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Preface

Proof theory, one of the two main directions of logic, has been mostly

concentrated on pure logic. There have been systematic reasons to think

that such a limitation of proof theory to pure logic is inevitable, but about

twelve years ago, we found what appears to be a very natural way of extending

the proof theory of pure logic to cover also axiomatic theories. How this

happens, and how extensive of our method is, is explained in this book.

We have written it so that, in principle, no preliminary knowledge of proof

theory or even of logic is necessary.

The book can be profitably read by students and researchers in philos-

ophy, mathematics, and computer science. The emphasis is on the pre-

sentation of a method, divided into four parts of increasing difficulty and

illustrated by many examples. No intricate constructions or specialized tech-

niques appear in these; all methods of proof analysis for axiomatic theories

are developed by analogy to methods familiar from pure logic, such as nor-

mal forms, subformula properties, and rules of proof that support root-first

proof search. The book can be used as a basis for a second course in logic,

with emphasis on proof systems and their applications, and with the basics

of natural deduction and sequent calculus for pure logic covered in Part I,

Chapter 2, and Part II, Chapter 6.

A philosopher who seeks the general significance of the work should be

able to see in what sense it contributes to the solution of a fascinating recently

discovered last problem of Hilbert that belongs to proof theory. The much

later Hilbert programme had more specific aims. It is remarkable how many

of the original aims of this foundational programme can be carried through

in, say, algebra and geometry, and indeed in many parts of mathematics that

do not involve the natural numbers and the incompleteness of their theory.

Mathematically oriented readers should be able, after a study of this book,

to produce independent work on the application of the method of proof

analysis in their favourite axiomatic theories.

The fourth part, on non-classical logics, is mainly aimed at the stu-

dent and specialist in philosophical logic. It presents in a systematic form,

building on the previous parts, a proof theory of non-classical logics,

with semantical aspects incorporated through what are known as labelled ix
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logical calculi. The fundamental idea here is very clear: the various systems

of modal and other non-classical logics can usually be characterized by some

key properties, expressed as conditions in the standard Kripke semantics.

These conditions are, taken abstractly, axioms for the frames of the said

semantics, and they convert into rules that extend an underlying sequent

calculus. The execution of this idea in the fourth part builds, by way of the

method, on virtually everything that has been presented in the previous

parts. It was a great surprise to the authors when the first of them discov-

ered the application of proof analysis to non-classical logics in 2003, and

many results in Part IV are new. This part is also useful for the study of

logic in computer science. Recent years have seen a growth of literature in

computer science on logical systems of knowledge presentation that stems

from epistemic logic as developed by philosophers, and to which systems

the method of Part IV can be fruitfully applied.

Hilbert’s enigmatic last problem that decorates our title is explained in our

Prologue that begins the book. The structure of the book is explained later

in Section 1.3, after which a summary of the individual chapters follows.

Finally, a word about what is not included: we have decided to, by and

large, present our approach and let it speak for itself. Of the different parts

of proof theory, we have a lot to say about structural proof theory, the

topic of our previous book published in 2001. Other topics, such as the

proof theory of arithmetic, ordinal proof theory, and what Anne Troelstra

calls interpretational proof theory in his Basic Proof Theory, remain largely

untouched. Troelstra’s book can be consulted for a first look at these different

aspects to proof theory. There is no easy introduction to the proof theory of

arithmetic, but Takeuti’s Proof Theory, especially in its early chapters, is fairly

accessible. The recent book by Pohlers (2009) on ordinal proof theory is a

hard read. Kohlenbach’s (2008) hefty tome collects together an enormous

amount of results that belong to interpretational proof theory.

This book began with a series of lectures titled ‘Five Lectures on Proof-

Analysis’ that the first author gave in Dresden in 2003. A second series was

given in Munich, and a third in Braga, Portugal, in 2006. The year after, the

second author gave a more extensive course on the topic at the University

of Helsinki. We thank those involved, organizers, colleagues, and students,

for these opportunities. In particular, we thank Roy Dyckhoff as well as our

students Bianca Boretti, Annika Kanckos, and Andrea Meinander, who have

all done research that has affected our presentation. We have also benefited

from comments by Michael von Boguslawski and Sergei Soloviev. All the
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while, we have been surrounded by the patient wondering of Daniel, Stella,

and Niclas.

In 1998, when the program of proof analysis was launched by our joint

article ‘Cut Elimination in the Presence of Axioms’ in The Bulletin of Sym-

bolic Logic, we received from Jussi Ketonen the following reaction: ‘I suspect

that this type of work will eventually lead to a completely new kind of under-

standing of proofs – not only as applications of rules, axioms, or ideologies,

but as a branch of mathematics’. Now, twelve years later, we hope to have

realized at least a beginning of that vision.





Prologue: Hilbert’s last problem

David Hilbert presented his famous list of open mathematical problems at

the international mathematical congress in Paris in 1900. First in the list

was Cantor’s continuum problem, the question of the cardinality of the set

of reals numbers. The second problem concerned the consistency of the

arithmetic of real numbers, i.e., of analysis, and so on. These problems are

generally recognized and have been at the centre of foundational research

for a hundred years, but few would be able to state how Hilbert’s list ended:

namely with a 23rd problem about the calculus of variations – or so it was

thought until some years ago, when German historian of science Rüdiger

Thiele found from old archives in Göttingen some notes in Hilbert’s hand

that begin with:

As a 24th problem of my Paris talk I wanted to pose the problem: criteria for the

simplicity of proofs, or, to show that certain proofs are simpler than any others. In

general, to develop a theory of proof methods in mathematics.

The 24th problem thus has two parts: a first part about the notion of

simplicity of proofs, and a second one that calls for a theory of proofs in

mathematics. Just as the problems that begin the list, what we call Hilbert’s

last problem has been at the centre of foundational studies for a long time.

When Hilbert later started to develop his Beweistheorie (proof theory), its

aims were much more specific than the wording of the last problem suggests:

he put up a programme the aim of which was to save mathematics from

the threat of inconsistency, by which one would also ‘solve the foundational

problems for good’.

Gerhard Gentzen, a student of Paul Bernays with whom Hilbert was

working, set as his objective in the early 1930s ‘to study the structure of

mathematical proofs as they appear in practice’. He presented the general

logical structure of mathematical proofs as a system of rules of proof by

which a path is built from the assumptions of a theorem to its conclusion.

Earlier formalizations of logic had given a set of axioms and just two rules of

inference. Another essential methodological novelty in Gentzen’s work was

that he presented proofs in the form of a tree instead of a linear succession

from the given assumptions to the claim of a proof. Each step in a proof 1
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determined a subtree from the assumptions that had been made down to that

point, and these parts could be studied in isolation. Most importantly, such

parts of the overall proof could be combined in new ways, contrary to the

earlier linear style of proof. Gentzen was able to give for proofs in pure logic –

that is, without any mathematical axioms – combinatorial transformations

that brought these proofs into a certain direct form. Questions such as the

consistency and decidability of a system of rules of proof could then be

answered.

It has been generally thought that Gentzen’s analysis of the structure of

proofs cannot be carried through to perfection outside pure logic. This book

aims at presenting a method in which mathematical axioms are converted

into systems of rules of proof and the structure of mathematical proofs

analyzed in the same way as Gentzen analysed proofs in pure logic. The

overall aim is to gain a mastery over the combinatorial possibilities offered

by a system of mathematical axioms. As a rule, such a complete mastery of

the workings of an axiom system cannot perhaps be achieved. Our aim is

to try to make a positive contribution to Hilbert’s last problem by a gradual

development of ‘proof methods in mathematics’, inspired by the methods of

structural proof theory and illustrated by examples drawn mainly from the

elementary axiomatics of algebra and geometry, and from what are known

as systems of non-classical logic.



1 Introduction

We shall discuss the notion of proof and then present an introductory

example of the analysis of the structure of proofs. The contents of the book

are outlined in the third and last section of this chapter.

1.1 The idea of a proof

A proof in logic and mathematics is, traditionally, a deductive argument

from some given assumptions to a conclusion. Proofs are meant to present

conclusive evidence in the sense that the truth of the conclusion should

follow necessarily from the truth of the assumptions. Proofs must be, in

principle, communicable in every detail, so that their correctness can be

checked. Detailed proofs are a means of presentation that need not follow

in any way the steps in finding things out. Still, it would be useful if there was

a natural way from the latter steps to a proof, and equally useful if proofs

also suggested the way the truths behind them were discovered.

The presentation of proofs as deductive arguments began in ancient

Greek axiomatic geometry. It took Gottlob Frege in 1879 to realize that

mere axioms and definitions are not enough, but that also the logical steps

that combine axioms into a proof have to be made, and indeed can be

made, explicit. To this purpose, Frege formulated logic itself as an axiomatic

discipline, completed with just two rules of inference for combining logical

axioms.

Axiomatic logic of the Fregean sort was studied and developed by Bert-

rand Russell, and later by David Hilbert and Paul Bernays and their students,

in the first three decades of the twentieth century. Gradually logic came to

be seen as a formal calculus instead of a system of reasoning: the language of

logic was formalized and its rules of inference taken as part of an inductive

definition of the class of formally provable formulas in the calculus.

Young Gerhard Gentzen, a student of Bernays, set as his task in 1932 to

develop a system of logic that is as close as possible to the actual proving

of theorems in mathematics. His basic observation was that reasoning in

mathematics uses assumptions from which conclusions are drawn. Some 3
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steps of reasoning analyse the assumptions into their components, others

move from these components towards a sought-for conclusion. The two-

way rules of such reasoning make up a system known as natural deduction
that has only rules of inference, but no logical axioms at all. This change from

axiomatic to rule-based systems marks a break with the existing axiomatic

tradition as upheld by Hilbert and Bernays. Each form of logical expression,

say a conjunction A&B (‘A and B ’) or an implication A ⊃ B (‘if A , then

B ’), has a rule that gives the sufficient conditions for inferring it: to infer

A&B , it is sufficient to have inferred the components A and B separately,

and to infer A ⊃ B , it is sufficient to add A temporarily to the stock of

assumptions that have been made, then to infer B . In these rules, logical

reasoning proceeds from the desired result to its deductive conditions. The

reverse step is, then, to reason from an assumption or previously reached

conclusion to its deductive consequences: to infer A from A&B , to infer B

from A&B , and to infer B from A ⊃ B and A together.

Gentzen’s analysis of the structure of proofs in logic was a perfect success.

He was able to show that the means for proving a logical theorem can be

restricted to those that concern just the logical operations that appear in

the theorem. Instead of logical axioms, there are just rules of inference,

separately for each logical operation such as conjunction or implication, to

the said effect. Logic on the whole is seen as a method for moving from given

assumptions to a conclusion. The Fregean tradition, instead, presented logic

as consisting of a basic stock of logical truths, namely the axioms of logic,

together with two rules by which new logical truths can be proved from the

axioms.

When Gentzen’s logic is applied to axiomatic systems of mathematics, the

axioms take their place among the assumptions from which logical proofs

can start. It is commonly thought that Gentzen’s analysis of the structure of

proofs does not go through in such axiomatic extensions of pure logic. We

try to show that this need not be so: the topic of this book is a method that

treats axiomatic systems in a way analogous to Gentzen’s natural deduction

for pure logic, namely through the conversion of mathematical axioms into

rules of inference, and with results analogous to those obtained in the proof

analysis of pure logic.

1.2 Proof analysis: an introductory example

(a) Natural deduction. Gentzen’s rules of natural deduction give an induc-

tive definition of the notion of a derivation tree. Such a tree begins, i.e.,
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has as leaves, formulas that are called assumptions. Each logical rule pre-

scribes how a derivation tree (in brief, a derivation) of the conclusion of

the rule is constructed from derivations of its premisses. The letter I indi-

cates that a formula with a specific structure is concluded or introduced,

and the letter E indicates that such a formula is, as one says, eliminated.

For conjunction A&B and implication A ⊃ B , Gentzen gave the following

rules:

Table 1.1 Gentzen’s rules for conjunction and implication

A B
A&B

&I
A&B

A
&E

A&B
B

&E

1

[A]....
B

A ⊃ B
⊃I,1

A ⊃ B A
B

⊃E

The rules, except for ⊃I , are straightforward. In rule ⊃I , a temporary

assumption A is made, and a derivation of B from A can be turned into

a derivation of A ⊃ B by the rule. The square brackets indicate that the

conclusion does not depend on the assumption A that has been closed or

discharged. A label, usually a number, indicates which rule closes what

assumptions.

Rules &I and ⊃E display one essential feature of Gentzen’s work: they

have two premisses so that derivation trees have binary branchings when-

ever these rules are applied. Each formula occurrence in a derivation tree

determines a subderivation that lets us derive the formula, from pre-

cisely the assumptions it depends on. Often such subderivations can be re-

arranged combinatorially so that the same overall conclusion is obtained in

a simpler way. Specifically, Gentzen’s main result about natural deduction

states that introductions followed by corresponding eliminations permit

such rearrangements, with the effect that these steps of proof get removed

from derivations. When no such simplifications are possible, all formulas in

a derivation are parts or subformulas of the open assumptions or the con-

clusion. A brief expression is that normal derivations have the subformula
property.

It is no exaggeration to say that the tree form of derivations that permits

their transformation, in contrast to the earlier linear arrangement of Frege,

Peano, Russell, and Hilbert and Bernays, was the key to all of Gentzen’s cen-

tral results: normalization in natural deduction, the corresponding method

of cut elimination in sequent calculus, and the proof of the consistency of

arithmetic.



6 Introduction

Normalization consists in steps of conversion such as the following trans-

formation of a part of a derivation:

....
A

....
B

A&B
&I

A
&E

.... �

....
A....

We shall need the normalizibility of logical derivations for the separation of

logical and mathematical steps of proof. Gentzen’s rules of natural deduction

require some small changes presented in Chapter 2, before this separation

can be made completely transparent.

(b) The theory of equality. We assume given a domain D of individuals,

objects a, b, c . . . of whatever sort, and a two-place relation a = b inD with

the following standard axioms:

Table 1.2 The axioms of an equality relation

EQ1 Reflexivity: a = a,

EQ2 Symmetry: a = b ⊃ b = a,

EQ3 Transitivity: a = b & b = c ⊃ a = c .

These axioms can be added to a Frege–Hilbert-style axiomatization of logic.

We shall instead first add them to natural deduction with the result that

instances of the axioms can begin a derivation branch. Thus, when we ask

whether a formula A is derivable from the collection of formulas � by the

axioms of equality, arbitrary instances of the axioms can be added to �.

We consider as an example a derivation of d = a from the assumptions

a = b, c = b, and c = d:

Table 1.3 A formal derivation in the axiomatic theory of equality

a = d ⊃ d = a
a = c & c = d ⊃ a = d

a = b & b = c ⊃ a = c
a = b

c = b ⊃ b = c c = b
b = c

⊃E

a = b & b = c
&I

a = c ⊃Ec = d
a = c & c = d

&I

a = d
⊃E

d = a
⊃E

Each topformula in the derivation is either one of the atomic assumptions

or an instance of an equality axiom. The derivation tree looks somewhat
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forbidding. The natural way to reason would be different, something like:

a is equal to b, b to c , c to d, therefore d is equal to a. Here the principles are

that equalities can be combined in chains and that equalities go both ways.

The latter was applied to get the link b equal to c from c equal to b, and to

get the conclusion d equal to a from a equal to d.

Logic in the derivation of d = a from the assumptions a = b, c = b, and

c = d seems like some kind of a decoration necessitated by the use of logic

in the writing of the axioms. We now want to say instead that a = b gives at

once b = a and that two equalities a = b and b = c give at once a = c :

Table 1.4 Symmetry and transitivity as rules of inference

a = b
b = a

Sym a = b b = c
a = c Tr

Our example derivation becomes:

Table 1.5 A formal derivation by the rules for equality

a = b
c = b
b = c

Sym

a = c Tr c = d
a = d

Tr

d = a
Sym

This should be contrasted with the logical derivation of Table 1.3.

To get the full theory of equality, we must add reflexivity as a zero-premiss
rule:

Table 1.6 The rule of reflexivity

a = a Ref

Now formal derivations start from assumptions and instances of rule Ref.

What about the role of logic after the addition of mathematical axioms

as rules? A premiss of an equality rule can be the conclusion of a logical rule

and a conclusion of an equality rule a premiss in a logical rule. It should be

clear that logic itself should not be ‘creative’ in the sense of making equalities

derivable from given equalities used as assumptions, if they were not already

derivable by just the equality rules. To show that there cannot be any such

creative use of logic, Gentzen’s normalization theorem comes to help. No

introduction rule can have as conclusions premisses of a mathematical rule,
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because the latter do not have logical structure. Using a slight modification

of Gentzen’s elimination rules, the mathematical rules can be completely

separated from the logical ones, so that in a normal derivation, the former

are applied first, then the latter build up logical structure. Thus, if an

equality is derivable from given equalities in natural deduction extended

with the rules of equality, it is derivable by just the rules of equality. This

separation of logic from mathematical axioms goes through for a large class

of axiomatizations.

Assume there to be a derivation of the equality a = c from given assump-

tions a1 = c1, . . . , an = cn by the rules of equality. By what has been said,

no logical rules need be used. Assume there to be a term b in the deriva-

tion that is neither a term in the conclusion a = c nor a term in any of

the assumptions. There is thus some instance of rule Tr that removes the

unknown term b:

a = b b = c
a = c Tr

If the premiss a = b is a conclusion of rule Tr, we can permute up the

instance of Tr that removes b, as follows:

a = d d = b
a = b

Tr
b = c

a = c Tr �
a = d

d = b b = c
d = c

Tr

a = c Tr

A similar transformation applies if the second premiss b = c has been

derived by Tr. Thus, we may assume that neither premiss of the step of

Tr that removes the term b has been derived by Tr. It can happen that

both premisses have been derived by rule Sym. We then have a part of the

derivation and its transformation:

b = a
a = b

Sym
c = b
b = c

Sym

a = c Tr �

c = b b = a
c = a Tr

a = c Sym

In the end, at least one premiss of the step of Tr that removes the term b has

an instance of rule Ref as one premiss, as in

d = b b = b
Ref

d = b
Tr

Now the conclusion is equal to the other premiss, so the step of Tr can be

deleted. Tracing up in the derivation the premiss d = b, the permutations

can never lead to an instance of Tr that removes b and has an assumption as

one premiss, because then b would be a term known from the assumption.
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Thus, a derivation can be so transformed that it cannot have any unknown

terms.

Consider next a derivation that has a ‘cycle’ or a ‘loop’, i.e., a branch with

the same equality occurring twice:

....
a = b....
a = b....

The part between the two occurrences can be cut out. This part may use some

equalities as assumptions that are not otherwise used in the derivation, but

their deletion just improves the result: we would get the conclusion with

fewer assumptions. When no loops are permitted, all derivations of an

equality a = c from the assumptions a1 = c1, . . . , an = cn have an upper

bound on size, here defined as the length of the longest derivation tree

branch: the number of distinct terms is at most 2n + 2; therefore the number

of distinct equalities is at most (2n + 2)2, an upper bound on height.

The above permutation argument could have been cut short as follows.

If the equality to be derived is not an instance of Ref, that rule can be left

out. If a premiss of Sym or Tr has been concluded by Ref, a loop is produced.

Therefore all terms must appear in equalities that are assumptions. Such

a simple argument does not usually work. The permutation argument,

instead, illustrates a type of combinatorial reasoning that is characteristic of

all that follows, beginning with the first real example, namely lattice theory

in Chapter 4.

1.3 Outline

(a) The four parts. The book has four parts. The first is based on natural

deduction in the sense that mathematical rule systems are formulated as

extensions of the logical rules of natural deduction. These rules define a

constructive system of logic in which existence proofs are effective and no

classical case distinctions (A or ¬A) are made. All elimination rules are

formulated in the manner of disjunction and existence elimination. As long

as an axiom system contains no essential disjunctions, ones that cannot

be converted into equivalent formulas without disjunctions, the logical

rules can be permuted below the mathematical ones. Therefore parts of
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derivations by the latter rules can be separated from parts of derivations

by the logical rules. The choice of classical or intuitionistic logic plays in

this situation no role in the study of the derivations by such systems of

mathematical rules.

With essentially disjunctive axioms, such as the linearity of an order

relation, a � b ∨ b � a, a classical sequent calculus formulation of logic

permits the separation of logical and mathematical rules, in contrast to

natural deduction. Sequent calculus was invented by Gentzen because he

did not succeed in the proof analysis of classical logic formulated as a system

of natural deduction. Part II of the book is based on sequent calculus in

the sense that mathematical rule systems now extend the logical rules of

sequent calculus.

We begin with axiomatic systems the axioms of which are universal, i.e.,

the axioms are quantifier-free formulas such as a = b & b = c ⊃ a = c in

which a, b, and c are arbitrary parameters. Thus, such axioms could as

well be written in the form ∀x∀y∀z(x = y & y = z ⊃ x = z). In Chapter

5 and in a general way in Part III, a much wider class of axioms is shown

convertible to rules: those that are, in the terminology of category theory,

geometric implications. Mathematical rules can now contain eigenvariables,

which makes them behave like existential axioms, though without any visible

logical structure.

Parts I–III build up gradually a method for an analysis of the structure

of mathematical proofs. In each part, it is well defined to what kinds of

axiomatic systems of mathematics the method can be applied. Part IV

builds on all of the methods of the previous parts, but its focus is different.

It occurred to the first author in 2003 that the method of proof analysis

can be fruitfully applied to create systems of proof for modal logic and

related non-classical logics: what is called the relational semantics of non-

classical systems of logic, especially modal logic and its Kripke semantics,

is formalized within the proof-theoretical calculi we use. The central new

element, in comparison with Parts I–III, is the use of what are known as

labelled logical calculi. Then, the properties that have been used previously

on a semantical level can be represented by formulas that convert into rules

just like the mathematical axioms treated in Parts I–III. It remains to be seen

whether, in turn, the extension of purely logical proof systems in Part IV

will find applications to more traditional mathematical structures.

(b) Summary of the individual chapters. The following is a list of the

topics covered in the individual chapters, with an emphasis on new aspects

that the method of proof analysis displays as well as on new results.
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Chapter 2 presents natural deduction with general elimination rules,

following von Plato (2001a). The extension of natural deduction by rules

that correspond to axioms was indicated in Negri and von Plato (1998)

and applied in Negri, von Plato, and Coquand (2004). Similar applica-

tions go in fact back to at least Prawitz (1971), and even Gentzen in the

1930s who converted arithmetical axioms into rules. The generalization

of natural deduction is needed for separating parts of derivations by the

rules of a mathematical theory from parts that use logical rules. Predi-

cate logic with equality is formulated as such a theory, with two rules that

act on atomic formulas. A proof-theoretical algorithm is given for decid-

ing if an atomic formula is derivable from given atomic formulas used as

assumptions.

Chapter 3 contains a discussion of axiomatic systems. It is very diffi-

cult to find organized treatments of the structure of an axiomatization. A

rather detailed pattern for such structure is presented. Axioms with con-

structions are contrasted with ones that use additional relations to express

what constructions do: say, a meet operation in lattice theory gives the

constructed object a ∧ b (‘meet of a and b’), expressed relationally by the

formula M(a, b, c) (‘the meet of a and b is c ’).

Chapter 4 treats order relations, lattice theory, and some equational

theories. One of the most basic results of lattice theory is Skolem’s 1920

positive solution to the word problem for freely generated lattices. This

is the problem of how to decide whether a given atomic formula a � b

follows from a finite number of given atomic formulas used as assumptions.

(Another name for this is the uniform word problem.) We give in Section 5.2

a permutation argument, from Negri and von Plato (2002), that establishes

the subterm property (as explained above in Section 1.2) for derivations by

the lattice rules. It is just a little over one page in length, does not assume any

previous knowledge of anything, and gives, in our opinion, a direct glimpse

into the ‘combinatorial work’ that is responsible for the positive solution.

Section 4.3 treats the most basic structure in algebra, a domain of objects

with a binary operation, i.e., a groupoid. It is shown that proof search in

the word problem for groupoids can be restricted to terms known from

the given atomic assumptions and from the conclusion. In Section 4.4, an

alternative system is given for lattice theory, one that uses eigenvariables. The

word problem is solved with almost no work. Secondly, the same method

is applied to formalize the theory of strict partial order in the presence of

equality.

In Chapter 5, existential axioms are converted into rules that extend

the logical calculus of natural deduction. The class of axioms covered is a
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special case of the class of geometric implications. The special case con-

sists in a restriction of the consequent of a geometric implication in such

extensions, into one existential formula over a conjunction of atomic for-

mulas instead of a disjunction of several such existential formulas. A dual

of the class of geometric implications is defined, what we call co-geometric

implications. Theories the axioms of which are such implications are called

co-geometric theories. We have not found this class of theories treated sys-

tematically or even defined in the literature but were led to it by very natural

considerations. Namely, existential formulas such as one that expresses the

non-degeneracy of a strict partial order, ∃x∃y x < y, contain an unnegated

atomic formula and are geometric implications. An existential formula such

as one that expresses the non-triviality of a domain with an equality rela-

tion, ∃x∃y ¬x = y, contains a negated atomic formula and is a co-geometric

implication. The latter is typical in many axiomatizations, such as projective

and affine geometry in which the axiom of non-collinearity is co-geometric.

Section 5.2 presents theories of equality and order as co-geometric and geo-

metric theories, respectively. A relational axiomatization of lattice theory is

given as a geometric theory in 5.3. It formalizes the system of lattice theory

of Skolem (1920). It is shown that the existence axioms for meet and join

are not needed in the proof search for an atomic formula from given atomic

formulas used as assumptions. For the rest of the rules, it is shown that

only those instances of the rules need be used in which all terms are known,

which gives a bound on proof search.

When natural deduction is extended by rules that correspond to a rela-

tion such as a linear order a � b with the linearity postulate a � b ∨ b � a,

there are two cases and it is not possible to convert the axiom into a rule

in natural deduction style with the property that logical and mathematical

parts of derivations always remain separate. For this reason, the logical sys-

tem of proof used is changed into a sequent calculus in Part III. Chapter 6

begins with an introduction to sequent calculus. Its rules are motivated

directly from those of natural deduction with general elimination rules.

Next the extension of sequent calculus by mathematical rules is presented.

The restriction in natural deduction to formulas that do not contain essen-

tial disjunctions can be dropped, so that first a scheme is presented for

converting any universal formula into a rule, or several rules. As with nat-

ural deduction, predicate logic with equality is given as a first example of

the extension of sequent calculus. It is shown through proof analysis that

predicate logic with equality is conservative over predicate logic. Deriva-

tions without equalities in the endsequent are so transformed that possible
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applications of rules for equality get eliminated from them. In Section 6.4,

a generalization of Herbrand’s theorem to universal theories is given.

Chapter 7 presents linear order as an extension of sequent calculus. A

proof-theoretical algorithm is given in Section 7.1 for ordering linearly any

partially ordered set. The possibility of such ordering is known as Szpilrajn’s

theorem. We show that if D is a set with a weak partial order a � b, � a

finite set of atomic formulas, and c and d two terms in � such that neither

c � d nor d � c is included in the partial order in D, then either c � d

or d � c can be consistently added to �. Section 7.2 gives a proof of the

subterm property for derivations by the rules of linear order. Section 7.3

extends this proof into a corresponding result for linear lattices, i.e., lattices

in which the ordering relation is linear.

Chapter 8 contains a study of the extension of sequent calculi by rules that

correspond to geometric implications, without the restriction that had to be

made in natural deduction in Chapter 5. In Section 8.3, a proof-theoretical

approach to a fundamental result of category theory, namely Barr’s theorem,

is given. The theorem states that if a geometric implication is derivable in a

geometric theory by the use of classical logic, then it is already derivable by

the use of intuitionistic logic. Our proof of this result consists in noting that

in a suitable rule system for geometric theories, a derivation of a geometric

implication is necessarily one in which the intuitionistic restrictions on the

rules of implication and universal quantification are met.

The system of natural deduction of Part I is intuitionistic. In sequent

calculus, both classical and intuitionistic versions of the logical calculus can

be extended by rules. Chapter 9 studies classical and intuitionistic axioma-

tizations, such as a classical equality relation and an intuitionistic apartness

relation. It is noted that derivations by the corresponding rules are duals, in

the sense that if the intuitionistic basic notions and axioms are converted

into a rule system that acts on the antecedent part of sequents, a mirror-

image system of rules acts on the right part of sequents and corresponds

to classical basic notions and axioms. Examples beyond equality and apart-

ness contain classical and intuitionistic projective and affine geometry. The

combinatorial challenge of proof analysis of derivations by the rules of an

intuitionistic or a classical theory is exactly the same. An essential differ-

ence between intuitionistic and classical theories can be met at the stage of

conversion of axioms into rules: the conjunctive normal form that we use

in such conversion may not be intuitionistically equivalent to an axiom,

whereas classically every universal formula has an equivalent in conjunctive

normal form. Secondly, derivations by the logical rules are different. The
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latter, however, has no effect on the mathematical parts of derivations that

are combinatorially duals of each other. Chapter 9 presents as an application

of the duality a generalization of Herbrand’s theorem to geometric theories,

and another one to co-geometric theories.

In Chapter 10, plane projective and affine geometries are converted into

proof systems. Both contain an existential axiom, that of non-collinearity, by

which there exist at least three non-collinear points. At the same time, there

are axioms that contain essential disjunctions. To make the combinatorial

analysis of derivations more manageable, a multiple-conclusion calculus in

the style of natural deduction is used. It is shown that the derivability of a

finite number of atomic cases from a finite number of atomic assumptions

is decidable in both geometries. The existential axiom turns out to be

conservative over the rest of the axioms for the said derivability problem.

The methods of proof analysis are applied to modal logic in Chapter 11.

The main idea of the approach is to make the well-known Kripke seman-

tics of modal logic a part of the formalism, through the use of labels that

correspond to possible worlds. A sequent calculus for basic normal modal

logic is given that has all the standard properties, namely that the struc-

tural rules are admissible. The calculus is furthermore suited to root-first

proof search because its rules are invertible, with height of derivation pre-

served. The extensions of basic modal logic into various modal calculi are

obtained by adding rules to the calculus that correspond to frame proper-

ties. Most such properties are expressible as universal axioms or geometric

implications. Therefore the structural properties of the extensions can be

guaranteed once and for all, similarly to any extensions of sequent calculi

by mathematical rules. In Section 11.5, termination of proof search for

most modal calculi is shown through a proof of the subterm property for

minimal derivations. In Section 11.6, modal undefinability results, usually

obtained through model-theoretic arguments, follow from simple analyses

of derivations. In the final section of Chapter 11, a detailed proof of the

completeness of a calculus for basic modal logic is given, in the same spirit

as Kripke’s original proof of 1963, but with the added formalism of labels.

Chapter 12 begins with the addition of the quantifiers to basic modal

logic. Then provability logic is treated, with cut elimination proved with

no compromises. In the final section, labelled sequent calculi are given for

relevance and other substructural logics and intermediate logics. The idea

is always to use the frame properties of the relational semantics for these

logics, through the conversion of these properties into corresponding rules

by which the basic calculus is extended.
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2 Rules of proof: natural deduction

This chapter gives, first, the calculus of natural deduction, together with its

basic structural properties such as the normalization of derivations and the

subformula property of normal derivations. Next, the calculus is extended

by mathematical rules, and it is shown that normalization works also in

such extensions. The theory of equality is treated in detail, as a first exam-

ple. Finally, predicate logic with an equality relation is studied. It is presented

as an extension of predicate logic without equality, and therefore normal-

ization of derivations applies. The question of the derivability of an atomic

formula from given atomic formulas, i.e., the word problem for predicate

logic with equality, is solved by a proof-theoretical algorithm.

2.1 Natural deduction with general elimination rules

Gentzen’s rules of natural deduction for intuitionistic logic have proved to

be remarkably stable. There has been variation in the way the closing of

assumptions is handled. In 1984, Peter Schroeder-Heister changed the rule

of conjunction elimination so that it admitted an arbitrary consequence

similarly to the disjunction elimination rule. We shall do the same for the

rest of the elimination rules and prove normalization for natural deduction

with general elimination rules.

Natural deduction is based on the idea that proving begins in practice

with the making of assumptions from which consequences are then drawn.

Thus, the first rule of natural deduction is that any formula A can be

assumed. Formally, by writing

A

we construct the simplest possible derivation tree, that of the conclusion of

A from the assumption A .

(a) Introduction rules as determined by the BHK-conditions. As

explained by Gentzen, the introduction rules formalize natural condi-

tions on direct proofs of propositions of the different logical forms. These 17
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are often referred to as the BHK-conditions (for Brouwer, Heyting, and

Kolmogorov) by which A&B is proved directly by proving A and B sepa-

rately, A ∨ B by proving one of A and B , and A ⊃ B by proving B from A .

The rules are:

Table 2.1 Gentzen’s introduction rules

A B
A&B

&I
A

A ∨ B
∨I1

B
A ∨ B

∨I2

1

[A]....
B

A ⊃ B
⊃I,1

In rule ⊃I , the formula A is assumed temporarily in order to derive B . The

notation [A] indicates that the assumption is closed or discharged at the

inference. It is possible that the assumption has been used several times to

infer B , or even 0 times. Not all instances of the assumption need be closed,

even if this would usually be the case. The number next to the rule and on

top of formulas is a discharge label.
For the quantifiers, we have:

Table 2.2 Introduction

rules for the quantifiers

A(y/x)

∀xA
∀I

A(t/x)

∃xA
∃I

The notation A(y/x) stands for the substitution of free occurrences of

the variable x in formula A by the variable y (‘y for x’). Rule ∀I has the

standard variable restriction: the eigenvariable y must not occur free in any

assumptions the premiss A(y/x) depends on.

(b) Inversion principle: determination of elimination rules. Gentzen

noticed that the elimination rules of natural deduction (E-rules) somehow

repeat what was already contained in derivations with corresponding intro-

duction rules (I-rules), and speculated that it should be possible to actually

determine E-rules from I-rules. The idea is captured by the following:

Inversion principle. Whatever follows from the direct conditions for intro-

ducing a formula, must follow from that formula.

The principle determines the following general elimination rules, with a

slight proviso on implication:
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Table 2.3 General elimination rules for the connectives

A&B

1

[A m,
1

B n]....
C

C
&E ,1

A ∨ B

1

[A m]....
C

1

[B n]....
C

C
∨E ,1

A ⊃ B A

1

[B n]....
C

C
⊃E ,1

The number of instances of a formula that are closed is indicated by an

exponent. In general, any numbers m, n � 0 of open assumptions A and B

can be chosen to be closed. Some instances of the same formula may become

closed while others remain open. If m = 0 or n = 0, there is a vacuous
discharge; if m > 1 or n > 1, there is a multiple discharge. Otherwise a

discharge is simple. Each instance of a rule must have a fresh label.

The standard elimination rules of natural deduction follow by setting,

in turn, C ≡ A or C ≡ B in &E , and C ≡ B in ⊃E. The derivations of the

minor premiss C become degenerate.

A direct proof of A ⊃ B consists in a derivation of B from the assump-

tion A . Thus, our inversion principle dictates that C follows from A ⊃ B

if C follows from the existence of a derivation of B from A . First-order

logic cannot express this situation, so rule ⊃E just shows how arbitrary

consequences of B reduce to arbitrary consequences of A under the major

premiss A ⊃ B . Schroeder-Heister, instead, used a higher-order rule, and

so does type theory.

The propositional part of intuitionistic natural deduction is completed by

adding an elimination rule for ⊥ and by defining negation and equivalence:

Table 2.4 Falsity elimination, negation, and equivalence

⊥
C

⊥E ¬A ≡ A ⊃ ⊥ A ⊃⊂ B ≡ (A ⊃ B)&(B ⊃ A).

Finally, we have the following table:

Table 2.5 Elimination rules for the quantifiers

∀xA

1

[A(t/x)m]
....
C

C
∀E ,1

∃xA

1

[A(y/x)m]
....
C

C
∃E ,1
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In rule ∀E , t is any term, i.e., a constant or a variable. In rule ∃E , the

eigenvariable y must occur free neither in the conclusion nor in any other

open assumption the minor premiss C depends on except A(y/x).

The standard elimination rule for the universal quantifier follows by set-

ting C ≡ A(t/x). The derivation of the minor premiss C is then degenerate,

similarly to the propositional case. When these degenerate derivations are

left unwritten in our rules, we get:

Table 2.6 Standard elimination rules of natural deduction

A&B
A

&E
A&B

B
&E

A ⊃ B A
B

⊃E
∀xA

A(t/x)
∀E

(c) Discharge principle: definition of derivations. ‘Compulsory dis-

charge’ dictates that one must discharge if one can. But look at

1
[A]

B ⊃ A
⊃I

A ⊃ (B ⊃ A)
⊃I,1

The upper rule is one with a vacuous discharge. Assumption A is closed at

the second step. If it happened that B is identical to A , compulsory discharge

would require a discharge of A at the first step, so something that looked

like a syntactically correct derivation under the ‘compulsory’ idea turned

out not to be so. We adopt instead the following:

Discharge principle. Each rule instance must have a fresh discharge label.

The example inference is now written

2
[A]

B ⊃ A
⊃I,1

A ⊃ (B ⊃ A)
⊃I,2

If we have A in place of B , the derivation remains formally correct.

We can now give a formal definition of the notion of a derivation of for-
mula A from the open assumptions �. The open assumptions are counted

with multiplicity, so they are multisets of formulas. The base case of a

derivation is the derivation of a formula A from the open assumption A :

A
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Now the rest are defined inductively according to the last rule applied,

straightforward for rules that do not change the assumptions, and exempli-

fied by &E for the rest:

Given derivations of A&B from � and of C from Am, B n, �,

�....
A&B

1
[Am,

1
B n], �....
C

C
&E ,1

is a derivation of C from �, �.

The full definition is given in Structural Proof Theory, pp. 167–170. We

observe that the putting together of two derivations is justified by the

definition:

Composition of derivations. Given derivations of A from � and of C from

A, � with no clash on labels and eigenvariables, they can be put together into

a derivation of C from �, �.

The closing of assumptions needs to be treated explicitly for composition

to produce a correct derivation. If two derivations to be composed use the

same eigenvariable symbols, these can be changed before the composition.

Similarly, in any given derivation, we can assume that rules with eigenvari-

ables have distinct eigenvariables and that each eigenvariable occurs only in

the part of the derivation above its associated rule of inference.

(d) Derivable and admissible rules. The derivability of a rule in a given

system of rules requires that the conclusion of the rule be derivable from

its premisses. There is an important related notion that is weaker, namely

the admissibility of a rule in a given system of rules, defined by: whenever

the premisses of the rule are derivable in the system, the conclusion also is.

Proofs of admissibility of a rule consider the ways in which the premisses

can have been derived, i.e., admissibility is proved by an induction on the

last rules applied in the derivations of the premisses.

(e) Classical propositional logic. The system of introduction and elim-

ination rules gives what is called intuitionistic logic. The reason for this

historically established nomenclature is that there is no rule that would

correspond to a principle of indirect proof. Natural deduction for classical
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propositional logic can be obtained by adding to the rules of intuitionistic

propositional logic a rule of excluded middle:

1
[A]....
C

1
[¬A]....

C
C

Em,1

Both A and ¬A are closed at the inference. The law of excluded middle,

A ∨ ¬A , is derivable by the rule:

1
[A]

A ∨ ¬A
∨I1

1
[¬A]

A ∨ ¬A
∨I2

A ∨ ¬A
Em,1

The rule of excluded middle is a generalization of the rule of indirect proof
(reductio ad absurdum):

1
[¬A]....⊥

A
Raa,1

This rule can be derived as follows from rule EM :

1
[A]

1
[¬A]....⊥

A
⊥E

A
Em,1

The difference between a genuine indirect inference and an inference to

a negative proposition is not always appreciated. In the latter, there is a

derivation of ⊥ from an assumption A , by which ¬A can be inferred. This

step is not, however, made by rule Raa, but by a special case of rule ⊃I .

Often proofs of irrationality of a real number, say
√

2, are given as examples

of indirect inferences, which they are not, because the property to be proved

is negative.

A system of classical propositional logic is obtained also when the rule

of excluded middle is restricted to atomic formulas (cf. Structural Proof

Theory, section 8.6). The rule is shown admissible for arbitrary propositional

formulas. Its admissibility for arbitrary formulas means that its use can be

replaced by uses of the rule on atomic formulas. The reduction of the rule
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of excluded middle to atoms does not go through when the quantifier rules

are added.

2.2 Normalization of derivations

(a) Convertibility. The standard normalization procedure of Gentzen and

Prawitz consists in the removal of consecutive introduction–elimination

pairs. Such pairs are known as detours, or Umwege in Gentzen’s terminol-

ogy, and their eliminations detour conversions. Later Prawitz considered

permutation convertibilities, instances of ∨E or ∃E that have as a conclu-

sion a major premiss of an E-rule, and simplification convertibilities.

Definition 2.1. An E-rule with a major premiss derived by an I-rule is a

detour convertibility.

A detour convertibility on A&B and the result of the conversion are, with

obvious labels left unwritten,

....
A

....
B

A&B
&I

[Am, B n]....
C

C
&E

....

....
A m×. . .

....
A

....
B n×. . .

....
B....

C....

A detour convertibility on disjunction is quite similar. A detour convertibil-

ity on A ⊃ B and the result of the conversion are

[Am]....
B

A ⊃ B
⊃I

....
A

[B n]....
C

C
⊃E

....

....
A m×. . .

....
A....

B n×. . .

....
A m×. . .

....
A....

B....
C....

There is no I-rule for ⊥, so no detour convertibility either.

Definition 2.2. An E-rule with a major premiss derived by an E-rule is a

permutation convertibility.

The novelty of general elimination rules is that permutation conversions

apply to all cases in which a major premiss of an E-rule has been derived.

With six E-rules, this gives 36 convertibilities of which we show a couple:
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A permutation convertibility on major premiss C&D derived by &E on

A&B and its conversion are

....
A&B

[Am, B n]....
C&D

C&D
&E

[Ck, Dl]....
E

E
&E

....

....
A&B

[Am, B n]....
C&D

[Ck, Dl]....
E

E
&E

E
&E

....

A permutation convertibility on major premiss C ⊃ D derived by ∨E on

A ∨ B obtains whenever a derivation has the part

....
A ∨ B

[Am]....
C ⊃ D

[B n]....
C ⊃ D

C ⊃ D
∨E

....
C

[Dl]....
E

E
⊃E

....

After the permutation conversion the part is

....
A ∨ B

[Am]....
C ⊃ D

....
C

[Dl]....
E

E
⊃E

[B n]....
C ⊃ D

....
C

[Dl]....
E

E
⊃E

E
∨E

....

Finally, we have permutation convertibilities in which the conversion for-

mula is ⊥ derived by ⊥E . Since ⊥E has only a major premiss, a permutation

conversion just removes one of these instances:

⊥
⊥ ⊥E

C
⊥E

�
⊥
C

⊥E

Definition 2.3. A simplification convertibility in a derivation is an instance

of an E-rule with no discharged assumptions, or an instance of ∨E with no

discharges of at least one disjunct.

As with permutation conversions, simplification conversions also apply

to all E-rules when general elimination rules are used. A simplification
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convertibility can prevent the normalization of a derivation, as is shown by

the following:

1
[A]

A ⊃ A
⊃I,1

2
[B]

B ⊃ B
⊃I,2

(A ⊃ A)&(B ⊃ B)
&I

3
[C]

C ⊃ C
⊃I,3

C ⊃ C
&E

There is a detour convertibility but the pieces of derivation do not fit

together in the right way to remove it. Instead, a simplification conversion

will remove the detour convertibility:

3
[C]

C ⊃ C
⊃I,3

Note that the notion of simplification convertibility is somewhat different

from those of detour and permutation convertibilities. In the latter two, the

major premiss of an E-rule is derived, whereas it can be an assumption in a

simplification convertibility.

(b) Normal derivations. In Gentzen’s natural deduction, the possible con-

vertibilities are, first, detour convertibilities on all the connectives and quan-

tifiers. Secondly, there are permutation convertibilities on disjunction and

existence, and simplification convertibilities likewise on disjunction and

existence. A derivation can be defined to be normal in Gentzen’s natural

deduction when it has no such convertibilities. The use of general elimi-

nation rules leads to a remarkable simplification of the notion of normal

derivability:

Definition 2.4. A derivation is normal if all major premisses of elimination

rules are assumptions.

As already indicated, a normal derivation can still contain simplification

convertibilities.

The definition of normal derivations extends also to the system of clas-

sical propositional logic of Section 2.1(e). The rule of excluded middle can

be permuted down relative to the introduction and elimination rules. A

derivation is normal if it has normal intuitionistic subderivations followed

by rules of excluded middle. It further follows that for a normal derivation,

the atoms in the rules of excluded middle are subformulas of open assump-

tions or of the conclusion. Thus, each formula in a normal derivation is a
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subformula of an open assumption or the conclusion, or a negation of an

atomic subformula.

(c) The subformula structure. Due to the form of the general E-rules

we consider subformula structure along threads in a derivation (a term

suggested to us by Dag Prawitz), instead of branches of the derivation

tree as would be the case for Gentzen’s elimination rules in the ∨, ∃-free

fragment. These threads are constructed starting with the endformula of a

derivation:

1. For I-rules, the threads are

....
A

A&B

....
B

A&B

....
A

A ∨ B

....
B

A ∨ B

....
B

A ⊃ B

....
A(y/x)
∀xA

....
A(t/x)
∃xA

2. For E-rules, the thread continues up from the minor premiss C, with

two threads produced for ∨E :

....
C
C

3. If the last formula is an open assumption A or an assumption A closed

by ⊃I , the thread ends with topformula A .

4. If the last formula is an assumption A or B closed by &E or ∨E ,

the construction of the thread continues from the major premiss A&B or

A ∨ B :

....
A&B

A....
C
C....

....
A&B

B....
C
C....

....
A ∨ B

A....
C
C....

....
A ∨ B

B....
C
C....

The construction is similar for rules ∀E and ∃E .

5. With ⊥E , there is no minor premiss, so the construction continues

directly from the major premiss ⊥:

....⊥
C
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6. If the last formula is an assumption B closed by ⊃E, the construction

continues with the major premiss A ⊃ B . A new thread begins with the

minor premiss A as endformula:

....
A ⊃ B

B....
C
C....

....
A

Note that the construction of threads will not reach the parts of derivation

that can be deleted in a simplification convertibility.

We can depict threads as follows, with a semicolon separating the ith

major premiss of an E-rule Ahi from its components Chi closed by the

elimination:

(A1, . . . , Ah1 ; Ch1, . . . , Ah2 ; Ch2, . . . , Ahi ; Chi , . . . , A)

(d) The normalization of derivations. The height of a major premiss Ahi

in a thread is measured as follows. Let h1 be the number of steps from the

topformula to a first major premiss Ah1 and hi the number of steps from

the temporary assumption of the preceding major premiss Ahi−1 to Ahi . The

height of Ahi in the thread is the sum h1 + · · · + hi .

From the construction of threads it is immediately evident that each

formula in a derivation is in at least one thread. A thread is normal if

it is a thread of a normal derivation. The height of each major premiss

in normal threads is equal to zero. It is easily seen that the converse also

holds. The formulas in a thread divide into an ‘E-part’ of nested sequences

of major premisses, each a subformula of the preceding formula, and an

‘I-part’ in which formulas start building up in the other direction through

introduction rules. Each formula in a normal thread is a subformula of

the endformula or of an open assumption. (For a proof, not difficult, see

Structural Proof Theory, p. 197.)

The proof of normalization uses what is called a multiset ordering. In

the proof, conversion formulas in threads in a derivation are collected into

multisets according to their length. The basic property of multiset ordering is

its well foundedness, which is used in the following way. If through a detour

conversion a conversion formula of length n is removed and replaced by

any number of conversion formulas of a strictly lesser length, the multiset
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ordering of the conversion formulas is reduced. Well-foundedness means

that in the end, no convertibilities remain.

Lemma 2.5. A permutation conversion on major premiss A diminishes its

height by one and leaves all other heights unaffected.

Given a derivation, consider its conversion formulas in each thread, ordered

by length into multisets.

Lemma 2.6. Detour conversions on & and ∨ reduce the multiset ordering of

conversion formulas in threads affected by the conversion.

Note that permutation conversions do not create any new conversion for-

mulas and therefore do not affect the multiset ordering. They can change

a permutation convertibility into a detour convertibility. If this happens

with implication, a new thread with the minor premiss as endformula is

constructed.

The construction of threads is essential in Lemma 2.6. It is seen from the

detour conversion scheme for & that parts of the derivation get multiplied.

These parts can contain conversion formulas of any length, so the multiset

of conversion formulas for the whole derivation is not necessarily reduced.

For threads, instead, it is reduced.

For each case of detour convertibility on implication, we consider the

derivation in three parts:

1. The derivations of the first minor premiss A .

2. The derivations of the second minor premiss C.

3. The derivations of the major premiss A ⊃ B and the continuation from

the conclusion C.

The idea of normalization is to postpone detour conversions on implication.

Assume therefore steps of normalization other than detour on implication to

have been made. No conversion can create new major premisses of E-rules.

Therefore only a bounded number of detour convertibilities on implication

can be met in such normalization, and both of the minor premisses in

an uppermost instance of ⊃E have a normal derivation. Possible detour

conversion on such instances can create new convertibilities, but they are

on strictly shorter formulas. An iteration of this procedure will eventually

lead to a downmost detour convertibility on implication to be eliminated,

and we have:

Theorem 2.7. Natural deduction with general elimination rules is normal-

izing.
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(e) Strong normalization. The condition of strong normalization of a

system of natural deduction means that conversions terminate, irrespective

of the order in which they are made. Joachimski and Matthes (2003) proved

directly strong normalization for natural deduction with general elimina-

tion rules. Their proof uses a system of term assignment. The above proof

of normalization is ‘almost strong’, in that the only restriction on conver-

sions concerns the postponing of normalization at detour convertibilities

on implication. It would be interesting to find a simple argument, based on

the conversion schemes and their combinatorial behaviour, by which this

restriction can be lifted.

2.3 From axioms to rules of proof

(a) Mathematical rules. We shall extend our calculus of intuitionistic nat-

ural deduction by suitably formulated mathematical rules. Assume a math-

ematical theory the axioms of which are all universal formulas in predicate

calculus. Each such formula can be represented as a conjunction of impli-

cations that have the form

P1& . . . &Pm ⊃ Q 1 ∨ . . . ∨ Q n (1)

with the Pi, Q j atomic formulas. It turns out that implications of this form

can be converted into rules that permit a separation of the mathematical

and logical part of the derivation if n � 1.

Definition 2.8. The Harrop formulas of propositional logic are:

(i) Atomic formulas and ⊥ are Harrop.

(ii) If A and B are Harrop, also A&B is Harrop.

(iii) If B is Harrop, also A ⊃ B is Harrop.

The idea is that there are no cases (disjunctions) among Harrop formulas,

nor any cases ‘hidden’ inside implications, such as in A ⊃ B ∨ C. On the

other hand, some disjunctions are inessential, in that there are equivalent

disjunction-free formulas, such as A ∨ B ⊃ C and (A ⊃ C)&(B ⊃ C).

With n = 1 in (1), we have

P1& . . . &Pm ⊃ Q (2)

We convert axioms of this form into rules of the form

P1 . . . Pm

Q (3)
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As one limiting case we have m = 0 and n = 1, and a zero-premiss rule:

Q (4)

As another limiting case we have n = 0, as best seen from (1). The false

formula ⊥ is put in the place of the consequent and (1) becomes the

negation

¬(P1& . . . &Pm) (5)

The corresponding rule has ⊥ in place of the formula Q of (3):

P1 . . . Pm

⊥ (6)

Derivations by mathematical rules are finitely branching trees with atoms

at the nodes. A finite number of axioms of the form (2) gives as many rules

of the form (3). An extension of the system of natural deduction NI by such

rules is denoted by NI∗.

Lemma 2.9. In a derivation in NI∗, instances of logical rules can be permuted

to apply after the mathematical rules.

Proof. Consider a premiss of a mathematical rule R , say P1, derived by a

logical rule. The I-rules give as conclusions compound formulas, so the only

possible rules are E-rules. If the major premiss is A&B and minor premiss

P1 in rule &E followed by rule R , we have a part of the derivation:

A&B

[A, B]....
P1

P1
&E

P2 . . . Pn

Q
R

The permuted part of the derivation is

A&B

[A, B]....
P1 P2 . . . Pn

Q
R

Q
&E

Note that with rule ∃E , we can assume that its eigenvariable occurs only

above the rule in the derivation, therefore not in the derivations of the

premisses P2, . . . , Pn. No violation of the eigenvariable condition is thus
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produced when these derivations are permuted to above rule ∃E . The trans-

formation is similar for the rest of the E-rules except ⊥E . In a purely logical

derivation, normalization brings with itself that also the premiss of ⊥E is

an assumption, but now it can be concluded by a mathematical rule of the

form given in (6) above. In this case we have a part of the derivation and its

transformation:

Q 1 . . . Q m

⊥ R1

P1
⊥E

. . . Pn

Q
R2

Q 1 . . . Q m

⊥ ⊥E

Q
⊥E

If anywhere in a derivation a premiss of a mathematical rule has been

concluded by ⊥E , the mathematical rule can be deleted. The repetition

of permutations such as for &E brings all E-rules below mathematical

rules. QED.

It can be seen from the two schemes in the proof that permutation of logical

rules to below mathematical rules does not affect the heights of derivation of

major premisses of E-rules. Therefore the normalization theorem extends

to derivations in NI∗.

Theorem 2.10. Derivations in NI∗convert to a form in which major premisses

of E-rules are assumptions except for ⊥ that can have been derived by a

mathematical rule.

Proof. The proof is an extension of the proof of normalization for NI. The

major premiss of an E-rule is never concluded by a mathematical rule except

for ⊥E . Therefore the possible convertibilities are the same as in a purely

logical derivation, and mathematical rules do not interfere in any way with

the conversion process. QED.

If intuitionistic natural deduction NI is changed into minimal logic through

the leaving out of rule ⊥E , no qualification is needed in Theorem 2.10.

(b) The subterm property. We can now define a property that will give the

decidability of the derivability of an atomic formula from a finite number

of atomic formulas by the rules of a theory:

Definition 2.11. A derivation of an atom P from atomic assumptions � in

a system of mathematical rules has the subterm property if all terms in the

derivation are terms in �, P . The derivation is loop free if no atom appears

twice in a derivation branch.
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Terms shall be called known terms if they appear in �, P , and otherwise

new terms.

Definition 2.12. A derivation of an atom P from atomic assumptions � in a

system of mathematical rules is minimal if it is loop free and atoms that can

be concluded by a zero-premiss rule are concluded by such a rule.

(c) Complexity of derivations. Mathematical rules of the form (3) can be

converted into program clauses that have the form:

P1, . . . Pm → Q

These program clauses can be combined through a rule of composition, as

in:

P1, . . . Pm → Q 1 Q 1, . . . Q n → R
P1, . . . Pm, Q 2, . . . Q n → R

Comp

Composition obviously corresponds to the application of two rules in suc-

cession, so the composition formula is the conclusion of the first rule and

a premiss of the second. The general derivability problem that we consider

within systems that extend natural deduction can be expressed in terms of

clauses. Let the assumptions be the atomic formulas S1, . . . Sk and the atom

to be derived T. Let the clauses that correspond to the axioms be

P1, . . . Pm → Q , . . . Q 1, . . . Q n → R . (7)

If minimal derivations have the subterm property, the derivability prob-

lem becomes: Is the clause S1, . . . Sk → T derivable by Comp from those

instances of (7) that contain only terms known from the clause to be derived?

There is only a bounded number of distinct clauses with known terms, and

all of the clauses have at most one formula at the right of the arrow. It is one

of the basic results of logic programming that this derivability problem can

be decided in a number of steps that is polynomial in the number of data,

i.e., the size of the clause to be derived.

2.4 The theory of equality

(a) The rules of equality. The axioms of an equality relation convert into

the following system of rules:

a = a Ref
a = b
b = a

Sym a = b b = c
a = c Tr
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We shall go through in detail the proof of the subterm property for the

theory of equality, already described in the Introduction.

Lemma 2.13. Subterm property for the theory of equality. Minimal deriva-

tions of atoms from atomic assumptions in the theory of equality have the

subterm property.

Proof. Consider a minimal derivation, and let b be an uppermost new term,

i.e., a new term such that no other new term has been removed from the

derivation above the last appearance of b. We then have a subderivation that

ends with a last occurrence of b:

a = b b = c
a = c Tr

If the left premiss is derived by Tr, we have, for some d, the derivation

a = d d = b
a = b

Tr
b = c

a = c Tr

The step that removes the new term b is permuted up:

a = d
d = b b = c

d = c
Tr

a = c Tr

If the right premiss of the original Tr has been derived by Tr, a similar

permutation is made. Permuting up the instance of Tr removing b, it is

possible that both premisses become derived by Sym:

b = d
d = b

Sym
e = b
b = e

Sym

d = e
Tr

This is transformed into

e = b b = d
e = d

Tr

d = e
Sym

In the end, the instance of Tr removing the new term b has as one premiss

a topformula. It cannot be an assumption because b was supposed to be

a new term. If it is an instance of Ref, the conclusion is equal to the other

premiss, against the assumption of a minimal derivation. QED.

Theorem 2.14. The derivability of an atom from a given number of atoms by

the rules of the theory of equality is decidable.
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Proof. By the subformula property, proof search can be restricted to the

known terms. If there are n such terms, there are at most n2 distinct

atoms with these terms. The number of loop-free derivations is therefore

bounded. QED.

Note that derivability is decidable in the strong sense of termination of

proof search. The search algorithm can be described as follows. Let � be

the given atoms, and a = b the atom to be derived. First, determine if the

conclusion is an instance of Ref. If not, apply Sym to all atoms of �, then

Tr in all possible ways, and add all new atoms concluded to � to get �1. If

a = b is not in �1, repeat the above to get �2, and so on. As mentioned in

2.3(c), the number of steps needed in this proof search is polynomial in the

number of given atoms.

The proof of decidability of derivability in the theory of equality extends

also to universal formulas, as in Corollary 4.4. An indirect way to show this

is as follows. Consider derivations by only the rules of propositional logic,

with instances of equality axioms and the given atoms as assumptions. By the

subterm property, the instances can be restricted to ones with known terms.

Then their number is bounded, and by the decidability of intuitionistic

propositional logic, the derivability of universal formulas in the theory of

equality is decidable.

(b) Purely syntactic proofs of independence. We are now in a position to

prove the independence of rule Sym in the theory of equality. If Sym were

a rule derivable from the other rules, i.e., if its conclusion were derivable

from its premiss by the other rules, b = a would be derivable from a = b

by Ref and Tr, which is not the case:

Corollary 2.15. The atom b = a is not derivable from the assumption a = b

in the system of rules Ref + Tr.

Proof. If there is a derivation, there is one with the subterm property. The

only rule with premisses is Tr, but any instance of Tr with just the terms a, b

produces a loop or gives as a conclusion one of a = a, b = b. QED.

A standard way of proving the mutual independence of the axioms of

a system is to use models. A domain of individuals D is found and an

interpretation given to the basic relations of the axiomatic system such that

all axioms except one turn out true for the model. For example, let D = N
(the natural numbers) and consider the relation n � m. It is obviously



Rules of proof: natural deduction 35

reflexive and transitive, but not symmetric. Therefore symmetry cannot

follow from reflexivity and transitivity.

The idea of proof analysis, as illustrated by the small example of the theory

of equality, is to try to see how an axiomatic system works, to get a hold

of the structure of derivations, and in particular to give reasons intrinsic to

the system for why some derivations are impossible.

2.5 Predicate logic with equality and its word problem

(a) Replacement rules. Predicate logic with equality is obtained from stan-

dard predicate logic through the addition of a two-place reflexive relation

a = b with the property that equals be substitutable everywhere. The latter

is formulated as a replacement axiom: A(a)&a = b ⊃ A(b). (We write for

brevity substitutions as A(a) instead of A(a/x), etc.) It is possible to restrict

the replacement axiom to atomic predicates and relations. Therefore it is

also possible to consider predicate logic with equality as a system of natural

deduction extended by two mathematical rules:

Table 2.7 The rules of predicate logic with equality

a = a Ref
P (a) a = b

P (b)
Repl

The second rule is schematic: there is one rule for each one-place pred-

icate, and with an n-place relation there is a rule for the replacement of

equals for each argument, so altogether there are n rules. These permit

us to derive an atom of the form Q (a, . . . , c, . . . , d) from the premisses

Q (a, . . . , b, . . . , d) and b = c . It follows at once, by Theorem 2.10, that the

normalization of derivations carries over to predicate calculus with equality.

We show first that the equality relation of predicate logic with equality,

as defined by the rules of Table 2.7, is an equality relation:

Lemma 2.16. Rules Sym and Tr are derivable in predicate logic with

equality.

Proof. For Sym, set P (x) ≡ x = a. The conclusion of Sym is derived from

its premiss as follows:

a = a Ref a = b
b = a

Repl
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For Tr, set P (x) ≡ x = c . The conclusion of Tr is derived from its premisses

as follows:

b = c
a = b
b = a

Sym

a = c Repl

QED.

We are ready to show that the rule of replacement is admissible for arbitrary

formulas:

Lemma 2.17. Application of replacement to arbitrary formulas reduces to rule

Repl.

Proof. The proof is by induction on the length of the replacement formula.

The base case is that of an atomic formula, covered by rule Repl. For ⊥,

nothing happens. The other cases are:

1. The formula is A(a)&B(a). Replacement is reduced to the components

A(a) and B(a) as follows:

A(a)&B(a)

1
A(a) a = b

A(b)
Repl

1
B(a) a = b

B(b)
Repl

A(b)&B(b)
&I

A(b)&B(b)
&E ,1

2. With A(a) ∨ B(a), the reduction is similar.

3. With A(a) ⊃ B(a), the reduction is as follows:

A(a) ⊃ B(a)

2
A(b)

a = b
b = a

Sym

A(a)
Repl

1
B(a) a = b

B(b)
Repl

B(b)
⊃E ,1

A(b) ⊃ B(b)
⊃I,2

The quantifiers are treated similarly. QED.

By this proof, the calculus is complete. Notice that if the standard implication

elimination rule were used, the replacement of a with b in the consequent

B(a) of A(a) ⊃ B(a) would have to be done after the logical elimination

step, so logical and mathematical parts of derivations could not be main-

tained apart.

We can give a complete analysis of the role of rule Ref in derivations. If

Ref gives the second premiss of rule Repl, a loop is produced. If it gives the
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first premiss, the replacement predicate is of the form a = x or x = a. There

are thus altogether three possible steps:

P (a) a = a Ref

P (a)
Repl

a = a Ref a = b
a = b

Repl
a = a Ref a = b

b = a
Repl

Two cases give a loop, the third the rule of symmetry.

(b) The word problem. We solve the word problem for predicate logic

with equality through proof analysis. By the separation of logical rules and

instances of rules Ref and Repl, it is sufficient to consider derivations by the

latter two.

Theorem 2.18. The derivability of an atom from a finite number of given

atoms by the rules of predicate logic with equality is decidable.

Proof. Let Q be derivable from P1, . . . , Pn in predicate logic with equality

and assume there to be new terms in the derivation. Consider an uppermost

such term b, i.e., a new term such that there are no new terms in the

subderivation down to the point at which b gets removed. This step is of the

form

P (b) b = c
P (c)

Repl

The second premiss is not an assumption because b is a new term; neither

do we have c ≡ b because b would appear in the conclusion. The only

possibility that is left is that b = c has been derived by replacement in one

of the predicates x = c or b = x, but this is impossible: the step would be

one of

a = c a = b
b = c

Repl
b = a a = c

b = c
Repl

The new term is found in an equality in a premiss, which would repeat itself

to infinity. QED.

Given a finite collection � of atoms, the application of Repl in minimal

derivations produces as conclusions a bounded set of atoms in polynomial

time, the congruence closure of �.

Notes to Chapter 2

Several logicians have suggested generalizations of Gentzen’s system of natu-

ral deduction. Schroeder-Heister (1984) contains the general version of rule
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&E , but an attempt at formalizing a most general rule of implication elimi-

nation led to a rule that goes beyond first-order logic. The system of general

elimination rules was presented by Tennant (1992) and by Lopez-Escobar

(1999), but in both cases with no substantial analysis of the structure of

derivations. In particular, the powerful notion of normal derivability, as in

Definition 2.4 above, was not used. It turned out that the perhaps first one

to have written down the system of rules was Dyckhoff (1988), in whose

opinion, at the time, the system was not useful (personal communication).

Gentzen’s doctoral thesis (1933–34) mentions in passing a proof of nor-

malization for intuitionistic natural deduction. A recently discovered early

handwritten version of Gentzen’s thesis contains such a proof, written care-

fully to be ready for publication. An English translation of the chapter

on normalization is given in Gentzen (2008). The proof proceeds by first

eliminating permutation convertibilities, i.e., premisses of elimination rules

derived by ∨E or ∃E . Then detour convertibilities are eliminated. See also

von Plato (2008, 2009) for the background of the thesis manuscript.

The conversion of universal axioms into rules of proof that extend nat-

ural deduction was briefly discussed in Negri and von Plato (1998). As

mentioned, similar rules were applied by Prawitz already in 1971, in the

proof theory of arithmetic. Even Gentzen’s notes from around 1933 have

such rules (see von Plato 2009). In Van Dalen and Statman (1978), the

axioms of an equality relation are turned into rules added to natural deduc-

tion and a proof-theoretical analysis of derivations made.
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We shall discuss the organization of an axiomatic system first through an

example, namely Hilbert’s famous axiomatization of elementary geometry.

Hilbert tried to organize the axioms into groups that stem from the divi-

sion of the basic concepts of geometry such as incidence, order, etc. Next,

detailed axiomatizations of plane projective geometry and lattice theo-

ry are presented, based on the use of geometric constructions and lattice

operations, respectively. An alternative organization of an axiomatic system

uses existential axioms in place of such constructions and operations. It is

discussed, again through the examples of projective geometry and lattice

theory, in Section 3.2.

3.1 Organization of an axiomatization

(a) Background to axiomatization. To define an axiomatic system, a lan-

guage and a system of proof is needed. The language will direct somewhat

the construction of an axiomatic system that is added onto the rules of

proof: there will be, typically, a domain of individuals, i.e., the objects the

axioms talk about, and some basic relations between these objects.

When an axiomatic system is developed in every detail, it becomes a

formal system. Expressions in the language of the systems are defined

inductively, and so are formal proofs. The latter form a sequence that can

be produced algorithmically, one after the other.

The idea of a formal axiomatic system is recent, only a hundred years

old. Axiomatic systems appeared for the first time in Greek geometry, as

known from Euclid’s famous book. What he called axioms could be several

things: proper axioms, definitions, descriptions of things, and construction

postulates. Axioms state things about the objects of geometry and their

truth should be immediately evident. The truth of the theorems is to be

reduced to the truth of the axioms through proof.

The axiomatization of elementary geometry was a fashionable topic in

the late nineteenth century. David Hilbert’s book Grundlagen der Geometrie
39



40 Proof systems based on natural deduction

(Foundations of Geometry, 1st edition 1899) became the best known trea-

tise. The first of Hilbert’s geometric axioms is in two parts: the first part

states that there is for any two points of the geometric plane a line such that

both points are incident with the line; the second part states that there is at

most one such line.

Table 3.1 Hilbert’s first axiom of geometry

I1 For two points A, B there exists always a line a such that both of the points

A, B are incident with it.

I2 For two points A, B there exists not more that one line with which both

points A, B are incident.

Hilbert adds that one always intends expressions such as ‘two points’ as

‘two distinct points’. Mysteriously, Hilbert never refers to his axiom I1 in

the proofs of his book. Instead of mentioning it, he just writes ‘AB ’ for a

line in proofs, whenever two points A and B are given. By axiom I1, there

exists such a line, but the notation is explained nowhere. It turns out that

the formulation of the first axiom as given above was a later one. Hilbert

changed it from the original that reads:

Table 3.2 The original version of Hilbert’s first axiom

I1 Two points A, B distinct from each other determine always a line a; we shall

set AB = a or BA = a.

I2 Any two distinct points of a line determine this line a; that is, if AB = a and

AC = a, and B �= C, then also BC = a.

Hilbert’s axiom I1 was originally a construction postulate. Its application in

proofs was clear enough when the object AB appeared. Hilbert didn’t care

to change the proofs in the later editions of his book, so the connecting line

construction AB has to be guessed by the reader who knows only a purely

existential formulation of the connecting line axiom. Even so, Hilbert’s book

has been hailed as the first one to have really formalized mathematics, to

have dealt with mathematics as a pure game with symbols devoid of intuitive

content.

From Hilbert’s axioms and proofs one can gather that he considered

plane geometry with two sorts of objects, points and lines. Notions such as

equal points, equal lines, distinct points, incidence of a point on a line, and

point outside a line are used, but the conceptual order is not given. There
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is no explicit system of proof; the axioms are instead applied intuitively.

As an extreme case, a proof can be absent, as happens in Hilbert’s fifth

theorem in the first edition of his book. In the theorem, a connecting line is

constructed through two points on distinct sides of a line. In applying the

connecting line construction, Hilbert tacitly assumes that the two points

are distinct, because it is a condition for the application of the construction.

No definition of ‘distinct sides’ is given. Let us try to figure out what would

be needed for a proof of Hilbert’s tacit assumption.

Consider a line l, and a point a on one side of the line. For convenience,

add an arrowhead to the line so that it has a direction with a appearing on

the ‘left side’ of the line, symbolically, L (a). Let similarly b be a point such

that R(b). The task is to show that a �= b. This can be considered a negation

of equality, so ¬a = b has to be proved. The following properties of L and

R will give a proof:

Table 3.3 Axioms for ‘left and right side’

I ¬ (L (a) & R(a)),

II L (a) & a = b ⊃ L (b), R(a) & a = b ⊃ R(b).

Let us assume L (a) & R(b) & a = b. From L (a) and a = b we get L (b) by

II, so L (b) & R(b), which contradicts I. Therefore the assumption a = b is

wrong and we have proved ¬ a = b.

The above small example shows what a formal system of proof can do: it

can reveal gaps in an axiomatization, such as the lack of explicit principles

of substitution of equals in Hilbert’s geometry or principles of orientation

of the plane. (Such explicit axioms could be found in the work of some of

Hilbert’s Italian predecessors, for example.)

Our basic language of logic, the predicate calculus, has a sort of ontology

of its own: we have a collection of individuals, or of several types of indi-

viduals, that make up a domain D over which the quantifiers range. The

predicate calculus can express properties and relations of the individuals of

the domain. Equality of two objects is often a crucial relation. An equality

a = b means that a and b are expessions for the same object. Say, we write

7 + 5 = 12 and the meaning is that these different espressions have the

same value, i.e., denote the same natural number.

Very many axioms are universal in form. They can be written either as

universally quantified formulas, or as formulas with free parameters, as in

the following axioms for equality:
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Table 3.4 Free-variable and universal axioms

I a = a, ∀x. x = x,

II a = b ⊃ b = a, ∀x∀y. x = y ⊃ y = x,

III a = b & b = c ⊃ a = c, ∀x∀y∀y. x = y & y = z ⊃ x = z.

It is convenient to use the notation for free parameters a, b, c, . . .

The notion of distinctness was used by L. Brouwer in the 1920s. His

idea seems to have been that the equality of two real numbers needs to be

replaced by a notion of ‘apartness’, with the meaning that a �= b indicates

that a and b ‘have a positive distance’. An equality relation can be defined as

the negation of apartness, as in a = b ≡df ¬a �= b. Reflexivity of equality

gives the obvious axiom of irreflexivity of the apartness relation, ¬a �= a.

Brouwer’s second axiom was given an explicit formulation by his student

Arend Heyting, and we have:

Table 3.5 Brouwer’s axioms for an

apartness relation

I ¬ a �= a,

II a �= b ⊃ a �= c ∨ b �= c .

The intuition for the second axiom is very clear: if a and b are apart, if

we can’t decide a = c because they are ‘indefinitely close’, then we see that

b �= c , and similarly if b = c can’t be decided.

By axiom II, we conclude ¬ (a �= c ∨ b �= c) ⊃ ¬ a �= b, so distributing

¬ in the disjunction and using the definition of equality, a = c & b = c ⊃
a = b. This is known as ‘Euclidean transitivity’ from Euclid, who had the

axiom: ‘any two things equal to a third are equal among themselves’.

Symmetry of apartness is a theorem: substitute a for c in axiom II and the

assumption a �= b gives a �= a ∨ b �= a. The former is excluded by axiom I,

so b �= a remains.

It is important that equals be substitutable in a �= b: if a �= b and b = c ,

then a �= c . This follows easily because equality was defined in terms of

apartness. A similar thing happens if we have a reflexive and transitive

partial order relation a � b and define equality by

a = b ≡df a � b & b � a

(b) Projective geometry. We now give a rigorous axiomatization of plane

projective geometry. The structure of the axiomatization is presented in five

parts.
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1. The domain and its basic relations. We have two sorts of objects in our

domain, points denoted a, b, c, . . . and lines denoted l, m, n, . . . Secondly,

we have the basic relations a = b, l = m, and a ∈ l (point incident with

a line). The last could be written in any way, say Inc(a, l), as no standard

notation for incidence has established itself.

After the domain and basic relations are fixed, we consider

I General properties of the basic relations

Reflexivity: a = a, l = l,

Symmetry: a = b ⊃ b = a l = m ⊃ m = l,

Transitivity: a = b & b = c ⊃ a = c, l = m & m = n ⊃ l = n.

2. Constructions and their properties. Next we have a choice of geometric

constructions and their properties to consider. We shall introduce the con-
necting line of two points a and b, denoted ln(a, b), and the intersection
point of two lines l and m, denoted pt(l, m). These are formally defined as

functions over pairs. Let the domain consist of points denoted Pt and lines

denoted Ln. We then have the functions

ln : Pt × Pt → Ln, pt : Ln × Ln → Pt .

We can now express the incidence properties of constructed objects as a

next group of axioms:

II Properties of constructed objects

a = b ∨ a ∈ ln(a, b), a = b ∨ b ∈ ln(a, b),
l = m ∨ pt(l, m) ∈ l, l = m ∨ pt(l, m) ∈ m.

The axioms state that the line ln(a, b) is constructed exactly through the

points a, b, and similarly for the construction pt(l, m). In the axioms, a = b

and l = m express degenerate cases of the constructions.

3. Uniqueness of constructed objects. We want to have the property that any

two points on a line ln(a, b) determine it, i.e., that

c ∈ ln(a, b) & d ∈ ln(a, b) ⊃ c = d ∨ ln(a, b) = ln(c, d),
pt(l, m) ∈ n & pt(l, m) ∈ k ⊃ n = k ∨ pt(l, m) = pt(n, k).

A simple formulation is

a ∈ l & b ∈ l ⊃ a = b ∨ ln(a, b) = l,
a ∈ l & a ∈ m ⊃ l = m ∨ pt(l, m) = a.



44 Proof systems based on natural deduction

Thoralf Skolem found in 1920 a single axiom from which the uniqueness

of both constructions follows, dubbed ‘Skolem’s beautiful axiom’ by Per

Martin-Löf:

III Uniqueness of constructions

a ∈ l & a ∈ m & b ∈ l & b ∈ m ⊃ a = b ∨ l = m.

The previous formulations follow as special cases of Skolem’s axiom.

4. Substitution of equals. We need to guarantee that equals can be substi-

tuted in the basic relations. Transitivity of equality is, from this point, just

the axiom by which equals are substituted by equals in the equality relations.

For the incidence relation, we have the following axioms:

IV Substitution axioms for incidence

a ∈ l & a = b ⊃ b ∈ l,

a ∈ l & l = m ⊃ a ∈ m.

Axiom groups I–IV give the universal theory of projective geometry.

5. Existence axioms. To the universal axioms is to be added an axiom of

non-collinearity by which there exist at least three non-collinear points:

V Axiom of non-collinearity

∃x∃y∃z(¬ x = y & ¬ z ∈ ln(x, y)).

(c) Lattice theory. A certain pattern in the organization of an axiomatiza-

tion seems to emerge from the above example. We now consider lattice theo-

ry under the same pattern. We have a domain D of individuals a, b, c, . . .

and a partial order over D. Equality is defined by a = b ≡ a � b & b � a.

Next we have two operations:

a ∧ b, the meet of a and b,

a ∨ b, the join of a and b.

The axioms are grouped as for projective geometry:

I General properties of the basic relation

Reflexivity: a � a,

Transitivity: a � b & b � c ⊃ a � c .
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II Properties of constructed objects

a ∧ b � a, a ∧ b � b,

a � a ∨ b, b � a ∨ b.

III Uniqueness of constructed objects

c � a & c � b ⊃ c � a ∧ b,

a � c & b � c ⊃ a ∨ b � c .

By axiom III, anything that is ‘between’ a ∧ b and a and also between a ∧ b

and b, is equal to a ∧ b:

a ∧ b � c & c � a & c � b ⊃ c = a ∧ b.

The substitution principles for equals in the meet and join constructions

are:

a = b ⊃ a ∧ b = c ∧ b, b = c ⊃ a ∧ b = a ∧ c .

These are provable and therefore class IV of substitution axioms is empty.

Lattice theory was born in the latter part of the nineteenth century. One

origin was in number theory, in which Richard Dedekind noticed that

the greatest common divisor and least common multiple of two natural

numbers follow certain abstract laws, namely those for a lattice meet and

join. Lattice theory was practised by Ernst Schröder in his ‘algebra of logic’,

though with a terminology and notation that is completely different from

that of today. Schröder considered the theory quite abstractly, with various

readings of the lattice order relation a � b. The most common reading was

that a and b were some sort of domains and the order an inclusion relation,

so, in substance, sets with a subset relation. Then meet and join became

intersection and union, respectively. In another reading, a and b could be

taken as propositions and the order expressed logical consequence with

meet and join standing for conjunction and disjunction, or they could be

taken as ‘circumstances’ within a relation of cause and effect. Skolem’s early

work in logic followed Schröder’s algebraic tradition. In 1920, he solved

what is today called the word problem for freely generated lattices: A finite

number of atomic formulas is assumed given, and the question is what

atomic relations these given ones determine. In other words, the problem

is to determine, for any atomic formula, if it is derivable from the given

atomic formulas. Schröder’s terminology and notation were unknown to

the extent that Skolem’s discovery remained unnoticed until 1992.
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A peculiarity of Skolem’s axiomatization is that it does not use the lattice

operations, but additional basic relations. Why he made this axiomatization

is not told to the reader of his article, but it works as a fine illustration of a

relational axiomatization.

3.2 Relational theories and existential axioms

Relational axiomatizations replace operations with relations. For exam-

ple, relational lattice theory is based on the idea of having two relations

M(a, b, c), J (a, b, c), in addition to the basic order relation, read as c is the

meet of a and b and c is the join of a and b, respectively. There are axioms

that state the existence of meets and joins:

∀x∀y∃zM(x, y, z), ∀x∀y∃zJ(x, y, z).

There are altogether many more axioms than in an axiomatization with

operations, but there are no functions:

I General properties of the basic relations

Reflexivity: a � a,

Transitivity: a � b & b � c ⊃ a � c .

II Properties of meet and join

M(a, b, c) ⊃ c � a, M(a, b, c) ⊃ c � b,

J(a, b, c) ⊃ a � c, J(a, b, c) ⊃ b � c .

III Uniqueness of meet and join

M(a, b, c) & d � a & d � b ⊃ d � c,

J(a, b, c) & a � d & b � d ⊃ c � d.

Substitution of equals in the meet and join relations needs to be postulated,

with a = b ≡ a � b & b � a. The relations have three arguments, so to cut

down the number of axioms, we do as follows:

IV Substitution axioms

M(a, b, c) & a = d & b = e & c = f ⊃ M(d, e, f ),

J(a, b, c) & a = d & b = e & c = f ⊃ J(d, e, f ).
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Substitution in one argument, say d for a in M(a, b, c), is obtained by the

instance

M(a, b, c) & a = d & b = b & c = c ⊃ M(d, b, c).

Finally, we have

V Existence of meets and joins

∀x∀y∃zM(x, y, z), ∀x∀y∃zJ(x, y, z).

The existential axioms are used as follows:

∀x∀y∃zM(x, y, z)

∃zM(a, b, z)
∀E ,∀E

[M(a, b, v)]....
C

C
∃E

Here v is an eigenvariable of rule ∃E . One would normally use existential

axioms by simply considering an instance M(a, b, v) with v arbitrary. This

was done by Skolem in 1920, well before Gentzen gave the natural quantifier

rules.

Lattice theory with operations has eight axioms, relational lattice theory

instead twelve. We show that the former is ‘at least as good’ as the latter.

Define the meet and join relations by

M(a, b, c) ≡ a ∧ b = c, J(a, b, c) ≡ a ∨ b = c .

Axiom V (existence of meets) is derived by

a ∧ b � a ∧ b a ∧ b � a ∧ b
a ∧ b = a ∧ b

&I

∃z a ∧ b = z
∃I

∀x∀y∃z x ∧ y = z
∀I,∀I

The topformulas are axioms, so, by definition, we have proved the existential

axiom ∀x∀y∃zM(x, y, z) from the axioms of lattice theory with the meet

and join operations. The rest of the relational axioms are derived similarly

from the definition of meet and join.

The language of relational lattice theory is not more expressive than

that of lattice theory with operations, because the former can be emulated

in the latter. In the other direction, to show the equivalence of the two

axiomatizations, we proceed as follows. Let an atomic formula t � s in

lattice theory with operations be given. It is translated into relational lattice

theory like this: Let a, b be some ground terms in t, with a ∧ b also in t.

Take a fresh term c and write down M(a, b, c). If a ∧ b was a component
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in some lattice term we now have, say, a term c ∧ d and we add M(c, d, e)

into our list, with e a fresh term. Proceeding in this way, we find that

t is some lattice term, say e ∧ f , and we add M(e, f , g) to our list. The

same procedure with the term s gives us a list of relational atoms finishing

with, say, M(e ′ ∧ f ′, h). One now proves by induction on the build-up of

terms that if t � s is provable in lattice theory with operations, then g � h

is provable from M(a, b, c), . . . , M(e, f , g), . . . , M(e ′, f ′, h) in relational

lattice theory.

Let us next try to give a relational axiomatization of plane projective

geometry. The relations of equality and incidence will be sufficient. The

numbering makes a comparison with the earlier axiomatization direct.

1. The axioms of equality are as before.

2. In place of a = b ∨ a ∈ ln(a, b) we have existence axioms

∀x∀y∃z(x = y ∨ (x ∈ z & y ∈ z)),
∀x∀y∃z(x = y ∨ (z ∈ x & z ∈ y)).

The notation is a bit awkward: we read from the two incidence relations

x ∈ z, y ∈ z in the first axiom that x and y are points and z a line, and

dually for the second axiom. One notational possibility is to bound the

quantifiers and to write, say, (∀x : Pt) for a universal quantifier bound

to points. Another way is to take more groups of letters into use.

3–4. The axioms of uniqueness and substitution go as before for projective

geometry with constructions.

5. The existence of non-collinear points is written

∃x∃y∃z(¬x = y ∨ (¬x ∈ z & ¬y ∈ z)).

Things go through smoothly in the change to a relational axiomatization.

Part of the reason is that we were able to formulate in Section 3.1 the

uniqueness and substitution axioms without the geometric constructions.

In a relational formulation, projective geometry has two types of existen-

tial axioms, 2 and 5 above.

As with lattice theory, it can be shown that existential axioms are prov-

able from the corresponding axioms for constructions, and that proofs

that use constructions can be substituted by proofs that use the existential

formulation.

It turns out that theories with operations are clearly easier to treat proof-

theoretically than relational theories. Moreover, the two types of existential

axioms in projective geometry lead to problems: as is shown in Chapter 8,

if one type of axiom is converted to rules, say the existence of connecting
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lines and intersection points, the other type remains unconvertible, and the

other way around.

Notes to Chapter 3

The materials of this chapter come in part from the article von Plato

(1996). The first edition of Hilbert’s Grundlagen der Geometrie can be found,

together with Hilbert’s lectures that preceded and followed it, in Hallett and

Majer (2004). The discovery of the change from constructions to existential

axioms was presented first in von Plato (1997). Skolem’s work on lattice

theory and projective geometry was in practice completely forgotten until

it was realized by Stanley Burris, in 1992, that the work on lattice theory

contains a polynomial-time solution of the word problem for freely gen-

erated lattices. Skolem’s relational lattice theory is the topic of Section 5.3.

Projective geometry is treated in detail in Chapter 10.



4 Order and lattice theory

We present in this chapter, first, the theory of partial order. One formulation

is based on a weak partial order a � b and another one on a strict partial

order a < b. The latter theory is problematic because of the absence of

any easy definition of equality. Next, we present lattice theory and give a

short, self-contained proof of the subterm property. By this property, we

get a solution of the word problem for finitely generated lattices. It also

follows that lattice theory is conservative over partial order for the problem

of derivability of an atom from given atoms.

In Section 4.3, the most basic structure of algebra, namely a set with

an equality and a binary operation, is treated. The proof of the subterm

property for such groupoids is complicated by the existence of a unit of the

operation. The treatment can be generalized to operations with any finite

number of terms.

It is possible to modify the rules of lattice theory so that they contain

eigenvariables. The number of rules drops down to four instead of six

(plus the two of partial order). Moreover, the subterm property has an

almost immediate proof. We consider also a formulation of strict order

with eigenvariable rules, which permits the introduction (in a literal sense)

of a relation of equality. A normal form for derivations and some of its

consequences such as the conservativity of strict order with equality over

the strict partial order fragment and the subterm property are shown.

4.1 Order relations

(a) Partial order. We assume given a domain D of individuals a, b, c . . .

and a two-place relation a � b in D with the following standard axioms:

Table 4.1 The axioms of partial order

PO1 Reflexivity: a � a,

PO2 Transitivity: a � b & b � c ⊃ a � c .

Equality is a defined notion:50
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Definition 4.1. a = b ≡ a � b & b � a.

It is straightforward to convert the two axioms of partial order into rules:

these are just like the rules Ref and Tr of an equality relation. Thus, deriva-

tions in the theory of partial order inherit the subterm property of the

theory of equality. As with equality, if a premiss of rule Tr is a reflexivity, a

loop is produced. Therefore the only use of rule Ref is to enable us to derive

an atom of the form a � a. Otherwise a derivation consists of transitivities

that combine a chain such as a1 � a2, a2 � a3, . . . an−1 � an to yield the

conclusion a1 � an.

(b) Strict partial order. One may want to use a strict partial order a < b

instead of a weak one, with the axioms:

Table 4.2 The axioms of strict partial order

SPO1 Irreflexivity: ¬ a < a,

SPO2 Transitivity: a < b & b < c ⊃ a < c .

These axioms convert into the two rules:

Table 4.3 The rules of strict partial order

a < a
⊥ Irr a < b b < c

a < c Tr

By Lemma 2.9, the case in which a premiss of Tr has been concluded by rule

⊥E need not be considered.

Given a set of atoms that form a chain and none of which is of the

form a < a, rule Irr can be applied if the chain contains an inconsistency,

exemplified by the mathematical part of the following derivation of the

antisymmetry of a < b:

Table 4.4 An example derivation in strict partial order

2

a < b & b < a

1

a < b
1

b < a
a < a Tr

⊥ Irr

⊥ &E ,1

¬(a < b & b < a)
⊃I,2

It is not possible to define equality in the theory of strict partial order in

the way of weak partial order. If a and b are two elements not compared in
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either direction in the strict order, the negation of a < b does not mean that

b � a. A standard way would be to add equality as a primitive, together with

axioms that permit the substitution of equals in the strict order relation:

Table 4.5 The axioms of strict partial order with equality

EQ1 Reflexivity: a = a,

EQ2 Symmetry: a = b ⊃ b = a,

EQ3 Transitivity: a = b & b = c ⊃ a = c ,

SUB1 Substitution: a < b & a = c ⊃ c < b,

SUB2 Substitution: a < b & b = c ⊃ a < c .

In derivations by the rules that correspond to these axioms, equality atoms

and order atoms mix in rather intricate ways which makes proof analysis

hard. We shall see in Section 4.4 that the use of eigenvariable rules results

in a neat separation of parts of derivation with rules for strict partial order

and rules that permit the introduction of an equality.

4.2 Lattice theory

(a) The subterm property. We consider a system of natural deduction

rules for lattice theory with the meet and join operations, as axiomatized in

Section 3.1(c):

Table 4.6 The rules of lattice theory in natural deduction style

a � a
Ref

a � b b � c
a � c

Tr

a ∧ b � a
L ∧1

a ∧ b � b
L ∧2

c � a c � b
c � a ∧ b

R∧

a � a ∨ b
R∨1

b � a ∨ b
R∨2

a � c b � c
a ∨ b � c

L ∨

Let us call this system of rules NDLT. Of the proper rules, R∧ and L ∨
maintain the terms of the premisses in the conclusion, but the middle

term in rule Tr is instead lost track of. Transitivity cannot be eliminated in

derivations in NDLT, but it can be reduced to instances in which the middle

term is a subterm of an assumption or of the conclusion. Decidability of the

derivability of an atom from given atomic assumptions then follows.

Theorem 4.2. Subterm property for NDLT. If an atom is derivable from

atomic assumptions in NDLT, it has a derivation with no new terms.
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Proof. Consider a topmost instance of Tr that removes a new term b:
....

a � b

....
b � c

a � c
Tr

(1)

1. First consider the derivation of the left premiss. If a � b is concluded

by Tr, permute up the Tr removing b:

a � d d � b
a � b

Tr
b � c

a � c
Tr

�

a � d
d � b b � c

d � c
Tr

a � c
Tr

(2)

Note that, by assumption, d is not a new term.

If a � b is concluded by L ∨, the term a has a form a ≡ d ∨ e and Tr is

permuted up as follows:

d � b e � b
d ∨ e � b

L ∨
b � c

d ∨ e � c
Tr

�

d � b b � c
d � c

Tr
e � b b � c

e � c
Tr

d ∨ e � c
L ∨

(3)

The permutation of Tr removing b is repeated until a left premiss d′ � b

is not derived by Tr or L ∨. It can be derived by one of the following rules:

1.1. Ref : Then d′ ≡ b and the right premiss of Tr is identical to the

conclusion, so b is not a new term.

L ∧1: Then d′ ≡ b ∧ e, so b is not a new term.

L ∧2: Then d′ ≡ e ∧ b, so b is not a new term.

1.2. R∨1: we have b ≡ d′ ∨ b′ and the step

d′ � d′ ∨ b′ R∨1
d′ ∨ b′ � c

d′ � c
Tr

....
a � c (4)

The case of R∨2 is similar.

1.3. R∧: We have some terms a′ and d, e such that b ≡ d ∧ e and

a′ � d a′ � e
a′ � d ∧ e

R∧
d ∧ e � c

a′ � c
Tr

....
a � c (5)
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2. Consider the right premiss b � c of (4) and (5). If concluded by rules

Tr or R∧, permute as in (2) and (3).

Rules R∨1, R∨2 are excluded dually to the excluded rules L ∧1, L ∧2 in

the left branch of (1).

This leaves two cases for (4) and also for (5):

2.1. In (4), the right premiss after permutation becomes d′ ∨ b′ � c ′ for

some term c ′

d′ � d′ ∨ b′ R∨1

....
d′ � c ′ b′ � c ′

d′ ∨ b′ � c ′ L ∨

d′ � c ′ Tr

....
a � c

is transformed into

....
d′ � c ′

....
a � c

with the transitivity step removed.

2.2
....

a′ � d a′ � e
a′ � d ∧ e

R∧
d ∧ e � c ′ L ∧1

a′ � c ′ Tr

....
a � c (6)

Now c ′ ≡ d so the derivation is transformed into

....
a′ � d....
a � c

with the transitivity step removed. Rule L ∧2 is treated similarly. QED.

The derivability of an atom when a finite number of atoms is assumed is

known as the ‘word problem for finitely presented lattices’. We have:
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Corollary 4.3. Word problem for finitely presented lattices. The deriv-

ability in lattice theory of an atom a � b from the given assumptions

a1 � b1, . . . , am � bm is decidable.

Corollary 4.4. Decidability of universal formulas. The derivability of uni-

versal formulas in lattice theory is decidable.

Proof. Consider a universal formula in prenex form ∀x . . .∀zA with A in

conjunctive normal form. Each conjunct Ak is of the form P1& . . . &Pm ⊃
Q 1 ∨ . . . ∨ Q n, with Pi, Q j atoms. The lattice axioms have no disjunctions

in positive parts and therefore (by Harrop’s theorem, see, e.g., Negri and

von Plato 2001) Ak is derivable if and only if P1& . . . &Pm ⊃ Q j is derivable

for some j . Apply Theorem 4.2 to each of the Q j . QED.

Terms that do not contain lattice operations will be called simple terms. If

an atom consists of only simple terms and is derivable in lattice theory, it

has by the subterm property a derivation the terms of which are all simple

terms, and thus no lattice rule need have been used. Therefore we have:

Corollary 4.5. Lattice theory is conservative over partial order for universal

formulas.

A proof-theoretical treatment of relational lattice theory, with existential

axioms in place of the meet and join operation, is presented in the next

chapter.

(b) The Whitman conditions. Consider the following modification of

the rules for lattice theory. Rules Ref, Tr, R∧, L ∨ from Table 4.5, and the

following:

Table 4.7 Modified rules for lattice theory

a � c
a ∧ b � c

L ∧′
1

b � c
a ∧ b � c

L ∧′
2

c � a
c � a ∨ b

R∨′
1

c � b
c � a ∨ b

R∨′
2

The rules of Table 4.6 follow by setting c ≡ a and c ≡ b, in turn. In the other

direction, the rules of Table 4.7 give those of Table 4.6. For L ∧1, assume the

premiss a � c of the rule in Table 4.7. Its conclusion follows from a ∧ b � a

by Tr. Therefore the system of Table 4.7 is equivalent to that of Table 4.6.

We show that rule Tr can be permuted up in the modified system so that

at least one of its premisses is an assumption. An immediate proof of the

subterm property follows.
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Lemma 4.6. Rule Tr can be permuted up in the modified system of lattice

theory so that at least one of its premisses is an assumption.

Proof. It is sufficient to consider a derivation with one transitivity as a

last rule. If its left premiss is derived by a left rule, Tr is permuted up, and

similarly if the right premiss is derived by a right rule. The remaining cases

are the following. The left premiss is derived by a right rule and the right by

a left rule. We then have, say,

c � a c � b
c � a ∧ b

R∧ a � d
a ∧ b � d

L ∧′
1

c � d
Tr

This part of the derivation is transformed into

c � a a � d
c � d

Tr

The rest of the cases are analogous. QED.

Theorem 4.7. Subterm property. If an atom is derivable from atomic assump-

tions in the modified system of lattice theory, it has a derivation with no new

terms.

Proof. Tr is the only rule that can remove a new term, but by Lemma 4.6,

derivations can be so transformed that all middle terms of Tr occur in

assumptions. QED.

It follows especially from Lemma 4.6 that if an atom is derivable with

no assumptions, it has a transitivity-free derivation. We then get for free

the following result by Phil Whitman (1941) that was among the most

important early results of lattice theory:

Corollary 4.8. The Whitman conditions. If an atom of the form a ∧ b �
c ∨ d is derivable in lattice theory, one of

a � c ∨ b, b � c ∨ d, a ∧ b � c, a ∧ b � d

is derivable.

Proof. An inspection of the rules shows that if an atom of the form a ∧ b �
c ∨ d is derivable, the last rule has to be one of the four modified rules of

Table 4.7. QED.
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4.3 The word problem for groupoids

A groupoid is the most basic structure of algebra, in the sense of being the

simplest considered: a set with an equality relation and a binary operation

with a unit. A solution to the word problem for groupoids gives us a new

way of treating the rule of symmetry wherein lies the interest of the problem.

(a) The axioms and rules for a groupoid. We have an unbounded number

of terms a, b, c, . . . , a1, b1, c1, . . . and a reflexive, symmetric, and transitive

equality relation a = b. Next we have a product ab of two terms, and a

unit 1. When products are iterated, parentheses are used as in (ab)c . The

parenthesis notation for products guarantees that if ab ≡ cd, then a ≡ c

and b ≡ d. (Remember that the notation a ≡ b stands for syntactic equality,

i.e., that a and b are identical expressions.)

Table 4.8 The axioms for a groupoid

G1 Equality: a = a, a = b ⊃ b = a, a = b & b = c ⊃ a = c ,

G2 Unit: a1 = a, 1a = a,

G3 Substitution: a = b & c = d ⊃ ac = bd.

These axioms are converted into a rule system:

Table 4.9 Groupoid axioms as a rule system

a = a Ref
a = b
b = a

Sym a = b b = c
a = c Tr

a1 = a
R1

1a = a
L1

a = b c = d
ac = bd

Sub

Here R and L indicate products with a unit at right and left, respectively.

(b) The subterm property. We shall now prove the subterm property for

derivations of equalities from given equalities.

Definition 4.9. Let the equalities a1 = b1, . . ., an = bn and a = b be given.

Then:

1. A term t is given if it is a term or subterm in a1, b1, . . . , an, bn, a, b.

2. A term t is known if it is given or of the form s1 or 1s with s a given term.

We show that any derivation can be so transformed, through the permu-

tation of the order of application of the rules, that possible new terms get
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eliminated. By clause 2 in Definition 4.9, we consider known terms modulo

product with 1 at left or right, but note that only one multiplication by 1 is

permitted. An upper bound is obtained on the number of terms that need

to be considered in a word problem, and likewise an upper bound on the

number of distinct equalities.

Lemma 4.10. Rule Sym can be permuted up in a derivation so that its

premisses are assumptions or conclusions of zero-premiss rules.

Proof. Consider an uppermost Sym in the derivation. Two consecutive

instances cancel each other, so there remain two cases. A premiss of Sym

has been derived by transitivity or by substitution.

1. Transitivity: A part of the derivation and its transformation are

a = b b = c
a = c Tr

c = a Sym

b = c
c = b

Sym
a = b
b = a

Sym

c = a Tr

2. Substitution: A part of the derivation and its transformation are

a = b c = d
ac = bd

Sub

bd = ac
Sym

a = b
b = a

Sym
c = d
d = c

Sym

bd = ac
Sub

A repetition of the above proof transformations brings rule Sym up to

formulas that start a derivation. QED.

We shall now add reversed versions of the zero-premiss rules to our system

of rules:

Table 4.10 Reversed zero-premiss rules

a = a1
R1rev

a = 1a
L1rev

When to the given equalities a1 = b1, . . . , an = bn the reversed equalities

b1 = a1, . . . , bn = an are also added, we can leave rule Sym out of our

system of rules. We then have just two proper rules, i.e., ones with premisses,

namely transitivity and substitution in a product. If there is a new term in

a derivation, it must be removed before the conclusion is reached, and the

only rule that does that is Tr.

Theorem 4.11. A derivation with an instance of Tr that removes a new term

can be so transformed that no new terms appear.
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Proof. Consider an uppermost new term in the derivation. We permute

up the transitivity that removes it so that at least one of its premisses is

a topformula, i.e., an assumption or a conclusion of a zero-premiss rule.

There are two cases:

1. One premiss is derived by transitivity and the new term is c : a part of

the derivation and its transformation are

a = b b = c
a = c Tr c = d

a = d
Tr

a = b
b = c c = d

b = d
Tr

a = d
Tr

The transformation is similar if the other premiss has been derived by Tr.

2. Both premisses are derived by substitution and the new term is bd: a

part of the derivation and its transformation are

a = b c = d
ac = bd

Sub
b = e d = f

bd = e f
Sub

ac = e f
Tr

a = b b = e
a = e Tr

c = d d = f

c = f
Tr

ac = e f
Sub

If in 2 b and d are known terms, nothing more needs to be done. Otherwise,

repetition of these transformations leads to a situation in which there are no

new terms or at least one premiss of the transitivity that removes a new term

is a topformula. Then it is an assumption or a conclusion of a zero-premiss

rule, but assumptions do not contain new terms. Rule Ref produces a loop.

In conclusions of the unit rules, at least one side of the equation appears

in the conclusion of the transitivity that removes the new term. We have to

ensure that the multiplication by 1 does not repeat, as required by clause 2

of Definition 4.9 of known terms.

If one premiss of Tr is a unit rule, the other is either a unit rule or Sub. In

the former case, the term with the unit must be the middle term or else it

is a term in the conclusion. The premisses are, say, b = b1 and b1 = b, but

then the conclusion is an instance of Ref. Let therefore the other premiss of

Tr be a conclusion of Sub. We then have, say,

b = b1
R1

b = c 1 = d
b1 = cd

Sub

b = cd
Tr

Here b is not a given term, so it is either known or a new term. In the

latter case, it is removed at some stage by Tr. Permutations bring up this Tr

until we have some left premiss a = b, the right premiss b = cd as in the
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above derivation, and a conclusion a = cd. This conclusion is obtained as

follows:

a = a1
R1

a = b b = c
a = c Tr 1 = d

a1 = cd
Sub

a = cd
Tr

The term b1 has been removed. If b is known but not given, it is of the form

b ≡ a1 with a a given term. The derivation and its transformation are:

a1 = (a1)1
R1

a1 = c 1 = d
(a1)1 = cd

Sub

a1 = cd
Tr

a = a1
R1

a1 = c
a = c Tr 1 = d

a1 = cd
Sub

Again, the new term b1 has been removed. With an uppermost new

term removed, the proof transformation is repeated until no new terms

appear. QED.

The substitution axiom and rule were formulated so that both terms of a

product could be substituted simultaneously. This is a crucial property in

the above proof. The two axioms a = b ⊃ ac = bc and c = d ⊃ ac = ad

are together equivalent to a = b & c = d ⊃ ac = bd. One learns by try-

ing it that the corresponding two rules would not permit us to make the

transformations that are needed for the above theorem.

(c) Proof search. The question of the derivability of an equality a = b from

given assumptions a1 = b1, . . . , an = bn by the axioms for a groupoid can

be effected as follows:

1. Add to the given equations, denoted �, the reversed assumptions b1 =
a1, . . . , bn = an. Let this collection be �1.

2. Add to �1 those conclusions of Unit in which at least one side of the

equality is a term known from a1, b1, . . . , an, bn, a, b. Let this collection

be �2.

3. Form the closure of �2 with respect to rules Tr, Sub, with only known

terms in the conclusion of the latter. Let this collection be �3.

4. If a = b is in �3, it is derivable from �, otherwise not.

The above proof search procedure can be described in terms of logic pro-

gramming by turning the axioms for a groupoid into logic programming

clauses:
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Table 4.11 The axioms for a groupoid as clauses

→ a = a, a = b → b = a, a = b, b = c → a = c ,

→ a1 = a, → 1a = a, a = b, c = d → ac = bd.

The clause that corresponds to rule Sym can be left out by Lemma 4.10.

The word problem can be posed as the question of the derivability of the

clause �2 → a = b through the following rule for the composition of the

clauses for a groupoid:

� → a = b a = b, � → c = d
�, � → c = d

Comp

Note that derivability here has two senses: one for the derivability of an

equation, by the rules for a groupoid, another for the derivability of a

clause through composition. The subterm property gives that in a deriva-

tion of � → a = b, the only clause instances that need be used are those

with known terms. Further, because all clauses have just one formula in

the succedent part, proof search is polynomial by known results of logic

programming:

Corollary 4.12. Proof search for a derivation of an equality from given equal-

ities by the rules for a groupoid has a polynomial upper bound.

(d) Functions. The above proof of the subterm property for a two-place

operation can be generalized to any functions: assume given an equality

relation and an n-place function f . Substitution of equals is guaranteed by

the axiom

a1 = b1 & . . . & an = bn ⊃ f (a1, . . . , an) = f (b1, . . . , bn).

The corresponding rule is

a1 = b1 . . . an = bn

f (a1, . . . , an) = f (b1, . . . , bn)
Sub

Transformation 2 in the proof of Theorem 4.11 generalizes to an arbitrary

number of arguments and shows in what way transitivity on function values

reduces to n transitivities on the arguments. As in the theorem, it is essential

that the substitution is simultaneous.
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4.4 Rule systems with eigenvariables

Universally quantified formulas can sometimes be used for defining prop-

erties of axiomatic systems otherwise expressible through conditions on

constructions. One case is lattice theory in which the meet operation can

be characterized axiomatically by the following:

∀x(x � a & x � b ⊃ x � c) ⊃⊂ a ∧ b � c .

The axiom characterizes the meet of a and b as a greatest element below a

and b. The join operation has an analogous characterization.

A weak order can be characterized in an analogous way, through an axiom

added to a strict order:

∀x∀y((x < a ⊃ x < b) & (b < y ⊃ a < y)) ⊃⊂ a � b.

Equality can now be defined through the weak order.

We shall convert the above axioms with universal quantifiers into rules

that have eigenvariables.

(a) Lattice theory. We have the two rules Ref and Tr of the order relation

and the following four rules for the meet and join operations, with x an

eigenvariable in rules LM, RJ:

Table 4.12 Eigenvariable rules for lattice theory

c � a c � b
c � a ∧ b

RM

[x � a x � b]....
x � d

a ∧ b � d
L M

[a � x, b � x]....
c � x

c � a ∨ b
RJ

a � d b � d
a ∨ b � d

L J

These rules are equivalent to the standard lattice rules. Consider rule LM:

With d ≡ a resp. d ≡ b in L M, the old rules L M1, L M2 of Table 4.7

come out as special cases. In the other direction, assume given a derivation

of x � d from the assumptions x � a, x � b, with x arbitrary. Substitute

a ∧ b for x in this derivation, to get a derivation of the conclusion a ∧ b � d

of rule L M from the axioms a ∧ b � a, a ∧ b � b.

The effect of the eigenvariable rules on the proof of the subterm property

is that all problems of permutation of critical transitivities disappear:

Theorem 4.13. Terms in derivations in lattice theory with eigenvariable rules

can be restricted to terms known from assumptions or the conclusion and a

bounded number of eigenvariables.
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Proof. Consider the last occurrence of a new term t in a derivation. It is

removed by rule Tr and the premisses are c � t and t � d for some c, d. As

long as at least one premiss is derived by another Tr, the step that removes

t is permuted up, and the same if the left premiss is derived by LM or LJ,

or the right premiss by RM or RJ. There remain the cases in which the left

premiss is derived by RM and the right by LM, and similarly for join. We

have t ≡ a ∧ b for some a, b and the part of the derivation

....
c � a

....
c � b

c � a ∧ b
RM

[x � a x � b]....
x � d

a ∧ b � d
L M

c � d
Tr

We take the premisses c � a and c � b, then substitute c for x in the

derivation of x � d from the assumptions x � a, x � b, to get a derivation

of c � d without the new term a ∧ b:

....
c � a

....
c � b....

c � d

Thus, in the end the instance of Tr that removes the new term disappears,

or else at least one of its premisses is an assumption and t not a new term.

Each time a rule with eigenvariables is applied, a lattice operation appears

in the conclusion. Therefore the number of lattice operations in the atom

to be derived gives an upper bound to the number of eigenvariables in a

possible derivation. QED.

(b) Strict order with equality. We add to the rules of strict partial order

of Table 4.3 the following:

Table 4.13 Eigenvariable rules for strict order

[x < a]....
x < b

[b < y]
....

a < y

a � b
�I

a � b c < a
c < b

�E 1
a � b b < c

a < c �E 2

In rule �I , x and y are distinct eigenvariables, not free in the conclusion nor

in any other assumptions than those shown as discharged in the schematic

rule.
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Theorem 4.14. The order relation a � b defined by the rules of Table 4.13 is

reflexive and transitive.

Proof. The following derivations show that Ref and Tr for weak partial

order are derivable rules:

1. Reflexivity:

[x < a] [a < y]
a � a

�I

The derivations of the two premisses of rule � I are degenerate.

2. Transitivity:

b � c
a � b [x < a]

x < b
�E 1

x < c �E 1

a � b
b � c [c < y]

b < y
�E 2

a < y �E 2

a � c
�I

QED.

Definition 4.15. Equality. a = b ≡ a � b & b � a.

Theorem 4.16. The relation a = b of Definition 4.15 is an equivalence

relation.

Proof. Reflexivity and transitivity follow by Theorem 4.14 and symmetry

by Definition 4.15. QED.

Rules �E 1 and �E 2 guarantee that equals can be substituted in the strict

order relation, so the axioms of Table 4.5, the one with a basic strict order

and equivalence relations and substitution axioms for equals in the order

relation, are all provable.

Definition 4.17. Normal derivation. A derivation in strict order with equality

is normal if no instance of rule �I is followed by rule �E .

Lemma 4.18. Derivations in strict order with equality convert to normal form.
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Proof. Consider a derivation that is not normal. It has at least one pair of

rules �I,�E 1 or �I,�E 2. With the second, the part of derivation is

[x < a]....
x < b

[b < y]....
a < y

a � b
�I

....
b < c

a < c �E 2

....

This part is converted, by the substitution of c for the arbitrary y in the

derivation of the second premiss of �I , into

....
b < c....
a < c....

The case is similar for the first pair of convertible rules. Repetition of these

conversions removes all I -E pairs from derivations. QED.

We give an example derivation:

1
[x < a]

2
[a < b]

x < b
Tr

2
[a < b]

1
[b < y]

a < y Tr

a � b
�I,1

a < b ⊃ a � b
⊃I,2

Let us call atoms of the form a < b S-atoms, and those of the form a � b

W-atoms.

Theorem 4.19. Subterm property. If an S-atom is derivable from given atoms

in strict order with equality, it has a derivation in which all terms are known.

If a W-atom is similarly derivable, it has a derivation in which all terms are

known except for two eigenvariables x, y of the last rule of the derivation.

Proof. We can assume the derivation to be normal. We show first how to

reduce the derivability of W-atoms to the derivability of S-atoms.
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The only rule that allows us to derive W-atoms is �I . Thus, if the con-

clusion is a W-atom a � b and the assumptions �, we have subderivations

of the premisses of a last rule �I as in

�′, x < a....
x < b

�′′, b < y....
a < y

Here �′, �′′ ≡ �, and a � b is derivable from � by the rules of strict order

with equality if and only if x < b is derivable from x < a and assumptions

�′ contained in � and a < y derivable from b < y and assumptions �′′

contained in �.

Next assume the conclusion to be an S-atom a < b. The derivation begins

with instances of Tr and �E , but the latter have a major (left) premiss that

is an assumption. Consider a new term removed by Tr, and permute it up

until at least one of its premisses is derived by �E , as in

c � d

....
d < e

c < e �E 2

....
e < f

c < f
Tr

....

Here e is a new term. The rule that removes it is permuted up:

c � d

....
d < e

....
e < f

d < f
Tr

c < f
�E 2

....

In the end, the rule that removes the new term has an assumption as

one premiss, which is impossible. Therefore the subterm property for the

derivations of S-atoms follows. By the reduction of derivations of W-atoms

to those of S-atoms, the second part of the theorem follows. QED.

A rule system that corresponds to a standard axiomatization of strict order

and equality, as in Table 4.5, produces derivations in which there is a mess

of order and equality atoms, hard to analyse combinatorially. With the

eigenvariable rule, the corresponding parts of derivations with S- and W-

atoms are neatly separated. In particular, if no assumptions are of the form
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a � b, and neither the conclusion, a normal derivation has no instances of

rules � I,� E . Therefore we have the following corollary.

Corollary 4.20. Strict order with equality is conservative over strict partial

order for the derivation of atoms from atomic assumptions.

Notes to Chapter 4

The solution of the word problem for freely generated lattices in Section

4.2 comes from Negri and von Plato (2002). The Whitman conditions are

derived through proof analysis in Negri and von Plato (2004). (An annoying

slip of pen in corollary 6.4 of that paper claimed the derivability of one of

a � b, a � c, b � c, b � d whenever a ∧ b � c ∨ d is derivable.)

The rule system for groupoids of Section 4.3 is new. We did not know

anything about a possible solution in more algebraic terms but just did the

example as an illustration of the proof-theoretical method in algebra; it

would be surprising if such a solution did not exist.

Rule systems with eigenvariables for lattice theory and the solution of the

word problem were given in the historical paper von Plato (2007). The rule

system for strict order with equality with its introduction and elimination

rules for weak partial order is new.

Our proof-theoretical solution to the word problem for freely generated

lattices has been carried further by Andrea Meinander in her master’s thesis

(Helsinki 2007), to solve the corresponding problem for ortholattices, a

problem that seems to have resisted solution by more traditional methods

of lattice theory (cf. Meinander 2010).



5 Theories with existence axioms

We show how to extend natural deduction systematically by rules that cor-

respond to existential axioms. Then we treat, as simple examples, theories of

equality and order in which conditions of non-triviality or non-degeneracy

have been added. Last, we give a detailed proof analysis of derivations in

relational lattice theory.

5.1 Existence in natural deduction

So far we have extended natural deduction by rules that correspond to

universal axioms, and in the last section of the previous chapter, by rules

that correspond to axioms in which a universal formula implies an atomic

one. We shall in this chapter consider existential axioms of the form

∀x1 . . .∀xn∃y1 . . . ∃ymA .

Certain restrictions will be put on formula A , supposed to be quantifier

free. An axiom of the above form would be used, in natural deduction, as

in the following schematic derivation:

∀x1 . . . ∀xn∃y1 . . . ∃ymA

∃y1 . . . ∃ymA(a1/x1, . . . , an/xn)
∀E ...∀E

[∃ymA(a1/x1, . . . , an/xn, z1/y1, . . . , zm−1/ym−1)]

[A(a1/x1, . . . , an/xn, z1/y1, . . . , zm/ym)]
....
C

C
∃E

....
C

C
∃E

This logical derivation from the axiom ∀x1 . . .∀xn∃y1 . . . ∃ymA can be writ-

ten as a rule from which the quantifier elimination steps have been removed:

[A(a1/x1, . . . , an/xn, z1/y1, . . . , zm/ym)]....
C
C68
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Here a1, . . . an are free parameters and z1, . . . zm eigenvariables, and the

assumption is closed at the inference. It depends on the form of A whether

a logic-free rule can be formulated.

A very general class of axioms convertible to rules is formed by what

are called in category theory geometric implications. They are defined as

follows. First, if A contains no ⊃ nor ∀, it is a geometric formula. (Note

that we treat negation in natural deduction as a special case of implication.)

Secondly, we set the following definition:

Definition 5.1. Geometric implication. If A and B are geometric formulas,

then formulas of the form

∀x1 . . .∀xn(A ⊃ B)

are geometric implications.

Geometric implications can be written in the following equivalent way: they

are conjunctions of universal closures of formulas of the form

P1& . . . &Pm ⊃ ∃y11 . . . ∃y1k M1 ∨ . . . ∨ ∃yn1 . . . ∃ynl Mn

Here the Pi are atoms, the Mj conjunctions of atoms, and the variables y

do not occur in the Pi .

The use of natural deduction poses a restriction on axioms that can be

transformed into rules of inference. The condition was, as in Definition 2.8,

that there be no disjunctions in positive parts of formulas. The correspond-

ing restriction in geometric implications is met in the special case of n = 1

and M ≡ Q 1& . . . &Q s that gives

P1& . . . &Pm ⊃ ∃y1 . . . ∃yk(Q 1& . . . &Q s).

We then arrive at the following natural deduction formulation of the

geometric rule scheme:

P1 . . . Pm

[Q 1, . . . , Q s]....
C

C

Here the assumptions Q 1, . . . , Q s are closed at the inference. These assump-

tions may contain eigenvariables v1, . . . , vk that must not occur free in C

nor in any other assumptions.

It is easily seen that a geometric rule has the same deductive strength

as the corresponding axiom. The way from the axiom to the rule goes
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as in the big schematic derivation above. The other way goes by forming

the conjunction of the assumptions Q i , then quantifying existentially to get

∃y1 . . . ∃yk(Q 1& . . . &Q s) as the minor premiss of the geometric rule. When

its major premisses P1, . . . , Pm are concluded from P1& . . . &Pm, the geo-

metric rule gives the conclusion ∃y1 . . . ∃yk(Q 1& . . . &Q s) and implication

introduction the axiom.

If a major premiss Pi of a geometric rule has been concluded by a logical

rule, it must have been an elimination rule, and a permutation as in the

proof of Theorem 2.9 can be applied.

Next to the geometric axioms and rules, we note the possibility of a

dual co-geometric class of axioms and rules. A formula A is defined to be

co-geometric if A contains no ⊃ nor ∃.

Definition 5.2. Co-geometric implication. If A and B are co-geometric for-

mulas, then formulas of the form

∀x1 . . .∀xn(A ⊃ B)

are co-geometric implications.

Co-geometric implications can be written in the following equivalent way:

They are conjunctions of universal closures of formulas of the form (with

xi vectors of variables)

∀z1 . . .∀zn(∀x1(Q 11 ∨ . . . ∨ Q 1k )& . . . &∀xn(Q n1 ∨ . . . ∨ Q nl ) ⊃ P1 ∨ . . . ∨ Pm).

Variable conditions are dual to those for the geometric implications.

The cases that can be converted to rules in natural deduction style are,

for geometric and co-geometric implications, as follows:

Table 5.1 Geometric and co-geometric rules in natural

deduction

P1 . . . Pm

[Q 1, . . . , Q s ]....
C

C
Q 1 . . . Q s

P

Q 1 . . . Q s

⊥

In typical cases of geometric and co-geometric implications, the atoms Q i

contain eigenvariables that correspond to the existential quantifiers. A co-

geometric implication can be converted into a rule in natural deduction

style only if m ≤ 1. The two cases m = 1 and m = 0 give as conclusions an

atom P and ⊥, respectively.
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The rules act only on atomic formulas, but variable conditions can pre-

vent the permutation of logical rules to below the mathematical ones. How-

ever, it happens in typical cases that rules with variable conditions are

conservative over the rest of the rules for the derivation of atoms from given

atoms.

5.2 Theories of equality and order again

We shall show by simple examples how existential axioms work as rules of

inference, and what type of results can be obtained by their use.

(a) Non-triviality in equality. The theory of equality would become trivial

in a case in which all elements are equal. Thus we want to add an axiom

that dictates the existence of at least two unequal elements. The condition

of non-triviality can be put as a fourth axiom of equality, next to those of

reflexivity, symmetry, and transitivity:

EQ4 Non-triviality: ∃x∃y ¬ x = y.

The axiom is different from those converted to rules so far, but it is classically

equivalent to a co-geometric implication with m = 0 and can be formulated

as a special case of the co-geometric rule scheme:

x = y
⊥ Ntriv

Here x and y are the eigenvariables of the rule, assumed distinct and not

free in any assumptions the premiss of the rule depends on. The idea is that

if one can prove x = y for arbitrary x and y, one can conclude anything.

As mentioned, rules with variable conditions can often be put aside in

word problems. For non-trivial equality, we have:

Theorem 5.3. No premiss of Ntriv is derivable from atomic assumptions by

the rules of equality.

Proof. Consider a derivation of an atom from given atoms by rules Ref, Sym,

and Tr. No such atom can work as the premiss of rule Ntriv : a topformula in

the derivation can contain x or y only if the formula comes from an instance

of Ref, but x = x and y = y produce a loop if rule Sym or Tr is applied, and

rule Ntriv is excluded by the requirement that x and y be distinct. QED.
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By the theorem, Ntriv gives a conservative extension of the theory of equality

as far as the derivability of atoms from given atoms is concerned. The proper

use of existential axioms, such as EQ4, requires a conclusion with a logical

structure.

(b) Non-degenerate partial order. We can add to strict partial order an

axiom that is similar to the one for non-trivial equality:

SPO3 Non-degeneracy: ∃x∃y x < y.

This axiom is a geometric implication and can be converted into the geo-

metric rule without major premisses:

[x < y]....
C
C

Ndeg

Here x and y are the eigenvariables of the rule, assumed distinct and not

free in any assumptions the premiss of the rule depends on except x < y

that is closed by the application of the rule.

Theorem 5.4. If a < b is derivable from a1 < b1, . . . , an < bn in the theory

of non-degenerate strict partial order, it is derivable without rule Ndeg, and

similarly if ⊥ is derivable from a1 < b1, . . . , an < bn.

Proof. Assume there are instances of Ndeg in a derivation. We trans-

form the derivation so that this turns out impossible. If the conclusion

of an uppermost instance of Ndeg is a premiss of Tr, the two rules can be

permuted as in

[x < y]....
c < d
c < d

Ndeg
d < e

c < e Tr

[x < y]....
c < d d < e

c < e Tr

c < e Ndeg

Eigenvariables of other possible instances of rule Ndeg in the derivation of

d < e do not interfere because all eigenvariable rules have their own distinct

variables. Therefore a derivation can be so transformed that all eigenvariable

rules are applied last.
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Now consider a derivation with applications of Ndeg as last rules. The

subderivation with just the uppermost Ndeg is:

�, [x < y]....
a < b
a < b

Ndeg

Here � denotes those given assumptions ai < bi that were used in the

derivation and possible assumptions with eigenvariables in rules that come

after the uppermost instance of Ndeg and that were also used in the deriva-

tion of a < b. By the subterm property for minimal derivations in strict

partial order, all terms in the derivation of the premiss of Ndeg are known.

The only way to use the assumption x < y is in rule Tr, but then either x

or y would have to appear in an assumption other than x < y, which is

impossible because of the requirement that each eigenvariable rule close

only assumptions with its own eigenvariables and nothing else. Therefore

x < y was used 0 times in the derivation, and the instance of Ndeg can be

dropped as superfluous.

After the uppermost Ndeg has been deleted, the rest follow one after the

other.

If ⊥ is derivable from a1 < b1, . . . , an < bn with Ndeg as a last rule, there

is an instance of Irref above Ndeg:

�, [x < y]....
a < a

⊥ Irref

⊥ Ndeg

As above, the formula x < y could be used only in Tr, but then either x or

y would appear in an atom that cannot be closed, by which the instance of

Ndeg would be superfluous. QED.

5.3 Relational lattice theory

We study a system of rules for lattice theory that corresponds to Skolem’s

original work (1920). The rules are given in a single-conclusion formulation

in natural deduction style.

(a) The rules of relational lattice theory. The relational axiomatization of

lattice theory, presented in Section 3.2, uses existence axioms for meets and
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joins instead of explicit meet and join operations. We assume an infinity

of parameters a, b, c, . . . and variables x, y, z, . . . There is a binary partial

order relation a � b and two ternary relations M(a, b, c) and J (a, b, c)

(‘c is the meet of a and b’, and ‘c is the join of a and b’). We call atoms

of these forms O-atoms, M-atoms, and J-atoms. Equality is partial order

in both directions. In the substitution rules below, we abbreviate the two

premisses a � b and b � a by a = b. The first rule has zero premisses. In

rules III–IV, the mnemonic letters L and R indicate that the meet and join

terms appear as left and right members, respectively, of the order relation

in the conclusion. The rules for lattice theory, with the roman numerals

signalling correspondence with the axiomatization in Section 3.2, are:

Table 5.2 Rules for relational lattice theory ReLT

I–II Rules for partial order:

a � a
Ref

a � b b � c
a � c

Tr

III–IV Rules for Meet and Join:

M(a, b, c)
c � a

L M1
M(a, b, c)

c � b
L M2

J (a, b, c)
a � c

RJ 1
J (a, b, c)

b � c
RJ 2

M(a, b, c) d � a d � b

d � c
RM

J (a, b, c) a � d b � d

c � d
L J

V Substitution of equals in Meet and Join:

M(a, b, c) a = d b = e c = f

M(d, e, f )
SM

J (a, b, c) a = d b = e c = f

J (d, e, f )
SJ

VI Existential rules for Meet and Join:

[M(a, b, x)]....
C
C

E M

[J (a, b, x)]....
C
C

E J

A derivation can begin with any O-, M-, or J -atoms as assumptions. The

existential rules have the variable restriction that the eigenvariable x must

not occur free in the conclusion C nor in any open assumption C depends

on, except in the M- or J-atoms indicated as closed. We assume that the

eigenvariable of a rule appears only in the subderivation down to that rule.

It follows that all the eigenvariables of existential rules in a derivation are

distinct.

The existential rules are equivalent to the existence axioms for meet

and join, namely ∀x∀y∃zM(x, y, z) and ∀x∀y∃zJ (x, y, z). If the latter are

assumed, the logical rules of universal and existential quantifier elimination
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lead to the conclusions of the existential lattice rules, and in the other

direction, the existence axioms are derivable by universal and existential

quantifier introduction and the existential lattice rules:

∀x∀y∃zM(x, y, z)

∃zM(a, b, z)
∀E ,∀E

[M(a, b, v)]....
C

C
∃E

[M(a, b, v)]
∃zM(a, b, z)

∃I

∃zM(a, b, z)
E M

∀x∀y∃zM(x, y, z)
∀I,∀I

From the left derivation, we observe that an existence axiom turns into a

corresponding existential rule of inference by the deletion of the existential

premiss. From the right derivation, we observe that the existential rule is

applied after rule ∃I and that this order cannot be permuted. However,

there is an existential quantifier in the conclusion and therefore this lack of

permutability does not influence the derivability of atomic formulas.

In Skolem (1920), rules I–V are treated formally, but existence axioms

and their variable restrictions are handled somewhat intuitively.

(b) Permutability of rules. The order of application of lattice rules can be

permuted by suitable local transformations:

Lemma 5.5. (i) Instances of rules EM, EJ permute down with respect to all the

other rules of ReLT. (ii) Instances of rules SM, SJ permute down with respect

to all the rules except for EM, EJ. If the conclusion is an O-atom, no instance

of SM, SJ is needed, and otherwise just one instance of SM, SJ is sufficient.

Proof. (i) If EM or EJ enables us to conclude an atom C and C is a premiss

of a lattice rule R that lets us conclude D , rule R is applied to the conclusion

C of EM or EJ, and then EM or EJ is applied to D . By the conditions on

eigenvariables, this can always be done. (ii) Consider a substitution on a

in M(a, b, c). We can leave out the superfluous premisses b = b and c = c

and have the instance

M(a, b, c) a � d d � a
M(d, b, c)

SM

The conclusion M(d, b, c) can be a premiss in L M1, L M2, and RM. In the

first case, make the conversion

M(a, b, c) a � d d � a
M(d, b, c)

SM

c � d
L M1

M(a, b, c)
c � a

L M1
a � d

c � d
Tr
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In the case of L M2 we convert as follows:

M(a, b, c) a � d d � a
M(d, b, c)

SM

c � b
L M2

M(a, b, c)
c � b

L M2

If M(d, b, c) is a premiss in RM, the derivation is

M(a, b, c) a � d d � a
M(d, b, c)

SM
e � d e � b

e � c
RM

This is converted into

M(a, b, c)
e � d d � a

e � a
Tr

e � b
e � c

RM

Other cases of substitutions are variants of these three, until when permuting

down substitution another substitution is met. We have, again assuming

substitutions on the first argument:

M(a, b, c) a � d d � a
M(d, b, c)

SM
d � e e � d

M(e, b, c)
SM

This is converted into transitivities and one substitution:

M(a, b, c)
a � d d � e

a � e
Tr

e � d d � a
e � a

Tr

M(e, b, c)
SM

No variable restrictions are violated by the above proof transformations, so

the transformations give a correct derivation of the original conclusion. In

the end, if the conclusion is an O-atom, no substitutions are needed, and

otherwise there is at most one substitution as a last rule. QED.

Lemma 5.5 corresponds to lemma 2 in Skolem (1920). Rules SM, SJ, EM, EJ

are the only ones that permit concluding M- or J -atoms. If existential rules

are permuted down and if the conclusion of the derivation is an O-atom,

no substitutions are needed down to the derivation of the premiss of the

first existential rule, and therefore no substitutions at all. We show later that

derivations that end with M- or J-atoms can be reduced to derivations that

enable us to derive O-atoms, so, by Lemma 5.5, we do not need to consider

rules SM, SJ.
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Definition 5.6. A derivation tree in ReLT is loop free if it has no branches in

which the same atom occurs more than once, except as a premiss and conclusion

of an existential rule, and atoms of the form a � a appear only as leaves. A

term in a derivation tree that is not a term in an open assumption or the

conclusion is a new term.

Lemma 5.7. In a loop-free derivation of an O-atom with no instances of rules

EM, EJ, there are no new terms in the derivation.

Proof. We may assume by Lemma 5.5 that there are no instances of rules

SM, SJ. Then M- and J-atoms are never conclusions, so terms in them

remain terms in open assumptions. Rule Tr is the only one that can remove

a new term, say b:

a � b b � c
a � c

Tr

Trace up atoms with the new term. First occurrences of b cannot be in

any M- or J-atoms or other assumptions. Thus, the new term must appear

first in instances b � b of rule Ref. Such an instance is not a premiss of

Tr because the conclusion would be equal to the other premiss and the

derivation would have a loop. Therefore b � b is a premiss of RM or LJ, say

M(b, e, f ) b � b b � e
b � f

RM
J(b, e, f ) b � b e � b

f � b
L J

Now the new term is in an M- or J -atom, contrary to assumption, and

similarly if b � b is the last premiss of RM or LJ. QED.

Lemma 5.8. In a loop-free derivation of an O-atom with one existential

rule EM or EJ as a last step and closed atom M(a, b, v) or J (a, b, v), first

occurrences of the eigenvariable v are not in instances of rule Ref.

Proof. By Lemma 5.5, the derivation of the O-atom premiss of rule EM

does not need rules SM, SJ. Assume there is a leaf in the derivation tree that

begins with v � v. It is not a premiss in Tr or there is a loop. By the variable

restriction on rule EM, v is not in any open assumption. Therefore v � v is

not a premiss in rule LJ. So v � v is a premiss in RM, but then the first or

second argument in M(a, b, v) is v and the conclusion of RM is the same

as the premiss v � v. The proof for E J is dual to above. QED.

Theorem 5.9. Subterm property. If an O-atom is derivable from atomic

assumptions in ReLT, it has a derivation with no new terms.
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Proof. We may assume that the derivation is loop free. If there are no

instances of EM or EJ, the result is given in Lemma 5.7. We show that

derivations with existential rules can be transformed through suitable per-

mutations into ones with loops. Assume the derivation has instances of EM

or EJ. By Lemma 5.5, these can be permuted last, and each of them enables

us to derive the O-atom that is the conclusion of the whole derivation.

Consider the subderivation down to a first instance of an existential rule,

say EM, that closes the assumption M(a, b, v). By Lemma 5.5, rules SM, SJ

can be assumed absent, so all M- and J-atoms in the derivation are assump-

tions. The eigenvariable v is a new term and by Lemma 5.8, all topmost

occurrences of v are in the closed assumptions M(a, b, v). We transform

the derivation into another one that has the same terms and show that either

it has a loop or else it has the subterm property. The transformation consists

in permuting up instances of rule Tr.

As in the proof of Lemma 5.7, only rule Tr can remove the new term

v from the derivation. Consider an instance such that v does not appear

anywhere below in the derivation:

c � v v � d
c � d

Tr
(1)

If the premiss c � v is concluded by LM1 or LM2, then c is identical to v.

The left premiss of Tr is v � v, but then the right premiss is identical to the

conclusion and there is a loop. Rules RJ 1, RJ 2 cannot have as a conclusion

c � v or else v is in a J -atom. The remaining cases are those where c � v

has been concluded by Tr, LJ, or RM. With Tr, we permute up the Tr that

removes v:

c � e e � v
c � v

Tr
v � d

c � d
Tr

�

c � e
e � v v � d

e � d
Tr

c � d
Tr

(2)

With LJ, there is some premiss of the form J(e, f , c):

J(e, f , c) e � v f � v
c � v

L J
v � d

c � d
Tr

Tr is permuted up as follows:

J(e, f , c)
e � v v � d

e � d
Tr

f � v v � d
f � d

Tr

c � d
L J

(3)
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The permutation of Tr that removes v as in (2) and (3) is repeated until the

left premiss has been concluded by RM. We then have some term c ′ such

that

M(a, b, v) c ′ � a c ′ � b
c ′ � v

RM
v � d

c ′ � d
Tr

(4)

Now consider the right premiss v � d of (4). Rules RJ 1, RJ 2, and L J would

give a J-atom with term v, so the possible rules are LM1, LM2, RM , and Tr.

With Tr we permute similarly to (2):

c ′ � v
v � g g � d

v � d
Tr

c ′ � d
Tr

�

c ′ � v v � g

c ′ � g
Tr

g � d

c ′ � d
Tr

(5)

With RM, there is some premiss of the form M(g , h, d):

c ′ � v
M(g , h, d) v � g v � h

v � d
RM

c ′ � d
Tr

Tr is permuted up as follows:

M(g , h, d)

c ′ � v v � g

c ′ � g
Tr

c ′ � v v � h
c ′ � h

Tr

c ′ � d
RM

(6)

The permutation of Tr that removes v as in (5) and (6) is repeated until for

some term d′ an atom v � d′ has been concluded by LM1 or LM2. Then d′

is identical to a or to b and step (4) has become one of:

M(a, b, v) c ′ � a c ′ � b
c ′ � v

RM
M(a, b, v)

v � a
L M1

c ′ � a
Tr

M(a, b, v) c ′ � a c ′ � b
c ′ � v

RM
M(a, b, v)

v � b
L M2

c ′ � b
Tr

Both derivations have a loop. Deletion of the part of the derivation between

the two occurrences of the same formula deletes also the assumption

M(a, b, v). Thus, in the end there is no new term v in a transformed

loop-free derivation, and therefore no instance of rule EM . The conclusion

now follows by Lemma 5.7. QED.
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Theorem 5.9 gives the main theorem of Skolem (1920) as a corollary:

Corollary 5.10. Conservativity of existential rules. If an O-atom is derivable

from given atoms in lattice theory, it is derivable without rules EM, EJ.

Proof. By the subterm property, there cannot be eigenvariables in a minimal

derivation of an O-atom. QED.

(c) Derivability of universal formulas. We first reduce the derivability of

arbitrary atoms to the derivability of O-atoms and then apply the subterm

property to conclude Skolem’s theorem on the decidability of universal

formulas.

Lemma 5.11. Derivability in ReLT of an M-atom M(a, b, c) from assump-

tions � reduces to the derivability of two O-atoms, and the same for J-atoms.

Proof. Let v be a fresh variable. We show that M(a, b, c) is derivable from

assumptions � if and only if v � c and c � v are derivable from M(a, b, v)

and �.

If M(a, b, c) is derivable from �, we have

M(a, b, v)

�....
M(a, b, c)

c � a
L M1

�....
M(a, b, c)

c � b
L M2

c � v
RM

and

�....
M(a, b, c)

M(a, b, v)
v � a

L M1

M(a, b, v)
v � b

L M2

v � c
RM

In the other direction, assuming v � c and c � v derivable from M(a, b, v)

and �, we have

[M(a, b, v)]

[M(a, b, v)], �....
v � c

[M(a, b, v)], �....
c � v

M(a, b, c)
SM

M(a, b, c)
E M

Since v was chosen fresh, the variable restriction in rule E M is met. QED.
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Theorem 5.12. Derivability of an atom from given atoms. The derivability

of an atom from given atoms in ReLT is decidable.

Proof. By Lemma 5.11, we can assume the conclusion to be an O-atom. By

the proof of Theorem 5.9, we can assume that there are no existential rules.

By the subterm property, only a bounded number of terms need be used in

instances of rules. Therefore the number of loop-free derivations that end

with the atom to be derived is also bounded. QED.

Skolem (1920, pp. 123–124) claims that the derivability of an arbitrary

universal formula reduces to what Theorem 5.12 establishes. He uses the

notion of conjunctive normal form for this, by which a universal formula

can be expressed as a conjunction of disjunctions of the form

¬P1 ∨ . . . ∨ ¬Pm ∨ Q 1 ∨ . . . ∨ Q n.

We consider the equivalent implications of the form

P1& . . . &Pm ⊃ Q 1 ∨ . . . ∨ Q n.

Skolem now states that at least one Q i should follow under P1& . . . &Pm,

and this can be decided by Theorem 5.12, by going through the Q i one by

one. There is a general result about natural deduction and its extension by

mathematical rules that explains why the method works:

Theorem 5.13. Disjunction property under atomic assumptions. If A ∨ B

is derivable from the atomic assumptions P1, . . . , Pm in NI∗, then one of A

and B is derivable.

Proof. Consider a normal derivation. If the last rule is an elimination, its

major premiss remains an open assumption, but all the open assumptions

are atomic. Therefore the last rule must be a disjunction introduction. By

leaving it out, a derivation of A or B is found. QED.

Observe that the result holds in particular for pure intuitionistic natural

deduction, without any added rules.

If A ∨ B is a disjunction of atoms Q 1 ∨ Q 2, a normal derivation of Q 1 or

of Q 2 uses only the mathematical rules. By Theorem 5.12, the derivability

of Q 1 and of Q 2 from P1, . . . , Pm is decidable. A disjunction such as

Q 1 ∨ . . . ∨ Q n is a shorthand for a formula (. . . (Q 1 ∨ Q 2) ∨ . . .) ∨ Q n

with just binary disjunctions. Repeated application of Theorem 5.12 shows

that also in this case, one of the Q i is derivable if all assumptions are atomic.
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Skolem apparently did not see the possibility of having a number of genuine

cases Q 1, . . . , Q n for which the disjunction property would not in general

hold. It is the specific character of the lattice axioms, namely that they are all

Harrop formulas, that makes the proof of Theorem 5.13 go through: with

axioms that contain genuine disjunctions, mathematical rules cannot be

fully separated from the logical rules of disjunction in extensions of natural

deduction.

(d) Further decidable classes of formulas. The standard decidable classes

of formulas of pure predicate calculus include the quantifier prefix classes

∀ . . .∀∃ . . . ∃ and ∀ . . .∀∃∀ . . . ∀, their degenerate cases, etc. The formula-

tion of lattice theory with existential axioms makes it a theory expressible in

the language of pure predicate calculus, that is, without constants or func-

tions. Consider those prefix classes that have a bounded Herbrand expan-

sion. By the subterm property, proof search terminates for these classes, and

the following result is obtained:

Theorem 5.14. Standard decidable classes. Let QA be a formula in prenex

form, with a quantifier prefix Q such that the corresponding Herbrand dis-

junction is bounded. Then derivability of QA in ReLT is decidable.

Notes to Chapter 5

The extension of sequent calculus by rules that correspond to axioms that are

geometric implications was developed systematically in Negri (2003). The

contents of this chapter are an adaptation of geometric and co-geometric

theories to natural deduction as a logical calculus. The class of co-geometric

theories was identified first in Negri and von Plato (2005). The extension

of natural deduction by geometric rules was used by Simpson (1994), as we

found out after the extension of sequent calculus in Negri (2003) had been

carried through.

Skolem’s forgotten work in lattice theory was rediscovered in the 1990s

(see Burris 1995 and Freese, Ježek, and Nation 1995). A review and recon-

struction of Skolem’s pioneering contributions to lattice theory is found in

von Plato (2007).

The approach to relational lattice theory of Section 5.3 comes from Negri

and von Plato (2004). It is different from Skolem’s, though we did not realize

that at the time of writing our paper in the spring of 2002. Skolem’s proof

uses, in fact, eigenvariables in the way of Section 4.4 above, as explained in

detail in von Plato (2007).
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6 Rules of proof: sequent calculus

6.1 From natural deduction to sequent calculus

(a) Notation and rules for sequent calculus. Sequent calculus has a nota-

tion that displays, for each step of inference of a derivation, the open assump-

tions. Each formula C has the open assumptions � it depends on listed on

the same line:

� → C

Sequent calculus can be regarded as a formal theory of the derivability
relation between a conclusion and the assumptions it depends on. In a

sequent � → C, the left, assumption side � is called the antecedent and the

right, conclusion side C the succedent.
In Gentzen’s original formulation of 1934–35, the assumptions �, �, �

were finite sequences, or lists as we would now say. Thus Gentzen had rules

that permitted the exchange of order of formulas in a sequence. We instead

consider assumptions finite multisets, that is, lists with multiplicity but no

order.

The rules of natural deduction show only the active formulas, and the

remaining open assumptions are left implicit. We can make the assumptions

explicit and write, for example, instead of

A B
A&B

&I

as follows:

�....
A

�....
B

A&B
&I

Here the dots are an informal schematic notation for derivability from

assumptions. 85
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When the derivability relation (the dots) is made formal, the introduction

rules of natural deduction become the following right rules of sequent

calculus, in which the comma represents multiset union:

Table 6.1 Right rules of sequent calculus

� → A � → B
�,� → A&B

R&
A, � → B

� → A ⊃ B
R⊃ � → A

� → A ∨ B
R∨1

� → B
� → A ∨ B

R∨2

The formula with the connective in a rule is the principal formula of that

rule, and its components in the premisses the active formulas. The Greek

letters denote possible additional assumptions that are not active in a rule;

they are called the contexts of the rules.

The elimination rules of natural deduction correspond to the left rules
of sequent calculus.

Table 6.2 Left rules of sequent calculus

A, B , � → C
A&B , � → C

L &
A, � → C B , � → C

A ∨ B , �, � → C
L ∨

� → A B , � → C
A ⊃ B , �, � → C

L ⊃

In contrast to the rules of natural deduction, those of sequent calculus are

local: the conclusion of a rule depends only on the premisses immediately

above the inference line of the rule, unlike rule ⊃I and the E -rules of natural

deduction.

We can ask whether the above rendering of the rules of natural deduction

in another, local notation is sufficient for giving a system of sequent calculus.

The answer is negative, for there are implicit rules of natural deduction that

are neither introduction nor elimination rules, in particular:

1. The same formula can act as an assumption and as a conclusion in a

derivation, as in

1
[A]

A ⊃ A
⊃I,1

This requires an addition to the logical rules of sequent calculus: the

making of assumptions in natural deduction, as explained in the begin-

ning of Section 2.1, corresponds to having initial sequents that have the
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form A → A and begin a derivation branch. The example derivation

becomes:

A → A
→ A ⊃ A

R⊃

2. It is possible to close assumptions that have not been made, in a vacuous
discharge, as in the following derivation:

1
[A]

B ⊃ A
⊃I

A ⊃ (B ⊃ A)
⊃I,1

3. It is possible to close several occurrences of the same formula at once, in

a multiple discharge, as in the following derivation:

2
[A ⊃ (A ⊃ B)]

1
[A]

A ⊃ B
⊃E 1

[A]
B

⊃E

A ⊃ B
⊃I,1

(A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)
⊃I,2

4. It is possible to replace an assumption A in a derivation by a derivation

of A and thus to obtain a derivation by substitution, or the composition
of two derivations, C from �, A and A from �, as in

�,

�....
A....

C

The structural rules of sequent calculus correspond to the natural deduc-

tion construction principles 2–4 (sometimes also 1 is included).

Weakening introduces an extra assumption in the antecedent:

� → C
A, � → C

Wk

In the notation of sequent calculus, example 2 becomes

A → A
A, B → A

Wk

A → B ⊃ A
R⊃

→ A ⊃ (B ⊃ A)
R⊃
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It is seen that weakening corresponds to vacuous discharge in natural

deduction.

Contraction is the rule:

A, A, � → C
A, � → C

Ctr

Example 3 becomes the sequent calculus derivation

A → A
A → A B → B
A ⊃ B , A → B

L ⊃

A ⊃ (A ⊃ B), A, A → B
L ⊃

A ⊃ (A ⊃ B), A → B
Ctr

A ⊃ (A ⊃ B) → A ⊃ B
R⊃

→ (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)
R⊃

Here it is seen that contraction corresponds to a use of multiple discharge

in natural deduction.

If assumptions are treated as sets instead of multisets, contraction is built

into the system and is no longer expressed as a distinct rule. This innocent-

looking change – often advocated in the literature as a simplification of the

rules of sequent calculus – cannot be formalized in any simple way, as we

shall see in a while.

Cut is the rule:

� → A A, � → C
�, � → C

Cut

The use of cut corresponds in natural deduction to the composition of two

derivations, but not only that: cut is needed in the translation from natural

deduction to sequent calculus to express those instances of elimination rules

in which the major premiss is derived, that is, not an assumption. These are

the non-normal instances of elimination rules as in Definition 2.4.

Sometimes cut is explained through the familiar practice in mathematics

of breaking proofs into lemmas, but it is essential that the cut formula in

the right premiss be derived by a left rule at some stage. Use of the left

rule corresponds to analysing the assumption into its components as in

the E -rules of natural deduction. This would be the only way to put an

assumption into proper use.

The propositional part of the sequent calculus obtained directly from

natural deduction with general elimination rules will be called G0i. Its rules

are now completely determined:
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Table 6.3 The sequent calculus G0ip

Initial sequents

A → A

Logical rules

A, B , � → C
A&B , � → C

L &
� → A � → B

�,� → A&B
R&

A, � → C B , � → C
A ∨ B , �, � → C

L ∨ � → A
� → A ∨ B

R∨1
� → B

� → A ∨ B
R∨2

� → A B , � → C
A ⊃ B , �, � → C

L ⊃
A, � → B

� → A ⊃ B
R⊃

⊥ → C
L ⊥

Structural rules

� → C
A, � → C

Wk
A, A, � → C

A, � → C
Ctr

Initial sequents are often called ‘logical axioms’ in the literature. The last

sequent in a derivation is called its endsequent.
The rule of cut is not a part of the above calculus, because it is eliminable.

(b) ‘Sequents as sets’. The suggestion has been made repeatedly of treating

the antecedents of sequents � → C as sets of formulas, instead of lists or

multisets. Let us look at rule L & of Table 6.3 in this light. Let the convention

be that the curly brackets are left out in sets that form the antecedents, with

A, B standing for the set {A, B} and A&B for the set {A&B}. Let � in rule

L & be empty, and we have what seems like a perfectly good rule instance:

A, B → C
A&B → C

L &

If it happened that A ≡ B , the antecedent would be the set {A} and there

is no instance of rule L & that would have as a conclusion the sequent

A&A → C.

Rules of inference are part of a definition of the formal notion of a

derivation. They convert derivations of their premisses into a derivation

of their conclusion. If it were possible to really treat ‘contexts as sets’, even

syntactic identity, as in A ≡ B in the above example, would not be needed

to fault suggested instances of rules, but mere equality of objects. Whenever
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the notion of a set is put into use, a notion of equality of sets is also put

into use. Two sets are equal if each member of one is a member of the

other and vice versa. By the extensionality of sets, if a ∈ S and a = b, then

also b ∈ S . Thus, a further notion of equality of objects is involved when

using sets. By the extensionality of sets, {a, b} = {a} if a = b. In the rules of

sequent calculus, the substitutability of equal sets would lead to syntactically

incorrect instances of the logical rules.

To remedy the defect, one would have to say that the rules work on

expressions for sets, not on sets directly, and to introduce a notation for the

equality of expressions for sets, say � ∼ �. The axioms for such equality

would include, next to reflexivity, symmetry, and transitivity, at least the

following, with n, m � 0:

I {A1, . . . , An, A, B , B 1, . . . , B m} ∼ {A1, . . . , An, B , A, B 1, . . . , B m},
II {A1, . . . , An, A, A, B 1, . . . , B m} ∼ {A1, . . . , An, A, B 1, . . . , B m}.
For example, given that we want to derive the sequent B&A → C from the

sequent A, B → C, we would have to use the first axiom to conclude that

{A, B} ∼ {B , A}. When this step is made formal, the above two axioms have

to be converted into rules. The first is symmetric in its left and right part,

the second not, so we have three rules, called here E , C, and W, respectively:

Table 6.4 Structural rules for contexts as sets

A 1, . . . , A n, A, B , B 1, . . . , B m → C
A 1, . . . , A n, B , A, B 1, . . . , B m → C

E
A 1, . . . , A n, A, A, B 1, . . . , B m → C

A 1, . . . , A n, A, B 1, . . . , B m → C
C

A 1, . . . , A n, A, B 1, . . . , B m → C
A 1, . . . , A n, A, A, B 1, . . . , B m → C

W

The derivation of B&A → C from A, B → C can now be made formal:

A, B → C
B , A → C

E

B&A → C
L &

The derivation of A&A → C from A → C is effected as follows:

A → C
A, A → C

W

A&A → C
L &

Similar examples for rule C can be easily constructed. The formalization of

the ‘contexts as sets’ idea leads to structural rules for the handling of equal

contexts. In the above, rule E is just Gentzen’s rule of exchange of the order
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of formulas in lists, rule C is the rule of contraction, and rule W a special

case of the rule of weakening. Thus, nothing is gained but the structural

rules just rendered informal by the ‘contexts as sets’ treatment.

(c) Desiderata on sequent calculi. Next we shall outline some desiderata

on sequent calculi with a view to applications in proof search.

The rules of sequent calculus can have independent or shared contexts.

The two styles in the right rule for conjunction give the rules

Table 6.5 Rules with independent

and shared contexts

� → A � → B
�,� → A&B

� → A � → B
� → A&B

Context-independent and context-sharing rules are easily seen to be equiv-

alent in the presence of the structural rules, in the sense that each rule of

one style is derivable from the corresponding rule of the other style. How-

ever, the two styles are not equivalent for proof search purposes. If the rules

of sequent calculus are used to look for a derivation root first, from the

endsequent to be derived, application of context-independent rules leads

to an explosion of the combinatorial possibilities of splitting the context in

the conclusion between the premisses of two-premiss rules. With context-

sharing rules, the premisses are uniquely determined once the principal

formula of the sequent to be derived is chosen.

Cut elimination is the best-known desired property of sequent calculus.

If we look at the rules, all formulas in the premisses of each rule are found

also in its conclusion, except for cut. Thus, we say that cut-free derivations

have the subformula property, but in the presence of cut, the property is

no longer guaranteed. Thus one of the main tasks of structural proof theory

is the design of sequent calculi in which cut is an eliminable or admissible
rule. Weakening is easily eliminated by letting initial sequents have the form

A, � → A instead of A → A . Contraction, instead, can be as ‘bad’ as cut,

as concerns a root-first search for a derivation of a given sequent: formulas

in antecedents can be multiplied with no end.

(d) Classical propositional logic. The rule obtained by a direct translation

of the natural deduction rule of excluded middle of Chapter 2,

A, � → C ¬A, � → C
� → C
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is not good for proof search purposes, because A is an arbitrary formula

that a priori need have no relation to the formulas in �, C. Nevertheless,

as mentioned in Chapter 2, the formula A can be restricted to atoms and

indeed to atoms from C (cf. Structural Proof Theory, theorem 8.6.6). This

works, however, only for the propositional part of classical logic, but not

for the quantifiers.

(e) Multisuccedent sequents. Gentzen’s formulation of classical logic is

based on the extension of the notion of a sequent into a multisuccedent
sequent. Sequents become expressions of the form

� → �

in which � and � are both multisets of formulas.

An intuitionistic system of sequent calculus is obtained as a special case

of the classical system, by a restriction on the context in implication rules

(and for predicate logic in the right rule for the universal quantifier as well).

In this way we gain the advantage of a uniform formalism for intuitionistic

and classical logic. Also Gentzen’s original classical calculus, denoted LK in

his first paper on the topic, was designed so that an intuitionistic calculus,

denoted LI, was directly a special case of the classical calculus, one in

which the succedent consisted of at most one formula. Thus, this calculus

permitted sequents with empty antecedents (no assumptions in natural

deduction), empty succedents (falsity ⊥ in natural deduction), and even

sequents that had both an empty antecedent and succedent.

In Gentzen (1934–35), what is sometimes called the denotational inter-

pretation of multisuccedent sequents was given: a sequent � → � expresses

that the conjunction of the formulas in � implies the disjunction of the for-

mulas in �.

The operational interpretation of single succedent sequents � → C

through natural deduction is: from the assumptions �, the conclusion C

can be derived. There is, however, no obvious way to extend it into sequents

with multiple succedents.

Again in Gentzen (1938), the multisuccedent calculus is explained as the

natural representation of the division into cases often found in mathemat-

ical proofs. Thus the antecedent � gives the open assumptions and the

succedent � the open cases of a derivation.

The logical rules change and combine open assumptions and cases: L &

replaces the open assumptions A, B by the open assumption A&B ; the dual

multisuccedent rule R∨ changes the open cases A, B into the open case
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A ∨ B , and so on. If there is just one case, we have an ordinary conclusion

from open assumptions. The other limiting case with no formula in the

succedent, as in � → , corresponds to the empty case, that is, impossibility.

In a multisuccedent formulation of sequent calculus, the classical law of

excluded middle is derivable as follows:

A → A, ⊥
→ A, ¬A
→ A ∨ ¬A

(f) Sequent calculi with invertible rules. As noted, calculi with indepen-

dent contexts are not suited for a root-first proof search, because the contexts

in the conclusion could be divided in the premisses in different ways. With

shared contexts, instead, the conclusion of a rule determines the premisses

in a unique way. What is more, it happens with suitably formulated rules

that the derivability between premisses and a conclusion goes both ways:

Definition 6.1. Invertibility. A rule is invertible if from the derivability of

a sequent of the form of its conclusion, the derivability of the corresponding

premiss or premisses follows.

For example, the single invertible rule

A, B , � → �

A&B , � → �

is better in this respect than the two non-invertible rules

A, � → �

A&B , � → �

B , � → �

A&B , � → �

If a premiss of one of the latter rules is given, say the first, it can be weakened

into a premiss of the single rule by the addition of B in the antecedent,

and then the single rule gives the conclusion. In the other direction, if a

premiss of the single rule is given, the two rules can be applied, followed

by a contraction on A&B to arrive at the conclusion of the single rule.

Formally, we have:

A, � → C
A, B , � → C

Wk

A&B , � → C

A, B , � → C
A, A&B , � → C

A&B , A&B , � → C
A&B , � → C

Ctr

Thus, the single rule is equivalent to the two rules. An example shows that

the two rules cannot be invertible. The sequent A&B → A&B is derivable
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because it is an initial sequent. Neither of A → A&B or B → A&B is

derivable, however.

Summing up, the desiderata for our sequent calculus are: multisuccedent,

with context-sharing rules, admissible structural rules, and invertible logical

rules. All of these desiderata are met in the following sequent calculus G3c.

Table 6.6 The sequent calculus G3c

Initial sequents

P, � → �, P

Logical rules

A, B , � → �

A&B , � → �
L &

� → �, A � → �, B
� → �, A&B

R&

A, � → � B , � → �

A ∨ B , � → �
L ∨

� → �, A, B
� → �, A ∨ B

R∨

� → �, A B , � → �

A ⊃ B , � → �
L ⊃

A, � → �, B
� → �, A ⊃ B

R⊃

⊥, � → �
L ⊥

Observe that initial sequents have an atomic formula on both sides of the

arrow.

An intuitionistic system is obtained as a special case of G3c by a modifi-

cation of the implication rules:

Table 6.7 Implication rules for the intuitionistic

calculus G3im

A ⊃ B , � → A B , � → �

A ⊃ B , � → �
L ⊃

A, � → B
� → �, A ⊃ B

R⊃

In G3im, the letter m stands for multisuccedent. The principal formula

of rule L ⊃ is repeated in the antecedent of the left premiss. In rule R⊃,

there is no context in the succedent of the premiss. The reasons for these

complications are explained in Structural Proof Theory, section 5.3.

We use in the results that follow the notation �n � → � to indicate that

the sequent � → � has a derivation of height bounded by n, where the

height of a derivation is its height as a tree.
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Theorem 6.2. Height-preserving inversion. All rules of G3c are invertible,

with height-preserving inversion.

Proof. We have to show that if �n � → �, A&B , then �n � → �, A and

�n � → �, B , and analogously for the other connectives. The proof is by

induction on n.

If � → �, A&B is an initial sequent or conclusion of L ⊥, then, A&B

not being atomic, also � → �, A and � → �, B are initial sequents or

conclusions of L ⊥. Assume height-preserving inversion up to height n, and

let �n+1 � → �, A&B . There are two cases.

If A&B is not principal in the last rule, it has one or two premisses �′ →
�′, A&B and �′′ → �′′, A&B , of derivation height � n, so by inductive

hypothesis, �n �′ → �′, A and �n �′ → �′, B and �n �′′ → �′′, A and

�n �′′ → �′′, B . Now apply the last rule to these premisses to conclude

� → �, A and � → �, B with a height of derivation � n + 1. If A&B

is principal in the last rule, the premisses � → �, A and � → �, B have

derivations of height � n. QED.

Next we consider the structural rules:

Table 6.8 The rules of weakening and contraction

� → �

A, � → �
LW

� → �

� → �, A
RW

A, A, � → �

A, � → �
LC

� → �, A, A
� → �, A

RC

These rules are all admissible in the G3-calculi:

Theorem 6.3. Height-preserving admissibility of weakening

If �n � → �, then �n A, � → �.

If �n � → �, then �n � → �, A .

Proof. Assume � → � to have been derived with height n. Add the formula

A to each antecedent in the derivation, to get a derivation of A, � → �

with height n. The proof is similar for right weakening. QED.

Theorem 6.4. Height-preserving admissibility of contraction

If �n A, A, � → �, then �n A, � → �.

If �n � → �, A, A, then �n � → �, A .

Proof. The proof is by a simultaneous induction on the height of the

derivation for left and right contraction, using height-preserving
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invertibility of the rules. The details are found in Structural Proof Theory,

theorem 3.2.2. QED.

Theorem 6.5. The rule of cut,

� → �, D D, �′ → �′

�, �′ → �, �′ Cut

is admissible in G3c.

Proof. The proof is just sketched here. The principle is to consider an

uppermost cut in a derivation. As long as the cut formula is not principal in

the right premiss of cut, it is permuted up. When it is principal in the right

but not in the left premiss, it is permuted up at left. This step corresponds

to a permutative conversion in natural deduction. Finally, we come to the

essential case in which cut is principal in both premisses. In the case of

conjunction, we have the part of the derivation

� → �, A � → �, B
� → �, A&B

R&
A, B , �′ → �′

A&B , �′ → �′ L &

�, �′ → �, �′ Cut

This part of the derivation is transformed into

� → �, B
� → �, A A, B , �′ → �′

B , �, �′ → �, �′ Cut

�, �, �′ → �, �, �′ Cut

Now there are two cuts on shorter formulas. Other connectives are treated

similarly. Cuts are permuted up until one premiss of cut is an initial sequent.

Then the conclusion of cut is the same as the other premiss of cut, modulo

weakening, or else it is an initial sequent. For the details, see Structural Proof

Theory, p. 54. QED.

The proof of cut elimination for G3c shows a first advantage of the use of

a contraction-free calculus: there is no need of multicut, a rule in which

several occurrences of the cut formula are deleted in the cut. It was used

by Gentzen to deal with a case of non-reducibility in the proof of cut

elimination, the one in which one of the premisses of cut is derived by a

contraction. Cut is a special case of multicut, so the elimination of multicut

gives cut elimination as a corollary. However, by a deeper analysis, not

just of the last rule applied in the premisses of cut, it is possible to prove
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cut elimination without using multicut even in the presence of the other

structural rules.

Corollary 6.6. Subformula property. Each formula in the derivation of a

sequent � → � in G3c is a subformula of �, �.

As an immediate consequence, we have:

Corollary 6.7. Consistency. The sequent → is not derivable.

By the admissibility of weakening, if → were derivable, then also → ⊥
would be derivable. The converse is obtained by applying cut to → ⊥ and

⊥ → , thus, an empty succedent behaves like ⊥.

(g) Rules for the quantifiers. For the sake of completeness of presentation,

we list here the quantifier rules of sequent calculus:

Table 6.9 The quantifier rules in sequent calculus G3c

A(t/x), ∀xA, � → �

∀xA, � → �
L ∀

� → �, A(y/x)

� → �, ∀xA
R∀

A(y/x), � → �

∃xA, � → �
L ∃

� → �, ∃xA, A(t/x)

� → �, ∃xA
R∃

Rules R∀ and L ∃ have an eigenvariable y, not free in the conclusion of the

rules. Rules L ∀ and R∃ have an arbitrary term t in the premiss. They have

also a repetition of the principal formula in the premiss to guarantee the

height-preserving admissibility of contraction.

The rules of Table 6.9 are those of the classical sequent calculus G3c.

The quantifier rules of the intuitionistic multisuccedent calculus G3im are

the same except that the context � in the premiss of rule R∀, but not in

its conclusion, must be empty. The reasons for this condition are as those

for the analogous restriction in rule R⊃. The proofs of admissibility of the

structural rules go through also when the quantifier rules are added.

6.2 Extensions of sequent calculus

(a) Cut elimination in the presence of axioms. It is well known that cut

elimination fails in the presence of proper axioms. A simple counterexample

is given in Girard (1987, p. 125). Let the axioms have the forms A ⊃ B and
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A . These are represented by the ‘axiomatic sequents’ → A ⊃ B and → A .

The sequent → B is derived from these axiomatic sequents, as in:

→ A
→ A ⊃ B

A → A B → B
A, A ⊃ B → B

L ⊃

A → B
Cut

→ B
Cut

However, there is no cut-free derivation of → B .

Observe that if the axioms are converted into the rules

B → C
A → C

A → C
→ C

then the sequent → B has instead a cut-free derivation

B → B
A → B
→ B

The above example shows only the idea of the conversion of axioms into

rules within a sequent calculus. In order to make the idea precise we have

to look carefully at the proof of admissibility of the structural rules for

the G3 sequent calculi. This inspection shows how to convert axioms into

rules while maintaining the admissibility of structural rules in the extended

systems.

First, the rules that correspond to the Hilbert-style axioms have to be

‘logic free’. The logical content of the mathematical axioms is absorbed into

the combinatorics of the sequent calculus mathematical rules. Only atomic

formulas should appear as active and principal in such rules.

Secondly, it is seen that the two rules act only on the antecedent side of

sequents. The rules will have an arbitrary multiset in the succedent.

The most general scheme that corresponds to these principles is:

Table 6.10 The scheme of mathematical rules

Q 1, � → � . . . Q n, � → �

P1, . . . , Pm, �, → �
R

Here �, � are arbitrary multisets; P1, . . . , Pm in the conclusion the princi-
pal atoms in the rule; and Q 1, . . . , Q n in the premisses the active atoms in

the rule, with m, n � 0. In particular, a rule can have zero premisses.

The full rule scheme corresponds to the formula

P1& . . . &Pm ⊃ Q 1 ∨ . . . ∨ Q n.
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To see better what forms of axioms the rule scheme covers, we write out

a few cases, together with their corresponding axiomatic statements in a

Hilbert-style calculus. The rules for axioms of the forms Q &R , Q ∨ R , and

P ⊃ Q are, with two rules for Q &R ,

Q , � → �

� → �
, R, � → �

� → �

Q , � → � R, � → �

� → �

Q , � → �

P, � → �

The rules for axioms of the forms Q , ¬P , and ¬(P1&P2) are:

Q , � → �

� → � P, � → � P1, P2, � → �

In order to deal with the admissibility of contraction, we have to augment

the rule scheme. Right contraction is unproblematic because of the arbitrary

context � in the succedents of the rule scheme. To handle left contraction,

assume there to be a derivation of A, A, � → �, and assume that the last

rule is a mathematical one. Then the derivation of A, A, � → � can be of

three different forms: first, neither occurrence of A is principal in the rule;

second, one is principal; third, both are principal. The first case is handled

by a straightforward induction, and the second case by the method, familiar

from the work of Kleene (1952) and exemplified by rule L ⊃ of the calculus

G3im, of repeating the principal formulas of the conclusion in the premisses.

Thus, the general rule scheme becomes

Table 6.11 The rule scheme with repetition of principal formulas

P1, . . . , Pm, Q 1, � → � . . . P1, . . . , Pm, Q n, � → �

P1, . . . , Pm, � → �
R

Repetitions in the premisses will make left contractions commute with rules

that follow the scheme. For the remaining case, with both occurrences of for-

mula A principal in the last rule, consider the situation with a Hilbert-style

axiomatization. We have some axiom, say ¬ (a < b & b < a) in the theory of

strict linear order, and substitution of b with a produces ¬ (a < a & a < a)

that we routinely abbreviate to ¬ a < a, irreflexivity of strict linear order.

This step is in fact a contraction. For systems with rules, the case in which

a substitution produces two identical formulas that are both principal in a

mathematical rule is taken care of by the following:
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Closure condition. Given a system with mathematical rules, if it has a rule

with a substitution instance of the form

P1, . . . , Pm−2, P, P, Q 1, � → � . . . P1, . . . , Pm−2, P, P, Q n, � → �

P1, . . . , Pm−2, P, P, � → �

then the system has to contain also the rule

P1, . . . , Pm−2, P, Q 1, � → � . . . P1, . . . , Pm−2, P, Q n, � → �

P1, . . . , Pm−2, P, � → �

The condition is unproblematic, because the number of rules to be added

to a given system of mathematical rules is bounded. Often the closure

condition is superfluous, because the contracted rule is already a rule of the

system.

Which axioms are representable as rules that follow the rule scheme?

For classical systems, the answer is unproblematic. All universal axioms

can have their propositional matrix converted to a conjunction of disjunc-

tions of atoms and negations of atoms. Each conjunct can be converted

into the classically equivalent form P1& . . . &Pm ⊃ Q 1 ∨ . . . ∨ Q n that is

representable as a rule of inference. We therefore have

Proposition 6.8. All classical quantifier-free axioms can be represented by

rules that follow the rule scheme.

The conversion to conjunctive normal form does not hold in general in

intuitionistic logic, so we have for intuitionistic systems a smaller class of

axioms convertible into rules that follow the rule scheme. See section 6.1(a)

of Structural Proof Theory for details.

The following result, proved in detail in section 6.2 of Structural Proof

Theory, holds for extensions of the G3 sequent systems. We shall denote

by G3c∗ (G3im∗) any extension of G3 (G3im) by rules that follow the rule

scheme and satisfy the closure condition:

Theorem 6.9. All the structural rules (weakening, contraction, and cut) are

admissible in G3c∗ and in G3im∗. Weakening and contraction are height-

preserving admissible.

Proof. For left weakening, since the two initial sequents and all rules have

an arbitrary context in the antecedent, addition of the weakening formula

to the antecedent of each sequent will give a derivation of A, � → �. For

right weakening, addition of the weakening formula to the succedents of all

sequents that are not followed by an instance of rule R⊃ or rule R∀ gives a

derivation of � → �, A .
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The proof of admissibility of the contraction rules and of the cut rule for

G3im requires the use of inversion lemmas. We observe that all the inversion

lemmas that hold for G3im hold for G3im∗ as well. This is achieved by

having only atomic formulas as principal in mathematical rules. For left

contraction, the proof is by induction on the height of derivation of the

premiss: if the premiss of contraction is an initial sequent or conclusion of

rule L ⊥, the conclusion also is an initial sequent or conclusion of L ⊥.

If A is not principal in the last rule, either logical or mathematical, apply

the inductive hypothesis to the premisses and then the rule.

If A is principal and the last rule is logical, for L & and L ∨ apply height-

preserving invertibility, the inductive hypothesis, and then the rule. For

L ⊃ apply the inductive hypothesis to the left premiss, invertibility and the

inductive hypothesis to the right premiss, and then the rule. If the last

rule is L ∀, apply the inductive hypothesis to its premiss, and then L ∀. If

the last rule is L ∃, apply height preserving invertibility of L ∃, the inductive

hypothesis, and L ∃.

If the last rule is mathematical, A is an atomic formula P and there are

two cases. In the first case one occurrence of A belongs to the context,

another is principal in the rule, say A ≡ Pm ≡ P . The derivation ends with

Q 1, P1, . . . , Pm−1, P, P, �′ → � . . . Q n, P1, . . . , Pm−1, P, P, �′ → �

P1, . . . , Pm−1, P, P, �′ → �
R

and we obtain

Q 1, P1, . . . , Pm−1, P, P, �′ → �

Q 1, P1, . . . , Pm−1, P, �′ → �
Ind

. . .

Q n, P1, . . . , Pm−1, P, P, �′ → �

Q n, P1, . . . , Pm−1, P, �′ → �
Ind

P1, . . . , Pm−1, P, �′ → �
R

In the second case both occurrences of A are principal in the rule, say

A ≡ Pm−1 ≡ Pm ≡ P ; thus the derivation ends with

Q 1, P1, . . . , Pm−2, P, P, �′ → � . . . Q n, P1, . . . , Pm−2, P, P, �′ → �

P1, . . . , Pm−2, P, P, �′ → �
R

and we obtain

Q 1, P1, . . . , Pm−2, P, P, �′ → �

Q 1, P1, . . . , Pm−2, P, �′ → �
Ind

. . .

Q n, P1, . . . , Pm−2, P, P, �′ → �

Q n, P1, . . . , Pm−2, P, �′ → �
Ind

P1, . . . , Pm−2, P, �′ → �
R

with the last rule given by the closure condition.

The proof of admissibility of right contraction in G3im∗ does not present

any additional difficulty with respect to the proof of admissibility in G3im
since in mathematical rules the succedent in both the premisses and the
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conclusion is an arbitrary multiset �. So in the case where the last rule in a

derivation of � → �, A, A is a mathematical rule, one simply proceeds by

applying the inductive hypothesis to the premisses, and then the rule.

The rule of cut is proved admissible by induction on the length of A with

subinduction on the sum of the heights of the derivations of the premisses of

cut� → �, A and A, �′ → �′. We consider here in detail only the cases that

arise from the addition of mathematical rules. The other cases are treated

in the corresponding proof for the purely logical calculi G3c and G3im.

1. If the left premiss is the conclusion of a zero-premiss mathematical

rule, then also the conclusion is, because such rules have an arbitrary context

as succedent.

2. If the right premiss is the conclusion of a zero-premiss mathematical

rule with A not principal in it, then also the conclusion is, for the same

reason as in 1.

3. If the right premiss is the conclusion of a zero-premiss mathematical

rule with A principal in it, A is atomic and we consider the left premiss.

The case in which it is the conclusion of a zero-premiss mathematical rule is

covered by 1. If it is an initial sequent with A not principal, the conclusion

is an initial sequent; otherwise, � contains the atom A and the conclusion

follows from the right premiss by weakening.

In the remaining cases we consider the last rule in the derivation of

� → �, A . Since A is atomic, A is not principal in the rule. Let us consider

the case of a mathematical rule. We transform the derivation, where P

stands for P1, . . . , Pm,

Q 1, P, �′′ → �, A . . . Q n, P, �′′ → �, A

P, �′′ → �, A
R

A, �′ → �′

P, �′, �′′ → �,�′ Cut

into

Q 1, P, �′′ → �, A A, �′ → �′

Q 1, P, �′, �′′ → �,�′ Cut
. . .

Q n, P, �′′ → �, A A, �′ → �′

Q n, P, �′, �′′ → �,�′ Cut

P, �′, �′′ → �,�′ R

where the cut has been replaced by n cuts with left premiss with derivation

of lower height.

Logical rules are dealt with similarly, except for R⊃ and R∀ in G3im that

are handled in 4.

Next we have the cases in which both premisses are derived by rules that

have premisses.
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4. A is not principal in the left premiss. For rules other than R⊃ and

R∀ in G3im, the cut is permuted up to the premisses of the rule by which

the left premiss was derived, with variable renaming to match the variable

restrictions in the cases of quantifier rules. Rules R⊃ and R∀ of G3im have

a restriction by which A does not appear in the premiss, but the conclusion

is obtained without cut by R⊃ or R∀ and weakening.

5. A is principal in only the left premiss. Then A has to be a compound

formula. Therefore, if the last rule of the right premiss is a mathematical

rule, A cannot be principal in the rule, because only atomic formulas are

principal in mathematical rules. In this case cut is permuted to the premisses

of the right premiss of cut. If the rule is a logical one with A not principal

in it, the usual reductions are applied.

6. A is principal in both premisses. This case can involve only logical rules

and is dealt with as in the usual proof for pure logic. QED.

In systems with mathematical rules we have a weak subformula property:

Theorem 6.10. If � → � is derivable in G3im∗ or G3c∗, then all formulas

in the derivation are either subformulas of the endsequent or atomic formulas.

A priori, atomic formulas can be lost track of. However, it turns out in

many cases that the weak subformula property is sufficient for a struc-

tural analysis of proofs. In the applications to the theories of order, lattice

theory, and geometry that will be presented in the following chapters, we

shall establish a subterm property for sequent calculus derivations, analo-

gous to natural deduction, by which proof search can be resricted to

known terms. Under this property, there is only a bounded number of

distinct atomic formulas that are not visible from the endsequent to be

derived.

A simple test for consistency for theories convertible to rules can be made

by analyzing the possible derivations of → ⊥ in G3c∗ or G3im∗:

Theorem 6.11. Assume that a theory convertible to rules is inconsistent. Then

(i) All rules in the derivation of → ⊥ are mathematical,

(ii) All sequents in the derivation have ⊥ as a succedent,

(iii) Each branch in the derivation begins with a rule of the form

P1, . . . , Pm → ⊥
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(iv) The last step in the derivation is a rule of the form

Q 1 → ⊥ . . . Q n → ⊥
→ ⊥

A detailed proof is given in Structural Proof Theory, theorem 6.4.2. Given a

system of axioms, the conjuncts of the axioms in conjunctive normal form

can be written in the form P1& . . . &Pm ⊃ Q 1 ∨ . . . ∨ Q n, with n, m � 0.

It follows that if an axiom system is inconsistent, there must be at least

one such formula with m = 0, and another with n = 0. In other words, at

least one formula is a negation and at least one an atom or a disjunction of

atoms. Therefore, if among the axioms of a system there are neither atoms

nor disjunctions of atoms, the axioms are consistent, and similarly if there

are no negations.

(b) Four approaches to extension by axioms. The method presented

in the previous section is not the only way to extend sequent calculi for

the treatment of axiomatic theories. Here we list four different approaches

and how they behave with respect to cut elimination and proof analysis.

As a basis, we take the intuitionistic calculus G3im, and then we have:

1. Addition of axioms A into G3im in the form of sequents → A by which

derivations can start. As is shown in the example at the beginning of this

section, the method leads to a failure of cut elimination. 2. Gentzen’s method

in his (1938, sec. 1.4). Add ‘mathematical groundsequents’ of the form

P1, . . . , Pm → Q 1, . . . , Q n. By Gentzen’s ‘Hauptsatz’, the cut rule can be

permuted into such groundsequents and arbitrary cuts reduced to cuts

on atoms. Weakening and contraction have to be added as explicit rules.

3. The method of Gentzen’s consistency proof of elementary arithmetic

without induction (1934–35, sec. IV.3). Treat axioms as a context � and

prove results of the form � → �. Cut elimination applies but the resulting

system is not contraction free. Arbitrary instances of the axioms may appear

in the antecedent. 4. Axioms are converted into rules.

All these approaches are equivalent, but the fourth is the one best suited

for the purposes of proof analysis. We define the four approaches more

precisely as follows:

Definition 6.12

(a) An extension of G3im through axioms is obtained by adding the struc-

tural rules and letting axiomatic sequents → A, with A an axiom, begin

derivations.
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(b) An extension of G3im through groundsequents is obtained by adding

the structural rules and letting sequents P1, . . . , Pm → Q 1, . . . , Q n, cor-

responding to the axioms, begin derivations.

(c) An extension of G3im through an axiomatic context is obtained by

letting instances of the axioms appear in the contexts of sequents.

(d) An extension of G3im through rules is obtained by the conversion of

axioms into mathematical rules.

Theorem 6.13. The four types of extensions of sequent calculus are equivalent

with respect to the derivability of sequents.

Proof. Axiomatic sequents and groundsequents are interderivable by cuts.

We show the equivalence of systems with rules to systems with axiomatic

sequents and with axiomatic contexts. For transparency, we consider the

formula P ⊃ Q ∨ R (Split), as other formulas convertible to rules are special

cases or inessential generalizations of it.

1. Equivalence of rules and axiomatic sequents: The rule

Q , P → � R, P → �

P → �
Split

can be derived through the axiom → P ⊃ Q ∨ R by means of cuts and

contractions:

→ P ⊃ Q ∨ R

P ⊃ Q ∨ R, P → P Q ∨ R, P → Q ∨ R

P ⊃ Q ∨ R, P → Q ∨ R
L ⊃

Q , P → � R, P → �

Q ∨ R, P → �
L ∨

P ⊃ Q ∨ R, P, P → �
Cut

P, P → �
Cut

P → �
LC

In the other direction, → P ⊃ Q ∨ R is derivable by rule Split:

Q , P → Q , R

Q , P → Q ∨ R
R∨

R, P → Q , R

R, P → Q ∨ R
R∨

P → Q ∨ R
Split

→ P ⊃ Q ∨ R
R⊃

2. Equivalence of axiomatic contexts and rules: Assume that � → �

was derived by rule Split, and show that P ⊃ Q ∨ R, � → � can be

derived by the rules of G3im. We assume that Split is the last rule in

the derivation, and therefore � ≡ P, �′. The premisses of the rule are

Q , P, �′ → � and R, P, �′ → �; thus there are by the inductive hypothe-

sis instances A1, . . . , Am and A ′
1, . . . , A ′

n of the axioms in the contexts such

that

Q , P, �′, A1, . . . , Am → � and R, P, �′, A ′
1, . . . , A ′

n → �
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are derivable in G3im. Structural rules can be used, and we have, in G3im,

a derivation that starts with a weakening of the Ai and A ′
j into a common

context A ′′
1, . . . , A ′′

k of instances of axioms:

P ⊃ Q ∨ R, P, �′, A ′′
1 , . . . , A ′′

k → P

Q , P, �′, A1, . . . , Am → �

Q , P, �′, A ′′
1 , . . . , A ′′

k → �
LW

R, P, �′, A ′
1, . . . , A ′

n → �

R, P, �′, A ′′
1 , . . . , A ′′

k → �
LW

Q ∨ R, P, �′, A ′′
1 , . . . , A ′′

k → �
L ∨

P ⊃ Q ∨ R, P, �′, A ′′
1 , . . . , A ′′

k → �
L ⊃

The split formula and the A ′′
1, . . . , A ′′

k are instances of axioms.

In the other direction, let � → � be derivable when axiom instances can

be added to �. Suppose for simplicity that only the split axiom occurs in the

context, i.e., that P ⊃ Q ∨ R, � → � is derivable. We have the derivation

by rule Split

Q , P → Q , R

Q , P → Q ∨ R
R∨

R, P → Q , R

R, P → Q ∨ R
R∨

P → Q ∨ R
Split

→ P ⊃ Q ∨ R
R⊃

P ⊃ Q ∨ R, � → �

� → �
Cut

By the admissibility of cut in G3im∗, the conclusion follows. QED.

In systems with axioms and with groundsequents, cuts cannot be eliminated,

whereas systems with axiomatic contexts and with rules are cut free. The

strength of systems with rules is that they permit proofs by induction on

rules used in a derivation, with some surprisingly simple, purely syntactic

proofs of properties of elementary axiom systems.

(c) Complexity of derivations. We have shown that systems with ground-

sequents are equivalent to systems with rules. From the point of view of

logic programming, the groundsequents are just programming clauses. It is

known that proof search for a clause that has more than one formula at left

and at right of the arrow, from a system of such clauses, is not in general

polynomial.

6.3 Predicate logic with equality

We shall treat predicate logic with equality as a first example of the extension

of sequent calculi by mathematical rules. The main aim is to show that if

� → � is derivable and contains no equality, the rules for equality are not

needed. In other words, predicate logic with equality is conservative over

predicate logic without equality.
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Axiomatic presentations of predicate logic with equality assume a primi-

tive relation a = b with the axiom of reflexivity, a = a, and the replacement
scheme, a = b &A(a/x) ⊃ A(b/x). We showed in Section 2.5 how natural

deduction is extended by corresponding rules. Here we shall do the same

within sequent calculus.

In the standard treatment in sequent calculus (as in Troelstra and

Schwichtenberg 2000, p. 128), one permits derivations to start with sequents

of the following form:

Table 6.12 Replacement

through axiomatic sequents

→ a = a a = b, P (a) → P (b)

Here P is an atomic formula. By Gentzen’s ‘extended Hauptsatz’, cuts can

be reduced to cuts on axiomatic sequents, but full cut elimination fails.

For example, there is no cut-free derivation of symmetry. Weakening and

contraction must be assumed.

By our method, cuts on equality axioms are avoided. We first restrict the

replacement scheme to atomic predicates P, Q , R, . . . and then convert the

axioms into rules:

Table 6.13 Replacement rules in sequent calculus

a = a, � → �

� → �
Ref

a = b, P (a), P (b), � → �

a = b, P (a), � → �
Repl

When these rules are added to G3im and G3c, intuitionistic and classical

predicate logic with equality are obtained, respectively.

By the restriction to atomic predicates, both forms of rules follow the

rule scheme. A case of duplication is produced in the conclusion of the

replacement rule if P (x) is x = b. The rule where both duplications are

contracted is an instance of the reflexivity rule, so the closure condition is

satisfied. We therefore have, both for G3im and G3c, the following theorem:

Theorem 6.14. The rules of weakening, contraction, and cut are admissible

in predicate logic with equality.

Lemma 6.15. The replacement axiom a = b, A(a/x) → A(b/x) is derivable

for arbitrary A .
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Proof. By induction on the length of A , using the left and right rules that

correspond to the outermost connective of A . QED.

Lemma 6.16. The replacement rule

a = b, A(a/x), A(b/x), � → �

a = b, A(a/x), � → �
Repl

is admissible for an arbitrary predicate A .

Proof. The proof is a sequent calculus version of the proof given in

Lemma 2.17. QED.

Our cut- and contraction-free calculus is equivalent to standard sequent

calculi, but the formulation of equality axioms as rules permits proofs

by induction on the height of derivation. The conservativity of predicate

logic with equality over predicate logic illustrates such proofs. To prove

the conservativity, we show that Ref can be eliminated from derivations of

equality-free sequents.

As observed above, the rule of replacement has an instance with a dupli-

cation, and the closure condition is satisfied because the instance in which

both duplications are contracted is an instance of reflexivity. For the proof

of conservativity, in the absence of Ref, the closure condition is satisfied by

the addition of the contracted instance of Repl:

a = b, b = b, � → �

a = b, � → �
Repl∗

We have the immediate result:

Lemma 6.17. If � → � has no equalities and is derivable in G3c+Ref+
Repl+Repl∗, no sequents in its derivation have equalities in the succedent.

The following lemma contains the essential analysis in the proof of conser-

vativity:

Lemma 6.18. If � → � contains no equalities and is derivable in G3c+Ref+
Repl+Repl∗, it is derivable in G3c+Repl+Repl∗.

Proof. We show that all instances of Ref can be eliminated from a given

derivation, by induction on the height of derivation of a topmost instance

a = a, �′ → �′

�′ → �′ Ref
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If the premiss is an initial sequent also the conclusion is, for by the above

lemma, �′ contains no equality, and the same if it is a conclusion of L ⊥.

If the premiss has been concluded by a logical rule, apply the inductive

hypothesis to the premisses and then the rule.

If the premiss has been concluded by Repl, there are two cases, according

to whether a = a is or is not principal. In the latter case the derivation is,

with �′ = P (b), �′′,

a = a, b = c, P (b), P (c), �′′ → �′

a = a, b = c, P (b), �′′ → �′ Repl

b = c, P (b), �′′ → �′ Ref

By permuting the two rules, the inductive hypothesis can be applied.

If a = a is principal, the derivation is, with �′ = P (a), �′′,

a = a, P (a), P (a), �′′ → �′

a = a, P (a), �′′ → �′ Repl

P (a), �′′ → �′ Ref

By height-preserving contraction, there is a derivation of a = a, P (a),

�′′ → �′ to which the inductive hypothesis applies, with a derivation of

�′ → �′ without rule Ref as a result.

If the premiss of Ref has been concluded by Repl∗ with a = a not prin-

cipal, the derivation is

a = a, b = c, c = c, �′ → �′

a = a, b = c, �′ → �′ Repl∗

b = c, �′′ → �′ Ref

The rules are permuted and the inductive hypothesis applied.

If a = a is principal, the derivation is

a = a, a = a, �′ → �′

a = a, �′ → �′ Repl∗

�′ → �′ Ref

Apply now height-preserving contraction and the inductive hypo-

thesis. QED.

Next, because rules Repl and Repl∗ have equalities in their conclusions, we

obtain:

Theorem 6.19. If � → � is derivable in G3c+Ref+Repl+Repl∗ and if �, �

contains no equality, then � → � is derivable in G3c.
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6.4 Herbrand’s theorem for universal theories

Let T be a theory with a finite number of purely universal axioms and clas-

sical logic. We turn the theory T into a system of mathematical rules by first

removing the quantifiers from each axiom, then converting the remaining

part into mathematical rules. The resulting system will be denoted G3cT.

Theorem 6.20. Herbrand’s theorem. If the sequent → ∀x∃y1 . . . ∃ykA,

with A quantifier free, is derivable in G3cT, then there are terms tij with

i � n, j � k such that

→
n∨

i=1

A(ti1/y1, . . . , tik/yk)

is derivable in G3cT.

Proof. Suppose that k = 1. The derivation of → ∀x∃yA ends with

→ A(z/x, t1/y), ∃yA(z/x)

→ ∃yA(z/x)
R∃

→ ∀x∃yA
R∀

Every sequent in the derivation is of the form

� → �, A(z/x, tm/y), . . . , A(z/x, tm+l/y), ∃yA(z/x)

Here �, � consist of subformulas of A(z/x, ti/y), with i < m, and atomic

formulas.

Consider the topsequents of the derivation. If they are initial sequents or

conclusions of L ⊥, they remain so after deletion of the formula ∃yA(z/x).

If they are conclusions of zero-premiss mathematical rules, they remain so

after the deletion because the right context in these rules is arbitrary. After

deletion, every topsequent in the derivation is of the form

� → �, A(z/x, tm/y), . . . , A(z/x, tm+l/y)

The application of the propositional and mathematical inferences as before,

but without the formula ∃yA(z/x) in the succedent, produces a derivation

of

→ A(z/x, t1/y), . . . , A(z/x, tm−1/y), A(z/x, tm/y), . . . , A(z/x, tn/y)

and the conclusion follows by applications of rule R∨. QED.

If the theory T is empty we have
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Corollary 6.21. If → ∃xA is derivable in G3c, there are terms t1, . . . , tn such

that → A(t1/x) ∨ . . . ∨ A(tn/x) is derivable.

Notes to Chapter 6

Section 6.1: The use of the word ‘sequent’ as a noun was begun by Kleene.

His Introduction to Metamathematics of 1952 (p. 441) explains the origin

of the term as follows: ‘Gentzen says “Sequenz”, which we translate as

“sequent”, because we have already used “sequence” for any succession of

objects, where the German is “Folge”.’ This is the standard terminology

now; Kleene’s usage has even been adapted to some other languages with

somewhat peculiar results in cases. But Mostowski (1965) for example uses

the literal translation ‘sequence’.

The classical propositional part of the calculus G3 was invented by the

Finnish logician Oiva Ketonen some time around 1940. It appears first in

a publication of 1943 in the Finnish language. Judging from this paper, it

seems that Ketonen found his rules as a solution to the problem that anyone

who attempts root-first proof search in sequent calculus faces: how does one

divide the contexts in two-premiss rules? The obvious answer is that if some

assumptions � are permitted in the end, they must be permissible elsewhere,

and the same for the cases. Thus, there is no need to divide contexts. Other

modifications of Gentzen’s rules in Ketonen (1944), however, are not as

simply explained: he used a single left conjunction and right disjunction

rule, where Gentzen had two rules for both, and a left implication rule with

shared contexts.

The G3-calculi were developed, on the basis of Ketonen’s work, by Kleene

in his influential book Introduction to Metamathematics. A final form of

these calculi was given by Dragalin (1988), except for a single succedent

intuitionistic version that was found by Troelstra in Basic Proof Theory.

The G0-calculi, i.e., calculi with independent contexts throughout, were

introduced in von Plato (2001b) to give a direct proof of Gentzen’s cut-

elimination theorem, in place of the original that used a cut rule that wiped

out several occurrences of the cut formula in one stroke.

The idea of deducing (in Newton’s sense) the rules of sequent calculus

from those of natural deduction with general elimination rules is from the

first chapter of Structural Proof Theory. The interpretation of the structural

rules of weakening and contraction in terms of natural deduction was

deduced in von Plato (2001a).

Section 6.2: The extension of the G3-calculi through mathematical rules,

and the proofs of admissibility of the structural rules, was first presented
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in Negri (1999) for some intuitionistic theories. Extension by rules that

correspond to universal axioms was given in Negri and von Plato (1998)

which appeared earlier but was written after Negri (1999).

Section 6.3: The treatment of predicate logic with equality, and especially

the proof of conservativity of predicate logic with equality over predicate

logic, is a result of ours presented in section 6.5 of Structural Proof Theory.

Anne Troelstra liked this result, shown to him as a manuscript, so much

that he asked to include it in the second edition of Basic Proof Theory where

it now appears as section 4.7.

A different system of sequent calculus for predicate logic with equality is

given in Degtyarev and Voronkov (2001). The calculus is an extension of a

G3-system for classical logic with primitive negation and has the following

rules for equality:

� → �, a = a

�(b/x), a = b → �(b/x)

�(a/x), a = b → �(a/x)

Similar rules were presented in Wang (1960) (with replacement only in �)

and in Kanger (1963).

Section 6.4: Our generalization of Herbrand’s theorem was inspired by Buss

(1995). It appeared first in Negri and von Plato (2005).



7 Linear order

The extensions of sequent calculi by rules, presented in the previous

chapter, share the good structural properties of the purely logical G3-calculi,

i.e., the rules of weakening, contraction, and cut are admissible. In addi-

tion to being admissible, weakening and contraction are height-preserving

admissible. The usual consequence of cut elimination, the subformula prop-

erty, holds in a weaker form, because all the formulas in the derivations in

such extensions are subformulas of the endsequent or atomic formulas.

However, by analysing, analogously to natural deduction, minimal deriva-

tions in specific theories, we can establish a subterm property, by which all

terms in a derivation can be restricted to terms in the endsequent.

This chapter gives proofs of the subterm property for partial and linear

order, the latter not an easy result. To make its presentation manageable, a

system of rules that act on the right part of multisuccedent sequents is used.

Further, it is shown through a proof-theoretical algorithm how to linearize

a partial order, a result known as Szpilrajn’s theorem. The extension is based

on the conservativity of the rule system for linear order over that for partial

order for sequents that have just one atom in the succedent. Finally, the

proof-theoretical solution of the word problem for lattices of Chapter 4 is

extended to linear lattices, i.e., lattices in which the order relation is linear.

7.1 Partial order and Szpilrajn’s theorem

(a) Minimal derivations. We observe that a derivation in which a rule,

read root first, produces a duplication of an atom, can be shortened by the

application of height-preserving admissibility of contraction in place of the

rule that introduces that atom. The possibility of such shortening justifies

the following definition:

Definition 7.1. Minimal derivations. A minimal derivation is a derivation

in which shortenings through height-preserving admissibility of contraction

are not possible, and sequents that can be concluded by zero-premiss rules

appear only as topsequents. 113
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The subterm property, together with the height-preserving admissibility

of contraction, will give a bound on proof search for the theories under

examination: in a minimal derivation in these theories, no new term can

appear, nor any instances of rules that produce a duplication of formulas.

We recall the notion of a Harrop formula in Section 2.3: these formulas

are ones that do not contain a disjunction in any positive part. A Harrop
theory is a theory the axioms of which consist of Harrop formulas. A left
Harrop system is a system of mathematical rules obtained from the axioms

of a Harrop theory by the use of the left rule scheme.

The rules of a left Harrop system have at most one premiss; thus the

derivations are linear, not proper trees, and therefore we have:

Theorem 7.2. If a sequent � → � with only atomic formulas is derivable in

a left Harrop system, then � → P is derivable for some atom P . If � is not

empty, the atom P can be chosen from �.

Proof. Consider a derivation of � → �. If the topsequent is an initial

sequent P, �′ → �′, P , with � = �′, P , the succedent can be changed

into P . If the topsequent is a zero-premiss mathematical rule, any atom

P can be put as the succedent and the derivation with the new succedent

continued as with �. QED.

The theorem is similar in nature to Theorem 5.13 by which Skolem’s claim

about the decidability of universal formulas in lattice theory could be justi-

fied. All axioms of lattice theory are Harrop formulas.

(b) Partial order. We consider the theory of partial order as an example of

the application of Theorem 7.2. The axioms of partial order are

PO1. a � a,

PO2. a � b & b � c ⊃ a � c .

Equality is defined by a = b ≡ a � b & b � a. (Thus, we are working with

what are sometimes called preorders or quasiorders.) Clearly, the equality so

defined is an equivalence relation and satisfies the principle of substitution

of equals in the order relation.

We define GPO as a sequent system with the additional rules

Table 7.1 Sequent calculus rules for partial order

a � a, � → �

� → �
Ref

a � c, a � b, b � c, � → �

a � b, b � c, � → �
Tr
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The closure condition arises when a ≡ b and b ≡ c , so the contracted

premiss of rule Tr to consider is

a � a, a � a, � → �

The contracted conclusion follows by rule Ref, so the closure condition is

satisfied without any additions. Thus, the rules of weakening, contraction,

and cut are admissible in GPO. Weakening and contraction are moreover

height-preserving admissible.

Proof analysis in GPO. There are exactly two kinds of derivations to con-

sider. To see what they are, assume that derivations are minimal. If � → �

is derivable, the topsequent has the form P, �′ → �′, P with �′, P = �,

and we can delete �′. The two kinds of derivations are:

1. Reflexivity derivations. P ≡ a � a.

The conclusion � → a � a follows in one step from the initial sequent

a � a, � → a � a, with an application of rule Ref :

a � a, � → a � a
� → a � a

Ref

The context � is superfluous and can be deleted; thus, the conclusion

becomes → a � a.

2. Transitivity derivations. The topsequent is a1 � an, �
′ → a1 � an.

The atom a1 � an must be the removed atom in a first step of transitivity or

else the derivation can be shortened: if some other atom P were removed,

with �′ ≡ P, �′′, the derivation could be shortened by starting with a1 �
an, �

′′ → a1 � an as topsequent.

There cannot be steps of reflexivity in this derivation: the reflexivity

atom would be principal in a step of transitivity, or else it could be removed

without further ado from the derivation with a subsequent shortening, thus

there would be a step of the form

a � b, a � a, a � b, � → a1 � an

a � a, a � b, � → a1 � an
Tr

By the height-preserving admissibility of contraction, the conclusion of this

step could be obtained already from the premiss without using transitivity,

in one step less.
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Two atoms a1 � a2, a2 � an are activated by the step of Tr that removes

a1 � an so that the topsequent is of the form

a1 � an, a1 � a2, a2 � an, �
′′ → a1 � an

If an atom different from a1 � a2 and a2 � an is removed in the second

step, that atom can be deleted from the topsequent. There is then one step

less. Therefore, in the second step, one of the activated atoms must become

the removed atom, with two new activated atoms, say a2 � a3, a3 � an, or

else the derivation can be again shortened. The closure of the principal atom

a1 � an with respect to the activation relation gives us what we call a chain
a1 � a2, a2 � a3, . . . an−1 � an in the topsequent. By the deletion of the

atoms that have not been active in the derivation, we have a derivation of the

form

�′′′, a1 � a2, a2 � a3, . . . an−1 � an → a1 � an
Tr....

a1 � a2, a2 � a3, . . . an−1 � an → a1 � an
Tr

in which �′′′ consists of the removed atoms a1 � an, . . .; thus we have:

Proposition 7.3. Sequents � → � derivable in GPO are derivable as left and

right weakenings of reflexivity and transitivity derivations.

Proof search for a sequent � → � is effected by one of the two controls:

Does � contain a reflexivity atom?

Does � contain a chain from a1 to an with the atom a1 � an in �?

If one of these is the case, the sequent � → � is derivable, otherwise it is

underivable.

It is seen that a sequent formulation of partial order is harder to analyse

than a natural deduction formulation, in which latter case most of the above

observations are almost immediate.

Non-degenerate partial order is obtained by adding the axiom

PO3. ¬ 1 � 0.

to PO1 and PO2. The corresponding rule has zero premisses

1 � 0, � → �
Ndeg

Derivations remain linear and the theorem on Harrop systems applies.
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If the topsequent is an instance of Ndeg, the atom 1 � 0 is removed in

the next step by Tr (it cannot be removed by Ref ). Steps of Tr hide the

inconsistent assumption 1 � 0, with the general form of conclusion

1 � a1, a1 � a2, . . . , an−1 � 0 → a � b

The chain in the antecedent is the closure of formulas activated by 1 � 0,

and a � b in the succedent is an arbitrary atom.

Non-trivial partial order has in addition,

PO4. 0 � 1.

The corresponding rule is

0 � 1, � → �

� → �
Ntriv

This rule commutes down with instances of Tr. The only interesting case is

a transitivity derivation with a chain from which the atom 0 � 1 has been

removed by Ntriv.

(c) Linear order. The theory of linear order is obtained by adding to partial

order the linearity axiom

LO. a � b ∨ b � a.

The corresponding rule is

a � b, � → � b � a, � → �

� → �
Lin

The system of rules for linear order is designated GLO.

Theorem 7.4. Conservativity. If � → P is derivable in GLO, it is derivable

already in GPO.

Proof. Consider a derivation with just one instance of Lin, as the last

rule, and assume the derivation to be minimal. Thus, the premisses of

Lin c � d, � → P and d � c, � → P are derivable in partial order. If P

is a reflexivity atom, � → P is derivable in one step of Ref. Otherwise,

with P ≡ a � b, there will be two transitive closures of the removed atom

a � b in both derivations of the two premisses of Lin, and let them be

a � a1, . . . am−1 � b and a � b1, . . . bn−1 � b. If c � d is not an atom in

the first chain, it can be deleted and a derivation of � → P in partial order
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obtained, and similarly for d � c in the second chain. Thus, we have the

two chains

a � a1, . . . , ai � c, c � d, d � ai+1, . . . am−1 � b

a � b1, . . . , bj � d, d � c, c � bj +1, . . . bn−1 � b

A chain from a to b can be constructed in two ways, say,

a � a1, . . . , ai � c, c � bj +1, . . . bn−1 � b

Now the sequent

a � a1, . . . , ai � c, c � bj +1, . . . bn−1 � b → a � b

is derivable in partial order. QED.

The conservativity theorem extends to non-degenerate non-trivial partial

order (note that non-triviality follows from non-degeneracy if the order is

linear: ¬ 1 � 0 and 0 � 1 ∨ 1 � 0 give 0 � 1):

Theorem 7.5. If � → P is derivable in non-degenerate GLO, it is already

derivable in non-degenerate non-trivial GPO.

(d) Extension algorithm from partial to linear order.

Definition 7.6. An ordering � is inconsistent if � → 1 � 0 is derivable for

some finite subset � of �, otherwise it is consistent.

Corollary 7.7. Szpilrajn’s theorem. Given a set � of atoms in a consistent

non-degenerate partial ordering, it can be extended to a consistent non-

degenerate linear ordering.

Proof. Let a, b be any two elements in � not ordered in �. We claim that

either�, a � b or�, b � a is consistent in GPO. Let us assume the contrary,

i.e., that there exists a finite subset � of � such that both �, a � b → 1 � 0

and �, b � a → 1 � 0 are derivable in GPO. We then have the step

a � b, � → 1 � 0 b � a, � → 1 � 0
� → 1 � 0

Lin

Now � → 1 � 0 is derivable in GLO, and by the conservativity theorem,

� → 1 � 0 is already derivable in GPO, contrary to the consistency assump-

tion. Iteration of the procedure gives the desired extension. QED.

Remark. Constructive conservativity vs non-constructive extension. The

proof of the above conservativity theorem is constructive, and effectivity of

the extension depends on how the set � is given.
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We observe a more general phenomenon: classical set-theoretic extension

results that use non-constructive principles such as Zorn’s lemma are refor-

mulated as constructive proof-theoretical conservativity results. An exam-

ple is the constructive conservativity of linear order over partial order vs

Szpilrajn’s (1930) classical theorem. Another example is the pointfree con-

structive Hahn-Banach theorem (Cederquist, Coquand, and Negri 1998) vs

the classical, non-constructive Hahn-Banach theorem.

Decidability of the order relation is often assumed, either explicitly or

through the application of the law of excluded middle. Our treatment

does not impose any such requirement and therefore does not rule out a

computational approach to order relations in continuous sets.

The law of excluded middle is avoided by considering extensions of the

intuitionistic calculus G3im, instead of the classical one.

Observe that the intuitionistic rules of implication do not permute down

with mathematical rules if these latter have at least two premisses. In the case

of Harrop theories, such as partial order or lattice theory, logical rules do

permute down and derivations by mathematical rules can be considered in

isolation. The separation of the logical and mathematical parts of derivations

holds with no restrictions if classical propositional logic is used, because of

the invertibility of all its rules.

In the previous chapter, we developed proof analyses for the G3 sequent

calculus and for the mathematical rules formulated in the form of a left rule

scheme. The question arises whether we can change the basic calculus, or

the form of the rule scheme, or both. The answer is positive, but some care is

needed to guarantee the admissibility of the structural rules in the extended

calculi. In general, the form of the rule scheme will have to be in harmony

with the basic calculus. If, for instance, we should modify the basic calculus

in favour of context-independent rules, the rule scheme would have to be

context-independent as well.

7.2 The word problem for linear order

In this section we shall introduce a variant of proof analysis with an appli-

cation to a specific problem, the word problem for linear order. We shall

first present a dual of the left rule scheme, namely the right rule scheme,

and show how it works in the example of the theory of linear order. For

Harrop theories, the right rule scheme has single succedent sequents and

can be presented as an extension of natural deduction, as in Chapter 2.

The example of lattice theory shows how the method of permutation of
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rules works for systems of this form. In order to extend the method of

permutation of rules to non-Harrop theories, such as the theory of linear

lattices, one would need a multiple-conclusion system of natural deduction.

We shall see in Chapter 10 how such a calculus works. One aspect is that

derivations by multiple-conclusion rules cannot always be written in the

form of two-dimensional trees, but the difficulty will be circumvented by

the use of sequent systems.

(a) Systems of right rules. The left rule scheme for an axiom of the form

P1& . . . &Pm ⊃ Q 1 ∨ . . . ∨ Q n

is as follows:

Q 1, P1, . . . , Pm, � → � . . . Q n, P1, . . . , Pm, � → �

P1, . . . , Pm, � → �

It has a dual formulation as a right rule scheme:

Table 7.2 The right rule scheme

� → �, Q 1, . . . , Q n, P1 . . . � → �, Q 1, . . . , Q n, Pm

� → �, Q 1, . . . , Q n

We have a repetition of the atoms Q i in the premisses, to obtain admissibility

of right contraction.

As for the left rule scheme, we have the following condition:

Closure condition. If the atoms in a rule have an instance that makes two

atoms in the conclusion identical, the contracted rule has to be added.

The analogue of Theorem 6.9 holds for extensions based on the right rule

scheme:

Theorem 7.8. The structural rules of left and right weakening and contraction

are height-preserving and the rule of cut admissible in extensions of G3c and

G3im by rules that follow the right rule scheme and satisfy the closure condition.

(b) Linear order. We consider the theory of linear order as a system with

right rules.
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Table 7.3 Right rules for linear order

� → �, a � b, b � a
Lin

� → �, a � a
Ref

� → �, a � c, a � b, � → �, a � c, b � c
� → �, a � c

Tr

The term b in rule Tr is called a middle term.

The following result establishes the subterm property for the theory of

linear order.

Theorem 7.9. All terms in a minimal derivation of � → � in the right theory

of linear order are terms in �, �.

Proof. We show first that rule Ref need not be considered: if a topsequent

is an instance of Ref , the first step must be a step of Tr that removes a

reflexivity atom a � a. The derivation has the form

� → �, a � c, a � a, � → �, a � c, a � c
� → �, a � c

Tr

The conclusion follows from the right premiss by height-preserving con-

traction, contrary to the assumption of a shortest derivation. Thus, proper

derivations start with initial sequents or instances of Lin, followed by

instances of Tr.

Let b be a first middle term from top that disappears from the derivation

in a step of transitivity, and we may assume this to be the last step. We show

that the derivation can be shortened. We have the instance

�

...→ �, a � c, a � b, �

...→ �, a � c, b � c
� → �, a � c

Tr

If a � b is never active in the rightmost branch of the derivation that leads

to the left premiss, it can be deleted and the derivation shortened. Tracing

up along the right branch from a � b, we find a removed atom d � b, and

we continue tracing the atoms removed in steps of transitivity that have the

previously traced atom as principal, until we arrive at an atom e � b in a

topsequent. It is not principal in an initial sequent because the term b would

appear in the antecedent. If it is not principal in Lin, it is deleted together

with the step of Tr that removes it. If it is principal in Lin, the topsequent is

of the form

� → �′, e � b, b � e
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There must be a step that removes b � e. Because a right branch was

followed, there is a step with a removed atom f � b in a left premiss:

�

...→ �′′, f � e, f � b, �

...→ �′′, f � e, b � e

� → �′′, f � e
Tr

....

Tracing f � b up the rightmost branch in the same way as a � b, we find

a topsequent with an atom g � b. Now an argument as for the atom e � b

applies, and for the process to stop at some finite stage, we must find an

atom with b not principal in Lin. It can be deleted and the derivation

shortened. QED.

The decidability of universal formulas reduces to the derivability of a finite

number of implications of the form

P1& . . . &Pm ⊃ Q 1 ∨ . . . ∨ Q n.

These are derivable in a system of rules if and only if the sequent

P1, . . . , Pm → Q 1, . . . , Q n

is derivable. By Theorem 7.9, proof search for such a sequent in the theory

of linear order can be restricted to atoms with known terms and to minimal

derivations, which makes proof search bounded and decidable. We therefore

have the following corollary:

Corollary 7.10. The quantifier-free theory of linear order is decidable.

Proof. Application of rule Tr, root first, with middle terms chosen from

the conclusion, can produce only a bounded number of distinct atoms in

the premisses. Whenever a duplication is produced, proof search fails by the

height-preserving admissibility of contraction. QED.

The first-order theory of linear order has been shown decidable in earlier

literature, but only in a weak sense: the theorems are recursively enumerable

because the theory is formalized, but it has been proved that the non-

theorems are also recursively enumerable. Such a result gives a decision

algorithm, but with no upper bound, whereas the above gives a decision

algorithm for universal formulas with a bound on proof search.
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7.3 Linear lattices

The theory of linear lattices has a binary partial order relation a � b and

equality is defined by a = b ≡ a � b & b � a.

The axioms are as follows:

Table 7.4 The axioms for a linear lattice

a � a (Ref ), a � b ∨ b � a (Lin), a � b & b � c ⊃ a � c (Tr),

a ∧ b � a (L ∧1), a ∧ b � b (L ∧2), c � a & c � b ⊃ c � a ∧ b (R∧),

a � a ∨ b (R∨1), b � a ∨ b (R∨2), a � c & b � c ⊃ a ∨ b � c (L ∨).

The principle of substitution of equals in the lattice operations can be

proved, because equality is defined through the partial order relation.

We start by the observation that in linear lattices, in addition to the lattice

equivalences, a ∨ b � c if and only if a � c and b � c and c � a ∧ b if and

only if c � a and c � b, we also have the equivalences that hold in virtue

of linearity, a ∧ b � c if and only if a � c or b � c and c � a ∨ b if and

only if c � a or c � b. These equivalences will lead to a sequent calculus

proof system for linear lattices. In establishing the structural properties of

the calculus, we shall also use the fact that reflexivity and linearity can be

restricted to ground terms, defined as follows:

Definition 7.11. A ground term is one that does not contain lattice operations.

Ground terms will be denoted by p , q, r, . . . The rules of our calculus for

linear lattices are the following:

Table 7.5 A rule system for linear lattices

� → �, p � p
Ref

� → �, p � q, q � p
Lin

� → �, a � c, a � b � → �, a � c, b � c
� → �, a � c

Tr

c � a, c � b, � → �

c � a ∧ b, � → �
L ∧R

a � c, � → � b � c, � → �

a ∧ b � c, � → �
L ∧L

� → �, c � a � → �, c � b
� → �, c � a ∧ b

R∧R
� → �, a � c, b � c
� → �, a ∧ b � c

R∧L

� → �, c � a, c � b
� → �, c � a ∨ b

R∨R
� → �, a � c � → �, b � c

� → �, a ∨ b � c
R∨L

c � a, � → � c � b, � → �

c � a ∨ b, � → �
L ∨R

a � c, b � c, � → �

a ∨ b � c, � → �
L ∧L
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Derivations start with initial sequents of the form a � b, � → �, a � b

and with instances of the zero-premiss rules. Of these rules, Ref and Lin are

restricted to ground terms.

An inspection of the rules shows that middle terms in Tr are the only

terms in premisses that need not be also terms in a conclusion. By the

permutability of logical rules past the mathematical rules, we consider

derivations of sequents with only atomic formulas.

The above rules give a complete system for the theory of linear lattices,

because reflexivity and linearity are derivable for arbitrary terms:

Lemma 7.12. The sequents → a � a and → a � b, b � a are derivable for

arbitrary terms a and b in the rule system for linear lattices.

Proof. By induction on the length of the terms a, b. For ground terms the

sequents are zero-premiss rules of the system, thus derivable. For a com-

pound term a, for instance a ≡ a1 ∧ a2, reflexivity follows from the meet

rules. We get by weakening from the inductive hypothesis → a1 � a1,

a2 � a1 and → a1 � a2, a2 � a2. These give, both by R ∧R , → a1 ∧
a2 � a1 and → a1 ∧ a2 � a2, and the conclusion → a1 ∧ a2 � a1 ∧ a2

follows by R ∧R .

If a is a join, the proof uses instead the rules for join.

For linearity, we have to analyse the form of a and b. If a and b are

not both ground terms, there are eight cases, reduced to five by symmetry.

In all such cases, linearity is reduced to linearity on the components that

is derivable by the inductive hypothesis. For instance, in the case where

a ≡ a1 ∧ a2, b ≡ b1 ∨ b2, linearity on a, b is derived by applying R ∧R

to the sequents → a1 ∧ a2 � b1 ∨ b2, b1 ∨ b2 � a1 and → a1 ∧ a2 � b1 ∨
b2, b1 ∨ b2 � a2. The former is derived by R ∨L from

→ a1 � b1, a1 � b2, a2 � b1 ∨ b2, b1 � a1

→ a1 � b1 ∨ b2, a2 � b1 ∨ b2, b1 � a1
R ∨R

→ a1 ∧ a2 � b1 ∨ b2, b1 � a1
R ∧L

and

→ a1 � b1, a1 � b2, a2 � b1 ∨ b2, b2 � a1

→ a1 � b1 ∨ b2, a2 � b1 ∨ b2, b2 � a1
R ∨R

→ a1 ∧ a2 � b1 ∨ b2, b2 � a1
R ∧L

Here the topsequents are derivable by the inductive hypothesis. The latter

is derived in a similar way. QED.
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The following results show that the system of sequent calculus for linear

lattices has the same structural properties as the purely logical calculus G3c.

Lemma 7.13. All the rules of the system for linear lattices are height-preserving

invertible.

Proof. By induction on the height of the derivation. QED.

Proposition 7.14. Weakening and contraction are height-preserving admis-

sible in the rule system for linear lattices.

Proof. The proof follows the structure of the proof of admissibility of

the structural rules for extensions of G3c. Observe that, because of the

invertibility of the lattice rules, contraction on atomic formulas with lattice

structure gets reduced to contraction on smaller atomic formulas. For this

reason, unlike in the rules of the general rule scheme, there is no need to

repeat the principal atoms of the rule in its premisses. QED.

Theorem 7.15. The rule of cut is admissible in the rule system for linear

lattices.

Proof. The proof follows the usual pattern of the proof of cut elimination

for extensions of G3c, with a refined measure on atomic formulas that takes

into account the complexity of terms in them. By the permutation of the

logical rules below the mathematical rules, and the permutation of cut with

respect to the latter, we can limit our analysis to the part of the derivation

with only mathematical rules. Observe that to consider the system has 11

mathematical rules so there are a priori 121 different cases of cut with

cut formula principal in both premisses. Of these, there are pairs that get

excluded because they are both right rules or both left rules, others that get

excluded because the terms do not match, and those with reflexivity and

linearity with lattice rules that are excluded because reflexivity and linearity

are restricted to ground terms. In the end, we are left with 15 cases that we

consider below:

1. The cut formula a � b ∧ c is principal in both premisses of cut and both

are derived by meet rules. We have three subcases according to the rules

used to derive the premisses of cut.

1.1. The derivation is

� → �, a � b � → �, a � c
� → �, a � b ∧ c

R∧R
a � b, a � c, �′ → �′

a � b ∧ c, �′ → �′ L ∧R

�, �′ → �, �′ Cut
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It is transformed into

� → �, a � c

� → �, a � b a � b, a � c, �′ → �′

a � c, �, �′ → �, �′ Cut

�, �, �′ → �, �, �′ Cut

�, �′ → �, �′ Ctr∗

Both cuts are on smaller atomic formulas.

1.2. The term a is a1 ∧ a2 and the derivation is

� → �, a � b � → �, a � c

� → �, a � b ∧ c
R∧R

a1 � b ∧ c, �′ → �′ a2 � b ∧ c, �′ → �′

a1 ∧ a2 � b ∧ c, �′ → �′ L ∧L

�, �′ → �, �′ Cut

It is transformed as follows

� → �, a1 ∧ a2 � b ∧ c

� → �, a1 � b ∧ c, a2 � b ∧ c
R∧L -Inv

a1 � b ∧ c, �′ → �′

�, �′ → �, �′, a2 � b ∧ c
Cut

a2 � b ∧ c, �′ → �′

�, �′ → �, �′ Cut

�, �′, �′ → �, �′, �′ Ctr∗

Here R ∧L -Inv is the (height-preserving admissible) inversion of

rule R ∧L and both cuts are on smaller cut formulas.

1.3. The derivation is

� → �, b � a, c � a

� → �, b ∧ c � a
R∧L

b � a, �′ → �′ c � a, �′ → �′

b ∧ c � a, �′ → �′ L ∧L

�, �′ → �, �′ Cut

and the transformed derivation is

� → �, b � a, c � a b � a, �′ → �′

�, �′ → �, �′, c � a
Cut

c � a, �′ → �′

�, �′, �′ → �, �′, �′ Cut

�, �′ → �, �′ Ctr∗

with two cuts on smaller formulas.

2. One of the premisses of cut is derived by a meet rule and the other

by a join rule. There are four subcases (R ∧R/L ∨L , R ∧L /L ∨R ,

R ∨R/L ∨R , R ∨L /L ∧L ). We shall consider in detail only the first, the

others being similar.

The derivation is of the form, with a ≡ a1 ∨ a2,

� → �, a � b � → �, a � c

� → �, a � b ∧ c
R∧R

a1 � b ∧ c, a2 � b ∧ c, �′ → �′

a1 ∨ a2 � b ∧ c, �′ → �′ L ∨L

�, �′ → �, �′ Cut
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It is converted into

� → �, a � c

� → �, a � b

a1 � b ∧ c, a2 � b ∧ c, �′ → �′

a � b ∧ c, �′ → �′ L ∨L -Inv

a � b, a � c, �′ → �′ L ∧R-Inv

a � c, �, �′ → �, �′ Cut

�, �, �′ → �, �, �′ Cut

�, �′ → �, �′ Ctr∗

There is a cut of smaller height followed by a cut on a smaller formula.

3. Both premisses of cut are derived by join rules (R ∨L /L ∨L , R ∨L /L ∨R ,

R ∨R/L ∨L , R ∨R/L ∨R). These cases are all variants of the cases con-

sidered above.

4. One of the premisses of cut is Tr and the other is a lattice rule. We have

four subcases, for the left meet and join rules. We consider the following

case, with c ≡ c1 ∧ c2:

�,→ �, a � c, a � b �,→ �, a � c, b � c

�,→ �, a � c
Tr

a � c1, a � c2, �
′ → �′

a � c1 ∧ c2, �
′ → �′ L ∧R

�,�′ → �,�′ Cut

It is converted into

�,→ �, a � c

�,→ �, a � c2
R∧R-Inv

�,→ �, a � c

�,→ �, a � c1
R∧R-Inv

a � c1, a � c2, �
′ → �′

a � c2, �, �′ → �,�′ Cut

�,�, �′ → �,�,�′ Cut

�,�′ → �,�′ Ctr∗

There are two cuts on smaller cut formulas. Observe that Tr has disappeared.

All the remaining cases are obtained in a similar way by the use of inversions

and reduction of cuts to cuts on smaller formulas. QED.

The following result permits us to reduce the word problem for linear lattices

to that for linear order:

Proposition 7.16. Rule Tr permutes up with respect to the lattice rules.

Proof. Consider the topmost transitivity and the rules used to derive its

premisses. If one of them is Ref, the conclusion is equal to the other premiss

and the step can be dispensed with. If one is Lin and the other a lattice rule,

say, for example, R ∧L , we have a derivation of the form

� → �, a1 � p , a2 � p , q � p

� → �, a1 ∧ a2 � p , q � p
R∧L

� → �, p � q, q � p
Lin

� → �, a1 ∧ a2 � q, q � p
Tr
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First weaken the left topsequent by the atom a2 � q. To fit the derivation

into a page’s breadth, we leave unwritten the contexts �, � and then have

the transformed derivation:

→ a1 � p , a2 � q, a2 � p , q � p → a1 � p , a2 � q, p � q, q � p
Lin

→ a1 � p , a2 � q, q � p
Tr → a1 � p , a2 � q, p � q, q � p

Lin

→ a1 � q, a2 � q, q � p
Tr

→ a1 ∧ a2 � q, q � p
R∧L

If both premisses of transitivity are obtained by lattice rules, it suffices

to consider the derivation of one of the premisses. If the middle term of

transitivity gets decomposed by the lattice rule, inversion is applied to the

other premiss of transitivity in order to move transitivity up. Otherwise

if the middle term is unaffected by the lattice rule, transitivity is simply

permuted up with respect to that rule. QED.

By the permutation result, we can collect our analyses of linear order and

linear lattices into the following:

Proposition 7.17. Structure of derivations in linear lattices. Derivations in

the rule system for linear lattices can be so transformed as to have a part of the

derivation in the rule system for linear order, followed by rules for the lattice

operations, followed by the logical rules.

It follows, in particular, that rule Tr can be restricted to ground terms. We

thus obtain the following:

Corollary 7.18. Subterm property. If a sequent is derivable in the theory of

linear lattices, it has a derivation with no new terms.

Proof. By Proposition 7.16, we can assume that the derivation has a form in

which no occurrence of transitivity follows applications of rules for lattice

operations. Any new term thus belongs to the part of the derivation in the

system for linear order. The result follows by Theorem 7.9. QED.

Notes to Chapter 7

The proof-theoretical treatment of Szpilrajn’s theorem in Section 7.1 comes

from Negri, von Plato, and Coquand (2004), as comes the possibility of a

right rule scheme and the proof of the subterm property for the theory of

linear order.

There is an interesting prehistory to the decision problem of the theory of

linear order of Section 7.2. It was announced as an open problem in Janisczak

(1953). In a review of this paper, Georg Kreisel (1954) announced a positive
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solution to the first-order decision problem and made a brief sketch of it.

It turned out, however, to be defective, because Kreisel himself published

a correction to this effect in the end of the 1954 volume of Mathematical

Reviews. (We thank Ryan Siders for having spotted the correction, not visible

in the online version.) Andrzej Ehrenfeucht announced in (1959) a positive

solution, but gave no proof. Such a proof was given by Läuchli and Leonard

(1966), however, only in the weak sense of, one could say, impossibility of

undecidability, as explained in Section 7.2.

Section 7.3 uses a system of rules for lattice operations that was developed

from a suggestion by Alex Simpson, after the first author had presented

another multisuccedent system for linear lattices, obtained as an extension

of the system for lattices of Section 4.2. The suggestion was to exploit

the equivalences a ∧ b � c if and only if a � c or b � c and c � a ∨ b

if and only if c � a or c � b that hold in a linear lattice. Simpson’s view

was that the word problem for linear lattices should have a simpler, not a

more complicated, solution than that for lattices in general, and indeed,

compared to the above proof, the proof of the subterm property in Negri

(2005b) is much more complicated. A further development of the methods

of Section 7.3 into a positive solution of the uniform word problem for linear

Heyting algebras is found in Dyckhoff and Negri (2006). Such algebras are

interesting from a logical point of view because they function as models of

what is known as Dummett logic; cf. chapter 7 of Structural Proof Theory.

The axioms of a Heyting algebra, without the linearity axiom, do not

contain disjunctions and can be converted into rules in natural deduction

style. It is, however, unlikely that derivations by these rules could have a

subterm property. Were this the case, there would be a polynomial bound

on proof search in propositional logic.





part iii

Proof systems for geometric theories





8 Geometric theories

8.1 Systems of geometric rules

(a) The geometric rule scheme. We used first natural deduction as the

logical calculus that is extended by rules. The axioms covered were formulas

without essential disjunctions. With sequent calculus as the logical calculus

to be extended, any universal axioms could be converted into rules. In this

chapter, we shall show how the class of axioms convertible into rules is

further extended into geometric implications, as in Chapter 5, but without

the restrictions that natural deduction brings with itself. We recall the

definition of a geometric implication:

Definition 8.1. A formula in first-order logic is geometric if it does not

contain ⊃ or ∀. A geometric implication has the form, with A and B

geometric formulas,

∀x . . .∀z(A ⊃ B).

A geometric theory is a theory axiomatized by geometric implications.

The examples of geometric axioms mostly encountered in mathematics are

existential axioms. An existential axiom can replace a construction and

postulated properties of constructed objects. It has in this case the form

∀x . . .∀y∃zA(x, . . . , y, z) and corresponds to the construction of some z

from any given x, . . . , y, such that A(x, . . . , y, z) holds. Constructions can

have conditions, as in elementary geometry where an intersection point

of two lines, say, can be constructed only if the lines are convergent. The

existential axiom together with the condition can be given, when suitably

formulated, as a geometric implication.

In lattice theory, the propositional part of existential axioms consists of

atomic formulas P (x, y, z). The rule that corresponds to such an existential

axiom is, with parameters a, b in place of the universally quantified variables:

P (a, b, z), � → �

� → �
E-Rule

133
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The rule has the variable restriction that the eigenvariable z must not be

free in the conclusion. Assuming the premiss of the rule, application of the

logical rule L ∃ followed by L ∀ twice gives as a conclusion

∀x∀y∃zP (x, y, z), � → �

A cut with the axiomatic sequent → ∀x∀y∃zP (x, y, z) gives the conclusion

of the rule. On the other hand, application of R∃ to the initial sequent

P (x, y, z) → P (x, y, z) followed by the rule and universal generalizations

gives the axiom, so it follows that the rule has the same force as the existential

axiom.

We shall give in the next Subsection (b) concrete examples of theories

axiomatized by geometric implications.

Proposition 8.2. Canonical form for geometric implications. Geometric

implications can be reduced to conjunctions of formulas of the form

∀x(P1& . . . &Pm ⊃ ∃y1M1 ∨ . . . ∨ ∃ynMn)

Each Pi is an atomic formula, each Mj is a conjunction of a list of atomic

formulas Q j , and none of the variables in the vectors yj are free in Pi .

The geometric rule scheme that corresponds to geometric axioms has the

form

Table 8.1 The geometric rule scheme

Q 1(z1/y1), P , � → � . . . Q n(zn/yn), P , � → �

P , � → �
GRS

The variables yi are called the replaced variables of the scheme, and the

variables zi the proper variables, or eigenvariables. In what follows, we shall

consider for ease of notation the case in which the vectors of variables yi

consist of a single variable. All the proofs can be adapted in a straightforward

way to the general case.

The geometric rule scheme is subject to the following condition that

expresses in a logic-free way the role of the existential quantifier in a geo-

metric axiom:

Condition. The eigenvariables must not be free in P , �, �.

(b) Examples of geometric theories. We give some examples of elemen-

tary theories that can be given a geometric axiomatization. In some cases,
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as in plane projective geometry (example 3), a careful choice of the basic

notions is needed, or else the theory fails to be geometric. It turns out that the

standard axiomatizations of projective and affine geometry use what were

called co-geometric implications in Chapter 5, and that a geometric

axiomatization is found by the use of the basic notions of intuitionistic

geometry. We shall analyse further this phenomenon when presenting the

duality between classical and constructive notions and proofs in the next

chapter.

1. Robinson arithmetic. The language has a constant 0, a unary successor

function s, binary functions + and ·. Atomic formulas have the form r = t,

for arbitrary terms r and t. For free variables, parameters a, b, c, . . . are

used.

1. ¬ s(a) = 0,

2. s(a) = s(b) ⊃ a = b,

3. a = 0 ∨ ∃y a = s(y),

4. a + 0 = a,

5. a + s(b) = s(a + b),

6. a · 0 = 0,

7. a · s(b) = a · b + a.

A classically equivalent axiomatization is obtained if 3 is replaced by:

3′. ¬ a = 0 ⊃ ∃y a = s(y).

The axiom is not geometric because it has the implication a = 0 ⊃⊥ in the

antecedent of an implication.

2. Ordered fields and real-closed fields

I Axioms for non-degenerate linear order:

1. a � a,

2. a � b ∨ b � a,

3. a � b & b � c ⊃ a � c ,

4. ¬ 1 � 0.

II Axioms for ordered additive groups:

5. (a + b) + c = a + (b + c),

6. a + b = b + a,

7. a + 0 = a,

8. ∃y a + y = 0,

9. a � b ⊃ a + c � b + c .
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III Axioms for multiplication:

10. (a · b) · c = a · (b · c),

11. a · b = b · a,

12. a · 1 = a,

13. a = 0 ∨ ∃y a · y = 1,

14. a · (b + c) = a · b + a · c ,

15. a � b & 0 � c ⊃ a · c � b · c .

A classically equivalent axiomatization is obtained if in place of 13 the

following axiom is chosen:

13′. ¬ a = 0 ⊃ ∃y a · y = 1.

This axiom, however, is not geometric, for the same reason as above.

Real-closed fields are obtained by adding the axioms that state the existence

of square roots and zeros of polynomials of odd degree:

16. 0 � a ⊃ ∃y a = y · y,

17. a2n+1 = 0 ∨ ∃y a2n+1 · y2n+1 + a2n · y2n + . . . a1 · y + a0 = 0.

The classically equivalent axiomatization with 17 replaced by

17′. ¬ a2n+1 = 0 ⊃ ∃y a2n+1 · y2n+1 + a2n · y2n + . . . a1 · y + a0 = 0

is clearly not geometric.

3. Classical projective geometry with constructions. The basic concepts are:

equality of two points, equality of two lines, and incidence of a point on a

line. These are written a = b, l = m, and a ∈ l. There are two constructions:

those of a connecting line ln(a, b) of two points and of an intersection point

pt(l, m) of two lines.

I Axioms for the equality relations:

a = a, a = c & b = c ⊃ a = b,

l = l, l = n & m = n ⊃ l = m.

II Axioms of incidence:

a = b ∨ a ∈ ln(a, b), a = b ∨ b ∈ ln(a, b),

l = m ∨ pt(l, m) ∈ l, l = m ∨ pt(l, m) ∈ m.

III Uniqueness axiom:

a ∈ l & b ∈ l & a ∈ m & b ∈ m ⊃ a = b ∨ l = m.
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IV Substitution axioms:

a ∈ l & a = b ⊃ b ∈ l,

a ∈ l & l = m ⊃ a ∈ m.

V Existence of three non-collinear points:

∃x∃y∃z(¬ x = y & ¬ z ∈ ln(x, y)).

Because of axiom V, the above is not a geometric theory. We obtain a

geometric axiomatization by the use of apartness between points and lines

as a basic notion, instead of equality:

4. Constructive projective geometry with constructions. The basic concepts

are: a �= b, l �= m, and a /∈ l. The constructions are: ln(a, b) and pt(l, m).

I Axioms for apartness relations:

¬ a �= a, a �= b ⊃ a �= c ∨ b �= c,

¬ l �= l, l �= m ⊃ l �= n ∨ m �= n.

II Axioms of incidence:

¬ (a �= b & a /∈ ln(a, b)),

¬ (a �= b & b /∈ ln(a, b)),

¬ (l �= m & p t(l, m) /∈ l),

¬ (l �= m & p t(l, m) /∈ m).

III Uniqueness axiom:

a �= b & l �= m ⊃ a /∈ l ∨ b /∈ l ∨ a /∈ m ∨ b /∈ m.

IV Substitution axioms:

a /∈ l ⊃ a �= b ∨ b /∈ l,

a /∈ l ⊃ l �= m ∨ a /∈ m.

V Existence of three non-collinear points:

∃x∃y∃z(x �= y & z /∈ ln(x, y)).

As can be seen, we have now a geometric axiomatization of projective geom-

etry. The classical basic concepts of equality and incidence are defined as

negations of the basic concepts of constructive geometry, namely apartness
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of two points, apartness of two lines, and the ‘outsideness’ of a point from

a line. On the other hand, these latter concepts can be defined as negations

of the basic concepts of classical projective geometry, if the law of double

negation is assumed: then, for example, ¬ a /∈ l will be equivalent to a ∈ l.

Transitivity of equality in the classical axiomatization was given in the

‘Euclidean’ form, because, put in this way, it comes directly out as the

contrapositive of the ‘co-transitivity’ of apartness.

Chapter 10 is devoted to an analysis of plane projective and affine

geometry.

8.2 Proof theory of geometric theories

We shall turn after the above examples of geometric theories to the general

proof theory of systems of geometric rules. In the extension of sequent

calculi by such rules, all the structural properties are preserved.

Definition 8.3. Let T be a geometric theory. Then G3cT (G3imT) is the

system of sequent calculus obtained by adding to G3c (G3im) the geometric

rules that correspond to the geometric axioms of T, together with the rules that

arise from the closure condition.

Theorem 8.4. Equivalence of axiomatic systems and rule systems. A geo-

metric axiom is derivable from the corresponding geometric rule. Conversely,

a geometric rule is derivable from the corresponding geometric axiom in

G3imT+Ctr+Cut.

Proof. A geometric axiom →A , represented as a sequent with an empty

antecedent, is derivable from the corresponding geometric rule scheme.

Below, an asterisk ∗ denotes possibly iterated steps of a rule, the premisses

are clearly derivable by R&, and Mi(zi/yi) ≡ &Q i(zi/yi):

Q 1(z1/y1), P → M1(z1/y1), . . . , Mn(zn/yn)

Q 1(z1/y1), P → ∃y1M1, . . . , ∃ynMn

R∃∗

. . .

Q n(zn/yn), P → M1(z1/y1), . . . , Mn(zn/yn)

Q n(zn/yn), P → ∃y1M1, . . . , ∃ynMn

R∃∗

P → ∃y1M1, . . . , ∃ynMn

G RS

P → ∃y1M1 ∨ . . . ∨ ∃ynMn

R∨∗

P1& . . . &Pm → ∃y1M1 ∨ . . . ∨ ∃ynMn
L &∗

→ P1& . . . &Pm ⊃ ∃y1M1 ∨ . . . ∨ ∃ynMn
R⊃

→ ∀x(P1& . . . &Pm ⊃ ∃y1M ∨ . . . ∨ ∃ynMn)
R∀

Conversely, a geometric rule is derivable from the corresponding geometric

axiom →A in G3im+Ctr+Cut as shown below. In the derivation of the

left premiss of cut, inverses of rules are used. These are admissible (and



Geometric theories 139

height-preserving) steps in G3im. Observe that the variable restriction in

GRS now comes into use in the steps of L ∃:

→ ∀x(P1&. . .&Pm ⊃ ∃y1M1 ∨. . .∨ ∃ynMn)

→ P1&. . .&Pm ⊃ ∃y1M1 ∨. . .∨ ∃ynMn
R∀Inv

P1&. . .&Pm → ∃y1M1 ∨. . .∨ ∃ynMn
R⊃Inv

P → ∃y1M1 ∨. . .∨ ∃ynMn

L &Inv

Q 1(z1/y1), P , � → �

M1(z1/y1), P , � → �
L &∗

∃y1M1, P , � → �
L ∃

. . .

Q n(zn/yn), P , � → �

Mn(zn/yn), P , � → �
L &∗

∃ynMn, P , � → �
L ∃

∃y1M1 ∨. . .∨ ∃ynMn, P , � → �
L ∨∗

P , P , � → �
Cut

P , � → �
Ctr∗

QED.

Remark. It is clear by the above derivation that the geometric rule scheme

hides a cut on the formula ∃y1M1 ∨ . . .∨ ∃ynMn. The substituted variables

yi are bound variables in the virtual cut formula, so it will be convenient

to regard the substituted variables of the scheme as bound variables and to

assume that in a derivation the sets of free and bound variables are disjoint.

The inversion lemmas for the propositional rules that hold for G3c and

G3im hold for their geometric extensions as well, because the geometric

rule scheme has only atomic formulas as principal and active formulas. So

we have:

Lemma 8.5. Inversion. All the inversions of the propositional rules that hold

for G3c and G3im hold also for their geometric extensions.

For the inversions of L ∃ and R∀, we need to add a condition on the variable

to avoid clashes with the proper variables of the geometric rules in the

derivation.

Lemma 8.6. Substitution. Given a derivation of � → � in G3cT (G3imT),

with x a free variable in �, �, t a term free for x in �, � and not containing

any of the variables of the geometric rules in the derivation, we can find a

derivation of �(t/x) → �(t/x) in G3cT (G3im) with the same height.

Proof. By induction on the height of the given derivation. For the logical

rules, the proof is contained in lemma 4.1.2 of Structural Proof Theory, so we

need to consider only the cases that arise from the addition of the geometric

rule scheme. Suppose the last rule in the derivation of � → � is G RS , with

premisses

Q i(zi/yi), P , �′ → �



140 Proof systems for geometric theories

for i = 1, . . . , n. The Q i are atomic and the term t is free for x in these

premisses; thus by the induction hypothesis we get derivations of

Q i(zi/yi)(t/x), P (t/x), �′(t/x) → �(t/x)

Since x is a free variable in �, �, by the remark at the end of the previous

section we have x �= yi , and since the zi are not free in P , �, � we have

x �= zi . Moreover, by hypothesis, t does not contain any of the yi . Therefore

the two substitutions in Q i are independent and we have Q i(zi/yi)(t/x) ≡
Q i(t/x)(zi/yi). Since t does not contain any of the zi , the zi are not free in

P (t/x), �′(t/x) → �(t/x), so we can apply the geometric rule scheme to

the premisses

Q i(t/x)(zi/yi), P (t/x), �′(t/x) → �(t/x)

Now we get P (t/x), �′(t/x) → �(t/x), i.e., �(t/x) → �(t/x). QED.

Lemma 8.7. Inversion for quantifier rules.

(i) If �n ∃xA, � → � and y is not among the variables of the geometric

rules in the derivation, then �n A(y/x), � → �.

(ii) If �n � → �, ∀xA and y is not among the variables of the geometric

rules in the derivation, then �n � → �, A(y/x).

Proof. (i) By induction on height of derivation n, as in Lemma 6.2. If

n = 0, then ∃xA, � → � is either an initial sequent, or a conclusion of

L ⊥, or a conclusion of a zero-premiss geometric rule. In each case also

A(y/x), � → � is an initial sequent, or a conclusion of L ⊥, or a conclusion

of a zero-premiss geometric rule, thus �0 A(y/x), � → �.

If n > 0 and ∃xA is principal in the last rule, the premiss gives a

derivation of A(z/x), � → �, where z is not free in �, �. By Lemma

8.6, using the substitution y/z, we obtain a derivation of the same height

of A(y/x), � → �. If ∃xA is not principal in the last rule, we argue as in

lemma 4.2.3 of Structural Proof Theory in the case the last rule is a logical

rule. If the last rule is a geometric rule, with � ≡ P , �′ and premisses

Q 1(z1/y1), P , ∃xA, �′ → �, . . . , Q n(zn/yn), P , ∃xA, �′ → �

we get by the assumption that free and bound variables are disjoint and by

the inductive hypothesis derivations of the sequents

Q 1(z1/y1), P , A(y/x), �′ → �, . . . , Q n(zn/yn), P , A(y/x), �′ → �
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Since y is none of the zi , we can apply the geometric rule scheme to these

premisses and obtain a derivation of P , A(y/x), �′ → �.

(ii) Similar to (i). QED.

Without loss of generality, we can assume by Lemma 8.6 that the following

condition on variables is satisfied:

Disjointness condition. In a derivation in G3cT (G3imT), the collections of

proper variables of any two geometric rules are disjoint.

Theorem 8.8. The rules of weakening

� → �

A, � → �
LW

� → �

� → �, A
RW

are height-preserving admissible in G3cT and in G3imT.

Proof. Consider the last step in the derivation of the premiss of the weaken-

ing rules. Apply, inductively, weakening to the premisses �i → �i of the last

step to obtain A, �i → �i , then the rule that had been used as the last step,

which gives A, � → �. Observe that if the last rule is geometric and the

weakening formula A contains some of its variables, the variable condition

is no longer satisfied after weakening with A . In this case the substitution

lemma is applied to the premisses of the geometric rule to have new free

variables that do not clash with those in A . The conclusion is then obtained

by applying the inductive hypothesis and the geometric rule. QED.

Theorem 8.9. The rules of contraction

A, A, � → �

A, � → �
LC

� → �, A, A

� → �, A
RC

are height-preserving admissible in G3cT and in G3imT.

Proof. By simultaneous induction for left and right contraction on the

height of the derivation of the premiss. If it is an initial sequent, also the

conclusion is. If the last rule is a propositional rule, then the conclusion

follows as in theorem 3.2.2 of Structural Proof Theory. If it is L ∀, we apply

the induction hypothesis to the premiss of the rule, and then the rule,

and similarly if it is L ∃ with A not principal in it. If it is L ∃ with A ≡
∃xB and premiss B(y/x), ∃xB , � → �, by the variable condition on the

geometric rule and the Remark after Theorem 8.4, y is not a variable in any

geometric rule in the derivation, so we can apply the inversion lemma for

L ∃ instantiated by y and obtain a derivation of B(y/x), B(y/x), � → �. By

the induction hypothesis we get B(y/x), � → � and by L ∃, ∃xB , � → �.
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If the last rule is a geometric rule, we distinguish three cases: 1. No

occurrence of A is principal in the rule. 2. One occurrence of A is principal,

the other is not. 3. Both occurrences of A are principal.

The first case is handled by a straightforward induction and the sec-

ond by the repetition of the principal formulas Pi in the premisses of

the geometric rule. Finally, the third case is taken care of by the closure

condition. QED.

We are now in the position to prove the admissibility of cut for our rule

systems for geometric theories. We remark that the proof has the same

structure as the proof of admissibility of cut for universal theories (Theorem

6.9 above), with an additional use of the substitution lemma in order to

meet the variable restriction in the geometric rule scheme.

Theorem 8.10. The rule of cut

� → �, A A, �′ → �′

�, �′ → �, �′ Cut

is admissible in G3cT and in G3imT.

Proof. By induction on the length of A with a subinduction on the sum of

the heights of the derivations of � → �, A and A, �′ → �′. We need to

consider only the cases that arise from the addition of the geometric rule

scheme. The other cases are treated in the corresponding proof for G3c and

G3im.

1. If the left premiss is a zero-premiss geometric rule, then also the

conclusion is a zero-premiss geometric rule, because these have an arbitrary

context as succedent.

2. If the right premiss is a zero-premiss geometric rule with A not princi-

pal in it, the conclusion is a zero-premiss geometric rule for the same reason

as in case 1.

3. If the right premiss is a zero-premiss geometric rule with A principal

in it, A is atomic and we consider the left premiss. The case that it is a

geometric zero-premiss rule is covered by 1. If it is an initial sequent with A

not principal, the conclusion is a logical axiom; otherwise, � contains the

atom A and the conclusion follows from the right premiss by weakening. In

the remaining cases we consider the last rule in the derivation of � → �, A .

Since A is atomic, A is not principal in the rule. Let us consider the case of
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a geometric rule (the others being dealt with similarly, except R⊃ and R∀
that are covered in 4). The derivation ends with

Q 1(z1/y1), P , �′′ → �, A . . . Q n(zn/yn), P , �′′ → �, A

P , �′′ → �, A
G RS

A, �′ → �′

P , �′, �′′ → �,�′ Cut

The cut cannot be simply permuted to the premisses of GRS because �′, �′

may bring in free variables that clash with the proper variables zi and thus

prevent the application of GRS after the cuts. Instead, we apply first the

substitution lemma to the right premiss of cut and replace all the variables

zi , if any, by fresh variables wi , and denote the substitution by w/z. Observe

that by the variable condition in GRS, the substitution does not affect the

cut formula A . We obtain the sequent

A, �′(w/z) → �′(w/z)

Now n cuts with the n premisses of GRS give, for i = i, . . . n, the n sequents

Q i(zi/yi), P , �′(w/z), �′′ → �, �′(w/z)

By applying GRS to these n premisses we get

P , �′(w/z), �′′ → �, �′(w/z)

The derivation is continued as before with the substitution (w/z) performed

globally. Observe that by the disjointness condition, the substitution does

not affect the active formulas of other geometric rules in the derivation. The

cut has thus been replaced by n cuts with a left premiss that has a derivation

of lower height and a right premiss of unaltered height.

Let us now consider the cases in which neither premiss is an axiom.

4. A is not principal in the left premiss. These cases are dealt with as

above, with cut permuted upwards to the premisses of the last rule used

in the derivation of the left premiss (with a suitable variable substitution

to match the variable restrictions in the cases of quantifier rules and the

geometric rule-scheme), except for R⊃ and R∀ in G3imT. By the intuition-

istic restrictions in these rules, A does not appear in the premisses, and the

conclusion is obtained without cut by R⊃ (R∀, resp.) and weakening.

5. A is principal only in the left premiss. Then A has to be a compound

formula. Therefore, if the last rule of the right premiss is a geometric rule, A
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cannot be principal in the rule, because only atomic formulas are principal

in geometric rules. In this case cut is permuted to the premisses of the right

premiss, with appropriate substitution of free variables as in 3, if the right

premiss is a GRS. If the right rule is a logical one with A not principal in it,

the usual reductions are applied.

6. A is principal in both premisses. This case can involve only logical rules

and is dealt with as in the usual proof for pure logic. QED.

Examples of proof analyses in geometric theories will be given in Chapter 10.

In typical cases, it turns out that existential axioms are conservative relative

to the derivability of atomic cases from atomic assumptions. If for the rest

of the rules a subterm property can be shown, a positive solution for the

said derivability problem follows. In this chapter, we shall present instead a

general result about the proof theory of geometric theories.

8.3 Barr’s theorem

We apply here the method of extension by rules to a general result for

geometric theories.

Barr’s theorem. Let T be a geometric theory and let A be a geometric impli-

cation. If G3cT � → A, then G3imT � → A .

Proof. Let A be ∀x(B ⊃ C) and consider a proof of A in G3cT. Because

B and C do not contain ⊃ or ∀, the derivation of A consists of geometric

rules, rules for &, ∨, ∃, a step of R ⊃ and steps of R∀. The geometric rules

can occur in any order among the logical rules, however, of the logical rules,

R ⊃ and R∀ come last. The geometric rules have the same succedent in both

the premisses and the conclusion, so therefore rules R ⊃ and R∀ are applied

to single-succedent sequents. It follows that the given proof must already be

a proof in G3imT. QED.

Therefore, through the method of proof analysis, the result reduces to a

triviality: A classical proof of a geometric implication in a geometric theory

formulated as a sequent system with rules is already an intuitionistic proof.

If we add the requirement that the geometric implication must not contain

⊥ in the antecedent, then the classical proof is even a proof in minimal

logic.
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Notes to Chapter 8

Interest in the study of geometric theories has arisen from different

areas of logic and mathematics. In topos theory, geometric formulas are

characterized as the fragment of first-order logic preserved by geometric

morphisms. The statement of Barr’s theorem in that context is as follows:

For any Grothendieck topos E, there is a Boolean topos B and a surjective

geometric morphism γ : B → E. Thus the conservativity result for geomet-

ric theories is proved using a completeness theorem for geometric theories

in Grothendieck topoi and the construction of a suitable Boolean topos

out of a Grothendieck topos (cf. Johnstone 1977, Mac Lane and Moerdijk

1992, p. 513). The preservation property extends beyond first-order logic

to existential fixed-point formulas (cf. Blass 1988).

Palmgren (2002) indicates a proof-theoretical proof of Barr’s theorem

by showing that geometric implications are stable under the Dragalin-

Friedman translation. A proof for the special case of the empty geometric

theory is suggested in Troelstra and Van Dalen (1988) (exercise 2.6.14) by

means of Kripke models.

The nature of geometric logic as the logic of finite observations has

been emphasized in localic approaches to constructive topology (cf. Vickers

1989). Geometric theories can be treated, as any other theory, by the addition

of Hilbert-style axioms to a logical proof system, but axiomatic systems are

hard to analyse proof-theoretically. In Simpson (1994), geometric theo-

ries are presented through suitable rules that extend intuitionistic natural

deduction. A proof of normalization for the extensions thus obtained is

given and the systems applied in a systematic study of the proof theory of

intuitionistic modal logic. Finally, in Coste, Lombardi, and Roy (2001), the

so-called method of ‘dynamical proof ’, which establishes the derivability of

one atom from a finite set of atoms, is applied to certain specific geometric

theories such as the theory of algebraically closed fields.

We observe that Barr’s theorem is not a characterization of the intu-

itionistic fragment of geometric theories, because we can go beyond geo-

metric implications and maintain the conservativity result. First, following

Dragalin’s suggestion (cf. Section 3.7.3 in Troelstra and Schwichtenberg

2000), we can modify the intuitionistic left rule for implication by admit-

ting a multisuccedent conclusion in the left premiss

A ⊃ B , � → �, A B , � → �

A ⊃ B , � → �
L ⊃

Rule L ⊃ of the classical calculus, without A ⊃ B in the left premiss, is

then admissible in the modified intuitionistic calculus; thus the difference
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between the intuitionistic and classical sequent systems is confined to rules

R⊃ and R∀. An operational definition of formulas for which the conser-

vativity of classical derivations holds can be given: if a formula is derivable

classically in a geometric theory and the derivation contains no steps of

R⊃ and R∀ with a non-empty context in the premiss, then the derivation

is an intuitionistic derivation. However, this is an empty characterization

that states nothing but that ‘an intuitionistic derivation is an intuitionistic

derivation’. A characterization in terms of only the form of the formulas,

not of their derivations, would be desirable. There are classes of formulas,

such as geometric implications, the form of which forces the derivation to

be of the stated kind. The same is true, for example, if the formula does not

contain in its positive part implications or universally quantified formulas

as components of a disjunction. Even so, there are still formulas outside the

mentioned classes for which the conservativity holds.



9 Classical and intuitionistic axiomatics

The method of conversion of mathematical axioms into rules of sequent

calculus reveals a perfect duality between classical and constructive basic

notions, such as equality and apartness, and between the respective rules

for these notions. Derivations by the mathematical rules of a constructive

theory are mirror-image duals of corresponding classical derivations, the

mathematical rules being obtained by shifting from the left to the right rule

scheme and vice versa.

The class of geometric theories is among those convertible into rules and

the duality defines the class of co-geometric theories, as in Definition 5.2.

The logical rules of classical sequent calculus are invertible, which has for

quantifier-free theories the effect that logical rules in derivations can be

permuted to apply after the mathematical rules. In the case of mathemat-

ical rules that have variable conditions, this separation of logic does not

always hold, because quantifier rules may fail to permute down. A suffi-

cient condition for the permutability of mathematical rules is determined

in this chapter and applied to give an extension of Herbrand’s theorem from

universal to geometric and co-geometric theories.

The use of systems of left and right rules is a matter of choice. In

Section 7.2, we used a system of right rules for linear order, because it was

felt easier to prove the main results. These results can be proved through a

system of left rules, as well.

9.1 The duality of classical and constructive notions and proofs

(a) Finitary basic concepts. A constructive approach to the real numbers

uses the apartness of two real numbers as a basic relation. The axioms for

this relation, written a �= b, are as follows:

AP1 ¬ a �= a,

AP2 a �= b ⊃ a �= c ∨ b �= c .

Substituting a for c in AP2, we get a �= b ⊃ a �= a ∨ b �= a, so symmetry of 147
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apartness follows by AP1. Equality is a defined notion:

EQDEF a = b ≡ ¬ a �= b.

By AP1, equality is reflexive. By the contraposition of symmetry of apart-

ness, we have also symmetry of equality. By AP2 and symmetry of apart-

ness, we have a �= b ⊃ a �= c ∨ c �= b, so contraposition gives transitivity of

equality.

If instead of the constructively motivated notion of apartness we take

equality as a basic notion, with its standards properties of reflexivity, sym-

metry, and transitivity, apartness can be defined by

APDEF a �= b ≡ ¬ a = b.

Irreflexivity and symmetry of apartness follow. For the ‘splitting’ property

of an apartness a �= b into two cases a �= c ∨ b �= c , the contraposition

of transitivity of equality gives ¬ a = b ⊃ ¬ (a = c & c = b). To distribute

negation inside the conjunction, classical logic is needed.

The play with classical and constructive notions can be carried further

in geometry. The parallelism of two lines is a classical basic relation, and its

constructive counterpart is the ‘convergence’ of two lines l and m, written

l ∦ m. The axioms are as for the apartness relation above.

The intuition for constructive basic notions is that the classical notions

such as equality are ‘infinitely precise,’ whereas apartness, if it obtains, can

be verified by a finite computation. Something of this intuition can be seen

already in Brouwer’s first ideas on the topic of apartness relations, from

1924, where it is required that the set of objects considered be continuous.

This was certainly the intention with Brouwer’s constructive real numbers

and with Heyting’s constructive synthetic geometry. A set is defined as

discrete if it has a decidable equality relation, otherwise it is continuous.

The constructive interpretation of the law of excluded middle for equality,

a = b ∨ ¬ a = b, is precisely that the basic domain of objects is discrete.

With such sets, it makes no difference which relations are used as basic, the

constructive or classical ones, as the axioms are interderivable.

In von Plato (2001c), the constructivization of elementary axiomatics was

extended from order relations to lattice theory. It then seemed that proofs

that use apartness relations would be harder to find than corresponding

classical proofs (see especially theorem 7.1 and the discussion on p. 196). It

has turned out, however, that there is an automatic bridge between classical

and constructive notions and proofs. The matter is best seen on a formal

level if for the representation of proofs sequent calculus is used.
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(b) Derivations in left and right rule systems. We shall show the duality

of classical and constructive notions and proofs through examples that are

easily seen to be representative of the general situation. Consider the theory

of apartness. Its two axioms convert into the system of left rules

a �= a, � → �
Irref

a �= c, a �= b, � → � b �= c, a �= b, � → �

a �= b, � → �
Split

Symmetry of apartness is expressed by the sequent → a �= b ⊃ b �= a and

has the derivation

a �= a, a �= b → b �= a
Irref

b �= a, a �= b → b �= a

a �= b → b �= a
Split

→ a �= b ⊃ b �= a
R⊃

(1)

Now take rules Irref and Split and move all atoms to the other side by rule

R¬ of classical sequent calculus. Next write a = b for ¬a �= b, etc. The

result can be written as the two rules for equality:

� → �, a = a
Ref

� → �, a = b, a = c � → �, a = b, b = c
� → �, a = b

ETr

Here ETr stands for ‘Euclidean transitivity’, from the way transitivity is

expressed by Euclid.

Within our example derivation (1), switch atoms on the left and right

sides of the arrow, erase the slashes, and change the rule names to get

b = a → a = b, a = a
Ref

b = a → a = b, b = a
b = a → a = b

ETr

→ b = a ⊃ a = b
R⊃

(2)

The sequents in the mathematical part of the derivation (2) are perfect

mirror images of those in derivation (1).

Next we convert the two axioms of an apartness relation into a system of

right rules:

� → �, a �= a
� → �

Irref
� → �, a �= c, b �= c, a �= b

� → �, a �= c, a �= b
Split

The symmetry of apartness now has the derivation

a �= b → b �= a, a �= a, a �= b

a �= b → b �= a, a �= a
Split

a �= b → b �= a
Irref

→ a �= b ⊃ b �= a
R⊃

(3)
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The mirror image left rules for equality are

a = a, � → �

� → �
Ref

a = b, a = c, b = c, � → �

a = c, b = c, � → �
ETr

Symmetry is derived by the mirror image of derivation (3):

a = b, a = a, b = a → a = b
a = a, b = a → a = b

Etr

b = a → a = b
Ref

→ b = a ⊃ a = b
R⊃

(4)

There are thus two kinds of systems of rules of equality, and the same for

apartness. Euclidean equality has axioms that are Harrop formulas. As a

consequence, derivations by the two rules of this theory are linear, with

just one premiss. Also the mirror image right theory of apartness has linear

derivations. It could be called a ‘co-Harrop’ theory, with axioms that have

no conjunctions in their negative parts.

The above examples of rules and derivations are fully representative of

the general situation: we can take the rule scheme that acts on the left,

antecedent part of sequents, and convert it into a rule scheme that acts on

the right, succedent part, in exactly the same way as in the examples. There

will be a change in the basic notions, from constructive to classical or the

other way around. The question remains what, if anything, is gained by the

constructivization of classical elementary axiomatic theories; combinato-

rially, for each derivation in a constructive system of rules, there is a dual

classical derivation and vice versa.

9.2 From geometric to co-geometric axioms and rules

We introduced in Chapter 8 a sequent calculus formulation of geometric

theories and presented as examples of geometric theories real-closed fields,

Robinson arithmetic, and constructive projective geometry. As noted, to

obtain a geometric axiomatization, some care is needed when formulating

the axioms: for example, the axiom that states the existence of inverses on

non-zero elements in the theory of fields is

¬ x = 0 ⊃ ∃y x · y = 1

This axiom is not geometric, because it contains an implication the

antecedent of which is an implication (x = 0 ⊃⊥), but it can be replaced
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by the geometric axiom

a = 0 ∨ ∃y a · y = 1

In this formulation, the axiom can be converted into a rule that follows the

geometric rule scheme:

a = 0, � → � a · y = 1, � → �

� → �
L-inv

The rule has the variable condition that y be not free in �, �.

Alternatively, we can take apartness a �= b as the primitive relation and

turn rule L-inv into the following right rule, with the same variable condition

on y:

� → �, a �= 0 � → �, a · y �= 1
� → �

R-inv

This form of the rule corresponds to the axiom ¬ ∀y(a �= 0 & a · y �= 1).

All the other axioms for fields and real-closed fields can be given in terms

of right rules for the primitive relation of apartness.

A similar transformation can be made with the axioms of constructive

affine geometry. These axioms, presented in von Plato (1995), are based

on the primitive notions of distinct points a �= b, distinct lines l �= m,

convergent lines l ∦ m, and of a point outside a line a /∈ l, and on the

constructions of a line ln(a, b) that connects two distinct points a and b

and of a point pt(l, m) obtained as the intersection of two convergent lines

l and m.

In 8.1(b), we observed that the theory extended by the axiom that states

the existence of three non-collinear points remains geometric:

∃x∃y∃z(x �= y & z /∈ ln(x, y))

The axiom corresponds to the following instance of the geometric rule

scheme:

x �= y, z /∈ l(x, y), � → �

� → �

The variable condition is that x, y, z must not occur free in �, �.

If the axiomatization is instead based on the primitive relations of equality

of points, equality of lines, parallelism of lines, and incidence of a point with

a line, the axiom becomes:

∃x∃y∃z(¬ x = y & ¬ z ∈ ln(x, y))
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This axiom is not any longer a geometric implication, so we have to make,

somewhat annoyingly, the following Remark:

Remark. Classical geometry is not a geometric theory.

The axiom can be given, however, in the form of the following right rule,

with the condition that x, y, z must not occur free in �, �:

� → �, x = y, z ∈ l(x, y)
� → �

by which

¬ ∀x∀y∀z(x = y ∨ z ∈ ln(x, y))

is derivable. All the other axioms can also be uniformly presented as right

rules for the primitive relations a = b, l = m, l ‖ m, and a ∈ l.

The above examples illustrate a general result:

Theorem 9.1. Let T be a geometric theory based on the primitive relations Ri,

with rules that follow the geometric rule scheme G RS, and let T′ be the theory

obtained by formulating the axioms in terms of the dual relations R ′
i . Then a

contraction- and cut-free system for the theory T′ is obtained by turning all

the instances of G RS into the form

� → �, P
′
, Q

′
1(z1/y1) . . . � → �, P

′
, Q

′
n(zn/yn)

� → �, P
′ co-GRS

with the eigenvariables zi not free in �, �, P
′

and the apices indicating the

atoms transformed in terms of the dual relations R ′
i .

We can ask what kinds of axioms are captured by the scheme co-G RS .

Clearly, the scheme is interderivable with an axiom of the form

∀x(∀y1M ′
1& . . . &∀ynM ′

n ⊃ P ′
1 ∨ . . . ∨ P ′

m) co-G A

in which M ′
j ≡ Q ′

j 1
∨ . . . ∨ Q ′

j kj
.

It is easy to verify that any formula of the form

∀x(A ⊃ B)

with A and B formulas that do not contain ⊃ or ∃, can be brought to a

canonical form that consists of conjunctions of formulas of the form given

by co-G A . We recall from Section 5.1 that formulas A , B that do not contain

⊃ or ∃, are called co-geometric and the implication A ⊃ B a co-geometric
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implication. A theory axiomatized by co-geometric implications will be

called a co-geometric theory. Classical projective and affine geometry with

the axiom of non-collinearity constitute examples of co-geometric theories.

The above examples have shown how the duality between geometric and

co-geometric theories can be used for changing the primitive notions in the

sequent formulation of a theory. Metatheoretical results can be imported

from one theory to its dual by exploiting the symmetry of their associated

sequent calculi.

In Section 6.4, an extension of Herbrand’s theorem to universal theories

was presented (Theorem 6.19). Clearly, the theorem does not extend to

geometric theories. In fact, if ∃xP is an axiom of a theory T, then → ∃xP

is derivable in G3cT but there is no finite disjunction such that → P (t1) ∨
. . . ∨ P (tn) would be derivable in G3cT.

The crucial component in the proof of Herbrand’s theorem is that one can

assume a derivation in which the quantifier rules come last. In first-order

logic and in universal theories this is unproblematic. With mathematical

rules that have variable conditions, like the geometric or the co-geometric

rule scheme, the quantifier rules cannot in general be permuted last in a

derivation. Suppose we have a derivation with the steps

Q 1(z1/y1), P , � → �, ∃xA, A(t/x)

Q 1(z1/y1), P , � → �, ∃xA
R∃

. . . Q n(zn/yn), P , � → �, ∃xA

P , � → �, ∃xA
GRS

If term t contains the variable z1, the permutation of R∃ to below G RS

fails because the variable condition for a correct application of G RS would

no longer be satisfied. This is the exact structural reason for the failure of

Herbrand’s theorem for existential theories. We can nevertheless impose an

additional hypothesis that makes the permutation possible. The hypothesis

ensures that a fresh variable substitution, limited to the atoms Q 1, is possible.

Lemma 9.2. Let T be a geometric theory and let G3cT be the sequent sys-

tem obtained by turning the theory into a system of left rules. Suppose that

the sequent Q i(zi/yi), P , � → �, A(t/x) is derivable in G3cT, that zi is

not free in P , �, �, and that no atom Q i occurs positively in A. Then

Q i(w/yi), P , � → �, A(t/x) is derivable for an arbitrary fresh variable w.

Proof. Consider the initial sequents in a derivation of the given sequent. By

the assumptions that zi not occur free in �, � and that no atom among the

Q i be in a positive part of A , it follows that the principal atoms of the initial

sequents are not among the Q i . Thus, after the substitution of the variable zi
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with a fresh variable w in the atoms Q i(zi/yi), the leaves of the tree remain

initial sequents, and the logical steps remain correct because the atoms in

Q i are never principal in logical rules. Since w is a fresh variable, also the

instances of the geometric rule scheme remain correct, thus the substitution

produces a derivation of Q i(w/yi), P , � → �, A(t/x) in G3cT. QED.

By the lemma, we can assume a derivation in which the mathematical rules

come first, followed by propositional rules, followed by a linear part that

consists of quantifier rules. The rest of the proof of Herbrand’s theorem is

then a routine matter. Thus we have:

Theorem 9.3. Herbrand’s theorem for geometric theories. Let T be a geo-

metric theory and let G3cT be the sequent system obtained by turning the

theory into a system of rules that follow the geometric rule scheme GRS. If the

sequent → ∀x∃y1 . . . ∃ykA, with A quantifier free, is derivable in G3cT and

no atom Q i occurs positively in A , then there are terms tij with i � n, j � k

such that

→
n∨

i=1

A(ti1/y1, . . . , tik/yk)

is derivable in G3cT.

By exploiting the symmetry between a left and a right rule system we obtain

the corresponding results for co-geometric theories.

Lemma 9.4. Let T be a co-geometric theory and let G3cT be the sequent system

obtained by turning the theory into a system of right mathematical rules.

Suppose the sequent � → �, Q i(zi/yi), P , A(t/x) is derivable in G3cT,

zi is not free in P , �, �, and no atom Q i occurs negatively in A. Then

� → �, Q i(w/yi), P , A(t/x) is derivable for an arbitrary fresh variable w.

Theorem 9.5. Herbrand’s theorem for co-geometric theories. Let T be a

co-geometric theory and let G3cT be the sequent system obtained by turning

the theory into a system of right rules that follow the co-geometric rule scheme

co-GRS. If the sequent → ∀x∃y1 . . . ∃ykA, with A quantifier free, is derivable

in G3cT and no atom Q i occurs negatively in A , then there are terms tij with

i � n, j � k such that

→
n∨

i=1

A(ti1/y1, . . . , tik/yk)

is derivable in G3cT.
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9.3 Duality of dependent types and degenerate cases

The axiomatization of elementary geometry with constructive basic notions

leads in a natural way to dependent typing: a formula with a constructed

line ln(a, b), such as the incidence axiom a ∈ ln(a, b), is well-formed only

if the condition of non-degeneracy a �= b is satisfied. In a first-order formu-

lation, incidence axioms with conditions of non-degeneracy can be given as

implications, as in von Plato (1995). For projective geometry, we have

a �= b ⊃ ¬ a /∈ ln(a, b), a �= b ⊃ ¬ b /∈ ln(a, b),

and similarly for intersection points. The corresponding left rule for the

first axiom is the zero-premiss rule

a �= b, a /∈ ln(a, b), � → �
Inc

By the duality of left and right rules, we have for the classical notions of

equality and incidence the rule

� → �, a = b, a ∈ ln(a, b)
Inc

Thus, the incidence axioms for connecting lines in a classical formulation

are

a = b ∨ a ∈ ln(a, b), a = b ∨ b ∈ ln(a, b),

and similarly for the rest of the incidence axioms. The degenerate cases
of equalities a = b in these axioms are the classical duals of dependent

typings in constructive geometry. The phenomenon is quite general; similar

observations could be made about the condition for the inverse operation.

The use of constructions seems to be necessary for the conversion of

mathematical axioms into systems of cut-free rules, be it a system based

on classical or constructive notions. To see why, we formulate elementary

geometry as a relational theory with existential axioms in place of con-

structions, as in

∀x∀y∃z(x ∈ z & y ∈ z).

(The sorts of the variables are determined from their places in the incidence

relation: x and y points, z a line.) Next, uniqueness axioms are added, such as

∀x∀y∀z∀v(x ∈ z & y ∈ z & x ∈ v & y ∈ v ⊃ z = v).

As mentioned above, it is possible to formulate geometry, the axiom of

non-collinearity included, either as a constructive geometric theory, or
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as a classical co-geometric theory. This result refers to a formulation with

geometric constructions. With a relational formulation, a comparison of

the form of the existential axioms that replace constructions with the form

of the axiom of non-collinearity leads instead to the following insight:

Indispensability of constructions. If non-collinearity is formulated as a geo-

metric implication, the existence axioms are co-geometric; if instead the exis-

tence axioms are geometric, non-collinearity is co-geometric.

There is thus a fundamental incompatibility in both approaches, but it can

be overcome through the use of constructions. This phenomenon is quite

general and is met in, for example, lattice theory, as in Section 5.3, and in

field theory.

Notes to Chapter 9

This chapter is based on Negri and von Plato (2005). In von Plato (1995),

the basic relations of constructive elementary geometry were treated.

The idea of an apartness relation in place of an equality relation appears

first in Brouwer’s works on the intuitionistic continuum from the early

1920s. Apartness was written as a # b. We have used a uniform notation

in which the intuitionistic notion is written with a slash over the classi-

cal one, as in a �= b. Such apartness is in the discrete case equivalent to

the negation of equality, or else it denotes the primitive notion of apart-

ness. Brouwer also introduced a whole range of notions of apartness, often

with very idiosyncratic notations or terminologies. For example, in his two

papers (1927, 1950) a strict linear order a < b was introduced, with the

symmetrization a < b ∨ b < a corresponding to apartness, and the double

negation ¬¬ a < b giving ‘the non-contradictory of the measurable natural

order on the continuum’.

A formal treatment of apartness relations began with the formalization

of elementary intuitionistic geometry in Heyting’s doctoral dissertation of

1925; see Heyting (1927). In it, point and line equalities were replaced

by corresponding apartnesses and the basic axiomatic properties studied.

Heyting’s little book (1956) presented intuitionistic axiomatizations of

apartness and order relations. In the 1960s, such relations were used in

different approaches to constructive analysis, as in Scott (1968), who estab-

lished the notation we use. At the same time, there began a period when

intuitionistic axiomatic systems were studied by the means of Kripke seman-

tics, as in Smorynski (1973).
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The axiomatizations of plane projective and affine geometry include the

axiom of non-collinearity, i.e., of the existence of at least three non-collinear

points. It is shown that this axiom, when converted into a suitable rule, is

conservative over the other rules in the following sense: if an atomic formula

is derivable by all the rules from a given finite number of atomic formulas

used as assumptions, it is derivable without the rule of non-collinearity.

(Thus, a proper use of existential axioms requires existential conclusions.)

By the subterm property for the rules with non-collinearity excluded, deriv-

ability by the rules of projective and affine geometry is decidable.

As an immediate application of the decision method, we conclude that

any finite set of atomic formulas is consistent. As a second application, we

prove the independence of the parallel postulate in affine geometry: a very

short proof search is exhaustive but fails to give a derivation. Thus, we see,

within the system of geometry, that no derivation can lead to the parallel

postulate.

It should be noted that the solution to the decision problem for pro-

jective and affine geometries applies only to derivations by the geometric

rules. When logical rules are applied, to conclude logically compound for-

mulas, the decision problem is known to have, by a result announced first

in Tarski (1949), a negative solution. Finally, it should be noted that the

decision methods presented here are provably terminating algorithms of

proof search. Earlier results in this direction have often given decidability

in the weak sense of impossibility of undecidability and no upper bound.

10.1 Projective geometry

(a) Basic relations, constructions, and axioms. We have two types of basic

objects, points and lines. ‘Given’ points are denoted by a, b, c, . . . and lines

by l, m, n, . . . In addition, certain rules contain eigenvariables x, y, z, . . .

The basic relations of projective geometry are as follows:

a = b, a and b are equal points,

l = m, l and m are equal lines,

a ∈ l, point a is incident with line l. 157
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Next we have two constructions:

ln(a, b), the connecting line of points a, b,

pt(l, m), the intersection point of lines l, m.

The geometric axioms have been presented in Chapter 3 and are not repeated

here.

(b) Multiple-conclusion rules. The geometric axioms will be converted

into rules that are a multiple-conclusion generalization of those of natural

deduction. The reason is that in such rules, each conclusion is the premiss

of a successive rule or an endformula in a derivation. Permutation of rules

is much more manageable than in sequent calculus in which a formula can

remain inactive. A sequent calculus formulation is also possible.

Given an axiom of the general form P1& . . . &Pm ⊃ Q 1 ∨ . . . ∨ Q n, the

corresponding rule is

P1 . . . Pm

Q 1 . . . Q n (1)

Here the atoms P1, . . . , Pm are the premisses and the atoms Q 1, . . . , Q n

the conclusions, with m, n � 0. If m = 0, we have a zero-premiss rule,

and if n = 0, a rule with an empty conclusion. The conclusions of a rule

represent the several possible cases under the premisses of the rule. If rules

are restricted to having just one conclusion, logical notation is needed to

express cases.

The atoms of geometry contain free parameters and therefore the geo-

metric rules are schematic. When values are given to these, a rule instance
is obtained.

Definition 10.1. A derivation is a finite combination of rule instances such

that

1. Each formula occurrence is the premiss of at most one rule instance.

2. Each formula occurrence is the conclusion of at most one rule instance.

3. There is no sequence of rule instances such that, proceeding from the pre-

misses of a rule instance upwards through rules in which the premisses are

conclusions, one arrives in two ways at the same rule instance.

We say that derivations that follow rule scheme (1) with conditions 1–3

of the definition are written in natural deduction style. The qualifications

‘instance’ and ‘occurrence’ are usually dropped when rule instances and

formula occurrences in derivations are considered. Formulas in a derivation

that are not conclusions of some rule are the (open) assumptions of the
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derivation. Formulas in a derivation that are not the premisses of some rule

are the (open) cases of the derivation.

As a limiting case of zero rule instances, we have derivations of the form

P

in which the atom P is at the same time an assumption and a case.

Derivations as defined in 10.1 need not be representable in two dimen-

sions. However, all those parts of derivations that we need to consider can be

printed in two dimensions provided that we permit the reordering of pre-

misses and conclusions. We refer to them as the first premiss (P1 in the rule

scheme), the second premiss, and so on, and similarly for the conclusions.

A thread in a derivation is a sequence of formulas (P1, . . . , Pk) such

that P1 is an assumption, Pk a case, and Pi a premiss in a rule and Pi+1 a

conclusion in the same rule, with 1 � i < k.

A derivation has a loop (or cycle) if it has a thread of the form

(P1, . . . , P, . . . , P, . . . , Pk)

The branches from a formula P in a derivation are formed by those

sequences (P1, . . . , P ) for which there is a thread (P1, . . . , P, . . . , Pk) in

the derivation, and the roots from P the sequences (P, . . . , Pk).

If the number of cases in each rule in a derivation is at most one, the

derivation is in tree form. Dually, if the number of premisses is at most one,

the derivation is in root form.

Given a derivation D, its upward subderivations are the derivations

obtained by deleting the roots of at least one conclusion formula P while

maintaining P as a case. A downward subderivation is obtained by similarly

deleting all branches of at least one premiss formula while maintaining the

formula as an assumption.

The rules of logical inference do not interfere with derivations by math-

ematical rules of the form (1), because steps of logical inference can be

permuted down relative to the mathematical rules. Therefore the question

of the derivability of given atomic cases � from given atomic assumptions

� concerns only the mathematical rules.

We can write multiple-conclusion rules in a sequent notation. The scheme

(1) becomes

�1 → �1, P1 . . . �m → �m, Pm

�1, . . . , �m → �1, . . . , �m, Q 1, . . . , Q n
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The rule for composing derivations is in sequent calculus notation

�1 → �1, P P, �2 → �2

�1, �2 → �1, �2
Comp

Lemma 10.2. Admissibility of composition. The rule of composition is

admissible in systems of rules that follow scheme (1).

Proof. The proof is by induction on the number of steps of inference of

the right premiss of rule Comp. We show that instances of Comp can be

permuted up until they disappear.

The base case is the derivation P → P , with the instance of Comp

�1 → �1, P P → P
�1 → �1, P

Comp

Thus, the conclusion is equal to the left premiss and the instance of Comp

can be deleted. In the inductive case, the last rule in the derivation of the

right premiss of Comp has the form

P, �21 → �21, P1 . . . �2m → �2m, Pm

P, �2 → �21, . . . , �2m, Q 1, . . . , Q n
Rule

Here �21, . . . , �2m ≡ �2, and �21, . . . , �2m, Q 1, . . . , Q n ≡ �2. We may

assume the composition formula in the second premiss of Comp to come

from the first premiss of Rule. By the inductive hypothesis, composition of

the first premiss of Comp with P, �21 → �21, P1 is admissible, the conclu-

sion being �1, �21 → �1, �21, P1. Now Rule is applied with this sequent as

the first premiss, and with the same conclusion as in the original instance

of Comp. QED.

Consider a derivation of � → � with a loop as in the thread:

(P1, . . . , P, . . . , P, . . . , Pk)

The loop can be eliminated as follows. The first occurrence of P of the

thread determines an upward subderivation of a sequent �1 → �1, P ,

and the second a downward subderivation of a sequent P, �2 → �2. By

the rule of composition, these can be put together into a derivation of

�1, �2 → �1, �2. Branches and roots between the two occurrences of P

in the original derivation have been removed, so the result of composition

gives a reduced multiset of assumptions and cases of the original derivation:

a derivation that is sharper in the sense of having fewer cases derived from

fewer assumptions.
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In the natural deduction style of writing derivations, each conclusion is

by definition a premiss in the next rule or a case of the whole derivation.

In sequent calculus style, conclusions can instead remain inactive. It is,

however, always possible to permute the order of application of sequent

calculus rules so that a unique correspondence with a natural deduction

style derivation is found. We shall therefore use the more readable natural

deduction style in the proofs of the main Lemmas 10.3 and 10.5 below.

(c) The rules of projective geometry. The rules of projective geometry that

correspond to axioms I–IV in Section 3.1(b) are given below. For axiom V,

we use the co-geometric rule scheme of Chapter 9:

Table 10.1 The rules of projective geometry

I Rules for equality relations

a = a Ref
a = b
b = a

Sym a = b b = c
a = c Tr

l = l
Ref

l = m
m = l

Sym
l = m m = n

l = n
Tr

II Rules for incidence

a ∈ ln(a, b)
ILn1

b ∈ ln(a, b)
ILn2

p t(l, m) ∈ l
IPt1

p t(l, m) ∈ m
IPt2

III Uniqueness rule

a ∈ l a ∈ m b ∈ l b ∈ m
a = b l = m

Uni

IV Substitution rules

a ∈ l a = b
b ∈ l

SPt a ∈ l l = m
a ∈ m SLn

V Rule of non-collinearity

x = y
ET,1

z ∈ ln(x, y)
ET,1

Here x = y and z ∈ ln(x, y) are conclusions in a given derivation. The

rule closes the possible cases x = y and z ∈ ln(x, y) in roots of a derivation,

which is indicated by the empty conclusion. A numerical label is needed for

showing which atoms go together in an application of the rule, similarly to

the use of discharge labels next to rule symbols and above closed formulas in

natural deduction. There can be any numbers m � 0, n � 0 of occurrences

of x = y and z ∈ ln(x, y) that are closed in one rule instance (as long as

there is at least one of either). In the rule, x, y, and z are the eigenvariables,
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assumed distinct and with no free occurrences of the eigenvariables in the

remaining assumptions or cases of the derivation.

In words, rule ET states that if it can be derived that the cases under �

include the case in which any two points x, y are equal, or (if not, then at

least) the one in which any third point z is incident with the line ln(x, y),

then these two cases can be excluded.

Rule ET can be written in a ‘local’ style by the use of sequent calculus

notation. The general case of arbitrary numbers m � 0, n � 0 of the two

cases x = y and z ∈ ln(x, y) is indicated by x = ym and z ∈ ln(x, y)n.

� → �, x = ym, z ∈ ln(x, y)n

� → �
ET

The condition on the eigenvariables x, y, z is that they must not be free in

the conclusion � → � of the rule.

We show that rule ET together with the logical rules of classical sequent

calculus makes the axiom of non-collinearity derivable:

x = y → x = y

→ x = y,¬ x = y
R¬

z ∈ ln(x, y) → z ∈ ln(x, y)

→ z ∈ ln(x, y),¬ z ∈ ln(x, y)
R¬

→ x = y, z ∈ ln(x, y),¬ x = y & ¬ z ∈ ln(x, y)
R&

→ x = y, z ∈ ln(x, y), ∃x∃y∃z(¬ x = y & ¬ z ∈ ln(x, y))
R∃,R∃,R∃

→ ∃x∃y∃z(¬ x = y & ¬ z ∈ ln(x, y))
ET

In the other direction, assuming the premiss of rule ET given, we obtain its

conclusion from the axiom of non-collinearity by:

→ ∃x∃y∃z(¬ x = y & ¬ z ∈ ln(x, y))

� → �, x = ym, z ∈ ln(x, y)n

¬ x = y,¬ z ∈ ln(x, y), � → �
L ¬ ,L ¬

¬ x = y & ¬ z ∈ ln(x, y), � → �
L &

∃x∃y∃z(¬ x = y & ¬ z ∈ ln(x, y)), � → �
L ∃,L ∃,L ∃

� → �
Comp

It follows that our rule calculus is equivalent to a standard axiomatic calculus

for projective geometry.

The axioms of group II in Chapter 3 contained the degenerate cases of

the constructions. These have been left out in the corresponding rules to

make the presentation that follows simpler.

(d) The subterm property. As the main result, we shall prove a subterm
property for loop-free derivations in the rule systems for plane projective

and affine geometry. The latter proof is given in the next section.

Definition. A new term in a derivation of � → � is one that is not a term

in �, �. Terms in �, � are known terms. The length of a term is the number

of geometric constructions in it.
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We show how to remove possible new terms from derivations of atomic cases

� from atomic assumptions � in projective geometry. Rule V is conservative

over rules I–IV in such derivations, so the main lemma states the subterm

property for derivations by rules I–IV. The proof is long with lots of cases.

We therefore give first a summary description:

Outline of the proof of the main lemma. The rules of projective geometry

have the remarkable property that each term in a conclusion is also a term

in some premiss. Consider a new term of maximal length, say a line. We

trace it to topformulas, and find that the only way it can appear in these is

through the zero-premiss incidence rules, say in a ∈ ln(a, b) or b ∈ ln(a, b).

In these, ln(a, b) is a new term of maximal length, and no ground terms can

be new terms of maximal length. Terms are removed from a derivation only

through transitivity and substitution. In both, the new term ln(a, b) occurs

in an equality. The only way terms first appearing in an incidence can be

found further down in an equality is through rule Uni. We transform the

uppermost instances of Uni with the term ln(a, b) in a conclusion so that

in the next step one of the following cases appears:

A The new term is removed by Tr.

B The new term is removed by SLn.

C The new term reappears in an incidence as a conclusion of rule SLn.

In case A, the other premiss of Tr is also an equation with ln(a, b). If it

is a conclusion of an uppermost instance of Uni, a proof transformation

removes the new term. If it is not, we trace up the term ln(a, b) until

an uppermost Uni and find again one of A, B, or C. Case B leads either

to the removal of ln(a, b) or to case A. In case C, there must be a second

instance of Uni concluding an equation with the term ln(a, b). Permutations

lead either to case A or to a second-to-uppermost Uni with ln(a, b). Proof

transformations are given that reduce this situation to the previously covered

ones.

Lemma 10.3. If the atomic cases � are derivable from the atomic assumptions

� with rules I–IV of plane projective geometry, there is a derivation with no

new terms.

Proof. The proof is divided into parts indicated by boldface numbers.

1. First occurrences of new terms. Consider a new term in a loop-free

derivation, say a line l. The following condition can be put:
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Condition 1. The term l is a term of maximum length among all new terms

in the derivation and the first in the lexicographical ordering of such terms.

Consider a downmost occurrence of a new term. The atom in which it

occurs determines an upward subderivation in which we trace up, step by

step, atoms with the new term, until we arrive at topformula atoms. For

l, these atoms occur in instances of Ref, IPt, or ILn. The first is excluded

because all applicable rules with l = l as one premiss give loops. With IPt

we have, say, pt(l, m) ∈ l, but then pt(l, m) is a new term longer than l,

against assumption 1. Therefore only ILn1 and ILn2 are possible and we

have the result that l is identical to a line ln(a, b) for some points a, b, and

the possible topformulas are

a ∈ ln(a, b)
ILn1

b ∈ ln(a, b)
ILn2

2. Rules that remove new terms. The rules that can remove the new term

ln(a, b) are Tr and SLn. In both, ln(a, b) occurs as a term in an equation in a

premiss. The only rule that can introduce such an equation in the derivation

is Uni, say, one of

c ∈ ln(a, b) c ∈ m d ∈ ln(a, b) d ∈ m
c = d ln(a, b) = m

Uni

c ∈ m c ∈ ln(a, b) d ∈ m d ∈ ln(a, b)
c = d m = ln(a, b)

Uni
(1)

If m is identical to ln(a, b), the conclusion contains the reflexivity atom

ln(a, b) = ln(a, b). When this atom is a premiss in Sym, Tr, or SLn, a loop

is found. Therefore the second and fourth (resp. first and third) premisses

do not contain the term ln(a, b). If (1) is an uppermost instance of Uni with

the term ln(a, b) in a conclusion, ln(a, b) does not occur in an equation in

any upward subderivation starting from these premisses.

We prove the lemma by showing the following:

1. One instance of Uni. If the maximal number of instances of Uni with

ln(a, b) in a conclusion is 1 in the threads of a derivation, these instances

can be converted so that no equation with the term ln(a, b) is concluded.

Therefore there cannot be any new term ln(a, b) left.

2. Reduction of the number of Uni in the threads. If the maximal number of

instances of Uni with ln(a, b) in a conclusion is more than 1 in the threads

of a derivation, it can be reduced.

Base case 1 and inductive case 2 mix in rather intricate ways in the proof.
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3. The form of an uppermost uniqueness. Assume that (1) is an upper-

most instance of Uni with the term ln(a, b) in a conclusion, and consider

its first premiss c ∈ ln(a, b). The only rule other than ILn that can have this

premiss as a conclusion is SPt, and the same for the first premiss of this

instance of SPt until an instance of ILn is found. We may assume this to be

the instance a ∈ ln(a, b):

a ∈ ln(a, b)
ILn1

a = a1

a1 ∈ ln(a, b)
SPt

a1 = a2
SPt....

am ∈ ln(a, b) am = c

c ∈ ln(a, b)
SPt

(2)

We can derive a = c by Tr from the right premisses in (2):

a = a1 a1 = a2
a = a2

Tr
....

a = c (3)

For the third premiss d ∈ ln(a, b), we have by analogous arguments

b = d (4)

In (4) it is assumed that a left premiss bn ∈ ln(a, b) of SPt, analogous to the

premiss am ∈ ln(a, b) in (2), led to a topformula instance b ∈ ln(a, b). In

the contrary case of a ∈ ln(a, b), (4) would be the conclusion a = d. From

this, together with (3), the case c = d of (1) could then be derived without

instances of Uni.

We now transform (1) by the use of (2)–(4) into

a ∈ ln(a, b)
ILn1

....
a = c

c ∈ ln(a, b)
SPt

c ∈ m

b ∈ ln(a, b)
ILn2

....
b = d

d ∈ ln(a, b)
SPt

d ∈ m

c = d ln(a, b) = m
Uni

(5)

and similarly with the conclusion m = ln(a, b).

4. Rules that have as a conclusion an equation with the new term. The

term ln(a, b) appears first in an equation only as a conclusion of Uni and

remains in an equation in a conclusion as long as such an equation is a

premiss in Sym or a premiss in Tr with ln(a, b) not the middle term. We
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show that such instances of Sym and Tr can be deleted or permuted above

Uni (5).

Assume then that there is a root down from ln(a, b) = m in (5) with a

sequence of instances of Sym and Tr until a step of Tr in which ln(a, b) is

a middle term or until a step of SLn with ln(a, b) in the second premiss. If

this branch has two consecutive instances of Sym, delete both. If it has two

consecutive instances of Tr we have, say

ln(a, b) = m m = n
ln(a, b) = n

Tr
n = l

ln(a, b) = l
Tr

(6)

with l, m, n distinct from ln(a, b). This is transformed into

ln(a, b) = m
m = n n = l

m = l
Tr

ln(a, b) = l
Tr

(7)

In the end, we have an alternating sequence of single instances of Sym and

Tr. Assume that there are at least two instances of Sym, with the part of

derivation

n = m
ln(a, b) = m
m = ln(a, b)

Sym

n = ln(a, b)
Tr

ln(a, b) = n
Sym

(8)

Transform this into

ln(a, b) = m
n = m
m = n Sym

ln(a, b) = n
Tr

(9)

If the conclusion of (9) is a first premiss in Tr, a transformation as in (7) is

made to remove one Tr with line ln(a, b).

In the end, there is at most one instance of Sym and Tr, say

l = m

c ∈ ln(a, b) c ∈ m d ∈ ln(a, b) d ∈ m
ln(a, b) = m

Uni

m = ln(a, b)
Sym

l = ln(a, b)
Tr

(10)

This is transformed into

c ∈ m
l = m
m = l

Sym

c ∈ l
SLn

c ∈ ln(a, b)
d ∈ m

l = m
m = l

Sym

d ∈ l
SLn

d ∈ ln(a, b)
l = ln(a, b)

Uni

(11)
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If the instances of Sym and Tr are in the other order as compared with (10),

the transformation is the same as (11).

If there is just one instance of Sym that lets us derive m = ln(a, b) from

ln(a, b) = m and no Tr, we interchange the first and second premiss, and

the third and fourth premiss, respectively, of Uni (5), to obtain the con-

clusion without Sym. If there is just one instance of Tr with ln(a, b) in the

conclusion, we have one of

ln(a, b) = m m = n
ln(a, b) = n

Tr
l = m m = ln(a, b)

l = ln(a, b)
Tr

(12)

The second is transformed as in (11), and the first analogously.

By the above permutations, we are left with three possible ways in which

the term ln(a, b) in the conclusion of (5) can appear as a premiss in a

successive rule:

A ln(a, b) is a middle term in a premiss in Tr.

B ln(a, b) is the left term in a second premiss of SLn.

C ln(a, b) is the right term in a second premiss of SLn.

These cases correspond to those in the outline of the proof. Cases A and B
remove the new term. These are treated in 5 below and case C in 6. We now

put the

Condition 2. Uppermost instances of Uni with ln(a, b) in a conclusion

have been transformed as in 3 and 4.

5. Removal of new terms. We assume first that there is at most one instance

of Uni with ln(a, b) in a conclusion along threads. The term ln(a, b) in the

conclusion of (5) is removed by Tr or SLn and we have two subcases:

5.1. If the rule is Tr, we have

l = ln(a, b) ln(a, b) = m
l = m

Tr
(13)

By assumption, also the first premiss is a conclusion of an uppermost

instance of Uni and we have, say,

c ′ ∈ l c ′ ∈ ln(a, b) d′ ∈ l d′ ∈ ln(a, b)
l = ln(a, b)

Uni
(14)

(The first conclusion c ′ = d′ of (14) can be left unwritten here and

later.) We conclude as for (3) and (4) that

a = c ′ (15)
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and

b = d′ (16)

are derivable. The upward subderivations from these equations do not

contain the term ln(a, b) in an equation. The step of Tr that removes

ln(a, b) now has a first premiss given by (14) and a second premiss

given by (5). It is transformed, with some obvious instances of Sym left

unwritten, into

c ′ ∈ l
c ′ = a a = c

c ′ = c
Tr

c ∈ l
SPt

c ∈ m
d′ ∈ l

d′ = b b = d
d′ = d

Tr

d ∈ l
SPt

d ∈ m
l = m

Uni

(17)

The instances of Uni concluding equations with the term ln(a, b) have

been removed.

5.2. If the term ln(a, b) is removed by SLn, we have

e ∈ ln(a, b) ln(a, b) = m
e ∈ m SLn (18)

We consider the derivation of the first premiss. Possible rules are ILn,

SPt, and SLn and we have three sub-subcases:

5.2.1. The first premiss of (18) is an instance of ILn that we may assume

without loss of generality to be a ∈ ln(a, b). Then e is identical

to a and the derivation is:

a ∈ ln(a, b)
ILn1

ln(a, b) = m
a ∈ m SLn (19)

It is converted, by the use of the second premiss of (5) and by

(3), into

c ∈ m c = a
a ∈ m SPt (20)

The instance of Uni with the term ln(a, b) in the conclusion has

been removed.

5.2.2. The first premiss of (18) is concluded by rule SPt and we have

f ∈ ln(a, b) f = e

e ∈ ln(a, b)
SPt

ln(a, b) = m
e ∈ m SLn (21)
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Rule SLn is permuted up:

f ∈ ln(a, b) ln(a, b) = m

f ∈ m
SLn

f = e
e ∈ m SPt (22)

This case leads to the removal on Uni as in 5.2.1.

5.2.3. The first premiss of (18) is concluded by rule SLn and we have

e ∈ l l = ln(a, b)

e ∈ ln(a, b)
SLn

ln(a, b) = m
e ∈ m SLn (23)

The derivation is transformed into

e ∈ l

l = ln(a, b) ln(a, b) = m

l = m
Tr

e ∈ m SLn (24)

This case leads to a step of transitivity removing ln(a, b), covered

by case 5.1.

Assume next that there is along threads more than one instance of Uni

with the term ln(a, b). If the first premiss in (13) is not a conclusion of an

uppermost instance of Uni with the term ln(a, b), we trace up ln(a, b) until

an uppermost instance. Now one of the cases A–C at the end of 4 applies

and we continue the proof analysis as in 5. If in repeating this process the

term ln(a, b) is never a right term in the second premiss of SLn (case C),

occurrences of ln(a, b) are removed in the same way as in 5.1 and 5.2.1.

Otherwise case C is met:

6. New term in an incidence. We are left with the case in which the term

ln(a, b) in an equation in (5) is a premiss in SLn after which it appears in

an incidence:

e ∈ m

c ∈ m c ∈ ln(a, b) d ∈ m d ∈ ln(a, b)

m = ln(a, b)
Uni

e ∈ ln(a, b)
SLn

(25)

The conclusion can be a premiss in SPt, SLn, or Uni and we have three

subcases:

6.1. If e ∈ ln(a, b) is a premiss in SPt, the other premiss is some e = f and

SPt permutes to the first premiss of SLn:

e ∈ m m = ln(a, b)

e ∈ ln(a, b)
SLn

e = f

f ∈ ln(a, b)
SPt

�

e ∈ m e = f

f ∈ m
SPt

m = ln(a, b)

f ∈ ln(a, b)
SLn

(26)
Eventually an instance of SLn or Uni is found:



170 Proof systems for geometric theories

6.2. If e ∈ ln(a, b) is a premiss in SLn, the other premiss is some ln(a, b) = n

and the derivation and its permutation are

e ∈ m m = ln(a, b)

e ∈ ln(a, b)
SLn

ln(a, b) = n
e ∈ n SLn �

e ∈ m
m = ln(a, b) ln(a, b) = n

m = n Tr

e ∈ n SLn

(27)

If there is just one Uni with ln(a, b) along threads, case 5.1 applies. If

not, we trace up from ln(a, b) = n to an uppermost Uni with ln(a, b).

6.3. Eventually the transformations in 6.1 and 6.2 lead to the third and final

subcase of 6 in which e ∈ ln(a, b) is a premiss in Uni. The conclusion

has the term ln(a, b) and the relevant part of the derivation is:

e ∈ m

c ∈ m c ∈ ln(a, b) d ∈ m d ∈ ln(a, b)

m = ln(a, b)
Uni

e ∈ ln(a, b)
SLn

e ∈ n f ∈ ln(a, b)
Rule

f ∈ n

ln(a, b) = n
Uni

(28)

Rule can be an instance of ILn, SPt, or SLn and we have three sub-

subcases:

6.3.1. If Rule is ILn with, say, f identical to a, (28) is transformed into

c ∈ ln(a, b)
a ∈ n c = a

c ∈ n SPt d ∈ ln(a, b)
d ∈ m

c ∈ m c = a
a ∈ m SPt a ∈ n e ∈ m e ∈ n

m = n Uni

d ∈ n
SLn

ln(a, b) = n
Uni

(29)

The number of instances of Uni along threads with ln(a, b) in

the conclusion has been reduced.

6.3.2. If Rule is SPt with a second premiss g = f , the order of the

premisses of the uppermost Uni in (28) is changed to allow us

to conclude ln(a, b) = m (twice) and (28) is transformed into

ln(a, b) = m
e ∈ m e ∈ n

g ∈ ln(a, b) g = f

f ∈ ln(a, b)
SPt

ln(a, b) = m

f ∈ m
SLn

f ∈ n
m = n Uni

ln(a, b) = n
Tr

(30)

The upward subderivation from f ∈ m is covered by case 5.2.

Note that the last step is at this point not yet transformed as in

3 and 4, but only after the term ln(a, b) has been removed from

the subderivation.
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6.3.3. If Rule is SLn, it has a second premiss l = ln(a, b) and the deriva-

tion is

e ∈ m m = ln(a, b)

e ∈ ln(a, b)
SLn

e ∈ n

f ∈ l l = ln(a, b)

f ∈ ln(a, b)
SLn

f ∈ n

ln(a, b) = n
Uni (31)

There are two threads that contain at least two instances of Uni

with ln(a, b) in a conclusion. The transformed derivation is

ln(a, b) = l

e ∈ m

l = ln(a, b) ln(a, b) = m

l = m
Tr

e ∈ l
SLn

e = n f ∈ l f ∈ n

l = n
Uni

ln(a, b) = n
Tr

(32)

If l = ln(a, b) is a conclusion of an uppermost instance of Uni,

the subderivation down to l = m is transformed as in (17)

with both of the uppermost instances of Uni removed from the

derivation.

If l = ln(a, b) is not a conclusion of an uppermost Uni, we

trace up ln(a, b) until an uppermost instance is found. All cases

that can arise are now covered.

By the above process, all occurrences of ln(a, b) are removed.

If a longest new term is a point, it is removed in a process dual to

the above. By repeating the removal all new terms, in descending

order of length, are removed. QED.

We show next that the existence of non-collinear points, rule V, is conser-

vative over rules I–IV for derivations that contain only atomic formulas:

Lemma 10.4. If the atomic cases � are derivable from the atomic assumptions

� with rules I–V of plane projective geometry, they are already derivable with

rules I–IV.

Proof. We write the proof using sequent calculus notation. Assume that

there is a loop-free derivation of � → � with instances of rule ET, and

consider a first such instance, with m � 0, n � 0 copies of the two formulas

closed by the rule:

� → �′, x = ym, z ∈ ln(x, y)n

� → �′ ET

The premiss is derived by rules I–IV, so Lemma 10.3 applies to it. If a

first occurrence of the eigenvariables x, y, z is found in an initial sequent,



172 Proof systems for geometric theories

there are eigenvariables in the antecedent, against the variable restrictions.

Therefore such occurrences are possible only in instances of Ref or ILn.

The former is excluded, because all possible rules with a reflexivity atom

give a loop. For rules ILn, the only known line term with eigenvariables in

the derivation of the premiss of rule ET is ln(x, y) and first occurrences of

eigenvariables in ILn must therefore be of the form

→ x ∈ ln(x, y)
ILn1 → y ∈ ln(x, y)

ILn2

There is no way in which the term z could occur in a topsequent and

therefore there is no atom z ∈ ln(x, y) in the derivation, so n = 0. This

leaves the derivable sequent � → �′, x = ym, with x, y not terms in �, �′.
Tracing x and y up to topsequents, Ref is excluded as before. Connecting

lines containing x or y and occurring in �, �′ would violate the variable

restrictions. Thus, such lines are new terms and there is no instance of ILn

containing x or y, so also m = 0. The conclusion of the rule is identical to

its premiss, so the instance of rule ET can be removed. QED.

Lemmas 10.3 and 10.4 give us immediately the following Theorem:

Theorem 10.5. If the atomic cases � are derivable from the atomic assump-

tions � with rules I–V of plane projective geometry, there is a derivation in

which all terms are terms in �, �.

Given a problem of derivability of atomic cases � from atomic assump-

tions � in projective geometry, proof search can be limited to the terms

known from �, �. There is a bounded number of distinct atomic formulas

with terms from �, �. Therefore there is also a bounded number of loop-

free derivations, and derivability is decidable. Derivations are in tree form

except when there is an instance of rule Uni. For the fragment without Uni,

derivability can be decided, by well known results, by a polynomial-time

algorithm, but not so for the full system.

To finish this section, we shall indicate how the proof of Lemma 10.3

could in principle, if sufficiently broad pages were available, be reproduced

in a sequent calculus formulation of the geometrical rules. The essential

property of the multiple-conclusion natural deduction formulation was

that each conclusion of a rule was at once the premiss in a successive rule.

A derivation is translated into a sequent notation by collecting all the open

assumptions into a multiset � and all the cases into another multiset �.

In the proof of Lemma 10.3, instances of rules I–IV are such that only one

formula is active in a premiss. Therefore, since there are no eigenvariables
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that could block a permutation, the order of rules can be so transformed that

a given atomic formula P active in a given rule was the principal formula in

a preceding rule. Next, we considered an uppermost instance of rule Uni,

the only rule with more than one principal formula. Therefore there are

above it only rules with the above-mentioned property of permutability.

It is now a routine matter to check that the proof transformations (28) to

(32), with more than one instance of Uni, can be carried through when they

are written in sequent notation. Overall, the only thing that happens when

the proof is carried through in sequent notation is that sequent arrows and

commas and contexts are added, but the proof transformations themselves

remain as they are.

10.2 Affine geometry

To obtain an axiom system for affine geometry, the following addi-

tions and modifications are made to the projective axiomatization of

Section 10.1:

There is one additional relation and construction:

(4.1) l ‖ m, l and m are parallel lines.

(4.2) par(l, a), the parallel to line l through point a.

The additional affine axioms are

I General axioms for parallelism

l ‖ l, l ‖ m ⊃ m ‖ l, l ‖ m & m ‖ n ⊃ l ‖ n.

II Affine axioms of incidence and parallelism

a ∈ par(l, a), par(l, a) ‖ l.

III Affine uniqueness axiom

a ∈ l & a ∈ m & l ‖ m ⊃ l = m.

IV Affine substitution axiom

l ‖ m & m = n ⊃ l ‖ n.

The rules to be added to projective geometry are:
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Table 10.2 The rules of affine geometry

I Rules for the parallelism relation

l ‖ l
Ref

l ‖ m

m ‖ l
Sym

l ‖ m m ‖ n

l ‖ n
Tr

II Rules for incidence and parallelism

a ∈ par(l, a)
IA

par(l, a) ‖ l
Par

III Uniqueness of parallels

a ∈ l a ∈ m l ‖ m

l = m
Unipar

IV Substitution rule

l ‖ m m = n

l ‖ n
SA

It will be useful to distinguish between transitivity for line equality and

parallelism by writing TrLn and TrPar.

We shall next prove the subterm property for loop-free derivations in

affine geometry.

Lemma 10.5. If the atomic cases � are derivable from the atomic assumptions

� with rules I–IV of plane affine geometry, there is a derivation with no new

terms.

Proof. The proof is an extension of the proof for projective geometry in

Lemma 10.3 and we consider only the new cases. The numbering of parts of

the proof is as in lemma 10.3 and the numbering of derivations continues

that of 10.3.

1. First occurrences of new terms. Consider a line par(l, a) that is a new

term of maximal length in a loop-free derivation. First occurrences of the

term are in

a ∈ par(l, a)
IA

par(l, a) ‖ l
Par

2. Rules that remove new terms. The term par(l, a) can be removed by

rules TrLn,TrPar, SLn, and SA. We consider first the case in which par(l, a)

does not occur in an equality in the derivation. Only TrPar can remove it:

m ‖ par(l, a) par(l, a) ‖ n
m ‖ n

TrPar
(33)
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If either premiss is derived by TrPar, the latter is permuted above it as in (6)

and (7). If the right premiss has been derived by SA, TrPar is again permuted

above. If both premisses are derived by Sym, we have

par(l, a) ‖ m

m ‖ par(l, a)
Sym

n ‖ par(l, a)

par(l, a) ‖ n
Sym

m ‖ n
TrPar

(34)

A single step of TrPar followed by Sym gives the conclusion from the two

premisses of the two Sym. In the end, we arrive at the derivation

par(l, a) ‖ l
Par

l ‖ par(l, a)
Sym

par(l, a) ‖ l
Par

l ‖ l
TrPar

(35)

The conclusion follows as an instance of Ref, with the part of derivation

containing the new term deleted.

We can now assume that the term par(l, a) appears in an equality in the

derivation. Rules that can introduce par(l, a) in an equality are

c ∈ par(l, a) c ∈ m d ∈ par(l, a) d ∈ m

c = d par(l, a) = m
Uni

(36)

c ∈ par(l a) c ∈ m par(l a) ‖ m

par(l a) = m
Unipar

(37)

and similarly with par(l, a) as the right term of the equality.

3. The form of an uppermost uniqueness. Let (37) be an uppermost

uniqueness rule with par(l, a) in the conclusion. The first premiss c ∈
par(l, a) has been derived, as in (2), by point substitutions, and the first

occurrence of the new term is in a ∈ par(l, a). The derivation is transformed,

as in (3), into

a ∈ par(l, a)
IA

....
a = c

c ∈ par(l, a)
SPt

(38)

In the derivation of the third premiss par(l, a) ‖ m of (37), only rules Par,

Sym, TrPar, and SA can appear, with par(l, a) not in the second premiss of

the last one. The derivation transforms into one of

par(l, a) ‖ l
Par

....
l ‖ m

par(l, a) ‖ m
TrPar

(39)
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or

par(l, a) ‖ l
Par

....
l = m

par(l, a) ‖ m
SA

(40)

If rule Uni is, as in (36), the uppermost uniqueness rule, consider the

premisses c ∈ par(l, a) and d ∈ par(l, a). As in (38), we conclude a = c

and a = d. Therefore c = d, the first conclusion of (36), follows, and the

instance of Uni can be deleted. We can now assume that first occurrences of

par(l, a) in equations are in conclusions of rule Unipar.

4. Rules that have as a conclusion an equation with the new term. The

new term introduced into an equation by (37) remains in an equation if

the equation is a premiss of Sym or a premiss of TrLn with par(l, a) not the

middle term. The analysis proceeds as in (6)–(9), with the result that there

is at most one Sym and TrLn followingUnipar, say

k = m

c ∈ par(l, a) c ∈ m par(l, a) ‖ m

par(l, a) = m
Unipar

m = par(l, a)
Sym

k = par(l, a)
TrLn

(41)

This is transformed into

c ∈ par(l, a)
c ∈ m

k = m
m = k

Sym

c ∈ k
SLn

par(l, a) ‖ m
k = m
m = k

Sym

par(l, a) ‖ k
SA

k ‖ par(l, a)
Sym

k = par(l, a)
Unipar

(42)

If the instances of Sym and TrLn are in the other order, the transformation

is similar.

We now have k = par(l, a) (or par(l, a) = k) as a conclusion of an upper-

most Unipar. The step following it is one of

A TrLn with par(l, a) the middle term.

B SLn with par(l, a) the removed term.

C SLn with par(l, a) the right term in the second premiss.

D SA with par(l, a) a term in the second premiss.

5. Removal of new terms. We consider cases A and B that remove the new

term.
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In case A we have a step of TrLn with the premisses k = par(l, a) and

par(l, a) = k′. By the transformations as in 4, both premisses become con-

clusions of Unipar, as in

c ∈ k c ∈ par(l, a) k ‖ par(l, a)

k = par(l, a)
Unipar

c ′ ∈ par(l, a) c ′ ∈ k′ par(l, a) ‖ k′

par(l, a) = k′ Unipar

k = k′ TrLn
(43)

By (38), a = c and a = c ′, so c = c ′. Derivation (43) is transformed into

c ∈ k

c ′ ∈ k′ c ′ = c

c ∈ k′ SPt
k ‖ p ar(l, a) par(l, a) ‖ k′

k ‖ k′ TrPar

k = k′ Unipar
(44)

The instances of Unipar with par(l, a) in the conclusion have been removed.

In case B, the term par(l, a) is removed by SLn and the conclusion of

Unipar is of the form par(l, a) = k, so we have the steps

d ∈ par(l, a)

c ∈ par(l, a) c ∈ k par(l, a) ‖ k

par(l, a) = k
Unipar

d ∈ k
SLn (45)

If the first premiss is an instance of IA, then d is identical to a. We have, as

in (38), a = c , so the premiss c ∈ k gives a ∈ k without Unipar.

The other cases of derivation of the first premiss are treated similarly to

the proof of Lemma 10.3, cases 5.2.2 and 5.2.3.

We have now covered cases A and B.

6. Now consider case C in which par(l, a) is a right term in the second

premiss of SLn. We have the steps

e ∈ k

c ∈ k c ∈ par(l, a) k ‖ par(l, a)

k = par(l, a)
Unipar

e ∈ par(l, a)
SLn (46)

As for the projective case, consider rules in which the conclusion is a pre-

miss:

6.1. e ∈ par(l, a) is a premiss in SPt. The case is treated as the one for

projective geometry.

6.2. e ∈ par(l, a) is a premiss in SLn. The case is treated as the one for

projective geometry.

6.3. e ∈ par(l, a) is a premiss in Unipar. We have the steps

e ∈ k

c ∈ k c ∈ par(l, a) k ‖ par(l, a)

k = par(l, a)
Unipar

e ∈ par(l, a)
SLn

e ∈ n par(l, a) ‖ n

par(l, a) = n
Unipar

(47)
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We may assume (47) to be an uppermost case of its kind. Therefore

par(l, a) does not appear in an equation in the derivation of the third

premiss of either Unipar. Analysis of the derivations of these premisses,

as in (39) and (40) of 3, shows that one of l = k and l ‖ k is derivable

for the upper Unipar, and one of l = n and l ‖ n for the lower one. We

have then altogether four cases:

1. l = k and l = n. The conclusion par(l, a) = n follows from the con-

clusion of the upper Unipar by steps of TrLn, so the case reduces

to A.

2. l = k and l ‖ n. Now k ‖ n follows, so e ∈ k, e ∈ n give by rule

Unipar the conclusion k = n. Then par(l, a) = n follows as in 1.

3. l ‖ k and l = n. This goes through as 2.

4. l ‖ k and l ‖ n. Now k ‖ n and this goes through as 2.

Each of these cases reduces to case A.

6.4. e ∈ par(l, a) is a premiss in Uni. The steps of derivation are

e ∈ k′
e ∈ k

c ∈ k c ∈ par(l, a) k ‖ par(l, a)

k = par(l, a)
Unipar

e ∈ par(l, a)
SLn

f ∈ k′ f ∈ par(l, a)

par(l, a) = n
Uni

(48)

As in (38), c ∈ par(l, a) gives a = c and f ∈ par(l, a) likewise a = f .

Therefore f ∈ k follows from c ∈ k, and we have the transformed steps

e ∈ k′ e ∈ k f ∈ k′ f ∈ k

e = f k′ = k
Uni

c ∈ k c ∈ par(l, a) k ‖ par(l, a)

k = par(l, a)
Unipar

k′ = par(l, a)
TrLn

(49)

Now par(l, a) is a middle term in TrLn and the case is covered by A.

7. In case D, par(l, a) is a term in a premiss of SA. We have two cases:

7.1. par(l, a) is the removed term in SA:

l′ ‖ par(l, a)

c ∈ par(l, a) c ∈ k par(l, a) ‖ k

par(l, a) = k
Unipar

l′ ‖ k
SA

(50)

We may assume that par(l, a) is not in an equation in the derivation

of the first premiss of SA. As in 6.3, we get from that premiss and the

third premiss of Unipar four cases: l′ = l and l = k etc., and each leads

to the elimination of Unipar concluding an equation with par(l, a).
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7.2. par(l, a) is the right term in the second premiss of SA:

l′ ‖ k

c ∈ k c ∈ par(l, a) k ‖ par(l, a)

k = par(l, a)
Unipar

l′ ‖ par(l, a)
SA

(51)

The third premiss of Unipar gives the two cases k = l and k ‖ l, and these

in combination with l′ ‖ k lead to l′ ‖ par(l, a) without rule Unipar.

The main part of the proof is now finished. In the proof for the projective

case, it was sufficient to consider a line as a new term, the case of a point

being dual. In affine geometry, new points can be introduced through rule

IA, as in a ∈ par(l, a). However, if a is a new term, also par(l, a) is, and a

cannot be a new term of maximal length. Our final task is therefore to ensure

that the addition of the rules of affine geometry does not interfere with the

proof of the subterm property for projective geometry. The essential case

to consider is an instance of Unipar with a new term of maximal length

ln(a, b) in its conclusion, this being an uppermost occurrence of ln(a, b) in

an equation, as in

c ∈ ln(a, b) c ∈ m ln(a, b) ‖ m
ln(a, b) = l

Unipar
(52)

The third premiss has been concluded by Sym, TrPar, or SA, with ln(a, b)

always in a parallelism in a premiss. Only rule Par can introduce such a new

term, but it cannot have an instance with ln(a, b) a maximal term, so a term

ln(a, b) as in (52) is not a new term. QED.

Lemma 10.6. If the atomic cases � are derivable from the atomic assump-

tions � by rules I–V of plane affine geometry, they are already derivable by

rules I–IV.

Proof. As in the proof of Lemma 10.4, consider a first instance of rule

ET. Rules IA and Par give possible new topformulas; however, if they con-

tain any of x, y, z, or ln(x, y), they also contain a par-construction with

eigenvariables which would be a new term. QED.

Lemmas 10.5 and 10.6 give us immediately the following theorem:

Theorem 10.6. If the atomic cases � are derivable from the atomic assump-

tions � with rules I–V of plane projective geometry, there is a derivation in

which all terms are terms in �, �.

Derivability is decidable with a bounded algorithm, as in the case for pro-

jective geometry at the end of the previous section.
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10.3 Examples of proof analysis in geometry

We give a couple of brief applications of proof analysis in geometry, to

illustrate the control over the structure of derivations made possible by the

restriction of proof search to known geometric objects.

1. Consistency. As a first application of the results of the previous sections,

we obtain proofs of consistency. The standard formulation of consistency

within sequent calculus is that the empty sequent → is underivable. Here

we obtain the more general result that any finite set of atomic formulas is

consistent:

Theorem 10.7. If � contains only atoms, the sequent � → is not derivable

in plane projective or affine geometry.

Proof. If � → is derivable, it is derivable without rule ET, by Lemma 10.4

for projective and Lemma 10.7 for affine geometry. The remaining rules

have always at least one formula as a conclusion. QED.

2. Euclid’s fifth postulate. As a second application of the system of rules of

affine geometry, we consider Euclid’s fifth postulate: given a point a outside

a line l, no point is incident with both l and the parallel to l through point

a. Axiomatically, we may express this by the formula

¬ a ∈ l ⊃ ¬ (b ∈ l & b ∈ par(l, a))

It takes some effort to derive this formula from the axioms of affine geometry

by standard methods of logical inference. Here, we can express the postulate

as the ‘logic-free’ sequent

b ∈ l, b ∈ par(l, a) → a ∈ l

Rule Unipar is essential in its derivation in our system:

Theorem 10.8. If rule Unipar is deleted from the system of plane affine geom-

etry and if the points a and b are not identical, the sequent

b ∈ l, b ∈ par(l, a) → a ∈ l

is not derivable.

Proof. No rule matches the premisses b ∈ l, b ∈ par(l, a). The zero-

premiss rule Ref produces loops, and IA and Par give a ∈ par(l, a) and

par(l, a) ‖ l. Now rule Sym gives l ‖ par(l, a), and after it only loops are

produced. QED.
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With rule Unipar added, the proof search is straightforward: the two pre-

misses b ∈ par(l, a), b ∈ l together with par(l, a) ‖ l give par(l, a) = l, so

a ∈ par(l, a) gives a ∈ l by line substitution.

Notes to Chapter 10

The first person to have attempted a combinatorial analysis of formal deriva-

tions in elementary geometry was Thoralf Skolem in 1920. The date is

remarkable because systematic theories of the structure of proofs in math-

ematics were developed only from the 1930s on. Foremost among these are

the sequent calculi and systems of natural deduction of Gentzen (1934–35).

Skolem’s paper is famous for the Löwenheim–Skolem theorem, included

in the first section. The second sections contains Skolem’s result on lattice

theory in a relational formulation, as presented in our Section 5.3.

Skolem used also in projective geometry a relational formulation of the

theory and solved the derivability problem for an axiomatization that did

not include non-collinearity. Instead of constructions, Skolem (1920) has

axioms that guarantee the existence of connecting lines and of intersection

points, such as the axiom ∀x∀y∃z(x ∈ z & y ∈ z). As noted in Section 8.2,

a proof-theoretical analysis will not work if to such axioms is added an

axiom of the form of non-collinearity. Skolem’s main result was a solution

to the word problem of the universal fragment of projective geometry. As an

application, he gave a syntactic proof of the independence of the conjecture

of Desargues.

Skolem’s system of projective geometry was reformulated in terms of

Gentzen’s sequent calculus by Ketonen (1944). Ketonen also extended it to

affine geometry, but again only as a universal theory, without the axiom of

non-collinearity. A summary of Ketonen’s thesis can be found in Bernays

(1945), and a more detailed discussion in von Plato (2004). Ketonen’s argu-

ments are as hard to follow as are Skolem’s. The geometrical parts of Skolem’s

1920 paper and of Ketonen’s thesis have remained completely unknown,

even if both works otherwise have had a profound effect. Skolem’s proof

is analysed in von Plato (2007). Its starting point is the systematic devel-

opment of proof systems for projective and affine geometry of von Plato

(2010) (referred to as the manuscript ‘Combinatorial Analysis of Proofs

in Elementary Geometry’ and with the year 2005 in the 2007 paper). It

is shown in great detail how Skolem’s result arises from the possibility of

permuting the order of application of the geometrical axioms. The explicit

notation for such permutations, as in this chapter, brought out more than

one gap in the cases covered in Skolem’s proof. Subsequently Bezem and

Hendriks (2008) implemented a proof system for Skolem’s geometry.
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11 Modal logic

11.1 The language and axioms of modal logic

In modal logic, we start from the language of propositional logic and add

to it the two modal operators � and �, to form from any given formula

A the formulas �A and �A . These are read as ‘necessarily A ’ and ‘possibly

A ’, respectively.

A system of modal logic can be an extension of intuitionistic or classical

propositional logic. In the latter, the notions of necessity and possibility are

interdefinable by the equivalence �A ⊃⊂ ¬�¬A .

It is seen that necessity and possibility behave analogously to the quan-

tifiers: in one interpretation, the necessity of A means that A holds in all

circumstances, and the possibility of A means that A holds in some circum-

stances. The definability of possibility in terms of necessity is analogous to

the classical definability of existence in terms of universality.

The system of basic modal logic, denoted by K in the literature, adds to

the axioms of classical propositional logic the following:

Table 11.1 The system of basic modal logic

1. Axiom: �(A ⊃ B) ⊃ (�A ⊃ �B),

2. Rule of necessitation: from A to infer �A .

One axiom and one rule is added to the axioms and rule modus ponens of

propositional logic. The rule of necessitation requires that the premiss be

derivable in the axiomatic system, i.e., its contents are that if A is a theorem,

also �A is a theorem. The rule has caused considerable confusion in the

literature.

If instead of axiomatic logic we start from a system of natural deduction

for propositional logic, the following rules are added:

Table 11.2 Natural deduction for basic modal logic

�(A ⊃ B) �A
�B

A
�A

185
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The second rule, called ‘necessitation’ or ‘box introduction’, requires a

restriction. To see why, assume that from a given formula A one could

conclude �A . Then, by first assuming A , then applying necessitation and

implication introduction, one could conclude A ⊃ �A . Anything would

imply its own necessity, which clearly is wrong. In the axiomatic formula-

tion, the premiss of necessitation was a theorem because in axiomatic logic

only theorems are derived. In a natural deduction system, one requires that

A be derivable with no open assumptions. If one thinks of the analogy

between necessity and universal quantification, it appears that the restric-

tion is analogous to the variable condition in the rule for introducing the

universal quantifier.

The analogy between necessity and possibility and the quantifiers suggests

other operators similar to those of modal logic. For example, whatever

must be done is obligatory, whatever can be done is permitted. These two

notions belong to deontic logic. Even more simply, we can read �A as

‘always A ’ and �A as ‘some time A ’, respectively, which gives rise to tense
logic.

The early study of modal logic, to the late 1950s, consisted mainly

of suggested axiomatic systems based on an intuitive understanding of

the basic notions. Certain axiomatizations became standard and are col-

lected here in the form of a table. All of them start with the axioms

of classical propositional logic and the axioms of basic modal logic of

Table 11.1.

Table 11.3 Extensions of basic modal logic

Axiom

T �A ⊃ A

4 �A ⊃ ��A

E �A ⊃ ��A

B A ⊃ ��A

3 �(�A ⊃ B) ∨ �(�B ⊃ A)

D �A ⊃ �A

2 ��A ⊃ ��A

W �(�A ⊃ A) ⊃ �A

Well-known extensions of basic modal logic are obtained through the addi-

tion of one or more of the above axioms to system K; for instance, K4 is

obtained by adding 4, S4 by adding T and 4, S5 by adding T, 4, and E (or

T, 4, and B), deontic S4 and S5 are obtained by replacing axiom T with
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axiom D in S4 and S5, respectively. The addition of W gives what is known

as the Gödel–Löb system, GL. Axiom 2, also known as axiom M, gives the

extensions of K4 and S4, known as K4.1 and S4.1, respectively. Axiom 3 is

used for instance in the extension S4.3 of system S4.

Of these systems, GL has been of particular interest for mathematical

logic, because it encodes logical properties of the notion of provability. A

very precise sense can be given to this encoding. Namely, it can be shown

that the notion of derivability in a formal system of arithmetic, when inter-

nalized in arithmetic as in Gödel’s incompleteness theorem, is captured by

GL. An arithmetic provability predicate ∃nPr(n, m) expresses that there

exists a Gödel number n of a formal derivation of the formula A with the

Gödel number m. To the arithmetic notion of provability corresponds a

modal operator �A that expresses the provability of A . Any true arithmetic

statement about provability is already derivable within the modal logic GL.

This result about the completeness of provability logic is known as Solovay’s
theorem. Section 12.2 is devoted to provability logic.

The study of modal logic was completely changed in the late 1950s

through the invention of a relational semantics of modal logic, to which

we now turn.

11.2 Kripke semantics

What is known as Kripke semantics, also known as relational semantics, was

presented by Saul Kripke in the late fifties (Kripke 1959) for the modal logic

S5. It was modified later to accomodate also other modal logics (Kripke

1963a) and intuitionistic logic (Kripke 1965). The idea had several signif-

icant anticipations in the work of Arnould Bayart, Rudolf Carnap, Jaakko

Hintikka, Stig Kanger, Richard Montague, Arthur Prior, and others. Ques-

tions of the originality and ultimate attribution for the invention of Kripke

semantics have raised a considerable debate. We shall not take any position

on these issues here, but refer to Copeland (2002) and Goldblatt (2005) for

an in-depth discussion.

The basic idea of the semantics is that a proposition is necessary if and

only if it is true in all ‘possible worlds’. The idea is made precise as follows.

A Kripke frame is a set W, the elements of which are called possible
worlds, together with an accessibility relation R , that is, a binary relation

between elements of W. A Kripke frame becomes a Kripke model when a

valuation is given. A valuation val takes a world w and an atomic formula
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P and gives as value 0 or 1, to determine which atomic formulas are true at

what particular worlds. The notation is

w � P whenever val(w, P ) = 1.

It is read as: formula P is true at world w, alternatively as w forces P . If

val(w, P ) = 0, we write w � P. A valuation is just like a line in a truth

table, except that it is indexed by a world. If there is just one world, we

have essentially the truth-table semantics of classical propositional logic.

Valuations are supposed to be actually given, not just to exist in some

abstract sense, so we have w � P or w � P for each atom P.

Valuations are extended in a unique way to arbitrary formulas by means of

inductive clauses. For the propositional connectives, the inductive extension

is straightforward:

Table 11.4 Valuations for the connectives

w � A&B whenever w � A and w � B ,

w � A ∨ B whenever w � A or w � B ,

w � A ⊃ B whenever from w � A follows w � B ,

w � ⊥ for no w.

It was assumed above that it is decidable if an atomic formula is forced at

a given world. The same property holds then for arbitrary formulas, by the

inductive clauses of Table 11.4. Further, if w � A , then w � ¬A . To prove

this, assume w � A . A contradiction follows, so w � ⊥. Therefore, by the

inductive clause for implication, w � ¬A .

Definition 11.1. Given a Kripke frame W, formula A is valid in W if, for

every valuation, w � A for every world w in W.

The central idea in Kripke’s semantics for modal logic is that a formula of

the form �A is true at world w if A is true at all worlds accessible from w

through the relation R :

w � �A if and only if for all o, o � A follows from wRo.

The second key insight of Kripke semantics is that the axioms of different

systems of modal logic correspond to special properties of the accessibility

relation. Let us take what is probably the simplest example, namely a reflex-
ive frame. We assume the accessibility relation to be reflexive. The condition
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corresponds to axiom T of Table 11.3:

w � �A ⊃ A for every world w.

To see this, assume w � �A . Then o � A for any o accessible from w , in

particular, by reflexivity, for w itself, so w � A . Therefore w � �A ⊃ A .

On the other hand, a frame that validates �A ⊃ A has to be reflexive. To see

this, let w be a world in the frame, and assume that not wRw . Then, under

the valuation v(A) ≡ {o ∈ W|wRo} we have the result that w � �A but

w � A . Thus reflexivity of the accessibility relation is equivalent to having

a modal system with axiom T.

Similarly, it is seen that �A ⊃ ��A is valid in every transitive frame

and that every frame validating it has to be transitive. We say that there is a

correspondence between a modal axiom and a property of the accessibility

relation.

Observe that the defining axiom of the system of basic modal logic K,

�(A ⊃ B) ⊃ (�A ⊃ �B), is valid in every frame.

Table 11.6 of Section 11.3 gives a list of common modal axioms together

with their corresponding frame conditions.

11.3 Formal Kripke semantics

Our aim is to provide a general approach to the proof theory of non-classical

logics, through the use of labelled sequent calculi that are required to obey

all the principles of good design usually required of traditional sequent sys-

tems. In particular, the calculi we shall present have all the structural rules –

weakening, contraction, and cut – admissible; they support, whenever pos-

sible, proof search, and have a simple and uniform syntax that allows easy

proofs of metatheoretical results.

In this section we shall present a sequent system for the basic modal

logic K with rules for the modalities � and � obtained through a meaning

explanation, in terms of the possible worlds semantics, and an inversion

principle. The modal logic K is characterized by arbitrary frames. Restric-

tions of the class of frames that characterize a given modal logic amount

to the addition of certain frame properties to the calculus. These proper-

ties are added in the form of mathematical rules, following the method of

extension of sequent calculi presented in Chapter 6. All the extensions are

thus obtained in a modular way. As a consequence, the structural properties

of the resulting calculi can be established in one theorem for all systems.
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(a) Basic modal logic. Basic modal logic is formulated as a labelled sequent

calculus through an internalization of the possible worlds semantics within

the syntax. The way to achieve the internalization is the following. First we

enrich the language so that sequents are expressions of the form � → �

where the multisets � and � consist of relational atoms wRo and labelled
formulas w : A , the latter corresponding to the forcing w � A in Kripke

models. Here w, o range over a set W of labels/possible worlds and A is

any formula in the language of propositional logic extended by the modal

operators of necessity and possibility, � and �.

The rules for each connective and modality are obtained from their mean-

ing explanations in terms of the relational semantics. Most importantly, the

inductive definition of forcing for a modal formula is:

w � �A whenever for all o, from wRo follows o � A.

The definition gives:

If o : A can be derived for an arbitrary o accessible from w, then

w : � A can be derived.

This condition is turned into the formal rule

wRo, � → �, o : A
� → �, w : �A

R�

In the rule, the arbitrariness of o becomes the variable condition that o must

not occur in �, �.

Reading the semantical explanation in the other direction, we have the

result that w � �A and wRo give o � A . A corresponding rule for the

antecedent side is:

o : A, w : �A, wRo, � → �

w : �A, wRo, � → �
L �

The rules for � are obtained similarly from the semantic explanation

w : �A whenever for some o, wRo and o : A .

The rules of sequent calculus for the propositional connectives are obtained

from the inductive definition of forcing, as in Table 11.4. The result is a

labelling of the active formulas with the same label in the premisses and

conclusion of each rule of the calculus G3c of Table 6.6. The following

sequent calculus G3K for basic modal logic is thus obtained:
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Table 11.5 The sequent calculus G3K

Initial sequents

w : P, � → �, w : P wRo, � → �, wRo

Propositional rules

w : A, w : B , � → �

w : A&B , � → �
L &

� → �, w : A � → �, w : B
� → �, w : A&B

R&

w : A, � → � w : B , � → �

w : A ∨ B , � → �
L ∨

� → �, w : A, w : B
� → �, w : A ∨ B

R∨

� → �, w : A w : B , � → �

w : A ⊃ B , � → �
L ⊃

w : A, � → �, w : B
� → �, w : A ⊃ B

R⊃

w :⊥, � → �
L ⊥

Modal rules

o : A, w : �A, wRo, � → �

w : �A, wRo, � → �
L �

wRo, � → �, o : A
� → �, w : �A

R�

wRo, o : A, � → �

w : �A, � → �
L �

wRo, � → �, w : �A, o : A
wRo, � → �, w : �A

R�

In the first initial sequent, P is an arbitrary atomic formula. In R� and in

L �, o is a fresh label. Observe that atoms of the form wRo in the right-hand

side of sequents are never active in the logical rules nor in the rules that

extend the logical calculus. Moreover, the derivations of the modal axioms

that correspond to the properties of the accessibility relation do not use these

sequents. As a consequence, initial sequents of the form wRo, � → �, wRo

are needed only for deriving properties of the accessibility relation, namely

the axioms that correspond to the rules for R given below. Thus such initial

sequents can as well be left out from the calculus without impairing the

completeness of the system.

(b) Extensions. Our aim is to extend the above basic calculus so that

the structural properties of the extensions are automatically guaranteed.

These properties will follow from the form of the axioms that characterize

the extensions. From the previous chapters, we know that they can be

universal formulas, geometric formulas, or co-geometric formulas. The

following table continues Table 11.3 with the frame properties of modal

axioms:
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Table 11.6 Modal axioms with corresponding frame properties

Axiom Frame property

T �A ⊃ A ∀w wRw reflexivity

4 �A ⊃ ��A ∀wor(wRo & oRr ⊃ wRr) transitivity

E �A ⊃ ��A ∀wor(wRo & wRr ⊃ oRr) euclideanness

B A ⊃ ��A ∀wo(wRo ⊃ oRw) symmetry

3 �(�A ⊃ B) ∨ �(�B ⊃ A) ∀wor(wRo & wRr ⊃ oRr ∨ rRo) connectedness

D �A ⊃ �A ∀w∃o wRo seriality

2 ��A ⊃ ��A ∀wor(wRo & wRr ⊃ ∃l(oRl & rRl)) directedness

W �(�A ⊃ A) ⊃ �A no infinite R-chains + transitivity

The frame properties in the first group (T, 4, E, B, 3) are universal

axioms, those in the second group are geometric implications, as defined in

Section 8.1, whereas the last one is not expressible as a first-order

property.

The systems T, K4, KB, S4, B, S5, . . . are obtained by adding one or

more axioms to the system K. Sequent calculi are obtained by adding to the

system G3K the rules that correspond to the properties of the accessibility

relation that characterize their frames. For instance, a sequent calculus for

S4 is obtained by adding to G3K the rules that correspond to the axioms of

reflexivity and transitivity of the accessibility relation:

wRw, � → �

� → �
Ref

wRr, wRo, oRr, � → �

wRo, oRr, � → �
Trans

A system for S5 is obtained by adding also the rule that corresponds to

symmetry:

oRw, wRo, � → �

wRo, � → �
Sym

Observe that rule Trans, as well as the rule that corresponds to euclideanness,

have two principal atoms in the conclusion and are therefore subject to the

closure condition.

oRr, wRo, wRr, � → �

wRo, wRr, � → �
Eucl

The contracted instances of these rules are, respectively,

wRw, wRw, � → �

wRw, � → �
Trans∗

oRo, wRo, � → �

wRo, � → �
Eucl∗
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Both of the contracted rules are instances of rule Ref ; therefore, in order

to have the rule of contraction admissible, they have to be added into

systems that do not contain rule Ref. Similar additions must be made for

all extensions by rules that have instances with two occurrences of the same

relational atom in the conclusion. A finer analysis shows that Trans∗ is

indeed admissible and need not be added.

Extensions are obtained in a modular way for all possible combinations

of properties:

G3T = G3K + Ref

G3K4 = G3K + Trans

G3KB = G3K + Sym

G3S4 = G3K + Ref + Trans

G3TB = G3K + Ref + Sym

G3S5 = G3K + Ref + Trans + Sym

A system for deontic logic is obtained by the addition of the geometric rule

Ser:

wRo, � → �

� → �
Ser

Here the variable condition is o /∈ �, �.

Directedness is another property that follows the pattern of a geometric

implication, and it is converted into the rule

oRl, rRl, wRo, wRr, � → �

wRo, wRr, � → �
Dir

The variable condition is l /∈ wRo, wRr, �, �.

The treatment of a modal logic with a frame property not expressible as a

first-order sentence, namely provability logic, is postponed to Section 12.2.

11.4 Structural properties of modal calculi

Let G3K∗ be any extension of G3K by rules for the accessibility relation that

follow the rule scheme for extensions of sequent calculus (Table 6.10) or the

more general geometric rule scheme (Table 8.1). The following properties

can be established uniformly for all systems that belong to the class G3K∗.

Lemma 11.2. Sequents of the form

w : A, � → �, w : A

with A an arbitrary modal formula, are derivable in G3K∗.
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Proof. By induction on the length of A . QED.

To prove the correspondence between our systems and their Hilbert-style

presentations, it is necessary to show that the characteristic axioms are

derivable and the systems closed under the rules of necessitation and modus

ponens.

Lemma 11.3. For arbitrary A and B , the sequent

→ w : �(A ⊃ B) ⊃ (�A ⊃ �B)

is derivable in G3K∗.

Proof. Apply, root first, the rules of G3K and Lemma 11.2. QED.

The rule of necessitation with labels added is

→ w : A
→ w : �A

It is a context-dependent rule, as it requires both the antecedent and succe-

dent contexts to be empty. As an explicit rule, it would impair the flexibility

of the systems in the permutations that are needed for proving cut elimi-

nation; however, we do not need to add any such rule because we can show

that it is admissible. To prove this, we exploit the first-order features of the

system to show a lemma about substitution.

Substitution of labels is defined in the obvious way for relational atoms

and labelled formulas:

wRo(r/l) ≡ wRo if l �= w and l �= o

wRo(r/w) ≡ rRo if w �= o

wRo(r/o) ≡ wRr if w �= o

wRw(r/w) ≡ rRr

w : A(r/o) ≡ w : A if o �= w

w : A(r/w) ≡ r : A

It is extended to multisets componentwise. We have

Lemma 11.4. If � → � is derivable in G3K∗, then �(o/w) → �(o/w) is

also derivable, with the same derivation height.

Proof. By induction on the height n of the derivation of � → �.

If n = 0, and (o/w) is not a vacuous substitution, the sequent can either

be an initial sequent of the form w : P, �′ → �′, w : P or of the form

wRo, �′ → �′, wRo or a conclusion of L ⊥ of the form ⊥, �′ → �. In
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each case �(o/w) → �(o/w) is either an initial sequent of the same form

or a conclusion of L ⊥.

Suppose n > 0, and consider the last rule applied in the derivation. If it

is a propositional rule, apply the inductive hypothesis to the premisses of

the rule, and then the rule. Proceed similarly if the last rule is a modal rule

without a variable condition, i.e., L � or R�. If the last rule is a modal rule

with a variable condition, observe that either the substitution is vacuous

or w is not an eigenvariable of the rule. In the first case, the result of the

substitution is identical to � → � and there is nothing to prove. In the

second case, assume that o is not an eigenvariable. We have, in the case that

the last rule is R� and w : �A appears as principal, a derivation that ends

with

....
wRr, � → �′, r : A
� → �′, w : �A

R�

Here r �= w and r is not in �, �. By applying the inductive hypothesis to

the shorter derivation of the premiss, and R�, we obtain the derivation in

n steps

....
oRr, �(o/w) → �′(o/w), r : A

�(o/w) → �′(o/w), o : �A
R�

If o is the eigenvariable, the derivation ends with

....
wRo, � → �′, o : A

� → �′, w : �A
R�

We apply first the inductive hypothesis to replace the eigenvariable o with

a fresh label r. By the variable condition, the substitution does not affect �

or �′, and we obtain a derivation of height n − 1 of

wRr, � → �′, r : A

Then we apply the inductive hypothesis to substitute w by o and conclude

by R� in n steps

....
oRr, �(o/w) → �′(o/w), r : A

�(o/w) → �′(o/w), o : �A
R�
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If w is not the label of a formula that is principal in the rule, the proof

does not present any significant difference, and the case of L � is detailed

similarly.

For extensions of G3K with rules for the accessibility relation R , observe

that the rules are schematic, thus closed under substitution. In other words,

the induction proceeds as for the propositional rules.

For geometric extensions, some care is needed to avoid a clash with the

eigenvariables of the geometric rule scheme. Suppose that the last rule in

the derivation is one of the form

Q 1(o1/w1), P , � → � . . . Q n(on/wn), P , � → �

P , � → �
GRS

If o �= oi for all i = 1, . . . , n, apply the inductive hypothesis to each of the

premisses to obtain derivations of

Q i(oi/wi)(o/w), P (o/w), �(o/w) → �(o/w)

Application of the geometric rule scheme gives

P (o/w), �(o/w) → �(o/w)

If o = oi for some i, we replace first the eigenvariable oi with a fresh variable

o′
i by the inductive hypothesis applied to the i-th premiss of the rule. Then by

the inductive hypothesis applied to each of the new premisses, we make the

substitution o/w and obtain the conclusion by applying rule GRS. QED.

Theorem 11.5. The rules of weakening

� → �
w : A, � → �

LW
� → �

� → �, w : A
RW

� → �
wRo, � → �

LWR
� → �

� → �, wRo
RWR

are height-preserving admissible in G3K∗.

Proof. Straightforward induction on the height of the derivation of the

premiss for the propositional rules and the modal and non-logical rules

without a variable condition. If the last step is a modal rule with a variable

condition, the substitution lemma is applied to the premisses of the rule to

have a fresh eigenvariable that does not clash with those in w : A and wRo.

The conclusion is then obtained by applying the inductive hypothesis and

the modal rule. An identical procedure is applied if the last step is a geometric

rule and w : A or wRo contain some of its eigenvariables. QED.
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We are now ready to prove admissibility of the necessitation rule:

Corollary 11.6. The necessitation rule is admissible in G3K∗.

Proof. Suppose we have a derivation of → w : A . By the substitution

lemma, we obtain a derivation of → o : A and, by the admissibility of

weakening, of wRo → o : A . By R�, we have → w : �A . QED.

We also obtain a very useful property of a sequent calculus, namely:

Lemma 11.7. All the rules of G3K∗ are height-preserving invertible.

Proof. The proof of height-preserving invertibility for the propositional

rules is done exactly as for G3c (theorem 3.1.1 in Structural Proof Theory).

Rules L � and R� are trivially height-preserving invertible, because their

premisses are obtained from the conclusion by weakening, and weakening

is height-preserving invertible. The same holds for the rules for R . As usual,

some care is needed for the rules with variable conditions.

We show the height-preserving invertibility of R� by induction on the

height n of the derivation of � → �, w : �A . If n = 0, it is an initial

sequent or a conclusion of L ⊥, but then also wRo, � → �, o : A is an

initial sequent or a conclusion of L ⊥ (observe that it is essential here

that the initial sequents are restricted to atomic formulas). If n > 0 and

� → �, w : �A is concluded by any rule R other than R� or L �, we

apply the inductive hypothesis to the premisses �′ → �′, w : �A (�′′ →
�′′, w : �A) and obtain derivations of height n − 1 of wRo, �′ → �′, o : A

(wRo, �′′ → �′′, o : A). By applying ruleRwe obtain a derivation of height

n of wRo, � → �, o : A . If � → �, w : �A is concluded by L �, � is of

the form r : �B , �′ and the derivation ends with

rRl, l : B , �′ → �, w : �A
r : �B , �′ → �, w : �A

L �

Here we can assume, without loss of generality, that the eigenvariable of L �

is not o (or else apply the substitution lemma). By the inductive hypothesis

applied to the premiss, we obtain a derivation with the same derivation

height that ends with

wRo, rRl, l : B , �′ → �, o : A
wRo, r : �B , �′ → �, o : A

L �

If � → �, w : �A is a conclusion of R� with principal formula in �, we

proceed in a similar way. If instead the principal formula is �A , the premiss

of the last step gives the conclusion (possibly with a different eigenvariable,
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but the desired one can be obtained by height-preserving substitution). The

proof of height-preserving invertibility of L � is similar. QED.

We are now in a position to prove the most important structural property of

our calculi besides cut-admissibility, namely the height-preserving admis-

sibility of contraction. First observe that there are, a priori, four contraction

rules, left and right contraction for expressions of the form w : A and of the

form wRo. Explicitly stated, the rules of left and right contraction are:

w : A, w : A, � → �

w : A, � → �
L C

wRo, wRo, � → �

wRo, � → �
L CR

� → �, w : A, w : A
� → �, w : A

RC
� → �, wRo, wRo

� → �, wRo
RCR

Observe that rule RCR is not needed if we use the calculus without the initial

sequent wRo, � → �, wRo.

Theorem 11.8. The rules of contraction are height-preserving admissible

in G3K∗.

Proof. By simultaneous induction on the height of derivation for left and

right contraction.

If n = 0 the premiss is either an initial sequent or a conclusion of L ⊥. In

each case, the contracted sequent is also an initial sequent or a conclusion

of L ⊥.

If n > 0, consider the last rule used to derive the premiss of contraction.

If the contraction formula is not principal in it, both occurrences are found

in the premisses of the rule and they have a smaller derivation height. By the

induction hypothesis, they can be contracted and the conclusion is obtained

by applying the rule to the contracted premisses. If the contraction formula

is principal in it, we distinguish three cases: 1. A rule in which the principal

formulas appear also in the premiss (such as L � or R� or the rules for R).

2. A rule in which the active formulas are proper subformulas of the principal

formula (such as the rules for &, ∨, ⊃; a formal definition of subformulas

of a labelled formula is given in Section 11.5). 3. A rule in which active

formulas are atoms wRo and proper subformulas of the principal formula

(like rules R� and L �).

In the first case we have, for instance,

w : �A, w : �A, wRo, o : A, � → �

w : �A, w : �A, wRo, � → �
L �
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By the induction hypothesis applied to the premiss we obtain

w : �A, wRo, o : A, � → �

w : �A, wRo, � → �
L �

Observe that the case in which both contraction formulas are principal in a

rule for R is taken care of by the closure condition.

In the second case, contraction is reduced to contraction on smaller

formulas as in the standard proof for G3c.

In the third case, a subformula of the contraction formula and an atom

wRo are found in the premiss, for instance

w : �A, wRo, o : A, � → �

w : �A, w : �A, � → �
L �

By height-preserving invertibility applied to the premiss, we obtain a deriva-

tion of height n − 1 of

wRo, o : A, wRo, o : A, � → �

that yields, by the induction hypothesis for the two forms of contraction at

left, a derivation of height n − 1 of

wRo, o : A, � → �

and the conclusion w : �A, � → � follows in one more step by L �.

QED.

Also cut can take two forms, namely

� → �, w : A w : A, �′ → �′

�, �′ → �, �′ Cut

and

� → �, wRo wRo, �′ → �′

�, �′ → �, �′ CutR

However, CutR is not needed if the variant of G3K without the initial sequent

wRo, � → �, wRo is used.

We have:

Theorem 11.9. The cut rule is admissible in G3K∗.

Proof. The proof has the same structure as the proof of admissibility of cut

for sequent calculus extended by the left rule scheme (Theorem 6.9). When

the geometric rule scheme is considered, the proof follows the pattern of
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Section 8.2, Theorem 8.10. We observe that in all the cases of permutation

of cuts that may give a clash with the variable conditions in the modal rules

(and in the rules for R in the case of geometric extensions), an appropri-

ate substitution prior to the permutation, justified by Lemma 11.4, will

be used.

We recall that the proof is by induction on the size of an uppermost cut

formula in a derivation, with a subinduction on the height of cut, that is, the

sum of the heights of the derivations of the premisses of cut. We consider

in detail only the case of a cut with the cut formula principal in modal rules

in both premisses of cuts.

If the cut formula is w : �A , the derivation is

wRo, � → �, o : A
� → �, w : �A

R�
wRr, w : �A, r : A, �′ → �′

wRr, w : �A, �′ → �′ L �

wRr, �, �′ → �, �′ Cut1

It is transformed into

wRr, � → �, r : A

� → �, w : �A wRr, w : �A, r : A, �′ → �′

wRr, r : A, �, �′ → �, �′ Cut1

wRr, wRr, �, �, �′ → �, �, �′ Cut1

wRr, �, �′ → �, �′ Ctr∗

Here the upper cut is of smaller height and the lower is on a smaller

cut formula, Ctr∗ denotes repeated applications of contraction rules, and

the leftmost premiss is obtained by the substitution (r/o) on the sequent

wRo, � → �, o : A .

If the cut formula is w : �A , the derivation is

wRo, � → �, w : �A, o : A
wRo, � → �, w : �A

R�
wRr, r : A, �′ → �′

w : �A, �′ → �′ L �

wRo, �, �′ → �, �′ Cut1

It is transformed into

wRo, � → �, w : �A, o : A w : �A, �′ → �′

wRo, �, �′ → �, �′, o : A
Cut1

wRo, o : A, �′ → �′

wRo, wRo, �, �′, �′ → �, �′, �′ Cut1

wRo, �, �′ → �, �′ Ctr∗

Here the upper cut is of a smaller height and the lower on a smaller cut

formula, and the rightmost premiss is obtained by the substitution (o/r)

from wRr, r : A, �′ → �′. QED.
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11.5 Decidability

In general, cut elimination alone does not ensure a terminating proof search

in a given system of sequent calculus. Cut elimination often has the sub-

formula property as one of its immediate consequences. Sometimes the

subformula property does not require full cut elimination, as in systems

with ‘analytic cut’, i.e., with cut restricted to subformulas of the conclusion.

Even the subformula property is not always sufficient to delimit the space

of proof search, because the notion of a subformula can be extended, in

first-order logic, to include all substitution instances of a given formula.

Another source of possible non-termination is the presence of structural

rules such as contraction.

In the systems we present, a suitable version of the subformula property,

adequate for a proof of syntactic decidability, will emerge as a consequence

of the structural properties of the calculi.

Before proceeding with the analysis of the subformula properties of our

systems, we state precisely what we mean by a ‘subformula’ and a ‘subfor-

mula property’ of derivations in the context of prefixed formulas w : A .

Subformula. For each propositional connective ◦, the subformulas of the for-

mula w : A ◦ B are w : A ◦ B and all the subformulas of w : A and of w : B.

The subformulas of w : �A and w : �A are w : �A and w : �A, respectively,

and all the subformulas of o : A for arbitrary o.

Subformula property. All formulas in a derivation are subformulas of for-

mulas in the endsequent.

Weak subformula property. All formulas in a derivation are either subfor-

mulas of formulas in the endsequent or atomic formulas of the form wRo.

A priori, these properties do not ensure decidability, unless a bound is found

on the number of eigenvariables and of ‘new worlds’ in a derivation of a

given sequent.

To obtain a bound on the number of atomic formulas that can appear

in a derivation, it is useful to look at minimal derivations, that is, deriva-

tions in which shortenings are not possible. A derivation in which a rule

instance produces, read in the root-first direction, a duplication of an atom

wRo, can be shortened by the application of height-preserving admissi-

bility of contraction at the rule instance. Similarly, a derivation that con-

tains a sequent that matches the conclusion of a zero-premiss rule instance
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can be shortened by removing the subtree that had as its conclusion that

sequent.

More precisely, we have:

Theorem 11.10. All variables (worlds) in a minimal derivation of a sequent

� → � in G3K and in its extensions G3T, G3K4, G3KB, G3S4, G3TB, and

G3S5 are either eigenvariables or else variables in �, �.

Proof. Immediate for G3K and its extensions with Trans and Sym (G3K4,

G3KB). For extension with Ref, the proof follows from the lemma below.

QED.

Before stating the lemma, we observe that the hypothesis of minimality

is redundant in the absence of Ref. Nevertheless, minimality is useful in

any case because it precludes the possibility of applying rules that produce

duplications.

Lemma 11.11. All labels in atoms of the form wRw removed by Ref in a

minimal derivation of a sequent � → � in G3T, G3S4, G3TB, G3S5, are

labels in �, �.

Proof. Consider a minimal derivation of a sequent � → � and suppose

that there is a label w in an atom wRw removed by Ref. Consider a last

occurrence of w and the step of Ref that removes it,

wRw, � → �

� → �
Ref

Trace the atom wRw up in the derivation (observe that nothing, in particular

no atom wRo, is removed by going up in the derivation).

If wRw is never principal in a rule, we trace it up to the leaves (initial

sequents) of the derivation tree. If it is principal in an initial sequent, it has

the form

wRw, � → �, wRw

We find an occurrence of w in the succedent. No atom of the form wRo is

removed from the right-hand side of sequents in a derivation, so w is found

in the conclusion. If wRw is not principal in any of the leaves, it can be

removed altogether from the derivation, together with the instance of Ref,

so the derivation is shortened, contrary to the assumption.
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If wRw is principal in a rule, the rule is one of L �, R�, Trans, or Sym.

We analyse each of these four possibilities.

1. If wRw is principal in L �, we have the derivation steps

w : A, wRw, w : �A, �′ → �′

wRw, w : �A, �′ → �′ L �

.... D
wRw, � → �

� → �
Ref

By tracing the variable w , we find another occurrence of the variable

in a modal expression w : �A . Since by hypothesis the premiss of Ref

contains the last occurrence of w , the occurrence in w : �A has been

removed from the derivation before the step of Ref. The expression

w : �A can be active in propositional rules that either maintain w on

the left-hand side of the sequent or that move it to the right-hand side.

Eventually we find

wRw, w : B , �′′ → �′ (1)

or

wRw, �′′ → �′′, w : B (2)

Observe that, because of the variable condition, w cannot disappear from

(1) by L �, nor from (2) by R�. If w : B is active in L � (1) or R� (2),

then we find another occurrence of w in an atom rRw in the conclusion

of the rule. The atom rRw can be removed only by Ref, so we must have

r ≡ w and therefore, for each of the two alternatives

w : B , wRw, w : �B , � → �

wRw, w : �B , � → �
L �

wRw, � → �, w : �B , w : B
wRw, � → �, w : �B

R�

Now we still have w in the conclusion.

2. If wRw is principal in R�, the analysis is similar.

3. If wRw is principal in Trans, we have the derivation

wRw, wRr, wRr, �′ → �′

wRw, wRr, �′ → �′ Trans

....
wRw, � → �

� → �
Ref
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By applying height-preserving admissibility of contraction to the premiss

of Trans, we obtain a shorter derivation of the same endsequent, contrary

to the assumption:

wRw, wRr, �′ → �′
....

wRw, � → �

� → �
Ref

4. If wRw is principal in Sym, we have

wRw, wRr, �′ → �′

wRw, �′ → �′ Sym

....
wRw, � → �

� → �
Ref

Again, by applying height-preserving admissibility of contraction as

above, we obtain a shorter derivation of the same endsequent, with

the step of Sym made superfluous, contrary to the assumption. QED.

The property stated by the above result will be referred to in brief as the

subterm property of a derivation:

Subterm property. All terms (labels, worlds) in a derivation are either eigen-

variables or terms (labels, worlds) in the conclusion.

Proofs of the subterm property for systems for lattice theory and linear

order have been obtained by similar methods in Chapters 5 and 7.

Another source of a potentially non-terminating proof search is the rep-

etition of the principal formulas in the premisses of L � and R�. By the

following lemmas, it is enough to apply them only once on any given pair

of principal formulas wRo, w : �A or wRo, w : �A . First we prove that

if there are two applications of L � or R� on the same pair of principal

formulas and on the same branch of the derivation, such applications can

be made consecutive by the permutation of rules:

Lemma 11.12. Rule L � permutes down with respect to rules L &, R&, L ∨,

R∨, L⊃, R⊃, L �, and R�. It also permutes with respect to instances of R�,

L �, and mathematical rules if the principal atom of L � is not active in them.
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Proof. The permutation is straightforward in the case of a one-premiss

propositional rule. For instance, for L & we have:

o : A, w : �A, wRo, r : C, r : D, � → �

w : �A, wRo, r : C, r : D, � → �
L �

w : �A, wRo, r : C&D, � → �
L &

�

o : A, w : �A, wRo, r : C, r : D, � → �

o : A, w : �A, wRo, r : C&D, � → �
L &

w : �A, wRo, r : C&D, � → �
L �

In the case of a two-premiss rule, use of height-preserving admissibility of

weakening is needed; the derivation is, for instance,

o : A, w : �A, wRo, � → �, r : C

w : �A, wRo, � → �, r : C
L �

w : �A, wRo, � → �, r : D

w : �A, wRo, � → �, r : C&D
R&

It is transformed into

o : A, w : �A, wRo, � → �, r : C

w : �A, wRo, � → �, r : D

o : A, w : �A, wRo, � → �, r : D
L W

o : A, w : �A, wRo, � → �, r : C&D
R&

w : �A, wRo, � → �, r : C&D
L �

Here the right premiss of R& is obtained by weakening from the right

premiss of the given derivation.

The permutation is done similarly for the other propositional rules. The

permutation is straightforward for the modal rules and the mathematical

rules, because of the additional hypothesis of no clash of active or principal

formulas. For instance, the permutation of L � over R� is as follows:

o : A, w : �A, wRo, rRl, � → �, l : B

w : �A, wRo, rRl, � → �, l : B
L �

w : �A, wRo, � → �, r : �B
R�

�

o : A, w : �A, wRo, rRl, � → �, l : B

o : A, w : �A, wRo, � → �, r : �B
R�

w : �A, wRo, � → �, r : �B
L �

QED.

A similar lemma holds, mutatis mutandis, for the dual case of rule R�:

Lemma 11.13. Rule R� permutes down with respect to rules L &, R&, L ∨,

R∨, L⊃, R⊃, L �, and R�. It also permutes with respect to instances of R�,

L �, and mathematical rules if the principal atom of R� is not active in them.

Corollary 11.14. In a minimal derivation in G3K and in any of its extensions

with rules for R, rules L � and R� cannot be applied more than once on the

same pair of principal formulas on any branch.
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Proof. Suppose we have, say, L � applied twice on w : �A, wRo. Then the

derivation contains the steps

o : A, w : �A, wRo, �′ → �′

w : �A, wRo, �′ → �′ L �

....
o : A, w : �A, wRo, � → �

w : �A, wRo, � → �
L �

By permuting down L � with respect to the steps in the dotted part of the

derivation, we obtain a derivation of the same height that ends with

o : A, o : A, w : �A, wRo, � → �

o : A, w : �A, wRo, � → �
L �

w : �A, wRo, � → �
L �

By applying height-preserving contraction on o : A in place of the upper

L �, a shorter derivation is obtained, contrary to the assumption of mini-

mality. QED.

Decidability for the basic modal logic K is obtained in the strongest form

of an effective bound on proof search in the system G3K:

Theorem 11.15. The system G3K allows a terminating proof search.

Proof. Consider any given sequent to be shown derivable. Apply, root first,

any propositional rules and modal rules that match the conclusion. The

propositional rules each reduce the complexity of the sequents. Rules R�

and L � remove one modal operator and add an atomic relation; rules L �

and R� increase the complexity. However, by the corollary above, rules

L � and R�, once applied on a given pair of formulas, need not be so

applied again. Therefore the number of applications of L � with principal

formula w : �A is bounded by the number of atoms of the form wRo that

may appear on the left-hand side of sequents in the derivation. This number,

in turn, is bounded by the number of existing atoms of that form and atoms

that can be introduced by applications of R� with the principal formula

w : �B or applications of L � with principal formula w : �B . A similar

bound holds for the number of applications of R� on a given principal

formula. QED.

Explicit bounds are computed as follows. First define negative and positive
parts of a sequent � → � as the negative and positive parts of the formula

&� ⊃ ∨�. For any given sequent, let n(�) be the number of � in the

negative parts of the sequent; p (�), the number of � in the positive parts
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of the sequent; n(�), the number of � in the negative parts of the sequent;

and p (�), the number of � in the positive parts of the sequent.

If the endsequent does not contain any atom wRo, the number of appli-

cations of L � in a minimal derivation is bounded by

n(�)(p (�) + n(�))

If there are a atoms in the antecedent of the endsequent, it is bounded by

n(�)(p (�) + n(�) + a)

The number of applications of R� is bounded, if there are no atoms wRo

in the endsequent, by

p (�)(p (�) + n(�))

If there are a such atoms, the number of applications is bounded by

p (�)(p (�) + n(�) + a)

By a similar argument we have:

Theorem 11.16. The system G3T allows a terminating proof search.

Proof. First, observe that by the subterm property, reflexivity can be

restricted to atoms wRw with w a world in the conclusion or an eigen-

variable introduced by R� or L �. Therefore, if e denotes the number of

worlds in the endsequent, the bound to the number of applications of L �

and R� is as above, with the parameter a replaced by a + e + p (�) +
n(�). QED.

The addition of rule Sym to G3K or G3T has the following effect on proof

search (with minimal derivations): whenever an atom wRo appears on the

left-hand side of sequents, the symmetric atom oRw has to be added. If w ≡
o, no addition is needed, because such addition would cause a duplication

and a use of height-preserving admissibility of contraction would shorten

the derivation. With the notation introduced above, in G3KB, the bound

to the number of applications of L � is n(�)(2p (�) + 2n(�) + 2a) and

for R�, p (�)(2p (�) + 2n(�) + 2a). For G3TB, the bounds are given

by n(�)(3p (�) + 3n(�) + 2a + e) and p (�)(3p (�) + 3n(�) + 2a + e),

respectively. We have thus proved:

Theorem 11.17. The systems G3KB and G3TB allow a terminating proof

search.
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In G3S4, the situation is more complicated. By the rule of transitivity and its

interaction with R� that brings in new accessible worlds, we can build chains

of accessible worlds on which L � can be applied ad infinitum. However, by

our results on height-preserving admissibility of substitution and height-

preserving admissibility of contraction, we can truncate an attempted proof

search after a finite number of steps. Before giving precise bounds, we illus-

trate the method with an example (based upon a similar example discussed

in section 11.2 of Viganó 2000). In what follows, we shall for simplicity

restrict the language to the � modality. The results can be generalized by

symmetry to the full language that includes �.

We attempt to find a proof for the sequent → w : �¬�A ⊃ �B . Pro-

ceeding root first, we build the following inference tree (in which we have

omitted the derivable right premisses of L⊃):

....
rRl, wRr, wRo, oRr, w : �¬�A → o : B , r : A, l : A

wRr, wRo, oRr, w : �¬�A → o : B , r : A, r : �A
R�

r : ¬�A, wRr, wRo, oRr, w : �¬�A → o : B , r : A
L ⊃

wRr, wRo, oRr, w : �¬�A → o : B , r : A
L �

wRo, oRr, w : �¬�A → o : B , r : A
Trans

wRo, w : �¬�A → o : B , o : �A
R�

o : ¬�A, wRo, w : �¬�A → o : B
L ⊃

wRo, w : �¬�A → o : B
L �

w : �¬�A → w : �B
R�

→ w : �¬�A ⊃ �B
R⊃

Consider now the topsequent. By applying the substitution (r/l) we obtain

a derivation of the same height for the sequent

rRr, wRr, wRo, oRr, w : �¬�A → o : B , r : A, r : A

Hence, by height-preserving contraction, we have a derivation of

rRr, wRr, wRo, oRr, w : �¬�A → o : B , r : A

By a step of reflexivity we obtain a derivation of

wRw, wRo, oRr, w : �¬�A → o : B , r : A

There is a shortening by two steps of the original derivation. We can assume

that the attempted proof search is for a minimal derivation, so we have a

contradiction and the sequent is not derivable.
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This argument can be formalized by giving a bound to the number of

successive applications of R� with principal formula w : �A on successive

worlds accessible from w . Intuitively, only those applications that contribute

to the unfolding of all the boxed negative subformulas of the endsequent

through steps of L � are needed. Additional steps are superfluous as they

give rise to duplications (modulo substitution) as soon as the innermost

boxed formula in a negative part has been reached, as shown in the above

example.

Theorem 11.18. In a minimal derivation of a sequent in G3S4, for each

formula w : �A in its positive part there are at most n(�) applications of R�

iterated on a chain of accessible worlds wRw1, w1Rw2, . . . , with principal

formula wi : �A.

Proof. Let m be n(�), and suppose that the antecedent of the derivable

sequent contains a formula of the form �mQ in which �m denotes a block

of m boxes. This assumption can be done without loss of generality: the

modalities in the negative parts of the sequent do not necessarily occur in

a block, but may be interleaved with propositional connectives. However,

these connectives can be unfolded by the application, root first, of propo-

sitional rules without changing the number of applications of R� that are

necessary to reach the innermost non-modal formula. Suppose that we iter-

ate R� on a chain of accessible worlds w0Rw1, . . . , etc., with w0 ≡ w . After

the first application of R�, we have the accessibility w0Rw1 and application

of L � produces an antecedent that contains w0 : �mQ , w1 : �m−1Q . After

the second application we have the new accessibility w1Rw2, and, by tran-

sitivity, w0Rw2, and applications of L � add to the antecedent the formulas

w2 : �m−2Q , w2 : �m−1Q . After m applications, the antecedent contains

in addition wm : Q , . . . , wm : �m−1Q and the succedent wm−1 : A . If we

apply R� one more time, by the newly available steps of L � licensed

by the accessibility wmRwm+1, we add to the antecedent also the formu-

las wm+1 : Q , . . . , wm+1 : �m−1Q . These latter steps are superfluous. By

Lemma 11.3, we can make the height-preserving substitution (wm+1/wm)

and by Theorem 11.8 eliminate all the duplications that arise, while main-

taining the derivation height. By the single step of reflexivity that eliminates

the atom wmRwm, we obtain a shorter derivation of the sequent reached

after m steps of R�. QED.

We therefore have:

Corollary 11.19. The system G3S4 allows a terminating proof search.
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By the remarks before Theorem 11.17, the result above extends directly

to G3S5.

11.6 Modal calculi with equality, undefinability results

The syntax for systems G3K∗ can be extended with equality. The treatment

of equality as a left rule system, as in Section 6.3, is easily implemented in

the context of labelled calculi. A contraction- and cut-free system G3K-Eq
of modal logic with equality is obtained by adding to G3K the rules of

reflexivity and Euclidean transitivity of equality, and rules of substitution

of equals:

Table 11.7 Rules for the equality relation

w = w, � → �

� → �
Eq-Ref

o = r, w = o, w = r, � → �

w = o, w = r, � → �
Eq-Trans

oRr, w = o, wRr, � → �

w = o, wRr, � → �
ReplR1

wRr, o = r, wRo, � → �

o = r, wRo, � → �
ReplR2

o : A, w = o, w : A, � → �

w = o, w : A, � → �
Repl

As in Section 6.3, it can be shown that rule Repl can be restricted to atomic

formulas:

o : P, w = o, w : P, � → �

w = o, w : P, � → �
ReplAt

Its general form for arbitrary formulas, rule Repl above, becomes admissible.

We observe by way of an example that the modal axiom

�(A&�B) ⊃ �(A ∨ �A ∨ B)

that corresponds to the frame property

∀wor(wRo&wRr ⊃ r = o ∨ rRo ∨ oRr)

converts to the rule

r = o, wRo, wRr, � → � rRo, wRo, wRr, � → � oRr, wRo, wRr, � → �

wRo, wRr, � → �

The corresponding sequent system is obtained by adding the above rule to

the system G3K augmented with the rules for equality. All the structural

properties of the resulting system hold, as a consequence of the general

results.
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The use of proof systems that unify the syntax and semantics of modal

logic permits us to obtain very simple proofs of negative results in modal
correspondence theory. These results state that certain frame properties,

such as irreflexivity and intransitivity, do not have any modal correspondent.

The usual proofs are based on model extension methods: to prove that a

frame property is not modally definable, it is shown that the corresponding

class of frames is not closed under the constructions of disjoint union,

generated subframes, bounded morphic images, and ultrafilter extensions

(cf. Blackburn, de Rijke, and Venema 2001, section 3.3; see also Van Benthem

1984). In our systems, the lack of a modal correspondent is an immediate

consequence of a conservativity theorem. Consider, for example, the frame

property of irreflexivity ∀w¬ wRw . It corresponds to the rule

wRw, � → �
Irref

We have by a straightforward proof analysis:

Theorem 11.20. The system G3K+Irref is conservative over G3K.

Proof. Suppose that the sequent � → �, not containing relational atoms,

is derivable in G3K+Irref. The atoms of the form wRo that appear on the

left-hand side of sequents in the derivation originate from applications of

rule R�. By the variable condition, w �= o, so the derivation contains no

atom of the form wRw , hence no application of Irref. Therefore the sequent

is derivable in G3K. QED.

It follows that the property of irreflexivity does not have any modal cor-

respondent, because if it had, there would be some formula that is provable

in the extension G3K+Irref but not in G3K.

Intransitivity is given by the axiom

∀w∀o∀r(wRo&oRr ⊃ ¬wRr).

It corresponds to the zero-premiss rule

wRo, oRr, wRr, � → �
Intrans

A similar result obtains:

Theorem 11.21. The system G3K+Intrans is conservative over G3K.

Proof. As above, observe that relational atoms on the left in derivations

of a sequent � → � originate from applications of R�. In order to have
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both wRr and oRr, two applications of R� with the same eigenvariable are

needed, but this is ruled out by the variable condition. QED.

We can generalize the above two results as follows:

Theorem 11.22. Let P1, . . . , Pn� → � be a zero-premiss rule, called G-

Intrans, that corresponds to the axiom ¬(P1& . . . &Pn) with Pi ≡ wiRoi,

and assume that for some i, j , oi = oj . Then G3K+G-Intrans is conservative

over G3K.

Proof. Straightforward. QED.

By similar arguments, we can prove conservativity for extensions by rules for

geometric axioms, such as the property that there exists a reflexive world,

∃w wRw , or compositions thereof, such as the property by which every

world has access to a reflexive one, ∀w∃o(wRo & oRo).

Let Eref be the geometric rule by which there exists a reflexive world

wRw, � → �

� → �

The variable condition is that w is not in �, �. We have

Theorem 11.23. The system G3K+Eref is conservative over G3K.

Proof. Assume that � → � is derivable in G3K+Eref and consider a step

of Eref in the derivation. Trace its active atom wRw until it is principal in a

rule. The rule can be L � or R�. In the former case, the derivation above

the step of Eref contains a sequent of the form wRw, w : �A, �′ → �′.
By the variable condition on Eref, the label w in w : �A has to disappear

before the application of Eref. However, by the presence of w in wRw in

the context, such a step would not be correct. The other possibility, that

wRw is principal in R�, is excluded in a similar way. If wRw is principal

in an initial sequent, then wRw is found in the succedent � because no

relational atoms disappear from the right-hand side of sequents, but this

violates the variable condition on Eref. The only possibility that remains is

that the atom wRw is nowhere principal. Then we can remove it everywhere

from the derivation, together with the step of Eref.

This procedure, combined with an induction on the number of occur-

rences of Eref in the derivation, produces a derivation in G3K. QED.

Corollary 11.24. The frame properties of irreflexivity, intransitivity and its

generalization, and the existence of a reflexive world do not have any modal

correspondent.
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Proof. By the conservativity theorems, there is no modal formula that can

be proved in the systems extended by the above frame properties that could

not be proved in the ground system. QED.

11.7 Completeness

Kripke’s original proof of completeness for modal logic with respect to

the semantics bearing his name used a direct construction of a Beth tree

from a failed proof search. In later proofs, Kripke countermodels had nodes

built from Henkin sets of formulas and extra devices that impose additional

properties on the accessibility relation. We show that for the labelled calculus

introduced in the previous sections, a completeness proof can be given that

is closer to Kripke’s original argument. For every sequent, the proof search

either ends in a proof or fails, and the failed proof tree gives a Kripke

countermodel.

(a) Soundness. We first reformulate the semantical notions of Section 11.2

so that they apply to our labelled calculi:

Definition 11.25. Let K be a frame with an accessibility relation R that

satisfies the properties ∗. Let W be the set of variables (labels) used in derivations

in G3K∗. An interpretation of the labels W in frame K is a function [[·]] :

W → K . A valuation of atomic formulas in frame K is a map V : AtFrm →
P(K ) that assigns to each atom P the set of nodes of K in which P holds; the

standard notation for k ∈ V(P ) is k � P .

Valuations are extended to arbitrary formulas by the following inductive

clauses:

k � ⊥ for no k,

k � A&B if k � A and k � B ,

k � A ∨ B if k � A or k � B ,

k � A ⊃ B if from k � A follows k � B ,

k � �A if for all k′, from kRk′ follows k′ � A ,

k � �A if there exists k′ such that kRk′ and k′ � A .

Definition 11.26. A sequent � → � is valid for an interpretation and a
valuation in K if for all labelled formulas w : A and relational atoms oRr

in �, whenever [[w]] � A and [[o]]R[[r]] in K , then for some l : B in �,

[[l]] � B. A sequent is valid if it is valid for every interpretation and every

valuation in a frame.
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Theorem 11.27. If the sequent � → � is derivable in G3K∗, then it is valid

in every frame with the properties ∗.

Proof. By induction on the derivation of � → � in G3K∗. If it is an initial

sequent, then there is a labelled atom w : P both in � and in �, so the claim

is obvious, and similarly if the sequent is a conclusion of L ⊥, because for

no valuation can ⊥ be forced at any node.

If � → � is a conclusion of a propositional rule, assume the rule is

L & with the premiss w : A, w : B , �′ → �. Assume that for an arbitrary

assignment and interpretation, all the formulas in � are valid. Since the con-

dition [[w]] � A&B is equivalent to [[w]] � A and [[w]] � B , the inductive

hypothesis, i.e., validity of w : A, w : B , �′ → � for every interpretation,

gives the desired conclusion.

If � → � is a conclusion of a modal rule, say R�, with the premiss

wRo, �′ → �′, o : A , assume by the induction hypothesis that the premiss

is valid. Let [[·]] be an arbitrary interpretation that validates all the formulas

in �′. We claim that one of the formulas in �′ or w : �A is valid under this

interpretation. Let k be an arbitrary element of K such that [[w]]Rk holds in

K ; let [[·]]′ be the interpretation identical to [[·]] except possibly on o, where

we set [[o]]′ ≡ k. Clearly [[·]]′ validates all the formulas in the antecedent of

the premiss, so it validates a formula in �′ or o : A (the alternative being

independent of the choice of [[o]]′). In the former case we have the result that

also [[·]] validates a formula in �′; in the latter, that [[·]] validates w : �A .

If the sequent is a conclusion of a mathematical rule without eigenvari-

ables, let the rule be for instance Trans :

wRr, wRo, oRr, � → �

wRo, oRr, � → �

Let [[w]]R[[o]] and [[o]]R[[z]]. Since R satisfies transitivity by assumption,

we have [[w]]R[[z]], so validity of the premiss gives the conclusion.

If the sequent is a conclusion of a mathematical rule with eigenvariables,

let the rule be for instance Directedness:

oRl, rRl, wRo, wRr, � → �

wRo, wRr, � → �

Here l is an eigenvariable. Since by hypothesis the frame is directed, if

[[w]]R[[o]] and [[w]]R[[r]], there exists d such that [[o]]Rd and [[r]]Rd. The

premiss is valid for all interpretations, in particular for one that coincides

with [[·]] on all labels, except possibly on l where it is assigned value d (this
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choice is possible because l is an eigenvariable). It follows that one of the

formulas in � holds under this interpretation. QED.

(b) Completeness. The proof of completeness follows the pattern of proof

of completeness for predicate logic, as in Structural Proof Theory, section 4.4.

Theorem 11.28. Let � → � be a sequent in the language of G3K∗. Then

either the sequent is derivable in G3K∗ or it has a Kripke countermodel with

properties ∗.

Proof. We define for an arbitrary sequent � → � in the language of G3K∗

a reduction tree, by applying the rules of G3K∗, root first, in all possible

ways. If the construction terminates, we obtain a proof, or else the tree

becomes infinite. By König’s lemma an infinite tree has an infinite branch

that is used to define a countermodel to the endsequent.

1. Construction of the reduction tree. The reduction tree is defined induc-

tively in stages as follows:

Stage 0 has � → � at the root of the tree. Stage n > 0 has two cases:

Case I: If every topmost sequent is an initial sequent or a conclusion of L ⊥
or of a zero-premiss mathematical rule, the construction of the tree ends.

Case II: If this is not the case, we continue the construction of the tree by

writing above those topsequents that are not initial, nor conclusions of L ⊥
or of a zero-premiss mathematical rule, other sequents that are obtained by

applying, root first, the rules of G3K∗ whenever possible, in a given order.

There are 10 + r different stages, 10 for the rules of the basic modal

system, r for the mathematical rules. At stage n = 10 + r + 1, we repeat

stage 1; at stage n = 10 + r + 1, we repeat stage 2; and so on, for each n.

We start, for n = 1, with L &: consider topmost sequents of the form

w1 : B 1&C1, . . . , wm : B m&Cm, �′ → �

Here B 1&C1, . . . , B m&Cm are all the formulas in � with a conjunction as

the outermost logical connective; we write

w1 : B 1, w1 : C1, . . . , wm : B m, wm : Cm, �′ → �

on top of it. This step corresponds to applying, root first, m times, rule L &.

For n = 2, we consider all the sequents of the form

� → w1 : B 1&C1, . . . , wm : B m&Cm, �′
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Here w1 : B 1&C1, . . . , wm : B m&Cm are all the labelled formulas in the

succedent with a conjunction as the outermost logical connective. We write

on top of them the 2m sequents

� → w1 : D1, . . . , wm : Dm, �′

Here Di is either B i or Ci and all possible choices are made. This step is

equivalent to applying R&, root first, successively with principal labelled

formulas w1 : B 1&C1, . . . , wm : B m&Cm.

For n = 3 and 4 we consider L ∨ and R∨ and define the reductions

symmetrically to the cases n = 2 and n = 1, respectively.

For n = 5, for each topmost sequent that has a number of labelled for-

mulas w1 : B 1 ⊃ C1, . . . , wm : B m ⊃ Cm with implication as the outermost

logical connective in the antecedent, �′ the other formulas, and succedent

�, write on top of it the 2m sequents

wi1 : Ci1, . . . , wik : Cik , �
′ → wj k+1 : B j k+1, . . . , wj m : B j m, �

Here i1, . . . , ik ∈ {1, . . . , m} and j k+1, . . . , j m ∈ {1, . . . , m} − {i1, . . . , ik}.
This step, perhaps less transparent because of the double indexing, cor-

responds to the root-first application of rule L ⊃ with principal formulas

w1 : B 1 ⊃ C1, . . . , wm : B m ⊃ Cm.

For n = 6, we consider all the labelled sequents that have implications

in the succedent, say w1 : B 1 ⊃ C1, . . . , wm : B m ⊃ Cm, and �′ the other

formulas, and write on top of them

w1 : B 1, . . . , wm : B m, � → w1 : C1, . . . , wm : Cm, �′

So here we apply, root first, m times, rule R⊃.

For n = 7, we consider all topsequents with modal formulas as in

w1 : �B 1, . . . , wm : �B m and relational atoms w1Ro1, . . . , wmRom in the

antecedent, and write on top of these sequents the sequents

o1 : B 1, . . . , om : B m, w1 : �B 1, . . . ,

wm : �B m, w1Ro1, . . . , wmRom, �′ → �

Here we apply, m times, rule L �.

For n = 8, let w1 : �B 1, . . . , wm : �B m be all the formulas with � as the

outermost connective in the succedent of topsequents of the tree, and let �′
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be the other formulas. Let r1, . . . , rm be fresh variables, not yet used in the

reduction tree, and write on top of each sequent the sequent

w1Rr1, . . . , wmRrm, � → �′, r1 : B 1, . . . , rm : B m

Here we apply, m times, rule R�.

For n = 9, let w1 : �B 1, . . . , wm : �B m be all the formulas with � as

the outermost connective in the antecedent of topsequents of the tree, and

let �′ be the other formulas. Let l1, . . . , lm be fresh variables, and write on

top of each sequent the sequent

w1Rl1, . . . , wmRlm, l1 : B 1, . . . , lm : B m�′ → �

We apply, m times, rule L �.

For n = 10, consider all topsequents with modal formulas w1 : �B 1, . . . ,

wm : �B m in the succedent and relational atoms w1Ro1, . . . , wmRom in the

antecedent, and write on top of these sequents the sequents

w1Ro1, . . . , wmRom, � → �′, w1 : �B 1, . . . ,

wm : �B m, o1 : B 1, . . . , om : B m

We apply, m times, rule R�.

Finally, for n = 10 + j , we consider the generic case of a mathematical

rule, that is, a rule for the relation R . For systems with the subterm property,

the mathematical rules need to be instantiated only on terms in the conclu-

sion or on eigenvariables. Thus, if the system contains rule Ref, instances of

that rule consist in adding to the antecedent all the relational atoms wRw

for w in � → �; with a rule with eigenvariables, such as seriality, the step

for that rule adds all the atoms of the form wRo for w in � → � and o a

fresh variable. Observe that because of height-preserving substitution and

height-preserving admissibility of contraction, once a rule with eigenvari-

ables has been considered, it need not be instantiated again on the same

principal formulas. If it is a rule such as Trans, consider all the sequents with

a pair of atoms of the form wRo, oRr in the antecedent and write on top of

them the sequents with the atoms wRr added.

For any n, for sequents that are neither initial, nor conclusions of L ⊥, nor

of zero-premiss mathematical rules, nor treatable by any one of the above

reductions, we write the sequent itself above them. This step is needed

to treat uniformly the failure of proof search in the following two cases:

the case in which the search goes on for ever because new rules always

become applicable and the case in which a sequent is reached which is not

a conclusion of any rule nor an initial sequent.
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If the reduction tree is finite, all its leaves are initial or conclusions of L ⊥,

or of zero-premiss mathematical rules, and the tree, read from the leaves to

the root, yields a derivation.

2. Construction of the countermodel. If the reduction tree is infinite, it has

an infinite branch. Let �0 → �0 ≡ � → �, �1 → �1 . . . , �i → �i, . . .

be one such branch. Consider the sets of labelled formulas and relational

atoms

� ≡
⋃

i>0

�i � ≡
⋃

i>0

�i

We define a Kripke model that forces all the formulas in � and no formula

in � and is therefore a countermodel to the sequent � → �.

Consider the frame K the nodes of which are all the labels that appear in

the relational atoms in �, with their mutual relationships expressed by the

relations wRo in �. Clearly, the construction of the reduction tree imposes

the frame properties of the countermodel; for instance, in the system G3S4,

the constructed frame is reflexive and transitive. The model is defined as

follows: for all atomic formulas w : P in �, we stipulate that w � P in

the frame, and for all atomic formulas o : Q in � we stipulate that o � Q .

Since no sequent in the reduction tree is initial, this choice can be coherently

made, for if there were the same labelled atom in � and in �, then, since

the sequents in the reduction tree are defined in a cumulative way, for some

i there would be a labelled atom w : P both in the antecedent and in the

succedent of �i → �i .

We then show inductively on the weight of formulas that A is forced in

the model at node w if w : A is in � and A is not forced at node w if w : A

is in �. Therefore we have a countermodel to the endsequent � → �.

If A is ⊥, it cannot be in � because no sequent in the branch contains

w : ⊥ in the antecedent, so it is not forced at any node of the model.

If A is atomic, the claim holds by the definition of the model.

If w : A ≡ w : B&C is in �, there exists i such that w : A appears first

in �i , and therefore, for some l � 0, w : B and w : C are in �i+l. By the

induction hypothesis, w � B and w � C, and therefore w � B&C.

If w : A ≡ w : B&C is in �, consider the step i in which the reduction

for A applies. This gives a branching, and one of the two branches belongs

to the infinite branch, so either w : B or w : C is in �, and therefore by the

inductive hypothesis, w � B or w � C, and therefore w � B&C.

If w : A ≡ w : B ∨ C is in �, we reason similarly to the case of w : A ≡
w : B&C in �.

If w : A ≡ w : B ∨ C is in �, we argue as with w : A ≡ w : B ∨ C in �.
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If w : A ≡ w : B ⊃ C is in �, then either w : B is in � or w : C is in �.

By the inductive hypothesis, in the former case w � B , and in the latter

w � C, so in both cases w � B ⊃ C.

If w : A ≡ w : B ⊃ C is in �, then for some i, w : B ∈ �i and w : C ∈ �i ,

so by the inductive hypothesis w � B and w � C, therefore w � B ⊃ C.

If w : A ≡ w : �B is in �, we consider all the relational atoms wRo

that occur in �. If there is no such atom, then the condition that for all o

accessible from w in the frame o � B , is vacuously satisfied, and therefore

w � �B in the model. Otherwise for any occurrence of wRo in � we find,

by the construction of the reduction tree, an occurrence of o : B in �. By

the inductive hypothesis, o � B , and therefore w � �B in the model.

If w : A ≡ w : �B is in �, consider the step at which the reduction for

w : A applies. We then find o : B in � for some o with wRo in �. By the

induction hypothesis, o � B , and therefore w � A .

The cases of w : A ≡ w : �B in � and of w : A ≡ w : �B in � are

symmetric to those of w : A ≡ w : �B in � and of w : A ≡ w : �B in �,

respectively. QED.

Corollary 11.29. If a sequent � → � is valid in every Kripke model with the

frame properties ∗, then it is derivable in the system G3K∗.

Notes to Chapter 11

Various sources in the literature claim that the deduction theorem does

not hold for modal logic. The reason for the claims of failure lies in an

unrestricted necessitation rule, used for extending derivability in a Hilbert

system to a notion of derivability from assumptions. The rule licences the

derivation of A � �A but not of � A ⊃ �A ; thus it is said that ‘the deduc-

tion theorem fails in modal logic’. When a traditional Hilbert-type system

of axiomatic logic is generalized into a system for derivations from assump-

tions, the necessitation rule has to be modified in a way that restricts its use to

cases in which the premiss does not depend on assumptions. This restriction

is entirely analogous to the restriction of the rule of universal generalization

of first-order logic. A detailed discussion of the issue, together with a proof

of the deduction theorem both directly in a Hilbert system extended with

assumptions, and indirectly, through equivalence with a cut-free sequent

system for basic modal logic, is presented in Hakli and Negri (2011a).

The closure condition (sec. 11.4) could seem to bring back, in some cases,

a contraction on relational atoms. However, a simple argument shows that

whenever a rule that arises from the closure condition is an instance of
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contraction (such as Trans∗) it is in fact admissible and need not be added

(cf. proposition 3 in Hakli and Negri 2011b).

The development of sequent systems for non-classical logics, in particular

modal logics, started in the 1950s with the work of Curry (1952), who

provided a system with cut elimination and a decision procedure for S4,

and Kanger (1957), who gave sequent calculi and decision procedures for T,

S4, and S5 with the use of ‘spotted formulas’, formulas indexed by natural

numbers.

Difficulties in the Gentzen-style formalization of modal logic were, how-

ever, encountered at a very elementary level, for instance in the search for an

adequate cut-free sequent calculus for the modal logic S5. In 1957 Ohnishi

and Matsumoto presented sequent calculi with cut elimination for various

modal logics, but no cut elimination for S5. Mints (1970) gives a sequent

calculus for S5 with quantifiers that enjoys cut elimination but not the

subformula property. The same limitation is encountered in Sato (1980).

Shvarts (1989) gave an indirect proof of cut elimination, by showing that

A is provable in S5 if and only if �A is provable in a suitable cut-free

calculus. A similar idea, translated in terms of tableaux systems, is exploited

in Fitting (1999). Braüner (2000) proved cut elimination for a calculus for

S5 that cannot be appropriately called a sequent system, because of the

non-locality of its rules. Two recent proposals of a sequent calculus for S5
appear in Restall (2008) and in Stouppa (2007).

The lack of a general solution has caused an overall pessimistic attitude

towards the possibility of applying Gentzen’s systems to non-classical logics

(Fitting 1983, p. 4, Bull and Segerberg 1984, p. 7, Sally Popkorn 1994, p. 97).

Also, in a recent textbook on modal logic, the development of a proof

theory for modal logic is presented as a premature undertaking (Blackburn,

de Rijke, and Venema 2001, p. xvi).

The failure of ordinary sequent systems is thus seen as a reason for

investigating generalizations of the notion of a Gentzen sequent. These

generalizations include systems such as higher-level sequents, higher-

dimensional, higher-arity, multiple-sequent systems, hypersequents, and

display logic (Wansing 1996, 2002).

In addition to these generalizations, in recent years an approach based

on the internalization of the Kripke semantics within a calculus has gained

prominence. This idea, with early precursors as far back as in Kanger (1957),

has been developed in several forms. Inference systems have been presented

that incorporate possible worlds in the form of sequents (Mints 1997, Viganó

2000, Kushida and Okada 2003, Castellini and Smaill 2002, Castellini 2005),

in the form of tableaux (Fitting 1983, Catach 1991, Nerode 1991, Goré
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1998, Massacci 2000), and in the form of natural deduction (Fitch 1966,

Simpson 1994, Basin, Matthews, and Viganó 1998). The use of a syntax that

includes the relational semantics has been central also in the work on first-

order encodings of modal logic (Ohlbach 1993, Schmidt and Hustadt 2003)

and in what is called hybrid logic (Blackburn 2000). Internalization of the

algebraic – rather than relational – semantics in a natural deduction style

presentation is instead mainly used in labelled deductive systems (Gabbay

1996).

The completeness proof of Section 11.7 comes from Negri (2009). This

article analyses Kripke’s original proofs from 1959 and 1963 and presents

a historical reconstruction of the emergence of Henkin-style completeness

proofs for modal logic. It also shows how the use of a labelled sequent

system permits a direct and uniform completeness proof for a wide variety

of modal logics. The proof is close in spirit to Kripke’s original arguments,

but without the drawbacks of the informal arguments in Kripke’s proof or

of the implicit character of Henkin-style completeness proofs.

Important references for the history of modal logic and possible worlds

semantics are Copeland (2002) and Goldblatt (2005).



12 Quantified modal logic, provability logic,

& other non-classical logics

This chapter begins with the addition of the quantifiers to modal logic.

Next provability logic is treated. The last two sections analyse formal proofs

in some systems of non-classical logics, namely intermediate logics and

substructural logics. The former are logical systems between intuitionistic

and classical logic. They are characterized axiomatically by the addition of

some axioms that extend intuitionistic logic, such as (A ⊃ B) ∨ (B ⊃ A).

Such axioms often have a semantic equivalent that can be converted into a

rule of our labelled calculi. The same goes for the substructural logics in the

final section.

12.1 Adding the quantifiers

(a) Semantics and syntax of quantified modal logic. We extend our

treatment to first-order modal logic through an internalization within the

syntax of the notion of a quantificational model. In such a model, intro-

duced in Kripke (1963b), there is associated to every world w a domain of

interpretation of individual variables D(w). The whole domain of inter-

pretation of individual variables is D ≡ ⋃
w∈K D(w). The valuation of

n-ary predicates P (x1, . . . , xn) in a quantificational model is given by a

function [[P ]] from Dn to the set of classical truth values {0, 1}, or, in

other words, a (classical) subset of Dn. We say that w forces P (x1, . . . , xn)

under the assignment σ ≡ 〈a1/x1, . . . an/xn〉, written w �σ P (x1, . . . , xn),

if [[P ]](a1, . . . , an) = 1. Observe that the notion of quantificational model

is not yet fully determined; there is, for example, an ambiguity in the

case in which some of the ai are not in D(w). As we shall see, there

are different possible assumptions about the domains D(w) that give

rise to different notions of quantificational models. We can nevertheless

proceed with a formal analysis of the notion to be imported into our

syntactic treatment. The possible distinctions for quantificational mod-

els will then be clear. The treatment will also exploit in full the similarities

between modalities and quantifiers: modalities are like quantifiers with pos-

sible worlds as their scope. The interaction of modalities with the proper

quantifiers is captured by conditions that connect possible worlds and ranges

of variables.222
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Given a valuation of atomic predicates under an assignment, it is extended

into a valuation of arbitrary formulas in a quantificational model by the

standard inductive clauses for propositional connectives. For the quantifiers,

we have

w �σ ∀xA(x, y1, . . . , yn) whenever for all σ′ such that σ′(yi) = σ(yi),

w �σ′ ∀xA(x, y1, . . . , yn).

Alternatively, by leaving arbitrary the assignment of free variables, we have

w � ∀xA(x) whenever for all a in D(w), w � A(a/x).

In a similar way, we have

w � ∃xA(x) whenever for some a in D(w), w � A(a/x).

Correspondingly, we add into our calculus expressions of the form a ∈ D(w)

that can appear in sequents together with labelled formulas w : A and

relational atoms wRo. The rules for the quantifiers are then obtained directly

from the semantic explanations:

Table 12.1 Quantifier rules of G3Kq

a ∈ D(w), � → �, w : A(a/x)

� → �, w : ∀xA
R∀

w : A(a/x), w : ∀xA, a ∈ D(w), � → �

w : ∀xA, a ∈ D(w), � → �
L ∀

a ∈ D(w), � → �, w : ∃xA, w : A(a/x)

a ∈ D(w), � → �, w : ∃xA
R∃

a ∈ D(w), w : A(a/x), � → �

w : ∃xA, � → �
L ∃

Rules R∀, L ∃ have the condition a /∈ �, �. To the initial sequents are

added sequents of the form a ∈ D(w), � → �, a ∈ D(w). These sequents

are not needed in practice because they, as well as those of the form

wRo, � → �, wRo, are needed only for the derivation of the properties

of the accessibility relation and of the domain.

Quantified modal logic is not as intuitive as standard propositional modal

logic. For example, the principle of universal instantiation, in the form

∀xA(x) ⊃ A(a), fails to hold in general. This failure is seen through a proof

search by our rules:
....

w : ∀xA(x) → w : A(a)
→ w : ∀xA(x) ⊃ A(a)

R⊃
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After this single step, no rule is applicable; the only way to continue would be

by a step of L ∀ but this would require the additional assumption a ∈ D(w).

Once we have proved the completeness of the calculus, it can be concluded

that the above failed proof search is exhaustive.

Let G3Kq be the system obtained by adding the quantifier rules to G3K.

Similarly to G3K, we may add to G3Kq properties of the accessibility rela-

tion and obtain, for example, a system for S5 with quantifiers by adding

rules Ref, Trans, and Sym. However, as we anticipated, there is more that

can be done in first-order extensions: in addition to properties of the acces-

sibility relation, also properties of the domain function can be required.

For instance, it can be postulated that for every world, the corresponding

domain of interpretation be non-empty:

∀w∃a(a ∈ D(w))

Another condition is that domains be increasing:

∀wo∀a(wRo & a ∈ D(w) ⊃ a ∈ D(o))

They can also be decreasing:

∀wo∀a(wRo & a ∈ D(o) ⊃ a ∈ D(w))

All the above properties follow the geometric rule scheme and their rule

form is as follows, with the variable condition a /∈ �, � in the first:

a ∈ D(w), � → �

� → �
Nonempty

a ∈ D(o), wRo, a ∈ D(w), � → �

wRo, a ∈ D(w), � → �
Incr

a ∈ D(w), wRo, a ∈ D(o), � → �

wRo, a ∈ D(o), � → �
Decr

The permutability of the necessity modality and the universal quantifier

has been the object of a long philosophical discussion (see, e.g., Fitting

and Mendelsohn 1998). The Barcan formula is ∀x�A ⊃ �∀xA and the

converse Barcan formula �∀xA ⊃ ∀�xA . Each of these has its own impli-

cations for the meaning of necessity. Below, we shall give derivations of

the Barcan formula and its converse in G3Kq+Decr and in G3Kq+Incr,

respectively.

The property of non-emptiness is usually part of the ontology of the

intended semantics for quantified systems of logic and is implicit in the

rule of elimination of the universal quantifier. However, we gain a more

flexible approach by not having it inbuilt in the rules for the quantifiers.
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The property is formally similar to the property of seriality that was added

to G3K to obtain deontic logic. This latter property is characterized by

the axiom �A ⊃ �A . Similarly, non-emptiness corresponds to the axiom

∀xA ⊃ ∃xA , derived as follows, where the topsequents are derivable by the

extension of Lemma 11.2 to G3Kq, shown below:

w : A(a/x), a ∈ D(w), w : ∀xA → w : ∃xA, w : A(a/x)

w : A(a/x), a ∈ D(w), w : ∀xA → w : ∃xA
R∃

a ∈ D(w), w : ∀xA → w : ∃xA
L ∀

w : ∀xA → w : ∃xA
Nonempty

→ w : ∀xA ⊃ ∃xA
R⊃

(b) Structural properties. Let G3Kq∗ be any extension of G3Kq by rules

that follow the geometric rule scheme for the atomic predicates a ∈ D(w),

wRo (called, respectively, domain atoms and relational atoms). Rules that

involve domain atoms will be called domain rules. We extend the proofs of

the structural properties of G3K to G3Kq∗. Observe that, unlike derivability,

admissibility is not a monotone property of deductive systems, that is, it

is not automatically maintained in extensions, so some care is needed.

However, because of the modularity of all the extensions considered, it is

enough to check, in the inductive proofs, the new cases that arise from the

addition of the quantifier rules and of the domain rules.

Lemma 12.1. Sequents of the form

w : A, � → �, w : A

with A an arbitrary first-order modal formula, are derivable in G3Kq∗.

Proof. We add the new cases of quantified A to the proof of Lemma 11.2.

The inductive steps for ∀ and ∃ are as follows:

w : A(a/x), a ∈ D(w), w : ∀xA, � → �, w : A(a/x)

a ∈ D(w), w : ∀xA, � → �, w : A(a/x)
L ∀

w : ∀xA, � → �, w : ∀xA
R∀

a ∈ D(w), w : A(a/x), � → �, w : ∃xA, w : A(a/x)

a ∈ D(w), w : A(a/x), � → �, w : ∃xA
R∃

w : ∃xA, � → �, w : ∃xA
L ∃

QED.

Theorem 12.2. The Barcan formula and the converse Barcan formula are

derivable in G3Kq+ Decr and in G3Kq+ Incr, respectively.
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Proof. The derivations are as follow, where the topsequents are derivable

by Lemma 12.1.

o : A(a/x), w : �A(a/x), a ∈ D(w), a ∈ D(o), wRo, w : ∀x�A → o : A(a/x)

w : �A(a/x), a ∈ D(w), a ∈ D(o), wRo, w : ∀x�A → o : A(a/x)
L �

a ∈ D(w), a ∈ D(o), wRo, w : ∀x�A → o : A(a/x)
L ∀

a ∈ D(o), wRo, w : ∀x�A → o : A(a/x)
Decr

wRo, w : ∀x�A → o : ∀xA
R∀

w : ∀x�A → w : �∀xA
R�

→ w : ∀x�A ⊃ �∀xA
R⊃

o : A(a/x), o : ∀xA, a ∈ D(o), wRo, a ∈ D(w), w : �∀xA → o : A(a/x)

o : ∀xA, a ∈ D(o), wRo, a ∈ D(w), w : �∀xA → o : A(a/x)
L ∀

a ∈ D(o), wRo, a ∈ D(w), w : �∀xA → o : A(a/x)
L �

wRo, a ∈ D(w), w : �∀xA → o : A(a/x)
Incr

a ∈ D(w), w : �∀xA → w : �A(a/x)
R�

w : �∀xA → ∀x�A
R∀

→ w : �∀xA ⊃ ∀x�A
R⊃

QED.

Lemma 12.3. For arbitrary A and B, the sequent

→ w : �(A ⊃ B) ⊃ (�A ⊃ �B)

is derivable in G3Kq∗.

Proof. By steps of rules for � and ⊃ and Lemma 12.1. QED.

To deal with G3Kq∗, we need to extend the definition of substitution to

domain atoms, as follows:

a ∈ D(w)(b/a) ≡ b ∈ D(w)

a ∈ D(w)(o/w) ≡ a ∈ D(o)

We have:

Lemma 12.4.

(i) If � → � is derivable in G3Kq∗, then also �(o/w) → �(o/w) is deriv-

able, with the same derivation height.

(ii) If � → � is derivable in G3Kq∗, then also �(b/a) → �(b/a) is deriv-

able, with the same derivation height.

Proof. The proof is by induction on the height n of the derivation of

� → � and extension of the one for Lemma 11.4. Only the new cases that

arise from the addition of the rules for domain atoms and for quantifiers

need be considered.
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(i) If n = 0, we have an initial sequent and the claim holds because the

result of substitution is an initial sequent of the same form.

If n > 0 and the last rule in the derivation is R∀ with principal

formula labelled by w , we have

....
a ∈ D(w), � → �′, w : A(a/x)

� → �′, w : ∀xA
R∀

Here a /∈ � → �′. By the inductive hypothesis and application of R∀,

we obtain in n steps the following derivation:

....
a ∈ D(o), �(o/w) → �′(o/w), o : A(a/x)

�(o/w) → �′(o/w), o : ∀xA
R∀

Also the other rules for quantifiers have no variable conditions on

worlds, so the proof is entirely similar. First the inductive hypothesis is

applied to the premiss of the rule, then the rule. The same is true for

the domain rules Nonempty, Incr, and Decr.

(ii) For height n = 0 the proof is clear. If n > 0 and the last rule is a

quantifier rule without a variable condition (L ∀ or R∃), proceed as

detailed above for substitution on worlds. If the last rule is a quantifier

rule with a variable condition, then either the substitution is vacuous

or a is not a domain eigenvariable of the rule. In the former case there is

nothing to prove. In the latter, assume that neither b is an eigenvariable.

If the last rule is R∀ we have:
....

c ∈ D(w), � → �′, w : A(c/x)

� → �′, w : ∀xA
R∀

Because A(c/x)(b/a) = A(b/a)(c/x), this is transformed by the induc-

tive hypothesis and R∀ into:

....
c ∈ D(w), �(b/a) → �′(b/a), w : A(c/x)(b/a)

�(b/a) → �′(b/a), w : ∀xA(b/a)
R∀

If b is a domain eigenvariable, we have

....
b ∈ D(w), � → �′, w : A(b/x)

� → �′, w : ∀xA
R∀
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First apply the inductive hypothesis to replace b with a fresh domain

eigenvariable c . By the variable condition, the substitution does not

affect � and �, so we have a derivation of height n − 1 of c ∈ D(w),

� → �′, w : A(c/x). We have, again by the inductive hypothe-

sis, a derivation of height n − 1 of c ∈ D(w), �(b/a) → �′(b/a),

w : A(c/x)(b/a), hence by R∀ and the identity of A(c/x)(b/a)

and A(b/a)(c/x), a derivation of height n of �(b/a) → �′(b/a),

w : ∀xA(b/a).

If the last rule in the derivation is a rule for domains, such as Incl,

without variable conditions, apply the inductive hypothesis to the pre-

miss and then the rule. If it is a rule with variable conditions, such as

Nonempty, then again either the substitution is vacuous or a is not a

variable with conditions. If neither b is a variable with conditions, we

have the derivation
....

c ∈ D(w), � → �

� → �
Nonempty

Here c /∈ �, �, c �= a, c �= b, and the derivation is transformed into

c ∈ D(w), �(b/a) → �(b/a)

�(b/a) → �(b/a)
Nonempty

If instead b is the existential variable, we make first a substitution of b

by a fresh variable c and then proceed as above. QED.

For quantified modal logic we have, in addition to the weakening and con-

traction rules of G3K, also weakening and contraction rules that operate on

domain atoms. All such rules are admissible, by the following proposition.

Theorem 12.5. The rules of weakening

� → �
w : A, � → �

LW
� → �

� → �, w : A
RW

� → �
wRo, � → �

LWR
� → �

� → �, wRo
RWR

� → �

x ∈ D(w), � → �
LWD

� → �

� → �, x ∈ D(w)
RWD

are height-preserving admissible in G3K∗.

Proof. Extend the induction detailed in the proof of Theorem 11.5, observ-

ing that if the last step is a quantifier rule with a variable condition, the

substitution lemma is applied to the premisses of the rule to have a fresh

eigenvariable that does not clash with that in a ∈ D(w). The conclusion is
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then obtained by an application of the inductive hypothesis and the quan-

tifier rule. The same procedure is followed if the last step is a geometric rule

and w : A or wRo or a ∈ D(w) contains an eigenvariable. QED.

Observe that rules RWR and RWD are not needed if we use the equivalent

calculus that does not contain the initial sequents wRo, � → �, wRo and

a ∈ D(w), � → �, a ∈ D(w).

Corollary 12.6. The rule of necessitation is admissible in G3Kq∗.

Proof. The same as the proof of Corollary 11.6, but using admissibility of

weakening and substitution for G3Kq∗. QED.

Also invertibility is maintained in the extensions of first-order basic modal

logic:

Theorem 12.7. All the rules of G3Kq∗ are height-preserving invertible.

Proof. Extend the proof of Lemma 11.7 by the following cases. Rules L ∀
and R∃ are height-preserving invertible because of the height-preserving

invertibility of weakening. The same holds for the domain rules.

Height-preserving invertibility of R∀ and L ∃ is shown in a way completely

similar to the height-preserving invertibility of R� and L �, respectively,

in Lemma 11.7. Also observe that the invertibilities of Lemma 11.7 are

maintained when the quantifier and the domain rules are added. QED.

In addition to the contraction rules of G3K, there are contraction rules to

be considered that act on domain atoms:

a ∈ D(w), a ∈ D(w), � → �

a ∈ D(w), � → �
L -CtrD

� → �, a ∈ D(w), a ∈ D(w)

� → �, a ∈ D(w)
R-CtrD

Rule R-CtrD is not needed if we use the calculus without the initial sequents

a ∈ D(w), � → �, a ∈ D(w).

Theorem 12.8. The rules of contraction are height-preserving admissible in

G3Kq∗.

Proof. The proof is obtained by adding to the proof of Theorem 11.8

the cases in which the last rule in the derivation is a quantifier rule or a

domain rule. Observe that as for the rules for � and �, the rules for the

quantifiers are either invertible (R∀ and L ∃) or are made so by copying

the principal formulas into their premisses (L ∀ and R∃). It follows that a

step of contraction that acts on their principal formulas is either reduced

to a contraction on a smaller formula or to a contraction of lesser height.
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The domain rules follow the general pattern of rules that extend sequent

calculi, so the reduction of contraction below a domain rule is made as

usual. QED.

Analogously to the cuts on relational atoms for G3K∗, there are in G3Kq∗

cuts on domain atoms that should, a priori, be considered:

� → �, a ∈ D(w) a ∈ D(w), �′ → �′

�, �′ → �,�′ CutD

However, these cuts cannot occur in the variant of G3K without the ini-

tial sequents a ∈ D(w), � → �, a ∈ D(w), because no domain atom can

appear on the right-hand side of sequents in derivations.

Theorem 12.9. The rule of cut is admissible in G3K∗.

Proof. The proof extends the proof of Theorem 11.9 to the cases of cuts on

quantified formulas and domain atoms. We shall consider here in detail only

the cases in which the cut formulas are of the form w : ∀xA and w : ∃xA

and are principal in both premisses of a cut.

If the cut formula is w : ∀xA , the derivation is

a ∈ D(w), � → �, w : A(a/x)

� → �, w : ∀xA
R∀

w : A(b/x), b ∈ D(w), w : ∀xA, �′ → �′

b ∈ D(w), w : ∀xA, �′ → �′ L ∀

b ∈ D(w), �, �′ → �,�′ Cut

It is transformed into

b ∈ D(w), � → �, w : A(b/x)

� → �, w : ∀xA w : A(b/x), b ∈ D(w), w : ∀xA, �′ → �′

w : A(b/x), b ∈ D(w), �, �′ → �, �′ Cut

b ∈ D(w), b ∈ D(w), �, �, �′ → �, �,�′ Cut

b ∈ D(w), �, �′ → �,�′ Ctr∗

Here the upper cut is of lesser height and the lower on a smaller cut formula,

Ctr∗ denotes repeated applications of contraction rules, and the leftmost

premiss is obtained by the substitution (b/a) from a ∈ D(w), � → �,

w : A(a/x).

If the cut formula is w : ∃xA , the derivation is

a ∈ D(w), � → �, w : ∃xA, w : A(a/x)

a ∈ D(w), � → �, w : ∃xA
R∃

b ∈ D(w), w : A(b/x), �′ → �′

w : ∃xA, �′ → �′ L ∃

a ∈ D(w), �, �′ → �,�′ Cut

It is transformed into

a ∈ D(w), � → �, w : ∃xA, w : A(a/x) w : ∃xA, �′ → �′

a ∈ D(w), �, �′ → �,�′, w : A(a/x)
Cut

a ∈ D(w), w : A(a/x), �′ → �′

a ∈ D(w), a ∈ D(w), �, �′, �′ → �, �′,�′ Cut

a ∈ D(w), �, �′ → �, �′ Ctr∗
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Here the upper cut is of lesser height and the lower on a smaller cut formula,

and the rightmost premiss is obtained by the substitution (b/a) from the

sequent b ∈ D(w), w : A(b/x), �′ → �′. QED.

(c) Soundness and completeness. We shall now define formally the seman-

tics for first-order modal logic that we have already introduced for the

justification of the rules for the quantifiers:

Definition 12.10. A quantificational frame (K , R,D) is a frame (K , R)

endowed with sets (domains) D(k) for every element k of K . Let X be the set

of variables and D the set of labels for elements of the domains in the language

of G3Kq∗. An interpretation of D in D is a function [[·]] : D → D and an

assignment of variables is a function σ : X → D. A valuation at world k of

atomic n-ary predicates P (x1, . . . , xn) is a map [[·]]k : AtPr → P(Dn(k)).

We say that k forces P under the assignment σ ≡ 〈a1/x1, . . . , an/xn〉 for
the given interpretation if ([[a1]], . . . , [[an]]) ∈ [[P ]]k. This forcing relation

is written more compactly as k �σ P (x1, . . . , xn) or k � P (a1, . . . , an).

The assignment of free variables can be left arbitrary, so that

w � P (x1, . . . , xn) is the same as w �σ P (x1, . . . , xn) for an arbitrary σ. In

particular, valuations of atomic predicates are extended to arbitrary formu-

las by the following clauses for the quantifiers:

k �σ ∀xA(x, y1, . . . , yn) whenever, for all σ′ such that σ′(yi) = σ(yi) for

i = 1, . . . , n, k �σ′ A(x, y1, . . . , yn).

k �σ ∃xA(x, y1, . . . , yn) whenever for some σ′ such that σ′(yi) = σ(yi)

for i = 1, . . . , n, k �σ′ A(x, y1, . . . , yn).

By letting arbitrary the assignment of free variables, we can restate the

inductive clauses for the valuation of arbitrary quantificational formulas:

Definition 12.11. The valuation of arbitrary formulas in a quantificational

model is defined inductively by the propositional clauses of Definition 11.25

together with the following clauses for the quantifiers:

k � ∀xA(x) whenever for all a ∈ D(k), k � A(a/x),

k � ∃xA(x) whenever for some a ∈ D(k), k � A(a/x).

The definition of validity of sequents in the first-order language is as follows:

Definition 12.12. A sequent is valid if it is valid for every interpretation of

labels, every assignment of variables, and every valuation of atomic predicates

in a quantificational frame.
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Theorem 12.13. Soundness. If sequent � → � is derivable in G3Kq∗, then

it is valid in every frame with the properties ∗.

Proof. By induction on the height of the derivation. By the proof of

Theorem 11.23, we have to consider only the new cases that arise from

the addition of the quantifiers and of the domain rules.

Let the last rule in the derivation be R∀ with premiss a ∈ D(w), �′ →
�′, w : A(a/x) and assume that the premiss is valid. Let [[·]], σ be an arbi-

trary interpretation and an arbitrary assignment that validates all the for-

mulas in �′. We claim that one of the formulas in �′ or w : ∀A is valid under

this intepretation and assignment. Let a be an arbitrary element of D(w)

and let σ′ be the assignment identical to σ except possibly on x, where we set

σ(x) = a. This assignment and interpretation validates all the formulas in

the antecedent of the premiss, so it validates a formula in �′ or w : A(a/x).

In the former case we have the result that a formula in �′ is validated also

under the assignment σ, in the latter that w : ∀xA is valid.

If the last rule in the derivation is L ∀, with premiss w : A(a/x),

a ∈ D(w), w : ∀xA, �′ → �, assume an arbitrary valuation and assign-

ment that validates a ∈ D(w), w : ∀xA, �′. By the definition of validity of

a universal formula, also A(a/x) is valid at w , and therefore the validity of

the premiss of the rule gives the desired conclusion.

Validity of the domain rules is proved in the same way as validity of

the rules for relational atoms; for instance, rule Incr is valid in all frames

with increasing domains, and rule Nonempty is valid in all frames with

non-empty domains. QED.

Theorem 12.14. Completeness. Let � → � be a sequent in the language

of G3Kq∗. Then either the sequent is derivable in G3Kq∗ or it has a Kripke

countermodel with properties ∗.

Proof. The reduction tree is built as in the proof of Theorem 11.24, with

the following additional stages for the quantifier and domain rules:

For n = 11, we consider all topsequents with quantificational for-

mulas w1 : ∀x1A1, . . . , wm : ∀xmAm and the domain atoms a1 ∈ D(w1),

. . . , am ∈ D(wm) in the antecedent, and write on top of these the se-

quent w1 : A1(a1/x1), . . . , wm : A1(am/xm), a1 ∈ D(w1), . . . , am ∈ D(wm),

w1 : ∀x1A1, . . . , wm : ∀xmAm, �′ → �. This step corresponds to m appli-

cations of rule L ∀.

For n = 12, let w1 : ∀x1A1, . . . , wm : ∀xmAm be all the formulas with ∀ as

outermost connective in the succedent of topsequents of the tree, and let �′

be the other formulas. Let b1, . . . , bm be fresh labels for domain elements,
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not yet used in the reduction tree, and write on top of each sequent the

sequent

b1 ∈ D(w1), . . . , bm ∈ D(wm), � → �, w1 : A1(b1/x1), . . . ,

wm : A1(bm/xm)

This step corresponds to m applications of rule R∀.

For n = 13, let w1 : ∃x1A1, . . . , wm : ∃xmAm be all the formulas with ∃
as outermost operation in the antecedent of the topsequents of the tree, and

let �′ be the other formulas. Let b1, . . . , bm be fresh labels, and write on top

of each sequent the sequent

b1 ∈ D(w1), . . . , bm ∈ D(wm), w1 : A1(b1/x1), . . . ,

wm : A(bm/xm), �′ → �

This step corresponds to m applications of rule L ∃.

For n = 14, consider all topsequents with the formulas w1 : ∃x1A1,

. . . , wm : ∃xmAm in the succedent and domain atoms a1 ∈ D(w1),

. . . , am ∈ D(wm) in the antecedent, and write on top of these sequents

the sequents

a1 ∈ D(w1), . . . , am ∈ D(wm), � → �′,

w1 : ∃x1A1, . . . , wm : ∃xmAm,

w1 : A1(a1/x1), . . . , wm : A(am/xm)

This step corresponds to m applications of rule R∃.

For n = 14 + j , apply the rules for relational and domain atoms whenever

the sequent matches the conclusion of one of them: for instance, if the system

includes Incr and the sequent under examination contains wRo, a ∈ D(w)

in the antecedent, write on top of this the sequent with a ∈ D(o) added to

the antecedent.

As for the propositional case, we either get a proof from the reduction

tree, or, if the search does not terminate, an infinite branch that is used

for the construction of the countermodel. The quantificational frame is

defined by starting from the propositional frame, with domains D(w) given

by all the a ∈ D(w) in �. The relational and the domain rules impose

the corresponding frame properties on the countermodel. The valuation

of atomic predicate formulas is defined by positing w � P (x1, . . . , xn) for

P (x1, . . . , xn) in � and w � Q (x1, . . . , xn) for Q (x1, . . . , xn) in �.

To show that all the formulas in � and no formula in � are forced by the

countermodel, we supplement the proof of Theorem 11.24 with the cases of
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quantificational formulas. If w : ∀xA is in �, consider all the domain atoms

a ∈ D(w). If there is no such atom, then by definition, ∀xA is forced at w

in the model. Or else we find w : A(a/x) in �, forced in the model by the

inductive hypothesis, and therefore w : ∀xA is forced as well. If w : ∀xA is

in �, we find by construction a ∈ D(w) in � and w : A(a/x) in �. By the

inductive hypothesis, A(a/x) is not forced at w in the model, where a is an

element of the domain D(w); thus w : ∀xA is not forced either.

The cases with w : ∃xA in � and w : ∃xA in � are symmetric to those of

w : ∀xA in � and w : ∀xA in �, respectively. QED.

12.2 Provability logic

Gödel–Löb provability logic, nowadays commonly called GL, is the logic

of arithmetic provability, with �A interpreted as ‘A is provable in Peano

arithmetic’. GL can be characterized axiomatically as follows. Start from the

system of basic modal logic K and add to its axioms and rules, as in Section

11.1, the following Löb axiom:

�(�A ⊃ A) ⊃ �A .

The axiom contains the unprovability of consistency as a special case. It can

be read as: if it is provable that from the provability of A, A follows, then A

is provable. In particular, with ⊥ in place of A , �⊥ ⊃ ⊥ states that falsity

is not provable, i.e., that the system of proof in question is consistent. By

Löb’s axiom, if that is provable, falsity is provable.

After Solovay’s landmark paper (1976) that presented GL axiomatically

as the logic of arithmetic provability and characterized its Kripke models as

the transitive and Noetherian frames, a lot of interest has been directed to

the search for an adequate, cut-free sequent system for GL. The issue is still

an open research interest (see the discussion in the notes to this chapter).

In the Kripke frames for provability logic, the accessibility relation R

is irreflexive, transitive, and Noetherian, the last condition meaning that

every R-chain eventually becomes stationary. Equivalently, we can say that

R is transitive and all R-chains are finite. Clearly, this characterizing frame

condition is not first order, so the method of universal and geometric

extensions exploited in Chapter 11 cannot be applied directly. However, the

condition can be internalized in the meaning explanation of the modality

as follows:

Lemma 12.15. In irreflexive, transitive, and Noetherian Kripke frames,

w � �Awhenever for all o, from wRo and o � �A follows o � A .
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Proof. Assume w � �A and let o be such that wRo. Then o � A holds and

the assumption o � �A is superfluous.

For the converse, assume the right-hand side and suppose that w � �A .

Then there exists w1 such that wRw1 and w1 � A . From the assumption

it follows that w1 � �A ; hence there exists some w2 such that w1Rw2

and w2 � A . By transitivity, we have wRw2 and so from the assumption,

w2 � �A follows. In this way, we build a chain wRw1, w1Rw2, . . . that

never becomes stationary, because of irreflexivity, so we have a contra-

diction. QED.

The right-to-left direction of the implication stated above gives the right

rule for �:

wRo, o : �A, � → �, o : A
� → �, w : �A

R�-L

The variable condition is that o is not in the conclusion. The left-to-right

direction gives the left rule:

w : �A, wRo, � → �, o : �A o : A, w : �A, wRo, � → �

w : �A, wRo, � → �
L �-L

Irreflexivity is the zero-premiss rule that lets us derive wRw, � → �. The

system G3GL is thus determined:

Table 12.2 The sequent calculus G3GL

Initial sequents

w : P, � → �, w : P w : �A, � → �, w : �A

Logical rules

As in G3K for &, ∨, ⊃, ⊥; L �-L , R�-L

Mathematical rules

Irref, Trans

It is an easy task to verify that all the preliminary results, from Lemma

11.2 to Corollary 11.6, proved for G3K∗, continue to hold for G3GL. In

particular, we have:

Theorem 12.16. The rules of substitution, weakening, and necessitation are

height-preserving admissible in G3GL.

In addition, we have the invertibility, not necessarily height preserving, of

all the rules of G3GL and of contraction:

Theorem 12.17. All the rules of the system G3GL are invertible.
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Proof. For the invertibility of the rules for &, ∨, ⊃, see Lemma 11.7.

Rule L �-L is height-preserving invertible by height-preserving invert-

ibility of weakening. We show invertibility of R�-L by induction on the

height n of the derivation of � → �, w : �A . If n = 0 and w : �A is not

principal, then also wRo, o : �A, � → �, o : A is an initial sequent, or an

instance of Irref. If it is principal, we have � ≡ w : �A, �′, and we need

to prove wRo, o : �A, w : �A, �′ → �, o : A derivable. This follows by

L �-L from the initial sequent wRo, o : �A, w : �A, �′ → �, o : A,

o : �A and the derivable sequent o : A, wRo, o : �A, w : �A, �′ → �,

o : A . The inductive step is dealt with as for G3K. QED.

We shall assume, without loss of generality, that derivations are pure, i.e.,

that the eigenvariables used at steps of R�-L appear only in the subtree

above the rule that introduces them. Clearly, by height-preserving substitu-

tion, such a condition can always be met.

Before proving the admissibility of contraction, we introduce the notion

of the range of a world in a derivation, to be used as one inductive parameter

in the proof of cut elimination. Roughly, the range of a label w in a derivation

D is the set of labels accessible through a chain from w in the left-hand side

of sequents of D. It is defined formally as follows:

Definition 12.18. The range of w in a derivationD is the (finite) set of worlds

o such that either wRo or for some n � 1 and for some w1, . . . , wn, each of the

atoms wRw1, w1Rw2, . . ., wnRo appear in the antecedent of a sequent in D.

Ranges of variables are ordered by set inclusion.

We say that a rule is range-preserving admissible if the elimination of the

rule does not increase the ranges of variables in the derivation.

Theorem 12.19. The rules of contraction are range-preserving admissible

in G3GL.

Proof. By simultaneous induction for left and right contraction, with

induction on the size of the contraction formula and subinduction on

derivation height. We detail the proof in one case specific to G3GL. Assume

we have proved admissibility of contraction for formulas of a size up to n on

the left and up to n − 1 on the right and assume the contraction formula is

w : �A on the right, of size n. If the last rule in the derivation is not R�-L on

the contraction formula, we apply the inductive hypothesis to the premiss of

the rule (of smaller height) and then apply the rule. If the last step is R�-L ,

the premiss is wRo, o : �A, � → �, w : �A, o : A . By using invertibility

of R�-L , we derive a sequent of the form wRo, wRo, o : �A, o : �A,
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� → �, o : A, o : A , and by using the inductive hypotheses we obtain a

derivation of wRo, o : �A, � → �, o : A , hence the conclusion of con-

traction by R�-L .

Although invertibility of R�-L is not, in general, range-preserving,

because it introduces a new world, the special instance of invertibility

used here does not, as the world needed in the inversion is already a

label used in the derivation. It follows that contraction is range-preserving

admissible. QED.

The need for the notion of range becomes clear from the proof of cut

elimination for G3GL.

A typical procedure of cut elimination for G3-like systems considers

topmost cuts and contains reductions that either decrease the height of one

of the two premisses of cut (for permutation cuts, that is, cuts in which the

cut formula is not principal in at least one of the premisses) or the size of the

cut formula (for detour, or principal, cuts, that is, cuts in which the formula

is principal in both premisses). The reductions are repeated until cuts reach

initial sequents and disappear. This procedure does not work for G3GL in

the case of detour cuts on w : �A . Consider a principal cut on w : �A :

wRo, o : �A, � → �, o : A

� → �, w : �A
R�-L

wRr, w : �A, �′ → �′, r : �A r : A, wRr, w : �A, �′ → �′

wRr, w : �A, �′ → �′ L �-L

wRr, �′, � → �,�′ Cut

This derivation is transformed into four cuts as follows:

D1....
wRr, wRr, �′, �, � → �,�,�′, r : A

D2....
wRr, r : A, �′, � → �,�′

wRr, wRr, wRr, �′, �′, �, �, � → �, �,�,�′,�′ Cut

wRr, �′, � → �,�′ Ctr∗

Here D1 and D2 are the following two derivations:

� → �, w : �A wRr, w : �A, �′, → �′, r : �A

wRr, �′, � → �, �′, r : �A
Cut

wRr, r : �A, � → �, r : A

wRr, wRr, �, �′, � → �,�′,�, r : A
Cut

� → �, w : �A wRr, w : �A, r : A, �′ → �′

wRr, r : A, �′, � → �,�′ Cut

Observe that the cuts on w : �A and on r : A are all reduced according

to the standard inductive parameter, whereas the cut on r : �A is not,

because neither the complexity of the cut formula nor the height of the cut

is reduced.
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However, if the range of r in the new derivation is strictly smaller than

the range of w in the original derivation, then we have for all the cuts in the

transformed derivation a reduced inductive parameter given by the triple

that consists of the complexity of the cut formula, the range of its label, and

the height of the cut, ordered lexicographically.

To prove the reduction in range, two extra assumptions are needed,

namely that there be no cuts such that wRw or wRw1, . . . , wnRw appears

in the antecedents of their conclusions, and that eigenvariables be pure, i.e.,

that they appear only in the subtree above the step that introduces them.

The first condition is met by observing that if there are cuts of the stated

form, they are eliminated by Irref and Trans. The second condition is met

by a fresh renaming of eigenvariables. It then follows that no w can be in the

range of itself, that if o is in the range of w , then the range of o is properly

included in the range of w , and that if o, r are in the range of w and o is an

eigenvariable, then the union of the range of o and the range of r is properly

included in the range of w .

The proof of cut elimination for G3GL is structured as the proof for G3K∗,

but with the induction on weight and height replaced by an induction on

the following triple parameter ordered lexicographically:

1. Size of the cut formula,

2. Range of the label of the cut formula,

3. Sum of the heights of the derivations of the two premisses of the cut.

The cases in which the cut formula is not principal in both premisses of cut

are dealt with as usual, with the additional observation that permutations

do not increase the range since they change neither the cut formula nor its

label. The only case specific to G3GL has been detailed above. We have thus

proved:

Theorem 12.20. The rule of cut is admissible in G3GL.

As an application of the cut-free calculus we have:

Corollary 12.21. Second incompleteness theorem. The sequent that

expresses consistency, → w : ¬ �⊥, is not derivable in G3GL.

Proof. Proceeding root first, if a derivation exists, it ends with

w : �⊥→ w :⊥
→ w : �⊥⊃⊥ R⊃

However, no rule of G3GL is applicable to the premiss. QED.
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Finally, in order to obtain the derivability of the characteristic axiom of GL
we show:

Lemma 12.22. All sequents of the form wRo, w : �A, � → �, o : �A are

derivable in G3GL.

Proof. Root first, by steps of R�-L , Trans, and L �-L . QED.

Corollary 12.23. The standard rule L � is derivable in G3GL.

Proof. By Lemma 12.22, the left premiss of L �-L is derivable in

G3GL. QED.

Even if the two left rules for � are interderivable, the use of L �-L seems

essential in the proof of cut elimination. If instead the standard rule L �

were used, a cut with a (derived) sequent of the form wRo, w : �A, � →
�, o : �A would be needed. However, its derivation introduces new worlds,

thus breaking the property of range admissibility of all cut reductions.

Corollary 12.24. The Löb axiom is derivable in G3GL.

Proof. Using Corollary 12.23, we have the inference:

o : �A ⊃ A, wRo, w : �(�A ⊃ A), o : �A → o : A
wRo, w : �(�A ⊃ A), o : �A → o : A

L �

w : �(�A ⊃ A) → w : �A
R�-L

→ w : �(�A ⊃ A) ⊃ �A
R⊃

The top sequent is derivable by L⊃ and Lemma 11.2 for G3GL. QED.

By Corollary 12.23, the system G3GL, with rules R�-L and L �-L , and the

system with rules R�-L and L � that we shall call G3KGL are equivalent. In

the latter system, initial sequents can be restricted to atomic formulas, as in

G3K, and therefore stronger structural properties such as height-preserving

admissibility of contraction hold with no limitations. Cut elimination for

G3KGL can be established through a translation to G3GL, cut elimination

in this system, and a translation back to G3KGL.

12.3 Intermediate logics

It is well known that intuitionistic logic can be embedded into the classical

modal logic S4, and actually all the logics intermediate between intuition-

istic and classical logic can be embedded in the modal logics intermediate

between S4 and S5. The analogy between these two families of logics is best
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seen at the level of their Kripke semantics. The explanation of the meaning

of implication in intuitionistic logic reflects the explanation of the modality

in K. We can internalize, as we have done for normal modal logics, the

inductive definition of validity in a Kripke frame, to obtain uniform G3-

style sequent calculi for intermediate logics. The accessibility relation for

intuitionistic logic is a partial order. The addition of properties to those of

reflexivity and transitivity gives logics above intuitionistic logic. We observe

that all the properties of the accessibility relation that characterize the inter-
polable propositional logics fall under the geometric rule scheme. By the

results on geometric extensions, we obtain for these logics complete calculi

with good structural properties. In addition, the uniformity in the syntax

allows immediate proofs of the faithfulness of the embeddings.

The inductive definition of validity of an implication in intuitionistic

logic in terms of Kripke semantics is:

w � A ⊃ B whenever for all o, from w � o and o � A follows o � B .

As before, we can convert this meaning explanation into a system of left and

right rules for intuitionistic implication. Arbitrariness of o in the right rule

is again expressed by a variable condition.

The rules for the other connectives are exactly as the rules in G3K. The

initial sequents of G3K are instead modified in order to guarantee the prop-

erty of monotonicity of the forcing relation. In compliance with the features

of the G3-style calculi, it is enough to have monotonicity with respect to

atomic formulas, with full monotonicity admissible. The mathematical rules

for the accessibility relation � are the rules Ref and Trans that express that

� is a partial order. We have thus determined the following system G3I for

intuitionistic propositional logic:

Table 12.3 The sequent calculus G3I

Initial sequents w � o, w : P, � → �, o : P

Logical rules
As in G3K for &, ∨, ⊥

w � o, w : A ⊃ B , � → o : A, �, w � o, w : A ⊃ B , o : B , � → �

w � o, w : A ⊃ B , � → �
L ⊃

w � o, o : A, � → �, o : B
� → �, w : A ⊃ B

R⊃

Order rules

w � w, � → �

� → �
Ref

w � r, w � o, o � r, � → �

w � o, o � r, � → �
Trans

Rule R⊃ has the condition that o must not be in �, �.
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Let G3I∗ be any extension of G3I by rules that follow the geometric rule

scheme. The structural properties of G3I∗ are proved uniformly for any

extension, after the method presented in Section 11.4.

Lemma 12.25. All sequents of the following form are derivable in G3I:

(i) w � o, w : A, � → �, o : A

(ii) w : A, � → �, w : A

Proof. By mutual induction on the structure of A . The implication from

1 to 2 for all A is routine by Ref. For atoms P and for ⊥, the proof of 1 is

trivial. For A ≡ B ⊃ C we have the following derivation of 1:

. . . , w : B ⊃ C, r : B , � → �, r : C, r : B . . . , w : B ⊃ C, r : C, r : B , � → �, r : C

w � o, o � r, w � r, x : B ⊃ C, r : B , � → �, r : C
L ⊃

w � o, o � r, x : B ⊃ C, r : B , � → �, r : C
Trans

w � o, w : B ⊃ C, � → o : B ⊃ C, �
R⊃

Here the topsequents are derivable by the inductive hypothesis for 2. The

cases in which A is a conjunction or disjunction are handled by the inductive

hypothesis for 1. QED.

Substitution of labels in relational atoms of the form w � o and in labelled

formulas w : A follows the definition given in Chaper 11. We have:

Lemma 12.26. If � → � is derivable in G3I∗, then �(o/w) → �(o/w) is

also derivable, with the same derivation height.

Proof. By induction on the height n of the derivation of � → �.

If n = 0, and (o/w) is not a vacuous substitution, the sequent can either

be an initial sequent of the form w � o, w : P, �′ → �′, o : P or of the form

⊥, �′ → �. In each case �(o/w) → �(o/w) is either an initial sequent of

the same form or a conclusion of L ⊥.

Suppose n > 0, and consider the last rule applied in the derivation. If it

is a rule for & or ∨, apply the inductive hypothesis to the premisses of the

rule, and then the rule. Proceed similarly if the last rule is L ⊃. If the last

rule is R⊃ and w an eigenvariable of the rule, the substitution is vacuous.

Otherwise, if o is not an eigenvariable either, apply the inductive hypothesis

to the shorter derivation of the premiss, and then R⊃.

If o is the eigenvariable, apply first the inductive hypothesis for the

replacement of the eigenvariable o with a fresh variable r. By the vari-

able condition, the substitution does not affect the context, and proceed as

in the previous case.
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For extensions of G3I by geometric rules, some care is needed for avoiding

a clash with the eigenvariables of the geometric rule scheme. The details are

similar to those in the proof of Lemma 11.4. QED.

Theorem 12.27. The rules of weakening,

� → �
w : A, � → �

L W
� → �

� → �, w : A
RW

� → �
w � o, � → �

L W�

are height-preserving admissible in G3I∗.

Proof. Straightforward induction on the height of the derivation of the

premiss for the rules for &, ∨, and L ⊃. If the last step is R⊃, the sub-

stitution lemma is applied to the premisses of the rule in order to have a

fresh eigenvariable that does not clash with those in w : A or w � o. The

conclusion is then obtained by applying the inductive hypothesis and the

rule. An identical procedure is applied if the last step is a geometric rule and

w : A or w � o contain some of its eigenvariables. QED.

To prove height-preserving admissibility of contraction, we need to show

the height-preserving invertibility of the rules of the sequent calculi G3I∗.

Theorem 12.28. All rules of G3I∗ are height-preserving invertible.

Proof. The proof of height-preserving invertibility for the rules for & and

∨ is done exactly as for G3c (Theorem 6.2). Rule L ⊃ is height-preserving

invertible by Theorem 12.27.

For R⊃, we use induction on the height n of the derivation of � →
�, w : A ⊃ B . If n = 0, it is an initial sequent or a conclusion of L ⊥, but

then also w � o, o : A, � → �, o : B is an initial sequent or a conclusion

of L ⊥. Observe that it is essential here that the initial sequents are restricted

to atomic formulas.

If n > 0 and � → �, w : A ⊃ B is concluded by any rule R other than

R⊃, apply the inductive hypothesis to the premiss �′ → �′, w : A ⊃ B ,

and possibly also to �′′ → �′′, w : A ⊃ B , to obtain derivations of height

at most n − 1 of the sequent w � o, o : A, �′ → �′, o : B , and possibly

also of w � o, o : A, �′′ → �′′, o : B . Application of rule R gives a deriva-

tion of height n of w � o, o : A, � → �, o : B . If � → �, w : A ⊃ B is a

conclusion of R ⊃ with principal formula in �, proceed in a similar way.

If instead the principal formula is A ⊃ B , the premiss of the last step gives

the conclusion, by height-preserving substitution if necessary. QED.
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Theorem 12.29. The rules of contraction,

w : A, w : A, � → �

w : A, � → �
L C

� → �, w : A, w : A
� → �, w : A

RC

w � o, w � o, � → �

w � o, � → �
L C�

are height-preserving admissible in G3I∗.

Proof. By simultaneous induction on the derivation height.

If n = 0, the premiss is either an initial sequent or a conclusion of L ⊥.

In each case the contracted sequent is also an initial sequent or a conclusion

of L ⊥.

If n > 0, consider the last step, by some ruleR, used to derive the premiss

of the contraction step. If the contraction formula is not principal in R,

both occurrences are found in the premisses of the step and have a smaller

derivation height. By the induction hypothesis, they can be contracted and

the conclusion obtained by applying rule R to the contracted premisses.

If the contraction formula is principal in rule R, we distinguish three

cases: either R is a rule in which the principal formulas appear also in the

premiss, such as L ⊃ or the rules for�, or it is a rule in which the premisses

consist of proper subformulas of the conclusion, such as the rules for & and

∨, or it is a rule, in fact R⊃, in which the premisses consist of atoms w � o

and proper subformulas of the conclusion. In the first case, contraction is

applied, by the induction hypothesis, to the premisses of the rule. If both

contraction formulas are principal in a rule for�, the conclusion holds by

the closure condition.

In the second case, contraction is reduced to contraction on smaller

formulas as in the standard proof for G3c.

In the third case, both a subformula of the contraction formula and an

atom w � o are found in the premiss, for instance

w � o, o : A, � → �, o : B , w : A ⊃ B
� → �, w : A ⊃ B , w : A ⊃ B

R⊃

By the height-preserving invertibility of R⊃ applied to the premiss, we

obtain a derivation of height at most n − 1 of

w � o, w � o, o : A, o : A, � → �, o : B , o : B

Now we have, by the induction hypothesis for both forms of contraction, a

derivation of height at most n − 1 of

w � o, o : A, � → �, o : B
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The conclusion � → �, w : A ⊃ B follows in one more step

by R⊃. QED.

Theorem 12.30. The rule of cut,

� → �, w : A w : A, �′ → �′

�, �′ → �, �′ Cut

is admissible in G3I∗.

Proof. The proof has the same structure as the proof of Theorem 11.9. We

observe that in all the cases of permutation of cuts that may give a clash

with the variable conditions in the implication rules, and in the rules for

� in the case of geometric extensions, an appropriate substitution (Lemma

12.26) prior to the permutation is used.

The proof is thus by induction on the length of the cut formula, with a

subinduction on the sum of the heights of the derivations of the premisses

of cut. We consider in detail only the case of a cut with the cut formula

principal in implication rules in both premisses.

If the cut formula is w : A ⊃ B , the derivation is

w � r, r : A, � → �, r : B

� → �, w : A ⊃ B

w � o, w : A ⊃ B , �′ → �′, o : A w � o, w : A ⊃ B , o : B , �′ → �′

w � o, w : A ⊃ B , �′ → �′

w � o, �, �′ → �,�′ Cut

It is transformed into

.

.

.

.
(w � o)2, �2, �′ → �2,�′, o : B

.

.

.

.
w � o, o : B , �, �′ → �, �′

(w � o)3, �3, �′2 → �3,�′2 Cut

w � o, �, �′ → �,�′ Ctr*

The first premiss is derived by

� → �, w : A ⊃ B w � o, w : A ⊃ B , �′ → �′, o : A

w � o, �, �′ → �, �′, o : A
Cut

w � r, r : A, � → �, r : B

w � o, o : A, � → �, o : B
(o/r)

(w � o)2, �2, �′ → �2,�′, o : B
Cut

The second premiss is derived by

� → �, w : A ⊃ B w � o, w : A ⊃ B , o : B , �′ → �′

w � o, o : B , �, �′ → �, �′ Cut

The two upper cuts, on w : A ⊃ B , are of smaller derivation height, the

other two on the smaller cut formulas o : A, o : B . QED.

We obtain at once the result that each of the seven interpolable intermediate

logics (cf. Maksimova 1979, Chagrov and Zakharyaschev 1997) belong to
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the class G3I∗. The point is simply that all these have frame conditions

expressible geometrically:

1. Int: Intuitionistic Logic. The accessibility relation � is reflexive and

transitive, i.e.,

∀w(w � w) and ∀wor(w � o & o � r ⊃ w � r).

2. Jan: Jankov–De Morgan Logic (cf. Jankov 1968). This logic, also known

as KC (cf. Chagrov and Zakharyaschev 1997) and as the ‘logic of weak

excluded middle’, is axiomatized by one of the formulas ¬A ∨ ¬¬A or

¬(A&B) ⊃ ¬A ∨ ¬B .

The relation � is directed or convergent, i.e.,

∀wor(w � o & w � r ⊃ ∃l(o � l & r � l)).

The instance of the rule scheme generated by this frame condition is,

with l fresh,

o � l, r � l, w � o, w � r, � → �

w � o, w � r, � → �

3. GD: Gödel–Dummett Logic. This logic (also known as LC, for ‘linear

chains’) has as characteristic axiom scheme either (A ⊃ B) ∨ (B ⊃ A)

or ((A ⊃ B) ⊃ C) ⊃ (((B ⊃ A) ⊃ C) ⊃ C).

The accessibility relation is strongly connected, i.e.,

∀wor(w � o & w � r ⊃ o � r ∨ r � o).

The instance of the rule scheme generated by this frame condition is

o � r, w � o, w � r, � → � r � o, w � o, w � r, � → �

w � o, w � r, � → �

4. Bd2: This logic is axiomatized by, for example, A ∨ (A ⊃ (B ∨ ¬B)).

The accessibility relation has depth at most 2, i.e., it satisfies

∀wor(w � o & o � r ⊃ r � o ∨ o � w).

The instance of the rule scheme generated by this frame condition is

r � o, w � o, o � r, � → � o � w, w � o, o � r, � → �

w � o, o � r, � → �

5. GSc: The logic is axiomatized by (A ⊃ B) ∨ (B ⊃ A) ∨ ((A ⊃
¬B)&(¬B ⊃ A)) and A ∨ (A ⊃ B ∨ ¬B). The accessibility relation has

depth at most 2 and at most 2 final elements, i.e., the following holds in
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addition to the frame condition for Bd2:

∀wor∃l((w � l & o � l) ∨ (o � l & r � l) ∨ (w � l & r � l)).

The corresponding instantiation of the rule scheme for the first condition

is given above; that for the second condition is, with l fresh:

w � l, o � l, � → � o � l, r � l, � → � w � l, r � l, � → �

� → �

6. Sm: Smetanich logic, also known as LC2 (cf. Chagrov and Zakharyaschev

1997) or the ‘logic of here and there’. The accessibility relation is linear

and has depth at most 2, i.e., satisfies the conditions for GD and Bd2.

It is axiomatized by the GD axiom plus the Bd2 axiom, or, equivalently,

(¬B ⊃ A) ⊃ (((A ⊃ B) ⊃ A) ⊃ A).

7. Cl: Classical logic. The logic is axiomatized by A ∨ ¬A or by ¬¬A ⊃ A .

The accessibility relation is symmetric

∀wo(w � o ⊃ o � w).

and the corresponding instantiation of the rule scheme is clearly

o � w, w � o, � → �

w � o, � → �

There are the following containments between these logics:

Int ⊂ Jan ⊂ GD ⊂ Sm, Int ⊂ Bd2 ⊂ GSc ⊂ Sm and Sm ⊂ Cl.

We recall the standard translation � of Int into S4, a variant from Troelstra

and Schwichtenberg (2000) of the translation given in Gödel (1933):

P � ≡ �P

⊥� ≡ ⊥
(A ⊃ B)� ≡ �(A� ⊃ B�)

(A&B)� ≡ A�&B�

(A ∨ B)� ≡ A� ∨ B�

The translation �� of a multiset � ≡ A1, . . . , An is defined componentwise

by

(A1, . . . , An)� ≡ A�
1 , . . . , A�

n

The translation on relational atoms is the identity.

We obtain a uniform proof of the faithful embeddings of intermediate logics

between Int and Cl and intermediate modal logics between S4 and S5:
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Theorem 12.31. Given an extension G3I∗ of G3I with rules for �, let

G3S4∗ be the corresponding extension of G3S4. Then G3I∗ � � → �

if and only if G3S4∗ � �� → ��.

Proof. From left to right is routine, by induction on the structure of the

derivation. For example, an initial sequent w � o, �, w : P → o : P, �

translates into the G3S4∗ derivation

. . . , ��, w : �P, r : P → r : P, ��

w � o, o � r, w � r, ��, w : �P → r : P, �� L �

w � o, o � r, ��, w : �P → r : P, �� Trans

w � o, ��, w : �P → o : �P, �� R�

Similarly, an instance of R⊃ is

w � o, �, o : A → o : B , �

� → w : A ⊃ B , �
R⊃

It translates into the steps

w � o, ��, o : A� → o : B�, ��

w � o, �� → o : A� ⊃ B�, �� R⊃

�� → w : �(A� ⊃ B�), ��
R�

An instance of L ⊃ is dealt with likewise. Conjunction, disjunction, and

falsity are routine.

The converse direction follows from the following lemma:

Lemma 12.32. If �, � are multisets of labelled formulas (with relational

atoms also possibly in �) and �′, �′ are multisets of labelled atomic formulas,

and G3S4∗ � ��, �′ → ��, �′, then G3I∗ � �, �′ → �, �′.

Proof. By induction on the derivation of ��, �′ → ��, �′. If it is an initial

sequent, then some atom w : P is in �′ and in �′; the conclusion then

follows in G3I∗ by Ref from the initial sequent w � w, �, �′ → �, �′. If it

is a conclusion of L⊥, so also is �, �′ → �, �′. If it is derived by a rule for

& or for ∨, the inductive hypothesis applies to the premisses and then the

corresponding rule in G3I∗ gives the conclusion.

If it is derived by a modal rule, the principal formula, being a translated

formula, can be only of the form �P or of the form �(A� ⊃ B�). There

are thus four cases:

1. With �P principal on the left, the step

w � o, o : P, w : �P, �′′�, �′ → ��, �′

w � o, w : �P, �′′�, �′ → ��, �′ L �
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is translated to the admissible step in G3I∗

w � o, o : P, w : P, �′′, �′ → �, �′

w � o, w : P, �′′, �′ → �, �′

2. With �P principal on the right, the step (with o fresh)

w � o, ��, �′ → �′′�, �′, o : P
��, �′ → �′′�, �′, w : �P

R�

is translated (using admissibility of substitution) to the steps in G3I∗

w � o, �, �′ → �′′, �′, o : P
w � w, �, �′ → �′′, �′, w : P

(w/o)

�, �′ → �′′, �′, w : P
Refl

3. With �(A� ⊃ B�) principal on the left, the step

w � o, w : �(A� ⊃ B�), o : A� ⊃ B�, �′′�, �′ → ��, �′

w � o, w : �(A� ⊃ B�), �′′�, �′ → ��, �′ L �

gives, by height-preserving invertibility of L⊃ in G3S4∗, derivations in

G3S4∗ of the sequents

w � o, w : �(A� ⊃ B�), �′′�, �′ → ��, �′, o : A�

and

w � o, w : �(A� ⊃ B�), o : B�, �′′�, �′ → ��, �′

to which the inductive hypothesis applies. This gives us derivations in

G3I∗ of the sequents

w � o, w : A ⊃ B , �′′, �′ → �, �′, o : A

and

w � o, w : A ⊃ B , o : B , �′′, �′ → �, �′

from which the desired conclusion

w � o, w : A ⊃ B , �′′, �′ → �, �′

follows by a step of L⊃ in G3I∗.

4. If �(A� ⊃ B�) is principal on the right, the step is

w � o, ��, �′ → �′′�, �′, o : A� ⊃ B�

��, �′ → �′′�, �′, w : �(A� ⊃ B�)
R�



Quantified modal logic, provability logic, etc. 249

from which, by height-preserving invertibility of R⊃ in G3S4∗, we have

a derivation in G3S4∗ of

w � o, o : A�, ��, �′ → �′′�, �′, o : B�

to which the inductive hypothesis applies. A step of R⊃ in G3I∗ gives us

the desired conclusion. QED.

Observe that the translation does not affect the steps involving the rules

for the accessibility relation; therefore the faithfulness of the embedding

is maintained for each of the intermediate logics considered above and

even for those not considered, provided the frame conditions are geometric

implications.

Observe also that the admissibility of Contraction and Cut in G3I∗ may

be obtained from this result, and their admissibility for extensions of S4,

since no use is made thereof in the proof of the theorem.

One may conclude, therefore, in an easy uniform fashion, the faithfulness

of the embedding of each intermediate logic characterized by frames sat-

isfying geometric implications into its (smallest) modal companion. Well-

known modal companions are S4 for Int, S4.2 for Jan, S4.3 for GD, S5
for Cl.

12.4 Substructural logics

From the point of view of proof theory as understood in this book, what are

called substructural logics can be described as follows. Consider a system

of sequent calculus in which some structural rule such as weakening or

contraction is indispensable. The G0i-calculus of section 5.1 in Structural

Proof Theory is an example. What happens to derivability in the calculus

if one rule, say weakening, is left out? The resulting logical system can be

characterized also axiomatically and is known as relevant logic. One oft-

heard characterization of substructural logics is that they are ‘logics without

structural rules’. Note, however, that the absence or presence of structural

rules is a property of a logical calculus, not of a logic in itself. Were this not so,

all the calculi of the G3-class would count as calculi for substructural logics,

even if they include intuitionistic and classical logic. Thus, the terminology

is somewhat misleading.

The family of relevant, and, more generally, substructural logics, is among

the logics that can be characterized in terms of a relational semantics. Our

method can therefore be successfully applied to obtain sequent calculi for
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these logics. The starting point for the development of uniform calculi for

substructural logics is the Routley-Meyer relational semantics. This seman-

tics is a generalization of the standard relational semantics for intuitionistic

and modal logic: instead of a binary accessibility relation, we have a ternary

relation R on a set of worlds W. A distinguished element 0 of W defines a

projection of R , namely a � b ≡ R0ab that turns out to be a partial order.

For basic relevant logic, R satisfies the following properties of reflexivity

and componentwise monotonicity:

Ref R0ww

Mon1 R0w ′w & Rwor ⊃ Rw ′or

Mon2 R0o′o & Rwor ⊃ Rwo′r
Mon3 R0r′r & Rwor′ ⊃ Rwor

All the above properties can be given as rules for the accessibility relation to

be added to a suitable labelled calculus.

As for intuitionistic logic, the only connective with a non-trivial semantics

is implication, with validity defined inductively:

w � A ⊃ B whenever for all o, r, from Rwor and o � A follows r � A .

This semantic explanation justifies the rules

Rwor, w : A ⊃B , � → �, o : A Rwor, w : A ⊃B , r : B , � → �

Rwor, w : A ⊃ B , � → �
L ⊃

Rwor, o : A, � → �, r : B
� → �, w : A ⊃ B

R⊃

The latter has the variable condition o, r /∈ �, �, w :A ⊃B .

These rules give a cut-free complete sequent calculus for basic relevance

logic, with initial sequents given by

R0wo, w : P, � → �, o : P.

The logical rules for implication are given as above, the rules for & and ∨ as

in G3K and G3I, and the mathematical rules are given by the monotonicity

properties of R .

Besides cut, also the other structural rules, namely weakening and con-

traction, are admissible. We observe that this does not contradict the sub-

structural nature of these logics. These admissible rules are what could

be called, borrowing terminology from hypersequents, ‘external’ structural

rules. In fact, we can easily verify that the axiom A ⊃ (B ⊃ A) that cor-

responds to weakening is not derivable in the above system despite the

admissibility of weakening.
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Logics that extend the basic relevant logic can be obtained by assum-

ing additional properties for the accessibility relation. We recall some cor-

respondences between axioms and frame properties for a variety of rel-

evant logics. First, define R2abcd ≡ R2(ab)cd ≡ ∃w(Rabw&Rwcd) and

R2a(bc)d ≡ ∃w(Rawd&Rbcw):

Table 12.4 Axioms and frame properties for substructural logics

Axiom Frame property

A&(A ⊃ B) ⊃ B Raaa or R0ab ⊃ Raab idempotence

(A ⊃ B)&(B ⊃ C) ⊃ (A ⊃ C) Rabc ⊃ R2a(ab)c transitivity

(A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)) R2abcd ⊃ R2b(ac)d suffixing

(A ⊃ B) ⊃ ((C ⊃ A) ⊃ (C ⊃ B)) R2abcd ⊃ R2a(bc)d associativity

(A ⊃ (A ⊃ B)) ⊃ (A ⊃ B) Rabc ⊃ R2abbc contraction

((A ⊃ A) ⊃ B) ⊃ B Ra0a specialized assertion

A ⊃ ((A ⊃ B) ⊃ B) Rabc ⊃ Rbac commutativity

A ⊃ (A ⊃ A) Rabc ⊃ (R0ac ∨ R0bc) mingle

All the properties of R are given by geometric implications. As a conse-

quence, the basic calculus can be extended by rules that represent these

frame properties. The structural properties follow from the general result

on extensions with the geometric rule scheme.

Notes to Chapter 12

Section 12.2: A rule similar to �R-L , but in natural deduction style, is given

in Gabbay (1996).

Semantic proofs of closure with respect to cut for certain sequent calculi

for GL, based on completeness arguments, were presented in Sambin and

Valentini (1982) and in Avron (1984). Syntactic proofs, aimed at provid-

ing explicit proof transformations that would describe a procedure of cut

elimination, were proposed by Leivant (1981), Valentini (1983), and Borga

(1983). Valentini (1983) gave a counterexample to the proof presented by

Leivant. More recently Moen (2003) observed that the proof by Valentini

assumes as a starting point a reduction of a cut on �A to a detour cut,

which is not fully justified in a calculus with explicit contraction. However,

in all the proofs given in the 1980s (and also in more recent proposals; see

Sasaki 2002) calculi with contexts-as-sets have been used, but these are not

altogether satisfactory, as discussed in Section 6.1(b).
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Another problematic aspect of the proposed calculi for provability logic

is a lack of harmony; in fact, there is only one rule, acting on both left and

right, for �

��, �,�A → A
��, �′ → �,�A

The rule does not respect any of the principles of separation, symmetry, and

uniqueness put forward as good design requirements for sequent calculi in

Wansing (1994). A discussion of the notion of harmony in the context of

modal logic is presented in Read (2008). The general elimination rules of

natural deduction aim at such harmony, and in von Plato (2005) they are

used to give a solution to the problem of normal derivability in S4.

Here we have shown how a calculus with admissible contraction for

sequents labelled by possible worlds, with harmonious, semantically origi-

nated left and right rules for �, permits a transparent syntactic proof of cut

elimination for GL.

A recent proof of cut elimination for GL appears in Goré and Ramanayake

(2008). Using an argument from von Plato (2001b), they show how to tackle

the problematic case that arises in Valentini’s proof if an explicit rule of

contraction is used in place of the implicit ‘context-as-sets’ treatment.

Subsection 12.3(a) is based on Dyckhoff and Negri (2005). A translation

(·)∗ from the language of intuitionistic propositional logic to the language of

classical modal logic was defined by Gödel in 1933. He proved by induction

on derivations that his translation was sound, that is, if �Int A , then �S4 A∗,

and conjectured faithfulness of the embedding, i.e. the converse. This was

proved by McKinsey and Tarski (1948), who gave a semantic proof that

�Int A implies �S4 A∗. Dummett and Lemmon (1959) proved, using the

same semantic method, that �Int+Ax A if and only if �S4+Ax∗ A∗ where A

is any propositional formula and Ax is a collection of axioms.

Compared with a standard proof for unlabelled calculi (Troelstra and

Schwichtenberg 2000), the above is both simple and general. The core of the

above proof, that is, the erasure of each �, is reminiscent of an analogous

reduction in the model-theoretic proof of faithfulness of the embedding

of Int into S4. For that purpose, it is shown how a countermodel for an

unprovable sequent in Int is turned into a countermodel for the translation

of that sequent in S4; in particular, ‘it can be treated as a modal frame

isomorphic to its skeleton’ (see Theorem 3.83 in Chagrov and Zakharyaschev

1997).

Subsection 12.3(b): A similar approach to substructural logics is pre-

sented in Viganó (2000). The main difference with respect to our method
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consists in the use of a basic sequent calculus with explicit structural rules

and in a presentation of mathematical rules for the accessibility relation in

the form of rules with a single conclusion (Horn clauses) that cannot be

extended beyond Harrop theories (theories that do not have disjunctions in

positive parts of axioms). This excludes, for instance, the treatment of the

last frame property in Table 12.4.

For a general background, history, motivations, applications, and refer-

ences to the vast literature in the field of substructural logics, we refer to

the survey by Dunn and Restall (2002) and to the two recent monographs

Restall (2000) and Mares (2004).
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Freese, R., J. Ježek, and J. Nation (1995) Free Lattices. American Mathematical

Society, Providence, RI.

Gabbay, D. (1996) Labelled Deductive Systems. Oxford University Press.

Gentzen, G. (1934–35) Untersuchungen über das logische Schließen. Mathematische

Zeitschrift, vol. 39, pp. 176–210 and 405–431.

(1938) Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlenthe-

orie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften,

vol. 4, pp. 19–44.

(1969) The Collected Papers of Gerhard Gentzen. Ed. M. Szabo, North-Holland,

Amsterdam.

(2008) The normalization of derivations. The Bulletin of Symbolic Logic, vol. 14,

pp. 245–257.

Girard, J.-Y. (1987) Proof Theory and Logical Complexity, vol. 1. Bibliopolis,

Naples.
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Viganó, L. (2000) Labelled Non-Classical Logics. Kluwer, Dordrecht.

Wang, H. (1960) Towards mechanical mathematics. IBM Journal of Research and

Development, vol. 4, pp. 2–22.

Wansing, H. (1994) Sequent calculi for normal modal propositional logics. Journal

of Logic and Computation, vol. 4, pp. 125–142.

(ed.) (1996) Proof Theory of Modal Logic. Kluwer, Dordrecht.

(2002) Sequent systems for modal logics. In D. Gabbay and F. Guenther

(eds.) Handbook of Philosophical Logic, 2nd edn, vol. 8, pp. 61–145, Kluwer,

Dordrecht.

Whitman, P. (1941) Free lattices. Annals of Mathematics, vol. 42, pp. 325–330.



Index of names

Avron A. 251

Barcan, R. 224, 225
Barr, M. 13, 144, 145
Basin, D. 221
Bayart, A. 187
van Benthem, J. 211
Bernays, P. 1, 3, 4, 5, 181
Beth, E. 213
Bezem, M. 181
Blackburn, P. 211, 221
Blass, A. 145
von Boguslawski, M. x
Boretti, B. x
Borga, M. 251
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