

97 Things
Every Project Manager Should Know

97 Things
Every Project Manager Should Know

Collective Wisdom from the Experts

Edited by Barbee Davis

Beijing · Cambridge · Farnham · Köln · Sebastopol · Taipei · Tokyo

97 Things Every Project Manager Should Know
Edited by Barbee Davis

Copyright © 2009 Barbee Davis. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more informa-
tion, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.
com.

Editor: Mike Loukides
Series Editor: Richard Monson-Haefel
Production Editor: Rachel Monaghan
Proofreader: Rachel Monaghan

Compositor: Ron Bilodeau
Indexer: Julie Hawks
Interior Designer: Ron Bilodeau
Cover Designer: Mark Paglietti

Print History:

 August 2009: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 97 Things Every Project
Manager Should Know and related trade dress are trademarks of O’Reilly Media, Inc.

PMP is a registered certification mark, PgMP is a registered service mark, and PMBOK is a
registered trademark of the Project Management Institute, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
clarified as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and au-
thors assume no responsibility for errors and omissions, or for damages resulting from the use
of the information contained herein.

TM

This book uses Repkover,™ a durable and flexible lay-flat binding.

ISBN: 978-0-596-80416-9

[M]

v

Contents

Tips by Topic. xv

Preface. xxiii

Get Users Involved As Early As Possible 2

Barbee Davis, MA, PHR, PMP

Avoid Whack-a-Mole Development 4

Venkat Subramaniam

A Word Can Make You Miss Your Deadline. 6

Pavel Simsa, PMP

Make Project Sponsors Write Their Own Requirements . . . 8

Miyoko Takeya, PMP

Favor the Simple Over the Complex. 10

Scott Davis

Pay Your Debts . 12

Brian Sletten

Add Talents, Not Skills, to Your Team 14

Richard Sheridan

vi Contents

Keep It Simple, Simon. 16

Krishna Kadali, M. Tech

You Aren’t Special . 18

Jared Richardson

Scrolling Through Time . 20

Kim MacCormack

Save Money on Your Issues. 22

Randy Loomis, PMP

How to Spot a Good IT Developer. 24

James Graham, PMP

Developer Productivity: Skilled Versus Average 26

Neal Ford

Size Matters . 28

Anupam Kundu

Document Your Process, Then Make Sure It Is Followed. . 30

Monte Davis, MCSE

Go Ahead, Throw That Practice Out. 32

Naresh Jain

Requirement Specifications: An Oxymoron 34

Alan Greenblatt

Success Is Always Measured in Business Value. 36

Barbee Davis, MA, PHR, PMP

Don’t Skip Vacations for the Project. 38

Joe Zenevitch

viiContents

Provide Regular Time to Focus 40

James Leigh

Project Management Is Problem Management 42

Lorin Unger

Empowering Developers: A Man Named Tim 44

Ken Sipe

Clever Code Is Hard to Maintain. 46

David Wood

Managing Human Factors in IT Project Management. . . . 48

James Graham, PMP

Use a Wiki. 50

Adrian Wible

The Missing Link. 52

Paul Waggoner, MBA, PMP, MCSE, CHP, CHSS

Estimate, Estimate, Estimate. 54

Richard Sheridan

Developers Unite—PMOs Are Advancing. 56

Angelo Valle

Value Results, Not Just Effort. 58

Venkat Subramaniam

Software Failure Is Organizational Failure 60

Brian Sletten

A Voice from the Other Side. 62

Marty Skomal, MPA

viii Contents

Keep Your Perspective . 64

James Graham, PMP

How Do You Define “Finished”?. 66

Brian Sam-Bodden

The 60/60 Rule . 68

David Wood

We Have Met the Enemy…and He Is Us. 70

Barbee Davis, MA, PHR, PMP

Work in Cycles. 72

James Leigh

To Thine Own Self Be True. 74

Harry Tucker

Meetings Don’t Write Code . 76

William J. Mills

Chart a Course for Change. 78

Kathy MacDougall

IT Program Management: Shared Vision 80

David Diaz Castillo, MBA, PMP

Planning for Reality . 82

Craig Letavec, PMP, PgMP, MSP

The Fallacy of Perfect Execution. 84

David Wood

Introduce a More Agile Communication System 86

Brian Sam-Bodden

ixContents

Don’t Worship a Methodology. 88

Fabio Teixeira de Melo, PMP

Don’t Throw Spreadsheets at People Issues. 90

Anupam Kundu

One Deliverable, One Person 92

Alan Greenblatt

The Fallacy of Perfect Knowledge 94

David Wood

Build Teams to Run Marathons, Not Sprints. 96

Naresh Jain

The Holy Trinity of Project Management 98

Paul Waggoner, MBA, PMP, MCSE, CHP, CHSS

Roadmaps: What Have We Done for You Lately? 100

Kathy MacDougall

The Importance of the Project Scope Statement. 102

Kim Heldman, PMP

Align Vision and Expected Outcome 104

David Diaz Castillo, MBA, PMP

Alice Doesn’t Live Here Anymore. 106

Barbee Davis, MA, PHR, PMP

Avoiding Contract Disputes . 108

Jorge Gelabert, PMP

You Get What You Measure . 110

Naresh Jain

x Contents

Don’t Fall into the “Not Invented Here” Syndrome. 112

Dr. Paul Giammalvo, CDT, CCE, MScPM

Favor the Now Over the Soon. 114

Scott Davis

Speed Is Life; More Is Better. 116

Matt “Boom” Daniel

Building the Morale on Your Team 118

David Bock

A Project Depends on Teamwork. 120

Lelio Varella, PMP

Serve Your Team . 122

Karen Gillison

The Fallacy of the Big Round Ball 124

David Wood

Responding to a Crisis. 126

James Graham, PMP

Know Your Integration Points. 128

Monte Davis, MCSE

Aggressively Promote Communication in
Distributed Projects . 130

Anupam Kundu

Start with the End in Mind . 132

Luis E. Torres, PMP

Clear Terms, Long Friendship!. 134

Matteo Becchi, PMP

xiContents

The Best Estimators: Those Who Do the Work. 136

Joe Zenevitch

Communicating Is Key. 138

Gennady Mironov, CPM

A Project Is the Pursuit of a
Solution. 140

Cynthia A. Berg, PhD (ABD), PMP

It’s the People, Stupid. 142

Adrian Wible

Documents Are a Means, Not an End 144

Patrick Kua

Can Earned Value and Velocity Coexist on Reports? 146

Barbee Davis, MA, PHR, PMP

Scope Change Happens; Get Used to It. 148

Pavel Simsa, PMP

Buying Ready-Made Software. 150

Ernani Marques da Silva, MBA, PMP, PgMP

Project Sponsors—Good, Bad, and Ugly 152

Jorge Gelabert, PMP

Should You Under-Promise, or Over-Deliver?. 154

Joe Zenevitch

Every Project Manager Is a Contract Administrator. 156

Fabio Teixeira de Melo, PMP

Important, but Not Urgent. 158

Alex Miller

xii Contents

Teach the Process. 160

Richard Sheridan

The Fallacy of Status. 162

Udi Dahan

What Do They Want to Hear, Anyway?. 164

Martha Legare, MBA, PMP

Recognize the Value of Team Morale 166

David Bock

Engage Stakeholders All Through Project Life. 168

Lukeman Lawal, M.ENG, MNSE, R.ENGR.

The Value of Planning . 170

Derry Simmel, PMP, MBA, FLMI

Don’t Always Be “The Messenger”. 172

Matt Secoske

Effectively Manage the Deliverables. 174

Ernani Marques da Silva, MBA, PMP, PgMP

We Are Project Managers, Not Superheroes. 176

Angyne J. Schock-Smith, PMP

Increase Communication:
Hold Frequent, Instant Meetings 178

Richard Sheridan

Flexibility Simplifies Project Management 180

Krishna Kadali, M. Tech

The Web Points the Way, for Now 182

David Wood

xiiiContents

Developers Hate Status Reports, Managers Love Them. 184

Pavel Simsa, PMP

You Are Not in Control . 186

Patrick Kua

Share the Vision. 188

Jared Richardson

True Success Comes with a Supporting Organization. . . . 190

Cynthia A. Berg, PhD (ABD), PMP

Establish Project Management Governance. 192

Ernani Marques da Silva, MBA, PMP, PgMP

9.7 Reasons I Hate Your Website. 194

Barbee Davis, MA, PHR, PMP

Contributors . 196

Index. 218

xv

Tips by Topic

Agile Methods

Get Users Involved As Early As Possible 2

Keep It Simple, Simon. 16

Scrolling Through Time . 20

How to Spot a Good IT Developer. 24

Don’t Skip Vacations for the Project. 38

Empowering Developers: A Man Named Tim 44

How Do You Define “Finished”?. 66

Work in Cycles. 72

Introduce a More Agile Communication System 86

The Fallacy of Perfect Knowledge . 94

Favor the Now Over the Soon. 114

Serve Your Team . 122

The Best Estimators: Those Who Do the Work. 136

Can Earned Value and Velocity Coexist on Reports? 146

Increase Communication: Hold Frequent, Instant Meetings. . . . 178

Software Development

Get Users Involved As Early As Possible 2

Avoid Whack-a-Mole Development . 4

A Word Can Make You Miss Your Deadline. 6

Favor the Simple Over the Complex. 10

xvi Contents

Pay Your Debts . 12

Go Ahead, Throw That Practice Out. 32

Provide Regular Time to Focus . 40

Clever Code Is Hard to Maintain. 46

Developers Unite—PMOs Are Advancing. 56

Software Failure Is Organizational Failure 60

A Voice from the Other Side. 62

How Do You Define “Finished”?. 66

The 60/60 Rule . 68

Work in Cycles. 72

The Fallacy of Perfect Execution. 84

The Fallacy of Perfect Knowledge . 94

Align Vision and Expected Outcome 104

Alice Doesn’t Live Here Anymore. 106

Favor the Now Over the Soon. 114

The Fallacy of the Big Round Ball . 124

Know Your Integration Points. 128

Scope Change Happens; Get Used to It. 148

Buying Ready-Made Software. 150

Flexibility Simplifies Project Management 180

The Web Points the Way, for Now . 182

Developers Hate Status Reports, Managers Love Them 184

Managing People and Teams

Avoid Whack-a-Mole Development . 4

Add Talents, Not Skills, to Your Team 14

You Aren’t Special . 18

How to Spot a Good IT Developer. 24

Developer Productivity: Skilled Versus Average 26

Success Is Always Measured in Business Value. 36

Empowering Developers: A Man Named Tim 44

Clever Code Is Hard to Maintain. 46

Managing Human Factors in IT Project Management. 48

xviiContents

The Missing Link. 52

Estimate, Estimate, Estimate. 54

Value Results, Not Just Effort. 58

Software Failure Is Organizational Failure 60

We Have Met the Enemy…and He Is Us. 70

Work in Cycles. 72

Meetings Don’t Write Code . 76

Chart a Course for Change. 78

One Deliverable, One Person . 92

Build Teams to Run Marathons, Not Sprints. 96

The Holy Trinity of Project Management 98

Align Vision and Expected Outcome 104

You Get What You Measure . 110

Building the Morale on Your Team . 118

A Project Depends on Teamwork. 120

The Best Estimators: Those Who Do the Work. 136

It’s the People, Stupid. 142

Teach the Process. 160

The Fallacy of Status. 162

Recognize the Value of Team Morale 166

International Issues or Distributed Teams

A Word Can Make You Miss Your Deadline. 6

Make Project Sponsors Write Their Own Requirements 8

Requirement Specifications: An Oxymoron 34

IT Program Management: Shared Vision 80

Don’t Worship a Methodology. 88

Alice Doesn’t Live Here Anymore. 106

Aggressively Promote Communication in Distributed Projects. . 130

Communicating Is Key. 138

Developers Hate Status Reports, Managers Love Them 184

You Are Not in Control . 186

Share the Vision. 188

xviii Contents

Managing Projects

Size Matters . 28

Document Your Process, Then Make Sure It Is Followed. 30

Project Management Is Problem Management 42

Use a Wiki. 50

How Do You Define “Finished”?. 66

The 60/60 Rule . 68

IT Program Management: Shared Vision 80

Planning for Reality . 82

Responding to a Crisis. 126

Start with the End in Mind . 132

Documents Are a Means, Not an End 144

Should You Under-Promise, or Over-Deliver?. 154

Important, but Not Urgent. 158

Effectively Manage the Deliverables. 174

Communications

Developer Productivity: Skilled Versus Average 26

Use a Wiki. 50

Developers Unite—PMOs Are Advancing. 56

Meetings Don’t Write Code . 76

Introduce a More Agile Communication System 86

Roadmaps: What Have We Done for You Lately? 100

Aggressively Promote Communication in Distributed Projects. . 130

Communicating Is Key. 138

It’s the People, Stupid. 142

Project Sponsors—Good, Bad, and Ugly 152

Every Project Manager Is a Contract Administrator. 156

What Do They Want to Hear, Anyway?. 164

Engage Stakeholders All Through Project Life 168

Don’t Always Be “The Messenger”. 172

Increase Communication: Hold Frequent, Instant Meetings. . . . 178

xixContents

Managing Stakeholders

Make Project Sponsors Write Their Own Requirements 8

Keep It Simple, Simon. 16

Scrolling Through Time . 20

Save Money on Your Issues. 22

Success Is Always Measured in Business Value. 36

Chart a Course for Change. 78

Roadmaps: What Have We Done for You Lately? 100

The Importance of the Project Scope Statement. 102

Avoiding Contract Disputes . 108

A Project Is the Pursuit of a Solution 140

Project Sponsors—Good, Bad, and Ugly 152

Should You Under-Promise, or Over-Deliver?. 154

Teach the Process. 160

Engage Stakeholders All Through Project Life 168

True Success Comes with a Supporting Organization. 190

Establish Project Management Governance. 192

Project Processes

Go Ahead, Throw That Practice Out. 32

Planning for Reality . 82

Don’t Worship a Methodology. 88

One Deliverable, One Person . 92

The Holy Trinity of Project Management 98

The Importance of the Project Scope Statement. 102

You Get What You Measure . 110

Don’t Fall into the “Not Invented Here” Syndrome. 112

Responding to a Crisis. 126

Know Your Integration Points. 128

Start with the End in Mind . 132

Clear Terms, Long Friendship!. 134

A Project Is the Pursuit of a Solution 140

xx Contents

Documents Are a Means, Not an End 144

Can Earned Value and Velocity Coexist on Reports? 146

Scope Change Happens; Get Used to It. 148

The Fallacy of Status. 162

The Value of Planning . 170

Effectively Manage the Deliverables. 174

Flexibility Simplifies Project Management 180

Establish Project Management Governance. 192

Project Requirements

Make Project Sponsors Write Their Own Requirements 8

Favor the Simple Over the Complex. 10

Keep It Simple, Simon. 16

Requirement Specifications: An Oxymoron 34

Buying Ready-Made Software. 150

End-Users

Get Users Involved As Early As Possible 2

Favor the Simple Over the Complex. 10

Document Your Process, Then Make Sure It Is Followed. 30

A Voice from the Other Side. 62

Keep Your Perspective . 64

9.7 Reasons I Hate Your Website. 194

Purchasing Issues

Save Money on Your Issues. 22

Avoiding Contract Disputes . 108

Buying Ready-Made Software. 150

Every Project Manager Is a Contract Administrator. 156

xxiContents

Self-Management

You Aren’t Special . 18

Don’t Skip Vacations for the Project. 38

Provide Regular Time to Focus . 40

Project Management Is Problem Management 42

Value Results, Not Just Effort. 58

Keep Your Perspective . 64

We Have Met the Enemy…and He Is Us. 70

To Thine Own Self Be True. 74

Build Teams to Run Marathons, Not Sprints. 96

Don’t Fall into the “Not Invented Here” Syndrome. 112

Speed Is Life; More Is Better. 116

Building the Morale on Your Team . 118

Serve Your Team . 122

Important, but Not Urgent. 158

Recognize the Value of Team Morale 166

Don’t Always Be “The Messenger”. 172

We Are Project Managers, Not Superheroes. 176

You Are Not in Control . 186

Share the Vision. 188

True Success Comes with a Supporting Organization. 190

Web Development

Scrolling Through Time . 20

Size Matters . 28

A Voice from the Other Side. 62

Favor the Now Over the Soon. 114

The Web Points the Way, for Now . 182

9.7 Reasons I Hate Your Website. 194

xxiii

In hoy, ng n o or introducing a new process is
simple. In reality, those of us who actually do it for a living know that it is
becoming increasingly chaotic.

97 Things Every Project Manager Should Know is a collection of wisdom from
project managers, software developers, and a wide range of other occupation
holders from all around the world who are successful in managing their teams
to success. They have shared what they think are important tips for you to
know, whether you are involved in trying to create the product or manage the
processes of your organization’s projects.

Traditional books teach theory. In this one, people who are actively working in
the field day to day share the best secrets that they have learned or developed
after years on the job. You can find practical suggestions to improve both the
final product and your personal experiences by taming the chaos and guiding
the project to a successful completion.

As I talk to active practitioners, I find that there is a growing trend to involve
software developers, research chemists, construction foremen, and all manner
of other industry-specific technical experts in projects in a more vocal and
active way. Users, and other stakeholders, must also be included in this ever-
more-democratic vocation. While this cooperation is great, it multiplies the
complexity of trying to get the work finished.

Interestingly, when editing this book I have found that regardless of industry,
project role, or worldwide location, those of us who have project responsibili-
ties face the same challenges. And the joy has been that these tip authors from
around the world have been willing to share their ideas to help us master those
challenges. Since they represent not only project managers, but the voices of
those new technical stakeholders in the project, this is your chance to hear
their ideas and concerns before facing similar participants in your workplace.

Preface

xxiv Preface

Based on my firm belief that shared knowledge is power, this book was cre-
ated by combining the work of authors from 29 United States locations and 12
other countries around the world. The authors have donated their thoughts
and advice to help others in the field grow and prosper through more skillful
project guidance. It is a testament to the intensity of today’s belief in the value
of a collaborative environment that, despite wrestling with their own daily
issues, these authors were still willing to take the time to help us all benefit
from their wise, field-tested solutions.

Permissions
The licensing of each tip is similar to open source. Every contribution is avail-
able online and licensed under Creative Commons, Attribution 3, which
means that you can use the individual contributions in your own work as long
as you give credit to the original author. Other open source books have been
tried and have, with only a few exceptions, failed. I believe that is because it’s
harder for individuals to contribute to a project unless it can be modularized.
This book succeeds for exactly that reason: each contribution is self-contained
and works both in this larger collection and on its own.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

On the web page for this book, we list errata and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596804169/
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com
For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our website at:

http://www.oreilly.com/

http://www.oreilly.com/catalog/9780596522698/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

1Preface

Safari® Books Online
When you see a Safari® Books Online icon on the cover of
your favorite technology book, that means the book is avail-
able online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets
you easily search thousands of top tech books, cut and paste code samples,
download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://my.safaribooksonline.com.

Acknowledgments
The idea for 97 Things Every Project Manager Should Know was not conceived
in a vacuum. There are many people who deserve credit for the concept and
its execution.

I would like to thank the series editor, Richard Monson-Haefel, whom I met
while helping to administrate the No Fluff Just Stuff symposiums for Jay
Zimmerman. After finding out about my focus on project management and
software development, he suggested I write a book for his “97 Things” series
called 97 Things Every Project Manager Should Know as a companion piece for
his own book, 97 Things Every Software Architect Should Know.

A public wiki was created on the O’Reilly Media website, so that everyone
around the world who wished to participate could be involved. I’m deeply
grateful to those who chose to donate their time and contribute tips to this
book.

O’Reilly deserves credit for listening to this idea with open ears, and backing
what is more or less an untested method of creating a book. O’Reilly also mer-
its praise for agreeing that all content will be open source (Creative Commons,
Attribution 3). The people at O’Reilly I would specifically like to thank include
Mike Loukides, Rachel Monaghan, Ed Stephenson, and Laurel Ackerman.
Without your help and guidance, this project would not have been possible.

O’Reilly is developing other “97 Things” titles. The idea is to create a new and
unique series that leverages the collaborative intelligence and practical experi-
ence of experts in every field. Project management, software development, and
data architecture are just a few of the topics we are already pursuing.

2 97 Things Every Project Manager Should Know

Get Users
Involved As Early
As Possible
Barbee Davis, MA, PHR, PMP
Omaha, Nebraska, U.S.

P n o o vlon involved getting user
requirements and then going off to do the coding and testing under a veil of
great secrecy. After all, the users wouldn’t understand what we were doing any-
way, right? At the end of the project, our magician’s magic cloth was whisked
away and the user was expected to “ooh” and “ahh” at the brilliance of what we
had produced. However, all too frequently the reaction was, “Well, I know you
went to a lot of work, but what I really wanted was….”

Today, the secret to project success is to involve the users almost as soon as
there is anything visible to show them. How much better it is to find out that
there are problems with what we are developing early on, rather than after the
project is complete!

Costs for changes become increasingly high the further along we are on the
project schedule timeline. The time to recode, retest, and rework the immedi-
ate software, as well as to test integration with all the peripheral code involved,
can delay the project substantially. And both time and cost baselines are jeop-
ardized if a change is so major that it has to go through a lengthy Change
Control Board process for approval.

Programming decisions over very minor issues, which make perfect sense to
the software developer and the project manager, may create chaos back at the
workstation when the software goes into use.

I know of a large training company that spent $5 million redesigning its order-
ing software. Previously, the item numbers matched the product being ordered

3Collective Wisdom from the Experts

in a logical way. For example, 4125 might be a student manual, 4225 was the
accompanying student exercise disk, 4325 could represent the instructor man-
ual, 4425 was the course outline for marketing purposes, and so on. You could
order all the items in the 4X25 series on the same screen.

Each day, administrative coordinators in 140 locations around the world
ordered the same kinds of materials over and over and soon memorized the
item numbers. Once you knew the number for a student manual, you could
immediately key in the numbers for the other items without looking them up,
and ordering went quickly.

In the redesign, somehow the project team forgot to consider the way the
ordering process was used by the real people doing it. Under the new design,
there was no logical relationship between items. Item 6358 might be the same
student manual that once was 4125, the accompanying student exercise disk
was now 8872, and the instructor manual for the same class was 3392.

Not only did the user have to look up each item and try to “forget” the old
numbers and system, but also each type of item was now on a separate page.

Administrative coordinators were furious. Ordering slowed to a crawl. The
project far exceeded its time and cost baselines.

As a project manager, you should get the users talking to the software develop-
ers early and often.

4 97 Things Every Project Manager Should Know

Avoid Whack-a-
Mole Development
Venkat Subramaniam
Broomfield, Colorado, U.S.

So oj ngface a lot of pressure to deliver fast. Time
is of the essence. How can you get things done fast?

Imagine you have two programmers on your team, Bernie and Rob. Both are
capable, have the same amount of domain knowledge, and have equal lan-
guage skills. During development, you find that Bernie finishes his feature
implementations much faster than Rob.

While Bernie focuses on getting the code completed quickly, Rob spends time
writing code and then refactoring* it. He names the variables and methods bet-
ter. Once he gets things working, he breaks the code into smaller pieces. Now
he writes tests to make sure each piece of his code does what he meant it to
do. When he’s reasonably satisfied, he declares the coding of that functionality
done.

But assume you don’t know these details. If you only look at the speed with
which the functionalities are declared done, clearly Bernie is the better man,
right?

A few weeks go by, and you demonstrate the features to your customer. As
usual, the customer loves your completed features, but now wants you to
change and improve them. You ask your developers to make those code altera-
tions. When you take the new and improved functionality back to your cus-
tomer, they try out the features that Rob implemented and are pleased with
the changes.

* Refactoring: Reworking the body of code to improve its internal structure without changing its
external function. It improves the software design. Refactoring code is going back to improve a
working feature that was created quickly and tested. Now it needs further internal refinement to
facilitate its long term use and make it easier to add future changes.

5Collective Wisdom from the Experts

Unfortunately, they discover something odd with the features that Bernie imple-
mented. While Bernie has programmed in the new functions fine, now a few
things that worked before don’t work anymore. The customer marks these as
defects, and you ask Bernie to fix them. The customer tests the features again.
Now even newer, stranger things seem to be broken. What’s going on here?

If you have a child, you know what is happening. Bernie has created a Whack-
A-Mole application. Whack-A-Mole is a toy. Kids are given a wooden ham-
mer to strike moles that pop up at random. It’s fun for them to be surprised
by which mole pops up next. However, fixing applications with broken code
popping up at random places is not fun. It is frustrating, unpredictable, and
it slows your product development. Bernie was sprinting initially, but he was
running in the wrong direction.

While Rob appeared slower at the outset, he was actually creating superior
code. His pace proved sustainable. The better quality of his initial code helped
him make workable changes quickly. Plus, the tests he wrote in the beginning
gave him instant feedback regarding whether or not his new code was compat-
ible with other parts of the application where the code was used.

When measuring time for a feature implementation, do not consider only the
time it takes to write it in the first place. Add the time it takes to enhance,
fix, and improve the code. Writing good quality code and tests takes time. It
appears to be a short-term loss. However, it comes with a long-term gain.

Ask yourself if you want speed, or if you want to savor sustainable progress.

6 97 Things Every Project Manager Should Know

A Word Can
Make You Miss
Your Deadline
Pavel Simsa, PMP
Bellevue, Washington, U.S.

Whh o n yo yo ln? The answer is “any
word.” When you are developing a product that will be released in languages
other than English, you are adding numerous new risks and constraints to
your project.

Some are technical and obvious. For example, if your product will be released
in Japanese, it has to support the appropriate fonts. If it doesn’t, the Japanese
version won’t work, even if the English one works perfectly. But font compati-
bility is not under your control. You and your team need to be aware of transla-
tion quirks and consider them before coding. Make sure that the development
practices follow international standards that will eliminate such issues.

However, the mere need for alternate language versions also constrains what
decisions you can make and when. Typically, localization (Japanese, Swedish,
German, etc.) happens in parallel with English development, with a certain
lag. It can be a few days, weeks, or even months. However, at some point the
translation of the foreign version has to “catch up” with the English version.

You need to make sure during testing and reviews that:

•	 What is in the English version can be properly translated

•	 What is translated truly corresponds to the English version

•	 The translated product works flawlessly

Here’s the catch. These three things may be tested after the English version
is finished and signed off on. During the testing and reviewing of a localized
version, you will always find at least one challenging issue that can’t be solved
except through a change to the English product.

7Collective Wisdom from the Experts

However, be aware that a relatively simple and low-risk last-minute change
in the English product, such as rephrasing a sentence (which takes only a few
seconds to code), often requires several days to implement and retest for all
the localized versions.

This can cost thousands of extra dollars, especially if you are contracting the
translation work to an external company. The mistake that less experienced soft-
ware development project managers often make is simple. They underestimate
the effect and magnitude of making unexpected changes to the English version.

Here are two main things you can do to prevent this:

•	 Add a “localization buffer” to the end of your schedule. End of schedule
means the effective deadline for any work on the English product included
in your project schedule. Any changes that need to be done after that tar-
geted end date must meet very specific and very strict criteria to “get in” to
the rework queue. Every change to this version also necessitates changes
to the foreign ones.

•	 Sequence the tasks in a way that quality control of functionality is done
separately from quality review of the English text. That can be as simple
as copying all of the English text to a spreadsheet for proofing. That way,
unclear wording can be found before the test cycle reveals it on an other-
wise functioning product. Now, the necessary change can be done earlier
and may not necessitate reworking other language versions.

8 97 Things Every Project Manager Should Know

Make Project
Sponsors Write Their
Own Requirements
Miyoko Takeya, PMP
Tokyo, Japan

Poj l no j ol with American corporations.
According to a survey conducted several years ago by one of Japan’s leading
information technology magazines, more than 75% of the projects that are
undertaken by Japanese corporations are considered a failure when measured
against the metrics of quality, cost, and delivery.

In Japan, as in most other nations, the top reason for failure in each metric is
almost always the same: poor requirements definition. The companies that are
most at risk are those with poor business analysis capabilities. When specifically
reporting on technology projects, such as software development, success is cat-
egorized, euphemistically, as “improbable.” This result shows how difficult it is to
find, identify, and define true requirements for a software project.

Since it is so hard to do, many project owners—such as customers, project
sponsors, or company executives—expect the project manager to define and
refine the requirements for the software on her own. They do not provide
much in the way of guidance or a clear definition of what they need. Since it is
a software project, and they may not understand software development them-
selves, they assume that they don’t have to define what they expect.

The software project manager usually does not have the authority or the time
to find, select, and prioritize the project requirements on her own—especially
since there may be several interest groups involved in the project that prob-
ably have conflicting ideas about what they envision the software will do upon
completion.

9Collective Wisdom from the Experts

It’s up to the project manager to spend time with those who are funding the
software project to help them define exactly what they want before the project
starts. Is it more important that it is done quickly, with few bugs, or on as small a
budget as possible? You can’t have it all. What resources and skill sets are crucial
to create the software they want? Are they making these resources available to
the team?

How will the software be used to run the infrastructure or make money for the
company? Are the time constraints realistic? Are they written into a customer
contract, tied to an important holiday date, or part of an elaborate marketing
plan?

Without serious, specific consideration of what is to be created on this project
during the requirement definition phase, the success of the project is severely
jeopardized. Remember, project owners need to convey what they want this
software to do, not how the programmers will go about producing that result.

Convince the project owners that they must be involved in the process from
start to finish. Solid requirements planning establishes a clear connection
between the business case, project goals, and the project outcome. Otherwise,
the project cannot produce the satisfactory result they are expecting.

A failed software project hurts the project owners most, since they have put up
the money to fund the project and were expecting to use the software to earn
back their investment.

10 97 Things Every Project Manager Should Know

Favor the Simple
Over the Complex
Scott Davis
Broomfield, Colorado, U.S.

A I’ onn,my microwave oven only has one button: “add a
minute.” To boil a cup of water for my coffee, I press the button three times. To
melt cheese on my crackers, one click. To warm up a flour tortilla, I press “add
a minute” and then open the door after 15 seconds.

Would a one-button microwave oven ever make it out of the planning com-
mittee? Probably not. I can tell by the (never used) features on my microwave
that the committee favored complexity over simplicity. Of course, they prob-
ably cloaked “complexity” in the euphemism “feature-rich.” No one ever starts
out with the goal of making a product that is unnecessarily complex. The com-
plexity comes along accidentally.

Suppose that I have a slice of cold pizza that I want to warm up. According to
the manufacturer’s directions, I should press the “menu” button. I am now faced
with the options “speedcook” or “reheat.” (Um, “reheat,” I guess, although I’m
kind of hungry. I wonder if speedcook will be any faster than reheat?)

“Beverage,” “pasta,” “pizza,” “plate of food,” “sauce,” or “soup”? (I choose “pizza,”
although it does have sauce on it, and it is on a plate.) “Deli/Fresh” or “Frozen”?
(Neither, actually—it’s leftover delivery pizza. I’ll choose “Deli/Fresh,” I guess.)
“1 slice,” “2 slices,” “3 slices,” or “4 slices”? I have no idea how much longer this
interrogation will last, so I press Cancel and then the “add a minute” button.

What does this have to do with software development? As far as I’m concerned,
Amazon.com only has one button: “one-click purchase.” Oh, sure, I had to type
in my address and my credit card number the first time I visited, but now I am
one click away from my impulse buy.

11Collective Wisdom from the Experts

Software generally solves complex problems. The question is how much of
that inherent complexity are you forcing onto the end-user? Is your software a
complexity amplifier? Great software is generally a complexity sink—it bears
the brunt of the problem on behalf of the user instead of passing it along.

As a software project manager, are you a complexity sink or a complexity
amplifier? The best ones absorb complexity from all sides—from the program-
mers, from the end-users, from management—and never amplify it. As the
end-users generate seemingly contradictory requirements, your job is to help
clean them up, rather than passing them blindly on to the developers. As the
developers cite arcane technical reasons for not being able to fulfill a require-
ment, your job is to translate (absorb) that complexity and present the end-
users with enough information to help them choose a different path.

How easy is it to use your application? How easy is it to add a new feature
to your application? How easy is it to request a new feature? Report a bug?
Deploy a new version? Roll back a bad version?

Simplicity doesn’t happen accidentally. It needs to be actively cultivated. Com-
plexity is what happens when you aren’t paying attention.

12 97 Things Every Project Manager Should Know

Pay Your Debts
Brian Sletten
Beverly Hills, California, U.S.

D, hn ll ng,is a useful financial instrument for both ordi-
nary citizens and successful organizations. It balances present insufficiencies
by borrowing against future surpluses. Used judiciously, short-term debt is an
effective tool for smoothing out the rough edges of cash ebbs and flows. When
abused, it becomes a burdensome yoke that makes it increasingly stressful to
move along.

In the world of software development, borrowing time can be a useful strat-
egy for meeting “at risk” milestones, while completing most of what needs
to be done. Ward Cunningham introduced the notion of “technical debt” as
something developers can incur as they head toward the end of an iteration,*
or a deadline, if time gets short. At that point, they may not be able to do code
right, but by taking some shortcuts they may be able to program code “right
enough” to still cross the finish line.

Even though the software is in a temporary, imperfect state, this is a perfectly
reasonable thing to do if the technical debt incurred is managed responsibly.
If it is not paid off, however, it will start to become more painful to do over
time. Continued borrowing against the future without repayment will put the
project further at risk.

The best way to pay off your technical debt is to assess what “loans” were taken
at the end of each iteration. Ask your developers to identify specific hacks† they
would like to unwind, and quantify how much time they think they need to do so.

* Iteration: A short period of time chosen by an agile project team (a week, two weeks, a month,
etc.) during which a key requirement chosen by the customer will be developed, tested, and then
delivered to the customer for approval or comment. The next iteration will then begin to develop
the next most important requirement and/or correct the work done in the preceding iteration.

†Hack: A quick fix or solution to a programming problem that works, but is less than ideal and may
need to be revised when time allows. Fixing the inelegant code may be referred to as “unwinding a
hack.”

13Collective Wisdom from the Experts

They do not need to pay debt off immediately, but it is good to gauge the extent
of the needed repair while the shortcuts are still fresh in the developers’ minds.

Make sure there are specific code problems identified to be rewritten, not just
arbitrary buckets of time requested. This is not an opportunity to goof off, it is
a disciplined approach to keeping your code base clean.

Additionally, an increasing array of software analysis tools such as code cover-
age, coupling analysis, and detection of style deviations can automatically help
identify places where debt has been incurred, perhaps without your knowl-
edge. Enter these items into your issue tracking system and schedule them
against future iterations. By balancing the workload to include new business
functionality and paying off loans, it is possible to keep your technical debt
from spiraling out of control while still satisfying customer feature requests.

Software gets unwieldy for many reasons. But it usually comes down to hacks,
insufficient documentation, inappropriate dependencies, shortcuts, and devi-
ations from the intended design. When developers throw up their hands and
say they need to start over on a system, chances are that unpaid technical debt
has become overwhelming. They feel the need to declare the software equiva-
lent of bankruptcy.

By identifying this debt along the way and dealing with it quickly, you can
make more frequent “minimum payments” to prevent ensuing chaos. This
metaphor is a surprisingly useful way to explain to business stakeholders how
software can become unmanageable over time and why they should invest in
keeping code clean.

14 97 Things Every Project Manager Should Know

Add Talents, Not
Skills, to Your Team
Richard Sheridan
Ann Arbor, Michigan, U.S.

I o h h y vyon n o ny h:skills, skills,
skills. One day an interview candidate threw cold water in my face, figura-
tively, and it changed me.

I was looking to add a new hero to my team, someone with years of Microsoft
experience. Looking over Bill’s resume, I could tell he was perfect for the posi-
tion. He had over six years of experience in all the relevant skills. If I could hit
the right price point, this was going to be easy.

Bill came in for the interview. We talked and I described the projects we had
on tap, and what a perfect fit Bill was for this position. I was sure this was going
well. Suddenly, I realized I wasn’t going to get him. I stopped the interview in
mid-stream and asked Bill what had happened. I told him he was perfect for
the position, but that I sensed he wasn’t coming.

His response was, “Rich, if I wanted to do what I’ve been doing the last six
years, I’d stay where I am. I heard you had some cool, new Java projects coming
up and I wanted to work here because I saw it as a chance to learn and grow.”

That’s when it dawned on me. Hiring by running a “resume versus skills”
match is the stupidest way a manager could ever build a team.

You see, my partners and I got into the high-tech industry because we
wanted to be at the leading edge of technology. None of us hoped to spend a
career recycling the same skills we learned in college. We got into this game
because it would always be about new frontiers and learning new techniques
and technologies.

15Collective Wisdom from the Experts

But somewhere along the way, things went horribly wrong. I realized we had
stopped investing in our employees’ growth. We weren’t looking for fresh, new
talent. We were looking for very specific, already refined, skills. Now, I tell
people that if they see an employer hiring for an exact skill match, what that
employer is really saying is, “We don’t plan to invest in you.”

My advice to anyone seeking to build a strong team is to hire for talents, not
for skills. What talents do I look for when hiring technologists for my agile
development teams? Good kindergarten skills:

•	 Do the candidates get along well with others?

•	 Do they play nice?

•	 Do they put their things away when they have finished playing?

•	 Are they excited about new things?

•	 Do they like learning?

I can teach skills. In fact, in our agile team environment, learning technology
is fast and easy. However, it is nearly impossible to teach an adult how to play
nice.

Hiring for talents, not for skills, is a radically different way to build a team.
However, I want to work with those who are poised to move enthusiastically
beside me into exciting, new future technology.

16 97 Things Every Project Manager Should Know

Keep It Simple,
Simon
Krishna Kadali, M. Tech
Kondapur, Hyderabad, India

Shol o h oj often make things more complicated
than they need to be. This a common cause of software project failures. The
team members of the project must have the ability to completely visualize the
objectives of the project and complete actual work. Stakeholders, however, can
accomplish the project in several simple, magical steps in their own minds.
They imagine achieving the end solution quickly and easily, no matter how
complex it is.

Stakeholders should not build a software project as a monolithic, gigantic,
inflexible monster; instead they should allow the information technology
team to build it like an onion, with each layer enhancing its maturity. There is
no other alternative in the world of reality. Regardless of the completeness of
the requirements, there will always be change. If your software is not flexible
enough to quickly adapt to changing requirements, the project is dead even
before it has begun.

To keep things simple, following are the key points to keep in mind:

•	 Keep the requirements simple. The business analysts often confuse a par-
ticular solution that came to their mind with the actual customer require-
ment based on a business need. Although the real requirement may be
something very simple, there may be a communications gap between
business analysts and programmer/developers since neither really under-
stands what the other does.

Business analysts should write requirements using simple tree-based
imagery. The root requirement is the simple objective of the overall proj-
ect. Small twig sets of child-level requirements are grouped together to
form a branch representing a parent-level requirement. This process is

17Collective Wisdom from the Experts

repeated on the diagram until each requirement is crystal-clear. Software
mind-mapping tools could be used to document the requirements using
this approach. Once even a small set of requirements is crystallized,
development can begin.

•	 Follow agile development processes. As soon as a small set of require-
ments is identified, the development team can start prototyping immedi-
ately. Once the prototype is available, stakeholders can test and provide
feedback. Customer feedback ensures that requirements are accurate and
also helps identify any gaps that developed in the requirements as they
were relayed from the actual customer, through the business analysts, to
the project team. Allowing the customer to see the prototype also checks
that the corresponding solution imagined by the developers is, indeed,
what the customer envisioned.

Gaps are translated into new requirements, developers re-prototype, and
the cycle continues. Each cycle should be as short as possible—typically,
not more than two to three weeks.

This cycle of defining a small set of requirements, producing a prototype
of the stated requirements, and obtaining feedback ensures that all project
stakeholders are always on the same page and everyone is comfortable
with what is going on. By religiously following these simple techniques,
every software project can reach a successful conclusion. Especially if suc-
cess is defined as a happy customer and working software that provides
the useful business function for which it was created.

18 97 Things Every Project Manager Should Know

You Aren’t Special
Jared Richardson
Morrisville, North Carolina, U.S.

R h yo Mo ol yo? “You’re special! You’re unique!”
Right, just like every other boy or girl who had a mom! Believing that loving
lie leads to common software project problems.

I coach many different teams. Without fail, the teams who believe they’re “spe-
cial” are always behind when judged by how well they meet their software
project metrics. Because they think they’re special, they have a strong inclina-
tion to reinvent everything. They think, “No other team could have possibly
developed usable software, or at least not as outstanding as what we create
among ourselves.” Instead of learning from the mistakes of other developer
teams, they insist on making their own mistakes. Over and over and over. At
company expense.

They spend so much time rewriting, debugging, and putting their own twist
on software and tools* that are already industry standard that they never fin-
ish customer projects. The ones they should sell to people for money. Those
mythical, magical products that would be as special as the team, if only it ever
got them written.

To hear this unique group of developers tell it, there are no existing build sys-
tems that can handle their “one of a kind” requirements. So, they must write a
new one for each new project. Instead of reusing an existing object-database
mapping tool, they write their own. Web application framework? We can do
that, they profess. Continuous integration? Check. Testing harnesses? Let’s
write those, too. The vainest and most disillusioned of them will even attempt
to write their own programming languages.

* Tools: Simple programs that software developers use to create, debug, test, analyze, track, or other-
wise support quality software development.

19Collective Wisdom from the Experts

So how do these teams spend their day? Solving the problems they’ve created
by substituting the untested code they built themselves for the fully functional
software tools usually available to them for free. When they write their own
database layer, they spend the days tracking down obscure performance bugs
and caching issues. Handling the edge cases† ends up consuming more time
than they ever would have spent learning, or even modifying, existing tools.

The reason less “special” (but more successful) teams use existing tools is
because the problems they’re setting out to solve are hard problems. They need
reliable tools so their attention is focused on the solution to their software
project, not on trying to refill an already brimming toolbox.

What does this have to do with effective software project management? Don’t
let your programmers reinvent the wheel. When they come to you explaining
how special their problems are, point out that their mothers may have stretched
things when they made that “you’re special” assessment. Be knowledgeable
about what’s available and guide your team toward high-quality open source
or commercial tools.

The “not invented here” syndrome derails so many great teams. Don’t let it
derail yours.

†Edge case: A problem or situation that only occurs at the extremes (for example, fastest or slowest
speed, highest or lowest volume of data, or with the oldest or newest browser interface). Often
it means focusing on trivial things that drain time while important programming throughput is
ignored.

20 97 Things Every Project Manager Should Know

Scrolling
Through Time
Kim MacCormack
Leesburg, Virginia, U.S.

Tlv y go,my team was hired to develop a web application as a
subcontractor for a graphic design firm. We were to have no direct contact
with the customer. All of the requirements were relayed by the client to our
prime contractor, and then passed on to us in a series of random emails.

One email concerned the screen resolution our artists should use. The previ-
ous standard had been 640×480, but more current research suggested that the
web site should support up to an 800×600 resolution. (Today the most common
screen resolution is 1,024×768.) Even though this was an experienced design
firm, its formal requirements (which we never saw) to the customer stated:

The layout of each page will conform to a fixed 800-pixel width standard and
600-pixel height standard.

If we had seen this requirement, we would have immediately corrected the
statement to read, “The layout of each page will conform to a fixed 800-pixel
width standard, to support up to an 800×600 monitor resolution.” Since we
had worked on many websites, we knew that the most important dimension
was the width. Users hate scrolling horizontally, while vertical scrolling is con-
sidered one of the realities, if not advantages, of using a browser. However,
evidently this valuable truth was never conveyed to the customer.

The content this novice website customer provided for each web page was
huge. As a result, very few pages could be completely viewed (lengthwise) on
a 15-inch monitor set to an 800×600 resolution. One had to scroll vertically.

21Collective Wisdom from the Experts

Not realizing we would have to be miracle workers to make this oversized
content display on a single screen, the end-user customer got very upset. They
blamed our prime contractor, the design shop. In return, the design shop
refused to pay us. According to them, we “did not meet the requirements as
written.”

From that experience, I have learned the danger of poorly constructed, writ-
ten requirements and how they can be used against you. It is important to
always document your assumptions and insist on reviewing and signing off on
requirements with the end-user, not just with a middleman.

Fortunately, agile project management practices have alleviated some of these
issues. By recognizing the importance of nose-to-nose interfaces between the
developer and the real customer, we have evolved to collectively creating User
Stories, and prioritizing features based on the business value they will provide
to the customer, rather than requirements lists. A one- or two-week iteration
process means we have early and frequent feedback, and the opportunity to
clarify customer expectations.

Twelve years later, I have run into almost exactly the same situation with a
client who is highly concerned about vertical scrolling, even though he wants
large amounts of content on the page. Luckily, with the way we run projects
today and the lessons I learned from my past experience, we resolved this issue
quickly and set realistic customer expectations without the chaos of the past.

22 97 Things Every Project Manager Should Know

Save Money on
Your Issues
Randy Loomis, PMP
Andover, Connecticut, U.S.

 ony ng nng othat was five upgrades
behind. We reached the point where it was so out of date that the vendor
would no longer support it. Our project consisted of working with the vendor to
upgrade our training software to the latest release, and then to train our users
to use the newest version.

We developed two statements of work, one that outlined the user training
agreement and one that delineated a “not-to-exceed” cost for applying the
upgrades to our old training software. After obtaining a copy of our data, the
vendor began the process of remotely developing and testing the scripts* nec-
essary to begin converting the data and applying the first of the upgrades.

Once the scripts passed vendor testing, they were migrated to our develop-
ment environment where we performed user tests. This process was repeated
as we added each of the five subsequent upgrades. While doing testing, we
would document any issues that we encountered, then we retested those issues
once the vendor had rewritten and retested their original scripts.

While working through each of the upgrades, the vendor’s hours, multiplied
by the billing rate established in the statement of work, were tracked against
the “not-to-exceed” budget. As we progressed through the upgrades, we dis-
covered bugs in the application upgrades themselves that were not related to
the custom scripts written to install the upgrades. We thoroughly documented
each issue, printing screens and providing step-by-step details of what we dis-
covered, and how and where we encountered each issue.

* Script: In computer programming, a program or sequence of instructions that is carried out by a
program rather than by the computer processor. Scripts can be used to control a software applica-
tion without altering the core code of the application.

23Collective Wisdom from the Experts

We also brought the vendor proof showing what we had originally been
promised the software would do. The vendor insisted that the software was
functioning “as designed.” Later, we discovered that the small bugs we had
encountered were only the tip of the iceberg and had greater ramifications.
They illuminated significant problems with the software’s basic functionality,
even after the upgrades.

Over time, the vendor conceded that several of the issues we discovered were
admittedly not “as designed”; rather, they were actual bugs. Remaining true to
our “not-to-exceed” contract, our vendor did not charge us for the significant
amount of work they were required to do to correct their own product after
they reached the “not-to-exceed” total in our contract.

At this stage of the project, in order to meet critical deadlines, we were com-
pletely focused on getting the software installed. Our concern of whether an
issue was “as designed” or a bug was the least of our worries. It became appar-
ent that, had we been tracking vendor time specifically against each bug issue
located, we might have avoided paying the “not-to-exceed” contract total cost.

When negotiating a contract with a vendor, specify that both the vendor’s and
your project team’s time be tracked against each separate issue that is encoun-
tered. This will allow the software project manger to have an accurate record
and be able to lower charges when there are issues with the vendor’s original
product, as opposed to problems with the contractual project work to imple-
ment it.

24 97 Things Every Project Manager Should Know

How to Spot a
Good IT Developer
James Graham, PMP
Ta’ l-Ibrag, Malta

So oj ngknow that project success rests on having
excellent developers. How do you spot stellar performers in the applicant herd?

Before new candidates interview, talk to your best developers. Have them reaf-
firm the specific knowledge needed. Is experience with a particular develop-
ment life cycle, a specific methodology, special toolsets, or definitive sector
knowledge (experience in the defense industry or the pharmaceutical sector,
for example) preferable, or mandatory?

Assess knowledge. Mix interviews, involving you and trusted representatives
from your development team, with theoretical tests. A good software engineer
will be able to fix “mock” syntax errors immediately and without any mental
stress. He or she can read other people’s code and understand its intent with-
out extensive documentation or glyph-by-glyph translation. When presented
with a programming problem, your candidate should be able to spot it and
then describe it in both “developer geek” and in language appropriate for non-
information technology stakeholders.

We all think “more is better” when hiring programming skills. But how do we
define “more”? Although a candidate may have excellent knowledge, this per-
son may not yet have developed the finesse to employ it effectively. A recent
graduate or newly trained developer may struggle to apply the theoretical
knowledge gained in an educational context when facing a demanding real-
world project. When tight deadlines squeeze the time to explore solutions,
and intense pressures from the client and other stakeholders loom, you need
experience on top of raw knowledge.

Ask the applicant/developer to write code for review by you and your team.
After analyzing the code and talking with your trusted developers, you will
sense whether this person’s approach and style will fit your team.

25Collective Wisdom from the Experts

Consider the candidate’s attitude toward work, coworkers, clients, and stake-
holders. I once worked with a developer known as “The Hair Dryer.” Legend
has it that when he was upset, he could blow people’s hair dry with his shout-
ing. He was an excellent developer, but a detriment to a project team.

As the world moves toward agile development methodologies, cross-functional
communication and soft skills will increase in importance. Developers will
find themselves working in small teams with people from elsewhere in the
organization. How well will your potential new teammate represent you when
unleashed into the wild? Follow these simple guidelines when hiring software
developers:

•	 Screen them to check for the right knowledge of development life cycles,
methodologies, toolsets, and their industry/sector familiarity.

•	 Test them to see a demonstration of their ability to apply their knowledge
in your workplace.

•	 Check out their communication and social skills.

•	 Look for the right attitude toward the work: a balance of desire to cre-
ate high-grade products while accepting the project constraints. Is there
documented evidence that they can produce products that are “fit for pur-
pose,” on time, and within the budget?

No matter how personable and skilled your applicant, always verify credentials
with the issuing institutions and check out resume entries with former employers.
Careful hiring practices may prevent a multitude of future problems.

26 97 Things Every Project Manager Should Know

Developer
Productivity: Skilled
Versus Average
Neal Ford
Atlanta, Georgia, U.S.

’ n o o h yhabout developer skills for project man-
agers who have been assigned for the first time to software projects. Under-
stand that really good software developers are much more productive than
average ones. In fact, some statistics say that really good developers are mul-
tiple orders of magnitude better than poor ones. One order of magnitude is the
same as multiplying a quantity by 10. The point is, a skilled programmer isn’t
just a little better than an average one; the difference is huge.

What should this mean to our newly minted software project managers as they
plan the development of this product? Managers erroneously think that even if
you can’t get the best and brightest, you still get some usefulness out of medio-
cre developers. But building software isn’t like digging a ditch, where even the
poorest ditch diggers can make a hole.

In software development, what is programmed today becomes the foundation
for tomorrow. If you have mediocre developers building your foundation, the
really good developers have to go back and fix the flaws before they can move
on. Hiring mediocre or average developers slows project velocity.* Frequently,
taking a poor performer off the team is more beneficial than adding a good
one.

Couple this with the fact that adding people to a late project makes it even
later, and you can understand why most enterprise development moves at a gla-
cial pace. The nonexperienced software project manager might reason that if
adding more warehouse men allows a truck to be loaded faster, hiring additional
programmers would shorten the time necessary to complete a software project.

* Velocity: A term used in agile software development to show the rate of progress for a team or a
team member, i.e., how much an individual programmer will be able to produce in a given time
period.

27Collective Wisdom from the Experts

That won’t work. It will take time, and pull other programmers off-task, to
get the new guys/gals up-to-date. In addition, the communication channels
increase with each addition to the team. With a team of two, there is one chan-
nel: Betsy Sue to Bill. Add Mike, and you jump to three channels. The number
of channels continues to grow exponentially.

Here’s the formula: n(n–1)/2. With 12 people on the team, you have 12(12–1)/2
channels, or 66 relationships you must maintain as the project manager. Add
one more person, and you now have 78 communication channels to oversee.

Building software with average developers exposes two project myths: 1) that
you can shorten a project by adding people, and 2) that it’s OK to have aver-
age developers produce average (buggy/off-task) code at an average pace. In
truth, average developers drag overall productivity down and the project takes
longer than necessary to complete.

The solution? Give good developers powerful tools. You’ll get higher-quality
software faster. Second, having warm bodies doesn’t help projects, and having
to babysit poor developers cuts the productivity of your good developers, who
are craftsmen. Software is too complex to turn into an assembly-line manufac-
turing process.

Want faster software development? Spend the extra money to hire and nurture
excellent software developers. It will pay off in both the short term, and in the
long term when it’s time to maintain the code.

28 97 Things Every Project Manager Should Know

Size Matters
Anupam Kundu
New York, New York, U.S.

Th z o h oj,the size of the team, the size of the deliverables,
and the size of the checklists—everything in a project depends on its SIZE.
Size changes the rules of how the game is played.

The bigger the project gets (in size or complexity), the more important it
becomes for a project manager to break down the project into manageable
modules and share the delivery responsibility of these modules with capable
people. This will ensure that key project members, including the project man-
ager, can see the “big picture” without getting lost in the details while scouting
for project health statistics.

Distributed projects tend to be bigger in size than other projects types; hence,
the tactics the project manager uses to manage the size actually impacts the
bottom line of the project. The word “big” conjures up a variety of images.
It can mean anything from eight people working for 12 months (if you are a
small vendor) to hundreds of people working on annual maintenance con-
tracts (if you are an enormous IT partner for your client).

Here are a few suggestions on how to carve out the right size for the proj-
ect and then make sure that everyone understands how the small parts of the
puzzle can make or break the big picture:

•	 Break down the project into as many independent, yet manageable, work-
streams as possible.

•	 Make sure each workstream has at least one key contact point responsible
for its delivery.

•	 If possible, try to have key members play overlapping roles in these work-
streams so that the “big picture” is shared across the teams.

29Collective Wisdom from the Experts

•	 Track the progress (use any tool) of each workstream separately, and tie
up the metrics at regular intervals to feel the pulse of the overall project.

•	 Document and share the risks, issues, assumptions, and dependencies of
each workstream separately.

•	 Organize regular team meetings to share the status of each and every
workstream.

•	 Publish an overall project roadmap, including release plans from all dif-
ferent workstreams.

•	 Use online tools aggressively to share user requirements, milestone
updates, bug reports, report timelines, and risks.

For example, imagine you are entrusted with building three versions of the
same website (North America, Asia-Pacific, and Mid-East). You decide it is
best to create three different workstreams, each with an independent delivery
contact person. Since all three sites are basically the same sites in a different
version (leading to medium customization), have a few key resources float
across all three workstreams. This way, they can ensure the overall integrity of
the sites and suggest reuse of implementation details.

Another example might be that you have multiple integration vendors for a sin-
gle project. It might be ideal to separate out each integration point (or a related
collection of them) into an individual workstream. This will allow simultaneous
channels of work and may shorten the delivery time. Involve the different teams
in daily meetings to coordinate the overall quality of the delivery.

30 97 Things Every Project Manager Should Know

Document Your
Process, Then Make
Sure It Is Followed
Monte Davis, MCSE
Omaha, Nebraska, U.S.

Dng n l gon o on lo o noh, a
woman got married and brought our email system to its knees.

The email flow works like this:

 1. New emails coming in are delivered through the new email system.

 2. If the new email system can, it delivers the message to the appropriate
new system user. If not, the message is sent on to the old email system for
delivery.

 3. Emails sent from someone still on the old system to someone still on the
old system are delivered to the appropriate mailbox. However, if the recip-
ient has already been migrated to the new system, the email is automati-
cally forwarded using a “migration” forwarding address created for each
user.

Here’s where the funny part comes in. Once Sally Single was migrated to the
new email system, she had two email addresses, sally.single@mycompany.com,
as well as a forwarding email address, sally.single@migrate.mycompany.com.
All email sent to her from users on the old system would automatically be
forwarded to the new mail system using her “migration” forwarding address.

When Sally got married and changed her name from “Sally Single” to “Sally
Married,” her email address changed as well. However, the person who
renamed Sally’s email address in the new system forgot to change her email
“migration” forwarding address on the old system. So, Sally ended up with the
following addresses.

31Collective Wisdom from the Experts

New System

 1. sally.married@mycompany.com

 2. sally.single@mycompany.com

 3. sally.married@migrate.mycompany.com

Old System

 1. sally.married@mycompany.com

 2. sally.single@mycompany.com

 3. sally.single@migrate.mycompany.com
(Original, unchanged migration entry
that was overlooked after the wedding.)

When emails were sent to Sally from users still on the old messaging system,
they created a loop: 1) Messages were created and sent on the old mail sys-
tem to sally.single@mycompany.com; 2) old mail system checks Sally’s account
and sees that forwarding is set to sally.single@migrate.mycompany.com and
forwards the messages; 3) the new mail system looks for someone with an
email address equal to sally.single@migrate.mycompany.com, but it doesn’t
find it, since that address was renamed when Sally got married, so 4) the new
mail system forwards the messages for the unknown recipient back to the old
mail system; 5) the old mail system knows to forward all messages with an
@migrate.mycompany.com address, so it forwards them to the new mail
server; and 6) lather, rinse, repeat.

Every time the messages loop, the corporate legal disclaimer is added to the end
of the messages. The legal disclaimer is only about 100 words, but when each
message is looping between systems several times a minute, this adds up quickly.
Evidently, Sally was very popular. There were so many messages sent to Sally that
the size and volume of the messages brought the mail system to a grinding halt.

Moral of this story: document your processes and make sure the process is fol-
lowed. Although the name change process had been documented, it was not
being followed. Otherwise, Sally’s user account on the old mail server would
have been updated with her new, married name migration email address, and
the issue would have been avoided.

32 97 Things Every Project Manager Should Know

Go Ahead, Throw
That Practice Out
Naresh Jain
Malad, Mumbai, India

Wh o l o h oh on’? They constantly
question their own practices and try to eliminate wasteful ones. They merci-
lessly refactor their processes along with their software.

Il semble que la perfection soit atteinte non quand il n’y a plus rien à ajouter,
mais quand il n’y a plus rien à retrancher. This French quote from Antoine de
Saint Exupéry means “Perfection is attained, not when there is nothing more
to add, but when there is nothing left to take away.”

Why don’t teams apply this principle today? Why is it that over a period of
time, the value of the end product gets thinner and thinner, and the process
and byproducts get bulkier and bulkier? Why do the lines of code expand,
while the useful features of the software become fewer and fewer?

Key indicators that things are “broken” in the software development processes:

•	 The software bloats up in terms of lines of code and useless features

•	 The team building the software keeps growing in size

•	 The process gets more and more prescriptive, dogmatic, and rigid

•	 The team is experiencing “death by planning” meetings

•	 The amount of documents and supporting artifacts increases exponentially

•	 Newly discovered bugs keep pouring in from customer test groups

Team leaders have a tendency to keep adding more processes, more checks,
and more audits, thinking that an increasingly stringent process will solve the
problem. In my experience, it’s never a process issue. Adding more processes
will only make it that much more difficult for the team to see the root cause of
the real problem.

33Collective Wisdom from the Experts

Why is it that most teams are afraid to throw away practices that are not really
helping the team? Why do teams start off with as many practices they can
think of, instead of adding the practices just in time?

This could be a symptom of the team not really understanding why it is using
the process in the first place. Or it could mean that someone who does not
fully understand the software development process is forcing a heavy-handed
methodology upon the team. In either case, the project becomes a “house of
cards” ready to disintegrate into a useless pile of code bits. Trying to change
anything, without understanding the true reason the project is expanding
without adding value, is useless.

In my opinion, a good project manager should have a healthy grasp of how the
team is working. He/she should be able to stand back and evaluate how each
process imposed on the team impacts the throughput of functional software.

A knowledgeable project manager should sift through all the possible activi-
ties a team might be asked to do and retain only those that are vital to the
success of this specific project. Once the leftover practices from projects past
are swept away, the team’s productivity and throughput should get better in a
short period of time.

“Less is more” is a very important philosophy when it comes to process.

34 97 Things Every Project Manager Should Know

Requirement
Specifications:
An Oxymoron
Alan Greenblatt
Sudbury, Massachusetts, U.S.

oo qn (R)describe how features of a product are going to
solve particular existing or potential problems. Good features (F), sometimes
called functionality, are added to products to address those important prob-
lems. Requirements are captured by salespeople or created by software project
managers:

•	 We can’t sell the product outside of the United States (R). We need to pro-
vide internationalization and location support (F).

•	 Users have to click five buttons to complete a very simple task. They get
frustrated and never complete the task. We need to simplify the user inter-
face (R) and reduce the number of button clicks to two or fewer to complete
the same tasks (F).

Specifications (S), on the other hand, describe exactly how problems will be
solved and the requirements will be met. Using the examples above, the fol-
lowing specifications might be written by systems architects:

•	 We will extract all text strings, including pop-up messages, and place
them in external resource bundles (S).

•	 The application will be enhanced so that all text displayed on the screen
will be retrieved from these resource bundles (S).

•	 Localization can be performed by creating specific resource bundles for
the locales required (S).

•	 The functionality achieved through clicking buttons 1, 2, and 3 will be
bundled into a single button click on Button A (S).

•	 The functionality of existing buttons 4 and 5 will be bundled into Button
B (S).

35Collective Wisdom from the Experts

Blurring the lines between requirements and specifications leads to the wrong
people making the decisions. You either end up with the software developers
making decisions about what features are important to a user, or with a soft-
ware project manager telling a developer how to structure code. Either way,
the result is a poor final software product.

Developers aren’t usually out talking to customers, users, marketing, sales, and
potential partners, trying to understand what new features are most important.
On the other hand, software project managers usually aren’t skilled developers
who understand how best to implement a feature, and how their untrained,
although well-meaning, specification suggestions would affect other aspects
of the product. Each group has a unique skill set.

Having good requirements that describe the problem you are trying to solve,
and why it is so important to solve this particular problem, lets the program-
mer be more flexible, efficient, and motivated during the development process.
Coders can make independent design decisions as they work on the problem
and understand it more thoroughly. They should only be bound by the tech-
nologies they have chosen to use, not by strict, brittle specifications created by
a nonprogrammer.

Specifications still need to be written, but they will change. Have you come to
the end of the product development cycle and only then fully understood how
this product should have been built in the first place?

Keep the what you are trying to build separate from the how to build it. Then, let
the properly trained team member make decisions based on his/her project role.

36 97 Things Every Project Manager Should Know

Success Is Always
Measured in
Business Value
Barbee Davis, MA, PHR, PMP
Omaha, Nebraska, U.S.

A oj ng,it’s easy to get caught up in meeting our time, cost,
scope, and quality baselines. The project quickly becomes an end in itself, and
our personal worth becomes entwined with our ability to bring this project in
according to these measurable expectations.

We need to focus on the fact that the project is only as successful as the busi-
ness value it adds to the organization. If we’re producing a software product
for market, the evaluation factors for “success” are clear. We need to use our
project management skills to bring this product to market quicker so we can
get it sold to a large portion of the customer base before the competition is able
to produce a similar or even better product.

We need to sell to a majority of the marketplace before the demand for this
item dries up. We need to design this software so that it is easy for customers
to install and learn to use. It needs to be easy to maintain and update.

Many software project managers feel their job is merely to get the software
completed. Without connecting the project to the business need, great soft-
ware could be a failure from the organization’s return on investment (ROI)
point of view.

If this is an internal project, how does this software project allow the organiza-
tion to save or earn money? Will we need fewer hardware resources because
what we develop is faster, more compressed, or has a better architecture? Will
we be able to make more money since we can take orders faster, process them,

37Collective Wisdom from the Experts

and ship them quicker? Will we save money by creating software that needs
fewer people to maintain it, or roll out an infrastructure change that lowers the
number of help desk calls?

If our software projects are for an industry-specific systems integrator, will
the way we sequence tasks or level resources increase the profit margin to the
company or buy us customer goodwill with a reputation for reliability? Will
our project prowess ensure that we complete more projects faster and, thus,
move us to a category with our suppliers in which we get a larger discount for
hardware?

Motivating teams and making difficult decisions on the spot become eas-
ier when we understand specifically how the completion of this project is
intended to benefit the company. When making the decision to fund this par-
ticular project over all of those that were in contention, why was this one more
important than those that were tabled for later?

Usually the project manager is not given the answer to these critical questions,
so you must learn to ask. The answer can alert you to whether time, money,
or quality is the key driver on the project. When you know the answer, you
can prepare workarounds, alternate solutions, and know where to spend your
contingency reserves to keep your project aligned with the business reason for
which it was created.

38 97 Things Every Project Manager Should Know

Don’t Skip Vacations
for the Project
Joe Zenevitch
New York, New York, U.S.

So oj ngn is a demanding profession. Besides
being the most visible position on the team, usually you are the only one in
that role and you don’t have a backup. Planning time off is difficult, especially
if you’re a third-party consultant. You feel that your absences impact the project
unfavorably.

To minimize this risk, novice project managers cancel their vacations, or in the
worst cases, do not plan vacations at all. I’ve learned over time that you really
need to take periodic vacations to get a break from the stressful conditions
that are inherent in most projects. Over the course of your career, how bitterly
do you resent the vacations you missed? But how foggy is your memory of the
specific issues you sidestepped by remaining on the job?

I’m not suggesting that you should plan your next vacation with no regard for
your project or project schedule. If it’s only a three-week-duration project, you
can wait. Taking a vacation the week before a major release would definitely
be irresponsible. But, if your 9- to 12-month project tanks because you take a
week or two off in the middle, then you are probably not managing it well in
the first place.

Obviously, it is important to find and train someone to fill your role while you
are away. He/she may not do things exactly as you would have done them, but
your surrogate will be able to keep the project ship afloat and sailing in the
right direction. You can make it known if you’d prefer to have major issues
deferred until your return.

39Collective Wisdom from the Experts

Your replacement could be a project manager from another team, but some-
one from your own team is probably the better choice. A team member will be
more familiar with the project, and this gives him/her a tryout run serving in a
leadership role. In some organizations, the business analyst can be a good fit as
an interim “you.” This person knows the requirements intimately, and should
know the basic mechanics of how to run your development iterations if you’ve
been involving the stakeholders at-large all along, as you should.

In agile development, the concept of the self-directed team is both impor-
tant and powerful. The idea is that the project manager puts in place easy-
to-understand and highly visible processes that the entire team follows. Over
time, as the team adopts these processes, the project manager does less and less
managing, and more and more facilitating. Essentially, removing obstacles and
resolving issues replaces day-to-day micromanaging.

One of the delightful byproducts of a smoothly running, self-directed team is
that the project manager’s appropriately timed vacation can become almost a
nonevent. Even if you are not around for a few days, the machine keeps run-
ning itself.

Certainly schedule your vacations to make sure you are available for project
releases, but definitely take time off. And never cancel a vacation just because
you think the project will grind to a halt without you.

40 97 Things Every Project Manager Should Know

Provide Regular
Time to Focus
James Leigh
Toronto, Ontario, Canada

So vlo glly o that interruptions such as
meetings, demos, and urgent bug fixes keep them from completing their work.
Typically, a person takes about 20 minutes to regain his train of thought after
one of these interruptions. A 5-minute question actually costs 25 minutes, and
a quick 10-minute meeting actually costs 30 minutes of potential work. Inter-
ruptions and recovery time consume 28% of a typical knowledge worker’s day
and can cause undue frustration and stress.

To help address this issue, set aside two hours a day (for example, between
10:00 a.m. and noon) that are interruption free. Alternately, you may be able
to plan an entire day when no meetings, questions, email, phones, and other
distractions are permitted, to allow developers to concentrate and focus on
their work. Intel and IBM set aside Fridays, calling them “zero-email Fridays”
and “Think Fridays,” respectively.

It is equally important that developers know what their top two priorities are so
they can plan their work for this period effectively. Even the best-intentioned
developers could only randomly guess at what these are if they’re not explicitly
told what will bring real business value to the project.

Infomania (a debilitating state of information overload) is widely recognized
as a major opponent to a developer’s productivity. Programming requires
that developers keep many things in their heads at once—everything from
variables, class structures, APIs (application programming interfaces), utility
methods, and even directory hierarchies. When a developer is interrupted,

41Collective Wisdom from the Experts

much of this information is “swapped out,” and it requires considerable mental
energy to regain it. This has a huge impact on productivity, and studies find
that employees are not creating new ideas to the extent they used to because
of infomania.

In addition, different types of distractions have varying degrees of impact on
the developer’s train of thought. One might be able to get up, use the restroom,
get a cup of coffee and a sandwich, or even move to a whiteboard, while keep-
ing all of the program data still actively circulating in the brain. In fact, the
movement might help him/her see a new avenue to solve a problem.

Planned meetings are especially problematic for programmers, as they might
waste time when they know there is an upcoming item on their schedule. They
think, “why get started only to be interrupted in 30 minutes?” And great ideas
that come during meetings may be lost, or stale, by the time the developer gets
back to his computer to capture them.

Developers’ productivity can also degrade by over 50% for each additional
simultaneous project. Developers working on three or more projects often
spend more time attending meetings to explain why they are not making any
progress than getting any actual work done. When developers must contribute
to multiple projects, make sure that they are guaranteed at least two full days
on each project before switching to another. This will minimize the amount of
time they must spend reintroducing themselves to each project.

42 97 Things Every Project Manager Should Know

Project Management
Is Problem
Management
Lorin Unger
Hoboken, New Jersey, U.S.

In h o n,software project management is a chal-
lenging and complex endeavor. Yet, I often see PMs make it even more diffi-
cult by having the wrong set of expectations for the role.

Plain and simple, project management is problem management. Were that not
the case, there would be no need for project managers. Rather, a request for
execution would be made and all the pieces (resources, technology, require-
ments, timeline, etc.) would simply align and the work would proceed
smoothly to completion without any need for shepherding.

The truth is, our role exists because that is not the reality. Resources are
overallocated, technologies and skill sets are incompatible, requirements are
unclear, and timelines are unrealistic. I frequently work with PMs who view
those types of issues as inconveniences, annoyances, or “problems” caused by
external forces that are interfering with their work. If only they had done this,
if only they had thought that out better, if only they would give me more time,
then all these needless complications would be gone and I could finally get on
with the business of project management.

Needless to say, these folks spend a lot of their time frustrated, tense, and
irritable.

The fact of the matter is, smoothing all those needless bumps and complica-
tions is the business of project management. Our role is to plan better, think
more clearly, and have a greater strategic vision that those who sponsor a

43Collective Wisdom from the Experts

project, and also those who work to deliver it. We’re here because executing a
project is an inherently messy business and individuals with our unique skills
and temperaments are necessary to ensure that the inevitable difficulties get
squashed, circumvented, or massaged into nonissues.

To complicate things further, this does not apply only to the mechanics of
managing a project. Sometimes people need to be “massaged into nonissues”
as well. The most challenging aspect of a project isn’t necessarily the technol-
ogy or timeline, but can be the personalities involved in the effort. This can be
anyone from resources assigned to the project to a senior oversight committee.

Some easy archetypes: the “resentful resource,” who seems perversely commit-
ted to undermining the PM’s authority; the “nervous stakeholder,” ever anx-
ious, is impossible to soothe; or the “back-seat PM,” a stakeholder or project
participant who feels compelled to assert his/her opinion on how the project
should be run at every possible opportunity.

It is, of course, beyond the scope of this tip to discuss how best to manage the
various interpersonal issues that can arise in a project. Suffice it to say that the
need to manage issues in this realm appears frequently, and is as much within
the scope of our project management responsibilities as is understanding the
work breakdown structure or maintaining an accurate project plan.

If we view these situations not as obstacles to doing the job but, more appro-
priately, as the heart of the job itself, the work will be smoother, calmer, and
more tranquil. Relatively speaking, of course.

44 97 Things Every Project Manager Should Know

Empowering
Developers:
A Man Named Tim
Ken Sipe
St. Charles, Missouri, U.S.

n h hnga software project manager can do is set the vision, set
the priorities, and get out of the way. Here’s a true story about a man named Tim.

We found we needed another team member on our project, so we posted the
opening and began to interview. One individual soon rose to the top of our
candidate list.

His name was Tim. Tim stood out significantly from the other applicants, and
it would have been a “no-brainer” decision to hire him. But, there was one
dissenting vote. All resources hired into our department may rotate between
any one of three project managers. One of those PMs had previous experience
working with Tim and indicated that he lacked motivation. She painted a pic-
ture of Tim web surfing regularly while on the job, and being a slacker.

This was a tough situation. When making a hiring decision, more weight
would normally be applied to a project manager’s personal experience with the
candidate as compared to a cold interview. However, from a technical perspec-
tive, Tim’s skills significantly exceeded those of other candidates. He was hired
despite the dissenting vote. The project was run using an agile development
methodology, so we had an open meeting at the start of the iteration.*

The opening meeting has several main purposes:

 1. Stories† are created and their priority is established and communicated,
based on user input.

* Iteration: A short period of time chosen by an agile project team (a week, two weeks, a month,
etc.) during which a key requirement chosen by the customer will be developed, tested, and then
delivered to the customer for approval or comment. The next iteration will then begin to develop
the next most important requirement and/or correct the work done in the preceding iteration.

†Story: A high-level description of a software requirement, usually broken down into single devel-
oper tasks, with just enough information to allow a developer to estimate how long it will take to
create, test, and/or implement it.

45Collective Wisdom from the Experts

 2. A team vision of the project scope is created through the stories, and good
acceptance criteria are established.

 3. Stories are broken down into tasks and estimated by the developer who is
to complete the task.

After the meeting, the tasks are entered into the task tracking system. The
significance of the task tracking system is often misunderstood. It is used for
developers to see what tasks are started. If they have finished their own tasks
early, they move on by “stealing” (or completing) a task not yet begun by the
originally assigned developer.

Tim turned out to be an outstanding hire. He out-produced everyone else on
the team. The most obvious measure of his value was in the number of tasks
he “stole” from other developers. Completing more tasks meant the project
finished quicker.

So the question is, why would another PM see Tim as unproductive? On closer
inspection, it became evident that the Tim-basher had a management style
that was excessively controlling. She would “spoon-feed” tasks to developers
and then leave the team workspace to attend meetings. Tim was so fast that he
would complete his assigned task immediately. Without any further direction
regarding project priorities or tasks he could begin next, he was left idle.

You’ll be amazed what a good team can do with a clear vision, well-defined
acceptance criteria, and shared project priorities not determined by a lone
software project manager but known, documented, and managed by the entire
team. Sometimes the best thing for the PM to do is get out of the way. Do you
manage a Tim?

46 97 Things Every Project Manager Should Know

Clever Code Is
Hard to Maintain
David Wood
Fredericksburg, Virginia, U.S.

Dvlo on o l. They must find
clever ways to make today’s project code work with yesterday’s antiquated
legacy software containing multiple patches. And through skill and ingenuity,
they may create numerous lines of clever code that finally get the job done. But
clever code may only create future maintenance problems due to the code’s
length and complexity. There may be a better way.

If you are a project manager new to software development, don’t be afraid to
let developers explore new languages and development tools. Allow them this
freedom, because this is how they discover innovative ways to improve their
coding practices and results. They may be able to design a software solution to
your legacy interface problem that is faster and has fewer lines of code to test
and maintain. This is certainly an advantage to your project.

There are innovative new programming languages that can perform the same
functions as your current ones with substantially fewer lines of code. This is
valuable in that a simpler code structure is easier to test, can be self-defining,
is smaller to store, and is easier to maintain.

Obviously, there are some concerns about adding new languages and platforms
within your organization. Will this new code truly solve the problem for the cur-
rent software or upgrade under development? Will it interface long-term with the
existing software used in your legacy databases, user interfaces within the organi-
zation, and third-party software in which the company has already invested?

47Collective Wisdom from the Experts

Are there other developers on the team or the department who will be able to
create software in this language or on this platform? Is there adequate product
support from language authors? Will there be timely updates and improvements?

Even if you are not familiar with programming yourself, don’t be reluctant to
allow programmers to embrace new languages. If the new language can trace
its tortured lineages back to C or Java (or any other common way of doing
things), it is probably going to be relatively painless to merge it into your cur-
rent practices.

However, be sure to document any new practices within your code. Otherwise,
your code base and the documentation about the code may diverge to the
point that the best way to understand the system is to look at the code itself.
This is called a “loss of coupling” between the software components and sys-
tem metadata. And when there is inadequate documentation to maintain your
software system, it must be replaced.

Encourage your project team developers to be innovative, but not clever to the
point of excessive complexity. Being too clever makes it hard on those who
follow. If later developers can’t read the code, how can they be expected to
maintain it? Any given programmer may try to be clever to enhance his job
security, but no project manager will benefit from it.

Code that is too clever will ultimately be too hard to maintain. That leads to
maintenance failure and a costly reworking of your software systems.

48 97 Things Every Project Manager Should Know

Managing Human
Factors in IT Project
Management
James Graham, PMP
Ta’ l-Ibrag, Malta

A o oj ng,we obsess over the schedule details.
We huddle with our teammates to try to anticipate risk factors that could
derail our projects. We crunch numbers to see if we can squeeze the project
deliverables out of the allocated budget. But we tend to overlook, or ignore, the
most prevalent cause of project failure: the human factor.

From errors, to accidents, to out-and-out nonperformance, human failure to
perform can often be tied to our tendency to repeat our past behaviors. If it
worked successfully for us last time, it should work again. There is an old say-
ing: “For he who is a hammer, every problem is a nail.” Psychological research
shows that people under the influence of stress may revert to the learning or
experiences that are hammer-like, because they found success with them in
the past. What is more stressful than undertaking a new software project?

Because the objective of most projects is to create a new product, service, or solu-
tion, agility and flexibility of mind and working style are major positive behav-
iors to encourage instead of repeating past actions. Following old processes may
be counterproductive when you’re faced with a new, different challenge.

Consider a business analyst who is highly experienced in one formal software
project management methodology. Intellectually, he may agree with his devel-
opers’ explanation of why a more agile approach to software development
makes sense. But when faced with time pressures that appear to compromise
the project, he may revert to using some favorite techniques that worked well
in past, non-software-related experiences.

49Collective Wisdom from the Experts

Bank supervisors report that reversing numbers is a common error, espe-
cially when employees are not 100% focused due to work-related or personal
stress. Knowing this human tendency, the wise project manager will carefully
check estimates, budgets, and other documents for these types of careless, but
human, errors.

What leads to stress on your project team? It could be personal, such as having
an argument with a spouse before leaving for work, or financial pressures at
home. Perhaps there are family worries about health or children.

Work-related encounters can also be stress inducing. It could be something
as minor as being late to a key stakeholder meeting and forgetting to bring an
important document. Or, it could be concerns from job security to worries
that the coding and testing for this project cannot be completed on target.

Stress leads to past behavior, not active problem-solving actions. As the soft-
ware project manager, it is your job to be on the lookout for symptoms of stress
that can lead your team members to regress to old behaviors. By having active
conversations with them and carefully managing their work environment, you
can prevent or help minimize the effects of stress.

People are human, so human emotions are natural in the workplace. But only
people can develop software. So, nurture and manage your human capital as
carefully as you monitor and protect your nonhuman resources.

50 97 Things Every Project Manager Should Know

Use a Wiki
Adrian Wible
New York, New York, U.S.

W g hnto centralize access to your project infor-
mation. Hopefully, the wiki will be updated multiple times daily and will
always be open in a window on team members’ desktops.

To prevent you from wasting any precious brain cells that may be needed for
the actual project work, I’ve provided some suggestions for pages you might
include on your wiki. While creating these, you are sure to have ideas about
customizing the site for your own software project:

•	 Stakeholders. Have space for topics such as up-to-the-minute project sta-
tus, short-term issues, long-term issues, risk, budget tracking, and mile-
stone achievements.

•	 Developers. Add information such as the connection string to connect to
the QA database. Fellow programmers won’t wasting time trying to locate
the code from other random sources. Team members can share informa-
tion on topics like coding standards, build and deployment procedures,
common pitfalls, and use of advanced coding techniques such as depen-
dency injection.

•	 General information. The software project manager should add the help
desk phone number, team roles and responsibilities, and individual team
member contact information here.

•	 Team calendars. Use this site to post team calendars. One great trick is to
use an embedded iFrame pointing to a Google calendar.

•	 Meeting minutes. Archive meeting minutes so the team can easily refresh
its memory on the details covered in past meetings. Also, team members
can quickly reference the minutes to research or prepare for future meetings.

51Collective Wisdom from the Experts

•	 Meeting agenda. Set up a process for stakeholders to suggest future
agenda items online. Subject, of course, to the approval of the software
project manager, the necessity for the item to be presented to the entire
team, and the time limitations of the next meeting.

•	 Business analyst. Often this person is not colocated in the developer work-
space. This is a perfect space to centralize access to working documents and
domain artifacts that can be accessed from multiple locations.

•	 Testers. The organizational structure may separate testing responsibility
from the programmer. This site can provide a clearinghouse between the
two teams. Post topics like how to use testing tools such as Selenium, QTP,
and Quality Center. Bug-tracking procedures can be developed and dis-
cussed online, and the final decisions posted here.

Some tips:

•	 Don’t duplicate information. If the information lies elsewhere, link to that
information instead of copying it into the wiki.

•	 Keep an eye on the volume of changes to make sure the information is not
getting stale. If it does, people will stop using the wiki.

•	 Try to make your information real-time-data–driven if possible. Look for
project management tools that include a wiki interface to enable creation
of charts and status that is driven from the actual project data. This gives
real-time status for the work in progress.

Any time you send project information via email, particularly with file attach-
ments (documents, project plans, budget information, etc.), you should con-
sider whether the team wiki would be a more appropriate place to exchange
and archive that information.

52 97 Things Every Project Manager Should Know

The Missing Link
Paul Waggoner, MBA, PMP, MCSE, CHP, CHSS
Waukee, Iowa, U.S.

So oj ng g that one of their most difficult
challenges is keeping team members properly engaged in the details of the
project, and on top of their assigned tasks and schedules. They understand
that team members are conflicted between the routine, operational respon-
sibilities of processing daily work, troubleshooting problems, coordinating
departmental issues, and answering everyday communications, versus com-
pleting the time-sensitive work of project development.

Although being selected for a project team may initially be seen as a compli-
ment, many developers feel that participation on a team is a major distraction
from day-to-day duties. When push comes to shove, a developer may openly
admit that daily maintenance and support of assigned systems are more
important to him/her than performing project task work.

As a project manager, your first impulse is to conclude that this person does
not belong on the team if your work can’t, or won’t, be given a clear priority.
However, most organizations have limited numbers of subject matter experts
(SMEs), so changing team members or locating a more dedicated one may not
be an option.

Here are a few simple suggestions to help with this problem:

•	 Make sure all management levels support the goals and objectives of the
project.

•	 Modify the subject matter expert job description to include “perform as
team member on various projects as needed,” instead of “perform other
duties as assigned.”

•	 Have management and Human Resources emphasize this change, and
make sure all supervisors weigh project activity achievements heavily in
future performance evaluations.

53Collective Wisdom from the Experts

•	 At the beginning of each new project, the software project manager, the
departmental manager or supervisor, the sponsor, or another key stake-
holder should send out a personalized communiqué inviting each team
member to participate in the project. This letter or email should explain
the high-level objectives of the project being undertaken, and the high-
level responsibilities of this specific team member.

•	 Announce that at the successful conclusion of this project, each team
member will receive a Certificate of Recognition and Achievement suit-
able for framing. Note that a second copy will be placed in his/her Human
Resources file to be referenced during quarterly performance reviews.

•	 The departmental manager’s boss should make it clear that projects
advance organizational goals at an even more important level than the
routine information technology tasks do.

•	 The executive should specifically request that the departmental manager
help the project team member free up time on a regular basis to complete
the project activities, even if his regular tasks must be temporarily off-
loaded to another member of the IT group.

It should be clearly understood that those who successfully participate in proj-
ects are “going the extra mile” for the organization and should be recognized
and rewarded. Those who participate successfully in large or small projects
should be singled out for praise. As they say in the agile world, this puts the
“art of the possible” in proper perspective, aligning organizational objectives
with employee motivations.

54 97 Things Every Project Manager Should Know

Estimate, Estimate,
Estimate
Richard Sheridan
Ann Arbor, Michigan, U.S.

So on n oj ngn,we get an estimate for a project at the
beginning of the project (when we know the least) and then never revisit that
estimate during the course of the project (when we know more than we did
at the beginning). Worse, we never compare our original estimate with actual
results to hone our future skills.

In our practice at my organization, we estimate once a week on every project.
Even for those tasks we have previously estimated but haven’t worked on yet,
we estimate again. Why do we do this? There are several reasons:

•	 We get better at estimating the more we do it.

•	 Sometimes we now know more and that helps our estimating.

•	 Sometimes we learn we didn’t know as much as we thought we did, and
that helps our estimating.

•	 Often when a new technology is involved, early estimates have “fear” built
in; as we learn more about the new technology, the fear-based component
lessens.

•	 Estimating is a great “conversation” in our world, since we estimate as a
group activity.

Finally, the best way to get better at estimating is to make sure you also keep track
of actuals so that the team gets feedback on how well it did in estimating. My only
warning: you can’t use this information to punish the team! True accountability
around estimating doesn’t involve getting people to hit their estimate, but rather to
have them warn you as soon as they think they are going to miss.

55Collective Wisdom from the Experts

Here is a simple game you can play to drive home the power of estimating and
feedback. Get three different empty jars of increasing size and fill them with
jelly beans. Record how many jelly beans it takes to fill up every jar.

Get together a group you are trying teach about estimating and ask members
to estimate the number of jelly beans in the smallest jar. When I teach this, I
have people work in pairs.

Give them only a short time to come up with an estimate and then have them
write it down. Collect the data by having each pair read its estimates aloud.
Write the estimates down on a whiteboard or flipchart. Do the same for the
second and third jars of jelly beans.

Finally, tell the group members that this is a good way to do estimating, thank
them for their input, and ask if there are any questions before you move on. It
never fails. Someone will ask how many jelly beans there actually are in each
jar. They want to know! Let them dangle a while and then tell them how silly
they are. After all, it’s just a jar of jelly beans.

Now you have them right where you want them. Ask them how many times
they’ve had the data to give feedback to their team on far more important top-
ics and they scoffed and dismissed it as unimportant. Overlooking feedback to
their teams will not happen again.

56 97 Things Every Project Manager Should Know

Developers
Unite—PMOs
Are Advancing
Angelo Valle
Rio de Janeiro, Brazil

I yo’ o vlo, you are probably convinced that a
more responsive, adaptable framework is your best chance of producing work-
ing software. Unfortunately, the rest of the world is moving to have a more
standardized approach throughout all departments. This is good news for
everyone except software developers.

A recently emerging concept in organizational structure is the project man-
agement office (PMO). This global phenomenon tasks a small group of indi-
viduals with the supervision and support of enterprise projects and programs.
The group’s purpose is to introduce consistency in documents and templates,
standardize reporting processes, and provide a uniform way to add business
value through projects.

PMOs are intended to be centers of intelligence and coordination. They link
strategic business objectives to employees’ actions within departmental proj-
ects through unified portfolio management, program management, and project
management practices. This is a good thing for your job security.

The PMO’s functions within the business can be:

•	 Strategic. In this role, the members of the Project Management Office
complete functions of identification, selection, and prioritization of the
projects that are most closely aligned with the organization’s strategic
planning.

•	 Directive. To fulfill their directive responsibilities, PMO employees define
guidelines, standards, and templates. They evaluate and choose how soft-
ware project managers should apply the best practices, tools, techniques,
and software to successfully complete the goals of their development
teams.

57Collective Wisdom from the Experts

•	 Supportive. The PMO provides support to team members and project
managers. This may manifest itself as training classes, adjusting templates
and documents to make them work in all departments, or working with a
project manager on staffing or other human resource issues.

Project Management Offices are not identical from corporation to corporation
around the world. Each business is at a different developmental stage with its
project management practices. So, the common name of PMO may encom-
pass numerous hybrid responsibilities drawn from the aforementioned list, or
unique ones not mentioned.

The PMO provides guidance in suitable standardized and validated tools,
techniques, and software, thereby reducing problems due to uncertainty and
the growing emphasis on cheaper/better/faster projects. The PMO applies a
standardized methodology where necessary and effective: project identifica-
tion, data collection, analysis, information gathering, distribution, report-
ing, risk management, procurement, quality, and other project management
knowledge areas such as documentation and communications.

The theme of economic success through a PMO model is a hot topic in interna-
tional congresses, seminars, and recently published papers. Academic discus-
sions are prolific, because of a growing need to match university experiences
with actual “real world” practices. The students of today are the developers of
tomorrow.

PMOs are here to stay. If you are currently a software developer, you should
be proactive in opening a dialog with your PMO. Communicate your profes-
sional success stories and the uniqueness of the software development pro-
cess. If you don’t, you are liable to be saddled with methods, documentation
requirements, and procedures that don’t fit your needs. Fast, good, high-quality
software is in everyone’s best interest.

58 97 Things Every Project Manager Should Know

Value Results,
Not Just Effort
Venkat Subramaniam
Broomfield, Colorado, U.S.

Dvlong o lo o o. However, if you hear
someone brag, “I work on an application with over 3 million lines of code,” ask
him or her how many of those lines of code are really needed.

Often, extra code is added with some perceived extensibility* in mind. Exten-
sibility is important, but if not done correctly, it can have the opposite effect. It
can delay your current project.

Extra, out-of-scope code is a symptom of software project managers who
reward only extra time and extra effort. If you routinely insist that the pro-
grammers work long hours, be sure they are actually producing additional,
useable results.

I like my lawn to be green, and rely on my sprinkler system to water it every
day. My first summer in Colorado, I noticed that one of my maple trees had
lost most of its leaves. Assuming that the hot and arid conditions were the
reason, I watered longer but noticed no improvement. The expert I consulted
asked me, “How frequently and how long do you water?” Hearing my answer,
he said, “That’s the problem! Reduce the duration and frequency by half, and
you will see improvement.”

I was killing the tree with excessive water. Having slightly less water actually
helps these trees. It builds their resistance and helps their growth. Two weeks
after following his advice, my tree was healthy and full of leaves.

Your programmers are like maple trees when it comes to work time. Give them
small, but adequate amounts of time and fewer broadly defined tasks, and they
flourish. Give them larger task chunks and ask them to routinely work extra

* Extensibility: A systems design principle where future growth is taken into consideration. The
ability to create and implement additional features is maximized while coding the currently needed
functionality.

59Collective Wisdom from the Experts

hours, and they begin to wilt. Plus, they tend to overwrite and complicate the
code, since they have too much time on their hands.

I worked for a manager who focused on how long people worked. Working a
Saturday morning, or staying late in the evening, was more important to him
than what employees were actually producing. It is impossible to be a produc-
tive and effective programmer for 12 hours or more a day.

In another group, the manager kept us to a traditional eight-hour work schedule.
Yes, there were days we stayed late, but those were exceptions rather than the
norm. Employees knew they were not required to work long hours but had to
provide their committed deliverables on schedule. So, we were focused and less
distracted, prioritized our work well, and used our time effectively. Even though
developer capabilities were about the same in both groups, we got more accom-
plished in the second group than in the one where we worked to exhaustion.

Encourage programmers to report the progress they make, rather than how
long they work. Let them know that you care about getting results rather than
keeping track of how long they spent at the computer. Once your team mem-
bers realize that you are a results-oriented manager and not a “put in hours”
manager, their focus will shift to achieving results rather than merely clocking
hours at work.

60 97 Things Every Project Manager Should Know

Software Failure
Is Organizational
Failure
Brian Sletten
Beverly Hills, California, U.S.

W ly l vlo when things go wrong with software proj-
ects in an organization. When deadlines are missed, or when what is delivered
has more bugs than an entomologist’s wildest fantasy, it may seem that the team
is not good enough, smart enough, productive enough, or up to the challenge.
While individual teams may deserve a fair amount of criticism, you cannot forget
that successful software projects require active and adequate participation by all
stakeholders.

Everyone’s participation is crucial, because in order to stave off failure, you need
to know who is building what, when, and why. You need to add business func-
tionality in deliberate, prioritized ways. You need to catch problems with poorly
captured and expressed requirements. You need to nip latent impediments in
the bud by spotting people who are potential blockers, noting communication
failures, and soothing overwhelmed (but overeager) development teams.

Developing software requires valid metrics, clear communication, and engaged
business and executive stakeholders. They must be involved in software deliv-
ery efforts and assume partial responsibility for both positive and negative
outcomes. The software project manager needs to measure and track success
and failure records. Teams that consistently deliver can be trusted to do so
again. Teams that seldom deliver require more oversight, further training, and
realignment, or perhaps some members must be shown the door.

However, allow software teams time to clean up their own messes. As they rush
toward various releases,* they will incur what wiki pioneer Ward Cunningham
calls “technical debt.” Like real debt, if it is not paid down consistently and
responsibly, it will become unwieldy and require too much attention to service.

* Releases: The agile development method of software development creates specific functionality
within several short time frames. During each time period, requirements analysis, planning, design,
coding, unit testing, and acceptance testing are performed. At the end of this time, a workable
feature is “released,” or shown to the customer.

61Collective Wisdom from the Experts

Each iteration† of work should include new business functionality, as well as a
sanctioned effort to refactor some of the hacks‡ that inevitably show up in the
code. This is neither a license to goof off, nor the sign of a bad team. It is sim-
ply a programming reality that must be routinely addressed with full support
from the executive stakeholders.

The organization must commit to tracking industry trends, acquiring tools,
and adopting practices that demonstrate productive influences on how pro-
grammers work. Encourage developers to expand their knowledge, both on
and off the clock. Playing around with new tools, being trained, attending
high-value conferences, and reading books and blogs are all necessary compo-
nents of the constant effort required by this field.

Organizing team lunches where members share knowledge and promote new
ideas is a great, inexpensive way to foster growth. Software engineers who feel
supported by their employers tend to be more loyal and willing to go the extra
mile. They are also more likely to be able and ready to respond to changes in
requirements and technical landscapes.

The software industry has a lot of work to do to help its practitioners be more
consistent in the delivery of high-quality, on-time releases. Organizations that
build software must be engaged in the process at all levels to improve their
own chances for continued, repeatable success.

†Iteration: A short period of time chosen by an agile project team (a week, two weeks, a month,
etc.) during which a key requirement chosen by the customer will be developed, tested, and then
delivered to the customer for approval or comment. The next iteration will then begin to develop
the next most important requirement and/or correct the work done in the preceding iteration.

‡Refactoring a hack: Going back to reprogram a quick, workable fix created to get a software feature
working, but which needs further internal refinement to facilitate its long-term use and support.

62 97 Things Every Project Manager Should Know

A Voice from
the Other Side
Marty Skomal, MPA
Omaha, Nebraska, U.S.

Whl ’ g o h o vloand software project man-
agers, you might find it equally advantageous to hear from the guy with the
metaphorical purse. I’m the customer.

Software developers have now infiltrated the realm of nonprofit and govern-
ment sectors, with promises of low-cost, web-based ways of doing business
using fancy technologies that have heretofore have been too expensive, too
elaborate, and beyond the comfort level of our employees and constituents.

Nonprofit and governmental agencies, subsisting on a shoestring and a few
paper clips, can be seduced by these automated possibilities, but there is a
trap. In an attempt to have it all, you can end up with nothing workable and
longing for the days of a shoebox and a pack of 3×5 index cards to house
your data.

For example, my agency decided to move from a paper-based grant applica-
tion process to an online one. Forms would be submitted directly to the agency
and downloaded into our database, avoiding manual data entry errors, low-
ering cost, and bypassing mailing inconveniences for constituents. We could
also view applications online during their preparation process and provide
assistance before submission.

Our software developers were eager to point out how they could automate
additional aspects of the grant application process, such as vetting potential
organizations against eligibility criteria before allowing them into the system,
ensuring that deadlines were met, and forcing expenses and income to balance
before allowing the Submit button to activate.

63Collective Wisdom from the Experts

Our core needs were simply to import data, verify its accuracy, and commu-
nicate back via email that we had received their proposals. However, we were
encouraged to program our system so that applications submitted after the
deadline would be rejected. By building in rigid requirements, we lost the flex-
ibility to be responsive and service oriented. Plus, once the system blocked an
application after the deadline passed, we were totally unable to import it into
our database without contacting the developers to perform a special override.

We should have started with a simpler system and added levels of complexity
as we became familiar with its capabilities. Instead, we ended up with part of a
nonfunctional spaceship when all we needed was a complete bicycle.

We walked away from that system and now use a vendor with a more stable
system that has fewer features. We adjusted our internal procedures to fit the
system rather than building software from scratch to keep our old procedures
intact. We now see our online grants system as a way to receive data and
manipulate it in our own database, rather than as a monument to all that is
technically possible but not necessarily useful.

To avoid leading your not-for-profit clients astray:

•	 Allow them to plan, build slowly, and test, test, test.

•	 Resist the temptation to advise them to over-automate simple tasks.

•	 Be the development team who cares about understanding your user’s needs.

Please try to understand what your not-for-profit client can successfully imple-
ment, before exhausting your entire technology toolbag on an emerging market.

64 97 Things Every Project Manager Should Know

Keep Your
Perspective
James Graham, PMP
Ta’ l-Ibrag, Malta

Whn ghng n qn o ,it is common
to hear “the system is slow,” “the application is unreliable and crashes,” “it does
everything we don’t need and nothing we do need,” “the menu structure is
cumbersome,” and “it takes too many keystrokes to do a simple task.”

Most software project managers empathize with users. We try to make them
feel better by suggesting solutions that will appear to remove their pain. I
believe that this approach, while well intended, is intrinsically wrong. Further,
it reduces the probability of a successful outcome in the subsequent project.

Some people say that the point of gathering business requirements is to pro-
vide a custom-designed solution, which in turn reduces end-user frustration.
I would agree that this is a worthy goal. However, a fatal flaw occurs if the
project manager who decides the best solution bases his decision on a heartfelt
desire to make the users feel better. In reality, project managers may not have
trained themselves to keep an unbiased perspective.

Perspective means looking for the best solution, not the fix that feels right to
the users. Remember, users have a deep understanding of their business area
and can make impressive contributions to a project by sharing that knowledge.
But how should we use their input?

When I worked as a management consultant in London, my experienced col-
leagues used to mentor me on the importance of objectivity. Their wisdom
was based on the truism that most experts like to show how clever they are,

65Collective Wisdom from the Experts

when often they should spend more time using their skills to ask the right
questions to uncover the root problem. If you don’t unmask the real problem,
your attempts to remove it will only swat at the symptoms.

We all are at risk to succumb to this mistake. Recently, I was asked to design
a management development program for a large organization. My immediate
impulse was to rush to address its pain points speedily, by suggesting that we
look at an existing program I own. I knew I could easily adapt it to cure the
issues that were creating so much irritation for my client.

Fortunately, my self-restraint kicked in. I spent an hour talking to the senior
managers about their real challenges. After I stepped back to listen to the busi-
ness problem, not merely the end-user complaints that indicated something
was amiss, I recommended an entirely different solution. It was more suited to
their needs and addressed their core issues.

The next time you are confronted by frustrated users, take a deep breath. Allow
them to vent their dissatisfaction with the surface symptoms they encounter
day-to-day. These irritations are real. Then ask them a series of questions to
get to the underlying, root causes of their frustration. Avoid the temptation
to make them feel better by providing a quick fix. It is in their best interests
for you to make sure you are aiming for the right target before you plan your
project solution trajectory.

66 97 Things Every Project Manager Should Know

How Do You Define
“Finished”?
Brian Sam-Bodden
Scottsdale, Arizona, U.S.

I h o o vlon o if there
isn’t a clear definition of what success means. For developers, success entails
delivering a product that meets customer expectations. However, to define
total project success, we need an accurate, shared definition among the larger
project team of what it means to “finish the project.”

To embrace the overall project scope, the core tenet of traditional, iterative
software development is “divide and conquer.” The project is broken into
deliverables, which are then divided into work packages. Those are ultimately
broken into activities assigned to a specific person.

Using an agile approach with one- to several-week iterations, or work periods,
the necessity to consider overall project scope can be masked. Finishing the
goals of one iteration can be clearly set out as creating working software that
passes unit tests, possibly clears limited integration tests, and allows prom-
ised software features to be demo’d to the stakeholders for their approval and
feedback.

The problem is that at the macro level, a project has many other considerations
beyond the code and its accompanying tests. Using the traditional waterfall
method, testing was relegated to the end of a project and became a flaw in the
process. In a more agile approach, developers may erroneously defer or dis-
miss all the nonprogramming items or activities as not having a place in their
view of what a software project entails.

Some of these items may be unit and integration testing between a newly cre-
ated component/feature and the components/features created in prior iterations.

67Collective Wisdom from the Experts

These often-overlooked integrations underscore a fundamental problem for
development teams. The complexity of software seems to be geometrically
proportional to the number of component interconnections. Don’t ignore the
time needed to craft a demo environment, and do write user-level/acceptance
testing scripts and create accompanying documentation. No matter how light
your methodology, shippable software requires a certain level of documentation.

When these items are not ignored, the macro definition of what it means to
be “finished” differs significantly from the accumulated finishing of a set of
features within an iteration. And, the delta created from a buildup of those
missing items per iteration can alter the way a feature is implemented, tested,
and perceived by the customer.

Let’s not overburden our developers with administrative or business issues.
The underlying concept we need to spread is that iterations are not just for
software developers. They must be coordinated with tasks important to the
larger, general software project team members. Business analysts, software
project managers, and quality testers must coordinate their crucial activities
with those of the developers.

The person responsible for this coordination is the software project manager,
who must understand and spread the overall definition of what it means to be
finished at the macro level so that the non-code-based activities are performed
side by side with the weekly iteration work. The project manager must be the
arbiter between the development team and the other stakeholders to define
what it truly means to be “finished.”

68 97 Things Every Project Manager Should Know

The 60/60 Rule
David Wood
Fredericksburg, Virginia, U.S.

W on nthat software development is the most important part
of the software life cycle. Methodologies abound for development. Books,
magazine articles, and blogs focus on development. Development, however, is
just not where the money is.

Fully 60% of the life cycle costs of software systems come from maintenance,
with a relatively measly 40% coming from development. That is an average, of
course. The actual cost of maintenance may vary from 40% to 80%, depending
on the system type and the environment it is deployed into. During main-
tenance, 60% of the costs on average relate to user-generated enhancements
(changing requirements), 23% to migration activities, and 17% to bug fixes.

The 60% of life cycle costs related to maintenance, coupled with the fact that
60% of maintenance activities relate to enhancements, gives us the so-called
60/60 Rule, one of the few proposed “laws” of software maintenance.

Migration activities include moving systems to new hardware or software envi-
ronments. Migration is, of course, a type of changing requirement. Factoring
that into our estimates points out an interesting fact: over 80% of maintenance
activities relate in some way to changing requirements.

Naturally, the ability to change code suggests that one should understand it
first. Understanding changes to be made is a major activity during mainte-
nance. Roughly 30% of total maintenance time is spent on understanding an
existing software product. The development of understanding applies to all
forms of maintenance: changing requirements, migration, and bug fixes.

69Collective Wisdom from the Experts

Understanding is a cost we must pay to maintain code that someone else wrote,
or we wrote long enough ago that we no longer have an intimate knowledge
of it. During maintenance, understanding code takes the place of new design
work found during development for most tasks.

The 60/60 Rule should prompt us to rethink the focus of software develop-
ment, as well as maintenance. The tendency to address development activities
may not yield the most impressive gains. Boehm’s early assertion in the early
1980s that proper software engineering discipline can reduce defects by up
to 75% may be true (although I seriously doubt it), and became the basis for
much work toward development methodologies, but so what?

A good methodology may reduce bugs (17% of the total maintenance effort), but
not address migration, enhancement time, or cost at all. To reduce maintenance
costs, we have to address the costs associated with understanding code, adjust-
ing code to new requirements, and/or migrating code to new environments.

The 60/60 Rule suggests that we should focus our efforts on creating systems that
are maintainable. Our software must be designed to change so systems become
flexible in the face of new requirements. Designing such systems is one of the
next great challenges in software engineering.

We know at least part of the answer. The software components need to become
less tightly coupled with one another, much the way the components of the
World Wide Web are bound together at the last possible moment and in a
flexible manner.

70 97 Things Every Project Manager Should Know

We Have Met
the Enemy…
and He Is Us
Barbee Davis, MA, PHR, PMP
Omaha, Nebraska, U.S.

Coon Wl Klly,who inked the long-running comic strip Pogo,
is famous for the quote, “We have met the enemy…and he is us.” Nowhere is
this sentiment more accurate than when describing a software project man-
ager who is new to the software development process. Here’s how to avoid
having “the enemy” be you:

•	 As a project manager, you expect your team members to estimate the
amount of time it will take them to complete a specific task. It is detri-
mental to the schedule if they go too far over the budgeted time. One of
your tasks on the project is to hold meetings to drive team communica-
tion. You need to demonstrate the ability to estimate and deliver the meet-
ings as meticulously as you expect your developers to estimate and deliver
their code.

When your meetings run long, you are stealing the precious program-
ming time developers count on to meet your project schedule deadlines.

•	 If your project team spoke a foreign language, you would take some les-
sons and get a translator. Your developers do not speak your language.
Buy a book, take a class, make Google your friend, and find a developer
who has the gift to explain complex things in a simple way. You cannot
bluff your way through this project without learning some of the concepts,
terms, and challenges your team faces.

•	 Regardless of the perfect methodology you used to build toasters and cars,
develop pharmaceuticals, or even construct skyscrapers, it won’t work
here. Let the trusted members of your team explain about agile method-
ologies. They aren’t new or risky. But they are your best chance at having
a working product at the end of your project.

71Collective Wisdom from the Experts

•	 Developers are craftsmen and artists. They work differently than accoun-
tants, attorneys, or bank tellers. When they are meeting in pairs and talk-
ing animatedly, they are actually working. When they are bouncing a ball
against a wall or doodling on a whiteboard, they may be crafting a solu-
tion to an architecture problem that can’t be solved by staring at a com-
puter screen. Give them space.

•	 Your team will work odd hours. We’ve all seen the cashier at the local
food emporium switch with her replacement: she opens the register and
exchanges the money drawer, and the new cashier is up and running. A
programmer can’t switch places with a cohort and just pick up where his
teammate left off. When your team member is feverishly at work, leave
him or her alone. Researchers say it may take an hour or more for the
person to regain productivity if interrupted.

•	 It is unnecessary to have every person program in exactly the same pro-
gramming language. Some endeavors are better approached with newer
languages that require fewer lines of code to write, test, store on your serv-
ers, and maintain. Don’t refuse to let your developers use the best tool for
the job.

Open your mind to this new world of software development, and you can be a
support for your software development team, not the enemy.

72 97 Things Every Project Manager Should Know

Work in Cycles
James Leigh
Toronto, Ontario, Canada

 o ll o nl yl,and our productivity is no
different. The human brain cannot focus on any single issue for more than a
few hours at a time. Ideal workdays are designed to ensure that the body has
time to rest and refocus every 90 to 180 minutes. Productivity has been shown
to degrade after about 90–120 minutes of work, requiring the brain to change
focus before productivity can increase.

The most effective software projects are created in environments that ensure
that developers are mentally productive. However, many things that contrib-
ute to developers’ productivity are out of the control of their software project
manager. You can’t ensure that they eat appropriately, or sleep enough hours at
night. However, a project manager can help ensure that a developer’s produc-
tivity does not degrade during the day, by encouraging frequent breaks and
providing opportunity for nutrition. The old saying that developers are driven
by their stomachs is true.

Studies also show that projects are more successful when broken into itera-
tions. By creating weekly or monthly subprojects—complete with goals, pri-
orities, feedback, and releases—software bugs can be mitigated and developer
satisfaction can be increased. Breaking the work into smaller iterations pro-
vides opportunities to track progress and acknowledge good results. It also
gives everyone on the team the opportunity to reflect, give feedback to one
another, and improve communication.

73Collective Wisdom from the Experts

Every cycle should include a planning stage, an action stage, a completion
stage, and a reward stage. Before beginning on any action item, ask yourself
or your team these questions: why, when, how, what, and who? Why are we
doing this? When is this going to be complete? How are we going to do this?
What are we going to accomplish? Who on our team will be responsible for
each portion of the item? With proper communication and understanding,
the action stage can be effective and productive, contributing to the overall
success of the project.

Once a task or action item is complete, get outside feedback. If one or two
members of the team completed the work, get another team member to review
it (peer review). If the entire team completed the work, get feedback from other
stakeholders (preferably end-users). The final stage of any cycle is the reward
stage; this is important for the sustainable health of any team or individual. As
a battery must be recharged after use, the brain and body must be rewarded
through recognition or acknowledgment of work.

As a software project manager, you must guide the team through project
cycles, ensuring that every person understands the plan and gets the feedback
he or she needs. Furthermore, each individual must follow his or her own daily
cycle of planning, doing, completing, and being rewarded. The manager must
ensure that all team members get the attention, information, and time they
need to keep their productivity at its best. This way, you can ensure that your
team is functioning at its full capacity.

74 97 Things Every Project Manager Should Know

To Thine Own
Self Be True
Harry Tucker
Matawan, New Jersey, U.S.

Any o ho hv vl on ol remem-
ber that during the safety demonstration we are told to put our oxygen masks
on first, and then to assist an elderly person or child with his or her mask. If
we struggle to put the other person’s mask on before ours, we may succumb
to oxygen deprivation before succeeding, and we all die. By putting ours on
quickly, we are empowered to put 100% effort into taking care of others, and
everyone lives.

I have witnessed many wonderful projects collapse over the years, even though
the perfect storm of success was at the feet of those involved. The projects in
question had:

•	 Unlimited market potential

•	 A superior product

•	 An empowered team enabled with phenomenal capability

However, the project manager had lost control of him-/herself and, therefore,
could not take care of the team. The opportunity died of oxygen deprivation,
so to speak, and the project failed.

To manage or lead teams (and there are sharp differences), software project
managers need to be in complete control of themselves. They must have a
strong understanding of their own personal purpose, vision, and mission, as
well as personal and professional goals. When a solid personal life structure
is in place, the manager’s life is empowered. Without such empowerment, the
manager is easily swept away by the challenges of living (both inside and out-
side the office). Then, an otherwise intelligent, talented manager loses focus
on the management tasks at hand.

75Collective Wisdom from the Experts

When that happens, various symptoms start to appear, one cascading upon
the next:

 1. The manager becomes visibly distracted and starts to feel out of control.

 2. Not feeling in control, he/she doesn’t feel empowered to stand up and do
what is needed to protect the project.

 3. The unprotected team starts to experience communication breakdowns.

 4. Communication breakdowns lead to slipped (not aligned with the origi-
nal project baseline) tasks.

 5. Slipped tasks, and a manager unable to bring things back under control,
lead to team despair.

 6. Team morale fails, adding further complexity to a project that is already
out of control.

I personally take time on a daily, weekly, and semi-annual basis to review
where I am in my life. My daily and weekly reviews help me keep on track as
far as short-term goals are concerned. My semi-annual retreat (white space
planning, as some people call it) provides me with an opportunity to assess my
long-term goals, personally and professionally, to make sure I am still on track.

While life will always throw curveballs at all of us, having short- and long-term
goals helps provide us with targets that help us realign our personal and pro-
fessional course after the turbulence has passed. With such a plan in hand, we
are enabled to focus more on the tasks at hand, including managing our teams,
to empower them toward success.

The oxygen masks have fallen—who are you helping first?

76 97 Things Every Project Manager Should Know

Meetings Don’t
Write Code
William J. Mills
Castro Valley, California, U.S.

Too on, people who could be doing something more productive are
trapped in meetings—meetings that have wandered off their intended pur-
pose, run over time, or trapped an entire team in the room when a more lim-
ited set of people would be just as effective. Only schedule meetings that have
a specific purpose, and only include people on the invitation list who need to
be there. Here’s an obvious list of things to avoid, as software project manager,
when you are planning your team meetings:

•	 Chit-chat. If you have participants who use this time to have informal
project-related exchanges, remind them to come a few minutes early or
plan to spend time together after the meeting. You can’t afford for the
entire group to wait until they finish chatting.

•	 Not getting in, getting done, and getting out. Plan a clear agenda that is
distributed beforehand. If you assemble the entire team, be sure your top-
ics are relevant to everyone.

•	 Diving too deep. It is good to bring up risk issues or roadblocks that have
arisen. However, this is not the place to hammer out the solutions. Form
smaller groups, or designate the appropriate team member, to pursue the
issue after the meeting.

The minute software engineers start talking about specific implementa-
tion details, have them make a note to remain after the main meeting and
move on with your scheduled agenda.

77Collective Wisdom from the Experts

•	 Going off-topic. The current meeting has a specific purpose. Don’t lose
that focus. There will be things that come up that are important, but not
on topic. You may have too many nonessential people there, or you might
be missing key stakeholders necessary to solve this issue. Schedule another
meeting, or finish the current one and deal with the new issue at the end.
Remember to let the folks who don’t need to be there get back to work.

•	 Going over time. As a project manager, you expect your team members
to be able to estimate the amount of time it will take them to complete a
specific task. It will be detrimental to the schedule if they go too far over
the budgeted time in your meeting.

•	 Meeting too often. If you are following an agile methodology, quick daily
meetings are necessary. If not, be sure the meetings you hold cover infor-
mation or collect data that couldn’t be assembled in another way.

•	 Indulging long-winded participants. As the leader of the meeting, it is
your job to use a nonverbal “stop” (hold up the palm of the hand toward
the speaker) and smile. Say, “Your point is well taken, but in the interest of
time, we are going to need to move on” (or “hear from others,” or “come
back to this point later if there is time”).

As you are the leader on the project, team members may feel they can’t speak
up about unproductive meetings. So, evaluate your own practices and see if
you can improve them on your own.

78 97 Things Every Project Manager Should Know

Chart a Course
for Change
Kathy MacDougall
Erie, Colorado, U.S.

 o hng h y n hh ol o. This may
be good for the organization, but the people who work there aren’t always
ready to embrace change. And let’s face it, if people can’t be convinced, cajoled,
or commanded to use your new software, it’s been a big waste of time and
money.

When requiring people to change the ways in which they work, the carrot
method (reward) is much better than the stick (punishment). Even if they’re
forced to adopt it, if your new software does not provide significant benefits
that users can understand and master, they will find every way possible to
avoid using it. Proper care must be taken to 1) understand the impact of this
change on the people it touches, and 2) put in place change-management plans
that help these people embrace the change.

Key to understanding the impact of the change is to understand how people
currently work and exactly how the new software will change that process. This
increases the chances that users will adopt the new system, and also improves
the design of your end-product, as it ensures that it will fit user needs.

The importance of change management cannot be underestimated and should
be a project manager’s focus early on in the project. To determine the impact
of the change on users, first document all current (“as is”) processes that touch
the software project. Create process flow diagrams that detail daily tasks as
well as data inputs and outputs.

79Collective Wisdom from the Experts

Next, document how these processes will differ once the new software has
been rolled out. Speak frankly with target users of the new software. Discuss
how the changes will affect their work. Listen carefully, evaluate the impact and
costs of each feature change, and adjust the software design accordingly. Make
sure that the changes will be acceptable to target users and their management.

Involve managers of the target user community early and often. They will
be important champions of change who can make or break the transition to
the new system by incentivizing and/or mandating that end-users make the
switch. They are invaluable partners to remove obstacles and solve unforeseen
issues with the rollout.

Create a plan for change. Determine the list of training and team-building
activities that will need to happen prior to the project launch, and build these
into your project schedule. Enlist help from the management community to
create the change management plan. At a minimum, this group must buy into
the concepts, implementation and training approach, and timelines whole-
heartedly. Listen carefully for objections or warnings about approaches that
will not work with their teams.

In summary, users and their management are interested in keeping their focus
squarely on meeting their business objectives. Transitions to new processes,
tools, and systems pose a potential threat to these goals. Solid upfront plan-
ning helps provide a smooth transition to the new system, paves the way for
buy-in and acceptance, and increases the chances of its long-term use.

80 97 Things Every Project Manager Should Know

IT Program
Management:
Shared Vision
David Diaz Castillo, MBA, PMP
Panama City, Panama

gnzon on go vl l individual technology
projects into a larger program. The strategy is to complete these projects in a more
cost-effective way and to bring strategic benefits to the organization by avoiding
overlap or gaps. However, it is vital that the software project manager convey to
the project team members the real business objective that their individual project
must achieve, as well as how this team aligns to the other projects. Team members
must also understand how the achievement of their specific project goals contrib-
utes to the success or failure of the overall program objectives.

Here are some key tasks:

•	 Find the connections that expand the importance of this project beyond
its mere standalone value.

•	 Define the relationships, deliverables, and risks shared among all projects
in the program.

•	 Keep all the team members in alignment with the final solution that the
program is trying to achieve.

•	 Understand the business, to propose solutions aligned to the strategic
objectives of the program as the inevitable problems appear.

This concept of bundling projects into programs is not very mature in Latin
America yet, but we are gaining experience managing programs with a com-
mon set of governance policies. Clearly there are rich benefits to be found
when each team has a clear vision of the entire program goals, not just its own
project work.

81Collective Wisdom from the Experts

The most difficult thing is getting the buy-in from vendors, clients, sponsors, and
other stakeholders. We need to analyze their interests, requirements, and needs
to be sure that there is value for each of them when we group technical projects.
Every group must gain more value than if its project was completed in a vacuum.

Particularly when customers span many countries, they will all have different
ideas of how technology should be created, and unique organizational proce-
dures and processes. Agreement and approval on internationally recognized
program management practices is fundamental in order to begin the align-
ment of all stakeholders to program goals.

To have a successful methodology, we need common, but flexible, documents
or templates to use for all projects. When we manage information technology
programs, we typically need goods or services from vendors with their own
unique methodology and templates, or outputs from other projects being run
simultaneously with our own. So, before we begin, all parties have to agree
which documents we are going to use.

What will our project management methodology be? If individual project
teams can’t agree on what methodology, procedures, processes, and integrated
change control steps will be adopted by all teams, the smooth codevelopment
of projects to serve the greater program good will fail. When choosing, the
software project manager needs to ask the team which templates and practices
are reasonable and useful to help it execute and control its projects efficiently.

Once you have a common process and document/template tools, you are in a
position to coordinate technical projects into programs. These provide greater
value to your customer and your organization than single projects done alone.

82 97 Things Every Project Manager Should Know

Planning for Reality
Craig Letavec, PMP, PgMP, MSP
Waynesville, Ohio, U.S.

I’ zng ho on o oj tend to fall into late,
over-budget, off-quality situations. Even in highly touted software shops with
international certifications and maturity assessments lining the walls, the tri-
als of managing the very fluid environment of software development are many.

The pace of development will naturally vary throughout the life of the proj-
ect. Sometimes you are ahead of schedule, sometimes behind. Often, project
managers seek to control these fluctuations through strict, elaborate project
timelines that lay out prescribed task assignments and deadlines. However,
they find themselves making multiple revisions to the plan along the way to
deal with the dynamic nature of creating software.

While the development and execution of a detailed, keenly estimated project
plan is important in the success of any project, many software project manag-
ers may find some benefit in adding some “reality time” into their plans.

The critical chain method uses the concept of “buffers” as one means to deal
with inherent variance over the life cycle of the project. Try introducing “buf-
fer time” or “reality time” into your schedule at each phase of your software
development life cycle (design, coding, testing, etc.).

Buffer time allows for a degree of flexibility within a phase without the need
to perform major scheduling adjustments. Think of this buffer time as a time
contingency reserve for the phase. The process is fairly straightforward. Look
at each phase of your project, consider the total duration of the phase based on
your best planning, and then add a buffer task at the end of the phase that has
a duration of a percentage of the total phase duration, say 10% or so.

83Collective Wisdom from the Experts

For example, on a 40-day total duration for a design phase, add 4 days of buf-
fer time to the end of the phase, for a total phase duration of 44 days. Will the
phase actually take 44 days? Perhaps not, but the “unused” time can then be
either carried forward or added to future buffers.

As experienced software project managers know, projects may proceed on
schedule during the early stages, only to end up dragging on later in the
process. Getting ahead of the curve almost always has more advantages than
disadvantages.

Expect skepticism the first time you try this approach. “Nonproductive” time
is the first thing managers will want to eliminate when they review your sched-
ule. Stand your ground. Make the simple point that you are performing basic
schedule risk management.

If you have a phase of the project that is riskier than another, add more buffer
at that point. You may be able to add less of a risk buffer in other spots on the
timeline.

Last, make sure that you are not “double-dipping.” Double-dipping would be
adding extra time at the task level and then again at the phase level. The tech-
nique works best when you are not already buffering each of your task dura-
tions by routinely adding extra time to each activity to deal with the unknown.

Try it. It works!

84 97 Things Every Project Manager Should Know

The Fallacy of
Perfect Execution
David Wood
Fredericksburg, Virginia, U.S.

I yo hn yo n ll oif you work hard enough,
don’t be embarrassed. Many others have thought so, too. Unfortunately, it is
not possible. Even in theory.

Arbitrary logic is hard to verify in the general case and hard, or impossible,
to fully test. Drawing an analogy to the bricks and beams used in other
construction-related activities, three researchers in the UK recently sug-
gested that software is hard to verify because “there are no good, predictable
building blocks. The elements out of which programs are constructed: state-
ments, procedures, or objects, cannot be composed in a predictable fashion.”

The building blocks of software don’t snap together like Legos. They can be
put together in so many ways that it is impossible to determine all of the com-
binations. That may be a decent working definition of Turing completeness.*
Software is, in a word, complicated.

Tracing and verifying arbitrary logic in code may sound esoteric. How about
the simpler job of tracing programmer intent? Surely we can talk to pro-
grammers and ask them what they meant. Unfortunately, programmer intent
is generally lost within a few days of writing a code block, especially when
requirements change or are inconsistently documented.

Programmers also change jobs, leaving undocumented or wrongly docu-
mented code behind. Source code rapidly becomes the last and only forensic
clue to programmer intent. Alas, intent can only be imperfectly ascertained
from clues like variable names, logic flow, and the occasional comment.

* Turing completeness: Named after Alan Turing, this is the concept that every design for a computing
device could be emulated by a universal machine. True Turing-complete machines are physically
impossible, due to the unlimited storage they would require. However, Turing completeness may be
attributed to machines that would be universal if they had unlimited storage.

85Collective Wisdom from the Experts

Bugs will remain part of every software product shipped. We put bugs into
software for both bad reasons (like ignorance of language features or poor
attention to detail) and good ones (such as conflicting or poorly communi-
cated requirements). Further, bugs are a source of change in software because
when they are recognized we refactor the code to fix them, injecting new bugs
in the process.

Meir (Manny) Lehman was the first to recognize that software evolves dur-
ing its life cycle, way back in 1969. He later figured out that multiple feed-
back loops exist within a software development effort, and that those feedback
loops influence the process of evolution. They include the injection of multiple
(possibly conflicting) requirements and design decisions.

Various degrees of programmer understanding of requirements, design deci-
sions, and implementation details contribute to other feedback loops. In other
words, the sources of bugs don’t have to be logical programming errors. Bugs
are also introduced by differences of opinion.

The Fallacy Of Perfect Execution is the delusion that it is possible to create
flawless code with sufficient attention to detail. If that were so, we would all
be strong advocates of structured programming techniques. We aren’t, and for
good reason. Software, at any stage of its evolution, is buggy, extremely likely
to change, and inaccurately documented.

That insight, simple though it may be, encourages us to approach software
differently. It encourages us to develop tools and techniques to incrementally
refactor software implementations, requirements, and documentation.

86 97 Things Every Project Manager Should Know

Introduce a More
Agile Communication
System
Brian Sam-Bodden
Scottsdale, Arizona, U.S.

Mo ov o l ojplace a great deal of blame
on communication breakdowns between software project managers, team
members, and stakeholders. Project managers are taught to mitigate commu-
nication breakdowns between team members, and provide constant, effective
communication. The weight of this responsibility sometimes leads project
managers to overreact. They blur the line between essential, concrete commu-
nications and those where the content‐to‐noise ratio actually harms project
progress instead of helping it.

To solve this problem, many software development endeavors are moving
toward a more flexible, agile process. The key to agile methodologies is timely
communication loops that enable agile teams to respond effectively to unfore-
seen changes, and quickly reassess and reprioritize project features.

How do agile project managers keep communications limited to the essen-
tials? They promote the daily “15-minute stand‐up” meeting. It entails devel-
opers describing what they’ve accomplished since the last standup, what
they’re planning to accomplish “today,” and any impediments they foresee in
reaching their goals. The negative risk of a stand‐up meeting is that it may
rely solely on the precision of each developer’s self-assessment. The solution?
To make stand‐up meetings more effective, integrate a task management tool
that can show the output of a feature’s tests. A tool does not lie about the state
of a project’s codebase, and testing results are a valuable addition to developer
self-assessment. Presenting report data correlating a feature to a set of tests it
passed gives a more accurate representation of the state of the feature.

For example, results from a continuous integration tool can paint an objec-
tive picture of progress. This reduces the stand‐up meeting communication to
the essentials: reporting of impediments (hopefully, already caught by the task
management tool) and unforeseen developments due to edge cases, integration

87Collective Wisdom from the Experts

challenges, and bugs/defects. By reflecting these development “discoveries”
through a shared, globally accessible tool, developers gain a greater level of
feedback precision. Often, unseen connections between features and tasks can
be discovered early.

One typical misconception is that synchronous* communications are always
more effective than asynchronous† communications. Adding development
tools and short, asynchronous communication loops can effectively supple-
ment face‐to‐face communications.

At a more general level of feedback, a wiki system can easily keep the vision
of the project adjusted to the reality of the development progress. Such a sys-
tem can also make information available in a timely manner and provide a
higher‐level channel to communicate to stakeholders-at-large, who might not
be interested in the deep, technical details impeding a particular feature’s prog-
ress. By contrast, a software developer’s vision of the overall project can be
blurred over time by the minutiae of his daily technical work. A wiki is an effec-
tive way to keep a clear, shared vision of the project among all the participants.

By attacking the problem of keeping information loops tight and noise-free,
software project managers can help avoid the breakdown in communications
typically blamed for project failures. A project manager’s responsibility and
challenge is to streamline the feedback loops at every level of a project.

* Synchronous communication: Participants all participate at the same time, whether in person or by
virtual means.

†Asynchronous communication: Participants have access to information, but do not have to be physi-
cally present and available in real time. Examples include email, discussion boards, and shared folders.

88 97 Things Every Project Manager Should Know

Don’t Worship a
Methodology
Fabio Teixeira de Melo, PMP
Coatzacoalcos, Veracruz, Mexico

Mny oj ng g ovly nv in following a meth-
odology, which hinders their ability to manage the project to a useful, praise-
worthy completion. If you used a certain format in your last job, studied it in
school, or obtained a certification in it, you may feel tempted to rigorously
establish all the processes and documents your textbook mentions, exactly as
they are described. This is a dangerous pitfall and raises the following issues:

•	 Required level of effort. Working thoroughly through all the processes
contained in reference materials may require a lot of administrative effort
from every team member. Are you sure you have considered all those
hours in your time and budget estimates? You certainly don’t want to put
in place a fantastic set of procedures that document the fact that your
project is failing because of the time you took to prepare them.

•	 Executing company’s culture. How familiar is your team with those spe-
cialized processes? Will you have to train team members? Is that train-
ing budgeted? Are they interested? What about functional managers and
other company departments with which you will have to deal? Do your
processes conflict with formally or informally established company pro-
cesses and habits? Such conflicts could be a risk to the project.

•	 Project focus. The focus of the project manager must be the successful
completion of the project, which in a software project is primarily linked
to delivering the software. All the project management knowledge you have
at your disposal is a means, not an end. Besides, your team will naturally

89Collective Wisdom from the Experts

give importance to the same things you, as a project manager, give impor-
tance to. If your focus is the full establishment of, and compliance with,
all the project management processes, that will be the focus of your team,
too. And then who will create the software?

•	 Virtual or geographically distributed team. If all of your team members
are not colocated, it may be very difficult to introduce and enforce manda-
tory procedures for them to follow. Their hardware and software, as well
as other technology, may make compliance with your demands difficult,
or even impossible. Narrow your expectations, if necessary, when having
remote teams deliver the products or services you need from their small
portion of the overall project.

In the end, no project management book or methodology you feel compelled
to follow is more important than your good sense. You should go through a
product analysis, a contract analysis, a first approach to a risk analysis, and an
interview with your major stakeholders (client and sponsor), and then choose
your project management strategy.

Try to document it for yourself, with a statement such as “I plan to manage
the project this way because….” This will help you adjust your strategy in case
the root reasons for your decision change. Based on the needs of the project,
you can determine which processes are most important and should be imple-
mented thoroughly, and which processes might deserve a lighter approach.
In the end, a good project management plan is all about being effective and
keeping it simple.

90 97 Things Every Project Manager Should Know

Don’t Throw
Spreadsheets at
People Issues
Anupam Kundu
New York, New York, U.S.

v yo v n hon h with lists of activities
to explain your work on a project? Many experienced managers try to use
spreadsheet lists as a “silver bullet”* for managing and monitoring projects.

Tom is an information technology development architect in the online division
of a large organization. He serves four or more different stakeholder groups.
Since he has a poor ability to prioritize the deliverables for different stake-
holders, he ends up annoying or disappointing someone every week. With too
many commitments to fulfill, and too few resources on hand, he is always at
the center of the resulting conflicts among the groups.

Tom and his team are talented IT architects, yet their lack of time and the skill
sets necessary to manage stakeholder expectations creates problems for every-
one in the online group. The solution? Get a trained software project manager
to prioritize and list the deliverables for Tom and his team every week, month,
or quarter.

The PM can facilitate discussions with the various stakeholders to prioritize
the deliverables. Then, the priorities are evaluated across all the internal cus-
tomers. This way, not only do the stakeholders have their expectations set cor-
rectly, but Tom and his team get a frequently refreshed list of tasks. They can
stay focused on developing the most important items on that week’s agenda,
across all projects.

The secret to making this plan effective is not to stop with a spreadsheet list
of deliverables for each project. Instead, the PM sets the expectations of the

* Silver bullet: In folklore, a silver bullet was the only kind of ammunition that would be effective in
killing a werewolf, vampire, witch, or other variety of monster. Now, the metaphor can mean a new
software or technology that will magically solve all major organizational problems. It can be any
solution that is perceived to have far-reaching effectiveness.

91Collective Wisdom from the Experts

stakeholders by involving them in prioritizing what features or functionalities
are the most important/valuable/revenue-producing, given the amount of
resources (time, money, and people) at Tom’s disposal. Then each group gets
feedback regarding how much work it can expect that week, given the needs of
other parts of the online division. Communication is the most effective com-
ponent in planning out the work for Tom’s team, especially when the priorities
of multiple projects must be established.

Perhaps Tom and his team have had an unfortunate experience with one of
the stakeholder groups on a past project. With this approach, the “blacklisted”
team can continue to get its work completed until time, or a more proactive
intervention, helps heal the wounds from the previous interaction.

In the end, software project management is about managing people and man-
aging the processes in which they are involved. Interpersonal conflicts within
a team and between vying organizational groups are very common. Diversity
in ideas, goals, values, beliefs, and needs are the primary strength of teams, not
weaknesses. However, they inevitably lead to personal conflicts and conflicts
over the prioritization of the workflow through the team.

Most conflicts are a threat to productivity and efficiency; resolving them sat-
isfactorily can actually strengthen relationships, foster creative change, and
improve results. All conflict resolution tactics depend on proactive commu-
nication, active listening, compassionate understanding, and some effective
negotiation and/or arbitration. Skilled software project managers are needed—
because you can’t solve people issues with spreadsheets.

92 97 Things Every Project Manager Should Know

One Deliverable,
One Person
Alan Greenblatt
Sudbury, Massachusetts, U.S.

Evy lvl hol hv ngl onwho is responsible
for its completion. Everyone working on the project should clearly understand
who is responsible for the delivery of each item. Actual development of the item
may involve a large group of people, but ultimate responsibility for ensuring its
on-time completion, and for understanding the technical issues surrounding
that item, should be associated with one person.

Too often, especially in highly politicized environments, responsibilities are
shared, particularly when things are a little fuzzy at the beginning of a project.
People like to be responsible for highly visible items that they know are going
to be successful. No one wants to be held responsible for something that is
sure to be a failure. In the beginning of a project, sometimes responsibilities are
shared because a deliverable, and its associated risks, are not fully understood.
No one really wants to step up and assume responsibility for a vague task.

Sometimes, a deliverable is so juicy that you end up with multiple people who
want to assume responsibility for it. Yet, not wanting to rock the boat, manage-
ment doesn’t assign specific responsibility to one person for fear that others
will get upset. Either way, you are setting the stage for much larger problems
down the road.

First, if there is a problem associated with a deliverable, one individual who is
ultimately responsible for it is much more apt to notify the team early, since
she knows she will be held accountable. When time is tight, people have a ten-
dency to assume that anything for which they are not held personally account-
able will be handled by someone else. That is how things fall through the
cracks. As software project manager, you end up with a crisis on your hands.

93Collective Wisdom from the Experts

Second, as the project moves on, it is simply much more efficient for all team
members, especially newcomers, to know exactly who to speak to regarding any
issue. If you have a question, you want to make sure you are asking the right
person—the expert associated with the topic at hand. And, if the expert doesn’t
know the answer, he will get it for you. You shouldn’t have to spend your time
chasing down an answer for something you don’t fully understand in the first
place.

Finally, sometimes (all right, often), projects don’t turn out as expected. If peo-
ple aren’t held accountable for their actions (or inactions), you’ll never be able
to fix the problems that occur, and group dynamics will suffer. Few issues are
more disruptive to team performance than the group wasting time trying to
decide who to blame for failure of a “group” assignment.

You don’t want to turn this into a contentious means of assigning blame, but
rather a means of properly distributing responsibility. And when a deliverable
comes in early and under budget (or at least on time and within budget), it’s
good to know who deserves the praise.

94 97 Things Every Project Manager Should Know

The Fallacy of
Perfect Knowledge
David Wood
Fredericksburg, Virginia, U.S.

W ll no n o h o hthat we don’t know everything.
Every day, hopefully, we learn a bit more about our profession, our society, and
ourselves. But we simply can’t know it all. If we stop learning we fall behind
rapidly, especially in the software industry. The idea that one can apprentice
to a trade and practice that trade the rest of one’s life has gone the way of the
dodo. Remember the dodo bird? No? That’s the point.

Technology, techniques, and the ideas upon which they are built change far
too rapidly in our era for any practitioner to know all he or she needs to know
at any point in time. We must constantly learn and we must equally adjust to
a state of ignorance, which requires us to spend some portion of every project
researching the knowledge we need. Why, then, do we persist in pretending
that we must, or even can, know everything about a software project during its
development phase?

The history of software engineering is replete with attempts to control software
projects, through carefully bound development and maintenance activities to
prevent buggy, failed software. Most such methodologies, such as the classic
“waterfall” methodology, presume that with sufficient time and up-front dili-
gence, a software project can be completely understood. Many demand that
requirements be set in stone before a line of code is written. What nonsense!

Giving up on knowing it all during development, we might think that we can
know it all later. Several software development methodologies presume this,

95Collective Wisdom from the Experts

such as the spiral or agile methodologies. Iterative development is seen as the
key to delivering a software project encoding “final” requirements. Unfortu-
nately for adherents of those methodologies, delivery of a software project is
just a comma in development, not a period.

Requirements, even when “agreed” upon in detailed upfront design, will
change during development. It is impossible to know them all in advance.
Multiple requirements often result in inconsistencies, even when they are
gathered from a single source. Requirements may even mean different things
to different people. Differing interpretations may be due to perception, goals,
or language. In order to create a successful software project, we must accept
and even embrace these ideas. We do not know it all and we never will.

The Fallacy of Perfect Knowledge is the delusion that it is possible to capture
complete, nonconflicting requirements for a software project. The reality is
that requirements will never be fully known at any time during a software
project’s life cycle—not during analysis, development, maintenance, or even
(or especially) when the system becomes legacy.

Continuous use of the agile techniques of iteration and refactoring into the
maintenance phase of the software life cycle begins to address some of these
concerns. A fuller understanding of the ways that software evolves may be the
next step. Until we have those conceptual tools, use them daily, and accept
our ignorances big and small, we will continue to fall victim to the Fallacy of
Perfect Knowledge.

96 97 Things Every Project Manager Should Know

Build Teams to
Run Marathons,
Not Sprints
Naresh Jain
Malad, Mumbai, India

I yo n yo for a short period of time—a “sprint” in
track and field terms—you burn yourself out. To run a marathon, a team must
be disciplined, practice every day, and keep a sustainable pace. When working
on software projects, we don’t want to run just once and exhaust ourselves. We
need to keep going at a steady pace. Sustainable teams are geared toward run-
ning marathons and not allowed to just sprint.

Building useful software products is not an end in itself. Team members need
to learn how to help one another, help other team members realize their true
potential, and create an environment that allows everyone to go beyond their
limitations.

Most teams have a gap in knowing how to do this. Someone needs to play an
active role to fill this void. In most cases, the software project manager is the
best choice to work on team development. I suggest the project manager target
a goal to build sustainable teams. This is a primary way he/she can add extra
value to the project.

If the project manager focuses on team building and individual growth, on-
time and within-budget deliveries will automatically fall into place. This also
ensures that teams are self-organized and don’t need a babysitter if the project
manager needs to guide multiple projects simultaneously.

Typically, project managers get caught up in daily fire-fighting tasks. Hence,
they don’t really have time to strategically build a team. Working with a long-
term team development plan ultimately allows the project manager to keep
out of micromanagement mode, not only for the current project, but on all
future endeavors.

97Collective Wisdom from the Experts

We need a fundamental shift in the focus of software project management
practices so that the PM takes a more strategic role. Leave the tactical things
to the programming team. This ensures that the team will take ownership of
the project and the software project managers can become true facilitators or
catalysts, making sure things are moving in the right direction for the project
overall.

General George S. Patton said, “No plan survives contact with the enemy.” This
means project managers need to spend more time empowering their teams to
deal with unanticipated changes, rather than trying to get involved in day-to-
day coding and architecture decisions. It’s foolish for them to think they can
fool the information technology team into believing they grasp the intricacies
of software development if they do not have a programming background. The
team knows immediately that these project managers don’t know what they
are talking about.

A software project manager is like an operating system’s kernel.* The kernel
itself does not do end-user tasks, but it ensures that the end-user tasks are cor-
rectly completed by the applications sitting on top of it. Similarly, if a project
manager can be a true facilitator and coach who ensures optimal collaboration
among the team members, it should no longer be an issue to build self-organized
teams ready to run marathons and deliver high-quality software.

* System kernel: The central component of an operating system. It manages the communication
between hardware and software and connects the application software—such as Internet browsers,
word processors, spreadsheets, and email—to the hardware of a computer. Memory, processing
functions, and input/output devices can thus be used by all applications.

98 97 Things Every Project Manager Should Know

The Holy Trinity of
Project Management
Paul Waggoner, MBA, PMP, MCSE, CHP, CHSS
Waukee, Iowa, U.S.

Th o oj ngusually defines the role of each team
member at the beginning of a new project, documenting why each team mem-
ber’s skills are vital and the general responsibilities each person should anticipate.
However, these documents seldom include an explanation of the software project
manager’s role during the project life cycle.

The challenge for the project manager, especially when working with a new
team, is to convey the essence of project management in a 30-minute overview,
without overwhelming the team with methodology details.

With a busy organization and team members whose first priority is taking care
of their primary work assignment, your challenge as PM is to convey, as con-
cisely as possible, one primary point that team members will take away from
your meeting: the “Holy Trinity,” also know as the triple constraint.

To introduce this core concept, prepare a slide or other visual depicting the
triple constraint. This is an equilateral triangle with its three points labeled
Time, Cost, and Scope. Together, they outline a space in their center, which
is the project Quality. This geometric representation of the project work illus-
trates that increasing the length of any one of the three sides forces a corre-
sponding change in at least one of the other sides of the triangle. Thus, change
also affects the project quality.

Point out that this fixed relationship among the three constraints explains why
defining scope becomes a critical first step, and a primary limitation. While
you may have your own key points depending on the project management
maturity of your organization, the type of project you are helming, the maturity
of the project management effort, and past experiences with your customers, be
sure to cover these:

99Collective Wisdom from the Experts

•	 The importance of each team member’s individual participation on the
project, which includes assisting with the development of the project plan.

•	 Project risks—what they are, how to identify them, and how to create and
monitor plans to avoid, mitigate, or respond to them.

•	 Tasks needing further breakdown to define the work to be completed by
each member of the team.

•	 Task assignments, scheduled completion dates, interdependencies of the
tasks for the entire team, and the project manager’s role in following up to
ensure timely completion of the assignments.

•	 Possible task completion delays, impediments to completing tasks in a
timely manner, and the PM’s role to assist with removing roadblocks.

•	 Communications plans, team member communication responsibilities,
and the PM’s role as focal point in coordinating plan details.

•	 Project status meeting responsibilities and schedules.

•	 Outline of next steps you plan to perform as PM as the project plan
unfolds.

Unless your organization is a “mature” project-oriented business, adding an
overview of the basic PM concepts at the beginning of all projects is critical to
assist team members in understanding the full extent of their responsibilities
and the details of their support structure. This includes laying out your role as
their software project manager.

100 97 Things Every Project Manager Should Know

Roadmaps: What
Have We Done
for You Lately?
Kathy MacDougall
Erie, Colorado, U.S.

oo onon n n o h oj is a
key factor in the success of any project. An important communication tool
for all projects is the official project roadmap. The project plan helps your
immediate project team chart a course for change at the task level. By contrast,
the project roadmap allows the broader stakeholder community to understand
the change that will happen at a higher level. The project roadmap is a vehicle
that helps to communicate the planned changes, the timeframes for specific
changes, and the impact these changes will have on the business.

So how does one go about creating a project roadmap? First, enlist the input
of top project stakeholders. What features are important to them? What’s the
priority level of each of these features? Are there things happening within
the business that will make it important to have particular features ready by
a specific date? Capture the voice of the customer and use this as the founda-
tion for a draft roadmap.

Next, create a draft of the roadmap that shows a list of high-level features
grouped into a realistic timeframe (quarterly works well typically). For each
feature, describe the business value (e.g., reduce time to place an order by
two minutes; reduce cost to place an order by $10) on the roadmap. If the
business value cannot be described, you should question the validity of
including the feature in the project. In short, items without tangible business
value shouldn’t appear on your roadmap, and they warrant further scrutiny
in the form of a cost/benefit analysis.

101Collective Wisdom from the Experts

Once a good draft has been created, get feedback from the project’s executive
sponsor as well as from the project stakeholders. Provide a live forum for
discussion that allows stakeholders to ask for clarity, voice concerns regard-
ing prioritization, and alert the team to items that are missing from the road-
map. These frank discussions build understanding of the project and help to
ensure that the roadmap is in alignment with stakeholder priorities. Adjust
the draft according to the input received. Ideally, after completing this step,
you’ll have a roadmap which is supported by all key stakeholders.

Finally, shout it out loudly—post the roadmap prominently on the project
website, present it to secondary stakeholder groups, and use it as a primary
communication tool for the projects. Review the roadmap quarterly to make
sure you are on track. Tell stakeholders what has been completed and what
will be coming during the next quarter. If delays make it necessary to revise
the roadmap, go back to the draft stage and repeat. Communicate the newly
revised plan to all involved.

This method of creating a project roadmap gives project stakeholders a voice
and lets them know what to expect. And last, but by no means least, it affords
your team a regular method by which to communicate to others what it has
successfully delivered during previous quarters.

102 97 Things Every Project Manager Should Know

The Importance
of the Project
Scope Statement
Kim Heldman, PMP
Lakewood, Colorado, U.S.

I h oj ln h hof a solid project management
methodology, the scope statement is the breath. The scope statement details
the vision of the project. It describes the goals and deliverables, and docu-
ments what a successful conclusion to the project looks like.

Unfortunately, many stakeholders have little interest in going through the
exercise of writing a scope statement. Even further, while most project man-
agers do take the time to create a well-rounded scope statement, they often
archive it before the signatures are dry and never look at it again. It’s impor-
tant to keep checking back with the scope statement throughout the project to
make certain you’re delivering what the customer is expecting.

One of my favorite analogies, and I use it often with my customer base, is
the remodel story. Imagine you have hired a contractor to finish the base-
ment. The question is, do you give the contractor direction or do you let him
decide what the layout will look like? Sure, the contractor will likely have some
ideas on layout, how big the rooms should be, and where the plumbing already
exists. But what if you want two bedrooms, a three-quarter bath, and a game
room, but the contractor builds one bedroom, a full bath, and a family room
with a full bar? Not at all close to what you were thinking.

And therein lies the importance of the scope statement. It is the project blue-
print. It describes the characteristics of the finished product or service of the
project. Without it, you might build one bedroom when your stakeholder is

103Collective Wisdom from the Experts

expecting two. The scope statement helps you manage stakeholder expecta-
tions. More than once, I have been knee-deep in the project life cycle, usu-
ally after a few key deliverables are in prototype stage, and had a stakeholder
say, “I thought we were getting two bedrooms.” This is where the scope state-
ment comes to the rescue. You certainly don’t want to wield it as though it is
a weapon, but it is a great way to gently remind your stakeholders what they
agreed to back at the beginning of the project.

It’s a good idea to periodically review your scope statement with your stake-
holders. Project status meetings or steering committee meetings are a logical
place to conduct this review. Devote some time every other meeting, or at
intervals that make sense given the size and scope of your project, to reviewing
the deliverables listed in the scope statement.

If you’re conducting regular status meetings, you’re likely doing this to some
extent already. Status meetings typically address the work accomplished last
period, and the anticipated work to be completed during the next work period.
Occasionally take the time to go beyond the next work period and remind every-
one of the key deliverables that are scheduled to be delivered later in the project.

Regularly reviewing the project scope statement can increase your chances for
a successful project and keep your stakeholder’s expectations aligned with the
goals of the project.

104 97 Things Every Project Manager Should Know

Align Vision and
Expected Outcome
David Diaz Castillo, MBA, PMP
Panama City, Panama

So vlon ojare very challenging, because needs
and expectations are not always well defined. The work of a software project
manager is to make sure that the following items are in place:

•	 The main project purpose is well defined.

•	 Everybody understands why this project is being undertaken.

•	 The impact for the three Ps (people, processes, and platforms) is clear.

•	 The needs and expectations are included in the requirements documents.
Determine what items are in scope or out of scope, then communicate this
to the team.

The software project manager needs to align team members with the vision
and the expected outcomes, and master these three additional points:

1. Business view. Why is this project the solution? (What problem or
opportunity is this project going to solve, or how will this add value to
the organization?)

2. SMART view. What should the software do? (Make it Specific, Measurable,
Agreed upon, Realistic, and possible to do within the Time constraint.)

3. Subjective view. What does the end-user think the system will do?
(Capture expectations and perceptions from the end-users during the
initiating phase.)

Point #1. When coding begins, the programming team and the software
project manager focus on the functionality and the technical part of the
project, not the main reason that the organization is funding this endeavor.

105Collective Wisdom from the Experts

Future misunderstandings, pitfalls, and errors in the decisions we make hap-
pen because the team is not constantly reminded of the real business problem
to be solved. The benefits that this project should bring to the organization
are not always at the forefront. To avoid this pitfall, the project manager needs
to crystallize the purpose, assumptions, constraints, and risks for the project.

Point #2. The technical and functional objective of the project must be clear
enough for all team members to grasp, including the project sponsor. The out-
comes have to be aligned with the strategic objectives of the business area that
eventually will become the owner of the system.

Point #3. The software project manager should identify what end-users expect.
How do they think this new application is going to help them in their day-to-day
work? The project manager must be clear on these benefits and expectations and
communicate them to the development team to get its buy-in. With that clarity,
he/she can move forward to convey the advantages accurately to the end-users
and help them form a realistic vision of the end software product.

With this detailed grasp of project purpose and benefit, on-the-fly decisions
become easier. And, as the software project manager really knows what the
users expect and what the system is intended to do, he/she is able to evaluate
change control submissions more effectively. This prevents misdirection or
tangents occurring during the project execution phase.

We as project managers should discipline ourselves to truly understand
both the technical project requirements and the business value the project is
intended to provide. With this knowledge, we will be prepared to create better
software results and manage uncertainty in a professional way throughout the
project life cycle.

106 97 Things Every Project Manager Should Know

Alice Doesn’t Live
Here Anymore
Barbee Davis, MA, PHR, PMP
Omaha, Nebraska, U.S.

Cn on ong o vlotend to revolve
around the best programming language, systems architecture, operating plat-
form, or project methodology. No one seems to notice that one of our team
members, Alice, doesn’t live here anymore. Where does Alice live now, and
how will it affect our software development plans?

She may live in India, where English is often trained phonetically, perhaps by a
script. Plan to allow extra time, or use written exchanges, to give Alice the best
chance to perform her part of the development, undaunted by the language
barrier.

Alice may live in Africa. With a smaller pool of technical talent, people may be
more important than projects to her employer. Technology may be limited, so
don’t assume 24-hour email, phone, and Internet connectivity.

Perhaps Alice has a wonderful job in a developing country. If she doesn’t
respond right away on conference calls, she may be experiencing a 30-second
satellite delay between when you talk and when she hears your words. You’ll
get the same gap with her answers or comments.

School yourself in the decision-making differences you may encounter with
team members from Japan. Anticipate more respect for age and experience.
Alice’s youth may make it inappropriate or offensive for her to speak up. Japa-
nese team members may also expect group consensus before any information
from the meeting is captured in writing.

If you have many Alices in multiple remote locations, you will need to care-
fully research numerous small issues to allow your team to function smoothly:

•	 What are the union agreements where Alice works? Are her working
hours different? Can she work overtime or weekends, come in early, or
work through lunch hours or breaks?

107Collective Wisdom from the Experts

•	 When do the holidays occur in the country where Alice lives? You’ll want
to plan any important group meetings with everyone’s convenience in
mind. You wouldn’t ask an American employee to come in on Christmas
morning.

•	 What are the accounting practices in Alice’s homeland? Do your reporting
cycles coincide with payroll cycles in other places?

•	 Is there any unexpected data export control? Some places in Europe exert
tight control over data transmissions. You may be able to send informa-
tion to Alice, but can she send you data in return?

•	 Customer service practices may vary from country to country. If Alice
is customer-facing, be sure she knows your team’s service standards and
quality expectations.

•	 If you are frustrated by a lack of voice mail, consider that several developing
countries feel that it is an automated machine that takes a person’s much-
needed job. Be respectful when you find cultural differences regarding
technology.

•	 Do you always expect Alice to come in during the middle of the night
to accommodate your 9 a.m. meeting every Tuesday? Respect all team
members by looking for the least distasteful meeting times, or rotate the
unpleasant times among all locations.

We are fortunate to have the brilliant minds and insightful viewpoints of a
virtual team. Be sure to use this bounty respectfully.

108 97 Things Every Project Manager Should Know

Avoiding Contract
Disputes
Jorge Gelabert, PMP
Berlin, Connecticut, U.S.

Poj ng ho hv n as Project Management
Professionals (PMP)® are familiar with the various types of contracts. They
know that the type of contract to use depends not only on the products and
services being purchased, but also on the level of risk they and the seller are
willing to assume. What they may not always be aware of is that even the best
contract does not guarantee that disputes will not arise.

Well-defined requirements are an obvious way of avoiding those possible con-
flicts. If the contract clearly defines what is expected, both parties will agree
on what the deliverables will be. However, well-defined requirements are
not always a reality in the world of project management. Some sellers (your
sales team) may underbid a proposal with the expectation that the inevitable
changes orders from the customer will allow them to recover the profit margin
they are losing in order to get the business. Even when projects are bid well
and there is a firm, well-defined agreement as to the project scope, changes
may arise that both parties must address. These, and any number of other
unique scenarios, can become possible areas of dispute.

So what can the project manager do? Approach the project with a mindset that
the customer is a partner, not an adversary. If both the seller (you) and buyer
(your customer) are invested in the success of the project, disagreements that
arise can be easily and amicably resolved. If each side is too focused on its
own interests, small disagreements can evolve into major conflicts and derail
a project.

109Collective Wisdom from the Experts

When disagreements arise, work to resolve them in such a way that both par-
ties come out as winners. Even when the contract supports your position,
negotiate. While you may feel that you would be proven right in a court of
law, the damage to the relationship, and the obvious stalemate of the project
while the case is being resolved, will impact the ultimate success of the project.
While there may be situations when pursuing a legal option is all that is left, it
should be a last resort.

The best way to avoid possible conflicts is to be fair when negotiating the con-
tract. For example, if the contract has penalties, make sure it includes bonuses
as well. Both parties need to feel they have an equal chance to win and lose.
Even with a fixed-price contract, it may be better to renegotiate than to have
the buyers (your customers) walk away from the project because they feel they
have more to lose by completing the project than by abandoning it.

Also, beware of the bid that feels too good to be true. If your sales team is not
presenting a competitive bid, it may mean that your buyers do not fully under-
stand what is required to complete the work of the project. Once they become
aware that they are overpaying, they will likely try to renegotiate, or walk away.

110 97 Things Every Project Manager Should Know

You Get What
You Measure
Naresh Jain
Malad, Mumbai, India

I ll-non that if you measure the wrong things, you
encourage wrong behavior. Software teams suffer daily because their manag-
ers are tracking and measuring them against the wrong parameters.

For example, measuring how many hours someone works encourages team
members to clock in longer hours. Studies show that working longer hours
does not necessarily produce better results. In most cases, it actually results in
poorer work quality.

Similarly, measuring and focusing on the team’s velocity (amount of function-
ality completed by the team in a time span) encourages more work to be done
faster, but does not necessarily ensure the most important/critical work is
being chosen. Therefore, this approach does not solve the real business prob-
lem of completing software development both quickly and bug-free.

Focusing on how many bugs the testers report encourages the testers to report
more bugs, but not necessarily to report issues with maximum business impact.
If developers are measured based on how many bugs are filed against them,
testers can become their enemy. This leads to unnecessary team tensions.

In my experience, more software, done faster, does not mean successful soft-
ware. Rapid software development is good for getting feedback quickly, but
building real products needs a lot more than just development speed.

Often when I visit dysfunctional teams, it turns out that the teams were mea-
sured using the wrong parameters. Hence the team adapted and optimized
itself for those poorly chosen parameters. Lacking the understanding of the

111Collective Wisdom from the Experts

project’s purpose or vision led to team members defining their own success
criteria and measuring themselves against their own respective, disconnected,
dysfunctional parameters. Incorrect measurement does more harm than good.

Good project managers ensure that everyone on the team really understands
what success means. They help build a common vision and shared under-
standing within the team. They encourage team collaboration by building
win-win situations, so that each team member has the same focus and is work-
ing toward the common goals. They help the team identify what really needs
to be measured. The secret sauce of successful projects is in using metrics as a
means to an end and not as a deliverable in their own right.

I find if I try to measure 10 different things at once, it gets very confusing and
distracting for the team. Limiting myself to measuring two or three param-
eters at a time, however, is very effective. These two to three parameters should
be unanimously decided by the team based on current issues hurting the team,
or on risks that the team feels will impact it in the near future.

Once the issue is resolved or the risk is mitigated, the team should remove the
old checks and replace them with new items added to its metrics. A team that
does not periodically change its metrics is symptomatic of a bigger problem.

Be sure that what you are measuring is of value, and know that it may change
during the project. You get what you measure, so be sure you are measuring
the right things.

112 97 Things Every Project Manager Should Know

Don’t Fall into
the “Not Invented
Here” Syndrome
Dr. Paul Giammalvo, CDT, CCE, MScPM
Jakarta, Indonesia

Poj ngnis nothing more than a set of processes, and when
integrated and combined, these processes result in a methodology. And those
processes/methodologies have nearly unlimited application.

There are five sets or groups of processes associated with project management:

•	 Initiation. Those processes that authorize or recognize that a project
exists.

•	 Planning. Those processes that enable us to identify what needs to be
done and how to go about doing it.

•	 Executing. The actual execution of processes identified in the planning
phase to produce results.

•	 Monitoring and Controlling. Those processes where we assess whether
the project is progressing in accordance with the plan.

•	 Closing. Those processes that identify whether what we did was done
on time, within the allocated budget, and in substantial conformance to
the specifications so that the project achieved the results for which it was
undertaken.

The information technology sector has been particularly reluctant to look at
what others are doing in project management. It doesn’t appear to adapt or
adopt “best practices” from those sectors that are more advanced or mature in
order to increase the success rate of IT projects.

The two great sectors to use as benchmarks are medicine and commercial air-
craft piloting. Why? Because both medicine and commercial airline piloting
embody project management into their delivery systems. For medicine it is
each operation or procedure, and for commercial airline piloting it is each

113Collective Wisdom from the Experts

flight from point A to point B. But more importantly from the perspective of
IT, the comparative success rate in both medicine and commercial flight is
extremely enviable.

So what practices do medicine and commercial aircraft piloting have that IT
does not? First, there is the near-total authority of the doctor/pilot in mak-
ing decisions. The flip side of that is people in these positions assume total
accountability, both financial and professional. In the case of commercial
pilots, they risk their own lives if they make a mistake.

Second, neither medicine or commercial piloting accepts “average” practices.
PMI’s PMBOK® Guide states that the project management body of knowledge
represents those skills, tools, and techniques that are “generally recognized as
good practice.”

Third, project management as implemented in the fields of medicine and com-
mercial airlines is not a standalone methodology. It exists, and is successful,
largely because project management is fully and inextricably linked with asset
management (departments that are responsible for the allocation and use of
organizational assets to fund projects) and operations management (departments
that generate revenues for an organization by handling its day-to-day work).
Information technology projects cannot be successful in any organization with-
out asset management providing adequate organizational resources, and opera-
tions management, as an internal customer, having realistic expectations.

Software project managers need to be willing to look outside their own IT
world and learn what has been successful in other applications of project man-
agement, especially medicine and commercial airline piloting, which enjoy
significantly higher success rates than do IT projects.

114 97 Things Every Project Manager Should Know

Favor the Now
Over the Soon
Scott Davis
Broomfield, Colorado, U.S.

n o y vo yng ,“Exaggeration is a million times worse
than understatement.” The project management variation on this is, “Now is a
million times better than soon, and a gazillion times better than later.”

If you’re in the software development industry, you’re familiar with the “vapor-
ware” phenomenon—software that is endlessly talked about but never actually
delivered. We can plan the software. We can discuss the features it will have.
But software that you can touch, run, and interact with is a million times better
than a Word document full of requirements.

This means hurry up and write the software—now! The prototype you put
together will instantly give you feedback about usability. Worried about per-
formance? How can you optimize performance without the software?

Agile software methodologies favor now, over soon, by focusing on quick iter-
ations. Often they span no more than a week or two. The idea is to get software
written and in front of the user as quickly as possible. If users like what they
see, you have an immediate victory. More importantly, if they don’t like what
they see, you have failed fast.

A quick success is only a hundred times better than a late success, but a quick
failure is a million times better than a late failure. It gives you time to rethink,
readjust, and rewrite the software sooner rather than later. A failure one week
before the ship date can be a showstopper. A failure early in the process gets
forgotten by the time the software actually goes live.

115Collective Wisdom from the Experts

If the software language or framework that you are using doesn’t let you roll
out new features in a matter of seconds or minutes, then the tool you are using
is part of the problem. If compiling your code takes hours instead of minutes
or seconds, you will be less likely to build early and often. These friction points
in the software development put you at a distinct competitive disadvantage.
Many of the top websites that you use on a daily basis can roll out new features
in as little as 30 minutes.

They are also industry leaders because of the quality of the software they pro-
duce quickly. They test their code incessantly. Do they wait until the end of
the software development life cycle to write their unit and integration tests?
Nope. They write them now. Test-first and test-driven methodologies are “de
rigeur” in top software development shops, because if testing is important, it is
important enough to do now.

It is not that planning isn’t a crucial part of successful software projects.
Just do your planning based on modern software practices and expectations.
Methodologies that date back to a time when code was written out in long-
hand, meticulously transferred to punch cards, and then hand-carried in a
shoebox to a system administrator don’t translate well to an era where software
is easy, free, and instantaneous. We are in the era of the now, and your pro-
cesses should be adjusted accordingly.

116 97 Things Every Project Manager Should Know

Speed Is Life;
More Is Better
Matt “Boom” Daniel
Coopersburg, Pennsylvania, U.S.

“S l; Mo ”is a common rallying cry in the jet-fighter
community. Imagine the participants, and it is easy to hear, “Gotta go fast!”
Right? “Everything must be done with immense speed!” Right? “Get there
now, get away now!” Right?

There is no denying that in the daily flying life of fighter pilots, speed is a fun-
damental need. (Mav and Goose said so in the movie Top Gun, so it must be
true.)

But is it always true that speed is life and more is better?

In a classic one-on-one dogfight* engagement, it is a viable tactic to go very
slowly to minimize your turn radius. You turn in a circle with a smaller cir-
cumference, forcing your opponent to fly in a larger circle and end up in front
of your aircraft so you have a better firing position. You “live inside his circle.”
This is true control, as both aircraft are flying at the speed of a major league
fastball while executing this choreography.

Scientific studies prove the advantage of optimal, rather than excessive, speed
for specific moves, tactics, and delivery profiles. Optimal speed, not maximum
speed, is the goal. So, once specific needs or tactics are chosen, speed is only a
key metric. But more important is how you choose to use that energy (speed).

Venturing outside of the fighter-pilot world to that of business, does the first
company to launch a new technology always win? If the goal is to have a sur-
vivable, relevant product or service, then the answer is, at best, “maybe.”

* Dogfight: In aviation history, a dogfight is a style of wartime aerial combat where two opposing
forces engage in battles in the air. Emerging in World War I, dogfights between two planes were
exchanges of gunfire and accompanying avoidance maneuvers.

117Collective Wisdom from the Experts

Being the first to market (speed) may not matter at all in your organization’s
business plan. The technology world is replete with examples of first-comers
who washed out, or fell victim to too much focus on energy (speed), and not
enough on energy management (applying that speed only when it served a
business function):

•	 Communications satellites. Iridium (a global satellite-phone technol-
ogy) was outsold by easier, cheaper communication systems that became
more accessible to the average person.

•	 VCRs (Videocassette recorders). The Betamax recorder, developed
before the Video Home System (VHS), was a superior product that was
first to market. The technology became obsolete when the company
refused to cross-license its products, services, and spin-offs.

•	 PDAs (Personal digital assistants). Apple Computer’s Apple Newton
digital assistant, although early to market, was ultimately surpassed in
sales by the interactive Palm phones.

•	 TV-to-Web. WebTV was an early, innovative product that used a televi-
sion for a display rather than a computer monitor. It just never caught on.

Ask yourself, how do you as a software project manager balance speed to
release with ensuring long-term relevance? What are the tools or practices you
use to make sure that your new solution does not fall victim to obsolescence?

Do you have a “speed is life; more is better” focus? Is it a strength, or is it
a weakness? In your environment, what does speed represent? What does
energy management mean to your project team?

118 97 Things Every Project Manager Should Know

Building the Morale
on Your Team
David Bock
Reston, Virginia, U.S.

A jo ol o h o oj ng is to create a
work environment that fosters the growth of team morale. Here are some tips
to help you start that process:

•	 Give your team some control over the direction of the project. Do you
talk with your team frequently? Do you regularly seek out its input? Can
someone make a suggestion, or bring a complaint to you, and feel like you
will actively work to effect a change because of it?

•	 Defend your team against “the bureaucracy.” Every organization has its
share of rules, and one of your jobs is to apply them in context. “In con-
text” means that, when appropriate, you will defend your team.

When a corporate memo comes out with rules banning cubicle decora-
tions, will you argue with management so Bill can keep his Rubik’s cube
collection on display? Even if you lose, the team’s morale will benefit.

•	 Look for ways to improve the work environment. I knew an engineer
who worked in a cubicle next to a window. But, according to the com-
pany organizational chart, he didn’t warrant a window office. Corporate
solution? The cubicles were reconfigured so that the window in his work-
space was blocked. Rather than argue with the “furniture police,” a good
manager would be the first person to start moving those cubicle walls to
uncover that window.

•	 Make your team feel like a team. One team had a Player of the Week award
that changed hands at the team meeting each week. Russ might say, “I’m
giving Mary the team player award because she worked late Thursday
night. I was late getting her the documentation, but thanks to her efforts,
we still finished the iteration Friday morning.” The next week, Mary would
recognize another team member’s contribution and pass along the award.

119Collective Wisdom from the Experts

•	 Respect the work-life balance. It is all right to demand overtime from
people occasionally, but if you are going to take time from their lives, you
need to give some back. Your employees shouldn’t be afraid to schedule a
morning doctor’s appointment or attend a child’s afternoon recital, espe-
cially after they’ve worked late to meet a deadline.

•	 Understand how cause and effect shapes morale. When you merely try to
recreate what motivated you or others on past teams, you may be missing
the key elements. If you ask yourself, “What can I do to improve working
conditions of my team?” and actually work to make those changes, morale
will usually improve.

•	 Make sure your activities are visible. You are a team member, too, so the
team should be aware of the work you are doing for it. It is easy to distrust
a manager who is always behind a closed door, and easy to follow one who
is openly, visibly working for the good of the team.

In your organization there will be unique opportunities to improve morale.
Consciously look for them and take advantage of them. If they work, share
them with others.

120 97 Things Every Project Manager Should Know

A Project Depends
on Teamwork
Lelio Varella, PMP
Tijuca, Rio de Janeiro, Brazil

A Poj n nvo o llny n. It can be
seen as a collective effort, jointly performed by people of great diversity. Once
deployed according to their own unique skills and competencies, and properly
coordinated, team members are able to produce major results and fulfill the
expectations of the project’s stakeholders. If we look to an information tech-
nology solution development project, for example, we may identify different
participant activity and group categories:

•	 Activities. Business Processes Review, Information Technology Solutions
and Services Definition, Products and Services Development, and New
Processes and Services Activation.

•	 Groups. Client Business Area Team, Information Technology Depart-
ment Team, and Outside Service Providers Team.

Project activities are work units requiring the participation of individuals from
different groups within the organization, and eventually participants from
external organizations, such as vendors and service providers.

These groups are formed by people with different centers of knowledge and
competence who, in practice, manage and/or carry out the project activities.
The members of each group are usually involved in a set of unique activities
within the project.

To work effectively and produce a positive result in the project environment,
the allocation of responsibilities should tie directly to individuals and not to
the departments or organizations to which people belong. These responsibility
assignments should be documented in the project plan.

Depending on their own abilities, and on the nature of the activity, each indi-
vidual can act simultaneously in various roles during a project. An individual
may act as a leader in one situation and a participant in another.

121Collective Wisdom from the Experts

The overall participation and contribution to the project results from each
group is measured by the collective sets of activities the group’s members com-
plete. Whereas individual responsibilities may be shown in a responsibility
matrix, a joint vision of the activities and overall responsibilities of each group
participating in the project is necessary as well.

In every project, there are diversities involved, nowhere more obviously than in
software development projects. Teamwork depends on two key principles that
need to coexist and work together to allow success: delegation and responsibility.

Delegation should follow the pattern documented in the project’s work break-
down structure. Split the work to be done. Then split the assignments to get
the work done accordingly. This is the only viable way for human beings to
understand, execute, and manage really big projects.

To delegate you need to take into consideration the adequate combination of
technical and managerial competencies required for each task. Once you’ve
delegated, do not interfere. As the software project manager, you are needed
to monitor, give support, and ask about results. In doing so, you will provide
motivation, earn respect, and foster team member “response-ability.”

“Response-ability” includes taking full responsibility. Remember this when
delegating, as well as when accepting assignments. Match the person’s skills
and abilities to the task.

Once leadership, delegation, and responsibility are in place, each supports the
other. Better results are almost guaranteed. And this leads to project success.

122 97 Things Every Project Manager Should Know

Serve Your Team
Karen Gillison
Leesburg, Virginia, U.S.

ong o I h o n gl* hoology,I worked with the
best project manager I ever met. Looking back, he was using prototype tech-
niques from the agile approach. He viewed his job as a facilitator for the team.
He saw his day-to-day duties as identifying and removing obstacles, and pro-
viding team resources. He was doing things that increase team velocity.†

There were no multihour meetings where you fight to stay awake until it’s your
turn to provide a status update—the ones where you wish you could escape
and actually write some code, so you will have some progress to report for the
next meeting. Instead, we started each project with a kick-off meeting, invit-
ing people with job functions from requirements to testing. The whole team
met to get a shared vision and understanding of the project. Then, every few
days, the project manager would come by for what we called “doorway” status
meetings. Each teammate gave a brief update on what was complete, what was
in progress, and what issues were critical.

This project manager tracked project status in a visual, obvious way. He had a
master spreadsheet for all the assignments, listing who should complete them.
He updated this document regularly, and posted a large printout outside his
doorway. Having information posted where we could all see it was great for
team communication. An added bonus was that it was also visible to upper-
level members of management, and provided them with a self-service way of
getting status updates whenever they wanted.

* Agile: An evolving methodology that promotes a software project management process that
encourages shorter planning phases, more adaptability to change, teamwork, unit testing, personal
accountability, and frequent customer involvement.

†Velocity: A term used in agile software development to show the rate of progress for a team or a
team member, i.e., how much an individual programmer will be able to produce in a given time
period.

123Collective Wisdom from the Experts

A few words about “ego.” My favorite project manager had the maturity and
self-discipline to keep his ego out of the way. Even though he was the boss,
he didn’t abuse his power, change tasks, or shift direction based on a whim.
His actions were never detrimental to team productivity, since his main goal
was to facilitate the team’s progress toward excellence.

By controlling his ego, he and the team achieved amazing results with satisfied
end-users and upper management, all while meeting budget and time con-
straints. Because this management style was so effective, there was a noticeable
absence of all-nighters, yelling, and general tension at the end of the project.
In less mature corporate environments, a project manager and a smoothly
performing team may not be recognized, because every project will seem
easy. Even without acknowledgment, satisfaction came to our team members
through doing right by the company, the end-users, and one another.

Today, an agile approach can provide new tools to make you a more effec-
tive project manager. I suggest you familiarize yourself with them, even if you
aren’t fortunate enough to work for an organization that has adopted these
methodologies. Instead, begin integrating these tools into your traditional
project management toolbox. Realize that one of the key roles of the project
manager is to increase the team’s velocity, and to work towards creating a team
environment with few inhibitors to productivity.

124 97 Things Every Project Manager Should Know

The Fallacy of the
Big Round Ball
David Wood
Fredericksburg, Virginia, U.S.

P ll,manufactured to be perfectly spherical, perfectly smooth.
The only design requirement for this ball is that its diameter be exact when
measured at any point. This ball is polished, and polished, and polished some
more, until it is perfect. Once no defects can be found, all work on the ball
stops. It may not be changed. It is perfection.

Does that sound like any software project you have ever worked on? I didn’t
think so. Software just doesn’t work like that.

Software changes constantly throughout its life cycle. Design decisions, so
often based on initial requirements, suddenly seem restrictive when new
requirements emerge. Hacks to adapt the code to new requirements violate the
design and make the code progressively less maintainable. The ball, however
round it was intended to be, becomes battered and bruised.

The Fallacy of the Big Round Ball is the delusion that software system
requirements don’t change appreciably after delivery or, worse, that they can
be controlled.

Early software engineering researchers believed that if requirements could be
fully understood before coding began, there would be no maintenance cri-
sis. Some took note of problems created by post-delivery changes to require-
ments and labeled them evil; static requirements yielded more stable systems.
Some sought to limit a user’s right to request changes (e.g., “Reduce the need
for change maintenance by planning for and controlling user enhancements”
was one of a list of “solutions to maintenance” suggested by James Martin and
Carma McClure in 1983).

125Collective Wisdom from the Experts

Unfortunately, such strict controls have the unintended side effect of making a
software system less useful to its end-users. Such decisions, often based upon
short-term economics, were greatly responsible for the alienation of infor-
mation technology departments from their user bases in the 1990s and the
subsequent development of smaller, often duplicate, software systems within
business units during that period.

The sands of requirements constantly shift under our feet. Requirements for
software projects change for some very good, and very simple, reasons. First,
they can. Software is a malleable medium. It is generally much more cost effec-
tive to change software than to make equivalent changes to hardware.

Second, users of software most often exist within competitive environments.
They compete with one another and with other organizations. As they struggle
to compete, they turn to the most malleable parts of their systems for new
advantages. Software’s flexibility is enticing.

If we give up on the Fallacy of the Big Round Ball, we can become more com-
fortable with changing requirements and see software malleability for what it
is: a huge advantage that we control. Requirements will change. We will have
to maintain our code. We will have to inject new requirements that will lead to
violations of our designs. That is a feature, as the saying goes, not a bug.

We can design adaptable software, but only if we adapt our thinking first.
Adaptability, flexibility of design, and readiness for change should be the
cornerstones of any new software project.

126 97 Things Every Project Manager Should Know

Responding
to a Crisis
James Graham, PMP
Ta’ l-Ibrag, Malta

A 3:03 .. on ny 15, 2009, Northwest Airlines Flight 1549 lifted off
the runway at New York’s LaGuardia airport for the short flight to Charlotte,
North Carolina.

The Airbus 320, commanded by Captain Chesley Sullenburger III, with 5 crew
and 150 passengers onboard, encountered a flock of birds over Brooklyn, New
York. Both engines suffered massive damage, causing a loss of thrust, or power.

Listening to the air-traffic audio tapes, two things stand out. First, one can
almost hear Sullenburger’s brain working as he quickly realizes that the
unthinkable has happened. His years of experience and training kick in. Sec-
ond, one can hear the equally rapid reaction of the air-traffic controller as he
continually suggests options to help, in a nonintrusive way.

Over the next few minutes, Sullenburger realizes that his aircraft does not have
the potential to reach LaGuardia, Newark, or nearby Teterboro Airport safely,
and decides to set down on the Hudson River. It must have been tempting to
try to “stretch” the glide to terra firma, but this professional captain weighed
the risks of all of his options and chose the one that saw all on board safe.

This is an excellent example of crisis management in action.

Passengers will be comforted to know that airline pilots discuss their actions
before every important phase of flight and use checklists that are developed to
help them manage both usual and unusual events. This means that they are
clear on the vital actions they will take, as a team, during the flight.

This crisis required the crew to work as a team; while Sullenberger was flying
the aircraft, First Officer Jeffrey Skyles was attempting to restart the engines to
allow a runway landing, and the flight attendants were preparing the passen-
gers to survive the ditching. Each member of the Northwest crew played his/
her part in ensuring a good outcome.

127Collective Wisdom from the Experts

When thinking about your software project, consider whether the following
conditions are true for your team:

•	 We have regular team briefings and increase the intensity of these before
critical phases (e.g., testing).

•	 We have a risk register with appropriate responses identified.

•	 Our risk register is regularly updated and current.

•	 Our specialists on the team are trained to the appropriate level.

•	 We have a crisis management plan, with key responsibilities assigned.

•	 Our crisis management plan has a clear internal and external communica-
tions strategy/plan.

If your answers are affirmative, great! You won’t have trouble sleeping at night.
But if not, then some immediate thinking and planning would be sensible.

Establishing clear responsibilities for dealing with crises is a good start. That
is a task that can be done in advance, as can the preparation of checklists, pro-
cesses, and procedures for each critical project phase. These can be incorpo-
rated in the project management plan and its subsidiaries, and communicated
so that all the team is clear.

Flight 1549 teaches that a capable team, with well-defined roles, can manage
the most challenging crisis successfully.

128 97 Things Every Project Manager Should Know

Know Your
Integration Points
Monte Davis, MCSE
Omaha, Nebraska, U.S.

Th hh o vy y no,development engi-
neer, and software project manager is systems integration. No matter how
promising a newly created application, a freshly purchased software package,
or a long-awaited, new-feature-laden upgrade, the business value rests in get-
ting it to work smoothly within the existing company system.

If you are an experienced project manager, but new to the information tech-
nology arena, don’t let the term integration confuse you. Integration simply
means linking together all of your various software programs so that all of
the subsystems work together to give you more functionality than you could
gain from any one application on its own. For example, you want data entry to
occur only once and the information to flow smoothly to sales representatives,
to accounts payable and receivable, and into other systems that allow various
employees to pull up the information they want, regardless of the software
interface they open.

Unfortunately, it’s often a tense time when new software upgrades are required.
They may introduce trouble into a smoothly running process flow. Recently,
we had a situation where an upgrade was scheduled for one of our systems.
During the upgrade process, the vendor encountered unexpected errors.

There were several views (preprogrammed screens configured to show spe-
cific segments of the database information) that were causing the upgrade to
fail. The outside vendor doing our upgrade didn’t know what the views were
being used for, so it deleted them. The rest of the upgrade appeared smooth.

Several days later, a service desk ticket was submitted for a completely separate
system that was having issues. Users weren’t seeing any new customer data
come across from the system that had been upgraded the previous weekend.

129Collective Wisdom from the Experts

As it turns out, the views that had been deleted were the source for the missing
customer data.

Since the source views were deleted to complete the upgrade, the synchroniza-
tion process between the systems was broken. We had to spend hours trouble-
shooting the system before we came to the conclusion that the source views
were missing. Then we had to recreate the deleted views, by hand, in order to
get the two systems talking again.

Most IT departments have diagrams showing how the various components of
their hardware systems are connected. But we’ve found it is equally helpful to
have a visual representation of how data flows throughout our organization.
Show the crucial junctures where data from one application flows into other
programs.

We learned that in situations like this, it helps to have good documentation
illustrating where your systems are reliant on one another. When we initially
met with the vendor engaged to manage our upgrades, we could have shared
our business flow diagram.

The initial upgrade problems could have been solved in another way, rather
than deleting crucial views that fed other systems. We could have saved our-
selves downtime and administrator stress, and come out of the upgrade process
confident that we didn’t have to live in fear that other, hidden problems had
been introduced to the system.

130 97 Things Every Project Manager Should Know

Aggressively Promote
Communication in
Distributed Projects
Anupam Kundu
New York, New York, U.S.

D oj nl hllngsince the project
team members are not colocated (not physically together). As a result, the fol-
lowing issues can become impediments to the success of a project:

•	 Lack of trust between the geographically dispersed teams.

•	 Unwieldy amounts of time spent on communication.

•	 Inability to foster a “one-team” feeling due to cultural differences.

•	 Lack of participation from team members during common meetings.

•	 Lack of identity with the project team, as team members in different geogra-
phies may speak different languages and/or have different project practices.

These stumbling blocks have become nightmares for many software project
managers facilitating distributed projects. Here are few to-dos to add to your
communication arsenal if you are assigned to manage a distributed project:

•	 Find and document the overlap time between different geographically
distributed teams (don’t forget Daylight Savings Time).

•	 Publish the instant messaging (IM) addresses of all the team members
(and the best time to reach them).

•	 Make sure that each key stakeholder has all conference call access details
(web and telephone).

•	 Gather and share the vacation details for different teams on a shared calendar.

•	 Publish a schedule of daily stand-up meeting between geographically dis-
persed teams. Stand-up meetings are better than sit-down ones; attendees
focus because no one wants to stand for a long time.

•	 Publish the name and a headshot (photo) of each team member. Identify
a back-up contact person for each key role.

131Collective Wisdom from the Experts

•	 Set up a common location for sharing project artifacts among the teams
(documents/reports/templates).

Besides enhancing your communication strategy, there are logistics issues that
need to be addressed to promote superior communication among distributed
teams:

•	 Invest in high-quality speakerphones for all locations. When participating
in conference calls, assurances of stable phone connectivity between dif-
ferent teams will go a long way toward building camaraderie.

•	 Place the phone in a spacious room equipped with a large table, as you want
to seat people comfortably and perhaps provide food for those participants
meeting at unusual hours. Add whiteboards so notes from phone conversa-
tions can be jotted down quickly for everyone in the room to view.

•	 Budget funds for a few team members to travel to other team sites, perhaps
during the initiation phase or quality assurance processes.

•	 Create a project dashboard (use any collaboration tool) for teams to com-
municate their issues. Share these dashboard images among the teams,
whether they use online tools or only have the technology for digital
photo sharing.

•	 Publish the overall goals and targets of the project at a common location
for everyone to see, even telecommuters.

•	 Arrange presentations by business sponsors and insist that key team
members from every location participate in these presentations.

As virtual and distributed teams become more common, you can increase
your chances of success with innovative communication techniques.

132 97 Things Every Project Manager Should Know

Start with the
End in Mind
Luis E. Torres, PMP
San Rafael, Alajuela, Costa Rica

Conglon! You’re the project manager of that dream software proj-
ect that everyone wanted to manage. All the company’s expectations are placed
on your shoulders. Your instinct tells you to run to your desk and start draft-
ing the project schedule, right? Well, there are a number of things to do first
to increase the chances of delivering a successful project. One of those things
would be “start with the end in mind.”

First, take the statement of work (SOW), the contract, or any documentation
that would tell you what the customer wants and needs. Find the difference
between “wants” and “needs” (I want an SUV, but what I need is a smaller
vehicle with good gas mileage). Now you’re in a better position to combine
both and answer questions like “what are we trying to accomplish?”, “what
would make this project a success for the customer, my company, and for me?”,
and “what would it take to achieve that success?”

There’s a lot more to the answer of this last question than just “a reasonable
profit.” You want the customer to come back to you, you want the project team
members to want to work with you again, and you want to become the beacon
of reference-ability.

The right attitude and the right people-management skills are paramount to
your success as a project manager. Call a kick-off meeting with your project
team members and review the SOW to gain a common understanding of what
you must deliver.

133Collective Wisdom from the Experts

Next, define the scope of the project and create the work breakdown structure.
Identify the quality parameters you must satisfy. Develop the schedule. Figure
out how much money you will need. These elements (scope, quality, duration,
and cost) will be the basic ones you should monitor and control, and are the
cornerstones of your project plan.

Once you break down your project into manageable pieces, you must identify
what characteristics the final product must have to satisfy the project’s quality
requirements. After you have properly sized your project (scope) and noted
what “rules” must be complied with (quality), you will be in a better position
to determine how long it will take you to finish it.

To find out how much time you will need to complete the project, you need to
determine the duration of each individual task, the dependencies among each
of those tasks, the specific constraints, and the resources available to you. Cost
comes last in this, since it is usually a function of the work you need to do, and
the time and resources you will need to complete that work. For example, if
you hire a consultant to perform a specific task, it will not cost you the same
amount if that individual is scheduled to work for one week than it will if he or
she will be working on your project for, let’s say, 10 months. Finally, consider
procurement, communications, and human resources.

By starting with the end in mind, you have a much better chance to be successful.

134 97 Things Every Project Manager Should Know

Clear Terms, Long
Friendship!
Matteo Becchi, PMP
Arlington, Virginia, U.S.

Th l o h o n ol Iln yng: Patti chiari,
amicizia lunga, which means “Clear terms equal long friendship.”

I think this mantra applies to many aspects of project management discipline.
On a broader, methodological level, this saying summarizes in my mind the
idea behind scope statements, setting goals and deliverables, and creating proj-
ect definition documents. Really, all project artifacts are geared toward stating
upfront the terms and goals the project team is setting out to accomplish.

Now take that concept to the 50,000 foot- (or 15,000-meter) view. Look at the
initiation and planning phases of the project life cycle across the nine knowledge
areas of the PMBOK® Guide, from developing the project charter, scope, work
breakdown structure (WBS), schedule, cost estimates, to quality/HR/communica-
tion and procurement plans.

Each of these activities underlines the heavy focus we dedicate to planning
upfront and communicating the plan to all stakeholders to make sure every-
one is on the same page. These are basically measures to ensure smooth sailing
on the journey that is the project life cycle.

Second, on the tactical level, when running meetings make sure you build, or
simply state and set, clear project meeting guidelines and expectations with
your team, such as:

•	 There will be a specific agenda and a required attendees list prepared
ahead of time. With the high salary rates of good software developers, you
can quickly go over budget if you waste coding time in meetings.

•	 Agree that each participant will prepare by gathering information, talking
to outside experts, reading relevant publications or research, and consult-
ing old notes or company records, as appropriate. A second meeting with
expensive personnel because one teammate did not prepare is inexcusable.

135Collective Wisdom from the Experts

•	 Arrive at meetings early if you need to plug in a laptop, set up projection
equipment, or hook up audio devices for your part of the presentation. If
not, come a few minutes early to find a chair, get coffee, and greet other
team members.

•	 Set a “policy” of no communication devices during meetings (BlackBerries,
laptops, and cell phones). If you’ve ever tried to speak while your tech-
nically adept software developers text or play games, you know that the
programmers are tuning you out.

•	 Agree to respect other project team members by refraining from run-
ning sidebar conversations, interrupting, or talking over someone who is
speaking.

Third, create clear contracts with your customers, vendors, and subcontrac-
tors. The sales division will focus only on the final product to be delivered and
the final price your organization will receive. Be sure it also includes specifics
of how changes will be requested and approved, and what the charge for them
will be.

Try to set a process for how often and in what format the customer expects
to be contacted regarding your project. Will your customers be available for
questions? Will they be willing to provide end-users to test software features
as the development progresses?

Clear terms equal long friendships—no matter where in the project environ-
ment you look.

136 97 Things Every Project Manager Should Know

The Best Estimators:
Those Who Do
the Work
Joe Zenevitch
New York, New York, U.S.

v yo n on ojwhere one person creates all the estimates
for the work to be done? Has this been a successful approach? My guess is,
probably not.

There are three major problems with this approach:

•	 Unless you are lucky, the developers on the team will not be at the same
skill level as the person creating the estimates. So, while the estimates
might be accurate if the lead architect were doing all the work, more than
likely the developer’s pace will vary.

•	 The risk that one person estimating for the entire team will be incorrect is
pretty high. The more people involved in estimating, the better.

•	 Developers are going to be handed an estimate they must meet. Rarely
have I seen a developer who is happy with this approach.

The worst infraction is when you, as the software project manager, decide you
are qualified to provide the estimates for the team. You may think that since
you are a former developer you can adequately choose the estimates. Even if
you are still actively doing development, think again. The same issues apply as
with the lead architect scenario described above, but the longer it’s been since
you’ve done active development, the worse your estimates are going to be. And
don’t even think about estimating if you are leading a team using a technology
with which you are unfamiliar.

On our projects, we do group estimation using a wideband-delphi approach.
We start by having our business analyst describe the requirements for a feature,
the development team listens, and then team members ask clarifying questions.

137Collective Wisdom from the Experts

Once they are ready to give their initial estimate, they each write their indi-
vidual figure on a card. When everyone has finished, on the count of three
they all hold up their cards.

Now we see how they compare. If they are very close, we go with the more con-
servative number. If there is a wide discrepancy, we ask the developers to talk
about the assumptions that went into their estimate. After more discussion, we
ask them to estimate again. What happens most frequently is that the estimates
converge to a single number as the developers gain a common understanding
and agreement on what will be required to complete the feature.

This approach is advantageous because:

•	 All of the team is involved in coming up with the estimates and all varying
perspectives are shared. Often team members are all of one mind and can
get to a shared estimate quickly.

•	 Later, when actual coding begins, developers have all been exposed to the
thought process that went into the estimates, making it less necessary that
only certain people can work on any single feature.

•	 By having the team “own” the estimate, there is less chance of backlash.
Their estimate may still be wrong, but team members will be less confron-
tational about it and more cooperative in coming to a revised estimate.

Remember, the best estimators are those who will do the work.

138 97 Things Every Project Manager Should Know

Communicating
Is Key
Gennady Mironov, CPM
Toronto, Ontario, Canada

Th o l nolg the project manager in any industry
should have is how to be a good communicator. The person may have many
different certifications and a list of titles and accreditations after his/her name,
but without the basic knowledge of how to collaborate with others, the work
of the project cannot be accomplished properly.

I strongly believe that when starting a new project, the good project manager
should meet in person with all of the stakeholders. Especially the client. The
PM should introduce him-/herself and discuss the project goals and all the
critical issues. If the stakeholders, client, and even the project team are not
located on different continents, meeting in person should not be a big prob-
lem, even during an economic recession.

We say in Russia that “it’s better to see it one time than to hear it a hundred times.”
From my own project management experience working on multimillion-dollar
projects, I’ve found I could easily solve problems with my clients within half a
day by visiting them in person.

On one project, we had a problem when our contractor was delaying the proj-
ect schedule by not supplying us with the required wireless base station. The
problem was that the contractor had outsourced this part of the project to its
own subcontractor, who was late with the power supply systems. Although
we spent weeks of calling and sending numerous emails back and fourth, we
could not solve this problem.

139Collective Wisdom from the Experts

Finally, I chose to meet personally with our contractor, explained the details of
the issue, offered some possible solutions, and we were able to get our needed
equipment. In most cases, the customer is on your side and ready to support
you if you are willing to listen and help come up with a reasonable solution.

Another time, one of our clients insisted on a very short project schedule. He
wanted to shorten the production cycle of the equipment at the end of the
year, when all the factories were working at 100% capacity to close as many
purchase orders as possible. We could not accept this, because it was twice as
short as the standard project period.

Again, I organized a three-party meeting between our company, the client,
and the vendor. We freely proposed the shortest, most realistic schedule, and
explained in detail why we couldn’t shorten it more. After finishing a specially
organized inventory to discover the number of items needed for the project
we already had in stock, we took some risk and accepted the customer’s order
without even receiving the order confirmation from him.

We closed the project successfully, two days ahead of that very tight schedule.
Our client was very happy, and at the beginning of the new year offered us
another unexpected project for another $2 million. We met schedule, scope,
budget, and quality requirements, and in this case earned extra profit for the
organization as a result of the project.

Software projects rest on person-to-person communication.

140 97 Things Every Project Manager Should Know

A Project Is the
Pursuit of a
Solution
Cynthia A. Berg, PhD (ABD), PMP
Glendale, Arizona, U.S.

Aho Shn Covy , “gn h h n n n.” And
what is a project, except the pursuit of an end solution? The best way to con-
ceptualize the end of a software project is to create a work breakdown struc-
ture (WBS). The WBS is a hierarchical view, which shows the entire scope of
the project broken down into deliverables,* much like an organizational chart
shows company divisions broken into departments and then work teams. The
deliverables are then divided into smaller and smaller components until they
get to the work package† level.

Include the team, sponsors, and other stakeholders when creating a WBS. This
ensures that the work of the project is fully defined and represents the needs
of all of the participants. Why include the team? Well, who knows the work
that needs to be done better than the project team members who will actually
do those tasks? Projects are doomed to fail when the project manager assumes
that he/she alone knows how to list every facet of the work of the project.

While creating a WBS, the team has an opportunity to challenge the norms
of “how we’ve always done it.” Plus, team members are formulating a shared
opinion on what constitutes the work of the project. This method ensures that
they will have more buy-in for the effort. After all, it’s always more interesting
to work on a project you helped to design.

How small should the activities of the WBS be broken down? That’s a trick
question. There are no activities shown in the WBS, since it is only divided to
the work package level. Once that work package is assigned to the department,
group, vendor, or subcontractor who will complete it, it can be broken down

* Deliverable: A product, result, or capability to perform a service that is created through the work of a
project.

†Work package: The smallest portion of a deliverable, including activities and schedule milestones.
The goal is to be able to assign it to one person, group, or vendor.

141Collective Wisdom from the Experts

further into the activities and milestones necessary to ensure that it is done
efficiently and with quality processes. Each assignee for a work package, the
lowest level of work, should create his or her own smaller project plan portion
that will flow back into the master schedule.

The WBS then becomes the backbone for all other planning, executing, moni-
toring, and controlling functions within the project. It also serves as a suc-
cinct communication tool for those both internal and external to the project.
A graphic representation of a WBS is a picture of the project solution. Once
that picture is completed, the detailed planning, scheduling, and budgeting
can begin. How can you plan, budget, and schedule before you have clearly
defined the work of the project?

The WBS is also invaluable as a brainstorming tool. With a graphic representa-
tion that displays the entirety of the project, it’s easy to spot omissions, redun-
dancies, or fertile pockets of work that could easily be enhanced to leverage
the value of the project. To identify potential risks (both internal and external),
look at each portion of the WBS.

A little time up front to get a clear work breakdown structure that is prepared,
understood, and agreed upon among all stakeholders is a recipe for project
excellence.

142 97 Things Every Project Manager Should Know

It’s the People,
Stupid
Adrian Wible
New York, New York, U.S.

v lo gh o h that the members of your project team are
human beings, with aspirations, strengths, constraints, and weaknesses. Your
project’s success hinges more on team members’ attitudes and aptitudes than
it does on your Gantt chart wizardry and project tracking prowess. Feel free to
manage the project, but don’t forget to lead the team.

Many of us manage projects in a matrix environment with team members
reporting both to us and to a department manager. We do not have human
resources (HR) hiring/firing/evaluation responsibility for them. However,
don’t abdicate responsibility for the care and feeding of the people on the team
to managers in the HR or functional hierarchy.

Many of those managers get promoted based on technical knowledge of
human resources or their departments, not on their ability to inspire people.
Your project’s success depends on your ability to lead. There are many books
available on leadership. Read voraciously.

Everyone on your team wants to contribute, learn, and achieve. It may be chal-
lenging at times to dig deeply enough to find this desire in some team mem-
bers, but it’s what makes software project management challenging and fun.

Hold one-on-one conversations with your team members regularly. Deter-
mine what their issues are, ask them for ideas, and give them a voice in the
project. Take their input seriously and act on it.

Ask your team members what they want to be when they grow up. Seriously.
We all have career aspirations. Be the one mentor who cares about their
careers. You’ll be amazed at how powerful this can be.

143Collective Wisdom from the Experts

Be open, honest, and direct with team members. Provide feedback on a regular
basis, not just at review time. Focus your feedback on the behavior, not the
person. Again, management literature abounds. Study.

When you have a performance issue with a team member, apply the CRAM
model: Constraints, Resources, Aptitude, and Motivation. Project managers
frequently diagnose poor performance as a motivation problem. The CRAM
model suggests that motivation is the last issue to consider. A team member
may be experiencing constraints in his life that limit his effectiveness. Examples
include getting divorced or married, having kids, fighting addiction issues, etc.

Team members may not have the resources necessary to contribute at their
highest level. Examples include no quality assurance (QA) test environment,
or ancient hardware. Perhaps budget constraints limit the ability to estab-
lish testing environments or buy licenses for necessary software. Perhaps the
domain expertise (business analyst, customer, end-user) is not accessible.

Your team member may not be cut out for the role he/she fills. He may not have the
programming aptitude necessary for this project. If so, find another project role,
if possible. Alternatively, find another team where he can leverage his strengths.

Motivation is the last lever to jiggle when a team member has performance
issues. It should only be considered once the constraints, resources, and apti-
tude problems have been addressed.

Be a leader and connect with the individual human beings who comprise your
team. The results may surprise you.

144 97 Things Every Project Manager Should Know

Documents Are a
Means, Not an End
Patrick Kua
London, UK

Enho on , “Pln ohl. Planning is essen-
tial.” Successful project managers understand how to reap the benefits from
planning without the overhead of meticulously updating their plans in minute
detail. They actively use documents to help spark meaningful conversations,
not as the replacement for all communication methods, or worse yet, as a way
of pointing out when people breach an agreement.

Planning and tracking will remain essential activities for a project manager,
though always framed in the context of achieving a particular goal. Many
organizations (incorrectly) measure project managers on how well they stick
to a plan, or how thoroughly a particular set of documents has been com-
pleted, distributed, and archived.

In organizations that misunderstand planning, project managers are asked,
“How accurately did you meet the plan?” Beware of enterprises that ask this
micromanagement-centered question instead of the more important ques-
tion, “Did you deliver the most value in the desired timeframe?” Value may be
judged as achieving the right goal within a given budget, delighting customers,
or exceeding expectations. With the wrong yardstick in hand, sometimes it’s
all too easy to forget what the end goal truly is intended to be.

Focusing on just developing plans and the perfect set of documents creates
a false sense of progress and accomplishment. It implies that the execution
of the plan is the easy part and that the plans are accurate, both of which are
hardly ever the case.

145Collective Wisdom from the Experts

I have seen project managers try to force everyone participating in the project
to keep to the activities and schedule recorded in the original plan. They fail to
realize that, as they recognize changing conditions, it would be more useful to
lead the team in replanning activities based on the new circumstances.

Plans and documents contain essential information for a business to meet its
goals. However, the plans and documents by themselves are actually quite use-
less. They need people to act upon the results they highlight and for someone
to convey the information they contain to other parties who would then ben-
efit from the knowledge.

Therefore, it is always important to consider what is the right level of informa-
tion to be passed on and what is the best method for delivering the information
to other parties concerned with the outcome of this project. Documents are
often the poorest choices to convey important data. The richest level of com-
munication is face-to-face.

Project managers also have the unenviable job of maintaining the delicate bal-
ance between the overhead need to meet traceability or auditing requirements
and other non-document-centric activities that ultimately add value to a project.

Successful project managers do just enough planning, capture just enough
detail, realize that issues will invariably arise as the project progresses, and
recognize when plans need to change because of new or unanticipated needs.
They remember that the documents from the planning process are the means
to a well-run project, not an end in and of themselves.

146 97 Things Every Project Manager Should Know

Can Earned Value
and Velocity Coexist
on Reports?
Barbee Davis, MA, PHR, PMP
Omaha, Nebraska, U.S.

So vlo nngly nthat a more agile,
flexible approach to creating software is the best way to produce high-quality,
working features that solve customer problems and provide business value.
However, project management offices (PMOs) are continuing to develop pro-
cedures and train project managers on more traditional approaches that work
successfully in many non–information technology areas of the corporation.

Is there a way to blend the reporting between the two factions, so that upper
management can have matching metrics from both areas? Yes. Sort of.

If you are new to earned value, it is a numeric tracking of progress and the
business value of that progress on a weekly, monthly, or quarterly basis. In
an over-simplistic explanation, ignoring the cost factors, the project manager
(and other stakeholders) define requirements and estimate the amount of time
it will take to do the work of the project. These estimates are converted into a
schedule.

Let’s say the reporting time period was one week and the project team esti-
mated it could do 40 predefined tasks in that week. Friday afternoon, the team
reports its actual progress. If it got all the tasks finished in those 40 hours, it
“earned” 40 hours worth of value (EV). It had estimated, or planned, 40 hours’
worth of value (PV). EV–PV=SV, or schedule variance. In this case, the team
had zero schedule variance.

However, if the team got behind, the schedule would be behind and other
workers down the line would need to be alerted. If the team finished early,

147Collective Wisdom from the Experts

the original estimates might be excessive, and incoming materials or other
project participants would need to know that their tasks may start earlier than
anticipated. Remember, the scope (work) of the project has already been set.

The agile term velocity means measuring the productivity of a developer. It is
used to allow that person to undertake an estimated amount of work for an
upcoming week, not to exceed the amount of work s/he completed last week.
However, since this developer is only being compared to himself and his last
week’s choices, rather than a long-term schedule, there is no need to resched-
ule the work of others. Further, the tasks for this week may be easier, have
fewer bugs, or be more familiar to the programmer.

In the software development project, the functionality of the end product has
not been set in stone. So if the velocity isn’t as fast as originally estimated, the
scope (amount of features delivered) can shrink.

The software project manager who is rolling reports from the software devel-
opment project in with marketing, manufacturing, and training issues needs
a reporting metric. The simplest approach is to give information technology
a block of time (and a corresponding payroll amount) to work on the soft-
ware. On the reports, show five weeks of time, for example. When your IT
team submits weekly software reports, have it also submit the features/stories
completed for you to convert to task names and enter into the report after the
fact. Now those tasks can be updated to show that they are 100% complete as
planned. This allows traditional reports to show agile progress.

148 97 Things Every Project Manager Should Know

Scope Change
Happens; Get
Used to It
Pavel Simsa, PMP
Bellevue, Washington, U.S.

I h on hng that distinguishes a software development project
from other project types, it is how, inevitably, scope changes occur. Not that it
never happens in other places, but I can’t think of another industry with such
a constantly fluctuating scope.

You know projects are governed by the triple constraint: cost, time, and scope:

•	 Cost. If your project is in trouble, throwing in extra money or resources
rarely helps. If you double the number of diggers, you’ll probably get your
trench dug in just slightly more than half the time. But if you double the
number of software developers, hoping to get the project back on track,
it will probably do more harm than good. You will create huge confusion
over who owns what code and how things need to be done. So cost needs
to stay the same.

•	 Time. There’s always “The Date.” It is not the delivery date indicated in
your original schedule. Nobody officially mentions it out loud, but if
you are developing a big security product that is scheduled to release in
November, there is a likely chance you will get to keep your job even if
your delivery slips until January. Secretly, the team knows “The Date” is
February, for example, “at the time of the international Black Hat secu-
rity conference where new releases are announced.” You have some flex-
ibility surrounding your delivery time, but only a small amount. Time
is constrained.

•	 Scope. What remains to change is the scope. Oddly enough, scope is one
of the most flexible constraints, especially when developing commercial
software, rather than software built and customized for a specific customer.
The reason is simple. Every new software product has “must have” and
“nice to have” features and functionality. The “nice to have” features typi-
cally outnumber the “must have” features several times over.

149Collective Wisdom from the Experts

Fortunately, the “nice to have” items are also the easiest to eliminate. If you
are building a skyscraper, you can’t announce in the middle of the project, “In
order to get this project back on track, we’ll only build 40 stories on this build-
ing, rather than the 60 stories the architectural plans show. We can add the
other 20 later, when we have the time.”

With software, it’s relatively easy to say, “Change of plans—we’ll support only
two operating systems in Release One. Later, we can add the other two we
originally planned to support.”

It’s not an ideal solution, so what can be done to avoid it? Honestly speaking,
probably nothing. It’s the nature of software development projects. However,
what you can do is to plan your scope concretely. Identify the “nice to have”
features and their dependencies from the beginning. The dependencies are
important. Removing a “nice to have” feature may otherwise also change the
development architectures linked to a “must have.”

If you plan possible scope reductions from the beginning, it will make your
decision about what to cut and how to cut it easier, should it become necessary.

150 97 Things Every Project Manager Should Know

Buying
Ready-Made
Software
Ernani Marques da Silva, MBA, PMP, PgMP
Mairipora, Sao Paulo, Brazil

Cnly, vy oon n lto buy software that is ready-
made—ready to be tested, implemented, and used out of the box. Why? Such
software allows organizations to leverage their efficiency and optimize their
effectiveness by cutting time spent in the developmental and implementation
phases. In this kind of purchase, you are not only buying the software, but the
know-how of the company that wrote the software.

Of course, each organization has its own procedures, policies, and legacy soft-
ware (e.g., accounting systems, security software, etc.). Therefore, new software
often has to be customized in order to support the company policies and pro-
cedures, and to integrate the programs with previously installed legacy systems.
In many cases, the vendor will capture the knowledge for that customization
during the presales process.

This is the point where the major problems may arise. Even if you follow a very
detailed procurement process, it is very complicated to determine whether cer-
tain functionalities (e.g., formulas, data entry screens, integration with legacy
software, etc.) inherent in the new application will work as business/product
area requirements intended. Once the procurement process is complete, the
contract is signed, and the project plan is approved and in implementation,
issues can pop up during the testing phase. The troubles can be related to the
customization or, in the worst-case scenario, related to the functionality that
the software was assumed to have based on the demo.

It is very important to follow specific steps before the contract is signed:

1. Prepare a very detailed checklist regarding the company’s software needs.

2. Visit the company and prepare a due diligence report.

151Collective Wisdom from the Experts

3. Prepare a vendor evaluation report, test cases, and test plan.

4. Make sure the test case is completed and documented.

5. Follow the test plan/cases before the contract is signed.

The gaps, and the plan by which these gaps will be bridged, should be under-
stood and approved by both companies. After this process is carefully followed
and documented, you will have very clear information by which to determine
which software should be purchased, the estimated time required for software
customization, and the actual associated costs. You will save money and time
in the long run.

It sounds as if a lot of time will be spent before the vendor is selected and the
contract is signed. Yes, but it is better to invest this time rather than waiting
until the software is in your hands to be installed. If too many incompatibilities
are discovered during testing—or, worst-case scenario, after the software is
already deployed to the final user—costs will skyrocket.

To recap, when your company decides to buy ready-made software, spend
more time identifying the real need and researching the functional and techni-
cal details of the software chosen before purchasing. Use this approach whether
the software provider is well known or new to you, and whether the software
is a low-impact desktop application or a more crucial server-side application
that could bring the company to its knees.

152 97 Things Every Project Manager Should Know

Project Sponsors—
Good, Bad, and
Ugly
Jorge Gelabert, PMP
Berlin, Connecticut, U.S.

Evy oj n ono—usually the person who initiated the
project and is responsible for providing the financial resources to successfully
complete it. Typically, this is someone high in the organization who will cham-
pion the project and step in when the software project manager faces company
challenges beyond his control. The larger the project, the greater the impor-
tance of a strong sponsor.

In my experience, sponsors come in three flavors: good, bad, and ugly. It is
important to recognize each type and know how to deal with it.

The worst type of sponsorship is “ugly.” These sponsors are usually assigned.
Therefore, they have no personal investment in what the project is delivering
or its intended use. Such a sponsor tends not to listen to the project manager
and instead focuses on arbitrary due dates set by those who have assigned
him/her to the project. Benign neglect is common. Assigned project sponsors
may change frequently, so there is no continuity.

Spotting this type of sponsorship is easy; addressing the problem is not. The
software project manager must work with the sponsor and respond to his/her
desires. Often this is at odds with making the project successful. One answer
can be to find a surrogate sponsor, a person or group who will benefit from the
deliverables of the project and who may be able to provide the assistance typi-
cally provided by a sponsor. Alternately, the project manager can ask others
with influence to intervene on their behalf with the current sponsor. Your suc-
cess will depend heavily on how well you, the project manager, are networked
within the organization.

153Collective Wisdom from the Experts

The “bad” sponsor can hinder a project in different ways. He or she may
become involved in routine matters typically handled by the project manager,
interact directly with team members, and make inappropriate project deci-
sions—usurping the role of project manager and confusing the team. He/she
may be a weak sponsor, fail to provide needed resources, become overburdened
with other efforts, or not have time to provide guidance for the project.

Prevent “bad” sponsor problems by developing clearly defined sponsor roles
and responsibilities up front. In the case of the intrusive sponsors, providing
them a “job description” of their role may get them to modify their behavior.
With weak sponsors, knowing what is expected may make them realize they
can’t fulfill that role, and you may get a better sponsor assigned to the project.

The ideal situation is having a “good” sponsor. Good sponsors understand
their role and responsibilities and behave accordingly. These are the project
champions who provide resources, assist when needed, and support the proj-
ect manager in his/her decisions. It’s a company executive who is personally
invested in the project success.

Whether “good,” “bad,” or “ugly,” it is your responsibility as software project
manager to manage the sponsor, just as you manage the project. Keep the
sponsor well informed, involve him/her only when necessary, and avoid allow-
ing the sponsor to take control of the project. Learn to recognize the sponsor
types and prepare accordingly.

154 97 Things Every Project Manager Should Know

Should You
Under-Promise,
or Over-Deliver?
Joe Zenevitch
New York, New York, U.S.

A h n o h oj,deliver less than you said you would, and you
are a bad software project manager. Deliver more than you said you would,
and you’re the hero. Actually, you should strive to deliver exactly what you
promised. No more, no less.

New project managers, eager to please, let business people/customers con-
tinue to add features, even as the team’s capacity to deliver them shrinks. The
business people, thinking that the project manager has things under control,
take advantage of this opening, and the onslaught of new features continues.

Afraid to show weakness, the green PMs just sweat it out and hope they can
deliver. But as the project end date draws near, it may become obvious that the
features list will not be finished. The process of cutting features, not neces-
sarily the newest additions, grudgingly begins. The formerly happy business
people are now planning the termination, or at least the post-release punish-
ment, of the project manager.

The experienced PMs know that they are going to have to be firm from day
one. Anything that resembles a new feature, or a change in scope, will be met
with pushback from the PM. He/she reminds the business owners that only so
many features will fit into each release.* If something new comes up, it must be
deferred to a future release or substituted for a planned feature.

The experienced PM avoids “High–Medium–Low” categorizations, as cus-
tomers may mark everything a “High.” They prefer a prioritized list of features
based on business value. A good PM reminds the business owners that features

* Release: At the end of a predefined work period, one or more iterations, the goal is to have the
feature(s)—working code—of the software available for demonstration to the customer, or perhaps
for actual use by a limited user group. This delivery of completed features is called a release in agile
programming.

155Collective Wisdom from the Experts

at the bottom of the priority list may not get done this release if delays are
encountered. These rules serve as an annoyance to the business owners, espe-
cially those who haven’t learned that ramming in features won’t work. Over
time, they get used to the process and come to accept it as a fact of project life.

Of course, the experienced PM expects that changes are going to happen dur-
ing the course of the project, and has built contingency time into the plan.
This contingency is held close to the vest, sometimes not being revealed to the
customer or even the team. It is managed like a precious resource, and only
features that survive the pushback battle get to eat into it.

When this does happen, the business owner is usually thankful that the PM
finally obliged him. In the final days of development, if contingency remains,
the PM might even opt to “open the reserves” and produce a few extra features.
Some business owners might question why they couldn’t have them earlier, but
in most cases they are happy to receive a few extra, unexpected things.

Now the PM stands at the end of the release. The team has delivered on what it
said it would. Sometimes it has provided extras. The business owner is happy,
the team is happy, and the PM’s reputation is intact. Let the end-of-release fes-
tivities begin.

156 97 Things Every Project Manager Should Know

Every Project
Manager Is a Contract
Administrator
Fabio Teixeira de Melo, PMP
Coatzacoalcos, Veracruz, Mexico

A h oj ng,you are responsible for change control. You put
together a process for documenting requests and performing the changes. But
how can you control changes when you are not aware that they happened?

The client’s team members will have direct contact with their peers in your
team. Trying to satisfy the client, or being unaware of contractual obligations,
a team member can agree to an extra training session, or even implement a
change to the software, and forget to inform you—or alert you when it is too
late. Some of those changes may be innocuous, but others could bring prob-
lems. For instance, silently altering part of the software features means the
change may remain unmentioned in the software manual. This could lead to
rewrites, reprinting, etc., with all the associated (an unbilled) time and cost.

One might feel tempted to prohibit interaction between members of the cli-
ent’s and the contractor’s project teams, but that can jeopardize communica-
tion. Contracts don’t cover whether or not the client has the right to talk to
your team members. And how can a project manager control whether the
team members and the client are in contact?

To avoid undocumented changes being performed, every team member should
be familiar with the contract, including aspects of scope, time, and each party’s
rights and dues. They should be prepared to analyze the client’s requests when
preparing a contract perspective and know how to alert everyone to future
changes. This requires that the change control and handling process be docu-
mented, and that team members be familiar with it.

157Collective Wisdom from the Experts

A workshop is a very effective tool to provide team members with knowledge
about the most important contract aspects and the change control process.
Hold this training at the very beginning. Alternately, you may want to include
a session about the subject in your internal kick-off meeting agenda. Either
way, you should make sure that every project team member is informed.

Special attention must be given to third parties working for the project, such as
providers, suppliers, or subcontractors. Controlling the client’s access to them
is difficult and delicate, and in some cases they may have an independent busi-
ness relationship with your client. It is not uncommon to see a subcontractor
accept a client’s request, perform it, and send the bill to you, the main contractor.

The best way to deal with this kind of problem is to avoid it. Talk to your pro-
viders and suggest that they inform people involved in your project about the
contractual aspects of your relationship both with them and with the client.
And introduce them to your change control process.

Remember: the success of a project is measured primarily by client satisfac-
tion. The point is not to deny changes, but to control them. All your team
members have to do about this is to detect a potential change and inform you
through your change control process. This allows you to control the relation-
ship with the client and to satisfy their needs without sacrificing time and cost.

158 97 Things Every Project Manager Should Know

Important, but
Not Urgent
Alex Miller
Ballwin, Missouri, U.S.

Th onl ovy lThe 7 Habits of Highly Effective
People, by Stephen Covey (Free Press), categorizes activities along a vertical
axis, importance, and a horizontal axis, urgency. We now have four possible
combinations:

1. Important and Urgent: Velociraptor* attack.

2. Important, but Not Urgent: Preparing future product strategy; reworking
a problematic part of the product.

3. Not Important, but Urgent: Neighbor calling to borrow some sugar.

4. Not Important, and Not Urgent: YouTube; surfing the Web.

Let’s examine how to maximize our effectiveness.

Consider the Not Important, Not Urgent tasks (#4) first. Most of these activi-
ties (the ones you might categorize as “slacking off ”) can simply be dropped.
These activities are, by definition, not important (so why are you doing them?)
and not urgent (so they can surely wait). If category 4 activities are mandated
by your company, you should be asking your boss why you must do them.
Smart managers don’t want people doing unimportant work.

We should also strive to reduce the occurrence of Not Important, but Urgent
activities (#3). One technique is to ask the source of the event to contact you
in a way that lets you deal with the event at a time of your choosing. Another
technique is to alter your environment to avoid being interrupted. Phone calls
and email are often treated as urgent, regardless of their importance. Use voice
mail or email filters to reduce the urgency of these tools.

* Velociraptor: A small, carnivorous dinosaur characterized as a great threat to humans in Steven
Spielberg’s science fiction thriller Jurassic Park.

159Collective Wisdom from the Experts

Important and Urgent activities (#1) generally must be handled as they occur.
However, you should work to install systems (risk prevention) that address
the cause of these events. For example, if bugs are causing a system to fail in
production, you should analyze the cause of these bugs and institute quality
controls to prevent them from occurring again. The best way to reduce the
important and urgent events is to institute feedback loops that address the root
cause of these occurrences.

The Important, but Not Urgent activities (#2) are the most important things
you can do in your job. This is where you do knowledge work and produce
value. If you did 25% more of these activities, your boss would give you a raise.

As a software project manager, you are in a unique position to focus the work
of your entire team on the Important, but Not Urgent activities. Your job is to
buffer your team from meaningless tasks (#4) and Urgent, but Not Important,
requests from other teams (#3). You, as the manager, have the power to say no
to these requests. Do them yourself, hire a lackey to do them, or just say no!

Your team can’t ignore Important and Urgent activities (#1), but if your team
spends all its time fighting fires, then you need to fix the faulty wires causing
those fires (#2). You might not see the benefits immediately, but over time your
team will spend more and more time doing the Important, but Not Urgent,
activities that make or break a project.

160 97 Things Every Project Manager Should Know

Teach the Process
Richard Sheridan
Ann Arbor, Michigan, U.S.

Fo o o ly vthere must be a common under-
standing of the process among all stakeholders. One of the ways we make sure
this happens at my organization is to teach formal classes in our processes
to all stakeholders involved in a project. The stakeholders include the project
sponsors, perhaps some key users, the project managers, the developers, the
designers, and the quality assurance specialists. And, we teach them the pro-
cess together in the same class setting.

We require our clients to take a class in our process during the course of their
project. The reason? We want to ensure that the sponsors of the project under-
stand how to steer the team in an effective manner. We combat unrealistic
expectations with a commonly understood agile process that incorporates
weekly estimating, planning, and show and tell.

Sponsors are taught our estimating practice so that they know how to treat
our estimates (estimates are not fixed-price bids). They are taught a simple
planning technique that chooses scope based on these estimates and is cross-
checked with business value. They actively participate in weekly “Show and
Tells,” which ensure that misunderstandings are exposed as quickly as possible.

Once, I was teaching a class in our process and I called on two of our devel-
opers in the class to explain the rules of accountability around estimating. I
stated, “Ted and Kealy, you will never be punished at this company for missing
an estimate.” I then turned to our project manager in the class and said, “Lisa,
you understand that you are not to pressure or punish our developers if they
miss their estimates.” I then faced the paying client in the room and explained,
“And Jen, you understand that if we go over our estimate, you will pay more
for the work?”

161Collective Wisdom from the Experts

Of course, at this point, I have two developers who think I’m tricking them
and a client who’s ready to cancel the project! I then explain the last “rule” of
accountability around estimating. “Kealy, Ted, the one thing I need from you
both is that as soon as you think you are going to blow an estimate, speak up
and tell your project manager. And Lisa, as software project manager, you can
have a discussion about the task with them to ensure that they haven’t changed
the scope of the task since the estimate was created. If, in fact, the estimate will
be missed, you must then call the client and ask them what they want to do.”

Finally, I turned to our client. “Jen, here’s what you get out of all this. More
aggressive estimates, more work in less time since the estimating environment
is a trusting one, and dedicated team members who enjoy striving to meet
their own estimates. However, you must be willing to accept that every once in
a while, we’ll make a mistake. And when we do, we’ll inform you before we’ve
spent all the money.”

Teaching the process is a powerful empowerment tool!

162 97 Things Every Project Manager Should Know

The Fallacy
of Status
Udi Dahan
Haifa, Israel

A l oj,I confidently embarked on my sec-
ond. This was a larger project, it was more strategic to my employer, and I
would manage a multidisciplinary team of people. I was sure that the skills that
had served me the first time around wouldn’t fail. Interestingly enough, it was
my trust in my team’s status reports that was my eventual undoing.

About two months into the project, my infrastructure team lead confessed, “It
turns out some of the architectural assumptions we made were unfounded.”
However, he assured me that, “We’ll be back on track by the end of the month.”
Despite his reassurances and the contingency buffers I had in place, I couldn’t
dismiss the sense that something was wrong.

At the end of the month, I followed up with the same team lead. He showed
me how the refactoring work had been completed on schedule and how the
developers were all set to hit their targets for the coming month. When I sat
down with my integration team lead, she notified me that everything looked
good from her vantage point, too. Modules were complying with their speci-
fications, each had been sufficiently tested, and all the multiple layers of the
architecture tested stable enough for the first integration.

After a slightly bumpy first integration (as many of them are) and a regular
quality assurance cycle, I was astounded to discover that almost every use case
had critical bugs in it. We were almost 5 months into the 15-month schedule,
but nowhere near a third done with our project work.

163Collective Wisdom from the Experts

I remained certain that all the team members would pull together to finish
on time. One month before we were supposed to be going live, everyone was
reporting that their work was at least 95% done. However, when I brought in
one of our real users to try the system out, she told me in no uncertain terms,
“This is broken in so many ways, I couldn’t stand working with anything like
it.” That didn’t sound like a project 95% done to me.

An experienced project manager, Patrick, was brought in to “save the day.”
While Patrick, the project savior, (and today, my mentor) was getting things
back on track, he explained to me the fallacy of status. The customer defines
“done,” not a status report.

The fact that the database team reported 95% completion had no real bearing
on whether our users could use what we developed. Even if the status reports
looked perfect, they were giving an incorrect view of the project progress. In
short, the project was doomed, practically from day one, because I wasn’t map-
ping to the goals of the project.

I finally understood why I always needed to work with users to have them
evaluate each feature as it was created, to be sure it added customer-perceived
value. That way, the project status reports, converted to earned-value reports,
show the true percentage of earned value created rather than only showing
how much work is left.

164 97 Things Every Project Manager Should Know

What Do They Want
to Hear, Anyway?
Martha Legare, MBA, PMP
Atlanta, Georgia, U.S.

Poj onon ny o—from “management by
walking around” to formal presentations. I consider communication the most
critical set of activities in a project.

The hardest, yet the most common, way to convey software project informa-
tion from one person to the next is a formal presentation. Some polls find that
public speaking is more frightening than death or the dentist!

Most presentations are too long, boring, and riddled with too much detail.
Look at your last presentation and see if it could accurately be described as
“death by PowerPoint®.”

If your answer is “yes,” you can redesign your next one so it truly communi-
cates to your audience. Ask yourself, “What is the best mode of presentation
for what I want to accomplish?” If you have a small group and want give-and-
take discussions, using a flip chart or a whiteboard to capture areas of concern
or agreement is a useful technique.

However, if you want executives to approve a particular project or agree to a
new project tact, a multimedia slideshow could work. The trick is to realize
that regardless of the technology you employ, you are what sells the idea to
your audience—not your slides, posters, or laser light shows.

We must engage both left-brain logic and right-brain creativity in order to effec-
tively sell our ideas. Use the statistical proof, but showcase it in a memorable for-
mat. Use easy-to-understand color charts and graphs, and just a few bullet points.

165Collective Wisdom from the Experts

Explain the story behind each bullet point, rather than using too much text and
reading it aloud a beat after participants have already read it for themselves.

Plan your presentation ahead of time using a whiteboard and sticky notes
rather than starting directly with PowerPoint. Brainstorming on sticky notes
allows you to see the big picture and easily rearrange ideas without feeling you
are destroying hours of work.

Place your sticky notes in “affinity” groups, combining similar concepts, and
then think about how to craft those ideas into a meaningful and memora-
ble story. Always come back to the questions “What’s my central point?” and
“Why does it matter to this specific audience?”

Capture interest by creating curiosity or showing the unexpected, then use
concrete illustrations to support your numbers with something your audience
can visualize. For example, a Wall Street Journal article described an executive
who lost enough of his company’s money that if you took crisp $100 bills and
stacked them on top of one another, they would reach the 92nd floor of his
Madison Avenue office. That’s a memorable image.

When in doubt, delete all but the essentials. You can prepare a handout for
people to read later if they want more detailed information, and a take-away
document will ensure that your facts won’t get distorted. This approach will
guarantee that you will present your essentials succinctly. And when you find
out that the president has cut your presentation from 30 minutes to 5 in order
to make his golf tee-time, you’ll be prepared to summarize on the spot.

166 97 Things Every Project Manager Should Know

Recognize the Value
of Team Morale
David Bock
Reston, Virginia, U.S.

Mol on o ho hng yo no yo n,but it is hard
to grow and measure. A team with high morale will occasionally put in extra
effort cheerfully, but a team with low morale will not. High morale isn’t just
about a better workplace, it is about a more productive team.

A few years ago, I worked with a team that exhibited high morale. At times,
the office felt more like a community of friends than a workplace. Productivity
was high. We would occasionally have crises that required a little extra “push,”
and team members would volunteer for that extra effort.

A few years later, I saw that same team at an ice cream social at the office, and
it didn’t appear happy. The team members weren’t socializing, and their body
language seemed cold. When I approached them, they were complaining that
there were only “chocolate Jimmies, not colored sprinkles” as a topping for
the ice cream. Think about that transition: same team, same project, much
different morale. It went from cheerfully working overtime, when needed, to
complaining about free ice cream.

How did this happen? The team had a new manager who made some bad deci-
sions. His errors led the team down a false path and created more work for it.
Senior management blamed the entire team. And when the manager took no
responsibility, the team lost confidence. The project became “more work and
less fun,” and morale suffered.

As the manager tried to improve the situation, he made things worse. He remem-
bered that when the team members had high morale, they would occasionally
go out to movies together. So, he instituted a “movie night.” The team had
no interest in socializing, and attendance was low. The manager began mark-
ing on performance reviews that people weren’t “participating with the team.”
That lowered morale even more.

167Collective Wisdom from the Experts

In this situation, the manager had the cause and effect backward. People don’t
have high team morale because they socialize; they are more willing to social-
ize because they have high morale.

As a consultant, I have tried to think about ways to measure morale. I have
joked about metrics like “the ratio of cars in the parking lot at 5:05 p.m. and
4:55 p.m.,” and the “number of visible Dilbert cartoons per square foot of office
space.” But I have realized morale isn’t something to be measured, morale is
the measurement. We are measuring the team’s attitude. Morale is the measure
of the team’s confidence in its leader, confidence in its teammates, and faith in
its own ability to get things done.

It is your job as the software project manager to create a workplace with high
morale. If team members respect you as their leader, and if they feel they can
talk to you and influence the outcome of events, morale will improve.

High morale results in greater satisfaction among your employees, lower turn-
over, and higher productivity. On top of all that, it’s just nicer to be around
happy people. Don’t you agree?

168 97 Things Every Project Manager Should Know

Engage
Stakeholders All
Through Project Life
Lukeman Lawal, M.ENG, MNSE, R.ENGR.
Lekki, Lagos, Nigeria

oo ong lonh with stakeholders who have significant
influence on the outcomes of a project are vital. Stakeholders are individuals
and groups, both inside and outside the organization, who can influence the
success of the project, and/or anyone who can be affected by the project.

Project managers should have a stakeholder engagement plan that includes
identification of stakeholders, an assessment of their degree of influence, and
an assessment of their favorability toward the project. Use this plan to deliber-
ately build support.

Engage stockholders early and keep them involved through project comple-
tion. Be sure you know the business need for the project they support. Work
toward aligning the needs of all of the key stakeholders, not just the top few.

It’s always pertinent to find out what the key stakeholders need to become vis-
ible and vocal advocates for the project, and how the project can be made to be
a win for them, as well as for your team.

Once your project plan reflects the needs of the key stakeholders, insist that
they demonstrate their commitment by providing the resources needed to
support the project. This gives you an army of investors to fight outside stake-
holders with no money or services who may want to stop the project.

It is advisable to assign a single point of accountability on the project team
for coordinating stakeholder management, and to interface with and actively
engage key stakeholders at appropriate levels. Create and utilize a stakeholder
communication plan to capture frequency of communications, content of
communication, and type of delivery method. Methods and frequency of con-
tact may differ for each stakeholder.

Schedule an alignment meeting with smaller stakeholders to minimize con-
flicts between departments. Your stakeholder handler will follow up to ensure

169Collective Wisdom from the Experts

that critical functions/groups are represented on the core project team, or on
the extended project team, as resources.

Review stakeholder standards of success with decision makers at each meeting
to ensure that alignment remains consistent.

Here are some other suggestions:

•	 Respect the business needs of stakeholders, even if you don’t agree.

•	 Ensure confidentiality on sensitive issues to build trust.

•	 Create an alliance of stakeholders to support your project.

•	 Get stakeholders actively and meaningfully involved.

•	 Solicit stakeholder ideas and use their input.

•	 Keep stakeholders informed.

•	 Leverage those with positive attitudes and get them invested—visibly if
possible.

However, expect setbacks and roadblocks and be ready to address them as
they occur. There will always be bumps on the road, so do not put the pres-
sure on yourself or the stakeholders to be perfect. Just deal with these issues
as they arise, and learn the lessons they will teach you so you do not have to
face them again.

Engaging stakeholders early enough and keeping them involved as part-
ners until the end of project will help you to avoid show stoppers. They may
not understand the details of project management, but if you help them
meet their business goals, they will join you in celebrating excellent project
performance.

170 97 Things Every Project Manager Should Know

The Value of
Planning
Derry Simmel, PMP, MBA, FLMI
Chapin, South Carolina, U.S.

“In preparing for battleI have always found that plans are useless, but planning is
indispensable.”

—Dwight D. Eisenhower, 34th President of the United States

So oj ng prefer the quote, “No plan survives contact with
the enemy,” by General George S. Patton. They reason that it is a waste of time
to create plans, since they will be invalid almost from the beginning. This atti-
tude has doomed many projects to failure. There will always be managers who
advocate action over planning. Action is seductive, planning is boring.

Boring as it may be, the sole purpose of planning is not to create a set of docu-
ments. Eisenhower realized that the discipline of planning causes you to think
about your project. The planning sessions create a deeper understanding of
the project. You address work, budget, resources, risks, timelines, and more.
As you plan, you gain greater insight into what is needed for success. Your
plans will also help you understand if, and how, goals can be achieved. Com-
pleted plans are an invaluable way to communicate about the project.

Planning documents record what was discussed and decided. They do not
exist to inflexibly dictate a course of action. Unfortunately, the originals will
quickly lose their value and relevance. That is why we have two types of plan-
ning: initial and ongoing.

The goal of initial planning is to set the course of the project. Initial planning
looks at the project as a whole and considers all areas (risk, time, quality, etc.).
The initial plan sets the intent of the project, and maps a reasonable course to
the objectives. The course will change as more information is gained and the
situation changes. This is natural. A change in the objectives is less common,
and should only be done with caution.

171Collective Wisdom from the Experts

To create an initial plan, you must think about your project, understand the
risks and limitations, and build a path to success. As the project manager, you
take your team through planning sessions to do this. Creating an initial level
of mutual understanding is vital, particularly right after “first contact with the
enemy…” reality.

First contact is when the act of planning pays off. Because everyone under-
stands the plan, each member can react independently in accordance with the
intent of the plan. Knowing the overall goals and restrictions allows your team
to make the right decisions quickly. This is when ongoing planning kicks in.

Your ongoing planning process starts with the existing plan and modifies it
to account for the new reality. You planned to start development on May 1st,
but now you can’t start until June 1st. How do you make up the time? Can you
assign your resources to other tasks that can be done in May? Do you need
more time, more money? These are your ongoing planning considerations.
You plan, adjust, and then execute.

Each time you plan, you are thinking and communicating about your project.
These necessary and fundamental activities will never fail to yield benefits well
beyond their cost.

172 97 Things Every Project Manager Should Know

Don’t Always Be
“The Messenger”
Matt Secoske
Omaha, Nebraska, U.S.

n o h o on olof the software project manager is to
facilitate an open dialogue between the various members of the team. Unfor-
tunately, I have been on many projects where the opposite has happened. The
PM became the bottleneck through which all communication flowed. He or
she was “The Messenger,” passing precious bits of information from one team
member to the next.

For a project to be organic as it progresses, information becomes the air and
water feeding the code base as it grows toward fulfilling the ultimate mission
of the project. All team members rely on a constant exchange of information.
But if the stakeholders are forced to channel all knowledge through the PM,
insurmountable problems are guaranteed.

The PM, after being entrusted with current updates, may not have correctly
identified all of the developers who need to receive that information. The orig-
inator of the message thinks he/she has fulfilled any obligation by passing it
along to the PM. Once the communication channel oversight is discovered,
the first team member may not remember exactly what she passed along ear-
lier, as she has since moved on to newer challenges. The PM, overwhelmed
with technological reports he or she may not understand, quickly becomes
incapable of being the single point of conductivity for project wisdom.

There is an even more damaging role than The Messenger, in which a well-
meaning but clueless PM becomes “The Scrambler.” As a project grows, so does
the amount of nontechnical information needed to keep it running smoothly.

173Collective Wisdom from the Experts

Developers need to know the business rules, the business champion needs to
know the status of the deliverables, and various other people need insight into
where the project stands in relation to its schedule, cost, and quality metrics.

As this amount of information grows, so does the likelihood that a non-
omnipotent PM will miscommunicate. The Scrambler has struck! For example,
a business rule that appears to have little impact on the project on the surface
may in fact be a major roadblock once its true intent is discovered. Sizable
changes to the code base may need to be done in order to repair the damages.

A project manager needs to get the right stakeholders together to talk about
the right topic at the right time. Finding a time to have people from disparate
departments available to meet may seem daunting. The practice? The PM, try-
ing to solve a scheduling issue says, “Cheri, I’ll take this directly to Bob, and get
back to you with the answer.” This can work for short, nontechnical questions.
But, be aware that success in small ventures can insidiously evolve you into a
Messenger or a Scrambler. Invariably something is missed in the translation,
leading to excessive wasted time spent trying to sort out the repercussions.

Providing clear, open channels for communication, along with archiving dis-
cussions and decisions, allows all team members to interact directly with one
another. This keeps The Messenger and The Scrambler project manager at bay,
and keeps the software project moving forward.

174 97 Things Every Project Manager Should Know

Effectively Manage
the Deliverables
Ernani Marques da Silva, MBA, PMP, PgMP
Mairipora, Sao Paulo, Brazil

Poj o o o lvl that, when com-
pleted, constitute the completion of the whole product, service, or result. For
software development projects, integrating all of the components is crucial for
the final result to work properly. The components, of course, vary depending
on the kind of software you are building. So, the deliverables are the major
components that should actively be planned, controlled, monitored, and man-
aged by following these tips:

•	 Identify the deliverables. Identified deliverables outline the full solution,
identify the order in which they should be created and delivered, identify
metrics that should be used to monitor and control their development and
delivery, and actively monitor their progress against the planned baseline
and metrics defined.

It is very important to break deliverables into partial packets of code, each
created to provide a special software function. This is especially important
for complex projects/environments and projects developed by third par-
ties. Do not wait to receive the full work package at the end. It is a good
practice to arrange for the delivery of project parts bit by bit, and follow
a preplanned process to deploy them to other members of the software
team for use in their own development work.

•	 Monitor and control the deliverables. Once you have defined the means
by which the work packages (functional code bits) will be built, moni-
tored, and controlled, you must actively monitor and control the building
phase to check whether the work is being done as planned. Checkpoints,
metrics, and key performance indicators (KPIs) should be shared with all
project team members.

175Collective Wisdom from the Experts

At the checkpoints, the KPIs and metrics should be evaluated against the
baseline and trend analysis in order to identify variances. This way, cor-
rective action can be done based on actual metrics, rather than hunches
or hearsay.

•	 Manage the deliverables. Once the anticipated work is delivered, the
code should be tested and deployed to a small group of users in order to
verify that it complies with requirements before it can be considered fin-
ished. This approach helps identify problems so that corrective action can
be taken before the software is deployed to the entire user group.

Throughout this approach, it is very important to remember that all mini-
deliverables will be ready in phases and they should be tested in an inte-
grated fashion (like a wave). If you wait until the full code set is delivered,
you could receive a body of code with a lot of unknown errors/defects or
unexpected behavior. Because the product/service/result was built with
these issues, their effect is both buried and multiplied. The cost and the
time spent in order to fix all nonworking code at this point can be very
high.

You can balance and examine the vendor’s experience in your company’s
environment, and in the system, against the complexity required by devel-
opment and decide whether this approach should be good for you or not.
In general, it is most useful for complex solutions or for new technology/
new solutions.

176 97 Things Every Project Manager Should Know

We Are Project
Managers, Not
Superheroes
Angyne J. Schock-Smith, PMP
Phillipsburg, New Jersey, U.S.

h h lif you’re a software project manager in infor-
mation technology environments, but is also transferrable to whatever type of
projects you manage.

“We are project managers, not superheroes,” is part of my introductory routine
when I deliver training on project management skills. When talking about the
characteristics of a good project manager, my favorite line is, “Get out your
capes, people! It takes a superhero to do all a software project manager must
do, and to do it well.” However, since this comes early in the training, I have to
offer some hope. So I say, “OK, some of us mere mortals actually become good
project managers. What’s the trick?”

I believe this trick has three parts:

•	 Know your personal strengths and weaknesses.

•	 Know the personal strengths and weaknesses of your team.

•	 Use this knowledge to create complementary partnerships with team
members who possess strengths where you have gaps.

How can you get to know your personal strengths and weaknesses?

•	 Get out your copies of all the old personality or work behavior tests you’ve
ever taken.

•	 Be honest as you extrapolate data from these old evaluations. Were you
honest when you took the questionnaire? Does the “label” still fit, or have
you grown and changed since that time? Which of the label’s associated
strengths and weaknesses most accurately describe you right now?

177Collective Wisdom from the Experts

•	 Don’t try to figure out which label would make the best project manager.
There is no right answer to that question. A good project manager has to
be flexible, i.e., be able to diagnose each situation and shift out of his/her
comfort zone to respond in the most effective way.

•	 From your available data, create a fresh, current personal inventory of
strengths and weaknesses. Keep it where you will always be able to find it
and update it as you continue to learn more about yourself.

After that, the rest is downhill! Use an available strengths inventory to assess
your team. Then, look for people on the team who have strengths in the areas
listed on your personal weakness inventory.

For me (an Expressive type , if you know the Social Styles types), my weakness
is attention to detail. I’ll always need someone (an Analytical type) to keep
me on track in that area! If you’re likely to try to please others more than you
should, you may need someone to help you drive the project forward more
forcefully than you would be comfortable doing yourself.

Make sure that you have teammates with complementary skills working with
you in areas where your weaknesses lie. But you don’t have to tell them that’s
what you are doing, right? Keep some mystique about it, and maybe you can
convince the team that you are a superhero. I won’t tell anyone otherwise.

178 97 Things Every Project Manager Should Know

Increase Communication:
Hold Frequent,
Instant Meetings
Richard Sheridan
Ann Arbor, Michigan, U.S.

So oj ng often fall into the deadly trap of regu-
larly scheduling their teams for painful meetings that have the unfortunate,
unintended effect of actually decreasing communications. One of the all-time
dreaded meetings is the classic Monday morning status meeting. As if Mon-
days weren’t bad enough already!

If you aren’t convinced that most meetings should be killed, try this experi-
ment. As the software project manager, don’t show up. Ask one of your trusted
colleagues about the meeting you skipped. Did they hold it without you?

If the meeting only happens when the boss or project manager shows up, kill
it. Your team is telling you they don’t get value out of it. Never hold meetings
where only one person gets value.

At my organization, we do everything we can to eliminate unproductive meet-
ings and replace them with simpler communication paths among team mem-
bers. For example, we have the team work all day, every day, in one big open
room with no walls, offices, cubes, or doors. Thus, when I need an answer
from someone, I can simply say, “Hey, James.” In less than 30 seconds, James
and I have exchanged the necessary information and can get back to work
without actually moving (or sending emails back and forth).

Imagine an all-company meeting with 60 people that is as easy to set up as
shouting out “Hey, everybody!” Everyone stops what they are doing and
responds, “Hey, Rich!” The meeting can take a few, short minutes and then
everyone turns back to work without moving from his/her seat.

179Collective Wisdom from the Experts

Our rituals and ceremonies include weekly “Show and Tells” to demonstrate prog-
ress on projects to sponsors, weekly “planning games” to authorize project scope,
daily stand-up meetings, and weekly kick-off meetings to brainstorm about how
we will work together toward common goals on client projects in the upcoming
week. The meeting has a structure that makes participation easy and fun.

Try a daily stand-up meeting for one week and see if it catches on. Here are
some lessons we’ve learned to make this meeting more effective:

•	 Invite everyone involved in the project. We often have 50–60 people in
this meeting.

•	 Call the meeting with an alarm clock loud enough for everyone to hear.
An impartial device calling the meeting is more likely to get participation.
We use a dartboard that has an alarm clock in it.

•	 Use a speaking token. We use a plastic Viking helmet to control the meet-
ing. Just hand it around the circle of people standing (no sitting allowed).
The person who has the token has the floor.

•	 Have people report what they recently completed, what they are working
on, and where they need help. Help doesn’t come during the meeting, but
afterward.

Our typical stand-up meeting takes 13 minutes! Call it, assemble it, hold it, give
everyone a chance to talk, finish it, and get back to work in 13 minutes. I defy
most organizations to complete a useful meeting of 60 people in 13 minutes.

180 97 Things Every Project Manager Should Know

Flexibility Simplifies
Project Management
Krishna Kadali, M. Tech
Kondapur, Hyderabad, India

Myoo Mh, o 17h-ny S, believed in
the principle, “Do not develop an attachment to any one weapon or any one
school of fighting.” This advice also rings true in our project life. It is impera-
tive that we not get too attached to any one management principle, software
tool, or programming language as our only weapon. It is only through seeing
our resources in a flexible way, arrangeable in many varying configurations,
that we are able to prepare the best response to the customer problems that
become our project.

Take an open-minded approach right from the beginning when you define
your project requirements. If you already have your weapon and fight plan
chosen before you talk to the customer, how can you be sure your solution is
the best one?

Before picking your weapon, examine all your customer’s requirements. What
problem is the customer trying to solve using your new software? The prob-
lems are usually attached to some business logic showing that the current
resources aren’t feature- or function-rich enough. Next, consider the pool of
existing factors and systems within your organization. Reusing parts of exist-
ing environmental systems skillfully can shorten and ease your project path.

Available enterprise environment factors include such diverse things as the
company infrastructure of existing facilities, equipment and software, com-
mercial and private databases, programming tools, and human resource skills.

A resource-oriented analysis of the customer requirements to be met by the
software or other project deliverables will reveal some of these underlying
resources that already exist in the organization: “Our users must be able to see
the XPP34 call center system side by side with our corporate accounts receiv-
able system. Your product will need to be merged, or be compatible, with our
4465IL legacy software.”

181Collective Wisdom from the Experts

Your job is to ask the right questions about various final performance results
expected by the customer, and about how existing resources/software/systems
and your new code ouput are to interrelate. You may be able to lay a foundation
for changes your customer will want in the future using this resource-oriented
approach. At the end of this analysis, your software begins to take shape as a
set of new resources—things that not only solve today’s problems, but that can
be used to complete future projects and interact with future software.

Once you know what the customer wants and what resources are already avail-
able within your organization, now you can choose your best weapon to fight
the problem. Actual development can first focus on a few key requirements
you deliver to gain the customer’s confidence. The modules and services
needed for satisfying the key requirements should be implemented first.

Leaving your mind open to new paths for software design provides a pleasant
way to handle software projects in the world of constantly changing require-
ments. This flexibility will simplify your project management challenges, and
creating fresh weapons and plans keeps your workday interesting and enriching.

182 97 Things Every Project Manager Should Know

The Web Points
the Way, for Now
David Wood
Fredericksburg, Virginia, U.S.

Th hy go ho logn “We stand on the shoul-
ders of those who came before us. We provide the shoulders for those who
follow us.” This quote is relevant for us as software developers. As each new
architecture, language, or platform rises to prominence, we tend to sigh, “This
is the answer to all of our programming problems.” And while it may solve
today’s issues, tomorrow there will be new challenges facing us.

Currently, we know of exactly one software architecture that scales to billions
of users and does so while being robust* to failures of individual components:
the World Wide Web. The Web is the largest, most used, and most robust
information retrieval system ever built by humankind—so far.

Why does the Web work so well? Roy Fielding, a founder of the vaunted
Apache project,† researched this very question. Fielding evaluated the archi-
tecture of an idealized version of the early Web and extracted architectural
style elements from it.

The result was a new software architectural style with the properties that we
have come to love about the Web. They are robust to both change and failure of
specific components. They separate concerns so we stop caring about imple-
mentation details such as programming languages. They use a common lingua
franca (a language for communication among those who don’t speak the same
mother tongue) to exchange language-neutral requests for information. They
scale mightily. They are stateless.

* Robust: Capable of coping well with variations, sometimes unpredictable ones, with minimal dam-
age, alteration or loss of functionality.

†Apache project: An open source project to develop and maintain free web server software for mod-
ern operating systems.

183Collective Wisdom from the Experts

Not every website uses these guiding principles, but many do, and the Web as a
whole uses them. However, these are only the shoulders on which the continu-
ous development of new and innovative architectures will rest.

We can learn important things from the Web’s success. Perhaps the most
important is that Moore’s Law‡ now allows us to accept a great deal of abstrac-
tion in our system design. Instead of being overly efficient with our hardware
and software, we can now think about being overly stable, overly robust, overly
scalable, and overly flexible. And we can accept the inefficiencies of our cur-
rent architectures, knowing full well that they are only a foundation for future
innovations.

Distributed systems, like the Web, are hard to design. Perhaps this is because
each of us is an individual. We treat our software systems like something that
an individual creates, centralized as we each see the world. The Web’s distrib-
uted systems have shown us the way, though. Distributed systems are harder to
conceptualize, and thus harder to create, but creating them is worth the effort.

Naturally, technology changes. Ideas and techniques change, too. The simple
Web of Fielding’s description is not the modern Web. Nor will it be the Web
of the future. The Web may not always point the way. The key to adapting to
new systems will be to design flexibility into our systems now. Only then can
we begin to create living, breathing, adaptive software systems that are ready
to integrate with new discoveries, providing the shoulders for those who fol-
low us.

‡Moore’s Law: This law describes a long-term trend in computer hardware in which the number of
transistors that can be placed, inexpensively, on an integrated circuit has increased exponentially.

184 97 Things Every Project Manager Should Know

Developers Hate
Status Reports,
Managers Love Them
Pavel Simsa, PMP
Bellevue, Washington, U.S.

Wong n h gg o ony n h ol,I can
attest that developers hate status reports. It makes them spend hours each
week writing down what seems to them to be obvious, redundant information.

For you as a software project manager, however, this is data used to get a bigger
picture of your project progress, and then passed on to upper management. On
average, a project manager helms five to seven projects at a time. Both you and
your senior management team need you to collect and pass on this project data.

Here are tips to make developers less resistant to sending their “whatever-
frequency-you-need” status reports:

•	 Help them understand why this report is important to other team mem-
bers or other departments that need to plan based on team progress. People
work harder to help their peers.

•	 If the project progress was slow, know what the team was doing. Was it
learning a new tool or language? Were there unexpected problems and
challenges this week? When you compile the status reports, add the
explanatory information to help others interpret the numbers.

•	 Give proper recognition. If you know what the problems and challenges
were, you’ll be able to make sure that no significant achievement is
masked by the progress report metrics. For those who have made helpful,
unplanned contributions, offer a latte coupon to a nearby coffee shop. Try
a “Great work, thank you <name>” email that goes to the entire division.
Create a direct link between the work and the importance of how it relates
to the “big picture.”

185Collective Wisdom from the Experts

•	 If you’re managing more than one developer, create a group incentive. “If
I get all status report by 3 p.m. every Friday from all of you for one month,
everyone gets the next Friday afternoon off,” or, “I’ll bring in food for a
group lunch.” Nobody wants to be the one who keeps his or her team from
the reward.

•	 Make it easy to write the report. Provide a template or an electronic tool
to submit the status. Be prepared to rewrite the verbiage in a way that
will be understandable to everyone. Your vice-president most likely won’t
understand “lcl check-in to main build lab.” You can change it to “feature
milestone 2 achieved; project on track.”

The point is, make sure you look at the task of completing periodic status
reports from the other person’s perspective. Status reports are important.
Everyone needs to know what’s going on. Senior management cares about
milestones, while business management cares about budget. Your job as a
project manager is to make sure that every stakeholder understands what’s
going on with the project—but also to realize that not all stakeholders are able
to fully analyze all the technical nuances of what is transpiring without your
help.

Find an effective input tool and work to achieve as much understanding of
the underlying tasks as you can. You are the liaison to create a comprehensive
status report that meets the needs of all stakeholders.

186 97 Things Every Project Manager Should Know

You Are Not
in Control
Patrick Kua
London, UK

I on oj I oh. The project manager obvi-
ously had a desire to be the central point of control. He had what appeared to
be an almost obsessive need to be involved in all “critical” decision-making
discussions. He would actively direct the daily stand-up meeting, and he alone
would decide who got to talk during project retrospective rituals. The team he
managed was actually well formed by the time I arrived, and I noticed with
interest how the quality of discussions differed between those where the proj-
ect manager was present and those where he was not.

When I talked to a few people on the team one on one, they confessed they
hated all of the meetings the project manager would hold, because they just
wanted them to be over. They felt like their time was being wasted, as their real
opinions were not valued. They recounted times they said the things the proj-
ect manager wanted to hear to get him to move on. When they had issues that
needed addressing, they would go to the technical lead. He was more willing
to be part of an open discussion and, therefore, was more effective at solving
problems.

The lesson I learned from this team is that acting as if you control the situa-
tion is not the same thing as actually being in control. In fact, actively seeking
control sometimes creates the opposite effect. An experienced, well-formed
team will actively shun a person trying to take control for personal reasons,
especially if that control brings little benefit to the team.

187Collective Wisdom from the Experts

It helps for project managers to understand group dynamics and different
leadership styles. Different projects and various teams will require differ-
ent levels of control. Well-formed, high-performing groups will often resent
excess control unless they can see how it helps them.

The control will often be seen as “meddling” and though the groups may ver-
bally agree, their actions after leaving the meeting may not fully reflect what
you intended. However, with a newly formed team, more control may provide
the group with direction and establish clearer objectives for the project.

Great project managers exert just the right level of control, respecting what
skills, experiences, and connections team members bring to the project at
hand. They recognize the signs when more control may help move the group
toward its ultimate goal, as well as recognizing the signs when the same con-
trol may be slowing the group down.

Nowhere is this more crucial than when a non-IT project manager is asked
to lead a software development project. The team, often resentful of outside
interference in its workspace, may devalue the skill set the project manager
brings to the project.

But the organizational skills, the ability of the project manager to keep the
project in line with company goals, and the successful care of communication
lines between upper management and the customer can protect the IT team
and leave its members free to work.

188 97 Things Every Project Manager Should Know

Share the Vision
Jared Richardson
Morrisville, North Carolina, U.S.

Do yo o h o? Do your team members want to bankrupt the
company? Sometimes it feels that way, but it’s usually not the case. The truth
is, everyone wants to succeed and feel proud of their contributions, no mat-
ter how much it appears that they’re trying to sabotage your project. They are
doing what they think is the right thing, but everyone has a different idea of
what “right” is.

As the software project manager, how do you get everyone working together?
Know that most teams labor in darkness. They don’t know why this project
matters, how it fits into the company’s larger strategy, or why the deadline is
June 17th. Since they don’t understand why certain decisions were made, the
choices appear arbitrary and irrational. Everyone struggles, trying to form a
clear vision of this murky situation without any definitive information to help
them. Should we be surprised that everyone see a different end goal to the
project?

To clear away the fog, you need to share with your team members the key pieces
of data that will make them knowledgeable about your common endeavor. Let
them know that the project needs to ship in mid-June to beat a competitor’s
product to market by three weeks. Help them understand that this project fills
a need in a larger corporate strategy to expand internationally, or that your
customer is counting on it to shore up dwindling profits from its existing, but
aging, product line.

189Collective Wisdom from the Experts

Be careful, if you’re new at sharing information. As the conduit of information
for your team, you’ll also be shaping the team’s morale. When you decide to
gripe about another group or manager, or a member of your team, your nega-
tive attitude can spread through your team as quickly as the flu. And, like a
viral infection, it can slow your team’s verve for days.

A great way to share project information is to hold a daily meeting. Teams with
10 people or so can meet effectively in as little as 10–20 minutes. Each person
has a one- to two-minute opportunity to bring the team up-to-date on his own
progress and ask for help, if he needs it. These quick “standups” are the perfect
place for the software project manager to share project updates.

When you opt for a weekly (or monthly) meeting, you may forget impor-
tant information; after all, it’s old news to you by the time the group finally
assembles. Or a problem that could have been prevented blows up because you
delayed sharing risk indicators. Perhaps the team will glaze over after you’ve
shared 17 bits of “vital” information all stuffed into one, bloated team talk.

Remember, your team, and everyone at your company, wants to succeed. Share
your vision and ask others to share theirs. You’ll find most of those idiots you
thought were out to close the company are actually people who will work side-
by-side with you to solve mutually understood team challenges.

190 97 Things Every Project Manager Should Know

True Success Comes
with a Supporting
Organization
Cynthia A. Berg, PhD (ABD), PMP
Glendale, Arizona, U.S.

I ognzon vo lnnng, aggressive problem seeking,
and timely issue resolutions, it could be due to a problem with the culture.
Those on a project team who play the devil’s advocate are often labeled as
troublemakers. If the organization is quick to “shoot the messenger,” team
members will avoid sharing troublesome issues and there may be an inclina-
tion to hide project problems.

This type of cultural setting encourages blaming behaviors that work to the
detriment of the entire organization, individual employees, and the custom-
ers. The role of the software project manager is to provide a predictable proj-
ect delivery, with as few unexpected events as possible. With no one pointing
out pitfalls early, there are often “surprises.” Seldom are they good surprises,
but rather, ugly ones showing that foresight and planning were impossible as
developers hid issues from exposure.

Wise executives will make sure the company is supporting the attitudes and
behaviors that allow developers to be effective. This includes evaluating human
resource policies and incentive plans to make sure that they are aligned with
behaviors that lead to the development of strong products and services.

A classic example of misalignment is an organization that officially “preaches”
teamwork, but then consistently rewards individual contributions. People are
smart; they know which path serves their own best interests. If upper manage-
ment can establish consistency between what it professes to believe and what
it provides as a work environment to encourage productive behavior, both the
individuals and the organization can flourish.

For those of you who find yourselves in nonsupportive or dysfunctional orga-
nizations, here are some steps you can take:

191Collective Wisdom from the Experts

•	 Ask and ask until you understand the scope of the project so you can work
within it.

•	 Locate probable team members and other stakeholders. Whenever pos-
sible, include them in brainstorming, planning, and project execution.

•	 Allow the people who are doing the work to fully participate in project
updates and decisions, at least until they finish their activities on this project.

•	 Always be an honest software project manager. Never gloss over or sim-
plify problems to avoid conflict or uncomfortable discussions.

•	 Provide the environment within your project team that you’d like to see
mirrored by the whole organization.

Project managers must be objective about the project. They occupy the unenvi-
able role of owing their first allegiance to the organization that pays them,
while at the same time needing to build a trust situation with the developers.
If the project outlook looks bleak, an astute and principled project manager
should make a recommendation that it be cancelled until peripheral problems
can be addressed.

We all want to work in an organization with a cohesive strategy to support new
software project development. But sadly, that capability level may vary enor-
mously even among departments within a single organization. Since moving
toward a more supportive environment benefits all, it should become a part
of the software project manager’s role to alert upper management to cultural
conflicts between project priorities and performance rewards.

192 97 Things Every Project Manager Should Know

Establish Project
Management
Governance
Ernani Marques da Silva, MBA, PMP, PgMP
Mairipora, Sao Paulo, Brazil

A oj n n h go comprised of team
members, vendor team members, customers or project sponsors, operational
teams, contract teams, financial teams, and other relevant stakeholders. In this
scenario, where the project involves a large group of people, a variety of situ-
ational things can jeopardize the project.

If you are a software project manager coming from an information technology
background, it may be helpful for you to know how to fit into the larger view
of project management outside your department.

Governance is a management method that is used to develop, communicate,
implement, and monitor polices, procedures, practices, and other acts used to
run a project. Putting an effective project governance structure and procedure
into place helps ensure the project alignment, monitoring and controlling of
threats and opportunities, decision making, and delivery of project packages
that are focused on the project planned. It allows you to appropriately address
the risk and consequently meet the project requirements.

To be effective, the project governance should be planned in advance. Address
relevant items in its framework like the governance goals and objectives; the
structure; the principles; the process, procedures, and standards; communi-
cation; reporting relationships; escalation procedures (what, when, how, by
whom); tools; clearly defined and applied responsibilities and accountabilities;
measurements and criteria for measurements; quality; meeting and steering
committees; audits; and monitoring and control.

Bear in mind that the governance can be affected by a series of factors: envi-
ronmental, sector, industry, company culture, and legislation. For example, in a
functional organization you, as project manager, may be directly reporting to a

193Collective Wisdom from the Experts

functional manager rather than to a portfolio or program manager. The project
manager has the most power in a projectized organization, where all work is set
up as projects. However, in a functional organization model, you could report
directly to a line or department manager, effectively weakening your power.

So, consider the organizational hierarchy when you plan and define the gov-
ernance architecture. The structure can be modified, as needed, based on the
evolution and progress of the work in order to keep the project aligned with its
planned goals and objectives. On a large project, align your work with larger
program or portfolio objectives and goals. But create or adapt a project gover-
nance model, even if you manage a very small project.

Typically, the project management office (PMO) is responsible for defining
and managing project-related procedures and processes, and creating the tem-
plates that should be followed.

The project board is an organizational body responsible for assuring that the
project goals are achieved. It provides support for addressing the project risks
appropriately, and for other issues as well. Some other board functions follow:

•	 Approving project plans and changes to the plan

•	 Collecting input for progress reporting

•	 Ensuring compliance with policies, procedures, standards, and requirements

•	 Providing guidance on risks and issues

•	 Reviewing project progress

Project governance should operate in an integrated fashion with other organiza-
tion’s governance structures when the project is interacting with other companies.

194 97 Things Every Project Manager Should Know

9.7 Reasons I Hate
Your Website
Barbee Davis, MA, PHR, PMP
Omaha, Nebraska, U.S.

Mo on on’ nothat software and web development differ,
so software project managers and software developers are asked to create web-
sites. Here are 9.7 ways you can keep me from ever doing business with your
company due to your annoying website:

1. Start off with a slow-loading Flash screen. Don’t let me bypass it, then
continue to make me wait endlessly as each page refreshes. The fast
response times of your competitors are calling me.

2. Surprise me with startling, ear-deafening video clips. I may be at work,
at home next to a sleeping child or spouse, or trying to buy a surprise gift.
If you really want to keep me away, omit an Off button.

3. Disable the Back button. You feel clever by keeping me from returning
to the search engine that got me to your website, but I won’t be trapped
twice. Next time, I won’t click on your page or buy any product or service
you sell.

4. Choose a low-visibility color scheme. Gray type on a slightly darker gray
background may be unique, but it isn’t readable. There are 25 other web-
sites at a mouse click where I don’t have to go blind to read information.
Also, reverse type (like white on black) that doesn’t allow me to easily cut
and paste means I can’t save your data for future purchasing decisions.

5. Ignore my portable devices. I may carry an iPhone, Kindle, or netbook
computer. If you don’t have a quick, low-overhead, mobile interface, you’re
not the modern organization I need. We’re headed away from the client/
server model, back to the old “dumb terminal” hooked to a powerful
computer in the sky. Plan for it.

195Collective Wisdom from the Experts

6. Provide no way I can reach a human by phone. If I have a problem,
insisting I use only your web support feature, even after I’ve exhausted its
limited help, is just wrong. I’m off to your competitor. Don’t you want to
know when your site is broken?

7. Insist I call to get information. Unless you are selling a never-before-
created product, such as teleportation to Saturn, you know your pricing.
Show it to me. Competitors can get it by calling as a phony customer.
Meanwhile, you have lost me as a real one.

8. Discriminate between customer types. I can get an older operating sys-
tem if I’m a business, so I should not be forced to upgrade to an unstable
new one just because I’m an individual. If I search an airline site for a
round-trip schedule, I want to see all the same flights listed if I prefer to
choose multicity flights, one by one.

9. Include a useless search function. I want to search your website content,
not just the public relations news releases regarding my search topic.

9.7 Mislabel your buttons. If the Read More button takes me to a video clip,
I’m angry. I want to scan your text-based information, not sit through an
entire presentation.

Don’t make me hate you!

196 Contributors

Contributors

Matteo Becchi, PMP (Arlington, irginia, U.S.)

Matteo Becchi is a certified project management professional (PMP)® con-
stantly seeking that next challenging career. He is experienced in IT appli-
cation upgrades, enhancements, and implementation projects, as well as
hardware-specific IT projects such as technology refreshes or data center
equipment migration and consolidation projects. Matteo has experience
managing direct reports as well as a diverse mix of project types and related
stakeholder groups. While he has experience with SDLCs (software devel-
opment life cycles) and firmly supports the Project Management Institute’s
(PMI) five project life cycle phases across the nine knowledge areas, he is
constantly pursuing ways to improve and perfect business processes (within
project management and beyond) in order to elevate the work environment
to higher levels of efficiency and effectiveness.

Matteo recently completed his master’s degree in information systems and
technology at the George Washington University and is currently enrolled
in a graduate-level Leadership Development certificate program. He is also
fluent in Italian and proficient in Spanish.

Matteo can be reached at matteo.becchi@gmail.com.

Cynthia A. Berg, PhD (ABD), PMP (lendale, Arizona, U.S.)

Cynthia Berg is owner of C.A. Berg and Associates, and does consulting
in leadership development and project management implementation. She
was with Medtronic for 20 years, most recently as principal project man-
agement specialist at Medtronic Arizona Device Manufacturing in Tempe,
Arizona, where she worked with new product development projects and
development of project management training and methodology. During

197Contributors

her tenure there, she also supported organizations within Medtronic, from
manufacturing to finance and new product development.

Cynthia is a senior faculty member at Keller Graduate School of Manage-
ment where she teaches in the Masters of Project Management program
and the MBA programs; she has been with Keller since 2000. She is also
an adjunct faculty member at Rio Salado Community College, where she
teaches business and project management to corporate clients and was named
Outstanding Adjunct Faculty Member for the 2000–2001 academic year.

Cynthia’s educational background includes a PhD in organizational behav-
ior from Capella University, where she is currently completing her disserta-
tion in the area of downsizing, survivor syndrome, and employee motiva-
tion; an MBA from Arizona State University; and bachelor’s degrees in both
psychology and sociology from The College of St. Catherine.

Cynthia has been active as a volunteer for the Project Management Institute
since 1991 on both local and international levels, and earned her PMP®
in 1993. Cynthia led the update of The Guide to the Project Management
Body of Knowledge (2000 Edition), and was named PMI Linn Stuckenbrook
Person of the Year 2001. She participated in the Standards MAG from 2000
through 2003, and prior to that was a member of PMI’s standards commit-
tee from 1995 through 1999. She is currently project leader for the creation
of a “Project Management Risk Practice Standard.”

Her other interests include scuba diving (she is a PADI-certified Dive Mas-
ter and Master Diver), fitness, counted cross-stitch and embroidery, and
creating stained glass—as well as, of course, reading.

David Bock (Reston, irginia, U.S.)

David Bock is a principal consultant at CodeSherpas, a company he
founded in 2007. David is also the president of the Northern Virginia Java
Users Group, the editor of O’Reilly’s OnJava.com website, and a frequent
speaker on technology in venues such as the No Fluff Just Stuff Software
Symposiums.

In January 2006, David was honored by being awarded the title of Java
Champion by a panel of esteemed leaders in the Java community in a pro-
gram sponsored by Sun. There are approximately 100 active Java Champi-
ons worldwide.

David has also served on several JCP panels, including the specification of
the Java 6 Platform and the Java Module System.

198 Contributors

David Diaz Castillo, MBA, PMP (Panama City, Panama)

David Díaz Castillo is the project manager office director for Project Man-
agement Consultants in Panama City, Panama. He has worked in govern-
ments and private projects in different industries including IT, legal, and
human resources. He is a systems engineer, and has an MBA in finance and
a graduate degree in project management. He earned his PMP® in 2007.

Udi Dahan (aifa, Israel)

Udi Dahan is an internationally renowned expert on software architecture
and design. Recognized four years in a row with the coveted “Most Valuable
Professional” award by Microsoft Corporation for solutions architecture and
connected systems, Udi is also on the advisory board of Microsoft’s next-
generation technology platforms: WCF/WF/OSLO, the Software Factories
Initiative, and the Composite Application Library and Guidance.

Udi is one of 33 experts in Europe recognized by the International .NET
Association (INETA); an author and trainer for the International Associa-
tion of Software Architects on Reliability, Availability, and Scalability; and
an SOA, Web Services, and XML Guru recommended by Dr. Dobb’s—the
world’s largest software magazine. When not consulting, training, and
speaking, Udi leads NServiceBus—the most popular open source .NET
Enterprise Service Bus.

From web projects in small Internet startups—including government projects
that push the limits of technology, to enterprise-scale programs with hun-
dreds of developers and testers costing tens of millions of dollars—companies
in all verticals and of all sizes entrust Udi with providing them relevant and
reliable architecture and design for their current and future requirements.

Udi can be contacted via his blog: UdiDahan.com.

Matt “Boom” Daniel (Coopersburg, Pennsylvania, U.S.)

Matt “Boom” Daniel is a 12-year United States Marines fighter pilot, Top-
Gun graduate, and weapons officer. Boom has mentored and trained officers
in the art of small-unit leadership, fighter aircraft tactics, and the compe-
tencies of operations planning, execution, and logistics. Matt facilitates
business discussions among CEOs and senior executives toward the goal
of real-world problem solving and strategic development. A 1985 graduate
of Virginia Military Institute with a BS in civil engineering, Boom started
his leadership and management consulting business, Business Battlefield,
Inc., in January of 2004. Married with four boys, Boom and his family live
in Coopersburg, Pennsylvania.

199Contributors

Barbee Davis, MA, PR, PMP (maha, ebraska, U.S.)

Barbee Davis, MA, PHR, PMP, writes a semi-monthly column for the
Project Management Institute’s (PMI) Community Post, which reaches
over 400,000 project managers around the world. She is an international
reviewer for training organizations wishing to be accepted or renewed into
the Registered Education Program (R.E.P.) for PMI.

With a background that includes owning a computer software training
company for desktop and technical application instruction and certifica-
tion, it makes sense that Barbee is a Black Belt in Microsoft Project. In fact,
she previously coauthored How To Learn Microsoft Project in 24 Hours.

Barbee has managed projects for companies all over the United States,
trained hundreds of project managers for certification, taught extensively
at the university level, and is sought after as a guest speaker. You may have
met her at the desk on the No Fluff Just Stuff tour in the United States or
Canada.

Monte Davis, MCSE (maha, ebraska, U.S.)

Monte Davis has been involved with Windows server administration,
information technology project management, server backup and recovery,
email administration, new server rollouts, LAN/WAN administration, and
second-level support since he joined MSI in March 2006. Monte’s technical
capabilities include all versions of Windows server administration, Cisco
IOS, Linux, Lotus Domino, Microsoft Exchange 2003, and TCP/IP.

Monte was previously employed with Retalix, formerly Integrated Distrib-
uted Systems, for five years as a network administration manager and site
administrator. He worked for ExecuTrain as an enterprise network admin-
istrator for five years in server administration, LAN/WAN administration,
and email administration. He also taught Microsoft Official Curriculum
courses.

Monte has a bachelor’s degree from Northwest Missouri State University
and is a member of a VMware user group.

His certifications include Microsoft Certified Systems Engineer—Microsoft
Windows Server 2003; Microsoft Certified Systems Administrator—Microsoft
Windows Server 2003; Microsoft Certified Systems Engineer Microsoft—Win-
dows 2000; Microsoft Certified Systems Engineer Microsoft—Windows NT
4.0; and Microsoft Certified Professional MCP 2.0—Certified Professional.

200 Contributors

Scott Davis (Broomfield, Colorado, U.S.)

Scott Davis published one of the first public websites implemented in Grails
in 2006 and has been actively working with the technology ever since.

Author of many books, such as Groovy Recipes: Greasing the Wheels of Java
and GIS for Web Developers (Pragmatic) and two ongoing IBM developer-
Works article series (Mastering Grails and, in 2009, Practically Groovy),
Scott writes extensively about how Groovy and Grails are the future of Java
development.

Scott teaches public and private classes on Groovy and Grails for startups
and Fortune 100 companies. He is the cofounder of the Groovy/Grails
Experience conference and is a regular presenter on the international tech-
nical conference circuit (including No Fluff Just Stuff, JavaOne, OSCON,
TheServerSide, and QCON).

In 2008, Scott was voted the top Rock Star at JavaOne for his talk “Groovy,
the Red Pill: How to blow the mind of a buttoned-down Java developer.”

You can contact Scott through his company, ThirstyHead, at thirstyhead.com.

eal Ford (Atlanta, eorgia, U.S.)

Neal Ford is software architect and meme wrangler at ThoughtWorks, a
global IT consultancy with an exclusive focus on end-to-end software
development and delivery. He is also the designer and developer of appli-
cations, instructional materials, magazine articles, courseware, and video/
DVD presentations, and he is author and/or editor of five books spanning
a variety of technologies. He focuses on designing and building large-scale
enterprise applications.

Neal is also an internationally acclaimed speaker, speaking at over 100
developer conferences worldwide and delivering more than 600 talks.
Check out his website at http://www.nealford.com. He welcomes feedback
and can be reached at nford@thoughtworks.com.

orge elabert, PMP (Berlin, Connecticut, U.S.)

Jorge Gelabert is a certified PMP® who works for Northeast Utilities as a
project manager. He holds a BS in computer engineering from the Univer-
sity of Bridgeport in Connecticut, holds an MS in computer science from
Rensselaer Polytechnic Institute (R.P.I.), speaks Spanish (native) and English,

201Contributors

is a Delphi Document Management Professional, and holds Masters and
Advanced Masters Certificates in project management from George Wash-
ington University.

Jorge is an active member of the Project Management Institute (PMI), hav-
ing served as director of marketing, president, and past president of the
Southern New England Chapter of PMI. Currently, he serves as the Com-
ponent Mentor for Region 3, supporting 19 PMI chapters. He is also a
member of the PMI-ISIG and IEEE associations.

Dr. Paul iammalvo, CDT, CCE, MScPM

(akarta, Indonesia)

Dr. Paul D. Giammalvo, CDT, PMP, CCE, MScPM, is senior technical advi-
sor (Project Management) to PT Mitratata Citragraha (PTMC) in Jakarta,
Indonesia (www.getpmcertified.com). He is also an adjunct professor of
project and program management at the Lille Graduate School of Manage-
ment in Paris, France (www.esc-lille.com). For 14+ years, he has been pro-
viding project management training and consulting throughout south and
eastern Asia, the Middle East, and Europe. He is also active in the global
project management community, serving as an advocate for and on behalf
of the global practitioner. He does so by playing an active professional role
in the Association for the Advancement of Cost Engineering International
(AACE), the Construction Specifications Institute (CSI), and the Construc-
tion Management Association of America (CMAA). He also sits on the
board of directors of the Global Alliance for Project Performance Standards
(GAPPS; www.globalpmstandards.org) in Sydney, Australia, and develops
graduate level curricula in asset and project management for Western Aus-
tralia University, Perth (www.blendedlearning.ecm.uwa.edu.au).

Paul has spent 18 of the last 35 years working on large, highly technical inter-
national projects, including such prestigious projects as the Negev Airbase
Project (part of the Camp David Peace Accords) in Ovda, Israel, and the Aly-
eska Pipeline and the Distant Early Warning Site (DEW Line) upgrades in
Alaska. Most recently, he worked as a senior project cost and scheduling con-
sultant for Caltex Minas Field in Sumatra, and project manager for the Taman
Rasuna Apartment Complex for Bakrie Brothers in Jakarta. His current cli-
ent list includes AT&T, Ericsson, Nokia, Lucent, General Motors, Siemens,
Conoco-Philips, Unocal, BP, Dames and Moore, SNC Lavalin, Freeport
McMoran, Caltex, the UN Projects Office, the World Bank Institute, and
many other multinational companies and NGO organizations.

202 Contributors

Paul holds an undergraduate degree in construction management and an
MS in project management from George Washington University. He was
recently awarded his PhD in project and program management through the
Institute Superieur De Gestion Industrielle (ISGI) and Ecole Superieure De
Commerce De Lille (ESC-Lille), under the supervision of Dr. Christophe
Bredillet, CCE, IPMA A Level.

Karen illison (eesburg, irginia, U.S.)

Karen Gillison has a background in computer science and 15 years of expe-
rience developing and delivering software and systems across a broad range
of industries and technologies. Karen provides software development and
project management services to commercial and government clients.

Karen is a member of the RubyNation organizing committee, Northern
Virginia Ruby User’s Group, and Java User’s Group; a Golden Spike alumna
of the Pragmatic Studio Ruby on Rails; and winner of the FGM Technical
Achievement Award for 2000 and 2006.

Karen lives in Virginia with her husband, Charles; their two children; and
two Labrador retrievers.

ames raham, PMP (Ta’ l-Ibrag, Malta)

James Graham is an independent management consultant who operates
globally.

He specializes in human resource development, designing and delivering
management development programs, as well as consulting in business pro-
cess improvement and corporate structure.

As well as possessing a PMP® certification, James is a fellow of the Institution
of Analysts and Programmers, and holds a master’s degree in consulting and
a diploma in psychology.

He lives on the island of Malta, in the Southern Mediterranean region of
Europe.

Alan reenblatt (Sudbury, Massachusetts, U.S.)

Alan Greenblatt brings 25 years of software development, technical man-
agement expertise, and entrepreneurship to his role as founder and CEO
of Sciova, a services firm specializing in the development of enterprise
semantic applications. As VP of Semantic Technologies at Metatomix,
Alan spent several years playing an integral role in the development of the

203Contributors

company’s advanced semantic technology platform and holds patents asso-
ciated with that work. He has worked regularly with customers such as Air-
bus Industries, State Street Bank, and UCB Pharma, helping them develop
unique and highly valuable semantic applications in their respective orga-
nizations. Over the years Alan has contributed significantly to the develop-
ment of advanced media technologies offered by both Sun Microsystems
and Microsoft. He cofounded Anyware Fast, a software consultancy, and
was instrumental in its sale to Dimension X, one of the very first Java
startups, specializing in virtual reality and interactive multimedia–authoring
software. At Dimension X, Alan was the director of technology until the
firm was acquired by Microsoft. As part of the Microsoft Office team, he
led the development of Microsoft Vizact 2000, an interactive multimedia
authoring product.

Alan has a Bachelor of Applied Science in electrical engineering from the
University of Waterloo.

Kim eldman, PMP (akewood, Colorado, U.S.)

Kim Heldman, PMP, has over 18 years experience in information technol-
ogy project management. She is the chief information officer for the Colo-
rado Department of Transportation and is responsible for all IT resource
planning, budgeting, and project management for a $1 billion organization
with 3,300+ geographically dispersed employees.

Kim has served in an executive leadership role for several years and is
regarded as a strategic visionary with an innate ability to collaborate with
diverse groups and organizations, instill hope and improve morale, and
lead her teams in achieving goals they never thought possible.

Kim has extensive experience in the government sector managing projects
of various size and scope. She serves on the Executive Governance Com-
mittee (EGC) in the Governor’s Office of Information Technology, which
is responsible for oversight and governance of IT state-certified projects.
In her role as cochair of the Colorado CIO Forum, Kim assisted with the
recommendation and review of statewide IT policies, standards, and initia-
tives. Kim is also the cofounder of the Colorado Project Management Users
Group, open to all state agency CIOs and IT project managers. She con-
tributed to the development and implementation of project management
policies, standards, and methodologies for projects statewide. The group’s
work was instrumental in helping to establish legislation requiring all major
IT projects in the state of Colorado to have certified project managers con-
ducting them.

204 Contributors

Kim is the bestselling author of the PMP® Project Management Professional
Study Guide, published by Sybex, Inc. and now in its fourth edition. Thou-
sands of people worldwide have used the Study Guide for their successful
preparation to sit for the PMP® exam. Kim is also the author of Project Man-
agement JumpStart, Second Edition, and Project Manager’s Spotlight on Risk
Management (both from Jossey-Bass). She is the coauthor of Excel 2007 for
Project Managers and PMP® Project Management Professional Study Guide
Deluxe Edition, Second Edition (both from Sybex).

Kim also writes on leadership topics and speaks at conferences and events.
She lives in Arvada, Colorado, with her husband, Bill, and three grown
children.

aresh ain (Malad, Mumbai, India)

Naresh Jain is a software craftsman working for Directi as a quality and
community evangelist. He helps software organizations deliver quality soft-
ware solutions using agile and lean thinking. He has worked on a variety of
software projects utilizing XP, Scrum, and Crystal techniques since 2003.

Naresh is passionate about building a community of talented and capable
software craftsmen, the next-generation software leaders in India. In recog-
nition of his accomplishments, in 2007 the Agile Alliance awarded Naresh
with the Gordon Pask Award for contributing to the Agile Community by
establishing Agile User Groups in India and creating the Simple Design and
Testing conference.

Naresh is the founder and vice-chairman of the Agile Software Commu-
nity of India (ASCI). He has organized various conferences, including the
Simple Design and Testing Conference (SDTConf) and Agile Coach Camp.
Naresh has helped start various agile user groups, including the Agile Philly
User Group and various groups in India.

Naresh is an active open source committer and enjoys teaching software
development courses in universities. By being a part of the team, Naresh
helps software companies embrace agile.

Naresh enjoys beer, music, adventure sports, and hot food of any color. You
can reach him at naresh@agilefaqs.com.

Krishna Kadali, M. Tech (Kondapur, yderabad, India)

Krishna Kadali has more than 19 years of hands-on experience in technol-
ogy and building businesses around technology solutions. Krishna has been
part of high-technology startups, as well as publicly traded companies, where

205Contributors

he played a key role in building successful businesses around software prod-
ucts. He is currently leading a systems and data integration service provider
based out of Hyderabad, India, called Prabhavat Solutions, which provides
several systems and data integration solutions.

Prior to founding Prabhavat, Krishna was founder and CTO at Nimaya,
based in McLean, Virginia, where he spearheaded the development of its
flagship products, ActionBridge and InSync, and also delivered several
other customer data integration and systems integration solutions. As a
part of Nimaya, he has built an offshore team in India from the ground
up and successfully delivered several technology solutions through the off-
shore team.

Prior to founding Nimaya, Krishna served in various capacities at MKS in
Fairfax, Virginia, and BULL S.A. in Paris, France, providing major contri-
butions to architecture, design, development, and delivery of their flagship
products—NuTCRACKER and OSIAPI, respectively—with extensive systems
programming background.

Krishna has a master’s degree in telecommunications from the Indian Insti-
tute of Technology in Kharagpur, India, and a bachelor’s degree in electronics
and communications from Jawaharlal Nehru Technological University in
Anantapur, India.

Patrick Kua (ondon, UK)

Patrick Kua is an agile coach, facilitator, and developer for ThoughtWorks.
He has been working with individuals on teams in agile environments for
the last four years, and understands how powerful and responsive people
can be when working together in a common manner. He is always inter-
ested in aspects of continuous improvement, and how lightweight processes
can boost team effectiveness. He brings a blend of deep technical skills and
deep understanding of management processes to teams that help them
move toward their goals.

Anupam Kundu (ew ork, ew ork, U.S.)

Anupam Kundu is a project manager/lead consultant at ThoughtWorks,
primarily based out of the New York area. Anupam comes from a broad
consultancy background and offers specific experience for managing large-
scale projects in multiple business domains, including HR/intranet systems
in investment banking/private equity firms, telecom BACC in North Amer-
ica, global publishing and media, senior healthcare systems, and title insur-
ance. Anupam has more than nine years of experience in various stages of

206 Contributors

requirements gathering, estimation, analysis and design, implementation,
quality control, training, and post-implementation activities for software
projects with premier enterprises.

ukeman awal, M.E, MSE, R.ER. (ekki, agos,

igeria)

Lukeman Lawal is a project engineer with Chevron Nigeria Limited. He
manages oil and gas projects—engineering designs, construction, and
installation. Lukeman was a project engineer on Escravos Gas Project Phase
3A (EGP3A) Offshore, New Oil Fields development. He presently works as
an early concept development project engineer.

Lukeman was an academic staff member at the Department of Mechanical
Engineering,University of Benin, Benin City, Nigeria.

Martha egare, MBA, PMP (Atlanta, eorgia, U.S.)

Martha Legare has been a coach, trainer, and consultant in North America
and Europe for almost 20 years. She is CEO of the Gantt Group, a consult-
ing and training firm linking strategic planning, project management, and
behavioral science. While the Gantt Group has a variety of clients, it focuses
on the marketing and advertising industry.

Martha has designed and delivered numerous seminars, including Loyola
University’s Project Management Certificate for its MBA program, where
she is adjunct faculty. She is published in the AMA Trainers’ Activity Book.
Martha has written project methodologies and helped develop project
offices in the U.S., Mexico, and Europe.

Martha is a certified PMP® and certified mediator for the American Arbitra-
tion Association. She received her MBA from Almeda University and her BA
from Guilford College. She is an innately strategic thinker with strong cross-
cultural skills and a steadfast commitment to improving clients’ businesses.

ames eigh (Toronto, ntario, Canada)

James Leigh is an independent software consultant based in Toronto, and
has been building web solutions for 10 years. He is experienced with mod-
elling business problems and concepts in software, and specializes in per-
formance and technology integration. His background is in semantic web
technologies and decentralized networks.

207Contributors

James has also led semantic-related open source software projects, includ-
ing Sesame’s federated RDF store, relation RDF store, server client library
for Sesame, integration of Mulgara and Sesame, and the object RDF mapper
of OpenRDF. He has also led optimization efforts for various Java applica-
tions for over five years, including benchmarking and optimizing Sesame’s
RDF stores, AMC theatres’ employee scheduling system, and a manufactur-
ing tracking system for swimwear designers Christina and Gottex.

Craig etavec, PMP, PgMP, MSP (Waynesville, hio, U.S.)

Craig Letavec has served as a project, program, and enterprise PMO man-
ager in a diverse range of companies including Procter & Gamble, Hewlett-
Packard, and Siemens AG. His experience includes leading global software
development and implementation projects, developing and implementing
project and program management offices, and developing and presenting
project management training courses. Craig holds the Project Management
Professional (PMP)®, Program Management Professional (PgMP)®, and
Managing Successful Programmes (MSP) certifications as well as an MS in
project management from George Washington University. He is the author
of The Program Management Office: Establishing, Managing, and Growing
the Value of a PMO, a bestselling reference book on the topics of PMO
development and management, and Program Management Professional
(PgMP)®: A Certification Study Guide with Best Practices for Maximizing
Business Results (both from J. Ross Publishing).

Randy oomis, PMP (Andover, Connecticut, U.S.)

Randy Loomis is a certified PMP® with over 14 years of project manage-
ment experience, and has worked in the information technology field for 26
years. He is currently employed by Northeast Utilities as a project manager
in the IT Program Management Office. Randy graduated cum laude from
Eastern Connecticut State University with a degree in psychology.

Kim MacCormack (eesburg, irginia, U.S.)

Kim MacCormack is a cofounder of CodeSherpas, Inc., a software consul-
tancy that brings her software engineering experience to commercial and
government clients. In this role, she’s committed to developing high-quality
web applications, helping her clients get their products to market faster.

Kim has more than 13 years of software and systems engineering experi-
ence. She has designed and developed a variety of web-based and client
server applications. She received her master’s degree in software engineering

208 Contributors

in 2005. Kim was also an early adopter of Ruby on Rails and is a Golden
Spike alumna of the Pragmatic Studio Ruby on Rails Training Course. In
addition, she is a member of the Northern Virginia Java Users Group and
Ruby Users Group.

Kim has experience with every aspect of the software engineering life cycle,
including requirements analysis, design, human/computer interface (HCI)
design, code development, and verification/validation. She has served as a
project manager, technical lead, and/or software engineer for over 30 web
applications for various commercial, nonprofit, and government clients.
These projects included basic websites, intranets, e-commerce applications,
content management systems, and complex web-based survey tools to cre-
ate customized surveys with full multilingual support.

Kathy MacDougall (Erie, Colorado, U.S.)

Kathy MacDougall is chief business architect at Zepheira, which provides
solutions to effectively integrate, navigate, and manage data across per-
sonal, group, and enterprise boundaries. As chief business architect, Kathy
is responsible for analyzing clients’ current business architecture and mak-
ing recommendations for improvements to ensure successful adoption of
new technology implementations.

Kathy has extensive experience leading enterprise-wide initiatives to help
companies evaluate, manage, and leverage their corporate data to increase
revenues and uncover new business intelligence. Successes during her
20-year tenure in this field include creating data-based and knowledge
management solutions for companies ranging from $500 million to $11 bil-
lion in size, including such names as General Electric and Sun Microsystems.

Since 2000, Kathy has been implementing solutions using semantic web
technologies. At Sun Microsystems, Kathy and her team led the first known
large-scale corporate implementation of semantic web technologies, which
provides the foundation for dynamic delivery of content from across the
organization. With the proper combination of technology and business
infrastructure in place, Sun was able to achieve an estimated cost avoid-
ance of $10M annually. Kathy and team were invited to provide their expert
perspective on the role of semantic web technologies in business solutions
at W3C’s Technical Plenary in 2003.

Kathy is a graduate of Colgate University and has extensive training in
processes improvement and effecting organizational change, including
background in Six Sigma methodologies.

209Contributors

Ernani Marques da Silva, MBA, PMP, PgMP

(Mairipora, Sao Paulo, Brazil)

Ernani Marques has over 19 years of broad-based and successful experience
in project management, program management, and portfolio management
within the IT, banking, and services industries. He has led and managed
project/program management offices (PMOs), as well as multiple projects
and teams.

His experience within the IT industry includes managing projects and pro-
grams in the areas of application development, product management, and
system integration utilizing full System Development Life Cycle (SDLC)
processes and project management methodologies.

Alex Miller (Ballwin, Missouri, U.S.)

Alex Miller is a tech lead and engineer at Terracotta, Inc., the makers of the
open source Java clustering product Terracotta. Prior to Terracotta, Alex
worked at BEA Systems on the AquaLogic product line and was chief architect
at MetaMatrix. His interests include Java, concurrency, distributed systems,
query languages, and software design.

Alex enjoys writing his blog at http://tech.puredanger.com. He is a contrib-
uting author to the 2008 release The Definitive Guide to Terracotta (Apress),
along with the rest of the Terracotta team. Alex is a frequent speaker at
Java user group meetings, the No Fluff Just Stuff tour, and conferences like
JavaOne.

William . Mills (Castro alley, California, U.S.)

William J. Mills is currently a Technical Yahoo! working primarily on soft-
ware and product security at Yahoo!. Prior to that, he worked at Invisible
Worlds (now defunct); at Wells Fargo, running firewalls and working on its
first Internet banking release; at various contracting gigs; and for a while at
the County of San Diego Superior Court.

ennady Mironov, CPM (Toronto, ntario, Canada)

Gennady Mironov was born in 1967. He served two years in the Soviet
Army and graduated from Power Engineering Technical University in Mos-
cow in 1992 with a master’s degree in electrical engineering. He received his
post-grad education in psychology and business in 2001.

210 Contributors

Gennady has been working for last 16 years in the IT/telecommunications
industry in roles from field technician to solutions manager to program
manager. In the last four years before he immigrated to Canada, he man-
aged huge wireless projects across Russia, based on Siemens and Huawei
solutions. He was directly responsible for projects up to $16 million USD.

In 2008, Gennady finished a one-year post-grad program at Humber Insti-
tute of Applied Technology in project management in Toronto. He recently
applied at PMI for his PMP® exam.

He lives in Toronto with his wife and three children.

ared Richardson (Morrisville, orth Carolina, U.S.)

Jared Richardson is the coauthor of the book Ship It! A Guide to Successful
Software Projects (Pragmatic), which is now available in five languages. He
works with NFJS One to help teams and managers who want an external
point of view. Jared can be found on the Web at http://AgileArtisans.com
and http://NFJSOne.com.

Brian Sam-Bodden (Scottsdale, Arizona, U.S.)

Brian Sam-Bodden is an author and recognized international speaker.
Brian has worked as an architect, developer, mentor, and trainer for several
Fortune 500 companies. He is the author of Beginning POJOs: Spring, Hiber-
nate, JBoss and Tapestry (Apress), and has also coauthored the Apress Java
title Enterprise Java Development on a Budget: Leveraging Java Open Source
Technologies.

Angyne . Schock-Smith, PMP (Phillipsburg, ew ersey,

U.S.)

Angyne J. Schock-Smith, PMP, is the former president and CEO of Arysta
Projex, Inc., an independent firm that served the project management com-
munity for 10 years. Prior to that time, Angyne served as a practicing proj-
ect manager across multiple functions, including global network solutions,
sales support, customer care, product management and strategic planning,
over an 18-year career with AT&T. As of October 1, 2008, she became
senior instructional designer for International Institute for Learning’s (IIL)
Global Learning Solutions, specializing in project/program management
and leadership training and consulting services.

211Contributors

Matt Secoske (maha, ebraska, U.S.)

Matt Secoske is principal of Nimblelogic, LLC, a boutique software devel-
opment company dedicated to making kick-*** web applications. He blogs
at http://mattsecoske.com and is on Twitter as @secos.

Richard Sheridan (Ann Arbor, Michigan, U.S.)

After only two years in business, Rich Sheridan, CEO of Menlo Innova-
tions, became the Forbes “Hire Yourself ” cover story for all those choos-
ing entrepreneurship over unemployment. The next year, it was a Wall
Street Journal article on the unique office Menlo uses for software design
and development. Within six years, Menlo had become one of Inc. 500’s
fastest-growing privately held firms in the U.S. What makes this story truly
remarkable is that it occurred against the backdrop of an IT industry that
everyone assumed was leaving the U.S. for offshore.

Sheridan’s team at Menlo breaks all the rules and, in doing so, produces
phenomenal results for its customers. No walls, offices, doors, or cubes—
one big open room, à la Edison’s original invention factory in Menlo Park,
New Jersey. In this noisy, fun atmosphere, Menlo has produced software
for all walks of industry, from health care to scientific equipment to high-
fashion e-commerce to diesel motor vehicle diagnostics, and many more.

Software developed by Menlo for its clients is designed for everyday people
by Menlo’s High-tech Anthropologists®, built to last by Menlo’s world-class
agile software development team, and managed by a set of professional
project managers listed among the nation’s 50 Most Prolific by the Project
Management Institute. Sheridan and Menlo have won numerous awards
and honors, and he and his team regularly are invited to present nation-
ally and internationally, sharing the secrets of the Menlo Software Factory™
with all who wish to learn how to build a learning organization that can
keep pace with today’s advances in software and design.

Derry Simmel, PMP, MBA, FMI (Chapin, South Carolina,

U.S.)

Derry Simmel has been in IT and project management for over 25 years.
Recently he has been creating PMOs, having built three in the last six years.
The latest of theses is for an $89 million program for the state of South Caro-
lina. Derry has an MBA from the University of Phoenix and a BS in computer
science from the University of South Carolina. He currently serves as the
vice-chairman of membership for PMI’s Project Management Office Specific
Interest Group and as the VP of programs for the PMI Midlands Chapter.

212 Contributors

Pavel Simsa, PMP (Bellevue, Washington, U.S.)

Pavel Simsa has been in the software development and localization business
for 10 years, 5 of which were project and program management of enter-
prise security software. He works for an international corporation with
stakeholders generally spread across the globe for each project. Each prod-
uct is typically released in 10–17 different languages, all at the same time.
Although he earned his PMP® certification only in 2008, he has been fol-
lowing the PMBOK® Guide best practices for several years, trying to apply
them to the unique, agile, and challenging world of software.

Ken Sipe (St. Charles, Missouri, U.S.)

Ken Sipe is a technology director with Perficient, Inc. (PRFT). Ken was the
founder of CodeMentor, where he was the chief architect and mentor, lead-
ing clients in the execution of RUP and agile methodologies in the delivery
of software solutions. He is a former trainer for Rational in OOAD and
RUP, and a CORBA Visibroker trainer for Borland. He continues to enjoy
providing training and mentoring in all aspects of software development.

Ken is also a regular speaker with NFJS—No Fluff Just Stuff.

Marty Skomal, MPA (maha, ebraska, U.S.)

Marty Skomal is director of programs at the Nebraska Arts Council, where
he supervises all organizational grant programs, including arts education,
multicultural arts, and arts touring. He has served as a conference presenter
and panelist for numerous state arts agencies, the Kennedy Center for the
Performing Arts, and the National Endowment for the Arts. He is also a
former NEA Fellowship recipient in the Arts Administration Fellows Pro-
gram and serves as a national arts program evaluator and consultant.

Marty holds a master’s degree in public administration from the University
of Nebraska.

Brian Sletten (Beverly ills, California, U.S.)

Brian Sletten is a liberal arts–educated software engineer with a focus on
forward-leaning technologies. He has a background as a system architect,
a developer, a mentor, and a trainer. His experience has spanned the online
games, defense, finance, and commercial domains with security consulting,

213Contributors

network matrix switch controls, 3D simulation/visualization, Grid Com-
puting, P2P, and semantic web–based systems. He has a BS in computer
science from the College of William and Mary and currently lives in Bev-
erly Hills, California. He is a senior platform engineer for Riot Games in
Culver City, California, working on League of Legends. He focuses on web
architecture, resource-oriented computing, the semantic web, scalable sys-
tems, and security consulting.

enkat Subramaniam (Broomfield, Colorado, U.S.)

Venkat Subramaniam, founder of Agile Developer, Inc., has trained and men-
tored thousands of software developers in the U.S., Canada, Europe, and Asia.
He helps his clients succeed with agile development and various software
technologies.

Venkat is a frequently invited speaker at various international software
conferences. He authored .NET Gotchas (O’Reilly), and coauthored the
2007 Jolt Productivity Award–winning book Practices of an Agile Developer
(Pragmatic Bookshelf). His most recent book is Programming Groovy (also
Pragmatic).

You can reach him at venkats@agiledeveloper.com.

Miyoko Takeya, PMP (Tokyo, apan)

Miyoko Takeya is a member of the Project Management Institute (PMI),
the Project Management Association Japan (PMAJ), and the Japan Soft-
ware Engineering and Management Society (SEMS).

For more than 30 years, she has worked in the information technology
industry in Japan, starting with Hitachi Co. Ltd. as an operating system
programmer, moving to Digital Equipment Co., and then to NCR Japan.

While she was at Digital and NCR, Miyoko spent most of her time on proj-
ect business and drove several programs for business quality and perfor-
mance. She also established a PMO (project management office), through
which she was able to implement a project management system, a proj-
ect accounting system, a project pricing system, an activity reporting and
tracking system, and many other systems used successfully for business
quality and performance improvement.

Miyoko has enjoyed her work in the IT industry project business area a
great deal. Currently, she runs her own consulting business for project
management.

214 Contributors

Fabio Teixeira de Melo, PMP (Coatzacoalcos, eracruz,

Mexico)

Fabio Pereira Teixeira de Melo, PMP, is a planning manager working for
Construtora Norberto Odebrecht, the construction arm of the Brazilian
multinational Odebrecht Group, with headquarters in Salvador–BA, Bra-
zil, and offices in 15 countries. His experience spans 15 years in construc-
tion, including EPC projects in energy, oil, gas, and petrochemical areas. A
Leadership Institute Graduate from the 2004 class and founder and former
president of PMI Recife, Pernambuco, Brazil Chapter, Fabio participated in
the elaboration of the Construction Extension to the PMBOK® Guide and
the Practice Standard for Scheduling®, and served a five-year term as Latin
America chair for the DPC SIG.

uis E. Torres, PMP (San Rafael, Alajuela, Costa Rica)

Luis E. Torres is a PMP® certified by the Project Management Institute (PMI).
He holds a master’s degree in project management (Universitat Ramon Llull,
Barcelona, Spain), MBAs in banking and finance (University of Costa Rica)
and international business (University of Costa Rica – National University,
San Diego, California), and a Licentiate in Mechanical Engineering (Uni-
versity of Costa Rica). Luis has over 15 years of combined experience in the
fields of strategic planning and budgeting, project management and finan-
cial analysis for multinational companies, administration of international
procurement contracts, and project engineering.

arry Tucker (Matawan, ew ersey, U.S.)

Harry Tucker (http://www.harrytucker.com) is consumed by excellence
in leadership incubation, collaboration, and personal empowerment. He
believes that current social, political, and ecological conditions warrant
a sense of urgency to incubate these leadership attributes in others. To
that point, he and his associates work with recognized leaders in personal
empowerment and leadership development to incubate skills and knowl-
edge in others while igniting their passion to make effective contributions
to the world.

Harry currently serves as a leadership incubator and strategy advisor to
Fortune 100 companies and has served Wall Street clients for almost 20
years. Previously, Harry worked as an award-winning senior enterprise

215Contributors

strategy advisor and architect with Microsoft. He is the founder of the
Microsoft Personal Empowerment Group, a private group within Microsoft
dedicated to incubating the growth of personal and professional success. In
2005, Harry also incubated a goal-setting and life-architecture program for
inner-city youth.

In addition to enjoying life with his partner Rowan and three wonderful
kids, Harry enjoys fly-fishing and reading, writing, studying, speaking, and
breathing personal empowerment principles.

orin Unger (oboken, ew ersey, U.S.)

Lorin Unger has over 12 years of experience in technology strategy and
management in environments ranging from dot-com to finance.

His specialties include technical strategy, team building and management,
process creation and implementation, offshore development procedure
implementation and management, efficiency analysis, and patience.

Angelo alle (Rio de aneiro, Brazil)

Angelo Valle is a specialist in technological innovation and industry orga-
nization civil engineer, master in construction management, at Federal
University, Rio de Janeiro, Brazil. He is the immediate past president of the
Rio de Janeiro Project Management Institute (PMI) chapter.

Angelo is a noted author of numerous papers. His latest areas of interest
revolve around project management organizations (PMOs) and earned
value. As academic coordinator of the MBA for Foundation Getulio Var-
gas, he is currently responsible for the education of more than 20,000 post-
graduate students.

elio arella, PMP (Tijuca, Rio de aneiro, Brazil)

Lelio Varella is a business management consultant with over 30 years of
experience and a focus on strategic planning and organizational devel-
opment; portfolio, program, and project management; and project man-
agement offices. He has provided service for some of the most important
Brazilian companies in sectors spreading from IT to oil and gas. A skilled
spokesperson and instructor, he has coauthored or participated in three
project management books. Lelio has been an active volunteer for PMI for
more than 10 years, and his achievements include founding the PMI Rio de
Janeiro chapter, which currently has over 1,000 members.

216 Contributors

Paul Waggoner, MBA, PMP, MCSE, CP, CSS (Waukee,

Iowa, U.S.)

Paul Waggoner, MBA, PMP, MCSE, CHP, CHSS, is an independent con-
sultant and contract project manager. Paul has over 20 years of experience
working in healthcare, information technology, and security. As a health-
care specialist, he works in the provider as well as payer environments.

For the past 10 years, Paul has worked as a project manager helping estab-
lish a PMO and completing a wide range of systems and clinical projects.
He has also held several technical and management positions and worked
as a director of a large information systems department in the midwest. He
also co-owned a computer training business and performed a wide range of
technical and administrative responsibilities.

Adrian Wible (ew ork, ew ork, U.S.)

Adrian Wible’s self-chosen title is “Software Development Catalyst”; he
works for ThoughtWorks, Inc., mostly in project management roles, but
strives to fend off suggestions of being “post-technical” by getting his hands
dirty in software development from time to time. He was indoctrinated
in the Waterfall/SDLC mode of development as a developer at IBM, and
moved into project, people, and process management roles throughout his
20+ year career there and at Dell Computer Corporation. Adrian joined
ThoughtWorks and discovered the Agile Manifesto (and XP, and Scrum,
and…) in 2005, and realized that project work and management could be
fun, exciting, and rewarding. He hasn’t looked back since.

Adrian can be reached at awible@thoughtworks.com.

David Wood (Fredericksburg, irginia, U.S.)

David Wood is a partner of Zepheira, where he manages software projects
and recommends the application of disruptive technologies to maximize
business opportunities.

David has been involved with the development of semantic web standards,
tools, products, and services since 1999. He cochaired the Semantic Web
Best Practices and Deployment Working Group at the W3C, and was a
member of the Semantic Web Coordination Group. He is a founding mem-
ber of several open source software projects, including the Kowari Metastore,
the Mulgara Semantic Store, and the recently rearchitected Persistent URL
service.

mailto:awible@thoughtworks.com

217Contributors

Most recently, David was entrepreneur-in-residence at the MIND Labo-
ratory within the University of Maryland Institute for Advanced Com-
puter Studies. He lead the implementation team for the Policy-Aware Web
project, which developed a next-generation access-control system for the
World Wide Web. David founded Tucana Technologies, Inc., a purveyor of
a semantic web database purchased by Northrop Grumman Corporation
in 2005. Prior to Tucana, David founded Plugged In Software, a successful
software services firm in Australia from 1995–2002.

David is an adjunct instructor of computer science at the University of Mary
Washington and researches the application of recombinant data techniques
to software maintenance at the University of Queensland.

oe enevitch (ew ork, ew ork, U.S.)

Joe Zenevitch is a senior project manager with ThoughtWorks, Inc., where
he provides program and project management services for state-of-the-art
software development projects, in addition to business analysis and agile
coaching. Joe has over 20 years of experience in software development, with
the past 15 focused on project management. While he has background in
traditional project management methods, he has specialized in agile project
management since ThoughtWorks began adopting it on projects in 1998.

Joe can be reached at joez@thoughtworks.com.

mailto:joez@thoughtworks.com

218 Index

umbers
60/60 Rule, 68–69

A
agile, 122
agile development processes, 17
agile software methodologies, 114–115
annoying websites, 194–195
Apache project, 182
asynchronous communication, 87

B
Becchi, Matteo

biography, 196
Clear Terms, Long Friendship!, 134–135

Berg, Cynthia A.
A Project Is the Pursuit of a Solution,

140–141
biography, 196
True Success Comes with a Supporting

Organization, 190–191
biographies

Becchi, Matteo, 196
Berg, Cynthia A., 196
Bock, David, 197
Castillo, David Diaz, 198
Dahan, Udi, 198
Daniel, Matt “Boom”, 198
Davis, Barbee, 199
Davis, Monte, 199
Davis, Scott, 200
Ford, Neal, 200

Gelabert, Jorge, 200
Giammalvo, Dr. Paul, 201
Gillison, Karen, 202
Graham, James, 202
Greenblatt, Alan, 202
Heldman, Kim, 203
Jain, Naresh, 204
Kadali, Krishna, 204
Kua, Patrick, 205
Kundu, Anupam, 205
Lawal, Lukeman, 206
Legare, Martha, 206
Leigh, James, 206
Letavec, Craig, 207
Loomis, Randy, 207
MacCormack, Kim, 207
MacDougall, Kathy, 208
Marques da Silva, Ernani, 209
Miller, Alex, 209
Mills, William J., 209
Mironov, Gennady, 209
Richardson, Jared, 210
Sam-Bodden, Brian, 210
Schock-Smith, Angyne J., 210
Secoske, Matt, 211
Sheridan, Richard, 211
Simmel, Derry, 211
Simsa, Pavel, 212
Sipe, Ken, 212
Skomal, Marty, 212
Sletten, Brian, 212
Subramaniam, Venkat, 213
Takeya, Miyoko, 213
Teixeira de Melo, Fabio, 214

Index

219Index

D
Dahan, Udi

biography, 198
The Fallacy of Status, 162–163

Daniel, Matt “Boom”
biography, 198
Speed Is Life; More Is Better, 116–117

Davis, Barbee
9.7 Reasons I Hate Your Website,

194–195
Alice Doesn’t Live Here Anymore,

106–107
biography, 199
Can Earned Value and Velocity Coexist

on Reports?, 146–147
Get Users Involved As Early As

Possible, 2–3
Success Is Always Measured in

Business Value, 36–37
We Have Met the Enemy…and He Is

Us, 70–71
Davis, Monte

biography, 199
Document Your Process, Then Make

Sure It Is Followed, 30–31
Know Your Integration Points,

128–129
Davis, Scott

biography, 200
Favor the Now Over the Soon,

114–115
Favor the Simple Over the Complex,

10–11
deadlines, missing, 6–7
debt, technical, 12–13
delegation, 121
deliverables

managing, 174–175
responsibility, 92–93

delivering fast, 4–5
developers

empowering, 44–45
identifying good developers, 24–25
multiple projects, 41
productivity, 41
skilled versus average, 26–27

distributed projects, 130–131
documenting code, 47
documenting processes, 30–31
documents, 144–145
dogfight, 116

Torres, Luis E., 214
Tucker, Harry, 214
Unger, Lorin, 215
Valle, Angelo, 215
Varella, Lelio, 215
Waggoner, Paul, 216
Wible, Adrian, 216
Wood, David, 216
Zenevitch, Joe, 217

Bock, David
biography, 197
Building the Morale on Your Team,

118–119
Recognize the Value of Team Morale,

166–167
buffer time, 82–83
business requirements, gathering, 64–65
business value, 36–37

C
Castillo, David Diaz

Align Vision and Expected Outcome,
104–105

biography, 198
IT Program Management: Shared

Vision, 80–81
change management, 78–79
clear terms, 134–135
code

documenting, 47
maintaining clever, 46–47

communication, 138–139, 172–173
asynchronous, 87
distributed projects, 130–131
presentations, 164–165
synchronous, 87

completion, 66–67
complexity, 10–11
contingency planning, 82–83
contracts

administration, 156–157
avoiding disputes, 108–109
clear, 135

control, 74–75
being in, 186–187

CRAM (Constraints, Resources, Aptitude,
and Motivation), 143

crisis, responding to, 126–127
customers, listening to, 62–63
cycles, working in, 72–73

220 Index

Greenblatt, Alan
biography, 202
One Deliverable, One Person, 92–93
Requirement Specifications: An

Oxymoron, 34–35

hacks, 12
Heldman, Kim

biography, 203
The Importance of the Project Scope

Statement, 102–103
human factors, 142–143

managing, 48–49

I
importance, 158–159
information sharing, 188–189
integration, 128–129
international team members, 106–107
iterations, 12, 44, 61

Jain, Naresh

biography, 204
Build Teams to Run Marathons, Not

Sprints, 96–97
Go Ahead, Throw That Practice Out,

32–33
You Get What You Measure, 110–111

K
Kadali, Krishna

biography, 204
Flexibility Simplifies Project

Management, 180–181
Keep It Simple, Simon, 16–17

Kua, Patrick
biography, 205
Documents Are a Means, Not an End,

144–145
You Are Not in Control, 186–187

Kundu, Anupam
Aggressively Promote Communication

in Distributed Projects, 130–131
biography, 205
Don’t Throw Spreadsheets at People

Issues, 90–91
Size Matters, 28–29

E
earned value, 146–147
ego, 123
empowering developers, 44–45
end in sight while planning, 132–133
estimating, 54–55, 136–137
expectations

aligning vision and, 104–105
clear, 134
setting, 90–91

F
failure, project, 8–9, 60–61, 74–75
fast development, 4–5
feedback, 142–143
finished, defining, 66–67
flexibility, 180–181
focus sessions, 40–41
Ford, Neal

biography, 200
Developer Productivity: Skilled Versus

Average, 26–27

gathering business requirements, 64–65
Gelabert, Jorge

Avoiding Contract Disputes, 108–109
biography, 200
Project Sponsors—Good, Bad, and

Ugly, 152–153
Giammalvo, Dr. Paul

biography, 201
Don’t Fall into the “Not Invented Here”

Syndrome, 112–113
Gillison, Karen

biography, 202
Serve Your Team, 122–123

governance, 192–193
Graham, James

biography, 202
How to Spot a Good IT Developer,

24–25
Keep Your Perspective, 64–65
Managing Human Factors in IT

Project Management, 48–49
Responding to a Crisis, 126–127

221Index

Mills, William J.
biography, 209
Meetings Don’t Write Code, 76–77

Mironov, Gennady
biography, 209
Communicating Is Key, 138–139

Moore’s Law, 183
morale, 118–119, 166–167
motivation, 52–53, 143
multiple projects, developers, 41

new software project managers, 70–71
Northwest Airlines Flight 1549, 126

over-delivering, 154–155

P
perfect execution, fallacy of, 84–85
perfect knowlege, fallacy of, 94–95
personal strengths and weaknesses, 176–177
planning, value of, 170–171
poorly written requirements, 20–21
presentations, 164–165
problem management, 42–43
processes

associated with project management,
112–113

documenting, 30–31
reassessing, 32–33
teaching, 160–161

productivity, developers, 41
program goals, 80–81
project completion, 66–67
project failure, 8–9
project governance, 192–193
project management office (PMO), 56–57,

146, 193
project meeting guidelines, 134
project roadmaps, 100–101
project scope statement, 102–103
project size, 28–29

R
reality time, 82–83
refactoring, 4
refactoring a hack, 61
reinventing the wheel, 18–19

Lawal, Lukeman

biography, 206
Engage Stakeholders All Through

Project Life, 168–169
Legare, Martha

biography, 206
What Do They Want to Hear,

Anyway?, 164–165
Lehman, Meir (Manny), 85
Leigh, James

biography, 206
Provide Regular Time to Focus, 40–41
Work in Cycles, 72–73

Letavec, Craig
biography, 207
Planning for Reality, 82–83

localization buffer, 7
long meetings, 70
Loomis, Randy

biography, 207
Save Money on Your Issues, 22–23

M
MacCormack, Kim

biography, 207
Scrolling Through Time, 20–21

MacDougall, Kathy
biography, 208
Chart a Course for Change, 78–79
Roadmaps: What Have We Done for

You Lately?, 100–101
maintaining clever code, 46–47
Marques da Silva, Ernani

biography, 209
Buying Ready-Made Software,

150–151
Effectively Manage the Deliverables,

174–175
Establish Project Management

Governance, 192–193
measuring incorrect parameters, 110–111
measuring success, 36–37
meetings, 76–77

frequent and instant, 178–179
long, 70

methodologies, worshipping, 88–89
Miller, Alex

biography, 209
Important, but Not Urgent, 158–159

222 Index

releases, 60, 154
requirements

changing, 124–125
fallacy of perfect knowledge, 95–96
gathering business requirements, 64–65
poorly written, 20–21
simplicity, 16
stories, 44
versus specifications, 34–35
writing, 8–9

responsibilities, deliverables, 92
results over effort, 58–59
rewards versus punishment, 78
rewriting everything, 18–19
Richardson, Jared

biography, 210
Share the Vision, 188–189
You Aren’t Special, 18–19

roadmaps, 100–101
robust, defined, 182

S
Sam-Bodden, Brian

biography, 210
How Do You Define “Finished”?,

66–67
Introduce a More Agile

Communication System, 86–87
Schock-Smith, Angyne J.

biography, 210
We Are Project Managers, Not

Superheroes, 176–177
scope, changing, 148–149
scope statement, 102–103
scripts, 22
Secoske, Matt

biography, 211
Don’t Always Be “The Messenger”,

172–173
sequencing tasks, 7
serving the team, 122–123
shared vision, 80–81
sharing information, 188–189
Sheridan, Richard

Add Talents, Not Skills, to Your Team,
14–15

biography, 211
Estimate, Estimate, Estimate, 54–55
Increase Communication: Hold

Frequent, Instant Meetings,
178–179

Teach the Process, 160–161

silver bullets, 90
Simmel, Derry

biography, 211
The Value of Planning, 170–171

simplicity, 10–11, 16–17
Simsa, Pavel

A Word Can Make You Miss Your
Deadline, 6–7

biography, 212
Developers Hate Status Reports,

Managers Love Them, 184–185
Scope Change Happens; Get Used To

It, 148–149
Sipe, Ken

biography, 212
Empowering Developers: A Man

Named Tim, 44–45
size of project, 28–29
skill versus talent, 14–15
Skomal, Marty

A Voice from the Other Side, 62–63
biography, 212

Skyles, Jeffrey, 126
Sletten, Brian

biography, 212
Pay Your Debts, 12–13
Software Failure Is Organizational

Failure, 60–61
software, purchasing, 150–151
specifications versus requirements, 34–35
“speed is life; more is better” focus, 116–117
sponsors, 152–153
spreadsheets, 90–91
stakeholders, 173

engaging, 168–169
status, fallacy of, 162–163
status reports, 184–185
stories, 44
Subramaniam, Venkat

Avoid Whack-a-Mole Development, 4–5
biography, 213
Value Results, Not Just Effort, 58–59

success, measuring, 36–37
Sullenburger, Chesley, 126–127
supportive organization, 190–191
synchronous communication, 87

T
Takeya, Miyoko

biography, 213
Make Project Sponsors Write Their

Own Requirements, 8

223Index

talent versus skill, 14–15
tasks

keeping team members motivated,
52–53

sequencing, 7
teaching the process, 160–161
team building, 96–97
team members, 142–143

aligning, 104
international, 106–107
morale, 118–119, 166–167
serving the team, 122–123

teamwork, 120–121
technical debt, 12–13
Teixeira de Melo, Fabio

biography, 214
Don’t Worship a Methodology, 88–89
Every Project Manager Is a Contract

Administrator, 156–157
time off, 38–39
time to focus, 40–41
tools, 18–19, 27

software, purchasing, 150–151
Torres, Luis E.

biography, 214
Start with the End in Mind, 132–133

tracking time against separate issues,
22–23

triple constraint, 98–99
Tucker, Harry

biography, 214
To Thine Own Self Be True, 74–75

U
under-promising, 154–155
Unger, Lorin

biography, 215
Project Management Is Problem

Management, 42–43
urgency, 158–159
users, involving, 2–3

vacations, 38–39
Valle, Angelo

biography, 215
Developers Unite—PMOs Are

Advancing, 56–57
value, business, 36–37
value of planning, 170–171

Varella, Lelio
A Project Depends on Teamwork,

120–121
biography, 215

velocity, 26, 110
earned value, 146–147

W
Waggoner, Paul

biography, 216
The Holy Trinity of Project

Management, 98–99
The Missing Link, 52–53

websites, annoying, 194–195
whack-a-mole development, 4–5
Wible, Adrian

biography, 216
It’s the People, Stupid, 142–143
Use a Wiki, 50–51

wikis, 50–51
Wood, David

biography, 216
Clever Code Is Hard to Maintain,

46–47
The 60/60 Rule, 68–69
The Fallacy of Perfect Execution,

84–85
The Fallacy of Perfect Knowledge,

94–95
The Fallacy of the Big Round Ball,

124–125
The Web Points the Way, for Now,

182–183
work breakdown structure, 140–141
working together, 188–189
worshipping methodologies, 88–89

Zenevitch, Joe

biography, 217
Don’t Skip Vacations for the Project,

38–39
Should You Under-Promise, or Over-

Deliver?, 154–155
The Best Estimators: Those Who Do

the Work, 136–137

The cover and heading font is Gotham; the text font is Minion Pro.

Colophon

	Tips by Topic
	Preface
	Get Users Involved As Early As Possible
	Avoid Whack-a-Mole Development
	A Word Can Make You Miss Your Deadline
	Make Project Sponsors Write Their Own Requirements
	Favor the Simple Over the Complex
	Pay Your Debts
	Add Talents, Not Skills, to Your Team
	Keep It Simple, Simon
	You Aren’t Special
	Scrolling Through Time
	Save Money on Your Issues
	How to Spot a Good IT Developer
	Developer Productivity: Skilled Versus Average
	Size Matters
	Document Your Process, Then Make Sure It Is Followed
	Go Ahead, Throw That Practice Out
	Requirement Specifications: An Oxymoron
	Success Is Always Measured in Business Value
	Don’t Skip Vacations for the Project
	Provide Regular Time to Focus
	Project Management Is Problem Management
	Empowering Developers:
A Man Named Tim
	Clever Code Is Hard to Maintain
	Managing Human Factors in IT Project Management
	Use a Wiki
	The Missing Link
	Estimate, Estimate, Estimate
	Developers Unite—PMOs Are Advancing
	Value Results, Not Just Effort
	Software Failure Is Organizational Failure
	A Voice from the Other Side
	Keep Your Perspective
	How Do You Define “Finished”?
	The 60/60 Rule
	We Have Met the Enemy…and He Is Us
	Work in Cycles
	To Thine Own Self Be True
	Meetings Don’t Write Code
	Chart a Course for Change
	IT Program Management: Shared Vision
	Planning for Reality
	The Fallacy of Perfect Execution
	Introduce a More Agile Communication System
	Don’t Worship a Methodology
	Don’t Throw Spreadsheets at People Issues
	One Deliverable, One Person
	The Fallacy of Perfect Knowledge
	Build Teams to Run Marathons, Not Sprints
	The Holy Trinity of Project Management
	Roadmaps: What Have We Done for You Lately?
	The Importance of the Project Scope Statement
	Align Vision and Expected Outcome
	Alice Doesn’t Live Here Anymore
	Avoiding Contract Disputes
	You Get What You Measure
	Don’t Fall into the “Not Invented Here” Syndrome
	Favor the Now Over the Soon
	Speed Is Life; More Is Better
	Building the Morale on Your Team
	A Project Depends on Teamwork
	Serve Your Team
	The Fallacy of the Big Round Ball
	Responding to a Crisis
	Know Your Integration Points
	Aggressively Promote Communication in Distributed Projects
	Start with the End in Mind
	Clear Terms, Long Friendship!
	The Best Estimators: Those Who Do the Work
	Communicating Is Key
	A Project Is the Pursuit of a
Solution
	It’s the People, Stupid
	Documents Are a Means, Not an End
	Can Earned Value and Velocity Coexist on Reports?
	Scope Change Happens; Get Used to It
	Buying
Ready-Made Software
	Project Sponsors—Good, Bad, and
Ugly
	Should You Under-Promise, or Over-Deliver?
	Every Project Manager Is a Contract Administrator
	Important, but Not Urgent
	Teach the Process
	The Fallacy of Status
	What Do They Want to Hear, Anyway?
	Recognize the Value of Team Morale
	Engage Stakeholders All Through Project Life
	The Value of Planning
	Don’t Always Be “The Messenger”
	Effectively Manage the Deliverables
	We Are Project Managers, Not Superheroes
	Increase Communication: Hold Frequent, Instant Meetings
	Flexibility Simplifies Project Management
	The Web Points the Way, for Now
	Developers Hate Status Reports, Managers Love Them
	You Are Not in Control
	Share the Vision
	True Success Comes with a Supporting Organization
	Establish Project Management Governance
	9.7 Reasons I Hate Your Website
	Contributors
	Index

