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Preface

Smart antennas involve processing of signals induced on an array of sensors such as
antennas, microphones, and hydrophones. They have applications in the areas of radar,
sonar, medical imaging, and communications.

Smart antennas have the property of spatial filtering, which makes it possible to receive
energy from a particular direction while simultaneously blocking it from another direction.
This property makes smart antennas a very effective tool in detecting and locating an
underwater source of sound such as a submarine without using active sonar. The capacity
of smart antennas to direct transmitting energy toward a desired direction makes them
useful for medical diagnostic purposes. This characteristic also makes them very useful
in canceling an unwanted jamming signal. In a communications system, an unwanted
jamming signal is produced by a transmitter in a direction other than the direction of the
desired signal. For a medical doctor trying to listen to the sound of a pregnant mother’s
heart, the jamming signal is the sound of the baby’s heart.

Processing signals from different sensors involves amplifying each signal before com-
bining them. The amount of gain of each amplifier dictates the properties of the antenna
array. To obtain the best possible cancellation of unwanted interferences, the gains of these
amplifiers must be adjusted. How to go about doing this depends on many conditions
including signal type and overall objectives. For optimal processing, the typical objective
is maximizing the output signal-to-noise ratio (SNR). For an array with a specified
response in the direction of the desired signal, this is achieved by minimizing the mean
output power of the processor subject to specified constraints. In the absence of errors,
the beam pattern of the optimized array has the desired response in the signal direction
and reduced response in the directions of unwanted interference.

The smart antenna field has been a very active area of research for over four decades.
During this time, many types of processors for smart antennas have been proposed and
their performance has been studied. Practical use of smart antennas was limited due to
excessive amounts of processing power required. This limitation has now been overcome
to some extent due to availability of powerful computers.

Currently, the use of smart antennas in mobile communications to increase the capacity
of communication channels has reignited research and development in this very exciting
field. Practicing engineers now want to learn about this subject in a big way. Thus, there
is a need for a book that could provide a learning platform. There is also a need for a
book on smart antennas that could serve as a textbook for senior undergraduate and
graduate levels, and as a reference book for those who would like to learn quickly about
a topic in this area but do not have time to perform a journal literature search for the
purpose.

This book aims to provide a comprehensive and detailed treatment of various antenna
array processing schemes, adaptive algorithms to adjust the required weighting on anten-
nas, direction-of-arrival (DOA) estimation methods including performance comparisons,
diversity-combining methods to combat fading in mobile communications, and effects of
errors on array system performance and error-reduction schemes. The book brings almost
all aspects of array signal processing together and presents them in a logical manner. It
also contains extensive references to probe further.
C Press LLC 
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After some introductory material in Chapter 1, the detailed work on smart antennas
starts in Chapter 2 where various processor structures suitable for narrowband field are
discussed. Behavior of both element space and beamspace processors is studied when
their performance is optimized. Optimization using the knowledge of the desired signal
direction as well as the reference signal is considered. The processors considered include
conventional beamformer; null-steering beamformer; minimum-variance distortionless
beamformer, also known as optimal beamformer; generalized side-lobe canceller; and
postbeamformer interference canceler. Detailed analysis of these processors in the absence
of  errors  is  carried  out  by  deriving  expressions for various performance measures. The
effect of errors on these processors has been analyzed to show how performance degrades
because of various errors. Steering vector, weight vector, phase shifter, and quantization
errors are discussed.

For various processors, solution of the optimization problem requires knowledge of the
correlation between various elements of the antenna array.  In  practice,  when this  infor-
mation is not available an estimate of the solution is obtained in real-time from received
signals as these become available. There are many algorithms available in the literature
to adaptively estimate the solution, with conflicting demands of implementation simplicity
and speed with which the solution is estimated.  Adaptive  processing  is  presented  in
Chapter 3, with details on the sample matrix inversion algorithm, constrained and uncon-
strained least mean squares (LMS) algorithms, recursive LMS algorithm, recursive least
squares algorithm, constant modulus algorithm, conjugate gradient method, and neural
network approach. Detailed convergence analysis of many of these algorithms is presented
under various conditions to show how the estimated solution converges to the optimal
solution. Transient and steady-state behavior is analyzed by deriving expressions for
various quantities of interest with a view to teach the underlying analysis tools. Many
numerical examples are included to demonstrate how these algorithms perform.

Smart antennas suitable for broadband signals are discussed in Chapter 4. Processing
of broadband signals may be carried out in the time domain as well as in the frequency
domain. Both aspects are covered in detail in this chapter. A tapped-delay line structure
behind each antenna to process the broadband signals in the time domain is described
along with its frequency response. Various constraints to shape the beam of the broadband
antennas are derived, optimization for this structure is considered, and a suitable adaptive
algorithm to estimate the optimal solution is presented. Various realizations of time-
domain broadband processors are discussed in detail along with the effect that the choice
of origin has on performance. A detailed treatment of frequency-domain processing of
broadband signals is presented and its relationship with time-domain processing is estab-
lished. Use of the discrete Fourier transform method to estimate the weights of the time-
domain structure and how its modular structure could help reduce real-time processing
are described.

Correlation between a desired signal and unwanted interference exists in situations of
multipath signals, deliberate jamming, and so on, and can degrade the performance of an
antenna array processor. Chapter 5 presents models for correlated fields in narrowband
and broadband signals. Analytical expressions for SNRs in both narrowband and broad-
band structures of smart antennas are derived, and the effects of several factors on SNR
are explored, including the magnitude and phase of the correlation, number of elements
in the array, direction and level of the interference source and the level of the uncorrelated
noise. Many methods are described to decorrelate the correlated sources, and analytical
expressions are derived to show the decorrelation effect of the proposed techniques.

In Chapter 6, various DOA estimation methods are described, followed by performance
comparisons and sensitivity analyses. These estimation tools include spectral estimation
methods, minimum variance distortionless response estimator, linear prediction method,
C Press LLC 
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maximum entropy method, maximum likelihood method, various eigenstructure methods
including many versions of MUSIC algorithms, minimum norm methods, CLOSEST
method, ESPRIT method, and weighted subspace fitting method. This chapter also con-
tains discussion on various preprocessing and number-of-source estimation methods.

In the first six chapters, it is assumed that the directional signals arrive from point
sources as plane wave fronts. In mobile communication channels, the received signal is a
combination of many components arriving from various directions due to multipath
propagation resulting in large fluctuation in the received signals. This phenomenon is
called fading. In Chapter 7, a brief review of fading channels is presented, distribution of
signal amplitude and received power on an antenna is developed, analysis of noise- and
interference-limited single-antenna systems in Rayleigh and Nakagami fading channels
is presented by deriving results for average bit error rate and outage probability. The
results show how fading affects the performance of a single-antenna system.

Chapter 8 presents a comprehensive analysis of diversity combining, which is a process
of combining several signals with independent fading statistics to reduce large attenuation
of the desired signal in the presence of multipath signals. The diversity-combining schemes
described and analyzed in this chapter include selection combiner, switched diversity
combiner, equal gain combiner, maximum ratio combiner, optimal combiner, generalized
selection combiner, cascade diversity combiner, and macroscopic diversity combiner. Both
noise-limited and interference-limited systems are analyzed in various fading conditions
by deriving results for average bit error rate and outage probability.
C Press LLC 
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Widespread interest in smart antennas has continued for several decades due to their use
in numerous applications. The first issue of IEEE Transactions of Antennas and Propagation,
published in 1964 [IEE64], was followed by special issues of various journals [IEE76, IEE85,
IEE86, IEE87a, IEE87b], books [Hud81, Mon80, Hay85, Wid85, Com88, God00], a selected
bibliography [Mar86], and a vast number of specialized research papers. Some of the
general papers in which various issues are discussed include [App76, d’A80, d’A84, Gab76,
Hay92, Kri96, Mai82, Sch77, Sta74, Van88, Wid67].

The current demand for smart antennas to increase channel capacity in the fast-growing
area of mobile communications has reignited the research and development efforts in this
area around the world [God97]. This book aims to help researchers and developers by
providing a comprehensive and detailed treatment of the subject matter. Throughout the
book, references are provided in which smart antennas have been suggested for mobile
communication systems. This chapter presents some introductory material and terminol-
ogy associated with antenna arrays for those who are not familiar with antenna theory.

1.1 Antenna Gain

Omnidirectional antennas radiate equal amounts of power in all directions. Also known
as isotropic antennas, they have equal gain in all directions. Directional antennas, on the
other hand, have more gain in certain directions and less in others. A direction in which
the gain is maximum is referred to as the antenna boresight. The gain of directional
antennas in the boresight is more than that of omnidirectional antennas, and is measured
with respect to the gain of omnidirectional antennas. For example, a gain of 10 dBi (some
times indicated as dBic or simply dB) means the power radiated by this antenna is 10 dB
more than that radiated by an isotropic antenna.
C Press LLC 
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An antenna may be used to transmit or receive. The gain of an antenna remains the
same in both the cases. The gain of a receiving antenna indicates the amount of power it
delivers to the receiver compared to an omnidirectional antenna.

1.2 Phased Array Antenna

A phased array antenna uses an array of antennas. Each antenna forming the array is
known as an element of the array. The signals induced on different elements of an array
are combined to form a single output of the array.

This process of combining the signals from different elements is known as beamforming.
The direction in which the array has maximum response is said to be the beam-pointing
direction. Thus, this is the direction in which the array has the maximum gain. When signals
are combined without any gain and phase change, the beam-pointing direction is broadside
to the linear array, that is, perpendicular to the line joining all elements of the array.

By adjusting the phase difference among various antennas one is able to control the beam
pointing direction. The signals induced on various elements after phase adjustment due to
a source in the beam-pointing direction get added in phase. This results in array gain (or
equivalently, gain of the combined antenna) equal to the sum of individual antenna gains.

1.3 Power Pattern

A plot of the array response as a function of angle is referred to as array pattern or antenna
pattern. It is also called power pattern when the power response is plotted. It shows the
power received by the array at its output from a particular direction due to a unit power
source in that direction. A power pattern of an equispaced linear array of ten elements
with half-wavelength spacing is shown in Figure 1.1. The angle is measured with respect
to the line of the array. The beam-pointing direction makes a 90° angle with the line of
the array. The power pattern has been normalized by dividing the number of elements in
the array so that the maximum array gain in the beam-pointing direction is unity.

The power pattern drops to a low value on either side of the beam-pointing direction.
The place of the low value is normally referred to as a null. Strictly speaking, a null is a
position where the array response is zero. However, the term sometimes is misused to
indicate the low value of the pattern. The pattern between the two nulls on either side of
the beam-pointing direction is known as the main lobe (also called main beam or simply
beam). The width of the main beam between the two half-power points is called the half-
power beamwidth. A smaller beamwidth results from an array with a larger extent. The
extent of the array is known as the aperture of the array. Thus, the array aperture is the
distance between the two farthest elements in the array. For a linear array, the aperture is
equal to the distance between the elements on either side of the array.

1.4 Beam Steering

For a given array the beam may be pointed in different directions by mechanically moving
the array. This is known as mechanical steering. Beam steering can also be accomplished
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by appropriately delaying the signals before combining. The process is known as electronic
steering, and no mechanical movement occurs. For narrowband signals, the phase shifters
are used to change the phase of signals before combining.

The required delay may also be accomplished by inserting varying lengths of coaxial
cables between the antenna elements and the combiner. Changing the combinations of
various lengths of these cables leads to different pointing directions. Switching between
different combinations of beam-steering networks to point beams in different directions
is sometimes referred to as beam switching.

When processing is carried out digitally, the signals from various elements can be
sampled, stored, and summed after appropriate delays to form beams. The required delay
is provided by selecting samples from different elements such that the selected samples
are taken at different times. Each sample is delayed by an integer multiple of the sampling
interval; thus, a beam can only be pointed in selected directions when using this technique.

1.5 Degree of Freedom

The gain and phase applied to signals derived from each element may be thought of as
a single complex quantity, hereafter referred to as the weighting applied to the signals. If
there is only one element, no amount of weighting can change the pattern of that antenna.
However, with two elements, when changing the weighting of one element relative to the
other, the pattern may be adjusted to the desired value at one place, that is, you can place
one minima or maxima anywhere in the pattern. Similarly, with three elements, two
positions may be specified, and so on. Thus, with an L-element array, you can specify L – 1
positions. These may be one maxima in the direction of the desired signal and L – 2
minimas (nulls) in the directions of unwanted interferences. This flexibility of an L element
array to be able to fix the pattern at L – 1 places is known as the degree of freedom of the
array. For an equally spaced linear array, this is similar to an L – 1 degree polynomial of
L – 1 adjustable coefficients with the first coefficient having the value of unity.

FIGURE 1.1
Power pattern of a ten-element linear array with half-wavelength spacing.
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1.6 Optimal Antenna

An antenna is optimal when the weight of each antenna element is adjusted to achieve
optimal performance of an array system in some sense. For example, assume that a
communication system is operating in the presence of unwanted interferences. Further-
more, the desired signal and interferences are operating at the same carrier frequency such
that these interferences cannot be eliminated by filtering. The optimal performance for a
communication system in such a situation may be to maximize the signal-to-noise ratio
(SNR) at the output of the system without causing any signal distortion. This would
require adjusting the antenna pattern to cancel these interferences with the main beam
pointed in the signal direction. Thus, the communication system is said to be employing
an optimal antenna when the gain and the phase of the signal induced on each element
are adjusted to achieve the maximum output SNR (sometimes also referred to as signal
to interference and noise ratio, SINR).

1.7 Adaptive Antenna

The term adaptive antenna is used for a phased array when the weighting on each element
is applied in a dynamic fashion. The amount of weighting on each channel is not fixed at
the time of the array design, but rather decided by the system at the time of processing
the signals to meet required objectives. In other words, the array pattern adapts to the
situation and the adaptive process is under control of the system. For example, consider
the situation of a communication system operating in the presence of a directional inter-
ference operating at the carrier frequency used by the desired signal, and the performance
measure is to maximize the output SNR. As discussed previously, the output SNR is
maximized by canceling the directional interference using optimal antennas. The antenna
pattern in this case has a main beam pointed in the desired signal direction, and has a null
in the direction of the interference. Assume that the interference is not stationary but moving
slowly. If optimal performance is to be maintained, the antenna pattern needs to adjust so
that the null position remains in the moving interference direction. A system using adaptive
antennas adjusts the weighting on each channel with an aim to achieve such a pattern.

For adaptive antennas, the conventional antenna pattern concepts of beam width, side
lobes, and main beams are not used, as the antenna weights are designed to achieve a set
performance criterion such as maximization of the output SNR. On the other hand, in
conventional phase-array design these characteristics are specified at the time of design.

1.8 Smart Antenna

The term smart antenna incorporates all situations in which a system is using an antenna
array and the antenna pattern is dynamically adjusted by the system as required. Thus,
a system employing smart antennas processes signals induced on a sensor array. A block
diagram of such a system is shown in Figure 1.2.
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The type of sensors used and the additional information supplied to the processor
depend on the application. For example, a communication system uses antennas as sensors
and may use some signal characteristics as additional information. The processor uses
this information to differentiate the desired signal from unwanted interference.

A block diagram of a narrowband communication system is shown in Figure 1.3 where
signals induced on an antenna array are multiplied by adjustable complex weights and
then combined to form the system output. The processor receives array signals, system
output, and direction of the desired signal as additional information. The processor cal-
culates the weights to be used for each channel.

1.9 Book Outline

Chapter 2 is dedicated to various narrowband processors and their performance. Adaptive
processing of narrowband signals is discussed in Chapter 3. Descriptions and analyses of

FIGURE 1.2
Block diagram of an antenna array system.

FIGURE 1.3
Block diagram of a communication system using an antenna array.
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broadband-signal processors are presented in Chapter 4. In Chapter 5, situations are
considered in which the desired signals and unwanted interference are not independent.
Chapter 6 is focused on using the received signals on an array to identify the direction of
a radiating source. Chapter 7 and Chapter 8 are focused on fading channels. Chapter 7
describes such channels and analyzes the performance of a single antenna system in a
fading environment. Chapter 8 considers multiple antenna systems and presents various
diversity-combining techniques.
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Notation and Abbreviations
References

Consider the antenna array system consisting of L antenna elements shown in Figure 2.1,
where signals from each element are multiplied by a complex weight and summed to
form the array output. The figure does not show components such as preamplifiers, band-
pass filters, and so on. It follows from the figure that an expression for the array output
is given by

(2.1)

where * denotes the complex conjugate. The conjugate of complex weights is used to
simplify the mathematical notation.

Denoting the weights of the array system using vector notation as

(2.2)

and signals induced on all elements as

(2.3)

the output of the array system becomes

(2.4)

where superscript T and H, respectively, denote transposition and the complex conjugate
transposition of a vector or matrix. Throughout the book w and x(t) are referred to as the
weight vector and the signal vector, respectively. Note that to obtain the array output, you

y t w x t
L

( ) = ( )
=
∑ l

l

l
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w = …[ ]w w wL
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1 2, , ,

x t x t x t x tL
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y t tH( ) = ( )w x
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need to multiply the signals induced on all elements with the corresponding weights. In
vector notation, this operation is carried out by taking the inner product of the weight
vector with the signal vector as given by (2.4).

The output power of the array at any time t is given by the magnitude square of the
array output, that is,

(2.5)

Substituting for y(t) from (2.4), the output power becomes

(2.6)

If the components of x(t) can be modeled as zero-mean stationary processes, then for a
given w the mean output power of the array system is obtained by taking conditional
expectation over x(t):

(2.7)

where E[⋅] denotes the expectation operator and R is the array correlation matrix defined by

(2.8)

Elements of this matrix denote the correlation between various elements. For example, Rij
denotes the correlation between the ith and the jth element of the array.

Consider that there is a desired signal source in the presence of unwanted interference
and random noise. The random noise includes both background and electronic noise. Let
xS(t), xI(t), and n(t), respectively, denote the signal vector due to the desired signal source,
unwanted interference, and random noise. The components of signal, interference, and
random noise in the output yS(t), yI(t), and yn(t) are then obtained by taking the inner
product of the weight vector with xS(t), xI(t), and n(t). These are given by

FIGURE 2.1
Antenna array system.
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(2.9)

(2.10)

and

(2.11)

Define the array correlation matrices due to the signal source, unwanted interference,
and random noise, respectively, as

(2.12)

(2.13)

and

(2.14)

Note that R is the sum of these three matrices, that is,

(2.15)

Let PS, PI and Pn denote the mean output power due to the signal source, unwanted
interference, and random noise, respectively. Following (2.7), these are given by

(2.16)

(2.17)

and

(2.18)

Let PN denote the mean power at the output of the array contributed by random noise
and unwanted interference, that is,

(2.19)

We refer to PN as the mean noise power at the output of the array system. Note that the
noise here includes random noise and contributions from all sources other than the desired
signal. In some sources, this is also referred to as noise plus interference.

Substituting from (2.17) and (2.18) in (2.19),

(2.20)
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Let RN denote the noise array correlation matrix, that is,

(2.21)

Then PN, the mean noise power at the output of the system can be expressed in terms of
weight vector and RN as

(2.22)

Let the output signal-to-noise ratio (SNR), sometimes also referred to as the signal to
interference plus noise ratio (SINR), be defined as the ratio of the mean output signal
power to the mean output noise power at the output of the array system, that is,

(2.23)

Substituting from (2.16) and (2.22) in (2.23), it follows that

(2.24)

The weights of the array system determine system performance. The selection process of
these weights depends on the application and leads to various types of beamforming schemes.

In this chapter, various beamforming schemes are discussed, performance of a processor
using these schemes is analyzed, and the effect of errors on processor performance is
presented [God93, God97].

2.1 Signal Model

In this section, a signal model is described and expressions for the signal vector and the
array correlation matrix required for the understanding of various beamforming schemes
are written.

Assume that the array is located in the far field of directional sources. Thus, as far as
the array is concerned, the directional signal incident on the array can be considered as a
plane wave front. Also assume that the plane wave propagates in a homogeneous media
and that the array consists of identical distortion-free omnidirectional elements. Thus, for
the ideal case of nondispersive propagation and distortion free elements, the effect of
propagation from a source to an element is a pure time delay.

Let the origin of the coordinate system be taken as the time reference as shown in
Figure 2.2. Thus, the time taken by a plane wave arriving from the kth source in direction
(φk,θk) and measured from the lth element to the origin is given by

(2.1.1)

where rl is the position vector of the lth element, v̂ (φk,θk) is the unit vector in direction
(φk,θk), c is the speed of propagation of the plane wave front, and the dot represents the
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dot product. For a linear array of equispaced elements with element spacing d, aligned
with the x-axis such that the first element is situated at the origin as shown in Figure 2.3,
it becomes

(2.1.2)

FIGURE 2.2
Coordinate system.

FIGURE 2.3
Linear array with element spacing d.
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Note that when the kth source is broadside to the array, θk = 90°. It follows from (2.1.2)
that for this case, τl(θk) = 0 for all l. Thus, the wave front arrives at all the elements of the
array at the same time and signals induced on all the elements due to this source are
identical. For θk = 0°, the wave front arrives at the lth element before it arrives at the
origin, and the signal induced on the lth element leads to that induced on an element at
the origin. The time delay given by (2.1.2) is

(2.1.3)

On the other hand, for θk = 180°, the time delay is given by

(2.1.4)

The negative sign is due to the definition of τl. It is the time taken by the plane wave from
the lth element to the origin. The negative sign indicates that the wave front arrives at the
origin before it arrives at the lth element, and the signal induced on the lth element lags
behind that induced on an element at the origin.

The signal induced on the reference element (an element at the origin) due to the kth
source is normally expressed in complex notation as

(2.1.5)

with mk(t) denoting the complex modulating function and f0 denoting the carrier fre-
quency. The structure of the modulating function reflects the particular modulation used
in a communication system. For example, for frequency division multiple access (FDMA)
systems it is a frequency-modulated signal given by mk(t) = Akejξk(t) with Ak denoting the
amplitude and ξk(t) denoting the message. For time division multiple access (TDMA)
systems, it is given by

(2.1.6)

where p(t) is the sampling pulse, the amplitude dk(n) denotes the message symbol, and ∆
is the sampling interval. For code division multiple access (CDMA) systems, mk(t) is given by

(2.1.7)

where dk(n) denotes the message sequence and g(t) is a pseudo random-noise binary
sequence having the values +1 or −1.

In general, the modulating function is normally modeled as a complex low-pass process
with zero mean and variance equal to the source power pk as measured at the reference
element. Assuming that the wave front on the lth elements arrives τl(φk,θk) seconds before
it arrives at the reference element, the signal induced on the lth element due to the kth
source can be expressed as

(2.1.8)
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The expression is based upon the narrowband assumption for array signal processing,
which assumes that the bandwidth of the signal is narrow enough and that the array
dimensions are small enough for the modulating function to stay almost constant during
τl(φk,θk) seconds, that is, the approximation mk(t) ≅  mk(t + τl(φk,θk)) holds.

Assume that there are M directional sources present. Let xl(t) denote the total signal
induced due to all M directional sources and background noise on the lth element. Thus,

(2.1.9)

where nl(t) is random noise component on the lth element, which includes background
noise and electronic noise generated in the lth channel. It is assumed to be temporally
white with zero mean and variance equal to σn

2.  Furthermore, it is assumed to be uncor-
related with directional sources, that is,

(2.1.10)

The noise on different elements is also assumed to be uncorrelated, that is,

(2.1.11)

It should be noted that if the elements were not omnidirectional, then the signal induced
on each element due to a source is scaled by an amount equal to the response of the
element under consideration in the direction of the source.

Substituting from (2.1.9) in (2.3), the signal vector becomes

(2.1.12)

where the carrier term ej2πf0t has been dropped for the ease of notation as it plays no role
in subsequent treatment and

(2.1.13)

2.1.1 Steering Vector Representation

Steering vector is an L-dimensional complex vector containing responses of all L elements
of the array to a narrowband source of unit power. Let Sk denote the steering vector
associated with the kth source. For an array of identical elements, it is defined as
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(2.1.14)

Note that when the first element of the array is at the origin of the coordinate system
τ1(φk,θk) = 0, the first element of the steering vector is identical to unity.

As the response of the array varies according to direction, a steering vector is associated
with each directional source. Uniqueness of this association depends on array geometry
[God81]. For a linear array of equally spaced elements with element spacing greater than
half wavelength, the steering vector for every direction is unique.

For an array of identical elements, each component of this vector has unit magnitude.
The phase of its ith component is equal to the phase difference between signals induced
on the ith element and the reference element due to the source associated with the steering
vector. As each component of this vector denotes the phase delay caused by the spatial
position of the corresponding element of the array, this vector is also known as the space
vector. It is also referred to as the array response vector as it measures the response of the
array due to the source under consideration. In multipath situations such as in mobile
communications, it also denotes the response of the array to all signals arising from the
source [Nag94]. In this book, steering vector, space vector, and array response vector are
used interchangeably.

Using (2.1.14) in (2.1.12), the signal vector can be compactly expressed as

(2.1.15)

Substituting for x(t) from (2.1.15) in (2.4), it follows that

(2.1.16)

The first term on the right side of (2.1.16) is the contribution from all directional sources
and the second term is the random noise contribution to the array output. Note that the
contribution of all directional sources contained in the first term is the weighted sum of
modulating functions of all sources. The weight applied to each source is the inner product
of the processor weight vector and steering vector associated with that source, and denotes
the complex response of the processor toward the source. Thus, the response of a processor
with weight vector w toward a source in direction (φ,θ) is given by

(2.1.17)

An expression for the array correlation matrix is derived in terms of steering vectors.
Substituting the signal vector x(t) from (2.1.15) in the definition of the array correlation
matrix given by (2.8) leads to the following expression for the array correlation matrix:
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(2.1.18)

The first term on the right-hand side (RHS) of (2.1.18) simplifies to

(2.1.19)

When sources are uncorrelated,

(2.1.20)

where pk denotes the power of the kth source measured at one of the elements of the
array. It should be noted that pk is the variance of the complex modulating function mk(t)
when it is modeled as a zero-mean low-pass random process, as mentioned previously.
Thus, for uncorrelated sources the first term becomes

(2.1.21)

The fact that the directional sources and the white noise are uncorrelated results in the
third and fourth terms on the RHS of (2.1.18) to be identical to zero. Using (2.1.11), the
second term simplifies to σn

2 I with I denoting an identity matrix. This along with (2.1.21)
lead to the following expression for the array correlation matrix when directional sources
are uncorrelated:

(2.1.22)

where I is the identity matrix and σn
2 I denotes the component of the array correlation

matrix due to random noise, that is

(2.1.23)

Let S0 denote the steering vector associated with the signal source of power pS. Then
the array correlation matrix due to the signal source is given by

(2.1.24)
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Similarly, the array correlation matrix due to an interference of power pI is given by

(2.1.25)

where SI denotes the steering vector associated with the interference.
Using matrix notation, the correlation matrix R may be expressed in the following

compact form:

(2.1.26)

where columns of the L × M matrix A are made up of steering vectors, that is,

(2.1.27)

and M × M matrix S denote the source correlation. For uncorrelated sources, it is a diagonal
matrix with

(2.1.28)

2.1.2 Eigenvalue Decomposition

Sometimes it is useful to express the array correlation matrix in terms of its eigenvalues
and their associated eigenvectors. The eigenvalues of the array correlation matrix can be
divided into two sets when the environment consists of uncorrelated directional sources
and uncorrelated white noise.

The eigenvalues contained in one set are of equal value. Their value does not depend
on directional sources and is equal to the variance of white noise. The eigenvalues con-
tained in the second set are functions of directional source parameters and their number
is equal to the number of these sources. Each eigenvalue of this set is associated with a
directional source and its value changes with the change in the source power of this source.
The eigenvalues of this set are bigger than those associated with the white noise. Some-
times these eigenvalues are referred to as the signal eigenvalues, and the others belonging
to the first set are referred to as the noise eigenvalues. Thus, a correlation matrix of an
array of L elements immersed in M uncorrelated directional sources and white noise has
M signal eigenvalues and L – M noise eigenvalues.

Denoting the L eigenvalues of the array correlation matrix in descending order by λ l,
l = 1, …, L and their corresponding unit-norm eigenvectors by Ul, l = 1, …, L the matrix
takes the following form:

(2.1.29)

with a diagonal matrix

(2.1.30)
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and

(2.1.31)

This representation is sometimes referred to as the spectral decomposition of the array
correlation matrix. Using the fact that the eigenvectors form an orthonormal set,

(2.1.32)

and

(2.1.33)

Thus,

(2.1.34)

The orthonormal property of the eigenvectors leads to the following expression for the
array correlation matrix:

(2.1.35)

2.2 Conventional Beamformer

The conventional beamformer, sometimes also known as the delay-and-sum beamformer,
has weights of equal magnitudes. The phases are selected to steer the array in a particular
direction (φ0,θ0), known as look direction. With S0 denoting the steering vector in the look
direction, the array weights are given by

(2.2.1)

The response of a processor in a direction (φ,θ) is obtained by using (2.1.17), that is,
taking the dot product of the weight vector with the steering vector S(φ,θ). With the
weights given by (2.2.1), the response y(φ,θ) is given by

(2.2.2)

Next, the behavior of this processor is examined under various conditions. It is shown
that the array with these weights has unity power response in the look direction, that is,
the mean output power of the processor due to a source in the look direction is the same
as the source power. An expression for the output SNR is also derived.
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2.2.1 Source in Look Direction

Assume a source of power pS in the look direction, hereafter referred to as the signal
source, with mS(t) denoting its modulating function. The signal induced on the lth element
due to this source only is given by

(2.2.3)

Thus, in vector notation, using steering vector to denote relevant phases, the array signal
vector due to look direction signal becomes

(2.2.4)

The output of the processor is obtained by taking the inner product of weight vector wc
with the signal vector x(t) as in (2.4). Thus, the output of the processor is given by

(2.2.5)

Substituting from (2.2.1) and (2.2.4), and noting that S0
HS0  = L, the output becomes

(2.2.6)

Thus, the output of the conventional processor is the same as the signal induced on an
element positioned at the reference element. Next, look at its mean out power. As there
is only the signal source present, the mean output power of the processor is the mean
signal power given by (2.16), that is,

(2.2.7)

Since

(2.2.8)

substituting from (2.2.1), (2.2.8) in (2.2.7), and noting that S0
HS0  = L,  

(2.2.9)

Thus, the mean output power of the conventional processor steered in the look direction
is equal to the power of the source in the look direction. The process is similar to mechan-
ically steering the array in the look direction except that it is done electronically by
adjusting the phases. This is also referred to as electronic steering, and phase shifters are
used to adjust the required phases. It should be noted that the aperture of an electronically
steered array is different from that of the mechanically steered array.

The concept of delay-and-sum beamformer can be further understood with the help of
Figure 2.4, which shows an array with two elements separated by distance d. Assume that
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a plane wave arriving from direction θ induces voltage s(t) on the first element. As the
wave arrives at the second element T̃ seconds later, with

(2.2.10)

the induced voltage on the second element equals s(t − T̃). If the signal induced at Element 1
is delayed by time T̃, the signal after the delay is s(t − T̃ ) and no delay is provided at
Element 2, then both voltage wave forms are the same. The output of the processor is the
sum of the two signals s(t − T̃ ). A scaling of each wave form by 0.5 provides the gain in
direction θ equal to unity.

2.2.2 Directional Interference

Let only a directional interference of power pI be present in direction (φI,θI). Let mI(t) and
SI, respectively, denote the modulating function and the steering vector for the interference.
The array signal vector for this case becomes

(2.2.11)

The array output is obtained by taking the inner product of weight vector and the array
signal vector. Thus,

(2.2.12)

The quantity 1/L S0
HS0 determines the amount of interference allowed to filter through

the processor and thus is the response of the processor in the interference direction.
The amount of interference power at the output of a processor is given by (2.17). Thus,

in the presence of interference only, an expression for the mean output power of the
conventional processor becomes

FIGURE 2.4
Delay-and-sum beamformer.
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(2.2.13)

For a single source in the nonlook direction

(2.2.14)

Substituting for RI and wc in (2.2.13),

(2.2.15)

where

(2.2.16)

and depends on the array geometry and the direction of the interference relative to the
look direction.

The effect of the interference direction on parameter ρ is shown in Figure 2.5 and Figure 2.6
for two types of arrays, planar and linear. The planar array consists of two rings of five
elements each, as shown in Figure 2.7, whereas the linear array consists of ten equispaced
elements.

FIGURE 2.5
Parameter ρ vs. interference direction at three values of inter-ring spacing for the array geometry shown in
Figure 2.7. From Godara, L.C., J. Acoust. Soc. Am., 85, 202–213, 1989 [God89a]. With permission.)
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For the planar array, the signal and the interference directions are assumed to be in the
plane of the array; the signal direction coincides with the x-axis. For the linear array, the
signal is assumed to be broadside to the array. For both cases, the direction of the inter-
ference is measured relative to the x-axis.

FIGURE 2.6
Parameter ρ vs. interference direction for a ten-element linear array. (From Godara, L.C., J. Acoust. Soc. Am., 85,
202–213, 1989 [God89a]. With permission.)

FIGURE 2.7
Structure of planar array.
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Figure 2.5 and Figure 2.6, respectively, show the values of ρ for various interference
directions at three values of inter-ring spacing µ and three values of inter-element spacing
d. The parameters µ and d are expressed in terms of the wavelength of the narrowband
sources. These figures show how ρ depends on the array geometry for given interference
and signal directions.

2.2.3 Random Noise Environment

Consider an environment consisting of uncorrelated noise of power σn
2.  It is assumed that

there is no directional source present. The array signal vector for this case becomes

(2.2.17)

The array output is obtained by taking the inner product of weight vector and the array
signal vector. Thus,

(2.2.18)

Substituting from (2.2.17) and (2.2.1), the output becomes

(2.2.19)

The mean output noise power of a processor is given by (2.18). Thus, the mean output
power of the conventional processor in the presence of uncorrelated noise only is given by

(2.2.20)

Since Rn is given by

(2.2.21)

substituting for Rn and wc in (2.2.20), 

(2.2.22)

Thus, the mean power at the output of the conventional processor is equal to the mean
uncorrelated noise power at an element of the array divided by the number of elements
in the array. In other words, the noise power at the array output is L times less than that
present on each element.

2.2.4 Signal-to-Noise Ratio

Assume that the noise environment consists of the random noise of power σn
2 and a

directional interference of power pI in the nonlook direction. Assume that there is a source
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of power pS in the look direction. Given that the interference and the signal are uncorre-
lated, the array signal vector for this case becomes

(2.2.23)

Now we have two directional sources, a signal source, a directional interference, and
the random noise. Thus, it follows from (2.1.22) that the array correlation matrix R is given
by

(2.2.24)

The mean output power of the processor is given by

(2.2.25)

Substituting from (2.2.1), (2.2.24) and noting that S0
HS0 = L, the expression for the mean

output power from (2.2.25) becomes

(2.2.26)

Note that the mean output power of the processor is the sum of the mean output powers
due to signal source, directional interference, and uncorrelated noise.

The mean signal power at the output of the processor is equal to the mean power of
the signal source, that is,

(2.2.27)

The mean noise power is the sum of the interference power and the uncorrelated noise
power, that is,

(2.2.28)

The output signal to noise ratio is then given by

(2.2.29)

Now consider a special case when no directional interference is present. For this case,
the expression for the output SNR becomes

(2.2.30)
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As the input SNR is pS/σn
2, this provides an array gain, which is defined as the ratio of

the output SNR to the input SNR, equal to L, the number of elements in the array.
This processor provides maximum output SNR when no directional interference oper-

ating at the same frequency is present. It is not effective in the presence of directional
interference, whether intentional or unintentional. The response of the processor toward
a directional source is given by (2.2.2). The performance of the processor in the presence
of one nonlook directional source indicated by SNR is given by (2.2.29). It is a function of
the interference power and the parameter ρ that in turn depends on the relative direction
of two sources and array geometry.

2.3 Null Steering Beamformer

The null steering beamformer is used to cancel a plane wave arriving from a known
direction and thus produces a null in the response pattern of the plane wave’s direction
of arrival. One of the earliest schemes, referred to as DICANNE [And69, And69a], achieves
this by estimating the signal arriving from a known direction by steering a conventional
beam in the direction of the source and then subtracting the output of this from each
element. An estimate of the signal is made by delay-and-sum beamforming using shift
registers to provide the required delay at each element, such that the signal arriving from
the beam-steering direction appears in phase after the delay, and then sums these wave
forms with equal weighting. This signal then is subtracted from each element after the
delay. The process is very effective for canceling strong interference and could be repeated
for multiple interference cancelation.

Although the process of subtracting the estimated interference using the delay-and-sum
beamformer in the DICANNE scheme is easy to implement for single interference, it
becomes cumbersome as the number of interferences grows. A beam with unity response
in the desired direction and nulls in interference directions may be formed by estimating
beamformer weights shown in Figure 2.1 using suitable constraints [d’As84, And69a].
Assume that S0 is the steering vector in the direction where unity response is required
and that S1, …, Sk are k steering vectors associated with k directions where nulls are
required. The desired weight vector is the solution of the following simultaneous equations:

(2.3.1)

(2.3.2)

Using matrix notation, this becomes

(2.3.3)

where A is a matrix with columns being the steering vectors associated with all directional
sources including the look direction, that is,

(2.3.4)

w SH
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and e1 is a vector of all zeros except the first element which is one, that is,

(2.3.5)

For k = L − 1, A is a square matrix. Assuming that the inverse of A exists, which requires
that all steering vectors are linearly independent [God81], the solution for the weight
vector is given by

(2.3.6)

In case the steering vectors are not linearly independent, A is not invertible and its pseudo
inverse can be used in its place.

It follows from (2.3.6) that due to the structure of the vector e1, the first row of the
inverse of matrix A forms the weight vector. Thus, the weights selected as the first row
of the inverse of matrix A have the desired properties of unity response in the look
direction and nulls in the interference directions.

When the number of required nulls are less than L − 1, A is not a square matrix. A
suitable estimate of weights may be produced using

(2.3.7)

Although the beam pattern produced by this beamformer has nulls in the interference
directions, it is not designed to minimize the uncorrelated noise at the array output. It is
possible to achieve this by selecting weights that minimize the mean output power subject
to above constraints [Bre88].

An application of a null steering scheme for detecting amplitude-modulated signals by
placing nulls in the known interference directions is described in [Cho93], which is able
to cancel a strong jammer in a mobile communication system. The use of a null steering
scheme for a transmitting array employed at a base station is discussed in [Chi94], which
minimizes the interferences toward other co-channel mobiles. Performance analysis of a
null steering algorithm is presented in [Fri89].

2.4 Optimal Beamformer

The null steering scheme described in the previous section requires knowledge of the
directions of interference sources, and the beamformer using the weights estimated by
this scheme does not maximize the output SNR. The optimal beamforming method
described in this section overcomes these limitations and maximizes the output SNR in
the absence of errors. It should be noted that the optimal beamformer, also known as the
minimum variance distortionless response (MVDR) beamformer, described in this section
does not require knowledge of directions and power levels of interferences as well as the
level of the background noise power to maximize the output SNR. It only requires the
direction of the desired signal.

In this section, first we discuss an optimal beamformer with its weights without any
constraints, and then study its performance in the presence of one interference and uncor-
related noise [God86].
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2.4.1 Unconstrained Beamformer

Let an L-dimensional complex vector ŵ represent the weights of the beamformer shown
in Figure 2.1 that maximize the output SNR. For an array that is not constrained, an
expression for ŵ is given by [App76, Ree74, Bre73]:

(2.4.1)

where RN is the array correlation matrix of the noise alone, that is, it does not contain any
signal arriving from the look direction (φ0,θ0) and µ0 is a constant.

Consider that the noise environment consists of the random noise of power σn
2 and a

directional interference of power pI in nonlook direction. Assume that there is a source of
power pS in the look direction, and that the interference and the signal are uncorrelated.
For this case, the array correlation matrix R is given by

(2.4.2)

The mean output power of the processor is given by

(2.4.3)

It follows from (2.4.2) and (2.4.3) that

(2.4.4)

Three terms on the RHS of (2.4.4) correspond to the output signal power, residual
interference power, and output uncorrelated noise power of the unconstrained optimal
beamformer. Let these be denoted by P̂S, P̂I and P̂n, respectively. Thus, it follows that

(2.4.5)

(2.4.6)

and

(2.4.7)

Substituting for ŵ and noting that S0
HS0  = L, these equations become
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where RI is the correlation matrix of interference and

(2.4.11)

The total noise at the output is given by

(2.4.12)

Substituting from (2.4.9) and (2.4.10), total noise becomes

(2.4.13)

2.4.2 Constrained Beamformer

Let the array weights be constrained to have a unit response in the look direction, that is,

(2.4.14)

Thus, it follows from (2.4.1) that constant µ0 is given by

(2.4.15)

Substituting this in (2.4.1) results in the following expression for the weight vector

(2.4.16)

Substituting for µ0 in (2.4.8), (2.4.9), (2.4.10) and (2.4.13) results in the following expres-
sions for the output signal power, residual interference power, output uncorrelated noise
power, and the total noise power of the constrained beamformer
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(2.4.19)

and

(2.4.20)

Note from (2.4.19) that β̂ is the ratio of the uncorrelated noise power at the output of the
constrained beamformer to the uncorrelated noise power at its input.

As the weights for the optimal beamformer discussed above are computed using noise
alone matrix inverse (NAME), the processor with these weights is referred to as the NAME
processor [Cox73]. It is also known as the maximum likelihood (ML) filter [Cap69], as it
finds the ML estimate of the power of the signal source, assuming all sources as interfer-
ence. It should be noted RN may be not be invertible when the background noise is very
small. In that case, it becomes a rank deficient matrix.

In practice when the estimate of the noise alone matrix is not available, the total array
correlation matrix (signal plus noise) is used to estimate the weights and the processor is
referred to as the SPNMI (signal-plus-noise matrix inverse) processor. An expression for
the weights of the constrained processor for this case is given by

(2.4.21)

These weights are the solution of the following optimization problem:

(2.4.22)

Thus, the processor weights are selected by minimizing the mean output power of the
processor while maintaining unity response in the look direction. The constraint ensures
that the signal passes through the processor undistorted. Therefore, the output signal
power is the same as the look direction source power. The minimization process then
minimizes the total noise including interference and the uncorrelated noise. The minimi-
zation of the total output noise while keeping the output signal constant is the same as
maximizing the output SNR.

It should be noted that the weights of the NAMI processor and the SPNAMI processor
are identical; and in the absence of errors, the processor performs identically in both cases.
This fact can be proved as follows. The Matrix Inversion Lemma for an invertible matrix
A and a vector x states that

(2.4.23)
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it follows from the Matrix Inversion Lemma that

(2.4.25)

Hence

(2.4.26)

and

(2.4.27)

Equations (2.4.21), (2.4.26), and (2.4.27) imply

(2.4.28)

Thus,

(2.4.29)

and the optimal weights of the two processors are identical. The processor with these
weights is referred to as the optimal processor. This is also known as MVDR beamformer.

2.4.3 Output Signal-to-Noise Ratio and Array Gain

The mean output power of the optimal processor is given by

(2.4.30)

This power consists of the signal power, residual interference power, and uncorrelated
noise power. Expressions for these quantities are given by (2.4.17), (2.4.18), and (2.4.19),
respectively. The total noise at the output is the sum of residual interference and uncor-
related noise. The expression for total noise power is given by (2.4.20).
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Let α̂ denote the SNR of the optimal beamformer, that is,

(2.4.31)

It follows from (2.4.17) and (2.4.20) that

(2.4.32)

It should be noted that the same result also follows from (2.4.8) and (2.4.13), the expres-
sions for the signal power and the total noise power at the output of unconstrained
beamformer. Thus, the constrained as well as unconstrained beamformer results in the
same output SNR.

The array gain of a beamformer is defined as the ratio of the output SNR to the input
SNR. Let Ĝ denote the array gain of the optimal beamformer, that is,

(2.4.33)

Let pN denote the total noise at the input. SNR at the input of the beamformer is then
given by

(2.4.34)

It follows from (2.4.32), (2.4.33) and (2.4.34) that

(2.4.35)

2.4.4 Special Case 1: Uncorrelated Noise Only

For a special case of the noise environment when no direction interference is present, the
noise-only array correlation matrix is given by

(2.4.36)

Substituting the matrix in (2.4.16), a simple calculation yields

(2.4.37)

Thus, the weights of the optimal processor in the absence of errors are the same as those
of the conventional processor, implying that the conventional processor is the optimal
processor for this case. Thus, in the absence of directional interferences the conventional
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processor yields the maximum output SNR and the array gain. The output SNR α̂ and
the array gain Ĝ of the optimal processor for this case are, respectively, given by

(2.4.38)

and

(2.4.39)

These quantities are independent of array geometry and depend only on the number of
elements in the array.

2.4.5 Special Case 2: One Directional Interference

Consider the case of a noise environment consisting of a directional interference of power
pI and uncorrelated noise of power σn

2 on each element of the array. Let SI denote the
steering vector in the direction of interference. For this case, the noise-only array correla-
tion matrix is given by

(2.4.40)

Using the Matrix Inversion Lemma, this yields

(2.4.41)

The substitution for RN
–1 , rearrangement, and algebraic manipulation leads to the fol-

lowing expression for the output SNR:

(2.4.42)

The array gain is given by

(2.4.43)

where

(2.4.44)

is a scalar quantity and depends on the direction of the interference relative to the signal
source and the array geometry, as discussed previously. It follows from (2.2.1) and (2.4.44)
after rearrangement that
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(2.4.45)

Thus, this parameter is characterized by the weights of the conventional processor. As
this parameter characterizes the performance of the optimal processor, it implies that the
performance of the optimal processor in terms of its interference cancelation capability
depends to a certain extent on the response of the conventional processor to interference.
This fact has been further highlighted in [Gup82, Gup84].

An interesting special case is when the interference is much stronger compared to
background noise, pI � σn

2. For this case, these expressions may be approximated as

(2.4.46)

and

(2.4.47)

When interference is away from the main lobe of the conventional processor ρ ≈ 1, it
follows that the output SNR of the optimal processor in the presence of a strong interfer-
ence is the same as that of the conventional processor in the absence of interference. This
implies that the processor has almost completely canceled the interference, yielding a very
large array gain.

The performance of the processor in terms of its output SNR and the array gain is not
affected by the look direction constraint, as it only scales the weights. Therefore, the
treatment presented above is valid for the unconstrained processor.

For the optimal beamformer to operate as described above and to maximize the SNR
by canceling interferences, the number of interferences must be less than or equal to L – 2,
as an array with L elements has L – 1 degrees of freedom and one has been utilized by
the constraint in the look direction. This may not be true in a mobile communications
environment due to the existence of multipath arrivals, and the array beamformer may
not be able to achieve the maximization of the output SNR by suppressing every inter-
ference. However, as argued in [Win84], the beamformer does not have to suppress
interferences to a great extent and cause a vast increase in the output SNR to improve the
performance of a mobile radio system. An increase of a few decibels in the output SNR
can make possible a large increase in the system’s channel capacity.

In the mobile communication literature, the optimal beamformer is often referred to as
the optimal combiner. Discussion on the use of the optimal combiner to cancel interferences
and to improve the performance of mobile communication systems can be found in
[Win84, Win87, Sua93, Nag94a]. The optimal combiner is discussed in detail in a later
chapter.

In the next section, a processor is described that requires a reference signal instead of
the desired signal direction to estimate the optimal weights of the beamformer.

2.5 Optimization Using Reference Signal

A narrowband beamforming structure that employs a reference signal [App76, Wid67,
Wid75, Zah73, App76a, Wid82] to estimate the weights of the beamformer is shown in
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Figure 2.8. The array output is subtracted from an available reference signal r(t) to generate
an error signal ε(t) = r(t) – wHx(t) that is used to control the weights. Weights are adjusted
such that the mean squared error between the array output and the reference signal is
minimized. The mean squared error ξ(w) for a given w is given by

(2.5.1)

where

(2.5.2)

is the correlation between the reference signal and the array signals vector x(t).
The mean square error (MSE) surface is a quadratic function of w and is minimized by

setting its gradient with respect to w equal to zero, with its solution yielding the optimal
weight vector, that is,

FIGURE 2.8
An array system using reference signal.
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(2.5.3)

The gradient of MSE with respect to w is obtained by differentiating both sides of (2.5.1)
with respect to w, yielding

(2.5.4)

Substituting (2.5.4) in (2.5.3) and solving, you obtain the well-known Wiener–Hoff
equation for optimal weights:

(2.5.5)

The processor with these weights is also known as the Wiener filter. The minimum MSE ξ̂
of the processor using these weights is obtained by substituting ŵMSE for w in (2.5.1),
resulting in

(2.5.6)

This scheme may be employed to acquire a weak signal in the presence of a strong
jammer as discussed in [Zah73] by setting the reference signal to zero and initializing the
weights to provide an omnidirectional pattern. The process starts to cancel strong inter-
ferences first and the weak signal later. Thus, intuitively, a time is expected when the
output would consist of the signal, which has not been canceled too much, but strong
interference has been reduced.

When an adaptive scheme (discussed in Chapter 3) is used to estimate ŵMSE, the strong
jammer gets canceled first as the weights are adjusted to put a null in that direction to
leave the signal-to-jammer ratio sufficient for acquisition.

Arrays using a reference signal equal to zero to adjust weights are referred to as power-
inversion adaptive arrays [Com79]. The MSE minimization scheme (the Wiener filter) is
a closed-loop method compared to the open-loop scheme of MVDR (the ML filter)
described in the previous section. In general the Wiener filter provides higher-output SNR
compared to the ML filter in the presence of a weak signal source. As the input signal
power becomes large compared to the background noise, the two processors give almost
the same results [Gri67]. This result is supported by a simulation study using mobile
communications with two vehicles [Fli94]. The increased SNR by the Wiener filter is
achieved at the cost of signal distortion caused by the filter. It should be noted that the
optimal beamformer does not distort the signal.

The required reference signal for the Wiener filter may be generated in a number of
ways depending on the application. In digital mobile communications, a synchronization
signal may be used for initial weight estimation followed by the use of a detected signal
as a reference signal. In systems using the TDMA scheme, a user-specific sequence may
be part of every frame for this purpose [Win94]. The use of known symbols in every frame
has also been suggested in [Cho92]. In other situations, use of an antenna for this purpose
has been examined to show the suitability to provide a reference signal [Cho92].

Studies of mobile communication systems using reference signal to estimate array
weights have also been reported in [And91, Geb95, Dio93].
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2.6 Beam Space Processing

In contrast to the element space processing discussed in previous sections, where signals
derived from each element are weighted and summed to produce the array output, the
beam space processing is a two-stage scheme where the first stage takes the array signals
as input and produces a set of multiple outputs, which are then weighted and combined
to produce the array output. These multiple outputs may be thought of as the output of
multiple beams. The processing done at the first stage is by fixed weighting of the array
signals and amounts to produce multiple beams steered in different directions. The
weighted sum of these beams is produced to obtain the array output and the weights
applied to different beam outputs are then optimized to meet a specific optimization
criterion.

In general, for an L-element array, a beam space processor consists of a main beam
steered in the signal direction and a set of not more than L – 1 secondary beams. The
weighted output of the secondary beams is subtracted from the main beam. The weights
are adjusted to produce an estimate of the interference present in the main beam. The
subtraction process then removes this interference. The secondary beams, also known as
auxiliary beams, are designed such that they do not contain the desired signal from the
look direction, to avoid signal cancelation in the subtraction process. A general structure
of such a processor is shown in Figure 2.9. Beam space processors have been studied under
many different names including the Howells–Applebaum array [App76, App76a, How76];
generalized side-lobe canceler (GSC) [Gri82, Gri77]; partitioned processor [Jim77, Can82];
partially adaptive arrays [Van87, Van89, Van90, Qia94, Qia95, Cha76, Mor78]; post-beam-
former interference canceler [Can84, God86a, God89, God89a, God91]; adaptive-adaptive
arrays [Bro86]; and multiple-beam antennas [May78, Kle75, Gob76].

FIGURE 2.9
Beam-space processor structure.
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The pattern of the main beam is normally referred to as the quiescent pattern and is
chosen such that it has a desired shape. For a linear array of equispaced elements with
equal weighting, the quiescent pattern has the shape of sin Lx/sin x with L being the
number of elements in the array, whereas for Tschebysheff weighting (the weighting
dependent on Tschebysheff polynomial coefficients), the pattern has equal side-lobe levels
[Dol46]. The beam pattern of the main beam may be adjusted by applying various forms
of constraints on the weights [App76a] and using various pattern synthesis techniques
discussed in [Gri87, Tse92, Web90, Er93, Sim83, Ng02].

There are many schemes to generate the outputs of auxiliary beams such that no signal
from the look direction is contained in them, that is, these beams have nulls in the look
direction. In its simplest form, it can be achieved by subtracting the array signals from
presteered adjacent pairs [Gab76, Dav67]. It relies on the fact that the component of the
array signals induced from a source in the look direction is identical after the presteering,
and this gets canceled in the subtraction process from the adjacent pairs. The process can
be generalized to produce M – 1 beams from an L-element array signal x(t) using a matrix
B such that

(2.6.1)

where M – 1 dimensional vector q(t) denotes the outputs of M – 1 beams and the matrix B,
referred to as the blocking matrix or the matrix prefilter, has the property that its M – 1
columns are linearly independent and the sum of elements of each column equals zero,
implying that M – 1 beams are independent and have nulls in the look direction. For an
array that is not presteered, the matrix needs to satisfy

(2.6.2)

where S0 is the steering vector associated with the look direction and 0 denotes a vector
of zeros.

It is assumed in the above discussion that M ≤ L, implying that the number of beams
are less than or equal to the number of elements in the array. When the number of beams
is equal to the number of elements in the array, the processing in the beam space has not
reduced the degree of freedom of the array, that is, its null-forming capability has not been
reduced. In this sense, these arrays are fully adaptive and have the same capabilities as
that of the array using element space processing. In fact, in the absence of errors, both
processing schemes produce identical results. On the other hand, when the number of
beams is less than the number of elements, the arrays are referred to as partially adaptive.
The null steering capabilities of these arrays have been reduced to equal the number of
auxiliary beams. When adaptive schemes, discussed later, are used to estimate the weights,
convergence is generally faster for these arrays. However, the MSE for these arrays is also
high compared to fully adaptive arrays [Van91].

These arrays are useful in situations where the number of interferences are much less
than the number of elements and offer computational advantage over element space
processing, as you only need to adjust M – 1 weights compared to L weights for the element
space case with M < L. Moreover, beam space processing requires less computation than
the element space case to calculate the weights in general as it solves an unconstrained
optimization compared to the constrained optimization problem solved in the latter case.
It should be noted that for the element space processing case, constraints on the weights
are imposed to prevent distortion of the signal arriving from the look direction and to

q xt B tH( ) = ( )

BHS 00 =
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make the array more robust against errors. For the beam space case, constraints are
transferred to the main beam, leaving the adjustable weights free from constraints.

Auxiliary beamforming techniques other than the use of a blocking matrix described
above include formation of M – 1 orthogonal beams and formation of beams in the direc-
tion of interference, if known. The beams are referred to as orthogonal beams to imply
that the weight vectors used to form beams are orthogonal, that is, their dot product is
equal to zero. The eigenvectors of the array correlation matrix taken as weights to generate
auxiliary beams fall into this category. In situations where directions of arrival of inter-
ference are known, the formation of beams pointed in these directions may lead to more
efficient interference cancelation [Bro86, Gab86].

Auxiliary beam outputs are weighted and summed, and the result is subtracted from
the main beam output to cancel the unwanted interference present in the main beam. The
weights are adjusted to cancel the maximum possible interference. This is normally done
by minimizing the total mean output power after subtraction by solving the unconstrained
optimization problem and leads to maximization of the output SNR in the absence of the
desired signal in auxiliary channels. The presence of the signal in these channels causes
signal cancelation from the main beam along with interference cancelation. A detailed
discussion on the principles of signal cancelation in general and some possible cures is
given in [Wid75, Wid82, Su86].

Use of multiple-beam array processing techniques for mobile communications has been
reported in various studies [Jon95, Sak92], including development of an array system
using digital hardware to study its feasibility [God02]. 

2.6.1 Optimal Beam Space Processor

It follows from the Figure 2.9 that the output of the main beam ψ(t) is given by

(2.6.3)

where the L-dimensional vector V is defined as

(2.6.4)

Let an M – 1 dimensional vector q(t) be defined as

(2.6.5)

It denotes M – 1 auxiliary beams, output of matrix prefilter B, and is given by

(2.6.6)

Let an M – 1 dimensional vector w denote the adjustable weights of the auxiliary beams.
It follows from Figure 2.9 that the output η(t) of the interference beam is given by

(2.6.7)
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The output y(t) of the overall beam space processor is obtained by subtracting the inter-
ference beam output from the main beam, and thus is given by

(2.6.8)

The mean output power P(w) of the processor for a given weight vector w is given by

(2.6.9)

where P0 is the mean power of the main beam given by

(2.6.10)

Rqq is the correlation matrix of auxiliary beams defined as

(2.6.11)

and Z denotes the correlation between the output of auxiliary beams and the main beam.
It is defined as

(2.6.12)

A substitution for q(t) and ψ(t) in (2.6.11) and (2.6.12) yields
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Substituting for P0, Rqq and Z in (2.6.9), the expression for P(w) becomes

(2.6.15)

Note that P(w) is a quadratic function of w and has a unique minimum. Let ŵ denote
weights that minimize P(w). Thus, it follows that

(2.6.16)

Substituting (2.6.15) in (2.6.16) yields

(2.6.17)

As B has rank M – 1, BHRB is of full rank and its inverse exists. Thus, (2.6.17) yields

(2.6.18)

Substituting for w = ŵ from (2.6.18) in (2.6.15), you obtain the following expression for
the mean output power of the optimal processor:

(2.6.19)

Expressions for the mean output signal power may be obtained by replacing the array
correlation matrix R by the signal only array correlation matrix RS in (2.6.15), yielding

(2.6.20)

Since

(2.6.21)

and

(2.6.22)

it follows from (2.6.20) that

(2.6.23)

Thus, when the blocking matrix B is selected such that BHS0 = 0, there are no signal
flows through the interference beam and the output signal power is present only in the
main beam. When the main beam is taken as the conventional beam, that is,
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(2.6.24)

the mean output signal power of the beam space processor becomes

(2.6.25)

Note that the signal power is independent of w.
Similarly, an expression for the mean output noise power may be obtained by replacing

the array correlation matrix R by the noise-only array correlation matrix RN in (2.6.15),
yielding

(2.6.26)

Substituting for w = ŵ from (2.6.18) in (2.6.26), you obtain the following expression for
the mean output noise power of the optimal processor:

(2.6.27)

The output SNR of the optimal beam space processor then becomes

(2.6.28)

These expressions cannot be simplified further without considering specific cases. In
Section 2.6.3, a special case of beam space processor is considered where only one auxiliary
beam is considered in the presence of one interference source to understand the behavior
of beam space processors. The results are then compared with an element space processor.
In the next section, a beam space processor referred to as the generalized side-lobe canceler
(GSC) is considered. The main difference between the general beam space processor
considered in this section and the GSC is that the GSC uses presteering delays.

2.6.2 Generalized Side-Lobe Canceler

A structure of the generalized side-lobe canceler is shown in Figure 2.10. The array is
presteered by delaying received signals on all antennas such that the component of the
received signal on all elements arriving from the look direction is in phase after presteering
delays. Let α l, l = 1, 2, …, L denote the phase delays to steer the array in the look direction.
These are given by

(2.6.29)

Let the received signals after presteering delays be denoted by x′(t). As these are delayed
versions of x(t), it follows that their lth components are related by
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(2.6.30)

This along with (2.1.9) imply that x′(t) are related to x(t) by

(2.6.31)

where Φ0 is a diagonal matrix defined as

(2.6.32)

Note that Φ0 satisfies the relation, Φ H
0S0 = 1, where 1 is a vector of ones.

These signals are used to form the main beam as well as M – 1 interference beams. The
main beam is formed using fixed weights on all channels. These weights are selected to
be of equal to 1/L so that a unity response is maintained in the look direction. Let these
be denoted by an L-dimensional vector V given by

(2.6.33)

The M – 1 interference beams are formed using a blocking matrix B. Let these be denoted
by an M – 1 dimensional vector q(t), given

FIGURE 2.10
Generalized side-lobe canceler structure.
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(2.6.34)

where matrix B has rank M – 1 and satisfies

(2.6.35)

Expressions for the main beam, interference beams, and GSC output are then, respec-
tively, given by

(2.6.36)

(2.6.37)

and

(2.6.38)

It can easily be verified that an expression for the mean output power of the GSC for a
given w is given by

(2.6.39)

where

(2.6.40)

is the array correlation matrix after steering delays.
Comparing (2.6.15) and (2.6.39), one notes that the expression for the mean output power

of the GSC for a given w is analogous to that given by (2.6.15), with V and R̃, respectively,
given by (2.6.33) and (2.6.40) and B satisfying (2.6.35). Thus, the expression for GSC optimal
weights is analogous to (2.6.18), with R replaced by R̃, that is,

(2.6.41)
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The expression for the mean output noise power of the optimal GSC then becomes

(2.6.42)

and the output SNR is given by (2.6.28).

2.6.3 Postbeamformer Interference Canceler

In this section, a processor with two beams referred to as the postbeamformer interference
canceler (PIC) in previous studies [God86a, God89, God89a, God91] is examined in the
presence of a look-direction signal of power pS, an interference of power pI, and uncorre-
lated noise of power σn

2.
As discussed previously for the general beam space processor, the two-beam processor

processes the signals derived from an antenna array by forming two beams using fixed
beamforming weights, as shown in Figure 2.11. One beam, referred to as the signal beam,
is formed to have a fixed response in the look direction. The processed output of the
second beam, referred to as the interference beam, is subtracted from the output of the
signal beam to form the output of the PIC.

Let L-dimensional complex vectors V and U represent the fixed weights of the signal
beamformer and the interference beamformer, respectively. It follows from Figure 2.11 that
the output ψ(t) of the signal beam and the output q(t) of the interference beam are,
respectively, given by

FIGURE 2.11
Post-beam former interference canceler structure.
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(2.6.43)

and

(2.6.44)

The output y(t) of the PIC processor is formed by subtracting the weighted output of the
interference beam from the output of the signal beam, that is,

(2.6.45)

For a given weight w, the mean output power P(w) of the PIC processor is given by

(2.6.46)

2.6.3.1 Optimal PIC

Let ŵ represent the complex weight of the interference channel of the PIC that minimizes
the mean output power of the PIC for given beamformer weights V and U. This weight ŵ
is referred to as the optimal weight, and the PIC with this weight is referred to as the
optimal PIC.

From the definition of the optimal weight, it follows that

(2.6.47)

which along with (2.6.46), implies that

(2.6.48)

The mean output power of the optimal PIC is given by

(2.6.49)

In the following discussion, three different beamformer weights for the interference
beam are considered. For these cases, the expressions for the signal power, residual inter-
ference power, and uncorrelated noise power at the output of the optimal PIC are derived
in [God89a]. For the three cases considered, it is assumed that the signal beam is formed
using the conventional beamforming weights, that is,

(2.6.50)

This choice of beamformer weights for the signal beam ensures that the response of the
signal beam in the signal direction is unity.
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2.6.3.2 PIC with Conventional Interference Beamformer

Let the interference beam be formed with the beamforming weights,

(2.6.51)

This choice of beamforming weights ensures that the response of the beam in the inter-
ference direction is unity. Note that these weights are not constrained to block the look
direction signal passing through to the interference beam as was done using blocking
matrix B in the previous discussion. This particular interference beam highlights the effect
of the signal present in the auxiliary beams.

It follows from (2.6.50) and (2.6.51) that the response of the interference beam in the
signal direction is the same as that of the signal beam in the interference direction. This
implies that a large amount of the signal power leaks into the interference beam. This
leads to a substantial amount of signal suppression and the presence of residual interfer-
ence when the PIC is optimized. This aspect of the PIC is now considered and expressions
for the mean output signal power and the mean output noise power of the optimal PIC
are presented.

Substituting for U and V in (2.6.48), you obtain an expression for the weight ŵc of the
optimal PIC using the conventional interference beamformer (CIB):

(2.6.52)

Substituting for R, this leads to

(2.6.53)

where β is a normalized dot product of S0 and SI, defined as β = S 0
HS1/L.

Substituting for R equals RS, RI, Rn and RN, when w = ŵc in (2.6.46), the following
expressions are obtained for the output signal power, residual interference power, uncor-
related noise power, and output noise power, respectively:

(2.6.54)
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and

(2.6.57)

where

(2.6.58)

is the SNR at the output of the interference beam. Since the SNR is a positive quantity
and the parameter ρ is not more than unity, it follows from (2.6.54) that the signal power
at the output of the optimal PIC using the CIB is less than the signal power at the output
of the signal beam. Hence, the signal has been suppressed by the PIC. Furthermore, the
signal suppression increases as (1)the parameter ρ, which depends on the array geometry
and the relative directions of the two sources, decreases, and (2) the SNR at the output of
the interference beam increases.

Since the SNR at the output of the interference beam is proportional to the input signal
power, it follows that signal suppression increases as the input signal power increases.
On the other hand, an increase in the interference power as well as the uncorrelated noise
power at the input of the PIC decreases the SNR at the output of the interference beam
and, hence, decreases the signal suppression of the optimal PIC using the CIB.

Physically, the signal suppression by the optimal PIC using the CIB arises from the
leakage of the signal into the interference beam. The component of the signal in the
interference beam is subtracted from the signal in the signal beam; in the process of
minimization of total output power, this leads to signal suppression. Signal suppression
increases as the parameter ρ decreases. The reason for this is that as ρ decreases, the
response of the interference beam in the signal direction increases, which increases the
signal leakage into the interference beam, causing more signal suppression.

To understand the dependency of the signal suppression on αI, the SNR at the output
of the interference beam, rewrite (2.6.53) as

(2.6.59)

It follows from (2.6.59) that as αI increases, the magnitude of ŵc increases, resulting in an
increase of the signal suppression. In the limit, as αI → ∞, ŵc → β/(1 – ρ). It can easily be
verified that for this value of ŵc, the output signal power reduces to zero, resulting in
total signal suppression.

The behavior of the output noise power of the optimal PIC using the CIB is described
by (2.6.57). The first term, which is proportional to the uncorrelated noise power at the
input of the PIC, decreases as the number of elements in the array increases and the
parameter ρ decreases. The second term, which is proportional to the total noise power
at the output of the interference beam, also decreases as the parameter ρ decreases and
depends on αI. As αI increases, resulting in an increase of ŵc, the second term on the right
side of (2.6.57) increases. This implies that the output noise power of the optimal PIC
using the CIB increases as the input signal power increases.
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ŵc

I

= +
− +

















1
1

1

1
1

ρ
ρ

α

β

C Press LLC 



© 2004 by CR
Let SNR(ŵc) denote the output SNR of the optimal PIC using the CIB. Then, it follows
from (2.6.54) and (2.6.57) that

(2.6.60)

For the special case when the noise environment consists of only directional sources,
that is, when σn

2 = 0, (2.6.60) reduces to

(2.6.61)

which agrees with the results presented in [Wid75, Wid82] that in the absence of uncor-
related noise, the output SNR of an interference canceler is inversely proportional to the
input SNR. In the presence of uncorrelated noise power, the behavior of SNR(ŵc) is shown
in Figure 2.12.

The results in Figure 2.12 are for an equally spaced linear array of ten elements, with
inter-element spacing of one-half wavelength. The signal source is assumed to be broad-
side to the array, and an interference source of unity power is assumed 60° off broadside.
For this array configuration and source scenario, the parameter ρ is equal to 0.99. Figure
2.12 shows that the presence of uncorrelated noise changes the behavior of SNR(ŵc)
dramatically, particularly for low-input SNR. In the absence of uncorrelated noise, the PIC
using the CIB is able to cancel most of the interference when the input SNR is small,
resulting in high-output SNR. The presence of uncorrelated noise increases the total output
noise significantly (see Equation 2.6.57), resulting in a substantial drop in the output SNR.

FIGURE 2.12
Output SNR of the PIC using CIB vs. input SNR for a ten-element linear array, θ0 = 90°, pI = 1, θI = 30°. (From
Godara, L.C., J. Acoust. Soc. Am., 85, 202–213, 1989 [God89a]. With permission.)
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2.6.3.3 PIC with Orthogonal Interference Beamformer

Let the interference beam be formed using the beamforming weights

(2.6.62)

where Uo is a complex vector such that

(2.6.63)

The constraint specified by (2.6.63) ensures that the interference beam has a null in the
signal direction. Thus, the interference beam does not contain any signal and the PIC using
the orthogonal interference beamformer (OIB) does not suppress the signal. Note that the
vector Uo may be a steering vector. This case corresponds to the parameter ρ taking on a
value of unity.

Various expressions for optimal PIC using the OIB are now presented. It is assumed
that the interference beam of the PIC using the OIB does not have a null in the interference
direction. If the interference beam had a null in the interference direction, then there would
be no interference present in this beam and no reduction in the interference from the signal
beam would result by forming the PIC output by subtracting the weighted output of the
interference beam from the signal beam.

From (2.6.48), (2.6.50) and (2.6.62), it follows that the optimal weight ŵo of the PIC using
the OIB is given by

(2.6.64)

Substituting for R in (2.6.64), one obtains, after manipulation,

(2.6.65)

where

(2.6.66)

and

(2.6.67)

Note that γo, as defined by (2.6.67), is a positive real scalar, with

(2.6.68)

and represents the normalized power response of the interference beam in the direction
of the interference.

The expressions for the signal power, the residual interference power, the uncorrelated
noise power, and total noise power at the output of the optimal PIC using the OIB are,
respectively, obtained by substituting for R equals RS, RI, Rn and RN, and w = ŵ0 in (2.6.46).
These are given by
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(2.6.69)

(2.6.70)

(2.6.71)

and

(2.6.72)

From expressions (2.6.69) to (2.6.72), the following observations can be made:

1. The optimal PIC using the OIB does not suppress the signal. This is because there
is no leakage of the signal into the interference beam.

2. The residual interference power of the optimal PIC using the OIB depends on
pI/σn

2. For a given array geometry and noise environment, the normalized residual
interference power P I(ŵ0)/pI decreases as pI/σn

2 increases. In a noise environment
with a very high pI/σn

2 , the residual interference power of the optimal PIC using
the OIB becomes very small. In the limit, as

(2.6.73)

which lead to full cancelation of the interference (see Equation 2.6.70). On the
other hand, as

(2.6.74)

and no cancelation of the interference takes place.
3. The uncorrelated noise power at the output of the PIC is more than the uncorrelated

noise power at the output of the signal beam. This follows from (2.6.71). The RHS
of (2.6.71) consists of two terms. The first term is the same as the uncorrelated noise
power at the output of the signal beam and the second term is proportional to the
uncorrelated noise power at the output of the signal beam; the proportionality
constant in the square brackets depends on the pI/σn

2 . As pI/σn
2  increases, the

quantity in the square brackets increases. This is due to the fact that ŵo increases
as pI/σn

2  increases. In the limit, the maximum increase in the uncorrelated noise
power caused by the optimal PIC using the OIB is σ n

2/L (1 – ρ)/γo.
4. The total noise power P N(ŵo) at the output of the optimal PIC using the OIB does

not depend on the signal power. It is proportional to the uncorrelated noise power
at the output of the signal beam and decreases as p1/σn

2 decreases. The uncorre-
lated noise dominates the total noise at the output of the optimal PIC.
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Now the output SNR of the optimal PIC using the OIB is examined. Let this ratio be
denoted by SNR(ŵo). It follows from (2.6.69) and (2.6.72) that

(2.6.75)

Thus, the output SNR of the optimal PIC using the OIB is proportional to the number of
elements and pS/σn

2 ; and depends on p1/σn
2 . As

(2.6.76)

Figure 2.13 shows SNR(ŵo) vs. input SNR for various p1/σn
2 . The array geometry and

noise environment used for this example is the same as that used for Figure 2.12. The
interference beam is formed using the steering vector in the endfire direction. The param-
eter γo for this case is 0.17. From Figure 2.13, for a given input SNR the output SNR
increases as p1/σn

2 increases.

2.6.3.4 PIC with Improved Interference Beamformer

As discussed in previous sections, the output of the optimal PIC contains residual inter-
ference power and uncorrelated noise power. This section presents and analyzes the
optimal PIC using an interference beamformer that eliminates all interference in the output
while simultaneously reducing the contribution of uncorrelated noise in the output. For
this case, let the interference beam be formed with the beamforming weights

FIGURE 2.13
Output SNR of the PIC using OIB vs. input SNR for a ten-element linear array, θ0 = 90°, pI = 1, θI = 30°. (From
Godara, L.C., J. Acoust. Soc. Am., 85, 202–213, 1989 [God89a]. With permission.)
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(2.6.77)

Note that the above expression is similar to the expression for the weights of constrained
optimal beamformer except that in this case the beam is constrained in the direction of
the interference rather than the look direction. Thus, it can easily be verified that the
interference beam formed with these weights has unity response in the interference direction
and has a reduced response in the signal direction. The response of the interference beam
in the signal direction depends on the signal source power and uncorrelated noise power.
It can be shown that this choice of beamforming weights minimizes the sum of signal
power and uncorrelated noise power in the interference channel output.

A substitution for V and U in (2.6.48) from (2.6.50) and (2.6.77), respectively, leads to
the following expression for ŵ1, the weight of the optimal PIC using the improved inter-
ference beamformer (IIB):

(2.6.78)

It follows from (2.6.78) that the weight, which minimizes the output power of PIC using
the IIB is independent of the signal, the interference, and the uncorrelated noise powers.
This weight depends only on the array geometry and relative directions of the two sources.

The expressions for the signal power and the noise power at the output of the optimal
PIC using the IIB are, respectively, given by

(2.6.79)

and

(2.6.80)

One observes from expressions (2.6.79) and (2.6.80) that the output signal power and the
output noise power of the optimal PIC using the IIB are independent of the interference
power. Thus, the optimal PIC using the IIB has completely suppressed the interference.
Furthermore, the output signal power and output noise power depend on σ n

2/LpS (ratio
of uncorrelated noise power to signal power at signal beam output). The output signal
power increases as σ n

2/LpS decreases, and approaches the input signal power in the limit.
Thus, in the presence of a strong signal source, the signal suppression by the optimal PIC
using the IIB is negligible. The signal suppression becomes further reduced as the number
of elements in the array is increased.

The total noise power at the output of the optimal PIC using the IIB is equal to the
uncorrelated noise power at the output of the signal beam when ρ = 1. To investigate the
effect of σ n

2/LpS on the output noise power when ρ < 1, you can rewrite the quantity in
the braces on the right side of (2.6.80) in the following form:

(2.6.81)
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Since ρ < 1, it follows from (2.6.81) that the second term on the RHS is negative if ρ
< (σ n

2/LpS)2. Thus, under this condition the quantity in the braces on the right side of
(2.6.80) is less than unity and, hence, the uncorrelated noise power at the output of the
PIC is less than the uncorrelated noise power at the output of the signal beam. Thus, the
optimal PIC using the IIB reduces the uncorrelated noise when ρ < (σ n

2/LpS)2. On the other
hand, when ρ > (σ n

2/LpS)2, the quantity in the braces on the right side of (2.6.80) is more
than unity and the optimal PIC using the IIB increases the uncorrelated noise power. Note
that at the output of the optimal PIC using the IIB, total noise consists of uncorrelated
noise only: it increases as σ n

2/LpS decreases and in the limit approaches σ n
2/LpS.

Now the output SNR of the optimal PIC using the IIB is examined. Let this ratio be
denoted by SNR(ŵI). It follows then from (2.6.79) and (2.6.80) that

(2.6.82)

Thus, the output SNR of the optimal PIC using the IIB is proportional to the input signal
to uncorrelated noise ratio, the number of elements in the array, and the parameter ρ.

2.6.3.5 Discussion and Comments

A comparison of the various results is presented in Table 2.1. The output signal power,
residual interference power, and output uncorrelated noise power of the optimal PIC are,
respectively, normalized by pS, pI(1 − ρ), and σ n

2/L. These quantities correspond to the
signal power, the interference power, and the uncorrelated noise power at the output of
the signal beam. This particular form of normalization is chosen to facilitate the compar-
ison between the performance of the PIC using the OIB, IIB, and CIB, and that of an

TABLE 2.1

Comparison of Normalized Signal Power, Interference Power, Uncorrelated Noise Power and SNR at 
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element space processor using conventional weights (the signal beam is formed using
conventional weights).

It follows from Table 2.1 that the SNR of the optimal PIC for the three cases is the same
when ρ is equal to unity or, equivalently, when the steering vectors in the signal and
interference directions are orthogonal to each other. The case of ρ < 1 is now considered.
For this situation, the results of the optimal PIC with the three interference beamformers
are discussed and some examples are presented. All examples presented here are for a
linear array of ten equally spaced elements with one-half wavelength spacing. The signal
direction is broadside to the array, and the uncorrelated noise power on each element is
equal to 0.01. The interference beam for the OIB case is formed using the steering vector
in the endfire direction. Thus, knowledge of the interference direction is not used in
selecting Uo.

2.6.3.5.1 Signal Suppression

From Table 2.1, the following observations about the normalized output signal power of
the optimal PIC for the three cases can be made:

1. The optimal PIC using the OIB does not suppress the signal; in the other two
cases the signal is suppressed. The signal suppression by the optimal PIC using
the CIB is more than that by the PIC using the IIB. This follows from the following
expression for the difference of the normalized output signal powers:

(2.6.83)

Physically, the interference beam rejects more of the signal in the IIB than in the
CIB and rejects all of the signal in the OIB. This leads to no suppression of signal
by the PIC using the OIB and less suppression in the case of the IIB than that of
the CIB.

2. The normalized output signal power of the optimal PIC using the IIB is indepen-
dent of the interference power. In the case of the optimal PIC using the CIB, it
increases as the interference power increases. Thus, it follows that the difference
between the normalized output signal power for the two cases decreases as the
interference power increases. In the limit the difference approaches

3. The normalized output signal power depends on the input signal power for both
the CIB and IIB cases. In the case of the optimal PIC using the CIB, it decreases
as the input signal power increases. Thus, the signal suppression increases as the
input signal power increases. However, in the case of the optimal PIC using the
IIB, the normalized output signal power increases as the input signal power
increases, approaching unity in the limit. Thus, the signal suppression is negligibly
small when the input signal to uncorrelated noise ratio is large.
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Figure 2.14 and Figure 2.15 show plots of the normalized output signal power of the
optimal PIC using OIB and IIB when the interference power is 1.0 and using the CIB when
the interference powers are 0.01, 0.1, and 1.0. For Figure 2.14, the interference is at an
angle of 60° from the signal while for Figure 2.15, the angle is at 5°. The parameter ρ for
these cases is 0.99 and 0.48, respectively. Note that for both the cases the normalized output
signal power of the PIC using the CIB increases as the interference power increases. Signal
suppression by the PIC using the CIB increases as the input signal power increases in both
cases, but the signal suppression is greater in Figure 2.15 (ρ = 0.48). This is because more
signal leaks into the interference beam for the scenario of Figure 2.15 than for Figure 2.14.

2.6.3.5.2 Residual Interference

The following observations about the residual interference can be made:

1. The output of the optimal PIC using the IIB does not contain any residual inter-
ference; in the OIB and CIB cases, residual interference is present.

2. For the optimal PIC using the OIB, the normalized output residual interference
depends on p I/σn

2 and the number of elements in the array. As p I/σn
2 increases,

the normalized residual interference decreases and approaches zero in the limit.
As this ratio decreases, the normalized residual interference increases but never
exceeds unity. Thus, the optimal PIC using the OIB always cancels some of the
interference present at the output of the signal beam. The interference cancelation
increases as p I/σn

2 and the number of elements in the array increase.
3. As presented in Table 2.1, the expression for the normalized residual interference

at the output of the optimal PIC using the CIB is a product of two terms. The first
term depends on the parameter ρ, which in turn is controlled by the array geom-
etry and the relative directions of the two sources: for ρ greater than one-half, the
term exceeds unity. The second term depends on σn

2/LpS and pI/pS, and increases

FIGURE 2.14
Normalized output signal power of the PIC using the OIB with pI = 1; the IIB with pI = 1; and the CIB with pI =
1, 0.1 and 0.01 vs. input signal power for a ten- element linear array, θ0 = 90°, σn

2 = 0.01, θI = 30°. (From Godara,
L.C., J. Acoust. Soc. Am., 85, 202–213, 1989 [God89a]. With permission.)
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as these parameters decrease (stronger signal), in the limit approaching unity. It
follows that the normalized residual interference at the output of the optimal PIC
using the CIB increases as the signal power increases, and approaches a limit that
is more than unity when ρ < 0.5. Thus, in certain cases, the interference power at
the output of the optimal PIC using the CIB may be more than the interference
power at the output of the signal beam.

Comparisons of the normalized residual interference at the output of the optimal PIC
using the CIB and OIB are shown in Figure 2.16 and Figure 2.17. The interference directions
are 5° and 60° off broadside, respectively. The signal power is assumed to be unity. These
figures show plots of the interference power at the output of the optimal PIC normalized
by the interference power at the output of signal beam. Thus, the interference level above
the 0 dB line indicates an increase in the interference power from that present in the signal
beam.

Figure 2.16 (the interference and signal are 5° apart, ρ = 0.48) shows that the optimal
PIC in both cases cancels some interference present in the signal beam. However, the
cancelation is very small for the lower range of the input interference and increases as the
input interference increases. For the lower range of the input interference power, the optimal
PIC using the CIB cancels slightly more interference than that using the OIB. The reverse
is true at the other end of the input interference range. The optimal PIC using the OIB
cancels about 10 dB more interference than that using the CIB when the input interference
power is unity.

Figure 2.17 shows the normalized output interference of the optimal PIC using the OIB
and CIB when the interference and the signal are 60° apart (ρ = 0.99). The figure shows
that for the lower range of the input interference, the residual interference at the output
of the optimal PIC using the CIB is about 40 dB more than the interference contents in
the signal beam. Thus, the optimal PIC using the CIB does not suppress weak interference,
but increases its level. In the case of the optimal PIC using the OIB, when the input

FIGURE 2.15
Normalized output signal power of the PIC using the OIB with pI = 1; the IIB with pI = 1; and the CIB with pI =
1, 0.1 and 0.01 vs. input signal power for a ten-element linear array, θ0 = 90°, σn

2 =  0.01, θI = 85°. (From Godara,
L.C., J. Acoust. Soc. Am., 85, 202–213, 1989 [God89a]. With permission.)
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interference power is very small, some interference reduction takes place. The reduction
is about 2 dB.

For both cases, the normalized output interference decreases as the input interference
power increases. For the entire range of input interference level, the residual interference
at the output of the optimal PIC using the CIB is about 42 dB more than that using the OIB.

FIGURE 2.16
Normalized residual interference power of the PIC using the OIB and the CIB vs. input interference power for
a ten-element linear array, θ0 = 90°, pS = 1.0, σn

2 = 0.01, θI = 85°. (From Godara, L.C., J. Acoust. Soc. Am., 85,
202–213, 1989 [God89a]. With permission.)

FIGURE 2.17
Normalized residual interference power of the PIC using the OIB and the CIB vs. input interference power for
a ten-element linear array, θ0 = 90°, pS = 1.0, σn

2 = 0.01, θI = 30°. (From Godara, L.C., J. Acoust. Soc. Am., 85,
202–213, 1989 [God89a]. With permission.)
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2.6.3.5.3 Uncorrelated Noise Power

A comparison of the normalized uncorrelated noise power at the output of the optimal
PIC for the CIB, OIB, and IIB is shown in Table 2.1. The table shows that the normalized
uncorrelated noise power at the output of the optimal PIC using the OIB is greater than
unity. In other words, the optimal PIC has increased the uncorrelated noise.

For the case of the optimal PIC using the IIB, the decrease or increase in the uncorrelated
noise power depends on the difference between the parameter ρ and the square of the
uncorrelated noise to signal ratio at the output of the signal beam (σn

2/LpS)2. The normalized
uncorrelated noise power at the output of the PIC is more than unity when ρ > (σn

2/LpS)2.
Thus, in the presence of a relatively stronger signal source, the optimal PIC using the IIB
increases the uncorrelated noise power.

2.6.3.5.4 Signal-to-Noise Ratio

First a comparison between the SNRs of the PIC using the IIB and OIB is considered. It
follows from (2.6.75) and (2.6.82) that

(2.6.84)

which implies that

(2.6.85)

Furthermore, for ρ ≈ 1

(2.6.86)

Now consider the PIC using the IIB and CIB. It follows from (2.6.60) and (2.6.82) that
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The above discussion agrees with the comparison of the output SNRs for the IIB, OIB,
and CIB cases shown in Figure 2.18 and Figure 2.19. For these cases, a unit power inter-
ference is assumed to be present. The direction of the interference is 60° from broadside
in Figure 2.18 and 5° from broadside in Figure 2.19. The parameter ρ is 0.99 and 0.48,
respectively, and the parameter γo is 0.17 and 0.01, respectively. One observes from these
figures that in the case of the CIB, the output SNR decreases as the input SNR increases

FIGURE 2.18
Output SNR of the PIC using the OIB, the IIB and the CIB vs. input SNR for a ten-element linear array, θ0 = 90°,
pI = 1.0, σn

2  = 0.01, θI = 30°. (From Godara, L.C., J. Acoust. Soc. Am., 85, 202–213, 1989 [God89a]. With permission.)

FIGURE 2.19
Output SNR of the PIC using the OIB, the IIB and the CIB vs. input SNR for a ten-element linear array, θ0 = 90°,
pS = 1.0, σn

2  = 0.01, θI = 85°. (From Godara, L.C., J. Acoust. Soc. Am., 85, 202–213, 1989 [God89a]. With permission.)
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beyond −8 dB in Figure 2.18 and beyond −16 dB in Figure 2.19. However, in the other two
cases the output SNR increases as the input SNR increases, resulting in array gains of the
order of 20 to 30 dB.

In the next two sections, a comparison of the optimal element space processor (ESP)
and the optimal PIC with an OIB is presented. It should be noted that the ESP is optimized
to minimize the mean output power subject to a unity constraint in the look direction and
the PIC is optimized to minimize the mean output power with the interference beam
having a null in the look direction.

2.6.4 Comparison of Postbeamformer Interference Canceler with Element 
Space Processor

Performance of the optimal ESP is a function of ρ, and the performance of the optimal
PIC with an OIB is dependent on ρ and γo. Thus, performance comparison of the two
processors depends on the relative values of these two constants.

First, consider a case where the precise interference direction is known. Let the inter-
ference beam be formed using an OIB given by

(2.6.91)

where

(2.6.92)

A simple calculation indicates that for the interference beamformer weights given by
(2.6.91) and (2.6.92), γo attains its maximum value and

(2.6.93)

A comparison of the results derived in Sections 2.4 and 2.6.3 reveals that for this case
the output powers and the SNRs of the two processors are identical (see (2.4.42) and
(2.6.75)). Thus, if the interference beam of the PIC is formed by an OIB for which (2.6.93)
holds, then the performance of the optimal PIC is identical to the performance of the
optimal ESP.

However, if the interference beam of the PIC is formed by an OIB for which

(2.6.94)

then a comparison of the results for the two processors (an expression for P̂N results using
(2.4.20) and (2.4.41) reveals that

(2.6.95)

and

(2.6.96)

Thus, the total noise power at the output of the optimal PIC in this case is more than
the total noise power at the output of the optimal ESP, and the SNR achievable by the
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optimal PIC is less than that achievable by the optimal ESP. It follows from (2.4.42) and
(2.6.75) that the ratio of the two SNRs is given by

(2.6.97)

For σn
2/Lp1 � γo, this ratio reduces to

(2.6.98)

and depends on the relative values of ρ and γo. Furthermore, if ρ ≅ 1, then it follows from
(2.6.98) that the output SNRs of the two processors are approximately the same. Plots of
(2.6.98) for four values of ρ as a function of γo are shown in Figure 2.20. The figure shows
that the difference in the output SNRs of the two processors is smaller for the larger values
of these constants and increases as these constants decrease.

2.6.5 Comparison in Presence of Look Direction Errors

Knowledge of the look direction is used to constrain the array response in the direction
of the signal such that the signal arriving from the look direction is passed through the
array processor undistorted. The array weights of the element space optimal beamformer
are estimated by minimizing the mean out power subject to the look direction constraint.
The processor maximizes the output signal to noise ratio by canceling all interference. A
direction source is treated as interference if it is not in the look direction. This shows the
importance of the accuracy of the look direction. An error occurs when the look direction
is not the same as the desired signal direction. For this case, the processor treats the desired

FIGURE 2.20
Difference in the SNRs of the two processors calculated using (2.6.98) as a function of ρ and γ0. (From Godara,
L.C., IEEE Trans. Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)
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signal source as interference and attenuates it. The amount of attenuation depends on the
power of the signal and the amount of error [Ows73, Cox73, God87, Zah72]. A stronger
signal is canceled more and a larger error causes more cancelation of the signal.

The solution to the look direction error, also known as the beam-pointing error, is to
make the beam broader so that when the signal is not precisely in the direction where it
should be (the look direction), its cancelation does not take place. The various methods
of broadening the beam include multiple linear constraints [Ows73, Ste83] and norm
constraints. Norm constraints prohibit the main beam blowing out as is the case in the
presence of pointing error. In the process of canceling a source close to the point constraint
in the look direction, the array response gets increased in the direction opposite to the
pointing error. A scheme to reduce the effect of pointing error, which does not require
broadening of the main beam, has been reported in [Pon96]. It makes use of direction
finding techniques combined with a reduced dimensional maximum likelihood formula-
tion to accurately estimate the direction of the desired signal. The effectiveness of this
scheme in mobile communications has been demonstrated using computer simulations.
Other schemes to remedy pointing error problems may be found in [Lo90, Muc81, Roc87].

In this section, the performance of the optimal element space processor and the beam
space processor in the presence of beam-pointing error is compared [God87]. The com-
parison presented here indicates that beam space processors in general are more robust
to pointing errors than elements space processors.

It is assumed for this analysis that the actual signal direction is different from the known
signal direction. Let the steering vector in the actual signal direction be denoted by S0.
The array correction matrix R in this case is given by

(2.6.99)

and the weights ŵ of the optimal ESP and ŵo of the optimal PIC with an OIB estimated
from the known signal direction are given by

(2.6.100)

and

(2.6.101)

where V is given by (2.6.50) and Uo satisfies (2.6.63).
The output power  P̂ of the ESP is given by

(2.6.102)

and the output power P(ŵo) of  the PIC processor is given by

(2.6.103)

A detailed comparative study of the performance of the two processors in the presence
of the signal direction error (SDE) is presented in Figure 2.21 to Figure 2.28. These figures
show how the direction of the interference source, the number of elements in the array,
and the uncorrelated noise power level affect the performance of the two processors as a
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function of the error in the signal direction. For all these figures, interference power is
taken to be 20 dB more than signal power.

Figure 2.21 to Figure 2.24 show, respectively, the comparison of the output signal powers,
the output uncorrelated noise powers, the power patterns, and the output SNRs of two
processors when the assumed look direction is broadside to a ten-element linear array
with half-wavelength spacing. The direction of the interference is 85° relative to the line
of the array, and the uncorrelated noise power level is 20 dB below the signal level. The

FIGURE 2.21
Output signal power vs. the SDE for a ten-element linear array, pI = 100, σn

2  = 0.01, θI = 85°. (From Godara, L.C.,
IEEE Trans. Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)

FIGURE 2.22
Output uncorrelated noise power vs. the SDE for a ten-element linear array, pI = 100, σn

2  = 0.01, θI = 85°. (From
Godara, L.C., IEEE Trans. Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)
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interference beamforming weights of the PIC processor are calculated using (2.6.91) and
(2.6.92).

Figure 2.21 shows that the output signal powers of the two processors are the same in
the absence of the SDE. As the SDE increases, the signal suppression by the ESP increases,
and it suppresses more than 11 dB signal power in the presence of a 1° error in the signal
direction. Note that the error in the signal direction is measured relative to the look
direction and is assumed to be positive in the counterclockwise direction. Thus, −1° and

FIGURE 2.23
Power pattern of a ten-element linear array when SDE = 1°, pI = 100, σn

2  = 0.01, θI = 85°. (From Godara, L.C.,
IEEE Trans. Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)

FIGURE 2.24
Output SNR vs. the SDE for a ten-element linear array, pI = 100, σn

2  = 0.01, θI = 85°. (From Godara, L.C., IEEE
Trans. Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)
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1° error, respectively, means that the signal direction is 89° and 91° relative to the line of
the array. Furthermore, the line of the array, interference direction, and signal direction
are in the same plane.

The signal suppression of the PIC processor is substantially less than that of the ESP. It
reduces the output signal power less than 2 dB in comparison to 11 dB of the ESP when
the error is −1° and increases the output signal power by about 1 dB when the error is 1°,
in which case the ESP suppresses more than 13 dB of signal.

A comparison of the uncorrelated noise powers of the two processors is shown in
Figure 2.22. This figure shows that there is no noticeable effect on the output uncorrelated
noise power of the PIC processor due to the presence of the SDE. However, there is a
significant increase in the uncorrelated noise output power of the ESP. A small SDE, of
the order of 0.4°, causes an increase of the order of 20 dB in the uncorrelated noise output
power.

Figure 2.23 shows the power patterns of the two processors when the error is 1°. The
reduced response in the signal direction and an increased response to the uncorrelated
noise are clearly visible from the pattern of the ESP.

Figure 2.24 compares the output SNRs of the two processors. The performance of the
two processors is the same in the absence of errors. The effect of the SDE on the output
SNR of the PIC is a slight reduction for a −1° error and a slight increase for a 1° error.
However, the error causes a significant reduction in the output SNR of the ESP.

Figure 2.25 compares the output SNRs of the two processors when the interference
direction is 25° relative to the line of the array. This figure demonstrates that the output
SNR of the ESP in Figure 2.25 is reduced by more than 20 dB by 0.1° error in the signal
direction. On the other hand, the effect of the SDE on the output SNR of the PIC is
negligibly small. It should be noted that the constant ρ attains values of 0.99 and 0.48,
respectively, for the scenarios of Figure 2.24 and Figure 2.25. A comparison of these figures
shows how the direction of the interference affects the output SNR of the ESP for a given
SDE. One observes that the performance of the ESP in a noise configuration with a higher
value of ρ is poorer than that with a lower value of ρ.

FIGURE 2.25
Output SNR vs. the SDE for a ten-element linear array, pI = 100, σn

2  = 0.01, θI = 25°. (From Godara, L.C., IEEE
Trans. Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)
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Figure 2.26 shows the output SNR plots of the two processors when the uncorrelated
noise level is raised to that of the signal level. Other noise and array parameters are the
same as in Figure 2.25. The effect of the raised uncorrelated noise level on the ESP in the
presence of the SDE is that the processor becomes less sensitive to the error. The output
SNR of the ESP in the presence of a 1° error is about 4 dB, in comparison to about 10 dB
of the PIC processor. The output SNR of 10dB is the level achievable by the two processors
in the absence of the error.

For a given uncorrelated noise level, the output SNRs of the two processors in the
absence of errors can be increased by increasing the number of elements, as shown in
Figure 2.27, where the number of elements of the linear array is increased from 10 to 20.
Comparing Figure 2.27 with Figure 2.26, an increase of about 3 dB in the output SNRs of
the two processors in the absence of SDE is noticeable. One also observes from the two
figures that the ESP is more sensitive to the SDE in the presence of an array with a greater
number of elements. With an array of 20 elements, the output SNR of the ESP in the
presence of 1° SDE is about −4 dB, in comparison to 4 dB when the number of elements
in the array is ten.

All the above results are for a linear array. Similar results were reported in [God87]
when a planar array was used.

The above results show that in the absence of errors both processors produce identical
results, whereas in the presence of look direction errors the beam space processor produces
superior performance. The situation arises when the known direction of the signal is
different from the actual direction. Now let us look at the reason for this difference in the
performance of the two processors.

The weights of the processor are constrained with the known look direction. When the
actual signal direction is different from the one used to constrain weights, the ESP cancels
this signal as if it were interference close to the look direction. The beam space processor,
on the other hand, is designed to have the main beam steered in the known look direction
and the auxiliary beams are formed to have nulls in this direction. The response of the
main beam does not alter much as one moves slightly away from the look direction, and

FIGURE 2.26
Output SNR vs. the SDE for a ten-element linear array, pI = 100, σn

2  = 1, θI = 25°. (From Godara, L.C., IEEE Trans.
Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)
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thus the signal level in the main beam is not affected. Similarly, when a null of the auxiliary
beams is placed in the known look direction, a very small amount of the signal leaks in
the auxiliary beam due to a source very close to the null and thus the subtraction process
does not affect the signal level in the main beam, yielding a very small signal cancelation
in the beam space processing compared to the ESP. For details of the effect of other errors
on the beam space processors, particularly GSC, see, for example [Jab86].

A comparison of the performance of the PIC with the tamed element space processor
is presented in Figure 2.28 for the scenario of Figure 2.27. For the tamed array, as discussed
in [Tak86], the weights of the optimal ESP are calculated using the array correlation matrix
RT, given by

(2.6.104)

where α0
2 is a control variable. The performance of the tamed array is optimized for

(2.6.105)

Figure 2.27 and Figure 2.28 show that the performance of ESP in the presence of SDE
has improved substantially using this procedure. However, the PIC performs better than
the tamed ESP.

2.7 Effect of Errors

The optimal weights of an antenna array, computed using the steering vector in the
direction of arrival of the desired signal and the noise-only array correlation matrix or the

FIGURE 2.27
Output SNR vs. the SDE for a 20-element linear array, pI = 100, σn

2  = 1, θI = 25°. (From Godara, L.C., IEEE Trans.
Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)
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total array correlation matrix, maximizes the output SNR in the absence of errors. In
practice, the estimated optimal weights are corrupted by random errors that arise due to
imperfect knowledge of the array correlation matrix, errors in steering vector estimation
caused by imperfect knowledge of the array element positions, and error due the finite
word-length arithmetic used, and so on. Thus, it is important to know how these errors
degrade array performance. The effect of some of these errors on the performance of the
optimal processor is discussed in the following sections.

2.7.1 Weight Vector Errors

Array weights are calculated using ideal conditions and then stored in memory, and are
implemented using amplifiers and phase shifters. Theoretical study of system performance
assumes the ideal error-free weights, whereas the actual performance of the system is
dependent on the implemented weights. The amplitude as well as the phase of these
weights are different from the ideal ones, and these differences arise from many types of
errors caused at various points in the system, starting from the deviation in the assumption
that a plane wave arrives at the array, uncertainty in the positions and the characteristics
of array elements, error in the knowledge of the array correlation matrix caused by its
estimation from finite number of samples, error in the steering vector or the reference
signal used to calculate weights, computational error caused by finite precision arithmetic,
quantization error in converting the analog weights into digital form for storage, and
implementation error caused by component variation. Studies of weight errors have been
conducted in which these errors are modeled as random fluctuations in weights [God86,
Lan85, Ber77, Hud77, Nit76, Ard88], or by modeling them as errors in amplitude and
phase [Ram80, Far83, Qua82, Kle80, Cox88, DiC78]. Performance indices to measure the
effect of errors include the array gain [God86, Far83], reduction in null depth [Lan85],

FIGURE 2.28
Output SNR vs. the SDE for a 20-element linear array, pI = 100, σn

2  = 1, θI = 25°. (From Godara, L.C., IEEE Trans.
Circuits Syst., 34, 721–730, 1987. ©IEEE. With permission.)
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reduction in interference rejection capability [Nit76], change in side-lobe level [Ram80,
Qua82, Kle80], and bias in the angle of arrival estimation [Cox 88], and so on.

The array gain is the ratio of the output SNR to the input SNR. The effect of random
weight fluctuation is to cause reduction in the array gain. The effect is sensitive to the
number of elements in the array and the array gain of the error-free system [God86]. For
an array with a large number of elements and with a large error-free gain, a large weight
fluctuation could reduce its array gain to unity, which implies that output SNR becomes
equal to the input SNR and no array gain is obtainable.

In this section, the effects of random errors in the weights of the processors on the output
signal power, output noise power, output SNR, and array gain are analyzed [God86]. It
is assumed that the estimated weights are different from the optimal weights by additive
random noise components. Let these errors be represented by an L-dimensional vector �
with the following statistics:

(2.7.1)

Let an L-dimensional complex vector w represent the estimated weights of the processor.
Thus,

(2.7.2)

2.7.1.1 Output Signal Power

The output signal power of the processor with estimated weights —w  is given by

(2.7.3)

Substituting for —w  and taking the mean value on both sides, this becomes, after manipulation,

(2.7.4)

Thus, the output signal power increases due to the random errors in the weight vector.
This increase is proportional to the input signal power, variance of errors, and number of
elements in the array.

2.7.1.2 Output Noise Power

The output noise power of the processor with estimated weights is given by

(2.7.5)

Substituting for —w, taking the expected value on both sides, and recognizing the fact that
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(2.7.6)

after manipulation, the result is

(2.7.7)

where Tr[.] denotes the trace of [.] and pN is the total input noise power that includes
directional interferences as well as uncorrelated noise.

Thus, the output noise power increases due to the presence of random errors in the
weights of the processor. The increase is proportional to the error variance, number of
elements in the array, and total input noise power of the processor.

2.7.1.3 Output SNR and Array Gain

Let αw and Gw denote the output SNR and the array gain of the processor with the random
errors in the weights. It follows from (2.7.4) and (2.7.7) that

(2.7.8)

where α̂ is the output SNR of the error-free beamformer. Equation (2.7.8) describes the
behavior of the output SNR as a function of the variance of the random errors, number
of elements in the array, output SNR, and array gain of the optimal processor.

Dividing both sides of this expression by the input SNR leads to an expression for Gw,
that is,

(2.7.9)

From this expression the following observations can be made:

1. The array gain Gw of the processor with the random additive errors in the weights
is a monotonically decreasing function of the variance of the random errors.

2. In the absence of errors in the weights, Gw is equal to Ĝ, the array gain of the
optimal processor.

3. As σw
2  increases very high Gw approaches unity. Thus, for finite variance in the

random errors the output SNR is more than the input SNR.
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An analysis similar to that presented here shows that in the presence of weight vector
error (WVE), the expressions for the output signal power and output noise power of the
SPNMI processor are the same as those of the NAMI processor. Hence, the presence of
the signal component in the array correlation matrix, which is used to estimate the optimal
weights, has not affected the performance of the processor in the presence of WVE.
However, as shown in the next section, this is not the case for steering vector error (SVE).

2.7.2 Steering Vector Errors

The known look direction appears in the optimal weight calculation through the steering
vector. The optimal weight calculation for the constrained beamforming requires knowledge
of the array correlation matrix and the steering vector in the look direction. Thus, the pointing
error causes an error to occur in the steering vector, which is used for weight calculation.

The steering vector may also be erroneous due to other factors such as imperfect knowl-
edge of array element positions, errors caused by finite word-length arithmetic, and so
on. The effect of steering vectors has been reported in [God86, Muc81, Com82]. An
analytical study by modeling the error as an additive random error indicates [God86] that
the effect of error is severe in the SPNMI processor, that is, when the array correlation
matrix, which is used to estimate the weights, contains the signal.

As the signal power increases, the performance of the processor deteriorates further due
to errors. By estimating the weights using a combination of a reference signal and a steering
vector, sensitivity of a processor to the SVE may be reduced [Hon87].

In this section, the effect of SVE on optimal beamformer performance is considered
[God86]. It is assumed that each component of the estimated steering vector

–
S is different

from S0 by an additive error component, that is,

(2.7.10)

where

(2.7.11)

and

(2.7.12)

The analysis presented here is for processors without constraints. The NAMI processor is
first considered.

2.7.2.1 Noise-Alone Matrix Inverse Processor

Let an L-dimensional vector w̃ represent the estimated weights of the processor when
–

S
rather than S0 is used in estimating the optimal weights. The expression for the estimated
weights of the processor in this case becomes

(2.7.13)

where µ̃ is a constant.
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The expected value of the mean output signal power and the mean output noise power
are given below. The expectation is taken over the randomness in the steering vectors.

2.7.2.1.1 Output Signal Power

The output signal power of a processor with weights w̃ is given by

(2.7.14)

Substituting for w̃ from (2.7.13), the signal power becomes

(2.7.15)

Taking the expected value on both sides of (2.7.15) and using (2.7.11) and (2.7.12), after
rearrangements,

(2.7.16)

where β̂ is the ratio of uncorrelated noise power at the output to the uncorrelated noise
power at the input of the optimal processor and P̂N is the mean output noise power of
the optimal processor.

2.7.2.1.2 Total Output Noise Power

The output noise power of the processor with weight vector w̃ is given by

(2.7.17)
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Taking the expected value on both sides of (2.7.18) and using (2.7.11) and (2.7.12), after
rearrangements,

(2.7.19)

where

(2.7.20)

Since κ > 0, it follows from (2.7.19) that the output noise power increases in proportion
to the variance of the random errors in the steering vector.

2.7.2.1.3 Output SNR and Array Gain

Let αs and GS denote the output SNR and the array gain of the NAMI processor with SVE.
It follows then from (2.7.16) and (2.7.19) that

(2.7.21)

and

(2.7.22)

It follows from these two equations that the behavior of the output SNR and the array
gain of the NAMI processor with SVE depend on the relative magnitudes of β̂ and κ. It
can be shown that κ ≥ β̂, and thus the array gain of the NAMI processor with the random
errors in the steering vector is a monotonically decreasing function of the error variance.

2.7.2.2 Signal-Plus-Noise Matrix Inverse Processor

Let an L-dimensional vector represent the estimated weights of the SPNMI processor
when

–
S rather than S0 is used in estimating the optimal weights. The expression for in

this case becomes
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Using the Matrix Inversion Lemma, 

(2.7.25)

where

(2.7.26)

From (2.7.23) and (2.7.25), it follows that

(2.7.27)

Comparing (2.7.13) with (2.7.27) one notes that the second term in (2.7.27) is due to the
presence of the signal component in the array correlation matrix that is used in estimating
the optimal weights. As the signal component goes to zero, the second term goes to zero
because a0 goes to zero, and thus becomes –w.

The effect of SVE on the output signal power, the output noise power, the output SNR,
and the array gain is now examined.

2.7.2.2.1 Output Signal Power

Following a procedure similar to that used for the NAMI processor, an expression for the
mean output signal power of the SPNMI processor in the presence of the SVE becomes

(2.7.28)

Comparing (2.7.16) with (2.7.28), in the presence of SVE the output signal power of both
processors increases and the increase is proportional to the output signal power of the
respective error-free processor and the parameter β̂, which is the ratio of the uncorrelated
noise powers at the output of the optimal processor to its input. Hence, the effect of the
random SVE on both processors is the same. Thus, the presence of the signal component
in the array correlation matrix has not altered the effects of SVE on output signal power.
In the next section, it is shown that this is not the case for the output noise power.

2.7.2.2.2 Total Output Noise Power

Following a procedure similar to that used for the NAMI processor, an expression for the
mean output noise power of the processor with weight vector becomes

(2.7.29)
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enhanced by the input signal power due to the presence of product terms σs
2α̂2 and σ s

2̂α.
Note that the third term in (2.7.29), which contains these terms, is missing from the
expression of the output noise power given by (2.7.19) when the array correlation matrix
of noise only is used in the calculation of the optimal weights.

2.7.2.2.3 Output SNR

Let denote the output SNR of the SPNMI processor in the presence of SVE. Then it
follows that

(2.7.30)

which describes the behavior of the output SNR of the SPNMI processor in the presence
of random SVE. Comparing this with (2.7.21), the expression for the output SNR of the
NAMI processor, one observes the presence of α̂2 and α̂ in the denominator of (2.7.30).
As the output SNR of the optimal processor α̂ is directly proportional to the input SNR
of the processor, it follows that:

1. The effect of SVE on output SNR of the SPNMI processor is very sensitive to the
input signal power.

2. The output SNR of the SPNMI processor drops faster than the output SNR of the
NAMI processor as the error variance increases.

3. For a given level of SVE, the output SNR of the SPNMI processor is less than the
output SNR of the NAMI processor, and the difference increases as the power of
the signal source increases.

It should be noted here that the above observations are true for any array geometry and
noise environment. However, the array geometry and the noise environment would affect
the results as α̂, κ, and β̂ depend on them.

Now the array gain of the SPNMI processor is compared with the array gain of the
NAMI processor GS in the presence of SVE. For this case, array gain is given by

(2.7.31)

Since κ ≥ β̂, it follows from (2.7.22) and (2.7.31) that for a given σs
2, the array gain

of the SPNMI processor is less than the array gain GS of the NAMI processor, and falls
more rapidly than GS as the variance of the random SVE increases. The fall in is greater
at a higher input SNR than at a lower input SNR.

2.7.2.3 Discussion and Comments

Table 2.2 compares the various results on SVE and WVE. All quantities are normalized
with their respective error-free values to facilitate observation of the effect of errors. The
following observations can be made from the table:
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1. The output signal power in all cases increases with the increase in error variance.
For WVE case, the increase depends only on the number of elements, whereas for
SVE it depends on the array geometry and the noise environment.

2. The output noise power in all cases increases with the increase in error variance.
For the WVE case, the increase depends on Ĝ and is independent of signal power.
For the SVE case, the increase in the output noise power is dependent on the input
signal power for the SPNMI processor, and is independent of the signal power
for the NAMI processor.

3. The array gain in all cases decreases with the increase in the error variance. In the
case of WVE, the decrease in the array gain depends on Ĝ. The greater Ĝ is, the
faster the array gain drops as the error variance increases. In the SVE case, the
array gain of the SPNMI processor is dependent on the output SNR of the optimal
processor (α̂), and it drops as α̂ is increased. Note that α̂ is directly proportional
to the input signal power. The effect of SVE on the NAMI processor is not affected
by the input signal power.

Two special cases of the noise environment are considered below to study the effect of
array elements, uncorrelated noise power, direction, and power of the interference source.

2.7.2.3.1 Special Case 1: Uncorrelated Noise Only

Consider the case of a noise environment where only uncorrelated noise is present. Let ∆
denote the ratio of the input signal power to the uncorrelated noise power on each element.
For this case,

(2.7.32)

(2.7.33)

(2.7.34)

TABLE 2.2

Comparison of the SVE and WVE*

Normalized Mean 
Output Signal Power

Normalized Mean 
Output Noise Power Normalized Array Gain

Effect of SVE 
on NAMI 
processor

Effect of SVE 
on SPAMI 
processor

Effect of WVE 
on both 
processors

* β̂: Ratio of the uncorrelated noise at the output to the input of the optimal beamformer; Ĝ: array
gain of the optimal beamformer; α̂ : output SNR of the optimal beamformer; : variance of the
additive random steering vector errors; : variance of the additive random weight vector errors;
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and

(2.7.35)

The expressions for the array gains of the two processors in the presence of SVE and WVE
are shown in Table 2.3. From the table, the following observations can be made.

1. For a given error level, say σS = σS0, the array gain of the NAMI processor increases
as the number of elements in the array increases. Thus, for a given error level and
input SNR, the output SNR of the NAMI processor increases as L increases.

2. The array gain of the NAMI processor decreases as the error level is increased,
and it does not depend on the ratio of the input signal to the uncorrelated noise
power, ∆. However, the behavior of the array gain of the SPNMI processor in
the presence of SVE depends on ∆. For a given L, drops faster at a higher ∆ than
at a lower ∆ as the SVE level is increased.

3. For ∆ � 1, the expression for becomes

(2.7.36)

and for a given level of errors the array gain increases with the increase in the
number of elements, as in the case of the NAMI processor.

4. For ∆ � 1, the expression for becomes

(2.7.37)

Thus, for a given σS, the array gain decreases with the increase in the number of
elements for a very high input signal to uncorrelated noise ratio.

5. The plots of vs. the input SNR for various values of L are shown in Figure 2.29
for error variance equal to 0.01. The results displayed in the figure are in agreement
with the above observations.

6. A comparison of the expressions for the array gain in the presence of the SVE and
the WVE reveal that Gw, the array gain of both processors in the presence of WVE,

TABLE 2.3

Comparison of Array Gain in the Presence of SVE and WVE with 
No Interference Present*

Array gain NAMI processor in SVE

Array gain of SPAMI processor in SVE

Array gain of both processors in WVE

* : Variance of steering vector error; : variance of weight vector error,
.
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behaves similarly to GS, the array gain of NAMI processor in the presence of SVE.
For a given error level, both Gw and GS increase with the increase in L. However,
for the same error level, say σS = σw = σ0,

(2.7.38)

2.7.2.3.2 Special Case 2: One Directional Interference

Consider the case of a noise environment consisting of a directional interference of power
pI and uncorrelated noise of power σn

2 on each element of the array. For this case, Ĝ and α̂
are, respectively, given by (2.4.43) and (2.4.42),

(2.7.39)

and

(2.7.40)

where

(2.7.41)

FIGURE 2.29
Array gain of SPNMI processor vs. SNR, no interference, and σs

2  = 0.01. (From Godara, L.C., IEEE Trans. Aerosp.
Electron. Syst., 22, 395–409, 1986. ©IEEE. With permission.)
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The effect of a variation in ρ on the array gain of the two processors in the presence of
WVE and SVE is shown in Figure 2.30 to Figure 2.33. The number of elements in the array
for these figures is taken to be ten.

Figure 2.30 shows Gw vs. σw
2 for five values of ρ. One observes from the figure that Gw,

which denotes the array gain of both the processors in the WVE, decreases faster at higher
values of ρ than at lower values of ρ, as the variance of the errors is increased. The result
is expected, since Ĝ increases as ρ increases.

Figure 2.31 and Figure 2.32 show the effect of ρ on the array gain of the SPNMI processor
in the presence of SVE for σn

2/pI = 0 dB and σn
2/pI = −40 dB, respectively. These figures

show that as the error variance is increased, the array gain falls more rapidly at higher
values of ρ than at lower values of ρ. The result is expected, since α̂ increases as ρ increases.

A comparison of Figure 2.31 and Figure 2.32 reveals that the effect of SVE on the array
gain is not altered significantly by increasing the interference power. The result is predict-
able from the expression for , since for Lρ  � σ n

2/pI the constants β̂, κ, and α̂ are
independent of interference power.

The effect of ρ on the array gain of the NAMI processor in the presence of the SVE is shown
in Figure 2.33. The figure demonstrates that the effect of the SVE on the array gain of the
NAMI processor is almost the same for all values of ρ. This observation implies that the array
geometry and direction of interference do not significantly influence the effect of SVE on the
NAMI processor unless the interference direction is very close to the look direction.

Figure 2.34 and Figure 2.35 compare the three array gains Gw, GS, and  for the case
of weak interference σn

2/pI = 0 dB, and strong interference, dB. For these figures, input
signal power is equal to uncorrelated noise power. These figures show that the array gains
of both processors in the presence of the SVE are not affected by the interference power,
whereas Gw, the array gain of two processors in the presence of WVE, is highly dependent

FIGURE 2.30
Gw vs. σw

2 , σn
2 /p1 = 0 dB, and ten-element array. (From Godara, L.C., IEEE Trans. Aerosp. Electron. Syst., 22,

395–409, 1986. ©IEEE. With permission.)

) 
G s

) 
G s
C Press LLC 



© 2004 by CR
FIGURE 2.31
 vs. σ s

2, σn
2 /pI = 0 dB, and ten-element array. (From Godara, L.C., IEEE Trans. Aerosp. Electron. Syst., 22, 395–409,

1986. ©IEEE. With permission.)

FIGURE 2.32

 vs. σs
2, σn

2 /pI = –40 dB, and ten-element array. (From Godara, L.C., IEEE Trans. Aerosp. Electron. Syst., 22,
395–409, 1986. ©IEEE. With permission.)
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on the interference power. It drops faster as σw
2 is increased in the presence of the inter-

ference and the rate of drop increases with the increase in the interference power. Note
the difference in the vertical scales of the two figures.

2.7.3 Phase Shifter Errors

The phase of the array weight is an important parameter and an error in the phase may
cause an estimate of the source to appear in a wrong direction when an array is used for
finding directions of sources, such as in [Cox88]. The phase control of signals is used to
steer the main beam of the array in desired positions, as in electronic steering. A device
normally used for this purpose is a phase shifter. Commonly available types are ferrite
phase shifters and diode phase shifters [Mai82, Sta70]. One of the specifications that
concerns an array designer is the root mean square (RMS) phase error.

Analysis of the RMS phase error shows that it causes the output SNR of the constrained
optimal processor to suppress the desired signal, and the suppression is proportional to
the product of the signal power and the random error variance [God85]. Furthermore,
suppression is maximum in the absence of directional interferences. Quantization error
occurs in digital phase shifters. In a p-bit digital phase shifter, the minimum value of the
phase that can be changed equals 2π/2p. Assuming that the error is distributed uniformly
between π/2p to π/2p, the variance of this error equals π2/3 × 22p.

In this section, the effect of random phase errors on the performance of the optimal
processor is analyzed [God85]. To facilitate this analysis, the phase shifters are separated
from the weights as shown in Figure 2.36 and are selected to steer the array in the look
direction.

FIGURE 2.33
 vs. σs

2, σn
2 /pI = –40 dB, and ten-element array. (From Godara, L.C., IEEE Trans. Aerosp. Electron. Syst., 22,

395–409, 1986. ©IEEE. With permission.)
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FIGURE 2.34

Gw, , and Gs vs. σ s
2, σn

2 /pI- = –40 dB, ρ = 0.9, and ten-element array. (From Godara, L.C., IEEE Trans. Aerosp.
Electron. Syst., 22, 395–409, 1986. ©IEEE. With permission.)

FIGURE 2.35

Gw, , and Gs vs. σ s
2, σn

2 /pI = 0 dB, ρ = 0.9, and ten-element array. (From Godara, L.C., IEEE Trans. Aerosp.
Electron. Syst., 22, 395–409, 1986. ©IEEE. With permission.)
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Let the optimal weights of the beamformer of Figure 2.36, referred to as the beamformer
using phase shifters, be denoted by . It follows from the figure that the output of the
optimal beamformer using phase shifters is given by

(2.7.42)

where x′(t) is the array signal received after the phase shifters and are given by (2.6.31).
Thus, using (2.6.31), (2.7.42) becomes

(2.7.43)

Now a relationship between w and ŵ, the weights of the optimal beamformer without
using phase shifters discussed in Section 2.4, is established. The output of the optimal
beamformer without using phase shifters is given by

(2.7.44)

Since the outputs of both structures are identical, it follows from (2.7.43) and (2.7.44)
that w and ŵ are related as follows:

(2.7.45)

An expression for w may be obtained from (2.4.16) and (2.7.45) and is given by

(2.7.46)

2.7.3.1 Random Phase Errors

In this section, the effect of random phase errors on optimal processor performance is
examined. Phase shifters with random phase errors are termed “actual phase shifters,”

FIGURE 2.36
Beamformer structure showing phase shifters.
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and the processor in this case is termed “optimal processor with phase errors” (OPPE). It
is assumed that random phase errors that exist in the phase shifters can be modeled as
stationary processes of zero mean and equal variance and are not correlated with each
other.

Let δl, l = 1, 2, …, L represent the phase error in the lth phase shifter. By assumption,

(2.7.47)

and

(2.7.48)

Let α̃ l , l = 1, 2, …, L represent the phase delays of the actual phase shifters. Then

(2.7.49)

where α l, l = 1, 2, …, L are the phase delays of error-free phase shifters, and are given by
(2.6.29).

Let a diagonal matrix Φ be defined as

(2.7.50)

It follows from (2.7.43) that an expression for the mean output power of the optimal
beamformer using phase shifters is given by

(2.7.51)

Similarly, the mean signal power, interference power, and uncorrelated noise power,
respectively, are given by

(2.7.52)

(2.7.53)

and

(2.7.54)

where β̂ is defined by (2.4.11). The last step in (2.7.54) follows from using (2.7.46).
Note that the mean output uncorrelated noise power given by (2.7.54) is not a function

of phase angles and is not affected by the random errors in the phase shifters.
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The effect of random phase errors on the output signal power and output interference
power is now examined. Substituting Φ for Φ0 in (2.7.52) and (2.7.53) and taking expec-
tation over random phase errors, expressions for the mean output signal power  and
interference power  of the OPPE follow:

(2.7.55)

and

(2.7.56)

2.7.3.2 Signal Suppression

Rewrite (2.7.55) in the following form:

(2.7.57)

Substituting for Φ and S0 in (2.7.57), after rearrangement,

(2.7.58)

Using the expansion

(2.7.59)

the first term on the RHS of (2.7.58) becomes

(2.7.60)

Assuming that the contribution of the higher-order terms is negligibly small, using (2.7.47)
and (2.7.48), (2.7.60) results in
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(2.7.61)

Noting that the second term on the RHS of (2.7.58) is pSβ̂, and the fact that l = 1, (2.7.58)
and (2.7.61) yield

(2.7.62)

Note that in the absence of directional interferences β̂ = 1/L, (2.7.62) becomes

(2.7.63)

Thus, the output signal power of OPPE is suppressed. The suppression of the output
signal power is proportional to the input signal power and random error variance. In the
presence of directional interference β̂ increases and thus the reduction in the signal power
is less than otherwise. In other words, signal suppression is maximum in the absence of
directional interference, and is given by the second term on the RHS of (2.7.63).

2.7.3.3 Residual Interference Power

Rewrite (2.7.56) in the following form:

(2.7.64)

Using (2.6.32), (2.7.49), and (2.7.50) in (2.7.64),

(2.7.65)

Noting that the diagonal entries of RI are the sum of all directional interference power
pI, the first term in the RHS of (2.7.65) reduces to pIβ̂. Following steps (2.7.59) to (2.7.61),
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(2.7.66)

Substituting for  from (2.7.46) in (2.7.66), it follows that

(2.7.67)

where pI is the total power of all directional interferences at the input of the processor and P̂I
is the residual interference power of the optimal processor given by (2.4.18).

2.7.3.4 Array Gain

In this section, the effect of random phase errors on the array gain of OPPE is examined.
Let  be the output SNR of OPPE. Thus,

(2.7.68)

where

(2.7.69)

is the total mean output noise power of OPPE.
Since the uncorrelated mean output noise power is not affected by the random phase

errors, it follows from (2.7.54) that

(2.7.70)

Substituting from (2.7.70) and (2.7.67) in (2.7.69), using (2.4.12) and (2.4.35), after manip-
ulation,

(2.7.71)

where Ĝ is the array gain of the optimal processor.
From (2.7.62), (2.7.68), and (2.7.71) it follows that

(2.7.72)

If  denotes the array gain of OPPE, then it follows from (2.7.72), (2.4.34), and (2.4.35) that

(2.7.73)
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Let

(2.7.74)

and

(2.7.75)

A simple algebraic manipulation using (2.7.73) to (2.7.75) shows that for σ2 > σ1,

(2.7.76)

Thus, the array gain of the optimal processor with random phase errors is a monotonically
decreasing function of the error variance. 

2.7.3.5 Comparison with SVE

Now, a comparison between the effect of the random phase shifter errors and the effect
of random SVE on optimal processor performance is made. SVE is discussed in Section 2.7.2.

Table 2.4 compares results. For purposes of the comparison, the results in both cases are
normalized with corresponding error-free values and thus are referred to as normalized.
The mean output signal power decreases with the increase in variance of phase shifter
error if β̂ < 1, whereas in the case of SVE it is a monotonically increasing function of the
variance of the errors. Note that for white noise only, β̂ < 1/L. The total mean output noise
power is a monotonically increasing function of SVE variance, whereas it decreases with
the increase in variance of the phase-shifter error if β̂Ĝ < 1. The array gains in both the
cases are monotonically decreasing functions of the variance of random errors.

2.7.4 Phase Quantization Errors

In this section, a special case of random error, namely the phase quantisation error, which
arises in digital phase shifters, is considered. In a p-bit phase shifter, the minimum value

TABLE 2.4

 Comparison of Steering Vector Errors and Phase Shifter Errors *

Type of Error Phase-Shifter Error Steering-Vector Error

Normalized output 
signal power

Normalized total 
output noise power

Normalized array gain

* β̂: Ratio of the uncorrelated noise at the output to the input of the 

optimal processor; Ĝ: array gain of the optimal processor; σ2: variance 
of the additive random phase shifter errors; σs
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of phase that can be changed is 2π/2p. Thus, it is assumed that the error which exists in
a p-bit digital phase shifter is uniformly distributed between –π/2p and π/2p.

For a uniformly distributed random variable x in the interval (−C, C), it can easily be
verified that

(2.7.77)

Substituting for C = π/2p in (2.7.77), the variance σp
2 of the error in a p-bit phase shifter,

is given by

(2.7.78)

Substituting σp for σ in expressions for the mean output signal power, mean output
noise power, output SNR, and the array gain, the following expressions for these quantities
are obtained as a function of the variance of the phase quantization error:

(2.7.79)

(2.7.80)

(2.7.81)

and

(2.7.82)

2.7.5 Other Errors

Uncertainty about the position of an array element causes degradation in the array per-
formance in general [Gof87, Kea80, She87, Ram80, Gil55], and particularly when the array
beam pattern is determined by constrained beamforming. As discussed previously, ele-
ment position uncertainty causes SVE, which in turn leads to a lower array gain. The effect
of position uncertainty on the beam pattern is to create a background beam pattern similar
to that of a single element, in addition to the normal pattern of the array [Gil55]. A general
discussion on the effect of various errors on the array pattern is provided in [Ste76].

A calibration process is normally used to determine the position of an antenna element
in an array. It requires auxiliary sources in known locations [Dor80]. A procedure that
does not require the location of these sources is described in [Roc87, Roc87a].

The element failure tends to cause an increase in side levels and the weights estimated
for the full array no longer remain optimal [She87]. This requires recalculation of the
optimal weight with the known failed elements taken into account [She87, Ram80].
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The effect of perturbation in the medium, which causes the wave front to deviate from
the plane wave propagation assumption, and related topics are found in [Vur79, Hin80,
Ste82]. The effect of a finite number of samples used in weight estimation is considered
in [Bor80, Ber86, Rag92] and how bandwidth affects narrowband beamformer performance
are discussed in [God86a, May79]. Effects of amplitude and phase errors on a mobile
satellite communication system using a spherical array employing digital beamforming
has also been studied [Chu92].

2.7.6 Robust Beamforming

The perturbation of many array parameters from ideal conditions under which the theo-
retical system performance is predicted, causes degradation in system performance by
reducing the array gain and altering the beam pattern. Various schemes have been pro-
posed to overcome these problems and to enhance array system performance operating
under nonideal conditions [God87, Cox87, Eva82, Kim92, You93, Er85, Er93, Er93a, Er94,
Tak86]. Many of these schemes impose various kinds of constraints on the beam pattern
to alleviate the problem caused by parameter perturbation. A survey of robust signal-
processing techniques in general is conducted in [Kas85]. It contains an excellent reference
list and discusses various issues concerning robustness.
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Notation and Abbreviations

E[.] Expectation operator
1 vector of ones
(.)H Hermitian transposition of vector or matrix (.)
(.)T Transposition of vector or matrix (.)
A Matrix of steering vectors
B Matrix prefilter
c Speed of propagation
CIB conventional interference beamformer
d element spacing
ESP element space processor
f0 carrier frequency
Ĝ array gain of optimal beamformer
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Gw array gain of optimal beamformer with WVE
Gs array gain of NAMI beamformer with SVE

array gain of SPNMI processor with SVE
array gain of OPPE

IIB improved interference beamformer
L number of elements in array
MSE mean square error
MMSE minimum mean square error
M number of directional sources
mk(t) complex modulating function of kth source
ms(t) complex modulating function of signal source
mI(t) complex modulating function of interference source
NAMI noise alone matrix inverse
nl (t) random noise on lth antenna
n(t) signal vector due to random noise
OIB orthogonal interference beamformer
OPPE optimal processor with phase errors
PIC postbeamformer interference canceler
pk power of kth source
pI power of interference source
pS power of signal source
pN total noise at input
P(w) mean output power for given w
P̂ mean output power of optimal beamformer
P̂ mean output power of optimal beamformer when known look direction is

in error
P(ŵ) mean output power of optimal beam-space processor
P(ŵ) mean output power of optimal PIC processor
PS mean output signal power
P̂S mean output signal power of optimal beamformer
PS mean output signal power of optimal beamformer in presence of WVE
P̃S mean output signal power of NAMI processor in presence of SVE

mean output signal power of SPNMI processor in presence of SVE
mean output signal power of OPPE

PS(w) mean output signal power of beam-space processor for given w
PS(ŵ) mean output signal power of optimal PIC processor with weight ŵ
PI mean output interference power
P̂I mean output interference power of optimal beamformer
PI mean output interference power of OPPE

P1(ŵ) mean output interference power of optimal PIC processor with weight ŵ
Pn mean output uncorrelated noise power

) 
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P̂n mean output uncorrelated noise power of optimal beamformer
mean output uncorrelated noise power of OPPE

Pn(ŵ) mean output uncorrelated noise power of optimal PIC processor with
weight ŵ

PN mean output noise power
P̂N mean output noise power of optimal beamformer
PN mean output noise power of optimal processor in presence of WVE
P̃N mean output noise power of NAMI processor in presence of SVE

mean output noise power of SPNMI processor in presence of SVE
mean output noise power of OPPE

PN(w) mean output noise power of beam-space processor for given w
PN(ŵ) mean output noise power of optimal PIC processor with weight ŵ
P0 mean power of main beam
Q matrix of eigenvectors
q(t) outputs of M – 1 auxiliary beams
q(t) output of interference beam
r(t) reference signal
rl position vector of lth antenna
R array correlation matrix
RN noise-only array correlation matrix
Rn random noise-only array correlation matrix
RI interference-only array correlation matrix
RMS root mean square
RS signal-only array correlation matrix
RT array correlation matrix used in tamed array
Rqq correlation matrix of auxiliary beams
R̃ array correlation matrix after steering delays
R– actual array correlation matrix when known look direction is in error
SPNMI signal-plus-noise matrix inverse
SNR signal-to-noise ratio
SNR(ŵ) signal-to-noise ratio of optimal beam-space processor
SNR(ŵ) signal-to-noise ratio of optimal PIC processor with weight ŵ

SNR of OPPE
SVE steering vector error
s(t) signal induces on reference element
s(t – T)˜ signal delayed by T̃
S source correlation matrix
Sk steering vector associated with kth source
S0 steering vector associated with known look direction
S0 steering vector associated with actual look direction when known look di-

rection is in error
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P n

 
) 
P N
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P N
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N R0
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S
–

steering vector associated with known look direction in presence of SVE
SI steering vector associated with interference
S(φ,θ) steering vector associated with direction (φ,θ)
T̃ delay time
Tr[.] Trace of [.]
U weight vector of interference beam of PIC
Uo weight vector of interference beam of PIC with OIB
Ul eigenvector associated with lth eigenvalue
V main beam weight vector
v̂ (φk, θk) unit vector in direction (φk,θk)
WVE weight vector error
ŵ weight of optimal PIC
ŵc weight of optimal PIC using CIB
ŵI weight of optimal PIC using IIB
ŵo weight of optimal PIC using OIB
ŵo weight of optimal PIC using OIB when known look direction is in error
wc weights of conventional beamformer
wl weight on lth antenna
w weight vector
ŵ weights of optimal beamformer
ŵ weights of optimal beamformer when known look direction is in error
w— weights of optimal beamformer in presence of weight errors
w̃ weights of NAMI processor in presence of SVE

weights of SPNMI processor in presence of SVE
weights of optimal beamformer using phase shifters to steer array

ŵMSE optimal weights of beamformer using reference signal
xl (t) signal induced on lth antenna
x(t) element signal vector
x′(t) element signal vector after presteering delay
xS(t) element signal vector due to desired signal source
xI(t) element signal vector due to interference source
y(t) array output
yS(t) signal component in array output
yI(t) interference component in array output
yn(t) random noise component in array output
y(φ,θ) response of a beamformer in (φ,θ)
z correlation between reference signal and x(t)
Z correlation between outputs of auxiliary beams and main beam
α l phase delays on lth channel to steer array in look direction, phase delays of

error-free phase shifter on lth channel
α l˜ phase delays of actual phase shifter (including error) on lth channel

w 

w 
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α̂ SNR of optimal beamformer
αw output SNR of optimal beamformer with WVE
αs output SNR of NAMI processor with SVE

output SNR of SPNMI processor with SVE
α0

2 control variable used in tamed arrays
αI SNR at output of interference beam of PIC processor
β̂ ratio of uncorrelated noise power at out of optimal beamformer to input

uncorrelated noise power
β normalized dot product of S0 and SI

βp phase of parameter β
βo Euclidian norm of Uo

γo normalized power response of interference beam in interference direction
δl phase error in lth phase shifter
ε(t) error signal
ε0 ratio of uncorrelated noise to interference power at input of beamformer
ξ(w) MSE for given w
ξ̂ minimum MSE
κ scalar parameter defined by (2.7.20)
ψ(t) output of main beam
η(t) output of interference beam
µ0 scalar constant
ρ scalar parameter function of array geometry, θS and θI

� vector of random errors in weights
�S vector of random errors in steering vectors
Λ diagonal matrix of eigenvalues
λl lth eigenvalue of array correlation matrix
σn

2 power of random noise induced on element
σw

2 variance of weight vector errors
σs

2 variance of steering vector errors
σ2 variance of phase shifter errors
σp

2 variance of phase error in p-bit phase shifter
(φk,θk) direction of kth source using three-dimensional notation
(φ0,θ0) look direction using three-dimensional notation
(θk) direction of kth source using two-dimensional notation
θI direction of interference source using two-dimensional notation
θS direction of signal source using two-dimensional notation
τl (φk,θk) propagation delay on lth antenna from source in (φk,θk)
τl(θk) propagation delay on lth antenna from source in (θk)
Φ0 diagonal matrix of error-free phase delays
Φ diagonal matrix of phase delays (including errors)

  
) 
α s
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The weights of an element-space antenna array processor that has a unity response in the
look direction and maximizes the output SNR in the absence of errors are given by

(3.1)

where RN is the array correlation matrix with no signal present, and is referred to as the
noise-only array correlation matrix, and S0 is the steering vector associated with the look
direction. When the noise-only array correlation matrix is not available, the array correlation
matrix R is used to calculate the optimal weights. For this case the expression becomes

(3.2)

The weights of the processor that minimizes the mean square error (MSE) between the
array output and a reference signal are given by

(3.3)

where z denotes the correlation between the reference signal and the array signals vector x(t).
In practice, neither the array correlation matrix nor the noise-alone matrix is available

to calculate optimal weights of the array. Thus, the weights are adjusted by some other
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means using the available information derived from the array output, array signals, and
so on to make an estimate of the optimal weights. There are many such schemes and these
are normally referred to adaptive algorithms. Some are described in this chapter, and their
characteristics such as the speed of adaption, mean and variance of estimated weights,
and parameters affecting these characteristics are discussed. Both element space and beam
space processors are considered.

3.1 Sample Matrix Inversion Algorithm

This algorithm estimates array weights by replacing correlation matrix R by its estimate
[God97]. An unbiased estimate of R using N samples of the array signals may be obtained
using a simple averaging scheme as follows:

(3.1.1)

where R̂(N) denotes the estimated array correlation matrix using N samples, and x(n)
denotes the array signal sample also known as the array snapshot at the nth instant of
time with t replaced by nT with T denoting the sampling time. The sampling time T has
been omitted for ease of notation.

Let R̂(n) denote the estimate of array correlation matrix and w(n) denote the array
weights at the nth instant of time. The estimate of R may be updated when the new
samples arrive using

(3.1.2)

and a new estimate of the weights w(n + 1) at time instant n + 1 may be made.
Let P(n) denote the output power at the nth instant of time given by

(3.1.3)

When N samples are used to estimate the array correlation matrix and the processor
has K degree of freedom the mean output power is given by [Van91]

(3.1.4)

where P̂ denotes the mean output power of the processor with the optimal weights, that is,

(3.1.5)

The factor (N – K)/N represents the loss due to estimate of R and determines the conver-
gence behavior of the mean output power.

It should be noted that as the number of samples grows, the matrix update approaches
its true value and thus the estimated weights approaches optimal weights, that is, as n →
∞, R(n) → R and ŵ(n) → ŵ or ŵMSE, as the case may be.
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The expression of optimal weights requires the inverse of the array correlation matrix,
and this process of estimating R and then its inverse may be combined to update the
inverse of the array correlation matrix from array signal samples using the Matrix Inversion
Lemma as follows:

(3.1.6)

with

(3.1.7)

This scheme of estimating weights using the inverse update is referred to as the recursive
least squares (RLS) algorithm, which is further discussed in Section 3.9. More discussion
on the simple matrix inversion (SMI) algorithm is found in [Ree74, Van91, Hor79].

Application of SMI to estimate the weights of an array to operate in mobile communi-
cation systems has been considered in many studies [Win94, Geb95, Lin95, Vau88, Has93,
Pas96]. One of these studies [Lin95] considers beamforming for GSM signals using a
variable reference signal as available during the symbol interval of the time-division
multiple access (TDMA) system. Applications discussed include vehicular mobile com-
munications [Vau88], reducing delay spread in indoor radio channels [Pas96], and mobile
satellite communication systems [Geb95].

3.2 Unconstrained Least Mean Squares Algorithm

Application of least mean squares (LMS) algorithm to estimate optimal weights of an
array is widespread and its study has been of considerable interest for some time. The
algorithm is referred to as the constrained LMS algorithm when the weights are subjected
to constraints at each iteration, whereas it is referred to as the unconstrained LMS algo-
rithm when weights are not constrained at each iteration. The latter is applicable mainly
when weights are updated using reference signals and no knowledge of the direction of
the signal is utilized, as is the case for the constrained case.

The algorithm updates the weights at each iteration by estimating the gradient of the
quadratic MSE surface, and then moving the weights in the negative direction of the
gradient by a small amount. The constant that determines this amount is referred to as
the step size. When this step size is small enough, the process leads these estimated weights
to the optimal weights. The convergence and transient behavior of these weights along
with their covariance characterize the LMS algorithm, and the way the step size and the
process of gradient estimation affect these parameters are of great practical importance.
These and other issues are discussed in detail in the following.

A real-time unconstrained LMS algorithm for determining optimal weight ŵMSE of the
system using the reference signal has been studied by many authors [Wid67, Gri69, Wid76,
Wid76a, Hor81, Ilt85, Cla87, Feu85, Gar86, Bol87, Fol88, Sol89, Jag90, Sol92, God97] and
is given by

(3.2.1)

where w(n + 1) denotes the new weights computed at the (n + 1)th iteration, µ is a positive
scalar (gradient step size) that controls the convergence characteristic of the algorithm
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(i.e., how fast and how close the estimated weights approach the optimal weights), and
g(w(n)) is an unbiased estimate of the MSE gradient. For a given w(n), the MSE is given
by (2.5.1), that is,

(3.2.2)

The MSE gradient at the nth iteration is obtained by differentiating (3.2.2) with respect
to w, yielding

(3.2.3)

Note that at the (n + 1)th iteration, the array is operating with weights w(n) computed at
the previous iteration; however, the array signal vector is x(n + 1), the reference signal
sample is r(n + 1), and the array output

(3.2.4)

3.2.1 Gradient Estimate

In its standard form, the LMS algorithm uses an estimate of the gradient by replacing R
and z by their noisy estimates available at the (n + 1)th iteration, leading to

(3.2.5)

Since the error ε(w(n)) between the array output and the reference signal is given by

(3.2.6)

it follows from (3.2.5) that

(3.2.7)

Thus, the estimated gradient is a product of the error between the array output and the
reference signal and the array signals after the nth iteration. Taking the conditional expec-
tation on both sides of (3.2.5), it can easily be established that the mean of the gradient
estimate for a given w(n) becomes

(3.2.8)

where –g(w(n)) denotes the mean of the gradient estimate for a given w(n). From (3.2.3)
and (3.2.8) it follows that the gradient estimate is unbiased. 

3.2.2 Covariance of Gradient

A particular characteristic of the gradient estimate, which is important in determining the
performance of the algorithm, is the covariance of the gradient estimate used. To obtain
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results on the covariance of the gradient estimate given by (3.2.5), making an additional
Gaussian assumption about the sequence {x(k)} is necessary. Thus, it is assumed that {x(k)}
is an independent indentically distributed (i.i.d.) complex Gaussian sequence.

The following result is useful for the analysis to obtain a fourth-order moment of
complex variables. The result, based on the Gaussian moment–factoring theorem, states
that [Ree62] when x1, x2, x3, and x4 are zero mean, complex jointly Gaussian random
variables, the following relationship holds:

(3.2.9)

Now consider the covariance of the gradient estimate given by (3.2.5). By definition, the
covariance of the gradient for a given w(n) is given by

(3.2.10)

The second term on the RHS of (3.2.10) is obtained by taking the outer product of (3.2.8),
yielding

(3.2.11)

To evaluate the first term on the RHS of (3.2.10), take the outer product of (3.2.5):

(3.2.12)

Taking the conditional expectation on both sides one obtains, for a given w(n),

(3.2.13)
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(3.2.14)

It follows from (3.2.14) and (3.2.9) that

(3.2.15)

This along with (2.5.2) implies that

(3.2.16)

where

(3.2.17)

is the mean power of the reference signal.
Similarly evaluating the other terms on the RHS of (3.2.13), 

(3.2.18)

Subtracting (3.2.11) from (3.2.18) and using (3.2.2),

(3.2.19)

where ξ(w(n)) is the MSE given by (3.2.2).

3.2.3 Convergence of Weight Vector

In this section, it is shown that the mean value of the weights estimated by (3.2.1) using
the gradient estimate given by (3.2.5) approaches the optimal weights in the limit as the
number of iterations grows large. For this discussion, it is assumed that the successive
array signal samples are uncorrelated. This is usually achieved by having a sufficiently
long iteration cycle of the algorithm. Substituting from (3.2.5) in (3.2.1), it follows that

(3.2.20)

A E n r n r n nH= +( ) +( ) +( ) +( )[ ]x x1 1 1 1*

A E x n r n r n x n

E x n r n E r n x n

E x n x n E r n r n

ij i j

i j

i j

= +( ) +( ) +( ) +( )[ ]
= +( ) +( )[ ] +( ) +( )[ ]

+ +( ) +( )[ ] +( ) +( )[ ]

1 1 1 1

1 1 1 1

1 1 1 1

*

*

  *

*

*

*

A RpH
r= +zz

p E r n r nr = ( ) ( )[ ]*

E n n n R n R R n n R

R n R n

n R R n

Rp

H H H

H H

H H

H
r

g w g w w w w w

w z z w

zw w z

zz

( )( ) ( )( )[ ] = ( ) ( ) + ( ) ( )

− ( ) − ( )

− ( ) − ( )

+ +

4 4

4 4

4 4

4 4

  

  

  

V n R n R n n n p

R n

H H H
rg w w w z w w z

w

( )( ) = ( ) ( ) − ( ) − ( ) +{ }
= ( )( )

4

4 ξ

w w x x w xn n n n n n r nH+( ) = ( ) − +( ) +( ) ( ) + +( ) +( )1 2 1 1 2 1 1µ µ *
C Press LLC 



© 2004 by CR
Equation (3.2.20) shows that w(n) is only a function of x(0), x(1), …, x(n). This along
with the assumption that the successive array samples are uncorrelated implies that w(n)
and x(n + 1) are uncorrelated. Hence, taking the expected value on both sides of (3.2.20),

(3.2.21)

where

(3.2.22)

Define a mean error vector –v(n) as

(3.2.23)

where ŵMSE is the optimal weight given by (3.3), that is,

(3.2.24)

It follows from (3.2.23) that –w(n) is given by

(3.2.25)

Substituting for –w(n) in (3.2.21),

(3.2.26)

Noting from (3.2.24) that
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it follows from (3.2.26) that

(3.2.28)

The behavior of the RHS of (3.2.28) can be explained better by converting it in diagonal
form, which can be done by using the eigenvalue decomposition of R given by (2.1.29).
In the following, (2.1.29) is rewritten:

(3.2.29)

where Λ is a diagonal matrix of the eigenvalues of R and Q is given by (2.1.31). It is a
matrix, with columns being the eigenvectors of R.
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ŵ zMSE R= −1

w v wn n MSE( ) = ( ) + ˆ

v v w zn I R n R MSE+( ) = −[ ] ( ) − +1 2 2 2µ µ µˆ

z w= R MSE
ˆ

v v

v

n I R n

I R n

+( ) = −[ ] ( )

= −[ ] ( )+

1 2

2 01

µ

µ

R Q QH= Λ
C Press LLC 



© 2004 by CR
Substituting for R in (3.2.28),

(3.2.30)

Equation (3.2.30) may be rewritten in the following form, using indexing:
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and it holds for n + 1. Thus, by indexing it is proved that (3.2.30) may be rewritten in the
form of (3.2.31). The quantity in the square bracket on the RHS of (3.2.31) is a diagonal
matrix with each entry (1 − 2µλi), with λi, i = 1, …, L being the L eigenvalues of R.

For µ < 1/λmax, with λmax denoting the maximum eigenvalue of R, the magnitude of
each diagonal element is less than 1, that is,

(3.2.36)

Hence, as the iteration number increases, each diagonal element of the matrix in the square
bracket diminishes, yielding

(3.2.37)

This along with (3.2.23) implies that

(3.2.38)

Thus, for µ < 1/λmax, the algorithm is stable and the mean value of the estimated weights
converges to the optimal weights. As the sum of all eigenvalues of R equals its trace, the
sum of its diagonal elements, the gradient step size µ can be selected in terms of measurable
quantities using µ < 1/Tr(R), with Tr(R) denoting the trace of R. It should be noted that
each diagonal element of R is equal to the average power measured on the corresponding
element of the array. Thus, for an array of identical elements, the trace of R equals the
power measured on any one element times the number of elements in the array.

3.2.4 Convergence Speed

The convergence speed of the algorithm refers to the speed by which the mean of the
estimated weights (ensemble average of many trials) approaches the optimal weights, and
is normally characterized by L trajectories along L eigenvectors of R. To obtain the conver-
gence time constant along an eigenvector of R, consider the initial mean error vector –v(0)
and express it as a linear combination of L eigenvectors of R, that is,

(3.2.39)

where αi, i = 1, 2, …, L are scalars and Ui, i = 1, 2, …, L are eigenvectors corresponding
to L eigenvalues of R.

Substituting from (3.2.39) in (3.2.31) yields

(3.2.40)

Since eigenvectors of R are orthogonal, (3.2.40) can be expressed as
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(3.2.41)

The convergence of the mean weight vector to the optimal weight vector along the ith
eigenvector is therefore geometric, with geometric ratio 1 − 2µλ i. If an exponential envelope
of the time constant τi is fitted to the geometric sequence of (3.2.41), then

(3.2.42)

where ln denotes the natural logarithm and the unit of time is assumed to be one iteration.
The negative sign in (3.2.42) appears due to the fact that the quantity in parentheses is
less than unity and the logarithm of that is a negative quantity.

Note that if

(3.2.43)

the time constant of the ith trajectory may be approximated to

(3.2.44)

Thus, these time constants are functions of the eigenvalues of the array correlation matrix,
the smallest one dependent on λmax, which normally corresponds to the strongest source
and the largest one controlled by the smallest eigenvalue that corresponds to the weakest
source or the background noise. Therefore, the larger the eigenvalue spread, the longer it
takes for the algorithm to converge. In terms of interference rejection capability, this means
canceling the strongest source first and the weakest last.

The convergence speed of an algorithm is an important property and its importance for
mobile communications is highlighted in [Nag94] by discussing how the LMS algorithm
does not perform as well as some other algorithms due to its slow convergence speed in
situations of fast-changing signal characteristics. Time availability for an algorithm to
converge in mobile communication systems not only depends on the system design, which
dictates duration of the user signal present such as the user slot duration in a TDMA
system, it is also affected by the speed of mobiles, which changes the rate at which a signal
fades. For example, a mobile on foot would cause the signal to fade at a rate of about
5 Hz, whereas it would be of the order of about 50 Hz for a vehicle mobile, implying that
an algorithm needs to converge faster in a system being used by vehicle mobiles compared
to the one used in a handheld portable [Win87]. Some of these issues for the IS-54 system
are discussed in [Win94] where the convergence of the LMS and the SMI algorithms in
mobile communication situations is compared.

Even when the mean of the estimated weights converges to optimal weights, they have
finite covariance, that is, their covariance matrix is not identical to a matrix with all
elements equal to zero. This causes the average of the MSE not to converge to the minimum
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MSE (MMSE) and leads to excess MSE. Convergence of the weight covariance matrix and
the excess MSE is discussed in following sections.

3.2.5 Weight Covariance Matrix

The covariance matrix of the weights at the nth iteration is given by

(3.2.45)

where expectation is unconditional and taken over w,

(3.2.46)

and

(3.2.47)

In this section, a recursive relationship for the weight covariance matrix is derived. The
relationship is useful for understanding the transient behavior of the matrix.

It follows from (3.2.45) that

(3.2.48)

and from (3.2.47) that

(3.2.49)

Substituting from (3.2.1) in (3.2.49),

(3.2.50)

Taking unconditional expectation on both sides of (3.2.10), and rearranging, it follows
that

(3.2.51)

where –g(w(n)) is the mean value of the gradient estimate for a given w(n). An expression
for –g(w(n)) is given by (3.2.8). From (3.2.8), taking the outer product of –g(w(n)),
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(3.2.52)

From (3.2.5),

(3.2.53)

and

(3.2.54)

From (3.2.50) to (3.2.54) it follows that

(3.2.55)

Evaluation of (3.2.48) requires the outer product of w(n + 1). From (3.2.1) and (3.4.8),

(3.2.56)

and thus

(3.2.57)

Subtracting (3.2.57) from (3.2.55) and using (3.2.48),

(3.2.58)

Thus, at each iteration the weight covariance matrix depends on the mean value of the
gradient covariance used at the previous iteration. Equation (3.2.58) may be further sim-
plified by substituting for Vg(w(n)) from (3.2.19). Taking the expectation over w on both
sides of (3.2.19),
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Using

(3.2.60)

(3.2.59) becomes

(3.2.61)

where

(3.2.62)

and Tr[.] denotes the trace of [.].
Substituting (3.2.61) in (3.2.58),

(3.2.63)

Thus, at the (n + 1)st iteration the weight covariance matrix is a function of ξ(w(n)).

3.2.6 Transient Behavior of Weight Covariance Matrix

In this section, the transient behavior of the weight covariance matrix is studied by
deriving an expression for kww(n) and its limit as n → ∞. Define

(3.2.64)

By pre- and postmultiplying by QH and Q on both sides of (3.2.63), and using

(3.2.65)

it follows that

(3.2.66)
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Using QHRQ = Λ and (3.2.64) in (3.2.66), the following matrix difference equation is
derived:

(3.2.67)

Now it is shown by induction that ∑(n), n ≥ 0 is a diagonal matrix. Consider n = 0. Since
the initial weight vector is w(0), it follows from (3.2.45) to (3.2.47) and (3.2.64) that

(3.2.68)

From (3.2.67) and (3.2.68),

(3.2.69)

As Λ is a diagonal matrix, it follows from (3.2.69) that ∑(1) is a diagonal matrix. Thus,
∑(n) is diagonal for n = 0 and 1. If ∑(n) is diagonal for any n, then it follows from (3.2.67)
that it is diagonal for n + 1. Thus, ∑(n), n ≥ 0 is a diagonal matrix.

As Q is a unitary transformation, it follows that the diagonal elements of ∑(n) are the
eigenvalues of kww(n). Let these be denoted by ηl (n), l = 1, …, L. Defining

(3.2.70)

and

(3.2.71)

to denote the eigenvalues of R and ∑(n), respectively, 

(3.2.72)

Substituting (3.2.72) in (3.2.67), the vector difference equation for the eigenvalues of ∑(n)
is

(3.2.73)

With

(3.2.74)

equation (3.2.73) has the solution

(3.2.75)
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Since Q diagonalizes kww(n), it follows that

(3.2.76)

where Ul, l = 1, …, L are the eigenvectors of R. Equation (3.2.76) describes the transient
behavior of the weight covariance matrix.

The next section shows that  �T �(n) exists under the conditions noted there. This,
along with the fact that 0 < λi < ∞∀ i, implies that  �(n) exists. It then follows from
(3.2.73) and (3.2.74) that

(3.2.77)

where ξ̂ is the minimum MSE given by (2.5.6). This along with (3.2.76) implies that an
expression for the steady-state weight covariance matrix is given by

(3.2.78)

3.2.7 Excess Mean Square Error

From the expressions of MSE given by (2.5.1), it follows that for a given w(n),

(3.2.79)

where ξ̂ is the minimum MSE, v(n) is the error vector at the nth iteration denoting the
difference between estimated weights w(n) and the optimal weights ŵ, and vH(n)Rv(n) is
the excess MSE.

Taking the expected value over w on both sides of (3.2.79), the average value of the MSE
at the nth iteration is derived, that is,

(3.2.80)

where

(3.2.81)

and E[vH(n)Rv(n)] denotes average excess MSE at the nth iteration.
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Taking the limit as n → × yields the steady-state MSE, that is,

(3.2.82)

Note that as n → ∞ E[v(n)] → 0 but the average value of the excess MSE does not approach
zero, that is,  E[vH(n)Rv(n)] ≠ 0. Now let us discuss the meaning of this quantity.

Substituting for v(n) in (3.2.79),

(3.2.83)

Consider the mean output power of the processor for a given w, that is,

Taking the expectation over w, it gives the mean output power at the nth iteration P(n),
that is,

(3.2.84)

This along with (3.2.83) yields

(3.2.85)

that in the limit becomes

(3.2.86)

Thus, the steady-state average excess MSE is the difference between the mean output
power of the processor in the limit P(×) and the mean output power of the optimal
processor, ŵH(n)Rŵ(n). It is the excess power contributed by the weight variance in the
steady state.

Next, an independent expression for the steady-state average excess MSE is derived.
Using (3.2.60) and the notation of the previous section, it follows that

(3.2.87)
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(3.2.87)

Substituting from (3.2.87) in (3.2.83),

(3.2.88)

Taking the limits on both sides, this becomes

(3.2.89)

It should be noted that (3.2.89) only holds in the limit. At the nth iteration, the average
excess MSE vH(n)Rv(n) is not equal to �T�(n). A relationship between the two quantities
is given by (3.2.88). Appendix 3.1 shows that

(3.2.90)

Thus, we have the following result for the steady-state average excess MSE, 
E[vH(n)Rv(n)]. If µ satisfies

(3.2.91)

and
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then

(3.2.93)

3.2.8 Misadjustment

The difference between the weights estimated by the adaptive algorithm and optimal
weights is further characterized by the ratio of the average excess steady-state MSE and
the MMSE. It is referred to as the misadjustment [Wid66]. It is a dimensionless parameter
and measures the performance of the algorithm. The misadjustment is a kind of noise,
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and is caused by the use of the noisy estimate of the gradient. This noise is referred to as
the misadjustment noise.

Let M denote the misadjustment. Thus, by definition

(3.2.94)

It follows from (3.2.94), (3.2.82), (3.2.93) that when the gradient is estimated by multiplying
the array signals with the error between the array output and the reference signal, and
the gradient step size selected such that (3.2.91) and (3.2.92) hold, then the misadjustment
MU for the unconstrained LMS algorithm is given by

(3.2.95)

For a sufficiently small µ, this results in

(3.2.96)

It follows from this expression that increasing µ increases the misadjustment noise. On
the other hand, an increase in µ causes the algorithm to converge faster as discussed earlier.
Thus, the selection of the gradient step size requires satisfying conflicting demands of
reaching the vicinity of the solution point quicker but wandering around over a larger
region causing a bigger misadjustment and arriving near the solution point slowly with
the smaller movement in the weights at the end. The latter causes an additional problem,
particularly in nonstationary environments, say when interference is slowly moving,
where the optimal solution moves, causing slowly adapting estimated weights to lag
behind the optimal weights. This phenomenon is referred to as the weight vector lag.

Many schemes including variable step size have been suggested to overcome this prob-
lem [Soo91, Pri91, Yas87, Eva93, Kwo92, Kwo92a, Har86, Che90]. Some of these are briefly
discussed.

The adaptive algorithm estimates the weights by minimizing the MSE. Thus, in schemes
where a variable step size is used, it reflects the value of the MSE at that iteration, going
up and down as the MSE goes up and down such that it stays between the maximum
permissible value for convergence and the minimum value based on the allowed misad-
justment. It may be truly variable or may be allowed to switch between a few preselected
values for the ease of implementation as well as by shifting by one bit left or right where
digital implementation is used. The step size may also be adjusted to reflect the change
in the direction of the error surface gradient at each iteration [Har86].

The optimal value of the step size at each step is suggested in [Yas87] such that it
minimizes the MSE at each iteration. This is a function of the value of the true gradient
at each iteration and the array correlation matrix. In practice, these may be replaced by
their instantaneous values, leading to a suboptimal value.

Instead of having a single step size for a whole weight vector, a variable step size can
be selected for each weight separately, leading to increased convergence of the algorithm
[Eva93]. The convergence speed of the algorithm may also be increased by adjusting
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weights such that interferences are canceled one at a time [Ko93, Ko93a], and by using a
scheme known as block processing [Ben92]. For broadband signals, an implementation in
the frequency domain may help increase the speed of convergence.

The application of frequency domain beamforming to estimate the weights using the
LMS algorithm for the case when a reference signal is available shows [Den78, Nar81,
Flo88, Ber86] how the frequency domain approach yields improved convergence and
reduced computational complexities compared to the time domain approach. Improved
convergence normally arises from the use of different gradient step sizes in different bins.
For the constrained LMS case, this is likely to cause deterioration in the steady-state
performance of the algorithm. This, however, does not affect the performance of the
unconstrained algorithm [Feu93].

The “sign algorithm,” in which the error between the array output and the reference
signal is replaced by its sign, is computationally less complex than the LMS algorithm, as
discussed in [Che90, Mat87].

The algorithm is usually analyzed assuming that successive samples are uncorrelated.
This assumption helps in simplifying the mathematics by allowing expectations of data
products to be replaced by the products of their expectations. Discussion of correlated
samples in nonstationary environment may be found in [Ber84, Ber85, Ewe90]. Applica-
tions of the unconstrained LMS algorithm to mobile communication systems using an
array include base mobile communication systems [Win84], indoor radio systems [Win87],
and satellite-to-satellite communication systems [Jon95].

3.3 Normalized Least Mean Squares Algorithm

This algorithm is a variation of the constant-step-size LMS algorithm and uses a data-
dependent step size at each iteration [God97]. At the nth iteration, the step size is given by

(3.3.1)

where µ0 is a constant. The algorithm and its convergence using various types of data
have been studied widely [Nit85, Nit86, Ber86a, Slo93, Rup93]. It avoids the need for
estimating the eigenvalues of the correlation matrix or its trace for selection of the maxi-
mum permissible step size. The algorithm normally has better convergence performance
and less signal sensitivity compared to the normal LMS algorithm. See [Bar94] for discus-
sion of its application to mobile communications.

3.4 Constrained Least Mean Squares Algorithm

A real-time constrained algorithm [Hud81, Fro72, Can80, God83, God86, God89, God90,
God93, God97, Mos70] for determining the optimal weight vector ŵ is
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where

(3.4.2)

is a projection operator, g(w(n)) is an unbiased estimate of the gradient of the power
surface wH(n)Rw(n) with respect to w(n) after the nth iteration; µ is the gradient step size,
a positive scalar constant that controls the characteristics of the adaptive algorithm; and
S0 is the steering vector in the look direction.

The algorithm is called constrained because the weight vector satisfies the constraint at
every iteration, that is, wH(n)S0 = 1, ∀ n. The process of imposing constraints may be
understood from Figure 3.1. It shows how weights are updated and how the projection
system works using a vector diagram for a two-weight system [Fro72]. The figure shows
constant power contours; the constraint surface (a line wHS0 = 1 for a two-dimensional
system); a surface parallel to the constraint surface passing through the origin (wHS0 = 0);
weight vectors w(n), w(n + 1), and ŵ; and the gradient at the nth iteration.

Point A on the diagram indicates the position of the weight after completion of the nth
iteration. It is the cross-section of the constraint equation wHS0 = 1 and the power surface
wH(n)Rw(n) (not shown in the figure). The weights are perturbed by adding a small
amount –µg(w(n)) and then are projected on wHS0 = 0 using projection operator P. This
is indicated by point B on the diagram. Note that PS0 = 0; thus the projection operator
projects the weights orthogonal to S0. The vector S0/L is added to restore the constraint.
This action moves the updated weights w(n + 1) to point C. The process continues by
moving the estimated weights toward point D, the optimal solution.

The effect of the gradient step size µ on the convergence speed and misadjustment noise
may also be understood using Figure 3.1. A larger step size means that the weight vector
moves faster toward point D, the solution point, but wanders around it over a larger
region, not closely approaching and causing more misadjustment.

The gradient of wH(n)Rw(n) with respect to w(n) is given by

(3.4.3)

FIGURE 3.1
Constrained LMS algorithm: a pictorial view of projection process.
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and its computation using this expression requires knowledge of R, which normally is
not available in practice. A typical scheme to estimate the required gradient is to replace
R by its noisy sample x(n + 1) xH(n + 1) available at time instant (n + 1).

There are a number of schemes used for estimating the required gradient [Fro72, Can80,
God83, God86, God90, God89]. Even though the estimated gradient in each case is unbi-
ased, the covariance of the estimated gradient obtained with each method is different, and
thus the transient and steady-state behavior of the constrained algorithm is different in
each case. In the following sections, some of these methods are described and the behavior
of the algorithm in each case is examined.

First, the normal gradient estimation scheme where R is replaced by its noisy sample is
discussed, and the algorithm in this case is referred to as the standard LMS algorithm to
differentiate it from the algorithm when a gradient estimated by different methods is used.

In the next section, the gradient estimation scheme used by the standard LMS algorithm
is described, and then some properties of the gradient are discussed along with the
convergence of the weights estimated by the algorithm to the optimal weights and the
study of the misadjustment [God86, God93].

3.4.1 Gradient Estimate

When all receiver outputs are accessible, the usual estimate of the gradient is made by
multiplying the array output by the receiver output, that is,

(3.4.4)

In obtaining this estimate, the array correlation matrix has been replaced by x(n + 1)xH(n +
1), which is a noisy sample of the array correlation matrix at the time instant (n + 1).

If {x(n)} is a zero-mean, stationary complex vector process, then for a given w(n) the
estimate of the gradient defined by (3.4.4) is unbiased, that is,

(3.4.5)

3.4.2 Covariance of Gradient

The covariance of the gradient estimate used in the weight update equation is important
in determining the performance of the algorithm, as was discussed previously. To obtain
results on the covariance of the gradient estimate defined by (3.4.4), it is necessary to make
an additional Gaussian assumption about the sequence {x(k)}. Thus, if {x(k)} is an i.i.d.
complex Gaussian sequence, then VgS

(w(n)), the covariance of the gradient estimated by
this method for a given w(n), is given by

(3.4.6)

A derivation of (3.4.6) is presented in Appendix 3.2.
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It follows from the expression that the covariance at the nth iteration is proportional to
the mean output power of the processor for a given w(n), the quantity that the gradient
algorithm is trying to minimize. Thus, the gradient estimate improves as the weight vector
approaches the optimal value.

3.4.3 Convergence of Weight Vector

In this section, results on convergence of the estimated weights to the optimal weights
are presented. The derivation of these results appears in Appendix 3.3.

Let λ̂max denote the maximum eigenvalue of PRP and λ̂i denote the ith eigenvalue of PRP.
If {x(k)} is an i.i.d. Gaussian sequence, and wH(0)w(0) < ∞ and

(3.4.7)

then

(3.4.8)

and the convergence of E[w(n)] to ŵ along the ith eigenvector of PRP has the following
time constant:

(3.4.9)

where ln[⋅] denotes the natural logarithm.
Thus, the mean value of the estimated weights converges to the optimal weights in the

limit provided that one starts with a bounded initial weight vector and the gradient step
size is small enough to satisfy the condition (3.4.7). It should be noted that upper limit on
the gradient step size, as well as convergence speed, depend on PRP. It follows from

(3.4.10)

and

(3.4.11)

that PRP = PRNP, and hence the convergence speed of the mean value of weights charac-
terized by the time constants and the upper limit on the gradient step size only depend
on the eigenvalues of PRNP, indicating that the signal arriving from the look direction
does not affect these quantities. The eigenvalues of PRNP are functions of the directions
and powers of directional sources as well as the array geometry with the maximum
eigenvalue being controlled by the strongest source governing the initial convergence
speed. The latter part of the convergence is controlled by the smaller eigenvalues associ-
ated with weak sources or background noise, and thus the overall speed of the algorithm
depends on the eigenvalue spread of PRNP.
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The discussion thus far has concentrated on the convergence of the mean value of
weights to optimal weights. The variance of these weights is an important parameter and
the transient and steady-state behavior of the weight covariance matrix kww(n) are indicators
of algorithm performance as discussed previously for the unconstrained LMS algorithm.

3.4.4 Weight Covariance Matrix

The weight covariance matrix is defined as

(3.4.12)

where

(3.4.13)

Appendix 3.4 shows that the matrix satisfies the following recursive relations. If Vgw(n))
denotes the covariance of the gradient used in the constrained LMS algorithm for a given
w(n), and kww(n) denotes the covariance of w(n), then

(3.4.14)

where the expectation is taken over w.
The weight covariance matrix at each iteration depends on the mean value of the

covariance of the gradient used at the previous iteration. Equation (3.4.14) may be further
simplified by substituting for Vg(w(n)). Taking expectation over w(n), pre- and post-
multiplying by P on both sides of the expression for the covariance of the gradient given
by (3.4.6) and using (3.2.60),

(3.4.15)

where

(3.4.16)

Equations (3.4.14) and (3.4.15) imply that

(3.4.17)
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3.4.5 Transient Behavior of Weight Covariance Matrix

The study of the convergence and transient behavior of the weight covariance matrix
presented here requires that the matrix be diagonalized. Conditions required for diago-
nalization of the weight covariance matrix by the transformation, which also diagonalizes
PRP, are described below.

The necessary and the sufficient condition for the diagonalization of kww(n + 1), n ≥ 0,
and PRP by the same unitary transformation is that the unitary transformation also
diagonalizes PE[Vg(w(n))]P for all n, where Vg(w(n)) is the covariance of g(w(n)) for a
given w(n) and the expectation is taken over w. A proof of the diagonalization conditions
is presented in Appendix 3.5.

Thus, to verify that the weight covariance matrix for the standard algorithm is diago-
nalizable by the same unitary transformation that diagonalizes PRP, we need to test if this
transformation diagonalizes PE[VgS

(w(n))]P. Since PRP is a Hermitian matrix, a unitary
matrix Q̂ exists, such that

(3.4.18)

where Λ̂ is a diagonal matrix with its diagonal elements being the eigenvalues of PRP.
It follows from (3.4.15) and (3.4.18) that

(3.4.19)

This implies that VgS
(w(n)) satisfy the conditions required for the diagonalization of kww(n).

Thus, Q̂Hkww(n)Q̂ is a diagonal matrix when the covariance of the gradient used for updat-
ing w(n) is given by (3.4.6). Let this be denoted by diagonal matrix Σ(n), that is,

(3.4.20)

Now the transient behavior of Σ(n) is analyzed. To study the transient behavior of Σ(n),
a matrix difference equation for Σ(n) is developed, a vector difference equation for its
diagonal terms is derived, and its solution is presented.

Pre- and postmultiplying (3.4.17) by Q̂H and Q̂, noting that

(3.4.21)

(3.4.22)

and using (3.4.20), the following matrix difference equation is derived:

(3.4.23)

Let the two L-dimensional vectors λ̂ and �(n) represent the L eigenvalues of PRP and
kww(n), respectively, that is,
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(3.4.24)

and

(3.4.25)

where λ̂i and ηi(n), i = 1, 2, …, L, are the eigenvalues of PRP and kww(n), respectively.
From (3.4.23) to (3.4.25) and the fact that

(3.4.26)

the following vector difference equation for the eigenvalues of kww(n) is derived:

(3.4.27)

Since

(3.4.28)

it follows from (3.4.16) that

(3.4.29)

With

(3.4.30)

(3.4.27) has the solution

(3.4.31)

where �(0) denotes the eigenvalues of kww(0). Since Q̂ diagonalizes kww(n), it follows that

(3.4.32)

where Q̂l, l = 1, 2, …, L are the eigenvectors of PRP.
Equations (3.4.31) and (3.4.32) completely describe the transient behavior of the weight

covariance.
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3.4.6 Convergence of Weight Covariance Matrix

In this section, the convergence of the weight covariance matrix is examined. Consider
the following equation:

(3.4.33)

This represents a set of L difference equations. Before studying the convergence, these
equations are reduced to a set of L – 1 difference equations by showing that one of the
components in each of the vectors is identical to zero.

Let λmin(.) denote the minimum eigenvalue of a matrix (.). Based on (3.4.22) and λmin(P) =
0, λmin(kww(n)) = 0. Also, λ̂min = 0. Let

(3.4.34)

and Q̂l be the eigenvector corresponding to λ̂ l. Since Q̂ diagonalizes kww(n) and P, Q̂l must
also be the eigenvector corresponding to the zero eigenvalue of kww(n) and P. Thus,

(3.4.35)

It follows from (3.4.34) and (3.4.35) that the lth difference equation in (3.4.33) is identical
to zero. Thus, these reduce to a set of L – 1 difference equations. Define L – 1 dimensional
vectors �̂′ and �′(n) such that the ith component is given by

(3.4.36)

where (⋅)′ denotes the L – 1 dimensional vectors �̂′ and �′(n), and (.) denotes the corre-
sponding L-dimensional vectors �̂ and �(n). Similarly, define an L – 1 × L – 1 dimensional
matrices H′ by dropping the column of zeros and the row of zeros from H.

With Λ̂′  denoting the diagonal matrix of L – 1 nonzero eigenvalues of PRP, it follows
from (3.4.30) and the definition of the above L – 1 dimensional vectors that

(3.4.37)

It follows from (3.4.33) to (3.4.37) that

(3.4.38)

It can be shown that �′(n) exists under certain conditions (see Appendix 3.6) and is
given by

(3.4.39)
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(3.4.40)

Substituting for the eigenvalues of kww(n) from (3.4.40) in (3.4.32) yields the steady-state
expressions for the covariance matrices.

(3.4.41)

3.4.7 Misadjustment

Misadjustment is a dimensionless measure of algorithm performance near the convergence
point as discussed previously. It is a normalized difference between the adaptive and
optimal performance of a processor. It is defined as the ratio of the excess mean output
power to the optimal power, that is,

(3.4.42)

Noting that w(n) and x(n + 1) are independent, the expectation over w(n) and x(n + 1)
in (3.4.42) can be taken independently. Taking the conditional expectation for a given w(n),
it follows that

(3.4.43)

Since

(3.4.44)

it follows from (3.4.43), after taking unconditional expectation on both sides, that

(3.4.45)
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(3.4.46)

The contribution of the second and third terms in (3.4.46) is zero in the limit because of
(3.4.8). Since kww(n) = Pkww(n)P, it follows that

(3.4.47)

where

(3.4.48)

Thus, (3.4.46) becomes

(3.4.49)

Appendix 3.6 proves that for the standard LMS algorithm, if

(3.4.50)

and

(3.4.51)

then the misadjustment is given by

(3.4.52)
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(3.4.53)

3.5 Perturbation Algorithms

The LMS algorithm discussed in previous sections requires that the signals on all elements
are accessible. In some situations this may not be possible. For example, in a large radio
frequency array it may not be economical to provide a coherent channel on all elements
in the array and thereby make the required signal inaccessible. In situations like this, one
needs to estimate the required gradient by other means if the LMS algorithm is to be used
for weight updating.

In this section, a method to estimate the required gradient for the LMS algorithm when
the signals on all elements are not accessible is described using three different processor
structures. One structure uses a single receiver to measure the power of the processor and
is referred to as a single-receiver system. The other two structures use two receivers to
measure the output power, one using dual perturbation and the other using a reference
receiver. The gradient estimate obtained using three different structures is unbiased
[Can80].

LMS algorithm performance using the gradient estimate by this method can be analyzed
using an approach similar to that used in previous sections. However, the results on the
mean and covariance of the gradient, and the covariance of the weights and misadjust-
ments are stated in this section. The method described in this section is for updating
weights of the constrained optimal beamformer. The methods applicable to other proces-
sors can easily be developed using a similar approach.

The method uses orthogonal sequences to perturb the weights of the processor, and
then measures the output power of the processor to estimate the required gradient. The
LMS algorithm using the gradient estimated by this method is referred to as perturbation
algorithm [Can80]. The perturbation algorithm requires more array samples and thus more
time than the LMS algorithm discussed in previous sections. A weight iteration cycle in
this case includes a complete weight perturbation cycle occupying, say, M time instants
to estimate the required gradient. Thus, the weight iteration index and the time index are
not the same in the perturbation algorithm, as may be the case for standard LMS algorithm.
Details on the algorithm and its analyses may be found in [Can80, God83, God86, God93].

Consider some useful definitions required to understand the material discussed in this
section. Let S denote a complex vector sequence defined as

(3.5.1)

where �(l), l = 1, 2, …, M are L-dimensional complex vectors.
The sequence S is said to be an orthogonal complex vector sequence if

(3.5.2)
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(3.5.3)

(3.5.4)

and

(3.5.5)

The sequence S is said to be of zero mean if

(3.5.6)

and is said to have odd symmetry if for every i, 1 ≤ i ≤ M, there exists a j, 1 ≤ j ≤ M, such
that �(i) = –�(j).

The next section discusses a scheme to generate the required perturbation sequences.

3.5.1 Time Multiplex Sequence

Perturbation sequences with the required properties for obtaining an unbiased gradient
estimate can be constructed in a number of ways. However, for a time multiplex sequence
it is possible to evaluate certain expressions in closed form. A procedure to construct a
time multiplex sequence is given below. Let

(3.5.7)

A multiplex sequence can be defined in terms of hi(j) as follows:

(3.5.8)

where δi(j) denotes the ith element of the column vector �(j).
It can be verified that S has zero-mean odd symmetry and satisfies the required orthog-

onality properties. The time multiplex sequence defined above has length M = 4L and can
be used to obtain an unbiased gradient estimate for all three structures. However, in the
case of a dual receiver with dual perturbation, a time multiplex sequence of length M =
2L can be constructed, which provides an unbiased estimate of the gradient [Can80].
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3.5.2 Single-Receiver System

In this section, a gradient estimate scheme using a single receiver system is described.
Figure 3.2 shows a schematic diagram of a single receiver system. The sequence S is used
to perturb the array weights about their nominal value w(n). The instantaneous output
power is then correlated with the sequence S and an estimate of the required gradient is
made.

At the ith instant within the perturbation cycle, 1 ≤ i ≤ M, the weight vector is given by

(3.5.9)

where γ is a real positive scalar and denotes the perturbation step size. An estimate of the
gradient is given by

(3.5.10)

where f1(w+,i) is the instantaneous array output power given by

(3.5.11)

and l is the time instant at which the perturbation cycle is initiated.
If the orthogonal perturbation sequence has odd symmetry, then for any γ > 0, the

estimate of the gradient defined by (3.5.10) is unbiased for a given w(n), that is,

(3.5.12)

3.5.2.1 Covariance of the Gradient Estimate

Let Vg1
(w(n)) denote the covariance of the gradient estimate defined by (3.5.10). If {x(n)}

is an i.i.d. Gaussian sequence, then for the time multiplex perturbation sequence defined
by (3.5.8),

FIGURE 3.2
Schematic diagram of a single receiver system.
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(3.5.13)

The second and fourth terms in (3.5.13) are proportional to wH(n)Rw(n), the quantity that
the adaptive algorithm is attempting to minimize. Thus, the gradient estimate improves
as the weight vector approaches the optimum. However, the first and third terms do not
necessarily decrease. Interestingly, the fourth term is similar to the term in VgS

(w(n)), the
covariance of the gradient estimate used in the standard algorithm. The first and second
terms are penalties due to the use of perturbation for estimating the gradient. The third
term is due to the mean of the gradient, which is not canceled in the single-receiver system.

3.5.2.2 Perturbation Noise

Although the estimated gradient is unbiased and independent of γ, the covariance of the
gradient is a function of γ. Furthermore, the presence of perturbations on the weights
causes an increase in the output power. This power is proportional to γ2. An indication
of the effect of the perturbation can be obtained by determining the excess output power,
referred to as the perturbation noise, ξ due to perturbation of weights about a nominal
weight w(n).

For any orthogonal sequences S having a zero mean, the excess power due to pertur-
bation about a nominal weight w(n) is given by

(3.5.14)

Note from (3.5.13) that Vg1
(w(n)) is a convex function of γ, and the optimal value γ̂(w(n))

for which Vg1
(w(n)) is minimum can be found. For a time multiplex perturbation sequence,

the following result can be established.
Let γ̂(w(n)) represent the value of γ(w(n)) for which Vg1

(w(n)) is minimum. Then

(3.5.15)

Let Vg1
(w(n)) represent the value of Vg1

(w(n)) at γ̂(w(n)). Then

(3.5.16)

The perturbation noise when the optimal γ is used can be obtained by substituting
(3.5.15) in (3.5.14). The result is given by

(3.5.17)

Assuming that the gradient algorithm converges, then ξ(γ̂(n)) is approximately given by

(3.5.18)
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3.5.3 Dual-Receiver System

In this section, a gradient estimation scheme using a processor with two receivers is
described. In a two-receiver system, an estimate of the required gradient can be obtained
by applying a perturbation sequence S in antiphase to the two sets of weights, and
correlating the difference power from the receivers with S as shown in Figure 3.3 with
switch position A. Thus, Receiver 1 has its weights perturbed according to

(3.5.19)

and Receiver 2 has its weights perturbed according to

(3.5.20)

Let f1(w+,i) and f2(w−,i) denote the instantaneous output power at Receivers 1 and 2,
respectively. An estimate of the gradient is given by

(3.5.21)

For a given weight vector w(n), the estimate of the gradient defined by (3.5.21) is unbiased
for any orthogonal perturbation sequence S.

FIGURE 3.3
Schematic diagram of a two-receiver system.
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3.5.3.1 Dual-Receiver System with Reference Receiver

In a two-receiver system, an estimate of the required gradient can also be obtained by
using a perturbation sequence S to perturb the array weights of only one of the receivers
about their nominal value w(n), while the other receiver has its weights fixed at w(n) as
shown in Figure 3.3 with switch position B. Let Receiver 1 have its weights perturbed by
a sequence S so that its weight vector is given by

(3.5.22)

Let f1(w+,i) and f2(w,i) denote the output power of receivers 1 and 2, respectively. An
estimate of the gradient is given by

(3.5.23)

The estimate of the gradient defined by (3.5.23) is unbiased when S is an orthogonal
perturbation sequence and has odd symmetry.

3.5.3.2 Covariance of Gradient

For two-receiver systems, the following result can be established. Let Vg2
(w(n)) and

Vg3
(w(n)) denote the covariance of the gradient estimated by (3.5.21) and (3.5.23), respec-

tively. If {x(n)} is an i.i.d. Gaussian sequence, then for the time multiplex perturbation
sequence defined by (3.5.8),

(3.5.24)

and

(3.5.25)

Vg2
(w(n)) and the second term for Vg3

(w(n)) are proportional to wH(n)Rw(n), the quantity
that the adaptive algorithm is attempting to minimize. Thus, the gradient estimate
improves as the weight vector approaches the optimal value.

3.5.4 Covariance of Weights

It can be established that the weight covariance matrix is diagonalizable when the cova-
riance of the gradient used for updating w(n) is Vg2

(w(n)) or Vg3
(w(n)). Thus, for these

two cases an analysis of the weight covariance matrix is possible by developing matrix
and vector difference equations using the scheme presented in Section 3.4. The results on
the transient and steady-state behavior of this matrix for the two cases are presented in
this section [God86].

The weight covariance matrix is not diagonalizable when the covariance of the gradient
used for updating w(n) is Vg1

(w(n)). Consequently, it is not possible to describe the
transient and the steady-state behavior of the weight covariance matrix for the single-
receiver system using the scheme presented in Section 3.4.
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3.5.4.1 Dual-Receiver System with Dual Perturbation

Substituting Vg2
(w(n)) for Vg(w(n)) in (3.4.14), and following a procedure similar to that

used in Section 3.4.5, the following matrix difference equation is derived:

(3.5.26)

where Γ is a diagonal matrix with its diagonal elements being the eigenvalues of P.
Let an L-dimensional vector � denote the L eigenvalues of P and an L-dimensional

vector �2(n) denote the L eigenvalues of the weight covariance matrix kww2
(n) when the

covariance of the gradient used is Vg2
(w(n)). Since Tr(�̂ Σ(n) ≡ �̂T�2(n), (3.5.26) reduces to

the following vector difference equation:

(3.5.27)

With

(3.5.28)

the solution of (3.5.27) is given by

(3.5.29)

and kww2
(n) is given by

(3.5.30)

where �2(0) is the vector of eigenvalues of kww2
(0) and Q̂l, l = 1, 2, …, L are the eigenvectors

of PRP. Equations (3.5.29) and (3.5.30) completely describe the transient behavior of the
weight covariance matrix.

The steady-state expression for the weight covariance matrix is obtained by substituting
the steady-state value of L – 1 nonzero eigenvalues of the weight covariance matrix. The
steady-state expression for these eigenvalues is given by

(3.5.31)
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3.5.4.2 Dual-Receiver System with Reference Receiver

Substituting Vg3
(w(n)) for Vg(w(n)) in (3.4.14), and following a procedure similar to that

used in Section 3.4.5, the following matrix difference equation is derived:

(3.5.32)

Denoting the eigenvalues of the weight covariance matrix kww3
(n) by an L-dimensional

vector �3(n) when the covariance of the gradient used is Vg3
(w(n)), (3.5.32) yields the

following vector difference equation:

(3.5.33)

which has the solution

(3.5.34)

and kww3
(n) is given by

(3.5.35)

where �3(0) is the vector of eigenvalues of kww3(0).
The steady-state behavior is obtained by substituting the steady-state expression for L – 1

nonzero eigenvalues given by

(3.5.36)

It could not be established that the weight covariance matrix is diagonizable when the
gradient is estimated using the single-receiver system, and thus an analysis of the behavior
of the weight covariance matrix is not possible. However, some results on the misadjust-
ment for this case are presented along with two other cases.
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3.5.5 Misadjustment Results

In this section, exact expressions for the misadjustment are presented for the dual receiver
system and bounds on the misadjustment are presented for the single-receiver case.

3.5.5.1 Single-Receiver System

For a single-receiver system with

(3.5.37)

if

(3.5.38)

then the misadjustment is bound by

(3.5.39)

where

(3.5.40)

(3.5.41)

and

(3.5.42)

Note that c = 1 corresponds to the optimal γ.

3.5.5.2 Dual-Receiver System with Dual Perturbation

If, for a given w(n), the covariance of the gradient is given by

(3.5.43)

(3.5.44)
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and

(3.5.45)

then the misadjustment is given by

(3.5.46)

3.5.5.3 Dual-Receiver System with Reference Receiver

If, for a given w(n), the covariance of the gradient is

(3.5.47)

(3.5.48)

and

(3.5.49)

then the misadjustment is given by

(3.5.50)

3.6 Structured Gradient Algorithm

In this section, a description and an analysis of the constrained LMS algorithm is presented
when it uses a gradient estimated from an estimate of the array correlation matrix having
a special structure [God89, God90, God93, God97]. The algorithm for this case is referred
to as the structured gradient algorithm.
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The gradient estimate given by (3.4.4) for the standard constrained LMS algorithm can
be expressed as

(3.6.1)

where

(3.6.2)

is a noisy sample of the array correlation matrix at the nth instant of time estimated from
only one array sample.

For a uniformly spaced linear array, the array correlation matrix R has the Toeplitz
structure, that is,

(3.6.3)

where ri, i = 0, 1, …, L – 1 denote the correlation between elements with lag i, defined as

(3.6.4)

and xm(n) denotes the signal derived from mth element at the nth time instant.
Note that not all combinations of m and i are possible in (3.6.4), as there are only L

elements in the array. For i = 0, m = 1, …, L yielding L values of r0. These values form the
main diagonal of R in (3.6.3). For i = 1, m = 1, 2, …, L – 1 results in L – 1 values of r1. These
values form the second diagonal of R and so on.

The noisy sample of R used in estimating the gradient for the standard algorithm does
not have the Toeplitz structure. The structured gradient algorithm exploits this structure
of the array correlation matrix in estimating the gradient. It takes R(n) and estimates an
array correlation matrix R̃ having the Toeplitz structure. The structured array correlation
matrix R̃ is then used in gradient estimation as discussed below.

3.6.1 Gradient Estimate

For this algorithm, the gradient estimate is defined as follows:

(3.6.5)

where R̃(n) is an estimate of the array correlation matrix at the nth instant of time having
Toeplitz structured as in (3.6.3), and is given by
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with

(3.6.7)

where Nl denotes the number of possible combinations of elements with lag l and sum-
mation is over all these combinations. For a linear array of equispaced elements, Nl = L – l.

Since

(3.6.8)

it follows from (3.6.7), (3.6.6), and (3.6.3) that

(3.6.9)

Thus, for a given w(n),

(3.6.10)

and the gradient estimate is unbiased.
The discussion on the structured gradient algorithm presented here is for an equispaced

linear array. The formulation can easily be extended to an arbitrary array.
For the equispaced linear array, each element of R̃(n) is a mean value of all elements of

R(n) with the same spatial correlation lags. Thus, r̃0(n) is an average of the main diagonal
elements of R(n), r̃1(n) is the mean of first diagonal elements of R(n), and so on. For an
array that is not an equispaced linear array, the array correlation matrix loses its Toeplitz
structure, and the number of elements in R with the same spatial correlation lags is less
in comparison to the equispaced case. However, there are always some elements in R with
the same spatial correlation lags. Even in a completely unstructured correlation matrix,
such as would be obtained from a three-element array with spacing d and 2d, the diagonal
elements are always of the same correlation lag, namely lag 0.

3.6.2 Examples and Discussion

Examples are presented in this section to compare the performance of the structured
gradient algorithm and the standard algorithm. The mean noise power for a given w(n)
is examined as a function of the weight update iteration to see the algorithm’s effectiveness
in reducing noise. 

Figure 3.4 to Figure 3.8 shows the plots of the mean noise power in dB for a given w(n)
vs. the iteration number. The mean noise power for a given w(n) is calculated using

(3.6.11)

A linear array of ten elements with half-wavelength spacing is assumed for these
examples. The look direction is assumed to be in the broadside of the array. The power
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of uncorrelated noise present on each element is assumed to be equal to 0.1. Two inter-
ference sources are assumed to be present. Directions of these interferences make angles
of 98° and 45° with the line of the array. The other parameters are included in figure
captions. The gradient algorithm is initialized with the conventional weight. The gradient
step size for the standard algorithm and the structured gradient algorithm are denoted
by µST and µSG, respectively. A comparison of the two algorithms in Figure 3.4 reveals that
the noise in the weights estimated by the structured gradient algorithm is much less than
that estimated by the standard algorithm.

Figure 3.5 compares the two algorithms when the signal power is reduced by 20 dB
compared to the scenario of Figure 3.4. Comparing Figure 3.4 and Figure 3.5, one observes
that the fluctuations in the mean output noise power in Figure 3.4, where the signal power
is 1, are more than in Figure 3.5 where the signal power is 0.01. Thus, the noise in the
weights estimated by the standard algorithm depends on the input signal power, and
increases as the signal power increases. On the other hand, the structured gradient algo-
rithm does not appear to be sensitive to the signal power. The signal sensitivity of the two
algorithms is further compared in Figure 3.6 and Figure 3.7, where the power of the second
interference is increased by 10 dB. Sensitivity of the standard algorithm to the input signal
level is clearly visible from the two figures. The noise fluctuation in weights estimated by
standard LMS algorithm is more in Figure 3.7 where the signal power is 1.0 than that in
Figure 3.6 where the signal power is .01.

FIGURE 3.4
10logPN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: θ1 = 98°, p1 = 1, θ2 = 45°, p2 = 10, σn

2 = 0.1, look direction angle θ0 =
90°, pS = 1, µSG = µST = .0005. (From Godara, L.C. and Gray, D.A., J. Acoust. Soc. Am., 86, 1040–1046, 1989 [God89].
With permission.)
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The noise in the weights estimated by the standard LMS algorithm can be reduced by
using a smaller value of the gradient step size. The reduction in the step size to reduce
the noise in weights means the reduction in the convergence speed of the algorithm as
shown in Figure 3.8, where the step size used for the standard algorithm is one-tenth of
that used in the structured gradient algorithm. For this case, the structured gradient
converges faster than the standard algorithm.

It should be noted that the gradient estimate using the structured method requires more
computation than the standard method. In the standard algorithm, an estimate of the
gradient requires an order of L complex multiplications, whereas, for structured gradient
algorithm, it requires the order of L2 complex multiplications. A detailed discussion on
the signal sensitivity of the LMS algorithms is presented in Section 3.14.

3.7 Recursive Least Mean Squares Algorithm

The recursive LMS algorithm uses all previous array samples to estimate the gradient, in
comparison to the standard LMS algorithm, which uses only one array sample [God90a,
God93]. In this section, the behavior of the recursive LMS algorithm is examined by
deriving an expression for the covariance of the gradient.

FIGURE 3.5
10logPN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: θ1 = 98°, p1 = 1, θ2 = 45°, p2 = 10, σn

2 = 0.1, look direction angle θ0 =
90°, pS = .01, µSG = µST = .0005. (From Godara, L.C. and Gray, D.A., J. Acoust. Soc. Am., 86, 1040–1046, 1989 [God89].
With permission.).
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3.7.1 Gradient Estimate

Let gR(w(n)) denote the estimated gradient by recursive method for a given w(n), defined
as

(3.7.1)

where

(3.7.2)

It follows from (3.7.2) that as the number of samples used in estimating the array corre-
lation matrix increases, the matrix estimate approaches the true correlation matrix. Thus,

(3.7.3)

and

FIGURE 3.6
10logPN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: θ1 = 98°, p1 = 1, θ2 = 45°, p2 = 100, σn

2 = 0.1, look direction angle θ0 =
90°, pS = .01, µSG = µST = .00005. (From Godara, L.C. and Gray, D.A., J. Acoust. Soc. Am., 86, 1040–1046, 1989
[God89]. With permission.)
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(3.7.4)

Consequently, the gradient estimate approaches the true gradient as n → ∞.

3.7.2 Covariance of Gradient

In this section, covariance of the gradient is established. The result is valid for large n
samples, such that

(3.7.5)

It follows from (3.7.1), (3.7.2), and (3.7.5) that

(3.7.6)

Let VgR
(w(n)) denote the covariance of the gradient estimate defined by (3.7.1) and (3.7.2)

for a given w(n). By definition,

FIGURE 3.7
10logPN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: θ1 = 98°, p1 = 1, θ2 = 45°, p2 = 100, σn

2 = 0.1, look direction angle θ0 =
90°, pS = 1, µSG = µST = .00005. (From Godara, L.C. and Gray, D.A., J. Acoust. Soc. Am., 86, 1040–1046, 1989 [God89].
With permission.)
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(3.7.7)

where gR(w(n)) is the mean value of the gradient estimate for a given w(n).
It follows from (3.7.1) and (3.7.2) that

(3.7.8)

Thus,

(3.7.9)

Using the following result for an i.i.d. complex Gaussian sequence {x(k)} and a Hermitian
matrix A,

(3.7.10)

the following is derived from (3.7.6)

(3.7.11)

FIGURE 3.8
10logPN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. The
curve with a solid line is for a structured gradient algorithm, and the one superimposed with a circle is for a
standard LMS algorithm. Two interferences: θ1 = 98°, p1 = 1, θ2 = 45°, p2 = 100, σn

2 = 0.1, look direction angle θ0 =
90°, pS = 1, µSG = .00005, µST = .000005. (From Godara, L.C. and Gray, D.A., J. Acoust. Soc. Am., 86, 1040–1046,
1989 [God89]. With permission.)
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Substituting in (3.7.7) from (3.7.9) and (3.7.11),  

(3.7.12)

It follows from (3.7.12) that the covariance of the estimated gradient by the recursive
method decreases as the iteration number increases and (n + 1)2 times less than the
covariance of the gradient estimated by the standard method. The covariance of the
gradient estimated by the standard method VgS

(w(n)), is given by

(3.7.13)

3.7.3 Discussion

As discussed previously, the projected covariance of the gradient PVg(w(n))P affects the
weight covariance. Taking the projection on both sides of (3.7.12) and (3.7.13), and noting
that PRP is independent of the look direction signal, one observes that the projected
covariance in both the cases is proportional to the mean output power. This implies that
for both the cases the projected covariance is a function of the look direction signal. This
in turn makes the weight covariance at each iteration sensitive to the look direction signal.
However, at the nth iteration, the weight covariance for the recursive algorithm case is
less than that for the standard LMS case due to the term (n + 1)2 in (3.7.12).

3.8 Improved Least Mean Squares Algorithm

The structured gradient algorithm exploits the structure of the array correlation matrix.
However, it does not make use of the previous samples when estimating the gradient at
the nth iteration. In this section, a method is presented that exploits the structure of the
array correlation matrix and uses previous samples. The method is referred to as the
improved method [God90a, God93].

An estimate of the gradient using the improved method is given by

(3.8.1)

where

(3.8.2)

with R̃(n) given by (3.6.6).
It can easily be shown that the gradient estimate is unbiased, that is,

(3.8.3)
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The performance and the signal sensitivity of the above algorithm is now compared
with a RLS algorithm that makes use of the previous samples and requires the same order
of computation for computing the weights. The following form of the RLS algorithm is
used for the comparison:

(3.8.4)

where R̂–1(n) is updated using the Matrix Inversion Lemma and is given by (3.1.6) and
(3.1.7). Note that in the absence of errors, n → ∞, R̂–1(n) → R–1, and w(n) → ŵ.

Figure 3.9 to Figure 3.12 compare the mean output noise power PN(w(n)) vs. the iteration
number for various look direction signal powers when the weights w(n) are adjusted using
the two algorithms. The mean output noise power is calculated using

(3.8.5)

A linear array of ten elements with half-wavelength spacing is assumed for these
examples. The variance of uncorrelated noise present on each element is assumed to be
equal to 0.1. Two interference sources are assumed to be present. The first interference
falls in the main lobe of the conventional array pattern and makes an angle of 98° with
the line of the array. The power of this interference is taken to be 10 dB more than the
uncorrelated noise power. The second interference makes an angle of 72° with the line of
the array and falls in the first side-lobe of the conventional pattern. The power of this
interference is 30 dB more than the uncorrelated noise power. The look direction is broadside
to the array. The signal power for the four plots is varied from −10 dB below the uncor-
related power to 30 dB above the uncorrelated noise power. The gradient algorithm is
initialized with the conventional weights.

FIGURE 3.9
PN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: θ1 = 98°, p1 = 1, θ2 = 72°, p2 = 100, σn

2 = 0.1, look direction angle θ0 = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631–1635, 1990. ©IEEE. With permission.)
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For the improved LMS algorithm the gradient step size µ is taken to be equal to 0.00005
and for the RLS algorithm ε0 is taken to be 0.0001. According to these figures, for a weak
signal the RLS algorithm performs better than the improved algorithm. However, as the
input signal power increases the output noise power of the processor using the RLS

FIGURE 3.10
PN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: θ1 = 98°, p1 = 1, θ2 = 72°, p2 = 100, σn

2 = 0.1, look direction angle θ0 = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631–1635, 1990. ©IEEE. With permission.)

FIGURE 3.11
PN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: θ1 = 98°, p1 = 1, θ2 = 72°, p2 = 100, σn

2 = 0.1, look direction angle θ0 = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631–1635, 1990. ©IEEE. With permission.)
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algorithm increases. Thus, the RLS algorithm used in the present form is sensitive to the
look direction signal. On the other hand, this is not the case for the improved LMS
algorithm. Performance of the improved LMS algorithm improves as the signal power is
increased, and in the presence of a strong signal it performs much better than the  RLS
algorithm, both in terms of convergence and the output SNR. See for example, the plots
in Figure 3.12 where the input signal power is 30 dB more than the uncorrelated noise
power.

Figure 3.13 compares the performance of the standard LMS algorithm, recursive LMS
algorithm, and improved LMS algorithm. The noise field and array geometry used for
this example are the same as those used in previous examples. The input signal power is
30 dB more than the uncorrelated noise power and the gradient step size is 0.00005. It is
clear from Figure 3.13 that the output noise power of the processor at each iteration is less
when the recursive algorithm and the improved algorithm are used in comparison to the
output noise power using the standard algorithm. A large fluctuation in the output of the
processor using the standard algorithm in comparison to the other two algorithms indi-
cates the sensitivity of this algorithm to the look direction signal. A comparison of the
recursive LMS and improved LMS show that the latter performs better, both in terms of
the amount of the noise and its variation as a function of iteration number.

3.9 Recursive Least Squares Algorithm

The convergence speed of the LMS algorithm depends on the eigenvalues of the array
correlation matrix. In an environment yielding an array correlation matrix with large
eigenvalue spread the algorithm converges with a slow speed. This problem is solved

FIGURE 3.12
PN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: θ1 = 98°, p1 = 1, θ2 = 72°, p2 = 100, σn

2 = 0.1, look direction angle θ0 = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631–1635, 1990. ©IEEE. With permission.)
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with the RLS algorithm [Sch77, d’As80, God97] by replacing the gradient step size µ with
a gain matrix R̂–1(n) at the nth iteration, producing the weight update equation

(3.9.1)

where R̂(n) is given by

(3.9.2)

with δ0 denoting a real scalar less than but close to 1. The δ0 is used for exponential
weighting of past data and is referred to as the forgetting factor as the update equation
tends to de-emphasize the old samples. The quantity 1/(1 – δ0) is normally referred to as
the algorithm memory. Thus, for δ0 = 0.99 the algorithm memory is close to 100 samples.
The RLS algorithm updates the required inverse of using the previous inverse and the
present sample as

(3.9.3)

The matrix is initialized as

(3.9.4)

FIGURE 3.13
PN(w(n)) vs. the iteration number for a 10-element linear array with one-half wavelength spacing. Two interfer-
ences: θ1 = 98°, p1 = 1, θ2 = 72°, p2 = 100, σn

2 = 0.1, look direction angle θ0 = 90°. (From Godara, L.C., IEEE Trans.
Antennas Propagat., 38, 1631–1635, 1990. ©IEEE. With permission.)
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The RLS algorithm minimizes the cumulative square error

(3.9.5)

and its convergence is independent of the eigenvalues distribution of the correlation
matrix.

The algorithm presented here is the exact RLS algorithm. Other forms of the RLS
algorithm with improved computation efficiency are available [Fab86, Cio84]. A compar-
ison of the convergence speed of the LMS, RLS, and some other gradient-based algorithms
using quantized or clipped data indicates that RLS is the most efficient and LMS is the
slowest [Gar87].

Computer simulation study of RLS, LMS, and SMI algorithms in mobile communication
situations suggests that the former outperforms the latter two in flat fading channels
[Fer93]. An application of the RLS algorithm for the reverse link of a cellular communi-
cation using the CDMA system is considered in [Wan94] to show an increase in channel
capacity by an adaptive array.

3.10 Constant Modulus Algorithm

The constant modulus algorithm is gradient based [God97] and works on the premise that
existing interference causes fluctuation in the amplitude of array output that otherwise
has a constant modulus. It updates weights by minimizing the cost function [Chi93, God80,
Tre83, Shy93]

(3.10.1)

using the following equation

(3.10.2)

where

(3.10.3)

is the array output after the nth iteration, y0 is the desired amplitude in the absence of
interference, and g(w(n)) denotes an estimate of the cost function gradient.

Similar to the LMS algorithm discussed previously, the constant modulus algorithm
uses an estimate of the gradient by replacing the true gradient with an instant value given
by

(3.10.4)
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where

(3.10.5)

The weight update equation for this case becomes

(3.10.6)

In appearance, this is similar to the LMS algorithm with reference signal where

(3.10.7)

Its application to digital, land mobile radio communication systems using TDMA to
compensate for selective fading is studied in [Ohg91]. Discussions of hardware implemen-
tation of a CMA adaptive array and its BER performance for high-speed transmission in
mobile communications may be found in [Ohg93a, Ohg93]. Development of CMA for
beam-space array signal processing including its hardware realization has been reported
in [Tan95]. The results presented in [Chi93] indicate that the beam space CMA is able to
cancel interferences arriving from other than the look direction.

CMA is useful for eliminating correlated arrivals and is effective for constant modulated
envelope signals such as GMSK and QPSK, which are used in digital communications.
However, the algorithm is not appropriate for the CDMA system because of the required
power control [Wan94]. Use of CMA to blindly separate co-channel FM signals in mobile
communications has been investigated in [Par95]. A variation referred to as differential
CMA reported in [Nis95] has inferior convergence characteristics compared to CMA but
may be improved using direction of arrival information to make it operative in beam space.

3.11 Conjugate Gradient Method

An application of the conjugate gradient method [Hes52, Dan67, Sar81] to adjust the
weights of an antenna array is discussed in [Cho92]. The method is generally useful for
solving a set of equations of the form Aw = b to obtain w. In this section, a brief description
of the CGM is provided [God97].

For an array-processing problem, w denotes the array weights, A is a matrix with each
of its columns denoting consecutive samples obtained from array elements, and b is a
vector containing consecutive samples of the desired signal. Thus, a residual vector

(3.11.1)

denotes error between the desired signal and array output at each sample, with the sum
of the squared error given by rHr.

The method starts with an initial guess w(0) of the weights, obtains a residual

(3.11.2)
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an initial direction vector

(3.11.3)

and moves the weights in this direction to yield a weight update equation,

(3.11.4)

where the step size is

(3.11.5)

The residual r(n) and the direction vector g(n) are updated using

(3.11.6)

and

(3.11.7)

with

(3.11.8)

The algorithm is stopped when the residual falls below a certain predetermined level.
It should be noted that the direction vector points in the direction of error surface gradient
rH(n)r(n) at the nth iteration, which the algorithm is trying to minimize. The method
converges to the error surface minimum within at most L iterations for an L-rank matrix
equation, and thus provides the fastest convergence of all iterative methods [Cho91,
Cho92].

Use of the conjugate gradient method to eliminate multipath fading in mobile commu-
nication situations has been studied in [Cho92] to show that the BER performance of the
system using the conjugate gradient method is better than that using the RLS algorithm.

3.12 Neural Network Approach

In this section, a neural-network base algorithm to estimate the weights of an adaptive
array system is described [God97]. For discussion on various aspects of this algorithm,
referred to as Madaline rule III (MRIII), as well as other related issues, see [Wid90]. For
general theory of neural networks and their applications, see [Lau90, Gel96].

The MRIII algorithm described here is applicable when the reference signal is available
and minimizes the MSE between the reference signal and the modified array output, rather
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than the MSE between the reference signal and the array output, as is the case for other
algorithms discussed previously. The array output is modified using a nonlinear mapping,
such as hyperbolic tangent

(3.12.1)

and the weights are updated using

(3.12.2)

where µ is the gradient step size and g(w(n)) is the instant gradient of the MSE surface
with respect to the array weights w(n).

When the array is operating with weights w(n), producing the array output

(3.12.3)

the modified output ỹ(n) becomes

(3.12.4)

and the resulting error signal is given by

(3.12.5)

The instant gradient of the MSE surface with respect to the array weights w(n) thus
becomes

(3.12.6)

Replacing ¹ε̃(n)/¹y(n) with ∆ε̃(n)/∆y for small ∆y in (3.12.6) results in

(3.12.7)

where ∆ε̃(n) denotes the change in the error output when the array output is perturbed
by a small amount of ∆y and could be measured to estimate the instant gradient. The
weight update equation then becomes
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(3.12.8)

The MSE surface of the error signal ε̃(n) may have local minimization and thus global
convergence of the MRIII algorithm is not guaranteed, which is not the case when MSE
between the reference signal and the array output is minimized [Wid90]. The algorithm,
however, is very robust, suitable for analog implementation, and results in fast weight
updates.

The MRIII algorithm described here is suitable when the reference signal is available.
A scheme to solve constrained beamforming problems using neural networks is analyzed
in [Cha92], and its implementation using switched capacitor circuits is described in
[Yan96]. Computer simulations and experimental results indicate the suitability of the
scheme.

3.13 Adaptive Beam Space Processing

In this section, an adaptive algorithm to estimate the weights of the two-beam processor
referred to as postbeamformer interference canceler (PIC), and discussed in Section 2.6.3
is presented and its performance is analyzed [God89a]. The analyses include the transient
and steady-state behavior of the weights. The structure of the processor is shown in Figure
2.11. These results can be generalized for a general multibeam processor.

Rewrite (2.6.43) to (2.6.46) in discrete notation:

(3.13.1)

(3.13.2)

(3.13.3)

and

(3.13.4)

where ψ(n) denotes the output of signal beam; q(n) denotes the output of the interference
beam; y(n) denotes the output of the processor; P(w) denotes the mean output of the
processor for a given w; V and U, respectively, denote the fixed weights of the signal-
beam and the interference beam; and w is the weight applied to the interference beam
output.

Let ŵ denote the optimal weight that minimizes P(w). From (2.6.48) it is given by

(3.13.5)

Define a real-time algorithm for determining the optimal weight ŵ as
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ŵ
R
R

H

H= V U
U U
C Press LLC 



© 2004 by CR
(3.13.6)

where w(n + 1) denotes the new weight computed at the (n + 1)th iteration, µ is a positive
scalar defining the step size, and g(w(n)) is an unbiased estimate of the gradient of P(w(n))
with respect to w.

It follows from (3.13.4) that the gradient of P(w(n)) with respect to w is given by

(3.13.7)

3.13.1 Gradient Estimate

A suitable estimate of the gradient of P(w(n)) with respect to w is given by

(3.13.8)

In proposing (3.13.8), it is assumed that the gradient algorithm defined by (3.13.6) iterates
at successive time instants. Thus, at time instant n + 1, the processor actually is operating
with the weight w(n) computed at the previous iteration and the time instant and the
array signal vector is x(n + 1). Note that for a given w(n), the estimate defined by (3.13.8)
is unbiased, that is,

(3.13.9)

A particular characteristic of the gradient used in (3.13.6) that is important in determin-
ing the performance of the algorithm is the covariance. For the gradient estimate defined
by (3.13.8), the following result on the convariance is established in Appendix 3.7.

Let Vg(w(n)) denote the covariance of the gradient estimate defined by (3.13.8) for a
given w(n). If {x(n)} is an i.i.d. complex Gaussian sequence, then

(3.13.10)

Note that the quantity in the square brackets is the mean output power of the PIC for a
given w(n). Thus, at each iteration the covariance of the gradient estimate is proportional
to the mean output power of the PIC that the adaptive algorithm defined by (3.13.6) is
trying to minimize.

The convergence analysis of the algorithm defined by (3.13.6) is presented when the
gradient estimate is defined by (3.13.8). In the event that {x(n)} is a sequence of i.i.d.
random complex vectors, a detailed analysis of the algorithm is possible. The analysis is
carried out using the approach described in Section 3.2.
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3.13.2 Convergence of Weights

The following result on the convergence of weights is established in Appendix 3.7. For
the algorithm defined by (3.13.6) and (3.13.8), if {x(n)} is an i.i.d. random vector sequence,

(3.13.11)

and

(3.13.12)

then

(3.13.13)

and the convergence of E[w(n)] to ŵ has the time constant given by

(3.13.14)

where ln(.) denotes the natural logarithm of (.).
Note that the step size µ and the convergence time constant τ are dependent on UHRU,

the average power at the output of the interference beamformer, and are independent of
the output power of the signal beamformer.

3.13.3 Covariance of Weights

Let Kww(n) denote the covariance of weight w(n) at the nth iteration, that is,

(3.13.15)

where

(3.13.16)

The covariance of the weight Kww(n) satisfies the following recursive relation:

(3.13.17)

where the expectation is taken over w. A derivation of this recursive equation is provided
in Appendix 3.7.

Since the covariance of the weight at the (n + 1)th iteration depends on the covariance
of the gradient estimated for a given weight at the nth iteration, it is possible to further
simplify the above recursive relation for a particular method of gradient estimate. When
the gradient estimate used in (3.13.6) is defined by (3.13.8), an expression for Vg(w(n)) is
given by (3.13.10). The expression is derived with the assumption that {x(k)} is an i.i.d.
complex Gaussian sequence. This assumption is necessary for the results presented
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throughout the remainder of this section. Taking the unconditional expectation on both
sides of (3.13.10) and substituting in (3.13.17), the following difference equation for the
covariance of the weight results:

(3.13.18)

3.13.4 Transient Behavior of Weight Covariance

Let

(3.13.19)

and

(3.13.20)

Since

(3.13.21)

it follows from (3.13.5) and (3.13.20) that

(3.13.22)

From (3.13.18) to (3.13.20), it follows that

(3.13.23)

which has the solution

(3.13.24)

where Kww(0) is the covariance of w(0).
Since w(0) is a deterministic scalar, it follows that

(3.13.25)

and thus (3.13.24) reduces to
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(3.13.26)

which completely describes the transient behavior of the covariance of the weights when
the gradient estimate used in (3.13.6) is defined by (3.13.8).

3.13.5 Steady State Behavior of Weight Covariance

Take the z transform on both sides of (3.13.23):

(3.13.27)

where Kww(z) and D(z) are the z transforms of Kww(n) and D(n), respectively.
Solving for Kww(z), from (3.13.27),

(3.13.28)

Since D(z) is stable, it follows from (3.13.28) that the stability of Kww(z) is guaranteed if

(3.13.29)

which, along with (3.13.19), implies that if

(3.13.30)

then Kww(z) is stable. Thus, Kww(n) exists. This proves the existence of the limit.
To obtain the steady-state expression for the weight covariance, let

(3.13.31)

Since

(3.13.32)

it follows from (3.13.19), (3.13.22), and (3.13.23) that

(3.13.33)

which, along with (3.13.4) and (3.13.5), leads to
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(3.13.34)

where P(ŵ) is the mean output power of the optimal PIC.
Thus, the steady-state weight covariance is proportional to the mean output power of

the optimal PIC.

3.13.6 Misadjustment

In the absence of noise in the weight, the adaptive algorithm defined by (3.13.6) and
(3.13.8) would converge to a steady state or optimal point on the mean output power
surface. The minimum mean output power of the PIC therefore would be P(ŵ). However,
the noise in the weight tends to cause the steady-state solution to vary randomly about
the minimum or optimal point. This results in excess power in the output power of the
PIC; the amount of excess power depends on the weight covariance.

As discussed previously, misadjustment is a dimensionless measure of the difference
between the adaptive and optimal performance of a processor. It is defined as the ratio
of the excess mean output power to the mean output power of the optimal PIC, that is,

(3.13.35)

In this section, analysis of the misadjustment is presented and an exact expression for it
is derived when the gradient algorithm defined by (3.13.6) and (3.13.8) is used to estimate
the weight given by (3.13.5).

Taking the expected value on both sides of (3.13.4) and using (3.13.15) and (3.13.16),

(3.13.36)

Taking the limit as n → ∞ and subtracting P(ŵ) on both sides of (3.13.36), an expression
for the steady-state excess mean output power follows:

(3.13.37)

Let MP denote the misadjustment in PIC. Equations (3.13.37), along with (3.13.35), imply
that

(3.13.38)

A substitution for K̂ww from (3.13.34) in (3.13.38) leads to the following expression for the
misadjustment:
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(3.13.39)

It follows from (3.13.39) that misadjustment in the adaptive PIC is independent of the
signal in the signal channel and depends  only on the mean power at the output of the
interference beamformer. Furthermore, for a very small step size µ, it is proportional to
this power. Thus, given this misadjustment, it is desirable that the interference beamformer
weight U is chosen such that UHRU is a smaller quantity.

However, it follows from (3.13.14) that if

(3.13.40)

then

(3.13.41)

Thus, a smaller power in the interference channel results in a longer convergence time
constant, which may not be desirable.

For the range of µ that satisfies (3.13.40), the misadjustment given by (3.13.39) can be
approximated as

(3.13.42)

which, along with (3.13.41) implies that the product of misadjustment and the convergence
time constant is given by

(3.13.43)

and is independent of array geometry and noise parameters.

3.13.7 Examples and Discussion

The example presented here is for a planar array of ten elements as shown in Figure 2.7.
The array consists of two rings of five elements each, with half-wavelength inter-ring
spacing µ0. The radius of the inner ring is 4 µ0.

A unity power signal source is assumed in the direction of the positive x-axis and an
interference source is assumed in the direction of the negative x-axis. The interference
power is taken to be 20 dB more than the signal power, and the uncorrelated noise power
is taken to be 20 dB less than the signal power. The interference beam of the PIC is formed
using

(3.13.44)

and

(3.13.45)

where S0 and SI are the steering vectors in the directions of the signal and interference
sources, respectively, and I is the identity matrix.
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The interference beam formed using (3.13.44) and (3.13.45) ensures that the interference
beam has a unity response in the interference direction and a null response in the signal
direction. The signal beam is formed using the conventional weight, that is,

(3.13.46)

The algorithm is initialized with

(3.13.47)

The gradient step size of 1 × 10−5 is used, which is about one-eighth of the inverse of
the estimated power of the interference beam. The power estimate at the output of the
interference beam is made by averaging 100 samples. Figure 3.14 shows the PIC output
power averaged over 50 runs as a function of the number of iterations. The figure shows
that the output of the processor converges to the signal power in about 15 iterations. Figure
3.15 shows the norm of the weight error, that is,

(3.13.48)

averaged over 50 runs as a function of the number of iterations. Convergence of the norm
of the weight error is evident in the figure.

3.14 Signal Sensitivity of Constrained Least Mean Squares Algorithm

The convergence of mean weights estimated by constrained LMS algorithm to optimal
weights is a function of the eigenvalues of PRNP, and thus is independent of the look

FIGURE 3.14
The output power averaged over 50 runs vs. the iteration number. (From Godara, L.C., J. Acoust. Soc. Am., 85,
194–201, 1989 [God89a]. With permission.)
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direction signal. However, this is not the case for the weight covariance matrix, which
depends on the projected covariance of the gradient used for the weight update algorithm,
that is, PVg(w(n))P. For the standard algorithm, this variance is a product of the array
correlation matrix R and the mean output power wH(n)Rw(n) at the nth instant of time.
Thus, PVg(w(n))P, which is proportional to wH(n)Rw(n)PRP, contains a signal from the
look direction, indicating that the performance of the standard LMS algorithm is not
independent of the signal and that the transient behavior of weight covariance depends
on it.

Results presented in Section 3.6 show that the weights estimated by the standard algo-
rithm are sensitive to signal power in the look direction. As signal power increases, the
noise in these weights tends to increase. The following, a rather heuristic argument,
explains this phenomenon [God97].

Rewrite the constrained LMS algorithm as follows:

(3.14.1)

and examine the term Pg(w(n)) for various estimates of the gradient. First, consider the
true gradient, that is,

(3.14.2)

Expressing R in the form

(3.14.3)

it follows that

(3.14.4)

Thus, the estimate of w(n + 1) for a given w(n) does not depend on the signal power in
the look direction when the true array correlation matrix is used in estimating the gradient.

FIGURE 3.15
The norm of weight error averaged over 50 runs vs. the iteration number. (From Godara, L.C., J. Acoust. Soc.
Am., 85, 194–201, 1989 [God89a]. With permission.)
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Now consider the gradient estimate given by (3.4.4) and rewrite in the following form:

(3.14.5)

where the factor 2 has been omitted for ease of analysis.
The array signal vector x(n) can be expressed as

(3.14.6)

where xN(n) is the array signal vector due to interference and uncorrelated noise only, and
mS(n) is the sample of the complex modulating function of the signal.

From (3.14.5) and (3.14.6), it follows that

(3.14.7)

Since

(3.14.8)

it follows from (3.14.7) that

(3.14.9)

The second term on the RHS of (3.14.9) contains m*s (n + 1), which is a random quantity
with variance equal to the look direction signal power. This makes Pg(w(n)) a noisy
quantity that fluctuates with the signal power and causes the w(n + 1) to fluctuate. The
fluctuations in w(n + 1) increase as the signal power increases. Thus, the weights estimated
by the standard algorithm are sensitive to the signal power requiring a lower step size in
the presence of a strong signal for the algorithm to converge which in turn reduces its
convergence speed.

This fact has been demonstrated in [Ohg93a] for a high-speed GMSK mobile commu-
nications system. The system has been implemented by mounting an array on a vehicle
to measure its BER performance.

The signal sensitivity of the standard LMS algorithm is caused by the use of a sample
correlation matrix in estimating the gradient, and could be reduced by using an estimate
of the correlation matrix from all available samples as is done with the recursive LMS
algorithm. In this case, variance of the estimated gradient is given as

(3.14.10)

Comparing this with the variance of the standard LMS algorithm, note that the variance
of the gradient estimated by the recursive method is less than that estimated by the
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standard method by a factor of (n + 1)2. Thus, the recursive algorithm is less signal sensitive
to signal power. In the limit as n increases, the signal sensitivity of the recursive LMS
algorithm approaches zero.

The signal sensitivity of the LMS also can be reduced by spatial averaging instead of
sample averaging, as is the case in the structured gradient algorithm. Because of spatial
averaging and the fact that mS(n + 1) and xN(n + 1) are not correlated, the dependence of
Pgst(w(n)) on the signal level is substantially reduced. Thus, the weights estimated by the
structured gradient algorithm are not very sensitive to the signal level in the look direction.

3.15 Implementation Issues

In this section, some implementation issues relating to finite precision arithmetic and real
vs. complex implementation are discussed [God97].

3.15.1 Finite Precision Arithmetic

The convergence speed, fluctuations in array weights during adaption, and misadjustment
noise are the measures of the transient and the steady-state behavior of the LMS algorithm.
Theoretical performance of the algorithm and the effect of the look direction signal and
gradient step size discussed in previous sections assume the existence of infinite precision,
that is, the variables are allowed to take any value.

In real life, when the algorithm is implemented using digital hardware where variables
can only take discrete values, other parameters affect its performance, and issues that
must be considered include quantization noise as well as roundoff and truncation noise
caused by finite precision arithmetic [Eva93, Ale87, Cha91, Leu91, Won91, Car84, Cio85].

First, when a b-bit quantizer is used to convert an analog signal of range −rmax to rmax
into a digital signal, it adds quantization noise of zero mean and variance [Opp75],

(3.15.1)

to the system. Second, the effect of finite word length of the devices where the numbers are
stored causes the roundoff or truncation noise to be added to the system. This arises from
the fact that when arithmetic operations are performed using these numbers, the answers
are normally longer than the available word length and need to be rounded off or truncated
to fit into finite word memory. Finally, all variables such as the estimated gradient, the
gradient step size, and the estimated weights are only allowed to take finite values, and can
be increased or decreased by a factor of 2. The combined effect of all these factors on the
algorithm is a larger fluctuation in weights and a larger misadjustment than otherwise.

The misadjustment appears to be the most sensitive to the finite word length effect on
weights, suggesting that the weights should be implemented using a longer word length
[Ale87] and a reduction in the step size below certain levels may even cause the misad-
justment to increase [Car84] which is contrary to the infinite precision case where a
decrease in the step causes the misadjustment to decrease. It appears [Cio85] that the finite
word-length effects are amplified in the environment, which yields smaller eigenvalues
for the correlation matrix.
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An important effect of the finite word length on the weight update is that when a small
input does not cause the weights to move more than the least significant bit (the smallest
possible increment, which depends on the number of bits used to store weights), then the
algorithm stalls and weights do not change anymore [Car84], requiring a bigger step size,
which in turn increases weight fluctuations.

A post-algorithm smoothing scheme suggested in [Cha91] appears to reduce weight
fluctuations leading to better convergence performance. It suggests a running average of
past weights. Thus, the weights are recursively updated using past weights with or
without finite memory. Discussion on system design applicable to mobile satellite com-
munications which takes into account quantization noise and other issues discussed above
may be found in [Geb95].

3.15.2 Real vs. Complex Implementation

In some situations, the input data to the weight adaption scheme are real, and in others,
the data are complex (with real and imaginary parts denoting in-phase and quadrature
components). In both of these cases, the weights could be updated using the real LMS
algorithm or the complex LMS algorithm. The former uses real arithmetic and real vari-
ables, and updates real weights (in-phase and quadrature component are updated sepa-
rately when complex data are available), whereas the complex algorithm [Wid75] uses
complex arithmetic and variables, and weights are updated as well as implemented as
complex variables similar to the treatment presented in this book. For real data using
complex algorithm, you need to generate the quadrature component using the Hilbert
transformer or quadrature filter [Pap65], which has the following transfer functions:

(3.15.2)

For a similar misadjustment, the complex algorithm converges faster than the real algo-
rithm. More details on this topic are available in [Hor81, God86]. Some of these issues are
discussed below.

3.15.2.1 Quadrature Filter

The output of the quadrature filter is related to its input by the Hilber transform. Before
deriving an expression for the quadrature filter transfer function given by (3.15.2), the
Hilber transform is defined and some useful properties are stated.

Let x̂(t) denote the Hilber transform of a real signal x(t) defined as

(3.15.3)

The Hilber transform has the following properties. First, the Hilber transform of the Hilber
transform is the negative of the original signal, that is,

(3.15.4)
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A signal and its Hilber transform pair form an orthogonal pair, that is,

(3.15.5)

The Hilber transform of a constant C is zero, that is,

(3.15.6)

The Hilber transform of cos(ωt) is sin(ωt), ω > 0. If

(3.15.7)

such that the highest frequency of a(t) is less than f0, then

(3.15.8)

Now a derivation of (3.15.2) is presented. It follows from (3.15.3) that x̂(t) is a convolution
of x(t) and 1/πt, that is,

(3.15.9)

Thus, the Hilbert transform can be thought of as an output of a system (Hilber transformer)
with an impulse response h(t) given by

(3.15.10)

Let sgn(t) denote the sign function, that is,

(3.15.11)

and F{.} denote the Fourier transform of {.}. Noting that

(3.15.12)

it follows from the duality theorem of the Fourier transform that

(3.15.13)

Taking the Fourier transform on both sides of (3.15.10) and using (3.15.13), the following
expression is obtained for the transfer function of the Hilber transformer, also known as
the quadrature filter:
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(3.15.14)

In the remainder of this section, a real valued signal is denoted  by xI(t) and its Hilber
transform is denoted by xQ(t).

3.15.2.2 Analytical Signals

A complex valued signal  x(t) is said  to be an analytical signal if its real and imaginary
parts are related via the Hibert transform. Thus, it can be expressed as

(3.15.15)

where xQ(t) = x̂I(t).
Taking the Fourier transform on both sides of (3.15.15) and using the properties of the

Hilber transform, it can easily be shown that x(t) has a one-sided spectrum.

3.15.2.3 Beamformer Structures

Consider the structures of two narrowband beamformers shown in Figure 3.16 and Figure
3.17. Figure 3.16 shows a real beamforming system and Figure 3.17 shows an in-phase
and quadrature (IQ) or complex beamforming system. The real beamforming system has
a single real valued output that can be produced by using real multiplication to achieve
the weighting of the array signals. The other has a complex valued output and can be
produced by using the complex multiplication to achieve the weighting of the array
signals.

FIGURE 3.16
Real beamforming system.
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Let the L-dimensional complex vector x(t) denote the array signal in complex notation
defined as

(3.15.16)

where the L-dimensional real vectors xI(t) and xQ(t) denote the in-phase and quadrature
array signals, respectively.

Define the L-dimensional complex weight vector w as

(3.15.17)

where the L-dimensional real vectors wI and wQ denote the weights as shown in Figure
3.16 and Figure 3.17.

Let yI(t) denote the output of the real beamforming system. It follows from Figure 3.16
that it is given by

(3.15.18)

Let y(t) denote the output of the IQ beamforming system. It can easily be shown from
Figure 3.17 that the output of the IQ beamforming system is given by

(3.15.19)

FIGURE 3.17
In-phase and quadrature beamforming system.
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Similarly, the beamformer structure may be developed when the reference signal is available.
Next, an implementation of the two algorithms is discussed with a view to compare the

difference in convergence speed. The development presented here is for the constrained
LMS algorithm. It can easily be extended for the unconstrained case.

3.15.2.4 Real LMS Algorithm

Implementation of the real LMS algorithm for the real beamforming system is shown in
Figure 3.18 and for the IQ beamforming system it is shown in Figure 3.19. When all signals
on the array are accessible, a suitable estimate of the required gradient of wHRw for w =
w(n) is

(3.15.20)

FIGURE 3.18
Real algorithm for real beamforming system.

FIGURE 3.19
Real algorithm for IQ beamforming system.
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In the real beamforming system, yI(n + 1) represents the only out of the system. In the IQ
beamforming system, it is the real part of the output. In both cases, it is  a  real  valued
quantity and given by

(3.15.21)

Note from (3.15.20) that real multiplications are used in estimating the real and imaginary
parts of the complex valued quantity gR(w(n)).

Using the result E[x(t)x(t)] = 0, it can easily be verified that the gradient given by (3.15.20)
and (3.15.21) is unbiased; that is, for a given w(n)

(3.15.22)

Let VgR
(w(n)) denote the covariance of the gradient estimate given by (3.15.20) and

(3.15.21). For a zero mean, stationary complex Gaussian vector process {x(k)}, it is given by

(3.15.23)

The derivation of (3.15.23) can easily be carried out following the procedure used in Section
3.4.2.

3.15.2.5 Complex LMS Algorithm

Implementation of the complex algorithm for the IQ beamforming system is shown in
Figure 3.20, and for the real beamforming system in Figure 3.21. When all signals on the
array are accessible, a suitable estimate of the required gradient of wHRw for w = w(n) is

(3.15.24)

FIGURE 3.20
Complex algorithm for IQ beamforming system.
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where

(3.15.25)

As ŷI(n + 1) ≡ yQ(n + 1), it follows from (3.15.25) that

(3.15.26)

It follows from (3.15.24) and (3.15.25) that the gradient estimate in this case is identical to
that for the standard LMS algorithm discussed in Section 3.4.1. Thus, the gradient cova-
riance for this case is given by (3.4.6). Denoting it by VgC

(w(n)) and rewriting (3.4.6)

(3.15.27)

3.15.2.6 Discussion

Comparing (3.15.23) and (3.15.27) one notes that

(3.15.28)

Thus, the covariance of the gradient used in the real algorithm is more than that used in
the complex algorithm. The extra term 8RwH(n)w(n)R, present for the case of the real
algorithm, results in more misadjustment for this case. Let MR denote the misadjustment
when the gradient is given by (3.15.20) and (3.15.21). Following the procedure used in
Section 3.4 it can be shown that [God86] if

(3.15.29)

FIGURE 3.21
Complex algorithm for real beamforming system.
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and

(3.15.30)

then the misadjustment is given by

(3.15.31)

The misadjustment for the complex case is given by (3.4.52). Let it be denoted by MC.
Comparing (3.15.30) with (3.4.52), one notes that

(3.15.32)

Thus, it follows that misadjustment in both cases would be same if the gradient step size
used in the complex case is double that used in the real case. Since for small step size the
convergence time constant is inversely proportional to step size, it follows that for the
same misadjustment the convergence time constant for the complex LMS algorithm is half
that of the real LMS algorithm. This means that for the same misadjustment, the conver-
gence speed of the complex LMS algorithm is twice that of the real LMS algorithm.
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IQ in-phase and quadrature
LMS least mean squares
MSE mean square error
RHS right-hand side
RLS recursive least squares
SNR signal-to-noise ratio
SMI sample matrix inverse
TDMA time-division multiple access
F normalized steering vector in look direction
F{.} Fourier transform
g(w(n)) gradient estimate for given w(n)
g(w(n)) gradient estimate for given w(n)
g1(w(n)) gradient estimate using single-receiver system for given w(n)
g2(w(n)) gradient estimate using dual perturbation system for given w(n)
g3(w(n)) gradient estimate using reference receiver system for given w(n)
gst(w(n)) gradient estimate using structured gradient algorithm for given w(n)
gR(w(n)) gradient estimate using recursive LMS algorithm for given w(n) and gradi-

ent estimate using real LMS algorithm for given w(n)
gI(w(n)) gradient estimate using improved LMS algorithm for given w(n)
g(w(n)) mean of the gradient estimate for given w(n)
H( ƒ ) transfer functions of quadrature filter
h(t) impulse response
I identity matrix
i.i.d. independent identically distributed
Im[.] imaginary part of complex quantity
K degree of freedom
Kww(n) covariance of w(n)
Kww
ˆ covariance of w(n) in limit
kww(n) covariance matrix of w(n)
kww2

(n) covariance matrix of w(n) in dual perturbation system
kww3

(n) covariance matrix of w(n) in reference receiver system
k0(n) constant denoting wH(n)Rw(n)
L number of elements in array
M misadjustment, length of sequence S
MC misadjustment in complex LMS algorithm
MP misadjustment in adaptive PIC
MR misadjustment in real LMS algorithm
MS misadjustment in standard LMS algorithm
MU misadjustment in unconstrained LMS algorithm
M1 misadjustment in single-receiver system
M2 misadjustment in dual perturbation system
M3 misadjustment in reference receiver system
ms(n) complex modulating function of signal
N number of samples
P projection operator
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P(n) output power at nth iteration
P(n) mean output power at nth iteration
P(w(n)) mean output power for given w(n)
P(w) mean output power PIC for given w
PN(w(n)) mean output noise power for given w(n)
P̂ mean output power of optimal processor
pr mean power of reference signal
ps signal power
Q matrix with columns being eigenvectors of R
Q̂ matrix with columns being eigenvectors of PRP
Q̂l eigenvector corresponding to λ̂ l
q(n) output of interference beam at nth instant of time
R array correlation matrix
R(n) estimate of R at nth instant of time using only one sample
R(n)ˆ estimate of R at nth instant of time using past samples
R(n)˜ estimate of R at nth instant of time using spatial averaging
R(n)˜̂ estimate of R using past samples and spatial averaging
Re[.] real part of complex quantity
RN array correlation matrix with no signal present
Rww(n) correlation matrix of w(n)
R(N) estimate of R using N samples
ri correlation between elements with lag i
S complex vector sequence
S0 steering vector associated with look direction
SI steering vector associated with interference
sgn(t) sign function
U fixed weights of interference beam
Ui eigenvector corresponding to λ i of R
V fixed weights of signal beam
Vg(w(n)) covariance of gradient for given w(n)
Vg(w(n)) covariance of gradient for given w(n)
VgC

(w(n)) covariance of gradient in complex LMS algorithm for given w(n)
Vg1

(w(n)) covariance of gradient using single receiver system for given w(n)
Vg2

(w(n)) covariance of gradient using dual perturbation system for given w(n)
Vg3

(w(n)) covariance of gradient using reference receiver system for given w(n)
Vgst

(w(n)) covariance of gradient in structured LMS algorithm for given w(n)
VgR

(w(n)) covariance of gradient in recursive LMS algorithm for given w(n) and co-
variance of gradient in real LMS algorithm for given w(n)

VgS
(w(n)) covariance of gradient in standard LMS algorithm for given w(n)

v(n) mean error vector at nth iteration
ŵ optimal weights of constrained processor
w(n) array weights at nth iteration
w(n) mean value of w(n)
wMSEˆ optimal weights of processor with reference signal
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ŵ optimal weight of PIC
w(n) PIC weight at nth iteration
w(n) mean value of w(n)
x(n) array signal vector at nth instant of time
x(t)ˆ Hilber transform of x(t)
xI(t) in-phase signal
xQ(t) quadrature phase signal
xN(n) array signal vector due to interference and uncorrelated noise
y(t) output of IQ beamforming system
y(n) array output at nth instant of time
y(w(n)) array output for given w(n)
yI(t) output of real beamforming system
z correlation between reference signal and array signals
Γ diagonal matrix of eigenvalues of P
Λ diagonal matrix of eigenvalues of R
Λ̂ diagonal matrix of eigenvalues of PRP
Λ̂′ diagonal matrix of nonzero eigenvalues of PRP
Σ(n) diagonal matrix of eigenvalues of kww(n)
γ perturbation step size
γ(w(n))ˆ step size for which Vg1(w(n)) is minimum
�(l) L-dimensional complex vector
ε(w(n)) error between array output and reference signal for given w(n)
ξ(γ) perturbation noise for given γ
ξ(w(n)) MSE for given w(n)
ξ̂ minimum MSE
ξ(n) average value of MSE at nth iteration
µ gradient step size
µ0 inter-ring spacing
µ(n) gradient step size at nth iteration
λi ith eigenvalue of R
λi
ˆ ith eigenvalue of PRP
λmax maximum eigenvalue of R
λmax
ˆ maximum eigenvalue of PRP
� vector of eigenvalues of R
�̂ vector of eigenvalues of PRP
�̂′ vector of nonzero eigenvalues of PRP
� vector of eigenvalues of P
ηi(n) ith eigenvalue of kww(n)
�(n) vector of eigenvalues of kww(n)
�2(n) vector of eigenvalues of kww2

(n)
�′(n) vector of nonzero eigenvalues of kww(n)
ψ(n) output of signal beam at nth instant of time
τ time constant for adaptive PIC
τi ith time constant
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Appendices

Appendix 3.1

In this appendix a derivation of (3.2.90) is presented. First, the following theorem used in
the derivation is established [Hor81, God86].

Theorem 3.1: Let the set of difference equations

(3A.1)

be such that

(3A.2)

(3A.3)

(3A.4)

and

all the eigenvalues of the system (3A.1) are real and positive. (3A.5)

If

(3A.6)

and

(3A.7)

then

(3A.8)

exists and is given by

(3A.9)

where αmax + βmax denotes the maximum value of αi + βi, i = 1, …, L.
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Proof of Theorem 3.1: The proof of the theorem makes use of the z-transform. If F(z)
denotes the z-transform of a sequence f(n) denoted as Z{f(n)}, then z-transform of f(n + 1)
is given by

(3A.10)

Taking the z-transform of the ith equation of (3A.1) and using (3A.10),

(3A.11)

where Di(0) denotes the value of Di(n) at n = 0.
It follows from (3A.11) that

(3A.12)

Let

(3A.13)

It follows from the first equation of (3A.12) and (3A.13) that

(3A.14)

It can easily be shown that the characteristic equation of (3A.14) is

(3A.15)

For the stability of υ(z), it is necessary that Di(z) is stable ∀ i and that all roots of (3A.15)
lie inside the unit circle.
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It follows from the second equation of (3A.12) that the stability of Di(z) is guaranteed if

(3A.16)

Equation (3A.16) follows from (3A.6). Thus, Di(z) is stable ∀ i.
By assumption, all eigenvalues of (3A.1) are positive and real. This implies that all the

roots of (3A.15) are positive and real. Since the sign of (3A.15) is positive for large values
of z, it follows that if no root of (3A.15) is to lie between z = 1 and z = ∞, then (3A.15)
must be positive for z = 1 + δ for all δ ≥ 0, that is,

(3A.17)

which is true by (3A.7).
Thus, υ(z) is stable and  exists, which proves the existence of (3A.8).

Equation (3A.9) is now established. From the properties of the z-transform, the final
value of the sequence f(n) is given by

(3A.18)

It follows from (3A.2), (3A.3), (3A.4), and (3A.18) that

(3A.19)

(3A.20)

and

(3A.21)

Multiplying both sides of (3A.14) by (1 − z−1), taking the limit z → 1, and using (3A.13)
and (3A.19) to (3A.21),

(3A.22)

which is (3A.9). Thus, the theorem is proved.
Proof of (3.2.90): Let
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Noting that

(3A.24)

and premultiplying on both sides of (3.2.73) by Λ and using (3A.23),

(3A.25)

The ith component of (3A.25) is given by

(3A.26)

Now apply Theorem 3A.1. Equation (3A.26) satisfies the form given by (3A.1) with

(3A.27)

(3A.28)

(3A.29)

and

(3A.30)

It follows from (3A.29) that

(3A.31)

which satisfies (3A.2). Furthermore, (3A.30) implies that (3A.3) is satisfied and kww(0) = 0
implies that Di(0) = 0, which in turn satisfies (3A.4). Since (3A.25) is propagated by a
symmetric, positive, definitive transition matrix for all values of µ, this implies that all
eigenvalues of the system (3A.25) are positive and real. This satisfies condition (3A.5). The
condition (3A.6) is satisfied if

(3A.32)

or

(3A.33)
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This is satisfied if

(3A.34)

The condition (3A.7) is now checked. Substituting for αi and βi in (3A.7),

(3A.35)

It follows from (3A.34) that

(3A.36)

Dividing (3A.35) by , the following condition is derived:

(3A.37)

This implies that (3A.7) is satisfied if

(3A.38)

Thus, when (3A.34) and (3A.38) are true, all conditions of the theorem are satisfied. It
follows from (3A.8) that
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(3A.39) implies that

(3A.42)

exists.
Substituting for various quantities in (3A.40),

(3A.43)

which is (3.2.90).

Appendix 3.2

In this appendix, a derivation of (3.4.6) is presented. Rewrite (3.2.10):

(3A.44)

where E[.] denotes the conditional expectation for a given w(n) and

(3A.45)

It follows from (3.4.5) and (3A.45) that
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Thus, the second term on the RHS of (3A.44) becomes
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It follows from (3.4.4) that

(3A.48)

If {x(k)} is a complex i.i.d. Gaussian sequence, then for any Hermitian matrix A the
following result holds, using (3.2.9):

(3A.49)

Taking the conditional expectation on both sides of (3A.48) for a given w(n) and using
(3A.49),
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(3A.50)

Substituting from (3A.47) and (3A.50) in (3A.44), (3.4.6) is derived.

Appendix 3.3

In this appendix, a derivation of (3.4.8) and (3.4.9) is presented. It is similar to results of
unconstrained algorithm presented in Sections 3.2.2 and 3.2.3.

It follows from (3.4.1) and (3.4.4) that

(3A.51)

When w(n) and x(n + 1) are uncorrelated it follows by taking the unconditional expectation
on both sides of (3A.51) that

(3A.52)

where

(3A.53)

Define a mean error vector v(n) as

(3A.54)

where ŵ is the optimal vector given by (2.4.21), that is,

(3A.55)

Subtracting ŵ from both sides of (3A.52) and using (3A.54), the following mean error
vector update equation is derived:

(3A.56)

From (3.4.2) and the fact that
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it follows that
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Similarly, (3.4.2) and (3A.55) imply that

(3A.59)

Thus, (3A.56) becomes

(3A.60)

where I is an identity matrix.
Since P2 = P, it follows from (3A.60) that
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Thus, (3A.60) becomes
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Using the properties of a norm, it follows from (3A.62) that
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This establishes

(3A.69)

To obtain the convergence time constant along an eigenvector of PRP, consider

(3A.70)

where αi, i = 1, 2, …, L are scalars and Q̂i, i = 1, 2, …, L are eigenvectors corresponding
to L eigenvalues of PRP.

From (3A.62) and (3A.70), it follows that

(3A.71)

Since eigenvectors of PRP are orthonormal, (3A.71) can be expressed as

(3A.72)

The convergence of the mean weight vector to the optimal weight vector along the ith
eigenvector of PRP is therefore geometric with geometric ratio (1 – 2µλ̂i). If an exponential
envelope of time constant τi is fitted to the geometric sequence of (3A.72), then

(3A.73)

where the unit of time is assumed to be one iteration. Note that if

(3A.74)

then

(3A.75)

Appendix 3.4

In this appendix, a derivation of (3.4.14) is presented [God86]. It follows from (3.4.12) and
(3.4.13) that
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Taking the outer product of (3.4.1),

(3A.78)

where F = S0/L.
Taking the conditional expectation of both sides of (3A.78) with respect to w(n) and

using (3.4.5),
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Taking the expectation on both sides over w(n), (3A.79) yields
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Taking the expected value of (3.4.1),
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Subtracting (3A.82) from (3A.80) and using (3A.76),

(3A.83)

By definition,

(3A.84)

Using (3.4.5), it follows from (3A.84) that

(3A.85)

From (3A.85), taking the expected value over w,

(3A.86)

which implies

(3A.87)

From (3.4.5), taking expected value over w,

(3A.88)

The outer product of (3A.88) results in

(3A.89)

Subtracting (3A.89) from (3A.87) and substituting in (3A.83),

(3A.90)

which is (3.4.14).

k n Pk n P P Rk n k n R P

P E n n E n E n PH H

ww ww ww ww

g w g w g w g w

+( ) = ( ) − ( ) + ( )[ ]
+ ( )( ) ( )( )[ ] − ( )( )[ ] ( )( )[ ]{ }

1 2

2

µ

µ  

V n E n n n

E n n E n n

H

H

g w g w g w w

g w w g w w

( )( ) = ( )( ) ( )( ) ( )[ ]
− ( )( ) ( )[ ] ( )( ) ( )[ ]  

V n E n n n R n n RH H
g w g w g w w w w( )( ) = ( )( ) ( )( ) ( )[ ] − ( ) ( )4

E V n E n n RR RH
g www g w g w( )( )[ ] = ( )( ) ( )( )[ ] − 4

E n n E V n RR RHg w g w wg ww( )( ) ( )( )[ ] = ( )( )[ ] + 4

E n R ng w w( )( )[ ] = ( )2

E n E n R n n RH Hg w g w w w( )( )[ ] ( )( )[ ] = ( ) ( )4

k n Pk n P P Rk n k n R P

PRk n RP PE V n P

ww ww ww ww

ww g w

+( ) = ( ) − ( ) + ( )[ ]
+ ( ) + ( )( )[ ]

1 2

42 2

µ

µ µ  
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Appendix 3.5

In this appendix, a proof of the diagonalization conditions stated in Section 3.4.5 is
presented [God86]. It follows directly from (3.4.1) and (3.4.12) that

(3A.91)

Thus, (3.4.14) can be expressed as

(3A.92)

Since PRP is an Hermitian matrix, a unitary matrix Q̂ exists, such that

(3A.93)

where Λ̂ is a diagonal matrix with the diagonal elements being the eigenvalues of PRP.
Define

(3A.94)

and

(3A.95)

Pre- and postmultiplying (3A.92) by Q̂H and Q̂, respectively, and using (3A.93), (3A.94),
and (3A.95),

(3A.96)

In view of (3A.93), (3A.94), and (3A.95), the statement of diagonalization conditions
becomes “the necessary and the sufficient condition for Σ(n + 1), n ≥ 0, to be a diagonal
matrix is that Ω(n) is a diagonal matrix for all n.” This is proved by induction.

Consider n = 0. Since initial weight vector w(0) is a known constant, it follows that

(3A.97)

It follows from (3.4.12) that

(3A.98)

Pk n P Pk n k n P k nww ww ww ww( ) ≡ ( ) ≡ ( ) ≡ ( )

k n k n PRP k n k n PRP

PE V n P PRP k n PRP

ww ww ww ww

g www

+( ) = ( ) − ( ) − ( )

+ ( )( )[ ] + ( )

1 2 2

42 2

µ µ

µ µ  

ˆ ˆ ˆQ PRPQH = Λ

Σ n Q K n QH( ) = ( )ˆ ˆ
ww

Ω n Q PE V n PQH( ) = ( )( )[ ]ˆ ˆ
g w

Σ Σ Λ Σ Σ Λ ΛΣ Λ Ωn n n n n n+( ) = ( ) − ( ) − ( ) + ( )[ ] + ( )1 2 2 4 2 2µ µ µ µˆ ˆ ˆ ˆ

E w w0 0( )[ ] ≡ ( )

k E
H

ww w w w w0 0 0 0 0

0

( ) = ( ) − ( )( ) ( ) − ( )( )[ ]
=
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Equations (3A.94) and (3A.98) imply that

(3A.99)

From (3A.96) and (3A.99) one obtains

(3A.100)

It follows from (3A.100) that the necessary and sufficient condition for Σ(1) to be a diagonal
matrix is that Ω(0) is a diagonal matrix. This proves the diagonalization conditions for n = 0.

Consider n = 1. Assume that Σ(1) is a diagonal matrix. For n = 1, (3A.96) becomes

(3A.101)

Since Σ(1) and Λ̂ are diagonal matrices, it follows that the terms in the square bracket of
(3A.101) form a diagonal matrix. Thus, it follows from (3A.101) that for Σ(2) to be a
diagonal matrix, the necessary and sufficient condition is that Ω(1) is a diagonal matrix.
This proves the theorem for n = 1.

Finally, assume that Σ(n) is a diagonal matrix. Since Λ̂ is a diagonal matrix, the terms
in the square bracket of (3A.96) form a diagonal matrix. Thus, it follows from (3A.96) that
for Σ(n + 1) to be a diagonal matrix, the necessary and sufficient condition is that Ω(n) is
a diagonal matrix. This completes the steps necessary for the proof by induction.

Appendix 3.6

In this appendix, a proof of (3.4.52) is presented [God86]. Let

(3A.102)

where �′(n) is defined by (3.4.36), and denotes the L – 1 diagonal elements of
and Λ̂′ is the diagonal matrix of L – 1 nonzero eigenvalues of PRP.

It follows from (3.4.37), (3.4.38), and (3A.102) that

(3A.103)

From (3A.103), a difference equation of the ith component of D(.) is given by

(3A.104)

With

(3A.105)

(3A.106)

Σ 0 0( ) =

Σ Ω1 02( ) = ( )µ

Σ Σ ΛΣ Σ Λ ΛΣ Λ Ω2 1 2 1 2 1 4 1 12 2( ) = ( ) − ( ) − ( ) + ( )[ ] + ( )µ µ µ µˆ ˆ ˆ ˆ

D n n( ) = ′ ′ ( )Λ̂ �

Q̂
H

kww n( )Q̂

D ll D lkn I n nT+( ) = − ′ + ′ + ′( ) ( ) + ′ ( )1 4 4 4 42 2 2 2 2 2
0µ µ µ µˆ ˆ ˆ ˆΛ Λ Λ�

D n D n k n D ni i i i i

L

+( ) = − ′ + ′( ) ( ) + ′ ( ) + ( )










=

−

∑1 1 4 4 42 2 2 2
0

1

1

µλ µ λ µ λˆ ˆ ˆ
l

l

α µλ µ λi i i= − +1 4 4 2 2ˆ ˆ

β µ λi i= 4 2 2ˆ
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(3A.107)

and

(3A.108)

equation (3A.104) is similar to (3A.1) and Theorem 3A.1 can be applied, provided the
conditions (3A.2) to (3A.7) are satisfied.

Since

(3A.109)

it follows from (3A.107) that

(3A.110)

which is (3A.2).
Equation (3A.108) implies (3A.3), kww(n) ≡ 0 implies that Di(0) = 0, which satisfies (3A.4).
Note that (3A.103) is propagated by a symmetric, positive definite transition matrix for

all values of µ. This implies that all eigenvalues of the system (3A.103) are positive and
real, which satisfies (3A.5). Following the argument used in (3A.32) to (3A.34), it can be
shown that (3A.6) is satisfied if

(3A.111)

which is (3.4.50). Thus, (3A.6) is satisfied.
Condition (3A.7) is checked in the following. Substituting for αi and βi in (3A.7), the

condition

(3A.112)

is derived. As (3A.111) implies that

(3A.113)

(3A.112) becomes

(3A.114)

ζ n k n n R nH( ) = ( ) ≡ ( ) ( )0 w w

c ni( ) = 0

lim ˆ
n

n
→∞

( ) =w w

lim ˆ ˆ *
n

Hn R
→∞

( ) = ≡ζ ζw w

0
1

2
< <µ

λ̂ max

δ µλ µλ µλ δ µλ µλ δ+ −( )[ ] − + −( )[ ] > ≥∏ ∑ ∏
≠

4 1 4 4 1 0 02ˆ ˆ ˆ ˆ ˆ
i i

i
i

i i
l l

l

    for 

δ µ λ µλ δ+ −( )[ ] > ≥∏ 4 1 0 02 ˆ ˆ
i i

i

    for 

µλ
δ
µλ

µλ
δ

ˆ

ˆ
ˆ

,i

i
ii

L

4
1

1 0
1

1

+ −( )
< ≥

=

−

∑     
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This implies that (3A.7) is satisfied if

(3A.115)

which is (3.4.51). Thus, all conditions of Theorem 3A.1 are satisfied. Thus, 
exists and from (3A.9) it follows that

(3A.116)

It follows from (3A.102) and (3.4.47) and λ̂L = 0 (λ̂min is λ̂L) that

(3A.117)

From (3A.105), (3A.106), (3A.110), (3A.116), and (3A.117),

(3A.118)

which along with (3.4.49) implies (3.4.52).

Note that the existence of , 0 < λ̂i < × ; i and (3A.102) imply that �′(n)

exists. This completes the derivation.

Appendix 3.7

In this appendix, the results presented in Section 3.13 are derived. The following result,
which follows from (3.2.9), is used here.

If {x(k)} is a complex i.i.d. Gaussian sequence, then for any Hermitian matrix A the
following result holds:

(3A.119)

where R is the array correlation matrix and Tr(.) denotes the trace.

µλ
µλ

ˆ

ˆ
i

ii

L

1
1

1

1

−( ) <
=

−

∑

lim
n i

i

L

D n
→∞

=

−

( )∑
1

1

lim

*

n i
i

L
i

ii

L

i

ii

LD n
→∞

=

−
=

−

=

−( ) =
−

−
−

∑
∑

∑1

1
1

1

1

1

1

1
1

ζ β
α

β
α

D n ni
i

L
T( ) ≡ ( )

=

−

∑
1

1

�̂ d

lim ˆ
ˆ ˆ

ˆ

ˆ

ˆ

ˆ
n

T

H i

ii

L

i

ii

Ln
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=

−

=

−( ) =
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−
−

∑
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� d

w w µ λ
µλ

µ λ
µλ

1

1
1

1

1

1

1

lim
n i

i

L

D n
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=

−

( )∑
1

1

lim
n→×

E n n A n n RAR Tr RA RH Hx x x x( ) ( ) ( ) ( )[ ] = + ( )
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Proof of (3.13.10): Let

(3A.120)

Since Vg(w(n)) denotes the covariance of the gradient estimate for a given w(n), it follows
from the definition of covariance that

(3A.121)

It follows from (3.13.3) and (3.13.8) that

(3A.122)

Substituting from (3.13.1) and (3.13.2), (3A.122) leads to

(3A.123)

Taking the expectation over x(.) for a given w(n) on both sides of (3A.123) and using
(3A.119), 

(3A.124)

Since

(3A.125)

it follows from (3A.121), (3A.124), and (3A.125) that

(3A.126)

which proves the result.

g w n E g w n w n( )( ) = ( )( ) ( )[ ]

V w n E g w n g w n g w n g w n w n

E g w n g w n w n g w n g w n

g ( )( ) = ( )( ) − ( )( ){ } ( )( ) − ( )( ){ } ( )[ ]
= ( )( ) ( )( ) ( )[ ] − ( )( ) ( )( )

* *

* *

g w n g w n n w n q n q n q n n w n q n( )( ) ( )( ) = ( ) − ( ) ( ){ } ( ) ( ) ( ) − ( ) ( ){ }* * *4 ψ ψ

g w n g w n n n n n

w n w n n n n n

w n n n n n

w n n

H H H H

H H H H

H H H H

H
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  *
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4

4

V x x UU x x V

U x x UU x x U
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E g w n g w n w n R R R R

w n w n R

w n R R

w n R R

H H H H
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H H

H H
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  *

4 4
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V UU V U UV V
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g
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Derivation of (3.13.13) and (3.13.14): Let

(3A.127)

Using (3.13.6) 

(3A.128)

Taking the expected value on both sides of (3A.128), 

(3A.129)

From (3.13.9) and (3A.127), it follows that

(3A.130)

which along with (3.13.5), implies that

(3A.131)

Taking the unconditional expectation on both sides of (3A.131) and substituting in
(3A.129), 

(3A.132)

Let

(3A.133)

Then,

(3A.134)

which implies

(3A.135)

For

(3A.136)

(3A.137)

e n w n w( ) = ( ) − ˆ

e n e n g w n+( ) = ( ) − ( )( )1 µ

E e n E e n E g w n+( )[ ] = ( )[ ] − ( )( )[ ]1 µ

E g w n w n R e n R w RH H H( )( ) ( )[ ] = − + ( ) +2 2 2V U U U U Uˆ

E g w n w n e n RH( )( ) ( )[ ] = ( )2 U U

E e n E e n E n RH+( )[ ] = ( )[ ] − ( )[ ]1 2 3µ U U

f n E e n( ) = ( )[ ]

f n R f nH+( ) = −( ) ( )1 1 2µU U

f n R fH n
+( ) = −( ) ( )+

1 1 2 0
1

µU U

0
1< <µ

U UHR

1 2 1− <µU UHR
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Furthermore, it follows from (3.13.11), (3A.127), and (3A.133) that

(3A.138)

Thus, it follows from (3A.135), (3A.137), and (3A.138) that

(3A.139)

Equation (3A.139) along with (3A.127) and (3A.133) implies (3.13.13).
To derive (3.13.14), consider (3A.135). It follows from (3A.135) that the convergence of

the mean weight to the optimum weight is geometric, with the geometric ratio (1 – 2 µUHRU).
If an exponential envelope of time constant τ is fitted to the geometric sequence of (3A.135),
then

(3A.140)

which is (3.13.14).
Derivation of (3.13.17): It follows from (3.13.15) and (3.13.16) that

(3A.141)

where

(3A.142)

It follows from (3.13.6) that

(3A.143)

Taking the conditional expectation with respect to w(n) on both sides of (3A.143),

(3A.144)

Since

(3A.145)
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and

(3A.146)

it follows from (3A.144) that

(3A.147)

Taking the unconditional expectation on both sides of (3A.147) and using (3A.142),

(3A.148)

Taking the unconditional expectation on both sides of (3.13.6) and using (3.13.16) and
(3A.146), 

(3A.149)

Taking the outer product of (3A.149),

(3A.150)

From (3.141), (3A.148), and (3A.150), one obtains

(3A.151)

which is (3.13.17).
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The beamformer structure of Figure 2.1 discussed earlier is for narrowband signals. As
the signal bandwidth increases, beamformer performance using this structure starts to
deteriorate [Rod79]. For processing broadband signals, a tap delay line (TDL) structure
shown in Figure 4.1 is normally used [Rod79, May81, Voo92, Com88, Ko81, Ko87, Nun83,
Yeh87, Sco83]. A lattice structure consisting of a cascade of simple lattice filters sometimes
is also used [Ale87, Lin86, Iig85, Soh84], offering certain processing advantages.

Although the TDL structure with constrained optimization is the commonly used struc-
ture for broadband array signal processing, alternative methods have been proposed.

FIGURE 4.1
Broadband processor with tapped delay line structure.
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These include adaptive nonlinear schemes, which maximizes the signal-to-noise ratio
(SNR) subject to additional constraints [Win72]; a variation of the Davis beamformer
[Dav67], which adapts one filter at a time to speed up convergence [Ko90]; a composite
system that also utilizes a derivative of beam pattern in the feedback loop to control the
weights [Tak80] to reject wideband interference; optimum filters that specify rejection
response [Sim83]; master and slave processors [Hua90]; a hybrid method that uses an
orthogonal transformation on data available from the TDL structure before applying
weights [Che95] to improve its performance in multipath environments; the weighted
Tschebysheff method [Nor94]; and the two-sided correlation transformation method
[Val95].

In this chapter, details on an array processor using the TDL structure and its partitioned
realization to process broadband array signals are provided, the time domain and fre-
quency domain methods are described, and details on deriving various constraints are
given [God95, God97, God99]. The treatment presented here is for solving a constrained
beamforming problem, assuming that the look direction is known. It can easily be extended
to the case when a reference signal is available.

4.1 Tapped-Delay Line Structure

In this section, a TDL structure for broadband antenna array processing is described, its
frequency response and optimization are discussed, an LMS algorithm to estimate the
solution of the point-constrained optimization problem is developed, and a design using
minimum mean square error (MSE) between the frequency response of the processor and
the desired response is presented.

4.1.1 Description

Figure 4.1 shows a general structure of a broadband antenna array processor consisting
of L antenna elements, steering delays Tl(φ0,θ), l = 1, …, L and a delay line section of J – 1
delays with inter-tap delay spacing T. The steering delays Tl(φ0,θ0), l = 1, …, L in front of
each element are pure time delays and are used to steer the array in a given look direction
(φ0,θ0). If τl(φ0,θ0) denotes the time taken by the plane wave arriving from direction (φ0,θ0),
and measured from the reference point to the lth element, then the steering delay Tl(φ0,θ0)
may be selected using

(4.1.1)

where T0 is a bulk delay such that Tl(φ0,θ0) > 0∀  l.
If s(t) denotes the signal induced on an element present at the center of the coordinate

system due to a broadband source of power density S(f) in direction (φ,θ), then the signal
induced on the lth element is given by s(t + τl(φ,θ)), as discussed in Chapter 2.

Let xl(t) denote the output of the lth sensor presteered in (φ0,θ0). It is given by

(4.1.2)

For a source in (φ0,θ0) it becomes xl(t) = s(t − T0), yielding identical wave forms after
presteering delays.

T T Ll l lφ θ τ φ θ0 0 0 0 0 1, , ,   , ,( ) = + ( ) = …

x t s t Tl l l( ) = + ( ) − ( )( )τ φ θ φ θ, ,0 0
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The TDL structure shown in Figure 4.1 following the steering delay on each channel is
a finite impulse response (FIR) filter. The coefficients of these filters are constrained to
specify the frequency response in the look direction. It should be noted that these coeffi-
cients are real compared to complex weights of the narrowband processor.

It follows from Figure 4.1 that the output y(t) of the processor is given by

(4.1.3)

where wlk denotes the weight on the kth tap of the lth channel. Note that the kth tap
output corresponds to the output after (k − 1) delays. Thus, first tap output corresponds
to the output of presteering delays and before any tapped delays section, the second tap
output corresponds to the output after one delay and Jth tap output corresponds to the
output after J − 1 delays.

Let W defined by

(4.1.4)

denote LJ weights of the filter structure, with wm denoting the column of L weights on
the mth tap.

Define an L-dimensional vector x(t) to denote array signals after presteering delays, that is,

(4.1.5)

and an LJ-dimensional vector X(t) to denote array signals across the TDL structure, that is,

(4.1.6)

It follows from (4.1.3) to (4.1.6) that the output y(t) of the processor in the vector notation
becomes

(4.1.7)

If X(t) can be modeled as a zero-mean stochastic process, then the mean output power
of the processor for a given W is given by

(4.1.8)

where

(4.1.9)

is an LJ × LJ dimensional real matrix and denotes the array correlation matrix with its
elements representing the correlation between various tap outputs. The correlation
between the outputs of mth tap on the lth channel and nth tap on the kth channel is given by

(4.1.10)

y t x t k T w k
k

JL

( ) = − −( )( )
==

∑∑ l l

l

1
11

W w w wT T T
J
T= …[ ]1 2, , ,

x t x t x t xL

T( ) = ( ) ( ) … ( )[ ]1 2, , ,

X x x xT T T Tt t t T t J T( ) = ( ) −( ) … − −( )( )[ ], , , 1

y t tT( ) = ( )W X

P E y t

RT

W

W W

( ) = ( )[ ]
=

2

R E t tT= ( ) ( )[ ]X X

R E x t m T x t n Tm n k k, ,
( ) = − −( )( ) − −( )( )[ ]

l l 1 1
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Note that the L × L matrix Rm,n denotes the correlation between the array outputs at the
mth and nth taps, that is, after (m − 1) and (n − 1) delays.

Substituting from (4.1.2), it follows that

(4.1.11)

where ρ(τ) denotes the correlation function of s(t), that is,

(4.1.12)

The correlation function is related to the spectrum of the signal by the inverse Fourier
transform, that is,

(4.1.13)

Thus, from known spectra of sources and their arrival directions, the correlation matrix
may be calculated. In practice, it can also be estimated by measuring signals at the output
of various taps.

For M uncorrelated directional sources, the array correlation matrix is the sum of cor-
relation matrices due to each source, that is,

(4.1.14)

where Rl is the array correlation matrix due to the lth source in direction (φl,θl).
Let RS denote the array correlation matrix due to the signal source, that is, a source in

the look direction, and RN denote the array correlation matrix due to noise, that is,
unwanted directional sources and other noise. The mean output signal power PS(W) and
mean output noise power PN(W) for a given weight vector are, respectively, given by

(4.1.15)

and

(4.1.16)

The output SNR for given weights is

(4.1.17)

R m n T T Tm n k k k, ,
, , , ,( ) = −( ) + ( ) − ( ) + ( ) − ( )[ ]l l lρ φ θ φ θ τ φ θ τ φ θ0 0 0 0

ρ τ τ( ) = ( ) +( )[ ]E s t s t

ρ τ π τ( ) = ( )
−∞

∞

∫ S e djf ff2

R R
M

=
=

∑ l

l 1

P RS
T

SW W W( ) =

P RN
T

NW W W( ) =

SNR
P
P

R
R

S

N

T
S

T
N

W
W
W

W W
W W

( ) = ( )
( )

=
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4.1.2 Frequency Response

Assume that the signal induced on an element at the center of the coordinate system due
to a monochromatic plane wave of frequency f can be represented in complex notation as
ej2πft. Thus, the induced signal on the lth element after the steering delay due to a plane
wave arriving in direction (φ,θ) becomes ej2πf(t + τl(φ,θ) – Tl(φ0,θ0)). The frequency response H(f,φ,θ)
of the processor to a plane wave front arriving in direction (φ,θ) is then given by

(4.1.18)

where T(f) is a diagonal matrix of steering delays given by

(4.1.19)

and S(f,φ,θ) is an L-dimensional vector defined as

(4.1.20)

It follows from (4.1.1), (4.1.19), and (4.1.20) that

(4.1.21)

where

(4.1.22)

In this case, the frequency response of the array steered in the look direction (φ0,θ0) is
given by

(4.1.23)

where

(4.1.24)

with 1 denoting a vector of ones.
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Let f be a J-dimensional constraint vector defined as

(4.1.25)

and C be an LJ × J constraint matrix defined as

(4.1.26)

The J constraints defined by (4.1.24) can now be expressed as

(4.1.27)

Since a(f) given by (4.1.22) corresponds to a pure time delay, the J constraints {fk} can be
used to specify the frequency response in the direction (φ0,θ0).

The processor can be forced to have a flat frequency response in the look direction by
selecting f as follows:

(4.1.28)

where k0 is a parameter, which can itself be optimized. Frequently, k0 is taken as J/2 for
J, an even number, and (J + 1)/2 for J, an odd number, since for a sufficiently large J this
gives close to optimum performance.

4.1.3 Optimization

The frequency response of an array processor in the look direction can be fixed using the
J constraints in (4.1.27). The processor can minimize the non–look direction noise when
weights are selected by minimizing the total mean output power such that (4.1.27) is
satisfied. Thus, in situations where one is interested in finding array weights, such that
the array processor minimizes the total noise and has the specified response in the look
direction, the following constrained beamforming problem is considered:

(4.1.29)

where f is a J-dimensional vector that specifies the frequency response in the look direction
and C is an LJ × J constraint matrix.

Let Ŵ denote the solution of the above problem. The solution is obtained by the Lagrange
multipliers method [Bry69, Lue69, Pie69]. This method transforms the constrained problem
into an unconstrained problem by adding the constraint function to the cost function using
a J-dimensional vector of undetermined Lagrange multipliers � to generate a new cost
function. Let J(W) denote the cost function for the present problem. It is given by

f = …[ ]f f fJ
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1 2, , ,

C =

…

…









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


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
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W f
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(4.1.30)

where 1/2 is added to simplify the mathematics.
Taking the gradient of (4.1.30) with respect to W,

(4.1.31)

At the solution point, the cost function gradient is zero. Thus,

(4.1.32)

Assuming that the inverse of the array correlation matrix R exists, Ŵ may be expressed
in terms of Lagrange multipliers as

(4.1.33)

Since Ŵ satisfies the constraint C TŴ = f, it follows from (4.1.33) that

(4.1.34)

An expression for Lagrange multipliers may be found from (4.1.34), yielding

(4.1.35)

Substituting for Lagrange multipliers in (4.1.33) from (4.1.35), an expression for the optimal
weights [Fro72] follows:

(4.1.36)

Let P̂ denote the mean output power of the processor using optimal weights, that is,

(4.1.37)

Substituting for Ŵ from (4.1.36),

(4.1.38)

The point-constraint minimization problem (4.1.29) specifies J constraints on the weights
such that the sum of L weights on all channels before the jth delay is equal to fi. For all
pass frequency responses in the look direction, all but one fi, i = 1, 2, …, J are selected to
be equal to zero. For i’s close to J/2, fi is taken to be unity. Thus, the constraints specify
that the sum of weights across the array is zero, except one near the middle of the filter
that is equal to unity.

J R CT T TW W W W f( ) = + −( )1
2

�

∇ ( ) = +W W WJ R C�

R CŴ + =� 0

Ŵ = − −R C1 �

− =−C R CT 1 � f

� = −( )− −
C R CT 1 1

f

Ŵ f= ( )− − −
R C C R CT1 1 1

ˆ ˆ ˆP RT= W W

P̂ C R CT= ( )− −
f fT 1 1
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Thus, for all pass frequency responses when fi, i = 1, …, J are selected as

(4.1.39)

equation (4.1.38) becomes

(4.1.40)

Application of broadband beamforming structures using TDL filters to mobile commu-
nications has been considered in [Win94, Des92, Ish95, Koh92] to overcome multipath
fading and large delay spread in TDMA as well as in CDMA systems.

4.1.4 Adaptive Algorithm

A constrained LMS algorithm to estimate the optimal weights of a narrowband element
space processor is discussed in Chapter 3. The corresponding algorithm to estimate the
optimal weights of the broadband processor given by (4.3.36) may be developed as follows
[Fro72].

Let W(n) denote the weights estimated at the nth iteration. At this stage, a new array
sample X(n + 1) is available and the array output using weights W(n) is given by

(4.1.41)

For notational simplicity it is assumed that the nth iteration coincides with the nth time
sample. The new weight vector W(n + 1) is calculated by moving in the negative direction
of the cost function gradient, that is,

(4.1.42)

where J(W(n)) is the cost function given by (4.1.30), with W replaced by W(n) and µ is a
positive scalar. Replacing R with its noisy sample X(n + 1)XT(n + 1), it follows from (4.1.31)
that

(4.1.43)

where �(n) denotes the Lagrange multipliers at the nth iteration.
Substituting from (4.1.43) in (4.1.42),

(4.1.44)

Assuming that the estimated weights satisfy the constraints at each iteration, it follows
from the second equation of (4.1.29) that

f
i k
i ki =

=
≠
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
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0

0
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W W WWn n J n+( ) = ( ) − ∇ ( )( )1 µ
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(4.1.45)

Multiplying by CT on both sides of (4.1.44) and using (4.1.45), it follows that

(4.1.46)

Solving for �(n) 

(4.1.47)

Substituting in (4.1.44), 

(4.1.48)

where

(4.1.49)

is a projection operator. It follows from (4.1.45) and (4.1.49) that

(4.1.50)

Thus,

(4.1.51)

and after substitution for W(n), (4.1.48) becomes

(4.1.52)

where

(4.1.53)

Thus, knowing the array weights W(n), array output, and array sample X(n + 1), the
new weights W(n + 1) can be calculated using the constrained LMS algorithm given by
(4.1.52), (4.1.53), and (4.1.49).

The algorithm is initialized at n = 0 using

(4.1.54)

The initialization of the algorithm using weights equal to F is selected because it denotes
the optimal weights in the presence of only white noise, that is, no directional interference.
This follows from the fact that the array correlation matrix R in this case is given by

(4.1.55)

C n C nT TW W f+( ) = ( ) =1

C y n n C C nT T( ) +( ) + ( ) =X 1 0�

� n C C C y n nT T( ) = −( ) ( ) +( )−1
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W W Xn n y n P n+( ) = ( ) − ( ) +( )1 1µ

P I C C C CT T= − ( )−1

P n n C C CTW W f( ) = ( ) − ( )−1
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F f= ( )−
C C CT 1

W F0( ) =
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Substituting in (4.1.36), it follows that

(4.1.56)

The convergence analysis of the algorithm may be carried out similar to that for the
narrowband case discussed in Chapter 3.

A substantial amount of computation in (4.1.52) is required to compute a multiplication
between an LJ-dimensional vector and matrix P. The sparse nature of matrix C allows
simplification of the algorithm with reduced computation as follows.

It follows from (4.1.26) that

(4.1.57)

where I is an identity matrix.
Substituting in (4.1.53) and (4.1.49) yields

(4.1.58)

and

(4.1.59)

From (4.1.52), (4.1.58), and (4.1.59) an update equation in wj(n), j = 0, 1, …, J − 1 may be
expressed as [Buc86]

(4.1.60)

where wj(n) denotes the L weights after the jth tap computed at the nth iteration, and x(n +
1 − j) denotes the array signal after the jth tap. Thus, (4.1.60) allows iterative computation
of J columns of weights separately.

Noting that for an L-dimensional vector, a

(4.1.61)

(4.1.60) may be implemented in summation form as [Fro72]:
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(4.1.62)

where (wj (n))l denotes the lth component of the weight vector wj(n).

4.1.5 Minimum Mean Square Error Design

The processor design considered in Section 4.1.3 by solving constrained optimization
problems given by (4.1.29) minimizes the mean output power while maintaining a spec-
ified frequency response in the look direction. In this section, a processor design discussed
in [Er85] is presented. This processor uses the TDL structure similar to that shown in
Figure 4.1. The weights of the processor are estimated to minimize the MSE ε0, between
the frequency response of the processor in the look direction and the desired look direction
response over a frequency band of interest [fL,fH], defined as

(4.1.63)

where A(f,φ,θ) denotes the desired frequency response in direction (φ,θ). For a processor
to have a flat frequency response in the look direction, it is given by

(4.1.64)

where τ denotes a delay parameter that may be optimized [Er85].
As the constraints on the weights are designed to minimize the deviation of the processor

response from the desired response in the means squared sense, the presteering delays
are not necessary. In this case, the presteering delays Tl(φ0,θ0), l = 1, 2, …, L are set to zero.
This is equivalent to the situation when matrix T(f) is not included in the frequency
response expression (4.1.18).

The processor also allows exact presteering as well as coarse presteering. For the exact
presteering case, the steering delays are given by (4.1.1). This case is useful in comparing
the performance of the processor using the minimum MSE design with that of the optimal
processor discussed in Section 4.1.3. Coarse presteering arises when sampled signals are
processed and steering delays are selected as the integer multiples of the sampling time
closest to the exact delays required to steer the array in look direction.

In the treatment that follows, it is assumed that steering delays Tl(φ0,θ0), l = 1, 2, …, L
are included in the design and the frequency response of the processor is given by (4.1.18).
However, the values of Tl(φ0,θ0) will depend on the case under consideration, that is, no
presteering, coarse presteering, or exact presteering.

4.1.5.1 Derivation of Constraints

It follows from (4.1.63) that

(4.1.65)
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where σ0 is a scalar given by

(4.1.66)

(4.1.67)

(4.1.68)

Q is an LJ × LJ dimensional positive, semidefinite symmetrical matrix, and P is an LJ-
dimensional vector.

Substituting for H(f,φ0,θ0) in (4.1.67) and (4.1.68) leads to the following expressions for
Q and P [Er85]:

(4.1.69)

where

(4.1.70)

with

(4.1.71)

and

(4.1.72)

where

(4.1.73)

Let W̃ denote an LJ-dimensional vector that minimizes ε0. Thus,

(4.1.74)
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It follows from (4.1.65) and (4.1.74) that W̃ satisfies

(4.1.75)

Rewrite (4.1.65) using (4.1.75) as

(4.1.76)

As the signal distortion depends on the allowed MSE between the desired look direction
response and the processor response in the look direction over the frequency band of
interest, the processor weights can be constrained to limit the MSE less than or equal to
some threshold value δ0. Thus, an optimization problem can be formulated as discussed
below.

4.1.5.2 Optimization

Consider the following optimization problem:

(4.1.77)

Defining an error vector

(4.1.78)

and using (4.1.76), the optimization problem (4.1.77) becomes

(4.1.79)

where

(4.1.80)

Note that (4.1.80) follows from (4.1.76), (4.1.77), and (4.1.79).
Let Ŵε be the solution of the optimization problem (4.1.77). It can be obtained using the

Lagrange multipliers method as follows [Er85].
Let J(V,λ) be the cost function defined as

(4.1.81)

where λ ≥ 0 is the Lagrange multiplier. As J(V,λ) is a convex function of V, the solution
for any λ is given by
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C Press LLC 



© 2004 by CR
(4.1.82)

Substituting from (4.1.81) it follows that

(4.1.83)

which implies

(4.1.84)

Substituting for V = V̂(λ) in (4.1.81) and rewriting it as

(4.1.85)

and using (4.1.84), (4.1.85) becomes

(4.1.86)

It follows from (4.1.83) that

(4.1.87)

Substituting for V̂(λ) from (4.1.87) in (4.1.86), 

(4.1.88)

It follows from the duality theorem [Lue69] that the optimum Lagrange multiplier λ̂
can be obtained by maximizing Ĵ(λ). Thus, it follows that

(4.1.89)

Substituting (4.1.88) in (4.1.89) yields

(4.1.90)
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To carry out the partial differentiation of (R + λQ)−1, define an invertible matrix:

(4.1.91)

Thus,

(4.1.92)

Carrying out the partial differentiation with respect to λ results in

(4.1.93)

Hence,

(4.1.94)

Substituting for A(λ) yields

(4.1.95)

(4.1.90) and (4.1.95) imply that λ̂ is the solution of

(4.1.96)

(4.1.87) and (4.1.78) imply that Ŵε, the solution of (4.1.77), is given by

(4.1.97)

where W̃ satisfies (4.1.75).
See [Er85] for discussion of the processor when it has exact presteering and is designed

for flat response over the entire frequency range (0,1/2T). In this case, processor perfor-
mance approaches that of the TDL processor discussed in Section 4.1.3, as δ0 → 0.

4.2 Partitioned Realization

The broadband processor structure shown in Figure 4.1 is sometimes referred to as an
element space processor or direct form of realization compared to a beam space processor
or partitioned form of realization. In the partitioned form, the processor is generally
realized using two blocks as shown in Figure 4.2. The upper block forms a fixed main
beam to receive the signal from the look direction and the lower block form auxiliary
beams also known as secondary beams to estimate the noise (interferences and other
unwanted noise) in the main beam. The lower block is designed to have no look direction
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signal so that when its output is subtracted from the main beam it reduces the noise. The
blocking of signal from the lower section may be achieved in several ways.

In one case, the array signals are processed through a signal blocking filter before
processing. Signal processing in this case solves an unconstrained optimization problem.
This unconstrained partitioned processor is referred to as the generalized side-lobe can-
celer and shown in Figure 4.3.

FIGURE 4.2
Broadband processor structure  with partitioned realization.

FIGURE 4.3
Broadband processor structure  with unconstrained partitioned realization.
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The signal in the lower section may also be blocked using constraints on its weights. In
this case, the weights of the lower section are estimated by solving a constrained optimi-
zation. This form of realization is referred to as the constrained partitioned realization. Its
block diagram is shown in Figure 4.4. Both forms of realization are discussed in this section.

4.2.1 Generalized Side-Lobe Canceler

The structure shown in Figure 4.3, also referred to as the generalized side-lobe canceler
for broadband signals [Gri82], is discussed here for a point constraint, that is, the response
is constrained to be unity in the look direction. Steering delays are used to align the wave
form arriving from the look direction as discussed in the previous section for the element
space processor. The array signals after the steering delays are passed through two sec-
tions. The upper section is designed to produce a fixed beam with a specified frequency
response and the lower section consists of adjustable weights. The output of the lower
section is subtracted from the output of the fixed beam to produce the processor output.

The upper section consists of a broadband conventional beam with a required frequency
response obtained by selecting the coefficients fj, j = 1, …, J of the FIR filter. Signals from
all channels are equally weighted and summed to produce the output yC(t) of the conven-
tional beam. For this realization to be equivalent to the direct form of realization, all
weights need to be equal to 1/L and the filter coefficients fj, j = 1, …, J need to be specified
as discussed in the previous section. The output of the fixed beam is given by

(4.2.1)

with

FIGURE 4.4
Broadband processor structure  with constrained partitioned realization.
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(4.2.2)

where x(t) denotes the array signal after presteering delays.
The fixed beam output can be expressed using the vector notation as

(4.2.3)

where X(t) is an LJ-dimensional array signal vector defined by (4.1.6), WF is an LJ-dimen-
sional fixed weight given by

(4.2.4)

and C is the constraint matrix given by (4.1.26). Note that WF is identical to F defined by
(4.1.53).

The lower section consists of a matrix prefilter and a TDL structure. The matrix prefilter
shown in the lower section is designed to block the signal arriving from the look direction.
Since these signal wave forms after the steering delays are alike, the signal blocking can
be achieved by selecting the matrix B such that the sum of its each row is equal to zero.
For the partitioned processor to have the same degree of freedom as that of the direct
form, the L – 1 rows of the matrix B need to be linearly independent. The output e(t) after
the matrix prefilter is an L – 1 dimensional vector given by

(4.2.5)

and can be thought of as outputs of L – 1 beams that are then shaped by the coefficients
of the FIR filter of each TDL section. Let an L – 1 dimensional vector vk denote these
coefficients before the kth delay. The J vectors v1, v2, …, vJ correspond to the J columns of
weights in the tapped delay line filter in the lower section. The lower filter output is then
given by

(4.2.6)

The output may be expressed in the vector notation as

(4.2.7)

where (L – 1)J dimensional vector V denotes the weights of the lower section defined as

(4.2.8)

and (L – 1)J dimensional vector E(t) denotes the array signals in the lower section defined
as

(4.2.9)
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It follows from (4.2.3) and (4.2.7) that the array output is then given by

(4.2.10)

For a given weight V, the mean output power of the processor is given by

(4.2.11)

where

(4.2.12)

and

(4.2.13)

As the array signal vectors E(t) and X(t) are related through matrix B, both matrices RXE
and REE could be rewritten in terms of R and B.

Since the response of the processor in the look direction is fixed due to the fixed beam,
and the lower section contains no signal from the look direction due to the presence of
the matrix prefilter, nonlook direction noise may be minimized by adjusting weights of
the lower section to minimize the mean output power. Thus, the optimal weights denoted
by V̂ are the solution of the following unconstrained beamforming problem:

(4.2.14)

Since the mean output power surface P(V) is a quadratic function of V, the solution of the
above problem can be obtained by taking the gradient of the of P(V) with respect to V
and setting it equal to zero. Thus,

(4.2.15)

Substituting for P(V) from (4.2.11),

(4.2.16)

When the array correlation matrix R is invertible, the matrix REE is invertible and (4.2.16)
yields

(4.2.17)
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It can be shown [Gri82] that when the weights in the array processors in Figure 4.1 and
Figure 4.2 are optimized, the performance of the two processors is identical. The weights V̂
may be expressed using array correlation matrix as follows.

Let B̃ be a matrix defined as

(4.2.18)

It follows from (4.2.4.), (4.2.9) and (4.2.18) that

(4.2.19)

Substituting in (4.2.12) and (4.2.13) yields

(4.2.20)

and

(4.2.21)

It follows from (4.2.17), (4.2.20), and (4.2.21) that

(4.2.22)

Substituting in (4.2.10) from (4.2.19) and (4.2.22), the output of the processor with opti-
mized weights becomes

(4.2.23)
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4.2.2 Constrained Partitioned Realization

Figure 4.4 shows a structure of the constrained partitioned realized processor [Jim77]. The
main difference between the constrained processor and unconstrained processor (also
referred to as the generalized side-lobe canceler in the pervious section) is that the latter
uses a signal blocking matrix to stop the signal from entering the lower section and solves
an unconstrained beamforming problem, whereas the constrained processor uses con-
straints on the weights of the lower section to eliminate the signal at the output of the
lower section. Consequently, the optimization problem solved to estimate the weights of
the lower section is a constrained one.

Let the LJ-dimensional vector WF given by Figure 4.4 denote the weights of the fixed
beam (upper section). Thus, the output of the upper section yF(t) is given by

(4.2.24)

Let the LJ-dimensional vector W denote the weights of the lower section. Thus, the
output of the lower section yA(t) is given by

(4.2.25)

The processor output y(t) is the difference of the two outputs. Thus,

(4.2.26)

The mean output power P(W) for given weights is given by

(4.2.27)

The lower section is designed such that its output does not contain the look direction
signal. This is achieved by selecting its weights to be the solution of the following beam-
forming problem:

(4.2.28)

It follows from (4.1.26) and the second equation of (4.2.28) that

(4.2.29)

where wj denotes the weights of the jth column, that is, before the jth delay in the lower
section.

Since the look direction signal wave forms on all elements after presteering delays are
alike, the constraints of (4.2.29) ensure that the lower section has a null response in the
look direction. Thus, the constraint in (4.2.28) achieves a null in the look direction similar
to that achieved by the matrix prefilter B discussed in the previous section.
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Let Ŵ0 denote the solution of (4.2.28). Using the method of Lagrange multipliers dis-
cussed in Section 4.1,

(4.2.30)

where Ŵ is given by (4.1.36).

4.2.3 General Constrained Partitioned Realization

In this section, a processor realization in general constrained form is presented where the
upper section is designed to minimize the MSE between the look direction desired
response and the frequency response of the processor in the look direction over a frequency
band of interest [fL,fH], as discussed in Section 4.1.5. The lower section is designed such
that its weights are constrained to yield a zero power response over the frequency band
of interest to prevent signal suppression. Design details may be found in [Er86].

Let an LJ-dimensional vector W̃ denote the weight of the upper section. These are
designed using minimum MSE design and satisfy (4.1.75). The output of the upper section
yF(t) is given by

(4.2.31)

Let an LJ-dimensional vector W denote the weights of the lower section. Thus, the output
of the lower section yA(t) is given by

(4.2.32)

and the processor output y(t) is given by

(4.2.33)

The mean output power P(W) for a given W is given by

(4.2.34)

4.2.3.1 Derivation of Constraints

Let weight vector W be constrained such that the power response of the lower section in
the look direction is zero over the frequency band of interest, that is,
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It follows from (4.2.35) and (4.1.67) that
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(4.2.36)

As Q is a positive semidefinite matrix, it can be factorized using its eigenvalues and
eigenvectors as

(4.2.37)

where Λ is a diagonal matrix with its elements being λi(Q), i =  1, 2, …, LJ, the eigenvalues
of Q, such that

(4.2.38)

and U is an LJ × LJ matrix of the eigenvector of Q, that is,

(4.2.39)

where Ui, i =  1, 2, …, LJ are the orthonormal eigenvectors of Q with the property that

(4.2.40)

Substituting (4.2.37) in (4.2.36) 

(4.2.41)

Assume that Q has rank η0. Thus, it follows from (4.2.39) and (4.2.41) that the necessary
and sufficient conditions to satisfy (4.2.41) are

(4.2.42)

Thus, the linear constraints of the form (4.2.42) can be used to ensure that the lower section
has a zero power response in the look direction over the frequency range of interest. It
should be noted that signal blocking in the lower section using these constraints is inde-
pendent of presteering delays, that is, the processor may include exact presteering, coarse
presteering, or no presteering.

4.2.3.2 Optimization

Let the optimum weight vector Ŵ be the solution of the following constrained beamform-
ing problem

(4.2.43)

where Uη 0 is the LJ × η0 dimensional matrix given by

(4.2.44)
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As Ui, i =  1, 2, …, η0 are linearly independent, the matrix Uη 0 has full rank. Using the
method of Lagrange multipliers,

(4.2.45)

4.3 Derivative Constrained Processor

The implication of the point constraint considered in Section 4.1 is that the array pattern
has a unity response in the look direction. It can be broadened using additional constraints,
such as derivative constraints, along with the point constraint [Er83, Er90, Er86a, Thn93].
The derivative constraints set the derivatives of the power pattern with respect to φ and
θ equal to zero in the look direction. The higher the order of derivatives, that is, first order,
second order, and so on, the broader the beam in the look direction normally becomes. A
broader beam is useful when the actual signal direction and known direction of the signal
are not precisely the same. In such situations, the processor with the point constraint in
the known direction of the signal would cancel the desired signal as if it were interference.
Other directional constraints to improve the performance of the beamformer in the pres-
ence of the look direction error include multiple linear constraints [Tak85, Buc87, Gri87]
and inequality constraints [Ahm83, Ahm84, Er90a, Er93].

In this section, some of these constraints are derived, a beamforming problem using
these constraints is formulated, an algorithm to estimate solution of the optimization
problem is presented, and the effect that choice of coordinate system origin has on the
performance of an array system using derivative constraints is discussed.

Derivative constraints are derived by setting derivatives of the power response ρ(f,φ,θ)
with respect to φ and θ to zero in direction (φ0,θ0). Since H(f,φ,θ) denotes the frequency
response of the processor, it follows that

(4.3.1)

The first-order derivative constraints are now derived [Er83].

4.3.1 First-Order Derivative Constraints

It follows from (4.3.1) that the partial derivative of the power response with respect to φ
is given by

(4.3.2)

where the parameters of ρ(f,φ,θ) and H(f,φ,θ) are omitted for ease of notation. It follows
from (4.1.18) that
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Differentiating (4.1.20) with respect to φ,

(4.3.4)

where

(4.3.5)

and τl (φ,θ) is given by (2.1.1). It can also be expressed as

(4.3.6)

where xl, yl, and zl denote the components of the lth element along the x, y, and z axis,
respectively, and c denotes the speed of propagation.

Substituting (4.3.4) in (4.3.3) and noting that T(f) and Λφ(φ,θ) are diagonal matrices,
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Thus,

(4.3.12)

Noting from (4.1.22) that a(f)a*(f) =  1 and using this in (4.3.12),

(4.3.13)

Similarly,

(4.3.14)

Substituting in (4.3.2),

(4.3.15)

Similarly,

(4.3.16)

where

(4.3.17)

It follows from (4.3.15) and (4.3.16), respectively, that sufficient conditions for 0
for all f > 0 are

(4.3.18)
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(4.3.19)

Equations (4.3.18) and (4.1.19) denote 2J linear constraints on the weights of the broad-
band processor. These constraints are sufficient for the first-order derivatives of the power
response with respect to φ and θ evaluated at (φ,θ) to be zero. These are referred to as the
first-order derivative constraints and are imposed along with the point constraint dis-
cussed previously.

Using a similar approach to the derivation of the first-order constraints presented in
this section, higher-order derivative constraints may be derived by setting the higher-
order derivatives of the power response with respect to φ and θ evaluated at (φ0,θ0) to zero.

4.3.2 Second-Order Derivative Constraints

The equations describing the second-order derivative constraints follow [Er83]:

(4.3.20)

(4.3.21)

(4.3.22)

(4.3.23)

(4.3.24)

and

(4.3.25)

These equations denote 6J linear constraints that are sufficient for the second-order
derivatives with respect to φ and θ evaluated at (φ0,θ0) to be zero. These are imposed along
with the point constraint and first-order derivative constraints.

It should be noted that these constraints depend on array geometry and are not neces-
sarily linearly independent. In the next section, a beamforming problem with derivative
constraints is considered.

4.3.3 Optimization with Derivative Constraints

A beamforming problem using derivative constraints may be formulated similar to the
constrained beamforming problem considered previously by adding derivative constraints
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specified by (4.3.18) to (4.3.25) to the point constraint given by the second equation of
(4.1.29).

In this case (4.1.29) becomes

(4.3.26)

where

(4.3.27)

and

(4.3.28)

with LJ × J matrices C0 to C8 given by

(4.3.29)

(4.3.30)

(4.3.31)

(4.3.32)

(4.3.33

(4.3.34)

(4.3.35)

(4.3.36)

and

(4.3.37)
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The notation diag[x] in (4.3.29) to (4.3.37) is defined as

(4.3.38)

For example, in (4.3.29)

(4.3.39)

and C0 is given by

(4.3.40)

It can easily be verified from (4.3.26) to (4.3.37) that

(4.3.41)

and

(4.3.42)

Equation (4.3.41) is the second equation of (4.1.29) and defines the point constraint,
whereas (4.3.42) defines derivative constraints given by (4.3.18) to (4.3.25).

The optimization problem (4.3.26) is similar in form to (4.1.29). Thus, it follows from
(4.1.36) that if D is of full rank, then the optimal weight Ŵ, the solution of (4.3.26), is given
by

(4.3.43)

The rank of D is dependent on array geometry. This is explained in the following example
using a linear array [Er83].

4.3.3.1 Linear Array Example

Consider a linear array along the x-axis with xl denoting the position of the lth element.
Assume that the directional sources are in the x-y plane with the look direction making
an angle φ0 with the array. In view of these assumptions, it follows that

(4.3.44)

These equations along with (4.3.6) imply that

(4.3.45)
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(4.3.46)

and

(4.3.47)

Now consider the constrained Equation (4.3.18) to Equation (4.3.25). Using (4.3.44) and
the fact the time delay τl(φ) is not a function of θ, one notes that the constraint equations
(4.3.19), (4.3.22), (4.3.23), (4.3.24), and (4.3.25) vanish. The only constraints remaining are
those given by (4.3.18), (4.3.20), and (4.3.21), that is,

(4.3.48)

(4.3.49)

and

(4.3.50)
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2(φ) are diagonal matrices given by
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To simplify the notation, define three L vectors �(φ), �(φ), and �(φ) as

(4.3.54)

(4.3.55)

and

(4.3.56)

Using (4.3.45) to (4.3.47) and (4.3.51) to (4.3.53), these become

(4.3.57)

(4.3.58)

and

(4.3.59)

The three constraint equations (4.3.48) to (4.3.50) are then given by

(4.3.60)

(4.3.61)

and

(4.3.62)

Note that (4.3.60) denotes J first-order constraints equations, and (4.3.61) and (4.3.62)
denote 2J second-order constraints. For a general array, there are 2J linear constraints and
6J derivative constraints as discussed previously. Thus, the constraints for a linear array
are much less than those for a general array. It should be noted that these constraints are
functions of the look direction.

� φ φφ( ) = ( )1T Λ

� φ
φ

φφ( ) =
∂
∂

( )1T Λ

� φ φφ( ) = ( )1T Λ2

� ′ ( ) = −
















φ φ
φ

0
0

1sin
c

x

xL

M

� ′ ( ) = −
















φ φ
φ

0
0

1cos
c

x

xL

M

� ′ ( ) = −
















φ φ
φ

0

2
0

2

1
2

2

sin
c

x

xL

M

�φ φT J0 0 1 2( ) = = …wl l,     , , ,

�φ φT J0 0 1 2( ) = = …wl l,     , , ,

�φ φT J0 0 1 2( ) = = …wl l,     , , ,
C Press LLC 



© 2004 by CR
For look direction in broadside to the array φ0 =  90°, it follows from (4.3.58) that �φ(φ0) =
0 and (4.3.61) vanish, reducing the constraints from 3J to 2J for a linear array. Similarly,
for an endfire array where the look direction is parallel to the array, φ0 = 0° or φ0 = 180°,
(4.3.57) and (4.3.59), imply that both (4.3.60) and (4.3.62) vanish. Thus, for a linear array,
only J second-order constraints given by (4.3.61) remain; first-order constraints have vanished.

When a beamforming problem is considered using derivative constraints, the constraints
equations specifying only linearly independent constraints need to be considered. It fol-
lows from (4.3.57) and (4.3.58) that vectors �φ(φ0) and �φ(φ0) are not linearly independent;
thus constraints (4.3.60) and (4.3.61) are not independent. Hence, only 2J constraints given
by (4.3.60) and (4.3.62) need to be used in the optimization process.

For this case beamforming problem given by (4.3.26) to (4.3.37) reduce to

(4.3.63)

where

(4.3.64)

and

(4.3.65)

with

(4.3.66)

(4.3.67)

and

(4.3.68)

For linearly independent vectors 1, �φ(φ0) and �φ(φ0), the constraint matrix D has full rank
[Er83] and the beamforming solution is given by (4.3.43).
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4.3.4 Adaptive Algorithm

An estimate of the solution of the beamforming problem (4.3.63), which converges in mean
to the optimal weights given by (4.3.43), may be made using a constrained LMS algorithm
similar to that given by (4.1.52), (4.1.53), and (4.1.49). In this case, it becomes

(4.3.69)

where the projection operator

(4.3.70)

and

(4.3.71)

The algorithm is initialized at n = 0 with

(4.3.72)

Note that the initial weight vector W(0) correspond to the optimal weight given by (4.1.43)
in the presence of white noise only.

Due to the sparse nature of matrices C0, C1, and C2, the projection operator P is sparse
and allows development of a temporally decoupled update equation to estimate the J
columns of L weights similar to that discussed earlier for the point constraint. For this
case, the algorithm is given by [Buc86]

(4.3.73)

where

(4.3.74)

(4.3.75)

and

(4.3.76)

4.3.5 Choice of Origin

In array system design, location of the time reference point (origin of the coordinate
system) with respect to the array elements is chosen for notational convience. In most
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cases, it is one element of the array or array’s center of gravity. These origin choices do
not affect the array beam pattern or output SNR. However, this is not the case when
derivative constraints are involved. The reason is that the constraint matrix D is a function
of τl(φ,θ), which in turn depends on origin choice, as it denotes the time taken by a plane
wave arriving from direction (φ,θ) and measured from the origin to the array’s lth element.
This dependence of the constraint matrix D on the choice of origin affects the solution of
the constrained beamforming problem. Hence, the beam pattern and the output SNR of
the beamformer using optimal weights depends on the choice of origin.

The vector G used to initialize the adaptive algorithm is the optimal weight under white
noise conditions and the output noise power is proportional to the norm of this weight,
that is, GTG. In view of this, the chosen origin should minimize GTG [Buc86].

It follows from (4.3.71) that

(4.3.77)

The first-order and the second-order derivative constraints discussed in this section so far
are sufficient to ensure that the power response derivatives evaluated at the look direction
are zero. However, these constraints are not the necessary and sufficient conditions for
the derivatives to be zero. In what follows is a discussion on the first-order derivative
constraints for a flat-response processor. For this case, these constraints are necessary and
sufficient conditions which ensure that the array beam pattern is independent of the choice
of origin [Er90].

The constraint vector f for the case of a flat frequency response in the look direction is
given by (4.1.28), that is,

(4.3.78)

Substituting (4.3.78) in (4.3.15), it follows that

(4.3.79)

If J is odd and k0 = (J + 1)/2, then (4.3.79) can be rewritten as

(4.3.80)

As the right hand side of (4.3.80) is a finite Fourier series, it follows that the necessary
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(4.3.81)

Similarly, the necessary and sufficient conditions for

for all f > 0 are

(4.3.82)

Note that (4.3.81) and (4.3.82) denote J – 1 linear constraints compared to 2J linear
constraints given by (4.3.18) and (4.3.19). Discussion on second-order derivative con-
straints may be found in [Er90], and an unconstrained partitioned realization of the
processor with derivative constraints is provided by [Er86a].

4.4 Correlation Constrained Processor

A set of nondirectional constraints to improve the performance of a broadband array
processor using a TDL structure under look direction errors is discussed in [Kik89]. These
are referred to as correlation constraints, and they use known characteristics of the desired
signal to estimate an LJ-dimensional correlation vector rd between the desired signal and
the array signal vector due to the desired signal, that is,

(4.4.1)

where sd(t) denotes the desired signal induced on the reference element, and LJ-dimen-
sional vector Xd(t) denotes the array signal across the TDL structure due to the desired
signal only.

The beamforming problem in this case becomes

(4.4.2)

where ρ0 is a scalar constant that specifies the correlation between the desired signal and
array output due to the desired signal, that is,
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where

(4.4.4)

For the desired signal with a flat spectrum over the frequency band of interest the con-
straint in (4.4.2) becomes PTW = 1 [Er93]. It can easily be verified that the solution ŴC of
the beamforming problem (4.4.2) is given by

(4.4.5)

4.5 Digital Beamforming

In this section, in a brief review of digital beamforming, the process of forming beams in
various directions is described [God97]. First, consider the analog beamformer structure
shown in Figure 4.5, where signals from all elements are weighted, delayed, and summed
to form a beam. The output of the beamformer is given by

(4.5.1)

The delay in front of each element is adjusted such that the signals induced from a given
direction, where the beam needs to be pointed to, are aligned after the delays. The weights
are adjusted to shape the beam.

In digital beamforming [Pri78, Dud77, Muc84, Pri79, Fan84, Mar89, Rud69, Gab84, Bra80,
Syl86, DeM77], the weighted signals from various elements are sampled, stored, and
summed after appropriate delays to form beams. The required delay is provided by
selecting samples from different elements such that the selected samples are taken at
different times. Each sample is delayed by an integer multiple of the sampling interval ∆.
The process is shown in Figure 4.6 for a linear array of equispaced elements where the
samples of weighted signals are shown as circles. Weights on each element are not shown.

FIGURE 4.5
Delay and sum processor structure.
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Ŵ r r rC d d
T

dR R= ( )− − −1 1 1

0ρ

y t w x t
L

( ) = − ( )( )
=

∑ l l l

l

τ φ
1

w1 τ1(φ)

w � τ �(φ)

wL τL (φ)

x1(t)

x�(t)

xL (t)

+
y(t)
C Press LLC 



© 2004 by CR
Assume that a beam is to be formed in direction φ2. Let the direction be such that

(4.5.2)

Thus, the signal from the lth element needs to be delayed by (l – 1)∆ seconds. This may
be accomplished by summing the samples on a line marked with symbol A in Figure 4.6.
For this case, the samples from Element 1 are not delayed, samples from Element 2 are
delayed by one sample, and so on.

Similarly, a beam may be steered in direction φ3 by summing the samples connected by
the line marked with symbol B in Figure 4.6, where the signals from Lth element are not
delayed, samples from element L – 1 are delayed by one sample, and so on. The beam
formed in direction φ1, by summing the samples connected by the line marked with symbol
C, does not require any delay.

It follows from the above discussion that when using this process, one can only form
beams in directions that require delays equal to some integer multiple of the sampling
interval, that is,

(4.5.3)

where kl, l = 1, 2, …, L are integers. The number of discrete directions where a beam can
be exactly pointed increases with increased sampling as shown in Figure 4.7, where the
sampling interval is ∆/2. The figure shows that additional beams in directions φ4 and φ5
may be formed. These exact beams are normally referred to as synchronous or natural
beams [Pri78], and it is possible to form a number of these beams simultaneously using
a separate summing network for each beam.

FIGURE 4.6
Digital beamforming process. (From Godara, L.C., Application to antenna arrays to mobile communications.
Part II: Beamforming and direction of arrival considerations, IEEE Proc., 85, 1195–1247, 1997. ©IEEE. With
permission.)
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The practical requirement of an adequate set of directions where simultaneous beams
need to be pointed implies that the array signals be sampled at much higher rates than
required by Nyquist criteria to reconstruct the wave form back from the samples [Pap75].
The high sampling rate means a large number of storage requirements along with high-
speed input-output devices, analog-to-digital converters, and large bandwidth cables [Pri78].

The high sampling rate requirement may be overcome by digital interpolation [Pri78,
Pri79, Syl86], which basically simulates the samples generated by high sampling rates and
thus increases the effective sampling rate. The process works by sampling the array signal
at a Nyquist rate or higher and padding with zeros between each sample to form a new
sequence. The number of zeros padded decides the effective sampling rate. For the sam-
pling rate to increase by L-fold, L – 1 zeros are padded to create a sequence as big as if it
were created by high-speed sampling. The padded sequences then are used for digital
beamforming by selecting appropriate samples as required and the beam output is passed
through an FIR filter to remove the unwanted spectrum. This filter is normally referred
to as an interpolation filter. The beams formed by interpolation beamformers have a
slightly higher side-lobe level.

A tutorial introduction to digital interpolation beamformers is given in [Pri78], whereas
some additional fundamentals of digital array processing may be found in [Dud77]. A
comparison of many approaches to digital beamforming implementations is discussed in
[Muc84, Mar89], who show how a real-time implementation is a trade-off between various
conflicting requirements of hardware complexities, memory requirements, and system
performance.

The shape of a beam, particularly its beam width, is controlled by the size of the array.
Generally, a narrow beam results from a larger array. In practice, the array size is fixed
and its extent is limited. A process known as extrapolation may be used [Fan84] during
digital beamforming to simulate a large array extent resulting in improved beam pattern.

FIGURE 4.7
Effect of sampling on digital beamforming. (From Godara, L.C., Application to antenna arrays to mobile com-
munications. Part II: Beamforming and direction of arrival considerations, IEEE Proc., 85, 1195–1247, 1997. ©IEEE.
With permission.)

C

t t − ∆ t − 2∆ Time

A

B

∆
2

φ1

φ 2

φ 4

Samples from element

1
2

L

E

φ 5

D

φ 3
C Press LLC 



© 2004 by CR
As the interpolation increases the effective sampling rate, the extrapolation extends the
effective array length. More information on signal extrapolation schemes may be found
in [Pap75, Sul91, Cad79, Son82, Jai81, Sna83].

Digital beamforming techniques for mobile satellite communications are examined in
[Chu90] by studying a configuration of a digital beamforming system capable of working
in transmit and receive modes. Digital beamforming for mobile satellite communications
has also been reported in [Geb95, Chu90]. An introduction to digital beamforming for
mobile communications may be found in [Ste87].

4.6 Frequency Domain Processing

A general structure of the element-space frequency domain processor is shown in
Figure 4.8, where broadband signals from each element are transformed into a frequency
domain using the discrete Fourier transform (DFT), and each frequency bin is processed
by a narrowband processor structure. The weighted signals from all elements are summed
to produce an output at each bin. The weights are selected independently by minimizing
the mean output power at each frequency bin subject to steering direction constraints.
Thus, the weights required for each frequency bin are selected independently and this
selection may be performed in parallel, leading to faster weight update. When an adaptive
algorithm such as the LMS algorithm is used for weight updating, a different step size
may be used for each bin leading to faster convergence.

FIGURE 4.8
Frequency domain processor structure.
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Various aspects of array signal processing in a frequency domain are reported in the
literature [Hod79, Arm74, Den78, Nar81, Web84, Shy85, Flo88, Ber86, Ree85, Man82,
Kum90, Cla83, Zhu90, God95, Hin81]. The optimum performance of the time domain and
frequency domain processors are the same only when the signals in various frequency
bins are independent. This independence assumption is mostly made in the study of
frequency domain processing. When the assumption does not hold, the frequency domain
processor may be suboptimal. Some of the tradeoffs and a comparison of the two proces-
sors are discussed in [Hod79, God95].

A study of the frequency domain algorithm [Web84] for coherent signals indicates that
the frequency domain method is insensitive to the sampling rate, and may be able to
reduce the effects of element malfunctioning on the beam pattern. A study in [Shy85]
shows that due to its modular parallel structure, beam forming in the frequency domain
is well suited for VLSI implementation and is less sensitive to the coefficient quantization.
Computational advantages of the frequency domain method (FDM) for bearing estimation
are discussed in [Ree85, Kum90, Hin81], and for correlated data are considered in [Man82,
Zhu90]. A general treatment of time and frequency domain realization with a view to
compare the structure of various algorithms of weight estimation in a unified manner is
provided in [God95].

In this section, frequency domain processing is studied in detail using a constrained
element space processor, and relationships between the time domain processor and the
frequency domain processor are established [God95].

4.6.1 Description

Consider an L-element array immersed in a noise field consisting of uncorrelated broad-
band directional sources and white noise. Let s(t) be a broadband real signal, with the
power spectral density S(f) induced on a reference element due to a source. The autocor-
relation function

(4.6.1)

is the inverse Fourier transform of S(f), that is,

(4.6.2)

Let xl(t) denote the time wave form derived from the lth element after presteering. Let
these wave forms be sampled at frequency fs. Denoting the sampling interval by T, the
sampled wave form derived from lth element becomes xl(nT). As the sampling period
does not play any role in the treatment that follows, it has been omitted for ease of notation.

Let x(n) denote the L samples after presteering delays, that is,

(4.6.3)

Now consider N array samples x(n − i + 1), i = 1, …, N, with x(n) denoting the most recent
samples. Let these be processed by the frequency domain processor structure shown in
Figure 4.8, where these are first converted into N frequency bins using discrete Fourier
transforms and then processed using N narrowband processors.
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Let ỹ(k) denote the output of the kth bin. From Figure 4.8, it follows that

(4.6.4)

where an L-dimensional complex vector h(k) denotes the L weights of the narrowband
processor for the kth bin, that is,

(4.6.5)

with hl(k) denoting the weight on the lth channel.
The L-dimensional complex vector x̃(k) denotes the L-frequency domain samples, that is,

(4.6.6)

with x̃l(k) denoting the frequency domain samples from the lth channel. The N frequency
samples of the lth channel x̃l(k), k = 0, 1, …, N − 1 are related to the N time samples xl (n),
n = 1, 2, …, N by the discrete Fourier transform [Bur85], that is,

(4.6.7)

where xli ≡ xl (n − i + 1), i = 1, 2, …, N and xl1 ≡ xl(n) denotes the most recent sample.
Thus, using N array samples x(n − i + 1), i = 1, 2, …, N, the frequency domain processor

produces N frequency domain outputs ỹ(k), k = 0, 1, …, N – 1. These are converted into
N output time samples y(n – i + 1), i = 1, 2, …, N using the inverse DFT, that is,

(4.6.8)

where y(n) denote the most recent output.
The most recent output corresponds to i = 1 in the LHS of (4.6.8). Thus, it follows from

(4.6.8) that

(4.6.9)

Thus, the most recent output sample may be obtained by averaging the output of N
narrowband processors without computing N-point inverse DFT. This aspect is exploited
in sliding window processing, where N most recent input samples are converted into
frequency domain using DFT, and the time domain output is obtained by averaging the
N outputs. In this scheme, every time a new input sample arrives, a full cycle involving
conversion to frequency domain using DFT, narrowband processing, and computation of
output using (4.6.9) needs to be carried out.
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The other processing scheme discussed previously where N input time samples are
collected, converted to the frequency domain, processed using N narrowband processors,
and converted back to N output time samples using the inverse DFT is referred to as block
processing [Com88]. Thus, in summary, in block processing a block of N input samples
is collected to be processed using narrowband processing to obtain N output time samples.
On the other hand, in sliding window processing every time a new sample arrives, the
complete processing cycle is invoked. The difference in the processing cycle for the two
schemes is that the sliding window processing does not use the inverse DFT.

In both cases, once the N time samples are converted into N frequency domain samples,
any of the narrowband processing schemes discussed in previous chapters may be used.
In the next section, the relationship between the frequency domain processing discussed
in this section and the time domain processing using the TDL structure discussed earlier
is established.

4.6.2 Relationship with Tapped-Delay Line Structure Processing

Assume that the N array samples x(n − i + 1), i = 1, 2, …, N are processed by two processor
structures, namely, the TDL structure shown in Figure 4.1 where the processing is carried
out in the time domain and frequency domain processor structure shown in Figure 4.8
where the processing is carried out in frequency domain. In the following, the conditions
are derived for the two processors to produce identical outputs.

4.6.2.1 Weight Relationship

The output of the time domain processor shown in Figure 4.1 is given by

(4.6.10)

where W is defined in (4.1.4) and X(n) is defined in (4.1.6) with t replaced by n. Rewrite
(4.6.10) as

(4.6.11)

It follows from (4.6.11) that the output at time n depends on the present input xl(n) and
J – 1 previous inputs, namely, xl(n − 1), …, xl(n − J + 1). Thus, for a given set of N samples
under consideration, one is able to obtain only N − (J + 1) output samples, namely y(n),
y(n − 1), …, y(n − N + J). This implies that for J = N, these samples only produce one
output sample, given by

(4.6.12)

Now, consider the frequency domain processor processing the same N samples. The
most recent time sample for the frequency domain processor is given by (4.6.9). For the
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two processors to produce identical outputs, the time samples given by (4.6.9) and (4.6.12)
must be equal, that is,

(4.6.13)

Rewrite (4.6.4) as

(4.6.14)

It follows from (4.6.13), (4.6.14), and (4.6.7) that

(4.6.15)

The identity holds if

(4.6.16)

Thus,

(4.6.17)

It follows then that both processors produce identical outputs when the TDL structure
has length equal to N and the two sets of weights are related by (4.6.16).

4.6.2.2 Matrix Relationship

Consider the output sequence of the frequency domain structure of Figure 4.8. Assume
that M0 sets, each of N samples, are being processed. Let ỹ(k, m) denote the output of the
kth frequency bin due to the mth data block. For a given h(k), the mean output power of
the kth bin is given by

(4.6.18)
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(4.6.19)

This along with (4.6.18) implies that

(4.6.20)

where

(4.6.21)

is an estimate of the array correlation matrix for the kth bin.
It follows from (4.6.21) that

(4.6.22)

Since

it follows from (4.6.22) that

(4.6.23)

Note that xl is a real variable and x̃l is a complex variable. Define an N-dimensional vector
xl (m) representing N samples in the tapped delay line structure on the lth channel as

(4.6.24)

and an N-dimensional vector e(k) representing N phasers at kth bin as

(4.6.25)
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From (4.6.23) to (4.6.25) it follows that

(4.6.26)

where

(4.6.27)

is an N × N matrix denoting the correlation between the lth and nth elements for the
tapped delay line structure, estimated from M0 sets of samples, each of length N. It is an
unbiased estimate for the correlation between the lth and nth elements for given M0
samples. As M0 increases, the estimate asymptotically approaches the true correlation.
Therefore, the relationship between the frequency domain and time domain matrices holds
for the true correlation matrices.

Throughout the chapter, Rf and R are used to denote the frequency domain and time
domain array correlation matrices, respectively, as well as their unbiased estimates. Fur-
thermore, the correlation between the mth and nth taps is denoted by the matrix (Rm,n),
and the correlation between lth and ith elements is denoted by the matrix (R̂l,i).

4.6.2.3 Derivation of Rf(k)

Let (Rm,n)l,i denote the correlation between lth and ith elements after mth and nth taps due
to a source in direction (φ,θ). An expression for (Rm,n)l,i from (4.1.11) is given by

(4.6.28)

where the arguments φ and θ have been suppressed for the ease of notation.
As the correlation function is symmetrical for real signals, it follows from (4.6.2) and

(4.6.28) that

(4.6.29)

Define an N-dimensional vector e(f) denoting N phasers at frequency f as

(4.6.30)

It follows from (4.6.29) that the N × N matrix denoting the correlation between lth and
ith elements is given by
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(4.6.31)

Equation (4.6.31) along with (4.6.26) implies that

(4.6.32)

where

(4.6.33)

Substituting for e(f) and e(k), (4.6.33) becomes

(4.6.34)

Using steering vector notation, one obtains from (4.6.32) the following compact expres-
sion for Rf(k):

(4.6.35)

where S̃(f,φ,θ) denotes the steering vector in (φ,θ) direction for an array presteered in (φ0,θ0).

4.6.2.4 Array with Presteering Delays

Noting that the steering vector in (φ0,θ0) direction for an array presteered in (φ0,θ0) is
identical to 1, it follows from (4.6.33) and (4.6.35) that the matrix Rf(k) due to a source in
a presteered direction is given by

(4.6.36)

where

(4.6.37)

The matrix in the square brackets on the right side of (4.6.37) is a spectrum-dependent
quantity. Let it be denoted by A. Its (m,n)th element Am,n is given by
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(4.6.38)

Am,n can be evaluated for a specific spectrum using (4.6.38). For example, for a brick-wall
type of spectrum given by

(4.6.39)

it becomes

(4.6.40)

where fH and fL are assumed to be normalized with respect to the sampling frequency.

4.6.2.5 Array without Presteering Delays

For this case, the steering delays Ti = 0, i = 1, 2, …, L. Thus, it follows from (4.6.32) that

(4.6.41)

where S(f,φ,θ)) denotes the steering vector in (φ,θ) direction for an array without prest-
eering. Note that this matrix in general is not equal to a matrix that depends on the energy
from the kth bin only, namely

(4.6.42)

with ∆f = 1/N denoting the bandwidth of a frequency bin.

4.6.2.6 Discussion and Comments

The results presented here show that when a broadband correlation matrix is transformed
into narrowband matrices, these matrices depend on the spectrum of the signal beyond
the bandwidth of their particular frequency bins, which is controlled by the parameter
a(f,k) given by (4.6.34). Figure 4.9 and Figure 4.10 show how this parameter behaves as a
function of the frequency for N = 10 and N = 100, respectively. The plots are for k = 0,
and show the normalized value of the parameter with respect to its maximum value N2.

4.6.3 Transformation of Constraints

As discussed in Section 4.3, the weights of the broadband element space processor using
TDL are subjected to various constraints to make the processor robust against various
uncertainties. In this section, some of these constraints are transformed for narrowband
processors operating in the frequency domain.
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4.6.3.1 Point Constraints

Assume that the weights of the TDL are constrained in the look direction, such that

(4.6.43)

where fm, m = 1, 2, …, N specifies the frequency response of the processor in the look
direction as discussed in Section 4.1.2. Note that (4.6.43) is obtained by rewriting (4.1.24)
with J replaced by N.

Summing on both sides of (4.6.16) over l,

(4.6.44)

This along with (4.6.43) implies that

(4.6.45)

FIGURE 4.9
The parameter a(f,k) defined by (4.6.33), normalized with respect to its maximum value, vs. frequency for N =
10 and k = 0. (From Godara, L.C., Application of the fast Fourier transform to broadband beamforming, J. Acoust.
Soc. Am., 98, 230–240, 1995. With permission.)

w f m Nm

L

ml

l=
∑ = = …

1

1 2,     , , ,

w
N

h k e m Nm

L
j

N
m k

L

k

N

l

l

l

l=

− −( )

==

−

∑ ∑∑= ( ) = …
1

2
1

10

1
1

1 2* ,     , , ,
π

f
N

h k e m Nm

j
N

m k
L

k

N

= ( ) = …
− −( )

==

−

∑∑1
1 2

2
1

10

1

l

l

* ,     , , ,
π

C Press LLC 



© 2004 by CR
Taking the inverse DFT on both sides, after rearrangements

(4.6.46)

Thus, the equivalent constraints on the weights of the kth bin processor are given by

(4.6.47)

where f̃k specifies the constraint on the weights of the kth bin processor. It follows from
(4.6.46) that

(4.6.48)

Thus, f̃k, k = 0, 1, 2, …, N – 1 are the coefficients of inverse DFT of Nfm, m = 1, 2, …, N.

4.6.3.2 Derivative Constraints

The derivative constraints for the broadband processor are discussed in detail in Section
4.3. These are imposed alongside the point constraints to broaden the beamwidth, which

FIGURE 4.10
The parameter a(f,k) defined by (4.6.33), normalized with respect to its maximum value, vs. frequency for N =
100 and k = 0. (From Godara, L.C., Application of the fast Fourier transform to broadband beamforming, J. Acoust.
Soc. Am., 98, 230–240, 1995. With permission.)
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helps to overcome the pointing errors. First-order constraints are given by (4.3.18) and
(4.3.19). Rewriting, 

(4.6.49)

and

(4.6.50)

where Λφ(φ,θ) and Λθ(φ,θ) are diagonal matrices given by

(4.6.51)

and

(4.6.52)

Rewrite (4.6.16) in vector notation as

(4.6.53)

Substituting in (4.6.49) and (4.6.50),

(4.6.54)

and

(4.6.55)

Taking the inverse DFT on both sides of (4.6.54) and (4.6.55), the following equivalent
constraints on the narrowband weights result:

(4.6.56)
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and

(4.6.57)

Alternatively, these may be expressed as

(4.6.58)

and

(4.6.59)

Following a similar procedure, the second-order derivative constraints for the weights
of the broadband processor given by (4.3.20) to (4.3.25) can be transformed for the weights
of the narrowband processors. These are given by

(4.6.60)

(4.6.61)

(4.6.62)

(4.6.63)

(4.6.64)

and

(4.6.65)

4.7 Broadband Processing Using Discrete Fourier Transform Method

In the previous section, an FDM to process broadband signals was discussed in which
broadband time domain data are transformed into narrowband frequency domain data
using DFT, and are then processed using narrowband processing schemes. The processed
signals are transformed into broadband time domain signals using the inverse DFT. Thus,
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the implementation is done using narrowband processors operating at different frequency
bins.

In contrast, in the time domain method (TDM) discussed in Section 4.1.3, the processor
is implemented in a time domain using a TDL structure, as shown in Figure 4.1. The
weights of the broadband processor are obtained by solving the constrained beamforming
problem when the look direction information is available.

In this section, the DFT method for estimating the weights of the broadband processor
using a TDL structure of Figure 4.1 is discussed, and the performance of the broadband
processor using the DFT method is compared with that using the time domain method
[God99]. The method is discussed by considering the beamforming problem with the point
constraint. In this case the TDM solves the following beamforming problem:

(4.7.1)

where C is the constraint matrix defined in (4.1.26) and f is a J-dimensional vector selected
to specify the frequency response in the look direction. The weights Ŵ estimated by the
TDM are the solution of (4.7.1), and are given by

(4.7.2)

The DFT method estimates the weights of the broadband processor of Figure 4.1 in two
steps. First, it estimates the weights of narrowband processors by minimizing the mean
output power of each frequency bin, and then uses the relations developed in the last
section between the time domain and frequency domain structures for identical outputs
to transform these into the required weights. It also maintains the same frequency response
in the look direction as is done by the TDM using the appropriate constraints developed
in the last section. Figure 4.11 shows a schematic diagram of the DFT method.

FIGURE 4.11
Schematic dagram of broadband processor using DFT methods.
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The similarity between the TDM and DFT methods is that both estimate the weights of
the TDL structure of Figure 4.1. The main difference between the two is that this method
minimizes the mean output power of each frequency bin, rather than minimizing the mean
output power of the processor, as is done by the TDM. This implies that if the sum of the
mean output powers from all frequency bins is not equal to the mean output power of
the processor shown in Figure 4.1, then the realized processor using the DFT method does
not maximize the mean output SNR in the absence of errors, as is case with the processor
using the TDM to estimate the weights. However, this method offers the potential for a
large amount of computational savings for real-time applications due to its parallel nature
of implementation as discussed later in this section.

As the DFT method minimizes the mean output power of each frequency bin and then
uses the relations between the time domain and the frequency domain structures for the
identical outputs, the performance of the realized processor in the absence of implemen-
tation errors is the same as the processor implemented in the frequency domain. However,
there are important differences.

The main difference between the DFT method and the FDM is that this method uses
the optimized weights of the narrowband processors operating at different frequency bins
to estimate the optimal weights of the time domain broadband processor. The processor
is implemented in the time domain and the received signal flows in the time domain
structure without encountering the delay associated with the frequency domain imple-
mentation. This may be important for some applications.

As broadband processor performance using the DFT method to estimate the weights
when implemented in the time domain is identical to that implemented in the frequency
domain, this fact presents a framework for comparing the performance of time domain
and frequency domain implementations under identical conditions.

4.7.1 Weight Estimation

The DFT method uses the following procedure to estimate the weights of the time-domain
broadband-constrained processor using a TDL structure of length J.

1. Estimate narrowband array correlation matrices Rf(k), k = 0, …, J – 1 using

(4.7.3)

where

(4.7.4)

and (R̂l,i) is a J × J matrix denoting the correlation between samples from lth and
ith elements given by (4.6.27).

2. Estimate ĥ(k), k = 0, …, (J − 1)  using

(4.7.5)
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which are the solutions of the following narrowband beamforming problems:

(4.7.6)

where

(4.7.7)

Equation (4.7.7) ensures that the required frequency response in the desired direc-
tion is maintained. It should be noted that due to the symmetry property of the
Fourier transform, one only needs to estimate Ĵ narrowband weights ĥ(k), k = 0,
…, ( Ĵ – 1), where

(4.7.8)

3. Estimate the weights of the time domain structure of Figure 4.1 using

(4.7.9)

The block diagram shown in Figure 4.12 summarizes the method to estimate the weights
of the broadband processor using the proposed technique.

4.7.2 Performance Comparison

In this section, examples are presented to compare the output SNR of the processor using
the weights estimated by the DFT method and the TDM. The weights for the TDM are
computed using (4.7.2), whereas for the DFT method, they are computed using (4.7.3) to
(4.7.9). Both methods use actual LJ × LJ dimensional array correlation matrix R, and
produce LJ weights of the TDL structure.

A linear array of equispaced elements is used in the presence of one interference source.
The element spacing is measured in wavelengths of the desired signal at the highest
frequency. The signal bandwidth is expressed in terms of the normalized frequency with
respect to sampling frequency. The sampling frequency is taken to be equal to twice the
highest frequency of the desired signal. Thus, the normalized highest frequency of the
desired signal is identical to 0.5. All directional sources are assumed to be of the brick-
wall type spectrum. The directional sources considered for the study are assumed to be
of two bandwidths, referred to as the large bandwidth and the small bandwidth. The
normalized frequency band for the large bandwidth is from [0.15, 0.5], whereas for the
small bandwidth it is [0.45, 0.5]. The desired signal of unit power is assumed to be present
broadside to the array.
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The output SNR is computed using

with RS denoting the actual array correlation matrix due to signal only, and RN denoting
the actual array correlation matrix due to interference and background noise only. The
SNR is plotted as a function of the angle of the interference by varying it from 0° to 180°.
The array is constrained to have the all-pass response in the desired signal direction by
selecting

(4.7.10)

where the filter-length parameter J is assumed to be an odd integer.
The performance comparison is carried out by varying the length of the filter, number

of elements in the array, the signal bandwidth, and interference-to-background-noise ratio
to see how various parameters affect the result.

4.7.2.1 Effect of Filter Length

In order to compare the performance of the two methods for a different number of taps,
a five-element array is used in the presence of a directional interference of power 10 dB
above the signal level and the white noise power 10 dB below the signal level. Figure 4.13
shows SNRT(dB) – SNRD(dB), or equivalently, 10log10(SNRT/SNRD), as a function of inter-
ference angle for various filter lengths with SNRT and SNRD, respectively, denoting the
output SNR of the processor using the TDM and DFT methods.

FIGURE 4.12
Block diagram of DFT method.
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The two bullets on each curve indicate the beamwidth of the antenna array used. An
expression for the beamwidth of the main lobe for the narrowband array with a large
number of elements is given by [Col85]

where λ0 is the wavelength of the narrowband signal, and d is the element spacing in
meters. Beamwidth for the broadband arrays has been taken to be the average of the two
beamwidths computed at the lowest and the highest frequencies of the signal.

Figure 4.13 shows that the difference between the two SNRs is smaller when the inter-
ference is outside the main lobe than the case when it is within the main lobe, except when
the interference is close to the look direction, in which case the processor generally is not
used for its interference canceling capability and thus the situation is of no practical
significance.

Above certain values of filter length, the results for the two bandwidths are different.
For a small bandwidth signal, the difference between the two SNRs is very small when
the interference is outside the main lobe, whereas it is reasonably high when it is within
the main lobe, except when the interference is close to the look direction.

In the case of large bandwidth signals, the difference between the two output SNRs
does not become as small as that for the small bandwidth case when the interference is
outside the main lobe. The difference is more sensitive to the filter length above certain
values for the large bandwidth case compared to the small bandwidth case and decreases
as the filter length is increased.

4.7.2.2 Effect of Number of Elements in Array

For this example, the array element numbers are varied to study their effect on the
performance difference of the two methods. Figure 4.14 shows the difference in the two
SNRs for the both bandwidth sources. When the interference is outside the main lobe, an
increase in the number of elements causes a decrease in the difference between the SNRs

(a) (b)

FIGURE 4.13
10 log(SNRT/SNRD) vs. interference angle with number of elements = 5, signal power = 1.0, interference power =
10.0, and white noise power = 0.1. (a) Large bandwith. (b) Small bandwidth. (From Godara, L.C. and Jahromi,
M.R.S., IEEE Trans. Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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obtained by the two methods. This implies that increasing the number of elements
improves the output SNR of the DFT method more than that of the TDM. Thus, when the
interference is away from the look direction, the output SNR achievable by the DFT method
approaches that of the TDM as the number of elements are increased. It should be noted
that an increase in the number of elements in the array causes a decrease in the array
beamwidth. Thus, as the number of elements in the array increases, the sector outside the
main lobe increases. When an interference is present in this sector, the difference in the
two SNRs is small.

Figure 4.14 also shows that the maximum value of the difference between the SNRs of
the two methods increases as the number of elements in the array is increased. Further-
more, the direction of interference where the maximum difference between the SNRs
occurs moves closer to the look direction as the number of elements is increased. Thus, it
means that as the number of elements is increased, the interference canceling capability
of the DFT method decreases relative to the TDM when the interference is close to the
look direction.

This is a very interesting result. It says that the interference-canceling capability of the
DFT method decreases, as the interference is very close to the look direction. In practice,
a situation in which interference is close to the look direction rarely occurs, and even if it
did, the interference-canceling capability of a processor is low for all practical purposes.
However, in the presence of the look direction error, situations do occur when the desired
source is not in the look direction and a processor treats it as interference. Extra precautions
are necessary to overcome such situations. It appears from these results that the DFT
method provides this beam-broadening capability naturally. This aspect of the DFT method
is further explored in a later section to show that it is robust against look direction errors.

4.7.2.3 Effect of Interference Power

Figure 4.15 shows the difference in SNRs achievable by the TDM and DFT methods for
various interference power levels at a given background noise. This figure shows that the
performance of the processor using the DFT method deteriorates relative to the one using
the TDM as interference power increases. This is true for small as well as large bandwidth
signals. However, the deterioration is comparatively low when the interference is outside
the main lobe. For the small bandwidth case, it is hardly noticeable.

(a) (b)

FIGURE 4.14
10 log(SNRT/SNRD) vs. interference angle with J = 15, signal power = 1.0, interference power = 10.0, and white
noise power = 0.1. (a) Large bandwith. (b) Small bandwidth. (From Godara, L.C. and Jahromi, M.R.S., IEEE
Trans. Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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4.7.3 Computational Requirement Comparison

In this section, examples are presented to compare the two methods based on their
computational requirements to estimate weights of the TDL filter once the time domain
array correlation matrix has been computed. The computation count reflects the floating-
point operations required for weight estimation. Denoting the computation count for the
TDM and the DFT method by OT and OD, respectively, one obtains from (4.7.2) and (4.7.3)
to (4.7.9) that

(4.7.11)

and

(4.7.12)

It should be noted that no allowance has been made in either of the methods for any
special matrix structure that might be used to reduce computation count.

Figure 4.16 shows the ratio of the floating-point operation for the TDM to the DFT
method, OT/OD, as a function of the filter length for a varying number of elements. The
TDM requires more computation than the DFT method, and a reduction of the order of
50 is possible using an array of 100 elements with a tapped delay line filter of length 100.
It should be noted that an increase in filter length does not increase the computational
savings as much as that achievable by increasing the number of elements. This is also
evident from approximations of OT and OD for large J and L. Approximating (4.7.11) and
(4.7.12) for large J and L lead to

(4.7.13)

and

(4.7.14)

(a) (b)

FIGURE 4.15
10 log(SNRT/SNRD) vs. interference angle with number of elements = 10, J = 15, signal power = 1.0, and white
noise power = 0.01. (a) Large bandwith. (b) Small bandwidth. (From Godara, L.C. and Jahromi, M.R.S., IEEE
Trans. Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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It follows from (4.7.13) and (4.7.14) that

(4.7.15)

Thus, it follows that the reduction of the order of L/2 is possible using the DFT method.

4.7.4 Schemes to Reduce Computation

In this section, a number of schemes are discussed to reduce the computational require-
ments for weight estimation using the DFT method.

4.7.4.1 Limited Number of Bins Processing

The DFT method basically divides the entire spectrum into a number of frequency bins
and processes signals in each bin. The weights at each bin are selected by minimizing the
mean output power of each bin subject to constraints. In practice, the processing of all
bins is not necessary, as the desired signal only covers a part of the spectrum, and thus
one is only interested in canceling the interference that overlaps the signal bandwidth.
Hence, one only needs to select weights by minimizing the mean output power of those
bins that are in the vicinity of the signal bandwidth. The weights for bins outside this
range may be selected to provide the maximum SNR under no directional sources. The
conventional processor maximizes the output SNR in the absence of a directional source
environment. Thus, selecting the weights of the antenna array is done by solving the
optimal beamforming problem for those bins in the vicinity of the signal bandwidth and
using equal weighting for other bins.

Since the equal weighting process does not require any computation, processing a
limited number of bins reduces the computation load substantially, depending on the
signal bandwidth. Computer analyses have shown that good results are obtained by
processing two extra bins, one on each side of the signal bandwidth. Let J̃ denote the
number of bins in the vicinity of the signal bandwidth that need to be processed by solving
the optimization problem. Thus, J̃ is given by

FIGURE 4.16
Ratio of the required floating point operations using the time domain method to DFT method (OT/OD) vs.
number of taps (J). (From Godara, L.C. and Jahromi, M.R.S., IEEE Trans. Signal Process., 47, 2386–2395, 1999.
©IEEE. With permission.)
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(4.7.16)

where denotes an integer greater than or equal to x, and BS denotes the normalized
signal bandwidth, that is,

(4.7.17)

In order to illustrate the computational efficiency and performance improvement pro-
vided by this scheme, consider the parameters of Figure 4.17. For this case, the bin elim-
ination scheme requires the processing of eight bins for the small bandwidth signal and
38 bins for the large bandwidth case, compared with 51 bins by the normal DFT method.
The floating-point operations required to process these bins reduce to 16% and 75% of the
normal DFT method for the two cases, respectively.

Figure 4.17 shows the improvement in output SNR using this method compared with
the normal DFT method, which processes all the bins. The SNR improvement is evident
for all interference directions. Thus, the processor using this method not only requires less
computation time but also attains higher output SNR compared to the normal DFT
method.

4.7.4.2 Parallel Processing Schemes

It is possible to increase the computation speed of the FDM by carrying out many com-
putations in parallel. Hardware complexity and, thus, system cost, is expected to increase
as more and more parallel processing is carried out to increase processing speed. Thus,
there is a tradeoff between speed, which is vital in real-time operations, and system
hardware cost. In this section, selected schemes are discussed, and their computational
requirements are compared with the TDM.

4.7.4.2.1 Parallel Processing Scheme 1

A block diagram showing the steps involved in this scheme to estimate the weights is
shown in Figure 4.18. The scheme processes all frequency bins in parallel. The number of
bins Ĵ required to be processed for a J-tap filter is given by (4.7.8).

FIGURE 4.17
SNR improvement using the bin elimination method compared to the DFT method vs. interference angle with
number of elements = 5, J = 101, signal power = 1.0, interference power = 10.0, and white noise power = 0.1.
(From Godara, L.C. and Jahromi, M.R.S., IEEE Trans. Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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It should be noted that when weights are estimated for real-time operations, the time
taken by the processor is an important measure of its performance, and the parallel
processing scheme minimizes this time. Let OD1 denote the computation count that reflects
this fact, and which represents the time taken to estimate the weights rather than to
measure total computation requirements. Then, the number of floating-point operations
OD1 required to estimate the weights is given by

(4.6.18)

4.7.4.2.2 Parallel Processing Scheme 2

This scheme not only processes all frequency bins in parallel but carries out matrix
multiplications in parallel. Computation of each element of matrix Rf(k) requires the
following operation:

(4.7.19)

The scheme carries out multiplication of e(k) with each column of (R̂l,i) in parallel to reduce
computation time from J vector multiplications to l vector multiplication. The resulting
vector is then multiplied with eH(k). The total time to compute each element of Rf(k)
reduces from J + 1 complex vector multiplications to two complex vector multiplications.
A block diagram of the scheme is shown in Figure 4.19.

Let the number of floating-point operations required to estimate weights with this
scheme be denoted by OD2. The solution, then, is

(4.7.20)

FIGURE 4.18
Block diagram of Parallel Processing Scheme Number 1. (From Godara, L.C. and Jahromi, M.R.S., IEEE Trans.
Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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4.7.4.2.3 Parallel Processing Scheme 3

The FDM requires estimation of L2 elements of matrix Rf(k). This scheme estimates these
elements in parallel, as shown in Figure 4.20. Thus, by computing Rf(k)li, l, i = 1, …, L in
parallel, it saves time of the order of L2 in the matrix estimation. Let the floating-point
operations required to estimate weights using this scheme be denoted by OD3. Then

(4.7.21)

It should be noted that this scheme incorporates the processing of all frequency bins in
parallel but does not carry out the multiplications of e(k) with ( ̂Rli) in parallel, as suggested
by Scheme 2. However, it is possible to carry out these operations in parallel by combining
all of the above schemes to get the maximum speed for real-time operations. The floating-
point operations required to estimate the weights using the combined scheme are given
by the following expression:

(4.7.22)

Figure 4.21 compares the ratios of floating-point operations required to estimate the
optimal weights using the TDM to the FDM using various parallel processing schemes.
Figure 4.21(a) shows the results for an array with 100 elements as a function of filter length.

Figure 4.21(b) shows the floating-point operations ratio as a function of the number of
elements using 100 taps. The successive parallel processing schemes require less processing
time, and thus, a substantial increase in computation speed is possible using them. Using
a 100-element array with a filter length of 100 taps, a 50-fold computational savings is

FIGURE 4.19
Block diagram of Parallel Processing Scheme Number 2. (From Godara, L.C. and Jahromi, M.R.S., IEEE Trans.
Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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possible without any parallel processing, and 125,620-fold using all parallel processing
schemes, compared to the TDM.

It should be noted that the schemes discussed in this section to increase processing speed
tend to do so by increasing system complexity. The limited bin-processing scheme not
only reduces the computation requirements of the DFT method but also has a potential
to improve its performance without increasing system complexity, as is the case with
parallel processing schemes.

FIGURE 4.20
Block diagram of Parallel Processing Scheme Number 3. (From Godara, L.C. and Jahromi, M.R.S., IEEE Trans.
Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)

FIGURE 4.21
Ratio of the required floating point operations using the time domain method to DFT method (OT/OD) (a) vs.
number of taps for 100 elements, (b) vs. number of elements for 100 taps. Curve A: Parallel Processing Scheme
Number 1; Curve B: Parallel Processing Scheme Number 2; Curve C: Parallel Processing Scheme Number 3;
Curve D: combination of all parallel processing schemes. (From Godara, L.C. and Jahromi, M.R.S., IEEE Trans.
Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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4.7.5 Discussion

It follows from the results presented so far that the DFT method is computationally more
efficient than the TDM, the output SNR of the beamformer is lower when the weights are
estimated by the DFT method compared to the case when the weights are estimated by
the TDM, and the interference-canceling capability of the DFT method decreases more
than the TDM when the interference approaches the look direction. Some of these issues
are reexamined in this section with the view to show that by appropriate choice of filter
length and number of elements in the array, it is possible to achieve a higher output SNR
with less processing time using the DFT method than the TDM. The DFT method is also
robust against look direction errors.

4.7.5.1 Higher SNR with Less Processing Time

It is  possible to obtain better SNR using the DFT method by increasing the number  of
elements or filter length such that the required processing time remains less than when
using the TDM. Two examples are presented to demonstrate this fact.

In the first example, an array with 20 elements uses the DFT method and an array with
10 elements uses the TDM to estimate the weights. Performance of the two methods is
compared in Figure 4.22, where results are displayed for both small and large bandwidth
cases. The figure shows that the DFT method yields better performance than the TDM.
For this case, computational savings of 14% are possible without using any parallel
processing, and when using combined parallel processing, 99%.

The second example uses a five-element array and a filter of 17 taps for the TDM and
177 taps for the DFT method. Results for both bandwidth sources displayed in Figure 4.23
indicate that the DFT method performance is almost equal to that of the TDM. The DFT
method for this case requires about 21% less computation time than the TDM. It should
be noted that the computational savings have been achieved by using parallel processing,
which increases hardware cost. Reduction in hardware cost could be achieved by using
the bin elimination method, which reduces 89 parallel stages to 11 stages for the small
bandwidth case and to 65 parallel stages for the large bandwidth case.

(a) (b)

FIGURE 4.22
Output SNR vs. interference angle with number of taps = 17, signal power = 1.0, interference power = 10.0, and
white noise power = 0.1. Solid line depicts the result using the time domain method with 10 elements and dotted
line depicts the result using the DFT method with 20 elements. (a) Large bandwidth. (b) Small bandwidth. (From
Godara, L.C. and Jahromi, M.R.S., IEEE Trans. Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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4.7.5.2 Robustness of DFT Method

Processor performance is compared when weights are estimated using the two methods
in the presence of the look direction error (LDE). It is assumed that the actual signal
direction is different from the look direction. The weights in both cases are constrained
in the look direction.

Figure 4.24 shows the output SNR of the processor using the two methods as a function
of look direction error. The error is measured relative to the look direction and is assumed
positive in the counterclockwise direction. Thus, errors 1° and −1° mean that the signal
direction is, respectively, 91° and 89° relative to the line of the array.

(a) (b)

FIGURE 4.23
Output SNR vs. interference angle with number of elements = 5, signal power = 1.0, interference power = 10.0,
and white noise power = 0.1. Solid line depicts the result using the time domain method with 17 taps and dotted
line depicts the result using the DFT method with 177 taps. (a) Large bandwidth. (b) Small bandwidth. (From
Godara, L.C. and Jahromi, M.R.S., IEEE Trans. Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)

FIGURE 4.24
Output SNR vs. the look direction error with number of elements = 10, number of taps = 15, bandwidth [0.15,0.5],
signal power = 1.0, interference power = 100.0, interference direction = 75 degrees with the line of the array, and
white noise power = 0.001. Solid line depicts the result using the time domain method with 17 taps and dotted
line depicts the result using the DFT method with 177 taps. (From Godara, L.C. and Jahromi, M.R.S., IEEE Trans.
Signal Process., 47, 2386–2395, 1999. ©IEEE. With permission.)
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Figure 4.24 shows that the DFT method is robust against the look direction error in the
presence of a single interference. The SNR of the processor using the DFT is about 10 dB
more than the one using the TDM in the presence of look direction error of less than 0.5°.
Although computer simulation shows the robustness of the DFT method against pointing
error, a theoretical explanation does not seem to exist.

4.8 Performance

Performance of broadband arrays as a function of the number of various parameters such
as the number of taps, tap spacing, array geometry, array aperture, and signal bandwidth
has been considered in the literature [May81, Voo92, Com88, Ko81, Ko87, Nun83, Yeh87,
Sco83] to understand their influence on the behavior of arrays. An analysis [May81] of
broadband array using eigenvalues of the array correlation matrix indicates that the
product of the array aperture and fractional bandwidth (FBW) of the signal is an important
parameter of the broadband array in determining its performance. The FBW is defined as
the ratio of the bandwidth to the center frequency of the signal. The number of taps
required on each element depends on this parameter as well as on the shape of the array,
with more taps needed for a complex shape. A study [Voo92, Com88] of the SNR as a
function of inter-tap spacing indicates that there is a range of spacing that yields close to
maximum attainable SNR and depends on the FBW of the signal. This range includes
quarter wavelength spacing at the center frequency f0. The quarter wavelength spacing
produces a 90° phase shift at f0 and is equal to 1/4f0. By measuring the tap spacing as a
multiple of this delay, the inter-tap spacing with the multiple around 1/FBW yields close
to the highest attainable SNR. With the multiple between 1/FBW to 4/FBW, a larger
number of taps for an equivalent performance is necessary.

A study of the jamming rejection capability [Ko81] and tracking performance of the
array in nonstationary environment [Ko87] also indicates that when tap spacing is mea-
sured in terms of the signal’s center frequency, the best performance is achieved when the
spacing is 1/4f0. For this tap spacing, the array correlation matrix has less eigenvalue
spread, which is the reason for this performance. The eigenvalue spread of a matrix
indicates the range of values that its eigenvalues take. A bigger ratio of the largest eigen-
value to the smallest eigenvalue indicates a larger spread.

The TDL filter tends to increase the degrees of freedom of the array that may be traded
against the number of elements such that an array with L elements is able to suppress
more than L – 1 directional interferences provided that their center frequencies are not the
same and fall within the FBW of the signal [Yeh87].
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Notation and Abbreviations

(φ,θ) direction in three-dimensional coordinate system, Figure 2.2
(φ) direction with respect to line array
(φ0,θ0) look direction
∆f bandwidth of frequency bin
[fL,fH] frequency band of interest
a(f,k) scalar defined in (4.6.33)
DFT discrete Fourier transform
FDM frequency domain method
FIR finite impulse response
LDE look direction error
MMSE minimum mean square error
MSE mean square error
TDL tapped delay line
TDM time domain method
A(f,φ,θ) desired frequency response in direction (φ,θ)
B matrix prefilter
B̃ matrix with B as diagonal elements
BS normalized signal bandwidth
C LJ × J dimensional constraint matrix
Ck constraint matrix
D constraint matrix
diag[x] matrix with x as diagonal elements
E(t) column of matrix prefilter outputs across TDL structure
e(t) column of L – 1 outputs of matrix prefilter
e(k) column of N phasers at kth bin defined in (4.6.25)
e(f) column of N phasers at frequency f defined in (4.6.30)
F optimal weights with point constraints, only white noise present
f J-dimensional constraint vector
fk kth component of f
fk
˜ kth coefficient of inverse DFT of Nfm, m = 1, 2, …, N
fs sampling frequency
G optimal weights with directional constraints, only white noise present
g constraint vector
H, H(f,φ,θ) frequency response of TDL processor in direction (φ,θ)
h(k) L weights of narrowband processor for kth bin
hl(k) weight on lth channel for kth bin
J number of taps in tapped delay line filter
J̃ number of bins that need processing in bin elimination method
C Press LLC 



© 2004 by CR
Ĵ number of bins that need processing due to DFT properties
J(W) cost function
J(V,λ) cost function
L number of elements
M number of directional sources
M0 number of data sets of N samples
N Number of samples processed by frequency domain method
OT Number of floating-point operations using TDM
OD Number of floating-point operations using DFT method
P projection operator
P(W) mean out power of a processor for given W
PS(W) mean output signal power for given W
PN(W) mean output noise power for given weight
P(k) mean out power of narrowband processor for kth bin
P̂ mean output power of TDL processor using optimal weights
P LJ-dimensional column vector defined by (4.1.68)
Q LJ × LJ matrix defined by (4.1.67)
R array correlation matrix
RS array correlation matrix due to signal source
RN array correlation matrix due to noise
Rl array correlation matrix due to lth source in direction (φl,θl)
(Rm,n) matrix denoting correlation after (m − 1) and (n − 1) delays
(Rl,i)ˆ matrix denoting correlation between lth and ith elements
Rf(k) array correlation matrix in frequency domain for kth bin
Rf(k)˜ array correlation matrix using energy from kth bin only
RXE matrix of correlation between X(t) and E(t)
REE matrix of correlation between E(t) and E(t)
rd correlation between desired signal and array signal vector
S(f) power spectral density of s(t)
S(f,φ,θ) steering vector at frequency f in direction (φ,θ)
S(f,φ,θ)˜ steering vector in (φ,θ) direction for array presteered in (φ0,θ0)
s(t) signal induced on reference element
SNR signal-to-noise ratio
SNR(W) SNR for given W
SNRT SNR using TDM
SNRD SNR using DFT method
T inter-tap spacing, sampling interval
T(f) diagonal matrix of steering delays
Tl(φ0,θ0) steering delay on lth element
T0 bulk delay to make Tl(φ0,θ0) a positive quantity
U LJ × LJ matrix of the eigenvector of Q
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Uη0 matrix of eigenvectors associated with η0 nonzero eigenvalues of Q
Ui eigenvector associated with ith eigenvalue of Q
V error vector, column of (L – 1)J weights of TDL structure
V̂ (L – 1)J dimensional optimal weights of TDL structure
vk column of L – 1 weights on the kth tap of TDL structure
W column of LJ weights of TDL structure
WF column of LJ fixed weight
Ŵ optimal weights of TDL processor
Ŵ0 optimal weights of constrained partioned processor
W̃ weight vector which minimizes ε0

W(n) weights estimated at the nth iteration
wm column of L weights on the mth tap of TDL structure
wlk weight on the kth tap of the lth channel
X(t) column of array signals across the TDL structure
X(n) array signals at nth instant of time
x(t) column of array signals after presteering delays
x(k)˜ column of frequency domain array signals for kth bin
x(k,m)˜ array signals for kth bin from mth data set
xl(t) output of lth sensor presteered in (φ0,θ0)
xli output of lth sensor before ith tap
xli(m) output of lth sensor before ith tap from mth data set
xl(m) N outputs of lth sensor across TDL filter from mth data set
xl components of the lth element along x-axis
xl(k)˜ output of lth sensor for kth bin
xl(k,m)˜ output of lth sensor from mth data set for kth bin
y(t) output of processor
yl components of lth element along y-axis
y(n) output at nth instant of time
y(k)˜ output of processor at kth bin
y(k,m)˜ output of processor at kth bin from mth data set
yA(t) output of auxiliary beams
yF(t) output of fixed beam
zl components of lth element along z-axis
Λ diagonal matrix with elements being eigenvalues of Q
Λφ(φ,θ) diagonal matrix defined by (4.3.5)
Λθ(φ,θ) diagonal matrix defined by (4.3.17)
Λφ(φ) diagonal matrix defined by (4.3.51)
∆ sampling interval
η0 rank of Q
δ0 threshold value
σ0 normalizing constant
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�(φ) vector defined by (4.3.55)
�(φ) vector defined by (4.3.56)
ε0 MSE between A(f,φ0,θ0) and H(f,φ0,θ0)
λ Lagrange multiplier
λi(Q) ith eigenvalue of Q
� J-dimensional vector of undetermined Lagrange multipliers
�(n) Lagrange multipliers at nth iteration
�(φ) vector defined by (4.3.54)
ρ(τ) correlation function of s(t)
ρ, ρ(f,φ,θ) power response of TDL processor in direction (φ,θ)
ρ0 correlation between desired signal and array output
τl(φ,θ) delay faced by signal from source in (φ,θ) on lth element
τl(φ) delay faced by signal from source in (φ) on lth element
τ delay parameter
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Interference canceling capabilities of the optimal antenna array processors discussed in
previous chapters assumed implicitly or explicitly that the desired signals arriving from
the look direction and the nonlook directional interferences are not correlated. Correlation
between the desired signal and unwanted interference exists in situations of multipath
arrivals and deliberate jamming, and affects the performance of antenna array processors
as discussed in [Wid82, God90, Tak87, Sha85, Han86, Han88, Lut86, Red87, Zol88, Ali92,
Qia95, Cho87, Tak86, Wil88, Han92].

The two directional signals are said to be fully correlated or coherent when one is the
delayed and scaled version of the other. For two sinusoidal signals, this amounts to the
fixed-phase relation between the two. The coherence between two signals normally arises
from deliberate jamming using so-called smart jammers, whereas the multipath signals
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normally result in partial correlation. The study of antenna array systems presented in
this chapter includes general correlated fields with coherence as a special case. Unless
otherwise explicitly stated, only two directional sources are assumed to be present to
facilitate the derivation of analytical expressions for the performance measure of antenna
array processors.

Correlation between the desired signal and an interference limits the applicability of
various weight estimation schemes. For example, when the weights are estimated by
minimizing the mean output power subject to the look direction constraint, the processor
cancels the desired signal while maintaining the constraint. The reason this happens is
that the processor, while minimizing the mean output power, adjusts the phase of the
correlated interference induced on each antenna such that the power of the sum of the
signal and the interference that is correlated with the signal is minimized, causing the signal
cancelation. This is consistent with the design that the processor minimizes the output
power. The optimal weights design is based on the assumption that the signal is not
correlated with interference.

The correlation δxy(f) between two broadband signals x(t) and y(t) is defined in terms
of their power spectrum [Car87]:

(5.1)

with Gxy(f) denoting the cross-power spectrum. It is related to the cross-correlation function

(5.2)

by the inverse Fourier transform

(5.3)

This chapter shows that the correlation between the desired signal and the unwanted
interference severely degrades the performance of antenna array systems, and techniques
are presented to improve their performance by decorrelating the directional sources. Both
narrowband and broadband arrays are discussed.

5.1 Correlated Signal Model

Consider an array of L omnidirectional elements immersed in the far field of two sinuso-
idal sources. One source is a signal source and the second is interference. Let pS and pI
represent the powers of the signal source and the interference, respectively; and let σ 2

n
denote the variance of the random noise component on each element with the temporal
narrowband spectrum and spatially white spectrum.

Let an L dimensional vector x(t) represent the L wave forms derived from L elements
of the array, and let a complex scalar δ, which lies within the unit circle, represent the
correlation coefficient between the two sources. Assuming the center of the coordinate
system as the time reference, the vector x(t) can be expressed as

δxy
xy

xx yy

f
G f

G f G f
( ) =

( )
( ) ( )

ρ τ τxy E x t y t( ) = ( ) +( )[ ]

G f e dxy xy
j f( ) = ( )
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∞

∫ ρ τ τπ τ2
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(5.1.1)

where S0 and S1 are steering vectors in the signal direction and in the interference direction,
respectively; * denotes the complex conjugate; n(t) represents the random noise compo-
nent; and mS(t) and mI(t) are zero-mean, unit-variance, complex low-pass processes asso-
ciated, respectively, with the signal source and the interference source. It is assumed that
mS(t), mI(t), and nl(t) are mutually uncorrelated with n l(t) denoting the lth component of
n(t).

The value of the complex scalar δ decides the correlated field under consideration. When
δ lies on the unit circle, that is �δ� = 1, the two sources are coherent and their fixed-phase
difference is given by δp, the phase of δ. On the other hand, when it lies inside the unit
circle with �δ� < 1, the two sources are partially correlated and δ = 0 corresponds to the
uncorrelated field case. For the uncorrelated field, (5.1.1) becomes

(5.1.2)

Equation (5.1.2) is identical to (2.1.15) with M = 2, m1 = ms(t), m2 = mI(t), S1 = S0,
and S2 = S1.

From (5.1.1) it follows that the array correlation matrix R can be expressed as

(5.1.3)

where L × 2 dimensional matrix

(5.1.4)

and 2 × 2 dimensional source correlation matrix

(5.1.5)

Note that (5.1.4) is identical to (2.1.27) with M = 2. However, the source correlation matrix
S for the correlated case given by (5.1.5) differs from the uncorrelated case given by (2.1.28)
due to the presence of off-diagonal terms containing the correlation coefficient.

The above equations show how the correlation between the two sources affects R. It
follows from these expressions that when two sources are uncorrelated, that is �δ� = 0, S
is a diagonal matrix guaranteeing R to be positive definite (assuming A is of full rank,
which requires that steering vectors corresponding to all directional sources are linearly
independent [God81]). The presence of correlation affects the rank of S and thus of R. In
the presence of correlation, the matrix R becomes ill conditioned and may not be invertible,
making it difficult for estimation of the weights of the optimal beamformer, which relies
on existence of the inverse of R. Thus, a beamforming scheme, which is optimal in the
absence of correlated arrival, is not able to cancel a correlated interference.

In the next section, the behavior of the constrained element space processor (ESP)
discussed in Section 2.4 is analyzed.
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5.2 Optimal Element Space Processor

Consider the narrowband ESP shown in Figure 2.1. The output y(t) and the mean output
power P(w) of the processor for the given weights w are given by

(5.2.1)

and

(5.2.2)

Let ŵ represent the L weights of the processor that minimizes the mean output power
subject to unity constraint in the look direction, that is,

(5.2.3) 

The processor with these weights is referred to as the optimal processor in Chapter 2.
An expression for the mean output power of the optimal processor in the presence of
correlated arrival is derived [Red87] below. Substituting for R from (5.1.3) to (5.1.5) in
(5.2.2) it follows that

(5.2.4)

To solve beamforming problem (5.2.3) using the Lagrange multiplier method define a
cost function,

(5.2.5)

where λ is the Lagrange multiplier. The solution ŵ is obtained by setting the partial
differentiation of the cost function with respect to w equal to zero. Thus,

(5.2.6)

Substituting for J(w) in (5.2.6) and using (5.2.4),
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(5.2.7)

Define

(5.2.8)

and note that

(5.2.9)

(5.2.10)

and

(5.2.11)

Premultiplying (5.2.7) by S0
H , and using (5.2.8) to (5.2.11) one obtains

(5.2.12)

Substituting for λ in (5.2.7), premultiplying it with SI
H, using (5.2.8) to (5.2.11), and solving

for ŵHSI, one obtains the optimized processor response in the interference direction, that is,

(5.2.13)

where

(5.2.14)

Note that ρ is also given by

(5.2.15)

Equation (5.2.13) describes the response of the beamformer in the interference direction.
Consider σn

2 = 0. Equation (5.2.13) for this case becomes

(5.2.16)
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It follows from (5.2.16) that the response of the optimal processor in the absence of white
noise is not zero, as is the case for the uncorrelated sources case. Thus, it does not cancel
the interference when it is correlated with the desired signal.

The implication of (5.2.16) is that even though the response of the processor in the look
direction is unity ( ŵHSI = 1), the processor using weights ŵ suppresses the look direction
signal. This aspect is now examined by deriving an expression for the mean output power
of the optimal processor.

It follows from (5.2.4) and the fact that an expression for ŵHSI has been derived previ-
ously, that to evaluate P( ŵ), only an expression for ŵ H ŵ is necessary. This can be obtained
by premultiplying (5.2.7) with ŵH and using (5.2.8) to (5.2.11). Thus,

(5.2.17)

where λ is given by (5.2.12) and ŵHSI is given by (5.2.13). Substituting for σ n
2ŵH ŵ from

(5.2.17), λ from (5.2.12), and ŵHSI from (5.2.13) in (5.2.4),

(5.2.18)

Now consider σn
2 = 0. For this case

(5.2.19)

It follows from (5.2.19) that the mean output power of the processor decreases as the
magnitude of the correlation constant increases and reduces to zero for coherent sources.
The processor in this case completely cancels the desired signal.

In the next section, the optimized postbeamformer interference canceler (PIC) processor is
studied in a correlated field environment. It is shown that the performance of the optimized
PIC processor is identical to that of the optimal ESP [God90]. Using this fact, a derivation of
the output signal-to-noise ratio (SNR) of the optimal ESP is presented in Section 5.4.

5.3 Optimized Postbeamformer Interference Canceler Processor

The narrowband PIC processor structure is shown in Figure 5.7 . Section 2.6.3 shows that
the mean output power of the processor for a given weight w is given by

(5.3.1)

where L dimensional complex vectors V and U, respectively, denote the fixed weights of
the signal beam and the interference beam, and a complex scalar w denotes the adjustable
weight. The optimal weight ŵ, which minimizes the mean output power P(w), is given
by (2.6.48), that is,
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 (5.3.2)

Assume that the signal beam is formed using the conventional beam forming weights,
that is,

(5.3.3)

and that the interference beam is selected as follows:

(5.3.4)

where P is a projection matrix given by

(5.3.5)

Equation (5.3.3) ensures that the signal beam response in the look direction is unity. The
interference beam selected using (5.3.4) and (5.3.5) has a unity response in the interference
direction and has a null in the look direction. This form of interference beam has been
selected to facilitate the derivation of the output SNR for the optimized ESP.

Next, an expression for P(ŵ), the mean output power of the optimized PIC, is derived,
and it is shown that P(ŵ) is equal to P̂, the mean output power of the optimal ESP in the
presence of correlated sources. It follows from (5.3.1) and (5.3.2) that the mean output
power P(ŵ) of the optimal PIC is given by

(5.3.6)

Substituting for V and U from (5.3.3) and (5.3.4) in (5.3.6) results in an expression for P(ŵ).
This is achieved by evaluating VHRV, VHRU, UHRV, and UHRU, and substituting in (5.3.6).
It follows from (5.3.3), (5.3.4), and (5.3.5) that

(5.3.7)

(5.3.8)

These, along with (5.1.3), imply that
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and

(5.3.11)

From (5.3.3), (5.1.4), and (5.2.8),

(5.3.12)

Similarly,

(5.3.13)

Thus,

(5.3.14)

(5.3.15)

and

(5.3.16)

It follows from (5.3.14) along with (5.2.15) and (5.3.16) that

(5.3.17)

Subtracting (5.3.17) from (5.3.15), the following expression for P(ŵ) results:

(5.3.18)
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Comparing (5.2.18) and (5.3.18), shows that the mean output powers of the optimal ESP
and the optimal PIC with V and U selected using (5.3.3) and (5.3.5), respectively, are the
same. Thus, in the presence of the correlated sources, the two processors perform identically.

In the next section, an expression for the output SNR of the two processors is derived
[God90]. As the performance of the two processors is the same, the PIC processor is used
for derivation of results.

5.4 Signal-to-Noise Ratio Performance

For the ease of analysis, rewrite (5.1.1) by regrouping terms containing mS(t) as follows:

(5.4.1)

From (5.1.3) and (5.4.1), 

(5.4.2)

It should be noted that the array correlation matrix is composed of three terms. The first
term in square brackets is contributed by the signal source. Let it be denoted by RS. The
second and the third terms on the RHS of (5.4.2) are contributions due to the interference
source (the component that is uncorrelated with the signal source) and the random noise.
Let these be denoted by RI and Rn, respectively.

It follows from (5.3.1) that the output signal power PS(ŵ), residual interference power
PI(ŵ), and the output uncorrelated noise power Pn(ŵ) of the optimal PIC, respectively are
given by

(5.4.3)

(5.4.4)

and

(5.4.5)

Let PN(ŵ) denote the total noise at the optimal PIC output. This consists of output
uncorrelated noise power and residual interference power, that is,

(5.4.6)

First, consider PS(ŵ) and evaluate various terms on the RHS of (5.4.3). It follows from
(5.3.2), (5.3.14), and (5.3.16) that

(5.4.7)
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and

(5.4.8)

Substituting for RS from the first term on the RHS of (5.4.2) and using (5.3.3) to (5.3.5),

(5.4.9)

(5.4.10)

and

(5.4.11)

It follows from (5.4.7) and (5.4.11) that

(5.4.12)
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After manipulation, (5.4.13) leads to

(5.4.14)

Next, an expression for the residual interference at the output of the optimal PIC is
derived. Substituting from (5.3.3), (5.3.4), and the second term on the RHS of (5.4.2) for
RI in (5.4.4), results in

(5.4.15)

which along with (5.4.7) and (5.4.8) implies that

(5.4.16)

After manipulation, (5.4.16) leads to

(5.4.17)

Similarly, an expression for the uncorrelated noise power at the optimal PIC output is
given by
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Substituting from (5.4.17) and (5.4.18) in (5.4.6), after manipulation

(5.4.19)

It can easily be verified that for �δ� = 0, (5.4.19) reduces to (2.7.72).
Let SNR(ŵ) denote the output SNR of the optimal PIC defined as

(5.4.20)

Substituting for PS(ŵ) and PN(ŵ) from (5.4.14) and (5.4.19) in (5.4.20),

(5.4.21)

where

(5.4.22)

As discussed in the previous section, the optimal PIC and ESP behave identically in the
absence of errors. Thus, the expression for the output SNR given by (5.4.21) is true for
both processors. Let it be denoted by SNRO. In the following, some special cases are
considered.

5.4.1 Zero Uncorrelated Noise

Zero uncorrelated noise corresponds to σn
2 = 0. From (5.4.22) it follows that for this case,

γ = 0, which along with (5.4.21) implies that

(5.4.23)

Thus, in the absence of uncorrelated noise, the output SNR is independent of the array
geometry and noise environment. It only depends on the magnitude of the correlation
coefficient and is independent of its phase. It should be noted here that γ = 0 indirectly
assumes that pI and ρ are not identical to zero.
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5.4.2 Strong Interference and Large Number of Elements

Now, consider a case when there is a strong interference source in the presence of nonzero
uncorrelated noise, and the array consists of a large number of elements, such that

(5.4.24)

It follows from (5.4.21) and (5.4.24) that

(5.4.25)

Thus, the output SNR in this case is less than that for the zero uncorrelated noise case
and decreases as the uncorrelated noise power increases.

5.4.3 Coherent Sources

This corresponds to �δ� = 1. Substituting �δ� = 1 in (5.4.21), the following expression results
for the output SNR when the signal source and the interference source are fully correlated:

(5.4.26)

where

(5.4.27)

with δp denoting the phase of the correlation coefficient.
It follows from (5.2.15) that

(5.4.28)

where βp denoting the phase of β. Thus, (5.4.27) implies

(5.4.29)

Substituting for γ and Ω in (5.6.26) leads to the following expression for SNRO for fully
correlated sources:
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with

(5.4.31)

(5.4.32)

(5.4.32)

It follows from (5.4.30) that for fully correlated sources, the output SNR (1) increases as
σn

2/L increases for low values of σn
2/L, and (2) decreases as σn

2/L increases for high values
of σn

2/L. Furthermore, the output SNR attains the maximum value

(5.4.34)

when

(5.4.35)

5.4.4 Examples and Discussion

In this section, some examples are presented to understand the effect of correlation on the
output SNR. For the results presented in Figure 5.1 to Figure 5.4, a linear array of one-
half wavelength spacing is used. The signal source of unity power is assumed broadside
to the array. Interference direction is measured relative to the line of the array. The
correlation phase is measured at the center of the coordinate system, which is at an end
element of the array. The correlation phase is assumed to be equal to 45°.

Figure 5.1 shows the output SNR as a function of the uncorrelated noise power for
various values of �δ�. The curve with the solid line is for fully correlated sources and agrees
with the results presented in the previous section. One observes from the figure that as
�δ� increases, the output SNR (1) decreases for low values of uncorrelated noise, and
(2) increases for high values of uncorrelated noise. The reason for the increase in the output
SNR as �δ� increases in the presence of high uncorrelated noise power is that, for this
scenario, the optimal processor tends to behave as the conventional processor. The
response of the conventional processor in the direction of the interference is fixed, and
thus the processor does not minimize the output power by canceling the desired signal.

Figure 5.2 to Figure 5.4 show the output SNR as a function of �δ� for various values of σ n
2.

Figure 5.2 is for an array with four elements whereas Figure 5.3 is for an array with ten
elements. Comparing Figure 5.2 and Figure 5.3, it is apparent that for a given noise field,
an increase in the number of elements in an array causes the output SNR to increase in
the absence of correlation but has a reverse effect when the sources are fully correlated.
Note the difference in the scales for the two figures.

Figure 5.4 shows the results for an array with ten elements when interference is in
direction 65°. A comparison between Figure 5.3 and Figure 5.4 reveals that the effect of
correlation on the output SNR is more when the interference is far from the look direction.
For the scenario of Figure 5.4, the output SNR decreases as �δ� increases at all values of σ n

2.
However, the reduction at higher values of σn

2 is much less than at lower values of σn
2 .
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5.5 Methods to Alleviate Correlation Effects

Many beamforming schemes have been devised to cancel an interference source that is
correlated with the signal. In principle, these work by restoring the rank of R. In this
section, some of these are briefly reviewed [God97].

In some earlier work [Wid82, Gab80], a mechanical movement of the array perpendicular
to the look direction was suggested to reduce the signal cancelation effect by the correlated
interference. The scheme generally known as the spatial dither algorithm works on the
principle that as the movement is perpendicular to the look direction, the signal induced
in the array is not affected, whereas the interference that arrives from a direction different
from that of the signal gets modulated with this motion. This causes a reduction in
interference, as noted in [Cho87] where the dither algorithm is further developed such
that a mechanical movement is not required.

The spatial smoothing scheme [Eva81] uses a notion of spatial averaging by subdividing
the array into smaller subarrays, and estimates the array correlation matrix by averaging
the correlation matrices estimated from each such subarray. The use of spatial smoothing
for beamforming is discussed in [Sha85, Red87] showing that the use of this method
reduces effective correlation between the interference and desired signal resulting in
reduced signal cancelation caused by optimal beamforming. Details on spatial smoothing
are provided in Section 5.6.

FIGURE 5.1
Output SNR vs. the uncorrelated noise power for a four element linear array with one-half wavelength spacing
for various values of �δ�, pI = 1, θI = 85°, pS = 1, θ0 = 90°, δp = 45°. (From Godara, L.C., IEEE Trans. Acoust. Speech
Signal Process., 38, 1–15, 1990. ©IEEE. With permission.)
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The spatial smoothing method uses uniform averaging of all matrices obtained from
various subarrays, that is, each matrix is weighted equally. This results in an estimate of
the matrix that is not as good as the one that could have been obtained from given subarray
matrices. Ideally in the absence of correlation, the array correlation matrix for a uniformly
spaced linear array has a Toeplitz structure, that is, elements of the matrix along each
diagonal are equal, and the estimated matrix by the spatial smoothing scheme is not the
closest to the Toeplitz matrix. An estimated matrix that is closest to a Toeplitz matrix is
obtained by a spatial averaging technique [Tak87, Lim90]. This technique weighs each
subarray matrix differently and then optimize the weights such that it minimizes the mean
square error between the weighted matrix and a Toeplitz matrix. When this matrix is used
to estimate the weights of the beamformer, the resulting system reduces more interference
than that given by the uniform weighted matrix estimate.

It should be noted that the number of rows and columns in the estimated matrix is equal
to the number of elements in the subarray and not equal to the number of elements in
the full array. Thus, the weights estimated by this matrix could only be applied to one of
the subarrays. Consequently, not all array elements are used for beamforming. This
reduces the array aperture and its degrees of freedom. For an environment consisting of
M − 1 direction interferences and the desired signal, the subarray size should be at least
M + 1 and the number of subarrays should be at least M(M − 1) + 1 [Tak87].

A scheme that does not reduce the degrees of freedom of the array is described in
[God90]. It decorrelates the sources by structuring the correlation matrix as the Toeplitz
type by averaging along each diagonal, and uses the resulting matrix to estimate the
weights of the full array. An adaptive algorithm to estimate the weights of an array based

FIGURE 5.2
Output SNR vs. the magnitude of the correlation coefficient for a four-element linear array with one-half
wavelength spacing for various values of σn

2 , pI = 100, θI = 85°, pS = 1, θ0 = 90°, δp = 45°. (From Godara, L.C.,
IEEE Trans. Acoust. Speech Signal Process., 38, 1–15, 1990. ©IEEE. With permission.)
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on this principle is presented in [God91], and the concept is extended to broadband
beamforming in [God92]. Details are provided in Section 5.7 and Section 5.8.

A beamforming scheme [Wid82] based on master and slave concepts cancels the corre-
lated arrival by the use of two channels. In one channel, the look direction signal is blocked,
and then weights are estimated by solving the constrained beamforming problem. These
weights are then used on the second channel. As the signal is not present at the time of
weight estimation, the beamformer does not cancel the signal. However, the process only
works for one correlated interference. It is extended for the multiple correlated interference
case in [Lut86] where an array of 2M − 1 elements is required to cancel M − 1 interferences.

Other schemes that require some knowledge of the interference, such as direction or the
correlation matrix due to interference only, are discussed in [Han86, Han88, Qia95, Wil88,
Han92]. Many of the schemes discussed above improve the array performance in the
presence of correlated arrivals by treating the correlated components as interferences and
canceling them by forming nulls in their directions using beamforming techniques. These
methods do not utilize the correlated components as is done in the diversity-combining
techniques discussed in Chapter 7. In diversity combining, various components are added
in a way to improve the signal level.

The RAKE receiver [Vau88, Tur80, Pri58, Faw64] achieves this increase in signal level
for a CDMA system by using a number of demodulators operating in parallel to track
each component employing the user code for that signal. The signal delay is identified by
sliding the code sequence to obtain the maximum correlation with the received component.
The signals are added at the baseband after appropriate delay and amplitude scaling. The
receiver, however, does not cancel unwanted interference by shaping the beam pattern.

FIGURE 5.3
Output SNR vs. the magnitude of the correlation coefficient for a ten-element linear array with one-half wave-
length spacing for various values of σn

2 , pI = 100, θI = 85°, pS = 1, θ0 = 90°, δp = 45°. (From Godara, L.C., IEEE
Trans. Acoust. Speech Signal Process., 38, 1–15, 1990. ©IEEE. With permission.)
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5.6 Spatial Smoothing Method

The spatial smoothing method, also known as the subarray averaging method, estimates
the weights of an L-element antenna array system using an augmented array of more than
L elements, and is suitable for a linear array of equispaced elements. The signals induced
on these extra elements are only used to restore the rank of the array correlation matrix
to be used in weight estimation. These signals are not used to produce the array output.

The method divides the array in L0 subarrays of size L such that the first subarray
consists of Element 1 to Element L, the second one consists of Element 2 to Element L + 1,
and so on as shown in Figure 5.5.

FIGURE 5.4
Output SNR vs. the magnitude of the correlation coefficient for a ten-element linear array with one-half wave-
length spacing for various values of σn

2 , pI = 100, θI = 65°, pS = 1, θ0 = 90°, δp = 45°. (From Godara, L.C., IEEE
Trans. Acoust. Speech Signal Process., 38, 1–15, 1990. ©IEEE. With permission.)

FIGURE 5.5
Construction of subarrays.
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Let the L dimensional vectors x1(t), x2(t), …, xL0
(t) denote the array signal vectors of L0

subarrays, that is,

(5.6.1)

(5.6.2)

(5.6.3)

where xk(t) denotes the signal induced on the kth element of the augmented array (full
array).

Let Rk denote the array correlation matrix of the kth subarray, that is,

(5.6.4)

Define the spatially smoothed correlation matrix
–
R by averaging Rk, k = 1, 2, …, L0, that is,

(5.6.5)

and use this to estimate the weights of the array system. It follows from (5.6.3) that to
form L0 subarrays of size L, one needs L + L0 − 1 elements.

As shown in [Sha85], the matrix
–
R has full-rank iff L0 ≥ L − 1. Thus, to estimate an L × L

dimensional full-rank spatially smoothed correlation matrix to estimate weights of an
L-element array system, at least 2(L − 1) elements are necessary.

5.6.1 Decorrelation Analysis

In this section, an analysis is presented that shows the decorrelation effect of the spatial
smoothing method [Red87]. It follows from (2.1.15) that the array signal vector x(t) due
to M directional sources and white noise can be expressed in the matrix notation as

(5.6.6)

where the M dimensional vector s(t) is defined as

(5.6.7)

with mk(t) denoting the modulating function of the kth source and 

(5.6.8)

with S(θk) denoting the steering vector associated with the kth source in direction θk, that is,

x1 1 2t x t x t x tL
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T( ) = ( ) ( ) … ( )[ ]+, , ,

xL L L L L

T
t x t x t x t
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(5.6.9)

with

(5.6.10)

Now, consider the array signal vector for the kth subarray. Following (5.6.6) to (5.6.10),
it can be expressed as

(5.6.11)

where nk(t) denotes the random noise vector received by the kth subarray,

(5.6.12)

and

(5.6.13)

with τlk(θ) denoting the propagation delay from the origin to the lth element in the kth
subarray. As the kth subarray is comprised of elements k to k + (L − 1), it follows that

(5.6.14)

(5.6.15)

and

(5.6.16)

Thus, (5.6.13) becomes

(5.6.17)

where d̂ = d/λ and λ denotes the wavelength corresponding to f0.
Substituting (5.6.17) in (5.6.12) and using (5.6.8),

(5.6.18)

where Φ is an M × M diagonal matrix with
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(5.6.19)

It follows from (5.6.11) and (5.6.18) that

(5.6.20)

Equations (5.6.4) and (5.6.20) imply that

(5.6.21)

where S is the source covariance matrix defined as

(5.6.22)

For uncorrelated sources, S is given by (2.1.28). For correlated sources, Si,j denotes the
correlation between ith and jth sources. For the correlated source model presented in
Section 5.1, Si,j is given by (5.1.5).

The following expression for the spatially smooth correlation matrix results after sub-
stituting for Rk from (5.6.21) in (5.6.5):

(5.6.23)

where

(5.6.24)

denotes the smoothed sources covariance matrix.
To understand the effect of spatial smoothing on the correlation between difference

sources, consider
–

Sij. It follows from (5.6.24) that

(5.6.25)

Equation (5.6.25) along with (5.6.19) imply that

(5.6.26)

where

(5.6.27)
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Using

(5.6.28)

i ≠ j terms in (5.6.26) simplifies to

(5.6.29)

which reduces as L0 increases and goes to zero in the limit.
Thus, the sources progressively get decorrelated as the number of subarrays is increased,

and the rate of decorrelation depends on the element spacing and the source directions.

5.6.2 Adaptive Algorithm

In this section, updating the weights of an array processor from available array samples
using the spatial smoothing method is discussed [Sha85]. Assume that N samples of the
kth subarray signal vectors xk(n), n = 1, 2, …, N are available. It follows then from (5.6.4)
and (5.6.5) that an estimate of the spatially smoothed correlation matrix is given by

(5.6.30)

Using the next sample xk(N + 1), the matrix 
–
RN+1
ˆ becomes

(5.6.31)

Thus, using (5.6.31), the spatially smoothed correlation matrix can be updated as new
samples arrive and the new matrix can be used to update the weights. For example, this
matrix can be used to estimate the power surface gradient, and the gradient-based adaptive
algorithm discussed previously can be employed to update the weights of an array processor.

Equation (5.6.31) can also be employed to update the inverse of the correlation matrix
by making successive use of the Matrix Inverse Lemma and the weights can be estimated
using the sample inversion algorithm as discussed in Chapter 3.

1
1
1

2 1+ + +… = −
−

−a a a
a
a

N
N

,

S
S

L

d L

d
ei j

i j ij

ij

j d Lij
,

, ˆsin ˆ

sin ˆ= −( )

0

0 2 10
π ψ

π ψ
π ψ

R̂
L N

n n

NL
n n

N
k

L

k k
H

n

N

k k
H

k

L

n

N

= ( ) ( )

= ( ) ( )

= =

==

∑ ∑

∑∑

1 1

1

0 1 1

0 11

0

0

x x

x x

ˆ

ˆ

R
N L

n n

N L
n n

N L
N N

NR
N N L

N k k
H

k

L

n

N

k k
H

k

L

n

N

k k
H

k

L

N

+
==

+

== =

=
+( ) ( ) ( )

=
+( ) ( ) ( ) +

+( ) +( ) +( )

=
+

+
+( )

∑∑

∑∑ ∑

1
0 11

1

0 11 0 1

0

1
1

1
1

1
1

1 1

1
1
1

0

0 0

x x

x x x x

xkk k
H

k

L

N N+( ) +( )
=

∑ 1 1
1

0

x

C Press LLC 



© 2004 by CR
5.7 Structured Beamforming Method

In this section, the use of a structured correlation matrix for estimating optimal weights
is discussed, and the decorrelation effect of this technique on the correlated environment
is examined [God90]. For ease of analysis, only two sources are assumed to be correlated.
The presence of other uncorrelated sources does not alter the analysis.

For the linear array of equispaced receivers immersed in a homogeneous noise field,
the array correlation matrix has a Toeplitz structure, that is, the entries along any diagonal
are equal. In the presence of correlated sources, the array correlation matrix does not have
this structure. The technique proposed here uses an estimate of the array correlation matrix
constrained to have this structure. This constraint is implemented by averaging the uncon-
strained array correlation matrix along the diagonals. Let this matrix, referred to as the
structured correlation matrix, be denoted by R̃. The entries along the mth diagonal of R̃
are given by

(5.7.1)

Using the structured correlation matrix, the following expression is obtained for the
weights of the optimal ESP with unity constraint in the look direction:

(5.7.2)

The mean output power of the processor for a given w̃ is given by

(5.7.3)

It should be noted that the use of the structured correlation matrix has been made only
in the feedback loop to calculate the weights of the processor and not in estimating the
output power. The structured correlation matrix can be used in obtaining the weights of
the optimal PIC processor by replacing R by R̃ in (5.3.2).

5.7.1 Decorrelation Analysis

The decorrelation effect of this method, referred to as the structured method, is examined
[God90] in this section. Rewrite (5.4.2) in the following form:

(5.7.4)

The term in the first set of square brackets on the RHS of (5.7.4) is not a function of the
correlation coefficient, has a Toeplitz structure, and is not affected by averaging along the
diagonals. The term in the second set of square bracket depends on δ and does not have
a Toeplitz structure. Thus, it is sufficient to examine the effect of averaging along the
diagonals on this term. Let this term be denoted by Q, that is,
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(5.7.5)

For an equispaced linear array, the lth component of a steering vector associated with θ
is given by

(5.7.6)

where d̂ is the spacing between the elements measured in wavelengths, and θ is the
direction of a source relative to the line of the array.

In writing (5.7.6), Element 1 is taken as the time reference. Consider the (l,k)th element
of S0SI

(5.7.7)

with θ0 and θ1 respectively denoting the direction of the signal and the interference relative
to the line of the array.

Let

(5.7.8)

Then the mth diagonal of S0SI
H is given by

(5.7.9)

Let qm denote the average of the mth diagonal. It follows then from (5.7.9) that

(5.7.10)

Using the identity

(5.7.11)

from (5.7.10),

(5.7.12)

is obtained, which, after manipulation, leads to

(5.7.13)
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Now consider S1S0
H . Let qm

1 denote the average of the mth diagonal of this matrix, that is,

(5.7.14)

which, after manipulation, leads to

(5.7.15)

It follows from (5.7.5), (5.7.10), and (5.4.14) that the entries along the mth diagonal of
the structured matrix Q̃, the term in the second set of square brackets in (5.7.4), is given by

(5.7.16)

which, along with (5.7.13) and (5.7.15), imply that

(5.7.17)

If �δ� and δp, respectively, denote the magnitude and phase of the correlation coefficient
measured at the reference point, Element 1 in the present case (5.7.17) reduces to

(5.7.18)

where

(5.7.19)

is the phase of the correlation coefficient measured at the center of the array.
Equation (5.7.18) describes the mth diagonal of the component of the structured corre-

lation matrix that depends on the correlation coefficient. From (5.7.18), the following
observations can be made. For

(5.7.20)

cosΨp = 0 and thus Q̃m, m = 0, 1, …, L − 1 reduce to zero. Thus, for these values of the
correlation phase, the two sources are completely decorrelated. This result is independent
of the magnitude of the correlation coefficient.
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For a given element spacing and source direction, the magnitudes of Q̃m, m = 0, 1, …,
L − 1 behave like a well-known function (sin x)/x, with the zeros given by

(5.7.21)

As the number of elements in the array increases, the magnitude of Q̃m decreases. The
greatest reduction occurs in the elements of the principal diagonal correspond to m = 0.
The magnitude of Q̃0 is given by

(5.7.22)

As m increases, the effect of increased elements in the array declines. The last diagonal
of Q̃ that consists of only one element, Q̃L,L, is not affected.

5.7.1.1 Examples and Discussion

For these examples, a linear array with one-half wavelength spacing is used. A unity
power signal source is assumed to be present broadside to the array. Unless otherwise
specified, the correlation phase is measured at an end element of the array.

Figure 5.6 compares the power patterns of the conventional beamformer, optimal beam-
former, and structured beamformer. Eight interferences are assumed in the directions of

FIGURE 5.6
Power pattern of an element space processor using conventional, optimal, and structured beamforming methods
using a ten-element linear array with one-half wavelength spacing in the presence of eight directional interfer-
ences in directions 25°, 45°, 60°, 108°, 120°, 135°, and 155°, each with unity power. Look direction is 90°, σn

2 = 4
sources in 45° and 90° are correlated with �δ� = 1, δp = 45°. (From Godara, L.C., IEEE Trans. Acoust. Speech Signal
Process., 38, 1–15, 1990. ©IEEE. With permission.)
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the side-lobes of the conventional pattern. The interference in the 45° direction is correlated
with the signal source. It is clear from the figure that even in the presence of correlated
arrivals, a ten-element array using the structured method is capable of nulling eight
direction sources while maintaining a specified response in the look direction. As expected,
the increased response of the optimal processor in the direction of the correlated interfer-
ence is clearly visible.

Figure 5.7 shows the output SNRs of the PIC and the ESP using the structured method
and compares the result to that of the optimal beamformer. The phase of the correlation
coefficient measured at the center of the array is assumed to be 90°. The magnitude of the
correlation has almost no effect on the output SNRs of the two processors when the
structured method is used. This agrees with the analysis presented in the previous section.
The output SNR of the optimal beamformer reduces to about −25 dB when the two sources
are fully correlated.

5.7.2 Structured Gradient Algorithm

The structured gradient algorithm uses the structured array correlation matrix to estimate
the required gradient to update the weights, and is discussed in detail in Section 3.6. In
this section, an analysis of this algorithm is focused on its use in updating the weights in
the presence of correlated arrivals. The analysis is presented for an equispaced linear array
in the presence of two correlated sources [God91].

FIGURE 5.7
Output SNR of the element space processor and the PIC processor using structured beamforming method vs.
the magnitude of the correlation coefficient for a four-element linear array with one-half wavelength spacing in
the presence of one directional interference of unity power in direction 85°. Correlation phase is 90° measured
at the center of the array. σn

2 = 0.001. (From Godara, L.C., IEEE Trans. Acoust. Speech Signal Process., 38, 1–15, 1990.
©IEEE. With permission.)
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Let an L-dimensional vector w(n + 1) denote the weights of the ESP updated by the
structured gradient algorithm, that is,

(5.7.23)

where P is the projection operator given by (3.4.2), and gst(w(n)) denotes the gradient
estimate defined by (3.6.5) to (3.6.7). It follows from (3.6.5) to (3.6.7) that

(5.7.24)

where R̃ is given by (5.7.1).

5.7.2.1 Gradient Comparison

Let g(w(n)) denote the gradient of the mean output power for a given w(n) when the
sources are not correlated, that is,

(5.7.25)

where R0 denotes the array correlation matrix when sources are not correlated, that is, δ =
0. It follows from (5.7.4) and (5.7.5) that

(5.7.26)

Let an L-dimensional error vector e(n) denote the difference between the true gradient
used in the standard LMS algorithm in the absence of the correlated field given by (5.7.25),
and the expected value of the gradient used by the structured gradient algorithm in the
presence of correlated field, that is,

(5.7.27)

The normalized norm of the error vector approaches zero in the limit as L → ∞, that is,

(5.7.28)

Equation (5.7.28) is now established. It follows from (5.7.24), (5.7.25), and (5.7.27) that

(5.7.29)

Since R̃ is obtained from R by averaging along the diagonals, it follows from (5.7.4) and
(5.7.5) that

(5.7.30)

w w g w
S

n P n n
Lst+( ) = ( ) − ( )( ){ } +1 0µ

E n n R nstg w w w( )( ) ( )[ ] = ( )2 ˜

g w wn R n( )( ) = ( )2 0

R R p p QS I= +0

e g w g w wn n E n nst( ) = ( )( ) − ( )( ) ( )[ ]

lim
L

H n n
L→∞

( ) ( ) =e e
0

e w wn R n R n( ) = ( ) − ( )2 20
˜

˜ ˜R R p p QS I0 0= +
C Press LLC 



© 2004 by CR
where Q̃ is a matrix having a Toeplitz structure with the entries along the mth diagonal
given by

(5.7.31)

Note that the matrix R0 denotes the array correlation matrix of an equispaced linear
array immersed in an uncorrelated noise field and thus has a Toeplitz structure. Hence,
it is not affected by averaging along the diagonals.

It follows from (5.7.29) and (5.7.30) that

(5.7.32)

Taking the dot product, dividing by L, and taking the limit on both sides,

(5.7.33)

where

(5.7.34)

Consider the matrix C. Its (l,n)th element is given by
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Since −1 ≤ sin x ≤ 1∀ x and 1/(L − �n−k�) ≤ 1 for 1 ≤ n ≤ L, 1 ≤ k ≤ L, it follows that

(5.7.40)

Thus,

(5.7.41)

where
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Thus, the normalized error vector norm approaches zero in the limit as L → ∞. The error
vector is the difference between the true gradient used in the standard LMS algorithm in
the presence of the uncorrelated noise field and the expected value of the gradient used
by the structured gradient algorithm in the presence of correlated arrivals. Since the use
of the true gradient in the standard LMS algorithm leads the estimated weight vector to
the optimal weight vector ŵ, and the processor using ŵ minimizes the total noise when
the noise field is not correlated, it follows that by using the gradient estimated by the
structured method, the mean value of the estimated weight would approach to ŵ for an
infinitely large array. Thus, the processor in the presence of correlated arrivals would have
the same antenna pattern (in the mean sense) as it has in the presence of the uncorrelated
noise field. Thereby, the correlated jammer would be canceled.

5.7.2.2 Weight Vector Comparison

In this section, a comparison is made between the normalized error between the expected
values of the weights estimated by the standard method when the noise field is not
correlated, and by the structured method when the noise field is correlated. Let w(n)
denote the weights estimated by the standard LMS algorithm in the absence of correlation,
that is, when δ = 0 and w̃(n) denotes the weights estimated by structured method. It is
assumed for the purpose of the comparison that at the nth iteration, both methods have
the same weight vector, that is, w̃(n) = w(n).

Let

(5.7.47)

Now it is shown that

(5.7.48)

It follows from (5.7.24) and (5.7.26) that

(5.7.49)

Denoting the gradient estimate of (3.4.4) by gs(w(n)), from (3.4.4) one obtains

(5.7.50)

Taking the expected value on both sides of (3.4.1) and (5.7.23), using (5.7.47), (5.7.49),
(5.7.50), and the fact that both the weight vectors are identical at the nth iteration {w̃(n) =
w(n)},

(5.7.51)

where

(5.7.52)

Thus,
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(5.7.53)

Now consider Q̃HPQ̃/L. It follows from (3.4.2) that

(5.7.54)

It follows from (5.7.34) and (5.7.45) that

(5.7.55)

Since Q̃H = Q̃ and (S0)m = exp(j2πd̂(m − 1)cos θ0), it follows from (5.7.36)

(5.7.56)

Substituting for β0 from (5.7.38) and rearranging,

(5.7.57)

Since −1 ≤ sin x ≤ 1∀ x, it follows that

(5.7.58)
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(5.7.59)

Using

(5.7.60)

to  sum the series  on the  RHS of  (5.7.58)  and (5.7.59),  dividing by L2 on both sides, and
taking the limit as L → ∞,

(5.7.61)

This implies that

(5.7.62)

From (5.7.54), (5.7.55) and (5.7.62) it follows that

(5.7.63)

This along with (5.7.53) establishes (5.4.48).
The implication of this result is that when the array has an infinitely large number of

elements, the structured LMS algorithm in the presence of correlated arrivals yields the
same weight vector in the mean sense as estimated by the standard LMS algorithm when
the sources are not correlated.

The structured gradient algorithm analyzed above only uses a snapshot available at the
(n +1)st iteration of the weight update to estimate the gradient. The improved LMS
algorithm discussed in Section 3.8 makes use of all available samples to estimate a gradient
required to update the array weights. Results similar to those given by (5.7.28) and (5.7.48)
for the structured gradient algorithm may also be established for the improved LMS
algorithm following a procedure similar to that discussed above.

Now some numerical examples are presented to compare the performance of the struc-
tured gradient algorithm and the improved algorithm with that of the standard LMS
algorithm in the presence of correlated field.

5.7.2.3 Examples and Discussion

Figure 5.8 and Figure 5.9 compare the mean output power P(w(n)) and the output SNR
vs. the iteration number when the weights are adjusted using the three algorithms. A
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linear array of ten elements with one-half wavelength spacing is assumed for these exam-
ples. That variance of uncorrelated noise present on each element is assumed to be 0.01.
Two interference sources are assumed to be present. The first interference makes an angle
of 65° with the line of the array, and is correlated with the signal source present broadside
to the array. The magnitude of correlation is taken to be equal to 0.99, and the correlation
phase measured at the reference point (one of the side elements of the array) is equal to
45°. The second interference makes an angle of 72° with the line of the array, and is not
correlated with the signal source. The power of the signal source, as well as of the
correlated interference, is 20 dB above the white noise power. The power of the second
interference is 40 dB above the white noise power. All algorithms are initialized with the
conventional weights, that is,

(5.7.64)

and the gradient step size µ in each case is taken to be equal to 0.00005.
The mean output power for a given w(n) is calculated using

(5.7.65)

and the output SNR is calculated using

(5.7.66)

FIGURE 5.8
Output power vs. the iteration number for a ten-element linear array with one-half wavelength spacing in the
presence of two directional interferences with direction = 65°, power = 1, �δ� = 0.99, δp = 45° and direction = 72°,
power = 100. Look direction is 90° with signal power = 1. σn

2 = 0.01. (From Godara, L.C., J. Acoust. Soc. Am., 89,
1730–1736, 1991. With permission.)
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with PS(w(n)) and PN(w(n)), respectively, denoting the mean output signal power and the
total mean output noise power for a given w(n). PS(w(n)) is calculated using

(5.7.67)

where RS is the correlation matrix due to signal only, that is,

(5.7.68)

and

(5.7.69)

Note that xS(t) is the array signal vector contributed by the signal source.
The mean output noise power is calculated using

where RN is the noise only array correlation matrix. It is given by

(5.7.70)

FIGURE 5.9
Output SNR vs. the iteration number for a ten-element linear array with one-half wavelength spacing in the
presence of two directional interferences with direction = 65°, power = 1, �δ� = 0.99, δp = 45° and direction = 72°,
power = 100. Look direction is 90° with signal power = 1. σn

2 = 0.01. (From Godara, L.C., J. Acoust. Soc. Am., 89,
1730–1736, 1991. With permission.)
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with

(5.7.71)

where m′I and S′I characterize the second interference.
Figure 5.8 shows that the mean output power of the processor is close to the input signal

power when the structured LMS algorithm and the improved LMS algorithm are used to
update the weights. Thus, in the presence of the correlated arrivals the processor is able
to cancel the correlated directional interference without canceling the desired signal. This
agrees with the theoretical results presented previously. The processor using the standard
LMS algorithm to update the weights cancels the desired signal and the mean output
power falls below the level of the input signal power, as expected.

Figure 5.9 compares the output SNR for the three algorithms. The output SNR achievable
by the processor using the structured method and the improved method is much higher
than by the standard LMS case. There are lots of fluctuations in the output SNR curve of
the structured method compared to that of the improved method. The reason for these
fluctuations is that the structured method uses only one sample to estimate the gradient
in comparison to all available samples used by the improved method. Thus, the correlated
interference can be canceled and the close proximity to the convergence point is quickly
attained by using the improved method to update the weights of an adaptive beamformer.
It should be noted here that though the theoretical results are presented to show the
performance of these algorithms for an infinitely large array, the example presented for a
ten-element array demonstrates the correlated jammer cancelation capability of these
algorithms for an array that is not so large.

5.8 Correlated Broadband Sources

In this section, an array processor using the tapped delay line (TDL) structure of Figure 4.1
is considered in the presence of correlated broadband directional sources. The structured
beamforming method is proposed to cancel the correlated interferences using a linear
array of equispaced elements, and its performance is analyzed [God92].

The array correlation matrix for an equispaced linear array using a TDL filter has a
special structure in the presence of uncorrelated directional sources, and the correlated
field destroys this structure. This structure is examined in the next section.

5.8.1 Structure of Array Correlation Matrix

Consider a linear array of L equispaced elements immersed in a homogeneous and uncor-
related noise field. For ease of analysis, assume that the array is aligned with the positive
x-axis and that one of the elements is situated at the origin. Let the origin of the coordinate
system be taken as the time reference. Thus, the time taken by a plane wave arriving from
direction θ and measured from Element l to the origin is given by

(5.8.1)

x S S nN I I I It m t m t t( ) = ( ) − + ′ ( ) ′ + ( )1 2δ

τ θ θ
l

l( ) = −( )d
c
1 cos
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where d is the spacing between the elements and c is the speed of propagation. It is
assumed that the spacing is less than a half-wavelength at all frequencies of interest. Let
an L-dimensional vector x(t) denote the sensor output after presteering delays Tl(θ0), l =
1, 2, …, L. These delays are selected such that the L output waveforms of the presteered
sensors due to a broadband source in the look direction are identical. As discussed
previously, an array may be presteered in direction θ0 using

(5.8.2)

where T0 is a bulk delay, such that

(5.8.3)

Let an LJ dimensional vector X(t) defined by (4.1.6) denote the array signals across the
TDL structure and R0 denote the array correlation matrix in the absence of source corre-
lation. Let R0(m,n) denote the (m,n)th block of R0 given by

(5.8.4)

It follows from (4.1.11) that [R0(m,n)]l,k due to a source in direction θ is given by

(5.8.5)

where ρ(τ) denotes the correlation function defined by (4.1.12).
Let [R0(m,n)]l,l+k, k = 0, 1, …, L – 1 denote the kth diagonal of the matrix R0(m,n). Thus,

(5.8.5) can be expressed as

(5.8.6)

where the parameters θ0 and θ are omitted for the ease of notation. It follows from (5.8.1)
and (5.8.2) that

(5.8.7)

and

(5.8.8)

Equations (5.8.7) and (5.8.8) imply that
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Substituting from (5.8.9) in (5.8.6),

(5.8.10)

As seen on the RHS of (5.8.10), the correlation function parameter only depends on k
and not on l. Thus, it follows that all L – k elements of the kth diagonal of the matrix
R0(m,n) are the same. Hence, each L × L block of the array correlation matrix R0(m,n),
m,n = 1, 2, …, J has the Toeplitz structure in the absence of correlation. The existence of
correlation between the directional sources destroys this structure. An array-processing
method is discussed later in the chapter to restore this structure in the array correlation
matrix before using it to estimate the weights of the TDL structure.

5.8.2 Correlated Field Model

Without any loss of generality, assume that there are two correlated broadband directional
sources. One source is a signal source and the other source is interference. Let pS and pI
represent the powers of the signal source and the interference source, respectively. Let θ0
and θI denote the directions of the two sources, respectively. Assume that the interference
contains a component of the desired signal such that the output of a sensor present at the
center of the coordinate system, assumed to be the time reference, can be expressed as

(5.8.11)

where mS(t) and mI(t) are zero-mean unit variance, low-pass processes associated with the
signal source and the interference source, respectively; n(t) is the random noise component
with a zero mean and variance equals σn

2 ; α is a positive real scalar denoting the magnitude
of correlation, and Tc is a real scalar denoting the time delay for the correlated field. For
two coherent sources, the magnitude of correlation equals 1. It is assumed that mS(t), mI(t),
and n(t) are mutually uncorrelated. The autocorrelation functions of mS(t) and mI(t) are
denoted by ρS(τ) and ρI(τ), respectively.

It should be noted that although the following analysis is for a specialized model of
(5.8.11) emphasizing a multipath application, the results are equally valid for a more
general correlated field model of the type

(5.8.12)

with the cross-correlation

(5.8.13)

that is assumed to be band limited.
It follows from (5.8.11) that the output of the mth tap on lth sensor, presteered in the θ0

direction, is given by
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(5.8.14)

Thus,

(5.8.15)

where

(5.8.16)

It follows from (5.8.15) that the array correlation matrix R in the presence of correlated
sources can be expressed as

(5.8.17)

where RS denotes the array correlation matrix due to the signal source in the look direction,
R1

I denotes the array correlation matrix due to the interference with the effective autocor-
relation given by

(5.8.18)

and Q denotes the array correlation matrix due to the cross-correlation between the signal
source and the interference. Expressions for RS, R1

I , and Q are given by the first term,
second term, and third term, respectively, on the RHS of (5.8.15).

The quantity inside the square brackets on the RHS of (5.8.17) represents the total array
correlation matrix due to the uncorrelated noise field. Thus,

(5.8.19)

5.8.3 Structured Beamforming Method

For a linear array of equispaced elements immersed in a homogeneous and uncorrelated
noise field, the array correlation matrix has a block Toeplitz structure; that is, each block
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of an L × L dimensional correlation matrix arising from the correlation of sensor vectors
at any two taps has the Toeplitz structure. The correlation between two directional sources
destroys this structure. The structured beamforming method described here uses an esti-
mate of the array correlation matrix with the constraint that the estimated matrix has the
block Toeplitz structure. Let R̃ denote the array correlation matrix estimated with this
structure. The weights of the beamformer estimated with the structured method are
calculated using the following expression:

(5.8.20)

where

(5.8.21)

β̂ is a positive scalar selected such that R̂ is positive definite, f is given by (4.1.25), and R̃
is the structured correlation matrix.

An estimate of the structured correlation matrix is made by averaging each block of the
L × L matrix along its diagonals. Let R̃(m,n) denote the (m,n)th block of the averaged
matrix. The entries along the kth diagonal of R̃(m,n) are given by

(5.8.22)

5.8.4 Decorrelation Analysis

In this section, an analysis is presented to show the decorrelation effect of the structured
method when the block correlation matrix is estimated by averaging along the diagonals.
It follows from (5.8.17) and (5.8.19) that the matrix R0 is not affected by the above method
since it has the block Toeplitz structure. Thus, it is sufficient to examine the effect of
averaging along the diagonals on matrix Q. It follows from (5.8.15) that

(5.8.23)

where the constant  has been suppressed for ease of analysis.
Qk(m,n), the kth diagonal of Q(m,n) is given by
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(5.8.26)

(5.8.27)

and

(5.8.28)

it follows from the fact that ρS(τ)  = ρS(−τ) and (5.8.24) that
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Using

(5.8.34)

in (5.8.33),

(5.8.35)

Using

(5.8.36)

in (5.8.35),

(5.8.37)

where

(5.8.38)

is the correlation delay time measured at the center of the array.
The following result is true for a signal source of finite bandwidth. The result is proved

later in the discussion.
If S(f) = 0 outside the frequency range of interest [fL,fH] and bounded over this finite

range, then

(5.8.39)

where Q̃(m,n) is the (m,n)th block of the structured correlation matrix arising from the
correlated source. The above result states that the Hilbert–Schmidt norm of a matrix goes
to zero as L → ∞.

The Hilbert–Schmidt norm of a matrix A satisfies the following axiom [Gra77]:

(5.8.40)
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Thus, it follows that Q̃(m,n) is an all-zero matrix for an infinitely large array; hence, Q̃ is
an all-zero matrix in the limit. This along with (5.8.17) implies that in the limit,

(5.8.41)

Thus, for an infinitely large array, the effect of correlation is completely canceled using
the structured beamforming method.

Although the results presented in this section hold for a large array, numerical examples
are presented later to show that the method presented here performs satisfactorily for a
relatively small array.

The result given by (5.8.39) is now proved. Let

(5.8.42)

First, it is shown that �G(f,k)� is bounded over the frequency range of interest [fL,fH] for
every k. It follows from (5.8.30) that

(5.8.43)

It is assumed that inter-element spacing is less than one-half wavelength at all frequencies,
that is,

(5.8.44)

Equations (5.8.43) and (5.8.44) imply that

(5.8.45)

From

(5.8.46)

(5.8.47)

and

(5.8.48)

it follows that

(5.8.49)
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(5.8.50)
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From (5.8.45) and (5.8.50),

(5.8.51)

As

(5.8.52)

for the frequency range of interest, it follows from (5.8.42) and (5.8.52) that

(5.8.53)

Now an outline of the proof of the result is presented. Since

(5.8.54)

we need to show that

(5.8.55)

Consider the first term. From (5.8.37) and (5.8.42), it follows that

(5.8.56)

As �G(f,0)� is bounded, the integration yields a finite value. Thus,

(5.8.57)

Now, consider the second term of (5.8.55). From (5.8.37) it follows that

(5.8.58)

Since G(f,k) is finite for every k, the integral exists. Let it be denoted by V0(k).
Let V0 be such that
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From (5.8.58) and (5.8.59), it follows that

(5.8.60)

From (5.8.57) and (5.8.60), it follows that (5.8.55) is true. This completes the proof.

5.8.4.1 Examples and Discussion

Figure 5.10 shows power patterns for an eight-element linear array in the presence of six
directional broadband sources using three beamforming methods. All sources are assumed
to have the brick-wall type of spectrum with normalized cutoff frequencies of 0.45 and
0.5. The power of each source is 20 dB above the power of white noise present on each
element of the array. Five interferences are assumed to be in the far field of the array and
are in directions of 22°, 50°, 68°, 112°, and 130° relative to the line of the array, and coincide
with the side-lobes of the conventional array pattern. The signal source is to the array
broadside. The interference in the direction of 50° is fully correlated with the signal source
and delayed by 45° at the maximum frequency. The phase delay is specified at the origin
of the coordinates system with array situated along the x axis. The spacing between the
elements of the array is taken to be one-half wavelength at the maximum frequency. The
delay line filter has nine taps (J = 9) with one sample delay between taps. The parameter
β̂ of (5.8.21) is taken to be equal to 8. The vector f is selected as follows.

Figure 5.10 compares the power patterns of the conventional, optimal, and structured
beamformers. The figure shows that the power pattern of the optimal beamformer has an
increased response in the direction of the correlated jammer, and this increased response
is responsible for the cancelation of the look direction signal. The power pattern of the
structured beamformer shown in plot C has its response about −48 dB in the direction of
the correlated jammer and has clearly suppressed it. The SNR measured at the output of
the array using the conventional, optimal, and structured beamformers is 45, 1, and 527,
respectively.

Figure 5.11 compares the Hilbert–Schmidt norm of the structured as well as the unstruc-
tured block of the array correlation matrix as a function of the number of elements in the
array. The L × L dimensional block of the array correlation matrix considered corresponds
to m = 1 and n = 1. Two sources are considered for the example. The look direction signal
is broadside to the array and the correlated interference is in the direction of 50° relative
to the line of the array. The other parameters are the same as in Figure 5.10. As seen in
the figure, the norm of the structured correlation matrix decreases as the number of the
elements in the array increases. On the other hand, the norm for the unstructured matrix
increases.
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FIGURE 5.10
Power patterns of an element space processor using conventional, optimal, and structured beamforming methods
using an eight-element linear array with one-half wavelength spacing at the maximum frequency in the presence
of six directional broadband interferences in directions 22°, 50°, 68°, 90°, 112°, and 130°, each with unity power
and frequency range (0.45, 0.5). Look direction is 90°, σn

2 = 0.01; sources in 50° and 90° are correlated with
correlation phase delay of 45° at the maximum frequency measured at the origin. (From Godara, L.C., J. Acoust.
Soc. Am., 92, 2702–2708, 1992. With permission.)

FIGURE 5.11
Hilber-Schmidt norm of Q(1,1) vs. the number of elements in the array in the presence of one broadband
correlated directional interference in directions 50° with unity power over frequency range (0.45, 0.5). The
correlation phase delay is taken to be 45° at the maximum frequency measured at the origin. Look direction is
90°, σn

2 = 0.01. (From Godara, L.C., J. Acoust. Soc. Am., 92, 2702–2708, 1992. With permission.)
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Notation and Abbreviations

ESP element space processor
PIC postbeamformer interference canceler
SNR signal-to-noise ratio
SNR(ŵ) output SNR of optimal PIC
SNRO SNR of optimal ESP and optimal PIC
TDL tapped delay line
A matrix of steering vectors
Ak matrix of steering vectors for kth subarray
d spacing between elements
d̂ spacing between elements measured in wavelengths
e(n) difference between g(w(n)) and E[gst(w(n))w(n)]
e(n+1)ˆ difference between E[w̃(n+1)] and E[w(n+1)]
f constraint vector
Gxy(f) cross-power spectrum
g(w(n)) gradient of mean output power for given w(n) for uncorrelated sources
gst(w(n)) gradient of mean output power for given w(n) using structured method
J length of TDL structure
L number of elements used by processor, size of subarray
L0 number of subarrays
M number of sources
mk(t) modulating function of kth source
mS(t) unit variance, complex low-pass process of signal source
mI(t) unit variance, complex low-pass process of interference source
n(t) noise vector
nk(t) noise vector for kth subarray
P projection matrix
P̂ mean output power of optimal ESP
P(w) mean output power of ESP for given w
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P(w) mean output power of PIC for given w
P(w)ˆ mean output power of optimal PIC
PS(w)ˆ mean output signal power of optimal PIC
PI(w)ˆ mean output interference power of optimal PIC
Pn(w)ˆ mean output uncorrelated noise power of optimal PIC
PN(w)ˆ total mean noise output power of optimal PIC
pS power of signal source
pI power of interference source
Q array correlation matrix due to cross-correlation between signal source and

interference
Q̃ structured matrix of Q
Q̃m mth diagonal of Q̃
R array correlation matrix
R0 array correlation matrix when sources are not correlated
R0(m,n) (m,n)th block of R0

R0(m,n)˜ (m,n)th block of R̃
Rk array correlation matrix of kth subarray
RS array correlation matrix due to signal
RI array correlation matrix due to interference
Rn array correlation matrix due to white noise
R
–

spatially smoothed array correlation matrix
R
–̂
N estimate of spatially smoothed correlation matrix

R̃ structured array correlation matrix
S source correlation matrix
S
–

smoothed sources covariance matrix
Si,j correlation between ith and jth sources
S
–
i,j smoothed correlation between ith and jth sources

S0 steering vector in signal direction
SI steering vector in interference direction
S(θk) steering vector in direction θk

Sk(θ) steering vector for kth subarray in direction θ
S(f) power spectral density of desired signal
s(t) vector of M modulating functions
Tl(θ0) steering delay on lth element
Tc correlation delay time measured at origin
U fixed weights of interference beam of PIC
V fixed weights of signal beam of PIC
w weights of ESP
ŵ weights of optimal ESP
w(n) weights estimated by standard algorithm in absence of correlation
w̃(n) weights estimated by structured method
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ŵ weight of optimal PIC
X(t) array signals across TDL structure
x(t) array signal vector
xk(t) array signal vector of kth subarray
Φ M × M diagonal matrix defined by (5.6.19)
Ω complex scalar defined by (5.4.27)
Ψp phase of correlation coefficient measured at center of array
ψc correlation delay time measured at center of array
α positive real scalar denoting magnitude of correlation
α0 scalar defined by (5.7.37)
αk scalar defined by (5.7.42)
β0 scalar defined by (5.7.38)
β complex scalar defined by (5.2.8)
β̂ positive scalar to make R̂ is positive definite in (5.8.21)
ψij scalar defined by (5.6.27)
ψ scalar defined by (5.8.30)
γ real scalar defined by (5.4.22)
η scalar defined by (5.8.31)
σn

2 uncorrelated noise power on each element
λ Lagrange multiplier
δxy(f) correlation between two broadband signals x(t) and y(t)
δ correlation between signal and interference
δp phase of correlation coefficient δ
θk direction of kth source
θ0 direction of signal
θI direction of interference
φ scalar defined by (5.7.8)
τl(θk) delay on lth element for a source in direction θk

τlk(θ) delay on lth element in kth subarray for source in direction θ
ρ complex scalar defined by (5.2.14)
ρxy(τ) cross correlation function between x and y
ρI(τ) autocorrelation functions of mI(t)
ρS(τ) autocorrelation functions of mS(t)
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6
Direction-of-Arrival Estimation Methods

6.1 Spectral Estimation Methods
6.1.1 Bartlett Method

6.2 Minimum Variance Distortionless Response Estimator
6.3 Linear Prediction Method
6.4 Maximum Entropy Method
6.5 Maximum Likelihood Method
6.6 Eigenstructure Methods
6.7 MUSIC Algorithm

6.7.1 Spectral MUSIC
6.7.2 Root-MUSIC
6.7.3 Constrained MUSIC
6.7.4 Beam Space MUSIC

6.8 Minimum Norm Method
6.9 CLOSEST Method
6.10 ESPRIT Method
6.11 Weighted Subspace Fitting Method
6.12 Review of Other Methods
6.13 Preprocessing Techniques
6.14 Estimating Source Number
6.15 Performance Comparison
6.16 Sensitivity Analysis
Notation and Abbreviations
References

The problem of localization of sources radiating energy by observing their signal received
at spatially separated sensors is of considerable importance, occurring in many fields,
including radar, sonar, mobile communications, radio astronomy, and seismology. In this
chapter, an estimation of the direction of arrival (DOA) of narrowband sources of the same
central frequency, located in the far field of an array of sensors is considered, and various
DOA estimation methods are described, compared, and sensitivity to various perturba-
tions is analyzed. The chapter also contains discussion of various preprocessing and source
estimation methods [God96, God97]. Source direction is parameterized by the variable θ.
The DOA estimation methods considered include spectral estimation, minimum-variance
distortionless response estimator, linear prediction, maximum entropy, and maximum
likelihood. Various eigenstructure methods are also described, including many versions
of MUSIC algorithms, minimum norm methods, CLOSEST method, ESPRIT method, and
the weighted subspace fitting method.
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6.1 Spectral Estimation Methods

These methods estimate DOA by computing the spatial spectrum P(θ), that is, the mean
power received by an array as a function of θ, and then determining the local maximas
of this computed spatial spectrum [Cap69, Lac71, Nut74, Joh82a, Wag84, Zha95, Bar56].
Most of these techniques have their roots in time series analysis. A brief overview and
comparison of some of these methods are found in [Lac71, Joh82a].

6.1.1 Bartlett Method

One of the earliest methods of spectral analysis is the Bartlett method [Lac71, Bar56], in
which a rectangular window of uniform weighting is applied to the time series data to
be analyzed. For bearing estimation problems using an array, this is equivalent to applying
equal weighting on each element. Thus, by steering the array in θ direction this method
estimates the mean power PB(θ), an expression for which is given by

(6.1.1)

where Sθ denotes the steering vector associated with the direction θ, L denotes the number
of elements in the array, and R is the array correlation matrix.

A set of steering vectors {Sθ} associated with various direction θ is often referred to as
the array manifold in DOA estimation literature. In practice, it may be measured at the
time of array calibration. From the array manifold and an estimate of the array correlation
matrix, PB(θ) is computed using (6.1.1). Peaks in PB(θ) are then taken as the directions of
the radiating sources.

The process is similar to that of mechanically steering the array in this direction and
measuring the output power. Due to the resulting side-lobes, output power is not only
contributed from the direction in which the array is steered but from the directions where
the side-lobes are pointing. The processor is also known as the conventional beamformer
and the resolving power of the processor depends on the aperture of the array or the
beamwidth of the main lobe.

6.2 Minimum Variance Distortionless Response Estimator

The minimum variance distortionless response estimator (MVDR) is the maximum likeli-
hood method (MLM) of spectrum estimation [Cap69], which finds the maximum likelihood
(ML) estimate of the power arriving from a point source in direction θ assuming that all
other sources are interference. In the beamforming literature, it is known as the MVDR
beamformer as well as the optimal beamformer, since in the absence of errors, it maximizes
the output SNR and passes the look direction signal undistorted as discussed in Chapter
2. For DOA estimation problems, MLM is used to find the ML estimate of the direction
rather than the power [Mil90]. Following this convention, the current estimator is referred
to as the MVDR estimator.

P
R
LB

H

θ θ θ( ) =
S S

2
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This method uses the array weights obtained by minimizing the mean output power
subject to a unity constraint in the look direction. The expression for the power spectrum
PMV(θ) is 

(6.2.1)

This method has better resolution properties than the Bartlett method [Cox73], but does
not have the best resolution properties of all methods [Joh82a].

6.3 Linear Prediction Method

The linear prediction (LP) method estimates the output of one sensor using linear combi-
nations of the remaining sensor outputs and minimizes the mean square prediction error,
that is, the error between the estimate and the actual output [Joh82a, Mak75]. Thus, it
obtains the array weights by minimizing the mean output power of the array subject to
the constraint that the weight on the selected sensor is unity. Expressions for the array
weights ŵ and the power spectrum PLP(θ), respectively, are

(6.3.1)

and

(6.3.2)

where u1 is a column vector such that one of its elements is unity and the remaining
elements are zero [Joh82a].

The position of 1 in the column vector corresponds to the position of the selected element
in the array for predicting its output. There is no criterion for proper choice of this element;
however, choice of this element affects the resolution capability and bias in the estimate.
These effects are dependent on the SNR and separation of directional sources [Joh82a].
LP methods perform well in moderately low SNR environments and are good compro-
mises in situations where sources are of approximately equal strength and are nearly
coherent [Kes85].

6.4 Maximum Entropy Method

The maximum entropy (ME) method finds a power spectrum such that its Fourier trans-
form equals the measured correlation subjected to the constraint that its entropy is max-
imized [Bur67]. The entropy of a Gaussian band-limited time series with power spectrum
S(f) is defined as
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(6.4.1)

where fN is the Nyquist frequency.
For estimating DOA from the measurements using an array of sensors, the ME method

finds a continuous function PME(θ) > 0 such that it maximizes the entropy function

(6.4.2)

subject to the constraint that the measured correlation between the ith and the jth elements
rij satisfies

(6.4.3)

where τij(θ) denotes the differential delay between elements i and j due to a source in θ
direction.

The solution to this problem requires an infinite dimensional search. The problem may
be transformed to a finite dimensional search using the duality principle [McC83] leading
to

(6.4.4)

In (6.4.4), ŵ is obtained by minimizing

(6.4.5)

subject to

(6.4.6)
and

(6.4.7)

where q(θ) and r, respectively, are defined as

(6.4.8)

and

(6.4.9)

It should be noted that the dimension of these vectors depends on the array geometry
and is equal to the number of known correlations rij for every possible i and j.

H S S f df
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f
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The minimization problem defined above may be solved iteratively using the standard
gradient LMS algorithm. For more information on various issues of the ME method, see
[Nag94, Ski79, Tho80, McC82, Lan83, Far85]. Suitability of the ME method for mobile
communications in fast-fading signal conditions has been studied by [Nag94].

6.5 Maximum Likelihood Method

The MLM estimates the DOAs from a given set of array samples by maximizing the log-
likelihood function [Mil90, Lig73, Sch68, Zis88, Sto90, Oh92, Lee94, Wu94a, She96]. The
likelihood function is the joint probability density function of the sampled data given the
DOAs and viewed as a function of the desired variables, which are the DOAs in this case.
The method searches for those directions that maximize the log of this function. The ML
criterion signifies that plane waves from these directions are most likely to cause the given
samples to occur [Hay85].

Maximization of the log-likelihood function is a nonlinear optimization problem, and
in the absence of a closed-form solution requires iterative schemes. There are many such
schemes available in the literature. The well-known gradient descent algorithm using the
estimated gradient of the function at each iteration as well as the standard Newton–Raphson
method are well suited for the job [Wax83]. Other schemes, such as the alternating pro-
jection method [Zis88, Oh92] and the expectation maximization algorithm [Mil90, Dem77,
Hin81], have been proposed for solving this problem in general as well as for specialized
cases such as unknown polarization [Lee94a], unknown noise environments [Wu94], and
contaminated Gaussian noise [Lig73]. A fast algorithm [Aba85] based on Newton’s method
developed for estimating frequencies of sinusoids may be modified to suit DOA estimation
based on ML criteria.

The MLM provides superior performance compared to other methods particularly when
SNR is small, the number of samples is small, or the sources are correlated [Zis88], and
thus is of practical interest. For a single source, the estimates obtained by this method are
asymptotically unbiased [Lee94a], that is, the expected values of the estimates approach
their true values in the limit as the number of samples used in the estimate increase. In
that sense, it may be used as a standard to compare the performance of other methods.
The method normally assumes that the number of sources, M, is known [Zis88].

When a large number of samples is available, other computationally more efficient
schemes may be used with performance almost equal to this method [Sto90]. Analysis of
the method to estimate the direction of sources when the array and the source are in
relative motion to each other indicates its potential for mobile communications [Wig95,
Zei95].

6.6 Eigenstructure Methods

These methods rely on the following properties of the array correlation matrix: (1) The
space spanned by its eigenvectors may be partitioned in two subspaces, namely the signal
subspace and the noise subspace; and (2) The steering vectors corresponding to the
directional sources are orthogonal to the noise subspace. As the noise subspace is orthog-
onal to the signal subspace, these steering vectors are contained in the signal subspace. It
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should be noted that the noise subspace is spanned by the eigenvectors associated with
the smaller eigenvalues of the correlation matrix, and the signal subspace is spanned by
the eigenvectors associated with its larger eigenvalues.

In principle, the eigenstructure-based methods search for directions such that the steer-
ing vectors associated with these directions are orthogonal to the noise subspace and are
contained in the signal subspace. In practice, the search may be divided in two parts. First,
find a weight vector w that is contained in the noise subspace or is orthogonal to the
signal subspace, and then search for directions such that the steering vectors associated
with these directions are orthogonal to this vector. The source directions correspond to
the local minima of the function �wHSθ�, where Sθ denotes a steering vector.

When these steering vectors are not guaranteed to be in the signal subspace there may
be more minima than the number of sources. The distinction between the actual source
direction and a spurious minima in �wHSθ� is made by measuring the power in these
directions.

Many methods have been proposed that utilize the eigenstructure of the array correla-
tion matrix. These methods differ in the way that available array signals have been utilized,
required array geometry, applicable signal model, and so on. Some of these methods do
not require explicit computation of the eigenvalues and eigenvectors of the array correla-
tion matrix, whereas in others it is essential. Effective computation of these quantities may
be done by methods similar to those described in [Tuf86]. When the array correlation
matrix is not available, a suitable estimate of the matrix is made from available samples.

One of the earliest DOA estimation methods based on the eigenstructure of covariance
matrix was presented by Pisarenko [Pis73], and has better resolution than the minimum
variance, ME, and LP methods [Wax84]. A critical comparison of this method with two
other schemes [Red79, Can80] applicable for a correlated noise field has been presented
in [Bor81] to show that the Pisarenko’s method is an economized version of these schemes,
restricted to equispaced linear arrays. The scheme presented in [Red79] is useful for off-
line implementations similar to those presented in [Joh82, Bro83], whereas the method
described in [Can80] is useful for real-time implementations and uses normalized gradient
algorithm to estimate a vector in the noise subspace from available array signals. Other
schemes suitable for real-time implementation are discussed in [Red82, Yan88, Lar83]. A
scheme known as the matrix pencil method, shown by [Oui89] to be similar to Pisarenko’s
method, has been described in [Oui88].

Eigenstructure methods may also be used for finding DOAs when the background noise
is not white but has a known covariance [Pau86] unknown covariance [Wax92], or when
the sources are in the near field and/or the sensors have unknown gain patterns [Wei88].
For the latter case, the signals induced on all elements of the array are not of the equal
intensity, as is the case when the array is in the far field of the directional sources. The
effect of spatial coherence on resolution capability of the these methods is discussed in
[Bie80], whereas the issue of the optimality of these methods is considered in [Bie83]. In
the following, some popular schemes are described in detail.

6.7 MUSIC Algorithm

The multiple signal classification (MUSIC) method [Sch86] is a relatively simple and
efficient eigenstructure variant of DOA estimation methods. It is perhaps the most studied
method in its class and has many variations. Some of these are discussed in this section.
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6.7.1 Spectral MUSIC

In its standard form, also known as spectral MUSIC, the method estimates the noise
subspace from available samples. This can be done either by eigenvalue decomposition
of the estimated array correlation matrix or singular value decomposition of the data
matrix with its N columns being the N array signal vector samples, also known as
snapshots. The latter is preferred for numerical reasons [DeG93].

Once the noise subspace has been estimated, a search for M directions is made by looking
for steering vectors that are as orthogonal to the noise subspace as possible. This is
normally accomplished by searching for peaks in the MUSIC spectrum given by

(6.7.1)

where UN denotes an L by L – M dimensional matrix, with L – M columns being the
eigenvectors corresponding to the L – M smallest eigenvalues of the array correlation
matrix and Sθ denoting the steering vector that corresponds to direction θ.

It should be noted that instead of using the noise subspace and searching for directions
with steering vectors orthogonal to this subspace, one could also use the signal subspace
and search for directions with steering vectors contained in this space [Bar83]. This
amounts to searching for peaks in

(6.7.2)

where US denotes an L × M dimensional matrix with its M columns being the eigenvectors
corresponding to the M largest eigenvalues of the array correlation matrix.

It is advantageous to use the one with smaller dimensions. For the case of a single
source, the DOA estimate made by the MUSIC method asymptotically approaches the
Cramer–Rao lower bound, that is, where the number of snapshots increases infinitely, the
best possible estimate is made. For multiple sources, the same holds for large SNR cases,
that is, when the SNR approaches infinity [Fri90, Por88]. The Cramer–Rao lower bound
(CRLB) gives the theoretical lowest value of the covariance for an unbiased estimator.

In [Klu93], an application of the MUSIC algorithm to cellular mobile communications
was investigated to locate land mobiles, and it is shown that when multipath arrivals are
grouped in clusters the algorithm is able to locate the mean of each cluster arriving at a
mobile. This information then may be used to locate line of sight. Its use for mobile satellite
communications has been suggested in [Geb95].

6.7.2 Root-MUSIC

For a uniformly spaced linear array (ULA), the MUSIC spectra can be expressed such that
the search for DOA can be made by finding the roots of a polynomial. In this case, the
method is known as root-MUSIC [Bar83]. Thus, root-MUSIC is applicable when a ULA is
used and solves the polynomial rooting problem in contrast to spectral MUSIC’s identi-
fication and localization of spectral peaks. Root-MUSIC has better performance than
spectral MUSIC [Rao89a].

6.7.3 Constrained MUSIC

This method incorporates the known source to improve estimates of the unknown source
direction [DeG93]. The situation arises when some of the source directions are already

P
U

MU H
N

θ
θ

( ) = 1
2

S

P UMU S
Hθ θ( ) = S

2

C Press LLC 



© 2004 by CR
known. The method removes signal components induced by these known sources from
the data matrix and then uses the modified data matrix for DOA estimation. Estimation
is achieved by projecting the data matrix onto a space orthogonal complement to a space
spanned by the steering vectors associated with known source directions. A matrix oper-
ation, the process reduces the signal subspace dimension by a number equal to the known
sources and improves estimate quality, particularly when known sources are strong or
correlated with unknown sources.

6.7.4 Beam Space MUSIC

The MUSIC algorithms discussed so far process the snapshots received from sensor ele-
ments without any preprocessing, such as forming beams, and thus may be thought of as
element space algorithms, which contrasts with the beamspace MUSIC algorithm in which
the array data are passed through a beamforming processor before applying MUSIC or
any other DOA estimation algorithms. The beamforming processor output may be thought
of as a set of beams; thus, the processing using these data is normally referred to as
beamspace processing. A number of DOA estimation schemes are discussed in [May87,
Kar90], where data are obtained by forming multiple beams using an array.

The DOA estimation in beam space has a number of advantages such as reduced
computation, improved resolution, reduced sensitivity to system errors, reduced resolu-
tion threshold, reduced bias in the estimate, and so on [Fri90, Lee90, Xu93, Zol93, Zol93a].
These advantages arise from the fact that a beamformer is used to form a number of beams
that are less than the number of elements in the array; consequently, less data to process
a DOA estimation are necessary.

This process may be understood in terms of array degrees of freedom. Element space
methods have degrees of freedom equal to the number of elements in the array, whereas
the degrees of freedom of beamspace methods are equal to the number of beams formed
by the beamforming filter. Thus, the process reduces the array’s degrees of freedom.
Normally, only M + 1 degrees of freedom to resolve M sources are needed.

The root-MUSIC algorithm discussed for the element space case may also be applied to
this case, giving rise to beamspace root-MUSIC [Zol93, Zol93a]. Computational savings
for this method are the same as for beamspace methods compared to element space
methods in general.

6.8 Minimum Norm Method

Minimum norm method [Red79, Kum83] is applicable for ULA, and finds the DOA
estimate by searching for peak locations in the spectrum [Erm94], as in the following
expression:

(6.8.1)

where w denotes an array weight such that it is of the minimum norm, has first element
equal to unity, and is contained in the noise subspace. The solution to the above problem
leads to the following expression for the spectrum [Erm94, Nic88, Cle89]:
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(6.8.2)

where the vector e1 contains all zeros except the first element, which is equal to unity.
Given that the method is applicable for ULA, the optimization problem to solve for the

array weight may be transformed to a polynomial rooting problem, leading to a root-
minimum-norm method similar to root-MUSIC. A performance comparison [Kri92] indi-
cated that the variance in the estimate obtained by root-MUSIC is smaller than or equal
to that of the root-minimum-norm method. Schemes to speed up the DOA estimation
algorithm of the minimum norm and to reduce computations are discussed in [Erm94,
Ng90].

6.9 CLOSEST Method

The CLOSEST method is useful for locating sources in a selected sector. Contrary to
beamspace methods, which work by first forming beams in selected directions, CLOSEST
operates in the element space and in that sense it is an alternative to beamspace MUSIC.
In a way, it is a generalization of the minimum-norm method. It searches for array weights
in the noise subspace that are close to the steering vectors corresponding to DOAs in the
sector under consideration, and thus its name. Depending on the definition of closeness,
it leads to various schemes. A method referred to as FINE (First Principal Vector) selects
an array weight vector by minimizing the angle between the selected vector and the
subspace spanned by the steering vectors corresponding to DOAs in the selected sector.
In short, the method replaces the vector e1 used in the minimum-norm method by a
suitable vector depending on the definition of closeness used. For details about the selec-
tion of these vectors and the relative merits of the CLOSEST method, see [Buc90].

6.10 ESPRIT Method

Estimation of signal parameters via rotational invariance techniques (ESPRIT) [Roy89] is
a computationally efficient and robust method of DOA estimation. It uses two identical
arrays in the sense that array elements need to form matched pairs with an identical
displacement vector, that is, the second element of each pair ought to be displaced by the
same distance and in the same direction relative to the first element.

However, this does not mean that one has to have two separate arrays. The array
geometry should be such that the elements could be selected to have this property. For
example, a ULA of four identical elements with inter-element spacing d may be thought
of as two arrays of three matched pairs, one with first three elements and the second with
last three elements such that the first and the second elements form a pair, the second and
the third elements form another pair, and so on. The two arrays are displaced by the
distance d. The way ESPRIT exploits this subarray structure for DOA estimation is now
briefly described.
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Let the signals induced on the lth pair due to a narrowband source in direction θ be
denoted by xl(t) and yl(t). The phase difference between these two signals depends on the
time taken by the plane wave arriving from the source under consideration to travel from
one element to the other. Assume that the two elements are separated by the displacement
∆0. Thus, it follows that

(6.10.1)

where ∆0 is measured in wavelengths.
Note that ∆0 is the magnitude of the displacement vector. This vector sets the reference

direction and all angles are measured with reference to this vector. Let the array signals
received by the two K-element arrays be denoted by x(t) and y(t). These are given by

(6.10.2)

and

(6.10.3)

where A is a K × M matrix with its columns denoting the M steering vectors corresponding
to M directional sources associated with the first subarray, Φ is an M × M diagonal matrix
with its mth diagonal element given by

(6.10.4)

s(t) denotes M source signals induced on a reference element, and nx(t) and ny(t), respec-
tively, denote the noise induced on the elements of the two subarrays. Comparing the
equations for x(t) and y(t), it follows that the steering vectors corresponding to M direc-
tional sources associated with the second subarray are given by AΦ.

Let Ux and Uy denote two K × M matrices with their columns denoting the M eigenvec-
tors corresponding to the largest eigenvalues of the two array correlation matrices Rxx and
Ryy, respectively. As these two sets of eigenvectors span the same M-dimensional signal
space, it follows that these two matrices Ux and Uy are related by a unique nonsingular
transformation matrix ψ, that is,

(6.10.5)

Similarly, these matrices are related to steering vector matrices A and AΦ by another
unique nonsingular transformation matrix T as the same signal subspace is spanned by
these steering vectors. Thus,

(6.10.6)

and

(6.10.7)
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Substituting for Ux and Uy and the fact that A is of full rank,

(6.10.8)

According to this statement, the eigenvalues of ψ are equal to the diagonal elements of
Φ, and columns of T are eigenvectors of ψ.

This is the main relationship in the development of ESPRIT [Roy89]. It requires an
estimate of ψ from the measurement x(t) and y(t). An eigendecompositon of ψ provides
its eigenvalues, and by equating them to Φ leads to the DOA estimates,

(6.10.9)

The ways in which estimates of ψ were efficiently obtained from the array signal
measurements led to many versions of ESPRIT [Roy89, Xu94, Ham94, Roy86, Pau86a,
Wei91]. The one summarized below is referred to as total least squares (TLS) ESPRIT
[Roy89, Xu94].

1. Make measurements from two identical subarrays that are displaced by ∆0. Esti-
mate the two array correlation matrices from the measurement and find their
eigenvalues and eigenvectors.

2. Find the number of directional sources M using available methods; some are
described in Section 6.14.

3. Form the two matrices with their columns being the M eigenvectors associated
with the largest eigenvalues of each correlation matrix. Let these be denoted by
Ux and Uy. For a ULA, this could be done by first forming an L × M matrix U, by
selecting its columns as the M eigenvectors associated with the largest eigenvalues
of the estimated array correlation matrix of the full array of L elements. Then
select the first K < L rows of U to form Ux and the last of its K rows to form Uy.

4. Form a 2M × 2M matrix

(6.10.10)

and find its eigenvalues λ1 ≥ … ≥ λ2M. Let Λ be a diagonal matrix:

(6.10.11)

Let the eigenvectors associated with λ1 ≥ … ≥ λ2M be the columns of a matrix V
such that

(6.10.12)
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5. Partition V into four matrices of dimension M × M as

(6.10.13)

6. Calculate the eigenvalues λm, m = 1, …, M of the matrix −V11V−1
22 .

7. Estimate the angle of arrival θm, using

(6.10.14)

Other ESPRIT variations include beamspace ESPRIT [Xu94], beamspace ESPRIT for
uniform rectangular array [Gan96], resolution-enhanced ESPRIT [Ham94], virtual inter-
polated array ESPRIT [Pau86a], multiple invariance ESPRIT [Swi92a], higher-order
ESPRIT [Yue96], and procrustes rotation–based ESPRIT [Zol89]. Use of ESPRIT for DOA
estimation employing an array at a base station in the reverse link of a mobile communi-
cation system has been studied in [Wan95].

6.11 Weighted Subspace Fitting Method

The weighted subspace fitting (WSF) method [Vib91, Vib91a] is a unified approach to
schemes such as MLM, MUSIC, and ESPRIT. It requires that the number of directional
sources be known. The method finds the DOA such that the weighted version of a matrix
whose columns are the steering vectors associated with these directions is close to a data-
dependent matrix. The data-dependent matrix could be a Hermitian square root of the
array correlation matrix or a matrix whose columns are the eigenvectors associated with
the largest eigenvalues of the array correlation matrix. The framework proposed in the
method can be used for deriving common numerical algorithms for various eigenstructure
methods as well as for their performance studies. WSF application for mobile communi-
cations employing an array at the base station has been investigated in [And91, Klo96].

6.12 Review of Other Methods

In this section, a brief review of methods not covered in detail is provided. A number of
eigenstructure methods reported in the literature exploit specialized array structures or
noise scenarios. Two methods using uniform circular arrays presented in [Mat94] extend
beamspace MUSIC and ESPRIT algorithms for two-dimensional angle estimation, includ-
ing an analysis of MUSIC to resolve two sources in the presence of gain, phase, and location
errors. Properties of an array have also been exploited in [Swi93] to find the azimuth and
elevation of a directional source. Two DOA estimation schemes in an unknown noise field
using two separate arrays proposed in [Wu94a] appear to offer superior performance
compared to their conventional counterparts.
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Use of a minimum redundancy linear array offers several advantages as discussed in
[Zol93]. By using such arrays, one may be able to resolve more than L sources using L
elements, L(L – 1)/2 being the upper limit. A minimum redundancy linear array has
nonuniform spacing such that the number of sensor pairs measuring the same special
correlation lag is minimized for a given number of elements. In designing such an array,
having only one pair with spacing d, one pair with spacing 2d, and so on is perferred,
such as a three-element array with element positions x1 = 0, x2 = d, and x3 = 3d. The
minimum redundancy linear arrays are also referred to as augmented arrays [God88].

The direction-finding methods applicable to unknown noise field are described in
[Wax92, LeC89, Won92, Rei92, Ami92]. The MAP (maximum a posteriori) method pre-
sented in [Won92, Rei92] is based on Bayesian analysis, and estimated results are not
asymptotically consistent, that is, the results may be biased [Wu94a]. The method in
[Ami92], referred to as concurrent nulling and location (CANAL), may be implemented
using analog hardware, thus eliminating the need for sampling, data storage, and so on.
A DOA estimation method in the presence of correlated arrivals using an array of unre-
stricted geometry is discussed in [Cad88]. Several methods that do not require eigenvalue
decomposition are discussed in [Rei87, Di85, Xu92, Wei93a, Fuc94, Che94, Yan94a, Sou95].

The method proposed in [Rei87] is applicable for a linear array of L elements. It forms
a K × K correlation matrix from one snapshot with K ≥ M, and is based on the QR
orthonormal decomposition [Gol83] on this correlation matrix, with Q being a K × K
unitary matrix and R being upper triangle. The last K – M columns of Q define a set of
orthonormal basis for the noise space. Denoting these columns by UN, the source directions
are obtained from power spectrum peaks:

(6.12.1)

The method is computationally efficient and the performance is comparable to MUSIC
[Rei87]. A multiple-source location method based on the matrix decomposition approach
is presented in [Di85]. The method requires the knowledge of the noise power estimate,
and is applicable for coherent as well as noncoherent arrivals. It does not require knowl-
edge of number of sources.

The method discussed in [Xu92] exploits the cyclostationarity [Gar91] of data that may
exist in certain situations. The method has significant implementation advantages and its
performance is comparable with the other methods. A method is discussed in [Wei93a]
that is based on polynomial rooting estimates DOA with high resolution and has low
computation requirements; it exploits the diversity polarization of an array. Such arrays
have the capability of separating signals based on polarization characteristics, and thus
have an advantage over uniformly polarized arrays [Fer83, Zis90].

An adaptive scheme based on Kalman filtering to estimate noise subspace is presented
in [Che94], which is then combined with root-MUSIC to estimate DOA. The method has
good convergence characteristics. The method presented in [Fuc94] uses a deconvolution
approach to the output of a conventional processor to localize sources, whereas those
discussed in [Yan94a, Sou95] use a neural network approach to direction finding.

The discussion on DOA estimation so far has been concentrated on estimating the
directions of stationary narrowband sources. Although extension of a narrowband direc-
tion-finding scheme to the broadband case is not trivial, some of the methods discussed
here have been extended to estimate broadband source directions. For discussion of these
and other schemes, see [Wax84, Su83, Wan85, Swi89, Kro89, Ott90, Cad90, Dor93, Gre94,
Swi94, Buc88, Hun90]. The methods described in [Su83, Wan85, Swi89, Cad90, Buc88] are
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based on a signal subspace approach, whereas those discussed in [Ott90, Hun90] and
[Dor93, Sch93] are related to the ESPRIT method and the ML method, respectively. Appli-
cations of high-resolution direction-finding methods to estimate the directions of moving
sources and to track these sources are described in [Rao94, Yan94, Liu94, Eri94, Sas91].
The problem of estimating the mean DOA of spatially distributed sources such as those
in base mobile communication systems has been examined in [Men96, Tru96].

6.13 Preprocessing Techniques

Several techniques are used to process data before using direction-finding methods for
DOA estimation, particularly in situations where directional sources are correlated or
coherent. Correlation of directional sources may exist due to multipath propagation, and
tends to reduce the rank of the array correlation matrix as discussed in Chapter 5. The
correlation matrix may be tested for source coherency by applying the rank profile test
described in [Sha87]. Most preprocessing techniques either try to restore this rank defi-
ciency in the correlation matrix or modify it to be useful for the DOA estimation methods.
In this section, some of these techniques are reviewed.

One scheme referred to as the spatial smoothing method has been widely studied in
the literature [Sha85, Wil88, Yeh89, Pil89, Lee90a, Mog91, Du91, Mog92, Yan92, Rao93,
Lio89, Wei93, Eva81], and is applicable for a linear array. Details on spatial smoothing for
beamforming are provided in Chapter 5. In its basic form, it decorrelates the correlated
arrival by subdividing the array into a number of smaller overlapping subarrays and then
averaging the array correlation matrix obtained from each subarray. The number of sub-
arrays obtained from an array depends on the number of elements used in each subarray.
For example, using K elements in each subarray, L − (K – 1) subarrays can be formed from
an array of L elements by forming the first subarray using elements 1 to K, the second
subarray using elements 2 to K + 1 and so on. The number and size of subarrays are
determined from the number of directional sources under consideration. For M sources,
a subarray size of M + 1 and a subarray number greater than or equal to M are necessary
[Sha85].

Thus, to estimate the directions of M sources, array size L = 2M is required, which could
be reduced to 3/2M by using the forward-backward spatial smoothing method [Wil88,
Pil89]. This process uses the average of the correlation matrix obtained from the forward
subarray scheme and the correlation matrix obtained from the backward subarray scheme.

The forward subarray scheme subdivides the array starting from one side of the array
as discussed above, whereas the backward subarray scheme subdivides the array starting
from the other side of the array. Thus, in the forward subarray scheme, the first subarray
is formed using elements 1 to K, whereas in the backward subarray scheme the first
subarray is formed using elements L to L − (K – 1) and so on. The mth subarray matrix
Rm

–
of the backward method is related to the forward-method matrix Rm by

(6.13.1)

where J0 is a reflection matrix with all its elements along the secondary diagonal being
equal to unity and zero elsewhere, that is,

R J R Jm m= 0 0
*
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(6.13.2)

The process is similar to that used by forward–backward prediction for bearing estimation
[Lee90a].

An improved spatial smoothing method [Du91] uses correlation between all array ele-
ments, rather than correlation between subarray elements as is done in forward–backward
spatial smoothing method. It estimates a cross-correlation matrix Rmj from subarrays m
and j, that is,

(6.13.3)

with xm(t) and xj(t), respectively, denoting the array signal vector from the mth and jth
subarrays.

The forward subarray matrix Rm is then obtained using

(6.13.4)

and
–
Rm is obtained by substituting Rm from (6.13.4) in (6.13.1). L0 in (6.13.4) denotes the

number of subarrays used.
A method described in [Mog91, Mog92] removes the effects of sensor noise to make

spatial smoothing more effective in low SNR situations. This spatial filtering method is
further refined in [Del96] to offer DOA estimates of coherent sources with reduced RMS
errors.

A decorrelation analysis of spatial smoothing [Yan92] shows that there exists an upper
bound on the number of subarrays and the maximum distance between the subarrays
depends on the fractional bandwidth of the signals. A comprehensive analysis of the use
of spatial smoothing as a preprocessing technique to weighted ESPRIT and MUSIC meth-
ods of DOA estimation presented in [Rao93] shows how their performance could be
improved by proper choice of the number of subarrays and weighting matrices. An ESPRIT
application to estimate the source directions and polarization shows improvement in its
performance in the presence of coherent arrivals when it is combined with the spatial
smoothing method [Li93].

Spatial smoothing methods using subarray arrangements reduce the effective aperture
of the array as well as degrees of freedom, and thus more elements are needed to process
correlated arrivals than would otherwise be required. The schemes that do not reduce
effective array size include those that restore the structure of the array correlation matrix
for the linear array to an uncorrelated one. These are referred to as structured methods
[God90, Tak87].

Structured methods rely on the fact that for a linear equispaced array, the correlation
matrix in the absence of correlated arrivals has a Toeplitz structure, that is, the elements
of the matrix along its diagonals are equal. Correlation between sources destroys this
structure. In [God90], the structure is restored by averaging the matrix obtained in the
presence of correlated arrivals by simple averaging along the diagonals as detailed in
Chapter 5, while in [Tak87] a weighted average is used. A DOA estimation method using
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the array correlation matrix structured by averaging along its diagonals discussed in
[Fuc96] appears to offer computational advantages over similar methods.

Other preprocessing schemes to decorrelate sources include random permutation
[Lio89], mechanical movement using a circular disk [Lim90], construction of a preprocess-
ing matrix using approximate knowledge of DOA estimate [Wei94a], signal subspace
transformation in the spatial domain [Par93], unitary transformation method [Hua91],
and methods based on aperture interpolations [Wei93, Swi89a, Wei95].

6.14 Estimating Source Number

Many high-resolution direction-finding methods require that the number of directional
sources, and their performance is dependent on perfect knowledge of these numbers.
Selected methods for estimating the number of these sources are discussed in this section.

The most commonly referred method for detecting the number of sources was first
introduced in [Wax85] based on Akaike’s information criterion (AIC) [Aka74] and Ris-
sanen’s minimum description length (MDL) [Ris78] principle. The method was further
analyzed in [Zha89, Wan86] and modified in [Yin87, Won90]. A variation of the method
that is applicable to coherent sources is discussed in [Wax92, Wax89a, Wax91]. Briefly, the
method works as follows [Wax85, Wan86]:

1. Estimate the array correlation matrix from N independent and identically distrib-
uted samples.

2. Find the L eigenvalues λi, i = 1, 2, …, L of the correlation matrix such that λ1 >
λ2 > … > λL.

3. Estimate the number of sources M by solving

(6.14.1)

where

(6.14.2)

(6.14.3)

and the penalty function

(6.14.4)

minimize  
M

N L M
M
M

M N−( ) ( )
( )







+ ( )log ,
f
f

f1

2
3

f1
1

1
M

L M i
i M

L

( ) =
−

= +
∑ λ

f2
1

1

M i
i M

L L M

( ) =










= +

−

∏ λ

f3
2

1
2

2
M N

M L M

M L M N
,

log
( ) =

−( )
−( )







for AIC

for MDL
C Press LLC 



© 2004 by CR
with L denoting the number of elements in the array.
A modification of the method based on the MDL principle applicable to coherent sources

is discussed in [Wax89a], which is further refined in [Wax92, Wax91] to improve perfor-
mance. A parametric method that does not require knowledge of eigenvalues of the array
correlation matrix is discussed in [Wu91]. It has better performance than some other
methods discussed and is computationally more complex.

All methods that partition the eigenvalues of the array correlation matrix rely on the
fact that the M eigenvalues corresponding to M directional sources are larger than the rest
of the L – M eigenvalues corresponding to the background noise; they also select the
threshold differently. One of the earliest methods uses a hypothesis-testing procedure
based on the confidence interval of noise eigenvalues [And63]. Threshold assignment was
subjective.

The eigenthreshold method uses a one-step prediction of the threshold for differentiating
the smallest eigenvalues from the others. This method performs better than AIC and MDL.
It has a threshold at a lower SNR value than MDL and a lower error rate than AIC at high
SNRs [Che91].

An alternate scheme for estimating the number of sources discussed in [Lee94] uses the
eigenvectors of the array correlation matrix; in contrast, other methods use the eigenvalues
of the array correlation matrix. This method, referred to as the eigenvector detection
technique, is applicable to a cluster of sources whose approximate directions are known,
and is able to estimate the number of sources at a lower SNR than those by AIC and MDL.

In practice, the number of sources an array may be able to resolve not only depends on
the number of elements in the array but also on array geometry, available number of
snapshots, and spatial distribution of sources. For discussion of these and other issues
related to array capabilities to uniquely resolve the number of sources, see [Fri91, Wax89,
Bre86] and references therein.

6.15 Performance Comparison

Performance analysis of various direction finding-schemes has been carried out by many
researchers [Joh82, Rao89, Lee90, Xu93, Pil89a, Sto89, Sto90a, Xu92a, Xu94a, Lee91, Zho91,
Zho93, Zha95a, Kau95, Kav86, Sto90, Sto91, Ott91, Mat94, Ott92, Vib95, Wei93, Cap70].
The performance measures considered for analysis include bias, variance, resolution,
CRLB, and probability of resolution. In this section, the performance of selected DOA
estimation schemes is discussed.

The MUSIC algorithm has been studied in [Lee90, Xu93, Pil89a, Sto89, Sto90a, Xu92a,
Xu94a, Lee91, Zho91, Zho93, Zha95a, Kau95, Kav86]. Most of these studies concentrate
on its performance and performance comparisons with other methods when a finite
number of samples is used for direction finding rather than their ensemble average.

A rigorous bias analysis of MUSIC shows [Xu92a] that the MUSIC estimates are biased.
For a linear array in the presence of a single source, the bias increases as the source moves
away from broadside. Interestingly, the bias also increases as the number of elements
increases without changing the aperture. An asymptotic analysis of MUSIC with for-
ward–backward spatial smoothing in the presence of correlated arrivals shows that to
estimate two angles of arrival of equal power under identical conditions, more snapshots
are required for correlated sources than for uncorrelated sources [Pil89a, Kav86].
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Bias and the standard deviation (STD) are complicated functions of the array geometry,
SNR, and number and directions of sources, and vary inversely proportional to the number
of snapshots. A poorer estimate generally results using a smaller number of snapshots
and sources with lower SNR. As shown in [Xu93, Xu92a], the performance of conventional
MUSIC is poor in the presence of correlated arrivals, and it fails to resolve coherent sources.

Although the bias and STD both play important roles in direction estimation, the effect
of bias near the threshold region is critical. A comparison of MUSIC performance with
those of the minimum-norm and FINE for finite-sample cases shows [Xu94a] that in the
low SNR range, the minimum-norm estimates have the largest STD and MUSIC estimates
have the largest bias. These results are dependent on source SNR, and the performance
of all three schemes approaches to the same limit as the SNR is increased. The overall
performance of FINE is better than the other two in the absence of correlated arrivals.

The estimates obtained by MUSIC and ML methods are compared with the CRLB in
[Sto89, Sto90a] for large-sample cases. The CRLB gives the theoretically lowest value of
the covariance of an unbiased estimator; it decreases with the number of samples, number
of sensors in the array, and source SNR [Sto89]. The study [Sto89] concluded that the
MUSIC estimates are the large-sample realization of ML estimates in the presence of uncor-
related arrivals. Furthermore, it shows that the variance of the MUSIC estimate is greater
than that of the ML estimate, and variance of the two methods approchaes each other, as the
number of elements and snapshots increases. Thus, using an array with a large number of
elements and samples, excellent estimates are possible of directions of uncorrelated sources
with large SNRs using the MUSIC method [Sto89]. It should be noted that MLM estimates
are unbiased [Vib95]. An unbiased estimate is also referred to as a consistent estimate.

An improvement in MUSIC DOA estimation is possible by beamspace MUSIC [Lee90,
Xu93]. By properly selecting a beamforming matrix and then using the MUSIC scheme to
estimate DOA, one is able to reduce the threshold level of the required SNR to resolve
the closely spaced sources [Lee90]. Although the variance of this estimate is not much
different from the element space case, it has less bias [Xu93]. The resolution threshold of
beamspace MUSIC is lower than the conventional minimum-norm method. However, for
two closely spaced sources, the beamspace MUSIC and beamspace minimum-norm pro-
vide identical performances when suitable beamforming matrices are selected [Lee90].

As shown in [Kau95], when beamforming weights have conjugate symmetry (useful
only for arrays with particular symmetry), the beamspace MUSIC has decorrelation prop-
erties similar to backward–forward smoothing and thus is useful for estimation of corre-
lated arrival source direction and offers performance advantages in terms of lower
variance for the estimated angle.

The resolution property of MUSIC analyzed in [Lee91, Zho91, Zho93, Zha95a, Kav86]
shows how it depends on SNR, number of snapshots, array geometry, and separation
angle of the two sources. The two closely spaced sources are said to be resolved when
two peaks in the spectrum appear in the vicinity of the two sources’ directions. Analytical
expressions of resolution probability and its variation as a function of various parameters
are presented in [Zha95a], and could be used to predict the behavior of a MUSIC estimate
for a given scenario.

A performance comparison of MUSIC and another eigenvector method, which uses
noise eigenvectors divided by corresponding eigenvalues for DOA estimation, indicates
[Joh82] that the former is more sensitive to the choice of assumed number of sources
compared to actual number of sources.

Performance analysis of many versions of ESPRIT are considered in [Rao89, Sto91a,
Ott91, Mat94a] and compared with other methods. Estimates obtained by subspace rota-
tion methods that include the Toeplitz approximation method (TAM) and ESPRIT have
greater variance than those obtained by MUSIC using large numbers of samples [Sto91a];
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estimates by ESPRIT using a uniform circular array are asymptotically unbiased [Mat94a];
LS-ESPRIT and TAM estimates are statistically equivalent; LS-ESPRIT and TLS-ESPRIT
have the same MSE [Rao89] and their performance depends on how subarrays are selected
[Ott91]; the minimum-norm method is equivalent to TLS-ESPRIT [Dow91]; and root-
MUSIC outperforms the ESPRIT [Rao89a]. TAM is based on the state space model, and
finds DOA estimates from signal subspace. In spirit, its approach is similar to ESPRIT
[Rao89]. The WSF and ML methods are efficient for Gaussian signals, as both attain CRLB
asymptotically [Sto90b, Ott92]. A method is said to be efficient when it achieves CRLB.

A correlation between sources affects the capabilities of various DOA estimation algo-
rithms differently [DeG85]. A study of the effect of the correlation between two sources
on the accuracy of DOA-finding schemes presented in [Wei93b] shows that the correlation
phase is more significant than correlation magnitude. Most performance analysis dis-
cussed assumes that the background noise is white. When this is not the case, the DOA
schemes perform differently. In the presence of colored background noise, MUSIC perfor-
mance is better than that of ESPRIT and the minimum-norm method over a wide range
of SNRs. The performance of the minimum-norm method is worse than MUSIC and
ESPRIT [Li92].

6.16 Sensitivity Analysis

Sensitivity analysis of MUSIC to various perturbations is presented in [Swi92, Rad94,
Fri94, Wei94, Ng95, Soo92]. A compact expression for the error covariance of the MUSIC
estimates given in [Swi92] may be used to evaluate the effect of various perturbation
parameters including gain and phase errors, effect of mutual coupling, channel errors,
and random perturbations in sensor locations. It should be noted that MUSIC estimates
of DOA require knowledge of the number of sources, similar to certain other methods and
underestimation of the source number may lead to inaccurate estimates of DOAs [Rad94].
A variance expression for the DOA estimate for this case has been provided in [Rad94].

Analysis of the effect of model errors on the MUSIC resolution threshold [Fri90, Wei94]
and on the wave forms estimated using MUSIC [Fri94] indicate that the probability of
resolution decreases [Wei94] with the error variance, and that the sensitivity to phase
errors depends more on array aperture than the number of elements [Fri94] in a linear
array. The effect of gain and phase error on the mean square error (MSE) of the MUSIC
estimate of a general array is analyzed in [Sri91]. The problem of estimating gain and
phase errors of sensors with known locations is considered in [Ng95].

An analysis [Soo92] of ESPRIT under random sensor uncertainties suggests that the
MUSIC estimates generally give lower MSEs than ESPRIT estimates. The former is more
sensitive to both sensor gain and phase errors, whereas the latter depends only on phase
errors. The study further suggests that for a linear array with a large number of elements,
the MSE of the ESPRIT estimate with maximum overlapping subarrays is lower than
nonoverlapping subarrays.

The effect of gain and phase errors on weighted eigenspace methods including MUSIC,
minimum-norm, FINE, and CLOSEST is studied in [Ham95] by deriving bias and variance
expressions. This study indicates that the effect is gradual up to a point and then the
increase in error magnitude causes the abrupt deterioration in bias and variance. The
weighted eigenspace methods differ from the standard ones such that a weighting matrix
is used in the estimate, and that matrix could be optimized to improve the quality of the
estimate under particular perturbation conditions.
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The effect of nonlinearity in the system on spectral estimation methods, including hard
clipping common in digital beamformers, has been analyzed in [Tut81]. It shows that by
using additional preprocessing such distortions could be eliminated.

Effects of various perturbations on DOA estimation methods emphasize the importance
of precise knowledge of various array parameters. Selected techniques to calibrate arrays
are discussed in [Wei89, Wyl94]. Schemes to estimate the steering vector, and in turn DOA
from uncalibrated arrays, are discussed in [Tse95]. [Che91a] focus on a scheme to estimate
DOA. Discussions on robustness issues of direction-finding algorithms are found in [Fli94,
Wei90]. A summary of performance and sensitivity comparisons of various DOA estima-
tion schemes is provided in Tables 6.1 to Table 6.12 [God97].

TABLE 6.1

Performance Summary of Bartlett Method

Property Comments and Comparison

Bias Biased
Bartlett > LP > MLM

Resolution Depends on array aperture
Sensitivity Robust to element position errors
Array General array

TABLE 6.2

Performance Summary of MVDR Method

Property Comments and Comparison

Bias Unbiased
Variance Minimum
Resolution MVDR > Bartlett

Does not have best resolution of any method
Array General array

TABLE 6.3

Performance Summary of Maximum Entropy Method

Property Comments and Comparison

Bias Biased
Resolution ME > MVDR > Bartlett

Can resolve at lower SNR than Bartlett

TABLE 6.4

Performance Summary of Linear Prediction Method

Property Comments and Comparison

Bias Biased
Resolution LP > MVDR

>Bartlett
>ME

Performance Good in low SNR conditions
Applicable for correlated arrivals
C Press LLC 



© 2004 by CR
TABLE 6.5

Performance Summary of ML Method

Property Comments and Comparison

Bias Unbiased
Less than LP, Bartlett, MUSIC

Variance Less than MUSIC for small samples
Asymptotically efficient for random signals
Not efficient for finite samples
Less efficient for deterministic signals than random signals
Asymptotically efficient for deterministic signals using very large array

Computation Intensive with large samples
Performance Same for deterministic and random signals for large arrays

Applicable for correlated arrivals
Works with one sample

TABLE 6.6

Performance Summary of Element Space MUSIC Method

Property Comments and Comparison

Bias Biased
Variance Less than ESPRIT and TAM for large samples, minimum norm

Close to MLM, CLOSEST, FINE
Variance of weighted MUSIC is more than unweighted MUSIC
Asymptotically efficient for large array

Resolution Limited by bias
Array Applicable for general array

Increasing aperture makes it robust
Performance Fails to resolve correlated sources
Computation Intensive
Sensitivity Array calibration is critical, sensitivity to phase error depends more on array 

aperture than number of elements, preprocessing can improve resolution
Correct estimate of source number is important
MSE depends on both gain and phase errors and is lower than for ESPRIT
Increase in gain and phase errors beyond certain value causes an abrupt 
deterioration in bias and variance

TABLE 6.7

Performance Summary of Beam Space MUSIC Method

Property Comments and Comparison

Bias Less than element space MUSIC
Variance Larger than element space MUSIC
RMS Error Less than ESPRIT, minimum norm
Resolution Similar to beamspace minimum norm, CLOSEST

Better than element space MUSIC, element space minimum norm
Threshold SNR decreases as the separation between the sources increases

Computation Less than element space MUSIC
Sensitivity More robust than element space MUSIC
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TABLE 6.8

Performance Summary of Root-MUSIC Method

Property Comments and Comparison

Variance Less than root minimum norm, ESPRIT
Resolution Beamspace root-MUSIC has better probability of resolution than beamspace MUSIC
RMS error Less than LS ESPRIT
Array Equispaced linear array
Performance Better than spectral MUSIC

Similar to TLS ESPRIT at SNR lower than MUSIC threshold
Beamspace root-MUSIC is similar to element space root MUSIC

TABLE 6.9

Performance Summary of Minimum Norm Method

Property Comments and Comparison

Bias Less than MUSIC
Resolution Better than CLOSEST, element space MUSIC
Method Equivalent to TLS

TABLE 6.10

Performance Summary of CLOSEST Method

Property Comments and Comparison

Variance Similar to element space MUSIC
Resolution Similar to beamspace MUSIC

Better than minimum norm
Performance Good in clustered situation
Sensitivity An increase in sensor gain and phase errors beyond certain 

value causes an abrupt deterioration in bias and variance

TABLE 6.11

Performance Summary of ESPRIT Method

Property Comments and Comparison

Bias TLS ESPRIT unbiased
LS ESPRIT biased

RMS Error Less than minimum norm
TLS similar to LS

Variance Less than MUSIC for large samples and difference increases with number of elements in array
Computation Less than MUSIC

Beam space ESPRIT needs less computation than beamspace root-MUSIC and ES ESPRIT
Method LS ESPRIT is similar to TAM
Array Needs doublets, no calibration needed
Performance Optimum-weighted ESPRIT is better than uniform-weighted ESPRIT

TLS ESPRIT is better than LS ESPRIT
Sensitivity More robust than MUSIC and cannot handle correlated sources

MSE robust for sensor gain errors
MSE is lowest for maximum overlapping subarrays under sensor perturbation
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Notation and Abbreviations

AIC Akaike’s information criterion
CANAL concurrent nulling and location
CRLB Cramer–Rao lower bound
DOA direction of arrival
ESPRIT estimation of signal parameters via rotational invariance technique
FINE first principal vector
LMS least mean square
LP linear prediction
LS least square
MAP maximum a posteriori
MDL minimum description length
ME maximum entropy
ML maximum likelihood
MLM maximum likelihood method
MSE mean square error
MVDR minimum variance distortionless response
MUSIC multiple signal classification
SNR signal-to-noise ratio
STD standard deviation
TAM Toeplitz approximation method
TLS total least square
ULA uniformly spaced linear array
WSF weighted subspace fitting

TABLE 6.12

Performance Summary of FINE Method

Property Comments and Comparison

Bias Less than MUSIC
Resolution Better than MUSIC and minimum norm
Variance Less than minimum norm
Performance Good at low SNR
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A L × M matrix with columns being steering vectors
d interelement spacing of linear equispaced array
E[⋅] expectation operator
e1 vector of all zeros except first element, which is equal to unity
fN Nyquist frequency
H(s) entropy function
J0 reflection matrix with all elements along secondary diagonal being equal to

unity and zero elsewhere
K number of elements in subarray
L number of elements in array
L0 number of subarrays
M number of directional sources 
N number of samples
PB(θ) power estimated by Bartlette method as function of θ
PLP(θ) power estimated by linear prediction method as function of θ
PME(θ) power estimated by maximum entropy method as function of θ
PMN(θ) power estimated by minimum norm method as function of θ
PMU(θ) power estimated by MUSIC method as function of θ
PMV(θ) power estimated by MVDR method as function of θ
R array correlation matrix 
Rm mth subarray matrix of forward method 
Rm
–

mth subarray matrix of backward method
Rmj cross correlation matrix of mth and jth subarrays
rij correlation between the ith and the jth elements
Sθ steering vector associated with the direction θ
S( f ) power spectral density of signal s(t)
s(t) vector of M source signals induced on reference element
T transformation matrix
UN matrix with its L – M columns being the eigenvectors corresponding to the

L – M smallest eigenvalues of R
US matrix with M columns being eigenvectors corresponding to M largest

eigenvalues
u1 column vector of all zeros except one element that is equal to unity
w array weight vector
ŵ optimized array weights 
Φ diagonal matrix defined by (6.10.4)
∆0 magnitude of displacement vector
Λ diagonal matrix defined by (6.10.11)
θ direction of source
τij(θ) differential delay between elements i and j due to source in direction θ
ψ transformation matrix
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7
Single-Antenna System in Fading Channels

7.1 Fading Channels
7.1.1 Large-Scale Fading
7.1.2 Small-Scale Fading
7.1.3 Distribution of Signal Power
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7.3.1.1 Rayleigh Fading Environment
7.3.1.2 Nakagami Fading Environment
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7.3.2.1 Identical Interferences
7.3.2.2 Signal and Interference with Different Statistics

7.3.3 Interference with Nakagami Fading and Shadowing
7.3.4 Error Rate Performance

Notation and Abbreviations
References

In previous chapters, it is assumed that the directional signals arrive from point sources as
plane wave fronts. In mobile communication channels, the received signal is a combination
of many components arriving from various directions as a result of multipath propagation.
Depending on terrain conditions and local buildings and structures, the power of the
received signal fluctuates randomly as a function of distance. Fluctuations on the order of
20 dB are common within the distance of one wavelength. This phenomenon is called fading.

In this chapter, a brief review of fading channels is presented with a view to introduce
notation and to develop mathematical equations to be used for analyzing the behavior of
communication systems. The chapter also contains analyses of a single antenna system
under various fading conditions. The methodology presented in this chapter would be
helpful in analyzing the performance of various diversity-combining schemes discussed
in Chapter 8, and results would serve as a reference for comparison.

A detailed treatment of fading channels is presented in [Skl02]. For an introduction to
mobile communications, see [God02]. For details on digital communications and the
required probability theory, see [Pro95].

7.1 Fading Channels

Let a transmitted signal s(t) be expressed in complex notation as

(7.1.1)s t g t ej f tc( ) = ( )[ ]Re 2π
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where Re[.] denotes the real part of a complex quantity, fc is the carrier frequency, and g(t)
is the complex envelope of s(t) that can be expressed in the magnitude and phase form as

(7.1.2)

where �g(t)� is the magnitude and φ(t) is the phase of the complex baseband wave form.
For the frequency and phase-modulated signals, �g(t)� is constant. Without any loss of

generality, it is assumed in the present discussion that it is equal to unity.
In the mobile communications environment, the transmitted signal undergoes fading.

There are two kinds of fading, namely large-scale and small-scale.
Large-scale fading, also known as shadowing, is caused by hills and large buildings. It

determines the local mean signal power at distance R from the transmitter. Let S denote
this power. It is a random quantity and the random variable S has a log-normal distribu-
tion.

Let Sd denote the mean signal power in decibels. Thus, Sd and S are related by

(7.1.3)

where log denotes log10(.). The random variable (RV) Sd has a normal distribution.
Small-scale fading, on the other hand, is a local phenomenon caused by multipath

propagation. It causes in a rapid fluctuation of the signal around the slowly varying local
mean.

Let x0(t) denote the signal component induced on an antenna. It is given by

(7.1.4)

where x̃0(t) is the signal component in the complex form. Following (7.1.1) and (7.1.2) x̃0(t)
can be expressed as

(7.1.5)

In the above equation, the complex random quantity r(t)ejθ(t) accounts for channel fading
with r(t) denoting the signal amplitude and θ(t) representing the random phase process
uniformly distributed in [0,2π).

It is convenient to think r(t) as a product of two variables, that is,

(7.1.6)

where m(t) is a slowly varying quantity and denotes the local mean value of the signal.
It accounts for large-scale fading and the effect of shadowing, and determines the local
mean power S given by

(7.1.7)

The complex quantity r0(t)ejθ(t) is the result of small-scale fading and causes rapid fluctu-
ations about the local mean signal m(t).

g t g t ej t( ) = ( ) ( )φ

S Sd = 10log

x t x t0 0( ) = ( )[ ]Re ˜

x̃ t r t e e ej t j f t j tc
0

2( ) = ( ) ( ) ( )θ π φ

r t m t r t( ) = ( ) ( )0

S m t= ( )2
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7.1.1 Large-Scale Fading

In free-space propagation, the received signal power PR at distance R from the transmitter
and the transmitted power PT of an isotropic source are linked by the well-known relation

(7.1.8)

Let PR0
 denote the received signal power at a reference distance R0 from the transmitter,

that is,

(7.1.9)

It follows from (7.1.8) and (7.1.9) that the received powers PR and PR0
 are related by

(7.1.10)

In mobile radio channels, the mean path loss between a transmitter and a receiver is
proportional to the nth power of distance R relative to a reference distance R0 rather than
2, as is the case for free-space propagation. In urban areas, a typical value of the path loss
exponent n is four. Denoting the received signal power at distance R0 from the transmitter
by S(R0), and the received signal power at a distance R from the transmitter by S(R), it
follows from (7.1.10) that for mobile radio channels,

(7.1.11)

Let Sd denote S(R) in decibels, that is,

(7.1.12)

Substituting for S(R) from (7.1.11) in (7.1.12) leads to

(7.1.13)

Note that the signal power S(R) received at R meters away from the transmitter is an
average value and is referred to as the area mean. Thus, Sd is the area mean signal power
in decibels. It is different from the mean signal power that we previously also referred to
as the local mean signal power and denoted by S (and Sd in decibels). The relationship
between the two is now described.

The mean signal power Sd is site dependent and for a given transmitter–receiver sepa-
ration, it differs from location to location due to the shadowing effect. It is a random
quantity with a normal distribution, and this randomness is reflected by adding a random
quantity to the area mean power Sd to yield an expression for the received mean power
in decibels, yielding

P
P
RR
T=

4 2π

P
P
RR
T

0 4 0
2=

π

P P
R
RR R= 



0

0
2

S R S R
R
R

n

( ) = ( )

0

0

S S Rd = ( )10log

S S R n
R
Rd = ( ) + 





10 100
0log log
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(7.1.14)

where Xσs
 is a zero-mean, Gaussian random variable (in decibels) with standard deviation

σs (also in decibels). The parameter σs is called the decibel spread and is a site-dependent
quantity. It may take on values between 6 to 12 dB depending on the severity of shadowing
[Fre79].

It follows from (7.1.4) that Sd is a random variable with a mean value equal to the area
mean Sd, that is,

(7.1.15)

Thus, Sd is a random variable having normal distribution with the mean value equal to
Sd and the standard deviation equal to σs. An expression for its probability density function
(pdf) fsd

(Sd) is given by [Yeh84]:

(7.1.16)

Due to the fact that the log value of S has a normal distribution, S is said to have a log-
normal distribution.

Note that the cumulative distribution function (cdf) Fx of an RV x is related to its pdf by

(7.1.17)

or alternately,

(7.1.18)

It follows from (7.1.16) and (7.1.17) that

(7.1.19)

Since

(7.1.20)

a differentiation on both sides with respect to S results in

(7.1.21)

S S Xd d s
= + σ

S E Sd d= [ ]

f S
S S

s d
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d d
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By substituting for Sd and dSd, it follows from (7.1.19) that the cdf of S is given by

(7.1.22)

This along with (7.1.18) implies that the pdf of S can be expressed as

(7.1.23)

7.1.2 Small-Scale Fading

For the discussion on small-scale fading, assume that the large-scale fading component
m(t) and thus the local mean signal power S remain constant. This would be the case
when the receiving antenna remains within a limited trajectory such that shadowing effects
may be ignored.

Under the assumption of m(t) being constant, it follows from (7.1.6) that the quantity
r(t)ejθ(t) may be thought of as representing the small-scale fading effect similar to r0(t)ejθ(t).
This quantity is the resultant sum of many scattered multipath components of varying
amplitude and phase arriving at the receiving antenna. Denote this in terms of its orthog-
onal components a(t) and b(t), that is,

(7.1.24)

The variables a(t) and b(t) result from the addition of many multipath components.
When the number of such components is large, these variables at a given time are statis-
tically independent, Gaussian random variables with a zero mean and equal variance σ2.
Dropping the reference to time for ease of notation, one thus writes expressions for pdfs
of a and b as

(7.1.25)

Writing an expression for the signal envelope from (7.1.24) as

(7.1.26)

it follows that r(t) ≥ 0 for all t. Furthermore, at a given time, it is a RV with

(7.1.27)
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Next, an expression for the pdf of r is derived. Consider

(7.1.28)

where xi, i = 1, 2, …, N are statistically independent, Gaussian random variables with a
zero mean and equal variance σ2. The pdf of Y is given by [Pro95]

(7.1.29)

where Γ(p) is the gamma function, defined as

(7.1.30)

It has the following properties [Abr72]:

(7.1.31)

and

(7.1.32)

The pdf given by (7.1.29) is called a chi-square or gamma pdf with N degrees of freedom.
In the present case,

(7.1.33)

Thus, N = 2 and the pdf of Y ≡ r2 becomes

(7.1.34)

Since the cdf of a RV x is related to its pdf by (7.1.17), it follows from (7.1.34) and (7.1.17)
that the cdf of Y, FY, is given by

(7.1.35)
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Thus,

(7.1.37)

and

(7.1.38)

Substituting from (7.1.37) and (7.1.38) in (7.1.35) and using r = Y1/2 leads to the cdf of r
given by

(7.1.39)

This along with the relation (7.1.18) yields

(7.1.40)

This is the pdf of a Rayleigh-distributed RV. Thus, r is an RV with Rayleigh distribution.
When the received signal has a significant nonfading component (line-of-sight compo-

nent) other than the reflective multipath component, the received signal envelope has a
Rice distribution with pdf given by [Rap96]

(7.1.41)

where A denotes the peak amplitude of the line-of-sight (LOS) component and I0( ) is the
modified Bessel function of the first kind and zero order. The Rice distribution is often
characterized by a parameter K0 defined as

(7.1.42)

As the magnitude of the LOS component A goes to zero, the Rice pdf approaches the
Rayleigh pdf given by (7.1.40).

Another distribution that is frequently used to describe the statistics of signals trans-
mitted through multipath fading channels is the Nakagami m-distribution with pdf given
by [Pro95]:

(7.1.43)
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(7.1.44)
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The fading parameter m is defined as

(7.1.45)

and Γ(m) is the gamma function.
Note that when m = 1, (7.1.43) reduces to the Rayleigh pdf given by (7.1.40). For values

of m in the range of 1/2 ≤ m ≤ 1, (7.1.43) results in pdfs having larger tails than a Rayleigh
pdf, whereas for m > 1 the tails of this pdf decay faster than the Rayleigh pdf. The term
m = ∞ denotes no fading.

The discussion presented thus far relates to distribution of the received signal amplitude.
Now the distribution of signal power is considered.

7.1.3 Distribution of Signal Power

The instantaneous power S of the received signal x0(t) is given by

(7.1.46)

It follows from (7.1.4), (7.1.5) and (7.1.46) that the expression for the instantaneous power
averaged over one radio frequency cycle reduces to

(7.1.47)

Equation (7.1.47) along with (7.1.27) implies that the local mean signal power S is given by

(7.1.48)

Now, an expression for fS, the pdf of S is derived for the case when the signal amplitude
has the Rayleigh distribution given by (7.1.40). For this case, the cdf of r, Fr, is given by
(7.1.39).

To transform fr into fS define a new variable:

(7.1.49)

Thus,

(7.1.50)

Using (7.1.47) to (7.1.50) in (7.1.39), the cdf of S is given by

(7.1.51)
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This along with the relation

(7.1.52)

yields

(7.1.53)

Similarly, the pdf of S in a Nakagami and Rice fading environment may be obtained.
For the case of Nakagami distributed environment, S is a gamma-distributed RV with

pdf fS(S) given by [Abu91, Woj86]:

(7.1.54)

7.2 Channel Gain

In this section, the concept of channel gain, sometimes also referred to as channel atten-
uation [Pro95] (to be used later in the book), is introduced and selected signal and power
variables are expressed using the channel gain. Define a real variable

(7.2.1)

to denote the signal envelope normalized with respect to the square root of the mean
signal power S and a complex variable C(t)

(7.2.2)

to denote the channel gain.
Thus, the received signal in the complex form given by (7.1.5) can be expressed as

(7.2.3)

where g(t) is the transmitted signal normalized to have a unit energy, that is,

(7.2.4)

Assume that the channel varies slowly such that α(t) and θ(t) may be regarded as
constant over a time duration T of interest, such as a bit or symbol duration. Thus, over
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this time the channel gain can be regarded as constant and the reference to time t may be
dropped, yielding

(7.2.5)

The instantaneous signal power S averaged over time T is then given by

(7.2.6)

In view of (7.2.1)  and the fact that the mean signal power is constant for  a given large-
scale fading, the channel gain is a complex RV and has the same statistics as r(t)ejθ(t).

7.3 Single-Antenna System

In this section, a single-channel system is considered, and its performance is examined by
studying the outage probability and the average bit error rate (BER) in the presence of
frequency nonselective slow-fading channels. Both noise-limited and interference-limited
systems are considered. The methodology to evaluate outage probability and average BER
presented here should be helpful in evaluating these parameters for various diversity
schemes discussed in Chapter 8.

7.3.1 Noise-Limited System

In a noise-limited system, system performance is limited by noise and the effect of co-
channel interference is negligible. Consider a noise-limited system with a single source in
the presence of an additive white Gaussian noise (AWGN) of zero mean and variance N.
Let γ denote the instantaneous signal power to the mean noise power ratio, that is,

(7.3.1)

As discussed in Section 7.1, S is an RV and thus γ is an RV. Let Γ denote its mean value,
that is,

(7.3.2)

Substituting from (7.3.1) in (7.3.2) and noting that S denotes the mean value of S,

(7.3.3)

For a receiver to function properly in a noise-limited system the SNR at its input must
be above a certain threshold γ0. When SNR drops below this threshold, the communication
link does not remain operational. The probability of this happening is referred to as the

˜ ,     x t C S g t e t Tj f tc
0

2 0( ) = ( ) ≤ ≤π

S
S= α 2

2

γ = S
N

Γ = ( )E γ

Γ = S
N

C Press LLC 



© 2004 by CR
outage probability, denoted by Po. Denoting P[x] as the probability of an event x, Po may
be expressed as

(7.3.4)

where fγ and Fγ, respectively, denote the pdf and cdf of γ.
It follows from (7.3.4) that evaluation of outage probability requires knowledge of the

pdf or the cdf of γ, which depends on the fading environment. The pdf of γ is also useful
in determining the average BER in the fading environment. When the conditional prob-
ability of bit error for a given value of the SNR, Pe(γ), is known, the average BER, Pe, may
be obtained by averaging over γ, that is,

(7.3.5)

7.3.1.1 Rayleigh Fading Environment

In this case, the signal amplitude has a Rayleigh distribution. First, we derive the pdf and
cdf of γ. The pdf of S is given by (7.1.53), that is,

(7.3.6)

It follows from (7.1.17) and (7.3.6) that the cdf of S is given as

(7.3.7)

Define a new variable:

(7.3.8)

Thus,

(7.3.9)

and

(7.3.10)

Substituting from (7.3.9) and (7.3.10) in (7.3.7) and using (7.3.1) and (7.3.3),

(7.3.11)
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Equations (7.1.17) and (7.3.11) imply that

(7.3.12)

Using (7.3.4), the outage probability then becomes

(7.3.13)

7.3.1.2 Nakagami Fading Environment

For this case, the pdf of S is given by (7.1.54). Following the procedure of the previous
section, the following expression for the pdf of γ is obtained:

(7.3.14)

The cumulative distribution function of γ then is given by

(7.3.15)

Defining

(7.3.16)

and noting that for integer m, Γ(m) = (m − 1)!, (7.3.15) becomes

(7.3.17)

yielding

(7.3.18)

7.3.2 Interference-Limited System

In an interference-limited system, system performance is limited by total interference
power and not noise power, as is the case for noise-limited systems. In this case, the effect
of noise is negligible and thus is ignored.
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In this section, the effect of co-channel interference is examined by deriving the expression
for the probability of signal-to-interference ratio µ being less than the desired threshold
value µ0 in a Nakagami fading environment [Abu91]. Rayleigh fading is treated as a special
case.

Assume that the received signal amplitude is an RV with a Nakagami distribution. Then
the signal power S is a gamma-distributed RV with pdf given by (7.1.54).

Assume that there are K co-channel interferences present. Let qi, i = 1, 2, …, K be i.i.d.
RVs with Nakagami distribution, and denote the amplitude of these interferences. Let Ii,
i = 1, 2, …, K denote their instantaneous powers, that is,

(7.3.19)

Let ψi, i = 1, 2, …, K be i.i.d. random-phase processes associated with K interferences.
It is assumed that r, θ, qi and ψi, i = 1, 2, …, K are mutually independent. Note that r and
θ denote the amplitude and phase of the signal, respectively.

The interference power Ii is a gamma-distributed RV with pdf given by (following 7.1.54)

(7.3.20)

where mi is the fading parameter and Ii is the mean power of the ith interference.

7.3.2.1 Identical Interferences

Consider that all interferences have identical statistics with the fading parameter denoted
by m (same as the signal) and equal mean power denoted by I. As interferences are
independent, the total interference power I is given by

(7.3.21)

I is a gamma-distributed RV with pdf given by [Abu91, Fel66]

(7.3.22)

Note that I denotes the total interference power and I denotes the mean power of each
interference.

Assume that the channel becomes inoperable when the ratio of signal power S to total
interference power I becomes less than some desired value µ0. Thus, the outage probability
with K interference PK

o can be written as

(7.3.23)
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This could be solved by letting S = x, finding the probability that µ0I ≥ x, and integrating
over x. Thus, (7.3.23) becomes [Fre79]

(7.3.24)

Since

(7.3.25)

and

(7.3.26)

it follows from (7.3.24) that

(7.3.27)

Substituting for fS and fI from (7.1.54) and (7.3.22), respectively, and evaluating the
integral [Abu91],

(7.3.28)

where

(7.3.29)

µ̃ denotes the average signal power to the average power of a single interference ratio,
that is,

(7.3.30)

and Ix(m,mK) is the incomplete beta function, given by

(7.3.31)

For a special case where m is an integer, (7.3.28) reduces to

(7.3.32)

where

(7.3.33)
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For the Rayleigh fading environment, m = 1 and PK
o becomes

(7.3.34)

which for a single interference case (K = 1) reduces to

(7.3.35)

Thus, (7.3.35) gives the outage probability in the presence of one interference with the
same statistics as the signal in the Rayleigh fading environment.

7.3.2.2 Signal and Interference with Different Statistics

Consider the case of an interference with fading statistics different from those of the signal
[Abu91]. Assume that only one interference exists. Let q1 denote the amplitude of the
interference with Nakagami distribution of parameter m1, whereas the signal amplitude
is assumed to be Nakagami distributed with parameter m. The interference power

(7.3.36)

is a gamma-distributed RV with pdf given by

(7.3.37)

where I denotes the mean interference power. Substituting for fS and fI from (7.1.54) and
(7.3.37), respectively, in (7.3.27), and evaluating the integrals for integer values of m and m1,

(7.3.38)

For details on (7.3.38) and results when there is more than one interference with different
statistics, see [Abu91].

7.3.3 Interference with Nakagami Fading and Shadowing

In this section, the analysis is extended to a scenario where both desired signal and
interference experience Nakagami fading in the presence of log-normal shadowing
[Abu91, Fre79]. The analysis in the previous section was without shadowing, and thus
the mean values of signals and interferences were assumed to be constant. In the presence
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of shadowing, the mean signal value S and the mean interference value I are log-normal
distributed random variables with respective pdfs given by

(7.3.39)

and

(7.3.40)

where

(7.3.41)

(7.3.42)

(7.3.43)

and

(7.3.44)

and σS and σI are decibel spread parameters for signal and interference, respectively.
As discussed in previous sections, calculation of the outage probability requires uncon-

ditional pdfs of the signal power and interference power, fS and fI, respectively. These may
be obtained by combining the pdfs of the mean signal power and mean interference power
given by (7.3.39) and (7.3.40), respectively, with the corresponding conditional pdfs of the
signal power and interference power given by (7.1.54) and (7.3.37), respectively. Note that
the pdfs given by (7.1.54) and (7.3.37) are conditional that the mean signal power and
mean interference power are constant. Denoting the conditional pdf of the signal power
given by (7.1.54) as fS/Sd

, it follows that

(7.3.45)

Similarly, denoting the conditional pdf of the interference power given by (7.3.37) as fI/Id
,

it follows that

(7.3.46)

Let the outage probability PI
o denote the probability that I Š S/µ0 in the presence of a

single interference. The probability may be evaluated using (7.3.27), that is,
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(7.3.47)

Substituting for fS and fI from (7.3.45) and (7.3.46) in (7.3.47), and evaluating the resulting
double integral leads to an expression for the outage probability, P1

o. It can be achieved
by following a procedure similar to that used by [Fre79] for converting a double integral
into a single integral to evaluate the outage probability in the presence of Rayleigh fading
and shadowing.

In [Abu91], a slightly different approach was used to obtain P1
o. It uses the expression

for P1
o in the absence of shadowing given by (7.3.38), and averages it using the joint pdf

of the signal power and interference power to include the effect of shadowing. Denoting
the joint pdf of Sd and Id by fSd1d

, it follows from (7.3.39) and (7.3.40) that

(7.3.48)

Noting from (7.3.30) and (7.1.3) that

(7.3.49)

substituting for µ̃ from (7.3.49) in (7.3.38) and averaging the result using (7.3.48) yields

(7.3.50)

where

(7.3.51)

and m and m1 are the signal and interference fading parameters, respectively, and µ̃a is
the ratio of the area mean signal power to the area mean interference power. Using Sd and
Id, µ̃a can be expressed as

(7.3.52)

For the Rayleigh fading case,

(7.3.53)
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(7.3.54)

The integrals in (7.3.50) and (7.3.54) can be evaluated using numerical methods for a
suitable choice of µ0.

7.3.4 Error Rate Performance

Let Pe(γ) denote the conditional probability of error for a given SNR γ for a particular
modulation technique, while Pe denotes the average BER. In fading conditions when γ is
a random variable with pdf fγ, Pe is obtained from Pe(γ) by averaging over all γ using
(7.3.5). For various modulation schemes, Pe(γ) in additive white Gaussian noise is given
below [Skl01].

For coherent binary phase shift keying (BPSK),

(7.3.55)

differentially coherent binary phase shift keying (DPSK),

(7.3.56)

coherent orthogonal frequency shift keying (CFSK),

(7.3.57)

and noncoherent orthogonal frequency shift keying (NCFSK),

(7.3.58)

where

(7.3.59)

and related to erfc(x) as

(7.3.60)
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For example, consider a NCFSK system in additive white Gaussian noise and Rayleigh
fading conditions. For this case, Pe(γ) is given by (7.3.58). In the Rayleigh fading environ-
ment with pdf of γ, fγ is given by (7.3.12). Substituting for fγ and Pe(γ) in (7.3.5) and denoting
the BER for this case by Pe,NCFSK, it follows that

(7.3.61)

where Γ is the mean signal-power to noise-power ratio.
Carrying out the integral, (7.3.61) yields

(7.3.62)

Similarly, (7.3.5) may be used to evaluate the BER for other modulation schemes in fading
conditions when conditional BER for a given modulation scheme and the pdf of γ in fading
conditions are known.

In Rayleigh fading channels, expressions for BER for coherent BPSK, CFSK, and DPSK
are given by [Pro95]

(7.3.63)

(7.3.64)

and

(7.3.65)

It follows from (7.3.62) and (7.3.65) that the average BER for NCFSK may be obtained
from the average BER for DPSK by replacing Γ with Γ/2. Similarly, it follows from (7.3.63)
and (7.3.64) that the average BER for CFSK may be obtained from the average BER for
BPSK by replacing Γ with Γ/2.

Notation and Abbreviations

BER bit error rate
BPSK binary phase shift keying
DPSK differential phase shift keying
FSK frequency shift keying
NCFSK noncoherent FSK
A amplitude of line-of-sight component
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a(t) real part of r(t)ejθ(t)

b(t) imaginary part of r(t)ejθ(t)

C, C(t) channel gain
cdf cumulative distribution function
Fx( ) cumulative distribution function of RV x
fc carrier frequency
fx probability density function of random variable x
fx/y conditional pdf of x for given y
g(t) complex baseband signal
I total power from all interference
I
–

mean power of single interference
I0( ) modified Bessel function of the first kind and zero order
Id interference power in dB
I
–
d mean value of Id

Ii instantaneous power of ith interference
Ix(m1,m2) incomplete beta function
I
–

i mean power of ith interference
K number of interferences
K0 Rice distribution parameter
m(t) accounts for large-scale fading
m Nakagami fading parameter
mi Nakagami fading parameter for ith interference
N mean noise power
n path loss exponent in mobile communications
pdf probability density function
P[ ] probability of an event [ ]
Pe average probability of error
Pe(γ) probability of error for given γ
Pe,x BER for modulation method x
PR received power in free space
PT transmitted power of an isotropic source
Po outage probability
PK

o outage probability when K interferences are present
pS signal power
qi amplitude of the ith interference 
R distance between transmitter and receiver
RV random variable
R0 reference distance
r0(t) accounts for small-scale fading
r(t) received signal amplitude
S– local mean received signal power
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S–(R) area mean, mean signal power received at R distance from transmitter
Sd local mean power in dB
S–d area mean power in dB and mean value of Sd

x0(t) received signal
x0(t)˜ received signal in complex form
xσs zero mean, Gaussian random variable with standard deviation σs (dB)
Γ mean signal power to noise power ratio
Γ(p) gamma function
α, α(t) normalized signal envelope 
γ instantaneous signal power to mean noise power ratio 
γ0 threshold value of γ for outage
φ(t) phase of complex baseband signal
θ(t) phase delay introduced by channel
σ standard deviation of a(t) and b(t)
σI dB spread parameter of interference
σS dB spread parameter of signal
µ signal to interference power ratio
µ0 threshold value of µ for outage
µ̃ ratio of mean powers of signal and interference 
µa˜ ratio of area mean powers of signal and interference
ψi phase of the ith interference
Ω E[r2]
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Notation and Abbreviations
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In the presence of multipath fading channels, the received signal experiences great atten-
uation while the channel is in deep fade, resulting in the loss of transmitted information.
This loss can be reduced by combining signals received over several independent fading
channels. The reason for the reduction in information loss is that the likelihood of all
signals experiencing deep fade simultaneously is considerably less than that experienced
by individual signals.

The process of combining several signals with independent fading statistics to reduce
large attenuation of the desired signal in the presence of multipath channels is referred
to as diversity combining [Jak74, Bre59]. There are many ways by which several indepen-
dent fading copies of a signal may be provided to a receiver for diversity combining. Some
of these are described below.

Frequency diversity: A signal may be transmitted using several carriers such that the
separation between successive carrier frequencies is longer than the coherence
bandwidth of the channel to ensure that the fading associated with different
frequencies is uncorrelated.

Time diversity: In this method, several copies of the signal are transmitted using
different time slots such that the separation between successive time slots is more
than the coherence time of the channel.

Space diversity: This method uses multiple antennas and is the subject of this chapter.
The method requires that the separation between multiple antennas should be
C Press LLC 
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sufficient enough for the various signals to be uncorrelated. The multiple antennas
may be used at a transmitter, at a receiver, or at both places depending on the
application. This chapter considers various diversity combining schemes using
single transmitting antennas and multiple receiving antennas.

Predetection and postdetection schemes: A diversity-combining method may be classified
as a predetection or postdetection method. Predetection diversity-combining
methods combine the received signals prior to detection and use single detectors
to receive the information. Postdetection diversity methods, on the other hand,
employ separate detectors on each branch and then combine the signals from
different branches.

In this chapter, various diversity schemes are described, and their performance is analyzed
and compared with that of a system using single receiving antennas.

There are basically two performance parameters, namely the outage probability and the
average bit error rate (BER), to denote the performance of a diversity combiner. The outage
probability is the probability that the SNR γ is below some threshold value γ0. It is given
by (7.3.4). The average BER is determined by averaging the conditional BER Pe(γ) for a
given SNR over all values of γ. An expression for the average BER is given by (7.3.5). The
conditional BER Pe(γ) is a modulation dependent quantity and is available in most text-
books on digital communications such as [Cou95, Pro95, Skl01]. Expressions for condi-
tional BER for coherent binary phase shift keying (BPSK), differentially coherent binary
phase shift keying (DPSK), coherent orthogonal frequency shift keying (CFSK), and non-
coherent orthogonal frequency shift keying (NCFSK) are given by (7.3.55), (7.3.56), (7.3.57),
and (7.3.58), respectively.

The outage probability Po is a predetection parameter, and thus requires the pdf of γ at
the input to the receiver. The average BER Pe for predetection diversity schemes may be
determined using the pdf of γ at the input to the receiver. For postdetection diversity
schemes it may be determined using the pdf of γ at the output of the receiver.

In view of the above discussion, it is clear that we need to determine the pdf of γ at the
input to the receiver to determine Po and Pe for the predetection diversity schemes and
pdf of γ at the output of the receiver to determine Pe for the postdetection diversity
schemes.

Consider a diversity-combining system consisting of L antennas as shown in Figure 8.1.
It is assumed that the signal is transmitted using a single antenna. Thus, the system consists
of L diversity channels carrying the same information. It is assumed that these channels
are slow fading and frequency nonselective. Furthermore, the fading processes among
these channels are mutually statistically independent.

FIGURE 8.1
Block diagram of a diversity combining system.
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The signal received on each antenna is weighted and summed to produce the output
y(t) of a diversity combiner. Let xi(t) denote the signal induced on the ith antenna due to
a desired signal source, and K, cochannel interference and uncorrelated noise. In the
complex form and omitting the carrier terms for ease of notation, 

(8.1)

where ri(t) and θi(t), respectively, denote the amplitude and phase of the desired signal
received on the ith branch; qij(t) and ψij(t), respectively, denote the amplitude and phase
of the jth interference received on the ith branch, g(t) denotes the designed message, gj(t)
denotes the jth interference message, and ni(t) denotes the zero mean, Gaussian noise of
variance (noise power) N present on the ith channel.

It is assumed that for any time t ri, i = 1, 2, …, L are i.i.d random variables (RVs) with
a specified distribution; qij, i = 1, 2, …, L and j = 1, 2, …, K are i.i.d RVs with a specified
distribution; θi, i = 1, 2, …, L are i.i.d RVs uniformly distributed in [0,2π); ψij, i = 1, 2, …,
L and j = 1, 2, …, K are i.i.d. RVs uniformly distributed in [0,2π); and ri, ni, qij, θi, and ψij,
i = 1, 2, …, L and j = 1, 2, …, K are mutually independent.

Fading on various channels is assumed to be independent and represents the effect of
small-scale fading unless stated otherwise. In other words, the results presented are for a
given large-scale fading. It is assumed that all channels have the same mean signal power
S and the mean interference power Ij due to jth interference. For identical interference, it
is denoted by I, that is,

(8.2)

The instantaneous signal power and interference power on the ith branch is denoted by
Si and Ii, respectively. These are related to ri and qij as follows:

(8.3)

and

(8.4)

The received signal from each channel is multiplied by a complex weight before combin-
ing. Let w*i denote the weight of the ith channel. It then follows from Figure 8.1 that the
combiner output y(t) is given by

(8.5)

where * denotes the conjugate of the complex quantity.
Define an L-dimensional complex vector CS, referred to as the signal channel gain vector,

to denote the instantaneous channel gains for the desired signals received on L branches,
that is,
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(8.6)

where αi and θi are the magnitude and the phase of the channel gain of the ith branch, as
discussed in Section 7.2.

Similarly, define interference channel gain vectors CIj, j = 1, 2, …, K to denote KL channel
gains. It should be noted that due to independent assumptions for the signal and various
interference envelopes, CS and CIj, j = 1, 2, …, K are mutually independent.

Let an L-dimensional vector be defined as

(8.7)

It follows from (8.1) and the discussion in Section 7.2 that x(t) can be written as

(8.8)

where the L-dimensional vector n(t) denotes the noise on L channels, pS denotes the mean
signal power, and pij denotes the mean power of the jth interference.

Let R denote the array correlation matrix. It follows from (8.8) that for given CS and CIj,
j = 1, 2, …, K, it is given by

(8.9)

Defining

(8.10)

it follows from (8.5) that the output of an L-branch combiner can be written in vector
notation as

(8.11)

The way that the weights on various branches are selected determines the type of
diversity combiner being employed. Several of these diversity schemes are now considered.

8.1 Selection Combiner

In this case, one of the L-diversity signals is selected for further processing. Thus,

(8.1.1)
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where l0 denotes the selected branch. Theoretically, one would like to select the branch
with the highest signal to noise ratio or in the interference limited system, with the highest
signal to co-channel interference ratio. In practice, however, it is easy to implement a
scheme that selects a branch with the largest power.

Now we analyze the performance of a system using L branch selection combining
scheme. Both noise limited and interference limited systems are considered [Abu92,
Abu94, Abu94b, Cha79, Sim99].

8.1.1 Noise-Limited Systems

The analysis of noise-limited systems consists of deriving expressions for the outage
probability, the mean signal-to-noise ratio (SNR) and the average BER. 

8.1.1.1 Rayleigh Fading Environment

First, consider that the system operates in the Rayleigh fading environment.

8.1.1.1.1 Outage Probability

Denoting the instantaneous SNR at the lth branch by γl, it follows from (7.3.13) that

(8.1.2)

where Γ denotes the mean SNR at each branch.
Let Po

sc denote the outage probability of the selection combiner (SC). Then Po
sc is the

probability that the instantaneous SNR in all L branches is simultaneously less than or
equal to γ0. Assuming that the fading on each branch is independent, it follows from (8.1.2)
that

(8.1.3)

8.1.1.1.2 Mean SNR

Let ΓSC denote the mean SNR of an L-branch selection combiner. An expression for the
mean SNR ΓSC may be obtained as follows.

The mean SNR is given by

(8.1.4)

where fγSC denotes the pdf of the instantaneous SNR of the received signal using the
L-branch SC. It is related to the cdf of γ by

(8.1.5)
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Noting from (7.3.4) that Po = Fγ(γ0), it follows from (8.1.3) that

(8.1.6)

From (8.1.5) and (8.1.6),

(8.1.7)

The second step follows using the binomial expansion, that is,

(8.1.8)

Substituting from (8.1.7) in (8.1.4) and evaluating the integral [Jak74],

(8.1.9)

It follows from (8.1.9) that the mean SNR of the processor becomes improved by using

an L-branch SC. The improvement factor is given by .

8.1.1.1.3 Average BER

The average BER at the output of SC can be obtained by averaging the conditional BER
for a given γ over all values of γ. Thus,

(8.1.10)

where Pe(γ) denotes the conditional BER at the output of SC for a given value of γ for a
particular modulation scheme, and fγ SC(γ) denotes the pdf of γ.

Consider an example of a coherent BPSK system. For this case, Pe(γ) is given by (7.3.55)
and in Rayleigh fading environment with independent fading, fγSC(γ) is given by (8.1.7).
Substituting these values and evaluating the integral using the identities

(8.1.11)

F eSC

L

γ

γ

γ( ) = −






−
1 Γ

f
L

e e

L L
k

e

SC

L

k k

k

L

γ

γ γ

γ

γ( ) = −






= −( ) −





−
−

−

− +( )

=

−

∑

Γ

Γ

Γ Γ

Γ

1

1
1

1

1

0

1

1 1
0

−( ) = −( ) 





=
∑x

n
k

xn k k

k

n

Γ Γsc

L

=
=
∑ 1

1
l

l

1

1
l

l=
∑

L

P P f de
sc

e SC= ( ) ( )
∞

∫ γ γ γγ
0

erfc x e dx

erfc x xe dx

x

x

( ) = −
+







( ) = −
+

−
+( ) +











−
∞

−
∞

∫

∫

α

α

α α

α α
α

α α

0

0

2

1
1

1
1

1
1

1
1 2 1 1
C Press LLC 



© 2004 by CR
one obtains [Eng96]

(8.1.12)

Similarly, the result for DPSK may be obtained and is given by [Eng96]

(8.1.13)

Note that the results for CFSK and NCFSK may be obtained by replacing Γ by Γ/2 in
(8.1.12) and (8.1.13), respectively.

8.1.1.2 Nakagami Fading Environment

First, consider the pdf of the SNR at the output of the selection combiner.

8.1.1.2.1 Output SNR pdf

An expression for the pdf of γ at a single branch is given by (7.3.14). Thus, it follows that
(7.3.14) denotes the pdf of γ at a branch of the SC. Rewrite (7.3.14):

(8.1.14)

It follows from (7.3.17) that the corresponding expression for Fγ (γ) is given by

(8.1.15)

Assuming that the fading on each branch is independent, the cdf at the output of the
SC is the product of individual cdfs, as denoted in (8.1.6) for the Rayleigh fading case. Thus,

(8.1.16)

The pdf of γSC then is

(8.1.17)

Substituting from (8.1.16), it follows that
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which, along with (8.1.14) and (8.1.15), implies that

(8.1.19)

Using binomial expansion (8.1.8), (8.1.19) can be expressed as [Abu94b]

(8.1.20)

where B is a set of all possible nonnegative integer combinations such that

(8.1.21)

(8.1.22)

(8.1.23)

and

(8.1.24)

Now, consider a dual diversity system (L = 2) operating in a Nakagami fading environ-
ment with fading parameter m [Sim99]. For this case, an expression for the pdf of the SNR
at the output of the SC is given by
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where Γ1 and Γ2 denote the mean SNR at Branch 1 and Branch 2, respectively, and Γ(m,x)
is the incomplete gamma function.

For the integer value of the fading parameter m, Γ(m,x) has a closed-form solution, and
thus (8.1.25) becomes

(8.1.26)

where

(8.1.27)

8.1.1.2.2 Outage Probability

It follows from (8.1.15) and (8.1.16) that the outage probability in the presence of Nakagami
fading is given by

(8.1.28)

For a dual-diversity system, an expression can be derived for Fγ SC(γ), the cdf of the SNR
at the output of the SC in the Nakagami fading environment for integer values of m, by
integrating (8.1.26). It is given by [Sim99]

(8.1.29)
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8.1.1.2.3 Average BER

Using the conditional BER given by (7.3.58) for an NCFSK system and the pdf given by
(8.1.20) in Nakagami fading environment (integer values of m), the average BER can be
obtained using (7.3.5). An expression is given by [Abu94b]

(8.1.32)

The result for a DPSK system is given by replacing Γ with 2Γ in (8.1.32). For a dual-
diversity system, the average BER can also be obtained using the pdf given by (8.1.26).
An expression for the average BER for a DPSK system is given by [Sim99]

(8.1.33)

The result for NCFSK can be obtained from (8.1.33) by replacing Γi with Γi/2, i = 1, 2.

8.1.2 Interference-Limited Systems

Assume that a desired signal and K co-channel interferences are present in a Nakagami
fading environment. Assume that all interferences have the same statistics with the fading
parameter denoted by m, the same as the desired signal, and have equal mean power
denoted by I.

Now, selection combiner performance using three possible selection algorithms
[Abu92] — desired signal power algorithm, total power algorithm and signal-to-interfer-
ence (SIR) power algorithm — is presented.

8.1.2.1 Desired Signal Power Algorithm

In this algorithm, the selection combiner selects the branch with the largest desired signal
power. Let Si denote the signal power of the ith branch, that is,

(8.1.34)

When all branches experience independent fading, it follows from (7.1.54) that the pdf of
Si is given by

(8.1.35)

where S denotes the mean signal power of each branch.
Let Ii denote the total interference power received on the ith branch, that is,

(8.1.36)
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The pdf of Ii, as seen in (7.3.22), is given by

(8.1.37)

Let µsc denote the SIR power ratio at the output of the selection combiner. As the SC selects
only one branch for processing, µsc also denotes the SIR at the selected branch. The
probability that µsc is less than or equal to the threshold µ0 is given by

(8.1.38)

where fµsc(µ) denotes the pdf of the SIR at the output of the SC, and is given by [Abu92]

(8.1.39)
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B, Cji, Aji, and dji are given by (8.1.21) to (8.1.24).
Substituting for fµsc(µ) in (8.1.38) and carrying out the integral [Abu92],

(8.1.41)
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(8.1.42)

with µ̃ denoting the average signal power S to average interference power I ratio at one
branch.
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For the Rayleigh fading environment (m = 1), (8.1.41) becomes

(8.1.43)

which, for a single interference (K = 1), reduces to

(8.1.44)

Note that for L = 1, (8.1.44) reduces to (7.3.35), the result for the single-antenna system.

8.1.2.2 Total Power Algorithm

In this algorithm, the branch with the largest total power is selected. Thus, Branch 1 is
selected if

(8.1.45)

For this case, the outage probability is given by

(8.1.46)

This expression is evaluated in [Abu 92], resulting in

(8.1.47)

where fuv is the joint pdf of u and v, given by

(8.1.48)

with A given by (8.1.40) and

(8.1.49)
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(8.1.51)

For dual-branch diversity systems, (8.1.47) reduces to

(8.1.52)

where

(8.1.53)
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(8.1.55)

and

(8.1.56)
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8.1.2.3 SIR Power Algorithm

In this algorithm, a diversity branch with the highest signal power to interference power
ratio is selected and an expression for outage probability is given by [Abu 92]

(8.1.57)

For the Rayleigh fading environment (m = 1) and one interference (K = 1), this reduces to

(8.1.58)

8.2 Switched Diversity Combiner

The switched diversity scheme, also known as scanning diversity, is similar to the selection
diversity discussed in the previous section except that in this scheme signals received on
L branches are continuously scanned in a fixed sequence until one is found above a given
threshold, rather than using the best one as is done in selection diversity. For example,
when the total received power is considered, the received power of the selected branch
is continuously compared with a given threshold value, ξ0. Until the received power
remains above ξ0, no switching is done. When it drops below ξ0, the next branch is
examined and switched to the receiver if the received power on this branch is found to
be above ξ0; otherwise, the search continues.

In this section, expressions for the outage probability and average BER in the Nakagami
fading environment are derived, and the effect of correlation on average BER is examined
[Abu92, Abu94a, Sch72].

8.2.1. Outage Probability

The outage probability for this scheme in the presence of Nakagami distributed interfer-
ences with statistics similar to those described in Section 8.1 can be written as [Abu92, Sch72]

(8.2.1)

where µSW denotes the SIR at the output of a switched diversity combiner (SDC), which
is the same as the SIR at the selected branch.
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Now, consider the various terms on the right side of (8.2.1). When Si + Ii ≤ ξ0 for all i,

(8.2.2)

as none of the branches is selected, effectively representing an outage.
From the independence of the desired signal and interferences, it follows that

(8.2.3)

and

(8.2.4)

In writing (8.2.4), it is assumed without any loss of generality that Branch 1 is selected.
It follows from (8.2.1) to (8.2.4) that

(8.2.5)

A further manipulation of (8.2.5) leads to [Abu92]

(8.2.6)

where

(8.2.7)

and P[S1 + I1 < ξ0] is given by (8.1.51).

8.2.2 Average Bit Error Rate

In this section, average BER is examined by considering an example of noncoherent
detection of binary FSK (NCFSK) signals in additive white Gaussian noise (AWGN) for a
two-branch diversity system in a slow Nakagami fading environment [Abu94a].

Assume that the switching is done at discrete intervals of time t = nT, where n denotes
an integer and T is the time interval between samples. Let an and bn denote the samples
of the signal envelopes at two antennas at time t = nT, and Xn = 1/2 a2
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denote their respective local signal powers. In the Nakagami fading environment, an and
bn are Nakagami distributed RVs, and Xn and Yn are gamma distributed.

Assume the following switching scheme is employed. Let the antenna selected at t =
(n − 1)T be Number 1. Switching to antenna Number 2 is done iff Xn < ξ0. Next, let Sn
denote the local signal power at the output of the switched diversity system. It follows
from the above switching strategy that

(8.2.8)

Sn = Yn as above with X and Y interchanged.
When the fading at two antennas is independent, the pdf of Sn is given by [Abu94a]

(8.2.9)

where

(8.2.10)

Let γn denote the instantaneous SNR at the output of the system at time t = nT, defined as

(8.2.11)

with N denoting the variance (noise power) of zero mean AWGN.
Following a procedure similar to that used in Section 7.3.1, it can easily be shown that

when the fading at two antennas is independent, the pdf of γn obtained from the pdf of
Sn is given by

(8.2.12)

Substituting for the pdf of the instantaneous SNR given by (8.2.12) and the conditional
probability of error for the NCFSK system given by (7.3.58) in (7.3.5), and evaluating the
integral for the average BER of the NCFSK in the Nakagami fading environment becomes
[Abu94a]
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(8.2.13)

It should be noted that Pe
sw depends on the threshold value of signal power ξ0 used for

switching. The optimum value of the threshold ξ̈0 may be obtained by solving

(8.2.14)

Substituting from (8.2.13) in (8.2.14) and solving for ξ̂0 yields

(8.2.15)

For the Rayleigh fading environment, m = 1. Thus, substituting m = 1 in (8.2.13) and
(8.2.15), expressions for Pe

sw and ξ̂0 in Rayleigh fading channels become

(8.2.16)

and

(8.2.17)

8.2.3 Correlated Fading

The expression for average BER given by (8.2.13) is derived when the fading at two
branches is independent and there is no correlation between the signal envelopes. Now
assume that the two are correlated with the power correlation coefficient k2 defined as

(8.2.18)

The average BER for this case is a function of k2 and is given by [Abu94a]

(8.2.19)
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where constants C and D are defined as

(8.2.20)

and

(8.2.21)

The optimum threshold ξ̂0, which minimizes the Pe
sw for this case, becomes

(8.2.22)

For the Rayleigh fading case, substituting m = 1 in (8.2.19) and (8.2.22), expressions for
Pe

sw and ξ̂0 become

(8.2.23)

and

(8.2.24)

where constants G and F are defined as

(8.2.25)

and

(8.2.26)

These equations can be used to evaluate the average BER and optimal threshold values
for various fading parameters. Using these equations to plot the optimal threshold as a
function of SNR, it is reported in [Abu94a] that ξ̂0 is an increasing function of SNR and
the fading parameter m, and a decreasing function of the correlation coefficient.
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8.3 Equal Gain Combiner

In equal gain combining, the desired signals on all branches are co-phased and equally
weighted before summing to produce the output. Without loss of generality, assume that
each channel has a unity gain. Thus, the weights of an equal gain combiner (EGC) are
given by

(8.3.1)

and the signal envelope at the output of the EGC is sum of L signal envelopes, that is,

(8.3.2)

In this section, the performance of an EGC in both noise-limited and interference-limited
environments in the presence of Nakagami fading is analyzed. 

8.3.1 Noise-Limited Systems

First, consider a noise-limited system [Abu92, Abu94, Bea91, Zha97, Zha99]. In this section,
expressions for the mean SNR, outage probability, and average BER for the EGC are
derived.

8.3.1.1 Mean SNR

Let SEG denote the instantaneous signal power at the output of the EGC. It follows from
(8.3.2) that it is given by

(8.3.3)

When each branch has the same noise power N, the total noise power at the output of
the EGC is equal to NL, as each channel has a unity gain and the output SNR γ is given by

(8.3.4)

Let ΓEG denote the mean SNR at the output of the EGC. Thus, (8.3.4) implies that

(8.3.5)

w e i Li
j i= = …θ 1 2, , ,

r ri
i

L

=
=
∑

1

S
r

EG =
2

2

γ =

=

S
LN

r
LN

EG

2

2

ΓEG E

E r

LN

= [ ]

= [ ]
γ

2

2

C Press LLC 



© 2004 by CR
It follows from (8.3.2), assuming independent fading, that

(8.3.6)

where the last step follows from the independent fading assumption.
Denoting the mean signal power at each branch by S, it follows that

(8.3.7)

The second term on the RHS of (4.3.6) can be evaluated by noting that

(8.3.8)

where fri
 denotes the pdf of the signal envelope at the ith branch.

For Nakagami distributed signals, the mean SNR is given by (7.1.43). Substituting in
(8.3.8) and evaluating the integral [Pro95],

(8.3.9)

Substituting from (8.3.7) and (8.3.9) in (8.3.6) and using (8.3.5), one obtains the following
expression for the mean SNR of the EGC for independent Nakagami fading:

(8.3.10)

where denotes the mean SNR of a single branch.
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For the Rayleigh fading case, m = 1. Substituting for m = 1 and noting that ,
(8.3.10) becomes

(8.3.11)

yielding an expression for the mean SNR of the EGC for independent Rayleigh fading.

8.3.1.2 Outage Probability

Estimation of outage probability requires knowledge of Fγ, the cdf of γ. It can be obtained
from Fr, the cdf of r as follows. Let FX and FY denote the cdfs of two RVs X and Y. If X
and Y are related via

(8.3.12)

then

(8.3.13)

Thus, it follows from (8.3.4) that Fγ(γ) is given by

(8.3.14)

where Fr(x) denotes the cdf of r, the sum of L independent RVs ri, i = 1, 2, …, L.
When ri, i = 1, 2, …, L are i.i.d. RVs, and are Nakagami distributed with parameter m,

Fr(x) can be computed within a determined accuracy using the following infinite series
[Bea90, Bea91]:

(8.3.15)

where
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(8.3.19)

(8.3.20)

and

(8.3.21)

with x denoting the signal envelope at one of the branches and T denoting the period of
the square wave used in deriving the series. T determines the accuracy of the results. A
value of T between 40 and 80 has been suggested in [Bea91].

For RVs ri, i = 1, 2, …, L, the Nakagami distributed with parameter m expectations in
(8.3.18) and (8.3.19) become

(8.3.22)

and

(8.3.23)

where 1F1(.;.;.) denotes the confluent hypergeometric function [Abr72] which is defined as

(8.3.24)

This function can be calculated as follows [Bea91]:

(8.3.25)

where
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(8.3.27)

when the parameter a is a small quantity,

(8.3.28)

when the parameter a is a medium to large quantity, and

(8.3.29)

For a discussion of the diversity gain obtainable using L = 2, 4, and 8, and m = 1, 2, 3,
and 4, see [Bea91]. The discussion concludes that a transmitter requires 11 dB less power
using a dual-diversity system in a Rayleigh fading condition (m = 1). The required power
decreases as diversity branches (L) increase, whereas an increase in power is required in
more severe fading as m increases.

8.3.1.3 Average BER

Calculation of the average BER using (7.3.5) requires knowledge of the SNR pdf for the
EGC, which is not available. However, it can be obtained using

(8.3.30)

where r denotes the amplitude of the signal envelope, fr denotes the pdf of r, and Pe(r)
denotes the conditional BER for a given value of r.

When r is the sum of i.i.d. RV, as is assumed to be the case for EGC, fr is given by [Abu92]

(8.3.31)

where

(8.3.32)

An, ΦR, ΦI, and ω were defined previously.
Substituting for γ from (8.3.4), in (7.3.55) to (7.3.58) expressions for the conditional BER

as a function of the signal component become

(8.3.33)
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and

(8.3.34)

Substituting for Pe(r) from (8.3.33) and fr(r) from (8.3.31) in (8.3.30) and carrying out the
integral, the average BER becomes [Bea91]

(8.3.35)

where

(8.3.36)

(8.3.37)

and

(8.3.38)

where g = 1 for coherent BPSK and g = 0.5 for CFSK.
Similarly, substituting for Pe(r) from (8.3.34) and fr(r) from (8.3.31) in (8.3.30), and car-

rying out the integral the average BER for DPSK and NCFSK systems becomes [Bea91]

(8.3.39)
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b is given by (8.3.38), g = 1 for DPSK, and g = 0.5 for NCFSK.
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The results presented here are for the case in which there is no gain unbalance on different
branches of EGC. For the effect of gain unbalance on the performance of EGC, see [Bea91].

The error rate performance of an EGC in Rician fading channels is discussed in [Abu94],
and is compared with that of the MRC and SC for BPSK and NCFSK signals.

8.3.1.4 Use of Characteristic Function

Calculation of the average BER by the above method involved two steps. First, determine
the pdf of the required variable and then use it to obtain the average BER. The average
BER can also be determined using a one-step procedure using the characteristic function
(CF) of the decision variable, as in [Zha97, Zha99]

(8.3.42)

where Im[x] denotes the imaginary part of x, and ψr(t) denotes the characteristic function
of r (the decision variable at the output of EGC), defined as

(8.3.43)

It provides a general formula for evaluating the average BER for an EGC with coherent
detection, and applies to arbitrary fading channels as long as their CF exists. The solution
relies on numerical methods to estimate the integral. An algorithm to evaluate the integral
using the Hermit method is discussed in [Zha99] for coherent detection of BPSK signals
in Rayleigh fading channels. More discussion on the use of CFs may be found in Section 8.6.

8.3.2 Interference-Limited Systems

Consider a desired signal and K co-channel interferences in a Nakagami fading environ-
ment with fading parameter m. The interference power IEG at the output of EGC is given by

(8.3.44)

with

(8.3.45)

Then the signal power to interference power ratio µEG at the output of EGC is given by

(8.3.46)
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Substituting from (8.3.46) and using the argument in deriving (7.3.27), it follows that

(8.3.48)

where fY(y) denotes the pdf of Y given by

(8.3.49)

with

(8.3.50)

and fr is given by (8.3.31). Substituting for fr and fy(y) in (8.3.48), it becomes [Abu92]

(8.3.51)
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and

(8.3.57)

8.3.2.2 Mean Signal Power to Mean Interference Power Ratio

In this section, an expression for the mean signal power to the mean interference power
ratio µ̃EG at the output of the EGC is derived in Rayleigh fading channels. Let SEG and IEG
denote the mean signal power and mean interference power at the output of the EGC. Thus,

(8.3.58)

Noting that Γ = S/N and ΓEG = SEG/LN, it follows from (8.3.11) that for Rayleigh fading
channels (m = 1), the mean output signal power is given by

(8.3.59)

Using the fact that
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(8.3.44) and (8.3.45) imply

(8.3.61)

Thus, it follows from (8.3.58), (8.3.59), and (8.3.61) that the ratio of the mean signal power
to the mean interference power at the output of EGC becomes

(8.3.62)

The ratio increases with the number of branches in the combiner.

8.4 Maximum Ratio Combiner

In maximal ratio combining, the signals on all branches are co-phased and the gain on
each branch is set equal to the signal amplitude to the mean noise power ratio [Jak74].
Thus, the branch weights are given by

(8.4.1)
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with

(8.4.2)

where Ni denotes the mean noise power on the ith branch.
When the mean noise power on all branches is identical, that is, Ni = N, i = 1, 2, …, L,

the gain on each branch becomes proportional to the signal amplitude. The difference
between a maximal ratio combiner (MRC) and an EGC is that in EGC, ai = 1, i = 1, 2, …, L.

In this section, the performance of an MRC is evaluated. Both noise-limited and inter-
ference-limited systems are considered [Sha00a, Tom99, Zha99a].

8.4.1 Noise-Limited Systems

In this section, expressions for the mean signal to noise ratio, outage probability, and
average BER are derived.

8.4.1.1 Mean SNR

First, consider the mean SNR at the output of the MRC. It follows from (8.5) and (8.4.1)
that the signal envelope at the output of the MRC is given by

(8.4.3)

Thus, the output signal envelope is the sum of individual signal envelopes weighted with
respective branch gains. Similarly, the total noise power NT at the output is given by

(8.4.4)

where the mean noise power of each channel has been weighted by the branch power
gain, namely the square of the branch gain, before summing.

The instantaneous SNR γ at the output of the combiner is given by

(8.4.5)
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Thus, the SNR at the output the combiner is the sum of the branch SNRs.
Let ΓMR denote the mean SNR of the MRC. It follows from (8.4.5) that ΓMR is given by

(8.4.6)

where the last step follows from the assumption that the noise power on each branch is
N, and Γ denotes the mean SNR at each branch. Thus, the mean SNR at the output of an
MRC varies linearly with number of branches in the combiner.

8.4.1.2 Rayleigh Fading Environment

For the Rayleigh fading environment, first consider the pdf of the SNR at the output of
the MRC, and then the outage probability and average BER.

8.4.1.2.1 PDF of Output SNR

When ri, i = 1, 2, …, L are Rayleigh distributed, the pdf of γ may be estimated as follows.
Consider an RV y given by

(8.4.7)

where xi denotes a Gaussian RV of zero mean and variance σ2. The RV y has a chi-squared
distribution with n degrees of freedom with pdf fy given by (7.1.29). Rewriting,

(8.4.8)

Now, using (7.1.33) and (7.1.47), (8.4.5) can be expressed as

(8.4.9)

where ai and bi denote two Gaussian RVs with zero mean and variance equal to S.
As ai/ , and bi/ , i = 1, 2, …, L are 2L Gaussian RVs with zero mean and variance

equal to S/(2N) ≡ Γ/2, it follows from a comparison of (8.4.9) and (8.4.7) that γ has a chi-
squared distribution with 2L degrees of freedom. Substituting for n = 2L and σ2 = Γ/2 in
(8.4.8) and noting that Γ(L) = (L−1)!,

(8.4.10)

Alternately, an expression for fγ(γ) may be derived using CFs as discussed in Section 8.7.
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8.4.1.2.2 Outage Probability

The outage probability is given by

(8.4.11)

with

(8.4.12)

Substituting for fγ(γ) from (8.4.10) in (8.4.12) and carrying out the integral, one obtains the
following expression for the distribution of γ [Jak74]:

(8.4.13)

The outage probability at the output of MRC in Rayleigh distributed channels is then
given by Fγ(γ0).

8.4.1.2.3 Average BER

Let Pe
MR denote the average BER at the output of the MRC. It can be obtained by averaging

the conditional BER for a fixed SNR γ over the pdf of γ, that is,

(8.4.14)

where Pe(γ) is the BER for a fixed γ at the output of the MRC for an arbitrary modulation
scheme. For coherent BPSK, coherently detected orthogonal FSK, and DPSK, is given by
[Pro95]
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where

(8.4.18)

The pdf of γ at the output of the MRC in the Rayleigh fading environment is given by
(8.4.10). Substituting in (8.4.14) and evaluating the integral, the expression for the average
BER is obtained [Pro95]. For BPSK, it becomes

(8.4.19)

where

(8.4.20)

For CFSK, it is also given by (8.4.19), with Γ0 defined as

(8.4.21)

For DPSK, it becomes

(8.4.22)

where bk is given by (8.4.18). The average BER for NCFSK can be obtained by replacing
Γ with Γ/2 in (8.4.22).

It should be noted that these results are for a slow fading environment, such that the ri
ejθi i = 1, 2, …, L are constant over the bit duration. For DPSK modulation, these are
assumed to be constant over the duration of two bits.

Evaluating Pe
MR as a function of L and Γ using the above expressions, one can determine

the effect of diversity on the average BER.

8.4.1.3 Nakagami Fading Environment

The average BERs for coherent BPSK and CFSK in the Nakagami fading environment with
integer m are given by [Zha99a]

(8.4.23)
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(8.4.24)

and for CFSK as

(8.4.25)

Results for noninteger m and correlated fading may be found in [Zha99a].

8.4.1.4 Effect of Weight Errors

The effect of weight errors introduced by incorrect estimates of the channel gain is exam-
ined in [Tom99]. Let ρ denote the normalized correlation between the actual complex
channel gain Ci = α iejθi, i = 1, 2, …, L and its estimate Ĉi at some time t, with squared
correlation given by

(8.4.26)

Note that ρ2 = 1 corresponds to the estimate with no error.

8.4.1.4.1 Output SNR pdf

When estimated channel gain α̂i differs from the actual channel gain αi, the weights used
in the MRC differ from those given by (8.4.1) by an error component. Assuming that these
weight errors are complex Gaussian distributed RVs, it can be shown that the pdf of the
output SNR in the presence of weight errors is given by [Tom99, Gan71]

(8.4.27)

where

(8.4.28)

This is an interesting result and shows that the pdf of γ in the presence of error is the
weighted error of the pdf of γ in the absence of error with the weighting co-efficient A(k)
given by (8.4.28), that is,

(8.4.29)

where fγ(γ) is given by (8.4.10). The pdf of γ in the presence of errors may be used to
estimate the effect of errors on the outage probability and average BER.
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8.4.1.4.2 Outage Probability

The outage probability P o
MR in the absence of errors is given by (8.4.11) with Fγ(γ) denoting

the distribution function of γ in the absence of errors. Thus, it follows that the outage
probability in the presence of errors P̂ o

MR is given by

(8.4.30)

with the distribution function in the presence of errors F̂(γ) given by

(8.4.31)

Substituting for f̂γ(γ) from (8.4.27) it becomes [Tom99, Gan71]

(8.4.32)

Note that in the absence of errors ρ2 = 1, (8.4.32) reduces to (8.4.10) as only A(L) is non-
zero. For ρ2 = 0, when the channel estimate is completely uncorrelated with the actual
channel parameters, only A(1) is nonzero, and the distribution function reduces to that of
the single branch case. Hence, no diversity advantage is available [Tom99, Gan71].

8.4.1.4.3 Average BER

Similarly, the effect of errors on the average BER may be obtained by replacing the pdf of
γ in the absence of errors fγ(γ) with f̂γ(γ) in (8.4.14). For this case, the average BER becomes

(8.4.33)

Substituting for f̂γ(γ) from (8.4.29) and using (8.4.14), it follows that

(8.4.34)

Thus, the average BER in the presence of errors is the weighted sum of the average BER
in the absence of errors.
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8.4.2 Interference-Limited Systems

Expressions for the mean SIR, outage probability, and average BER are examined in this
section.

8.4.2.1 Mean Signal Power to Interference Power Ratio

Assume that ai = αi in (8.4.2), with αi denoting the amplitude of the signal channel gain
on the ith channel. When the mean noise power is identical on all channels, the weight
vector for MRC can be expressed as

(8.4.35)

For an interference-limited system, the array signal x(t) due to a desired signal and K
identical interferences is given by

(8.4.36)

and the output of the MRC becomes

(8.4.37)

It then follows that the signal power SMR and the interference power IMR for given CS
and CIk are, respectively, given by

(8.4.38)

and
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and the SIR at the output of MRC, µ, becomes
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[Sha00a] shows that when the desired signal is Rice distributed and the interferences
are Rayleigh distributed, the pdf of µ is given by

(8.4.42)

where K0 denotes the Rice distribution parameter defined by (7.1.42). For K0 = 0, the Rice
distribution becomes the Rayleigh distribution, and the pdf of µ for the Rayleigh distrib-
uted signal case becomes

(8.4.43)

yielding

(8.4.44)

where –µMR denotes the mean value of the signal power to the interference power at the
output of the MRC.

For K0 = ∞, the desired signal becomes nonfading and the pdf for the nonfading signal
case becomes

(8.4.45)

yielding

(8.4.46)

Thus, the mean signal power to interference power is the same for both cases.

8.4.2.2 Outage Probability

The outage probability is defined as

(8.4.47)
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For MRC, when the signal envelope has a Rayleigh distribution, (8.4.47) and (8.4.43) yield
[Sha00a]

(8.4.48)

where 2F1(a; b; c; x) denotes the Gauss hypergeometric function defined as [Abr72]

(8.4.49)

with

(8.4.50)

When the signal envelope is nonfading, (8.4.45) and (8.4.47) yield

(8.4.51)

where Γ(K, x) is the incomplete gamma function.

8.4.2.3 Average BER

Assuming that the interference term in (8.4.37) is Gaussian distributed, the conditional
Pe(µ) for coherent BPSK is given by [Sha00a]

(8.4.52)

The average BER may be obtained by averaging all values of µ (the SIR) as

(8.4.53)

Substituting for Pe(µ) from (8.4.52) and fµ(µ) from (8.4.43) in (8.4.53), Pe
MR for the Rayleigh

fading environment becomes

(8.4.54)

Evaluation of the integral leads to [Sha00a]
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(8.4.55)

where 2F2(.) is a hypergeometric function. An expression for the generalized hypergeo-
metric function is given by [And85]

(8.4.56)

with

(8.4.57)

8.5 Optimal Combiner

An optimal combiner (OC) or beamformer as discussed in Chapter 2 maximizes the output
SNR at the output of the combiner, and is useful in canceling unwanted interferences in
nonfading and uncorrelated environments when the system has more degrees of freedom
than the number of interferences present. In mobile communications, the situation is
different than that assumed in Chapter 2. There are generally more co-channel interfer-
ences than the number of elements in the array; these interferences may not be as strong
as the desired signal and fading conditions prevail. Under these conditions, the OC is not
able to fully cancel all interferences. However, it is able to achieve performance improvement
by combating the effect of fading and causing some reduction in the power of co-channel
interferences entering the receiver [Win84, Win87, Win87a].

In this section, OC performance is examined when there are more co-channel interfer-
ences than the number of elements in the array in fading conditions. Expressions for the
average BER and the probability of errors are derived using the procedure presented in
[Sha98, Sha00]. For analytical simplicity, it is assumed that all interferences are of equal
power and that the system is interference limited. Thus, the effect of noise is ignored.

Let woc denote the weights of the OC given by (2.4.1). For an interference-limited system
when the effect of noise is ignored, the noise-only array correlation matrix RN in (2.4.1) is
identical to the correlation matrix due to interference RI. Thus, woc can be estimated using

(8.5.1)
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where α0 is an arbitrary constant and the steering vector in the look direction has been
replaced by the signal channel gain vector. Let RI be estimated using

(8.5.2)

with pI denoting the power of each interference, and CIj denoting the channel gain vector
for the jth interference.

It can be shown [Gir77] that for K ≥ L, RI
–1 exists with probability one if

is positive definite. Thus, it is assumed here that RI
–1 exists.

8.5.1 Mean Signal Power to Interference Power Ratio

Let SOC and IOC denote the signal power and the interference power at the output of OC,
respectively. These are given by

(8.5.3)

and

(8.5.4)

where

(8.5.5)

denotes an estimate of the signal array correlation matrix.
Substituting for RS and woc, it follows that
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and

(8.5.7)

Let µ denote the signal power to interference power at the output of the OC. Thus, it
follows from (8.5.6) and (8.5.7) that

(8.5.8)

R pI I Ij Ij
H

j

K

=
=
∑C C

1

∑ = [ ]E Ij Ij
HC C

S ROC oc
H

S oc= w w

I ROC oc
H

I oc= w w

R pS S S S
H= C C

S p ROC S S
H

I S= ( )−α 0
2 1 2

C C

I ROC S
H

I S= ( )−α 0
2 1C C

µ =

= ( )−

S
I

p R

oc

oc

S S
H

I SC C1
C Press LLC 



© 2004 by CR
In Rayleigh fading channels, the pdf of µ, fµ(µ) is given by [Sha98]

(8.5.9)

and the mean value of SIR at the output of the OC –µoc becomes

(8.5.10)

where

(8.5.11)

Note that for K = L, E(µ) does not exist. It follows from (8.5.10) that for K @ L, the mean
SIR is proportional to number of branches in the combiner.

8.5.2. Outage Probability

The outage probability Po
oc is given by

(8.5.12)

Substituting for fµ(µ) from (8.5.9), and evaluating the integral (8.5.12) becomes [Sha98]

(8.5.13)

where 2F1(a, b; c; x) is a hypergeometric function given by (8.4.49).
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the Gaussian property is often assumed for such analyses and the results presented here
are under this assumption.

The conditional BER (for a given µ) for a coherent BPSK is given by (8.4.52). The average
BER is then obtained by averaging all values of µ. Thus,

(8.5.14)

Substituting for fµ in (8.5.14) from (8.5.9) and evaluating the integral [Sha98],

(8.5.15)

where 2F2(.) is a hypergeometric function given by (8.4.56).

8.6 Generalized Selection Combiner

A conventional selection combiner discussed in Section 8.1 selects the signal from a branch
with the strongest signal, normally with the largest instantaneous SNR. A generalized
selection combiner (GSC), on the other hand, selects strongest signals from more than one
branch and combines these selected signals  coherently  using  an  MRC  or  an  EGC.  In
maximum ratio combining, the selected signals are combined coherently with a gain
proportional to the amplitude of the signal received on respective branches as discussed
in Section 8.4, whereas in equal gain combining the gain on each branch is the same as
discussed in Section 8.3.

Thus, a GSC is a two-stage processor as shown in Figure 8.2, where the first stage selects
the LC strongest signals from L branches and the second stage combines these using an
MRC (or EGC). It becomes an MRC (or EGC) when all branches are selected at the first
stage, and becomes an SC when only one branch is selected.

Since the MRC and EGC select all branches, including those with poor SNR that provide
only a marginal contribution to the information as well as a possible source of errors.
Thus, a GSC is expected to be more robust than the MRC and EGC in the presence of
channel gain errors. On the other hand, an SC only processes one branch, and thus may
be losing too much information in the process. Thus, an GSC is expected to offer advan-
tages over an SC. For more details on the GSC and its performance under various noise
environments, see [Alo00, Eng96, Kon98, Roy96].
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In this section, the performance of a GSC is studied and the use of moment-generating
functions and the CFs to evaluate various performance measures is explained.

8.6.1 Moment-Generating Functions

The moment-generating function (MGF) of an RV x, Mx(S), is defined as [Alo00]

(8.6.1)

It is related to the Laplace transform of the pdf of x, fx, by

(8.6.2)

and thus one is able to obtain the pdf of x from Mx by taking the inverse Laplace transform
on both sides of (8.6.2).

The MGF is related to the CF of x, ψx(jω), by [Pro95]

(8.6.3)

and the cumulant function of x by [Abr72]

(8.6.4)

The mean value of x may be obtained from φx using

(8.6.5)

or alternately,

(8.6.6)

FIGURE 8.2
Block diagram of a generalized selection combiner.
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The use of CF to evaluate average BER is discussed in Section 8.3.
Now the performance of an L-branch GSC is examined by deriving expressions for the

mean output SNR, outage probability, and average BER when it selects Lc signals from
branches with the largest instantaneous SNR in a noise-limited Rayleigh fading environ-
ment and combines them using an MRC.

8.6.2 Mean Output Signal-to-Noise Ratio

Section 8.4 shows that the SNR at the output of the MRC is the sum of the SNR at each
branch. Let γ(l) denote the ordered SNR at the lth branch, such that γ(1) ≥ γ(2) ≥ … ≥ γ(L).
Thus, it follows that the SNR at the output of the GSC is the sum of the SNR at selected
branches. Hence,

(8.6.7)

It should be noted that even when γl, l = 1, 2, …, L are i.i.d. RVs, RVs γ(l), l = 1, 2, …, Lc
are not i.i.d. RVs [Alo00].

The mean SNR at the output of the GSC, ΓGS, is then given by

(8.6.8)

where γ(l) is the mean value of the ordered SNR on a selected branch, and is given by

(8.6.9)

with fγ(l) denoting the pdf of the ordered SNR γ(l).
When γl, l = 1, 2, …, L are i.i.d. RVs, fγ(l) can be expressed in terms of fγ, the pdf of the

unordered SNR. It is given by [Alo00]

(8.6.10)

where Fγ is the cdf of γ.
For Rayleigh fading channels, fγ and Fγ are, respectively, given by (7.3.12) and (7.3.11).

Substituting in (8.6.10),

(8.6.11)

Substituting this in (8.6.9) with u denoting e−γ/Γ, the expression for γ(l) becomes
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(8.6.12)

which, along with (8.6.8), yields

(8.6.13)

Details on the evaluation of (4.6.12) and (4.6.13) are provided in [Alo00]. A derivation
of (8.6.13) is also provided in [Roy96]. It can easily be seen that for Lc = 1, (8.6.13) reduces
to (8.1.9), an expression for ΓSC. For Lc = L, it becomes (8.4.6), an expression for ΓMR. Thus,
(8.6.13) is a generalization of the two results. It can be shown that ΓGS is a monotonically
increasing function of the selected branches, resulting in ΓSC ≤ ΓGS ≤ ΓMR [Kon98]. Thus,
the mean SNR of the GSC is bounded below by ΓSC and above by ΓMR.

An alternative derivation of (8.6.13) using moment-generating functions is presented
below. An expression for M γGS

(S), the MGF of γGS in the Rayleigh fading environment, is
given by [Alo00]:

(8.6.14)

Alternately, in summation form the expression becomes

(8.6.15)

Substituting for MγGS
 from (8.6.14) in (8.6.4), one obtains an expression for the cumulant

function:

(8.6.16)

which, along with (8.6.5), yields (8.6.13).
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To derive the pdf of γGS, rewrite (8.6.14) by replacing l with l + Lc to shift the range of
product terms from l = Lc, …, L to l = 0, …, L − Lc:

(8.6.17)

The required fγGS
 may be obtained by substituting MγGS

 from (8.6.17) in (8.6.2), and then
taking the inverse Laplace transforms. An expression for fγGS

 becomes [Roy96]

(8.6.18)

where al are the coefficients of the partial fraction expansion of (8.6.17) and are given by

(8.6.19)

and

(8.6.20)

The expression also has a compact form given by [Alo00]:

(8.6.21)

8.6.3 Outage Probability

Let Po
GS denote the outage probability for GSC. It is defined as

(8.6.22)
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An expression of FγGS
(γ) may be obtained by integrating (8.6.18) [Roy96]:

(8.6.23)

where

(8.6.24)

and

(8.6.25)

An expression for Po
GS follows from (8.6.22) and (8.6.23). A closed-form expression for

Po
GS is obtained by integrating (8.6.21) and using (8.6.22) [Alo00]:

(8.6.26)

8.6.4 Average Bit Error Rate

The average BER for the GSC can be obtained by averaging the conditional BER for a
given γ over all γ using an expression for fγGS

. Using (8.6.18) and (7.3.55), an expression
for the average BER for coherent BPSK becomes [Roy96]

(8.6.27)

Replacing Γ by Γ/2 in (8.6.27), an expression for the average BER for CFSK is obtained.
The MGF may also be used to directly derive expressions for the average BER. For

various modulation schemes, the average BER using the MGF is given in [Alo00]. For
coherent BPSK and CFSK,

(8.6.28)
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Substituting for MγGS from (8.6.15) and carrying out the integral,

(8.6.29)

where

(8.6.30)

and can be evaluated using the following equations[Alo00].
For C1 = C2 = C,

(8.6.31)

with

(8.6.32)

(8.6.33)

(8.6.34)

and sgn(x) denoting the sign of x.
For C1 ≠ C2,

(8.6.35)

with T1 and T2 corresponding to T of (8.6.32), with C replaced by C1 and C2, respectively.
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The expression for the average BER for BPSK (g = 1) given by (8.6.28) yields the same
numerical results as given by [Eng96] for Lc = 2 and Lc = 3 using the conventional approach
of averaging the conditional BER over all values of γ. These expressions are given below.

For Lc = 2, the average BER Pe
SC2 for coherent BPSK is given by

(8.6.36)

with

(8.6.37)

and

(8.6.38)

For Lc = 3, the expression is given by

(8.6.39)

with
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and

(8.6.41)

8.7 Cascade Diversity Combiner

A cascade diversity combiner (CDC) is similar to the GSC discussed in the previous section
in that it employs a two-stage diversity combining [Roy96]. However, there are some
differences. The CDC divides the L branches in Lc groups of M branch each, and then
uses a selection combiner to select one best signal from each group at the first stage. At
the second stage, it uses an MRC to combine the Lc signals selected at the first stage. The
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Lc selected signals at the first stage are not necessarily the best Lc signals, as is the case
for the GSC. However, the combiner is perhaps easy to implement and analyze, as the
SNR at different branches may be assumed to be i.i.d. RVs. In addition, having equal
numbers of M inputs in different selection combiners helps in implementation. For M =
1, there is no selection; it is equivalent to an MRC. For Lc = 1, there is no combiner and it
is equivalent to a conventional SC. Figure 8.3 shows a block diagram of a predetection
CDC.

In this section, an analysis of a CDC is presented. Both Rayleigh fading and Nakgami
fading environments are considered [Cho00, Roy96].

8.7.1 Rayleigh Fading Environment

First, consider the pdf of γCD, the SNR at the output of the CDC.

8.7.1.1 Output SNR pdf

It follows from (8.1.7) that when SNRs on different branches are i.i.d. RVs, the pdf of the
SNR at the output of an M branch selection combiner in a Rayleigh fading environment
is given by

(8.7.1)

The characteristic function of γ is given by

(8.7.2)

Substituting for fγ from (8.7.1) and carrying out the integral, it becomes

FIGURE 8.3
Block diagram of a cascade diversity combiner.
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(8.7.3)

The second stage uses an MRC to combine the Lc signals. As the SNR at the output of
the MRC is the sum of individual SNRs, it follows that the instantaneous SNR γCD at the
output of the CDC is given by

(8.7.4)

where γl denotes the SNR at the output of the lth SC.
Since γl, l = 1, …, Lc are i.i.d. RVs, it implies that characteristic function of γCD is the

product of individual characteristic functions, that is,

(8.7.5)

One observes from (8.7.5) that ψγCD
(jω) has M poles of order Lc each. Thus, it can be

expressed in summation form suitable for inverse transformation to obtain pdf of γCD as
follows:

(8.7.6)

where ak,l are the coefficients of the partial fraction expression of ψγCD
(jω). For a technique

to compute these coefficients, see [Gil81].
Taking the inverse transformation of (8.7.6), the pdf of γCD then becomes [Roy96]

(8.7.7)

8.7.1.2 Outage Probability

Let Po
γ CD

denote the outage probability for a CDC. Integrating (8.7.7) yields

(8.7.8)
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where

(8.7.9)

An expression for outage probability is obtained by substituting γ0 for γ in FγCD
:

(8.7.10)

8.7.1.3 Mean SNR

The mean value of SNR at the output of the CDC can be obtained using (8.6.3) to (8.6.5)
with S = jω, that is,

(8.7.11)

where

(8.7.12)

Substituting for ψγCD
(jω) from (8.7.5) in (8.7.12),

(8.7.13)

Differentiating on both sides of (8.7.13) with respect to ω yields

(8.7.14)

Using this in (8.7.11) it follows that

(8.7.15)

Thus, the mean SNR increases by from the single branch mean SNR. In fact, the

gain in mean SNR is the product of the gain by an M branch SC and an Lc branch MRC.
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8.7.1.4 Average BER

The average BER may be obtained by averaging the conditional BER over all values of γ,
that is,

(8.7.16)

Consider an example of a coherent BPSK system. Substituting for Pe(γ) from (7.3.55) in
(8.7.16),

(8.7.17)

Changing the order of integration, it becomes

(8.7.18)

Using (8.7.8), the formulas

(8.7.19)

and

(8.7.20)

and carrying out the integral [Roy96], the expression becomes

(8.7.21)

Now consider a case of M = 1 and Lc = L. In this situation, the CDC becomes an MRC.
It follows from comparing the terms in (8.7.5) and (8.7.6) that
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Thus, from (8.7.9) using Lc = L and (8.7.22):

(8.7.23)

Substituting this in (8.7.21),

(8.7.24)

It is left an exercise for the reader to show that this is the same as (8.4.19).
Note that using M = 1, Lc = L, (8.7.22) and (8.7.23) in (8.7.7) and (8.7.8), respectively,

leads to (8.4.10) and (8.4.13).
Now, consider an example DPSK system. For DPSK, Pe(γ) is given by (8.4.17). Substi-

tuting (8.4.17) and (8.7.7) in (8.7.16) and carrying out the integral [Roy96],

(8.7.25)

where ak, l are the same as in (4.7.6). The above result also applies to noncoherent orthogonal
FSK when Γ is replaced by Γ/2.

8.7.2 Nakagami Fading Environment

In the Nakagami fading environment with the fading parameter m acquiring integer values,
the pdf of the SNR at the output of an L branch selection combiner when signals on all
channels are i.i.d. RVs is given by (8.1.20). The characteristic function of γSC is given by

(8.7.26)

Substituting for fγSC
(γ) from (8.1.20) in (8.7.26) and evaluating the integral, the CF of γSC for

an M branch selection combiner becomes [Cho00]

(8.7.27)

The characteristic function of γCD is the product of the individual characteristic functions;
thus, it is given by

(8.7.28)

Following a procedure similar to the Rayleigh fading case described in Section 8.7, the
pdf of the SNR of the cascade receiver is given by [Cho00]

(8.7.29)
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where

(8.7.30)

and ai,l are the partial fraction coefficients.

8.7.2.1 Average BER

Consider an example of differential QPSK [Cho00]. The conditional BER for an Lc branch
MRC using the differential QPSK in AWGN channels is given by

(8.7.31)

where

(8.7.32)

(8.7.33)

and In(.) is the modified Bessel function of the first kind and order n.
The average BER then becomes

(8.7.34)
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where

(8.7.35)

(8.7.36)

and F(a, b; c; x) = 2F1(a, b; c; x) is a hypergeometric function given by (8.4.49).

8.8 Macroscopic Diversity Combiner

The signal envelope undergoes fast fluctuations due to local phenomena, and superim-
posed on these fluctuations is a slow varying mean signal level due to shadowing as
discussed in Chapter 7. The fast-varying signal components received on spatially sepa-
rated antennas may be regarded as uncorrelated with antenna spacing of the order of half
a carrier wavelength. However, this is not the case for the slow-varying mean levels. The
various space-diversity techniques discussed in previous sections required independent
fading components. These space-diversity techniques are normally referred to as microdi-
versity techniques, and are only useful in combating the effect of fast fading.

A space-diversity technique referred to as macrodiversity is employed to overcome the
effect of shadowing. In macrodiversity, a cell is served by a group of geographically
separated base stations, and a base station receiving a strongest mean signal is used to
establish a link with a mobile [Tur91, Abu94b, Abu95, Jak74].

8.8.1 Effect of Shadowing

In this section, the effect of shadowing on the performance of a system using a microscopic
selection combiner and microscopic maximal ratio combiner schemes in the Rayleigh
fading environment is considered [Tur91].

8.8.1.1 Selection Combiner

Let fγSC
 denote the pdf of the SNR at the output of a system using L-branch SC for a given

mean SNR level, and let fΓ denote the pdf of the mean SNR at the site employing the SC
system. Let Pe(γ) denote the BER for a particular modulation scheme for a SNR γ. Then
the BER at the output of the SC system is the average over all values of the SNR given by

(8.8.1)

This quantity is dependent of the mean SNR Γ. When Γ is not constant, the average of all
Γ needs to be carried out to evaluate the average BER. It is given by

G m i m i m i, ,Γ Γ Γ( ) = +( ) + +( ) +2 2 21 4 1 2

x
m i

G m i
= +( ) +

( )
1 2Γ

Γ, ,

P P f de e SC
Γ( ) = ( ) ( )

∞

∫ γ γ γγ

0

C Press LLC 



© 2004 by CR
(8.8.2)

An expression for fγSC
 in the Rayleigh fading environment is given by (8.1.7). Rewrite in

the following from

(8.8.3)

Substituting this in (8.8.1) gives Pe(Γ), and Pe then may be obtained using the pdf of Γ in
(8.8.2). The pdf of Γ has a log-normal distribution. It follows from (7.1.23) that it is given by

(8.8.4)

where
–Γd is the mean value of Γ in decibels and σ2 is its variance in decibels. If you know

the BER for a particular modulation scheme, the average BER can be calculated using
above procedure.

Consider an example of the CFSK scheme. For CFSK, Pe(γ) is given by (7.3.57), that is,

(8.8.5)

In [Tur91], the average BER for a minimum shift keying (MSK) receiver is derived using

(8.8.6)

For M = 1 and di = 1, (8.8.6) reduces to (8.8.5). Thus, the results derived for MSK reduce
to that for CFSK when M = 1 and di = 1.

Substituting (8.8.3) and (8.8.5) in (8.8.1) and carrying out the integrals [Tur91],

(8.8.7)

which, along with (8.8.4) and (8.8.2), results in the average BER in Rayleigh and log-normal
fading,

(8.8.8)
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8.8.1.2 Maximum Ratio Combiner

Now, consider the MRC under a similar environment. The SNR pdf at the output of the
MRC is given by (8.4.10), that is,

(8.8.9)

Using (8.8.9) and (8.8.5), the average BER for a given mean SNR becomes

(8.8.10)

and the average BER after taking shadowing into consideration using (8.8.4) becomes
[Tur91]

(8.8.11)

8.8.2 Microscopic Plus Macroscopic Diversity

Figure 8.4 shows a block diagram of a composite microscopic-plus-macroscopic diversity
system in which transmission from a mobile is received by N different base stations. Each
station employs an L-branch microscopic diversity system, which may employ any of the
diversity-combining techniques discussed previously, and produces one output per base
station. Thus N base stations produce a total of N outputs. A macroscopic diversity scheme
is then used to produce one output. In principle, the macroscopic diversity scheme may
use any one of the previous diversity-combining schemes to produce one output from N
branches.

In this section, a scheme in which a selection diversity is employed to select one of the
N branches is analyzed [Tur91]. Assuming that the signals on N branches are log-normally
distributed, the pdf of the N-branch selection-diversity scheme is given by

(8.8.12)

where F(.) is the cumulative normal distribution function.
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The average BER to include the shadowing effect may be calculated by averaging the
conditional BER at the output of microscopic diversity combiner, that is,

(8.8.13)

where Pe(Γ) denotes the average BER at the output of microscopic diversity combiner for
a given mean SNR. For CFSK system operating in the Rayleigh fading environment, for
SC and MRC, it is given by (8.8.7) and (8.8.10), respectively.

Let Pe
SCM and Pe

MRM denote the average BER when a composite system uses SC as mac-
roscopic diversity with SC and MRC as microscopic diversity , respectively. Using (8.8.7)
in (8.8.13) along with (8.8.12) yields [Tur91]

(8.8.14)

and using (8.8.10) in (8.8.13) yields [Tur91]

(8.8.15)

FIGURE 8.4
Block diagram of a macroscopic diversity combiner.
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Notation and Abbreviations

AWGN additive white Gaussian noise
BER bit error rate
BPSK binary phase shift keying
CDC cascade diversity combiner
CFSK coherent orthogonal frequency shift keying
DPSK differentially binary phase shift keying
EGC equal gain combiner
GSC generalized selection combiner
MGF moment generating function
MRC maximum ratio combiner
NCFSK noncoherent orthogonal frequency shift keying
OC optimal combiner
cdf cumulative distribution function
pdf probability density function
RV random variable
SC selection combiner
SDC switched diversity combiner
SIR signal power to interference power ratio
CS channel gain vector for signal
CIj channel gain vector for jth interference
Fγ cdf of γ
fγ pdf of γ
fγ
ˆ pdf of γ in weight errors
Ii total interference power
IOC total interference power at the output of OC
IEG interference power at the output of EGC
IMR interference power at the output of MRC
Ij–

mean power due to jth interference, identical on all branches
I
–

mean interference power due to identical interferences on all branches
Ij
i instantaneous power on ith branch due to jth interference

K number of interferences
L number of branches
LC number of selected branches
L(f) Laplace transform of f
Mx MGF of x
m Nakagami fading parameter
N uncorrelated noise power
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ni noise on ith channel
n(t) noise vector
P( ) probability of ( )
Pe average BER
Pe(γ) conditional BER
Pe

SC average BER at output of SC
Pe

GS average BER at output of GSC
Pe

SC2 average BER at output of two-branch GSC
Pe

SC3 average BER at output of three-branch GSC
Pe

CD average BER in CDC
Pe

MR average BER in MRC
Pe

MRˆ average BER in MRC with weight errors
Pe

SW average BER in SDC
Pe

OC average BER in OC
Po
CD outage probability of CDC

Po
EG outage probability of EGC

Po
SC outage probability of SC

Po
SW outage probability of SDC

Po
GS outage probability of GSC

Po
MR outage probability of MRC

Po
MR

ˆ outage probability of MRC in weight errors
Po
OC outage probability of OC

pIj power of jth interference source
pS power of signal source
qij amplitude of the jth interference received on ith branch
R array correlation matrix
RS,RI,RN array correlation matrix of signal, interference, and noise only, respectively
r signal amplitude
ri signal amplitude received on ith branch
SC2 selection combiner with two branches selected
SC3 selection combiner with three branches selected
S
–

mean signal power identical on all branches
Si signal power on ith branch
SOC signal power at output of OC
SEG signal power at output of EGC
SMR signal power at output of MRC
wi weight on the ith branch
w weight vector
woc weight vector of optimal combiner
xi(t) received signal on ith branch
x(t) array signal vector
y(t) combiner output.
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Γ mean SNR at a branch
ΓEG mean SNR of EGC
ΓCD mean SNR at output of CDC
ΓSC mean SNR at output of SC
ΓGS mean SNR at output of GSC
ΓMR mean SNR at output of MRC
Γi mean SNR at ith branch
α inverse of Γ
αi,θi channel attenuation and phase on ith branch
α0 an arbitrary constant
ψij phase of jth interference received on ith branch
ψr characteristic function of an RV r
θi(t) signal phase on ith branch
φx cumulant generating function of x
γ SNR
γ0 threshold value of SNR
γl SNR of lth branch
γ(l) ordered SNR of lth branch
γ(l) mean value of γ(l)
γCD SNR of CDC
γGS SNR of GSC
γSC SNR of SC
ξ0 threshold value of power
ξ0
ˆ optimum value of threshold power
ρ correlation coefficient
µ signal power to interference power ratio
µ0 threshold value of SIR
µSC SIR of SC
µEG SIR of EGC
µSW SIR of SDC
µ̃ average signal power to average interference power ratio
µEG˜ average signal power to average interference power ratio of EGC
µMR

– mean SIR of MRC
µOC

– mean SIR of OC
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