or C#. First, the entity written in Java is converted to XML, and then
the XML data is transferred to the .NET server, and then XML is con-
verted to the entity in C# in the .NET server.

Now, WebService techniques have already been replaced with JSON.
Because XML in WebService is too heavy, we usually have to create a lot
of files like DTD or Schema to define the format of the XML. But JSON is
lighter than XML.

Proxy Pattern﻿    ◾    107

Let’s go back to the Android system. AIDL is implemented in Remote
Proxy, as shown in Figure 4.2.

As we talked about in previous chapters, AIDL has a Client and a Server.
For example, we can define the method sum in AIDL,

sum(int a, int b)

AIDL will help us when generating Java source code automatically; the
implementation of the add method in its Proxy class is below:

private static class Proxy implements com.lypeer.
ipcclient.Caculator {
  @Override
 � public int add(int a, int b) throws android.
os.RemoteException {

   � android.os.Parcel _data = android.os.Parcel.
obtain();

   � android.os.Parcel _reply = android.os.Parcel.
obtain();

    int _result;
    try {
      _data.writeInterfaceToken(DESCRIPTOR);
      _data.writeInt(a);
      _data.writeInt(b);

FIGURE 4.2  AIDL with a proxy pattern.

108    ◾    Android App-Hook and Plug-In Technology﻿

     � mRemote.transact(Stub.TRANSACTION_add, _data,
_reply, 0);

      _reply.readException();
      _result = _reply.readInt();
    } finally {
      _reply.recycle();
      _data.recycle();
    }
    return _result;
  }

    //ignore some code…
}

The method add will write variables a and b to _data, and then send _
data and _reply to another endpoint of AIDL using the method transact of
the object mRemote. The object _reply is a callback function; it will bring
back the result. This is a typical proxy pattern, as shown in Figure 4.3.

The other endpoint of AIDL will read the values from _data by calling
on the method onTransact in the class Stub, then calculate the result, and
return the proxy via the object _reply.

4.1.2 � Write Log

The class Class1 has a method doSomething; we must write a log before the
method doSomething is executed. Commonly, we add a statement to write
a log at the beginning of the method doSomething.

After we have learned the proxy pattern, we design the class Class1Proxy
as shown in Figure 4.4, with the following code:

FIGURE 4.3  A proxy pattern with Proxy and IBinder.

Proxy Pattern﻿    ◾    109

public class Class1Proxy implements Class1Interface {
    Class1 clzz = new Class1();

    @Override
    public void doSomething() {
        System.out.println("Begin log");
        clzz.doSomething();
        System.out.println("End log");
    }
}

Then we use the class Class1Proxy instead of Class1,

  Class1Proxy proxy = new Class1Proxy();
  proxy.doSomething();

4.2 � STATIC-PROXY AND DYNAMIC-PROXY*
Continue with the sample above, since it was a proxy pattern, but there’re
some problems with it. We need to write a Proxy class for each origin class,
and the number of classes will be increased quickly. But the logic is nearly
the same. We call this Static-Proxy.

Dynamic-Proxy can resolve this problem. Now let’s have a look at an
important piece of syntax: Proxy.newProxyInstance().

*	 Sample code: https://github.com/BaoBaoJianqiang/InvocationHandler

FIGURE 4.4  Implementation of a Static-Proxy.

https://github.com/

110    ◾    Android App-Hook and Plug-In Technology﻿

static Object newProxyInstance(
  ClassLoader loader,
  Class<?>[] interfaces,
  InvocationHandler h)

There are three parameters in the above function:

•	 Loader: the ClassLoader of target class Class1.

•	 Interfaces: the interface type of the target class Class1; here it is
Class1Interface.

•	 The third parameter is an implementation of InvocationHandler; we
will inject the target object of Class1 with its constructor.

Class1Interface class1 = new Class1();
Class1Interface class1Proxy = (Class1Interface) Proxy.
newProxyInstance(
                class1.getClass().getClassLoader(),
                class1.getClass().getInterfaces(),
                new InvocationHandlerForTest(class1));
class1Proxy.doSomething();

Through the method Proxy.newProxyInstance(), we could create a new
instance of Class1Interface, which is a class1Proxy.

class1Proxy.doSomething will call the method invoke() of
InvocationHandlerForTest.

The second parameter of the method invoke, named method, is actually
the method doSomething of Class1.

We can write a log before or after method.invoke(), as follows:

public class InvocationHandlerForTest implements
InvocationHandler {
    private Object target;

    public InvocationHandlerForTest(Object target) {
        this.target = target;
    }

    @Override
    �public Object invoke(Object o, Method method,
Object[] objects) throws Throwable {

Proxy Pattern﻿    ◾    111

        System.out.println("Begin Log");
        Object obj = method.invoke(target, objects);
        System.out.println("End Log");
        return obj;
    }
}

Focused on method.invoke(target, objects), target is Class1 and objects is
a parameter of the method doSomething of Class1.

Then if we invoke the method doSomething of class1Proxy, the method
doSomething of Class1 will be invoked.

The method Proxy.newProxyInstance() could be applied to any instance
of the interface, and adds a new function to the original object, so we call
it a Dynamic-Proxy.

In the plug-in technique, an object created by Proxy.newProxyInstance()
would be used to replace the original one, we call this technique a hook.

4.3 � A HOOK ON THE AMN*
This section is an extension of Chapter 3, Reflection.

In Chapter 3, we defined two classes AMN and Singleton. In fact, these
two classes represent the implementation of ActivityManagerNative of the
Android source code, but the implementation in Chapter 3 was simple.

The communication between Android components (Activity, Service,
and so on) and the AMS are based on AMN or AMP, as we mentioned in
Chapter 2.

For example, an app invokes the method startActivity:

  ActivityManagerNative.getDefault().startActivity()

And sends a message by the method sendBroadcast():

  ActivityManagerNative.getDefault().broadcastIntent()

In Chapter 3, we introduced reflection. Now we understand that
ActivityManagerNative.getDefault() invokes the method get of the class
Singleton, and returns the field mInstance of Singleton.

We can replace mInstance with our own logic, for example, to print a
log. The code is shown as follows:

*	 Code sample: https://github.com/BaoBaoJianqiang/hookAMS

https://github.com/

112    ◾    Android App-Hook and Plug-In Technology﻿

public final class HookHelper {

    public static void hookActivityManager() {
        try {
            �// To get the Singleton of AMN, gDefault, it’s a

static property
            �Object gDefault = RefInvoke.

getStaticFieldObject("android.app.
ActivityManagerNative", "gDefault");

            �// gDefault is an android.util.Singleton object;

we get mInstance property of it, it’s type of
IActivityManager

            �Object rawIActivityManager = RefInvoke.
getFieldObject(

                    "android.util.Singleton",
                    gDefault, "mInstance");

            �//Create the proxy object of

iActivityManagerInterface, then replace the
property, and let it do something

            �Class<?> iActivityManagerInterface = Class.
forName("android.app.IActivityManager");

            Object proxy = Proxy.newProxyInstance(
                    �Thread.currentThread().

getContextClassLoader(),
                    new Class<?>[] { iActivityManagerInterface },
                    new HookHandler(rawIActivityManager));

            //Replace mInstance of Singleton with proxy
            �RefInvoke.setFieldObject("android.util.

Singleton", gDefault, "mInstance", proxy);

        } catch (Exception e) {
            throw new RuntimeException("Hook Failed", e);
        }
    }
}

The logic in HookHandler is simple, it will print logs before the original
method is executed.

Proxy Pattern﻿    ◾    113

class HookHandler implements InvocationHandler {

    private static final String TAG = "HookHandler";

    private Object mBase;

    public HookHandler(Object base) {
        mBase = base;
    }

    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        Log.d(TAG, "hey, baby; you are hooked!!");
        �Log.d(TAG, "method:" + method.getName() + " called

with args:" + Arrays.toString(args));

        return method.invoke(mBase, args);
    }
}

4.4 � A HOOK ON THE PMS*
The PMS is one of the services in the Android system; we can’t hook it
directly. In fact, we can only hook its proxy object within the Android
system process; it’s an object of the class PackageManager. We can also
find it in a lot of classes.

ActivityThread has a field sPackageManager.
ApplicationPackageManager has a field mPM.
We try to hook these two fields and print some logs.

public static void hookPackageManager(Context context) {
  try {
// Get the global ActivityThread object
   � Object currentActivityThread = RefInvoke.

getStaticFieldObject("android.app.
ActivityThread", "currentActivityThread");

    // Get origin sPackageManager from ActivityThread
   � Object sPackageManager = RefInvoke.getFieldObject

(currentActivityThread, "sPackageManager");

*	 Code sample: https://github.com/BaoBaoJianqiang/hookPMS

https://github.com/

114    ◾    Android App-Hook and Plug-In Technology﻿

   � // Prepare the proxy object to replace the

original object
   � Class<?> iPackageManagerInterface = Class.

forName("android.content.pm.IPackageManager");
   � Object proxy = Proxy.newProxyInstance(iPackageMan

agerInterface.getClassLoader(),
               new Class<?>[] { iPackageManagerInterface },
               new HookHandler(sPackageManager));

   � // 1. Replace sPackageManager from ActivityThread
   � RefInvoke.setFieldObject(sPackageManager,

"sPackageManager", proxy);

    // 2. Replace mPm from ApplicationPackageManager
    PackageManager pm = context.getPackageManager();
    RefInvoke.setFieldObject(pm, "mPM", proxy);

  } catch (Exception e) {
    throw new RuntimeException("hook failed", e);
  }
}

4.5 � SUMMARY
This chapter is examined two kinds of proxy patterns in the Android sys-
tem, and looked at a powerful method called Proxy.newProxyInstance().

In this chapter, we tried to hook AMN and the PMS to print some logs.
In Chapter 5, we will hook the method startActivity to launch an Activity
which has not been declared in the AndroidManifest.xml.

115

C h a p t e r 5

Hooking startActivity()

In Chapter 4, we talked about how to hook the Proxy of the AMS and
the PMS during app processes.
In this chapter, with experience of hooking the method startActivity(),

we can start an Activity without it being declared in the AndroidManifest.
xml.

5.1 � INVOKE STARTACTIVITY() IN TWO WAYS
One way to invoke the method startActivity() in Activity:

Intent intent = new Intent(MainActivity.this,
SecondActivity.class);
startActivity(intent);

Another way is to invoke the method startActivity() of the Context; we
execute getApplicationContext() to get an instance of Context, shown as
follows:

Intent intent = new Intent(MainActivity.this,
SecondActivity.class);
getApplicationContext().startActivity(intent);

But the essence of these two ways is the same, as shown in Figure 5.1
and 5.2. Compare these two figures: we find the steps before AMN/AMP
are different; the other steps are the same.

Android App-Hook and Plug-In Technology Hooking startActivity()

116    ◾    Android App-Hook and Plug-In Technology﻿

5.2 � HOOKING STARTACTIVITY() OF THE ACTIVITY
When we invoke the method startActivity() of Activity, we want to write
our own logic, for example, printing some logs.

Press the button in Activity1 to navigate to Activity2; the whole process
is very long. I introduced this process in Section 2.6. Now let’s focus on the
first step and the last step of this process.

•	 first, Activity1 notifies the AMS to navigate to Activity2

•	 second, the AMS notifies the app to navigate to Activity2

FIGURE 5.1  Sequence diagram of startActivity() in Activity.

FIGURE 5.2  Sequence diagram of startActivity() in Context.

Hooking startActivity()    ◾    117

According to Figure 5.3, we can hook in the following three places:

•	 the method startActivityForResult() of Activity

•	 the field mInstrumentation of Activity

•	 the method getDefault() of AMN

According to Figure 5.4, we can hook in the following two places:

•	 the field mCallback of H

•	 the field mInstrumentation of ActivityThread, to hook its methods
newActivity() and callActivityOnCreate()

FIGURE 5.3  Process from the app to the AMS.

FIGURE 5.4  Process from the AMS to the app.

118    ◾    Android App-Hook and Plug-In Technology﻿

5.2.1 � Solution 1: Hooking the Method
startActivityForResult of Activity

We usually create a class named BaseActivity in the app, and all the
Activities defined need to inherit from it, then we can override the method
startActivityForResult() in BaseActivity. Because the method startActiv-
ity() invokes the method startActivityForResult() in Activity, we can over-
ride the method startActivityForResult().

5.2.2 � Solution 2: Hooking the Field mInstrumentation of Activity*
According to Figure 5.3, there is a field mInstrumentation inside Activity,
and the method startActivityForResult() of Activity invokes the method
execStartActivity() of the field mInstrumentation, shown as follows:

public class Activity extends ContextThemeWrapper {
    private Instrumentation mInstrumentation; 

    �public void startActivityForResult(Intent intent,
int requestCode, @Nullable Bundle options) {

        //Omit some code
        Instrumentation.ActivityResult ar =
                mInstrumentation.execStartActivity(
                    �this, mMainThread.getApplicationThread(),

mToken, this,
                    intent, requestCode, options);
    }
}

The field mInstrumentation of Activity is private; we need to obtain this
field by reflection and replace it with an object of EvilInstrumentation.
This means the method execStartActivity() of EvilInstrumentation will be
invoked, which is referred to Figure 5.5.

EvilInstrumentation inherits from Instrumentation and has a field
mBase; mBase is also a type of Instrumentation, and we call the wrap-
per of Instrumentation by the name EvilInstrumentation. When we call
the method execStartActivity() of EvilInstrumentation, we write logs in
this method, and then invoke the method execStartActivity() of mBase
(Figure 5.6).

*	 Code sample: https://github.com/BaoBaoJianqiang/hook11

https://github.com/

Hooking startActivity()    ◾    119

	 1)	The logic in MainActivity; hooking Instrumentation with the method
onCreate():

  public class MainActivity extends Activity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);

FIGURE 5.5  Invoke the method execStartActivity() of EvilInstrumentation.

FIGURE 5.6  EvilInstrumentation extends Instrumentation.

120    ◾    Android App-Hook and Plug-In Technology﻿

        �Instrumentation mInstrumentation = (Instrumentation)
RefInvoke.getFieldOjbect(Activity.class, this,
"mInstrumentation");

        �Instrumentation evilInstrumentation = new EvilInst
rumentation(mInstrumentation);

        �RefInvoke.setFieldOjbect(Activity.class, this,

"mInstrumentation", evilInstrumentation);

        Button tv = new Button(this);
        tv.setText("Test Page");
        setContentView(tv);

        tv.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                �Intent intent = new Intent(MainActivity.this,

SecondActivity.class);
                startActivity(intent);
            }
        });
    }
}

	 2)	The logic in EvilInstrumentation, which overrides the method
execStartActivity():

public class EvilInstrumentation extends
Instrumentation {

    �private static final String TAG =
"EvilInstrumentation";

    // saved the original object in ActivityThread
    Instrumentation mBase;

    public EvilInstrumentation(Instrumentation base) {
        mBase = base;
    }

    public ActivityResult execStartActivity(

Hooking startActivity()    ◾    121

            �Context who, IBinder contextThread, IBinder
token, Activity target,

            Intent intent, int requestCode, Bundle options) {

        Log.d(TAG, "XXX visited!");

        �// Start calling the original method, call it or

leave it, but if you don't, all the
startActivity() will expire.

        �// Since this method is hidden, you need to use
reflection to invoke.

        Class[] p1 = {Context.class, IBinder.class,
                IBinder.class, Activity.class,
                Intent.class, int.class, Bundle.class};
        Object[] v1 = {who, contextThread, token, target,
                intent, requestCode, options};
        �return (ActivityResult) RefInvoke.

invokeInstanceMethod(
                mBase, "execStartActivity", p1, v1);
    }
}

This mechanism only takes effect in the current Activity, and it replaces
the current value of the field mInstrumentation with an EvilInstrumentation
object. When we navigate to another Activity, it doesn’t work.

We can implement this logic in BaseActivity. Because we require that all
the Activities inherit from BaseActivity, each activity has the field mInstru-
mentation which is replaced with an EvilInstrumentation object.

5.2.3 � Solution 3: Hooking the Method getDefault() of AMN*
In Figure 5.3, the method execStartActivity() of Instrumentation invokes
the method startActivity() of AMN, shown as follows:

public class Instrumentation {

    public ActivityResult execStartActivity(
            �Context who, IBinder contextThread, IBinder

token, Activity target,
            Intent intent, int requestCode, Bundle options) {
       

*	 Code sample: https://github.com/BaoBaoJianqiang/hook12

https://github.com/

122    ◾    Android App-Hook and Plug-In Technology﻿

        //Omit some code
        int result = ActivityManagerNative.getDefault()
                �.startActivity(whoThread, who.

getBasePackageName(), intent,
                        �intent.resolveTypeIfNeeded(who.

getContentResolver()),
                        �token, target != null ? target.mEmbeddedID :

null,
                        requestCode, 0, null, options);
    }
}

The method getDefault() of AMN, described in Section 4.3, returns an
IActivityManager object.

IActivityManager is an interface, we can use the method Proxy.new-
ProxyInstance() to replace the IActivityManager object with a MockClass1
object, shown as follows:

public class AMSHookHelper {
    �public static final String EXTRA_TARGET_INTENT =
"extra_target_intent";

    �public static void hookAMN() throws
ClassNotFoundException,

            NoSuchMethodException, InvocationTargetException,
            IllegalAccessException, NoSuchFieldException {

        �//Gets the gDefault singleton of AMN, which is

final static
        �Object gDefault = RefInvoke.

getStaticFieldOjbect("android.app.
ActivityManagerNative", "gDefault");

        �// gDefault is an android.util.Singleton<T>

object; We fetch the mInstance inside the
singleton

        �Object mInstance = RefInvoke.
getFieldOjbect("android.util.Singleton", gDefault,
"mInstance");

        �// Create a proxy object MockClass1 for this

object, then replace the field and let our proxy
object do the work

Hooking startActivity()    ◾    123

        �Class<?> classB2Interface = Class.
forName("android.app.IActivityManager");

        Object proxy = Proxy.newProxyInstance(
                Thread.currentThread().getContextClassLoader(),
                new Class<?>[] { classB2Interface },
                new MockClass1(mInstance));

        �//Change the mInstance field of gDefault to proxy
        �RefInvoke.setFieldOjbect("android.util.Singleton",

gDefault, "mInstance", proxy);
    }
}

ClassMockClass1 need follow two points:

	 1)	Implement the interface InvocationHandler.

	 2)	Intercept the method startActivity() and print a log before executing
it.

The code is shown as follows:

class MockClass1 implements InvocationHandler {

    private static final String TAG = "MockClass1";

    Object mBase;

    public MockClass1(Object base) {
        mBase = base;
    }
 
    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        if ("startActivity".equals(method.getName())) {

            Log.e("bao", method.getName());

            return method.invoke(mBase, args);
        }

124    ◾    Android App-Hook and Plug-In Technology﻿

        return method.invoke(mBase, args);
    }
}

Then we can invoke the method hookAMN() of AMSHookHelper in the
lifecycle method attachBaseContext() of MainActivity. Click the button in
MainActivity and enter into MockClass1.

attachBaseContext() is a lifecycle method of MainActivity, and it’s
executed earlier than the lifecycle method onCreate(). We need to hook
it as soon as possible to make sure the hook takes effect in the following
Activities.

There is a scenario in which the user clicks a button in the web browser
and navigates to a detailed page of the app. MainActivity has no chance
to show, which means the hook logic of attachBaseContext() won’t be
executed.

In all plug-in frameworks, we move the hooking logic into the method
attachBaseContext() of Application. As we introduced in Chapter 2,
Application is created when the app process is created, so the method
attachBaseContext() of Application is executed before each Activity is
born.

In this chapter, we choose to hook in the attachBaseContext() of
MainActivity for simplicity.

public class MainActivity extends Activity {

    @Override
    protected void attachBaseContext(Context newBase) {
        super.attachBaseContext(newBase);

        try {
            AMSHookHelper.hookAMN();
        } catch (Throwable throwable) {
            �throw new RuntimeException("hook failed",

throwable);
        }
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        Button = new Button(this);

Hooking startActivity()    ◾    125

        button.setText("start TargetActivity");

        �button.setOnClickListener(new View.

OnClickListener() {
            @Override
            public void onClick(View v) {
                �Intent intent = new Intent(MainActivity.this,

TargetActivity.class);
                startActivity(intent);
            }
        });
        setContentView(button);
    }
}

5.2.4 � Solution 4: Hooking the Field mCallback of H*
The whole process of startActivity() is long. We have introduced three
ways to hook in the preceding sections; each of them occurs in the process
which sends messages from the app to AMS.

From now on, let’s talk about the process which sends a message from
the AMS to the app.

In Figure 5.7, ActivityThread has a field mH. The type of mH is H. Class
H inherits from Handler, meaning class H inherits the function of dis-
patching messages.

Handler has an object named mCallback. The type of mCallback is
Callback. Because H inherits from Handler, the object mH has a field
mCallback (Figure 5.8).

*	 Code sample: https://github.com/BaoBaoJianqiang/hook13

FIGURE 5.7  Communication between ActivityThread and H.

https://github.com/

126    ◾    Android App-Hook and Plug-In Technology﻿

The AMS sends a message to the app to launch an Activity, and then
ActivityThread invokes the method sendMessage() of mH. The value in the
message to launch an Activity is 100 (LAUNCH_ACTIVITY).

The method sendMessage() of mH invokes the method handleMessage()
of mCallback to send the message.

As a result, we can hook the field mCallback, to replace it with a Callback
object. App developers can use the class Callback directly.

Now let’s hook the field mCallback of H to intercept its method
handleMessage().

	 1)	The implementation of HookHelper:

public class HookHelper {

    �public static void attachBaseContext() throws
Exception {

        �// First, obtain the object for current

ActivityThread
        �Object currentActivityThread = RefInvoke.

getStaticFieldOjbect("android.app.ActivityThread",
"sCurrentActivityThread");

        �// Because there is ActivityThread in a process,

so we obtain the field mH
        �Handler mH = (Handler) RefInvoke.

getFieldOjbect("android.app.ActivityThread",
currentActivityThread, "mH");

FIGURE 5.8  Relationship between ActivityThread and H.

Hooking startActivity()    ◾    127

        //replace the mCallback to new MockClass2(mH)
        �RefInvoke.setFieldOjbect(Handler.class, mH,

"mCallback", new MockClass2(mH));
    }
}

	 2)	The implementation of MockClass2:

public class MockClass2 implements Handler.Callback {

    Handler mBase;

    public MockClass2(Handler base) {
        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {

        switch (msg.what) {
            �//  "LAUNCH_ACTIVITY" inside ActivityThread value

100
            �// The best way is by using reflection, which is

to use hard coding for simplicity
            case 100:
                handleLaunchActivity(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

    private void handleLaunchActivity(Message msg) {
        // get the TargetActivity;

        Object obj = msg.obj;

        Log.d("baobao", obj.toString());
    }
}

Now, we might question why we don’t hook the field mH of Activity
Thread directly?

128    ◾    Android App-Hook and Plug-In Technology﻿

Let’s have a quick look at the proceeding hooking demos. We find they
are separated into two different solutions, one is Static-Proxy, and the
other one is Dynamic-Proxy:

•	 Static-Proxy: there are two classes suitable for this solution, one is
Handler.Callback, the other one is Instrumentation. Only these two
classes are exposed to app developers.

•	 Dynamic-Proxy: there are two interfaces suitable for this solution,
IPackageManager, and IActivityManager. The method Proxy.new-
ProxyInstance() only supports the interface.

Look at the field mH of ActivityThread. The type of mH is H. H is an
internal class, and it’s not open to app developers, so app developers can-
not create an object which inherits from H to replace the field mH. Also,
H is not an interface; we can’t use Proxy.newProxyInstance() to replace it.

Unfortunately, most of the classes in the Android system are not open
to app developers.

5.2.5 � Solution 5: Hooking Instrumentation Again*
From Figure 5.4, let’s focus on the last two steps; I simplify it as shown in
Figure 5.9.

*	 Code sample: https://github.com/BaoBaoJianqiang/hook14

FIGURE 5.9  Launch a new Activity.

https://github.com/

Hooking startActivity()    ◾    129

According to Section 5.2.2, there is a field mInstrumentation in Activity,
and we replace it with our own EvilInstrumentation object.

ActivityThread has a field mInstrumentation too. ActivityThread invokes
the method newActivity() of mInstrumentation to generate an Activity
object and then invoke the method callActivityOnCreate() of mInstrumen-
tation to start this new Activity.

By the way, we can also hook the field mInstrumentation of
ActivityThread and replace it with our own EvilInstrumentation, but this
time we’re intercepting the method newActivity() and callActivityOnCre-
ate() of Instrumentation.

	 1)	The logic in HookHelper to replace the field mInstrumentation of
ActivityThread:

public class HookHelper {

    public static void attachContext() throws Exception{
        �// First, obtain the object of current

ActivityThread
        �Object currentActivityThread = RefInvoke.

invokeStaticMethod("android.app.ActivityThread",
"currentActivityThread");

        �// obtain original the mInstrumentation field
        �Instrumentation mInstrumentation =

(Instrumentation) RefInvoke.
getFieldOjbect("android.app.ActivityThread"
,currentActivityThread, "mInstrumentation");

        // create a proxy object
        �Instrumentation evilInstrumentation = new EvilInst

rumentation(mInstrumentation);

        // Replace
        �RefInvoke.setFieldOjbect("android.app.

ActivityThread" ,currentActivityThread,
"mInstrumentation", evilInstrumentation);

    }
}

130    ◾    Android App-Hook and Plug-In Technology﻿

	 2)	The logic in EvilInstrumentation to print logs in the method newAc-
tivity() and callActivityOnCreate():

public class EvilInstrumentation extends
Instrumentation {

    �private static final String TAG =
"EvilInstrumentation";

    // save the original object inside ActivityThread
    Instrumentation mBase;

    public EvilInstrumentation(Instrumentation base) {
        mBase = base;
    }

    �public Activity newActivity(ClassLoader cl, String
className,

                                Intent intent)
            �throws InstantiationException,

IllegalAccessException,
            ClassNotFoundException {

        Log.d(TAG, "XXX visited!");

        return mBase.newActivity(cl, className, intent);
    }

    �public void callActivityOnCreate(Activity activity,
Bundle bundle) {

        Log.d(TAG, "XXX visited!");

        Class[] p1 = {Activity.class, Bundle.class};
        Object[] v1 = {activity, bundle};
        RefInvoke.invokeInstanceMethod(
                mBase, "callActivityOnCreate", p1, v1);
    }
}

Hooking startActivity()    ◾    131

5.3 � HOOKING THE METHOD STARTACTIVITY OF CONTEXT
There are two ways to launch a new Activity. We have introduced a way
which is widely used in app development: to invoke the method startAc-
tivity() of the Activity.

This section introduces another way to launch an Activity, the method
startActivity() of Context.

5.3.1 � Solution 6: Hooking the Field mInstrumentation
of ActivityThread*

We can use the method startActivity() of Context to launch a new Activity.
We get a Context object through the method getApplicationContext().

Intent intent = new Intent(MainActivity.this,
SecondActivity.class);
getApplicationContext().startActivity(intent);

In the method startActivity() of Context, it invokes the method startAc-
tivity() of ContextImpl.

The method startActivity() of ContextImpl invokes the method exec-
StartActivity() of the field mInstrumentation of ActivityThread, shown as
follows:

class ContextImpl extends Context {
    @Override
    �public void startActivity(Intent intent, Bundle
options) {

        //Omit some code
        �mMainThread.getInstrumentation().

execStartActivity(
                �getOuterContext(), mMainThread.

getApplicationThread(), null,
                (Activity) null, intent, -1, options);
    }
}

As a result, we can hook the field mInstrumentation of ActivityThread
and intercept the method execStartActivity() of Instrumentation. The code
is shown as follows:

*	 Code sample: https://github.com/BaoBaoJianqiang/hook15

https://github.com/

132    ◾    Android App-Hook and Plug-In Technology﻿

	 1)	The logic of HookHelper, which we introduced in Section 5.2.5:

public class HookHelper {

    public static void attachContext() throws Exception{
        �// First, obtain the object of current

ActivityThread
        �Object currentActivityThread = RefInvoke.

invokeStaticMethod("android.app.ActivityThread",
"currentActivityThread");

        //  obtain original mInstrumentation field
        �Instrumentation mInstrumentation =

(Instrumentation) RefInvoke.
getFieldOjbect("android.app.ActivityThread”,
currentActivityThread, "mInstrumentation");

        // create a proxy object
        �Instrumentation evilInstrumentation = new EvilInst

rumentation(mInstrumentation);

        // transformation
        �RefInvoke.setFieldOjbect("android.app.

ActivityThread”, currentActivityThread,
"mInstrumentation", evilInstrumentation);

    }
}

	 2)	The logic of EvilInstrumentation, which we introduced in Section
5.2.2:

public class EvilInstrumentation extends
Instrumentation {

    �private static final String TAG =
"EvilInstrumentation";

    �// save the original object inside ActivityThread
    Instrumentation mBase;

    public EvilInstrumentation(Instrumentation base) {
        mBase = base;
    }

Hooking startActivity()    ◾    133

    public ActivityResult execStartActivity(
            �Context who, IBinder contextThread, IBinder

token, Activity target,
            Intent, int requestCode, Bundle options) {

        Log.d(TAG, "XXX visited!");

        Class[] p1 = {Context.class, IBinder.class,
                IBinder.class, Activity.class,
                Intent.class, int.class, Bundle.class};
        Object[] v1 = {who, contextThread, token, target,
                intent, requestCode, options};
        �return (ActivityResult) RefInvoke.

invokeInstanceMethod(
                mBase, "execStartActivity", p1, v1);
    }
}

5.3.2 � Which Solution Is the Best?

The process of hooking the method startActivity() of Context, is to get an
Instrumentation object from ActivityThread, and then execute the method
execStartActivity() of the Instrumentation, and finally invoke the method
AMN.getDefault().startActivity().

Up until now, we have introduced six solutions, but we find that solu-
tion 3, described in Section 5.2.3 is the best one, which hooks the method
getDefault() of AMN.

Therefore, solution 1, 2, and 6 are not widely used in plug-in program-
ming. All the plug-in frameworks use solution 3.

5.4 � LAUNCH AN ACTIVITY NOT DECLARED
IN ANDROIDMANIFEST.XML

In the traditional Android app development, an app can’t launch an
Activity not declared in the AndroidManifest.xml.

Now let’s look at this limitation in Android.

5.4.1 � How to Hook AMN

Let’s have a look at the process of the navigation from one Activity to
another Activity, as shown in Figure 5.10.

When an app launches a new Activity that is not declared in the
AndroidManifest.xml, the AMS will perform a check on whether

134    ◾    Android App-Hook and Plug-In Technology﻿

the new Activity is declared in the AndroidManifest.xml in step 2 of
Figure 5.10. If the Activity is not declared, the AMS will throw an
ActivityNotFoundException.

We need to create a false impression for the AMS that the new Activity
exists in AndroidManifest.xml.

But we can’t modify the hooking logic in the AMS process; the AMS is a
system process, and we have no permissions to modify it; otherwise, every
app would modify the logic in the AMS, and Android system would not
be secure. For example, we write an app to change the original behavior of
Clipboard. In this app, whatever the content we cut or copy, the content we
paste is the same string. But it takes effect only in this app. When we open
another app, the Clipboard recovers its original behavior, and the paste
content is the content we cut or copied before.

We can’t hook the AMS in step 2; we can only write a hook login in the
app in step 1 (before checking) and 5 (launch a new Activity).

The hooking solution is that we declare an empty Activity which has no
logic. It’s only a placeholder, so we name it StubActivity.

In step 1 of Figure 5.10, we replace the TargetActivity with StubActivity
declared in the AndroidManifest.xml before we send the TargetActivity
information to the AMS. The AMS will check the validation of StubActivity

FIGURE 5.10  Navigation from one Activity to another Activity.

Hooking startActivity()    ◾    135

rather TargetActivity. In the process of replacement, we store the informa-
tion of the original TargetActivity in a Bundle.

In step 5 of Figure 5.10, when the AMS notifies the app to launch
StubActivity, we replace StubActivity with the original TargetActivity. The
information of the TargetActivity is stored in a Bundle (Figure 5.11).

5.4.2 � First Half of the Hook*
Up until now, we have mainly used hooking with the method startActiv-
ity(). Before the app sends the information of the Activity to the AMS, we
have three points to hook, as follows:

•	 Hook the field mInstrumentation of Activity, which is applicable to
the method startActivity() of Activity.

•	 Hook the field mInstrumentation of ActivityThread, which is appli-
cable to the method startActivity() of Context.

•	 Hooking on AMN is applied to the methods startActivity() of Activity
and Context.

*	 Code sample: https://github.com/BaoBaoJianqiang/hook31

FIGURE 5.11  Hook the launching process of Activity.

https://github.com/

136    ◾    Android App-Hook and Plug-In Technology﻿

We have introduced the first two points in the previous sections; now,
we’re going to hook AMN and replace TargetActivity with StubActivity.

	 1)	The code of AMSHookHelper:

public class AMSHookHelper {
    public static final String EXTRA_TARGET_INTENT =
"extra_target_intent";

    /**
    * Hook AMS
    �* The main thing you do is "temporarily replace the

Activity you really want to start with a
StubActivity declared in androidmanifest.xml," and
hook AMS

    */
    �public static void hookAMN() throws
ClassNotFoundException,

            NoSuchMethodException, InvocationTargetException,
            IllegalAccessException, NoSuchFieldException {

        �//Obtained the singleton gDefault of AMN, which is

static final
        �Object gDefault = RefInvoke.getStaticFieldOjbect

("android.app.ActivityManagerNative", "gDefault");

        �// The getDefault is an object of android.util.

Singleton<T>,we take out the mIntance field inside
the singleton

        �Object mInstance = RefInvoke.getFieldOjbect
("android.util.Singleton", gDefault, "mInstance");

        �// Create a proxy object MockClass1 for this

object, then replace the field and let our proxy
object do the work

        �Class<?> classB2Interface = Class.
forName("android.app.IActivityManager");

        Object proxy = Proxy.newProxyInstance(
                Thread.currentThread().getContextClassLoader(),
                new Class<?>[] { classB2Interface },
                new MockClass1(mInstance));

Hooking startActivity()    ◾    137

        �//The field mIntance of the gDefault changes to
proxy

        �RefInvoke.setFieldOjbect("android.util.Singleton",
gDefault, "mInstance", proxy);

    }
}

	 2)	The code of MockClass1:

class MockClass1 implements InvocationHandler {

    private static final String TAG = "MockClass1";

    Object mBase;

    public MockClass1(Object base) {
        mBase = base;
    }

    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        Log.e("bao", method.getName());

        if ("startActivity".equals(method.getName())) {
            //  Intercept the method only
            �// Replace the parameters, whatever you want; You

can even replace the original Activity and start
another Activity

            // Find the first Intent object in the parameter
            Intent raw;
            int index = 0;

            for (int i = 0; i < args.length; i++) {
                if (args[i] instanceof Intent) {
                    index = i;
                    break;
                }
            }

138    ◾    Android App-Hook and Plug-In Technology﻿

            raw = (Intent) args[index];

            Intent newIntent = new Intent();

            �// The package name of the stunt Activity, which

is our own package name
            �String stubPackage = raw.getComponent().

getPackageName();

            �// So we're going to temporarily replace the

starting Activity with the StubActivity
            �ComponentName componentName = new

ComponentName(stubPackage, StubActivity.class.
getName());

            newIntent.setComponent(componentName);

            �// Save the TargetActivity that we originally

started
            �newIntent.putExtra(AMSHookHelper.EXTRA_TARGET_

INTENT, raw);

            // Replace Intent to cheat AMS
            args[index] = newIntent;

            Log.d(TAG, "hook success");
            return method.invoke(mBase, args);

        }

        return method.invoke(mBase, args);
    }
}

We use MockClass1 to intercept the method startActivity(), and do the
following work step by step:

	 1)	Get the original Intent from the parameters of the method
startActivity();

	 2)	Create a NewIntent object to launch StubActivity;

Hooking startActivity()    ◾    139

	 3)	Save the original Intent in the NewIntent object;

	 4)	Replace the original Intent with the NewIntent object.

The original Intent stored in the NewIntent object will be used in the next
section.

5.4.3 � Second Half of the Hook: Hooking the Field mCallback of H*
After the app cheats the AMS into launching StubActivity, the AMS will
notify the app to start StubActivity in step 4 of Figure 5.10. We have no
permissions to modify the AMS process. We can only modify the app
process in step 5 of Figure 5.10, for example, changing StubActivity to
TargetActivity.

In Section 5.2.4 and 5.2.5, we have introduced two kinds of hooking
techniques:

•	 Hooking the field mCallback of H;

•	 Hooking the field mInstrumentation of ActivityThread.

The solution in this section is based on hooking the field mCallback of
H, shown as follows:

	 1)	AMSHookHelper is the same as solution 4 introduced in Section
5.2.4.

public class HookHelper {
 � public static final String EXTRA_TARGET_INTENT =
"extra_target_intent";

    �public static void attachBaseContext() throws
Exception {

        �// First, obtain the object of current

ActivityThread
        �Object currentActivityThread = RefInvoke.

getStaticFieldOjbect("android.app.ActivityThread",
"sCurrentActivityThread");

        // we obtain the field mH

*	 Code sample: https://github.com/BaoBaoJianqiang/hook31

https://github.com/

140    ◾    Android App-Hook and Plug-In Technology﻿

        �Handler mH = (Handler) RefInvoke.
getFieldOjbect("android.app.ActivityThread",
currentActivityThread, "mH");

        //replace the mCallback to new MockClass2(mH)
        �RefInvoke.setFieldOjbect(Handler.class, mH,

"mCallback", new MockClass2(mH));
    }
}

	 2)	MockClass2 intercepts messages with the value 100 (which stands
for the method startActivity()) and replaces StubActivity with
TargetActivity:

class MockClass2 implements Handler.Callback {

    Handler mBase;

    public MockClass2(Handler base) {
        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {

        switch (msg.what) {
            �//  "LAUNCH_ACTIVITY" inside ActivityThread value

100
            �// The best way is by using reflection, which is

to use hard coding for simplicity
            case 100:
                handleLaunchActivity(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

    private void handleLaunchActivity(Message msg) {
        �// In this case,  take out the TargetActivity in

simple way;;
        Object obj = msg.obj;

Hooking startActivity()    ◾    141

        �Intent intent = (Intent) RefInvoke.
getFieldOjbect(obj.getClass(), obj, "intent");

        �Intent targetIntent = intent.getParcelableExtra(AM

SHookHelper.EXTRA_TARGET_INTENT);
        intent.setComponent(targetIntent.getComponent());
    }
}

5.4.4 � Second Half of the Hook: Hooking the
mInstrumentation Field of ActivityThread*

	 1)	HookHelper hooks the field mInstrumentation of ActivityThread, and
has the same implementation as introduced in Section 5.2.5:

public class HookHelper {
 � public static final String EXTRA_TARGET_INTENT =
"extra_target_intent";

    public static void attachContext() throws Exception{
        �// First, obtain the object of current

ActivityThread
        �Object currentActivityThread = RefInvoke.

invokeStaticMethod("android.app.ActivityThread",
"currentActivityThread");

        // obtain original the mInstrumentation field
        �Instrumentation mInstrumentation =

(Instrumentation) RefInvoke.
getFieldOjbect("android.app.ActivityThread”,
currentActivityThread, "mInstrumentation");

        // create a proxy object
        �Instrumentation evilInstrumentation = new EvilInst

rumentation(mInstrumentation);

        // transformation
        �RefInvoke.setFieldOjbect("android.app.

ActivityThread" ,currentActivityThread,
"mInstrumentation", evilInstrumentation);

    }
}

*	 Code sample: https://github.com/BaoBaoJianqiang/hook32

https://github.com/

142    ◾    Android App-Hook and Plug-In Technology﻿

	 2)	As we discussed in Section 5.2.5, we can hook the field mIn-
strumentation of ActivityThread, and intercept two methods in
Instrumentation, shown as follows:

•	 Activity newActivity(ClassLoader cl, String className, Intent
intent)

•	 void callActivityOnCreate(Activity activity, Bundle icicle,
PersistableBundle persistentState)

We can’t get an Intent object from the method callActivityOnCreate(), but
we can get an Intent object in the parameters of the method newActivity(),
so we choose to intercept newActivity():

public class EvilInstrumentation extends
Instrumentation {
   
 � private static final String TAG =
"EvilInstrumentation";

    �// The package name of the Stub Activity, which is
our own package name

    String packageName = "jianqiang.com.hook1";

    // saved the original object in ActivityThread
    Instrumentation mBase;

    public EvilInstrumentation(Instrumentation base) {
        mBase = base;
    }

    �public Activity newActivity(ClassLoader cl, String
className,

                                Intent intent)
            �throws InstantiationException,

IllegalAccessException,
            ClassNotFoundException {

        �Intent rawIntent = intent.getParcelableExtra

(HookHelper.EXTRA_TARGET_INTENT);
        if(rawIntent == null) {

Hooking startActivity()    ◾    143

            return mBase.newActivity(cl, className, intent);
        }

        �String newClassName = rawIntent.getComponent().

getClassName();
        �return mBase.newActivity(cl, newClassName,

rawIntent);
    }
}

Note that we need to judge whether the object rawIntent is null or not
in the method newActivity(). If the object rawIntent is null, it means the
process is normal, and we don’t hook.

5.5 � SUMMARY
This chapter introduced the process of the method startActivity(), and
looked for the places suitable to hook with this method.

As a result, there are six hooking solutions.
Based on these six hooking solutions, we can launch an Activity not

declared in the AndroidManifest.xml.
Try to understand all six solutions in this chapter as they are widely

used in plug-in apps.

http://taylorandfrancis.com

145

C h a p t e r 6

The Basic Concepts of
Plug-In Techniques

In this chapter, we begin to introduce plug-in techniques. This chapter
will talk about how to load classes into a plug-in app.
We find it’s not convenient to load classes in plug-ins by reflection each

time, the code is ugly, that’s why we use Interface-Oriented programming
in plug-in frameworks.

Last, we introduce how to use Android Studio to debug plug-in apps.

6.1 � LOADING EXTERNAL DEX*
In the previous chapters, we introduced ClassLoader. In Android 6.0 or
higher, we need to request permission to read and write onto the SDCard.

Loading an external dex/apk file is a combination of these two tech-
nologies. The flow is as follows:

	 1.	Download the plug-in apk from the server to the mobile’s SDCard.
That’s why we need to request the permissions to read and write onto
the SDCard.

	 2.	Read the dex of the plug-in app to generate the corresponding
DexClassLoader.

	 3.	Use the method loadClass() of DexClassLoader to read classes in this
dex.

*	 Sample code: https://github.com/Baobaojianqiang/Dynamic0

Android App-Hook and Plug-In Technology The Basic Concepts of Plug-In Techniques

https://github.com/

146    ◾    Android App-Hook and Plug-In Technology﻿

At the beginning of studying plug-in techniques, I used to upload the plug-
in apk from my computer to the SDCard and copy it from the SDCard to
a specified directory manually. So the app can read the plug-in in this
directory.

This solution is quite troublesome. We must do it again and again if the
plug-in is frequently modified.

Later, I put the plug-in apk into the folder Assets in the app, as shown
in Figure 6.1. After the app is launched, I write code to copy the plug-ins
in the folder Assets to the memory. In this way, we simulate the process
of downloading plug-ins from the server to the Android device, which is
relatively simple and convenient for debugging.

app-debug.apk is a plug-in. The code of this plug-in is in Dynamic/
Plugin1. The code in Plugin1 is very simple, including only one file, Bean.
java, shown as follows:

package jianqiang.com.plugin1;

public class Bean {
    private String name = "jianqiang";

FIGURE 6.1  Put the plug-in in the folder assets of the HostApp.

The Basic Concepts of Plug-In Techniques﻿    ◾    147

    public String getName() {
        return name;
    }

    public void setName(String paramString) {
        this.name = paramString;
    }
}

We compile and package the Plugin1 project, generate app-debug.apk,
and copy this apk file into the folder Assets in the project Host.

The next step is to load app-debug.apk in the Host project. The process
has two steps:

	 1.	Copy app-debug.apk from the folder Assets into the directory /data/
data/files. We encapsulate this logic into the method extractAssets()
of Utils, and then call this method when the app is launched. In this
example, we rewrite the method attachBaseContext() of MainActivity
and invoke the method extractAssets() of Utils.

    @Override
    protected void attachBaseContext(Context newBase) {
        super.attachBaseContext(newBase);
        try {
            Utils.extractAssets(newBase, apkName);
        } catch (Throwable e) {
            e.printStackTrace();
        }
    }

	 2.	Load dex into app-debug.apk

     File extractFile = this.getFileStreamPath(apkName);
        dexpath = extractFile.getPath();

        �fileRelease = getDir("dex", 0); //0 表示Context.

MODE_PRIVATE

        classLoader = new DexClassLoader(dexpath,
                �fileRelease.getAbsolutePath(), null,

getClassLoader());

148    ◾    Android App-Hook and Plug-In Technology﻿

From these four code lines, we can get an instance of ClassLoader, and
can load any class in the dex of Plugin1, for example, the class Bean.

Class mLoadClassBean;
try {
    �mLoadClassBean = classLoader.loadClass("jianqiang.
com.plugin1.Bean");

    Object beanObject = mLoadClassBean.newInstance();

    �Method getNameMethod = mLoadClassBean.
getMethod("getName");

    getNameMethod.setAccessible(true);
    �String name = (String) getNameMethod.
invoke(beanObject);

} catch (Exception e) {
    Log.e("DEMO", "msg:" + e.getMessage());
}

Although we have the class Bean, we can’t use it directly in program-
ming, because class Bean doesn’t exist in the Host project. We can only
use Bean using the refection syntax, but as we discussed in Chapter 3, the
refection syntax is ugly and difficult to read.

To solve this problem, we introduce another technique, interface-ori-
ented programming.

6.2 � INTERFACE-ORIENTED PROGRAMMING*
There are five design principles in the design pattern. Put together the
first letters of each design principle, and we get a single word SOLID. The
fourth character is I, which represents the principle of dependency inver-
sion, which is defined as follows:

Oriented toward interfaces or abstract programming, not specific or
implementation-oriented programming.

Now let’s understand this design principle through an example.
First, we create a class library named MyPluginLibrary; we set the proj-

ect HostApp and Plugin1 to rely on MyPluginLibrary.

*	 Sample code: https://github.com/Baobaojianqiang/Dynamic1.0

https://github.com/

The Basic Concepts of Plug-In Techniques﻿    ◾    149

It’s easy to create project dependencies in Android Studio. Take the
HostApp as an example; refer to Figure 6.2.

Second, we create an interface IBean in MyPluginLibrary:

public interface IBean {
    String getName();

    void setName(String paramString);
}

Third, in the project Plugin1, the class Bean implements the interface
IBean:

import com.example.jianqiang.mypluginlibrary.IBean;

public class Bean implements IBean {
    private String name = "jianqiang";

FIGURE 6.2  Add dependencies between projects.

150    ◾    Android App-Hook and Plug-In Technology﻿

    @Override
    public String getName() {
        return name;
    }

    @Override
    public void setName(String paramString) {
        this.name = paramString;
    }
}

Fourth, in the project HostApp, we write code based on the interface
IBeans, as follows:

Class mLoadClassBean = classLoader.
loadClass("jianqiang.com.plugin1.Bean");
Object beanObject = mLoadClassBean.newInstance();

IBean bean = (IBean) beanObject;
bean.setName("Hello");
tv.setText(bean.getName());

Now this demo is done, we can invoke the method getName() or set-
Name() of the interface IBeans to communicate with Plugin1.

Sometimes, we want Plugin1 to push data to the HostApp by itself. We
use a callback to satisfy this requirement.

First, in the project MyPluginLibrary, we add a method register() in the
interface IBean.

Second, in the project Plugin1, we implement the method register() in
Bean, which will invoke the method clickButton():

public class Bean implements IBean {
  …
    private ICallback callback;

    @Override
    public void register(ICallback callback) {
        this.callback = callback;

        clickButton();
    }

The Basic Concepts of Plug-In Techniques﻿    ◾    151

    public void clickButton() {
        callback.sendResult("Hello: " + this.name);
    }
}

Third, in the project HostApp, we invoke the method register() of Bean,
and pass an ICallback object as a parameter into the method register():

Class mLoadClassBean = classLoader.
loadClass("jianqiang.com.plugin1.Bean");
Object beanObject = mLoadClassBean.newInstance();

IBean bean = (IBean) beanObject;

ICallback callback = new ICallback() {
    @Override
    public void sendResult(String result) {
      tv.setText(result);
    }
};
bean.register(callback);

These two demos show the beauty of Interface-Oriented programming.
Up until now, our plug-in app doesn’t have a UI. UI is a complex topic

in Android, especially in plug-in programming, and we shall talk about
this topic in the following chapters.

6.3 � PLUG-IN THINNING*
If we find code or logic that can be used in many places, we usually encap-
sulate it into a class or a library. It’s also suitable for plug-in techniques.

Although we encapsulate the logic and code in MyPluginLibrary, we
compile MyPluginLibrary as a war/jar file, and all the plug-in apps are
dependent on this war/jar file and compile this file into the plug-in app.
Because all the plug-ins will be packaged into one final app, the size of this
final app will be larger.

It’s not a good solution. We must take action to make the final app
smaller. Let’s have a look at the plugin1.apk via JadxGUI (Figure 6.3).

We find MyPluginLibrary exists in plugin1.apk. We want to remove this
package in the plug-in app.

*	 Sample Code: https://github.com/Baobaojianqiang/Dynamic1.1

https://github.com/

152    ◾    Android App-Hook and Plug-In Technology﻿

To solve this problem, we use the keyword “provided,” rather than
“compile.”

In general, we use “compile.” Take the Gradle file of the project Plugin1
as an example:

dependencies {
    compile fileTree(dir: “libs”, include: [“*.jar”])
    testCompile “junit:junit:4.12”
    compile “com.android.support:appcompat-v7:25.2.0”
    compile project(path: ':MyPluginLibrary')
}

Wherever the keyword “compile” appears, the corresponding jar file
will be packaged into the current apk.

We can replace the keyword “compile” with “provided.” The keyword
“provided” means that the corresponding jar package will be used only at
“compile” time but won’t package into the current apk.

The keyword “provided” only supports jar packages, not includ-
ing the module. Therefore, the MyPluginLibrary project must be pack-
aged as a jar file first. Let’s write a task named makeJar in build.gradle of
MyPluginLibrary:

task clearJar(type: Delete) {
    delete “build/outputs/mypluginlibrary.jar”
}

FIGURE 6.3  plugin1.apk in JadxGUI.

The Basic Concepts of Plug-In Techniques﻿    ◾    153

task makeJar(type: Copy) {
    from(“build/intermediates/bundles/default/”)
    into(“build/outputs/”)
    include(“classes.jar”)
    rename (“classes.jar”, “mypluginlibrary.jar”)
}

makeJar.dependsOn(clearJar, build)

Click the menu “Sync Project with Gradle files” in Android Studio; we
can see a new command named makeJar in the Gradle panel (Figure 6.4).

Click the command makeJar; we find that a new jar named myplugin-
library.jar was generated in the directory MyPluginLibrary/build/outputs/.

Copy this jar file to the folder Lib of the project Plugin1, and then use
the keyword “provided” to reference this jar file in build.gradle:

dependencies {
  compile fileTree(dir: “libs”, include: [“*.jar”])
  testCompile “junit:junit:4.12”
  compile “com.android.support:appcompat-v7:25.2.0”
  provided files("lib/classes.jar")
}

Note: do not put the jar file in the directory Libs, it will cause the key-
word “provided” not to work.

After we configure the keyword “provided,” we package the project
Plugin1 again and then use the JadxGUI to see the contents of plugin1.
apk, and we will now find the package MyPluginLibrary doesn’t exist, as
shown in Figure 6.5.

FIGURE 6.4  makeJar in Android Studio.

154    ◾    Android App-Hook and Plug-In Technology﻿

6.4 � DEBUGGING IN PLUG-INS*
Thanks to Android Studio, we can debug plug-ins easily.

We use the code example Dynamic1.1 in Section 6.3, to show how
to debug a plug-in app step by step. We put the HostApp, Plugin1, and
MyPluginLibrary into one Android project so that we can debug from the
HostApp to Plugin1 and MyPluginLibrary.

	 1)	Create an Android app project named Dynamic1.2. The directory is
shown in Figure 6.6.

*	 Code sample: https://github.com/Baobaojianqiang/Dynamic1.2

FIGURE 6.5  Structure of plugin1.apk using the keyword provided. Note: The
syntax of Gradle 3.0 has replaced the keyword provided with compileOnly, and
the functionality has not changed.

FIGURE 6.6  The first version of Dynamic1.2.

https://github.com/

The Basic Concepts of Plug-In Techniques﻿    ◾    155

	 2)	Delete the subdirectory App in the directory Dynamic1.2.

	 3)	In the directory Dynamic 1.2, let’s create three subdirectories named
“HostApp,” “Plugin1,” and “MyPluginLibrary.”

	 4)	Copy and paste from one place to the other in the following table:

From To

Dynamic1.1/Host/app Dynamic1.2/ Host
Dynamic1.1/Plugin1/app Dynamic1.2/ Plugin1
Dynamic1.1/MyPluginLibrary Dynamic1.2/MyPluginLibrary

	 5)	Modify the file settings.gradle in Dynamic1.2:

  include ”:HostApp”, “:Plugin1”, “:MyPluginLibrary”

	 6)	Re-open the project Dynamic1.2. Click the menu “Sync Project
with Gradle files” in Android Studio, and the project is shown in
Figure 6.7.

Insert the following code in the file build.gradle of Plugin1, it helps us to
rename the apk as “plugin1.apk” rather than “app-debug.apk” after we
compile and build an apk, and copy this plug-in app to the folder Assets of
the HostApp.

FIGURE 6.7  New directories after the project sync.

156    ◾    Android App-Hook and Plug-In Technology﻿

assemble.doLast {
    android.applicationVariants.all { variant ->
        �// Copy Release artifact to HostApp's assets and

rename
        if (variant.name == "release") {
            variant.outputs.each { output ->
                File originFile = output.outputFile
                println originFile.absolutePath
                copy {
                    from originFile
                    into "$rootDir/HostApp/src/main/assets"
                    rename(originFile.name, "plugin1.apk")
                }
            }
        }
    }
}

	 7)	Let’s set a breakpoint in the code of project Plugin1, and when we
begin to debug this project we’ll find that it stops at this breakpoint.
Android Studio is powerful for debugging.

6.5  �APPLICATION PLUG-IN SOLUTIONS*
In the plug-in app, we can also define a custom Application, and plug-in
apps will do some initial work in the method onCreate() of this custom
Application.

The method onCreate() of the custom Application in the plug-in app
doesn’t have a lifecycle. It is only a normal class; it has no chances of being
executed. We must invoke it in the method onCreate() of the custom
Application in the

The code examples in this section are based on ZeusStudy1.4; the major
changes are located in the method onCreate() of MyApplication.

public class MyApplication extends Application {
    //ignore some code

    @Override
    public void onCreate() {
        super.onCreate();

*	 Code sample: https://github.com/Baobaojianqiang/ ZeusStudy1.8

https://github.com/

The Basic Concepts of Plug-In Techniques﻿    ◾    157

        for(PluginItem pluginItem: PluginManager.plugins) {

            try {
                �Class clazz = PluginManager.mNowClassLoader.

loadClass(pluginItem.applicationName);
                �Application application = (Application)clazz.

newInstance();

                if(application == null)
                    continue;

                application.onCreate();

            } catch (ClassNotFoundException e) {
                e.printStackTrace();
            } catch (InstantiationException e) {
                e.printStackTrace();
            } catch (IllegalAccessException e) {
                e.printStackTrace();
            }
        }
    }
}

In addition, we need to provide a method to parse the name of the cus-
tom Application in the plug-in, as follows:

public static String loadApplication(Context context,
File apkFile) {
        �Object packageParser = RefInvoke.

createObject("android.content.pm.PackageParser");
        Class[] p1 = {File.class, int.class};
        �Object[] v1 = {apkFile, PackageManager.

GET_RECEIVERS};
        �Object packageObj = RefInvoke.invokeInstanceMethod

(packageParser, "parsePackage", p1, v1);

        �Object obj = RefInvoke.getFieldObject(packageObj,

"applicationInfo");
        �ApplicationInfo applicationInfo =

(ApplicationInfo)obj;
        return applicationInfo.className;
  }

158    ◾    Android App-Hook and Plug-In Technology﻿

6.6 � SUMMARY
This chapter introduces the basic knowledge of plug-in techniques. The
“protagonist” in plug-in techniques is Activity and Resource. We’ll talk
about these techniques one by one in the following chapters.

159

C h a p t e r 7

Resources in Plug-In

Activity and Resource are twin brothers. If we want to resolve
Activity in the plug-in completely, we must deal with Resource first.

In this chapter, we discuss how to load the resources in the Android
system, and then study how to load resources into the plug-in. Finally, we
introduce two solutions for changing skin in the app dynamically.

7.1 � HOW TO LOAD RESOURCES IN ANDROID
7.1.1 � Types of Resources

Generally, there are two categories of Resources in Android.
One is in the folder Res which will be compiled into a binary file. During

the compiling process, the file R.java will be created; it contains a HEX
value which corresponds to each Resource file, shown as follows:

Android App-Hook and Plug-In Technology Resources in Plug-In

160    ◾    Android App-Hook and Plug-In Technology﻿

It is easy to access these Resources; for example, R.id.action0. First, we
get an instance of the class Resources via the method getResources() of
Context, and then we can fetch any resources through the method get-
String() of this instance, shown as follows:

Resources resources = getResources();
String appName = resources.getString(R.string.
app_name)

The other category of Resources is stored in the folder Assets; the files in
this folder won’t be compiled into a binary file: they are packaged into the
apk file, so we cannot access them through R.java.

The only way to fetch the Resources in Assets is to use the method open()
of the AssetManager. We can get the instance of AssetManager from the
method getAssets() of the Resources. The code is as follows:

Resources resources = getResources();
AssetManager am = getResources().getAssets();
InputStream is = getResources().getAssets().
open("filename");

7.1.2 Resources and AssetManager

Resources are like the salesman in an IT company; AssetManager is like
the programmer. The salesman always faces the customers; the program-
mer works inside the company.

We can see that Resource provides a lot of methods like getString(), get-
Text(), getDrawable(), and so on. In fact, all the methods above invoke the
corresponding private method of AssetManager indirectly. AssetManager
has no logic and is only a wrapper of Resources.

Resources in Plug-In﻿    ◾    161

It is not “fair” for AssetManager, as it does lots of work, but it is not well
known to us, AssetManager has only two public methods. For example,
the method open() is used to access the Resources in the folder Assets.

AssetManager has a method addAssetPath(String path), and we can
pass the path of the apk to the parameter path, then AssetManager and
Resources can access all the resources in this apk.

addAssetPath(String path) is not a public method; we can use reflection
syntax, put the path of the plug-in apk into this method, then the resources
of this plug-in apk will be thrown into a resource pool. The resources of
the current app are already in this pool.

How many times the method addAssetPath() is executed depends on
the number of plug-in apps (Figure 7.1).

AssetManager has an internal method to access resources. During
the process of the apk’s packaging, each resource generates a HEX value
in R.java. But when the app is running, how do we know the mapping
between this HEX value and the corresponding resource file?

During the process of the apk’s packaging, a file named resources.arsc
will be generated at the same time, which is a HashTable that stores all the
mapping between the HEX value and the corresponding resource file.

7.2 � PLUG-IN SOLUTIONS OF RESOURCES*
Let’s try to read a String resource from a plug-in app.

	 1)	The code in Plugin1:

public class Dynamic implements IDynamic {

    @Override
    public String getStringForResId(Context context) {

*	 https://github.com/BaoBaoJianqiang/dynamic1.3

FIGURE 7.1  Resources and AssetManager.

https://github.com/

162    ◾    Android App-Hook and Plug-In Technology﻿

        �return context.getResources().getString(R.string.
myplugin1_hello_world);

    }
}

In Plugin1, there is a file strings.xml in the folder Res/Values, we can
find a configuration for this resource:

<resources>
    �<string name=" myplugin1_hello_world">Hello World</
string>

</resources>

	 2)	The code in the HostApp:

public class MainActivity extends AppCompatActivity {

    private AssetManager mAssetManager;
    private Resources mResources;
    private Resources.Theme mTheme;
    private String dexpath = null;    //apk file path
    private File fileRelease = null;  //decompress folder
    private DexClassLoader classLoader = null;

    �private String apkName = "plugin1.apk";    //apk file
name

    TextView tv;

    @Override
    protected void attachBaseContext(Context newBase) {
        super.attachBaseContext(newBase);
        try {
            Utils.extractAssets(newBase, apkName);
        } catch (Throwable e) {
            e.printStackTrace();
        }
    }

    @SuppressLint("NewApi")
    @Override
    protected void onCreate(Bundle savedInstanceState) {

Resources in Plug-In﻿    ◾    163

        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
File extractFile = this.getFileStreamPath(apkName);
        dexpath = extractFile.getPath();

        �fileRelease = getDir("dex", 0); //0 means Context.

MODE_PRIVATE

        classLoader = new DexClassLoader(dexpath,
                �fileRelease.getAbsolutePath(), null,

getClassLoader());

        Button btn_6 = (Button) findViewById(R.id.btn_6);

        tv = (TextView)findViewById(R.id.tv);

        // The calling of resource files
        �btn_6.setOnClickListener(new View.

OnClickListener() {
            @Override
            public void onClick(View arg0) {
                loadResources();
                Class mLoadClassDynamic = null;

                try {
                    �mLoadClassDynamic = classLoader.

loadClass("jianqiang.com.plugin1.Dynamic");
                    �Object dynamicObject = mLoadClassDynamic.

newInstance();

                    IDynamic dynamic = (IDynamic) dynamicObject;
                    �String content = dynamic.

getStringForResId(MainActivity.this);
                    tv.setText(content);
                    �Toast.makeText(getApplicationContext(),

content + "", Toast.LENGTH_LONG).show();
                } catch (Exception e) {
                    Log.e("DEMO", "msg:" + e.getMessage());
                }
            }
        });
    }

164    ◾    Android App-Hook and Plug-In Technology﻿

    protected void loadResources() {
        try {
            �AssetManager assetManager = AssetManager.class.

newInstance();
            �Method addAssetPath = assetManager.getClass().

getMethod("addAssetPath", String.class);
            addAssetPath.invoke(assetManager, dexpath);
            mAssetManager = assetManager;
        } catch (Exception e) {
            e.printStackTrace();
        }

        �mResources = new Resources(mAssetManager, super.

getResources().getDisplayMetrics(), super.
getResources().getConfiguration());

        mTheme = mResources.newTheme();
        mTheme.setTo(super.getTheme());
    }

    @Override
    public AssetManager getAssets() {
        if(mAssetManager == null) {
            return super.getAssets();
        }

        return mAssetManager;
    }

    @Override
    public Resources getResources() {
        if(mResources == null) {
            return super.getResources();
        }

        return mResources;
    }

    @Override
    public Resources.Theme getTheme() {
        if(mTheme == null) {
            return super.getTheme();
        }

Resources in Plug-In﻿    ◾    165

        return mTheme;
    }
}

The logic of the code above is divided into four parts:

	 1)	The logic in the method loadResources()

Create an instance of AssetManager using reflection syntax, invoke the
method addAssetPath() to add the path of the plug-in app into the resource
pool.

This resource pool only contains the resources of Plugin1. This means
the instance of AsssetManager we created earlier only serves for Plugin1.

	 2)	Based on this instance, we create the corresponding Resources and
Theme by overriding the methods getAssets(), getResources(), and
getTheme(). The logic of these three methods is almost the same.
Let’s take the method getAssets() as an example, as follows:

    @Override
    public AssetManager getAssets() {
        if(mAssetManager == null) {
            return super.getAssets();
        }

        return mAssetManager;
    }

In the method getAssets() of Activity above, the object mAssetManager
points to the plug-in app as a default. If mAssetManager is null, it means
that it’s a normal app without a plug-in, and we invoke super.getAssets() to
get the resources. As we introduced in Section 2.7, the parent of Activity is
ContextImpl; if mAssetManager is not null, we use mAssetManager to get
the resources in the plug-in.

	 3)	Load the plug-in and generate the corresponding ClassLoader:

File extractFile = this.getFileStreamPath(apkName);
        dexpath = extractFile.getPath();

166    ◾    Android App-Hook and Plug-In Technology﻿

        �fileRelease = getDir("dex", 0); //0 means Context.
MODE_PRIVATE

        classLoader = new DexClassLoader(dexpath,
                �fileRelease.getAbsolutePath(), null,

getClassLoader());

	 4)	Use reflection syntax to load the class of the plug-in using inter-
face-oriented programming. In this sample, we generate an object
dynamicObject, and invoke its method getStringForResId() to visit
the resources in the plug-in app.

Class mLoadClassDynamic = classLoader.
loadClass("jianqiang.com.plugin1.Dynamic");
Object dynamicObject = mLoadClassDynamic.
newInstance();

IDynamic dynamic = (IDynamic) dynamicObject;
String content = dynamic.
getStringForResId(MainActivity.this);
tv.setText(content);

Now, we will find a perfect solution for loading resources into the plug-
in app.

But first we find all the logic is in the MainActivity of the HostApp,
and refactoring is required. Please refer to the project Dynamic2*, where
I move some basic logic to BaseActivity; for example, the method getAs-
sets(), getResources() and getTheme().

7.3 � SOLUTIONS FOR CHANGING SKINS†

There are a lot of apps, like games or chatrooms, which have a feature to
support the changing of skins dynamically. For example, the emoji in a
chatroom app can be downloaded and used immediately.

A simple method for this is to compress all the new emoji pictures into a
zip file named skin1.zip. After the app downloads this zip file, it will unzip
it into a folder named Skin1 and use the new picture as skin1/a.png rather
than the original picture a.png.

*	 https://github.com/BaoBaoJianqiang/dynamic2
†	 https://github.com/BaoBaoJianqiang/dynamic3

https://github.com/
https://github.com/

Resources in Plug-In﻿    ◾    167

We can also implement this requirement based on plug-in technol-
ogy; we can put all the images into the plug-in app and read each of these
resources using R.java.

Let’s finish this function based on the project Dynamic1.2 in Section 7.3.

	 1)	Generate plugin1.apk.

In the project Plugin1, we write a class named UIUtil with three methods,
getText(), getImage(), and getLayout(), which can fetch strings, images,
and layouts from R.java.

public class UIUtil {
    public static String getTextString(Context ctx){
        �return ctx.getResources().getString(R.string.

hello_message);
    }

    public static Drawable getImageDrawable(Context ctx)
{
        �return ctx.getResources().getDrawable(R.drawable.

robert);
    }

    public static View getLayout(Context ctx){
        �return LayoutInflater.from(ctx).inflate(R.layout.

main_activity, null);
    }
}

Then, we put some resources into Plugin1:

•	 Put an image robert.png into Res/Drawable, as shown in Figure 7.2.

•	 Add a string value hello_message into strings.xml in the folder Res/
Values, as follows:

FIGURE 7.2  robert.png in Plugin1.

168    ◾    Android App-Hook and Plug-In Technology﻿

  <string name="hello_message">Hello</string>

•	 Modify the layout file main_activity.xml in the folder Res/Layout.
There are three buttons placed horizontally in main_activity.xml.

We compile and package Plugin1 to generate plugin1.apk. Then we put this
apk file in the folder Assets of the HostApp.

After the app is compiled, rename the apk file plugin1.apk and put it
into the Assets folder in the HostApp.

	 2)	Generate plugin2.apk

We generate plugin2.apk in the same way as plugin1.apk, but we do make
some modifications in the project Plugin2:

•	 Rotate the image robert.png 180 degrees.

•	 Update the String value “hello_message” to “Hi.”

•	 Update the layout main_activity.xml, and place the three buttons
vertically.

We also put plugin2.apk in the folder Assets of the HostApp.

	 3)	Work in the HostApp

First, move the common methods to BaseActivity, as follows:

•	 Load plugin1.apk and plugin2.apk into the folder Assets.

•	 Generate ClassLoader for each plug-in.

•	 Override the methods getAssets(), getResources(), and getTheme().

•	 Write methods loadResources1() and loadResources2() to generate
AssetManager for each plug-in.

The code is as follows:

Resources in Plug-In﻿    ◾    169

public class BaseActivity extends Activity {

    private AssetManager mAssetManager;
    private Resources mResources;
    private Resources.Theme mTheme;
    private String dexpath1 = null;    //apk file path
    private String dexpath2 = null;    //apk file path
    �private File fileRelease = null;  //decompression
path

    protected DexClassLoader classLoader1 = null;
    protected DexClassLoader classLoader2 = null;

    TextView tv;

    @Override
    protected void attachBaseContext(Context newBase) {
        super.attachBaseContext(newBase);

        Utils.extractAssets(newBase, "plugin1.apk");
        Utils.extractAssets(newBase, "plugin2.apk");
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);

        fileRelease = getDir("dex", 0);

        �File extractFile1 = this.

getFileStreamPath("plugin1.apk");
        dexpath1 = extractFile1.getPath();

        �classLoader1 = new DexClassLoader(dexpath1,

fileRelease.getAbsolutePath(), null,
getClassLoader());

        �File extractFile2 = this.

getFileStreamPath("plugin2.apk");
        dexpath2 = extractFile2.getPath();

170    ◾    Android App-Hook and Plug-In Technology﻿

        �classLoader2 = new DexClassLoader(dexpath2,
fileRelease.getAbsolutePath(), null,
getClassLoader());

    }

    protected void loadResources1() {
        try {
            �AssetManager assetManager = AssetManager.class.

newInstance();
            �Method addAssetPath = assetManager.getClass().

getMethod("addAssetPath", String.class);
            addAssetPath.invoke(assetManager, dexpath1);
            mAssetManager = assetManager;
        } catch (Exception e) {
            e.printStackTrace();
        }
        Resources superRes = super.getResources();
        �mResources = new Resources(mAssetManager,

superRes.getDisplayMetrics(), superRes.
getConfiguration());

        mTheme = mResources.newTheme();
        mTheme.setTo(super.getTheme());
    }

    protected void loadResources2() {
        try {
            �AssetManager assetManager = AssetManager.class.

newInstance();
            �Method addAssetPath = assetManager.getClass().

getMethod("addAssetPath", String.class);
            addAssetPath.invoke(assetManager, dexpath2);
            mAssetManager = assetManager;
        } catch (Exception e) {
            e.printStackTrace();
        }
        Resources superRes = super.getResources();
        �mResources = new Resources(mAssetManager,

superRes.getDisplayMetrics(), superRes.
getConfiguration());

        mTheme = mResources.newTheme();
        mTheme.setTo(super.getTheme());
    }

Resources in Plug-In﻿    ◾    171

    @Override
    public AssetManager getAssets() {
        �return mAssetManager == null ? super.getAssets() :

mAssetManager;
    }

    @Override
    public Resources getResources() {
        �return mResources == null ? super.getResources() :

mResources;
    }

    @Override
    public Resources.Theme getTheme() {
        return mTheme == null ? super.getTheme() : mTheme;
    }
}

Second, write an Activity named ResourceActivity that inherits from
BaseActivity. In ResourceActivity, we click the button “Theme1” to load
the skin of plugin1.apk and click the button “Theme2” to load the skin of
plugin2.apk:

public class ResourceActivity extends BaseActivity {

    /**
    * List 3 examples : TextView,ImageView,LinearLayout
    */
    private TextView textV;
    private ImageView imgV;
    private LinearLayout layout;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_resource);

        textV = (TextView) findViewById(R.id.text);
        imgV = (ImageView) findViewById(R.id.imageview);
        layout = (LinearLayout) findViewById(R.id.layout);

        �findViewById(R.id.btn1).setOnClickListener(new

OnClickListener() {

172    ◾    Android App-Hook and Plug-In Technology﻿

            @Override
            public void onClick(View arg0) {
                loadResources1();

                doSomething1();
            }
        });

        �findViewById(R.id.btn2).setOnClickListener(new

OnClickListener() {
            @Override
            public void onClick(View v) {
                loadResources2();

                doSomething2();
            }
        });
    }

    private void doSomething1() {
        try {
            �Class clazz = classLoader1.loadClass("jianqiang.

com.plugin1.UIUtil");

            �String str = (String) RefInvoke.

invokeStaticMethod(clazz, "getTextString",
Context.class, this);

            textV.setText(str);

            �Drawable drawable = (Drawable) RefInvoke.

invokeStaticMethod(clazz, "getImageDrawable",
Context.class, this);

            imgV.setBackground(drawable);

            layout.removeAllViews();
            �View view = (View) RefInvoke.

invokeStaticMethod(clazz, "getLayout", Context.
class, this);

            layout.addView(view);

        } catch (Exception e) {
            Log.e("DEMO", "msg:" + e.getMessage());
        }
    }

Resources in Plug-In﻿    ◾    173

    private void doSomething2() {
        try {
            �Class clazz = classLoader2.loadClass("jianqiang.

com.plugin1.UIUtil");

            �String str = (String) RefInvoke.

invokeStaticMethod(clazz, "getTextString",
Context.class, this);

            textV.setText(str);

            �Drawable drawable = (Drawable) RefInvoke.

invokeStaticMethod(clazz, "getImageDrawable",
Context.class, this);

            imgV.setBackground(drawable);

            layout.removeAllViews();
            �View view = (View) RefInvoke.

invokeStaticMethod(clazz, "getLayout", Context.
class, this);

            layout.addView(view);

        } catch (Exception e) {
            Log.e("DEMO", "msg:" + e.getMessage());
        }
    }
}

Now, let’s run the HostApp: we click the button “Theme”1 to see the
skin shown in Figure 7.3, and click the button “Theme2” to see the skin
shown in Figure 7.4.

FIGURE 7.3  Effect after click “Button1.”

174    ◾    Android App-Hook and Plug-In Technology﻿

There is too much duplicate code in the HostApp. It is necessary to put
these plug-ins into a HashMap in the BaseActivity, shown as follows:

public class BaseActivity extends Activity {

    private AssetManager mAssetManager;
    private Resources mResources;
    private Resources.Theme mTheme;

    �protected HashMap<String, PluginInfo> plugins = new
HashMap<String, PluginInfo>();

    @Override
    protected void attachBaseContext(Context newBase) {
        super.attachBaseContext(newBase);

        Utils.extractAssets(newBase, "plugin1.apk");
        Utils.extractAssets(newBase, "plugin2.apk");
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {

FIGURE 7.4  Effect after click “Button2.”

Resources in Plug-In﻿    ◾    175

        super.onCreate(savedInstanceState);

        genegatePluginInfo("plugin1.apk");
        genegatePluginInfo("plugin2.apk");
    }

    protected void genegatePluginInfo(String pluginName) {
        �File extractFile = this.

getFileStreamPath(pluginName);
        File fileRelease = getDir("dex", 0);
        String dexpath = extractFile.getPath();
        �DexClassLoader classLoader = new

DexClassLoader(dexpath, fileRelease.
getAbsolutePath(), null, getClassLoader());

        �plugins.put(pluginName, new PluginInfo(dexpath,

classLoader));
    }

    protected void loadResources(String dexPath) {
        try {
            �AssetManager assetManager = AssetManager.class.

newInstance();
            �Method addAssetPath = assetManager.getClass().

getMethod("addAssetPath", String.class);
            addAssetPath.invoke(assetManager, dexPath);
            mAssetManager = assetManager;
        } catch (Exception e) {
            e.printStackTrace();
        }
        Resources superRes = super.getResources();
        �mResources = new Resources(mAssetManager,

superRes.getDisplayMetrics(), superRes.
getConfiguration());

        mTheme = mResources.newTheme();
        mTheme.setTo(super.getTheme());
    }

    @Override
    public AssetManager getAssets() {
        �return mAssetManager == null ? super.getAssets() :

mAssetManager;
    }

176    ◾    Android App-Hook and Plug-In Technology﻿

    @Override
    public Resources getResources() {
        �return mResources == null ? super.getResources() :

mResources;
    }

    @Override
    public Resources.Theme getTheme() {
        return mTheme == null ? super.getTheme() : mTheme;
    }
}

Now the code in ResourceActivity will be simple:

public class ResourceActivity extends BaseActivity {

    /**
    * The widgets that need to replace the theme
    �* The example of them: TextView,ImageView,

LinearLayout
    */
    private TextView textV;
    private ImageView imgV;
    private LinearLayout layout;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_resource);

        textV = (TextView) findViewById(R.id.text);
        imgV = (ImageView) findViewById(R.id.imageview);
        layout = (LinearLayout) findViewById(R.id.layout);

        �findViewById(R.id.btn1).setOnClickListener(new

OnClickListener() {
            @Override
            public void onClick(View arg0) {
                �PluginInfo pluginInfo = plugins.get("plugin1.

apk");

                loadResources(pluginInfo.getDexPath());

Resources in Plug-In﻿    ◾    177

                doSomething(pluginInfo.getClassLoader());
            }
        });

        �findViewById(R.id.btn2).setOnClickListener(new

OnClickListener() {
            @Override
            public void onClick(View v) {
                �PluginInfo pluginInfo = plugins.get("plugin2.

apk");

                loadResources(pluginInfo.getDexPath());

                doSomething(pluginInfo.getClassLoader());
            }
        });
    }

    private void doSomething(ClassLoader cl) {
        try {
            �Class clazz = cl.loadClass("jianqiang.com.

plugin1.UIUtil");

            �String str = (String) RefInvoke.

invokeStaticMethod(clazz, "getTextString",
Context.class, this);

            textV.setText(str);

            �Drawable drawable = (Drawable) RefInvoke.

invokeStaticMethod(clazz, "getImageDrawable",
Context.class, this);

            imgV.setBackground(drawable);

            layout.removeAllViews();
            �View view = (View) RefInvoke.

invokeStaticMethod(clazz, "getLayout", Context.
class, this);

            layout.addView(view);

        } catch (Exception e) {
            Log.e("DEMO", "msg:" + e.getMessage());
        }
    }
}

178    ◾    Android App-Hook and Plug-In Technology﻿

Changing skins using the plug-in technique is very easy. Plugin1 is a
template; we can generate a new skin plug-in easily using Plugin1, without
changing code, only to replace the resources in the folder Res.

7.4 � ANOTHER PLUG-IN SOLUTION FOR CHANGING SKINS*
The sample code in this section is Dynamic3.2; it’s based on Dynamic3.1,
and we only modify the method doSomething() of ResourceActivity.

In the example in Section 7.3, we use R.drawable.robert to see the
resources in the plug-in app.

In fact, in the HostApp, we can directly access the inner class of the
plug-in app in R.java, such as jianqiang.com.plugin1.R$string, and then
we can fetch the resources in the plug-in from this inner class, shown as
follows:

Class stringClass = cl.loadClass("jianqiang.com.
plugin1.R$string");
int resId1 = (int) RefInvoke.getStaticFieldObject
(stringClass, "hello_message");
textV.setText(getResources().getString(resId1));

Class drawableClass = cl.loadClass("jianqiang.com.
plugin1.R$drawable");
int resId2 = (int) RefInvoke.getStaticFieldObject
(drawableClass, "robert");
imgV.setBackground(getResources().
getDrawable(resId2));

Class layoutClazz = cl.loadClass("jianqiang.com.
plugin1.R$layout");
int resId3 = (int) RefInvoke.getStaticFieldObject
(layoutClazz, "main_activity");
View view = (View) LayoutInflater.from(this).
inflate(resId3, null);
layout.removeAllViews();
layout.addView(view);

In this solution, we don’t need the class UIUtil, plugin1.apk because it is
only a container storing the resources and R.java.

*	 Sample code: https://github.com/BaoBaoJianqiang/dynamic3.2

https://github.com/

Resources in Plug-In﻿    ◾    179

7.5 � SUMMARY
This chapter gives a detailed description of the Resources in Android
systems. Based on this mechanism, we use a reflection syntax to invoke
the method addAssetPath() of AssetManager to load resources into the
plug-in app.

We introduced two solutions for changing skins using plug-in
techniques.

http://taylorandfrancis.com

181

C h a p t e r 8

The Plug-In Solution
of Four Components

This chapter introduces a plug-in solution for the four compo-
nents in the Android system: Activity, Service, ContentProvider, and

BroadcastReceiver.

8.1 � THE SIMPLEST PLUG-IN SOLUTION
This section introduces the simplest solutions provided by plug-ins
which are applicable to all the components, including Activity, Service,
ContentProvider, and BroadcastReceiver. These solutions involve the fol-
lowing techniques:

	 1)	Combine all the dexes of the plug-ins to load classes defined in the
plug-in.

	 2)	Pre-declare Activity, Service, ContentProvider, and BroadcastReceiver
of the plug-in in the HostApp’s AndroidManifest.xml. Of course, if
there are hundreds of Activities in the plug-in, this is not a good
solution.

	 3)	Merge all the resources of the plug-in into a resources pool. However,
this solution may result in the conflict of resource IDs from different
plug-ins.

Android App-Hook and Plug-In Technology The Plug-In Solution of Four Components

182    ◾    Android App-Hook and Plug-In Technology﻿

8.1.1 � Pre-Declare Activity and Service of the Plug-In
in the HostApp’s AndroidManifest.xml*

As we mentioned earlier, all components including Activity, Service,
ContentProvider, and BroadcastReceiver in a plug-in are only normal
classes; the Android system doesn’t recognize them as components at all.

To enable the HostApp to recognize them, we must declare them in
the HostApp’s AndroidManifest.xml. This is the simplest plug-in solution,
because we needn’t hook a class.

Look at the sample ZeusStudy1.0, as shown in Figure 8.1. Plugin1 has a
service named TestService1.

Correspondingly, in the AndroidManifest.xml of the HostApp, we
declare TestService1 as follows:

<service android:name="jianqiang.com.plugin1.
TestService1" />

*	 Sample code: https://github.com/BaoBaoJianqiang/ZeusStudy1.0

FIGURE 8.1  Project structure of Plugin1.

https://github.com/

The Plug-In Solution of Four Components﻿    ◾    183

8.1.2 � Combine the Dex*
In the HostApp, how do you load the classes from the plug-in? There are
three ways:

	 1)	Use ClassLoader to load the classes into the plug-in; it’s not conve-
nient when we switch ClassLoader to load the classes from different
plug-ins. We previously introduced this in Section 6.1.

	 2)	Combine all the dex files of the HostApp and the plug-ins, and use
an array dexElements to store all the dex files. Once all the dex files
of the plug-ins are merged into the array dexElements, the dex of the
HostApp is also in this array; we can load any class whether it is into
the HostApp or the plug-in; the implementation is as follows:

    public final class BaseDexClassLoaderHookHelper {

    �public static void patchClassLoader(ClassLoader cl,
File apkFile, File optDexFile)

            �throws IllegalAccessException,
NoSuchMethodException, IOException,
InvocationTargetException,
InstantiationException, NoSuchFieldException {

        // Obtain BaseDexClassLoader : pathList
        �Object pathListObj = RefInvoke.

getFieldObject(DexClassLoader.class.
getSuperclass(), cl, "pathList");

        // Obtain PathList: Element[] dexElements
        �Object[] dexElements = (Object[]) RefInvoke.

getFieldObject(pathListObj, "dexElements");

        // Element type
        �Class<?> elementClass = dexElements.getClass().

getComponentType();

        // Create an array to replace the original array
        �Object[] newElements = (Object[]) Array.

newInstance(elementClass, dexElements.length + 1);

*	 Sample code: https://github.com/BaoBaoJianqiang/ZeusStudy1.0

https://github.com/

184    ◾    Android App-Hook and Plug-In Technology﻿

        �// Construct a Plug-In Element(File file, boolean
isDirectory, File zip, DexFile dexFile) This
constructor

        �Class[] p1 = {File.class, boolean.class, File.
class, DexFile.class};

        �Object[] v1 = {apkFile, false, apkFile, DexFile.
loadDex(apkFile.getCanonicalPath(), optDexFile.
getAbsolutePath(), 0)};

        �Object o = RefInvoke.createObject(elementClass,
p1, v1);

        Object[] toAddElementArray = new Object[] { o };
        // Copy the original elements
        �System.arraycopy(dexElements, 0, newElements, 0,

dexElements.length);
        // The element of the Plug-In is copied in
        �System.arraycopy(toAddElementArray, 0,

newElements, dexElements.length,
toAddElementArray.length);

        // replace
        �RefInvoke.setFieldObject(pathListObj,

"dexElements", newElements);
    }
}

	 3)	Replace the original ClassLoader of Android with a ClassLoader writ-
ten by me. We can add our own logic into this custom ClassLoader to
iterate each ClassLoader of the plug-in. I will introduce this solution
in detail in Section 8.2.6.

8.1.3 � Start a Service of the Plug-In*
Since we have finished the actions in Section 8.1.1 and 8.1.2, we can start a
Service of the plug-in in the HostApp, as follows:

Intent intent = new Intent();
String serviceName = "jianqiang.com.plugin1.
TestService1";
intent.setClassName(this, serviceName);
startService(intent);

*	 Sample code: https://github.com/BaoBaoJianqiang/ZeusStudy1.0

https://github.com/

The Plug-In Solution of Four Components﻿    ◾    185

8.1.4 � Resources in Activity*
In Section 8.1.1, 8.1.2, and 8.1.3, we loaded a Service of the plug-in into the
HostApp.

All of the other components, Activity, ContentProvider, and
BroadcastReceiver of the plug-in can be loaded in the same way.

The plug-in solutions for Service, ContentProvider, and BroadcastReceiver
are simple: we only need to merge all the dex files of the plug-in into one
array and pre-declare them in the AndroidManifest.xml.

The solution for Activity is a bit complicated.
Activity is heavily dependent on resources. Therefore, we must resolve

the problem of how to load the resources into the plug-in.
I introduced the relationship between AssetManager and Resources in

Chapter 7. There is a method addAssetPath(String path) of AssetManager.
We can pass all the paths from the plug-ins into this method; all the
paths make up a String separated with a comma or a semicolon. Now
AssetManager becomes a superstar that has all the resources, including
the HostApp and the plug-in. We store this AssetManager in a global class
PluginManager; this means we can load any class into the HostApp and
the plug-in.

The logic above is implemented as follows (in MyApplication):

    private static void reloadInstalledPluginResources() {
        try {
            �AssetManager assetManager = AssetManager.class.

newInstance();
            �Method addAssetPath = AssetManager.class.

getMethod("addAssetPath", String.class);

            �addAssetPath.invoke(assetManager, mBaseContext.

getPackageResourcePath());
            �addAssetPath.invoke(assetManager, pluginItem1.

pluginPath);

            �Resources newResources = new

Resources(assetManager,
                    �mBaseContext.getResources().

getDisplayMetrics(),

*	 This section example code, please refer to https://github.com/Baobaojianqiang/ZeusStudy1.1

https://github.com/

186    ◾    Android App-Hook and Plug-In Technology﻿

                    �mBaseContext.getResources().
getConfiguration());

            �RefInvoke.setFieldObject (mBaseContext,

"mResources", newResources);
            �// This is the main need to replace, if you do

not support the Plug-In runtime update, just
leave this one

            �RefInvoke.setFieldObject (mPackageInfo,
"mResources", newResources);

            mNowResources = newResources;
            �// Need to clean up the mTheme object, otherwise

it will report an error when loading resources
through inflate mode

            �// If the activity dynamically loads the Plug-In,
you need to set the activity's mTheme object to
null

            �RefInvoke.setFieldObject (mBaseContext, "mTheme",
null);

        } catch (Throwable e) {
            e.printStackTrace();
        }

Activity in the plug-in must implement the ZeusBaseActivity. We over-
ride the method getResources() in ZeusBaseActivity, and it helps us to fetch
the resources of the plug-in using PluginManager.

public class ZeusBaseActivity extends Activity {

    @Override
    public Resources getResources() {
        return PluginManager.mNowResources;
    }
}

The code for TestActivity1 in the plug-in is as follows (it uses the layout
activity_test1.xml in the plug-in):

public class TestActivity1 extends ZeusBaseActivity {
    private final static String TAG = "TestActivity1";

The Plug-In Solution of Four Components﻿    ◾    187

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_test1);

        �findViewById(R.id.button1).setOnClickListener

(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                try {
                    Intent intent = new Intent();

                    �String activityName = "jianqiang.com.hostapp.

ActivityA";
                    �intent.setComponent(new ComponentName

("jianqiang.com.hostapp", activityName));

                    startActivity(intent);

                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        });
    }
}

Now that the simplest plug-in solution for Activity is completed, we can
jump from the Activity of the plug-in app to the Activity of the HostApp.

However, there is a fatal problem: we must pre-declare all the compo-
nents, such as Activity, Service, ContentProvider, and BroadcastReceiver of
the plug-in into the HostApp’s AndroidManifest.xml; we can’t add a new
Activity or Service after the app has been compiled and packaged.

In fact, the number of Services, BroadcastReceivers, or ContentProviders
used in an app is small, so it makes sense that we pre-define these compo-
nents of the plug-in in the HostApp. Normally we don’t add a new Service
to the plug-in. If we want to add a new Service to the Plug-In, we can wait
for the next release of the app.

But Activity is different from the other three components. Activity is
widely used in apps; the number of Activities is large. We modify an Activity
or add a new Activity to the plug-in frequently. So, we cannot pre-declare

188    ◾    Android App-Hook and Plug-In Technology﻿

these new Activities in the AndroidManifest.xml in the HostApp. We shall
resolve this problem in Section 8.2.

8.2 � A PLUG-IN SOLUTION FOR ACTIVITY
Activity is widely used in Android apps.

There are three problems with the plug-in solutions for Activity:

	 1)	In the HostApp, how can we load the class of a plug-in app?

	 2)	In the HostApp, how can we load the resources of a plug-in app?

	 3)	In the HostApp, how can we load the Activity of a plug-in app?

This section focuses on these three problems.

8.2.1 � Launch an Activity of a Plug-In Not Declared in
the AndroidManifest.xml of the HostApp*

We introduced a solution in Section 5.4 on to how to launch an Activity
that is not declared in the AndroidManifest.xml.

This solution is also suitable for Activity in plug-ins. We pre-declare
a StubActivity in the HostApp, and when we want to launch an Activity
from a plug-in we replace it with StubActivity.

In the following example, we use AMSHookHelper to accomplish this
goal.

The method hookAMN() of AMSHookHelper replaces the Activity of
the plug-in with a StubActivity pre-declared in the AndroidManifest.xml
of the HostApp. The logic of replacement occurs in MockClass1 by hook-
ing AMN.

The method hookActivityThread() of AMSHookHelper replaces
StubActivity with the original Activity of the plug-in which is the one to
be launched. The logic of replacement occurs in MockClass2 by hooking
ActivityThread.

The code of AMSHookHelper is as follows:

public class AMSHookHelper {

    �public static final String EXTRA_TARGET_INTENT =
"extra_target_intent";

*	 Sample code: https://github.com/BaoBaoJianqiang/ActivityHook1

https://github.com/

The Plug-In Solution of Four Components﻿    ◾    189

    /**
    * Hook AMS
    �* The main operation is to temporarily replace the

plug-in Activity that is actually needed to start
the StubActivity declared in the AndroidManifest.
xml, and then cheat the AMS

    */
    �public static void hookAMN() throws
ClassNotFoundException,

            NoSuchMethodException, InvocationTargetException,
            IllegalAccessException, NoSuchFieldException {

        �//Get the gDefault singleton of AMN, gDefault is

final and static
        �Object gDefault = RefInvoke.

getStaticFieldObject("android.app.
ActivityManagerNative", "gDefault");

        �// gDefault is an instance of android.util.Singleton<T>.

We get the mInstance field from this singleton
        �Object mInstance = RefInvoke.

getFieldObject("android.util.Singleton", gDefault,
"mInstance");

        �// Create a proxy instance of MockClass1 and replace

this field. Let the proxy object deal with it.
        �Class<?> classB2Interface = Class.

forName("android.app.IActivityManager");
        Object proxy = Proxy.newProxyInstance(
                Thread.currentThread().getContextClassLoader(),
                new Class<?>[] { classB2Interface },
                new MockClass1(mInstance));

        �//Replace the mInstance field of mDefault with

proxy object
        �RefInvoke.setFieldObject("android.util.Singleton",

gDefault, "mInstance", proxy);
    }

    /**
    �* Because we cheat AMS with a StubActivity, we have to

replace back the Activity we really need to start now.
    * Otherwise it will really start a StubActivity.

190    ◾    Android App-Hook and Plug-In Technology﻿

    �* To eventually start the Activity, an inner class
of ActivityThread called H will do the work

    * H will forward the message through it’s callback
    */
    �public static void hookActivityThread() throws
Exception {

        // Get the current ActivityThread object firstly
        �Object currentActivityThread = RefInvoke.

getStaticFieldObject("android.app.ActivityThread",
"sCurrentActivityThread");

        �// Since ActivityThread has only one process, we

get the mH of this object
        �Handler mH = (Handler) RefInvoke.getFieldObject(cu

rrentActivityThread, "mH");

        �//Replace mCallback field of Handler with new

MockClass2(mH)
        RefInvoke.setFieldObject(Handler.class,
                mH, "mCallback", new MockClass2(mH));
    }
}

The code of MockClass1 is as follows:

class MockClass1 implements InvocationHandler {

    private static final String TAG = "MockClass1";

    Object mBase;

    public MockClass1(Object base) {
        mBase = base;
    }

    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        Log.e("bao", method.getName());

        if ("startActivity".equals(method.getName())) {

The Plug-In Solution of Four Components﻿    ◾    191

            // Only intercept this method
            �// Replace parameters as you want and even can replace

the original Activity to start another Activity.

            // Find the first Intent object in the parameter
            Intent raw;
            int index = 0;

            for (int i = 0; i < args.length; i++) {
                if (args[i] instanceof Intent) {
                    index = i;
                    break;
                }
            }
            raw = (Intent) args[index];

            Intent newIntent = new Intent();

            // The packageName of StubActivity
            �String stubPackage = "jianqiang.com.

activityhook1";

            �// Replace the Plug-In Activity that is actually

needed to start the StubActivity temporarily
            �ComponentName componentName = new

ComponentName(stubPackage, StubActivity.class.
getName());

            newIntent.setComponent(componentName);

            // Save TargetActivity
            �newIntent.putExtra(AMSHookHelper.EXTRA_TARGET_

INTENT, raw);

            �// Replace Intent to achieve the purpose of

deceiving AMS
            args[index] = newIntent;

            Log.d(TAG, "hook success");
            return method.invoke(mBase, args);
        }

        return method.invoke(mBase, args);
    }
}

192    ◾    Android App-Hook and Plug-In Technology﻿

The code of MockClass2 is as follows:

class MockClass2 implements Handler.Callback {

    Handler mBase;

    public MockClass2(Handler base) {
        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {

        switch (msg.what) {
            �// The value of "LAUNCH_ACTIVITY"  of

ActivityThread is 100
            �// Use reflection is the best way, we use hard

coding here for simplicity
            case 100:
                handleLaunchActivity(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

    private void handleLaunchActivity(Message msg) {
        �// For simplicity, get the TargetActivity

directly;

        Object obj = msg.obj;

        // Restore the target intent
        �Intent raw = (Intent) RefInvoke.

getFieldObject(obj, "intent");

        �Intent target = raw.getParcelableExtra(AMSHookHelp

er.EXTRA_TARGET_INTENT);
        raw.setComponent(target.getComponent());
    }
}

The Plug-In Solution of Four Components﻿    ◾    193

8.2.2 � Solution 1: Based on Dynamic-Proxy*
There are many plug-in solutions for Activity, which are roughly divided
into two categories:

•	 The solution based on Dynamic-Proxy, represented by DroidPlugin†
written by Yong Zhang. Which loads Activity, Service,
BroadcastReceiver, and ContentProvider from the plug-in app
through hooking the internal API in the Android system.

•	 The solution based on Static-Proxy, represented by DL‡ written
by Yugang Ren. Which loads all Activities in the plug-in through
ProxyActivity.

This chapter focuses on plug-in solutions based on Dynamic-Proxy to
support Activity.

8.2.2.1 � The Process of Launching an Activity
In the last step in the process of launching an Activity, the communication
between ActivityThread and H is the key point, as shown in Figure 8.2.

*	 Sample code: https://github.com/BaoBaoJianqiang/ActivityHook1
†	 The GitHub address of DroidPlugin: https://github.com/Qihoo360/DroidPlugin
‡	 The GitHub address of DL: https://github.com/singwhatiwanna/dynamic-load-apk

FIGURE 8.2  The last step in the process of launching Activity.

https://github.com/
https://github.com/
https://github.com/

194    ◾    Android App-Hook and Plug-In Technology﻿

	 1)	ActivityThread invokes the method handleMessage() of H:

public void handleMessage(Message msg) {
        switch (msg.what) {
            case LAUNCH_ACTIVITY: {
                �final ActivityClientRecord r =

(ActivityClientRecord) msg.obj;

                r.packageInfo = getPackageInfoNoCheck(
                      �r.activityInfo.applicationInfo,

r.compatInfo);
                handleLaunchActivity(r, null);
            } break;
        }
    }

r.packageInfo is a type of LoadedApk. LoadedApk contains information
about the current apk. We can get information such as Activity, Service,
BroadcastReceiver, and ContentProvider.

The method getPackageInfoNoCheck() returns an instance of
LoadedApk, and it will invoke the method getPackageInfo() indirectly:

    �public final LoadedApk getPackageInfoNoCheck(Applica
tionInfo ai,

            CompatibilityInfo compatInfo) {
        �return getPackageInfo(ai, compatInfo, null, false,

true, false);
    }

    �private LoadedApk getPackageInfo(ApplicationInfo
aInfo, CompatibilityInfo compatInfo, ClassLoader
baseLoader, boolean securityViolation, boolean
includeCode, boolean registerPackage) {

        �final boolean differentUser = (UserHandle.
myUserId() != UserHandle.getUserId(aInfo.uid));

        synchronized (mResourcesManager) {
            WeakReference<LoadedApk> ref;
            if (differentUser) {
                ref = null;
            } else if (includeCode) {
                ref = mPackages.get(aInfo.packageName);
            } else {
                ref = mResourcePackages.get(aInfo.packageName);
            }

The Plug-In Solution of Four Components﻿    ◾    195

            �LoadedApk packageInfo = ref != null ? ref.get() :

null;
            �if (packageInfo == null || (packageInfo.

mResources != null
                    �&& !packageInfo.mResources.getAssets().

isUpToDate())) {               
                packageInfo =
                    �new LoadedApk(this, aInfo, compatInfo,

baseLoader,
                            �securityViolation, includeCode &&                        

(aInfo.flags&ApplicationInfo.FLAG_HAS_
CODE) != 0, registerPackage);

            }
            return packageInfo;
        }
    }

The method getPackageInfo() is used to check the cache; for example,
there is a code line in this method:

ref = mPackages.get(aInfo.packageName);

mPackages is a cache object, storing all the instances of LoadedApk. If
we can’t find a suitable object in the cache mPackages, we’ll create a new
LoadedApk object and throw it into the cache.

	 2)	Perform the method LaunchActivity() of ActivityThread:

    �private Activity performLaunchActivity(ActivityClien
tRecord r, Intent customIntent)

        Activity activity = null;

        �java.lang.ClassLoader cl = r.packageInfo.

getClassLoader();
        activity = mInstrumentation.newActivity(
                    cl, component.getClassName(), r.intent);
        return activity;
    }

When we invoke the method newActivity() of mInstrumentation,
we need specify the value of the object cl, and we can retrieve cl from
r.packageInfo.getClassLoader().

196    ◾    Android App-Hook and Plug-In Technology﻿

r.packageInfo is an instance of LoadedApk, and we can get this instance
from the cache; if it doesn’t exist in the cache, we create a new one.

If it’s a normal app without a plug-in, the instance of cl is the ClassLoader
of the HostApp.

If it is a plug-in, the instance of cl is the ClassLoader of the plug-in.

8.2.2.2 � Add a Plug-In Activity to the Cache
We have introduced the mechanisms for launching an Activity, now let’s
find the plug-in solution of Activity.

There are two steps:

	 1)	Create an instance of LoadedApk and put this instance into the
cache. As I introduced in Section 8.2.2.1, mPack­ages is the cache,
and the method getPackageInfo() will retrieve this instance directly
from mPack­ages.

	 2)	Get the field mClassLoader of the object LoadedApk and set it as the
ClassLoader of the plug-in apk.

The code is as follows:

public class LoadedApkClassLoaderHookHelper {

    �public static Map<String, Object> sLoadedApk = new
HashMap<String, Object>();

    �public static void hookLoadedApkInActivityThread(F
ile apkFile) throws ClassNotFoundException,

            �NoSuchMethodException, InvocationTargetException,
IllegalAccessException, NoSuchFieldException,
InstantiationException {

        �// Get the current ActivityThread object firstly
        �Object currentActivityThread = RefInvoke.

invokeStaticMethod("android.app.ActivityThread",
"currentActivityThread");

        �// Get the mPackages field, which caches the dex

package information
        �Map mPackages = (Map) RefInvoke.getFieldObject(cur

rentActivityThread, "mPackages");

The Plug-In Solution of Four Components﻿    ◾    197

        // Prepare two parameters
        // android.content.res.CompatibilityInfo
        �Object defaultCompatibilityInfo = RefInvoke.

getStaticFieldObject("android.content.res.
CompatibilityInfo", "DEFAULT_COMPATIBILITY_INFO");

        �// Get ApplicationInfo information from Apk
        �ApplicationInfo applicationInfo = generateApplicat

ionInfo(apkFile);

        �//call getPackageInfoNoCheck method of

ActivityThread, the above two fields are
parameters.

        �Class[] p1 = {ApplicationInfo.class, Class.
forName("android.content.res.CompatibilityInfo")};

        �Object[] v1 = {applicationInfo,
defaultCompatibilityInfo};

        �Object loadedApk = RefInvoke.invokeInstanceMethod(
currentActivityThread, "getPackageInfoNoCheck",
p1, v1);

        // Create a Plug-In ClassLoader
        �String odexPath = Utils.getPluginOptDexDir(applica

tionInfo.packageName).getPath();
        �String libDir = Utils.

getPluginLibDir(applicationInfo.packageName).
getPath();

        �ClassLoader classLoader = new
CustomClassLoader(apkFile.getPath(), odexPath,
libDir, ClassLoader.getSystemClassLoader());

        �RefInvoke.setFieldObject(loadedApk,
"mClassLoader", classLoader);

        // Put the Plug-In LoadedApk object into the cache
        �WeakReference weakReference = new

WeakReference(loadedApk);
        �mPackages.put(applicationInfo.packageName,

weakReference);

        �// Because it is a weak reference, we must keep a

copy somewhere, otherwise it is easy to be GC.
        �sLoadedApk.put(applicationInfo.packageName,

loadedApk);
    }
}

198    ◾    Android App-Hook and Plug-In Technology﻿

We use reflection to execute the method getPackageInfoNoCheck()
dynamically. This method has two parameters. The type of one param-
eter is ApplicationInfo. It’s complex to prepare this parameter. So we
write a method generateApplicationInfo() to generate the instance of
ApplicationInfo, shown as follows:

    �public static ApplicationInfo
generateApplicationInfo(File apkFile)

            �throws ClassNotFoundException,
NoSuchMethodException, IllegalAccessException,
InstantiationException,
InvocationTargetException, NoSuchFieldException {

        �// Find out the core class that needs reflection:

android.content.pm.PackageParser
        �Class<?> packageParserClass = Class.

forName("android.content.pm.PackageParser");
        �Class<?> packageParser$PackageClass = Class.

forName("android.content.
pm.PackageParser$Package");

        �Class<?> packageUserStateClass = Class.
forName("android.content.pm.PackageUserState");

        �// Get our final goal firstly:

generateApplicationInfo method
        // API 23 !
        �// public static ApplicationInfo

generateApplicationInfo(Package p, int flags,
        //    PackageUserState state) {
        // Other Android versions do not guarantee this.

        �// First, we have to create a Package object for

this method
        �// This object can be returned by the android.

content.pm.PackageParser#parsePackage method.
        �// Create a PackageParser object
        �Object packageParser = packageParserClass.

newInstance();

        �// call PackageParser.parsePackage method to parse

Apk information

The Plug-In Solution of Four Components﻿    ◾    199

        �//It’s actually an android.content.
pm.PackageParser.Package object

        Class[] p1 = {File.class, int.class};
        Object[] v1 = {apkFile, 0};
        �Object packageObj = RefInvoke.invokeInstanceMethod

(packageParser, "parsePackage", p1, v1);

        �// The third parameter mDefaultPackageUserState

uses the default constructor
        �Object defaultPackageUserState =

packageUserStateClass.newInstance();

        // Ready To Go!
        �Class[] p2 = {packageParser$PackageClass, int.

class, packageUserStateClass};
        �Object[] v2 = {packageObj, 0,

defaultPackageUserState};
        �ApplicationInfo applicationInfo =

(ApplicationInfo)RefInvoke.invokeInstanceMethod(pa
ckageParser, "generateApplicationInfo", p2, v2);

        String apkPath = apkFile.getPath();
        applicationInfo.sourceDir = apkPath;
        applicationInfo.publicSourceDir = apkPath;

        return applicationInfo;
    }

Let’s analyze the code above. Invoke the method generateApplica-
tionInfo() of PackageParser using reflection to generate an instance of
ApplicationInfo. This method is always modified in different visions of
Android systems, so the solution in this book is only suitable for Android
API 23. The plug-in framework DroidPlugin supports all versions of the
Android system.

Although we have put the instance of LoadedApk into the cache mPack-
ages, the key in the cache is still wrong. Let’s have a look at a snippet of the
source code from the Android system:

public void handleMessage(Message msg) {
        switch (msg.what) {
            case LAUNCH_ACTIVITY: {

200    ◾    Android App-Hook and Plug-In Technology﻿

                �final ActivityClientRecord r =
(ActivityClientRecord) msg.obj;

                r.packageInfo = getPackageInfoNoCheck(
                      �r.activityInfo.applicationInfo,

r.compatInfo);
                handleLaunchActivity(r, null);
            } break;
        }
    }

    �public final LoadedApk getPackageInfoNoCheck(Applica
tionInfo ai,

            CompatibilityInfo compatInfo) {
        �return getPackageInfo(ai, compatInfo, null, false,

true, false);
    }

    �private LoadedApk getPackageInfo(ApplicationInfo
aInfo, CompatibilityInfo compatInfo, ClassLoader
baseLoader, boolean securityViolation, boolean
includeCode, boolean registerPackage) {

            if (differentUser) {
                ref = null;
            } else if (includeCode) {
                ref = mPackages.get(aInfo.packageName);
            } else {
                ref = mResourcePackages.get(aInfo.packageName);
            }
  }

The method mPackages.get(aInfo.packageName) is used to search the
cache, which means the key is aInfo.packageName, the object aInfo comes
from r.activityInfo.applicationInfo, the object r is the field obj of the param-
eter msg of the method handleMessage(Message msg).

Because we cheat the AMS, the field packageName of msg.obj.activity-
Info.applicationInfo is still jianqiang.com.activityhook1, and we need to
replace it with the packageName of the plug-in, jianqiang.com.testactivity.
The code is as follows:

ActivityInfo activityInfo = (ActivityInfo) RefInvoke.
getFieldObject(obj, "activityInfo");

The Plug-In Solution of Four Components﻿    ◾    201

activityInfo.applicationInfo.packageName = target.
getPackage() == null?target.getComponent().
getPackageName() : target.getPackage();

We put the code above at the end of the method handleLaunchActivity
of MockClass2.

8.2.2.3 � Solution 1 of Loading Class in a Plug-In: Create
DexClassLoader for Each Plug-In apk

We introduced the method hookLoadedApkInActivityThread() of
LoadedApkClassLoaderHookHelper in Section 8.2.2.2. In this method, we
find something interesting, shown as follows:

        �String odexPath = Utils.getPluginOptDexDir(applica
tionInfo.packageName).getPath();

        �String libDir = Utils.
getPluginLibDir(applicationInfo.packageName).
getPath();

        �ClassLoader classLoader = new
CustomClassLoader(apkFile.getPath(), odexPath,
libDir, ClassLoader.getSystemClassLoader());

        �RefInvoke.setFieldObject(loadedApk,
"mClassLoader", classLoader);

Each plug-in is an instance of LoadedApk. We replace the field
mClassLoader of LoadedApk with a custom ClassLoader named
CustomClassLoader.

The definition of the CustomClassLoader is as follows; it is actually a
subclass of DexClassLoader:

public class CustomClassLoader extends DexClassLoader {

    �public CustomClassLoader(String dexPath, String
optimizedDirectory, String libraryPath, ClassLoader
parent) {

        �super(dexPath, optimizedDirectory, libraryPath,
parent);

    }
}

202    ◾    Android App-Hook and Plug-In Technology﻿

We can launch Activity and every class of the plug-in app by
CustomClassLoader. When the app user navigates from the HostApp to
the plug-in app, the app will use CustomClassLoader. When the app user
leaves the plug-in app and goes back to the HostApp, the app will use its
original ClassLoader.

8.2.2.4 � Hooking More Classes
Implementing plug-in technology via hooking can cause an interesting
bug. When we click the button in the Activity of the plug-in, it will throw
up an exception as follows:

Unable to get package info for jianqiang.com.
testactivity; is package not installed?

We can search the exception in the source code of the Android sys-
tem, and find out the problem is in the method initializeJavaContextClass-
Loader of LoadedApk:

    private void initializeJavaContextClassLoader() {
        �IPackageManager pm = ActivityThread.

getPackageManager();
        android.content.pm.PackageInfo pi;
        try {
            �pi = pm.getPackageInfo(mPackageName, 0,

UserHandle.myUserId());
        } catch (RemoteException e) {
            �throw new IllegalStateException("Unable to get

package info for "
                    + mPackageName + "; is system dying?", e);
        }
        if (pi == null) {
            �throw new IllegalStateException("Unable to get

package info for "
                    �+ mPackageName + "; is package not

installed?");
        }
}

The variable pi is null, so it throws up an exception. Let’s have a look at
the generation of the pi,

pi= pm.getPackageInfo();

The Plug-In Solution of Four Components﻿    ◾    203

If we replace the object pm with a new object Proxy, and override the
method getPackageInfo() of Proxy, pi will not be null;

Let’s have a look at how to get the object pm, as follows:

public final class ActivityThread {
    �private static ActivityThread
sCurrentActivityThread;

    static IPackageManager sPackageManager;

    public static IPackageManager getPackageManager() {
        if (sPackageManager != null) {
            return sPackageManager;
        }
        IBinder b = ServiceManager.getService("package");
        �sPackageManager = IPackageManager.Stub.

asInterface(b);
        return sPackageManager;
    }
}

The method getPackageManager() of ActivityThread returns the object
pm, and this method actually returns the field sPackageManager of the
ActivityThread, so we can hook this field, as follows:

    �private static void hookPackageManager() throws
Exception {

        �Object currentActivityThread =
.invokeStaticMethod("android.app.ActivityThread",
"currentActivityThread");

        �// Get the original sPackageManager field of

ActivityThread
        �Object sPackageManager = RefInvoke.getFieldObject(

currentActivityThread, "sPackageManager");

        �// Prepare a proxy object to replace the original

object
        �Class<?> iPackageManagerInterface = Class.

forName("android.content.pm.IPackageManager");
        �Object proxy = Proxy.newProxyInstance(iPackageMana

gerInterface.getClassLoader(),

204    ◾    Android App-Hook and Plug-In Technology﻿

                new Class<?>[] { iPackageManagerInterface },
                new MockClass3(sPackageManager));

        �// Replace the sPackageManager field of

ActivityThread
        �RefInvoke.setFieldObject(currentActivityThread,

"sPackageManager", proxy);
    }
}

The logic in MockClass3 is shown as follows:

public class MockClass3 implements InvocationHandler {

    private Object mBase;

    public MockClass3(Object base) {
        mBase = base;
    }

    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        if (method.getName().equals("getPackageInfo")) {
            return new PackageInfo();
        }
        return method.invoke(mBase, args);
    }
}

Place the method hookPackageManage()into MockClass2 and invoke it
in the method handleLaunchActivity() of MockClass2.

Let’s recall the plug-in solution of Activity described earlier in this
section. We put the object LoadedApk corresponding to the plug-in apk
into the cache directly, and then change the ClassLoader of the object
LoadedApk to the ClassLoader of the plug-in.

The disadvantage of this solution is obvious. We must use reflection to
get a lot of instances of the internal class in the Android system, and we
must we must write a lot of if…else… statements to resolve the code change
among the different versions of the Android system.

The Plug-In Solution of Four Components﻿    ◾    205

8.2.3 � Solution 2: Merge All the Plug-In Dexes into One Array*
Let’s have a look at how to load the dex of the plug-in:

        �File extractFile = this.
getFileStreamPath(apkName);

        String dexpath = extractFile.getPath();
        �File fileRelease = getDir("dex", 0); //0 means

Context.MODE_PRIVATE
        �DexClassLoader classLoader = new

DexClassLoader(dexpath,
                �fileRelease.getAbsolutePath(), null,

getClassLoader());

The variable dexpath is the path of the plug-in app. The Android system
handles dexPath in BaseDexClassLoader and DexPathList:

public class BaseDexClassLoader extends ClassLoader {
    private final DexPathList pathList;

    �public BaseDexClassLoader(String dexPath, File
optimizedDirectory,

            String librarySearchPath, ClassLoader parent) {
        super(parent);

        this.pathList = new DexPathList(this, dexPath,
            librarySearchPath, optimizedDirectory);
    }
}

public class DexPathList {
    private Element[] dexElements;
   
    �public DexPathList(ClassLoader definingContext,
String dexPath,

            String libraryPath, File optimizedDirectory) {
        �this.dexElements = makeDexElements(splitDexPath(de

xPath), optimizedDirectory);
    }

*	 Sample code: https://github.com/BaoBaoJianqiang/ActivityHook2

https://github.com/

206    ◾    Android App-Hook and Plug-In Technology﻿

    private static List<File> splitDexPath(String path) {
        return splitPaths(path, false);
    }

    �private static List<File> splitPaths(String
searchPath, boolean directoriesOnly) {

        List<File> result = new ArrayList<>();

        �if (searchPath != null) {
for (String path : searchPath.split(File.
pathSeparator)) {
    //omit some codes….
            }
        }
    }
}

We split the string dexPath into an array by File.pathSeparator and each
item in the string array is a path from the dex/apk in the HostApp or the
plug-in, shown as follows:

/data/user/0/jianqiang.com.activityhook1/files/
plugin1.apk:/data/user/0/jianqiang.com.activityhook1/
files/plugin1.apk:

The string array will be converted into the field dexElements of
DexPathList.

Based on this knowledge, we can manually add the dex of the plug-in
into the array dexElements of the HostApp using hook technology.

There are three steps.

	 1)	In the HostApp, get the field dexElements of ClassLoader of the
HostApp:

•	 Get the field pathList of BaseDexClassLoader; its type is
DexPathList.

•	 Get the field dexElements of DexPathList; it is an array.

	 2)	Get an Element object from the variable apkFile of the plug-in.

	 3)	Merge dexElements of the plug-in and the HostApp into a new dex
array and replace the original field dexElements of the HostApp.

The Plug-In Solution of Four Components﻿    ◾    207

To carry out these three points, the code is as follows:

    �public static void patchClassLoader(ClassLoader cl,
File apkFile, File optDexFile)

            �throws IllegalAccessException,
NoSuchMethodException, IOException,
InvocationTargetException,
InstantiationException, NoSuchFieldException {

        // Get BaseDexClassLoader : pathList
        �Object pathListObj = RefInvoke.

getFieldObject(DexClassLoader.class.
getSuperclass(), cl, "pathList");

        // Get PathList: Element[] dexElements
        �Object[] dexElements = (Object[]) RefInvoke.

getFieldObject(pathListObj, "dexElements");

        // Element type
        �Class<?> elementClass = dexElements.getClass().

getComponentType();

        // Create an array to replace the original array
        �Object[] newElements = (Object[]) Array.

newInstance(elementClass, dexElements.length + 1);

        �// Plug-In constructor of Element(File file,

boolean isDirectory, File zip, DexFile dexFile) 
        �Class[] p1 = {File.class, boolean.class, File.

class, DexFile.class};
        �Object[] v1 = {apkFile, false, apkFile, DexFile.

loadDex(apkFile.getCanonicalPath(), optDexFile.
getAbsolutePath(), 0)};

        �Object o = RefInvoke.createObject(elementClass,
p1, v1);

        Object[] toAddElementArray = new Object[] { o };
        // Copy the original elements
        �System.arraycopy(dexElements, 0, newElements, 0,

dexElements.length);
        // Copy the Plug-In elements
        �System.arraycopy(toAddElementArray, 0,

newElements, dexElements.length,
toAddElementArray.length);

        // Replace
        �RefInvoke.setFieldObject(pathListObj,

"dexElements", newElements);
    }

208    ◾    Android App-Hook and Plug-In Technology﻿

8.2.4 � Plug-In Solution of Resources*
Solutions 1 and 2 don’t support resources in an Activity, but we have intro-
duced how to load the resources of plug-ins in Section 8.1.4, and we can
merge these solutions together.

The demo ZeusStudy1.2 is easy; we won’t spend much time introducing
it in detail; please read it for yourself.

8.2.5 � Support LaunchMode in Plug-In†

Although we have introduced two solutions for the plug-in technique of
Activity, we find all the Activities in the plug-ins have the same value as
LaunchMode as standard, which is the default value of LaunchMode.

There are three other values of LaunchMode, singleTop, singleTask, and
singleInstance.

If we have an Activity with LaunchMode = singleTop declared in the
plug-in’s AndroidManifest.xml, singleTop won’t work at all, because the
AMS will treat it as a StubActivity with the default value of LaunchMode
as standard, not singleTop.

The best solution for these three LaunchModes is to supply a lot of
StubActivities, some for singleTop, some for singleTask, and some for sin-
gleInstance, as shown in Figure 8.3.

*	 Sample code: https://github.com/BaoBaoJianqiang/ZeusStudy1.2
†	 Sample code: https://github.com/BaoBaoJianqiang/ZeusStudy1.3

FIGURE 8.3  Use stub to support different LaunchMode.

https://github.com/
https://github.com/

The Plug-In Solution of Four Components﻿    ◾    209

Next, we need to map between the real Activities of the plug-in and
the StubActivities of the HostApp; for example, between ActivityA and
SingleTopActivity1. We can define the mapping in a JSON file and download
it from the remote server. In this book, we define mock data to simulate
this scenario and store it in the collection pluginActivies of MyApplication.
The code is as follows, ActivityA will have the same LaunchMode with
SingleTopActivity1:

public class MyApplication extends Application {
    �public static HashMap<String, String> pluginActivies
= new HashMap<String, String>();

    void mockData() {
        �pluginActivies.put("jianqiang.com.plugin1.

ActivityA", "jianqiang.com.hostapp.
SingleTopActivity1");

        �pluginActivies.put("jianqiang.com.plugin1.
TestActivity1", "jianqiang.com.hostapp.
SingleTaskActivity2");

    }
}

Do you still remember MockClass1? This class intercepts the request
of the method startActivity(), and we can add some logic to it to judge
if the LaunchMode of the Activity of the plug-in is default, the code is as
follows:

class MockClass1 implements InvocationHandler {

    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        Log.e("bao", method.getName());

        if ("startActivity".equals(method.getName())) {

            //..omit some code

            �String rawClass = raw.getComponent().

getClassName();

210    ◾    Android App-Hook and Plug-In Technology﻿

            �if(MyApplication.pluginActivies.
containsKey(rawClass)) {

                �String activity = MyApplication.pluginActivies.
get(rawClass);

                int pos = activity.lastIndexOf(".");
                �String pluginPackage = activity.substring(0,

pos);
                �componentName = new

ComponentName(pluginPackage, activity);
            } else {
                �componentName = new ComponentName(stubPackage,

StubActivity.class.getName());
            }

            //..omit some code
        }
  }
}

Let’s test whether the mechanism of LaunchMode can work normally.
In the project Plugin1, the LaunchMode of ActivityA is singleTop, and

the LaunchMode of TestActivity1 is singleTask.

	 1)	Click the button in TestActivity1 to navigate to ActivityA, and then
click the button “Goto TestActivity1” in ActivityA to navigate to
TestActivity1 again, Because the LaunchMode of TestActivity1 is
singleTask, the instance of TestActivity1 created previously in the
stack can be found, and the Android system won’t create a new
instance of TestActivity1 but will go back to the previous instance
of TestActivity1. This means the instance of ActivityA will be
destroyed.

	 2)	Click the button in TestActivity1 to navigate to ActivityA. In
ActivityA, click the button “Goto ActivityA” to navigate to ActivityA
again, because the LaunchMode of ActivityA is singleTop, the
instance of ActivityA will be reused without creating a new instance
of ActivityA.

This solution has a small bug that whenever the Activity is singleTop or
singleTask, the method onCreate() of this Activity won’t be invoked, but

The Plug-In Solution of Four Components﻿    ◾    211

the method onNewIntent() will be invoked. So, we need to intercept the
method onNewIntent() in MockClass2 to replace the StubActivity with the
original Activity of the plug-in. The code is as follows:

class MockClass2 implements Handler.Callback {

    Handler mBase;

    public MockClass2(Handler base) {
        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {

        switch (msg.what) {
            �// The value of "LAUNCH_ACTIVITY"  of

ActivityThread is 100
            �// Use reflection is the best way, we use Hard

coded here for simplicity
            case 100:
                handleLaunchActivity(msg);
                break;
            case 112:
                handleNewIntent(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

    private void handleNewIntent(Message msg) {
        Object obj = msg.obj;
        �ArrayList intents = (ArrayList)RefInvoke.

getFieldObject(obj, "intents");

        for(Object object : intents) {
            Intent raw = (Intent)object;
            �Intent target = raw.getParcelableExtra(AMSHookHel

per.EXTRA_TARGET_INTENT);

212    ◾    Android App-Hook and Plug-In Technology﻿

            if(target != null) {
                raw.setComponent(target.getComponent());

                if(target.getExtras() != null) {
                    raw.putExtras(target.getExtras());
                }

                break;
            }
        }
    }

    //..omit some code
}

We won’t spend time verifying whether singleInstance works in the
plug-in. That’s your homework.

8.2.6 � Solution 3: Hook ClassLoader*
We have introduced two solutions in Sections 8.2.2 and 8.2.3 for launch-
ing an Activity from the plug-in:

	 1)	Create a corresponding ClassLoader for each plug-in.

	 2)	Merge all the dexes into one array.

Now let’s talk about the third solution, which replaces the ClassLoader of
the HostApp with our own ZeusClassLoader directly.

ZeusClassLoader can play the role of the ClassLoader of the HostApp,
which is done in the constructor of ZeusClassLoader, as follows:

ZeusClassLoader classLoader = new
ZeusClassLoader(mBaseContext.getPackageCodePath(),
mBaseContext.getClassLoader());

class ZeusClassLoader extends PathClassLoader {
    private List<DexClassLoader> mClassLoaderList = null;

    �public ZeusClassLoader(String dexPath, ClassLoader
parent) {

*	 Sample code: https://github.com/BaoBaoJianqiang/ZeusStudy1.4

https://github.com/

The Plug-In Solution of Four Components﻿    ◾    213

        super(dexPath, parent);

        �mClassLoaderList = new ArrayList<DexClassLoa

der>();
  }
}

The variable mClassLoaderList of ZeusClassLoader stores all the
ClassLoaders of the plug-in. First the method loadClass(String class,
boolean resolve) of ZeusClassLoader tries to use the ClassLoader of the
HostApp to load the class. If the ClassLoader of the HostApp can’t load
this class, it will traverse the collection mClassLoaderList until it finds a
suitable ClassLoader that can load this class.

The code in ZeusClassLoader is as follows:

class ZeusClassLoader extends PathClassLoader {
    private List<DexClassLoader> mClassLoaderList = null;

    �public ZeusClassLoader(String dexPath, ClassLoader
parent) {

        super(dexPath, parent);

        �mClassLoaderList = new ArrayList<DexClassLoa

der>();
    }

    /**
    * Add a Plug-In to the current classLoader
    */
    �protected void addPluginClassLoader(DexClassLoader
dexClassLoader) {

        mClassLoaderList.add(dexClassLoader);
    }

    @Override
    �protected Class<?> loadClass(String className,
boolean resolve) throws ClassNotFoundException {

        Class<?> clazz = null;
        try {
            �// First look for parent classLoader, here is the

system to help us create the classLoader, the
target corresponds to the HostApp

            clazz = getParent().loadClass(className);

214    ◾    Android App-Hook and Plug-In Technology﻿

        } catch (ClassNotFoundException ignored) {

        }

        if (clazz != null) {
            return clazz;
        }

        //find the ClassLoader in the mClassLoaderList
        if (mClassLoaderList != null) {
            �for (DexClassLoader classLoader :

mClassLoaderList) {
                if (classLoader == null) continue;
                try {
                    �// we only look for the plug-in’s own apk and

don’t need to check the parent to avoid multiple
useless queries and improve performance.

                    clazz = classLoader.loadClass(className);
                    if (clazz != null) {
                        return clazz;
                    }
                } catch (ClassNotFoundException ignored) {

                }
            }
        }
        �throw new ClassNotFoundException(className + " in

loader " + this);
    }
}

The code in PluginManager is as follows:

public class PluginManager {
 � public static volatile ClassLoader mNowClassLoader =
null; // System ClassLoader

 � public static volatile ClassLoader mBaseClassLoader
= null; // System ClassLoader

 � public static void init(Application application) {
      mBaseClassLoader = mBaseContext.getClassLoader();
      mNowClassLoader = mBaseContext.getClassLoader();

      �ZeusClassLoader classLoader = new

ZeusClassLoader(mBaseContext.getPackageCodePath(),
mBaseContext.getClassLoader());

The Plug-In Solution of Four Components﻿    ◾    215

 � File dexOutputDir = mBaseContext.getDir("dex",
Context.MODE_PRIVATE);

 � final String dexOutputPath = dexOutputDir.
getAbsolutePath();

       
  for(PluginItem plugin: plugins) {
  � DexClassLoader = new DexClassLoader(plugin.

pluginPath,
                �dexOutputPath, null, mBaseClassLoader);
   classLoader.addPluginClassLoader(dexClassLoader);
  }

 � PluginUtil.setField(mPackageInfo, "mClassLoader",
classLoader);

 � Thread.currentThread().setContextClassLoader(classLo
ader);

  mNowClassLoader = classLoader;
  }
}

But this solution is also not perfect. Originally, we started an Activity in
the plug-in app as follows:

Intent intent = new Intent();
String activityName = PluginManager.plugins.get(0).
packageInfo.packageName + ".TestActivity1";
intent.setClass(this, Class.forName(activityName));
startActivity(intent);

When the method Class.forName() is invoked, the Android system will
throw an exception that the HostApp can’t find the Activity of the plug-
in. Because Class.forName() uses BootClassLoader to load class, it is not
hooking.

So, we couldn’t use the method Class.forName() in the plug-in. We use
the method getClassLoader(), shown as follows:

Intent intent = new Intent();
String activityName = PluginManager.plugins.get(0).
packageInfo.packageName + ".TestActivity1";
intent.setClass(this, getClassLoader().
loadClass(activityName));
startActivity(intent);

216    ◾    Android App-Hook and Plug-In Technology﻿

Activity is different from the other three components. It is widely used
in apps. Activity interacts with the app user directly, and it has three
important features, as follows:

•	 More lifecycle functions

•	 LaunchMode

•	 Resources

We need to support these three features of Activity in the plug-in.

8.3 � THE PLUG-IN SOLUTION FOR SERVICE
Service is an Android component running in a background process. There
are two forms of launching a Service: startService() and bindService(). We
must support these two mechanisms with plug-in techniques.

8.3.1 � The Relationship Between Service and Activity

In Section 2.7, we have introduced the family of Context. Activity and
Service are both descendants of Context. There are so many similarities
between Activity and Service; for example, both of them start with the help
of Context and communicate with the AMS, and then the AMS notifies
the app which component to launch, and forwards the message through
ActivityThread and H (Figure 8.4).

FIGURE 8.4  The family of Context.

The Plug-In Solution of Four Components﻿    ◾    217

There are also some differences between Activity and Service, let’s have
a look:

	 1)	Activity is user-oriented; it has a lot of lifecycle methods; Service runs
as a background process and has fewer lifecycle methods.

	 2)	Activity has an important feature LaunchMode; there is a stack to
store all the Activities. When we create a new Activity, it will be put
on the top of the stack. The default value of LaunchMode is stan-
dard. If we create the instances of the same Activity many times,
all the instances of this Activity will be put on the top of the stack.
That’s why we use StubActivity to cheat the AMS in plug-in program-
ming. But Service doesn’t support LaunchMode. When we invoke
the method startService() of the same Service many times, only one
instance of Service is generated. So, if we use StubService to cheat the
AMS, it doesn’t support multiple Services in the plug-in.

	 3)	ActivityThread uses Instrumentation to launch an Activity.
Instrumentation is not used for a Service.

There are two forms of starting a Service:

	 1)	startService()

	 2)	bindService()

The differences between these two forms are that the method startSer-
vice() and the corresponding method stopService() are only used to start
and stop a Service. For example, in a music app, we define a Service. We
click the play button to notify the Service to execute the method startSer-
vice() in the background processes to play the music.

When the method bindService() is executed, an instance of
ServiceConnection will be sent to the AMS. The AMS will send a Binder
object to the app; this object exists in the second parameter of the callback
method onServiceConnected() of the ServiceConnection.

218    ◾    Android App-Hook and Plug-In Technology﻿

8.3.2 � StubService*
In the previous sections, we introduced that if we invoke the method
startService() of the same Service several times, only one instance of the
Service is created. So, we can’t use only one StubService to hook multiple
Services in the plug-in.

But we find the number of the Services in one app is less than ten;
which is different from Activity. So, we can create ten StubServices in the
HostApp, for example, StubService1, StubService2, and StubService10.
Each StubService corresponds to only one Service of the plug-in, shown
in Figure 8.5.

*	 Sample code: https://github.com/BaoBaoJianqiang/ServiceHook1

FIGURE 8.5  Ten StubServices in the HostApp.

https://github.com/

The Plug-In Solution of Four Components﻿    ◾    219

The next step is to set the mapping between StubService in the HostApp
and the Service of the plug-in. There are two ways:

One way is to get a JSON string from the server; this file contains the 1:1
mapping, shown as follows.

{
    "plugins": [
        {
            �"PluginService": "jianqiang.com.testservice1.

MyService1",
            �"StubService": "jianqiang.com.activityhook1.

StubService1"
        },
        {
            �"PluginService": "jianqiang.com.testservice1.

MyService2",
            �"StubService": "jianqiang.com.activityhook1.

StubService2"
        }
   ]
}

Another way is to create a configuration file named plugin_config in
the folder Assets of each plug-in app and put this JSON string into this file.

This second way is more natural.
The core code of parsing the configuration file plugin_config in the

plug-in is as follows:

String strJSON = Utils.readZipFileString(dexFile.
getAbsolutePath(), "assets/plugin_config.json");
if(strJSON != null && !TextUtils.isEmpty(strJSON)) {
JSONObject jObject = new JSONObject(strJSON.
replaceAll("\r|\n", ""));
JSONArray jsonArray = jObject.getJSONArray("plugins");
for(int i = 0; i< jsonArray.length(); i++) {
    �JSONObject jsonObject = (JSONObject)jsonArray.
get(i);

    UPFApplication.pluginServices.put(
        jsonObject.optString("PluginService"),
        jsonObject.optString("StubService"));
    }
}

220    ◾    Android App-Hook and Plug-In Technology﻿

The method readZipFileString of Utils reads the contents of the configu-
ration file plugin_config in the folder Assets of the plug-in*. It converts a
JSON string into a HashMap. This HashMap is stored in the field plugin-
Services of UPFApplication in the HostApp and it’s a global variable. The
field pluginServices plays a key role when a plug-in Service is loaded.

8.3.3 � Plug-In Solution to startService()†

Plug-in solutions to Service and Activity are the same. Let’s start with
startService() and stopService().

First, merge the dexes of the HostApp and the plug-in. We have intro-
duced the BaseDexClassLoaderHookHelper in Section 8.2.3; we can use
this class to load any class; don’t worry about the ClassNotFoundExeption
anymore.

Second, cheat the AMS. This implementation is in AMSHookHelper.
The code is as follows:

public class AMSHookHelper {

    �public static final String EXTRA_TARGET_INTENT =
"extra_target_intent";

    �public static void hookAMN() throws
ClassNotFoundException,

            NoSuchMethodException, InvocationTargetException,
            IllegalAccessException, NoSuchFieldException {

        �// Get the gDefault singleton of AMN, gDefault is

final and static
        �Object gDefault = RefInvoke.

getStaticFieldObject("android.app.
ActivityManagerNative", "gDefault");

        �// gDefault is an instance of android.util.

Singleton<T>. We get the mInstance field from this
singleton

        �Object mInstance = RefInvoke.
getFieldObject("android.util.Singleton", gDefault,
"mInstance");

*	 Refers from the ZeusPlugin framework: https://github.com/iReaderAndroid/ZeusPlugin
†	 Sample code: https://github.com/BaoBaoJianqiang/ServiceHook1

https://github.com/
https://github.com/

The Plug-In Solution of Four Components﻿    ◾    221

        �// Create a proxy instance of MockClass1 and
replace this field. Let the proxy object deal with
it.

        �Class<?> classB2Interface = Class.
forName("android.app.IActivityManager");

        Object proxy = Proxy.newProxyInstance(
                Thread.currentThread().getContextClassLoader(),
                new Class<?>[] { classB2Interface },
                new MockClass1(mInstance));

        �// Replace the mInstance field of mDefault with

proxy object
        Class class1 = gDefault.getClass();
        �RefInvoke.setFieldObject("android.util.Singleton",

gDefault, "mInstance", proxy);
    }

    �public static void hookActivityThread() throws
Exception {

        // Get the current ActivityThread object firstly
        �Object currentActivityThread = RefInvoke.

getStaticFieldObject("android.app.ActivityThread",
"sCurrentActivityThread");

        �// Since ActivityThread has only one process, we

get the mH of this object
        �Handler mH = (Handler) RefInvoke.getFieldObject(cu

rrentActivityThread, "mH");

        �// Replace mCallback field of Handler with new

MockClass2(mH)
        �RefInvoke.setFieldObject(Handler.class, mH,

"mCallback", new MockClass2(mH));
    }
}

Let’s analyze MockClass1 and MockClass2 in the above code:
First, hook AMN and cheat the AMS to start StubService. The imple-

mentation of the code is in the class MockClass1. Now we try to intercept
two methods startService() and stopService(). But we don’t store the Intent
in the cache. Because we can use pluginServices in UPFApplication, we can

222    ◾    Android App-Hook and Plug-In Technology﻿

find the corresponding StubService according to the mapping defined in
pluginServices:

class MockClass1 implements InvocationHandler {

    private static final String TAG = "MockClass1";

    // replacing package name of StubService
    �private static final String stubPackage =
"jianqiang.com.activityhook1";

    Object mBase;

    public MockClass1(Object base) {
        mBase = base;
    }

    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        Log.e("bao", method.getName());

        if ("startService".equals(method.getName())) {
            // Only intercept this method
            �// Replace parameters as you want and even can

replace the original Activity to start another
Activity.

            // Find the first Intent object in the parameter
            int index = 0;
            for (int i = 0; i < args.length; i++) {
                if (args[i] instanceof Intent) {
                    index = i;
                    break;
                }
            }

            �//get StubService form UPFApplication.

pluginServices
            Intent rawIntent = (Intent) args[index];
            �String rawServiceName = rawIntent.getComponent().

getClassName();

The Plug-In Solution of Four Components﻿    ◾    223

            �HashMap<String, String> a = UPFApplication.
pluginServices;

            �String stubServiceName = UPFApplication.

pluginServices.get(rawServiceName);

            �// replace Plug-In Service of StubService
            �ComponentName componentName = new

ComponentName(stubPackage, stubServiceName);
            Intent newIntent = new Intent();
            newIntent.setComponent(componentName);

            // Replace Intent, cheat AMS
            args[index] = newIntent;

            Log.d(TAG, "hook success");
            return method.invoke(mBase, args);
        } else if ("stopService".equals(method.getName())) {
            // Only intercept this method
            �// Replace parameters as you want and even can

replace the original Activity to start another
Activity.

            // Find the first Intent object in the parameter
            int index = 0;
            for (int i = 0; i < args.length; i++) {
                if (args[i] instanceof Intent) {
                    index = i;
                    break;
                }
            }

            �//Get StubService form UPFApplication.

pluginServices
            Intent rawIntent = (Intent) args[index];
            �String rawServiceName = rawIntent.getComponent().

getClassName();
            �String stubServiceName = UPFApplication.

pluginServices.get(rawServiceName);

            // Replace Plug-In Service of StubService
            �ComponentName componentName = new

ComponentName(stubPackage, stubServiceName);

224    ◾    Android App-Hook and Plug-In Technology﻿

            Intent newIntent = new Intent();
            newIntent.setComponent(componentName);

            // Replace Intent, cheat AMS
            args[index] = newIntent;

            Log.d(TAG, "hook success");
            return method.invoke(mBase, args);
        }

        return method.invoke(mBase, args);
    }
}

Second, after the AMS is cheated, it will inform the app to launch
StubService. We need to hook the field mCallback of the mH and intercept
the method handleMessage() of ActivityThread. We intercept the branch of
114(CREATE_SERVICE). This branch executes the method handleCrea-
teService() of ActivityThread.

When the app starts a Service, the app sends an Intent object to AMS.
We can’t retrieve this Intent object of the method handleCreateService() of
the class ActivityThread. The intent carries the information which service
will be launched. We can get this information from the parameter data
of the method handleCreateService(). The type of the parameter data is
CreateServiceData, shown as follows:

private void handleCreateService(CreateServiceData
data) {
    �LoadedApk packageInfo = getPackageInfoNoCheck(data.
info.applicationInfo, data.compatInfo);

    Service service = null;

    �java.lang.ClassLoader cl = packageInfo.
getClassLoader();

    s�ervice = (Service) cl.loadClass(data.info.name).
newInstance();

    // omit unrelated codes
    service.onCreate();
}

The Plug-In Solution of Four Components﻿    ◾    225

We replace data.info.name with Service in the plug-in, shown as follows:

class MockClass2 implements Handler.Callback {

    Handler mBase;

    public MockClass2(Handler base) {
        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {

        Log.d("baobao4321", String.valueOf(msg.what));
        switch (msg.what) {

            �// The value of "CREATE_SERVICE" in

ActivityThread is 114.
            �// Use reflection is the best way, we use Hard

coded here for simplicity
            case 114:
                handleCreateService(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

    private void handleCreateService(Message msg) {
        �// For simplicity, take plug-in Service out

directly

        Object obj = msg.obj;
        �ServiceInfo serviceInfo = (ServiceInfo)RefInvoke.

getFieldObject(obj, "info");

        String realServiceName = null;

        �for (String key : UPFApplication.pluginServices.

keySet()) {
            �String value = UPFApplication.pluginServices.

get(key);

226    ◾    Android App-Hook and Plug-In Technology﻿

            if(value.equals(serviceInfo.name)) {
                realServiceName = key;
                break;
            }
        }

        serviceInfo.name = realServiceName;
    }
}

Now a plug-in framework that supports the startService() is complete.
Let’s have a look how to use MyService1 of the plug-in:

Intent intent = new Intent();
intent.setComponent(
 � new ComponentName("jianqiang.com.testservice1",
"jianqiang.com.testservice1.MyService1"));

startService(intent);

8.3.4 � Plug-In Solution of bindService*
Let’s talk about another format of Service: bindService() and unbindService().

With the help of the previous examples, the methods bindService()
and unbindService() of Service are very simple. We can add some logic in
MockClass1 to cheat the AMS when the method bindService() is called.

else if ("bindService".equals(method.getName())) {

            // Find the first Intent object in the parameter
            int index = 0;
            for (int i = 0; i < args.length; i++) {
                if (args[i] instanceof Intent) {
                    index = i;
                    break;
                }
            }

            Intent rawIntent = (Intent) args[index];
            �String rawServiceName = rawIntent.getComponent().

getClassName();

*	 Sample code: https://github.com/BaoBaoJianqiang/ServiceHook2

https://github.com/

The Plug-In Solution of Four Components﻿    ◾    227

            �String stubServiceName = UPFApplication.
pluginServices.get(rawServiceName);

            // Replace Plug-In Service of StubService
            �ComponentName componentName = new

ComponentName(stubPackage, stubServiceName);
            Intent newIntent = new Intent();
            newIntent.setComponent(componentName);

            // Replace Intent, cheat AMS
            args[index] = newIntent;

            Log.d(TAG, "hook success");
            return method.invoke(mBase, args);
        }

Next, we call MyService2 of the plug-in in the HostApp:

findViewById(R.id.btnBind).setOnClickListener(new
View.OnClickListener() {
    @Override
    public void onClick(View v) {
        final Intent intent = new Intent();
        intent.setComponent(
            new ComponentName("jianqiang.com.testservice1",
                "jianqiang.com.testservice1.MyService2"));
        �bindService(intent, conn, Service.

BIND_AUTO_CREATE);
    }
});

findViewById(R.id.btnUnbind).setOnClickListener(new
View.OnClickListener() {
    @Override
    public void onClick(View v) {
        unbindService(conn);
    }
});

Up until now, we may have some questions.

228    ◾    Android App-Hook and Plug-In Technology﻿

•	 Why not cheat the AMS when unbindService() is invoked?

•	 Why not write code in MockClass2 to replace StubService2 with
MyService2?

These two questions have also been bothering me for a long time.
The answer to the first question is simple. The method bindService()

has a parameter conn. The type of conn is ServiceConnection. conn will be
sent to AMS and stored in the AMS process. Now let’s review the syntax of
unbindService(). This method also has a parameter conn. The app process
will send this parameter to AMS. If this conn was stored in the AMS pro-
cess before, AMS will find it. That’s why we needn’t cheat AMS when the
app executes the method unbindService() of the service in the plug-in app.

The second question is also very interesting. The flowchart of bind-
Service() is shown in Figure 8.6 (the AMS sends a message to the app
processes).

In other words, the method bindService() goes through branch 114 (the
method handleCreateService()) first and then goes through branch 121
(the method handleBindService()).

The method handleCreateService() puts MyService2 into the collection
mServices.

FIGURE 8.6  Flowchart of bindService().

The Plug-In Solution of Four Components﻿    ◾    229

Then in the methods handleBindService() (branch 121) and handleUn-
bindService() (branch 122) we can find both MyService2 in the collec-
tion mService and execute the corresponding methods bindService() and
unbindService().

We intercept branch 114 to resolve the logic of createService(). In the
method handleCreateService(), we switch ServiceName from StubService2
to MyService2. Therefore, we do not need to intercept branch 121 and 122
and add and logic in MockClass2.

In this section, we have introduced a plug-in solution for Service.
This solution requires that we pre-declare ten StubServices in the
AndroidManifest.xml of the HostApp. When the number of services in
the plug-in is more than ten, this solution is not suitable.

In Chapter 9, we will introduce another plug-in framework, DL, written
by Yugang Ren. DL will give a final plug-in solution for Service.

8.4 � A PLUG-IN SOLUTION FOR BROADCASTRECEIVER
BroadcastReceiver (Receiver for short in this book) is the simplest compo-
nent in Android. It is a class that implements the design pattern Observer.

We have introduced the principle of Receiver in detail in Chapter 2.
We talk about the plug-in solutions for the Receiver in this section. The
Receiver is divided into two kinds: Dynamic Receiver and Static Receiver,
the implementations of these two kinds are different.

8.4.1 � Receiver Overview

The Receiver is divided into two kinds: Static Receiver and Dynamic
Receiver. Let’s have a look at the differences between them briefly:

	 1)	Static Receiver must be declared in the AndroidManifest.xml. The
PMS will parse the AndroidManifest.xml of the app after the user
downloads and installs an app; this means all the Static Receivers
exist in PMS.

	 2)	Dynamic Receiver is registered by the app developer in the code; the
method registerReceiver() of Context calls the method AMN.getDe-
fault().RegisterReceiver, so all the Dynamic Receivers exist in the AMS.

The only difference between Static Receiver and Dynamic Receiver is the
registration mechanism discussed above. Static Receiver and Dynamic
Receiver have the same format for sending and receiving broadcasts.

230    ◾    Android App-Hook and Plug-In Technology﻿

	 1)	Send a broadcast to the AMS using the method sendBroadcast()
of Context, and it will invoke the method AMN.getDefault().
broadcastIntent.

	 2)	After receiving the above information, the AMS will search the
broadcasts stored in the AMS and the PMS for which ones meet the
conditions, and then notify the App process to start these receivers
and invoke the method onReceive() of these receivers.

The lifecycle of the Receiver is very simple. There is only one lifecycle
method onReceive(), which is a callback function.

When Receiver sends or receives a broadcast, it will carry an intent-fil-
ter. For example, we need set an intent-filter when we want to send broad-
casts, and then the AMS will know which broadcasts are suitable for the
intent-filter. The code as follows:

	 1)	Static Receiver declared in the AndroidManifest.xml:

        <receiver
            android:name=".MyReceiver"
            android:enabled="true"
            android:exported="true">
            <intent-filter>
                <action android:name="baobao2" />
            </intent-filter>
        </receiver>

	 2)	Register Dynamic Receiver in the code:

  MyReceiver myReceiver = new MyReceiver();
  IntentFilter intentFilter = new IntentFilter();
  intentFilter.addAction("baobao2");
  registerReceiver(myReceiver, intentFilter);

	 3)	Send a broadcast:

    Intent intent = new Intent();
    intent.setAction("baobao2");
    intent.putExtra("msg", "Jianqiang");
    sendBroadcast(intent);

The Plug-In Solution of Four Components﻿    ◾    231

8.4.2 � A Plug-In Solution for Dynamic Receiver*
Dynamic Receiver needn’t communicate with the AMS, so it is only a nor-
mal class.

We only make sure that the HostApp can load this normal class in the
plug-in. In Section 8.2.2, we introduced the technique of dex merging. We
can use BaseDexClassLoaderHookHelper in the project Receiver1.0, and
then the Dynamic Receiver in the plug-in can be invoked normally.

8.4.3 � A Plug-In Solution for Static Receiver†

Static Receiver must be declared in the AndroidManifest.xml, which is
similar to Activity.

In Section 8.2, we introduced a plug-in solution for Activity. Activity
is not declared in the AndroidManifest.xml and can be launched. We use
StubActivity to cheat the AMS.

But this is not suitable for Static Receiver, because we must specify an
intent-filter for the broadcast. The parameters of the intent-filter such as
action can be set to any value, so we cannot use a Stub mechanism in the
Receiver directly.

However, we have another solution. We try to treat Static Receiver
declared in the AndroidManifest.xml of the plug-in as a Dynamic Receiver,
as follows:

Step 1: Because the PMS can only read the AndroidManifest.xml of the
HostApp, parse, and register Static Receiver. We can use the PMS to parse
the Static Receiver declared in the AndroidManifest.xml of the plug-in by
reflection.

Step 1: Traverse the list of Static Receivers we get in step 1. Use the
ClassLoader in the plug-in to load each Receiver in the list, instantiate
them as an object, and register them in the AMS as Dynamic Receivers.

The PMS parses the AndroidManifest.xml using the method
PackageParser(). The definition of the method PackageParser() is as follows:

public Package parsePackage(File packageFile, int
flags)

*	 Sample code: https://github.com/BaoBaoJianqiang/Receiver1.0
†	 Sample code: https://github.com/BaoBaoJianqiang/Receiver1.1

https://github.com/
https://github.com/

232    ◾    Android App-Hook and Plug-In Technology﻿

Let’s analyze the parameters and return a value for this method:

•	 The first parameter is apk, which can be specified as a plug-in apk;

•	 The second parameter is a filter. When we set it to PackageManager.
GET_RECEIVERS, all the Static Receivers in the apk will be returned;

•	 The return value is a Package object, storing the Static Receivers we
get from the AndroidManifest.xml.

So, we can get a Package object by using the method parsePackage(),
this Package object represents for a plug-in app. We can get all the Static
Receivers of this plug-in app from this Package object. The code is as
follows:

        �// First call parsePackage to get the
corresponding Package object of the Apk object

        �Object packageParser = RefInvoke.
createObject("android.content.pm.PackageParser");

        Class[] p1 = {File.class, int.class};
        �Object[] v1 = {apkFile, PackageManager.

GET_RECEIVERS};
        �Object packageObj = RefInvoke.invokeInstanceMethod

(packageParser, "parsePackage", p1, v1);

        �// Read the receivers field in the Package. It is

a List<Activity>
        �// The next thing to do is to get the ActivityInfo

corresponding to the Receiver according to this
List<Activity> (still regard the receiver
information as the activity information)

        �List receivers = (List) RefInvoke.
getFieldObject(packageObj, "receivers");

        for (Object receiver : receivers) {
            registerDynamicReceiver(context, receiver);
        }

In the for loop of the above code, we invoke the method registerDy-
nalmicReceiver() to convert each Static Receiver to a Dynamic Receiver and
register all these Receivers in the AMS. The implementation is as follows

The Plug-In Solution of Four Components﻿    ◾    233

    �// Parse the receiver and the corresponding
intentFilter

    �// Register Receiver manually
    �public static void registerDynamicReceiver(Context
context, Object receiver) {

        // Get the intents field of receiver
        �List<? extends IntentFilter> filters = (List<?

extends IntentFilter>) RefInvoke.getFieldObject(
                �"android.content.pm.PackageParser$Component",

receiver, "intents");

        try {
            // Register each static Receiver as dynamic
            for (IntentFilter intentFilter : filters) {
                �ActivityInfo receiverInfo = (ActivityInfo)

RefInvoke.getFieldObject(receiver, "info");

                �BroadcastReceiver broadcastReceiver =

(BroadcastReceiver) RefInvoke.
createObject(receiverInfo.name);

                �context.registerReceiver(broadcastReceiver,
intentFilter);

            }
        } catch (Exception e) {
            e.printStackTrace();
        }
}

8.4.4 � A Final Plug-In Solution for Static Receiver*
Static Receiver has a feature enabling it to launch even if the app is
not launched because the PMS has read all the Static Receivers in the
AndroidManifest.xml before the app is launched.

The solution introduced in Section 8.4.3 is not the best solution. In this
solution, we convert all the Static Receivers from the plug-in into Dynamic
Receivers. This means we must launch the app first; otherwise, the Static
Receivers from the plug-in won’t be launched.

Most app developers misunderstand that “launching an app is to
launch an Activity.” Activity is one of the four Android components. We

*	 Sample code: https://github.com/BaoBaoJianqiang/Receiver1.2

https://github.com/

234    ◾    Android App-Hook and Plug-In Technology﻿

can launch a Service or send a broadcast to the Receiver before the home
page of the app is launched.

So, we continue to explore how to send a broadcast to the Static Receiver
from the plug-in without launching the app.

We introduced StubActivity and StubService in Section 8.2 and 8.3; now
let’s review this technique:

•	 All the Activities can be mapped to only one StubActivity. If
the LaunchMode is not a standard(default value), we need more
StubActivities.

•	 Each Service in the plug-in app corresponds to only one StubService.
But a StubService in the HostApp can be used for a Service from the
plug-in. We will introduce a 1:n plug-in solution in Section 9.2.4.

We can also create a lot of StubReceivers and create 1:1 mapping between
the StubReceiver and Receiver from the plug-in.

	 1)	Receiver has an interesting feature: Action. Each Receiver carries one
or more Actions. So, we can create only one StubReceiver but add
many Actions for this StubReceiver, and each Action is mapped to the
Receiver of the plug-in, as follows:

  <receiver
   android:name=".StubReceiver"
   android:enabled="true"
   android:exported="true">
        <intent-filter>
            <action android:name="jianqiang1" />
        </intent-filter>
        <intent-filter>
            <action android:name="jianqiang2" />
        </intent-filter>
        <intent-filter>
            <action android:name="jianqiang3" />
        </intent-filter>
        <intent-filter>
            <action android:name="jianqiang4" />
        </intent-filter>
  </receiver>

The Plug-In Solution of Four Components﻿    ◾    235

In this StubReceiver, there are four Actions, the name of each Action is
“jianqiang1,” “jianqiang2,” “jianqiang3,” and “jianqiang4.”

	 2)	In the AndroidManifest.xml, there is a meta-data tag for each com-
ponent. We can configure this tag for the Services from the plug-in;
for example, MyReceiver has a meta-data tag, its name is “oldAction”
and its value is “jianqiang,” shown as follows:

  <?xml version="1.0" encoding="utf-8"?>
 � <manifest xmlns:android="http://schemas.android.com/
apk/res/android"

      package="jianqiang.com.receivertest">
 
      <application
          android:allowBackup="true"
          android:icon="@mipmap/ic_launcher"
          android:label="@string/app_name"
          android:supportsRtl="true"
          android:theme="@style/AppTheme">
 
          <receiver
              android:name=".MyReceiver"
              android:enabled="true"
              android:exported="true">
              <intent-filter>
                  <action android:name="baobao" />
              </intent-filter>
              �<meta-data android:name="oldAction" android:val

ue="jianqiang1"></meta-data>
          </receiver>
          <receiver
              android:name=".MyReceiver2"
              android:enabled="true"
              android:exported="true">
              <intent-filter>
                  <action android:name="baobao2" />
              </intent-filter>
              �<meta-data android:name="oldAction" android:val

ue="jianqiang2"></meta-data>
          </receiver>
      </application>
  </manifest>

http://schemas.android.com/

236    ◾    Android App-Hook and Plug-In Technology﻿

This plug-in has two Static Receivers, MyReceiver has the Action “bao-
bao” and meta-data tag “oldAction=jianqiang,” and MyReceiver2 has the
Action “baobao2” and meta-data tag “oldAction=jianqiang2”; we convert
these two Static Receivers to Dynamic Receivers, and store the mapping
“jianqiang:baobao” and “jianqiang2:baobao2” in a HashMap. The code is
as follows (we use ReceiverManager.pluginReceiverMappings to store all
the mapping):

  public final class ReceiverHelper {
      �private static final String TAG =

"ReceiverHelper";
 
      /**
      �* Parse the <receiver> in the Plug-In Apk file

and store it
      *
      * @param apkFile
      * @throws Exception
      */
      �public static void preLoadReceiver(Context

context, File apkFile) {
          �// First, call parsePackage to get the Package

object of the Apk
          �Object packageParser = RefInvoke.

createObject("android.content.pm.PackageParser");
          Class[] p1 = {File.class, int.class};
          �Object[] v1 = {apkFile, PackageManager.

GET_RECEIVERS};
          �Object packageObj = RefInvoke.invokeInstanceMetho

d(packageParser, "parsePackage", p1, v1);
 
          �String packageName = (String)RefInvoke.

getFieldObject(packageObj, "packageName");
 
          �// Read the receivers field in the Package. This

is a List<Activity>
           � // The next thing to do is to get the

ActivityInfo corresponding to the Receiver
according to this List<Activity> (still regard
the receiver information as the activity
information)

The Plug-In Solution of Four Components﻿    ◾    237

          �List receivers = (List) RefInvoke.
getFieldObject(packageObj, "receivers");

 
          try {
              for (Object receiver : receivers) {
                  �Bundle metadata = (Bundle)RefInvoke.

getFieldObject(
                          �"android.content.

pm.PackageParser$Component", receiver,
"metaData");

                  �String oldAction = metadata.
getString("oldAction");

 
                  �// Parse the receiver and the corresponding

intentFilter
                  �List<? extends IntentFilter> filters =

(List<? extends IntentFilter>) RefInvoke.
getFieldObject("android.content.
pm.PackageParser$Component", receiver,
"intents");

 
                  �// Register each static Receiver as dynamic
                  for (IntentFilter intentFilter : filters) {
                      �ActivityInfo receiverInfo = (ActivityInfo)

RefInvoke.getFieldObject(receiver, "info");
                      �BroadcastReceiver broadcastReceiver =

(BroadcastReceiver) RefInvoke.
createObject(receiverInfo.name);

                      �context.registerReceiver(broadcastReceiver,
intentFilter);

 
                      �String newAction = intentFilter.

getAction(0);
                      �ReceiverManager.pluginReceiverMappings.

put(oldAction, newAction);
                  }
              }
          } catch (Exception e) {
              e.printStackTrace();
          }
      }
  }

238    ◾    Android App-Hook and Plug-In Technology﻿

We use the method preLoadReceiver() of ReceiverHelper to parse
AndroidManifest.xml, fetch all the Static Receivers and get the tag meta-
data for each Receiver, we have introduced this method in Section 8.4.3.

	 3)	According to this configuration, when we send a broadcast with
the intent-filter “action=jianqiang1,” the method onReceive() of
StubReceiver will be fired; it searches the mapping collection
ReceiverManager.pluginReceiverMappings, and finds the mapping
“jianqiang:baobao,” and then send a new broadcast with the intent-
filter “action=baobao,” finally the method onReceive() of the Receiver
from the plug-in will be fired. The code of the StubReceiver is as
follows:

public class StubReceiver extends BroadcastReceiver {
  public StubReceiver() {
  }
 
  @Override
 � public void onReceive(Context context, Intent
intent) {

   String newAction = intent.getAction();
      �if(ReceiverManager.pluginReceiverMappings.

containsKey(newAction)) {
       �String oldAction = ReceiverManager.

pluginReceiverMappings.get(newAction);
          context.sendBroadcast(new Intent(oldAction));
   }
  }
}

Up to now, we have introduced the plug-in solution for the Static
Receiver. We can send a broadcast to the Static Receiver in the plug-in even
if the app hasn’t been launched.

This section introduces a plug-in solution for Dynamic Receiver and
Static Receiver.

In Section 9.2.5, we will introduce a new plug-in solution for a Receiver
based on Static-Proxy. This solution takes a Receiver from the plug-in as a
normal class and invokes the method onReceive() of ProxyReceiver in the
plug-in.

The Plug-In Solution of Four Components﻿    ◾    239

8.5 � A PLUG-IN SOLUTION FOR CONTENTPROVIDER
This section introduces a plug-in solution for ContentProvider.

Some app developers may be not familiar with ContentProvider because
it’s not widely used in apps. Actually, it’s only used in special scenarios.
For example, when an app reads the mobile address book.

8.5.1 � The Basic Concept of ContentProvider

ContentProvider is used to provide a large amount of data.
ContentProvider is not widely used in apps.
ContentProvider is widely used in the custom Android ROM such as

MIUI. The communication between different components always uses
ContentProvider to transport large amounts of data.

ContentProvider is an SQLite database, which is divided into data pro-
vider and data user. They transmit data via Anonymous Shared Memory
(ASM). For example, there is a data provider named A, and a data user
named B. B asks A for data and tells A “you can write the data in this
memory address”; A prepares the data, writes in the memory address
required by B, and then B can use this data directly. ASM is different from
traditional data transmission; it’s suitable for transmitting large amounts
of data.

However, ContentProvider is not suitable in all scenarios, for example,
when the app jumps from ActivityA to ActivityB and transfers some data,
and the data is too small, such as a string or an integer. The data trans-
mission is based on Binder, and Binder communicates quickly with the
process.

It’s necessary to use ContentProvider when the data is more than 1M;
otherwise, Binder is enough.

8.5.2 � A Simple Example of ContentProvider*
Let’s write an example to help us understand ContentProvider. There are
two apps, A1 and B1:

There is a ContentProvider defined in B1 to provide data, and A1 calls
the ContentProvider of B1 to obtain data.

The ContentProvider declared in B1:

<provider
    �android:name=".MyContentProvider"

*	 Sample code: https://github.com/BaoBaoJianqiang/ContentProvider1

https://github.com/

240    ◾    Android App-Hook and Plug-In Technology﻿

    �android:authorities="baobao"
    �android:enabled="true"
    �android:exported="true"/>

Now A1 can visit the ContentProvider of B1 by using the following URI:

content://baobao/

Let’s have a look at MyContentProvider defined in B1:

public class MyContentProvider extends ContentProvider {
    public MyContentProvider() {
    }

    @Override
    public boolean onCreate()
    {
        System.out.println("===onCreate===");
        return true;
    }

    @Override
    �public int delete(Uri uri, String where, String[]
whereArgs)

    {
        System.out.println(uri + "===delete===");
        System.out.println("where:" + where);
        return 1;
    }
   
    @Override
    �public Cursor query(Uri uri, String[] projection,
String where,

                        String[] whereArgs, String sortOrder)
    {
        // Omit a lot of code
    }

    @Override
    public Uri insert(Uri uri, ContentValues values)
    {
        // Omit a lot of code
    }

The Plug-In Solution of Four Components﻿    ◾    241

    @Override
    �public int update(Uri uri, ContentValues values,
String where,

                      String[] whereArgs)
    {
        // Omit a lot of code
    }
}

All the ContentProviders must implement CRUD methods. For exam-
ple, in the ContentProvider of B1, I implemented the method delete(). The
implementation is simple, it returns directly.

Now, let’s have a look at how to use the ContentProvider of B1 in A1.

  public class MainActivity extends Activity {

    ContentResolver contentResolver;
    Uri uri;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        uri = Uri.parse("content://baobao/");
        contentResolver = getContentResolver();
    }

    public void delete(View source) {
        �int count = contentResolver.delete(uri, "delete_

where", null);
        �Toast.makeText(this, "delete uri:" + count, Toast.

LENGTH_LONG).show();
    }
}

In A1, we invoke the method getContentResolver() to get the handle
of ContentProvider and invoke its method delete() to invoke the method
delete() in the remote ContentProvider of B1. We need to specify the URI
of the remote ContentProvider in the CRUD method; in this demo the
URI is “content://baobao/.”

242    ◾    Android App-Hook and Plug-In Technology﻿

Let’s test this ContentProvider. Install A1 and B1 on the Android phone;
it doesn’t matter if you launch B1 or not.

When we click the delete button in A1, the method delete() of
MyContentProvider is invoked and this method returns 1.

8.5.3 � A Plug-In Solution for ContentProvider*
Do you still remember the plug-in solution for BroadcastReceiver? All the
Static Receivers of the plug-in are converted to Dynamic Receivers, and then
they are registered manually in the Receiver collection of the HostApp.

Actually, ContentProvider has the same plug-in implementation as
BroadcastReceiver. But it is called “installation,” rather than “registration.”

The logic of “installation” is in the method installContentProviders() of
ActivityThread, as follows:

      private void installContentProviders(
            Context context, List<ProviderInfo> providers) {
        �final ArrayList<IActivityManager.

ContentProviderHolder> results =
            �new ArrayList<IActivityManager.

ContentProviderHolder>();

        for (ProviderInfo cpi : providers) {
            �IActivityManager.ContentProviderHolder cph =

installProvider(context, null, cpi,
                    �false /*noisy*/, true /*noReleaseNeeded*/,

true /*stable*/);
            if (cph != null) {
                cph.noReleaseNeeded = true;
                results.add(cph);
            }
        }

        try {
            �ActivityManagerNative.getDefault().

publishContentProviders(
                getApplicationThread(), results);
        } catch (RemoteException ex) {
        }
    }

*	 Sample code: https://github.com/BaoBaoJianqiang/ContentProvider2

https://github.com/

The Plug-In Solution of Four Components﻿    ◾    243

We have the chance to execute this method manually and put the
ContentProvider of the plug-in as the second parameter of this method.

Now we get the plug-in solution for ContentProvider, shown as follows:

	 1)	Merge the dex of the HostApp and the plug-in. Refer to the
BaseDexClassLoaderHookHelper class. We introduced this tech-
nique in Section 8.1.2.

	 2)	Invoke the method parsePackage() of PackageParser to fetch the
information from the ContentProvider of the plug-in; this method
returns a Package object, and we use the method generateProvider-
Info() to convert it to the ProviderInfo object we need.

    �public static List<ProviderInfo> parseProviders(File
apkFile) throws Exception {

        // get an instance of the PackageParser object
        �Class<?> packageParserClass = Class.

forName("android.content.pm.PackageParser");
        �Object packageParser = packageParserClass.

newInstance();

        �// First,execute parsePackage method to get

corresponding Package object for the Apk object.
        Class[] p1 = {File.class, int.class};
        �Object[] v1 = {apkFile, PackageManager.

GET_PROVIDERS};
        �Object packageObj = RefInvoke.invokeInstanceMethod

(packageParser, "parsePackage",p1, v1);

        // Read the services field in the Package object
        �// Next, get the corresponding ProviderInfo for

Provider according to the List<Provider>.
        �List providers = (List) RefInvoke.

getFieldOjbect(packageObj.getClass(), packageObj,
"providers");

        �// execute the generateProviderInfo method to

convert PackageParser.Provider to ProviderInfo

        �// prepare the parameters that the

generateProviderInfo method required

244    ◾    Android App-Hook and Plug-In Technology﻿

        �Class<?> packageParser$ProviderClass = Class.
forName("android.content.
pm.PackageParser$Provider");

        �Class<?> packageUserStateClass = Class.
forName("android.content.pm.PackageUserState");

        �Object defaultUserState = packageUserStateClass.
newInstance();

        �int userId = (Integer) RefInvoke.
invokeStaticMethod("android.os.UserHandle",
"getCallingUserId", null, null);

        �Class[] p2 = {packageParser$ProviderClass, int.
class, packageUserStateClass, int.class};

        List<ProviderInfo> ret = new ArrayList<>();
        �// parse the Provider component according to the

Intent
        for (Object provider : providers) {
            �Object[] v2 = {provider, 0, defaultUserState,

userId};
            �ProviderInfo info = (ProviderInfo) RefInvoke.invo

keInstanceMethod(packageParser,
"generateProviderInfo",p2, v2);

            ret.add(info);
        }

        return ret;
    }

	 3)	Put the ContentProvider of the plug-in in the ContentProvider col-
lection of the HostApp, so that the HostApp can treat them as “real”
ContentProviders, rather than a normal class. We also need set the
file packageName of these ContentProviders to the packageName of
the current apk. The code is as follows:

for (ProviderInfo providerInfo : providerInfos) {
providerInfo.applicationInfo.packageName = context.
getPackageName();

}

	 4)	Invoke the method installContentProviders() of ActivityThread by
reflection, and pass the ContentProviders of the plug-in as a param-
eter to this method:

The Plug-In Solution of Four Components﻿    ◾    245

        �Object currentActivityThread = RefInvoke.
invokeStaticMethod("android.app.ActivityThread",
"currentActivityThread", null, null);

        Class[] p1 = {Context.class, List.class};
        Object[] v1 = {context, providerInfos};

        �RefInvoke.invokeInstanceMethod(currentActivityThr

ead, "installContentProviders", p1, v1);

8.5.4 � The Right Time to Install a ContentProvider Plug-In*
We have introduced a plug-in solution for ContentProvider. Sometimes
when we invoke the CRUD method on the ContentProvider of the plug-in,
we find this ContentProvider is still not “installed” in the HostApp.

So, we want to install the ContentProvider of the plug-in as soon as
possible.

The method installContentProviders() of ActivityThread is used to install
ContentProvider, which is invoked after the app process is launched; it’s
invoked earlier than the method onCreate() of Application, but later than
the method attachBaseContext() of Application. So, we can execute the
method installContentProviders() manually in the method attachBaseC-
ontext(), as follows:

public class UPFApplication extends Application {

    @Override
    protected void attachBaseContext(Context base) {
        super.attachBaseContext(base);

        try {
            File apkFile = getFileStreamPath("plugin2.apk");
            if (!apkFile.exists()) {
                Utils.extractAssets(base, "plugin2.apk");
            }

            �File odexFile = getFileStreamPath("plugin2.

odex");

*	 Sample code: https://github.com/BaoBaoJianqiang/ContentProvider2

https://github.com/

246    ◾    Android App-Hook and Plug-In Technology﻿

            �//Hook ClassLoader,ensure that the class in the
Plug-In can be loaded successfully

            �BaseDexClassLoaderHookHelper.patchClassLoader(get
ClassLoader(), apkFile, odexFile);

            //install Plug-In Providers
            �ProviderHelper.installProviders(base,

getFileStreamPath("plugin2.apk"));
        }catch (Exception e) {
            throw new RuntimeException("hook failed", e);
        }
    }
}

8.5.5 � The Forwarding Mechanism of ContentProvider*
It is not an ideal solution that the third app invokes the ContentProvider
of plug-in directly.

It is better to define a StubContentProvider in the HostApp. We export
a StubContentProvider into the third app. When the third app invokes
this StubContentProvider, we can forward StubContentProvider to the
ContentProvider of the plug-in, as shown in Figure 8.7.

Let’s write a method getRealUri() to convert the URI, shown as follows:

private Uri getRealUri(Uri raw) {
        String rawAuth = raw.getAuthority();
        if (!AUTHORITY.equals(rawAuth)) {
            Log.w(TAG, "rawAuth:" + rawAuth);
        }

*	 Sample code: https://github.com/BaoBaoJianqiang/ContentProvider2

FIGURE 8.7  Forwarding ContentProvider.

https://github.com/

The Plug-In Solution of Four Components﻿    ◾    247

        String uriString = raw.toString();
        �uriString = uriString.replaceAll(rawAuth + '/',

"");
        Uri newUri = Uri.parse(uriString);
        Log.i(TAG, "realUri:" + newUri);
        return newUri;
    }

The method getRealUri() will convert the URI protocol such as “con-
tent://host_auth/plugin_auth/path/query” to “content://plugin_auth/
path/query.”

For example, “content://baobao222/jianqiang” can be converted to
“content://jianqiang.”

ContentProvider is a database engine. It provides CRUD methods to the
third app.

The plug-in solution ContentProvider is simple: read all the
ContentProviders in the AndroidManifest.xml of the plug-in and put them
into the ContentProviders collection of the HostApp.

The key point of this solution is the forwarding mechanism. We expose
a StubContentProvider to the third app. The third app doesn’t know
the ContentProviders of the plug-in. What we need to do is forward the
StubContentProviders to the ContentProviders of the plug-in using a dif-
ferent URI.

8.6 � SUMMARY
This chapter introduced the core techniques for using plug-ins using the
four components that make up the basic app.

We use a lot of hook techniques in this chapter; we modify the original
behavior of some internal methods not open to app developers. In Chapter
9, we will introduce another solution with a little modification to these
internal methods.

http://taylorandfrancis.com

249

C h a p t e r 9

A Plug-In Solution
Based on Static-Proxy

9.1 � A PLUG-IN SOLUTION FOR ACTIVITY
BASED ON STATIC-PROXY

This chapter introduces my favorite plug-in framework designed by
Yugang Ren*, dynamic-load-apk (DL for short). DL invents a new keyword
“that,” so this framework has an interesting alias “That.”

In this chapter, I will introduce the design idea of the “That” framework
in detail and write a new “That” framework from scratch, including the
plug-in implementation of Activity, Service, and BroadcastReceiver.

9.1.1 � The Idea of Static-Proxy

As we introduced in the previous chapters, when we create an instance of
Activity in the plug-in using reflection, this instance doesn’t have lifecycle
methods; it’s only a normal class object.

For example, we cheat the AMS not to check the Activity without declar-
ing in the AndroidManifest.xml. But if we don’t put the Activity from the
Plug-In into the Activity collection of the HostApp, the method onCre-
ate() of this Activity can’t be invoked by the AMS, and the other lifecycle
methods of Activity such as onResume(), onPause() have the same prob-
lem. Because the HostApp doesn’t treat this Activity from the plug-in as a
real Activity, it’s only a normal class.

*	 https://github.com/singwhatiwanna/dynamic-load-apk

Android App-Hook and Plug-In Technology A Plug-In Solution Based on Static-Proxy

https://github.com/

250    ◾    Android App-Hook and Plug-In Technology﻿

To invoke these methods normally, we create a proxy class Proxy
Activity in the HostApp and declare it in the AndroidManifest.xml, so it’s
a real Activity.

ProxyActivity has a reference to ActivityA in the plug-in. In the logic
of the method onCreate() of ProxyActivity, the method onCreate() of
ActivityA is invoked, as shown in Figure 9.1.

This is similar to a puppet show. The artists pull the wire, and the
puppets at the end of the wire move according to the pulling action.
ProxyActivity is the artist, and ActivityA of the plug-in is the puppet. The
puppet has no life. ActivityA of the plug-in is a normal class; it also doesn’t
have lifecycle methods.

9.1.2 � The Simplest Example of Static-Proxy*
In this section, I will introduce an example of the implementation
of Static-Proxy. Figure 9.2 shows the most important classes in this
example.

*	 Sample code: https://github.com/BaoBaoJianqiang/That1.0

FIGURE 9.1  Core of the “That” framework.

https://github.com/

A Plug-In Solution Based on Static-Proxy﻿    ◾    251

9.1.2.1 � Jump from the HostApp to the Plug-In
In the HostApp, ProxyActivity is a proxy for all the Activities of the plug-in.
We can use ProxyActivity with different parameters to open any Activity
of the plug-in.

For example, if we want to jump to the MainActivity of the plug-in, the
code is as follows:

Intent intent = new Intent("jianqiang.com.hostapp.
VIEW");
intent.putExtra(ProxyActivity.EXTRA_DEX_PATH,
mPluginItems.get(position).pluginPath);
intent.putExtra(ProxyActivity.EXTRA_CLASS,
mPluginItems.get(position).packageInfo.packageName +
".MainActivity");
startActivity(intent);

The above intent carries two parameters:

	 1)	EXTRA_DEX_PATH, the path of the dex in the plug-in.

	 2)	EXTRA_CLASS, the full name of the Activity in the plug-in (packa-
geName + className).

FIGURE 9.2  Relationship between classes of the HostApp and plug-in.

252    ◾    Android App-Hook and Plug-In Technology﻿

9.1.2.2 � Communication between ProxyActivity and Plug-In Activity
To simplify the logic of ProxyActivity, I abstract the logic of creating a
ClassLoader for the plug-in and loading the resources of the plug-in into a
parent class BaseHostActivity. We introduced this technique in Chapter 7.

Let’s focus on the special logic of ProxyActivity.
In the method onCreate() of ProxyActivity, we get an instance of the

Activity from the plug-in; its name is mRemoteActivity. mRemoteActivity
can help us do the following:

	 1)	Call the method setProxy() of mRemoteActivity and pass “this”
(instance of ProxyActivity) and the path of the plug-in to the Activity
of the plug-in.

//Create the instance of Activity using reflection
Class<?> localClass = dexClassLoader.
loadClass(className);
Constructor<?> localConstructor = localClass.
getConstructor(new Class[] {});
Object instance = localConstructor.newInstance(new
Object[] {});
mRemoteActivity = (Activity) instance;

//Execute the setProxy method of the Plug-In Activity
to establish a bidirectional reference
RefInvoke.invokeInstanceMethod(instance, "setProxy",
    new Class[] { Activity.class, String.class },
    new Object[] { this, mDexPath });

Now ProxyActivity has a reference to the Activity of the plug-in app, and
the Activity of the plug-in app also has a reference to ProxyActivity. Later
we will talk about how to use the variable “this” passed from the method
setProxy() in the Activity of the plug-in.

	 2)	In the method onCreate() of ProxyActivity, we invoke the method onCre-
ate() of mRemoteActivity by reflection. ProxyActivity of the HostApp is
the old artist, and mRemoteActivity of plug-in is the puppet.

We implement the method onResume() as follows:

@Override
protected void onResume() {
    super.onResume();
 

A Plug-In Solution Based on Static-Proxy﻿    ◾    253

    try {
Method method = localClass.
getDeclaredMethod(methodName, new Class[]
{ });
method.setAccessible(true);
method.invoke(mRemoteActivity, new
Object[] { });

    } catch (Exception e) {
        e.printStackTrace();
    }
}

However, there is a performance issue in the code above. The method
onResume() will be invoked multiple times, and the reflection will be
invoked many times. To optimize performance, we store the method
object in a dictionary. When we want to invoke the method onResume(),
we fetch the method object from the dictionary, and then call the invoke()
method of method object.

There’re many lifecycle methods of Activity, such as onCreate(), onAc-
tivityResult(), onRestart(), onStart(), onPause(), onStop(), and onDestroy().
All the methods can follow route to improve performance. We encapsu-
late this logic into the method instantiateLifecircleMethods(), as follows:

protected void instantiateLifecircleMethods(Class<?>
localClass) {
        String[] methodNames = new String[] {
                "onRestart",
                "onStart",
                "onResume",
                "onPause",
                "onStop",
                "onDestroy"
        };
        for (String methodName : methodNames) {
            Method method = null;
            try {
                �method = localClass.getDeclaredMethod

(methodName, new Class[] { });
                method.setAccessible(true);
            } catch (NoSuchMethodException e) {
                e.printStackTrace();
            }

254    ◾    Android App-Hook and Plug-In Technology﻿

            mActivityLifecircleMethods.put(methodName, method);
        }

        Method onCreate = null;
        try {

            �onCreate = localClass.getDeclaredMethod
("onCreate", new Class[] { Bundle.class });

            onCreate.setAccessible(true);
        } catch (NoSuchMethodException e) {

            e.printStackTrace();
        }
        �mActivityLifecircleMethods.put("onCreate",

onCreate);

        Method onActivityResult = null;
        try {

            �onActivityResult = localClass.getDeclaredMeth
od("onActivityResult",

                    �new Class[] { int.class, int.class,
Intent.class });

            onActivityResult.setAccessible(true);
        } catch (NoSuchMethodException e) {

            e.printStackTrace();
        }
        �mActivityLifecircleMethods.put("onActivityResult",

onActivityResult);
    }

And then, we can implement the method onResume() as follows:

@Override
    protected void onResume() {
        super.onResume();
        �Method onResume = mActivityLifecircleMethods.

get("onResume");
        if (onResume != null) {
            try {

                �onResume.invoke(mRemoteActivity, new
Object[] { });

            } catch (Exception e) {
                e.printStackTrace();

            }
        }
    }

A Plug-In Solution Based on Static-Proxy﻿    ◾    255

9.1.2.3 � The Logic of Activity in the Plug-In
We encapsulate some common code from the plug-in into
BasePluginActivity.

As mentioned earlier, the ProxyActivity of the HostApp will pass itself
(“this”) to the variable “that” of Activity in the plug-in. The variable “that”
is defined in BasePluginActivity.

So, what is the use of “that”? In other words, the Activity of the plug-in
is only a puppet without life. So, when we write the following code in the
MainActivity of the plug-in, it will throw an exception during runtime:

@Override
protected void onCreate(Bundle savedInstanceState) {
    this.setContentView(R.layout.activity_main);
    this.findViewById(R.id.button1);
}

The keyword “this” points to the current object, and it is an Activity of
the apk, but the Activity of the plug-in is not a real Activity, which means
we can’t use the keyword “this” in the Activity of the plug-in any more.

We can use the keyword “that” instead to avoid this runtime exception:

that.setContentView(R.layout.activity_main);
that.findViewById(R.id.button1);

9.1.3 � Jump in the Plug-In*
In Plugin1, jumping from MainActivity to SecondActivity is actually a
navigation between two ProxyActivities of the HostApp.

We change some code in the plug-in:

	 1)	Add the logic for jumping from MainActivity to SecondActivity:

public class MainActivity extends BasePluginActivity {

    �private static final String TAG =
"Client-MainActivity";

    @Override
    protected void onCreate(Bundle savedInstanceState) {

*	 Sample code: https://github.com/BaoBaoJianqiang/That1.1

https://github.com/

256    ◾    Android App-Hook and Plug-In Technology﻿

        that.setContentView(R.layout.activity_main);

        //startActivity, Jump inside the plugin
        �Button button1 = (Button) that.findViewById

(R.id.button1);
        button1.setOnClickListener(new OnClickListener() {
            @Override
            public void onClick(View v) {
                �Intent intent = new Intent(AppConstants.

PROXY_VIEW_ACTION);
                �intent.putExtra(AppConstants.EXTRA_DEX_PATH,

dexPath);
                �intent.putExtra(AppConstants.EXTRA_CLASS,

"jianqiang.com.plugin1.SecondActivity");
                that.startActivity(intent);
            }

	 2)	The logic in SecondActivity:

public class SecondActivity extends BasePluginActivity {

    �private static final String TAG =
"Client-SecondActivity";

    @Override
protected void onCreate(Bundle savedInstanceState) {   
        that.setContentView(R.layout.second);
    }
}

Maybe we are not used to this code style. We can find the keyword
“that” everywhere, rather than “this.” Where super.onCreate() is present,
we will try to solve these inconveniences in the next section.

9.1.4 � Eliminate the Keyword “that”*
In the “That” framework, the lifecycle method of an Activity in the plug-
in needn’t call its parent method, because it doesn’t have its own lifecycle.

*	 Sample code: https://github.com/BaoBaoJianqiang/That1.2

https://github.com/

A Plug-In Solution Based on Static-Proxy﻿    ◾    257

For example, the method onCreate(), if we write the code as follows, will
throw an exception at runtime.

@Override
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);

    that.setContentView(R.layout.activity_main);
    that.findViewById(R.id.button1);
}

Therefore, we can’t use the keyword “super” anymore.
In addition, the keyword “that” is widely used in plug-ins, such as the

methods setContentView(), findViewById(). In fact, the complete state-
ment is as follows:

this.that.setContentView(R.layout.activity_main);
this.that.findViewById(R.id.button1);

So if we don’t use “that,” it will throw a compile error when we invoke
the method setContentView() in the plug-in directly, as it will invoke the
lifecycle methods of an Activity in the plug-in, but actually, Activity in the
plug-in doesn’t have a lifecycle.

We don’t want to use “that” frequently, so we try to solve this syntax
problem through object-oriented programming.

Let’s come back to the BasePluginActivity of the plug-in to add some empty
methods to it, such as setContentView(), findViewById(), and startActivity():

public class BasePluginActivity extends Activity {
  @Override
    protected void onCreate(Bundle savedInstanceState) {
  }

    @Override
    public void setContentView(int layoutResID) {
        that.setContentView(layoutResID);
    }

    @Override
    public View findViewById(int id) {
        return that.findViewById(id);
  }

258    ◾    Android App-Hook and Plug-In Technology﻿

  @Override
  public void startActivity(Intent intent) {
        that.startActivity(intent);
  }
}

Well, in the MainActivity of the plug-in, we can write code normally
as before, the keyword “that” has gone, and the keyword “super” is
back:

public class MainActivity extends BasePluginActivity {

    private static final String TAG = "Client-MainActivity";

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);

        setContentView(R.layout.activity_main);

        //startActivity, Jump inside the plugin
        �Button button1 = (Button) findViewById

(R.id.button1);
        button1.setOnClickListener(new OnClickListener() {
            @Override
            public void onClick(View v) {
                �Intent intent = new Intent(AppConstants.

PROXY_VIEW_ACTION);
                �intent.putExtra(AppConstants.EXTRA_DEX_PATH,

dexPath);
                �intent.putExtra(AppConstants.EXTRA_CLASS,

"jianqiang.com.plugin1.SecondActivity");
                startActivity(intent);
            }
        });
    }
}

The methods setContentView(), findViewById(), startActivity() in
the code above, will call the same method of BasePluginActivity, and
the method super.onCreate() is also to call the method onCreate() of
BasePluginActivity.

A Plug-In Solution Based on Static-Proxy﻿    ◾    259

We can’t eliminate the keyword “that” at all, for example, the method
setResult() of Activity.

The method setResult defined in the Activity has a modifier final, so this
method can’t be overridden; we have to use that.setResult().

In the Activity, there are many methods with the modifier final.

9.1.5 � Jump Out*
We hope to improve the jumping mechanism in the plug-in; for example,
to jump from the plug-in to the HostApp or to another plug-in.

9.1.5.1 � Preparation for Jumping Out
Let’s do some preparations first.

	 1)	Add another plug-in project named Plugin2.

When the app navigates from Plugin1 to Plugin2, Plugin1 needs to
know the dexPath (the path of the dex file) of Plugin2. So it’s time to create
a class MyPlugins, which is a container. The dexPath of each plug-in app is
defined in this class, shown as follows:

public class MyPlugins {
    �public final static HashMap<String, String> plug-ins
= new HashMap<String, String>();

}

	 2)	When the MainActivity of the HostApp resolves Plugin1 and
Plugin2, put the dexPath of Plugin1 and Plugin2 into MyPlugins:

File file1 = getFileStreamPath("plugin1.apk");
File file2 = getFileStreamPath("plugin2.apk");
File[] plugins = {file1, file2};

for (File plugin : plugins) {
  PluginItem item = new PluginItem();
  item.pluginPath = plugin.getAbsolutePath();
 � item.packageInfo = DLUtils.getPackageInfo(this,
item.pluginPath);

  mPluginItems.add(item);
 � MyPlugins.plugins.put(plugin.getName(), item.
pluginPath);

}

*	 Sample code: https://github.com/BaoBaoJianqiang/That1.3

https://github.com/

260    ◾    Android App-Hook and Plug-In Technology﻿

9.1.5.2 � Jump to Another Plug-In
This example illustrates how to jump from MainActivity of Plugin2 to
SecondActivity of Plugin1; actually it is a jump between two ProxyActivities
of the HostApp, as follows:

public class MainActivity extends BasePluginActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        //startActivity, Plug-In jump
        �Button button1 = (Button) findViewById

(R.id.button1);
        �button1.setOnClickListener(new View.

OnClickListener() {
            @Override
            public void onClick(View v) {
                �String plugin1DexPath = MyPlugins.plugins.

get("plugin1.apk");

                �Intent intent = new Intent(AppConstants.

PROXY_VIEW_ACTION);
                �intent.putExtra(AppConstants.EXTRA_DEX_PATH,

plugin1DexPath);
                �intent.putExtra(AppConstants.EXTRA_CLASS,

"jianqiang.com.plugin1.SecondActivity");
                startActivity(intent);
            }
        });
    }
}

9.1.5.3 � Jump to the HostApp
This example demonstrates how to jump from MainActivity of Plug1 to
MainActivity of the HostApp:

Button button3 = (Button) findViewById(R.id.button3);
        button3.setOnClickListener(new OnClickListener() {
            @Override
            public void onClick(View v) {

A Plug-In Solution Based on Static-Proxy﻿    ◾    261

                Intent intent = new Intent();
                intent.putExtra("userName", "baojianqiang");
                �ComponentName componentName = new

ComponentName("jianqiang.com.hostapp",
"jianqiang.com.hostapp.MainActivity");

                intent.setComponent(componentName);
                startActivity(intent);
            }
        });

9.1.6 � Use Interface-Oriented Programming in Static-Proxy*
Now we focus on the ProxyActivity of the HostApp. We use reflection to
execute the methods onRestart(), onStart(), onResume() and so on. The
syntax of reflection is ugly, shown as follows:

public class ProxyActivity extends BaseHostActivity {

    private static final String TAG = "ProxyActivity";

    private String mClass;

    private Activity mRemoteActivity;
    �private HashMap<String, Method>
mActivityLifecircleMethods = new HashMap<String,
Method>();

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        �mDexPath = getIntent().getStringExtra

(AppConstants.EXTRA_DEX_PATH);
        �mClass = getIntent().getStringExtra(AppConstants.

EXTRA_CLASS);

        loadClassLoader();
        loadResources();

        launchTargetActivity(mClass);
    }

    void launchTargetActivity(final String className) {

*	 Sample code: https://github.com/BaoBaoJianqiang/That1.4

https://github.com/

262    ◾    Android App-Hook and Plug-In Technology﻿

        try {
          // Reflects the plugin's Activity object
            �Class<?> localClass = dexClassLoader.

loadClass(className);
            �Constructor<?> localConstructor = localClass.

getConstructor(new Class[] {});
            �Object instance = localConstructor.

newInstance(new Object[] {});
            mRemoteActivity = (Activity) instance;

            �//Execute the setProxy method of the Plug-In

Activity to establish a bidirectional
reference

            �Method setProxy = localClass.
getMethod("setProxy", new Class[] { Activity.
class, String.class });

            setProxy.setAccessible(true);
            �setProxy.invoke(instance, new Object[] {

this, mDexPath });

            �//One-time reflection activity life cycle

function
            instantiateLifecircleMethods(localClass);

            �//Execute the onCreate method of the Plug-In

Activity
            �Method onCreate = mActivityLifecircleMethods.

get("onCreate");
            Bundle bundle = new Bundle();
            �onCreate.invoke(instance, new Object[] {

bundle });
        } catch (Exception e) {

            e.printStackTrace();
        }
    }

    �protected void instantiateLifecircleMethods(Class<?>
localClass) {

        String[] methodNames = new String[] {
                "onRestart",
                "onStart",

A Plug-In Solution Based on Static-Proxy﻿    ◾    263

                "onResume",
                "onPause",
                "onStop",
                "onDestroy"
        };
        for (String methodName : methodNames) {
            Method method = null;
            try {

                �method = localClass.getDeclaredMethod
(methodName, new Class[] { });

                method.setAccessible(true);
            } catch (NoSuchMethodException e) {

                e.printStackTrace();
            }
            �mActivityLifecircleMethods.put(methodName, method);
  Method onCreate = null;
        try {

            �onCreate = localClass.getDeclaredMethod
("onCreate", new Class[] { Bundle.class });

            onCreate.setAccessible(true);
        } catch (NoSuchMethodException e) {

            e.printStackTrace();
        }
        �mActivityLifecircleMethods.put("onCreate",

onCreate);

        Method onActivityResult = null;
        try {

            �onActivityResult = localClass.getDeclaredMeth
od("onActivityResult",

                    �new Class[] { int.class, int.class,
Intent.class });

            onActivityResult.setAccessible(true);
        } catch (NoSuchMethodException e) {

            e.printStackTrace();
        }
        �mActivityLifecircleMethods.put("onActivityResult",

onActivityResult);
    }

264    ◾    Android App-Hook and Plug-In Technology﻿

    @Override
    protected void onStart() {
        super.onStart();
        �Method onStart = mActivityLifecircleMethods.

get("onStart");
        if (onStart != null) {
            try {

                �onStart.invoke(mRemoteActivity, new
Object[] {});

            } catch (Exception e) {
                e.printStackTrace();

            }
        }
    }
 }

We introduced interface-oriented programming in the previous sec-
tion; it’s widely used in plug-in programming.

Let’s design an interface IRemoteActivity:

public interface IRemoteActivity {
    public void onStart();
    public void onRestart();
    �public void onActivityResult(int requestCode, int
resultCode, Intent data);

    public void onResume();
    public void onPause();
    public void onStop();
    public void onDestroy();
    public void onCreate(Bundle savedInstanceState);
    �public void setProxy(Activity proxyActivity, String
dexPath);

}

Then we make BasePluginActivity implement the interface
IRemoteActivity:

public class BasePluginActivity extends Activity
implements IRemoteActivity {

Originally the methods onCreate(), onResume() and others have a mod-
ifiler protected, now we need set it to public.

A Plug-In Solution Based on Static-Proxy﻿    ◾    265

Then we can use interface-oriented programming in ProxyActivity of
the HostApp. The new implementation of ProxyActivity is as follows:

public class ProxyActivity extends BaseHostActivity {

    private static final String TAG = "ProxyActivity";

    private String mClass;

    private IRemoteActivity mRemoteActivity;
    �private HashMap<String, Method>
mActivityLifecircleMethods = new HashMap<String,
Method>();

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        �mDexPath = getIntent().getStringExtra(AppConstants.

EXTRA_DEX_PATH);
        �mClass = getIntent().getStringExtra(AppConstants.

EXTRA_CLASS);

        loadClassLoader();
        loadResources();

        launchTargetActivity(mClass);
    }

    void launchTargetActivity(final String className) {
        try {

            //Activity objects that reflect the plugin
            �Class<?> localClass = dexClassLoader.

loadClass
(className);

            �Constructor<?> localConstructor = localClass.
getConstructor(new Class[] {});

            �Object instance = localConstructor.
newInstance(new Object[] {});

            mRemoteActivity = (IRemoteActivity) instance;
            mRemoteActivity.setProxy(this, mDexPath);

266    ◾    Android App-Hook and Plug-In Technology﻿

            �//Execute the onCreate method of the Plug-In
Activity

            Bundle bundle = new Bundle();
            mRemoteActivity.onCreate(bundle);

        } catch (Exception e) {
            e.printStackTrace();

        }
    }

    @Override
    �protected void onActivityResult(int requestCode, int
resultCode, Intent data) {

        �Log.d(TAG, "onActivityResult resultCode=" +
resultCode);

        �mRemoteActivity.onActivityResult(requestCode,
resultCode, data);

        �super.onActivityResult(requestCode, resultCode,
data);

    }

    @Override
    protected void onStart() {
        super.onStart();
        mRemoteActivity.onStart();
    }

    @Override
    protected void onRestart() {
        super.onRestart();
        mRemoteActivity.onRestart();
    }
    @Override
    protected void onResume() {
        super.onResume();
        mRemoteActivity.onResume();
    }

    @Override
    protected void onPause() {
        super.onPause();
        mRemoteActivity.onPause();
    }

A Plug-In Solution Based on Static-Proxy﻿    ◾    267

    @Override
    protected void onStop() {
        super.onStop();
        mRemoteActivity.onStop();
    }

    @Override
    protected void onDestroy() {
        super.onDestroy();
        mRemoteActivity.onDestroy();
    }
}

Is it clearer now? This is the power of interface-oriented programming.
Next, we should add more lifecycle methods for Activity in

IRemoteActivity, such as:

•	 public void onSaveInstanceState(Bundle outState);

•	 public void onNewIntent(Intent intent);

•	 public void onRestoreInstanceState(Bundle savedInstanceState);

•	 public boolean onTouchEvent(MotionEvent event);

•	 public boolean onKeyUp(int keyCode, KeyEvent event);

•	 public void onWindowAttributesChanged(LayoutParams params);

•	 public void onWindowFocusChanged(boolean hasFocus);

9.1.7 � Support for LaunchMode*
Now let’s discuss how to support LaunchMode in the “That” framework. It
was fixed by Tao Zhang.

The content of this section is based on Tao Zhang’s framework
CJFrameworkForAndroid†.

Let’s have a quick look at LaunchMode first.

9.1.7.1 � Overview of LaunchMode
	 1)	Launchmode is declared in the AndroidManifest.xml as follows:

  <activity android:launchMode="singleTask"></activity>

*	 Sample code: https://github.com/BaoBaoJianqiang/That1.5
†	 Tao Zhang, CJFrameforAndroid. https://github.com/kymjs/CJFrameForAndroid. (Accessed 24

June 2019.)

https://github.com/
https://github.com/

268    ◾    Android App-Hook and Plug-In Technology﻿

	 2)	LaunchMode has four values

Android apps have an Activity stack, and each time the app launches an
Activity it will put this Activity on top of the stack. According to the dif-
ferent usage of the stack, LaunchMode has four values, standard, singleTop,
singleTask, and singleInstance, shown as follows:

•	 standard, the default mode. Each time the app launches an Activity,
it will create a new instance of this Activity. Even if the app jumps
from Activity1 to Activity1, because the LaunchMode of Activity1 is
standard there are two instances of Activity1 in the stack.

Activity is widely used in apps. There are hundreds of Activities in the
app. Almost all the Activities have the same LaunchMode: standard.

Let’s introduce another scenario based on LaunchMode: Push. A news
app always sends push messages to the users; when the user clicks on the
push message, the app will navigate to a DetailActivity to show the detail
of the news. If we set the LaunchMode of DetailActivity to standard, when
the user receives ten push messages from this news app he clicks each mes-
sage and opens DetailActivity ten times to see the different news items. But
he also needs to click ten times to come back to the original Activity.

Obviously, standard is not suitable for this scenario. We want to click
once to get back to the original Activity.

•	 singleTop. If the current page is Activity1 (at the top of the stack),
let’s navigate to Activity1, because the LaunchMode of Activity1 is
singleTop, the instance of Activity1 at the top of the stack will be used
directly, instead of creating a new instance.

		 We will find that singleTop is suitable for the push message.

•	 singleTask. If we want to open Activity1, and there is an instance
of Activity1 in the stack, because the LaunchMode of Activity1 is
singleTask, this instance will be used. At the same time, all the
instances in the stack, from this instance to the top Activity, will
be destroyed, which means that this instance will be the top of the
Activity stack.

		 singleTask is generally used to jump back to the home page of the
app. The instance of the home page is only one.

A Plug-In Solution Based on Static-Proxy﻿    ◾    269

•	 singleInstance. If the LaunchMode of the Activity has this value, the
Android system will create an instance of this Activity in a new stack,
and all the third app can visit this instance in the stack.

		 It’s difficult to understand. Let’s take the camera as an example. My
App wants to use the camera; the camera is a system app in Android.
My app and camera are two apps running in different processes. My
app will navigate the Activity of the camera. The LaunchMode of this
Activity is singleInstance. After my app finishes using the camera, it
goes back to my app. Because the other apps maybe want to use the
camera too.

9.1.7.2 � Plug-In Solutions for LaunchMode
We have introduced the basic concept of LaunchMode. Now let’s study
how to support it in the plug-in. The solution is to simulate the function of
the physical back button.

First, write a Singleton CJBackStack, with a field atyStack; atyStack is a
collection to store all the open Activities of the plug-in.

Let’s have a look at the method launch() of CJBackStack.

public void launch(IRemoteActivity pluginAty) {
    atyStack.add(pluginAty);

    if (atyStack.size() == 1)
            return;

    if(pluginAty.getLaunchMode() == LaunchMode.STANDARD)
            return;

    �if(pluginAty.getLaunchMode() == LaunchMode.
SINGLETOP) {

        //Countdown to the second element
        int index = atyStack.size() - 2;
        �if (atyStack.get(index).getClass().getName().equals(
                pluginAty.getClass().getName())) {
            remove(atyStack.size() - 2);
        }
    }

    for (int i = atyStack.size() - 2; i >= 0; i--) {

270    ◾    Android App-Hook and Plug-In Technology﻿

        �if (atyStack.get(i).getClass().getName().
equals(pluginAty.getClass().getName())) {

            switch (pluginAty.getLaunchMode()) {
                case LaunchMode.SINGLETASK: // Stack unique
                    �// Here, since each remove() and atyStack.

size() will decrease, the third paragraph of
the for statement is omitted.

                    for (int j = i; j < atyStack.size() - 1;) {
                        remove(j);
                    }
                    break;
                �case LaunchMode.SINGLEINSTANCE://Unique in

application
                    remove(i);
                    break;
            }
        }
    }
}

Each time we launch an Activity from the plug-in, we put the Activity in
the atyStack. There are five branches.

	 1)	If there is only one Activity in atyStack, do nothing. LaunchMode
does not work at this time.

	 2)	If the LaunchMode of the current Activity is standard, do nothing.

	 3)	If the LaunchMode of the current Activity is singleTop, then check
the second top element in atyStack. If the type of this element is the
same as the top Activity, let’s remove the second top element from
atyStack and execute its method finish() to close this Activity. When
we press the backpress button, the app will jump back to the third
top element, which simulate the scenario singleTop.

private void remove(int index) {
        IRemoteActivity aty = atyStack.get(index);
        atyStack.remove(index);
        if (aty instanceof BasePluginActivity) {
            ((BasePluginActivity) aty).finish();
        }
    }

A Plug-In Solution Based on Static-Proxy﻿    ◾    271

    public void finish(IRemoteActivity aty) {
        for (int i = atyStack.size() - 2; i >= 0; i--) {
            if (aty.equals(atyStack.get(i))) {
                remove(i);
            }
        }
    }

	 4)	When the LaunchMode of the current Activity is singleTask, it is nec-
essary to traverse the other elements of atyStack to see if there’s an
element with the same type as the current Activity. If yes, remove
all the elements between this element and the current Activity from
atyStack and execute the method finish() to close them.

	 5)	When the LaunchMode of the current Activity is singleInstance, it is
necessary to traverse the other elements of atyStack to see if there’s
an element with same type as the current Activity. If yes, remove it
and execute its method finish() to close it.

In this demo, in the MainActivity of Plugin2, let’s click the button single-
Top to jump to ActivityA. The LaunchMode of ActivityA is singleTop.

There is a button in ActivityA, let’s click this button to jump to ActivityA
again. Then let’s press the backpress button, we find that the app goes
directly to the MainActivity of Plugin2. This means that singleTop is simu-
lated successfully in the plug-in.

This section introduces the “That” framework of Activity. We don’t
need more knowledge of the Android system; we only need to master the
proxy pattern.

The advantage of the “That” framework is that we don’t need to hook
the internal API of the Android system.

9.2 � THE PLUG-IN SOLUTION FOR SERVICE AND
BROADCASTRECEIVER BASED ON STATIC-PROXY

This section continues to introduce how to support Service and
BroadcastReceiver in the “That” framework step by step.

9.2.1 � Static-Proxy in Service*
In the “That” framework, we use to ProxyActivity to control all the
Activities from the plug-in. This solution is also suitable for Service. We try

*	 Sample code: https://github.com/BaoBaoJianqiang/That3.1

https://github.com/

272    ◾    Android App-Hook and Plug-In Technology﻿

to write a demo, That3.1, based on the demo That1.5 introduced in Section
9.1.7. There are three core classes; the following table lists all mapping of
these three classes between the plug-in solutions for Activity and Service:

Activity Service

ProxyActivity ProxyService
BasePluginActivity BasePluginService
IRemoteActivity IRemoteService

	 1)	IRemoteService, the interface needs to override the following five
methods of Service; it is much simpler than Activity with a lot of
lifecycle methods.

•	 onCreate

•	 onStartCommand

•	 onDestroy

•	 onBind

•	 onUnbind

	 2)	BasePluginService, the parent class of Service in the plug-in, acts as a
puppet like BasePluginActivity.

public class BasePluginService extends Service
implements IRemoteService {

    public static final String TAG = "DLBasePluginService";
    private Service that;
    private String dexPath;

    @Override
    �public void setProxy(Service proxyService, String
dexPath) {

        that = proxyService;
        this.dexPath = dexPath;
    }

    @Override
    public void onCreate() {
        Log.d(TAG, TAG + " onCreate");
    }

A Plug-In Solution Based on Static-Proxy﻿    ◾    273

    @Override
    �public int onStartCommand(Intent intent, int flags,
int startId) {

        Log.d(TAG, TAG + " onStartCommand");
        return 0;
    }

    @Override
    public void onDestroy() {
        Log.d(TAG, TAG + " onDestroy");
    }

    @Override
    public IBinder onBind(Intent intent) {
        Log.d(TAG, TAG + " onBind");
        return null;
    }

    @Override
    public boolean onUnbind(Intent intent) {
        Log.d(TAG, TAG + " onUnbind");
        return false;
    }
}

	 3)	ProxyService, this class acts as an artist manipulating the puppets.

public class ProxyService extends Service {
   
    private static final String TAG = "DLProxyService";

    private String mClass;
    private IRemoteService mRemoteService;

    @Override
    public void onCreate() {
        super.onCreate();
    }
   
    @Override
    �public int onStartCommand(Intent intent, int flags,
int startId) {

        super.onStartCommand(intent, flags, startId);

274    ◾    Android App-Hook and Plug-In Technology﻿

        �mDexPath = intent.getStringExtra(AppConstants.
EXTRA_DEX_PATH);

        �mClass = intent.getStringExtra(AppConstants.
EXTRA_CLASS);

        loadClassLoader();

        try {

            �//get Activity objects of Plug-In by
reflection

            �Class<?> localClass = dexClassLoader.
loadClass(mClass);

            �Constructor<?> localConstructor = localClass.
getConstructor(new Class[] {});

            �Object instance = localConstructor.
newInstance(new Object[] {});

            mRemoteService = (IRemoteService) instance;
            mRemoteService.setProxy(this, mDexPath);

            �return mRemoteService.onStartCommand(intent,

flags, startId);
        } catch (Exception e) {

            e.printStackTrace();
            return 0;

        }
    }
   
    @Override
    public void onDestroy() {
        super.onDestroy();
        Log.d(TAG, TAG + " onDestroy");

        mRemoteService.onDestroy();
    }

    @Override
    public IBinder onBind(Intent intent) {
        Log.d(TAG, TAG + " onBind");
        return mRemoteService.onBind(intent);
    }

A Plug-In Solution Based on Static-Proxy﻿    ◾    275

    @Override
    public boolean onUnbind(Intent intent) {
        Log.d(TAG, TAG + " onUnbind");
        return mRemoteService.onUnbind(intent);
    }

    protected String mDexPath;
    protected ClassLoader dexClassLoader;

    protected void loadClassLoader() {
        �File dexOutputDir = this.getDir("dex", Context.

MODE_PRIVATE);
        �final String dexOutputPath = dexOutputDir.

getAbsolutePath();
        dexClassLoader = new DexClassLoader(mDexPath,
                dexOutputPath, null, getClassLoader());
    }
}

Now let’s write a class TestService1 in Plugin2 and write a class
TestService2 in Plugin2; they both inherit BasePluginService. Let’s take
TestService1 as an example:

public class TestService1 extends BasePluginService {

    private static final String TAG = "TestService1";
   
    @Override
    public void onCreate() {
        super.onCreate();
        Log.e(TAG, "onCreate");
    }
   
    @Override
    �public int onStartCommand(Intent intent, int flags,
int startId) {

        Log.e(TAG, "onStartCommand");
        �return super.onStartCommand(intent, flags,

startId);
    }

276    ◾    Android App-Hook and Plug-In Technology﻿

    @Override
    public void onDestroy() {
        super.onDestroy();
        Log.d(TAG, TAG + " onDestroy");
    }
}

	 4)	In the HostApp, we invoke the TestService of Plugin1 as follows:

    public void startService1InPlugin1(View view) {
        Intent intent = new Intent();
        intent.setClass(this, ProxyService.class);
        �intent.putExtra(AppConstants.EXTRA_DEX_PATH,

pluginItem1.pluginPath);
        �intent.putExtra(AppConstants.EXTRA_CLASS,

pluginItem1.packageInfo.packageName +
".TestService1");

        startService(intent);
    }

  public void stopService1InPlugin1(View view) {
        Intent intent = new Intent();
        intent.setClass(this, ProxyService.class);
        �intent.putExtra(AppConstants.EXTRA_DEX_PATH,

pluginItem1.pluginPath);
        �intent.putExtra(AppConstants.EXTRA_CLASS,

pluginItem1.packageInfo.packageName +
".TestService1");

        stopService(intent);
    }

Now, a simple plug-in demo to support Service is completed, but there
are three issues:

9.2.1.1  Issue 1
Service is different from Activity. When we open the same Activity many
times, the Android system will create multiple instances of this Activity,
so in the “That” framework, one ProxyActivity corresponds to multiple
Activities of the plug-in.

A Plug-In Solution Based on Static-Proxy﻿    ◾    277

But one Service only corresponds to one instance, so one ProxyService
can’t correspond to the multiple Services of the plug-in.

In the demo above, when we start TestService1 of Plugin1 or TestService2
of Plugin2, we use the same instance of ProxyService.

    public void startService2InPlugin2(View view) {
        Intent intent = new Intent();
        intent.setClass(this, ProxyService.class);
        �intent.putExtra(AppConstants.EXTRA_DEX_PATH,

pluginItem2.pluginPath);
        �intent.putExtra(AppConstants.EXTRA_CLASS,

pluginItem2.packageInfo.packageName +
".TestService2");

        startService(intent);
    }

    public void stopService2InPlugin2(View view) {
        Intent intent = new Intent();
        intent.setClass(this, ProxyService.class);
        �intent.putExtra(AppConstants.EXTRA_DEX_PATH,

pluginItem2.pluginPath);
        �intent.putExtra(AppConstants.EXTRA_CLASS,

pluginItem2.packageInfo.packageName +
".TestService2");

        stopService(intent);
    }

When I click the button “start TestService1” and “start TestService2”
step by step, and then click the button “stop TestService1,” we find that
TestService1 and TestService2 stop at the same time.

9.2.1.2  Issue 2
When I write the method bindService() and unbindService(), I find
that the variable mRemoteService is null in the method binding() of
BasePluginService, that is why it crashed:

    public void bindService3InPlugin1(View view) {
        Intent intent = new Intent();
        intent.setClass(this, ProxyService.class);

278    ◾    Android App-Hook and Plug-In Technology﻿

        �intent.putExtra(AppConstants.EXTRA_DEX_PATH,
pluginItem1.pluginPath);

        �intent.putExtra(AppConstants.EXTRA_CLASS,
pluginItem1.packageInfo.packageName +
".TestService3");

        �bindService(intent, mConnection, Context.

BIND_AUTO_CREATE);
    }

    public void unbindService3InPlugin1(View view) {
        unbindService(mConnection);
    }

The variable mRemoteService is only instantiated in the method
onStartCommand() of ProxyService. But the method bind() of Service
doesn’t invoke the method onStartCommand(). We can find the truth in
Figure 9.3.

9.2.1.3  Issue 3
When we debug the code in the plug-in, we find the method onCreate() of
Service has never been invoked.

Because Service in the plug-in is a normal class, and it doesn’t have a
lifecycle, including onCreate().

9.2.2 � Support bindService()*
In this section, we will solve issue 2 and issue 3.

To solve issue 2 that the variable mRemoteService is null when the
method onBind() of ProxyService is executed, we need copy the code in the

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/That3.2

FIGURE 9.3  Two paths of Service.

https://github.com/

A Plug-In Solution Based on Static-Proxy﻿    ◾    279

method onStartCommand() of ProxyService and paste it into the method
onBind().

To solve issue 3 that the method onCreate() of ProxyService is not exe-
cuted, we need to execute the methods onStartCommand() and onBind()
of ProxyService manually.

The code is as follows:

    @Override
    �public int onStartCommand(Intent intent, int flags,
int startId) {

        super.onStartCommand(intent, flags, startId);

        �mDexPath = intent.getStringExtra(AppConstants.

EXTRA_DEX_PATH);
        �mClass = intent.getStringExtra(AppConstants.

EXTRA_CLASS);

        loadClassLoader();

        try {

            //get Server objects of Plug-In by reflection
            �Class<?> localClass = dexClassLoader.

loadClass(mClass);
            �Constructor<?> localConstructor = localClass.

getConstructor(new Class[] {});
            �Object instance = localConstructor.

newInstance(new Object[] {});

            mRemoteService = (IRemoteService) instance;
            mRemoteService.setProxy(this, mDexPath);
    mRemoteService.onCreate();

            �return mRemoteService.onStartCommand(intent,
flags, startId);

        } catch (Exception e) {
            e.printStackTrace();
            return 0;

        }
    }

    @Override
    public IBinder onBind(Intent intent) {
        Log.d(TAG, TAG + " onBind");

280    ◾    Android App-Hook and Plug-In Technology﻿

        �mDexPath = intent.getStringExtra(AppConstants.
EXTRA_DEX_PATH);

        �mClass = intent.getStringExtra(AppConstants.
EXTRA_CLASS);

        loadClassLoader();

        try {

            //get Server objects of Plug-In by reflection
            �Class<?> localClass = dexClassLoader.

loadClass(mClass);
            �Constructor<?> localConstructor = localClass.

getConstructor(new Class[] {});
            �Object instance = localConstructor.

newInstance(new Object[] {});

            mRemoteService = (IRemoteService) instance;
            mRemoteService.setProxy(this, mDexPath);
    mRemoteService.onCreate();

            return mRemoteService.onBind(intent);
        } catch (Exception e) {

            e.printStackTrace();
            return null;

        }
    }

There is a performance issue in the above code: each time the method
onBind() is invoked, we should create a ClassLoader from the plug-in. In
fact, we can create all the ClassLoaders of the plug-ins at one time, and
store them in a HashMap, which we can take out whenever we want to
use it.

9.2.3 StubService*
For most apps, there are a lot Activities but few Services in an app. The
number of Services in one app is less than ten.

Based on this fact, we can pre-write ten ProxyServices in the HostApp,
and name them from ProxyService1 to ProxyService10.

The next step is to create a strict mapping between each ProxyService
and real Service of the plug-in; for example, ProxyService1 corresponds to

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/That3.3

https://github.com/

A Plug-In Solution Based on Static-Proxy﻿    ◾    281

the TestService1 of the plug-in, ProxyService2 corresponds to TestService2
of the plug-in, and so on. We can maintain a JSON string to record this
mapping, shown as follows:

{
  pluginServices: [
   {
    proxy: jianqiang.com.hostapp.ProxyService1,
    realService: jianqiang.com.plugin1.TestService1
   },
   {
    proxy: jianqiang.com.hostapp.ProxyService2,
    realService: jianqiang.com.plugin2.TestService2
   },
   {
    proxy: jianqiang.com.hostapp.ProxyService3,
    realService: jianqiang.com.plugin1.TestService3
   }
 ]
}

We can download this JSON string from the remote server. We can also
store this JSON string in the plug-in app.

Take the TestService1 of Plugin1 as an example:

	 1)	Design a Singleton ProxyServiceManager, to obtain the correspond-
ing ProxyService according to the Service of the plug-in.

public class ProxyServiceManager {
    �private HashMap<String, String> pluginServices = null;

    private static ProxyServiceManager instance = null;

    private ProxyServiceManager() {
        pluginServices = new HashMap<String, String>();
        �pluginServices.put("jianqiang.com.plugin1.

TestService1", "jianqiang.com.hostapp.
ProxyService1");

        �pluginServices.put("jianqiang.com.plugin2.
TestService2", "jianqiang.com.hostapp.
ProxyService1");

282    ◾    Android App-Hook and Plug-In Technology﻿

        �pluginServices.put("jianqiang.com.plugin1.
TestService3", "jianqiang.com.hostapp.
ProxyService1");

    }

    public static ProxyServiceManager getInstance() {
        if(instance == null)
            instance = new ProxyServiceManager();

        return instance;
    }

    public String getProxyServiceName(String className) {
        return pluginServices.get(className);
    }
}

	 2)	In the MainActivity of the HostApp, let’s launch the TestService1 of
Plugin1:

    public void startService1InPlugin1(View view) {
        try {
            Intent intent = new Intent();

            �String serviceName = pluginItem1.packageInfo.

packageName + ".TestService1";
            �String proxyServiceName = ProxyServiceManager.

getInstance().getProxyServiceName(serviceName);
            �intent.setClass(this, Class.forName

(proxyServiceName));

            �intent.putExtra(AppConstants.EXTRA_DEX_PATH,

pluginItem1.pluginPath);
            �intent.putExtra(AppConstants.EXTRA_CLASS,

serviceName);

            startService(intent);

        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
    }

A Plug-In Solution Based on Static-Proxy﻿    ◾    283

Now, we create the 1:1 mapping between the Service of the HostApp
and ProxyService of the plug-in.

9.2.4 � The Last Solution for Service Plug-Ins: Integration
with Dynamic-Proxy and Static-Proxy*

Can I use a StubService to handle multiple Services in a plug-in? I don’t
want to pre-declare a lot of StubServices as placeholders.

It’s time to use the hook technology introduced in Chapter 8.

9.2.4.1 � Parse Service in the Plug-In
First of all, we still need to use the class BaseDexClassLoaderHookHelper
to merge all the dex files of the HostApp and plug-in together, we have
already introduced these techniques in Section 8.2.3.

Second, the plug-in is also an apk file and has an AndroidManifest.xml,
which defines the information of all app components, like Activity and
Service. We can get this information from the plug-in when the HostApp
starts, shown as follows:

    �public void preLoadServices(File apkFile) throws
Exception {

          �Object packageParser = RefInvoke.createObject
("android.content.pm.PackageParser");

 
          �// First call parsePackage to get the

corresponding Package object to the Apk object
          �Object packageObj = RefInvoke.invokeInstanceMetho

d(packageParser, "parsePackage",
                  new Class[] {File.class, int.class},
                  �new Object[] {apkFile, PackageManager.

GET_SERVICES});
 
          // Read the services field in the Package object
          �// The next thing to do is to obtain ServiceInfo

corresponding to Service from List<Service>
          �List services = (List) RefInvoke.getField

Object(packageObj, "services");
 

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/
ServiceHook3 and for the example code of this section, please refer to https://github.com/
Baobaojianqiang/ServiceHook4

https://github.com/
https://github.com/
https//github.com/

284    ◾    Android App-Hook and Plug-In Technology﻿

          �// Invoke function generateServiceInfo to convert
PackageParser.Service to ServiceInfo

          �Class<?> packageParser$ServiceClass = Class.
forName("android.content.pm.PackageParser$Service");

          �Class<?> packageUserStateClass = Class.
forName("android.content.pm.PackageUserState");

 
          �int userId = (Integer) RefInvoke.

invokeStaticMethod("android.os.UserHandle",
"getCallingUserId");

          �Object defaultUserState = RefInvoke.createObject
("android.content.pm.PackageUserState");

 
 
          �// Parse the intent corresponding Service component
          for (Object service : services) {
              �// need to invoke android.content.pm.PackagePar

ser#generateActivityInfo(android.content.
pm.ActivityInfo, int, android.content.
pm.PackageUserState, int)

              �ServiceInfo info = (ServiceInfo) RefInvoke.invo
keInstanceMethod(packageParser,
"generateServiceInfo",

                      �new Class[] {packageParser$ServiceClass,
int.class, packageUserStateClass, int.
class},

                      �new Object[] {service, 0, defaultUserState,
userId});

 
              �mServiceInfoMap.put(new ComponentName(info.

packageName, info.name), info);
          }
      }

The method parsePackage() of PackageParser obtains the Service
collection from the plug-in according to the path of the plug-in apk.
But in this collection, the type of each Service is android.content.
pm.PackageParser$Service, which is not visible to app developers. So,
we use reflection syntax to convert each element in this collection to an
instance of ServiceInfo. ServiceInfo is visible to app developers. The convert
method is generateServiceInfo() of PackageParser; it returns a new collec-
tion storing the instances of the Services from the plug-in.

A Plug-In Solution Based on Static-Proxy﻿    ◾    285

9.2.4.2 � Create a Service Object Using Reflection
In the source code of the Android system, a Service object is created using
the method handleCreateService() of ActivityThread, shown as follows:

    �private void handleCreateService(CreateServiceData
data) {

        LoadedApk packageInfo = getPackageInfoNoCheck(
                data.info.applicationInfo, data.compatInfo);
        Service service = null;
        �java.lang.ClassLoader cl = packageInfo.

getClassLoader();
        �service = (Service) cl.loadClass(data.info.name).

newInstance();

        service.onCreate();
        mServices.put(data.token, service);
}

In the method handleCreateService(), a Service object is created using
reflection, executes its method onCreate(), and stores this object in a col-
lection, mServices. All the Services of the app are stored in this collection.

In Section 8.3.3.1, we introduced how to read the Service collection of a
plug-in. Each element of this collection is a ServiceInfo object.

Now let’s try to convert this ServiceInfo object to a Service object.
The general idea is to create a parameter data using reflection; the type

of data is CreateServiceData. Then we can invoke the method handleCrea
teService(CreateServiceData data) of ActivityThread.

As mentioned earlier, there is a collection, mServices, in the
ActivityThread, which stores all the Services of the current app. When we
invoke the method handleCreateService() of ActivityThread, we actually
add a new Service in the collection mServices.

Now we are using the “That” framework. All the components of the
plug-in are puppets; these “puppets” don’t have life, so the Services of the
plug-in shouldn’t exist in the collection mServices of the ActivityThread.
We need to remove it from the collection mServices and save these Services
in a new collection, mServiceMap, defined by ourselves.

Let’s have a look at the code implementation:

    �private void proxyCreateService(ServiceInfo
serviceInfo) throws Exception {

        IBinder token = new Binder();

286    ◾    Android App-Hook and Plug-In Technology﻿

        �// Create CreateServiceData object, used as a
parameter passed to the ActivityThread
handleCreateService

        �Object createServiceData = RefInvoke.
createObject("android.app.ActivityThread$CreateSer
viceData");

        �RefInvoke.setFieldObject(createServiceData,

"token", token);

        // Write info object
        �// This change is for that, LoadedApk will be the

main program of the ClassLoader when load the
Class, we choose Hook BaseDexClassLoader way to
load the Plug-In

        �serviceInfo.applicationInfo.packageName =
UPFApplication.getContext().getPackageName();

        �RefInvoke.setFieldObject(createServiceData,
"info", serviceInfo);

        // Get the default compatibility configuration
        �Object defaultCompatibility = RefInvoke.

getStaticFieldObject("android.content.res.
CompatibilityInfo", "DEFAULT_COMPATIBILITY_INFO");

        // Write compatInfo field
        �RefInvoke.setFieldObject(createServiceData,

"compatInfo", defaultCompatibility);

        �// private void handleCreateService(CreateService

Data data) {
        �Object currentActivityThread = RefInvoke.

getStaticFieldObject("android.app.ActivityThread",
"sCurrentActivityThread");

        �RefInvoke.invokeInstanceMethod(currentActivity
Thread, "handleCreateService",

                createServiceData.getClass(),
                createServiceData);

        �// The Service object created by

handleCreateService has no return value but is
stored in the mServices field of ActivityThread.
Here we manually get it

A Plug-In Solution Based on Static-Proxy﻿    ◾    287

        �Map mServices = (Map) RefInvoke.getFieldObject(cur
rentActivityThread, "mServices");

        Service service = (Service) mServices.get(token);

        �// After getting it, remove the service, we just

borrow the flowers
        mServices.remove(token);

        // Store this Service
        mServiceMap.put(serviceInfo.name, service);
    }

9.2.4.3  �ProxyService and ServiceManager
Now we have our own mServiceMap of ServiceManager to store all the
Services of the plug-in, we can implement the plug-in solution of Service.

Figure 9.4 shows the flowchart of startService() in the plug-in solution.

First, let's focus on step 2, MockClass1 is responsible for intercepting
the method startService() and stopService(), and hooking AMN to replace
the original MyService1 with ProxyService. Refer to Chapter 6 for this
technique.

ProxyService is started in this way, but it cannot be used for multi-
ple Services in the plug-in at the same time, so it is necessary to write

FIGURE 9.4  Flowchart of startService().

288    ◾    Android App-Hook and Plug-In Technology﻿

a Singleton ServiceManager, which is responsible for managing multiple
Services of the plug-in.

The lifecycle method onStartCommand() of ProxyService will invoke
the method onStartCommand() of ServiceManager. ServiceManager will
analyses the intent in the parameter and pick up MyService1 from the
intent. Then ServiceManager will check if MyService1 exists in mService-
Map. If not found (meaning this is the first time to start MyService1), it will
use the method proxyCreateService() to create an instance of MyService1

The instance of MyService1 created in this way is only a normal class,
and it does not have lifecycle methods like onCreate(), onStartCommand(),
onDestroy(), and so on. Not all these lifecycle methods can be invoked by
the Android system, so we have to call methods like onStartCommand()
of MyService1 manually.

That’s the whole process of the method startService(). Next, let’s have a
look at the process of the method stopService(). Figure 9.5 shows the flow-
chart of stopService() in the plug-in solution.

In the plug-in solution for the method stopService(), we still use
MockClass1 to intercept the method stopService() of AMN.

We can not replace MyService1 of the plug-in with ProxyService of
the HostApp directly; we should invoke the method stopService() of

FIGURE 9.5  Flowchart of stopService().

A Plug-In Solution Based on Static-Proxy﻿    ◾    289

ServiceManager to invoke the method onDestroy() of MyService1, and
then remove MyService1 from mServiceMap.

Finally, we have to check if mServiceMap is empty. If empty, we should
destroy ProxyService. But we can’t invoke the method onDestroy() of
ProxyService directly; we should invoke the method stopService() of
Context to notify the Android system to destroy ProxyService.

Now, we have introduced the plug-in solution for startService() and
stopService(). We use only one ProxyService to correspond to multiple
Services of the plug-in. The code is shown as follows:

	 1)	MockClass1

class MockClass1 implements InvocationHandler {

    private static final String TAG = "MockClass1";

    // Alias ProxyService package name
    �private static final String stubPackage =
"jianqiang.com.activityhook1";

    Object mBase;

    public MockClass1(Object base) {
        mBase = base;
    }

    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        Log.e("bao", method.getName());

        if ("startService".equals(method.getName())) {
            // Only intercept this function
            // Replace parameters and do whatever you want;
    �// even replace the original ProxyService to start

another Service.

            // Find the first Intent object in the parameter
            int index = 0;
            for (int i = 0; i < args.length; i++) {
                if (args[i] instanceof Intent) {

290    ◾    Android App-Hook and Plug-In Technology﻿

                    index = i;
                    break;
                }
            }

            �//get ProxyService form UPFApplication.

pluginServices
            Intent rawIntent = (Intent) args[index];

            �// The package name of the proxy service, which

is our own package name
            �String stubPackage = UPFApplication.getContext().

getPackageName();

            // replace Plug-In Service of ProxyService
            �ComponentName componentName = new

ComponentName(stubPackage, ProxyService.class.
getName());

            Intent newIntent = new Intent();
            newIntent.setComponent(componentName);

            �// The TargetService we originally started to

save first
            �newIntent.putExtra(AMSHookHelper.EXTRA_TARGET_

INTENT, rawIntent);

            // Replace Intent, cheat AMS
            args[index] = newIntent;

            Log.d(TAG, "hook success");
            return method.invoke(mBase, args);
        } else if ("stopService".equals(method.getName())) {
            // Only intercept this function
            // Replace parameters and do whatever you want;
    �// even replace the original ProxyService to start

another Service.
            // Find the first Intent object in the parameter
            int index = 0;
            for (int i = 0; i < args.length; i++) {
                if (args[i] instanceof Intent) {
                    index = i;

A Plug-In Solution Based on Static-Proxy﻿    ◾    291

                    break;
                }
            }

            Intent rawIntent = (Intent) args[index];
            Log.d(TAG, "hook success");
            �return ServiceManager.getInstance().

stopService(rawIntent);
        }

        return method.invoke(mBase, args);
    }
}

	 2)	ProxyService

public class ProxyService extends Service {

    private static final String TAG = "ProxyService";

    @Override
    public void onCreate() {
        Log.d(TAG, "onCreate() called");
        super.onCreate();
    }

    @Override
    public int onStartCommand(Intent intent, int flags,
int startId) {
        Log.d(TAG, "onStart() called with " + "intent = ["
+ intent + "], startId = [" + startId + "]");

        // 分发Service
        �ServiceManager.getInstance().onStartCommand

(intent, flags, startId);
        return super.onStartCommand(intent, flags, startId);
    }

    @Override
    public IBinder onBind(Intent intent) {
        return null;
    }

292    ◾    Android App-Hook and Plug-In Technology﻿

    @Override
    public void onDestroy() {
        Log.d(TAG, "onDestroy() called");
        super.onDestroy();
    }
}

	 3)	ServiceManager (the method proxyCreateService() is in Section
9.2.4.2 and the method preLoadServices() is in Section 9.2.4.1)

public final class ServiceManager {

    private static final String TAG = "ServiceManager";

    private static volatile ServiceManager sInstance;

    �private Map<String, Service> mServiceMap = new
HashMap<String, Service>();

    �// Storage Plug-In Service information
    �private Map<ComponentName, ServiceInfo>
mServiceInfoMap = new HashMap<ComponentName,
ServiceInfo>();

    �public synchronized static ServiceManager
getInstance() {

        if (sInstance == null) {
            sInstance = new ServiceManager();
        }
        return sInstance;
    }

    /**
    �* Start a plug-in Service; If the Service has not been

started yet, a new plug-in Service will be created
    * @param proxyIntent
    * @param startId
    */
    �public int onStartCommand(Intent proxyIntent, int
flags, int startId) {

        �Intent targetIntent = proxyIntent.getParcelableExt

ra(AMSHookHelper.EXTRA_TARGET_INTENT);

A Plug-In Solution Based on Static-Proxy﻿    ◾    293

        ServiceInfo = selectPluginService(targetIntent);

        try {
            if (!mServiceMap.containsKey(serviceInfo.name)) {
                // Service does not exist yet, first create it
                proxyCreateService(serviceInfo);
            }

            �Service service = mServiceMap.get(serviceInfo.

name);
            �return service.onStartCommand(targetIntent,

flags, startId);
        } catch (Exception e) {
            e.printStackTrace();
            return -1;
        }
    }

    /**
    �* Stop a Plug-In Service, ProxyService will stop

when all Plug-In services are stopped
    * @param targetIntent
    * @return
    */
    public int stopService(Intent targetIntent) {
        �ServiceInfo serviceInfo = selectPluginService(targ

etIntent);
        if (serviceInfo == null) {
            �Log.w(TAG, "cannot found service: " + targetIntent.

getComponent());
            return 0;
        }
        Service service = mServiceMap.get(serviceInfo.name);
        if (service == null) {
            Log.w(TAG, "cannot run, stopped multiple times");
            return 0;
        }

        service.onDestroy();

        mServiceMap.remove(serviceInfo.name);
        if (mServiceMap.isEmpty()) {

294    ◾    Android App-Hook and Plug-In Technology﻿

            �// Without Service, this mServiceMap does not
need to exist

            Log.d(TAG, "service all stopped, stop proxy");
            Context appContext = UPFApplication.getContext();
            �appContext.stopService(new Intent().

setComponent(new ComponentName(appContext.
getPackageName(), ProxyService.class.
getName())));

        }
        return 1;
    }

    /**
    * Select the matching ServiceInfo
    * @param pluginIntent Plug-In  Intent
    * @return
    */
    �private ServiceInfo selectPluginService(Intent
pluginIntent) {

        �for (ComponentName componentName : mService
InfoMap.keySet()) {

            �if (componentName.equals(pluginIntent.
getComponent())) {

                return mServiceInfoMap.get(componentName);
            }
        }
        return null;
    }
}

9.2.4.4 � bindService() and unbindService()*
We have learned that the plug-in solution of startService() and stopSer-
vice(), and the solution of bindService() and unbindService(), is relatively
simple.

Figures 9.6 and 9.7 shows the flowchart of bindService() and unbindSer-
vice() in the plug-in solution.

The plug-in solution of bindService() is the same as startService(), and
the plug-in solution of unbindService() is the same as stopService().

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/
ServiceHook4

https://github.com/

A Plug-In Solution Based on Static-Proxy﻿    ◾    295

FIGURE 9.6  Flowchart of bindService().

FIGURE 9.7  Flowchart of unbindService().

296    ◾    Android App-Hook and Plug-In Technology﻿

The differences are that the methods bindService() and unbindService()
have an extra parameter conn; its type is ServiceConnection.

ServiceConnection conn = new ServiceConnection() {
    @Override
   � public void onServiceConnected(ComponentName

name, IBinder service) {
Log.d("baobao", "onServiceConnected");

    }

    @Override
   � public void onServiceDisconnected(ComponentName

componentName) {
Log.d("baobao", "onServiceDisconnected");

    }
};

bindService(intent, conn, Service.BIND_AUTO_CREATE);
unbindService(conn);

The method unbindService() doesn’t have a parameter carrying the
intent object. The method unbindService() has a parameter conn, and the
type of conn is ServiceConnection. The app process sends conn to AMS.
AMS can then unbind Service by conn.

But when ServiceManager invokes the method onUnbind(intent) of
MyService2, it needs the intent parameter.

So, we store all the 1:1 mappings between conn and intent in a HashMap
named mServiceInfoMap2 in ServiceManager.

When MockClass1 intercepts the method unbindService(), we can get
the corresponding intent by conn, and pass this intent to ServiceManager.
The code is as follows:

	 1)	MockClass1

package jianqiang.com.activityhook1.ams_hook;

import android.content.ComponentName;
import android.content.Intent;
import android.util.Log;

import java.lang.reflect.InvocationHandler;

A Plug-In Solution Based on Static-Proxy﻿    ◾    297

import java.lang.reflect.Method;

import jianqiang.com.activityhook1.ProxyService;
import jianqiang.com.activityhook1.ServiceManager;
import jianqiang.com.activityhook1.UPFApplication;

class MockClass1 implements InvocationHandler {

    private static final String TAG = "MockClass1";

    Object mBase;

    public MockClass1(Object base) {
        mBase = base;
    }

    @Override
    �public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {

        Log.e("bao", method.getName());
        if("bindService".equals(method.getName())) {
            // Only intercept this method
            // Replace parameters and do whatever you want;
    �// replace the original ProxyService to start

another Service.
            // Find the first Intent object in the parameter
            int index = 0;
            for (int i = 0; i < args.length; i++) {
                if (args[i] instanceof Intent) {
                    index = i;
                    break;
                }
            }

            �//get ProxyService form UPFApplication.

pluginServices
            Intent rawIntent = (Intent) args[index];

            //store intent-conn
            �ServiceManager.getInstance().mServiceMap2.

put(args[4], rawIntent);

298    ◾    Android App-Hook and Plug-In Technology﻿

            �// The package name of the proxy service, which
is our own package name

            �String stubPackage = UPFApplication.getContext().
getPackageName();

            // replace Plug-In Service of ProxyService
            �ComponentName componentName = new ComponentName

(stubPackage, ProxyService.class.getName());
            Intent newIntent = new Intent();
            newIntent.setComponent(componentName);

            �// The TargetService we originally started to

save first
            �newIntent.putExtra(AMSHookHelper.EXTRA_TARGET_

INTENT, rawIntent);

            // Replace Intent, cheat AMS
            args[index] = newIntent;

            Log.d(TAG, "hook success");
            return method.invoke(mBase, args);
        } else if("unbindService".equals(method.getName())) {
            �Intent rawIntent = ServiceManager.getInstance().

mServiceMap2.get(args[0]);
            ServiceManager.getInstance().onUnbind(rawIntent);
            return method.invoke(mBase, args);
        }

        return method.invoke(mBase, args);
    }
}

	 2)	ProxyService

public class ProxyService extends Service {

    private static final String TAG = "ProxyService";

    @Override
    public void onCreate() {
        Log.d(TAG, "onCreate() called");
        super.onCreate();
    }
   

A Plug-In Solution Based on Static-Proxy﻿    ◾    299

    @Override
    public IBinder onBind(Intent intent) {
        Log.e("jianqiang", "Service is binded");

        �return ServiceManager.getInstance().

onBind(intent);
    }

    @Override
    public boolean onUnbind(Intent intent) {
        Log.e("jianqiang", "Service is unbinded");

        return super.onUnbind(intent);
    }
}

	 3)	ServiceManager

public final class ServiceManager {

    �private Map<String, Service> mServiceMap = new
HashMap<String, Service>();

    //store intent-conn
    �public Map<Object, Intent> mServiceMap2 = new
HashMap<Object, Intent>();

    public IBinder onBind(Intent proxyIntent) {

        �Intent targetIntent = proxyIntent.getParcelableExt

ra(AMSHookHelper.EXTRA_TARGET_INTENT);
        �ServiceInfo serviceInfo = selectPluginService

(targetIntent);

        try {
            if (!mServiceMap.containsKey(serviceInfo.name)) {
                // Service does not exist yet, first create
                proxyCreateService(serviceInfo);
            }

            �Service service = mServiceMap.get(serviceInfo.name);
            return service.onBind(targetIntent);
        } catch (Exception e) {

300    ◾    Android App-Hook and Plug-In Technology﻿

            e.printStackTrace();
            return null;
        }
    }

    /**
    �* Stop a Plug-In Service, ProxyService will stop

when all Plug-In services are stopped
    * @param targetIntent
    * @return
    */
    public boolean onUnbind(Intent targetIntent) {
        �ServiceInfo serviceInfo = selectPluginService

(targetIntent);
        if (serviceInfo == null) {
            �Log.w(TAG, "cannot found service: " + targetIntent.

getComponent());
            return false;
        }
        Service service = mServiceMap.get(serviceInfo.name);
        if (service == null) {
            Log.w(TAG, "cannot run, stopped multiple times");
            return false;
        }

        service.onUnbind(targetIntent);

        mServiceMap.remove(serviceInfo.name);
        if (mServiceMap.isEmpty()) {
            �// Without Service, this mServiceMap does not

need to exist
            Log.d(TAG, "service all stopped, stop proxy");
            Context appContext = UPFApplication.getContext();
            appContext.stopService(
                    �new Intent().setComponent(new ComponentName

(appContext.getPackageName(), ProxyService.
class.getName())));

        }
        return true;
    }
}

Up until now, the “That” framework supports Service.

A Plug-In Solution Based on Static-Proxy﻿    ◾    301

9.2.5 � Static-Proxy in BroadcastReceiver*
How to use Static-Proxy in BroadcastReceiver?

BroadcastReceiver is a normal class; it has only one method onReceive().
Let’s create a ProxyReceiver in the HostApp; it’s a Receiver. When

we invoke the method sendBroadcast(Intent intent) to fire the method
onReceive() of ProxyReceiver, the parameter intent carries the informa-
tion about the Receiver of Plug-In. When ProxyReceiver receives this
information, it will invoke the method sendBroadcast again, to fire the
method onReceive() of ProxyReceiver. Let’s have a look at how to imple-
ment this idea.

Because both Activity and Service inherit from Context, we can invoke
the method getClassLoader() and getDir() of Context in Activity and
Service. We can pass dexPath of the plug-in as a parameter to ProxyActivity
and ProxyService, and then create a ClassLoader for the plug-in to invoke
the method loadClass() of ClassLoader to get the corresponding Activity
and Service.

But we find it doesn’t work for Receiver, because Receiver does not have
a Context inside; we can’t use the syntax like getClassLoader() or getDir(),
so it’s no use to pass dexPath to ProxyReceiver.

We can also generate all the ClassLoaders of the plug-ins at one time
and put them into a HashMap. When ProxyReceiver wants to use the
ClassLoader of the PLUG-IN, we can fetch it from this HashMap using
the name of the plug-in.

	 1)	Declare ProxyReceiver in AndroidManifest.xml:

        <receiver android:name=".ProxyReceiver">
            <intent-filter>
                <action android:name="baobao2" />
            </intent-filter>
        </receiver>

	 2)	Prepare MyClassLoaders which carries all the plug-ins:

public class MyClassLoaders {
    �public static final HashMap<String, DexClassLoader>
classLoaders = new HashMap<String, DexClassLoader>();

}

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/That3.4

https://github.com/

302    ◾    Android App-Hook and Plug-In Technology﻿

In the MainActivity of the HostApp, pre-load all the ClassLoaders of
plug-ins into MyClassLoaders:

    pluginItem1 = generatePluginItem("plugin1.apk");
    pluginItem2 = generatePluginItem("plugin2.apk");

    �private PluginItem generatePluginItem(String
apkName) {

        File file = getFileStreamPath(apkName);
        PluginItem item = new PluginItem();
        item.pluginPath = file.getAbsolutePath();
        �item.packageInfo = DLUtils.getPackageInfo(this,

item.pluginPath);

        String mDexPath = item.pluginPath;

        �File dexOutputDir = this.getDir("dex", Context.

MODE_PRIVATE);
        �final String dexOutputPath = dexOutputDir.

getAbsolutePath();
        �DexClassLoader dexClassLoader = new DexClassLoader

(mDexPath,
                dexOutputPath, null, getClassLoader());

        �MyClassLoaders.classLoaders.put(apkName, dexClass

Loader);

        return item;
    }

Now we can use any ClassLoader directly in ProxyReceiver:

public class ProxyReceiver extends BroadcastReceiver {
   
    private static final String TAG = "ProxyService";

    private String mClass;
    private String pluginName;
    private IRemoteReceiver mRemoteReceiver;

    @Override
    public void onReceive(Context context, Intent intent) {

A Plug-In Solution Based on Static-Proxy﻿    ◾    303

        Log.d(TAG, TAG + " onReceive");

        �pluginName = intent.getStringExtra(AppConstants.

EXTRA_PLUGIN_NAME);
        �mClass = intent.getStringExtra(AppConstants.

EXTRA_CLASS);

        try {

            //Get Plug-In receiver object by  reflection
            �Class<?> localClass = MyClassLoaders.

classLoaders.get(pluginName).
loadClass(mClass);

            �Constructor<?> localConstructor = localClass.
getConstructor(new Class[] {});

            �Object instance = localConstructor.
newInstance(new Object[] {});

            mRemoteReceiver = (IRemoteReceiver) instance;
            mRemoteReceiver.setProxy(this);
            mRemoteReceiver.onReceive(context, intent);

        } catch (Exception e) {

            e.printStackTrace();
        }
    }
}

	 3)	Send a broadcast to the ProxyReceiver, pass the package name of the
apk and the name of the Receiver from the plug-in to the ProxyReceiver.
Now we needn’t pass dexPath to the ProxyReceiver anymore.

    public void notifyReceiver1(View view) {
        Intent intent = new Intent(MainActivity.ACTION);
        �intent.putExtra(AppConstants.EXTRA_PLUGIN_NAME,

"plugin1.apk");
        �intent.putExtra(AppConstants.EXTRA_CLASS,

"jianqiang.com.plugin1.TestReceiver1");
        sendBroadcast(intent);
    }

    public void notifyReceiver2(View view) {
        Intent intent = new Intent(MainActivity.ACTION);

304    ◾    Android App-Hook and Plug-In Technology﻿

        �intent.putExtra(AppConstants.EXTRA_PLUGIN_NAME,
"plugin2.apk");

        �intent.putExtra(AppConstants.EXTRA_CLASS,
"jianqiang.com.plugin2.TestReceiver2");

        sendBroadcast(intent);
    }

	 4)	All the Receivers of the plug-in must inherit the parent class
BasePluginReceiver and implement the interface IRemoteReceiver.

public interface IRemoteReceiver {
    �public void onReceive(Context context, Intent intent);

    public void setProxy(BroadcastReceiver proxyReceiver);
}

public class BasePluginReceiver extends Broadcast
Receiver implements IRemoteReceiver{

    public static final String TAG = "BasePluginReceiver";
    private BroadcastReceiver that;

    @Override
    public void setProxy(BroadcastReceiver proxyReceiver) {
        that = proxyReceiver;
    }

    @Override
    public void onReceive(Context context, Intent intent) {

    }
}

public class TestReceiver1 extends BasePluginReceiver {

    private static final String TAG = "TestReceiver1";

    @Override
    public void onReceive(Context context, Intent intent) {
        Log.e(TAG, "TestReceiver1 onReceive");
    }
}

A Plug-In Solution Based on Static-Proxy﻿    ◾    305

Up until now, the plug-in solution for BroadcastReceiver is completed,
and there is a one-to-many relationship between the ProxyReceiver and
the Receivers of the plug-in.

Unfortunately, the “That” framework only supports Dynamic Receivers.
It doesn’t support Static Receivers.

9.3 � SUMMARY
We spent a lot of time to introduce the “That” framework. Although
“That” is no longer maintained by its creator, it’s still being used by many
companies in their enterprise-level apps.

“Puppet” is the most vivid description of this plug-in framework.

http://taylorandfrancis.com

307

C h a p t e r 10

Related Plug-In
Techniques

Up until now, we have introduced the plug-in solutions of four
components. But it’s not enough; we still have a lot of problems to

face. In this chapter, we will introduce how to resolve these problems in
detail.

10.1 � RESOLVE THE CONFLICTS BETWEEN
RESOURCES OF THE PLUG-INS

We have already introduced how to load Resources from the plug-in in
Chapter 7.

Each resource has an ID in R.java, such as 0x7f00010002. Because the
HostApp and plug-in are packaged separately, the ID value in the HostApp
may be the same as the ID value of plug-in. In this scenario, the app can’t
load the correct resource

We’ll resolve this problem of ID conflict in this section. Let us focus on
the command aapt during the app packaging process.

10.1.1 � The Process of App Packaging

Before 2014, the packaging of an Android app was based on Ant, and
we needed to know each step of the packaging process, including which
command was executed, and which parameters were required for this
command.

Android App-Hook and Plug-In Technology Related Plug-In Techniques

308    ◾    Android App-Hook and Plug-In Technology﻿

Later, Gradle was widely used in Android packaging; the packaging
process was simplified to a simple configuration file in Gradle. Some peo-
ple are familiar with Gradle, but they don’t know the commands like aapt
or zipalign.

Figure 10.1 shows the whole process of Android app packaging. Let’s
introduce these steps one by one:

	 1)	aapt. Generate two files, R.java corresponds to the resources in
the folder Res, Manifest.java corresponds to the AndroidManifest.
xml.

	 2)	AIDL. Generate a Java file for each AIDL file written by the app
developers into the app.

	 3)	javac. Compile the Java code to generate a lot of .class files.

	 4)	Proguard. Obfuse code and generate a mapping.txt. This step is
optional.

	 5)	dex. Convert all the .class files into dex files.

	 6)	aapt. Package the resources in the folder Res and the files in the folder
Assets into a zip file with the suffix .ap_. This is another important
feature of the command aapt.

	 7)	apkbuilder. Package the dex files, the files with the suffix .ap_, and
the AndroidManifest.xml into an apk file, which is unsigned.

	 8)	jarsigner. Signature this unsigned apk file.

	 9)	zipalign. Execute this command to reduce the usage of the memory
during runtime.

In these nine steps, we focus on the first step, the generation of the R.java.
We can control the generation process of the resource ID.

10.1.2 � Hook aapt*
10.1.2.1 � Modify and Generate a New aapt Command
As we know, the Android system will generate the resource ID in R.java
for each resource in the folder Res.

*	 For the example code from this section, please refer to https://github.com/Baobaojianqiang/AAPT

https://github.com/

Related Plug-In Techniques﻿    ◾    309

FIGURE 10.1  Android app packaging process.

310    ◾    Android App-Hook and Plug-In Technology﻿

Each resource in the folder Res has a HEX value in R.java, shown as
follows:

The hex value such as 0x7f0b006d consists of three parts: PackageId +
TypeId + EntryId:

•	 PackageId: This field is always 0x7f.

•	 TypeId: Stands for the resource type. Figure 10.2 lists all the types
of resources; we are familiar with layout, string, drawable, and so
on. The value of TypeId increments from 1; for example, attr=0x01,
drawable=0x02.

•	 EntryId: The ID value of the resource under this type, incremented
from 0.

For example, 0x7f0b006d, PackageId is 0x7f, TypeId is 0b00, and EntryId
is 6d.

In the plug-in project, we find the resource ID of the HostApp is always
the same as the resource ID of the plug-in.

To resolve this problem, we can set different PackageId for different
plug-ins. For example, the HostApp has two plug-ins, Plugin1 and Plugin2.
We set the PackageId of Plugin1 to 0x40, set the PackageId of Plugin12 to

Related Plug-In Techniques﻿    ◾    311

0x40. The PackageId of the HostApp is always 0x7f, so this conflict won’t
occur anymore.

In the whole process of packaging, aapt is used to generate the resource
ID for the resources in the folder Res. The default value of PackageId is
0x7f. We need to modify the source code of the aapt command.

The source code of aapt is located in the Android SDK, so search “0x7f”
in the source code; we find the logic of 0x7f, shown as follows:

ResourceTable::ResourceTable(Bundle* bundle, const
String16& assetsPackage, ResourceTable::PackageType
type)
    : mAssetsPackage(assetsPackage)
    , mPackageType(type)
    , mTypeIdOffset(0)
    , mNumLocal(0)
    , mBundle(bundle)
{
    ssize_t packageId = -1;
    switch (mPackageType) {
        case App:

FIGURE 10.2  Structure of R.java.

312    ◾    Android App-Hook and Plug-In Technology﻿

        case AppFeature:
            packageId = 0x7f;
            break;

        case System:
            packageId = 0x01;
            break;

        case SharedLibrary:
            packageId = 0x00;
            break;

        default:
            assert(0);
            break;
}

  //omit some code below
}

The code above is the constructor of ResourceTable with a Bundle param-
eter. In the switch…case… statement, we find the app defaults to 0x7f, and
we also find 0x00 and 0x01 are used by the Android system itself. So, we
can’t use 0x00 and 0x01 as the prefix of the resource ID of the plug-in.

The process of aapt is shown in Figure 10.3.

FIGURE 10.3  Flow of generating resource ID by aapt.

Related Plug-In Techniques﻿    ◾    313

Next, let’s talk about how to modify the code of aapt to modify the pre-
fix of the resource ID of the plug-in, as below:

	 1)	Add a new argument in the aapt command, pass the new value of the
prefix such as 0x71 to the aapt command.

	 2)	Pass 0x71 as a parameter to the constructor of ResourceTable.

	 3)	In the constructor of ResourceTable, set 0x71 to the variable
PackageId.

The implementation is as follows:

	 1)	In the function main of Main.cpp, we add a new argument,
-PLUG-resource-id:

else if(strcmp(cp, "-PLUG-resource-id") == 0){
  argc--;
  argv++;
  if (!argc) {
  � fprintf(stderr, "ERROR: No argument supplied for

'--PLUG-resource-id' option\n");
   wantUsage = true;
   goto bail;
    }
    bundle.setApkModule(argv[0]);
}

	 2)	In Bundle.h, we add two methods: getApkModule() and
setApkModule():

//pass Plug-In prefix
const android::String8& getApkModule() const {return
mApkModule;}
void setApkModule(const char* str) { mApkModule=str;}

	 3)	In the constructor of ResourceTable, append some code after the
switch statement:

if(!bundle->getApkModule().isEmpty()){
  android::String8 apkmoduleVal=bundle->getApkModule();
  packageId=apkStringToInt(apkmoduleVal);
}

Now we compile and generate a new aapt command.

314    ◾    Android App-Hook and Plug-In Technology﻿

10.1.2.2 � Using This New aapt Command in the Project
We replace the original aapt command with this new aapt command. But
it’s inconvenient for us to supply a new appt command for different ver-
sions of the Android platforms.

Another solution is to put this new aapt command into the plug-
in project. We rename this command file as aapt_mac (it’s compiled
in mac) and place it in the root directory of the project, as shown in
Figure 10.4.

Then let’s modify the Gradle file, shown as follows:

apply Plug-In: 'com.android.application'

import com.android.sdklib.BuildToolInfo
import java.lang.reflect.Method

Task modifyAaptPathTask = task('modifyAaptPath') << {
    android.applicationVariants.all { variant ->
        �BuildToolInfo buildToolInfo = variant.

androidBuilder.getTargetInfo().getBuildTools()
        �Method addMethod = BuildToolInfo.class.

getDeclaredMethod("add", BuildToolInfo.PathId.
class, File.class)

FIGURE 10.4  Rename aapt tool to aapt_mac.

Related Plug-In Techniques﻿    ◾    315

        addMethod.setAccessible(true)
        �addMethod.invoke(buildToolInfo, BuildToolInfo.

PathId.AAPT, new File(rootDir, "aapt_mac"))
        �println "[LOG] new aapt path = " + buildToolInfo.

getPath(BuildToolInfo.PathId.AAPT)
    }
}

android {
    compileSdkVersion 25
    buildToolsVersion "25.0.3"

    defaultConfig {
        applicationId "jianqiang.com.testreflection"
        minSdkVersion 21
        targetSdkVersion 25
        versionCode 1
        versionName "1.0"
    }
    buildTypes {
        release {
            minifyEnabled false
            �proguardFiles getDefaultProguardFile('proguard-

android.txt'), 'proguard-rules.pro'
        }
    }

    preBuild.doFirst {
        modifyAaptPathTask.execute()
    }

    aaptOptions {
        �aaptOptions.additionalParameters '--PLUG-

resource-id', '0x71'
    }
}

dependencies {
    compile fileTree(dir: 'libs', include: ['*.jar'])
    testCompile 'junit:junit:4.12'
    compile 'com.android.support:appcompat-v7:25.2.0'
}

316    ◾    Android App-Hook and Plug-In Technology﻿

In the code above, we modify the path of aapt to the new path of mac_
aapt in the root directory.

In addition, we set the prefix of the resources to 0x71. This means all the
resource IDs in this apk will start with “0x71” after packaging.

10.1.3 � public.xml*
Sometimes we need a custom control which is used in PluginA and
PluginB. So, we write this control into the HostApp. PluginA and PluginB
use this control and its resources in the HostApp

The resource ID of the HostApp is always changing as we add or
remove resources to the HostApp. If the resource ID of the custom con-
trol changes, PluginA will not find this resource. So, we need to set the
resource ID of this custom control to a fixed value.

When the version of Gradle is smaller than 1.3, we can define a file pub-
lic.xml in the folder Res/Values, as follows:

<?xml version="1.0" encoding="utf-8" ?>
<resources>
    �<public type = "string" name="string1" id =
"0x7f050024"/>

</resources>

We define string1 in public.xml, its value is 0x7f050024. When we use
R.string1 in the app, its value is always 0x7f050024.

We can also define a range from 0x7f02000f to 0x7f020001 for a special
resource, as follows, don’t ignore the space after “type” and “id”:

<?xml version="1.0" encoding="utf-8" ?>
<resources>
     � <public-padding name="my_" end="0x7f02000f"

start="0x7f020001" type="drawable" />
</resources>

In Gradle 1.3 or the earlier versions, public.xml is not supported, even
though we put this file in the folder Res/Values it doesn’t work. But we can
write some code into a Gradle file to implement this function.

Based on the project ActivityHost1 introduced in the previous chapters,
we need to modify three places, as follows:

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/Apollo1.1

https://github.com/

Related Plug-In Techniques﻿    ◾    317

	 1)	Modify build.gradle of ActivityHook1:

afterEvaluate {
    for (variant in android.applicationVariants) {
        def scope = variant.getVariantData().getScope()
        �String mergeTaskName = scope.getMergeResourcesTask().

name

        def mergeTask = tasks.getByName(mergeTaskName)

        mergeTask.doLast {
            copy {
                int i = 0
                println android.sourceSets.main.res.srcDirs
                from(android.sourceSets.main.res.srcDirs) {
                    include 'values/public.xml'
                    �rename 'public.xml', (i++ == 0 ? "public.xml"

: "public_${i}.xml")
                }

                into(mergeTask.outputDir)
            }
        }
    }
}

	 2)	Open the file string.xml in the folder Res/Values of ActivityHost1 and
add one line:

<string name="string1">Test String</string>

	 3)	Create public.xml in the folder Res/Values:

<?xml version="1.0" encoding="utf-8" ?>
<resources>
    �<public type = "string" name="string1" id =
"0x7f050024"/>

</resources>

Let’s package the project ActivityHost1, and open ActivityHost1.apk by
JadxGUI. We find that the value of R.string.string1 is always 2131034148, which
is a decimal value, corresponding to a HEX value of 0x7f050024 (Figure 10.5).

318    ◾    Android App-Hook and Plug-In Technology﻿

10.1.4 � Plug-In Uses Resources in the HostApp*
The resource ID defined in public.xml of the HostApp is a fixed value, but
how does the plug-in access the resource ID of the HostApp?

If we compile the HostApp as a ClassLibrary, we can add a reference to
this ClassLibrary in the plug-in. So, plug-ins can visit any class or resource
of the HostApp. We need to write a script in Gradle to compile the project’s
HostApp to a jar file and copy it into the project plug-in. We also need to
change the keyword “compile” to “provide” in the Gradle file, to make sure
the jar generated by the HostApp won’t be compiled into the plug-in app.

We introduced the project Apollo1.1 in Section 10.1.3.
The project in this section is Apollo1.2; it’s based on Apollo1.1. Let’s

begin our exploration.

	 1)	Write a task in build.gradle of the HostApp to generate the jar file of
ActivityHost1:

task buildJar(dependsOn: [“compileReleaseJavaWith
Javac”], type: Jar) {
    //final Jar name
    archiveName = "sdk2.jar"

  //the directory of needed resource to package
      �def srcClassDir = [project.buildDir.absolutePath +

"/intermediates/classes/release"]

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/Apollo1.2

FIGURE 10.5  Resource ID in JadxGUI.

https://github.com/

Related Plug-In Techniques﻿    ◾    319

  //directory of initial resource
      from srcClassDir
}

	 2)	Execute buildJar (in the Gradle panel of Android Studio), to generate
sdk2.jar under the folder /Build/Libs of ActivityHost1.

	 3)	Create a folder sdk-jars under the root directory of the TestActivity
project and copy sdk2.jar into this folder

	 4)	Add one line in build.gradle of the TestActivity (TestActivity is a
plug-in project):

provided files('sdk-jars/sdk2.jar')

We use the keyword “provided” rather than “compile,” meaning that
the sdk2.jar file is only used at the time of compilation and the file sdk2.jar
will not be compiled into the plug-in app.

After clicking “Sync” in the Gradle panel of Android Studio, we can use
StringConstant.string1 defined in ActivityHost1 of the TestActivity proj-
ect, shown as follows:

import jianqiang.com.activityhook1.StringConstant;

public class MainActivity extends Activity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        TextView tv = new TextView(this);
        tv.setText("baobao222");
        setContentView(tv);

        �Log.d("baobao2", String.valueOf(StringConstant.

string1));
    }
}

This section provides various solutions to resolve the conflicts of
resource ID between the HostApp and plug-ins. Let’s have a review:

Solution 1: Merge the resources of the HostApp and the plug-in together.
We invoke the method addAssetPath() of AssetManager to merge these
resources.

320    ◾    Android App-Hook and Plug-In Technology﻿

Solution 1 may cause conflicts of resource ID. There are several:

•	 Solution 1.1: Rewrite the aapt command, specify the prefix of the
resource ID, such as 0x71, to ensure that the resource ID of the
HostApp and plug-in will never conflict.

•	 Solution 1.2: After packaging the plug-in app, modify the resource
ID in R.java and resource.arsc, for example, modify the default prefix
0x7f to 0x71, so that there will never be conflict between the HostApp
and plug-in app.

•	 Solution 1.3: Specify the values of all the resource IDs in public.xml.
But doing this is very troublesome. Every time we add a resource in
the app, we need to maintain it in public.xml. So, this solution can
only be used to fix several specific values.

Solution 2: If we don’t merge resources in the process of packaging, we
need to create an AssetManager for each plug-in. Each AssetManager calls
the method addAssetPath by reflection to add the resources of the plug-in.
When we navigate from the HostApp to plug-in, we should switch to the
AssetManager of the plug-in. We introduced this solution in Chapter 5,

We focus on solution 1 in this section.

10.2 � A PLUG-IN FRAMEWORK BASED ON FRAGMENT
In this section, I will introduce an ancient plug-in framework named
AndroidDynamicLoader;* it’s the first open source plug-in framework
published by Yimin Tu of Dianping.com in July 2012. This framework
loads Fragment of the plug-in dynamically.

Unlike the four components of the Android system, Fragment is only
a simple class. All the four components need to interact with the AMS,
while Fragment has no relationship with the AMS.

The AndroidDynamicLoader framework is based on Eclipse and Ant;
it’s a bit out of date. I use this framework in Android Studio and Gradle; it
has a new name Min18Fragment, which is better for us to understand the
spirit of this framework.

10.2.1 � AndroidDynamicLoader Overview

The AndroidDynamicLoader framework was the first open source plug-in
framework. It proposes a lot of ideas and put these ideas into practice.

*	 https://github.com/mmin18/AndroidDynamicLoader

https://github.com/

Related Plug-In Techniques﻿    ◾    321

	 1)	Override the following four methods to load resources of the plug-in:

•	 getAssets()

•	 getResources()

•	 getTheme()

I introduced the “That” framework in Chapter 9; it also overrides these
four methods.

	 2)	Create each ClassLoader for the plug-in apk. When the HostApp loads
the class of the plug-in, it will use the corresponding ClassLoader. I
introduced this technique in Chapter 6.

10.2.2 � A Simple Plug-In Sample Based on Fragment*
Let’s have a look at how to load Fragment of the Plug-In.

	 1)	Declare FragmentLoaderActivity in the AndroidManifest.xml of
the HostApp, and it is used as the container of Fragment, shown as
follows:

<activity android:name=".FragmentLoaderActivity">
  <intent-filter>
  <action android:name="jianqiang.com.hostapp.VIEW" />
 � <category android:name="android.intent.category.
DEFAULT" />

  </intent-filter>
</activity>

	 2)	All the navigation logic is in FragmentLoaderActivity. For example,
we want to load Fragment1:

Intent intent = new Intent(AppConstants.ACTION);
intent.putExtra(AppConstants.EXTRA_DEX_
PATH,mPluginItems.get(position).pluginPath);
intent.putExtra(AppConstants.EXTRA_CLASS,
mPluginItems.get(position).packageInfo.packageName +
".Fragment1");
startActivity(intent);

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/
Min18Fragment

https://github.com/

322    ◾    Android App-Hook and Plug-In Technology﻿

We need to pass two parameters to FragmentLoaderActivity. One is
the path of the plug-in, the other is the full name of the Fragment to be
loaded.

Since then, we can write all the page logic in this FragmentLoaderActivity,
putting each page in the Fragment and using whatever we want.

	 3)	According to the parameter dexPath, Fragmentloaderactivity can get
the corresponding ClassLoader and Resources. Fragmentloaderactivity
uses the corresponding ClassLoader to launch the Fragment of the
plug-in.

//Reflects the Plugin's Fragment object
Class<?> localClass = dexClassLoader.
loadClass(mClass);
Constructor<?> localConstructor = localClass.
getConstructor(new Class[] {});
Object instance = localConstructor.newInstance
(new Object[] {});
Fragment f = (Fragment) instance;
FragmentManager fm = getFragmentManager();
FragmentTransaction ft = fm.beginTransaction();
ft.replace(R.id.container, f);
ft.commit();

Note that R.id.container refers to the layout activity_fragment_loaderd.

10.2.3 � Jumping Between Fragments*
We are more interested in how to jump between different Fragments.
There are four scenarios:

From To

Fragment in the HostApp Fragment in Plugin1
Fragment in Plugin1 Fragment in Plugin1
Fragment in Plugin1 Fragment in Plugin2
Fragment in Plugin1 Fragment in the HostApp

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/
Min18Fragment2

https://github.com/

Related Plug-In Techniques﻿    ◾    323

The first scenario, jumping from the HostApp to Plugin1, we have already
talked about in Section 10.2.2.

In this section we focus on the second scenario, jumping between
different Fragments in an Activity of Plugin1. The following code
implements the logic of jumping from Fragment1 to Fragment2 in
FragmentLoaderActivity.

    public class Fragment1 extends BaseFragment {
        @Override
        �public View onCreateView(LayoutInflater inflater,

ViewGroup container, Bundle savedInstanceState) {
            �View view = inflater.inflate(R.layout.fragment1,

container, false);
            �view.findViewById(R.id.load_fragment2_btn).

setOnClickListener(new View.OnClickListener() {
                @Override
                public void onClick(View arg0) {
                    Fragment2 fragment2 = new Fragment2();
                    Bundle args = new Bundle();
                    args.putString("username", "baobao");
                    fragment2.setArguments(args);
                    getFragmentManager()
                            .beginTransaction()
                            �.addToBackStack(null)  //Add the current

fragment to the back stack
                            �.replace(Fragment1.this.getContainerId(),

fragment2).commit();               
      }
            });
            return view;
        }
    }

The corresponding layouts of the FragmentLoaderActivity are defined
in the HostApp, but we want to use this layout in the plug-in, so we define
the parent class BaseFragment in the MyPluginLibrary, which has a field
containerId. All the Fragments inherit from BaseFragment. When we load
Fragment in FragmentLoaderActivity, we need to pass R.id.container to the
field containerId of BaseFragment:

  BaseFragment f = (BaseFragment) instance;
f.setContainerId(R.id.container);

324    ◾    Android App-Hook and Plug-In Technology﻿

Now we can jump from one Fragment to another Fragment in the same
Activity of the plug-in,

10.2.4 � Jump from the Plug-In*
Let’s talk about how to jump from the plug-in to the HostApp or other
plug-ins.

First, when we jump from the HostApp to the plug-in, we should
switch the ClassLoader of the HostApp to the ClassLoader of the plug-in.
AssetManager and Resources have the same logic. When we jump from the
HostApp to the plug-in, we should switch the AssetManager and Resources
of the HostApp to the AssetManager and Resources of the plug-in. We can
encapsulate this logic in BaseActivity, shown as follows:

    public class BaseHostActivity extends Activity {
        private AssetManager mAssetManager;
        private Resources mResources;
        private Theme mTheme;

        protected String mDexPath;
        protected ClassLoader dexClassLoader;

        protected void loadClassLoader() {
            �File dexOutputDir = this.getDir("dex", Context.

MODE_PRIVATE);
            �final String dexOutputPath = dexOutputDir.

getAbsolutePath();
            �dexClassLoader = new DexClassLoader(mDexPath,dexO

utputPath, null, getClassLoader());
        }

        protected void loadResources() {
            try {
                �AssetManager assetManager = AssetManager.class.

newInstance();
                �Method addAssetPath = assetManager.getClass().

getMethod("addAssetPath", String.class);
                addAssetPath.invoke(assetManager, mDexPath);
                mAssetManager = assetManager;
            } catch (Exception e) {
                e.printStackTrace();

*	 Sample Code: https://github.com/Baobaojianqiang/Min18Fragment3

https://github.com/

Related Plug-In Techniques﻿    ◾    325

            }
            Resources superRes = super.getResources();
            �mResources = new Resources(mAssetManager,

superRes.getDisplayMetrics(), superRes.
getConfiguration());

            mTheme = mResources.newTheme();
            mTheme.setTo(super.getTheme());
        }

        @Override
        public AssetManager getAssets() {
            �return mAssetManager == null ? super.getAssets()

: mAssetManager;
        }

        @Override
        public Resources getResources() {
            �return mResources == null ? super.getResources()

: mResources;
        }

        @Override
        public Theme getTheme() {
            �return mTheme == null ? super.getTheme() : mTheme;
        }
    }

In the method onCreate() of FragmentLoaderActivity, we invoke the
methods loadClassLoader() and loadResources(), and then load the
Fragment of the plug-in.

    �public class FragmentLoaderActivity extends
BaseHostActivity {

        private String mClass;

        @Override
        protected void onCreate(Bundle savedInstanceState) {
            �mDexPath = getIntent().getStringExtra(AppConstants.

EXTRA_DEX_PATH);
            �mClass = getIntent().getStringExtra(AppConstants.

EXTRA_CLASS);

326    ◾    Android App-Hook and Plug-In Technology﻿

            super.onCreate(savedInstanceState);
            �setContentView(R.layout.

activity_fragment_loader);
            loadClassLoader();
            loadResources();
            try {

                //Reflects the Plug-In 's Fragment object
                �Class<?> localClass = dexClassLoader.

loadClass(mClass);
                �Constructor<?> localConstructor =

localClass.getConstructor(new Class[] {});
                �Object instance = localConstructor.

newInstance(new Object[] {});
                Fragment f = (Fragment) instance;
                FragmentManager fm = getFragmentManager();
                �FragmentTransaction ft =

fm.beginTransaction();
                ft.add(R.id.container, f);
                ft.commit();

            } catch (Exception e) {
                �Toast.makeText(this, e.getMessage(), Toast.

LENGTH_LONG).show();
            }
        }
    }

We introduce an ancient plug-in framework named AndroidDynamic
Loader in this section. We can load the Fragment dynamically; we don’t
need to communicate with the AMS anymore.

10.3 � DOWNGRADE*
If Google suddenly announced that Android plug-in technology was for-
bidden in all the Android app markets, such as it is with Google Play, then
what would we do?

React Native may be the answer to this question, but if this technique is
also forbidden, what would we do?

So back to the Hybrid? It’s not a good solution; the performance of the
mobile browser in Android is poor, especially on the list page.

*	 For the example code of this section, please refer to https://github.com/Baobaojianqiang/Hybrid1.2

https://github.com/

Related Plug-In Techniques﻿    ◾    327

Is there a mechanism that each Activity in the app has a corresponding
HTML5 page? When there is a bug or crash in one Activity, can we replace
this Activity with an HTML5 page immediately?

There are two problems to resolve here.

	 1)	The original behavior is to click the button to jump from ActivityA
to ActivityB, if we replace ActivityA with an HTML page named
page_a.html, when we click the hyperlink in page_a.html, we expect
the behavior to be the same as before, and to jump to ActivityB.

	 2)	We find the navigation from ActivityA to ActivityB is as follows:

Intent intent = new Intent(MainActivity.this,
FirstActivity.class);
intent.putExtra("UserName", "jianqiang");
intent.putExtra("Age", 10);
startActivity(intent);

But we find the navigation from ActivityA to an HTML page named
page_a.html is different. ActivityA can’t navigate to an HTML page directly.
We create WebviewActivity to load this HTML5 page, and navigate from
ActivityA to this WebviewActivity, shown as follows:

Intent intent = new Intent(MainActivity.this,
WebviewActivity.class);
newIntent.putExtra("FullURL",
 � "file:///storage/emulated/0/myHTML5/thirdpage.
html?a=1&b=abc");

startActivity(intent);

How to switch between Activity and HTML5 freely without writing two
different methods? The best solution is for the app developers to still write
code in as usual; for example, they write the code “startActivity(intent)”
to navigate the page from one Activity to another Activity. They don’t care
whether the next page is an Activity or HTML at runtime. We can override
the methods startActivity() or startActivityForResult() of Activity to decide
if the next page is an Activity or HTML. We need prepare a configuration
file. This file specifies whether each page is an Activity or HTML. The app
will download this file at runtime from the remote server. If the origi-
nal Activity has a bug or crash, we can add a configuration in this file to
specify which HTML5 page will replace this Activity.

328    ◾    Android App-Hook and Plug-In Technology﻿

The solution has a name: downgrade. We don’t need plug-in techniques
to fix the online bugs anymore. The downgrade is also suitable for iOS.
In the following sections, we talk about this technique in detail based on
Android.

10.3.1 � From Activity to HTML5

We hope that the Android developers start an Activity and pass data to
this Activity as usual, including Int, Strings, and custom entities. They
don’t care about whether the next page is an Activity or an HTML page, as
shown below:

Intent intent = new Intent(MainActivity.this,
FirstActivity.class);
intent.putExtra("UserName", "jianqiang");
intent.putExtra("Age", 10);

ArrayList<Course> courses = new ArrayList<Course>();
courses.add(new Course("Math", 80));
courses.add(new Course("English", 90));
courses.add(new Course("Chinese", 75));
intent.putExtra("Courses", courses);

startActivity(intent);

Then we download a JSON string from the remote server; it’s a configu-
ration file defining which activity will be replaced with an HTML5 page,
shown as follows:

[{
    "activity": "jianqiang.com.hook3.FirstActivity",
    �"h5path": "file:///storage/emulated/0/myHTML5/
firstpage.html",

    "fields": [{"fieldName": "UserName", type: 1},
            {"fieldName": "Age", type: 2},
            {"fieldName": "Courses", type: 3},
       ]

},{
    "activity": "jianqiang.com.hook3.ThirdActivity",
    �"h5path": "file:///storage/emulated/0/myHTML5/
thirdpage.html"

}]

Related Plug-In Techniques﻿    ◾    329

The field fields specifies the value of the parameters to navigate to
FirstActivity or firstpage.html, as well as the type of the parameter, where one
represents String, two represents Int, and three represents the custom entity.
I don’t list all the types in the demo; you can add more types as you need.

To be simple, we mock this configuration file in the apk and put the cor-
responding HTML5 files in the folder Assets to simulate that we download
these files from the remote server. The code is as follows:

public class MyApplication extends Application {
    �public static HashMap<String, PageInfo> pages = new
HashMap<String, PageInfo>();

}

    void prepareData() {
        �String newFilePath = Environment.

getExternalStorageDirectory() + File.separator +
"myHTML5";

        Utils.copy(this, "firstpage.html", newFilePath);
        Utils.copy(this, "secondpage.html", newFilePath);
        Utils.copy(this, "thirdpage.html", newFilePath);
        Utils.copy(this, "style.css", newFilePath);

        �String h5FilePath1 = newFilePath + File.separator

+ "firstpage.html";
        �String h5FilePath2 = newFilePath + File.separator

+ "thirdpage.html";

        �HashMap<String, Integer> fields = new

HashMap<String, Integer>();
        fields.put("UserName", 1);  //1 means string
        fields.put("Age", 2);      //2 means int
        fields.put("Courses", 3);  //3 means object

        �PageInfo pageInfo1 = new PageInfo("file://" +

h5FilePath1, fields);
        �MyApplication.pages.put("jianqiang.com.hook3.

FirstActivity", pageInfo1);

        �PageInfo pageInfo2 = new PageInfo("file://" +

h5FilePath2, null);
        �MyApplication.pages.put("jianqiang.com.hook3.

ThirdActivity", pageInfo2);
}

330    ◾    Android App-Hook and Plug-In Technology﻿

As the files are “downloaded from the remote server,” we override the
method startActivityForResult() of BaseActivity to parse this configura-
tion file.

The methods startActivity() and startActivityForResult() are widely
used in app development. startActivity() invokes startActivityForResult
()indirectly. That’s why we override startActivityForResult() rather than
startActivity().

The logic of overriding the method startActivityForResult() is as follows:

	 1)	Search in MyApplication.pages to check if we’ll launch an Activity or
an HTML5 page. If we want to launch an HTML5 page, we’ll create a
new intent to launch WebViewActivity, convert the parameters of the
old intent to a string with the format “url?k1=v1&k2=v2”. We need
to encode v1 and v2 to a new string str, and pass the URL with the
format “URL?json=str” to WebViewActivity.

We have downloaded a configuration file from the remote server. It’s a
JSON string. There is a field “fields” defined in this JSON string. We can
use the corresponding Java syntax to take values from the Intent accord-
ing to the type of each parameter defined in “fields,” shown as follows:

public class BaseActivity extends Activity {
    @Override
    �public void startActivityForResult(Intent intent,
int requestCode) {

        if(intent.getComponent() == null) {
            �super.startActivityForResult(intent,

requestCode);
        }

        �String originalTargetActivity = intent.

getComponent().getClassName();

        �PageInfo pageInfo = MyApplication.pages.

get(originalTargetActivity);
        if(pageInfo == null) {
            �super.startActivityForResult(intent,

requestCode);
        }

Related Plug-In Techniques﻿    ◾    331

        StringBuilder sb2 = new StringBuilder();
        �if(pageInfo.getFields()!= null && pageInfo.

getFields().size() > 0) {
            sb2.append("{");

            for(String key: pageInfo.getFields().keySet()) {
                int type = pageInfo.getFields().get(key);
                switch (type) {
                    case 1:
                        String v1 = intent.getStringExtra(key);
                        sb2.append("\"" + key + "\"");
                        sb2.append(":");
                        sb2.append("\"" + v1 + "\"");
                        sb2.append(",");
                        break;
                    case 2:
                        int v2 = intent.getIntExtra(key, 0);
                        sb2.append("\"" + key + "\"");
                        sb2.append(":");
                        sb2.append(String.valueOf(v2));
                        sb2.append(",");
                        break;
                    case 3:
                        �Serializable v3 = intent.

getSerializableExtra(key);
                        Gson gson = new Gson();
                        String strJSON = gson.toJson(v3);
                        sb2.append("\"" + key + "\"");
                        sb2.append(":");
                        sb2.append(strJSON);
                        sb2.append(",");
                        break;
                    default:
                        break;
                }
            }

            sb2.deleteCharAt(sb2.length() - 1);
            sb2.append("}");
        }

        StringBuilder sb = new StringBuilder();
        sb.append(pageInfo.getUri());

332    ◾    Android App-Hook and Plug-In Technology﻿

        �if(pageInfo.getFields()!= null && pageInfo.
getFields().size() > 0) {

            sb.append("?json=");
            String str = null;
            try {
                �str = URLEncoder.encode(sb2.toString(),

"UTF-8");
            } catch (UnsupportedEncodingException e) {
                e.printStackTrace();
            }
            sb.append(str);
        }

        Intent newIntent = new Intent();
        newIntent.putExtra("FullURL", sb.toString());

        �// The name of the alias’ package, which is our

own package name.
        �String stubPackage = MyApplication.getContext().

getPackageName();

        �// Here we temporarily replace the started

Activity with WebviewActivity
        �ComponentName componentName = new

ComponentName(stubPackage, WebviewActivity.class.
getName());

        newIntent.setComponent(componentName);

        �super.startActivityForResult(newIntent, requestCode);
    }
}

Let us go through the logic in WebViewActivity. It is used to receive the
JSON data from the previous page and then pass this JSON data to the
WebView.

public class WebviewActivity extends Activity {

    private static final String TAG = "WebviewActivity";
    WebView wv;

Related Plug-In Techniques﻿    ◾    333

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_webview);

        �String fullURL = getIntent().getStringExtra

("FullURL");

        wv = (WebView) findViewById(R.id.wv);
        wv.getSettings().setJavaScriptEnabled(true);
        wv.getSettings().setBuiltInZoomControls(false);
        wv.getSettings().setSupportZoom(true);
        wv.getSettings().setUseWideViewPort(true);
        wv.getSettings().setLoadWithOverviewMode(true);
        wv.getSettings().setSupportMultipleWindows(true);
        wv.setWebViewClient(new MyWebChromeClient());
        wv.loadUrl(fullURL);
    }
}

In firstpage.html, we need to parse the parameters from the previous
page, shown as follows:

<html>
<head>
    <meta charset="utf-8">
    �<meta name="viewport"
content="initial-scale=1,maximum-scale=1,minimum-
scale=1,user-scalable=no"/>

    �<link href="style.css" rel="stylesheet" type="text/
css">

    <script type="text/JavaScript">
        function parseJSON() {
            var url = window.location.href;
            var arr = url.split('=');

            var otest = document.getElementById("test");

            var newli = document.createElement("li");

            �var result = JSON.parse(decodeURIComponent

(arr[1]));

334    ◾    Android App-Hook and Plug-In Technology﻿

            newli.innerHTML = result.UserName;

            otest.insertBefore(newli, otest.childNodes[1]);
        }
    </script>
</head>
<body onload="parseJSON()">
    <ul id="test">
       
   
<body>
<html>

In HTML5, JSON.parse() was used to parse JSON data, and we use the
method decodeURIComponent() to decode the value from WebviewActivity.

Now, the navigation from Activity to HTML5 is finished.

10.3.2 � From HTML5 to Activity

Now let’s study how to navigate from HTML to Activity.
Firstly, we need to define some contracts. For example, if the app navi-

gates to SecondActivity; we need to define a contract as follows:

activity://jianqiang.com.hook3.SecondActivity?
json=encodeData

encodeData in the above contract is the data we want to pass to
SecondActivity. When we click the hyperlink with the above contract, the
app will navigate to SecondActivity with the parameter “ json=encodeData”.

Sometimes when we click the hyperlink in HTML5, we want to navigate
to another HTML5 page, we need define the contract as follows:

secondpage.html? ?json=encodeData

Now let’s talk about the generation of encodeData. For example, we
want to pass the following JSON string to Activity:

{“HotelId”:14, “HotelName” = “Hotel111”, “Rooms”:[{“room
Type”:“LargeBed”, “price”:100}, {“roomType”:“DoubleBed”,
“price”:200}]}

Related Plug-In Techniques﻿    ◾    335

Unfortunately, we don’t know the type of each field in this JSON string.
So, we need provide another JSON string to define the type for each field,
shown as follows:

[{“key”: “HotelId”, “value”: “2”}, {“key”:
“HotelName”, “value”: “1”}, {“key”: “Rooms”,
“value”:“jianqiang.com.hook3.entity.Course”}]

One is String, two is Integer, three is a custom entity. It is consistent with
the type number defined in Section 10.3.1.

Now let’s merge these two JSON strings into one string, and encode this
string, shown as follows in firstpage.html:

<html>
<head>
    <meta charset="utf-8">
    �<meta name="viewport"
content="initial-scale=1,maximum-scale=1,minimum-
scale=1,user-scalable=no"/>

    �<link href="style.css" rel="stylesheet" type="text/
css">

    <script type="text/JavaScript">
        function gotoSecondActivity() {
            �var baseURL = "activity://jianqiang.com.hook3.

SecondActivity";
            �var jsonValue = "{'HotelId':14, 'HotelName' =

'guoguo hotel', 'Rooms':[{'roomType':'king
bedroom', 'price':100}, {'roomType':'double-bed
room', 'price':200}]}";

            �var jsonType = "[{'key':'HotelId', 'value':'2'},
{'key':'HotelName', 'value':'1'}, {'key':'Rooms',
'value':'jianqiang.com.hook3.entity.Course'}]";

            �var finalJSON = "{'jsonValue'=" + jsonValue + ",
'jsonType'=" + jsonType + "}";

            �baseURL = baseURL + "?json=" + encodeURIComponent

(finalJSON);

            location.href= baseURL;
        }

336    ◾    Android App-Hook and Plug-In Technology﻿

        function gotoSecondActivityInWeb() {
            var baseURL = "secondpage.html";
            �var jsonValue = "{'HotelId':14, 'HotelName' =

'guoguo hotel', 'Rooms':[{'roomType':'king
bedroom', 'price':100}, {'roomType':'double-bed
room', 'price':200}]}";

            �var jsonType = "[{'key':'HotelId', 'value':'2'},
{'key':'HotelName', 'value':'1'}, {'key':'Rooms',
'value':'jianqiang.com.hook3.entity.Course'}]";

            �var finalJSON = "{'jsonValue'=" + jsonValue + ",
'jsonType'=" + jsonType + "}";

            �location.href= baseURL+ "?json=" +

encodeURIComponent(finalJSON);
        }
    </script>
</head>
<body onload="parseJSON()">
    �<a href="JavaScript:void(0)" onclick="gotoSecondActi
vity()">navigate to SecondActivity

    �<a href="JavaScript:void(0)" onclick="gotoSecondActi
vityInWeb()">navigate to SecondPage

<body>
<html>

In thridpage.html, we define a new contract format, which is used to
invoke the method startActivityForResult() of Activity:

startActivityForResult://jianqiang.com.hook3.
MainActivity

The code in thridpage.html:

<html>
<head>
    <meta charset="utf-8">
    �<meta name="viewport" content="initial-scale=1,
maximum-scale=1,minimum-scale=1,user-scalable=no"/>

    �<link href="style.css" rel="stylesheet" type="text/
css">

Related Plug-In Techniques﻿    ◾    337

    <script type="text/JavaScript">
        function backToMainActivity() {
            �var baseURL = "startActivityForResult://

jianqiang.com.hook3.MainActivity";
            var jsonValue = "{'score':14}";
            var jsonType = "[{'key':'score', 'value':'2'}]";
            �var finalJSON = "{'jsonValue'=" + jsonValue + ",

'jsonType'=" + jsonType + "}";

            �baseURL = baseURL + "?json=" + encodeURIComponent

(finalJSON);

            location.href= baseURL;
        }

    </script>
</head>
<body>
    <ul id="test">
       
   

    �<a href="JavaScript:void(0)" onclick="backToMainActi
vity()">return results

<body>
<html>

In WebViewActivity which loads firstpage.html, we need intercept the
URL. We dispatch the request to the different methods of Activity using
the contract.

Let’s have a look at the complete code of WebViewActivity:

public class WebviewActivity extends Activity {

    private static final String TAG = "WebviewActivity";
    WebView wv;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_webview);

338    ◾    Android App-Hook and Plug-In Technology﻿

        �String fullURL = getIntent().
getStringExtra("FullURL");

        wv = (WebView) findViewById(R.id.wv);
        wv.getSettings().setJavaScriptEnabled(true);
        wv.getSettings().setBuiltInZoomControls(false);
        wv.getSettings().setSupportZoom(true);
        wv.getSettings().setUseWideViewPort(true);
        wv.getSettings().setLoadWithOverviewMode(true);
        wv.getSettings().setSupportMultipleWindows(true);
        wv.setWebViewClient(new MyWebChromeClient());
        wv.loadUrl(fullURL);
    }

    public class MyWebChromeClient extends WebViewClient {
        @Override
        �public boolean shouldOverrideUrlLoading(WebView

view, WebResourceRequest request) {
            Uri url = request.getUrl();

            if(url == null) {
                �return super.shouldOverrideUrlLoading(view,

request);
            }

            Intent intent = null;
            �if (url.toString().toLowerCase().

startsWith("activity://")) {
                �intent = parseUrl(url.toString(), "activity://");
                startActivity(intent);
            �} else if(url.toString().toLowerCase().startsWith

("startactivityforresult://")) {
                �intent = parseUrl(url.toString(),

"startactivityforresult://");
                setResult(2, intent);
                finish();
            } else {
                �return super.shouldOverrideUrlLoading(view,

request);
            }

Related Plug-In Techniques﻿    ◾    339

            return true;
        }
    }

    Intent parseUrl(String url, String prefix) {
        int pos = url.indexOf("?");
        �String activity = url.substring(prefix.length(),

pos);

        //6 means ?json=
        String jsonEncodeData = url.substring(pos + 6);

        String jsonData = null;
        try {
            �jsonData = URLDecoder.decode(jsonEncodeData,

"UTF-8");
        } catch (UnsupportedEncodingException e) {
            e.printStackTrace();
        }

        JSONObject jsonObject = null;
        try {
            jsonObject = new JSONObject(jsonData);
        } catch (JSONException e) {
            e.printStackTrace();
        }

        �JSONArray jsonType = jsonObject.

optJSONArray("jsonType");
        �JSONObject jsonValue = jsonObject.

optJSONObject("jsonValue");

        Intent intent = new Intent();

        for (int i = 0; i < jsonType.length(); i++) {
            JSONObject item = jsonType.optJSONObject(i);
            String key = item.optString("key");
            String value = item.optString("value");

            switch (value) {
                case "1":
                    String strData = jsonValue.optString(key);
                    intent.putExtra(key, strData);

340    ◾    Android App-Hook and Plug-In Technology﻿

                    break;
                case "2":
                    int intData = jsonValue.optInt(key);
                    intent.putExtra(key, intData);
                    break;
                default:
                    �JSONArray arrayData = jsonValue.

optJSONArray(key);
                    Gson gson = new Gson();
                    ArrayList arrayList = new ArrayList();

                    try {
                        �for (int j = 0; j < arrayData.length(); j++) {
                            �Object data = gson.fromJson(arrayData.

optJSONObject(j).toString(), Class.
forName(value));

                            arrayList.add(data);
                        }
                    } catch (ClassNotFoundException e) {
                        e.printStackTrace();
                    }

                    intent.putExtra(key, arrayList);

                    break;
            }
        }

        �ComponentName componentName = new

ComponentName(getPackageName(), activity);
        intent.setComponent(componentName);

        return intent;
    }
}

10.3.3 � Support for the Backpress Button

The Android system has a backpress button.
In the downgrade solution, we need to support the backpress but-

ton. When the app navigates from one HTML5 page to another HTML5

Related Plug-In Techniques﻿    ◾    341

page, and we press the backpress button, we want the app to go back to
the first HTML5 page; we need to override the method onKeyDown() of
WebViewActivity:

    @Override
    �public boolean onKeyDown(int keyCode, KeyEvent
event) {

        if (event.getAction() == KeyEvent.ACTION_DOWN) {
            �if (keyCode == KeyEvent.KEYCODE_BACK &&

wv.canGoBack()) { // Indicates the operation when
the physical back button is pressed

                wv.goBack(); // back
                // webview.goForward();//forward
                return true; // processed
            }
        }
        return super.onKeyDown(keyCode, event);
    }

Downgrade is a good solution for fixing online bugs of the app without
publishing a new version. It’s a temporary solution to fix bugs quickly. It
supports both Android and iOS.

10.4 � PROGUARD FOR PLUG-INS
Plug-ins can be signed.

This section introduces the techniques to obfuse the plug-in after the
plug-in is signed.

10.4.1 � Basic Obfuse Rules for Plug-Ins*
In Android, we use ProGuard to obfuse the Android code.

Let’s have a look at what we need to consider when we obfuse a simple
app.

•	 Four components (Activity and so on) and Application should be
declared in the AndroidManifest.xml; they cannot be obfused.

•	 R.java cannot be obfused because sometimes we need to fetch
resources of the app using reflection syntax.

*	 Code sample: https://github.com/Baobaojianqiang/Sign1 & https://github.com/Baobaojianqiang/
Sign2

https://github.com/
https://github.com/
https://github.com/

342    ◾    Android App-Hook and Plug-In Technology﻿

•	 Class in android.support.v4 and android.support.v7 cannot be obfused.

•	 A class that implements Serializable cannot be obfused; otherwise, it
will throw an exception in deserialize.

•	 Generics cannot be obfused.

•	 CustomView cannot be obfused; otherwise, we can’t find this
CustomView in the layout.

These rules also can be applied to plug-ins, because the plug-in is
also an apk. Although we don’t need to declare four components in the
AndroidManifest.xml of the plug-in, we still get these components from
the plug-in using the reflection of their full name.

Sometimes, the HostApp may invoke a method in the plug-in by reflec-
tion, shown as follows:

Class mLoadClass = classLoader.loadClass("jianqiang.
com.receivertest.MainActivity");
Object mainActivity = mLoadClass.newInstance();

Method getNameMethod = mLoadClass.
getMethod("doSomething");
getNameMethod.setAccessible(true);
String name = (String) getNameMethod.
invoke(mainActivity);

Run these codes above and the app will throw an exception that the
method doSomething() of MainActivity is not found because it’s obfused.

So, we could obfuse the classes or the methods invoked by reflec-
tion in Plug-In, shown as follows, we need to add a configuration in
Proguard-rules:

-keep class jianqiang.com.receivertest.MainActivity {
    public void doSomething();
}

10.4.2 � Obfuse Without a Common Library*
HostApp and the plug-in app always use the same class library, shown in
Figure 10.6.

*	 Code sample: https://github.com/Baobaojianqiang/ZeusStudy1.5

https://github.com/

Related Plug-In Techniques﻿    ◾    343

In Figure 10.6, the HostApp and plug-ins both have a dependency on a
common library named MyPluginLibrary. If we compile MyPluginLibrary
into the HostApp and plug-ins and package all the plug-ins into the
HostApp, the HostApp will have at least two MyPluginLibraries, and the
size of the HostApp will be larger. So, we use the keyword “provided” in
the build.gradle of the plug-in and use the keyword “compile” in the build.
gradle of the HostApp.

Is it necessary to obfuse MyPluginLibrary?
In this section, we focus on the plug-in solution without obfusing

MyPluginLibrary; it’s simple to implement.

	 1)	Use the keyword “provided” in the build.gradle of Plugin1, shown as
follows:

dependencies {
    compile fileTree(dir: “libs”, include: [“*.jar”])
    testCompile “junit:junit:4.12”

    compile “com.android.support:appcompat-v7:25.2.0”
   
  //compile project(“:MyPluginLibrary”)
    provided files("lib/mypluginlibrary.jar")
}

	 2)	Modify the build.gradle to obfuse Plugin1:

buildTypes {
  release {

FIGURE 10.6  Plug-in architecture.

344    ◾    Android App-Hook and Plug-In Technology﻿

   minifyEnabled true
        �proguardFiles getDefaultProguardFile(“proguard-

android.txt'”, “proguard-rules.pro”
  }
}

Now we package Plugin1 again and open it in JadxGUI; we can find
that the code is obfused and MyPluginLibrary is missing in plugin1.apk,
shown in Figure 10.7.

Because MyPluginLibrary is not packaged into plugin1.apk, it’s not
obfused. Let’s check the TestActivity1 of Plugin1 in Figure 10.7; we find it
uses PluginManager of MyPluginLibrary as usual, shown as follows:

public class TestActivity1 extends ZeusBaseActivity {
    protected void onCreate(Bundle bundle) {
        super.onCreate(bundle);
        setContentView(R.layout.activity_test1);
        �findViewById(R.id.btnGotoActivityA).

setOnClickListener(new OnClickListener(this) {
            final /* synthetic */ TestActivity1 a;
            {
                this.a = r1;
            }

            public void onClick(View view) {
                try {
                    Intent intent = new Intent();
                    �intent.setComponent(new

ComponentName("jianqiang.com.plugin1",
"jianqiang.com.plugin1.ActivityA"));

FIGURE 10.7  Structure of Plugin1 without MyPluginLibrary.

Related Plug-In Techniques﻿    ◾    345

                    �intent.putExtra("UserInfo", new
UserInfo("baobao", 60));

                    �intent.putExtra("PlugPath", ((PluginItem)
PluginManager.plugins.get(0)).pluginPath);

                    this.a.startActivity(intent);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        });
    }
}

Because MyPluginLibrary is packaged into the HostApp, the HostApp
should follow the same rule as Plugin1, and not obfuse MyPluginLibrary
either; otherwise, when we invoke the class of MyPluginLibrary, it will
throw a ClassNotFoundException. We need to add a rule to avoid obfusing
any class of MyPluginLibrary, shown as follows:

-keep class com.example.jianqiang.mypluginlibrary.** {
*;}

In the next section, we focus on how to obfuse MyPluginLibrary with a
plug-in solution.

10.4.3 � Obfusing with a Common Library*
I have introduced a simple plug-in solution without obfusing the common
library in Section 10.4.2. It’s simple, but not secure. If we put some impor-
tant logic into the common library without obfusing, it’s easy to get the
source code of the common library by JadxGUI.

So, it’s necessary to obfuse the common library. We still take the
HostApp, Plugin1, and MyPluginLibrary as an example. The HostApp and
plug-ins must obfuse MyPluginLibrary with the same rule.

If we obfuse Plugin1, we need to use the keyword “compile” rather
than “provided” in the build.gradle of Plugin1. But the keyword “com-
pile” will increase the size of the final apk; we have talked about this in
Section 10.4.3.

A perfect solution should include the following three points:

*	 Code sample: https://github.com/Baobaojianqiang/ZeusStudy1.6

https://github.com/

346    ◾    Android App-Hook and Plug-In Technology﻿

	 1)	We find that we can split the original dex of Plugin1 into two dexes,
classes.dex and classes2.dex. The classes of Plugin1 are thrown into
classes.dex, the other classes are thrown into classes2.dex, including
MyPluginLibrary. We can use MultiDex to finish this work.

	 2)	And then we replace classes2.dex with an empty dex with the same
name manually. We need to write a Python script to finish this work.

	 3)	Finally, we use the same obfusing rule in the HostApp and Plugin1.
We obfuse Plugin1 at first and then put the obfusing rule defined in
Plugin1 into the HostApp. The HostApp will follow the same obfus-
ing rule as Plugin1.

I will introduce the three aspects in the following section.

10.4.3.1 � Use MultiDex
First, we add a configuration in the build.gradle of Plugin1 to support
MultiDex as follows:

    dexOptions {
        javaMaxHeapSize "4g"
        preDexLibraries = false

        additionalParameters += '--multi-dex'
        �additionalParameters += '--main-dex-

list=maindexlist.txt'
        additionalParameters += '--minimal-main-dex'
        �additionalParameters += '--set-max-idx-number=20000'
    }

We use the keyword “compile” in the build.gradle of Plugin1.
MyPluginLibrary will be packaged into plugin1.apk:

compile project(path: “:MyPluginLibrary”)

It’s time to create a maindexlist.txt file, and this file contains all the
classes packaged in classes.dex; we define all the classes of Plugin1 in this
file, as follows:

jianqiang/com/plugin1/TestService1.class
jianqiang/com/plugin1/ActivityA.class
jianqiang/com/plugin1/TestActivity1.class

Related Plug-In Techniques﻿    ◾    347

The classes which not defined in this file will be packaged into classes2.
dex, such as the classes of MyPluginLibrary.

It is difficult to write these classes one by one in maindexlist.txt, so we
write a Python script to generate all the classes. The code of collect.py is
shown as follows:

import os

fw = open('maindexlist.txt', 'w')

def dirlist(path): 
    filelist = os.listdir(path) 
 
    for filename in filelist: 
        filepath = os.path.join(path, filename) 
        if os.path.isdir(filepath): 
            dirlist(filepath) 
        elif len(filepath)>5 and filepath[-5:]=='.java': 
            �baseStr = filepath.replace('src/main/java/','').

replace('.java', '')
            fw.write(baseStr+ '.class\n')
            for index in range(1, 11):
                �fw.write(baseStr+ '$' + str(index) + '.class\n')
    fw.close()
dirlist("src/main/java/") 

When we execute this script, it will scan all the files with the suffix
“.java” in the project Plugin1 and replace this suffix “.java” with “.class”.

But we find that there are many inner classes in Plugin1. For example,
when we write code as follows, it will generate ActivityA$1, ActivityB$2,
and so on.:

Button b1 = new Button(this);
b1.setOnClickListener(new View.OnClickListener() {
  @Override
  public void onClick(View v) {
   //do something
  }
});

348    ◾    Android App-Hook and Plug-In Technology﻿

In the original Python script, it will generate a class like ActivityA with-
out its inner classes. So we need to consider how to generate these inner
classes automatically. We find it’s impossible to know how many inner
classes there are in a class in advance. We also find that MultiDex does not
support the wildcard *. We can’t use * in maindexlist.txt.

A simple but rough method is to generate 100 inner classes for each
class in advance from ActivityA$1 to ActivityA$100. It’s enough to use.

Let’s modify collect.py to support inner classes.

import os

fw = open('maindexlist.txt', 'w')

def dirlist(path): 
    filelist = os.listdir(path) 
 

    for filename in filelist: 
        filepath = os.path.join(path, filename) 
        if os.path.isdir(filepath): 
            dirlist(filepath) 
        elif len(filepath)>5 and filepath[-5:]=='.java': 
            �baseStr = filepath.replace('src/main/java/','').

replace('.java', '')
fw.write(baseStr+ '.class\n')
#generate nested class
            for index in range(1, 11):
                �fw.write(baseStr+ '$' + str(index) + '.class\n')
    fw.close()
dirlist("src/main/java/")

Let’s compile and package Plugin1; we will find that the original dex was
separated into two dexes. classes.dex has all the classes of Plugin1, and the
classes of MyPluginLibrary are thrown into classes2.dex. classes2.dex also
has the classes of android.support,* shown in Figures 10.8 and 10.9.

FIGURE 10.8  classes.dex in JadxGUI.

Related Plug-In Techniques﻿    ◾    349

10.4.3.2 � Modify the ProGuard File
Suppose there are five classes, A, B, C, D, and E in MyPluginLibrary, the
HostApp uses A, B, and C, and Plugin1 uses C, D, E. When we obfuse the
HostApp because D and E are not used in the HostApp, it will be removed
from MyPluginLibrary. When we run the logic of Plugin1, it will throw a
ClassNotFoundException because D and E are missing.

To resolve this bug, we need to add a configuration in proguard-rule.pro
of the HostApp and Plugin1, shown as follows:

-dontshrink

It means all the classes are kept in obfusing; even if they are not used in
the current app.

When we obfuse Plugin1, it will generate a mapping file in the direc-
tory Build/Output/Mapping/Release. If the name of the class is obfused,
the original name of the new name of this class will be stored in this file.
It forms a mapping. This file maintains all the mappings of the original
name to the new name. This is shown as follows:

com.example.jianqiang.mypluginlibrary.AppConstants ->
com.example.jianqiang.mypluginlibrary.a:
    java.lang.String PROXY_VIEW_ACTION -> a

FIGURE 10.9  classes2.dex in JadxGUI.

350    ◾    Android App-Hook and Plug-In Technology﻿

    java.lang.String EXTRA_DEX_PATH -> b
    java.lang.String EXTRA_CLASS -> c
    �6:6:void <init>() -> <init>
com.example.jianqiang.mypluginlibrary.BuildConfig ->
com.example.jianqiang.mypluginlibrary.b:
    boolean DEBUG -> a
    java.lang.String APPLICATION_ID -> b
    java.lang.String BUILD_TYPE -> c
    java.lang.String FLAVOR -> d
    int VERSION_CODE -> e
    �java.lang.String VERSION_NAME -> f
6:6:void <init>() -> <init>

Copy these mappings and save it as a file named mapping_mypl-
uginlibrary.txt. Then copy this mapping file into the root directory
of the HostApp and add a configuration in proguard-rules.pro of the
HostApp:

-applymapping mapping_mypluginlibrary.txt

Up until now, the HostApp will apply the same obfusing rules as
Plugin1.

10.4.3.3 � Remove Redundant Dexes from plugin1.apk
Because MyPluginLibrary is compiled into plugin1.apk, the size of this apk
file is larger. Not only MyPluginLibrary but also a lot of redundant librar-
ies are packaged into plugin1.apk, such as android.support.*

It’s time to reduce the size of the app. Let’s prepare something as follows:

•	 The keystore.jks file of the HostApp and Plugin1, which is the private
key to sign the HostApp and Plugin1.

•	 Create a script file named createEmplyDex.py.

•	 Package Plugin1 to generate plugin1.apk.

We split the dex of plugin1.apk into two dexes in Section 10.4.3.2. All
the classes of Plugin1 are thrown into classes.dex. The other classes are
thrown into classes2.dex, including the classes of MyPluginLibrary.

Related Plug-In Techniques﻿    ◾    351

Now let’s perform our magic tricks.

	 1)	Write a python script to create an empty dex, shown as follows:

f=open('classes2.dex','w')
f.close()

	 2)	Use apktool to decompile plugin1.apk.

java -jar apktool.jar d --no-src -f plugin1.apk

It will generate a subdirectory Plugin1 in the current directory; there
are two dex files in this directory, shown in Figure 10.10.

	 3)	Replace classes2.dex with the empty dex we created in step 1.

	 4)	Package and generate plugin1.apk again, using the following
command:

java -jar apktool.jar b plugin1

	 5)	Sign plugin1.apk again with the following command, key0 is the
alias of keystore.jks and the password is 123456.

FIGURE 10.10  Structure of plugin1.apk.

352    ◾    Android App-Hook and Plug-In Technology﻿

jarsigner -verbose -keystore keystore.jks -digestalg
SHA1 -sigalg MD5withRSA -signed jar plugin1_sign.apk
"plugin1/dist/plugin1.apk" key0

	 6)	Execute the command zipalign again, shown as follows:

zipalign -v four plugin1_sign.apk plugin1_final.apk

The original size of plugin1.apk was 1.4M; after these six steps, the size
of plugin1_final.apk is only 620k. Finally, we rename plugin1_final.apk to
plugin1.apk and put it in the folder Assets of the HostApp.

To obfuse Android code is boring and tedious, especially the second solu-
tion introduced in Section 10.4.3. We can merge all these steps into Gradle
for simplicity,* but it will be difficult to understand its internal principle.

10.5 � INCREMENTAL UPDATE†

In this section, let’s talk about how to update the plug-in, which is an
important feature. Each plug-in is an app; the size of the app is large. When
the version of the plug-in upgrades from 1.0 to 2.0, the app will download
the new plug-in from the remote server. If the size of this plug-in is larger
than 10M, so it will take a long time.

If we can generate a file that includes only the differences between the
versions 1.0 and 2.0 of this plug-in and supply this file for the App user,
the size of this file is small; the app user can download it in a short time.

This technique has a cool name: An Incremental Update.

10.5.1 � The Basic Concept of an Incremental Update

First, we need to compile and package all the plug-ins and put these plug-
ins in the folder Assets of the HostApp, to make sure the HostApp can load
all the plug-ins in this folder.

Each plug-in has its own version. If the version of the HostApp is 6.0.0,
the version of the plug-in in the folder Assets of the HostApp should be
6.0.0.1.

When we find that Plugin1 version 6.0.0.1 has a bug, we fix this bug,
compile and package Plugin1 again, and set its version to 6.0.0.2, and put
it on the remote server. The app will detect the new version of Plugin1 and
download it.

*	 Refer to https://github.com/louiszgm/zeusstudy1.6
†	 Sample Code: https://github.com/That2

https://github.com/
https://github.com/

Related Plug-In Techniques﻿    ◾    353

If the size of Plugin1 is large, for example, more than 30M, and it will take a
long time to download it. But we find the differences between the new plug-in
and the old plug-in are small, maybe less than 1M, so we use an incremental
update technique to download these differences in a short time, and merge
them with the old plug-in, to generate the new version of the plug-in.

10.5.2 � Create an Incremental Package

We use bsdiff to compare these two versions of Plugin1, and to generate a
file patch.diff.

Download the tool bsdiff and execute the following command to gener-
ate an Incremental Package mypatch.diff:

bspatch old.apk new.apk mypatch.diff

Zip the file mypatch.diff. It’s better to generate this zip file on a Windows
platform.

Upload this zip package, called patch1.zip, to the remote server. For
example:

https://files.cnblogs.com/files/Jax/patch1.zip.

10.5.3 � Apply Permissions

It’s easy to download and unzip the Incremental Package; so, we won’t
spend too much time on it, please refer to the methods download() and
unzip() in detail.

These two methods both need to read and write SDCard permissions.
We need to write code to apply these permissions, shown as follows:

private static final int REQUEST_EXTERNAL_STORAGE = 1;
private static String[] PERMISSIONS_STORAGE = {
  Manifest.permission.READ_EXTERNAL_STORAGE,
  Manifest.permission.WRITE_EXTERNAL_STORAGE
};

public void verifyStoragePermissions() {
  // Check if we have write permission
 � int permission = ActivityCompat.
checkSelfPermission(this,

   Manifest.permission.WRITE_EXTERNAL_STORAGE);

If (permission != PackageManager.PERMISSION_GRANTED) {
   // We don't have permission so prompt the user

https://files.cnblogs.com/

354    ◾    Android App-Hook and Plug-In Technology﻿

  � ActivityCompat.requestPermissions(this,
PERMISSIONS_STORAGE,

   REQUEST_EXTERNAL_STORAGE);
  }
}

In the method onCreate() of Activity, we execute the method verifyStor-
agePermissions() to apply the permissions to read and write on to an SDCard.
After the app launches, a dialog will pop up for the app user to confirm.

10.5.4 � Merge Incremental Package

Now I introduce an open source project, ApkPatchLibrary, written by
Cundong Liu*. It helps us to build and apply patches to binary files.
ApkPatchLibrary is based on another famous open source project, bsdiff, but
ApkPatchLibrary is used in the Android system. It supplies a tool named
libApkPatchLibrary.so. We can use this tool to generate a file, including the
differences between the two files; we named it mypatch.diff, we can also use
this tool to merge the old file and mypatch.diff to generate the new file.

Now let’s put libApkPatchLibrary.so in the folder Jnilibs/Armeabi, and
then we create a package com.cundong.utils in the HostApp and create a
java file PatchUtils in this package, as shown in Figure 10.11.

*	 Refer to https://github.com/cundong/SmartAppUpdates

FIGURE 10.11  Incrementally updated SO packages.

https://github.com/

Related Plug-In Techniques﻿    ◾    355

package com.cundong.utils;
public class PatchUtils {

/**
* native method Use the App with the path oldApkPath
and the patch with the path patchPath to generate a
new Apk and stores it in newApkPath.
*
* Returns 0, indicating successful operation
*
* @param oldApkPath example: /sdcard/old.apk
* @param newApkPath example: /sdcard/new.apk
* @param patchPath example: /sdcard/xx.patch
* @return
*/
public static native int patch(String oldApkPath,
String newApkPath,
String patchPath);
}

Now we can merge the files using PatchUtils, as follows:

	 1)	In MainActivity, add a static method to initialize ApkPatchLibrary.

Static {
  System.loadLibrary("ApkPatchLibrary");
}

	 2)	Merge files after the method unzip():

try {
 � int patchResult = PatchUtils.patch(oldApkPath,
newFilePath, patchFilePath);

  if(patchResult == 0) {
  log.e("bao", patchResult + "");
} catch (Exception ex) {
  ex.printStackTrace();
}

newFilePath is the path of the new apk file after merging the files. Let’s
read this file to get the new version of the plug-in.

356    ◾    Android App-Hook and Plug-In Technology﻿

Up until now, we have finished an example of a plug-in incremental
update. It is only a simple example. In an enterprise app, an incremental
update is more complex.

Incremental update not only applies to the Android plug-in technology
but also applies in Hybrid and React Native.

10.6 � A PLUG-IN SOLUTION FOR SO FILES
In this section, we will talk about SO files.

During Android app development, Java code is not suitable, for exam-
ple, for encryption algorithms or encoding and decoding of audio and
video. We must use C/C++ to implement these special scenarios, to gener-
ate a file with the file extension “so.” We always call it as a SO file. In the
Android system, we use System.load() or System.loadLibrary() to load a
SO file.

App developers always use SO supplied by a third party; for example,
in Section 10.5, we use libApkPatchLibrary.so for an incremental update.

App developers rarely write SO. So, let’s start from how to write an SO
in this section.

10.6.1 � Write a Hello-World SO*
In this section, we’ll write a simple SO file with only one method get-
String(), which returns a string directly.

10.6.1.1 � Download NDK
First, we need to download the Android NDK in Android Studio. Click
SDK Manager in Android Studio and switch to the tab “SDK Tools,” and
here we can find an NDK item. Click on it to begin downloading NDK, as
shown in Figure 10.12.

After we download NDK, and we can check the path of NDK in
Figure 10.13.

Now we can find a configuration file generated automatically in the file
local.properties in the root directory of the project.

ndk.dir=/Users/jianqiang/Library/Android/sdk/
ndk-bundle

*	 For Demo Codes,Goto https://github.com/Baobaojianqiang/JniHelloWorld

https://github.com/

Related Plug-In Techniques﻿    ◾    357

Finally, we add a configuration in the file gradle.properties.

android.useDeprecatedNdk=true

10.6.1.2 � Create a Project to Generate SO
Let’s create an Android project; the project name is JniHelloWorld. Please
follow me step by step:

FIGURE 10.12  Download NDK.

FIGURE 10.13  Configure NDK location.

358    ◾    Android App-Hook and Plug-In Technology﻿

	 1)	Create a Java class named JniUtils, as shown in Figure 10.14, declare
a method getString() in JniUtils.

package com.jianqiang.jnihelloworld;

public class JniUtils {
    public native String getString();
}

	 2)	Click the menu “Build-> Make Module App.” Android Studio will
generate a file JniUtils.class, as shown in Figure 10.15.

FIGURE 10.14  Structure of JniHelloWorld.

FIGURE 10.15  Location of JniUtils.class.

Related Plug-In Techniques﻿    ◾    359

Go to the directory Debug and execute the following command:

javah -jni com.jianqiang.jnihelloworld.JniUtils

It will generate a file com_jianqiang_jnihelloworld_JniUtils.h; the con-
tent of this file is as follows:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_jianqiang_jnihelloworld_
JniUtils */

#ifndef _Included_com_jianqiang_jnihelloworld_JniUtils
#define _Included_com_jianqiang_jnihelloworld_JniUtils
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class:    com_jianqiang_jnihelloworld_JniUtils
 * Method:    getString
 * Signature: ()Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_com_jianqiang_
jnihelloworld_JniUtils_getString
  (JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

	 3)	In the directory Jinhelloworld/App/Src/Main, create a folder named
Jni, and copy the file com_jianqiang_jnihelloworld_JniUtils.h into
this folder, as shown in Figure 10.16.

FIGURE 10.16  Location of com_jianqiang_jnihelloworld_JniUtils.h.

360    ◾    Android App-Hook and Plug-In Technology﻿

In the same folder Jni, create a file com_jianqiang_jnihelloworld_JniUtils.c;
the content of this file is as follows:

#include "com_jianqiang_jnihelloworld_JniUtils.h"
/**
 �* The content of the above include directive must
have .h extension, and the following function must
have the same name of this file
 */
JNIEXPORT jstring JNICALL Java_com_jianqiang_
jnihelloworld_JniUtils_getString
        (JNIEnv *env, jobject obj) {
    return (*env)->NewStringUTF(env, "Hello Jianqiang");
}

	 4)	Add an NDK configuration in the build.gradle to generate two SO
files which support arm-32bits and arm-64bits.

apply plugin: “com.android.application”

android {
    compileSdkVersion 26
    buildToolsVersion "27.0.3"
    defaultConfig {
        applicationId "com.jianqiang.jnihelloworld"
        minSdkVersion 22
        targetSdkVersion 26
        versionCode 1
        versionName "1.0"
        �testInstrumentationRunner "android.support.test.

runner.AndroidJUnitRunner"

        ndk{
            moduleName "hello" // name of generated SO
            abiFilters "armeabi-v7a", "arm64-v8a"
        }
    }
    buildTypes {
        release {
            minifyEnabled false

Related Plug-In Techniques﻿    ◾    361

            �proguardFiles getDefaultProguardFile('proguard-
android.txt'), 'proguard-rules.pro'

        }
    }
}

	 5)	Rebuild the project; Android Studio will generate a new directory
NDK in Build/Intermediates automatically, and there are two sub-
directories Armeabi-V7a and Arm64-V8a, which stores the corre-
sponding SO file, libhello.so, shown in Figure 10.17.

FIGURE 10.17  Directory of SO.

362    ◾    Android App-Hook and Plug-In Technology﻿

10.6.2 � Using SO*
In this section, we’ll try to use the libhello.so created in Section 10.6.1.

	 1)	Create a folder named Jnilibs, then copy libhello.so to this folder, as
shown in Figure 10.18.

	 2)	Create a package com.jianqiang.jnihelloworld in the project; it’s also
the package name of libhello.so.

	 3)	Define a class JniUtils in this package and create a method get-
String() in this class, which is the same with the class and method
in libhello.so:

package com.jianqiang.jnihelloworld;

public class JniUtils {

    static {
        System.loadLibrary("hello");
    }

*	 For demo codes,Goto https://github.com/Baobaojianqiang/MySO1

FIGURE 10.18  Copy libhello.so to the folder Jnilibs.

https://github.com/

Related Plug-In Techniques﻿    ◾    363

//It must be declare using native when calling c
functions from Java and keep the names of functions
identical.
    public native String getString();
}

JniUtils has a static constructor. We always load libhello.so in the static
constructor. Because the static constructor is executed only once to make
sure this SO file is loaded only once too.

	 4)	Finally, click the button “MainActivity,” to invoke the method get-
String() of libhello.so:

public class MainActivity extends Activity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        �final Button btnShowMessage = (Button)

findViewById(R.id.btnShowMessage);
        �btnShowMessage.setOnClickListener(new View.

OnClickListener() {
            @Override
            public void onClick(View v) {
                �btnShowMessage.setText(new JniUtils().

getString());
            }
        });
    }
}

Up until now, we finish a simple demo to illustrate how to SO. When
the app is starting, the Android system will choose the corresponding SO
in the folder Arm64-V8a or Armeabi-V7a.

10.6.3 � The Principle of Loading SO

In Section 10.6.2, we created an SO file and used this SO file in another
project. I will talk about the process of loading an SO file in this section.

364    ◾    Android App-Hook and Plug-In Technology﻿

10.6.3.1 � Compiling SO*
Android supports three types of CPU: x86-based, ARM-based, and MIPS-
based. In fact, there are a few devices based on x86 or mips. Nearly all the
Android devices use ARM.

Now we only talk about ARM, which is divided into 32-bits and 64-bits:

•	 armeabi/armeabi-v7a: This is mainly used on Android 4.0 and higher
versions. The CPU of the phone must be 32-bits. However, armeabi is
a very old version; it is obsolete.

•	 arm64-v8: This is mainly used for Android 5.0 and higher versions.
The CPU of the phone must be 64-bits.

Usually, we generate multiple SO files according to the CPU types and
put them under the folder Jnilibs of the project, shown in Figure 10.19.

Actually, we don’t need to prepare so many SO files. ARM is downward-
compatible; for example, SO compiled in 32-bits can be run normally on
the 64-bits system.

Android starts one virtual machine (VM) for each app. When the
Android 64-bits system loads 32-bits SO or app, it will start two VM; one
is 64-bits, the other one is 32-bits.

So, it is enough to keep only one SO file to support armeabi-v7a in an
app. Android 64-bit systems will load it on the 32-bit VM. It reduces the
size of the app. Refer to the demo MySO1.1 in detail.

*	 For demo codes, refer to https://github.com/Baobaojianqiang/MySO1.1

FIGURE 10.19  Jnilibs, containing different SO files.

https://github.com/

Related Plug-In Techniques﻿    ◾    365

10.6.3.2 � The Process of Loading SO
Let’s have a look at the whole process of loading the SO.

If the CPU is 64-bits, we can use the following command to check which
CPUs the current phone supports. Take my phone; for example, it supports
three types of SO, arm64-v8a, armeabi-v7a, and armeabi (Figure 10.20).

All these types are stored in a sorted collection named abiList.
Iterate the directory Jnilibs in sequence. For example, the first one is

arm64-v8a. If there is a subfolder named Arm64-V8a in the folder Jnilibs
and there are SO files in the subfolder Arm64-V8a, then the Android sys-
tem will load all the SO files in the subfolder Arm64-V8a.

For example, on my Android phone, there is an SO file a.so in the sub-
folder Arm64-V8a, and there are two SO files a.so and b.so in the subfolder
Armeabi-V7a; my Android phone will load a.so in the subfolder Arm64-
V8a, but the phone won’t load b.so forever. It depends on the SO loading
mechanism in the Android system.

To reduce the app size, we keep only one SO file, which is in the sub
folder Armeabi-V7a.

32-bits ARM phones must load the SO files in armeabi-v7a.
If we want to load 32-bits SO file in a 64-bits ARM phone, we must put

all the SO files in the subfolder Armeabi-V7a. We can’t put any SO files in
the subfolder Arm64-V8a.

10.6.3.3 � Two Ways to Load SO*
There are two methods to load SO:

One way is to use System.loadLibrary(). It loads SO in the folder Jnilibs. For
example, if we want to load libhello.so, we should write the following code:

  System.loadLibrary("hello");

Another way is to use System.load(). It can load SO in any location. The
parameter of this method is the full path of the SO file.

*	 For demo codes, go to https://github.com/Baobaojianqiang/MySO2

FIGURE 10.20  Check how many types of SO files are supported in the current
mobile phone.

https://github.com/

366    ◾    Android App-Hook and Plug-In Technology﻿

These two ways both use dlopen to open SO files.
We’ve talked about how to use System.loadLibrary() in the demo

MySO1.
We can also put the SO files in the remote server. Once an app down-

loads these SO files, it will load them dynamically using the method
System.load(). Refer to the demo MySO2.

Sometimes we only generate a 32-bits SO file and put it in the folder
Assets/Armeabi-V7a.

Now if a 64-bits Android phone uses System.load() to load this SO file,
it will throw an exception, shown as follows:

dlopen failed: libhello.so is 32-bit instead of 64 bits

Because this phone is a 64-bits VM, it can only load the 64-bits SO file.
It can’t load the 32-bits SO file.

In this scenario, we need write a simple 32-bits SO file and put this SO
file in the folder Jnilibs/Armeabi-V7 as a placeholder. The 64-bits Android
system will use the 32-bits VM, rather than the 64-bits VM. So, the 64-bits
Android system can load any SO file in the folder Assets.

For example, we write an SO file libgoodbye.so, which has only one
method sayGoodBye() and returns a simple string “Goodbye baobao”
directly. Refer to the demo JniHelloWorld2 for detail.

Out libgoodbye.so in the folder Jnilibs/Armeabi-V7a of MySO2, and then
use System.loadLibrary() to load this SO file, and then use System.load() to
load libhello.so. No exception occurs. The code is shown as follows:

public class MainActivity extends Activity {
    private String soFileName = "libhello.so";

    @Override
    protected void attachBaseContext(Context newBase) {
        super.attachBaseContext(newBase);

        Utils.extractAssets(newBase, soFileName);
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {

Related Plug-In Techniques﻿    ◾    367

        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        �File dir = this.getDir("jniLibs", Activity.

MODE_PRIVATE);
       
        �File tmpFile = new File(dir.getAbsolutePath() +

File.separator + "armeabi-v7a");
        if (!tmpFile.exists()) {
            tmpFile.mkdirs();
        }

        �File distFile = new File(tmpFile.getAbsolutePath()

+ File.separator + "libhello.so");

        System.loadLibrary("goodbye");

        �if (Utils.copyFileFromAssets(this, "libhello.so",

distFile.getAbsolutePath())){
            System.load(distFile.getAbsolutePath());
        }

        �final Button btnShowMessage = (Button)

findViewById(R.id.btnShowMessage);
        �btnShowMessage.setOnClickListener(new View.

OnClickListener() {
            @Override
            public void onClick(View v) {
                �btnShowMessage.setText(new JniUtils().

getString());
            }
        });
    }
}

Loading SO dynamically is a good solution. If we don’t need to load SO
immediately, we can put all the SO files in the remote server to reduce the
size of the apk.

On the other hand, we only need one SO file in the subfolder Armeabi-
V7a to make the size of the apk smaller.

368    ◾    Android App-Hook and Plug-In Technology﻿

10.6.3.4 � The Relationship between ClassLoader and SO
In Chapter 6, we used DexClassLoader to load classes of plug-ins, shown
as follows:

        �File extractFile = this.getFileStreamPath(apkName);
        dexpath = extractFile.getPath();

        �fileRelease = getDir("dex", 0); //0 For Context.

MODE_PRIVATE

        classLoader = new DexClassLoader(dexpath,
                �fileRelease.getAbsolutePath(), null,

getClassLoader());

We always set the third parameter of the constructor of DexClassLoader
to null. This parameter is the absolute path of the SO file.

10.6.4 � A Plug-In Solution Based on System.load()*
There are two solutions for downloading SO dynamically. This section
will introduce the first solution.

In the first plug-in solution, the HostApp creates a DexClassLoader for
each plug-in to parse classes of the plug-in. We can also get the path of
each plug-in. We join these paths into a new string separated by com-
mas. We can set this new string as the third parameter of the constructor
of DexClassLoader. So, all the SO files in the HostApp and plug-in will
“enjoy the same treatment.” We use the method System.loadLibrary() to
load these SO files.

Figure 10.21 shows the project structure of MySO3.
We use only one 32-bits SO file named libgoodbye.so in our project to

reduce the size of the apk; put this file in the folder Jnilibs.
In the UPFApplication of the HostApp, we write code to load this 32-bits

SO file to make sure the Android system uses the 32-bits virtual machine
to load the other 32-bits SO file from now on.

The code is shown as follows:

public class UPFApplication extends Application {
    @Override
    protected void attachBaseContext(Context base) {
        super.attachBaseContext(base);

*	 For demo codes, go to https://github.com/Baobaojianqiang/MySO3

https://github.com/

Related Plug-In Techniques﻿    ◾    369

        System.loadLibrary("goodbye");
    }
}

The logic in the MainActivity of the HostApp:

public class MainActivity extends AppCompatActivity {

    private String dexpath = null;  //location of files

FIGURE 10.21  Project structure of MySO3.

370    ◾    Android App-Hook and Plug-In Technology﻿

    private File fileRelease = null;  //release folder
    private DexClassLoader classLoader = null;

    private String apkName = "plugin1.apk";    //apk name

    TextView tv;

    @Override
    protected void attachBaseContext(Context newBase) {
        super.attachBaseContext(newBase);
        try {
            Utils.extractAssets(newBase, apkName);
        } catch (Throwable e) {
            e.printStackTrace();
        }
    }

    @SuppressLint("NewApi")
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        File extractFile = this.getFileStreamPath(apkName);
        dexpath = extractFile.getPath();

        �fileRelease = getDir("dex", 0); //0 For Context.

MODE_PRIVATE

      //make a SO path concatenating with commas.
        �String libPaths = Utils.UnzipSpecificFile(dexpath,

extractFile.getParent());

        classLoader = new DexClassLoader(dexpath,
                �fileRelease.getAbsolutePath(), libPaths,

getClassLoader());

        tv = (TextView)findViewById(R.id.tv);
        Button btn_1 = (Button) findViewById(R.id.btn_1);
        // invoke with relection
        �btn_1.setOnClickListener(new View.

OnClickListener() {

Related Plug-In Techniques﻿    ◾    371

            @Override
            public void onClick(View arg0) {
                Class mLoadClassBean;
                try {
                    �mLoadClassBean = classLoader.

loadClass("jianqiang.com.plugin1.Bean");
                    �Object beanObject = mLoadClassBean.

newInstance();

                    �Method getNameMethod = mLoadClassBean.

getMethod("getName");
                    getNameMethod.setAccessible(true);
                    �String name = (String) getNameMethod.

invoke(beanObject);

                    tv.setText(name);
                    �Toast.makeText(getApplicationContext(), name,

Toast.LENGTH_LONG).show();

                } catch (Exception e) {
                    Log.e("DEMO", "msg:" + e.getMessage());
                }
            }
        });
    }
}

In Plugin1, we use the method getName() of Bean to invoke the method
getString() defined in libhello.so, shown as follows:

public class Bean implements IBean {
    private String name = "jianqiang";

    private ICallback callback;

    @Override
    public String getName() {
        return new JniUtils().getString();
    }

    //ommit some codes
}

372    ◾    Android App-Hook and Plug-In Technology﻿

In Plugin1, we create a class JniUtils to load the SO file, shown as follows:

public class JniUtils {
    static {
        System.loadLibrary("hello");
    }

    �//It must be declare using native when calling c
functions from Java and keep the names of functions
identical.

    public native String getString();
}

10.6.5 � An SO Plug-In Solution Based on System.loadLibrary()*
There are two solutions for downloading SO dynamically. This section
will introduce the second solution.

The plug-in can load SO files by itself, copy SO files to a new folder, and
use the method System.loadLibrary() to load them dynamically.

The solution is quite simple. I supply a demo base with ZeusStudy1.4
and modify two places, shown as follows:

	 1)	Add a 32-bits SO file named libgoodbye.so to the folder Jnilibs/
Armeabi-V7a of the HostApp. Then invoke the method System.load-
Library() in Application to load this SO file. Refer to Section 10.6.4
for details.

	 2)	In TestActivity1 of Plugin1, fetch libhello.so from the folder Assets of
plugin1.apk, and then load it with the method System.load(), shown
as follows:

public class TestActivity1 extends ZeusBaseActivity {
    private String apkName = "plugin1.apk";    //apk name
    private String soFileName = "libhello.so";

    @Override
    protected void attachBaseContext(Context newBase) {
        super.attachBaseContext(newBase);

        File extractFile = this.getFileStreamPath(apkName);

*	 For demo codes, go to https://github.com/Baobaojianqiang/ZeusStudy1.7

https://github.com/

Related Plug-In Techniques﻿    ◾    373

        String dexpath = extractFile.getPath();

        �String libPath = Utils.UnzipSpecificFile(dexpath,
extractFile.getParent());

        System.load(libPath + "/" + soFileName);
    }

    //ommit some lines of code.
}

We talk about the SO techniques in this section. We introduce two
methods for loading SO files, which means we also have two solutions for
loading the SO files of the plug-in.

10.7 � HOOKING THE PACKAGING PROCESS
In this section, I will introduce a plug-in solution based on hooking the
packaging process to resolve the conflict of resource ID. It has an inter-
esting name: Small.* It is a custom Gradle plug-in, which modifies the
PackageId of the resource ID.

10.7.1 � Gradle Plug-In Project

Many Android plug-in frameworks write Gradle script to hook the pack-
aging process to resolve the conflict of resource ID.

The Small framework provides a custom Gradle plug-in named Gradle-
Small to hook resources.arsc during the packaging process.

Let’s begin from how to write a custom Gradle plug-in.

10.7.1.1 � Create Gradle Plug-In Project†

We can’t create a Gradle plug-in project in Android Studio directly. We
can create a Module or Android Library at first, and then delete all the files
except build.gradle and the files in the folder Src/Main.

Next, we can use the project named buildSrc in code sample
TestSmallGradle1.0, shown in Figure 10.22.

Now, in build.gradle of the buildSrc project, we add configuration as
follows:

*	 https://github.com/wequick/Small
†	 For demo codes, go to https://github.com/Baobaojianqiang/TestSmallGradle1.0

https://github.com/
https://github.com/

374    ◾    Android App-Hook and Plug-In Technology﻿

apply plugin: “groovy”

dependencies {
  compile gradleApi()
  compile localGroovy()
}

And then we can create a class MyPlugin.groovy in the project build-
Src. The grammar of “groovy” is the same as Java. MyPlugin.groovy imple-
ments the interface: plug-in<Project>, shown as follows:

public class MyPlugin implements plugin<Project> {

    @Override
    void apply(Project project) {
        project.task(“testPlugin”) << {
            println "Hello gradle plugin in src"
        }
    }
}

Then, let’s create a sub folder in the folder Src/Main, shown in Figure 10.23.
In Figure 10.23, there is a file named net.wequick.small.properties; this

is the entry point of the Gradle plug-in project. The content of this file is as
follows; it will invoke the method apply() of MyPlugin:

implementation-class=com.jianqiang.MyPlugin

FIGURE 10.22  Project structure of TestSmallGradle1.0.

Related Plug-In Techniques﻿    ◾    375

At last, in build.gradle of the app, we apply a plug-in to net.wequick.
small:

apply plugin: “net.wequick.small”

Click the button “Sync Project With Gradle Files” in Android Studio,
a new task named testPlugin will occur in the Gradle panel. testPlugin is
created in MyPlugin; the definition of MyPlugin is as follows.

public class MyPlugin implements Plugin<Project> {
    @Override
    void apply(Project project) {
        project.extensions.create(“pluginSrc”, MyExtension)

        project.task(“testPlugin”) << {
            println project.pluginSrc.message
        }
    }
}

Click testPlugin in the Gradle panel; it will print log in the Gradle
Console Panel, shown as follows:

Incremental Java compilation is an incubating feature.
:testPlugin
Hello gradle plugin in src

BUILD SUCCESSFUL

Total time: 2.11 secs

FIGURE 10.23  Structure of buildSrc.

376    ◾    Android App-Hook and Plug-In Technology﻿

Up until now, we have finished the first demo.
Don’t add the following declaration in build.gradle of the root directory

in TestSmallGradle1.0; otherwise, only two tasks testPlugin and clean are
shown in the Gradle panel.

apply plugin: “net.wequick.small”

10.7.1.2 � Extension*

In Section 10.7.1.1, we have defined a task named testPlugin in MyPlugin;
it prints a message. It’s a fixed value. But we expect that the task can print
a dynamic value. We can use Extension.

First, we create MyExtension in the project buildSrc, shown as follows:

class MyExtension {
    String message
}

Next, we use MyExtension in MyPlugin; the code is as follows:

public class MyPlugin implements Plug-in<Project> {

    @Override
    void apply(Project project) {
        project.extensions.create(“pluginSrc”, MyExtension)

        project.task(“testPlugin”) << {
            println project.pluginSrc.message
        }
    }
}

In the code above, we create a new Extension, its name is pluginSrc. So,
we can use the following code in the project:

  project.pluginSrc.message.

Next, in build.gradle of the app, we apply this new plug-in net.wequick.
small to the current project and set a value for pluginSrc.message.

*	 For demo codes, go to https://github.com/Baobaojianqiang/ TestSmallGradle1.1

https://github.com/

Related Plug-In Techniques﻿    ◾    377

  apply plugin: ”net.wequick.small”

pluginSrc {
    message = “hello gradle plugin”
}

Now we execute the task testPlugin; we can find the message “hello
Gradle plug-in” is printed.

10.7.1.3 � The Hook App Packaging Process*
Gradle has a lot of internal tasks, such as preBuild. In the packaging pro-
cess of the app, Gradle will execute these tasks one by one.

Let’s create an Android project and execute the task assembleRelease in
the Gradle panel; an apk will be generated. We can see the following logs
in the Gradle console panel (Figure 10.24).

assembleRelease is the simplest task in the app packaging process. I list
some important tasks in the following table.

Task Name Functionality

processReleaseResources Exec aapt to generate a zip file, and R.java
compileReleaseJavaWithJavac Exec javac. Compile Java code to multiple .class files

Now let’s have a look at the method afterEvaluate(), shown as follows:

public class MyPlugin implements Plug-in<Project> {

    @Override
    void apply(Project project) {
   //omit some code
        project.afterEvaluate() {
            def preBuild = project.tasks['preBuild']
            preBuild.doFirst {
                println 'hookPreReleaseBuild'
            }
            preBuild.doLast {
                println 'hookPreReleaseBuild2'
            }
        }
    }
}

*	 For demo codes, go to https://github.com/Baobaojianqiang/ TestSmallGradle1.2

https://github.com/

378    ◾    Android App-Hook and Plug-In Technology﻿

The app packaging process is to execute a series of internal tasks
such as preBuild. We can get the task such as preBuild in the method
afterEvaluate().

After we get this task, we can invoke the method doFirst() or doLast() to
execute some logic before or after this task is executed.

Now I have introduced the basic knowledge of a gradle plug-in. In
Section 10.7.2, I will talk about how to hook the app packaging process.

FIGURE 10.24  Console log when executing assembleRelease.

Related Plug-In Techniques﻿    ◾    379

10.7.2 � Modify resources.arsc

In Section 8.3.1, I introduced a scenario. When we merge all the resource
IDs of the HostApp and the plug-in together, the resource ID may conflict
between these two apks. The solution is to rewrite the command aapt to
specify different PackageIds for different plug-ins.

In this section, I will introduce another solution. After the command
aapt is executed, we modify R.java and resources.arsc in the Gradle plug-in.

10.7.2.1 � How to Find Resources in Android
Let’s have a look at how to search for resources in the Android system.
There are two classes involved in this process, as follows:

	 1)	Resources find the file name of the resource by resource ID. It is a 1:1
mapping between the resource ID and the file name. This mapping
is stored in resources.arsc. Resources search this file to find the cor-
responding file name.

	 2)	AssetManager finds the resource by the resource name.

Figure 10.25 shows this process in detail.

FIGURE 10.25  How to get resources in AssetManager and Resources.

380    ◾    Android App-Hook and Plug-In Technology﻿

10.7.2.2 � Function of aapt
What does the command aapt do in the app packaging process? Refer to
Figure 10.26 for details.

In Figure 10.26, there are three steps, shown as follows:

	 1)	Zip all the resources into a file.

	 2)	Generate the resource ID for each resource and save this 1:1 mapping
between the resource ID and the file name in resources.arsc.

	 3)	Write resource ID for each resource in R.java.

After the command aapt is executed, it will execute javac, which will com-
pile all Java files include R.java.

We can add our own logic after the command aapt has been executed
and before the command javac has been executed.

10.7.2.3 � The Principle of Gradle-Small
Let’s talk about the principle of Gradle-Small: reset the PackageId for each
resource ID in R.java and resources.arsc.

We also find there are a lot of redundant resources in resources.arsc. The
packages like AppCompat and Design are stored in resources.arsc. It means
if there are two plug-ins in the HostApp, the packages AppCompat and
Design will have three duplicate copies.

FIGURE 10.26  Generation after executing aapt.

Related Plug-In Techniques﻿    ◾    381

The function of Gradle-Small is to remove these redundant resources
in the plug-in; we keep the packages like AppCompat and Design only in
the HostApp.

10.7.2.4 � How to Use Gradle-Small
Because Gradle-Small has been uploaded to JCenter, we can use it by
declaring it in build.gradle. On the other hand, Gradle-Small is open
source, so we can include it in our plug-in project and use it directly after
we compile the current project.

Gradle-Small supplies some tasks for us, and we can find them in the
Gradle panel of Android Studio, shown as follows:

•	 buildBundle: It’s used in plug-in packaging.

•	 buildLib: It’s used in class library packaging.

•	 small: It’s also a task used to summarize the information of all the
plug-ins, as shown in Figure 10.27, the PackageId of lib is 0x79.

10.7.2.5 � The Family of Plug-Ins Defined in Gradle-Small
There is a lot of custom plug-ins and Extensions in Gradle-Small, as shown
in Figures 10.28 and 10.29.

Let’s focus on one family of plug-ins, which is the core of Gradle-Small.

	 1)	BasePlugin

BasePlugin is an ancestor of the plug-in family. It divides the method
apply() into three methods, shown as follows:

•	 createExtension()

•	 configureProject()

•	 createTask()

FIGURE 10.27  Outputs after executing the task small.

382    ◾    Android App-Hook and Plug-In Technology﻿

FIGURE 10.28  Family of plug-ins.

FIGURE 10.29  Family of Extension.

Related Plug-In Techniques﻿    ◾    383

public abstract class BasePlugin implements
Plugin<Project> {
    void apply(Project project) {
        this.project = project

        createExtension()
        configureProject()
        createTask()
    }
}

The descendants of BasePlugin will override these three methods.

	 2)	RootPlugin

RootPlugin is the entry point of Gradle-Small; it takes the role of function
main(). In the method configureProject() of RootPlugin, it dispatches the
request to the other plug-ins, shown as follows:

•	 HostPlugin: Correspond to the project app; in this scenario, its
HostApp.

•	 AppPlugin: Correspond to the project which has a prefix app, such
as app.about, in this scenario, all the plug-ins belong to AppPlugin.

•	 LibraryPlugin: Corresponds to the project which has a prefix lib, such
as lib.style, in this scenario, it’s a class library used by the HostApp
and plug-in app.

•	 AssetPlugin: Corresponds to the project which only has resources.
This project does not have any code.

I list four plug-in classes corresponding to four files in the folder META-
INF in Figure 10.30.

FIGURE 10.30  Files in META-INF.

384    ◾    Android App-Hook and Plug-In Technology﻿

In the method configureProject() of RootPlugin, it starts the compiling
process of AppPlugin or LibraryPlugin; the code is shown as follows:

switch (type) {
    case “App”:
        it.apply plugin: AppPlugin
        rootExt.appProjects.add(it)
        break;
    case “lib”:
        it.apply plugin: LibraryPlugin
        rootExt.libProjects.add(it)
        break;

	 3)	LibraryPlugin

LibraryPlugin is used to handle the class library in the Android app.

	 4)	AppPlugin

This is the core class for resolve the conflict of resource ID.
The method initPackageId() of AppPlugin will generate a new PackageId

for each plug-in, such as 0x79. Of course, we can configure this PackageId
manually in Extension. The value will be saved in a global array named
sPackageIds; we will use it later.

The method hookVariantTask() of AppPlugin is responsible for hooking
the Android app packaging process, shown as follows:

protected void hookVariantTask(BaseVariant variant) {
    hookMergeAssets(variant.mergeAssets)
    hookProcessManifest(small.processManifest)
    hookAapt(small.aapt)
    �hookJavac(small.javac, variant.buildType.
minifyEnabled)

    �def mergeJniLibsTask = project.tasks.
withType(TransformTask.class).find {

        �it.transform.name == 'mergeJniLibs' &&
it.variantName == variant.name

    }

Related Plug-In Techniques﻿    ◾    385

    hookMergeJniLibs(mergeJniLibsTask)

    // Hook clean task to unset package id
    project.clean.doLast {
        sPackageIds.remove(project.name)
    }
}

The method hookVariantTask() executes five methods which have the
prefix hook. Let’s introduce the most important methods as follows:

•	 hookAapt()

This method intercepted the original task processReleaseResources. It
means we can add our own logic after the command aapt is executed.

aapt generates R.java; this file defines the resource ID for each resource;
we change the PackageId of each resource to 0x79. And then we put R.java
in a new location; we will use this file in the method hookJavac(). I will
introduce this later.

aapt also produces a package, including AndroidManifest.xml, resources.
arsc, and all the resources. We unzip this package and fetch resources.arsc
from it. We change the PackageId of each resource in resources.arsc to
0x79.

This method also removes libraries like AppCompat and Design.

•	 hookJavac()

This method intercepted the original task compileReleaseJavaWith-
Javac. It means we can remove some resource files such as R$drawable.
class after the Java code is compiled to the .class files by the command
javac. We must delete these files because the resource IDs stored in these
files have the same prefix 0x7f.

In the method hookAapt(), we change the PackageId to 0x79 in R.Java
and put this file in a new location. After we delete the files like R$drawable.
class, we can execute the command javac to compile R.Java to R.class.

10.7.2.6 � The Family of Editors Defined in Gradle-Small
Finally, let’s have a look at how to modify resources.arsc. It’s implemented
by a series of Editors in Gradle-Small, as shown in Figure 10.31.

386    ◾    Android App-Hook and Plug-In Technology﻿

ArscEditor is the most important Editor in Figure 10.31.
Resource IDs are saved in the sections “Package Header” and “Type

Spec & Type Info” in Figure 10.32. We change the PackageId from 0x7f to
0x79.

Refer to the author’s blog for detail*. We won’t spend much time on it.
It’s difficult to read the source code of Gradle-Small. My suggestion is

to write logs at the beginning and end of each method of Gradle-Small.

*	 Author’s blog: https://github.com/wequick/Small/tree/master/Android/DevSample/buildSrc

FIGURE 10.31  Family of Editors.

FIGURE 10.32  Structure of resources.arsc.

https://github.com/

Related Plug-In Techniques﻿    ◾    387

When we execute a task generated by Gradle-Small, we can find how many
methods are invoked from logs, shown as follows:

private def hookAapt(ProcessAndroidResources aaptTask) {
  Console.println('AppPlugin_hookAapt')
  Console.println(aaptTask)

  aaptTask.doLast { ProcessAndroidResources it ->
  � // Unpack resources.ap_
   File apFile = it.packageOutputFile

10.8 � COMPATIBILITY WITH ANDROID O AND P
In the previous chapters, I introduced a plug-in technique based on
Android 7.0. All the samples can be found on my GitHub. When you run
the demo on your phone with the Android O or P system, you may get an
exception during runtime. This section discusses how to fix these bugs in
these two Android systems.

Note: I list some popular mappings between Android system names,
versions, and API level in the following table:

Android System Version API level

P 28
Oreo 8.1 27
Oreo 8.0 26
Nougat 7.1 25
Nougat 7.0 24
Marshmallow 6.0 23

Note: for the sample code refer to https://
github.com/BaoBaoJianqiang/ZeusStudy1.2.

Switch to branch api26+ and have a look at the log as follows:

https://github.com/
https://github.com/

388    ◾    Android App-Hook and Plug-In Technology﻿

10.8.1 � Compatibility with Android O

In this section, we focus on the Android O system. We will discuss the
modifications from Android N to O and introduce a solution for the com-
patibility of the Android O system.

10.8.1.1 � Refactor of AMN
ActivityManagerNative (AMN) is modified in every Android system.

AMN has a field gDefault; its definition in API 25 is as follows:

public abstract class ActivityManagerNative extends
Binder implements IActivityManager {
    �private static final Singleton<IActivityManager>
gDefault = new Singleton<IActivityManager>() {

        protected IActivityManager create() {
            IBinder b = ServiceManager.getService("activity");
            if (false) {
                �Log.v("ActivityManager", "default service

binder = " + b);
            }
            IActivityManager am = asInterface(b);
            if (false) {
                �Log.v("ActivityManager", "default service = " +

am);
            }
            return am;
        }
    };
}

We can obtain the field gDefault of AMN by reflection, execute the
method create() of gDefault. The method create() returns an object which
implements the interface IActivityManager.

We can hook this IActivityManager object by the method Proxy.new-
ProxyInstance(), intercept its method startActivity(), and replace the
original Activity which is not declared in AndroidManifest.xml with a
StubActivity declared in AndroidManifest.xml. The code is as follows:

public static void hookAMN() throws
ClassNotFoundException,
            NoSuchMethodException, InvocationTargetException,
            IllegalAccessException, NoSuchFieldException {
 

Related Plug-In Techniques﻿    ◾    389

        �//Gets the gDefault singleton of AMN, which is
final and static

        �Object gDefault = RefInvoke.
getStaticFieldObject("android.app.
ActivityManagerNative", "gDefault");

        �// The gDefault is an android.util.singleton <T>
object; We pull out the mInstance field in this
singleton

        �Object mInstance = RefInvoke.
getFieldObject("android.util.Singleton", gDefault,
"mInstance");

 
        �// Create a proxy object for this object,

MockClass1, and replace the field with our proxy
object to help with the work

        �Class<?> classB2Interface = Class.
forName("android.app.IActivityManager");

        Object proxy = Proxy.newProxyInstance(
                Thread.currentThread().getContextClassLoader(),
                new Class<?>[] { classB2Interface },
                new MockClass1(mInstance));

        //Change gDefault's mInstance field to proxy
        Class class1 = gDefault.getClass();
        �RefInvoke.setFieldObject("android.util.Singleton",

gDefault, "mInstance", proxy);
    }

We introduced the logic in the above code in Chapter 5 in detail.
Unfortunately, it doesn’t work on Android O (API level 26), and the value
of gDefault is null, shown as follows:

Object gDefault = RefInvoke.getStaticFieldObject
("android.app.ActivityManagerNative", "gDefault");

In Android O, the field gDefault is removed from AMN. Another field
IActivityManagerSingleton defined in ActivityManager plays the same role as
gDefault. This means we can use this field instead of gDefault, shown as follows:

Object gDefault = RefInvoke.
getStaticFieldObject("android.app.ActivityManager",
"IActivityManagerSingleton");

390    ◾    Android App-Hook and Plug-In Technology﻿

To be compatible with all Android systems, we use an “if…else...” state-
ment to handle the differences among different Android scenarios, shown
as follows:

Object gDefault = null;
        if (android.os.Build.VERSION.SDK_INT <= 25) {
            �//Gets the gDefault singleton of AMN, which

is  static
            �gDefault = RefInvoke.getStaticFieldObject("android.

app.ActivityManagerNative", "gDefault");
        } else {
            �//Obtain the ActivityManager singleton

IActivityManagerSingleton, he really is the
gDefault before

            �gDefault = RefInvoke.getStaticFieldObject("android.
app.ActivityManager", "IActivityManagerSingleton");

        }

10.8.1.2 � The Story of Element and DexFile
Now let’s review the process of how to load the class of a plug-in. In this
book, I have introduced three mechanisms as follows:

	 1)	Create a ClassLoader for each plug-in, and use the corresponding
ClassLoader to load the classes of the plug-in.

	 2)	Combine all the dexes of the plug-ins into the dex array of the
HostApp.

	 3)	The HostApp uses its original ClassLoader to load classes in the
HostApp. The HostApp can’t use its original ClassLoader to load classes
in the plug-in app. So we write a new ClassLoader and replace the orig-
inal ClassLoader with this new ClassLoader. This new ClassLoader has
a collection storing all the ClassLoaders for each plug-in. It will try to
load a class in the HostApp at first, and if not found it will iterate its
internal collection to find which ClassLoader can load this class.

The second mechanism is the simplest solution, shown as follows:

public final class BaseDexClassLoaderHookHelper {
 
    �public static void patchClassLoader(ClassLoader cl,
File apkFile, File optDexFile)

Related Plug-In Techniques﻿    ◾    391

            �throws IllegalAccessException,
NoSuchMethodException, IOException,
InvocationTargetException,
InstantiationException, NoSuchFieldException {

        // Obtain BaseDexClassLoader : pathList
        �Object pathListObj = RefInvoke.

getFieldObject(DexClassLoader.class.
getSuperclass(), cl, "pathList");

 
        // obtain PathList: Element[] dexElements
        �Object[] dexElements = (Object[]) RefInvoke.

getFieldObject(pathListObj, "dexElements");
 
        // Element type
        �Class<?> elementClass = dexElements.getClass().

getComponentType();
 
        // Create an array to replace the original array
        �Object[] newElements = (Object[]) Array.

newInstance(elementClass, dexElements.length + 1);
 
        �// Construct the plugin Element(File file, boolean

isDirectory, File zip, DexFile dexFile)
        �Class[] p1 = {File.class, boolean.class, File.

class, DexFile.class};
        �Object[] v1 = {apkFile, false, apkFile, DexFile.

loadDex(apkFile.getCanonicalPath(), optDexFile.
getAbsolutePath(), 0)};

        �Object o = RefInvoke.createObject(elementClass,
p1, v1);

 
        Object[] toAddElementArray = new Object[] { o };
        // The original elements are copied in
        �System.arraycopy(dexElements, 0, newElements, 0,

dexElements.length);
        // Copy the element of the plugin
        �System.arraycopy(toAddElementArray, 0,

newElements, dexElements.length,
toAddElementArray.length);

 
        // replace

392    ◾    Android App-Hook and Plug-In Technology﻿

        �RefInvoke.setFieldObject(pathListObj,
"dexElements", newElements);

    }
}

In the code above, let’s pay attention to the following code lines, we
execute the constructor of Element, but unfortunately, in the Android O
system, this constructor is discarded:

Class[] p1 = {File.class, boolean.class, File.class,
DexFile.class};
Object[] v1 = {apkFile, false, apkFile, DexFile.
loadDex(apkFile.getCanonicalPath(), optDexFile.
getAbsolutePath(), 0)};
Object o = RefInvoke.createObject(elementClass, p1, v1);
Object[] toAddElementArray = new Object[] { o };

In addition, DexFile, which is used as a parameter in this constructor,
is also discarded in Android O. Google explains that DexFile is only avail-
able inside the Android system, not open to app developers.

We can execute the method makeDexElements() of the DexPathList
class to generate dex in the plug-in.

 � List<File> legalFiles = new ArrayList<>();
  legalFiles.add(apkFile);

List<IOException> suppressedExceptions = new
ArrayList<IOException>();
 
 � Class[] p1 = {List.class, File.class, List.class,
ClassLoader.class};

 � Object[] v1 = {legalFiles, optDexFile,
suppressedExceptions, cl};

  Object[] toAddElementArray = (Object[])
 � RefInvoke.invokeStaticMethod("dalvik.system.
DexPathList", "makeDexElements", p1, v1);

The code above is also available in the previous versions of the Android
system. This means we find a better method suitable for all the Android
systems.

Related Plug-In Techniques﻿    ◾    393

10.8.2 � Compatibility with Android P

The impact of Android P on plug-ins is mainly in two aspects. One is the
modification of the class H, and the other is the modification of the class
Instrumentation.

10.8.2.1 � The Modification of the Class H
10.8.2.1.1 � Starting from Message and Handler
Android developers are familiar with two classes: Message and Handler.
Let’s have a quick review of how to send or receive a message in the
Android system.

When the Android system starts a new app process, it will create
ActivityThread at first; ActivityThread is the main thread and is also called
the UI thread. The function main() of the app doesn’t exist in the app
itself; it’s “hidden” in ActivityThread,

In the function main(), MainLooper is created. MainLooper is an end-
less loop that is responsible for receiving messages.

The class Message is defined as follows. It has three fields, what and obj
is open to app developers, but target is a private field, and it’s a Handler
object.

public final class Message implements Parcelable {
  public int what;
  public Object obj;
  Handler target;

  //ignore some code
}

In the app process, each lifecycle method of the Application and the four
components communicates with the AMS process frequently, as follows:

•	 The app process passes the data to the AMS process by AMN.

•	 The AMS process passes the data to the app process and the app uses
ApplicationThread to receive the data from the AMS.

ApplicationThread invokes the method sendMessage() after it receives
data. The method sendMessage() will send a message to the endless loop
of MainLooper.

394    ◾    Android App-Hook and Plug-In Technology﻿

Now let’s analyze how to handle the message in the MainLooper. Each
message has a field target. When a message is thrown into the MainLooper,
the Android system will invoke the method dispatchMessage() of the tar-
get to dispatch the message to the corresponding class to handle it. The
field target is a Handler object.

It’s time to have a look at the structure of the class Handler, shown as
follows:

public class Handler {
    final Callback mCallback;

    public interface Callback {
        public boolean handleMessage(Message msg);
    }

    public void handleMessage(Message msg) {
    }
   
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
}

The method handleMessage(Message msg) of Handler has no logic, so
we always write a subclass which inherits from Handler and overrides the
method handleMessage().

In the Android system, this subclass is H. H is an inner class defined in
ActivityThread, shown as follows:

public final class ActivityThread {
    private class H extends Handler {
        public static final int LAUNCH_ACTIVITY        = 100;

Related Plug-In Techniques﻿    ◾    395

        public static final int PAUSE_ACTIVITY          = 101;
        �public static final int PAUSE_ACTIVITY_FINISHING=

102;
        public static final int STOP_ACTIVITY_SHOW    = 103;
        public static final int STOP_ACTIVITY_HIDE      = 104;
        public static final int SHOW_WINDOW            = 105;
        public static final int HIDE_WINDOW            = 106;
        public static final int RESUME_ACTIVITY        = 107;
        public static final int SEND_RESULT              = 108;
        public static final int DESTROY_ACTIVITY        = 109;
        public static final int BIND_APPLICATION        = 110;
        public static final int EXIT_APPLICATION        = 111;
        public static final int NEW_INTENT              = 112;
        public static final int RECEIVER                = 113;

        //ignore some code

        public void handleMessage(Message msg) {
            switch (msg.what) {
                case LAUNCH_ACTIVITY: {
                    �final ActivityClientRecord r =

(ActivityClientRecord) msg.obj;

                    r.packageInfo = getPackageInfoNoCheck(
                            �r.activityInfo.applicationInfo,

r.compatInfo);
                    �handleLaunchActivity(r, null,

"LAUNCH_ACTIVITY");
                } break;
           
          //ignore some code
            }
        }
    }
}

The method handleMessage(Message msg) of H is used to dispatch the
message to the different branches; for example, in the above code snippets,
if msg.what is equal to LAUNCH_ACTIVITY, it will launch an Activity.

LAUNCH_ACTIVITY is a const, equal to 100. There are a lot of consts
declared in ActivityThread. For example, PAUSE_ACTIVITY is equal
to 101. From 100 to 109, all these consts are prepared for the lifecycle

396    ◾    Android App-Hook and Plug-In Technology﻿

method of Activity. From 110, they are prepared for Application, Service,
ContentProvider, and BroadcastReceiver.

Up until now, we have discussed the process of sending and receiving
messages in Android. We need to remember the following two points:

•	 There is a field mCallback in the class Handler.

•	 H is used to handle different messages.

10.8.2.1.2 � Plug-In solutions before Android P
Before Android P (API level 28), we hook the field Callback of H and inter-
cepted the method handleMessage() of H, shown as follows:

class MockClass2 implements Handler.Callback {

    Handler mBase;

    public MockClass2(Handler base) {
        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {

        switch (msg.what) {
            case 100:
                handleLaunchActivity(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

    private void handleLaunchActivity(Message msg) {
        Object obj = msg.obj;

        �Intent raw = (Intent) RefInvoke.

getFieldObject(obj, "intent");

        �Intent target = raw.getParcelableExtra(AMSHookHelp

er.EXTRA_TARGET_INTENT);

Related Plug-In Techniques﻿    ◾    397

        raw.setComponent(target.getComponent());
    }
}

We have discussed MockClass2 in Section 5.2.4.

10.8.2.1.3 � New message mechanism in Android P
Android P refactors the process of messages used in Activity. We have
introduced that there are ten messages defined in ActivityThread from
100 to 109 and prepared for Activity. These ten messages are missing in
ActivityThread; there is a new message EXECUTE_TRANSACTION equal
to 159 defined in ActivityThread.

Why did Google make this change? Because Activity has a lot of lifecycle
methods, and these methods form a state machine, shown in Figure 10.33.

FIGURE 10.33  State machine of lifecycle methods in Activity.

398    ◾    Android App-Hook and Plug-In Technology﻿

It’s not convenient to write a lot of branches in the method handleMes-
sage() of H, shown as follows:

    private class H extends Handler {
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case LAUNCH_ACTIVITY: {
                    �final ActivityClientRecord r =

(ActivityClientRecord) msg.obj;

                    r.packageInfo = getPackageInfoNoCheck(
                            �r.activityInfo.applicationInfo,

r.compatInfo);
                    �handleLaunchActivity(r, null,

"LAUNCH_ACTIVITY");
                } break;
           
          //ignore some code
            }
        }
    }

We create a class for each state; for example, we create LaunchActivityItem
to replace the branch LAUNCH_ACTIVITY, shown in Figure 10.34.

In Android P, we can remove these ten branches in the method han-
dleMessage() of H, and the implementation of LaunchActivityItem is as
follows:

FIGURE 10.34  Activity lifecycle family.

Related Plug-In Techniques﻿    ◾    399

public class LaunchActivityItem extends
ClientTransactionItem {
 
  @Override
 � public void execute(ClientTransactionHandler client,
IBinder token,

            �PendingTransactionActions pendingActions) {
  � ActivityClientRecord r = new

ActivityClientRecord(token, mIntent, mIdent,
mInfo,

   � mOverrideConfig, mCompatInfo, mReferrer,
mVoiceInteractor, mState, mPersistentState,

                �mPendingResults, mPendingNewIntents,
mIsForward,

                mProfilerInfo, client);
  � client.handleLaunchActivity(r, pendingActions,

null /* customIntent */);
  }
}

Although we create a lot of classes for each state, the code in the method
handleMessage() of H is less. It fits in the open–close principle. We can
have more than 100 classes, but we can’t write all the code into one class.

10.8.2.1.4  Hook class H in Android P
Android P deletes ten messages from 100 to 109 in the method han-
dleMessage() of H, and adds a new message equal to 159, named
EXECUTE_TRANSACTION.

This modification causes the plug-in framework not to work in Android
P because we use MockClass2 to intercept the message equal to 100, shown
as follows:

class MockClass2 implements Handler.Callback {

    Handler mBase;

    public MockClass2(Handler base) {
        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {

400    ◾    Android App-Hook and Plug-In Technology﻿

        switch (msg.what) {
            case 100:
                handleLaunchActivity(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

Now we need intercept the message equal to 159, and dispatch a differ-
ent state to a different branch, shown as follows:

class MockClass2 implements Handler.Callback {

    Handler mBase;

    public MockClass2(Handler base) {
        mBase = base;
    }

    @Override
    public boolean handleMessage(Message msg) {

        switch (msg.what) {
            case 100:  //below API 28
                handleLaunchActivity(msg);
                break;
            case 159:  //for API 28
                handleActivity(msg);
                break;
        }

        mBase.handleMessage(msg);
        return true;
    }

    private void handleActivity(Message msg) {
        Object obj = msg.obj;

        �List<Object> mActivityCallbacks = (List<Object>)

RefInvoke.getFieldObject(obj, "mActivityCallbacks");

Related Plug-In Techniques﻿    ◾    401

        if(mActivityCallbacks.size() > 0) {
            �String className = "android.app.

servertransaction.LaunchActivityItem";
            �if(mActivityCallbacks.get(0).getClass().

getCanonicalName().equals(className)) {
                Object object = mActivityCallbacks.get(0);
                �Intent intent = (Intent) RefInvoke.

getFieldObject(object, "mIntent");
                �Intent target = intent.getParcelableExtra(AMSHo

okHelper.EXTRA_TARGET_INTENT);
                intent.setComponent(target.getComponent());
            }
        }
    }
}

10.8.2.2 � The Refactoring of the Class Instrumentation
Before Android P, the logic of the method newActivity() of Instrumentation
is as follows:

public Activity newActivity(ClassLoader cl, String
className, Intent intent)
  � throws InstantiationException,

IllegalAccessException, ClassNotFoundException {
 � return (Activity)cl.loadClass(className).
newInstance();

}

Android P rewrites the logic of Instrumentation. In the method
newActivity() of Instrumentation, it will check the field mThread of
Instrumentation. If it is empty, it will throw an exception:

public class Instrumentation {
    �public Activity newActivity(ClassLoader cl, String
className,

            Intent intent)
            �throws InstantiationException,

IllegalAccessException,
            ClassNotFoundException {
        �String pkg = intent != null && intent.

getComponent() != null

402    ◾    Android App-Hook and Plug-In Technology﻿

                �? intent.getComponent().getPackageName() :
null;

        �return getFactory(pkg).instantiateActivity(cl,
className, intent);

    }

    private AppComponentFactory getFactory(String pkg) {
        if (pkg == null) {
            �Log.e(TAG, "No pkg specified, disabling

AppComponentFactory");
            return AppComponentFactory.DEFAULT;
        }
        if (mThread == null) {
            �Log.e(TAG, "Uninitialized ActivityThread, likely

app-created Instrumentation,"
                    �+ " disabling AppComponentFactory", new

Throwable());
            return AppComponentFactory.DEFAULT;
        }
        �LoadedApk apk = mThread.peekPackageInfo(pkg, true);
        // This is in the case of starting up "android".
        �if (apk == null) apk = mThread.getSystemContext().

mPackageInfo;
        return apk.getAppFactory();
    }
}

In Chapter 5, we introduced a hooking solution to intercept the method
execStartActivity() of Instrumentation, as follows:

public class HookHelper {

    public static void attachContext() throws Exception{
        �Object currentActivityThread = RefInvoke.

invokeStaticMethod("android.app.ActivityThread",
"currentActivityThread");

        �Instrumentation mInstrumentation =

(Instrumentation) RefInvoke.getFieldObject(current
ActivityThread, "mInstrumentation");

        �Instrumentation evilInstrumentation = new EvilInst

rumentation(mInstrumentation);

Related Plug-In Techniques﻿    ◾    403

        �RefInvoke.setFieldObject(currentActivityThread,
"mInstrumentation", evilInstrumentation);

    }
}

public class EvilInstrumentation extends
Instrumentation {

    private static final String TAG =
"EvilInstrumentation";

    Instrumentation mBase;

    public EvilInstrumentation(Instrumentation base) {
        mBase = base;
    }

    public ActivityResult execStartActivity(
            �Context who, IBinder contextThread, IBinder

token, Activity target,
            Intent intent, int requestCode, Bundle options) {

        Log.d(TAG, "hello guys");

        Class[] p1 = {Context.class, IBinder.class,
                IBinder.class, Activity.class,
                Intent.class, int.class, Bundle.class};
        Object[] v1 = {who, contextThread, token, target,
                intent, requestCode, options};

        �return (ActivityResult) RefInvoke.

invokeInstanceMethod(
                mBase, "execStartActivity", p1, v1);
    }
}

In the code above, we replace the original Instrumentation with
EvilInstrumentation. But it doesn’t work in Android P. It will throw an
exception, as follows:

Uninitialized ActivityThread, likely app-created
Instrumentation.

404    ◾    Android App-Hook and Plug-In Technology﻿

We find the root cause of this exception, the field mThread of
EvilInstrumentation, is empty.

To solve this bug, we must rewrite the method newActivity() of
EvilInstrumentation, shown as follows:

public class EvilInstrumentation extends
Instrumentation {
    //ignore some code

    �public Activity newActivity(ClassLoader cl, String
className,

                                Intent intent)
            �throws InstantiationException,

IllegalAccessException,
            ClassNotFoundException {

        return mBase.newActivity(cl, className, intent);
    }
}

When EvilInstrumentation executes its method newActivity(), the orig-
inal method newActivity() of Instrumentation will be executed. The field
mThread of Instrumentation is not null, so the exception above won’t be
thrown up.

Note: For the sample code refer to https://github.com/BaoBaoJianqiang/
Hook15. Switch to the branch named api26+; the log is as follows:

In this chapter, I introduced the compatibility of plug-ins with Android
O and P. As Google releases a new version of the Android system every
year, we need to keep an eye on the changes which cause plug-in frame-
work to stop functioning correctly.

10.9 � SUMMARY
In this chapter, we have introduced a lot of problems with plug-in tech-
niques. It’s not only useful for plug-ins but widely used in other domains.

https://github.com/
https://github.com/

405

C h a p t e r 11

Summary of Plug-In
Technology

In the previous chapters, we introduced the history of plug-in
technology, different plug-in solutions, and a lot of well-known plug-in

frameworks.
We’ll review all these concepts and techniques in this summary chapter.

11.1 � PLUG-IN ENGINEERING
There are always more than three projects in the plug-in: HostApp,
MyPluginLibrary, Plugin1, and perhaps other plug-in projects.

The HostApp and the plug-in app all depend on MyPluginLibrary.
Chapter 6 describes how to create one solution with all the three proj-

ects in Android Studio; we can debug from the HostApp to Plugin1 or
MyPluginLibrary.

Refer to Section 10.4 for plug-in signing and obfuscation.
Refer to Section 10.5 for incremental updates using plug-ins.

11.2 � CLASS LOADING IN THE PLUG-IN
It is impossible to use the ClassLoader of the HostApp to load the classes
of Plugin1. We have three solutions to load classes from Plugin1:

	 1)	Use the ClassLoader of Plugin1 to load classes from Plugin1. Refer to
Chapter 6.

Android App-Hook and Plug-In Technology Summary of Plug-In Technology

406    ◾    Android App-Hook and Plug-In Technology﻿

	 2)	The app stores its dexes in an array. We combine all the dexes of
all the plug-ins into the dex array of the HostApp. This means the
ClassLoader of the HostApp can load any class whether this class in
the HostApp or the plug-in. Refer to Section 8.2.3.

	 3)	Write a custom ClassLoader to replace the original ClassLoader of
the HostApp. In this custom ClassLoader, declare a collection to
store all the ClassLoaders of the HostApp and the plug-ins. If we
use this custom ClassLoader to load one class, it will traverse each
ClassLoader stored in the collection to check which ClassLoader can
load that particular class. Refer to Section 8.2.6.

11.3 � WHICH CLASS OR INTERFACE CAN BE HOOKED?
“Once a lie starts, it can never be stopped. You need to continuously patch
it up.”

We always use this phrase to describe the DroidPlugin framework.
DroidPlugin can nearly hook all the classes of the Android system.

Refer to Chapter 5 for more information about hooking technology. It’s
easy to identify which class we can hook, shown as follows:

	 1)	Classes which are open to the app developers

Most of the classes and methods in the Android system are not open to
app developers. If we want to use them, we must use reflection. We can’t
hook these classes or methods.

We can only hook the classes which are open to app developers. For
example, we can hook Instrumentation and Callback, but we can’t hook H.

We can create a class named EvilInstrumentation, which inherits
Instrumentation; we can use an instance of EvilInstrumentation to replace
the original instance of Instrumentation.

	 2)	Classes which implement the interface

If one class implements an interface, we can use Proxy.newProxyInstance()
to intercept the methods of this class. For example, ActivityManagerNative
implements the interface IActivityManager, so we can hook
ActivityManagerNative.

Another interface introduced in this book is IPackageManager.

	 3)	Collection

Summary of Plug-In Technology﻿    ◾    407

Most of the classes and methods are not open to app developers, but if
there is a collection field in the class we can add an element to this collec-
tion using reflection.

A typical example is to create a LoadedApk object and put it into the
cache “in advance,” as shown in Section 8.2.2.

11.4 � A PLUG-IN SOLUTION FOR ACTIVITY
Generally, plug-in solutions can be divided into Dynamic-Proxy and
Static-Proxy.

	 1)	Dynamic-Proxy is referred to in Section 8.2. Create an empty
StubActivity in the HostApp as a placeholder. Start ActivityA of the
plug-in but tell the AMS to start the StubActivity. After cheating the
AMS successfully, change the StubActivity to ActivityA. We need to
hook a lot of classes to finish this mechanism.

	 2)	Static-Proxy is referred to in Chapter 9. Create a ProxyActivity in
the HostApp that determines which Activity of plug-in to launch.
The Activities of the plug-in don’t have a lifecycle, so in the lifecy-
cle method of ProxyActivity, we invoke the corresponding lifecycle
method of the plug-in.

In addition, we need support the LaunchMode of the Activity of the plug-
in. Refer to Section 8.2.5 and 9.1.7

To launch the Activity from the plug-in, we also need to load the
resources of the Activity of the plug-in. Let’s review this technique in
Section 11.5.

11.5 � A PLUG-IN SOLUTION FOR RESOURCES
Resources are only used in an Activity.

The app loads the resources with the method addAssetPath(String dex-
Path) of AssetManager; the parameter dexPath is the location of the apk.

In the HostApp, the original AssetManager can only load the resources
of the HostApp, and can’t load the resources of Plugin1. We have two solu-
tions for this limitation:

	 1)	When we navigate from the HostApp to Plugin1, we create a new
AssetManager to load the resources of Plugin1.

408    ◾    Android App-Hook and Plug-In Technology﻿

When we jump from Plugin1 to the HostApp, we switch to the original
AssetManager to load resources from the HostApp.

Refer to Chapter 7 for the implementation of this solution.

	 2)	In the HostApp, invoke the method addAssetPath(String dexPath)
of AssetManager. If there are three plug-ins, we need to invoke this
method three times. We set the parameter dexPath to the path of
Plugin1, Plugin2, and Plugin3. After we invoke this method three
times, the resources of the HostApp will contain all the resources,
including from the HostApp, Plugin1, Plugin2, and Plugin3.

We need to store all these resources in a global variable so that the HostApp
and plug-ins can visit them.

Refer to Section 9.1.4 for the implementation of this solution.
In solution 2, we need to merge the resource IDs of the HostApp and all

the plug-ins. But the value of the resource ID of the HostApp may conflict
with the value of the resource ID of the plug-in. We have two solutions to
resolve this issue:

	 1)	Modify the command aapt by adding a new argument for this com-
mand to specify the PackageId of the resource ID, such as 0x71. Refer
to Section 10.1.2.

	 2)	Hook the packaging process. After the command aapt is executed,
the file R.java and resources.arsc are generated. We can modify these
two files to replace the PackageId of the resource ID with 0x71. Refer
to Section 10.7 for details.

11.6 � USE FRAGMENT IN THE PLUG-IN
I Once confused the differences between Fragment and Activity.

The biggest difference is that Activity needs to communicate with the
AMS frequently, but Fragment doesn’t need to do that. The Fragment is
just like a CustomView that lives in the Activity.

Because Fragment needn’t communicate with the AMS, we needn’t
declare Fragment in the AndroidManifest.xml. Thus we have a new plug-
in solution to write only one Activity in the app. All the pages are imple-
mented by Fragment. This one Activity hosts all the Fragments, whether
the Fragment comes from the HostApp or the plug-in.

For the plug-in solution based on Fragment refer to Section 10.2.

Summary of Plug-In Technology﻿    ◾    409

11.7 � PLUG-IN SOLUTIONS FOR SERVICE,
CONTENTPROVIDER, AND BROADCASTRECEIVER

The number of components in the app, including Service,
ContentProvider, and BroadcastReceiver, is almost less than ten; we
don’t need to add a new component of a plug-in dynamically. So, we
can declare these components in the AndroidManifest.xml in advance.
Refer to Section 8.1.1.

The disadvantage of this solution is that we can’t add a new component
dynamically. However, we can handle these problems with the following
solutions.

11.7.1 � A Plug-In Solution for Service

There are three different plug-in solutions for Service:

	 1)	Dynamic-Proxy. Service is different from Activity; we can declare one
StubActivity in the AndroidManifest.xml of the HostApp to corre-
spond to multiple Activities of the plug-ins. However, if we declare
one StubService in the AndroidManifest.xml of the HostApp, it only
corresponds to one Service of the plug-in. So, we need to pre-declare
multiple StubServices to correspond to the multiple Services of the
plug-ins. Refer to Section 8.1.3 for details.

	 2)	Static-Proxy. Create ProxyService in the HostApp. We can use
ProxyService to launch the Service of the plug-in. But one ProxyService
can’t correspond to multiple Services. So we should pre-declare mul-
tiple ProxyServices. Refer to Section 9.2.1, 14.2 and 14.3.

	 3)	The last solution is to declare one StubService to correspond to mul-
tiple Services of the plug-in. Refer to Section 9.2.4 for details.

11.7.2 � A Plug-In Solution for BroadcastReceiver

BroadcastReceiver has two types: Dynamic Receiver and Static Receiver.
Dynamic Receiver is simple. It’s only a simple class that has one method

onReceive(). We can use ClassLoader to easily load Dynamic Receiver by
reflection.

Static Receiver is different from Dynamic Receiver. We must declare
Static Receiver in the AndroidManifest.xml. We can send a broadcast to
the Static Receiver; even if the app is not launched.

We have a lot of plug-in solutions to support Static Receiver.

410    ◾    Android App-Hook and Plug-In Technology﻿

	 1)	The simplest plug-in solution for a Static Receiver is to transform the
Static Receiver of the plug-in to a Dynamic Receiver registered in the
HostApp. The disadvantage of this solution is that we can’t use the
features of the Static Receiver. If the app is not launched, we can send
a broadcast to the Static Receiver of plug-in. Refer to Section 8.4.3 for
details.

	 2)	Static-Proxy. We declare a ProxyReceiver in the HostApp; it’s respon-
sible for dispatching the broadcast to the corresponding Static
Receiver of the plug-in. Refer to Section 9.2.5 for details. This solu-
tion has the same disadvantage in that we can’t use the features of the
Static Receiver.

	 3)	Dynamic-Hook. Declare one StubReceiver with multiple Actions
in the AndroidManifest.xml of the HostApp. Each Action of the
StubReceiver corresponds to a Static Receiver in the plug-in. In the
method onReceive() of StubReceiver, it dispatches the broadcast to
the corresponding Static Receiver of the plug-in. Refer to Section
8.4.4 for details.

11.7.3 � A Plug-In Solution for ContentProvider

ContentProvider is the engine of SQLite. It provides CRUD methods for
app developers.

In the plug-in solution for ContentProvider, we can pre-declare a
StubContentProvider to cheat the AMS. StubContentProvider is open to
the user. When the third-party user invokes the CRUD methods of the
StubContentProvider, StubContentProvider will dispatch the request to
the corresponding ContentProvider of the plug-in. Refer to Section 8.1.5
for details.

11.8 � SUMMARY
In the last chapter of this book, we reviewed all the technologies involved
in plug-ins, and we hope that readers can master this technique.

411

Appendix A: Sample
Code List

This book supplies over 70 code samples, and I list all the code
samples here for convenience. The GitHub web address is long, so the

same prefix is used for each project: https://github.com/baobaojianqiang/;
you can view the sample at https​://gi​thub.​com/b​aobao​jianq​iang/​<proj​
ectNa​me>.

Chapter Section Project Description

2 2.15.1 ReceiverTestBetween
ActivityAndService1

Music player implemented by two
receivers

2.15.2 ReceiverTestBetween
ActivityAndService2

Music player implemented by only one
receiver

3 3.1 TestReflection Reflection, basic syntax
3.2 TestReflection2 Reflection using jOOR
3.3 TestReflection3 Reflection encapsulated by the author

of this book
3.4 TestReflection4 Based on TestReflection3

4 4.2 InvocationHandler Dynamic-Proxy
4.3 HookAMS Hook the AMS
4.4 HookPMS Hook the PMS

5 5.2.2 Hook11 Hook mInstrumentation of Activity
5.2.3 Hook12 Hook startActivity of AMN
5.2.4 Hook13 Hook the callback of H
5.2.5 Hook14 Hook Instrumentation
5.3.1 Hook15 Hook Instrumentation, based on

ActivityThread
5.4.2 Hook31 Start an Activity not declared in

theAndroidManifest.xml, first-half5.4.3
5.4.4 Hook32 Start an Activity not declared in the

AndroidManifest.xml, second-half

Appendix A Appendix A

(Continued)

https://github.com/
https://github.com/

412    ◾    Appendix A﻿

Chapter Section Project Description

6 6.1 Dynamic0 Reflect a dex file
6.2 Dynamic1.0 Interface-Oriented programming
6.3 Dynamic1.1 Keyword “provided”
6.4 Dynamic1.2 Debug
6.5 ZeusStudy1.8 Plug-in for Application

7 7.2 Dynamic1.3 Read resource in the plug-in
Dynamic2 Refactor based on Dynamic1.3

7.3 Dynamic3 Skin Changing
7.4 Dynamic3.2 Skin changing, another solution

8 8.1.1 ZeusStudy1.0 Service plug-in solution
8.1.2
8.1.3
8.1.4 ZeusStudy1.1 Activity plug-in solution, not including

StubActivity
8.2.1 ActivityHook1 Activity plug-in solution 1
8.2.2
8.2.3 ActivityHook2 Activity plug-in solution 2
8.2.4 ZeusStudy1.2 Read Resource in the plug-in
8.2.5 ZeusStudy1.3 LaunchMode solution
8.2.6 ZeusStudy1.4 Hook ClassLoader with

ZeusClassLoader
8.3.2 ServiceHook1 createService
8.3.3
8.3.4 ServiceHook2 bindService
8.4.2 Receiver1.0 Dynamic BroadcastReceiver plug-in

solution
8.4.3 Receiver1.1 Static BroadcastReceiver plug-in

solution
8.4.4 Receiver1.2 Final plug-in solution for Static

BroadcastReceiver
8.5.2 ContentProvider1 ContentProvider demo
8.5.3 ContentProvider2 ContentProvider plug-in solution
8.5.4
8.5.5

9 9.1.2 That1.0 The simple demo of the “That”
framework

9.1.3 That1.1 Navigation in plug-in inside
9.1.4 That1.2 Keyword “that”
9.1.5 That1.3 Navigation between the plug-in and

HostApp

(Continued)

Appendix A﻿    ◾    413

Chapter Section Project Description

9.1.6 That1.4 Interface-Oriented programming,
using IRemoteActivity

9.1.7 That1.5 Support LaunchMode
TestSingleInstance singleInstance demo

9.2.1 That3.1 startService
9.2.2 That3.2 bindService
9.2.3 That3.3 StubService
9.2.4 ServiceHook3 Another plug-in solution to

startService
ServiceHook4 Another plug-in solution to

bindService
9.2.5 That3.4 Use stub for BroadcastReceiver

10 10.1.2 AAPT Modify aapt
TestAAPTUpdate Use new aapt command in App

10.1.4 Apollo1.1 public.xml
10.1.5 Apollo1.2 Plug-in using the resources in the

HostApp
10.2.2 Min18Fragment Simple demo based on Fragment

plug-in solution
10.2.3 Min18Fragment2 Navigate from one plug-in to another

plug-in
10.2.4 Min18Fragment3 Navigation from the plug-in to the

HostApp
10.3 Hybrid1.2 Replace Activity with an HTML5 page

based on startActivityForResult
10.4.1 Sign1 Basic Knowledge of ProGuard

Sign2 Use keep in the HostApp
10.4.2 ZeusStudy1.5 Not obfuscate lib
10.4.3 ZeusStudy1.6 Obfuscate lib
10.5 That2 Incremental update based on the

plug-in
10.6.1 JniHelloWorld A simple SO file is written by the

author of this book
10.6.2 MySO1 Use SO from a third party, both 32 bits

and 64 bits
10.6.3 MySO1.1 Use SO from a third party, 32 bits only

JniHelloWorld2 A simple SO file is written by the
author of this book

MySO2 Load the SO file in the HostApp. The
SO files are located in the directory
assets

(Continued)

414    ◾    Appendix A﻿

Chapter Section Project Description

10.6.4 MySO3 system.loadLibrary
10.6.5 ZeusStudy1.7 sysntem.load
10.7.1.1 TestSmallGradle1.0 Custom plug-in
10.7.1.2 TestSmallGradle1.1 Custom Extension
10.7.1.3 TestSmallGradle1.2 Hook the app building process in Gradle
10.8.1.1 ZeusStudy1.2 AMN
10.8.1.2 Element and DexFile
10.8.2.1 H class
10.8.2.2 Hook15 execStartActivity in Instrumentation

415

Index

23Code, 3
65536 issue, 64

aapt, 308, 385
function, 380
generation after executing, 380
hooking

modifying and generating new
command, 308, 310–313

new appt command in project,
314–316

aapt_mac command, 314
aar files, 9
ABTest, 8
ACDD project, 5
Activity component, 10, 13, 23, 38, 65, 327;

see also AMS
code in, 72–74
hooking of launching process of, 135
plug-in solution for, 185–216

ActivityManagerNative (AMN), 29, 87, 406
class diagram of, 29
hooking of getDefault() method of,

121–125
proxy pattern and, 111–113
refractor, 388–390

ActivityManagerNative.getDefault()
method, 111

Activ​ityMa​nager​Nativ​e.get​Defau​lt().​start​
Activ​ity()​ method, 29

ActivityManagerProxy (AMP) object, 29
class diagram of, 29

ActivityManagerService, 88
ActivityNotFoundException, 30, 134
ActivityRecord object, 31

ActivityThread, 24, 27, 33, 34, 36, 43,
50, 113, 285, 393, 394, 397;
see also mInstrumentation

communication with H, 125
interaction with H, 36
and PackageManagerService (PMS),

60–61
relationship with H, 126

addAssetPath() method, 1, 3, 6, 161,
165, 319

addAssetPath(String dexPath)
method, 408

addAssetPath(String path) method,
161, 185

Add dependencies, between projects, 149
add method, 107–108
address field, 85
afterEvaluate() method, 377–378
AIDL, 13, 17–22, 308

class diagram of, 18
full picture of, 21
with proxy pattern, 107–108

Ajax, 11
Alibaba, 7
Amazon app, 23, 24, 33, 34

starting activity, 35–37
AMN.getDefault() method, 29
AMS, 14, 22–23, 126, 139, 393

app sending messages to, 45
hooking of, 133–135
informing app, 46–47
process from apps to, 117
process from, to apps, 117
Service component and, 42–47
service sending broadcast to, 50

Index Index

416    ◾    Index﻿

working principles
app launching, 23–24
app starting, 24–37

AMSHookHelper, 124, 139–140, 188
code of, 136–137, 188–190, 220–221

AndFix, 8
android.content.

pm.PackageParser$Service, 284
Android-dynamical-loading plug-in

framework, 5
AndroidDynamicLoader, 3, 320–321
AndroidManifest.xml, 4, 13, 23, 30, 42, 44,

47, 49, 51, 54, 57, 59, 65, 114, 229,
231, 235, 250, 283, 301, 308, 321,
341, 342, 388, 409

Activity launching of plug-in not
declared in, 188–192

launching an activity not declared
in, 133

AMS hooking, 133–135
first half of hook, 135–139
second half of hook, 139–143

pre-declaring Activity and Service of
plug-in in, 182

Android-Plug-in-Framework, 4
androidpluginmgr project, 4
Android Studio V1.0, 4
Angular, 11
Anonymous Shared Memory (ASM), 31,

54–56, 239
class diagram of, 55
structure of, 55

Ant, 307
apk.resources.arsc, 57
apkbuilder, 308
apk file, 9, 57, 160, 161, 283
ApkPatchLibrary, 354, 355
apk plug-in, 145, 146
App, handling broadcast, 50
app-debug.apk, 146–147
Application class, 27
Application custom, 156–158
ApplicationPackageManager, 113
ApplicationThread (APT), 31, 35, 43, 393
ApplicationThreadProxy (ATP) object,

31, 43
apply() method, 374
AppPlugin, 383, 384

arm64-v8, 364
ARM CPU, 364
armeabi/armeabi-v7a, 364
ArscEditor, 386
asInterface() method, 21, 22
assembleRelease, 377

Console log during execution of, 378
AssetManager, 160–161, 185, 324, 407–408

getting resources in, 379
AssetPlugin, 383
Atlas plug-in framework, 3
Atlas plug-in framework, 7
attach() method, 34
attachBaseContext() method, 124, 147, 245
atyStack field, 269, 270, 271

BaseActivity class, 118, 121, 166, 168, 169,
171, 174, 324

BaseDexClassLoader, 63, 205
BaseDexClassLoaderHookHelper, 220, 283
BaseFragment, 323
BaseHostActivity, 252
BasePlugin, 381, 383
BasePluginActivity, 5–6, 255, 257, 264, 272
BasePluginReceiver, 304
BasePluginService, 272–273, 275, 277
Bean class, 148
bind() method, 45
BIND_APPLICATION message, 34
Binder, 14, 44, 45

communication in, 16–17
structure of, 15

Binder Client, 14, 15, 16, 21, 30
Binder Driver, 15, 16, 17
Binder Server, 14, 15, 16, 21, 22, 30
bindService() method, 45, 217, 277, 294, 296

flowchart of, 295
plug-in solution of, 226–229

BOOLEAN, 80
BroadcastReceiver, 10, 13, 47–48, 65,

409–410
plug-in solution for, 229

Dynamic Receiver, 231
Receiver overview, 229–230
Static Receiver, 231–238

registration, 48–49
sending of broadcast, 49–50
Static-Proxy in, 301–305

Index﻿    ◾    417

BS (Browser/Server) architecture, 11, 12
bsdiff, 353, 354
build.gradle, 152, 153, 155, 318, 343, 345,

346, 360, 373, 375, 376
modification of, 317

buildSrc structure, 375
Bundle parameter, 311, 313
ButterKnife, 12

callActivityOnCreate() method, 37, 117,
129, 142

CJFrameForAndroid plug-in framework, 4
Class.forName() method, 80, 215
class1Proxy.doSomething, 110
ClassB2Mock type, 87–88
Class constructors, 81–83, 90

calling, 83
classes.dex, 64–65, 346

in JadxGUI, 348
classes2.dex, 346

in JadxGUI, 348
ClassLibrary, 318
Classloader, 44, 61–63, 148, 165–166, 183,

184, 280, 301, 302–303, 324, 390,
405, 406

family of, 62
hooking of, 212–216

ClassNotFoundException, 345, 349
class property, 80
Client, 15
Clipboard, 17, 61, 134
collect.py, 347

modification of, 348
Componentized model, 9
configureProject() method, 383, 384
connect() method, 46
conn parameter, 228, 296
ContentProvider, 10, 13, 51–54, 410

ASM, 54–56
basic concept of, 239
communication with AMS, 56–57
essence of, 54
example of, 239–242
forwarding mechanism of, 246–247
plug-in solution for, 242–245
right time to install plug-in of,

245–246
Context family, 38–41, 216

ContextImpl object, 35, 39, 40, 60, 131, 165
Context object, 24, 37, 43
ContextThemeWrapper, 39
ContextWrapper, 5, 39
ContextWrapper. Service, 39
create() method, 86, 87, 90
createObject() method, 93–94, 98
CreateServiceData, 224, 285
CRUD method, 54, 57, 241, 245
CS (Client/Server) architecture, 11
Ctrip.com, 6
Cundong Liu, 354
currentActivityThread() method, 1
CursorWindow object, 55–56
CustomClassLoader, 201

delete() method, 241
DetailActivity, 268
dex, of plug-in, 205–207
DexClassLoader, 61–62, 63, 64, 368

creation, for each plug-in apk,
201–202

DexElements, 183
Dex files, 64, 283, 308

combining, 183–184
and Element, 390–392
splitting into multiple dexes, 64

Dex loading, external, 145–148
DexPath, 205, 206, 259, 301, 322
DexPathList, 205, 392
Dex plug-in framework, 4, 6
Dianping.com app, 2–3
Didi, 7
Direct-Load-Apk project, 4
dispatchMessage() method, 394
dlopen, 366
doFirst() method, 378
doLast() method, 378
doSomething() method, 83, 108, 178, 342
Double-opening, 11
DroidPlugin plug-in framework, 5, 193,

199, 406
DynamicAPK plug-in framework, 6
Dynamic-Hook, 6, 410
dynamic-load-apk project, 3, 249
dynamicObject object, 166
Dynamic-Proxy, 109–111, 128, 407, 409

solution based on, 193

418    ◾    Index﻿

Activity launching process, 193–196
DexClassLoader creation for each

plug-in apk, 201–202
hooking of classes, 202–204
plug-in activity addition to cache,

196–201
Dynamic Receiver, 47, 48, 49, 229, 230,

409–410
plug-in solution for, 231

ECMAScript, 11
Element and Dexfile, 390–392
Encapsulated classes, of basic

reflection, 93
field reflection optimization, 102–103
generics handling, 96–97
getFieldObject method, 95, 96
getting constructor, 93–94
invokeInstanceMethod method, 94
invokeStaticMethod method, 95
reflection with only one parameter and

without parameters, 97–99
replacing string with class type,

100–101
setFieldObject method, 95, 96
static and instance fields compared, 101

encodeData, 334
EntryId, 310
EvilInstrumentation, 118–121, 129, 130,

403–404, 406
execStartActivity() method, 5, 26, 40, 118,

119, 121, 131, 402
extractAssets() method, 147

File.pathSeparator, 206
findViewById() method, 257, 258
firstpage.html, 333, 335–336
Flash, 11
Flex, 11
Fragment, 3, 320

AndroidDynamicLoader overview,
320–321

jump from plug-in, 324–326
jumping between, 322–324
plug-in sample based on, 321–322

FragmentLoaderActivity, 321, 322,
323, 325

gDefault field, 388, 389
generateApplicationInfo() method,

198, 199
generateProviderInfo() method, 243
generateServiceInfo() method, 284
getApplicationContext() method, 39,

115, 131
getAssets() method, 160, 165
getClassLoader() method, 215, 301
GetConstructors() method, 82
getContentResolver() method, 241
getDeclaredConstructors() method, 81, 82
getDefault().doSomething() method, 88
getDefault method, 87, 88, 117, 121–125
getDir() method, 301
getFieldObject method, 95, 96, 102
getImage() method, 167
getLayout() method, 167
getName() method, 150, 371
getPackageInfo() method, 195
getPackageInfoNoCheck() method, 36,

194, 198
getPackageManager() method, 60, 61, 203
getRealUri() method, 246–247
getReceiver-Dispatcher() method, 49
getResources() method, 5, 6, 160, 186
getstaticfieldobject method, 101
getString() method, 160, 356, 363
getStringForResId() method, 166
getSuperclass() method, 80
getText() method, 167
GitHub, 4, 5
Google Play, 1
Gradle, 4, 308, 316

modification of, 314–315, 316–317
Gradle plug-in project, 373

creation of, 373–376
Extension, 376–377
hook app packaging process, 377–378

Gradle-Small principle, 380–381
editors family defined in, 385–387
plug-ins family defined in, 381–385
using, 381

Guangliang Lin, 6

handleBindService() method, 229
handleCreateService() method, 43, 224,

228, 229, 285

Index﻿    ◾    419

handleLaunchActivity() method, 37,
44, 204

handleMessage() method, 32–33, 126,
398, 399

handleMessage(Message msg), 394, 395
handlePauseActivity() method, 33
Handler.Callback, 128
Handler class, 32, 394
handleUnbindService() method, 229
HashMap, 174, 220, 280, 296, 301
HashTable, 161
H class modification

hooking, in Android P, 399–401
Message class and Handler class,

393–396
new message mechanism in Android P,

397–399
plug-in solutions before Android P,

396–397
HEX value, 159, 161, 310
hookAapt() method, 385
hookActivityThread() method, 188
hookAMN() method, 124, 188
HookHandler, 112–113
HookHelper, 129, 141

implementation of, 126–127
Hooking, 2
hookJavac() method, 385
hookPackageManage() method, 204
hookVariantTask() method, 384–385
HostApp, 5, 6, 146, 148–151, 168, 174, 316

classes, and plug-in classes
compared, 251

code, 162–165
MainActivity of, 369–371
plug-in uses resources in, 318–320
TestService of Plugin1 in, 276
UPFApplication of, 368

HostPlugin, 383
Hot-fix technique, 2, 6
Houkx, 4
HTML5 page, 12, 327

IActivityManager object, 29, 122, 128,
388, 406

IActivityManagerSingleton, 389
IApplication thread class diagram, 31
IBean, 149, 150

IBinder, 21, 22
proxy pattern with, 108

“if…else…” statement, 390
IIntentReceiver, 49
IInterface, 29
initializeJavaContextClassLoader ()

method, 202
initPackageId() method, 384
installContentProviders() method, 242, 244
instantiateLifecircleMethods() method,

253–254
Instrumentation object, 26

hooking of, 128–130
Intent-filter, 49, 230, 231, 238
Intent object, 26, 142
invoke() method, 253
invokeInstanceMethod(), 94, 99
invokeStaticMethod(), 95, 99
IPackageManager, 61, 128, 406
iReader, 7
IRemoteActivity interface, 264, 267, 272
IRemoteReceiver interface, 304
IServiceInterface, 72

jarsigner, 308
javac, 308
JavaScript, 11–12
JCenter, 381
jianqiang.com.plugin1.R$string, 178
jianqiang.com.testactivity, 200
JniUtils class, 358, 362, 363, 372
jOOR, 79, 88–89

generics and Singleton, 91–93
getting class from string, 89–90
property and method of class, 90–91

jQuery, 11
JSON, 106, 209, 219, 220, 281, 328, 330,

334–335
JSON.parse() method, 334
jsPatch, 12

Kaedea, 5

LAUNCH_ACTIVITY, 35, 395
LaunchActivityItem, 398–399
Launcher, 23–24

AMS handling information from,
30–31

420    ◾    Index﻿

clicking of app icon in, 25–29
going to sleep and informing AMS

again, 31–33
LaunchMode, 4, 267

overview of, 267–269
plug-in solutions for, 269–271
support, in plug-in, 208–212

libApkPatchLibrary.so, 356
libgoodbye.so, 366
LibraryPlugin, 383, 384
Limpoxe, 4
loadClassLoader() method, 325
LoadedApk object, 34, 36, 44, 49, 57, 194,

195, 196, 199, 204, 407
loadResources() method, 165, 325
Lody, 4
Log writing, 108–109
Loopers, 34

main() function, 24, 27, 34, 393
invoking, and informing AMS, 34

MainActivity, 66, 124–125, 255, 258, 271,
282, 302

maindexlist.txt file, 346, 347
MainLooper, 34, 393–394
makeDexElements() method, 392
makeJar command, 153
Manifest.java, 308
mapping.txt, 308
mAssetManager object, 165
mBase, 118
mCallback

of H, 125–128, 139–141
of mH, 224

mClassLoader, 196
mClassLoaderList, 213
meta-data tag, 235
method.invoke() method, 110, 111
mH, of ActivityThread, 128
mInstance, 86, 88, 111
mInstrumentation, 26, 40, 117,

118–121, 129, 131–133, 135,
141–143

mInstrumentation.execStartActivity()
method, 27–28

mMainThread.getApplicationThread()
method, 28

MMORPG games, 8

MockClass1, 122–124, 188, 209, 221–222,
287, 288, 289–291

code of, 137–138, 190–191, 296–298
MockClass2, 140, 188, 211, 221, 225, 396,

399–401
code of, 192
implementation of, 127

MockClass3, 204
mPackages, 195
mPackages.get(aInfo.packageName)

method, 200
mPM, 61
mRemote, 22
mRemoteActivity, 252
mRemoteService, 277, 278
mServiceMap, 285, 287, 289
mServices, 285
mToken, 28
MultiDex, 63–65, 346–349
Music player, 65

based on one receiver, 71–76
based on two receivers, 65–71
class diagram of, 71
state machine of, 71

MyAidl.aidl, 17
MyAidl.java, 17, 20
MyApplication, 156, 185
MyBinder object, 72
MyClassLoaders, 301, 302
MyContentProvider, 51, 240
MyExtension, 376
mypatch.diff, 353, 354
MyPlugin.groovy, 374
MyPlugin.groovy class, 374
MyPluginLibrary, 148, 149, 151, 152, 153,

154, 343–344
Plugin1 structure without, 345

MyPlugins class, 259
MyReceiver, 235
MyService1, 226, 288
MyService2, 227, 228, 229

name field, 84
Navigation, in app, 37
NDK, downloading, 356–357
net.wequick.small.properties, 374
newActivity() method, 37, 117, 129, 142,

401, 404

Index﻿    ◾    421

New directories, after project sync, 155
newFilePath, 355
newInstance() method, 83
NoSuchFieldException, 92

onBind() method, 71, 278, 279, 280
onCreate() method, 24, 34, 43, 119, 156,

245, 249, 252, 257, 278, 279, 285,
325, 354

onDestroy() method, 289
onKeyDown() method, 341
onNewIntent() method, 211
onPause() method, 33, 37
onReceive() method, 230, 238
onResume() method, 252–253

implementation of, 254
onServiceConnected() method, 45, 217
onStartCommand() method, 278, 279, 288
onTransact() method, 21, 22
open() method, 161
OpenAtlas project, see ACDD
OTA app, 1

PackageId, 310
PackageManager, 232
PackageManagerService (PMS), 23, 57, 231

ActivityThread and, 60–61
app installation process, 58
PackageParser, 59
proxy pattern and, 113–114

PackageParser class, 59, 199
PackageParser() method, 231
Parent-Delegation, 63
parsePackage() method, 59, 232, 284
Parse service, in plug-in, 283–284
patch.diff, 353
PatchUtils, 355
PathClassLoader, 62, 63, 64
PAUSE_ACTIVITY, 32, 33, 395
play() method, 71
plugin1.apk, 151, 152, 154, 167, 168, 171

structure of, 351
plugin2.apk, 168, 171
PluginManager, 185, 214
Plug-ins, 1–2; see also Static-Proxy

Application custom in, 156–158
architecture, 343
compatibility with Android O, 387

ActivityManagerNative (AMN)
refractor, 388–390

Element and Dexfile, 390–392
compatibility with Android P, 393

class H modification, 393–401
Instrumentation class refactoring,

401–404
components requiring, 10
conflict resolving between

resources of, 307
aapt hooking, 308–316
app packaging process,

307–308, 309
plug-in uses resources in HostApp,

318–320
public.xml, 316–318, 320

debugging in, 154–156
dexes, merging into one array,

205–207
double-opening and virtual machine,

10–11
downgrade, 326–328

from Activity to HTML5, 328–334
from HTML5 to Activity, 334–340
support for backpress button,

340–341
external dex loading, 145–148
framework based on Fragment, 320

AndroidDynamicLoader overview,
320–321

jump from plug-in, 324–326
jumping between Fragments,

322–324
plug-in sample based on Fragment,

321–322
history of, 2–8
hooking of packaging process, 373

Gradle plug-in project, 373–378
resource.arsc modifying, 379–387

HTML5, 12
incremental update of, 352

concept of, 352–353
creation of, 353
merging package, 354–356
permissions applying, 353–354

interface-oriented programming,
148–151

LaunchMode support in, 208–212

422    ◾    Index﻿

proguard for, 341
basic obfuse rules, 341–342
obfuse without common library,

342–345
obfusing with common library,

345–352
React Native, 9
resources in, 159

AssetManager, 160–161
solutions, 161–166
types of, 159–160

SO files, 356
compiling, 364
loading methods, 365–367
loading process, 365
NDK downloading, 356–357
project generation for generation,

357–361
relationship with ClassLoader, 368
solution based on System.load(),

368–372
solution based on System.

loadLibrary(), 372–373
using, 362–363

solution, 181
Activity, 185–216
BroadcastReceiver, 229–238
ContentProvider, 239–247
dex files combining, 183–184
pre-declaring Activity and Service

HostApp’s AndroidManifest
.xml, 182

of resources, 208
Service, 184, 216–229

solutions, for changing skins, 166–179
thinning, 151–154
usage of, 8–9

pluginSrc, 376
PMS, see PackageManagerService
preLoadReceiver() method, 238
Primitive types, 80–81
Private and static method, of class, 84, 91

and value modification, 85–86
Private field of class and value

modification, 84–85, 91
Private method, of class, 83–84, 90–91
Process.start() method, 33
ProGuard, 64, 308

modifying, 349–350
ProxyActivity, 3, 250–251, 255

communication with plug-in activity,
252–254

implementation of, 265–267
Proxy class, 16, 17, 20, 21
proxyCreateService() method, 288
Proxy.newProxyinstance() method, 81,

88, 109, 110, 111, 114, 122, 128,
388, 406

Proxy pattern, 105
AMN, 111–113
class diagram of, 105
Dynamic-Proxy, 109–111
meaning and significance of, 105–106

log writing, 108–109
Remote Proxy, 106–108

PMS, 113–114
Static-Proxy, 109

ProxyReceiver, 301, 302–303
ProxyService, 273–275, 277, 287–289,

291–292, 298–299
public.xml, 316–318, 320

Qihoo360, 5, 7

R.drawable.robert, 178
R.id.action0, 160
R.id.container, 322, 323
R.java, 159, 167, 307, 308, 310, 311, 320,

341, 385, 408
r.packageInfo, 36, 194, 196
r.packageInfo.getClassLoader()

method, 195
rawB2Object object, 87, 88
rawIntent object, 143
React, 11
React Native, 6, 9, 12, 326
readZipFileString, of Utils, 220
Receiver, see BroadcastReceiver
Redundant dexes, removing, 350–352
RefInvoke class, 93, 94, 95, 96, 97, 101
Reflect.java, 88–89
Reflect.on method, 89–90
ReflectException.java, 88
Reflection, 79

basic, 79–80
class using string, 80–81

Index﻿    ◾    423

encapsulated classes of, 93–102
generics and Singleton class, 86–88
property and method of class,

81–86
jOOR, 88–89

generics and Singleton, 91–93
getting class from string, 89–90
property and method of class,

90–91
register() method, 150, 151
registerDynalmicReceiver() method, 232
registerReceiver() method, 49
Remote Proxy, 106–108
RePlugin plug-in framework, 7
Res/Drawable, 167
Res/Values folder, 162, 167
Res folder, 159, 310
resource.arsc, 161, 320
resource.arsc, modifying, 379

aapt function, 380
Gradle-Small principle, 380–381

editors family defined in, 385–387
plug-ins family defined in,

381–385
using, 381

resource finding in Android, 379
ResourceActivity, 171
resources.arsc, 408

structure of, 386
ResourceTable, 311–312, 313
robert.png, 167
RootPlugin, 383–384
RxJava, 12

SecondActivity, 255, 334
logic for jumping from

MainActivity to, 255–256
logic in, 256

sendBroadcast() method, 111
sendBroadcast(Intent intent) method, 301
sendMessage() method, 31, 126, 393
sendthread() method, 31
Service component, 10, 13, 41, 65, 409

binding, in same process, 44–47
code in, 74–76
launching and binding process of, 41
paths of, 278
plug-in solution for, 216–229

relationship with Activity, 216–217
starting, in new process, 41–44
starting, in same process, 44

ServiceConnection object, 45
ServiceDispatcher, 47
ServiceInfo, 284
ServiceManager, 14, 15, 16, 29, 61, 288,

292–294, 299–300
ServiceRecord object, 42
setContentView() method, 257, 258
setFieldObject method, 95, 96
setName() method, 150
setProxy() method, 252
setResult() method, 259
setstaticfieldobject method, 101
settings.gradle, 155
Silverlight (Microsoft), 11
singleInstance mode, of LaunchMode,

269, 271
singleTask mode, of LaunchMode,

268, 271
Singleton CJBackStack, 269
Singleton class, 86–88, 91–93, 111
Singleton ProxyServiceManager, 281
Singleton ServiceManager, 288
singleTop mode, of LaunchMode,

268, 270
Siyu Song, 3
skin1.zip, 166
skin1/a.png, 166
Small plug-in framework, 6
SmartClient, 11
SO files, 356

compiling, 364
loading methods, 365–367
loading process, 365
NDK downloading, 356–357
project generation for generation,

357–361
relationship with ClassLoader, 368
solution based on System.load(),

368–372
solution based on System.

loadLibrary(), 372–373
using, 362–363

sPackageIds, 384
sPackageManager field203
standard mode, of LaunchMode, 268

424    ◾    Index﻿

startActivity() method, 111, 115, 125, 257,
258, 330

of Activity, 26
activity launching, not declared in

AndroidManifest.xml,
133–143

of AMP, 29, 30
of Context object, 39
hooking, of Activity, 116–117

solutions, 118–130
hooking, of Context, 131

solutions, 131–133
invoking of, 115–116
kinds of, 40
sequence diagram, in Activity and

Context, 116
startActivityForResult() method, 26, 117,

118, 330
startActivitySafely() method, 26
startService() method, 42, 217, 218, 287

flowchart of, 287
plug-in solution to, 220–226

Static-Proxy, 4, 6, 109, 128, 407, 409, 410
bindService() and unbindservice(),

294–300
in BroadcastReceiver, 301–305
example of, 250

Activity logic in plug-in, 255
communication between

ProxyActivity and plug-in
activity, 252–254

jumping from HostApp to
plug-in, 251

idea of, 249–250
interface-oriented programming in,

261–267
jump in plug-in, 255–256
jump out, 259

jump to another plug-in, 260
jump to HostApp, 260–261
preparation for, 259

LaunchMode, 267
overview of, 267–269
plug-in solutions for, 269–271

Parse service in plug-in, 283–284
ProxyService and ServiceManager,

287–294

in Service, 271–276
issues, 276–278

Service object creation, using
reflection, 285–287

support bindService(), 278–283
“that” keyword elimination,

256–259
Static Receiver, 47, 48, 49, 229, 230,

409–410
final plug-in solution for, 233–238
plug-in solution for, 231–233

stop() method, 71
stopService() method, 217, 287, 288, 289

flowchart of, 288
String, get class using, 80–81, 89
strings.xml file, 162
StubActivity, 4, 134, 136, 139, 188, 234
Stub class, 20, 21, 22
StubContentProvider, 246
StubReceiver, 234–235

code of, 238
StubService, 217, 218–220, 234
sum() method, 21, 22
super.getAssets() method, 165
super.onCreate() method, 258
SurfaceFlinger, 14
System.load() method, 356, 365, 366,

368–372
System.loadLibrary()method, 356, 365,

366, 372–373

Taobao app, 3
Tao Zhang, 3
TargetActivity, 134
TestActivity1, 210
TestClassCtor, 81, 83–85
testPlugin, 375
TestService1, 182, 275–276, 282
TestService2, 275
“That” framework, 3, 4, 256–259, 285, 300,

305, 321
core of, 250

that.setResult() method, 259
thridpage.html, 336–337
Tinker, 8, 12
transact() method, 22
TurboDex project, 4

Index﻿    ◾    425

TypeId, 310
TYPE property, 80–81

UI thread, see ActivityThread
UIUtil class, 167
unbindService() method, 277, 294, 296

flowchart of, 295
unzip() method, 355

verifyStoragePermissions() method, 354
VirtualApk plug-in framework, 7
VirtualApp, 4, 11
Virtual machine, 10–11
Vue, 11

war/jar file, 151
WebService technique, 106

WebviewActivity, 327, 332–333, 341
code of, 337–340

WeiShu Tian, 5
WMS, 14
work () method, 84

Xiao Tian, 3

Yimin Tu, 2, 320
Yong Zhang, 5, 6, 193
Yugang Ren, 3, 6, 7, 249

ZeusBaseActivity, 186
ZeusClassLoader, 212
ZeusPlugin plug-in framework, 7
zipalign, 308, 352
Zygote, 14

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	About the Author
	About the Translators
	Introduction
	1: Plug-Ins from the Past to the Future
	1.1 Android Plug-Ins in China
	1.2 History of Android Plug-In Techniques
	1.3 Usage of Plug-Ins
	1.4 Another Choice: React Native
	1.5 Do All Components Require Plug-Ins?
	1.6 Double-Opening and Virtual Machine
	1.7 From Native to HTML5
	1.8 Summary

	2: The Underlying Knowledge of Android
	2.1 Overview of Underlying Android Knowledge
	2.2 Binder
	2.3 AIDL
	2.4 ActivityManagerService
	2.5 Activity Working Principles
	2.5.1 How to Launch an App
	2.5.2 Starting the App Is Not So Simple
	2.5.2.1 Click the App Icon in Launcher and Send a Message to the AMS
	2.5.2.2 The AMS Handles the Information from the Launcher
	2.5.2.3 The Launcher Goes to Sleep and Informs the AMS Again
	2.5.2.4 The AMS Creates a New Process
	2.5.2.5 Start a New Process and Inform the AMS
	2.5.2.6 The AMS Tells the New App Which Activity to Launch
	2.5.2.7 The Amazon App Starts an Activity

	2.6 Navigation in App
	2.7 Family of Context
	2.8 Service
	2.8.1 Start Service in a New Process
	2.8.1.1 The App Sends a Message to the AMS to Launch Service
	2.8.1.2 The AMS Creates a New Process
	2.8.1.3 Start a New Process and Inform the AMS
	2.8.1.4 The AMS Sends Information to the New Process
	2.8.1.5 New Process to Launch Service

	2.8.2 Start a Service in the Same Process
	2.8.3 Bind a Service in the Same Process
	2.8.3.1 The App Sends a Message to the AMS to Bind a Service
	2.8.3.2 The AMS Sends Two Messages to the App Process
	2.8.3.3 The App Receives the First Message
	2.8.3.4 The App Receives the Second Message and Sends a Binder Object to the AMS
	2.8.3.5 AMS Informs the App

	2.9 BroadcastReceiver
	2.9.1 Registration
	2.9.2 Send a Broadcast

	2.10 ContentProvider
	2.10.1 The Essence of the ContentProvider
	2.10.2 The ASM
	2.10.3 Communication between ContentProvider and the AMS

	2.11 The PMS and App Installation Process
	2.11.1 PMS Introduction
	2.11.2 App Installation Process
	2.11.3 PackageParser
	2.11.4 ActivityThread and PackageManager

	2.12 ClassLoader
	2.13 Parent-Delegation
	2.14 MultiDex
	2.15 A Music Player App
	2.15.1 A Music Player Based on Two Receivers
	2.15.2 A Music Player Based on One Receiver

	2.16 Summary

	3: Reflection
	3.1 Basic Reflection
	3.1.1 Get the Class Using a String
	3.1.1.1 Get the Class Using a String
	3.1.1.2 Class.forName
	3.1.1.3 Property class
	3.1.1.4 Property TYPE

	3.1.2 Get the Property and Method of the Class
	3.1.2.1 Get the Constructor of the Class
	3.1.2.2 Invoke a Private Method of the Class
	3.1.2.3 Invoke a Private and Static Method of the Class
	3.1.2.4 Get a Private Field of the Class and Modify Its Value
	3.1.2.5 Get the Private Static Field of the Class and Modify Its Value

	3.1.3 Generics and Singleton<T>

	3.2 jOOR
	3.2.1 Get a Class from a String
	3.2.1.1 Get a Class from a String
	3.2.1.2 Get a Class by Using on and get

	3.2.2 Get the Property and Method of a Class
	3.2.2.1 Get a Constructor of a Class
	3.2.2.2 Get the Private Method of the Class
	3.2.2.3 Get the Private and Static Method of the Class
	3.2.2.4 Get the Private Field of the Class
	3.2.2.5 Get the Private and Static Field of the Class

	3.2.3 Generics and Singleton<T>

	3.3 Encapsulated Classes of the Basic Reflection
	3.3.1 Get a Constructor
	3.3.2 Invoke Instance Methods
	3.3.3 Invoke Static Methods
	3.3.4 Get the Field of the Class and Set Its Value
	3.3.5 Handle Generics

	3.4 Further Encapsulation of the Reflection
	3.4.1 Reflect a Method with Only One Parameter or without Parameters
	3.4.2 Replace String with Class Type
	3.4.3 Differences between the Static and Instance Fields
	3.4.4 Optimization of the Field Reflection

	3.5 Summary

	4: Proxy Pattern
	4.1 What Is a Proxy Pattern?
	4.1.1 Remote Proxy
	4.1.2 Write Log

	4.2 Static-Proxy and Dynamic-Proxy
	4.3 A Hook on the AMN
	4.4 A Hook on the PMS
	4.5 Summary

	5: Hooking startActivity()
	5.1 Invoke startActivity() in Two Ways
	5.2 Hooking startActivity() of the Activity
	5.2.1 Solution 1: Hooking the Method startActivityForResult of Activity
	5.2.2 Solution 2: Hooking the Field mInstrumentation of Activity
	5.2.3 Solution 3: Hooking the Method getDefault() of AMN
	5.2.4 Solution 4: Hooking the Field mCallback of H
	5.2.5 Solution 5: Hooking Instrumentation Again

	5.3 Hooking the Method startActivity of Context
	5.3.1 Solution 6: Hooking the Field mInstrumentation
of ActivityThread
	5.3.2 Which Solution Is the Best?

	5.4 Launch an Activity Not Declared in AndroidManifest.xml
	5.4.1 How to Hook AMN
	5.4.2 First Half of the Hook
	5.4.3 Second Half of the Hook: Hooking the Field mCallback of H
	5.4.4 Second Half of the Hook: Hooking the mInstrumentation Field of ActivityThread

	5.5 Summary

	6: The Basic Concepts of Plug-In Techniques
	6.1 Loading External Dex
	6.2 Interface-Oriented Programming
	6.3 Plug-In Thinning
	6.4 Debugging in Plug-Ins
	6.5 Application Plug-In Solutions
	6.6 Summary

	7: Resources in Plug-In
	7.1 How to Load Resources in Android
	7.1.1 Types of Resources
	7.1.2 Resources and AssetManager

	7.2 Plug-In Solutions of Resources
	7.3 Solutions for Changing Skins
	7.4 Another Plug-In Solution for Changing Skins
	7.5 Summary

	8: The Plug-In Solution of Four Components
	8.1 The Simplest Plug-In Solution
	8.1.1 Pre-Declare Activity and Service of the Plug-In in the HostApp’s AndroidManifest.xml
	8.1.2 Combine the Dex
	8.1.3 Start a Service of the Plug-In
	8.1.4 Resources in Activity

	8.2 A Plug-In Solution for Activity
	8.2.1 Launch an Activity of a Plug-In Not Declared in the AndroidManifest.xml of the HostApp
	8.2.2 Solution 1: Based on Dynamic-Proxy
	8.2.2.1 The Process of Launching an Activity
	8.2.2.2 Add a Plug-In Activity to the Cache
	8.2.2.3 Solution 1 of Loading Class in a Plug-In: Create DexClassLoader for Each Plug-In apk
	8.2.2.4 Hooking More Classes

	8.2.3 Solution 2: Merge All the Plug-In Dexes into One Array
	8.2.4 Plug-In Solution of Resources
	8.2.5 Support LaunchMode in Plug-In
	8.2.6 Solution 3: Hook ClassLoader

	8.3 The Plug-In Solution for Service
	8.3.1 The Relationship Between Service and Activity
	8.3.2 StubService
	8.3.3 Plug-In Solution to startService()
	8.3.4 Plug-In Solution of bindService

	8.4 A Plug-In Solution for BroadcastReceiver
	8.4.1 Receiver Overview
	8.4.2 A Plug-In Solution for Dynamic Receiver
	8.4.3 A Plug-In Solution for Static Receiver
	8.4.4 A Final Plug-In Solution for Static Receiver

	8.5 A Plug-In Solution for ContentProvider
	8.5.1 The Basic Concept of ContentProvider
	8.5.2 A Simple Example of ContentProvider
	8.5.3 A Plug-In Solution for ContentProvider
	8.5.4 The Right Time to Install a ContentProvider Plug-In
	8.5.5 The Forwarding Mechanism of ContentProvider

	8.6 Summary

	9: A Plug-In Solution Based on Static-Proxy
	9.1 A Plug-In Solution for Activity Based on Static-Proxy
	9.1.1 The Idea of Static-Proxy
	9.1.2 The Simplest Example of Static-Proxy
	9.1.2.1 Jump from the HostApp to the Plug-In
	9.1.2.2 Communication between ProxyActivity and Plug-In Activity
	9.1.2.3 The Logic of Activity in the Plug-In

	9.1.3 Jump in the Plug-In
	9.1.4 Eliminate the Keyword “that”
	9.1.5 Jump Out
	9.1.5.1 Preparation for Jumping Out
	9.1.5.2 Jump to Another Plug-In
	9.1.5.3 Jump to the HostApp

	9.1.6 Use Interface-Oriented Programming in Static-Proxy
	9.1.7 Support for LaunchMode
	9.1.7.1 Overview of LaunchMode
	9.1.7.2 Plug-In Solutions for LaunchMode

	9.2 The Plug-In Solution for Service and BroadcastReceiver Based on Static-Proxy
	9.2.1 Static-Proxy in Service
	9.2.1.2 Issue 2
	9.2.1.3 Issue 3

	9.2.2 Support bindService()
	9.2.3 StubService
	9.2.4 The Last Solution for Service Plug-Ins: Integration with Dynamic-Proxy and Static-Proxy
	9.2.4.1 Parse Service in the Plug-In
	9.2.4.2 Create a Service Object Using Reflection
	9.2.4.3 ProxyService and ServiceManager
	9.2.4.4 bindService() and unbindService()

	9.2.5 Static-Proxy in BroadcastReceiver

	9.3 Summary

	10: Related Plug-In Techniques
	10.1 Resolve the Conflicts between Resources of the Plug-Ins
	10.1.1 The Process of App Packaging
	10.1.2 Hook aapt
	10.1.2.1 Modify and Generate a New aapt Command
	10.1.2.2 Using This New aapt Command in the Project

	10.1.3 public.xml
	10.1.4 Plug-In Uses Resources in the HostApp

	10.2 A Plug-In Framework Based on Fragment
	10.2.1 AndroidDynamicLoader Overview
	10.2.2 A Simple Plug-In Sample Based on Fragment
	10.2.3 Jumping Between Fragments
	10.2.4 Jump from the Plug-In

	10.3 Downgrade
	10.3.1 From Activity to HTML5
	10.3.2 From HTML5 to Activity
	10.3.3 Support for the Backpress Button

	10.4 ProGuard for Plug-Ins
	10.4.1 Basic Obfuse Rules for Plug-Ins
	10.4.2 Obfuse Without a Common Library
	10.4.3 Obfusing with a Common Library
	10.4.3.1 Use MultiDex
	10.4.3.2 Modify the ProGuard File
	10.4.3.3 Remove Redundant Dexes from plugin1.apk

	10.5 Incremental Update
	10.5.1 The Basic Concept of an Incremental Update
	10.5.2 Create an Incremental Package
	10.5.3 Apply Permissions
	10.5.4 Merge Incremental Package

	10.6 A Plug-In Solution for SO Files
	10.6.1 Write a Hello-World SO
	10.6.1.1 Download NDK
	10.6.1.2 Create a Project to Generate SO

	10.6.2 Using SO
	10.6.3 The Principle of Loading SO
	10.6.3.1 Compiling SO
	10.6.3.2 The Process of Loading SO
	10.6.3.3 Two Ways to Load SO
	10.6.3.4 The Relationship between ClassLoader and SO

	10.6.4 A Plug-In Solution Based on System.load()
	10.6.5 An SO Plug-In Solution Based on System.loadLibrary()

	10.7 Hooking the Packaging Process
	10.7.1 Gradle Plug-In Project
	10.7.1.1 Create Gradle Plug-In Project
	10.7.1.2 Extension
	10.7.1.3 The Hook App Packaging Process

	10.7.2 Modify resources.arsc
	10.7.2.1 How to Find Resources in Android
	10.7.2.2 Function of aapt
	10.7.2.3 The Principle of Gradle-Small
	10.7.2.4 How to Use Gradle-Small
	10.7.2.5 The Family of Plug-Ins Defined in Gradle-Small
	10.7.2.6 The Family of Editors Defined in Gradle-Small

	10.8 Compatibility with Android O and P
	10.8.1 Compatibility with Android O
	10.8.1.1 Refactor of AMN
	10.8.1.2 The Story of Element and DexFile

	10.8.2 Compatibility with Android P
	10.8.2.1 The Modification of the Class H
	10.8.2.2 The Refactoring of the Class Instrumentation

	10.9 Summary

	11: Summary of Plug-In Technology
	11.1 Plug-In Engineering
	11.2 Class Loading in the Plug-In
	11.3 Which Class or Interface Can Be Hooked?
	11.4 A Plug-In Solution for Activity
	11.5 A Plug-In Solution for Resources
	11.6 Use Fragment in the Plug-In
	11.7 Plug-In Solutions for Service, ContentProvider, and BroadcastReceiver
	11.7.1 A Plug-In Solution for Service
	11.7.2 A Plug-In Solution for BroadcastReceiver
	11.7.3 A Plug-In Solution for ContentProvider

	11.8 Summary

	Appendix A: Sample Code List
	Index

