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Preface

Smart antennas involve processing of signals induced on an array of sensors such as
antennas, microphones, and hydrophones. They have applications in the areas of radar,
sonar, medical imaging, and communications.

Smart antennas have the property of spatial filtering, which makes it possible to receive
energy from a particular direction while simultaneously blocking it from another direction.
This property makes smart antennas a very effective tool in detecting and locating an
underwater source of sound such as a submarine without using active sonar. The capacity
of smart antennas to direct transmitting energy toward a desired direction makes them
useful for medical diagnostic purposes. This characteristic also makes them very useful
in canceling an unwanted jamming signal. In a communications system, an unwanted
jamming signal is produced by a transmitter in a direction other than the direction of the
desired signal. For a medical doctor trying to listen to the sound of a pregnant mother’s
heart, the jamming signal is the sound of the baby’s heart.

Processing signals from different sensors involves amplifying each signal before com-
bining them. The amount of gain of each amplifier dictates the properties of the antenna
array. To obtain the best possible cancellation of unwanted interferences, the gains of these
amplifiers must be adjusted. How to go about doing this depends on many conditions
including signal type and overall objectives. For optimal processing, the typical objective
is maximizing the output signal-to-noise ratio (SNR). For an array with a specified
response in the direction of the desired signal, this is achieved by minimizing the mean
output power of the processor subject to specified constraints. In the absence of errors,
the beam pattern of the optimized array has the desired response in the signal direction
and reduced response in the directions of unwanted interference.

The smart antenna field has been a very active area of research for over four decades.
During this time, many types of processors for smart antennas have been proposed and
their performance has been studied. Practical use of smart antennas was limited due to
excessive amounts of processing power required. This limitation has now been overcome
to some extent due to availability of powerful computers.

Currently, the use of smart antennas in mobile communications to increase the capacity
of communication channels has reignited research and development in this very exciting
field. Practicing engineers now want to learn about this subject in a big way. Thus, there
is a need for a book that could provide a learning platform. There is also a need for a
book on smart antennas that could serve as a textbook for senior undergraduate and
graduate levels, and as a reference book for those who would like to learn quickly about
a topic in this area but do not have time to perform a journal literature search for the
purpose.

This book aims to provide a comprehensive and detailed treatment of various antenna
array processing schemes, adaptive algorithms to adjust the required weighting on anten-
nas, direction-of-arrival (DOA) estimation methods including performance comparisons,
diversity-combining methods to combat fading in mobile communications, and effects of
errors on array system performance and error-reduction schemes. The book brings almost
all aspects of array signal processing together and presents them in a logical manner. It
also contains extensive references to probe further.
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After some introductory material in Chapter 1, the detailed work on smart antennas
starts in Chapter 2 where various processor structures suitable for narrowband field are
discussed. Behavior of both element space and beamspace processors is studied when
their performance is optimized. Optimization using the knowledge of the desired signal
direction as well as the reference signal is considered. The processors considered include
conventional beamformer; null-steering beamformer; minimum-variance distortionless
beamformer, also known as optimal beamformer; generalized side-lobe canceller; and
postbeamformer interference canceler. Detailed analysis of these processors in the absence
of errors is carried out by deriving expressions for various performance measures. The
effect of errors on these processors has been analyzed to show how performance degrades
because of various errors. Steering vector, weight vector, phase shifter, and quantization
errors are discussed.

For various processors, solution of the optimization problem requires knowledge of the
correlation between various elements of the antenna array. In practice, when this infor-
mation is not available an estimate of the solution is obtained in real-time from received
signals as these become available. There are many algorithms available in the literature
to adaptively estimate the solution, with conflicting demands of implementation simplicity
and speed with which the solution is estimated. Adaptive processing is presented in
Chapter 3, with details on the sample matrix inversion algorithm, constrained and uncon-
strained least mean squares (LMS) algorithms, recursive LMS algorithm, recursive least
squares algorithm, constant modulus algorithm, conjugate gradient method, and neural
network approach. Detailed convergence analysis of many of these algorithms is presented
under various conditions to show how the estimated solution converges to the optimal
solution. Transient and steady-state behavior is analyzed by deriving expressions for
various quantities of interest with a view to teach the underlying analysis tools. Many
numerical examples are included to demonstrate how these algorithms perform.

Smart antennas suitable for broadband signals are discussed in Chapter 4. Processing
of broadband signals may be carried out in the time domain as well as in the frequency
domain. Both aspects are covered in detail in this chapter. A tapped-delay line structure
behind each antenna to process the broadband signals in the time domain is described
along with its frequency response. Various constraints to shape the beam of the broadband
antennas are derived, optimization for this structure is considered, and a suitable adaptive
algorithm to estimate the optimal solution is presented. Various realizations of time-
domain broadband processors are discussed in detail along with the effect that the choice
of origin has on performance. A detailed treatment of frequency-domain processing of
broadband signals is presented and its relationship with time-domain processing is estab-
lished. Use of the discrete Fourier transform method to estimate the weights of the time-
domain structure and how its modular structure could help reduce real-time processing
are described.

Correlation between a desired signal and unwanted interference exists in situations of
multipath signals, deliberate jamming, and so on, and can degrade the performance of an
antenna array processor. Chapter 5 presents models for correlated fields in narrowband
and broadband signals. Analytical expressions for SNRs in both narrowband and broad-
band structures of smart antennas are derived, and the effects of several factors on SNR
are explored, including the magnitude and phase of the correlation, number of elements
in the array, direction and level of the interference source and the level of the uncorrelated
noise. Many methods are described to decorrelate the correlated sources, and analytical
expressions are derived to show the decorrelation effect of the proposed techniques.

In Chapter 6, various DOA estimation methods are described, followed by performance
comparisons and sensitivity analyses. These estimation tools include spectral estimation
methods, minimum variance distortionless response estimator, linear prediction method,
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maximum entropy method, maximum likelihood method, various eigenstructure methods
including many versions of MUSIC algorithms, minimum norm methods, CLOSEST
method, ESPRIT method, and weighted subspace fitting method. This chapter also con-
tains discussion on various preprocessing and number-of-source estimation methods.

In the first six chapters, it is assumed that the directional signals arrive from point
sources as plane wave fronts. In mobile communication channels, the received signal is a
combination of many components arriving from various directions due to multipath
propagation resulting in large fluctuation in the received signals. This phenomenon is
called fading. In Chapter 7, a brief review of fading channels is presented, distribution of
signal amplitude and received power on an antenna is developed, analysis of noise- and
interference-limited single-antenna systems in Rayleigh and Nakagami fading channels
is presented by deriving results for average bit error rate and outage probability. The
results show how fading affects the performance of a single-antenna system.

Chapter 8 presents a comprehensive analysis of diversity combining, which is a process
of combining several signals with independent fading statistics to reduce large attenuation
of the desired signal in the presence of multipath signals. The diversity-combining schemes
described and analyzed in this chapter include selection combiner, switched diversity
combiner, equal gain combiner, maximum ratio combiner, optimal combiner, generalized
selection combiner, cascade diversity combiner, and macroscopic diversity combiner. Both
noise-limited and interference-limited systems are analyzed in various fading conditions
by deriving results for average bit error rate and outage probability.
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Widespread interest in smart antennas has continued for several decades due to their use
in numerous applications. The first issue of IEEE Transactions of Antennas and Propagation,
published in 1964 [IEE64], was followed by special issues of various journals [IEE76, IEES5,
IEE86, IEE87a, IEE87b], books [Hud81, Mon80, Hay85, Wid85, Com88, God00], a selected
bibliography [Mar86], and a vast number of specialized research papers. Some of the
general papers in which various issues are discussed include [App76, d’A80, d”A84, Gab76,
Hay92, Kri%, Mai82, Sch77, Sta74, Van88, Wid67].

The current demand for smart antennas to increase channel capacity in the fast-growing
area of mobile communications has reignited the research and development efforts in this
area around the world [God97]. This book aims to help researchers and developers by
providing a comprehensive and detailed treatment of the subject matter. Throughout the
book, references are provided in which smart antennas have been suggested for mobile
communication systems. This chapter presents some introductory material and terminol-
ogy associated with antenna arrays for those who are not familiar with antenna theory.

1.1 Antenna Gain

Omnidirectional antennas radiate equal amounts of power in all directions. Also known
as isotropic antennas, they have equal gain in all directions. Directional antennas, on the
other hand, have more gain in certain directions and less in others. A direction in which
the gain is maximum is referred to as the antenna boresight. The gain of directional
antennas in the boresight is more than that of omnidirectional antennas, and is measured
with respect to the gain of omnidirectional antennas. For example, a gain of 10 dBi (some
times indicated as dBic or simply dB) means the power radiated by this antenna is 10 dB
more than that radiated by an isotropic antenna.
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An antenna may be used to transmit or receive. The gain of an antenna remains the
same in both the cases. The gain of a receiving antenna indicates the amount of power it
delivers to the receiver compared to an omnidirectional antenna.

1.2 Phased Array Antenna

A phased array antenna uses an array of antennas. Each antenna forming the array is
known as an element of the array. The signals induced on different elements of an array
are combined to form a single output of the array.

This process of combining the signals from different elements is known as beamforming.
The direction in which the array has maximum response is said to be the beam-pointing
direction. Thus, this is the direction in which the array has the maximum gain. When signals
are combined without any gain and phase change, the beam-pointing direction is broadside
to the linear array, that is, perpendicular to the line joining all elements of the array.

By adjusting the phase difference among various antennas one is able to control the beam
pointing direction. The signals induced on various elements after phase adjustment due to
a source in the beam-pointing direction get added in phase. This results in array gain (or
equivalently, gain of the combined antenna) equal to the sum of individual antenna gains.

1.3 Power Pattern

A plot of the array response as a function of angle is referred to as array pattern or antenna
pattern. It is also called power pattern when the power response is plotted. It shows the
power received by the array at its output from a particular direction due to a unit power
source in that direction. A power pattern of an equispaced linear array of ten elements
with half-wavelength spacing is shown in Figure 1.1. The angle is measured with respect
to the line of the array. The beam-pointing direction makes a 90° angle with the line of
the array. The power pattern has been normalized by dividing the number of elements in
the array so that the maximum array gain in the beam-pointing direction is unity.

The power pattern drops to a low value on either side of the beam-pointing direction.
The place of the low value is normally referred to as a null. Strictly speaking, a null is a
position where the array response is zero. However, the term sometimes is misused to
indicate the low value of the pattern. The pattern between the two nulls on either side of
the beam-pointing direction is known as the main lobe (also called main beam or simply
beam). The width of the main beam between the two half-power points is called the half-
power beamwidth. A smaller beamwidth results from an array with a larger extent. The
extent of the array is known as the aperture of the array. Thus, the array aperture is the
distance between the two farthest elements in the array. For a linear array, the aperture is
equal to the distance between the elements on either side of the array.

1.4 Beam Steering

For a given array the beam may be pointed in different directions by mechanically moving
the array. This is known as mechanical steering. Beam steering can also be accomplished
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FIGURE 1.1
Power pattern of a ten-element linear array with half-wavelength spacing.

by appropriately delaying the signals before combining. The process is known as electronic
steering, and no mechanical movement occurs. For narrowband signals, the phase shifters
are used to change the phase of signals before combining.

The required delay may also be accomplished by inserting varying lengths of coaxial
cables between the antenna elements and the combiner. Changing the combinations of
various lengths of these cables leads to different pointing directions. Switching between
different combinations of beam-steering networks to point beams in different directions
is sometimes referred to as beam switching.

When processing is carried out digitally, the signals from various elements can be
sampled, stored, and summed after appropriate delays to form beams. The required delay
is provided by selecting samples from different elements such that the selected samples
are taken at different times. Each sample is delayed by an integer multiple of the sampling
interval; thus, a beam can only be pointed in selected directions when using this technique.

1.5 Degree of Freedom

The gain and phase applied to signals derived from each element may be thought of as
a single complex quantity, hereafter referred to as the weighting applied to the signals. If
there is only one element, no amount of weighting can change the pattern of that antenna.
However, with two elements, when changing the weighting of one element relative to the
other, the pattern may be adjusted to the desired value at one place, that is, you can place
one minima or maxima anywhere in the pattern. Similarly, with three elements, two
positions may be specified, and so on. Thus, with an L-element array, you can specify L — 1
positions. These may be one maxima in the direction of the desired signal and L - 2
minimas (nulls) in the directions of unwanted interferences. This flexibility of an L element
array to be able to fix the pattern at L — 1 places is known as the degree of freedom of the
array. For an equally spaced linear array, this is similar to an L — 1 degree polynomial of
L -1 adjustable coefficients with the first coefficient having the value of unity.
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1.6 Optimal Antenna

An antenna is optimal when the weight of each antenna element is adjusted to achieve
optimal performance of an array system in some sense. For example, assume that a
communication system is operating in the presence of unwanted interferences. Further-
more, the desired signal and interferences are operating at the same carrier frequency such
that these interferences cannot be eliminated by filtering. The optimal performance for a
communication system in such a situation may be to maximize the signal-to-noise ratio
(SNR) at the output of the system without causing any signal distortion. This would
require adjusting the antenna pattern to cancel these interferences with the main beam
pointed in the signal direction. Thus, the communication system is said to be employing
an optimal antenna when the gain and the phase of the signal induced on each element
are adjusted to achieve the maximum output SNR (sometimes also referred to as signal
to interference and noise ratio, SINR).

1.7 Adaptive Antenna

The term adaptive antenna is used for a phased array when the weighting on each element
is applied in a dynamic fashion. The amount of weighting on each channel is not fixed at
the time of the array design, but rather decided by the system at the time of processing
the signals to meet required objectives. In other words, the array pattern adapts to the
situation and the adaptive process is under control of the system. For example, consider
the situation of a communication system operating in the presence of a directional inter-
ference operating at the carrier frequency used by the desired signal, and the performance
measure is to maximize the output SNR. As discussed previously, the output SNR is
maximized by canceling the directional interference using optimal antennas. The antenna
pattern in this case has a main beam pointed in the desired signal direction, and has a null
in the direction of the interference. Assume that the interference is not stationary but moving
slowly. If optimal performance is to be maintained, the antenna pattern needs to adjust so
that the null position remains in the moving interference direction. A system using adaptive
antennas adjusts the weighting on each channel with an aim to achieve such a pattern.
For adaptive antennas, the conventional antenna pattern concepts of beam width, side
lobes, and main beams are not used, as the antenna weights are designed to achieve a set
performance criterion such as maximization of the output SNR. On the other hand, in
conventional phase-array design these characteristics are specified at the time of design.

1.8 Smart Antenna

The term smart antenna incorporates all situations in which a system is using an antenna
array and the antenna pattern is dynamically adjusted by the system as required. Thus,
a system employing smart antennas processes signals induced on a sensor array. A block
diagram of such a system is shown in Figure 1.2.
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Weights
Antenna 1 T )@)'
Antenna 2 T Output
E E—

Antennal| Or [

—  Weight
E— . .
Estimation
Desired
Signal
Direction

FIGURE 1.3
Block diagram of a communication system using an antenna array.

The type of sensors used and the additional information supplied to the processor
depend on the application. For example, a communication system uses antennas as sensors
and may use some signal characteristics as additional information. The processor uses
this information to differentiate the desired signal from unwanted interference.

A block diagram of a narrowband communication system is shown in Figure 1.3 where
signals induced on an antenna array are multiplied by adjustable complex weights and
then combined to form the system output. The processor receives array signals, system
output, and direction of the desired signal as additional information. The processor cal-
culates the weights to be used for each channel.

1.9 Book Outline

Chapter 2 is dedicated to various narrowband processors and their performance. Adaptive
processing of narrowband signals is discussed in Chapter 3. Descriptions and analyses of
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broadband-signal processors are presented in Chapter 4. In Chapter 5, situations are
considered in which the desired signals and unwanted interference are not independent.
Chapter 6 is focused on using the received signals on an array to identify the direction of
a radiating source. Chapter 7 and Chapter 8 are focused on fading channels. Chapter 7
describes such channels and analyzes the performance of a single antenna system in a
fading environment. Chapter 8 considers multiple antenna systems and presents various
diversity-combining techniques.

I
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Consider the antenna array system consisting of L antenna elements shown in Figure 2.1,
where signals from each element are multiplied by a complex weight and summed to
form the array output. The figure does not show components such as preamplifiers, band-
pass filters, and so on. It follows from the figure that an expression for the array output
is given by

(0= iwr () e

where * denotes the complex conjugate. The conjugate of complex weights is used to
simplify the mathematical notation.
Denoting the weights of the array system using vector notation as

T
w= [W1/ Wy, ooy wL] (2.2)
and signals induced on all elements as

x(t) = [Xl(t), xz(t), ey xL(t)]T (2.3)

the output of the array system becomes

y(t) = w"x(t) (2.4)

where superscript T and H, respectively, denote transposition and the complex conjugate
transposition of a vector or matrix. Throughout the book w and x(t) are referred to as the
weight vector and the signal vector, respectively. Note that to obtain the array output, you
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FIGURE 2.1
Antenna array system.

need to multiply the signals induced on all elements with the corresponding weights. In
vector notation, this operation is carried out by taking the inner product of the weight
vector with the signal vector as given by (2.4).

The output power of the array at any time t is given by the magnitude square of the
array output, that is,

2
P(t)=|y(t
(6) =[y(t) 25
=y(t)y*(t)
Substituting for y(t) from (2.4), the output power becomes
P(t) = w'x(t)x" (t) w (2.6)

If the components of x(t) can be modeled as zero-mean stationary processes, then for a
given w the mean output power of the array system is obtained by taking conditional
expectation over x(t):

P(w) = E[w'x(t)x"(t) w]
= wHE[x(t)x"(t)] w 2.7)
=w'Rw
where E[[Jdenotes the expectation operator and R is the array correlation matrix defined by
R = E[x(t) x"(t) (2.8)

Elements of this matrix denote the correlation between various elements. For example, R;;
denotes the correlation between the ith and the jth element of the array.

Consider that there is a desired signal source in the presence of unwanted interference
and random noise. The random noise includes both background and electronic noise. Let
xs(t), xi(t), and n(t), respectively, denote the signal vector due to the desired signal source,
unwanted interference, and random noise. The components of signal, interference, and
random noise in the output yg(t), yi(t), and y,(t) are then obtained by taking the inner
product of the weight vector with xg(t), x(t), and n(t). These are given by
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y5(t) = whxg(t) (2.9)

y,(t) =w'x,(t) (2.10)

and
y.(t)=w"n(t) (2.11)

Define the array correlation matrices due to the signal source, unwanted interference,
and random noise, respectively, as

Ry = E[xg(t) x¢'(t) 2.12)

R, = E[x(t) x}'(t) (2.13)
and

R, = E[n(t) n"(¢) (2.14)

Note that R is the sum of these three matrices, that is,
R=R¢+R; +R (2.15)

Let Ps, P; and P,, denote the mean output power due to the signal source, unwanted
interference, and random noise, respectively. Following (2.7), these are given by

P, =w" R, w (2.16)

P=w"'R, w (2.17)
and

P =w'R w (2.18)

Let Py denote the mean power at the output of the array contributed by random noise
and unwanted interference, that is,

P, =P +P, (2.19)

We refer to Py as the mean noise power at the output of the array system. Note that the
noise here includes random noise and contributions from all sources other than the desired
signal. In some sources, this is also referred to as noise plus interference.

Substituting from (2.17) and (2.18) in (2.19),

P =w"R, w+w"'R w
(2.20)
=wh (RI +Rn) w
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Let Ry denote the noise array correlation matrix, that is,
Ry =R, +R, (2.21)

Then Py, the mean noise power at the output of the system can be expressed in terms of
weight vector and Ry as

P

N = wh Ryw (2.22)

Let the output signal-to-noise ratio (SNR), sometimes also referred to as the signal to
interference plus noise ratio (SINR), be defined as the ratio of the mean output signal
power to the mean output noise power at the output of the array system, that is,

Fs (2.23)

SNR ==
Py

Substituting from (2.16) and (2.22) in (2.23), it follows that

w' R, w

SNR = (2.24)

H
w Ryw

The weights of the array system determine system performance. The selection process of
these weights depends on the application and leads to various types of beamforming schemes.

In this chapter, various beamforming schemes are discussed, performance of a processor
using these schemes is analyzed, and the effect of errors on processor performance is
presented [God93, God97].

2.1 Signal Model

In this section, a signal model is described and expressions for the signal vector and the
array correlation matrix required for the understanding of various beamforming schemes
are written.

Assume that the array is located in the far field of directional sources. Thus, as far as
the array is concerned, the directional signal incident on the array can be considered as a
plane wave front. Also assume that the plane wave propagates in a homogeneous media
and that the array consists of identical distortion-free omnidirectional elements. Thus, for
the ideal case of nondispersive propagation and distortion free elements, the effect of
propagation from a source to an element is a pure time delay.

Let the origin of the coordinate system be taken as the time reference as shown in
Figure 2.2. Thus, the time taken by a plane wave arriving from the kth source in direction
(®.8y) and measured from the lth element to the origin is given by

T (0, 8)= "1\ B}((:k’ ) @1.1)

where 1, is the position vector of the Ith element, v (@,6,) is the unit vector in direction
(@8, c is the speed of propagation of the plane wave front, and the dot represents the
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dot product. For a linear array of equispaced elements with element spacing d, aligned
with the x-axis such that the first element is situated at the origin as shown in Figure 2.3,
it becomes

1,(6,) =%(| -1)cos8, 212
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Note that when the kth source is broadside to the array, 8, = 90°. It follows from (2.1.2)
that for this case, 1,(8) = 0 for all 1. Thus, the wave front arrives at all the elements of the
array at the same time and signals induced on all the elements due to this source are
identical. For 6, = 0°, the wave front arrives at the Ith element before it arrives at the
origin, and the signal induced on the Ith element leads to that induced on an element at
the origin. The time delay given by (2.1.2) is

1(6,) :%(I -1) (2.13)

On the other hand, for 8 = 180°, the time delay is given by

1(8,)= —%0 -1) (2.1.4)

The negative sign is due to the definition of 1,. It is the time taken by the plane wave from
the 1th element to the origin. The negative sign indicates that the wave front arrives at the
origin before it arrives at the Ith element, and the signal induced on the lth element lags
behind that induced on an element at the origin.

The signal induced on the reference element (an element at the origin) due to the kth
source is normally expressed in complex notation as

m, (t) ™" 2.1.5)

with my(t) denoting the complex modulating function and f; denoting the carrier fre-
quency. The structure of the modulating function reflects the particular modulation used
in a communication system. For example, for frequency division multiple access (FDMA)
systems it is a frequency-modulated signal given by my(t) = A.e#® with A, denoting the
amplitude and §,(t) denoting the message. For time division multiple access (TDMA)
systems, it is given by

m,(t) = z d, (n)p(t-na) (2.1.6)

where p(t) is the sampling pulse, the amplitude d,(n) denotes the message symbol, and A
is the sampling interval. For code division multiple access (CDMA) systems, m,(t) is given by

m, (t) =d, (t)s(t) 2.1.7)

where di(n) denotes the message sequence and g(t) is a pseudo random-noise binary
sequence having the values +1 or —1.

In general, the modulating function is normally modeled as a complex low-pass process
with zero mean and variance equal to the source power p, as measured at the reference
element. Assuming that the wave front on the Ith elements arrives 1,(@6,) seconds before
it arrives at the reference element, the signal induced on the Ith element due to the kth
source can be expressed as

m, (t) 270 (% &) (2.1.8)
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The expression is based upon the narrowband assumption for array signal processing,
which assumes that the bandwidth of the signal is narrow enough and that the array
dimensions are small enough for the modulating function to stay almost constant during
T,(®,,6,) seconds, that is, the approximation my(t) Omy(t + 1,(¢,6)) holds.

Assume that there are M directional sources present. Let x,(t) denote the total signal
induced due to all M directional sources and background noise on the lth element. Thus,

x, (t) = imk(t) &M (e &) 4 () 2.19)

where n((t) is random noise component on the Ith element, which includes background
noise and electronic noise generated in the 1th channel. It is assumed to be temporally
white with zero mean and variance equal to 2. Furthermore, it is assumed to be uncor-
related with directional sources, that is,

E[m, (t)n, ()] =0 (2.1.10)
The noise on different elements is also assumed to be uncorrelated, that is,

0 1#k
E[n, (t)n, (t)] = @pz . (2.1.11)

n

It should be noted that if the elements were not omnidirectional, then the signal induced
on each element due to a source is scaled by an amount equal to the response of the
element under consideration in the direction of the source.

Substituting from (2.1.9) in (2.3), the signal vector becomes

[pi2m(a &) 0
M %izmz((ﬂw a)d
x(t) = Z m, (t) T B+ n(t) (2.1.12)

i (a, 6)H

where the carrier term e/?™t has been dropped for the ease of notation as it plays no role
in subsequent treatment and

[ (t)
n(t)= B“Dz(t)
(1)

(2.1.13)

OmOC O

2.1.1 Steering Vector Representation

Steering vector is an L-dimensional complex vector containing responses of all L elements
of the array to a narrowband source of unit power. Let S, denote the steering vector
associated with the kth source. For an array of identical elements, it is defined as
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s, =[exp(j2T|f0TI (@ ) - exp(i27 1 (@ Q))]T (2.1.14)

Note that when the first element of the array is at the origin of the coordinate system
T1(@8)) = 0, the first element of the steering vector is identical to unity.

As the response of the array varies according to direction, a steering vector is associated
with each directional source. Uniqueness of this association depends on array geometry
[God81]. For a linear array of equally spaced elements with element spacing greater than
half wavelength, the steering vector for every direction is unique.

For an array of identical elements, each component of this vector has unit magnitude.
The phase of its ith component is equal to the phase difference between signals induced
on the ith element and the reference element due to the source associated with the steering
vector. As each component of this vector denotes the phase delay caused by the spatial
position of the corresponding element of the array, this vector is also known as the space
vector. It is also referred to as the array response vector as it measures the response of the
array due to the source under consideration. In multipath situations such as in mobile
communications, it also denotes the response of the array to all signals arising from the
source [Nag94]. In this book, steering vector, space vector, and array response vector are
used interchangeably.

Using (2.1.14) in (2.1.12), the signal vector can be compactly expressed as

M
x(t) = Z m, (t)S, +n(t) (2.1.15)
Substituting for x(t) from (2.1.15) in (2.4), it follows that
y(t)=w"x(t)

= i m, (t)w"S,_+w"n(t)

(2.1.16)

The first term on the right side of (2.1.16) is the contribution from all directional sources
and the second term is the random noise contribution to the array output. Note that the
contribution of all directional sources contained in the first term is the weighted sum of
modulating functions of all sources. The weight applied to each source is the inner product
of the processor weight vector and steering vector associated with that source, and denotes
the complex response of the processor toward the source. Thus, the response of a processor
with weight vector w toward a source in direction (¢,0) is given by

y(0.8)=w"S(¢ § 2.1.17)

An expression for the array correlation matrix is derived in terms of steering vectors.
Substituting the signal vector x(t) from (2.1.15) in the definition of the array correlation
matrix given by (2.8) leads to the following expression for the array correlation matrix:

M oM uk

0
R=E m, ()8, + nm%@z m, (t)S, + n(t)% E
= :
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(2.1.18)

E N (t)s TS (t)s di% E[ (1) *()]ss“ (2.1.19)
m, (t)S, m, (t)S, = m, (t)m, (t)[S,S, 1.
i i

When sources are uncorrelated,

. 0o 1#k
E[m, (t)mk(t)] = EP =k (2.1.20)

where py denotes the power of the kth source measured at one of the elements of the
array. It should be noted that py is the variance of the complex modulating function my(t)
when it is modeled as a zero-mean low-pass random process, as mentioned previously.
Thus, for uncorrelated sources the first term becomes

M OM d'0 wm

BTy m (08, (1) m (1S3 =) p.S,St 2.1.21)
S 0% 5

The fact that the directional sources and the white noise are uncorrelated results in the
third and fourth terms on the RHS of (2.1.18) to be identical to zero. Using (2.1.11), the
second term simplifies to 021 with I denoting an identity matrix. This along with (2.1.21)
lead to the following expression for the array correlation matrix when directional sources
are uncorrelated:

M
R= Z p,S,SI+02 1 (2.1.22)

where I is the identity matrix and 021 denotes the component of the array correlation
matrix due to random noise, that is

R =0>1 (2.1.23)

n n

Let Sy denote the steering vector associated with the signal source of power ps. Then
the array correlation matrix due to the signal source is given by

R, = psS, S (2.1.24)
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Similarly, the array correlation matrix due to an interference of power py is given by
R, = pISIS? (2.1.25)

where S; denotes the steering vector associated with the interference.
Using matrix notation, the correlation matrix R may be expressed in the following
compact form:

R=ASA" +02 (2.1.26)

where columns of the L x M matrix A are made up of steering vectors, that is,
A=[S,S,, ..., S\] (2.1.27)

and M x M matrix S denote the source correlation. For uncorrelated sources, it is a diagonal
matrix with
i=j

S =r! 1.
; E; ] (2.1.28)

2.1.2 Eigenvalue Decomposition

Sometimes it is useful to express the array correlation matrix in terms of its eigenvalues
and their associated eigenvectors. The eigenvalues of the array correlation matrix can be
divided into two sets when the environment consists of uncorrelated directional sources
and uncorrelated white noise.

The eigenvalues contained in one set are of equal value. Their value does not depend
on directional sources and is equal to the variance of white noise. The eigenvalues con-
tained in the second set are functions of directional source parameters and their number
is equal to the number of these sources. Each eigenvalue of this set is associated with a
directional source and its value changes with the change in the source power of this source.
The eigenvalues of this set are bigger than those associated with the white noise. Some-
times these eigenvalues are referred to as the signal eigenvalues, and the others belonging
to the first set are referred to as the noise eigenvalues. Thus, a correlation matrix of an
array of L elements immersed in M uncorrelated directional sources and white noise has
M signal eigenvalues and L — M noise eigenvalues.

Denoting the L eigenvalues of the array correlation matrix in descending order by A,
1=1, ..., L and their corresponding unit-norm eigenvectors by U;,1 =1, ..., L the matrix
takes the following form:

R =QAQ" (2.1.29)
with a diagonal matrix

Q, 00

g 0

E Al
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and
Q=[U,..U] (2.1.31)

This representation is sometimes referred to as the spectral decomposition of the array
correlation matrix. Using the fact that the eigenvectors form an orthonormal set,

QQ" =1 (2.1.32)
and

Q"Q=1I (2.1.33)
Thus,

Q"=Q" (2.1.34)

The orthonormal property of the eigenvectors leads to the following expression for the
array correlation matrix:

M
R= ZAl U UM +021 (2.1.35)

2.2 Conventional Beamformer

The conventional beamformer, sometimes also known as the delay-and-sum beamformer,
has weights of equal magnitudes. The phases are selected to steer the array in a particular
direction (@,8;), known as look direction. With S, denoting the steering vector in the look
direction, the array weights are given by

.2.1)

The response of a processor in a direction (¢,0) is obtained by using (2.1.17), that is,
taking the dot product of the weight vector with the steering vector S(¢0). With the
weights given by (2.2.1), the response y(,0) is given by

y(o §=wS(0 §
(2.2.2)
1 en

- f So S((p, 9)

Next, the behavior of this processor is examined under various conditions. It is shown
that the array with these weights has unity power response in the look direction, that is,
the mean output power of the processor due to a source in the look direction is the same
as the source power. An expression for the output SNR is also derived.
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2.2.1 Source in Look Direction

Assume a source of power pg in the look direction, hereafter referred to as the signal
source, with mg(t) denoting its modulating function. The signal induced on the Ith element
due to this source only is given by

x, () = m,(t) (v (@) (22.3)

S

Thus, in vector notation, using steering vector to denote relevant phases, the array signal
vector due to look direction signal becomes

x(t) = m,(t) e™'S, (2.2.4)

The output of the processor is obtained by taking the inner product of weight vector w,
with the signal vector x(t) as in (2.4). Thus, the output of the processor is given by

y(t) = wx(t) (225)
Substituting from (2.2.1) and (2.2.4), and noting that S{§ = L, the output becomes
y(t) =m,(t) ™" (2.2.6)

Thus, the output of the conventional processor is the same as the signal induced on an
element positioned at the reference element. Next, look at its mean out power. As there
is only the signal source present, the mean output power of the processor is the mean
signal power given by (2.16), that is,

P(w ) =P
2.2.7)
= WCHRSWC
Since
R, = psS,S" (2.2.8)
substituting from (2.2.1), (2.2.8) in (2.2.7), and noting that S{i§ =L,
P(w,.)=ps (22.9)

Thus, the mean output power of the conventional processor steered in the look direction
is equal to the power of the source in the look direction. The process is similar to mechan-
ically steering the array in the look direction except that it is done electronically by
adjusting the phases. This is also referred to as electronic steering, and phase shifters are
used to adjust the required phases. It should be noted that the aperture of an electronically
steered array is different from that of the mechanically steered array.

The concept of delay-and-sum beamformer can be further understood with the help of
Figure 2.4, which shows an array with two elements separated by distance d. Assume that
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FIGURE 2.4

Delay-and-sum beamformer.

Source

a plane wave arriving from direction 8 induces voltage s(t) on the first element. As the
wave arrives at the second element T seconds later, with

7=%c0s0 (2.2.10)
C

the induced voltage on the second element equals s(t - ). If the signal induced at Element 1
is delayed by time T, the signal after the delay is s(t— T) and no delay is provided at
Element 2, then both voltage wave forms are the same. The output of the processor is the
sum of the two signals s(t-T). A scaling of each wave form by 0.5 provides the gain in
direction 6 equal to unity.

2.2.2 Directional Interference

Let only a directional interference of power p; be present in direction (@, 6;). Let my(t) and
S, respectively, denote the modulating function and the steering vector for the interference.
The array signal vector for this case becomes

x(t) =m,(t) ™" S, (2.2.11)

The array output is obtained by taking the inner product of weight vector and the array
signal vector. Thus,

=m,(t) ™ w''s, (22.12)

H
=m,(t) ™ 7SE’LSI

The quantity 1/L SIS determines the amount of interference allowed to filter through
the processor and thus is the response of the processor in the interference direction.

The amount of interference power at the output of a processor is given by (2.17). Thus,
in the presence of interference only, an expression for the mean output power of the
conventional processor becomes
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P(w.)=P

I

(22.13)
= W?RIWC
For a single source in the nonlook direction
R, =pS;S;' (2.2.14)
Substituting for R; and w, in (2.2.13),
P(w.)=p, (1-p) (2.2.15)
where
H H
p=1-20 550 % (2216)

L

and depends on the array geometry and the direction of the interference relative to the
look direction.

The effect of the interference direction on parameter p is shown in Figure 2.5 and Figure 2.6
for two types of arrays, planar and linear. The planar array consists of two rings of five
elements each, as shown in Figure 2.7, whereas the linear array consists of ten equispaced

elements.
1.5
. Inter-ring Spacing = 25
Q
@
©
IS
g
[
[
0 50 100 150
Interference Angle (Degree)
FIGURE 2.5

Parameter p vs. interference direction at three values of inter-ring spacing for the array geometry shown in
Figure 2.7. From Godara, L.C., J. Acoust. Soc. Am., 85, 202213, 1989 [God89a]. With permission.)
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Inter-ring Spacing = 25

Parameter p

Interference Angle (Degree)

FIGURE 2.6
Parameter p vs. interference direction for a ten-element linear array. (From Godara, L.C., ]. Acoust. Soc. Am., 85,

202-213, 1989 [God89a]. With permission.)

E\‘-ﬂi 72° /

element
posifion

FIGURE 2.7
Structure of planar array.

For the planar array, the signal and the interference directions are assumed to be in the
plane of the array; the signal direction coincides with the x-axis. For the linear array, the
signal is assumed to be broadside to the array. For both cases, the direction of the inter-
ference is measured relative to the x-axis.
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Figure 2.5 and Figure 2.6, respectively, show the values of p for various interference
directions at three values of inter-ring spacing p and three values of inter-element spacing
d. The parameters g and d are expressed in terms of the wavelength of the narrowband
sources. These figures show how p depends on the array geometry for given interference
and signal directions.

2.2.3 Random Noise Environment

Consider an environment consisting of uncorrelated noise of power 62. It is assumed that
there is no directional source present. The array signal vector for this case becomes

x(t) =n(t) (2.2.17)

The array output is obtained by taking the inner product of weight vector and the array
signal vector. Thus,

y(t) = wix(t) (2.2.18)

Substituting from (2.2.17) and (2.2.1), the output becomes

y(t)= Sgi‘(t) (2.2.19)

The mean output noise power of a processor is given by (2.18). Thus, the mean output
power of the conventional processor in the presence of uncorrelated noise only is given by

P(w.)=P,
(2.2.20)
=wiR w,
Since R, is given by

R, =01 (2.2.21)

substituting for R, and w, in (2.2.20),

0.2

P =-n 2222

Thus, the mean power at the output of the conventional processor is equal to the mean
uncorrelated noise power at an element of the array divided by the number of elements
in the array. In other words, the noise power at the array output is L times less than that
present on each element.

2.2.4 Signal-to-Noise Ratio

Assume that the noise environment consists of the random noise of power 02 and a
directional interference of power pyin the nonlook direction. Assume that there is a source
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of power pg in the look direction. Given that the interference and the signal are uncorre-
lated, the array signal vector for this case becomes

x(t) = mg(t) ™" S, +m,(t) *™" S, +n(t) (2.2.23)
Now we have two directional sources, a signal source, a directional interference, and

the random noise. Thus, it follows from (2.1.22) that the array correlation matrix R is given

by
R=p,S, S, +p, S, S +0> 1 (2.2.24)

The mean output power of the processor is given by
P(w )= w'Rw, (2.2.25)

Substituting from (2.2.1), (2.2.24) and noting that Si§ =L, the expression for the mean
output power from (2.2.25) becomes

2
P(w,.)=ps +p; (1-p) +0—L“ (2.2.26)

Note that the mean output power of the processor is the sum of the mean output powers
due to signal source, directional interference, and uncorrelated noise.

The mean signal power at the output of the processor is equal to the mean power of
the signal source, that is,

P, =p, (2.2.27)

The mean noise power is the sum of the interference power and the uncorrelated noise
power, that is,

2
P, =p, (1-p)+ % (2.2.28)

The output signal to noise ratio is then given by

Y
Py
(2.2.29)
- Ps —
P: (1 - p) -

L

Now consider a special case when no directional interference is present. For this case,
the expression for the output SNR becomes

SNR = Ps T (2.2.30)

2
n
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As the input SNR is ps/02, this provides an array gain, which is defined as the ratio of
the output SNR to the input SNR, equal to L, the number of elements in the array.

This processor provides maximum output SNR when no directional interference oper-
ating at the same frequency is present. It is not effective in the presence of directional
interference, whether intentional or unintentional. The response of the processor toward
a directional source is given by (2.2.2). The performance of the processor in the presence
of one nonlook directional source indicated by SNR is given by (2.2.29). It is a function of
the interference power and the parameter p that in turn depends on the relative direction
of two sources and array geometry.

2.3 Null Steering Beamformer

The null steering beamformer is used to cancel a plane wave arriving from a known
direction and thus produces a null in the response pattern of the plane wave’s direction
of arrival. One of the earliest schemes, referred to as DICANNE [And69, Andé9a], achieves
this by estimating the signal arriving from a known direction by steering a conventional
beam in the direction of the source and then subtracting the output of this from each
element. An estimate of the signal is made by delay-and-sum beamforming using shift
registers to provide the required delay at each element, such that the signal arriving from
the beam-steering direction appears in phase after the delay, and then sums these wave
forms with equal weighting. This signal then is subtracted from each element after the
delay. The process is very effective for canceling strong interference and could be repeated
for multiple interference cancelation.

Although the process of subtracting the estimated interference using the delay-and-sum
beamformer in the DICANNE scheme is easy to implement for single interference, it
becomes cumbersome as the number of interferences grows. A beam with unity response
in the desired direction and nulls in interference directions may be formed by estimating
beamformer weights shown in Figure 2.1 using suitable constraints [d’As84, And69a].
Assume that S is the steering vector in the direction where unity response is required
and that Sy, ..., Sy are k steering vectors associated with k directions where nulls are
required. The desired weight vector is the solution of the following simultaneous equations:

whs, =1 (2.3.1)
w'S =0,i=1, ...,k (2.3.2)

Using matrix notation, this becomes
w'l A=e/ (2.3.3)

where A is a matrix with columns being the steering vectors associated with all directional
sources including the look direction, that is,

AA[S, S, .., S] (2.3.4)

© 2004 by CRC PressLLC



and e, is a vector of all zeros except the first element which is one, that is,

e, =[10,..,0 (2.3.5)

For k =L -1, A is a square matrix. Assuming that the inverse of A exists, which requires
that all steering vectors are linearly independent [God81], the solution for the weight
vector is given by

wh = elT AT (2.3.6)

In case the steering vectors are not linearly independent, A is not invertible and its pseudo
inverse can be used in its place.

It follows from (2.3.6) that due to the structure of the vector e;, the first row of the
inverse of matrix A forms the weight vector. Thus, the weights selected as the first row
of the inverse of matrix A have the desired properties of unity response in the look
direction and nulls in the interference directions.

When the number of required nulls are less than L — 1, A is not a square matrix. A
suitable estimate of weights may be produced using

-1

wi =el AF(AAY) (2.37)

Although the beam pattern produced by this beamformer has nulls in the interference
directions, it is not designed to minimize the uncorrelated noise at the array output. It is
possible to achieve this by selecting weights that minimize the mean output power subject
to above constraints [Bre88].

An application of a null steering scheme for detecting amplitude-modulated signals by
placing nulls in the known interference directions is described in [Cho93], which is able
to cancel a strong jammer in a mobile communication system. The use of a null steering
scheme for a transmitting array employed at a base station is discussed in [Chi94], which
minimizes the interferences toward other co-channel mobiles. Performance analysis of a
null steering algorithm is presented in [Fri89].

2.4 Optimal Beamformer

The null steering scheme described in the previous section requires knowledge of the
directions of interference sources, and the beamformer using the weights estimated by
this scheme does not maximize the output SNR. The optimal beamforming method
described in this section overcomes these limitations and maximizes the output SNR in
the absence of errors. It should be noted that the optimal beamformer, also known as the
minimum variance distortionless response (MVDR) beamformer, described in this section
does not require knowledge of directions and power levels of interferences as well as the
level of the background noise power to maximize the output SNR. It only requires the
direction of the desired signal.

In this section, first we discuss an optimal beamformer with its weights without any
constraints, and then study its performance in the presence of one interference and uncor-
related noise [God86].
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2.4.1 Unconstrained Beamformer

Let an L-dimensional complex vector w represent the weights of the beamformer shown
in Figure 2.1 that maximize the output SNR. For an array that is not constrained, an
expression for w is given by [App76, Ree74, Bre73]:

w=, Ry S, (24.1)
where Ry is the array correlation matrix of the noise alone, that is, it does not contain any
signal arriving from the look direction (@, 8;) and I, is a constant.

Consider that the noise environment consists of the random noise of power 6,2 and a
directional interference of power p; in nonlook direction. Assume that there is a source of

power pg in the look direction, and that the interference and the signal are uncorrelated.
For this case, the array correlation matrix R is given by

R=p.S, S +p, S, " +02 1 (2.4.2)
The mean output power of the processor is given by
P =w"Rw (2.4.3)
It follows from (2.4.2) and (2.4.3) that
P=p, WS, Sl'w +p, w''S SHw +02 ww (2.4.4)

Three terms on the RHS of (2.4.4) correspond to the output signal power, residual
interference power, and output uncorrelated noise power of the unconstrained optimal
beamformer. Let these be denoted by Ps, P; and P, respectively. Thus, it follows that

P, =p; w''S, Si'w (24.5)
P =p, w'S, Si'w (2.4.6)

and
P, =02 w'w (2.4.7)

Substituting for w and noting that S{§ = L, these equations become

A _ 2
Py =pg 12 (SERY S,) (2.4.8)
P, =S RIR, RS, (2.4.9)
and
5 25,2 [eHp-1 q \?
P =0 Byl (S'RY S,) (2.4.10)
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where R; is the correlation matrix of interference and

. Hp-lp -1
B=0 nRxB (2.4.11)
(So Ry So)
The total noise at the output is given by
P =D +P, (2.4.12)
Substituting from (2.4.9) and (2.4.10), total noise becomes
By = W5 (SIRIR, RYS, +07 SYRIRSS,)
=S RY(R, +02I)RJS
020 N( I ) NS0 (2.413)

= 2SIRIR (RS,

N-"N"'N

= U(Z)S?RI_\Il S,

2.4.2 Constrained Beamformer

Let the array weights be constrained to have a unit response in the look direction, that is,

whs =1 (2.4.14)

(2.4.15)

Substituting this in (2.4.1) results in the following expression for the weight vector
W= _RyS (2.4.16)

Substituting for p, in (2.4.8), (2.4.9), (2.4.10) and (2.4.13) results in the following expres-
sions for the output signal power, residual interference power, output uncorrelated noise
power, and the total noise power of the constrained beamformer

P, = pq (2.4.17)

IA)I - S?RSRI R{\Ilfo
(s RY' s)

(2.4.18)
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P =02 (2.4.19)

and

p=_ 1 (2.4.20)

Note from (2.4.19) that [ is the ratio of the uncorrelated noise power at the output of the
constrained beamformer to the uncorrelated noise power at its input.

As the weights for the optimal beamformer discussed above are computed using noise
alone matrix inverse (NAME), the processor with these weights is referred to as the NAME
processor [Cox73]. It is also known as the maximum likelihood (ML) filter [Cap69], as it
finds the ML estimate of the power of the signal source, assuming all sources as interfer-
ence. It should be noted Ry may be not be invertible when the background noise is very
small. In that case, it becomes a rank deficient matrix.

In practice when the estimate of the noise alone matrix is not available, the total array
correlation matrix (signal plus noise) is used to estimate the weights and the processor is
referred to as the SPNMI (signal-plus-noise matrix inverse) processor. An expression for
the weights of the constrained processor for this case is given by

RS,

W= 0
SHRTS,

(2.4.21)

These weights are the solution of the following optimization problem:

minimize w!Rw
w (2.4.22)
subjectto w'" § =1

Thus, the processor weights are selected by minimizing the mean output power of the
processor while maintaining unity response in the look direction. The constraint ensures
that the signal passes through the processor undistorted. Therefore, the output signal
power is the same as the look direction source power. The minimization process then
minimizes the total noise including interference and the uncorrelated noise. The minimi-
zation of the total output noise while keeping the output signal constant is the same as
maximizing the output SNR.

It should be noted that the weights of the NAMI processor and the SPNAMI processor
are identical; and in the absence of errors, the processor performs identically in both cases.
This fact can be proved as follows. The Matrix Inversion Lemma for an invertible matrix
A and a vector x states that

Hy1_ o ATxx"A™
(A +XxXXx ) - A m (2423)
Since
R =pg S,SI +R,, (2.4.24)
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it follows from the Matrix Inversion Lemma that

-1 psRI_\IlS()SI(;IR;Il

R7'=R 2.4.25
NSRS e (242)
Hence
RIS =RS _PSR;}SOS?R;\?SO
0 N*~0 1+SHR—1S p
0 "“N*YolF's
RS, (14SIRS ) - PRSI SIRSS, a2
1+ SRS ps
_ R3S,
1+5/RS;ps
and
Hp -1
S{R'S, = % (2.4.27)
1+5,RySyps
Equations (2.4.21), (2.4.26), and (2.4.27) imply
-1
w= M (2.4.28)
SO 1QN SO
Thus,
wW=w (2.4.29)

and the optimal weights of the two processors are identical. The processor with these
weights is referred to as the optimal processor. This is also known as MVDR beamformer.

2.4.3 Output Signal-to-Noise Ratio and Array Gain

The mean output power of the optimal processor is given by

1 (2.4.30)

SHRS,
This power consists of the signal power, residual interference power, and uncorrelated
noise power. Expressions for these quantities are given by (2.4.17), (2.4.18), and (2.4.19),

respectively. The total noise at the output is the sum of residual interference and uncor-
related noise. The expression for total noise power is given by (2.4.20).
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Let & denote the SNR of the optimal beamformer, that is,

d=38 (2.4.31)
N
It follows from (2.4.17) and (2.4.20) that
- Hpp -1
a=psS,Ry S, (2.4.32)

It should be noted that the same result also follows from (2.4.8) and (2.4.13), the expres-
sions for the signal power and the total noise power at the output of unconstrained
beamformer. Thus, the constrained as well as unconstrained beamformer results in the
same output SNR.

The array gain of a beamformer is defined as the ratio of the output SNR to the input
SNR. Let G denote the array gain of the optimal beamformer, that is,

A

G= % (2.4.33)
Input SNR
Let py denote the total noise at the input. SNR at the input of the beamformer is then
given by
Input SNR = s (2.4.34)
P~

It follows from (2.4.32), (2.4.33) and (2.4.34) that

G =Pn~ S?RI_\Il S,

b (2.4.35)

A

Z’—\J

2.4.4 Special Case 1: Uncorrelated Noise Only

For a special case of the noise environment when no direction interference is present, the
noise-only array correlation matrix is given by

R =01 (2.4.36)

Substituting the matrix in (2.4.16), a simple calculation yields

W= (2.4.37)
L

Thus, the weights of the optimal processor in the absence of errors are the same as those
of the conventional processor, implying that the conventional processor is the optimal
processor for this case. Thus, in the absence of directional interferences the conventional
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processor yields the maximum output SNR and the array gain. The output SNR @ and
the array gain G of the optimal processor for this case are, respectively, given by

.~ _PpsL
6= ;s (2.4.38)
and
G=L (2.4.39)

These quantities are independent of array geometry and depend only on the number of
elements in the array.

2.4.5 Special Case 2: One Directional Interference

Consider the case of a noise environment consisting of a directional interference of power
pr and uncorrelated noise of power 0,2 on each element of the array. Let S; denote the
steering vector in the direction of interference. For this case, the noise-only array correla-
tion matrix is given by

R, =02I+p,SS! (2.4.40)

Using the Matrix Inversion Lemma, this yields

7]

1
)
01’1

Ry = (2.4.41)

[
|
S N|—
+
—_
[ |

5|9

The substitution for Ry, rearrangement, and algebraic manipulation leads to the fol-
lowing expression for the output SNR:

G=Psk  PL (2.4.42)

The array gain is given by

G=F> . (2.4.43)

where

_SySSI'S

- (2.4.44)

p=1
is a scalar quantity and depends on the direction of the interference relative to the signal
source and the array geometry, as discussed previously. It follows from (2.2.1) and (2.4.44)
after rearrangement that
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p=1-w'SSlw_ (2.4.45)

Thus, this parameter is characterized by the weights of the conventional processor. As
this parameter characterizes the performance of the optimal processor, it implies that the
performance of the optimal processor in terms of its interference cancelation capability
depends to a certain extent on the response of the conventional processor to interference.
This fact has been further highlighted in [Gup82, Gup84].

An interesting special case is when the interference is much stronger compared to
background noise, p; > 02. For this case, these expressions may be approximated as

a Dp;il“zp (2.4.46)
and
G Dploisz (2.4.47)

n

When interference is away from the main lobe of the conventional processor p = 1, it
follows that the output SNR of the optimal processor in the presence of a strong interfer-
ence is the same as that of the conventional processor in the absence of interference. This
implies that the processor has almost completely canceled the interference, yielding a very
large array gain.

The performance of the processor in terms of its output SNR and the array gain is not
affected by the look direction constraint, as it only scales the weights. Therefore, the
treatment presented above is valid for the unconstrained processor.

For the optimal beamformer to operate as described above and to maximize the SNR
by canceling interferences, the number of interferences must be less than or equal to L -2,
as an array with L elements has L —1 degrees of freedom and one has been utilized by
the constraint in the look direction. This may not be true in a mobile communications
environment due to the existence of multipath arrivals, and the array beamformer may
not be able to achieve the maximization of the output SNR by suppressing every inter-
ference. However, as argued in [Win84], the beamformer does not have to suppress
interferences to a great extent and cause a vast increase in the output SNR to improve the
performance of a mobile radio system. An increase of a few decibels in the output SNR
can make possible a large increase in the system’s channel capacity.

In the mobile communication literature, the optimal beamformer is often referred to as
the optimal combiner. Discussion on the use of the optimal combiner to cancel interferences
and to improve the performance of mobile communication systems can be found in
[Win84, Win87, Sua93, Nag94a]. The optimal combiner is discussed in detail in a later
chapter.

In the next section, a processor is described that requires a reference signal instead of
the desired signal direction to estimate the optimal weights of the beamformer.

2.5 Optimization Using Reference Signal

A narrowband beamforming structure that employs a reference signal [App76, Wid67,
Wid75, Zah73, App76a, Wid82] to estimate the weights of the beamformer is shown in
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FIGURE 2.8
An array system using reference signal.

Figure 2.8. The array output is subtracted from an available reference signal r(t) to generate
an error signal £(t) = r(t) — whx(t) that is used to control the weights. Weights are adjusted
such that the mean squared error between the array output and the reference signal is
minimized. The mean squared error {(w) for a given w is given by

&(w) =E[e(t) ]
= E2(1e(t)'

- Egr(t) —wix(t} {x(t) - wix(t} E (2.5.1)
= ER(r(t) +wx()x" ())w - w"x(t)e(t) ~r(x"()w]
= E[‘r(t)‘2 +w'Rw -w''z -z"'w
where
z= E%(t)r(t)* 0 2.5.2)

is the correlation between the reference signal and the array signals vector x(t).

The mean square error (MSE) surface is a quadratic function of w and is minimized by
setting its gradient with respect to w equal to zero, with its solution yielding the optimal
weight vector, that is,
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GE(W)

w

=0 (2.5.3)

W=WMSE

The gradient of MSE with respect to w is obtained by differentiating both sides of (2.5.1)
with respect to w, yielding

OE(W)

w

=2Rw -2z (2.5.4)

Substituting (2.5.4) in (2.5.3) and solving, you obtain the well-known Wiener-Hoff
equation for optimal weights:

Wy =R 2 (2.5.5)
The processor with these weights is also known as the Wiener filter. The minimum MSE g

of the processor using these weights is obtained by substituting Wygg for w in (2.5.1),
resulting in

£ = E[\r(t)\2 -z"R7z (2.5.6)

This scheme may be employed to acquire a weak signal in the presence of a strong
jammer as discussed in [Zah73] by setting the reference signal to zero and initializing the
weights to provide an omnidirectional pattern. The process starts to cancel strong inter-
ferences first and the weak signal later. Thus, intuitively, a time is expected when the
output would consist of the signal, which has not been canceled too much, but strong
interference has been reduced.

When an adaptive scheme (discussed in Chapter 3) is used to estimate Wy, the strong
jammer gets canceled first as the weights are adjusted to put a null in that direction to
leave the signal-to-jammer ratio sufficient for acquisition.

Arrays using a reference signal equal to zero to adjust weights are referred to as power-
inversion adaptive arrays [Com79]. The MSE minimization scheme (the Wiener filter) is
a closed-loop method compared to the open-loop scheme of MVDR (the ML filter)
described in the previous section. In general the Wiener filter provides higher-output SNR
compared to the ML filter in the presence of a weak signal source. As the input signal
power becomes large compared to the background noise, the two processors give almost
the same results [Gri67]. This result is supported by a simulation study using mobile
communications with two vehicles [Fli94]. The increased SNR by the Wiener filter is
achieved at the cost of signal distortion caused by the filter. It should be noted that the
optimal beamformer does not distort the signal.

The required reference signal for the Wiener filter may be generated in a number of
ways depending on the application. In digital mobile communications, a synchronization
signal may be used for initial weight estimation followed by the use of a detected signal
as a reference signal. In systems using the TDMA scheme, a user-specific sequence may
be part of every frame for this purpose [Win94]. The use of known symbols in every frame
has also been suggested in [Cho92]. In other situations, use of an antenna for this purpose
has been examined to show the suitability to provide a reference signal [Cho92].

Studies of mobile communication systems using reference signal to estimate array
weights have also been reported in [And91, Geb95, Dio93].
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FIGURE 2.9
Beam-space processor structure.

2.6 Beam Space Processing

In contrast to the element space processing discussed in previous sections, where signals
derived from each element are weighted and summed to produce the array output, the
beam space processing is a two-stage scheme where the first stage takes the array signals
as input and produces a set of multiple outputs, which are then weighted and combined
to produce the array output. These multiple outputs may be thought of as the output of
multiple beams. The processing done at the first stage is by fixed weighting of the array
signals and amounts to produce multiple beams steered in different directions. The
weighted sum of these beams is produced to obtain the array output and the weights
applied to different beam outputs are then optimized to meet a specific optimization
criterion.

In general, for an L-element array, a beam space processor consists of a main beam
steered in the signal direction and a set of not more than L — 1 secondary beams. The
weighted output of the secondary beams is subtracted from the main beam. The weights
are adjusted to produce an estimate of the interference present in the main beam. The
subtraction process then removes this interference. The secondary beams, also known as
auxiliary beams, are designed such that they do not contain the desired signal from the
look direction, to avoid signal cancelation in the subtraction process. A general structure
of such a processor is shown in Figure 2.9. Beam space processors have been studied under
many different names including the Howells—Applebaum array [App76, App76a, How76];
generalized side-lobe canceler (GSC) [Gri82, Gri77]; partitioned processor [Jim77, Can82];
partially adaptive arrays [Van87, Van89, Van90, Qia94, Qia95, Cha76, Mor78]; post-beam-
former interference canceler [Can84, God86a, God89, God89a, God91]; adaptive-adaptive
arrays [Bro86]; and multiple-beam antennas [May78, Kle75, Gob76].
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The pattern of the main beam is normally referred to as the quiescent pattern and is
chosen such that it has a desired shape. For a linear array of equispaced elements with
equal weighting, the quiescent pattern has the shape of sin Lx/sin x with L being the
number of elements in the array, whereas for Tschebysheff weighting (the weighting
dependent on Tschebysheff polynomial coefficients), the pattern has equal side-lobe levels
[Dol46]. The beam pattern of the main beam may be adjusted by applying various forms
of constraints on the weights [App76a] and using various pattern synthesis techniques
discussed in [Gri87, Tse92, Web90, Er93, Sim83, Ng02].

There are many schemes to generate the outputs of auxiliary beams such that no signal
from the look direction is contained in them, that is, these beams have nulls in the look
direction. In its simplest form, it can be achieved by subtracting the array signals from
presteered adjacent pairs [Gab76, Dav67]. It relies on the fact that the component of the
array signals induced from a source in the look direction is identical after the presteering,
and this gets canceled in the subtraction process from the adjacent pairs. The process can
be generalized to produce M — 1 beams from an L-element array signal x(t) using a matrix
B such that

q(t) =B"x(t) (2.6.1)

where M - 1 dimensional vector q(t) denotes the outputs of M — 1 beams and the matrix B,
referred to as the blocking matrix or the matrix prefilter, has the property that its M -1
columns are linearly independent and the sum of elements of each column equals zero,
implying that M — 1 beams are independent and have nulls in the look direction. For an
array that is not presteered, the matrix needs to satisfy

BHSO =0 (2.6.2)

where §; is the steering vector associated with the look direction and 0 denotes a vector
of zeros.

It is assumed in the above discussion that M < L, implying that the number of beams
are less than or equal to the number of elements in the array. When the number of beams
is equal to the number of elements in the array, the processing in the beam space has not
reduced the degree of freedom of the array, that is, its null-forming capability has not been
reduced. In this sense, these arrays are fully adaptive and have the same capabilities as
that of the array using element space processing. In fact, in the absence of errors, both
processing schemes produce identical results. On the other hand, when the number of
beams is less than the number of elements, the arrays are referred to as partially adaptive.
The null steering capabilities of these arrays have been reduced to equal the number of
auxiliary beams. When adaptive schemes, discussed later, are used to estimate the weights,
convergence is generally faster for these arrays. However, the MSE for these arrays is also
high compared to fully adaptive arrays [Van91].

These arrays are useful in situations where the number of interferences are much less
than the number of elements and offer computational advantage over element space
processing, as you only need to adjust M — 1 weights compared to L weights for the element
space case with M < L. Moreover, beam space processing requires less computation than
the element space case to calculate the weights in general as it solves an unconstrained
optimization compared to the constrained optimization problem solved in the latter case.
It should be noted that for the element space processing case, constraints on the weights
are imposed to prevent distortion of the signal arriving from the look direction and to
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make the array more robust against errors. For the beam Space case, constraints are
transferred to the main beam, leaving the adjustable weights free from constraints.

Auxiliary beamforming techniques other than the use of a blocking matrix described
above include formation of M — 1 orthogonal beams and formation of beams in the direc-
tion of interference, if known. The beams are referred to as orthogonal beams to imply
that the weight vectors used to form beams are orthogonal, that is, their dot product is
equal to zero. The eigenvectors of the array correlation matrix taken as weights to generate
auxiliary beams fall into this category. In situations where directions of arrival of inter-
ference are known, the formation of beams pointed in these directions may lead to more
efficient interference cancelation [Bro86, Gab86].

Auxiliary beam outputs are weighted and summed, and the result is subtracted from
the main beam output to cancel the unwanted interference present in the main beam. The
weights are adjusted to cancel the maximum possible interference. This is normally done
by minimizing the total mean output power after subtraction by solving the unconstrained
optimization problem and leads to maximization of the output SNR in the absence of the
desired signal in auxiliary channels. The presence of the signal in these channels causes
signal cancelation from the main beam along with interference cancelation. A detailed
discussion on the principles of signal cancelation in general and some possible cures is
given in [Wid75, Wid82, Su86].

Use of multiple-beam array processing techniques for mobile communications has been
reported in various studies [Jon95, Sak92], including development of an array system
using digital hardware to study its feasibility [God02].

2.6.1 Optimal Beam Space Processor

It follows from the Figure 2.9 that the output of the main beam (i(t) is given by
W(t) = Vix(t) (2.6.3)
where the L-dimensional vector V is defined as
V= [Vl, Vo, oee VL]T (2.6.4)
Let an M - 1 dimensional vector q(t) be defined as

a(t) =[a; @s s Guger] | (26.5)

It denotes M -1 auxiliary beams, output of matrix prefilter B, and is given by
q(t) =B"x(t) (2.6.6)

Let an M — 1 dimensional vector w denote the adjustable weights of the auxiliary beams.
It follows from Figure 2.9 that the output n(t) of the interference beam is given by

n(t) = wq(t) (2.6.7)
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The output y(t) of the overall beam space processor is obtained by subtracting the inter-
ference beam output from the main beam, and thus is given by

(2.6.8)

=5f{w(9) - wHa(eh{w(0)-wa(t} |

(2.6.9)
=Eg())w(t) +w'a(t)g" (w - wha(t)u(t)” - w(t)a"(jw
=P, +w'R w-w"'Z-Z"w
where P is the mean power of the main beam given by
P,=V'RV (2.6.10)
R,q is the correlation matrix of auxiliary beams defined as
R,, = E[q(t)q"(t) 2.6.11)

and Z denotes the correlation between the output of auxiliary beams and the main beam.
It is defined as

Z= Egl(t)lp(t)*% (2.6.12)
A substitution for q(t) and (t) in (2.6.11) and (2.6.12) yields

R, =Ea(t)a"(t)
= E[Bx(t)x""(t)B] (2.6.13)

=B"RB

Z= E%(t)w(t)*g

= E[B"x(t)x"(t)V] (2.6.14)
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Substituting for Py, Rgq and Z in (2.6.9), the expression for P(w) becomes
P(w) = V"RV +w"B"RBw -~w"B"RV -V"RBw (2.6.15)

Note that P(w) is a quadratic function of w and has a unique minimum. Let W denote
weights that minimize P(w). Thus, it follows that

m =0 (2.6.16)
ow wW=W
Substituting (2.6.15) in (2.6.16) yields
B"RBw - B"RV =0 (2.6.17)

As B has rank M - 1, BHRB is of full rank and its inverse exists. Thus, (2.6.17) yields
~ _ (pHpR) ' RH
w =(B"RB) B"RV (2.6.18)

Substituting for w = w from (2.6.18) in (2.6.15), you obtain the following expression for
the mean output power of the optimal processor:

P(W) = VYRV - V¥RB(B"RB) ' B"RV (2.6.19)

Expressions for the mean output signal power may be obtained by replacing the array
correlation matrix R by the signal only array correlation matrix Rg in (2.6.15), yielding

P,(w) = V'R,V +w"B"R,Bw -~w"B"R,V ~V'R.Bw (2.6.20)
Since
Rs =psS,Sy (2.6.21)
and
B"S, =0 (2.6.22)

it follows from (2.6.20) that
P,(w)=V"RV (2.6.23)

Thus, when the blocking matrix B is selected such that BHS, = 0, there are no signal
flows through the interference beam and the output signal power is present only in the
main beam. When the main beam is taken as the conventional beam, that is,
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V= %SO (2.6.24)

Py(W) =ps (2.6.25)

Note that the signal power is independent of w.

Similarly, an expression for the mean output noise power may be obtained by replacing
the array correlation matrix R by the noise-only array correlation matrix Ry in (2.6.15),
yielding

P (w)=V"R V+w"B"R Bw -w"B"R V -V"R Bw (2.6.26)

Substituting for w = W from (2.6.18) in (2.6.26), you obtain the following expression for
the mean output noise power of the optimal processor:

P, (W)= V"RV +V"RB(B"RB) 'B"RB(B"RB) B"RV

(2.6.27)
-1 -1
- V'RB(B"RB) B"R,V - V'R, B(B"RB) B"RV
The output SNR of the optimal beam space processor then becomes
SNR(w) = s (2.6.28)

Py (W)

These expressions cannot be simplified further without considering specific cases. In
Section 2.6.3, a special case of beam space processor is considered where only one auxiliary
beam is considered in the presence of one interference source to understand the behavior
of beam space processors. The results are then compared with an element space processor.
In the next section, a beam space processor referred to as the generalized side-lobe canceler
(GSC) is considered. The main difference between the general beam space processor
considered in this section and the GSC is that the GSC uses presteering delays.

2.6.2 Generalized Side-Lobe Canceler

A structure of the generalized side-lobe canceler is shown in Figure 2.10. The array is
presteered by delaying received signals on all antennas such that the component of the
received signal on all elements arriving from the look direction is in phase after presteering
delays. Let a, 1=1, 2, ..., L denote the phase delays to steer the array in the look direction.
These are given by

a, =217 (@, Q) 1=12 .. L (2.6.29)

Let the received signals after presteering delays be denoted by x'(t). As these are delayed
versions of x(t), it follows that their Ith components are related by
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FIGURE 2.10
Generalized side-lobe canceler structure.

x;(6)=x (t -7, (@, &) (2.6.30)
This along with (2.1.9) imply that x'(t) are related to x(t) by
x'(t) = df'x(t) (2.6.31)

where @ is a diagonal matrix defined as

[e/" oaQd
%:S el ‘E (2.6.32)
Ho "

Note that ®, satisfies the relation, ® {5, = 1, where 1 is a vector of ones.

These signals are used to form the main beam as well as M — 1 interference beams. The
main beam is formed using fixed weights on all channels. These weights are selected to
be of equal to 1/L so that a unity response is maintained in the look direction. Let these
be denoted by an L-dimensional vector V given by

v=14 (2.6.33)
L

The M - 1 interference beams are formed using a blocking matrix B. Let these be denoted
by an M -1 dimensional vector q(t), given
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alt) =B ()

(2.6.34)
=B"®o}'x(t)
where matrix B has rank M — 1 and satisfies
B"1=0 (2.6.35)

Expressions for the main beam, interference beams, and GSC output are then, respec-
tively, given by

P(t) = Vi¥d'x(t) (2.6.36)

n(t) = w"q(t)
(2.6.37)
=w"B"®]'x(t)

and

y(6)=w(t)-n(t)

o i (2.6.38)
= VHolx(t) - w"B" df'x(t)

It can easily be verified that an expression for the mean output power of the GSC for a
given w is given by

= Egv%yx(t) - wBH @l (i} { V" fix(t) - wHB" afix(t} E

(2.6.39)
=VioliRO V + w'B"df/RD Bw - VI &f'R & Bw -w''B" dJ'Ro, V
= VIRV +w"B"RBw - V'RBw -w'B"RV
where
R= PR, (2.6.40)

is the array correlation matrix after steering delays.

Comparing (2.6.15) and (2.6.39), one notes that the expression for the mean output power
of the GSC for a given w is analogous to that given by (2.6.15), with V and R, respectively,
given by (2.6.33) and (2.6.40) and B satisfying (2.6.35). Thus, the expression for GSC optimal
weights is analogous to (2.6.18), with R replaced by R, that is,

~ -1 ~
W= (BHRB) BHRV (2.6.41)
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The expression for the mean output noise power of the optimal GSC then becomes

P

N

~ ~ -1 ~ -1 ~
(W) = V'RV + V'RB(B"RB) B'R,B(B"RB) B'RV
(2.6.42)
~ ~ -1 ~ -1 ~
- V'RB(B'RB) B'R,V - V"R B(B"RB) B'RV

and the output SNR is given by (2.6.28).

2.6.3 Postbeamformer Interference Canceler

In this section, a processor with two beams referred to as the postbeamformer interference
canceler (PIC) in previous studies [God86a, God89, God89a, God91] is examined in the
presence of a look-direction signal of power pg, an interference of power p;, and uncorre-
lated noise of power o2.

As discussed previously for the general beam space processor, the two-beam processor
processes the signals derived from an antenna array by forming two beams using fixed
beamforming weights, as shown in Figure 2.11. One beam, referred to as the signal beam,
is formed to have a fixed response in the look direction. The processed output of the
second beam, referred to as the interference beam, is subtracted from the output of the
signal beam to form the output of the PIC.

Let L-dimensional complex vectors V and U represent the fixed weights of the signal
beamformer and the interference beamformer, respectively. It follows from Figure 2.11 that
the output Y(t) of the signal beam and the output q(t) of the interference beam are,
respectively, given by
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W(t) = Vix(t) (2.6.43)
and

q(t) =U"x(t) (2.6.44)

The output y(t) of the PIC processor is formed by subtracting the weighted output of the
interference beam from the output of the signal beam, that is,

y(t) =w(t)-wq(t) (2.6.45)
For a given weight w, the mean output power P(w) of the PIC processor is given by

P(w)= V'RV +w*wU"RU -w*V"RU -wU"RV (2.6.46)

2.6.3.1 Optimal PIC

Let w represent the complex weight of the interference channel of the PIC that minimizes
the mean output power of the PIC for given beamformer weights V and U. This weight w
is referred to as the optimal weight, and the PIC with this weight is referred to as the
optimal PIC.

From the definition of the optimal weight, it follows that

or(w) (2.6.47)
aW W=W
which along with (2.6.46), implies that
. _ VIRU
= 2.6.48
W= U"RU (2.6.48)

The mean output power of the optimal PIC is given by
P(w) = V'RV -U"RV V'RU/U"RU (2.6.49)

In the following discussion, three different beamformer weights for the interference
beam are considered. For these cases, the expressions for the signal power, residual inter-
ference power, and uncorrelated noise power at the output of the optimal PIC are derived
in [God89a]. For the three cases considered, it is assumed that the signal beam is formed
using the conventional beamforming weights, that is,

S (2.6.50)

v="0
L

This choice of beamformer weights for the signal beam ensures that the response of the
signal beam in the signal direction is unity.
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2.6.3.2 PIC with Conventional Interference Beamformer
Let the interference beam be formed with the beamforming weights,

u=3 (2.6.51)

L
This choice of beamforming weights ensures that the response of the beam in the inter-
ference direction is unity. Note that these weights are not constrained to block the look
direction signal passing through to the interference beam as was done using blocking
matrix B in the previous discussion. This particular interference beam highlights the effect
of the signal present in the auxiliary beams.

It follows from (2.6.50) and (2.6.51) that the response of the interference beam in the
signal direction is the same as that of the signal beam in the interference direction. This
implies that a large amount of the signal power leaks into the interference beam. This
leads to a substantial amount of signal suppression and the presence of residual interfer-
ence when the PIC is optimized. This aspect of the PIC is now considered and expressions
for the mean output signal power and the mean output noise power of the optimal PIC
are presented.

Substituting for U and V in (2.6.48), you obtain an expression for the weight w, of the
optimal PIC using the conventional interference beamformer (CIB):

H
w_ = 0RS (2.6.52)
SRS,
Substituting for R, this leads to
2
jon-5i
O (2.6.53)
fP ol
Ps Lps H

where B is a normalized dot product of Sy and S;, defined as B = S1S,/L.

Substituting for R equals Rg, R, R, and Ry, when w = w, in (2.6.46), the following
expressions are obtained for the output signal power, residual interference power, uncor-
related noise power, and output noise power, respectively:

P,(W, ) =peo?/(1+a,)’ (2.6.54)
p(w )= PP p*/(1-p) (2.6.55)
[1 L Pi/Ps*0; /Lpsg
(1-p) o

p/i-p) O
E1+P1/ps+0 /Lpsgé
g g

( -

(2.6.56)
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and

< \_0mp, P p+oi/L
P, =+ n 2.6.57
N(Wc) L 1_p(1+1/a1)2 ( )
where

N Sy

is the SNR at the output of the interference beam. Since the SNR is a positive quantity
and the parameter p is not more than unity, it follows from (2.6.54) that the signal power
at the output of the optimal PIC using the CIB is less than the signal power at the output
of the signal beam. Hence, the signal has been suppressed by the PIC. Furthermore, the
signal suppression increases as (1)the parameter p, which depends on the array geometry
and the relative directions of the two sources, decreases, and (2) the SNR at the output of
the interference beam increases.

Since the SNR at the output of the interference beam is proportional to the input signal
power, it follows that signal suppression increases as the input signal power increases.
On the other hand, an increase in the interference power as well as the uncorrelated noise
power at the input of the PIC decreases the SNR at the output of the interference beam
and, hence, decreases the signal suppression of the optimal PIC using the CIB.

Physically, the signal suppression by the optimal PIC using the CIB arises from the
leakage of the signal into the interference beam. The component of the signal in the
interference beam is subtracted from the signal in the signal beam; in the process of
minimization of total output power, this leads to signal suppression. Signal suppression
increases as the parameter p decreases. The reason for this is that as p decreases, the
response of the interference beam in the signal direction increases, which increases the
signal leakage into the interference beam, causing more signal suppression.

To understand the dependency of the signal suppression on ay, the SNR at the output
of the interference beam, rewrite (2.6.53) as

O O

. _4d p 1 O

W=+ =B (2.6.59)
O O
O O

It follows from (2.6.59) that as a; increases, the magnitude of W, increases, resulting in an
increase of the signal suppression. In the limit, as a; — o, W, —» /(1 — p). It can easily be
verified that for this value of w,, the output signal power reduces to zero, resulting in
total signal suppression.

The behavior of the output noise power of the optimal PIC using the CIB is described
by (2.6.57). The first term, which is proportional to the uncorrelated noise power at the
input of the PIC, decreases as the number of elements in the array increases and the
parameter p decreases. The second term, which is proportional to the total noise power
at the output of the interference beam, also decreases as the parameter p decreases and
depends on a;. As a; increases, resulting in an increase of W, the second term on the right
side of (2.6.57) increases. This implies that the output noise power of the optimal PIC
using the CIB increases as the input signal power increases.
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FIGURE 2.12
Output SNR of the PIC using CIB vs. input SNR for a ten-element linear array, 6, = 90°, p; = 1, 6; = 30°. (From
Godara, L.C., J. Acoust. Soc. Am., 85, 202-213, 1989 [God89a]. With permission.)

Let SNR(W,) denote the output SNR of the optimal PIC using the CIB. Then, it follows
from (2.6.54) and (2.6.57) that

w )= p(1-p)ps
)= o)t (o2 1)+ pai(py o7 1) (2660

For the special case when the noise environment consists of only directional sources,
that is, when 62 =0, (2.6.60) reduces to

SNR(W,) = V/a, (2.6.61)

which agrees with the results presented in [Wid75, Wid82] that in the absence of uncor-
related noise, the output SNR of an interference canceler is inversely proportional to the
input SNR. In the presence of uncorrelated noise power, the behavior of SNR(W,) is shown
in Figure 2.12.

The results in Figure 2.12 are for an equally spaced linear array of ten elements, with
inter-element spacing of one-half wavelength. The signal source is assumed to be broad-
side to the array, and an interference source of unity power is assumed 60° off broadside.
For this array configuration and source scenario, the parameter p is equal to 0.99. Figure
2.12 shows that the presence of uncorrelated noise changes the behavior of SNR(W,)
dramatically, particularly for low-input SNR. In the absence of uncorrelated noise, the PIC
using the CIB is able to cancel most of the interference when the input SNR is small,
resulting in high-output SNR. The presence of uncorrelated noise increases the total output
noise significantly (see Equation 2.6.57), resulting in a substantial drop in the output SNR.
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2.6.3.3 PIC with Orthogonal Interference Beamformer
Let the interference beam be formed using the beamforming weights

U=U, (2.6.62)
where U, is a complex vector such that
uUl's, =0 (2.6.63)

The constraint specified by (2.6.63) ensures that the interference beam has a null in the
signal direction. Thus, the interference beam does not contain any signal and the PIC using
the orthogonal interference beamformer (OIB) does not suppress the signal. Note that the
vector U, may be a steering vector. This case corresponds to the parameter p taking on a
value of unity.

Various expressions for optimal PIC using the OIB are now presented. It is assumed
that the interference beam of the PIC using the OIB does not have a null in the interference
direction. If the interference beam had a null in the interference direction, then there would
be no interference present in this beam and no reduction in the interference from the signal
beam would result by forming the PIC output by subtracting the weighted output of the
interference beam from the signal beam.

From (2.6.48), (2.6.50) and (2.6.62), it follows that the optimal weight W, of the PIC using
the OIB is given by

H
w, = 5aRUp (2.6.64)
LU RU_
Substituting for R in (2.6.64), one obtains, after manipulation,
H H
W, = 5,55 12J0 (2.6.65)
L Bo(yo + 0-r\/LpI)
where
B, =UU, (2.6.66)
and
Ul's s/'U
=—o 12l To 2.6.67
yo LUI(;IUO ( )
Note that y,, as defined by (2.6.67), is a positive real scalar, with
0<y, <1 (2.6.68)

and represents the normalized power response of the interference beam in the direction
of the interference.

The expressions for the signal power, the residual interference power, the uncorrelated
noise power, and total noise power at the output of the optimal PIC using the OIB are,
respectively, obtained by substituting for R equals Rg, R, R;, and Ry, and w = Wy in (2.6.46).
These are given by
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Py(W,)=ps (2.6.69)

P(w, )= p(l=p) (2.6.70)
[1 + Vo(LpI/ Uj)]

O (. 0
P, (W,)= 9 ,0g (=P, _p 2.6.71)

L L Hyo+0j/LpI) H

and
~y_o2t (1-p) O

Po(W,) =7 a4 i (2.6.72)

From expressions (2.6.69) to (2.6.72), the following observations can be made:

1. The optimal PIC using the OIB does not suppress the signal. This is because there
is no leakage of the signal into the interference beam.

2. The residual interference power of the optimal PIC using the OIB depends on
p1/ 0. For a given array geometry and noise environment, the normalized residual
interference power P({W)/p;decreases as p;/02 increases. In a noise environment
with a very high p;/02, the residual interference power of the optimal PIC using
the OIB becomes very small. In the limit, as

H H
Pw g, L 255U, (2.6.73)
Gn L BOVO

which lead to full cancelation of the interference (see Equation 2.6.70). On the
other hand, as

% -0 W, -0 (2.6.74)

and no cancelation of the interference takes place.

3. The uncorrelated noise power at the output of the PIC is more than the uncorrelated
noise power at the output of the signal beam. This follows from (2.6.71). The RHS
of (2.6.71) consists of two terms. The first term is the same as the uncorrelated noise
power at the output of the signal beam and the second term is proportional to the
uncorrelated noise power at the output of the signal beam; the proportionality
constant in the square brackets depends on the p;/0%. As p;/03 increases, the
quantity in the square brackets increases. This is due to the fact that W, increases
as p;/0% increases. In the limit, the maximum increase in the uncorrelated noise
power caused by the optimal PIC using the OIB is 6Z/L (1 - p)/Y,

4. The total noise power P\(W,) at the output of the optimal PIC using the OIB does
not depend on the signal power. It is proportional to the uncorrelated noise power
at the output of the signal beam and decreases as p;/02 decreases. The uncorre-
lated noise dominates the total noise at the output of the optimal PIC.
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FIGURE 2.13
Output SNR of the PIC using OIB vs. input SNR for a ten-element linear array, 8, = 90°, p; = 1, 6; = 30°. (From
Godara, L.C., . Acoust. Soc. Am., 85, 202-213, 1989 [God89a]. With permission.)

Now the output SNR of the optimal PIC using the OIB is examined. Let this ratio be
denoted by SNR(W,). It follows from (2.6.69) and (2.6.72) that

Lp O o, U
2 o
SNR(W,) = G“HIQLPIH (2.6.75)
v+ 41-p

Thus, the output SNR of the optimal PIC using the OIB is proportional to the number of
elements and ps/02; and depends on p;/03. As

% L@ SNR(W,) - Lf’%(l&//—oﬂ’j (2.6.76)

Figure 2.13 shows SNR(W,) vs. input SNR for various p;/03. The array geometry and
noise environment used for this example is the same as that used for Figure 2.12. The
interference beam is formed using the steering vector in the endfire direction. The param-
eter Y, for this case is 0.17. From Figure 2.13, for a given input SNR the output SNR
increases as p;/02 increases.

2.6.3.4 PIC with Improved Interference Beamformer

As discussed in previous sections, the output of the optimal PIC contains residual inter-
ference power and uncorrelated noise power. This section presents and analyzes the
optimal PIC using an interference beamformer that eliminates all interference in the output
while simultaneously reducing the contribution of uncorrelated noise in the output. For
this case, let the interference beam be formed with the beamforming weights
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_ RS
SRS, (2.6.77)
Note that the above expression is similar to the expression for the weights of constrained

optimal beamformer except that in this case the beam is constrained in the direction of

the interference rather than the look direction. Thus, it can easily be verified that the
interference beam formed with these weights has unity response in the interference direction
and has a reduced response in the signal direction. The response of the interference beam
in the signal direction depends on the signal source power and uncorrelated noise power.

It can be shown that this choice of beamforming weights minimizes the sum of signal

power and uncorrelated noise power in the interference channel output.

A substitution for V and U in (2.6.48) from (2.6.50) and (2.6.77), respectively, leads to
the following expression for w, the weight of the optimal PIC using the improved inter-
ference beamformer (IIB):

W, =S}'S, /L (2.6.78)

It follows from (2.6.78) that the weight, which minimizes the output power of PIC using
the IIB is independent of the signal, the interference, and the uncorrelated noise powers.
This weight depends only on the array geometry and relative directions of the two sources.

The expressions for the signal power and the noise power at the output of the optimal
PIC using the IIB are, respectively, given by

v Loz /ip)d
Ps(wl)zpsp v /Lpsg (2.6.79)
and
o2 H1+a2/ip)EH
P (W,) Tép o+ 02 Lp. EE (2.6.80)

One observes from expressions (2.6.79) and (2.6.80) that the output signal power and the
output noise power of the optimal PIC using the IIB are independent of the interference
power. Thus, the optimal PIC using the IIB has completely suppressed the interference.
Furthermore, the output signal power and output noise power depend on ¢ 7Lpsg (ratio
of uncorrelated noise power to signal power at signal beam output). The output signal
power increases as 0 7 Lpg decreases, and approaches the input signal power in the limit.
Thus, in the presence of a strong signal source, the signal suppression by the optimal PIC
using the IIB is negligible. The signal suppression becomes further reduced as the number
of elements in the array is increased.

The total noise power at the output of the optimal PIC using the IIB is equal to the
uncorrelated noise power at the output of the signal beam when p = 1. To investigate the
effect of 0 7Lpg on the output noise power when p < 1, you can rewrite the quantity in
the braces on the right side of (2.6.80) in the following form:

O1+02/1, f
( +0r;/ pS)D =1+(1-p)
p+0n/LpS D

p—(cj/LpS)z

; (2.6.81)
(p +0, /Lps)

© 2004 by CRC PressLLC



TABLE 2.1

Comparison of Normalized Signal Power, Interference Power, Uncorrelated Noise Power and SNR at

H H
the Output of the Optimal PIC Forming Interference Beam with CIB, OIB and IIB, v, =% and
sHs sis 00
=1--0-1"1"0
p 12
Optimal PIC
with CIB OIB 11B
Normalized 2
outputsignal - i’ 3 1 El—(l ) Onz/zLPs g
power d+ _pz 0 p+0./Lps
B Pi/Ps+0,/Lps
Normalized o 1 1 0
residual Ry ) ﬁ 7D ﬁ
interference (1 p) %+ P1/Ps*+9,./Lps 0 d+y, Lpzl 0
power 8 (1-p) g O 0, O
Normalized > 2
1 1- -
uncorrelated P+ (1p_ ) " g 1+% 1+(1_p)P (an/Lps)
noise power P Ell*' P1/Ps +0, /Lps O [Vo t0o, /Lpl] (p+cr2/Lps.)2
5 (-0 B
Output SNR p . Lps/o,nz Lpgp
(1-p) 2y 3 (- B ,, (-9 o,
72+GH/LPSD‘+ 2 + Z/L
Pi/Ps 0. /Lps H Pi/Ps*+0i/LpsH Yo+ O, /Lp,

Since p < 1, it follows from (2.6.81) that the second term on the RHS is negative if p
< (0 2/Lpg)%. Thus, under this condition the quantity in the braces on the right side of
(2.6.80) is less than unity and, hence, the uncorrelated noise power at the output of the
PIC is less than the uncorrelated noise power at the output of the signal beam. Thus, the
optimal PIC using the IIB reduces the uncorrelated noise when p < (0 2/Lps)? On the other
hand, when p > (0 2/Lps)? the quantity in the braces on the right side of (2.6.80) is more
than unity and the optimal PIC using the IIB increases the uncorrelated noise power. Note
that at the output of the optimal PIC using the IIB, total noise consists of uncorrelated
noise only: it increases as 0 2/Lpg decreases and in the limit approaches ¢ 2/Lps.

Now the output SNR of the optimal PIC using the IIB is examined. Let this ratio be
denoted by SNR(Wy). It follows then from (2.6.79) and (2.6.80) that

SNR(W,) = p;ipzl‘ (2.6.82)

n

Thus, the output SNR of the optimal PIC using the IIB is proportional to the input signal
to uncorrelated noise ratio, the number of elements in the array, and the parameter p.

2.6.3.5 Discussion and Comments

A comparison of the various results is presented in Table 2.1. The output signal power,
residual interference power, and output uncorrelated noise power of the optimal PIC are,
respectively, normalized by ps, pi(1 - p), and 0 2/L. These quantities correspond to the
signal power, the interference power, and the uncorrelated noise power at the output of
the signal beam. This particular form of normalization is chosen to facilitate the compar-
ison between the performance of the PIC using the OIB, IIB, and CIB, and that of an
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element space processor using conventional weights (the signal beam is formed using
conventional weights).

It follows from Table 2.1 that the SNR of the optimal PIC for the three cases is the same
when p is equal to unity or, equivalently, when the steering vectors in the signal and
interference directions are orthogonal to each other. The case of p < 1 is now considered.
For this situation, the results of the optimal PIC with the three interference beamformers
are discussed and some examples are presented. All examples presented here are for a
linear array of ten equally spaced elements with one-half wavelength spacing. The signal
direction is broadside to the array, and the uncorrelated noise power on each element is
equal to 0.01. The interference beam for the OIB case is formed using the steering vector
in the endfire direction. Thus, knowledge of the interference direction is not used in
selecting U,.

2.6.3.5.1 Signal Suppression

From Table 2.1, the following observations about the normalized output signal power of
the optimal PIC for the three cases can be made:

1. The optimal PIC using the OIB does not suppress the signal; in the other two
cases the signal is suppressed. The signal suppression by the optimal PIC using
the CIB is more than that by the PIC using the IIB. This follows from the following
expression for the difference of the normalized output signal powers:

PS (VAVC) PS (WI)

Ps Ps

. [(p+02/Lpg) +(1+02/Lpg) (1+a,)|[(1-p) + o, (1 +02 /Lpy)]
(1+a,)(p+02/Lps)

(2.6.83)

Physically, the interference beam rejects more of the signal in the IIB than in the
CIB and rejects all of the signal in the OIB. This leads to no suppression of signal
by the PIC using the OIB and less suppression in the case of the IIB than that of
the CIB.

2. The normalized output signal power of the optimal PIC using the IIB is indepen-
dent of the interference power. In the case of the optimal PIC using the CIB, it
increases as the interference power increases. Thus, it follows that the difference
between the normalized output signal power for the two cases decreases as the
interference power increases. In the limit the difference approaches

S 1+p+2(cj/Lp5)
(p+0§/LpS)2

_pz (1

3. The normalized output signal power depends on the input signal power for both
the CIB and IIB cases. In the case of the optimal PIC using the CIB, it decreases
as the input signal power increases. Thus, the signal suppression increases as the
input signal power increases. However, in the case of the optimal PIC using the
IIB, the normalized output signal power increases as the input signal power
increases, approaching unity in the limit. Thus, the signal suppression is negligibly
small when the input signal to uncorrelated noise ratio is large.
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FIGURE 2.14

Normalized output signal power of the PIC using the OIB with p; = 1; the IIB with p; = 1; and the CIB with p, =
1, 0.1 and 0.01 vs. input signal power for a ten- element linear array, 6, = 90°, 02 =0.01, 6; = 30°. (From Godara,
L.C., J. Acoust. Soc. Am., 85, 202-213, 1989 [God89a]. With permission.)

Figure 2.14 and Figure 2.15 show plots of the normalized output signal power of the
optimal PIC using OIB and IIB when the interference power is 1.0 and using the CIB when
the interference powers are 0.01, 0.1, and 1.0. For Figure 2.14, the interference is at an
angle of 60° from the signal while for Figure 2.15, the angle is at 5°. The parameter p for
these cases is 0.99 and 0.48, respectively. Note that for both the cases the normalized output
signal power of the PIC using the CIB increases as the interference power increases. Signal
suppression by the PIC using the CIB increases as the input signal power increases in both
cases, but the signal suppression is greater in Figure 2.15 (p = 0.48). This is because more
signal leaks into the interference beam for the scenario of Figure 2.15 than for Figure 2.14.

2.6.3.5.2  Residual Interference
The following observations about the residual interference can be made:

1. The output of the optimal PIC using the IIB does not contain any residual inter-
ference; in the OIB and CIB cases, residual interference is present.

2. For the optimal PIC using the OIB, the normalized output residual interference
depends on p Yo 2and the number of elements in the array. As p /0 ?2increases,
the normalized residual interference decreases and approaches zero in the limit.
As this ratio decreases, the normalized residual interference increases but never
exceeds unity. Thus, the optimal PIC using the OIB always cancels some of the
interference present at the output of the signal beam. The interference cancelation
increases as p yo2and the number of elements in the array increase.

3. As presented in Table 2.1, the expression for the normalized residual interference
at the output of the optimal PIC using the CIB is a product of two terms. The first
term depends on the parameter p, which in turn is controlled by the array geom-
etry and the relative directions of the two sources: for p greater than one-half, the
term exceeds unity. The second term depends on 0 %/ Lps and p;/ps, and increases
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FIGURE 2.15

Normalized output signal power of the PIC using the OIB with p; = 1; the IIB with p; = 1; and the CIB with p, =
1, 0.1 and 0.01 vs. input signal power for a ten-element linear array, 6, = 90°, 62 =0.01, 8; = 85°. (From Godara,
L.C., J. Acoust. Soc. Am., 85, 202-213, 1989 [God89a]. With permission.)

as these parameters decrease (stronger signal), in the limit approaching unity. It
follows that the normalized residual interference at the output of the optimal PIC
using the CIB increases as the signal power increases, and approaches a limit that
is more than unity when p < 0.5. Thus, in certain cases, the interference power at
the output of the optimal PIC using the CIB may be more than the interference
power at the output of the signal beam.

Comparisons of the normalized residual interference at the output of the optimal PIC
using the CIB and OIB are shown in Figure 2.16 and Figure 2.17. The interference directions
are 5° and 60° off broadside, respectively. The signal power is assumed to be unity. These
figures show plots of the interference power at the output of the optimal PIC normalized
by the interference power at the output of signal beam. Thus, the interference level above
the 0 dB line indicates an increase in the interference power from that present in the signal
beam.

Figure 2.16 (the interference and signal are 5° apart, p = 0.48) shows that the optimal
PIC in both cases cancels some interference present in the signal beam. However, the
cancelation is very small for the lower range of the input interference and increases as the
input interference increases. For the lower range of the input interference power, the optimal
PIC using the CIB cancels slightly more interference than that using the OIB. The reverse
is true at the other end of the input interference range. The optimal PIC using the OIB
cancels about 10 dB more interference than that using the CIB when the input interference
power is unity.

Figure 2.17 shows the normalized output interference of the optimal PIC using the OIB
and CIB when the interference and the signal are 60° apart (p = 0.99). The figure shows
that for the lower range of the input interference, the residual interference at the output
of the optimal PIC using the CIB is about 40 dB more than the interference contents in
the signal beam. Thus, the optimal PIC using the CIB does not suppress weak interference,
but increases its level. In the case of the optimal PIC using the OIB, when the input
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FIGURE 2.16

Normalized residual interference power of the PIC using the OIB and the CIB vs. input interference power for
a ten-element linear array, 6, = 90°, ps = 1.0, 02 = 0.01, 8; = 85°. (From Godara, L.C., J. Acoust. Soc. Am., 85,
202-213, 1989 [God89a]. With permission.)
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FIGURE 2.17

Normalized residual interference power of the PIC using the OIB and the CIB vs. input interference power for
a ten-element linear array, 8, = 90°, ps = 1.0, 62 = 0.01, 6, = 30°. (From Godara, L.C., ]. Acoust. Soc. Am., 85,
202-213, 1989 [God89a]. With permission.)

interference power is very small, some interference reduction takes place. The reduction
is about 2 dB.

For both cases, the normalized output interference decreases as the input interference
power increases. For the entire range of input interference level, the residual interference
at the output of the optimal PIC using the CIB is about 42 dB more than that using the OIB.
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2.6.3.5.3 Uncorrelated Noise Power

A comparison of the normalized uncorrelated noise power at the output of the optimal
PIC for the CIB, OIB, and IIB is shown in Table 2.1. The table shows that the normalized
uncorrelated noise power at the output of the optimal PIC using the OIB is greater than
unity. In other words, the optimal PIC has increased the uncorrelated noise.

For the case of the optimal PIC using the IIB, the decrease or increase in the uncorrelated
noise power depends on the difference between the parameter p and the square of the
uncorrelated noise to signal ratio at the output of the signal beam (0 2/ Lpg)>. The normalized
uncorrelated noise power at the output of the PIC is more than unity when p > (0 %/ Lpg)>
Thus, in the presence of a relatively stronger signal source, the optimal PIC using the IIB
increases the uncorrelated noise power.

2.6.3.5.4 Signal-to-Noise Ratio

First a comparison between the SNRs of the PIC using the IIB and OIB is considered. It
follows from (2.6.75) and (2.6.82) that

A Y, t—=
SNR(#,) _ 1 Lpy (2.6.84)
SNR(w,) p v+ . o
° Lp
which implies that
SNR(W,) >SNR(w, ) (2.6.85)
Furthermore, for p=1
SNR(W,) = SNR(W,) (2.6.86)

Now consider the PIC using the IIB and CIB. It follows from (2.6.60) and (2.6.82) that

SNR(‘?’C) = 1 (2.6.87)
SNR(,) (1+a,)"+ 1%0(12(1 +Lp,/o?)
Thus
SNR(W,) >SNR(W, ) (2.6.88)
Furthermore, for low values of o,
SNR(W,) OSNR(w,) (2.6.89)
Note that
a, = (=plps (2.6.90)

(p, +02/L)

is the SNR at the output of the interference beam.
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FIGURE 2.18
Output SNR of the PIC using the OIB, the IIB and the CIB vs. input SNR for a ten-element linear array, 6, = 90°,
p1=1.0,02 =0.01, 6, = 30°. (From Godara, L.C., J. Acoust. Soc. Am., 85,202-213, 1989 [God89a]. With permission.)

T 1B

20 — 0IB

OUTPUT SNR (dB)

- CIB

0
INPUT SNR (dB)

FIGURE 2.19
Output SNR of the PIC using the OIB, the IIB and the CIB vs. input SNR for a ten-element linear array, 6, = 90°,
ps=1.0, 02 =0.01, 6, = 85°. (From Godara, L.C., J. Acoust. Soc. Am., 85,202-213, 1989 [God89a]. With permission.)

The above discussion agrees with the comparison of the output SNRs for the IIB, OIB,
and CIB cases shown in Figure 2.18 and Figure 2.19. For these cases, a unit power inter-
ference is assumed to be present. The direction of the interference is 60° from broadside
in Figure 2.18 and 5° from broadside in Figure 2.19. The parameter p is 0.99 and 0.48,
respectively, and the parameter Y, is 0.17 and 0.01, respectively. One observes from these
figures that in the case of the CIB, the output SNR decreases as the input SNR increases
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beyond -8 dB in Figure 2.18 and beyond —16 dB in Figure 2.19. However, in the other two
cases the output SNR increases as the input SNR increases, resulting in array gains of the
order of 20 to 30 dB.

In the next two sections, a comparison of the optimal element space processor (ESP)
and the optimal PIC with an OIB is presented. It should be noted that the ESP is optimized
to minimize the mean output power subject to a unity constraint in the look direction and
the PIC is optimized to minimize the mean output power with the interference beam
having a null in the look direction.

2.6.4 Comparison of Postbeamformer Interference Canceler with Element
Space Processor

Performance of the optimal ESP is a function of p, and the performance of the optimal
PIC with an OIB is dependent on p and Y, Thus, performance comparison of the two
processors depends on the relative values of these two constants.

First, consider a case where the precise interference direction is known. Let the inter-
ference beam be formed using an OIB given by

A

U_=PS

o I

(2.6.91)

where

P=1-(s,S)/L (2.6.92)

A simple calculation indicates that for the interference beamformer weights given by
(2.6.91) and (2.6.92), y, attains its maximum value and

Y, =P (2.6.93)

A comparison of the results derived in Sections 2.4 and 2.6.3 reveals that for this case
the output powers and the SNRs of the two processors are identical (see (2.4.42) and
(2.6.75)). Thus, if the interference beam of the PIC is formed by an OIB for which (2.6.93)
holds, then the performance of the optimal PIC is identical to the performance of the
optimal ESP.

However, if the interference beam of the PIC is formed by an OIB for which

Y, <p (2.6.94)

then a comparison of the results for the two processors (an expression for Py results using
(2.4.20) and (2.4.41) reveals that

Py (W,)> Py (2.6.95)
and
SNR(W,)<é (2.6.96)

Thus, the total noise power at the output of the optimal PIC in this case is more than
the total noise power at the output of the optimal ESP, and the SNR achievable by the
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FIGURE 2.20
Difference in the SNRs of the two processors calculated using (2.6.98) as a function of p and y,. (From Godara,
L.C., IEEE Trans. Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)

optimal PIC is less than that achievable by the optimal ESP. It follows from (2.4.42) and
(2.6.75) that the ratio of the two SNRs is given by

SNR(WO) = or% + LpI 0-nz + yo LpI (2697)
SNR(W) ~ o2 +(1+y, -pLp, 02 +pLp,
For 0 2/Lp; <Y, this ratio reduces to
SNR(w
(i, Yo (2.6.98)

SNR(W) ~(1+y,-9)p

and depends on the relative values of p and y,. Furthermore, if p 01, then it follows from
(2.6.98) that the output SNRs of the two processors are approximately the same. Plots of
(2.6.98) for four values of p as a function of Y, are shown in Figure 2.20. The figure shows
that the difference in the output SNRs of the two processors is smaller for the larger values
of these constants and increases as these constants decrease.

2.6.5 Comparison in Presence of Look Direction Errors

Knowledge of the look direction is used to constrain the array response in the direction
of the signal such that the signal arriving from the look direction is passed through the
array processor undistorted. The array weights of the element space optimal beamformer
are estimated by minimizing the mean out power subject to the look direction constraint.
The processor maximizes the output signal to noise ratio by canceling all interference. A
direction source is treated as interference if it is not in the look direction. This shows the
importance of the accuracy of the look direction. An error occurs when the look direction
is not the same as the desired signal direction. For this case, the processor treats the desired
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signal source as interference and attenuates it. The amount of attenuation depends on the
power of the signal and the amount of error [Ows73, Cox73, God87, Zah72]. A stronger
signal is canceled more and a larger error causes more cancelation of the signal.

The solution to the look direction error, also known as the beam-pointing error, is to
make the beam broader so that when the signal is not precisely in the direction where it
should be (the look direction), its cancelation does not take place. The various methods
of broadening the beam include multiple linear constraints [Ows73, Ste83] and norm
constraints. Norm constraints prohibit the main beam blowing out as is the case in the
presence of pointing error. In the process of canceling a source close to the point constraint
in the look direction, the array response gets increased in the direction opposite to the
pointing error. A scheme to reduce the effect of pointing error, which does not require
broadening of the main beam, has been reported in [Pon96]. It makes use of direction
finding techniques combined with a reduced dimensional maximum likelihood formula-
tion to accurately estimate the direction of the desired signal. The effectiveness of this
scheme in mobile communications has been demonstrated using computer simulations.
Other schemes to remedy pointing error problems may be found in [Lo90, Muc81, Roc87].

In this section, the performance of the optimal element space processor and the beam
space processor in the presence of beam-pointing error is compared [God87]. The com-
parison presented here indicates that beam space processors in general are more robust
to pointing errors than elements space processors.

It is assumed for this analysis that the actual signal direction is different from the known
signal direction. Let the steering vector in the actual signal direction be denoted by S,
The array correction matrix R in this case is given by

R=psS,S) +p,SS; +0,1 (2.6.99)

and the weights w-of the optimal ESP and w, of the optimal PIC with an OIB estimated
from the known signal direction are given by

w=(R7S))/SIR™S, (2.6.100)
and

W, =(V"RU, ) /UIRU, (2.6.101)

where V is given by (2.6.50) and U, satisfies (2.6.63).
The output power P of the ESP is given by

P =w"Rw (2.6.102)
and the output power P(w,) of the PIC processor is given by
P(W,) = VIRV +## UMRU, ~# U'RV -~ V'RU, (2.6.103)

A detailed comparative study of the performance of the two processors in the presence
of the signal direction error (SDE) is presented in Figure 2.21 to Figure 2.28. These figures
show how the direction of the interference source, the number of elements in the array,
and the uncorrelated noise power level affect the performance of the two processors as a
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FIGURE 2.21
Output signal power vs. the SDE for a ten-element linear array, p; = 100, 62 = 0.01, 6, = 85°. (From Godara, L.C.,
IEEE Trans. Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)
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FIGURE 2.22
Output uncorrelated noise power vs. the SDE for a ten-element linear array, p; = 100, 62 = 0.01, 6, = 85°. (From
Godara, L.C., IEEE Trans. Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)

function of the error in the signal direction. For all these figures, interference power is
taken to be 20 dB more than signal power.

Figure 2.21 to Figure 2.24 show, respectively, the comparison of the output signal powers,
the output uncorrelated noise powers, the power patterns, and the output SNRs of two
processors when the assumed look direction is broadside to a ten-element linear array
with half-wavelength spacing. The direction of the interference is 85° relative to the line
of the array, and the uncorrelated noise power level is 20 dB below the signal level. The
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Power pattern of a ten-element linear array when SDE = 1°, p; = 100, 62 = 0.01, 6, = 85°. (From Godara, L.C.,
IEEE Trans. Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)
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FIGURE 2.24
Output SNR vs. the SDE for a ten-element linear array, p; = 100, 02 = 0.01, 6, = 85°. (From Godara, L.C., I[EEE
Trans. Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)

interference beamforming weights of the PIC processor are calculated using (2.6.91) and
(2.6.92).

Figure 2.21 shows that the output signal powers of the two processors are the same in
the absence of the SDE. As the SDE increases, the signal suppression by the ESP increases,
and it suppresses more than 11 dB signal power in the presence of a 1° error in the signal
direction. Note that the error in the signal direction is measured relative to the look
direction and is assumed to be positive in the counterclockwise direction. Thus, —1° and
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1° error, respectively, means that the signal direction is 89° and 91° relative to the line of
the array. Furthermore, the line of the array, interference direction, and signal direction
are in the same plane.

The signal suppression of the PIC processor is substantially less than that of the ESP. It
reduces the output signal power less than 2 dB in comparison to 11 dB of the ESP when
the error is —1° and increases the output signal power by about 1 dB when the error is 1°,
in which case the ESP suppresses more than 13 dB of signal.

A comparison of the uncorrelated noise powers of the two processors is shown in
Figure 2.22. This figure shows that there is no noticeable effect on the output uncorrelated
noise power of the PIC processor due to the presence of the SDE. However, there is a
significant increase in the uncorrelated noise output power of the ESP. A small SDE, of
the order of 0.4°, causes an increase of the order of 20 dB in the uncorrelated noise output
power.

Figure 2.23 shows the power patterns of the two processors when the error is 1°. The
reduced response in the signal direction and an increased response to the uncorrelated
noise are clearly visible from the pattern of the ESP.

Figure 2.24 compares the output SNRs of the two processors. The performance of the
two processors is the same in the absence of errors. The effect of the SDE on the output
SNR of the PIC is a slight reduction for a —1° error and a slight increase for a 1° error.
However, the error causes a significant reduction in the output SNR of the ESP.

Figure 2.25 compares the output SNRs of the two processors when the interference
direction is 25° relative to the line of the array. This figure demonstrates that the output
SNR of the ESP in Figure 2.25 is reduced by more than 20 dB by 0.1° error in the signal
direction. On the other hand, the effect of the SDE on the output SNR of the PIC is
negligibly small. It should be noted that the constant p attains values of 0.99 and 0.48,
respectively, for the scenarios of Figure 2.24 and Figure 2.25. A comparison of these figures
shows how the direction of the interference affects the output SNR of the ESP for a given
SDE. One observes that the performance of the ESP in a noise configuration with a higher
value of p is poorer than that with a lower value of p.

40

PIC

QUTPUT SNR (dB)
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0
ERROR IN DEGREE

FIGURE 2.25
Output SNR vs. the SDE for a ten-element linear array, p; = 100, 62 = 0.01, 6, = 25°. (From Godara, L.C., I[EEE
Trans. Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)
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FIGURE 2.26
Output SNR vs. the SDE for a ten-element linear array, p; = 100, 62 =1, 6, = 25°. (From Godara, L.C., IEEE Trans.
Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)

Figure 2.26 shows the output SNR plots of the two processors when the uncorrelated
noise level is raised to that of the signal level. Other noise and array parameters are the
same as in Figure 2.25. The effect of the raised uncorrelated noise level on the ESP in the
presence of the SDE is that the processor becomes less sensitive to the error. The output
SNR of the ESP in the presence of a 1° error is about 4 dB, in comparison to about 10 dB
of the PIC processor. The output SNR of 10dB is the level achievable by the two processors
in the absence of the error.

For a given uncorrelated noise level, the output SNRs of the two processors in the
absence of errors can be increased by increasing the number of elements, as shown in
Figure 2.27, where the number of elements of the linear array is increased from 10 to 20.
Comparing Figure 2.27 with Figure 2.26, an increase of about 3 dB in the output SNRs of
the two processors in the absence of SDE is noticeable. One also observes from the two
figures that the ESP is more sensitive to the SDE in the presence of an array with a greater
number of elements. With an array of 20 elements, the output SNR of the ESP in the
presence of 1° SDE is about —4 dB, in comparison to 4 dB when the number of elements
in the array is ten.

All the above results are for a linear array. Similar results were reported in [God87]
when a planar array was used.

The above results show that in the absence of errors both processors produce identical
results, whereas in the presence of look direction errors the beam space processor produces
superior performance. The situation arises when the known direction of the signal is
different from the actual direction. Now let us look at the reason for this difference in the
performance of the two processors.

The weights of the processor are constrained with the known look direction. When the
actual signal direction is different from the one used to constrain weights, the ESP cancels
this signal as if it were interference close to the look direction. The beam space processor,
on the other hand, is designed to have the main beam steered in the known look direction
and the auxiliary beams are formed to have nulls in this direction. The response of the
main beam does not alter much as one moves slightly away from the look direction, and
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FIGURE 2.27
Output SNR vs. the SDE for a 20-element linear array, p; = 100, 62 =1, 6, = 25°. (From Godara, L.C., IEEE Trans.
Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)

thus the signal level in the main beam is not affected. Similarly, when a null of the auxiliary
beams is placed in the known look direction, a very small amount of the signal leaks in
the auxiliary beam due to a source very close to the null and thus the subtraction process
does not affect the signal level in the main beam, yielding a very small signal cancelation
in the beam space processing compared to the ESP. For details of the effect of other errors
on the beam space processors, particularly GSC, see, for example [Jab86].

A comparison of the performance of the PIC with the tamed element space processor
is presented in Figure 2.28 for the scenario of Figure 2.27. For the tamed array, as discussed
in [Tak86], the weights of the optimal ESP are calculated using the array correlation matrix
Ry, given by

R, =R+a’l (2.6.104)
where 03 is a control variable. The performance of the tamed array is optimized for
a2 =Lpg /2 (2.6.105)

Figure 2.27 and Figure 2.28 show that the performance of ESP in the presence of SDE
has improved substantially using this procedure. However, the PIC performs better than
the tamed ESP.

2.7 Effect of Errors

The optimal weights of an antenna array, computed using the steering vector in the
direction of arrival of the desired signal and the noise-only array correlation matrix or the
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FIGURE 2.28
Output SNR vs. the SDE for a 20-element linear array, p; = 100, 62 =1, 6, = 25°. (From Godara, L.C., IEEE Trans.
Circuits Syst., 34, 721-730, 1987. ©IEEE. With permission.)

total array correlation matrix, maximizes the output SNR in the absence of errors. In
practice, the estimated optimal weights are corrupted by random errors that arise due to
imperfect knowledge of the array correlation matrix, errors in steering vector estimation
caused by imperfect knowledge of the array element positions, and error due the finite
word-length arithmetic used, and so on. Thus, it is important to know how these errors
degrade array performance. The effect of some of these errors on the performance of the
optimal processor is discussed in the following sections.

2.7.1 Weight Vector Errors

Array weights are calculated using ideal conditions and then stored in memory, and are
implemented using amplifiers and phase shifters. Theoretical study of system performance
assumes the ideal error-free weights, whereas the actual performance of the system is
dependent on the implemented weights. The amplitude as well as the phase of these
weights are different from the ideal ones, and these differences arise from many types of
errors caused at various points in the system, starting from the deviation in the assumption
that a plane wave arrives at the array, uncertainty in the positions and the characteristics
of array elements, error in the knowledge of the array correlation matrix caused by its
estimation from finite number of samples, error in the steering vector or the reference
signal used to calculate weights, computational error caused by finite precision arithmetic,
quantization error in converting the analog weights into digital form for storage, and
implementation error caused by component variation. Studies of weight errors have been
conducted in which these errors are modeled as random fluctuations in weights [God86,
Lan85, Ber77, Hud77, Nit76, Ard88], or by modeling them as errors in amplitude and
phase [Ram80, Far83, Qua82, Kle80, Cox88, DiC78]. Performance indices to measure the
effect of errors include the array gain [God86, Far83], reduction in null depth [Lan85],
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reduction in interference rejection capability [Nit76], change in side-lobe level [Ram80,
Qua82, Kle80], and bias in the angle of arrival estimation [Cox 88], and so on.

The array gain is the ratio of the output SNR to the input SNR. The effect of random
weight fluctuation is to cause reduction in the array gain. The effect is sensitive to the
number of elements in the array and the array gain of the error-free system [God86]. For
an array with a large number of elements and with a large error-free gain, a large weight
fluctuation could reduce its array gain to unity, which implies that output SNR becomes
equal to the input SNR and no array gain is obtainable.

In this section, the effects of random errors in the weights of the processors on the output
signal power, output noise power, output SNR, and array gain are analyzed [God86]. It
is assumed that the estimated weights are different from the optimal weights by additive
random noise components. Let these errors be represented by an L-dimensional vector I
with the following statistics:

E(r)=0 i=12..L

L2 isi 2.7.1)
E[rir. =g~ ) yj=12,..,L
) DO 1;"-']

Let an L-dimensional complex vector w represent the estimated weights of the processor.
Thus,

RyS,

W= N0
Sy RS,

+T (2.7.2)

2.7.1.1 Output Signal Power

The output signal power of the processor with estimated weights w is given by
P,(w)=pw"S,Si'w (2.7.3)
Substituting for w and taking the mean value on both sides, this becomes, after manipulation,
P, =p(1+02L) (2.7.4)

Thus, the output signal power increases due to the random errors in the weight vector.
This increase is proportional to the input signal power, variance of errors, and number of
elements in the array.

2.7.1.2 Output Noise Power
The output noise power of the processor with estimated weights is given by

P

N

(w)=w"Rw (2.7.5)

N

Substituting for w, taking the expected value on both sides, and recognizing the fact that
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E[IRI] = [ Tr(IT"R,

=Tr(E[rrR,) 276
=02Tr(R,)
=0, pxL

after manipulation, the result is

FN = 1gN +Gv2\/LpN

2
w

O p. O

=P d+o, L0 (2.7.7)
g g

=P [1+02LG]

where Tr[.] denotes the trace of [.] and py is the total input noise power that includes
directional interferences as well as uncorrelated noise.

Thus, the output noise power increases due to the presence of random errors in the
weights of the processor. The increase is proportional to the error variance, number of
elements in the array, and total input noise power of the processor.

2.7.1.3 Output SNR and Array Gain

Let a,, and G,, denote the output SNR and the array gain of the processor with the random
errors in the weights. It follows from (2.7.4) and (2.7.7) that

1+02L
(1+oiL)

a_=d P
1+0. LG

w

2.7.8)

where @ is the output SNR of the error-free beamformer. Equation (2.7.8) describes the
behavior of the output SNR as a function of the variance of the random errors, number
of elements in the array, output SNR, and array gain of the optimal processor.

Dividing both sides of this expression by the input SNR leads to an expression for G,,
that is,

~ 1+0G2
G, =G 1ok (2.7.9)
1+0 LG

From this expression the following observations can be made:

1. The array gain G,, of the processor with the random additive errors in the weights
is a monotonically decreasing function of the variance of the random errors.

2. In the absence of errors in the weights, G,, is equal to G, the array gain of the
optimal processor.

3. As 02 increases very high G,, approaches unity. Thus, for finite variance in the
random errors the output SNR is more than the input SNR.
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An analysis similar to that presented here shows that in the presence of weight vector
error (WVE), the expressions for the output signal power and output noise power of the
SPNMI processor are the same as those of the NAMI processor. Hence, the presence of
the signal component in the array correlation matrix, which is used to estimate the optimal
weights, has not affected the performance of the processor in the presence of WVE.
However, as shown in the next section, this is not the case for steering vector error (SVE).

2.7.2 Steering Vector Errors

The known look direction appears in the optimal weight calculation through the steering
vector. The optimal weight calculation for the constrained beamforming requires knowledge
of the array correlation matrix and the steering vector in the look direction. Thus, the pointing
error causes an error to occur in the steering vector, which is used for weight calculation.

The steering vector may also be erroneous due to other factors such as imperfect knowl-
edge of array element positions, errors caused by finite word-length arithmetic, and so
on. The effect of steering vectors has been reported in [God86, Muc81, Com82]. An
analytical study by modeling the error as an additive random error indicates [God86] that
the effect of error is severe in the SPNMI processor, that is, when the array correlation
matrix, which is used to estimate the weights, contains the signal.

As the signal power increases, the performance of the processor deteriorates further due
to errors. By estimating the weights using a combination of a reference signal and a steering
vector, sensitivity of a processor to the SVE may be reduced [Hon87].

In this section, the effect of SVE on optimal beamformer performance is considered
[God86]. It is assumed that each component of the estimated steering vector S is different
from Sy by an additive error component, that is,

S=§, +I, (2.7.10)
where
Hrg)=0 i=12..,L (2.7.11)
and
E[rsfs*j :Bbsz 1:] i,j=12,..L (2.7.12)
00 i#j

The analysis presented here is for processors without constraints. The NAMI processor is
first considered.

2.7.2.1 Noise-Alone Matrix Inverse Processor

Let an L-dimensional vector W represent the estimated weights of the processor when S
rather than S is used in estimating the optimal weights. The expression for the estimated
weights of the processor in this case becomes

R
(2.7.13)
R

where [l is a constant.
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The expected value of the mean output signal power and the mean output noise power
are given below. The expectation is taken over the randomness in the steering vectors.

2.7.2.1.1 Output Signal Power

The output signal power of a processor with weights w is given by
Py(W) = psw"S Sh'w (2.7.14)

Substituting for w from (2.7.13), the signal power becomes

Ps(vNV) = pS[ﬁRI_\Il(SO +Fs)]HSOSE){[|1R1:11(So + Fs)]

= p, SRS SRS, -
P B[SURIS SRAT, +IURIS SUR3S

+ ps ISy RYTTERYS,

Taking the expected value on both sides of (2.7.15) and using (2.7.11) and (2.7.12), after
rearrangements,

=p.fi %sHR 3s,) +028HRIRS o

ap-ie O
:psgm ?:lelfsl) ?(SHR 1s) (2.7.16)

=py[1+foz| /B3

where B is the ratio of uncorrelated noise power at the output to the uncorrelated noise
power at the input of the optimal processor and Py is the mean output noise power of
the optimal processor.

2.7.2.1.2  Total Output Noise Power
The output noise power of the processor with weight vector w is given by

P, = W'R W 2.7.17)
Substituting for w from (2.7.13), it becomes
P N~ ﬂzsglRiflso
+P[SYRIT, +TERYS, (2.7.18)

+ P THRIT,
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Taking the expected value on both sides of (2.7.18) and using (2.7.11) and (2.7.12), after

rearrangements,
=[S} R3S, +02Tr(Ry)
n Tr(R}) O
=[*0+0? QES?RQSO (2.7.19)
B “SoRyS H
&2
= [1 + GSZK] <
I)N
where
Tr(R7))

A 2.7.20
*(siris,) @720

Since K > 0, it follows from (2.7.19) that the output noise power increases in proportion
to the variance of the random errors in the steering vector.

2.7.2.1.3 Output SNR and Array Gain

Let a, and Gg denote the output SNR and the array gain of the NAMI processor with SVE.
It follows then from (2.7.16) and (2.7.19) that

o =G 1+ B 2.7.21)
1+o K
and
"
G =GloP (2.7.22)
1+0K

It follows from these two equations that the behavior of the output SNR and the array
gain of the NAMI processor with SVE depend on the relative magnitudes of B and k. It
can be shown that k 2 {3, and thus the array gain of the NAMI processor with the random
errors in the steering vector is a monotonically decreasing function of the error variance.

2.7.2.2  Signal-Plus-Noise Matrix Inverse Processor

Let an L-dimensional vector w represent the estimated weights of the SPNMI processor
when S rather than S, is used in estimating the optimal weights. The expression for w in
this case becomes

w={ R[S, +I] (2.7.23)
where

R =R, +pS,S! (2.7.24)
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Using the Matrix Inversion Lemma,
R™ =Ry -a,RyS,Si' Ry (2.7.25)

where

_ Ps
a, = 2.7.26
O 1+ pSS?R_I ]150 ( )

From (2.7.23) and (2.7.25), it follows that
w={L R[S, +T| - fia RIS SR (S, +T) (2.7.27)

Comparing (2.7.13) with (2.7.27) one notes that the second term in (2.7.27) is due to the
presence of the signal component in the array correlation matrix that is used in estimating
the optimal weights. As the signal component goes to zero, the second term goes to zero
because a; goes to zero, and thus w becomes w.

The effect of SVE on the output signal power, the output noise power, the output SNR,
and the array gain is now examined.

2.7.2.2.1 Output Signal Power

Following a procedure similar to that used for the NAMI processor, an expression for the
mean output signal power of the SPNMI processor in the presence of the SVE becomes

b - (15;}:2195)“)5[1 " cjé] (2.7.28)

Comparing (2.7.16) with (2.7.28), in the presence of SVE the output signal power of both
processors increases and the increase is proportional to the output signal power of the
respective error-free processor and the parameter 3, which is the ratio of the uncorrelated
noise powers at the output of the optimal processor to its input. Hence, the effect of the
random SVE on both processors is the same. Thus, the presence of the signal component
in the array correlation matrix has not altered the effects of SVE on output signal power.
In the next section, it is shown that this is not the case for the output noise power.

2.7.2.2.2  Total Output Noise Power

Following a procedure similar to that used for the NAMI processor, an expression for the
mean output noise power of the processor with weight vector w becomes

b= W B B

(f)N + ps)2

k+(d> +2d)(K ) )]% (2.7.29)

Since K = B, it follows from (2.7.29) that the output noise power of the SPNMI processor
increases with the increase in the variance of random errors 62, and the increase is
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enhanced by the input signal power due to the presence of product terms 026 and o .
Note that the third term in (2.7.29), which contains these terms, is missing from the
expression of the output noise power given by (2.7.19) when the array correlation matrix
of noise only is used in the calculation of the optimal weights.

2.7.2.2.3 Output SNR

Let ds denote the output SNR of the SPNMI processor in the presence of SVE. Then it
follows that

) - 7 d(1+0§[§) _
2k +(a? +2d)(|< —B)‘

which describes the behavior of the output SNR of the SPNMI processor in the presence
of random SVE. Comparing this with (2.7.21), the expression for the output SNR of the
NAMI processor, one observes the presence of 62 and & in the denominator of (2.7.30).
As the output SNR of the optimal processor @ is directly proportional to the input SNR
of the processor, it follows that:

= (2.7.30)
1+0

1. The effect of SVE on output SNR of the SPNMI processor is very sensitive to the
input signal power.

2. The output SNR of the SPNMI processor drops faster than the output SNR of the
NAMI processor as the error variance increases.

3. For a given level of SVE, the output SNR of the SPNMI processor is less than the
output SNR of the NAMI processor, and the difference increases as the power of
the signal source increases.

It should be noted here that the above observations are true for any array geometry and
noise environment. However, the array geometry and the noise environment would affect
the results as &, K, and f3 depend on them.

Now the array gain of the SPNMI processor G is compared with the array gain of the
NAMI processor Gg in the presence of SVE. For thls case, array gain is given by

B (1 +0§f3)(§
235_1+052K +(6(2 +20?)(K —ﬁ)‘ @7.31)

Since K 2 fi, it follows from (2.7.22) and (2.7.31) that for a given o2, the array gain és
of the SPNMI processor is less than the array gain Gs of the NAMI processor, and Gg falls
more rapidly than Gg as the variance of the random SVE increases. The fall in G4 is greater
at a higher input SNR than at a lower input SNR.

2.7.2.3 Discussion and Comments

Table 2.2 compares the various results on SVE and WVE. All quantities are normalized
with their respective error-free values to facilitate observation of the effect of errors. The
following observations can be made from the table:
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TABLE 2.2
Comparison of the SVE and WVE*

Normalized Mean
Output Signal Power

Normalized Mean

Output Noise Power Normalized Array Gain

Effect of SVE
on NAMI 1+ f;csz
processor

Effect of SVE
on SPAMI N
processor 1+Bo;

Effect of WVE
on both
processors

1+0’L

o
2 22 L nd 2\0 (1+0:[§)

1+0; §<+(or +2a)(K 'B)E 1+0‘2§(+(dz+zd)(K _g)é
21 A (1+0‘§L)

1+O'WLG m

* f: Ratio of the uncorrelated noise at the output to the input of the optimal beamformer; G: array
gain of the optimal beamformer; a: output SNR of the optimal beamformer; 03: variance of the

additive random steering vector errors; 0 : variance of the additive random weight vector errors;

Tr(R})

~(siRys,)

1. The output signal power in all cases increases with the increase in error variance.
For WVE case, the increase depends only on the number of elements, whereas for
SVE it depends on the array geometry and the noise environment.

2. The output noise power in all cases increases with the increase in error variance.
For the WVE case, the increase depends on G and is independent of signal power.
For the SVE case, the increase in the output noise power is dependent on the input
signal power for the SPNMI processor, and is independent of the signal power

for the NAMI processor.

3. The array gain in all cases decreases with the increase in the error variance. In the
case of WVE, the decrease in the array gain depends on G. The greater G is, the
faster the array gain drops as the error variance increases. In the SVE case, the
array gain of the SPNMI processor is dependent on the output SNR of the optimal
processor (@), and it drops as @ is increased. Note that & is directly proportional
to the input signal power. The effect of SVE on the NAMI processor is not affected

by the input signal power.

Two special cases of the noise environment are considered below to study the effect of
array elements, uncorrelated noise power, direction, and power of the interference source.

2.7.2.3.1 Special Case 1: Uncorrelated Noise Only

Consider the case of a noise environment where only uncorrelated noise is present. Let A
denote the ratio of the input signal power to the uncorrelated noise power on each element.

For this case,
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G=L (2.7.32)

g=L (2.7.33)
5 7.

a=LA (2.7.34)



and

TABLE 2.3

Comparison of Array Gain in the Presence of SVE and WVE with
No Interference Present*

L+o?
1+0?

Array gain NAMI processor in SVE

L+o?
1+02[1+ L% (L ~1) +24(L ~1)]

Array gain of SPAMI processor in SVE

L+oll’

Array gain of both processors in WVE — —w

* o 52: Variance of steering vector error; Gi,: variance of weight vector error,
— 2
A= pS/on'

k=1 (2.7.35)

The expressions for the array gains of the two processors in the presence of SVE and WVE
are shown in Table 2.3. From the table, the following observations can be made.

1.

For a given error level, say 0g = 0Og, the array gain of the NAMI processor increases
as the number of elements in the array increases. Thus, for a given error level and
input SNR, the output SNR of the NAMI processor increases as L increases.

. The array gain of the NAMI processor decreases as the error level is increased,

and it does not depend on the ratio of the input signal to the uncorrelated noise
power, A. However, the behavior of the array gain G of the SPNMI processor in
the presence of SVE depends on A. For a given L, G4 drops faster at a higher A than
at a lower A as the SVE level is increased.

]
For A < 1, the expression for G4 becomes

L+0?

Ivo? (2.7.36)

S

and for a given level of errors the array gain increases with the increase in the
number of elements, as in the case of the NAMI processor.

)
For A > 1, the expression for G4 becomes

L+0o?
ey 2.7.37
* T 1+020L(L-1) ( )
Thus, for a given 0g, the array gain decreases with the increase in the number of
elements for a very high input signal to uncorrelated noise ratio.

The plots of és vs. the input SNR for various values of L are shown in Figure 2.29
for error variance equal to 0.01. The results displayed in the figure are in agreement
with the above observations.

A comparison of the expressions for the array gain in the presence of the SVE and
the WVE reveal that G,,, the array gain of both processors in the presence of WVE,
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Array gain of SPNMI processor vs. SNR, no interference, and 0? = 0.01. (From Godara, L.C., IEEE Trans. Aerosp.
Electron. Syst., 22, 395-409, 1986. ©IEEE. With permission.)

behaves similarly to Gg, the array gain of NAMI processor in the presence of SVE.
For a given error level, both G,, and Gg increase with the increase in L. However,
for the same error level, say 05 = G, = Oy,

G.-G. = oy(L-1)(L*-1) >0 (2.7.38)
S (1401402 o

2.7.2.3.2  Special Case 2: One Directional Interference

Consider the case of a noise environment consisting of a directional interference of power
pr and uncorrelated noise of power 6.2 on each element of the array. For this case, G and &
are, respectively, given by (2.4.43) and (2.4.42),

p=l L PL(=p) p)z (2.7.39)
L (pL+¢,)
and
K=1 JL-p)-1 (2.7.40)
pL+eg,
where
0.2
g, = (2.7.41)
P
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The effect of a variation in p on the array gain of the two processors in the presence of
WVE and SVE is shown in Figure 2.30 to Figure 2.33. The number of elements in the array
for these figures is taken to be ten.

Figure 2.30 shows G,, vs. 03, for five values of p. One observes from the figure that G,,,
which denotes the array gain of both the processors in the WVE, decreases faster at higher
values of p than at lower values of p, as the variance of the errors is increased. The result
is expected, since G increases as p increases.

Figure 2.31 and Figure 2.32 show the effect of p on the array gain of the SPNMI processor
in the presence of SVE for 62/p;= 0 dB and 02/p;= —40 dB, respectively. These figures
show that as the error variance is increased, the array gain falls more rapidly at higher
values of p than at lower values of p. The result is expected, since @ increases as p increases.

A comparison of Figure 2.31 and Figure 2.32 reveals that the effect of SVE on the array
gain is not altered significantly by increasing the interference power. The result is predlct—
able from the expression for G since for Lp > 02/p; the constants [3 K, and G are
independent of interference power.

The effect of p on the array gain of the NAMI processor in the presence of the SVE is shown
in Figure 2.33. The figure demonstrates that the effect of the SVE on the array gain of the
NAMI processor is almost the same for all values of p. This observation implies that the array
geometry and direction of interference do not significantly influence the effect of SVE on the
NAMI processor unless the interference direction is very close to the look direction.

Figure 2.34 and Figure 2.35 compare the three array gains G,,, G, and G, for the case
of weak interference 0 2/p; = 0 dB, and strong interference, dB. For these f1gures input
signal power is equal to uncorrelated noise power. These figures show that the array gains
of both processors in the presence of the SVE are not affected by the interference power,
whereas G,,, the array gain of two processors in the presence of WVE, is highly dependent
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on the interference power. It drops faster as 02 is increased in the presence of the inter-
ference and the rate of drop increases with the increase in the interference power. Note
the difference in the vertical scales of the two figures.

2.7.3 Phase Shifter Errors

The phase of the array weight is an important parameter and an error in the phase may
cause an estimate of the source to appear in a wrong direction when an array is used for
finding directions of sources, such as in [Cox88]. The phase control of signals is used to
steer the main beam of the array in desired positions, as in electronic steering. A device
normally used for this purpose is a phase shifter. Commonly available types are ferrite
phase shifters and diode phase shifters [Mai82, Sta70]. One of the specifications that
concerns an array designer is the root mean square (RMS) phase error.

Analysis of the RMS phase error shows that it causes the output SNR of the constrained
optimal processor to suppress the desired signal, and the suppression is proportional to
the product of the signal power and the random error variance [God85]. Furthermore,
suppression is maximum in the absence of directional interferences. Quantization error
occurs in digital phase shifters. In a p-bit digital phase shifter, the minimum value of the
phase that can be changed equals 211/2P. Assuming that the error is distributed uniformly
between T1/2P to T1/2P, the variance of this error equals T2/3 x 22

In this section, the effect of random phase errors on the performance of the optimal
processor is analyzed [God85]. To facilitate this analysis, the phase shifters are separated
from the weights as shown in Figure 2.36 and are selected to steer the array in the look
direction.
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Qutput y(t)

FIGURE 2.36
Beamformer structure showing phase shifters.

Let the optimal weights of the beamformer of Figure 2.36, referred to as the beamformer
using phase shifters, be denoted by w. It follows from the figure that the output of the
optimal beamformer using phase shifters is given by

y(t) = Wix'(t) (2.7.42)

where x'(t) is the array signal received after the phase shifters and are given by (2.6.31).
Thus, using (2.6.31), (2.7.42) becomes

y(t) = Wolix(t) (2.7.43)

Now a relationship between w and w, the weights of the optimal beamformer without
using phase shifters discussed in Section 2.4, is established. The output of the optimal
beamformer without using phase shifters is given by

y(t) = wx(t) (2.7.44)

Since the outputs of both structures are identical, it follows from (2.7.43) and (2.7.44)
that w and w are related as follows:

W =0OW (2.7.45)
An expression for w may be obtained from (2.4.16) and (2.7.45) and is given by

_ ®yRyS, (2.7.46)
Sy RS,
2.7.3.1 Random Phase Errors

In this section, the effect of random phase errors on optimal processor performance is
examined. Phase shifters with random phase errors are termed “actual phase shifters,”
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and the processor in this case is termed “optimal processor with phase errors” (OPPE). It
is assumed that random phase errors that exist in the phase shifters can be modeled as
stationary processes of zero mean and equal variance and are not correlated with each
other.

Let 8,1=1, 2, ..., L represent the phase error in the Ith phase shifter. By assumption,

gs]=0, 1=12,..,L (2.7.47)
and
E[3,3,] = EP ;ftlhermse k=12, .., L (2.7.48)

Let &, 1=1,2, ..., L represent the phase delays of the actual phase shifters. Then
a, =a, +6 I =1,2,..,L (2.7.49)
where a, 1 =1, 2, ..., L are the phase delays of error-free phase shifters, and are given by

(2.6.29).
Let a diagonal matrix ® be defined as

o, =exp(ja,), 1=1,2, ..., L (2.7.50)

It follows from (2.7.43) that an expression for the mean output power of the optimal
beamformer using phase shifters is given by

P =E[y(t)y*(t)]
= &ch{fE[x(t)xH(t)] O, (2.7.51)
= &chOHRan&

Similarly, the mean signal power, interference power, and uncorrelated noise power,
respectively, are given by

= WHOHR O W (2.7.52)
P = WHIOHR @ W (2.7.53)
and
P =a2wh
=o’B

(2.7.54)

where f% is defined by (2.4.11). The last step in (2.7.54) follows from using (2.7.46).
Note that the mean output uncorrelated noise power given by (2.7.54) is not a function
of phase angles and is not affected by the random errors in the phase shifters.
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The effect of random phase errors on the output signal power and output interference
power is now examined. Substituting @ for @ in (2.7.52) and (2.7.53) and taking expec-
tation over random phase errors, expressions for the mean output signal power f’s and
interference power f’l of the OPPE follow:

by = W 0"R 0] w

2.7.55
= pS&HE[mHsOsqun]& @75

and
b = ‘&/HE[anRan]‘&z (2.7.56)

2.7.3.2  Signal Suppression
Rewrite (2.7.55) in the following form:

L
Igs =, Z &;‘E[mfl S, s;kmkk]&k (2.7.57)
Substituting for ® and Sy in (2.7.57), after rearrangement,

hen o6 )

L L (2.7.58)
=Ps Z ‘&’T‘X’kE[exp‘J‘(al - 5k)] *Ps Z ‘Q’T‘&'k
| /#-k | ’=k
Using the expansion
z¢ 7
exp(z)=1+z ta (2.7.59)
the first term on the RHS of (2.7.58) becomes
L
oy WihuElenp=i(8 -]

1%k

(2.7.60)

2! 3!

:pSZ&T&kEé-ﬁ(ék _6|)_(6k_6l)2 _j(q(_ §)3 o E

Assuming that the contribution of the higher-order terms is negligibly small, using (2.7.47)
and (2.7.48), (2.7.60) results in
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p. Z &T&kE[l +i(5, -3 )] =pe Z &T&k(l - )
=ps(1-0?) Z o, - ps(1- 02)Z b e
= ps(L —oz)&HuT& -ps(1-0%)B

Noting that the second term on the RHS of (2.7.58) is pg fﬁ, and the fact thatw" 1=1, (2.7.58)
and (2.7.61) yield

Ik’S =ps —PsO° (1 —B) (2.7.62)
Note that in the absence of directional interferences f3 =1/L, (2.7.62) becomes

L-1

I("S =ps —Ps (2.7.63)

Thus, the output signal power of OPPE is suppressed. The suppression of the output
signal power is proportional to the input signal power and random error variance. In the
presence of directional interference [ increases and thus the reduction in the signal power
is less than otherwise. In other words, signal suppression is maximum in the absence of
directional interference, and is given by the second term on the RHS of (2.7.63).

2.7.3.3 Residual Interference Power
Rewrite (2.7.56) in the following form:

IQI = Z&fE[qa;lRHkank]&k (2.7.64)
Using (2.6.32), (2.7.49), and (2.7.50) in (2.7.64),
Ig Z‘g"*q)on 1 ® Okk‘gv E[exp 6 -9 ))]

Z‘g" or Ry @ Okk‘gv E[exp 6 _6))] (2.7.65)
Z‘g" o Ry ® Okk‘g\’ E[exp 5 _5))]

Noting that the diagonal entries of R; are the sum of all directional interference power
py the first term in the RHS of (2.7.65) reduces to pIB Following steps (2.7.59) to (2.7.61),
the second term in the RHS of (2.7.65) becomes (1 - 0)[wHQR ¢gw —p B]. Thus,
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b=(1- oz)[&ang*quno& " Gzplf%] (2.7.66)
Substituting for w from (2.7.46) in (2.7.66), it follows that
B, =5, +0%(pp, -7 (2.7.67)

where py is the total power of all directional interferences at the input of the processor and P
is the residual interference power of the optimal processor given by (2.4.18).

2.7.3.4 Array Gain

In this section, the effect of random phase errors on the array gain of OPPE is examined.
Let SNR, be the output SNR of OPPE. Thus,

SISIRO = % (2.7.68)
N
where
b =D +P (2.7.69)

is the total mean output noise power of OPPE.
Since the uncorrelated mean output noise power is not affected by the random phase
errors, it follows from (2.7.54) that

(2.7.70)

Substituting from (2.7.70) and (2.7.67) in (2.7.69), using (2.4.12) and (2.4.35), after manip-
ulation,

b, =p,

1+ oz(faé —1)] (2.7.71)

where G is the array gain of the optimal processor.
From (2.7.62), (2.7.68), and (2.7.71) it follows that

(2.7.72)

é =G 1+ 02(@ _1) (2.7.73)
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TABLE 2.4

Comparison of Steering Vector Errors and Phase Shifter Errors *

Type of Error Phase-Shifter Error  Steering-Vector Error
Normalized output ol "
signal power 1-o (1 B) 1+op
Normalized total of, an )
output noise power 1o (1 - G) 1+o.x
_2[1_qn N
1-o (1 B) 1+0 SZB

Normalized array gain !
1—02(1—[3 1+o]K

*f: Ratio of the uncorrelated noise at the output to the input of the

optimal processor; G: array gain of the optimal processor; 62 variance
of the additive random phase shifter errors; 02: variance of the additive

. Tr(R})
random steering vector errors, K = 7————.
(SO RN SO )

Let

& =G

(2.7.74)

0=0,

and

&, =6

2

(2.7.75)

0=0,

A simple algebraic manipulation using (2.7.73) to (2.7.75) shows that for o, > oy,

G, <&, (2.7.76)

Thus, the array gain of the optimal processor with random phase errors is a monotonically
decreasing function of the error variance.

2.7.3.5 Comparison with SVE

Now, a comparison between the effect of the random phase shifter errors and the effect
of random SVE on optimal processor performance is made. SVE is discussed in Section 2.7.2.

Table 2.4 compares results. For purposes of the comparison, the results in both cases are
normalized with corresponding error-free values and thus are referred to as normalized.
The mean output signal power decreases with the increase in variance of phase shifter
error if B < 1, whereas in the case of SVE it is a monotonically increasing function of the
variance of the errors. Note that for white noise only, B < 1/L. The total mean output noise
power is a monotonically increasing function of SVE variance, whereas it decreases with
the increase in variance of the phase-shifter error if BG < 1. The array gains in both the
cases are monotonically decreasing functions of the variance of random errors.

2.7.4 Phase Quantization Errors

In this section, a special case of random error, namely the phase quantisation error, which
arises in digital phase shifters, is considered. In a p-bit phase shifter, the minimum value
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of phase that can be changed is 211/2P. Thus, it is assumed that the error which exists in
a p-bit digital phase shifter is uniformly distributed between —11/2P and 11/2P.

For a uniformly distributed random variable x in the interval (-C, C), it can easily be
verified that

E[Xz] < (2.7.77)

Substituting for C = 1/2P in (2.7.77), the variance 0} of the error in a p-bit phase shifter,
is given by

(2.7.78)

Substituting o, for 0 in expressions for the mean output signal power, mean output
noise power, output SNR, and the array gain, the following expressions for these quantities
are obtained as a function of the variance of the phase quantization error:

I(’s = ps[l —05(1 —fi)] (2.7.79)
I(*‘N =P|1 —05(1 —fzé)] (2.7.80)

(2.7.81)

and

(2.7.82)

2.7.5 Other Errors

Uncertainty about the position of an array element causes degradation in the array per-
formance in general [Gof87, Kea80, She87, Ram80, Gil55], and particularly when the array
beam pattern is determined by constrained beamforming. As discussed previously, ele-
ment position uncertainty causes SVE, which in turn leads to a lower array gain. The effect
of position uncertainty on the beam pattern is to create a background beam pattern similar
to that of a single element, in addition to the normal pattern of the array [Gil55]. A general
discussion on the effect of various errors on the array pattern is provided in [Ste76].

A calibration process is normally used to determine the position of an antenna element
in an array. It requires auxiliary sources in known locations [Dor80]. A procedure that
does not require the location of these sources is described in [Roc87, Roc87a].

The element failure tends to cause an increase in side levels and the weights estimated
for the full array no longer remain optimal [She87]. This requires recalculation of the
optimal weight with the known failed elements taken into account [She87, Ram80].
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The effect of perturbation in the medium, which causes the wave front to deviate from
the plane wave propagation assumption, and related topics are found in [Vur79, Hin80,
Ste82]. The effect of a finite number of samples used in weight estimation is considered
in [Bor80, Ber86, Rag92] and how bandwidth affects narrowband beamformer performance
are discussed in [God86a, May79]. Effects of amplitude and phase errors on a mobile
satellite communication system using a spherical array employing digital beamforming
has also been studied [Chu92].

2.7.6 Robust Beamforming

The perturbation of many array parameters from ideal conditions under which the theo-
retical system performance is predicted, causes degradation in system performance by
reducing the array gain and altering the beam pattern. Various schemes have been pro-
posed to overcome these problems and to enhance array system performance operating
under nonideal conditions [God87, Cox87, Eva82, Kim92, You93, Er85, Er93, Er93a, Er94,
Tak86]. Many of these schemes impose various kinds of constraints on the beam pattern
to alleviate the problem caused by parameter perturbation. A survey of robust signal-
processing techniques in general is conducted in [Kas85]. It contains an excellent reference
list and discusses various issues concerning robustness.
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Notation and Abbreviations

E[.] Expectation operator

1 vector of ones

()H Hermitian transposition of vector or matrix (.)
)T Transposition of vector or matrix (.)
A Matrix of steering vectors

B Matrix prefilter

c Speed of propagation

CIB conventional interference beamformer
d element spacing

ESP element space processor

fy carrier frequency

G array gain of optimal beamformer
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array gain of optimal beamformer with WVE
array gain of NAMI beamformer with SVE
array gain of SPNMI processor with SVE
array gain of OPPE

improved interference beamformer

number of elements in array

mean square error

minimum mean square error

number of directional sources

complex modulating function of kth source
complex modulating function of signal source
complex modulating function of interference source
noise alone matrix inverse

random noise on Ith antenna

signal vector due to random noise
orthogonal interference beamformer

optimal processor with phase errors
postbeamformer interference canceler

power of kth source

power of interference source

power of signal source

total noise at input

mean output power for given w

mean output power of optimal beamformer

mean output power of optimal beamformer when known look direction is
in error

mean output power of optimal beam-space processor

mean output power of optimal PIC processor

mean output signal power

mean output signal power of optimal beamformer

mean output signal power of optimal beamformer in presence of WVE
mean output signal power of NAMI processor in presence of SVE
mean output signal power of SPNMI processor in presence of SVE
mean output signal power of OPPE

mean output signal power of beam-space processor for given w

mean output signal power of optimal PIC processor with weight W
mean output interference power

mean output interference power of optimal beamformer

mean output interference power of OPPE

mean output interference power of optimal PIC processor with weight w
mean output uncorrelated noise power



mean output uncorrelated noise power of optimal beamformer

1K
P mean output uncorrelated noise power of OPPE

P, (W) mean output uncorrelated noise power of optimal PIC processor with
weight W

Py mean output noise power

15N mean output noise power of optimal beamformer

Py mean output noise power of optimal processor in presence of WVE

B mean output noise power of NAMI processor in presence of SVE

mean output noise power of SPNMI processor in presence of SVE
mean output noise power of OPPE

N

Pn(w) mean output noise power of beam-space processor for given w
Pn(W) mean output noise power of optimal PIC processor with weight W
Py mean power of main beam

Q matrix of eigenvectors

q(t) outputs of M -1 auxiliary beams

q(t) output of interference beam

r(t) reference signal

I position vector of 1th antenna

R array correlation matrix

Ry noise-only array correlation matrix

R, random noise-only array correlation matrix

Ry interference-only array correlation matrix

RMS root mean square

Rg signal-only array correlation matrix

Ry array correlation matrix used in tamed array

Raq correlation matrix of auxiliary beams

R array correlation matrix after steering delays

R actual array correlation matrix when known look direction is in error

SPNMI  signal-plus-noise matrix inverse

SNR signal-to-noise ratio

SNR(W) signal-to-noise ratio of optimal beam-space processor
SNR(W)  signal-to-noise ratio of optimal PIC processor with weight w
SNR,  SNR of OPPE

SVE steering vector error

s(t) signal induces on reference element

s(t—-T)  signal delayed by T

S source correlation matrix

Sy steering vector associated with kth source

Sy steering vector associated with known look direction

S steering vector associated with actual look direction when known look di-

rection is in error
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steering vector associated with known look direction in presence of SVE
steering vector associated with interference

steering vector associated with direction (¢,0)

delay time

Trace of [-]

weight vector of interference beam of PIC

weight vector of interference beam of PIC with OIB

eigenvector associated with 1th eigenvalue

main beam weight vector

unit vector in direction (¢,6,)

weight vector error

weight of optimal PIC

weight of optimal PIC using CIB

weight of optimal PIC using IIB

weight of optimal PIC using OIB

weight of optimal PIC using OIB when known look direction is in error
weights of conventional beamformer

weight on Ith antenna

weight vector

weights of optimal beamformer

weights of optimal beamformer when known look direction is in error
weights of optimal beamformer in presence of weight errors
weights of NAMI processor in presence of SVE

weights of SPNMI processor in presence of SVE

weights of optimal beamformer using phase shifters to steer array
optimal weights of beamformer using reference signal

signal induced on Ith antenna

element signal vector

element signal vector after presteering delay

element signal vector due to desired signal source

element signal vector due to interference source

array output

signal component in array output

interference component in array output

random noise component in array output

response of a beamformer in (¢,6)

correlation between reference signal and x(t)

correlation between outputs of auxiliary beams and main beam

phase delays on lth channel to steer array in look direction, phase delays of
error-free phase shifter on Ith channel

phase delays of actual phase shifter (including error) on lth channel



SNR of optimal beamformer

w output SNR of optimal beamformer with WVE
output SNR of NAMI processor with SVE
output SNR of SPNMI processor with SVE

Q‘-mQ Q o

a3 control variable used in tamed arrays

o SNR at output of interference beam of PIC processor

B ratio of uncorrelated noise power at out of optimal beamformer to input
uncorrelated noise power

B normalized dot product of Sy and S;

Bp phase of parameter 3

Bo Euclidian norm of U,

Yo normalized power response of interference beam in interference direction

) phase error in Ith phase shifter

£(t) error signal

£ ratio of uncorrelated noise to interference power at input of beamformer

&(w) MSE for given w

2 minimum MSE

K scalar parameter defined by (2.7.20)

w(t) output of main beam

n() output of interference beam

Mo scalar constant

p scalar parameter function of array geometry, 65 and 6;

r vector of random errors in weights

I's vector of random errors in steering vectors

A diagonal matrix of eigenvalues

A Ith eigenvalue of array correlation matrix

(o3 power of random noise induced on element

o2 variance of weight vector errors

(o variance of steering vector errors

o2 variance of phase shifter errors

o} variance of phase error in p-bit phase shifter

(9,61 direction of kth source using three-dimensional notation

(0,00 look direction using three-dimensional notation

(CH direction of kth source using two-dimensional notation

6; direction of interference source using two-dimensional notation

6 direction of signal source using two-dimensional notation

T,(9,8) propagation delay on Ith antenna from source in (¢,,0,)

T,(8y) propagation delay on Ith antenna from source in (8)

P, diagonal matrix of error-free phase delays

P diagonal matrix of phase delays (including errors)
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The weights of an element-space antenna array processor that has a unity response in the
look direction and maximizes the output SNR in the absence of errors are given by

(3.1)

where Ry is the array correlation matrix with no signal present, and is referred to as the
noise-only array correlation matrix, and S is the steering vector associated with the look
direction. When the noise-only array correlation matrix is not available, the array correlation
matrix R is used to calculate the optimal weights. For this case the expression becomes

R'S,

W= 0
SHR'S,

(3.2)

The weights of the processor that minimizes the mean square error (MSE) between the
array output and a reference signal are given by

Wy =R z (3.3)
where z denotes the correlation between the reference signal and the array signals vector x(t).

In practice, neither the array correlation matrix nor the noise-alone matrix is available
to calculate optimal weights of the array. Thus, the weights are adjusted by some other
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means using the available information derived from the array output, array signals, and
so on to make an estimate of the optimal weights. There are many such schemes and these
are normally referred to adaptive algorithms. Some are described in this chapter, and their
characteristics such as the speed of adaption, mean and variance of estimated weights,
and parameters affecting these characteristics are discussed. Both element space and beam
space processors are considered.

3.1 Sample Matrix Inversion Algorithm

This algorithm estimates array weights by replacing correlation matrix R by its estimate
[God97]. An unbiased estimate of R using N samples of the array signals may be obtained
using a simple averaging scheme as follows:

R(N) = ;INZ_jx(n) X" (n) (3.1.1)

where IAQ(N) denotes the estimated array correlation matrix using N samples, and x(n)
denotes the array signal sample also known as the array snapshot at the nth instant of
time with t replaced by nT with T denoting the sampling time. The sampling time T has
been omitted for ease of notation.

Let R(n) denote the estimate of array correlation matrix and w(n) denote the array
weights at the nth instant of time. The estimate of R may be updated when the new
samples arrive using

A

nR(n)+x(n+1) x"(n+1)

R(n+1)= 3.1.2
(n+1) e (312)
and a new estimate of the weights w(n + 1) at time instant n + 1 may be made.
Let P(n) denote the output power at the nth instant of time given by
P(n) = w"(n)x(n) x"(n)w(n) (3.1.3)

When N samples are used to estimate the array correlation matrix and the processor
has K degree of freedom the mean output power is given by [Van91]

)]:N—KA

E[P(n P (3.1.4)

where P denotes the mean output power of the processor with the optimal weights, that is,

P =w"Rw (3.1.5)

The factor (N — K)/N represents the loss due to estimate of R and determines the conver-
gence behavior of the mean output power.

It should be noted that as the number of samples grows, the matrix update approaches
its true value and thus the estimated weights approaches optimal weights, that is, asn -
®, R(n) -» R and w(n) - W or Wy, as the case may be.
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The expression of optimal weights requires the inverse of the array correlation matrix,
and this process of estimating R and then its inverse may be combined to update the
inverse of the array correlation matrix from array signal samples using the Matrix Inversion
Lemma as follows:

_R7(n-1) x(n) x"(n) R"(n - 1)
1+x"(n) R™(n -1) x(n)

(3.1.6)
with

R7(0)= sil, g, >0 (3.1.7)

0

This scheme of estimating weights using the inverse update is referred to as the recursive
least squares (RLS) algorithm, which is further discussed in Section 3.9. More discussion
on the simple matrix inversion (SMI) algorithm is found in [Ree74, Van91, Hor79].

Application of SMI to estimate the weights of an array to operate in mobile communi-
cation systems has been considered in many studies [Win94, Geb95, Lin95, Vau88, Has93,
Pas96]. One of these studies [Lin95] considers beamforming for GSM signals using a
variable reference signal as available during the symbol interval of the time-division
multiple access (TDMA) system. Applications discussed include vehicular mobile com-
munications [Vau88], reducing delay spread in indoor radio channels [Pas96], and mobile
satellite communication systems [Geb95].

3.2 Unconstrained Least Mean Squares Algorithm

Application of least mean squares (LMS) algorithm to estimate optimal weights of an
array is widespread and its study has been of considerable interest for some time. The
algorithm is referred to as the constrained LMS algorithm when the weights are subjected
to constraints at each iteration, whereas it is referred to as the unconstrained LMS algo-
rithm when weights are not constrained at each iteration. The latter is applicable mainly
when weights are updated using reference signals and no knowledge of the direction of
the signal is utilized, as is the case for the constrained case.

The algorithm updates the weights at each iteration by estimating the gradient of the
quadratic MSE surface, and then moving the weights in the negative direction of the
gradient by a small amount. The constant that determines this amount is referred to as
the step size. When this step size is small enough, the process leads these estimated weights
to the optimal weights. The convergence and transient behavior of these weights along
with their covariance characterize the LMS algorithm, and the way the step size and the
process of gradient estimation affect these parameters are of great practical importance.
These and other issues are discussed in detail in the following.

A real-time unconstrained LMS algorithm for determining optimal weight Wy of the
system using the reference signal has been studied by many authors [Wid67, Gri69, Wid76,
Wid76a, Hor81, 11t85, Cla87, Feu85, Gar86, Bol87, Fol88, Sol89, Jag90, Sol92, God97] and
is given by

w(n + 1) = w(n) - ug(w(n)) (3.2.1)

where w(n + 1) denotes the new weights computed at the (n + 1)th iteration, [ is a positive
scalar (gradient step size) that controls the convergence characteristic of the algorithm
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(i.e., how fast and how close the estimated weights approach the optimal weights), and
g(w(n)) is an unbiased estimate of the MSE gradient. For a given w(n), the MSE is given
by (2.5.1), that is,

E(w(n)) = E[‘r(n + 1)‘2

The MSE gradient at the nth iteration is obtained by differentiating (3.2.2) with respect
to w, yielding

+wh (n)Rw(n) -wh (n)z - sz(n) (3.2.2)

0, &(w) =2R w(n)-2z (3.2.3)

w=w(n)
Note that at the (n + 1)th iteration, the array is operating with weights w(n) computed at

the previous iteration; however, the array signal vector is x(n + 1), the reference signal
sample is r(n + 1), and the array output

y(w(n)) =w"(n)x(n+1) (3.2.4)

3.2.1 Gradient Estimate

In its standard form, the LMS algorithm uses an estimate of the gradient by replacing R
and z by their noisy estimates available at the (n + 1)th iteration, leading to

g(w(n)) = 2x(r1 +1) xH (n + 1) w(n) - 2x(r1 +1) r* (n + 1) (3.2.5)
Since the error £(w(n)) between the array output and the reference signal is given by

S(w(n)) =r(n+1)-w"(n)x(n+1) (3.2.6)

it follows from (3.2.5) that
g(w(n)) = 2x(n +1) &* (w(n)) (3.27)
Thus, the estimated gradient is a product of the error between the array output and the
reference signal and the array signals after the nth iteration. Taking the conditional expec-

tation on both sides of (3.2.5), it can easily be established that the mean of the gradient
estimate for a given w(n) becomes

g(w(n)) =2Rw(n) -2z (32.8)

where g{w(n)) denotes the mean of the gradient estimate for a given w(n). From (3.2.3)
and (3.2.8) it follows that the gradient estimate is unbiased.

3.2.2 Covariance of Gradient

A particular characteristic of the gradient estimate, which is important in determining the
performance of the algorithm, is the covariance of the gradient estimate used. To obtain
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results on the covariance of the gradient estimate given by (3.2.5), making an additional
Gaussian assumption about the sequence {x(k)} is necessary. Thus, it is assumed that {x(k)}
is an independent indentically distributed (i.i.d.) complex Gaussian sequence.

The following result is useful for the analysis to obtain a fourth-order moment of
complex variables. The result, based on the Gaussian moment—factoring theorem, states
that [Ree62] when X;, X, X3, and x4 are zero mean, complex jointly Gaussian random
variables, the following relationship holds:

[x1x2x3x4] E[ ] E{X3XZ] + E[xle] E{ x;xa] (3.2.9)

Now consider the covariance of the gradient estimate given by (3.2.5). By definition, the
covariance of the gradient for a given w(n) is given by

=Edg(w(n)) - g(w(n)} {g(w(n) -g(w(n)} "5
= H[g(w(n)e"!(w(n)]] - E[g n))g" (w(o)

- E[g(w{n))g" (w(n)] - E[g(w(n)g" (w(n)
= E[g(w(n))g" (w(n))] -~ g(w(n))g" (w(n))

The second term on the RHS of (3.2.10) is obtained by taking the outer product of (3.2.8),
yielding

(3.2.10)

g(w(n))g"(w(n)) = 4Rw(n)w" (n)R - 4Rw(n)z" - 4zw" (n)R +4zz"  (3.2.11)

To evaluate the first term on the RHS of (3.2.10), take the outer product of (3.2.5):

g(w(n))gH (w(n)) = 4{x(n +1) x"(n +1) w(n)w" (n)x(n +1)x"(n+1)

-x(n+1) x"(n+1) w(n)r(n+1)x"(n+1)

(3.2.12)

(
—x(n+1) r*(n+1)w n)x n+ ) (r1+1)

(
+x(n + 1) r* (n + l)r(n + 1)xH (n + 1)}
Taking the conditional expectation on both sides one obtains, for a given w(n),
E[g(w(n))gH(w(n))] = 4E[x(r1 + 1) xH(n + 1) w(n)wH (n)x(n + l)xH(n + 1)]
- 4E[x(n + 1) xH(n + 1) w(n)r(n + 1)xH(r1 + 1)]
(3.2.13)
- 4E[x(n + 1) r* (n + 1)wH (n)x(n + 1) xH(n + 1)]
+4E[x(n +1) r* (n+1)r(n+1)x"(n+ 1)]

Consider the fourth term on the RHS of (3.2.13), and define a matrix:
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A =E[x(n+1) r* (n+1)r(n +1)x"(n +1) (3.2.14)
Tt follows from (3.2.14) and (3.2.9) that
Ay =Hx(n+1) r* (n+ )r(n + 1)x; (0 +1)
=E[x,(n +1) r* (n + D] E[r(n +1)x; (n +1) (3.2.15)
¥ E[xi(n +1) (n+ 1)] E[r* (n +1)r(n + 1)
This along with (2.5.2) implies that

A=zz" +Rp, (3.2.16)

where
p, =E[r* (n)r(n]] (3.2.17)

is the mean power of the reference signal.
Similarly evaluating the other terms on the RHS of (3.2.13),

E[g(w(n))gH (w(n))] = 4w" (n)Rw(n)R +4Rw(n)w" (n)R

- 4Rw(n)z" - 4Rz"w(n)

(3.2.18)
-4zw" (n)R - 4Rw" (n)z
+4zz" + 4Rp,
Subtracting (3.2.11) from (3.2.18) and using (3.2.2),
\A (w(n)) = 4R{ w"(n)Rw(n) - z"w(n) - w"(n)z + pr}
(3.2.19)

e

where &(w(n)) is the MSE given by (3.2.2).

3.2.3 Convergence of Weight Vector

In this section, it is shown that the mean value of the weights estimated by (3.2.1) using
the gradient estimate given by (3.2.5) approaches the optimal weights in the limit as the
number of iterations grows large. For this discussion, it is assumed that the successive
array signal samples are uncorrelated. This is usually achieved by having a sufficiently
long iteration cycle of the algorithm. Substituting from (3.2.5) in (3.2.1), it follows that

w(n + 1) = w(n) - 2ux(n +1) xH (n + 1) w(n) + Zux(n +1) r*(n + 1) (3.2.20)
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Equation (3.2.20) shows that w(n) is only a function of x(0), x(1), ..., x(n). This along
with the assumption that the successive array samples are uncorrelated implies that w(n)
and x(n + 1) are uncorrelated. Hence, taking the expected value on both sides of (3.2.20),

w{n +1) = W(n) - 2uE{x(n +1) " (n +1)] W(n) + 2uE[x(n +1) "(n +1)
=w(n) - 2pR w(n)+2pz (3.2.21)
=[1-2uR]w(n) +2uz
where
= E[w(n)] (3.2.22)
Define a mean error vector v(n) as
v(n) =w(n) - Wy, (3.2.23)
where Wy is the optimal weight given by (3.3), that is,

~

Wye =Rz (3.2.24)

It follows from (3.2.23) that w(n) is given by

w(n) =v(n) + Wy, (3.2.25)
Substituting for w(n) in (3.2.21),
v(n+1) =[1-2pR]v(n) - 2HRW ;. +2pz (3.2.26)
Noting from (3.2.24) that
Zz=RwW (3.2.27)
it follows from (3.2.26) that
v(n+1)=[I-2uR]v(n
(3.2.28)

=[1- 2pR]“”v(0)

The behavior of the RHS of (3.2.28) can be explained better by converting it in diagonal
form, which can be done by using the eigenvalue decomposition of R given by (2.1.29).
In the following, (2.1.29) is rewritten:

R = QAQ" (3.2.29)

where A is a diagonal matrix of the eigenvalues of R and Q is given by (2.1.31). It is a
matrix, with columns being the eigenvectors of R.
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Substituting for R in (3.2.28),
v(n+1) =[1-2007Q"]""¥(0) (3.2.30)
Equation (3.2.30) may be rewritten in the following form, using indexing;:
v(n+1) = Q[I -2pA]"" Q"¥(0) (3.2.31)
For n = 0, it follows from (3.2.30) using QQ" =1 that

v(1) =[1-21QA Q"] ¥(0)
=Q[I-2uA| Q"v(0)

(3.2.32)

Thus, (3.2.31) holds for n = 0. For n = 1, it follows from (3.2.30) using QHQ = I that

v(2) =[1-2uQA Q"] ¥(0)
=[1-20QAQ" ~2pQA Q™ +41°QA Q™ QA QY] ¥(0)
(3.2.33)
= Q[I —2uA —2pA +4u2/\2]QH v(0)
=Q[I-2pA]* Q" v(0)

Thus, (3.2.31) holds for n = 1. If (3.2.31) holds for any n, that is,
v(n) = Q[I -2pA]" Q" v(0) (3.2.34)
then
v(n+1)=[1-2uQA Q""" ¥(0)
= [1 -2uQA QH]“ [1 —21QA QH] v(0)
=Q[I-2pA]" Q" [1 —21QA QH] v(0)
- {Q[I —2uA]" Q" —2pQT - 2pA]" Q* Q/\QH} (0) (3.2.35)
={Q[1-201]" " - 2uq[1-201]" AQ"} ¥(0)
={Q[1-200]"[1-217] @} ¥(0)

= Q[ -2pA]"" Q" ¥(0)
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and it holds for n + 1. Thus, by indexing it is proved that (3.2.30) may be rewritten in the
form of (3.2.31). The quantity in the square bracket on the RHS of (3.2.31) is a diagonal
matrix with each entry (1 - 2pA;), with A;, i =1, ..., L being the L eigenvalues of R.

For g < 1/Ayuy, with A, denoting the maximum eigenvalue of R, the magnitude of
each diagonal element is less than 1, that is,

1-2p\ | <10 (3.2.36)

Hence, as the iteration number increases, each diagonal element of the matrix in the square
bracket diminishes, yielding

lim v(n)=0 (3.2.37)
This along with (3.2.23) implies that
lim w(n) = w,q; (3.2.38)

Thus, for Y4 < 1/A 4, the algorithm is stable and the mean value of the estimated weights
converges to the optimal weights. As the sum of all eigenvalues of R equals its trace, the
sum of its diagonal elements, the gradient step size p can be selected in terms of measurable
quantities using P < 1/Tr(R), with Tr(R) denoting the trace of R. It should be noted that
each diagonal element of R is equal to the average power measured on the corresponding
element of the array. Thus, for an array of identical elements, the trace of R equals the
power measured on any one element times the number of elements in the array.

3.2.4 Convergence Speed

The convergence speed of the algorithm refers to the speed by which the mean of the
estimated weights (ensemble average of many trials) approaches the optimal weights, and
is normally characterized by L trajectories along L eigenvectors of R. To obtain the conver-
gence time constant along an eigenvector of R, consider the initial mean error vector v(0)
and express it as a linear combination of L eigenvectors of R, that is,

L

v(0) = 2 a,U, (3.2.39)

where a;,i=1, 2, ..., L are scalars and U, i = 1, 2, ..., L are eigenvectors corresponding
to L eigenvalues of R.
Substituting from (3.2.39) in (3.2.31) yields

L
¥(n+1)=Q[I-2pA]"" Q" Z a.U, (3.2.40)

1=

Since eigenvectors of R are orthogonal, (3.2.40) can be expressed as
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L

v(n+1)= Z a,Q[I -2uA]"" Q'Y
(3.2.41)

L

= zo(i[1—2p>\i]“”Ui

The convergence of the mean weight vector to the optimal weight vector along the ith
eigenvector is therefore geometric, with geometric ratio 1 —2pA;. If an exponential envelope
of the time constant T; is fitted to the geometric sequence of (3.2.41), then

4

where In denotes the natural logarithm and the unit of time is assumed to be one iteration.
The negative sign in (3.2.42) appears due to the fact that the quantity in parentheses is
less than unity and the logarithm of that is a negative quantity.

Note that if

2uA, <1 (3.2.43)
the time constant of the ith trajectory may be approximated to

1
T =
bO2pA,

(3.2.44)

Thus, these time constants are functions of the eigenvalues of the array correlation matrix,
the smallest one dependent on A, which normally corresponds to the strongest source
and the largest one controlled by the smallest eigenvalue that corresponds to the weakest
source or the background noise. Therefore, the larger the eigenvalue spread, the longer it
takes for the algorithm to converge. In terms of interference rejection capability, this means
canceling the strongest source first and the weakest last.

The convergence speed of an algorithm is an important property and its importance for
mobile communications is highlighted in [Nag94] by discussing how the LMS algorithm
does not perform as well as some other algorithms due to its slow convergence speed in
situations of fast-changing signal characteristics. Time availability for an algorithm to
converge in mobile communication systems not only depends on the system design, which
dictates duration of the user signal present such as the user slot duration in a TDMA
system, it is also affected by the speed of mobiles, which changes the rate at which a signal
fades. For example, a mobile on foot would cause the signal to fade at a rate of about
5 Hz, whereas it would be of the order of about 50 Hz for a vehicle mobile, implying that
an algorithm needs to converge faster in a system being used by vehicle mobiles compared
to the one used in a handheld portable [Win87]. Some of these issues for the IS-54 system
are discussed in [Win94] where the convergence of the LMS and the SMI algorithms in
mobile communication situations is compared.

Even when the mean of the estimated weights converges to optimal weights, they have
finite covariance, that is, their covariance matrix is not identical to a matrix with all
elements equal to zero. This causes the average of the MSE not to converge to the minimum
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MSE (MMSE) and leads to excess MSE. Convergence of the weight covariance matrix and
the excess MSE is discussed in following sections.

3.2.5 Weight Covariance Matrix

The covariance matrix of the weights at the nth iteration is given by

Ky () = E|(w(o) = w5(m)(w(i) - (o))

=l ()] [l "0) G249
+E[W(r1)wH n ] - E[W n WH(n)]
= R, (n) - w(n)w"(n)
where expectation is unconditional and taken over w,
= E[w(n)] (3.2.46)
and
R, (n) = E[w(n)w" (n) (3.2.47)

In this section, a recursive relationship for the weight covariance matrix is derived. The
relationship is useful for understanding the transient behavior of the matrix.
It follows from (3.2.45) that

k,.n+1)=R,_ (n+1])-w(n+L)w"(n+1) (3.2.48)
and from (3.2.47) that
R, (n+1)=E[w(n +1)w"(n+1) (3.2.49)
Substituting from (3.2.1) in (3.2.49),
Ry (n+1)=R,,,,(n) + E[g(w(n))g" (w(n))]
(3.2.50)
- uE[g(w(n))wH (n)] - pE[w(n)gH (w(n))]

Taking unconditional expectation on both sides of (3.2.10), and rearranging, it follows
that

E[g(w(n))gH (w(n))] = E[Vg (w(n))] + E[g(w(n))gH (w(n))] (3.2.51)

where g(w(n)) is the mean value of the gradient estimate for a given w(n). An expression
for g(w(n)) is given by (3.2.8). From (3.2.8), taking the outer product of g(w(n)),
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Bg(w(n))g"(w ]E[ {2Rw(n) -2 {2Rw(n)-23 "

(3.2.52)
= 4{ RR,, (n)R +2zz" —Rw(n)z" - ZWHR}
From (3.2.5),
E[w(n)g" (w(n))| = 2R, (n)R ~2w(n)z" (3.2.53)
and
Bg(w(n))w" (n)] = 2RR,,,(n) 22" (n) (3.2.54)
From (3.2.50) to (3.2.54) it follows that
R (1) =R, () + W[V, (w(n)
+ 4u2{RRWW (n)R +zz" - RW(n)zH - zWHR} (3.2.55)

- 2u{ RR,,(n)-zw"(n)+R,, (n)R - W(n)zH}
Evaluation of (3.2.48) requires the outer product of w(n + 1). From (3.2.1) and (3.4.8),
w(n+1) =w(n)-2pR w(n)+2uz (3.2.56)
and thus
w(n+1) w'(n+1)=w(n)w"(n)
+4*{Rw(n)w" (n)R + zz" ~-Rw(n)z" -zw"(n)R  (3257)
- 2p{ W(n)WH (n)R + RW(H)WH (n) - W(n)zH —zw' (n)}

Subtracting (3.2.57) from (3.2.55) and using (3.2.48),

K, (n+1) =k, (n)+40°Rk, ()R -2p{Rk _ (n) +k, (n)R}
(3.2.58)
+ sz[Vg (w(n))]

Thus, at each iteration the weight covariance matrix depends on the mean value of the
gradient covariance used at the previous iteration. Equation (3.2.58) may be further sim-
plified by substituting for Vy(w(n)) from (3.2.19). Taking the expectation over w on both
sides of (3.2.19),

E[Vg(w ] 4RE[W n)Rw(n) - z"w(n) - w"(n)z +pr]

(3.2.59)
—4R{E[w n)Rw(n )] z"w(n)-w"(n)z +Pr}
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Using

E[wH (n)Rw(n)] = E[Tr[RW(n)WH (n)]]

=TrRR,,,, (n)] (3.2.60)

= Tr[Rkww n)] +w'(n)Rw(n)
(3.2.59) becomes
B[V, (w(n))| = 4RTqRK,, (n)] + 4RE(w(n)) (3.2.61)
where
&(W(n)) = w" (n)Rw(n) - z"'w(n) -w"(n)z + p, (3.2.62)

and Tr[.] denotes the trace of [.].
Substituting (3.2.61) in (3.2.58),
K, (n+1) =k, (n) +40°Rk, (n)R +4p°RTe Rk, (n)]
(3.2.63)
~2p{Rk,, () + K, (W) +124RE((n)

Thus, at the (n + 1)st iteration the weight covariance matrix is a function of &(w(n)).

3.2.6 Transient Behavior of Weight Covariance Matrix

In this section, the transient behavior of the weight covariance matrix is studied by
deriving an expression for k,,(n) and its limit as n - . Define

2(n)=Q"k,, (n)Q (3.2.64)
By pre- and postmultiplying by Qf and Q on both sides of (3.2.63), and using
QQ" =1 (3.2.65)
it follows that
Q"k,, (n+1)Q=Q"k,, (n)Q +41*Q"RQQ"k,,, (n)QQ"RQ
+4’Q"RQT{Q"RQQ"K,,, (n)Q)]
(3.2.66)
-2{Q"RQQ"k,,, (n)Q +Q"k,,, (1)QQ"RY
+n24Q"RQE(W(n))
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Using QPRQ = A and (3.2.64) in (3.2.66), the following matrix difference equation is
derived:

3(n+1) = (n) + 42 A (n) +4u2/\Tr[/\Z(n)] (3.2.67)
— 4pAZ(n) + P2 4NE(W(n)) )

Now it is shown by induction that } (n), n =2 0 is a diagonal matrix. Consider n = 0. Since
the initial weight vector is w(0), it follows from (3.2.45) to (3.2.47) and (3.2.64) that

2(0)=0 (3.2.68)
From (3.2.67) and (3.2.68),
5(1) = p24ng(w(0)) (3.2.69)

As A is a diagonal matrix, it follows from (3.2.69) that Y (1) is a diagonal matrix. Thus,
> (n) is diagonal for n = 0 and 1. If } (n) is diagonal for any n, then it follows from (3.2.67)
that it is diagonal for n + 1. Thus, Y (n), n = 0 is a diagonal matrix.

As Q is a unitary transformation, it follows that the diagonal elements of } (n) are the
eigenvalues of k,,(n). Let these be denoted by n,(n), 1 =1, ..., L. Defining

r=[A, A (3.2.70)
and
n(n)=[n,(n), ..., n, ()] (3.2.71)
to denote the eigenvalues of R and ¥ (), respectively,
Tt{AZ(n)] = A™n(n) (3.2.72)

Substituting (3.2.72) in (3.2.67), the vector difference equation for the eigenvalues of } (n)
is

n(n+1) ={1-4pA +412A7 +4p*AN"} (n) + 428 (W(n))A (3.2.73)
With
H = 4pA —4p*A? —4p>ANT (3.2.74)

equation (3.2.73) has the solution

n

n(n) ={1-H} "0(0) + 4p°A Z {1-H "g(W(n-i)) (3.2.75)

1=
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Since Q diagonalizes k,,(n), it follows that

k()= Z” (U, Ut

(3.2.76)

where U, 1=1, ..., L are the eigenvectors of R. Equation (3.2.76) describes the transient

behavior of the weight covariance matrix.

The next section shows that }linl AT n(n) exists under the conditions noted there. This,

along with the fact that 0 < A; < «[;, implies that }Iirrl n(n) exists. It then follows from

(3.2.73) and (3.2.74) that

lim n(n) = 4u2£H71)\

n - oo

o1 0O

n _u)\lg

- HE o U o

L A O g O

-u -0 1 O
1- A,

= HIH—W\LE

(3.2.77)

where € is the minimum MSE given by (2.5.6). This along with (3.2.76) implies that an

expression for the steady-state weight covariance matrix is given by

2 L

. _ HE 1 H
lim k = E UU
nl_)oo ww(n) L )\l 4 1- u)\l 1~

1- A
HZ 1-pA,

3.2.7 Excess Mean Square Error

From the expressions of MSE given by (2.5.1), it follows that for a given w(n),

E(w(n)) =& 4y (n)Rv(n)

(3.2.78)

(3.2.79)

where 2 is the minimum MSE, v(n) is the error vector at the nth iteration denoting the
difference between estimated weights w(n) and the optimal weights w, and vH(n)Rv(n) is

the excess MSE.

Taking the expected value over w on both sides of (3.2.79), the average value of the MSE

at the nth iteration is derived, that is,

¢(n)= £ +E[VH(n)Rv(n)]

where
&(n) = E[g (w(n))

and E[vF(n)Rv(n)] denotes average excess MSE at the nth iteration.
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Taking the limit as n — x yields the steady-state MSE, that is,

§(w) = lim € (n)

) (3.2.82)
=&+ li{r}o E[VH (n)RV(n)]

Note thatasn - o E[v(n)] - 0 but the average value of the excess MSE does not approach
zero, that is, 111inl E[vH(n)Rv(n)] # 0. Now let us discuss the meaning of this quantity.

Substituting for v(n) in (3.2.79),

E[vH (n)Rv(n)] = E[wH (n)Rw(n)] +w"(n)Rw(n)
(3.2.83)

-wh (n)RW(n

T
|
jasi
€}
3
=

Consider the mean output power of the processor for a given w, that is,
P(w(n)) =wh (n)Rw(n)

Taking the expectation over w, it gives the mean output power at the nth iteration P(n),
that is,

F(n) = E[P(w(n))]

(3.2.84)
= E[wH(n)Rw(n)]
This along with (3.2.83) yields
E[VH (n)Rv(n)] =P(n) +wW"(n)RW(n)
(3.2.85)
-w"(n)Rw(n) - w" (n)R¥(n)
that in the limit becomes
lim E[v"'(n)Rv(n)] = () - %" (n)Rw¥(n) (3.2.86)

Thus, the steady-state average excess MSE is the difference between the mean output
power of the processor in the limit P(x) and the mean output power of the optimal
processor, WH(n)Rw(n). It is the excess power contributed by the weight variance in the
steady state.

Next, an independent expression for the steady-state average excess MSE is derived.
Using (3.2.60) and the notation of the previous section, it follows that

E[WH (n)Rw(n)] = Tr[Rkww (n)] +w"(n)Rw(n)
(3.2.87)
= Ti{Q"RQQ"k,,, (n)Q] + W' (n)Rw(n)
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= Tr[/\Z(n)] +wh (n)RW(n)

(3.2.87)
= Nnn) + W' (n)Re¥(n)
Substituting from (3.2.87) in (3.2.83),
E[v"(n)Rv(n)| = A™(n) + v (n)R¥(n) (3.2.88)
Taking the limits on both sides, this becomes
lim E[v"(n)Rv(n)]| = lim A™n(n) (3.2.89)

It should be noted that (3.2.89) only holds in the limit. At the nth iteration, the average
excess MSE vH(n)Rv(n) is not equal to ATn(n). A relationship between the two quantities
is given by (3.2.88). Appendix 3.1 shows that

~ A
U -
lim)\T( —& 3.2.90
Jm ”‘ln)— L A (3.2.90)
1-p i
1-pA,

Thus, we have the following result for the steady-state average excess MSE, lim

E[vH(n)Rv(n)]. If 1 satisfies e
0<p< 3291
H . ( )
and
L
LUV
i< 32.92
Z (1_“)‘1) ( :
then

Euzl “)\

lim E[v (3.2.93)

_u21 HA,

3.2.8 Misadjustment

The difference between the weights estimated by the adaptive algorithm and optimal
weights is further characterized by the ratio of the average excess steady-state MSE and
the MMSE. It is referred to as the misadjustment [Wid66]. It is a dimensionless parameter
and measures the performance of the algorithm. The misadjustment is a kind of noise,
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and is caused by the use of the noisy estimate of the gradient. This noise is referred to as
the misadjustment noise.
Let M denote the misadjustment. Thus, by definition

Faa b

M = E(mé) - (3.2.94)

It follows from (3.2.94), (3.2.82), (3.2.93) that when the gradient is estimated by multiplying
the array signals with the error between the array output and the reference signal, and
the gradient step size selected such that (3.2.91) and (3.2.92) hold, then the misadjustment
My for the unconstrained LMS algorithm is given by

L )\i
HZ 1-pA,

1—pz 1 L
1= B u)\l

For a sufficiently small , this results in

M, = uTr[R] (3.2.96)

It follows from this expression that increasing [ increases the misadjustment noise. On
the other hand, an increase in | causes the algorithm to converge faster as discussed earlier.
Thus, the selection of the gradient step size requires satisfying conflicting demands of
reaching the vicinity of the solution point quicker but wandering around over a larger
region causing a bigger misadjustment and arriving near the solution point slowly with
the smaller movement in the weights at the end. The latter causes an additional problem,
particularly in nonstationary environments, say when interference is slowly moving,
where the optimal solution moves, causing slowly adapting estimated weights to lag
behind the optimal weights. This phenomenon is referred to as the weight vector lag.

Many schemes including variable step size have been suggested to overcome this prob-
lem [S0091, Pri91, Yas87, Eva93, Kwo92, Kwo92a, Har86, Che90]. Some of these are briefly
discussed.

The adaptive algorithm estimates the weights by minimizing the MSE. Thus, in schemes
where a variable step size is used, it reflects the value of the MSE at that iteration, going
up and down as the MSE goes up and down such that it stays between the maximum
permissible value for convergence and the minimum value based on the allowed misad-
justment. It may be truly variable or may be allowed to switch between a few preselected
values for the ease of implementation as well as by shifting by one bit left or right where
digital implementation is used. The step size may also be adjusted to reflect the change
in the direction of the error surface gradient at each iteration [Har86].

The optimal value of the step size at each step is suggested in [Yas87] such that it
minimizes the MSE at each iteration. This is a function of the value of the true gradient
at each iteration and the array correlation matrix. In practice, these may be replaced by
their instantaneous values, leading to a suboptimal value.

Instead of having a single step size for a whole weight vector, a variable step size can
be selected for each weight separately, leading to increased convergence of the algorithm
[Eva93]. The convergence speed of the algorithm may also be increased by adjusting
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weights such that interferences are canceled one at a time [K093, Ko93a], and by using a
scheme known as block processing [Ben92]. For broadband signals, an implementation in
the frequency domain may help increase the speed of convergence.

The application of frequency domain beamforming to estimate the weights using the
LMS algorithm for the case when a reference signal is available shows [Den78, Nar81,
Flo88, Ber86] how the frequency domain approach yields improved convergence and
reduced computational complexities compared to the time domain approach. Improved
convergence normally arises from the use of different gradient step sizes in different bins.
For the constrained LMS case, this is likely to cause deterioration in the steady-state
performance of the algorithm. This, however, does not affect the performance of the
unconstrained algorithm [Feu93].

The “sign algorithm,” in which the error between the array output and the reference
signal is replaced by its sign, is computationally less complex than the LMS algorithm, as
discussed in [Che90, Mat87].

The algorithm is usually analyzed assuming that successive samples are uncorrelated.
This assumption helps in simplifying the mathematics by allowing expectations of data
products to be replaced by the products of their expectations. Discussion of correlated
samples in nonstationary environment may be found in [Ber84, Ber85, Ewe90]. Applica-
tions of the unconstrained LMS algorithm to mobile communication systems using an
array include base mobile communication systems [Win84], indoor radio systems [Win87],
and satellite-to-satellite communication systems [Jon95].

3.3 Normalized Least Mean Squares Algorithm

This algorithm is a variation of the constant-step-size LMS algorithm and uses a data-
dependent step size at each iteration [God97]. At the nth iteration, the step size is given by

u(n)=——Fo o (3.3.1)

where |, is a constant. The algorithm and its convergence using various types of data
have been studied widely [Nit85, Nit86, Ber86a, Slo93, Rup93]. It avoids the need for
estimating the eigenvalues of the correlation matrix or its trace for selection of the maxi-
mum permissible step size. The algorithm normally has better convergence performance
and less signal sensitivity compared to the normal LMS algorithm. See [Bar94] for discus-
sion of its application to mobile communications.

3.4 Constrained Least Mean Squares Algorithm

A real-time constrained algorithm [Hud81, Fro72, Can80, God83, God86, God89, God90,
God93, God97, Mos70] for determining the optimal weight vector W is

w(n + 1) = P{w(n) - ug(w(n)} + % (3.4.1)
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~hg(w(n))
W,
=1
constant w"'s,
power surface
contour
FIGURE 3.1
Constrained LMS algorithm: a pictorial view of projection process.
where
S,Sy
P=1-=0 (3.4.2)

is a projection operator, g(w(n)) is an unbiased estimate of the gradient of the power
surface wH(n)Rw(n) with respect to w(n) after the nth iteration; [l is the gradient step size,
a positive scalar constant that controls the characteristics of the adaptive algorithm; and
S is the steering vector in the look direction.

The algorithm is called constrained because the weight vector satisfies the constraint at
every iteration, that is, wH(n)Sy = 1, On. The process of imposing constraints may be
understood from Figure 3.1. It shows how weights are updated and how the projection
system works using a vector diagram for a two-weight system [Fro72]. The figure shows
constant power contours; the constraint surface (a line wHS, = 1 for a two-dimensional
system); a surface parallel to the constraint surface passing through the origin (wHS, = 0);
weight vectors w(n), w(n + 1), and w; and the gradient at the nth iteration.

Point A on the diagram indicates the position of the weight after completion of the nth
iteration. It is the cross-section of the constraint equation wtS; = 1 and the power surface
wh(n)Rwi(n) (not shown in the figure). The weights are perturbed by adding a small
amount —ug(w(n)) and then are projected on wtlS; = 0 using projection operator P. This
is indicated by point B on the diagram. Note that PS, = 0; thus the projection operator
projects the weights orthogonal to Sy. The vector Sy/L is added to restore the constraint.
This action moves the updated weights w(n + 1) to point C. The process continues by
moving the estimated weights toward point D, the optimal solution.

The effect of the gradient step size 1 on the convergence speed and misadjustment noise
may also be understood using Figure 3.1. A larger step size means that the weight vector
moves faster toward point D, the solution point, but wanders around it over a larger
region, not closely approaching and causing more misadjustment.

The gradient of wH(n)Rw(n) with respect to w(n) is given by

0,(w'Rw)  =2Rw(n) (3.4.3)

w —
w=w(n

© 2004 by CRC PressLLC



and its computation using this expression requires knowledge of R, which normally is
not available in practice. A typical scheme to estimate the required gradient is to replace
R by its noisy sample x(n + 1) x(n + 1) available at time instant (n + 1).

There are a number of schemes used for estimating the required gradient [Fro72, Can80,
God83, God86, God90, God89]. Even though the estimated gradient in each case is unbi-
ased, the covariance of the estimated gradient obtained with each method is different, and
thus the transient and steady-state behavior of the constrained algorithm is different in
each case. In the following sections, some of these methods are described and the behavior
of the algorithm in each case is examined.

First, the normal gradient estimation scheme where R is replaced by its noisy sample is
discussed, and the algorithm in this case is referred to as the standard LMS algorithm to
differentiate it from the algorithm when a gradient estimated by different methods is used.

In the next section, the gradient estimation scheme used by the standard LMS algorithm
is described, and then some properties of the gradient are discussed along with the
convergence of the weights estimated by the algorithm to the optimal weights and the
study of the misadjustment [God86, God93].

3.4.1 Gradient Estimate

When all receiver outputs are accessible, the usual estimate of the gradient is made by
multiplying the array output by the receiver output, that is,

g(w(n)) = 2x(n +1)y* (w(n)) (3.4.4)

In obtaining this estimate, the array correlation matrix has been replaced by x(n + 1)xH(n +
1), which is a noisy sample of the array correlation matrix at the time instant (n + 1).

If {x(n)} is a zero-mean, stationary complex vector process, then for a given w(n) the
estimate of the gradient defined by (3.4.4) is unbiased, that is,

E[g(w(n))‘w(n)] = E[Zx(n +1)y* [w(n)]]
= 2E[x(n +1)x" (n+1)w(n) (3.4.5)

= 2Rw(n)

3.4.2 Covariance of Gradient

The covariance of the gradient estimate used in the weight update equation is important
in determining the performance of the algorithm, as was discussed previously. To obtain
results on the covariance of the gradient estimate defined by (3.4.4), it is necessary to make
an additional Gaussian assumption about the sequence {x(k)}. Thus, if {x(k)} is an i.i.d.
complex Gaussian sequence, then Vg (w(n)), the covariance of the gradient estimated by
this method for a given w(n), is given by

V, (w(n))=4w" (n)Rw(n)R (3.4.6)

8

A derivation of (3.4.6) is presented in Appendix 3.2.
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It follows from the expression that the covariance at the nth iteration is proportional to
the mean output power of the processor for a given w(n), the quantity that the gradient
algorithm is trying to minimize. Thus, the gradient estimate improves as the weight vector
approaches the optimal value.

3.4.3 Convergence of Weight Vector

In this section, results on convergence of the estimated weights to the optimal weights
are presented. The derivation of these results appears in Appendix 3.3.

Let A, denote the maximum eigenvalue of PRP and A; denote the ith eigenvalue of PRP.
If {x(k)} is an i.i.d. Gaussian sequence, and wH(0)w(0) < « and

0<n<s 1 (347)

max

then

lim E[w(n)] =W (3.4.8)

n - oo

and the convergence of E[w(n)] to w along the ith eigenvector of PRP has the following
time constant:

1= (34.9)
In|1—2u)\i|

where In[[J denotes the natural logarithm.

Thus, the mean value of the estimated weights converges to the optimal weights in the
limit provided that one starts with a bounded initial weight vector and the gradient step
size is small enough to satisfy the condition (3.4.7). It should be noted that upper limit on
the gradient step size, as well as convergence speed, depend on PRP. It follows from

R= pSSOS(I;I +Ry (3.4.10)
and
PS, =0 (3.4.11)

that PRP = PR\P, and hence the convergence speed of the mean value of weights charac-
terized by the time constants and the upper limit on the gradient step size only depend
on the eigenvalues of PR\P, indicating that the signal arriving from the look direction
does not affect these quantities. The eigenvalues of PR\P are functions of the directions
and powers of directional sources as well as the array geometry with the maximum
eigenvalue being controlled by the strongest source governing the initial convergence
speed. The latter part of the convergence is controlled by the smaller eigenvalues associ-
ated with weak sources or background noise, and thus the overall speed of the algorithm
depends on the eigenvalue spread of PR\P.
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The discussion thus far has concentrated on the convergence of the mean value of
weights to optimal weights. The variance of these weights is an important parameter and
the transient and steady-state behavior of the weight covariance matrix k,,,,(n) are indicators
of algorithm performance as discussed previously for the unconstrained LMS algorithm.

3.4.4 Weight Covariance Matrix

The weight covariance matrix is defined as

k,.(n) :E[(w(n)—W(n))(w(n)—W(n))H] (3.4.12)
where
w(n) = E[w(n)] (3.4.13)

Appendix 3.4 shows that the matrix satisfies the following recursive relations. If V,w(n))
denotes the covariance of the gradient used in the constrained LMS algorithm for a given
w(n), and k,,,(n) denotes the covariance of w(n), then

Ky (n+1) =Pk, (n)P - 2uP[RK,,, (n) +k,, (n)R]P
(3.4.14)
+44°PRK,,, (n)RP +*PE|V, (w(n))|P

where the expectation is taken over w.

The weight covariance matrix at each iteration depends on the mean value of the
covariance of the gradient used at the previous iteration. Equation (3.4.14) may be further
simplified by substituting for Vg(w(n)). Taking expectation over w(n), pre- and post-
multiplying by P on both sides of the expression for the covariance of the gradient given
by (3.4.6) and using (3.2.60),

PE[V, (w(n)|P = 4PRPE[w" (n)Rw(n)]

(3.4.15)
= 4PRP{ TRk, (n)] + K, (n}
where
k,(n) = w"(n)Rw(n) (3.4.16)
Equations (3.4.14) and (3.4.15) imply that
K,,(n+1)=PK,, (n)P-2u{PRK _ (n)+k,, (n)RD}
(3.4.17)

+44°PRK, (n)RP + 44 °PRP{ Tr[RK,,,, (n)] + K, (n}
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3.4.5 Transient Behavior of Weight Covariance Matrix

The study of the convergence and transient behavior of the weight covariance matrix
presented here requires that the matrix be diagonalized. Conditions required for diago-
nalization of the weight covariance matrix by the transformation, which also diagonalizes
PRP, are described below.

The necessary and the sufficient condition for the diagonalization of k,,(n + 1), n 20,
and PRP by the same unitary transformation is that the unitary transformation also
diagonalizes PE[V (w(n))]P for all n, where Vg (w(n)) is the covariance of g(w(n)) for a
given w(n) and the expectation is taken over w. A proof of the diagonalization conditions
is presented in Appendix 3.5.

Thus, to verify that the weight covariance matrix for the standard algorithm is diago-
nalizable by the same unitary transformation that diagonalizes PRP, we need to test if this
transformation diagonalizes PE[V, (w(n))]P. Since PRP is a Hermitian matrix, a unitary
matrix Q exists, such that

Q"PRPQ = A (3.4.18)

where A is a diagonal matrix with its diagonal elements being the eigenvalues of PRP.
It follows from (3.4.15) and (3.4.18) that

Q"PE[V,, (w(n))|PQ = 4ATH[RK,,, (n)] + 47k, (n) (34.19)

This implies that V, (w(n)) satisfy the conditions required for the diagonalization of k().
Thus, QHk,,,(n)Q isa diagonal matrix when the covariance of the gradient used for updat-
ing w(n) is given by (3.4.6). Let this be denoted by diagonal matrix Z(n), that is,

3(n)=Q"k,,,(n)Q (3.4.20)

Now the transient behavior of Z(n) is analyzed. To study the transient behavior of Z(n),
a matrix difference equation for >(n) is developed, a vector difference equation for its
diagonal terms is derived, and its solution is presented.

Pre- and postmultiplying (3.4.17) by QHand Q, noting that

P> =P (3.4.21)
k,.(n)=Pk_ (n)P (3.4.22)
and using (3.4.20), the following matrix difference equation is derived:
S(n+1) = (n) - 4pAZ(n) + 4p* A Z(n)
A (3.4.23)
¥ 4p2A{ Tr(Az(n)) +k, (n)}

Let the two L-dimensional vectors A and m(n) represent the L eigenvalues of PRP and
kuw(n), respectively, that is,
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A~ A A~ ~ 17T
X =[)\1,)\2, ...,)\L] (3.4.24)
and

=[Ny on]’ (3.4.25)

where )A\i and nyn), i =1, 2, ..., L, are the eigenvalues of PRP and k,,(n), respectively.
From (3.4.23) to (3.4.25) and the fact that

Tr[/\Z(n)] = XTn(n) (3.4.26)

the following vector difference equation for the eigenvalues of k,,(n) is derived:

n(n+1)= [1 —4pA +42A +4u2XXT]n(n) +4p2k, (n)A (3.4.27)
Since
limw(n)=w (3.4.28)

it follows from (3.4.16) that

lim k,(n) = w"'Rw (3.4.29)
With
H = 4pA —4p2A2 —4p>ANT (3.4.30)
(3.4.27) has the solution
n(n) = (1-H)"n(0) + 4> Z n-i)(I-H)"'A (3.4.31)

where 1(0) denotes the eigenvalues of k,,,(0). Since Q diagonalizes k., (n), it follows that

- Z n (n)Q Qf (3.432)

where Ql, 1=1,2, ..., L are the eigenvectors of PRP.
Equations (3.4.31) and (3.4.32) completely describe the transient behavior of the weight
covariance.
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3.4.6 Convergence of Weight Covariance Matrix

In this section, the convergence of the weight covariance matrix is examined. Consider
the following equation:

n(n+1) = (I -H)q(n) + p24k,(n)A (3.4.33)

This represents a set of L difference equations. Before studying the convergence, these
equations are reduced to a set of L —1 difference equations by showing that one of the
components in each of the vectors is identical to zero.

Let Ain(-) denote the minimum eigenvalue of a matrix (.). Based on (3.4.22) and A,;,(P) =
0, Amin(kww(n)) = 0. Also, Ay, = 0. Let

ADA =0 (3.4.34)

and Ql be the eigenvector corresponding to 5\1. Since Q diagonalizes k,,(n) and P, Ql must
also be the eigenvector corresponding to the zero eigenvalue of k,(n) and P. Thus,

n(n)=0 (3.4.35)

It follows from (3.4.34) and (3.4.35) that the lth difference equation in (3.4.33) is identical
to zero. Thus, these reduce to a set of L -1 difference equations. Define L — 1 dimensional
vectors A’ and n'(n) such that the ith component is given by

DL%[)T %:1, 2,..,1-1 (3.4.36)
amﬁl i=I,1+1, .. L-1

where ([J denotes the L -1 dimensional vectors A and n'(n), and (.) denotes the corre-
sponding L-dimensional vectors A and q(n). Similarly, define an L — 1 x L — 1 dimensional
matrices H' by dropping the column of zeros and the row of zeros from H.

With A" denoting the diagonal matrix of L -1 nonzero eigenvalues of PRP, it follows
from (3.4.30) and the definition of the above L. — 1 dimensional vectors that

H' = 4pA’ - 4p2A2 = 4p2A'N' T (3.4.37)

It follows from (3.4.33) to (3.4.37) that

N(n+1)=(I-H)n'(n) +4p°k, (n)N’ (3.4.38)

It can be shown that hm'r] (n) exists under certain conditions (see Appendix 3.6) and is
given by

lim »'(n) = 4 2WHRWH' '\’ (3.4.39)

Substituting for the inverse of H',
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H
limn/(n) = HV RW L (3.4.40)

a

K ~, .

e 1-p A H- HA] 1_“)\L—1E
£ 1—u)\'

Substituting for the eigenvalues of k,,(n) from (3.4.40) in (3.4.32) yields the steady-state
expressions for the covariance matrices.

noo

limkww(n)— MW IR Z L _g0¢ (3.4.41)

3.4.7 Misadjustment

Misadjustment is a dimensionless measure of algorithm performance near the convergence
point as discussed previously. It is a normalized difference between the adaptive and
optimal performance of a processor. It is defined as the ratio of the excess mean output
power to the optimal power, that is,

M = g FL ({0 1) + ()] - R

n- o w'Rw

(3.4.42)

Noting that w(n) and x(n + 1) are independent, the expectation over w(n) and x(n + 1)
in (3.4.42) can be taken independently. Taking the conditional expectation for a given w(n),
it follows that

E[WH(n)x(n+1) “(n +1)w(n)w(n ] w"(n)Rw(n) (3.4.43)
= Tr[w(n)wH(n)R]

Since

(3.4.44)

it follows from (3.4.43), after taking unconditional expectation on both sides, that
E[WH(I’I)X(I’I +1)x" (n +1)w( ] Tr[R n R]
= Tr[k,,, (n)R + W(n)w" (n)R] (3.4.45)
= Tr[kww (n)R] +w"(n)Rw(n)

and (3.4.42) becomes
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M= lim Tr[kww (n)R] +w"(n)Rw(n) - w"Rw

o wHRw

(3.4.46)

The contribution of the second and third terms in (3.4.46) is zero in the limit because of
(3.4.8). Since ky(n) = Pk, (n)P, it follows that

Tr[K,,,, (n)R] = TPk, (n)PR]

=Tr[k,,,, (n)PRP]
= Tr[k n)OAQ ] (3.4.47)
= Tr[Qkaw (n)Qi\]
= )A\Td(n)
where
d(n) = Diag]Q"k (n)Q] (3.4.48)
Thus, (3.4.46) becomes
)\Td(n)
=lim 3.4.49
n-o W RW ( )
Appendix 3.6 proves that for the standard LMS algorithm, if
O<p< ot (3.4.50)
2xmax -
and
< A
u o<1 (3.4.51)
1= 1- u)\l

then the misadjustment is given by

u21 p)\

M; = (3.4.52)

1-
u21 p)\

For sufficiently small , this results in

© 2004 by CRC PressLLC



M =u Z )A\i
= (3.4.53)

3.5 Perturbation Algorithms

The LMS algorithm discussed in previous sections requires that the signals on all elements
are accessible. In some situations this may not be possible. For example, in a large radio
frequency array it may not be economical to provide a coherent channel on all elements
in the array and thereby make the required signal inaccessible. In situations like this, one
needs to estimate the required gradient by other means if the LMS algorithm is to be used
for weight updating.

In this section, a method to estimate the required gradient for the LMS algorithm when
the signals on all elements are not accessible is described using three different processor
structures. One structure uses a single receiver to measure the power of the processor and
is referred to as a single-receiver system. The other two structures use two receivers to
measure the output power, one using dual perturbation and the other using a reference
receiver. The gradient estimate obtained using three different structures is unbiased
[Can80].

LMS algorithm performance using the gradient estimate by this method can be analyzed
using an approach similar to that used in previous sections. However, the results on the
mean and covariance of the gradient, and the covariance of the weights and misadjust-
ments are stated in this section. The method described in this section is for updating
weights of the constrained optimal beamformer. The methods applicable to other proces-
sors can easily be developed using a similar approach.

The method uses orthogonal sequences to perturb the weights of the processor, and
then measures the output power of the processor to estimate the required gradient. The
LMS algorithm using the gradient estimated by this method is referred to as perturbation
algorithm [Can80]. The perturbation algorithm requires more array samples and thus more
time than the LMS algorithm discussed in previous sections. A weight iteration cycle in
this case includes a complete weight perturbation cycle occupying, say, M time instants
to estimate the required gradient. Thus, the weight iteration index and the time index are
not the same in the perturbation algorithm, as may be the case for standard LMS algorithm.
Details on the algorithm and its analyses may be found in [Can80, God83, God86, God93].

Consider some useful definitions required to understand the material discussed in this
section. Let S denote a complex vector sequence defined as

s={5(1), 3(2), ..., 3(M} (3.5.1)

where 6(1), 1 =1, 2, ..., M are L-dimensional complex vectors.
The sequence S is said to be an orthogonal complex vector sequence if

v i Re[a(i)] Re[3"(i)] =1 (352)
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% i Tm[3(i)] tm[8"(i)] =1 (35.3)

ﬁ iRe[S(i)] Im[3"(i)] =0 (354)

and

v i im5(i)] Re[8"(i)] =0 (355)

The sequence S is said to be of zero mean if

1 o
M Z 3(i)=0 (3.5.6)

and is said to have odd symmetry if for every i, 1 <i< M, there exists aj, 1 <j <M, such
that 8(i) = —8(j).
The next section discusses a scheme to generate the required perturbation sequences.

3.5.1 Time Multiplex Sequence

Perturbation sequences with the required properties for obtaining an unbiased gradient
estimate can be constructed in a number of ways. However, for a time multiplex sequence
it is possible to evaluate certain expressions in closed form. A procedure to construct a
time multiplex sequence is given below. Let

0 V2L, j=2i-1

hi(j) = %‘\“ZL, j=2i i=1,2,...,2L (3.5.7)
B 0 elsewhere in the range 1<j< 4L

A multiplex sequence can be defined in terms of h;(j) as follows:

) = . |:|
Re(éi(?)) hi(l).Di:L 2,..,L j=12,..,4L (3.5.8)
1m(8;(j)) = ... ()c

where 9,(j) denotes the ith element of the column vector 8(j).

It can be verified that S has zero-mean odd symmetry and satisfies the required orthog-
onality properties. The time multiplex sequence defined above has length M = 4L and can
be used to obtain an unbiased gradient estimate for all three structures. However, in the
case of a dual receiver with dual perturbation, a time multiplex sequence of length M =
2L can be constructed, which provides an unbiased estimate of the gradient [Can80].
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FIGURE 3.2
Schematic diagram of a single receiver system.

3.5.2 Single-Receiver System

In this section, a gradient estimate scheme using a single receiver system is described.
Figure 3.2 shows a schematic diagram of a single receiver system. The sequence S is used
to perturb the array weights about their nominal value w(n). The instantaneous output
power is then correlated with the sequence S and an estimate of the required gradient is
made.

At the ith instant within the perturbation cycle, 1 < i< M, the weight vector is given by

w,(w(n),i)=w(n)+va(i), 1<isM (3.5.9)

where Y is a real positive scalar and denotes the perturbation step size. An estimate of the
gradient is given by

gi(w(n)) = %M i f(w..,1)8(i) (3.5.10)

where f;(w,,i) is the instantaneous array output power given by

f

1

(w+,i) = wH(w(n), i)x(l +i)x"(1 + i)w+(w(n),i) (3.5.11)

+

and 1 is the time instant at which the perturbation cycle is initiated.
If the orthogonal perturbation sequence has odd symmetry, then for any y > 0, the
estimate of the gradient defined by (3.5.10) is unbiased for a given w(n), that is,

E[gl(w(n))‘w(n)] =2Rw(n) (3.5.12)

3.5.2.1 Covariance of the Gradient Estimate

Let Vg (w(n)) denote the covariance of the gradient estimate defined by (3.5.10). If {x(n)}
is an i.i.d. Gaussian sequence, then for the time multiplex perturbation sequence defined
by (3.5.8),
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101 {wH(n)Rw(n} ZIE

+7
y: BL

+ Zdiag[Rw(n)wH(n)R] +2w" (n)Rw(n)diag(R)

v, (w(n)) = y2[2L(diag(R))2 51

The second and fourth terms in (3.5.13) are proportional to wH(n)Rw(n), the quantity that
the adaptive algorithm is attempting to minimize. Thus, the gradient estimate improves
as the weight vector approaches the optimum. However, the first and third terms do not
necessarily decrease. Interestingly, the fourth term is similar to the term in Vg (w(n)), the
covariance of the gradient estimate used in the standard algorithm. The first and second
terms are penalties due to the use of perturbation for estimating the gradient. The third
term is due to the mean of the gradient, which is not canceled in the single-receiver system.

3.5.2.2  Perturbation Noise

Although the estimated gradient is unbiased and independent of y, the covariance of the
gradient is a function of y. Furthermore, the presence of perturbations on the weights
causes an increase in the output power. This power is proportional to y2 An indication
of the effect of the perturbation can be obtained by determining the excess output power,
referred to as the perturbation noise, § due to perturbation of weights about a nominal
weight w(n).

For any orthogonal sequences S having a zero mean, the excess power due to pertur-
bation about a nominal weight w(n) is given by

&(v) =2y’Tr(R) (3.5.14)

Note from (3.5.13) that V (w(n)) is a convex function of y, and the optimal value Y(w(n))
for which V, (w(n)) is minimum can be found. For a time multiplex perturbation sequence,
the following result can be established.

Let Y(w(n)) represent the value of y(w(n)) for which Vg (w(n)) is minimum. Then

. O™ (n)Rw(n)
y(w(n)) = B%E (3.5.15)
Let V, (w(n)) represent the value of V, (w(n)) at y(w(n)). Then
Vgl (w(n)) = 4w"(n)Rw(n)diag(R)
(3.5.16)

+2 diag[Rw(n)wH(n)R]

The perturbation noise when the optimal y is used can be obtained by substituting
(3.5.15) in (3.5.14). The result is given by

E(?(n)) =w"(n)Rw(n) (3.5.17)
Assuming that the gradient algorithm converges, then (y(n)) is approximately given by

§(V(n)) OW"RW (3.5.18)
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FIGURE 3.3
Schematic diagram of a two-receiver system.

3.5.3 Dual-Receiver System

In this section, a gradient estimation scheme using a processor with two receivers is
described. In a two-receiver system, an estimate of the required gradient can be obtained
by applying a perturbation sequence S in antiphase to the two sets of weights, and
correlating the difference power from the receivers with S as shown in Figure 3.3 with
switch position A. Thus, Receiver 1 has its weights perturbed according to

w,(w(n),i)=w(n)+ya(i), 1<isM (3.5.19)
and Receiver 2 has its weights perturbed according to
w_(w(n),i)=w(n)-va(i), 1<isM (3.5.20)

Let fi(w,i) and f)(w_i) denote the instantaneous output power at Receivers 1 and 2,
respectively. An estimate of the gradient is given by

g,(w(n)) = Z%M i [£,(w..1) =6 (w_i)]a(i) (35.21)

For a given weight vector w(n), the estimate of the gradient defined by (3.5.21) is unbiased
for any orthogonal perturbation sequence S.
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3.5.3.1 Dual-Receiver System with Reference Receiver

In a two-receiver system, an estimate of the required gradient can also be obtained by
using a perturbation sequence S to perturb the array weights of only one of the receivers
about their nominal value w(n), while the other receiver has its weights fixed at w(n) as
shown in Figure 3.3 with switch position B. Let Receiver 1 have its weights perturbed by
a sequence S so that its weight vector is given by

w,(w(n),i)=w(n)+va(i), 1<isM (3.5.22)

Let f;(w,,i) and f)(w,i) denote the output power of receivers 1 and 2, respectively. An
estimate of the gradient is given by

(W)= i [fi(w...1) =1, (w )]a() (35.23)

The estimate of the gradient defined by (3.5.23) is unbiased when S is an orthogonal
perturbation sequence and has odd symmetry.

3.5.3.2 Covariance of Gradient

For two-receiver systems, the following result can be established. Let Vg (w(n)) and
V. (w(n)) denote the covariance of the gradient estimated by (3.5.21) and (3.5.23), respec-
tively. If {x(n)} is an ii.d. Gaussian sequence, then for the time multiplex perturbation
sequence defined by (3.5.8),

V_(w(n)) = 2w" (n)Rw(n)diag(R) (3.5.24)

82

and

v, (w(n))= yz[ZL(diag(R))z +2w" (n)Rw(n)diag(R) (3.5.25)

Vg (w(n)) and the second term for V, (w(n)) are proportional to wH(n)Rw(n), the quantity
that the adaptive algorithm is attempting to minimize. Thus, the gradient estimate
improves as the weight vector approaches the optimal value.

3.5.4 Covariance of Weights

It can be established that the weight covariance matrix is diagonalizable when the cova-
riance of the gradient used for updating w(n) is V, (w(n)) or Vg (w(n)). Thus, for these
two cases an analysis of the weight covariance matrix is possible by developing matrix
and vector difference equations using the scheme presented in Section 3.4. The results on
the transient and steady-state behavior of this matrix for the two cases are presented in
this section [God86].

The weight covariance matrix is not diagonalizable when the covariance of the gradient
used for updating w(n) is Vg (w(n)). Consequently, it is not possible to describe the
transient and the steady-state behavior of the weight covariance matrix for the single-
receiver system using the scheme presented in Section 3.4.
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3.5.4.1 Dual-Receiver System with Dual Perturbation

Substituting V, (w(n)) for Vy(w(n)) in (3.4.14), and following a procedure similar to that
used in Section 3.4.5, the following matrix difference equation is derived:

s{n+1)=(1-4pA -4 (o)
2 A (3.5.26)
o (R e{An(n)) K, o]

where I is a diagonal matrix with its diagonal elements being the eigenvalues of P.

Let an L-dimensional vector ¥ denote the L eigenvalues of P and an L-dimensional
vector y(n) denote the L eigenvalues of the weight covariance matrix ky,,(n) when the
covariance of the gradient used is V, (w(n)). Since Tr(A =(n) = ATny(n), (3.5.26) reduces to
the following vector difference equatlon

n,(n+1)= é ApA +4p2A2 +p22 Tr( JORT qu( n)+ uz%Tr(R)kO(n)ﬁ (3.5.27)
With
H, = 4pA - 4p2A2 —%Tr (R)u>OA" (3.5.28)

the solution of (3.5.27) is given by

n

n,(n) = (1-H,) ", (0) + 2 %Tr(R) Z ky(n-i)(1-H,)"'d (3.5.29)

1=

and ky,,(n) is given by

K o, Z Ny (n (3.5.30)

where n(0) is the vector of eigenvalues of ki, (0) and Ql, 1=1,2, ..., Lare the eigenvectors
of PRP. Equations (3.5.29) and (3.5.30) completely describe the transient behavior of the
weight covariance matrix.

The steady-state expression for the weight covariance matrix is obtained by substituting
the steady-state value of L — 1 nonzero eigenvalues of the weight covariance matrix. The
steady-state expression for these eigenvalues is given by

W TR Grg O ., g
lim w)(n) = 2L . 5 3531
) 1—uTr gl( ) (1 ”ALI)E
2L Z 1- u)\
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3.5.4.2 Dual-Receiver System with Reference Receiver

Substituting V, (w(n)) for Vg(w(n)) in (3.4.14), and following a procedure similar to that
used in Section 3.4.5, the following matrix difference equation is derived:

S(n+1)= (1 —4pA +4uz/\z)z(n) + HZ(Z/L)(VZ(Tr(R))z
+ Te(R)(Tr{Ax(n) + K, o))

(3.5.32)

Denoting the eigenvalues of the weight covariance matrix ky,,(n) by an L-dimensional
vector Mz(n) when the covariance of the gradient used is Vgs(w(n)) (3.5.32) yields the
following vector difference equation:

my(n+1)= - 4uh +40A 17 D Te(RJOA Ko (n)
(3.5.33)
2 2 2
+u? fTr(R)ko (n)d +p? EVZ[Tr(R)] )

which has the solution

n,(n) :(I H ) n,(0)
\ (3.5.34)

2 %Tr(R) Z (ko(n-1)+y*Tr(R))(1-H,) "

and k. (n) is given by

Ky, Z Ny (n (3.5.35)

where n;3(0) is the vector of eigenvalues of Ky.(0).
The steady-state behavior is obtained by substituting the steady-state expression for L — 1
nonzero eigenvalues given by

UTI’( ) WHRW 27p(R) O [T
]{ifr;n's(n): o1 L(R w+y 1‘( )] gﬁ( 1 ) (1 1uA )E (3.5.36)
T-p Zl " 1 -1/§

It could not be established that the weight covariance matrix is diagonizable when the
gradient is estimated using the single-receiver system, and thus an analysis of the behavior
of the weight covariance matrix is not possible. However, some results on the misadjust-
ment for this case are presented along with two other cases.
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3.5.5 Misadjustment Results

In this section, exact expressions for the misadjustment are presented for the dual receiver
system and bounds on the misadjustment are presented for the single-receiver case.

3.5.5.1 Single-Receiver System
For a single-receiver system with

if
1
O<p<
afL-1
T Te(R)+158,,,,
then the misadjustment is bound by
bLl < Ml s le
where
ChL-1 ~ fpn O
Mol “Tr(R) +0.5(L ~1)"R g
L1 a DL — 1
1-pg I (R)
Da (L-1 ~ Hpa O
MEO T Jrr(R) +0.5(L ~1) R
Hl -1 0
1- ugm rr(R)+154,, nf]
and
_o, 1d
a= +ED

Note that ¢ = 1 corresponds to the optimal y.

3.5.5.2 Dual-Receiver System with Dual Perturbation
If, for a given w(n), the covariance of the gradient is given by
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(3.5.38)

(3.5.39)

(3.5.40)

(3.5.41)

(3.5.42)

(3.5.43)

(3.5.44)



and

L-1

HTr(R) LIPS (3.5.45)
2L L 1-pA,
then the misadjustment is given by
UTrR) « 1
2L Z 1-A,
M, = T (3.5.46)

L HTHR) < 1
2L Zl_“xi

3.5.5.3 Dual-Receiver System with Reference Receiver

If, for a given w(n), the covariance of the gradient is

V,(w(n)) =V, (w(n)) (3.5.47)
1
O<P< 7 3.5.48
4Rt TH(R) 2L 249
and
L-1
nTr(R) LIPS (3.5.49)
2L & 1-pA,
then the misadjustment is given by
L-1
§+ , Tr(R) CuTr(R) 1
Y wiRwH 2L Zl_px_
M, = —— ‘ (3.5.50)

L HTHR) < 1
2L pr;}i

3.6 Structured Gradient Algorithm

In this section, a description and an analysis of the constrained LMS algorithm is presented
when it uses a gradient estimated from an estimate of the array correlation matrix having
a special structure [God89, God90, God93, God97]. The algorithm for this case is referred
to as the structured gradient algorithm.
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The gradient estimate given by (3.4.4) for the standard constrained LMS algorithm can
be expressed as

85(w(n)) =2R(n +1)w(n) (3.6.1)
where

R(n) = x(n)xH (n) (3.6.2)

is a noisy sample of the array correlation matrix at the nth instant of time estimated from
only one array sample.

For a uniformly spaced linear array, the array correlation matrix R has the Toeplitz
structure, that is,

0, L L r,0
r=0" ° . 363
oM O 1, [0 (3.6.3)

Hﬁ—l I, Iy H

wherer;, i =0, 1, ..., L -1 denote the correlation between elements with lag i, defined as

* G=0,1,...,L-1
n= ) g (3.64)

and x,(n) denotes the signal derived from mth element at the nth time instant.

Note that not all combinations of m and i are possible in (3.6.4), as there are only L
elements in the array. Fori=0, m =1, ..., L yielding L values of r,. These values form the
main diagonal of Rin (3.6.3). Fori=1,m=1,2, ...,L-1results in L — 1 values of r,. These
values form the second diagonal of R and so on.

The noisy sample of R used in estimating the gradient for the standard algorithm does
not have the Toeplitz structure. The structured gradient algorithm exploits this structure
of the array correlation matrix in estimating the gradient. It takes R(n) and estimates an
array correlation matrix R having the Toeplitz structure. The structured array correlation
matrix R is then used in gradient estimation as discussed below.

3.6.1 Gradient Estimate

For this algorithm, the gradient estimate is defined as follows:

g.(w(n)) =2R(n +1)w(n) (3.6.5)

where R(n) is an estimate of the array correlation matrix at the nth instant of time having
Toeplitz structured as in (3.6.3), and is given by

[, (n) I (n) L (n)l]
R(n)= %(n) © o E (3.6.6)
i, () i(n) B
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with
- 1
5(n)=—"») x(n)x,»n), 1=0,1,..L-1 (3.6.7)
()= Y o)

where N, denotes the number of possible combinations of elements with lag 1 and sum-
mation is over all these combinations. For a linear array of equispaced elements, N, =L - 1.
Since

E[f (n) =%, 1=0,1,..,L-1 (3.6.8)

it follows from (3.6.7), (3.6.6), and (3.6.3) that

E[f{(n)] =R (3.6.9)
Thus, for a given w(n),

Bg.,(w(n))] = 2Rw(n) (3.6.10)

and the gradient estimate is unbiased.

The discussion on the structured gradient algorithm presented here is for an equispaced
linear array. The formulation can easily be extended to an arbitrary array.

For the equispaced linear array, each element of R(n) is a mean value of all elements of
R(n) with the same spatial correlation lags. Thus, ry(n) is an average of the main diagonal
elements of R(n), ry(n) is the mean of first diagonal elements of R(n), and so on. For an
array that is not an equispaced linear array, the array correlation matrix loses its Toeplitz
structure, and the number of elements in R with the same spatial correlation lags is less
in comparison to the equispaced case. However, there are always some elements in R with
the same spatial correlation lags. Even in a completely unstructured correlation matrix,
such as would be obtained from a three-element array with spacing d and 2d, the diagonal
elements are always of the same correlation lag, namely lag 0.

3.6.2 Examples and Discussion

Examples are presented in this section to compare the performance of the structured
gradient algorithm and the standard algorithm. The mean noise power for a given w(n)
is examined as a function of the weight update iteration to see the algorithm’s effectiveness
in reducing noise.

Figure 3.4 to Figure 3.8 shows the plots of the mean noise power in dB for a given w(n)
vs. the iteration number. The mean noise power for a given w(n) is calculated using

P (w(n)) = w"(n)Rw(n) (3.6.11)

A linear array of ten elements with half-wavelength spacing is assumed for these
examples. The look direction is assumed to be in the broadside of the array. The power
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FIGURE 3.4

10logPy(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: 8, = 98°, p, = 1, 8, = 45°, p, = 10, @2 = 0.1, look direction angle 8, =
90°, ps = 1, Hgg = Mgr = .0005. (From Godara, L.C. and Gray, D.A., . Acoust. Soc. Am., 86, 1040-1046, 1989 [God89].
With permission.)

of uncorrelated noise present on each element is assumed to be equal to 0.1. Two inter-
ference sources are assumed to be present. Directions of these interferences make angles
of 98° and 45° with the line of the array. The other parameters are included in figure
captions. The gradient algorithm is initialized with the conventional weight. The gradient
step size for the standard algorithm and the structured gradient algorithm are denoted
by Ugrand g, respectively. A comparison of the two algorithms in Figure 3.4 reveals that
the noise in the weights estimated by the structured gradient algorithm is much less than
that estimated by the standard algorithm.

Figure 3.5 compares the two algorithms when the signal power is reduced by 20 dB
compared to the scenario of Figure 3.4. Comparing Figure 3.4 and Figure 3.5, one observes
that the fluctuations in the mean output noise power in Figure 3.4, where the signal power
is 1, are more than in Figure 3.5 where the signal power is 0.01. Thus, the noise in the
weights estimated by the standard algorithm depends on the input signal power, and
increases as the signal power increases. On the other hand, the structured gradient algo-
rithm does not appear to be sensitive to the signal power. The signal sensitivity of the two
algorithms is further compared in Figure 3.6 and Figure 3.7, where the power of the second
interference is increased by 10 dB. Sensitivity of the standard algorithm to the input signal
level is clearly visible from the two figures. The noise fluctuation in weights estimated by
standard LMS algorithm is more in Figure 3.7 where the signal power is 1.0 than that in
Figure 3.6 where the signal power is .01.
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10logPy(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: 6, = 98°, p, = 1, 8, = 45°, p, = 10, 02 = 0.1, look direction angle 8, =
90°, ps = .01, g = sy = .0005. (From Godara, L.C. and Gray, D.A., J. Acoust. Soc. Am., 86, 1040-1046, 1989 [God89].
With permission.).

The noise in the weights estimated by the standard LMS algorithm can be reduced by
using a smaller value of the gradient step size. The reduction in the step size to reduce
the noise in weights means the reduction in the convergence speed of the algorithm as
shown in Figure 3.8, where the step size used for the standard algorithm is one-tenth of
that used in the structured gradient algorithm. For this case, the structured gradient
converges faster than the standard algorithm.

It should be noted that the gradient estimate using the structured method requires more
computation than the standard method. In the standard algorithm, an estimate of the
gradient requires an order of L complex multiplications, whereas, for structured gradient
algorithm, it requires the order of L? complex multiplications. A detailed discussion on
the signal sensitivity of the LMS algorithms is presented in Section 3.14.

3.7 Recursive Least Mean Squares Algorithm

The recursive LMS algorithm uses all previous array samples to estimate the gradient, in
comparison to the standard LMS algorithm, which uses only one array sample [God90a,
God93]. In this section, the behavior of the recursive LMS algorithm is examined by
deriving an expression for the covariance of the gradient.
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10logPy(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: 6, = 98°, p; = 1, 8, = 45°, p, = 100, 0% = 0.1, look direction angle 8, =
90°, ps = .01, Pgg = Hgr = .00005. (From Godara, L.C. and Gray, D.A., ]. Acoust. Soc. Am., 86, 1040-1046, 1989
[God89]. With permission.)

3.7.1 Gradient Estimate

Let gr(w(n)) denote the estimated gradient by recursive method for a given w(n), defined

as
g (w(n)) =2R(n +1)w(n) 3.7.1)
where
R )= R X ) 672)
n+l

It follows from (3.7.2) that as the number of samples used in estimating the array corre-
lation matrix increases, the matrix estimate approaches the true correlation matrix. Thus,

limR(n) =R (3.7.3)

n- o

and
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10logPy(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: 8, = 98°, p, = 1, 0, = 45°, p, = 100, 02 = 0.1, look direction angle 8, =
90°, ps = 1, Hgg = Mgy = .00005. (From Godara, L.C. and Gray, D.A., ]. Acoust. Soc. Am., 86, 1040-1046, 1989 [God89].
With permission.)

lim g, (w(n)) = 2Rw(n) (3.7.4)

n —

Consequently, the gradient estimate approaches the true gradient asn — .

3.7.2 Covariance of Gradient

In this section, covariance of the gradient is established. The result is valid for large n
samples, such that

R(n) OR (3.7.5)

It follows from (3.7.1), (3.7.2), and (3.7.5) that

gR(w(n)) = nz-rkll Rw(n)+

2 1 x(n + 1)xH(n + 1)w(n) (3.7.6)

Let Vg (w(n)) denote the covariance of the gradient estimate defined by (3.7.1) and (3.7.2)
for a given w(n). By definition,
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1989 [God89]. With permission.)

Ve, (w(n)) = E[gR (w(n))gg (w(n))] -8 (w(n))gfj (w(n)) (3.7.7)

where gg(w(n)) is the mean value of the gradient estimate for a given w(n).
It follows from (3.7.1) and (3.7.2) that

gx(w(n)) =2Rw(n) 3.7.8)
Thus,

gr (w(n))gRH (w(n)) = 4Rw(n)wH (n)R (3.7.9)

Using the following result for an i.i.d. complex Gaussian sequence {x(k)} and a Hermitian
matrix A,

E[x(n)x(n) Ax(n)x"(n)] = RAR +Tr(RA)R (3.7.10)

the following is derived from (3.7.6)

E[gR (w(n))gg (w(n))] =4 Rw(n)w"(n)R + (nfl)z w¥(n)Rw(n)R (3.7.11)
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Substituting in (3.7.7) from (3.7.9) and (3.7.11),

v, (w(n))= (nfl)sz(n)Rw(n)R (3.7.12)

It follows from (3.7.12) that the covariance of the estimated gradient by the recursive
method decreases as the iteration number increases and (n + 1)? times less than the
covariance of the gradient estimated by the standard method. The covariance of the
gradient estimated by the standard method V,(w(n)), is given by

V, (w(n)) = 4w" (n)Rw(n)R (3.7.13)

3.7.3 Discussion

As discussed previously, the projected covariance of the gradient PV (w(n))P affects the
weight covariance. Taking the projection on both sides of (3.7.12) and (3.7.13), and noting
that PRP is independent of the look direction signal, one observes that the projected
covariance in both the cases is proportional to the mean output power. This implies that
for both the cases the projected covariance is a function of the look direction signal. This
in turn makes the weight covariance at each iteration sensitive to the look direction signal.
However, at the nth iteration, the weight covariance for the recursive algorithm case is
less than that for the standard LMS case due to the term (n + 1)2in (3.7.12).

3.8 Improved Least Mean Squares Algorithm

The structured gradient algorithm exploits the structure of the array correlation matrix.
However, it does not make use of the previous samples when estimating the gradient at
the nth iteration. In this section, a method is presented that exploits the structure of the
array correlation matrix and uses previous samples. The method is referred to as the
improved method [God90a, God93].

An estimate of the gradient using the improved method is given by

g,(w(n)) = 2R(n +1)w(n) (3.8.1)
where

X R(n)+R(n +1

R(n+1)= n(n);l(“) (3.8.2)

with R(n) given by (3.6.6).
It can easily be shown that the gradient estimate is unbiased, that is,

E[gl(w(n))‘w(n)] =2Rw(n) (3.8.3)
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FIGURE 3.9

Py(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: 6, =98°, p; =1, 6, =72°, p, =100, &2 = 0.1, look direction angle 8, = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631-1635, 1990. ©IEEE. With permission.)

The performance and the signal sensitivity of the above algorithm is now compared
with a RLS algorithm that makes use of the previous samples and requires the same order
of computation for computing the weights. The following form of the RLS algorithm is
used for the comparison:

- R™ (n)SO
w(n)= STR-(n)S, (3.8.4)

where R7(n) is updated using the Matrix Inversion Lemma and is given by (3.1.6) and
(3.1.7). Note that in the absence of errors, n » o, R(n) - R, and w(n) - w.

Figure 3.9 to Figure 3.12 compare the mean output noise power Py(w(n)) vs. the iteration
number for various look direction signal powers when the weights w(n) are adjusted using
the two algorithms. The mean output noise power is calculated using

Py (w(n)) = WH(n)RNw(n) (3.8.5)

A linear array of ten elements with half-wavelength spacing is assumed for these
examples. The variance of uncorrelated noise present on each element is assumed to be
equal to 0.1. Two interference sources are assumed to be present. The first interference
falls in the main lobe of the conventional array pattern and makes an angle of 98° with
the line of the array. The power of this interference is taken to be 10 dB more than the
uncorrelated noise power. The second interference makes an angle of 72° with the line of
the array and falls in the first side-lobe of the conventional pattern. The power of this
interference is 30 dB more than the uncorrelated noise power. The look direction is broadside
to the array. The signal power for the four plots is varied from -10 dB below the uncor-
related power to 30 dB above the uncorrelated noise power. The gradient algorithm is
initialized with the conventional weights.
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Py(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: 0, =98°, p; =1, 6, =72°, p, = 100, 2 = 0.1, look direction angle 8, = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631-1635, 1990. ©IEEE. With permission.)
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Py(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: 0, =98°, p; =1, 6, =72°, p, = 100, 0 = 0.1, look direction angle 8, = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631-1635, 1990. ©IEEE. With permission.)

For the improved LMS algorithm the gradient step size | is taken to be equal to 0.00005
and for the RLS algorithm & is taken to be 0.0001. According to these figures, for a weak
signal the RLS algorithm performs better than the improved algorithm. However, as the
input signal power increases the output noise power of the processor using the RLS
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Py(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: 6, =98°, p; =1, 6, =72°, p, =100, &2 = 0.1, look direction angle 8, = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631-1635, 1990. ©IEEE. With permission.)

algorithm increases. Thus, the RLS algorithm used in the present form is sensitive to the
look direction signal. On the other hand, this is not the case for the improved LMS
algorithm. Performance of the improved LMS algorithm improves as the signal power is
increased, and in the presence of a strong signal it performs much better than the RLS
algorithm, both in terms of convergence and the output SNR. See for example, the plots
in Figure 3.12 where the input signal power is 30 dB more than the uncorrelated noise
power.

Figure 3.13 compares the performance of the standard LMS algorithm, recursive LMS
algorithm, and improved LMS algorithm. The noise field and array geometry used for
this example are the same as those used in previous examples. The input signal power is
30 dB more than the uncorrelated noise power and the gradient step size is 0.00005. It is
clear from Figure 3.13 that the output noise power of the processor at each iteration is less
when the recursive algorithm and the improved algorithm are used in comparison to the
output noise power using the standard algorithm. A large fluctuation in the output of the
processor using the standard algorithm in comparison to the other two algorithms indi-
cates the sensitivity of this algorithm to the look direction signal. A comparison of the
recursive LMS and improved LMS show that the latter performs better, both in terms of
the amount of the noise and its variation as a function of iteration number.

3.9 Recursive Least Squares Algorithm

The convergence speed of the LMS algorithm depends on the eigenvalues of the array
correlation matrix. In an environment yielding an array correlation matrix with large
eigenvalue spread the algorithm converges with a slow speed. This problem is solved

© 2004 by CRC PressLLC



102

Standard LMS

10t
o]
3
o
-
2
£ 10 ) 4
5 ]
& \ ]
5 \ N
o “I \‘ -

L L Recursivel
10 RN ;
102 ;

0 100 200 300 400 500 600 700 800 900 1000

Iteration Number

FIGURE 3.13

Py(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: 6, =98°, p; =1, 6, =72° p, = 100, 2 = 0.1, look direction angle 8, = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631-1635, 1990. ©IEEE. With permission.)

with the RLS algorithm [Sch77, d’As80, God97] by replacing the gradient step size u with
a gain matrix R(n) at the nth iteration, producing the weight update equation

w(n)=w(n-1)- R (n) x(n)e* (w(n - 1)) (3.9.1)
where R(n) is given by

A

R(n)=8, f{(n -1)+x(n) x"(n)
n (392)

:Zquﬁm

with &, denoting a real scalar less than but close to 1. The &, is used for exponential
weighting of past data and is referred to as the forgetting factor as the update equation
tends to de-emphasize the old samples. The quantity 1/(1 — &y) is normally referred to as
the algorithm memory. Thus, for &) = 0.99 the algorithm memory is close to 100 samples.
The RLS algorithm updates the required inverse of using the previous inverse and the
present sample as

R R S5-1(.. _ H R-1( 1\
R(n)= %D{ I(n-1)- (n 1H X(n)A’fl (n R (n 1)|:| (3.9.3)
0 B 8, +x"(n) R (n-1)x(n) [
The matrix is initialized as
ﬁ%ngm g, >0 (3.9.4)

© 2004 by CRC PressLLC



The RLS algorithm minimizes the cumulative square error

= Zag-k ‘s(k)‘z (3.9.5)

and its convergence is independent of the eigenvalues distribution of the correlation
matrix.

The algorithm presented here is the exact RLS algorithm. Other forms of the RLS
algorithm with improved computation efficiency are available [Fab86, Cio84]. A compar-
ison of the convergence speed of the LMS, RLS, and some other gradient-based algorithms
using quantized or clipped data indicates that RLS is the most efficient and LMS is the
slowest [Gar87].

Computer simulation study of RLS, LMS, and SMI algorithms in mobile communication
situations suggests that the former outperforms the latter two in flat fading channels
[Fer93]. An application of the RLS algorithm for the reverse link of a cellular communi-
cation using the CDMA system is considered in [Wan94] to show an increase in channel
capacity by an adaptive array.

3.10 Constant Modulus Algorithm

The constant modulus algorithm is gradient based [God97] and works on the premise that
existing interference causes fluctuation in the amplitude of array output that otherwise
has a constant modulus. It updates weights by minimizing the cost function [Chi93, God80,

Tre83, Shy93]
% g‘y ~y2 ZE (3.10.1)
using the following equation
w(n +1) = w(n) - u g(w(n)) (3.10.2)
where
y(n) =w"(n)x(n+1) (3.10.3)

is the array output after the nth iteration, y, is the desired amplitude in the absence of
interference, and g(w(n)) denotes an estimate of the cost function gradient.

Similar to the LMS algorithm discussed previously, the constant modulus algorithm
uses an estimate of the gradient by replacing the true gradient with an instant value given

by

g(w(n)) = 28(11) x(n + 1) (3.10.4)
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where

e(n) = (\y(n)\z -yé) y(n) (3.10.5)
The weight update equation for this case becomes
w(n+1) =w(n)-2ue(n) x(n+1) (3.10.6)
In appearance, this is similar to the LMS algorithm with reference signal where

e(n) =r(n)-y(n) (3.10.7)

Its application to digital, land mobile radio communication systems using TDMA to
compensate for selective fading is studied in [Ohg91]. Discussions of hardware implemen-
tation of a CMA adaptive array and its BER performance for high-speed transmission in
mobile communications may be found in [Ohg93a, Ohg93]. Development of CMA for
beam-space array signal processing including its hardware realization has been reported
in [Tan95]. The results presented in [Chi93] indicate that the beam space CMA is able to
cancel interferences arriving from other than the look direction.

CMA is useful for eliminating correlated arrivals and is effective for constant modulated
envelope signals such as GMSK and QPSK, which are used in digital communications.
However, the algorithm is not appropriate for the CDMA system because of the required
power control [Wan94]. Use of CMA to blindly separate co-channel FM signals in mobile
communications has been investigated in [Par95]. A variation referred to as differential
CMA reported in [Nis95] has inferior convergence characteristics compared to CMA but
may be improved using direction of arrival information to make it operative in beam space.

3.11 Conjugate Gradient Method

An application of the conjugate gradient method [Hes52, Dan67, Sar81] to adjust the
weights of an antenna array is discussed in [Cho92]. The method is generally useful for
solving a set of equations of the form Aw = b to obtain w. In this section, a brief description
of the CGM is provided [God97].

For an array-processing problem, w denotes the array weights, A is a matrix with each
of its columns denoting consecutive samples obtained from array elements, and b is a
vector containing consecutive samples of the desired signal. Thus, a residual vector

r=b-Aw (3.11.1)

denotes error between the desired signal and array output at each sample, with the sum
of the squared error given by r'r.
The method starts with an initial guess w(0) of the weights, obtains a residual

1(0) =b - Aw(0) (3.11.2)
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an initial direction vector
g(0)=A"r(0) (3.11.3)

and moves the weights in this direction to yield a weight update equation,

w(n + 1) = w(n) - p(n) g(n) (3.11.4)
where the step size is
Alr(n)]
H(n) = H()z (3.11.5)
Alg(n)
The residual r(n) and the direction vector g(n) are updated using
r(n + 1) = r(n) + p(n) Ag(n) (3.11.6)
and
g(n+1)=A"r(n+1)-a(n)g(n) (3.11.7)
with
Alr(n+1)]
a(n) = M (3.11.8)
‘AHr(n)‘

The algorithm is stopped when the residual falls below a certain predetermined level.
It should be noted that the direction vector points in the direction of error surface gradient
rf(n)r(n) at the nth iteration, which the algorithm is trying to minimize. The method
converges to the error surface minimum within at most L iterations for an L-rank matrix
equation, and thus provides the fastest convergence of all iterative methods [Cho91,
Cho92].

Use of the conjugate gradient method to eliminate multipath fading in mobile commu-
nication situations has been studied in [Cho92] to show that the BER performance of the
system using the conjugate gradient method is better than that using the RLS algorithm.

3.12 Neural Network Approach

In this section, a neural-network base algorithm to estimate the weights of an adaptive
array system is described [God97]. For discussion on various aspects of this algorithm,
referred to as Madaline rule III (MRIII), as well as other related issues, see [Wid90]. For
general theory of neural networks and their applications, see [Lau90, Gel96].

The MRIII algorithm described here is applicable when the reference signal is available
and minimizes the MSE between the reference signal and the modified array output, rather

© 2004 by CRC PressLLC



than the MSE between the reference signal and the array output, as is the case for other
algorithms discussed previously. The array output is modified using a nonlinear mapping,
such as hyperbolic tangent

1 _ e—Zx
tanh(x) = L+

(3.12.1)

and the weights are updated using

w(n + 1) = w(n) - ug(w(n)) (3.12.2)
where | is the gradient step size and g(w(n)) is the instant gradient of the MSE surface

with respect to the array weights w(n).
When the array is operating with weights w(n), producing the array output

y(n) = wH(n)x(n + 1) (3.12.3)

the modified output §(n) becomes
§(n) = tanh(y(n)) (3.12.4)

and the resulting error signal is given by
&(n) = §(n) ~r(n +1) (3.12.5)

The instant gradient of the MSE surface with respect to the array weights w(n) thus
becomes

(3.12.6)

Replacing &(n)/'y(n) with A&(n)/Ay for small Ay in (3.12.6) results in

g(w(n)) = 2&(n) Ai(yn) x(n+1) (3.12.7)

where A&(n) denotes the change in the error output when the array output is perturbed
by a small amount of Ay and could be measured to estimate the instant gradient. The
weight update equation then becomes
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Aé(n)

w(n + 1) = w(n) - 2u§(n) Ay

x(n+1) (3.12.8)

The MSE surface of the error signal £&(n) may have local minimization and thus global
convergence of the MRIII algorithm is not guaranteed, which is not the case when MSE
between the reference signal and the array output is minimized [Wid90]. The algorithm,
however, is very robust, suitable for analog implementation, and results in fast weight
updates.

The MRIII algorithm described here is suitable when the reference signal is available.
A scheme to solve constrained beamforming problems using neural networks is analyzed
in [Cha92], and its implementation using switched capacitor circuits is described in
[Yan96]. Computer simulations and experimental results indicate the suitability of the
scheme.

3.13 Adaptive Beam Space Processing

In this section, an adaptive algorithm to estimate the weights of the two-beam processor
referred to as postbeamformer interference canceler (PIC), and discussed in Section 2.6.3
is presented and its performance is analyzed [God89a]. The analyses include the transient
and steady-state behavior of the weights. The structure of the processor is shown in Figure
2.11. These results can be generalized for a general multibeam processor.

Rewrite (2.6.43) to (2.6.46) in discrete notation:

Y(n) = Vx(n) (3.13.1)
q(n) =U"x(n) (3.13.2)
y(n) = ¥(n) - wq(n) (3.13.3)
and
P(w) = VPRV +w*wU"RU -w*V"RU -wU"RV (3.13.4)

where (n) denotes the output of signal beam; q(n) denotes the output of the interference
beam; y(n) denotes the output of the processor; P(w) denotes the mean output of the
processor for a given w; V and U, respectively, denote the fixed weights of the signal-
beam and the interference beam; and w is the weight applied to the interference beam
output.

Let w denote the optimal weight that minimizes P(w). From (2.6.48) it is given by

VHRU
U"RU

W =

(3.13.5)

Define a real-time algorithm for determining the optimal weight W as
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w(n + 1) = w(n) - pg(w(n)) (3.13.6)

where w(n + 1) denotes the new weight computed at the (n + 1)th iteration, p is a positive
scalar defining the step size, and g(w(n)) is an unbiased estimate of the gradient of P(w(n))
with respect to w.

It follows from (3.13.4) that the gradient of P(w(n)) with respect to w is given by

w

0,P(w(n)) iy = 2w(n)UMRU -2V RU (3.13.7)

3.13.1 Gradient Estimate

A suitable estimate of the gradient of P(w(n)) with respect to w is given by

g(w(n)) = 2y(n)q*(n) (3.13.8)

In proposing (3.13.8), it is assumed that the gradient algorithm defined by (3.13.6) iterates
at successive time instants. Thus, at time instant n + 1, the processor actually is operating
with the weight w(n) computed at the previous iteration and the time instant and the
array signal vector is x(n + 1). Note that for a given w(n), the estimate defined by (3.13.8)
is unbiased, that is,

E[g{w(n))w(n)| = -2E[y(n)q*(n)w(n)]
= —ZE[{VHx(n) - w(n)UHx(n} x1 (n)U‘w(n)] (3.13.9)
= -2V"RU +2w(n)U"RU

A particular characteristic of the gradient used in (3.13.6) that is important in determin-
ing the performance of the algorithm is the covariance. For the gradient estimate defined
by (3.13.8), the following result on the convariance is established in Appendix 3.7.

Let Vy(w(n)) denote the covariance of the gradient estimate defined by (3.13.8) for a
given w(n). If {x(n)} is an i.i.d. complex Gaussian sequence, then

V,(w(n)) = 4U"RU[ V'RV +w*(n)w(n)U"RU
(3.13.10)

- w(n)U"RV - w*(n)V'RU]

Note that the quantity in the square brackets is the mean output power of the PIC for a
given w(n). Thus, at each iteration the covariance of the gradient estimate is proportional
to the mean output power of the PIC that the adaptive algorithm defined by (3.13.6) is
trying to minimize.

The convergence analysis of the algorithm defined by (3.13.6) is presented when the
gradient estimate is defined by (3.13.8). In the event that {x(n)} is a sequence of i.i.d.
random complex vectors, a detailed analysis of the algorithm is possible. The analysis is
carried out using the approach described in Section 3.2.
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3.13.2 Convergence of Weights

The following result on the convergence of weights is established in Appendix 3.7. For
the algorithm defined by (3.13.6) and (3.13.8), if {x(n)} is an i.i.d. random vector sequence,

w(0)| < o (3.13.11)
and
O<p<— b (3.13.12)
U"RU
then
lim E[w(n)] =W (3.13.13)

and the convergence of E[w(n)] to w has the time constant given by

: 1

1= 3.13.14
lnil—zuUHRUj ( )

where In(.) denotes the natural logarithm of (.).

Note that the step size 4 and the convergence time constant T are dependent on UFRU,
the average power at the output of the interference beamformer, and are independent of
the output power of the signal beamformer.

3.13.3 Covariance of Weights

Let K, (n) denote the covariance of weight w(n) at the nth iteration, that is,

K, (n) = E|(w(n) -w(n))(w(n) - w(n)) ] (3.13.15)
where

w(n) = E[w(n)] (3.13.16)

The covariance of the weight K,,,.(n) satisfies the following recursive relation:

Ky (n+1) =K, (0 - 4uU"RU + 402 (U"RU) B iV, (win))]  (3.1317)

W

where the expectation is taken over w. A derivation of this recursive equation is provided
in Appendix 3.7.

Since the covariance of the weight at the (n + 1)th iteration depends on the covariance
of the gradient estimated for a given weight at the nth iteration, it is possible to further
simplify the above recursive relation for a particular method of gradient estimate. When
the gradient estimate used in (3.13.6) is defined by (3.13.8), an expression for Vy(w(n)) is
given by (3.13.10). The expression is derived with the assumption that {x(k)} is an ii.d.
complex Gaussian sequence. This assumption is necessary for the results presented
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throughout the remainder of this section. Taking the unconditional expectation on both
sides of (3.13.10) and substituting in (3.13.17), the following difference equation for the
covariance of the weight results:

2
K, (n+1)=K,, (n)d -4uU"RU +8*(U"RU) 5
+ 4p2UHRU[VHRV +w*(n)w(n)U"RU (3.13.18)

~w*(n)V"RU - w(n)U"RV|

3.13.4 Transient Behavior of Weight Covariance

Let
H =1-4pU"RU +8u2(UHRU)2 (3.13.19)
and
D(n) = U"RU[ V'RV +W*(n)w(n)U"RU
(3.13.20)
~ W*(n)V"'RU - w(n)U"RV]
Since
limw(n) =W (3.13.21)
it follows from (3.13.5) and (3.13.20) that
lim D(n) = VVRVU"RU - V'RUU"RV (3.13.22)
From (3.13.18) to (3.13.20), it follows that
K,,(n+1)=K_, (n)H+4p’D(n) (3.13.23)
which has the solution
K,,(n)=H"K,,(0)+4p’ Z D(n-i)H"" (3.13.24)
where K,,,(0) is the covariance of w(0).
Since w(0) is a deterministic scalar, it follows that
K,.(0)=0 (3.13.25)

and thus (3.13.24) reduces to
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K,.(n)=4p> Z D(n -i)H"" (3.13.26)

which completely describes the transient behavior of the covariance of the weights when
the gradient estimate used in (3.13.6) is defined by (3.13.8).

3.13.5 Steady State Behavior of Weight Covariance
Take the z transform on both sides of (3.13.23):

zK, (z) =K, (z)H +4p’D(z) (3.13.27)

where K, ,(z) and D(z) are the z transforms of K, (n) and D(n), respectively.
Solving for K,,(z), from (3.13.27),

5 D(Z)Z_l
1-Hz™!

K,,(z)=4p (3.13.28)

Since D(z) is stable, it follows from (3.13.28) that the stability of K,,,,(z) is guaranteed if
H|<1 (3.13.29)
which, along with (3.13.19), implies that if

1

o<p<
H U"RU

(3.13.30)

then K,,,,(z) is stable. Thus, }}IQKWW(H) exists. This proves the existence of the limit.
To obtain the steady-state expression for the weight covariance, let

A

K,, =limK_, (n) (3.13.31)
Since
limK (n)=limK_ (n+1) (3.13.32)

it follows from (3.13.19), (3.13.22), and (3.13.23) that

P = VHRVU"RU - VFRUU"RV

= 3.13.33
ww =H UHRU[l—ZpUHRU] ( )

which, along with (3.13.4) and (3.13.5), leads to
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. P(w
K, = HL})I (3.13.34)
v 1-2pU"RU
where P(W) is the mean output power of the optimal PIC.
Thus, the steady-state weight covariance is proportional to the mean output power of
the optimal PIC.

3.13.6 Misadjustment

In the absence of noise in the weight, the adaptive algorithm defined by (3.13.6) and
(3.13.8) would converge to a steady state or optimal point on the mean output power
surface. The minimum mean output power of the PIC therefore would be P(W). However,
the noise in the weight tends to cause the steady-state solution to vary randomly about
the minimum or optimal point. This results in excess power in the output power of the
PIC; the amount of excess power depends on the weight covariance.

As discussed previously, misadjustment is a dimensionless measure of the difference
between the adaptive and optimal performance of a processor. It is defined as the ratio
of the excess mean output power to the mean output power of the optimal PIC, that is,

. w(n))[-P(Ww
MZP{EE[P( P(VJ) o

(3.13.35)

In this section, analysis of the misadjustment is presented and an exact expression for it
is derived when the gradient algorithm defined by (3.13.6) and (3.13.8) is used to estimate
the weight given by (3.13.5).

Taking the expected value on both sides of (3.13.4) and using (3.13.15) and (3.13.16),

E[P(w(n))] = VIRV +K,,,,(n)U"RU +Ww* (n)w(n)U"RU
(3.13.36)
-w*(n)V'RU - w(n)U"RV

Taking the limit as n — o and subtracting P(w) on both sides of (3.13.36), an expression
for the steady-state excess mean output power follows:

lim E[P(w(n))| - P(#) =K, U"RU (3.13.37)

Let Mp denote the misadjustment in PIC. Equations (3.13.37), along with (3.13.35), imply
that

K _U"R
v =K, U"RU

M) (3.13.38)

A substitution for KW from (3.13.34) in (3.13.38) leads to the following expression for the
misadjustment:
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U"RU
p =M 2JUUFRU (3.13.39)
It follows from (3.13.39) that misadjustment in the adaptive PIC is independent of the
signal in the signal channel and depends only on the mean power at the output of the
interference beamformer. Furthermore, for a very small step size |, it is proportional to
this power. Thus, given this misadjustment, it is desirable that the interference beamformer
weight U is chosen such that UMRU is a smaller quantity.
However, it follows from (3.13.14) that if

2uUYRU <1 (3.13.40)

then

1= %uUHRU (3.13.41)

Thus, a smaller power in the interference channel results in a longer convergence time
constant, which may not be desirable.

For the range of Y that satisfies (3.13.40), the misadjustment given by (3.13.39) can be
approximated as

M, = pU"RU (3.13.42)

which, along with (3.13.41) implies that the product of misadjustment and the convergence
time constant is given by

M, =05 (3.13.43)

and is independent of array geometry and noise parameters.

3.13.7 Examples and Discussion

The example presented here is for a planar array of ten elements as shown in Figure 2.7.
The array consists of two rings of five elements each, with half-wavelength inter-ring
spacing M. The radius of the inner ring is 4 L.

A unity power signal source is assumed in the direction of the positive x-axis and an
interference source is assumed in the direction of the negative x-axis. The interference
power is taken to be 20 dB more than the signal power, and the uncorrelated noise power
is taken to be 20 dB less than the signal power. The interference beam of the PIC is formed
using

(3.13.44)

and

p=r-S5

(3.13.45)

where S and S; are the steering vectors in the directions of the signal and interference
sources, respectively, and I is the identity matrix.
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FIGURE 3.14
The output power averaged over 50 runs vs. the iteration number. (From Godara, L.C., J. Acoust. Soc. Am., 85,
194-201, 1989 [God89a]. With permission.)

The interference beam formed using (3.13.44) and (3.13.45) ensures that the interference
beam has a unity response in the interference direction and a null response in the signal
direction. The signal beam is formed using the conventional weight, that is,

_SY

L

\% (3.13.46)

The algorithm is initialized with

w(0)=0 (3.13.47)

The gradient step size of 1 x 10~ is used, which is about one-eighth of the inverse of
the estimated power of the interference beam. The power estimate at the output of the
interference beam is made by averaging 100 samples. Figure 3.14 shows the PIC output
power averaged over 50 runs as a function of the number of iterations. The figure shows
that the output of the processor converges to the signal power in about 15 iterations. Figure
3.15 shows the norm of the weight error, that is,

[(wn) = #)* (w(n) -w)] (3.13.48)

averaged over 50 runs as a function of the number of iterations. Convergence of the norm
of the weight error is evident in the figure.

3.14 Signal Sensitivity of Constrained Least Mean Squares Algorithm

The convergence of mean weights estimated by constrained LMS algorithm to optimal
weights is a function of the eigenvalues of PR\P, and thus is independent of the look
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FIGURE 3.15
The norm of weight error averaged over 50 runs vs. the iteration number. (From Godara, L.C., ]. Acoust. Soc.
Am., 85, 194-201, 1989 [God89a]. With permission.)

direction signal. However, this is not the case for the weight covariance matrix, which
depends on the projected covariance of the gradient used for the weight update algorithm,
that is, PVg(w(n))P. For the standard algorithm, this variance is a product of the array
correlation matrix R and the mean output power wt(n)Rw(n) at the nth instant of time.
Thus, PVg(w(n))P, which is proportional to wH(n)Rw(n)PRP, contains a signal from the
look direction, indicating that the performance of the standard LMS algorithm is not
independent of the signal and that the transient behavior of weight covariance depends
on it.

Results presented in Section 3.6 show that the weights estimated by the standard algo-
rithm are sensitive to signal power in the look direction. As signal power increases, the
noise in these weights tends to increase. The following, a rather heuristic argument,
explains this phenomenon [God97].

Rewrite the constrained LMS algorithm as follows:

w(n+1)=Pw(n)+S,/L - uPg(w(n)) (3.14.1)

and examine the term Pg(w(n)) for various estimates of the gradient. First, consider the
true gradient, that is,

g(w(n)) = 2Rw(n) (3.14.2)
Expressing R in the form
R=p,S,S +R (3.14.3)
it follows that
Pg(w(n)) =2R w(n) (3.14.4)

Thus, the estimate of w(n + 1) for a given w(n) does not depend on the signal power in
the look direction when the true array correlation matrix is used in estimating the gradient.
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Now consider the gradient estimate given by (3.4.4) and rewrite in the following form:
g(w(n)) = x(n + 1)xH (n + 1)w(r1) (3.14.5)

where the factor 2 has been omitted for ease of analysis.
The array signal vector x(n) can be expressed as

x(n) = ms(n)SO + Xy (n) (3.14.6)
where x\(n) is the array signal vector due to interference and uncorrelated noise only, and

mg(n) is the sample of the complex modulating function of the signal.
From (3.14.5) and (3.14.6), it follows that

g(w(n)) = m, (n + 1)m:(n +1)5,SF w(n)

g+ Do+ Tjw(n)

(3.14.7)
#m, (n +1)Sx! (n +1)w(n)
+m (o +1)x, (n + )S!iw(n)
Since
PS,=0 (3.14.8)
it follows from (3.14.7) that
Pg(w(n)) =Pxy (n + 1)x§(n + 1)w(n) (5.149)

+m}(n +1)Px, (n +1)S/'w(n)

The second term on the RHS of (3.14.9) contains m§ (n + 1), which is a random quantity
with variance equal to the look direction signal power. This makes Pg(w(n)) a noisy
quantity that fluctuates with the signal power and causes the w(n + 1) to fluctuate. The
fluctuations in w(n + 1) increase as the signal power increases. Thus, the weights estimated
by the standard algorithm are sensitive to the signal power requiring a lower step size in
the presence of a strong signal for the algorithm to converge which in turn reduces its
convergence speed.

This fact has been demonstrated in [Ohg93a] for a high-speed GMSK mobile commu-
nications system. The system has been implemented by mounting an array on a vehicle
to measure its BER performance.

The signal sensitivity of the standard LMS algorithm is caused by the use of a sample
correlation matrix in estimating the gradient, and could be reduced by using an estimate
of the correlation matrix from all available samples as is done with the recursive LMS
algorithm. In this case, variance of the estimated gradient is given as

v, (w(n))= (nfl)z w'(n) R w(n) R (3.14.10)

Comparing this with the variance of the standard LMS algorithm, note that the variance
of the gradient estimated by the recursive method is less than that estimated by the
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standard method by a factor of (n + 1)2 Thus, the recursive algorithm is less signal sensitive
to signal power. In the limit as n increases, the signal sensitivity of the recursive LMS
algorithm approaches zero.

The signal sensitivity of the LMS also can be reduced by spatial averaging instead of
sample averaging, as is the case in the structured gradient algorithm. Because of spatial
averaging and the fact that mg(n + 1) and xy(n + 1) are not correlated, the dependence of
Pg.(w(n)) on the signal level is substantially reduced. Thus, the weights estimated by the
structured gradient algorithm are not very sensitive to the signal level in the look direction.

3.15 Implementation Issues

In this section, some implementation issues relating to finite precision arithmetic and real
vs. complex implementation are discussed [God97].

3.15.1 Finite Precision Arithmetic

The convergence speed, fluctuations in array weights during adaption, and misadjustment
noise are the measures of the transient and the steady-state behavior of the LMS algorithm.
Theoretical performance of the algorithm and the effect of the look direction signal and
gradient step size discussed in previous sections assume the existence of infinite precision,
that is, the variables are allowed to take any value.

In real life, when the algorithm is implemented using digital hardware where variables
can only take discrete values, other parameters affect its performance, and issues that
must be considered include quantization noise as well as roundoff and truncation noise
caused by finite precision arithmetic [Eva93, Ale87, Cha91, Leu91, Won91, Car84, Cio85].

First, when a b-bit quantizer is used to convert an analog signal of range -1, to r ..
into a digital signal, it adds quantization noise of zero mean and variance [Opp75],

_~2b 2
27 1

ol = 3 (3.15.1)

to the system. Second, the effect of finite word length of the devices where the numbers are
stored causes the roundoff or truncation noise to be added to the system. This arises from
the fact that when arithmetic operations are performed using these numbers, the answers
are normally longer than the available word length and need to be rounded off or truncated
to fit into finite word memory. Finally, all variables such as the estimated gradient, the
gradient step size, and the estimated weights are only allowed to take finite values, and can
be increased or decreased by a factor of 2. The combined effect of all these factors on the
algorithm is a larger fluctuation in weights and a larger misadjustment than otherwise.

The misadjustment appears to be the most sensitive to the finite word length effect on
weights, suggesting that the weights should be implemented using a longer word length
[Ale87] and a reduction in the step size below certain levels may even cause the misad-
justment to increase [Car84] which is contrary to the infinite precision case where a
decrease in the step causes the misadjustment to decrease. It appears [Cio85] that the finite
word-length effects are amplified in the environment, which yields smaller eigenvalues
for the correlation matrix.
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An important effect of the finite word length on the weight update is that when a small
input does not cause the weights to move more than the least significant bit (the smallest
possible increment, which depends on the number of bits used to store weights), then the
algorithm stalls and weights do not change anymore [Car84], requiring a bigger step size,
which in turn increases weight fluctuations.

A post-algorithm smoothing scheme suggested in [Cha91] appears to reduce weight
fluctuations leading to better convergence performance. It suggests a running average of
past weights. Thus, the weights are recursively updated using past weights with or
without finite memory. Discussion on system design applicable to mobile satellite com-
munications which takes into account quantization noise and other issues discussed above
may be found in [Geb95].

3.15.2 Real vs. Complex Implementation

In some situations, the input data to the weight adaption scheme are real, and in others,
the data are complex (with real and imaginary parts denoting in-phase and quadrature
components). In both of these cases, the weights could be updated using the real LMS
algorithm or the complex LMS algorithm. The former uses real arithmetic and real vari-
ables, and updates real weights (in-phase and quadrature component are updated sepa-
rately when complex data are available), whereas the complex algorithm [Wid75] uses
complex arithmetic and variables, and weights are updated as well as implemented as
complex variables similar to the treatment presented in this book. For real data using
complex algorithm, you need to generate the quadrature component using the Hilbert
transformer or quadrature filter [Pap65], which has the following transfer functions:

T f>0
H(f)= 3.15.2
=0 < (3152)

For a similar misadjustment, the complex algorithm converges faster than the real algo-
rithm. More details on this topic are available in [Hor81, God86]. Some of these issues are
discussed below.

3.15.2.1 Quadrature Filter

The output of the quadrature filter is related to its input by the Hilber transform. Before
deriving an expression for the quadrature filter transfer function given by (3.15.2), the
Hilber transform is defined and some useful properties are stated.

Let x(t) denote the Hilber transform of a real signal x(t) defined as

K1) = % | :(_TZdT (3.153)

The Hilber transform has the following properties. First, the Hilber transform of the Hilber
transform is the negative of the original signal, that is,

() = —x(t) (3.15.4)
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A signal and its Hilber transform pair form an orthogonal pair, that is,

o

J’ X(t)x(t)dt=0 (3.15.5)

-0

The Hilber transform of a constant C is zero, that is,

C=0 (3.15.6)

The Hilber transform of cos(wt) is sin(wt), w > 0. If

x(t) = a(t)cos(2r,t + 6), £, >0 (3.15.7)
such that the highest frequency of a(t) is less than f;, then

%(t)=a(t)sin(2tt + 6), £, >0 (3.15.8)

Now a derivation of (3.15.2) is presented. It follows from (3.15.3) that X(t) is a convolution
of x(t) and 1/1t, that is,

K(t) =x(t)* - (3.159)

Thus, the Hilbert transform can be thought of as an output of a system (Hilber transformer)
with an impulse response h(t) given by

1
h(t) = = (3.15.10)
Let sgn(t) denote the sign function, that is,
sgn(t) = g : Zg (3.15.11)
and F{.} denote the Fourier transform of {.}. Noting that
Fsgn(t} = € (3.15.12)
L

it follows from the duality theorem of the Fourier transform that

Fﬁrlﬁ@: ~jsgn(f) (3.15.13)

Taking the Fourier transform on both sides of (3.15.10) and using (3.15.13), the following
expression is obtained for the transfer function of the Hilber transformer, also known as
the quadrature filter:
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H(f) = jsgn(f)
E j f<0

In the remainder of this section, a real valued signal is denoted by x;(t) and its Hilber
transform is denoted by xq(t).

3.15.2.2  Analytical Signals

A complex valued signal x(t) is said to be an analytical signal if its real and imaginary
parts are related via the Hibert transform. Thus, it can be expressed as

x(t) = x;(t) +jxo () (3.15.15)

where xq(t) = X;(t).
Taking the Fourier transform on both sides of (3.15.15) and using the properties of the
Hilber transform, it can easily be shown that x(t) has a one-sided spectrum.

3.15.2.3 Beamformer Structures

Consider the structures of two narrowband beamformers shown in Figure 3.16 and Figure
3.17. Figure 3.16 shows a real beamforming system and Figure 3.17 shows an in-phase
and quadrature (IQ) or complex beamforming system. The real beamforming system has
a single real valued output that can be produced by using real multiplication to achieve
the weighting of the array signals. The other has a complex valued output and can be
produced by using the complex multiplication to achieve the weighting of the array

signals.
‘ >+
Xll(t) QF
>+
Q\ -
@ @ < > Output Y, (t)
x,(t) oF
‘ >+
XIL(t) QF
FIGURE 3.16

Real beamforming system.
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XI L (t) QF

Cwg,
FIGURE 3.17

In-phase and quadrature beamforming system.

Let the L-dimensional complex vector x(t) denote the array signal in complex notation
defined as

x(t) = x;(t) +jx, (t) (3.15.16)
where the L-dimensional real vectors x;(t) and x(t) denote the in-phase and quadrature

array signals, respectively.
Define the L-dimensional complex weight vector w as

w=w, +jw, (3.15.17)

where the L-dimensional real vectors w; and wg denote the weights as shown in Figure
3.16 and Figure 3.17.

Let y(t) denote the output of the real beamforming system. It follows from Figure 3.16
that it is given by

YI(t) = WITxl(t) + W(TJXQ (t)

= Re[w''x(t)] (3.15.18)
= %[wa(t) +xM (t)w]

Let y(t) denote the output of the IQ beamforming system. It can easily be shown from
Figure 3.17 that the output of the IQ beamforming system is given by

y(t) = w'x(t) (3.15.19)
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Real algorithm for real beamforming system.
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FIGURE 3.19

Refy()]
Inphase and >
Quadrature
Beamforming Complex Output y(t)
System R
Im[y(t)]
Real
Algorithm

Real algorithm for IQ beamforming system.

Similarly, the beamformer structure may be developed when the reference signal is available.
Next, an implementation of the two algorithms is discussed with a view to compare the
difference in convergence speed. The development presented here is for the constrained

LMS algorithm. It can easily be extended for the unconstrained case.

3.15.2.4 Real LMS Algorithm

Implementation of the real LMS algorithm for the real beamforming system is shown in
Figure 3.18 and for the IQ beamforming system it is shown in Figure 3.19. When all signals
on the array are accessible, a suitable estimate of the required gradient of wHRw for w =

w(n) is
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FIGURE 3.20
Complex algorithm for IQ beamforming system.

In the real beamforming system, y;(n + 1) represents the only out of the system. In the IQ
beamforming system, it is the real part of the output. In both cases, it is a real valued
quantity and given by

yi(n+1)= %[wa(n 1) +x"(n +1)w(n)] (3.15.21)

Note from (3.15.20) that real multiplications are used in estimating the real and imaginary
parts of the complex valued quantity gr(w(n)).

Using the result E[x(t)x(t)] =0, it can easily be verified that the gradient given by (3.15.20)
and (3.15.21) is unbiased; that is, for a given w(n)

B g (w(n))] = 2Rw(n) (3.15.22)

Let Vg (w(n)) denote the covariance of the gradient estimate given by (3.15.20) and
(3.15.21). For a zero mean, stationary complex Gaussian vector process {x(k)}, it is given by

V, (w(n)) = 4w" (n)Rw(n)R +8Rw" (n)w(n)R (3.15.23)

The derivation of (3.15.23) can easily be carried out following the procedure used in Section
3.4.2.

3.15.2.5 Complex LMS Algorithm

Implementation of the complex algorithm for the IQ beamforming system is shown in
Figure 3.20, and for the real beamforming system in Figure 3.21. When all signals on the
array are accessible, a suitable estimate of the required gradient of wHRw for w = w(n) is

g(w(n)) =2x(n +1)y* (n+1) (3.15.24)
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FIGURE 3.21
Complex algorithm for real beamforming system.

where

[output when the complex system is used

y(n+1)= Elyl(n +1)+j§,(n +1) when the real system is used (3.15.25)
As yi(n + 1) = yo(n + 1), it follows from (3.15.25) that
y(n+1)=wx(n +1) (3.15.26)

It follows from (3.15.24) and (3.15.25) that the gradient estimate in this case is identical to
that for the standard LMS algorithm discussed in Section 3.4.1. Thus, the gradient cova-
riance for this case is given by (3.4.6). Denoting it by V, (w(n)) and rewriting (3.4.6)

V. (w(n)) = 4w" (n)Rw(n)R (3.15.27)

8C

3.15.2.6 Discussion
Comparing (3.15.23) and (3.15.27) one notes that

— H
V, (w(n))=V,_(w(n))+8Rw" (n)w(n)R (3.15.28)
Thus, the covariance of the gradient used in the real algorithm is more than that used in
the complex algorithm. The extra term 8RwH(n)w(n)R, present for the case of the real
algorithm, results in more misadjustment for this case. Let My denote the misadjustment
when the gradient is given by (3.15.20) and (3.15.21). Following the procedure used in
Section 3.4 it can be shown that [God86] if

0<p< 4;\1 (3.15.29)

max
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and

L-1 $
2u A (3.15.30)
£ 1-2pA,

then the misadjustment is given by

~

L-1
2u A =
_ L 1-2UA,
= —

L=
1-2u A; ~
Lo 1-2UA,
The misadjustment for the complex case is given by (3.4.52). Let it be denoted by M.
Comparing (3.15.30) with (3.4.52), one notes that

Mg

(3.15.31)

M (21) = Mg (1) (3.15.32)

Thus, it follows that misadjustment in both cases would be same if the gradient step size
used in the complex case is double that used in the real case. Since for small step size the
convergence time constant is inversely proportional to step size, it follows that for the
same misadjustment the convergence time constant for the complex LMS algorithm is half
that of the real LMS algorithm. This means that for the same misadjustment, the conver-
gence speed of the complex LMS algorithm is twice that of the real LMS algorithm.
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Notation and Abbreviations

Al Frobenius norm of a matrix A

E[] expectation operator

E[Xy] conditional expectation for given y
In natural logarithm

Tr(.) trace of (.)

()H Hermitian transpose of (.)

)T transpose of (.)

CMA constant modulus algorithm
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IQ

LMS
MSE
RHS
RLS
SNR
SMI
TDMA
F

F{.)
g(w(n))
g(w(n))
gi(w(n))
gx(w(n))
g3(w(n))
8s(w(n))
gr(w(n))

gi(w()
g(w(n))
H(f)
h(t)

I

iid.
Im[.]

K
Kw(n)
IZWW
Kyw(1)
Ky
Ky )
ko(n)

my(n)
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in-phase and quadrature

least mean squares

mean square error

right-hand side

recursive least squares

signal-to-noise ratio

sample matrix inverse

time-division multiple access

normalized steering vector in look direction

Fourier transform

gradient estimate for given w(n)

gradient estimate for given w(n)

gradient estimate using single-receiver system for given w(n)
gradient estimate using dual perturbation system for given w(n)
gradient estimate using reference receiver system for given w(n)
gradient estimate using structured gradient algorithm for given wi(n)

gradient estimate using recursive LMS algorithm for given w(n) and gradi-
ent estimate using real LMS algorithm for given w(n)

gradient estimate using improved LMS algorithm for given w(n)
mean of the gradient estimate for given w(n)

transfer functions of quadrature filter

impulse response

identity matrix

independent identically distributed

imaginary part of complex quantity

degree of freedom

covariance of w(n)

covariance of w(n) in limit

covariance matrix of w(n)

covariance matrix of w(n) in dual perturbation system
covariance matrix of w(n) in reference receiver system
constant denoting wH(n)Rw(n)

number of elements in array

misadjustment, length of sequence S

misadjustment in complex LMS algorithm
misadjustment in adaptive PIC

misadjustment in real LMS algorithm

misadjustment in standard LMS algorithm
misadjustment in unconstrained LMS algorithm
misadjustment in single-receiver system
misadjustment in dual perturbation system
misadjustment in reference receiver system

complex modulating function of signal

number of samples

projection operator



P(n) output power at nth iteration

P(n) mean output power at nth iteration
P(w(n))  mean output power for given w(n)

P(w) mean output power PIC for given w
Pn(w(n)) mean output noise power for given w(n)
P mean output power of optimal processor

Pr mean power of reference signal

Ps signal power

Q matrix with columns being eigenvectors of R

Q matrix with columns being eigenvectors of PRP

Q eigenvector corresponding to 5\1

q(n) output of interference beam at nth instant of time

R array correlation matrix

R(n) estimate of R at nth instant of time using only one sample
R(n) estimate of R at nth instant of time using past samples
R(n) estimate of R at nth instant of time using spatial averaging
R(n) estimate of R using past samples and spatial averaging
Rel.] real part of complex quantity

Ry array correlation matrix with no signal present

Ryw(n) correlation matrix of w(n)

R(N) estimate of R using N samples

I correlation between elements with lag i

S complex vector sequence

Sy steering vector associated with look direction

S steering vector associated with interference

sgn(t) sign function

U fixed weights of interference beam

U; eigenvector corresponding to A; of R

A% fixed weights of signal beam

Vg(w(n)) covariance of gradient for given w(n)

Vg(w(n)) covariance of gradient for given w(n)

Vg (w(n)) covariance of gradient in complex LMS algorithm for given w(n)

Vg (w(n)) covariance of gradient using single receiver system for given w(n)
Vg, (w(n)) covariance of gradient using dual perturbation system for given w(n)
Vg (w(n)) covariance of gradient using reference receiver system for given w(n)
Vg (w(n)) covariance of gradient in structured LMS algorithm for given w(n)

Vg (w(n)) covariance of gradient in recursive LMS algorithm for given w(n) and co-
variance of gradient in real LMS algorithm for given w(n)

Vg (w(n)) covariance of gradient in standard LMS algorithm for given w(n)

v(n) mean error vector at nth iteration

w optimal weights of constrained processor

w(n) array weights at nth iteration

w(n) mean value of w(n)

WisE optimal weights of processor with reference signal
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ni(n)
()
Ny(n)
M'(n)
P(n)
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optimal weight of PIC

PIC weight at nth iteration

mean value of w(n)

array signal vector at nth instant of time
Hilber transform of x(t)

in-phase signal

quadrature phase signal

array signal vector due to interference and uncorrelated noise
output of IQ beamforming system

array output at nth instant of time

array output for given w(n)

output of real beamforming system
correlation between reference signal and array signals
diagonal matrix of eigenvalues of P
diagonal matrix of eigenvalues of R
diagonal matrix of eigenvalues of PRP
diagonal matrix of nonzero eigenvalues of PRP
diagonal matrix of eigenvalues of k,(n)
perturbation step size

step size for which Vg (w(n)) is minimum
L-dimensional complex vector

error between array output and reference signal for given w(n)
perturbation noise for given y

MSE for given w(n)

minimum MSE

average value of MSE at nth iteration
gradient step size

inter-ring spacing

gradient step size at nth iteration

ith eigenvalue of R

ith eigenvalue of PRP

maximum eigenvalue of R

maximum eigenvalue of PRP

vector of eigenvalues of R

vector of eigenvalues of PRP

vector of nonzero eigenvalues of PRP
vector of eigenvalues of P

ith eigenvalue of k(1)

vector of eigenvalues of k,(n)

vector of eigenvalues of Ky, (n)

vector of nonzero eigenvalues of k,(n)
output of signal beam at nth instant of time
time constant for adaptive PIC

ith time constant
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