

Beginning Game
Programming

Second Edition

Jonathan S. Harbour

� 2007 Thomson Course Technology, a division of Thomson Learning

Inc. All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or

retrieval system without written permission from Thomson Course

Technology PTR, except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are

trademarks of Thomson Course Technology, a division of Thomson

Learning Inc., and may not be used without written permission.

Windows, DirectX, and Visual C++ are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other

countries. Borland C++ and C++Builder are trademarks of Borland

Software Corporation in the United States and other countries. Pro

Motion is a copyright of Cosmigo GmbH. Anim8or is a copyright of

Steve Glanville. Mappy is a copyright of Robin Burrows. Ghost in the

Shell, Motoko Kusanagi, and Section 9 are copyrights of Shirow

Masamune-Production I.G./KODANSHA.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software

support. Please contact the appropriate software manufacturer’s

technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted

throughout this book to distinguish proprietary trademarks from

descriptive terms by following the capitalization style used by the

manufacturer.

Information contained in this book has been obtained by Thomson

Course Technology PTR from sources believed to be reliable. However,

because of the possibility of human or mechanical error by our sources,

Thomson Course Technology PTR, or others, the Publisher does not

guarantee the accuracy, adequacy, or completeness of any information

and is not responsible for any errors or omissions or the results

obtained from use of such information. Readers should be particularly

aware of the fact that the Internet is an ever-changing entity. Some facts

may have changed since this book went to press.

Educational facilities, companies, and organizations interested in

multiple copies or licensing of this book should contact the Publisher

for quantity discount information. Training manuals, CD-ROMs, and

portions of this book are also available individually or can be tailored

for specific needs.

ISBN-10: 1-59863-288-4

ISBN-13: 978-1-59863-288-0

Library of Congress Catalog Card Number: 2006904402

Printed in the United States of America

07 08 09 10 11 PH 10 9 8 7 6 5 4 3 2 1

Publisher and General Manager,

Thomson Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah O’Donnell

Manager of Editorial Services:

Heather Talbot

Marketing Manager:

Heather Hurley

Senior Acquisitions Editor:

Emi Smith

Marketing Coordinator:

Adena Flitt

Project Editor:

Jenny Davidson

Technical Reviewer:

Joshua R. Smith

PTR Editorial Services Coordinator:

Erin Johnson

Interior Layout Tech:

ICC Macmillan Inc.

Cover Designer:

Mike Tanamachi

CD-ROM Producer:

Brandon Penticuff

Indexer:

Kelly D. Henthorne

Thomson Course Technology PTR,

a division of Thomson Learning Inc.

25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

eISBN-10: 1-59863-786-X

http://www.courseptr.com

For My Mother,

Vicki Myrlene Harbour

‘‘I want to be a game designer, how do I get a job?’’ This is a question I field very

often when I do interviews or talk to students. I’ve even been accosted by the

parents of an apparently gifted teenager as I left the stage with my band. My usual

answer is, ‘‘so what have you designed?’’ The vast majority of the time, I am given

a long explanation about how the person has lots of great ideas, but is in need of a

team tomake them a reality. My response to this is to try to explain how everyone

I work with has great ideas, but only a small percentage of them are designers.

I don’t mean to be harsh, but the reality is that there are no successful companies

out there that will give someone off the street a development team for 18+

months and a multimillion dollar budget without some sort of proof of concept.

What sets someone like Sid Meier (legendary game designer with whom I’m

honored to work at Firaxis Games) apart is his ability to take an idea and make

something fun out of it. Of course, Sid now gets large teams to do his projects,

but he always starts the same way—a team of one cranking out prototypes

cobbled together with whatever art and sound he can either dig up or create

himself. It’s these rough proofs of concept that allow people uninvolved with the

creation process to immediately see the fun in a given idea, and that’s what gets

you a budget and a team. Every budding designer should take note and ask,

‘‘What would Sid do?’’

That’s when a book like this is invaluable. I became acquainted with Jonathan a

couple of years ago when I picked up the original version of this book at the

bookstore at the Game Developer’s Conference. A programmer buddy of mine

Foreword

iv

helped me pick it out from among numerous similar books. He thought it was

very well written and thought the emphasis on DirectX would be very applicable

to what we do at Firaxis. Another buddy mentioned that he had read Jonathan’s

work on programming the Game Boy Advance and was very impressed. In my

opinion, they gave me great advice and I enjoyed myself immensely while

working through the book. While reading, I noticed that Jonathan was a big fan

of our game, Sid Meier’s Civilization III. I contacted him because I have worked

on numerous Civ titles and we have kept in contact ever since.

The beauty of a book like this is that it takes away all of the excuses. It provides

an excellent introduction to game programming. It takes you by the hand and

walks you through the seemingly complex process of writing C code making use

of DirectX. Before you know it, you’ll have a fully usable framework for bringing

your ideas to life. You are even provided with tools to create your own art and

sound to help dress up the game. In other words, you will have all the tools you

need to start making prototypes and prove that you are much more than just

someone with great ideas. Believe me; taking this crucial next step will put you at

the top of the heap of people looking for jobs in the industry. You will have the

ability to stand out and that’s vital when so many people are clamoring for work

in game development.

So, what would Sid do? Well, when he was prototyping Sid Meier’s Railroads! last

year, he wrote the entire prototype in C. He didn’t have an artist (they were all

busy on another title at the time), so he grabbed a 3D art program, made his own

art, and threw it in the game—often using text labels to make sure players knew

what things were in the game. He used audio files from previous Firaxis games

and the Internet, and sprinkled them around to enhance the player’s experience.

He created something—in a fairly short amount of time—that showed our

publisher and others just how much fun the game was going to be. And he did it

on his own . . . just like the ‘‘old days’’ when he worked from his garage.

So what should you do? Well, if you want to get a job in the industry as a game

designer or even if you just want to make a cool game to teach math to your

daughter, you should buy this book. Jump in and work through the exercises and

develop the beginnings of your own game library—Sid has some code he’s used

since the Commodore 64 days. Let your imagination run wild and then find ways

to translate your ideas into something people can actually play.Whatever you do,

just do something. It’s the one true way to learn and develop as a designer and it is

your ticket to finding game designer fulfillment and maybe even a job. And if Sid

Foreword v

wasn’t Sid, and didn’t already have all of those tools at his disposal, it just might

be what he would do too.

Barry E. Caudill

Executive Producer

Firaxis Games

2K Games

Take 2 Interactive

vi Foreword

I am grateful to my wife, Jennifer, for giving me the time and space to write while

also working full time, which takes away most of my free time. Thank you for

being so supportive. I love you. It’s hard to believe, but since the first edition of

this book was published, we’ve added twomore members to our family. Jeremiah

and Kayleigh have welcomed Kaitlyn and Kourtney to our home in the past two

years. I thank God for all of these blessings.

I am indebted to the hard working editors, artists, and layout specialists at

Thomson Course Technology PTR and to all of the freelancers for doing such a

fine job. Many thanks especially to Jenny Davidson, Brandon Penticuff, Mitzi

Koontz, and Emi Smith. Thanks go to Joshua Smith for his technical review,

which was invaluable. I believe you will find this a true gem of a game pro-

gramming book due to all of their efforts.

Acknowledgments

vii

Jonathan S. Harbour is a senior instructor of game development at the Uni-

versity of Advancing Technology (www.uat.edu) in Tempe, Arizona, where he

teaches a variety of game programming courses. When not teaching others about

games, writing about games, or playing games, he enjoys audio/video editing,

wrenching on old Fords (and going to local car shows), and watching movies. His

favorite game development tools are DarkBASIC, Allegro, and DirectX. Jonathan

is the author of these recent books: Game Programming All in One, Third Edition;

DarkBASIC Pro Game Programming, Second Edition (with Joshua Smith);

Beginning Java 5 Game Programming; and The Gadget Geek’s Guide to Your Xbox

360. Jonathan founded a small, independent game studio, Primeval Games, as a

creative outlet for producing humorous casual games, and is working on several

unique, new games, including a space shooter. He lives in Arizona with his wife,

Jennifer, and four children: Jeremiah, Kayleigh, Kaitlyn, and newcomer

Kourtney. He can be reached at www.jharbour.com.

About the Author

viii

www.uat.edu
www.jharbour.com

Introduction . xv

PART I WINDOWS PROGRAMMING. 1

Chapter 1 Getting Started with Windows and DirectX 3

Welcome to the Adventure! . 4

Let’s Talk About Compilers . 5

What’s Your Skill Level? . 7

An Overview of Windows Programming . 10

‘‘Getting’’ Windows . 11

Understanding Windows Messaging . 12

Multi-Tasking . 13

Multi-Threading . 16

Event Handling . 17

A Quick Overview of DirectX. 18

What Is Direct3D? . 20

What You Have Learned . 21

Review Questions . 22

Chapter 2 Windows Programming Basics . 25

The Basics of a Windows Program . 26

Creating a Win32 Project . 26

Understanding WinMain . 31

The Complete WinMain . 33

Contents

ix

x Contents

What You Have Learned . 36

Review Questions . 37

On Your Own . 37

Chapter 3 Windows Messaging and Event Handling 39

Writing a Full-Blown Windows Program . 40

Understanding InitInstance . 44

Understanding MyRegisterClass . 47

Understanding WinProc . 50

What You Have Learned . 55

Review Questions . 56

On Your Own . 57

Chapter 4 The Real-Time Game Loop . 59

What Is a Game Loop? . 60

The Old WinMain. 60

WinMain and Looping . 62

The GameLoop Project . 67

Source Code for the GameLoop Program 67

What You Have Learned . 74

Review Questions . 75

On Your Own . 76

PART II DIRECTX PROGRAMMING . 77

Chapter 5 Your First DirectX Graphics Program. 79

Getting Started with Direct3D . 80

The Direct3D Interfaces . 81

Creating the Direct3D Object . 81

Taking Direct3D for a Spin . 84

Direct3D in Fullscreen Mode . 93

What You Have Learned . 95

Review Questions . 96

On Your Own . 96

Chapter 6 Bitmaps and Surfaces . 99

Surfaces and Bitmaps . 100

The Primary Surfaces . 102

Secondary Offscreen Surfaces . 102

The Create_Surface Example . 105

Loading Bitmaps from Disk. 112

The Load_Bitmap Program . 113

Contents xi

What You Have Learned . 117

Review Questions . 118

On Your Own . 119

Chapter 7 Drawing Animated Sprites . 121

Drawing Animated Sprites. 122

The Anim_Sprite Project . 122

Concept Art . 141

Animated Sprites Explained . 142

What You Have Learned . 147

Review Questions . 148

On Your Own . 149

Chapter 8 Advanced Sprite Programming 151

Drawing Transparent Sprites . 152

Creating a Sprite Handler Object . 152

Loading the Sprite Image . 154

Drawing Transparent Sprites. 157

Drawing an Animated Sprite . 164

Working with Sprite Sheets . 165

The Tiled_Sprite Program . 166

Collision Detection . 170

Testing for Collisions . 170

The CollisionTest Program . 171

What You Have Learned . 178

Review Questions . 179

On Your Own . 180

Chapter 9 Jamming with DirectX Audio . 181

Using DirectSound . 182

Initializing DirectSound . 183

Creating a Sound Buffer. 184

Loading a Wave File. 184

Playing a Sound . 185

Testing DirectSound . 186

Creating the Project . 187

Creating the DirectX Audio Support Files 191

Tweaking the Framework Code . 194

Adding the Game Files . 195

Running the Program. 201

xii Contents

What You Have Learned . 202

Review Questions . 203

On Your Own . 203

Chapter 10 Handling Input Devices . 205

The Keyboard . 206

DirectInput Object and Device . 206

Initializing the Keyboard . 208

Reading Key Presses . 209

The Mouse . 210

Initializing the Mouse . 210

Reading the Mouse . 212

Paddle Game . 213

The New Framework Code for DirectInput 213

The Paddle Game Source Code . 219

Paddle Game Explained . 227

What You Have Learned . 228

Review Questions . 229

On Your Own . 230

Chapter 11 Tile-Based Scrolling Backgrounds 231

Introduction to Scrolling . 232

Introduction to Tile-Based Backgrounds . 233

Backgrounds and Scenery . 233

Creating Backgrounds from Tiles . 234

Tile-Based Scrolling . 234

Dynamically Rendered Tiles . 243

The Tile Map . 244

Creating a Tile Map Using Mappy. 245

The DynamicScroll Project. 251

What You Have Learned . 260

Review Questions . 260

On Your Own . 261

PART III 3D PROGRAMMING . 263

Chapter 12 3D Graphics Fundamentals . 265

Introduction to 3D Programming. 266

The Three Steps to 3D Programming. 267

The 3D Scene . 267

Moving to the Third Dimension . 272

Contents xiii

Grabbing Hold of the 3D Pipeline. 273

The Vertex Buffer. 275

Rendering the Vertex Buffer. 278

Creating a Quad . 279

The Textured Cube Demo . 282

Modifying the Framework . 282

The Cube_Demo Program. 288

What’s Next? . 294

What You Have Learned . 295

Review Questions . 296

On Your Own . 296

Chapter 13 Creating Your Own 3D Models with Anim8or 299

Introducing Anim8or. 300

Getting into 3D Modeling . 300

Features. 302

The Interface . 303

Installing Anim8or . 303

Using Anim8or . 304

Stock Primitives . 305

Manipulating Objects . 310

Manipulating the Entire Scene . 314

Creating the Car Model. 318

The Wheels . 319

The Frame . 330

The Windows. 333

The Headlights and Taillights . 334

Creating a Scene . 338

What You Have Learned . 340

Review Questions . 341

On Your Own . 342

Chapter 14 Working with 3D Model Files . 343

Converting 3D Files . 344

Converting 3DS to .X . 344

Loading and Rendering a Model File . 351

Loading an .X File . 352

Rendering a Complete Model . 354

The Load_Mesh Program . 355

What’s Next? . 360

xiv Contents

What You Have Learned . 362

Review Questions . 362

On Your Own . 363

Chapter 15 Complete 3D Game . 365

Bash . 366

Playing the Game. 368

Creating the Models. 373

Printing Text Using a Bitmapped Font. 376

Simple 3D Collision Detection . 379

Bash Source Code. 380

What’s Next? . 380

What You Have Learned . 381

Review Questions . 382

On Your Own . 382

Index . 385

This book will teach you the fundamentals of how to write games in the C++

language, using the powerful but intimidating DirectX 9 SDK. Game program-

ming is a challenging subject that is not just difficult to master; it is difficult just

to get started. This book takes away the mystery of game programming using the

tools of the trade: C++ and DirectX. You will learn how to harness the power of

Windows and DirectX to write both 2D and 3D games, with an especially strong

emphasis on some of the more advanced topics in 3D programming for a

beginning book.

You will learn how to write a simple Windows program. From there, you will

learn about the key DirectX components: Direct3D, DirectSound, and Direct-

Input. You will learn how to make use of these key DirectX components while

writing simple code that is easy to understand, at a pace that will not leave you

behind. Along the way, you will put all of the new information gleaned from each

chapter into a framework, or game library, that will be readily available to you in

future chapters (as well as your own future game projects). After you have

learned all that you need to know to write a simple game, you will do just that.

And it is not just the usual sprite-based game either; it’s a complete, fully

functional 3D game, using collision detection, with real 3D models. A complete

chapter will teach you just how to create your own models using the popular and

free Anim8or modeling program (included on the CD-ROM).

Introduction

xv

Where to Begin?
My philosophy for game development is neither limited nor out of reach for the

average programmer. I want to really get down to business early on and not have

to explain every function call in the standard C++ library. So you will want to

begin learning C++ right now if you are not familiar with the language. There are

certainly a lot of great products you can use that are as powerful (or more so) as

the language used in this book. There are products like Blitz Basic (see Game

Programming for Teens by Maneesh Sethi) and DarkBASIC (see DarkBASIC Pro

Game Programming, 2nd Edition by Jonathan Harbour and Joshua Smith). These

are two examples of game development tools that provide you with a complete

package: compiler, editor, game library/engine, and the ability to produce a

standaloneWindows/DirectX game without the need for a runtime library of any

kind. If you are fairly new to the C++ language or have no experience with it at

all, I strongly suggest that you read a C primer first (such as C Programming for

the Absolute Beginner by Michael Vine). I often use the terms ‘‘C’’ and ‘‘C++’’

interchangeably to avoid confusion, but most of the code in this book is actually

just basic C rather than C++.

Why am I recommending so many books? Well, the books on BASIC are just

mentioned in passing (as a subject that you may wish to pursue), while I do

recommend that you read a C primer before continuing with this book. Game

programming as a subject is not something that you just pick up after reading a

single book. Although this book has everything you need to write simple 2D and

3D games (and granted it does cover a lot of useful information in that regard), no

single volume can claim to cover everything because game development is a

complex subject. I am confident that you will manage to follow along and grasp

the concepts in this book just fine without one, but a C primer will give you a very

good advantage before getting into Windows and DirectX programming. This

book spends no time at all discussing the C language; it jumps right intoWindows

and DirectX code fairly quickly, followed by a new subject in each chapter!

This book was written in a progressive style that is meant to challenge you at every

step, and relies on repetition rather than memorization. I don’t cover a difficult

subject just once and expect you to know it from that point on. Instead, I just

present similar code sections in each program so you’ll get the hang of it over

time. The learning curve here is modeled after driving a car: once you have learned

to use the accelerator and brake pedals, the actual process of learning to drive

comes from practice. You wouldn’t dare attempt to compete in a NASCAR race

xvi Introduction

after simply reading a driving book, would you? Of course not! But after many

hours behind the wheel, you would at least be qualified to drive around the track.

I would rather you learn to draw a Bresenham line on your own than to copy

someone else’s texture-wrapped polygon code. There are a lot of things we will

have to just take for granted in this book, because the goal is to teach the basics

and prepare you for further study. But at the same time, I don’t want to give you

the impression that you can get by just by copying and pasting code to

accomplish what you need for a particular game. On the contrary, the up-front

learning curve is a challenge, and can be frustrating at times, but you have to get

started somewhere, so my goal is to help you develop a love of learning and foster

that love for video games that prompted you to pick up this book.

So, where to begin? If this book is going to teach you the basics of DirectX, so that

you can write your own games, then we need to start with the basics of a

Windows program.

What Will You Learn in This Book?
This book will teach you how to write a Windows program, and from there, the

sky’s the limit! You will learn about DirectX; you will dive into Direct3D head-

first and learn all about surfaces, textures, meshes, 3D models, and that is just the

beginning!

You will learn how to interface with your computer’s hardware using DirectX

components, and use those hardware devices in your games!

Since this book is dedicated to teaching the basics of game programming, it will

cover a lot of subjects very quickly, so you’ll need to be on your toes! I use a casual

writing style tomake the subjects easy to understand and use repetition rather than

memorization to nail the points home. You will learn by doing and you will not

struggle with any one subject, because you will practice each topic several times

throughout the book. Each chapter builds on the one before, but may be con-

sidered independent, so if there is any one subject that you are very interested in at

the start, then feel free to skip around. However, the game framework built in this

book does refer back to previous chapters, so I recommend reading it one chapter

at a time.

This book spends a lot of time on 3D programming, but in order to get to the 3D

material, there is a lot of information that must be covered first. Those topics

are covered quickly so you will be learning some of the advanced topics in 3D

Introduction xvii

programming in no time. In order to load a 3Dmodel, for instance, you will need

to learn how to create a 3D model first, right? Well, you will learn just how to do

that in this book!

Anim8or is a powerful 3D modeling program that is free and included on the

CD-ROM that accompanies this book. You will learn how to use Anim8or in

Chapter 13 to create a complete model of a car.

After you have learned the ropes of 3D modeling, you will also need to learn how

to convert your 3Dmodels to a format that Direct3D will understand. Chapter 14

explains how to convert the models exported from Anim8or to the Direct3D

format.

What Compiler Should You Use?
This book uses the C++ language and all examples are compiled with Microsoft

Visual C++ 2003. You should be able to compile and run the programs using

another Windows compiler such as Borland C++Builder or with another version

of Visual C++ (6.0 and later should work fine). You may also use the free Visual

C++ 2005 Express Edition, available for download from Microsoft’s Web site.

What About the Programming Language?
This book focuses on the C++ language. This book is not a primer on the C++

language, but rather makes use of this very powerful, low-level language to write

games. The examples and source code are mostly C, except for the use of some

specific C++ here and there. You will get by just fine with a basic understanding

of the C language. Just know that I do not teach the language in this book—we

get down to business writing games very quickly and do not have time for a

tutorial on C/C++ programming.

As such, you do need to know C in advance (preferably, C++). If this is your first

experience with the C language, and you have not used it before, I’ll be honest

with you, you will have a very hard time with the source code in this book. If you

feel that you are up to the challenge, then you might be able to wade through the

C code and make some sense out of it. But I want to warn you in advance: I don’t

spend even a single paragraph trying to teach you anything about the C language!

This book is about game programming, and it assumes that you already know C.

I recommend that you acquire a C primer to read before delving into this book,

or to keep handy for those parts that may confuse you.

xviii Introduction

What About a Complete Game?
Beginning Game Programming, Second Edition is not a tutorial on how to pro-

gram in C, and not a DirectX reference. This book is all about game program-

ming. You will learn the skills to write a complete 3D game in C and DirectX 9

called Bash. Bash demonstrates wireframe and solid rendering with materials and

textures using Direct3D, and uses real 3D models created with Anim8or.

Creating this game is not just a matter of typing in some source code and

compiling it, then away you go. On the contrary, you need to create your own 3D

models for this game. I encourage this throughout the book, because if you want

to master game programming, you need to become proficient with a modeling

package like Anim8or (which is almost as feature rich as 3ds max and Maya, for

our purposes here). You will actually see how the artwork for Bash is created.

Since you learn how to create your own models in Chapter 13, you will be able to

enhance and modify Bash to suit your own tastes by modifying the 3D models in

Anim8or. How would you like to add your own photos to be used as textures in

the game? No problem, you will learn how to do things like that in this book.

You will learn how the models for Bash were created.

Introduction xix

Conventions Used in This Book
The following styles are used in this book to highlight portions of text that are

important. You will find note, tip, and caution boxes here and there throughout

the book.

No t e

This is what a note looks like. Notes are additional information related to the text.

T i p

This is what a tip looks like. Tips give you pointers in the current tutorial being covered.

C au t i o n

This is what a caution looks like. Cautions provide you with guidance and what to do or not do in
a given situation.

Book Summary
This book is divided into three parts:

n Part I: Windows Programming. This first section provides all the information

you will need to get started writing Windows code. By the time you have

completed the first four chapters, you will have a solid grasp of how aWindows

program works.

n Part II: DirectX Programming. This section is the meat and potatoes of

the book, providing solid tutorials on the most important components of

DirectX, including functions for loading images, manipulating sprites, double-

buffering, keyboard and mouse input, sound effects, and other core features of

any game.

n Part III: 3D Programming. This section provides four chapters dedicated to

creating 3D models, loading them with DirectX 9 code, and creating a 3D

game.

xx Introduction

Windows Programming

The first part of the book provides an introduction to Windows programming,

which is a foundation that you’ll need before getting into DirectX programming.

The four chapters in Part I will give you an overview of how Windows works,

explain how to write a simple Windows program, discuss the Windows messag-

ing system, and go over real-time programming by showing you how to create a

non-interrupting game loop.

Chapter 1 Getting Started with Windows and DirectX

Chapter 2 Windows Programming Basics

Chapter 3 Windows Messaging and Event Handling

Chapter 4 The Real-Time Game Loop

Part I

This page intentionally left blank

Getting Started with
Windows and DirectX

Game programming is one of the most complicated forms of computer pro-

gramming you will ever have the pleasure of endeavoring to master. Games are as

much works of art as they are grand technical achievements. Many technically

fantastic games go unnoticed and unappreciated, while less technically savvy

games go on to widespread fame and bring fortune to their makers. Regardless of

your ultimate goals as a game programmer, this is one of the most enjoyable

hobbies that you could ever take up, and the results will both frustrate and

exhilarate you at the same time—I hope you’re ready for the adventure that is

about to begin! This chapter provides the crucial information necessary to get

3

chapter 1

started writing Windows games; it leads into the next three chapters, which

provide an overview of the mechanics of a Windows program.

Here is what you will learn in this chapter:

n How to put game programming into perspective.

n How to choose the best compiler for your needs.

n How to determine your skill level and realize what you need to learn.

n How to get started learning about Windows programming.

Welcome to the Adventure!
Welcome to the adventure that is game programming! I have enjoyed playing and

programming games for many years, and probably share the same enthusiasm for

this once-esoteric subject that you do. Games, and by that I mean PC games, were

once foundwithin the realm of Geek Land, where hardy adventurers would explore

vast imaginary worlds and then struggle to create similar worlds on their own;

meanwhile, out in the real world, people were living normal lives: hanging out with

friends, flirting with girls (or guys), going to the movies, cruising downtown.

Why did we choose to miss out on all that fun? Because we thought it was more

fun to stare at pixels on the screen? Precisely!

But one man’s pixel is another man’s fantasy world or outer-space adventure.

And the earliest games in ‘‘gaming’’ were little more than globs of pixels being

shuffled around on the screen. Our imaginations filled in more details than we

often realized when we played the primitive games of the past.

So, what’s your passion? Or rather, what’s your favorite type of game? Is it a classic

arcade shoot-em-up, a fantasy adventure, a real-time strategy game, a role-

playing game, a sports-related game? I’d like to challenge you to design a game

in your mind while reading this book, and imagine how you might go about

creating that game as you delve into each chapter. This book was not written to

give you a ‘‘warm fuzzy’’ feeling about game development, with a few patchy code

listings and directions on where to go next. I really take the subject quite seriously

and prefer to give you a sense of completion upon finishing the last chapter. This

is a self-contained book to a certain degree, in that what you will learn is

applicable toward your own early game projects. What you will learn here will

allow you to write a complete game with enough quality that you may feel

4 Chapter 1 n Getting Started with Windows and DirectX

confident to share it with others. What I will not do is give you a game engine or a

sample game (per se) and tell you to ‘‘go for it.’’

Let’s Talk About Compilers

The programs in this book were written mainly for Microsoft Visual C++.

Although there are many Windows compilers on the market (some no longer

available at retail), very few of them will compile the programs in this book due

to the DirectX SDK, which was written with and for Visual C++.

Figure 1.1 shows Visual C++ 6.0, which was a very popular and solid version of

MSVC for many years and used to develop hundreds (if not thousands) of retail

games. There is a freeware compiler called Dev-C++ 5.0, available for free from

Bloodshed Software, which is fully capable of compiling Windows code.

Unfortunately, the DirectX SDK is not available for this compiler. The same may

Welcome to the Adventure! 5

Figure 1.1
Microsoft Visual C++ 6.0

be true of the once-popular Borland C++ and C++Builder products, which once

supported DirectX, but that is no longer certain. Since we’re focusing on the June

2006 version of DirectX, the code probably will not compile with Dev-C++ or

Borland or most other compilers.

As is the case with most Windows compilers, more recent versions should work

fine with the source code in this book. For example, Visual Studio .NET 2002,

2003, and 2005 Express Edition will all compile the code without complaint.

The free version of Visual C++ 2005, called the Express Edition, is available

for download from Microsoft at http://msdn.microsoft.com/vstudio/express/

visualc/. This compiler is not limited in any way, even though it’s free! It’s an

unprecedented move on the part of the world’s largest software maker. You can

compile the code in this book using 2005 Express Edition, and the configuration

is similar to MSVC 2003, which is shown in Figure 1.2.

6 Chapter 1 n Getting Started with Windows and DirectX

Figure 1.2
Visual C++ 7.1 (2003)

http://msdn.microsoft.com/vstudio/express/visualc/
http://msdn.microsoft.com/vstudio/express/visualc/

T i p

I recommend using Visual C++ 2005 for DirectX programming, because it is the latest and
greatest compiler, and is certain to support every feature of DirectX for the foreseeable future. In
fact, the free version of XNA Game Studio uses Visual C++ 2005 Express Edition, and this tool
supports Xbox 360 development---without requiring the official (and expensive) dev kit.

Although I am very fond of Dev-C++ and C++Builder, I focus on Visual C++

exclusively here because it is guaranteed to work with DirectX without a hitch. If

you’re unhappy with that statement, here’s what I’ve got to say—stop reading,

because you aren’t a beginner! If you want a good, solid tutorial on using

Dev-C++ and other open-source game programming tools, see my book Game

Programming All In One, Third Edition. In that book, I do not cover DirectX, but

focus on an open-source, cross-platform game library called Allegro. How lucky

you are in this day and age! Years ago, it was quite a struggle for a student or

hobby programmer to even find a good retail compiler when computer stores

were few and far between. Today, not only do all the major computer stores carry

every compiler imaginable, but you even have free compilers! My, how times

have changed.

What’s Your Skill Level?

This chapter moves along at a brisk pace, so if you already have some experience

writing Windows code, it shouldn’t bore you. On the other hand, if you have

never written a Windows program before, this may be a bit of a challenge for you

because I’m going to assume that you already have some familiarity with the

C language. I just want you to be prepared! If you picked up this book thinking

that it would teach you absolutely everything you need to know to write a

computer game using the C language, and all you’ll need to know about Win-

dows and DirectX to boot, well, you may be in for a surprise, because we only

have time to cover the key topics in order to build two games in such a short

amount of time and space! I’m going to assume that you have already studied the

basics of the C language at least. If you have trouble with the main function, then I

encourage you to pick up a primer first.We have somuch information to cover in

this book—if I don’t move along at a pretty good pace, we’ll never get into the

good stuff, like loading and drawing 3D models!

As I’ve said, the journey to becoming a master game developer is a long and

arduous one, and you may be taking the first tentative steps here. I want to

encourage you to invest in good C and Windows references, as well as in

Welcome to the Adventure! 7

additional game programming books (on whatever game genre interests you). I

have a feeling—if you share some of the same interests that I do—that this book

will whet your appetite and you’ll be clamoring for more by the time you’re done

with the last chapter! You are certain to find a book about any subject you want

to learn about by visiting www.courseptr.com.

Do you want to get up to speed quickly and produce something good right away?

Learn the art of focusing your entire being on a single goal and then eat, drink,

sleep, and breathe programming. Early on, if you are a normal person, other

aspects of your life may suffer while you are working on your ‘‘zen.’’ You will

learn in time to juggle the basic responsibilities of life, friends, and family while

also having focus. In the martial arts, you learn to focus all of your energy into a

strike to deal a powerful blow to an opponent. Learn to use this kind of focus

and energy with everything you do in life, including game programming or

any other endeavor. The idea is to get past the ‘‘beginner’’ stage so that you are

able to study, understand, and discuss the more advanced topics on your

own. By focusing on mastering a subject early on, you can get the gist of it

fairly quickly.

I remember how, when I was just getting started, I had assumed that so much of

the work involved in a computer program is done automatically (or rather, was

handled by the O/S). It’s quite a shock when you realize that nothing is given to

you—that you must write all the code to get anything at all to come up on the

screen. Now, it isn’t as bad as it was in the early years of the PC, when MS-DOS

was the most common O/S (up until the mid-1990s). Back then, you really did

have to screw with the video card registers and literally program it using very

low-level assembly language.

No t e

I have a huge book on that subject by Michael Abrash called Graphics Programming Black Book
(no longer in print). Michael developed his graphics coding wizardry before he was hired as a
graphics consultant by studios such as Valve, id Software, and Croteam, and he was the ultimate
graphics programming guru! To read some of Michael’s commentary about programming Quake,
visit http://www.bluesnews.com/abrash/.

I found this much easier than assembling a program and linking to it (the last

stage of compiling your program). Figure 1.3 shows the compilation process.

As compilers became more powerful, standard O/S libraries that abstracted the

computer system hardware and raised it up a notch became available. No longer

did programmers have to write all the interface code to the hardware (if you have

8 Chapter 1 n Getting Started with Windows and DirectX

www.courseptr.com
http://www.bluesnews.com/abrash/

been playing games for a long time, you may remember how convoluted some of

the older MS-DOS game installs used to be). Back in the MS-DOS days, game

programmers had to write their own video card and sound card drivers! Imagine

that! If you want some classic examples, look upDungeon Keeper and Jedi Knight.

Instead, Windows, the device drivers, and DirectX provide a layer of abstraction

over the hardware. You can focus on the design and programming of your game

rather than spending so much time writing hardware interface code (which was

the subject of all game programming books in the early days, when game design

was unheard-of). I suspect that these limitations in the operating system are what

limited game development to the real ultra-guru and prevented many aspiring

game designers from getting into the business in the ’80s and early ’90s. You

simply had to be technical, as well as creative, to succeed at that time. But when

Microsoft released DirectX for Windows 95, and then continued to improve it

over the next ten years, it took all of that complexity and simplified it down to a

common game API—application programming interface. The new features

added to each new version of DirectX (a result of all the advances in 3D graphics

technology) greatly enhanced the original version of DirectX, which was

designed to bring gaming to Windows in a big way. However, during the

Welcome to the Adventure! 9

Figure 1.3
The compilation process takes a source code file, compiles it, and then links it into an executable.

intervening years, DirectX has grown to become immensely large and compli-

cated, and again we are faced with barriers to entry once again (see Figure 1.4).

Of course, it is better to have DirectX (on the right side of the teeter-totter)

because you don’t have to use or even look into all the advanced features if you

don’t need them for your game. That’s the good news, really; if you want the

power, it’s available, but you can learn the basics and start seeing progress with

simple games very quickly.

An Overview of Windows Programming
If you are new to Windows programming, then you’re in for a treat, because

Windows is a fun operating system to use for writing games. First of all, there are

so many great compilers and languages available for Windows. Second, it’s the

most popular operating system in the world, so any game you write for Windows

has the potential to become quite popular. The third great thing about Windows

is that you have the amazing DirectX library at our disposal. Not only is DirectX

the most widely used game programming library in existence, it is also easy to

learn. Now, don’t misunderstand my meaning—DirectX is easy to learn, but

mastering it is another matter. I will teach you how to use it—and wield it, so to

speak—to create your own games. Mastering it will require a lot more work and

knowledge than this single book provides.

Before you can start writing DirectX code, you will need to learn how to write a

simple Windows application and learn how Windows handles messages. So let’s

10 Chapter 1 n Getting Started with Windows and DirectX

Figure 1.4
What DirectX does to simplify the hardware interface is countered by an extremely large and complex
set of features.

start at the beginning. What is Windows? Windows is a multi-tasking, multi-

threaded operating system. What this means is that Windows can run many

programs at the same time, and each of those programs can have one or more

threads running as well. As you might imagine, this operating system archi-

tecture lends itself well to multi-processor systems, such as the Pentium D and

Intel Core Duo chips, as well as multi-processor motherboard systems.

‘‘Getting’’ Windows

Few operating systems will scale as well asWindows from one version to the next.

The numerous versions of Windows that are in use—from Windows Vista to

Windows XP Home to Windows 2000 Professional—are all so similar that

programs can be written for one version of Windows that will run almost

without change on other versions of Windows. For instance, a program that you

developed with Microsoft Visual C++ 6.0 back in 1998 under Windows NT 4.0

or Windows 98 will still run on the latest Windows XP Professional or Windows

Vista. You may even have a few games in your game library that came out in the

late 1990s that supported an early version of DirectX (for instance, DirectX 6.0);

don’t be surprised if such games will still run on a new PC running Windows XP.

So we have established that Windows programs have a lot of longevity (also

known as ‘‘shelf life’’ in the software industry). What can Windows really do?

No t e

Whenever I refer to ‘‘Windows’’ in this book, I’m including every recent version of Windows that is
relevant to the topic at hand---that is, PCs and game programming. This should include all previous,
current, and future versions of Windows that are compatible. For all practical purposes, this really is
limited just to 32-bit programs. You may assume any reference to ‘‘Windows’’ from here on includes
all such versions. At the very least, this will include Windows 2000, XP, 2003, and Vista.

Windows programming can be simple or complex, depending on the type of

program you are writing. If you have a development background with experience

writing applications, then you probably have a good understanding of how

complex a graphical user interface (GUI) can become. All it takes is a few menus,

a few forms, and you will find yourself inundated with dozens (if not hundreds)

of controls with which you must contend. Windows is very good as a multi-

tasking operating system because it is message-driven. Object-oriented pro-

gramming proponents would argue that Windows is an object-oriented oper-

ating system. In fact, it isn’t. The latest version of Windows today functions

almost exactly the same way that early versions of Windows (such as the old

An Overview of Windows Programming 11

Windows 286, Windows 3.0, and so on) functioned, in that messages drive the

operating system, not objects. The operating system is similar to the human

nervous system, although not nearly as intricate or complicated. But if you

simplify the human nervous system in an abstract way, you’ll see impulses

moving through the neurons in the human body from the senses to the brain,

and from the brain to the muscles.

Understanding Windows Messaging

Let’s talk about a common scenario to help with the analogy of comparing an

operating system to the human nervous system. Suppose that some event is

detected by nerves on your skin. This event might be a change of temperature or

something may have touched you. If you touch your left arm with a finger of

your right hand, what happens? You ‘‘feel’’ the touch. Why? When you touch

your arm, it is not your arm that is feeling the touch, but rather, your brain. The

sense of ‘‘touch’’ is not felt by your arm, per se, but rather, your brain localizes

the event so that you recognize the source of the touch. It is almost as if the

neurons in your central nervous system are queried as to whether they parti-

cipated in that ‘‘touch event.’’ Your brain ‘‘sees’’ the neurons in the chain that

relayed the touch message, so it is able to determine where the touch occurred

on your arm. Now touch your arm, and move your finger back and forth on

your arm. What do you sense is happening? It is not a constant ‘‘analog’’

measurement, because there are a discrete number of touch-sensitive neurons

in your skin. The sense of motion is, in fact, digitally relayed to your brain. Now

you might refute my claim here by saying that the sense of pressure is analog.

We are getting into some abstract ideas at this point, but I would pose that the

sense of pressure is relayed to your brain in discrete increments, not as a

capacitive analog signal.

How is this subject related to Windows programming? The sense of touch is very

similar to the way in which Windows messaging works. An external event, like a

mouse click, causes a small electrical signal to pass from the mouse to the USB

port into the system bus, which might be thought of as the nervous system of the

computer. From there, the signal is picked up by the operating system

(Windows) and a message is generated and passed to applications that are

running (like your game). Your program, then, is like a conscious mind that

reacts to that ‘‘sense of touch.’’ The subconscious mind of the computer (the

operating system that handles all of the logistics of processing events) ‘‘pre-

sented’’ this event to your program’s awareness.

12 Chapter 1 n Getting Started with Windows and DirectX

It seems that over time, our advanced information systems start to mimic the

natural world, and when we have finally built the ultimate supercomputer, it may

just resemble a human mind.

There is yet another issue at hand. We humans have two brains, after all.

Remember my comment about technology mimicking biological brains? Well,

most processor builders today are heading in the direction of incorporating

multiple processor cores into a single silicon chip. Within a few years, multi-

processor systems will be the norm, because they will be available right inside a

standard processor chip.

Multi-Tasking

First and foremost, Windows is a preemptive multi-tasking operating system.

This means that your PC can run many programs at the same time. Windows

accomplishes this feat by running each program for a very short amount of time,

counted in milliseconds, or thousandths of a second. This jumping from one

program to another very quickly is called time slicing, andWindows handles time

slicing by creating a virtual address space (a small ‘‘simulated’’ computer) for

each program in memory. Each time Windows jumps to the next program, the

state of the current program is stored so that it can be brought back again when it

is that program’s turn to receive some processor time. This includes processor

register values and any data that might be overwritten by the next process. Then,

when the program comes around again in the time-slicing scheme, these values

are restored into the processor registers and program execution continues where

it left off.

No t e

If this sounds like a wasteful use of processor cycles, you should be aware that during those few
microseconds, the processor is able to run a few hundred thousand instructions at the very least---
modern processors that approach the gigaflop rating will run several million instructions in a short
‘‘time slice.’’

The Windows operating system might be thought of as having a central nervous

system of its own—based on events. When you press a key, a message is created

for that keypress event and circulated through the system until a program picks it

up and uses it. I should clarify a point here, as I have brought up ‘‘circulation.’’

Windows 3.0, 3.1, and 3.11 were non-pre-emptive operating systems that tech-

nically were just very advanced programs sitting on top of 16-bit MS-DOS. These

An Overview of Windows Programming 13

early versions of Windows were more like MS-DOS shells than true operating

systems, and, thus, were not able to truly ‘‘own’’ the entire computer system. You

could write a program for Windows 3.x and have it completely take over the

system, without freeing up any processor cycles for other programs. You could

even lock up the entire operating system if you wanted to. Early Windows

programs had to release control of the computer’s resources in order to be

‘‘Windows Logo’’ certified (which was an important marketing issue at the time).

Windows 95 was the first 32-bit version ofWindows and was a revolutionary step

forward for this operating system family in that it was a pre-emptive operating

system.

What this means is that the operating system has a very low-level core that

manages the computer system, and no single program can take over the system,

which was the case under Windows 3.x. Pre-emptive means that the operating

system can pre-empt the functioning of a program, causing it to pause, and the

operating system can then allow the program to start running again later. When

you have many programs and processes (each with one or more threads) begging

for processor time, this is called a time-slicing system, which is how Windows

works. As youmight imagine, having amulti-processor system is a real advantage

when you are using an operating system such as this. Ignoring all reviews and

opinions to the contrary on this matter, a dual-processor Athlon 64, Opteron,

Xeon, Itanium, PentiumD, or Core Duo system (if you can afford one!) is a great

setup for a game programmer or any developer for that matter. For one thing,

SMP (symmetric multiprocessing) processors usually have more internal cache

memory because they are designed for servers. Another point is that, regardless of

the raw benchmarks that may or may not shed a good light on such systems, we

are talking about multi-tasking here, so the more processing power the better!

While you may have had to turn off most applications while doing game

development in the past, with these modern multi-core systems, you can leave

other apps running in the background while working on a game and you will not

notice any drag on the system. Of course, a ton of memory helps too! I

recommend 2GB of RAM for game development—and make it the fastest

memory chips your system can handle while you’re at it! (My main PC is a little

underpowered because I opted for a Micro ATX system in one of those tiny cases

during my last system build! But it sure beats lugging a gigantic tower case to

LAN parties.)

Figure 1.5 shows an overview of how non-preemptive multi-tasking works. Note

how each program receives control over the processor and must then explicitly

14 Chapter 1 n Getting Started with Windows and DirectX

release control in order for the computer system to function properly. Such

programs must also be careful about using too much time; in essence, non-

preemptive O/S programs must voluntarily share the processor.

The next illustration, Figure 1.6, shows how preemptive multi-tasking works. As

you can see, the diagram is similar (so it is easy to compare), but the O/S now

controls everything and need not wait for the programs to ‘‘play nicely’’ and

share processor time. The O/S will simply suspend a program after an allotted

number of milliseconds of timeslice and then give the program more processor

time after looping through all processes and threads running in the system.

An Overview of Windows Programming 15

Figure 1.5
Non-preemptive multi-tasking requires the voluntary release of control by each program. The O/S is very
limited in control over applications.

Figure 1.6
A preemptive multi-tasking O/S has full control over the system and allocates slices of time for each
running process and thread.

Multi-Threading

Multi-threading is the process of breaking up a program into multiple, inde-

pendent parts that might work together to accomplish a task (or that might

perform completely independent tasks). This is not the same as multi-tasking on

the system level. Multi-threading is sort of like multi-multi-tasking, where each

program has running parts of its own, and those small program fragments are

oblivious of the time-slicing system performed by the operating system. As far as

your main Windows program and all of its threads are concerned, they all have

complete control over the system and have no ‘‘sense’’ that the operating system

is slicing up the time allotted to each thread or process. Therefore, multi-

threading means that each program is capable of delegating processes to its own

mini-programs. For instance, a chess program might create a thread to think

ahead while the player is working on his next move. The ‘‘thought’’ thread would

continue to update moves and counter-moves while waiting for the player. While

this might just as easily be accomplished with a program loop that thinks while

waiting for user input, the ability to delegate the process out to a thread might

have significant benefits for a program.

Just as an example, you can create two threads in a Windows program and give

each thread its own loop. As far as each thread is concerned, its loop runs

endlessly and it runs extremely fast, without interruption. But at the system

level, each thread is given a slice of processor time. Depending on the speed of

the processor and operating system, a thread may be interrupted 50, 100, or

even 1000 times per second, but will be oblivious to the interruption. Figure 1.7

illustrates the relationship between program, processes, and threads.

No t e

Multi-threading is a fascinating subject, and worth your time to learn about! I covered this
subject in Game Programming All In One, Third Edition, and explained how to use the Pthread-
Win32 library, which makes multi-threading a snap. That may be a good next step after you’ve
finished this book. I’ve found that most beginners can learn the Allegro game library very
quickly.

Multi-threading is very useful for game programming. The many tasks involved

in a game loop might be delegated into separate threads that will execute inde-

pendently, each one communicating with the main program. A thread might

be set up to handle screen updates automatically. All the program would have

to do then is make sure the double buffer gets updated at a specified time with

all of the objects on the screen, and the thread will do the work on a regular

16 Chapter 1 n Getting Started with Windows and DirectX

basis—perhaps even with timing built in so that the game will run at a uniform

speed regardless of the processor. Most of the popular game engines are multi-

threaded, meaning that they inherently support multiple processors. This is a

boon for gamers who have forked over the additional cost for a dual-processor

system! What is even more useful is when a standalone game server (which is

often provided with popular online games so that players can run their own

games) supports multiple processors, because it takes a lot of processing power to

handle large games with many players. A dual-processor game server is even

more capable of handling a large allotment of players.

T i p

A double buffer is sort of a bitmap image in memory that you can use to draw the graphics for
your game, and this image is then copied to the screen resulting in a very smoothly rendered
display.

Event Handling

At this point, youmight be asking yourself, ‘‘How doesWindows keep track of so

many programs running at the same time?’’ Windows handles the problem, first

of all, by requiring that programs be event-driven. Secondly, Windows uses

An Overview of Windows Programming 17

Figure 1.7
A multi-threaded program might feature multi-threaded processes and independent threads.

system-wide messages to communicate. Windows messages are small packets of

data sent by the operating system to each running program with three primary

features—window handle, instance identifier, and message type—telling that

program that some event has occurred. The events will normally involve user

input, such as a mouse click or key press, but might be from a communications

port or a TCP/IP socket.

Each Windows program must check every message that comes in through the

message handler to determine whether the message applies to that program.

Messages that are not identified are sent along to the defaultmessage handler, which

puts them back into theWindowsmessaging stream, so to speak. Think ofmessages

as fish—when you catch a fish that is too small or that you don’t like, you throw it

back. But you keep the fish that you want. It is similar in theWindows event-driven

architecture; if your program recognizes a message that it wants to keep, that

message is taken out of the message stream and no other program will see it.

Once you have experimented with Windows programming and have learned to

handle some Windows messages, you will see how it was designed for applica-

tions, not games. The trick is learning to ‘‘tap into’’ the Windows messaging

system and inject your own code, such as a Direct3D initialization routine or a

function call to refresh the screen. All of the actions in a game are handled

through the Windows messaging system; it is your job to intercept and deal with

messages that are relevant to your game. You will learn how to write a Windows

program in the next chapter, and will learn more about Windows messaging in

the next couple of chapters.

A Quick Overview of DirectX
I’ve covered a lot of information in a short amount of time on Windows theory,

just to get to this point—where I can finally introduce you to DirectX. You’ve

probably heard a lot about DirectX, because it is a buzzword that many people use

in the industry, but that few in the mainstream truly understand. DirectX provides

an interface to the low-level hardware interface of a Windows PC, providing

a consistent and reliable set of functions for games that does not rely on the

Windows API or GDI (which means DirectX is much faster). See Figure 1.8.

DirectX is closely integrated intoWindows and will not work with any other O/S,

as it relies on the basic libraries in the Windows API to function, as shown in

Figure 1.9.

18 Chapter 1 n Getting Started with Windows and DirectX

A Quick Overview of DirectX 19

Figure 1.8
The primary components of DirectX 9

Figure 1.9
DirectX, an alternative to the slow GDI, still relies on the Windows API.

Here is a rundown of the DirectX components:

n DirectX Graphics. This is the graphical system of DirectX that provides

access to 3D accelerator cards and fast 2D graphics via a component called

DirectDraw, suitable for arcade-style games as well as real-time strategy,

role-playing, and other 2D games. 3D games have access to the latest video

cards through the Direct3D interface. DirectX 9 still provides backward

compatibility for DirectDraw games, but it is recommended that all

new code take advantage of the improvements to Direct3D for both

2D and 3D coding.

n DirectX Audio. This component includes interfaces for playing digital

sound files, as well as digital andMIDI music, using a standard interface that

supports all sound cards and formats on all PCs; this includes a built-in,

real-time, multi-channel sound and music mixer. Basically, all of your

sound and music needs are taken care of with DirectX Audio.

n DirectInput. This component provides access to the peripherals on a

Windows PC, such as the keyboard, mouse, and joystick, with support for

unusual hardware such as flight sticks, steering wheels, pedals, and force-

feedback devices (such as a gamepad with rumble feature).

n DirectPlay. This component provides an interface for writing networked

games with lobby support (a virtual ‘‘room’’ where players can interact and

chat before a game starts). DirectPlay is highly optimized and efficient at

handling a large number of players, but was designed for generally single-

server games with up to 32 players; it is generally suitable for 99 percent of

games. What DirectPlay does not provide is support for massively multi-

player online games (although DirectPlay can be used to connect clients/

players to game servers).

What Is Direct3D?

Direct3D is the technical term for DirectX Graphics, the graphical part of

DirectX that does all the 2D and 3D rendering (and as such, is the most

important part of DirectX). I’ll teach you to use Direct3D 9 in an upcoming

chapter. You will learn how to load bitmaps and draw them on the screen (in

2D mode), as well as use bitmaps to add textures to 3D models in future

chapters.

20 Chapter 1 n Getting Started with Windows and DirectX

I have to admit, I’m a huge fan of 2D games, especially turn-based strategy games

like SidMeier’s Civilization series, and others, such as Panzer General III andmost

real-time strategy games (come on, how could you not have fun with Command

& Conquer or Starcraft?). And to be honest, I have been such a proponent of 2D

that it is what I write about most often. You can still develop an entire 2D game

using Direct3D, or use 2D bitmaps and sprites to enhance a 3D game. You always

have to display stats and other information on the screen that must be drawn as a

2D image, so learning how to draw andmanipulate 2D graphics is a necessity. For

the short term, a brief overview of 2D surfaces and sprites (using Direct3D) will

help you to understand the whole DirectX Graphics system when I take you into

3D land later in the book.

Just to keep things on track, let me reiterate one of the goals of this book: to

develop an understanding of 2D and 3D graphics and the knowledge needed

to create games. My goal is not to make you an expert game programmer, just to

give you enough information (and enthusiasm!) to take yourself to the next level

and learn more about this subject. I will be getting into 3D models, texturing,

lighting, and all the other subjects needed to write a simple 3D game. I’ll even go

over the basics of using popular 3D modeling programs in this book! What I’m

getting at is that I want you to have fun with the material, and not get bogged

down in the details! Because the details of 3D game programming are huge and

complex, the average beginner’s eyes tend to glaze over when hearing about

vertex buffers and texture coordinates. I can relate, because it takes time to build

up to details like that when you’re just getting started! While I’m not exactly

sheltering you from the complexity, by ignoring all the details and just focusing

on what works right now, we can move forward onto subjects that are often left

out of books on this material.

It is possible to just jump in and start writing Direct3D code at this point, but

sooner or later you’ll need to learn the basics of Windows programming and get

some exposure to WinMain and the other Windows core functions, as this is at the

very center of a DirectX program.

What You Have Learned
In this chapter, you have learned the basics of Windows programming in pre-

paration for DirectX coding! Here are the key points:

n You learned what it takes to get into game programming and got a glimpse

of the ‘‘bigger picture’’ and what may be in store for you in the near future.

What You Have Learned 21

n You learned all about compilers and whether your favorite compiler will

work or not, and whether you might need to consider a free compiler like

Dev-C++.

n You learned how to judge your own skills and what you’ll need to focus on

to raise your programming skill in order to write better, faster, more

complex games.

n You learned the basics of what makes Windows tick and how you might tap

into the Windows system with your own programs.

Review Questions
Here are some review questions that will help you to think outside the box and

retain some of the information covered in this chapter.

22 Chapter 1 n Getting Started with Windows and DirectX

1. What type of multi-tasking does Windows 2000 and XP use, preemptive or

non-preemptive?

2. What compiler is primarily featured in this book (although the programs

are compatible with any Windows compiler)?

3. What scheme does Windows use to notify programs that events have

occurred?

4. What is the process called wherein a program uses multiple, independent

parts that might work together to accomplish a task (or that might perform

completely independent tasks)?

5. What is Direct3D?

Review Questions 23

This page intentionally left blank

Windows
Programming Basics

In this chapter, I am going to show you what a simple Windows program looks

like. This is valuable information that you will need in the following two chap-

ters, which build on this knowledge. These topics will come back to haunt you

later on if you have not mastered them, as the chapters to follow will rely on your

basic understanding of how Windows works. It will be very helpful if you have

some experience writing Windows programs already, but I won’t assume that

you do. Instead, I’ll just cover the basics of a Windows program—all that is

necessary to start writing DirectX code.

25

chapter 2

26 Chapter 2 n Windows Programming Basics

Windows programming is fun, as I’m sure you’ll find out in a fewminutes. If you

feel even a little bit overwhelmed by any subject in this chapter, don’t worry too

much because repetition in later chapters will nail the points home for you.

Although I could have just explained WinMain and WinProc as I showed you how

to write the DirectX programs, it’s probably easier to understand these concepts

when you’re not trying to learn something else at the same time. So this chapter

focuses on showing you how to write a simple Windows program, create the

project, type in the code, and compile and run it.

Here is what you will learn in this chapter:

n How to create a Win32 Application project.

n How to write a simple Windows program.

n How to understand the WinMain function.

n How to understand the WinProc function.

The Basics of a Windows Program
Are you ready to get started writing Windows programs? Good! This chapter

provides the ‘‘prerequisites’’ you’ll need in future chapters to write DirectX code.

Every Windows program includes a function called WinMain at minimum. Most

Windows programs also include an event callback function called WinProc that

receives messages so that you can write the code to deal with certain types of

messages. If you were writing a full-blown Windows application (for instance, a

commercial software product like 3ds max), then you would have a very large and

complicated WinProc function in the program to handle the many program states

and events. But in a DirectX program, you don’t really have to mess with events

because your main interest lies with the DirectX interfaces that provide their own

functions for dealing with events. DirectX is also mostly a polled library, in that

you must ask for data rather than having it thrown at you (which is the case with

WinProc). For instance, when you start learning about DirectInput, you’ll find that

keyboard, mouse, and joystick input is mainly gathered by calling functions to see

what values have changed.

Creating a Win32 Project

In this book, every project will be the same, so once you have learned to create a

new project in Visual C++, then you’ll be able to use the same strategy to create

all the projects in the rest of the book.

What is a project, you may ask?Well, a project is a file, really, that manages all the

source code files in a program. All of the simple programs in this book will have a

single source code file (at least until we build the game framework), but most real

games have many source code files. You might have source code files for your

Direct3D routines, DirectInput code, DirectSound code, and so on, and you’ll

also have the main code for the game itself. The project keeps track of all the

source code files, and is managed from within the IDE of your compiler. For the

sake of simplicity, I’ll just refer to Visual C++ (or the shorthand MSVC) from

now on.

The usual project that you will want to set up in your compiler is a Win32

application, which is what I have selected in the Visual C++ project dialog in

Figure 2.1. Name the new project ‘‘HelloWorld’’.

To do this, first start up Visual C++ 2003 or 2005, then open the File menu and

select New. (Specifically, I am pulling screenshots for the figures from Visual C++

2003, although 2005 is similar.) Select ‘‘Visual C++’’ from the Project Types list,

and this is where youwill find all the project types. Look for an item called ‘‘Win32

Project.’’ That is the one you want. There are many types of Windows programs

you can create with Visual C++, as you can see. Try not to get lost in the list of

project templates; stick to the ‘‘Win32’’ types to avoid confusion.

The Basics of a Windows Program 27

Figure 2.1
Creating a new Win32 application-type project

Most Windows compilers default to C++ files. Although we are writing mostly C

code in this book, it doesn’t make much difference in the filenames, so you will

want to stick with source code files with an extension of .cpp. Always choose

‘‘empty project’’ so that you can add your own file to the project. This is the

standard that I will use in this book.

Next up is the Application Settings dialog. Click the Application Settings tab on

the left to bring up the dialog shown in Figure 2.2. Note that from the choices,

I’ve selected ‘‘Windows application’’ and ‘‘Empty project’’.

T i p

Try not to let file extensions confuse you. All modern C++ compilers use the .cpp file extension,
regardless of whether you are writing C or C++ code. For the sake of simplicity, I use the .cpp
extension, although the trend in years past was to use the .c extension. Due to the way in which
modern compilers work, it is just easier to use .cpp, because the .c extension causes some
problems when compiling DirectX programs.

Now that you have a new project ready to go, let’s take a look at a complete (but

simple) Windows program, so you can better understand how it works. Since we

haven’t added a new file to the project yet, let’s do that now. If you have a

completely blank project (as expected), you’ll need to add a source file to the

project. You can do so by opening the File menu and selecting New to bring up the

28 Chapter 2 n Windows Programming Basics

Figure 2.2
Creating a new Win32 project.

New file dialog (the same dialog you used to create the new project). There are

several other ways to add a new source file to the project as well. You can open the

Project menu and select Add New Item, or you can right-click the project name in

the Solution Explorer (the list of files on the right side of the Visual C++ IDE) and

choose the same option from the context pop-up menu. Look for the C++ Source

File item in the list and give the file a name (I recommend main.cpp), as shown in

Figure 2.3.

After you have added the new source file, the project will look something like that

in Figure 2.4.

Here is the source code for the HelloWorld program. This is a complete Windows

program!You see,Windowsprogrammingdoesn’t really have tobe all that difficult

when you strip out all the app stuff, like menus, that aren’t needed for writing

games.

// Beginning Game Programming, 2nd Edition
// Chapter 2
// HelloWorld program
#include <windows.h>

The Basics of a Windows Program 29

Figure 2.3
Adding a new file, main.cpp, to the empty project

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nShowCmd)

{
MessageBox(NULL, "Motoko Kusanagi has hacked your system!",

"Public Security Section 9", MB_OK | MB_ICONEXCLAMATION);
}

This program simply displays a dialog box on the screen, as shown in Figure 2.5.

What is the most important thing you should glean from this example? That

WinMain does not need to be a big, ugly, complex hodge-podge of app code. When

you compile a program with Visual C++, the executable file is located in a folder

called Debug (inside your project’s folder).

30 Chapter 2 n Windows Programming Basics

Figure 2.4
A new source file has been added to the project, ready for your source code.

In the tradition of climbing the learning curve, I’ll expand this little example a bit

and show you how to create a standard program window and draw on it. This is

the next step before you actually learn to initialize and use Direct3D.

Now that you’ve seen what a very simple Windows program looks like, let’s delve

a little further into the magical realm of Windows programming and learn to

create a real window and draw stuff on it—using MessageBox is a bit of a cheat!

What you really want is your very own window, which you’ll create in the next

chapter. Ironically, you won’t need a main program window when you start

writing DirectX code, because DirectX interfaces directly with the video card.

The one exception would be if you were to write DirectX programs that run in a

window. In my opinion, doing this defeats the purpose of DirectX, though,

because a game shouldn’t run in a window, it should always (without exception)

run fullscreen. Do you want players focusing on your game or on instant mes-

sages and e-mail?

Understanding WinMain

As you have just learned, every Windows program has a function called WinMain.

WinMain is the Windows equivalent of the main function in standard C programs,

and is the initial entry point for a Windows program. Themost important function in

your program will be WinMain, but after you have set up the messaging calls you will

probably not come back to WinMain while working on other parts of the program.

WinMain hasn’t changed since 16-bit Windows 3.x, in order to retain backward

compatibility. WinMain is the boss, the foreman, and handles the top-level part of

the program. The job of WinMain is to set up the program, and then to set up the

main message loop for the program. This loop processes all of the messages

received by the program. Windows sends these messages to every running pro-

gram. Most of the messages will not be used by your program, and so the O/S

doesn’t even send some messages to your program. Usually, WinMain will send

The Basics of a Windows Program 31

Figure 2.5
Output from the ‘‘Hello World’’ program

messages over to another function called WinProc, which works closely with

WinMain to process user input and other messages. See Figure 2.6 for a com-

parison of WinMain and WinProc.

The WinMain Function Call

The function call for WinMain looks like this:

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,
int nCmdShow)

Let’s go over these parameters:

n HINSTANCE hInstance. The first parameter identifies the instance of the

program being called, as a program may be run several times. The

Windows architecture is such that program code actually runs in a single

memory space to conserve memory, while program data and variables are

stored in individual memory spaces. The hInstance parameter tells the

program which instance is trying to run. For the first instance, you will

want to initialize the program (covered later). But if the program is run

multiple times in Windows, the general practice is to just kill the new

instance (also covered later).

32 Chapter 2 n Windows Programming Basics

Figure 2.6
WinMain and WinProc work hand-in-hand to handle application events (such as painting the screen
and responding to mouse clicks).

n HINSTANCE hPrevInstance. The second parameter identifies the previous

instance of the program and is related to the first parameter. If

hPrevInstance is NULL, then this is the first instance of the program.

You will want to check the value of hPrevInstance before initializing

the current instance. This is absolutely critical to game programming!

You will never want to have two instances of your game running at the

same time.

n LPTSTR lpCmdLine. The third parameter is a string that contains the

command-line parameters passed to the program. This could be used

to tell the program to use certain options, such as ‘‘debug,’’ which might

be used to dump program execution to a text file. Usually a Windows

program will use a settings (INI) file for program parameters used for

runtime. But there are many cases where you would use program para-

meters; an image viewer, for instance, will often be passed the name of a

picture file to display.

n int nCmdShow. The last parameter specifies how the program window is to

be displayed.

Youmight have noticed that WinMain returns a value with the words int WINAPI in

front of the function call. This is also standard practice and goes back to

Windows 3.x. A return value of zero indicates that the program never made it to

the main loop and was terminated prematurely. Any non-zero value indicates

success.

The Complete WinMain

Listed below is more of a standard version of WinMain that you will often see in

app code. I will explain each part of the function following the code listing

presented here:

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
// declare variables
MSG msg;

The Basics of a Windows Program 33

// register the class
MyRegisterClass(hInstance);

// initialize application
if (!InitInstance (hInstance, nCmdShow))

return FALSE;

// main message loop
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
return msg.wParam;

}

WinMain couldn’t get much simpler than this, considering that the function pro-

cesses theWindowsmessages for your program (I’ll explain the new stuff shortly!).

Even the simplest of graphics programs will need to process messages. Believe it or

not, doing something as simple as printing ‘‘Hello World’’ on the screen requires

that you wait for a message to come along for painting the screen. Infuriating, isn’t

it? Message handling does take some getting used to if you are used to just calling a

function when you need something (like displaying text on the screen) done.

Fortunately, we won’t spendmuch time in the basics ofWindows because soon I’ll

take you into the realm of DirectX. Once you have initialized Direct3D, there’s no

need to return to WinMain (patience, Grasshopper!).

Now let me explain what is going on inside WinMain in the following paragraphs.

You are already familiar with the function call, so let’s move along to the real

code. The first section declares the variables that will be used within WinMain:

// declare variables
MSG msg;

The MSG variable is used by the GetMessage function later to retrieve the

details of each Windows message. Next, the program is initialized with the

following:

// register the class
MyRegisterClass(hInstance);

34 Chapter 2 n Windows Programming Basics

// initialize application
if (!InitInstance (hInstance, nCmdShow))

return FALSE;

This code uses the hInstance variable passed to WinMain by Windows. The

variable is then passed on to the InitInstance function. InitInstance is located

further down in the program, and basically checks to see if the program is already

running and then creates the main program window. I will go over the

MyRegisterClass function shortly.

Finally, let’s look at the main loop that handles all of the messages in the program:

// main message loop
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

The while loop in this part of WinMainwill continue to run forever unless amessage

to kill the program comes along. The GetMessage function call looks like this:

BOOL GetMessage(LPMSG lpMsg,
HWND hWnd,
UINT wMsgFilterMin,
UINT wMsgFilterMax)

Let’s decipher the parameters:

n LPMSG lpMsg. This parameter is a long pointer to a MSG structure which

handles the message information.

n HWND hWnd. The second parameter is a handle to a specific window’s

messages. If NULL is passed, then GetMessage will return all of the messages

for the current instance of the program.

n UINT wMsgFilterMin and UINT wMsgFilterMax. These parameters tell Get-

Message to return messages in a certain range. The GetMessage call is the

most crucial line of code in the entire Windows program! Without this

single line in WinMain, your program will be sensory-deprived, unable to

respond to the world.

The two core lines of code within the GetMessage loop work to process the

message returned by GetMessage. The Windows API Reference states that the

The Basics of a Windows Program 35

TranslateMessage function is used to translate virtual-key messages into char-

acter messages, and then sent back through the Windows messaging system with

DispatchMessage. These two functions will jointly set up the messages that you

will expect to receive in WinProc (the window callback function) for your game

window, such as WM_CREATE to create a window and WM_PAINT to draw the window.

I will cover WinProc later in this chapter. If you feel confused about Windows

messaging, don’t worry about it, because this is just a precursor to working with

DirectX; once you have written a Windows message loop, you will not need to

deal with it again and can focus on your DirectX code.

What You Have Learned

In this chapter, you have learned how to write a simple Windows program and

have explored the purposes of WinMain and WinProc. Here are the key points:

n You learned some basic Windows programming concepts.

n You learned about the importance of WinMain.

n You wrote a simple Windows program that displayed text in a message

box.

n You learned about Windows messaging and the WinProc callback

function.

36 Chapter 2 n Windows Programming Basics

Review Questions

Here are some review questions that will help you to think outside the box and

retain some of the information covered in this chapter.

1. What does the hWnd variable represent?

2. What does the hDC variable represent?

3. What is the main function in a Windows program called?

4. What is the name of the window event callback function?

5. What function is used to display a message inside a program window?

On Your Own
These exercises will challenge you to learn more about the subjects presented in

this chapter and will help you to push yourself to see what you are capable of

doing on your own.

On Your Own 37

Exercise 1. The HelloWorld program displays a simple message in a text box with

an exclamation point icon. Modify the program so that it will display a question

mark icon instead.

Exercise 2. Now modify the HelloWorld program so that it will display your

name in the message box.

38 Chapter 2 n Windows Programming Basics

Windows Messaging
and Event Handling

The last chapter provided you with an overview of WinMain and WinProc, and you

wrote a simple Windows program. This chapter takes the ball and runs with it,

going over a complete windowed program that displays something on the screen,

thereby showing you how the window handle and device context work to pro-

duce output in a window. This will reinforce your grasp of the basic Windows

programming model; it will also give you a glimpse of the Windows GDI

(graphical device interface) and show you why it is better suited for applications

39

chapter 3

rather than games (for which we have DirectX!). By dividing the tutorial on

Windows programming into several chapters, my goal is to help you digest the

information in a way that helps improve. Rather than going into detail and

providing complete examples using the GDI (which is a waste of time), I’ll go

over the material quickly because I want to get into DirectX right away. If you feel

that you have a solid understanding of Windows programming already, you may

skip to the next chapter to learn how to write a real-time game loop. Otherwise,

read on!

Here is what you will learn in this chapter:

n How to create a window.

n How to draw text on the window.

n How to draw pixels on the window.

n How the WM_PAINT event works in the WinProc callback function.

Writing a Full-Blown Windows Program
Okay, let’s use the new information you learned in the last chapter to write a

slightly more complicated program that actually creates a standard window and

draws text and graphics on the window. Sounds pretty simple, right? Well, it is!

There’s a lot of startup code when you need to draw on a window, so let’s learn by

example.

Create another Win32 Application project (call it ‘‘WindowTest’’) using Visual

C++ and add a new main.cpp file to the project. I want to give you a complete

listing for a more fully functional Windows program, after which we will reverse-

engineer the program and explain each line of code in detail. See if you can figure

out what’s going on as you type in the program. If you would prefer to not type

in the program, you can open the project from the CD-ROM in \sources\

chapter03\WindowTest (and don’t worry, I won’t call you lazy).

After you have compiled and run the program, you should see output like that

in Figure 3.1. Oops, not sure how to compile the program? No problem, let me

show you. The easiest way is to press Ctrl+F5 to build and run the program

(assuming there are no errors). If you want to just compile the code, press

Ctrl+Shift+B (for build). You can also perform these actions from the Build

menu (Build Solution) and the Debug menu (Start Without Debugging).

40 Chapter 3 n Windows Messaging and Event Handling

// Beginning Game Programming
// Chapter 3
// WindowTest program

//header files to include
#include <windows.h>
#include <stdlib.h>
#include <time.h>

//application title
#define APPTITLE "Hello World"

//function prototypes (forward declarations)
BOOL InitInstance(HINSTANCE,int);
ATOM MyRegisterClass(HINSTANCE);
LRESULT CALLBACK WinProc(HWND,UINT,WPARAM,LPARAM);

//the window event callback function
LRESULT CALLBACK WinProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

PAINTSTRUCT ps;
HDC hdc;
char *szHello = "Hello World!";
RECT rt;
int x, y, n;
COLORREF c;

switch (message)

Writing a Full-Blown Windows Program 41

Figure 3.1
The WindowTest program

{
case WM_PAINT:

//get the dimensions of the window
GetClientRect(hWnd, &rt);

//start drawing on device context
hdc = BeginPaint(hWnd, &ps);

//draw some text
DrawText(hdc, szHello, strlen(szHello), &rt, DT_CENTER);

//draw 1000 random pixels
for (n=0; n<3000; n++)
{

x = rand() % (rt.right - rt.left);
y = rand() % (rt.bottom - rt.top);
c = RGB(rand()%256, rand()%256, rand()%256);
SetPixel(hdc, x, y, c);

}

//stop drawing
EndPaint(hWnd, &ps);
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

}
return DefWindowProc(hWnd, message, wParam, lParam);

}

//helper function to set up the window properties
ATOM MyRegisterClass(HINSTANCE hInstance)
{

//create the window class structure
WNDCLASSEX wc;
wc.cbSize = sizeof(WNDCLASSEX);

//fill the struct with info
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WinProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;

42 Chapter 3 n Windows Messaging and Event Handling

wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = APPTITLE;
wc.hIconSm = NULL;

//set up the window with the class info
return RegisterClassEx(&wc);

}

//helper function to create the window and refresh it
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{

HWND hWnd;

//create a new window
hWnd = CreateWindow(

APPTITLE, //window class
APPTITLE, //title bar
WS_OVERLAPPEDWINDOW, //window style
CW_USEDEFAULT, //x position of window
CW_USEDEFAULT, //y position of window
500, //width of the window
400, //height of the window
NULL, //parent window
NULL, //menu
hInstance, //application instance
NULL); //window parameters

//was there an error creating the window?
if (!hWnd)

return FALSE;

//display the window
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

return TRUE;
}

//entry point for a Windows program
int WINAPI WinMain(HINSTANCE hInstance,

Writing a Full-Blown Windows Program 43

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
// declare variables
MSG msg;

// register the class
MyRegisterClass(hInstance);

// initialize application
if (!InitInstance (hInstance, nCmdShow))

return FALSE;

//set random number seed
srand(time(NULL));

//main message loop
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
return msg.wParam;

}

Okay, well that’s the complete listing for the WindowText program, your first

completeWindows program that features a standard program window. Now let’s

reverse-engineer it and see what makes a Windows program tick, shall we?

Understanding InitInstance

InitInstance is the first function called by WinMain to set up the program.

InitInstance basically just creates the program window. This code could be just

inserted into WinMain, but it is more convenient to have it in a separate function

(this has something to do with dealing with multiple instances, when you run a

program more than once). Note that InitInstance is not a primary Windows

function like WinMain, but simply a ‘‘helper’’ function to which you could give

a different name if you wished. The instance handle is a global variable used

in the program to keep track of the main instance. I will show you what the

function call looks like and what a typical InitInstance should do. You shouldn’t

treat this as the law, though, because it’s just a standard practice, not a

requirement.

44 Chapter 3 n Windows Messaging and Event Handling

The InitInstance Function Call

The function call for InitInstance looks like this:

BOOL InitInstance(HINSTANCE hInstance,
int nCmdShow)

Let’s go over the parameters here:

n HINSTANCE hInstance. The first parameter is passed by WinMain with

the program instance that it receives from Windows. InitInstance will

check this with the global instance to see if the new instance needs to be

killed (the usual procedure in Windows). When this happens, the main

instance of the program is set as the foreground window. To the user, it

will seem as if running the program again just brought the original in-

stance forward.

n int nCmdShow. The second parameter is passed to InitInstance by

WinMain, which receives the parameter from Windows. The most

common values for this parameter include SW_HIDE and SW_SHOW, and

are often sent by Windows based on events in the operating system

(such as a power down).

The InitInstance function returns a BOOL value, which is either TRUE or FALSE,

and simply tells WinMain whether startup succeeded or failed. Note that WinMain

does not send InitInstance any of the command-line parameters. If you want

to process the lpCmdLine string, then you can either create a new function to

handle it or just process the parameters inside WinMain, which is how it is usually

done.

The Structure of InitInstance

Quite often in application programming it is recommended that you use a

resource table for string handling. Resource strings are really a matter of pre-

ference (and I, for one, do not use them). There is the possibility that you will

want to port the text in your games to another language, and this is where storing

strings as resources will come in handy. In general practice, however, it’s not

commonly used. The code to display a simple message from a resource causes a

program to look up every string used, which slows down the program and adds a

lot of clutter to the code, especially from the point of view of a beginner.

Writing a Full-Blown Windows Program 45

The InitInstance function is pretty simple, as shown here. I will explain each

section of the function after the code listing that follows:

BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{

HWND hWnd;

//create a new window
hWnd = CreateWindow(
APPTITLE, //window class
APPTITLE, //title bar
WS_OVERLAPPEDWINDOW, //window style
CW_USEDEFAULT, //x position of window
CW_USEDEFAULT, //y position of window
500, //width of the window
400, //height of the window
NULL, //parent window
NULL, //menu
hInstance, //application instance
NULL); //window parameters

//was there an error creating the window?
if (!hWnd)

return FALSE;

//display the window
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

return TRUE;
}

Note that until this section of code, there was actually no user interface for the

program at all! The main window that is created with the CreateWindow function

becomes the window used by your program. The whole point of InitInstance is

to create the new window needed by this application and display it. The list of

parameters for CreateWindow includes comments that describe what each para-

meter does. After the window has been created (and verified), the last few lines of

code are used to actually display the newly created window:

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

46 Chapter 3 n Windows Messaging and Event Handling

The hWnd value is passed to these functions by the CreateWindow function. At the

point of creation, the window existed in Windows but was not yet visible.

UpdateWindow tells the new window to draw itself by sending a WM_PAINT message

to the window handler. Oddly enough, the program talks to itself quite often in

this manner; this is common in Windows programming. The final line in

InitInstance returns a value of TRUE back to WinMain:

return TRUE;

If you recall, WinMain took this return value very seriously! If InitInstance

doesn’t like something that is going on, WinMain will end the program:

// initialize application
if (!InitInstance (hInstance, nCmdShow))

return FALSE;

Returning a value fromwithin WinMain, whether it is TRUE or FALSE, will terminate the

program immediately. If InitInstance returns a value of TRUE, recall that WinMain

will then go into the message handling while loop, and the programwill start to run.

Understanding MyRegisterClass

MyRegisterClass is a very simple function that sets up the values for the main

window class used by your program. The code in MyRegisterClass could have

easily been placed inside WinMain, and MyRegisterClass could also have easily

been put inside WinMain. In fact, all of this stuff could have been crammed into

WinMain and Windows would not have complained. But it makes the program a

whole lot easier to understand when the initialization code for a Windows

program is segregated into recognizable (and standard) helper functions.

WinMain calls InitInstance and sets up the program window by calling

MyRegisterClass. This is another optional helper function that is not required

(although you must insert the code somewhere, so why not just use it?). You may

rename the function if you wish, also.

The MyRegisterClass Function Call

MyRegisterClass is passed two parameters by InitInstance so that it can set up

the window class settings:

ATOM MyRegisterClass(HINSTANCE hInstance,

LPTSTR szWindowClass)

Writing a Full-Blown Windows Program 47

You are already familiar with both of these parameters. hInstance is the very

same instance passed to InitInstance by WinMain. This variable gets around! As

you recall, hInstance stores the current instance of the running program, and is

copied into a global variable in InitInstance. The second parameter is easy

enough to follow, as it was set up in InitInstance as a char * with an initial

window class name (in this case, ‘‘Hello World’’). Recall also that this can be a

Unicode string.

It is also possible to use a LPTSTR or TCHAR and avoid the pointer symbol. Often a

LPTSTR is more clear, but many C programmers are used to the common char

*szVar format, which is why I used char * originally. There really is no standard,

and it is primarily a matter of programmer preference (or perhaps part of a set of

coding standards set forth by an employer). I tend to use whatever seems to make

the most sense in a given situation. If char * seems easier to understand in a code

listing, that is what I use (especially when communicating with a beginner on a

sticky programming issue like initializing a Windows program).

The Structure of MyRegisterClass

The MyRegisterClass() function is listed below. I will explain the function in

detail following the code listing:

ATOM MyRegisterClass(HINSTANCE hInstance)
{

//create the window class structure
WNDCLASSEX wc;
wc.cbSize = sizeof(WNDCLASSEX);

//fill the struct with info
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WinProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = APPTITLE;
wc.hIconSm = NULL;

48 Chapter 3 n Windows Messaging and Event Handling

//set up the window with the class info
return RegisterClassEx(&wc);

}

First, MyRegisterClass defines a new variable, wc, of type WNDCLASS. Each member

of the structure is defined in MyRegisterClass in order, so there is no need to list

the struct.

The window style, wc.style, is set to CS_HREDRAW | CS_VREDRAW. The pipe symbol

is a method for combining bits. The CS_HREDRAW value causes the program

window to be completely redrawn if a movement or size adjustment changes the

width. Likewise, CS_VREDRAW causes the window to be completely redrawn when

the height is adjusted.

The variable, wc.lpfnWinProc, requires a little more explanation, as it is not

simply a variable, but a long pointer to a callback function. This is of great

importance, as without this value setting, messages will not be delivered to the

program window (hWnd). The callback window procedure is automatically called

when a Windows message comes along with that hWnd value. This applies to all

messages, including user input and window repaint. Any button presses, screen

updates, or other events will go through this callback procedure. You may give

this function any name you like, such as BigBadGameWindowProc, as long as it has a

return value of LRESULT CALLBACK and the appropriate parameters.

The struct variables wc.cbClsExtra and wc.cbWndExtra should be set to zero most

of the time. These values just add extra bytes of memory to a window procedure,

and you really do not need to use them.

wc.hInstance is set to the hInstance parameter passed to MyRegisterClass. The

main window needs to know what instance it is using. If you really want to

confuse your program, set each new instance to point to the same program

window. Now that would be funny! This should never happen because new

instances of your game should be killed rather than being allowed to run.

wc.hIcon and wc.hCursor are pretty self-explanatory. The LoadIcon function is

normally used to load an icon image from a resource, and the MAKEINTRESOURCE

macro returns a string value for the resource identifier. This macro is not something

that is commonly used for a game (unless the game needs to run in a window).

wc.hbrBackground is set to the handle for a brush used for drawing the back-

ground of the program window. The stock object, WHITE_BRUSH, is used by

default. This may be a bitmap image, a custom brush, or any other color.

Writing a Full-Blown Windows Program 49

wc.lpszMenuName is set to the name of the program menu, also a resource. I will

not be using menus in the sample programs in this book.

wc.lpszClassName is set to the szWindowClass parameter passed to

MyRegisterClass. This gives the window a specific class name and is used for

message handling along with hWnd.

Finally, MyRegisterClass calls the RegisterClassEx function. This function is

passed the WNDCLASS variable, wc, that was set up with the window details. A

return value of zero indicates failure. If the window is successfully registered with

Windows, the value will be passed back to InitInstance.

Whew—how about that to rack your brain?! I don’t expect you to remember all

of this information right now, but it is always a good idea as a game programmer

to understand how everything works so you can get the most out of the hardware

you’re working on.

Understanding WinProc

WinProc is the window callback procedure that Windows uses to communicate

events to your program. Recall that MyRegisterClass set up the WNDCLASS struct

that was passed to RegisterClassEx. Once the class is registered, the window can

then be created and displayed on the screen. One of the fields in the struct,

lpfnWinProc, is set to the name of a window callback procedure, typically called

WinProc. This function will handle all of the messages sent to the main program

window. As a result, WinProc will typically be the longest function in the main

program source code file. Figure 3.2 shows how WinProc handles event messages.

The WinProc Function Call

The window callback function looks like this:

LRESULT CALLBACK WinProc(HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam)

You will want to get to know this function, because it is the key to initializing

Direct3D. The parameters are simple and straightforward, and represent the real

‘‘engine’’ of a windows program. Recall that this information was retrieved

earlier by the GetMessage function in WinMain. Do not confuse InitInstance with

WinProc, though. InitInstance is only run once to set up the window callback

50 Chapter 3 n Windows Messaging and Event Handling

procedure. After that, InitInstance is out of the picture and WinProc takes over,

receiving and handling all messages.

Let’s take a look at the parameters for WinProc:

n HWND hWnd. The first parameter is the window handle. Typically in a

game, you will create a new handle to a device context, known as a hDC,

using the hWnd as a parameter. Before DirectX came along, this was once

crucial in the development of Windows games. Now, after you receive the

window handle and pass it to DirectDraw/Direct3D, it is no longer needed.

n UINT message. The second parameter is the message that is being sent to the

window callback procedure. The message could be anything, and youmight

not even need to use it. For this reason, there is a way to pass the message

along to the default message handler (discussed in the next section).

n WPARAM wParam and LPARAM lParam. The last two parameters are the

high and low bit value parameters passed along with certain command

messages. I’ll explain this in the next section.

The Structure of WinProc

The window callback procedure will get modified quite a bit during a game

development project, but it is the goal of the game library developed later in the

Writing a Full-Blown Windows Program 51

Figure 3.2
The WinProc callback function handles events related to the application.

book to help you avoid mucking around inside WinProc. The game library will

outsource, so to speak, the window messages to custom classes that will handle

each message individually. There are really only a handful of messages related to

game programming, and those are the only messages we want to see. The game

library will make it easy to work with these messages.

Here is a simple version of a window callback procedure, with an explanation

following:

LRESULT CALLBACK WinProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

PAINTSTRUCT ps;
HDC hdc;
char *szHello = "Hello World!";
RECT rt;
int x, y, n;
COLORREF c;

switch (message)
{
case WM_PAINT:

//get the dimensions of the window
GetClientRect(hWnd, &rt);

//start drawing on device context
hdc = BeginPaint(hWnd, &ps);

//draw some text
DrawText(hdc, szHello, strlen(szHello), &rt, DT_CENTER);

//draw 1000 random pixels
for (n=0; n<3000; n++)
{

x = rand() % (rt.right - rt.left);
y = rand() % (rt.bottom - rt.top);
c = RGB(rand()%256, rand()%256, rand()%256);
SetPixel(hdc, x, y, c);

}

//stop drawing
EndPaint(hWnd, &ps);
break;

52 Chapter 3 n Windows Messaging and Event Handling

case WM_DESTROY:
PostQuitMessage(0);
break;

}
return DefWindowProc(hWnd, message, wParam, lParam);

}

As you are already familiar with the parameters, I’ll get right down to business.

This function can be broken down into two main parts, the declaration and the

switch statement, which is like a large nested if statement. Within the switch

statement, there are also twomain parts, case statements for a commandmessage

and for regular messages. A command will use the last two parameters of WinProc,

wParam and lParam, while regular messages usually do not need the parameters.

There are several variables declared at the top:

PAINTSTRUCT ps;
HDC hdc;
char *szHello = "Hello World!";
RECT rt;
int x, y, n;
COLORREF c;

The PAINTSTRUCT variable, ps, is used in the WM_PAINTmessage handler to start and

stop a screen update, sort of like unlocking and then locking the device context

while making updates (so the screen is not garbled in the process). The variable,

hdc, is also used in the WM_PAINTmessage handler to retrieve the device context of

the program’s window. The other variables are used to display the message on the

screen (szHello) and draw pixels on the window (x, y, n, and c).

Following the variable declarations is the switch (message) statement. This is

basically an easy way to handle multiple messages, and is far better than using

nested if statements. switch is far better able to handle a large number of con-

ditional tests, which is why it is used in WinProc to check the messages.

Let me explain WM_DESTROY first. The WM_DESTROY message identifier tells the

window that it is time to shut down; your program should gracefully close down

by removing objects frommemory and then call the PostQuitMessage function to

end the program. When you take the next step and start writing Direct3D code,

this will be the only message of concern, as WM_PAINT is not needed in a Direct3D

program.

Writing a Full-Blown Windows Program 53

Okay, now back to the first message identifier, WM_PAINT. This is definitely the

most interesting message for game programming because this is where the

window updates are handled. Take a look at the code for WM_PAINT again:

//get the dimensions of the window
GetClientRect(hWnd, &rt);

//start drawing on device context
hdc = BeginPaint(hWnd, &ps);

//draw some text
DrawText(hdc, szHello, strlen(szHello), &rt, DT_CENTER);

//draw 1000 random pixels
for (n=0; n<3000; n++)
{

x = rand() % (rt.right - rt.left);
y = rand() % (rt.bottom - rt.top);
c = RGB(rand()%256, rand()%256, rand()%256);
SetPixel(hdc, x, y, c);

}

//stop drawing
EndPaint(hWnd, &ps);
break;

The first line calls BeginPaint to lock the device context for an update (using the

window handle and PAINTSTRUCT variables). The next line calls GetClientRect to

copy the program window’s rectangular area into a temporary RECT variable. This

is used by DrawText to center the message in the window. Note that BeginPaint

returns the device context for the program window. This is necessary at every

refresh because, although it is uncommon, the device context is not guaranteed

to be constant while the program is running (for instance, imagine that memory

runs low and your program is filed away into virtual memory and then retrieved

again—such an event would almost certainly generate a new device context).

The only line that actually does something to the user interface is the third line,

which calls DrawText. This function displays a message at the destination device

context. The DT_CENTER parameter at the end tells DrawText to center the message

at the top center of the passed rectangle. Of course, there is also the section of

code that draws pixels on the screen. Did you know that if you resize the window,

all the pixels will be redrawn? Go ahead and try it! Pretty cool, huh? That

54 Chapter 3 n Windows Messaging and Event Handling

demonstrates WM_PAINT perfectly: it is called when the window needs to be

redrawn. If you resize the window, multiple calls to WM_PAINT occur, each time

with a different rectangle (returned by GetClientRect).

The last line of the paint message handler calls EndPaint to shut down the

graphics system for that iteration of the message handler.

No t e

WM_PAINT is not called continuously, as in a real-time loop, but only when the window must be
redrawn. Therefore, WM_PAINT is not a suitable place to insert the screen refresh code for a
game. Instead, as you will learn in the next chapter, you must modify the loop in WinMain to
have code run in a real-time loop.

What You Have Learned

In this chapter, you have learned the basics of Windows programming in pre-

paration for DirectX coding. Here are the key points:

n You learned even more Windows programming concepts.

n You wrote a simple program to display ‘‘Hello World.’’

n You learned how to draw pixels in a window.

n You dissected a complete Windows program and learned how it works.

What You Have Learned 55

Review Questions

Here are some review questions that will help you to think outside the box and

retain some of the information covered in this chapter.

1. What does the WinMain function do?

2. What does the WinProc function do?

3. What is a program instance?

4. What function can you use to draw pixels in a window?

5. What function is used to draw text inside a program window?

56 Chapter 3 n Windows Messaging and Event Handling

On Your Own

These exercises will challenge you to learn more about the subjects presented in

this chapter and will help you to push yourself to see what you are capable of

doing on your own.

Exercise 1. The window in the WindowTest program has a white background

(WHITE_BRUSH). Modify the program so that it uses a black background.

Exercise 2. The WindowTest program displays a text message at the top center of

the program window. Modify the program so that it displays the text message at

the upper left corner of the program window.

On Your Own 57

This page intentionally left blank

The Real-Time
Game Loop

Chapter 3 was basically the final one to discuss the basics of Windows pro-

gramming. This chapter moves on to explore real-time game loops—specifically,

how to get a real-time loop out of WinMain, which doesn’t seem to have any

support for it! You will learn a few new tricks in this chapter that will get the real-

time loop going in preparation for DirectX in the next chapter. By the time you

have finished this chapter, you will have learned how to write a game loop that

will drive the rest of the code in the book. So pay attention!

59

chapter 4

Here is what you will learn in this chapter:

n How to create a real-time game loop.

n How to call other game-related functions from WinMain.

n How to use the PeekMessage function.

n How to draw bitmaps using the GDI.

What Is a Game Loop?
There’s a lot more to Windows and DirectX than I will cover in these few

chapters. I want to focus on game creation rather than spending 200 pages

discussing the logistics of the O/S or game library (DirectX, in this case). What

I’d really like to do is get away from the Windows code and come up with just a

simple, run-of-the-mill main function, which is standard in C ++ programs (but

which is missing from Windows programs, which use WinMain).

One way to do this is to stick all of the basic Windows code (including WinMain)

inside one source code file (such as winmain.cpp) and then use another source code

file (such as game.cpp) just for the game. Then, it would be a simple matter to call

some sort of main function from within WinMain and your ‘‘game code’’ will start

running right after the programwindow is created and all theWindows overhead is

handled. This is actually a standard practice on many systems and libraries,

abstracting away the O/S and presenting the programmer with a standard interface.

One such library is Allegro, a cross-platform game library available for Windows,

Linux, Mac OS X, and Unix systems. If you write a program that uses Allegro, then

your program can be compiled on any of these systems without modification! This

brings ‘‘porting’’ down to a manageable level, because it requires little effort to re-

compile a program for Linux after it has been developed for Windows (and vice

versa). I don’t really want to move in that direction here, but it is a good example of

how beneficial it is to abstract your code as much as possible.

The Old WinMain

Here’s the version of WinMain that you saw in the last few chapters:

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

60 Chapter 4 n The Real-Time Game Loop

{
MSG msg;
MyRegisterClass(hInstance);
if (!InitInstance (hInstance, nCmdShow))

return FALSE;

while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
return msg.wParam;

}

There’s just one problem with this version of WinMain; it doesn’t have a

continuous loop, just a limited loop that processes any pending messages and

then exits.

The Need for Continuity

When you have sprites or 3D models animating on the screen, with enemy

characters moving around and with guns and explosions and thermonuclear

detonations in the background, you need things to keep moving regardless of

Windows messages! In short, listed above is a stodgy, inanimate version of

WinMain that is totally unsuitable for a game. You need something that keeps on

running regardless of whether there are event messages coming in. The key to

creating a real-time loop that keeps running all of the time regardless of what

Windows is doing is modifying the while loop in WinMain.

First of all, the while loop is conditional upon a message being present, while a

game should keep running through the loop regardless of whether there’s a

message or not. This definitely needs to be changed! See Figure 4.1 for an

illustration of the current WinMain.

The Real-Time Terminator

Notice how the main loop terminates if there are no messages, but will keep on

processing any messages that are present. What would happen if the main game

loop were called from this version of WinMain? Well, once in a while the game

loop would execute and things would be updated on the screen, but more often it

would do nothing at all. Why is that? Because this is an event-driven while loop,

What Is a Game Loop? 61

and we need a common, run-of-the-mill procedural while loop that keeps going,

and going, and going . . . regardless of what’s happening. A real-time game loop

has to keep running non-stop until the game ends. And in case you were won-

dering, I’ll show you how to create a consistent, regular frame rate in the next

chapter. Our goal at this point is to make things run as blindingly fast as possible,

and then worry about timing later. Always work on getting something to work

first, and then optimize or clean it up it later (if you have time).

Now let’s look at another illustration, in Figure 4.2, that shows a new version of

WinMain, only this time it features a real-time game loop that doesn’t just loop

through the events but keeps on looping regardless of the events.

WinMain and Looping

The key to making a real-time loop is to modify the while loop in WinMain so that

it runs indefinitely, and then check for messages inside the while loop. By

indefinitely, I mean that the loop will keep running forever unless something

interrupts the loop and causes it to exit (by calling exit or return inside the

loop). In addition to using an endless loop, there’s an alternative to calling the

GetMessage function to detect event messages coming in. The alternate function

62 Chapter 4 n The Real-Time Game Loop

Figure 4.1
The standard WinMain is not friendly to a real-time game loop.

is called PeekMessage. As the name implies, this function can look at incoming

messages without necessarily retrieving them out of the message queue.

Now, as you don’t want the message queue to just pile up (it will probably crash

your program eventually), you want to use PeekMessage in place of GetMessage,

regardless of whether there are messages or not. If there are messages, fine, go

ahead and process them. Otherwise, just return control to the next line of code.

As it turns out, GetMessage is not very polite, and doesn’t let us keep the game

loop going unless a message is actually sitting in the message queue to be pro-

cessed. PeekMessage, on the other hand, is polite and will just pass control on to

the next statement if no message is waiting.

Time to Take a Peek

Let’s take a look at the format of the PeekMessage function:

BOOL PeekMessage(
LPMSG lpMsg, //pointer to message struct
HWND hWnd, //window handle

What Is a Game Loop? 63

Figure 4.2
The newly modified WinMain is much more friendly to a real-time game loop.

UINT wMsgFilterMin, //first message
UINT wMsgFilterMax, //last message
UINT wRemoveMsg); //removal flag

Now for a rundown on the parameters:

n LPMSG lpMsg. This parameter is a pointer to the message structure that

describes the message (type, parameters, and so on).

n HWND hWnd. This is a handle to the window that is associated with the

event.

n UINT wMsgFilterMin. This is the first message that has been received.

n UINT wMsgFilterMax. This is the last message that has been received.

n UINT wRemoveMsg. This is a flag that determines how the message will be

handled after it has been read. This can be PM_NOREMOVE to leave the

message in the message queue, or PM_REMOVE to remove the message

from the queue after it has been read.

Plugging PeekMessage into WinMain

Okay, now let’s make use of PeekMessage so that you can see how this all fits in

with writing a game. Here’s a new version of the main loop in WinMain with the

new PeekMessage function in place (along with a few extra lines that I’ll explain

shortly).

while (TRUE)
{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

//look for quit message
if (msg.message = = WM_QUIT)

break;
//decode and pass messages on to WndProc
TranslateMessage(&msg);
DispatchMessage(&msg);

}

//process game loop regardless of Windows messages!
Game_Run();

}

64 Chapter 4 n The Real-Time Game Loop

In this new version of the while loop you’ll notice that PeekMessage is now called

instead of GetMessage, and you’ll recognize the PM_REMOVE parameter, which

causes any event messages to be pulled out of the queue and processed. In

actuality, there are really no messages coming in to a DirectX program (except

perhaps WM_QUIT) because most of the processing takes place in the DirectX

libraries.

Take a look at the if statement that looks for the WM_QUIT message. This is really

the only case that causes the while loop to exit; otherwise, it keeps on running

indefinitely.

So, suppose you now have a game loop. What can you do with it? I sneaked in an

extra line of code that should have caught your eye, as it is called Game_Run. This

function is not part of Windows; in fact, it doesn’t even exist yet. You’re going to

write this function yourself shortly! It will also make more sense in the next

chapter when you finally get a chance to start digging into DirectX code.

That said, let’s take a look at the finished version of WinMain:

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
// declare variables
MSG msg;

// register the class
MyRegisterClass(hInstance);

// initialize application
if (!InitInstance (hInstance, nCmdShow))

return FALSE;

//initialize the game
Game_Init();

// main message loop
while (TRUE)
{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

What Is a Game Loop? 65

//look for quit message
if (msg.message == WM_QUIT)

break;

//decode and pass messages on to WndProc
TranslateMessage(&msg);
DispatchMessage(&msg);
}

//process game loop regardless of Windows messages!
Game_Run();

}
//do cleanup
Game_End();

//end program
return msg.wParam;

}

Okay, I admit it; I skipped ahead a little and sneaked something in without

warning. What I’m talking about is the unknown function call to Game_Init

and a similar call to Game_End. Now, don’t get upset—I’m not going to make a

habit of dumping new things on you without explanation. But sometimes I

think it’s interesting to show how something works before really going over it.

In this case, what I’m doing is planning ahead a little. I’ve written enough

games to know that initialization is a task best handled before the game loop

starts.

S t a t e - D r i v e n G ame s

This is actually one of those annoying sources of debate among die-hard game programmers.
Some argue that a game should be state-driven from the start, and all function calls should be
abstracted in the extreme so that code is portable to other platforms (for instance, some people
write code wherein all the Windows code is hidden away, and they’ll then have a similar Mac OS
X or Linux version of the O/S code available, at which point it’s possible to port much of the game
to those platforms without too much difficulty). I’m going to delve into this a little just because it’s
such a good habit to develop! Even while being stressed out over getting a game finished and
pounding out code for 16 hours at a time, if you are a true professional, you’ll manage that while
also sparing some neurons for higher-level things like code management and pondering issues
that might come up in the future for your game.

66 Chapter 4 n The Real-Time Game Loop

The GameLoop Project
In order to show you how this discussion of real-time programming applies,

I’m going to have you create a new project that includes the new version of

WinMain and all these new functions that I’ve been sneaking into the code listings.

Go ahead and create a new Win32 Application like usual, with no sample code

included (an empty project). Name the new project GameLoop, as shown in

Figure 4.3. Next, open the File menu, select New to bring up the New dialog. Select

C++ Source File from the list of available files to add to the project. (Remember

to ignore the C++ part and name your file with a .c extension.) Name the new file

winmain.cppandclickOKtoaddthefile toyournewproject, as showninFigure4.4.

As an option, you can also load the GameLoop project off the CD-ROM.

Source Code for the GameLoop Program

The code I will present here will be the basis for all of the programs that will

follow, with only very few changes to come. You might notice quite a few minor

improvements from the similar code listing presented in the last chapter. Go

ahead and open the winmain.cpp file in the GameLoop project and type in the

following code listing. I’ll go over it shortly.

The GameLoop Project 67

Figure 4.3
Creating a new Win32 Application project called GameLoop

// Beginning Game Programming, Second Edition
// Chapter 4
// GameLoop project

#include <windows.h>
#include <winuser.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define APPTITLE "Game Loop"

//function prototypes
LRESULT CALLBACK WinProc(HWND,UINT,WPARAM,LPARAM);
ATOM MyRegisterClass(HINSTANCE);
BOOL InitInstance(HINSTANCE,int);
void DrawBitmap(HDC,char*,int,int);
void Game_Init();
void Game_Run();
void Game_End();

68 Chapter 4 n The Real-Time Game Loop

Figure 4.4
Adding the winmain.cpp file to the project

//local variables
HWND global_hwnd;
HDC global_hdc;

//the window event callback function
LRESULT CALLBACK WinProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

global_hwnd = hWnd;
global_hdc = GetDC(hWnd);

switch (message)
{

case WM_DESTROY:
PostQuitMessage(0);
break;

}
return DefWindowProc(hWnd, message, wParam, lParam);

}

//helper function to set up the window properties
ATOM MyRegisterClass(HINSTANCE hInstance)
{

//create the window class structure
WNDCLASSEX wc;
wc.cbSize = sizeof(WNDCLASSEX);

//fill the struct with info
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WinProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = APPTITLE;
wc.hIconSm = NULL;

//set up the window with the class info
return RegisterClassEx(&wc);

}

The GameLoop Project 69

70 Chapter 4 n The Real-Time Game Loop

//helper function to create the window and refresh it
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{

HWND hWnd;

//create a new window
hWnd = CreateWindow(

APPTITLE, //window class
APPTITLE, //title bar
WS_OVERLAPPEDWINDOW, //window style
CW_USEDEFAULT, //x position of window
CW_USEDEFAULT, //y position of window
500, //width of the window
400, //height of the window

NULL, //parent window
NULL, //menu
hInstance, //application instance
NULL); //window parameters

//was there an error creating the window?
if (!hWnd)
return FALSE;

//display the window
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

return TRUE;
}

//entry point for a Windows program
int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
int done = 0;
MSG msg;

// register the class
MyRegisterClass(hInstance);

// initialize application
if (!InitInstance (hInstance, nCmdShow))
return FALSE;

The GameLoop Project 71

//initialize the game
Game_Init();

// main message loop
while (!done)
{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

//look for quit message
if (msg.message == WM_QUIT)

done = 1;

//decode and pass messages on to WndProc
TranslateMessage(&msg);
DispatchMessage(&msg);

}

//process game loop
Game_Run();

}

//do cleanup
Game_End();

return msg.wParam;
}

Wait, We’re Not Finished Yet!

Okay, there’s more to this code listing but I wanted to pause here for a moment

because that’s the end of the Windows code. It might be better to put these

functions in a separate source file, but things are simple enough at this point that

doing so isn’t necessary. Now let’s add the two additional functions to the

bottom of the listing:

void Game_Init()
{

//initialize the game...
//load bitmaps, meshes, textures, sounds, etc.

//initialize the random number generator
srand(time(NULL));

}

void Game_Run()
{

//this is called once every frame
//do not include your own loop here!

int x = 0, y = 0;
RECT rect;
GetClientRect(global_hwnd, &rect);

if (rect.right > 0)
{

x = rand() % (rect.right - rect.left);
y = rand() % (rect.bottom - rect.top);
DrawBitmap(global_hdc, "c.bmp", x, y);

}
}

void Game_End()
{
}

Hold It, There’s One More Detail

Okay, now for one more support function that I threw in just for fun (because I

was getting tired of drawing pixels). This function is called DrawBitmap, and does

just that—rather slowly, I’ll admit. This function is suitable for loading a full

background image or a small bitmap, as I do in this program. The function

actually loads a bitmap file into memory, does some Windows fuddling with it,

and then draws it at a random location on the window (using the window’s

device context). You would never want to do this in a real game, because it loads

the darned bitmap file every single time it goes through the loop! That’s insanely

slow and wasteful, but it is okay for demonstration purposes because all of the

bitmap-related code is located in this function rather than strewn about the rest

of the listing. I want you to focus on the game loop and support functions rather

than this antiquated bitmap code that we won’t even use beyond this chapter.

void DrawBitmap(HDC hdcDest, char *filename, int x, int y)
{

HBITMAP image;
BITMAP bm;
HDC hdcMem;

72 Chapter 4 n The Real-Time Game Loop

//load the bitmap image
image = (HBITMAP)LoadImage(0,"c.bmp",IMAGE_BITMAP,0,0,LR_LOADFROMFILE);

//read the bitmap’s properties
GetObject(image, sizeof(BITMAP), &bm);

//create a device context for the bitmap
hdcMem = CreateCompatibleDC(global_hdc);
SelectObject(hdcMem, image);

//draw the bitmap to the window (bit block transfer)
BitBlt(

global_hdc, //destination device context
x, y, //x,y location on destination
bm.bmWidth, bm.bmHeight, //width,height of source bitmap
hdcMem, //source bitmap device context
0, 0, //start x,y on source bitmap
SRCCOPY); //blit method

//delete the device context and bitmap
DeleteDC(hdcMem);
DeleteObject((HBITMAP)image);

}

No t e

If this were a book about programming the Windows GDI (graphical device interface), I would
certainly go over all of the GDI graphics functions with you in vast detail! But since it’s a side note
at best, just take the GDI for granted.

Running the GameLoop Program

Alrighty, then! Go ahead and run the program now, and you should see a window

appear with a bunch of freaking crazy C bitmaps being blasted onto the window,

as shown in Figure 4.5.

TheWindows GDI—which is the system that provides you with window handles

and device contexts and allows you to draw on windows to build a user interface

(or a game that does not use DirectX)—is a step backward, to be blunt. I want to

keep moving forward, covering only the aspects of Windows coding necessary to

provide a footing for DirectX, so kindly ignore this lapse in my own judgment. I

was being nostalgic.

The GameLoop Project 73

What You Have Learned

In this chapter you have learned how to write a real-time game loop, and have

picked up a few extra tidbits about theWindows GDI along the way. Here are the

key points:

n You learned all about the PeekMessage function.

n You learned how to modify the main loop in WinMain.

74 Chapter 4 n The Real-Time Game Loop

Figure 4.5
The GameLoop program window is filled with C bitmaps.

n You added some new functions that will make it easier to write a

game.

n You learned a few antiquated skills on how to draw with the GDI (just

for fun).

Review Questions

Here are some review questions that will help you to think outside the box and

retain some of the information covered in this chapter.

1. What is a real-time game loop?

2. Why do you need to use a real-time loop in a game?

3. What is the main helper function used to create a real-time loop?

4. What Windows API function can you use to draw a bitmap onto the screen?

5. What does DC stand for?

Review Questions 75

On Your Own

These exercises will challenge you to learn more about the subjects presented in

this chapter and will help you to push yourself to see what you are capable of

doing on your own.

Exercise 1. The GameLoop program demonstrated how to load and draw a

bitmap using the GDI routines. Modify the c.bmp image with a bitmap of your

choice and load it into the program instead.

Exercise 2.Modify the GameLoop program so that it draws just a single bitmap

that moves around in the window. (Hint: You will need to make sure the bitmap

doesn’t ‘‘fly off’’ the boundaries of the window.)

76 Chapter 4 n The Real-Time Game Loop

DirectX Programming

The second part of the book covers the basics of DirectX 9 programming. You

will learn how to use DirectX Graphics, DirectX Audio, and DirectInput, and will

put it all together into a game framework library that can be reused in the

remainder of the book’s projects (as well as in your own future projects). Here are

the chapters you will encounter in Part II:

Chapter 5 Your First DirectX Graphics Program

Chapter 6 Bitmaps and Surfaces

Chapter 7 Drawing Animated Sprites

Chapter 8 Advanced Sprite Programming

Chapter 9 Jamming with DirectX Audio

Chapter 10 Handling Input Devices

Chapter 11 Tile-Based Scrolling Backgrounds

Part II

This page intentionally left blank

Your First DirectX
Graphics Program

This chapter will show you how to write a simple Direct3D program, and is

intentionally sparse on the 3D details because the more complicated 3D topics

are reserved for Part III of the book. You will learn how to initialize Direct3D and

create a device that gives you access to the video card, providing access to the

primary surface. You will also learn how to use a back buffer for flicker-free

display of graphics. Chapter 6 will take you deeper into the depths of Direct3D’s

architecture by exploring surfaces, how to draw on them, how to load bitmaps,

and how to create animated sprites (which is the basis for a 2D game).

79

chapter 5

If you are eager to get started with 3D graphics, you can skip ahead to Part III of

the book, but I recommend that you stay here and learn the basics first. Before

you start loading 3D objects and rendering animated characters on the screen,

you need to know the basics of DirectX. In particular, the game framework in

Chapter 9 is used in all future chapters, so it’s important to understand how the

game library works. Much of the game framework is readied in this very chapter,

and you will add to it over the next several chapters to make DirectX

programming easier.

Here is what you will learn in this chapter:

n How to initialize the Direct3D object.

n How to create a device for accessing the video display.

n How to create a back buffer for flicker-free graphics.

n How to run a Direct3D program in a window.

n How to run a Direct3D program in fullscreen mode.

Getting Started with Direct3D
To use Direct3D or any other component of DirectX, you must be somewhat

familiar with how to use headers and library files (standard fare in C program-

ming), because DirectX function calls are stored in header files, and the pre-

compiled DirectX functions are stored in libs. For instance, the Direct3D

functions are stored in d3d9.lib, and the way your program ‘‘sees’’ Direct3D is by

including the d3d9.h header file using the #include <d3d9.h> directive in your

source code files.

I will assume that you have already installed the DirectX 9 Software Development

Kit (SDK) for Visual C++ or the separate version of DX9 for Dev-C++. If you

have not installed one of these yet, you should do that before reading any further.

The DirectX 9 SDK is located on the CD-ROM that accompanies this book in the

\DirectX folder, while the Dev-C++ version is located in \dev-cpp. When given

the DirectX Runtime Support option, you want to install the debug version for

development.

Okay, ready to go?

80 Chapter 5 n Your First DirectX Graphics Program

The Direct3D Interfaces

In order to write a program that uses Direct3D, you must create one variable for

the Direct3D interface and another for the graphics device. The Direct3D

interface is called LPDIRECT3D9 and the device object is called LPDIRECT3DDEVICE9.

You can create the variables like this:

LPDIRECT3D9 d3d = NULL;
LPDIRECT3DDEVICE9 d3ddev = NULL;

The LPDIRECT3D9 object is the big boss of the Direct3D library, the object that

controls everything, while LPDIRECT3DDEVICE9 represents the video card. You can

probably tell what those objects are by their names. LP means ‘‘long pointer,’’ so

LPDIRECT3D9 is a long pointer to the DIRECT3D9 object. These definitions are

located in the d3d9.h header file, which you must #include in your source code

file. Here is how LPDIRECT3D9 is defined:

typedef struct IDirect3D9 *LPDIRECT3D9;

This may be confusing if you aren’t particularly adept with pointers; they can

be confusing until you ‘‘get it.’’ Pointers are certainly the biggest obstacle to

most programmers’ mastery of C. When I don’t understand something, I

prefer to let my subconscious work on it—because my conscious mind just gets

in the way sometimes. Seriously—if you don’t get it, just start using these

pointers and objects and give yourself time. You’ll slowly come to understand.

One mistake programmers often make is to assume that they must know

how something works in order to use it. Not so! Just go ahead and write

Direct3D programs; you don’t need to know anything about 3D modeling or

rendering right away. Practice builds experience, which makes up for a lack of

understanding.

IDirect3D9 is an interface; therefore, LPDIRECT3D9 is a long pointer to the

Direct3D9 interface. The same goes for LPDIRECT3DDEVICE9, which is a long

pointer to the IDirect3DDevice9 interface.

Creating the Direct3D Object

Let me now show you how to initialize the main Direct3D object:

d3d = Direct3DCreate9(D3D_SDK_VERSION);

Getting Started with Direct3D 81

This code initializes Direct3D, which means that it is ready to be used. First, you

must create the device upon which Direct3D will display output. This is where

the d3ddev variable will be used (note that d3d is used to call this function):

d3d->CreateDevice(
D3DADAPTER_DEFAULT, //use default video card
D3DDEVTYPE_HAL, //use the hardware renderer
hWnd, //window handle
D3DCREATE_SOFTWARE_VERTEXPROCESSING, //do not use T&L (for compatibility)
&d3dpp, //presentation parameters
&d3ddev); //pointer to the new device

Ha r dwa r e T& L

If you are a technophile (that is, someone who loves to tinker with gadgets), or rather, if you are a
hardcore gamer who loves to argue about video card specifications, then the parameter
D3DCREATE_SOFTWARE_VERTEXPROCESSING probably irritated you. If you don’t know anything about
video cards, then no harm done! But I suspect you make it a habit to keep up to date on all the
latest computer technology, right? Well, we all know that ‘‘transform and lighting’’ was the big
buzzword of 2002, and all video cards since then have come with T&L. What this really means is
that much of the 3D setup work is handled by the video card itself, rather than your computer’s
central processing unit (CPU).

When 3Dfx came out with the world’s first 3D accelerator card for the PC, it took the industry by
storm and revolutionized gaming. It would have happened sooner or later anyway, but 3Dfx was
first because the company had been building 3D hardware for arcade game machines for years. I
remember the first time I saw Quake running with 3D acceleration; my jaw dropped.

Having the rendering pipeline reside in the 3D card rather than the CPU is a given at this point.
Evolution takes over for a few years and video cards are bumping up the polygon counts and
feature sets. Then nVidia ushered in the next revolution by adding the transform and lighting
phase of the 3D rendering pipeline to the 3D chip itself, offloading that work from the CPU.

What is transform & lighting, anyway? A transform is the manipulation of polygons, while lighting
is just like it sounds---adding lighting effects to those polygons. While 3D chips first enhanced
games by rendering textured polygons in the hardware (vastly improving quality and speed), T&L
added the final touch by having the 3D chip manipulate and light the scene as well. This frees up
the CPU for other tasks, like artificial intelligence and game physics---which, in case you haven’t
noticed, have really taken off in recent years! This is not due to just faster CPUs, but primarily due
to the GPU taking the load off.

The last two parameters of CreateDevice specify the device parameters (d3dpp)

and the device object (d3ddev). d3dpp must be defined before use, so let’s go over

it now. There are a lot of options that you can specify for the device, which you

can see in Table 5.1.

82 Chapter 5 n Your First DirectX Graphics Program

First, create a variable of the D3DPRESENT_PARAMETERS struct that is used to set up

the device parameters:

D3DPRESENT_PARAMETERS d3dpp;

and then clear out the struct to zero all values before use:

ZeroMemory(&d3dpp, sizeof(d3dpp));

Let’s take a look at all the possible Direct3D presentation parameters:

There are a lot of options in the d3dpp struct, and a lot of sub-structs within it as

well. I’ll go over options that you need in order to work through the topics in this

chapter, but I may not cover every option (which would amount to information

overload). Let’s fill in the d3dpp struct with just a few values needed to get a

windowed Direct3D program running:

d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;

Getting Started with Direct3D 83

Table 5.1 Direct3D Presentation Parameters

Variable Type Description

BackBufferWidth UINT Width of the back buffer

BackBufferHeight UINT Height of the back buffer

BackBufferFormat D3DFORMAT Format of the back buffer, D3DFORMAT. Pass
D3DFMT_UNKNOWN to use desktop format in
windowed mode

BackBufferCount UINT Number of back buffers

MultiSampleType D3DMULTISAMPLE_TYPE Number of multi-sampling levels for full-screen
anti-aliasing. Normally pass D3DMULTISAM-

PLE_NONE

MultiSampleQuality DWORD Quality level of multi-sampling. Normally pass 0

SwapEffect D3DSWAPEFFECT Swapping method for back buffer

hDeviceWindow HWND Parent window for this device

Windowed BOOL Set to TRUE for windowed mode, FALSE for
fullscreen mode

EnableAutoDepthStencil BOOL Allow D3D to control the depth buffers (normally
set to TRUE)

AutoDepthStencilFormat D3DFORMAT Format of the depth buffers

Flags DWORD Optional flags (normally set to 0)

FullScreen_RefreshRateInHz UINT Fullscreen refresh rate (must be 0 for windowed)

PresentationInterval UINT Controls the buffer swap rate

After these few values have been filled in, you can then call CreateDevice to create

the primary Direct3D drawing surface.

Taking Direct3D for a Spin

Let’s create a sample project to use in this section on Direct3D to get a feel for

how a complete Direct3D program works. Create a new Win32 Project type of

program and call it d3d_windowed (or whatever name you wish, although this is

the name of the project on the CD-ROM). Add a new file, called winmain.cpp, to

the empty project. Now let’s configure the project for Direct3D.

No t e

Remember that this is all basically just C code (rather than C++), even though the filenames all
have an extension of .cpp. Visual C++ may complain if the source files don’t end with .cpp in
some cases.

Adding Direct3D to the Linker

Open the Project menu and select Properties (the last option on the bottom of

the menu). The Properties dialog is shown in Figure 5.1.

84 Chapter 5 n Your First DirectX Graphics Program

Figure 5.1
The Project Properties dialog for the d3d_windowed project in Microsoft Visual C++

Now, click the Linker item on the list at the left to open up the linker options.

You’ll notice several sub-items under the Linker tree item, such as General,

Input, Debugging, and so on. Select the sub-item called Input under the Linker

tree menu, as shown in Figure 5.2.

Pay special attention to the field called Additional Dependencies. This field shows

all of the library files that are linked to your program when all of the various

source code files are compiled and linked together to form the executable file. If

you have a winmain.cpp file in your project, then it is compiled to winmain.obj

(which is an object file), which contains the binary instructions that will run on

your computer. This is a very low-level binary file that is not readable, so don’t

even try to open it (you can see the various output files inside the Debug

folder, as it is created inside your program’s main folder when you compile the

program).

Now, let’s add the Direct3D library file to the list of libraries. Add ‘‘d3d9.lib’’ to

the Additional Dependencies field, as shown in Figure 5.3, and then close the

dialog.

Assuming your source code is correct, this is all you need to do to compile a

Direct3D program. You have now configured your first DirectX project in Visual

C++! This is no easy thing to do, so you should feel like you’re making some

serious progress—especially if you are new to the C++ language!

Getting Started with Direct3D 85

Figure 5.2
Opening the Link tab in the Project Properties dialog

Typing in the Source Code

Here is the standard Windows code needed to get the program rolling. I’ll show

you the Direct3D-specific code at the end of this listing.

// Beginning Game Programming, Second Edition
// Chapter 5
// d3d_windowed program

//header files to include
#include <d3d9.h>
#include <time.h>

//application title
#define APPTITLE "Direct3D_Windowed"

//forward declarations
LRESULT WINAPI WinProc(HWND,UINT,WPARAM,LPARAM);
ATOM MyRegisterClass(HINSTANCE);
int Game_Init(HWND);
void Game_Run(HWND);
void Game_End(HWND);

//Direct3D objects

86 Chapter 5 n Your First DirectX Graphics Program

Figure 5.3
Adding d3d9.lib to the Additional Dependencies field.

LPDIRECT3D9 d3d = NULL;
LPDIRECT3DDEVICE9 d3ddev = NULL;

//window event callback function
LRESULT WINAPI WinProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

switch(msg)
{

case WM_DESTROY:
Game_End(hWnd);
PostQuitMessage(0);
return 0;

}
return DefWindowProc(hWnd, msg, wParam, lParam);

}

//helper function to set up the window properties
ATOM MyRegisterClass(HINSTANCE hInstance)
{

//create the window class structure
WNDCLASSEX wc;
wc.cbSize = sizeof(WNDCLASSEX);

//fill the struct with info
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WinProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = APPTITLE;
wc.hIconSm = NULL;

//set up the window with the class info
return RegisterClassEx(&wc);

}

//entry point for a Windows program
int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,

Getting Started with Direct3D 87

LPSTR lpCmdLine,
int nCmdShow)

{
// declare variables
MSG msg;

// register the class
MyRegisterClass(hInstance);

// initialize application
//note––got rid of initinstance
HWND hWnd;

//create a new window
hWnd = CreateWindow(
APPTITLE, //window class
APPTITLE, //title bar
WS_OVERLAPPEDWINDOW, //window style
CW_USEDEFAULT, //x position of window
CW_USEDEFAULT, //y position of window
500, //width of the window
400, //height of the window
NULL, //parent window
NULL, //menu
hInstance, //application instance
NULL); //window parameters

//was there an error creating the window?
if (!hWnd)

return FALSE;

//display the window
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

//initialize the game
if (!Game_Init(hWnd))

return 0;

// main message loop
int done = 0;

while (!done)
{

88 Chapter 5 n Your First DirectX Graphics Program

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
//look for quit message
if (msg.message == WM_QUIT)
{

MessageBox(hWnd, "Received WM_QUIT message", "WinMain", MB_OK);
done = 1;

}

//decode and pass messages on to WndProc
TranslateMessage(&msg);
DispatchMessage(&msg);

}
else

//process game loop (else prevents running after window is closed)
Game_Run(hWnd);

}
return msg.wParam;

}

The first thing you might have noticed about this code is that InitInstance is

missing. Actually, I just moved the code from this helper function directly into

WinMain because the Direct3D code needs access to the window handle (hWnd),

and I would prefer to just keep the CreateWindow function right inside WinMain.

There are several more changes in this code listing that make it differ from the

GameLoop program that you saw in the last chapter. For one thing, Game_End is

called from within WinProc (the window event callback function, as you’ll

recall) after the WM_DESTROY message. This function actually removes the

Direct3D objects and any other things from memory before the program ends.

If you want to see the program hang, just terminate the program without first

releasing Direct3D—it will keep running in memory, even though the program

window is gone! This is what you might call a bad thing. Oh, why beat around

the bush? This is a very bad thing. So, this call to Game_End right inside the

callback function ensures that Direct3D is shut down properly before the

program ends.

Now let’s go over the code to initialize Direct3D. I have put the code you have

learned about in this chapter so far inside Game_Init, which is called by WinMain

just before the main loop starts running. The calls to MessageBox are for testing

purposes, and can be removed once you understand how the program works.

Getting Started with Direct3D 89

int Game_Init(HWND hwnd)
{

//display init message
MessageBox(hwnd, "Program is about to start", "Game_Init", MB_OK);

//initialize Direct3D
d3d = Direct3DCreate9(D3D_SDK_VERSION);
if (d3d == NULL)
{

MessageBox(hwnd, "Error initializing Direct3D", "Error", MB_OK);
return 0;

}

//set Direct3D presentation parameters
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;

//create Direct3D device
d3d->CreateDevice(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
hwnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&d3ddev);

if (d3ddev == NULL)
{

MessageBox(hwnd, "Error creating Direct3D device", "Error", MB_OK);
return 0;

}

//set random number seed
srand(time(NULL));

//return okay
return 1;

}

Did you see that first line that calls MessageBox to display a message? I inserted

this to demonstrate how things work in the program, how the functions are

90 Chapter 5 n Your First DirectX Graphics Program

called, and to demonstrate the ordering of events in a Windows program. If you

want to really see how it all works, you may insert similar MessageBox function

calls elsewhere in the program. You can insert them basically anywhere except for

in the game loop, which you don’t really want to interrupt with a message box, as

that will mess everything up. Okay, let’s take a look at Game_Run to see what

happens to draw on the Direct3D display:

void Game_Run(HWND hwnd)
{

//make sure the Direct3D device is valid
if (d3ddev == NULL)

return;

//clear the screen with a green color
d3ddev->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,255,255), 1.0f, 0);

//start rendering
if (d3ddev->BeginScene())
{

//do something here!

//stop rendering
d3ddev->EndScene();

}

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

}

First, this function makes sure that the d3ddev (Direct3D device) exists; other-

wise, it returns an error. Next, the Clear function is called to clear the back buffer

with the color green. This is not just a cosmetic function call to Clear. This

literally blanks out the screen before each frame is rendered (and as you will learn

later on, this function can also clear the z-buffer used to draw polygons). Imagine

that you have a character walking on the screen. At each frame (here within

Game_Run) you will change to the next frame of animation, so that over time the

character really appears to be walking. Well, if you don’t clear the screen first,

then each frame of the animation is drawn over the last frame, resulting in a big

mess on the screen. That is why Clear is called before the rendering begins: to

wipe the slate clean and prepare it for the next frame.

Getting Started with Direct3D 91

Now for the last part of the program:

void Game_End(HWND hwnd)
{

//display close message
MessageBox(hwnd, "Program is about to end", "Game_End", MB_OK);

//release the Direct3D device
if (d3ddev != NULL)

d3ddev->Release();

//release the Direct3D object
if (d3d != NULL)

d3d->Release();
}

The Game_End function is called from within WinMain, as you’ll recall, after a

WM_DESTROYmessage comes in. This usually happens when you close the program

window (clicking the small X icon at the top right corner—duh, you knew that, right?).

Running the Program

If you run the program (F5 from Visual C++), you should see a blank window

pop up, as shown in Figure 5.4. Hey, it doesn’t do much, but you’ve learned a lot

about initializing Direct3D—that baby is ready for some polygons!

92 Chapter 5 n Your First DirectX Graphics Program

Figure 5.4
The Direct3D_Windowed program demonstrates how to initialize Direct3D.

Direct3D in Fullscreen Mode

The next step is to learn how to program Direct3D to run in fullscreen mode,

which is how most games run. This requires a change to the CreateWindow

function and a few changes to the Direct3D presentation parameters. Using the

d3d_windowed program as a basis, you can just make the following changes to

make the program run in fullscreen mode.

T i p

It’s good to have your game run fullscreen for production, but it’s preferable to run the game in
windowed mode while you are working on it because in fullscreen mode Direct3D takes control
over the screen, and you won’t be able to see any error messages that pop up.

Modifying the Code

First, add the following lines up near the top of the code listing:

//screen resolution
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

These defines will make it easier to change the video resolution later, if you wish.

They also make the code more readable.

Adding Keyboard Support

Because this program will run in fullscreen mode, you need a way to end the

program. Without some way to check for keyboard input, the only way to end

a program in fullscreen mode is to Alt+Tab out to the desktop, open Task

Manager, and terminate the program the hard way. This just will not do, so let

me show you a quick and easy solution that will work until I’ve had a chance to

introduce you to DirectInput in a later chapter. Add this code below the last two

defines that you inserted into the code:

//macros to read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code)((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

Modifying CreateWindow

Now, down in WinMain, I have made some changes to the CreateWindow function

call that you should note (the changes appear in bold):

Getting Started with Direct3D 93

//create a new window
hWnd = CreateWindow(
APPTITLE, //window class
APPTITLE, //title bar
WS_EX_TOPMOST | WS_VISIBLE | WS_POPUP, //window style
CW_USEDEFAULT, //x position of window
CW_USEDEFAULT, //y position of window
SCREEN_WIDTH, //width of the window
SCREEN_HEIGHT, //height of the window
NULL, //parent window
NULL, //menu
hInstance, //application instance
NULL); //window parameters

The CreateWindow function includes the screen width and height defines, but I

also made some changes to the WS_OVERLAPPED window style. It now includes the

WS_EX_TOPMOST value, which causes the window to take precedence over all other

windows. The other two options are WS_VISIBLE and WS_POPUP, which ensure that

the window has focus and no longer includes a border or title bar.

Changing the Presentation Parameters

The next change involves the D3DPRESENT_PARAMETERS struct, which directly

affects the appearance and capabilities of the Direct3D primary surface. You may

recall that the last program set it up with the following three lines:

d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;

There are several other options that I did not set the first time around that are

now significant when you are trying to initialize Direct3D in fullscreen mode.

Here are the new d3dpp settings with changes in bold (found in Game_Init).

d3dpp.Windowed = FALSE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_X8R8G8B8;
d3dpp.BackBufferCount = 1;
d3dpp.BackBufferWidth = SCREEN_WIDTH;
d3dpp.BackBufferHeight = SCREEN_HEIGHT;
d3dpp.hDeviceWindow = hwnd;

94 Chapter 5 n Your First DirectX Graphics Program

Looking for the Escape Key

Okay, just one more change and you’ll be on target with this fullscreen program.

Scroll down in the code listing to the Game_Run function, which is called by

WinMain to update the screen (this is where all rendering and core gameplay will

occur). Add the following code to the end of the Game_Run function:

//check for escape key (to exit program)
if (KEY_DOWN(VK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);

Now, when the program runs in fullscreen mode, you will have a way to exit out of

the program. See, I do plan ahead! The program is now ready to run, so give it a spin.

What You Have Learned

In this chapter, you have learned how to initialize and run a Direct3D program in

windowed and fullscreen modes. Here are the key points:

n You learned about the Direct3D interface objects.

n You learned about the CreateDevice function.

n You learned about the Direct3D presentation parameters.

n You learned what settings to use to run Direct3D in windowed mode.

n You learned how to run Direct3D in fullscreen mode.

What You Have Learned 95

Review Questions

Here are some review questions to challenge your impressive intellect and see if

you have any weaknesses:

1. What is Direct3D?

2. What is the Direct3D interface object called?

3. What is the Direct3D device called?

4. What function do you use to start rendering?

5. What function lets you read from the keyboard asynchronously?

On Your Own

96 Chapter 5 n Your First DirectX Graphics Program

These exercises will challenge you to learn more about the subjects presented in

this chapter and will help you to push yourself to see what you are capable of

doing on your own.

Exercise 1.Modify the Direct3D_Windowed program so that it displays a different

color in the background other than green.

Exercise 2. Modify the Direct3D_Fullscreen program so that it uses a different

resolution other than 640� 480.

On Your Own 97

This page intentionally left blank

Bitmaps and
Surfaces

Some of the best games ever made were 2D games that didn’t even require an

advanced 3D accelerated video card. It is important to learn about 2D graphics

because they are the basis for all graphics that are displayed on your monitor—

regardless of how those graphics are rendered, game graphics are all converted to

an array of pixels on the screen. In this chapter, you will learn about surfaces,

which are just regular bitmaps that can be drawn to the screen. So, think back on

some of your all-time favorite games. Were they all 3D games? Very likely not—

there have been more blockbuster 2D games than there have been of the 3D

variety. Rather than compare and contrast the 2D and 3D, it’s better to just learn

both and then use whichever one your game calls for. A game programmer

should know everything in order to create the best games.

99

chapter 6

Here is what you will learn in this chapter:

n How to create a surface in memory.

n How to fill a surface with color.

n How to load a bitmap image file.

n How to draw a surface on the screen.

Surfaces and Bitmaps
Direct3D uses surfaces for many things. The monitor (shown in Figure 6.1)

displays what the video card sends to it, and the video card pulls the video display

out of a frame buffer that is sent to the monitor one pixel at a time (they might be

in single file, but they move insanely fast!).

The frame buffer is stored in the memory chips on the video card itself (shown in

Figure 6.2), and these chips are usually very fast. There was a time when video

memory (VRAM) was extremely expensive because it was so fast—much faster

than standard system RAM. Now things are somewhat reversed, as the PC’s main

memory usually has the best technology and the video cards are a step or two

behind. The reason for this is because it’s difficult to redo the architecture of a

video card, which is a very precise and complex circuit board.

100 Chapter 6 n Bitmaps and Surfaces

Figure 6.1
A typical monitor

The PC motherboard, on the other hand, is constantly in a state of flux, as

semiconductor companies strive to outdo each other. Video card companies, no

matter how competitive they may be, can’t gamble on putting six months’ worth

of effort into a memory technology that fails in the market and is replaced by

other types of memory (remember Rambus?). Also, while motherboards are built

for a variety of industries and uses—and, thus, have been subject to much

experimentation—video cards are built for one thing only: displaying graphics.

Therefore, less experimentation goes on with the chips on a video card. After the

PC market has decided on a memory standard, it tends to show up on video

cards. You may recall when the first DDR (double data rate) memory was used

on video cards; it was quite a while after DDR had been initially released.

Where was I? Oh, right! The frame buffer resides in video memory, and repre-

sents the image you see on the monitor (as shown in Figure 6.3). So it makes

sense that the easiest way to create graphics is to just modify the frame buffer

directly; the result is that you see the changes on the screen right away. This is

how things work, basically, but I’m leaving out one small detail. You don’t want

to draw directly on the frame buffer because that causes flicker as your graphics

are drawn, erased, moved, and redrawn while the screen is being refreshed.

Surfaces and Bitmaps 101

Figure 6.2
The monitor displays the linear array of pixels sent to it by the video card

Figure 6.3
The frame buffer in VRAM contains the image that is rendered on the monitor

Instead, what you want to do is draw everything on an offscreen buffer and then

blast that ‘‘double’’ or ‘‘back’’ buffer to the screen very quickly. This is called

double buffering. There are other methods of creating a flicker-free display, such

as page flipping, but I tend to prefer a back buffer because it is more straight-

forward (and a bit easier).

The Primary Surfaces

You might recall from the last chapter that you created a back buffer by setting

the presentation parameters. Then, using the Clear function, you filled the back

buffer with green and then used the Present function to refresh the screen. You

were using a double/back buffer without even realizing it! That’s one nice feature

that Direct3D provides—a built-in back buffer. And it makes sense, because

double buffering is as common today in games as bread and butter is in your

kitchen.

The ‘‘frame buffer’’ that I mentioned earlier is also called the front buffer, which

makes sense in that the back buffer is copied to it during each frame. Both the

front and back buffers are created for you when you configure the presentation

parameters and call CreateDevice. Isn’t that great?

Secondary Offscreen Surfaces

The other type of surface you can use is called a secondary or offscreen surface.

This type of surface is really just an array in memory that looks like a bitmap

(where it has a header and then data representing pixels). You can create as many

offscreen surfaces as you need for your game; it is common to use hundreds of

them while a game is running. The reason is because all of the graphics in a game

are stored in surfaces, and these surfaces are copied to the screen in a process

called bit-block transfer. The common way to refer to this term is ‘‘blitter’’—you

‘‘blit’’ surfaces to the screen.

You might remember the GameLoop program from Chapter 4 that used a

function called BitBlt (that I purposely neglected to explain at the time). BitBlt

is a Windows GDI function for ‘‘blitting’’ bitmaps to device contexts, such as the

main window of your program. A device context is sort of like a Direct3D

surface, but is more difficult to use (due to the complexity of theWindows GDI).

Direct3D surfaces are simple in comparison, as you’ll see shortly. In fact, I might

use the word refreshing to describe them after writing Windows code for so many

years.

102 Chapter 6 n Bitmaps and Surfaces

Creating a Surface

You create a Direct3D surface by first declaring a variable to point to the surface

in memory. The surface object is called LPDIRECT3DSURFACE9, and you create a

variable like so:

LPDIRECT3DSURFACE9 surface = NULL;

Once you have created a surface, you have a lot of freedom as to what you can do

with the surface. You can use the ‘‘blitter’’ to draw bitmaps to the surface (from

other surfaces, of course), or you can fill the surface with a color, among other

things. If you want to clear the surface prior to drawing on it, for instance, you

would use the ColorFill function, which has this syntax:

HRESULT ColorFill(

IDirect3DSurface9 *pSurface,
CONST RECT *pRect,
D3DCOLOR color

);

This usage causes the destination surface to be filled with the color red:

d3ddev->ColorFill(surface, NULL, D3DCOLOR_XRGB(255,0,0));

Drawing the Surface (Blitting)

Probably the most interesting function, of course, is the blitter. You can blit

portions or all of one surface onto another surface (including the back buffer or

the screen). The blitter is called StretchRect (strange name, huh?). Here is what it

looks like:

HRESULT StretchRect(

IDirect3DSurface9 *pSourceSurface,
CONST RECT *pSourceRect,
IDirect3DSurface9 *pDestSurface,
CONST RECT *pDestRect,
D3DTEXTUREFILTERTYPE Filter

);

Well, didn’t I tell you that bitmaps were easier to deal with in Direct3D than they

are with the Windows GDI? I wasn’t kidding. This sweet little function only has

five parameters, and it is really easy to use. Let me give you an example:

d3ddev->StretchRect(surface, NULL, backbuffer, NULL, D3DTEXF_NONE);

Surfaces and Bitmaps 103

This is the easiest way to call the function, assuming that the two surfaces are the

same size. If the source surface is smaller than the destination, then it is blitted to

the upper-left corner of the destination surface. Of course, this isn’t very inter-

esting; when this function is really handy is when you specify the rectangles for

the source and destination. The source rectangle can be just a small portion or the

entire surface; the same goes for the destination, but you’ll usually blit the source

somewhere ‘‘on’’ the destination. Here’s an example:

rect.left = 100;
rect.top = 90;
rect.right = 200;
rect.bottom = 180;
d3ddev->StretchRect(surface, NULL, backbuffer, &rect, D3DTEXF_NONE);

This code copies the source surface onto the destination, stretching it into the

rectangle at (100, 90, 200, 180), which is 100� 90 pixels in size. Regardless of

the size of the source surface, as long as it isn’t NULL, it will be ‘‘stuffed’’ into the

dimensions specified by the destination rectangle.

I’ve been using backbufferwithout first explaining where it came from. No, there

is not a global variable called backbuffer that you can freely use! (Although that

would be kind of cool.) But it’s not a big deal—you can create this variable

yourself. It is actually just a pointer to the real back buffer, and you can get this

pointer by calling a special function called GetBackBuffer. Boy, was that a tough

call, huh? Well, you can’t argue with the straightforward approach (which is not

Microsoft’s usual approach).

HRESULT GetBackBuffer(

UINT iSwapChain,
UINT BackBuffer,
D3DBACKBUFFER_TYPE Type,
IDirect3DSurface9 **ppBackBuffer

);

Here is how you might call this function to retrieve a pointer to the back buffer.

First, let’s create the backbuffer variable (that is, pointer) and then have this

fancy GetBackBuffer function ‘‘point it’’ to the real back buffer:

LPDIRECT3DSURFACE9 backbuffer = NULL;
d3ddev->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &backbuffer);

104 Chapter 6 n Bitmaps and Surfaces

I’ll bet you were worried that Direct3D was going to be hard. Well, it all depends

on your point of view. You can either be the pessimist and complain about every

unknown function in the DirectX 9 SDK help file (which I refer to often), or you

can just do what works, use what you learn, and get started writing a game.

Granted, you have yet to draw a polygon, but we’ll be there soon enough.

The Create_Surface Example

Let’s turn this into a sample program so that you can see it all come together

nicely. I have written a program called Create_Surface that demonstrates the

functions ColorFill, StretchRect, and GetBackBuffer, and, more importantly,

shows how to use surfaces! You can see sample output from the program in

Figure 6.4. In case you’re wondering why there’s just one rectangle in the figure:

it’s because when the program is running, there is only one rectangle on the

screen at a time, though it’s running so fast there appear to be many on the screen

at once.

Go ahead and create a new project called Create_Surface and add a new file to the

project called winmain.cpp. Now, as before, go into the Project menu, click on

Settings, click on the Linker/Input item, and add d3d9.lib to the Additional

Dependencies field.

Ready? Okay, let’s do it; here’s the code for the program. I’ve highlighted

important lines of code in bold so you can identify them if you’re just modifying

the Direct3D_Fullscreen from the last chapter (from which this program was

originally based).

No t e

You can load this project off the CD-ROM or just modify a program from the last chapter and
make changes to it, as much of the Windows code remains unchanged.

Surfaces and Bitmaps 105

Figure 6.4
The Create_Surface program copies random rectangles from an offscreen surface to the screen.

// Beginning Game Programming, Second Edition
// Chapter 6
// Create_Surface program

//header files to include
#include <d3d9.h>
#include <time.h>

//application title
#define APPTITLE "Create_Surface"

//macros to read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code)((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

//screen resolution
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

//forward declarations
LRESULT WINAPI WinProc(HWND,UINT,WPARAM,LPARAM);
ATOM MyRegisterClass(HINSTANCE);
int Game_Init(HWND);
void Game_Run(HWND);
void Game_End(HWND);

//Direct3D objects
LPDIRECT3D9 d3d = NULL;
LPDIRECT3DDEVICE9 d3ddev = NULL;

LPDIRECT3DSURFACE9 backbuffer = NULL;
LPDIRECT3DSURFACE9 surface = NULL;

//window event callback function
LRESULT WINAPI WinProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

switch(msg)
{

case WM_DESTROY:
Game_End(hWnd);
PostQuitMessage(0);
return 0;

}

106 Chapter 6 n Bitmaps and Surfaces

return DefWindowProc(hWnd, msg, wParam, lParam);
}

//helper function to set up the window properties
ATOM MyRegisterClass(HINSTANCE hInstance)
{

//create the window class structure
WNDCLASSEX wc;
wc.cbSize = sizeof(WNDCLASSEX);

//fill the struct with info
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WinProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = APPTITLE;
wc.hIconSm = NULL;

//set up the window with the class info
return RegisterClassEx(&wc);

}

//entry point for a Windows program
int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
// declare variables
MSG msg;

// register the class
MyRegisterClass(hInstance);

// initialize application
HWND hWnd;

Surfaces and Bitmaps 107

//create a new window
hWnd = CreateWindow(

APPTITLE, //window class
APPTITLE, //title bar
WS_EX_TOPMOST | WS_VISIBLE | WS_POPUP, //window style
CW_USEDEFAULT, //x position of window
CW_USEDEFAULT, //y position of window
SCREEN_WIDTH, //width of the window
SCREEN_HEIGHT, //height of the window
NULL, //parent window
NULL, //menu
hInstance, //application instance
NULL); //window parameters

//was there an error creating the window?
if (!hWnd)

return FALSE;

//display the window
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

//initialize the game
if (!Game_Init(hWnd))

return 0;

// main message loop
int done = 0;
while (!done)
{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

//look for quit message
if (msg.message == WM_QUIT)

done = 1;

//decode and pass messages on to WndProc
TranslateMessage(&msg);

DispatchMessage(&msg);
}
else

//process game loop (else prevents running after window is closed)
Game_Run(hWnd);

}

108 Chapter 6 n Bitmaps and Surfaces

return msg.wParam;
}

int Game_Init(HWND hwnd)
{

HRESULT result;

//initialize Direct3D
d3d = Direct3DCreate9(D3D_SDK_VERSION);
if (d3d == NULL)
{

MessageBox(hwnd, "Error initializing Direct3D", "Error", MB_OK);
return 0;

}

//set Direct3D presentation parameters
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));

d3dpp.Windowed = FALSE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_X8R8G8B8;
d3dpp.BackBufferCount = 1;
d3dpp.BackBufferWidth = SCREEN_WIDTH;
d3dpp.BackBufferHeight = SCREEN_HEIGHT;
d3dpp.hDeviceWindow = hwnd;

//create Direct3D device
d3d->CreateDevice(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
hwnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&d3ddev);

if (d3ddev == NULL)
{

MessageBox(hwnd, "Error creating Direct3D device", "Error", MB_OK);
return 0;

}

Surfaces and Bitmaps 109

//set random number seed
srand(time(NULL));

//clear the backbuffer to black
d3ddev->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0);

//create pointer to the back buffer
d3ddev->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &backbuffer);

//create surface
result = d3ddev->CreateOffscreenPlainSurface(

100, //width of the surface
100, //height of the surface
D3DFMT_X8R8G8B8, //surface format
D3DPOOL_DEFAULT, //memory pool to use
&surface, //pointer to the surface
NULL); //reserved (always NULL)

if (!result)
return 1;

//return okay
return 1;

}

void Game_Run(HWND hwnd)
{

RECT rect;
int r,g,b;

//make sure the Direct3D device is valid
if (d3ddev == NULL)

return;

//start rendering
if (d3ddev->BeginScene())
{

//fill the surface with random color
r = rand() % 255;
g = rand() % 255;
b = rand() % 255;
d3ddev->ColorFill(surface, NULL, D3DCOLOR_XRGB(r,g,b));

110 Chapter 6 n Bitmaps and Surfaces

//copy the surface to the backbuffer
rect.left = rand() % SCREEN_WIDTH/2;
rect.right = rect.left + rand() % SCREEN_WIDTH/2;
rect.top = rand() % SCREEN_HEIGHT;
rect.bottom = rect.top + rand() % SCREEN_HEIGHT/2;
d3ddev->StretchRect(surface, NULL, backbuffer, &rect, D3DTEXF_NONE);

//stop rendering
d3ddev->EndScene();

}

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

//check for escape key (to exit program)
if (KEY_DOWN(VK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);
}

void Game_End(HWND hwnd)
{

//free the surface
surface->Release();

//release the Direct3D device
if (d3ddev != NULL)

d3ddev->Release();

//release the Direct3D object
if (d3d != NULL)

d3d->Release();
}

No t e

Isn’t it astonishing how little this program changed from the last one? For this reason, I will not
repeat all the Windows code any longer from this point forward, but will simply include the
necessary code to demonstrate the topic at hand. I will leave it to you to open an existing project
and modify it to suit. I recommend the Direct3D_Fullscreen program, which is an excellent
example that is suitable as a basis for all future programs. In case you were wondering, this code
will become the game foundation that you’ll assemble later on, and all the repeated code will be
moved into a reusable source code file. Then you’ll be able to spend all your time just writing
DirectX code rather than dealing with the Windows code. But we aren’t quite there yet. . ..

Surfaces and Bitmaps 111

Loading Bitmaps from Disk

The next step is to load a bitmap file from disk into a surface and then draw the

bitmap on the screen (via the back buffer, of course). Unfortunately, Direct3D

does not have any function for loading a bitmap file, so you’ll have to write your

own bitmap loader.

<Indeterminate pause>. Just kidding!

Actually, what I was thinking at this very moment was Balki Bartokamous from

the TV show Perfect Strangers, and his famous quote: ‘‘Don’t be reedeeculose!’’

Writing your own bitmap loader, for a program running on the Windows O/S:

yes, that is ridiculous.

However, Direct3D really doesn’t know how to load a bitmap. Fortunately, there

is a helper library called D3DX (which stands for Direct3D extensions) that

provides many helpful functions, including one to load a bitmap into a surface.

The only stipulation is that you must add the #include <d3dx.h> include state-

ment to your program, and you must also add d3dx9.lib to the project settings.

No big whoop.

No t e

Why is it that whenever a Microsoft project manager or marketing manager can’t think of a good
name for a new product, they just call it ‘‘X’’ something? The whole ‘‘X’’ thing was trendy in the
’90s, but it’s really retro at this point . . . i.e. Xbox. . . we get the joke, DirectX box. Now that’s just
hilarious.

The function we’re interested in is called D3DXLoadSurfaceFromFile, which has

this syntax:

HRESULT D3DXLoadSurfaceFromFile(

LPDIRECT3DSURFACE9 pDestSurface,
CONST PALETTEENTRY* pDestPalette,
CONST RECT* pDestRect,
LPCTSTR pSrcFile,
CONST RECT* pSrcRect,
DWORD Filter,
D3DCOLOR ColorKey,
D3DXIMAGE_INFO* pSrcInfo

);

112 Chapter 6 n Bitmaps and Surfaces

Okay, now for the good part. Not only can this great function load a standard

Windows bitmap file, it can also load a bunch more formats! Table 6.1 has the

list.

As usual, many of these parameters will be NULL, so it’s not as difficult as it

appears (although when I see any function with more than six parameters, my

eyes tend to glaze over . . .).

The Load_Bitmap Program

Let’s write a short program to demonstrate how to load a bitmap file into a

surface and draw it on the screen. First of all, you don’t need to type in all that

code again; you can just make the noted changes to the Create_Surface program,

so I’ll just list the code that’s necessary to make the changes. Second, I need to

show you how to configure the project for D3DX. Open the Project Settings

dialog, click the Link tab, and type both d3d9.lib and d3dx9.lib into the Addi-

tional Dependencies field, as shown in Figure 6.5.

The first thing you need to do is add the #include <d3dx9.h> to the code as

shown:

//header files to include
#include <d3d9.h>
#include <d3dx9.h>
#include <time.h>

//application title
#define APPTITLE "Load_Bitmap"

Surfaces and Bitmaps 113

Table 6.1 Graphics File Formats

Extension Format

.bmp Windows Bitmap (standard)

.dds DirectDraw Surface (DirectX 7)

.dib Windows Device Independent Bitmap

.jpg Joint Photographic Experts Group (JPEG)

.png Portable Network Graphics

.tga Truevision Targa

Now scroll on down to the Game_Init function and make the changes noted in

bold (deleting any lines of code that no longer belong from the previous project).

Most of the code remains unchanged.

int Game_Init(HWND hwnd)
{

HRESULT result;

//initialize Direct3D
d3d = Direct3DCreate9(D3D_SDK_VERSION);
if (d3d = = NULL)
{

MessageBox(hwnd, "Error initializing Direct3D", "Error", MB_OK);
return 0;

}

//set Direct3D presentation parameters
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));

114 Chapter 6 n Bitmaps and Surfaces

Figure 6.5
Adding support for the D3DX library to the project

d3dpp.Windowed = FALSE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_X8R8G8B8;
d3dpp.BackBufferCount = 1;
d3dpp.BackBufferWidth = SCREEN_WIDTH;
d3dpp.BackBufferHeight = SCREEN_HEIGHT;
d3dpp.hDeviceWindow = hwnd;

//create Direct3D device
d3d->CreateDevice(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
hwnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&d3ddev);

if (d3ddev = = NULL)
{

MessageBox(hwnd, "Error creating Direct3D device", "Error", MB_OK);
return 0;

}

//set random number seed
srand(time(NULL));

//clear the backbuffer to black
d3ddev->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0);

//create pointer to the back buffer
d3ddev->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &backbuffer);

//create surface
result = d3ddev->CreateOffscreenPlainSurface(

640, //width of the surface
480, //height of the surface
D3DFMT_X8R8G8B8, //surface format
D3DPOOL_DEFAULT, //memory pool to use
&surface, //pointer to the surface
NULL); //reserved (always NULL)

if (result != D3D_OK)
return 1;

Surfaces and Bitmaps 115

//load surface from file
result = D3DXLoadSurfaceFromFile(

surface, //destination surface
NULL, //destination palette
NULL, //destination rectangle
"legotron.bmp", //source filename
NULL, //source rectangle
D3DX_DEFAULT, //controls how image is filtered
0, //for transparency (0 for none)
NULL); //source image info (usually NULL)

//make sure file was loaded okay
if (result != D3D_OK)

return 1;

//draw surface to the backbuffer
d3ddev->StretchRect(surface, NULL, backbuffer, NULL, D3DTEXF_NONE);

//return okay
return 1;

}

There are a few changes that need to be made to Game_Run, mainly involving the

removal of some code because no screen updates will take place after the image

has been drawn.

void Game_Run(HWND hwnd)
{

//make sure the Direct3D device is valid
if (d3ddev = = NULL)

return;

//start rendering
if (d3ddev->BeginScene())
{

//create pointer to the back buffer
d3ddev->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &backbuffer);

//draw surface to the backbuffer
d3ddev->StretchRect(surface, NULL, backbuffer, NULL, D3DTEXF_NONE);

//stop rendering
d3ddev->EndScene();

}

116 Chapter 6 n Bitmaps and Surfaces

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

//check for escape key (to exit program)
if (KEY_DOWN(VK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);
}

The complete source listing and project for the program are included on the CD-

ROM in \sources\chapter06\load_bitmap. When you run the program, you

should see the bitmap shown in Figure 6.6 fill the screen.

What You Have Learned

What You Have Learned 117

Figure 6.6
The Load_Bitmap program loads a bitmap image into a Direct3D surface and then blits it to the screen.

In this chapter you learned how to create and manipulate surfaces. Here are the

key points:

n You learned how to create a surface.

n You were able to fill the surface with random colors.

n You found out how to load a bitmap image from disk into a surface, with

support for many graphics file formats.

n You learned how to draw whole and partial surfaces onto the screen.

Review Questions

Here are some review questions to dash your self-image and shatter your

motivation.

1. What is the name of the primary Direct3D object?

2. What is the Direct3D device called?

3. What is the name of the Direct3D surface object?

4. What function can you use to draw images to the screen?

5. What is the term that describes copying images to a surface?

118 Chapter 6 n Bitmaps and Surfaces

On Your Own

These exercises will help to reinforce the material you have learned today. It may

not stick, but it’s worth a shot!

Exercise 1. The Load_Bitmap program loads a bitmap file and displays it on the

screen. Use what you have learned about StretchRect to draw only a portion of

the bitmap image to the screen.

Exercise 2. You have been recruited by the Star League to defend the frontiers

against the Zurg. Using the knowledge you have learned in this chapter, write a

simple game to demonstrate your worthiness to continue reading this book.

On Your Own 119

This page intentionally left blank

Drawing
Animated Sprites

This chapter will teach you how to create and use sprites, which are suitable for

creating 2D games, in the Direct3D environment. Sprites are small bitmaps

(usually transparent) that are displayed on the screen and represent the objects in

the game, such as a spaceship or a turtle-stomping plumber. All 2D games use

sprites, as well as solid bitmaps that are called ‘‘tiles,’’ which are used to fill in the

background scene of a typical 2D game.

Here is what you will learn in this chapter:

n How to create a sprite and load a bitmap into a sprite surface.

n How to control the animation of a sprite.

n How to move a sprite on the screen.

121

chapter 7

Drawing Animated Sprites
There are two ways to draw a sprite with Direct3D. Both methods require that

you keep track of the sprite’s position, size, speed, and other properties on your

own, so the logistics are not relevant. The simpler of the two methods is to load a

sprite image into a D3D surface (which you learned about in the last chapter)

and then draw the sprite using StretchRect. The more difficult—but more

powerful—method is to use a special object called D3DXSprite to handle sprites

in Direct3D. D3DXSprite uses textures rather than surfaces to hold the sprite

image, so using it requires a slightly different approach than what you learned in

the last chapter. However, loading a bitmap image into a texture is no more

difficult than loading an image into a surface. I will cover the simple method of

drawing sprites in this chapter, and then go over D3DXSprite in Chapter 8.

The Anim_Sprite Project

In the last chapter, I hinted about creating a game framework. The purpose of a

framework is to make it easier to get started on each new game project; with

a framework, you don’t have to re-create an entire DirectX 9 project from

scratch. The framework should have source code files with helper functions that

assist with initializing Direct3D, DirectInput, DirectSound, and so on, along with

functions for loading bitmaps into surfaces and textures, among other things. In

this chapter, you will get started working on that framework, as you now have

enough information to put it all together. Another reason to create a framework

is that the single code listings are getting quite long, and most of it is repeated

code.

While creating this new project that demonstrates sprite animation, you will

again learn by repetition and will also encounter some new functions. I will

explain how it all works after you have created the project, so that you’ll have

some exposure to the code before learning about the theory.

Configuring the Project

Let’s start working on this framework by putting the code with which you are

now intimately familiar into more logical, organized source code files that will

work together to make it possible to write DirectX 9 games. First of all, fire up

Visual C++. Create a new project by opening the File menu and selecting New.

The new project is called Anim_Sprite and is a standard Win32 Project with an

empty project workspace, as usual.

122 Chapter 7 n Drawing Animated Sprites

Next, add a new source code file to the project called winmain.cpp. Figure 7.1

shows the project at this stage; it looks like all the previous projects you have

worked on thus far.

I’ll go over the steps for adding the DirectX libraries to the project again: First go

into the Project menu and select Properties to bring up the Project Properties

dialog, shown in Figure 7.2.

Add the Direct3D libraries to the list of library files in the linker settings page.

Click the Link tab and add the two entries d3d9.lib and d3dx9.lib, as shown in

Figure 7.3.

That’s all you need to do to officially add Direct3D support to your program. In

the next few chapters, as I take you on a tour of DirectInput and DirectSound

(with DirectMusic), you’ll learn how to add support for these libraries as well,

Drawing Animated Sprites 123

Figure 7.1
The new Anim_Sprite project.

and when the time comes, we’ll also write new source code files for these DirectX

components that will be added to the framework.

Source Code Files

As you have already added the winmain.cpp file to the project, let’s start there.

Just note that you’ll be adding several more source code files and header files to

the project shortly. The source for the winmain.cpp file this time will include only

the Windows-specific code and nothing else. There will not be any DirectX or

game loops here because I’m isolating the Windows, DirectX, and game code.

I think you will love the result—it gets the clutter out of your game’s source file.

It’s hard enough to design and program a game—with the several hundred

variables that you must keep track of (in a typical small- to medium-sized game)

in your head—without having to deal with all the logistical code as well.

Now then, here is the code for winmain.cpp. Note that it isn’t exactly the same as

the code you’ve seen in previous chapters because function calls are now being

made to functions you haven’t written yet (but we’ll get to them soon!).

124 Chapter 7 n Drawing Animated Sprites

Figure 7.2
The Project Properties dialog.

winmain.cpp

// Beginning Game Programming, Second Edition

// Chapter 7
// winmain.cpp - Windows framework source code file

#include <d3d9.h>
#include <d3dx9.h>
#include <time.h>
#include <stdio.h>
#include "dxgraphics.h"
#include "game.h"

//window event callback function
LRESULT WINAPI WinProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

switch(msg)
{

case WM_DESTROY:
//release the Direct3D device

Drawing Animated Sprites 125

Figure 7.3
Adding the Direct3D libraries to the project.

if (d3ddev != NULL)
d3ddev->Release();

//release the Direct3D object
if (d3d != NULL)

d3d->Release();

//call the "front-end" shutdown function
Game_End(hWnd);

//tell Windows to kill this program
PostQuitMessage(0);
return 0;

}
return DefWindowProc(hWnd, msg, wParam, lParam);

}

//helper function to set up the window properties
ATOM MyRegisterClass(HINSTANCE hInstance)
{

//create the window class structure
WNDCLASSEX wc;
wc.cbSize = sizeof(WNDCLASSEX);

//fill the struct with info
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC)WinProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = APPTITLE;
wc.hIconSm = NULL;

//set up the window with the class info
return RegisterClassEx(&wc);

}

//entry point for a Windows program
int WINAPI WinMain(HINSTANCE hInstance,

126 Chapter 7 n Drawing Animated Sprites

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
MSG msg;
HWND hWnd;

// register the class
MyRegisterClass(hInstance);

//set up the screen in windowed or fullscreen mode?
DWORD style;
if (FULLSCREEN)

style = WS_EX_TOPMOST | WS_VISIBLE | WS_POPUP;
else

style = WS_OVERLAPPED;

//create a new window
hWnd = CreateWindow(

APPTITLE, //window class
APPTITLE, //title bar
style, //window style
CW_USEDEFAULT, //x position of window
CW_USEDEFAULT, //y position of window
SCREEN_WIDTH, //width of the window
SCREEN_HEIGHT, //height of the window
NULL, //parent window
NULL, //menu
hInstance, //application instance
NULL); //window parameters

//was there an error creating the window?
if (!hWnd)

return FALSE;

//display the window
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

if (!Init_Direct3D(hWnd, SCREEN_WIDTH, SCREEN_HEIGHT, FULLSCREEN))
return 0;

//initialize the game

Drawing Animated Sprites 127

if (!Game_Init(hWnd))
{

MessageBox(hWnd, "Error initializing the game", "Error", MB_OK);
return 0;

}

// main message loop
int done = 0;
while (!done)
{

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

//look for quit message
if (msg.message == WM_QUIT)

done = 1;

//decode and pass messages on to WndProc
TranslateMessage(&msg);
DispatchMessage(&msg);
}
else

//process game loop (prevents running after window is closed)
Game_Run(hWnd);

}
return msg.wParam;

}

dxgraphics.h

Now open the Project menu and select Add New Item to bring up the Add

New Item dialog. Select Header File (.h) from the list and type dxgraphics.h

in the file name field, as shown in Figure 7.4.

Here is the code listing for dxgraphics.h. After you have added this file to the

project, the workspace will look like that in Figure 7.5.

#ifndef _DXGRAPHICS_H
#define _DXGRAPHICS_H

//function prototypes
int Init_Direct3D(HWND, int, int, int);
LPDIRECT3DSURFACE9 LoadSurface(char *, D3DCOLOR);

//variable declarations
extern LPDIRECT3D9 d3d;

128 Chapter 7 n Drawing Animated Sprites

extern LPDIRECT3DDEVICE9 d3ddev;
extern LPDIRECT3DSURFACE9 backbuffer;

#endif

dxgraphics.cpp

In like manner, add another source code file, called dxgraphics.cpp, to the

project. This will contain the actual functions defined in the header file above.

Here is the source code for the dxgraphics.cpp file:

// Beginning Game Programming, 2nd Edition
// Chapter 7
// dxgraphics.cpp - Direct3D framework source code file

#include <d3d9.h>
#include <d3dx9.h>
#include "dxgraphics.h"

//variable declarations
LPDIRECT3D9 d3d = NULL;
LPDIRECT3DDEVICE9 d3ddev = NULL;
LPDIRECT3DSURFACE9 backbuffer = NULL;

Drawing Animated Sprites 129

Figure 7.4
Adding a new header file to the project.

int Init_Direct3D(HWND hwnd, int width, int height, int fullscreen)
{

//initialize Direct3D
d3d = Direct3DCreate9(D3D_SDK_VERSION);
if (d3d == NULL)
{

MessageBox(hwnd, "Error initializing Direct3D", "Error", MB_OK);
return 0;

}

//set Direct3D presentation parameters
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));

d3dpp.Windowed = (!fullscreen);

130 Chapter 7 n Drawing Animated Sprites

Figure 7.5
The Anim_Sprite project now includes dxgraphics.h.

d3dpp.SwapEffect = D3DSWAPEFFECT_COPY;
d3dpp.BackBufferFormat = D3DFMT_X8R8G8B8;
d3dpp.BackBufferCount = 1;
d3dpp.BackBufferWidth = width;
d3dpp.BackBufferHeight = height;
d3dpp.hDeviceWindow = hwnd;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;

//create Direct3D device
d3d->CreateDevice(

D3DADAPTER_DEFAULT,
D3DDEVTYPE_HAL,
hwnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp,
&d3ddev);

if (d3ddev == NULL)
{

MessageBox(hwnd, "Error creating Direct3D device", "Error", MB_OK);
return 0;

}

//clear the backbuffer to black
d3ddev->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0);

//create pointer to the back buffer
d3ddev->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &backbuffer);

return 1;
}

LPDIRECT3DSURFACE9 LoadSurface(char *filename, D3DCOLOR transcolor)
{

LPDIRECT3DSURFACE9 image = NULL;
D3DXIMAGE_INFO info;
HRESULT result;

//get width and height from bitmap file
result = D3DXGetImageInfoFromFile(filename, &info);
if (result != D3D_OK)

return NULL;

Drawing Animated Sprites 131

//create surface
result = d3ddev->CreateOffscreenPlainSurface(

info.Width, //width of the surface
info.Height, //height of the surface
D3DFMT_X8R8G8B8, //surface format
D3DPOOL_DEFAULT, //memory pool to use
&image, //pointer to the surface
NULL); //reserved (always NULL)

if (result != D3D_OK)
return NULL;

//load surface from file into newly created surface
result = D3DXLoadSurfaceFromFile(

image, //destination surface
NULL, //destination palette
NULL, //destination rectangle
filename, //source filename
NULL, //source rectangle
D3DX_DEFAULT, //controls how image is filtered
transcolor, //for transparency (0 for none)
NULL); //source image info (usually NULL)

//make sure file was loaded okay
if (result != D3D_OK)

return NULL;

return image;
}

Well that’s all there is to the Windows and DirectX code thus far. As you can see,

there’s still a long way to go, and we’ll fill in more details over the next few

chapters. For now, let’s focus on the specific code for the Anim_Sprite program.

game.h

Add another Header File (.h) item to the project and name it game.h. Here is

the source code listing for game.h.

#ifndef _GAME_H
#define _GAME_H

#include <d3d9.h>
#include <time.h>
#include <stdio.h>

132 Chapter 7 n Drawing Animated Sprites

#include <stdlib.h>
#include "dxgraphics.h"

//application title
#define APPTITLE "Anim_Sprite"

//screen setup
#define FULLSCREEN 1
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

//macros to read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code)((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

//function prototypes
int Game_Init(HWND);
void Game_Run(HWND);
void Game_End(HWND);

//sprite structure
typedef struct {

int x,y;
int width,height;
int movex,movey;
int curframe,lastframe;
int animdelay,animcount;

} SPRITE;

#endif

game.cpp

Alrighty, then—we’re finally at the code that is the whole point of all this work,

the game.cpp file. Add a new C++ File (.cpp) to the project using the Project

menu and name the file game.cpp. Here is the code to type into this file.

#include "game.h"

LPDIRECT3DSURFACE9 kitty_image[7];
SPRITE kitty;

//timing variable
long start = GetTickCount();

Drawing Animated Sprites 133

//initializes the game
int Game_Init(HWND hwnd)
{

char s[20];
int n;

//set random number seed
srand(time(NULL));

//load the sprite animation
for (n=0; n<6; n++)
{

sprintf(s,"cat%d.bmp",n+1);
kitty_image[n] = LoadSurface(s, D3DCOLOR_XRGB(255,0,255));
if (kitty_image[n] == NULL)

return 0;
}

//initialize the sprite’s properties
kitty.x = 100;
kitty.y = 150;
kitty.width = 96;
kitty.height = 96;
kitty.curframe = 0;
kitty.lastframe = 5;
kitty.animdelay = 2;
kitty.animcount = 0;
kitty.movex = 8;
kitty.movey = 0;

//return okay
return 1;

}

//the main game loop
void Game_Run(HWND hwnd)
{

RECT rect;

//make sure the Direct3D device is valid
if (d3ddev == NULL)

return;

134 Chapter 7 n Drawing Animated Sprites

//after short delay, ready for next frame?
//this keeps the game running at a steady frame rate
if (GetTickCount() - start >= 30)
{

//reset timing
start = GetTickCount();

//move the sprite
kitty.x + = kitty.movex;
kitty.y + = kitty.movey;

//"warp" the sprite at screen edges
if (kitty.x > SCREEN_WIDTH - kitty.width)

kitty.x = 0;
if (kitty.x < 0)

kitty.x = SCREEN_WIDTH - kitty.width;

//has animation delay reached threshold?
if (++kitty.animcount > kitty.animdelay)
{

//reset counter
kitty.animcount = 0;

//animate the sprite
if (++kitty.curframe > kitty.lastframe)

kitty.curframe = 0;
}

}

//start rendering
if (d3ddev->BeginScene())
{

//erase the entire background
d3ddev->ColorFill(backbuffer, NULL, D3DCOLOR_XRGB(0,0,0));

//set the sprite’s rect for drawing
rect.left = kitty.x;
rect.top = kitty.y;
rect.right = kitty.x + kitty.width;
rect.bottom = kitty.y + kitty.height;

Drawing Animated Sprites 135

//draw the sprite
d3ddev->StretchRect(kitty_image[kitty.curframe], NULL,

backbuffer, &rect, D3DTEXF_NONE);

//stop rendering

d3ddev->EndScene();
}

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

//check for escape key (to exit program)
if (KEY_DOWN(VK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);
}

//frees memory and cleans up before the game ends
void Game_End(HWND hwnd)
{

int n;

//free the surface
for (n=0; n<6; nþ þ)

kitty_image[n]->Release();
}

The end result of adding all these new source files to the project is shown in

Figure 7.6.

The Sprite Artwork

Obviously, before you can run the program you’ll need the source artwork that I

have used. When you run the program, it should look like Figure 7.7.

This animated cat has six frames of high-quality animation and looks quite good

running across the screen. The artwork is part of a free sprite library called

SpriteLib, created by Ari Feldman, a talented artist who runs a Web site at http://

www.flyingyogi.com. Ari released SpriteLib to help budding game programmers

get started without having to worry too much about content while learning.

There are literally hundreds of sprites (both static and animated) and back-

ground tiles included in SpriteLib, and Ari adds to it now and then. Visit his Web

site to download the complete SpriteLib, because only a few examples are

included with this book.

136 Chapter 7 n Drawing Animated Sprites

http://www.flyingyogi.com
http://www.flyingyogi.com

Drawing Animated Sprites 137

Figure 7.7
The Anim_Sprite program draws an animated cat on the screen.

Figure 7.6
The completed Anim_Sprite project has five source code files.

T i p

The home of Ari Feldman’s SpriteLib is at http://www.flyingyogi.com.

The six frames of the animated cat sprite are shown in Figure 7.8. You can copy

the files off the CD-ROM to the project folder on your hard drive in order to

run this program.

These six catxx.bmp files are each 96� 96 pixels in size, and have a pink back-

ground with an RGB value of (255,0,255). If you refer back to the Game_Init

function given previously, you will notice that the call to LoadSurface included a

color value for the second parameter:

//load the sprite animation
for (n=0; n<6; n++)
{

sprintf(s,"cat%d.bmp",n+1);
kitty_image[n] = LoadSurface(s, D3DCOLOR_XRGB(255,0,255));
if (kitty_image[n] == NULL)

return 0;
}

The color value represented by D3DCOLOR_XRGB(255,0,255) is that pink color. But

why does the LoadSurface function need to worry about the background color?

After all, this program doesn’t even use transparency (check the next chapter for

that). You specify the transparent color so the StretchRect function will render

the transparent color as black (note that StretchRect does not handle true

transparency). This is convenient because then you can use any color you want

while editing the sprite to offset it from the background, and it will be rendered in

black when loaded into the game.

Do you want to see how the cat will look when drawn over a background other

than black? Okay, here are a few small modifications you can make to the

program to add a background. I have included a background.bmp file in the

folder for this project already, so it’s ready to go if you copy it off the CD-ROM.

138 Chapter 7 n Drawing Animated Sprites

Figure 7.8
The animated cat sprite has six frames.

http://www.flyingyogi.com

First, add the following line up near the top of the game.cpp with the other

variable declarations:

LPDIRECT3DSURFACE9 back;

Next, in Game_Init, add the line of code to load the background bitmap into this

new surface:

back = LoadSurface("background.bmp", D3DCOLOR_XRGB(255,0,255));

Next, down in Game_Run, comment out the ColorFill line and replace it with a

call to StretchRect, as shown here:

//d3ddev->ColorFill(backbuffer, NULL, D3DCOLOR_XRGB(0,0,0));
d3ddev->StretchRect(back, NULL, backbuffer, NULL, D3DTEXF_NONE);

Finally, add a line to Game_End to free the memory used by the background

surface:

back->Release();

Now go ahead and run the program again, this time with a background showing;

the screen should look something like Figure 7.9.Why all this discussion if the cat

isn’t even being drawn with transparency? Because we’re just dealing with raw

surfaces, translating the background color of your sprite into black is the best we

Drawing Animated Sprites 139

Figure 7.9
The cat is being animated over a colorful background. Note the lack of transparency.

can do at this point. But stay tuned, as I’ll cover true sprite transparency (and a

lot of other interesting features) in the next chapter.

Naturally, you can use black for the background ‘‘transparent’’ color of your

sprites in the first place, but the point here is that most people don’t use black—

they use an alternate color that is easier to see when editing the source image. To

see what the surface would look like without manipulating the transparent color,

you can modify the call to D3DXLoadSurfaceFromFile in dxgraphics.cpp (which

you may recall from Chapter 6).

Note the second-to-last parameter, transcolor. If you change this to 0, then

recompile and run the program, Direct3D will ignore the so-called ‘‘transparent’’

color of the image and just draw it natively. See Figure 7.10.

result = D3DXLoadSurfaceFromFile(
image, //destination surface
NULL, //destination palette
NULL, //destination rectangle
filename, //source filename
NULL, //source rectangle
D3DX_DEFAULT, //controls how image is filtered
transcolor, //for transparency (0 for none)
NULL); //source image info (usually NULL)

140 Chapter 7 n Drawing Animated Sprites

Figure 7.10
The cat is being drawn without regard to the ‘‘transparent’’ color.

Concept Art

Most sprites are rendered from 3Dmodels today. It is rare to come across a game

that features all hand-drawn artwork. Why? Because a 3D model can be rotated,

textured, and manipulated easily after it has been created, while a 2D drawing is

permanent. It is a simple matter to apply battle damage textures to a 3D model

and then render out another frame for the game to use. I don’t have room to

discuss the complete process of creating concept art and turning it into game

characters in this meager chapter. But I can give you a few examples.

Figure 7.11 is a concept drawing that I commissioned for an RPG. This was an

early concept of a character that would have been a female archer. The drawing

was made by Jessica K. Fuerst.

Pixel artists or 3Dmodelers use the concept drawings to construct the 2D images

and 3D models for the game. Concept art is very important because it helps you

to think through your designs and really brings the characters to life. If you are

not a talented artist or can’t afford to pay an artist to draw concept art for your

game, then at least try to come up with your own pencil-and-paper drawings—

the process of drawing is almost as important as the end result.

Drawing Animated Sprites 141

Figure 7.11
Concept drawing of a female archer character for an RPG. Image courtesy of Jessica K. Fuerst.

Figure 7.12 is a painting of a female fantasy character, drawn by Eden Celeste,

that inspired some ideas for another RPG character. Sometimes browsing online

art galleries is a good way to derive inspiration for your game. Many artists are

willing to work for hire or sell some of their existing work to you for use in a

game.

Animated Sprites Explained

Now that you’ve had some exposure to the source code for a program that draws

an animated sprite on the screen, I’ll go over the key aspects of this program to

help fill in any gaps in your understanding of it.

First of all, by presenting the practical application before the theory, I am

assuming that you know a little about games already and have the background to

understand what it is that makes up a game—at least in principle. A sprite is a

small bitmapped image that is drawn on the screen and represents a character or

object in a game. Sprites can be used for inanimate objects like trees and rocks, or

animated game characters like a hero/heroine in a role-playing game. One thing

is certain in the modern world of game development: Sprites are reserved

exclusively for the 2D realm. You will not find a sprite in a 3D game, unless that

sprite is being drawn ‘‘over’’ the 3D rendered game scene, as with a heads-up

display or bitmapped font. For instance, in a multi-player game with a chat

feature, the text messages appearing on the screen from other players are usually

142 Chapter 7 n Drawing Animated Sprites

Figure 7.12
Concept drawing of another fantasy character for an RPG. Image courtesy of Eden Celeste.

drawn as individual letters, each treated as a sprite. Figure 7.13 shows an example

of a bitmapped font stored in a bitmap file.

A sprite is typically stored in a bitmap file as a series of tiles, each tile representing

a single frame of that sprite’s animation sequence. An animation might look less

like movement than a change of direction, as in the case of an airplane or

spaceship in a shoot-’em-up game. Figure 7.14 shows a tank sprite that faces in a

single direction but includes animated treads for movement.

Now what if you wanted that tank to face other directions as well as animate? As

you can imagine, the number of frames can increase exponentially as you add a

new frame of animation for each direction of travel. Figure 7.15 shows a non-

animated tank that has been rotated in 32 directions for a very smooth turning

rate. Unfortunately, when you add the moving tank treads, those 32 frames

suddenly become 32 * 8 = 256 frames! It would be difficult to program a tank with

somany frames, and how would you store them in the bitmap file? Linearly, most

likely, in rows and columns. A better solution is usually to reduce the number of

frames until you get the game finished, and then perhaps (if you are so inclined)

add more precision and detail to the animation.

MechCommander (MicroProse, FASA Studios) was one of the most highly ani-

mated video games ever made, and were it not for the terrible AI in this game and

unrealistic difficulty level, I would have considered it among my all-time favorite

games. The fascinating thing aboutMechCommander is that it is a highly detailed

Drawing Animated Sprites 143

Figure 7.13
A bitmapped font used to print text on the screen in a game.

Figure 7.14
A tank sprite with animated treads, courtesy of Ari Feldman.

2D sprite-based game. Every single mech in the game is a 2D sprite stored in a

series of bitmap files. The traditional 2D nature of this game becomes amazing

when you consider that the game featured about 100,000 frames! Imagine the

amount of time it took to first model the mechs with a 3D modeler (like 3ds

max), and then render out 100,000 snapshots of various angles and positions,

and then resize and add the final touches to each sprite.

No t e

In August of 2006, Microsoft released the source code to MechCommander 2, along with all of
the game’s resources (artwork, etc). You can download the complete code for the game (which is
powered by DirectX) from here: http://www.microsoft.com/downloads/details.aspx?familyid=
6D790CDE-C3E5-46BE-B3A5-729581269A9C&displaylang=en. I found this link by Googling for
‘‘mechcommander 2 source code’’.

Another common type of sprite is the platformer game sprite, shown in

Figure 7.16. Programming a platform game is more difficult than programming a

shoot-’em-up, but the results are usually worth the extra work.

The SPRITE Struct

The key to this program is the SPRITE struct defined in game.h:

//sprite structure
typedef struct {

int x,y;

144 Chapter 7 n Drawing Animated Sprites

Figure 7.15
A 32-frame rotation of the tank sprite (not animated), courtesy of Ari Feldman.

http://www.microsoft.com/downloads/details.aspx?familyid=6D790CDE-C3E5-46BE-B3A5-729581269A9C&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=6D790CDE-C3E5-46BE-B3A5-729581269A9C&displaylang=en

int width,height;
int movex,movey;
int curframe,lastframe;
int animdelay,animcount;

} SPRITE;

The obvious members of this struct are x, y, width, and height. What may not be

so obvious is movex and movey. These member variables are used to update the x

and y position of the sprite during each frame update. The curframe and last-

frame variables help to keep track of the current frame of animation for the sprite.

curframe is updated during each iteration through the game loop, and when it

has reached lastframe it is looped back to zero. The animdelay and animcount

variables work with the previous two in order to adjust the timing of a particular

sprite. If the animation frame is updated every single time through the game’s

main loop, then the animation will run too fast. You don’t want to slow down the

frame rate of the game just to keep animation at a reasonable rate, so the

alternative is to delay updating the frame by a set value.

The ‘‘kitty’’ sprite is defined like this:

LPDIRECT3DSURFACE9 kitty_image[7];
SPRITE kitty;

The sprite is initialized in the Game_Init function and set to the following values:

//initialize the sprite’s properties
kitty.x = 100;
kitty.y = 150;
kitty.width = 96;
kitty.height = 96;
kitty.curframe = 0;
kitty.lastframe = 5;

Drawing Animated Sprites 145

Figure 7.16
An animated platform game character, courtesy of Ari Feldman.

kitty.animdelay = 2;
kitty.animcount = 0;
kitty.movex = 8;
kitty.movey = 0;

The Game Loop

The Game_Run function is the game loop, so always remember that it must process

a single screen update and that is all! Don’t ever put a while loop here or the game

will probably just lock up (because control will not return to WinMain).

There are two parts to the Game_Run function. The first part should move and

animate the sprite(s) in the game. The second part should draw the sprite(s) to

the screen. The reason that a screen update is divided into two parts (one for

logic, the other for screen refresh) is because you don’t want to take too much

processing time in between the BeginScene and EndScene calls, so keep the code

there to the minimum required to update the graphics and leave other processing

tasks for either before or after the screen update.

The key lines of code that you should pay attention to are those that move the

sprite, keep the sprite on the screen, and animate the sprite:

//move the sprite
kitty.x += kitty.movex;
kitty.y += kitty.movey;

//"warp" the sprite at screen edges
if (kitty.x > SCREEN_WIDTH - kitty.width)

kitty.x = 0;
if (kitty.x < 0)

kitty.x = SCREEN_WIDTH - kitty.width;

//has animation delay reached threshold?
if (+ +kitty.animcount > kitty.animdelay)
{

//reset counter
kitty.animcount = 0;

//animate the sprite
if (+ +kitty.curframe > kitty.lastframe)

kitty.curframe = 0;
}

146 Chapter 7 n Drawing Animated Sprites

Do you see how convenient the sprite movement and animation code is when

you utilize the SPRITE struct? This code is generic enough to be put into a separate

function that can be passed a specific SPRITE variable to update multiple sprites in

a game (something I’ll get into in the next chapter).

What You Have Learned

In this chapter you have forged ahead in learning how to program 2D surfaces

and sprites in Direct3D! Take heart if you are not entirely confident of all this

new information, though, because learning it is no simple feat! If you have any

doubts, I recommend reading this chapter again before forging ahead to the next

one, which deals with advanced sprite programming. Don’t balk at all the 2D

graphics discussions here; I encourage you to keep learning because this is the

foundation for the 3D chapters to come! Here are the key points:

n You learned how to create a 2D surface that is rendered by Direct3D.

n You created a sprite and learned how to associate it with a surface.

n You learned about timing and how to slow down the game.

n You learned about animation and animated a running cat on the screen.

n You learned a thing or two about transparency.

What You Have Learned 147

Review Questions

These questions will challenge you to study this chapter further, if necessary.

1. What is the benefit of having concept drawings for a game?

2. What is the name of the surface object in Direct3D?

3. What function should you use to draw a surface on the screen?

4. What D3DX helper function do you use to load a bitmap image into a

surface?

5. Where can you find a good collection of free sprites on the Web?

148 Chapter 7 n Drawing Animated Sprites

On Your Own

The following exercises will help you to think outside the box and push the limits

of your understanding of this material.

Exercise 1. The Anim_Sprite program draws an animated cat on the screen.

Modify the bitmaps and the program so that it draws a different animated sprite.

Exercise 2. Modify the Anim_Sprite program so that the cat runs twice as fast,

without adjusting the frame rate limiter (start and GetTickCount). Modify the

program again so the sprite moves half as fast as it did originally.

On Your Own 149

This page intentionally left blank

Advanced Sprite
Programming

This chapter takes the subject of sprites to the next level. By utilizing textures

rather than surfaces it is possible to draw a sprite transparently; other special

effects are also possible. This chapter will provide you with a truly robust and

reusable set of sprite routines that will be useful in future projects. This chapter is

rounded out with a discussion of collision detection, which makes it possible to

detect when two sprites have overlapped or collided with each other.

151

chapter 8

Here is what you will learn in this chapter:

n How to use the D3DXSprite object.

n How to load a texture.

n How to draw a transparent sprite.

n How to test for sprite collisions.

Drawing Transparent Sprites
The D3DXSprite object is really a wonderful surprise for any programmer planning

to write a 2D game using Direct3D. One of the benefits of doing so is that you have

a full 3D renderer at your disposal while using 2D functions that are every bit as

fast as previous implementations (such as the old DirectDraw). By treating a sprite

as a texture and rendering the sprite as a rectangle (comprised of two triangles, as is

the case with all 3D rectangles), you have the ability to transform the sprite!

By transform I mean you can move the sprite with full 3D hardware acceleration.

You can draw the sprite transparently by specifying an alpha color in the source

bitmap that represents transparent pixels. Black (0,0,0) is a common color to use

for transparency, but it is not a very good color to use. Why? Because it’s hard to

tell which pixels are transparent and which are simply dark in color. A better

color to use is pink (255,0,255) because it is seldom used in game graphics and

shows up brightly in the source image. You can instantly spot the transparent

pixels in such an image.

Obviously, the D3DXSprite method is the way to go, but I’m going to cover the

simpler method as well because it may be helpful in some circumstances to use

non-transparent images—for instance, to draw a tiled background.

Creating a Sprite Handler Object

The D3DXSprite object is just a sprite handler that includes a function to draw sprites

from a texture (with various transformations). Here is how you might declare it:

LPD3DXSPRITE sprite_handler;

You can then initialize the object by calling the D3DXCreateSprite function. What

this does, basically, is attach the sprite handler to your primary Direct3D object

and device so that it knows how to draw sprites on the back buffer.

152 Chapter 8 n Advanced Sprite Programming

HRESULT WINAPI D3DXCreateSprite(

LPDIRECT3DDEVICE9 pDevice,
LPD3DXSPRITE *ppSprite

);

And here is an example of how you might invoke this function:

result = D3DXCreateSprite(d3ddev, &sprite_handler);

Starting the Sprite Handler

I’ll go over loading a sprite image shortly, but for the time being, let me show you

how to use D3DXSprite. When you have called BeginScene from your primary

Direct3D device, you can start drawing sprites. The first thing youmust do is lock

the surface so that the sprites can be drawn. You do this by calling the

D3DXSprite.Begin function, which has this format:

HRESULT Begin(
DWORD Flags

);

The flags parameter is required and will usually be D3DXSPRITE_ALPHABLEND,

which draws sprites with transparency support. Here is an example:

sprite_handler->Begin(D3DXSPRITE_ALPHABLEND);

Drawing a Sprite

Drawing a sprite is a little more complicated than simply blitting the image using

a source and destination rectangle, as was the case with surfaces in the last

chapter. However, D3DXSprite just uses a single function, Draw, for all of the

transformation options, so once you understand how this function works you

can perform transparency, scaling, and rotation by just altering the parameters.

Here is the declaration for the Draw function:

HRESULT Draw(

LPDIRECT3DTEXTURE9 pTexture,
CONST RECT *pSrcRect,
CONST D3DXVECTOR3 *pCenter,
CONST D3DXVECTOR3 *pPosition,
D3DCOLOR Color

);

Drawing Transparent Sprites 153

The first parameter is the most important one, because it specifies the texture to

use for the source image of the sprite. The second parameter is also important,

because you can use it to grab ‘‘tiles’’ out of the source image and thus store all of

your sprite’s animation frames in a single bitmap file (more on that later in this

chapter). The third parameter specifies the center point fromwhich rotation takes

place. The fourth parameter specifies the position of the sprite, and this is typically

where you set the x and y value. The last parameter specifies the color alterations

to be made on the sprite image as it is drawn (and doesn’t affect transparency).

The D3DXVECTOR3 is a new data type released with DirectX 9.0b, and includes three

member variables: x, y, and z.

typedef struct D3DXVECTOR3 {
FLOAT x;
FLOAT y;
FLOAT z;

} D3DXVECTOR3;

The first two, x and y, are the only ones you’ll need to move the sprite on the 2D

surface of the screen. I will show you an example of how to use Draw in a sample

program shortly.

Stopping the Sprite Handler

After you have finished drawing sprites, but before you have called EndScene, you

must call D3DXSprite.End to unlock the surface for other processes to use. Here is

the syntax:

HRESULT End(VOID);

Usage is fairly obvious because the function is so short:

sprite_handler->End();

Loading the Sprite Image

The first thing that you should be aware of is that D3DXSprite uses a texture rather

than a surface to store the sprite image. So, while the LPDIRECT3DSURFACE9

object was used in the last chapter for sprites, in this chapter you will use the

LPDIRECT3DTEXTURE9 object instead. If I were creating a tile-based scrolling arcade

game like Super Mario World or R-Type or Mars Matrix, I would use a surface to

154 Chapter 8 n Advanced Sprite Programming

draw (and scroll) the background, but I would use a texture for the foreground

sprites that represent the game characters/spaceships/enemies, as the case may

be. There really is no performance benefit to using a surface over a texture,

because your expensive video card (with an advanced 3D chip) will render your

sprites on the screen using a hardware texture-mapping system that is light-

years faster than anything you could do with software. Gone are the days when a

2D sprite blitter was written in assembly language! Today, we let Direct3D draw

our sprites.

The first thing you must do to create a D3DXSprite is to create a texture object

into which the sprite’s bitmap image is loaded:

LPDIRECT3DTEXTURE9 texture = NULL;

The next thing you need to do is grab the resolution out of the bitmap file

(assuming you have the sprite bitmap ready to go) using the D3DXGetImage-

InfoFromFile function:

D3DXIMAGE_INFO info;
result = D3DXGetImageInfoFromFile("image.bmp", &info);

If the file exists, then you will have the Width and Height, which are useful for the

next step. Next, you load the sprite’s image from a bitmap file directly into a

texture in a single step using the D3DXCreateTextureFromFileEx function:

HRESULT WINAPI D3DXCreateTextureFromFileEx(

LPDIRECT3DDEVICE9 pDevice,
LPCTSTR pSrcFile,
UINT Width,
UINT Height,
UINT MipLevels,
DWORD Usage,
D3DFORMAT Format,
D3DPOOL Pool,
DWORD Filter,
DWORD MipFilter,
D3DCOLOR ColorKey,
D3DXIMAGE_INFO *pSrcInfo,
PALETTEENTRY *pPalette,
LPDIRECT3DTEXTURE9 *ppTexture

);

Drawing Transparent Sprites 155

Don’t worry too much about all these parameters, as most of them are filled in

with default values and NULLs. The only thing left to do, then, is to write a little

function that puts all of this information together and returns a texture for you.

Here is that function, which I have called LoadTexture (creative, aren’t I?):

LPDIRECT3DTEXTURE9 LoadTexture(char *filename, D3DCOLOR transcolor)
{

//the texture pointer
LPDIRECT3DTEXTURE9 texture = NULL;

//the struct for reading bitmap file info
D3DXIMAGE_INFO info;

//standard Windows return value
HRESULT result;

//get width and height from bitmap file
result = D3DXGetImageInfoFromFile(filename, &info);
if (result != D3D_OK)

return NULL;

//create the new texture by loading a bitmap image file
D3DXCreateTextureFromFileEx(

d3ddev, //Direct3D device object
filename, //bitmap filename
info.Width, //bitmap image width
info.Height, //bitmap image height
1, //mip-map levels (1 for no chain)
D3DPOOL_DEFAULT, //the type of surface (standard)
D3DFMT_UNKNOWN, //surface format (default)
D3DPOOL_DEFAULT, //memory class for the texture
D3DX_DEFAULT, //image filter
D3DX_DEFAULT, //mip filter
transcolor, //color key for transparency
&info, //bitmap file info (from loaded file)
NULL, //color palette
&texture); //destination texture

//make sure the bitmap texture was loaded correctly
if (result != D3D_OK)

return NULL;

return texture;
}

156 Chapter 8 n Advanced Sprite Programming

As texturing will be discussed more in Part III, I will skip over a detailed

explanation of this function for now. Make use of it to load sprites at this point

and we’ll go over it again later. Remember to always ignore things that you don’t

immediately need and move on toward getting what you do need accomplished.

Only return to look over the advanced options when you have the time, will-

ingness, and ability to do so.

Drawing Transparent Sprites

Now that you understand how D3DXSprite works with Direct3D textures to draw

a transparent sprite (at least, that’s the theory!), let’s write a short program to

show how to pull it all together. You can load the project off the CD-ROM if you

wish, or you can modify the Anim_Sprite project from the previous chapter. I’ll

assume you’re going to create a new project from scratch. After all, that’s the best

way to learn. Figure 8.1 shows the Trans_Sprite program.

Creating the Trans_Sprite Project

First of all, fire up Visual C++ and create a new Win32 Project, and give it the

name Trans_Sprite. Next, open the Project menu and select Properties to bring

Drawing Transparent Sprites 157

Figure 8.1
The Trans_Sprite program demonstrates how to draw transparent sprites with Direct3D.

up the Project Properties dialog. Click the Linker/Input item and add d3d9.lib

and d3dx9.lib to the Additional Dependencies field, as shown in Figure 8.2.

Next, you need to copy the following files from the Anim_Sprite folder from

Chapter 7 into your new project folder:

n winmain.cpp

n dxgraphics.h

n dxgraphics.cpp

You can add game.h and game.cpp if you wish, but I recommend just creating

them from scratch because most of the code in these two key files will change

from one project to the next. To add them, open the Project menu and select Add

New Item to add new source code files. Select Header File (.h) for the game.h file,

and select Source File (.cpp) for the game.cpp file.

game.h

Now that you have re-created a project that supports the game framework

(which currently just includes the Windows and Direct3D code, but in time will

include other DirectX components), it’s time to write the ‘‘real’’ code for this

program. Here is the code for game.h:

158 Chapter 8 n Advanced Sprite Programming

Figure 8.2
Adding support for Direct3D to the project

#ifndef _GAME_H
#define _GAME_H

#include <d3d9.h>
#include <d3dx9.h>
#include <d3dx9math.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include "dxgraphics.h"

//application title
#define APPTITLE "Trans_Sprite"

//screen setup
#define FULLSCREEN 0 //0 = windowed, 1 = fullscreen
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

//macros to read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code)((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

//function prototypes
int Game_Init(HWND);
void Game_Run(HWND);
void Game_End(HWND);

//sprite structure
typedef struct {

int x,y;
int width,height;
int movex,movey;
int curframe,lastframe;
int animdelay,animcount;

} SPRITE;

#endif

game.cpp

Here is the main code for the Trans_Sprite program, which is entered into the

game.cpp source code file:

Drawing Transparent Sprites 159

#include "game.h"

LPDIRECT3DTEXTURE9 kitty_image[7];
SPRITE kitty;
LPDIRECT3DSURFACE9 back;
LPD3DXSPRITE sprite_handler;

HRESULT result;

//timing variable
long start = GetTickCount();

//initializes the game
int Game_Init(HWND hwnd)
{

char s[20];
int n;

//set random number seed
srand(time(NULL));

//create sprite handler object
result = D3DXCreateSprite(d3ddev, &sprite_handler);
if (result != D3D_OK)

return 0;

//load the sprite animation
for (n=0; n<6; n++)
{

//set up the filename
sprintf(s,"cat%d.bmp",n+1);

//load texture with "pink" as the transparent color
kitty_image[n] = LoadTexture(s, D3DCOLOR_XRGB(255,0,255));
if (kitty_image[n] == NULL)
return 0;

}

//load the background image
back = LoadSurface("background.bmp", NULL);

//initialize the sprite’s properties
kitty.x = 100;

160 Chapter 8 n Advanced Sprite Programming

kitty.y = 150;
kitty.width = 96;
kitty.height = 96;
kitty.curframe = 0;
kitty.lastframe = 5;
kitty.animdelay = 2;
kitty.animcount = 0;
kitty.movex = 8;
kitty.movey = 0;

//return okay
return 1;

}

//the main game loop
void Game_Run(HWND hwnd)
{

//make sure the Direct3D device is valid
if (d3ddev = = NULL)

return;

//after short delay, ready for next frame?
//this keeps the game running at a steady frame rate
if (GetTickCount() - start >= 30)
{

//reset timing
start = GetTickCount();

//move the sprite
kitty.x + = kitty.movex;
kitty.y + = kitty.movey;

//"warp" the sprite at screen edges
if (kitty.x > SCREEN_WIDTH - kitty.width)

kitty.x = 0;
if (kitty.x < 0)

kitty.x = SCREEN_WIDTH - kitty.width;

//has animation delay reached threshold?
if (++ kitty.animcount > kitty.animdelay)

{
//reset counter
kitty.animcount = 0;

Drawing Transparent Sprites 161

//animate the sprite
if (+ + kitty.curframe > kitty.lastframe)

kitty.curframe = 0;
}

}

//start rendering
if (d3ddev->BeginScene())
{

//erase the entire background
d3ddev->StretchRect(back, NULL, backbuffer, NULL, D3DTEXF_NONE);

//start sprite handler
sprite_handler->Begin(D3DXSPRITE_ALPHABLEND);

//create vector to update sprite position
D3DXVECTOR3 position((float)kitty.x, (float)kitty.y, 0);

//draw the sprite
sprite_handler->Draw(

kitty_image[kitty.curframe],
NULL,
NULL,
&position,
D3DCOLOR_XRGB(255,255,255));

//stop drawing
sprite_handler->End();

//stop rendering
d3ddev->EndScene();

}

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

//check for escape key (to exit program)
if (KEY_DOWN(VK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);

}

//frees memory and cleans up before the game ends

162 Chapter 8 n Advanced Sprite Programming

void Game_End(HWND hwnd)
{

int n;

for (n=0; n<6; nþ þ)
if (kitty_image[n] != NULL)

kitty_image[n]->Release();

if (back != NULL)
back->Release();

if (sprite_handler != NULL)
sprite_handler->Release();

}

Modifying dxgraphics.h

Now we need to add support for loading of textures to the framework file called

dxgraphics.h. This file is already in your project, so you can simply open it and

add the new line of code that will make the LoadTexture function visible

throughout the project.

Add the following line of code to dxgraphics.h in the function prototypes section:

LPDIRECT3DTEXTURE9 LoadTexture(char *, D3DCOLOR);

After you have added the line, the prototypes section should look like this:

//function prototypes
int Init_Direct3D(HWND, int, int, int);
LPDIRECT3DSURFACE9 LoadSurface(char *, D3DCOLOR);
LPDIRECT3DTEXTURE9 LoadTexture(char *, D3DCOLOR);

Modifying dxgraphics.cpp

Now that you have defined the new LoadTexture function so the rest of the

program can use it, you’ll need to open the dxgraphics.cpp file and add the actual

function to this file.

LPDIRECT3DTEXTURE9 LoadTexture(char *filename, D3DCOLOR transcolor)
{

//the texture pointer
LPDIRECT3DTEXTURE9 texture = NULL;

Drawing Transparent Sprites 163

//the struct for reading bitmap file info
D3DXIMAGE_INFO info;

//standard Windows return value
HRESULT result;

//get width and height from bitmap file
result = D3DXGetImageInfoFromFile(filename, &info);
if (result != D3D_OK)

return NULL;

//create the new texture by loading a bitmap image file
D3DXCreateTextureFromFileEx(

d3ddev, //Direct3D device object
filename, //bitmap filename
info.Width, //bitmap image width
info.Height, //bitmap image height
1, //mip-map levels (1 for no chain)
D3DPOOL_DEFAULT, //the type of surface (standard)
D3DFMT_UNKNOWN, //surface format (default)
D3DPOOL_DEFAULT, //memory class for the texture
D3DX_DEFAULT, //image filter
D3DX_DEFAULT, //mip filter
transcolor, //color key for transparency
&info, //bitmap file info (from loaded file)
NULL, //color palette
&texture); //destination texture

//make sure the bitmap texture was loaded correctly
if (result != D3D_OK)

return NULL;

return texture;
}

Drawing an Animated Sprite
Up to this point, you have been learning about creating, manipulating, and

drawing sprites using just a single bitmap image for each frame of animation

(at least, for those sprites that are animated). This is a good way to learn about

sprite programming, but it is not very efficient. For one thing, your game will

have probably hundreds of bitmap files to load, which takes a long time.

164 Chapter 8 n Advanced Sprite Programming

Amuch better way to handle sprites is by storing the sprite images in a single tiled

bitmap image. I hinted about this in the last chapter, when I showed you some

tiled images of a tank sprite and a running caveman character, shown in Figure 8.3.

Working with Sprite Sheets

The trick to capturing a tile is understanding that the source image is made up of

rows and columns of tiles—and in the context of a sprite, we call this tiled image

a sprite sheet. What you want to do is figure out the upper left corner of where the

tile is located in the bitmap image and then copy from that source a rectangle

based on the width and height of the sprite.

First, you need to figure out the left, or x, position of the tile. You do that by using

the modulus operator, %. Modulus returns the remainder of a division. So, for

instance, if the current frame is 20, and there are only five columns in the bitmap,

then modulus will give you the horizontal starting position of the tile (when you

multiply it by the width of the sprite). Calculating the top edge of the tile is then

simply a matter of dividing the current frame by the number of columns, and

multiplying the result by the sprite height. If there are five columns across, then

tile 20 will be in row 4, column 5. Here is the pseudo-code:

left = (current frame % number of columns) * sprite width
top = (current frame / number of columns) * sprite height

The actual code used in the Tiled_Sprite program looks like this (note the use of

the sprite width and height in the calculation for the left and top as well as for

then calculating the right and bottom edges of the source rectangle):

left = (curframe % columns) * width;
top = (curframe / columns) * height;
right = left + width;
bottom = top + height;

Drawing an Animated Sprite 165

Figure 8.3
The caveman character has eight running frames and four jumping frames of animation.

The Tiled_Sprite Program

Here is the source code for the Tiled_Sprite program, which demonstrates how

to animate a sprite based on a single bitmap image. The output from the program

is shown in Figure 8.4. You will want to type this code into the game.cpp file,

assuming you are using the same type of framework that we’ve been building up

to this point (with the dxgraphics.h, dxgraphics.cpp, and other files in our small

game library).

#include "game.h"

LPDIRECT3DTEXTURE9 caveman_image;
SPRITE caveman;
LPDIRECT3DSURFACE9 back;
LPD3DXSPRITE sprite_handler;

HRESULT result;

//timing variable
long start = GetTickCount();

166 Chapter 8 n Advanced Sprite Programming

Figure 8.4
The Tiled_Sprite program demonstrates how to use a tiled bitmap image for sprite animation.

//initializes the game
int Game_Init(HWND hwnd)
{

//set random number seed
srand(time(NULL));

//create sprite handler object
result = D3DXCreateSprite(d3ddev, &sprite_handler);
if (result != D3D_OK)

return 0;

//load texture with "pink" as the transparent color
caveman_image = LoadTexture("caveman.bmp", D3DCOLOR_XRGB(255,0,255));
if (caveman_image = = NULL)

return 0;

//load the background image
back = LoadSurface("background.bmp", NULL);

//initialize the sprite’s properties
caveman.x = 100;
caveman.y = 180;
caveman.width = 50;
caveman.height = 64;
caveman.curframe = 1;
caveman.lastframe = 11;
caveman.animdelay = 3;
caveman.animcount = 0;
caveman.movex = 5;
caveman.movey = 0;

//return okay
return 1;

}

//the main game loop
void Game_Run(HWND hwnd)
{

//make sure the Direct3D device is valid
if (d3ddev = = NULL)

return;

//after short delay, ready for next frame?

Drawing an Animated Sprite 167

//this keeps the game running at a steady frame rate
if (GetTickCount() - start >= 30)
{

//reset timing
start = GetTickCount();

//move the sprite
caveman.x þ= caveman.movex;
caveman.y þ= caveman.movey;

//"warp" the sprite at screen edges
if (caveman.x > SCREEN_WIDTH - caveman.width)

caveman.x = 0;
if (caveman.x < 0)

caveman.x = SCREEN_WIDTH - caveman.width;

//has animation delay reached threshold?
if (++ caveman.animcount > caveman.animdelay)
{

//reset counter
caveman.animcount = 0;

//animate the sprite
if (++ caveman.curframe > caveman.lastframe)

caveman.curframe = 1;
}

}

//start rendering
if (d3ddev->BeginScene())
{

//erase the entire background
d3ddev->StretchRect(back, NULL, backbuffer, NULL, D3DTEXF_NONE);

//start sprite handler
sprite_handler->Begin(D3DXSPRITE_ALPHABLEND);

//create vector to update sprite position
D3DXVECTOR3 position((float)caveman.x, (float)caveman.y, 0);

//configure the rect for the source tile
RECT srcRect;
int columns = 8;

168 Chapter 8 n Advanced Sprite Programming

srcRect.left = (caveman.curframe % columns) * caveman.width;
srcRect.top = (caveman.curframe / columns) * caveman.height;
srcRect.right = srcRect.left + caveman.width;
srcRect.bottom = srcRect.top + caveman.height;

//draw the sprite
sprite_handler->Draw(

caveman_image,
&srcRect,
NULL,
&position,
D3DCOLOR_XRGB(255,255,255));

//stop drawing
sprite_handler->End();

//stop rendering
d3ddev->EndScene();

}

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

//check for escape key (to exit program)
if (KEY_DOWN(VK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);

}

//frees memory and cleans up before the game ends
void Game_End(HWND hwnd)
{

if (caveman_image != NULL)
caveman_image->Release();

if (back != NULL)
back->Release();

if (sprite_handler != NULL)
sprite_handler->Release();

}

Drawing an Animated Sprite 169

Collision Detection
So far you have learned how to draw sprites onto the screen, but it takes more to

make a game than simply the ability to draw. A real game has sprites that interact,

where bullets and rockets hit enemy ships and cause them to explode, and sprites

that must navigate a maze without going through walls, and sprites that can run

and jump over crates and land on top of enemy characters (such as how Mario

jumps onto turtles in Super Mario World to knock them out).

All of these situations require the ability to detect when two sprites have collided,

or touched each other. Sprite collision really opens up the world of game pro-

gramming andmakes it possible for you to build a real game! The key to collision

testing is to identify where two sprites are on the screen, and then compare their

bounding boxes (or rectangles). That is why this type of collision testing is called

bounding box collision detection.

Testing for Collisions

If you know the location of both sprites, and you know their widths and heights,

then it should be possible to create a temporary rectangle variable (using

Windows’ RECT structure) containing the bounds of each sprite. Here is an

example using the SPRITE struct that you have been using so far (which contains a

sprite’s x, y, width, and height properties).

RECT rect1;
rect1.left = sprite1.x + 1;
rect1.top = sprite1.y + 1;
rect1.right = sprite1.x + sprite1.width-1;
rect1.bottom = sprite1.y + sprite1.height-1;

Notice that the rectangle’s left and top properties have been set to the sprite’s x

and y values. Likewise, the rectangle’s bottom-right corner has been set using the

width and height of the sprite. Thus, a RECT has been populated with the sprite’s

physical location on the screen.

To actually put this code to use, we’ll call on a Windows API function. The

function is extremely helpful, because it performs the collision test for us with a

single call! The function is called IntersectRect. It accepts two RECT variables and

simply returns 0 for false, or 1 for true (which indicates that the sprites are

intersecting—or colliding). This function also returns the union of the two

sprites—the portions that overlapped—although we aren’t interested in this

information (a simple yes or no will suffice!).

170 Chapter 8 n Advanced Sprite Programming

Let’s take a look at a function that creates two RECT variables and then calls on

IntersectRect to see if they have collided. This function is called Collision, and

is very reusable.

int Collision(SPRITE sprite1, SPRITE sprite2)
{

RECT rect1;
rect1.left = sprite1.x + 1;
rect1.top = sprite1.y + 1;
rect1.right = sprite1.x + sprite1.width-1;
rect1.bottom = sprite1.y + sprite1.height-1;

RECT rect2;
rect2.left = sprite2.x + 1;
rect2.top = sprite2.y + 1;
rect2.right = sprite2.x + sprite2.width-1;
rect2.bottom = sprite2.y + sprite2.height-1;

RECT dest;
return IntersectRect(&dest, &rect1, &rect2);

}

The CollisionTest Program

The CollisionTest program source code is shown on the following page. This

program is based on the previous projects in this chapter, utilizing the following

reusable source files:

n winmain.cpp

n dxgraphics.cpp

n dxgraphics.h

n game.h

This program is really neat, as it loads up a ball sprite and draws 50 balls on the

screen at a time, performing collision testing among all of them. Whenever two

balls collide, the program causes them to rebound off of each other realistically. A

whole screen full of them can get quite crazy as a result! Figure 8.5 shows the output

of this program.The following code shouldbe typed into the game.cpp source code

file of our framework/template project that you’ve been building. Youmay create a

whole new project or simply replace the code in game.cpp from an earlier project.

Collision Detection 171

// Beginning Game Programming, Second Edition
// Chapter 8
// CollisionTest program

#include "game.h"

//number of balls on the screen
#define NUMBALLS 50

typedef enum _DIRS
{

NONE = -1,
ABOVE = 0,
LEFT = 1,
BELOW = 2,
RIGHT = 3

} DIRS;

//misc variables
LPDIRECT3DTEXTURE9 ball_image;
SPRITE balls[NUMBALLS];
LPDIRECT3DSURFACE9 back;

172 Chapter 8 n Advanced Sprite Programming

Figure 8.5
The CollisionTest program demonstrates collision detection.

LPD3DXSPRITE sprite_handler;
HRESULT result;

//timing variable
long start = GetTickCount();

int Collision(SPRITE sprite1, SPRITE sprite2)
{

RECT rect1;
rect1.left = sprite1.x + 1;
rect1.top = sprite1.y + 1;
rect1.right = sprite1.x + sprite1.width-1;
rect1.bottom = sprite1.y + sprite1.height-1;

RECT rect2;
rect2.left = sprite2.x + 1;
rect2.top = sprite2.y + 1;
rect2.right = sprite2.x + sprite2.width-1;
rect2.bottom = sprite2.y + sprite2.height-1;

RECT dest;
return IntersectRect(&dest, &rect1, &rect2);

}

DIRS Orientation(SPRITE sprite1, SPRITE defendent)
{

RECT r;
r.left = sprite1.x + 1;
r.top = sprite1.y9 + 1;
r.right = sprite1.x + sprite1.width-1;
r.bottom = sprite1.y + sprite1.height-1;

int centerx = defendent.x + defendent.width/2;
int centery = defendent.y + defendent.height/2;

if (centery < r.top)
return ABOVE;

if (centery > r.bottom)
return BELOW;

if (centerx < r.left)
return LEFT;

Collision Detection 173

if (centerx > r.right)
return RIGHT;

return NONE;
}

void MoveBalls()
{

int n,m;
DIRS dir;

for (n=0; n<NUMBALLS; nþ þ)
{

balls[n].x + = balls[n].movex;
balls[n].y + = balls[n].movey;

//bounce the ball at screen edges
if (balls[n].x > SCREEN_WIDTH - balls[n].width)
{

balls[n].x -= balls[n].width;
balls[n].movex *= -1;

}
else if (balls[n].x < 0)
{

balls[n].x þ= balls[n].width;
balls[n].movex *= -1;

}

if (balls[n].y > SCREEN_HEIGHT - balls[n].height)
{

balls[n].y -= balls[n].height;
balls[n].movey *= -1;

}
else if (balls[n].y < 0)
{

balls[n].y + = balls[n].height;
balls[n].movey *= -1;

}

//check for collision with other balls
for (m=0; m<NUMBALLS; m ++)
{

174 Chapter 8 n Advanced Sprite Programming

//ignore current ball (can’t collide with self)
if (n != m)
{

if (Collision(balls[n], balls[m]))
{

//argh! we collided!
dir = Orientation(balls[n], balls[m]);
switch (dir)
{

case ABOVE: //this one is shared below
case BELOW:

balls[n].movey *= -1;
balls[m].movey *= -1;
break;

case LEFT: //this one is shared below
case RIGHT:

balls[n].movex *= -1;
balls[m].movex *= -1;
break;

} //switch
} //collision

} //if
} //for m

} //for n
}

void DrawBalls()
{

int n;
D3DXVECTOR3 position(0,0,0); //ball position vector

//draw the balls
for (n=0; n<NUMBALLS; n ++)
{

position.x = (float)balls[n].x;
position.y = (float)balls[n].y;
sprite_handler->Draw(

ball_image,
NULL,
NULL,
&position,
D3DCOLOR_XRGB(255,255,255));

}
}

Collision Detection 175

//initializes the game
int Game_Init(HWND hwnd)
{

int n;

//set random number seed
srand(time(NULL));

//create sprite handler object
result = D3DXCreateSprite(d3ddev, &sprite_handler);
if (result != D3D_OK)

return 0;

//load the background image
back = LoadSurface("background.bmp", NULL);
if (back == NULL)

return 0;

//load the ball sprite
ball_image = LoadTexture("ball.bmp", D3DCOLOR_XRGB(255,0,255));
if (ball_image == NULL)

return 0;

//set the balls’ properties
for (n=0; n<NUMBALLS; n ++)
{

balls[n].x = rand() % SCREEN_WIDTH;
balls[n].y = rand() % SCREEN_HEIGHT;
balls[n].width = 12;
balls[n].height = 12;
balls[n].movex = 1 + rand() % 6;
balls[n].movey = rand() % 12 - 6;

}

//return okay
return 1;

}

//the main game loop
void Game_Run(HWND hwnd)
{

//make sure the Direct3D device is valid
if (d3ddev == NULL)

return;

176 Chapter 8 n Advanced Sprite Programming

//after short delay, ready for next frame?
//this keeps the game running at a steady frame rate
if (GetTickCount() - start >= 30)
{

//reset timing
start = GetTickCount();

//move the ball sprites
MoveBalls();

}

//start rendering
if (d3ddev->BeginScene())
{

//erase the entire background
d3ddev->StretchRect(back, NULL, backbuffer, NULL, D3DTEXF_NONE);

//start sprite handler
sprite_handler->Begin(D3DXSPRITE_ALPHABLEND);

//draw the sprites
DrawBalls();

//stop drawing
sprite_handler->End();

//stop rendering
d3ddev->EndScene();

}

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

//check for escape key (to exit program)
if (KEY_DOWN(VK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);
}

//frees memory and cleans up before the game ends
void Game_End(HWND hwnd)
{

if (ball_image != NULL)
ball_image->Release();

Collision Detection 177

if (back != NULL)
back->Release();

if (sprite_handler != NULL)
sprite_handler->Release();

}

What You Have Learned

In this chapter, you have learned how to use D3DXSprite to draw transparent

sprites in Direct3D. Here are the key points:

n You learned how to create the D3DXSprite object.

n You learned how to load a texture from a bitmap file.

n You learned how to draw a transparent sprite.

n You learned how to grab sprite animation frames out of a single bitmap.

n You learned how to test for sprite collisions.

178 Chapter 8 n Advanced Sprite Programming

Review Questions

Here are some review questions to see how much you have retained from this

chapter.

1. What is the name of the DirectX object used to handle sprites?

2. What function is used to load a bitmap image into a texture object?

3. What function do you use to create the sprite object?

4. What is the name of the D3DX function that draws a sprite?

5. What is the D3DX texture object called?

Review Questions 179

On Your Own

The following exercises will help to challenge your grasp of the information

presented in this chapter.

Exercise 1. The Trans_Sprite program animates a running cat on the screen.

Modify the program so that it uses a new background of your own design, and

change the animation rate of the cat sprite.

Exercise 2. The Tiled_Sprite program features a running caveman. Modify the

caveman’s movement rate and animation rate so that he runs really fast!

180 Chapter 8 n Advanced Sprite Programming

Jamming with DirectX
Audio

Sound and music are vital parts of any game; they help to really make the game

feel more immersive and can add an enormous amount of emotion to a game.

There is just a completely different reaction to any type of game when it features

dynamic, powerful sound effects and appropriate background music. This

chapter will show you how to use DirectSound to audibly enhance a game and

give it some mood.

181

chapter 9

Here is what you will learn in this chapter:

n How to initialize DirectSound.

n How to load a wave file.

n How to play a static sound with mixing.

n How to play a looping sound with mixing.

Using DirectSound
DirectSound is the DirectX component that handles all sound output for your

game, and features a multi-channel sound mixer. Basically, you just tell

DirectSound to play a sound and it takes care of all the details (including

combining that sound with any currently playing sounds).

The code required to create, initialize, load, and play a wave file using Direct-

Sound is even more involved than the bitmap and sprite code you learned about

in the last several chapters. For this reason, and in the interest of re-inventing the

wheel, I will show you how to use Microsoft’s own wrapper for DirectSound.

Using a wrapper is generally against my own instincts as a programmer, as

I prefer to know everything about the code I’m using, and often prefer to write

my own rather than use someone else’s code. However, there comes a time when,

in the interest of time, you have to give in and use what’s already available. After

all, DirectX itself is a game library written by someone else, and it makes no sense

to adhere to a strict philosophy in game programming when all it does is slow

you down. It’s okay if you are writing mostly C, as I am doing in this book,

because once in a while you may be required to delve a little into C++ in order to

re-use code. In this case, we’ll use the DirectSound Utility classes–but I have

chosen not to go into detail on how they work. You might think of it as going

over an SDK, such as DirectX itself—there is a lot of code that you don’t

understand, but as long as it works, you can work on your game without wor-

rying about it.

The latest releases of the DirectX SDK provide a new version of the DirectSound

Utility library, called DXUTsound. We won’t be using this because it has too

many support files with it. Instead, we’ll use an older version that I hung onto

from a previous version of DirectX 9.0c. The old ‘‘DXUT’’ version of Direct-

Sound is found in a file called dsutil.cpp (and it depends on only dsutil.h and

182 Chapter 9 n Jamming with DirectX Audio

dxutil.h, nothing more). You will need to include these three files in your game

projects in order to use the DirectSound wrapper.

No t e

There is nothing wrong with using a wrapper when time is of the essence or when something is
too complicated for you to write yourself. If you would like to learn absolutely everything about
DirectX Audio, I recommend you acquire a copy of Beginning Game Audio Programming, by
Mason McCuskey (also published by Thomson Course Technology PTR). This book goes over every
detail of the DirectSound interfaces and shows you how to create a more robust and powerful
sound library for your game projects.

No t e

Three files are required for the programs in this chapter to compile: dxutil.h, dsutil.h, and
dsutil.cpp. These files are available in the chapter09\play_sound project folder on the CD-ROM.
When you create any new project that uses sound, just include these three files with your project.
Later, when we create the dxaudio.cpp and dxaudio.h files, you’ll want to include those in any
new project you create as well. In the latest DirectX SDK, Microsoft is now distributing a new
version of these files under the new name of DXUT (which you can find in the DirectX SDK
Documentation for C++ in the Programs menu).

The new DXUT has many file dependencies that I did not want to include for our meager needs
here. So, I am using the DirectSound helper classes from the old version of the DXUT framework
library, as they are self-contained. Everything Microsoft touches becomes hopelessly complicated,
so it’s often easier to work with earlier versions of the code, as in this case.

There are three classes defined in dsutil that we’re interested in here:

Initializing DirectSound

The first thing to do in order to use DirectSound is create an instance of the

CSoundManager class (which creates an ‘‘object’’ of the ‘‘class’’).

CSoundManager *dsound = new CSoundManager();

The next step requires you to call the Initialize function to initialize the

DirectSound manager:

dsound->Initialize(window_handle, DSSCL_PRIORITY);

Using DirectSound 183

CSoundManager The primary DirectSound device.

CSound Used to create DirectSound buffers.

CWaveFile Helps load a wave file into a CSound buffer.

Thefirst parameter is thewindowhandle for your program,while the secondparam-

eter specifies the DirectSound cooperative level, of which there are three choices:

DSSCL_NORMAL. Shares sound device with other programs.

DSSCL_PRIORITY. Gains higher priority over sound device (recommended for

games).

DSSCL_WRITEPRIMARY. Provides access to modify the primary sound buffer.

The most common cooperative level is DSSCL_PRIORITY, which gives your game a

higher priority on the sound device than other programs that may be running.

Creating a Sound Buffer

After you have initialized the DirectSoundmanager (via CSoundManager), you will

then usually load all of the sound effects for your game. You access sound effects

using CSound pointer variables that are declared like this:

CSound *wave;

The CSound object that you create is a wrapper for a secondary sound buffer called

LPDIRECTSOUNDBUFFER8 that, thanks to dsutil, you do not need to program yourself.

Loading a Wave File

The sound mixer created and managed by DirectSound might be thought of as

the primary buffer for sound. Like Direct3D, the primary buffer is where output

occurs. But in the case of DirectSound, the secondary buffers are sound data rather

than bitmap data, and you play a sound by calling Play (which I’ll go over shortly).

Loading a wave file into a DirectSound secondary buffer involves a simple single-

line function call rather than a multi-page code listing to initialize the sound

buffer, open the wave file, read it into memory, and configure all of the param-

eters. The CSoundManager object that you create has the function you need to load

a wave file. It is called Create:

HRESULT Create(
CSound** ppSound,
LPTSTR strWaveFileName,
DWORD dwCreationFlags = 0,
GUID guid3DAlgorithm = GUID_NULL,
DWORD dwNumBuffers = 1

);

184 Chapter 9 n Jamming with DirectX Audio

The first parameter specifies the CSound object that you want to use for the newly

loaded wave sound. The second parameter is the filename. The remaining

parameters can be left at their defaults, meaning you really only need to call this

function with two parameters. Here is an example:

result = dsound->Create(&wave, "snicker.wav");

T i p

Beginning Game Audio Programming explains the wave file format and goes into extensive detail
on how to load a wave file from scratch.

Playing a Sound

You are free to play sounds as often as you want without worrying about the

sound mixing, ending the sound playback, or any other details, because

DirectSound itself handles all of those details for you. Within the CSound class

itself is a function called Play that will play the sound for you. Here is what that

function looks like:

HRESULT Play(
DWORD dwPriority = 0,
DWORD dwFlags = 0,
LONG lVolume = 0,
LONG lFrequency = -1,
LONG lPan = 0

);

The first parameter is the priority, which is an advanced option and should

always be set to zero. The second parameter specifies whether you want the sound

to loop, meaning that it will restart at the beginning and continue playing every

time it reaches the end of the wave data. If you want to play the sound with

looping, use DSBPLAY_LOOPING for this parameter. The last three parameters

specify the volume, frequency, and panning (left to right) of the sound, which

are also usually left at their defaults, but you may experiment with them if you

wish.

Here is an example of how you would usually call this function, first with normal

playback. You can either fill in the parameters or leave them out entirely if you

want to use the defaults.

wave->Play();

Using DirectSound 185

And here is how you would use looping:

wave->Play(0, DSBPLAY_LOOPING);

To stopplaybackof a soundwhile it is playing,use the Stop function.This function is

particularly useful with looping sounds, which will go on forever unless you spe-

cifically stop or reset the sound by playing it again without the looping parameter.

HRESULT Stop();

An example usage of this function couldn’t be much simpler:

wave->Stop();

Testing DirectSound
Let’s write a simple demo to test the DirectSound code you have learned how to

write in this chapter. As DirectSound is an entirely new component, we need to add

it to the so-called ‘‘framework’’ by creating a new header and source code file for the

new code. I’ll show you how to create the project from scratch, add all the necessary

files, and type in the code for the new DirectSound functions you learned about

(but have yet to put into practice). After the basic project is ready to go, I’ll go over

the code for a sample program that bounces a hundred balls on the screen with

looping and static sound effects. The Play_Sound program is shown in Figure 9.1.

186 Chapter 9 n Jamming with DirectX Audio

Figure 9.1
The Play_Sound program demonstrates how to use DirectSound.

Creating the Project

I’ll show you how to create this entire project from scratch. Although you can open

an existing project and modify it, I recommend you follow along and create one

from scratch because doing so is good practice and there are a lot of steps involved.

Fire up Visual C++. Open the File menu and select New to bring up the New dialog.

Make sure the Projects tab is selected. Choose Win32 Application for the project

type, and type Play_Sound for the project name. Click OK to close the dialog and

create the new project. As usual, don’t let Visual C++ add any files for you.

Copying the Reusable Source Files

Next, copy the support files from a previous project into the new folder that was

created for the project you just created. Here are the files you will need:

n winmain.cpp

n dxgraphics.h

n dxgraphics.cpp

n game.h

n game.cpp

The game.h and game.cpp files will be replaced with entirely new code, but it

doesn’t hurt to copy the files to your new project, as that’s easier than creating the

new files from the New dialog.

Copying the DirectSound Utility Files

The next step is somewhat annoying but it is necessary for using the dsutil

support classes, which, as you have learned, greatly simplifies the otherwise very

complex DirectSound library. There are three files that must be copied to your

project folder and added to your project:

n dxutil.h

n dsutil.h

n dsutil.cpp

Inserting the Copied Files into Your Project

After you have copied these files to your new project folder, you can add them to

your project in Visual C++ by opening the Project menu and selecting Add

Existing Item. This will bring up the Add Existing Item dialog shown in Figure 9.2.

Testing DirectSound 187

Following are listed all of the files that should have been copied to your new

project folder that you should select to insert into your project:

n winmain.cpp

n dxgraphics.h

n dxgraphics.cpp

n game.h

n game.cpp

n dsutil.cpp

n dxutil.h

n dsutil.h

188 Chapter 9 n Jamming with DirectX Audio

Figure 9.2
Adding an existing file to the project.

Figure 9.3 shows all of the files selected in the file selection dialog.

You can verify that your project is configured correctly by referring to Figure 9.4,

which shows the Solution Explorer loaded with all of the necessary files.

Adding DirectX Library References

Next, let’s configure the project for the various DirectX libraries that are

required. Open the Project menu and select Properties to bring up the Project

Property Pages dialog. Select the Linker tree menu item on the left, and select the

Linker/Input page, shown in Figure 9.5.

Here are the lib filenames to add to the Additional Dependencies field on the

Project Property Pages dialog:

n d3d9.lib

n d3dx9.lib

n dsound.lib

n dxguid.lib

n dxerr9.lib

n winmm.lib

Testing DirectSound 189

Figure 9.3
Selecting the files to be inserted into the project.

190 Chapter 9 n Jamming with DirectX Audio

Figure 9.5
Adding DirectX library references to the list of library modules in the Project Settings dialog.

Figure 9.4
The framework files have been added to the project.

That’s a long list of lib files for the project, but just think: it will get even longer

when you learn about DirectInput in the next chapter! Actually, we won’t be

adding many more files to the list.

But hang on aminute! Before you can compile this program, there are a fewmore

things that must be done first.

Creating the DirectX Audio Support Files

Your new Play_Sound project is now ready for the DirectSound code. I have put

together the DirectSound helper code we went over earlier in the chapter and

placed it inside two files:

n dxaudio.h

n dxaudio.cpp

The header file will include the definitions for the DirectSound functions you’ll

need to load and play sounds in your game. This just makes it easier to work with

the CSoundManager and CSound classes (which are provided by the DirectSound

Utility library).

Creating dxaudio.h

Open the Project menu and select Add New Item to bring up the Add New Item

dialog. Select Header File (.h) and type dxaudio.h for the filename, as shown in

Figure 9.6. Click OK to add the new file to your project.

Here is the code for the dxaudio.h file:

#ifndef _DXAUDIO_H
#define _DXAUDIO_H 1

#include "dsutil.h"

//primary DirectSound object
extern CSoundManager *dsound;

//function prototypes
int Init_DirectSound(HWND);
CSound *LoadSound(char *);
void PlaySound(CSound *);

Testing DirectSound 191

void LoopSound(CSound *);
void StopSound(CSound *);

#endif

Creating dxaudio.cpp

Open the Project menu again and select Add New Item to bring up the Add New

Item dialog. Select C++ File (.cpp) and type dxaudio.cpp for the filename, as

shown in Figure 9.7. Click OK to add the new file to your project.

Here is the code for the dxaudio.cpp file:

#include "dxaudio.h"

CSoundManager *dsound;

int Init_DirectSound(HWND hwnd)
{

HRESULT result;

//create DirectSound manager object
dsound = new CSoundManager();

192 Chapter 9 n Jamming with DirectX Audio

Figure 9.6
Adding the new dxaudio.h file to the project.

//initialize DirectSound
result = dsound->Initialize(hwnd, DSSCL_PRIORITY);
if (result != DS_OK)

return 0;

//set the primary buffer format
result = dsound->SetPrimaryBufferFormat(2, 22050, 16);
if (result != DS_OK)

return 0;

//return success
return 1;

}

CSound *LoadSound(char *filename)
{

HRESULT result;

//create local reference to wave data
CSound *wave;

//attempt to load the wave file

Testing DirectSound 193

Figure 9.7
Adding the new dxaudio.cpp file to the project.

result = dsound->Create(&wave, filename);
if (result != DS_OK)

return NULL;

//return the wave
return wave;

}

void PlaySound(CSound *sound)
{

sound->Play();
}

void LoopSound(CSound *sound)
{

sound->Play(0, DSBPLAY_LOOPING);
}

void StopSound(CSound *sound)
{

sound->Stop();
}

Tweaking the Framework Code

The next subject is more a matter of personal preference than it is a requirement.

I personally like to stuff as much logistical code away as possible and let the

‘‘framework’’ (I use that word loosely because it is not quite a wrapper and not

quite a game engine, but just a way of organizing the DirectX code) handle it. So,

you can follow this step to add the DirectSound initialization to WinMain or you

can call the Init_DirectSound function from your main initialization routine in

the game, instead. I prefer to add it to WinMain, so here is how to do that.

Adding DirectSound Initialization to winmain.cpp

Open winmain.cpp in your project. Scroll down to the WinMain function until

you find the beginning of the while loop, which looks like this:

// main message loop
int done = 0;
while (!done)

Just above that, you’ll see the Direct3D initialization and game initialization

code. You can insert the DirectSound initialization before or after either of those

two other initialization lines, as long as it comes before the while loop.

194 Chapter 9 n Jamming with DirectX Audio

//initialize DirectSound
if (!Init_DirectSound(hWnd))
{

MessageBox(hWnd, "Error initializing DirectSound", "Error", MB_OK);
return 0;

}

No t e

If you ever get totally, completely, absolutely lost during the tutorial to create this project, feel free
to save yourself the headache and just load the project off the CD-ROM (which you should have
copied to your hard drive already, if you have been working through the examples in each
chapter).

Adding the Game Files

Okay, this has been quite a long process, but if you have followed along and

performed each step along the way, then you should now have a project that is

ready to compile. Unfortunately, the game.h and game.cpp files contain source

code from a previous project that has nothing to do with DirectSound! So,

conveniently, these files are already in your project—you just need to open them

up and replace the code.

game.h

Here is the code for the game.h file. Just delete all of the existing code and replace

it with the code listed here, or make selective replacements if you are relatively

sure you won’t make any mistakes. It’s usually safer to wipe all of the code lines,

but you can leave the conditional compiler statements in place (such as #ifndef. . .).

#ifndef _GAME_H
#define _GAME_H 1

//windows/directx headers
#include <d3d9.h>
#include <d3dx9.h>
#include <dxerr9.h>
#include <dsound.h>
#include <windows.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>

Testing DirectSound 195

//framework-specific headers
#include "dxgraphics.h"
#include "dxaudio.h"

//application title
#define APPTITLE "Play_Sound"

//screen setup
#define FULLSCREEN 0 //0 = windowed, 1 = fullscreen
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

//macros to read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code)((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

//function prototypes
int Game_Init(HWND);
void Game_Run(HWND);
void Game_End(HWND);

//sprite structure
typedef struct {

int x,y;
int width,height;
int movex,movey;
int curframe,lastframe;
int animdelay,animcount;
int scalex, scaley;
int rotation, rotaterate;

} SPRITE;

#endif

game.cpp

You’ll also need to replace the code in game.cpp with the following code listing.

The projects are really completely different, so I don’t expect that you’ll be able to

just selectively replace the code with the listing given here. However, you can give

it a try if you wish. If all else fails, you can copy the completed game.cpp file off

the CD-ROM and insert it into the project, all ready to go.

196 Chapter 9 n Jamming with DirectX Audio

#include "game.h"
//number of balls on the screen
#define NUMBALLS 100

//misc variables
LPDIRECT3DTEXTURE9 ball_image;
SPRITE balls[NUMBALLS];
LPDIRECT3DSURFACE9 back;
LPD3DXSPRITE sprite_handler;
HRESULT result;

//timing variable
long start = GetTickCount();

//the wave sound
CSound *sound_bounce;
CSound *sound_electric;

//initializes the game
int Game_Init(HWND hwnd)
{

int n;

//set random number seed
srand(time(NULL));

//create sprite handler object
result = D3DXCreateSprite(d3ddev, &sprite_handler);
if (result != D3D_OK)

return 0;

//load the background image
back = LoadSurface("background.bmp", NULL);
if (back == NULL)

return 0;

//load the ball sprite
ball_image = LoadTexture("ball.bmp", D3DCOLOR_XRGB(255,0,255));
if (ball_image == NULL)

return 0;

//set the balls’ properties
for (n=0; n<NUMBALLS; n++)

Testing DirectSound 197

{
balls[n].x = rand() % SCREEN_WIDTH;
balls[n].y = rand() % SCREEN_HEIGHT;
balls[n].width = 12;
balls[n].height = 12;
balls[n].movex = 1 + rand() % 6;
balls[n].movey = rand() % 12 - 6;

}

//load bounce wave file
sound_bounce = LoadSound("bounce.wav");
if (sound_bounce == NULL)

return 0;

//load the electric wave file
sound_electric = LoadSound("electric.wav");
if (sound_electric == NULL)

return 0;

//return okay
return 1;

}

//the main game loop
void Game_Run(HWND hwnd)
{

D3DXVECTOR3 position(0,0,0); //ball position vector
int n;
int playing = 0;

//make sure the Direct3D device is valid
if (d3ddev == NULL)

return;

//after short delay, ready for next frame?
//this keeps the game running at a steady frame rate
if (GetTickCount() - start >= 30)
{

//reset timing
start = GetTickCount();

//move the ball sprites
for (int n=0; n<NUMBALLS; n++)

198 Chapter 9 n Jamming with DirectX Audio

{
balls[n].x += balls[n].movex;
balls[n].y += balls[n].movey;

//bounce the ball at screen edges
if (balls[n].x > SCREEN_WIDTH - balls[n].width)
{

balls[n].x -= balls[n].width;
balls[n].movex *= -1;
PlaySound(sound_bounce);

}
else if (balls[n].x < 0)
{

balls[n].x += balls[n].width;
balls[n].movex *= -1;
PlaySound(sound_bounce);

}

if (balls[n].y > SCREEN_HEIGHT - balls[n].height)
{

balls[n].y -= balls[n].height;
balls[n].movey *= -1;
PlaySound(sound_bounce);

}
else if (balls[n].y < 0)
{

balls[n].y += balls[n].height;
balls[n].movey *= -1;
PlaySound(sound_bounce);

}
}

}

//start rendering
if (d3ddev->BeginScene())
{

//erase the entire background
d3ddev->StretchRect(back, NULL, backbuffer, NULL, D3DTEXF_NONE);

//start sprite handler
sprite_handler->Begin(D3DXSPRITE_ALPHABLEND);

//draw the balls
for (n=0; n<NUMBALLS; n++)

Testing DirectSound 199

{
position.x = (float)balls[n].x;
position.y = (float)balls[n].y;
sprite_handler->Draw(

ball_image,
NULL,
NULL,
&position,
D3DCOLOR_XRGB(255,255,255));

}

//stop drawing
sprite_handler->End();

//stop rendering
d3ddev->EndScene();

}

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

//check for escape key (to exit program)
if (KEY_DOWN(VK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);

//spacebar plays the electric sound
if (KEY_DOWN(VK_SPACE))

LoopSound(sound_electric);

//enter key stops the electric sound
if (KEY_DOWN(VK_RETURN))

StopSound(sound_electric);
}

//frees memory and cleans up before the game ends
void Game_End(HWND hwnd)
{

if (ball_image != NULL)
ball_image->Release();

if (back != NULL)
back->Release();

200 Chapter 9 n Jamming with DirectX Audio

if (sprite_handler != NULL)
sprite_handler->Release();

if (sound_bounce != NULL)
delete sound_bounce;

if (sound_electric != NULL)
delete sound_electric;

}

Running the Program

When you run the program, you are presented with either a windowed or full-

screen display. I recommend running all of the sample programs in fullscreen

mode—refer to the setting in game.h that affects this:

#define FULLSCREEN 0 //0 = windowed, 1 = fullscreen

Figure 9.8 shows the output of the Play_Sound program.

Testing DirectSound 201

Figure 9.8
The Play_Sound program output.

When you run the program, be aware of how to start and stop the looping sound

(which sounds like electricity). Press the spacebar to start the looping sound, and

press Enter to stop the sound. All the while, the annoying balls are bouncing all

over the screen and making an uproar in the process!

What You Have Learned

This chapter explained how to use some relatively painless DirectSound support

routines included in the DirectX SDK tomake DirectSound programming easier.

Here are the key points:

n You learned how to initialize the DirectSound object.

n You learned how to load a wave file into a sound buffer.

n You learned how to play and stop a sound, with or without looping.

n You learned a little bit about sound mixing.

n You got some practice working on a project with many files.

n You learned about the value of code re-use.

202 Chapter 9 n Jamming with DirectX Audio

Review Questions

These questions will help to challenge your understanding of the chapter:

1. What is the name of the primary DirectSound class used in this chapter?

2. What is a secondary sound buffer?

3. What is the secondary sound buffer called in dsutil.h?

4. What is the option called that causes a sound to play with looping?

5. For reference, what is the name of the function that draws a surface to the

screen?

On Your Own

On Your Own 203

The following exercises will help you to think outside the box and push your

limits, which will increase your capacity for retention.

Exercise 1. The Play_Sound program played a sound effect every time a small ball

hit the edge of the screen. Modify the program so that it draws a different number

of balls of your choosing (instead of 100).

Exercise 2. The Play_Sound program plays just a single sound when a ball sprite

hits an edge. Modify the program by adding three more wave files, with asso-

ciated code to load them, so that when a ball strikes the top, left, right, or bottom

edge of the screen, it plays a different sound for each.

204 Chapter 9 n Jamming with DirectX Audio

Handling Input
Devices

Welcome to the virtual interface chapter! In the coming pages, you will learn how

to use DirectInput to program the keyboard and mouse to provide your games

with support for the most common input devices.

Here is what you will learn in this chapter:

n How to create the primary DirectInput object.

n How to create DirectInput devices.

n How to write a keyboard handler.

n How to write a mouse handler.

205

chapter 10

The Keyboard
The keyboard is the standard input device for all games, even for those that don’t

specifically use the keyboard, so it is a given that your games will use the keyboard

one way or another. If nothing else, you should allow the user to exit your game

or at least bring up some sort of in-game menu by pressing the Escape key (that’s

the standard). Programming the keyboard using DirectInput is not difficult, but

you do need to initialize DirectInput first.

The primary DirectInput object is called IDirectInput8; you can reference it

directly or using the LPDIRECTINPUT8 pointer data type. Why is the number ‘‘8’’

attached to these interfaces? Because, like DirectSound, DirectInput has not

changed since the last major revision of DirectX, which was version 8.1. Kind of

makes you wonder why we’re at a full version upgrade to 9.0c already (and very

likely beyond that by the time you read this).

The DirectInput library file is called dinput8.lib, so be sure to add this file to the

linker options in the Project Settings dialog along with the other libs. I’ll assume

that you read the last chapter and learned how to set up the project to support

DirectX and the game framework you’ve been building up to this point. If you

have any question about how to set up the project at this point in the book, refer

to the last chapter for a complete overview and tutorial. In this chapter, I’ll have

you add a new component to the framework for DirectInput using two new files

(dxinput.h and dxinput.cpp).

DirectInput Object and Device

Okay, you are familiar with the drill of initializing the DirectX components, so

let’s learn how to scan the keyboard for button input. You will want to first define

the primary DirectInput object used by your program along with the object for

the device:

LPDIRECTINPUT8 dinput;

LPDIRECTINPUTDEVICE8 dinputdev;

After defining the variables, you can then call DirectInputCreate8 to initialize

DirectInput. The function has this format:

HRESULT WINAPI DirectInput8Create(
HINSTANCE hinst,
DWORD dwVersion,

206 Chapter 10 n Handling Input Devices

REFIID riidltf,
LPVOID *ppvOut,
LPUNKNOWN punkOuter

);

This function just creates the primary DirectInput object that you pass to it.

The first parameter is the instance handle for the current program. A con-

venient way to get the current instance when it is not immediately available

(normally this is only found in WinMain) is by using the GetModuleHandle

function. The second parameter is the DirectInput version, which is always passed

as DIRECTINPUT_ VERSION, defined in dinput.h. The third parameter is a reference

identifier for the version of DirectInput that you want to use. At present,

this value is IID_ IDirectInput8. The fourth parameter is a pointer to the

primary=DirectInput object pointer (note the double pointer here), and the

fifth parameter is always NULL. Here is an example of how you might call this

function:

HRESULT result = DirectInput8Create(
GetModuleHandle(NULL),
DIRECTINPUT_VERSION,
IID_IDirectInput8,
(void**)&dinput,
NULL);

After initializing the object, you can then use the object to create a new Direc-

tInput device by calling the CreateDevice function:

HRESULT CreateDevice(
REFGUID rguid,
LPDIRECTINPUTDEVICE *lplpDirectInputDevice,
LPUNKNOWN pUnkOuter

);

The first parameter is a value that specifies the type of object you want to create

(such as the keyboard or mouse). Here are the values you can use for this

parameter:

n GUID_SysKeyboard

n GUID_SysMouse

The second parameter is your device pointer that receives the address of the

DirectInput device handler. The third parameter is always NULL. Here is how you

The Keyboard 207

might call this function:

result = dinput->CreateDevice(GUID_SysKeyboard, &dikeyboard, NULL);

Initializing the Keyboard

Onceyouhave theDirectInputobject anddeviceobject for thekeyboard, youcanthen

initialize the keyboard handler to prepare it for input. The next step is to set the

keyboard’s data format,which instructsDirectInputhow topass thedataback toyour

program. It is abstracted in thiswaybecause there arehundredsof inputdeviceson the

market with a myriad of features, so there has to be a uniform way to read them all.

Setting the Data Format

The SetDataFormat specifies how the data format is set.

HRESULT SetDataFormat(
LPCDIDATAFORMAT lpdf

);

The single parameter to this function specifies the device type. For the keyboard,

you want to pass the value of c_dfDIKeyboard as this parameter. The constant for

a mouse would be c_dfDIMouse. Here, then, is a sample function call:

HRESULT result = dikeyboard->SetDataFormat(&c_dfDIKeyboard);

Note that you do not need to define c_dfDIKeyboard yourself, as it is defined in

dinput.h.

Setting the Cooperative Level

The next step is to set the cooperative level, which determines how much of the

keyboard DirectInput will give your program by way of priority. To set the

cooperative level, you call the SetCooperativeLevel function:

HRESULT SetCooperativeLevel(
HWND hwnd,
DWORD dwFlags

);

The first parameter is the window handle. The second parameter is the interesting

one, as it specifies the priority that your program will have over the keyboard or

mouse. The most common values to pass when working with the keyboard are

208 Chapter 10 n Handling Input Devices

DISCL_NONEXCLUSIVE and DISCL_FOREGROUND. If you try to gain exclusive use of the

keyboard, DirectInput will probably complain, so ask for non-exclusive access with

priority as the foreground application in order to give your game the most control

over the keyboard. So, then, here is how you might call the function:

HRESULT result = dikeyboard->SetCooperativeLevel(hwnd,
DISCL_NONEXCLUSIVE | DISCL_FOREGROUND);

Acquiring the Device

The last step in initializing the keyboard is to acquire the keyboard device using

the Acquire function:

HRESULT Acquire(VOID);

If the function returns a positive value (DI_OK) then you have successfully

acquired the keyboard and are ready to start checking for key presses.

An important point that I should make here is that you must unacquire the

keyboard before your game ends or it will leave DirectInput and the keyboard

handler in an unknown state. Windows and DirectInput will probably take care

of cleaning up after you, but it really depends on the version of Windows that the

user is running. Believe it or not, there are still computers running Windows 98

and ME, despite these operating systems being quite out of date. Windows 2000

is quite a bit more stable, as is XP and 2003, but you shouldn’t leave anything to

chance. It’s best to unacquire the device before your game ends. Each DirectInput

device has an Unacquire function with the following format:

HRESULT Unacquire(VOID);

Reading Key Presses

Somewhere in your game loop you need to poll the keyboard to update its key

values. Speaking of keys, it is up to you to define the array of keys that are to be

populated with the keyboard device status, like this:

char keys[256];

You must poll the keyboard to fill in this array of characters, and to do that you

call the GetDeviceState function. This function is used for all devices regardless

of type, so it is standard for all input devices:

HRESULT GetDeviceState(
DWORD cbData,

The Keyboard 209

LPVOID lpvData
);

The first parameter is the size of the device state buffer to be filled with data. The

second parameter is a pointer to the data. In the case of the keyboard, here is how

you would call this function:

dikeyboard->GetDeviceState(sizeof(keys), (LPVOID)&keys);

After polling the keyboard, you can then check the keys array for values corre-

sponding to the DirectInput key codes.

Here is how you would check for the ESCAPE key:

if (keys[DIK_ESCAPE] & 0x80)
{

//ESCAPE key was pressed, so do something!
}

The Mouse
Once you have written a handler for the keyboard, it is a piece of cake to support

the mouse as well, because the code is very similar, and it shares the DirectInput

object and device pointers. So let’s jump ahead and learn about the mouse

interface. First, define the mouse device:

LPDIRECTINPUTDEVICE8 dimouse;

Next, create the mouse device:

result = dinput->CreateDevice(GUID_SysMouse, &dimouse, NULL);

Initializing the Mouse

So, let’s assume DirectInput is all squared away, and now you want to add a

mouse handler. The next step is to set the data format for the mouse, which

instructs DirectInput how to pass the data back to your program. It functions in

exactly the same way for the mouse as it does for the keyboard.

Setting the Data Format

The SetDataFormat function looks like this:

210 Chapter 10 n Handling Input Devices

HRESULT SetDataFormat(
LPCDIDATAFORMAT lpdf

);

The single parameter to this function specifies the device type. The constant for

your mouse is c_dfDIMouse. Here, then, is a sample function call:

HRESULT result = dimouse->SetDataFormat(&c_dfDIMouse);

Note, again, that you do not need to define c_dfDIMouse, as it is defined in

dinput.h.

Setting the Cooperative Level

The next step is to set the cooperative level, which determines howmuch priority

over the mouse DirectInput will give your program. To set the cooperative level,

you call the SetCooperativeLevel function:

HRESULT SetCooperativeLevel(
HWND hwnd,
DWORD dwFlags

);

The first parameter is the window handle. The second parameter is the inter-

esting one, as it specifies the priority that your program will have over the mouse.

The most common values to pass when working with the mouse are DISCL_

EXCLUSIVE and DISCL_FOREGROUND (which has the added benefit of hiding the stock

Windows cursor from view). Here is how to call this function:

HRESULT result = dimouse->SetCooperativeLevel(hwnd,
DISCL_EXCLUSIVE | DISCL_FOREGROUND);

Acquiring the Device

The last step is to acquire the mouse device using the Acquire function. If the

function returns DI_OK, then you have successfully acquired the mouse and are

ready to start checking for movement and button presses.

As with the keyboard device, you must also unacquire the mouse device after you

are done using it, or else you could leave DirectInput in an unstable state:

HRESULT Unacquire(VOID);

The Mouse 211

Reading the Mouse

Somewhere in your game loop you need to poll the mouse to update the mouse

position and button status. You poll the mouse using the GetDeviceState

function:

HRESULT GetDeviceState(
DWORD cbData,

LPVOID lpvData
);

The first parameter is the size of the device state buffer to be filled with data. The

second parameter is a pointer to the data. There is a struct available for your use

in polling the mouse:

DIMOUSESTATE mouse_state;

Here is how you would fill the DIMOUSESTATE struct by calling the GetDeviceState

function:

dimouse->GetDeviceState(sizeof(mouse_state), (LPVOID)&mouse_state);

The struct looks like this:

typedef struct DIMOUSESTATE {
LONG lX;
LONG lY;
LONG lZ;
BYTE rgbButtons[4];

} DIMOUSESTATE;

There is an alternate struct available for your use when you want to support

complex mouse devices with more than four buttons, in which case the button

array is doubled in size but the struct is otherwise the same:

typedef struct DIMOUSESTATE2 {
LONG lX;
LONG lY;
LONG lZ;
BYTE rgbButtons[8];

} DIMOUSESTATE2;

After polling the mouse, you can then check the mouse_state struct for x and y

motion and button presses. You can check for mouse movement, also called

212 Chapter 10 n Handling Input Devices

mickeys, using the lX and lY member variables. What are mickeys? Mickeys

represent motion of the mouse rather than an absolute position, so you must

keep track of the old position if you want to use these mouse-positioning values

to draw your own pointer. Mickeys are a convenient way of handling mouse

motion because you can continue to move in a single direction and the mouse

will continue to report movement, even if the ‘‘pointer’’ would have reached the

edge of the screen.

As you can see from the struct, the rgbButtons array holds the result of button

presses. If you want to check for a specific button (starting with 0 for button 1),

here is how you might do that:

button_1 = obj.rgbButtons[0] & 0x80;

A more convenient method of detecting button presses is by using a define:

#define BUTTON_DOWN(obj, button) (obj.rgbButtons[button] & 0x80)

By using the define, you can check for button presses like so:

button_1 = BUTTON_DOWN(mouse_state, 0);

Paddle Game
That about sums up the keyboard and mouse. Are you ready to put it into practice

with a sample program? As this is the last chapter in Part II on the subject of the

DirectX library, I have something of a surprise for you. After adding DirectInput to

the game framework, I’m going to show you a game called Paddle Game that could

be the basis for a complete Breakout orArkanoid-style game that you canmodify and

tweak to come up with your own design. Figure 10.1 shows Paddle Game running.

The game supports both the keyboard and mouse and is ready for your own

enhancements! Using the Collision function that I’ll go over with you shortly, you’ll

be able to add your own blocks to the game in order to let the ball ‘‘bash’’ them.

The New Framework Code for DirectInput

Now, while you’re working on this Paddle Game project, is a good time to update

the game framework to add DirectInput support to it.

winmain.cpp

Unfortunately, changes must be made to WinMain again. It would be nice if you

didn’t have to open up winmain.cpp anymore, but in the interest of encapsulating

Paddle Game 213

the game framework completely and removing all initialization code from

Game_Init, it’s a necessary step.

Add #include "dxinput.h" to the includes section in winmain.cpp.

Add the following DirectInput initialization code to the WinMain function just

before the main while loop with the other DirectX initialization code.

//initialize DirectInput
if (!Init_DirectInput(hwnd))
{

MessageBox(hWnd, "Error initializing DirectInput", "Error", MB_OK);
return 0;

}

Next, look for the WinProc function and add the following code to the WM_DESTROY

event code:

//release input objects
Kill_Keyboard();
Kill_Mouse();
if (dinput != NULL) dinput->Release();

214 Chapter 10 n Handling Input Devices

Figure 10.1
Paddle Game is a near-complete game that demonstrates how to use DirectInput to read the keyboard
and mouse.

Come to think of it, we neglected to free up the DirectSound object here! Well, it

never hurts to fill in missing cleanup code all at once when you’re about done

with a project, so here goes:

if (dsound != NULL) dsound->Release();

I know all this modification is a pain, but the end result is a framework in which

the logistical code is all tied up in supporting source code files and your actual

game code is isolated and more accessible. In a nutshell: you can focus on

gameplay rather than Windows and DirectX.

C au t i o n

If you have any trouble with the updates in this chapter, just refer to Chapter 9, which explained
how to create the project from scratch. I won’t cover all of that information here again. If you get
really lost, then you can load the completed project off the CD-ROM, in which case you should pay
attention to the Game_Init, Game_Run, and Game_End functions. Just be sure to add din-
put8.lib to the linker options in your project.

dxinput.h

Add a new file to your project called dxinput.h. This is the header file for the

DirectInput framework. Here is the code for this file:

#ifndef _DXINPUT_H
#define _DXINPUT_H 1

#include <dinput.h>

//function prototypes
int Init_DirectInput(HWND);
int Init_Keyboard(HWND);
void Poll_Keyboard();
int Key_Down(int);
void Kill_Keyboard();
void Poll_Mouse();
int Init_Mouse(HWND);
int Mouse_Button(int);
int Mouse_X();
int Mouse_Y();
void Kill_Mouse();

//DirectInput objects, devices, and states
extern LPDIRECTINPUT8 dinput;

Paddle Game 215

extern LPDIRECTINPUTDEVICE8 dimouse;
extern LPDIRECTINPUTDEVICE8 dikeyboard;
extern DIMOUSESTATE mouse_state;

#endif

dxinput.cpp

Add another new file to the project, and this time name it dxinput.cpp. This file

contains the source code for the keyboard and mouse handlers to add Direc-

tInput support to your games.

#include "dxinput.h"

#define BUTTON_DOWN(obj, button) (obj.rgbButtons[button] & 0x80)

LPDIRECTINPUT8 dinput;
LPDIRECTINPUTDEVICE8 dimouse;
LPDIRECTINPUTDEVICE8 dikeyboard;
LPDIRECTINPUTDEVICE8 dijoystick;
DIMOUSESTATE mouse_state;

//keyboard input
char keys[256];

int Init_DirectInput(HWND hwnd)
{

//initialize DirectInput object
HRESULT result = DirectInput8Create(

GetModuleHandle(NULL),
DIRECTINPUT_VERSION,
IID_IDirectInput8,
(void**)&dinput,
NULL);

if (result != DI_OK)
return 0;

//initialize the mouse
result = dinput->CreateDevice(GUID_SysMouse, &dimouse, NULL);
if (result != DI_OK)

return 0;

216 Chapter 10 n Handling Input Devices

//initialize the keyboard
result = dinput->CreateDevice(GUID_SysKeyboard, &dikeyboard, NULL);
if (result != DI_OK)

return 0;

//clean return
return 1;

}

int Init_Mouse(HWND hwnd)
{

//set the data format for mouse input
HRESULT result = dimouse->SetDataFormat(&c_dfDIMouse);
if (result != DI_OK)

return 0;

//set the cooperative level
//this will also hide the mouse pointer
result = dimouse->SetCooperativeLevel(hwnd,

DISCL_EXCLUSIVE | DISCL_FOREGROUND);
if (result != DI_OK)

return 0;

//acquire the mouse
result = dimouse->Acquire();
if (result != DI_OK)

return 0;

//give the go-ahead
return 1;

}

int Mouse_X()
{

return mouse_state.lX;
}

int Mouse_Y()
{

return mouse_state.lY;
}

Paddle Game 217

int Mouse_Button(int button)
{

return BUTTON_DOWN(mouse_state, button);
}

void Poll_Mouse()
{

dimouse->GetDeviceState(sizeof(mouse_state), (LPVOID)&mouse_state);
}

void Kill_Mouse()
{

if (dimouse != NULL)
{

dimouse->Unacquire();
dimouse->Release();
dimouse = NULL;

}
}

int Init_Keyboard(HWND hwnd)
{

//set the data format for mouse input
HRESULT result = dikeyboard->SetDataFormat(&c_dfDIKeyboard);
if (result != DI_OK)

return 0;

//set the cooperative level
result = dikeyboard->SetCooperativeLevel(hwnd,

DISCL_NONEXCLUSIVE | DISCL_FOREGROUND);
if (result != DI_OK)

return 0;

//acquire the mouse
result = dikeyboard->Acquire();
if (result != DI_OK)

return 0;

//give the go-ahead
return 1;

}

void Poll_Keyboard()
{

218 Chapter 10 n Handling Input Devices

dikeyboard->GetDeviceState(sizeof(keys), (LPVOID)&keys);
}

int Key_Down(int key)
{

return (keys[key] & 0x80);
}

void Kill_Keyboard()
{

if (dikeyboard != NULL)
{

dikeyboard->Unacquire();
dikeyboard->Release();
dikeyboard = NULL;

}
}

The Paddle Game Source Code

Whew, another batch of changes done to add the latest DirectX component to

the framework! Aren’t you glad that’s over? You might be wondering why this is

all necessary—is it just a waste of paper and time, or is there a point to it?

Of course there’s a point, or I wouldn’t have put you through it. Code re-use is

the key to becoming a professional programmer. You simply cannot rewrite code

again and again and expect to have any time to get real work done. The source

code files you have created thus far provide a game framework that greatly

reduces the amount of work you must do to write a Windows/DirectX game.

And we’re talking about a full-blown Direct3D 9.0b game, at that! What? We

haven’t even gone into 3D yet?

I’ve been holding off on 3D for a reason: it’s a little more complicated. I wanted

to have this basis of code (the framework) ready to go before diving headfirst into

the 3D code because otherwise we’d be swimming in reams of code right now.

The 3D chapters that follow will be easy to understand and grasp because I’m not

getting into any 3Dmath, but there is a lot of code involved when you’re working

with Direct3D.

Okay, where were we? Oh, yeah, Paddle Game! For reference, Figure 10.2 shows

the project workspace for the Paddle Game project as it should appear at this

point. If you are still lost, go ahead and load the project off the CD-ROM so you

can at least keep up with the discussion.

Paddle Game 219

game.h

Here is the header file for the game.

#ifndef _GAME_H
#define _GAME_H 1

//windows/directx headers
#include <d3d9.h>
#include <d3dx9.h>
#include <dxerr9.h>
#include <dsound.h>
#include <dinput.h>
#include <windows.h>
#include <time.h>

220 Chapter 10 n Handling Input Devices

Figure 10.2
The project workspace for the Paddle Game project

#include <stdio.h>
#include <stdlib.h>

//framework-specific headers
#include "dxgraphics.h"
#include "dxaudio.h"
#include "dxinput.h"

//application title
#define APPTITLE "Paddle_Game"

//screen setup
#define FULLSCREEN 0 //0 = windowed, 1 = fullscreen
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

//function prototypes
int Game_Init(HWND);
void Game_Run(HWND);
void Game_End(HWND);

//sprite structure
typedef struct {

int x,y;
int width,height;
int movex,movey;
int curframe,lastframe;
int animdelay,animcount;
int scalex, scaley;
int rotation, rotaterate;

} SPRITE;

#endif

game.cpp

Here is the source code for the Paddle Game project. I will explain key parts of the

code at the end of the listing.

#include "game.h"

//background image
LPDIRECT3DSURFACE9 back;

Paddle Game 221

//sprite handler
LPD3DXSPRITE sprite_handler;

//ball sprite
LPDIRECT3DTEXTURE9 ball_image;
SPRITE ball;

//paddle sprite
LPDIRECT3DTEXTURE9 paddle_image;
SPRITE paddle;

//the wave sound
CSound *sound_bounce;
CSound *sound_hit;

//misc
long start = GetTickCount();
HRESULT result;

//initializes the game
int Game_Init(HWND hwnd)
{

//set random number seed
srand(time(NULL));

//initialize mouse
if (!Init_Mouse(hWnd))
{

MessageBox(hWnd, "Error initializing the mouse", "Error", MB_OK);
return 0;

}

//initialize keyboard
if (!Init_Keyboard(hWnd))
{

MessageBox(hWnd, "Error initializing the keyboard", "Error", MB_OK);
return 0;

}

//create sprite handler object
result = D3DXCreateSprite(d3ddev, &sprite_handler);
if (result != D3D_OK)

return 0;

222 Chapter 10 n Handling Input Devices

//load the background image
back = LoadSurface("background.bmp", NULL);
if (back == NULL)

return 0;

//load the ball sprite
ball_image = LoadTexture("ball.bmp", D3DCOLOR_XRGB(255,0,255));
if (ball_image == NULL)

return 0;

//set the ball’s properties
ball.x = 400;
ball.y = 200;
ball.width = 12;
ball.height = 12;
ball.movex = 8;
ball.movey = -8;

//load the paddle sprite
paddle_image = LoadTexture("paddle.bmp", D3DCOLOR_XRGB(255,0,255));
if (paddle_image == NULL)

return 0;

//set paddle properties
paddle.x = 300;
paddle.y = SCREEN_HEIGHT - 50;
paddle.width = 90;
paddle.height = 26;

//load bounce wave file
sound_bounce = LoadSound("bounce.wav");
if (sound_bounce == NULL)

return 0;

//load the hit wave file
sound_hit = LoadSound("hit.wav");
if (sound_hit == NULL)

return 0;

//return okay
return 1;

}

Paddle Game 223

int Collision(SPRITE sprite1, SPRITE sprite2)
{

RECT rect1;
rect1.left = sprite1.xþ1;
rect1.top = sprite1.yþ1;
rect1.right = sprite1.x þ sprite1.width-1;
rect1.bottom = sprite1.y þ sprite1.height-1;

RECT rect2;
rect2.left = sprite2.xþ1;
rect2.top = sprite2.yþ1;
rect2.right = sprite2.x þ sprite2.width-1;
rect2.bottom = sprite2.y þ sprite2.height-1;

RECT dest;
return IntersectRect(&dest, &rect1, &rect2);

}

//the main game loop
void Game_Run(HWND hwnd)
{

//ball position vector
D3DXVECTOR3 position(0,0,0);

//make sure the Direct3D device is valid
if (d3ddev == NULL)

return;

//update mouse and keyboard
Poll_Mouse();
Poll_Keyboard();

//after short delay, ready for next frame?
//this keeps the game running at a steady frame rate
if (GetTickCount() - start >= 30)
{

//reset timing
start = GetTickCount();

//move the ball sprite
ball.x þ= ball.movex;
ball.y þ= ball.movey;

224 Chapter 10 n Handling Input Devices

//bounce the ball at screen edges
if (ball.x > SCREEN_WIDTH - ball.width)

{
ball.x -= ball.width;
ball.movex *= -1;
PlaySound(sound_bounce);

}
else if (ball.x < 0)
{

ball.x þ = ball.width;
ball.movex *= -1;
PlaySound(sound_bounce);

}

if (ball.y > SCREEN_HEIGHT - ball.height)
{

ball.y -= ball.height;
ball.movey *= -1;
PlaySound(sound_bounce);

}
else if (ball.y < 0)
{

ball.y þ= ball.height;
ball.movey *= -1;
PlaySound(sound_bounce);

}

//move the paddle
paddle.x þ = Mouse_X();
if (paddle.x > SCREEN_WIDTH - paddle.width)

paddle.x = SCREEN_WIDTH - paddle.width;
else if (paddle.x < 0)

paddle.x = 0;

//check for left arrow
if (Key_Down(DIK_LEFT))

paddle.x -= 5;

//check for right arrow
if (Key_Down(DIK_RIGHT))

paddle.x þ = 5;

Paddle Game 225

//see if ball hit the paddle
if (Collision(paddle, ball))
{

ball.y -= ball.movey;
ball.movey *= -1;
PlaySound(sound_hit);

}
}

//start rendering
if (d3ddev->BeginScene())
{

//erase the entire background
d3ddev->StretchRect(back, NULL, backbuffer, NULL, D3DTEXF_NONE);

//start sprite handler
sprite_handler->Begin(D3DXSPRITE_ALPHABLEND);

//draw the ball
position.x = (float)ball.x;
position.y = (float)ball.y;
sprite_handler->Draw(

ball_image,
NULL,
NULL,
&position,
D3DCOLOR_XRGB(255,255,255));

//draw the paddle
position.x = (float)paddle.x;
position.y = (float)paddle.y;
sprite_handler->Draw(

paddle_image,
NULL,
NULL,
&position,
D3DCOLOR_XRGB(255,255,255));

//stop drawing
sprite_handler->End();

//stop rendering
d3ddev->EndScene();

}

226 Chapter 10 n Handling Input Devices

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

//check for mouse button (to exit program)
if (Mouse_Button(0))

PostMessage(hwnd, WM_DESTROY, 0, 0);

//check for escape key (to exit program)
if (Key_Down(DIK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);
}

//frees memory and cleans up before the game ends
void Game_End(HWND hwnd)
{

if (ball_image != NULL)
ball_image->Release();

if (paddle_image != NULL)
paddle_image->Release();

if (back != NULL)
back->Release();

if (sprite_handler != NULL)
sprite_handler->Release();

if (sound_bounce != NULL)
delete sound_bounce;

if (sound_hit != NULL)
delete sound_hit;

}

Paddle Game Explained

Most of the code for this partial game is straightforward and familiar from

previous projects. The one difference here is inclusion of a function that detects

sprite collisions; it is also used to determine when the paddle and ball collide

on the screen. When such a collision takes place, the ball reverses direction.

Paddle Game 227

Windows provides a very convenient function that you can use to check for

collisions, called IntersectRect. The function has this syntax:

BOOL IntersectRect(
LPRECT lprcDst,
CONST RECT *lprcSrc1,
CONST RECT *lprcSrc2

);

The first parameter is not needed, so I just pass a dummy RECT to it. The second and

third parameters also expect a RECT, and these are populated with data from two

sprites before calling IntersectRect. This function uses the two rectangles to

determine if an intersection between them exists, based on the left, top, right, and

bottom values in each. If you really care about the intersection rectangle, then you can

actually use the RECT filled in with data in the first parameter. The only thing I worry

about when using this function is the return value, which is zero on failure or one on

success. If it returns one, then you know there was a collision between the two sprites.

Can you think of a good use for this function? One great idea would be to add a

bunch of blocks to the game (using an array of RECTs to keep track of their posi-

tions), and then use IntersectRect to see if the ball hits any of the blocks. You can

then destroy the block and have the ball bounce away just like it does when it hits the

paddle. Presto! There you have your very own traditional ball-and-paddle game.

What You Have Learned
This chapter has ventured into the subject of how to handle keyboard and mouse

input using DirectInput. Here are the key points:

228 Chapter 10 n Handling Input Devices

n You learned how to initialize DirectInput.

n You learned how to create a keyboard handler.

n You learned how to create a mouse handler.

n You added a new DirectInput component to the game framework.

n You wrote a nearly complete game called Paddle Game.

n You learned about sprite collision.

Review Questions

The following review questions will challenge your comprehension of the

subject material covered in this chapter.

1. What is the name of the primary DirectInput object?

2. What is the function that creates a DirectInput device?

3. What is the name of the struct that contains mouse input data?

4. What function do you call to poll the keyboard or mouse?

5. What is the name of the function that helps check for sprite collisions?

Review Questions 229

On Your Own

The following exercises will challenge your retention of the information pre-

sented in this chapter.

Exercise 1. Paddle Game featured a single ball bouncing on the screen with

support for collision with the paddle. This is obviously just the start of what

could become a great game. Add support for blocks that the ball can strike. When

the ball hits a block, the block should disappear and the ball should reverse

direction.

Exercise 2. In addition to adding blocks to make this a functional game, add the

logic to cause the player to lose when the ball hits the bottom edge of the screen.

230 Chapter 10 n Handling Input Devices

Tile-Based Scrolling
Backgrounds

Most action and arcade games use the technique of tile-based scrolling to achieve

the moving background you see in such games. Although this technique is now

decades old, it is still employed for rendering backgrounds, and this style of 2D

game is still used frequently today. Back in the old days, when computer memory

was very limited, tile-based scrolling was used because it is very efficient. We take

for granted multiple gigabytes of memory today, but that much memory was

unbelievable, even in a hard drive, let alone main memory (RAM). The concept

of a virtual screen buffer, which you will learn about in this chapter, was used

with very limited video cards at the time (with 256 to 1024 KB of video memory).

Back then, you would be very lucky to have two 320�240 screens (or buffers), let

alone enough memory for a large scrolling world. This chapter focuses on creating

tile-based backgrounds with scrolling using secondary buffers. As youwill discover,

231

chapter 11

this is far easier than trying to wranglememory out of a video card as programmers

were forced to do years ago. A memory buffer will work well with either full-screen

or windowed mode.

Here is a breakdown of the major topics in this chapter:

n Introduction to scrolling.

n Creating tile-based backgrounds.

n Using a single large scroll buffer.

n Using dynamically drawn tiles.

Introduction to Scrolling
What is scrolling? In today’s gaming world, where 3D is the focus of everyone’s

attention, it’s not surprising to find gamers and programmers who have never

heard of scrolling. What a shame! The heritage of modern games is a long and

fascinating one that is still relevant today, even if it is not understood or

appreciated. The console industry puts great effort and value into scrolling,

particularly on handheld systems, such as the Game Boy Advance. Given the

extraordinary sales market for the GBA, would you be surprised to learn that

more 2D games may be sold in a given day than 3D games? Figure 11.1 illustrates

the concept of scrolling.

232 Chapter 11 n Tile-Based Scrolling Backgrounds

Figure 11.1
The scroll window shows a small part of a larger game world.

No t e

Scrolling is the process of displaying a small portion of a large virtual game world in a window on the
screen, and moving the view of that window to reflect the changing position within the game world.

You could display one huge bitmap image in the virtual game world, representing

the current level of the game, and then copy (blit) a portion of that virtual world

onto the screen. This is the simplest form of scrolling. Another method uses tiles

to create the game world, which I’ll cover shortly. First, you’ll write a short

program to demonstrate how to use bitmap scrolling.

Introduction to Tile-Based Backgrounds
You have seen what a simple scroller looks like, even though it relied on keyboard

input to scroll. A high-speed scrolling arcade game would automatically scroll

horizontally or vertically, displaying a ground-, air-, or space-based terrain below

the player (usually represented by an airplane or a spaceship). The point of these

games is to keep the actionmoving so fast that the player doesn’t have a chance to

rest from one wave of enemies to the next. Two upcoming chapters have been

dedicated to these very subjects! For the time being, I want to keep things simple

to cover the basics of scrolling before you delve into these advanced chapters.

Backgrounds and Scenery

A background is comprised of imagery or terrain in one form or another, upon

which the sprites are drawn. The background might be nothing more than a

pretty picture behind the action in a game, or it might take an active part, as in a

scroller. When you are talking about scrollers, they need not be relegated only to

the high-speed arcade games. Role-playing games are usually scrollers too, as are

most sports games.

You should design the background around the goals of your game, not the other

way around. You should not come up with some cool background and then try to

build the game around it. (However, I admit that this is often how games are

started.) You never want to rely on a single cool technology as the basis for an

entire game, or the game will be forever remembered as a trendy game that tried

to cash in on the latest fad. Instead of following and imitating, set your own

precedents and make your own standards!

What am I talking about, you might ask? You might have the impression that

anything and everything that could possibly have been done with a scrolling

Introduction to Tile-Based Backgrounds 233

game has already been done ten times over. Not true. Not true! Remember when

Doom first came out? Everyone had been imitating Wolfenstein 3D when Car-

mack and Romero bumped up the notch a few hundred points and raised

everyone’s expectations so high that shockwaves reverberated throughout the

entire game industry—console and PC alike.

Do you really think it has all been done before and there is no more room for

innovation, that the game industry is saturated and it’s impossible to make a

successful ‘‘indie’’ game? That didn’t stop Bungie from going for broke on their

first game project.Halo hasmade itsmark in gaming history by upping everyone’s

expectations for superior physics and intelligent opponents. Now, a few years

hence, what kinds of games are coming out? What is the biggest industry buzz-

word? Physics. Design a game today without it, and suddenly your game is so

1990s in the gaming press. It’s all about physics and AI now, and that started with

Halo. Rather, it was perfected with Halo—I can’t personally recall a game with

that level of interaction beforeHalo came along. There is absolutely no reasonwhy

you can’t invent the next innovation or revolution in gaming, even in a 2D game.

Creating Backgrounds from Tiles

The real power of a scrolling background comes from a technique called tiling.

Tiling is a process in which there really is no background, just an array of tiles

that make up the background as it is displayed. In other words, it is a virtual

background and it takes up very little memory compared to a full bitmapped

background. Take a look at Figure 11.2 for an example.

Can you count the number of tiles used to construct the background in

Figure 11.2? Eighteen tiles make up this image, actually. Imagine that—an entire

game screen built using a handful of tiles, and the result is pretty good!

Obviously, a real game would have more than just grass, roads, rivers, and

bridges; a real game would have sprites moving on top of the background. How

about an example? I thought you’d like that idea.

Tile-Based Scrolling

The ScrollTest program, which you will write soon, uses tiles to fill the large

background bitmap when the program starts. It loads up the tiles from a bitmap

(containing the tiles arranged in rows and columns), and then uses the map data

to fill in the virtual scroll surface represented by a large bitmap in memory. Take

a look at Figure 11.3.

234 Chapter 11 n Tile-Based Scrolling Backgrounds

Introduction to Tile-Based Backgrounds 235

Figure 11.3
The ScrollTest program demonstrates how to perform tile-based background scrolling.

Figure 11.2
A bitmap image constructed of tiles

This program creates the tiles that you see in this figure by drawing the tiles onto a

large bitmap image created in memory (which is actually a Direct3D surface—and

we’re using a surface rather than a texture because no transparency is needed). The

actual bitmap containing the tiles is shown in Figure 11.4. These tiles were created

by Ari Feldman (http://www.flyingyogi.com) as part of his free SpriteLib.

I have prepared a legend of the tiles and the value for each in Figure 11.5. You can

use the legend while building your own maps.

ScrollTest Header File

Now, let’s write a test program to demonstrate, because theory only gets one so far

when trying to build an actual game. I don’t know about you, but I learn better by

doing rather than by reading. I’m assuming that you’re going to follow the same

steps from the previous chapter for creating a new project, and adding the necessary

236 Chapter 11 n Tile-Based Scrolling Backgrounds

Figure 11.4
The source file containing the tiles used in the ScrollTest program

Figure 11.5
A legend of the tiles and their reference numbers used to create a map in the DynamicScroll program

http://www.flyingyogi.com

library files. For reference, here are the library files again that must be added to the

Additional Dependencies field under Project Properties, Linker, Input:

n d3d9.lib

n d3dx9.lib

n dsound.lib

n dinput8.lib

n dxguid.lib

n dxerr9.lib

n winmm.lib

Here’s the header file for the ScrollTest program. This is the code that goes in the

game.h file.

// Beginning Game Programming, Second Edition
// ScrollTest program header file

#ifndef _GAME_H
#define _GAME_H

#include <d3d9.h>
#include <d3dx9.h>
#include <d3dx9math.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include "dxgraphics.h"
#include "dxinput.h"

//application title
#define APPTITLE "ScrollTest"

//screen setup
#define FULLSCREEN 0 //0 = windowed, 1 = fullscreen
#define SCREEN_WIDTH 800
#define SCREEN_HEIGHT 600

//data for the scrolling map
#define TILEWIDTH 64

Introduction to Tile-Based Backgrounds 237

#define TILEHEIGHT 64
#define MAPWIDTH 25
#define MAPHEIGHT 18
#define GAMEWORLDWIDTH (TILEWIDTH * MAPWIDTH)
#define GAMEWORLDHEIGHT (TILEHEIGHT * MAPHEIGHT)

//macros to read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code)((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

//function prototypes
int Game_Init(HWND);
void Game_Run(HWND);
void Game_End(HWND);

//scrolling map support functions
void ScrollScreen();
void BuildGameWorld();
void DrawTile(LPDIRECT3DSURFACE9,int,int,int,int,LPDIRECT3DSURFACE9,int,int);

#endif

ScrollTest Source Code

Now let’s write the main source code for the ScrollTest program, which is typed

into the game.cpp source code file. The map data shown in this code has been

compacted in order to save space and to fiton a linewithoutwrapping, but it is hard

to read thisway. If youprefer, youmay type in themapdata as shown inFigure 11.6.

// Beginning Game Programming, Second Edition
// ScrollTest program

#include "game.h"

int ScrollX, ScrollY; //current scroll position
int SpeedX, SpeedY; //scroll speed
LPDIRECT3DSURFACE9 gameworld; //scroll buffer
long start; //timing variable

int MAPDATA[MAPWIDTH*MAPHEIGHT] = {
80,81,
81,81,81,82,90,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,92,3,3,3,3,3,92,3,
92,90,3,13,83,96,3,3,23,3,92,3,13,92,3,3,3,3,3,3,11,3,13,3,3,92,

238 Chapter 11 n Tile-Based Scrolling Backgrounds

90,3,3,3,3,3,3,3,10,3,3,3,3,3,23,3,3,3,3,3,3,3,13,3,92,90,3,96,
3,13,3,3,3,3,3,3,3,3,3,3,3,3,96,3,23,3,96,3,3,92,90,3,3,3,3,3,3,
13,3,3,3,13,3,3,11,3,3,3,3,3,3,3,13,3,92,90,3,83,11,3,92,3,3,3,
3,3,11,3,3,3,3,3,3,3,83,3,3,3,92,92,90,3,3,3,96,3,13,3,3,3,11,
10,3,3,3,3,3,13,3,3,13,3,3,3,92,90,3,23,3,3,3,3,3,3,96,3,3,83,
3,3,3,92,3,3,3,3,3,13,3,92,90,3,3,3,3,3,3,3,3,3,3,3,3,23,3,3,3,
3,3,3,3,3,3,3,92,90,3,3,3,11,3,92,3,3,13,3,3,131,3,10,3,3,3,96,
3,92,3,96,3,92,90,3,13,83,3,3,3,3,3,3,3,3,3,3,3,13,3,3,3,3,3,3,
3,3,92,90,3,3,3,3,13,3,3,3,3,3,11,96,3,3,3,3,3,3,13,3,13,3,11,
92,90,92,3,13,3,3,3,3,3,3,92,3,10,3,23,3,3,3,3,3,3,3,3,3,92,90,
3,3,3,3,3,96,3,23,3,3,3,3,3,3,3,3,83,3,3,13,3,96,3,92,90,3,3,3,
3,92,3,3,3,3,3,13,3,3,3,13,3,3,3,11,3,3,3,3,92,90,3,13,3,3,3,3,
3,3,3,96,3,3,3,3,3,3,3,3,3,3,92,3,3,92,100,101,101,101,101,101,
101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,
101,101,102

};

Introduction to Tile-Based Backgrounds 239

Figure 11.6
The map data in the ScrollTest program

//initializes the game
int Game_Init(HWND hwnd)
{

Init_DirectInput(hwnd);
Init_Keyboard(hwnd);
Init_Mouse(hwnd);
start = GetTickCount();
BuildGameWorld();
return 1;

}

//the main game loop
void Game_Run(HWND hwnd)
{

//make sure the Direct3D device is valid
if (d3ddev == NULL)

return;

//poll DirectInput devices
Poll_Keyboard();
Poll_Mouse();

//check for escape key (to exit program)
if (Key_Down(DIK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);

//scroll based on mouse input
if (Mouse_X() != 0) ScrollX += Mouse_X();
if (Mouse_Y() != 0) ScrollY += Mouse_Y();

//keep the game running at a steady frame rate
if (GetTickCount() - start >= 30)
{

//reset timing
start = GetTickCount();

//start rendering
if (d3ddev->BeginScene())
{

//update the scrolling view
ScrollScreen();

240 Chapter 11 n Tile-Based Scrolling Backgrounds

//stop rendering
d3ddev->EndScene();

}
}
//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

}

//frees memory and cleans up before the game ends
void Game_End(HWND hwnd)
{

Kill_Keyboard();
Kill_Mouse();
dinput->Release();

}

void BuildGameWorld()
{

HRESULT result;
int x, y;
LPDIRECT3DSURFACE9 tiles;

//load the bitmap image containing all the tiles
tiles = LoadSurface("groundtiles.bmp", D3DCOLOR_XRGB(0,0,0));

//create the scrolling game world bitmap
result = d3ddev->CreateOffscreenPlainSurface(

GAMEWORLDWIDTH, //width of the surface
GAMEWORLDHEIGHT, //height of the surface
D3DFMT_X8R8G8B8,
D3DPOOL_DEFAULT,
&gameworld, //pointer to the surface
NULL);

if (result != D3D_OK)
{

MessageBox(NULL,"Error creating working surface!","Error",0);
return;

}

//fill the gameworld bitmap with tiles
for (y=0; y < MAPHEIGHT; y++)

Introduction to Tile-Based Backgrounds 241

for (x=0; x < MAPWIDTH; x++)
DrawTile(tiles, MAPDATA[y * MAPWIDTH + x], 64, 64, 16,
gameworld, x * 64, y * 64);

//now the tiles bitmap is no longer needed
tiles->Release();

}

void DrawTile(LPDIRECT3DSURFACE9 source, // source surface image
int tilenum, // tile #
int width, // tile width
int height, // tile height
int columns, // columns of tiles
LPDIRECT3DSURFACE9 dest, // destination surface
int destx, // destination x
int desty) // destination y

{

//create a RECT to describe the source image
RECT r1;
r1.left = (tilenum % columns) * width;
r1.top = (tilenum / columns) * height;
r1.right = r1.left + width;
r1.bottom = r1.top + height;

//set destination rect
RECT r2 = {destx,desty,destx+width,desty+height};

//draw the tile
d3ddev->StretchRect(source, &r1, dest, &r2, D3DTEXF_NONE);

}

void ScrollScreen()
{

//update horizontal scrolling position and speed
ScrollX += SpeedX;
if (ScrollX < 0)
{

ScrollX = 0;
SpeedX = 0;

}
else if (ScrollX > GAMEWORLDWIDTH - SCREEN_WIDTH)

242 Chapter 11 n Tile-Based Scrolling Backgrounds

{
ScrollX = GAMEWORLDWIDTH - SCREEN_WIDTH;
SpeedX = 0;

}

//update vertical scrolling position and speed
ScrollY += SpeedY;
if (ScrollY < 0)
{

ScrollY = 0;
SpeedY = 0;

}
else if (ScrollY > GAMEWORLDHEIGHT - SCREEN_HEIGHT)
{

ScrollY = GAMEWORLDHEIGHT - SCREEN_HEIGHT;
SpeedY = 0;

}

//set dimensions of the source image
RECT r1 = {ScrollX, ScrollY, ScrollX+SCREEN_WIDTH-1,

ScrollY+SCREEN_HEIGHT-1};

//set the destination rect
RECT r2 = {0, 0, SCREEN_WIDTH-1, SCREEN_HEIGHT-1};

//draw the current game world view
d3ddev->StretchRect(gameworld, &r1, backbuffer, &r2,

D3DTEXF_NONE);
}

Dynamically Rendered Tiles
Displaying tiles just to make a proof-of-concept is one thing, but it is not very

useful. True, you have some code to create a virtual background, load tiles onto

it, and then scroll the game world. In the past, I have generated a realistic-looking

game map with source code, using an algorithm that matched terrain curves and

straights (such as the road, bridge, and river) so that I created an awesome map

from scratch, all by myself. Building an algorithmic landscape is one thing, but

constructing it at run time is not a great solution—even if your map-generating

routine is very good.

Dynamically Rendered Tiles 243

For instance, many games, such as Warcraft III, Age of Mythology, and Civili-

zation IV can generate the game world on the fly. Obviously, the programmers

spent a lot of time perfecting the world-generating routines. If your game would

benefit by featuring a randomly generated game world, then your work is cut out

for you, but the results will be worth it. This is simply one of those design

considerations that you must make, given that you have time to develop it.

The Tile Map

Assuming you don’t have the means to generate a randommap (or simply do not

want to go that route), you can simply create one within an array, as we did in the

ScrollTest program. But where did this map data actually come from? And, fur-

thermore, where do you start? First of all, you should realize that the tiles are

numbered and should be referenced this way in themap array. Each number in the

tile map represents a tile image in a bitmap file. Here is what the array looks like, as

defined in the DynamicScroll program (which we’ll cover here in a minute).

244 Chapter 11 n Tile-Based Scrolling Backgrounds

int MAPDATA[MAPWIDTH*MAPHEIGHT] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192
};

The trick here is that this is really only a single-dimensional array, but the listing

makes it obvious how the map will look because there are 16 numbers in each

row—the same number of tiles in each row of the bitmap file, which is shown in

Figure 11.7. I did this intentionally so you can use this as a template for creating

your own maps. And you can create more than one map if you want. Simply

change the name of each map and reference the map you want to draw so that

your newmap will show up. You are not limited in addingmore tiles to each row.

One interesting thing you can try is making MAPDATA a two-dimensional array

containing many maps, and then changing the map at run time! You could use

this simple scrolling code as the basis for any of a hundred different games if you

have the creative gumption to do so.

Creating a Tile Map Using Mappy

I’mgoing to go through the stepswith you for creating a very simple tilemapusing

the awesome (and free) tile-editing program,Mappy. This program is available at

http://www.tilemap.co.uk, and is provided on the CD-ROM in \software\Mappy.

It is my favorite level/map-editing program for tile-based games, and is used by

many professional game developers as well (especially those working on handheld

Dynamically Rendered Tiles 245

Figure 11.7
This starfield image used by the DynamicScroll program was shot by the Hubble Space Telescope
(courtesy of NASA).

http://www.tilemap.co.uk

and strategy games). I wishwe had time for a full tutorial on usingMappy, because

it really is jam-packed with an amazing assortment of features (tucked away in its

various sub-menus). We’ll have to rely on simplistic coverage of Mappy here, just

enough to read in a large photograph and convert it to a tile map.

No t e

If you enjoy this subject and want to learn more, I recommend you pick up Game Programming All
in One, Third Edition, which contains five whole chapters on just the subject of scrolling back-
grounds, including a complete tutorial chapter on using Mappy! Although that book focuses on
the open-source Allegro Game Library, it uses DirectX behind the scenes.

Let’s start by firing up Mappy. When it starts running, open the File menu and

select NewMap. This will bring up the NewMap dialog box shown in Figure 11.8.

As shown in this figure, type in 64� 64 for the tile size and 16� 24 for the map

size (which is a count of the number of tiles in the tile map). The newmap will be

created, but will be void of any tiles as of yet, as you can see in Figure 11.9.

Importing an Existing Bitmap File

Next, we’re going to import the space photograph taken by Hubble into Mappy

and convert it to a tile map. As shown in Figure 11.10, open the MapTools menu,

and select Useful Functions, followed by the option ‘‘Create map from big

picture’’. Browse for the space1.bmp file, located in \sources\chapter11\Dyna-

micScroll\map on the CD-ROM. When you select this file, Mappy will import it

into the palette of tiles, as shown in Figure 11.11.

As you can see from this figure, there are a lot of tiles that made up the image! If

you are curious about the number of tiles in this palette, let’s take a look! Open

246 Chapter 11 n Tile-Based Scrolling Backgrounds

Figure 11.8
Creating a new map using Mappy

up the MapTools menu and select Map Properties. This brings up the Map

Properties dialog box, shown in Figure 11.12. Take a look at the text values on the

left side of the dialog: Map Array, Block Str, Graphics, and so on. The Map Array

text tells you the size of the map in tiles (16�24, just as we specified). Now take a

look at the Graphics information. Here we see that there are 193 tiles in this tile

map, and they are all 64�64 pixels in size, and have a color depth of 24 bits.

When you import a large bitmap into Mappy, it grabs tiles starting at the upper-

left corner of the bitmap, and goes through the image in a grid, from left to right

and from top to bottom, until the entire image has been encoded into tiles. It

then constructs the tile map using those tile numbers and inserts the tile map into

the editor, so that it resembles the original bitmap image. Note that you must

create the tile map in the first place so that it is at least as large as the bitmap

image (in this case, 1024�768) or larger.

Dynamically Rendered Tiles 247

Figure 11.9
The new map that has been created by Mappy, awaiting your custom tiles

Exporting the Tile Map

First, let’s just save the tile map in the nativeMappy file format, so it can be edited

later. Open the File menu and select Save. I have named this tile map

‘‘spacemap’’. The default extension for a Mappy file is .fmp.

Now, you can go ahead and edit the tile map if you want, but I’m going to just go

ahead and export the tile map now and show you how to do that. First, open up

the File menu and select the Export option. This brings up the Export dialog,

shown in Figure 11.13. Select the options on this dialog as follows:

n Map array as comma values only (?.CSV)

n Graphics Blocks as picture (?.BMP)

n 16 blocks per row

These options will causeMappy to export a new bitmap file comprised of the tiles

in the order that they appear in the palette—which means this bitmap image will

248 Chapter 11 n Tile-Based Scrolling Backgrounds

Figure 11.10
Preparing to import a large bitmap file as the source for our tiles

Dynamically Rendered Tiles 249

Figure 11.12
The Map Properties dialog box shows the properties of the tile map.

Figure 11.11
The palette of tiles has been imported from the large space photograph.

then be used to draw the tiles in your game. Note that Mappy automatically

inserts a blank tile first in the palette. You want to keep that blank tile in place,

because the tile map values begin with that first blank tile (index number zero). I

have named the export file spacemap.

Click the Okay button and Mappy will save two new files for your use:

n spacemap.csv

n spacemap.bmp

The .csv file is a comma-separated values file, which is actually just stored in a text

format (which can be opened in Notepad or any text editor). If you have

Microsoft Excel installed, it will try to open the .csv file if you double-click it,

because Excel uses that format for text-based spreadsheets as well. You can

rename it to spacemap.txt to make it easier to open the file if you wish. Once

open, copy the contents out of this file and paste it into your source code over

any pre-existing tile map (defined by the array called MAPDATA in the examples in

this chapter).

250 Chapter 11 n Tile-Based Scrolling Backgrounds

Figure 11.13
The Export dialog box is used to export a tile map to a text file.

The DynamicScroll Project

Now let’s create a new project. You may just re-use one of the projects from the

previous chapter if you want, since it will already be configured with the proper

library files and so forth. Or, if you created the ScrollTest program, feel free to

reuse that project.

If you are creating a new project file, call it DynamicScroll, since that is the name

of this program. This program is similar to ScrollTest, but it draws the tiles

directly to the screen without the need for a large bitmap in memory. This

program will also use a smaller virtual background to cut down on the size of the

map array. Why? Not to save memory, but to make the program more man-

ageable. Because the virtual background was 1600�1200 in the previous pro-

gram, it would require 50 columns of tiles across and 37 rows of tiles down to fill

it! That is no problem at all for a map editor program, but it’s too much data to

type in manually.

To make it more manageable, the new virtual background will be 1024 pixels

across, which also happens to be the width of the screen in this program. That

was intentional, because the DynamicScroll program will simulate a vertically

scrolling arcade shooter game! The point is to demonstrate how it will work, not

to build a game engine, so don’t worry about precision at this point. If you want

to type in the values to create a bigger map, by all means, go for it! That would be

a great learning experience, as a matter of fact. For your purposes here (and with

my primary goal of being able to print an entire row of numbers in a single source

code line in the book), I’ll stick to 16 tiles across and 24 tiles down.

In the example tile map, I have doubled its size by copying the entire tile map of

values and pasting them at the end, which effectively doubles the map size;

otherwise, you would not be able to scroll it. We’re just going to scroll the screen

of tiles over and over again in such a game, but in this example, the scrolling will

be controlled by the mouse. You can work with a map that is deeper than it is

wide, so that will allow you to test scrolling up and down fairly well. Figure 11.14

shows the output from the DynamicScroll program.

DynamicScroll Header File

Here’s the DynamicScroll header file, which goes in the game.h header file.

// Beginning Game Programming, Second Edition
// DynamicScroll program header

Dynamically Rendered Tiles 251

#ifndef _GAME_H
#define _GAME_H

#include <d3d9.h>
#include <d3dx9.h>
#include <d3dx9math.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include "dxgraphics.h"
#include "dxinput.h"
#include "dxaudio.h"

//application title
#define APPTITLE "DynamicScroll"

//screen setup
#define FULLSCREEN 0 //0 = windowed, 1 = fullscreen
#define SCREEN_WIDTH 1024
#define SCREEN_HEIGHT 768

252 Chapter 11 n Tile-Based Scrolling Backgrounds

Figure 11.14
The DynamicScroll program scrolls a map that was defined in the map array.

//data for the scrolling map
#define TILEWIDTH 64
#define TILEHEIGHT 64
#define MAPWIDTH 16
#define MAPHEIGHT 24
#define GAMEWORLDWIDTH (TILEWIDTH * MAPWIDTH)
#define GAMEWORLDHEIGHT (TILEHEIGHT * MAPHEIGHT)
//scrolling window size
#define WINDOWWIDTH (SCREEN_WIDTH / TILEWIDTH) * TILEWIDTH
#define WINDOWHEIGHT (SCREEN_HEIGHT / TILEHEIGHT) * TILEHEIGHT
//scroll buffer size
#define SCROLLBUFFERWIDTH (SCREEN_WIDTH + TILEWIDTH * 2)
#define SCROLLBUFFERHEIGHT (SCREEN_HEIGHT + TILEHEIGHT * 2)

//macros to read the keyboard asynchronously
#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEY_UP(vk_code)((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

//function prototypes
int Game_Init(HWND);
void Game_Run(HWND);
void Game_End(HWND);

//scrolling map support functions
void DrawTile(LPDIRECT3DSURFACE9,int,int,int,int,LPDIRECT3DSURFACE9,int,
int);
void DrawScrollWindow();
void DrawTiles();
void UpdateScrollPosition();

#endif

DynamicScroll Source Code

Now let’s type in the source code for the DynamicScroll program. This code goes

in the game.cpp file.

// Beginning Game Programming, Second Edition
// DynamicScroll program

#include "game.h"

int ScrollX, ScrollY; //current scroll position
int SpeedX, SpeedY; //scroll speed

Dynamically Rendered Tiles 253

LPDIRECT3DSURFACE9 scrollbuffer; //scroll buffer
LPDIRECT3DSURFACE9 tiles; //source image containing tiles
long start; //timing variable

int MAPDATA[MAPWIDTH*MAPHEIGHT] = {
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,
70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,
92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,
110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,
142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,
158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,
174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,
190,191,192,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,
63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,
84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,
120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,
136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,
152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,
168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,
184,185,186,187,188,189,190,191,192
};

//initializes the game
int Game_Init(HWND hwnd)
{

HRESULT result;

Init_DirectInput(hwnd);
Init_Keyboard(hwnd);
Init_Mouse(hwnd);

//load the tile images
tiles = LoadSurface("spacemap.bmp", D3DCOLOR_XRGB(0,0,0));

//create the scroll buffer surface in memory, slightly bigger
//than the screen

result = d3ddev->CreateOffscreenPlainSurface(

254 Chapter 11 n Tile-Based Scrolling Backgrounds

SCROLLBUFFERWIDTH, SCROLLBUFFERHEIGHT,
D3DFMT_X8R8G8B8, D3DPOOL_DEFAULT,
&scrollbuffer,
NULL);

start = GetTickCount();
return 1;

}

//the main game loop
void Game_Run(HWND hwnd)
{

//make sure the Direct3D device is valid
if (d3ddev == NULL)

return;

//poll DirectInput devices
Poll_Keyboard();
Poll_Mouse();

//check for escape key (to exit program)
if (Key_Down(DIK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);

//scroll based on mouse input
if (Mouse_X() != 0) ScrollX += Mouse_X();
if (Mouse_Y() != 0) ScrollY += Mouse_Y();

//keep the game running at a steady frame rate
if (GetTickCount() - start >= 30)
{

//reset timing
start = GetTickCount();

//update the scrolling view
UpdateScrollPosition();

//start rendering
if (d3ddev->BeginScene())
{

//draw tiles onto the scroll buffer
DrawTiles();

Dynamically Rendered Tiles 255

//draw the scroll window onto the back buffer
DrawScrollWindow();

//stop rendering
d3ddev->EndScene();

}
}

//display the back buffer on the screen
d3ddev->Present(NULL, NULL, NULL, NULL);

}

//frees memory and cleans up before the game ends
void Game_End(HWND hwnd)
{

Kill_Keyboard();
Kill_Mouse();
dinput->Release();

}

//This function updates the scrolling position and speed
void UpdateScrollPosition()
{

//update horizontal scrolling position and speed
ScrollX += SpeedX;

if (ScrollX < 0)
{

ScrollX = 0;
SpeedX = 0;

}
else if (ScrollX > GAMEWORLDWIDTH - WINDOWWIDTH)

{
ScrollX = GAMEWORLDWIDTH - WINDOWWIDTH;
SpeedX = 0;

}

//update vertical scrolling position and speed
ScrollY += SpeedY;
if (ScrollY < 0)

{
ScrollY = 0;
SpeedY = 0;

}

256 Chapter 11 n Tile-Based Scrolling Backgrounds

else if (ScrollY > GAMEWORLDHEIGHT - WINDOWHEIGHT)
{

ScrollY = GAMEWORLDHEIGHT - WINDOWHEIGHT;
SpeedY = 0;

}
}

//This function does the real work of drawing a single tile from the
//source image onto the tile scroll buffer. Parameters provide much
//flexibility.
void DrawTile(LPDIRECT3DSURFACE9 source, // source surface image

int tilenum, // tile #
int width, // tile width
int height, // tile height
int columns, // columns of tiles
LPDIRECT3DSURFACE9 dest, // destination surface
int destx, // destination x
int desty) // destination y

{
//create a RECT to describe the source image
RECT r1;
r1.left = (tilenum % columns) * width;
r1.top = (tilenum / columns) * height;
r1.right = r1.left + width;
r1.bottom = r1.top + height;

//set destination rect
RECT r2 = {destx,desty,destx+width,desty+height};

//draw the tile
d3ddev->StretchRect(source, &r1, dest, &r2, D3DTEXF_NONE);

}

//This function fills the tile buffer with tiles representing
//the current scroll display based on scrollx/scrolly.
void DrawTiles()
{

int tilex, tiley;
int columns, rows;
int x, y;
int tilenum;

//calculate starting tile position

Dynamically Rendered Tiles 257

tilex = ScrollX / TILEWIDTH;
tiley = ScrollY / TILEHEIGHT;

//calculate the number of columns and rows
columns = WINDOWWIDTH / TILEWIDTH;
rows = WINDOWHEIGHT / TILEHEIGHT;

//draw tiles onto the scroll buffer surface
for (y=0; y<=rows; y++)
{

for (x=0; x<=columns; x++)
{

//retrieve the tile number from this position
tilenum = MAPDATA[((tiley + y) * MAPWIDTH + (tilex + x))];

//draw the tile onto the scroll buffer
DrawTile(tiles,tilenum,TILEWIDTH,TILEHEIGHT,16,scrollbuffer,

x*TILEWIDTH,y*TILEHEIGHT);
}

}
}

//This function draws the portion of the scroll buffer onto the back buffer
//according to the current "partial tile" scroll position.
void DrawScrollWindow()
{

//calculate the partial sub-tile lines to draw using modulus
int partialx = ScrollX % TILEWIDTH;
int partialy = ScrollY % TILEHEIGHT;

//set dimensions of the source image as a rectangle
RECT r1 = {partialx,partialy,partialx+WINDOWWIDTH,partialy+WINDOWHEIGHT};

//set the destination rectangle
//This line draws the virtual scroll buffer to the screen exactly as is,
//without scaling the image to fit the screen. If your screen does not
//divide evenly with the tiles, then you may want to scale the scroll
//buffer to fill the entire screen. It’s better to use a resolution that
//divides evenly with your tile size.

//use this line for scaled display
//RECT r2 = {0, 0, WINDOWWIDTH-1, WINDOWHEIGHT-1};

258 Chapter 11 n Tile-Based Scrolling Backgrounds

//use this line for non-scaled display
RECT r2 = {0, 0, SCREEN_WIDTH-1, SCREEN_HEIGHT-1};

//draw the "partial tile" scroll window onto the back buffer
d3ddev->StretchRect(scrollbuffer, &r1, backbuffer, &r2, D3DTEXF_NONE);

}

Figure 11.15 shows the completed project with all the source files showing up in

the Solution Explorer, for your reference.

This program was quite a bit to chew on all at once, and we didn’t explain every

detail very carefully—because we have to move on to 3D and can’t spare any

more time on 2D graphics at this point! But all of this code is reusable and you

can build a scrolling arcade game with it very easily. Just get your scroller moving

on its own (without requiring user input), and then add some sprites over the

top, and presto—you have a scrolling arcade game!

Dynamically Rendered Tiles 259

Figure 11.15
The complete DynamicScroll project in Visual C++

What You Have Learned

In this chapter we learned about scrolling backgrounds. You learned how they are

created and how to use them in a game. Working with tiles to create a scrolling

game world is by no means an easy subject! Here are the key points:

n You learned how to create a virtual scroll buffer.

n You learned how to use Mappy to create a tile map.

n You learned how to dynamically draw tiles onto the screen.

Review Questions

260 Chapter 11 n Tile-Based Scrolling Backgrounds

The following review questions will challenge your comprehension of the subject

material covered in this chapter.

1. What was the resolution of the virtual scroll buffer used in the ScrollTest

program?

2. Likewise, what was the resolution of the buffer used in the DynamicScroll

program?

3. What is the difference between the tile drawing code in the two example

programs?

4. How would you create a tile map using Mappy with a gigantic level with

thousands of tiles?

5. What is the effective limit on map size for a game that draws tiles

dynamically?

On Your Own

The following exercises will challenge your retention of the information pre-

sented in this chapter.

Exercise 1. This DynamicScroll program sure has a lot of potential and we have

only scratched the surface here! See if you can get the program to automatically

scroll the tile map without user input.

On Your Own 261

Exercise 2. The DynamicScroll program almost looks like a rudimentary game

with automatic scrolling, so let’s take it one step further. Load up a sprite and

draw it on the screen over the top of the scroller. Then, allow the player to move

the space ship left and right using the arrow keys.

262 Chapter 11 n Tile-Based Scrolling Backgrounds

3D Programming

Part III is dedicated to the subject of 3D programming.

Chapter 12 3D Graphics Fundamentals

Chapter 13 Creating Your Own 3D Models with Anim8or

Chapter 14 Working with 3D Model Files

Chapter 15 Complete 3D Game

Part III

This page intentionally left blank

3D Graphics
Fundamentals

This chapter covers the basics of 3D graphics. You will learn the basic concepts so

that you are at least aware of the key points in 3D programming. However, this

chapter will not go into great detail on 3D mathematics or graphics theory, which

are far too advanced for this book. What you will learn instead is the practical

implementation of 3D in order to write simple 3D games. You will get just exactly

what you need to write a simple 3D game without getting bogged down in theory.

If you have questions about how matrix math works and about how 3D rendering

265

chapter 12

is done, you might want to use this chapter as a starting point and then go on and

read a book such as Beginning Direct3D Game Programming, by Wolfgang Engel

(Thomson Course Technology). The goal of this chapter is to provide you with a

set of reusable functions that can be used to develop 3D games.

Here is what you will learn in this chapter:

n How to create and use vertices.

n How to manipulate polygons.

n How to create a textured polygon.

n How to create a cube and rotate it.

Introduction to 3D Programming
It’s a foregone conclusion today that everyone has a 3D accelerated video card.

Even the low-end budget video cards are equipped with a 3D graphics processing

unit (GPU) that would be impressive were it not for all the competition in

this market pushing out more and more polygons and new features every year.

Figure 12.1 shows a typical GeForce 6600 video card.

266 Chapter 12 n 3D Graphics Fundamentals

Figure 12.1
Modern 3D video cards are capable of producing real-time photorealistic graphics.

The Three Steps to 3D Programming

There are three steps involved in 3D graphics programming:

1. World transformation. This moves 3D objects around in the ‘‘world,’’

which is a term that describes the entire scene. In other words, the world

transformation causes things in the scene to move, rotate, scale, and so on.

2. View transformation. This is the camera, so to speak, that defines what you

see on the screen. The camera can be positioned anywhere in the ‘‘world,’’ so

if you want to move the camera, you do so with the view transform.

3. Projection transformation. This is the final step, in which you take the view

transform (what objects are visible to the camera) and draw them on the

screen, resulting in a flat 2D image of pixels.

Direct3D provides all the functions and transformations that you need to create,

render, and view a scene without using any 3D mathematics—which is good for

you, the programmer, because 3D matrix math is not easy.

A transformation occurs when you add, subtract, multiply, or divide one matrix

with another matrix, causing a change to occur within the resulting matrix; these

changes cause 3D objects to move, rotate, and scale 3D objects. A matrix is a grid

or two-dimensional array that is 4� 4 (or 16 cells) in size. Direct3D defines all of

the standard matrices that you need to do just about everything required for a 3D

game.

The 3D Scene

Before you can do anything with the scene, you must first create the 3D objects

that will make up the scene. In this chapter, I will show you how to create simple

3D objects from scratch, and will also go over some of the freebie models that

Direct3D provides, mainly for testing. There are standard objects, such as a

cylinder, pyramid, torus, and even a teapot, that you can use to create a scene.

Of course, you can’t create an entire 3D game just with source code because there

are too many objects in a typical game. Eventually, you’ll need to create your 3D

models in a modeling program like 3ds max or the free Anim8or program

(included on the CD-ROM). The next two chapters will explain how to load 3D

models from a file into a scene. But in this chapter, I’ll stick with programmable

3D objects.

Introduction to 3D Programming 267

Introducing Vertices

The advanced 3D graphics chip that powers your video card sees only vertices. A

vertex (singular) is a point in 3D space specified with the values of X, Y, and Z.

The video card itself really only ‘‘sees’’ the vertices that make up the three angles

of each triangle. It is the job of the video card to fill in the empty space that makes

up the triangle between the three vertices. See Figure 12.2.

Creating and manipulating the 3D objects in a scene is a job for you, the pro-

grammer, so it helps to understand some of the basics of the 3D environment.

The entire scene might be thought of as a mathematical grid with three axes. You

might be familiar with the Cartesian coordinate system if you have ever studied

geometry or trigonometry: The coordinate system is the basis for all geometric

and trigonometric math, as there are formulas and functions for manipulating

points on the Cartesian grid.

The Cartesian Coordinate System

The ‘‘grid’’ is really made up of two infinite lines that intersect at the origin. These

lines are perpendicular. The horizontal line is called the X axis and the vertical

line is called the Y axis. The origin is at position (0,0). The X axis goes up in value

toward the right, and it goes down in value to the left. Likewise, the Y axis goes up

in the up direction, and goes down in the down direction. See Figure 12.3.

If you have a point at a specified position that is represented on a Cartesian

coordinate system, such as at (100,�50), then you canmanipulate that point using

268 Chapter 12 n 3D Graphics Fundamentals

Figure 12.2
A 3D scene is made up entirely of triangles.

mathematical calculations. There are three primary things you can do with a

point:

1. Translation. This is the process of moving a point to a new location. See

Figure 12.4.

2. Rotation. This causes a point to move in a circle around the origin at a

radius that is based on its current position. See Figure 12.5.

Introduction to 3D Programming 269

Figure 12.3
The Cartesian coordinate system

Figure 12.4
A point (100,�50) is translated by a value of (�200,150) resulting in a new position at (�100,100).

3. Scaling. You can adjust the point relative to the origin by modifying the

entire range of the two axes. See Figure 12.6.

The Origin of Vertices

The one thing you want to remember when working with 3D graphics is that

everything works around the origin. So, when you want to rotate a 3D object on

270 Chapter 12 n 3D Graphics Fundamentals

Figure 12.5
A point (75,75) is rotated by 180 degrees, resulting in a new position at (�75,�75).

Figure 12.6
A point (75,75) is scaled by �50 percent, resulting in a new position at (�50,50).

the screen, you have to remember that all rotation is based on the origin point. If

you translate the object to a new location that is no longer centered at the origin,

then rotating the object will cause it to move around the origin in a circle!

So, what’s the solution to this problem? This is the biggest sticking point most

people run into with 3D programming because it’s very hard to get a handle on it

unless you have, say, a more senior programmer to explain it to you. In this case,

you have an opportunity to learn an important lesson in 3D graphics pro-

gramming that is all-too-often ignored: The trick is to not really move the 3D

objects at all.

What!? No, I’m not kidding. The trick is to leave all of the 3D objects at the origin

and not move them at all. Does that mess with your head? Okay, I’ll explain

myself. You know that a 3D object is made up of vertices (three for every triangle,

to be exact). The key is to draw the 3D objects at a specified position, with a

specified rotation and scaling value, without moving the ‘‘original’’ object itself. I

don’t mean that you should make a copy of it; instead, just draw it at the last

instant before refreshing the screen. Do you remember how you were able to

draw many sprites on the screen with only a single sprite image? It’s sort of like

that, only you’re just drawing a 3D object based on the original ‘‘image,’’ so to

speak, and the original does not change. By leaving the source objects at the

origin, you can rotate them around what is called a local origin for each object,

which preserves the objects.

So, how do you move a 3D object without moving it? The answer is by using

matrices. A matrix is a 4�4 grid of numbers that represent a 3D object in

‘‘space.’’ Each 3D object in your scene (or game) has its own matrix.

No t e

As you might have guessed, matrix mathematics is a subject way, way, way beyond the scope of
this book, but I encourage you to look into it if you want to learn what really happens in the world
of polygons.

The result of using matrices to give each 3D object its own origin is that your 3D

world has its own coordinate system—as do all of the objects in the scene—so

you can manipulate objects independently of one another. You can even

manipulate the entire scene without affecting these independent objects. For

example, suppose you are working on a racing game, and you have cars racing

around an oval track. You want each car to be as realistic as possible so that each

car can rotate and move on its own, regardless of what the other cars are doing.

Introduction to 3D Programming 271

At some point, of course, you want to add the code that will cause the cars to

crash if they collide. You also want the cars to stay ‘‘flat’’ on the pavement of the

track, which means calculating the angle of the track and positioning the four

corners of the car appropriately.

Imagine taking it even further—think of the possibilities that arise when you can

cause individual objects to contain sub-objects, each with their own local origins,

that follow along with the ‘‘parent’’ object. You can then position the sub-objects

with respect to the origin of the parent object and cause the sub-objects to rotate

on their own. Does this help you to visualize how you might program the wheels

of a car to roll on their own while the car remains stationary? The wheels ‘‘follow

along’’ with the car, meaning they translate/rotate/scale with the parent object,

but they also have the ability to roll and turn left or right.

C a u t i o n

The most frustrating problem with 3D programming is not seeing anything come up on the screen
after you have written what you believe to be clean code that ‘‘should work, dang it!’’ The number
one most common mistake in 3D programming is forgetting about the camera and view trans-
form. As you work through this chapter, keep the following points in mind.

The first thing you should set up in the scene is the perspective, camera, and view with a test poly
or quad to make sure your scene is set up properly before proceeding. Once you know for sure
that the view is good, you can move ahead with the rest of the code for your game. Another
frequent problem involves the position of the camera, which might seem okay for your initial test
but then may be too close to the object for it to show up, or the object may have moved off ‘‘the
screen.’’ One good test is to move the camera away from the origin (such as a Z of --100, for
instance), and then make sure your target matrix points to the origin (0, 0, 0). That should clear up
any viewing problems and allow you to get cracking on the game again.

The second thing you should do to initially set up the scene is check the lighting conditions of your
scene. Do you have lighting enabled without any lights? Direct3D is really literal and will not
create ambient light for you unless you tell it there will be no light sources!

Moving to the Third Dimension

I hope you are now getting the hang of the Cartesian coordinate system.

Although it is crucial to the study of 3D graphics, I will not go into any more

detail because the subject requires more theory and explanation than I have room

for here. Instead, I’m going to just cover enough material to teach you what you

need to know to write a few simple 3D games, after which you can decide which

aspect of 3D programming you’d like to study further. It’s always more fun to do

what works first and work on an actual game rather than try to learn every nook

and cranny of a library like Direct3D all at once.

272 Chapter 12 n 3D Graphics Fundamentals

Figure 12.7 shows the addition of a third dimension to the Cartesian coordinate

system. All of the current rules that you have learned about the 2D coordinate

system apply, but each point is now referred to with three values (X,Y,Z) instead

of just the two.

Grabbing Hold of the 3D Pipeline

The first thing you need to learn before you can draw a single polygon on the

screen is that Direct3D uses a custom vertex format that you define. Here is the

struct that you’ll be using in this chapter:

struct VERTEX

{
float x, y, z;
float tu, tv;

};

The first three member variables are the position of the vertex, and the tu and tv

variables are used to describe how a texture is drawn. Now you have an incredible

amount of control over how the rendering process takes place. These two vari-

ables instruct Direct3D how to draw a texture on a surface, and Direct3D

Introduction to 3D Programming 273

Figure 12.7
The Cartesian coordinate system with a third dimension

supports wrapping of a texture around the curve of a 3D object. You specify the

upper-left corner of the texture with tu = 0.0 and tv = 0.0, and then you specify

the bottom-right corner of the texture using tu = 1.0 and tv = 1.0. All the

polygons in between these two will usually have zeroes for the texture coordi-

nates, which tells Direct3D to just keep on stretching the texture over them.

Texturing is an advanced subject and there are a thousand options that you will

discover as you explore 3D programming in more depth. For now, let’s stick to

stretching a texture over two triangles in a quad.

Introducing Quads

Using the VERTEX struct as a basis, you can then create a struct that will help with

creating and keeping track of quads:

struct QUAD
{

VERTEX vertices[4];
LPDIRECT3DVERTEXBUFFER9 buffer;
LPDIRECT3DTEXTURE9 texture;

};

The QUAD struct is completely self-contained as far as the data goes. Here you have

the four vertices for the four corners of the quad (made up of two triangles); you

have the vertex buffer for this single quad (more on that in a minute) and you

have the texture that is mapped onto the two triangles. Pretty cool, huh? The only

thing missing is the code that actually creates a quad and fills the vertices with real

3D points. First, let’s write a function to create a single vertex. That can then be

used to create the four vertices of the quad:

VERTEX CreateVertex(float x, float y, float z, float tu, float tv)
{

VERTEX vertex;
vertex.x = x;
vertex.y = y;
vertex.z = z;
vertex.tu = tu;
vertex.tv = tv;
return vertex;

}

This function just declares a temporary VERTEX variable, fills it in with the values

passed to it via parameters, and then returns it. This is very convenient because

274 Chapter 12 n 3D Graphics Fundamentals

there are five member variables in the VERTEX struct. I’ll show you how to create

and draw a quad in a bit. But first you need to learn about the vertex buffer.

The Vertex Buffer

The vertex buffer is not as scary as it might sound. My first impression of a

vertex buffer was that it was some kind of surface onto which the 3D objects are

drawn before being sent to the screen, sort of like a double buffer for 3D. I

couldn’t have been more wrong! A vertex buffer is just a place where you store

the points that make up a polygon so that Direct3D can draw it. You can

technically have many vertex buffers in your program—one for each triangle if

you want. However, this is extremely inefficient and will cause a 3D program to

run quite slowly.

For the sake of clarity and for illustrative purposes, I will be showing you how to

get 3D objects on the screen by giving each object its own vertex buffer. But in

general practice, this is a very bad idea. As I’m basing this chapter on the concept

of a quad (made up of two triangles arranged in a ‘‘strip’’), it makes sense to

create a vertex buffer for each quad in the scene, to help you understand what’s

going on, and it really helps when you are just learning this material for the first

time. Having a vertex buffer for each quad makes it crystal-clear what’s going on

when a quad is rendered.

Giving every quad its own vertex buffer is sort of like an airline company

transporting a single person in a passenger jumbo jet. Imagine a Boeing 747 with

a full complement of pilots and crew just to serve a single customer! But for

educational purposes, I suppose this scenario does demonstrate how commercial

aviation works.

Just be aware that this is a big issue with 3D engines, where the vertex buffer is

the subject of much discussion regarding optimization and efficiency. In fact,

most 3D engines employ what is called a vertex buffer cache that contains all

of the vertices that will be visible in the camera’s view. Powerful 3D engines

also use what’s called a texture cache so that textures are re-used by polygons

that share them. In case you are curious as to why this is the case, understand

that a 3D card can only ‘‘use’’ one texture at a time. Therefore, it is more

efficient to tell Direct3D to use a texture only once—and then use that texture

throughout the scene on any polygon that needs it before going to the next

texture. This is where a texture cache comes in handy, as it will take care of

these kinds of issues.

Introduction to 3D Programming 275

Creating a Vertex Buffer

To get started, you must define a variable for the vertex buffer:

LPDIRECT3DVERTEXBUFFER9 buffer;

Next, you can create the vertex buffer by using the CreateVertexBuffer function.

It has this format:

HRESULT CreateVertexBuffer(
UINT Length,
DWORD Usage,
DWORD FVF,
D3DPOOL Pool,
IDirect3DVertexBuffer9** ppVertexBuffer,
HANDLE* pSharedHandle

);

The first parameter specifies the size of the vertex buffer, which should be big

enough to hold all of the vertices for the polygons you want to render. The second

parameter specifies the way in which you plan to access the vertex buffer, which is

usually write-only. The third parameter specifies the vertex stream type that

Direct3D expects to receive. You should pass the values corresponding to the

type of vertex struct you have created. Here, we have just the position and texture

coordinates in each vertex, so this value will be D3DFVF_XYZ | D3DFVF_TEX1 (note

that values are combined with or). Here is how I define the vertex format:

#define D3DFVF_MYVERTEX (D3DFVF_XYZ | D3DFVF_TEX1)

The fifth parameter specifies the vertex buffer pointer, and the last parameter is

not needed. How about an example? Here y’go:

d3ddev->CreateVertexBuffer(
4*sizeof(VERTEX),
D3DUSAGE_WRITEONLY,
D3DFVF_MYVERTEX,
D3DPOOL_DEFAULT,
&buffer,
NULL);

As you can see, the first parameter receives an integer that is sizeof(VERTEX)

times four (because there are four vertices in a quad). If you are drawing just a

single triangle, you would specify 3 * sizeof(VERTEX), and so on for however

276 Chapter 12 n 3D Graphics Fundamentals

many vertices are in your 3D object. The only really important parameters, then,

are the vertex buffer length and pointer (first and fifth, respectively).

Filling the Vertex Buffer

The last step in creating a vertex buffer is to fill it with the actual vertices of your

polygons. This step must follow any code that generates or loads the vertex

array, as it will plug the data into the vertex buffer. For reference, here is the

definition for the QUAD struct once more (pay particular attention to the VERTEX

array):

struct QUAD
{

VERTEX vertices[4];
LPDIRECT3DVERTEXBUFFER9 buffer;
LPDIRECT3DTEXTURE9 texture;

};

You can use the CreateVertex function, for instance, to set up the default values

for a quad:

vertices[0] = CreateVertex(-1.0f, 1.0f, 0.0f, 0.0f, 0.0f);
vertices[1] = CreateVertex(1.0f, 1.0f, 0.0f, 1.0f, 0.0f);
vertices[2] = CreateVertex(-1.0f,-1.0f, 0.0f, 0.0f, 1.0f);
vertices[3] = CreateVertex(1.0f,-1.0f, 0.0f, 1.0f, 1.0f);

That is just one way to fill the vertices with data. Youmight define a different type

of polygon somewhere in your program or load a 3D shape from a file (more on

that in the next chapter!).

After you have your vertex data, you can plug it into the vertex buffer. To do so,

you must Lock the vertex buffer, copy your vertices into the vertex buffer, and

then Unlock the vertex buffer. Doing so required a temporary pointer. Here is

how you set up the vertex buffer with data that Direct3D can use:

void *temp = NULL;
buffer->Lock(0, sizeof(vertices), (void**)&temp, 0);
memcpy(temp,vertices, sizeof(vertices));
buffer->Unlock();

For reference, here is the Lock definition. The second and third parameters are

the important ones; they specify the length of the buffer and a pointer to it.

Introduction to 3D Programming 277

HRESULT Lock(

UINT OffsetToLock,
UINT SizeToLock,
VOID **ppbData,
DWORD Flags

);

Rendering the Vertex Buffer

After initializing the vertex buffer, it will be ready for the Direct3D graphics

pipeline and your source vertices will no longer matter. This is called the ‘‘setup,’’

and it is one of the features that have been moved out of the Direct3D drivers and

into the GPU in recent years. Streaming the vertices and textures from the vertex

buffer into the scene is handled much more quickly by a hard-coded chip than it

is by software.

In the end, it’s all about rendering what’s inside the vertex buffer, so let’s learn how

to do just that. To send the vertex buffer that you’re currently working on to the

screen, set the stream source for theDirect3Ddevice so that it points to your vertex

buffer, and then call the DrawPrimitive function. Before doing this, you must first

set the texture to be used. This is one of the most confusing aspects of 3D graphics,

especially for a beginner. Direct3D deals with just one texture at a time, so you

have to tell it which texture to use each time it changes or Direct3Dwill just use the

last-defined texture for the entire scene! Kind of weird, huh?Well, it makes sense if

you think about it. There is no pre-programmedway to tell Direct3D to use ‘‘this’’

texture for one polygon and ‘‘that’’ texture for the next polygon. You just have to

write this code yourself each time the texture needs to be changed.

Well, in the case of a quad, we’re just dealing with a single texture for each quad,

so the concept is easier to grasp. You can create any size vertex buffer you want,

but you will find it easier to understand how 3D rendering works by giving each

quad its own vertex buffer. This is not the most efficient way to draw 3D objects

on the screen, but it works great while you are learning the basics! Each quad can

have a vertex buffer as well as a texture, and the source code to render a quad is

therefore easy to grasp. As you can imagine, this makes things a lot easier to deal

with because you can write a function to draw a quad, with its vertex buffer and

texture easily accessible in the QUAD struct.

First, set the texture for this quad:

d3ddev->SetTexture(0, texture);

278 Chapter 12 n 3D Graphics Fundamentals

Next, set the stream source so that Direct3D knows where the vertices come from

and how many need to be rendered:

d3ddev->SetStreamSource(0, q.buffer, 0, sizeof(VERTEX));

Finally, draw the primitive specified by the stream source, including the ren-

dering method, starting vertex, and number of polys to draw:

d3ddev->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

Obviously, these three functions can be put into a reusable Draw function toge-

ther (more on that shortly).

Creating a Quad

I don’t know if quad is an official term, but it doesn’t matter, because the term

describes what I want to do on two levels. The first aspect of the term quad is that

it represents four corners of a rectangle, which is the building block of most 3D

scenes. You can build almost anything with a bunch of cubes (each of which is

made up of six quads). As you might have guessed, those corners are represented

as vertices. The second aspect of a quad is that it represents the four vertices of a

triangle strip.

Drawing Triangles

There are two ways you can draw objects (all of which are made up of triangles):

n A Triangle List draws every single polygon independently, each with a set of

three vertices.

n A Triangle Strip draws many polygons that are connected with shared

vertices.

Obviously, the second method is more efficient and, therefore, preferable, and it

helps to speed up rendering because fewer vertices must be used. But you can’t

render the entire scene with triangle strips because most objects are not con-

nected to each other. Now, triangle strips work great for things like ground

terrain, buildings, and other large objects. It also works well for smaller objects

like the characters in your game. But what helps here is an understanding that

Direct3D will render the scene at the same speed regardless of whether all the

triangles are in a single vertex buffer or in multiple vertex buffers. Think of it as a

Introduction to 3D Programming 279

series of for loops. Tell me which one of these two sections of code is faster.

Ignore the num++ part and just assume that ‘‘something useful’’ is happening

inside the loop.

for (int n=0; n<1000; n++) num++;

or

(for int n=0; n<250; n++) num++;
(for int n=0; n<250; n++) num++;
(for int n=0; n<250; n++) num++;
(for int n=0; n<250; n++) num++;

What do you think? It might seem obvious that the first code is faster because

there are fewer calls. Someone who is into optimization might think the second

code listing is faster because perhaps it avoids a few if statements here and there

(it’s always faster to unroll a loop and put if statements outside of them).

Un r o l l i n g a L o o p

What do I mean when I say unrolling a loop? (This is not directly related to 3D, but helpful
nonetheless.) Take a look at the following two groups of code (from a fictional line-drawing
function, assume x and y have already been defined):

for (x=0; x<639; x++)
if (x % 2 == 0)

DrawPixel(x, y, BLUE);
else

DrawPixel(x, y, RED);
and
for (x=0; x<639; x+=2)

DrawPixel(x, y, BLUE);
for (x=1; x<639; x+=2)

DrawPixel(x, y, RED);

The second snippet of code is probably twice as fast as the first one because the loops have been
unrolled and the if statement has been removed. Try to think about optimization issues like this
as you work on a game because loops should be coded carefully. The for loop doesn’t actually
take up any processor time itself; it’s the code executed by the for loop that is important to
consider.

A quad is made up of two triangles. The quad requires only four vertices because

the triangles will be drawn as a triangle strip. Check out Figure 12.8 to see the

difference between the two types of triangle rendering methods.

280 Chapter 12 n 3D Graphics Fundamentals

Figure 12.9 shows some other possibilities for triangle strips. You can join any

two vertices that share a side.

Creating the Quad

Creating a quad requires even less effort than creating two attached triangles,

thanks to the triangle strip rendering process. To draw any polygon, whether it is

a triangle, quad, or complete model, there are two basic steps involved.

Introduction to 3D Programming 281

Figure 12.8
Triangle List and Triangle Strip rendering methods compared and contrasted

Figure 12.9
A triangle strip can take many forms. Note also that many more than two polygons can be used.

First, you must copy the vertices into a Direct3D vertex stream. To do this, you

first lock the vertex buffer, then copy the vertices to a temporary storage location

with a pointer variable, then unlock the vertex buffer.

void *temp = NULL;
quad->buffer->Lock(0, sizeof(quad->vertices), (void**)&temp, 0);
memcpy(temp, quad->vertices, sizeof(quad->vertices));
quad->buffer->Unlock();

The next step is to set the texture, tell Direct3D where to find the stream source

containing vertices, and then call on the DrawPrimitive function to draw the

polygons specified in the vertex buffer stream. I like to think of this as a Star Trek-

esque transporter. The polygons are transported from the vertex buffer into the

stream and re-assembled on the screen!

d3ddev->SetTexture(0, quad->texture);
d3ddev->SetStreamSource(0, quad->buffer, 0, sizeof(VERTEX));
d3ddev->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

The Textured Cube Demo
Let’s get realistic here. No one cares about drawing shaded and colored triangles,

so I’m not going to waste time on the subject. Are you going to create a complete

3D game by programming triangles to assemble themselves into objects and then

move them around and do collision checking and so on? Of course not, so why

spend time learning about it? Triangles are critical to a 3D system, but not very

useful in the singular sense. Only when you combine triangles do things get

interesting.

The really interesting thing about modern 3D APIs is that it is easier to create a

textured quad than one with shading. I will avoid the subject of dynamic lighting

because it is beyond the scope of this book; ambient lighting will absolutely

suffice for our purposes here. Did you know that most retail games use ambient

lighting? Most of the dynamically-lit games are first-person shooters.

Modifying the Framework

What comes next? Well, now that you have all this great code for doing stuff in

3D, let’s just plug it into the Direct3D module in the game framework you’ve

been building in the book. And it’s about time, right? That ‘‘Direct3D’’ module

has been stuck in 2D land for several chapters now!

282 Chapter 12 n 3D Graphics Fundamentals

There is a lot of information here, and I don’t want to overwhelm you if this is

your first experience with Direct3D or in 3D graphics programming in general.

Anything that you do not fully grasp (or that I skim over) in this chapter will be

covered again in a little more detail in the next chapter, in accordance with my

‘‘learn by repetition’’ concept.

The unfortunate fact of the situation at this point is that the framework is getting

pretty big. There are now all of the following components in the framework that

has been developed in this book:

n dxgraphics.h

n dxgraphics.cpp

n dxaudio.h

n dxaudio.cpp

n dxinput.h

n dxinput.cpp

n winmain.cpp

n game.h

n game.cpp

In addition, the DirectX components need the following support files, which are

distributed with the DirectX SDK:

n dsutil.h

n dsutil.cpp

n dxutil.h

n dxutil.cpp

My goal is not to create some big game-engine type of library; it is just to group

reusable code in a way that makes it more convenient to write DirectX programs.

The problem is that many changes must be made to both the header and source

file for each struct, function, and variable. So what I’m going to do at this point is

just show you what code I’m adding to the framework, explain to you where it

goes, and then just encourage you to open the project from the CD-ROM. The

The Textured Cube Demo 283

‘‘open file and insert this code . . .’’ method is just too confusing, don’t you agree?

Due to the way compilers work, it’s just not a simple copy-and-paste operation

because variables need to be defined in the header (using extern) before they are

‘‘declared’’ in the actual source file. It’s an unwieldy process to say the least.

That said, I encourage you to open up the cube_demo project from \sources\

chapter12 on the CD-ROM, which you should have copied to your hard drive

already.

dxgraphics.h

First, let’s add the definitions for the VERTEX and QUAD structures and the camera

to the dxgraphics.h file:

#define D3DFVF_MYVERTEX (D3DFVF_XYZ | D3DFVF_TEX1)
struct VERTEX
{

float x, y, z;
float tu, tv;

};
struct QUAD
{

VERTEX vertices[4];
LPDIRECT3DVERTEXBUFFER9 buffer;
LPDIRECT3DTEXTURE9 texture;

};

extern D3DXVECTOR3 cameraSource;
extern D3DXVECTOR3 cameraTarget;

Next, let’s add the following sections of code to dxgraphics.h. First, the function

prototypes:

void SetPosition(QUAD*,int,float,float,float);
void SetVertex(QUAD*,int,float,float,float,float,float);
VERTEX CreateVertex(float,float,float,float,float);
QUAD* CreateQuad(char*);
void DeleteQuad(QUAD*);
void DrawQuad(QUAD*);
void SetIdentity();
void SetCamera(float,float,float,float,float,float);
void SetPerspective(float,float,float,float);
void ClearScene(D3DXCOLOR);

284 Chapter 12 n 3D Graphics Fundamentals

I have not covered camera movement yet, but it is essential, and is not something

I intend to just ignore. I will explain how the camera works below in the section

on writing the actual cube_demo program.

dxgraphics.cpp

Now, opening up the dxgraphics.cpp source file, let’s first add the variable

declarations for cameraSource and cameraTarget, which were previously defined

in the header file.

D3DXVECTOR3 cameraSource;
D3DXVECTOR3 cameraTarget;

Okay, how about some really great reusable functions for 3D programming? I

have gone over most of the basic code for these functions already. The rest are

really just support functions that are self-explanatory. For instance, SetPosition

just sets the position of a vertex inside a particular quad (without affecting the

texture coordinates). The SetVertex function actually sets the position and the

texture coordinates. These are very helpful support functions that will greatly

simplify the 3D code in the main program (coming up!).

void SetPosition(QUAD *quad, int ivert, float x, float y, float z)
{

quad->vertices[ivert].x = x;
quad->vertices[ivert].y = y;
quad->vertices[ivert].z = z;

}

void SetVertex(QUAD *quad, int ivert, float x, float y, float z, float tu, float tv)
{

SetPosition(quad, ivert, x, y, z);
quad->vertices[ivert].tu = tu;
quad->vertices[ivert].tv = tv;

}

VERTEX CreateVertex(float x, float y, float z, float tu, float tv)
{

VERTEX vertex;
vertex.x = x;
vertex.y = y;
vertex.z = z;
vertex.tu = tu;

The Textured Cube Demo 285

vertex.tv = tv;
return vertex;

}

QUAD *CreateQuad(char *textureFilename)
{

QUAD *quad = (QUAD*)malloc(sizeof(QUAD));

//load the texture
D3DXCreateTextureFromFile(d3ddev, textureFilename, &quad->texture);

//create the vertex buffer for this quad
d3ddev->CreateVertexBuffer(
4*sizeof(VERTEX),
0,
D3DFVF_MYVERTEX, D3DPOOL_DEFAULT,
&quad->buffer,
NULL);

//create the four corners of this dual triangle strip
//each vertex is X,Y,Z and the texture coordinates U,V
quad->vertices[0] = CreateVertex(-1.0f, 1.0f, 0.0f, 0.0f, 0.0f);
quad->vertices[1] = CreateVertex(1.0f, 1.0f, 0.0f, 1.0f, 0.0f);
quad->vertices[2] = CreateVertex(-1.0f,-1.0f, 0.0f, 0.0f, 1.0f);
quad->vertices[3] = CreateVertex(1.0f,-1.0f, 0.0f, 1.0f, 1.0f);

return quad;
}

void DeleteQuad(QUAD *quad)
{

if (quad == NULL)
return;

//free the vertex buffer
if (quad->buffer != NULL)

quad->buffer->Release();

//free the texture
if (quad->texture != NULL)

quad->texture->Release();
//free the quad

286 Chapter 12 n 3D Graphics Fundamentals

free(quad);
}

void DrawQuad(QUAD *quad)
{

//fill vertex buffer with this quad’s vertices
void *temp = NULL;
quad->buffer->Lock(0, sizeof(quad->vertices), (void**)&temp, 0);
memcpy(temp, quad->vertices, sizeof(quad->vertices));
quad->buffer->Unlock();

//draw the textured dual triangle strip
d3ddev->SetTexture(0, quad->texture);
d3ddev->SetStreamSource(0, quad->buffer, 0, sizeof(VERTEX));

d3ddev->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
}

void SetIdentity()
{

//set default position, scale, and rotation
D3DXMATRIX matWorld;
D3DXMatrixTranslation(&matWorld, 0.0f, 0.0f, 0.0f);
d3ddev->SetTransform(D3DTS_WORLD, &matWorld);

}

void ClearScene(D3DXCOLOR color)
{

d3ddev->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, color, 1.0f, 0);
}

void SetCamera(float x, float y, float z, float lookx, float looky, float lookz)
{

D3DXMATRIX matView;
D3DXVECTOR3 updir(0.0f,1.0f,0.0f);

//move the camera
cameraSource.x = x;
cameraSource.y = y;
cameraSource.z = z;

//point the camera
cameraTarget.x = lookx;
cameraTarget.y = looky;

The Textured Cube Demo 287

cameraTarget.z = lookz;

//set up the camera view matrix
D3DXMatrixLookAtLH(&matView, &cameraSource, &cameraTarget, &updir);
d3ddev->SetTransform(D3DTS_VIEW, &matView);

}

void SetPerspective(float fieldOfView, float aspectRatio, float nearRange,
float farRange)
{

//set the perspective so things in the distance will look smaller
D3DXMATRIX matProj;
D3DXMatrixPerspectiveFovLH(&matProj, fieldOfView, aspectRatio, nearRange,

farRange);
d3ddev->SetTransform(D3DTS_PROJECTION, &matProj);

}

The Cube_Demo Program

The next step is the main code, which uses all of these reusable functions you just

added to the dxgraphics module of the framework. The Cube_Demo program

(shown in Figure 12.10) draws a textured cube on the screen and rotates it in the

x and z axes.

288 Chapter 12 n 3D Graphics Fundamentals

Figure 12.10
The Cube_Demo program demonstrates everything covered in this chapter about 3D programming.

While it might seem like there are only eight vertices in a cube (refer to

Figure 12.11), there are actually many more, because each triangle must have its

own set of three vertices. But as you learned recently, a triangle strip works well to

produce a quad with only four vertices.

As you have just worked with triangles and quads up to this point, a short

introduction to cubes is in order. A cube is considered one of the simplest 3D

objects you can create, and is a good shape to use as an example because it has six

equal sides. As all objects in a 3D environment must be made up of triangles, it

follows that a cube must also be made up of triangles. In fact, each side of a cube

(which is a rectangle) is really two right triangles positioned side by side with the

two right angles at opposing corners. See Figure 12.12.

No t e

A right triangle is a triangle that has one 90-degree angle.

The Textured Cube Demo 289

Figure 12.11
A cube might have only eight corners, but is comprised of many vertices.

Figure 12.12
A rectangle is made up of two right triangles.

After you have put together a cube using triangles, you end up with something

like Figure 12.13. This figure shows the cube sub-divided into triangles.

game.cpp

Well, now it’s time to go over the main source code for the Cube_Demo pro-

gram. I encourage you to load the project off the CD-ROM (which should be

copied to your hard drive for convenience—and don’t forget to turn off the read-

only attribute so you can make changes to the files).

Nothing has changed in game.h since the last project, so you can just use one of

your recent copies of game.h for this project or follow along with the Cube_

Demo project itself. So much information has been covered that I elected to skip

over setting up the project and so on.

If you think it’s strange to create a 3D model using code as shown below, you

would be right on the mark. This is indeed very strange, but it is helpful at this

point to illustrate how vertices are used to build polygons, which then make up

models (also called meshes). It would be very difficult to create any type of

complex 3D model using code like this, so it’s only really useful in our simple

cube example. Soon we’ll learn how to load a mesh file into memory and render

models directly from a file.

#include "game.h"

#define BLACK D3DCOLOR_ARGB(0,0,0,0)

VERTEX cube[] = {
{-1.0f, 1.0f,-1.0f, 0.0f,0.0f}, //side 1
{ 1.0f, 1.0f,-1.0f, 1.0f,0.0f },

290 Chapter 12 n 3D Graphics Fundamentals

Figure 12.13
A cube is made up of six sides, with twelve triangles in all.

{-1.0f,-1.0f,-1.0f, 0.0f,1.0f },
{ 1.0f,-1.0f,-1.0f, 1.0f,1.0f },

{-1.0f, 1.0f, 1.0f, 1.0f,0.0f }, //side 2
{-1.0f,-1.0f, 1.0f, 1.0f,1.0f },
{ 1.0f, 1.0f, 1.0f, 0.0f,0.0f },
{ 1.0f,-1.0f, 1.0f, 0.0f,1.0f },

{-1.0f, 1.0f, 1.0f, 0.0f,0.0f }, //side 3
{ 1.0f, 1.0f, 1.0f, 1.0f,0.0f },
{-1.0f, 1.0f,-1.0f, 0.0f,1.0f },
{ 1.0f, 1.0f,-1.0f, 1.0f,1.0f },

{-1.0f,-1.0f, 1.0f, 0.0f,0.0f }, //side 4
{-1.0f,-1.0f,-1.0f, 1.0f,0.0f },
{ 1.0f,-1.0f, 1.0f, 0.0f,1.0f },
{ 1.0f,-1.0f,-1.0f, 1.0f,1.0f },

{ 1.0f, 1.0f,-1.0f, 0.0f,0.0f }, //side 5
{ 1.0f, 1.0f, 1.0f, 1.0f,0.0f },
{ 1.0f,-1.0f,-1.0f, 0.0f,1.0f },
{ 1.0f,-1.0f, 1.0f, 1.0f,1.0f },

{-1.0f, 1.0f,-1.0f, 1.0f,0.0f }, //side 6
{-1.0f,-1.0f,-1.0f, 1.0f,1.0f },
{-1.0f, 1.0f, 1.0f, 0.0f,0.0f },
{-1.0f,-1.0f, 1.0f, 0.0f,1.0f }

};

QUAD *quads[6];

void init_cube()
{

for (int q=0; q<6; q++)
{

int i = q*4; //little shortcut into cube array
quads[q] = CreateQuad("cube.bmp");
for (int v=0; v<4; v++)
{

quads[q]->vertices[v] = CreateVertex(
cube[i].x, cube[i].y, cube[i].z, //position
cube[i].tu, cube[i].tv); //texture coords

i++; //next vertex

The Textured Cube Demo 291

}
}

}

//initializes the game
int Game_Init(HWND hwnd)
{

//initialize keyboard
if (!Init_Keyboard(hwnd))
{

MessageBox(hwnd, "Error initializing the keyboard", "Error", MB_OK);
return 0;

}

//position the camera
SetCamera(0.0f, 2.0f, -3.0f, 0, 0, 0);

float ratio = (float)SCREEN_WIDTH / (float)SCREEN_HEIGHT;
SetPerspective(45.0f, ratio, 0.1f, 10000.0f);

//turn dynamic lighting off, z-buffering on
d3ddev->SetRenderState(D3DRS_LIGHTING, FALSE);
d3ddev->SetRenderState(D3DRS_ZENABLE, TRUE);

//set the Direct3D stream to use the custom vertex
d3ddev->SetFVF(D3DFVF_MYVERTEX);

//convert the cube values into quads
init_cube();

//return okay
return 1;

}

void rotate_cube()
{

static float xrot = 0.0f;
static float yrot = 0.0f;
static float zrot = 0.0f;

//rotate the x and Y axes
xrot += 0.05f;
yrot += 0.05f;

292 Chapter 12 n 3D Graphics Fundamentals

//create the matrices
D3DXMATRIX matWorld;
D3DXMATRIX matTrans;
D3DXMATRIX matRot;

//get an identity matrix
D3DXMatrixTranslation(&matTrans, 0.0f, 0.0f, 0.0f);

//rotate the cube
D3DXMatrixRotationYawPitchRoll(&matRot,

D3DXToRadian(xrot),
D3DXToRadian(yrot),
D3DXToRadian(zrot));

matWorld = matRot * matTrans;

//complete the operation
d3ddev->SetTransform(D3DTS_WORLD, &matWorld);

}

//the main game loop
void Game_Run(HWND hwnd)
{

ClearScene(BLACK);

rotate_cube();

if (d3ddev->BeginScene())
{

for (int n=0; n<6; n++)
DrawQuad(quads[n]);

d3ddev->EndScene();
}

d3ddev->Present(NULL, NULL, NULL, NULL);

Poll_Keyboard();
if (Key_Down(DIK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);

}

The Textured Cube Demo 293

void Game_End(HWND hwnd)
{

for (int q=0; q<6; q++)
DeleteQuad(quads[q]);

}

What’s Next?

That’s a lot of information to digest in a single chapter, and I wouldn’t be

surprised if you needed to go over the information here again to really get a

grasp of it. 3D programming is no easy chore, and mastery of the subject can

take years. Don’t be discouraged, though, because there are a lot of great things

you can do before you have mastered it! For instance, this chapter has just

scratched the surface of what you can do with even a novice understanding of

Direct3D.

Figure 12.14 shows an image of a car that I created with Anim8or, a free 3D

modeling program that is included on this book’s CD-ROM. This powerful 3D

modeling tool supports the 3D Studio Max file format (.3DS). The next two

chapters will teach you how to create your own 3Dmodels and how to load those

models from a file into your Direct3D program.

294 Chapter 12 n 3D Graphics Fundamentals

Figure 12.14
You will learn how to create and use your own 3D models in the next two chapters!

What You Have Learned

This chapter has given you an overview of 3D graphics programming. You have

learned a lot about Direct3D, and have seen a textured cube demo. Here are the

key points:

n You learned what vertices are and how they make up a triangle.

n You learned how to create a vertex structure.

n You learned about triangle strips and triangle lists.

n You learned how to create a vertex buffer and fill it with vertices.

n You learned about quads and how to create them.

n You learned about texture mapping.

n You learned how to create a spinning cube.

What You Have Learned 295

Review Questions

The following questions will help to reinforce the information you have learned

in this chapter.

1. What is a vertex?

2. What is the vertex buffer used for?

3. How many vertices are there in a quad?

4. How many triangles make up a quad?

5. What is the name of the Direct3D function that draws polygons?

On Your Own

296 Chapter 12 n 3D Graphics Fundamentals

The following exercises will help to challenge your retention of the information

in this chapter.

Exercise 1. The Cube_Demo program creates a rotating cube that is textured.

Modify the program so that the cube spins faster or slower based on keyboard

input.

Exercise 2. Modify the Cube_Demo program so that each of the six sides of the

cube has a different texture. Hint: You may need to copy the code from DrawQuad

into your main source code file in order to use different textures.

On Your Own 297

This page intentionally left blank

Creating Your Own
3D Models with
Anim8or

This chapter will teach you how to create your own 3D models using a freeware

modeling program called Anim8or. This program is powerful and full-featured

and easy to learn and use. The interface is a study in interaction design (pio-

neered by Alan Cooper, see http://www.cooper.com), as the most commonly

used features are readily available, and below this layer are more complex features

(such as animation). This chapter will introduce you to Anim8or and go over the

basic features of the program, and then it will teach you how to create a simple

model of a car.

299

chapter 13

http://www.cooper.com

Here is what you will learn in this chapter:

n How to use Anim8or to create 3D models, meshes, and objects.

n How to manipulate a mesh into a desired shape.

n How to apply a material to the face of a mesh.

n How to create the components of a car and build it.

Introducing Anim8or
Anim8or is an advanced, modern, full-featured, absolutely free 3D modeling

program that you can use to use to create 3D models for just about anything you

want, including games. The current version of Anim8or at the time of this

writing is 0.85, with 0.9 just around the corner. The author of this program,

R. Steven Glanville, considers Anim8or to be still in beta stage, although it is fully

functional at this point and loaded with great features. As a software engineer for

NVIDIA—the company responsible for the mystical GeForce chips and

responsible for bringing ‘‘GPU’’ and ‘‘T&L’’ into consumer awareness, Steven

knows a thing or two about graphics. The primary goal of Anim8or is to make it

easy to create 3D animations. While it’s a great program for creating static

models for games, it also includes extensive support for key-frame animation of

models. Anim8or allows you to easily create, edit, and animate models with its

intuitive interface. See Figure 13.1.

No t e

As this is just a quick overview of Anim8or and not a full reference of the program, I encourage
you to bookmark the following URL where the latest edition of the Anim8or manual may be
found: http://www.anim8or.com/manual.

Getting into 3D Modeling

First of all, I need to insert a disclaimer of sorts here: I am a programmer, not an

artist. Therefore, what you can expect is a very primitive tutorial in 3D modeling

that a modeler might find amusing. I make no apology for being a programmer;

I am simply not a modeler. However, as with programming, modeling is a skill

that can improve over time.

Why, then, should I include a chapter about 3D modeling if I’m an amateur at

the subject myself? Because coming up with artwork and models is one of the

most frustrating aspects of game programming on your own, but whatever you

300 Chapter 13 n Creating Your Own 3D Models with Anim8or

http://www.anim8or.com/manual

can learn to do on your own is extremely valuable and timesaving. And even a

simple overview of a modeling tool and tutorial on how to create a model will

help you tremendously.

That being said, I want to encourage you to study the subject further if it interests

you. I have found that books on 3ds max 4 are particularly helpful because that

interface is sort of similar to Anim8or. By sort of I mean that the basic concepts are

similar enough that you can figure out what to do in Anim8or by reading a book

on 3dsmax 4. Newer versions of 3ds max have been loaded with new features that

I find daunting. I know exactly where to direct you for the absolute best tutorial

for a beginner, though, and I don’t hesitate for a moment because I have found

this book to be outstanding. It is calledModeling a Character in 3DSMax, by Paul

Steed. Paul worked for id Software as a modeler on Quake III, so he knows what

he’s talking about. Paul will teach you step-by-step how to create a female

character the likes of which you might find in any modern game. There are other

Introducing Anim8or 301

Figure 13.1
Anim8or is a full-featured 3D modeling and animation program.

references available to you, too, and I strongly encourage you to look them up

because even a basic familiarity with 3D modeling will help wonderfully as you

hone your 3D programming skills.

If you do pick up a few books on 3D modeling but you don’t own a copy of 3ds

max, there are two immediate options that you can try. First, Discreet has provided

a free modeling tool called GMAX. This is a scaled-down version of 3ds max that

does not include any capability for creating animations or scenes with cameras and

so on. All you can do with GMAX is edit 3Dmodels. That aspect of the program is

identical to 3ds max, and I particularly like it because the interface resembles 3ds

max 4, which is better for learning than the newer versions because it is simpler.

It is also very nice to be able to create your ownmodels. It is a pain to try to locate

free models on the Web, mainly because almost none of the free models you are

likely to find will be suitable for your game. However, there is a lot of good stock

available for scenery and miscellaneous objects, for which I direct you to 3D Cafe

(located at http://www.3dcafe.com), where you can download free models and

purchase licenses for model sets that can be used in your games.

Another excellent source of models on the Web is 3D Modelworks, located at

http://www.3dmodelworks.com. I particularly like this site because it includes a

Web-based model browser so that you can actually see the models on the screen,

rotate, and zoom in and out, before purchasing the model. The browser also

animates those models on the screen that are animated.

Features

There are four modes in Anim8or, three for editing and one for putting objects

into a scene. Anim8or lets you zoom in and out of the workspace to rotate, move,

and scale individual polygons as well as entire models; to group objects together;

and to edit the vertices of an object.

The Object Editor

The Object Editor is where you create and edit models. Anim8or can import the

following types of files into the Object Editor:

n 3D Studio (.3ds)

n LightWave (.lwo)

n Wavefront (.obj)

n Anim8or (.an8)

302 Chapter 13 n Creating Your Own 3D Models with Anim8or

http://www.3dcafe.com
http://www.3dmodelworks.com

The Figure Editor

The Figure Editor is used to animate characters using bone animation techni-

ques. First, you define the structure of a character using jointed bones with

various properties (such as direction and limits of movement), and then add

polygons to the bones to construct a character that can be easily animated.

The Sequence Editor

The Sequence Editor lets you define segments of motion by manipulating a

model for each step; then these segments can be assembled into a sequence using

the Scene Editor.

The Scene Editor

The Scene Editor is where you construct animated or static scenes using objects,

figures, and sequences you have created in the other programmodes. The scene is

where you can add cameras and create a movie that can be saved as an AVI file.

The Interface

Your mouse is the primary editing device in Anim8or. You move the mouse in a

left/right motion to manipulate the X axis, an up/down motion to manipulate

the Y axis, and the right mouse button along with up/down motion to manip-

ulate the Z axis. I’ll assume that you can navigate the Anim8or menus (after a

little practice) and can load and save files. Manipulating objects and using the

four modes are what really require some explanation.

Take a look at Figure 13.2, which shows the Object Editor as it appears when

Anim8or first starts up.

If you open theModemenu (shown in Figure 13.3), you will find the four primary

parts of Anim8or: Object, Figure, Sequence, and Scene. The Browser is a feature

that allows you to browse all of the objects, figures, or sequences currently loaded

into Anim8or (meaning that yes, you can have many of each item in the scene).

I will go over each of the four modes in the following sections of this chapter.

Installing Anim8or

Anim8or does not need to be installed at all, and you will be surprised to know

that it comes as a single 1,200KB executable file, Anim8or.exe, without any setup

file, documentation files, or the like. You just copy the Anim8or.exe file to a

convenient place (such as your Windows Desktop) and run it; it’s as simple as

Introducing Anim8or 303

that. Anim8or uses OpenGL to render 3D graphics, so you will need a video card

with an OpenGL driver (I suspect you knew that already).

To install Anim8or, just copy the Anim8or.exe file from the CD-ROM; the file is

located in \Anim8or. Although 0.9 is the version covered in this chapter, I

encourage you to visit themainAnim8or homepage, at http://www.anim8or.com,

in order to download a newer version of the program that may be available.

Using Anim8or
I am going to give you a step-by-step tutorial now on how to create a model with

Anim8or’s Object Editor. You should be able to get the hang of Anim8or by

following along in this tutorial enough to be able to create your own models. If

Anim8or is not already in Object mode, then switch to it with the Mode menu.

You are presented with a blank object-editing screen, as shown in Figure 13.4.

304 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.2
Anim8or’s Object Editor is ready for some polygons.

http://www.anim8or.com

Stock Primitives

It’s easy to get stuck in a modeling program when you don’t know how to change

the views on the screen, so let’s go over that now. First, let’s add a stock primitive

to the Edit window so that there’s something to view. Figure 13.5 shows the

toolbar on the left side of the screen.

Look down toward the bottom of the toolbar for a few icons, as shown in

Figure 13.6. Select the Add Sphere icon. You are now in Insert mode and will be

able to add a sphere to the scene by dragging the mouse in one of the four view

windows.

Adding a Sphere

Drag the mouse in one of the four views to add a sphere to the scene, as shown in

Figure 13.7. Note that the sphere will be centered where your mouse starts, so you

may want to start at the center.

Using Anim8or 305

Figure 13.3
The Mode menu is where you can change the editing mode of Anim8or.

306 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.5
The toolbar in Anim8or

Figure 13.4
The Object Editor is waiting for you to begin crafting a model.

That was pretty neat, huh? I’m amazed at how easy it is to add primitives to the

scene. Primitives are what a scene is made up of, and you’ll be doing it a lot. Right

now, the sphere object is selected. If it’s not, just click on it once.

You can double-click an object to edit its properties. Double-click the sphere

now, and you will see the Sphere Editor dialog, shown in Figure 13.8. You may

Using Anim8or 307

Figure 13.7
Adding a sphere to the scene

Figure 13.6
Stock primitives available for import into your model

change the sphere’s name here if you think doing so will help you when editing—

you will be selecting objects by name after the scene becomes filled with objects

(and it becomes difficult to select them with the mouse).

308 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.9
Adding a cylinder to the scene

Figure 13.8
Editing the sphere’s properties

Adding a Cylinder

Next, let’s see what a cylinder looks like. Select the sphere with the mouse and

press the Delete key to delete it. You can also cut the object by pressing Alt +X, or

by using the Edit menu to select Delete Object. Once your scene is clear again,

you can add a cylinder.

The cylinder is different from the sphere in that it is not centered at the point

where you start dragging. Instead, the cylinder is created beginning at the click-

drag point and ending in the spot where you release the mouse button. Try it

now. Select the Cylinder icon (below the Sphere icon) and click-drag in one of

the view windows. The cylinder will be added to the scene, as in Figure 13.9.

Adding a Cube

You can add a cube to the scene in a similar fashion. The Cube icon is located just

to the right of the Sphere icon. The result is shown in Figure 13.10.

Using Anim8or 309

Figure 13.10
Adding a cube to the scene

Adding Other Stock Primitives

There are manymore stock primitives that you can add to your scene that are not

included on the toolbar. Take a look at the Build menu—scroll down to the

Primitives menu item to see a list, as shown in Figure 13.11.

Manipulating Objects

Add a whole bunch of stock primitives to the scene, as I have done in Figure 13.12,

so that I can show you how to move objects and change the view.

Click on the Select icon on the toolbar to enter Selection mode. In this mode, you

can click on objects in the scene to select them. Select one of the objects in your

scene as I have done in Figure 13.13, in which I selected a sphere.

T i p

The shortcut key for Select mode is A.

310 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.11
Viewing the available stock primitives

Moving Objects

Now, look at the toolbar and find the Move icon. I have selected it in Figure 13.14.

Now that you have depressed the Move icon, Anim8or is in Move Object mode.

You can move the selected object in any of the views by dragging it with the

mouse. Here is where changing the viewport comes in handy; by doing so, you

can zoom in and domore up-close work. You canmake any of the four viewports

fill the screen by clicking the name of the viewport to bring up a pop-up menu

and selecting 1-View, as shown in Figure 13.15.

T i p

The shortcut key for Move mode is M.

The 1-View option will cause that selected view to fill the screen, as shown in

Figure 13.16.

Using Anim8or 311

Figure 13.12
Adding a bunch of stock primitives to the scene

You can click the viewport name again and select All to return to the four-way

view. Using this pop-up menu, you can change any viewport to one of the

following choices:

n Front

n Side

312 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.13
Selecting an object in the scene

Figure 13.14
Selecting the Move icon on the toolbar at the left side of the screen

n Top

n Ortho

n Perspective

Try going into 1-View mode and then change the viewport to one of these to see

the effect.

T i p

A quick shortcut to return a view to its standard facing is the F key. This is particularly handy when
you have zoomed in or out of the viewport.

Rotating Objects

In addition to moving (translating) objects, you can also rotate and scale them.

The Rotate and Scale icons are on the toolbar, but you can also use the R and S

Using Anim8or 313

Figure 13.15
Changing the Perspective view to fill the screen

keys to quickly switch to those modes. So, to quickly select an object and enter

Rotate mode, press A, click an object, and then press R. Once in Rotate mode,

just drag the mouse over the object to rotate it, as shown in Figure 13.17.

Scaling Objects

To scale an object, simply select an object by pressing A, then clicking the mouse,

and then pressing S (or using the Scale icon on the toolbar). Dragging the mouse

inside the viewport changes the scale of the object, as shown in Figure 13.18.

Manipulating the Entire Scene

You can manipulate the entire scene using tools similar to those used to

manipulate individual objects. The scene is usually referred to as the world in

modeling lingo, but I prefer to call it a scene when manipulating a single object

314 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.16
The Perspective view now occupies the entire viewport for the scene.

(while in the Object Editor). The term world may be found elsewhere in

Anim8or—in the Scene Editor, to be exact (more on that later).

If you look at the toolbar at the left edge of the Anim8or screen, you’ll see an icon

that looks like an eyeball. That is the Object/Viewpoint icon, which places

Anim8or in a mode that allows you to adjust the scene (or the viewport, through

which you ‘‘see’’ the scene).

Moving the Viewport

When you select the Object/Viewpoint icon, Anim8or goes into Viewpoint

mode, in which you can move, rotate, and scale the entire scene (that is, all of the

objects together). First, select the Move icon (or press the M key), and then drag

the mouse inside the viewport. All of the objects in the scene will move together

along with the origin. What this essentially means is that you are changing the

Using Anim8or 315

Figure 13.17
Rotating objects independently of one another

viewport’s simulated ‘‘camera’’ but not actually moving the scene. Put another

way: you are moving the ‘‘camera,’’ not the scene itself. See Figure 13.19.

Rotating the Viewport

You can rotate the scene only with the Perspective viewport because the other

viewport modes are fixed. Make sure the Perspective viewport is currently the

active viewport (or switch it to 1-View), and make sure you are in Object/

Viewport mode rather than Object/Edit mode. You can then rotate the viewport

by dragging the mouse. See Figure 13.20.

Scaling the Viewport

Fortunately, you can change the scaling of any viewport. To change the scale,

make sure you are in Object/Viewport mode, select the Zoom View icon, and

then drag the mouse in the viewport to zoom in and out. See Figure 13.21.

316 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.18
Changing the scale of an object

T i p

The shortcut key for Viewport Zoom mode is N.

Changing the Shading Mode

You can change the shading mode at any time, but it makes sense to cover the

subject here,whilewe’re talking about the entire scene. In addition to the left toolbar

there is a top toolbar that is right below the program menus (see Figure 13.22).

Aside from a few convenient icons for Undo, Redo, and Cut, this is where you

change the shading mode of the scene. The default shading mode is Flat Shaded.

Here are the options available:

n Wireframe

n Flat Shaded

n Smooth Shaded

Using Anim8or 317

Figure 13.19
Moving the viewport

The wireframe display is shown in Figure 13.23. Why would you want to use

Wireframemode when a better shading mode is available? For one thing, you can

edit individual polygons and vertices in Wireframe mode, in which you can see

the individual parts that make up an object. There may also be times when you

want to see parts of an object that are hidden in a shaded mode.

Figure 13.24 shows the scene with Smooth Shaded enabled. It makes quite a

difference in the appearance of the objects in the scene, especially curved surfaces

like a sphere.

Creating the Car Model
You should now have a pretty good idea how to get around in Anim8or, so the

next step is to learn how to create a complete model from scratch. The trick to

creating really attractive meshes is to start with a primitive and subdivide it, thus

318 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.20
Rotating the viewport

tweaking it into shape. This is not too dissimilar to a blacksmith pounding metal

into a certain shape. In fact, the more subdividing and custommanipulation you

do with a mesh, the better it will look. You will take a basic cylinder and turn it

into a wheel by subdividing and tweaking it. Figure 13.25 shows a wireframe

model of the completed car that you will create from scratch. Are you ready?

The Wheels

The wheels of the car will be surprisingly easy; you watch. First, we’ll start with a

tiny cylinder, and then we’ll scale it up to a manageable size before subdividing it.

The same wheel mesh will be used for all four wheels of the car.

Creating the Car Model 319

Figure 13.21
Scaling the viewport

Figure 13.22
The top toolbar in Anim8or

Starting with a Cylinder

If Anim8or is not in Object Edit mode, select it from theMode menu. Next, open

the Object menu and select New to create a new, empty object workspace.

Select the Cylinder icon from the left toolbar. Highlight the Front viewport, and

then drag only a tiny amount to create a cylinder (a cylinder fragment, really).

You might have to do this several times to get just the right width for the wheel

because you can’t clearly see the cylinder as you are drag-creating it. You will

need to drag the mouse only a few pixels. To see what the initial wheel looks like,

hit S to enter Scale mode, and then drag the mouse over the viewport to zoom

into the cylinder fragment.

You want the cylinder to be taller than it is wide—and don’t make it too narrow,

either! If the cylinder is too narrow in width, then subdividing the wheel to bend

320 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.23
Changing the shading mode to Wireframe

it into shape will result in a thin, funky-looking wheel. If the cylinder is too long,

it won’t work as a wheel. Figure 13.26 shows a cylinder that is more suited for the

barrel of a steamroller than for a car wheel. Try again!

Repeat until you have a cylinder that looks like a wheel, something like in

Figure 13.27.

The next thing you need to do is adjust the wheel’s position, orientation, and

scale factor until the wheel is centered on the origin and facing in the correct

direction. The end result should look similar to Figure 13.28.

T i p

If you have a hard time re-orienting the wheel in the proper position, try this: Select the wheel,
then open the Edit menu. Scroll down to the Locate menu item, then select Center About Origin.

Converting the Cylinder to a Mesh

Creating the Car Model 321

Figure 13.24
Changing the shading mode to Smooth Shaded

The wheel looks pretty good already, doesn’t it? If you were creating a car for a

city view, this wheel would work fine. But we need more detail in this wheel,

especially if the final car will be used in a game.

If you are looking for a certain cartoonish look, try this quick method of turning

the wheel into sort of a cartoon doughnut: Open the Build menu and select

Convert to Subdivided. Presto! There is your doughnut. If you apply a black-

shaded or textured material to the wheel, it would work fine for some purposes.

But that is not the direction I’m taking with this car (no pun intended).

Open Build and select Convert to Mesh. The wheel is now a mesh, which is an

editable object.

T i p

If you make any mistakes while editing a mesh, simply press Ctrl + Z for Undo. You can also use
the Edit menu to Undo or Redo. You will use Undo frequently while working with meshes in order
to get the result you’re looking for. You should save your work often.

322 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.25
Wireframe view of the Hummer

Subdividing the Mesh to Increase Detail

Now it’s time to subdivide the cylinder to add more detail to it. Open Build and

select Subdivide Faces to bring up the Smooth Parameters dialog, shown in

Figure 13.29.

This is where you input the tension that should be applied to the mesh. Type 1 for

the tension and click OK. The result is shown in Figure 13.30.

Okay, let’s subdivide the wheel once more. The first attempt left a lot of

blockiness, so we’ll divide the wheel down one more time to add more polygons

and, in turn, improve the roundness of the wheel. Open the Smooth Parameters

dialog again by selecting Build, Subdivide Faces.

This time, type in 0.1 in the Tension field and click OK. The result is shown in

Figure 13.31.

Creating the Car Model 323

Figure 13.26
This cylinder is way too oddly shaped to become a wheel.

Applying Materials

You now have a very nice-looking wheel, but it is in plain, drab gray, which

means it has no materials. You can apply complex combinations of colors and

textures to the polygons (also called faces) in a mesh. The last chapter explained

how to programmatically apply texture to a cube, but a real mesh created in a

modeling program may have hundreds of different materials applied to it. Now

I’ll show you how to make the wheel look like, well, a wheel. It needs two

materials: one for the tire, another for the rim.

Bring up the Materials toolbar if it is not visible. You can do so from the top

toolbar or by selecting Options, Materials from the menu. Double-click the first

empty material to bring up the Material Editor dialog.

324 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.27
This cylinder is just right for a wheel.

T i p

You can create custom materials for individual faces in a mesh by double-clicking a face or a mesh
in the viewport.

Click the Ambient color selector and choose a dark gray color for the tire

material. You can also type TIRE in the name field to give this material a name if

Creating the Car Model 325

Figure 13.28
Re-orienting the wheel to center it at the origin

Figure 13.29
The Smooth Parameters dialog is used to subdivide a mesh.

you want. The result is shown in Figure 13.32. Click OK and the newmaterial will

be added to the materials list.

Now, double-click the next ‘‘new’’ material to bring up theMaterial Editor dialog

again. Change the name to CHROME. This material will be a little more complex

because it needs to shine like chrome. You are going to have to do what you think

is best here—it is more important for you to experiment with the Materials

Editor than for me to give you precise values; after all, my opinion of chrome

might differ from yours. I have set Specular to 0.7 and Emissive to 0.2, and

selected a dull gray color for the Ambient and Diffuse properties (without

touching their values). Figure 13.33 shows the properties for this material.

The great thing about the materials in Anim8or is that you can use the same

material for all similar objects in your model, and then, if you want to tweak the

material, it will be applied to every face to which you applied the material!

326 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.30
The wheel mesh has been subdivided and is now more detailed.

Editing Faces, Lines, and Vertices

In order to apply the chrome material to the rims of the wheel, you’ll need to go

in using the Object/Point Edit mode. The Object/Point icon is located below the

Object/Viewpoint icon (which looks like an eye). When you select this icon, the

toolbar changes and the viewport goes into Wireframe mode. You now have

access to the individual vertices, lines, and faces that make up the mesh. Very

powerful fine-tuning capabilities here, indeed! If there’s anything you don’t like

about your mesh, you can tweak it in Object/Point Edit mode.

Figure 13.34 shows the toolbar for Object/Point Edit mode. Take a look at the

three options below the X/Y/Z Axis Enable icons. One is called Point Select, one

is called Edge Select, and the last is called Face Select.

Click the Face Select icon to enable Face Select Edit mode. You can do a lot of

interesting things with these tools, but I’m just going to show you how to use

them to apply materials to individual faces so that you can give the wheel some

chrome rims.

Creating the Car Model 327

Figure 13.31
The wheel is now smooth with a very round surface.

After you have turned on the Face Select mode, choose the Drag Select icon so

that you can drag the selection rectangle around a group of faces to edit. If you

have a hard time with this, select each individual face (press A) and then apply

328 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.32
The Material Editor dialog

Figure 13.33
Creating the CHROME material

the material to each one. There aren’t very many faces that need to be chromed,

so you can select each one and chrome it. You can see the results right away by

switching to Flat Shaded mode; Wireframe mode is only helpful when you are

changing vertices or lines.

Select each of the faces at the center of the outer side of the wheel and apply the

chrome material to it, as shown in Figure 13.35.

Creating the Car Model 329

Figure 13.34
The Object/Point toolbar

Figure 13.35
Selecting the rim part of the wheel and applying the chrome material to it.

I consider thewheel complete, but I suppose the ‘‘star’’ pattern on thewheelmight

cause some in the perfectionist crowd to pause. Never fear: it’s a simple matter to

switch back to Wireframe mode and nudge the vertices up to beat the rim of the

wheel into a semi-circular shape. You canmanipulate vertices and lines directly in

Flat Shaded mode; often this is quite difficult, but I think this wheel is simple

enough that you canmange it. Just remember to hit A each time youwant to select

a vertex, then hitM tomove it, then drag it to a new location, and then hit A again

to select the next one. Working in 1-View mode is easier. (See Figure 13.36.)

While I’m at it, I think I’ll fine-tune the tire as well, as there are some weird jagged

edges there. You can do this if you want or you can just move on. . . .

The Frame

Well, after the experience of creating the wheel, the rest of the car will seem like

child’s play. As you can see from the tutorial on creating the wheel, it’s easy to

330 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.36
Fine-tuning the geometry of the rim part of the wheel

keep adding more and more detail to a 3D model. However, if you have the time

and willingness, the results are always better when you add more details to each

mesh. Now let’s work on the frame, which will be simplistic in comparison. Go

ahead and add a new object for the car frame.

T i p

When you need to add a new object in Anim8or, open the Object menu and select New.

The important thing to remember when working on meshes is that they can be

scaled in the scene, so don’t worry about making everything to scale right now (in

other words, don’t worry about comparing the car frame to the wheel mesh).

Creating the Main Car Frame

First, add a rectangular solid to the scene and then convert it to a mesh using the

Build menu. The actual shape is not all that important right away because you can

use the Object/Point Edit mode to grab a side of the mesh and drag it to the

dimensions you want. Try to make the car frame look like the one in Figure 13.37.

Creating the Car Model 331

Figure 13.37
The main car frame is basically just a rectangular solid.

T i p

Whenever you manipulate the vertices, lines, or faces of a mesh to resize it, you can use the Build,
Join Solids menu option to redefine the mesh at the new size.

Add a second cube (or rectangular solid from the Build menu) and convert it to a

mesh. Resize the mesh using the Object/Point Edit mode—select the lines of a

face and move them out so that the mesh sits on top of the car frame. The mesh

should be about half the length of the frame, as this is the cab or roof of the car.

See Figure 13.38.

Once you have completed the car’s body, click the Drag Select icon and drag a

selection box around both mesh objects to select both of them. Open the Build

menu and select Group. The car body will now be treated as a single mesh.

Now open up the Materials toolbar (Options, Materials) and double-click the

first empty material. Change the ambient color to an attractive car-paint color.

332 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.38
The cabin/roof mesh has been added on top of the car frame.

Add a few more materials in like manner using several different colors. You will

be able to change the car’s color by applying any one of these materials to the car

body. Choose a material that you like and apply it to the two car body pieces. See

Figure 13.39.

T i p

If you haven’t done so yet, save your work now!

The Windows

The windows are the same for both the front and rear of the car, while a second

set of windows is used for the two sides of the car. Figure 13.40 shows the

windows used for the front and rear. We won’t be modeling doors now, but that

would be a great project to try after the basic car is done. The windshield has a light

gray-colored material applied to it, and is made up of just a simple rectangular

Creating the Car Model 333

Figure 13.39
The car body has been grouped and a colorful material applied.

solid that has been stretched into a thin rectangle. It will take some tweaking of the

windows to get them to fit in the body of the car during scene-building time, at

which point you can return to the windows and edit them. Switching back and

forth between objects and scenes is something you will do frequently.

The side windows are similar to, but not quite as large as, the front and rear

windows. You can copy the front window, create a new object, and paste it into

the new object space, then resize as needed during scene time. Figure 13.41 shows

the side windows.

The Headlights and Taillights

All that remains to be done at this point are the headlights and taillights. Of

course, you could add a lot more detail to this car. I will leave that up to you

(though I may add some new objects to this car and use it in a game at some point

in the near future, because I’ve become quite fond of it!).

334 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.40
The front and rear windows share a mesh and are ready to be installed.

The Headlight

Add a new object to the works and then create a new rectangular solid (or a cube)

that is rather thin but otherwise square in width and height. Open the Build

menu and select Convert to Mesh. Go back into the Build menu and select

Subdivide Faces to bring up the Smooth Parameters dialog. Type in 0.25 for the

tension value and click OK.

Repeat this step again to subdivide the headlight again by 0.25. You can try to

subdivide it again if you want even more smoothness to try to get that headlight

bulb shape. See Figure 13.42.

Now the headlight needs a slightly glowing material so that it will look like a real

headlight. It won’t shoot out a beam of light, but it will at least appear to glow

(using the Emissive property), which is a pretty good effect. Figure 13.43 shows

the material properties for the headlight.

Creating the Car Model 335

Figure 13.41
The side windows also share a mesh.

The Taillight

Now for the taillights. The process will be similar to that of the headlights, except

that the taillight needs to be square rather than round. Add a new object and add

a rectangular solid or a cube that is very thin but equally wide and high, like you

did for the headlight.

Next, select the object and convert it to a mesh using the Build menu. Open the

Build menu again and select Subdivide Faces to bring up the Smooth Parameters

dialog.

First, subdivide the taillight by 1.0. That will turn it into four solids but will retain

the basic shape. Next, subdivide it again by 0.25. This will give it a basically square

shape, but with rounded corners.

Create a material that is a deep red with an emissive value of 0.4; this way, it

will have a faint glow to it. Figure 13.44 shows the material properties for the

336 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.42
The headlight is created by subdividing a simple rectangular solid.

Creating the Car Model 337

Figure 13.43
The headlight material is white with a faintly illuminated yellow color.

Figure 13.44
The taillight material is a faintly illuminated red color.

taillight. (Of course, you won’t see the actual colors in the black-and-white

screenshots.)

Figure 13.45 shows the finished taillight with the material applied to it.

Creating a Scene
Generally, you will want to create an entire model as a single object rather than

assembling a model from component parts created as individual meshes in

Anim8or’s Object Edit mode. However, it is very convenient to be able to edit the

meshes on their own without other parts of the model getting in the way, and it is

a simple matter to copy and paste meshes from one object into another. If you

were going to create a complex scene with more than just the single car, you

would want to combine it all into a single object so that it would be possible to

control the car as a whole. As a learning experience, though, I think it was easier

338 Chapter 13 n Creating Your Own 3D Models with Anim8or

Figure 13.45
The complete taillight mesh with an illuminated red color.

to construct the car using the Scene Editor. You can export the car to a 3ds max

(.3ds) file from the Scene Editor, so this works well for creating models to be used

in a game.

Figure 13.46 shows the completed Hummer in the Scene Editor. The most

surprising thing about this model is that no textures were used; only materials

were used to give the car texture and color! What I’m going to do at this point is

show you how to add one of the objects to the scene and then leave it up to you to

assemble the car, factory style! Just remember the things you have learned in the

chapter so far: how to select, rotate, move, and scale objects. If scaling is a big

problem and all of your pieces are way out of kilter, I recommend you switch to

the Object Editor and change the scale of the objects at the source rather than

inside the Scene Editor. Not only is this much easier, but it ensures that your car

model will be uniform and consistent.

Creating a Scene 339

Figure 13.46
The completed Hummer is ready for a test drive.

First, open the Mode menu and select Scene. This puts you in Scene Edit mode.

Next, open the Build menu and select Add Object. You can select an object from

the Object Selector dialog. If the objects are all unnamed, you may want to switch

back to Object Edit mode and give each part of the car an identifying name. You

can do this while in Object Edit mode by opening the Settings dialog and

choosing Object, which will bring up a dialog that will allow you to name the

object. This is especially helpful when you are working on a complex scene with

dozens or even hundreds of objects!

C a u t i o n

If you get completely stuck while trying to build the car in this chapter, you can always load the
Anim8or file off the CD-ROM. Just be sure to clear the read-only property of the car.an8 file. It is
located in \sources\chapter13.

What You Have Learned

This chapter provided a tutorial on how to use Anim8or to create your own 3D

models. Here are the key points:

n You learned that Anim8or is a free 3D modeling program.

n You learned where to find Anim8or on the Web.

n You learned how to use viewports to change the view of a scene.

n You learned how to create stock primitive objects.

n You learned how to manipulate points, lines, and faces in a mesh.

n You learned how to create objects and insert them into a scene.

n You learned enough information to create a 3D car from scratch.

340 Chapter 13 n Creating Your Own 3D Models with Anim8or

Review Questions

The following questions will help you to determine whether you have retained

the information presented in this chapter.

1. What is a mesh?

2. How many editing modes are there in Anim8or?

3. How do you convert a stock primitive into a mesh?

4. How to you go into Object/Point Edit mode to manipulate a mesh?

5. How do you bring up the Materials toolbar?

Review Questions 341

On Your Own

The following exercises will help you to think outside the box and push your

limits, helping you to retain the information you’ve been shown.

Exercise 1. The Hummer model is still very primitive, but it was a good example

of what you can do. See if you can improve the model by adding more detail to

the car body itself. Add front and rear bumpers, a hood that rises toward the

windshield (rather than being flat), and passenger doors.

Exercise 2. This model would really benefit from the use of textures rather than

just simple materials. Try to locate the texture for a wheel on the Web and apply

it to the Hummer’s wheels. If you can’t find a wheel texture, then consider

creating one yourself using a graphic editor like The Gimp, which is available for

free from http://www.gimp.org. Textures can be applied from theMaterial Editor

dialog.

342 Chapter 13 n Creating Your Own 3D Models with Anim8or

http://www.gimp.org

Working with 3D
Model Files

This chapter is a natural follow-up to Chapter 13, in which you learned how to

create a 3D model from scratch using Anim8or. This chapter takes it a step

further, teaching you how to convert that model into a format that can be loaded

into your own Direct3D programs. You will learn how to convert, load, and

render the Hummer car model that was created in Chapter 13.

Here is what you will learn in this chapter:

n How to convert a 3DS file to .X.

n How to optimize a model file.

n How to load a model file into memory.

n How to manipulate and draw a model on the screen.

343

chapter 14

Converting 3D Files
The most difficult part of getting a model into your game is converting it to

the Direct3D format, which has an extension of .X. Without some guidance,

you face the hit-or-miss task of searching the Web for 3D file converters, and

you never know how reliable or up-to-date these programs are. Although

Direct3D can read the .X file format, it does not set up the materials and

textures for you; this is something that you will have to learn to do yourself.

Fortunately, it is possible to read the material and texture counts from the

mesh object after an .X file has been loaded, which can then be used to

iterate through the materials and textures and then render the .X model. I’ll

go over this relatively painless code shortly. First, let’s talk about converting

files.

Converting 3DS to .X

There is a program called conv3ds.exe that was once included in the DirectX SDK

up through version 8.1, but was dropped in version 9.0. It is true that Discreet no

longer supports the 3DS format, and that the MAX format is now the standard,

but most software products still work with 3DS files, including Anim8or. The

conv3ds.exe tool is very convenient for Anim8or users because Anim8or exports

to the 3DS format, so I have included it on the CD-ROM.

T i p

The conv3ds.exe program is included on the book’s CD-ROM in \software\conv3ds.

Using the conv3ds Utility

I recommend you copy conv3ds.exe to your \Windows or \WINNT folder on

your primary drive partition so it will be available to any command prompt. Or

you can just add it to the system path by opening Control Panel, System, then

clicking the Advanced tab, and then clicking the Environment Variables button.

Here you can edit the path to add any folder you want.

Type conv3ds.exe to see the list of options. The most common usage is this:

conv3ds -m file.3ds

This converts a 3ds file to .X and combines all meshes into a single mesh, which

optimizes the file. If the conversion succeeds, nothing is displayed on the screen.

344 Chapter 14 n Working with 3D Model Files

If you want to see some details about the conversion as it takes place, you can add

the following verbose option:

conv3ds -m -v1 file.3ds

The -v1 option will display themeshes that are being converted over and saved in the

new .X file. The Hummer model is quite huge compared to the cube in Chapter 11,

for instance, so in order to use the same basic rendering options in the code you are

used to, it is helpful to reduce the scale of the car model. This isn’t totally necessary;

you could just zoom out with the camera to an appropriate distance so that the car

model will show up, but it’s more convenient to rescale the model as it is converted.

So, let’s convert over the car.3ds file that was exported from Anim8or. The option

to alter the scale of the model is -s, and you give it a scale value:

conv3ds -m -v1 -s0.05 car.3ds

T i p

You can export an entire scene in Anim8or using the Scene, Export option. To export a single mesh
(in Object/Edit mode), use the Object, Export option.

That command will produce a Hummer model that is only five percent of the

original size, without losing any details. The scaling problem is just due to the size

of the model that I created in Anim8or. When you create your own 3D models,

you’ll want to load them into your game to see how they scale compared to the

rest of the game. It’s better to adjust scale of the original model in your modeling

program, but in this example, I wanted to also show you an option for changing

the scale when the file is converted.

Using the MeshView Utility

After you have converted a 3ds max file to a Direct3D file, you can load it in your

program. But first, it’s a good idea to use the MeshView program (included with

the DirectX SDK). The MeshView program is located in \DX90SDK\Utilities.

You can also run it from the Start menu. Go to Programs, Microsoft DirectX 9.0

SDK, DirectX Utilities, Mesh Viewer. Figure 14.1 shows the Mesh Viewer with

our Hummer from Chapter 13 loaded.

Mesh Viewer includes a lot of advanced options that will help identify problems

with a mesh, such as incorrect texture coordinates, materials, or normals (used

for lighting). Take a look at the status bar on the bottom-right of the Mesh

Converting 3D Files 345

Viewer window and you’ll see some information about your .X file. The two

values on the right side show the total number of triangles (faces) and vertices,

respectively. Remember that a mesh created with triangle strips will share ver-

tices, which is why this model has many more faces than vertices. According to

Mesh Viewer, our Hummer model has 17,016 polygons. Not bad for your first

attempt at 3D modeling!

Optimizing the Model

What we’re really interested in is the optimization features of Mesh Viewer. If

you think about it, this Hummer model has been through quite a bit and is not

necessarily the most efficient model in the world. First, it was exported from

Anim8or’s Scene Editor into a .3ds file. Then it was converted to a .X file using

the conv3ds utility.

346 Chapter 14 n Working with 3D Model Files

Figure 14.1
The Hummer created in the last chapter has been converted to .X and loaded into Mesh Viewer.

Try optimizing the model using some of the features in Mesh Viewer. Figure 14.2

shows one good option that will try to reduce the polygon count of themodel. Go

into the MeshOps menu, select Optimize, Compact. Before you do this, take a

look at the vertex count at the bottom-right corner of the window. The Hummer

model that was converted to .X has 13,916 vertices. Pay attention to that number

as you perform various optimizations; it will go down to reflect a model that has

been cleaned up.

Triangle Removal Optimization

Another good optimization is in MeshOps, Weld Vertices (see Figure 14.3). This

will combine vertices and rebuild the triangle strip for every two polygons (faces)

that share two vertices. If you’ll recall, this car model was constructed frommany

Converting 3D Files 347

Figure 14.2
Optimizing the mesh can reduce the number of vertices and fix any problems with the faces.

individual parts, so most of it is comprised of adjacent polygons that are not

joined. Welding the vertices in this way helps to clean up the model quite a bit.

I recommend selecting the first three options and leaving the rest alone, unless you

are a 3D guru (in which case, why are you reading this book?). Figure 14.4 shows

the Weld Vertices dialog box.

Here are the options I selected:

n Remove Back To Back Triangles. This will eliminate duplicate triangles

that are not needed.

n Regenerate Adjacency. This will rebuild the triangle strip structure after

the vertices have been welded (or shared).

348 Chapter 14 n Working with 3D Model Files

Figure 14.3
Welding the vertices will rebuild the triangle strip and improve the mesh.

n Partial Weld Vertices. This will generate additional polygons, if necessary,

to share common vertices not at the line ends.

When you click Apply or OK, the vertex optimization will begin. Whoa—take a

look at Figure 14.5. Ten percent of the vertices have been eliminated by this single

optimization, from 13,916 vertices down to 11,308!

Weld Vertices Optimization

If your model is fairly simple and does not need to be manipulated at run time,

then you can try the next optimization. Go back into MeshOps and select Weld

Vertices again. This time, check just the Weld All Vertices option. Click Apply to

see the result. Very complex models probably should not have this optimization

done to them; then again, it’s worth a try to see if the model still looks correct in

your game. According to Figure 14.6, this results in 25 percent more vertices

removed from the model. Altogether, about 35 percent of the vertices have been

combined without any apparent change in the model.

Saving the File

Be sure to save the file before you close the Mesh Viewer utility! Go to File, Save

Mesh As to bring up the Save As dialog box (see Figure 14.7). You can type in the

filename and also the file type, which will be one of the following:

n Text

Converting 3D Files 349

Figure 14.4
The Weld Vertices dialog box

n Binary

n Binary Compressed

This is interesting because you can at least prevent someone from opening your

model files in a text editor by saving them in the binary compressed format—it’s

not much protection, but it does prevent players from modifying your model files

without a binary .X reader. Binary compressed .X files are about one-tenth the file

size of the text format (on average), so your game installation will bemuch smaller.

Just be sure to keep your source models in the standard 3ds or .X format.

350 Chapter 14 n Working with 3D Model Files

Figure 14.5
The Weld Vertices optimization has eliminated 10 percent of the vertices.

Loading and Rendering a Model File
The only thing left to do is learn how to load a model from an .X file into your

Direct3D program and render it on the screen! Are you ready? I said, are you

ready!? Let’s get to it, then.

Loading and Rendering a Model File 351

Figure 14.6
Weld All Vertices optimization eliminates 25 percent more vertices.

Figure 14.7
Saving the model file

Loading an .X File

Direct3D provides a function to create a mesh out of an .X file that is loaded, and

that makes it very simple to read in any model file into your own games (because

you now have the ability to convert a 3DS file to .X).

Let’s learn how to load a model. Instead of starting off with 100 percent theory,

I’m going to show you complete, working code so you’ll be able to understand it

better when you get to the project I’ll give you later in the chapter.

Defining the MODEL Structure

First, we need a new struct to deal with model files that are to be loaded from disk:

struct MODEL
{

LPD3DXMESH mesh;
D3DMATERIAL9* materials;
LPDIRECT3DTEXTURE9* textures;
DWORD material_count;

};

Some programmers and modelers prefer to call them ‘‘mesh files,’’ but I submit

that ‘‘mesh’’ does not properly describe the contents of a typical 3D model file

(such as car.X). These files contain meshes, materials, and a lot of data types and

animation instructions. So to call it just a mesh file is incorrect. I much prefer

‘‘model,’’ hence the name of the struct above.

The MODEL struct contains the primary objects needed to load and render a model

file. First, you have the mesh. If your original model file contained many meshes/

objects, then it should have been condensed down to a single mesh by the

conv3ds utility. Otherwise, the mesh here might represent multiple meshes

(which the .X file format supports).

Next, there is a D3DMATERIAL9 pointer variable that will be loaded with an array

of materials defined in the model file. LPDIRECT3DTEXTURE9 should already be

familiar to you after working with sprites, so no surprises here, except that a

model may contain multiple textures. These textures are not stored in the model

file itself, but in separate bitmap files, and the texture filenames are stored in the

model file.

Finally, there is a member variable that holds the number of materials in the

model, which is used during rendering. There may be many materials in a model,

352 Chapter 14 n Working with 3D Model Files

but not every one is required to have a texture. However, a texture must be

defined within a material. Hence, we have a material_count variable, but there is

no need to keep track of the number of textures.

Loading the Mesh

The key to loading a model file resides in the D3DXLoadMeshFromX function:

HRESULT WINAPI D3DXLoadMeshFromX(
LPCTSTR pFilename,
DWORD Options,
LPDIRECT3DDEVICE9 pDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh

);

The parameters for this function are filled with either defaults (in one form or

another) or NULLs, with key parameters being the filename, Direct3D device,

material buffer, material count, andmesh object. First, you need amaterial buffer

to load the materials into:

LPD3DXBUFFER matbuffer;

Let’s also assume that a pointer to the MODEL struct has already been created:

MODEL *model = (MODEL*)malloc(sizeof(MODEL));

The model struct is allocated in memory and returned by the LoadModel function

(which I’ll cover in a moment). Then you can read the model file and load the

materials andmeshes at the same time. Here is sample code that calls this function:

result = D3DXLoadMeshFromX(
filename, //filename
D3DXMESH_SYSTEMMEM, //mesh options
d3ddev, //Direct3D device
NULL, //adjacency buffer
&matbuffer, //material buffer
NULL, //special effects
&model->material_count, //number of materials
&model->mesh); //resulting mesh

Loading and Rendering a Model File 353

Loading the Materials/Textures

The materials are stored in the material buffer, but they need to be converted into

Direct3D materials and textures before the model can be rendered. You are

familiar with the texture object, but the material object, LPD3DXMATERIAL, is new.

Here is how you copy the materials and textures out of the material buffer and

into individual material and texture arrays. First, let’s create the arrays:

D3DXMATERIAL* d3dxMaterials = (LPD3DXMATERIAL)matbuffer->GetBufferPointer();
model->materials = new D3DMATERIAL9[model->material_count];
model->textures = new LPDIRECT3DTEXTURE9[model->material_count];

The next step is to iterate through the materials and grab them out of the material

buffer. For each material, the ambient color is set and the texture is loaded into the

texture object. As these are dynamically allocated arrays, a model is limited only by

available memory and the ability of your video card to render it. You could have a

model with millions of faces, each with a different material.

for(i=0; i<model->material_count; i+ +)
{

//grab the material
model->materials[i] = d3dxMaterials[i].MatD3D;

//set ambient color for material
model->materials[i].Ambient = model->materials[i].Diffuse;

model->textures[i] = NULL;
if(d3dxMaterials[i].pTextureFilename != NULL &&

lstrlen(d3dxMaterials[i].pTextureFilename) > 0)
{

//load texture file specified in .X file
result = D3DXCreateTextureFromFile(d3ddev,

d3dxMaterials[i].pTextureFilename,
&model->textures[i]);

}
}

Rendering a Complete Model

Drawing the model is a piece of cake after it has been loaded. I’ll admit, the code to

load a model is not exactly easy to understand until you’ve walked through it line

by line a few times. The rendering code is much easier, and should be quite

understandable, because you have used the DrawPrimitive function already.

354 Chapter 14 n Working with 3D Model Files

Remember the Cube_Demo? That was just a simple example of what you must do

now to render an entire 3D model.

First, you set the material, the texture, and then call DrawPrimitive to display that

polygon (face).Thebiggest difference is thatnowyoumust iterate through themodel

and render each face individually using the material_count. Here is how it works:

for(i=0; i<model->material_count; i + +)
{

d3ddev->SetMaterial(&model->materials[i]);
d3ddev->SetTexture(0, model->textures[i]);
model->mesh->DrawSubset(i);

}

See, I told you it wasn’t difficult. What’s next? How about we write the complete

program to load our Hummer and render it? After all that work modeling it, I’m

eager to see the model actually loaded into a Direct3D program.

The Load_Mesh Program

I have written a complete program to load the Hummer model and render it fully

shaded on the screen, and I will now go over the source code for this programwith

you. Figure 14.8 shows the Load_Mesh program running. Pretty cool, isn’t it?

Loading and Rendering a Model File 355

Figure 14.8
The Load_Mesh program loads the Hummer model created in the last chapter.

T i p

You will learn how to manipulate several models at once using code in the next chapter while
working on a complete game!

The ability to create your own model from scratch, optimize it, and then load it

into your own game—there’s so much potential there for what you can do now

that it boggles the mind. The sky’s the limit, really! Whatever kind of 3D game you

can imagine—you now have the power to make it happen. There are, obviously, a

lot of details to fill in along the way, but this is a terrific start.

As usual, you’ll need a completely built project with all the usual suspects in order

to compile this program. You can load the completed project from the CD-ROM

in \sources\chapter14\Load_Mesh, or you can open the Cube_Demo program

from Chapter 11 and replace the game.cpp file here.

#include "game.h"

#define WHITE D3DCOLOR_ARGB(0,255,255,255)
#define BLACK D3DCOLOR_ARGB(0,0,0,0)

#define CAMERA_X 0.0f
#define CAMERA_Y 4.0f
#define CAMERA_Z 7.0f

//define the MODEL struct
struct MODEL
{

LPD3DXMESH mesh;
D3DMATERIAL9* materials;
LPDIRECT3DTEXTURE9* textures;
DWORD material_count;

};

MODEL *car;

MODEL *LoadModel(char *filename)
{

MODEL *model = (MODEL*)malloc(sizeof(MODEL));
LPD3DXBUFFER matbuffer;
HRESULT result;

356 Chapter 14 n Working with 3D Model Files

//load mesh from the specified file
result = D3DXLoadMeshFromX(

filename, //filename
D3DXMESH_SYSTEMMEM, //mesh options
d3ddev, //Direct3D device
NULL, //adjacency buffer
&matbuffer, //material buffer
NULL, //special effects
&model->material_count, //number of materials
&model->mesh); //resulting mesh

if (result != D3D_OK)
{

MessageBox(NULL, "Error loading model file", "Error", MB_OK);
return NULL;

}

//extract material properties and texture names from material buffer
D3DXMATERIAL* d3dxMaterials = (D3DXMATERIAL*)matbuffer->GetBufferPointer();
model->materials = new D3DMATERIAL9[model->material_count];
model->textures = new LPDIRECT3DTEXTURE9[model->material_count];

//create the materials and textures
for(DWORD i=0; i<model->material_count; i + +)
{

//grab the material
model->materials[i] = d3dxMaterials[i].MatD3D;

//set ambient color for material
model->materials[i].Ambient = model->materials[i].Diffuse;

model->textures[i] = NULL;
if(d3dxMaterials[i].pTextureFilename != NULL &&

lstrlen(d3dxMaterials[i].pTextureFilename) > 0)
{

//load texture file specified in .X file
result = D3DXCreateTextureFromFile(d3ddev,

d3dxMaterials[i].pTextureFilename,
&model->textures[i]);

if (result != D3D_OK)

Loading and Rendering a Model File 357

{
MessageBox(NULL, "Could not find texture file", "Error", MB_OK);
return NULL;

}
}

}

//done using material buffer
matbuffer->Release();

return model;
}

VOID DeleteModel(MODEL *model)
{

//remove materials from memory
if(model->materials != NULL)

delete[] model->materials;

//remove textures from memory
if (model->textures != NULL)
{

for(DWORD i = 0; i < model->material_count; i + +)
{

if (model->textures[i] != NULL)
model->textures[i]->Release();

}
delete[] model->textures;

}

//remove mesh from memory
if (model->mesh != NULL)

model->mesh->Release();

//remove model struct from memory
if (model != NULL)

free(model);

}

void DrawModel(MODEL *model)

358 Chapter 14 n Working with 3D Model Files

{
//draw each of the mesh subsets
for (DWORD i=0; i<model->material_count; i + +)
{

//set the material and texture for this subset
d3ddev->SetMaterial(&model->materials[i]);
d3ddev->SetTexture(0, model->textures[i]);

//draw the mesh subset
model->mesh->DrawSubset(i);

}
}

//initializes the game
int Game_Init(HWND hwnd)
{

//initialize keyboard
if (!Init_Keyboard(hwnd))
{

MessageBox(hwnd, "Error initializing the keyboard", "Error", MB_OK);
return 0;

}

//set the camera and perspective
SetCamera(CAMERA_X, CAMERA_Y, CAMERA_Z, 0, 0, 0);
float ratio = (float)SCREEN_WIDTH / (float)SCREEN_HEIGHT;
SetPerspective(45.0f, ratio, 0.1f, 10000.0f);

//use ambient lighting and z-buffering
d3ddev->SetRenderState(D3DRS_ZENABLE, TRUE);
d3ddev->SetRenderState(D3DRS_AMBIENT, WHITE);

car = LoadModel("car.X");
if (car == NULL)
{

MessageBox(hwnd, "Error loading car.X", "Error", MB_OK);
return 0;

}

//return okay
return 1;

}

Loading and Rendering a Model File 359

//the main game loop
void Game_Run(HWND hwnd)
{

ClearScene(BLACK);

if (d3ddev->BeginScene())
{

//rotate the view
D3DXMATRIXA16 matWorld;
D3DXMatrixRotationY(&matWorld, timeGetTime()/1000.0f);
d3ddev->SetTransform(D3DTS_WORLD, &matWorld);

//draw the car model
DrawModel(car);

d3ddev->EndScene();
}

d3ddev->Present(NULL, NULL, NULL, NULL);

Poll_Keyboard();
if (Key_Down(DIK_ESCAPE))

PostMessage(hwnd, WM_DESTROY, 0, 0);
}

void Game_End(HWND hwnd)
{

DeleteModel(car);
}

What’s Next?

Whoa—this new functionality really adds a whole new dimension to the game

framework you’ve been building in this book. Anyway, the reusable 3D model

loading/drawing code from this chapter should be moved into the dxgraphics.cpp

file and the function prototypes added to dxgraphics.h. I have done this

already, in a project called Framework. This is a good place to grab the project

and copy it to a new folder for your own games because it’s all configured and

ready to go for both 2D and 3D games, with all the code up to this point

plugged into the framework. I have left the Game_Run function intentionally

empty, for the most part, so it’s just sitting there waiting for you to do some

360 Chapter 14 n Working with 3D Model Files

magic with it! If you run it, the window will just be blank. For reference, here

are the files in the Framework:

n dxgraphics.h

n dxgraphics.cpp

n dxaudio.h

n dsaudio.cpp

n dxinput.h

n dxinput.cpp

n dsutil.h

n dsutil.cpp

n dxutil.h

n winmain.cpp

n game.h

n game.cpp

And also for your reference, here are the libs that are needed by your future

Visual C++ projects:

n d3d9.lib

n d3dx9.lib

n dsound.lib

n dinput8.lib

n dxguid.lib

n dxerr9.lib

n winmm.lib

Loading and Rendering a Model File 361

I don’t know about you, but I’m absolutely itching to put all this code to work in a

real game project, which is exactlywhat we’re going to do in the next chapter.When

you’re ready, we’ll build a complete game to finish off the book!

What You Have Learned

This chapter has given you the information you need to load a model file into

memory and render it with Direct3D! Here are the key points:

n You learned how to export an Anim8or model to the 3DS format.

n You learned how to convert a 3DS file to an .X file using conv3ds.

n You learned how to optimize an .X file using Mesh Viewer.

n You learned how to load an .X file into your program.

n You learned how to manipulate and render the model.

n You are eager to write a complete game!

Review Questions

362 Chapter 14 n Working with 3D Model Files

The following review questions will help you to determine if you grasped all of

the information in this chapter.

1. What is the name of the program that converts 3DS files to the .X format?

2. What program can you use to optimize meshes in an .X file?

3. What is the name of the function you can use to load an .X file into a

Direct3D mesh?

4. What function would you use to draw each of the polygons in a model?

5. What does the Weld Vertices optimization accomplish?

On Your Own

The following exercises will help you to learn evenmore about the information in

this chapter.

Exercise 1. This chapter explained how to convert the Hummer model into the

Direct3D .X format and then load and render it. Try to create your own model

from scratch and repeat the process using your own model.

Exercise 2. The Load_Mesh program demonstrates how to load an .X file and

render it on the screen. Modify the program so that it uses the keyboard or mouse

to rotate the model rather than just watching it rotate on its own.

On Your Own 363

This page intentionally left blank

Complete
3D Game

In this chapter, you will learn how to create a complete game using C and

DirectX. That is no small feat by any standard, as the language and the libraries

are quite difficult to master (as you have learned thus far in the book). The fact

that the source code for this game is so short is a testament to the game fra-

mework that we’ve been building in the book. It really does take all of the most

difficult parts out of the equation and allows you to focus on just the gameplay—

which was the primary goal, as you’ll recall, in the beginning. The game is called

Bash, and it is a 3D version of a ball-and-paddle game.

365

chapter 15

Here is what you will learn in this chapter:

n How to write a complete 3D game called Bash.

n How to detect when 3D objects have collided.

n How to print text using a bitmapped font.

n How to program objects to move on their own.

n How to create custom 3D models for the game.

n How to enhance a game with event-based sound effects.

Bash
The game featured in this chapter uses a stereotypical game design that is not

terribly creative. To be honest, though, it is one of the best types of game to use as

an example when teaching game programming. You have all the basics here in this

complete game:

n Multiple models and sprites on the screen.

n A contained game world that is easy to manage.

n Simple design that the player can immediately get into.

n Direct control of the paddle to help the beginning programmer see

cause-effect.

n Multiple sound effects for various events in the game.

n A bitmapped font for displaying information on the screen.

n Score keeping.

n 3D collision detection between the ball and the paddle/blocks.

n Using game state to enhance gameplay.

These aspects of the Bash game will help you to pull together all the information

you have gleaned in the book and assemble it into an actual game. The game is

complete but is purposefully limited in features in order to give you the oppor-

tunity to improve it. Thus, the source code for Bash is short and simple, to make it

366 Chapter 15 n Complete 3D Game

easy to modify. I wanted to put so much more into this game myself, but I realized

that it would not do to add all the bells and whistles for you right at the start. For

starters, this game seriously needs some powerups, such as firepower (allowing you

to shoot at the blocks), paddle resizing, bonus points, and extra lives.

The game plays out until you have destroyed all the blocks, then it displays

‘‘GAME OVER’’ and the game is paused. There is no facility built into the game

at present to load levels; that would be a really great feature, though. Instead, after

you have cleared all the blocks, the game is over. You can try to play, but the game

will just stop, because there are no blocks. That should be remedied so that

the player can continue playing the next level after clearing the blocks. There are

countless features that you could add to the game, so I’ll let you have some fun

doing just that!

It will be fun to modify the game to suit your own tastes. Don’t like the paddle?

Change it! Don’t like how the ball bounces off the blocks? Change it! Don’t care

for the wall texture? Change it! Bash is like the game framework itself: a complete,

ready-to-use, pre-packaged ‘‘kit’’ that you can use to create your own games.

Figure 15.1 shows what the game looks like.

Bash 367

Figure 15.1
The complete game featured in this chapter is a ball-and-paddle game called Bash.

Playing the Game

Let’s take a quick tour of Bash to see how the game is played before getting into

how it was programmed.

Game States

There are three game states in Bash:

1. PAUSE

2. RUNNING

3. GAMEOVER

These three states determine how the game behaves. When the game is in PAUSE

state (Figure 15.2), the ball will track along with the paddle so that the player can

launch it at will. This occurs at the start of the game or after the player misses the

ball.

The normal RUNNING state, shown in Figure 15.3, causes the game to play out

normally, with collision checking and the whole works. This is the most common

game state that is in effect for most of the duration of the game.

368 Chapter 15 n Complete 3D Game

Figure 15.2
The game is in PAUSE state, waiting for the player to launch the ball.

The third state is the GAMEOVER state (see Figure 15.4) that is set when the ball

has destroyed all of the blocks. A good enhancement to the game would be to add

‘‘lives’’ that the player loses upon missing the ball. This will allow you to use the

GAMEOVER state for cases in which the player runs out of lives as well as for

when all the blocks are destroyed. This enhancement is one of the first things I

would do to improve the game because without the chance for failure, there is

little incentive to play the game. I would also recommend adding a high score!

Collision

When the ball hits a block, a very brief ‘‘COLLISION’’ message is displayed in the

lower-right corner, as shown in Figure 15.5.

Keeping Score

The game keeps track of the score by adding one point to the score for every block

that is destroyed. See Figure 15.6.

Stats

On the lower-left corner of the screen are printed three status messages (see

Figure 15.7). These messages display the number of blocks remaining, the ball’s

Bash 369

Figure 15.3
The normal game state is RUNNING.

370 Chapter 15 n Complete 3D Game

Figure 15.4
When the game is over, all you can do is hit Escape to quit.

Figure 15.5
Breaking the blocks allows you to see the blocks behind.

Bash 371

Figure 15.6
The score (displayed in the upper-right corner) is tallied for each block destroyed.

Figure 15.7
The ball position and direction, and a block count, are displayed in the lower-left.

3D direction, and the ball’s 3D position. This is the sort of information you

would want displayed while you are developing a game, but not necessarily in a

release version.

Frame Rate

The frame rate is displayed in the upper-left corner of the screen (see Figure 15.8).

The game calculates the frame rate by incrementing a counter every time Game_Run

is called, and the frame count is displayed on the screen once every second.

Smart Paddle

While developing this game, I found that it really helps to have a ‘‘smart paddle’’

or autopilot to test collision detection, particularly in a challenging game like

this. It is really difficult to judge depth in the game because of the limited colors

being used; really, the only depth is provided by the perspective settings, because

there is no dynamic lighting. It would be cool to make the ball itself become a

light source, but that would require some theory on how to create dynamic lights

in Direct3D—very possible, but beyond the goals of this small book. Figure 15.9

shows the game with smart paddle enabled.

372 Chapter 15 n Complete 3D Game

Figure 15.8
The frame rate is displayed in the upper-left corner of the screen.

Creating the Models

I won’t go into detail on how I created the models and artwork for Bash because

you already got a very good tutorial on using Anim8or and the utilities required

to create a Direct3D-compatible .X model file. I will give you a brief glimpse of

each model and texture used in the game so that you will know what to expect if

you attempt to modify them. When you are making modifications to the models

used in Bash, just remember to export using the Object menu in Anim8or, save

as a 3DS file, then open a command prompt and run ‘‘conv3ds filename.3ds’’ to

convert the model to the Direct3D .X format (the conv3ds options aren’t

absolutely necessary). I recommend just copying conv3ds.exe to the folder of your

project for convenience.

The Ball

The ball is a simple sphere that was created using Anim8or’s sphere primitive tool.

See Figure 15.10.

The Paddle

Figure 15.11 shows the paddle in Anim8or. As you can see, it is a textured model

that uses the bitmap from the paddle game in Chapter 10. How cool is that? This

Bash 373

Figure 15.9
Smart Paddle mode causes the paddle to move automatically.

paddle has been upgraded to 3D. What I did here was first create a rectangular

solid (or rather, a cube—the reason I keep using that term is because a ‘‘cube’’

has equal sides). I then converted it to a mesh using the Build menu and sub-

divided it four times. The first three times, I just used a value of 1 to subdivide the

shape into smaller polygons. Then, I subdivided by the value 0 to round off the

edges and produce a cool paddle-like shape. The paddle.bmp texture was then

applied using the Material Editor in Anim8or. I selected a white color for both

ambient and diffuse colors, and applied the paddle texture to both of them. If you

apply the texture to just ambient, it won’t show up, so be sure to apply it to both.

The Blocks

There are three types of blocks in the game: green, red, and blue. As a pro-

grammer, I find these colors pleasant, but of course they are really obnoxious to

374 Chapter 15 n Complete 3D Game

Figure 15.10
The ball is a simple sphere, created with Anim8or’s sphere primitive tool.

the casual player. One of my first recommendations as you modify the game is to

create a lot of different colored blocks. Just use Copy/Paste to copy a block, add

a new object in Anim8or, and paste the block there. Remember to press the F key

to get the full view. Then you can customize the blocks by entering Object/Point

Edit mode, selecting a face, and applying a new material to it; the material might

be a different color or even a texture! How about adding your own digital photos

to texture the blocks? Now that would be really funny! (See Figure 15.12.)

No t e

I do not recommend subdividing the blocks to make them look better. Rely on creative materials
instead. If you want to subdivide a block, I recommend doing it just once, to create four quads per
side, to which you can then apply custom materials. Any more than four per side and the game
will come to a clunking stop with a frame rate you won’t be able to tolerate. Just remember that
there are 300 blocks---if each block has hundreds of faces (like the paddle and ball), then the
game will run too slowly.

Bash 375

Figure 15.11
The paddle is a subdivided rectangular solid that was ‘‘smithed’’ into the desired shape.

The Walls

The walls in the game are created using quads (which you may recall from

Chapter 12), each using the same texture (shown in Figure 15.13). I decided it

would be easier to manipulate the walls in the game in code rather than trying to

create a model with Anim8or and then rotate/translate it into position. This

would have been possible, but I just thought the brute-force method of creating

a quad for each of the five walls used in the game was more straightforward.

Never ignore the brute force method when it gets the job done swiftly and

efficiently (if inelegantly).

Printing Text Using a Bitmapped Font

It goes without saying that the newest feature I will show you how to program in

this chapter is the ability to print text on the screen using a bitmapped font. I

376 Chapter 15 n Complete 3D Game

Figure 15.12
The red, green, and blue blocks are all the same size but have different materials applied.

would have used this feature several chapters ago, but there was no real need to

do so until now, when it became impossible to write a complete game without

displaying some text! Well, you know the old saying, ‘‘Necessity is the mother

of invention.’’

The bitmapped font is shown in Figure 15.14. You can create your own font if you

wish, as long as youmake sure that each character has exactly the same dimensions.

The characters in this bitmapped font are each 8� 12 pixels; you may use any

dimensions you want for each character, as long as they are all the same.

I wrote two functions to print text on the screen. The functions assume nothing,

so they require you to specify everything as parameters. Now, I could have

simplified the functions if I had just used global variables for the font details, but

Bash 377

Figure 15.13
The wall texture was created using Paint Shop Pro.

Figure 15.14
The bitmapped font used in the game

by passing font data to the function directly, you can support multiple fonts in

your game. If you want to write a generic Print-type function, by all means do so.

You may even write a custom function, such as Print_Small_Font, for each type

of font you want to use in your game. I prefer to just pass the font itself as a

parameter because it is just a pointer to a DIRECT3DTEXTURE9.

Below are the important parts of the DrawText function that you will find in the

complete source code listing for the game. Note how a vector is created for the

position of the text? What’s happening here is that each character of the text

message is copied to the screen using the sprite handler’s Draw function, which you

learned about way back in Chapter 8 (look at the trans_sprite program again for

reference).

The actual index into the bitmapped font is then calculated as the character code

minus 32. That is because this font starts with the space character (32), and then

includes 96 characters in the ASCII code, from space (32) to dash (-), with all the

usual alphanumeric characters you are likely to need included. A rectangle is then

created, pointing to the correct index for that particular character. You learned

about this technique back in Chapter 7 (refer to the anim_sprite program).

Finally, the Draw function of D3DXSPRITE is called to actually draw the character

(transparently).

//create vector to update sprite position
D3DXVECTOR3 position((float)x, (float)y, 0.0f);

//ASCII code of ocrfont.bmp starts with 32 (space)
int index = c - 32;

//configure the rect
RECT srcRect;
srcRect.left = (index % cols) * width;
srcRect.top = (index / cols) * height;
srcRect.right = srcRect.left + width;

srcRect.bottom = srcRect.top + height;

//draw the sprite
sprite_handler->Draw(

lpfont,
&srcRect,
NULL,
&position,
D3DCOLOR_XRGB(255,255,255));

378 Chapter 15 n Complete 3D Game

Simple 3D Collision Detection

3D collision detection is the next most significant feature in this game that you

have not learned about yet. There are some very advanced ways to perform 3D

collision detection that are quite beyond the scope of this book; what you’ll find

in Bash is a very simple method of detecting a collision between two 3D objects,

using a fixed bounding cube. Thus, you might call this ‘‘point-cubic collision

detection.’’

I use the term point-cubic because that is exactly what this method does—it checks

to see whether a point is located inside a cubic region of 3D space. If the point is

found to be within the cube, then the collision test returns true; otherwise, it

returns false.

Two D3DXVECTOR3 parameters are passed to the Collision function, followed by a

single int parameter specifying the size of the cube. The first vector is the center

point of the first object; the second vector is the center point of the second object;

the third parameter, size, will specify how far from the second point the collision

test will encompass. If the first point is within that boundary, then the collision

is true.

left = second.x - size;
right = second.x + size;
bottom = second.y - size;
top = second.y + size;
front = second.z - size;
back = second.z + size;

if (first.x > left && first.x < right &&
first.y > bottom && first.y < top &&
first.z > front && first.z < back)

{
//collision detected!

}

There are flaws with this simplistic collision detection algorithm, of course. First

of all, you have to manually specify the size of the second 3D object because the

collision routine doesn’t try to figure this out on its own. To do so would require

delving into the inner depths of a Direct3DMesh object, which, unfortunately, is

way beyond the scope of this book. But we don’t need that kind of precision for a

game like Bash, which mainly uses rectangular-shaped objects. All you must do

manually is run the game and tweak the size until you get a good result. The key is

Bash 379

to use the same scale for all of your objects in Anim8or. As long as you try to keep

all of the models the same basic size, then you can use the same size value for all of

them. The exception might be a model like the ball, which is necessarily smaller

than the paddle or blocks. In the case of the ball, 50 percent of the size used by the

other models should suffice.

Bash Source Code

The source code for this game is quite short as far as games written in C and

DirectX go. Naturally, there are a lot of places where readability and compre-

hension were more important than shortening the code. But in the end, this is a

very manageable code listing for a complete game. You should have no trouble

working through it as you try to modify the game to suit your own needs.

This game is not at all efficient, as far as simplicity goes. For instance, the code

that fills the playing area with blocks actually loads each block from disk! This is a

very bad way to write a game in general, but the focus here is on keeping the code

as simple as possible so you will be able to focus on how the game works.

On the CD, you’ll find the code for the game.cpp file for the Bash game, and I’m

assuming you’ll use the framework developed in the previous chapter to build this

project. The game.h file remains as it is, save for the following line change:

//application title
#define APPTITLE "BASH"

No t e

To conserve space, the entire code listing for Bash has been provided on the CD-ROM rather than
listed in this chapter. Please load the Bash project off the CD-ROM to peruse the source code for
the game (which is about 20 pages long).

What’s Next?
There are a lot of fun things that you can do with the Bash game, and I encourage

you to spend some time with the source code to solidify everything you have

learned in this book because Bash covers all of it in a nutshell.

380 Chapter 15 n Complete 3D Game

What You Have Learned

This chapter explained how to create a complete game from scratch to test the

game framework that you have been learning about and creating in this book.

Here are the specifics:

n You learned how quick and easy it is to create new gamemodels in Anim8or.

n You learned about a simple form of 3D collision detection.

n You learned how to print text using a bitmapped font.

n You learned how to use sound effects to enhance game events.

n You used the keyboard and mouse effortlessly in a real game.

n You put the game framework to the final test!

What You Have Learned 381

Review Questions

The following questions will help you to determine how well you have learned

the subjects discussed in this chapter.

1. Briefly, how does the simple 3D collision detection in Bash work?

2. What type of basic geometric shape is used to test for collisions?

3. What type of struct do you use to print each letter in a bitmapped font?

4. What type of object stores the bitmapped font image in memory?

5. How many milliseconds are used to calculate frame rate for one second?

On Your Own

382 Chapter 15 n Complete 3D Game

Rather than provide two exercises in this last chapter, I have decided to just list

some of the new features that you might add to the game. You might consider

trying these exercises, but don’t limit yourself to just these ideas.

n Add the ability to toggle the wireframe view for destroyed blocks

on or off.

n Add new levels with some creative geometric block formations.

n Add ‘‘lives’’ so that there is a penalty for missing too many balls.

n Add powerups to enhance gameplay (firepower, multiple balls,

and so on).

n Add ball position indicators to the screen edges to help the player

with depth.

On Your Own 383

This page intentionally left blank

3D files, converting, 344
3D graphics, 265–294

Caretesian coordinate system, 268–270,

272–273

Cube_Demo program, 288–294

framework, modifying, 282–288

lighting conditions, 272

matrixes, 271

perspective, 272

programming, steps, 267

quads, 274–275

creating, 279–282

triangles, 279–281, 289–290

scene, 267–272

textured cube demo, 282

texturing, 273–275

unrolling a loop, 280

vertex buffer, 275–279

creating, 246–277

filling, 277–278

rendering, 278–279

vertices, 268, 270–272
3D models, 141, 300–302,

343–361

3D files, converting, 344

3DS to X, converting, 344–351

Anim8or, 300–302

Conv3ds utility, 344–345

loading, 351–354

Load_Mesh program, 355–360

MeshView utility, 345–349

optimizing, 346–347

rendering, 354–355

Save As dialog, 349–351

triangle removal optimization, 347–349

Weld vertices optimization, 349

3DS to X, converting, 344–351

A
Abrash, Michael, 8
Add New Item command, Project

menu, 29
Add New Item dialog, 128
Allegro, 7, 60
Anim8or program, 267, 299–340, 373

3D modeling, 300–302

Build menu, 322

Edit menu, 321–322

faces, lines, vertices, 326–330

features, 302–303

Figure Editor, 303

installing, 303–304

interface, 303

Material Editor dialog, 324–328

Materials toolbar, 324

Mode menu, 305, 320

model car, creating, 318–338

frame, 330–333

headlights and taillights, 334–338

wheels, 319–330

windows, 333–334

385

INDEX

Anim8or program (continued)
Object Editor, 302, 306, 320

Object/Point Edit mode, 326,

329, 375

objects, 310–314

moving, 311–313

rotating, 313–314

scaling, 314

Scale mode, 320

scenes, 314–318

creating, 338–340

shading mode, changing,

317–318

Viewport, moving, 315–316

Viewport, rotating, 316–317

Viewport, scaling, 316

Scene Editor, 303

Sequence editor, 303

Smooth Parameters dialog,

323, 325

stock primitives, 305–310

adding, 310

cubes, adding, 309

cylinders, adding, 309

spheres, adding, 305–308

toolbar, 306

Application Settings dialog, 28
artwork, sprites, 136–140
audio support files, 191–194

B
backgrounds and scenery, 233–234
backgrounds, sprites, 139–140
Bash game, 365–380

bitmapped font, 376–378

collision detection, 379–380

models, creating, 373–376

playing, 368–373

source code, 380
BeginScene function, 153
bitmaps, 112–117, 143–144

D3DX library, 114

Game_Init function, 114

graphics file formats, 113

importing, 246–248

Load_Bitmap program, 113–117

loading, 112

Project Settings dialog, 113

bitmapped fonts, 143, 376–378
blitting, surfaces, 103–105
Bloodshed Software, 5
Borland C++, 6
bounding box collision detection,

sprites, 170–178
Build menu, 40
Build menu, Anim8or, 322

C
C++ Builder, 6–7
Caretesian coordinate system, 268–270,

272–273
Celeste, Eden, 142
collision detection, 372, 379–380

sprites, 170–178

ColorFill function, 105
compilation process, 9
compilers, 5–7
concept art, sprites, 141–142
Conv3ds utility, 344–345
cooperative levels, DirectSound, 184
copying files, DirectSound, 187–189
CreateDevice, Direct3D, 82–83
CreateWindow function, Direct3D,

93–94
CSound class, 183–185
CSoundManager class, 183–184
Ctrl+Shift+B, 40
Ctrl+F5, 40
Cube_Demo program, 288–294
cubes, adding, 309
CWaveFile class, 183–184
cylinders, adding, 309

D
D3DX library, 114
Debug folder, 30
Debug menu, 40
Dev-C++ 5.0, 5–7
DirectInput, 20, 26, 213–219
DirectPlay, 20
DirectSound, 181–202

classes, 183

cooperative levels, 184

copying files, 187–189

386 Index

CSound class, 183–185

CSoundManager class, 183–184

CWaveFile class, 183–184

DirectX audio support files, 191–194

DirectX libraries, 189–191

DXUTsound, 182–183

File menu, 187

framework code, 194–195

game files, adding, 195–201

header files, 191

initializing, 183–184

New dialog, 187

Play function, 185–186

Project menu, 191–192

Project Property Pages dialog, 189

reusable source files, 187

sound buffers, 184

testing, 186

utility files, 187

wave files, loading, 184–185

wrappers, 183
Direct3D, 20–21, 80–95

CreateDevice, 82–83

CreateWindow function, 93–94

fullscreen mode, 93–95

Game_End function, 89, 92

Game_Init function, 89

Game_Run function, 91

graphics device, 81

headers, 80

initializing, 81–84

interfaces, 81

keyboard support, 93

library files, 80, 125

Linker, 84–86

MessageBox function, 89–90

presentation parameters, 83–84, 94

Project menu, Properties option, 84

Project Properties dialog, 84–85
DirectX

components, 19

overview, 18–20

DirectX Graphics, 20
DirectX Sound, 20
double buffers, 17, 102
Draw function, 153–154

DrawBitmap function, 72–73
Dungeon Keeper, 9
DXUTsound, 182–183
DynamicScroll program, 244–245,

251–260

E
Edit menu, Anim8or, 321–322
EndScene function, 154
event handling, 17–18
Export dialog, scrolling, 248, 250

F
faces, lines, vertices, Anim8or, 326–330
Feldman, Ari, 136, 143–145, 236
Figure Editor, Anim8or, 303
file extensions, 28
File menu, New, 28, 187
frame buffers, 100–102
framework code, 194–195
framework

modifying, 282–288

sprites, 122–140

front buffers, 102
Fuerst, Jessica K., 141
fullscreen mode, Direct3D, 93–95

G
Game Boy Advance, 232
Game_End function, 66, 89, 92
game files, adding, 195–201
Game_Init function, 66, 89, 114,

145–146
GameLoop project, 67–74, 89

DrawBitmap function, 72–73

running, 73–74

source code, 67–71

game loops, real time, 59–74

continuity, 61

defined, 60

GetMessage function, 62–63

PeekMessage function, 63–66

parameters, 64

WinMain, 64–66

real-time, terminator, 61–62

sprites, 146–147

Index 387

game loops, real time (continued)
while loop, WinMain, 61–62

WinMain, limited loop, 60–61

Game_Run function, 91, 146, 372
games, state-driven, 66
GeForce 6600 video card, 266
GetBackBuffer function,

104–105
GetMessage function, 62–63
graphics device, Direct3D, 81
Graphics Device Interface (GDI), 73
graphics file formats, 113

H
Halo, 234
hardware, 10
headers, Direct3D, 80
header files, DirectSound, 191
header files, scrolling,

236–238
header files, sprites, 128–132
HelloWorld program, 29–31

I
images, loading, 154–157
InitInstance function, 44–47

function call, 45

structure, 45–47
input devices, 205–228

keyboard, 206–210

mouse, 210–213
interfaces, Direct3D, 81

J–K
Jedi Knight, 9
keyboard, 206–210

CreateDevice function,

207–208

cooperative level, setting,

208–209

data format, setting, 208

device acquisition, 209

DirectInput objects, 206–208

initializing, 208–209

key presses, reading, 209–210

keyboard support, Direct3D, 93

L
library files, Direct3D, 80
library files, DirectX, 189–191
lighting, 82, 272
Linker, Direct3D, 84–86
Load_Bitmap program, 113–117
Load_Mesh program, 355–360
LoadTexture function, 163–164

M
Map Properties dialog, 247, 249
Mappy, 245–250
Mars Matrix, 154
Material Editor dialog, Anim8or,

324–328
Materials toolbar, Anim8or, 324
matrixes, 271
MechCommander, 143–144
MechCommander 2, 144
MeshView utility, 345–349
MessageBox function, 31, 89–90
Mode menu, Anim8or, 305, 320
model car, creating, 318–338

frame, 330–333

headlights and taillights, 334–338

wheels, 319–330

windows, 333–334

mouse, 210–213

cooperative level, setting, 211

data format, setting, 210–211

device acquisition, 211

initializing, 210–211

reading, 212–213

multi-tasking, preemptive, 13–15
multi-threading, 16–17
MyRegisterClass funtion, 47–50

function call, 47–48

structure, 48–50

N
New command, File menu, 28
New dialog, 187
New File dialog, 29

O
Object Editor, Anim8or, 302, 306, 320
Object/Point Edit mode, Anim8or, 326, 329

388 Index

objects, Anim8or, 310–314

moving, 311–313

rotating, 313–314

scaling, 314
offscreen surfaces, 102–105

P
Paddle Game project, 213–228
PeekMessage function, 63–66

parameters, 64

WinMain, 64–66

perspective, 272
platformer games, sprites, 144–145
Play function, 185–186
polled library, 26
preemptive multi-tasking, 13–15
presentation parameters, Direct3D,

83–84, 94
primary surfaces, 102
program basics, 26
programming, 3D, 267
programming overview, 10–11
Project menu, 128, 133, 157, 191–192
Project menu, Add New Item, 29
Project menu, Properties option, 84
Project Properties dialog, 84–85,

123–124, 157–158
Project Property Pages dialog, 189
projects, defined, 27
Project Settings dialog, 113

Q
quads, 274–275

creating, 279–282

triangles, 279–281, 289–290
Quake, 82

R
real-time terminators, 61–62
reusable source files, 187
R-Type, 154

S
Save As dialog, MeshView,

349–351
Scale mode, Anim8or, 320

scenes,

3D, 267–272

Anim8or, 314–318

creating, 338–340

shading mode, changing, 317–318

Viewport, moving, 315–316

Viewport, rotating, 316–317

Viewport, scaling, 316

Scene Editor, Anim8or, 303
scrolling, 231–259

backgrounds and scenery, 233–234

bitmap files, importing, 246–248

defined, 233

DynamicScroll program, 244–245,

251–260

Export dialog, 248, 250

header files, 236–238

Map Properties dialog, 247, 249

Mappy, 245–250

ScrollTest program, 238–243

tile-based, 234–243

tile-based backgrounds, 233–234

tile map, 244–250

tiles, dynamically rendered, 243–244

ScrollTest program, 238–243
secondary surfaces, 102–105
Sequence editor, Anim8or, 303
skill level, 7–10
Smooth Parameters dialog, Anim8or,

323, 325
Solution Explorer, 29
sound buffers, 184
source code files, sprites, 124–136
spheres, adding, 305–308
sprite handler objects, 152–154
SpriteLib, 136, 138
sprites, 121–147

3D models, 141

Add New Item dialog, 128

artwork, 136–140

backgrounds, 139–140

bitmaps, 143–144

bitmapped fonts, 143

bounding box collision detection,

170–178

collision detection, 170–178

concept art, 141–142

configuration, 122–124

Index 389

sprites (continued)
defined, 142

Direct3D libraries, 125

drawing, 122

framework, 122–140

Game_Init function, 145–146

game loop, 146–147

Game_Run function, 146

header files, 128–132

platformer games, 144–145

Project menu, 128, 133

Project Properties dialog, 123–124

source code files, 124–136

sprite sheets, 165–169

SPRITE struct, 144–146

transcolor parameter, 140

transparent, 152–164

transparent color, 140

sprite sheets, 165–169
SPRITE struct, 144–146
state-driven games, 66
stock primitives, Anim8or,

305–310

adding, 310

cubes, adding, 309

cylinders, adding, 309

spheres, adding, 305–308

StretchRect function, 105
Super Mario World, 154, 170
surfaces, 100–111

blitting, 103–1025

ColorFill function, 105

creating, 103

double buffering, 102

drawing, 103–105

frame buffers, 100–102

front buffer, 102

GetBackBuffer function, 104–105

offscreen, 102–105

primary, 102

secondary, 102–105

StretchRect function, 105

T
testing, sound files, 186
texturing, 273–275

tile-based backgrounds, 233–234
tile-based scrolling, 234–243
tile maps, 244–250
tiles, dynamically rendered,

243–244
toolbar, Anim8or, 306
transcolor parameter, sprites, 140
transparent sprites, 140, 152–164

BeginScene, 153

Draw function, 153–154

drawing, 157–164

EndScene function, 154

loading images, 154–157

LoadTexture function, 163–164

Project menu, 157

Project Properties dialog, 157–158

sprite handler objects, 152–154

transforms, 82
triangle removal optimization,

347–349

U–V
unrolling a loop, 280
utility files, 187
vertex buffer, 275–279

creating, 246–277

filling, 277–278

rendering, 278–279

vertices, 268, 270–272
video cards, 82, 99–101, 266
Visual C++, 5–7
Visual Studio .NET, 6

W–Z
wave files, loading, 184–185
Weld vertices optimization, 349
while loop, WinMain, 61–62
Win32 projects, 26–31
Windows, defined, 11–12
Windows messaging, 12–13
WinMain function, 26, 31–36, 55

function call, 32–33

HINSTANCE hInstance parameter, 32

HINSTANCE hPrevInstance

parameter, 33

HWND hWnd parameter, 35

390 Index

int nCmdShow parameter, 33

limited loop, 60–61

LPMSG 1pMsg parameter, 35

LPTSTR 1pCmdLine parameter, 33

UINT wMsgFilterMax

parameter, 35

UINT wMsgFilterMin parameter, 35

while loop, 61–66

WinProc function, 26, 50–55

function call, 50–51

parameters, 51

structure, 51–55
WindowTest program,

writing, 40–44
WM_Paint, 55
wrappers, 183
XNA Game Studio, 7

Index 391

www.courseptr.com

License Agreement/Notice of Limited Warranty
By opening the sealed disc container in this book, you agree to the following terms

and conditions. If, upon reading the following license agreement and notice of

limited warranty, you cannot agree to the terms and conditions set forth, return the

unused book with unopened disc to the place where you purchased it for a refund.

License
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc.

You are licensed to copy the software onto a single computer for use by a single user and to a

backup disc. You may not reproduce, make copies, or distribute copies or rent or lease the

software in whole or in part, except with written permission of the copyright holder(s). You may

transfer the enclosed disc only together with this license, and only if you destroy all other copies

of the software and the transferee agrees to the terms of the license. You may not decompile,

reverse assemble, or reverse engineer the software.

Notice of Limited Warranty
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical

defects in materials and workmanship for a period of sixty (60) days from end user’s purchase

of the book/disc combination. During the sixty-day term of the limited warranty, Thomson

Course Technology PTR will provide a replacement disc upon the return of a defective disc.

Limited Liability
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST

ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL

THOMSON COURSE TECHNOLOGY PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER

DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE

FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM,

DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF THOMSON

COURSE TECHNOLOGY PTR AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED

THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties
THOMSON COURSE TECHNOLOGY PTR AND THE AUTHOR SPECIFICALLY DISCLAIM

ANY AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING

WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR

PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR

EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of

law principles. The United Convention of Contracts for the International Sale of Goods is

specifically disclaimed. This Agreement constitutes the entire agreement between you and

Thomson Course Technology PTR regarding use of the software.

