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Introduction

ELCOME TO THE FIRST edition of Android App-Hook and Plug-In
Technology

WHAT THIS BOOK WILL TEACH YOU

This book will teach you everything you need to know to master Android
plug-in techniques.

This book introduces the Android plug-in technique. An app can be
downloaded as an apk file in a zip file from the remote server. We call this
zip file a plug-in. This app can invoke a class in this plug-in. This means
that we can update the content of the app without republishing it again.

Google Play has a strict app auditing strategy. It forbids any app from
downloading another app to prevent it from downloading malicious con-
tent or pornographic and violent content. Thus, we cannot publish an app
using this plug-in technique on Google Play.

This book will teach you the underlying knowledge of the Android sys-
tem, which help you master Android technique at a high level.

After reading this book, you will be familiar with several aspects of the
Android system, including the following content:

e Binder and AIDL mechanisms.

 The working mechanisms of Activity, Service, ContentProvider, and
BroadcastReceiver.

o Communication between ActivityManagerService and four
components.

o How to launch an app.
o LaunchMode.

o The families of Context and ClassLoader.

xxiii
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o MultiDex.
o How to load SO.

o PackageManagerService and how to install an app in the Android
system.

o Reflection.

o 'The Proxy.newProxylnstance() method for adding an external func-
tion to the original API.

WHO IS THIS BOOK FOR?
Don’t use the plug-in techniques introduced in this book on Google Play;
it’s forbidden.

This book introduces a lot of knowledge about the Android system
which is useful to app developers.

THE SAMPLE CODE

The sample code in this book is on my Github: https://github.com/
BaoBaoJiangiang/.

There are 74 demos in this book, and I list the address of each demo in
the corresponding chapter and section.

In Appendix A, I list all the demos with their corresponding chapter

and section.

THE BOOK’S STRUCTURE

This book consists of 11 chapters: chapters 1 to 5 introduces the basic
knowledge of plug-in techniques; chapters 6 to 10 introduces several solu-
tions for plug-in programming issues; Chapter 11 is an overall summary.

Below is a brief overview of the chapters.

Chapter 1 introduces the history of Android plug-in techniques.

Chapter 2 introduces the underlying Android system, including
Binder and AIDL, ActivityManagerService, PackageManagerService,
ActivityThread, LoadedApk, and so on. As this book is written for app
developers, I illustrate these concepts with a series of pictures rather than
code.

Chapter 3 introduces the syntax of reflection, and the encapsulation
of the reflection, including jOOR, a famous Java reflection framework.
Reflection is the basis of plug-in techniques.


https://github.com/
https://github.com/
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Chapter 4 introduces proxy patterns, including Static-Proxy and
Dynamic-Proxy, these two proxies generate two important plug-in
frameworks, DroidPlugin and DL. Proxy.newProxylnstance() is a widely
used plug-in, and we use this method to hook IActivityManager and
IPackageManager in this chapter.

Chapter 5 introduces how to start an Activity not declared in the
AndroidManifest.xml, based on the Proxy.newProxylnstance() introduced
in Chapter 4.

Chapter 6 introduces the basic knowledge of plug-ins, including
how to debug from the Hostapp to the plug-in, and interface-oriented
programming.

Chapter 7 introduces how to load Resources into plug-ins. AssetManager
and Resources are key points, especially the method addAssetPath() of
AssetManager. Based on this technique, we can dynamically change a skin.

Chapter 8 introduces plug-in solutions for Activity, Service,
BroadcastReceiver, and ContentProvider. A different mechanism of these
four components results in different plug-in solutions.

Chapter 9 introduces a plug-in framework based on Static-Proxy. The
creator of this framework invented a new keyword “that,” so this frame-
work is also called “That.” “That” is a very smart framework; it’s also well
known as Puppet.

Chapter 10 considers other related plug-in techniques. Including
how to resolve conflicts between the resource ID in plug-ins, how to use
fragments in plug-ins, how to replace HTML5 with Activity, how to use
ProGuard in plug-ins, how to reduce the size of plug-ins, how to download
a SO file dynamically, and how to support the Android O and P systems
with plug-ins.

Chapter 11 summarizes all the plug-in techniques mentioned in this
book.

CONTACTING THE AUTHORS

If you have suggestions, remarks, or questions on plug-in techniques and
sample code, please contact the author on: 16230091@qq.com.
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CHAPTER 1

Plug-Ins from the
Past to the Future

OOGLE PLAY HAS A strict app auditing strategy. For example, it for-
bids any app to download another app to prevent it from download-
ing bad content, pornographic and violent content, for example.

In addition, Google Play forbids app developers from modifying
the original behavior of the API of the Android system, which is not
open to the app developers. For example, the method addAssetPath()
of the AssetManager, and the method currentActivityThread() of the
ActivityThread. Also, Android P launched a new mechanism named
the grey-list and black-list. If the developer modifies the APIs through
the two lists above, these APIs will print a warning or return null
directly.

The auditing strategy in the Chinese app market is less strict.
Downloading and launching are allowed and there are two main tech-
niques widely used in China; one is plug-in, the other one is hot-fix.

1.1 ANDROID PLUG-INS IN CHINA

The plug-in technique separates one app into a lot of small apps for dif-
ferent business purposes; the OTA* app, for example, consists of hotels,
flights, cars, and other domains. We can separate these domains into sev-
eral small apps, such as a hotel app, flight app, and car app, and all these
small apps are called plug-in apps. As all the businesses are separated into

* OTA: Online Travel Agent
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different plug-in apps, only the home page is left in the main app (and is
called the Hostapp). When users click the button in the Hostapp, it will
navigate to the small apps.

In traditional app coding strategy, all the code and logic should be in
one app. When we find bugs in the app, there is only one way to solve this
online bug; it is to package this app again and submit it to the Android app
market. However, the users must download the latest version of this app
to remedy the bugs. This is not a good solution; it’s not user-friendly. Most
users don’t want to waste time updating an app.

Android plug-ins are a very good solution to the problem above. If there
is a bug in one plug-in, we just need to package this plug-in app again, and
then put this new plug-in on the remote server. When the app user opens
the Hostapp, it will download this new plug-in in the background thread
automatically. When downloaded successfully, the user needs to restart
the app and the bugs will have been eliminated from the app.

The plug-in technique is not only used to fix bugs but is also suitable for
rapid software development. In traditional app development, you launch
a new version of the app every month. It is very common for a very big
company to have 100 product requirements needing to be coded within
one month. Any delay in development causes some products to launch
later than planned. By using the plug-in technique, the different apps can
be launched individually; there will be no time limit.

In China, the hot-fix technique was developed using similar ideas to
plug-ins. The hot-fix technique is useful for fixing online bugs. When app
developers find online bugs, they can fix the codes and then package the
code modification into a zip file; then upload this zip file to the remote
server, so that users can download this zip file dynamically. After the users
have downloaded the zip successfully, the app will decompose this zip file
and substitute the old code with the new code in the zip file.

The plug-in technique and hot-fix technique were developed using
very similar ideas. The plug-in technique loads outside the apps by hook-
ing the Android internal system APIL The hook occurs in the Java code,
where the hot-fix is happening in NDK, which means C++. A hot-fix
replaces the pointer of the old method with a pointer of the new method.

This book focuses on the plug-in technique.

1.2 HISTORY OF ANDROID PLUG-IN TECHNIQUES

On July 27, 2012, the first milestone in Android plug-in technology was
reached. Yimin Tu, who worked for Dianping.com, released the first
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Android plug-in open source project, AndroidDynamicLoader*, and the
Dianping.com app was based on this framework. This plug-in frame-
work is based on Fragment. The app has only one activity; all the pages
are implemented by fragments and loaded by this activity. Some fragment
pages are plug-ins, which can be downloaded dynamically. This plug-in
framework was the first time anyone used the method addAssetPath() of
the AssetManager to handle the Resources in the plug-in app.

In 2013, 23Code appeared. 23Code provides a container where plug-
ins can be dynamically downloaded and run. We can write a variety of
UserControls and run them in 23Code. It is an Android plug-in frame-
work, but without source code and not widely known.

On March 27, 2013, Bokui, the developer of the Taobao app, shared
technical information on Taobao’s plug-in framework. The name of this
plug-in framework is Atlas’. In this topic, he introduced a way to modify
the internal API of Android, incremental update, downgrade, compatibil-
ity, and so on. It’s a pity that this plug-in framework is not an open source
project. We can’t learn more from this topic.

At 8:20 on March 30, 2014, the second milestone of Android plug-in
technology was reached. Yugang Ren published an Android plug-in proj-
ect named dynamic-load-apk*, which was not the same as the other plug-
in projects. It did not modify the internal methods of the Android system,
but solved problems from the application layer of the app by creating a
class named ProxyActivity to distribute and start the activity of the plug-
in. Yugang Ren invented a keyword called “that” in this framework, it’s
also called the “That” framework in this book. In fact, the creator does not
like this nickname and named it DL for short. When he developed this
framework, there were so many difficulties, because there was not enough
information on Android plug-in technology that could be referred to,
especially before 2014.

The “That” framework only has the implementation of Activity at the
beginning. With the contribution of Xiao Tian and Siyu Song, the imple-
mentation of Service was available later. In April 2015, the “That” frame-
work was stable.

Atthesametime, Tao Zhangwasalso contributing to theimplementation
of plug-in technology. In May 2014, after reading all the source codes of DL,

* https://github.com/mmin18/AndroidDynamicLoader
 http://v.youku.com/v_show/id_XNTMzM;jYzMzM2.html
* https://github.com/singwhatiwanna/dynamic-load-apk
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https://github.com/
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he released his first plug-in framework, CJFrameForAndroid*. This design
was similar to the “That” framework. In addition, the CJFrameForAndroid
framework provided a plug-in solution called LaunchMode, which was a
very important contribution to plug-in techniques.

In November 2014, Houkx released a plug-in project named android-
pluginmgr on GitHub'. This framework first proposed registering a
StubActivity in the AndroidManifest.xml to cheat the AMS but opened an
Activity in a plug-in. At the same time, Houkx also found that all the per-
missions should be declared in the AndroidManifest.xml of the plug-in in
advance.

On December 8, 2014, there was good news, Android Studio V1.0 was
available. Android developers began to gradually abandon Eclipse to use
Android Studio. Android Studio is compiled and packaged with Gradle,
which makes the design of plug-in frameworks much simpler, eliminating
the inconvenience of using Eclipse to run the Android SDK.

Then, though, 2015 was coming. Lody, an 18-year-old boy, began using
Android in 2015 when he was a senior high school student. He had studied
the source code of the Android system for 3 years. His first well-known
open source project was TurboDex*, which could quickly load dex with
high speed. This is a very useful plug-in framework because it usually
takes a long time to load all the plug-ins for initialization.

At the end of March 2015, Lody released the plug-in project: Direct-
Load-ApkS. This framework combined two thoughts mentioned earlier;
one was Static-Proxy, from Yugang Ren’s “That” framework, the other
one was to cheat the AMS, from Houkx’s pluginmgr framework. Direct-
Load-Apk is not widely known, because Lody had too much school
homework.

The legend of Lody wasn't finished yet; he spent a lot of time on
Virtual App. Virtual App is like a virtual machine on the Android system.
It can install and run other apps. We'll discuss VirtualApp in Section 1.6.

In May 2015, Limpoxe released the plug-in framework:
Android-Plug-in-Framework®.

* https://github.com/kymjs/CJFrameForAndroid
 https://github.com/houkx/android-pluginmgr

¥ https://github.com/asLody/TurboDex

S http://git.oschina.net/oycocean/Direct-Load-apk

¢ https://github.com/limpoxe/Android-Plugin-Framework
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In July 2015, Kaedea released the plug-in framework: Android-
dynamical-loading*.

On August 27, 2015, the third milestone of Android plug-in technology
was reached, Yong Zhang’s plug-in framework DroidPlugin® came out.
Yong Zhang was a developer at Qihoo360, and DroidPlugin was used in
his team. The magic of this framework is that any app can be loaded into
the HostApp. You can write a Host App based on this framework, and then
load apps written by others as plug-ins.

DroidPlugin is a powerful plug-in framework, but its disadvantage is
obvious. It modifies too many internal APIs of the Android system. Due to
the lack of literature on the DroidPlugin framework, it is difficult to under-
stand. There are many articles about DroidPlugin on blogs and forums,
but the best one is written by WeiShu Tian*. He also worked at Qihoo360
and had the opportunity to talk about DroidPlugin with its creator. He
then wrote a series of articles about the DroidPlugin, including the prin-
ciples of Binder, AIDL and the plug-in mechanism for the Activity, Service,
BroadcastReceiver, and ContentProvider.

The year 2015 was the first year of Android plug-in development. Not
only the “that” framework and DroidPlugin but many other plug-in frame-
works were also born at that time.

The project OpenAtlas was released on GitHub in May and was later
renamed ACDD. It proposes modifying the command aapt so that the
resource ID of the plug-in is no longer a fixed value of 0x7f, but can be
modified to a value such as 0x71. aapt is a command line tool supplied
by Android. It’s used to generate resource IDs during the packaging pro-
cess of an Android app. This technique solves the problem of resource
ID conflict after merging the resources of the plug-in and the Hostapp
together.

OpenAtlas hooks the method execStartActivity() of Instrumentation to
load the Activity of the plug-in dynamically.

In addition, OpenAtlas also modifies ContextWrapper, and r