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Preface

The interaction of molecules with static electric and magnetic fields or the time-
dependent fields of electromagnetic radiation is often described in terms of so-called
molecular electromagnetic properties. The outcome of many experiments involving
electromagnetic fields are therefore interpreted with such properties. With modern
quantum chemical computer software such as Dalton, CFOUR, Orca, Turbomole,
Gaussian or Gamess, to name just a few, it is nowadays possible to calculate values
of many of these electromagnetic properties for individual molecules or clusters of
molecules with an accuracy comparable to experiment. Contrary to the experimental
determination calculations allow to identify and analyse individual contributions to
the properties and offer therefore an understanding of molecular properties, which can-
not be obtained by their measurement alone. This creates a fruitful interplay between
theory and experiment, prediction and experimental verification, measurement and
theoretical rationale with applications ranging from the design of materials to the
understanding of natural phenomena.

This book focuses on the definitions and quantum theory of molecular electromag-
netic properties as well as on the theory of the computational methods for calculating
them. It tries to treat both aspects equally thoroughly and differs therefore from
typical textbooks on physical chemistry as well on computational chemistry. While
electromagnetic properties like the polarizability or the nuclear magnetic shielding
tensor are typically defined in physical chemistry textbooks, the quantum chemical
methods for calculating them are at most superficially mentioned. In typical computa-
tional chemistry textbooks the situation is reversed, because computational methods
and their application are discussed but the quantum theory underlying the definitions
of molecular properties is typically not mentioned.

The list of molecular properties, which are discussed in this book, is not and hardly
can be complete, because new experimental setups lead sometimes also to the defi-
nition of new electromagnetic properties. Instead, the most important properties of
each type are described, i.e. one or two prototypical properties that are used in the
description of the interaction with static or oscillating electric fields, with magnetic
fields and with magnetic moments of nuclei. They are also the properties that most
chemists will have heard of, like, e.g., the chemical shift of NMR spectroscopy or the
electronic excitation energies that give rise to the absorption in UV/Vis spectra. Fur-
thermore, the emphasis is more on the general concepts in the definition and derivation
of molecular properties, on the interrelation between different types of properties and
on detailed derivation of the selected molecular electromagnetic properties than on
completeness.

This applies even more to the quantum chemical methods for calculating them. The
list of methods is ever-growing and any attempt to give a comprehensive overview
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is bound to fail. The emphasis is therefore again on the general concepts, on the
differences and similarities between methods and on detailed derivation of selected pro-
totypical quantum chemical methods. Consequently, only so-called ab initio quantum
chemical wavefunction methods based on the non-relativistic Schrödinger equation are
discussed in this book.

Reading this book you will not only learn how the most important molecular
properties are defined but will also learn how to derive molecular properties for new
experimental setups. Furthermore, you can understand the relations between vari-
ous molecular properties and how this can be used to predict the outcome of one
experiment based on other measurements. In the third part of the book you acquire a
thorough understanding of quantum chemical methods for the calculation of molecular
properties. In particular, you find out how the various quantum mechanical methods
are related to each other. At the same time you will become acquainted with different
techniques for deriving computational methods and will learn how to apply these tech-
niques to different types of wavefunctions. This will allow you to derive new methods
on your own.

The book is aimed at graduate or senior undergraduate students and at PhD
students or post-docs who want to embark on the calculation of molecular electro-
magnetic properties. It is expected that you have some basic knowledge of quantum
mechanics corresponding to a second-year quantum mechanics or quantum chemistry
course and of classical electromagnetism corresponding to a typical undergraduate
physics course for non-physics students. Furthermore, you should be somewhat famil-
iar with quantum chemical methods for the calculation of electronic energies such as
the Hartree–Fock (HF) or self-consistent-field (SCF) method, Møller–Plesset (MP)
perturbation and coupled cluster (CC) theory. However, the basic equations and
notation of these methods are also discussed in the book.

The book is divided into three parts and preceded by an introduction. In Part I,
Quantum Mechanical Fundamentals, the foundations are laid by deriving the Schrö-
dinger equation for a molecule in the presence of electromagnetic fields and by
presenting the perturbation theory tools for solving this Schrödinger equation approx-
imately. Time-independent as well as time-dependent perturbation theory in the form
of response theory are discussed. In Part II, Definition of Properties, many differ-
ent molecular properties are defined and quantum chemical expressions for them are
derived using perturbation theory. Finally, in Part III, Computational Methods for the
Calculation of Molecular Properties, a selection of modern quantum chemical methods
for the calculation of molecular properties is derived and discussed. Furthermore, some
illustrative examples of calculated properties are presented. Exercises are included in
all chapters that will allow you to test your understanding on some of the intermedi-
ate derivations. At the end of each chapter a Further Reading section is added with
a list of books or review articles that I found useful while writing the corresponding
chapter. The list is in no way complete but reflects much more my personal taste and
preferences.
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1

Introduction

All experiments carried out on molecules can be understood as the interaction of a
molecule with an electromagnetic field. If we exclude situations or fields strengths
where the molecules change their identity, i.e. undergo chemical reactions, or where
it becomes difficult to distinguish between the molecule and e.g. an intense laser
field, we can treat the fields as perturbations that slightly modify the nuclear and
electronic structure of molecules. These interactions with weak electromagnetic fields
and the corresponding changes in the molecular structure are often described in terms
of so-called molecular properties. Some of the best-known molecular properties
are the electric dipole moment, the frequency-dependent polarizability, the chemical
shift and indirect nuclear spin-spin coupling constant of nuclear magnetic resonance
(NMR) spectroscopy or the hyperfine coupling constant of electron spin resonance
(ESR) spectroscopy. Molecular properties are intrinsic properties of a particular state
of a molecule, which means that they are independent of the strength of the fields.
Therefore, they can be used to describe the response of a molecule to an arbitrary
field within the above-described limits.

The electromagnetic fields discussed here can be the static external electric field
in a capacitor or the electric field due to another molecule nearby, the static external
magnetic field in an NMR or ESR spectrometer but also the internal magnetic fields
due to the magnetic moments of nuclei with spin or the internal electric field due to
the electric quadrupole moment of a nucleus. Furthermore it can be the oscillating
electric and magnetic fields of electromagnetic radiation. Molecular properties thus
play an important role in the interpretation of numerous experimental phenomena
such as the refractive index, the Stark and Zeeman effects, the Kerr effect, nuclear
and electric magnetic resonance spectra and many more. Even long-range interactions
between molecules can be understood in terms of molecular electric moments.

Although many of these properties can be determined to a high accuracy in exper-
iments it is also important to be able to calculate them. Unknown compounds or
molecular configurations can be identified by their calculated properties. Candidates
for new materials with desired properties can be screened fast and inexpensively by
calculating the respective properties instead of synthesizing them first. The value of
an electromagnetic property of a particular molecule or the changes of a property in
a series of molecules can often be explained by analysing all the terms that contribute
to it. The information about the structure and nature of a molecule that is contained
in the measured properties can only in this way be fully unfolded. Theoretical calcu-
lations of molecular electromagnetic properties can therefore supplement experiments
in many ways in addition to calculation of the energetics and structure of molecules.



2 Introduction

This book is concerned with the quantum chemical methods for the calculations
of electromagnetic properties of molecules. However, in detail only so-called ab initio
quantum chemical methods will be discussed in Part III. As ab initio methods one
normally describes those quantum chemical methods that start from the beginning,
i.e. methods that require the evaluation of all the terms in the Schrödinger or Dirac
equation and do not include other experimentally determined quantities than the
nuclear charges, nuclear masses, nuclear dipole and quadrupole moments and maybe
positions of the nuclei. This is in contrast to the so-called semi-empirical methods
where many of the integrals over the operators in the Hamiltonian are replaced by
experimentally or otherwise determined constants. However, in the case of density
functional theory (DFT) methods the classification is somewhat debatable.

In this book the interaction between fields and molecules is treated in a semi-
classical fashion. Quantum mechanics is used for the description of the molecule,
whereas the treatment of the electromagnetic fields is based on classical electromag-
netism. A complete quantum mechanical description using quantum electrodynamics
is beyond the scope of this presentation, although we will make use of the correct
value of the electronic g-factor as given by quantum electrodynamics. Furthermore,
only ab initio methods derived from the non-relativistic Schrödinger equation are dis-
cussed. Nevertheless, the Dirac equation is briefly discussed in order to introduce the
electronic spin via the Pauli Hamiltonian.



Part I

Quantum Mechanical
Fundamentals
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2

The Schrödinger Equation
in the Presence of Fields

A complete quantum mechanical treatment of the interaction of molecules and fields
would require quantum electrodynamics, which is probably the most successful theory,
that was ever derived. Using it, one can reproduce very accurately the Lamb shift in the
hydrogen atom spectrum and the g-factor of the free electron ge ≈ 2.002. Nevertheless
it is not yet regularly1 employed in the calculation of electromagnetic properties of
molecules and the effects are expected to be very small.

Therefore, we will make a series of approximations to this approach. First, we
will only use quantum mechanics for the description of the molecule and use classical
electrodynamics for the electromagnetic fields. In this semi-classical approach the
perturbing fields and nuclear moments are considered to be unaffected by the molecular
environment, the so-called minimal coupling approximation.

Secondly, the exposition will be restricted to non-relativistic quantum mechanics,
i.e. to the Schrödinger equation.2 This approach is justified, if we restrict ourselves
to atoms of the first three rows of the periodic table, for which relativistic effects are
generally unimportant. However, if we are interested in discussing properties, which
include interactions with the spin of the electrons such as NMR and ESR coupling
constants, the Schrödinger equation is not sufficient alone, because it is in principle
a spin-free theory contrary to the Dirac equation. The necessary operators for the
interaction with the electron spin are therefore derived from the Dirac equation and
then added to the Schrödinger Hamiltonian in an ad hoc fashion.

Finally, the Born-Oppenheimer approximation is applied in order to separate the
nuclear and electronic wavefunctions.

2.1 The Time-Dependent Schrödinger Equation

The total Hamiltonian for a molecule with N electrons and M nuclei in the absence
of fields3 is, in non-relativistic quantum mechanics, given as

1 See Romero and Aucar (2002) for an example of the calculation of quantum electrodynamics
effects on molecular properties.

2 See Saue (2001) for a discussion of ab initio methods for the calculation of electromagnetic
properties based on the Dirac equation.

3 When talking about fields we do not include the electric field arising from the charges of the
electrons and nuclei in the molecule, unless stated otherwise.
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Ĥ(0)
nuc,e =

1
2

M∑
K

�̂p 2
K

mK
+

e2

4πε0

∑
K<L

ZKZL

|�RK − �RL|

+
1

2me

N∑
i

�̂p 2
i −

e2

4πε0

NM∑
iK

ZK

|�ri − �RK | +
e2

4πε0

∑
i<j

1
|�ri − �rj | (2.1)

where �RK is the position vector of nucleus K with mass mK and atomic number ZK

and �ri is the position vector of electron i. The operators for the canonical momentum

of the nuclei, −ı� �̂∇K , and electrons, −ı� �̂∇i, are denoted �̂p K and �̂p i, respectively. All
the other constants have their usual meaning (see e.g. Mills et al., 1993).

The first axiom of quantum mechanics states that the state of a molecule is
completely described by the time-dependent wavefunction Φ(0)({�RK}, {�ri}, t), where
{�RK} and {�ri} stand collectively for the position vectors of all nuclei and electrons
and t is the time. Another axiom states that the average measured value < P >t of
a physical observable P obtained in a series of measurements on a large ensemble of
molecules, which are all in the same state |Φ(0)({�RK}, {�ri}, t)〉, can be calculated as
the expectation value of the corresponding quantum mechanical operator P̂

< P >t≡ 〈Φ(0)({�RK}, {�ri}, t) | P̂ |Φ(0)({�RK}, {�ri}, t)〉
〈Φ(0)({�RK}, {�ri}, t) | Φ(0)({�RK}, {�ri}, t)〉

(2.2)

Finally, the last postulate states that the time dependence of the wavefunction is
governed by the time-dependent Schrödinger equation

Ĥ(0)
nuc,e |Φ(0)({�RK}, {�ri}, t)〉 = ı�

∂

∂t
|Φ(0)({�RK}, {�ri}, t)〉 (2.3)

When the Hamiltonian does not depend explicitly on time like the one given
in Eq. (2.1), we can apply the separation of variables technique and separate the
time variable t from the spatial coordinates {�RK} and {�ri}. We write therefore the
time-dependent wavefunction Φ(0)({�RK}, {�ri}, t) as the product of a time-independent
wavefunction Φ(0)({�RK}, {�ri}) and a time-dependent phase factor ϑ(t).

Φ(0)({�RK}, {�ri}, t) = Φ(0)({�RK}, {�ri}) ϑ(t) (2.4)

Inserting this trial solution in Eq. (2.3), the time-dependent Schrödinger equation
separates in two equations: the time-independent Schrödinger equation

Ĥ(0)
nuc,e |Φ(0)({�RK}, {�ri})〉 = E(0) |Φ(0)({�RK}, {�ri})〉 (2.5)

and an equation for the time-dependent phase factor ϑ(t).
The time-independent Schrödinger equation in Eq. (2.5) is a second-order partial

differential equation. However, it can also be interpreted as an eigenvalue equation.
The time-independent wavefunctions Φ(0)({�RK}, {�ri}) are then the eigenfunctions of
the Hamiltonian with the energy E(0) as eigenvalue.

For the time-dependent phase factor one obtains [see Exercise 2.1]

ϑ(t) = e−
ı
�

E(0)t (2.6)
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Exercise 2.1 Derive Eq. (2.6) for the time-dependent phase factor.

The time dependence of the time-dependent wavefunction in Eq. (2.4) corresponds
therefore simply to a rotation in the complex plane and the probability density of the
time-dependent wavefunction, | Φ({�RK}, {�ri}, t) |2, given as

|Φ(0)({�RK}, {�ri}, t)|2 =
(
Φ(0)({�RK}, {�ri})e− ı

�
E(0)t

)∗ (
Φ(0)({�RK}, {�ri})e− ı

�
E(0)t

)
= |Φ(0)({�RK}, {�ri})|2 (2.7)

is consequently constant in time. The solutions of the time-independent Schrödinger
equation are therefore called stationary states. For these states the expectation
value of the corresponding quantum mechanical operator4 P̂ , and thus the average
measured value < P > of the physical observable P becomes also time-independent

< P >≡ 〈Φ(0)({�RK}, {�ri}) | P̂ |Φ(0)({�RK}, {�ri})〉
〈Φ(0)({�RK}, {�ri}) | Φ(0)({�RK}, {�ri})〉

(2.8)

2.2 The Born–Oppenheimer Approximation

The masses of the nuclei, mK , are at least three orders of magnitude larger than the
mass of an electron. We can therefore assume that the electrons will instantaneously
adjust to a change in the positions of the nuclei and that we can find a wavefunc-
tion for the electrons for each arrangement of nuclei. In the Born–Oppenheimer
approximation the total molecular Hamilton operator Ĥ

(0)
nuc,e from Eq. (2.1) is thus

partitioned in the kinetic energy operator of the nuclei, 1
2

∑M
K

�̂p 2
K

mK
, and a molecular

field free electronic Hamiltonian Ĥ(0), defined as

Ĥ(0) =
1

2me

N∑
i

�̂p 2
i −

e2

4πε0

NM∑
iK

ZK

|�ri − �RK | +
e2

4πε0

∑
i<j

1
|�ri − �rj | (2.9)

+
e2

4πε0

∑
K<L

ZKZL

|�RK − �RL|

where the set of nuclear coordinates {�RK} is held fixed.
Furthermore, setting up a time-independent Schrödinger equation with this opera-

tor we obtain the time-independent field-free electronic Schrödinger equation
for a given set of nuclear coordinates {�RK}

Ĥ(0) |Ψ(0)
k ({�ri}; {�RK})〉 = E

(0)
k ({�RK}) |Ψ(0)

k ({�ri}; {�RK})〉 (2.10)

The solution Ψ(0)
k ({�ri}; {�RK}) of this equation is called the electronic wavefunction

of the kth electronic state and is a function of the electronic coordinates {�ri} but

4 It is assumed that the operator P̂ is also independent of time.
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depends only parametrically on the nuclear coordinates {�RK}. This means that for
each set of nuclear coordinates {�RK} the electronic wavefunction shows a different
functional dependence on the electronic coordinates {�ri}. Strictly speaking, the nuclear
repulsion energy, e2

4πε0

∑
K<L

ZKZL

|�RK−�RL| , which is a constant for space-fixed nuclei, is
not part of the “pure” electronic Hamiltonian, as it does not include any electronic
variables. However, it is often added to it such that the eigenvalues of this operator, the
electronic energies E

(0)
k ({�RK}), become the total energy of a molecule for fixed nuclei.

In the Born–Oppenheimer approximation the total time-independent wavefunction
is then approximated by the product of the electronic wavefunction Ψ(0)

k ({�ri}; {�RK})
for the given electronic state k and a nuclear wavefunction Θ(0)

v,J({�RK}), which
depends only on the nuclear coordinates {�RK}, i.e.

Φ(0)
k,v,J ({�RK}, {�ri}) = Ψ(0)

k ({�ri}; {�RK}) Θ(0)
v,J ({�RK}) (2.11)

The quantum numbers v and J stand collectively for the quantum numbers of all the
vibrational modes and for the quantum numbers of the rotational motion of the whole
molecule. When we insert this approximate trial wavefunction in the time-independent
Schrödinger equation, Eq. (2.5), neglect two small terms [see Exercise 2.2] and make
use of the time-independent field free electronic Schrödinger equation, Eq. (2.10), we
obtain the nuclear Schrödinger equation[

1
2

M∑
K

�̂p 2
K

mK
+ E

(0)
k ({�RK})

]
|Θ(0)

v,J ({�RK})〉 = E
(0)
k,v,J |Θ(0)

v,J ({�RK})〉 (2.12)

We can see that the total electronic energy, E
(0)
k ({�RK}) as a function of the nuclear

coordinates {�RK} fulfills the role of the potential energy for the motion of the nuclei
and is therefore often called a potential-energy surface.

Exercise 2.2 Derive the nuclear Schrödinger equation, Eq. (2.12), and the two terms that
are neglected in the Born–Oppenheimer approximation.

In the following, we will consider neither the nuclear Schrödinger equation nor the
parametrical dependence of the electronic wavefunction on the nuclear coordinates
until Chapter 8. We will therefore also omit the dependence on the nuclear coordi-
nates, ({�RK}), in the notation for the electronic energies and wavefunctions until that
chapter.

On the other hand, we will later on use the time-dependent version of Eq. (2.10),
i.e. the time-dependent electronic Schrödinger equation,

Ĥ(0) |Ψ(0)
k ({�ri}, t)〉 = ı�

∂

∂t
|Ψ(0)

k ({�ri}, t)〉 (2.13)

whose solutions are the electronic stationary states

|Ψ(0)
k ({�ri}, t)〉 = e−

ı
�

E(0)t|Ψ(0)
k ({�ri})〉 = e−

ı
�

Ĥ(0)t|Ψ(0)
k ({�ri})〉 (2.14)
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2.3 Electron Charge and Current Density

According to Max Born’s interpretation of the wavefunction the square of the absolute
value of the wavefunction of an electron, |ψ(�r)|2 = ψ∗(�r) ψ(�r), gives the probability
density of finding the electron at the point �r. Generalizing to the N -electron case we
can say that∣∣∣Ψ(0)

k (�r1, �r2, · · · , �rN )
∣∣∣ 2

d�r1d�r2 · · · d�rN

= Ψ(0)∗
k (�r1, �r2, · · · , �rN )Ψ(0)

k (�r1, �r2, · · · , �rN ) d�r1d�r2 · · · d�rN (2.15)

is the probability of finding electron 1 in the volume element d�r1 at the point �r1

and at the same time electron 2 in the volume element d�r2 at point �r2 and so forth
for a system in a state |Ψ(0)

k (�r1, �r2, · · · , �rN )〉. If we are only interested in knowing the
probability for finding electron 1 in the volume element d�r1 at point �r1, i.e. P1(�r1) d�r1,
we have to integrate over the coordinates of the other electrons

P1(�r1) d�r1 =
(∫

�r2

· · ·
∫

�rN

∣∣∣Ψ(0)
k (�r1, �r2, · · · , �rN )

∣∣∣ 2

d�r2 · · · d�rN

)
d�r1 (2.16)

where e.g. d�r2 stands for dx2 dy2 dz2 and
∫
�r2

denotes a triple integral
∫ ∫ ∫

over the
volume element d�r2. Of course electrons are indistinguishable and the probability of
finding electron 2 in a volume element at the same point is identical. The probability
of finding an electron in the volume element d�r at a point �r is therefore N times
the probability of finding electron 1 at this point5 and is thus given as

P (�r ) d�r = N

(∫
�r2

· · ·
∫

�rN

∣∣∣Ψ(0)
k (�r, �r2, · · · , �rN )

∣∣∣ 2

d�r2 · · · d�rN

)
d�r (2.17)

where P (�r ) is the electron density. The integral over N − 1 electrons in Eq. (2.17)
is inconvenient for actual calculations. Using the properties of the Dirac δ function,
δ(�r0), in three dimensions ∫

�r

δ(�r − �r0)f(�r) d�r = f(�r0) (2.18)

we can extend the integration to include all electrons and obtain for the electron
density

P (�r ) = N

∫
�r1

· · ·
∫

�rN

δ(�r1 − �r)
∣∣∣Ψ(0)

k (�r1, · · · , �rN )
∣∣∣ 2

d�r1 · · · d�rN (2.19)

Making use of the indistinguishability of the electrons again we can alternatively write
the electron density as an expectation value

P (�r ) = 〈Ψ(0)
k ({�ri}) |D̂(�r) |Ψ(0)

k ({�ri})〉 (2.20)

5 The subscript 1 that indicates coordinates of electron 1 is therefore dropped in the following.
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of the density operator D̂(�r), which is defined as

D̂(�r) =
N∑
i

δ(�ri − �r) (2.21)

This expression will be used later in Part III, when we want to calculate the electron
density for various approximate wavefunctions.

Sometimes, it is also necessary to generalize the definition of the electron density
P (�r) by defining a reduced one-electron density matrix

P (�r, �r ′) = N

∫
· · ·

∫
Ψ(0)

k (�r, �r2, · · · , �rN ) Ψ(0)∗
k (�r ′, �r2, · · · , �rN ) d�r2 · · · d�rN (2.22)

Finally, we can define now the charge density ρel(�r) of an N -electron system in
a state described by the wavefunction Ψ(0)

k (�r1, · · · , �rN ) as

ρel(�r) = −e 〈Ψ(0)
k ({�ri}) |D̂(�r) |Ψ(0)

k ({�ri})〉 (2.23)

In order to derive an expression for the current density of the electrons, �jel(�r), i.e.
the flux of the electronic charges, we have to start from the continuity equation of
classical electromagnetism

∂ρ(�r, t)
∂t

= −�∇ ·�j(�r) (2.24)

which relates the rate of change of a conserved charge density to the divergence of the
current density. This implies taking the time derivative of the time-dependent charge
density ρel(�r, t) of the electrons, i.e. the generalization of Eq. (2.23) for time-dependent
electronic wavefunctions. However, here we will call the variable �r1 and we will start the
derivation from the probability density as given implicitly in Eq. (2.17) but generalized
for a time-dependent wavefunction Ψ(0)

k ({�ri}, t) = Ψ(0)
k (�r1, �r2, · · · , �rN , t)

∂ρel(�r1, t)
∂t

= −eN
∂

∂t

∫
�r2

· · ·
∫

�rN

∣∣∣Ψ(0)
k (�r1, �r2, · · · , �rN , t)

∣∣∣ 2

d�r2 · · · d�rN (2.25)

The time derivative of the wavefunction and its complex conjugate is given by the
time-dependent Schrödinger equation Eq. (2.13) leading to [see Exercise 2.3]

∂ρel(�r1, t)
∂t

=
−ıeN

2me�

∫
�r2

· · ·
∫

�rN

{
Ψ(0)

k ({�ri}, t)
N∑

i=1

�̂p 2
i Ψ

(0)∗
k ({�ri}, t) (2.26)

−Ψ(0)∗
k ({�ri}, t)

N∑
i=1

�̂p 2
i Ψ

(0)
k ({�ri}, t)

}
d�r2 · · · d�rN

Exercise 2.3 Derive Eq. (2.26) for the time derivative of the electronic charge density using
the time-dependent electronic Schrödinger equation, Eq. (2.13).
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We split the summation over i now up in the term i = 1 and the remaining terms
i = 2 · · ·N , because the latter terms can be shown to vanish [see Exercise 2.4]. Using,
furthermore, that

�̂∇ ·
[
Ψ(0)

k ({�ri}, t) �̂∇Ψ(0)∗
k ({�ri}, t)

]
=

[
�̂∇ · Ψ(0)

k ({�ri}, t)
] [

�̂∇ · Ψ(0)∗
k ({�ri}, t)

]
+ Ψ(0)

k ({�ri}, t)∇̂2Ψ(0)∗
k ({�ri}, t) (2.27)

and a corresponding equation for the expression where Ψ(0)
k ({�ri}, t) and Ψ(0)∗

k ({�ri}, t)
are interchanged we arrive at

∂ρel(�r1, t)
∂t

=
ı�eN

2me

�̂∇1 ·
∫

�r2

· · ·
∫

�rN

[
Ψ(0)

k ({�ri}, t) �̂∇1Ψ
(0)∗
k ({�ri}, t) (2.28)

−Ψ(0)∗
k ({�ri}, t) �̂∇1Ψ

(0)
k ({�ri}, t)

]
d�r2 · · · d�rN

Exercise 2.4 Show that the terms for i = 2 · · ·N in Eq. (2.26) are all zero.

Changing the variable �r1 to �r and introducing the Dirac δ function again we can
continue in analogy to the derivation of Eq. (2.20) and obtain

∂ρel(�r, t)
∂t

= �̂∇ ·
(

e

2me
〈Ψ(0)

k ({�ri}, t) |
N∑
i

δ(�ri − �r)�̂pi |Ψ(0)
k ({�ri}, t)〉

+
e

2me
〈Ψ(0)

k ({�ri}, t) |
N∑
i

δ(�ri − �r)�̂pi |Ψ(0)
k ({�ri}, t)〉∗

)
(2.29)

Comparison of this expression with the continuity equation in Eq. (2.24) leads us
finally to the desired expression for the current density

�jel(�r) =
e

2me
〈Ψ(0)

k ({�ri}, t) |
N∑
i

δ(�ri − �r)�̂pi |Ψ(0)
k ({�ri}, t)〉

+
e

2me
〈Ψ(0)

k ({�ri}, t) |
N∑
i

δ(�ri − �r)�̂pi |Ψ(0)
k ({�ri}, t)〉∗ (2.30)

of an N -electron system in a state described by the time-dependent wavefunction
Ψ(0)

k (�r1, · · · , �rN , t). For a stationary state, i.e. a wavefunction of the form of Eq. (2.4),
this reduces to

�jel(�r) =
e

2me

(
〈Ψ(0)

k ({�ri}) |
N∑
i

δ(�ri − �r)�̂pi |Ψ(0)
k ({�ri})〉

+〈Ψ(0)
k ({�ri}) |

N∑
i

δ(�ri − �r)�̂pi |Ψ(0)
k ({�ri})〉∗

)
(2.31)
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2.4 The Force due to Electromagnetic Fields

Before we study the interaction between the electrons in a molecule and classical
electromagnetic fields, we should review briefly the relevant equations from classical
electromagnetism.

The force �F of an electromagnetic field on a particle with charge q and mass m is
called the Lorentz force and is given as

�F (�r, t) = q
[
�E(�r, t) + �v × �B(�r, t)

]
(2.32)

where �v = d�r
dt is the velocity of the particle and �E(�r, t) and �B(�r, t) are the vectors of

the electric field and the magnetic induction or flux density, respectively.
In electromagnetism it is often more convenient to work with two potentials instead

of the electric and magnetic fields directly. These so-called scalar potential, φ(�r, t),
and vector potential, �A(�r, t), are indirectly defined by their relations to the electric
and magnetic fields

�E(�r, t) = −�∇φ(�r, t) − ∂ �A(�r, t)
∂t

(2.33)

�B(�r, t) = �∇× �A(�r, t) (2.34)

These relations can be derived from Maxwell’s equations in vacuum

�∇ · �E(�r, t) = 0 (2.35)

�∇ · �B(�r, t) = 0 (2.36)

�∇× �E(�r, t) = −∂ �B(�r, t)
∂t

(2.37)

�∇× �B(�r, t) =
1
c2

∂�E(�r, t)
∂t

(2.38)

where c is the speed of light in vacuum. One should note that electric and magnetic
phenomena are coupled in the case of a time-dependent vector potential, due to the
time derivative in Eqs. (2.33), (2.37) and (2.38).

One possible solution to Eqs. (2.33) and (2.34) for the case of a static and
homogeneous electric field �E and magnetic induction �B are the potentials

φ E(�r) = −�r · �E (2.39)

�A B(�r) =
1
2

�B × �r (2.40)

which we will meet many times in the following.
However, the scalar and vector potentials are not uniquely defined by Eqs. (2.33)

and (2.34). Given an arbitrary scalar function χ(�r, t), the following transformations
of the time-dependent vector potential

�A(�r, t) → �A′(�r, t) = �A(�r, t) + �∇χ(�r, t) (2.41)
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and simultaneously of the time-dependent scalar potential

φ(�r, t) → φ′(�r, t) = φ(�r, t) − ∂χ(�r, t)
∂t

(2.42)

leaves the fields, �E(�r, t) and �B(�r, t), unchanged [see Exercise 2.5]. The transformations
in Eqs. (2.41) and (2.42) are so-called gauge transformations of the second kind
and χ(�r, t) is called the gauge function.6 The consequences of this arbitrariness of the
gauge function and thus the gauge transformations for the Schrödinger equation and
molecular properties are discussed in more details in sections 2.9 and 5.10.

Exercise 2.5 Show that the electric field �E(�r, t) and the magnetic induction �B(�r, t) in Eqs.
(2.33) and (2.34) are invariant to the gauge transformations in Eqs. (2.41) and (2.42).

Hint: Recall that the curl of a gradient vanishes, i.e. �∇× �∇χ(�r, t) = 0.

Using the scalar and vector potential we can write the expression for the Lorentz
force alternatively as

�F = q

{
−�∇φ(�r, t) − ∂ �A(�r, t)

∂t
+ �v ×

[
�∇× �A(�r, t)

]}
(2.43)

2.5 Minimal Coupling—Non-Relativistically

The usual way to treat the interaction between electromagnetic fields or nuclear
electromagnetic moments and molecules is a semi-classical way, where the fields or
nuclear moments are treated classically and the electrons are treated by quantum
mechanics. The fields or nuclear moments are thus not part of the system, which is
treated quantum mechanically, but they are merely considered to be perturbations
that do not respond to the presence of the molecule. They therefore enter the mole-
cular Hamiltonian in terms of external potentials similar to the Coulomb potential
due to the charges of the nuclei. This is therefore called the minimal coupling
approach.

In order to reduce the number of indices and summation sign we derive here the
Hamiltonian operator for the motion of a single electron in the presence of external
fields. The final equations can then easily be generalized to the many-electron case in
Section 2.8.

Before we can derive the additional terms in the Hamiltonian operator due to
the interaction with external fields we should recall how in general one constructs
the Schrödinger equation for a given system. The standard approach starts from the
classical Hamiltonian H for the system that is a function of the position coordinates

6 By choosing a particular form of the gauge function χ(�r, t) we choose the gauge of the potentials,
i.e. we calibrate the potentials. This is somewhat analogous to setting the zero point of a potential
energy.
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�r and the canonical momenta �p of the particles.7 In the case of a field-free particle the
classical Hamilton function is given as

H =
�p 2

2m
(2.44)

The time-dependent Schrödinger equation is then obtained if one replaces the functions
by operators using the substitutions rules

�p → �̂p = −ı� �̂∇ (2.45)

H → ı�
∂

∂t
(2.46)

and lets both sides of Eq. (2.44) act on the wavefunction of the given system. In the
example of the field-free particle this leads to the following time-dependent Schrödinger
equation

ı�
∂

∂t
|ψ(�r, t)〉 =

�̂p 2

2m
|ψ(�r, t)〉 (2.47)

The problem for us is therefore to derive the classical Hamiltonian function for
an electron in the presence of electromagnetic fields, which is normally done from the
classical Lagrangian. Hamilton’s and Lagrange’s generalizations of classical mechan-
ics are essentially the same theory as Newton’s formulation but are more elegant and
often computationally easier to use.8 In our context, their importance lies in the fact
that they serve as a springboard to quantum mechanics.

The classical Lagrangian L
L(�r,�v, t) = T (�r,�v) − U(�r,�v, t) (2.48)

is a function of generalized position coordinates �r and their time derivatives, i.e. the
generalized velocities �v. The generalized coordinates can, but need not, be cartesian
coordinates. Alternatively, they could be any kind of polar coordinates or the set
of independent coordinates in a system with one or more constraints. T (�r,�v) is the
kinetic energy and U(�r,�v, t) is a generalized potential. The latter has to be chosen
in such a way that on application of Lagrange’s equations of motion, also called
the Euler–Lagrange equations

d

dt

[
∂L
∂vα

]
− ∂L

∂rα
= 0 (2.49)

Newton’s second law
�F = m

d�v

dt
(2.50)

is recovered.9

7 The canonical momentum is often also called generalized or conjugate momentum. Its precise
definition is given later in this section.

8 References to more detailed discussions and to derivations of the Lagrangian and Hamiltonian
formulations of classical mechanics can be found in the Further Reading section.

9 Contrary to Newton’s second law the Lagrangian and Hamiltonian formulations of classical
mechanics are form invariant under a change of coordinates, i.e. the Euler–Lagrange equations have
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In our case of the motion of an electron in external fields the respective force is the
Lorentz force given in Eq. (2.43) and we therefore have to find a generalized potential
U that will reproduce the following relation

−e

{
−�∇φ(�r, t) − ∂ �A(�r, t)

∂t
+ �v ×

[
�∇× �A(�r, t)

]}
= me

d�v

dt
(2.51)

Let us try to use
U(�r,�v, t) = −e φ(�r, t) + e �v · �A(�r, t) (2.52)

as generalized potential U , which gives the following expression for the Lagrangian

L(�r,�v, t) =
me�v

2

2
+ e φ(�r, t) − e �v · �A(�r, t) (2.53)

The potential U , in Eq. (2.52), is called the generalized potential because it depends
not only on the position of the electron and on time but also on the velocity of
the electron. When we insert this Lagrangian in Lagrange’s equations, Eq. (2.49), we
obtain Newton’s second law, Eq. (2.51) [see Exercise 2.6], which proves that our choice
of the generalized potential in Eq. (2.52) was indeed correct.

Exercise 2.6 Show that the Lagrangian in Eq. (2.53) fulfills the Lagrange equations
(2.49), which means that on inserting the Lagrangian into Lagrange equations one obtains
Eq. (2.51).

From this Lagrangian one can then define a classical Hamiltonian function,
which translated to operator form yields the desired Hamiltonian operator. The clas-
sical Hamiltonian H is a function of time, of the generalized position coordinates �r
and of their conjugated generalized momenta �p. It is defined as10

H(�r, �p, t) = �p · �v − L(�r,�v, t) (2.54)

The components11 of the generalized momentum vector �p, the canonical conjugate to
�r, are given as

pα =
∂L(�r,�v, t)

∂vα
(2.55)

For the Lagrangian in Eq. (2.53) this definition yields

�p = me �v − e �A(�r, t) (2.56)

the same form for all types of coordinates. This is one of several advantages of the Lagrangian
formulation.

10 The relation between the classical Lagrangian and Hamiltonian is called a Legendre trans-
formation and the Lagrangian and Hamiltonian are called Legendre transforms of each other. The
purpose of this transformation is to exchange the role of the velocities and conjugated momenta as
the independent variables. Legendre transformations are well known in thermodynamics where e.g.
the enthalpy H(S, P ) and Gibbs free energy G(T, P ) = H(S, P ) − TS are Legendre transforms of
each other.

11 Components of a vector or tensor are denoted by small greek subscripts α, β, γ, . . . . They will
typically represent one of the cartesian components x, y, z.
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We should note that in the presence of electromagnetic fields the canonical momen-
tum �p is no longer equal to the product of mass and velocity. The latter is therefore
often also called the kinematical or mechanical momentum �π

�π ≡ me �v = �p + e �A(�r, t) (2.57)

because the kinetic energy is defined as

T =
1
2
me�v

2 =
1

2me
�π 2 (2.58)

Inserting the expression for the canonical momentum, Eq. (2.56), in the definition
of the classical Hamiltonian, Eq. (2.54), we then obtain

H =
me �v · �v

2
− e φ(�r, t) (2.59)

However, in order to use the usual substitution rule, Eq. (2.45), for the transition
to quantum mechanics, the classical Hamiltonian has to be written in terms of the
canonical momentum �p, and not the velocity �v. But with the help of Eq. (2.57) we
can replace the mechanical momentum by the canonical momentum and get

H =
1

2me

[
�p + e �A(�r, t)

]2

− e φ(�r, t) (2.60)

When we apply now the substitution rules, Eqs. (2.45) and (2.46), and let both sides
act on the time-dependent wavefunction of the electron, |ψ(�r, t)〉, we obtain the time-
dependent Schrödinger equation

ı�
∂

∂t
|ψ(�r, t)〉 = Ĥ |ψ(�r, t)〉 (2.61)

where the quantum mechanical Hamiltonian operator Ĥ for a single particle is
given as

Ĥ =
1

2me

[
�̂p + e �̂A(�r, t)

]2

− e φ̂(�r, t) (2.62)

In the Coulomb gauge, where one chooses �∇· �A = 0 [see Exercise 2.7], this can then
be written as

Ĥ =
1

2me
�̂p 2 +

1
me

e �̂A(�r, t) · �̂p +
1

2me
e2

[
�̂A(�r, t)

]2

− e φ̂(�r, t) (2.63)

This is a non-relativistic, Schrödinger, Hamiltonian for a single, spin-less particle. In
Section 2.8 it will be generalized to the case of many particles, electrons and nuclei.

Exercise 2.7 Show that in the static case the vector potential �A can be chosen to be diver-

gence free, i.e. �∇ · �A = 0, without effect on the magnetic induction. Secondly, investigate
what consequences this choice has for time-dependent potentials and fields.

Hint: Remember that any vector field �F (�r, t) can be separated in two components

�F (�r, t) = �FT (�r, t) + �FL(�r, t)
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where �FT (�r, t) and �FL(�r, t) are the transverse or solenoidal and longitudinal or irrotational
components that are defined by the following relations

∇ · �FT (�r, t) = 0

∇× �FL(�r, t) = 0

2.6 Minimal Coupling—Relativistically

In the last section, a non-relativistic Hamiltonian for a spin-less particle was derived.
However, electrons have spin and in general it would be desirable to use a Hamil-
tonian operator that fulfills the requirements of special relativity. The so-called Dirac
Hamiltonian operator is such a relativistic operator for a single particle in the
presence of an electromagnetic field. It can be derived in the same ways as the
non-relativistic analogue was obtained in the previous section.

The Lorentz force in Eq. (2.43) is unchanged in special relativity, because elec-
tromagnetism in Maxwell’s formulation fulfills the requirements of special relativity.12

Newton’s second law, on the other hand,

�F =
d

dt
(mr�v) (2.64)

is changed due to the velocity dependence of the relativistic mass mr

mr =
m√

1 − �v 2

c2

(2.65)

where m is the rest mass.
In complete analogy to the non-relativistic case we have to set up a Lagrangian

again that, inserted in Lagrange’s equations, Eq. (2.49), should yield Newton’s second
law, Eq. (2.64). The following Lagrangian

L(�r,�v, t) = −me c2

√
1 − �v 2

c2
+ e φ(�r, t) − e �v · �A(�r, t) (2.66)

can be shown to have the correct form [see Exercise 2.8].

Exercise 2.8 Show that the relativistic Lagrangian in Eq. (2.66) also fulfills the Lagrange
equations (2.49).

The components of the canonical momentum vector are again obtained as partial
derivatives of the Lagrangian

12 Maxwell’s theory of electromagnetism was actually the first theory that fulfilled the require-
ments of special relativity (i.e. the equations are invariant under a Lorentz transformation), even
before special relativity was formulated by Einstein.
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pα =
∂L(�r,�v, t)

∂vα
=

me vα√
1 − �v 2

c2

− e Aα(�r, t) (2.67)

With that, we have now all the necessary ingredients for the classical Hamiltonian
according to Eq. (2.54) [see Exercise 2.9]

H =
me c2√
1 − �v 2

c2

− e φ(�r, t) (2.68)

In terms of the canonical momentum the classical Hamiltonian can be written as

H =

√
m2

ec
4 + c2

[
�p + e �A(�r, t)

]2

− e φ(�r, t) (2.69)

Exercise 2.9 Derive the expressions for the classical relativistic Hamiltonian in Eqs. (2.68)
and (2.69).

Hint: In the second step you might want to use the following relation

m2
e c4

1 − �v 2

c2

= m2
e c4 + c2 m2

e �v 2

1 − �v 2

c2

in order to replace �v by �p.

Because of the square root, it is not possible to make the transition to quantum
mechanics. However, if we write the term underneath the square root as a perfect
square of something, we can continue. Therefore, Dirac proposed the following relation

m2
ec

4 + c2
[
�p + e �A(�r, t)

]2

=

{
β me c2 + c

∑
μ=x,y,z

αμ [pμ + e Aμ(�r, t)]

}2

(2.70)

where the a priori unknown α′s and β have to fulfill the conditions

α2
μ = β2 = 1 for μ = x, y, z (2.71)

αμαν + αναμ = 0 for μ �= ν (2.72)

αμβ + βαμ = 0 for μ = x, y, z (2.73)

in order for Eq. (2.70) to be fulfilled.
It turns out [see Exercise 2.10] that the simplest solution to these equations are a

set of 4 × 4 matrices defined as

β =
(

I2 02

02 −I2

)
, αμ =

(
02 σμ

σμ 02

)
(2.74)

where I2 and 02 are the 2 × 2 unit and zero matrices

I2 =
(

1 0
0 1

)
, 02 =

(
0 0
0 0

)
(2.75)



Minimal Coupling—Relativistically 19

and the σμ are the Pauli spin matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −ı
ı 0

)
, σz =

(
1 0
0 −1

)
(2.76)

Exercise 2.10 Show that the α matrices in Eq. (2.74) fulfill the conditions (2.71), (2.72)
and (2.73).

Hint: You may want to make use of the commutator and anti-commutator relations of the
Pauli spin matrices

[σi, σj ] = 2 ı εijk σk or σiσj = ı εijk σk

and

[σi, σj ]+ = 2 δij I2 or σiσi = I2

where εijk is the Levi-Civita symbol (see e.g. Mills et al., 1993), defined as

εijk =

⎧⎨⎩ 1 if i, j, k is an even permutation of x, y, z
−1 if i, j, k is an odd permutation of x, y, z
0 if any index is repeated

The classical Hamiltonian can therefore be rewritten as

H = β me c2 + c
∑

μ=x,y,z

αμ [pμ + e Aμ(�r, t)] − e φ(�r, t)I4 (2.77)

where I4 is a 4 × 4 unit matrix.
Finally, we can now apply the substitution rules, Eqs. (2.45) and (2.46), let both

sides act on the time-dependent wavefunction of the electron, |ψ(�r, t)〉, and obtain in
this way the time-dependent Dirac equation

ı�
∂

∂t
|ψ(�r, t)〉 =

{
c

∑
μ=x,y,z

αμ

[
p̂μ + e Âμ(�r, t)

]
− e φ̂(�r, t)I4 + β me c2

}
|ψ(�r, t)〉

(2.78)
Because β and the α′s are 4 × 4 matrices, the wavefunction ψ will consist of four

components

ψ =
(

ψL

ψS

)
=

⎛⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞⎟⎟⎠ (2.79)

which one calls a four-component spinor. The Dirac equation is therefore a set of four
coupled differential equations that couple the four components of the wavefunction.
The two-component spinors ψL and ψS are called the large and small component of
the wavefunction, respectively, because ψL is the main component of the wavefunction
for electrons. For a positron, on the other hand, the small component would be the
main component of the wavefunction.
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Substituting Eq. (2.74) for the α matrices and Eq. (2.79) for the four-component
wavefunction, the Dirac equation can alternatively be written as two coupled two-
component equations[

c
∑

α=x,y,z

σα

(
p̂α + e Âα

)]
|ψS〉 +

(
−e φ̂ + me c2

)
|ψL〉 = ı�

∂

∂t
|ψL〉 (2.80)

[
c

∑
α=x,y,z

σα

(
p̂α + e Âα

)]
|ψL〉 +

(
−e φ̂ − me c2

)
|ψS〉 = ı�

∂

∂t
|ψS〉 (2.81)

2.7 Elimination of the Small Component

We could continue now with the Dirac equation and derive expressions for the mole-
cular properties using standard perturbation theory. However, as stated earlier, the
exposition in these notes is restricted basically to a non-relativistic treatment with
the exception that we want to include also interactions with the spin of the electrons.
The appropriate operator can be found by reduction of the Dirac equation to a non-
relativistic two-component form, which can be achieved by several approaches.13 Here,
we want to discuss only the simplest approach, the so-called elimination of the small
component.

We assume that the potentials φ̂(�r) and �̂A(�r) are time independent and collect the
time dependence of the wavefunction in a phase factor

|ψ(�r, t)〉 = |ψ̄(�r)〉 e−ıEt/� (2.82)

which implies that ψ(�r, t) is an eigenfunction of ı� ∂
∂t with eigenvalue E. Inserting this

wavefunction in Eqs. (2.80) and (2.81) and rearranging we obtain

c

{ ∑
α=x,y,z

σα

[
p̂α + e Âα(�r)

]}
|ψ̄S〉 =

(
E + e φ̂(�r) − me c2

)
|ψ̄L〉 (2.83)

c

{ ∑
α=x,y,z

σα

[
p̂α + e Âα(�r)

]}
|ψ̄L〉 =

(
E + e φ̂(�r) + me c2

)
|ψ̄S〉 (2.84)

From Eq. (2.84) we can see that the small component of the wavefunction |ψ̄S〉 can
be expressed in terms of the large component as

|ψ̄S〉 =
c

E + e φ̂(�r) + me c2

{ ∑
α=x,y,z

σα

[
p̂α + e Âα(�r)

]}
|ψ̄L〉 (2.85)

13 See the references mentioned in the Further Reading section.
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Inserting this expression in Eq. (2.83) we obtain a single two-component equation for
the large component{ ∑

α=x,y,z

σα

[
p̂α + e Âα(�r)

]} c2

E + e φ̂(�r) + me c2

{ ∑
α=x,y,z

σα

[
p̂α + e Âα(�r)

]}
|ψ̄L〉

=
(
E + e φ̂(�r) − me c2

)
|ψ̄L〉 (2.86)

This equation together with the expression for the small component in Eq. (2.85) is
still the Dirac equation. In order to reduce it to a non-relativistic expression we have to
expand c2

E+e φ̂(�r)+ me c2 . If we introduce the non-relativistic energy ENR = E −me c2,
we can rewrite the denominator as

E + e φ̂(�r) + me c2 = 2 me c2 + ENR + e φ̂(�r) (2.87)

Since 2 me c2 is of the order of MeV we can assume that ENR + e φ̂(�r) << 2 me c2

and thus expand c2

E+e φ̂(�r)+ me c2 as

c2

E + e φ̂(�r) + me c2
=

1
2 me

⎛⎝ 1

1 + ENR+e φ̂(�r)
2 me c2

⎞⎠
=

1
2 me

(
1 − ENR + e φ̂(�r)

2 me c2
+ . . .

)
(2.88)

When we use only the first term, the equation for the large component reads

1
2 me

{ ∑
α=x,y,z

σα

[
p̂α + e Âα(�r)

]}{ ∑
α=x,y,z

σα

[
p̂α + e Âα(�r)

]}
|ψ̄L〉

=
[
ENR + e φ̂(�r)

]
|ψ̄L〉 (2.89)

The left-hand side of this equation can be simplified, if we make use of a relation

that holds for the Pauli spin matrices and two general, spin-free vector operators �̂C

and �̂D with components Ĉα and D̂α [see Exercise 2.11]( ∑
α=x,y,z

σαĈα

)⎛⎝ ∑
β=x,y,z

σβD̂β

⎞⎠ =
(
�̂C · �̂D

)
I2 + ı

∑
α=x,y,z

σα

(
�̂C × �̂D

)
α

(2.90)

and a relation that holds for the gradient operator �̂∇, a general vector operator �̂C and
a scalar function ψ [see Exercise 2.12]

�̂∇×
(

�Cψ
)

= −�C × �̂∇ψ +
(

�̂∇× �C
)

ψ (2.91)
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Exercise 2.11 Prove relation (2.90).

Hint: You may want to make use again of the commutator and anti-commutator relations of
the Pauli spin matrices given in Exercise 2.10.

Exercise 2.12 Prove relation (2.91).

The non-relativistic Schrödinger-Pauli equation can then finally be written
as [see Exercise 2.13]{

1
2 me

[
�̂p + e �̂A(�r)

]2

I2 +
e �

2 me

∑
α=x,y,z

σα

[
�̂∇× �̂A(�r)

]
α
− e φ̂(�r)I2

}
|ψ̄L〉

= ENR|ψ̄L〉 (2.92)

Exercise 2.13 Derive Eq. (2.92) from Eq. (2.89) using Eqs. (2.90) and (2.91).

On comparison with the Schrödinger Hamiltonian in Eq. (2.62) we can identify
the additional term due to the interaction of the electron spin with a magnetic field,
a so-called Zeeman term

ĤZeeman =
e �

2 me

∑
α=x,y,z

σα

[
�̂∇× �̂A(�r)

]
α

(2.93)

The electron spin operator �̂s in units of Js is related to the Pauli spin matrices
�σ by

�̂s =
�

2
�σ (2.94)

and the electron spin Zeeman operator becomes therefore

ĤZeeman =
2 e

2 me
�̂s ·

[
�̂∇× �̂A(�r)

]
(2.95)

However, from quantum electrodynamics we know that this should be written as

ĤZeeman =
ge e

2 me
�̂s ·

[
�̂∇× �̂A(�r)

]
(2.96)

where ge ≈ 2.0023 is the electron g-factor.
Including also the next term of the expansion, Eq. (2.88), gives rise to additional

operators including the mass-velocity, Darwin and one-electron spin-orbit operators,
which can be used in perturbation theory calculations of relativistic corrections to the
non-relativistic results of the Schrödinger equation and molecular properties. However,
the expansion is based on the assumption that the scalar potential φ̂(�r) is small, which
is not fulfilled for the inner electrons of heavy atoms, because close to the nucleus they
are exposed to the strong Coulomb potential of the nucleus. For this situation the
expansion is then no longer valid. Alternative expansions exist, which circumvent this
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problem, like, e.g. the zeroth-order regular approximation (ZORA) by Chang et al.
(1986) and van Lenthe et al. (1993).

2.8 The Molecular Electronic Hamiltonian

In the last three sections we have considered the effect of a time-dependent external
electric field �E(�r, t) and a magnetic induction �B(�r, t) on the motion of an electron and
denoted the corresponding potentials with φ(�r, t) and �A(�r, t). In the present section
we want to collect all the terms and derive our final expression for the molecular
electronic Hamiltonian. However, we will not restrict ourselves to the case of exter-
nal fields because in the following chapters we want to study also interactions with
other sources of electromagnetic fields such as magnetic dipole moments and electric
quadrupole moments of the nuclei, the rotation of the molecule as well as interactions
with field gradients. Therefore, we do not include the superscripts B and E on the
vector and scalar potential in this section. On the other hand, we will assume that
the perturbations are time independent. The time-dependent case is considered in
Section 3.9.

In the previous sections it was shown that in the minimal coupling approximation
the vector potential enters the mechanical momentum of electron i

π̂i = me�̂vi = �̂pi + e �̂A(�ri) (2.97)

As we are working within the Born–Oppenheimer approximation the nuclei are fixed
in space and there is thus no coupling between the momenta of the nuclei and the
vector potential.

Secondly, terms consisting of the scalar potential times the charges of the particles
have to be added to the Hamiltonian. Although we are only interested in the electronic
Hamiltonian, one should also add the constant contribution from the interaction of
the scalar potential with the nuclear charges. In total, the following terms due to the
scalar potential have to be added

−e

N∑
i

φ̂(�ri) + e

M∑
K

ZK φ̂(�RK) (2.98)

The electronic Hamiltonian becomes then

Ĥ =
1

2me

N∑
i

[
�̂pi + e �̂A(�ri)

]2

− e2

4πε0

NM∑
iK

ZK

|�ri − �RK |

+
e2

4πε0

∑
K<L

ZKZL

|�RK − �RL|
+

e2

4πε0

∑
i<j

1
|�ri − �rj | (2.99)

−
N∑
i

eφ̂(�ri) + e
M∑
K

ZK φ̂(�RK)
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Thirdly, the interaction of the spin of the electrons with magnetic fields is
introduced via the Zeeman term of the Pauli Hamiltonian, Eq. (2.96),

ĤZeeman =
N∑
i

gee

2me
�̂si ·

[
�̂∇× �̂A(�ri)

]
(2.100)

Collecting all terms we can finally write the molecular electronic Hamiltonian
operator Ĥ in the presence of an electromagnetic field as

Ĥ = Ĥ(0) + Ĥ(1) + Ĥ(2)

=
N∑
i

ĥ(0)(i) +
∑
i<j

ĝ(i, j) + Ĥ(0)
nuc +

N∑
i

ĥ(1)(i) + Ĥ(1)
nuc +

N∑
i

ĥ(2)(i) (2.101)

Ĥ(0) is the unperturbed Hamiltonian from Eq. (2.9) and contains one-electron ĥ(0)(i),
two-electron ĝ(i, j) and nuclear Ĥ

(0)
nuc contributions

ĥ(0)(i) =
1

2me
�̂p 2

i − e2

4πε0

M∑
K

ZK

|�ri − �RK | (2.102)

ĝ(i, j) =
e2

4πε0

1
|�ri − �rj | (2.103)

Ĥ(0)
nuc =

e2

4πε0

∑
K<L

ZKZL

|�RK − �RL|
(2.104)

Ĥ(1) includes all one-electron, ĥ(1)(i), and nuclear, Ĥ
(1)
nuc, operators, which are linear

in the perturbing field and thus first order

ĥ(1)(i) =
e

me

�̂A(�ri) · �̂pi +
gee

2me
�̂si ·

[
�̂∇× �̂A(�ri)

]
− e φ̂(�ri) (2.105)

Ĥ(1)
nuc = e

M∑
K

ZK φ̂(�RK) (2.106)

where we have assumed the Coulomb gauge, i.e. �∇ · �A = 0, again. Finally, Ĥ(2)

contains the one-electron operators quadratic in the perturbations and is thus second
order

ĥ(2)(i) =
e2

2me

�̂A 2(�ri) (2.107)

In Chapters 4, 5 and 6 explicit forms for these perturbation Hamiltonian
operators will be derived by expressing the scalar and vector potentials in terms
of components of the electric field Eα, the electric field gradient Eαβ , the magnetic
induction Bα, the nuclear moment mK

α and the rotation of the molecule. The resulting
operators are also collected in Appendix A.

In the meantime we will in Chapter 3 discuss perturbations by a general field with
tensor components Fα···. With the notation Fα··· we will cover both vector fields,
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�F , with three components Fα as well as second-rank tensor fields, F , with nine
components Fαβ like the electric-field gradient tensor E. The first and second-order
perturbation Hamiltonians Ĥ(1) + Ĥ(2), in Eq. (2.101), will then be expressed as the
scalar or tensor product of the perturbations, i.e. fields or magnetic moments, and
two interaction or perturbation operators ÔF

α··· and ÔFF
αβ···

Ĥ(1) + Ĥ(2) =
∑
α···

ÔF
α··· Fα··· +

∑
α,β,···

Fα··· ÔFF
αβ··· Fβ··· (2.108)

With Ôα··· we denote cartesian components of a vector operator Ôα as well as com-
ponents of a second-rank tensor operator Ôαβ , depending on the situation. Similarly,
Ôαβ··· stands for second- Ôαβ , third- Ôαβγ and fourth-rank tensor operators Ôαβγδ.
The superscripts F and FF are labels attached to the operators in order to associate
them with their corresponding fields. In later chapters it will be convenient to express
the perturbation operators as the sum over all electrons

ÔF
α··· =

N∑
i

ôFi,α··· (2.109)

ÔFF
αβ··· =

N∑
i

ôFF
i,αβ··· (2.110)

where ôFi,α··· and ôFF
i,αβ··· are then the perturbation operators acting on electron i alone.

2.9 Gauge Transformations

In Section 2.4 it was mentioned that the vector and scalar potentials, �A(�ri, t) and
φ(�ri, t), are not uniquely determined by their relations to the fields, �E(�ri, t) and �B(�ri, t),
in Eqs. (2.33) and (2.34). A simultaneous gauge transformation of the two potentials
with a gauge function χ(�r, t), Eqs. (2.41) and (2.42), changes the potentials but leaves
the fields �E(�ri, t) and �B(�ri, t) unchanged.

The fact that the observable fields, �E(�ri, t) and �B(�ri, t) do not change under such
a gauge transformation, implies that all equations describing the physics of a sys-
tem must be form invariant under this gauge transformation. This applies in
particular to the time-dependent Schrödinger equation

ı�
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.111)

with the Hamiltonian Ĥ given in Eq. (2.99).
Replacing the potentials φ(�ri, t) and �A(�ri, t) in the Hamiltonian Ĥ by φ′(�ri, t) and

�A′(�ri, t), according to the gauge transformation of second kind in Eqs. (2.41) and
(2.42), yields a new Hamiltonian Ĥ ′
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Ĥ ′ =
1

2me

N∑
i

[
�̂pi + e �̂A(�ri, t) + e�∇χ(�ri, t)

]2

−
N∑
i

[
eφ̂(�ri, t) − e

∂χ(�ri, t)
∂t

]

− e2

4πε0

NM∑
iK

ZK

|�ri − �RK | +
e2

4πε0

∑
i<j

1
|�ri − �rj | (2.112)

where the terms in Eq. (2.99), which depend only on nuclear coordinates have been
excluded. Their inclusion would require that we go beyond the Born–Oppenheimer
approximation and also include the nuclear kinetic energy terms 1

2

∑
K �̂π2

K/mK with

kinematical momentum operators �̂πK depending on the vector potential �̂A(�RK , t) as
given in Eq. (2.57). This gauge-transformed Hamiltonian Ĥ ′ can also be obtained
directly by the following transformation [see Exercise 2.14]

Ĥ ′ − ı�
∂

∂t
= e−ı

∑
i

e
�

χ(�ri,t)

(
Ĥ − ı�

∂

∂t

)
eı

∑
i

e
�

χ(�ri,t) (2.113)

where the summation is over all electrons i.

Exercise 2.14 Prove Eq. (2.113) for a one-electron system, i.e. with the Hamiltonian in Eq.

(2.62) and with a one-electron transformation operator eı e
�

χ(�r,t).

Form invariance of the time-dependent Schrödinger equation under the gauge trans-
formations in Eqs. (2.41) and (2.42) or in Eq. (2.113) is therefore obtained if also the
wavefunction Ψ(t) is simultaneously transformed according to

|Ψ(t)〉 → |Ψ′(t)〉 = e−ı
∑

i
e
�

χ(�ri,t) |Ψ(t)〉 (2.114)

which is called a gauge transformation of the first kind.
Similarly, form invariance of the time-independent Schrödinger equation under a

gauge transformation is guaranteed by the simultaneous gauge transformation of the
total Hamiltonian

Ĥ ′ = e−ı
∑

i
e
�

χ(�ri) Ĥ eı
∑

i
e
�

χ(�ri) (2.115)

or the vector potential in the Hamiltonian

�A(�ri) → �A′(�ri) = �A(�ri) + �∇χ(�ri) (2.116)

and the gauge transformation of the time-independent wavefunction

|Ψ〉 → |Ψ′〉 = e−ı
∑

i
e
�

χ(�ri) |Ψ〉 (2.117)

The form invariance of the Schrödinger equation will then lead to gauge invariant
expectation values of the Hamiltonian. However, this will not be the case for an
arbitrary operator. In particular, it turns out that expectation values of the canonical
momentum operator, given in Eq. (2.45), are not gauge invariant, whereas expectation
values of the mechanical or kinematical momentum operator, given in Eq. (2.97), are
gauge invariant [see Exercise 2.15]
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〈Ψ′ |
∑

i

�̂π′
i |Ψ′〉 = 〈Ψ |

∑
i

�̂πi |Ψ〉 (2.118)

The mechanical or kinematical momentum operator is therefore sometimes also called
the gauge invariant momentum operator.

Exercise 2.15 Prove equation (2.118) for a one-electron system, i.e. with the kinemat-
ical momentum operator in Eq. (2.57) and with a one-electron transformation operator

eı e
�

χ(�r,t).

An important gauge transformation in the context of the calculation of static
molecular properties is given by the following gauge function

χ(�ri) = −1
2

�B × �RGO · �ri (2.119)

where �RGO is the arbitrary gauge origin. This gauge function implies that

�∇χ(�ri) = −1
2

�B × �RGO (2.120)

and that the vector potential for a uniform magnetic induction

�AB′
(�ri) =

1
2

�B × (�ri − �RGO) (2.121)

previously given in Eq. (2.40), becomes a linear function of the arbitrary gauge ori-
gin �RGO under this gauge transformation. This has important consequences for all
magnetic properties that will be discussed in Section 5.10.

For time-dependent properties three other gauge transformations will play an
important role. Let us consider the case that the scalar potential φ(�r, t) is zero and
that the vector potential �A(t) depends only on time. The latter assumption implies,
according to Eq. (2.34), that the magnetic field vanishes. In the first transformation
we choose now the gauge function to be

χ(�ri, t) = − �A(t) · �ri (2.122)

According to Eqs. (2.41) and (2.42) the transformed potentials then become

�A′(�ri, t) = �A(t) + �∇χ(�ri, t) = 0 (2.123)

φ′(�ri, t) = φ(�ri, t) − ∂χ(�ri, t)
∂t

=
∂ �A(t) · �ri

∂t
= −�E(t) · �ri (2.124)

where the last equality is due to the definition of the vector potential in Eq. (2.33). The
effect of this gauge transformation is that the time-dependent electric field will enter
the Hamiltonian via the scalar potential instead of via the vector potential and that
it couples the time-dependent electric field with the position vectors of the electrons.
This gauge is therefore called the length gauge.
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In the second transformation we choose the gauge function to be

χ(t) = − e

2me

∫ t

0

�A 2(t′)dt′ (2.125)

giving rise to a scalar potential

φ′(t) = −∂χ(t)
∂t

=
e

2me

�A 2(t) (2.126)

which cancels the second-order contribution, Eq. (2.107), to the molecular Hamil-
tonian. The time-dependent electric field enters in this gauge the molecular Hamil-

tonian only via the linear �̂A(t) · �̂pi term in Eq. (2.105) and is thus coupled through its
vector potential to the canonical momentum or velocity of the electrons. This gauge
is called the velocity gauge.

Finally, in the Lorenz gauge the gauge function χ(�ri, t) is chosen in such a
way that

�∇ · �A′(�ri, t) +
1
c2

∂φ′(�ri, t)
∂t

= 0 (2.127)

With this gauge, the third and fourth Maxwell equations (2.37) and (2.38) take, in
vacuum, a simple form in terms of the potentials

∇2φ(�r, t) − 1
c

∂2φ(�r, t)
∂t2

= 0 (2.128)

∇2 �A(�r, t) − 1
c

∂2 �A(�r, t)
∂t2

= 0 (2.129)
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Perturbation Theory

In the previous chapter we have derived the molecular electronic Hamiltonian Ĥ in the
presence of static electromagnetic fields or fields due to nuclear moments. Throughout
this chapter we will consider a general field and denote it as �F with components Fα···.
Examples for Fα··· are one of the three components of the electric field Eα, of the
magnetic induction Bα, of the nuclear moment mK

α of a magnetic nucleus K or one of
the nine components of the field gradient Eαβ .1

Our first task in this chapter is to obtain expressions for the wavefunction |Ψ0( �F)〉
of the ground state of our system in the presence of the components of such a static
field and afterwards expressions for the energy E0( �F) and for the expectation value
〈Ψ0( �F) | P̂ |Ψ0( �F)〉 of an arbitrary operator P̂ in the presence of the field. This means
that we have to solve the time-independent Schrödinger equation for the system

Ĥ( �F) |Ψ0( �F)〉 = E0( �F) |Ψ0( �F)〉 (3.1)

However, we consider only electromagnetic fields that cause a slight change in the
nuclear and electronic structure of the molecules and we treat them as mere pertur-
bations of the wavefunction and energy of our system. Furthermore, we are often
more interested in these small changes in the wavefunction and energy of the system
than in the final state of the system itself. Therefore, we will not attempt to solve
Eq. (3.1) directly but rather apply time-independent perturbation theory2 and
time-independent response theory. We consider throughout the book only prop-
erties of molecules in their electronic ground state, because most of the computational
methods discussed in Part III are restricted to the electronic ground state. Pertur-
bation theory as discussed in the present chapter could, however, also be applied to
non-degenerate excited states.

Our second task is to generalize this approach to the case of time-dependent fields
and the solution of the time-dependent Schrödinger equation

ı�
∂

∂t
|Ψ0(t, �F)〉 = Ĥ(t) |Ψ0(t, �F)〉 (3.2)

1 The subscript α · · · indicates thus that we are dealing with tensor fields of different rank as
discussed in Section 2.8.

2 Sometimes, it is also called Schrödinger or Rayleigh–Schrödinger perturbation theory, because
Erwin Schrödinger developed it for the calculation of the Stark effect on the hydrogen atom
(Schrödinger, 1926).
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There, we will employ time-dependent perturbation theory in the form of time-
dependent response theory in order to derive terms in the expansion of the
time-dependent wavefunction |Ψ0(t, �F)〉 and of a time-dependent expectation value
of a given operator P̂ , 〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉. The time-dependent Schrödinger equa-
tion, i.e. Eq. (3.2), contrary to the time-independent version is not an eigenvalue
equation with the energy as eigenvalue. Therefore, we will not consider the energy in
Section 3.11 but only expectation values of the operators corresponding to physical
observables. In Section 12.3, however, we will briefly discuss an alternative approach
that defines a quasi- or pseudo-energy also for the time-dependent case.

Before starting properly with perturbation theory we will first introduce in the
next section the Hellmann–Feynman theorem, which establishes a deep connection
between the energy and molecular properties calculated as expectation values and
that does not rely on perturbation theory.

3.1 The Hellmann–Feynman Theorem

In Part II we will see that all molecular properties can be defined as derivatives of the
energy with respect to the strength of external or internal perturbations. A theorem,
which will become very useful in this context, is the Hellmann–Feynman theorem.

Let us, for its derivation, consider a Hamiltonian Ĥ( �F) with eigenfunctions
|Ψ0( �F)〉 and eigenvalues E0( �F) that all depend on the general electromagnetic field
�F with components Fα···

Ĥ( �F) |Ψ0( �F)〉 = E0( �F) |Ψ0( �F)〉 (3.3)

We assume further that the eigenfunctions are normalized for all values of Fα···

〈Ψ0( �F) | Ψ0( �F)〉 = 1 (3.4)

We are now interested in how the energy changes as a function of the strength
of the component Fα··· of the field. Instead of the dependence on a field �F we could
also consider any other parameter on which the Hamiltonian and therefore the energy
and wavefunction depend. A typical example of such a parameter is the change in the
position vector �RK of a nucleus K. However, here we want to know the first derivative
of the energy with respect to a component Fα··· of a general electromagnetic field

dE0( �F)
dFα···

=
d

dFα···
〈Ψ0( �F) |Ĥ( �F) |Ψ0( �F)〉 (3.5)

= 〈Ψ0( �F) | ∂Ĥ( �F)
∂Fα···

|Ψ0( �F)〉

+ 〈dΨ0( �F)
dFα···

|Ĥ( �F) |Ψ0( �F)〉 + 〈Ψ0( �F) |Ĥ( �F) | dΨ0( �F)
dFα···

〉

The Hamiltonian depends only explicitly on the field, which allows us to replace the
total by the partial derivative of the Hamiltonian. In the second and third terms we
can make use of the fact that Ψ0( �F) is an eigenfunction of Ĥ( �F), Eq. (3.3), and that
the eigenvalues are real, which allows us to write
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dE0( �F)
dFα···

= 〈Ψ0( �F) | ∂Ĥ( �F)
∂Fα···

|Ψ0( �F)〉 (3.6)

+ E0( �F)

(
〈dΨ0( �F)

dFα···
| Ψ0( �F)〉 + 〈Ψ0( �F) | dΨ0( �F)

dFα···
〉
)

= 〈Ψ0( �F) | ∂Ĥ( �F)
∂Fα···

|Ψ0( �F)〉 + E0( �F)
d

dFα···
〈Ψ0( �F) | Ψ0( �F)〉

The last term vanishes, because we have assumed that the eigenfunctions Ψ0( �F) are
normalized for any value of Fα···, Eq. (3.4). We thus arrive at the conclusion that the
first derivative of the energy with respect to the component Fα··· of the field can be
obtained as an expectation value of the derivative of the Hamiltonian

dE0( �F)
dFα···

= 〈Ψ0( �F) | ∂Ĥ( �F)
∂Fα···

|Ψ0( �F)〉 (3.7)

Evaluating the derivative of the Hamiltonian with respect to the component Fα··· of a
field �F and therefore of the two perturbation Hamiltonians Ĥ(1) + Ĥ(2) in Eq. (2.108)
leads us to a possibly field-dependent operator, which we denote3 with P̂ ( �F) and that
is then given as

P̂ ( �F) =
∂Ĥ( �F)
∂Fα···

= ÔF
α··· +

∑
β···

(
ÔFF

αβ··· + ÔFF
βα···

)
Fβ··· (3.8)

In the presence of the field the operator P̂ ( �F) consists of a field-independent or zeroth-
order term

P̂ (0) = ÔF
α··· ≡ P̂ (3.9)

for which we will mostly use the symbol P̂ in the following, and a first-order, field-
dependent contribution

P̂ (1)( �F) =
∑
β···

(
ÔFF

αβ··· + ÔFF
βα···

)
Fβ··· (3.10)

Often, one is interested in the derivative of the energy evaluated at zero field
strength, i.e. for | �F| = 0. This then gives

∂E0( �F)
∂Fα···

∣∣∣∣∣
| �F|=0

= 〈Ψ(0)
0 |

(
∂Ĥ( �F)
∂Fα···

)
| �F|=0

|Ψ(0)
0 〉 (3.11)

= 〈Ψ(0)
0 |ÔF

α··· |Ψ(0)
0 〉 = 〈Ψ(0)

0 | P̂ |Ψ(0)
0 〉 (3.12)

3 In the derivations in this chapter it is convenient to distinguish between the operators of the

perturbing fields, ÔF
α··· and ÔFF

αβ···, and the operator whose expectation value we are evaluating,

although they are often the same operator. Therefore, we will call the latter P̂ ( �F) or P̂ .
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which is called the the generalized Hellmann-Feynman theorem4 and establishes
the equivalence between the first derivative of the energy and the expectation value
of an operator, given as the corresponding derivative of the Hamiltonian. One should
note that in the derivation of the Hellmann–Feynman theorem, we do not assume
that we have solved the Schrödinger equation for the system without the field �F ,
Eq. (2.10), as we are going to do in the following sections on perturbation theory.
This detail will become important later when we discuss approximate methods for
calculating molecular properties in Part III.

3.2 Time-Independent Perturbation Theory

Perturbation theory builds on the partitioning of the Hamiltonian from Eq. (2.101) in
an unperturbed Hamiltonian Ĥ(0) and perturbation Hamiltonians λĤ(1) + λ2Ĥ(2),

Ĥ = Ĥ(0) + λĤ(1) + λ2Ĥ(2) (3.13)

where λ is a dimensionless ordering parameter, which is introduced during the deriva-
tion of the perturbation theory expressions and is discarded afterwards. For λ = 1 the
perturbation is turned on, while λ = 0 corresponds to the unperturbed system. The
linear, quadratic or general mth-order dependence of the operators, energies and wave-
functions on the perturbing field �F is therefore shown twice: (a) by the superscripts
(m) and (b) explicitly by the powers of the ordering parameter λ.

We suppose now that the energies E
(0)
n and wavefunctions |Ψ(0)

n 〉 (n = 0, 1, 2, · · · ) of
the unperturbed Hamiltonian Ĥ(0) are known, i.e. that the unperturbed Schrödinger
equation

Ĥ(0) |Ψ(0)
n 〉 = E(0)

n |Ψ(0)
n 〉 (3.14)

has been solved exactly. This is Eq. (2.10), which we from now on will write without
explicitly stating the dependence of the many-electron wavefunction |Ψ(0)

n 〉 on the coor-
dinates. In reality, this is of course not possible. However, we will ignore this fact until
we discuss practical methods for the calculation of molecular properties in Part III.
There, we will distinguish between two types of computational methods. In the first
type of methods one makes approximations to the perturbation theory expressions
that were derived assuming that Eq. (3.14) can be solved exactly, whereas in the sec-
ond type of methods one starts from an approximate solution to Eq. (3.14) and derives
expressions for the molecular properties using perturbation theory with approximate
states. We will later also use the fact that the functions {|Ψ(0)

n 〉} are eigenfunctions of
the Hermitian operator Ĥ(0) and therefore form a complete orthonormal set. Further-
more, we restrict ourselves here to non-degenerate perturbation theory, which means
that the unperturbed state |Ψ(0)

0 〉 of the system cannot be degenerate.
Finally, we assume that the eigenfunction |Ψ0( �F)〉 and eigenvalue E0( �F) of the

full Hamiltonian Ĥ are close to those of the unperturbed Hamiltonian Ĥ(0), i.e. the
perturbation by �F is indeed small. We can then expand the perturbed wavefunction

4 It is called the generalized Hellmann–Feynman theorem because Hellmann (1937) and Feynman
(1939) considered originally the changes in energy due to a change in the geometry.
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and energy, |Ψ0( �F)〉 and E0( �F), in a formal power series in λ around the exact
solutions E

(0)
0 and |Ψ(0)

0 〉 of the unperturbed Hamiltonian Ĥ(0)

E0( �F) = E
(0)
0 + λE

(1)
0 ( �F) + λ2E

(2)
0 ( �F) + · · · (3.15)

|Ψ0( �F)〉 = |Ψ(0)
0 〉 + λ|Ψ(1)

0 ( �F)〉 + λ2|Ψ(2)
0 ( �F)〉 + · · · (3.16)

The energy E
(m)
0 ( �F) and wavefunction |Ψ(m)

0 ( �F)〉 are called the mth-order correction
to the energy and wavefunction. Terms like Ĥ(1)|Ψ(2)

0 ( �F)〉 or E
(2)
0 ( �F)|Ψ(1)

0 ( �F)〉 are
then third-order terms. When we assume that the perturbations are small, we actually
mean that with increasing order m the corrections to the energy and wavefunction
become systematically smaller.

In order to make the derivations mathematically easier without changing the final
expressions we require the perturbed wavefunction |Ψ0( �F)〉 to be normalized in the
following way, called intermediate normalization

1 = 〈Ψ(0)
0 | Ψ0( �F)〉

= 〈Ψ(0)
0 | Ψ(0)

0 〉 + λ〈Ψ(0)
0 | Ψ(1)

0 ( �F)〉 + λ2〈Ψ(0)
0 | Ψ(2)

0 ( �F)〉 + · · · (3.17)

As the unperturbed wavefunction |Ψ(0)
0 〉 is normalized (〈Ψ(0)

0 | Ψ(0)
0 〉 = 1), this leads to

the following conditions on the higher-order (n > 0) corrections to the wavefunction

〈Ψ(0)
0 | Ψ(n)

0 ( �F)〉 = 0 (3.18)

which we will use later. Although this is very convenient for the derivation of the
higher-order corrections to the energy, one should realize that the wavefunction
|Ψ0( �F)〉 is not normalized, if one truncates the power series Eq. (3.16) at a finite
order. Therefore, one has to renormalize the truncated wavefunction at each order.
However, this is not necessary for the second-order correction to the energy that we
will derive here.

We are ready now to insert the power-series expansions of the perturbed
wavefunction and energy in the Schrödinger equation, Eq. (3.1),(

Ĥ(0) + λĤ(1) + λ2Ĥ(2)
)(

|Ψ(0)
0 〉 + λ|Ψ(1)

0 ( �F)〉 + λ2|Ψ(2)
0 ( �F)〉 + · · ·

)
(3.19)

=
(
E

(0)
0 + λE

(1)
0 ( �F) + λ2E

(2)
0 ( �F) + · · ·

)
×

(
|Ψ(0)

0 〉 + λ|Ψ(1)
0 ( �F)〉 + λ2|Ψ(2)

0 ( �F)〉 + · · ·
)

The two sides of this equation are power series in λ. Therefore, the terms multiplied
by the same powers of λ, i.e. terms of the same order, have to be equal on both sides
in order for the whole equation to be fulfilled. We thus obtain a series of equations,
where the zeroth-order equation is just the equation for the unperturbed Hamiltonian,
Eq. (3.14) again. The first- and second-order equations are

Ĥ(0)|Ψ(1)
0 ( �F)〉 + Ĥ(1)|Ψ(0)

0 〉 = E
(0)
0 |Ψ(1)

0 ( �F)〉 + E
(1)
0 ( �F)|Ψ(0)

0 〉 (3.20)
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Ĥ(0)|Ψ(2)
0 ( �F)〉 + Ĥ(1)|Ψ(1)

0 ( �F)〉 + Ĥ(2)|Ψ(0)
0 〉

= E
(0)
0 |Ψ(2)

0 ( �F)〉 + E
(1)
0 ( �F)|Ψ(1)

0 ( �F)〉 + E
(2)
0 ( �F)|Ψ(0)

0 〉 (3.21)

and the general mth-order equation for m > 2 can be written as

Ĥ(0)|Ψ(m)
0 ( �F)〉 + Ĥ(1)|Ψ(m−1)

0 ( �F)〉 + Ĥ(2)|Ψ(m−2)
0 ( �F)〉

= E
(0)
0 |Ψ(m)

0 ( �F)〉 +
m−1∑
i=1

E
(i)
0 ( �F)|Ψ(m−i)

0 ( �F)〉 + E
(m)
0 ( �F)|Ψ(0)

0 〉 (3.22)

These equations are inhomogeneous differential equations, which can sometimes
be solved analytically for the first-, second- and higher-order corrections to the wave-
function. But normally they are solved by expanding the mth-order correction to
the wavefunction |Ψ(m)

0 ( �F)〉 in a complete basis of functions, which fulfill the same
boundary conditions as the unknown function. The eigenfunctions {|Ψ(0)

n 〉} of the
unperturbed Hamiltonian Ĥ(0) form a complete set and are therefore usually chosen
as the basis set for the mth-order correction to the wavefunction

| Ψ(m)
0 ( �F)〉 =

∑
n�=0

|Ψ(0)
n 〉 C

(m)
n0 ( �F) (3.23)

The expansion coefficients C
(m)
n0 ( �F) are defined as the projection of the mth-order

correction to the wavefunction against the corresponding basis functions 〈Ψ(0)
n |

[see Exercise 3.1]
C

(m)
n0 ( �F) = 〈Ψ(0)

n | Ψ(m)
0 ( �F)〉 (3.24)

The term with n = 0 can be excluded from the summation in Eq. (3.23) because com-
parison of Eq. (3.24) with Eq. (3.18) shows that the corresponding coefficient C

(m)
00 ( �F)

vanishes as a direct consequence of intermediate normalization of the wavefunction.
This is one of the reasons for using the intermediate normalization.

Exercise 3.1 Prove the relation for the coefficients of the mth-order correction to the
wavefunction Eq. (3.24).

Inserting the expansion of the mth-order correction to the wavefunction, Eq. (3.23),
into the mth-order equation, Eq. (3.22), gives

Ĥ(0)
∑
k �=0

|Ψ(0)
k 〉 C

(m)
k0 ( �F) +

2∑
i=1

Ĥ(i)
∑

k

|Ψ(0)
k 〉 C

(m−i)
k0 ( �F)

= E
(0)
0

∑
k �=0

|Ψ(0)
k 〉 C

(m)
k0 ( �F) +

m∑
i=1

E
(i)
0 ( �F)

∑
k

|Ψ(0)
k 〉 C

(m−i)
k0 ( �F) (3.25)

which holds for all orders m, if we define C
(0)
k0 ( �F) = δk0 and C

(−1)
k0 ( �F) = 0. Expressions

for the coefficients C
(m)
n0 ( �F) can then be derived from this equation by projecting
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against the corresponding basis function 〈Ψ(0)
n | and isolation of C

(m)
n0 ( �F). For the

first-order coefficients this leads to [see Exercise 3.2]

C
(1)
n0 ( �F) =

〈Ψ(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(3.26)

and the first-order correction to the wavefunction is therefore given as

| Ψ(1)
0 ( �F)〉 =

∑
n�=0

| Ψ(0)
n 〉 〈Ψ

(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(3.27)

For the coefficients of the mth-order correction to the wavefunction one obtains

C
(m)
n0 ( �F) =

2∑
i=1

∑
k

〈Ψ(0)
n |Ĥ(i) |Ψ(0)

k 〉
E

(0)
0 − E

(0)
n

C
(m−i)
k0 ( �F) −

m−1∑
i=1

E
(i)
0 ( �F)

C
(m−i)
n0 ( �F)

E
(0)
0 − E

(0)
n

(3.28)

Exercise 3.2 Derive the expression for the first-order coefficient C
(1)
n0 ( �F), Eq. (3.26).

Exercise 3.3 Derive an expression for the second-order correction to the wavefunction.

When we project Eqs. (3.20) to (3.22) on the unperturbed ground state 〈Ψ(0)
0 |

and rearrange them, we can derive expressions for the first-, second- and higher-order
(m > 2) corrections to the energy [see Exercise 3.4]

E
(1)
0 ( �F) = 〈Ψ(0)

0 |Ĥ(1) |Ψ(0)
0 〉 (3.29)

E
(2)
0 ( �F) = 〈Ψ(0)

0 |Ĥ(2) |Ψ(0)
0 〉 + 〈Ψ(0)

0 |Ĥ(1) |Ψ(1)
0 ( �F)〉 (3.30)

E
(m)
0 ( �F) = 〈Ψ(0)

0 |Ĥ(2) |Ψ(m−2)
0 ( �F)〉 + 〈Ψ(0)

0 |Ĥ(1) |Ψ(m−1)
0 ( �F)〉 (3.31)

Exercise 3.4 Derive Eqs. (3.29), (3.30) and (3.31) for the first-, second- and mth-order
corrections to the energy.

We should note that the first-order correction to the energy is independent of the
changes in the wavefunction. In general, with the mth-order wavefunction one can
calculate the energy up to order 2m + 1

E
(2m+1)
0 ( �F) = 〈Ψ(m)

0 ( �F) |Ĥ(2) |Ψ(m−1)
0 ( �F)〉 + 〈Ψ(m−1)

0 ( �F) |Ĥ(2) |Ψ(m)
0 ( �F)〉

+ 〈Ψ(m)
0 ( �F) |Ĥ(1) |Ψ(m)

0 ( �F)〉

−
m∑

i,j=1

E
(2m+1−i−j)
0 ( �F)〈Ψ(i)

0 ( �F) | Ψ(j)
0 ( �F)〉 (3.32)

which is the well-known 2m + 1 rule (Löwdin, 1965).
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Exercise 3.5 Illustrate the 2m+1 rule by deriving an expression for the third-order correc-
tion to the energy that includes only the first-order correction to the wavefunction.

Hint: Use the fact that 〈Ψ(0)
0 |Ĥ(1) |Ψ(2)

0 ( �F)〉 = 〈Ψ(2)
0 ( �F) |Ĥ(1) |Ψ(0)

0 〉∗ and find an expression

for 〈Ψ(2)
0 ( �F) |Ĥ(1) |Ψ(0)

0 〉 from Eq. (3.20).

On insertion of the first-order correction to the wavefunction in Eq. (3.30) we can
then immediately write down the expression for the second-order correction to
the energy

E
(2)
0 ( �F) = 〈Ψ(0)

0 |Ĥ(2) |Ψ(0)
0 〉 +

∑
n�=0

〈Ψ(0)
0 |Ĥ(1) |Ψ(0)

n 〉〈Ψ(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(3.33)

The second-order energy correction thus consists of two terms: a ground-state expec-
tation value5 over the second-order Hamiltonian Ĥ(2) and a so-called sum-over-states
term, which involves a summation over all excited states of the system and transi-
tion moments between the ground state and these excited states with the first-order
Hamiltonian Ĥ(1). Finally, we can insert the expressions for the first- and second-order
perturbation Hamiltonians, Eq. (2.108),

E
(2)
0 ( �F)=

∑
α,β,···

Fα···

⎛⎝〈Ψ(0)
0 |ÔFF

αβ··· |Ψ(0)
0 〉+

∑
n�=0

〈Ψ(0)
0 |ÔF

α··· |Ψ(0)
n 〉〈Ψ(0)

n |ÔF
β··· |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

⎞⎠Fβ···

(3.34)

which explicitly shows the quadratic dependence of E
(2)
0 ( �F) on components of the

field �F .

3.3 Time-Independent Response Theory

Although time-independent perturbation theory is mostly used for the derivation of
energy corrections, it is not restricted to this but can be applied to any physical
observable P and its expectation value as defined in Eq. (2.8). In this section, we
want to illustrate this for the case of an observable whose corresponding operator is
obtained as a derivative of the Hamiltonian with respect to the component Fα··· of a
field �F , i.e. the field-dependent operator P̂ ( �F) defined in Eqs. (3.8) to (3.10).

Considering now the time-independent expectation value of this operator in the
presence of the field,

〈Ψ0( �F) | P̂ ( �F) |Ψ0( �F)〉 = 〈Ψ0( �F) | P̂ |Ψ0( �F)〉 + 〈Ψ0( �F) | P̂ (1)( �F) |Ψ0( �F)〉 (3.35)

5 Sometimes, the 〈Ψ(0)
0 |Ĥ(2) |Ψ(0)

0 〉 term is considered to be only first order because it does not
include a summation over excited states. However, this is a misunderstanding and is not in agreement
with the partitioning of the Hamiltonian in Eq. (2.101).
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we can make use of the expansion of the field-dependent wavefunction |Ψ0( �F)〉,
Eq. (3.16), and obtain to first order

〈Ψ0( �F) | P̂ ( �F) |Ψ0( �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 + 〈Ψ(0)
0 | P̂ (1)( �F) |Ψ(0)

0 〉 (3.36)

+ 〈Ψ(0)
0 | P̂ |Ψ(1)

0 ( �F)〉 + 〈Ψ(1)
0 ( �F) | P̂ |Ψ(0)

0 〉 + · · ·

The last three terms are linear in the components of the field and represent the lin-
ear response of the expectation value 〈Ψ(0)

0 | P̂ |Ψ(0)
0 〉 to the field �F . Therefore, we

want to call this application of time-independent perturbation theory to the case of
an expectation value in the presence of a field also time-independent response
theory.

Inserting the expressions for the first-order wavefunction, Eq. (3.27), and for the
operator P̂ , Eqs. (3.9) and (3.10), in the first-order contributions gives

〈Ψ0( �F) | P̂ ( �F) |Ψ0( �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 (3.37)

+
∑
β···

⎛⎝〈Ψ(0)
0 |ÔFF

αβ··· + ÔFF
βα··· |Ψ(0)

0 〉 +
∑
n�=0

〈Ψ(0)
0 |ÔF

α··· |Ψ(0)
n 〉〈Ψ(0)

n |ÔF
β··· |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔF

β··· |Ψ(0)
n 〉〈Ψ(0)

n |ÔF
α··· |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

⎞⎠Fβ···

One should note that due to our choice of the operator P̂ ( �F) as first derivatives of the
Hamiltonian we could have derived the terms linear in Fβ··· also as the first derivative
of E

(2)
0 ( �F), Eq. (3.34), with respect to Fα···. However, in Section 3.11 we are going to

extend our treatment of response theory to the case of time-dependent fields, where
the energy is not the eigenvalue of the Hamiltonian and where we can only work with
expectation values.

3.4 Second Derivatives of the Energy

In this section, we want to derive expressions for the second derivatives of the energy
with respect to two components Fα··· and Fβ··· of the general electromagnetic field
without relying on perturbation theory. According to the Hellmann–Feynman theo-
rem, Eq. (3.7), the second derivative of the energy is equal to the first derivative of
the expectation value of the derivative of the Hamiltonian for a non-zero value of the
field, | �F| �= 0, i.e.

d 2E0( �F)
dFβ···dFα···

=
d

dFβ···
〈Ψ0( �F) | ∂Ĥ( �F)

∂Fα···
|Ψ0( �F)〉

= 〈dΨ0( �F)
dFβ···

| ∂Ĥ( �F)
∂Fα···

|Ψ0( �F)〉 + 〈Ψ0( �F) | ∂Ĥ( �F)
∂Fα···

| dΨ0( �F)
dFβ···

〉
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+ 〈Ψ0( �F) | ∂2Ĥ( �F)
∂Fβ···∂Fα···

|Ψ0( �F)〉 (3.38)

Inserting the first, Eq. (3.8), and second derivative of the Hamiltonian,

∂2Ĥ( �F)
∂Fβ···∂Fα···

= ÔFF
αβ··· + ÔFF

βα··· (3.39)

we obtain for the second derivative of the energy evaluated at zero field strength,
| �F| = 0,

d 2E0( �F)
dFβ···dFα···

∣∣∣∣∣
| �F|=0

=
d

dFβ···
〈Ψ0( �F) | ∂Ĥ( �F)

∂Fα···
|Ψ0( �F)〉

∣∣∣∣∣
| �F|=0

= 〈dΨ0( �F)
dFβ···

|ÔF
α··· |Ψ0( �F)〉

∣∣∣∣∣
| �F|=0

+ 〈Ψ0( �F) |ÔF
α··· |

dΨ0( �F)
dFβ···

〉
∣∣∣∣∣
| �F|=0

+ 〈Ψ(0)
0 |ÔFF

αβ··· + ÔFF
βα··· |Ψ(0)

0 〉 (3.40)

In Part III we will apply these expressions directly, but here we want to combine
them with perturbation theory as developed in Section 3.2. Inserting thus the per-
turbation theory expansion of the perturbed wavefunction |Ψ0( �F)〉, Eq. (3.16), in the
right-hand side of Eq. (3.40) we obtain for the second derivative of the energy

d 2E0( �F)
dFβ···dFα···

∣∣∣∣∣
| �F|=0

= 〈Ψ(0)
0 |ÔF

α··· |
dΨ(1)

0 ( �F)
dFβ···

∣∣∣∣∣
| �F|=0

〉 + 〈 dΨ(1)
0 ( �F)

dFβ···

∣∣∣∣∣
| �F|=0

|ÔF
α··· |Ψ(0)

0 〉(3.41)

+ 〈Ψ(0)
0 |ÔFF

αβ··· + ÔFF
βα··· |Ψ(0)

0 〉 + · · ·
Inserting the expression for the first-order wavefunction, Eq. (3.27), would bring us
back to the expression for the second-order energy correction, Eq. (3.34).

3.5 Density Matrices

The expectation value of a general one-electron but spin-free operator Ô =
∑

i ô(i) in
the unperturbed ground state |Ψ(0)

0 〉 is given as

〈Ψ(0)
0 |Ô |Ψ(0)

0 〉 (3.42)

=
∫

· · ·
∫

Ψ(0)∗
0 (�x1, �x2, · · · , �xN )

∑
i

ô(i) Ψ(0)
0 (�x1, �x2, · · · , �xN ) d�x1 · · · d�xN

Electrons are indistinguishable and each of the terms in
∑

i ô(i) will thus give the
same result

〈Ψ(0)
0 |Ô |Ψ(0)

0 〉 (3.43)

= N

∫
· · ·

∫
Ψ(0)∗

0 (�x1, �x2, · · · , �xN ) ô(1) Ψ(0)
0 (�x1, �x2, · · · , �xN ) d�x1 · · · d�xN



40 Perturbation Theory

The operator Ô is spin free and we can therefore integrate over the spin

〈Ψ(0)
0 |Ô |Ψ(0)

0 〉 (3.44)

= N

∫
· · ·

∫
Ψ(0)∗

0 (�r1, �r2, · · · , �rN ) ô(1) Ψ(0)
0 (�r1, �r2, · · · , �rN ) d�r1 · · · d�rN

In order to make use of the definition of the reduced one-electron density matrix
Eq. (2.22) we need to rearrange the kernel of the integral

〈Ψ(0)
0 |Ô |Ψ(0)

0 〉 (3.45)

= N

∫
· · ·

∫
�r ′

1=�r1

ô(1) Ψ(0)
0 (�r1, �r2, · · · , �rN ) Ψ(0)∗

0 (�r ′
1, �r2, · · · , �rN ) d�r1 · · · d�rN

The subscript �r ′
1 = �r1 on the integral means that �r ′

1 should be set equal to �r1 after
ô(1) has acted on Ψ(0)

0 (�r1, �r2, · · · , �rN ) but before the integration is carried out. This
procedure is necessary in the case that ô(1) includes a differential operator that then
should only act on Ψ(0)

0 (�r1, �r2, · · · , �rN ) and not on Ψ(0)∗
0 (�r ′

1, �r2, · · · , �rN ). We can now
use the definition of the reduced one-electron density matrix Eq. (2.22), which gives

〈Ψ(0)
0 |Ô |Ψ(0)

0 〉 =
∫

�r ′
1=�r1

ô(1) P (�r1, �r
′
1) d�r1 (3.46)

In the presence of the perturbing field �F also the ground-state electron density
Eq. (2.20) and ground-state reduced one-electron density matrix Eq. (2.22) become
field dependent

P (�r, �F) = 〈Ψ0({�ri}, �F) |D̂(�r) |Ψ0({�ri}, �F)〉 (3.47)

P (�r, �r ′, �F) = N

∫
· · ·

∫
Ψ0(�r, �r2, · · · , �rN , �F) Ψ∗

0(�r
′, �r2, · · · , �rN , �F) d�r2 · · · d�rN (3.48)

In continuation of the perturbation expansion of the wavefunction in Eq. (3.16) one
can then also expand the perturbed electron density and perturbed reduced density
matrix in a perturbation series

P (�r, �F)=P (�r) +
∑
α

P (1)
α (�r) Fα + · · · (3.49)

P (�r, �r ′, �F)=P (�r, �r ′) +
∑
α

P (1)
α (�r, �r ′) Fα + · · · (3.50)

where the first-order corrections to the electron density and to the reduced one-electron
density matrix are given as

P (1)
α (�r) = 〈Ψ(1)

0 ({�ri}) |D̂(�r) |Ψ(0)
0 ({�ri})〉 + 〈Ψ(0)

0 ({�ri}) |D̂(�r) |Ψ(1)
0 ({�ri})〉 (3.51)

P (1)
α (�r, �r ′) = N

∫
· · ·

∫
Ψ(1)

0 (�r, �r2, · · · , �rN ) Ψ(0)∗
0 (�r ′, �r2, · · · , �rN ) d�r2 · · · d�rN

+ N

∫
· · ·

∫
Ψ(0)

0 (�r, �r2, · · · , �rN ) Ψ(1)∗
0 (�r ′, �r2, · · · , �rN ) d�r2 · · · d�rN (3.52)
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In extension of Eq. (3.46) we can then express the first-order correction to a field-
dependent expectation value of the general but spin-free operator Ô with the first-order
reduced density matrix P

(1)
α (�r, �r ′) as

〈Ψ0( �F) |Ô |Ψ0( �F)〉(1) = 〈Ψ(0)
0 |Ô |Ψ(1)

0 ( �F)〉 + 〈Ψ(1)
0 ( �F) |Ô |Ψ(0)

0 〉

=
∑
α

Fα

∫
�r ′

1=�r1

ô(1) P (1)
α (�r1, �r

′
1) d�r1 (3.53)

3.6 The Ehrenfest Theorem

In Section 3.3 we looked at the dependence of an expectation value on a perturbing field
�F and expanded the expectation value in powers of this perturbation. In this section,
we want to study now the time evolution of an expectation value of an arbitrary
operator P̂ . Finally, in the section on time-dependent response theory, Section 3.11,
we will combine both and study the effects of a time-dependent perturbation Fα···(t).

Let us study the time dependence of an expectation value by deriving an expression
for the time derivative of an expectation value, i.e. an equation of motion for the
expectation value of the operator P̂

d

dt
〈Ψ(0)

0 (t) | P̂ |Ψ(0)
0 (t)〉 (3.54)

= 〈∂Ψ(0)
0 (t)
∂t

| P̂ |Ψ(0)
0 (t)〉 + 〈Ψ(0)

0 (t) | ∂P̂

∂t
|Ψ(0)

0 (t)〉 + 〈Ψ(0)
0 (t) | P̂ | ∂Ψ(0)

0 (t)
∂t

〉
The time derivative of the wavefunction is given by the time-dependent electronic

Schrödinger equation, Eq. (2.13),

∂

∂t
|Ψ(0)

0 (t)〉 = − ı

�
Ĥ |Ψ(0)

0 (t)〉 (3.55)

and correspondingly for the complex conjugate of the wavefunction

∂

∂t
〈Ψ(0)

0 (t)| =
ı

�
〈Ψ(0)

0 (t)|Ĥ (3.56)

Inserted in Eq. (3.54) we obtain

d

dt
〈Ψ(0)

0 (t) | P̂ |Ψ(0)
0 (t)〉 = − ı

�
〈Ψ(0)

0 (t) | [P̂ , Ĥ] |Ψ(0)
0 (t)〉 + 〈Ψ(0)

0 (t) | ∂P̂

∂t
|Ψ(0)

0 (t)〉
(3.57)

The second term vanishes, if the operator, P̂ , itself is independent of time, as in
all cases we consider here. We arrive thus at the Ehrenfest theorem

d

dt
〈Ψ(0)

0 (t) | P̂ |Ψ(0)
0 (t)〉 = − ı

�
〈Ψ(0)

0 (t) | [P̂ , Ĥ] |Ψ(0)
0 (t)〉 (3.58)

One should note that the Ehrenfest theorem is derived solely by application of the
time-dependent Schrödinger equation. It contains therefore the same information and
is often applied as an alternative to the time-dependent Schrödinger equation, when
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the time evolution of a system is to be determined, as in Sections 11.2 and 11.3. In
these cases the operator P̂ would typically be one of the operators that govern the
time dependence of the system (Olsen and Jørgensen, 1985; Christiansen et al., 1998b;
Olsen et al., 2005).

3.7 The Off-Diagonal Hypervirial Theorem

A second very useful theorem can be derived from the Ehrenfest theorem, if one
considers the wavefunctions of two different stationary states and the unperturbed
Hamiltonian instead of a general time-dependent wavefunction (Chen, 1964)

ı�
d

dt
〈Ψ(0)

m (t) | P̂ |Ψ(0)
n (t)〉 = 〈Ψ(0)

m (t) | [P̂ , Ĥ(0)] |Ψ(0)
n (t)〉 (3.59)

Being stationary states, Eq. (2.14), |Ψ(0)
m (t)〉 = |Ψ(0)

m 〉e− ı
�

E(0)
m t and |Ψ(0)

n (t)〉 =
|Ψ(0)

n 〉e− ı
�

E(0)
n t are eigenfunctions of Ĥ(0) and we can write

ı�
d

dt
〈Ψ(0)

m (t) | P̂ |Ψ(0)
n (t)〉 = (E(0)

n − E(0)
m )〈Ψ(0)

m (t) | P̂ |Ψ(0)
n (t)〉 (3.60)

The combination of Eqs. (3.59) and (3.60) gives for m = n the hypervirial
theorem

〈Ψ(0)
m | [P̂ , Ĥ(0)] |Ψ(0)

m 〉 = 0 (3.61)

and for m �= n the off-diagonal hypervirial theorem

〈Ψ(0)
m | [P̂ , Ĥ(0)] |Ψ(0)

n 〉 = (E(0)
n − E(0)

m )〈Ψ(0)
m | P̂ |Ψ(0)

n 〉 (3.62)

Several important relations can be derived from the off-diagonal hypervirial rela-
tion (Hansen and Bouman, 1979), if one chooses an operator P̂ that does not commute
with the Hamiltonian Ĥ(0). The most important one is obtained for P̂ = Ôr

α, which
is a cartesian component of the sum of the position operators of all electrons
defined as6

Ôr
α =

N∑
i

r̂i,α (3.63)

Recalling the well-known commutator relation

[ �̂Or, Ĥ(0)] =
ı�

me

�̂Op (3.64)

where �̂Op is the total canonical momentum operator of the electrons, whose
cartesian components are defined as

Ôp
α =

N∑
i

p̂i,α (3.65)

6 The definitions of all operators are also collected in Appendix A.
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we obtain the off-diagonal hypervirial relation for transition moments of the electronic
position and momentum operators(

E(0)
n − E(0)

m

)
〈Ψ(0)

m | �̂Or |Ψ(0)
n 〉 =

ı�

me
〈Ψ(0)

m | �̂Op |Ψ(0)
n 〉 (3.66)

and the hypervirial relation for the canonical momentum operator

〈Ψ(0)
m | �̂Op |Ψ(0)

m 〉 = 0 (3.67)

which both of will be used several times in the following chapters.

3.8 The Interaction Picture

Before we can start with the discussion of time-dependent perturbation theory in the
form of response theory, we need to introduce an alternative formulation of quantum
mechanics, called the interaction or Dirac representation. In general, several
representations of the wavefunctions or state vectors and of the operators of quantum
mechanics are equivalent, i.e. valid, as long as the expectation values of operators
〈Ψ0 | Ô |Ψ0〉 or inner products of the wavefunctions 〈Ψ0 | Ψn〉 are always the same.
Measurable quantities and thus the physics are contained in the expectation values
or inner products, whereas operators and wavefunctions are mathematical constructs
used in a particular formulation of the theory. One example of this was already dis-
cussed in Section 2.9 on gauge transformations of the vector and scalar potentials. In
the present section we want to look at a transformation that is related to the time
dependence of the wavefunctions and operators.

The operators Ĥ and Ô and the wavefunctions |Ψ0(t)〉 that we have used so far are
said to be in the Schrödinger picture, where the wavefunctions carry the time depen-
dence and the operators are time independent apart from the case of an explicit time
dependence due to a time-dependent perturbation. The Schrödinger representation is
the natural choice for time-independent systems.

The interaction or Dirac representation becomes, on the other hand, useful,
if one deals with a system that is described by a time-dependent Hamiltonian such as

Ĥ(t) = Ĥ(0) + Ĥ(1)(t) (3.68)

The wavefunctions |ΨI
0(t)〉 and operators ÔI

α(t) in the interaction picture are defined
as

|ΨI
0(t)〉 = e

ı
�

Ĥ(0)t |Ψ0(t)〉 (3.69)

ÔI
α(t) = e

ı
�

Ĥ(0)t Ôα e−
ı
�

Ĥ(0)t (3.70)

where one should recall that any exponential operator eÂ is defined via its Taylor series
expansion as

eÂ = 1 + Â +
1
2 !

(Â)2 + · · · (3.71)
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The essence of the interaction picture can be illustrated when we assume for a
moment that the time-dependent perturbation Hamiltonian Ĥ(1)(t) vanishes. The
time-dependent wavefunction |Ψ0(t)〉 in the Schrödinger picture then becomes equal
to the unperturbed but still time-dependent wavefunction

|Ψ(0)
0 (t)〉 = e−

ı
�

E
(0)
0 t|Ψ(0)

0 〉 = e−
ı
�

Ĥ(0)t|Ψ(0)
0 〉 (3.72)

where the last equality holds, because |Ψ(0)
0 〉 is an eigenfunction of Ĥ(0) with eigenvalue

E
(0)
0 , see Eq. (3.14). The effect of the transformation to the interaction picture is

consequently, that the time dependence of the unperturbed wavefunction is removed

|Ψ(0),I
0 (t)〉 = e

ı
�

Ĥ(0)t |Ψ(0)
0 (t)〉 = e

ı
�

Ĥ(0)te−
ı
�

Ĥ(0)t|Ψ(0)
0 〉 = |Ψ(0)

0 〉 (3.73)

As the time dependence of the unperturbed wavefunctions is simply a rotation in the
complex plane, Eq. (2.6), we can say that in the interaction picture this rotation is
frozen out or that we have switched to a rotating frame that rotates with the time
dependence of the unperturbed wavefunctions. The time evolution of the perturbed
wavefunction |ΨI

0(t)〉 is in the interaction picture thus governed by the perturbation
Hamiltonian Ĥ(1)(t) alone, as we will see in the following section. This will greatly
simplify the derivation of time-dependent wavefunctions in the following section and
is the motivation for introducing the interaction picture here.

3.9 Time-Dependent Perturbation Theory

When dealing with time-dependent fields one has to find solutions to the time-
dependent electronic Schrödinger equation

ı�
∂

∂t
|Ψ0(t, �F)〉 =

[
Ĥ(0) + Ĥ(1)(t)

]
|Ψ0(t, �F)〉 (3.74)

In the rest of this chapter we will not consider time-dependent magnetic perturbations
and have therefore neglected the second-order perturbation Hamiltonian Ĥ(2)(t). Gen-
eralizing Eq. (2.108) we write the time-dependent first-order perturbation Hamiltonian
Ĥ(1)(t) as

Ĥ(1)(t) =
∑
β···

ÔF
β···Fβ···(t) (3.75)

In the length gauge, Eq. (2.122), the operator ÔF
β··· could be the electric dipole or

quadrupole operator, defined in Appendix A. It depends on coordinates and momenta
of the electrons but it is independent of time, whereas we assume that the time-
dependent field Fβ···(t) does not depend on any electronic variables. The subscript
β · · · again denotes components of a tensor of appropriate rank. On the other hand,
in the velocity gauge, Eq. (2.125), the operator ÔF

β··· is equal to the total canonical

momentum operator �̂Op, Eq. (3.65), and the time-dependent field in Eq. (3.75) is

replaced by the time-dependent vector potential �̂A(t). However, in the following we
will discuss only the length gauge.
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For monochromatic linear polarized radiation in the dipole approximation7 the
time dependence of a component of the field vector can be expressed as

Fβ···(t) = Fβ···(ω) cos(ωt) =
1
2
Fβ···(ω)

(
eıωt + e−ıωt

)
(3.76)

For a general pulse of coherent but polychromatic radiation this then becomes

Fβ···(t) =
1
2

∫ ∞

0

dω Fβ···(ω)
(
eıωt + e−ıωt

)
=

1
2

∫ ∞

−∞
dω Fβ···(ω) e−ıωt (3.77)

which we can recognize as the Fourier transform of Fβ···(t) into Fourier components
1
2Fβ···(ω). The perturbation Hamiltonian can then also be expressed in terms of its
Fourier components8

Ĥ(1)(t) =
∫ ∞

−∞
dω Ĥ(1)(ω) =

1
2

∑
β···

Ôω
β···

∫ ∞

−∞
dω Fβ···(ω) e−ıωt (3.78)

Fβ···(ω) are the frequency or Fourier components of the time-dependent field Fβ···(t),
whereas the operator Ôω

β··· depends only on coordinates and momenta of the electrons.
It is actually not affected by the Fourier transformation and thus just the same oper-
ator as ÔF

β···. The superscript ω is a pure label, like the superscript F , attached to it
in order to associate it with the field oscillating with frequency ω and to remind us of
the fact that we are in the frequency domain.

There exist many different but essentially equivalent approaches (Dirac, 1958;
Langhoff et al., 1972; Zubarev, 1974; Olsen and Jørgensen, 1985; Pickup, 1992) for
obtaining the time-dependent wavefunction. Here, we will use the interaction or
Dirac representation of the time-dependent wavefunction

|ΨI
0(t, �F)〉 = e

ı
�

Ĥ(0)t|Ψ0(t, �F)〉 (3.79)

introduced in the previous section, which is more convenient for the derivation of
response functions in Section 3.11. We begin by taking the time derivative ı� ∂

∂t of
|ΨI

0(t, �F)〉

ı�
∂

∂t
|ΨI

0(t, �F)〉 = −Ĥ(0)e
ı
�

Ĥ(0)t |Ψ0(t, �F)〉 + e
ı
�

Ĥ(0)t ı�
∂

∂t
|Ψ0(t, �F)〉 (3.80)

In the second term we can make use of the time-dependent Schrödinger equation,
(3.74), which leads [see Exercise 3.6] to the equation of motion for |ΨI

0(t, �F)〉 in the
interaction picture

ı�
∂

∂t
|ΨI

0(t, �F)〉 = Ĥ(1),I(t) |ΨI
0(t, �F)〉 (3.81)

7 Details of the dipole approximation are discussed in Section 7.1
8 In principle, the frequency ω in the exponential should be replaced by ω′ ≡ ω + ıη. The small

positive infinitesimal η ensures then that Ĥ(1)(t) is zero for t = −∞ and that the perturbation builds
up adiabatically from t = −∞. However, this is omitted in the following for the sake of a less-complex
notation. Similarly, the effects of switching on the static perturbations are ignored throughout this
book.
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where Ĥ(1),I(t) is the interaction representation, Eq. (3.70), of the perturbation Hamil-
tonian. We can see that the time dependence of the perturbed wavefunction, is, in
the interaction picture, indeed governed by the perturbation Hamiltonian alone, as
discussed in the last section.

Exercise 3.6 Fill in the missing steps in the derivation of the equation of motion, Eq. (3.81),

for the time-dependent wavefunction in the interaction picture |ΨI
0(t, �F)〉.

The time-dependent wavefunction |ΨI
0(t, �F)〉 in the interaction picture is then

obtained by integration

|ΨI
0(t, �F)〉 − |ΨI

0(−∞, �F)〉 =
1
ı�

∫ t

−∞
dt′ Ĥ(1),I(t′) |ΨI

0(t
′, �F)〉 (3.82)

Recalling the time dependence of the unperturbed Schrödinger wavefunctions,
Eq. (3.72), and that the perturbed Schrödinger wavefunction |Ψ0(t, �F)〉 is equal to
the unperturbed time-dependent Schrödinger wavefunction in the limit of t → −∞ we
can see that

|ΨI
0(−∞, �F)〉 = lim

t→−∞ e
ı
�

Ĥ(0)t |Ψ0(t, �F)〉 = |Ψ(0)
0 〉 (3.83)

Moving the unperturbed wavefunction to the right-hand side of Eq. (3.82), and
premultiplying the resulting equation with e−

ı
�

Ĥ(0)t we obtain an equation for the
time-dependent wavefunction Ψ0(t, �F) in the Schrödinger picture

|Ψ0(t, �F)〉 = e−
ı
�

Ĥ(0)t |Ψ(0)
0 〉 +

1
ı�

∫ t

−∞
dt′ e−

ı
�

Ĥ(0)(t−t′) Ĥ(1)(t′) |Ψ0(t′, �F)〉 (3.84)

With this equation the Dirac or interaction representation has served its purpose
and from now on we will work again with the wavefunctions in the Schrödinger
picture.

Equation (3.84) is not really a solution to the differential equation, Eq. (3.81), but
only the integral version of it. The unknown time-dependent wavefunction, Ψ0(t, �F),
is expressed as the unperturbed wavefunction and a correction term that depends on
the unknown wavefunction again. In analogy to the expansion of time-independent
wavefunction in Eq. (3.16) we now expand the time-dependent wavefunction also in a
perturbation series

|Ψ0(t, �F)〉 = |Ψ(0)
0 (t)〉 + |Ψ(1)

0 (t, �F)〉 + |Ψ(2)
0 (t, �F)〉 + · · · (3.85)

where |Ψ(0)
0 (t)〉 is the unperturbed but time-dependent wavefunction as, e.g., given in

Eq. (3.72) and therefore the first term on the right-hand side of Eq. (3.84). Contrary
to the time-independent case we do not need to introduce a formal ordering parameter
λ here, because we are not going to split the time-dependent Schrödinger equation
into separate equations for each order. The second term, i.e. the integral term on the
right-hand side of Eq. (3.84), will then give rise to all higher-order corrections in the
expansion of the time-dependent wavefunction. They can be obtained by iteratively
solving the integral equation.
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In the first iteration, the unknown time-dependent wavefunction |Ψ0(t′, �F)〉 in the
integral in Eq. (3.84) is approximated by the zeroth-order term, leading to

|Ψ0(t, �F)〉 = e−
ı
�

Ĥ(0)t |Ψ(0)
0 〉+e−

ı
�

Ĥ(0)t 1
ı�

∫ t

−∞
dt′e

ı
�

Ĥ(0)t′ Ĥ(1)(t′) e−
ı
�

Ĥ(0)t′ |Ψ(0)
0 〉+· · ·

(3.86)
We can then identify the first-order correction to the time-dependent wavefunction as

|Ψ(1)
0 (t, �F)〉 = e−

ı
�

Ĥ(0)t 1
ı�

∫ t

−∞
dt′ Ĥ(1),I(t′) |Ψ(0)

0 〉 (3.87)

where we have used the Dirac representation of operators, Eq. (3.70), for the sole
purpose of a more compact equation; a trick that we will make use of more often in
the rest of this chapter.

The second-order correction to the wavefunction is obtained, if we iterate once
more on Eq. (3.84), which means that we let the unknown function |Ψ0(t′, �F)〉 in the
integral in Eq. (3.84) be equal to |Ψ(0)

0 (t′)〉+ |Ψ(1)
0 (t′, �F)〉. This gives rise to one term

more

|Ψ(2)
0 (t, �F)〉 = e−

ı
�

Ĥ(0)t

(
1
ı�

)2 ∫ t

−∞
dt′

∫ t′

−∞
dt′′ Ĥ(1),I(t′) Ĥ(1),I(t′′) |Ψ(0)

0 〉 (3.88)

which we can identify as the second-order correction to the time-dependent wavefunc-
tion. In the same way one can derive also higher-order corrections.

3.10 Transition Probabilities and Rates

The compact integral expressions for the time-dependent wavefunction in Eq. (3.86)
and in particular for the first-order correction in Eq. (3.87) will be employed in the
derivation of response functions in the following section. However, for the interpreta-
tion of the time-dependent wavefunctions it is useful to expand them in the complete
set of unperturbed wavefunctions Eq. (2.14) analogous to the perturbed wavefunctions
of time-independent perturbation theory in Eq. (3.23)

|Ψ(1)
0 (t, �F)〉 =

∑
n�=0

e−
ı
�

Ĥ(0)t|Ψ(0)
n 〉 C

(1)
n0 (t, �F) (3.89)

where the time-dependent first-order coefficients are defined as

C
(1)
n0 (t, �F) = 〈e− ı

�
Ĥ(0)tΨ(0)

n | Ψ(1)
0 (t, �F)〉 (3.90)

The coefficients C
(1)
n0 (t, �F) and their norm |C(1)

n0 (t, �F)|2 can then be interpreted as
probability amplitude and probability, respectively, for finding the system in the sta-
tionary state |Ψ(0)

n 〉 at time t. As the system was originally, i.e. before the perturbation
was turned on, in the state Ψ(0)

0 we can interpret |C(1)
n0 (t, �F)|2 as the probability for a

transition from state Ψ(0)
0 to Ψ(0)

n and thus as the transition probability.
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Inserting the expression for the first-order wavefunction Eq. (3.87) we obtain for
the first-order coefficient

C
(1)
n0 (t, �F) = 〈Ψ(0)

n |e ı
�

Ĥ(0)te−
ı
�

Ĥ(0)t 1
ı�

∫ t

−∞
dt′ Ĥ(1),I(t′) |Ψ(0)

0 〉

=
1
ı�

∫ t

−∞
dt′ 〈Ψ(0)

n |e ı
�

Ĥ(0)t′Ĥ(1)(t′)e−
ı
�

Ĥ(0)t′ |Ψ(0)
0 〉 (3.91)

Using the fact that the states Ψ(0)
0 and Ψ(0)

n are eigenfunctions of the Hamiltonian
Ĥ(0) and defining a transition angular frequency ωn0 as

ωn0 =
E

(0)
n − E

(0)
0

�
(3.92)

we can write the first-order probability amplitude as

C
(1)
n0 (t, �F) =

1
ı�

∫ t

−∞
dt′ 〈Ψ(0)

n |Ĥ(1)(t′) |Ψ(0)
0 〉eıωn0t′ (3.93)

Inserting now the expressions for the perturbation Hamiltonian, Eq. (3.75) and
Eq. (3.77) the probability amplitude becomes

C
(1)
n0 (t, �F) =

1
2ı�

∑
β···

〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉

∫ ∞

0

dω Fβ···(ω)

×
(∫ t

−∞
dt′eı(ωn0−ω)t′ +

∫ t

−∞
dt′eı(ωn0+ω)t′

)
(3.94)

where we have made use of the fact that the operator Ôω
β··· does not depend on the

frequency of the radiation. Integration over t′ then gives

C
(1)
n0 (t, �F) =

1
2ı�

∑
β···

〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉

×
∫ ∞

0

dω Fβ···(ω)
(

eı(ωn0−ω)t − 1
ı(ωn0 − ω)

+
eı(ωn0+ω)t − 1

ı(ωn0 + ω)

)
(3.95)

The first term in the second line is negligible unless the frequency of the radiation
is close to the transition frequency, i.e. ω 
 ωn0, whereas in the second term the
frequency needs to be ω 
 −ωn0. This implies that the first term corresponds to a
transition from state Ψ(0)

0 to state Ψ(0)
n and thus to the absorption of a photon of

energy �ω, while the second term corresponds to the transition from Ψ(0)
n to Ψ(0)

0 and
therefore to the emission of a photon. Both conditions cannot be fulfilled at the same
time and we can therefore consider the two processes separately.
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The transition probability for absorption is thus given as∣∣∣C(1)
n0 (t, �F)

∣∣∣2 =
1

2�2

∑
β···

∣∣∣〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉

∣∣∣2 ∫ ∞

0

dω F2
β···(ω)

2 sin
(

1
2 (ωn0 − ω)t

)
(ωn0 − ω)2

(3.96)

As a function of the frequency ω the term
2 sin( 1

2 (ωn0−ω)t)
(ωn0−ω)2 has one sharp maximum

for ω 
 ωn0, which is going to dominate the integral. We can therefore approximate
the amplitude of the field Fβ···(ω) by its value Fβ···(ωn0) at this frequency, take it out
of the integral, extend the lower integration limit to −∞ and evaluate the remaining
standard integral, leading to∣∣∣C(1)

n0 (t, �F)
∣∣∣2 =

π

2�2
t
∑
β···

∣∣∣〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉

∣∣∣2 F2
β···(ωn0) (3.97)

which shows that the transition probability to first order in perturbation theory
increases linear with time. Now, we can define finally a transition rate, W

(1)
n0 , to

first order as the time derivative of the transition probability

W
(1)
n0 =

d

dt

∣∣∣C(1)
n0 (t, �F)

∣∣∣2 =
π

2�2

∑
β···

∣∣∣〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉

∣∣∣2 F2
β···(ωn0) (3.98)

and understand why the matrix element 〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉 is often called a transition

moment Mn0,β···.

3.11 Time-Dependent Response Theory

Having derived the first few terms in a perturbation expansion of the time-dependent,
perturbed wavefunction |Ψ0(t, �F)〉, Eq. (3.85), we are now ready to look at a per-
turbation expansion of an expectation value 〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 in the presence
of a general, time-dependent field �F(t), where P̂ could be any kind of operator. But
again, we are here mostly interested in operators that are obtained as derivatives of
the Hamiltonian with respect to a component of a field �F , i.e. the operators P̂ defined
in Eqs. (3.8) and (3.9). The expansion will thus be a generalization of the expan-
sion in Eq. (3.36) to the time-dependent case, but with the restriction that we will
only consider field-independent operators P̂ in the derivations in order to reduce the
complexity of the equations.

We can now insert the expansion of the time-dependent wavefunction |Ψ0(t, �F)〉,
Eq. (3.85), and the first-order correction, Eq. (3.87), in the time-dependent expecta-
tion value

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉
= 〈Ψ(0)

0 (t) | P̂ |Ψ(0)
0 (t)〉 + 〈Ψ(0)

0 (t) | P̂ |Ψ(1)
0 (t, �F)〉 + 〈Ψ(1)

0 (t, �F) | P̂ |Ψ(0)
0 (t)〉 + · · ·
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= 〈Ψ(0)
0 (t) | P̂ |Ψ(0)

0 (t)〉 +
1
ı�

∫ t

−∞
dt′ 〈Ψ(0)

0 (t) | P̂ e−
ı
�

Ĥ(0)tĤ(1),I(t′) |Ψ(0)
0 〉

− 1
ı�

∫ t

−∞
dt′ 〈Ψ(0)

0 |Ĥ(1),I(t′) e
ı
�

Ĥ(0)t P̂ |Ψ(0)
0 (t)〉 + · · · (3.99)

where we have assumed that the time-dependent wavefunction is normalized. Using the
definition of |Ψ(0)

0 (t)〉, Eq. (3.72), and introducing the commutator [Â, B̂] = ÂB̂− B̂Â

of two operators Â and B̂, we can write this more compactly as

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 (3.100)

= 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 +
1
ı�

∫ t

−∞
dt′ 〈Ψ(0)

0 | [P̂ I(t), Ĥ(1),I(t′)] |Ψ(0)
0 〉 + · · ·

The upper integration limit can be extended to ∞,9 if we introduce the Heaviside
step function Θ(t), which is equal to 1 for t ≥ 0 and zero for t < 0, yielding

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 (3.101)

= 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 +
1
ı�

∫ ∞

−∞
dt′ Θ(t − t′) 〈Ψ(0)

0 | [P̂ I(t) , Ĥ(1),I(t′)] |Ψ(0)
0 〉 + · · ·

Finally, we insert the definition of the first-order perturbation Hamiltonian, Eq. (3.75),
and obtain

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 (3.102)

+
1
ı�

∫ ∞

−∞
dt′ Θ(t − t′) 〈Ψ(0)

0 | [P̂ I(t) ,
∑
β···

ÔF,I
β··· (t

′)Fβ···(t′)] |Ψ(0)
0 〉 + · · ·

or

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 (3.103)

+
∑
β···

∫ ∞

−∞
dt′ Fβ···(t′)

{
Θ(t − t′)

1
ı�

〈Ψ(0)
0 | [P̂ I(t) , ÔF,I

β··· (t
′)] |Ψ(0)

0 〉
}

+ · · ·

where we have moved the perturbing time-dependent field Fβ···(t′) out of the inte-
gral over the electronic coordinates. The second term is in complete analogy to the
time-independent case in Eq. (3.36) again linear in the components of the now time-
dependent field �F(t) and thus represents the time-dependent linear response of
the expectation value 〈Ψ(0)

0 | P̂ |Ψ(0)
0 〉 to the time-dependent field.

The expression in “{}” in Eq. (3.103) is the coefficient of this linear term and
expresses how susceptible the expectation value is to changes by the time-dependent
field. It is therefore called the linear response function in the time domain
(Olsen and Jørgensen, 1985) and is given its own symbol 〈〈 P̂ I(t) ; ÔF,I

β··· (t
′) 〉〉 defined

as

9 This is necessary for the Fourier transformation of this expression to the frequency domain later
on.
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〈〈 P̂ I(t) ; ÔF,I
β··· (t

′) 〉〉 = Θ(t − t′)
1
ı�
〈Ψ(0)

0 |
[
P̂ I(t), ÔF,I

β··· (t
′)
]
|Ψ(0)

0 〉 (3.104)

It is often also called the polarization propagator in the time domain (Zubarev,
1974; Linderberg and Öhrn, 1973; Jørgensen and Simons, 1981), while mathematically
it is a double-time Green’s function.

With the above definition of the linear response function or polarization propagator
we can rewrite the expansion of the time-dependent, perturbed expectation value as

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 +
∫ ∞

−∞
dt′

∑
β···

〈〈 P̂ I(t) ; ÔF,I
β··· (t

′) 〉〉Fβ···(t′)

+ · · · (3.105)

From the definition of the polarization propagator in Eq. (3.104) one could get the
impression that it depends on two times, t and t′. However, this is not the case, the
propagator depends only on the time difference t − t′ because

〈〈 P̂ I(t) ; ÔF,I
β··· (t

′) 〉〉 = Θ(t − t′)
1
ı�

〈Ψ(0)
0 |

[
P̂ I(t), ÔF,I

β··· (t
′)
]
|Ψ(0)

0 〉

= Θ(t − t′)
1
ı�

〈Ψ(0)
0 |

[
e

ı
�

Ĥ(0)t P̂ e−
ı
�

Ĥ(0)t, ÔF,I
β··· (t

′)
]
|Ψ(0)

0 〉

= Θ(t − t′)
1
ı�

〈Ψ(0)
0 |

[
P̂ , e−

ı
�

Ĥ(0)t ÔF,I
β··· (t

′) e
ı
�

Ĥ(0)t
]
|Ψ(0)

0 〉

= Θ(t − t′)
1
ı�
〈Ψ(0)

0 |
[
P̂ , ÔF,I

β··· (t
′ − t)

]
|Ψ(0)

0 〉 (3.106)

which follows from the fact that |Ψ(0)
0 〉 is an eigenfunction of Ĥ(0) [see Exercise 3.7].

We can thus rewrite the definition of the polarization propagator

〈〈 P̂ I(t) ; ÔF,I
β··· (t

′) 〉〉 = 〈〈 P̂ ; ÔF,I
β··· (t

′ − t) 〉〉

= Θ(t − t′)
1
ı�
〈Ψ(0)

0 |
[
P̂ , ÔF,I

β··· (t
′ − t)

]
|Ψ(0)

0 〉 (3.107)

and change the variable from t′− t to t in the following. In addition to this mathemat-
ical proof the physical interpretation of the polarization propagator also requires that
it depends only on the time difference. A propagator is a quantity that propagates,
i.e. transfers something in time or space from one point to another. The polarization
propagator transfers the disturbance in the system created at the time t′ by the per-
turbation ÔF,I

β···Fβ··· to the time t where it then leads to a change in the expectation
value of the operator P̂ . Its value tells us then how much the property represented by
the operator P̂ is changed at time t by the action of the perturbation ÔF,I

β···Fβ··· since
time t′, which obviously has to be independent of the precise point on the time axis
at which t′ is.

Exercise 3.7 Fill in the missing steps in the derivation of Eq. (3.106), which proves that
the polarization propagator depends only on the time difference t − t′.
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Hint: Expand the commutator and the exponential operator e
ı
�

Ĥ(0)t and use the fact that

|Ψ(0)
0 〉 is an eigenfunction of Ĥ(0).

We will later on in Chapter 7 see that the measurable molecular properties related
to the response functions or polarization propagators are normally defined to be fre-
quency dependent and not time dependent. We define therefore the Fourier transform
of the time dependent polarization propagator as

〈〈 P̂ ; Ôω
β··· 〉〉ω =

∫ ∞

−∞
〈〈 P̂ ; ÔF,I

β··· (t) 〉〉 e−iωt dt (3.108)

With this frequency-dependent polarization propagator, 〈〈 P̂ ; Ôω
β··· 〉〉ω, and

the Fourier components , Fβ···(ω), of the time-dependent field from Eq. (3.77) we can
rewrite the expansion of the time-dependent, perturbed expectation value, Eq. (3.105),
as

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 +
1
2

∫ ∞

−∞
dω e−ıωt

∑
β···

〈〈 P̂ ; Ôω
β··· 〉〉ωFβ···(ω)

+ · · · (3.109)

However, Eq. (3.108) is only the definition of the Fourier transform, which then
has to be applied to the expression for the time-dependent polarization propagator in
Eq. (3.107) with t′ − t replaced by t. This leads us [see Exercise 3.8] to the spectral
representation of the polarization propagator or linear response function

〈〈 P̂ ; Ôω
β··· 〉〉ω =

∑
n�=0

〈Ψ(0)
0 | P̂ |Ψ(0)

n 〉〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉

�ω + E
(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |Ôω

β··· |Ψ(0)
n 〉〈Ψ(0)

n | P̂ |Ψ(0)
0 〉

−�ω + E
(0)
0 − E

(0)
n

(3.110)

Exercise 3.8 Derive the expression for the polarization propagator in the frequency domain,
Eq. (3.110), from the expression in the time domain, Eq. (3.107).

Hint: Try to insert the resolution of the identity
∑

n |Ψ(0)
n 〉〈Ψ(0)

n | = 1 between P̂ and ÔF,I
β··· (t)

in Eq. (3.107). Use, furthermore, that

1

ı

∫ ∞

−∞
eiat Θ(t) dt = lim

η→0+

∫ ∞

−∞

δ(a − x)

x + ıη
dx = lim

η→0+

1

a + ıη
=

1

a

From the spectral representation, Eq. (3.110), we can easily verify the general
symmetry property of the polarization propagator

〈〈 P̂ ; Ôω
β··· 〉〉ω = 〈〈 Ôω

β··· ; P̂ 〉〉−ω (3.111)
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and the special cases for two real and hermitian operators or for two purely imaginary
and hermitian operators

〈〈 P̂ ; Ôω
β··· 〉〉ω = 〈〈 P̂ ; Ôω

β··· 〉〉−ω for P and Oω
β··· both real or both imaginary

(3.112)

and for one real hermitian and one imaginary hermitian operator

〈〈 P̂ ; Ôω
β··· 〉〉ω = −〈〈 P̂ ; Ôω

β··· 〉〉−ω for P real and Oω
β··· imaginary hermitian

(3.113)

However, the main application of the spectral resolution lies in the interpretation of the
polarization propagator. We can see from Eq. (3.110), that the polarization propagator
has a pole if the frequency of the perturbation ω matches one of the excitation energies
±(E(0)

n −E
(0)
0 )/� of the system. The polarization propagator contains thus information

about the excited electronic states of a molecule and its spectra, as will be discussed
in more detail in Section 7.4.

In the static case, ω = 0, the spectral representation, Eq. (3.110), reduces to
the sum-over-states contribution for the second derivative of a second-order energy
correction, Eq. (3.34),

〈〈 ÔF
α··· ; ÔF

β··· 〉〉ω=0 =
∑
n�=0

〈Ψ(0)
0 |ÔF

α··· |Ψ(0)
n 〉〈Ψ(0)

n |ÔF
β··· |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔF

β··· |Ψ(0)
n 〉〈Ψ(0)

n |ÔF
α··· |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

=
∂2E

(2)
0

∂Fα∂Fβ···
(3.114)

where we have finally replaced the symbol for the operator P̂ by ÔF
α··· according

to its definition as the first derivative of the Hamiltonian with respect to the Fα

component of a field F , i.e. Eq. (3.9), and have replaced Ôω
β··· by ÔF

β···, because
the perturbation is now time and frequency independent. In the second equality we
have furthermore assumed that the field F gives rise to only a first-order perturba-
tion Hamiltonian Ĥ(1). This equivalence between static linear response functions and
second-order energy derivatives implies that all properties that are obtained from this
second-order energy correction can also be obtained from the zero-frequency limit of
a polarization propagator or linear response function.

The comparison with Eqs. (3.34) and (3.37) also shows that the linear response
function will only give the contributions to the second-order properties that depend on
the first-order wavefunction and first-order perturbation Hamiltonian. The contribu-
tions that are expectation values of Ĥ(2) must be obtained by choosing our operator
P̂ to be the perturbation-dependent operator P̂ ( �F) defined in Eqs. (3.8) to (3.10).
The expansion of the expectation value, Eq. (3.109), then becomes
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〈Ψ0(t, �F) | P̂ ( �F) |Ψ0(t, �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 (3.115)

+
1
2

∫ ∞

−∞
dω1 e−ıω1t

∑
β···

(
〈Ψ(0)

0 |ÔFF
αβ··· + ÔFF

βα··· |Ψ(0)
0 〉 + 〈〈 P̂ ; Ôω

β··· 〉〉ω
)
Fβ···(ω)

+ · · ·

In the static case, ω = 0, this is reduced to

〈Ψ0( �F) | P̂ ( �F) |Ψ0( �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉
+

∑
β···

(
〈Ψ(0)

0 |ÔFF
αβ··· + ÔFF

βα··· |Ψ(0)
0 〉 + 〈〈 P̂ ; ÔF

β··· 〉〉ω=0

)
Fβ··· + · · · (3.116)

This equation, which is the perturbation theory expansion of an expectation value in
the presence of a static field �F in static response functions or polarization propagators,
is another way of writing Eq. (3.36). Therefore, we can identify the static response
function as the first derivative of the first-order correction to a perturbed expectation
value, i.e.

〈〈 P̂ ; ÔF
β··· 〉〉ω=0 =

∂

∂Fβ···

(
〈Ψ(0)

0 | P̂ |Ψ(1)
0 ( �F)〉 + 〈Ψ(1)

0 ( �F) | P̂ |Ψ(0)
0 〉

)
(3.117)

or relate it according to Eq. (3.53) to the first-order reduced density matrix P
(1)
α (�r, �r ′)

〈〈 P̂ ; ÔF
β··· 〉〉ω=0 =

∫
�r ′

1=�r1

p̂(1) P
(1)
β (�r1, �r

′
1) d�r1 (3.118)

In later chapters we will identify molecular properties as first derivatives of the
energy with respect to different static fields �F . There, we will return to this expansion
in Eq. (3.116), when we are interested in the value of some of these molecular properties
in the presence of the static field �F or another field. In particular, this expression
will become important for the case of perturbations that give rise to a second-order
perturbation Hamiltonian Ĥ(2).

In the following, we want to go back to the expansion of the time-dependent
expectation value in Eq. (3.99) and derive expressions for the next terms. Collecting
all second-order terms in the expansion

〈Ψ(1)
0 (t, �F) | P̂ |Ψ(1)

0 (t, �F)〉 + 〈Ψ(2)
0 (t, �F) | P̂ |Ψ(0)

0 (t)〉 + 〈Ψ(0)
0 (t) | P̂ |Ψ(2)

0 (t, �F)〉 (3.119)

and inserting the first- and second-order corrections to the time-dependent wavefunc-
tion, Eqs. (3.87) and (3.88), the next and thus quadratic term, in the expansion of
the time-dependent expectation value, Eq. (3.100), becomes [see Exercise 3.9](

1
ı�

)2 ∫ t

−∞
dt′

∫ t′

−∞
dt′′ 〈Ψ(0)

0 |
[[

P̂ I(t) , Ĥ(1),I(t′)
]
, Ĥ(1),I(t′′)

]
|Ψ(0)

0 〉 (3.120)
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or(
1
ı�

)2∫ ∞

−∞
dt′ Θ(t − t′)

∫ ∞

−∞
dt′′ Θ(t′ − t′′) 〈Ψ(0)

0 |
[[

P̂ I(t), Ĥ(1),I(t′)
]
, Ĥ(1),I(t′′)

]
|Ψ(0)

0 〉

(3.121)

if we make use of the Heaviside step function again and extend the integration limits.

Exercise 3.9 Fill in the missing steps in the derivation of Eqs. (3.120) and (3.121).

The next step is then again to insert the first-order perturbation Hamiltonian,
Eq. (3.75) leading to∫ ∞

−∞
dt′

∫ ∞

−∞
dt′′

∑
β···,γ···

Fβ···(t′)Fγ···(t′′) (3.122)

×
{

Θ(t − t′) Θ(t′ − t′′)
(

1
ı�

)2

〈Ψ(0)
0 |

[[
P̂ I(t), ÔF,I

β··· (t
′)
]
, ÔF,I

γ··· (t
′′)
]
|Ψ(0)

0 〉
}

The expression in “{}” in Eq. (3.122) is the coefficient of the term quadratic in the
perturbing field F and is therefore called the quadratic response function in the
time domain (Olsen and Jørgensen, 1985). Extending the notation for the linear
response function it gets its own symbol 〈〈 P̂ I(t) ; ÔF,I

β··· (t
′), ÔF,I

γ··· (t′′) 〉〉 defined as

〈〈 P̂ I(t) ; ÔF,I
β··· (t

′), ÔF,I
γ··· (t

′′) 〉〉 (3.123)

= Θ(t − t′)Θ(t′ − t′′)
(

1
ı�

)2

〈Ψ(0)
0 |

[[
P̂ I(t), ÔF,I

β··· (t
′)
]
, ÔF,I

γ··· (t
′′)
]
|Ψ(0)

0 〉

This notation can be extended to higher-order response functions, by adding more
operators after the “;”, i.e. 〈〈 Â ; B̂, Ĉ, D̂, · · · 〉〉.

In analogy to the linear response function, the quadratic response function does
not depend on the three times, t, t′ and t′′ but rather on the two time differences
t1 = t′ − t and t2 = t′′ − t

〈〈 P̂ I(t) ; ÔF,I
β··· (t

′), ÔF,I
γ··· (t

′′) 〉〉 = 〈〈 P̂ ; ÔF,I
β··· (t1), Ô

F,I
γ··· (t2) 〉〉 (3.124)

= Θ(−t1)Θ(−t2)
(

1
ı�

)2

〈Ψ(0)
0 |

[[
P̂ , ÔF,I

β··· (t1)
]
, ÔF,I

γ··· (t2)
]
|Ψ(0)

0 〉

Applying Fourier transformations, Eq. (3.108), to both times we obtain the quadratic
response function in the frequency domain



56 Perturbation Theory

〈〈 P̂ ; Ôω1
β···, Ô

ω2
γ··· 〉〉ω1,ω2

=
∑

n�=0,m �=0

⎧⎨⎩ 〈Ψ(0)
0 | P̂ |Ψ(0)

n 〉〈Ψ(0)
n |Ôω1

β··· |Ψ(0)
m 〉〈Ψ(0)

m |Ôω2
γ··· |Ψ(0)

0 〉(
E

(0)
n − E

(0)
0 − �(ω1 + ω2)

)(
E

(0)
m − E

(0)
0 − �ω2

)

+
〈Ψ(0)

0 | P̂ |Ψ(0)
n 〉〈Ψ(0)

n |Ôω2
β··· |Ψ(0)

m 〉〈Ψ(0)
m |Ôω1

γ··· |Ψ(0)
0 〉(

E
(0)
n − E

(0)
0 − �(ω1 + ω2)

)(
E

(0)
m − E

(0)
0 − �ω1

)

+
〈Ψ(0)

0 |Ôω1
γ··· |Ψ(0)

n 〉〈Ψ(0)
n | P̂ |Ψ(0)

m 〉〈Ψ(0)
m |Ôω2

β··· |Ψ(0)
0 〉(

E
(0)
n − E

(0)
0 + �ω1

)(
E

(0)
m − E

(0)
0 − �ω2

) (3.125)

+
〈Ψ(0)

0 |Ôω2
β··· |Ψ(0)

n 〉〈Ψ(0)
n | P̂ |Ψ(0)

m 〉〈Ψ(0)
m |Ôω1

γ··· |Ψ(0)
0 〉(

E
(0)
n − E

(0)
0 + �ω2

)(
E

(0)
m − E

(0)
0 − �ω1

)

+
〈Ψ(0)

0 |Ôω2
β··· |Ψ(0)

n 〉〈Ψ(0)
n |Ôω1

γ··· |Ψ(0)
m 〉〈Ψ(0)

m | P̂ |Ψ(0)
0 〉(

E
(0)
n − E

(0)
0 + �ω2

)(
E

(0)
m − E

(0)
0 + �(ω1 + ω2)

)

+
〈Ψ(0)

0 |Ôω1
β··· |Ψ(0)

n 〉〈Ψ(0)
n |Ôω2

γ··· |Ψ(0)
m 〉〈Ψ(0)

m | P̂ |Ψ(0)
0 〉(

E
(0)
n − E

(0)
0 + �ω1

)(
E

(0)
m − E

(0)
0 + �(ω1 + ω2)

)
⎫⎬⎭

where 〈Ψ(0)
n | P̂ |Ψ(0)

m 〉 denotes 〈Ψ(0)
n | P̂ − 〈Ψ(0)

0 | P̂ |Ψ(0)
0 〉 |Ψ(0)

m 〉, i.e. the matrix element
of a fluctuation operator.

Finally, we can now write the expansion of the time-dependent expectation value,
Eq. (3.99), in terms of linear and quadratic response functions in the time domain,
Eqs. (3.107) and (3.124), as

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉 +
∫ ∞

−∞
dt′

∑
β···

〈〈 P̂ ; ÔF,I
β··· (t

′ − t) 〉〉Fβ···(t′)

+
1
2

∫ ∞

−∞
dt′

∫ ∞

−∞
dt′′

∑
βγ···

〈〈 P̂ ; ÔF,I
β··· (t

′ − t), ÔF,I
γ··· (t

′′ − t) 〉〉Fβ···(t′) Fγ···(t′′) + · · ·

(3.126)

or in terms of linear and quadratic response functions in the frequency domain,
Eqs. (3.110) and (3.125), as

〈Ψ0(t, �F) | P̂ |Ψ0(t, �F)〉 = 〈Ψ(0)
0 | P̂ |Ψ(0)

0 〉

+
1
2

∫ ∞

−∞
dω1 e−ıωt

∑
β···

〈〈 P̂ ; Ôω
β··· 〉〉ω1Fβ···(ω)
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+
1
8

∫ ∞

−∞
dω1 e−ıω1t

∫ ∞

−∞
dω2 e−ıω2t

∑
β··· ,γ···

〈〈 P̂ ; Ôω1
β···, Ô

ω2
γ··· 〉〉ω1,ω2Fβ···(ω1)Fγ···(ω2)

+ · · · . (3.127)

3.12 Matrix Representation of the Propagator

In the last section we have derived an expression for the linear response function or
polarization propagator in the frequency domain, Eq. (3.110). However, application
of this expression requires that one knows all unperturbed excited states Ψ(0)

n of the
system and their energies E

(0)
n or the excitation energies E

(0)
n −E

(0)
0 and corresponding

transition moments 〈Ψ(0)
0 | Ôω | Ψ(0)

n 〉. In the following, we want to derive now an
alternative but equally exact matrix representation of the polarization propagator,
where this is not required. Actually, by comparing this matrix representation with
Eq. (3.110) will show us a way to obtain excitation energies and transition moments
from the polarization propagator. Furthermore, this matrix expression will become
the basis for approximate polarization propagator methods in Sections 10.3 and 10.4.

We start by taking the time derivative of the time-dependent linear response
function, Eq. (3.107),

ı�
d

dt
〈〈 P̂ ; ÔF,I

β··· (t) 〉〉 (3.128)

= ı�
dΘ(−t)

dt

1
ı�
〈Ψ(0)

0 |
[
P̂ , ÔF,I

β··· (t)
]
|Ψ(0)

0 〉 + Θ(−t)
d

dt
〈Ψ(0)

0 |
[
P̂ , ÔF,I

β··· (t)
]
|Ψ(0)

0 〉

Next, we use the fact that the time derivative of an operator in the interaction picture
is the commutator of this operator with the Hamiltonian [see Exercise 3.10], i.e.

d

dt
ÔF,I

β··· (t) =
1
ı�

[ÔF,I
β··· (t) , Ĥ(0)] (3.129)

and that the Heaviside step function Θ(t) is the integral of the Dirac δ function

Θ(t) =
∫ t

−∞
δ(t′) dt′ (3.130)

leading to

ı�
d

dt
〈〈 P̂ ; ÔF,I

β··· (t) 〉〉 (3.131)

= −δ(−t)〈Ψ(0)
0 |

[
P̂ , ÔF,I

β··· (t)
]
|Ψ(0)

0 〉 − Θ(−t)
1
ı�
〈Ψ(0)

0 |
[
P̂ ,

[
Ĥ(0), ÔF,I

β··· (t)
]]

|Ψ(0)
0 〉

Exercise 3.10 Prove that the time derivative of an operator in the interaction picture is
given by the commutator of this operator with the Hamiltonian, Eq. (3.129).
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The Dirac δ function is symmetric and the second term on the right-hand side is
again a linear response function, so that we can write

ı�
d

dt
〈〈 P̂ ; ÔF,I

β··· (t) 〉〉 = − δ(t)〈Ψ(0)
0 |

[
P̂ , ÔF,I

β··· (t)
]
|Ψ(0)

0 〉

− 〈〈 P̂ ; [Ĥ(0), ÔF,I
β··· (t)] 〉〉 (3.132)

Because of the Dirac δ function δ(t) the operator ÔF,I
β··· (t) in the first term can be

replaced by ÔF,I
β··· (t = 0) = Ôβ··· and we thus obtain the equation of motion for

the polarization propagator in the time domain

ı�
d

dt
〈〈 P̂ ; ÔF,I

β··· (t) 〉〉 = − δ(t)〈Ψ(0)
0 |

[
P̂ , Ôβ···

]
|Ψ(0)

0 〉

− 〈〈 P̂ ; [Ĥ(0), ÔF,I
β··· (t)] 〉〉 (3.133)

More interesting for us is, however, the equation of motion transformed to the
frequency domain

�ω〈〈 P̂ ; Ôω
β··· 〉〉ω = 〈Ψ(0)

0 | [P̂ , Ôω
β···] |Ψ(0)

0 〉 + 〈〈 P̂ ; [Ĥ(0), Ôω
β···] 〉〉ω (3.134)

which can be derived [see Exercise 3.11] by using the inverse Fourier transform of the
polarization propagator, which is defined as

〈〈 P̂ ; ÔF,I
β··· (t) 〉〉 =

1
2π

∫ ∞

−∞
dω 〈〈 P̂ ; Ôω

β··· 〉〉ωeiωt (3.135)

and another representation of the Dirac δ function

δ(t) =
1
2π

∫ ∞

−∞
eiωtdω (3.136)

Exercise 3.11 Derive the equation of motion in the frequency domain for the polarization
propagator, Eq. (3.134), from the equation of motion in the time domain, Eq. (3.133).

The equation of motion in the frequency domain can also be derived directly from
the spectral representation of the polarization propagator in the frequency domain,
Eq. (3.110), if one realizes that ab

c+d = ab
c − d

c
ab

c+d . Applying this trick to the first term
in Eq. (3.110) gives

〈Ψ(0)
0 | P̂ |Ψ(0)

n 〉〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉

�ω + E
(0)
0 − E

(0)
n

=
〈Ψ(0)

0 | P̂ |Ψ(0)
n 〉〈Ψ(0)

n |Ôω
β··· |Ψ(0)

0 〉
�ω

(3.137)

−
〈Ψ(0)

0 | P̂ |Ψ(0)
n 〉〈Ψ(0)

n |Ôω
β··· |Ψ(0)

0 〉
(
E

(0)
0 − E

(0)
n

)
�ω

(
�ω + E

(0)
0 − E

(0)
n

)
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Using the same trick also for the second term we can rewrite the polarization
propagator in the frequency domain as

〈〈 P̂ ; Ôω
β··· 〉〉ω =

1
�ω

∑
n

{
〈Ψ(0)

0 | P̂ |Ψ(0)
n 〉〈Ψ(0)

n |Ôω
β··· |Ψ(0)

0 〉 (3.138)

−〈Ψ(0)
0 |Ôω

β··· |Ψ(0)
n 〉〈Ψ(0)

n | P̂ |Ψ(0)
0 〉

}

− 1
�ω

∑
n�=0

⎧⎨⎩ 〈Ψ(0)
0 | P̂ |Ψ(0)

n 〉〈Ψ(0)
n |Ôω

β··· |Ψ(0)
0 〉

(
E

(0)
0 − E

(0)
n

)
�ω + E

(0)
0 − E

(0)
n

−
〈Ψ(0)

0 |Ôω
β··· |Ψ(0)

n 〉〈Ψ(0)
n | P̂ |Ψ(0)

0 〉
(
E

(0)
0 − E

(0)
n

)
−�ω + E

(0)
0 − E

(0)
n

⎫⎬⎭
where we have extended the first sum to include also n = 0 because these terms vanish
anyway. In the next step we use in the second sum the fact that the states |Ψ(0)

n 〉 are
eigenfunctions of the Hamiltonian Ĥ(0) with eigenvalue E

(0)
n , Eq. (3.14), and that they

thus form a complete set. In the first sum we can make use of the resolution of the
identity

1 =
∑

n

|Ψ(0)
n 〉〈Ψ(0)

n | (3.139)

which leads to

〈〈 P̂ ; Ôω
β··· 〉〉ω =

1
�ω

〈Ψ(0)
0 | [P̂ , Ôω

β···] |Ψ(0)
0 〉

+
1

�ω

∑
n

{
〈Ψ(0)

0 | P̂ |Ψ(0)
n 〉〈Ψ(0)

n | [Ĥ(0), Ôω
β···] |Ψ(0)

0 〉
�ω + E

(0)
0 − E

(0)
n

+
〈Ψ(0)

0 | [Ĥ(0), Ôω
β···] |Ψ(0)

n 〉〈Ψ(0)
n | P̂ |Ψ(0)

0 〉
−�ω + E

(0)
0 − E

(0)
n

}
(3.140)

where the second and third terms together are the spectral representation of the
〈〈 P̂ ; [Ĥ(0), Ôω

β···] 〉〉ω polarization propagator and we have therefore derived the equa-
tion of motion in the frequency domain, Eq. (3.134), directly from the spectral
representation of the polarization propagator.

Before we continue in the derivation of a matrix representation of the polarization
propagator, we want to mention that by taking the zero-frequency limit of the equa-
tion of motion in the frequency domain, we obtain the following relation between a
polarization propagator and a ground-state expectation value

〈Ψ(0)
0 | [P̂ , Ôω

β···] |Ψ(0)
0 〉 = 〈〈 P̂ ; [Ôω

β···, Ĥ
(0)] 〉〉ω=0 (3.141)

which will become very useful in later chapters.
The equation of motion in the frequency domain, Eq. (3.134), tells us that a

polarization propagator of two operators P̂ and Ôω
β··· is equal to an expectation value
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of the commutator of these operators plus another, more complicated polarization
propagator, in which the second operator Ôω

β··· was replaced by the commutator of
the unperturbed Hamiltonian with this operator. This might look like a step in the
wrong direction. However, iterating on this equation leads us to the so-called moment
expansion of the polarization propagator in terms of a series of expectation
values of nested commutators

〈〈 P̂ ; Ôω
β··· 〉〉ω =

(
1

�ω

)
〈Ψ(0)

0 | [P̂ , Ôω
β···] |Ψ(0)

0 〉

+
(

1
�ω

)2

〈Ψ(0)
0 |

[
P̂ ,

[
Ĥ(0), Ôω

β···
]]

|Ψ(0)
0 〉

+
(

1
�ω

)3

〈Ψ(0)
0 |

[
P̂ ,

[
Ĥ(0),

[
Ĥ(0), Ôω

β···
]]]

|Ψ(0)
0 〉 + · · · (3.142)

This series can be expressed in a more compact form by using the so-called super-
operator formalism (Goscinski and Lukman, 1970). We introduce this formalism
here, as we had introduced the interaction picture in Section 3.8, in order to facilitate
our derivations. The final equations will, however, be written without any super-
operators. The superoperator formalism is one level of abstraction higher than the
Hilbert vector space of quantum mechanics. In the infinite-dimensional Hilbert space
the vectors of the vector space are given as quantum mechanical wavefunctions and
the transformations performed on the vectors in the vector space are given by the
quantum mechanical operators. The binary product10 defined in Hilbert space is the
overlap integral 〈Ψk | Ψl〉 between two wavefunctions, Ψk and Ψl. In the superopera-
tor formalism we now have an infinite-dimensional vector space, where the quantum
mechanical operators, e.g. our operators P̂ or Ôω

β···, are the vectors in the vec-
tor space and the superoperator binary product, (P̂ | Ôω

β···), is defined in the
following way

(P̂ | Ôω
β···) = 〈Ψ(0)

0 | [P̂ †, Ôω
β···] |Ψ(0)

0 〉 (3.143)

The state Ψ(0)
0 employed in the definition of the superoperator binary product is

often called the reference state and need not be the ground state of the system.
The transformations working on the vectors in this vector space of operators, i.e. the
operators, are called superoperators and are here denoted with a wide hat as, e.g. in
Ô. Commonly, only the superoperator Hamiltonian Ĥ(0) and the superoperator
identity operator Î are used, which are defined as

Ĥ(0)Ôω
β··· = [Ĥ(0), Ôω

β···] (3.144)

and

Î Ôω
β··· = Ôω

β···. (3.145)

10 The binary product in a general vector space is the generalization of the scalar or dot product
of two vectors in the normal 3-dimensional vector space {R}3.
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The action of a superoperator Ô1 on the normal operator Ô2 is thus to build the
commutator [Ô1, Ô2] of the operator Ô1 (no longer as superoperator) with the normal
operator.

Making use of this superoperator formalism, the moment expansion of the
polarization propagator can be written as

〈〈 P̂ ; Ôω
β··· 〉〉ω =

(
1

�ω

)
〈Ψ(0)

0 | [P̂ , Î Ôω
β···] |Ψ(0)

0 〉

+
(

1
�ω

)2

〈Ψ(0)
0 |

[
P̂ , Ĥ(0)Ôω

β···
]
|Ψ(0)

0 〉

+
(

1
�ω

)3

〈Ψ(0)
0 |

[
P̂ , (Ĥ(0))2Ôω

β···
]
|Ψ(0)

0 〉 + · · · (3.146)

or

〈〈 P̂ ; Ôω
β··· 〉〉ω =

(
1

�ω

)
(P̂ † | Î Ôω

α···) +
(

1
�ω

)2

(P̂ † | Ĥ(0)Ôω
β···)

+
(

1
�ω

)3

(P̂ † | (Ĥ(0))2Ôω
β···) + · · · (3.147)

This looks very much like the series expansion of 1
1−x . We define therefore the

superoperator resolvent by the series expansion(
�ωÎ − Ĥ(0)

)−1

=
(

1
�ω

){
Î +

∞∑
n=1

(
Ĥ(0)

�ω

)n}
(3.148)

and use it in the moment expansion of the polarization propagator

〈〈 P̂ ; Ôω
β··· 〉〉ω = (P̂ † | (�ωÎ − Ĥ(0))−1Ôω

β···) (3.149)

However, this is only a cosmetic change, because the superoperator resolvent is an
inverse operator and is only defined through its series expansion in Eq. (3.148). The
way in which we can proceed, is to find a matrix representation of the superoperator
resolvent. In order to do that we need a complete set of basis vectors like in the normal
Hilbert space. However, the vectors in the superoperator formalism are operators and
we therefore need a complete set of operators. Such a set of operators {ĥn} consists of
a complete set of excitation and de-excitation operators with respect to the reference
state |Ψ(0)

0 〉. This means that all other states |Ψ(0)
n 〉 of the system or all excited states of

the system, if the reference state is the ground state, must be generated by operating
on the reference state |Ψ(0)

0 〉, i.e.

ĥn|Ψ(0)
0 〉 = |Ψ(0)

n 〉 (3.150)

With this complete set of excitation and de-excitation operators {ĥn}, arranged
either as column vector ĥ or as row vector ĥT , we can, like in other vector spaces,
also find an expression for the superoperator identity operator Î, which is called a
resolution of the superoperator identity,
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Î = | ĥT )(ĥ | ĥT )−1(ĥ | (3.151)

The desired matrix representation of the superoperator resolvent is then obtained
in two steps by the inner projection technique (Pickup and Goscinski, 1973), where
the superoperator resolvent is projected in the space of the complete set of excitation
and de-excitation operators {ĥn}. First, we insert the resolution of the superoperator
identity twice in Eq. (3.149) leading to

〈〈 P̂ ; Ôω
β··· 〉〉ω = (P̂ † | ĥT )(ĥ | ĥT )−1(ĥ | (�ωÎ − Ĥ(0))−1 | ĥT )(ĥ | ĥT )−1(ĥ | Ôω

β···)

(3.152)

In the second step we need to find an alternative expression for (ĥ |(�ωÎ− Ĥ(0))−1| ĥT ).
To that purpose we start with the definition of the superoperator resolvent, i.e.

(�ωÎ − Ĥ(0))−1(�ωÎ − Ĥ(0)) = Î (3.153)

Inserting this in the superoperator binary products between the complete set of
operators arranged as a matrix, (ĥ | ĥT ),

(ĥ | (�ωÎ − Ĥ(0))−1(�ωÎ − Ĥ(0)) | ĥT ) = (ĥ | ĥT ) (3.154)

and inserting the resolution of the identity, we obtain

(ĥ | (�ωÎ − Ĥ(0))−1 | ĥT )(ĥ | ĥT )−1(ĥ | (�ωÎ − Ĥ(0)) | ĥT ) = (ĥ | ĥT ) (3.155)

Multiplying this equation from the right first by (ĥ | (�ωÎ − Ĥ(0)) | ĥT )−1 and then
by (ĥ | ĥT ) we arrive at the desired alternative expression

(ĥ | (�ωÎ − Ĥ(0))−1 | ĥT ) = (ĥ | ĥT )(ĥ | (�ωÎ − Ĥ(0)) | ĥT )−1(ĥ | ĥT ) (3.156)

Using this relation in Eq. (3.152) leads us to an exact matrix representation of the
polarization propagator in the superoperator formalism

〈〈 P̂ ; Ôω
β··· 〉〉ω = (P̂ † | ĥT )(ĥ | (�ωÎ − Ĥ(0)) | ĥT )−1(ĥ | Ôω

β···) (3.157)

This expression no longer contains the inverse of operators but the inverse of matrix
representations of the operators. From comparison of Eq. (3.149) and Eq. (3.157)
we may conclude that a matrix representation of the superoperator resolvent is
given by (

�ωÎ − Ĥ(0)
)−1

= | ĥT )(ĥ | (�ωÎ − Ĥ(0)) | ĥT )−1(ĥ | (3.158)

Now we can insert the definitions of the superoperator binary product,
Eq. (3.143), the superoperator Hamiltonian, Eq. (3.144) and the superoperator iden-
tity, Eq. (3.145), in Eq. (3.157) and arrive thereby at our final expression for a matrix
representation of the polarization propagator

〈〈 P̂ ; Ôω
β··· 〉〉ω = T T (P̂ ) (�ωS − E)−1

T (Ôω
β···) (3.159)

where T T (P̂ ) and T (Ôω
β···) are, respectively, row and column vectors and are called

property gradient vectors. They have the elements

T T
i (P̂ ) = 〈Ψ(0)

0 | [P̂ , ĥi] |Ψ(0)
0 〉 (3.160)
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and
T j(Ôω

β···) = 〈Ψ(0)
0 | [ĥ†

j , Ô
ω
β···] |Ψ(0)

0 〉 (3.161)

The combination (�ωS − E) is also called the principal propagator M and consists
of the electronic Hessian matrix E with the elements

Eij = 〈Ψ(0)
0 | [ĥ†

i , [Ĥ
(0), ĥj ]] |Ψ(0)

0 〉 (3.162)

and the overlap matrix S with the elements

Sij = 〈Ψ(0)
0 | [ĥ†

i , ĥj ] |Ψ(0)
0 〉 (3.163)

As mentioned before, the complete set of operators {ĥn} consists in general of
excitation {eĥn} and de-excitation {dĥn} operators. The principal propagator matrix
can therefore be divided into four blocks

M = �ωS − E = �ω

(
eeS edS
deS ddS

)
−

(
eeE edE
deE ddE

)
(3.164)

where eeE and eeS, arise from excitation and excitation operators, edE and edS,
arise from excitation and de-excitation operators, and so forth. Correspondingly, the
property gradient vectors T T (P̂ ) and T (Ôω

β···) can be divided into two contributions
eT T (P̂ ) and dT T (P̂ ) or eT (Ôω

β···) and dT (Ôω
β···).

The matrix representation in Eq. (3.159) is exact as long as the set of opera-
tors {ĥn} is complete and as long as |Ψ(0)

0 〉 is an eigenfunction of Ĥ(0). Contrary to
Eq. (3.110) the matrix representation Eq. (3.159) involves no excited states of the sys-
tem, but only the ground state |Ψ(0)

0 〉 or in the general case the reference state. It is
thus a much more convenient starting point for approximate polarization propagator
methods, which will be discussed in more detail in Sections 10.3 and 10.4. Here, we can
already mention that these approximate polarization propagator methods are obtained
by making an approximation to the exact wavefunction |Ψ(0)

0 〉 and by truncating the
otherwise infinite set of operators {ĥn}.

On the other hand, the spectral representation of the polarization propagator,
Eq. (3.110), can be obtained from the matrix representation, Eq. (3.159), if one chooses
the set of operators {ĥn} to be the following set of operators

{ĥn} =
{

eĥn, dĥn

}
=

{
| Ψ(0)

n 〉〈Ψ(0)
0 |, | Ψ(0)

0 〉〈Ψ(0)
n |

}
(3.165)

which are a special type of projection operators and are called the state trans-
fer operators, because they are made from the eigenstates |Ψ(0)

0 〉 and |Ψ(0)
n 〉 of the

Hamiltonian Ĥ(0). With these operators the two off-diagonal blocks edE and deE of
the electronic Hessian matrix and edS and deS of the overlap matrix become zero
[see Exercise 3.12] and the propagator in Eq. (3.159) can be written as

〈〈 P̂ ; Ôω
β··· 〉〉ω = eT T (P̂ ) (�ω eeS − eeE)−1 eT (Ôω

β···)

+ dT T (P̂ )
(
�ω ddS − ddE

)−1 dT (Ôω
β···) (3.166)
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as the inverse of a block-diagonal matrix is a block-diagonal matrix whose diagonal
blocks are the inverse of the diagonal blocks of the original matrix.

Noting, furthermore [see Exercise 3.13] that the state-transfer operators reduce the
elements of the diagonal blocks of the electronic Hessian matrix to

eeEnm = 〈Ψ(0)
0 |eĥn

†
, [Ĥ(0), eĥm] |Ψ(0)

0 〉 = δnm

(
E(0)

n − E
(0)
0

)
(3.167)

ddEnm = −〈Ψ(0)
0 | [Ĥ(0), dĥm], dĥn

† |Ψ(0)
0 〉 = δnm

(
E(0)

n − E
(0)
0

)
(3.168)

and the elements of the diagonal blocks of the overlap matrix S to

eeSnm = 〈Ψ(0)
0 |eĥn

† eĥm |Ψ(0)
0 〉 = δnm (3.169)

ddSnm = −〈Ψ(0)
0 |dĥm

dĥn
† |Ψ(0)

0 〉 = −δnm (3.170)

and finally the elements of the property gradient vectors to

eT T
n (P̂ ) = 〈Ψ(0)

0 | P̂ eĥn |Ψ(0)
0 〉 = 〈Ψ(0)

0 | P̂ |Ψ(0)
n 〉 (3.171)

dT T
n (P̂ ) = −〈Ψ(0)

0 |dĥn P̂ |Ψ(0)
0 〉 = −〈Ψ(0)

n | P̂ |Ψ(0)
0 〉 (3.172)

eT n(Ôω
β···) = 〈Ψ(0)

0 |eĥ†
n Ôω

β··· |Ψ(0)
0 〉 = 〈Ψ(0)

n |Ôω
β··· |Ψ(0)

0 〉 (3.173)

dT n(Ôω
β···) = −〈Ψ(0)

0 |Ôω
β···

dĥ†
n |Ψ(0)

0 〉 = −〈Ψ(0)
0 |Ôω

β··· |Ψ(0)
n 〉 (3.174)

we can see that the ee block of the matrix representation in Eq. (3.166) leads to the first
sum in the spectral representation of the polarization propagator, Eq. (3.110), while
the dd block leads to the second sum in Eq. (3.110). This implies that by reversing this
line of argument one could in principle derive directly and without resorting to the
superoperator formalism the non-diagonal matrix representation of the polarization
propagator, Eq. (3.159), from the spectral representation in Eq. (3.110).

Exercise 3.12 Show that the off-diagonal blocks edE and deE of the electronic Hessian
matrix and the off-diagonal blocks edS and deS of the overlap matrix vanish if one chooses

the state transfer operators, Eq. (3.165), as operators {ĥn}.

Exercise 3.13 Prove Eqs. (3.167) to (3.174).

3.13 Pseudo-Perturbation Theory

In the discussion of the spectral representation of the polarization propagator in
Section 3.11 we have seen that the electronic vertical excitation energies of the system
(E(0)

n −E
(0)
0 ) are the poles of the polarization propagator. In the matrix representation

Eq. (3.159) a polarization propagator has a pole, if the principal propagator matrix
(E − �ωS) becomes singular. This leads to the homogeneous linear equations
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(E − �ωS) R = 0 (3.175)

and thus to the generalized eigenvalue problem

ERn = �ωnSRn (3.176)

where �ωn is an eigenvalue of the electronic Hessian matrix and therefore equal to a
vertical excitation energy (E(0)

n − E
(0)
0 ) and Rn is the corresponding eigenvector. In

the case of an asymmetric Hessian matrix E, as in the coupled cluster response theory
described in Section 11.4, Rn is the right eigenvector, while a left eigenvector Ln is
obtained as

LnE = LnS�ωn (3.177)

The eigenvectors are normally orthonormalized with the overlap matrix S as metric

LmSRn = δmn (3.178)

For symmetric Hessian matrices the left and right eigenvectors are the same.
Often one knows, or can easily obtain, the eigenvalues and eigenvectors of an

approximation to the original eigenvalue problem

E(0)R(0)
n = �ω(0)

n S(0)R(0)
n (3.179)

L(0)
n E(0) = L(0)

n S(0)
�ω(0)

n (3.180)

In pseudo-perturbation theory (Christiansen et al., 1996) one builds on this fact
and finds approximations to the eigenvalues and eigenvectors by applying the tech-
niques of perturbation theory from Section 3.2 to this eigenvalue problem. The Hessian
and overlap matrices are then partitioned into the zeroth-order parts E(0) and S(0)

and a remainder that is treated as first and second order

E = E(0) + E(1) + E(2) + · · · (3.181)

S = S(0) + S(1) + S(2) + · · · (3.182)

The eigenvalues and eigenvectors of E are then also expanded in a perturbation
series as

ωn = ω(0)
n + ω(1)

n + ω(2)
n + · · · (3.183)

Rn = R(0)
n + R(1)

n + R(2)
n + · · · (3.184)

Ln = L(0)
n + L(1)

n + L(2)
n + · · · (3.185)

(3.186)

In the following it will be convenient to choose the first-order matrices E(1) and S(1)

in such a way that their contribution to first order is zero, i.e.

L(0)
n E(1)R(0)

n = 0 (3.187)

L(0)
n S(1)R(0)

n = 0 (3.188)
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Inserting the expansions in the eigenvalue problem Eq. (3.176) and separating
orders then gives first- and second-order equations

E(1)R(0)
n + E(0)R(1)

n =
(
�ω(1)

n S(0) + �ω(0)
n S(1)

)
R(0)

n + �ω(0)
n S(0)R(1)

n (3.189)

E(2)R(0)
n +E(1)R(1)

n + E(0)R(2)
n

=
(
�ω(2)

n S(0) + �ω(0)
n S(2) + �ω(1)

n S(1)
)

R(0)
n

+
(
�ω(1)

n S(0) + �ω(0)
n S(1)

)
R(1)

n + �ω(0)
n S(0)R(2)

n (3.190)

which projected against the zeroth-order left eigenvector leads to the following expres-
sions for the first- and second-order corrections to the eigenvalues [see Exercise 3.14]

�ω(1)
n = L(0)

n

(
E(1) − �ω(0)

n S(1)
)

R(0)
n = 0 (3.191)

�ω(2)
n = L(0)

n

(
E(2) − �ω(0)

n S(2)
)

R(0)
n + L(0)

n

(
E(1) − �ω(0)

n S(1)
)

R(1)
n (3.192)

Exercise 3.14 Derive the results for the first- and second-order corrections to the eigenvalues
using Eqs. (3.187) and (3.188) and the zeroth-order eigenvalue problems Eq. (3.179).

Rearranging the first-order equation one obtains for the first-order right eigenvector

R(1)
n = −

(
E(0) − �ω(0)

n S(0)
)−1 (

E(1) − �ω(0)
n S(1)

)
R(0)

n (3.193)

and thus finally for the second-order correction to the eigenvalue

�ω(2)
n =L(0)

n

(
E(2) − �ω(0)

n S(2)
)

R(0)
n (3.194)

− L(0)
n

(
E(1) − �ω(0)

n S(1)
)(

E(0) − �ω(0)
n S(0)

)−1

×
(
E(1) − �ω(0)

n S(1)
)

R(0)
n

Comparison with Eq. (3.33) shows that the second-order correction in pseudo-
perturbation theory has essentially the same structure as in regular time-independent
perturbation theory.

3.14 Further Reading
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4

Electric Properties

In the first part of the book we have derived the Hamiltonian for the interaction
of molecules with electromagnetic fields. Furthermore, we have employed time-
independent perturbation theory or static response theory in order to obtain expres-
sions for the corrections to the energy and wavefunction of a molecule due to the
interaction with electromagnetic fields. We are thus well prepared for defining many
different molecular properties in this and the following chapters and for deriving
quantum mechanical expressions for them.

Some of the properties discussed here are well known from pre-quantum mechanical
physics and chemistry. For these properties we will start with their classical defini-
tions and then translate them to quantum mechanical expressions. The electric dipole
moment and higher-order electric moments or the electric fields at the positions of
the nuclei are typical examples. One can define an electric dipole moment for a col-
lection of discrete point charges as well as for a continuous distribution of positive
and negative charges with charge density ρ(�r) independent of whether the charge den-
sity follows the laws of classical or quantum mechanics. Similarly, one can define a
magnetic dipole moment as soon as a current density �j(�r) is given.

In this chapter we will discuss electric properties and start with the electrostatic
potential of the charges in a molecule, because it leads straightforwardly to a definition
of electric moments. Afterwards, we will look at changes in the electric moments due
to external electric fields and finally we will derive expressions for the electric field
and field gradients due to the charges in a molecule.

4.1 Electric Multipole Expansion

The electric charges in a molecule, i.e. the charges of the nuclei at fixed positions
and the charges of the distributed electrons, give rise to an electric field that we can
represent by the associated electrostatic potential φρ(�R).1 Other molecules in the
neighbourhood of this molecule will experience and react to this field. Knowledge of
the electrostatic potential φρ(�R) around a molecule is, therefore, important for, e.g.,
the study of long-range intermolecular interactions.

For a distribution of charges the electrostatic potential φρ(�R) at a point �R is
given as superposition of the potentials due to the individual charges. In the case of a

1 The superscript ρ is supposed to indicate that the electrostatic potential is due to a charge
distribution.
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continuous distribution of charges with charge density ρ(�r) the summation becomes
an integration and the electrostatic potential then reads

φρ(�R) =
1

4πε0

∫
�r

ρ(�r)

| �R − �r | d�r (4.1)

where d�r stands for dx dy dz throughout this chapter and
∫
�r

denotes a triple integral∫ ∫ ∫
over the appropriate volume with volume element d�r. This expression is exact

but often it is not particularly useful because an integration has to be performed for
each observation point �R and because complete knowledge of the charge distribution
ρ(�r) is required. In the following, we will derive an alternative expression for this
electrostatic potential that is only exact in the limit of an infinite series, but that
neither requires a separate integration for every observation point �R nor complete
knowledge of the charge density ρ(�r).

We will start by expanding 1

|�R−�r| in a Taylor series around an origin �RO within
the charge distribution

1

| �R − �r | =
1

| �R − �RO | +
∑
α

(
∂

∂rα

1

| �R − �r |

)
�r=�RO

(rα − RO,α) (4.2)

+
1
2

∑
αβ

(
∂2

∂rα∂rβ

1

| �R − �r |

)
�r=�RO

(rα − RO,α)(rβ − RO,β)

+ . . .

where the derivatives have to be evaluated at the point �r = �RO. The Greek subscripts
α, β, etc. denote again vector or tensor components in the molecule-fixed cartesian
coordinate system. A summation over a Greek subscript will here and in the following
denote summation over all three cartesian components. For an observation point �R
far from the charge distribution this series should converge rapidly. Inserting this
expansion in the expression for the electrostatic potential, Eq. (4.1), we obtain

φρ(�R) =
1

4πε0

[
1

| �R − �RO |

∫
�r

ρ(�r) d�r

+
∑
α

(
∂

∂rα

1

| �R − �r |

)
�r=�RO

∫
�r

ρ(�r) (rα − RO,α) d�r

+
1
2

∑
αβ

(
∂2

∂rα∂rβ

1

| �R − �r |

)
�r=�RO

∫
�r

ρ(�r) (rα − RO,α)(rβ − RO,β) d�r

+ . . .

]
(4.3)

Equation (4.3) includes a series of integrals over the charge density ρ(�r) multiplied
by increasing powers of (rα − RO,α). These type of integrals

∫
xnf(x) dx are a well-

known concept and are called the nth-order moments of the function f(x). We define
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therefore the cartesian components of the moments of the charge distribution
ρ(�r), also called the electric moments, as

q =
∫

�r

ρ(�r) d�r (4.4)

μα(�RO) =
∫

�r

(rα − RO,α) ρ(�r) d�r (4.5)

Qαβ(�RO) =
∫

�r

(rα − RO,α) (rβ − RO,β) ρ(�r) d�r (4.6)

The zeroth-order electric moment q is the total charge, μα is a cartesian component
of the first-order electric moment, called the electric dipole moment, and Qαβ is a
cartesian component of the second-order electric moment tensor. The definition
of the components of the first electric moment, Eq. (4.5), is the generalization to
a continuous charge distribution ρ(�r) and to an arbitrary origin �RO of the classical
expression

�μ =
∑

i

qi
�Ri (4.7)

for the electric dipole moment of a set of point charges {qi} with position vectors
{�Ri} relative to the origin of the coordinate system. For two point charges q1 and
q2 = −q1 the classical expression is reduced to the well-known expression |�μ| = q1d,
where d = |�R1 − �R2| is the distance between the two point charges.

Frequently, a traceless2 quadrupole moment tensor Θ is defined, which has
only five independent elements given as

Θαβ(�RO) =
1
2

∫
�r

[
3(rα − RO,α) (rβ − RO,β) − δαβ (�r − �RO)2

]
ρ(�r) d�r (4.8)

Since the sum of the diagonal elements is zero, one can obtain one diagonal element
from the sum of the other two diagonal elements. The quadrupole moment tensor
measures essentially the deviation of the charge distribution ρ(�r) from spherical sym-
metry. To avoid confusion it is customary to call the moment Q defined in Eq. (4.6) the
second electric moment and Θ as defined in Eq. (4.8) the electric quadrupole
moment.

With this definition of the electric moments we have already achieved our first
goal, because we have removed or at least hidden the integration over the charge
distribution in the Taylor expansion of the electrostatic potential

φρ(�R) =
1

4πε0

[
q

| �R − �RO | +
∑
α

(
∂

∂rα

1

| �R − �r |

)
�r=�RO

μα(�RO)

+
1
2

∑
αβ

(
∂2

∂rα∂rβ

1

| �R − �r |

)
�r=�RO

Qαβ(�RO) + . . .

⎤⎦ (4.9)

2 whose trace is zero:
∑

α Θαα = 0.
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Finally, we have to evaluate the derivatives in Eq. (4.9) [see Exercise 4.1] that then
yields the multipole expansion of the electrostatic potential

φρ(�R) =
1

4πε0

q

| �R − �RO | +
1

4πε0

∑
α

μα(�RO)
Rα − RO,α

| �R − �RO |3 (4.10)

+
1

8πε0

∑
αβ

Qαβ(�RO)
3 (Rα − RO,α) (Rβ − RO,β) − δαβ(�R − �RO)2

| �R − �RO |5 + . . .

Exercise 4.1 Derive the two derivatives(
∂

∂rα

1

| �R − �r |

)
�r=�RO(

∂2

∂rα∂rβ

1

| �R − �r |

)
�r=�RO

used in the derivation of Eq. (4.10).

Convergence of the multipole series for a particular observation point �R depends
on the precise form of the charge distribution ρ(�r) and on the distance (�R − �RO)
between the observation point and the charge distribution. However, one can expect
in general that the contribution from the higher moments in this series will become
negligible as the distance between the observation point �R and the origin �RO increases
and the potential will then be described accurately by the charge and dipole moment
terms alone.

Apart from motivating the definition of the electric moments, the importance of the
multipole expansion in Eq. (4.10) lies in the fact that we can calculate the electrostatic
potential φρ(�R) for any point �R from the simple formula in Eq. (4.10) as soon as we
know the electric multipole moments of the corresponding charge distribution ρ(�r)
instead of evaluating the more complicated expression in Eq. (4.1) for each �R. A major
application of electric multipole moments is thus the description and calculation of
intermolecular forces (Buckingham, 1967).

An important feature of the electric multipole moments, as defined in Eqs. (4.4)–
(4.6) and (4.8), is that the first non-vanishing moment of a charge distribution is
independent of the choice of the origin �RO. However, all the higher moments depend
on this origin. Thus, the dipole moment of a neutral molecule or the quadrupole
moment of a neutral and non-polar3 molecule are both independent of the origin �RO,
whereas the dipole moment of an ion or the quadrupole moment of a neutral but
polar3 molecule will depend on the origin �RO [see Exercise 4.2].

Exercise 4.2 Show that the dipole moment of an ion and the quadrupole moment of a

neutral but polar molecule depend on the origin �RO.

3 A molecule is polar when it has a dipole moment.
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4.2 Potential Energy in an Electric Field

Electric multipole moments also play an important role in the description of inter-
actions between molecules and external electric fields. The potential energy E of a
distribution of charges ρ(�r) immersed in an external inhomogeneous static electric
field is given as4

E(�E ,E) =
∫

�r

ρ(�r) φ E(�r) d�r, (4.11)

where φ E(�r) is the scalar potential associated with the electric field as defined in
Eq. (2.33). This is simply the generalization of E = q φ E for a single charge q to
the case of a continuous charge distribution ρ(�r). Analogous to the expression for the
electrostatic potential of a charge distribution in Eq. (4.1), this expression for the
potential energy is exact, but evaluation of Eq. (4.11) requires that the charge density
ρ(�r) and the electric potential φ E(�r) are known for all values of �r. A more useful
expression can be obtained again, if we expand the scalar potential in a Taylor series
around �RO

φ E(�r) = φ E(�RO) +
∑
α

(rα − RO,α)
∂φ E(�r)

∂rα

∣∣∣∣
�r=�RO

+
1
2

∑
αβ

(rα − RO,α)(rβ − RO,β)
∂2φ E(�r)
∂rα∂rβ

∣∣∣∣
�r=�RO

+ . . . (4.12)

where the derivatives have to be evaluated again at �r = �RO. The first derivatives of
the scalar potential φ E are the components of the electric-field vector Eα

Eα(�RO) = −∂φ E(�r)
∂rα

∣∣∣∣
�r=�RO

(4.13)

and the second derivatives are the components of the electric-field gradient tensor Eαβ

Eαβ(�RO) = −∂2φ E(�r)
∂rα∂rβ

∣∣∣∣
�r=�RO

(4.14)

etc. The expansion of the scalar potential is thus

φ E(�r) = φ E(�RO) −
∑
α

(rα − RO,α)Eα(�RO)

− 1
2

∑
αβ

(rα − RO,α)(rβ − RO,β)Eαβ(�RO) + . . . (4.15)

4 (�E, E) indicates that the energy depends on the electric-field vector �E, the electric-field gradient
tensor E and possibly higher derivatives of the electric field.
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On insertion of Eq. (4.15) in Eq. (4.11) one obtains for the potential energy

E(�E ,E) = φ E(�RO)
∫

�r

ρ(�r) d�r −
∑
α

Eα(�RO)
∫

�r

(rα − RO,α) ρ(�r) d�r

− 1
2

∑
αβ

Eαβ(�RO)
∫

�r

(rα − RO,α) (rβ − RO,β) ρ(�r) d�r + . . . (4.16)

The integrals over ρ(�r) are again the electric moments defined in Eqs. (4.4)–(4.6).
The energy E(�E ,E) of the interaction between a charge distribution and a static

but inhomogeneous electric field can therefore be expressed in terms of the electric
moments of the charge distribution

E(�E ,E) = q φ E(�RO) −
∑
α

μα(�RO)Eα(�RO) − 1
2

∑
αβ

Qαβ(�RO)Eαβ(�RO) + . . . (4.17)

similar to the multipole expansion of the electrostatic potential of a charge distribution
in Eq. (4.10). Alternatively, using the quadrupole moment tensor Θ we can write for
the interaction energy [see Exercise 4.3] and [see Exercise 4.4]

E(�E ,E) = q φ E(�RO) −
∑
α

μα(�RO)Eα(�RO) − 1
3

∑
αβ

Θαβ(�RO)Eαβ(�RO) + . . . (4.18)

Exercise 4.3 Show that the contribution 1
2

∑
αβ Qαβ(�RO)Eαβ(�RO) of the second-order elec-

tric moment to the interaction energy in Eq. (4.17) is unchanged if an arbitrary constant C
is added to the diagonal elements Qαα of the second-order electric moment.

Hint : Recall that we only use the scalar potential φE(�RO) far away from the charges that

originally generated it and that therefore it satisfies Laplace’s equation ∇2φE(�RO) = 0. This
leads to an equation that can be used in the solution of this exercise.

Exercise 4.4 Show that Eqs. (4.17) and (4.18) are equivalent.

The electric multipole moments of a charge distribution, defined in Eqs. (4.4)–
(4.6) or (4.8), can therefore not only be used to express the electrostatic potential
φρ created by this charge distribution in surroundings but also the interaction energy
E of the same charge distribution with an external scalar potential φE . The electric
moments therefore play an important role in the description of intermolecular inter-
actions, where one molecule is considered to give rise to an electric potential that the
other molecule feels. One part of the interaction energy is therefore expanded in the
multipole moments of both molecules (Buckingham, 1967).

Furthermore, Eq. (4.18) shows that we can define the cartesian components of the
dipole moment and quadrupole moment alternatively as derivatives5 of the interaction
energy with respect to the field strength Eα or field gradient Eαβ

5 In Section 4.4 we will see that the derivatives have to be evaluated for zero field or field gradient
strength, Eα = 0 or Eαβ = 0, in order to obtain the permanent moments.
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μα(�RO) = − ∂E(�E)

∂Eα(�RO)
(4.19)

Qαβ(�RO) = −2
∂E(E)

∂Eαβ(�RO)
(4.20)

Θαβ(�RO) = −3
∂E(E)

∂Eαβ(�RO)
(4.21)

in addition to the definitions as integrals over the charge density given in Eqs. (4.5)
and (4.8). These definitions will be used in the derivation of quantum mechanical
expressions for the moments in the next section and in Part III.

4.3 Quantum Mechanical Expressions for Electric Moments

In the previous two sections we found two alternative sets of expressions for the elec-
tric moments from which we can start deriving quantum mechanical formulas. The
first one, the original definitions in Eqs. (4.5)–(4.6) and (4.8), are integrals over the
charge density ρ(�r ), whereas in the second type of expressions, Eqs. (4.19), (4.20) and
(4.21), the moments are defined as derivatives of the energy. Consequently, we could
quantise the original definitions of the moments Eqs. (4.5), (4.6) and (4.8) or apply
the derivatives Eqs. (4.19), (4.20) and (4.21) to the quantum-mechanical expression
for the energy of a molecule in the presence of an electrostatic scalar potential φE .
Actually, there is a third option that is based on the Hellmann–Feynman theorem,
Eq. (3.11), which says that the derivative of the energy with respect to a parameter
in the Hamiltonian can be calculated as the expectation value of an operator that is
the corresponding derivative of the Hamiltonian.

Let us look first at the transition of the original definitions as integrals over the
charge density, Eqs. (4.5), (4.6) and (4.8), to quantum mechanics that we will illustrate
for the example of the electric dipole moment. In the Born–Oppenheimer approxima-
tion, Section 2.2, the electrons in a molecule form a continuous charge distribution
ρel(�r), whereas the discrete nuclear charges are located at fixed points �RK . The expres-
sion, Eq. (4.5) for the α-component of the electric dipole moment can therefore be
rewritten as

μα(�RO) =
∫

�r

(rα − RO,α) ρel(�r) d�r +
∑
K

ZKe (RK,α − RO,α) (4.22)

The transition to quantum mechanics can now be made by inserting the quantum
mechanical expression for the charge density of N electrons in the state |Ψ(0)

0 〉,
Eq. (2.23)

μα(�RO) =
∫

�r

(rα − RO,α) (−e)〈Ψ(0)
0 |

N∑
i

δ(�ri − �r) |Ψ(0)
0 〉 d�r

+
∑
K

ZKe (RK,α − RO,α) (4.23)
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Recalling the properties of the Dirac δ function in three dimensions, Eq. (2.18), and
the fact that the Dirac δ function is a symmetrical function of its argument

δ(�r − �a) = δ(�a − �r) (4.24)

we can evaluate the integral over �r in Eq. (4.23). The quantum mechanical expres-
sion for the cartesian components of the electric dipole moment is therefore
given as

μα(�RO) = 〈Ψ(0)
0 |−e

N∑
i

(ri,α − RO,α) |Ψ(0)
0 〉 +

∑
K

ZKe (RK,α − RO,α) (4.25)

In complete analogy we can derive quantum mechanical expressions for the components
of the second electric moment tensor Qαβ and the quadrupole moment tensor Θαβ

Qαβ(�RO) = 〈Ψ(0)
0 |−e

N∑
i

(ri,α − RO,α)(ri,β − RO,β) |Ψ(0)
0 〉

+
∑
K

ZKe (RK,α − RO,α)(RK,β − RO,β) (4.26)

Θαβ(�RO) =
1
2
〈Ψ(0)

0 |−e

N∑
i

3(ri,α − RO,α) (ri,β − RO,β) − δαβ (�ri − �RO)2 |Ψ(0)
0 〉

+
1
2

∑
K

ZKe
[
3(RK,α − RO,α) (RK,β − RO,β) − δαβ (�RK − �RO)2

]
(4.27)

In the second approach we will use the fact that the moments are defined as
derivatives of the energy of a molecule in the presence of an inhomogeneous electric
field, Eqs. (4.19), (4.20) and (4.21). In order to apply these definitions we need to
find an expression for the energy of a molecule in the presence of an inhomogeneous
electric field. Here, we are using perturbation theory as developed in Section 3.2. The
first step is thus to define the perturbation Hamiltonian operators Ĥ(1) and to derive
explicit expressions for them in terms of components of the electric field Eα(�RO) and
field gradient tensor Eαβ(�RO). The electric field and field gradient enter the molecular
Hamiltonian in the form of the scalar potential φ̂E(�r). From Eq. (4.15) we can see
that the electrostatic potential at the position �r of particle (electron or nucleus) for
an electric field with non-zero gradient is given as

φ̂E(�r) = − (�r − �RO) · E(�RO)

− 1
2

∑
αβ

[
(rα − RO,α)(rβ − RO,β) − 1

3
δαβ(�r − �RO)2

]
Eαβ(�RO) (4.28)

where we have not included the constant term, φE(�RO), from the expansion of the
electrostatic potential in Eq. (4.15), because it does not depend on any electronic coor-
dinate. When we insert this in the general expression for the molecular Hamiltonian,
Eq. (2.101), we can write the first-order perturbation Hamiltonian as
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Ĥ(1) = −
∑
α

[
ÔE

α(�RO) + Ω̂E
α(�RO)

]
Eα(�RO) −

∑
αβ

[
Ô∇E

αβ (�RO) + Ω̂∇E
αβ (�RO)

]
Eαβ(�RO)

(4.29)
where the perturbation operators of the electrons are defined as6

ÔE
α(�RO) =

N∑
i

ôEi,α(�RO) = −e

N∑
i

(ri,α − RO,α)

≡ μ̂α(�RO) (4.30)

Ô∇E
αβ (�RO) =

N∑
i

ô∇E
i,αβ(�RO) = −e

2

N∑
i

[
(ri,α − RO,α)(ri,β − RO,β) − 1

3
δαβ(�ri − �RO)2

]
≡ 1

3
Θ̂αβ(�RO) (4.31)

The N -electron operators �̂μ(�RO) and Θ̂(�RO) will in the following often be called
the electric dipole operator and the electric quadrupole operator, respec-
tively. Although we are working within the Born–Oppenheimer approximation we
have included the interaction of the electric field and field gradient with the nuclear
charges in the molecular Hamiltonian in Eq. (2.101). This interaction then leads to
nuclear contributions to the perturbation Hamiltonian operators. The operators Ω̂E

α

and Ω̂∇E
αβ

Ω̂E
α(�RO) =

∑
K

ZKe(RK,α − RO,α) (4.32)

Ω̂∇E
αβ (�RO) =

1
2

∑
K

ZKe

[
(RK,α − RO,α)(RK,β − RO,β) − 1

3
δαβ(�RK − �RO)2

]
(4.33)

are such terms that give rise to the nuclear contributions to the electric dipole and
quadrupole moments. Here and in the following, we will use Ô or ôi for operators
relating to electrons, while Ω̂ will be nuclear operators.

Having defined the perturbation Hamiltonians and perturbation operators we can
now derive expressions for the cartesian components of the electric moments as deriv-
atives of the energy in the presence of perturbing fields according to Eqs. (4.19) and
(4.21). We have now two possibilities: either we make use of the perturbation theory
expansion of the energy, Eq. (3.15), or of the Hellmann-Feynman theorem. Let us start
with perturbation theory. Because the moments are first derivatives we only need to
consider the first-order energy correction, Eq. (3.29),

μα(�RO) = −∂E
(1)
0 (�E)

∂Eα(�RO)
= − ∂

∂Eα(�RO)
〈Ψ(0)

0 |Ĥ(1) |Ψ(0)
0 〉 (4.34)

6 All perturbation operators derived in this and the following chapters are collected in
Appendix A.
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Θαβ(�RO) = −3
∂E

(1)
0 (E)

∂Eαβ(�RO)
= −3

∂

∂Eαβ(�RO)
〈Ψ(0)

0 |Ĥ(1) |Ψ(0)
0 〉 (4.35)

Alternatively, we can employ the Hellmann–Feynman theorem, Eq. (3.11), and obtain
the cartesian components of the electric moments directly as expectation values of the
corresponding derivatives of the Hamiltonian

μα(�RO) = 〈Ψ(0)
0 |− ∂Ĥ

∂Eα(�RO)
|Ψ(0)

0 〉 (4.36)

Θαβ(�RO) = 3 〈Ψ(0)
0 |− ∂Ĥ

∂Eαβ(�RO)
|Ψ(0)

0 〉 (4.37)

However, the first derivatives of the first-order perturbation Hamiltonian in Eqs. (4.34)
and (4.35) and of the full molecular electronic Hamiltonian are obviously the same

∂Ĥ

∂Eα(�RO)
=

∂Ĥ(1)

∂Eα(�RO)
= −μ̂α(�RO) − Ω̂E

α(�RO) (4.38)

∂Ĥ

∂Eαβ(�RO)
=

∂Ĥ(1)

∂Eαβ(�RO)
= −1

3
Θ̂αβ(�RO) − Ω̂∇E

αβ (�RO) (4.39)

and the quantum mechanical expressions for the cartesian components of the total
electric dipole and quadrupole moments are therefore given as

μα(�RO) = 〈Ψ(0)
0 | μ̂α(�RO) |Ψ(0)

0 〉 + Ω̂E
α(�RO) (4.40)

Θαβ(�RO) = 〈Ψ(0)
0 |Θ̂αβ(�RO) |Ψ(0)

0 〉 + 3 Ω̂∇E
αβ (�RO) (4.41)

These expression are of course identical to the ones derived previously in Eqs. (4.25)
and (4.27), apart from the fact that they are written in terms of the moment operators
here.

This proves that the different definitions are indeed equivalent as long as we know
the exact solutions to the unperturbed Schrödinger equation, Eq. (3.14). However, this
will no longer be the case when we work with approximate wavefunctions in Part III
and therefore we have discussed all the alternative definitions in detail here.

4.4 Induced Electric Moments and Polarizabilities

So far, it has been assumed that the distribution of charges is fixed and is not influenced
by the external electric field apart from a change in its energy. However, at least the
electrons are moving and therefore the charge distribution will redistribute itself in the
presence of the external electric field in such a way that the total energy is minimized.
One says that the charge distribution will be polarized. As a result, the cartesian
components of the electric moments of the charge distribution will change and their
values will depend on the strength of the field
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μα(�E ,E) = μα + μind
α (�E ,E) (4.42)

Θαβ(�E ,E) = Θαβ + Θind
αβ (�E ,E) (4.43)

One can say that the field-dependent moments �μind(�E ,E) and Θind(�E ,E)7 are induced
by the external field in addition to the field-independent, so-called permanent,
moments �μ, Θ, which we have introduced in the previous sections.

Traditionally, the dependence of the cartesian components of the electric moments,
μα(�E ,E) and Θαβ(�E ,E), on powers of the strength of an external field Eα and field
gradient Eαβ is expressed in the following way (Buckingham, 1967)

μα(�E ,E) = μα +
∑

β

ααβEβ +
1
2

∑
βγ

βαβγEβEγ +
1
6

∑
βγδ

γαβγδEβEγEδ

+
1
3

∑
βγ

Aα,βγEβγ +
1
3

∑
βγδ

Bα,β,γδEβEγδ + . . . (4.44)

Θαβ(�E ,E) = Θαβ +
∑

γ

Aγ,αβEγ +
1
2

∑
γδ

Bγ,δ,αβEγEδ

+
∑
γδ

Cαβ,γδEγδ + . . . (4.45)

where here and in the rest of this section the origin dependence “(�RO)” of the moments
is not written out explicitly as well, as Eα and Eαβ are meant as abbreviations for
Eα(�RO) and Eαβ(�RO), respectively, in order to reduce the complexity of the notation.
The expansion coefficients, ααβ , βαβγ , γαβγδ, Aγ,αβ , Bα,β,γδ and Cαβ,γδ, on the other
hand, are independent of the origin �RO that is shown in Section 4.5.

These expansions serve mainly as definitions of the polarizabilities and hyperpo-
larizabilities as proportionality constants in the correction terms to the permanent
moments. The dipole polarizability α is a second-rank tensor with nine carte-
sian components ααβ , the dipole–quadrupole polarizability and first dipole
hyperpolarizability are third-rank tensors with 27 cartesian components Aα,βγ and
βαβγ , while the quadrupole–quadrupole polarizability , the dipole–quadrupole
hyperpolarizability and the second dipole hyperpolarizability are fourth-rank
tensors with 81 cartesian components Cαβ,γδ, Bα,β,γδ and γαβγδ.8

Based on the expansions, one can express the polarizabilities and hyperpolariz-
abilities as first and higher derivatives of the field-dependent moments �μ(�E ,E) and
Θ(�E ,E) with respect to the components of the electric field and field gradient9

7 (�E, E) indicates that the moments depend on the electric-field vector �E and on the electric-field
gradient tensor E.

8 The notation for the cartesian component indices of the various quadrupole (hyper) polarizabil-
ities, e.g. Bα,β,γδ, differs slightly from the one for the pure dipole (hyper)polarizabilities, e.g. βαβγ ,
in order to mark more clearly which are the quadrupole components.

9 These definitions are also collected in the second and third columns of Table B.1 of appendix B.
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ααβ =
∂μα(�E)

∂Eβ

∣∣∣∣∣
|�E|=0

(4.46)

Aα,γδ = 3
∂μα(E)
∂Eγδ

∣∣∣∣
|E|=0

=
∂Θγδ(�E)

∂Eα

∣∣∣∣∣
|�E|=0

(4.47)

Cγδ,αβ =
∂Θγδ(E)

∂Eαβ

∣∣∣∣
|E|=0

(4.48)

βαβγ =
∂2μα(�E)
∂Eγ∂Eβ

∣∣∣∣∣
|�E|=0

(4.49)

Bα,β,γδ = 3
∂2μα(�E ,E)
∂Eγδ∂Eβ

∣∣∣∣∣
|�E|=|E|=0

=
∂2Θγδ(�E ,E)

∂Eβ∂Eα

∣∣∣∣∣
|�E|=|E|=0

(4.50)

γαβγδ =
∂3μα(�E)

∂Eδ∂Eγ∂Eβ

∣∣∣∣∣
|�E|=0

(4.51)

The expansion of the electric moments in Eqs. (4.44) and (4.45) also explains why
the polarizabilities are sometimes called the linear response of the moments to an
electric field or field gradient, the first hyperpolarizabilities the quadratic response
and the second-order hyperpolarizability the cubic response.

The isotropic or mean polarizabilities normally measured for molecules in the liquid
or gas phase are defined as (Buckingham, 1967)

α =
1
3

∑
α

ααα (4.52)

B =
2
15

∑
αβ

Bα,β,αβ (4.53)

C =
1
5

∑
αβ

Cαβ,αβ (4.54)

whereas the anisotropy of the dipole polarizability Δα is defined as

Δα =

√∑
αβ(3ααβααβ − ααααββ)

2
(4.55)

Similarly, one defines two isotropic averages for the first hyperpolarizability

β‖ =
1
5

∑
α

(βzαα + βαzα + βααz) (4.56)

β⊥ =
1
5

∑
α

(2βzαα − 3βαzα + 2βααz) (4.57)
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where the molecular z-axis is parallel to the electric dipole moment vector of the
molecule, and also two isotropic averages for the second hyperpolarizability

γ = γ‖ =
1
15

∑
αβ

(γααββ + γαβαβ + γαββα) (4.58)

γ⊥ =
1
15

∑
αβ

(2γαββα − γααββ) (4.59)

Since we are concerned with a polarizable charge distribution, i.e. a charge distri-
bution that will change when we turn on the electric field or field gradient, we have
to be careful when deriving an expression for the energy in the presence of the exter-
nal field and field gradient. It is not possible to obtain the correct expression for the
energy E of the charge distribution by simply inserting the field and field-gradient-
dependent moments, �μ(�E ,E) and Θ(�E ,E) from Eqs. (4.44) and (4.45), in the multipole
expansion of the energy in Eq. (4.18), because the moments are now functions of the
fields. Instead, we have to consider an infinitesimal change in energy dE due to an
infinitesimal change in the fields and to integrate dE from zero field strength to �E .
We will illustrate this for the case of the dipole moment and its dependence on the
electric field. From Eq. (4.19) we can see that

dE = −
∑
α

μα(�E) dEα = −�μ(�E) · d�E (4.60)

The energy can now be obtained by integration on both sides, which gives

E(�E) − E(0) = −
∫ �E

0

�μ(�E ′) · d�E ′ (4.61)

The integral on the right-hand side of Eq. (4.61) is a line integral over a vector field
�μ(E) in the space defined by the components of the electric field. Normally, a line
integral is defined over coordinate space and looks like this

∫
�A(�r) · d�r. However, if we

identify the electric-field vector �E as the generalization of a position vector �r we can see
that the integral in Eq. (4.61) is indeed a line integral. A line integral is independent
of the path when the vector function �A(�r) is the gradient of a scalar single-valued field
with continuous derivatives. Recalling that the components of the dipole moment are
the partial derivatives of the energy with respect to the components of the electric field,
we can conclude that the integral in Eq. (4.61) is independent of the integration path
and we can carry out the integration in three steps: from �E ′ = (0, 0, 0) to (Ex, 0, 0),
from (Ex, 0, 0) to (Ex, Ey, 0) and finally to (Ex, Ey, Ez). But before we can carry out the
integration we have to insert the expansion of the dipole moment in the presence of
an electric field, Eq. (4.44) and obtain

E(�E) − E(0) (4.62)

= −
∑
α

∫ �E

0

⎛⎝μα +
∑

β

ααβE ′
β +

1
2

∑
βγ

βαβγE ′
βE ′

γ +
1
6

∑
βγδ

γαβγδE ′
βE ′

γE ′
δ + . . .

⎞⎠ dE ′
α
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Integration along the path described above yields the following expression for the
energy of a polarizable charge distribution

E(�E) = E(0) (4.63)

−
∑
α

μαEα − 1
2

∑
αβ

ααβEαEβ − 1
6

∑
αβγ

βαβγEαEβEγ − 1
24

∑
αβγδ

γαβγδEαEβEγEδ

Exercise 4.5 Verify the result of the line integral in Eq. (4.62) for the case of an elec-
tric field (Ex, Ey, 0) and an expansion of the dipole moment in the polarizability and first
hyperpolarizability only.

In the same way, the contribution of the quadrupole and mixed dipole–quadrupole
polarizabilities to the energy can be obtained. The final expression for the energy of a
polarizable charge distribution in the presence of an inhomogeneous electric field then
reads (Buckingham, 1967)

E(�E ,E) = E(0) + q φ E −
∑
α

μαEα − 1
3

∑
αβ

ΘαβEαβ

− 1
2

∑
αβ

ααβEαEβ − 1
6

∑
αβγδ

Cαβ,γδEαβEγδ − 1
3

∑
αβγ

Aα,βγEαEβγ

− 1
6

∑
αβγ

βαβγEαEβEγ − 1
6

∑
αβγδ

Bα,β,γδEαEβEγδ

− 1
24

∑
αβγδ

γαβγδEαEβEγEδ − . . . . (4.64)

where again the origin dependence “(�RO)” of the permanent moments and of the
potential φ E was dropped and Eα and Eαβ are used as abbreviations for Eα(�RO) and
Eαβ(�RO), respectively.

The importance of Eq. (4.64) lies in the fact that one can calculate from it the
change in energy of a charge distribution due to an external electric field or field gra-
dient of arbitrary strength. One only needs to know the various polarizabilities and
hyperpolarizabilities. In the same way as the charge distribution in a molecule is influ-
enced by an external electric field it is also modified by the electric field due to other
molecules in the neighbourhood. Permanent electric moments of the surrounding mole-
cules induce additional electric moments in molecules leading to another contribution
to the intermolecular interaction energy. This so-called induction energy is determined
by the polarizabilities of the molecules and detailed knowledge of the polarizabilities
is therefore also important for the description of intermolecular forces (Buckingham,
1967).

Furthermore, Eq. (4.64) also allows us to define the various polarizabilities and
hyperpolarizabilities as derivatives of the energy. The first derivatives of the energy
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with respect to the field and field gradient are the electric dipole moment and elec-
tric quadrupole moment, as shown in Eqs. (4.19) and (4.21). Evaluating them at
zero electric field and field gradient yields the permanent moments. The second
derivatives of the energy give the polarizabilities, the third derivatives give the first
hyperpolarizabilities and so on10

ααβ = − ∂2E(�E)
∂Eβ∂Eα

∣∣∣∣∣
|�E|=0

(4.65)

Aα,βγ = −3
∂2E(�E ,E)
∂Eβγ∂Eα

∣∣∣∣∣
|�E|=|E|=0

(4.66)

Cαβ,γδ = −3
∂2E(E)

∂Eγδ∂Eαβ

∣∣∣∣
|E|=0

(4.67)

βαβγ = − ∂3E(�E)
∂Eγ∂Eβ∂Eα

∣∣∣∣∣
|�E|=0

(4.68)

Bα,β,γδ = −3
∂3E(�E ,E)

∂Eγδ∂Eβ∂Eα

∣∣∣∣∣
|�E|=|E|=0

(4.69)

γαβγδ = − ∂4E(�E)
∂Eδ∂Eγ∂Eβ∂Eα

∣∣∣∣∣
|�E|=0

(4.70)

4.5 Quantum Mechanical Expressions for Polarizabilities

In the previous section we have defined the tensor components ααβ , Aα,βγ and Cαβ,γδ

of the electric dipole, dipole–quadrupole and quadrupole-quadrupole polarizability
tensors as derivatives of the energy E(�E ,E) in the presence of a field and field gradient,
Eqs. (4.65) to (4.67), or alternatively as derivatives of the perturbation dependent
electric dipole �μ(�E ,E) and quadrupole moment Θ(�E ,E), Eqs. (4.46) to (4.48), see
also Table B.1. Furthermore, we have seen in Sections 3.3 and 4.3 that the electronic
contributions to the electric dipole and quadrupole moments can be expressed as
expectation values of the electric dipole and quadrupole moment operators, �̂μ(�RO)
and Θ̂(�RO) for the electrons, respectively. Both definitions can be used to derive
quantum mechanical expressions for the polarizabilities.

Let us start with the first definition as derivatives of the energy, Eqs. (4.65) to
(4.67). Again we will use the perturbation theory expression for the perturbed energy,
Eq. (3.15), but differentiate it now twice with respect to the appropriate components
of the field or field gradient. This leads us immediately to the second-order correction
to the energy, because the first-order correction depends only linearly on the fields.
We can therefore express the polarizabilities as

10 These definitions are also collected in the last column of Table B.1 of Appendix B.
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ααβ = − ∂2E
(2)
0 (�E)

∂Eα∂Eβ

∣∣∣∣∣
|�E|=0

= − ∂2

∂Eα∂Eβ

∑
n�=0

〈Ψ(0)
0 |Ĥ(1) |Ψ(0)

n 〉〈Ψ(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

∣∣∣∣∣∣
|�E|=0

(4.71)

Aα,βγ = −3
∂2E

(2)
0 (�E ,E)

∂Eα∂Eβγ

∣∣∣∣∣
|�E|=|E|=0

= −3
∂2

∂Eα∂Eβγ

∑
n�=0

〈Ψ(0)
0 |Ĥ(1) |Ψ(0)

n 〉〈Ψ(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

∣∣∣∣∣∣
|�E|=|E|=0

(4.72)

Cαβ,γδ = −3
∂2E

(2)
0 (E)

∂Eαβ∂Eγδ

∣∣∣∣∣
|E|=0

= −3
∂2

∂Eαβ∂Eγδ

∑
n�=0

〈Ψ(0)
0 |Ĥ(1) |Ψ(0)

n 〉〈Ψ(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

∣∣∣∣∣∣
|E|=0

(4.73)

However, in Section 4.3 we have seen that the derivatives of the first-order pertur-
bation Hamiltonian, Ĥ(1), with respect to a component of the electric field Eα and
field gradient Eαβ are the cartesian components of the electric dipole and quadru-
pole moment operators, μ̂α(�RO) + Ω̂E

α(�RO) and Θ̂αβ(�RO) + Ω̂∇E
αβ (�RO), Eqs. (4.38)

and (4.39). Using them we arrive at the final sum-over-states expression for the
components of the electric dipole polarizability tensor

ααβ = −
∑
n�=0

{
〈Ψ(0)

0 | μ̂α |Ψ(0)
n 〉〈Ψ(0)

n | μ̂β |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

+
〈Ψ(0)

0 | μ̂β |Ψ(0)
n 〉〈Ψ(0)

n | μ̂α |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

}
(4.74)

the electric dipole–quadrupole polarizability tensor

Aα,βγ = −
∑
n�=0

〈Ψ(0)
0 | μ̂α |Ψ(0)

n 〉〈Ψ(0)
n |Θ̂βγ |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

−
∑
n�=0

〈Ψ(0)
0 |Θ̂βγ |Ψ(0)

n 〉〈Ψ(0)
n | μ̂α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(4.75)

and the electric quadrupole–quadrupole polarizability tensor

Cαβ,γδ = − 1
3

∑
n�=0

〈Ψ(0)
0 |Θ̂αβ |Ψ(0)

n 〉〈Ψ(0)
n |Θ̂γδ |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n
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− 1
3

∑
n�=0

〈Ψ(0)
0 |Θ̂γδ |Ψ(0)

n 〉〈Ψ(0)
n |Θ̂αβ |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(4.76)

One should note that there is no contribution from the nuclear operators Ω̂E
α(�RO)

and Ω̂∇E
αβ (�RO) and that the polarizabilities are independent of the origin �RO. The

explanation for that is that neither Ω̂E
α(�RO) nor �RO act on the electronic wavefunctions

and that the unperturbed states are orthogonal 〈Ψ(0)
0 | Ψ(0)

n 〉 = 0. The transition
moments over Ω̂E

α(�RO) and Ω̂∇E
αβ (�RO) reduce therefore to

〈Ψ(0)
0 | Ω̂E

α(�RO) |Ψ(0)
n 〉 = Ω̂E

α(�RO)〈Ψ(0)
0 | Ψ(0)

n 〉 = 0 (4.77)

and the origin dependence of the transition moment over the electronic dipole moment
operator vanishes

〈Ψ(0)
0 | μ̂α(�RO) |Ψ(0)

n 〉 = 〈Ψ(0)
0 |−e

N∑
i

ri,α |Ψ(0)
n 〉 + 〈Ψ(0)

0 |eRO,α |Ψ(0)
n 〉

= 〈Ψ(0)
0 |−e

N∑
i

ri,α |Ψ(0)
n 〉 + eRO,α〈Ψ(0)

0 | Ψ(0)
n 〉

= 〈Ψ(0)
0 |−e

N∑
i

ri,α |Ψ(0)
n 〉 (4.78)

Since the polarizabilities can be derived as second derivatives of the energy, they are
often also called second-order properties.

Calculating polarizabilities from the sum-over-states expressions requires knowl-
edge of all excited states Ψ(0)

n and their energies E
(0)
n . Equations (4.74) to (4.76) are

therefore mainly used in the interpretation of calculated or measured polarizabili-
ties. The explicit knowledge of exited states can be avoided by employing the second
approach, where we want to derive the polarizabilities as first derivatives of the corre-
sponding field-dependent moments, Eqs. (4.46) to (4.48). In Section 4.3 it was shown
that the permanent moments can be written as expectation values of the appropriate
electric moment operators with unperturbed wavefunctions. Perturbation-dependent
moments can be obtained as expectation values of the electric dipole moment oper-
ator with the perturbed wavefunction, Eq. (3.35), as was shown in section 3.3. We
can therefore apply the general expression for the first derivative of a perturbation-
dependent expectation value, Eq. (3.40), to the polarizabilities and obtain expressions
involving first derivatives of the perturbed wavefunction for the tensor components of
the dipole polarizability

ααβ =
∂μα(�E)

∂Eβ

∣∣∣∣∣
|�E|=0

=
∂

∂Eβ
〈Ψ0(�E) | μ̂α |Ψ0(�E)〉

∣∣∣∣
|�E|=0
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= 〈Ψ(0)
0 | μ̂α | ∂Ψ0(�E)

∂Eβ

∣∣∣∣∣
|�E|=0

〉 + 〈 ∂Ψ0(�E)
∂Eβ

∣∣∣∣∣
|�E|=0

| μ̂α |Ψ(0)
0 〉 (4.79)

of the quadrupole polarizability

Cαβ,γδ =
∂ Θαβ(E)

∂Eγδ

∣∣∣∣
|E|=0

=
∂

∂Eγδ
〈Ψ0(E) |Θ̂αβ |Ψ0(E)〉

∣∣∣∣
|E|=0

= 〈Ψ(0)
0 |Θ̂αβ | ∂Ψ0(E)

∂Eγδ

∣∣∣∣
|E|=0

〉 + 〈 ∂Ψ0(E)
∂Eγδ

∣∣∣∣
|E|=0

|Θ̂αβ |Ψ(0)
0 〉 (4.80)

and of the dipole–quadrupole polarizability

Aα,βγ =
∂ Θβγ(�E)

∂Eα

∣∣∣∣∣
|�E|=|E|=0

=
∂

∂Eα
〈Ψ0(�E) |Θ̂βγ |Ψ0(�E)〉

∣∣∣∣
|�E|=|E|=0

= 〈Ψ(0)
0 |Θ̂βγ | ∂Ψ0(�E)

∂Eα

∣∣∣∣∣
|�E|=|E|=0

〉 + 〈 ∂Ψ0(�E)
∂Eα

∣∣∣∣∣
|�E|=|E|=0

|Θ̂βγ |Ψ(0)
0 〉 (4.81)

Alternatively, the dipole–quadrupole polarizability can be obtained as derivative of
the electric-field-gradient-dependent dipole moment

Aα,βγ = 3
∂ μα(E)
∂Eβγ

∣∣∣∣
|�E|=|E|=0

= 3
∂

∂Eβγ
〈Ψ0(E) | μ̂α |Ψ0(E)〉

∣∣∣∣
|�E|=|E|=0

= 3〈Ψ(0)
0 | μ̂α | ∂Ψ0(E)

∂Eβγ

∣∣∣∣
|�E|=|E|=0

〉 + 3〈 ∂Ψ0(E)
∂Eβγ

∣∣∣∣
|�E|=|E|=0

| μ̂α |Ψ(0)
0 〉 (4.82)

In Part III we will come back to these expressions and evaluate the derivatives of
approximate wavefunctions. However, here we will use the response formalism as
developed in Section 3.11. Using Eq. (3.116) we can express the derivatives of the per-
turbation dependent expectation value in terms of polarization propagators or linear
response functions and thus obtain for the tensor components of the polarizabilities

ααβ =
∂

∂Eβ
〈Ψ0(�E) | μ̂α |Ψ0(�E)〉

∣∣∣∣
|�E|=0

= −〈〈 μ̂α ; μ̂β 〉〉ω=0 (4.83)

Aα,βγ =
∂

∂Eα
〈Ψ0(�E) |Θ̂βγ |Ψ0(�E)〉

∣∣∣∣
|�E|=|E|=0

= 3
∂

∂Eβγ
〈Ψ0(E) | μ̂α |Ψ0(E)〉

∣∣∣∣
|�E|=|E|=0

= −〈〈 μ̂α ; Θ̂βγ 〉〉ω=0 (4.84)

Cαβ,γδ =
∂

∂Eγδ
〈Ψ0(E) |Θ̂αβ |Ψ0(E)〉

∣∣∣∣
|E|=0

= −1
3
〈〈 Θ̂αβ ; Θ̂γδ 〉〉ω=0 (4.85)

Inserting the perturbation theory expansion of the perturbed wavefunction up
to first order, Eq. (3.27), in Eqs. (4.79) to (4.82) or the expression for the static
response function Eq. (3.114) in equations (4.83) to (4.85) leads us back to the sum-
over-states expressions given in Eqs. (4.74)–(4.76), of course. The significance of the
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other expressions for the polarizabilities will become clear in Part III where we will
see that they will give rise to different approximate methods for the calculation of
polarizabilities than the normal sum-over-states expressions in Eqs. (4.74)–(4.76).

4.6 Molecular Electric Fields and Field Gradients

In addition to the electric moments and polarizabilities, which have been considered
up to now, the electric fields arising from a distribution of charges are also important
for describing various molecular properties.

We have discussed several times already that knowledge of the electrostatic poten-
tial φρ(�R) due to a distribution of charges, as given in Eq. (4.1), is important for the
study of intermolecular interactions. The first and second derivatives of this molecular
electrostatic potential are, according to Eqs. (4.13) and (4.14), the molecular electric
field �Eρ(�R) and the molecular electric field gradient tensor Eρ(�R) at a point �R due to
the molecular charge distribution ρ(�r). [see Exercise 4.6] Their cartesian components
of the field and field gradient are thus given as

Eρ
α(�R) =

1
4πε0

∫
�r

ρ(�r)
Rα − rα

| �R − �r |3 d�r (4.86)

Eρ
αβ(�R) =

1
4πε0

∫
�r

ρ(�r)

[
δαβ

| �R − �r |3 − 3
(Rα − rα)(Rβ − rβ)

| �R − �r |5

]
d�r (4.87)

Exercise 4.6 Derive the expression (4.87) for the molecular electric-field gradient.

The molecular electric field gives rise to a force �F acting on the charges in the
charge distribution, where the contribution to the electric field from the charge in
question has to be excluded, of course. For a charge distribution in equilibrium this
force should obviously be zero. For example, the force acting on a nucleus K in a
molecule would then be

�FK = ZKe �Eρ(�RK) (4.88)

and this force will be zero in the Born-Oppenheimer approximation, if the molecule
is in its equilibrium geometry. In actual calculations using one of the approximate
methods that are discussed in Part III, however, this will only be the case, if the
equilibrium geometry of the molecule was determined with the same method as used
in the calculation of this force.

Although the fields and field gradients are well defined for any point in space, it
is not possible to measure them at an arbitrary point within the charge distribution.
Fields can be probed by dipole moments and field gradients by quadrupole moments
(see e.g. Eq. (4.18)). In order to measure the field at an arbitrary point one would
have to bring a dipole moment there, which is of course not possible within a molecule.
Only via the interaction with the nuclei in a molecule is it therefore possible to get
information about some of these field quantities and only at the positions of the nuclei.
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But nuclei do not have electric dipole moments and the molecular electric field can
thus not be investigated in this way.

However, nuclei with a spin quantum number IK ≥ 1 possess an electric quadrupole
moment ΘK and one can study the molecular electric field gradient at the positions of
the nuclei, Eρ

αβ(�RK), via the interaction with the nuclear electric quadrupole moment
defined via an effective spin Hamiltonian

Ĥspin =
1
2�

∑
K

ΘK

IK(2IK − 1)

∑
αβ

ÎK
α Eρ

αβ(�RK)ÎK
β (4.89)

The product of the nuclear quadrupole moment with the electric-field-gradient tensor
divided by �, i.e. ΘKEρ(�RK)/�, is called the nuclear quadrupole coupling tensor,
while ΘKEρ

zz(�RK)/� is called the nuclear quadrupole coupling constant. The lat-
ter can be obtained from the hyperfine structure of rotational spectra, the quadrupole
splitting of the lines in a Mössbauer spectrum or the linewidth of the lines in the NMR
spectrum of a molecule containing the quadrupole nucleus K. As a traceless second-
rank tensor the electric-field-gradient tensor Eρ(�RK) can be diagonalized. The three
eigenvalues of the electric-field-gradient tensor and thus the components of Eρ(�RK) in
its own principal axis coordinate system are called Eρ

aa(�RK), Eρ
bb(�RK) and Eρ

cc(�RK),
where

|Eρ
cc(�RK)| ≥ |Eρ

bb(�RK)| ≥ |Eρ
aa(�RK)| (4.90)

From these eigenvalues one defines also an asymmetry parameter ηK as

ηK =
Eρ

aa(�RK) − Eρ
bb(�RK)

Eρ
cc(�RK)

(4.91)

which has values between zero and one. Finally, as a traceless tensor the eigenvalues
are not independent of each other but fulfill the condition that

Eρ
aa(�RK) + Eρ

bb(�RK) + Eρ
cc(�RK) = 0 (4.92)

The classical expression for the electric field and field gradient due to a charge
density ρ(�r), Eqs. (4.86) and (4.87), are analogous to the definition of the electric
moments as integrals over the charge density in Eqs. (4.5) and (4.6). The quantum
mechanical expressions for the tensor components of the electric field at an arbitrary
observation point �R, Eρ

α(�R), and of the field gradient at the position of a nucleus K,
Eρ

αβ(�RK), can therefore be obtained in the same way as for the electric moments in
Section 4.3. We only have to replace the integration over the classical charge density
ρ(�r) with an expectation value for the electrons and with a summation over all nuclei
in the case of the field and with a summation over all other nuclei, L �= K, in the case
of the field gradient

Eρ
α(�R) =

e

4πε0
〈Ψ(0)

0 |
N∑
i

ri,α − Rα

| �ri − �R |3 |Ψ
(0)
0 〉 −

∑
K

ZKe

4πε0

RK,α − Rα

| �RK − �R |3 (4.93)
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Eρ
αβ(�RK) =

e

4πε0
〈Ψ(0)

0 |
N∑
i

[
3
(ri,α − RK,α)(ri,β − RK,β)

| �ri − �RK |5 − δαβ

| �ri − �RK |3

]
|Ψ(0)

0 〉

− 1
4πε0

∑
L�=K

ZLe

[
3
(RL,α − RK,α)(RL,β − RK,β)

| �RL − �RK |5 − δαβ

| �RL − �RK |3

]
(4.94)

Defining electric-field operators, �̂Oμ and �̂Ωμ,

Ôμ
α(�R) =

N∑
i

ôμ
i,α(�R) =

e

4πε0

N∑
i

ri,α − Rα

| �ri − �R |3 (4.95)

Ω̂μ
α(�R) = −

∑
K

ZKe

4πε0

RK,α − Rα

| �RK − �R |3 (4.96)

and electric-field-gradient operators, Ô
Θ

and Ω̂
Θ

,

ÔΘ
αβ(�R) =

N∑
i

ôΘ
i,αβ(�R)

=
e

4πε0

N∑
i

[
3
(ri,α − RK,α)(ri,β − RK,β)

| �ri − �RK |5 − δαβ

| �ri − �RK |3

]
(4.97)

Ω̂Θ
αβ(�R) = − 1

4πε0

∑
L�=K

ZLe

[
3
(RL,α − RK,α)(RL,β − RK,β)

| �RL − �RK |5 − δαβ

| �RL − �RK |3

]
(4.98)

we can write the quantum mechanical expression for the electric-field and electric-field
gradient at an arbitrary point �R more simply as

Eρ
α(�R) = 〈Ψ(0)

0 |Ôμ
α(�R) |Ψ(0)

0 〉 + Ω̂μ
α(�R) (4.99)

Eρ
αβ(�RK) = 〈Ψ(0)

0 |ÔΘ
αβ(�R) |Ψ(0)

0 〉 + Ω̂Θ
αβ(�R) (4.100)
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5

Magnetic Properties

In the previous chapter we have defined several electric properties as derivatives of
the energy of a charge distribution ρ(�r) in the presence of an electric field or field
gradient. Some of these properties were alternatively also defined as derivatives of the
electric moments. Furthermore, quantum mechanical expressions were derived for all
these properties using perturbation theory or static response theory as outlined in
Chapter 3.

In the present chapter we will now define analogous magnetic properties and derive
quantum mechanical expression for them in the same ways as in the electric case.
However, there are some important differences. First, there will be more types of
properties to be studied, because in addition to an external magnetic field we are
also interested in the interaction with nuclear magnetic dipole moments. Secondly,
magnetic properties exhibit a greater complexity than electric properties. This shows
up already in the fact that the current density �j(�r), which takes over the role of the
charge density ρ(�r) in this chapter, is a vector field and not a scalar field as ρ(�r).
Furthermore the potential that will represent the fields or magnetic moments is the
vector potential, �A(�r), i.e. again a vector field instead of the scalar potential of the
electric case. Finally, the problem of gauge transformations as discussed in Section 2.9,
is important for magnetic properties.

5.1 Magnetic Multipole Expansion

A dynamic system of charges with charge density ρ(�r) gives rise to a current density
�j(�r)

�j(�r) = ρ(�r) �v(�r) (5.1)

where �v(�r) is the velocity distribution. The vector potential �Aj(�R) due to this
current density is given as

�Aj(�R) =
μ0

4π

∫
�r

�j(�r)

| �R − �r | d�r (5.2)
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This expression is completely analogous to the scalar potential of a charge distribution
ρ(�r), Eq. (4.1).1 Using again the Taylor expansion of 1

|�R−�r| around an origin2 �RGO

within the charge distribution, Eq. (4.2), we can write a cartesian component of the
vector potential as

Aj
α(�R) =

μ0

4π

1

| �R − �RGO |

∫
�r

jα(�r) d�r

+
μ0

4π

∑
β

Rβ − RGO,β

| �R − �RGO |3
∫

�r

jα(�r) (rβ − RGO,β) d�r + . . . (5.3)

We can simplify this expression, when the charge density ρ(�r) and current density
�j(�r) are independent of time, i.e. when we are dealing with a steady current that
implies that

�∇ ·�j = 0 (5.4)

For such a steady current distribution one can derive from the divergence theorem of
vector calculus an expression [see Exercise 5.1]∫

�r

[
�∇f(�r)

]
·�j(�r) d�r = 0 (5.5)

which is valid for an arbitrary scalar function f(�r). With this expression we can show
now that the monopole term in the Taylor expansion of the vector potential, Eq. (5.3)
vanishes, because choosing f = rα in Eq. (5.5) gives precisely the first term in Eq. (5.3)
[see Exercise 5.2].

Exercise 5.1 Derive Eq. (5.5) from the divergence theorem for a bounding surface S′ that
completely encloses the current distribution∫

�r

�∇ ·
[
f(�r)�j(�r)

]
d�r =

∮
f(�r)�j(�r) · d�S′ = 0

Next, we will not consider terms higher than the second, i.e. the dipole term. This
is in accordance with the electric quadrupole approximation, which is based on
the fact that the effects of electric quadrupole and magnetic dipole terms are of the
same order of magnitude and smaller than the electric dipole terms. They should
therefore be treated together, as we do here, while second-order magnetic moments
should be treated together with third electric moments, which we have not discussed
either. The remaining (dipole) term

1 This reflects the fundamental symmetry between space and time coordinates in special relativity
and thus also in electromagnetism. The three space coordinates and time are collected in a so-called
four-vector in special relativity. In the same way is the charge density ρ(�r) the fourth, i.e. time,
component of the current-charge-density four-vector and the scalar potential φ(�r, t) is the fourth, i.e.
time, component of the vector-scalar-potential four-vector.

2 Contrary to the electric multipole expansion we want to denote the arbitrary origin with �RGO

and call it the gauge origin as defined in Section 2.9.
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Aj
α(�R) =

μ0

4π

∑
β

Rβ − RGO,β

| �R − �RGO |3
∫

�r

(rβ − RGO,β) jα(�r) d�r (5.6)

can also be simplified if we write it as the sum of its symmetric and antisymmetric
part

Aj
α(�R) =

μ0

4π

∑
β

Rβ − RGO,β

| �R − �RGO |3
1
2

{∫
�r

[(rβ − RGO,β) jα(�r) + (rα − RGO,α) jβ(�r)] d�r

+
∫

�r

[(rβ − RGO,β) jα(�r) − (rα − RGO,α) jβ(�r)] d�r

}
(5.7)

Using now f = (rα −RGO,α)(rβ −RGO,β) in Eq. (5.5) shows that the symmetric part
of the dipole term vanishes [see Exercise 5.2] and we obtain finally

�Aj(�R) =
μ0

4π

1
2

∫
�r

[
(�r − �RGO) ×�j(�r)

]
× (�R − �RGO)

| �R − �RGO |3 d�r + . . . (5.8)

or

�Aj(�R) =
μ0

4π
�m × (�R − �RGO)

| �R − �RGO |3 + . . . . (5.9)

for the vector potential, where the first-order magnetic moment �m, the magnetic
dipole moment, is defined as

�m =
1
2

∫
�r

(�r − �RGO) ×�j(�r) d�r =
1
2

∫
�r

ρ(�r)(�r − �RGO) × �v(�r) d�r (5.10)

Exercise 5.2 Prove that ∫
�r

jα(�r) d�r = 0

and ∫
�r

[(rβ − RGO,β) jα(�r) + (rα − RGO,α) jβ(�r)] d�r = 0

starting from Eq. (5.5)

The absence of a zeroth-order moment in Eq. (5.9) reflects the fact that magnetic
monopole moments do not exist. The magnetic dipole moments can thus be shown to
be independent of the gauge origin �RGO [see Exercise 5.3] as a direct consequence of
the absence of magnetic monopole moments.

Exercise 5.3 Show that the magnetic dipole moment, Eq. (5.10), is independent of the

gauge origin �RGO.

Higher magnetic moments are rarely encountered (Buckingham and Stiles, 1972)
and are not considered here as stated earlier. Neither do magnetic dipole moments
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play such an important role as their electric counterparts since closed-shell molecules
do not posses a permanent magnetic moment. Open-shell molecules can have non-
zero permanent magnetic moments, which explains their paramagnetism. In the
following we will look at first-order properties of open shell molecules in Sections 5.3
and 5.6, while we will only consider second-order or response properties of closed-shell
molecules. On the other hand, nuclei with non zero spin have a magnetic moment that
gives rise to many interesting interactions with the electrons such as NMR spectra
and couplings in ESR spectra (see Sections 5.6 and 5.7). The expression for the vector
potential, Eq. (5.9), will therefore be mainly used in the following for the vector
potential of a nuclear magnetic moment.

5.2 Potential Energy in a Magnetic Induction

The potential energy of a distribution of charges immersed in an external homogeneous
magnetic induction �B can be expressed in terms of the magnetic moments analogously
to the electric field case in Section 4.2. In general, the potential energy E of a current
distribution in the presence of an external magnetic induction is given by

E( �B) = −
∫

�r

�j(�r) · �AB(�r) d�r (5.11)

where �AB(�r) is the vector potential associated with the magnetic induction �B,

�B(�r) = �∇× �AB(�r) (5.12)

which is the time-independent version of Eq. (2.34). A simpler expression for the
potential energy can again be obtained now by expanding a component of the vector
potential AB

α(�r) in a Taylor series around the gauge origin �RGO (Lazzeretti, 1989)

AB
α(�r) = AB

α(�RGO) +
∑

β

(rβ − RGO,β)
(

∂AB
α(�r)

∂rβ

)
�r=�RGO

+ . . . (5.13)

which leads to

E( �B) = −
∑
α

AB
α(�RGO)

∫
�r

jα(�r) d�r −
∑
αβ

(
∂AB

α(�r)
∂rβ

)
�r=�RGO

∫
�r

(rβ − RGO,β)jα(�r) d�r

+ . . . (5.14)

The integral in the first term was shown to vanish in the last section and the second
term can again be rewritten (Eq. (5.5)) in terms of its antisymmetric part, such that

E( �B) = −
∑
αβ

(
∂AB

α(�r)
∂rβ

)
�r=�RGO

1
2

∫
�r

[(rβ − RGO,β) jα(�r) − (rα − RGO,α) jβ(�r)] d�r

+ . . . (5.15)
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or in vector notation

E( �B) = −1
2

∫
�r

[
(�r − �RGO) ×�j(�r)

]
·
[
�∇× �AB(�r)

]
�r=�RGO

d�r + . . . (5.16)

Using the definition of the magnetic dipole moment given in Eq. (5.10) and the defi-
nition of the vector potential given in Eq. (5.12) the expansion of the energy can be
written as

E( �B) = −�m · �B(�RGO) + . . . (5.17)

From this equation it can be seen that as an alternative to Eq. (5.10) the magnetic
dipole moment can also be defined as the derivative of the potential energy with
respect to the field induction Bα

mα = − ∂E( �B)

∂Bα(�RGO)
(5.18)

5.3 Quantum Mechanical Expression for the Magnetic Moment

Quantum mechanical expressions for the permanent magnetic dipole moment can be
derived in exactly the same way as the corresponding formulas for the electric dipole
moment, in Section 4.3. We will therefore skip most of the derivations here and only
discuss the final equations. There is, however, one interesting difference.

But first, we need to derive explicit expressions for the first-order perturbation
Hamiltonian operator Ĥ(1) for the case of a static and homogeneous magnetic induc-
tion �B. The corresponding vector potential at the position of electron i can be obtained
from the general expression in Eq. (2.121)

�̂AB(�ri) =
1
2

�B × (�ri − �RGO) (5.19)

Inserting this vector potential in the general expression for the molecular Hamiltonian,
Eq. (2.101), we can write the first-order perturbation Hamiltonian as [see Exercise 5.4]

Ĥ(1) = −
∑
α

Bα

[
ÔlB

α (�RGO) + ÔsB
α

]
(5.20)

where the perturbation operators are defined as3

ÔlB
α (�RGO) =

N∑
i

ôlB
i,α(�RGO)

= − e

2me
L̂α(�RGO) = − e

2me

N∑
i

l̂i,α(�RGO) = − e

2me

N∑
i

[
(�ri − �RGO) × �̂p i

]
α

≡ m̂l
α(�RGO) (5.21)

3 All perturbation operators derived in this chapter are also collected in Appendix A.
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and

ÔsB
α =

N∑
i

ôsB
i,α = − gee

2me
Ŝα = − gee

2me

N∑
i

ŝi,α (5.22)

Exercise 5.4 Derive the first-order perturbation Hamiltonian for a homogeneous external

magnetic induction, �B, by inserting the vector potential, Eq. (5.19), in the general expression
of the molecular Hamiltonian, Eq. (2.101), retaining the first-order term.

The N -electron operator �̂ml(�RGO) is called the orbital magnetic dipole opera-

tor, �̂li(�RGO) is the orbital angular momentum operator of electron i with respect
to the gauge origin �RGO and �̂si is the spin angular momentum operator of elec-
tron i. The total orbital and spin angular moment operators of all N electrons are

denoted by �̂L and �̂S

�̂L =
N∑
i

�̂li (5.23)

�̂S =
N∑
i

�̂si (5.24)

The perturbation operators are again the first derivatives of the molecular electronic
Hamiltonian

∂Ĥ

∂Bα

∣∣∣∣∣
|�B|=0

=
∂Ĥ(1)

∂Bα
= −ÔlB

α − ÔsB
α (5.25)

The derivation of a component of the magnetic dipole moment as first derivative
of the perturbed energy, Eq. (5.18), via perturbation theory or the Hellmann–Feynman
theorem then leads to the following expectation value

mα = 〈Ψ(0)
0 |ÔlB

α + ÔsB
α |Ψ(0)

0 〉

= 〈Ψ(0)
0 |m̂l

α(�RGO) |Ψ(0)
0 〉 − gee

2me
〈Ψ(0)

0 | Ŝα |Ψ(0)
0 〉 (5.26)

= − e

2me
〈Ψ(0)

0 | L̂α(�RGO) + geŜα |Ψ(0)
0 〉

In the case of the electric dipole moment we could derive the quantum mechani-
cal expression, Eq. (4.25), simply by replacing the electron density by the quantum
mechanical expression for it. However, the analogous derivation of the quantum
mechanical expression for the magnetic dipole moment starting from the classical
definition of the magnetic dipole moment as an integral over the current density,
Eq. (5.10), and replacing the classical current density by the quantum mechanical
expectation value from Eq. (2.31), will lead only to the expectation value of the orbital
magnetic dipole moment operator. The contribution from the electron spin cannot be



Quantum Mechanical Expression for the Magnetic Moment 99

obtained in this way, because spin has no classical analogue. This illustrates the danger
in simply translating classical expressions to quantum mechanics and the advantage
of defining properties as derivatives of the energy.

At the end of Section 5.1 it was briefly mentioned that permanent magnetic
moments are not as important as their electric counterparts, because they vanish for
closed-shell molecules. We want to prove this statement now starting from Eq. (5.26).
The orbital part of the magnetic dipole moment is essentially an expectation value of

the angular momentum operator �̂L. The angular momentum operator is a hermitian
operator, which implies that

〈Ψ | �̂L |Ψ〉 = 〈Ψ | �̂L |Ψ〉∗ (5.27)

For real wavefunctions Ψ the right-hand side becomes

〈Ψ | �̂L |Ψ〉 = 〈Ψ | �̂L∗ |Ψ〉 (5.28)

or

〈Ψ | �̂L |Ψ〉 = −〈Ψ | �̂L |Ψ〉 (5.29)

when we recall that �̂L is a purely imaginary operator. This means that the expectation

value of �̂L is zero for real wavefunctions. One says that the orbital angular momen-
tum is quenched for a molecule described by real wavefunctions. For molecules in
orbitally non-degenerate states we can always choose the wavefunctions to be real and
therefore they do not have a permanent orbital magnetic moment. Furthermore, when
the state is also a singlet state, the expectation value 〈Ψ(0)

0 | Ŝ2 |Ψ(0)
0 〉 vanishes and

the molecule has neither spin nor orbital permanent magnetic moment.
Among open-shell molecules only linear molecules with an odd number of electrons

have permanent orbital magnetic moments. First, linear molecules can have orbitally
degenerate states according to the Jahn–Teller theorem, secondly for even number of
electrons the electrons are paired with respect to the eigenvalues of l̂z, which means
that their total contribution to the angular momentum is zero again. On the other
hand, open-shell molecules with an odd number of electrons, called radicals, have
spin magnetic moments. Molecules with an even number of unpaired electrons in the
ground state are rare, because it requires an orbitally degenerate state. O2 with its
triplet ground state is thus the prime example.

In the case of the electric moments we also had to include contributions from the
nuclear charges. For the magnetic moments the situation is different. Nuclei with non-
zero spin have of course a nuclear magnetic moment. However, due to the inverse
dependence of the magnetic moment on the mass, see e.g. Eq. (5.26), the nuclear spin
magnetic dipole moments are at least three orders of magnitude smaller than the elec-
tronic spin magnetic moments. Therefore, we do not include them here but will con-
sider them in Sections 5.4 and 5.7 as perturbations of the electronic structure. Nuclear
magnetic moments analogous to the electronic angular magnetic moment exist, but
they require an angular motion of the nuclei and thus a rotation of the nuclear frame-
work of the molecule. Since we are working in the Born–Oppenheimer approximation
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the nuclei are kept fixed in space and we do not have this contribution. However, we will
consider this contribution and other couplings with molecular rotation in Chapter 6.

5.4 Induced Magnetic Moment, Magnetizability, and Nuclear
Magnetic Shielding

In the presence of an external magnetic induction �B the energy of the distribution of
moving charges changes according to Eq. (5.17). A polarizable distribution of charges
will adjust itself in order to minimize the energy. This leads to a change in the current
density, �j(�r), and in the moments of the current density, �m, such that an additional
current density �jind(�r) and magnetic moment �mind are induced. An important source
of magnetic induction in molecules, apart from an external magnetic field, is the
magnetic dipole moment �mK of a nucleus K in the molecule. The electronic magnetic
dipole moment �m( �B, {�mK}) in the presence of an external magnetic induction �B and
M nuclear magnetic moments, {�mK},4 can again be expanded in a Taylor series as
(Lazzeretti, 1989)

mα( �B, {�mK}) = mα + mind
α ( �B, {�mK})

mα( �B, {�mK}) = mα +
∑

β

ξαβBβ −
∑
K

∑
β

σK
βαmK

β + . . . (5.30)

where ξαβ and σK
βα are cartesian components of the dipole magnetizability and

nuclear magnetic shielding tensor, respectively, while the mean or isotropic
magnetizability is thus defined as

ξ =
1
3

∑
α

ξαα (5.31)

The magnetizability is the magnetic analogue to the polarizability and can be consid-
ered as the linear response of the molecular magnetic dipole moment to an external
magnetic induction. The nuclear magnetic shielding tensor is similarly the linear
response of the molecular magnetic dipole moment to the magnetic dipole moment
of a nucleus K. It is the molecular property behind the chemical shift measured in
nuclear magnetic resonance (NMR) spectroscopy and will be discussed in more detail
in Section 5.7. Here, we should note already that the nuclear magnetic shielding tensor
is not symmetric and that we choose to associate the first index, i.e. the row index,
with the nuclear magnetic moment �mK , while the second, i.e. the column index, will
be associated with an external magnetic field in the following.

From the expansion in Eq. (5.30) we can define the components of the magne-
tizability and nuclear magnetic shielding tensor of nucleus K as first derivatives of
the perturbed electronic magnetic dipole moment with respect to a component of the
magnetic induction or the nuclear magnetic dipole moment of nucleus K5

4 We will use the notation {�mK}, when referring to all the nuclear moments in a molecule
collectively.

5 These definitions are collected in the second column of Table B.2 of Appendix B.
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ξαβ =
∂mα( �B)

∂Bβ

∣∣∣∣∣
|�B|=0

(5.32)

σK
βα = − ∂mα(�mK)

∂mK
β

∣∣∣∣∣
|�mK |=0

(5.33)

In order to derive an expression for the energy of a polarizable charge and current
distribution we have to proceed as in the electric case. We consider first only the
changes due to the magnetic induction �B. The infinitesimal change in the energy dE
due to an infinitesimal change in the magnetic induction is according to Eq. (5.18)
then

dE = −
∑
α

mα( �B) dBα = −�m( �B) · d �B (5.34)

The energy is again obtained by integration on both sides

E( �B) − E(0) = −
∫ �B

0

�m( �B ′) · d �B ′ (5.35)

Inserting now the expansion of the electronic magnetic dipole moment from Eq. (5.30)
we can write

E( �B) − E(0) = −
∑
α

∫ �B

0

⎛⎝mα +
∑

β

ξαβB′
β + . . .

⎞⎠ dB′
α (5.36)

Evaluating the line integral as described for the electric case in Section 4.4 then yields

E( �B) = E(0) −
∑
α

mαBα − 1
2

∑
αβ

ξαβBαBβ + . . . (5.37)

In the same way, the contribution of the nuclear magnetic shielding tensor to the
energy can be obtained. The final expression for the energy of a polarizable charge
and current distribution in the presence of a magnetic induction �B and M nuclear
magnetic moments, {�mK} then reads (Lazzeretti, 1989)

E( �B, {�mK}) = E(0) −
∑
α

mαBα − 1
2

∑
αβ

ξαβBαBβ +
∑
K

∑
αβ

σK
αβmK

α Bβ + . . . (5.38)

This expression includes only the contributions from the charge and current distribu-
tion. For the total energy of the system one would have to add the energy contributions
−∑

K �mK · �B of the M nuclear magnetic moments �mK in the external magnetic
induction �B. Equation (5.38) allows us to define some of the magnetic properties
as derivatives of the energy. The first derivative is the magnetic dipole moment,
Eq. (5.18). The permanent magnetic dipole moment �m is obtained, if the derivative is
evaluated at zero magnetic field. The magnetizability as well as the nuclear magnetic
shielding tensor of a nucleus K, which we had already defined as first derivatives of the
electronic magnetic dipole moment in the presence of an external magnetic induction
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or nuclear magnetic moments, Eqs. (5.32) and (5.33), can therefore also be defined6

as second derivatives of the energy,

ξαβ = − ∂2E( �B)
∂Bα∂Bβ

∣∣∣∣∣
|�B|=0

(5.39)

σK
αβ =

∂2E( �B, �mK)
∂Bβ∂mK

α

∣∣∣∣∣
|�B|=|�mK |=0

(5.40)

similar to the polarizability tensor. They are therefore normally also called second-
order properties.

5.5 Quantum Mechanical Expression for the Magnetizability

In the previous section we have defined the cartesian components of the magneti-
zability tensor ξαβ as second derivatives of the energy E( �B) in the presence of a
magnetic induction �B, Eq. (5.39), or alternatively as first derivatives of the magnetic-
field-dependent electronic magnetic dipole moment mα( �B), Eq. (5.32). Both definitions
can be used to derive quantum mechanical expressions for the magnetizability.

Let us start with the first definition as derivative of the energy. Again, we will
use the perturbation theory expression for the perturbed energy, Eq. (3.15), but dif-
ferentiate it now twice with respect to the appropriate components of the magnetic
induction. This leads us immediately to the second-order correction to the energy,
because the first-order correction depends only linearly on the fields. We can therefore
express the magnetizability as

ξαβ = − ∂2E
(2)
0 ( �B)

∂Bα∂Bβ

∣∣∣∣∣
|�B|=0

= − ∂2

∂Bα∂Bβ
〈Ψ(0)

0 |Ĥ(2) |Ψ(0)
0 〉

∣∣∣∣
|�B|=0

− ∂2

∂Bα∂Bβ

∑
n�=0

〈Ψ(0)
0 |Ĥ(1) |Ψ(0)

n 〉〈Ψ(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

∣∣∣∣∣∣
|�B|=0

(5.41)

One should recall that the magnetic perturbations enter the molecular Hamiltonian

in Eq. (2.101) in the form of the vector potential �̂A and that �̂A contributes both to
Ĥ(1) and to Ĥ(2). Therefore, we have to use the full expression for the second-order
energy correction including the 〈Ψ(0)

0 |Ĥ(2) |Ψ(0)
0 〉 term for the magnetizability and in

general all magnetic properties contrary to the electric analogue in Section 4.5.
In Section 5.3 we have obtained already the appropriate expression for Ĥ(1)

in Eq. (5.20). In the same way we can now derive the second-order perturbation
Hamiltonian Ĥ(2) for the case of an external magnetic induction as [see Exercise 5.5]

6 These definitions are collected in the last column of Table B.2 of Appendix B.
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Ĥ(2) =
∑
αβ

ÔBB
αβ (�RGO) Bα Bβ (5.42)

where the perturbation operator is defined as7

ÔBB
αβ (�RGO) =

N∑
i

ôBB
i,αβ(�RGO)

=
e2

8me

∑
i

[
(�ri − �RGO)2δαβ − (ri,α − RGO,α)(ri,β − RGO,β)

]
(5.43)

Exercise 5.5 Derive the second-order perturbation Hamiltonian for a homogeneous external

magnetic induction, �B, by inserting the vector potential, Eq. (5.19), in the general expression
of the molecular Hamiltonian, Eq. (2.101), retaining the second-order term.

We are now ready to evaluate the derivatives in Eq. (5.41) and obtain the sum-
over-states expression for the components of the magnetizability tensor

ξαβ = − 〈Ψ(0)
0 |ÔBB

αβ (�RGO) + ÔBB
βα (�RGO) |Ψ(0)

0 〉

−
∑
n�=0

〈Ψ(0)
0 |m̂l

α(�RGO) |Ψ(0)
n 〉〈Ψ(0)

n |m̂l
β(�RGO) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

−
∑
n�=0

〈Ψ(0)
0 |m̂l

β(�RGO) |Ψ(0)
n 〉〈Ψ(0)

n |m̂l
α(�RGO) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(5.44)

One should note that there is no contribution from the electron spin �S to the magne-
tizability, because transition matrix elements like 〈Ψ(0)

0 | Ŝα |Ψ(0)
n 〉 are zero due to the

orthogonality of the unperturbed states.
In the second approach we want to derive the magnetizability as first derivative

of the magnetic moment in the presence of a magnetic field, i.e. of a magnetic-field-
dependent magnetic moment, according to Eq. (5.32). In Section 5.3 it was shown
that the permanent magnetic moment can be obtained as the expectation value
of the operator for the magnetic moment with the unperturbed wavefunction. For
the magnetic-field-dependent magnetic moment we need then both a perturbation-
dependent magnetic dipole moment operator, �̂ml(�RGO, �B) as well as the perturbed
wavefunction, Ψ0( �B). Contrary to the electric case in Section 4.5 the normal magnetic
dipole moment operator, Eq. (5.21), differs from the magnetic dipole moment oper-
ator in the presence of a magnetic induction �B. The latter is obtained by applying,
Eq. (3.8), to the Hamiltonian, Eq. (2.101), with H(1) and H(2) as given in Eqs. (5.20)
and (5.42).

∂Ĥ

∂Bα
= �̂ml(�RGO, �B) = m̂l

α(�RGO) −
∑

β

[
ÔBB

αβ (�RGO) + ÔBB
βα (�RGO)

]
Bβ (5.45)

7 All perturbation operators derived in this chapter are collected in Appendix A.
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Here, we have neglected the contribution from the spin of the electrons, i.e. ÔsB
α ,

because it will not contribute to the magnetizability. Applying the general expression
for the first derivative of a perturbation-dependent expectation value, Eq. (3.40), to
the case of magnetic dipole moment in the presence of an external magnetic induction,
we obtain expressions involving first derivatives of the perturbed wavefunction for the
tensor components of the dipole magnetizability

ξαβ =
∂mα( �B)

∂Bβ

∣∣∣∣∣
|�B|=0

=
∂

∂Bβ
〈Ψ0( �B) |m̂l

α(�RGO, �B) |Ψ0( �B)〉
∣∣∣∣
|�B|=0

= 〈 ∂Ψ0( �B)
∂Bβ

∣∣∣∣∣
|�B|=0

|m̂l
α(�RGO) |Ψ(0)

0 〉 + 〈Ψ(0)
0 |m̂l

α(�RGO) | ∂Ψ0( �B)
∂Bβ

∣∣∣∣∣
|�B|=0

〉 (5.46)

− 〈Ψ(0)
0 |

[
ÔBB

αβ (�RGO) + ÔBB
βα (�RGO)

]
|Ψ(0)

0 〉

In Part III we will come back to these expressions and evaluate the derivatives
of approximate wavefunctions. However, here we will use the response formalism
as developed in Section 3.11. Using Eq. (3.116) we can express the derivatives
of the perturbation-dependent expectation value in terms of polarization propaga-
tors or linear response functions and thus obtain for the tensor components of the
magnetizability

ξαβ =
∂

∂Bβ
〈Ψ0( �B) |m̂l

α(�RGO, �B) |Ψ0( �B)〉
∣∣∣∣
|�B|=0

(5.47)

= −〈Ψ(0)
0 |

[
ÔBB

αβ (�RGO) + ÔBB
βα (�RGO)

]
|Ψ(0)

0 〉 − 〈〈 m̂l
α(�RGO) ; m̂l

β(�RGO) 〉〉ω=0

Inserting the perturbation theory expansion of the perturbed wavefunction up to first
order, Eq. (3.27), in Eq. (5.46) or the expression for the static response function
Eq. (3.114) in Eq. (5.47) leads us back to the sum-over-states expressions given in
Eq. (5.44), of course. The significance of the other expressions for the magnetizability
will become clear in Part III where we will see that for approximate wavefunctions they
can give different results than the normal sum-over-states expression in Eq. (5.44).

All the expressions for the magnetizability derived in this section show that there
are two different contributions to the magnetizability and in general to many of the
second-order magnetic properties.

ξαβ = ξdia
αβ (�RGO) + ξpara

αβ (�RGO) (5.48)

The first contribution is an expectation value of the second-order perturbation oper-
ator with the unperturbed wavefunction Ψ(0)

0 of the system. It is negative and is
called the diamagnetic contribution ξdia

αβ . The second contribution involves either
the first derivative of the perturbed wavefunction, the first-order correction to the
wavefunction, a sum over all the other unperturbed states {Ψ(0)

n } or a linear response
function like in the case of the polarizability. This contribution is positive, because
the energy difference in the denominator of the sum-over-states expression, Eq. (5.44)
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is negative, and is called the paramagnetic contribution ξpara
αβ . Only the paramag-

netic contribution is immediately expressible as polarization propagator, Eq. (5.47).
However, also the diamagnetic contribution, i.e. the term involving a ground-state
expectation value, can be reformulated as sum-over-states or polarization propagator
expression, as will be shown for all magnetic properties in Section 5.9. For most
closed-shell molecules the diamagnetic term is larger than the paramagnetic term and
the molecule is said to be diamagnetic. This means that a probe of this molecule when
brought into an inhomogeneous magnetic field will avoid the areas of higher magnetic
induction, because the energy increases there, as we can see from Eq. (5.38). In a
few closed-shell molecules the paramagnetic term is larger than the diamagnetic term,
which means that the molecule is paramagnetic.8 A probe of these molecules will be
pulled into regions of higher magnetic induction because the energy is lower there,
Eq. (5.38). Such a molecule will therefore behave like a molecule with a permanent
magnetic moment, which explains why ξpara

αβ (�RGO) is called the paramagnetic contri-
bution. This induced paramagnetism should be distinguished from paramagnetism due
to a permanent magnetic dipole moment. For a bulk sample the latter paramagnetism
becomes temperature dependent due to the Boltzmann averaging of the orientation
of the permanent magnetic dipole moments, whereas the induced paramagnetism due
to a positive magnetizability is temperature independent. This explains why it is
sometimes also called temperature-independent paramagnetism (TIP).

In Section 5.10 we will discuss that the dia- and paramagnetic contribu-
tions both depend quadratically on the gauge origin �RGO but their sum, the
magnetizability, is independent. This cancellation holds for exact unperturbed states
{Ψ(0)

n } and for certain approximate methods such as the random phase approxima-
tion or coupled Hartree–Fock and multiconfigurational self-consistent field response
methods, which will be discussed in Sections 10.3, 10.4, 11.1 and 11.2. The gauge-
origin dependence of the dia- and paramagnetic contributions has the consequence
that the separation in a dia- and paramagnetic contribution is arbitrary and that no
physical meaning should be assigned to the two terms individually. Actually, alterna-
tive expressions have been derived for the diamagnetic contribution that are no longer
expectation values but involve also a sum over all states {Ψ(0)

n } (Geertsen, 1989; Sauer
et al., 1994a; Lazzeretti et al., 1994). These expressions are discussed and derived in
Section 5.9.

5.6 Molecular Magnetic Fields and ESR Parameters

The current density �j(�r) of a system of moving charges will also give rise to a mag-
netic field or magnetic induction that we want to call the permanent molecular
magnetic induction �Bj(�R) and add a superscript “j” in order to distinguish it from
the external magnetic induction. An expression for it can be obtained by applica-
tion of Eq. (5.12) to the expression (5.2) for the vector potential �Aj(�R) of a current
distribution [see Exercise 5.6]

8 For some examples see, e.g., Sauer et al. (1993).
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�Bj(�R) = �∇× �Aj(�R)

= −μ0

4π

∫
�r

(�R − �r) ×�j(�r)

| �R − �r |3 d�r

= −μ0

4π

∫
�r

ρ(�r)
(�R − �r) × �v(�r)

| �R − �r |3 d�r (5.49)

Exercise 5.6 Derive the expression (5.49) for the molecular magnetic induction.

Like the molecular electric field it is of course defined for any point in space, but
within the charge distribution only the value at the position of the nuclei can be probed
experimentally again. The interaction of such a nuclear magnetic dipole moment �mK

with the molecular magnetic induction, �Bj , gives rise to a change in the energy of the
distribution of charges

E(�mK) = −
∑
α

mK
α Bj

α(�RK) (5.50)

Consequently, the molecular magnetic induction at the position of some nucleus K
can be defined as the derivative of the energy of the distribution of charges,

Bj
α(�RK) = −∂E(�mK)

∂mK
α

(5.51)

with respect to its nuclear magnetic moment �mK .9

In Section 5.3 on the magnetic moments it was shown that there can be two
contributions to the magnetic moment: one from the orbital angular momentum of
the electrons and one from the electronic spins, the latter being the more frequent
case. The same applies therefore also to the permanent molecular magnetic induction
�Bj(�R). Experimentally interesting is the spin molecular magnetic induction �Bj,s(�RK)
of open-shell molecules at the position of a nucleus K with non-zero spin ÎK and
associated nuclear magnetic moment �mK

�mK =
gKμN

�

�IK (5.52)

where gK and μN = e�

2mp
are the nuclear g-factor of nucleus K and the nuclear

magneton, respectively, and mp is the proton mass. According to Eq. (5.50) this
interaction of the nuclear spin and the spin of the electrons via their magnetic moments
leads to a change in the energy of the electrons. The latter shows up as splittings of
the lines in the electron spin resonance (ESR) spectra of radicals. The splittings
are directly related to the hyperfine coupling tensor aK

αβ , which is defined via an
effective spin Hamiltonian

ĤESR =
2π

�

∑
αβ

ÎK
α aK

αβŜβ (5.53)

9 This definition is also listed in the first column of Table B.2 of Appendix B.



Molecular Magnetic Fields and ESR Parameters 107

which acts only on electronic and nuclear spin states and is normally used in the
analysis of ESR spectra. An expectation value of this operator for a particular spin
state then gives the energy of this state. This energy is the same as Eq. (5.50) and
an expression for the hyperfine tensor aK

αβ can therefore be extracted by comparing
Eqs. (5.50) and (5.53)

aK
αβ = −gKμN

2π

Bj,s
α (�RK)

〈Ψ(0)
0 | Ŝβ |Ψ(0)

0 〉
(5.54)

where �Bj,s(�RK) is the contribution of the electronic spin to the permanent molecular
magnetic induction.

Like all the electric and magnetic moments and all other first derivatives of the
energy, the molecular magnetic induction can be calculated as an expectation value.
And as in the case of the magnetic moment in Section 5.3 the spin contribution is
not obtained by simply translating the classical expression to quantum mechanics.
We therefore will express it directly as an expectation value of the derivative of the
first-order Hamiltonian Ĥ(1) with respect to the components of the nuclear magnetic
moment mK

α of nucleus K. The “external” perturbation is therefore now a nuclear
magnetic moment �mK and we need to insert its vector potential �AK(�ri) in the mole-
cular Hamiltonian, Eq. (2.101). The vector potential of a general magnetic moment
was already derived in Section 5.1. Applying Eq. (5.9) we thus obtain for the value of
the vector potential of �mK at the position of electron i

�AK(�ri) =
μ0

4π
�mK × (�ri − �RK)

| �ri − �RK |3 (5.55)

Inserted in the molecular Hamiltonian, Eq. (2.101), the first-order perturbation
Hamiltonian becomes [see Exercise 5.7]

Ĥ(1) = −
∑
α

(
Ôl mK

α + Ôs mK

α

)
mK

α (5.56)

= −gKμN

�

∑
α

(
Ôl mK

α + Ôs mK

α

)
IK
α (5.57)

where the perturbation operators10 are the orbital paramagnetic (OP) or para-
magnetic nuclear spin-electron orbit operator (PSO)

ÔlmK

α =
N∑
i

ôlmK

i,α

= − e

me

μ0

4π

N∑
i

l̂i,α(�RK)

| �ri − �RK |3 = − e

me

μ0

4π

N∑
i

(
�ri − �RK

| �ri − �RK |3 × �̂pi

)
α

≡ ÔOP
K,α (5.58)

10 All perturbation operators derived in this chapter are collected in Appendix A.
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and the sum of the Fermi contact and spin-dipolar operators

ÔsmK

α =
∑

i

ôsmK

i,α ≡ ÔFC
K,α + ÔSD

K,α (5.59)

where

ÔFC
K,α = −geeμ0

3me

N∑
i

δ(�ri − �RK)ŝi,α (5.60)

ÔSD
K,α = − gee

2me

μ0

4π

N∑
i

⎧⎨⎩3
[
�̂si · (�ri − �RK)

]
(ri,α − RK,α)

| �ri − �RK |5 − ŝi,α

| �ri − �RK |3

⎫⎬⎭ (5.61)

The operator �̂li(�RK) =
(
�ri − �RK

)
× �̂pi, in Eq. (5.58), is the angular momentum

operator of electron i again but now with respect to the position of the nucleus K.

Exercise 5.7 Derive the first-order perturbation Hamiltonian, Eqs. (5.56) to (5.61), for
the vector potential of a nuclear magnetic moment, �mK , by inserting the vector potential,
Eq. (5.55), in the general expression of the molecular Hamiltonian, Eq. (2.101), retaining the
first-order term.

The permanent molecular magnetic induction at the position of nucleus K can
therefore be calculated as the following expectation value

Bj
α(�RK) = Bj,l

α (�RK) + Bj,s
α (�RK)

= 〈Ψ(0)
0 |ÔOP

K,α |Ψ(0)
0 〉 + 〈Ψ(0)

0 |ÔFC
K,α + ÔSD

K,α |Ψ(0)
0 〉 (5.62)

and the components aK
αβ of the ESR hyperfine coupling tensor, defined in Eq. (5.54),

are thus given as

aK
αβ = −gKμN

2π

〈Ψ(0)
0 |ÔFC

K,α + ÔSD
K,α |Ψ(0)

0 〉
〈Ψ(0)

0 | Ŝβ |Ψ(0)
0 〉

=
μ0

6πme

egegKμN

〈Ψ(0)
0 | Ŝβ |Ψ(0)

0 〉
〈Ψ(0)

0 |
N∑
i

δ(�ri − �RK)ŝi,α |Ψ(0)
0 〉

+
μ0

16π2me

3egegKμN

〈Ψ(0)
0 | Ŝβ |Ψ(0)

0 〉
〈Ψ(0)

0 |
N∑
i

[
�̂si · (�ri − �RK)

]
(ri,α − RK,α)

| �ri − �RK |5 |Ψ(0)
0 〉

− μ0

16π2me

egegKμN

〈Ψ(0)
0 | Ŝβ |Ψ(0)

0 〉
〈Ψ(0)

0 |
N∑
i

ŝi,α

| �ri − �RK |3 |Ψ
(0)
0 〉 (5.63)

There are two contributions – one from the Fermi contact and one from the spin-
dipolar operator. The latter dipolar contribution is anisotropic and is averaged to
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zero for molecules in the gas or liquid phase, whereas the Fermi-contact contribu-
tion is isotropic and is therefore the only contribution to the ESR hyperfine coupling
constants of gas- or liquid-phase molecules.

5.7 Induced Magnetic Fields and NMR Parameters

In Section 5.4 it was discussed that the interaction of a charge distribution with an
external magnetic induction, �B, or with a nuclear magnetic moment, �mL, leads to
an induced current density �jind(�r). According to Eq. (5.49) this will also give rise to
an induced molecular magnetic induction �Bj,ind(�R). In analogy to the induced
magnetic moment we want to expand the induced molecular magnetic induction at an
arbitrary point �R, �Bj,ind(�R), in a series in the external magnetic induction �B and the
magnetic moments {�mL} of nuclei L

Bj
α(�R, �B, {�mL}) = Bj

α(�R) + Bj,ind
α (�R, �B, {�mL})

Bj
α(�R, �B, {�mL}) = Bj

α(�R) −
∑

β

σαβ(�R) Bβ −
∑
L

∑
β

KL
αβ(�R) mL

β + . . . (5.64)

where σαβ(�R) is a cartesian component the magnetic shielding tensor field (Jensen
and Hansen, 1999) and we define KL

αβ(�R) as a cartesian component of the reduced
indirect nuclear spin-spin coupling tensor field. They can therefore be defined11

as first derivatives of the molecular magnetic induction �Bj(�R) in the presence of an
external magnetic induction �B and the magnetic moment of a nucleus L

σαβ(�R) = − ∂Bj
α(�R, �B)
∂Bβ

∣∣∣∣∣
|�B|=0

(5.65)

KL
αβ(�R) = − ∂Bj

α(�R, �mL)
∂mL

β

∣∣∣∣∣
|�mL|=0

(5.66)

The product σ(�R) �B is the contribution to the induced electronic magnetic induction
at point �R coming from changes in the motion of the electrons due to an external
magnetic induction, while the product KL(�R) �mL is the additional electronic magnetic
induction induced by the magnetic moment �mL and thus by the nuclear spin �IL.

The magnetic shielding tensor field σ(�R) is a generalization of the magnetic shield-
ing tensor of NMR spectroscopy, introduced already in Section 5.4, to an arbitrary
point �R in space. This implies that the nuclear magnetic shielding tensor of a
nucleus K is given as σK = σ(�RK). The nuclear magnetic shielding constant
σK , which one is normally concerned with in liquid- or gas-phase NMR, is the trace
of the nuclear magnetic shielding tensor

11 These definitions are also included in Table B.2 of Appendix B.
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σK =
1
3

∑
αα

σK
αα (5.67)

Another property, conceptually closely related to the magnetic shielding tensor field,
is the nucleus independent chemical shift (NICS) (Schleyer et al., 1996), which is
the generalization of the chemical shift (vide infra) to an arbitrary point in space.
The reduced indirect nuclear spin-spin coupling tensor field KL(�R), finally, is the
generalization of the reduced indirect nuclear spin-spin coupling tensor KKL

of nuclei K and L in such a way that the latter is the value of the reduced indirect
nuclear spin-spin coupling tensor field at the position of the nuclear magnetic moment
�mK , i.e. KKL = KL(�RK). The reduced indirect nuclear spin-spin coupling constant
KKL between two nuclei K and L is again defined as the trace of the corresponding
tensor

KKL =
1
3

∑
αα

KKL
αα (5.68)

A nuclear magnetic moment �mK in a molecule thus experiences in the presence of
an external magnetic induction �B not the pure external magnetic induction but a local
magnetic induction �B loc(�RK), which is the sum of the external magnetic induction
�B and the molecular magnetic induction �Bj . In the following, we will consider only
molecules without a permanent magnetic moment and therefore without a permanent
molecular magnetic induction, �Bj = 0, i.e. closed-shell molecules. The local magnetic
induction at the position of nucleus K in a closed-shell molecule can then be written
as

Bloc
α (�RK) = Bα + Bj,ind

α (�RK , �B, �mL) = Bα −
∑

β

σK
αβ Bβ −

∑
L�=K

∑
β

KKL
αβ mL

β + . . .

=
∑

β

(
δαβ − σK

αβ

)Bβ −
∑
L�=K

∑
β

KKL
αβ mL

β + . . . (5.69)

where δαβ is the Kronecker δ. We can recognize the two terms linear in the external
magnetic induction as the well-known expression of NMR spectroscopy for the local
field at nucleus K. This proves that our identification of the property σαβ(�RK) from
Eq. (5.64) as the nuclear magnetic shielding tensor of nucleus K was indeed correct.

However, the shielding constant cannot be obtained from an NMR spectrum.12 The
parameter actually measured is the chemical shift δ, which is the relative difference
of the Larmor or resonance frequency νK of nucleus K and the Larmor frequency
νK,ref of the same nucleus in a reference molecule

δ =
νK − νK,ref

νK,ref
× 106 in ppm (5.70)

The Larmor or resonance frequency is the frequency of an allowed transition
between two nuclear spin states of nucleus K. The energy of a nuclear spin state in

12 In Section 6.6 it will be shown that the paramagnetic contribution of the shielding tensor is
related to the spin rotation constant, which can be measured in vibration-rotation spectra.
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the presence of a local magnetic induction �Bloc,K is simply the interaction energy of
the corresponding nuclear magnetic moment with the field, Eq. (5.17), i.e.

EmIK
= −mK

z Bloc
z (�RK) (5.71)

where we have used the standard notation that the direction of the magnetic field
defines the z-axis. Inserting the relation between the nuclear magnetic moment and
nuclear spin, Eq. (5.52), and using the fact that the z-component of the nuclear spin
is quantized,

Iz = mIK � (5.72)

we can write the resonance frequency of an allowed transition (ΔmIK = ±1) as

νK =
|EmIK +1 − EmIK

|
h

=
gKμN

h
Bloc

z (�RK) =
gKμN

h

(
1 − σK

)Bz (5.73)

for a molecule in the gas or liquid phase.13 The chemical shift can thus alternatively
be written in terms of the shielding constants as

δ =
σK,ref − σK

1 − σK,ref
× 106 ≈ (

σK,ref − σK
)× 106 (5.74)

where σK,ref is the nuclear magnetic shielding of the same type of nucleus in a refer-
ence substance added to the experimental sample. In order to distinguish the nuclear
magnetic shielding σK from the chemical shift δ it is often also called the absolute
nuclear magnetic shielding. From Eq. (5.74) we can see that a negative (positive)
chemical shift implies that the nucleus is more (less) shielded than in the reference
molecule.

The reduced indirect nuclear spin-spin coupling tensor KKL is proportional to
the normal indirect nuclear spin-spin coupling tensor JKL measured in NMR
spectra (Mills et al., 1993)

KKL
αβ =

h

μ2
NgKgL

JKL
αβ (5.75)

where gK and gL are again the nuclear g-factors of the two nuclei K and L. The
indirect nuclear spin-spin coupling constant JKL finally is the trace of the cor-
responding tensor. The value of the reduced coupling constant KKL is independent
of the nuclear g-factors and thus independent of the particular isotope of a nucleus
contrary to the measured coupling constant JKL. Reduced spin-spin coupling con-
stants KKL involving e.g. the 1H and 2H isotopes of hydrogen are equal, whereas
the normal coupling constants JKL differ by the ratio of the two nuclear g-factors.
Furthermore, reduced coupling constants between different pairs of nuclei differ only
because of the different electronic environment and not also because of the differences
in nuclear g-factors, which makes the comparison of reduced coupling constants often
more meaningful.

13 Obviously, for a molecule with more than one nucleus with spin there could be an additional
contribution to the local field from the spin-spin couplings. However, this is not included in the
definition of the chemical shift and is therefore omitted here.
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On the other hand, it is the spin-spin coupling constant JKL, which is traditionally
defined through the effective spin Hamiltonian used in the analysis of NMR spectra

ĤNMR = −
∑
K

gKμN

�

∑
αβ

ÎK
α

(
δαβ − σK

αβ

)Bβ +
2π

�

∑
K �=L

∑
αβ

ÎK
α

(
JKL

αβ + DKL
αβ

)
ÎL
β

(5.76)

Similar to the spin Hamiltonian of ESR spectroscopy, Eq. (5.53), ĤNMR in Eq. (5.76)
acts on nuclear spin states. DKL

αβ is a component of the direct through space dipolar
nuclear spin-spin coupling tensor that, however, averages to zero in the gas and
liquid phase.

All the correction terms to the pure nuclear spin–external magnetic induction term,

− gKμN

�
�̂IK · �B, involve interactions with the electrons and can therefore also be obtained

from corrections to the electronic energy of the molecule. Namely, the interaction of the
permanent and induced molecular magnetic induction, Eq. (5.64), with the magnetic
moment �mK of the nuclei produces according to Eq. (5.50), E = −∑

α mK
α Bj

α(�RK),
additional contributions to the electronic energy in Eq. (5.37). Following the same
procedure as in Sections 4.4 and 5.4 one obtains

ΔE( �B, {�mK}) = −
∑
K

∑
α

mK
α Bj

α +
∑
K

∑
αβ

σK
αβmK

α Bβ +
∑
KL

∑
αβ

KKL
αβ mK

α mL
β + . . .

=
∑
K

gKμN

�

⎛⎝−
∑
α

ÎK
α Bj

α +
∑
αβ

σK
αβ ÎK

α Bβ

⎞⎠ (5.77)

+
2π

�

∑
KL

∑
αβ

JKL
αβ ÎK

α ÎL
β + . . .

Comparison with the spin Hamiltonian Eq. (5.76) shows that the identification of the
property KL

αβ(�RK) in Eq. (5.64) as the reduced indirect nuclear spin-spin coupling
tensor of nuclei K and L was correct and that the cartesian components of it can be
defined as second derivative of the energy with respect to the components of the two
nuclear magnetic moments �mK and �mL

KKL =
∂2E(�mK , �mL)

∂mK
α ∂mL

β

∣∣∣∣∣
|�mK |=|�mL|=0

(5.78)

Furthermore, a comparison of Eq. (5.77) with Eq. (5.38) proves that σK
αβ in Eq. (5.30)

was indeed a component of the nuclear magnetic shielding tensor.

5.8 Quantum Mechanical Expression for the NMR Parameters

In this section, we are going to derive quantum mechanical expressions for the elements
of the nuclear magnetic shielding and reduced indirect nuclear spin-spin coupling ten-
sors, σK

αβ and KKL
αβ , of closed-shell molecules. According to Eqs. (5.40) and (5.78)

they can be defined as second derivatives of the energy in the presence of an external
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magnetic induction �B and a nuclear magnetic moment �mK or two nuclear magnetic
moments �mK and �mL. Like always, we will use the perturbation theory expression for
the perturbed energy, Eq. (3.15), but differentiate it now once with respect to a com-
ponent of the nuclear magnetic moment mK

α and once with respect to a component
of the magnetic induction Bβ in the case of the nuclear magnetic shielding tensor or
once more with respect to a component of another nuclear magnetic moment mL

β in
the case of the reduced indirect nuclear spin-spin coupling tensor. We can therefore
express the nuclear magnetic shielding tensor as

σK
αβ =

∂2E
(2)
0 ( �B, �mK)

∂mK
α ∂Bβ

∣∣∣∣∣
|�B|=|�mK |=0

=
∂2

∂mK
α ∂Bβ

〈Ψ(0)
0 |Ĥ(2) |Ψ(0)

0 〉
∣∣∣∣
|�B|=|�mK |=0

+
∂2

∂mK
α ∂Bβ

∑
n�=0

〈Ψ(0)
0 |Ĥ(1) |Ψ(0)

n 〉〈Ψ(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

∣∣∣∣∣∣
|�B|=|�mK |=0

(5.79)

and the reduced indirect nuclear spin-spin coupling tensor as

KKL
αβ =

∂2E
(2)
0 (�mK , �mL)
∂mK

α ∂mL
β

∣∣∣∣∣
|�mK |=|�mL|=0

=
∂2

∂mK
α ∂mL

β

〈Ψ(0)
0 |Ĥ(2) |Ψ(0)

0 〉
∣∣∣∣∣
|�mK |=|�mL|=0

+
∂2

∂mK
α ∂mL

β

∑
n�=0

〈Ψ(0)
0 |Ĥ(1) |Ψ(0)

n 〉〈Ψ(0)
n |Ĥ(1) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

∣∣∣∣∣∣
|�mK |=|�mL|=0

(5.80)

Again, as in the case of the magnetizability we have to use the full expression
for the second-order energy correction including the diamagnetic 〈Ψ(0)

0 | Ĥ(2) | Ψ(0)
0 〉

terms. The first-order perturbation Hamiltonians for the interaction with an external
magnetic induction and with a nuclear magnetic moment were already presented in
Eqs. (5.20) and (5.56). They contain the orbital paramagnetic ÔOP

α , Eq. (5.58), the
Fermi contact ÔFC

α , Eq. (5.60), and the spin-dipolar operator ÔSD
α Eq. (5.61).

But we also need the second-order perturbation Hamiltonians Ĥ(2) that are bilin-
ear in the external magnetic induction and a nuclear magnetic moment in the case
of the shielding tensor and bilinear in two nuclear magnetic moments in the case of
the coupling tensor. Inserting, therefore, the sum of the vector potential for an exter-

nal field �̂AB(�ri) = 1
2

�B × (�ri − �RGO), Eq. (5.19), and for a nuclear magnetic moment
�AK(�ri) = μ0

4π �mK × (�ri−�RK)

|�ri−�RK |3 , Eq. (5.55) in the general expression for the molec-
ular Hamiltonian, Eq. (2.101), we can identify the two second-order perturbation
Hamiltonian operators as [see Exercise 5.8]
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Ĥ(2) =
∑
K

∑
αβ

ÔmKB
αβ mK

α Bβ (5.81)

and
Ĥ(2) =

∑
KL

∑
αβ

ÔmKmL

αβ mK
α mL

β (5.82)

where the perturbation operators are defined as14

ÔmKB
αβ (�RGO) =

∑
i

ômKB
i,αβ (�RGO) (5.83)

=
e2

2me

μ0

4π

∑
i

[
(�ri − �RGO) · (�ri − �RK)

| �ri − �RK |3 δαβ − (ri,α − RGO,α)
(ri,β − RK,β)

| �ri − �RK |3

]
and

ÔmKmL

αβ =
∑

i

ômKmL

i,αβ (5.84)

=
e2

2me

(μ0

4π

)2∑
i

[
(�ri − �RL)

| �ri − �RL |3 · (�ri − �RK)

| �ri − �RK |3 δαβ− (ri,α − RL,α)

| �ri − �RL |3
(ri,β − RK,β)

| �ri − �RK |3

]
The latter is often called the orbital diamagnetic (OD) or diamagnetic nuclear
spin-electron orbit operator (DSO), whereas the first could be called the
diamagnetic shielding operator.

Exercise 5.8 Derive the second-order perturbation Hamiltonian, Eqs. (5.81) to (5.84), for
the vector potential of a nuclear magnetic moment, �mK and an external magnetic induction,
Eq. (5.19), by inserting the two vector potentials in the general expression of the molecular
Hamiltonian, Eq. (2.101), retaining the second-order terms.

Taking the derivatives we arrive at the sum-over-states expressions for the nuclear
magnetic shielding tensor

σK
αβ = 〈Ψ(0)

0 |ÔmKB
αβ |Ψ(0)

0 〉 +
∑
n�=0

〈Ψ(0)
0 |ÔOP

K,α |Ψ(0)
n 〉〈Ψ(0)

n |m̂l
β(�RGO) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |m̂l

β(�RGO) |Ψ(0)
n 〉〈Ψ(0)

n |ÔOP
K,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(5.85)

= σK,dia
αβ (�RGO) + σK,para

αβ (�RGO)

There are two contributions as in the case of the magnetizability that are called
diamagnetic and paramagnetic term, in analogy to the magnetizability in Eq. (5.44).
However, the two contributions have the opposite sign as their magnetizability coun-
terparts. Equation (5.85) indicates that the two contributions also depend on the
gauge origin but their sum, the shielding tensor, is independent. The separation in a

14 All perturbation operators derived in this chapter are collected in Appendix A.
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dia- and paramagnetic contribution is therefore again arbitrary and the diamagnetic
contribution can also be rewritten in terms of a sum over all states (Geertsen, 1991;
Smith et al., 1992; Sauer et al., 1994a,b; Lazzeretti et al., 1994) like the paramag-
netic term as discussed in Section 5.9. A negative shielding constant implies that the
nucleus is de-shielded and the local magnetic induction at the nucleus is larger than
the external field.

Application of the second derivatives in Eq. (5.80) gives quantum mechanical
expressions for the reduced indirect nuclear spin-spin coupling tensor

KKL
αβ = KKL,OD

αβ + KKL,OP
αβ + KKL,FC

αβ + KKL,SD
αβ + K

KL,FC/SD
αβ (5.86)

where

KKL,OD
αβ = 2〈Ψ(0)

0 |ÔmKmL

αβ |Ψ(0)
0 〉 (5.87)

KKL,OP
αβ =

∑
n�=0

〈Ψ(0)
0 |ÔOP

K,α |Ψ(0)
n 〉〈Ψ(0)

n |ÔOP
L,β |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔOP

L,β |Ψ(0)
n 〉〈Ψ(0)

n |ÔOP
K,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(5.88)

KKL,FC
αα =

∑
n�=0

〈Ψ(0)
0 |ÔFC

K,α |Ψ(0)
n 〉〈Ψ(0)

n |ÔFC
L,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔFC

L,α |Ψ(0)
n 〉〈Ψ(0)

n |ÔFC
K,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(5.89)

KKL,SD
αβ =

∑
n�=0

〈Ψ(0)
0 |ÔSD

K,α |Ψ(0)
n 〉〈Ψ(0)

n |ÔSD
L,β |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔSD

L,β |Ψ(0)
n 〉〈Ψ(0)

n |ÔSD
K,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(5.90)

K
KL,FC/SD
αβ =

∑
n�=0

〈Ψ(0)
0 |ÔFC

K,α |Ψ(0)
n 〉〈Ψ(0)

n |ÔSD
L,β |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔSD

K,α |Ψ(0)
n 〉〈Ψ(0)

n |ÔFC
L,β |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔSD

L,β |Ψ(0)
n 〉〈Ψ(0)

n |ÔFC
K,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔFC

L,β |Ψ(0)
n 〉〈Ψ(0)

n |ÔSD
K,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(5.91)
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It consists of five contributions, where, however, the last contribution, the Fermi con-
tact – spin dipolar cross-term is purely anisotropic and does not contribute to the
trace of the tensor and thus to the coupling constant. The Fermi-contact term on the
other hand is isotropic, i.e. the off-diagonal elements of the tensor all vanish. Fur-
thermore the diagonal elements are all the same. Like the diamagnetic contributions
to the magnetizability and nuclear magnetic shielding tensor, the orbital diamagnetic
contribution to the indirect nuclear spin-spin coupling constant is normally written
as an expectation value. However, it can be expressed alternatively as a sum over
all states (Sauer, 1993) (see Section 5.9) like the diamagnetic contributions to the
shielding and magnetizability tensor.

The Fermi contact, spin dipolar and their cross-term contain operators that include
the electron spin operator Ŝ. Application of these operators on a singlet reference
state |Ψ(0)

0 〉 will give a linear combination of triplet states. The states |Ψ(0)
n 〉 thus

have to be triplet states in order for the transition moments to be non-zero. For a
singlet reference state the Fermi contact, spin dipolar and Fermi contact–spin dipolar
cross-term therefore involve a sum over triplet states and triplet excitation energies
E

(0)
0 − E

(0)
n . The orbital paramagnetic operator, on the other hand, is spin free and

the summation is therefore over states of the same spin symmetry as |Ψ(0)
0 〉.

The nuclear magnetic shielding and indirect nuclear spin-spin coupling tensor can
also be obtained as derivatives of the molecular magnetic induction Bj

α(�RK , �B, �mL)
at the position of nucleus K with respect to either the external magnetic induction
�B or the nuclear magnetic moment of nucleus L, Eqs. (5.65) and (5.66). Furthermore
the nuclear shielding tensor was also defined as the derivative of the molecular mag-
netic moment with respect to the nuclear magnetic moment of nucleus K, Eq. (5.33).
Quantum mechanical expressions can thus be obtained as first derivatives of the cor-
responding perturbation-dependent first-order properties according to Eq. (3.41). The
operator for the molecular magnetic moment in the presence of nuclear
magnetic moments can be derived by Eq. (3.8)

m̂α(�RGO, {�mK}) = ÔlB
α (�RGO) + ÔsB

α −
∑
K

∑
β

ÔmKB
βα (�RGO) mK

β

= m̂l
α(�RGO) + ÔsB

α −
∑
K

∑
β

ÔmKB
βα (�RGO) mK

β (5.92)

The operator for the molecular magnetic induction at nucleus K in the pres-
ence of an external magnetic induction �B and nuclear magnetic moments
{�mL} is correspondingly given as

B̂j
α(�RK , �B, {�mL}) = ÔlmK

α + ÔsmK

α −
∑

β

ÔmKB
αβ (�RGO) Bβ − 2

∑
L�=K

∑
β

ÔmKmL

αβ mL
β

= ÔOP
K,α + ÔFC

K,α + ÔSD
K,α −

∑
β

ÔmKB
αβ (�RGO) Bβ

− 2
∑
L�=K

∑
β

ÔmKmL

αβ mL
β (5.93)
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Applying then the general expression for the first derivative of a perturbation-
dependent expectation value, Eq. (3.41), to a component of the molecular magnetic
induction Bj

α(�RK , �B) at the position of nucleus K in the presence of an external
magnetic induction we obtain expressions for the tensor components of the nuclear
magnetic shielding tensor of nucleus K involving first derivatives of the perturbed
wavefunction

σK
αβ = − ∂Bj

α(�RK , �B)
∂Bβ

∣∣∣∣∣
|�B|=0

= − ∂

∂Bβ
〈Ψ0( �B) | B̂j

α(�RK , �B) |Ψ0( �B)〉
∣∣∣∣
|�B|=0

(5.94)

= −〈Ψ(0)
0 |ÔOP

K,α |
∂Ψ0( �B)

∂Bβ

∣∣∣∣∣
|�B|=0

〉 − 〈 ∂Ψ0( �B)
∂Bβ

∣∣∣∣∣
|�B|=0

|ÔOP
K,α |Ψ(0)

0 〉

+ 〈Ψ(0)
0 |ÔmKB

αβ (�RGO) |Ψ(0)
0 〉

Alternatively, we can take the first derivative of a component of the molecular magnetic
dipole moment mα(�mK) in the presence of a magnetic nucleus K

σK
βα = − ∂mα(�mK)

∂mK
β

∣∣∣∣∣
|�mK |=0

= − ∂

∂mK
β

〈Ψ0(�mK) |m̂α(�RGO, �mK) |Ψ0(�mK)〉
∣∣∣∣∣
|�mK |=0

(5.95)

= −〈Ψ(0)
0 |m̂l

α(�RGO) | ∂Ψ0(�mK)
∂mK

β

∣∣∣∣∣
|�mK |=0

〉 − 〈 ∂Ψ0(�mK)
∂mK

β

∣∣∣∣∣
|�mK |=0

|m̂l
α(�RGO) |Ψ(0)

0 〉

+ 〈Ψ(0)
0 |ÔmKB

βα (�RGO) |Ψ(0)
0 〉

In both expressions we have assumed that we are looking at closed-shell molecules

only and have therefore not included the contributions from �̂OsB and �̂OsmK

.
Finally, taking the first derivative of the molecular magnetic induction Bj

α(�RK , �mL)
at the position of nucleus K in the presence of a magnetic nucleus L we obtain expres-
sions for the reduced indirect nuclear spin-spin coupling constant of nuclei K and L

KKL
αβ = − ∂Bj

α(�RK , �mL)
∂mL

β

∣∣∣∣∣
|�mL|=0

= − ∂

∂mL
β

〈Ψ0(�mL) | B̂j
α(�RK , �mL) |Ψ0(�mL)〉

∣∣∣∣∣
|�mL|=0

(5.96)

= −〈Ψ(0)
0 |ÔOP

K,α + ÔFC
K,α + ÔSD

K,α |
∂Ψ0(�mL)

∂mL
β

∣∣∣∣∣
|�mL|=0

〉

− 〈 ∂Ψ0(�mL)
∂mL

β

∣∣∣∣∣
|�mL|=0

|ÔOP
K,α + ÔFC

K,α + ÔSD
K,α |Ψ(0)

0 〉 + 2〈Ψ(0)
0 |ÔmKmL

αβ |Ψ(0)
0 〉

In Part III we will come back to these expressions and evaluate the derivatives
of approximate wavefunctions. However, here we will use the response formalism
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as developed in Section 3.11. Using Eq. (3.116) we can express the derivatives of
the perturbation-dependent expectation value in terms of polarization propagators or
linear response functions and thus obtain for the tensor components of the nuclear
magnetic shielding tensor of nucleus K

σK
αβ = − ∂

∂Bβ
〈Ψ0( �B) | B̂j

α(�RK , �B) |Ψ0( �B)〉
∣∣∣∣
|�B|=0

= − ∂

∂mK
α

〈Ψ0(�mK) |m̂β(�RGO, �mK) |Ψ0(�mK)〉
∣∣∣∣
|�mK |=0

= 〈Ψ(0)
0 |ÔmKB

αβ (�RGO) |Ψ(0)
0 〉 + 〈〈 ÔOP

K,α ; m̂l
β(�RGO) 〉〉ω=0 (5.97)

and of the reduced indirect nuclear spin-spin coupling constant of nuclei K and L

KKL
αβ = − ∂

∂mL
β

〈Ψ0(�mL) | B̂j
α(�RK , �mL) |Ψ0(�mL)〉

∣∣∣∣∣
|�mL|=0

(5.98)

= 2〈Ψ(0)
0 |ÔmKmL

αβ |Ψ(0)
0 〉 + 〈〈 ÔOP

K,α ; ÔOP
L,β 〉〉ω=0

+ 〈〈 ÔFC
K,α + ÔSD

K,α ; ÔFC
L,β + ÔSD

L,β 〉〉ω=0

Analogous to the magnetizability, we can see that the diamagnetic contributions to the
nuclear magnetic shielding and the reduced indirect nuclear spin-spin coupling tensors
are normally not expressed as linear response functions. However, these diamagnetic
contributions can also be reformulated as a sum-over-states or polarization propagator
expression, as will be shown in Section 5.9.

Inserting the perturbation theory expansion of the perturbed wavefunction up to
first order, Eq. (3.27), or the expression for the static response function Eq. (3.114)
yields the same expressions for the nuclear magnetic shielding tensor and reduced
indirect nuclear spin-spin coupling tensor as derived above.

5.9 Sum-over-States Expression for Diamagnetic Terms

The three second-order magnetic properties, the magnetizability, nuclear magnetic
shielding and reduced indirect nuclear spin-spin coupling tensor, all consist of two
contributions: a linear response or sum-over-states term with two first-order pertur-
bation Hamiltonians, which is often called the paramagnetic term, and a ground-state
expectation value of a second-order perturbation Hamiltonian, which is called the
diamagnetic term. This asymmetry has profound consequences for the gauge-origin
dependence of the magnetizability and shielding tensor, as will be discussed in
Section 5.10. It is therefore desirable to find the same type of expression for both terms.
Unfortunately, it seems impossible to find ground-state-expectation-value expressions
for the paramagnetic terms, which would be highly desirable, because ground-state
expectation values are computationally much simpler. On the other hand, it is possible
to rewrite the diamagnetic contributions to the magnetizability ξdia

αβ (�RGO), nuclear
magnetic shielding σK,dia

αβ (�RGO) and reduced indirect nuclear spin-spin coupling
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tensors KKL,OD
αβ (Geertsen, 1989, 1991; Smith et al., 1992; Sauer, 1993; Sauer et al.,

1994a,b; Lazzeretti et al., 1994) as a sum-over-states or linear response functions that
will be denoted with a superscript “Δ”

ξΔ
αβ(�RGO) = − 1

2me

∑
n�=0

〈Ψ(0)
0 |

[
�̂μ(�RGO) × �̂ml(�RGO)

]
α
|Ψ(0)

n 〉〈Ψ(0)
n |Ôp

β |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

− 1
2me

∑
n�=0

〈Ψ(0)
0 |Ôp

β |Ψ(0)
n 〉〈Ψ(0)

n |
[
�̂μ(�RGO) × �̂ml(�RGO)

]
α
|Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

= − 1
2me

〈〈
[
�̂μ(�RGO) × �̂ml(�RGO)

]
α

; Ôp
β 〉〉ω=0 (5.99)

σK,Δ
αβ (�RGO) =

1
mec2

∑
n�=0

〈Ψ(0)
0 |

[
�̂Oμ(�RK) × �̂ml(�RGO)

]
α
|Ψ(0)

n 〉〈Ψ(0)
n |Ôp

β |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

+
1

mec2

∑
n�=0

〈Ψ(0)
0 |Ôp

β |Ψ(0)
n 〉〈Ψ(0)

n |
[
�̂Oμ(�RK) × �̂ml(�RGO)

]
α
|Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

=
1

mec2
〈〈

[
�̂Oμ(�RK) × �̂ml(�RGO)

]
α

; Ôp
β 〉〉ω=0 (5.100)

KKL,Δ
αβ =

1
mec2

∑
n�=0

〈Ψ(0)
0 |

[
�̂Oμ(�RK) × �̂OOP

L

]
α
|Ψ(0)

n 〉〈Ψ(0)
n |Ôp

β |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

+
1

mec2

∑
n�=0

〈Ψ(0)
0 |Ôp

β |Ψ(0)
n 〉〈Ψ(0)

n |
[
�̂Oμ(�RK) × �̂OOP

L

]
α
|Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

=
1

mec2
〈〈

[
�̂Oμ(�RK) × �̂OOP

L

]
α

; Ôp
β 〉〉ω=0 (5.101)

where �̂μ, �̂ml and �̂Oμ are the electric and magnetic dipole, Eqs. (4.30) and (5.21), and

electric-field operators, Eq. (4.95), while �̂Op is the total canonical momentum operator
of the electrons, whose cartesian components are defined in Eq. (3.65).

In order to prove this for all three properties we start by rewriting the operators
of the diamagnetic terms as

Ô
dia

= f
(

�̂O1 · �̂O2 I3 − �̂O1 ⊗ �̂O2

)
(5.102)

where I3 is the 3×3 unit matrix and the vector products �̂O1 · �̂O2 and �̂O1⊗ �̂O2 = �̂O1
�̂OT

2

are the inner and outer or dyadic product of two vectors, which give a scalar and a
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Table 5.1 Operators and factors of the

diamagnetic contributions to the magne-

tizability, nuclear magnetic shielding and

reduced indirect nuclear spin-spin coupling

tensors

f Ô1 Ô2

ξdia − e2

4me
�̂μ(�RGO) �̂μ(�RGO)

σK,dia − 1
2mec2

�̂μ(�RGO) �̂Oμ(�RK)

KKL,dia 1
2mec4

�̂Oμ(�RL) �̂Oμ(�RK)

3 × 3 matrix with elements
(

�̂O1 ⊗ �̂O2

)
αβ

= Ô1,αÔ2,β , respectively. The constants f

and the operators �̂O1 and �̂O2 are given in Table 5.1.
The operators in Eq. (5.102) can be written as the following commutator

[see Exercise 5.9]

�̂O1 · �̂O2 I3 − �̂O1 ⊗ �̂O2 = − ı

�

[
�̂O2 ×

(
�̂O1 × �̂Op

)
, ( �̂Or)T

]
(5.103)

where �̂Or is the sum of the position operators of all electrons as defined in Eq. (3.63).

Exercise 5.9 Prove that the operators for the diamagnetic contributions to the magneti-
zability, nuclear magnetic shielding and reduced indirect nuclear spin-spin coupling tensors
can be written as the commutator given in Eq. (5.103).

Hint: Start by showing that
[
�̂O1, ( �̂Or)T

]
=

[
�̂O2, ( �̂Or)T

]
= 0

The diamagnetic contributions can therefore be written as

〈Ψ(0)
0 |Ôdia |Ψ(0)

0 〉 =
f

ı�
〈Ψ(0)

0 |
[
�̂O2 ×

(
�̂O1 × �̂Op

)
, ( �̂Or)T

]
|Ψ(0)

0 〉

=
f

ı�

{
〈Ψ(0)

0 |
[
�̂O2 ×

(
�̂O1 × �̂Op

)]
( �̂Or)T |Ψ(0)

0 〉

−〈Ψ(0)
0 | �̂Or

[
�̂O2 ×

(
�̂O1 × �̂Op

)]T

|Ψ(0)
0 〉

}
(5.104)

We can then insert the resolution of the identity,
∑

n |Ψ(0)
n 〉〈Ψ(0)

n | = 1, between the

operators �̂O2 ×
(

�̂O1 × �̂Op
)

and �̂Or, leading to
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〈Ψ(0)
0 |Ôdia |Ψ(0)

0 〉 =
f

ı�

∑
n

{
〈Ψ(0)

0 | �̂O2 ×
(

�̂O1 × �̂Op
)
|Ψ(0)

n 〉〈Ψ(0)
n |( �̂Or)T |Ψ(0)

0 〉 (5.105)

−〈Ψ(0)
0 | �̂Or |Ψ(0)

n 〉〈Ψ(0)
n |

[
�̂O2 ×

(
�̂O1 × �̂Op

)]T

|Ψ(0)
0 〉

}
Finally, using the off-diagonal hypervirial relation, Eq. (3.66) we arrive at the desired
sum-over-states expression in Eqs. (5.99)–(5.101)

〈Ψ(0)
0 |Ôdia |Ψ(0)

0 〉 =
f

me

∑
n�=0

〈Ψ(0)
0 | �̂O2 ×

(
�̂O1 × �̂Op

)
|Ψ(0)

n 〉〈Ψ(0)
n |( �̂Op)T |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
f

me

∑
n�=0

〈Ψ(0)
0 | �̂Op |Ψ(0)

n 〉〈Ψ(0)
n |

[
�̂O2 ×

(
�̂O1 × �̂Op

)]T

|Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

(5.106)

where n = 0 was removed from the summation, because 〈Ψ(0)
0 | �̂Op |Ψ(0)

0 〉 = 0 according
to the hypervirial theorem Eq. (3.67).

5.10 The Gauge-Origin Problem

In Section 2.9, we have discussed the fact that the vector potential is not uniquely
defined, i.e. adding the gradient of the so-called gauge function χ(�r, t) to it will leave
the magnetic induction unchanged but will change the Hamiltonian, see Eq. (2.115).
Gauge invariance for the Schrödinger equation can, however, be obtained by similarly
gauge transforming the wavefunction, Eq. (2.117). The physics is thus not changed by
such a gauge transformation, which implies that all quantum mechanical expressions
for properties should also be invariant under these gauge transformations.

A particularly important gauge function is χ(�ri) = − 1
2

�B × �RGO · �ri, Eq. (2.119),
which leads to a dependence of the vector potential on an arbitrary gauge origin �RGO.
In the derivation of the magnetic properties in the previous sections we had already
used a vector potential of this form. As a consequence, the dia- and paramagnetic
contributions to the magnetizability tensor, Eq. (5.44), depend quadratically on this
gauge origin, whereas the two contributions to the nuclear magnetic shielding tensor,
Eq. (5.85), only linearly. For each property the sum of both contributions, however,
must be independent of any kind of gauge transformation and thus also of this gauge
origin �RGO.

It can be shown [see Exercise 5.10] that this is indeed the case, if we assume
that the wavefunctions are exact solutions of the unperturbed Schrödinger equation
Eq. (3.14).

Exercise 5.10 The expressions for the diamagnetic and paramagnetic contributions to the
magnetizability and nuclear magnetic shielding tensor in equations (5.44) and (5.85) depend
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on the gauge origin �RGO of the vector potential �A(�ri), Eq. (2.121), for the magnetic induc-
tion. Show that the sum of the diamagnetic and paramagnetic contributions, however, is

independent of �RGO.

Hint: Replace the gauge origin �RGO in Eq. (5.44) and Eq. (5.85) by �RGO + �D, isolate

the terms that depend on the arbitrary change �D in the gauge origin and show that these
terms cancel. Furthermore you might want to use the hypervirial relation Eq. (3.66) and the

fact that the set of excited states Ψ
(0)
n is complete, i.e.

∑
n

|Ψ(0)
n 〉〈Ψ(0)

n | = 1

However, for the latter discussion of approximate methods in Part III it is useful
to derive explicit expressions for the gauge dependence of the trace of both properties.
For a change in the gauge origin from �RGO to �RGO + �D one obtains [see Exercise 5.11]

ξ(�RGO + �D) = ξ(�RGO) + �Cξ
1(�RGO) �D + �D Cξ

2
�D (5.107)

σ(�RGO + �D) = σ(�RGO) + �Cσ
1

�D (5.108)

where the gauge-origin dependence tensors are given as

Cξ
1,α(�RGO) = − e

3me

∑
βγ

εαβγ

⎛⎝∑
n�=0

〈Ψ(0)
0 |Ôp

β |Ψ(0)
n 〉〈Ψ(0)

n |m̂l
γ(�RGO) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

−
∑
n�=0

〈Ψ(0)
0 |m̂l

β(�RGO) |Ψ(0)
n 〉〈Ψ(0)

n |Ôp
γ |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

⎞⎠
− e

3me
〈Ψ(0)

0 | μ̂α(RGO) |Ψ(0)
0 〉 (5.109)

Cξ
2,αβ = − e2

12m2
e

⎛⎝∑
γ

δαβ

∑
n�=0

〈Ψ(0)
0 |Ôp

γ |Ψ(0)
n 〉〈Ψ(0)

n |Ôp
γ |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

−
∑
n�=0

〈Ψ(0)
0 |Ôp

α |Ψ(0)
n 〉〈Ψ(0)

n |Ôp
β |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

⎞⎠ (5.110)

− e2

6me
Nδαβ
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Cσ
1,α = − e

6me

∑
βγ

εαβγ

⎛⎝∑
n�=0

〈Ψ(0)
0 |Ôp

β |Ψ(0)
n 〉〈Ψ(0)

n |ÔOP
K,γ |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

−
∑
n�=0

〈Ψ(0)
0 |ÔOP

K,β |Ψ(0)
n 〉〈Ψ(0)

n |Ôp
γ |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

⎞⎠
− e

3mec2
〈Ψ(0)

0 |Ôμ
α(�RK) |Ψ(0)

0 〉 (5.111)

where εαβγ is the Levi-Civita symbol (Mills et al., 1993), which is defined as

εαβγ =

⎧⎨⎩
+1 if αβγ is an even permutation of x, y, z
−1 if αβγ is an odd permutation of x, y, z
0 otherwise

(5.112)

Alternatively, we can write them more compactly in terms of polarization
propagators as

Cξ
1,α(�RGO) = − e

3me
〈〈 Ôp

β ; m̂l
γ(�RGO) 〉〉ω=0 − e

3me
〈Ψ(0)

0 | μ̂α(RGO) |Ψ(0)
0 〉 (5.113)

Cξ
2,αβ = − e2

24m2
e

(∑
γ

δαβ〈〈 Ôp
γ ; Ôp

γ 〉〉ω=0 − 〈〈 Ôp
α ; Ôp

β 〉〉ω=0

)
− e2

6me
Nδαβ

Cσ
1,α = − e

6me

∑
γ

εαβγ〈〈 Ôp
β ; ÔOP

K,γ 〉〉ω=0 − e

3mec2
〈Ψ(0)

0 |Ôμ
α(�RK) |Ψ(0)

0 〉

(5.114)

Exercise 5.11 Derive the expressions for gauge-origin dependence tensors of the trace of
the magnetizability and nuclear magnetic shielding tensors in Eqs. (5.109) to (5.111).

Hint: Replace the gauge-origin �RGO in Eqs. (5.44) and (5.85) by �RGO + �D, form the trace of

the tensors and collect the terms that depend linearly or quadratically on �D.

In the case of exact unperturbed wavefunctions the gauge-dependence tensors are
all zero, of course, but in the case of approximate methods this is not necessarily
the case and they can then serve as a measure of the gauge-origin dependence of a
particular result for the magnetizability or nuclear magnetic shielding.

Finally, it is actually possible for the case of the nuclear magnetic shielding tensor
to derive an alternative expression for the diamagnetic contribution, such that the
gauge-origin dependence disappears exactly from the diamagnetic and paramagnetic
contribution. These expressions will then give gauge-origin-independent results for
the nuclear magnetic shielding tensor also in the case of the approximate methods
in part III. Several attempts have been made to achieve this (Geertsen, 1991; Smith
et al., 1992; Sauer et al., 1994b; Lazzeretti et al., 1994). They are all based on the
reformulation of the diamagnetic contribution as a sum over all states, as discussed in
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Section 5.9. The most useful one, because it gives gauge-origin-independent expres-
sions for the whole shielding tensor is the continuous transformation of origin of
the current density, whereby the diamagnetic contribution to the current density
is set to zero (CTOCD-DZ) approach by Lazzeretti and coworkers (Lazzeretti et al.,
1994). The CTOCD-DZ diamagnetic contribution is given as

σK,Δ
αβ =

∑
γδ

εβγδ

⎛⎝∑
n�=0

〈Ψ(0)
0 |Ôp

γ |Ψ(0)
n 〉〈Ψ(0)

n |ÔCTOCD−DZ
K,δα |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
∑
n�=0

〈Ψ(0)
0 |ÔCTOCD−DZ

K,δα |Ψ(0)
n 〉〈Ψ(0)

n |Ôp
γ |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

⎞⎠ (5.115)

=
∑
γδ

εβγδ 〈〈 Ôp
γ ; ÔCTOCD−DZ

K,δα 〉〉ω=0 (5.116)

where
ÔCTOCD−DZ

K,δα =
1

4me

[
μ̂δ(RGO) ÔOP

K,α + ÔOP
K,α μ̂δ(RGO)

]
(5.117)

Exercise 5.12 Show that the sum of the paramagnetic contribution to the nuclear magnetic
shielding tensor Eq. (5.85) and the CTOCD-DZ diamagnetic contribution Eq. (5.115) is inde-

pendent of the gauge origin �RGO without making use of the hypervirial relation, Eq. (3.66),

or the resolution of the identity,
∑

n |Ψ(0)
n 〉〈Ψ(0)

n | = 1.
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6

Properties Related
to Nuclear Motion

So far, we have restricted ourselves to the situation that the nuclei are fixed in space,
i.e. we have considered molecular properties or contributions to the molecular proper-
ties that can be obtained from the electronic Schrödinger equation, Eq. (2.10), alone.
In this chapter, and the following chapter we will finally lift this restriction and allow
the nuclei to move again. In this chapter, we will look at properties that arise or at least
have contributions due to a breakdown of the Born–Oppenheimer approximation. This
means that in order to derive quantum mechanical expressions for these experimen-
tally observable properties we have to take into account the coupling of nuclear and
electronic motion, i.e. some of the terms that are neglected in the Born–Oppenheimer
approximation.

6.1 Molecular Rotation as Source for Magnetic Moments

When a molecule rotates around its centre of nuclear masses RCM , there are rotating
charges, which give rise to an additional current density �jJ (�r). This current density
can be expressed in terms of the angular momentum of the rotation �J and the moment
of inertia tensor I as

�jJ (�r) = ρ(�r) �v(�r) = ρ(�r) �ω × (�r − �RCM )

= ρ(�r)(I−1 �J) × (�r − �RCM ) (6.1)

where �ω = I−1 �J is the angular velocity of the rotating charges. According to
Eqs. (5.10) this rotational current density will lead to a magnetic moment �mJ , called
the rotational magnetic moment,

�mJ,rig( �J) =
1
2

∫
�r

ρ(�r)(�r − �RCM ) ×
[
(I−1 �J) × (�r − �RCM )

]
d�r (6.2)

In this expression, we have assumed that the charges rotate rigidly and therefore added
the superscript “rig”. This means in particular that the electrons move rigidly with
the nuclear frame and do not lag behind. However, in a real molecule the electronic
charge distribution will not rotate rigidly, but will be influenced by the fact that the
nuclei rotate with angular momentum �J . This coupling between nuclear rotational
motion and the motion of the electrons
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Ĥ(1) = �̂L I−1 �̂J (6.3)

is neglected in the Born–Oppenheimer approximation. The changes in the rotational
magnetic moment and induction are thus a manifestation of the breakdown of the
Born–Oppenheimer approximation.

There are several ways of deriving these contributions (Wick, 1933b, 1933a, 1948;
Eshbach and Strandberg, 1952; Flygare and Benson, 1971). Here we will follow the
original derivation (Wick, 1933b, 1933a) which makes use of the fact that going to the
rotating frame of the nuclei leads, according to Larmor’s theorem, (Rabi et al., 1954)
to an apparent magnetic induction �BJ acting on the electrons

�BJ = −2me

e
I−1 �J (6.4)

for which we then can define a vector potential as

�AJ = −me

e
I−1 �J × (�r − �RCM ) (6.5)

In complete analogy to Eq. (5.30) this magnetic induction leads to an induced
magnetic moment �mJ,ind in addition to the magnetic moment �mJ,rig of the rigidly
rotating charge distribution

mJ
α( �J) = mJ,rig

α ( �J) + mJ,ind
α ( �J) (6.6)

Contrary to the definition of the properties in the previous chapters here one combines
traditionally the rigid and induced or Born–Oppenheimer breakdown contribution in
one property and defines only one property, the rotational g tensor gJ , as the pro-
portionality tensor between the rotational magnetic moment �mJ( �J) and the rotational
angular momentum �J

mJ
α( �J) =

μN

�

∑
β

gJ,αβ Jβ =
μN

�

∑
β

(grig
J,αβ + gind

J,αβ) Jβ (6.7)

where μN = e�

2mp
is the nuclear magneton again.

From the expansion in Eq. (6.7) we can define the components of the rotational
g tensor as first derivatives1 of the rotational magnetic moment with respect to a
component of the rotational angular momentum �J of the nuclei

gJ,αβ =
�

μN

∂mJ
α( �J)

∂Jβ

∣∣∣∣∣
| �J|=0

(6.8)

The rotational magnetic moment �mJ ( �J) can interact with an external magnetic
induction �B like any other magnetic moment, Eq. (5.17). The resulting change in the
energy is then

ΔE( �B, �J) = −
∑
α

Bα mJ
α( �J) = −μN

�

∑
αβ

Bα gJ,αβ Jβ (6.9)

1 This definition is also given in the second column of Table B.3 of Appendix B.
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which allows us to define the components of the rotational g tensor as second deriva-
tives of the corresponding interaction energies with respect to a component of the
rotational angular momentum �J of the nuclei and a component of the external
magnetic induction2

gJ,αβ = − �

μN

∂2E( �B, �J)
∂Bα∂Jβ

∣∣∣∣∣
| �J|=|�B|=0

(6.10)

Although the rotational g tensor can be defined as second derivatives of the energy
similar to the magnetizability, there exists a fundamental difference. The energy in
Eq. (5.39) is the electronic energy, i.e. the solution to the electronic Schrödinger
equation in the presence of scalar and vector potentials, Eq. (3.1), while the energy
in Eq. (6.10) is in principle the solution to the full time-independent Schrödinger
equation, Eq. (2.5), including the nuclear kinetic energy terms. Consequently, only
the induced contributions can be obtained as derivatives of the electronic energy in
the presence of the Born–Oppenheimer breakdown operator given in Eq. (6.3).

Nowadays, the diagonal components of the rotational g tensor in the principal axes
coordinate system of the molecule3 can be measured in many ways. The two original
methods are both based on Eq. (6.9). Already in 1933 rotational magnetic moments
and thus the rotational g tensor were measured by deflection of molecular beams in
inhomogenous magnetic fields (Frisch and Stern, 1933; Estermann and Stern, 1933).
Alternatively, one can study the changes in the rotational energies due to an external
magnetic field, the so-called rotational Zeeman effect, which is normally expressed in
terms of an effective rotational Hamiltonian as (Eshbach and Strandberg, 1952)

Ĥrot( �B) =
Ĵ2

x

2Ixx
+

Ĵ2
y

2Iyy
+

Ĵ2
z

2Izz
− μN

�

�BgJ
�̂J (6.11)

and allows for the experimental determination of the rotational g tensor (Flygare and
Benson, 1971; Flygare, 1974; Sutter and Flygare, 1976).

6.2 Quantum Mechanical Expression for the Rotational g Tensor

The derivation of the quantum mechanical expression for the rotational g tensor
requires the derivation of quantum mechanical expressions for the rigid and induced
contribution to the rotational magnetic moment. An expression for the first is most
easily derived in analogy to the electric dipole moment in Section 4.3 by translating the
classical expression, Eq. (6.2), to quantum mechanics. Before doing so, however, we
want to make use of Lagrange’s formula for a vector triple product [see Exercise 6.1]

�A ×
(

�B × �C
)

= �B
(

�A · �C
)
−

(
�A · �B

)
�C (6.12)

2 This definition is also given in the last column of Table B.3 of Appendix B.
3 In the principal axes coordinate system the moment-of-inertia tensor of the molecule is diagonal,

but not necessarily the rotational g tensor.
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and rewrite the classical expression for the rigid contribution to the rotational magnetic
moment

�mJ,rig( �J) (6.13)

=
1
2

∫
�r

ρ(�r)
[
(�r − �RCM ) · (�r − �RCM ) I3 − (�r − �RCM ) ⊗ (�r − �RCM )

]
(I−1 �J) d�r

Exercise 6.1 Prove relation (6.12).

Comparison with Eq. (6.7) allows us to identify a component of the rigid
contribution to the rotational g tensor as

grig
J,αβ =

mp

e

∫
�r

ρ(�r)
[
(�r − �RCM )2δαβ − (rα − RCM,α)(rβ − RCM,β)

] 1
Iββ

d�r (6.14)

In a molecule the charge distribution ρ(�r) consists of the discrete nuclear charges
located at the points �RK and the continuous charge distribution ρel(�r) of the electrons.
A quantum mechanical expression for the latter can be obtained again from Eq. (2.23).
The rigid contribution to the rotational g tensor

grig
J,αβ = gnuc

J,αβ + grig,el
J,αβ (6.15)

thus has a nuclear

gnuc
J,αβ = mp

∑
K

ZK

[
(�RK − �RCM )2δαβ − (RK,α − RCM,α)(RK,β − RCM,β)

] 1
Iββ

(6.16)

and an electronic contribution

grig,el
J,αβ = −2mp

me
〈Ψ(0)

0 |ÔJJ
αβ (�RCM ) |Ψ(0)

0 〉 1
Iββ

(6.17)

where the electronic perturbation operator ÔJJ
αβ (�RCM ) is defined as

ÔJJ
αβ (�RCM ) =

N∑
i

ôJJ
i,αβ(�RCM ) (6.18)

=
me

2

N∑
i

[
(�ri − �RCM )2δαβ − (ri,α − RCM,α)(ri,β − RCM,β)

]
The derivation of the induced contribution, on the other hand, is very similar

to the derivation for the magnetizability. We could start from the definition of the
rotational g tensor as first derivative of the rotational magnetic moment, Eq. (6.8),
which would then be the induced contribution to it, and use the response theory
formalism of Section 3.11. Using Eq. (3.116) we could express the derivatives of the
induced rotational magnetic moment in terms of a polarization propagator and ground-
state expectation value. Here we will, however, make use of the definition as second
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derivative of the energy, Eq. (6.10). Applying this to the electronic energy in the
presence of an external magnetic induction �B and the internal Born–Oppenheimer
breakdown perturbation in Eq. (6.3) we will obtain directly the induced contribution
to the rotational g tensor.

But first, we have to derive the first- and second-order perturbation Hamiltonian
operators [see Exercise 6.2]. In addition to the orbital magnetic dipole operator,
Eq. (5.21), we also obtain a first-order operator from the vector potential due to
the coupling with the rotation, Eq. (6.5) and second-order operator that is bilinear in
the external magnetic induction and the coupling with the rotation

Ĥ(1) =
∑
α

ÔlJ
α (�RCM )(I−1 �J)α (6.19)

Ĥ(2) =
∑
αβ

ÔBJ
αβ (�RCM , �RGO) Bα(I−1 �J)β (6.20)

where the first- and second-order perturbation operators are given as

ÔlJ
α (�RCM ) =

N∑
i

ôlJ
i,α(�RCM ) = −

N∑
i

l̂i,α(�RCM ) (6.21)

=
2me

e
m̂l

α(�RCM )

and

ÔBJ
αβ (�RCM , �RGO) =

N∑
i

ôBJ
i,αβ(�RCM , �RGO) (6.22)

= −e

2

N∑
i

[
(�ri − �RCM ) · (�ri − �RGO)δαβ − (ri,α − RCM,α)(ri,β − RGO,β)

]
One should note that both perturbation operators are similar to the corresponding
operators for the magnetizability tensor, but not equal. Apart from constant factors,
they differ such that for the rotational g tensor the first-order operator as well as one
of the factors in the second-order operator are defined with respect to the nuclear
centre of masses �RCM and not with respect to the arbitrary gauge origin �RGO.

Exercise 6.2 Derive the second-order perturbation Hamiltonian for the induced contribution
to the rotational g tensor, Eq. (6.22), by inserting the vector potentials, (5.19) and (6.5),
in the general expression of the molecular Hamiltonian, Eq. (2.101), retaining the bilinear
second-order term.

Using again perturbation theory for the perturbed energy we can obtain the second
derivative of the electronic energy directly from the second-order correction to the
energy
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gind
J,αβ = − �

μN

∂2E
(2)
0 ( �B, �J)

∂Bα∂Jβ

∣∣∣∣∣
| �J|=|�B|=0

= mp
1

Iββ

⎡⎣4me
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∑
n�=0

(
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+
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E
(0)
0 − E

(0)
n

)

− 2
e
〈Ψ(0)

0 |ÔBJ
αβ (�RCM , �RGO) |Ψ(0)

0 〉
]

(6.23)

The induced contribution consists therefore of a paramagnetic or sum-over-states con-
tribution and a diamagnetic or ground-state expectation value term. Combining these
with the contribution from the rigid charges, Eq. (6.15), yields

gJ,αβ = gpara
J,αβ + gdia

J,αβ + gnuc
J,αβ

=
mp

Iββ

4me

e2

∑
n�=0

(
〈Ψ(0)

0 |m̂l
α(�RGO) |Ψ(0)

n 〉〈Ψ(0)
n |m̂l

β(�RCM ) |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

+
〈Ψ(0)

0 |m̂l
β(�RCM ) |Ψ(0)

n 〉〈Ψ(0)
n |m̂l

α(�RGO) |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

)

− mp

Iββ
〈Ψ(0)

0 |
∑

i

[
(�RGO − �RCM ) · (�ri − �RCM )δαβ

− (ri,α − RCM,α)(RGO,β − RCM,β)
]
|Ψ(0)

0 〉

+
mp

Iββ

∑
K

ZK

[
(�RK − �RCM )2δαβ − (RK,α − RCM,α)(RK,β − RCM,β)

]
(6.24)

This would be the final expression for the rotational g tensor consisting of three terms:
a paramagnetic term, a new diamagnetic-like term and a nuclear contribution. The
first term can then also be expressed in terms of linear response functions according
to Eq. (3.114), leading to

gpara
J,αβ =

4mpme

e2Iββ
〈〈 m̂l

α(�RGO) ; m̂l
β(�RCM ) 〉〉ω=0 (6.25)

However in the spirit of section 5.9 the new diamagnetic contribution can also be
written as a sum over all states [see Exercise 6.3]
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〈Ψ(0)
0 |

∑
i

[
(�ri − �RCM )(�RGO − �RCM )δαβ − (ri,α − RCM,α)(RGO,β − RCM,β)

]
|Ψ(0)

0 〉

= − 1
me

∑
n�=0

(
〈Ψ(0)

0 |∑i[(�RGO − �RCM ) × �pi]α |Ψ(0)
n 〉〈Ψ(0)

n |∑i li,β(�RCM ) |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

+
〈Ψ(0)

0 |∑i li,β(�RCM ) |Ψ(0)
n 〉〈Ψ(0)

n |∑i[(�RGO − �RCM ) × �pi]α |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

)
(6.26)

Exercise 6.3 Show that the diamagnetic contribution to the rotational g tensor can indeed
be reformulated as a sum-over-states, Eq. (6.26).

Hint: Start by showing that for a constant vector �C it holds that

�̂μ(�RO) · �C I3 − �̂μ(�RO) ⊗ �C =
1

ı�

[
�C × �̂Or,

(
�̂μ(�RO) × �̂Op

)T
]

and then continue as in Section 5.9.

The effect of this reformulated diamagnetic contribution is that it replaces the
dependence of one of the orbital angular momentum operators on the gauge origin
RGO in the sum-over-states term by a dependence on the centre of nuclear masses
RCM . An alternative expression for the rotational g tensor is thus

gJ,αβ = gnuc
J,αβ + gel

J,αβ

=
mp

Iββ

∑
K

ZK

[
(�RK − �RCM )2δαβ − (RK,α − �RCM,α)(RK,β − �RCM,β)

]

+
mp

meIββ

∑
n�=0

(
〈Ψ(0)

0 |∑i li,α(�RCM ) |Ψ(0)
n 〉〈Ψ(0)

n |∑i li,β(�RCM ) |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

+
〈Ψ(0)

0 |∑i li,β(�RCM ) |Ψ(0)
n 〉〈Ψ(0)

n |∑i li,α(�RCM ) |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

)
(6.27)

where we can see that it consists of a nuclear and an electronic sum-over-states con-
tribution only. The latter term can then also be expressed in terms of linear response
functions according to Eq. (3.114)

gel
J,αβ =

4mpme

e2Iββ
〈〈 m̂l

α(�RCM ) ; m̂l
β(�RCM ) 〉〉ω=0 (6.28)

The equivalence between the expressions in Eqs. (6.24) and (6.27) is based on the
reformulation of the diamagnetic contribution as a sum-over-states or linear response
function. As discussed in Section 5.9 this reformulation is exact, if we are dealing
with the exact eigenstates of the unperturbed Hamiltonian. However, in approximate
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calculations this does not always hold and different values might be obtained from
Eqs. (6.24) and (6.27).

On comparison of the electronic contribution with the expression for the para-
magnetic contribution to the magnetizability in Eq. (5.44) we can see that they are
proportional

gel
J,αβ = −4mpme

e2Iββ
ξpara
αβ (�RCM ) (6.29)

if one chooses the centre of nuclear masses, RCM , as the gauge origin for the magne-
tizability. This relation has frequently been used for the experimental determination
of the paramagnetic contribution to the magnetizability from measured rotational g
tensors (Flygare and Benson, 1971; Flygare, 1974; Sutter and Flygare, 1976), as the
nuclear contribution, gn

J,αβ , can easily be calculated from the nuclear coordinates.
Combined with a calculated diamagnetic contribution to the magnetizability one can
thus obtain semi-experimental values of the magnetizability

ξαβ = ξdia
αβ (�RCM ) − e2Iββ

4mpme

(
gJ,αβ − gnuc

J,αβ

)
(6.30)

However, one should keep in mind that this relation only holds for a given fixed
nuclear geometry, while the measured rotational g tensor is for a particular vibrational
state. Direct application of it will therefore neglect the possibly large contributions
from vibrational motion of the nuclei (see e.g. Lutnæs et al. (2009)), as discussed
in Chapter 8. For an accurate determination of the magnetizability it is therefore
necessary to correct explicitly for the vibrational corrections included in the measured
rotational g tensor.

6.3 Rotational g Tensor and Electric Dipole Moment

In the previous section we have seen that the rotational g tensor is related to the
paramagnetic contribution to the magnetizability, Eq. (6.29). Here, we will explore
a relation between the rotational g tensor and the electric dipole moment. We will
see that the latter is related to the difference between the rotational g tensor of two
isotopologues of the same molecule, i.e. two molecules that differ only in the isotopes
of one or more nuclei. We consider therefore a component of the rotational g tensor,
g′J,αβ , of one isotopologue with moment of inertia tensor I ′ and centre of nuclear
masses, �R′

CM , which is shifted by a vector �D = �R′
CM − �RCM from the centre of

nuclear masses of the second isotopologue with moment of inertia tensor I

g′J,αβ I ′ββ = mp

∑
K

ZK

[
(�RK − �R′

CM )2δαβ − (RK,α − �R′
CM,α)(RK,β − �R′

CM,β)
]

+
mp

me
〈〈

∑
i

[(�ri − �R′
CM ) × �pi]α ;

∑
i

[(�ri − �R′
CM ) × �pi]β 〉〉ω=0 (6.31)

Using the relation between the position vectors of the two centres of mass we can
rewrite this as
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g′J,αβ I ′ββ = gJ,αβ Iββ

− mp

∑
K

ZK

[
2 �D · (�RK − �RCM )δαβ − Dα(RK,β − RCM,β) − Dβ(RK,α − RCM,α)

]
+ mp

∑
K

ZK

(
�D · �D δαβ − DαDβ

)

− mp

me

∑
γδ

Dγ

(
εαγδ〈〈 Ôp

δ ;
∑

i

li,β(�RCM ) 〉〉ω=0 + εβγδ〈〈
∑

i

li,α(�RCM ) ; Ôp
δ 〉〉ω=0

)

+
mp

me

∑
γδζη

εαγδ εβζηDγDζ〈〈 Ôp
δ ; Ôp

η 〉〉ω=0 (6.32)

where we have made use of the Levi-Civita symbol, Eq. (5.112), again.
We are going to rewrite the three linear response functions now as ground-state

expectation values similar to the derivations in Section 5.9. However, here we will not
proceed via the sum-over-states expressions for the response function, but want to
illustrate an alternative approach via the equation of motion of the polarization prop-

agator for zero frequencies, Eq. (3.141). Recalling that �̂Op is the canonical conjugate

momentum operator to �̂Or, i.e. Eq. (3.64) we can make use of Eq. (3.141) and replace
the three response functions by ground-state expectation values

g′J,αβ I ′ββ = gJ,αβ Iββ

− mp

∑
K

ZK

[
2 �D · (�RK − �RCM )δαβ − Dα(RK,β − RCM,β) − Dβ(RK,α − RCM,α)

]

+
mp

ı�

∑
γδ

Dγ

(
εαγδ〈Ψ(0)

0 | [Ôr
δ ,
∑

i

li,β(�RCM )] |Ψ(0)
0 〉

−εβγδ〈Ψ(0)
0 | [

∑
i

li,α(�RCM ), Ôr
δ ] |Ψ(0)

0 〉
)

(6.33)

+ mp

∑
K

ZK

(
�D · �D δαβ − DαDβ

)
+

mp

ı�

∑
γδζη

εαγδ εβζηDγDζ〈Ψ(0)
0 | [Ôp

δ , Ôr
η] |Ψ(0)

0 〉

Evaluating the commutators we obtain for the expectation values

〈Ψ(0)
0 | [Ôr

δ , Ô
p
η] |Ψ(0)

0 〉 = ı�Nδδη (6.34)

〈Ψ(0)
0 | [Ôr

δ ,
∑

i

li,β(�RCM )] |Ψ(0)
0 〉 = ı�εδβζ〈Ψ(0)

0 |
∑

i

(ri,ζ − RCM,ζ) |Ψ(0)
0 〉 (6.35)

where N is the total number of electrons, and thus for the relation between the
rotational g tensors
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g′J,αβ I ′ββ = gJ,αβ Iββ

− mp

∑
K

ZK

[
2 �D · (�RK − �RCM )δαβ − Dα(RK,β − RCM,β) − Dβ(RK,α − RCM,α)

]
+ 2mp

�D · 〈Ψ(0)
0 |

∑
i

(�ri − �RCM ) |Ψ(0)
0 〉δαβ

− mp Dα〈Ψ(0)
0 |

∑
i

(ri,β − RCM,β) |Ψ(0)
0 〉 − mp Dβ〈Ψ(0)

0 |
∑

i

(ri,α − RCM,α) |Ψ(0)
0 〉

+ mp

∑
K

ZK

(
�D · �D δαβ − DαDβ

)
− mpN

(
�D · �D δαβ − DαDβ

)
(6.36)

Recalling the definition of the electric dipole moment, Eq. (4.25), introducing the total
charge q of the molecule

q = e
∑
K

ZK − eN (6.37)

and using the definition of �D = �R′
CM − �RCM we arrive finally at the relation between

the rotational g tensor of two isotopologues of a molecule and its dipole moment

g′J,αβ I ′ββ = gJ,αβ Iββ (6.38)

− 2
mp

e
(�R′

CM − �RCM ) · �μ(�RCM ) δαβ

+
mp

e
(R′

CM,α − RCM,α) μβ(�RCM ) +
mp

e
(R′

CM,β − RCM,β) μα(�RCM )

+
mp

e
q
[
(�R′

CM − �RCM )2 δαβ − (R′
CM,α − RCM,α)(R′

CM,β − RCM,β)
]

This relation allows us to determine experimentally the electric dipole moment by
simply measuring the rotational g tensor of two isotopologues (Rosenblum et al., 1958).
However, one should keep in mind that the expressions for the dipole moment as well
as for the rotational g tensor, which were used in the derivation, are for a particular
nuclear geometry. The effects of vibrational motion of the nuclei, as discussed in
Chapter 8, are thus not included, while experimentally measured rotational g tensors
are always for a particular vibrational state. Equation (6.38) can thus only be applied
to measured rotational g tensors, if the changes due to the vibrational motion of the
nuclei are negligible or explicitly corrected for prior to application of Eq. (6.38).

6.4 Rotational g Tensor and Electric Quadrupole Moment

The rotational g tensor can also be related to the electric quadrupole moment tensor
Θ. We will in the following derive this relation for the xx diagonal component, which
according to Eq. (4.27) is given as
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Θxx(�RCM ) =
∑
K

ZKe

{
(�RK,z − �RCM,z)2 − 1

2
[(�RK,x − �RCM,x)2 + (�RK,y − �RCM,y)2]

}
+

1
e
〈Ψ(0)

0 | 1
2

[
μ̂2

x(�RCM ) + μ̂2
y(�RCM )

]
− μ̂2

z(�RCM ) |Ψ(0)
0 〉 (6.39)

where we have placed the otherwise arbitrary origin of the coordinate system on the
centre of nuclear masses, �RCM and made use of the definition of the electric dipole
moment operator, Eq. (4.30). Comparison with Eqs. (5.44) and (6.27) shows that
the nuclear contribution to the quadrupole moment tensor is expressible in terms of
components of the nuclear contribution to the rotational g tensor, gnuc

J,αβ , and the
electronic contribution in terms of components of the diamagnetic contribution to the
magnetizability tensor, ξdia

αβ (�RCM ), as

Θxx(�RCM ) =
e

mp

[
1
2
(
Ixx gnuc

xx,J + Iyy gnuc
yy,J

)− Izz gnuc
zz,J

]
− 4me

e

{
1
2

[
ξdia
xx (�RCM ) + ξdia

yy (�RCM )
]
− ξdia

zz (�RCM )
}

(6.40)

Recalling the relation between the magnetizability and the rotational g tensor,
Eq. (6.30), we can replace the diamagnetic and nuclear contributions by the total
magnetizability and rotational g tensor and obtain finally

Θxx(�RCM ) =
e

mp

[
1
2

(Ixx gxx,J + Iyy gyy,J ) − Izz gzz,J

]
− 4me

e

[
1
2

(ξxx + ξyy) − ξzz

]
(6.41)

Corresponding relations for the other diagonal components can be obtained by cyclic
permutations of the coordinate triple xyz to yzx or zxy. Since the quadrupole moment
of a polar molecule depends on the origin of the coordinate system it is important to
remember that the centre of nuclear masses is automatically chosen as the origin
in Eq. (6.41). Similar to the previously derived relations between the rotational g
tensor and other molecular properties, Eqs. (6.30) and (6.38), one has to take care of
vibrational corrections to the properties in Eq. (6.41), when it is applied to measured
rotational g tensors and magnetizabilities.

6.5 Molecular Rotation as Source for Magnetic Fields

We will now look at the effect of molecular rotation on the magnetic field at the
position R̂K of a magnetic nucleus K. According to Eq. (5.49) the current density of
the rigidly rotating charges will give rise to an additional contribution, a rotational
magnetic induction �Bj,J(�R)

�Bj,J,rig(�RK , �J) =
μ0

4π

∫
�r

ρ(�r)
(�r − �RK) ×

[
(I−1 �J) × (�r − �RK)

]
| �r − �RK |3 d�r (6.42)
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where the position vectors are now with respect to the nucleus of interest. Again, we
have assumed that the charges rotate rigidly and therefore added the superscript “rig”.
However, the coupling between the rotational motion of the nuclei and the motion of
the electrons, Eq. (6.3), will again lead to an additional induced contribution, �Bj,J,ind,
so that the total rotational magnetic induction at the position of nucleus K can be
written as

Bj,J
α (�RK , �J) = Bj,J,rig

α (�RK , �J) + Bj,J,ind
α (�RK , �J) (6.43)

Analogous to the rotational g tensor one defines a spin rotation tensor CK as the
proportionality tensor between the rotational magnetic induction �Bj,J(�RK , �J) and the
rotational angular momentum �J (Gunther-Mohr et al., 1954; Flygare, 1964)

Bj,J
α (�RK , �J) =

2π

μNgK

∑
β

CK
αβ Jβ =

2π

μNgK

∑
β

(CK,rig
αβ + CK,ind

αβ ) Jβ (6.44)

where μN = e�

2mp
and gK are the nuclear magneton and the nuclear g-factor of nucleus

K. The induced contribution to the spin-rotation tensor is again a consequence of
the breakdown of the Born–Oppenheimer approximation. The individual cartesian
components of the spin-rotation tensor can thus be defined as first derivatives4 of the
rotational magnetic induction at the position of nucleus K with respect to a component
of the rotational angular momentum �J of the nuclei

CK
αβ =

μNgK

2π

∂Bj,J
α (�RK ; �J)

∂Jβ

∣∣∣∣∣
| �J|=0

(6.45)

The rotational magnetic induction, �Bj,J(�RK , �J), at the position of a nucleus K
can be probed by the magnetic moment of this nucleus, �mK like any other magnetic
field within a molecule. The change in energy is then given by Eq. (5.50)

ΔE(�mK , �J) = −
∑
α

mK
α Bj,J

α (�RK ; �J) = − 2π

μNgK

∑
αβ

mK
α CK

αβ Jβ (6.46)

which allows us to define the components of the spin-rotation tensor alternatively
as second derivatives of this interaction energy with respect to a component of the
rotational angular momentum �J of the nuclei and a component of the nuclear magnetic
moment �mK :5

CK
αβ = −μNgK

2π

∂2E( �B, �mK)
∂mK

α ∂Jβ

∣∣∣∣∣
| �J|=|�mK |=0

(6.47)

where we should keep in mind that it is only the induced, Born-Oppenheimer break-
down contribution, which can be obtained in this way as derivative of the perturbed
electronic energy.

4 This definition is also given in the fourth column of Table B.3 of Appendix B.
5 This definition is also given in the last column of Table B.3 of Appendix B.
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Equation (6.46) explains also the name spin-rotation tensor for CK , because it is
the coupling tensor for the coupling of the rotational angular moment of the molecule
�J with the spin �IK of the nuclei {K}, which gives rise to an additional contribution
to the rotational energy. This is normally expressed in terms of an effective rotational
Hamiltonian as

Ĥrot =
Ĵ2

x

2Ixx
+

Ĵ2
y

2Iyy
+

Ĵ2
z

2Izz
− 2π

�

∑
K

�̂IKCK �̂J (6.48)

6.6 Quantum Mechanical Expression for the Spin Rotation Tensor

The derivation of the quantum mechanical expressions for the spin rotation tensor is
completely analogous to the one for the rotational g tensor. We will therefore just
discuss the final expressions. The rigid contribution again consists of a nuclear and an
electronic term

CK,rig
αβ =

μNgKe

2πIββ

μ0

4π

⎧⎨⎩∑
L�=K

ZL

[
(�RL − �RK)

(�RL − �RK)

| �RL − �RK |3 δαβ

−(RL,α − RK,α)
(RL,β − RK,β)

| �RL − �RK |3

]
(6.49)

− 〈Ψ(0)
0 |

N∑
i

[
(�ri − �RK)

(�ri − �RK)

| �ri − �RK |3 δαβ − (ri,α − RK,α)
(ri,β − RK,β)

| �ri − �RK |3

]
|Ψ(0)

0 〉
}

For the derivation of the induced contribution we will start from the defini-
tion as second derivative of the electronic energy, Eq. (6.47) in the presence of
a nuclear magnetic moment and the molecular rotation. The corresponding vector
potentials, Eqs. (5.55) and (6.5), lead to two first-order perturbation Hamiltoni-
ans, Eqs. (5.56) and (6.19), and a new second-order-order-perturbation Hamiltonian
[see Exercise 6.4]

Ĥ(2) =
∑
αβ

ÔmKJ
αβ (�RCM , �RK) mK

α (I−1 �J)β (6.50)

where the perturbation operator is given as

ÔmKJ
αβ (�RCM , �RK) =

N∑
i

ômKJ
i,αβ (�RCM , �RK) (6.51)

= −eμ0

4π

∑
i

[
(�ri − �RCM ) · (�ri − �RK)

| �ri − �RK |3 δαβ − (ri,α − RCM,α)
(ri,β − RK,β)

| �ri − �RK |3

]
As for the rotational g tensor this operator is very similar to the one for the diamagnetic
contribution to the nuclear magnetic shielding tensor but with one of the electronic
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position vectors defined with respect to the nuclear centre of masses �RCM and not
with respect to the arbitrary gauge origin �RGO.

Exercise 6.4 Derive the second-order perturbation Hamiltonian for the induced contribution
to the spin rotation tensor, Eq. (6.51), by inserting the vector potentials, (5.55) and (6.5),
in the general expression of the molecular Hamiltonian, Eq. (2.101), retaining the bilinear
second-order term.

The second-order perturbation theory expression for a component of the spin
rotation tensor then becomes

CK,ind
αβ = −μNgK

2π

∂2E( �B, �mK)
∂mK

α ∂Jβ

∣∣∣∣∣
| �J|=|�mK |=0

= −μNgK

2πIββ

⎡⎣∑
n�=0

(
〈Ψ(0)

0 |ÔOP
K,α |Ψ(0)

n 〉〈Ψ(0)
n | L̂β(�RCM ) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
〈Ψ(0)

0 | L̂β(�RCM ) |Ψ(0)
n 〉〈Ψ(0)

n |ÔOP
K,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

)

+ 〈Ψ(0)
0 |ÔmKJ

αβ (�RCM , �RK) |Ψ(0)
0 〉

]
(6.52)

The induced contribution consists again of a paramagnetic or sum-over-states con-
tribution and a diamagnetic or ground-state expectation value term, which can be
combined with the contribution from the rigid charges, Eq. (6.49),

CK
αβ = CK,para

αβ + CK,dia
αβ + CK.nuc

αβ (6.53)

= −μNgK

2πIββ

eμ0

4π

⎧⎪⎨⎪⎩ 4π

eμ0

∑
n�=0

〈Ψ(0)
0 |ÔOP

K,α |Ψ(0)
n 〉〈Ψ(0)

n |∑i

[
(�ri − �RCM ) × �pi

]
β
|Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
4π

eμ0

∑
n�=0

〈Ψ(0)
0 |∑i

[
(�ri − �RCM ) × �pi

]
β
|Ψ(0)

n 〉〈Ψ(0)
n |ÔOP

K,α |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

− 〈Ψ(0)
0 |

N∑
i

[
(�RK − �RCM )

(�ri − �RK)

| �ri − �RK |3 δαβ − (RK,α − RCM,α)
(ri,β − RK,β)

| �ri − �RK |3

]
|Ψ(0)

0 〉

−
∑
L�=K

ZL

[
(�RL − �RK)

(�RL − �RK)

| �RL − �RK |3 δαβ − (RL,α − RK,α)
(RL,β − RK,β)

| �RL − �RK |3

]⎫⎬⎭
These are again a paramagnetic term, a new diamagnetic-like term and a nuclear
contribution, where the first can be expressed as a linear response function according
to Eq. (3.114)
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CK,para
αβ =

μNgK

2πIββ

2me

e
〈〈 ÔOP

K,α ; m̂l
β(�RCM ) 〉〉ω=0 (6.54)

On the other hand, the new diamagnetic contribution can again be written as a
sum over all states [see Exercise 6.5] following the derivations in Section 5.9

〈Ψ(0)
0 |

N∑
i

[
(�RK − �RCM )

(�ri − �RK)

| �ri − �RK |3 δαβ − (RK,α − RCM,α)
(ri,β − RK,β)

| �ri − �RK |3

]
|Ψ(0)

0 〉

=
4π

eμ0

∑
n�=0

⎧⎪⎨⎪⎩
〈Ψ(0)

0 |ÔOP
K,α |Ψ(0)

n 〉〈Ψ(0)
n |∑i

[
(�RK − �RCM ) × �pi

]
β
|Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
〈Ψ(0)

0 |∑i

[
(�RK − �RCM ) × �pi

]
β
|Ψ(0)

n 〉〈Ψ(0)
n |ÔOP

K,α |Ψ(0)
0 〉

E
(0)
0 − E

(0)
n

⎫⎪⎬⎪⎭ (6.55)

Exercise 6.5 Show that the diamagnetic contribution to the spin rotation tensor can indeed
be reformulated as a sum-over-states, Eq. (6.55).

Hint: Start by showing that for a constant vector �D it holds that

�D · �̂Oμ(�RK) I3 − �D ⊗ �̂Oμ(�RK) =
ı

�

[
�̂Oμ(�RK) × �̂Op,

(
�D × �̂Or

)T
]

and then continue as in Section 5.9.

Combined with the paramagnetic term in Eq. (6.53) this reformulated diamagnetic
contribution replaces in the paramagnetic term the dependence of the orbital angular
momentum operator on the nuclear centre of mass RCM by a dependence on the
position of nucleus K. An alternative expression for the spin-rotation tensor is thus

CK
αβ = CK,nuc

αβ + CK,el
αβ

=
μNgK

2πIββ

eμ0

4π

∑
L�=K

ZL

[
(�RL − �RK)

(�RL − �RK)

| �RL − �RK |3 δαβ

−(RL,α − RK,α)
(RL,β − RK,β)

| �RL − �RK |3

]

− μNgK

2πIββ

∑
n�=0

[
〈Ψ(0)

0 |ÔOP
K,α |Ψ(0)

n 〉〈Ψ(0)
n | L̂β(�RK) |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+
〈Ψ(0)

0 | L̂β(�RK) |Ψ(0)
n 〉〈Ψ(0)

n |ÔOP
K,α |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

]
(6.56)



Non-Adiabatic Rotational and Vibrational Reduced Masses 141

which consists of a nuclear and an electronic sum-over-states contribution only. The
latter term can then also be expressed in terms of linear response functions according
to Eq. (3.114)

CK,el
αβ =

μNgK

2πIββ

2me

e
〈〈 ÔOP

K,α ; m̂l
β(�RK) 〉〉ω=0 (6.57)

The two alternative expressions for the spin rotation tensor in equations (6.53) and
(6.56) are equivalent, if we are dealing with the exact eigenstates of the unperturbed
Hamiltonian. However, in approximate calculations this does not always hold and
different values might be obtained from Eqs. (6.53) and (6.56).

Comparing Eq. (6.57) with the expression for the paramagnetic contribution to
the nuclear magnetic shielding tensor in Eq. (5.97) we can see that the latter is pro-
portional to the electronic contribution to the spin-rotation tensor, if one chooses the
position of nucleus K as the gauge origin for the nuclear magnetic shielding tensor

CK,el
αβ =

me

mp

gK�

2πIββ
σK,para

αβ (�RK) (6.58)

This relation is of great importance for NMR spectroscopy because it allows us to
determine the absolute shielding tensor σK by a combination of the measured spin
rotation tensor with its nuclear contribution, which can easily be calculated from the
nuclear coordinates, and a calculated diamagnetic contribution

σαβ = σdia
αβ (�RK) +

me

mp

gK�

2πIββ

(
CK

αβ − CK,nuc
αβ

)
(6.59)

This is the only possibility to determine experimental, or rather semi-experimental,
absolute shielding constants, as one can only obtain differences in the shielding con-
stants, i.e. chemical shifts, from NMR spectra as discussed in Section 5.7. However,
one has to be careful in applying this relation similar to the relation between the
rotational g tensor and the magnetizability, Eq. (6.30). First, one has to take care of
the vibrational corrections in the measured spin rotation tensors and secondly NMR
spectra are normally measured in the liquid phase so that solvent effects would have
to be considered as well. Nevertheless, it has been used to establish absolute shielding
scales for several light nuclei (Flygare, 1964; Hindermann and Cornwell, 1968; Jameson
et al., 1980; Vaara et al., 1998; Puzzarini et al., 2009).

6.7 Non-Adiabatic Rotational and Vibrational Reduced Masses

In the previous sections we have studied Born–Oppenheimer-breakdown corrections
to two molecular properties, the rotational g tensor and the nuclear spin-rotation
constant, i.e. the effect of the coupling between nuclear and electronic motion on the
electronic energies. In this and the following sections we will now turn our attention
to the effect of this coupling on the motion of the nuclei and will discuss Born–
Oppenheimer-breakdown corrections to the rotational and vibrational energies. For
the sake of a simpler presentation we will illustrate it for a diatomic molecule AB,
where there is only one vibrational mode that involves changes in the internuclear
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distance R = |�RA − �RB| and that we have placed along the z-axis. Corrections to the
Born-Oppenheimer expressions for vibration-rotation energies of diatomic molecules
have been derived several times (Herman and Asgharian, 1966; Watson, 1973; Bunker
and Moss, 1977; Watson, 1980; Herman and Ogilvie, 1998). Here we will follow mainly
the derivation by Bunker and Moss (Bunker and Moss, 1977). After separation of
the translation of the whole molecule and transformation to nuclear centre of mass
coordinates one can write the field-free Hamiltonian for the electronic ground state of
symmetry 1Σ+ of a diatomic molecule as

Ĥ(0)
nuc,e = Ĥ(0) + Ĥ ′ (6.60)

where the zeroth-order electronic Hamiltonian, Ĥ(0) is the Born–Oppenheimer mole-
cular field-free electronic Hamiltonian defined in Eq. (2.9) but now with all position
vectors defined relative to the centre of nuclear masses RCM . The remaining three
terms in the Hamiltonian,

Ĥ ′ = − �
2

2μn

∂2

∂R2
+

1
2μnR2

[
�̂J − �̂L(�RCM )

]2

+
1

2(mA + mB)

∑
i,j

�̂pi · �̂pj (6.61)

are the kinetic-energy operator for the vibrational motion of the two nuclei of masses
mA and mB , the kinetic-energy operator for the rotation of the nuclei about their
centre of mass and third a mass polarization term, where the nuclear reduced mass
μn is defined as

μn =
mAmB

mA + mB
(6.62)

The angular momentum operator for rotation of the whole molecule about the mole-

cular centre of mass is denoted �̂J , and �̂L(�RCM ) is the operator for total angular
momentum of the electrons, Eq. (5.23), but now with respect to the nuclear centre of
mass.

The eigenfunctions of the Hamiltonian in Eq. (6.60), the molecular wavefunctions
Φ(0)

k,vJ(R, θ, φ, {�ri}), are functions of both the electronic coordinates �ri, the internuclear
distance R and the two rotation angles θ and φ. Approximations to them are normally
obtained by an approximate separation of nuclear and electronic coordinates. In the
first step one solves the electronic Schrödinger equation, Eq. (2.10),

Ĥ(0) |Ψ(0)
k ({�ri};R)〉 = E

(0)
k (R) |Ψ(0)

k ({�ri};R)〉 (6.63)

which yields a complete set of electronic wavefunctions {Ψ(0)
k ({�ri};R)}. The molecular

wavefunctions can then be expanded in this complete set

Φ(0)
k,v,J (R, θ, φ, {�ri}) =

∑
k

Ψ(0)
k ({�ri};R) Θk,(0)

v,J (R, θ, φ) (6.64)

Similar to ESR and NMR spectroscopy, Sections 5.6 and 5.7, vibration-rotation spec-
tra are interpreted in terms of an effective Hamiltonian for vibration-rotational motion
of the nuclei. This Hamiltonian is in principle obtained by taking the expectation
value of the molecular Hamiltonian, Eq. (6.60), over the corresponding electronic
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state |Ψ(0)
0 ({�ri};R)〉. However, the situation is complicated by the fact that the elec-

tronic energies depend on the internuclear distance R, which is the coordinate of
the vibrational motion. Therefore, the Hamiltonian is first subjected to a unitary
transformation (Bunker and Moss, 1977)

ˆ̃H = e−ıλŜĤeıλŜ = ˆ̃H(0) + λ ˆ̃H(1) + λ2 ˆ̃H(2) + · · · (6.65)

in which the hermitian operator Ŝ is chosen such that the transformed Hamil-
tonian ˆ̃H does not couple different electronic wave functions through first order
[see Exercise 6.6], i.e.

〈Ψ(0)
0 ({�ri};R) | ˆ̃H(1) |Ψ(0)

n ({�ri};R)〉 = 0 (6.66)

Exercise 6.6 Derive the expression for the first Hamiltonian ˆ̃H(1) following the discussion
in Bunker and Moss (Bunker and Moss, 1977).

In zeroth order one then obtains the Born–Oppenheimer nuclear Hamiltonian,
Eq. (2.12), whereas going to second order gives an effective vibration-rotational Hamil-
tonian for the electronic ground state (Watson, 1973; Bunker and Moss, 1977; Watson,
1980; Herman and Ogilvie, 1998)

Ĥeff = −�
2

2
∂

∂R

1
μn

[1 + β(R)]
∂

∂R
+

1
2μnR2

[1 + α(R)] �̂J 2

+ E
(0)
0 (R) + Ead(R) + Enad(R) (6.67)

which includes four additional contributions: an adiabatic, Ead(R), and a non-
adiabatic, Enad(R), contribution to the potential energy and non-adiabatic correction
terms β(R) and α(R) for the nuclear reduced masses in the kinetic energy operators
for vibration and rotation. Adiabatic in this context means that this term is an expec-
tation value over the wavefunction of the considered electronic state, here the ground
state,

Ead(R) = − �
2

2μn
〈Ψ(0)

0 ({�ri};R) | ∂2

∂R2
|Ψ(0)

0 ({�ri};R)〉

+
1

2μnR2
〈Ψ(0)

0 ({�ri};R) |L2
x + L2

y |Ψ(0)
0 ({�ri};R)〉

+
1

2(mA + mB)
〈Ψ(0)

0 ({�ri};R) |
∑
i,j

�̂pi · �̂pj |Ψ(0)
0 ({�ri};R)〉 (6.68)

and thus comes from the first contribution to the second-order energy correction,
Eq. (3.33). The effect of these corrections is that the potential energy of the nuclei
does not only depend on the internuclear distance R but also on the relative momenta
of the nuclei. Non-adiabatic, on the other hand, implies that they are obtained from
the second contribution to the second-order energy-correction, Eq. (3.33), and involve
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a sum over other electronic, i.e. excited states. Both energy-correction terms, Ead(R)
and Enad(R), are not related to any molecular properties and will therefore not be
discussed further.

The corrections to the vibrational and rotational reduced nuclear masses, on the
other hand, can be related to molecular electromagnetic properties. They also involve
sum over excited states and are therefore non-adiabatic corrections

β(R) = − 2
μn

∑
n�=0

(
〈Ψ(0)

0 ({�ri};R) |−ı� ∂
∂R |Ψ(0)

n ({�ri};R)〉
)2

E
(0)
0 (R) − E

(0)
n (R)

(6.69)

α(R) =
2

μnR2

∑
n�=0

∣∣∣〈Ψ(0)
0 ({�ri};R)

∣∣∣ L̂⊥(�RCM )
∣∣∣Ψ(0)

n ({�ri};R)
〉∣∣∣2

E
(0)
0 (R) − E

(0)
n (R)

(6.70)

where we have assumed that the molecule is aligned along the z-axis and therefore
L̂x = L̂y, which we thus denote here and in the rest of this section as L̂⊥. Both terms
are second order in the coupling between the nuclear and the electronic motion. The
rotational correction, α(R), is due to the coupling between the nuclear and electronic
angular momentum, Eq. (6.3), whereas the vibrational correction, β(R) arises due to
a similar coupling between the linear momenta. They are thus a consequence of the
breakdown of the Born–Oppenheimer approximation and are therefore often also called
Born–Oppenheimer breakdown (BOB) parameters. Physically, they represent
the contribution of the electrons to the reduced masses or the lagging behind of the
electrons and one can therefore define effective reduced masses for vibration and for
rotation as

μeff
v,n =

μn

1 + β(R)
(6.71)

μeff
J,n =

μn

1 + α(R)
(6.72)

Recalling that −ı� ∂
∂R is a hermitian operator, i.e.

〈Ψ(0)
0 ({�ri};R) | −ı�

∂Ψ(0)
n ({�ri};R)

∂R
〉 = 〈Ψ(0)

n ({�ri};R) | −ı�
∂Ψ(0)

0 ({�ri};R)
∂R

〉∗

= −〈Ψ(0)
n ({�ri};R) | −ı�

∂Ψ(0)
0 ({�ri};R)

∂R
〉 (6.73)

where it was also used that the wavefunctions are real, we can rewrite the non-adiabatic
vibrational correction alternatively as

β(R) = −2�
2

μn

∑
n�=0

〈Ψ(0)
0 ({�ri};R) | ∂

∂R |Ψ(0)
n ({�ri};R)〉〈Ψ(0)

n ({�ri};R) | ∂
∂R |Ψ(0)

0 ({�ri};R)〉
E

(0)
0 (R) − E

(0)
n (R)

(6.74)
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In contrast to previous chapters we have until now in this section shown explicitly
that the electronic wavefunctions depend not only on the position vectors of the elec-
trons {�ri} but parametrically also on the internuclear distance R. In the following, we
will not indicate the obvious dependence on the electronic coordinates for the sake of
more compact formulas, but continue with showing the dependence of the electronic
wavefunctions and Born–Oppenheimer energies on the internuclear distance.

Like all sum-over-states expressions we can also express the non-adiabatic correc-
tions to the reduced masses as linear response functions

β(R) = − �
2

μn
〈〈 ∂

∂R
;

∂

∂R
〉〉ω=0 (6.75)

α(R) =
1

μnR2
〈〈 L̂⊥(�RCM ) ; L̂⊥(�RCM ) 〉〉ω=0 (6.76)

Comparison with Eq. (6.27) shows that the non-adiabatic correction to the rota-
tional reduced mass is proportional to the electronic contribution to the rotational g
factor gel

J,n(R)

α(R) =
me

mp
gel

J,n(R) (6.77)

Here and in the following, we refer to the xx- or yy-component of the rotational g
tensor of a diatomic molecule aligned along the z-axis as the rotational g factor gJ (R),
i.e.

gJ(R) ≡ gJ,xx(R) = gJ,yy(R) (6.78)

Furthermore, we have added a subscript n in order to indicate that the moment of
inertia tensor as well as the centre of mass is in terms of the nuclear masses. This
relation might at first sight be surprising, like the relations between the rotational g
tensor and the magnetizability, Eq. (6.29), or between the spin rotation tensor and
the nuclear magnetic shielding, Eq. (6.58), because α(R) is quadratic in the coupling
between rotation of the nuclei and electronic motion, Eq. (6.3), whereas the rotational
g tensor is bilinear in the coupling with rotation and the interaction with an external
magnetic induction. However, rotation and apparent magnetic fields are interrelated,
as discussed already in Section 6.1. A corresponding magnetic property for the non-
adiabatic vibrational correction β(R) does not exist, as molecules do not acquire
a magnetic moment during their vibrations. Nevertheless, Herman and coworkers
(Herman and Asgharian, 1966; Herman and Ogilvie, 1998) defined a corresponding
vibrational g factor, whose electronic contribution gel

v,n(R) is then proportional to
the non-adiabatic vibrational correction

β(R) =
me

mp
gel

v,n(R) (6.79)

The effective Hamiltonian for vibration-rotational motion of nuclei, Eq. (6.67),
thus contains effective reduced masses

μeff
v/J,n =

μn

1 + me

mp
gel

v/J,n(R)
(6.80)
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in which gel
v/J,n(R) is the electronic contribution to either a rotational or vibrational g

factor and μn is the reduced mass in terms of nuclear masses. However, sometimes it
is more convenient to express the effective Hamiltonian, Eq. (6.67), in terms of atomic
masses MA and MB . Such a change of masses can be achieved approximately, if one
assumes that the difference between an atomic and a nuclear mass is equal to the total
mass of the electrons of the given atom, i.e. ZAme or ZBme, where ZA and ZB are
the atomic numbers of the two atoms. The inverse of an atomic reduced mass μ can
then be expressed in terms of nuclear masses and atomic numbers as

1
μ

=
mA + ZAme + mB + ZBme

(mA + ZAme)(mB + ZBme)
=

mA + ZAme + mB + ZBme

mAmB

[
1 + me

(
ZA

mA
+ ZB

mB

)]
+ m2

eZAZB

(6.81)

Neglecting the term proportional to m2
e and expanding the remaining denominator as[

1 + me

(
ZA

mA
+

ZB

mB

)]−1

≈ 1 − me

(
ZA

mA
+

ZB

mB

)
(6.82)

leads to

1
μ
≈ mA + mB

mAmB

[
1 − me

ZAm2
B + ZBm2

A

(mA + mB)mAmB

]
− m2

e

ZA + ZB

mAmB

(
ZA

mA
+

ZB

mB

)
(6.83)

Neglecting once more the term proportional to m2
e one obtains an approximate relation

between the atomic and nuclear reduced masses

1
μ
≈ 1

μn

[
1 − me

ZAm2
B + ZBm2

A

(mA + mB)mAmB

]
(6.84)

The error made by this approximation is of order 10−7u or smaller (Bak et al., 2005).
Interestingly, this correction happens to be proportional to the nuclear contribution
to the rotational g factor of a diatomic molecule, Eq. (6.16), expressed in terms of
nuclear masses,

gnuc
n = mp

ZAm2
B + ZBm2

A

(mA + mB)mAmB
(6.85)

which is independent of internuclear distance. The change from nuclear to atomic
masses thus introduces a term that is equal to the nuclear contribution to the rotational
g factor of diatomic molecules.

Defining a “total vibrational g factor” of a diatomic molecule (Herman and
Asgharian, 1966; Herman and Ogilvie, 1998)

gv,n = gel
v,n + gnuc

n (6.86)

where the subscript n indicates again the use of nuclear masses, we can approxi-
mate the effective reduced masses in Eq. (6.80) by the atomic reduced mass μ and a
correction from the rotational or vibrational g factor as

1

μeff
v/J,n

≈ 1
μ

+
1
μn

me

mp
gv/J,n (6.87)
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However, the correction terms still depend on the nuclear masses. In addition to the
obvious factor 1

μn
the electronic contributions to the g factors, Eqs. (6.69) and (6.70),

include a second factor 1
μn

. Furthermore, the electronic contribution to the rotational
g factor, Eq. (6.70), depends also on the masses, because the angular momentum

operator �̂L(�RCM ) is defined with respect to the centre of nuclear masses. But we ignore
this dependence here, although this dependence on masses allows the determination
of the electric dipolar moment from the rotational g factors of isotopic variants as
discussed in Section 6.3. The mass dependence of the nuclear contribution to the g
factor, Eq. (6.85), on the other hand, is more complicated. However, the ratio gnuc

n

gnuc is
almost equal to μ

μn
, which implies that we can write

1

μeff
v/J,n

≈ 1
μ

[
1 +

(
μ

μn

)2
me

mp
gv/J

]
(6.88)

or

1

μeff
v/J,n

≈ 1
μ

(
1 +

me

mp
gv/J

)
(6.89)

if one accepts that
(

μ
μn

)2

≈ 1 to the accuracy normally required here (Bak et al.,
2005). The effective vibration-rotational Hamiltonian for the electronic ground state
of a diatomic molecule, using atomic masses, can then finally be written as

Ĥeff = −�
2

2
∂

∂R

1
μ

[
1 +

me

mp
gv(R)

]
∂

∂R
+

1
2μR2

[
1 +

me

mp
gJ(R)

]
�̂J 2

+ E
(0)
0 (R) + Ead(R) + Enad(R) (6.90)

where the rotational and vibrational g factor radial functions in terms of atomic masses
are defined as

gv/J(R) = gnuc + gel
v/J(R) (6.91)

gnuc =
mp

μR2

[
ZA(RA,z − RCM,z)2 + ZB(RB,z − RCM,z)2

]
= mp

ZAM2
B + ZBM2

A

(MA + MB)MAMB
(6.92)

gel
v (R) = −mp

me

2�
2

μ

∑
n�=0

〈Ψ(0)
0 (R) | ∂

∂R |Ψ(0)
n (R)〉〈Ψ(0)

n (R) | ∂
∂R |Ψ(0)

0 (R)〉
E

(0)
0 (R) − E

(0)
n (R)

(6.93)

= −mp

me

�
2

μ
〈〈 ∂

∂R
;

∂

∂R
〉〉ω=0 (6.94)
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gel
J (R) =

mp

me

2
μR2

∑
n�=0

∣∣∣〈Ψ(0)
0 (R) | L̂⊥(�RCM ) |Ψ(0)

n (R)〉
∣∣∣2

E
(0)
0 (R) − E

(0)
n (R)

(6.95)

=
mp

me

1
μR2

〈〈 L̂⊥(�RCM ) ; L̂⊥(�RCM ) 〉〉ω=0 (6.96)

6.8 Partitioning of the g Factors

In order to fit vibration-rotation spectra of several isotopologues of diatomic molecules
to the effective Hamiltonian, Eq. (6.90), one normally partitions the corrections to the
reduced masses, i.e. the g factor radial functions gJ(R) and gv(R), into two isotopically
independent terms that are associated with one or the other nucleus

gJ(R) =
μ

MA
gA

J (R) +
μ

MB
gB

J (R) (6.97)

gv(R) =
μ

MA
gA

v (R) +
μ

MB
gB

v (R) (6.98)

Physically, these isotopically independent g factors correspond to the hypothetical
situations, where the molecule rotates around one of the atoms, i.e. the axis of rotation
goes through this atom, or where only one of the atoms moves during the vibration.
Mathematically they are obtained (Watson, 1973, 1980; Sauer, 1998; Kjær and Sauer,
2009) by choosing the atoms, i.e. �RA or �RB, instead of the centre of mass �RCM as origin
in the expression for the rotational g factor and by replacing in the expression for the
vibrational g factor the canonical momentum operator for the vibration P̂R = −ı� ∂

∂R
with the following two isotopically invariant operators

P̂zA = P̂R +
(RB,z − RCM,z)

R
Ôp

z (6.99)

P̂zB = P̂R +
(RA,z − RCM,z)

R
Ôp

z (6.100)

where �̂Op is the total canonical momentum operator of the electrons, whose cartesian
components are defined in Eq. (3.65), and the molecule AB is placed along the z-axis.
The isotopically invariant contributions to the g factors are thus given as

gA
J (R) =

mp

μ
ZA +

mp

meμR2
〈〈 L̂x(�RB) ; L̂x(�RB) 〉〉ω=0 (6.101)

gB
J (R) =

mp

μ
ZB +

mp

meμR2
〈〈 L̂x(�RA) ; L̂x(�RA) 〉〉ω=0 (6.102)

gA
v (R) =

mp

μ
ZA +

mp

meμ
〈〈 P̂zA ; P̂zA 〉〉ω=0 (6.103)

gB
v (R) =

mp

μ
ZB +

mp

meμ
〈〈 P̂zB ; P̂zB 〉〉ω=0 (6.104)

where we have chosen L̂⊥ = L̂x here and in the rest of this section.
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In the following, we are going to prove Eqs. (6.97) and (6.98) following the deriva-
tions in Section 6.3 and will derive other useful relations involving the isotopically
invariant g factors. In order to do so we will reformulate gB

J (R) and gB
v (R) by adding

and subtracting �RCM in Eq. (6.102) and inserting Eq. (6.100) in Eq. (6.104), leading
to

gB
J (R) =

mp

μ
ZB +

mp

meμR2
〈〈 L̂x(�RCM ) ; L̂x(�RCM ) 〉〉ω=0

− mp

meμR2
(RCM,z − RA,z)

(
〈〈 Ôp

y ; L̂x(�RCM ) 〉〉ω=0 + 〈〈 L̂x(�RCM ) ; Ôp
y 〉〉ω=0

)
+

mp

meμR2
(RCM,z − RA,z)2〈〈 Ôp

y ; Ôp
y 〉〉ω=0 (6.105)

and

gB
v (R) =

mp

μ
ZB +

mp

meμ
〈〈 P̂R ; P̂R 〉〉ω=0

− mp

meμR
(RCM,z − RA,z)

(
〈〈 Ôp

z ; P̂R 〉〉ω=0 + 〈〈 P̂R ; Ôp
z 〉〉ω=0

)
+

mp

meμR2
(RCM,z − RA,z)2〈〈 Ôp

z ; Ôp
z 〉〉ω=0 (6.106)

The second terms are the electronic contributions to the rotational and vibrational g
factors, whereas the last three terms are static response functions involving the total

electronic momentum operator �̂Op and another operator �̂O. Using Eqs. (3.64) and
(3.141) we can again replace them by ground-state expectation values of commutators

of the operator �̂O and the sum of the position operators of the electrons, �̂Or,

gB
J (R) = gJ(R) +

mp

μ
ZB − mp

μR2

[
ZA(RA,z − RCM,z)2 + ZB(RB,z − RCM,z)2

]
+

2mp

μR2
(RCM,z − RA,z)

1
ı�
〈Ψ(0)

0 | [Ôr
y, L̂x(�RCM )] |Ψ(0)

0 〉

− mp

μR2
(RCM,z − RA,z)2

1
ı�
〈Ψ(0)

0 | [Ôr
y, Ôp

y ] |Ψ(0)
0 〉 (6.107)

and

gB
v (R) = gv(R) +

mp

μ
ZB − mp

μR2

[
ZA (RA,z − RCM,z)

2 + ZB (RB,z − RCM,z)
2
]

− 2mp

μR
(RCM,z − RA,z)

(
〈 ∂

∂R
Ψ0 |

∑
i

r̂i,z |Ψ0〉 + 〈Ψ0 |
∑

i

r̂i,z | ∂

∂R
Ψ0〉

)

− mp

μR2
(RCM,z − RA,z)2

1
ı�
〈Ψ(0)

0 | [Ôr
y, Ôp

y ] |Ψ(0)
0 〉 (6.108)
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Evaluating the commutators, (6.34) and (6.35), we can rewrite this as

gB
J (R) = gJ(R) +

mp

μ

[
ZB − ZA

(
RA,z − RCM,z

R

)2

− ZB

(
RB,z − RCM,z

R

)2
]

− 2mp

μR2
(RCM,z − RA,z)〈Ψ(0)

0 |
∑

i

(ri,z − RCM,z) |Ψ(0)
0 〉

− mp

μR2
(RCM,z − RA,z)2N (6.109)

and

gB
v (R) = gv(R) +

mp

μ

[
ZB − ZA

(
RA,z − RCM,z

R

)2

− ZB

(
RB,z − RCM,z

R

)2
]

− 2mp

μR
(RCM,z − RA,z)

∂

∂R
〈Ψ0 |Ôr

z |Ψ0〉

− mp

μR2
(RCM,z − RA,z)2N (6.110)

Recalling that according to Eq. (4.25) the z-component of the electric dipole
moment μz(�RCM , R) for the internuclear distance R and with the origin of the
coordinate system at the centre of mass, is given as

μz(�RCM , R) = e [ZA(RA,z − RCM,z) + ZB(RB,z − RCM,z)] − e〈0 |
∑

i

(ri,z − RCM,z) |0〉

(6.111)

and that the total charge q of the molecule was defined in Eq. (6.37) we can write

gB
J (R) = gJ(R)− 2mp

eμR
μz(�RCM , R)

RA,z − RCM,z

R
+

mp

μ
q

(
RA,z − RCM,z

R

)2

(6.112)

and

gB
v (R) = gv(R) − 2mp

eμ

∂

∂R
μz(�RCM , R)

RA,z − RCM,z

R
+

mp

μ
q

(
RA,z − RCM,z

R

)2

(6.113)

Choosing the coordinate system such that RA,z − RCM,z = −R μ/MA, which
implies for a molecule of polarity +AB− that μz < 0, we can finally write

gB
J (R) = gJ(R) +

2mp

eR

μz(�RCM , R)
MA

+ mpq
μ

M2
A

(6.114)

and

gB
v (R) = gv(R) +

2mp

eMA

∂

∂R
μz(�RCM , R) + mpq

μ

M2
A

(6.115)
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The analogous derivations for nucleus A would then give

gA
J (R) = gJ(R) − 2mp

eR

μz(�RCM , R)
MB

+ mpq
μ

M2
B

(6.116)

and

gA
v (R) = gv(R) − 2mp

eMB

∂

∂R
μz(�RCM , R) + mpq

μ

M2
B

(6.117)

For a neutral diatomic molecule, i.e. q = 0, we can then trivially prove the partitioning
of the rotational and vibrational g factors in Eqs. (6.97) and (6.98) by inserting Eqs.
(6.114)–(6.117).

On the other hand, simply averaging the two isotopically invariant g factors gives
another partitioning of the g factors

gJ (R) = girr
J (R) − mp

eR
μz(�RCM , R)

(
1

MA
− 1

MB

)
− mp

2
q

(
μ

M2
A

+
μ

M2
B

)
(6.118)

and

gv(R) = girr
v (R)− mp

e

∂

∂R
μz(�RCM , R)

(
1

MA
− 1

MB

)
− mp

2
q

(
μ

M2
A

+
μ

M2
B

)
(6.119)

where two “irreducible” non-adiabatic contributions to the g factors were defined as

girr
J (R) =

1
2
[
gB

J (R) + gA
J (R)

]
=

mp

2μ

(
ZA + ZB +

1
meR2

〈〈 L̂x(�RA) ; L̂x(�RA) 〉〉ω=0

+
1

meR2
〈〈 L̂x(�RB) ; L̂x(�RB) 〉〉ω=0

)
(6.120)

and

girr
v (R) =

1
2
[
gB

v (R) + gA
v (R)

]
=

mp

2μ

[
ZA + ZB +

1
me

(
〈〈 P̂zA ; P̂zA 〉〉ω=0 + 〈〈 P̂zB ; P̂zB 〉〉ω=0

)]
(6.121)

These relations give some physical insight in the g factors (Sauer, 1998; Kjær and
Sauer, 2009). In addition to a contribution from the overall charge of the molecule
there are two contributions: one due to the electric dipole moment or gradient of
the dipole moment with respect to the internuclear distance and one irreducible non-
adiabatic contribution consisting of the average of the isotopically invariant g factors.
Interestingly, there seems to be a parallelism to the gross selection rules for rotation
and vibration spectra, where a permanent electric dipole moment or a change in the
electric dipole moment under vibration is required.
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Finally, by subtracting the isotopically invariant g factors we can obtain expressions
for the electric dipole moment

μz(R) =
eRμ

2mp

[
gB

J (R) − gA
J (R)

]
(6.122)

and the gradient of the electric dipole moment with respect to the internuclear distance
R

∂

∂R
μz(�RCM , R) =

eμ

2mp

[
gB

v (R) − gA
v (R)

]
(6.123)

From a computational point of view these expressions are not interesting, but they
offer an alternative route to the experimental determination of the electric dipole
moment and its gradient (Ogilvie and Liao, 1994). The analysis of vibration-rotation
spectra recorded without external electric fields via a fit to the effective Hamiltonian
in Eq. (6.90) will produce values for the isotopically invariant g factors that can then
be used in equations Eqs. (6.122) and (6.123) for this purpose.

6.9 Further Reading

Rotational g Tensor

J. F. Ogilvie, J. Oddershede and S. P. A. Sauer, The Rotational g Factor of Diatomic
Molecules in State 1Σ+ or 0+, Adv. Chem. Phys. 111, 475–536 (2000).

W. H. Flygare, Molecular Structure and Dynamics, Prentice-Hall, Englewood Cliffs
(1978): Chapter 6.8.

Spin Rotation Tensor

W. H. Flygare, Molecular Structure and Dynamics, Prentice-Hall, Englewood Cliffs
(1978): Chapter 6.9.

Effective Vibration-Rotational Hamiltonian

J. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cam-
bridge University Press, Cambridge (2003): Chapter 7.



7

Frequency-Dependent and
Spectral Properties

The discussion to this point has been limited to static electric and magnetic fields.
However, molecules are often exposed to time-dependent fields, as for example in the
interaction with electromagnetic radiation. Some of the properties introduced in this
chapter, like the frequency-dependent polarizability are generalizations to time- or
frequency-dependent fields of the properties introduced in Chapters 4 and 5. Other
spectral properties like the vertical excitation energies, transition dipole moments and
properties derived from them, are a completely different type of property as they
cannot be defined as derivatives of the ground-state energy.

7.1 Time-Dependent Fields

Solving Maxwell’s equations [see Exercise 7.1] for the vector potential of a plane or
linear polarized electromagnetic wave oscillating with angular frequency ω gives

�A(�r, t) = �Aωeı(�k·�r−ωt) + �Aω∗e−ı(�k·�r−ωt) (7.1)

where the wave or propagation vector �k points in the direction of the propagation of
the wave. It has the length

|�k| = nr(ω)
ω

c
=

2πnr(ω)
λ

(7.2)

where c is the speed of light, λ the wavelength of the electromagnetic wave in vacuum
and nr(ω) the refractive index of the medium through which the wave propagates. The
refractive index is the ratio of the speed of electromagnetic radiation in vacuum to the
speed in a medium. The dependence of the refractive index on the frequency is called
dispersion. In vacuum, the refractive index is therefore equal to 1. The amplitude �Aω

is in principle a complex vector perpendicular to the propagation vector �k, but can be
chosen to be purely imaginary by an appropriate choice of origin of the time variable.
With this choice the time dependence of the vector potential reduces to

�A(�r, t) = ı2 �Aω sin(�k · �r − ωt) (7.3)

showing that the vector potential is then real. Using Eqs. (2.33) and (2.34) we can
obtain expressions for the electric and magnetic fields of this plane monochromatic
electromagnetic wave
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�E(�r, t) = �Eω cos(�k · �r − ωt) (7.4)

�B(�r, t) = �Bω cos(�k · �r − ωt) (7.5)

where the amplitude �Eω = ı2ω �Aω of the electric field is also perpendicular to the
propagation vector, while the amplitude �Bω = ı2�k × �Aω of the magnetic field is per-
pendicular to both the propagation vector �k and the amplitude of the vector potential
and thus to the electric field.

Exercise 7.1 Show that the plane-polarized electromagnetic wave in Eq. (7.1) is a solution
to Maxwell’s equation for the vector potential in vacuum Eq. (2.129).

A general pulse of coherent polychromatic electromagnetic radiation1 can be
described as superposition of monochromatic plane waves. The vector potential and
fields of such a pulse are then given as

�A(�r, t) =
∫ ∞

0

ı2 �Aω sin(�k · �r − ωt)dω =
∫ ∞

0

�Aω
[
eı(�k·�r−ωt) − e−ı(�k·�r−ωt)

]
dω (7.6)

�E(�r, t) =
∫ ∞

0

�Eω cos(�k · �r − ωt)dω =
1
2

∫ ∞

0

�Eω
[
eı(�k·�r−ωt) + e−ı(�k·�r−ωt)

]
dω (7.7)

�B(�r, t) =
∫ ∞

0

�Bω cos(�k · �r − ωt)dω =
1
2

∫ ∞

0

�Bω
[
eı(�k·�r−ωt) + e−ı(�k·�r−ωt)

]
dω (7.8)

Typical molecules have diameters of 1 to 100 Å, which is thus the order of magni-
tude of the maximal length of the vector �r in the expression for the vector potential
and fields. The propagation vector �k, on the other hand, has length 2π

λ , meaning that
the product �k ·�r is much smaller than 1 for all types of electromagnetic radiation with
longer wavelengths than X-rays. For these waves we can expand eı�k·�r in a power series

eı�k·�r = 1 + ı�k · �r +
1
2!

(ı�k · �r)2 + · · · ≈ 1 (7.9)

and approximate it by the first term, 1. This is the same as setting �k = �0 and implies
that we ignore the spatial variation of the vector potential across a molecule. We can
therefore write for the vector potential

�A(t) =
∫ ∞

0

2
ı

�Aω sin(ωt)dω =
∫ ∞

0

�Aω
(
e−ıωt − eıωt

)
dω (7.10)

and for the electric field

�E(t) =
∫ ∞

0

�Eω cos(ωt)dω =
1
2

∫ ∞

0

�Eω
(
e−ıωt + eıωt

)
dω (7.11)

1 For incoherent radiation one would have to introduce a phase that depends on the frequency of
the radiation.
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The magnetic induction �B(t), however, vanishes because it is the curl of the vector
potential according to Eq. (2.34), which means that the amplitude �Bω = ı2�k × �Aω

is zero for �k = �0. In this long-wavelength approximation with this purely time-
dependent vector potential we can then choose the velocity or length gauge for the
vector as discussed at the end of Section 2.9. Because the length gauge implies
that the perturbation Hamiltonian becomes −�̂μ · �E(t) and thus involves the electric
dipole moment operator, the long-wavelength approximation is often called the dipole
approximation.

Retaining also the second term ı�k · �r in the expansion of eı�k·�r leads to a spatially
non-uniform vector potential and electric field, as well as to a non-vanishing magnetic
induction and to an interaction with molecules via the magnetic dipole and electric
quadrupole operators.

Plane or linear polarization of radiation, given in Eqs. (7.4) and (7.5), is not the
only possibility. One alternative is circular polarization in the form of left-circularly
polarized and right-circularly polarized waves whose electric-field vectors are
given as

�EL(�r, t) = Eω

[
�ei cos

(
ωnL

r (ω)
c

�ek · �r − ωt

)
+ �ej sin

(
ωnL

r (ω)
c

�ek · �r − ωt

)]
(7.12)

�ER(�r, t) = Eω

[
�ei cos

(
ωnR

r (ω)
c

�ek · �r − ωt

)
− �ej sin

(
ωnR

r (ω)
c

�ek · �r − ωt

)]
(7.13)

The two unit vectors �ei and �ej are perpendicular to each other and to the direction
of the propagation, i.e. �ei ⊥ �ek, �ej ⊥ �ek and �ei ⊥ �ej , where �ek is a unit vector in the
direction of �k. The associated magnetic induction vectors are

�BL(�r, t) = Bω

[
−�ei sin

(
ωnL

r (ω)
c

�ek · �r − ωt

)
− �ej cos

(
ωnL

r (ω)
c

�ek · �r − ωt

)]
(7.14)

�BR(�r, t) = Bω

[
�ei sin

(
ωnR

r (ω)
c

�ek · �r − ωt

)
− �ej cos

(
ωnR

r (ω)
c

�ek · �r − ωt

)]
(7.15)

For right-circularly polarized radiation the electric field vector �ER rotates clockwise
when looking into the oncoming wave, i.e. at the source of the radiation. Circular
polarization of photons corresponds to the two possible projections of the photon’s
spin on the direction of propagation, Sz, called helicity. Right-circularly polarized
photons have ms = −1 and thus Sz = −�, while left-circularly polarized photons have
ms = 1. Plane-polarized radiation can then be expressed as a superposition of left-
and right-circulary polarized waves with the same refractive index, nr(ω) = nR

r (ω) =
nL

r (ω), i.e.

�E(�r, t) = �EL(�r, t) + �ER(�r, t) = 2Eω�ei cos
(

ωnr(ω)
c

�ek · �r − ωt

)
(7.16)
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7.2 Frequency-Dependent Polarizability

In the presence of a pulse of coherent polychromatic electromagnetic radiation and
making the dipole approximation we can generalize the expansion in Eq. (4.44) for a
component of the now time-dependent electric dipole moment to (Buckingham, 1967)

μα(�E(t)) = μα + μind
α (�E(t)) (7.17)

μα(�E(t)) = μα +
∑

β

∫ ∞

0

ααβ(−ω1;ω1)Eω1
β cos(ω1t) dω1 (7.18)

+
1
2

∑
βγ

∫ ∞

0

∫ ∞

0

βαβγ(−ω1 − ω2;ω1, ω2)Eω1
β cos(ω1t)Eω2

γ cos(ω2t) dω1 dω2

+ . . .

where ααβ(−ω1;ω1) and βαβγ(−ω1 − ω2;ω1, ω2) are components of the frequency-
dependent electric dipole polarizability, also called the dynamic electric
dipole polarizability and first hyperpolarizability tensors, respectively.

The isotropic frequency-dependent electric dipole polarizability α(−ω1;ω1) is the
trace of the polarizability tensor

α(−ω1;ω1) =
1
3

∑
α

ααα(−ω1;ω1) (7.19)

It is the molecular property underlying the refractive index nr(ω1) of a macroscopic
sample with number density N . For a non-polar molecule, i.e. without permanent
electric dipole moment, the relation between them can be shown to be2

nr(ω1) =

√√√√1 + 2α(−ω1;ω1) N
3ε0

1 − α(−ω1;ω1) N
3ε0

≈ 1 + α(−ω1;ω1)
N
2ε0

(7.20)

In order to derive a quantum mechanical expression for the frequency-dependent
polarizability we can make use of time-dependent response theory as described in
Section 3.11. We need therefore to evaluate the time-dependent expectation value
of the electric dipole operator 〈Ψ0(�E(t)) | μ̂α | Ψ0(�E(t))〉 in the presence of a time-
dependent electric field, Eq. (7.11). Employing the length gauge, Eqs. (2.122) – (2.124),
which implies that the time-dependent electric field enters the Hamiltonian via the
scalar potential in Eq. (2.105), the perturbation Hamilton operator for the periodic
and spatially uniform electric field of the electromagnetic wave is given as

Ĥ(1)(t) = −
∑

β

ÔE
β Eβ(t)

= −
∑

β

μ̂β

∫ ∞

0

Eω1
β

2
(
e−ıω1t + eıω1t

)
dω1 = −

∑
β

μ̂β

∫ ∞

−∞

Eω1
β

2
e−ıω1tdω1 (7.21)

2 References to the derivation can be found in the Further Reading section.
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Comparison with Eq. (3.78) shows that the Fourier components of the operator and
the field are given as

Ôω
β··· = − μ̂β (7.22)

Fβ···(ω) = Eω1
β (7.23)

Insertion of these operators in Eq. (3.109) yields for the expansion of the time-
dependent dipole moment

〈Ψ0(�E(t)) | μ̂α |Ψ0(�E(t))〉

= 〈Ψ(0)
0 | μ̂α |Ψ(0)

0 〉 +
∫ ∞

−∞

∑
β

〈〈 μ̂α ; −μ̂β 〉〉ω1

Eω1
β

2
e−ıω1t dω1 + · · · (7.24)

= 〈Ψ(0)
0 | μ̂α |Ψ(0)

0 〉 −
∑

β

∫ ∞

0

〈〈 μ̂α ; μ̂β 〉〉ω1Eω1
β cos (ω1t) dω1 + · · · (7.25)

Comparing this with the classical expansion of a time-dependent dipole moment in
Eq. (7.18) we can identify the frequency-dependent polarizability tensor as a linear
response function or polarization propagator

ααβ(−ω1;ω1) = −〈〈 μ̂α ; μ̂β 〉〉ω1 (7.26)

Using the spectral representation of the polarization propagator, Eq. (3.110), we can
alternatively write

ααβ(−ω1;ω1) = −
∑
n�=0

〈Ψ(0)
0 | μ̂α |Ψ(0)

n 〉〈Ψ(0)
n | μ̂β |Ψ(0)

0 〉
�ω1 + E

(0)
0 − E

(0)
n

−
∑
n�=0

〈Ψ(0)
0 | μ̂β |Ψ(0)

n 〉〈Ψ(0)
n | μ̂α |Ψ(0)

0 〉
−�ω1 + E

(0)
0 − E

(0)
n

(7.27)

= 2
∑
n�=0

(E(0)
n − E

(0)
0 )〈Ψ(0)

0 | μ̂α |Ψ(0)
n 〉〈Ψ(0)

n | μ̂β |Ψ(0)
0 〉

(E(0)
n − E

(0)
0 )2 − �2ω2

1

(7.28)

which for ω1 = 0, i.e. for the static polarizability, reduces to the expression obtained
by static response theory or Rayleigh–Schrödinger perturbation theory in Section 4.5.

7.3 Optical Rotation

In Section 7.1 we discussed that plane or linear polarized radiation can be expressed
as the superposition of left-circularly polarized �EL and right-circularly polarized waves
�ER with the same refractive index. If the refractive indices for left- and right-circularly
polarized radiation, however, differ by

Δnr(ω1) = nL
r (ω1) − nR

r (ω1) (7.29)
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the superposition will still be a plane-polarized wave

�E(�r, t) = �EL(�r, t) + �ER(�r, t)

= 2Eω1 cos

(
ω1

[
nL

r (ω1) + nR
r (ω1)

]
2c

�ek · �r − ω1t

)

×
[
�ei cos

(
ω1Δnr(ω1)

2c
�ek · �r

)
+ �ej sin

(
ω1Δnr(ω1)

2c
�ek · �r

)]
(7.30)

but with a plane of polarization that is rotated by an angle

Δθ =
ω1Δnr(ω1)

2c
�ek · �r (7.31)

compared to the original wave, Eq. (7.16). This phenomenon is called optical rota-
tion and a medium that has the property that left- and right-circularly polarized
waves propagate with different velocity, i.e. that their refractive indices differ, is called
a circularly birefringent medium.3 Chiral molecules have this property, because
they experience the spatial variation of the electric field vector of left- and right-
circularly polarized waves as being of the same or opposite handedness as their own
structure.

In the derivation of the molecular properties, which give rise to this effect, we have
to take the spatial variation of the electric field vector into account and can thus not
make the dipole approximation, contrary to the last section. This implies that we
have to include a contribution from the interaction with the curl of the time-dependent
electric-field, �∇× �E(�r, t), to the expansion of the induced dipole moment of a molecule
in Eq. (7.18). However, Maxwell’s third equation, Eq. (2.37) relates the curl of the
electric-field vector to the time derivative ∂ �B(�r, t)/∂t of the magnetic induction and
we can thus alternatively replace the spatial variation and expand the induced dipole
moment instead in the electric field and the time derivative of the magnetic induction
of a monochromatic wave (Buckingham, 1967) as

μL/R
α (�EL/R(t), �BL/R(t))

= μα + μL/R,ind
α (�EL/R(t), �BL/R(t)) (7.32)

= μα +
∑

β

ααβ(−ω1;ω1) EL/R
β (t) +

∑
β

1
ω1

G′
αβ(−ω1;ω1)

∂ �B L/R
β (t)
∂t

+ . . . (7.33)

where G′(−ω1;ω1) is the mixed frequency-dependent electric dipole magnetic
dipole polarizability tensor, whose isotropic value G′(−ω1;ω1) is again the trace
of the tensor

G′(−ω1;ω1) =
1
3

∑
α

G′
αα(−ω1;ω1) (7.34)

3 Birefringence is in general the property that the refractive indices of radiation along two
directions in a medium differ.
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Extending the relation between the refractive index and the polarizability, Eq. (7.20),
the refractive indices of a macroscopic sample with number density N for left- and
right-circularly polarized waves become

nL/R
r (ω1) ≈ 1 + α(−ω1;ω1)

N
2ε0

∓ G′(−ω1;ω1)
N

2cε0
(7.35)

and we can finally express the difference in refractive indices

Δnr(ω1) = −G′(−ω1;ω1)
N
cε0

(7.36)

and the angle of rotation

Δθ = −ω1 G′(−ω1;ω1)N
2ε0c2

�ek · �r (7.37)

in terms of the molecular mixed frequency-dependent electric dipole magnetic dipole
polarizability G′(−ω1;ω1).

In order to derive a quantum mechanical expression for the mixed dynamic electric
dipole magnetic dipole polarizability tensor we have to evaluate the time-dependent
expectation value of the electric dipole operator 〈Ψ0(t) | μ̂α |Ψ0(t)〉 in the presence of
the time-dependent magnetic induction of left- or right-circularly polarized radiation

�BL/R(t) = Bω1 [∓�ei sin(ω1t) − �ej cos(ω1t)] (7.38)

= ±�ei
Bω1

2ı

(
e−ıω1t − eıω1t

)− �ej
Bω1

2
(
e−ıω1t + eıω1t

)
(7.39)

For a closed-shell molecule the perturbation Hamiltonian operator then becomes to
first order

Ĥ
(1)
L/R(t) = − �̂OlB · �BL/R(t)

= ∓ �̂ml · �ei
Bω1

2ı

(
e−ıω1t − eıω1t

)
+ �̂ml · �ej

Bω1

2
(
e−ıω1t + eıω1t

)
(7.40)

Comparison with Eq. (3.78) shows that the Fourier components of the operator and
the field are given as

�̂Oω
1 = ∓ �̂ml · �ei (7.41)

F1(ω1) =
Bω1

2ı
[δ(ω − ω1) − δ(ω + ω1)] (7.42)

�̂Oω
2 = �̂ml · �ej (7.43)

F2(ω1) =
Bω1

2
[δ(ω − ω1) + δ(ω + ω1)] (7.44)
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Insertion of these operators in Eq. (3.109) yields for the expansion of the time-
dependent dipole moment

〈Ψ0(t) | μ̂α |Ψ0(t)〉L/R

= 〈Ψ(0)
0 | μ̂α |Ψ(0)

0 〉 +
(
〈〈 μ̂α ; ∓ �̂ml · �ei 〉〉ω1 e−ıω1t − 〈〈 μ̂α ; ∓ �̂ml · �ei 〉〉−ω1 eıω1t

) Bω1

2ı

+
(
〈〈 μ̂α ; �̂ml · �ej 〉〉ω1 e−ıω1t + 〈〈 μ̂α ; �̂ml · �ej 〉〉−ω1 eıω1t

) Bω1

2
+ · · · (7.45)

The electric dipole moment operator �̂μ is a hermitian and real operator, whereas �̂ml

is hermitian and purely imaginary. The linear response function of such operators is
thus purely imaginary and according to Eq. (3.113) antisymmetric with respect to a
change in the sign of the frequency ω1. We can therefore rewrite the expansion as

〈Ψ0(t) | μ̂α |Ψ0(t)〉L/R

= 〈Ψ(0)
0 | μ̂α |Ψ(0)

0 〉 ∓ 〈〈 μ̂α ; �̂ml · �ei 〉〉ω1

(
e−ıω1t + eıω1t

) Bω1

2ı

+ 〈〈 μ̂α ; �̂ml · �ej 〉〉ω1

(
e−ıω1t − eıω1t

) Bω1

2
+ · · · (7.46)

= 〈Ψ(0)
0 | μ̂α |Ψ(0)

0 〉 ± 〈〈 μ̂α ; �̂ml · �ei 〉〉ω1 cos(ω1t) ı Bω1

− 〈〈 μ̂α ; �̂ml · �ej 〉〉ω1 sin(ω1t) ı Bω1 + · · · (7.47)

Using the fact that the time derivative of the magnetic induction in Eq. (7.39) becomes

∂ �BL/R(t)
∂t

= ω1Bω1 [∓�ei cos(ω1t) + �ej sin(ω1t)] (7.48)

we finally obtain for the expansion of the time-dependent dipole moment

〈Ψ0(t) | μ̂α |Ψ0(t)〉L/R = 〈Ψ(0)
0 | μ̂α |Ψ(0)

0 〉− ı

ω1
〈〈 μ̂α ; �̂ml 〉〉ω1 ·

∂ �BL/R(t)
∂t

+ · · · (7.49)

Comparing this with the classical expansion of a time-dependent dipole moment in
Eq. (7.33) we can identify the frequency-dependent mixed electric dipole magnetic
dipole polarizability tensor as a linear response function or polarization propagator

G′
αβ(−ω1;ω1) = −ı〈〈 μ̂α ; m̂l

β 〉〉ω1 (7.50)

As mentioned before the 〈〈 μ̂α ; m̂l
β 〉〉ω1 response function is purely imaginary, but

the G′ tensor is real.
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Using the spectral representation of the polarization propagator, Eq. (3.110), we
can alternatively write

G′
αβ(−ω1;ω1) = −ı

∑
n�=0

〈Ψ(0)
0 | μ̂α |Ψ(0)

n 〉〈Ψ(0)
n |m̂l

β |Ψ(0)
0 〉

�ω1 + E
(0)
0 − E

(0)
n

− ı
∑
n�=0

〈Ψ(0)
0 |m̂l

β |Ψ(0)
n 〉〈Ψ(0)

n | μ̂α |Ψ(0)
0 〉

−�ω1 + E
(0)
0 − E

(0)
n

(7.51)

= 2ı�
∑
n�=0

ω1〈Ψ(0)
0 | μ̂α |Ψ(0)

n 〉〈Ψ(0)
n |m̂l

β |Ψ(0)
0 〉

(E(0)
n − E

(0)
0 )2 − �2ω2

1

(7.52)

and can see that for ω1 = 0 the frequency-dependent mixed electric dipole magnetic
dipole polarizability tensor vanishes.

7.4 Electronic Excitation Energies and Transition Moments

In the previous sections it was shown that frequency-dependent linear response prop-
erties, such as frequency-dependent polarizabilities, can be obtained as the value of the
polarization propagator for the appropriate operators. Furthermore, all static second-
order properties discussed in Chapters 4 and 5 can be calculated as the value of a
polarization propagator for zero frequency.

In addition to these properties, which are all related to the value of a particular
polarization propagator, we can get further information about a molecule by studying
the poles and residues of the linear response function or polarization propagator. We
can see from Eq. (3.110), that the polarization propagator has a singularity or pole,
if the frequency ω of the perturbation takes one of the following values

ω = ±E
(0)
n − E

(0)
0

�
(7.53)

However, E
(0)
n − E

(0)
0 = ΔEn0 is the difference in energy between the unperturbed

reference state |Ψ(0)
0 〉 and one of the other unperturbed states |Ψ(0)

n 〉 and thus equal
to the vertical electronic excitation energy from state Ψ(0)

0 to state Ψ(0)
n .

Finding the poles of the polarization propagator is thus a way of directly calculating
the vertical electronic excitation energies of a system.

Furthermore, the residuum corresponding to a pole, �ωn0 = E
(0)
n − E

(0)
0 , defined

as

lim
ω→ωn0

�(ω − ωn0)〈〈 Ôω
α··· ; Ôω

α··· 〉〉ω = 〈Ψ(0)
0 |Ôω

α··· |Ψ(0)
n 〉〈Ψ(0)

n |Ôω
α··· |Ψ(0)

0 〉

= |〈Ψ(0)
n |Ôω

α··· |Ψ(0)
0 〉|2 (7.54)

is the square of the norm of the electronic transition moment Mn0,α··· of operator
Ôω

α··· from state |Ψ(0)
0 〉 to state |Ψ(0)

n 〉 as defined in Section 3.10.
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In the following, we want to derive expressions for the operators Ôω
α···. For the

general vector potential given in Eq. (7.6) the first-order perturbation Hamiltonian
takes the form

Ĥ(1)(t) =
e

me

N∑
i

�A(�ri, t) · �̂pi (7.55)

and the transition rate for absorption of a photon becomes

W
(1)
n0 =

π

2

(
e

�me

)2 ∑
α

|Mn0,α···|2 (Aωn0
α )2

=
π

2

(
e

�me

)2 ∑
α

∣∣∣∣∣〈Ψ(0)
n |

N∑
i

eı�k·�ri p̂i,α |Ψ(0)
0 〉

∣∣∣∣∣
2

(Aωn0
α )2 (7.56)

However, instead of evaluating directly the transition moments of the
∑N

i eı�k·�ri �̂pi

interaction operator one expands the exponential according to Eq. (7.9). The first
term gives again the dipole approximation, i.e. one ignores the spatial variation of the
vector potential. This reduces the expression for the transition rate to

W
(1)
n0 =

π

2

(
e

�me

)2 ∑
α

∣∣∣〈Ψ(0)
n |Ôp

α |Ψ(0)
0 〉

∣∣∣2 (Aωn0
α )2 (7.57)

where �̂Op is the total canonical momentum operator of the electrons defined in
Eq. (3.65). But according to the off-diagonal hypervirial relation, Eq. (3.66), we can

replace the transition moment of �̂Op by a transition moment of �̂Or and obtain for the
transition rate

W
(1)
n0 =

π

2

( e

�

)2 (
E(0)

n − E
(0)
0

)2 ∑
α

∣∣∣〈Ψ(0)
n |Ôr

α |Ψ(0)
0 〉

∣∣∣2 (Aωn0
α )2 (7.58)

or in terms of the electric dipole moment operator �̂μ, Eq. (4.30),

W
(1)
n0 =

π

2�2

(
E(0)

n − E
(0)
0

)2 ∑
α

∣∣∣〈Ψ(0)
n | μ̂α |Ψ(0)

0 〉
∣∣∣2 (Aωn0

α )2 (7.59)

In the dipole approximation one thus arrives at a transition moment of the dipole
operator, 〈Ψ(0)

n | �̂μ |Ψ(0)
0 〉, which is called the electric dipole transition moment

�ME1
n0 and that explains why it is called the dipole approximation.
Going beyond the dipole approximation we consider now the next term in the

expansion, Eq. (7.9), ı�k · �r. The next contribution to the transition moment then
becomes

〈Ψ(0)
n | ı

N∑
i

�k · �ri p̂i,α |Ψ(0)
0 〉 (7.60)

This contribution depends not only on the direction of the polarization of the radiation,
here α, but also on the direction of the propagation of the wave, given by the direction
in which the propagation vector �k points. For the derivation of the detailed form of
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the operators in this contribution, we will consider radiation traveling along the z-axis
whose vector potential is polarized in the x-direction, which implies that α = x and
that the propagation vector is �k = (0, 0, ωn0

c ) according to Eq. (7.2). The contribution
to the transition moment then becomes

Mn0,zx =
ıωn0

c
〈Ψ(0)

n |
N∑
i

zi p̂i,x |Ψ(0)
0 〉 (7.61)

where we can recognise the operator zi p̂i,x as one half of the y-component of the elec-
tronic angular momentum operator, Eq. (5.23). Using the same trick as in Eq. (5.7),
we can write it as the sum of its symmetric and antisymmetric part

N∑
i

zi p̂i,x =
1
2

N∑
i

(zi p̂i,x + xi p̂i,z) +
1
2

N∑
i

(zi p̂i,x − xi p̂i,z) (7.62)

where the second, antisymmetric part is the y-component of the total orbital angular

momentum operator of the electrons �̂L, Eq. (5.23). Recalling that xi and p̂i,z commute
and using the commutator relation Eq. (3.64) we can rewrite the first, symmetric part
as well, giving

N∑
i

zi p̂i,x =
1
2

me

ı�

N∑
i

(
zi [xi, Ĥ

(0)] + [zi, Ĥ
(0)] xi

)
+

1
2
L̂y (7.63)

The contribution to the transition moment then becomes

Mn0,zx =
ωn0

2c

me

�
〈Ψ(0)

n |
N∑
i

(
zixiĤ

(0) − Ĥ(0)zixi

)
|Ψ(0)

0 〉 +
ıωn0

2c
〈Ψ(0)

n | L̂y |Ψ(0)
0 〉
(7.64)

However, the states Ψ(0)
0 and Ψ(0)

n are eigenstates of the Hamiltonian Ĥ(0) and we get
therefore

Mn0,zx = −ωn0

2c

me

�

(
E(0)

n − E
(0)
0

)
〈Ψ(0)

n |
N∑
i

zixi |Ψ(0)
0 〉 +

ıωn0

2c
〈Ψ(0)

n | L̂y |Ψ(0)
0 〉

= −ω2
n0

2c

me

�
〈Ψ(0)

n |
N∑
i

zixi |Ψ(0)
0 〉 +

ıωn0

2c
〈Ψ(0)

n | L̂y |Ψ(0)
0 〉 (7.65)

Defining a second electric moment operator Ôrr
αβ as

Ôrr
αβ =

N∑
i

r̂i,αr̂i,β (7.66)

and using the definition of the magnetic dipole moment operator, Eq. (5.21), we can
write a general αβ element of this contribution to the transition moment as
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Mn0,αβ = ME2
n0,αβ +

∑
γ

εαβγMM1
n0,γ (7.67)

= −ω2
n0

2c

me

�
〈Ψ(0)

n |Ôrr
αβ |Ψ(0)

0 〉 −
∑

γ

εαβγ
ıωn0

2c

me

e
〈Ψ(0)

n |m̂l
γ |Ψ(0)

0 〉 (7.68)

where we have defined implicitly a component of the electric quadrupole transition
moment ME2

n0 and of the magnetic dipole transition moment �MM1
n0 .

All these transition moments, �ME1
n0 , ME2

n0 , and �MM1
n0 can be obtained as residua of

the appropriate polarization propagators according to Eq. (7.54), i.e. the frequency-
dependent dipole α(−ω;ω) and quadrupole polarizability C(−ω;ω) and a frequency-
dependent paramagnetic contribution to the magnetizability ξp(−ω;ω).

The intensity of a measured absorption band is usually reported in terms of the
dimensionless dipole oscillator strength, which is defined in terms of the electric
dipole transition moments as

f l
n0 =

2
3

me

�2e2

(
E(0)

n − E
(0)
0

)
|〈Ψ(0)

n | �̂μ |Ψ(0)
0 〉|2 =

2
3

me

�2

(
E(0)

n − E
(0)
0

)
|〈Ψ(0)

n | �̂Or |Ψ(0)
0 〉|2

(7.69)

Due to the appearance of the position operator, this is called the dipole oscillator
strength in the length representation. One can consider the oscillator strength
as the trace of a tensor of cartesian components

f l
n0,αβ = 2

me

�2e2

(
E(0)

n − E
(0)
0

)
〈Ψ(0)

0 | μ̂α |Ψ(0)
n 〉〈Ψ(0)

n | μ̂β |Ψ(0)
0 〉 (7.70)

Using the off-diagonal hypervirial relation, Eq. (3.66), one can define two alternative
formulations of the oscillator strength (Hansen, 1967), a mixed representation

fm
n0 =

2
3

1
ı�e

〈Ψ(0)
0 | �̂Op |Ψ(0)

n 〉〈Ψ(0)
n | �̂μ |Ψ(0)

0 〉 =
2
3

1
ı�
〈Ψ(0)

0 | �̂Op |Ψ(0)
n 〉〈Ψ(0)

n | �̂Or |Ψ(0)
0 〉
(7.71)

and a velocity representation

fv
n0 =

2
3

1
me

|〈Ψ(0)
n | �̂Op |Ψ(0)

0 〉|2
E

(0)
n − E

(0)
0

(7.72)

The mixed representation is particular interesting because it does not involve the
excitation energies explicitly. It can alternatively also be written in the following two
ways

fm
n0 = −2

3
1

ı�e
〈Ψ(0)

0 | �̂μ |Ψ(0)
n 〉〈Ψ(0)

n | �̂Op |Ψ(0)
0 〉

=
1
3

1
ı�e

[
〈Ψ(0)

0 | �̂Op |Ψ(0)
n 〉〈Ψ(0)

n | �̂μ |Ψ(0)
0 〉 − 〈Ψ(0)

0 | �̂μ |Ψ(0)
n 〉〈Ψ(0)

n | �̂Op |Ψ(0)
0 〉

]
(7.73)
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For optically active, i.e. chiral, molecules the intensity of the bands of circular
dichroism (CD) spectra is expressed in terms of a rotational strength that is
defined as

Rn0 = ı〈Ψ(0)
0 | �̂μ |Ψ(0)

n 〉〈Ψ(0)
n | �̂ml |Ψ(0)

0 〉 (7.74)

and that can be calculated as residuum of the mixed frequency-dependent electric
dipole magnetic dipole polarizability tensor G′(−ω;ω), Eq. (7.50) and thus of the
〈〈 μ̂α ; m̂l

β 〉〉ω polarization propagator.
The calculation of electronic vertical excitation energies ΔEn0 = �ωn0 and cor-

responding transitions moments or oscillator strengths fn0 from the linear response
functions or polarization propagators is a very interesting alternative to the usual
approach because it is done in a direct way. Neither the wavefunctions |Ψ(0)

0/n〉 nor the

energies E
(0)
0/n of the initial state 0 or final state n have to be calculated explicitly in

order to obtain these spectral properties, because ΔEn0 and fn0 are obtained directly
as poles and residues of the polarization propagator that is calculated by approxima-
tions to Eq. (3.159). The response theory approach is therefore predestinate to the
calculation of electronic spectra.

Finding the poles of the polarization propagator as given e.g. in Eq. (3.159) implies
finding the values of the frequency ω for which the matrix

(
E[2] − �ωS[2]

)
becomes

singular. This could in principle be done by a pole search where one tries to determine
the frequency of the pole by repeatedly evaluating the response function. However,
this is cumbersome and unnecessary because singularity of this matrix is also the
necessary condition for that the set of linear equations(

E[2] − �ωS[2]
)

X = 0 (7.75)

has a non-trivial solution for X, i.e. X �= 0. This, on the other hand, is simply the
generalized eigenvalue equation for the electronic hessian matrix E[2]

E[2]X = �ωS[2]X (7.76)

Finding the poles of the propagator corresponds therefore to solving the generalized
eigenvalue problem for the electronic Hessian matrix or the principal propagator,
which is written out here in more detail[(

〈Ψ(0)
0 | [ĥ†

i , [Ĥ
(0), ĥj ]] |Ψ(0)

0 〉 · · ·
...

. . .

)

−�ωn0

(
〈Ψ(0)

0 | [ĥ†
i , ĥj ] |Ψ(0)

0 〉 · · ·
...

. . .

)](
Xn0

j
...

)
= 0 (7.77)

The vertical excitation energies ΔEn0 are thus obtained as eigenvalues �ωn0 and {Xn0
j }

are the elements of the corresponding eigenvectors. The transition moments, finally,
can be calculated from the eigenvectors {Xn0

j } and the property gradient vectors
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T j(Ôα) = 〈Ψ(0)
0 | [h†

j , Ôα] |Ψ(0)
0 〉 as

〈Ψ(0)
n |Ôα |Ψ(0)

0 〉 =
∑

j

Xn0
j 〈Ψ(0)

0 | [ĥ†
j , Ôα] |Ψ(0)

0 〉 (7.78)

7.5 Dipole Oscillator Strength Sums

The set of dipole oscillator strengths {fn0}, defined in Eq. (7.69), is often called
the dipole oscillator strength distribution (DOSD). Summed over all excited
states, bound as well as continuum states, they are related to several other molecular
properties, as will be shown in the following. One defines two types of energy-weighted
moments of the dipole oscillator strength distribution4

S(k) =
∑
n�=0

(
E(0)

n − E
(0)
0

)k

fn0 (7.79)

L(k) =
∑
n�=0

(
E(0)

n − E
(0)
0

)k

ln(E(0)
n − E

(0)
0 )fn0 (7.80)

also called dipole oscillator strength sums. Depending on whether one sums
the oscillator strengths in their length, mixed or velocity representation one thus
obtains the sums in the three representations. In the following we will only distinguish
between the three representations when necessary by adding the superscripts l, m or
v. As for the oscillator strengths, Eq. (7.70), one can also define sums for the cartesian
components of the dipole oscillator strengths as

Sαβ(k) =
∑
n�=0

(
E(0)

n − E
(0)
0

)k

fn0,αβ (7.81)

Lαβ(k) =
∑
n�=0

(
E(0)

n − E
(0)
0

)k

ln(E(0)
n − E

(0)
0 )fn0,αβ (7.82)

Several dipole oscillator strength sums are related to other molecular properties by
so-called dipole oscillator strength sum rules. The best known is the Thomas–
Reiche–Kuhn sum rule that relates the S(0) sum to the number of electrons N of
the system, i.e.

S(0) =
∑
n�=0

fn0 = N (7.83)

as can be shown easily [see Exercise 7.2].

Exercise 7.2 Derive the Thomas-Reiche-Kuhn sum rule Eq. (7.83).

Hint: Start with the mixed representation of the oscillator strengths in Eq. (7.73). Use the

fact that the set of excited states Ψ
(0)
n is complete, i.e.

4 For the unbound continuum states the summation should be replaced by an integration.
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∑
n

|Ψ(0)
n 〉〈Ψ(0)

n | = 1

and use the commutator relation Eq. (6.34).

Comparing the definition of the components of the oscillator strength in the length
representation, Eq. (7.70), with the expression for a component of the frequency-
dependent polarizability in Eq. (7.28) we can see that the polarizability can be written
in terms of the oscillator strengths as

ααβ(−ω;ω) =
�

2e2

me

∑
n�=0

f l
n0,αβ

(E(0)
n − E

(0)
0 )2 − �2ω2

=
�

2e2

me

∑
n�=0

f l
n0,αβ

(E(0)
n − E

(0)
0 )2

1
1 − �2ω2

(E
(0)
n −E

(0)
0 )2

(7.84)

For frequencies smaller than the lowest excitation energy, i.e.
∣∣∣�ω/(E(0)

n − E
(0)
0 )

∣∣∣ < 1,
we can expand the last term in a Taylor series and obtain

ααβ(−ω;ω) =
�

2e2

me

∞∑
k=0

(�ω)2k
∑
n�=0

f l
n0,αβ

(E(0)
n − E

(0)
0 )2k+2

(7.85)

or in terms of the dipole oscillator strength sums

ααβ(−ω;ω) =
e2

�
2

me

∞∑
k=0

(�ω)2k Sl
αβ(−2k − 2) (7.86)

This is often called the Cauchy moment expansion of the frequency-dependent
polarizability and the sums S(k) for even but negative values of k are called
Cauchy moments. S(−2) in particular turns out to be proportional to the static
polarizability

ααβ(0; 0) =
e2

�
2

me
Sl

αβ(−2) (7.87)

which is another well-known example of a dipole oscillator strength sum rule. The
other Cauchy moments, i.e. even and negative sums, S(−4), S(−6), · · · , describe
the frequency dependence or dispersion of the frequency-dependent polarizability
and can therefore be defined either as even derivatives of the frequency-dependent
polarizability

Sl
αβ(−m − 2) =

me

e2�2

1
�mm!

(
dm

dωm
ααβ(−ω;ω)

)
ω=0

(7.88)

for m = 2, 4, 6, · · · being even positive numbers or alternatively as both odd and even
derivatives of the frequency-dependent polarizability
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Sl
αβ(−2k − 2) =

me

e2�2

1
2k�2kk!

lim
ω→0

(
1
ω

d

dω

)k

ααβ(−ω;ω) (7.89)

for k = 1, 2, 3, · · · being positive numbers. However, the positive even dipole oscil-
lator strength sums can also be obtained as derivatives of the frequency-dependent
polarizability [see Exercise 7.3]

Sl
αβ(2k) = (−1)k−1 me

e2�2

1
2k�2kk!

lim
ω→∞

(
ω3 d

dω

)k

ω2ααβ(−ω;ω) (7.90)

for k = 0, 1, 2, 3, · · ·

Exercise 7.3 Derive the Thomas–Reiche–Kuhn and S(2) sum rules from Eq. (7.90).

Recalling that the frequency-dependent polarizability is related to the
〈〈 μ̂α ; μ̂β 〉〉ω propagator, Eq. (7.26), we can express the even dipole oscillator
strength sums also as derivatives of this polarization propagator, i.e.

Sl
αβ(2k) = (−1)k me

e2�2

1
2k�2kk!

lim
ω→∞

(
ω3 d

dω

)k

ω2〈〈 μ̂α ; μ̂β 〉〉ω

for k = 0, 1, 2, 3, · · · (7.91)

Sl
αβ(−2k − 2) = − me

e2�2

1
2k�2kk!

lim
ω→0

(
1
ω

d

dω

)k

〈〈 μ̂α ; μ̂β 〉〉ω

for k = 1, 2, 3, · · · (7.92)

Similar relations between the even sums in mixed, Sm, and velocity representation,
Sv, and the 〈〈 μ̂α ; Ôp

β 〉〉ω and 〈〈 Ôp
α ; Ôp

β 〉〉ω polarization propagators can also be
derived (Jørgensen et al., 1978).

The dipole oscillator strengths and their sums play not only an important role in
the description of the interaction of molecules with electromagnetic radiation but also
in the description of the interaction of molecules with beams of charged particles, i.e.
ions. A beam of ions with charge Z passing with velocity v through matter is scattered
by the medium molecules and loses part of its kinetic energy Ekin. This is normally
expressed in terms of the linear stopping power or energy loss per unit path length
x defined as

S(v) = − 1
N

dEkin

dx
(7.93)

where N is the density of molecules in the target.
In the case of fast ions moving through a medium the main contribution to the

energy loss comes from the inelastic collision with the electrons of the molecules in
the medium that will be exited or even ionised. The simplest expression describing
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this process is the Bethe formula derived via first-order perturbation theory (Bethe,
1930)

S(v) =
Ze2Ne2

mev24πε20
ln(

2mev
2

I(0)
) (7.94)

where N is the number of electrons in the target molecules and I(0) is called the
mean excitation energy of the target molecules. The mean excitation energy is not
a simple mean value of all electronic excitation energies (E(0)

n − E
(0)
0 ), but is defined

in terms of the energy-weighted moments or sums of the dipole oscillator strength
distribution as

ln I(0) =
L(0)
S(0)

=

∑
n�=0 ln(E(0)

n − E
(0)
0 )fn0∑

n�=0 fn0
(7.95)

7.6 van der Waals Coefficients

In Sections 4.1 and 4.2 we discussed the fact that the electric moments of molecules
play an important role in the description of the intermolecular forces between two
molecules separated by a large distance. Their contribution to the interaction energy
is of purely classical, i.e. electrostatic nature. Here, we want to show now that also
the contribution from quantum mechanical dispersion or London forces, i.e. the
dispersion energy Edisp

AB , can be related to molecular properties of the two interact-
ing molecules. In particular, we will see that it is related to the frequency-dependent
polarizabilities, which is in line with the physical interpretation of the dispersion forces
as arising from the interaction of induced dipole moments, which implies that both
charge distributions are perturbed by their interaction.

The dispersion energy can thus be derived by perturbation theory where the pertur-
bation Hamiltonian consists of the interaction potential of the two charge distributions.
One expands both charge distributions in multipole series and keeps the first term,
which for two uncharged molecules A and B separated by a distance |�RAB | is the
dipole–dipole interaction term

Ĥ
(1)
AB =

1
4πε0|RAB |3

[
�̂μA · �̂μB − 3(�̂μA · �RAB)(�RAB · �̂μB)

R2
AB

]
(7.96)

where �̂μA and �̂μB are the dipole moment operators of the two molecules. The unper-
turbed Hamiltonian of the complex is then the Hamiltonian of two non-interacting
molecules and thus just the sum of the Hamiltonian operators of the two separate mole-
cules with the unperturbed complex energies E

(0)
nA,mB being the sum of the energies of

the separate molecules
E(0)

nA,mB
= E(0)

nA
+ E(0)

mB
(7.97)

and the unperturbed complex wavefunctions Ψ(0)
nA,mB being the product of the

corresponding molecular wavefunctions

Ψ(0)
nA,mB

= Ψ(0)
nA

Ψ(0)
mB

(7.98)
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The first-order correction to the energy of the ground state of the complex,
Eq. (3.29), then becomes

E
(1)
0A,0B

= 〈Ψ(0)
0A,0B

|Ĥ(1)
AB |Ψ(0)

0A,0B
〉 = 〈Ψ(0)

nA
Ψ(0)

mB
|Ĥ(1)

AB |Ψ(0)
nA

Ψ(0)
mB

〉 (7.99)

or after inserting the perturbation Hamiltonian, Eq. (7.96),

E
(1)
0A,0B

=
1

4πε0|RAB |3
[
�μA · �μB − 3(�μA · �RAB)(�RAB · �μB)

R2
AB

]
(7.100)

This is the electrostatic interaction between the permanent dipole moments �μA and
�μB of the two molecules.

The second-order energy correction, Eq. (3.33), becomes

E
(2)
0A,0B

=
∑

nA,mB �=0A,0B

〈Ψ(0)
0A,0B

|Ĥ(1)
AB |Ψ(0)

nA,mB 〉〈Ψ(0)
nA,mB |Ĥ(1)

AB |Ψ(0)
0A,0B

〉
E

(0)
0A,0B

− E
(0)
nA,mB

(7.101)

where the double sum runs over all complex states in which at least one of the molecules
is excited. We can therefore distinguish between terms where one molecule is excited,
e.g. molecule A

Eind
0A,0B

=
∑

nA �=0A

〈Ψ(0)
0A,0B

|Ĥ(1)
AB |Ψ(0)

nA,0B
〉〈Ψ(0)

nA,0B
|Ĥ(1)

AB |Ψ(0)
0A,0B

〉
E

(0)
0A,0B

− E
(0)
nA,0B

(7.102)

and terms where both are excited

Edisp
0A,0B

=
∑

nA �=0A

∑
mB �=0B

〈Ψ(0)
0A,0B

|Ĥ(1)
AB |Ψ(0)

nA,mB 〉〈Ψ(0)
nA,mB |Ĥ(1)

AB |Ψ(0)
0A,0B

〉
E

(0)
0A,0B

− E
(0)
nA,mB

(7.103)

The former is the induction energy contribution to the intermolecular forces and
can be shown to consist of the static polarizability of molecule A and the permanent
electric dipole moment of molecule B. We will not consider this term any further here.

Inserting the unperturbed complex energies and wavefunctions, Eqs. (7.97) and
(7.98), in the latter term gives

Edisp
0A,0B

=
∑

nA �=0A

∑
mB �=0B

〈Ψ(0)
0A

Ψ(0)
0B

|Ĥ(1)
AB |Ψ(0)

nAΨ(0)
mB 〉〈Ψ(0)

nAΨ(0)
mB |Ĥ(1)

AB |Ψ(0)
0A

Ψ(0)
0B

〉
E

(0)
0A

− E
(0)
nA + E

(0)
0B

− E
(0)
mB

(7.104)
where the product of transition moments of Ĥ

(1)
AB can be written more explicitly as∣∣∣〈Ψ(0)

0A
Ψ(0)

0B
|Ĥ(1)

AB |Ψ(0)
nA

Ψ(0)
mB

〉
∣∣∣2

=
1

(4πε0)2|RAB |10
∣∣∣ �RT

AB

(
〈Ψ(0)

0A
| �̂μA |Ψ(0)

nA
〉 · 〈Ψ(0)

0B
| �̂μB |Ψ(0)

mB
〉 I3

− 3〈Ψ(0)
0A

| �̂μA |Ψ(0)
nA

〉 ⊗ 〈Ψ(0)
0B

| �̂μB |Ψ(0)
mB

〉
)

�RAB

∣∣∣2 (7.105)
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However, in the gas or liquid phase the molecules can have all possible orientations with
respect to each other. Therefore, for the isotropic interaction between the two mole-
cules one has to average over all molecular orientations, which reduces the absolute
square of the transition matrix element to

∣∣∣〈Ψ(0)
0A

Ψ(0)
0B

|Ĥ(1)
AB |Ψ(0)

nA
Ψ(0)

mB
〉
∣∣∣2 =

∣∣∣〈Ψ(0)
0A

| �̂μA |Ψ(0)
nA〉

∣∣∣2 ∣∣∣〈Ψ(0)
0B

| �̂μB |Ψ(0)
mB 〉

∣∣∣2
24π2ε20|RAB |6 (7.106)

The dipole–dipole contribution to the isotropic dispersion energy between two
neutral molecules is thus given as

Edisp
0A,0B

= − 1
24π2ε20|RAB |6

∑
nA �=0A

∑
mB �=0B

∣∣∣〈Ψ(0)
0A

| �̂μA |Ψ(0)
nA〉

∣∣∣2 ∣∣∣〈Ψ(0)
0B

| �̂μB |Ψ(0)
mB 〉

∣∣∣2
(E(0)

nA − E
(0)
0A

) + (E(0)
mB − E

(0)
0B

)

(7.107)

In order to evaluate this contribution one needs only all excitation energies and
corresponding transition dipole moments for molecule A and also for molecule B. Both
can be obtained from the poles and residues of a polarization propagator for molecule
A and separately for molecule B as described in Section 7.4. However, it is preferable
to avoid the simultaneous summation over all states and express the dispersion energy
in terms of molecular properties. This can be achieved by using the following integral
transform

1
x + y

=
2
π

∫ ∞

0

x

x2 + z2

y

y2 + z2
dz (7.108)

for the denominator of the dispersion energy, i.e.

Edisp
0A,0B

= − 1
12π3ε20|RAB |6

∫ ∞

0

dz
∑

nA �=0A

(E(0)
nA − E

(0)
0A

)
∣∣∣〈Ψ(0)

0A
| �̂μA |Ψ(0)

nA〉
∣∣∣2

(E(0)
nA − E

(0)
0A

)2 + z2

×
∑

mB �=0B

(E(0)
mB − E

(0)
0B

)
∣∣∣〈Ψ(0)

0B
| �̂μB |Ψ(0)

mB 〉
∣∣∣2

(E(0)
mB − E

(0)
0B

)2 + z2

(7.109)

Choosing z =
√−1�ω = ı�ω and then comparing the two summations with

Eq. (7.28) we can see that they correspond to frequency-dependent polarizabilities
for imaginary frequencies, giving

Edisp
0A,0B

= − 3�

16π3ε20|RAB |6
∫ ∞

0

dω αA(−ıω; ıω) αB(−ıω; ıω) (7.110)

Commonly, the dipole–dipole contribution to the dispersion energy is written as

Edisp
0A,0B

= − CAB
6

|RAB |6 (7.111)
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where the C6 or van der Waals dispersion coefficient is then defined as

CAB
6 =

3�

16π3ε20

∫ ∞

0

dω αA(−ıω; ıω) αB(−ıω; ıω) (7.112)

which is often called the Casimir–Polder formula (Casimir and Polder, 1948). As
discussed before this expression is for the isotropic interaction. Similar, but more
complicated, expressions have been derived for the situation, where the orientation
of the two molecules to each other is important (Visser et al., 1983, 1984; Visser and
Wormer, 1984; Rijks and Wormer, 1988; Hettema et al., 1994).

As for real frequencies, Eq. (7.26), one can also obtain components of the polar-
izability for imaginary frequencies from correspondingly complex linear response
functions (Norman et al., 2003)

ααβ(−ıω; ıω) = −〈〈 μ̂α ; μ̂β 〉〉ıω (7.113)

Alternatively, one can make use of the fact that the frequency dependence of the
polarizability can be expressed in terms of dipole oscillator strength sums Eq. (7.86).
This expansion, however, converges only for frequencies below the first excitation
energy, i.e. �ω < min{E(0)

n − E
(0)
0 }. Nevertheless, the expansion can be extended

beyond this convergence radius and in particular into the complex plane by using
well-known analytical continuation techniques based on Padé approximants [n,m]α to
the frequency-dependent polarizability α (Langhoff and Karplus, 1970). In particular,
the [n, n− 1]α Padé approximant to α(ıω) expressed by the dipole oscillator strength
sums, Eq. (7.86), can be used as a lower bound

α(ıω) ≥ [n, n − 1]α (7.114)

An upper bound can be obtained either from the [n, n]α Padé approximant to α(ıω)

α(ıω) ≤ [n, n]α (7.115)

or via the same type of Padé approximant [n, n−1] as for the lower bound, but now to
Sl(0)−ω2α(ıω) instead of to α(ıω). This approximant is usually denoted as [n, n−1]β
and an upper bound to α(ıω) is then given as

α(ıω) ≤ Sl(0) − [n, n − 1]β
ω2

(7.116)

7.7 Further Reading

Refractive Index and Optical Rotation

P. Atkins and R. Friedman, Molecular Quantum Mechanics, 4th edn. Oxford
University Press, Oxford (2005): Chapters 12.9–12.12.

A. Hinchliffe and R. W. Munn, Molecular Electromagnetism, John Wiley and Sons
Ltd, Chichester (1985): Chapter 15.6.



Further Reading 173

Transition Moments

B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, 2nd ed. Pearson
Education, Harlow (2003): Chapters 2.8, 4.1–4.3, 9.1–9.3.

Stopping Power

B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, 2nd edn. Pearson
Education, Harlow (2003): Chapter 13.3.

van der Waals Coefficients

P. Atkins and R. Friedman, Molecular Quantum Mechanics, 4th edn. Oxford
University Press, Oxford (2005): Chapter 12.5.

A. Hinchliffe and R. W. Munn, Molecular Electromagnetism, John Wiley and Sons
Ltd, Chichester (1985): Chapter 15.7.



8

Vibrational Contributions
to Molecular Properties

The expressions for the molecular properties given in Chapters 4–7 were derived for
a set of fixed nuclear coordinates. However, this is not a realistic description of a
molecule, since even at 0 K a molecule vibrates. In order to obtain agreement with
experimental data it is necessary to take the effects of nuclear motion into account.
Their contribution is in general not negligible especially for NMR spin-spin coupling
constants and higher-order polarizabilities. For example, calculated first and second
hyperpolarizabilities, which do not include any vibrational corrections (Bishop, 1990)
are of questionable relevance to experiment, even though they may be of value for
benchmarking purposes. Furthermore, experimentally observable effects like tempera-
ture dependence and isotope shifts of e.g. NMR parameters are solely due to differences
in these nuclear motion corrections.

In this chapter we will therefore discuss the contributions from the nuclear wave-
function to the molecular properties derived in the previous chapters. However, in
doing so we will still make use of the Born–Oppenheimer approximation. In the
following, we will use the static polarizability as example and illustrate how these
vibrational corrections can be incorporated (Bishop and Cheung, 1980; Bishop et al.,
1980). The expression, which we are going to derive, can then easily be transferred
to all linear response properties. A detailed description of vibrational corrections to
static and frequency-dependent hyperpolarizabilities can be found in the reviews by
Bishop (1990; 1998).

In order to incorporate the effects of nuclear motion we have to go back to
the Hamiltonian, Eq. (2.1), which includes the kinetic energy operators for the
nuclei. The corresponding eigenfunctions are the so-called vibronic wavefunctions1

Φ(0)
kv ({�ri}, {�RK}) with energy E

(0)
kv and are characterized by the electronic, k, and

vibrational, v, quantum numbers, where v stands throughout the chapter collec-
tively for the vibrational quantum numbers of all vibrational modes of the molecule.
The proper approach for the treatment of the nuclear motion effects would be to
use these unperturbed vibronic wavefunctions Φ(0)

kv ({�ri}, {�RK}) instead of the unper-
turbed electronic wavefunctions Ψ(0)

k ({�ri}; {�RK}) in the derivation of expression for
the molecular properties in Chapters 4–7. However, we still want to make use

1 We neglect in this section the rotational motion of the whole molecule. The corresponding
subscript J is therefore also missing here compared to the expressions in Section 2.2.
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of the Born–Oppenheimer approximation and have therefore the choice of apply-
ing it before or after the effect of the external perturbation is introduced in the
Hamiltonian.

8.1 Sum-over-States Treatment

In the first approach, the so-called sum-over-states treatment of the corrections
due to molecular vibration, the effects of the perturbation on the electronic and
vibrational part of the wavefunction are treated simultaneously. This means that per-
turbation theory as developed in Section 3.2 is applied to the vibronic wavefunctions.
In the presence of an external electric field with component Eβ the perturbed vibronic
wavefunction for, e.g., the electronic ground state k = 0 and an arbitrary vibrational
state v, Φ0v(�E), is thus obtained through first order, Eq. (3.27), as2

Φ0v(�E) = Φ(0)
0v + Φ(1)

0v (�E)

= Φ0v +
∑

nv′ �=0v

|Φ(0)
nv′〉

〈Φ(0)
nv′ |−∑

β

(
μ̂β + Ω̂E

β

)
Eβ |Φ(0)

0v 〉
E

(0)
0v − E

(0)
nv′

(8.1)

where the first-order perturbation Hamiltonian, Eq. (4.29), for the perturbation by a
homogenous electric field was already inserted. The summation now includes vibronic
wavefunctions for all vibrational levels v′ of all electronic states n with the exception
of the particular vibrational level v of the electronic ground state n = 0. Using this
wavefunction in the expression for the second-order energy correction, Eq. (3.30),
we can evaluate the components of the static polarizability tensor, ααβ , from their
definition as second derivatives of the perturbed energy, Eq. (4.65), and obtain

ααβ = −2
∑

nv′ �=0v

〈Φ(0)
0v | μ̂α + Ω̂E

α |Φ(0)
nv′〉〈Φ(0)

nv′ | μ̂β + Ω̂E
β |Φ(0)

0v 〉
E

(0)
0v − E

(0)
nv′

(8.2)

The summation is typically split into two parts, defining the components αv
αβ of the

vibrational polarizability, unfortunately sometimes also called atomic polariz-
ability, where the summation goes over all vibrational states v′ �= v of the same
electronic state n = 0

αv
αβ = −2

∑
v′ �=v

〈Φ(0)
0v | μ̂α + Ω̂E

α |Φ(0)
0v′〉〈Φ(0)

0v′ | μ̂β + Ω̂E
β |Φ(0)

0v 〉
E

(0)
0v − E

(0)
0v′

(8.3)

2 Here and in most equations of the following sections we will not show explicitly that the vibronic

wavefunctions Φkv depend on the electronic {�ri} and nuclear position vectors {�RK} nor that the

vibrational wavefunctions Θv depend on the nuclear position vectors {�RK} and the electronic wave-
functions Ψk on the position vectors of the electrons {�ri} and parametrically on the nuclear position

vectors {�RK}.
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and an electronic-vibrational polarizability

αe,v
αβ = −2

∑
n�=0,v′

〈Φ(0)
0v | μ̂α + Ω̂E

α |Φ(0)
nv′〉〈Φ(0)

nv′ | μ̂β + Ω̂E
β |Φ(0)

0v 〉
E

(0)
0v − E

(0)
nv′

(8.4)

where the summation goes over all other electronic states n �= 0 and all their
vibrational levels v′.

Now, one can make use of the the Born-Oppenheimer approximation, as discussed
in Section 2.2, and approximate the unperturbed vibronic wavefunctions as a simple
product of vibrational Θ(0)

v ({�RK}) and electronic wavefunction Ψ(0)
n ({�ri}; {�RK}), i.e.

Φ(0)
nv ({�ri}, {�RK}) = Ψ(0)

n ({�ri}; {�RK}) Θ(0)
v ({�RK}) (8.5)

Using this ansatz in the expressions for the polarizabilities one obtains

αv
αβ = −2

∑
v′ �=v

〈Θ(0)
v | 〈Ψ(0)

0 | μ̂α + Ω̂E
α |Ψ(0)

0 〉 |Θ(0)
v′ 〉〈Θ(0)

v′ | 〈Ψ(0)
0 | μ̂β + Ω̂E

β |Ψ(0)
0 〉 |Θ(0)

v 〉
E

(0)
0v − E

(0)
0v′

(8.6)

αe,v
αβ = −2

∑
v′

∑
n�=0

〈Θ(0)
v | 〈Ψ(0)

0 | μ̂α |Ψ(0)
n 〉 |Θ(0)

v′ 〉〈Θ(0)
v′ | 〈Ψ(0)

n | μ̂β |Ψ(0)
0 〉 |Θ(0)

v 〉
E

(0)
0v − E

(0)
nv′

(8.7)

The electronic ground-state expectation values in the numerator of the vibrational
polarizability αv are components of the permanent electric dipole moment, Eq. (4.40),
and we can therefore write the vibrational polarizability more compactly as

αv
αβ = −2

∑
v′ �=v

〈Θ(0)
v |μα({�RK}) |Θ(0)

v′ 〉〈Θ(0)
v′ |μβ({�RK}) |Θ(0)

v 〉
E

(0)
0v − E

(0)
0v′

(8.8)

In the electronic-vibrational polarizability αe,v
αβ , on the other hand, the nuclear part

of the electric dipole moment operator Ω̂E
α, Eq. (4.32), cannot contribute because the

electronic states |Ψ(0)
0 〉 and |Ψ(0)

n 〉 are orthogonal.
For all the magnetic linear response properties derived in Chapters 5 and 6 one

would obtain expressions similar to the electronic-vibrational polarizability, Eq. (8.7).
On the other hand, the diamagnetic contributions to the magnetic properties as well
as all first-order properties, i.e. properties defined as first derivatives of the energy,
will take the following simple expectation value form

〈Θ(0)
v | 〈Ψ(0)

0 |Ô |Ψ(0)
0 〉 |Θ(0)

v 〉 (8.9)

where Ô would be of the ÔFF
αβ··· type for the diamagnetic contributions to the magnetic

properties and of the ÔF
α··· type for the first-order properties. Finally, for closed-shell

molecules there is no pure vibrational contribution to the magnetic properties similar
to Eq. (8.8), because the permanent magnetic moment or molecular magnetic induc-
tion vanishes due to the quenching of the angular momentum operator, as discussed
in Section 5.3.
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In order to evaluate the vibrational polarizability, Eq. (8.8), one needs the energies
of all vibrational states of the electronic ground state and the corresponding vibra-
tional dipole transition moments, which requires knowledge of the potential energy
and electric dipole moment surface of this single electronic state. For the electronic-
vibrational polarizability, Eq. (8.7), however, one would need to know not only all
excited electronic states, Ψ(0)

n and the electronic dipole transition moments to them
but also all the vibrational states, Θ(0)

v′ , of these excited states, which makes this
approach rather difficult to apply in actual calculations.

However, we can make the approximation in Eq. (8.7) that the differences between
the vibrational energies are much smaller than the differences between the electronic
energies, i.e.

E
(0)
0v − E

(0)
nv′ ≈ E

(0)
00 − E

(0)
n0 (8.10)

which removes the dependence on the vibrational states from the denominator. Con-
sequently we can use in the numerator the fact that the vibrational wavefunctions
form a complete set, i.e. that

1 =
∑
v′

|Θ(0)
v′ 〉〈Θ(0)

v′ | (8.11)

and obtain from Eq. (8.7) a simplified expression for the electronic-vibrational
polarizability

αe,v
αβ ≈ −2

∑
n�=0

〈Θ(0)
v | 〈Ψ(0)

0 | μ̂α |Ψ(0)
n 〉〈Ψ(0)

n | μ̂β |Ψ(0)
0 〉 |Θ(0)

v 〉
E

(0)
00 − E

(0)
n0

(8.12)

8.2 Clamped-Nucleus Treatment

In the second approach, the so-called clamped-nucleus treatment, the effect of
the perturbation on the electronic and nuclear motion is treated sequentially. First,
the Born–Oppenheimer approximation is applied to the vibronic wavefunction of
the ground state, Φ0v({�ri}, {�RK}), which is therefore expressed as a product of an
electronic wavefunction Ψ0({�ri}; {�RK}) and a vibrational wavefunction Θv({�RK})

Φ0v({�ri}, {�RK}) = Ψ0({�ri}; {�RK}) Θv({�RK}) (8.13)

Secondly, in the presence of an external electric field with component Eβ , the field
gives rise to a first-order perturbation Hamiltonian, Eq. (4.29), and the electronic
wavefunction can be expanded in a perturbation series Eq. (3.16). To first order the
electronic wavefunction, Eq. (3.27), and the electronic energy including the nuclear
repulsion, Eq. (3.29), are then given as

Ψ0(�E) = Ψ(0)
0 +Ψ(1)

0 (�E) = Ψ(0)
0 +

∑
n�=0

| Ψ(0)
n 〉

〈Ψ(0)
n |−∑

β

(
μ̂β + Ω̂E

β

)
Eβ |Ψ(0)

0 〉
E

(0)
0 ({�RK}) − E

(0)
n ({�RK})

(8.14)
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and

E0({�RK}, �E) = E
(0)
0 ({�RK}) + E

(1)
0 ({�RK}, �E)

= E
(0)
0 ({�RK}) + 〈Ψ(0)

0 |−
∑

β

μ̂β Eβ |Ψ(0)
0 〉 −

∑
β

Ω̂E
β Eβ (8.15)

where E
(0)
0 ({�RK}) indicates that the electronic energies are for a given set of nuclear

coordinates {�RK}.3 Recognising the last two terms as the permanent electric dipole
moment �μ({�RK}), from Eq. (4.40), again we can write the energy as

E0({�RK}, �E) = E
(0)
0 ({�RK}) − �μ({�RK}) · �E (8.16)

With this energy as potential energy for the nuclear motion the nuclear Schrödinger
equation in the Born–Oppenheimer approximation, Eq. (2.12), becomes[∑

K

1
2mK

�̂p 2
K + E0({�RK}, �E)

]
|Θv(�E)〉 = E0v(�E)|Θv(�E)〉 (8.17)

which means that the external electric field, Eβ , enters the nuclear Hamiltonian
together with an operator that is an expectation value over the electronic wavefunction
but depends on the nuclear position vectors {�RK}[∑

K

1
2mK

�̂p 2
K + E

(0)
0 ({�RK}) − �μ({�RK}) · �E

]
|Θv(�E)〉 = E0v(�E)|Θv(�E)〉 (8.18)

This equation is now also solved with perturbation theory assuming that the unper-
turbed equation, i.e. without the −�μ({�RK}) · �E term, has been solved and a complete
set of eigenfunctions {Θ(0)

v } has been obtained. The vibrational wavefunction for an
arbitrary vibrational state v of the given electronic state is then also expanded in a
perturbation series and is to first order given as

Θv(�E) = Θ(0)
v + Θ(1)

v (�E) = Θ(0)
v +

∑
v′ �=v

| Θ(0)
v′ 〉 〈Θ

(0)
v′ |−�μ({�RK}) · �E |Θ(0)

v 〉
E

(0)
0v − E

(0)
0v′

(8.19)

An expression for the polarizability can finally be obtained by time-independent
response theory as described in Sections 3.3 and 3.4, i.e. Eq. (4.79),

3 See the footnote of the previous section for the implied dependence of the wavefunctions on the
electronic and/or nuclear position vectors.
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ααβ =
∂

∂Eβ
〈Φ0v(�E) | μ̂α + Ω̂E

α |Φ0v(�E)〉(1) (8.20)

=
∂

∂Eβ

[
〈Θ(0)

v Ψ(1)
0 (�E) | μ̂α |Ψ(0)

0 Θ(0)
v 〉 + 〈Θ(0)

v Ψ(0)
0 | μ̂α |Ψ(1)

0 (�E)Θ(0)
v 〉

+ 〈Θ(1)
v (�E)Ψ(0)

0 | μ̂α + Ω̂E
α |Ψ(0)

0 Θ(0)
v 〉

+〈Θ(0)
v Ψ(0)

0 | μ̂α + Ω̂E
α |Ψ(0)

0 Θ(1)
v (�E)〉

]
(8.21)

where we have used that the first-order correction to a vibronic wavefunction like
Eq. (8.13), i.e. a simple product function, is given as

Φ(1)
0v ({�ri}, {�RK}, �E) = Ψ(1)

0 ({�ri}; {�RK}, �E) Θ(0)
v ({�RK})

+ Ψ(0)
0 ({�ri}; {�RK}) Θ(1)

v ({�RK}, �E) (8.22)

This then gives again two contributions: a vibrationally averaged electronic
polarizability

αe,av
αβ = −2 〈Θ(0)

v |
∑
n�=0

〈Ψ(0)
0 | μ̂α |Ψ(0)

n 〉〈Ψ(0)
n | μ̂β |Ψ(0)

0 〉
E

(0)
0 ({�RK}) − E

(0)
n ({�RK})

|Θ(0)
v 〉

= 〈Θ(0)
v ({�RK}) |ααβ({�RK}) |Θ(0)

v ({�RK})〉 (8.23)

and the vibrational polarizability, given in Eq. (8.6) or Eq. (8.8).
Although the expression for the vibrational polarizability is thus the same as the

one obtained with the sum-over-states treatment, the expression for the electronic
contribution differs significantly from Eq. (8.7) or Eq. (8.12). The averaged elec-
tronic contribution in Eq. (8.23) is simply the pure electronic polarizability as given in
Eq. (4.74) but averaged with the unperturbed vibrational wavefunction Θ(0)

v ({�RK})
of the electronic ground state. In the approximate form of the electronic-vibrational
polarizability in Eq. (8.12), on the other hand, the transition moments to each
excited electronic state are averaged individually with the unperturbed vibrational
wavefunction Θ(0)

v ({�RK}) of the electronic ground state and then divided by the dif-
ference between the energies of the vibrational ground state of the respective excited
electronic state E

(0)
n0 and of the vibrational ground state of the electronic ground

state E
(0)
00 .

8.3 Vibrational and Thermal Averaging

In this section, we will describe in more detail how the vibrational averaging of
the pure electronic polarizability and the calculation of the vibrational polarizabil-
ity is carried out. We will hereby distinguish between diatomic and polyatomic
molecules.
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For diatomic molecules the vibration-rotation wavefunctions can be obtained
numerically as solutions of the one-dimensional Schrödinger equation{

− �
2

2μ

[
d2

dR2
+

J(J + 1)
R2

]
+ E0(R)

}
| Θ(0)

v,J 〉 = E
(0)
v,J | Θ(0)

v,J〉 (8.24)

where R is the internuclear distance, J is the rotational quantum number and E
(0)
0 (R)

is the Born–Oppenheimer electronic energy including the nuclear repulsion.4 The
vibrational or more precisely vibration-rotational averaging in the clamped-nucleus
treatment in Eq. (8.23) can then be carried out numerically, if one calculates the polar-
izability as given in Eq. (4.74) pointwise as a function of the internuclear distance R.
The calculation of the vibrational polarizability in Eq. (8.8) requires correspondingly
the pointwise calculation of the electric dipole moment as a function of the inter-
nuclear distance and the numerical calculation of all vibrational wavefunctions and
corresponding vibrational energies supported by the potential energy surface of the
electronic ground state.

For polyatomic molecules the electronic polarizability in the clamped-nucleus treat-
ment is frequently expressed as the polarizability evaluated at an equilibrium geometry
{�RK,e} plus a vibrational correction Δαv

αe,av
αβ = 〈Θ(0)

v ({�RK}) |ααβ({�RK}) |Θ(0)
v ({�RK})〉 = ααβ({�RK,e}) + Δαv

αβ (8.25)

When one is interested in the correction for the vibrational ground state “v = 0”,
i.e. the state where the vibrational quantum numbers of all the vibrational modes of
the molecule are equal to zero, one calls this the zero-point vibrational correc-
tion (ZPVC) ΔαZPVC = Δαv=0. In order to calculate a vibrational correction
one expands the polarizability normally in a Taylor series in the set of normal
coordinates5 {Qa}

ααβ({�RK}) = ααβ({�RK,e})+
∑

a

(
∂ααβ

∂Qa

)
Qa +

1
2

∑
ab

(
∂2ααβ

∂Qa∂Qb

)
QaQb + · · · (8.26)

The vibrational correction is then obtained as a series of expectation values of
increasing powers of the normal coordinates {Qa}

Δαv
αβ =

∑
a

(
∂ααβ

∂Qa

)
〈Θ(0)

v |Qa |Θ(0)
v 〉 +

1
2

∑
ab

(
∂2ααβ

∂Qa∂Qb

)
〈Θ(0)

v |QaQb |Θ(0)
v 〉 + · · ·

(8.27)

The unperturbed, i.e. field-free, vibrational wavefunctions Θ(0)
v are in principle

found by solving the unperturbed vibrational Schrödinger equation Eq. (2.12), in

4 For highly accurate calculations of the vibration-rotation wavefunctions and energies one should
of course employ the effective Hamiltonian in Eq. (6.67).

5 For M nuclei there are 3M − 6 normal coordinates or 3M − 5 in the case of linear molecules.
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which the nuclear potential energy E
(0)
0 ({�RK}) is also expanded in a Taylor series in

the normal coordinates {Qa}

E
(0)
0 ({�RK}) = E

(0)
0 ({�RK,e}) +

1
2

∑
a

ω2
aQ2

a +
1
6

∑
abc

KabcQaQbQc + · · · (8.28)

where ωa =
√

Kaa and Kabc are the harmonic vibrational frequency and force constant
and the cubic force constant, respectively, defined as

Kab =
∂2E

(0)
0 ({�RK})

∂Qa∂Qb
(8.29)

Kabc =
∂3E

(0)
0 ({�RK})

∂Qa∂Qb∂Qc
(8.30)

Terminating the expansion after the quadratic term and choosing E
(0)
0 ({�RK,e}) as the

zero point of the potential energy one obtains an harmonic potential for which the
vibrational Schrödinger equation

1
2

∑
a

[
−�

2 ∂2

∂Q2
a

+ ω2
aQ2

a

]
|Θ(0,0)

v ({Qa})〉 = E(0,0)
v |Θ(0,0)

v ({Qa})〉 (8.31)

can be separated into equations for each normal mode Qa

1
2

[
−�

2 ∂2

∂Q2
a

+ ω2
aQ2

a

]
|ϑva

(Qa)〉 = Eva
|ϑva

(Qa)〉 (8.32)

with the energy

Eva
=

(
va +

1
2

)
�ωa (8.33)

and ϑva
(Qa) being a one-mode harmonic oscillator wavefunction. The total many-

mode vibrational wavefunction and energy in this harmonic approximation are then
given as

Θ(0,0)
v ({Qa}) =

∏
a

ϑva
(Qa) (8.34)

E(0,0)
v =

∑
a

Eva
(8.35)

The anharmonicity of the potential energy function, to first order expressed by the
cubic force constants {Kabc}, leads to a perturbation operator 1

6

∑
abc KabcQaQbQc.

The field-free vibrational wavefunction Θ(0)
v ({Qa}) is thus expanded in the usual

perturbation series

Θ(0)
v ({Qa}) = Θ(0,0)

v ({Qa}) + Θ(0,1)
v ({Qa}) + · · · (8.36)
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where the zeroth-order wavefunction is given in Eq. (8.34). For the expansion of the
first-order correction Θ(0,1)

v ({Qa}) we need according to Eq. (3.27) a complete set
of functions, which in general consists of all many-mode vibrational wavefunctions
obtained by exciting one, two and so forth up to all one-mode harmonic oscillator
functions ϑva

(Qa) to all possible higher (or lower) vibrational levels. However, in the
following we will derive only an expression for zero point vibrational corrections and
restrict ourselves therefore to corrections to the ground state vibrational wavefunction
Θ(0,0)

v=0 ({Qa}), which implies that we can restrict ourselves to many-mode vibrational
wavefunctions Θ(0,0)

vb=1({Qa}), where only one of the one-mode harmonic oscillator func-
tion ϑvb

(Qb) was excited to the vb = 1 level, while the other modes a �= b remain in
the lowest level va = 0 (Kern and Matcha, 1968), i.e.

Θ(0,0)
vb=1({Qa}) = ϑvb=1(Qb)

∏
a�=b

ϑva=0(Qa) (8.37)

The first-order correction to the ground-state vibrational wavefunction then reads

Θ(0,1)
v=0 ({Qa})=−

∑
b

|Θ(0,0)
vb=1({Qa})〉

〈Θ(0,0)
vb=1({Qa}) | 1

6

∑
cde KcdeQcQdQe |Θ(0,0)

v ({Qa})〉
� ωb

(8.38)

Using the following expectation values of the normal coordinates over one-mode
harmonic oscillator wavefunctions

〈ϑva
|Qa |ϑv′

a
〉 = 0 if v′

a �= va ± 1 (8.39)

〈ϑva
|Qa |ϑva+1〉 =

√
�

2ωa
(va + 1) (8.40)

〈ϑva
|QaQa |ϑva

〉 =
�

ωa
(va +

1
2
) (8.41)

we can evaluate the transition matrix element in Eq. (8.38) [see Exercise 8.1] and then
obtain for the first-order correction to the perturbed wavefunction

Θ(0,1)
v=0 ({Qa}) = −1

4

∑
b

|Θ(0,0)
vb=1({Qa})〉

√
�

2ω3
b

∑
c

Kbcc

ωc
(8.42)

Exercise 8.1 Prove that

1

6

∑
cde

Kcde〈Θ(0,0)
vb=1({Qa}) |QcQdQe |Θ(0,0)

v ({Qa})〉 =
�

4

√
�

2ωb

∑
c

Kbcc

ωc

using the expectation values in Eqs. (8.39) to (8.41).
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Now, we are finally ready to evaluate the matrix elements of the normal coordinates
in the expression for the zero-point vibrational correction. To the lowest non-vanishing
order in perturbation theory this gives

ΔαZPVC
αβ =

∑
a

(
∂ααβ

∂Qa

)
〈Θ(0)

v=0 |Qa |Θ(0)
v=0〉(1)+

1
2

∑
ab

(
∂2ααβ

∂Qa∂Qb

)
〈Θ(0)

v=0 |QaQb |Θ(0)
v=0〉(0)

(8.43)

as a consequence of Eqs. (8.39) and (8.41). Inserting Eqs. (8.34) and (8.42) into
Eq. (8.43) and using the properties (8.39) to (8.41) of the one-mode harmonic oscillator
functions again, one obtains finally for the zero-point-vibrational correction to the
static polarizability tensor [see Exercise 8.2]

ΔαZPVC
αβ = −�

4

∑
a

1
ω2

a

(
∂ααβ

∂Qa

)(∑
b

Kabb

ωb

)
+

�

4

∑
a

1
ωa

(
∂2ααβ

∂Q2
a

)
(8.44)

where the first term thus arises from the anharmonic term in the potential, Eq. (8.28),
and the second term comes from the non-linear term in the expansion of the polariz-
ability, Eq. (8.26). The are therefore sometimes called the mechanical and electrical
anharmonic contributions. Equivalent expressions for higher vibrational levels have
also been derived (Toyama et al., 1964).

Exercise 8.2 Derive the expression for the zero-point-vibrational correction (ZPVC) in
Eq. (8.44).

The effect of temperature, T , can finally be included by Boltzmann averaging the
averaged electronic polarizability over several vibrational states of energy E

(0)
v

αe
αβ(T ) =

∑
v αe,av

αβ e
−E

(0)
v

kT∑
v e

−E
(0)
v

kT

(8.45)

or after inserting the expansion of the vibrationally averaged polarizability, Eq. (8.25),

αe
αβ(T ) = ααβ({�RK,e}) +

∑
v Δαv

αβ e
−E

(0)
v

kT∑
v e

−E
(0)
v

kT

(8.46)

For the evaluation of the vibrational polarizability, Eq. (8.8), one needs to
calculate the vibrational energies, E

(0)
0v , as well as vibrational transition moments,

〈Θ(0)
v |μα |Θ(0)

v′ 〉, of the electric dipole moment. Both can be obtained by a perturba-
tion theory treatment similar to the one used here for the evaluation of the ZPVC to
electronic polarizability (Bishop and Kirtman, 1991).
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8.4 Further Reading

Vibrational Corrections to NMR Parameters

T. A. Ruden and K. Ruud, in M. Kaupp, M. Bühl and V. G. Malkin, ed. Calculation of
NMR and EPR Parameters Theory and Applications, Wiley-VCH, Weinheim (2004):
Chapter 10, pages 153–173.

Vibrational Corrections to Optical Parameters

D. M. Bishop, Molecular Vibrational and Rotational Motion in Static and Dynamic
Electric Fields, Rev. Mod. Phys. 62, 343–374 (1990).

D. M. Bishop, Molecular Vibration and Nonlinear Optics, Adv. Chem. Phys. 104,
1–40 (1998).



Part III

Computational Methods
for the Calculation of
Molecular Properties

In this final part we want to discuss quantum chemical methods that can be used
to calculate values of all the electric, magnetic and spectral properties that were
defined in the Chapters 4, 5, 6 and 7. The emphasis will hereby be more on the
conceptual aspects, on what the methods have in common and on how they differ
than on the technical and computational details of the methods. Explicit formulas for
these methods ready to be implemented in computer programs will not be presented
here in general.

In principle, one could start from the perturbation theory expressions that were
derived in these chapters and insert the appropriate ground and excited-state wave-
functions, |Ψ(0)

0 〉 and |Ψ(0)
n 〉. However, we have to remember that perturbation

theory as outlined in Section 3.2 and thus all the expressions for molecular prop-
erties derived in the previous chapters are based on the assumption that we have
solved the unperturbed Schrödinger equation, Eq. (3.14). Already in Section 3.2 it
was mentioned that this is not possible, but we had postponed it to the present
part to draw the necessary consequences of this problem. There are at least
three possible ways out of this dilemma and thus, starting points for approximate
methods:

1. We can make approximations to the “exact” perturbation theory expressions
derived in Chapters 4–7. This means that we will insert approximate unper-
turbed energies and wavefunctions in the expressions derived in Chapters 4–7
or approximate unperturbed wavefunctions and an incomplete set of operators
in the propagators derived in Section 3.12. Methods based on this approach are
discussed in Chapter 10.

2. We can keep the perturbation theory approach, but use approximate solutions to
the unperturbed Schrödinger equation as zeroth-order wavefunction and energy,
i.e. we can rederive expression for the corrections to the energy and wavefunctions
using perturbation theory but now with approximate wavefunctions. Methods
based on this approach are discussed in Chapter 11.
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3. We can abandon the perturbation theory approach all together and go back to the
definitions of the properties as derivatives of the energy. These definitions are then
applied to approximate expressions for the energy of a molecule in the presence
of the perturbations. Methods based on this approach are briefly discussed in
Chapter 12.

Consequently, the present part is organised in such a way that all methods that fall
in one of these three categories are discussed together in a chapter. There are cases
where identical working equations can be derived from two or all three of the starting
points. The most prominent cases are the methods obtained with self-consistent field
(SCF) or multiconfigurational self-consistent field (MCSCF) wavefunctions. The first-
order polarization propagator approximation (FOPPA) better known as the random-
phase approximation (RPA), the coupled Hartree–Fock method (CHF), the SCF linear
response theory and the analytical second derivative of the SCF energy will all give
identical equations and results for e.g. a static polarizability and correspondingly their
multiconfigurational generalisations.

In addition to the question of approximate perturbation theory there are at least
two other criteria that can be used to classify practical quantum chemical methods
for the calculation of electromagnetic properties:
Fulfillment of the Hellmann–Feynman theorem: In Chapters 4–7 we have seen
that molecular properties can be defined either as derivatives of the electronic energy
or as derivatives of molecular electromagnetic moments and fields. For exact states,
which obviously fulfill the Hellmann–Feynman theorem, both definitions lead to the
same expressions for the properties, but for an approximate method the same expres-
sion will only be obtained if the approximate method fulfills the Hellmann–Feynman
theorem.

Possibility for the calculation of time- or frequency-dependent properties:
Response theory methods obviously fulfill this condition and static properties are
actually obtained as the zero-frequency limit of response function. Methods based on
derivatives of the energy, on the other hand, can a priori not be used to calculate time-
or frequency-dependent properties, as the energy is not part of the time-dependent
Schrödinger equation. However, derivative techniques have become so popular that
several types of quasi- or pseudo-energies have been defined also for the time-dependent
case.

The methods that will be discussed in the following are all of the ab initio type.
Given the molecular field free Hamiltonian in Eq. (2.9), with the nuclear coordinates
and charges and the electronic mass given as parameters, in these methods all integrals
over this Hamiltonian or parts of it are evaluated ab initio, i.e. by strict application of
the appropriate mathematical rules and without using further data from experiment or
otherwise. The emphasis will be in particular on the SCF and on so-called correlated
methods. Semi-empirical or density functional theory (DFT) methods on the other
hand will not be mentioned explicitly. However, most of what will be said about SCF-
based methods for the calculation of properties will also apply to semi-empirical or
DFT methods, because one can consider to a certain extent the semi-empirical and
DFT methods as variants of SCF, just with a slightly different Hamiltonian.
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Throughout this part only closed-shell molecules and thus closed-shell wavefunc-
tions will be discussed. This implies that permanent magnetic moments and fields as
defined in Sections 5.3 and 5.6 will be zero.

We will start in the following chapter with a short review of ab initio methods
for the calculation of ground-state energies and wavefunctions, before we discuss how
these methods are employed in the calculation of electromagnetic properties.
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9

Short Review of Electronic
Structure Methods

In the present chapter a very brief review of closed-shell ab initio methods for the
calculation of the energy and wavefunction in the absence of perturbations is given. We
will cover only those methods whose application to the calculation of electromagnetic
properties will be discussed in the following sections. The main purpose of this section
is thus to introduce the concepts and notation of the different methods.

In the previous chapters we have in the notation carefully distinguished between
the ground state |Ψ(0)

0 〉 and exited states |Ψ(0)
n 〉 and between perturbed and unper-

turbed wavefunctions. In this and the following chapter, however, we will work with
unperturbed wavefunctions and energies. For the sake of a simpler notation we will
drop the superscript “(0)” for the unperturbed, i.e. field-free, problem. It will be only
used for the field-free Hamiltonian Ĥ(0) in these chapters.

For all the methods covered in this chapter it holds that the approximations1

|Φ0〉 to the ground-state N -electron wavefunction |Ψ(0)
0 〉 can be expressed as a linear

combination of Slater determinants {|Φn〉}

|Ψ(0)
0 〉 ≈ |Φ0〉 =

∑
n

|Φn〉 Cn0 (9.1)

Throughout this chapter we will assume that the approximate wavefunctions |Φ0〉 are
always properly normalized. A Slater determinant is an antisymmetrized product

|Φn〉 =
1√
N !

det

∣∣∣∣∣∣∣∣∣∣
ψ1(�x1) ψ2(�x1) · · · ψN (�x1)
ψ1(�x2) ψ2(�x2) · · · ψN (�x2)
...

...
. . .

...
ψ1(�xN ) ψ2(�xN ) · · · ψN (�xN )

∣∣∣∣∣∣∣∣∣∣
(9.2)

of one-electron molecular spin-orbitals {ψp(�x)}, which are the product of a spatial
molecular orbital φp(�r) and the appropriate abstract one-electron spin functions
α(s) or β(s)

1 To indicate via the notation that we are dealing with approximate wavefunctions, contrary to
the previous chapters, Φ is used as the symbol for all approximate N -electron wavefunctions instead of
Ψ. Furthermore, a superscript such as SCF, MCSCF, MPn or CC is added for particular approximate
wavefunctions.
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ψp(�x) = φp(�r)
{

α(s)
β(s) (9.3)

where s denotes the abstract spin variable and �x stands for spatial and spin variables
of an electron together. In restricted methods the same set of spatial molecular orbitals
{φp(�r)} is used for α and β spin orbitals.

Although it is not necessary in general, we will assume here that the molecular
orbitals (MO) are expanded in a basis of one-electron functions, {χμ}, denoted by
Greek indices and called atomic orbitals (AO) (although there is no restriction on
their position within the molecule)

φp =
∑

μ

χμ cμp (9.4)

where {cμp} are the molecular orbital coefficients. The spin orbitals in Eq. (9.3) and
therefore the Slater determinants in Eq. (9.2) depend consequently on the molecular
orbital coefficients {cμp}.

The approximate methods differ then in how the energy is calculated and how the
molecular orbital coefficients, {cμp}, and the coefficients {Cn0} in the expansion in
Slater determinants are determined. In this context, we can distinguish between

Variational methods such as the self-consistent field (SCF), multiconfigurational
self-consistent field (MCSCF) or full configuration interaction (full CI) methods,
where the energy is calculated as an expectation value

E0({Cn0}, {cμp}) = 〈Φ0({Cn0}, {cμp}) |Ĥ(0) |Φ0({Cn0}, {cμp})〉 (9.5)

and the wavefunction parameters {Cn0} and {cμp} are obtained variationally, i.e.
from the condition that the energy should be a minimum with respect to the
wavefunction parameters:

∂E0({Cn0}, {cμp})
∂Cn0

=
∂E0({Cn0}, {cμp})

∂cμp
= 0 (9.6)

Non-variational methods such as Møller–Plesset perturbation theory (MP) or the
coupled cluster (CC) method, where the energy can be expressed as a transition
or asymmetric expectation value

E0({Cn0}, {cμp}) = 〈Φ0
′({Cn0}, {cμp}) |Ĥ(0) |Φ0({Cn0}, {cμp})〉 (9.7)

and the determinant expansion coefficients {Cn0} are not obtained variationally,
but by projecting the corresponding Schrödinger equation against appropriate
determinants, while the molecular orbital coefficients {cμp} are still obtained
variationally from the SCF energy

∂ESCF
0 ({cμp})

∂cμp
= 0 (9.8)
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In a few cases explicit expressions of determinant expansion coefficients or other
matrix elements are given in this chapter in terms of two electron repulsion integrals
over spatial orbitals in the so-called Mulliken or chemical notation(
φi(�r1)φk(�r1)

∣∣φj(�r2)φl(�r2)
)

=
e2

4πε0

∫
�r1

∫
�r2

φ∗
i (�r1) φ∗

j (�r2)
1

|�r1 − �r2| φk(�r1) φl(�r2) d�r1 d�r2

(9.9)

9.1 Hartree–Fock Theory

All the ab initio methods discussed here are based on the Hartree–Fock (HF) or self-
consistent field method. In closed-shell HF theory the unperturbed many-electron
wavefunction |Ψ(0)

0 〉 is approximated by a single Slater determinant

|Ψ(0)
0 〉 ≈ |ΦSCF

0 〉 (9.10)

The spatial orbitals are solutions to the Hartree–Fock equations

f̂(i) φp(�ri) = εp φp(�ri) (9.11)

which are derived from the condition that the Hartree–Fock energy, ESCF
0 ,

ESCF
0 = 〈ΦSCF

0 |Ĥ(0) |ΦSCF
0 〉 (9.12)

has to be stationary with respect to a variation of the spin orbitals δψp

δESCF
0 = 0 (9.13)

under the constraint that the orbitals have to remain orthonormal

〈ψp | ψq〉 = δpq (9.14)

The Hartree–Fock Hamiltonian F̂ is the sum of the one-electron Fock operators
f̂(i) and is defined as

F̂ =
N∑
i

f̂(i) =
N∑
i

[
ĥ(0)(i) + v̂HF(i)

]
(9.15)

where ĥ(0)(i) is defined in Eq. (2.101) and v̂HF(i) is an effective one-electron potential,
called the Hartree–Fock potential, defined as

v̂HF(i) =
e2

4πε0

occ∑
j

∫
�r2

φ∗
j (�r2)

2 − P̂12

|�ri − �r2| φj(�r2) d�r2 (9.16)

where P̂12 is a permutation operator, which permutes electron 1 with 2. v̂HF(i) is
the potential that an electron experiences when it moves in the averaged field of
all the other electrons. In order to calculate this averaged field of the other elec-
trons one needs molecular orbitals φj(�r2) that describe the other electrons. Obviously
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they are also solutions of the Hartree–Fock equations Eq. (9.11). The Fock oper-
ator thus depends on its own eigenfunctions and the Hartree–Fock equations have
to be solved iteratively until self-consistency of the Hartree–Fock potential v̂HF(i) is
obtained. This is why the Hartree–Fock method is also called the self-consistent field
method.

The eigenvalues of the Fock operator are the orbital energies εp

εp = 〈ψp | f̂ |ψp〉 = 〈ψp | ĥ(0) |ψp〉 +
occ∑
j

[(
ψp(�r1) ψp(�r1)

∣∣ψj(�r2) ψj(�r2)
)

− (
ψp(�r1) ψj(�r1)

∣∣ψj(�r2) ψp(�r2)
)]

(9.17)

or in terms of the spatial orbitals

εp = 〈φp | f̂ |φp〉 = 〈φp | ĥ(0) |φp〉 +
occ∑
j

[
2
(
φp(�r1) φp(�r1)

∣∣φj(�r2) φj(�r2)
)

− (
φp(�r1) φj(�r1)

∣∣φj(�r2) φp(�r2)
)]

(9.18)

The N spin orbitals with the lowest energy, or N/2 spatial orbitals, are then used
to construct the N -electron Slater determinant |ΦSCF

0 〉, i.e. the Hartree–Fock wave-
function or SCF determinant. These spin or spatial orbitals are therefore called the
occupied orbitals and are denoted with the Latin indices i, j, k, . . .. Solutions to the
Hartree–Fock equation with higher orbital energies are called unoccupied or virtual
orbitals and are denoted by the indices a, b, c, . . . , while general spatial orbitals have
indices p, q, r, . . ..

The Hartree–Fock wavefunction |ΦSCF
0 〉 is an eigenfunction of the Hartree–Fock

Hamiltonian F̂

F̂ |ΦSCF
0 〉 =

N∑
i

εi|ΦSCF
0 〉 (9.19)

However, the eigenvalue is the sum of the orbital energies of the occupied orbitals
and not the Hartree–Fock energy, which is the expectation value of the full Hamilton
operator Ĥ(0), Eq. (9.12). When evaluated, this expectation value for the Hartree–
Fock energy becomes

ESCF
0 =

occ∑
i

〈ψi | ĥ(0) |ψi〉 +
1
2

occ∑
i

occ∑
j

[(
ψi(�r1) ψi(�r1)

∣∣ψj(�r2) ψj(�r2)
)

− (
ψi(�r1) ψj(�r1)

∣∣ψj(�r2) ψi(�r2)
)]

(9.20)
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or using the definition of the orbital energies Eq. (9.17)

ESCF
0 =

occ∑
i

εi − 1
2

occ∑
i

occ∑
j

[(
ψi(�r1) ψi(�r1)

∣∣ψj(�r2) ψj(�r2)
)

− (
ψi(�r1) ψj(�r1)

∣∣ψj(�r2) ψi(�r2)
)]

(9.21)

In terms of the spatial orbitals the Hartree–Fock energy is given as

ESCF
0 = 2

occ∑
i

〈φi | ĥ(0) |φi〉 +
occ∑
i

occ∑
j

[
2
(
φi(�r1) φi(�r1)

∣∣φj(�r2) φj(�r2)
)

− (
φi(�r1) φj(�r1)

∣∣φj(�r2) φi(�r2)
)]

(9.22)

or

ESCF
0 = 2

occ∑
i

εi −
occ∑
i

occ∑
j

[
2
(
φi(�r1) φi(�r1)

∣∣φj(�r2) φj(�r2)
)

− (
φi(�r1) φj(�r1)

∣∣φj(�r2) φi(�r2)
)]

(9.23)

In the Roothaan–Hartree–Fock approach (Roothaan, 1951) the molecular orbitals
are expanded in atomic orbitals, {χμ}, Eq. (9.4). Solving the Hartree–Fock equa-
tions for this ansatz then corresponds to finding the molecular orbital coefficients.

The variational condition for the Hartree–Fock energy, Eq. (9.13), is then
similarly

∂ESCF
0 ({cμp})

∂cμp
= 0 (9.24)

which applied to Eq. (9.12) implies also

∂

∂cμp
|ΦSCF

0 ({cμp})〉 = 0 (9.25)

9.2 Excited Determinants and Excitation Operators

Additional eigenfunctions of the Hartree–Fock Hamiltonian can be generated by
including virtual orbitals in the determinants instead of some or all of the occupied
orbitals. They are normally classified according to their relation to the Hartree–Fock
wavefunction, also called the SCF determinant, |ΦSCF

0 〉. A determinant in which one
of the orbitals of the SCF determinant |ΦSCF

0 〉, i.e. an occupied orbital i, is replaced
by another unoccupied orbital a is called a singly excited determinant |Φa

i 〉. In
doubly excited determinants |Φab

ij 〉 two occupied orbitals i and j are replaced by
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two unoccupied orbitals a and b and so forth up to N -tuply excited determinants,
where N is the number of electrons in the system.2

It is often convenient to express this in terms of general excitation operators eĥiμ
,

which act on the Hartree–Fock determinant. The excitation level is indicated by the
subscript i and μ refers to a particular operator of this general excitation level. The
whole set of excitation operators of level i is often collected in a column vector denoted
by ĥi. Alternatively, one often expresses excitation operators of a particular level
in terms of the single excitation or orbital rotation operators q̂†ai, where the
subscript ai then refers to the involved virtual and occupied orbitals.

The effect of single, double, etc. excitation operators acting on the Hartree–Fock
determinant can then be expressed in both notations as

eĥ1μ
|ΦSCF

0 〉 = q̂†ai|ΦSCF
0 〉 = |Φa

i 〉 (9.26)

eĥ2μ
|ΦSCF

0 〉 = q̂†aiq̂
†
bj |ΦSCF

0 〉 = |Φab
ij 〉 (9.27)

...

With these operators we can reformulate the expansion of the general approximate
N -electron wavefunction |Φ0〉 in a linear combination of Slater determinants, Eq. (9.1),
alternatively as

|Φ0〉 = C
(
1 + T̂1 + T̂2 + · · · + T̂i + · · · + T̂N

)
|ΦSCF

0 〉 (9.28)

where the excitation T̂i operators are defined as

T̂1 =
∑
ai

tai q̂†ai (9.29)

T̂2 =
∑
a>b
i>j

tab
ij q̂†ai q̂†bj (9.30)

...

T̂i =
∑

μ

tiμ

eĥiμ
(9.31)

...

T̂N =
∑

μ

tNμ

eĥNμ
(9.32)

2 These commonly used names are quite unfortunate, because a priori these determinants are
not related to the excited states of a molecule. However, in the simplest possible treatment of excited
states they can be used as a crude approximation for the excited states of a molecule, as discussed
in Section 10.2.
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The effect of e.g. T̂1 acting on |ΦSCF
0 〉 in Eq. (9.28) is thus

T̂1|ΦSCF
0 〉 =

∑
ai

tai q̂†ai|ΦSCF
0 〉 =

∑
ai

tai |Φa
i 〉 (9.33)

and similar for T̂2 etc. The expansion coefficients tai , tab
ij or in general tiμ

will in the
following bear different names like correlation coefficients or amplitudes, depending
on how they are determined.

Analogously, one also expands a general approximate N -electron bra state 〈Φ0| in
a complete set of operators acting on the bra Hartree–Fock determinant

〈Φ0| = 〈ΦSCF
0 |

(
1 + Λ̂1 + Λ̂2 + · · · + Λ̂i + · · · + Λ̂N

)
C (9.34)

where the de-excitation operators Λ̂i are defined as

Λ̂1 =
∑
ai

λa
i q̂ai (9.35)

Λ̂2 =
∑
a>b
i>j

λab
ij q̂ai q̂bj (9.36)

...

Λ̂iμ
=

∑
iμ

λiμ

dhiμ
(9.37)

...

Λ̂Nμ
=

∑
Nμ

λNμ

dhNμ
(9.38)

The q̂ai, q̂aiq̂bj or general dhiμ
operators are the hermitian conjugate or adjoint of the

excitation operators

q̂ai = (q̂†ai)
† (9.39)

q̂aiq̂bj = (q̂†bj q̂
†
ai)

† (9.40)

...
dĥiμ

= eĥ†
iμ

(9.41)

They are therefore the single de-excitation, double de-excitation and so forth
operators and their effect is best described by letting them act on the Hartree–Fock
determinant as a bra state

〈ΦSCF
0 | dĥ1μ

= 〈ΦSCF
0 |q̂ai = 〈Φa

i | (9.42)

〈ΦSCF
0 | dĥ2μ

= 〈ΦSCF
0 |q̂bj q̂ai = 〈Φab

ij | (9.43)

...
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The expansion coefficients λiμ
are normally just called “λ” amplitudes and will not

necessarily be related to the tiμ
amplitudes.

The whole set of excitation operators {eĥiμ
} forms a complete set of operators,

meaning that acting on the Hartree–Fock wavefunction they generate all excited
determinants and form therefore a resolution of the identity

1 = |ΦSCF
0 〉〈ΦSCF

0 | +
∑
iμ

eĥiμ
|ΦSCF

0 〉〈ΦSCF
0 | dĥiμ

(9.44)

9.3 Multiconfigurational Self-Consistent Field Method

The multiconfigurational self-consistent field method (MCSCF) is the generalization
of the Hartree–Fock method in the sense that the wavefunction

|Ψ(0)
0 〉 ≈ |ΦMCSCF

0 〉 =
∑

n

|Φn〉 Cn0 (9.45)

is now a linear combination of several Slater determinants or configuration state func-
tions, |Φn〉. The latter are spin- or symmetry-adapted linear combinations of a few
determinants.

The molecular orbital coefficients, {cμp}, as well as the configuration expansion
coefficients, {Cn0}, are simultaneously determined variationally

∂EMCSCF
0 ({Cn0}), {cμp})

∂cμp
=

∂EMCSCF
0 ({Cn0}), {cμp})

∂Cn0
= 0 (9.46)

An alternative formulation of the MCSCF wavefunction makes use of an exponen-
tial unitary transformation of the orbitals and also of the configuration state functions
in a given initial wavefunction |ΦMCSCF

0 〉

|ΦMCSCF
0 ({κpq}, {Sn0})〉 = e−κ̂e−Ŝ |ΦMCSCF

0 〉 (9.47)

The operators Ŝ and κ̂ are defined as

Ŝ =
∑
n�=0

(
Sn0 R̂†

n0 − S∗
n0 R̂0n

)
(9.48)

κ̂ =
∑
p>q

κpq

(
q̂†pq − q̂†qp

)
(9.49)

where {R̂†
n0} and {R̂0n} are state transfer operators

R̂†
n0 = |ΦMCSCF

n 〉〈ΦMCSCF
0 | (9.50)

R̂0n = |ΦMCSCF
0 〉〈ΦMCSCF

n | (9.51)

the wavefunctions |ΦMCSCF
n 〉 are the orthogonal complement states to |ΦMCSCF

0 〉 and
q̂†pq are the single excitation operators of Eq. (9.26) but here for general orbitals p
and q.
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The same formulation can also be used for the single determinant of the Hartree–
Fock wavefunction. All coefficients Sn0 then vanish and only the orbitals are unitarily
transformed, i.e.

|ΦSCF
0 ({κai})〉 = e−κ̂|ΦSCF

0 〉 (9.52)

The anti-hermitian operator κ̂ is here defined as

κ̂ =
∑
ai

κai

(
q̂†ai − q̂†ia

)
(9.53)

where q†ai are the proper single excitation operators, Eq. (9.26), which explains why
they are also called the orbital rotation operators. Rotations between the virtual
orbitals vanish obviously, while rotations between the occupied orbitals correspond to
linear combinations of the columns in the Slater determinant and leave the value of
the determinant, i.e. the wavefunction, unchanged. One of the advantages of this for-
mulation of the Hartree–Fock wavefunction is that the orthonormality of the orbitals,
Eq. (9.14), is always preserved in a unitary transformation.

The formulation of the MCSCF wavefunction in Eq. (9.47) will later be the starting
point for the derivation of MCSCF linear response functions in Section 11.2.

9.4 Configuration Interaction

In the multiconfigurational self-consistent field method both the configuration coeffi-
cients {Cn0} as well as the molecular orbital coefficients {cμp} are varied until the
energy becomes minimal. If one keeps the latter fixed and optimizes the energy only
with respect to the configuration coefficients {Cn0}, i.e.

∂ECI
0 ({Cn0}))
∂Cn0

=
∂〈ΦCI

0 ({Cn0}) |Ĥ(0) |ΦCI
0 ({Cn0})〉

∂Cn0
= 0 (9.54)

one obtains the configuration interaction (CI) method. The wavefunction in
the CI method then takes the same form as in MCSCF with the difference that the
molecular orbital coefficients {cμp} are kept fixed

|Ψ(0)
0 〉 ≈ |ΦCI

0 〉 =
∑

n

|Φn〉 Cn0 (9.55)

However, normally one expresses the CI wavefunction like in Eq. (9.28)3 in terms of
the Hartree–Fock wavefunction and the excited determinants {|Φa···

i··· 〉} as

|ΦCI
0 〉 = |ΦSCF

0 〉C0 +
∑

a
i

|Φa
i 〉 Ca

i +
∑
a>b
i>j

|Φab
ij 〉 Cab

ij +
∑

a>b>c
i>j>k

|Φabc
ijk〉 Cabc

ijk + · · · (9.56)

Application of the variational condition, Eq. (9.54), then leads to a set of linear
equations for the configuration coefficients, which are conveniently written as the
following matrix eigenvalue equation

3 The C and t coefficients are then related as Ca···
i··· = Cta···i··· and C0 = C.
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ĤC = ECIC (9.57)

where Ĥ is the configuration interaction or CI matrix, i.e. the matrix of the
unperturbed molecular Hamiltonian Ĥ(0) in the basis of the Hartree–Fock and excited
determinants {|ΦSCF

0 〉, |Φa···
i··· 〉}, and C is the configuration coefficients collected in a

column vector.
Solving the eigenvalue equation for the energy ECI one has to evaluate matrix

elements of the Hamiltonian Ĥ(0) between the Hartree–Fock Slater determinant ΦSCF
0

and excited Slater determinants or between two excited Slater determinants. In this
context the so-called Slater–Condon rules become very useful, which state that

• The matrix element between two Slater determinants, which differ by only one
spin orbital, i.e. a Slater determinant Φ and another Φr

p, where the spin orbital
ψp is replaced by a spin orbital ψr, is equal to

〈Φ |Ĥ(0) |Φr
p〉 = 〈ψp | ĥ(0) |ψr〉 (9.58)

+
∑

s

[(
ψp(�r1) ψr(�r1)

∣∣ψs(�r2) ψs(�r2)
)− (

ψp(�r1) ψs(�r1)
∣∣ψs(�r2) ψr(�r2)

)]
where the summation over s runs over all spin orbitals that are included in both
Slater determinants.

• The matrix element between two Slater determinants, which differ by two spin
orbitals, i.e. a Slater determinant Φ and another Φrs

pq, where the spin orbital
ψp is replaced by a spin orbital ψr and the spin orbital ψq is replaced by a spin
orbital ψs, is equal to

〈Φ |Ĥ(0) |Φrs
pq〉 =

(
ψp(�r1) ψr(�r1)

∣∣ψq(�r2) ψs(�r2)
)− (

ψp(�r1) ψs(�r1)
∣∣ψq(�r2) ψr(�r2)

)
(9.59)

• All matrix elements between two Slater determinants, which differ by more than
two spin orbitals, i.e. a Slater determinant Φ and another Φrs···

pq··· vanish

〈Φ |Ĥ(0) |Φrs···
pq···〉 = 0 (9.60)

However, the matrix element 〈ΦSCF
0 | Ĥ(0) | Φa

i 〉 between the Hartree–Fock
determinant and any singly excited determinant is special and vanishes

〈ΦSCF
0 |Ĥ(0) |Φa

i 〉 = 〈ψi | f̂ |ψa〉 = 0 (9.61)

because it is equal to an occupied-virtual off-diagonal element of the Fock matrix,
which is zero, if the orbitals are solutions of the Hartree–Fock equations Eq. (9.11).
This is called the Brillouin theorem.

9.5 Møller–Plesset Perturbation Theory

One of the most widely used methods for treating the electron correlation missing in
the Hartree–Fock wavefunction is Møller–Plesset (MP) perturbation theory (Møller
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and Plesset, 1934; Pople et al., 1976), an application of Rayleigh–Schrödinger per-
turbation theory as outlined in Section 3.2 to the electron correlation problem. The
field-free Hamiltonian Ĥ(0) is thereby partitioned

Ĥ(0) = F̂ + V̂ (9.62)

in the Hartree–Fock Hamiltonian F̂ and the so-called fluctuation potential V̂ . The
latter is the difference between the correct electron–electron repulsion term of the
Hamiltonian, Eq. (2.101), and the effective electron repulsion as expressed by the sum
over the Hartree–Fock potentials

V̂ =
∑
i<j

ĝ(i, j) −
∑

i

v̂HF(i) (9.63)

The fluctuation potential takes over the role of the perturbation and the wavefunc-
tion and energy are thus expanded in a perturbation series in V̂

|Ψ(0)
0 〉 ≈ |ΦMP

0 〉 = C
(|ΦSCF

0 〉 + |ΦMP1〉 + |ΦMP2〉 + · · · ) (9.64)

E
(0)
0 ≈ EMP

0 = EMP0 + EMP1 + EMP2 + · · ·

= ESCF
0 + EMP2 + · · · (9.65)

where C is a normalization constant and the zeroth-order wavefunction is the sin-
gle determinant SCF wavefunction, |ΦSCF

0 〉. The notation without and with the
subscript “0” tries to distinguish between the MP second-order correction to the
energy EMP2 and the MP second-order (MP2) energy EMP2

0 = ESCF
0 + EMP2. Equa-

tion (9.65) states that the Hartree–Fock energy is the sum of the zeroth and first-order
energy and that one has to go at least to second order for the first correction to the
Hartree–Fock energy.4 This can easily be seen [see Exercise 9.1], if one compares the
definition of the Hartree–Fock energy, Eq. (9.12), as expectation value of the total
Hamiltonian with the partitioning of the Hamiltonian in MP perturbation theory,
Eq. (9.63), and the perturbation theory expression for the zeroth and first-order energy,
Eqs. (3.14) and (3.29). The zeroth-order energy is the eigenvalue of the Hartree–
Fock Hamiltonian F̂ and thus only the sum of the orbital energies of the occupied
orbitals.

Exercise 9.1 Show that the Hartree-Fock energy is equal to EMP0 + EMP1.

The first- and higher-order corrections to the wavefunction, Eqs. (3.23) and (3.28),
are as usual expanded in the eigenfunctions of the unperturbed Hamiltonian F̂ , which

4 This was actually the question investigated in the original paper by Møller and Plesset (Møller
and Plesset, 1934). Møller–Plesset perturbation theory as a systematic approach for calculating elec-
tronic energies and wavefunctions was first extensively explored by Pople and coworkers (Pople et al.,
1976).
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are the singly excited |Φa
i 〉, doubly excited |Φab

ij 〉, . . . N -tuply excited deter-
minants, Eqs. (9.26), (9.27), etc. With this definition of the many-electron basis
functions the first-order correction to the wavefunction, Eq. (3.27), becomes5

|ΦMP1〉 =
∑
n�=0

| Φn〉 〈Φn | V̂ |ΦSCF
0 〉

〈ΦSCF
0 | F̂ |ΦSCF

0 〉 − 〈Φn | F̂ |Φn〉
= T̂2[1]|ΦSCF

0 〉 =
∑
a>b
i>j

tab
ij [1] |Φab

ij 〉

(9.66)

because the matrix element 〈Φn | V̂ |ΦSCF
0 〉 vanishes for all but doubly excited deter-

minants |Φab
ij 〉 [see Exercise 9.2]. The first-order doubles correlation coefficients

are thus given as

tab
ij [1] =

(
φa(�r1) φi(�r1)

∣∣φb(�r2) φj(�r2)
)

εi + εj − εa − εb
(9.67)

where the two-electron repulsion integral is defined in Eq. (9.9). Correlation coefficients
is the name commonly given in MP perturbation theory to the determinant expansion
coefficients Cn0 of the approximate wavefunction Eq. (9.1).

Exercise 9.2 Show that only doubly excited determinants can contribute to the first-order
correction to the wavefunction.

Hint: Use the Slater–Condon rules in Eqs. (9.58) to (9.60) and Brillouin’s theorem Eq. (9.61).

The second-order MP correction to the energy is then given as an asymmetric
expectation value

EMP2 = 〈ΦSCF
0 | V̂ |ΦMP1〉 = 〈ΦSCF

0 | V̂ T̂2[1] |ΦSCF
0 〉

=
1
2

∑
ab
ij

(
φi(�r1) φa(�r1)

∣∣φj(�r2) φb(�r2)
) {

4 tab
ij [1] − 2 tab

ji [1]
}

(9.68)

The second-order MP correction to the wavefunction

|ΦMP2〉 =
∑
n�=0

|Φn〉
(

〈Φn | V̂ |ΦMP1〉
〈ΦSCF

0 | F̂ |ΦSCF
0 〉 − 〈Φn | F̂ |Φn〉

−〈ΦSCF
0 | V̂ |ΦSCF

0 〉 〈Φn | ΦMP1〉
〈ΦSCF

0 | F̂ |ΦSCF
0 〉 − 〈Φn | F̂ |Φn〉

)
(9.69)

5 The “[1]” in T̂2[1] or tab
ij [1] indicates here and in the following that one is dealing with MP1

correlation coefficients. Correspondingly, “[2]” will denote MP2 correlation coefficients.
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consists of singly, doubly, triply and quadruply excited determinants

|ΦMP2〉 =
∑
ai

tai [2] |Φa
i 〉 +

∑
a>b
i>j

tab
ij [2] |Φab

ij 〉 +
∑

a>b>c
i>j>k

tabc
ijk [2] |Φabc

ijk〉 +
∑

a>b>c>d
i>j>k>l

tabcd
ijkl [2] |Φabcd

ijkl 〉

(9.70)

where, e.g., the second-order singles correlation coefficients are given as

tai [2] =
1√
2

1
εi − εa

⎛⎝∑
jbc

(
φa(�r1) φb(�r1)

∣∣φj(�r2) φc(�r2)
) {

4 tbc
ij [1] − 2 tbc

ji [1]
}

−
∑
jkb

(
φk(�r1) φi(�r1)

∣∣φj(�r2) φb(�r2)
) {

4 tba
jk[1] − 2 tba

kj [1]
}⎞⎠ (9.71)

9.6 Coupled Cluster Theory

In coupled cluster theory (CC) the N -electron wavefunction is given as

|Ψ(0)
0 〉 ≈ |ΦCC

0 〉 = eT̂ |ΦSCF
0 〉 (9.72)

where the cluster operator T̂ consists of single, double and so forth excitation
operators

T̂ = T̂1 + T̂2 + · · · + T̂i + · · · + T̂N (9.73)

defined in Eqs. (9.29) to (9.32). The determinant expansion coefficients tai , tab
ij , tiμ

and so forth of the singly, doubly, i-tuply, etc. excited determinants are in coupled
cluster theory called singles, doubles, i -tuple, etc. amplitudes. Different coupled
cluster methods are obtained by truncating the expansion of T̂ in Eq. (9.73). In
the popular coupled cluster singles and doubles model (CCSD), the cluster
operator consists of T̂1 and T̂2.

Inserting the coupled cluster wavefunction, Eq. (9.72), in the Schrödinger equation
gives the coupled cluster Schrödinger equation

Ĥ(0)|ΦCC
0 〉 = ECC

0 |ΦCC
0 〉 (9.74)

Similarly to the MP2 energy, Eq. (9.68), the coupled cluster energy is obtained as a
transition expectation value by projecting against the Hartree–Fock wavefunction

ECC
0 = 〈ΦSCF

0 |Ĥ(0) |ΦCC
0 〉 (9.75)

where it was used that |ΦSCF
0 〉 is orthogonal to all excited determinants. Alternatively,

one could also have projected against 〈ΦSCF
0 |e−T

ECC
0 = 〈ΦSCF

0 |e−T̂ Ĥ(0) |ΦCC
0 〉 (9.76)



202 Short Review of Electronic Structure Methods

Again, similarly to Møller–Plesset perturbation theory, the amplitudes can be
obtained by solving the set of coupled non-linear equations that are generated by
projecting the coupled cluster Schrödinger equation against 〈Φa

i |e−T̂ , 〈Φab
ij |e−T̂ , etc.

〈Φa
i |e−T̂ Ĥ(0) |ΦCC

0 〉 = 0 (9.77)

〈Φab
ij |e−T̂ Ĥ(0) |ΦCC

0 〉 = 0 (9.78)

...

〈ΦSCF |dĥNμ
e−T̂ Ĥ(0) |ΦCC

0 〉 = 0 (9.79)

where the right-hand sides vanish because of

〈ΦSCF |dĥiμ
e−T̂ |ΦCC

0 〉 = 〈ΦSCF |dĥiμ
e−T̂ eT̂ |ΦSCF

0 〉 = 〈ΦSCF |dĥiμ
|ΦSCF

0 〉 = 0 (9.80)

The coupled cluster amplitude equations are often collectively called the coupled
cluster vector function ei with elements,

eiμ
= 〈ΦSCF |dĥiμ

e−T̂ Ĥ(0) |ΦCC
0 〉 = 0 (9.81)

For the popular CCSD model recalling the definition of an exponential operator
Eq. (3.71) and using the Møller–Plesset partitioning of the Hamiltonian, Eq. (9.62),
the expression for the energy and the amplitude equations then become

ECCSD
0 = 〈ΦSCF

0 |e−T̂ Ĥ(0) |ΦCCSD〉 = 〈ΦSCF
0 |e−(T̂1+T̂2)Ĥ(0)e−(T̂1+T̂2) |ΦSCF

0 〉

= ESCF
0 + 〈ΦSCF

0 | V̂ (
1
2
T̂ 2

1 + T̂2) |ΦSCF
0 〉 (9.82)

and

〈Φa
i |e−(T̂1+T̂2)Ĥ(0) |ΦCCSD

0 〉 = 〈Φa
i | [F̂ , T̂1] + V̂ T1 + [V̂ T1 , T̂2] |ΦSCF

0 〉 = 0 (9.83)

〈Φab
ij |e−(T̂1+T̂2)Ĥ(0) |ΦCCSD

0 〉

= 〈Φab
ij | [F̂ , T̂2] + V̂ T1 + [V̂ T1 , T̂2] +

1
2
[[V̂ T1 , T̂2], T̂2] |ΦSCF

0 〉 = 0 (9.84)

where we have introduced the T̂1 transformed operators (Koch et al., 1994)

ÔT1 = e−T̂1Ô eT̂1 (9.85)

in analogy to the interaction picture in Eq. (3.70).
In the CC2 model (Christiansen et al., 1995b) these amplitude equations are

approximated based on Møller-Plesset perturbation theory arguments, however, with
the slight difference that the single excitations and thus the T̂1 operator are treated
as being of zeroth order, while in normal Møller–Plesset perturbation theory they
enter first in the second-order wavefunction, Eq. (9.69), due to the Brillouin theo-
rem, Eq. (9.61), and thus are of second order. The reason for this choice is simply
that contrary to MP2 the CC2 method was constructed for the calculation of not
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only electronic energies and wavefunctions but primarily for the calculation of mole-
cular properties via the response theory approach. In the presence of an external
perturbation, however, the single excitations will already enter the wavefunction in
zeroth-order, as will be shown later in Section 11.1. On the other hand, the double
excitation and thus the T̂2 operator are treated as first order like in Møller–Plesset
perturbation theory, Eq. (9.66). The amplitude equations to second order, defined in
this way, i.e. the CC2 amplitude equations then become

〈Φa
i |e−(T̂1+T̂2)Ĥ(0) |ΦCC2

0 〉 = 〈Φa
i | [F̂ , T̂1] + V̂ T1 + [V̂ T1 , T̂2] |ΦSCF

0 〉 = 0 (9.86)

〈Φab
ij |e−(T̂1+T̂2)Ĥ(0) |ΦCC2

0 〉 = 〈Φab
ij | [F̂ , T̂2] + V̂ T1 |ΦSCF

0 〉 = 0 (9.87)

The next-higher method would be CCSDT (Noga and Bartlett, 1987, 1988;
Scuseria and Schaefer, 1988), where triple excitations T̂3 are also included in the
wavefunction. This is therefore a rather expensive method and not yet employed on
a regular basis. However, one can make the same type of approximation to the equa-
tions for the triples amplitudes, i.e. the triples coupled cluster vector function e3, as
were made in CC2 to the doubles amplitude equations. This leads then to the CC3
model (Christiansen et al., 1995a). Nevertheless, one still has to solve the equations
for the triples amplitudes iteratively. An non-iterative alternative is the CCSD(T)
model (Raghavachari et al., 1989), where the triples correction to the CCSD energy is
obtained from the triples contribution to the fourth-order Møller–Plesset perturbation
theory energy and from one fifth-order term describing the coupling between singles
and triples. Both contributions are, however, evaluated with the CCSD amplitudes.

9.7 The Hellmann–Feynman Theorem for Approximate
Wavefunctions

The approximate wavefunctions |Φ0〉 described in the previous sections of this chapter
depend on molecular orbital coefficients {cμp} and possibly also on some kind of
configuration or determinant coefficients {Cn0} that together are here denoted as
{Ci}. The energy of a molecule in all these approximate methods can be expressed as
the following asymmetric expectation value

E0 = 〈Φ0
′ |Ĥ(0) |Φ0〉 (9.88)

In the case of the variational methods, SCF, MCSCF and CI, |Φ0
′〉 = |Φ0〉 and we

have the normal expectation value. For the non-variational methods such as Møller–
Plesset perturbation or coupled cluster theory, the energy is calculated as a transition
expectation value, where |Φ0

′〉 = |ΦSCF
0 〉.

Let us now consider again the case of a Hamiltonian Ĥ(λ), which depends on a
perturbation symbolized by the real parameter λ. Both sets of wavefunction coefficients
will depend on λ and the wavefunction thus indirectly also

|Φ0(λ)〉 = |Φ0({Ci(λ)})〉 (9.89)

In addition to the wavefunction parameters, {cμp} and {C0k}, also the basis func-
tions χμ can depend on the perturbation. This will be the case when the perturbation
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corresponds to a change in the geometry or when perturbation-dependent basis func-
tions such as the gauge including atomic orbitals (GIAO) (London, 1937) are used.
In the following, however, we will ignore the dependence of the basis functions on the
perturbation.

The derivative of the electronic energy E0(λ, {Ci(λ)}) with respect to the real
parameter λ is then

dE0(λ, {Ci(λ)})
dλ

=
∂E0(λ, {Ci(λ)})

∂λ
+

∑
i

(
∂(E0(λ, {Ci(λ)})

∂Ci(λ)

)(
∂Ci(λ)

∂λ

)
(9.90)

or

dE0(λ, {Ci(λ), C ′
i(λ)})

dλ
= 〈Φ0

′({C ′
i(λ)}) | ∂Ĥ(λ)

∂λ
|Φ0({Ci(λ)})〉

+
∑

i

〈∂Φ0
′({C ′

i(λ)})
∂C ′

i(λ)
|Ĥ(λ) |Φ0({Ci(λ)})〉

(
∂C ′

i(λ)
∂λ

)
(9.91)

+
∑

i

〈Φ0
′({C ′

i(λ)}) |Ĥ(λ) | ∂Φ0({Ci(λ)})
∂Ci(λ)

〉
(

∂Ci(λ)
∂λ

)
in the case that the energy can be written as the asymmetric expectation value,
Eq. (9.88). The molecular orbital coefficients will actually be the same in |Φ0

′〉 and
|Φ0〉, i.e. c′μp = cμp for MPn and CC wavefunctions.

If the wavefunction is variationally optimised with respect to all parameters, i.e.

∂E0(λ, {Ci(λ), C ′
i(λ)})

∂Ci(λ)
=

∂E0(λ, {Ci(λ), C ′
i(λ)})

∂C ′
i(λ)

= 0 (9.92)

and thus
∂

∂Ci(λ)
|Φ0({Ci(λ)})〉 =

∂

∂C ′
i(λ)

〈Φ0({C ′
i(λ)})| = 0 (9.93)

the Hellmann–Feynman theorem is fulfilled again

dE0(λ, {Ci(λ), C ′
i(λ)})

dλ
=

∂E0(λ, {Ci(λ), C ′
i(λ)})

∂λ

= 〈Φ0
′({C ′

i(λ)}) | ∂Ĥ(λ)
∂λ

|Φ0({Ci(λ)})〉 (9.94)

This is always the case for a SCF and MCSCF wavefunction, because they are
optimized with respect to all wavefunction parameters. Truncated CI wavefunctions,
by contrast, are not variationally optimized with respect to the molecular orbital
coefficients. The Hellmann–Feynman theorem is therefore satisfied only in the limit
of a full CI wavefunction, when the molecular orbital coefficients are redundant.

In non-variational approaches such as Møller–Plesset perturbation theory or cou-
pled cluster methods the wavefunction is not at all variationally optimized. However,
it is possible to choose 〈Φ0

′| in such a way that the Hellmann–Feynman theorem is
fulfilled to a certain extent, while the transition expectation value in Eq. (9.88) still
gives the energy.
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Arponen (1983) defined such a transition expectation value for the coupled cluster
energy

ECC,Λ
0 = 〈ΦΛ

0 |Ĥ(0) |ΦCC
0 〉 (9.95)

between the coupled cluster state and a dual bra or “Λ” state 〈ΦΛ
0 | defined as

〈ΦΛ
0 | = 〈ΦSCF

0 |(1 + Λ̂) e−T̂ (9.96)

The Λ̂ operator is defined in complete analogy to the T̂ operator, Eq. (9.73) as the
sum of the de-excitation operators

Λ̂ = Λ̂1 + Λ̂2 + · · · + Λ̂i + · · · + Λ̂N (9.97)

given in Eqs. (9.35) to (9.38).
The transition expectation value in Eq. (9.95) is an example of the much more gen-

eral concept of Lagrangians (Jørgensen and Helgaker, 1988; Helgaker and Jørgensen,
1988; Helgaker et al., 1989; Christiansen et al., 1998b) for non-variational wavefunc-
tions. A Lagrangian is the normal expression for the energy of a non-variational
wavefunction augmented with constraints that are simply the equations from which the
wavefunction parameters are determined, multiplied with some Lagrangian multipli-
ers. The goal with this formulation of the Lagrangian is that it can be made stationary
with respect to the wavefunction parameters contrary to the normal energy expression
of non-variational wavefunctions.

In the case of the coupled cluster wavefunction the equations for the wavefunction
parameters, i.e. for the coupled cluster amplitudes tiμ

, are simply the equations for
the coupled cluster vector function eiμ

in Eq. (9.81). The constraints are then eiμ
= 0

and the coupled cluster Langrangian LCC
0 (Christiansen et al., 1995a, 1998b) is given

as
LCC

0 = ECC
0 +

∑
iμ

λiμ
eiμ

(9.98)

where λiμ
are Lagrangian multipliers. Comparison with Eq. (9.95) [see Exercise 9.3]

shows that Arponen’s transition expectation value is just an alternative way of writing
the coupled cluster Langrangian

ECC,Λ
0 = LCC

0 (9.99)

and that the Lagrangian multipliers in the coupled cluster Lagrangian are the λiμ

amplitudes defined in Eqs. (9.35) to (9.38). The definition of the dual bra or “Λ” state
〈ΦΛ

0 | is thus just a convenient way to build these constraints into an expectation value
expression. The variational condition with respect to the λiμ

amplitudes is trivially
fulfilled for the coupled cluster Lagrangian ECC,Λ

0 = LCC
0

∂LCC
0

∂λiμ

=
∂ECC,Λ

0

∂λiμ

= 0 (9.100)

because the derivative with respect to the λiμ
amplitudes is

∂〈ΦΛ
0 |Ĥ(0) |ΦCC〉

∂λiμ

= 〈ΦSCF |dhiμ
e−T̂ Ĥ(0) |ΦCC

0 〉 = eiμ
= 0 (9.101)
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i.e. the coupled cluster vector function eiμ
, Eq. (9.81), and thus the equations that the

coupled cluster amplitudes anyway fulfill. On the other hand, equations for the CC
λiμ

amplitudes are obtained from the condition that the coupled cluster Lagrangian
ECC,Λ

0 = LCC
0 is stationary with respect to the tiμ

amplitudes, i.e.

∂LCC
0

∂tiμ

=
∂ECC,Λ

0

∂tiμ

=
∂〈ΦΛ

0 |Ĥ(0) |ΦCC〉
∂tiμ

= 〈ΦΛ
0 | [Ĥ(0), ehiμ

] |ΦCC〉 = 0 (9.102)

Exercise 9.3 Insert the expressions for the “Λ” state 〈ΦΛ
0 |, Eq. (9.96), and the Λ̂ operator,

Eq. (9.97), in the expression for Arponen’s transition expectation value, Eq. (9.95), and show
that is equal to the coupled cluster Langrangian LCC

0 in Eq. (9.98).

The transition expectation value ECC,Λ
0 , or coupled cluster Lagrangian LCC

0 , is thus
stationary with respect to the configuration or determinant coefficients and therefore
satisfies partially the Hellmann–Feynman theorem

∂ECC,Λ
0

∂λ
=

∂LCC
0

∂λ
=

∂〈ΦΛ
0 (λ) |Ĥ(λ) |ΦCC

0 (λ)〉
∂λ

= 〈ΦΛ
0 | ∂Ĥ(λ)

∂λ
|ΦCC

0 〉 (9.103)

which implies that identical expressions for first-order properties can be obtained as
first derivatives of the energy or as asymmetric expectation value with the Λ state.

Similar transition expectation values can also be defined for other non-variational
methods like Møller–Plesset perturbation theory, where one defines a Lagrangian by
adding the equations for the correlation coefficients as extra conditions multiplied with
Lagrangian multipliers to the respective MP energy expression (Hättig and Heß, 1995;
Aiga and Itoh, 1996).

In Section 12.2 it will be discussed that this approach for the calculation of expecta-
tion values is called the unrelaxed method, because the conditions for the molecular
orbital coefficients were not included as additional constraints in the coupled cluster
Lagrangian given in Eq. (9.95) or Eq. (9.98). A coupled cluster Lagrangian including
orbital relaxation takes the following form

LCC,relax
0 = 〈ΦSCF

0 |e−κ̂Ĥ(0)eκ̂eT̂ |ΦSCF
0 〉

+
∑
iμ

λiμ
〈ΦSCF

0 |dĥiμ
e−T̂ e−κ̂Ĥ(0)eκ̂ eT̂ |ΦSCF

0 〉

+
∑
pq

τpq〈ΦSCF
0 |

[
q†pq , e−κ̂Ĥ(0)eκ̂

]
|ΦSCF

0 〉 (9.104)

where κ̂ is the orbital rotation operator from Eq. (9.49) and the τpq coefficients are
the Lagrangian multipliers for the conditions on the molecular orbital coefficients, i.e.
the Brillouin theorem Eq. (9.61).
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Although it is not directly related to the Hellmann–Feynman theorem, we list also
the second derivatives of the energy for an approximate wavefunction here

d2

dλ2
E0(λ, {Ci(λ)}) =

∂2E0(λ, {Ci(λ)})
∂λ2

+ 2
∑

i

∂2E0(λ, {Ci(λ)})
∂λ ∂Ci

∂Ci

∂λ
(9.105)

+
∑

i

∂2E0(λ, {Ci(λ)})
∂C2

i

(
∂Ci

∂λ

)2

+
∑

i

∂E0(λ, {Ci(λ)})
∂Ci

∂2Ci

∂λ2

For a variational energy the last term vanishes again and the second derivative of the
energy for variational methods is given as

d2

dλ2
E0(λ, {Ci(λ)}) =

∂2E0(λ, {Ci(λ)})
∂λ2

+ 2
∑

i

∂2E0(λ, {Ci(λ)})
∂λ ∂Ci

∂Ci

∂λ

+
∑

i

∂2E0(λ, {Ci(λ)})
∂C2

i

(
∂Ci

∂λ

)2

(9.106)

9.8 Approximate Density Matrices

In Section 2.3 the electron density P (�r) and a reduced one-electron density matrix
P (�r, �r ′) were defined in Eqs. (2.17), (2.20) and (2.22). In Section 3.5 it was
then shown how the electron density can be used in the calculation of expectation
values.

In the present section we want to derive now approximations to the electron density
and reduced one-electron density matrix using two of the approximate wavefunctions
presented in the previous sections: the SCF wavefunction |ΦSCF

0 〉 and the Møller–
Plesset perturbation theory wavefunction through second order, |ΦMP1

0 〉 + |ΦMP2
0 〉.

But before doing so we want to introduce two more entities that are very convenient
in the context of approximate methods, the density matrices Dpq and Dμν in the
molecular orbital and atomic orbital basis. They are the coefficients in the expansion
of the electron density P (�r) in the set of molecular orbitals {φp} or atomic orbitals
{χμ}

P (�r) =
∑
pq

φp(�r) Dpq φ∗
q(�r) (9.107)

=
∑
μν

χμ(�r) Dμν χ∗
ν(�r) (9.108)

and in the expansion of the reduced one-electron density matrix P (�r, �r ′)

P (�r, �r ′) =
∑
pq

φp(�r) Dpq φ∗
q(�r

′) (9.109)

=
∑
μν

χμ(�r) Dμν χ∗
ν(�r ′) (9.110)
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The electron density P SCF(�r) for an SCF wavefunction can be obtained by simple
application of Eq. (2.20) and the Slater–Condon rules Eq. (9.58)

P SCF(�r) = 〈ΦSCF
0 | P̂ (�r) |ΦSCF

0 〉 =
N/2∑

i

2〈φi(�r1) |δ(�r1 − �r) |φi(�r1)〉 =
N/2∑

i

2 φ∗
i (�r) φi(�r)

(9.111)

Comparison with Eq. (9.107) shows that the SCF density matrix in the molecular
orbital basis is given as

DSCF
ij = 2 δij , DSCF

ia = 0 , DSCF
ab = 0 (9.112)

Transforming the molecular orbitals in Eq. (9.111) to the atomic orbital basis

P SCF(�r) =
N/2∑

i

2 φ∗
i (�r) φi(�r) =

N/2∑
i

∑
μν

2 χ∗
ν(�r) c∗νi χμ(�r) cμi (9.113)

and comparison with Eq. (9.108) gives the SCF density matrix in the atomic orbital
basis

DSCF
μν = 2

N/2∑
i

c∗νi cμi (9.114)

Similarly, the MP second-order correction to the electron density can be defined
as (Jensen et al., 1988a,b)

PMP2(�r) = 〈ΦMP1 | P̂ (�r) |ΦMP1〉 + 〈ΦSCF
0 | P̂ (�r) |ΦMP2〉 + 〈ΦMP2 | P̂ (�r) |ΦSCF

0 〉
=

∑
pq

φp(�r) φ∗
q(�r) DMP2

pq (9.115)

which gives for the second-order correction to the density matrix in the molecular
orbital basis

DMP2
ij = −

∑
abk

tab
ik [1]

{
4 tab

jk[1] − 2 tab
kj [1]

}
(9.116)

DMP2
ab =

∑
cij

tac
ij [1]

{
4 tbc

ij [1] − 2 tbc
ji [1]

}
(9.117)

DMP2
ia = DMP2

ai =
√

2 tai [2] (9.118)

This is often called the unrelaxed second-order correction to the density
matrix in order to distinguish it from the relaxed density matrix, which will be
defined in Section 12.2.

In Section 3.5 also the perturbed and in particular the first-order electron density
P

(1)
α (�r) and first-order reduced one-electron density matrix P

(1)
α (�r, �r′) were introduced.

For these we can define corresponding first-order density matrices D
(1)
α,pq and D

(1)
α,μν
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in the molecular orbital and atomic orbital basis as coefficients in the expansion of the
first-order reduced one-electron density matrix P

(1)
α (�r, �r ′)

P (1)
α (�r, �r ′) =

∑
pq

φp(�r) D(1)
α,pq φ∗

q(�r
′) (9.119)

=
∑
μν

χμ(�r) D(1)
α,μν χ∗

ν(�r ′) (9.120)

Approximate expressions for these first-order density matrices will be derived later in
Chapters 10 to 12.

9.9 Further Reading

Electronic Structure Theory

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory, McGraw-Hill, New York (1989).

T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory, John
Wiley & Sons, Chichester (2000).

F. Jensen, Introduction to Computational Chemistry, 2nd edn John Wiley & Sons,
Chichester (2007): Chapters 3 and 4.
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Approximations to Exact
Perturbation and Response
Theory Expressions

In the beginning of this part it was discussed that one way to obtain practical
expressions for the electromagnetic properties, which can be implemented in com-
puter programs, is to make approximations to the “exact” expressions derived with
time-independent and time-dependent perturbation theory in Chapter 3.

In Section 10.1 we will illustrate this for ground-state expectation values such as
Eq. (4.25) and many others and in Section 10.2 for sum-over-states expressions such
as Eq. (4.74) and many others. In the rest of the chapter we will discuss methods
in which approximations are made to the exact matrix representation of the linear
response function or polarization propagator given in Eq. (3.159). This equation is
exact as long as a complete set of excitation and de-excitation operators {hn} is used
and the reference state |Ψ(0)

0 〉 is an eigenfunction of the unperturbed Hamiltonian.
Approximate polarization propagator methods are thus obtained by truncating the
set of operators and by using an approximate reference state |Ψ(0)

0 〉. Møller–Plesset
(MP) perturbation theory, linearized coupled cluster and multiconfigurational self-
consistent field (MCSCF) wavefunctions are commonly employed as approximate
reference states in polarization propagator approximations and will be discussed in
Sections 10.3 and 10.4.

10.1 Ground-State Expectation Values

All approximate ab initio methods presented in Chapter 9 are based on Slater determi-
nants built with molecular orbitals. In this section we will therefore derive expressions
for the expectation value 〈Φ0 | Ô | Φ0〉 of a general one-electron but spin-free opera-
tor Ô =

∑
i ô(i) with an approximate closed-shell wavefunction |Φ0〉 in terms of the

molecular spatial orbitals {φp}.
Starting from the expression for the ground-state expectation value, Eq. (3.46), as

integral over the reduced one-electron density matrix P (�r, �r ′) and using the expansion
of it in molecular orbitals, Eq. (9.109), we obtain an expression for the expecta-
tion value as a contraction of the density matrix in the molecular orbital basis and
molecular property integrals

〈Φ0 |Ô |Φ0〉 =
∑
pq

Dpq

∫
φ∗

q(�r1)ô(1) φp(�r1) d�r1 =
∑
pq

Dpq 〈φq | ô |φp〉 (10.1)
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or alternatively with the AO density matrix

〈Φ0 |Ô |Φ0〉 =
∑
μν

Dμν 〈χν | ô |χμ〉 (10.2)

This expression is general and we can therefore use it together with, e.g. the SCF or
MP2 density matrices derived in Section 9.8.

Turning now to the first-order correction to the field-dependent expectation value
〈Ψ0( �F) | Ô | Ψ0( �F)〉(1) of this operator, we can analogously obtain an expression in
terms of molecular orbitals and the first-order density matrix by using Eq. (9.119),
i.e.

〈Ψ0( �F) |Ô |Ψ0( �F)〉(1) =
∑
α

Fα

∫
�r ′

1=�r1

ô(1) P (1)
α (�r1, �r

′
1) d�r1

=
∑
α

Fα

∑
pq

D(1)
α,pq 〈φq | ô |φp〉 (10.3)

=
∑
α

Fα

∑
μν

D(1)
α,μν 〈χν | ô |χμ〉 (10.4)

10.2 Sum-over-States Methods

The sum-over-states method for the calculation of second-or higher-order properties
is based on equations like (3.33), (3.110), (3.114) or (3.125), to name a few. The main
task is thus to obtain a set of excitation energies E

(0)
n −E

(0)
0 and transition moments

〈Ψ(0)
0 | Ô | Ψ(0)

n 〉 with the appropriate operator Ô =
∑N

i ôi or alternatively a ground-
state wavefunction Ψ(0)

0 and a set of excited-state wavefunctions {Ψ(0)
n } from which

the excitation energies and transition moments can be calculated.
In Section 9.2 it was mentioned that the simplest approximation for an excited

state |Ψ(0)
n 〉 is to represent it by one singly excited determinant Φa

i . Approximating
at the same time the ground-state wavefunction Ψ(0)

0 with the Hartree–Fock deter-
minant ΦSCF

0 and the Hamiltonian by the Hartree–Fock Hamiltonian F̂ , Eq. (9.15),
the excitation energies E

(0)
n − E

(0)
0 become equal to orbital energy differences εa − εi

and the transition moments 〈Ψ(0)
0 | Ô | Ψ(0)

n 〉 become simple matrix elements of the
corresponding one-electron operator ôi in the molecular orbital basis 〈φi | ô | φa〉
[see Exercise 10.1]. The spectral representation of the polarization propagator,
Eq. (3.110), thus becomes approximated as

〈〈 Ôα··· ; Ôβ··· 〉〉ω ≈
∑
ia

( 〈φi | ôα··· |φa〉〈φa | ôβ··· |φi〉
�ω − εa + εi

+
〈φi | ôβ··· |φa〉〈φa | ôα··· |φi〉

−�ω − εa + εi

)
(10.5)

In the static limit, ω = 0, this is called the uncoupled Hartree–Fock approxima-
tion (UCHF) (Dalgarno, 1959), which played an important role in the early days
of calculations of molecular properties.
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Exercise 10.1 Show that
〈ΦSCF

0 |Ô |Φa
i 〉 = 〈φi | ô |φa〉

and
〈Φa

i | F̂ |Φa
i 〉 − 〈ΦSCF

0 | F̂ |ΦSCF
0 〉 = εa − εi

using the Slater–Condon rules Eq. (9.58) and the expression for the orbital energy Eq. (9.17).

Excitation energies and transition moments can in principle be obtained as poles
and residua of polarization propagators as discussed in Section 7.4. However, only in
the case that the set of operators {ĥn} in Eq. (7.77) is restricted to single excitation
and de-excitation operators {q†ai, qai} is it computationally feasible to determine all
excitation energies. This restricts this approach to single-excitation-based methods
like the random phase approximation (RPA) discussed in Sections 10.3 and 11.1 or
time-dependent density functional theory (TD-DFT).

Nowadays, the sum-over-states method is thus mostly used in three cases.

• The first is benchmark studies of two-electron systems using explicitly correlated
wavefunctions (see, e.g. Bishop (1994)).

• The second is the study of hyperpolarizabilities of larger systems using semi-
empirical methods.

• Finally, it is used in the analysis of contributions to a molecular property like
a polarizability or NMR spin-spin coupling constant from excitations between
individual, typically localized, molecular orbitals (see, e.g. Hansen and Bouman
(1985), Packer and Pickup (1995), Sauer and Provasi (2008) or Provasi and Sauer
(2009)). This is normally done at the level of the random phase approximation
or time-dependent density functional theory.

10.3 Møller–Plesset Perturbation Theory Polarization Propagator

In the polarization propagator approximations based on Møller–Plesset perturbation
theory the reference state |Ψ(0)

0 〉 in Eqs. (3.160) to (3.163) is approximated by the
Møller–Plesset perturbation theory wavefunction in Eq. (9.64). The complete set
of operators ĥ consists of all possible single excitation and de-excitation operators
ĥ1, all possible double excitation and de-excitation operators ĥ2 up to all possible
N -tuple excitation and de-excitation operators ĥN with respect to the SCF wavefunc-
tion |ΦSCF

0 〉 (Dalgaard, 1979; Olsen et al., 2005) as defined in Eqs. (9.26) to (9.43),
i.e.

ĥ1 =
(

eĥ1
dĥ1

)
=

(
q̂†

q̂

)
(10.6)

ĥ2 =
(

eĥ2
dĥ2

)
=

(
q̂†q̂†

q̂q̂

)
(10.7)

...
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The matrix form of the polarization propagator, (3.159), can thus be written as

〈〈 P̂α ; Ôω
β··· 〉〉ω =

(
T T

1 (P̂α) T T
2 (P̂α) · · · )⎛⎜⎝M11 M12 · · ·

M21 M22 · · ·
...

...
. . .

⎞⎟⎠
−1 ⎛⎜⎝T 1(Ôω

β···)
T 2(Ôω

β···)
...

⎞⎟⎠
(10.8)

where the M ij matrices in the principal propagator are defined as

M ij = �ωSij − Eij (10.9)

The property gradient vectors T T
i (P̂α) and T j(Ôω

β···) are given as

T T
i (P̂α) =

(
eT T

i (P̂α) dT T
i (P̂α)

)
=

(
〈Ψ(0)

0 | [P̂α,e hT
i ] |Ψ(0)

0 〉 〈Ψ(0)
0 | [P̂α,d hT

i ] |Ψ(0)
0 〉

)
(10.10)

T i(Ôω
β···) =

(
eT i(Ôω

β···)
dT i(Ôω

β···)

)
=

(
〈Ψ(0)

0 | [eh†
i , Ô

ω
β···] |Ψ(0)

0 〉
〈Ψ(0)

0 | [dh†
i , Ô

ω
β···] |Ψ(0)

0 〉

)
(10.11)

and the overlap Sij and electronic Hessian matrices Eij are defined as

Sij =
(

eeSij
edSij

deSij
ddSij

)
=

(
〈Ψ(0)

0 | [eh†
i ,

e hT
j ] |Ψ(0)

0 〉 〈Ψ(0)
0 | [eh†

i ,
d hT

j ] |Ψ(0)
0 〉

〈Ψ(0)
0 | [dh†

i ,
e hT

j ] |Ψ(0)
0 〉 〈Ψ(0)

0 | [dh†
i ,

d hT
j ] |Ψ(0)

0 〉

)
(10.12)

Eij =
(

eeEij
edEij

deEij
ddEij

)

=

(
〈Ψ(0)

0 | [eh†
i , [F̂ + V̂ ,e hT

j ]] |Ψ(0)
0 〉 〈Ψ(0)

0 | [eh†
i , [F̂ + V̂ ,d hT

j ]] |Ψ(0)
0 〉

〈Ψ(0)
0 | [dh†

i , [F̂ + V̂ ,e hT
j ]] |Ψ(0)

0 〉 〈Ψ(0)
0 | [dh†

i , [F̂ + V̂ ,d hT
j ]] |Ψ(0)

0 〉

)
(10.13)

A series of approximations of increasing order n is then obtained by requiring that
the matrix elements in Sij , Eij as well as T T

i (P̂α) and T i(Ôω
β···) are evaluated through

order n in the fluctuation potential. However, in the definition of a polarization prop-
agator approximation to a particular order n one concentrates on the single excitations
and considers the higher-excited contributions only as corrections to the former. This
is most easily done in a partitioned form of the principal propagator matrix M . Using
the following relation for the inverse of a blocked matrix [see Exercise 10.2](

U V
W Z

)−1

=

((
U − V Z−1W

)−1 (
W − ZV −1U

)−1(
V − UW−1Z

)−1 (
Z − WU−1V

)−1

)
(10.14)

=

((
U − V Z−1W

)−1 −U−1V
(
Z − WU−1V

)−1

−Z−1W
(
U − V Z−1W

)−1 (
Z − WU−1V

)−1

)

one can rewrite the matrix representation of polarization propagator, Eq. (10.8), in a
partitioned form as [see Exercise 10.3]
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〈〈 P̂α ; Ôω
β··· 〉〉ω =

[
T T

1 (P̂α) − T T
2···(P̂α)(M2···2···)−1M2···1

]
(10.15)

× [
M11 − M12···(M2···2···)−1M2···1

]−1
[
T 1(Ôω

β···) − M12···(M2···2···)−1T 2···(Ôω
β···)

]
where the “2 · · · ” notation is meant to indicate that all contributions from the h2 and
higher operators are included in these matrices or vectors. In an nth-order polariza-
tion propagator approximation one includes then all matrix element of order up to
and including n in the M11 matrix and T T

1 (P̂α) and T 1(Ôω
β···) vectors. In addition,

one includes in the matrices M12···, M2···1 and M2···2··· as well as in the vectors
T T

2···(P̂α) and T 2···(Ôω
β···) only terms up to such an order as necessary for mak-

ing the products T T
2···(P̂α)(M2···2···)−1M2···1 or M12···(M2···2···)−1T 2···(Ôω

β···) and
M12···(M2···2···)−1M2···1 to be correct through nth order.

Exercise 10.2 Prove Eq. (10.14).

Exercise 10.3 Derive the partitioned form of the matrix representation of the polarization
propagator, Eq. (10.15), using the relation for the inverse of a blocked matrix, Eq. (10.14).

10.3.1 First Order and Zeroth Order

In the first-order polarization propagator approximation (FOPPA) the ref-
erence state is then the Hartree–Fock wavefunction |ΦSCF

0 〉 and one needs to include
only the h1 operators in the set of operators. In principle, one could also include the
h2 and higher operators, because there are contributions to the M22 matrices already
in zeroth order and to the M12, M21 matrices in first order. However, due to the
partitioning in Eq. (10.15), it is the order of the whole M12(M22)−1M21 contribution
that counts and this is of second order at least, because the lowest non-vanishing order
of the M12 and M21 matrices is first order.

This approximation is better known as the time-dependent Hartree–Fock
approximation (TDHF) (McLachlan and Ball, 1964) (see Section 11.1) or ran-
dom phase approximation (RPA) (Rowe, 1968) and can also be derived as the
linear response of an SCF wavefunction, as described in Section 11.2. Furthermore,
the structure of the equations is the same as in time-dependent density functional the-
ory (TD-DFT), although they differ in the expressions for the elements of the Hessian
matrix E22. The polarization propagator in the RPA is then given as

〈〈 P̂α ; Ôω
β··· 〉〉ω =

(
eP T (0)

α
dP T (0)

α

)( eXβ···(ω)
dXβ···(ω)

)
(10.16)

with the so-called solution vector given as(
eXβ···(ω)
dXβ···(ω)

)
=

[
�ω

(
1 0
0 −1

)
−

(
A(0,1) B(1)∗

B(1) A(0,1)∗

)]−1 (
eO

ω(0)
β···

dO
ω(0)
β···

)
(10.17)
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where the elements of the RPA A(0,1) and B(1) matrices and of the eP (0)
α , dP (0)

α ,
eO

ω(0)
β··· and dO

ω(0)
β··· vectors are in terms of real spin-orbitals {ψp} given as

A
(0,1)
ai,bj =

(ee
E11

)
ai,bj

= 〈ΦSCF
0 | [qai, [F̂ + V̂ , q†bj ]] |ΦSCF

0 〉 (10.18)

= 〈Φa
i | F̂ + V̂ |Φb

j〉 − δijδab〈ΦSCF
0 | F̂ + V̂ |ΦSCF

0 〉 (10.19)

= (εa − εi)δijδab

+
(
ψa(�r1) ψi(�r1)

∣∣ψj(�r2) ψb(�r2)
)− (

ψa(�r1) ψb(�r1)
∣∣ψj(�r2) ψi(�r2)

)
B

(1)
ai,bj =

(de
E11

)
ai,bj

= 〈ΦSCF
0 | [qai, [F̂ + V̂ , qbj ]] |ΦSCF

0 〉 (10.20)

= −〈ΦSCF
0 |Ĥ(0) |Φab

ij 〉
=

(
ψa(�r1) ψj(�r1)

∣∣ψb(�r2) ψi(�r2)
)− (

ψa(�r1) ψi(�r1)
∣∣ψb(�r2) ψj(�r2)

)
eP

(0)
α,ai =

(e
T T

1 (P̂α)
)
ai

= 〈ΦSCF
0 | [P̂α, q†ai] |ΦSCF

0 〉 = 〈ψi | p̂α |ψa〉 (10.21)

dP
(0)
α,ai =

(d
T T

1 (P̂α)
)
ai

= 〈ΦSCF
0 | [P̂α, qai] |ΦSCF

0 〉 = −〈ψa | p̂α |ψi〉 (10.22)

eO
ω(0)
β··· ,ai =

(e
T 1(Ôω

β···)
)
ai

= 〈ΦSCF
0 | [qai, Ô

ω
β···] |ΦSCF

0 〉 = 〈ψa | ôω
β··· |ψi〉 (10.23)

dO
ω(0)
β··· ,ai =

(d
T 1(Ôω

β···)
)
ai

= 〈ΦSCF
0 | [q†ai, Ô

ω
β···] |ΦSCF

0 〉 = −〈ψi | ôω
β··· |ψa〉 (10.24)

and the first-order contributions to the property gradients eP T (1)
α , dP T (1)

α , eO
ω(1)
β···

and dO
ω(1)
β··· vanish [see Exercise 10.4].

Exercise 10.4 Explain why there is no first-order contribution to the property gradient
eP

T (1)
α .

Using the explicit RPA expressions for the property gradients, Eqs. (10.21) and
(10.22), the RPA polarization propagator can be written as

〈〈 P̂α ; Ôω
β··· 〉〉ω =

∑
ai

(
eXβ··· ,ai(ω)〈ψi | p̂α |ψa〉 − dXβ··· ,ai(ω)〈ψa | p̂α |ψi〉

)
(10.25)

Recalling furthermore Eq. (3.118) and Eq. (9.119) we can identify then the occupied-
virtual and virtual-occupied blocks of the RPA first-order density matrix D

(1),RPA
β,pq as

D
(1),RPA
β,ai = eXβ··· ,ai(ω) (10.26)

D
(1),RPA
β,ia = −dXβ··· ,ai(ω) (10.27)

In Section 11.1 we will see that the elements of the solution vector are actually the
coefficients of the first-order correction to the molecular orbitals.

A frequent approximation to the RPA, which is also employed nowadays in the
context of TD-DFT, is obtained by setting the B(1) matrix zero. This is often called
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the Tamm–Dancoff approximation or mono-excited CI as the remaining A(0,1)

matrix is simply the CI matrix of the Hamiltonian minus the Hartree–Fock energy in
the basis of the singly excited determinants, Eq. (10.19). This corresponds to describ-
ing the excited states as a linear combination of singly excited determinants {Φa

i }
while the ground state is the simple Hartree–Fock determinant. The B(1) matrix,
on the other hand, is the “Hartree–Fock–doubly excited determinant” part of the CI
matrix and introduces correlation in the ground state, which in the RPA is described
with the Hartree–Fock determinant plus a linear combination of all doubly excited
determinants (Hansen and Bouman, 1979). However, the expansion coefficients in this
linear combination are not variationally optimized but can be derived from the con-
dition that the off-diagonal hypervirial relation, Eq. (3.62), is fulfilled for the RPA
transition moments (Hansen and Bouman, 1979).

Going one step further and retaining only the zeroth-order contribution to the
hessian matrix, i.e. A(0) brings us back to the frequency-dependent version of uncou-
pled Hartree–Fock, Eq. (10.5), sometimes also called the zeroth-order polarization
propagator approximation (ZOPPA).

10.3.2 Second Order

In the second-order polarization propagator approximation (SOPPA)
(Nielsen et al., 1980) all terms in the partitioned form of the polarization propaga-
tor, Eq. (10.15), are evaluated through second order.1 This implies that we have
to include now also contributions from the ĥ2 operators, because the first non-
vanishing term in the T T

2···(P̂α)(M2···2···)−1M2···1 or M12···(M2···2···)−1T 2···(Ôω
β···)

and M12(M22)−1M21 contributions is of second order, as discussed earlier and has
to be included now.

The polarization propagator in the SOPPA is then given as

〈〈 P̂α ; Ôω
β··· 〉〉ω =

(
eP T (0,2)

α
dP T (0,2)

α
eΠT (1)

α
dΠT (1)

α

)
⎛⎜⎜⎜⎝

eXβ···(ω)
dXβ···(ω)
eΞβ···(ω)
dΞβ···(ω)

⎞⎟⎟⎟⎠ (10.28)

with the solution vector given as⎛⎜⎜⎝
eXβ···(ω)
dXβ···(ω)
eΞβ···(ω)
dΞβ···(ω)

⎞⎟⎟⎠ =

⎡⎢⎢⎢⎣ω

⎛⎜⎜⎝
Σ(0,2) 0 0 0

0 −Σ(0,2)∗ 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ −

⎛⎜⎜⎜⎝
A(0,1,2) B(1,2)∗ C̃

(1)
0

B(1,2) A(0,1,2)∗ 0 C̃
(1)∗

C(1) 0 D(0) 0

0 C(1)∗ 0 D(0)∗

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

−1

×

⎛⎜⎜⎜⎜⎜⎝
eO

ω(0,2)
β···

dO
ω(0,2)
β···

eΩ
ω(1)
β···

dΩ
ω(1)
β···

⎞⎟⎟⎟⎟⎟⎠ (10.29)

1 “Through second order” means that the zeroth-, first- and second-order terms are included.



Møller–Plesset Perturbation Theory Polarization Propagator 217

An analysis of the matrix elements using the Slater Condon rules shows that besides
the first-order correction to the wavefunction |ΦMP1〉 only the single excitation part,∑

ai tai [2] |Φa
i 〉, is required from the second-order correction |ΦMP2〉, Eq. (9.70). In the

following, explicit expressions for the elements of the SOPPA matrices and vectors in
terms of spatial orbitals {φp} for two spin-free operators P̂α and Ôω

β··· are given.
The A-, B- and Σ-matrix, which are already present in RPA then become in

SOPPA

A
(0,1,2)
ai,bj =

(ee
E11

)(0,1,2)

ai,bj
= 〈ΦMP

0 | [qai, [F̂ + V̂ , q†bj ]] |ΦMP
0 〉(0,1,2) (10.30)

= (εa − εi)δijδab

+ 2
(
φa(�r1) φi(�r1)

∣∣φj(�r2) φb(�r2)
)− (

φa(�r1) φb(�r1)
∣∣φj(�r2) φi(�r2)

)
+

1
2
(εb − εj)

(
δab DMP2

ij − δij DMP2
ba

)
− 1

2
δab

∑
cdk

(
φj(�r1) φc(�r1)

∣∣φk(�r2) φd(�r2)
) {

4 tcd
ik [1] − 2 tcd

ki [1]
}

− 1
2
δij

∑
ckl

(
φk(�r1) φb(�r1)

∣∣φl(�r2) φc(�r2)
) {4 tac

kl [1] − 2 tac
lk [1]}

B
(1,2)
ai,bj =

(de
E11

)(1,2)

ai,bj
= 〈ΦMP

0 | [qai, [F̂ + V̂ , qbj ]] |ΦMP
0 〉(1,2) (10.31)

= −2
(
φa(�r1) φi(�r1)

∣∣φb(�r2) φj(�r2)
)

+
(
φa(�r1) φj(�r1)

∣∣φb(�r2) φi(�r2)
)

+
1
2

∑
ck

[(
φa(�r1) φj(�r1)

∣∣φk(�r2) φc(�r2)
) {

4 tbc
ik[1] − 2 tbc

ki[1]
}

+
(
φb(�r1) φi(�r1)

∣∣φk(�r2) φc(�r2)
) {

4 tac
jk[1] − 2 tac

kj [1]
}

+
(
φa(�r1) φc(�r1)

∣∣φk(�r2) φj(�r2)
) {

4 tbc
ki[1] − 2 tbc

ik[1]
}

+
(
φb(�r1) φc(�r1)

∣∣φk(�r2) φi(�r2)
) {

4 tac
kj [1] − 2 tac

jk[1]
} ]

− 1
2

∑
kl

(
φk(�r1) φi(�r1)

∣∣φl(�r2) φj(�r2)
) {

4 tab
kl [1] − 2 tab

lk [1]
}

− 1
2

∑
cd

(
φa(�r1) φc(�r1)

∣∣φb(�r2) φd(�r2)
) {

4 tcd
ij [1] − 2 tcd

ji [1]
}

Σ(0,2)
ai,bj =

(ee
S11

)(0,2)

ai,bj
= 〈ΦMP

0 | [qai, q
†
bj ] |ΦMP

0 〉(0,2) (10.32)

= δabδij +
1
2
δab DMP2

ij − 1
2
δij DMP2

ba

The second-order correction to the A matrix, as given here, is not Hermitian.
Therefore, one normally uses a symmetrized second-order correction A

′(2)
ai,bj defined as

A
′(2)
ai,bj =

1
2

(
A

(2)
ai,bj + A

(2)
bj,ai

)
= A

(2)
ai,bj +

1
2

(
A

(2)
bj,ai − A

(2)
ai,bj

)
(10.33)
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Compared to the A-matrix in RPA, Eq. (10.18), one obtains in second order two
additional contributions, which consist of contractions of two-electron repulsion inte-
grals with the first-order doubles correlation coefficients defined in Eq. (9.67), and one
term that contains the second-order correction to the density matrix, Eqs. (9.116) and
(9.117). The latter contribution

〈ΦMP
0 | [qai, [F̂ + V̂ , q†bj ]] |ΦMP

0 〉(0)〈ΦMP
0 | ΦMP

0 〉(2) (10.34)

is a renormalisation term, which arises because the Møller–Plesset perturbation theory
wavefunction, Eq. (9.64), has to be normalized at each order.

The second-order correction to the B-matrix consists also of contractions of two-
electron repulsion integrals with the first-order doubles correlation coefficients. But
contrary to the A-matrix, where only two-electron repulsion integrals with two occu-
pied and two virtual molecular orbitals contribute, the B-matrix also includes integrals
with four occupied or four virtual molecular orbitals. On the other hand, there is no
renormalization term in the B-matrix, as the zeroth-order B-matrix vanishes.

As in the case of the RPA we can analyze which kind of matrix elements of the
Hamiltonian the second-order contributions to the A-and B-matrices correspond to.
The new contributions are all matrix elements between the Hartree–Fock determinant
and the first-order Møller–Plesset perturbation theory wavefunction. As the latter
consist of doubly excited determinants, the new contributions to A will include matrix
elements between triply and singly excited determinants, 〈Φacd

ikl | F̂ + V̂ |Φb
j〉, as well

as between doubly excited determinants and the Hartree–Fock determinant, 〈Φbc
jk |

F̂ +V̂ |ΦSCF
0 〉. Similar in the B-matrix one obtains additional matrix elements between

two singly excited determinants, 〈Φa
i | F̂ + V̂ |Φc

k〉, and between two doubly excited
determinants, 〈Φab

ij | F̂ + V̂ | Φcd
kl 〉 [see Exercise 10.5]. This implies that in SOPPA

more electron correlation is included in the ground state in terms of triply excited
determinants, but also that the excited states are correlated by the admixture of
doubly excited determinants.

Exercise 10.5 Explain why the second-order contributions to the molecular Hessian matrix

consist of the following type of matrix elements: 〈Φacd
ikl | F̂ + V̂ | Φb

j〉, 〈Φbc
jk | F̂ + V̂ | ΦSCF

0 〉,
〈Φa

i | F̂ + V̂ |Φc
k〉 and 〈Φab

ij | F̂ + V̂ |Φcd
kl 〉.

Hint : Expand the commutator in the matrix element and insert the first-order Møller–Plesset
perturbation theory wavefunction.

The second-order correction to the overlap matrix Σ consists of a similar term
with the second-order correction to the density matrix, Eqs. (9.116) and (9.117), as
the renormalization contribution the A-matrix. This is to be expected as the overlap
matrix is related to the norm of the second-order Møller–Plesset perturbation theory
wavefunction, which can be expressed in terms of the second-order correction to the
density matrix as

〈ΦMP
0 | ΦMP

0 〉(2) =
∑

a

DMP2
aa −

∑
i

DMP2
ii (10.35)
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In addition to these second-order corrections to the RPA matrices there are three
new matrices due to the ĥ2 operators. In the following, we present explicit expressions
for them in terms of spatial orbitals {φp} and for two spin-free operators P̂α and Ôω

β···
using a biorthogonal set of double excitation operators {q̂†q̂†, q̂q̂} (Bak et al., 2000).

D
(0)
aibj,ckdl =

(ee
E22

)(0)

aibj,ckdl
= 〈ΦSCF

0 | [qaiqbj , [F̂ + V̂ , q†ckq†dl]] |ΦSCF
0 〉(0) (10.36)

=
1

(1 + δabδij)
(εa + εb − εi − εj) (δacδikδbdδjl + δadδilδbcδjk)

C
(1)
aibj,ck =

(ee
E21

)(1)

aibj,ck
= 〈ΦSCF

0 | [qaiqbj , [F̂ + V̂ , q†ck]] |ΦSCF
0 〉(1) (10.37)

=
√

2
(1 + δabδij)

{
δik

(
φa(�r1) φc(�r1)

∣∣φb(�r2) φj(�r2)
)

+ δjk

(
φa(�r1) φi(�r1)

∣∣φb(�r2) φc(�r2)
)

− δac

(
φk(�r1) φi(�r1)

∣∣φb(�r2) φj(�r2)
)

− δbc

(
φa(�r1) φi(�r1)

∣∣φk(�r2) φj(�r2)
)}

C̃
(1)
ck,aibj =

(ee
E12

)(1)

ck,aibj
= 〈ΦSCF

0 | [qck, [F̂ + V̂ , q†aiq
†
bj ]] |ΦSCF

0 〉(1) (10.38)

=
1√
2

[
δik

{
2
(
φj(�r1) φb(�r1)

∣∣φc(�r2) φa(�r2)
)− (

φj(�r1) φa(�r1)
∣∣φc(�r2) φb(�r2)

)}
+ δjk

{
2
(
φi(�r1) φa(�r1)

∣∣φc(�r2) φb(�r2)
)− (

φi(�r1) φb(�r1)
∣∣φc(�r2) φa(�r2)

)}
− δac

{
2
(
φi(�r1) φk(�r1)

∣∣φj(�r2) φb(�r2)
)− (

φj(�r1) φk(�r1)
∣∣φi(�r2) φb(�r2)

)}
− δbc

{
2
(
φj(�r1) φk(�r1)

∣∣φi(�r2) φa(�r2)
)− (

φi(�r1) φk(�r1)
∣∣φj(�r2) φa(�r2)

)}]

These matrices are very similar to the contributions of same order to the A matrix.
The D(0) matrix, being zeroth order, consists only of molecular orbital energy differ-
ences. This means that pure double excitations are treated in SOPPA only in zeroth
order and thus not more accurate than in a uncoupled Hartree–Fock calculation. The
C(1) matrices, which couple double excitations with the single excitations are first
order and consist therefore of two-electron repulsion integrals like the A(1) and B(1)

matrices. Although the pure double excitations are only treated through zeroth order,
the effect of the doubles excitations on the singly excited states is still correct through
second order as one can see from the partitioned form of the polarization propagator
Eq. (10.15).

Turning to the property gradients, there are again additional second-order cor-
rections to the P T (0)

α and O
ω(1)
β··· contributions of the RPA and additional new

contributions ΠT (1)
α and Ωω(1)

β··· due to the ĥ2 operators.
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eP
(0,2)
α,ai =

(e
T T

1 (P̂α)
)(0,2)

ai
= 〈ΦMP

0 | [P̂α, q†ai] |ΦMP
0 〉(0,2) (10.39)

=
√

2〈φi | p̂α |φa〉 +
1√
2

∑
j

(〈φj | p̂α |φa〉 DMP2
ji − 〈φi | p̂α |φj〉 DMP2

aj

)
+

1√
2

∑
b

(〈φb | p̂α |φa〉 DMP2
bi − 〈φi | p̂α |φb〉 DMP2

ab

)
dP

(0,2)
α,ai =

(d
T T

1 (P̂α)
)(0,2)

ai
= 〈ΦMP

0 | [P̂α, qai] |ΦMP
0 〉(0,2) (10.40)

= −
√

2〈φa | p̂α |φi〉 − 1√
2

∑
j

(〈φa | p̂α |φj〉 DMP2
ij − 〈φj | p̂α |φi〉 DMP2

ja

)
− 1√

2

∑
b

(〈φa | p̂α |φb〉 DMP2
ib − 〈φb | p̂α |φi〉 DMP2

ba

)
eO

ω(0,2)
β··· ,ai =

(e
T 1(Ôω

β···)
)(0,2)

ai
= 〈ΦMP

0 | [qai, Ô
ω
β···] |ΦMP

0 〉(0,2)

=
√

2〈φa | ôω
β··· |φi〉 +

1√
2

∑
j

(〈φa | ôω
β··· |φj〉 DMP2

ij − 〈φj | ôω
β··· |φi〉 DMP2

ja

)
+

1√
2

∑
b

(〈φa | ôω
β··· |φb〉 DMP2

ib − 〈φb | ôω
β··· |φi〉 DMP2

ba

)
dO

ω(0,2)
β··· ,ai =

(d
T 1(Ôω

β···)
)(0,2)

ai
= 〈ΦMP

0 | [q†ai, Ô
ω
β···] |ΦMP

0 〉(0,2) (10.41)

= −
√

2〈φi | ôω
β··· |φa〉 − 1√

2

∑
j

(〈φj | ôω
β··· |φa〉 DMP2

ji − 〈φi | ôω
β··· |φj〉 DMP2

aj

)
− 1√

2

∑
b

(〈φb | ôω
β··· |φa〉 DMP2

bi − 〈φi | ôω
β··· |φb〉 DMP2

ab

)
eΠ(1)

α,aibj =
(e

T T
2 (P̂α)

)(1)

aibj
= 〈ΦMP

0 | [P̂α, q†aiq
†
bj ] |ΦMP

0 〉(1) (10.42)

= −1
2

∑
k

(〈φi | p̂α |φk〉
{
4 tab

kj [1] − 2 tab
jk[1]

}
+ 〈φj | p̂α |φk〉

{
4 tab

ik [1] − 2 tab
ki [1]

})
+

1
2

∑
c

(〈φc | p̂α |φa〉
{
4 tcb

ij [1] − 2 tcb
ji [1]

}
+ 〈φc | p̂α |φb〉

{
4 tac

ij [1] − 2 tac
ji [1]

})
dΠ(1)

α,aibj =
(d

T T
2 (P̂α)

)(1)

aibj
= 〈ΦMP

0 | [P̂α, qaiqbj ] |ΦMP
0 〉(1) (10.43)

=
1
2

∑
k

(〈φk | p̂α |φi〉
{
4 tba

jk[1] − 2 tba
kj [1]

}
+ 〈φk | p̂α |φj〉

{
4 tba

ki [1] − 2 tba
ik [1]

})
− 1

2

∑
c

(〈φa | p̂α |φc〉
{
4 tbc

ji [1] − 2 tbc
ij [1]

}
+ 〈φb | p̂α |φc〉

{
4 tca

ji [1] − 2 tca
ij [1]

})
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eΩω(1)
β··· ,aibj =

(e
T 2(Ôω

β···)
)(1)

aibj
= 〈ΦMP

0 | [qaiqbj , Ô
ω
β···] |ΦMP

0 〉(1) (10.44)

= − 2
(1 + δabδij)

∑
k

{〈φk | ôω
β··· |φi〉 tba

jk[1] + 〈φk | ôω
β··· |φj〉 tba

ki [1]
}

+
2

(1 + δabδij)

∑
c

{〈φa | ôω
β··· |φc〉 tbc

ji [1] + 〈φb | ôω
β··· |φc〉 tca

ji [1]
}

dΩω(1)
β··· ,aibj =

(d
T 2(Ôω

β···)
)(1)

aibj
= 〈ΦMP

0 | [q†aiq
†
bj , Ô

ω
β···] |ΦMP

0 〉(1) (10.45)

=
2

(1 + δabδij)

∑
k

{〈φi | ôω
β··· |φk〉 tab

kj [1] + 〈φj | ôω
β··· |φk〉 tab

ik [1]
}

− 2
(1 + δabδij)

∑
c

{〈φc | ôω
β··· |φa〉 tcb

ij [1] + 〈φc | ôω
β··· |φb〉 tac

ij [1]
}

We see that the first-order ΠT (1)
α and Ωω(1)

β··· vectors consist of contractions of the
property integrals in molecular orbital basis with the first-order doubles correlation
coefficients, while the second-order corrections to P T (0)

α and O
ω(0)
β··· consist of con-

tractions of the property integrals with the second-order correction to the density
matrix. Furthermore, one should note that contrary to the renormalization term in
the A(2) matrix and the second-order correction to the overlap matrix the corrections
to the P T (0)

α and O
ω(0)
β··· property gradients also have contributions from the occupied-

virtual and virtual-occupied off-diagonal blocks of the density matrix Eq. (9.118).
This is therefore the only place where the second-order correction to the wavefunction
contributes in SOPPA.

Finally, one might wonder whether it is possible to write the SOPPA polarization
propagator as the contraction of property integrals of the operator P̂ in the molecu-
lar orbital basis with a SOPPA first-order density matrix in analogy to Eq. (10.25).
However, this is not immediately possible for two reasons:

1. The second-order corrections to the ĥ1 part of the property gradient imply that a
SOPPA first-order density matrix will not be contracted with property integrals
in the molecular orbital basis. However, defining a kind of MP2 correction to the
molecular orbitals as

φMP2
p =

1
2

(∑
i

φi DMP2
ip −

∑
a

φa DMP2
ap

)
(10.46)

and requiring that the MP2 correction to the property integrals is linear in this
correction, i.e.

〈φi | p̂α |φa〉MP2 = 〈φi | p̂α |φMP2
a 〉 + 〈φMP2

i | p̂α |φa〉 (10.47)

one could express the ĥ1 part of the propagator as a contraction of these correlated
property integrals with a SOPPA first-order density matrix.

2. The ĥ2 contributions to the property gradients ΠT (1)
α as well as to the solution

vector Ξβ···(ω) are both 4 index quantities, which prevents us from formulating
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their contribution as a contraction of property integrals with a first-order one-
particle density matrix.

10.3.3 Higher-Order and Mixed Methods

Evaluating all the terms in the partitioned form of the polarization propagator,
Eq. (10.15), through third order one obtains the third-order polarization propa-
gator approximation (TOPPA). The expressions for all matrix elements have been
derived but only parts have been implemented (Geertsen et al., 1991a).

However, other attempts have been made to improve on the treatment of elec-
tron correlation in SOPPA. Three SOPPA-like methods have thus been presented. All
are based on the fact that a coupled cluster wavefunction gives a better description
than the Møller–Plesset first- and second-order wavefunctions, Eqs. (9.66) and (9.70).
In the second-order polarization propagator with coupled cluster singles and dou-
bles amplitudes–SOPPA(CCSD)–method (Sauer, 1997), the reference state |Ψ(0)

0 〉
in Eqs. (3.160) to (3.163) is approximated by a linearized CCSD wavefunction

|Ψ(0)
0 〉 ≈

(
1 + T̂1 + T̂2

)
|ΦSCF

0 〉 (10.48)

This keeps essentially the structure of the SOPPA equations but replaces in all matrix
elements the first-order MP doubles correlation coefficients, Eq. (9.67), and the second-
order MP singles correlation coefficient, Eq. (9.71), by coupled cluster singles and
doubles amplitudes. In the earlier coupled cluster singles and doubles polarization
propagator approximation (CCSDPPA) (Geertsen et al., 1991a), a precursor to
SOPPA(CCSD), this was done only partially and in particular not in the second-
order correction to the density matrix DMP2. Very recently, a third method (Kjær
et al., 2010), SOPPA(CC2), was proposed in which the Møller–Plesset correlation
coefficients are replaced by the corresponding CC2 amplitudes instead of the CCSD
amplitudes. This reduces the computational cost in the calculation of the amplitudes
to the same as in the SOPPA calculation.

10.3.4 Iterative and Non-Iterative Doubles Correction

In a previous section, we have discussed that in the SOPPA method the description
of excited states, which in the RPA approximation are described as a linear combi-
nation of singly excited determinants, is improved by including electron correlation
in the reference state and by including also double excitation operators ĥ2. As a
consequence of counting orders in the partitioned form of the polarization propaga-
tor the main purpose of the double excitations is to improve the description of the
same single excitation-dominated states as in RPA. However, this correction is rather
costly, because in SOPPA the corrections from the double excitation operators ĥ2 are
included in the principal propagator whose dimension is therefore increased from two
times the number of single excitations squared as in RPA to two times the number of
single and double excitations squared.

It is thus worthwhile to consider alternatives for the calculation of single-excitation-
dominated excited states with double excitation corrections in SOPPA without having
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to diagonalize a matrix of the full dimension of single and double excitations squared.
The original implementations of the SOPPA method were therefore based on the
partitioned form of the polarization propagator, Eq. (10.15). However, the eigenvalue
equation for the partitioned principal propagator in SOPPA becomes(

A(0,1,2) + C̃
(1)

(�ωn − D(0))−1C(1) B(1,2)

B(1,2) A(0,1,2) + C̃
(1)

(−�ωn − D(0))−1C(1)

)(
eXn
dXn

)

= �ωn

(
Σ(0,2) 0

0 −Σ(0,2)

)(
eXn
dXn

)
(10.49)

which means that it is frequency dependent and depends on its own eigenvalues �ωn,
i.e. the excitation energies. One has to solve this equation iteratively for one excitation
energy at a time by inserting the eigenvalue obtained in one iteration as frequency in
the principal propagator for the next iteration until this eigenvalue remains the same
and one has obtained self-consistency like for the Hartree–Fock equations, Eq. (9.11).
This procedure has to be repeated for each excitation energy, i.e. for each eigenvalue of
the principal propagator, and is therefore no longer applied in the context of SOPPA.
However, it is nowadays used in the calculation of excitation energies from coupled
cluster response functions at the CC3 level, see Section 11.4.

As an approximate alternative one does not directly include the doubles corrections
in the principal propagator but corrects the RPA excitation energies, obtained by
solving the RPA eigenvalue problem, with a non-iterative doubles correction. This
approach is called doubles corrected random-phase approximation–RPA(D)
(Christiansen et al., 1998a) and is based on pseudo-perturbation theory that was
described in Section 3.13.

Applied to SOPPA this means that the electronic Hessian and overlap matrices
are each split in three contributions

E = E(0) + E(1) + E(2) (10.50)

with

E(0) =

⎛⎜⎜⎝
A(0,1) B(1) 0 0
B(1) A(0,1) 0 0

0 0 D(0) 0
0 0 0 D(0)

⎞⎟⎟⎠ (10.51)

E(1) =

⎛⎜⎜⎜⎝
0 0 C̃

(1)
0

0 0 0 C̃
(1)

C(1) 0 0 0
0 C(1) 0 0

⎞⎟⎟⎟⎠ (10.52)

E(2) =

⎛⎜⎜⎝
A(2) B(2) 0 0
B(2) A(2) 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎠ (10.53)
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and

S = S(0) + S(1) + S(2)

=

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ +

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ +

⎛⎜⎜⎝
Σ(2) 0 0 0

0 −Σ(2) 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ (10.54)

Choosing the zeroth-order eigenvectors to be the RPA eigenvectors

L(0)
n

†
= R(0)

n =

⎛⎜⎜⎜⎝
eXRPA

n

dXRPA
n

0
0

⎞⎟⎟⎟⎠ (10.55)

implies that the zeroth-order eigenvalues are the RPA excitation energies

ω(0)
n = ωRPA

n (10.56)

and that the E(1) and S(1) matrices do not contribute in first order, because

L(0)
n E(1)R(0)

n = 0 (10.57)

as assumed in Eqs. (3.187) and (3.188).
The second-order correction to the eigenvalues, Eq. (3.194), then becomes

�ω(2)
n =

(
eXRPA

n

† dXRPA
n

†)(
A(2) − �ωRPA

n Σ(2) B(2)

B(2) A(2) + �ωRPA
n Σ(2)

)(
eXRPA

n

dXRPA
n

)

−
(

eXRPA
n

† dXRPA
n

†)(
C̃

(1)
0

0 C̃
(1)

)(
D(0) − �ωRPA

n 0
0 D(0) + �ωRPA

n

)−1

×
(

C(1) 0
0 C(1)

)(
eXRPA

n

dXRPA
n

)
(10.58)

and the eigenvalues and thus excitation energies in the RPA(D) method are finally
defined as the sum of the zeroth- and second-order contributions

�ωRPA(D)
n = �ωRPA

n + �ω(2)
n (10.59)

Compared with the partitioned SOPPA eigenvalue problem in Eq. (10.49) we can
see that only the RPA eigenvectors are necessary and that thus only the RPA eigen-
value problem has to be solved. The second-order and doubles correction, on the
other hand, are evaluated only once, meaning that we have a non-iterative doubles
correction in RPA(D).
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10.4 Multiconfigurational Polarization Propagator

In the multiconfigurational polarization propagator approximation, normally called
multiconfigurational random phase approximation (MCRPA), the set of
operators contains state transfer operators {R†,R}, Eq. (9.51), in addition to the non-
redundant single excitation q† and de-excitation q operators (Yeager and Jørgensen,
1979). The expression for the polarization propagator in MCRPA can be obtained
from Eq. (10.8) if one identifies h2 with {R†,R} and |Ψ(0)

0 〉 with |ΦMCSCF
0 〉.

〈〈 P̂α ; Ôω
β··· 〉〉ω = T T (P̂α) (�ωS − E)−1

T (Ôω
β···) (10.60)

=
(
eT T (P̂α) dT T (P̂α)

) [
�ω

(
Σ Δ

−Δ −Σ

)
−

(
A B
B A

)]−1
(

eT (Ôω
β···)

dT (Ôω
β···)

)

where the matrices and vectors are commonly defined as

A =

(〈ΦMCSCF
0 | [q, [Ĥ(0), q†T ]] |ΦMCSCF

0 〉 〈ΦMCSCF
0 | [R†, [Ĥ(0), qT ]] |ΦMCSCF

0 〉
〈ΦMCSCF

0 | [R, [Ĥ(0), q†T ]] |ΦMCSCF
0 〉 〈ΦMCSCF

0 | [R, [Ĥ(0),R†T ]] |ΦMCSCF
0 〉

)
(10.61)

B =

(〈ΦMCSCF
0 | [q, [Ĥ(0), qT ]] |ΦMCSCF

0 〉 〈ΦMCSCF
0 | [R, [Ĥ(0), qT ]] |ΦMCSCF

0 〉
〈ΦMCSCF

0 | [R, [Ĥ(0), q†T ]] |ΦMCSCF
0 〉 〈ΦMCSCF

0 | [R, [Ĥ(0),RT ]] |ΦMCSCF
0 〉

)
(10.62)

Σ =

( 〈ΦMCSCF
0 | [q, q†T ] |ΦMCSCF

0 〉 〈ΦMCSCF
0 | [q,R†T ] |ΦMCSCF

0 〉
〈ΦMCSCF

0 | [R, q†T ] |ΦMCSCF
0 〉 〈ΦMCSCF

0 | [R,R†T ] |ΦMCSCF
0 〉

)
(10.63)

Δ =

( 〈ΦMCSCF
0 | [q, qT ] |ΦMCSCF

0 〉 〈ΦMCSCF
0 | [q,RT ] |ΦMCSCF

0 〉
〈ΦMCSCF

0 | [R, qT ] |ΦMCSCF
0 〉 〈ΦMCSCF

0 | [R,RT ] |ΦMCSCF
0 〉

)
(10.64)

eT T (P̂α) =
(
〈ΦMCSCF

0 | [P̂α, q†T ] |ΦMCSCF
0 〉〈ΦMCSCF

0 | [P̂α,R†T ] |ΦMCSCF
0 〉

)
(10.65)

dT T (P̂α) = −eT T∗(P̂α) (10.66)

dT T (P̂α) = −eT T∗(P̂α)eT (Ôω
β···) =

( 〈ΦMCSCF
0 | [q, Ôω

β···] |ΦMCSCF
0 〉

〈ΦMCSCF
0 | [R, Ôω

β···] |ΦMCSCF
0 〉

)
(10.67)

dT (Ôω
β···) = −eT ∗(Ôω

β···) (10.68)

Since in MCRPA the reference wavefunction |Ψ(0)
0 〉 is a variational MCSCF wave-

function, one can derive the MCRPA also by application of linear response theory,
Section 11.2, or of the quasi-energy derivative method, Section 12.3, to this MCSCF
state.
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Perturbation and Response Theory
with Approximate Wavefunctions

In this chapter we will follow now the second approach, which means that we will
apply time-independent and time-dependent perturbation theory from Chapter 3 to
approximate solutions of the unperturbed molecular Hamiltonian. In particular, we
will illustrate this in the following for Hartree–Fock, MCSCF and coupled cluster
wavefunctions.

11.1 Coupled and Time-Dependent Hartree–Fock

In the coupled Hartree–Fock method (CHF), which was probably derived the
first time by Peng (1941) and rederived many times (Stevens et al., 1963; Gerratt and
Mills, 1968), second- and higher-order static properties are obtained by solving the
Hartree–Fock equations

f̂(1, �F) ψp(�r1, �F) = εp( �F) ψp(�r1, �F) (11.1)

self-consistently in the presence of a perturbing field �F under the condition that the
perturbed occupied1 spin orbitals {ψi( �F)} remain orthonormal

〈ψi(�r1, �F) | ψj(�r1, �F)〉 = δij (11.2)

Contrary to the unperturbed Hartree–Fock theory, where the molecular orbitals are
expanded in atomic one-electron basis functions Eq. (9.4), one normally expands the
perturbed occupied spin orbitals in the set of orthonormalized unperturbed molecular
spin orbitals {ψq}

ψi(�r1, �F) =
all∑
q

ψq(�r1) Uqi( �F) (11.3)

One of the consequences of this choice is that the unperturbed Fock matrix becomes
diagonal in this basis.

1 We are only interested in the occupied orbitals here.
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Inserting this ansatz in the perturbed Hartree–Fock equations, (11.1) and (11.2),
gives

f̂(1, �F)
all∑
q

ψq(�r1) Uqi( �F) = εi( �F)
all∑
q

ψq(�r1) Uqi( �F) (11.4)

and for the orthonormality condition

all∑
q

U∗
jq( �F) Uqi( �F) = δji (11.5)

Multiplying the perturbed Hartree–Fock equations, Eq. (11.4), from the left with
another basis function, an unperturbed molecular orbital ψr, followed by integration
one obtains a matrix form of the perturbed Hartree–Fock equations

all∑
q

Frq( �F) Uqi( �F) = εi( �F)
all∑
q

δrq Uqi( �F) (11.6)

where an element of the perturbed Fock matrix Fpq( �F) is given as

Fpq( �F) = 〈ψp | f̂( �F) |ψq〉
= 〈ψp | ĥ(0) + ĥ(1) + ĥ(2) |ψq〉 (11.7)

+
occ∑
j

all∑
st

U∗
sj( �F)

{(
ψp ψq

∣∣ψs ψt

)− (
ψp ψt

∣∣ψs ψq

)}
Utj( �F)

and the first- and second-order one-electron perturbation Hamiltonians ĥ(1) + ĥ(2) are
according to Eqs. (2.108), (2.109) and (2.110) scalar or tensor products of the general
perturbation Fα··· and two one-electron perturbation operators ôFα··· and ôFF

αβ···

ĥ(1)(i) + ĥ(2)(i) =
∑
α···

Fα··· ôFi,α··· +
∑

α,β,···
Fα··· ôFF

i,αβ··· Fβ··· (11.8)

Exercise 11.1 Derive the orthonormality condition, Eq. (11.5) for the expansion coefficients

Uqi( �F) of the perturbed molecular spin orbitals {ψi( �F)}.

Exercise 11.2 Derive the expression for the perturbed Fock matrix Frq( �F), Eq. (11.7).

The perturbed Fock matrix in the basis of the unperturbed molecular spin orbitals,
Fpq( �F), the perturbed orbital energies εi( �F) and the coefficients Uqi( �F) of the
perturbed orbitals are then expanded in orders of this perturbing field

Fpq( �F) = F (0)
pq +

∑
α···

F
(1)
α··· ,pq Fα··· + · · · (11.9)
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εi( �F) = ε
(0)
i +

∑
α···

ε
(1)
α··· ,i Fα··· + · · · (11.10)

Uqi( �F) = U
(0)
qi +

∑
α···

U
(1)
α··· ,qi Fα··· + · · · (11.11)

The zeroth-order Fock matrix and the matrix of the zeroth-order coefficients are both
diagonal

U (0)
qp = δqp (11.12)

F (0)
pq = ε(0)p δpq (11.13)

which is a consequence of the fact that we used the unperturbed molecular spin orbitals
{ψq} as basis. The perturbed spin orbitals, in Eq. (11.3), are thus expanded in orders
of the perturbation

ψi(�r1, �F) = ψi(�r1) +
all∑
q

ψq(�r1)
∑
α···

U
(1)
α··· ,qi Fα··· + · · · (11.14)

Also, the SCF density matrix is perturbed, DCHF
μν ( �F), and is expanded in orders

of the perturbation

DSCF
μν ( �F) = DSCF

μν +
∑
α···

D
(1),CHF
α··· ,μν Fα··· + · · · (11.15)

From the definition of the unperturbed density matrix DSCF
μν in Eq. (9.114) it follows

that for a closed-shell molecule the first-order correction to the SCF density matrix in
the atomic orbital basis is then

D
(1),CHF
α··· ,μν = 2

∑
i

(
c
(1)∗
α··· ,μicνi + c∗μic

(1)
α··· ,νi

)
= 2

(
U

(1)∗
α··· ,μν + U

(1)
α··· ,νμ

)
(11.16)

Inserting these expansions in the perturbed Hartree–Fock equations, Eqs. (11.6)
and (11.5), and separating orders, we obtain the first-order Hartree–Fock equations

all∑
q

(F (0)
rq U

(1)
α··· ,qi + F

(1)
α··· ,rq U

(0)
qi ) = ε

(0)
i

all∑
q

δrq U
(1)
α··· ,qi + ε

(1)
α··· ,i

all∑
q

δrq U
(0)
qi (11.17)

and
all∑
q

(
U

(0)∗
jq U

(1)
α··· ,qi + U

(1)∗
α··· ,jqU

(0)
qi

)
= 0 (11.18)

which after evaluation of the zeroth-order terms, Eqs. (11.12) and (11.13), become

(ε(0)r − ε
(0)
i ) U

(1)
α··· ,ri = ε

(1)
α··· ,i δri − F

(1)
α··· ,ri (11.19)

U
(1)
α··· ,ji + U

(1)∗
α··· ,ji = 0 (11.20)
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For r �= i one finally obtains for the expansion coefficients of the first-order
correction to the orbitals

U
(1)
α··· ,ri = − F

(1)
α··· ,ri

ε
(0)
r − ε

(0)
i

(11.21)

an equation that must be solved iteratively since the first-order Fock matrix, F
(1)
α··· ,ri,

depends on U(1)
α···

F
(1)
α··· ,ri = 〈ψr | ôFα··· |ψi〉 (11.22)

+
occ∑
j

∑
st

{(
ψr ψi

∣∣ψs ψt

)− (
ψr ψt

∣∣ψs ψi

)}(
U

(1)∗
α··· ,sjδtj + δsjU

(1)
α··· ,tj

)

Exercise 11.3 Derive the expression for the first-order correction to the Fock matrix F
(1)
α··· ,ri

in Eq. (11.22).

In principle, the summation over q in Eq. (11.14), runs over all spin-orbitals.
However, mixing the occupied orbitals among themselves does not change the total
wavefunction (Stevens et al., 1963). Therefore, we only need the virtual-occupied
blocks of the matrices of the first- and higher-order coefficients U

(n)
α··· ,ai. The first-order

Hartree–Fock equations then read

occ∑
j

vir∑
b

[
(ε(0)a − ε

(0)
i ) δab δij +

(
ψa ψi

∣∣ψj ψb

)− (
ψa ψb

∣∣ψj ψi

)]
U

(1)
α··· ,bj

+
occ∑
j

vir∑
b

[(
ψa ψi

∣∣ψb ψj

)− (
ψa ψj

∣∣ψb ψi

)]
U

(1)∗
α··· ,bj

= −〈ψa | ôFα··· |ψi〉 (11.23)

The two expressions in the parentheses are the RPA A(0,1) and B(1) matrices given
in Eqs. (10.18) and (10.20) and we can rewrite Eq. (11.23) therefore as

occ∑
j

vir∑
b

[
A

(0,1)
ai,bj U

(1)
α··· ,bj − B

(1)
ai,bj U

(1)∗
α··· ,bj

]
= −〈ψa | ôFα··· |ψi〉 (11.24)

For real (−) or imaginary (+) perturbations we have that U
(1)∗
α··· ,bj = U

(1)
α··· ,bj or

U
(1)∗
α··· ,bj = −U

(1)
α··· ,bj , respectively, and Eq. (11.24) simplifies to two sets of linear

equations
occ∑
j

vir∑
b

(
A

(0,1)
ai,bj ∓ B

(1)
ai,bj

)
U

(1)
α··· ,bj = −〈ψa | ôFα··· |ψi〉 (11.25)
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Once the expansion coefficients of the first-order correction to the orbitals, U
(1)
α··· ,bj ,

are obtained as solutions of these equations, we can calculate the corrections to the
Hartree–Fock energy and thus molecular properties.

From Eq. (9.21) we can deduce that in the presence of the perturbing field �F the
perturbed Hartree–Fock energy is given as

ESCF
0 ( �F) =

occ∑
i

εi( �F) (11.26)

− 1
2

occ∑
ij

vir∑
abcd

U∗
ai( �F)U∗

cj( �F)
[(

ψa ψb

∣∣ψc ψd

)− (
ψa ψd

∣∣ψc ψb

)]
Ubi( �F)Udj( �F)

Inserting the perturbation series, Eqs. (11.10) and (11.11), and separating orders the
second-order correction to the energy can be shown to be [see Exercise 11.4]

E
(2),SCF
0 =

∑
α,β,···

occ∑
i

Fα···〈ψi | ôFF
αβ··· |ψi〉 Fβ··· (11.27)

+
∑

α,β,···

occ∑
i

vir∑
a

Fα···
(
U

(1)∗
α··· ,ai 〈ψa | ôFβ··· |ψi〉 + 〈ψi | ôFβ··· |ψa〉 U

(1)
α··· ,ai

)
Fβ···

which should be compared with the expression for the second-order energy correc-
tion of exact wavefunctions in Eq. (3.34). Second-order molecular properties that
are defined as second derivatives of the energy are thus obtained at the coupled
Hartree–Fock level as

∂2E
(2),SCF
0

∂Fα···∂Fβ···
=

occ∑
i

〈ψi | ôFF
αβ··· |ψi〉

+
occ∑
i

vir∑
a

(
U

(1)∗
α··· ,ai 〈ψa | ôFβ··· |ψi〉 + 〈ψi | ôFβ··· |ψa〉 U

(1)
α··· ,ai

)
(11.28)

Exercise 11.4 Derive the second-order correction to the Hartree–Fock energy, Eq. (11.27)
starting from Eq. (11.26) as shown by Peng (1941) or Stevens et al. (1963).

The relation to the random phase approximation (RPA) in Section 10.3 becomes
clear, when one considers also the complex conjugate equation of Eq. (11.24)

occ∑
j

vir∑
b

[
−B

(1)
ai,bj U

(1)
α··· ,bj + A

(0,1)
ai,bj U

(1)∗
α··· ,bj

]
= −〈ψi | ôFα··· |ψa〉 (11.29)

realises that the molecular orbital integrals 〈ψa | ôFα··· | ψi〉 over the first-order per-
turbation operator ôFα··· in these equations are the elements of the property gradients
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eOω(0)
α··· and dOω(0)

α··· defined in Eqs. (10.23) and (10.24) and combines Eqs. (11.24) and
Eq. (11.29) in one matrix equation(

A(0,1) B(1)

B(1) A(0,1)

)(
U (1)

α···
−U (1)∗

α···

)
= −

(
eOω(0)

α···
dOω(0)

α···

)
(11.30)

or (
U (1)

α···
−U (1)∗

α···

)
= −

(
A(0,1) B(1)

B(1) A(0,1)

)−1 (
eOω(0)

α···
dOω(0)

α···

)
(11.31)

Comparing this with Eq. (10.17) we can see that for zero frequency of the perturba-
tion the RPA solution vectors eXα···(ω = 0) and dXα···(ω = 0) are identical to the
expansion coefficients U (1)

α and −U (1)∗
α of the first-order correction to the orbitals and

have therefore a simple, physical interpretation.
In Time-dependent Hartree–Fock theory (TDHF) (Langhoff et al., 1972)

this derivation is generalized to the time-dependent field of a monochromatic linear
polarized radiation in the dipole approximation Eq. (3.76). The molecular orbitals are
then also time dependent and are again expanded in the unperturbed orbitals

ψi(�r1, t, �F) = ψi(�r1) +
1
2

∑
p

ψp(�r1)
∑
α···

Fα···(ω)
[
U

(1)
α··· ,pi(ω)eıωt + U

(1)
α··· ,pi(−ω)e−ıωt

]
+ · · · (11.32)

The frequency-dependent expansion coefficients U
(1)
α··· ,pi(ω) and U

(1)
α··· ,pi(−ω) are then

determined by inserting the time-dependent orbitals in the time-dependent version of
the Hartree–Fock equation,[

f̂(1, �F) − ı
∂

∂t

]
ψp(�r1, t, �F) = εp( �F) ψp(�r1, t, �F) (11.33)

which can be derived from Frenkel’s variational principle (Frenkel, 1934).
In analogy to the derivation of the coupled Hartree–Fock equations one can

then derive the time-dependent Hartree–Fock equations for the first-order expansion
coefficients[

�ω

(
1 0

0 −1

)
−

(
A(0,1) B(1)∗

B(1) A(0,1)∗

)](
U (1)

α···(−ω)

−U (1)
α···(ω)

)
=

(
eOω(0)

α···
dOω(0)

α···

)
(11.34)

which are just the RPA equations Eq. (10.17) with(
U (1)

α···(−ω)

−U (1)
α···(ω)

)
=

(
eXα···(ω)
dXα···(ω)

)
(11.35)

As has already been mentioned, the variational nature of the Hartree–Fock wave-
function means that the CHF/TDHF equations are equivalent to the RPA equations.
Unlike RPA and its correlated extensions, however, an atomic-orbital-based solu-
tion of the iterative CHF equations cannot give excitation energies and transition
moments.
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Historically, CHF, was favoured over RPA since it could be solved in the atomic
orbital basis (Diercksen and McWeeny, 1966), rather than requiring a transforma-
tion to the molecular orbital basis. The need for an inverse Hessian in RPA/SOPPA
also restricted the size of system that could be studied. However, the use of direct
atomic-orbital-driven methods for RPA response properties (Feyereisen et al., 1992)
and for SOPPA (Bak et al., 2000; Christiansen et al., 1998a), coupled with itera-
tive methods for solving the inverse Hessian, mean that they can now be applied as
widely as CHF/TDHF and provide far more information about excited states and
properties.

11.2 Multiconfigurational Linear Response Functions

In the application of response theory to an SCF wavefunction |ΦSCF
0 〉, or to an MCSCF

wavefunction |ΦMCSCF
0 〉, presented in the following way first by Olsen and Jørgensen

(1985), the time-dependent MCSCF state |ΦMCSCF
0 (t)〉 is usually expressed as (Olsen

and Jørgensen, 1985; Fuchs et al., 1993)

|ΦMCSCF
0 (t)〉 = eıκ̂(t)eıŜ(t)|ΦMCSCF

0 〉 (11.36)

where

κ̂(t) =
∑
p>q

[
κpq(t) q̂†pq + κ∗

pq(t) q̂pq

]
(11.37)

Ŝ(t) =
∑
n�=0

[
Sn0(t) R̂†

n0 + S∗
n0(t) R̂0n

]
(11.38)

are the time-dependent versions of the operators in Eqs. (9.48) and (9.49). For the
SCF case we have Sn0(t) = S∗

n0(t) = 0 and the orbital rotation parameters κpq(t) and
κ∗

pq(t) become equal to the Fourier transforms of the TDHF expansion coefficients

U
(1)
α,pi(ω) and U

(1)
α,pi(−ω) in Eq. (11.32).

In order to keep the equations more compact it is advantageous to collect the
operators in one row vector ĥT = ({q̂†pq}, {q̂pq}, {R̂†

n0}, {R̂0n}) and correspondingly
the time-dependent orbital rotation and state-transfer parameters in one column vec-
tor γ(t) = ({κpq(t)}, {κ∗

pq(t)}, {Sn0(t)}, {S∗
n0(t)})T . The latter are then expanded in

orders of the time-dependent perturbation Hamiltonian Ĥ(1)(t), Eq. (3.78),

γ(t) = γ(1)(t) + γ(2)(t) + · · · (11.39)

Contrary to response theory for exact states, in Section 3.11, or for coupled cluster
wavefunctions, in Section 11.4, in MCSCF response theory the time dependence of the
wavefunction is not determined directly from the time-dependent Schrödinger equa-
tion in the presence of the perturbation Ĥ(1)(t), Eq. (3.74). Instead, one applies the
Ehrenfest theorem, Eq. (3.58), to the operators, which determine the time dependence
of the MCSCF wavefunction, i.e. the operators {ĥj}
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d

dt
〈ΦMCSCF

0 (t) | ĥj |ΦMCSCF
0 (t)〉 +

ı

�
〈ΦMCSCF

0 (t) | [ĥj , Ĥ
(0) + Ĥ(1)(t)] |ΦMCSCF

0 (t)〉 = 0

(11.40)

Inserting the expression for the time-dependent MCSCF wavefunction, Eq. (11.36),
and the perturbation expansion of the wavefunction parameters, Eq. (11.39), and
separating the orders one finds for the first-order equation [see Exercise 11.5]

ı�〈ΦMCSCF
0 | [ĥj ,

d

dt
κ̂(t)(1) +

d

dt
Ŝ(t)(1)] |ΦMCSCF

0 〉

− 〈ΦMCSCF
0 | [[ĥj , Ĥ

(0)], κ̂(t)(1) + Ŝ(t)(1)] |ΦMCSCF
0 〉

= −ı〈ΨMCSCF
0 | [ĥj , Ĥ

(1)(t)] |ΨMCSCF
0 〉 (11.41)

where the first-order operators are defined as

κ̂(1)(t) =
∑
p>q

[
κ(1)

pq (t) q̂†pq + κ(1)∗
pq (t) q̂pq

]
(11.42)

Ŝ(1)(t) =
∑
n�=0

[
S

(1)
n0 (t) R̂†

n0 + S
(1)∗
n0 (t) R̂0n

]
(11.43)

Exercise 11.5 Derive the first-order equation Eq. (11.41) from the Ehrenfest theorem
Eq. (11.40).

Using the implicit definitions, Eq. (10.60), of the MCRPA Hessian E and overlap
S matrices one can write the first-order equation more compactly as

ı�S
d

dt
γ(1)(t) − Eγ(1)(t) = T (Ĥ(1)(t)) (11.44)

This linear system of ordinary differential equations is normally solved by Fourier
transforming it to the frequency domain (Fuchs et al., 1993). We insert therefore the
Fourier transform of Ĥ(1)(t) from Eq. (3.78) and an analogous Fourier transform of
the first-order time-dependent wavefunction parameters γ(1)(t)

γ(1)(t) =
∫ ∞

−∞
dω γ(1)(ω) =

1
2

∑
β···

∫ ∞

−∞
dω X(Ôω

β···) Fβ···(ω) e−ıωt (11.45)

and obtain [see Exercise 11.6]

(�ωS − E) X(Ôω
β···) = T (Ôω

β···) (11.46)

which are the MCRPA response equations (10.60) again. However, contrary to Section
10.4 here we have derived them from response theory applied to an approximated
MCSCF wavefunction and not by approximating the expressions derived for exact
wavefunctions using the superoperator formalism.

Exercise 11.6 Fill in the missing steps in the derivation of Eq. (11.46).



Second-Order Polarization Propagator Approximation 235

11.3 Second-Order Polarization Propagator Approximation

The formulation of approximate response theory based on an exponential parame-
trization of the time-dependent wavefunction, Eq. (11.36), and the Ehrenfest theorem,
Eq. (11.40), can also be used to derive SOPPA and higher-order Møller–Plesset pertur-
bation theory polarization propagator approximations (Olsen et al., 2005). Contrary to
the approach employed in Chapter 10, which is based on the superoperator formalism
from Section 3.12 and that could not yet be extended to higher than linear response
functions, the Ehrenfest-theorem-based approach can be used to derive expressions
also for quadratic and higher-order response functions. In the following, it will briefly
be shown how the SOPPA linear response equations, Eq. (10.29), can be derived with
this approach.

The key step is to bring the Møller–Plesset perturbation theory wavefunction,
Eq. (9.64), into a form, that resembles a MCSCF wavefunction, i.e.

|ΦMP
0 〉 = C

⎛⎜⎝|ΦSCF
0 〉 +

∑
ai

tai |Φa
i 〉 +

∑
a>b
i>j

tab
ij |Φab

ij 〉 + · · ·

⎞⎟⎠ (11.47)

= C

⎛⎜⎝1 +
∑
ai

tai Ra†
i +

∑
a>b
i>j

tab
ij Rab†

ij + · · ·

⎞⎟⎠ |ΦSCF
0 〉 (11.48)

where the correlation coefficients are then expanded in Møller–Plesset perturbation
theory orders of the fluctuation potential Eq. (9.63) as

ta···i··· = ta···i··· [1] + ta···i··· [2] + · · · (11.49)

and the MP state-transfer operators are defined with respect to the Hartree–Fock
wavefunction as

R̂a···†
i··· = |Φa···

i··· 〉〈ΦSCF
0 | (11.50)

R̂a···
i··· = |ΦSCF

0 〉〈Φa···
i··· | (11.51)

The time-dependent Møller–Plesset wavefunction |ΦMP
0 (t)〉 is then written as

|ΦMP
0 (t)〉 = eıκ̂(t)eıŜ(t)|ΦMP

0 〉 (11.52)

where the operators governing the time dependence of the wavefunction are defined
as

κ̂(t) =
∑
p>q

[
κpq(t) q̂†pq + κ∗

pq(t) q̂pq

]
(11.53)

Ŝ(t) =
∑
ab···
ij···

[
Sab···

ij··· (t) R̂ab···†
ij··· + Sab···∗

ij··· (t) Rab···
ij···

]
(11.54)

One should note that single excitations and de-excitations are not included in the
time-dependent MP state-transfer operator Ŝ(t) because they are already included
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as orbital rotations κ̂(t). With this ansatz for the wavefunction and the Ehrenfest
theorem applied to it

d

dt
〈ΦMP

0 (t) | ĥj |ΦMP
0 (t)〉 +

ı

�
〈ΦMP

0 (t) | [ĥj , Ĥ
(0) + Ĥ(1)(t)] |ΦMP

0 (t)〉 = 0 (11.55)

one can follow the derivation in the previous chapter and derive the equation for the
SOPPA solution vector Eq. (10.29) [see Exercise 11.7].

Exercise 11.7 Derive the SOPPA Hessian and overlap matrices using the Ehrenfest theorem
Eq. (11.55).

11.4 Coupled Cluster Linear Response Functions

Coupled cluster response functions were derived by Koch and Jørgensen (1990) start-
ing from a time-dependent version of the transition expectation value Eq. (9.95) of
Arponen (1983)

〈ΦΛ
0 (t) | P̂ |ΦCC

0 (t)〉 (11.56)

where the time-dependent coupled cluster state |ΦCC
0 (t)〉 and dual or “Λ” state 〈ΦΛ

0 (t)|
are defined as

|ΦCC
0 (t)〉 = eT̂ (t)|ΦSCF

0 〉 (11.57)

〈ΦΛ
0 (t)| = 〈ΦSCF

0 |
[
1 + Λ̂(t)

]
e−T̂ (t) (11.58)

The time-dependent cluster and Λ operator consist, like their time-independent ver-
sions, Eqs. (9.73) and (9.97), of single, double and so forth excitation operators

T̂ (t) = T̂1(t) + T̂2(t) + T̂3(t) + · · · + T̂N (t) (11.59)

Λ̂(t) = Λ̂1(t) + Λ̂2(t) + Λ̂3(t) + · · · + Λ̂N (t) (11.60)

with

T̂1(t) =
∑
ai

tai (t) q̂†ai (11.61)

T̂2(t) =
∑
a>b
i>j

tab
ij (t) q̂†ai q̂†bj (11.62)

...

and

Λ̂1(t) =
∑
ai

λa
i (t) q̂ai (11.63)
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Λ̂2(t) =
∑
a>b
i>j

λab
ij (t) q̂ai q̂bj (11.64)

...

Using again the shorthand notation {eĥiμ
} and {dĥiμ

}, from Eq. (9.41), for all exci-
tation and de-excitation operators one can write the time-dependent cluster and Λ
operator more compactly as

T̂ (t) =
∑
iμ

tiμ
(t) eĥiμ

(11.65)

Λ̂(t) =
∑
iμ

λiμ
(t) dĥiμ

(11.66)

where tiμ
(t) and λiμ

(t) are the corresponding time-dependent amplitudes.
The time-dependent amplitudes, tiμ

(t) and λiμ
(t), are then determined from the

coupled cluster time-dependent Schrödinger equations

e−T̂ (t) ı�
d

dt
|ΦCC

0 (t)〉 = e−T̂ (t) Ĥ(t) |ΦCC
0 (t)〉 (11.67)(

−ı�
d

dt
〈ΦΛ

0 (t)|
)

eT̂ (t) = 〈ΦΛ
0 (t)| Ĥ(t) eT̂ (t) (11.68)

by projecting them on 〈ΦSCF
0 |dĥiμ

and eĥiμ
|ΦSCF

0 〉, respectively, yielding two systems
of ordinary linear differential Eqs. [see Exercise 11.8]

ı�
dtiμ

(t)
dt

= 〈ΦSCF
0 |dĥiμ

e−T̂ (t)Ĥ(t) |ΦCC
0 (t)〉 (11.69)

− ı�
dλiμ

(t)
dt

= 〈ΦΛ
0 (t) | [Ĥ(t), eĥiμ

] |ΦCC
0 (t)〉 (11.70)

Exercise 11.8 Derive the equations for the time-dependent amplitudes, Eqs. (11.69) and
(11.70).

Hint: In the derivation of the λiμ(t) amplitudes one should make use of the resolution of
identity as given in Eq. (9.44).

In the presence of a time-dependent perturbation Ĥ(1)(t), Eq. (3.75), the ampli-
tudes tiμ

(t) and λiμ
(t) in Eqs. (11.69) and (11.70) are expanded in a perturbation

series
tiμ

(t) = tiμ
+ t

(1)
iμ

(t) + · · · (11.71)

λiμ
(t) = λiμ

+ λ
(1)
iμ

(t) + · · · (11.72)
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where tiμ
and λiμ

are the unperturbed and time-independent amplitudes from Sections
9.6 and 9.7. Inserting these expansions in the differential equations and separating
orders one obtains in first order

ı�
dt

(1)
iμ

(t)

dt
= 〈ΦSCF

0 |dĥiμ
e−T̂ Ĥ(1)(t) |ΦCC

0 〉 +
∑
jν

t
(1)
jν

(t)Aiμjν
(11.73)

−ı�
dλ

(1)
iμ

(t)

dt
= 〈ΦΛ

0 | [Ĥ(1)(t), eĥiμ
] |ΦCC

0 〉+
∑
jν

t
(1)
jν

(t)Fiμjν
+

∑
jν

λ
(1)
jν

(t)Ajν iμ
(11.74)

where |ΦCC
0 〉 and 〈ΦΛ

0 | are the time-independent, unperturbed coupled cluster,
Eq. (9.72), and “Λ” state, Eq. (9.96) wavefunctions, respectively, and T̂ is the
time-independent, unperturbed cluster operator. The elements of the coupled cluster
Jacobian A matrix and of the F matrix are defined as

Aiμjν
= 〈ΦSCF

0 |dĥiμ
e−T̂ [Ĥ(0), eĥjν

] |ΦCC
0 〉 (11.75)

Fiμjν
= 〈ΦΛ

0 |[[Ĥ(0), eĥiμ
], eĥjν

] |ΦCC
0 〉 (11.76)

The Jacobian matrix A can be shown [see Exercise 11.9] to be the first derivative
of the time-independent coupled cluster amplitude equations, i.e. the coupled clus-
ter vector function e, Eq. (9.81), with respect to the time-independent amplitudes
tjν

, i.e.

Aiμjν
=

∂

∂tjν

eiμ
=

∂

∂tjν

〈ΦSCF
0 |dĥiμ

e−T̂ Ĥ(0) |ΦCC
0 〉 (11.77)

Exercise 11.9 Derive the coupled cluster Jacobian in Eq. (11.75) as a derivative of the
coupled cluster amplitude equations, i.e. prove Eq. (11.77).

Like in the previous two chapters the two differential equations, (11.73) and
(11.74), for the amplitudes are solved by transforming them to the frequency domain.
We define therefore Fourier components Xiμ

(Ôω
β···) and Yiμ

(Ôω
β···) of the first-order

amplitudes as

t
(1)
iμ

(t) =
∫ ∞

−∞
dω t

(1)
iμ

(ω) =
1
2

∑
β···

∫ ∞

−∞
dω Xiμ

(Ôω
β···) Fβ···(ω) e−ıωt (11.78)

λ
(1)
iμ

(t) =
∫ ∞

−∞
dω λ

(1)
iμ

(ω) =
1
2

∑
β···

∫ ∞

−∞
dω Yiμ

(Ôω
β···) Fβ···(ω) e−ıωt (11.79)

Inserting them together with the Fourier transform of Ĥ(1)(t), Eq. (3.78), in the two
differential equations and evaluating the derivatives gives



Coupled Cluster Linear Response Functions 239

∑
β···

∫ ∞

−∞
dω �ω Xiμ

(Ôω
β···) Fβ···(ω) e−ıωt

=
∑
β···

∫ ∞

−∞
dω 〈ΦSCF

0 |dĥiμ
e−T̂ Ôω

β··· |ΦCC
0 〉Fβ···(ω) e−ıωt

+
∑
β···

∫ ∞

−∞
dω

∑
jν

Xjν
(Ôω

β···)Aiμjν
Fβ···(ω) e−ıωt (11.80)

−
∑
β···

∫ ∞

−∞
dω �ω Yiμ

(Ôω
β···) Fβ···(ω) e−ıωt

=
∑
β···

∫ ∞

−∞
dω 〈ΦΛ

0 | [Ôω
β···,

eĥiμ
] |ΦCC

0 〉 Fβ···(ω) e−ıωt

+
∑
β···

∫ ∞

−∞
dω

∑
jν

Fiμjν
Xjν

(Ôω
β···)Fβ···(ω) e−ıωt

+
∑
β···

∫ ∞

−∞
dω

∑
jν

Yjν
(Ôω

β···)Ajν iμ
Fβ···(ω) e−ıωt (11.81)

Both equations have to be fulfilled for any frequency ω and strength of the field
component Fβ···(ω), which implies that

�ω Xiμ
(Ôω

β···) = 〈ΦSCF
0 |dĥiμ

e−T̂ Ôω
β··· |ΦCC

0 〉 +
∑
jν

Xjν
(Ôω

β···)Aiμjν
(11.82)

�ω Yiμ
(Ôω

β···) = −〈ΦΛ
0 | [Ôω

β···,
eĥiμ

] |ΦCC
0 〉 −

∑
jν

Fiμjν
Xjν

(Ôω
β···) −

∑
jν

Yjν
(Ôω

β···)Ajν iμ

(11.83)

Isolating the unknown Fourier components Xiμ
(Ôω

β···) and Yiμ
(Ôω

β···) and collecting
them in two column vectors X(Ôω

β···) and Y (Ôω
β···) we obtain two sets of coupled

linear equations

X(Ôω
β···) = (�ω 1 − A)−1 〈ΦSCF

0 |dhe−T̂ Ôω
β··· |ΦCC

0 〉 (11.84)

Y T (Ôω
β···) = −

[
〈ΦΛ

0 | [Ôω
β···,

ehT ] |ΦCC
0 〉 + FX(Ôω

β···)
]
(�ω 1 + A)−1 (11.85)

where 1 is a unit matrix of the same dimension as A. One should note that the
frequency-dependent cluster amplitudes X(Ôω

β···) have to be determined before one
can solve for the amplitudes Y (Ôω

β···) of the “Λ” state.
These are the analogous equations to the response equations for Møller–Plesset

perturbation theory polarization propagators or MCSCF linear response functions in
Eqs. (10.29) and (11.46). However, there are a few important differences. First, in
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coupled cluster linear response theory one has to solve two sets of equations, one for
each type of amplitudes. On the other hand, the coupled cluster Jacobian matrix A
is only half the size of corresponding Hessian matrices in Møller–Plesset polarization
propagator methods described in Sections 10.3 and 11.3, because the set of operators
{ĥiμ

} consists of only excitation or de-excitation operators in coupled cluster response
theory and not both, as in Møller–Plesset polarization propagator theory. Finally, the
coupled cluster Jacobian matrix A is inherently asymmetric, which implies that the
left and right eigenvectors of it will not be the same.

Having determined the time dependence of the coupled cluster and “Λ” wave-
functions to first order, i.e. having derived expressions for the Fourier components
Xiμ

(Ôω
β···) and Yiμ

(Ôω
β···) of the first-order time-dependent amplitudes in Eqs. (11.78)

and (11.79), we can insert them now in an expansion of the time-dependent transition
expectation value, Eq. (11.56), in orders of the perturbation

〈ΦΛ
0 (t) | P̂ |ΦCC

0 (t)〉 = 〈ΦΛ
0 | P̂ |ΦCC

0 〉
+

∑
iμ

t
(1)
iμ

(t) 〈ΦΛ
0 | [P̂ , ehiμ

] |ΦCC
0 〉

+
∑
iμ

λ
(1)
iμ

(t) 〈ΦSCF
0 |dhiμ

e−T̂ P̂ |ΦCC
0 〉 + · · · (11.86)

and obtain

〈ΦΛ
0 (t) | P̂ |ΦCC

0 (t)〉 = 〈ΦΛ
0 | P̂ |ΦCC

0 〉

+
1
2

∑
β···

∫ ∞

−∞
dω

∑
iμ

Xiμ
(Ôω

β···) 〈ΦΛ
0 | [P̂ , ehiμ

] |ΦCC
0 〉Fβ···(ω) e−ıωt + · · ·

+
1
2

∑
β···

∫ ∞

−∞
dω

∑
iμ

Yiμ
(Ôω

β···) 〈ΦSCF
0 |dhiμ

e−T̂ P̂ |ΦCC
0 〉Fβ···(ω) e−ıωt (11.87)

Comparison with the analogous expansion of an expectation value for exact states,
Eq. (3.109), shows that the coupled cluster linear response function is given as

〈〈 P̂ ; Ôω
β··· 〉〉ω = T Λ,T (P̂ )X(Ôω

β···) + Y T (Ôω
β···)T CC(P̂ ) (11.88)

where the elements of the “property gradient” vectors T Λ(Ô) and T CC(Ô) for an
operator Ô are defined as

TΛ
iμ

(Ô) = 〈ΦΛ
0 | [Ô, ehiμ

] |ΦCC
0 〉 (11.89)

TCC
iμ

(Ô) = 〈ΦSCF
0 |dhiμ

e−T̂ Ô |ΦCC
0 〉 (11.90)

Inserting the two solutions vectors X(Ôω
β···) and Y (Ôω

β···) we finally obtain
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〈〈 P̂ ; Ôω
β··· 〉〉ω = T Λ,T (P̂ ) (�ω 1 − A)−1

T CC(Ôω
β···)

+ T Λ,T (Ôω
β···) (−�ω 1 − A)−1

T CC(P̂ )

+
[
F (�ω 1 − A)−1

T CC(Ôω
β···)

]T

(−�ω 1 − A)−1
T CC(P̂ ) (11.91)

In coupled cluster response theory the poles of the linear response function and
thus the vertical excitation energies are then found as eigenvalues of the coupled cluster
Jacobian

(A − �ω1) R = 0 (11.92)

For the most common coupled cluster response function methods, CCSD (Koch and
Jørgensen, 1990) and CC2 (Christiansen et al., 1995b), the Jacobian can be derived as
derivatives with respect to the tiν

amplitudes of the CCSD and CC2 vector functions
in Eqs. (9.83), (9.84) and (9.86), (9.87)

ACCSD = (11.93)(〈ΦSCF
0 |dh1

[
ĤT1 + [ĤT1 , T̂2], ehT

1

] |ΦSCF
0 〉 〈ΦSCF

0 |dh1[ĤT1 , ehT
2 ] |ΦSCF

0 〉
〈ΦSCF

0 |dh2

[
ĤT1 + [ĤT1 , T̂2], ehT

1

] |ΦSCF
0 〉 〈ΦSCF

0 |dh2[ĤT1 , ehT
2 ] |ΦSCF

0 〉

)

ACC2 = (11.94)(〈ΦSCF
0 |dh1

[
ĤT1 + [ĤT1 , T̂2], ehT

1

] |ΦSCF
0 〉 〈ΦSCF

0 |dh1[ĤT1 , ehT
2 ] |ΦSCF

0 〉
〈ΦSCF

0 |dh2[ĤT1 , ehT
1 ] |ΦSCF

0 〉 〈ΦSCF
0 |dh2[F̂ , ehT

2 ] |ΦSCF
0 〉

)

where ĤT1 is the T1 transformed unperturbed Hamiltonian

ĤT1 = e−T̂1Ĥ(0) eT̂1 (11.95)

CC2 linear response theory as well as SOPPA, in Section 10.3, are in principle both
second-order response function methods, although there are significant differences.
Nevertheless, one can compare the blocks of elements in the CC2 Jacobian with the
corresponding matrices in the SOPPA Hessian. The “dh2,

ehT
2 ” block in CC2 and the

D(0) matrix in SOPPA have essentially the same elements. Also the “dh1,
ehT

2 ” and

“dh2,
ehT

1 ” blocks in CC2 contain elements similar to the C̃
(1)

and C(1) matrices.
However, there are also additional contributions in CC2 due to the T1 transformed
Hamiltonian. The same holds also for the “dh1,

ehT
1 ” block in CC2, which corresponds

to the A0,1,2 matrix in SOPPA.
Response functions have also been derived for the CC3 model (Christiansen

et al., 1995a), which is an approximation to the CCSDT model (Hald et al., 2001)
in the same way as CC2 is to CCSD. The immense number of triple excitations
included in the CC3 Jacobian makes it necessary to formulate it in a partitioned
form using Eq. (10.14). However, the partitioned CC3 Jacobian then depends also
on its own eigenvalues similar to the partitioned SOPPA Hessian in Eq. (10.49),



242 Perturbation and Response Theory with Approximate Wavefunctions

which implies that one has to iterate on each eigenvalue separately. As an alter-
native, an approximation to CC3 has been developed by Christiansen et al. (1996)
using the pseudo-perturbation theory from Section 3.13, where the triples excita-
tions are included as non-iterative corrections to CCSD excitation energies. This
CCSDR(3) method closely reproduces the results of CC3 calculations for vertical
excitation energies (Sauer et al., 2009; Falden et al., 2009; Silva-Junior et al., 2010).

A method closely related to the CCSD linear response function approach but
derived differently is the equation-of-motion coupled cluster approach (EOM-
CCSD) (Sekino and Bartlett, 1984; Geertsen et al., 1989; Stanton and Bartlett,
1993). The EOM-CCSD excitation energies are identical to the excitation energies
obtained from the CCSD linear response function, but the transition moments and
second-order properties, like frequency-dependent polarizabilities of spin-spin coupling
constants, differ somewhat.

11.5 Further Reading

MCSCF Response Theory

J. Olsen and P. Jørgensen, Time-dependent response theory with applications to
self-consistent field and multiconfigurational self-consistent field wave functions, in
Modern Electronic Structure Theory ed. D. R. Yarkony, World Scientific, Singapore
(1995): Chapter 13.
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Derivative Methods

In this chapter we will finally follow the third approach, which means that we aban-
don the perturbation-theory approach all together and go back to the definitions of
the properties as derivatives of the energy in the presence of the perturbation. We
will illustrate with a few examples how this approach can be applied to approximate
expressions for the energy in the presence of both static as well as time-dependent
perturbations. However, the presentation will be very brief and restricted to Møller–
Plesset perturbation theory and coupled cluster energies as nothing new is obtained
for variational methods compared to the response theory approaches in Chapters 10
and 11.

12.1 The Finite-Field Method

The finite-field method of Cohen and Roothaan (1965) and Pople, et al. (1968) involves
numerical evaluation of derivatives of the electronic energy, of first- or higher-order
properties, or in general of a property, P , in the presence of a perturbation opera-
tor, ÔF

α Fα. Calculations of P are performed for various values of field strength Fα.
The desired derivative, at zero field strength, can then be obtained either by finite
differences or by fitting the calculated values of P to a Taylor expansion in the field
strength Fα.

In a finite-field calculation of the ααα component of the static dipole polarizability
tensor, for example, the perturbation operator, − ÔE

α Eα, is added to the Hamiltonian,
H(0), and the electronic energy E(Eα) or the electronic contribution to the α compo-
nent of the dipole moment μα(Eα) calculated for various finite values of the electric
field strength Eα. ααα is then obtained as the numerical first derivative with respect
to Eα of μα(Eα) or as the numerical second derivative of the electric-field-dependent
electronic energy E(Eα). Off-diagonal elements αβα of the polarizability can be sim-
ilarly obtained from the μβ(Eα), whereas the calculation as second derivative of the
energy requires a 2-dimensional fit.

The property P of which derivatives can be taken need not be a static prop-
erty, but can also be a frequency-dependent polarizability α(−ω;ω), as e.g. done
by Jaszuński (1987). Finite-field calculations on α(−ω;ω) facilitate calculation of
β(−ω;ω, 0), γ(−ω;ω, 0, 0) and so forth.

The finite-field method is by far the easiest method to implement as long as the
perturbations are real. Any program for the calculation of the property P can be used,
as long as it is possible to include additional one-electron operators in the Hamiltonian.
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The finite-field method can thus be applied at any level of approximation or correlation
and even to approximations or methods for which a wavefunction or a ground-state
energy is not defined. The latter approach was used for example for the calculation of
the static second hyperpolarizability γ(0; 0, 0, 0) of Li− as second derivative of α(0; 0)
at the SOPPA(CCSD) level (Sauer, 1997).

Imaginary perturbation operators, like ÔlB
α , ÔsB

α , ÔlmK

α and ÔsmK

α , require the
use of complex arithmetic, which prevented a routine usage of the finite-field method
for the calculation of magnetic properties. Nevertheless, finite-field approaches to the
calculation of nuclear magnetic shielding constants (Fukui et al., 1992a) and nuclear
spin-spin coupling constants (Fukui et al., 1992b) have been presented. In this method
the paramagnetic contribution to σK

αβ , for example, was evaluated as numerical deriv-

ative of the expectation value of ÔlmK

α with respect to Bβ . The expectation value
itself was calculated to second order in electron correlation in the presence of the
magnetic induction Bβ . The Fermi contact, spin-dipolar and orbital paramagnetic
contributions to the coupling constants JKL

αβ were obtained as numerical derivatives
with respect to mK

α of an expression for the energy, which is second order in electron
correlation and first order in −

(
ÔlmL

β + ÔsmL

β

)
and is thus calculated in the presence

of the perturbation −
(
ÔlmK

α + ÔsmK

α

)
mK

α . Mixed electric–magnetic properties, on
the other hand, like nuclear magnetic shielding polarizabilities can easily be evaluated
as numerical derivatives of electric-field-dependent nuclear magnetic shielding tensors
without complex arithmetic.

A disadvantage of the finite-field method lies in the nature of numerical differ-
entiation. Care must be taken in choosing the field strength, in our example Eα,
which must not be too high, and in the number of different field strengths for
which the property P is evaluated. For higher-order properties or multiple pertur-
bations the method becomes cumbersome since the number of calculations to be
performed increases rapidly. Secondly, adding the field to the Hamiltonian lowers
the symmetry and therefore increases the computational cost of these calculations
compared to the calculations without field. Finally, the method can obviously not
be used for time-dependent perturbations and therefore for frequency-dependent
properties.

A variation of this method is the finite point charge method, used by Maroulis and
Thakkar (1988), in which the external electric field or field gradient is simulated by an
appropriate arrangement of point charges. This method is even simpler to implement,
since it only requires the option to include centres with a charge but no basis functions,
rather than a modified one-electron Hamiltonian.

The finite-field method has been widely used but is becoming increasingly obsolete
because of the advances in the analytical derivative methods: most electromagnetic
properties can now be calculated analytically, obviating the need for a finite-field
calculation.

However, there is one important exception, the calculation of geometrical deriva-
tives of electromagnetic properties, i.e. derivatives with respect to a change in a nuclear
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coordinate or a normal coordinate. These derivatives, in particular first and second
derivatives, are needed for the calculation of the vibrational averaging corrections to
molecular properties as discussed in Chapter 8. Analytical derivatives are so far only
implemented for a few, mainly first derivatives of first-order properties. Derivatives of
other properties are therefore still done numerically nowadays, see e.g. (Bishop and
Sauer, 1997; Sauer et al., 2001; Ruden et al., 2003).

12.2 The Analytic Derivative Method

In the analytic derivative method for the calculation of molecular properties, approx-
imate expressions for P within a given method are differentiated analytically with
respect to the perturbation. It is equally general as the finite-field method and does
not suffer from the numerical problems of the latter method. However, it is much
more difficult to apply to a new type of wavefunction, since expressions for the ana-
lytical derivatives have to be derived and implemented. Nevertheless, expressions for
first- and second-order properties have been implemented for most ab initio meth-
ods following the derivation of analytical derivatives with respect to changes in the
nuclear coordinates. Explicit expressions can be found in several reviews (Helgaker
and Jørgensen, 1988; Amos and Rice, 1989; Gauss and Cremer, 1992).

12.2.1 First Derivatives

Let us consider again a system in the presence of a general perturbation Fα··· that
could be a component of the electric field Eα, field gradient Eαβ , magnetic induction
Bα or nuclear moment mK

α with the first- and second-order perturbation Hamiltonians
Ĥ(1) + Ĥ(2) as given in Eq. (2.101) and Eqs. (2.108)–(2.110).

The first derivative of the energy of such a perturbed system with respect to Fα···
can then be written for most methods as

dE( �F)
dFα···

∣∣∣∣∣
| �F|=0

=
∑
pq

Dpq 〈φp | ∂ĥ(1)

∂Fα···
|φq〉 =

∑
μν

Dμν 〈χμ | ∂ĥ(1)

∂Fα···
|χν〉 (12.1)

or
dE( �F)
dFα···

∣∣∣∣∣
| �F|=0

=
∑
pq

Dpq 〈φp | ôFα··· |φq〉 =
∑
μν

Dμν 〈χμ | ôFα··· |χν〉 (12.2)

where Dpq and Dμν are density matrices in the molecular and atomic orbital basis.
The atomic orbitals χμ are here assumed to be independent of the perturbation.
For variational wavefunctions, i.e. methods that fulfill the Hellmann–Feynman theo-
rem, this result is equivalent to Eqs. (10.1) and (10.2) and the density matrices are
identical.

However, for non-variational wavefunctions, as for example in the case of Møller–
Plesset perturbation theory and the coupled cluster methods, the density matrices
here are not consistent with the definition in Eq. (2.20) and thus Eqs. (9.107) and
(9.108). The density matrices defined in Eq. (12.1) are for those methods therefore
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called relaxed or response density matrix (Trucks et al., 1988). In Section 9.7 it
was discussed that the Hellmann–Feynman theorem can be fulfilled in non-variational
methods such as coupled cluster theory (see e.g. Perera et al., 1996), when the first-
order properties are defined as first derivatives of the Lagrangian Eq. (9.95) instead of
the energy directly, meaning that the energy and first-order properties are evaluated
as transition expectation values, Eqs. (9.95) and (9.103). The relaxed CC density can
therefore also be calculated as the transition expectation value of the density operator,
Eq. (2.21),

PCC,rel(�r) = 〈ΦΛ |D̂(�r) |ΦCC〉 =
∑
pq

φp(�r) φ∗
q(�r) DCC,rel

pq (12.3)

The relaxed density matrix can in general be decomposed in an SCF and correlation
part

Drel = DSCF + Dcorr,rel (12.4)

The SCF density is given in Eq. (9.112) and the correlation part consists of two parts

Dcorr,rel = Damp,rel + Dorb,rel (12.5)

where Damp,rel contains amplitudes or correlation coefficients and Dorb,rel, obtained
as a solution of the so-called Z-vector equations (Handy and Schaefer, 1984), arises
because of the relaxation of the orbitals for non-variational wavefunctions. Only the
occupied-virtual and virtual-occupied blocks are non-zero in Dorb,rel, which is again
a result of the Brillouin condition for the SCF ground state.

In the following, this will be illustrated for the MP2 energy correction, Eq. (9.68),
whose straightforward differentiation gives

dEMP2( �F)
dFα···

∣∣∣∣∣
�F=0

=
∑
ab

DMP2
ab 〈φa | ∂ĥ(1)

∂Fα···
|φb〉 +

∑
ij

DMP2
ij 〈φi | ∂ĥ(1)

∂Fα···
|φj〉

+
∑
ai

LMP2
ai U

(1)
α··· ,ai (12.6)

or

dEMP2( �F)
dFα···

∣∣∣∣∣
�F=0

=
∑
ab

DMP2
ab 〈φa | ôFα··· |φb〉 +

∑
ij

DMP2
ij 〈φi | ôFα··· |φj〉

+
∑
ai

LMP2
ai U

(1)
α··· ,ai (12.7)

where DMP2
ij and DMP2

ab are the occupied-occupied and virtual-virtual blocks of the
second-order correction to the density matrix as given in Eqs. (9.116) and (9.117).
LMP2

ai is called a Lagrangian although it differs from the Lagrangians discussed in
Section 9.7 and is given as
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LMP2
ai = −4
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)]
(12.8)

Finally, U
(1)
α··· ,ai are the solutions of the coupled Hartree–Fock equations, which enter

in the expression for the derivative, because the molecular orbitals also depend on field.
Inserting the expression for U

(1)
α··· ,ai from Eq. (11.25) the third term can be written

more explicitly as∑
ai

LMP2
ai U

(1)
α··· ,ai = −

∑
ai

∑
bj

LMP2
ai

(
A(0,1) − B(1)

)−1

ai,bj
〈φb | ôFα··· |φj〉 (12.9)

However, instead of solving the coupled Hartree–Fock equations for all components
α of the field �F , i.e. with the molecular orbital integrals 〈φb | ôFα··· | φj〉 as the right-
hand side, one can solve one set of coupled Hartree–Fock equations for the so-called
Z-vector (Handy and Schaefer, 1984), with this second type of Lagrangian, LMP2

ai , as
the right-hand side ∑

bj

(
A

(0,1)
ai,bj − B

(1)
ai,bj

)
Zbj = −LMP2

ai (12.10)

The last term in Eq. (12.6) can then be written as∑
ai

LMP2
ai U

(1)
α··· ,ai =

∑
ai

Zai〈φa | ôFα··· |φi〉 (12.11)

which is completely analogous to the other two contributions to the first derivative
in Eq. (12.6), because it consists of a contraction of molecular orbital integrals of the
perturbation operator ôFα··· with another vector. The only difference is that now the
summation is over pairs of occupied and virtual molecular orbitals. Defining therefore
the occupied-virtual and virtual-orbital blocks DMP2,rel

ia and DMP2,rel
ai of the relaxed

density matrix to be equal to the Z vector

DMP2,rel
ai = Zai (12.12)

one can write the first derivative of the MP2 energy correction compactly as the
contraction of all molecular orbital integrals of the perturbation operator with the
corresponding elements of the relaxed density matrix
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dEMP2,rel( �F)
dFα···

∣∣∣∣∣
�F=0

=
∑
pq

DMP2
pq 〈φq | ôFα··· |φp〉 (12.13)

as stated in Eq. (12.1) and in analogy to the expression in Eq. (10.1) for the unrelaxed
density matrix consistent through second order in Eqs. (9.116)–(9.118). The difference
between the unrelaxed density matrix consistent through second order (Jensen et al.,
1988a; 1988b) and the relaxed density MP2 matrix (Gauss and Cremer, 1992; Cybulski
and Bishop, 1994) is therefore in the occupied-virtual and virtual-orbital blocks.

12.2.2 Second Derivatives

The second derivative of the energy can be written in terms of atomic orbitals as

d2E( �F)
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(12.14)
or
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(12.15)
where we have assumed again that the atomic orbitals are independent of the pertur-
bation. The derivative of the relaxed density matrix, the so-called first-order relaxed
density matrix, in the atomic orbital basis is given as

D
(1)
β··· ,μν =

∂Dμν

∂Fβ···
=

∑
pq

c∗μp

∂Dpq

∂Fβ···
cνq +

∑
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Dpq

(
∂c∗μp

∂Fβ···
cνq + c∗μp

∂cνq

∂Fβ···

)
(12.16)

The derivatives of the molecular orbital coefficients {cνq} are obtained by solving the
coupled-perturbed Hartree–Fock equations (11.25). The first-order density matrix
at the SCF level was given in Eq. (11.16). The occupied-occupied and virtual-virtual
blocks of the correlated first-order density matrix contain derivatives of the amplitudes
or correlation coefficients, which can be obtained by straightforward differentiation
of the equations defining the amplitudes. The occupied-virtual and virtual-occupied
part requires the solution of the first-order Z-vector equations, i.e. the derivative of the
Z-vector equations. Explicit expressions for the relaxed density matrices and first-order
relaxed density matrices for many methods can also be found in e.g. (Helgaker and
Jørgensen, 1988; Amos and Rice, 1989; Gauss and Cremer, 1992; Gauss and Stanton,
1995).

12.3 Time-Dependent Analytical Derivatives

Several attempts have been made to extend the analytical energy derivative method
also to the case of time-dependent perturbations. The pseudo-energy derivative (PED)
method of Rice and Handy (1991), the quasi-energy derivative (QED) method of
Sasagane, et al., (1993) and the time-dependent second-order Møller–Plesset method
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(TDMP2) method of Hättig und Heß (1995) were steps in this direction. The
most recent attempt that in a way summarises all previous developments is the
time-averaged quasi-energy method of Christiansen et al. (Christiansen et al., 1998b).

All these methods define response functions as derivatives of a perturbed
time-dependent quasi-energy (Löwdin and Mukherjee, 1972; Langhoff et al., 1972;
Kutzelnigg, 1992)

Q(t, �F) = 〈Ψ(t, �F) |Ĥ(t) − ı�
∂

∂t
|Ψ(t, �F)〉 (12.17)

with the time-dependent perturbation Hamiltonian Ĥ(t) as defined in Eqs. (3.68) and
(3.78).

While the linear response function 〈〈 Ôω
α··· ; Ôω

β··· 〉〉ω of an operator Ôω
α··· in the

presence of a time-dependent field with Fourier components Fβ···(ω) was obtained in
the PED method as
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and in the QED or TDMP2 method as

〈〈 Ôω
α··· ; Ôω

β··· 〉〉ω =
d2Q(t, �F)

dFα···(−ω)dFβ···(ω)
|| �F|=0 (12.19)

it is finally in the time-averaged quasi-energy method given as

〈〈 Ôω
α··· ; Ôω

β··· 〉〉ω =
d2{Q(t, �F)}T

dFα···(−ω)dFβ···(ω)
|| �F|=0 (12.20)

where the time average is defined as (Langhoff et al., 1972)

{Q(t, �F)}T =
1
T

∫ T
2

−T
2

Q(t, �F) dt (12.21)

and T is a period of the perturbation Eq. (3.78)

Ĥ(1)(t + T ) = Ĥ(1)(t) (12.22)

The TDMP2 approach (Hättig and Heß, 1995) has only been applied to the linear
response function. PED (Rice and Handy, 1991, 1992) and QED (Aiga et al., 1993)
expressions for the frequency-dependent polarizability and first hyperpolarizability,
i.e. linear and quadratic response functions, have been derived at the SCF and MP2
level, whereas QED expressions have also been presented for the coupled cluster level
(Aiga et al., 1994). Furthermore, QED expressions for second and third hyperpolar-
izabilities, i.e. cubic and quartic response functions, have been presented for SCF,
MCSCF, full and truncated CI wavefunctions (Sasagane et al., 1993). Finally, time-
averaged QED expressions for linear and higher response functions, excitation energies
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and excited-state properties have been presented for general variational and non-
variational theories and in particular for various coupled cluster methods (Christiansen
et al., 1998b).

At the SCF level all methods lead to the same expressions for the response func-
tions as obtained in the random phase approximation, in Section 10.3, with the
time-dependent Hartree–Fock approximation, in Chapter 11.1, or with SCF linear
response theory. The QED and time-averaged QED method for an MCSCF energy
was also shown to yield the same expressions as obtained from propagator or response
theory in Sections 10.4 and 11.2.

However, for non-variational wavefunctions and in particular at the MP2 level the
various methods differ, despite the fact that they were constructed to give the correct
static perturbation limit, meaning the same as obtained from taking derivatives of the
time-independent MP2 energy in Section 12.2.2. The PED method started from the
normal expression for the MP2 closed-shell energy, Eq. (9.68), but expressed with the
time-dependent perturbed molecular orbitals from Eq. (11.32). In addition, it was
required that the condition

〈Φ(t) | ∂Φ(t)
∂Fα···(0)

〉 = 0 (12.23)

is fulfilled for the first-order time-dependent MP wavefunction

|Φ(t)〉 = |ΦSCF
0 (t)〉 + |ΦMP1(t)〉 (12.24)

However, no time-dependent contribution was included in the first-order correlation
coefficients apart from the time dependence of the molecular orbitals.

In the TDMP2 method, in the newest version of the QED method, called QED-
MP2 Aiga and Itoh, 1996, and in the time-averaged QED method, the derivatives are
taken of an MP2 time-dependent and relaxed quasi-energy Lagrangian
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The first term is the generalization of the normal MP2 energy, Eq. (9.68), to the case of
time-dependent molecular orbitals and time-dependent first-order doubles correlation
coefficients t2μ

[1](t). The second and third terms are the time-dependent version of
the equations for the t2μ

[1](t) coefficients multiplied with their Lagrangian multipliers
λ2μ

[1](t). It is these equations that were not included in the PED approach. Finally,
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κ̂(t) is the time-dependent orbital rotation operator, defined in Eq. (11.37) with the
time-dependent orbital rotation parameters κpq(t) and κ∗

pq(t), which are equal to the

Fourier transforms of the TDHF expansion coefficients U
(1)
α··· ,pi(ω) and U

(1)
α··· ,pi(−ω) in

Eq. (11.32). The last term is therefore the TDHF equations multiplied by correspond-
ing time-dependent Lagrangian multipliers τpq(t). This Lagrangian is thus variational
with respect to the TDHF coefficients, Eq. (11.35), the first-order doubles correlation
coefficients as well as with respect to the Lagrangian multipliers for both types of
coefficients. A constraint like Eq. (12.23) is not necessary in the QED method as a
result of the fact that the second derivative is with respect to Fα···(−ω). The TDHF
coefficients have to be obtained by solving the TDHF equations, Eq. (11.35), as in the
PED method. The first-order MP2 amplitudes as well as the Lagrangian multipliers
for both the TDHF coefficients and the first-order MP2 amplitudes are obtained by
solving appropriate response equations.

An important difference between the PED and QED method at the MP2 level
as well as between these methods and the SOPPA or CC2 linear response functions
concerns the poles of the response function, i.e. the values of the frequency of radiation
for which the response function becomes singular. The poles of the exact response
functions are equal to the vertical excitation energies of the system, as discussed in
Section 7.4. The PED expression contains Hartree–Fock orbital energy differences as
poles and thus excitation energies, whereas the QED method has the RPA or TDHF
poles and double excitation poles coming from the time-dependent first-order doubles
correlation coefficients t2μ

[1](t). This is a major drawback of this approach because
it is not in agreement with the pole structure of the exact response functions. It is
a consequence of including orbital relaxation in the Lagrangian given in Eq. (12.25),
which implies a two-step procedure, where first the TDHF equations are solved and
afterwards equations for the time-dependent t2μ

[1](t) amplitudes. The SOPPA and
CC2 response functions, on the other hand, which are implicitly based on an unrelaxed
formalism have the correct pole structure.

The same problem with the pole structure appears also for coupled cluster
response functions, if one defines them as derivatives of a time-average quasi-energy
Lagrangian including orbital relaxation. It is therefore preferable also in the ana-
lytical derivative approach like in Section 11.4 to derive coupled cluster response
functions as derivatives of a time-dependent quasi-energy Lagrangian without orbital
relaxation
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0 〉 (12.26)

Inserted in Eq. (12.20) one then obtains an expression for the coupled cluster response
function that is essentially Eq. (11.91) but symmetrized with respect to the two
property operators P̂ = Ôω

α··· and Ôω
β··· and the sign of the frequency ω.
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13

Examples of Calculations
and Practical Issues

In the following sections some examples will be given of the calculation of the elec-
tromagnetic molecular properties introduced in Chapters 4 to 8 with some of the ab
initio methods described in Chapters 10 to 12. The examples are neither meant to
give an exhaustive overview of the performance of the different ab initio methods nor
the molecular properties. But before doing so we have to discuss one important prac-
tical issue in all quantum chemical calculations, the one-electron basis set, and the
more technical question of how the response functions or propagators are evaluated in
actual calculations, i.e. the reduced linear equations algorithm.

13.1 Basis Sets for the Calculation of Molecular Properties

In all the quantum chemical methods described in Chapters 10 to 12 the approximate
electronic wavefunctions are built from molecular orbitals, which are the solutions
of the Hartree–Fock equations Eq. (9.11) or their multiconfigurational extension. In
all modern methods these molecular orbitals are expanded in a set of one-electron
functions {χμ}, called the basis set

φp(�r) =
∑

μ

χμ(�r) cμp (13.1)

In most cases these basis functions are what is called Gaussian-type orbitals (GTO)

χζ,k,m,n(�R,�r) = C(x − Rx)k(y − Ry)m(z − Rz)ne−ζ(�r−�R)2 (13.2)

here given as cartesian Gaussian-type functions, where C is the normalization constant
and the basis function is placed at point �R. The sum of the exponents k, m and n
is the angular momentum quantum number l of this function. Basis functions always
come in sets of functions having the same exponent ζ but all possible combinations of
the exponents k, m and n whose sums give the same value of the angular momentum
quantum number l.

Mathematically, the set of functions only has to be complete, apart from fulfilling
the same boundary conditions as the molecular orbitals. However, this is not possible
in practice, because it would require infinitely large basis sets. Often, one chooses
therefore a more physical approach, where the basis functions are placed at the atoms
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and are meant to simulate atomic orbitals of the individual atoms in the molecule. The
expansion in Eq. (13.1) then becomes a linear combination of atomic orbitals (LCAO).
However, the GTOs are not an ideal approximation to atomic orbitals, which would
be exponential functions e−ζ|�r−�R| instead of Gaussian-type functions e−ζ(�r−�R)2 of the
distance from the centre �R. This means that the GTOs fall off too quickly as compared
to real atomic orbitals and that they have a maximum at the nucleus, i.e. at �r = �R,
instead of the cusp of proper atomic orbitals. The most inner and outer parts of the
atomic orbitals are therefore not well described by GTOs. The common solution to this
problem is to combine several GTOs, which are called primitive GTOs, in a con-
tracted GTO, which is then meant to simulate one atomic orbital. The coefficients
of this combination are preset and kept fixed during the calculation of the molecular
orbital coefficients cμp, i.e. the solution of the Hartree–Fock equations Eq. (9.11).

Although the Gaussian-type orbitals (contracted or not) are not atomic orbitals
but just basis functions, one still keeps the nomenclature and distinguishes between
valence orbitals, which are meant to describe the electrons in the outermost shell,
e.g. the 2s and 2p electrons in carbon or the 1s electron in hydrogen, and core
orbitals, which are meant to describe the inner electrons, e.g. the 1s electrons in
carbon. If each core and valence orbital of an atom is represented by a single primitive
or contracted GTO one speaks of a minimal basis set.

However, such a basis set is not suitable for any quantitative calculations, even if it
were to consist of the proper atomic orbitals. The reason is that proper atomic orbitals
describe the electrons in an isolated atom with a spherically symmetric potential. This
symmetry is broken in any molecule and the basis has to reflect this leading to two
different kinds of extension of a minimal basis set. First, one represents each atomic
orbital not by a single contracted or primitive GTO, but by two, three or more GTOs
with different exponents ζ. Such basis sets are therefore called double zeta (DZ),
triple zeta (TZ), and so forth, basis sets. Normally, this is in particular important
for the valence functions, whereas the core orbitals are described by a single but then
contracted GTO. A basis set with a single contracted GTO for each core orbital and
two, three or more contracted or primitive GTOs for each valence orbital is then called
a valence double zeta (VDZ), valence triple zeta (VTZ), and so forth, basis set.
A typical example of a VDZ basis set is the Pople-style basis sets (Hehre et al., 1972)
6-31G, where each core orbital is represented by a contraction of 6 primitive GTOs
while the valence orbitals are represented by two basis functions: one contraction of
three primitive GTOs and a second but primitive GTO with a smaller exponent ζ.

However, this is often still not enough because it does not introduce the required
asymmetry in the basis set. This can be achieved by also including basis functions
with a higher angular momentum quantum number l than the valence orbitals,
e.g. d-orbitals for carbon or p-orbitals for hydrogen. They are called polarization
functions and are important for smaller molecules with high symmetry in particular,
whereas in large molecules with low symmetry the atoms can partly “borrow” from
each other. In the Pople-style basis sets this would lead to a 6-31G(d,p) or shorter
6-31G** basis set, which has an additional set of d-type GTOs for all second- and third-
row atoms and an additional set of p-type GTOs for hydrogen (Francl et al., 1982).
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A basis set can therefore be improved by both increasing the number of valence
orbitals as well as adding more polarization functions. However, in a balanced basis
set this should be done in such a way that both changes lead to changes of equal
importance, which normally means changes in the electronic energy of the same order
of magnitude. The series of correlation consistent polarized basis sets cc-pVXZ (with
the cardinal number X = D, T, Q, 5, 6) by Dunning and coworkers (Dunning Jr.,
1989; Woon and Dunning Jr., 1993; Wilson et al., 1999) and the series of polarization
consistent pc-n (with n = 0, 1, 2, 3, 4) basis sets by Jensen (Jensen, 2001, 2002a,
2002b, 2002c, 2003, Jensen and Helgaker 2004, 2007) are two prominent examples
of this. In the cc-pVXZ basis sets the criteria was the change in the energy of a
correlated wavefunction calculation, whereas the pc-n basis sets are optimized for
density functional theory calculations.

All these basis sets are essentially optimized for the calculation of electronic
energies and are therefore able to represent the operators included in the field-free
electronic Hamiltonian Ĥ(0) reasonably well. However, in the calculation of molecular
electromagnetic properties it is necessary also to represent other operators such as the
electric dipole operator, the electronic angular momentum operator, the Fermi-contact
operator and more. Most of these basis sets are a priori not optimized for this and
have to be extended.

In the following, this will be discussed in more detail for electric properties like the
dipole polarizabilities, for magnetic properties like the magnetizabilities and nuclear
magnetic shielding tensors and for the indirect nuclear spin-spin coupling constants.

13.1.1 Electric Properties

The perturbation operator in the calculation of electric dipole moments, electric
dipole polarizabilities and hyperpolarizabilities, i.e. the electric dipole moment oper-
ator Eq. (4.30), contains the position vector �r of the electrons, which implies that the
tail of the wavefunction becomes important. However, this is not well described in
GTOs as discussed before and it is therefore essential to include additional valence
functions with very small exponents ζ – so-called diffuse basis functions. In the
Pople-style basis sets this is done in the 6-31G+ and 6-31G++ basis sets, where in
the “+” basis set one diffuse function is added only for second- and third-row atoms,
while in the “++” basis set one diffuse function is also added for hydrogen (Clark
et al., 1983). In the series of correlation consistent and polarization consistent basis
sets one set of diffuse functions of each type present in the basis set is added in the
aug-cc-pVXZ (Kendall et al., 1992; Woon and Dunning Jr., 1993, 1994; Balabanov
and Peterson, 2005) and aug-pc-n (Jensen, 2002c) version of these basis sets. In the
series of correlation consistent basis sets it is also possible to add two or more sets of
diffuse functions in the “d-aug”, “t-aug” and so forth versions.

It is observed and can theoretically be supported that the requirements on the
basis set increase with the order of the molecular property, i.e. from an electric dipole
moment via the electric dipole polarizability to the first dipole hyperpolarizability and
so forth. In particular, functions with a higher angular momentum quantum number
than the valence orbitals, the polarization functions, become increasingly important



256 Examples of Calculations and Practical Issues

and the required maximum angular momentum quantum number represented in the
basis set increases along this series. A similar increase in the requirements on the
basis set is observed, when one goes from the electric dipole moment to the electric
quadrupole moment and so forth.

The correlation consistent basis sets contain a systematically increasing amount of
polarization functions not only with respect to the number of functions but also to the
highest angular momentum quantum number, which is always just one value smaller
than the cardinal number X. This series of basis sets is therefore well suited for and
frequently used in the calculation of polarizabilities and hyperpolarizabilities. Often,
one can observe a monotonic convergence of the results, which offer the possibility to
extrapolate to a complete basis set limit. However, these basis sets quickly become
very large with increasing cardinal number X.

An often cheaper alternative are the medium-size polarized basis sets by Sadlej
and co-workers (Sadlej, 1988, 1991a,b, 1992; Sadlej and Urban, 1991; Kellö and Sadlej,
1995; Neogrády et al., 1996; Cernusak et al., 2003). They are essentially triple zeta
basis sets with polarization functions. The key to their success is the way the ζ expo-
nents for the polarization functions are chosen: the polarization functions have the
same exponents as some of the valence orbitals with the highest angular momentum
quantum number, e.g. the d- and f-type functions on carbon have the same expo-
nents as some of the p-type functions. The reasoning behind this choice is that the
first-order correction to the perturbed orbitals of an atom in the presence of an elec-
tric field would approximately consist of atomic orbitals with the same exponent ζ
but the angular momentum quantum number l one higher and one lower than the
original function. This means that the basis set already includes also functions for
the first-order correction to the atomic orbitals. However, for larger molecules this
leads sometimes to linear dependencies and consequently convergence problems in
the calculation of the molecular orbitals. The same problem can also be observed in
calculations with the larger correlation consistent basis sets. Therefore, a modified ver-
sion of the medium-size polarized basis sets, called reduced-size polarized (ZmPolX)
basis sets, has recently been developed (Benkova et al., 2005a,b,c; Baranowska et al.,
2007) that contains a smaller number of diffuse polarization functions. Very recently,
Rappoport and Furche (2010) also developed a version of the Karlsruhe valence double-
, triple- and quadruple-zeta basis sets (Schäfer et al., 1992, 1994; Weigend et al., 2003;
Weigend and Ahlrichs, 2005) that was variationally optimised for the calculation of
polarizabilities.

13.1.2 Magnetic Properties

The perturbation operators in the calculation of magnetisabilities and rotational
g-factors are the magnetic dipole moment or angular momentum operators of the
electrons, Eq. (5.21). Inclusion of enough diffuse functions is therefore equally impor-
tant as for the electric analogue, the polarizability. However, while it was advisable
to include polarization functions with high enough angular momentum in the cal-
culation of polarizabilities, it is absolutely necessary for the case of the angular
momentum operator as perturbation operator. Again, the correlation consistent
basis sets in particular in their augmented form are frequently used, but it is often
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necessary for convergence to go to higher cardinal numbers than in the case of
polarizabilities.

Furthermore, one is faced with the gauge-origin problem, as discussed in Section
5.10. A popular solution to this problem is to work with perturbation-dependent basis
sets. In the case of an external magnetic field as perturbation such basis functions
take the following form

χζ,k,m,n(�R,�r, �B) = e
ıe
2�{(�RGO−�R)× �B}·�rχζ,k,m,n(�R,�r) (13.3)

These are most often called gauge including atomic orbitals (GIAO) but some-
times also London orbitals (Helgaker and Jørgensen, 1991), because London (London,
1937) employed functions of this type for the first time. Their first application to the
calculation of NMR nuclear magnetic shielding tensors, on the other hand, goes back
to Hameka (Hameka, 1958) and Ditchfield (Ditchfield, 1974). Comparison with Eqs.
(2.117) and (2.119) shows that the prefactor in a GIAO basis function corresponds
actually to a unitary gauge transformation, which moves the global gauge origin �RGO

to the centre �R of this basis function. The GIAO basis functions are thus just one
example for the general idea of distributed gauge origins. Application of the same pref-
actor to molecular orbitals is the idea behind the IGLO (Kutzelnigg, 1980; Schindler
and Kutzelnigg, 1982; van Wüllen and Kutzelnigg, 1996) and LORG (Hansen and
Bouman, 1985) approaches to the calculation of magnetizabilities and NMR nuclear
magnetic shielding tensors.

Employing these GIAO basis functions removes the dependence on the global
origin from property integrals necessary for the calculation of magnetizabilities and
NMR nuclear magnetic shielding tensors but introduces a dependence on the external
magnetic field also in the two-electron repulsion integrals Eq. (9.9). However, most
important in the context of basis-set requirements is that the exponential prefactor in
GIAOs introduces implicitly higher angular momentum functions in the basis set, as
can be seen by expanding it

χζ,k,m,n(�R,�r, �B) = χζ,k,m,n(�R,�r)+
ıe

2�

{
(�RGO − �R) × �B

}
·�r χζ,k,m,n(�R,�r)+· · · (13.4)

Calculation of magnetic properties with GIAO basis sets therefore show a significantly
improved basis set convergence over regular basis sets.

The nuclear magnetic shielding tensor contains in addition to the magnetic dipole
moment operator also the orbital paramagnetic operator, Eq. (5.58), with its 1

|�ri−�RK |3
dependence. Consequently, also the inner region of the electron density, i.e. closer to
the nuclei, has to be described properly by the basis set. It is therefore necessary to
add additional functions with large exponents, so-called tight functions. This can
partly be achieved by using the correlation consistent core-valence cc-pCVXZ series of
basis sets or their augmented version aug-cc-pCVXZ (Woon and Dunning Jr., 1995).
Jensen has also developed a modified version of his polarization consistent basis sets,
called pcS-n, which are optimised for DFT calculations of shielding constants (Jensen,
2008) by including tight p-functions.

In the CTOCD-DZ approach for solving the gauge-origin problem in shielding
calculations, Section 5.10, the diamagnetic contribution to the shielding tensor is
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reformulated as a linear response function of the total electronic momentum operator,
Eq. (3.65), and a new CTOCD-DZ operator, Eq. (5.117), which is essentially the
electronic position vector times the orbital paramagnetic operator. Consequently, it
becomes important to add not only p-type functions with large exponents, as in the
pcS-n basis sets, but also d-type functions with large exponents (Sauer et al., 1994a,b).
Sauer and coworkers (Ligabue et al., 2003; Bruun-Ghalbia et al., 2010) have therefore
developed a modified version of the aug-cc-pCVTZ basis sets, called aug-cc-pCVTZ-
CTOCD-uc, where such functions were added.

13.1.3 Electron-Spin-Dependent Properties

The NMR indirect nuclear spin-spin coupling constants as well as the ESR hyperfine
coupling constants are probably the extreme cases of additional basis-set requirements
in molecular property calculations. The Fermi-contact operator, Eq. (5.60), includes
a Dirac δ function, which means that only the electron density at the coupled nuclei
contributes. However, GTO basis functions, being Gaussian functions, have the funda-
mentally wrong behavior in that region: a maximum instead of a cusp. It is therefore
ultimately important to have s-type GTOs with very large exponents in the basis
set such that the cusp at the nucleus can at least approximately be simulated. This
was already realized by Schulman and Kaufman (1970) or Kowalewski et al. (1979)
and later by Oddershede and coworkers (Oddershede et al., 1988; Geertsen et al.,
1991b) or Guilleme and San Fabián (Guilleme and San Fabián, 1998). Based on this
several specialized spin-spin coupling constants basis sets have been developed that
are modifications of the correlation consistent basis sets. In the cc-pVXZ-Cs series by
Helgaker and coworkers (Helgaker et al., 1998) the cc-pVXZ basis sets were extended
with the core-valence s-type functions of the cc-pCVXZ basis sets. In the cc-pVXZ-
sun basis sets by Helgaker and coworkers (Helgaker et al., 1998) the s-type functions
of the cc-pVXZ basis sets were decontracted and augmented with a series of n s-
type functions with increasingly larger exponents. In the aug-cc-pVTZ-J basis sets
by Sauer and coworkers (Enevoldsen et al., 1998; Provasi et al., 2001; Barone et al.,
2003; Rusakov et al., 2010; Provasi and Sauer, 2010) the aug-cc-pVTZ basis set was
totally uncontracted, 4 s-type functions with increasingly larger exponents and for
third-row atoms also 3 d-type functions with large exponents were added. Finally,
the basis set was recontracted using the molecular orbital coefficients of suitable test
molecules as contraction coefficients and the most diffuse second polarization function
was removed. The resulting basis set was shown to reproduce results of DFT calcu-
lations for spin-spin coupling constants obtained with much larger basis sets (Peralta
et al., 2003; Deng et al., 2006). Finally, Jensen and coworkers (Jensen, 2006; Benedikt
et al., 2008; Jensen, 2010) generated modifications of the pc-n and cc-pVXZ basis sets,
called, respectively, pcJ-n and ccJ-pVXZ,where not only tight s-type but also tight p-
and d-type functions were added to the original basis sets. These basis sets are to be
preferred over the basis sets with only tight s-type functions whenever the spin-dipolar
Eq. (5.90) and orbital paramagnetic Eq. (5.88) contributions to the indirect spin-spin
coupling constants are equally or more important than the Fermi-contact contribution
Eq. (5.89).
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13.2 Reduced Linear Equations

A feature common to all propagator or response function methods is that the response
function is given as the product of a property gradient vector T T (P̂α) with the inverse
of the principal propagator matrix (�ωS − E) and another property gradient vector
T (Ôω

β···)

〈〈 P̂α ; Ôω
β··· 〉〉ω = T T (P̂α)(�ωS − E)−1T (Ôω

β···) (13.5)

which can also be written as

〈〈 P̂α ; Ôω
β··· 〉〉ω = T T (P̂α)X(Ôω

β···) (13.6)

where X(Ôω
β···) is the so-called solution vector, defined as

X(Ôω
β···) = (�ωS − E)−1T (Ôω

β···) (13.7)

In actual calculations, however, the inverse of the principal propagator is never eval-
uated. Instead, the solution vector is obtained as a solution of the corresponding set
of coupled linear equations

(�ωS − E) X(Ôω
β···) = T (Ôω

β···) (13.8)

which are solved iteratively by expanding the solution vector in a basis of orthogonal
trial vectors {bi} (Pople et al., 1979)

X(Ôω
β···) =

∑
i

bici (13.9)

The number of trial vectors required for a converged solution is normally orders of
magnitude smaller than the dimension of the principal propagator.

In a given iteration n the expansion of the solution vector, Eq. (13.9), is inserted
in the linear equations Eq. (13.8), which are then premultiplied with the trial vectors
{b1 · · · bn}. This transforms the original linear equations, Eq. (13.8), to the basis of
the trial vectors {b1 · · · bn}, which is called the reduced space,(

�ωSR − ER
)

XR(Ôω
β···) = T R(Ôω

β···) (13.10)

where the matrices in the reduced space are defined as

SR
ij = bi

T S bj (13.11)

ER
ij = bi

T E bj (13.12)

TR
i (Ôω

β···) = bi
T T (Ôω

β···) (13.13)

while the elements of the solution vector, XR(Ôω
β···) in the reduced space are the

optimal coefficients {ci} in the expansion of the trial vector X(Ôω
β···) in iteration n

Eq. (13.9).
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The linear equations in the reduced space are then solved with standard techniques,
meaning by calculating the inverse of (�ωSR − ER). In order to check whether the
solution vector is already converged in this iteration one compares the norm of a
residual vector, defined as,

Rn = (�ωS − E) Xn(Ôω
β···) − T (Ôω

β···) (13.14)

with a preset threshold.
If the solution vector is not yet converged, one has to extend the set of trial vectors.

A new trial vector bn+1 can be generated by a generalization of the conjugate gradient
method

bn+1 = (�ωSdiag − Ediag)−1 Rn , (13.15)

where Sdiag and Ediag are diagonal matrices consisting of the diagonal elements of
S and E and the matrix (�ωSdiag − Ediag)−1 is called a preconditioner. Afterwards,
one has to calculate the new elements of the matrices in the reduced space and there-
fore (�ωS − E) bn+1, which is called a linear transformed trial vector. This can be
done directly without ever calculating the (�ωS − E) matrix explicitly (Olsen and
Jørgensen, 1985; Packer et al., 1996). For the RPA and SOPPA polarization propaga-
tors this can also be done directly from the two electron integrals in the basis of the
atomic orbitals (Feyereisen et al., 1992; Bak et al., 2000; Christiansen et al., 1998a).

13.3 Examples of Electron Correlation Effects

In this section we will illustrate the calculation of electromagnetic properties taking
the electric dipole moment �μ Eq. (4.40) in Table 13.1, the static electric dipole polar-
izability α Eq. (4.52) in Table 13.2, the absolute nuclear magnetic shielding constant
σ Eq. (5.67) in Table 13.3 and the indirect nuclear spin-spin coupling constants J

Table 13.1 Electric dipole moment (in a.u. ≈ 8.478358 × 10−30

C m) of the hydrogen halides, HX, and methyl halides, CH3X,

calculated with an SCF as well as an unrelaxed and relaxed MP2

density matrix. Ab initio results taken from Packer et al. (1994),

experimental equilibrium geometry data for HX from Ogilvie

et al. (1980) and for CH3X from Landolt-Börnstein (1976).

Molecule SCF unrelaxed MP2 relaxed MP2 Exp.

HF 0.7570 0.6994 0.7100 0.7094
HCl 0.4725 0.4455 0.4419 0.4305
HBr 0.3777 0.3375 0.3417 0.3219
CH3F 0.8443 0.7521 0.7380 0.7312
CH3Cl 0.8095 0.7271 0.7589 0.7461
CH3Br 0.8456 0.7524 0.7462 0.7162
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Table 13.2 Comparison of different polarization propagator (Dalskov and

Sauer, 1998) and analytical derivative methods (McDowell et al., 1995) for the

calculation of static dipole polarizabilities α (in units of e2a2
0E

−1
h ) using the

medium-size polarized basis sets (Sadlej, 1988, 1991a; Andersson and Sadlej,

1992).

RPA SOPPA SOPPA CCSD MP2 MP4 Exp.
SCF (CCSD)

HF 4.874 6.085 5.818 5.724 5.674 5.770 5.60
HCl 16.664 17.671 17.352 17.499 17.368 17.433 17.39
H2O 8.492 10.319 9.939 9.824 9.792 9.866 9.64
H2S 23.614 24.922 24.343 24.604 24.570 24.542 24.71
NH3 12.926 14.736 14.366 14.411 14.432 14.411 14.56
PH3 29.915 31.120 30.184 30.674 30.689 30.510 30.93
CH4 16.120 16.853 16.520 16.709 16.754 16.704 17.27
SiH4 29.960 31.414 30.742 31.467 31.035 31.216 31.90
F2 8.593 8.903 8.525 8.550 8.219 8.662 8.38
Cl2 29.886 31.346 30.556 30.905 30.556 30.707 30.42
C2H4 28.303 28.329 27.482 27.534 27.793 27.635 27.70
CO2 15.841 19.444 18.726 18.013 17.884 17.846 17.51
SO2 23.653 28.659 27.407 26.444 26.174 26.343 25.61

Eq. (5.75) in Tables 13.4 to 13.6 as examples. The emphasis is here on the comparison
of some of the methods introduced in Chapters 10 to 12 and in particular on the effect
of electron correlation, meaning the difference in the results obtained with methods
based on the Hartree–Fock wavefunction, like SCF linear response (section 11.2) or
RPA (section 10.3) and CHF (section 11.1) on one side and with methods based on
multiconfigurational (sections 10.4 and 11.2), Møller–Plesset (sections 10.3 and 12.2)
or coupled cluster wavefunctions (sections 10.3, 11.4 and 12.2) on the other side. Only
results for small molecules are discussed here.

13.3.1 Electric Dipole Moment

In Table 13.1 some results for the electric dipole moment (Packer et al., 1994) of the
hydrogen halides, HX, and methyl halides, CH3X, are shown. They are calculated with
the SCF density matrix, Eq. (9.112),with the unrelaxed second-order (MP2) density
matrix in Eqs. (9.116)–(9.118) and with the relaxed second-order (MP2) density matrix
in Eq. (12.5). The results for the dipole moments are clearly improved by the second-
order correction to the MP density matrix. However, no clear trend is observable
for the comparison of the relaxed and unrelaxed MP2 density matrix. Correlation
at this level reduces the dipole moments on average by 9%. The root-mean-square
percentage deviation of the unrelaxed MP2 results from the experimental equilibrium
geometry values is 3.6% with a maximum and minimum deviation of 5.0% and –1.4%,
respectively.
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13.3.2 Isotropic Dipole Polarizability

In Table 13.2 results for the isotropic dipole polarizability are compared, calculated
as polarization propagator at the RPA, SOPPA and SOPPA(CCSD) level, as CCSD
linear response function and as second derivative of the SCF, MP2 and MP4 energy.
The maximum difference between the results at the highest level, CCSD, and the
experimental results is 3% or 0.83 a.u. for SO2. However, one should remember that the
calculated results are for a fixed equilibrium geometry, while the experimental results
are for the vibrational ground state. As indicated in Table 13.2 the RPA polarization
propagator results and SCF second derivative results are identical, illustrating the
equivalence of these two approaches. Concerning the effect of electron correlation one
can see that at the CCSD level the effect varies between 1% and 17% or –0.04 and
2.79 a.u. It is interesting to note that the difference between the unrelaxed CCSD
linear response and the relaxed MP4 results is very small and the agreement with the
CCSD linear response results is in most cases better in the SOPPA(CCSD) than in
the SOPPA approach.

13.3.3 Nuclear Magnetic Shielding Constants

In Table 13.3 results for nuclear magnetic shielding constants σ Eq. (5.67) are com-
pared, which were calculated (Gauss, 1992, 1993, 1994; Gauss and Stanton, 1995, 1996)
as analytical second derivatives of the MP2, MP3, CCSD and CCSD(T) energies with
GIAO basis functions. For hydrides of second-row atoms one observes that the dif-
ferences between the MP3, CCSD and CCSD(T) results are rather small, whereas for
the multiply bonded diatomic molecules there are still such large changes between the
CCSD and CCSD(T) results that one cannot be sure that the results at the CCSD(T)
level are converged. MP2, on the other hand, typically overestimates the correlation

Table 13.3 Comparison of different analytical derivative methods for the calcula-

tion of nuclear magnetic shielding constants σ (in ppm) (Gauss, 1992, 1993, 1994;

Gauss and Stanton, 1995, 1996) The experimental data (Gauss, 1992; Wasylishen

and Bryce, 2002) are extrapolated to the equilibrium geometry by subtracting

calculated ro-vibrational corrections from the experimental values.

SCF MP2 MP3 CCSD CCSD(T) Experiment

HF σ
19F 413.6 424.2 417.8 418.1 418.6 419.7 ±6

H2O σ
17O 328.1 346.1 336.7 336.9 337.9 337 ±2

NH3 σ
15N 262.3 276.5 270.1 269.7 270.7 273.3 ±0.1

CH4 σ
13C 194.8 201.0 198.8 198.7 198.9 198.4 ±0.9

F2 σ
19F –167.9 –170.0 –176.9 –171.1 –186.5 –192.8

N2 σ
15N –112.4 –41.6 –72.2 –63.9 –58.1 –59.6 ±1.5

CO σ
13C –25.5 20.6 –4.2 0.8 5.6 2.8 ±0.9

σ
17O –87.7 –46.5 –68.3 –56.0 –52.9 –56.79 ±0.59
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correction and the MP2 results are sometimes in not much better agreement with
higher-level methods or experimental results than the SCF results.

13.3.4 Indirect Nuclear Spin-Spin Coupling Constants

Finally, in Tables 13.4, 13.5 and 13.6 we compare results (Vahtras et al., 1992, 1993;
Wigglesworth et al., 1998; Enevoldsen et al., 1998; Kaski et al., 1998; Åstrand et al.,
1999; Jaszuński and Ruud, 2001; Sauer et al., 2001; Yachmenev et al., 2010) for the
indirect nuclear spin-spin coupling constants J , Eq. (5.75), calculated with four polar-
ization propagator methods: RPA, SOPPA, SOPPA(CCSD) and MCRPA. The results
of the RPA, SOPPA and SOPPA(CCSD) calculations (Wigglesworth et al., 1998;
Enevoldsen et al., 1998; Sauer et al., 2001; Yachmenev et al., 2010) for a given mole-
cule were obtained with the same basis set and at the same nuclear geometry, whereas
in some of the MCRPA calculations (Vahtras et al., 1992, 1993; Kaski et al., 1998;

Table 13.4 Comparison of different polarization propagator methods for the cal-

culation of indirect nuclear spin-spin coupling constants J (in Hz) (Vahtras et al.,

1992, 1993; Wigglesworth et al., 1998; Enevoldsen et al., 1998; Kaski et al., 1998;

Åstrand et al., 1999; Jaszuński and Ruud, 2001; Sauer et al., 2001; Yachmenev

et al., 2010). The experimental data are extrapolated to the equilibrium geometry

by subtracting calculated ro-vibrational corrections from the experimental values.

RPA MCRPA SOPPA SOPPA Experiment
(CCSD)

N2
1J

15N−14N –14.9 0.8 2.7 2.1 1.4±0.6
CO 1J

13C−17O –5.7 16.1 20.4 18.6 15.6±0.1
C2H2

1J
13C−13C 409.5 188.1 189.3 188.7 185.04

HF 1J
1H−19F 666.9 543.7 539.5 529.4 540

H2O 1J
1H−17O –103.4 –83.9 –82.4 –80.6 –83.04±0.02

NH3
1J

1H−15N –78.4 –62.2 –62.4 –62.1
CH4

1J
1H−13C 156.9 135.7 126.9 122.3 120.87±0.05

C2H2
1J

1H−13C 411.1 247.3 262.9 253.6 242.70
SiH4

1J
1H−29Si –241.2 — –202.5 –192.1 –193.3±0.6

H2O 2J
1H−1H –22.4 –9.6 –9.1 –8.8 –7.8±0.7

NH3
2J

1H−1H –24.4 –11.2 –11.9 –11.3
CH4

2J
1H−1H –27.0 –20.8 –15.3 –14.0 –11.878±0.004

C2H2
2J

1H−13C –49.9 53.0 52.6 51.7 53.82
SiH4

2J
1H−1H –1.2 — 2.1 2.6 2.62±0.08

C2H2
3J

1H−1H 84.9 11.2 12.2 11.3 10.89
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Åstrand et al., 1999; Jaszuński and Ruud, 2001) a slightly different basis set and
nuclear geometry were employed than in the other calculations. However, this has no
effect on the conclusions of the comparison.

The comparison of the three contributions in Tables 13.5 and 13.6 with the total
coupling constants in Table 13.4 shows that one-bond C–C, C–H, N–H, Si–H and
to a lesser degree also O–H coupling constants are dominated by the Fermi contact
contribution. For two-bond H–H coupling constants the Fermi-contact contribution
is still the largest contribution. However, the orbital paramagnetic and diamagnetic
contributions are often of the same order of magnitude as the Fermi-contact contri-
bution but partially cancel each other, because they often have opposite signs. Only
in the case of coupling constants involving atoms with many lone pairs like F or cou-
plings across double and triple bonds should one expect that the orbital paramagnetic

Table 13.5 Comparison of different polarization

propagator methods for the calculation of the

orbital paramagnetic contribution JOP to the indirect

nuclear spin-spin coupling constants (in Hz) (Vahtras

et al., 1992, 1993; Wigglesworth et al., 1998; Enevold-

sen et al., 1998; Kaski et al., 1998; Åstrand et al.,

1999; Jaszuński and Ruud, 2001; Sauer et al., 2001;

Yachmenev et al., 2010).

JOP

RPA MCRPA SOPPA
(CCSD)

N2
1J

15N−14N 0.43 2.69 3.00
CO 1J

13C−17O 11.81 12.89 14.11
C2H2

1J
13C−13C 15.05 6.67 6.34

HF 1J
1H−19F 195.05 182.0 189.82

H2O 1J
1H−17O –12.27 –11.45 –11.51

NH3
1J

1H−15N –3.07 –2.93 –2.97
CH4

1J
1H−13C 1.47 1.48 1.50

C2H2
1J

1H−13C –3.60 –0.84 –0.85
SiH4

1J
1H−29Si 0.47 — 0.44

H2O 2J
1H−1H 9.09 9.23 9.31

NH3
2J

1H−1H 6.24 6.19 6.24
CH4

2J
1H−1H 3.73 3.59 3.72

C2H2
2J

1H−13C 8.28 5.58 5.60
SiH4

2J
1H−1H 2.35 — 2.34

C2H2
3J

1H−1H 5.54 4.80 4.81
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Table 13.6 Comparison of different polarization propagator methods for the calculation

of the spin-dipolar, JSD, and Fermi contact JFC contributions to the indirect nuclear

spin-spin coupling constants (in Hz) (Vahtras et al., 1992, 1993; Wigglesworth et al.,

1998; Enevoldsen et al., 1998; Kaski et al., 1998; Åstrand et al., 1999; Jaszuński and

Ruud, 2001; Sauer et al., 2001; Yachmenev et al., 2010.)

JSD JFC

RPA MCRPA SOPPA RPA MCRPA SOPPA
(CCSD) (CCSD)

N2
1J

15N−14N –7.84 –1.95 –1.76 –7.49 –0.53 0.79
CO 1J

13C−17O –9.07 –4.77 –4.37 –8.53 3.90 8.76
C2H2

1J
13C−13C 29.06 9.04 8.46 365.35 172.34 173.92

HF 1J
1H−19F –11.73 –1.41 –0.94 483.62 363.2 340.50

H2O 1J
1H−17O –0.01 –0.41 –0.47 –91.12 –72.08 –68.56

NH3
1J

1H−15N –0.02 –0.18 –0.18 –75.22 –58.98 –58.87
CH4

1J
1H−13C –0.21 0.02 0.03 155.42 123.53 120.58

C2H2
1J

1H−13C 3.04 0.43 0.43 411.41 247.40 253.73
SiH4

1J
1H−29Si 0.05 — –0.05 –241.78 — –192.43

H2O 2J
1H−1H 1.25 1.03 0.89 –25.50 –12.70 –11.87

NH3
2J

1H−1H 0.91 0.68 0.67 –26.30 –12.82 –12.94
CH4

2J
1H−1H 0.46 0.35 0.36 –27.68 –15.73 –14.53

C2H2
2J

1H−13C –1.52 1.02 0.98 –55.25 47.77 46.47
C2H2

3J
1H−1H 3.02 0.57 0.59 79.93 9.43 9.49

SiH4
2J

1H−1H 0.09 — 0.07 –1.22 — 2.59

and or the spin-dipolar contributions will make a significant contribution to the total
coupling constant.

Turning to the comparison of the different methods we can see from Table 13.4
that the agreement of the SOPPA(CCSD) results with the experimental values is
very good for some of the indirect nuclear spin-spin coupling constants. For most
molecules the deviations are less than 4 Hz with a rms value of 2.3 Hz, apart from HF
and 1J

1H−13C in C2H2, where the deviations are about 10 Hz. Including also those
couplings increases the rms to 5.1 Hz. The rms value of the percentage deviations is
for all molecules 18% (10% without HF and 1J

1H−13C in C2H2).
Based on these statistical data one can conclude that spin-spin coupling con-

stants are more difficult to calculate than dipole polarizabilities and nuclear magnetic
shielding constants. This can also be seen if one compares the correlation correc-
tions to both properties as calculated at the SOPPA(CCSD) level. The correlation
corrections for the molecules in Table 13.4 vary between 20% for HF and 426%
for CO.



266 Examples of Calculations and Practical Issues

The calculation of spin-spin coupling constants is also complicated because it
consists of four terms (see Section 5.7), of which the three linear response function
contributions are shown in Tables 13.5 and 13.6. In Section 5.7, it was discussed that
two of them, the spin-dipolar and the Fermi-contact contribution, depend on excited
triplet states, which uncorrelated methods like RPA are often not able to describe
properly. The large correlation effects in the spin-spin coupling constants are thus
normally due to the Fermi-contact term.

13.4 Examples of Vibrational Averaging Effects

In Tables 13.7 and 13.8 some illustrative examples of the zero-point-vibrational cor-
rections to nuclear magnetic shielding constants, σ, and indirect nuclear spin-spin
coupling constants, J , are collected.

A few general conclusions can be drawn from these examples. Zero-point-vibrational
corrections for properties, which describe an interaction with nuclear magnetic
moments, like the nuclear magnetic shielding constant and the indirect nuclear spin-
spin coupling constant, can amount to 10% and are typically larger for the coupling
than for the shielding constants. Compared with the correlation effects discussed in
Section 13.3 zero-point-vibrational corrections are smaller but not significantly smaller,
which implies that they have to considered in a high-level calculation of NMR para-
meters. The large zero-point-vibrational corrections to the nuclear magnetic shielding
constants of F2 and CO are two extreme cases, well known in the literature. The cor-
rections to geminal hydrogen-hydrogen couplings, 2J

1H−1H , are per cent wise larger
than the corrections to other couplings in the same molecule.

Table 13.7 Calculated zero-point-vibrational correc-

tions (ZPVC) to the nuclear magnetic shielding

constant (in ppm) (Sundholm et al., 1996; Åstrand

et al., 1999; 1999, 200a)

Molecule Property result at Re ZPVC %

HF σ
19F 419.68 –10.01 2.4

HF σ
1H 29.01 –0.32 1.1

H2O σ
17O 343.94 –9.86 2.9

H2O σ
1H 30.97 –0.48 1.6

F2 σ
19F –187.84 30.90 16.5

C2H2 σ
13C 128.89 –3.78 2.9

C2H2 σ
1H 30.45 –0.80 2.6

CO σ
13C 5.29 –1.82 34.5

CO σ
17O –53.5 –4.8 9.0

N2 σ
15N –58.7 –3.5 5.9
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Table 13.8 Calculated zero-point-vibrational correc-

tions (ZPVC) to the indirect nuclear spin-spin cou-

pling constant (in Hz) (Wigglesworth et al., 1997, 1998;

Åstrand et al., 1999; Wigglesworth et al., 2000b, 2001;

Sauer et al., 2001; Yachmenev et al., 2010)

Molecule Property result at Re ZPVC %

HF 1J
1H−19F 526.4 –26.9 5.1

H2O 1J
1H−17O –81.555 3.963 4.9

H2O 2J
1H−1H –8.581 0.653 7.6

NH3
1J

1H−15N –61.968 0.341 0.5
NH3

2J
1H−1H –10.699 0.537 5.0

CH4
1J

1H−13C 123.846 5.030 4.1
CH4

2J
1H−1H –14.450 –0.686 4.7

SiH4
1J

1H−29Si –129.059 –7.585 3.8
C2H2

1J
13C−13C 189.995 4.861 1.9

C2H2
1J

1H−13C 254.906 –9.212 4.9
C2H2

2J
1H−13C 51.727 –3.237 6.3

C2H2
3J

1H−1H 11.311 –1.184 10.5

13.5 Further Reading

Basis Sets

F. Jensen, Introduction to Computational Chemistry, 2nd edn John Wiley & Sons,
Chichester (2007): Chapter 5.

Ro-Vibrational Corrections to NMR Parameters

T. A. Ruden and K. Ruud, in M. Kaupp, M. Bühl and V. G. Malkin, ed. Calculation of
NMR and EPR Parameters Theory and Applications, Wiley-VCH, Weinheim (2004):
Chapter 10, pages 153–173.



This page intentionally left blank 



Part IV

Appendices



This page intentionally left blank 



Appendix A

Operators

In this appendix, explicit expressions for all the perturbation operators are collected.
They were derived in Chapters 4 to 8 by expressing the scalar and vector potentials
in the molecular electronic Hamiltonian, Eq. (2.101), in terms of electric fields and
various magnetic inductions.

A.1 Perturbation Operators

The scalar potential of an external electric field with non-zero gradient is, Eq. (4.28),

φ̂E(�ri) = − (�ri − �RO) · E(�RO)

− 1
2

∑
αβ

[
(ri,α − RO,α)(ri,β − RO,β) − 1

3
δαβ(�ri − �RO)2

]
Eαβ(�RO) (A.1)

where the scalar potential at the origin of the coordinate system, φE(�RO) is set to
zero. For the vector potential we want to consider three different cases:

• a uniform magnetic induction, Eq. (5.19),

�̂AB(�ri) =
1
2

�B × (�ri − �RGO) (A.2)

where �RGO is the arbitrary gauge origin, defined in Section 5.10
• the magnetic induction due to the rotation of a molecule, Eq. (6.5),

�̂AJ (�ri) = −me

e

(
I−1 �J

)
× (�ri − �RCM ) (A.3)

• the magnetic dipole moment of nucleus K, Eq. (5.55),

�̂AK(�ri) =
μ0

4π
�mK × �ri − �RK

| �ri − �RK |3 (A.4)

whose magnetic induction is

�BK(�ri) =
μ0

4π

⎧⎨⎩3
[
�mK · (�ri − �RK)

]
(�ri − �RK)

| �ri − �RK |5 − �mK

| �ri − �RK |3

⎫⎬⎭
+

μ0

4π

8π

3
δ(�ri − �RK)�mK (A.5)
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Inserting these potentials in the molecular electronic Hamiltonian, Eq. (2.101), we
obtain after some manipulation the following expressions for the first- and second-order
perturbation Hamiltonian operators:

Ĥ(1) = −
∑
α

(
ÔlB

α + ÔsB
α

)
Bα +

∑
α

(
ÔlJ

α + ÔsJ
α

)
(I−1 �J)α (A.6)

−
∑
K

∑
α

(
ÔlmK

α + ÔsmK

α

)
mK

α

−
∑
α

(
ÔE

α + Ω̂E
α

)
Eα(�RO) −

∑
αβ

(
Ô∇E

αβ + Ω̂∇E
αβ

)
Eαβ(�RO)

Ĥ(2) =
∑
αβ

ÔBB
αβ BαBβ +

∑
αβ

ÔJJ
αβ (I−1 �J)α(I−1 �J)β +

∑
KL

∑
αβ

ÔmKmL

αβ mK
α mL

β (A.7)

+
∑
αβ

ÔBJ
αβ Bα(I−1 �J)β +

∑
K

∑
αβ

ÔmKB
αβ mK

α Bβ +
∑
K

∑
αβ

ÔmKJ
αβ mK

α (I−1 �J)β

A.1.1 Field-Independent Perturbation Operators

The perturbation operators Ô are obtained as derivatives of the molecular elec-
tronic Hamiltonian, Eqs. (2.101) and (2.108), evaluated for zero fields or magnetic
moments:

• the electric dipole moment operators coupling a molecule with a uniform
electric field

μ̂α ≡ ÔE
α(�RO) =

N∑
i

ôEi,α(�RO) =
N∑
i

μ̂i,α(�RO) = −e

N∑
i

(ri,α − RO,α) (A.8)

Ω̂E
α(�RO) =

M∑
K

ZKe(RK,α − RO,α) (A.9)

• the electric quadrupole moment operators coupling a molecule with the
gradient of an electric field

Ô∇E
αβ (�RO) =

N∑
i

ô∇E
i,αβ(�RO) =

1
3

N∑
i

Θ̂i,αβ(�RO)

= −e

2

N∑
i

[
(ri,α − RO,α)(ri,β − RO,β) − 1

3
δαβ(�ri − �RO)2

]
(A.10)

Ω̂∇E
αβ (�RO) =

1
2

M∑
K

ZKe

[
(RK,α − RO,α)(RK,β − RO,β) − 1

3
δαβ(�RK − �RO)2

]
(A.11)
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• the electric field operator coupling a molecule with an electric dipole moment

Ôμ
α(�R) =

N∑
i

ôμ
i,α(�R) =

e

4πε0

N∑
i

ri,α − Rα

| �ri − �R |3 (A.12)

Ω̂μ
α(�R) = −

∑
K

ZKe

4πε0

RK,α − Rα

| �RK − �R |3 (A.13)

• electric field gradient operators coupling a molecule with an electric
quadrupole moment located at �RK

ÔΘ
αβ(�R) =

N∑
i

ôΘ
i,αβ(�R)

=
e

4πε0

N∑
i

[
3
(ri,α − RK,α)(ri,β − RK,β)

| �ri − �RK |5
− δαβ

| �ri − �RK |3

]
(A.14)

Ω̂Θ
αβ(�R) = − 1

4πε0

∑
L �=K

ZLe

[
3
(RL,α − RK,α)(RL,β − RK,β)

| �RL − �RK |5
− δαβ

| �RL − �RK |3

]
(A.15)

• the orbital magnetic dipole moment operator coupling the motion of the
electrons in a molecule with a uniform magnetic induction

m̂l ≡ ÔlB
α (�RGO) =

N∑
i

ôlB
i,α(�RGO) =

N∑
i

m̂l
i,α(�RGO) (A.16)

= − e

2me

N∑
i

l̂i,α(�RGO) = − e

2me

N∑
i

[
(�ri − �RGO) × �̂pi

]
α

where �̂li(�RGO) is the orbital angular momentum operator of electron i with
respect to the gauge origin �RGO

• the spin magnetic dipole moment operator coupling the spin of the electrons
in a molecule with a uniform magnetic induction

m̂s ≡ ÔsB
α =

N∑
i

ôsB
i,α =

N∑
i

m̂s
i,α = − gee

2me

N∑
i

ŝi,α (A.17)

where �̂si is the spin operator of electron i
• the operator coupling the orbital angular momentum of the electrons

in a molecule with the rotation of the molecule

ÔlJ
α (�RCM ) =

N∑
i

ôlJ
i,α(�RCM ) = −

N∑
i

l̂i,α(�RCM ) (A.18)
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• the operator coupling the spin of the electrons in a molecule with the
rotation of the molecule

ÔsJ
α =

N∑
i

ôsJ
i,α =

2me

e
ÔsB

α (A.19)

• the orbital paramagnetic (OP) or paramagnetic nuclear spin-electron
orbit (PSO) operator coupling the orbital angular momentum of the electrons
in a molecule with a magnetic dipole moment located at �RK

ÔOP
K,α ≡ ÔlmK

α =
N∑
i

ôlmK

i,α = − e

me

μ0

4π

N∑
i

l̂i,α(�RK)

| �ri − �RK |3 (A.20)

= − e

me

μ0

4π

N∑
i

(
�ri − �RK

| �ri − �RK |3 × �̂pi

)
α

where �̂li(�RK) is the orbital angular momentum operator of electron i with
respect to the position of the magnetic dipole moment �RK

• the Fermi-contact (FC) and spin-dipolar (SD) operators coupling the spin
of the electrons in a molecule with a magnetic dipole moment located at �RK

ÔFC
K,α + ÔSD

K,α ≡ ÔsmK

α =
N∑
i

ôsmK

i,α (A.21)

= − gee

2me

μ0

4π

8π

3

N∑
i

δ(�ri − �RK)ŝi,α

− gee

2me

μ0

4π

N∑
i

⎧⎨⎩3
[
�̂si · (�ri − �RK)

]
(ri,α − RK,α)

| �ri − �RK |5 − ŝi,α

| �ri − �RK |3

⎫⎬⎭
• the diamagnetic magnetizability tensor operator coupling the motion of

the electrons in a molecule with the square of a uniform magnetic induction

ÔBB
αβ (�RGO) =

N∑
i

ôBB
i,αβ(�RGO) (A.22)

=
e2

8me

N∑
i

[
(�ri − �RGO)2δαβ − (ri,α − RGO,α)(ri,β − RGO,β)

]
• the operator coupling the orbital angular momentum of the electrons

in a molecule with the rotation of the molecule to second order

ÔJJ
αβ (�RCM ) =

N∑
i

ôJJ
i,αβ(�RCM ) (A.23)

=
me

2

N∑
i

[
(�ri − �RCM )2δαβ − (ri,α − RCM,α)(ri,β − RCM,β)

]



Perturbation Operators 275

• the orbital diamagnetic (OD) or diamagnetic nuclear spin-electron
orbit (DSO) operator coupling the orbital angular momentum of the electrons
in a molecule with two magnetic dipole moments located at �RK and �RL

ÔmKmL

αβ =
N∑
i

ômKmL

i,αβ (A.24)

=
e2

2me

(μ0

4π

)2 N∑
i

[
(�ri − �RL)

| �ri − �RL |3 · (�ri − �RK)

| �ri − �RK |3 δαβ − (ri,α − RL,α)

| �ri − �RL |3
(ri,β − RK,β)

| �ri − �RK |3

]

• the diamagnetic rotational g tensor operator coupling the orbital angular
momentum of the electrons in a molecule with the rotation of the molecule and
a uniform magnetic induction

ÔBJ
αβ (�RCM , �RGO) =

N∑
i

ôBJ
i,αβ(�RCM , �RGO) (A.25)

= −e

2

N∑
i

[
(�ri − �RCM ) · (�ri − �RGO)δαβ − (ri,α − RCM,α)(ri,β − RGO,β)

]
• the diamagnetic nuclear magnetic shielding tensor operator coupling the

orbital angular momentum of the electrons in a molecule with a magnetic dipole
moment located at �RK and a uniform magnetic induction

ÔmKB
αβ (�RGO) =

N∑
i

ômKB
i,αβ (�RGO) (A.26)

=
e2

2me

μ0

4π

N∑
i

[
(�ri − �RGO) · (�ri − �RK)

| �ri − �RK |3 δαβ − (ri,α − RGO,α)
(ri,β − RK,β)

| �ri − �RK |3

]

• the diamagnetic spin-rotation tensor operator coupling the orbital angular
momentum of the electrons in a molecule with the rotation of the molecule and
a magnetic dipole moment located at �RK

ÔmKJ
αβ (�RCM ) =

N∑
i

ômKJ
i,αβ (�RCM ) (A.27)

= −e
μ0

4π

N∑
i

[
(�ri − �RCM ) · (�ri − �RK)

| �ri − �RK |3 δαβ − (ri,α − RCM,α)
(ri,β − RK,β)

| �ri − �RK |3

]

A.1.2 Field-Dependent Perturbation Operators

For the derivation of magnetic second- or higher-order properties via response theory
as discussed in Section 3.3 it is necessary to know the molecular magnetic moment and
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molecular magnetic induction operators in the presence of an external magnetic induc-
tion �B, nuclear magnetic moments {�mL} or the perturbation due to the rotation of the
molecule. These operators are also obtained as derivatives of the molecular electronic
Hamiltonian, Eq. (2.101), but now for non-zero fields or magnetic moments:

• the orbital magnetic dipole moment operator in the presence of
magnetic perturbations

m̂α(�RGO, �B, {�mK}, �J) = − ∂Ĥ

∂Bα
(A.28)

= ÔlB
α + ÔsB

α − 2
∑

β

ÔBB
αβ Bβ −

∑
K

∑
β

ÔmKB
βα mK

β −
∑

β

ÔBJ
αβ (I−1 �J)β

• the operator for the molecular magnetic induction in the presence of
magnetic perturbations

B̂j
α(�RK , �B, {�mL}, �J) = − ∂Ĥ

∂mK
α

(A.29)

= ÔlmK

α + ÔsmK

α −
∑

β

ÔmKB
αβ Bβ − 2

∑
L

∑
β

ÔmKmL

αβ mL
β −

∑
K

∑
β

ÔmKJ
αβ (I−1 �J)β

A.1.3 Sum-over-States Diamagnetic Contribution Operators

The reformulation of the diamagnetic contributions to the magnetizability, nuclear
magnetic shielding and indirect nuclear spin-spin coupling tensor as linear response
functions or sum-over-states (SOS) term discussed in Section 5.9 leads to new
operators:

• the SOS diamagnetic magnetizability tensor operator

ÔξΔ

α (�RGO) =
[
�̂μ(�RGO) × �̂ml(�RGO)

]
α

(A.30)

• the SOS diamagnetic nuclear magnetic shielding tensor operator

ÔσK,Δ

α (�RGO) =
[
�̂Oμ(�RK) × �̂ml(�RGO)

]
α

(A.31)

• the CTOCD-DZ diamagnetic nuclear magnetic shielding tensor oper-
ator

ÔCTOCD−DZ
K,δα (�RGO) =

1
4me

[
μ̂δ(RGO) ÔOP

K,α + ÔOP
K,α μ̂δ(RGO)

]
(A.32)

• the SOS orbital diamagnetic or diamagnetic nuclear spin-electron orbit
operator

ÔKKL,Δ

α =
[
�̂Oμ(�RK) × �̂OOP

L

]
α

(A.33)
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A.2 Other Electronic Operators

• the density operator

D̂(�r) =
N∑
i

δ(�ri − �r) (A.34)

• the sum of the electronic position operators

Ôr
α =

N∑
i

r̂i,α (A.35)

• the second moment operator

Ôrr
αβ =

N∑
i

r̂i,αr̂i,β (A.36)

• the total electronic canonical momentum operator

Ôp
α =

N∑
i

p̂i,α (A.37)

• the total electronic angular momentum operator

L̂α(RGO) =
N∑
i

[
(�ri − �RGO) × �̂pi

]
α

(A.38)
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Definitions of Properties

In the following tables all definitions of molecular response properties as derivatives
of the energy or derivatives of other properties are collected.

Table B.1 Definitions of tensor components of the elec-

tric polarizabilities and hyperpolarizabilities as deriva-

tives of components of the field-dependent electric dipole

μα(�E , E) and quadrupole Θγδ(�E , E) moments or of the

field-dependent energy E(�E , E). All derivatives have to

be evaluated at zero field and field gradient.

μα(�E ,E) Θγδ(�E ,E) E(�E ,E)

ααβ
∂

∂Eβ
— − ∂2

∂Eβ∂Eα

βαβγ
∂2

∂Eγ∂Eβ
— − ∂3

∂Eγ∂Eβ∂Eα

γαβγδ
∂3

∂Eδ∂Eγ∂Eβ
— − ∂4

∂Eδ∂Eγ∂Eβ∂Eα

Aα,γδ 3
∂

∂Eγδ

∂

∂Eα
−3

∂2

∂Eγδ∂Eα

Bαβ,γδ 3
∂2

∂Eγδ∂Eβ

∂2

∂Eβ∂Eα
−3

∂3

∂Eγδ∂Eβ∂Eα

Cγδ,αβ —
∂

∂Eαβ
−3

∂2

∂Eγδ∂Eαβ
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Table B.2 Definitions of various magnetic properties as derivatives of the

perturbed energy E( �B, �mK , �mL) or as derivatives of components of the per-

turbed magnetic dipole moment mα( �B, �mK) and molecular magnetic induction

Bj
β(�R; �B, �mL). All derivatives are evaluated at zero magnetic field and zero

nuclear magnetic moment.

mα( �B, �mK) Bj
β(�R; �B, �mL) Bj

β(�RK ; �B, �mL) E( �B, �mK , �mL)

ξαβ
∂

∂Bβ
— — − ∂2

∂Bβ∂Bα

σβα(�R) — − ∂

∂Bα
— —

σK
βα − ∂

∂mK
β

— − ∂

∂Bα

∂2

∂mK
β ∂Bα

KL
βα(�R) — − ∂

∂mL
α

— —

KKL
βα — — − ∂

∂mL
α

∂2

∂mK
β ∂mL

α

Table B.3 Definitions of the rotational g tensor and spin rotation as

derivatives of the perturbed energy E( �B, �mK , �J) or as derivatives of com-

ponents of the perturbed magnetic dipole moment mJ
α( �J) and molecular

magnetic induction Bj,J
β (�R; �J). All derivatives have to be evaluated for

zero perturbation.

mJ
α( �J) Bj,J

α (�R; �J) Bj,J
α (�RK ; �J) E( �B, �mK , �J)

gJ,αβ
�

μN

∂

∂Jβ
— — − �

μN

∂2

∂Bα∂Jβ

Cαβ(�R) —
μNgK

2π

∂

∂Jβ
— —

CK
αβ — —

μNgK

2π

∂

∂Jβ
−μNgK

2π

∂2

∂mK
α ∂Jβ
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Perturbation Theory Expressions
for Properties

Using time-independent perturbation theory from Section 3.2 or response theory as
described in Sections 3.3 and 3.11 one can derive the following expressions for the
first-order P (1)

P (1) = f1〈Ψ(0)
0 |Ô1 |Ψ(0)

0 〉 (C.1)

and second-order P (2) molecular properties

P (2) = f1〈Ψ(0)
0 |Ô1 |Ψ(0)

0 〉 + f2

∑
n�=0

〈Ψ(0)
0 |Ô2 |Ψ(0)

n 〉〈Ψ(0)
n |Ô3 |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

+ f2

∑
n�=0

〈Ψ(0)
0 |Ô3 |Ψ(0)

n 〉〈Ψ(0)
n |Ô2 |Ψ(0)

0 〉
E

(0)
0 − E

(0)
n

(C.2)

= f1〈Ψ(0)
0 |Ô1 |Ψ(0)

0 〉 + f2〈〈 Ô2 ; Ô3 〉〉ω=0 (C.3)

for fixed nuclear positions. The operators Ô1, Ô2 and Ô3 and the prefactors f1 and f2

are collected in Tables C.1 and C.2.

Table C.1 Operators and prefactors for the exact first-order

Rayleigh–Schrödinger perturbation theory expressions for mole-

cular properties. See Eq. (C.1).

P (1) f1 Ô1

μα(�RO) 1 ÔE
α (�RO) + Ω̂E

α(�RO)

Θαβ(�RO) 3 Ô∇E
αβ (�RO) + Ω̂∇E

αβ (�RO)

mα(�RGO) 1 ÔlB
α (�RGO) + ÔsB

α

Bj
α(�RK) 1 ÔlmK

α (�RGO) + ÔsmK

α

aK
αβ −gKμN

2π

1

〈Ψ(0)
0 | Ŝα |Ψ(0)

0 〉
ÔsmK

β
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Table C.2 Operators and prefactors for the exact second-order Rayleigh–Schrödinger

perturbation theory expressions for molecular properties. See Eqs. (C.2) and (C.3).

P (2) f1 Ô1 f2 Ô2 Ô3

ααβ -1 ÔE
α ÔE

β

Aα,βγ(�RO) -3 ÔE
α Ô∇E

βγ

Cαβ,γδ(�RO) -3 Ô∇E
αβ Ô∇E

βγ

ξαβ(�RGO) -2 ÔBB
αβ (�RGO) -1 ÔlB

α (�RGO) ÔlB
β (�RGO)

ξΔ
αβ(�RGO) − 1

2me
ÔξΔ

α (�RGO) Ôp
β

σK
αβ(�RGO) 1 ÔmKB

αβ (�RGO) 1 ÔlmK

α ÔlB
β (�RGO)

σK,Δ
αβ (�RGO) 1

mec2
ÔσK,Δ

α (�RGO) Ôp
β

σK,Δ
αβ (�RGO)

∑
γδ

εβγδ Ôp
γ ÔCTOCD−DZ

K,δα (�RGO)

KKL
αβ 2 ÔmKmL

αβ 1 ÔlmK

α + ÔsmK

α ÔlmL

β + ÔsmL

β

KKL,Δ
αβ

1
mec2

ÔKKL,Δ
α Ôp

β

grig
J,αβ(�RCM ) − 2mp

eIββ
ÔJJ

αβ (�RCM )

gind
J,αβ(�RCM , �RGO) − 2mp

eIββ
ÔBJ

αβ (�RCM , �RGO)
2mp

eIββ
ÔlB

α (�RGO) ÔlJ
β (�RCM )

gel
J,αβ(�RCM )

4mpme

e2Iββ
ÔlB

α (�RCM ) ÔlB
β (�RCM )

CK,rig
αβ (�RK)

μNgK

2πIββ
ÔmKJ

αβ (�RK)

CK,ind
αβ (�RCM , �RK) −μNgK

2πIββ
ÔmKJ

αβ (�RCM )
μNgK

2πIββ
ÔlmK
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β (�RCM )

CK,el
αβ (�RK)
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2πIββ

2me

e
ÔlmK

α ÔlB
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Löwdin, P.-O. (1965). Studies in perturbation theory. IX. Connection between
various approaches in the recent development. Evaluation of upper bounds to
energy eigenvalues in Schrödinger’s perturbation theory. J. Math. Phys., 6,
1341–1353.
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Jacobian, 241

singles, doubles and triples model, 203
vector function, 202, 203, 238
wavefunction, 201, 222

Λ, 205, 236
linearised, 222
time-dependent, 236

coupled Hartree–Fock, 105, 186, 227, 231,
232, 247, 248, 261

coupling
minimal, 5, 13, 17
nuclear motion–electron motion, 126,

137, 141, 144, 273–276
coupling tensor

hyperfine, 106, 280, 281
nuclear quadrupole, 90
nuclear spin-spin, 263

basis set, 258
direct, 112
Fermi contact term, 116, 244, 258, 264,

266
indirect, 110–113, 117, 118, 244, 266
spin-dipolar term, 116, 244, 258, 265,

266
CTOCD-DZ, 124, 257
current

density, 10, 11, 93, 105, 126, 136
continuous transformation of origin,

124
induced, 100
polarizable, 101

steady, 94

density
charge, 10, 72
current, 10, 11, 93, 105, 126, 136

continuous transformation of origin, 124
induced, 100
polarizable, 101

electron, 9
perturbed, 40

flux, 12
matrix, 39, 207

atomic orbital, 207, 210, 245
first-order, 41, 54, 209, 211, 229, 248
molecular orbital, 207, 210, 245
perturbed, 40, 229
reduced one-electron, 10, 40, 210
relaxed, 246, 261
response, 246
SCF, 208, 210, 229, 246, 261
second-order correction, 208, 218
unrelaxed MP2, 208, 210, 218, 261

operator, 10
density functional theory, 186, 255,

257, 258
time-dependent, 212, 214, 215

DFT, 186, 255, 257, 258
diamagnetic, 104, 114, 119, 121, 131–133,

136, 139, 140
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expectation value, 105, 116, 118, 124, 131,
132, 140, 258

linear response function, 105, 116, 118,
124, 131, 132, 140, 258

sum-over-states, 105, 116, 118, 124, 131,
132, 140, 258

diffuse functions, 255
dipole approximation, 45, 155, 158, 162
dipole moment

electric, 73, 77, 78, 133, 135, 147, 150,
151, 170, 178, 243, 255, 261,
278–281

induced, 81, 158, 169
time-dependent, 156, 157

gradient, 151
magnetic, 95, 97, 98, 280, 281

induced, 100, 127
nuclear, 96, 100, 106, 137
rotating, 126, 127

time-dependent, 160
dipole oscillator strength, 164–169

sum rules, 166, 167
sums, 166, 172

Dirac
δ function, 9, 11, 57, 58, 78, 258
equation, 21

time-dependent, 19, 20
Hamiltonian operator, 17
representation, 43

dispersion, 153
coefficient, 172
energy, 169, 171, 172
force, 169

divergence theorem, 94
DSO, 114
DZ, 254

Ehrenfest theorem, 41, 233, 235
eigenvalue, 224

problem, 65, 165, 223, 241
second-order correction, 66

eigenvector, 65, 165
RPA, 224

electric moment
first, 73, 77
second, 73, 77

electric quadrupole approximation, 94
electromagnetism

classical, 12
electron

density, 9
electron spin resonance, 5, 96, 106
energy

m-th order, 36
adiabatic, 143
charge distribution, 75, 83, 101
derivative, 32, 243

first, 31, 79, 97, 204, 206, 245, 246,
278, 279

second, 38, 53, 85, 102, 112, 175, 207,
231, 243, 248, 262, 278, 279

dispersion, 169, 171, 172
electronic, 177
first-order, 36
induction, 170
kinetic, 16
loss, 168
mean excitation, 169
non-adiabatic, 143
perturbed, 34, 75, 96, 106, 112, 127, 137,

243
potential, 75, 96

anharmonic, 181, 183
nuclear, 181
surface, 8

rotational, 128, 138, 141
second-order, 36, 37, 143
vertical excitation, 53, 64, 161, 165, 171,

211, 212, 224, 232, 242, 250, 251
vibrational, 141, 177, 181

EOM-CCSD, 242
equation-of-motion

coupled cluster method, 242
expectation value, 41
interaction picture, 45
Lagrange’s, 14
polarization propagator, 58, 59, 134

ESR, 5, 96, 106
Euler–Lagrange equations, 14
excitation energy

vertical, 53, 64, 161, 165
expectation value, 6, 7, 33, 39, 98, 131, 134,

139, 206, 210
equation-of-motion, 41
field-dependent, 37, 54, 87, 104, 117, 211,

244
first-order, 41
gauge invariant, 26
relation to polarization propagator, 59
second-order, 54
time-dependent, 31, 41, 49–51, 53, 56, 156,

159, 240
time-derivative, 41
transition, 190, 201, 203, 205, 236, 240, 246

FC, 108
Fermi contact, 108, 116
field

electric, 12, 71, 75, 76, 78, 80, 81, 83–85,
158, 175, 177

electromagnetic wave, 153–155
molecular, 89
time-dependent, 158

magnetic, 96, 100
field gradient

electric, 75, 76, 78, 81, 83, 85, 88
molecular, 89

finite field, 243
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finite point charge, 244
first-order polarization propagator

approximation, 186, 214
fluctuation potential, 199, 213, 235
flux density, 12
Fock matrix, 198

perturbed, 228
FOPPA, 186, 214
force

dispersion, 169
intermolecular, 169, 170
London, 169
Lorentz, 12, 15, 17

force constant
cubic, 181
harmonic, 181

form invariance, 25, 26
frequency

angular, 153
Larmor, 110
resonance, 111
vibrational

harmonic, 181

g factor
electron, 5, 22
nuclear, 106, 111, 137
rotational, 145–147, 149, 151, 256

irreducible non-adiabatic, 151
isotopically independent, 148, 151

vibrational, 145–147, 149, 151
irreducible non-adiabatic, 151
isotopically independent, 148, 151

g tensor
rotational, 127–136, 141, 145,

278–281
gauge

Coulomb, 16, 24
function, 13, 27, 28
length, 27, 44, 155, 156
Lorenz, 28
origin, 27, 94, 95, 105, 121, 122, 130,

132, 133, 139, 257
transformation, 13, 25, 26, 257
velocity, 28, 155

gauge including atomic orbital, 204,
257

GIAO, 204, 257
gradient

electric
field, 75, 76, 78, 81, 83, 85, 88

property, 62, 165, 213, 215, 240, 259
Green’s function

double-time, 51
GTO, 253

Hamiltonian, 5
classical, 13, 15, 18, 19
derivative, 32, 39, 80, 103

Dirac, 17
electronic, 7, 24
gauge transformed, 26
Hartree-Fock, 191–193, 199
operator, 16
perturbation, 24, 33, 45, 78, 97, 102, 107,

113, 130, 138, 142, 156, 159,
272, 273

perturbed, 24, 31, 33, 43, 44, 203
rotational, 128, 138
spin, 106, 112
superoperator, 60
time-dependent, 43, 44, 156
unperturbed, 7, 24, 33, 142
vibration-rotational, 143, 145, 147

Hartree-Fock, 191
coupled, 227
energy, 191–193, 199

perturbed, 231
equation, 191, 192, 254

first-order, 229, 230
perturbed, 227, 228
time-dependent, 232

Hamiltonian, 191, 192, 199
potential, 191, 199
Roothaan, 193
time-dependent, 214, 232
uncoupled, 211
wavefunction, 191–193, 197, 198, 207

Heaviside step function, 50, 57
helicity, 155
Hellmann-Feynman theorem, 31, 33, 38, 77,

80, 98, 186, 203, 204, 206, 245
Hessian matrix

electronic, 63, 165, 214, 223, 234, 240
hyperfine coupling, 106, 280, 281
hyperfine splitting, 90
hyperpolarizability, 212, 255

first, 174
dipole, 81, 249, 255, 278, 279
dipole-quadrupole, 81, 278, 279

second, 174
dipole, 81, 244, 249, 278, 279

hypervirial theorem, 42, 121
momentum operator, 43
off-diagonal, 42, 121, 124, 162, 164

transition moment, 43, 216

IGLO, 257
induction

energy, 170
magnetic, 12, 96, 127, 128

electromagnetic wave, 153–155
induced, 109
local, 110
molecular, 105, 280, 281
rotational, 136, 137
time-dependent, 158
time-derivative, 160
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inner projection, 62
interaction

electric, 170
intermolecular, 71, 169

interaction picture, 43
equation-of-motion, 45

intermediate normalization, 34
intermolecular interactions, 71, 169
irrotational, 17
isotope shift, 174
isotopologue, 133, 135, 148

Jacobian
CC2 model, 241
CCSD model, 241
coupled cluster, 238, 240, 241

Jahn–Teller theorem, 99

Lagrangian, 205
classical, 14, 15, 17
coupled cluster, 205, 246, 251
Møller–Plesset perturbation theory, 206,

246, 250
quasi-energy

time-dependent, 250, 251
Lamb shift, 5
Larmor

frequency, 110
theorem, 127

LCAO, 254
length

gauge, 27, 44, 155, 156
representation, 164, 166–168

London
force, 169
orbital, 257

longitudinal, 17
Lorentz force, 12, 15, 17
LORG, 257

Mössbauer spectroscopy, 90
magnetizability, 100–102, 118, 122, 130, 133,

136, 145, 164, 278–281
basis set, 256

magneton
nuclear, 106

mass
centre of, 130, 139, 140, 142, 145, 150
reduced, 142, 144–146, 148

non-adiabatic, 143, 145
relativistic, 17
rest, 17

Maxwell’s equations, 12, 28, 153, 158
MCRPA, 225, 233, 234, 263
MCSCF, 190, 196, 197, 203, 204

linear response, 233, 234
wavefunction, 186, 196, 225

time-dependent, 233
mean excitation energy, 169

medium-size polarized basis set, 256
minimal coupling, 5, 13, 17
mixed representation, 164, 166, 168
molecular orbital, 190, 191, 193, 210, 221,

253
coefficient, 190, 193, 196, 197, 203, 204,

254, 258
derivative, 248
first-order, 215, 229, 230, 232
localised, 212
time-dependent, 232, 250

moment
electric, 77

dipole, 73, 77, 78, 81, 133, 135, 147, 150,
151, 156, 160, 170, 178, 243, 255, 261,
278–281

first, 73, 77
gradient, 151
induced, 80, 81, 158, 169
quadrupole, 73, 77, 78, 81, 135,

278–281
second, 73, 77

magnetic
dipole, 95, 97, 280, 281
first, 95
induced, 100, 127
monopole, 95
nuclear, 96, 100, 106, 137
rotating, 127
rotational, 126

of inertia, 126, 133
transition, 49, 53, 161, 162, 165, 171, 211,

212, 232
dipole, 162
magnetic dipole, 164
quadrupole, 164

moment expansion
Cauchy, 167
polarization propagator, 60, 61
polarizability, 167

momentum
angular

orbital, 98, 99, 132, 140, 142, 147
rotation, 126–128, 137, 138, 142

canonical, 14, 15, 17, 26, 134
gauge invariant, 27
generalised, 15
kinematical, 16, 26
mechanical, 16, 23, 26

mono-excited CI, 216
Mulliken notation, 191
multiconfigurational polarization propagator

approximation, 225, 233, 234
multiconfigurational self-consistent field, 190,

196, 197
wavefunction, 186, 196

multipole expansion
electric, 71, 74, 169
magnetic, 93
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Møller–Plesset perturbation theory
correlation coefficient, 200, 201, 222,

250
energy, 199

second-order, 200, 246, 250, 262
Lagrangian, 206, 246
polarization propagator, 239
relaxed density matrix, 247, 261
time-dependent, 249
wavefunction, 199, 204, 207, 222,

235, 245
first-order, 200, 217, 218
second-order, 200, 217
time-dependent, 235

Newton’s second law, 14, 17
NICS, 110
NMR, 5, 90, 96, 100, 109, 110, 141
non-adiabatic, 143–145
normal

coordinate, 180, 183
mode, 180, 181

normalisation
intermediate, 34

nuclear magnetic resonance, 5, 90, 96, 100,
109, 110, 141

nuclear magneton, 106

OP, 107
operator

canonical momentum, 42, 134, 148, 162
cluster, 201
complete set, 61, 63, 196, 212
CTOCD-DZ, 124, 276, 277
Darwin, 22
de-excitation, 62, 195, 212

double, 195
single, 195, 225
time-dependent, 236

density, 10, 277, 278
diamagnetic magnetizability, 103, 274, 275,

276, 277
diamagnetic nuclear magnetic shielding,

114, 275–277
diamagnetic spin-orbit, 114, 275–277
electric dipole, 79, 136, 155, 156, 160, 162,

255, 272, 273
electric field, 91, 273, 274
electric-field gradient, 91, 273, 274
electric quadrupole, 79, 155, 272, 273
electron position, 42
electron spin, 22
excitation, 62, 194, 201, 212

double, 194, 201, 216, 219, 222
single, 194, 201, 214, 225
time-dependent, 236

Fermi contact, 108, 109, 113, 255, 258,
274, 275

field-dependent, 32, 116

Fock, 191, 192
Hamiltonian, 5, 16

derivative, 32, 39, 80, 103
Dirac, 17
electronic, 7, 24
gauge transformed, 26
Hartree–Fock, 191–193, 199
perturbation, 24, 33, 45, 78, 97, 102,

107, 113, 114, 130, 138, 142, 156, 159,
272, 273

perturbed, 24, 31, 33, 43, 44, 203
rotational, 128, 138
spin, 106, 112
time-dependent, 43, 44, 156
unperturbed, 7, 24, 33, 142
vibration-rotational, 143, 145, 147

hermitian, 53
interaction, 25, 79
Λ, 195, 205

time-dependent, 236
magnetic dipole, 98, 116, 155, 163, 256,

273, 274, 276, 277
magnetic induction, 116, 276, 277
mass-velocity, 22
orbital angular momentum, 98, 108, 132,

140, 142, 147, 163, 255, 256,
273–275

orbital diamagnetic, 114, 276, 277
orbital paramagnetic, 107, 113, 257,

274–276
orbital rotation, 194, 197, 206, 225, 233,

236, 251
paramagnetic spin-orbit, 107, 274, 275
perturbation, 25, 79, 97, 103, 107, 108,

129, 130, 138
position

electron, 277, 278
second moment, 277, 278
spin, 98

electron, 116, 273, 274
spin-dipolar, 108, 109, 113, 274, 275
spin-orbit, 22
state transfer, 63, 196, 225, 233, 235
T , 194, 201

time-dependent, 236
T1 transformed, 202
tensor, 25
total electronic angular momentum, 277,

278
total electronic canonical momentum, 277,

278
vector, 25
Zeeman, 22, 24

optical rotation, 158
orbital

atomic, 190, 193, 232, 254
gauge including, 204, 257

core, 254
energy, 192, 193, 199, 211, 251
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perturbed, 228
Gaussian type, 253

contracted, 254
primitive, 254

London, 257
molecular, 190, 191, 193, 210, 221,

253
coefficient, 190, 193, 196, 197, 203,

204, 254, 258
derivative, 248
first-order, 215, 229, 230, 232
localised, 212
occupied, 192–194, 197
time-dependent, 232, 250
unoccupied, 192–194, 197
virtual, 192–194, 197

relaxation, 206, 246, 251
spatial, 192

molecular, 189–192
spin, 189–192, 198, 215, 228

perturbed, 227, 229
valence, 254–256

oscillator strength, 164–169
sum rules, 166, 167
sums, 166, 172

overlap matrix, 63

Padé approximant, 172
paramagnetic, 105, 114, 121, 131, 133, 139,

140, 244
paramagnetism, 96

temperature independent, 105
Pauli spin matrix, 19, 22
pc-n, 255
pcJ-n, 258
pcS-n, 257
perturbation theory

2m + 1 rule, 36
mth order equation, 35
Møller–Plesset, 190, 199, 202, 203, 235,

243, 261
correlation coefficient, 200, 201, 222,

250
energy, 199
Lagrangian, 206
relaxed density matrix, 247, 261
time-dependent, 249
wavefunction, 199, 204, 207, 212, 222,

235, 245
pseudo, 64, 223
Rayleigh-Schrödinger, 33, 199
time-dependent, 31, 44
time-independent, 30, 33

phase factor
time-dependent, 6, 20

polarizability
atomic, 175
dipole, 81, 85, 174, 175, 243, 255,

278–281

frequency-dependent, 156, 157, 164,
167–169, 172, 249

dipole-quadrupole, 81, 85, 278–281
electric dipole-magnetic dipole

frequency-dependent, 158, 160, 165
electronic-vibrational, 176
quadrupole, 81, 85, 278–281

frequency-dependent, 164
vibrational, 175
vibrational averaged, 176

polarization consistent basis set, 255
polarization functions, 254, 255
polarization propagator, 88, 157, 160, 215

approximation
first-order, 186, 214
multiconfigurational, 225, 233, 234
second-order, 216, 235, 241, 251
third-order, 222
zeroth-order, 216

derivative, 168
eigenvalue problem, 165, 223
eigenvector, 165
equation-of-motion, 134
matrix representation, 213

partitioned, 213, 216, 223
moment expansion 59, 60

Møller–Plesset, 239
pole, 161, 165, 171, 212
residuum, 161, 164, 165, 171, 212
spectral representation, 161, 211
static, 52
symmetry, 52
time domain, 50
time-derivative, 56

potential
Coulomb, 22
electrostatic, 71, 78, 89
fluctuation, 199, 213, 235
generalised, 14, 15
harmonic, 181
Hartree–Fock, 191, 199
scalar, 12, 25, 71, 75

electric field, 78, 271, 272
time-dependent, 13, 27, 28

vector, 12, 16, 23, 25, 93, 96, 105
electromagnetic wave, 153, 154
magnetic moment, 95, 107, 271, 272
rotating nuclei, 127, 271, 272
time-dependent, 12, 27, 28, 153, 154
uniform magnetic induction, 27, 97,

271, 272
probability, 9

amplitude, 47
density, 9
transition, 47, 49

propagator
principal, 63, 213, 259

property
first-order, 206, 246, 280, 281
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gradient, 62, 165, 213, 215, 219, 240, 259
second-order, 87, 102, 231, 280, 281

PSO, 107

quadrupole moment
electric, 73, 77, 78, 135, 278–281
induced, 81
nuclear, 90

quadrupole splitting, 90
quantum electrodynamics, 5, 22
quasi-energy

time-averaged, 249
time-dependent, 249

radiation
circular polarized, 155, 157
linear polarized, 45, 153, 155, 157
plane polarized, 45, 153, 155, 157
polychromatic, 45, 154

random-phase approximation, 186, 212, 214,
215, 222, 224, 231, 232, 250, 261–263,
266

doubles corrected, 223, 224
matrix, 215, 230
multiconfigurational, 225, 233, 234, 263

reduced mass, 142, 144–146, 148
non-adiabatic, 143, 145

reduced size polarized basis set, 256
reduced space, 259
refractive index, 153, 155–159
renormalisation, 218
representation

Dirac, 43
interaction, 43
length, 164, 166–168
mixed, 164, 166, 168
Schrödinger, 43
velocity, 164, 166, 168

resolution of the identity, 52, 59, 61, 120,
124, 196

response function
linear, 50, 88, 100, 104, 118, 131, 132, 134,

139, 141, 145, 157, 160, 249
CC2, 241, 251
CC3, 241
CCSD, 262
complex, 172
coupled cluster, 236, 240, 251
eigenvalue problem, 65, 165, 223, 241
frequency domain, 52
matrix representation, 62
pole, 53, 64, 161, 165, 171, 212, 241,

251
self-consistent field, 186, 214, 233, 234,

250
spectral representation, 52
static, 53
symmetry, 52
time domain, 51

time-derivative, 57
quadratic, 235, 249

frequency domain, 55
time domain, 55

response theory
time-dependent, 31, 49
time-independent, 30, 37

Roothaan Hartree-Fock, 193
rotating frame, 44, 127
rotational g factor, 145–147, 149, 151, 256

irreducible non-adiabatic, 151
isotopically independent, 148, 151

rotational g tensor, 127–136, 141, 145,
278–281

rotational spectroscopy, 90
rotational strength, 165
RPA, 186, 212, 214, 215, 222, 224, 231, 232,

250, 261–263, 266
matrix, 215, 230

RPA(D), 223, 224

scalar potential, 12, 25
electric field, 78
time-dependent, 13, 27, 28

SCF, 186, 190, 203, 204, 249, 250, 260, 261
energy, 186, 190
linear response, 214, 250
wavefunction, 186

Schrödinger equation
electronic, 7, 142
nuclear, 8, 178, 180, 181
time-dependent, 6, 8, 14, 25, 44

field-dependent, 30, 237
time-independent, 6

field-dependent, 30
unperturbed, 33
vibrational, 181

Schrödinger picture, 43
Schrödinger–Pauli equation, 22
SD, 108
second-order polarization propagator

approximation, 216, 235, 241, 251,
262, 263

second-order property, 87, 102, 231
self-consistent field, 186, 190–192

energy, 186
linear response, 214
multiconfigurational, 190, 196, 197

wavefunction, 186, 196
wavefunction, 186, 191–193, 197, 198, 207

shielding
nuclear magnetic, 100–102, 109, 111–113,

117, 118, 122, 139, 141, 244, 257, 262,
266, 278–281

basis set, 257
CTOCD-DZ, 124, 257
IGLO, 257
LORG, 257
polarizability, 244
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shielding field
magnetic, 109, 278–281

Slater determinant, 189–192, 196–198, 210
excited

doubly, 194, 200, 201
quadruply, 201
singly, 194, 198, 200, 201, 211, 222
triply, 201

linear combination, 194
Slater–Condon rules, 198, 200, 208, 212, 217
small component

elimination, 20
solenoidal, 17
solution vector, 214, 216, 259
SOPPA, 216, 235, 241, 251, 262, 263
SOPPA(CC2), 222
SOPPA(CCSD), 222, 244, 262, 263, 265
spatial orbital, 192

molecular, 189–192
special relativity, 17
spectroscopy

electron spin resonance, 5, 96, 106
Mössbauer, 90
nuclear magnetic resonance, 5, 90, 96, 100,

109, 110, 141
rotational, 90
vibration-rotational, 143

spin
electron, 22, 98, 103, 116
function, 189
nuclear, 90, 106, 111
Pauli matrix, 19, 22
photon, 155

spin rotation tensor, 137–141, 278–281
spin-dipolar, 108, 116
spin-orbital, 189–192, 198, 215, 228

perturbed, 227, 229
spin-spin coupling tensor

nuclear, 263
basis set, 258
direct, 112
Fermi contact term, 116, 244, 258, 264,

266
indirect, 110–113, 117, 118, 244, 266
spin-dipolar term, 116, 244, 258, 265,

266
spinor

four-component, 19
two-component, 19

splitting
hyperfine, 90
quadrupole, 90

stationary state, 7, 11
electronic, 8

stopping power, 168
substitution rule, 14, 19
sum rule

dipole oscillator strength, 166, 167
Thomas–Reiche–Kuhn, 166

sum-over-states, 86, 103, 114, 118, 131, 139,
141, 144, 145, 211

superoperator, 60
binary product, 60
Hamiltonian, 60
resolution of the identity, 61
resolvent, 61

Tamm–Dancoff approximation, 216
TD-DFT, 212, 214, 215
TDHF, 214, 232
temperature

averaging, 183
dependence, 174
independent paramagnetism, 105

theorem
Brillouin, 198, 200, 202, 206, 246
divergence, 94
Ehrenfest, 41, 233, 235
Hellmann–Feynman, 77, 80, 98, 186, 203,

204, 206, 245
hypervirial, 42, 121

momentum operator, 43
off-diagonal, 42, 121, 124, 162, 164,

216
transition moment, 43, 216

Jahn–Teller, 99
Larmor, 127

third–order polarization propagator
approximation, 222

Thomas–Reiche–Kuhn sum rule, 166
time–dependent Hartree-Fock, 214, 232
TIP, 105
TOPPA, 222
transition

moment, 49, 53, 161, 162, 165, 171, 211,
212, 232

dipole, 162, 177
magnetic dipole, 164
quadrupole, 164
vibrational, 177

probability, 47, 49
rate, 49, 162

transverse, 17
two-electron repulsion integral

Mulliken notation, 191
TZ, 254

uncoupled Hartree–Fock, 216
unrelaxed, 206

van der Waals coefficient, 172
VDZ, 254
vector potential, 12, 16, 23, 25, 93,

96, 105
electromagnetic wave, 153, 154
magnetic moment, 95, 107
time-dependent, 12, 27, 28, 153, 154
uniform magnetic induction, 27, 97
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velocity
angular, 126
gauge, 28, 155
representation, 164, 166, 168

vibrational
averaging, 174
correction, 133, 135, 136, 174, 180, 266

clamped-nucleus, 177, 180
sum-over-states, 175
zero-point, 180, 183

vibrational g factor, 145–147, 149, 151
irreducible non-adiabatic, 151
isotopically independent, 148, 151

VTZ, 254

wave
electromagnetic

circular polarized, 155, 157
linear polarized, 45, 153, 155, 157
plane polarized, 45, 153, 155, 157
polychromatic, 45, 154

vector, 153
wavefunction

mth–order, 36
Born interpretation, 9
configuration interaction, 197
electronic, 7, 142, 176, 177
first-order, 36
harmonic oscillator, 182
Hartree–Fock, 191–193, 197, 198, 207

large component, 20
many-electron, 189, 191, 194, 199, 201

bra, 195
nuclear, 8, 174
orthogonal complement, 196
perturbed, 34, 203
self-consistent field, 191–193, 197, 198,

207
multiconfigurational, 196, 225, 233

small component, 20
time-dependent, 6, 26, 43, 45, 233

first-order, 47
second-order, 47

time-derivative, 41
variational, 190, 197, 204
vibrational, 176–178, 180, 182
vibronic, 174–177

wavelength, 153

Z vector, 247, 248
Zeeman effect

rotational, 128
Zeeman term, 22, 24
zero point vibrational correction,

180, 183
zeroth-order polarization propagator

approximation, 216
ZOPPA, 216
ZORA, 23
ZPVC, 180, 183
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