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Preface

Quantum Mechanics (henceforth QM) is without a doubt the most important and the most difficult branch
of physics. Our entire current understanding of the material universe is based upon it.

There are many useful introductory texts available today each with its own particular flavor and approach.
The approach taken in this volume is to present to the beginning student an extensive and rich selection of prob-
lems and solutions that cover all the main areas given in an introductory course in QM. Special emphasis was
placed on presenting the basic concepts and results. Part of the task of assimilating introductory QM involves
mastery of the formal (mathematical) methods. Such mastery is necessary to be able to continue with the more
advanced topics. Effort was placed in presenting problems that demonstrate the application of QM to the solu-
tion of applied problems. We have also found it useful to include a chapter on numerical methods. The computer
is already firmly established as an important tool of the practicing physicist.

We wish to thank the following individuals for their contribution and assistance to the production of this
volume: Dr, Uri Onn, Zahir Millad, M.Sc¢., Moran Furman, M.Sc., and Arya Bart, M.Sc.

It is our hope that this volume will help the novice to QM to overcome the initial hurdles to mastering this
fascinating and important discipline.

YoAV PELEG
REUVEN PNINI
ELYAHU ZAARUR

il



Chapter

Contents
INTRODUCTION ...covvevereeeeeereersorserserssssssssnssssnssssssasssrssssssssassssssssssssosses

11 Tha Partirla Nature of Ela nrnmnnnnrlr\ Radiation 172 Tha Nuality ~f
1.1 INe raricic Nature o1 aeciror Agnciic wadgialiol. 1.2 e wgaiity Of

Light. 1.3 The Duality of Matter. 1.4 Wave-packets and the Uncertainty Relation.

Chapter

MATHEMATICAL BACKGROUND .......ciiiinsenicncnssnssesssnssnaes 11
2.1 The Complex Field C. 2.2 Vector Spaces over C. 2.3 Linear Operators and
Matrices. 2.4 Eigenvectors and Eigenvalues. 2.5 Fourier Series and the Fourier
Transform. 2.6 The Dirac Delta Function.

Chapter

THE SCHRODINGER EQUATION AND

ITS APPLICATIONS ....ccocivriiisininisncsrsssnsnssnssssssssesassssssssossassnsnsssnns 21
3.1 Wave Functions of a Single Particle. 3.2 The Schrédinger Equation. 3.3 Par-

ticle in a Time-Independent Potential. 3.4 Scalar Product of Wave Functions;
Operators. 3.5 Probability Density and Probability Current.

&

THE FNTINDATIONCS AR ODOTTANTIT FEOCHANICCS
a F Aan., a2 AN

EBAG B\ UINAFIRA AR 1MAF IR Vuﬂl‘ A JLiVYA 1lva F 9\ 1iX L7 assassisssssssssasstU
4.1 Introduction. 4.2 Postulates in Quantum Mechanics. 4.3 Mean Value and
Root-Mean-Square Deviation. 4.4 Commuting Observables. 4.5 Function of an
Operator. 4.6 Hermitian Conjugation. 4.7 Discrete and Continuous State
Spaces. 4.8 Representations, 4.9 The Time Evolution. 4.10 Uncertainty Re-
lations. 4.11 The Schrodinger and Heisenberg Pictures.

Chapter

HARMONIC OSCILLATOR aseseetsssavane ...-...‘.'....I...'.‘.l..lI......'....‘......so
5.1 Introduction. 5.2 The Hermite Polynomials. 5.3 Two- and Three-Dimensional
Harmonic Oscillators, 5.4 Operator Methods for a Harmonic Oscillator.

[}

ANGIIT AR MOMENTIIM

6.1 Introduction. 6.2 Commutation Relations. 6.3 Lowering and Raising
Operators. 6.4 Algebra of Angular Momentum. 6.5 Differential Represen-
tations. 6,6 Matrix Representation of an Angular Momentum. 6.7 Spherical
Symmetry Potentials. 6.8 Anguiar Momentum and Rotations.

Chapter

I.N *esessptecsatencs LYY Y Y s8sc00s0s0000b00e 2008500060000 00 00000 eve [XITYYTY 7YY 122
Definitions. 7.2 Spin 1/2 7.3 Pauli Matn'ces 7.4 Lowenng and Raising

.. Qinnma T & Tintasn atlni sertthh o RAnnmacss 024l
1 opacc. /.u 1iteract IU Wllll a 1V1¢15ucuu I I.C].U

(R U‘!

ators. 7.5 Rotations inthe S

N
pera

‘Cl




vi

Chapter

CONTENTS

HYDROGEN'LIKE ATOMS'."' ----------- Sessscenecses sssqsssanss o.ol;o.locn.uoocacul40
8.1 A Particle in a Central Potential. 8.2 Two Interacting Particles. 8.3 The Hy-
drogen Atom. 8.4 Energy Levels of the Hydrogen Atom. 8.5 Mean Value

Fvnﬂ:ccmnc 8.6 Hvdrogen-like Atoms,

= 2o g L0 (S S A )

Chapter

PARTICLE MOTION IN
AN ELECTROMAGNETIC FIELD .....ocovvsvrireeniresseressassssessssessss 154

AimdmdSs A AR FIYVAIARSS L SAY A ANy &2 aadSlarl P IR TP FIT IS IR T PRSI P TTPITSETTRSIIASIET S

9.1 The Electromagnetic Field and Its Assocnated Potentials. 9.2 The Hamilto-
nian of a Particle in the Electromagnetic Field. 9.3 Probability Density
and Probability Current. 9.4 The Magnetic Moment. 9.5 Units.

Chapter

10

SOLUTION METHODS IN QUANTUM MECHANICS—
PART A..uvevvrrervecsenesenene cessscsssusnsees crrsssessnssassensessissasssssansssssssasseass 1 79
10.1 Time-Independent Perturbation Theory. 10.2 Perturbation of a Nondegener-

ate Level. 10.3 Perturbation of a Degenerate State. 10.4 Time-Dependent Pertur-
bation Theory.

Chapter

1

1

SOLUTION METHODS IN QUANTUM MECHANICS—
PARTB........... ceeesersnnesreranne cererensssreasss ceresenrsrnesarssanse cerserseraasaasersearernes 199

11.1 The Variational Method, 11.2 Semiclassical Apprgximagign (Tb_e WKR Ap-

proximation).

Chapter

12

NUMERICAL METHODS IN QUANTUM MECHANICS .......214

12.1 Numerical Quadrature. 12.2 Roots. 12.3 Integration of Ordinary Differen-
tial Equations.

Chapter

1

3

IDENTICAL PARTICLES....cc.civiiciesecsnesacssesssssessnssnssnroscssosaseness 228

13.1 Introduction. 13.2 Permutations and Symmetries of Wave Functions. 13.3
Bosons and Fermions.

Chapter

14

ADDITION OF ANGULAR MOMENTA .......cmvivrcnrinrencensarenss 236

14.1 Introduction, 14.2 {j7, i3, J°, J.} Basis. 14.3 Clebsch-Gordan Coeffi-
cients.

(‘hnntpr

SCATTERING THEORY ...oeeoeccierionsessoressornessssssssssssesnsssseesesssenses s 256

15.1 Cross Section, 15,2 Stationary Scattering States. 15.3 Bormn Approx-
imation. 15.4 Partial Wave Expansions. 15.5 Scattering of Identical Parti-
cles.




Chapter 16

CONTENTS

SEMICLASSICAL TREATMENT OF RADIATION ..................286
16.1 The Interaction of Radiation with Atomic Systems. 16.2 Time-Dependent
Perturbation Theory. 16.3 Transition Rate. 16.4 Multipole Transitions. 16.5
Spontaneous Emission.

Appendix

MATHEMATICAL APPENDIX .....nnincmncssncnsnnranssssasssssnnsssnas 301
A.1 Fourier Series and Fourier Transform. A.2 The Dirac 8-Function. A.3 Her-

mite Polynomials. A.4 Legendre Polynomials. A.5 Associated Legendre
Functions. A.6 Spherical Harmonics. A.7 Associated Laguerre Polynom-
ials. A.8 Spherical Bessel Functions.

INDEX

vii



Chapter 1

Introduction

1.1 THE PARTICLE NATURE OF ELECTROMAGNETIC RADIATION

Isaac Newton considered light to be a beam of particles. During the nineteenth century, some experiments
concerning interference and diffraction of light demonstrated light’s wavelike nature. Later, optics was inte-
grated into electromagnetic theory and it was proved that light is a kind of electromagnetic radiation. However,
the phenomenon of black body radiation, which was studied toward the end of the nineteenth century, could not
be explained within the framework of electromagnetic theory. In 1900 Max Planck arrived at a formula explain-
ing black body radiation, and later proved that it can be derived by assuming the quantization of electromagnetic

vadiatinn
f LELEE s Es L,

In 1905, generalizing Planck’s hypothesis, Einstein proposed a return to the particle theory of light. He
claimed that a_beam of light of frequency v consists of photons, each possessing energy Av, where
h = 6.62x 10 Joules x second (Planck’s constant). Einstein showed how the introduction of the photon
could explain the unexplained characteristics of the photoelectric effect. About 20 years later, the photon was
actually shown to exist as a distinct entity (the Compton effect; see Problem 1.3).

The photoelectric effect was discovered by Heinrich Hertz in 1887. It is one of several processes by which
electrons can be removed from a metal surface. A schematic drawing of the apparatus for studying the photo-
electric effect is given in Fig. 1-1.

| -1 I+
O,
1
AMN
|
Fig. 1-1

The critical potential V, such that eV, = E__ (the maximum energy of the electrons emitted from the
anode) is called the stopping potential. The experimental results of the photoelectric effect are summarized in
Fig. 1-2.

(a) When light shines on a metal surface, the current flows almost instantaneously
light intensity.
(b) For fixed frequency and retarding potential, the photocurrent is directly proportional to the light intensity.
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Fig. 1-2

(¢) For constant frequency and light intensity, the photocurrent decreases with the increase of the retarding
potential V, and finally reaches zero whenV = V.

(d) For any given surface, the stopping potential V|, depends on the frequency of the light but is independent
of the light intensity. For each metal there is a threshold frequency v, that must be exceeded for
photoemission to occur; no electrons are emitted from the metal unless v > v, no matter how great the
light intensity is.

The experimental correlation between the stopping potential V,, and the frequency of light can be represented by
eVy = hv—hv, (1.1)

where # is the same for all metals (Planck’s constant).

i.2 THE DUALITY OF LIGHT

The double-slit experiment (Problem 1.4) shows that it is not possible to explain the experimental results
if only one of the two characteristics of lighi—wave or particie—is considered. Lighr behaves simuitaneousty
like a wave and a flux of particles; the wave enables us to calculate the probability of the manifestation of a
particle, The dynamic parameters of the particles (the energy £ and the photon momentum p) are linked to the

wave parameters (the frequency v and the wave vector k) by the relations
E=hv =to 12
p = Ak (1.2)

where 2 = h/27. These are the Planck—Einstein relations.

1.3 THE DUALITY OF MATTER

Contemporaneously with the discovery of the photon, a fundamental phenomenon of atomic physics was
observed. It was discovered that an atom emits or absorbs only light with well-determined frequencies. This
fact can be explained by assuming that the energy of an atom can take on only certain discrete values. The exist-



CHAP. 1] INTRODUCTION 3

ence of such discrete energy levels was demonstrated by the Franck—Hertz experiment. Niels Bohr interpreted
this in 1913 in terms of electron orbits and proposed the following model for the hydrogen atom.

The electrons move in orbits restricted by the requirement that the angular momentum be an integral mul-
tiple of 4/2x. For a circular orbit of radius r, the electron velocity v is given by

mvy = =— n=1,2,... (1.3)

The relation between the Coulomb force and the centrifugal force can be written in the following form:
= — (14)

where —e is the charge of the electron. We assume that the nuclear mass is infinite. Combining (/.3) and (/.4)
we obtain

2me?
Va = T (1.5)
and
1 n?h?
7 = z 2 (16)
47" me®
The energy is
i e’ 2nme’
_ -2 ¢ _

Bohr postulated that the electrons in these orbits do not radiate, despite their acceleration; they are in stationary
states. Electrons can make discontinuous transitions from one allowed orbit to another. The change in energy
will appear as radiation of frequency
PR E — E' 71 O
V=" (1.0}
The physical basis of the Bohr model remained unclear until 1923, when De Broglie put forth the hypothesis
that material particles have wavelike characteristics; a particle of energy E and momentum p is associated with
a wave of angular frequency o = E/# and a wave vectork = p/h. The corresponding wavelength is therefore
28 h
= - = = (1.9)

=T =0

This is the De Broglie relation.

1.4 WAVE-PACKETS AND THE UNCERTAINTY RELATION

The wave and particle aspects of electrom
of wave-packet. A wave-packet is a superposition of waves. We can construct a wave-packet in which the waves
interfere with each other almost completely outside a given spatial region. We thus obtain a localized wave-
packet that can be considered an approximate description of a classical particle. A wave-packet consisting of a

superposition of plane waves may be written

pects of electromagnetic radiation and matter can be united through the concept

1 ik-r
fr) = Wj‘g(k)ek dk (1.10)
or in one dimenston,
1"
fx) = JTT:J g(kye™ dk (1.11)

The evolution of wave-packets is determined by the Schridinger equation (see Chapter 3). When a wave-packet
evolves according to the postulates of quantum mechanics (see Chapter 4), the widths of the curves f(x) and
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g(k) are related by

AxAk>1 (1.12)
Using the De Broglie relation p = Ak, we have

ApAx>h (1.13)

This is the Heisenberg uncertainty relation; if we try to construct a highly localized wave-packet in space, then
it is impossible to associate a well-defined momentum with it. In contrast, a wave-packet with a defined momen-
tum within narrow limits must be spatially very broad. Note that since # is very small, the notions of classical
physics will fail only for a microscopic system (see Problem 1.14). The uncertainty relation acts to reconcile the
wave—particle duality of matter and radiation (see Problems 1.4 and 1.5).

Considering a wave-packet, one should distinguish between phase velocity and group velocity. For a wave
of angular frequency ® = 27y and wave number k = 21/A, the phase velocity is

g

= AV (1.14)

Vp—

This is the rate at which a point of constar els cket of dift Ir
frequency and in phase speed combines to create a region of strong constructive interference, the speed v_ at
which the region advances is related to the angular frequency @ and wave number & of the component waves

by the relation

nt phase travels through space. When a packet of waves differin

a
=

o

d
ve = G2 (1.15)

Solved Problems

1.1.  Consider the four experimental results of the photoelectric effect described in Section 1.1. For each
result discuss whether it would be expected on the basis of the classical properties of electromagnetic
waves.

We refer separately to each of the effects described in Fig. 1-2.

(@) An electron in a metal will be free to leave the surface only after the light beam provides 1ts binding energy.
Because of the continuous nature of the electromagnetic radiation, we expect the energy absorbed on the
metal’s surface to be proportional to the intensity of the light beam (energy per unit time per unit area), the area
illuminated, and the time of illummnation. A simple calculation (see Problem 1.11) shows that in the case of an
intensity of 100 w/ m?, photoemission can be expected only after 100 h. Experimentally, the delay times that
were observed for the same light intensity were not longer than 10 5. Classical theory is thus unable to explain
the instantaneous emission of electrons from the anode.

(b) With the increase of light energy, the energy absorbed by the electrons in the anode increases. Therefore, clas-
sical theory predicts that the number of electrons emitted (and thus the current) will increase proportionally to
the light intensity. Here classical theory is able to account for the experimental result.

{c} This result shows that there is a distribution in the energies of the emitted electrons. The distribution in itself
can, within the framework of the classical theory, be attributed to the varying degrees of binding of electrons
to metal, or to the varying amount of energy transferred from the light beam to the electrons. But the fact that
there exists a well-defined stopping potential independent of the intensity indicates that the maximum energy
of released electrons does not depend on the amount of energy reaching the surface per unit time. Classical
theory is unable to account for this.

(d) According to the classical point of view, emission of electrons from the anode depends on the light intensity
but not on its frequency. The existence of a frequency below which no emission occurs, however great the light
intensity, cannot be predicted within the framework of classical theory.

In conclusion, the classical theory of electromagnetic radiation is unable to fully explain the photoelectric effect.

1.2.  Interpret the experimental results of the photoelectric effect in view of Einstein’s hypothesis of the quan-
tization of light.
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1L.3.

As in Problem 1.1, we refer separately to each of the effects described in Fig. 1-2.

(@) According to the hypothesis that light consists of photons, we expect that a photon will be able to transfer its
energy to an electron in a metal, and therefore it is feasible that photoemission occurs instantaneously even at

that ¢th £ ala
a very small light intensity. This is contrary to the classical view, which proposes that the emission of electrons

depends on continuous accumulation of energy absorbed from light.

(b) From quantum theory’s point of view, light intensity is equal to the energy of each photon multiplied by the
number of photons crossing a unit area per unit time. It is reasonable that the number of emitted electrons per
unit time (which is equivalent to the current) will be proportional to the light intensity.

(c) The frequency of the electromagnetic radiation determines the energy of the photons hv. Therefore, the energy
transferred to electrons in a metal due to light absorption is well defined, and thus for any given frequency there
exists a maximum kinetic energy of the photoelectrons. This explains the effect described in Fig. 1-2.

(d) Equation ({.1) can be given a simple interpretation if we assume that the binding energy of the electrons that
are least tightly bound to the metal is ¢ = Av,. The maximum kinetic energy of emitted electrons is kv — ¢,
Using the definition of stopping potential, eV, is the maximum kinetic energy; therefore, eV, = hv — hv,.

Consider the Compton effect (see Fig. 1-3). According to quantum theory, a monochromatic electro-
magnetic beam of frequency v is regarded as a collection of particlelike photons, each possessing an
energy E = hvanda momentum p = hv/c = h/A, where A is the wavelength. The scattering of elec-
tromagnetic radiation becomes a problem of collision of a photon with a charged particle. Suppose that
a photon moving along the x-axis collides with a particle of mass m,,. As a result of the collision, the
photon is scattered at an angle 6, and its frequency is changed. Find the increase in the photon’s wave-
length as a function of the scattering angle.

.&’ _
/§ "
hv - a

o g \u
h/A, X ¢ X

Before collision After collision

Fig. 1-3

First, since the particle may gain significant kinetic energy, we must use it by relativistic dynamics. Applying
energy conservation we obtain

hv  + E, = v + E
(before collision) N — o (after collision) (1.3.1)
pnoion partiCIC pnoton panicie

where E, is the rest energy of the particle (E, = myc?). The magnitudes of the moments of the incident and scattered
photons are, respectively,

=7 amd p==g (13.2)
The scattering angle 0 is the angle between the directions of p, and p, . Applying the law of cosines to the triangle
in Fig. 1-4, we obtain

P’ =pi+py.—2pp,. cosB (1.3.3)
Recall that
(1.34)
Using (i.3.7) we have

hv—hv' = E—E, = k™ + h2v? - 2hw' = E* + EX - 2EE (1.3.5)
0 0 0
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P,

Fig. 1-4

Relying on relativity theory, we replace E2 with EZ+ p>c?. Subtracting (1.3.4) from (/.3.5), we obtain

~2h*vv' (1 —cos 0) = 2EL-2EE, (1.3.6)
Therefore, using (/.3.1),
hPvv' (1 —cos0) = E,(E-E;) = myc’(hv—hv') (1.3.7)
h v-v c ¢
We see that —— (1 —cos §) = —c¢ = ——= = A - A. Therefore, the increase in the wavelength AX is
myc vV vV
h
AA = A=A = —(l-cosB) (1.3.8)

myce

This is the basic equation of the Compton effect.

Consider a beam of light passing through two parallel slits. When either one of the slits is closed, the
pattern observed on a screen placed beyond the barrier is a typical diffraction pattern (see Fig. 1-5).
When both slits are open, the pattern is as shown in Fig. 1-5: an interference pattern within a diffraction
envelope. Note that this pattern is not the two single-slit diffraction patterns superposed. Can this phe-
nomenon be explained in terms of classical particlelike photons? Is it possible to demonstrate particle
aspects of light in this experimental setup?

ciian team invident boam

mmsngI Intensity T
Sesesn SKursun
Fig. 1-5

Suppose that the beam of light consisted of a stream of pointlike classical particles. If we consider each of these
particles separately, we note thai each one must pass through either one of 1he slits. Therefore, the pattern obtained
when the two slits are open must be the superposition of the patterns obtained when each of the slits is open sepa-
rately. This is not what is observed in the experiment. The paitern actually obtained can be explained only in terms
of interference of the light passing simultaneously through both of the slits (see Fig, 1-6),

Yet, it is possible 10 observe particle aspects of light in this system: If the light intensity is very weak, the pho-
tons will reach the screen a1 a low rale. Then if a pholography plate is placed at the screen, the pattern will be formed
slowly, a point at a time. This indicates the arrival of separaie photons to the screen. Note that it is impossible to
delermine which slit each of 1these photons passes through; such a measurement would destroy the interference

pattern.
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L.5.

1.6.

huckdent basm

Irensity

Roveon
Fig. 1-6
Figure 1-7 describes schematically an experimental apparatus whose purpose i to measure the position
~Af o alante~nmn A hanne ~AF alantememos AF all_Aafimnd e rivmcy zem dlan e Tdtasa e Alen Do
Ul all cicLuaui, My vcain Ul i Ui O1 Weii- ucuucu lllUlllCl lu i l lllUVIlIE 111 LKl W lLlVC A'ullCLLlUll

scatters light shining along the negative x-axis. A certain electron w111 scatter a certain photon that will
be detected through the microscope.

Electron Photon
llj ,_/\\\
II 9 \‘
¢ > Lens
Fig. 1-7
According to optics theory, the precision with which the electron can be localized is
A A

where A is the wavelength of the light. Show that if we intend to minimize Ax by reducing A, this will
result in a loss of information about the x-component of the electron momentum.

According to quantumn theory, recoiling light consists of photons, each with a momentum Av/ ¢, The direction
of the photon after scattering is undetermined within the angle subtended by the aperture, i.e., 28. Hence the mag-
nitude of the x-component of the photon is uncertain by

hv
Apx~27 sin O (1.5.2)
Therefore,

hv
AxAp, ~ 27 sin @5 ~ 4nh (1.5.3)

sin O

We can attempt to overcome this difficulty by measuring the recoil of the screen in order to determine more pre-
cisely the x-component of the photon momentum. But we must remember that once we include the microscope as
part of the observed system, we must also consider its location. The microscope itself must obey the uncertainty
relations, and if its momentum is to be specified, its position will be less precisely determined. Thus this apparatus
gives us no opportunity for violating the uncertainty relation.

Prove that the Bohr hydrogen atom approaches classical conditions when n becomes very large and
small quantum jumps are involved.
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Let us compute the frequency of a photon emitted in the transition between the adjacent states n, = nandn, =

21’ me* ch ch
n— 1when n » 1. We define the Rydberg constant R = ——— .50, E, = —Rand E; = = R. Therefore, the fre-
quency of the emitted photon is J i n
2 2
n, —nj (n,+n)(n,—n)
v=—"5cR= — cR (16.1)
ey ey
n,—n, = 1,so for n» 1 we have
n +n=2n nin? = n' (16.2)

Therefore, v = 2cR/n’. According to classical theory of electromagnetism, a rotating charge with a frequency f
will emit a radiation of frequency f. On the other hand, using the Bohr hydrogen model, the orbital frequency of the
electron around the nucleus is
C An*me*
fo = 2rr, T g3

{1.6.3)

or f, = 2cR/n’, which is identical to v.

Show that the uncertainty relation Ax Ap > # forces us to reject the semiclassical Bohr model for the
hydrogen atom.

In the Bohr model we deal with the electron as a classical particle. The allowed orbits are defined by the quan-
tization rules: The radius r of a circular orbit and the momentum p = mv of the rotating electron must satisfy
pr=nh {n=1,2,...). To consider an electron’s motion in classical terms, the uncertainties in its position and
momentum must be negligible when compared to r and p; in other words, Ax « r and Ap « p. This implies

Axdp

r p
i

«l (1.7.1)

On the other hand, the uncertainty relation imposes

(1.7.2)

(a) Consider a thermal neutron, that is, a neutron with speed v corresponding to the average thermal
energy at the temperature T = 300K. Is it possible to observe a diffraction pattern when a beam of such
neutrons falls on a crystal? (b) In a large accelerator, an electron can be provided with energy over
1 GeV = 10° eV. What is the De Broglie wavelength corresponding to such electrons?

3

kT where k is the Bolzmann constant

(a) The average thermal energy of an absolute temperature T is E,, = 54T where k is th mann constant

LIxY atyOiulc

(k = 1.38 x 1072 J/K). Therefore, we have
1 5 p? 3 o
M.Vt = 5 = gkl (1.8.1)

According to the De Broglie relation the corresponding wavelength is

Ao A (182)
P [3mkT
ForT = 300K we have
6.63 % 107" .
A =14 A (18.3)

J3%1.67x 107 % 1.38 % 107 x 300

This is the order of magnitude of the spaces between atoms in a crystal, and therefore a diffraction phenomenon
analogous to that of x-rays.

(b) We note that the electron’s rest energy is m,c’ = 0.5 X 10° ev. Therefore, if an energy of 10° eV is imparted
to the electron, it will move with a velocity close to the speed of light, and it must be treated using relativistic
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1.9.

1.10.

L11.

1.12.

1.13.

dynamics. The relation A = h/p remains valid, but we have E = ,/p’c? + m2c*. In this example, mec2 is neg-
ligible when compared with E, and we obtain

-34 B
e 6.6x 107 x3x 10 ]
he _08x10 XY 1210 m= 12 fm (184)
& L6 x 10

With electrons accelerated to such energies, one can explore the structure of atomic nuclei.

A

n

The wavelength and the frequency in a wave guide are related by

A= —— (1.9.1)

Jvi-vi
Express the group velocity v, in terms of ¢ and the phase velocity v, = Av.

First we find how the angular frequency ® depends on the wave number k. Wehave ® = 2nv; sousing (/.9./),
we have

222

2
c 2 ck
(k) = 2nJi;+v0 = 2n’\/4—n2+v§ (1.9.2)

Hence, the group velocity is

2 [—+v}
4n?

Supplementary Problems

{2 T
Refer to Problem 1.9 and find the group velocity for the following relations: (@) v = % (water waves in shallow
pA’

water; T is the surface tension and p the density). () v = /% (water waves in deep water).

Ans, (a) Ve = 5V (&) Ve = 3V,

Suppose that light of intensity 107" W/ m? normally falls upon a metal surface. The atoms are approximately 3 A
apart and it is given that there is one free electron per atom. The binding energy of an electron at the surface is SeV.
Assume that the light is uniformly distributed over the surface and its energy absorbed by the surface electrons. If
the incident radiation is treated classically (as waves), how long must one wait after the beam is switched on until
an eleciron gains enough energy io be released as a photoelectron? Ans.  Approximately 280{ years.
Consider a monochromatic beam of light of intensity I and frequency v striking a completely absorbing surface.
Suppose that the light is incident along the normal to the surface. Using classical electromagnetic theory, one can
show that on the surface a pressure called the radiation pressure is acting, which is related to the light intensity by
P = I/c.Is this relation also valid from the point of view of quantum theory?

hv
Ans. Yes. P = 7N , where N is the flux of the photon beam.

Suppose that monochromatic light s scattered by an electron. Use Problem 1.3 to find the shift in the wavelength

when the scattering angle is 90°, What is the fractional increase in the wavelength in the visible region (say

At LA = aliaonial LIvase 1 110N L2 R4y,

A = 4000 A)? What is the fractional increase for x-ray photons of A = 1 A?

I
Ans. AL = ——(1-cosf) = 0.0243 A ForA = 4000 A, the fractional shift is 0.006 percent. ForA = 1 A it
is 2 percent.
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1.14.

1.15.
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We wish to show that wave properties of matter are irrelevant for the macroscopic world. Take as an example a tiny

. . 15 . . .
particle of diameter | pm and mass m = 10 " kg. Calculate the De Broglie wavelength corresponding to this par-
ticle if its speed is 1 mmy/s. Ans. A = 66x10° A,

Consider a virus of size 10 A. Suppose that its density is equal to that of water (g/cr) and that the virus is located
in a region that is approximately equal to its size. What is the minimum speed of the virus? Ans. v . =1mfs.



Chapter 2

Mathematical Background

2.1 THE COMPLEX FIELD C

The complex field, denoted by C, is the field generated by the complex numbers a + bi, where a and b are
real numbers and / is the solution of the equation x2+1 = 0,ie.i = J=1.If z = a + bi, then a is called the
real part of z and denoted Re (z); & is called the imaginary part of z and denoted Im (z). The complex conjugate
of z = a+ bi is a - bi and is denoted by z. Summation and multiplication of complex numbers is performed in
the following manner:

(@a+bd) + (c+di) = (a+c) +(b+d) -i (2.1)
(a+bi) (c+di) = (ac~bd) + (bc +ad) {2.2)
If z # O we define z' and division by z by
-1 z a —b
z = —= = + i (2.3)
2 a+b a’+ b’
g = wz—l (24)

Figure 2-1 represents a geometric realization of the complex field as points in the plane.

y
z=a+ib
b T /_.
-~
Ped
-~
-~
"”
Yo
0 a X
Fig. 2-1

The distance between the point z and O is denoted |z| = Ja* »\/-—z and is called the modulus of z. The

angle 0 is called the argument of z and denoted by arg(z). Since points in the plane can be characterized by polar
coordinates, i.e., a pair (r, 0) where r >0and 0 <0 < 2%, rite a complex number in terms of its mod-
ulus and argument. As one can easily verify,

a =rcosB b = rsinB (2.5)
and b

[2 2
r=4da +b 0= tan“‘(;) (2.6)

PR P TR { mmn OY aim OV w0
allJ UICICIVIC £ — 7 (LU U T IdIIVU) = T7T¢E
-~ - AV oV alialaN ;Wal s W AL A AMRETETE M
2.2 VECTORSPACESOVERC

n~l ey | 1/,

ollection of elements V that is closed under associative addition (+) of its ele-
Sati /i iti acn O, pm\/culuv win V-

=
a
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1. V contains a unique element denoted O that satisfies
v+0=0+v =v (2.7)

0 is called the null vector.
ovis alsoin V.

oa(v+u) = ov+ou.
(a+P)v = av+pv.
(o-Byv = a(Bw).

. 0-v=0,00:-0=0,1-v=v.

PR W

An Important Example—C”: Consider elements of the form (2, 25, - - .+ 2,), where the z; are complex
numbers. We define addition of such elements by

(2152902 Z) + (W Wo oo a W) = (21 WH 2+ Wy o0, 2+ W) (2.8)
and we define multiplication by a scalar (a complex number z) by
(21525 000 2,) = (22),22,,...,22,) (2.9)

It can be verified that the collection of these elements has all the properties of a vector space over C. This impor-
tant vector space is denoted C".

Some Useful Definitions: A collection of vectors i, . . ., u, in V span V if every element in V can be writ-

ten as a linear combination of the u’s; that is,
v =au t+--tayu, (2.10)
where a,,...,a, are complex numbers. The vectors u,,...,u, are called linearly independent if
au,+---+au, = 0impliesa, =a, = ... =a, = 0.Ifu,...,u, are linearly independent and span V

1

Y

a ~~l

a thane TL 20
IC UIraicritsion Ul v, JUPPUDC LGl Fr 1M a LUL™

PN allod ¢tlan Asrenrecr e AF T Quvencn mn o

they are called a basis of V. The number # is unique and is called t
lection of vectors from a vector space V. W is a subspace of V if: (1) for every v, w, in W, v + w s also in W, (2)
for every w in W and every scalar o, ov is also in W.

Linear Operators: Let V be a vector space over the complex field C. Amap 7T :V — V is an operator on
V if it satisfies the following condition for every o, B in C and every u, v in V:

T(ov+Pu) = ol (v) +BT (u) (2.11)
If T and S are linear operators, their sum, the linear operator T + §, is defined by
(T+8(u)y =T(u) +S(u) (2.12)
for every u in V. Similarly, we define the product of two linear operators by
(T-$)(v) = T[S(v)] (2.13)

for every v in V. The set of linear operators equipped with addition and multiplication is therefore an algebra
over the complex field. For now, let us restrict ourselves to a finite dimensional vector space.
Assume e, ..., e, is a basis of V and let T be a linear operator on V. Applying T to e, .. ., e, we get

T(e)) =0 e+ 0y,

(2.14)
Te,) =0, e, +---+0, e,
whefe 0,; are complex numbers. Now we define the matnix representation of 7 relative to the basis e by
aj; ay anl)
a2 ay a

(2.15)
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Note that the matrix representation of an operator is dependent on the choice of basis. For infinite matrices it
is possible to sum and multiply infinite matrices like finite matrices, though one must pay attention to con-
vergence whenever infinite sums are involved. Linear operators are of great importance in gquantum

mechanics, since as we shall see in the next chanters rhpu renresent nhvcmal guantities such as enerov

damwrirsiliinatrdy v 2O aiRaz S 13 =R N L ST AvpavSeiin 1) SR \1 CARititin S Suliid ad 15T,

momentum, etc.

Inner Product: An inner product on V is a function {u, v) from V X V to the complex field (i.e., taking
every pair of vectors to a complex number), that satisfies the following conditions for every u, v, &' in V and o
mndC:

0] (u,v) = (v, u)

(i) {u+u,v)={(u, vy +{u,v)
(iii) (o, vy = o (u,v)
(iv) (u,u) >0 ifuz0

(2.16)

A vector space that has an inner product is called an inner product space.
We can use the inner product to specify some useful definitions. The norm of a vector v is

vl = J{v, v (2.17)

Iffvl = 1, then v is called a unit vector and is said to be normalized.
Two vectors u and v are said to be orthogonal if
{u,v) = 0 (2.18)

A set of vectors {u;} is orthogonal if any pair of two separate elements is orthogonal, that is, {u;u j) = 0 for
i # j. In particular, the set is orthonormal if in addition each of its elements is a unit vector, or compactly,

(ujoup) = 9 (2.19)

where 8, is the Kronecker delta function, which is O for i #j and 1 otherwise. An important result, used fre-
quently in quantum mechanics, is the Cauchy—Schwartz inequality: For all vectors u and v,

[Cu, < flull - v (2.20)

Operators and Inner Products: Suppose T is a linear operator on V and suppose V is an inner product
space. It can be shown that there is a unique linear operator denoted I that satisfies:

(Tu,v) = (u, T'v) (2.21)
for every u, v in V. This operator is called the conjugate operator of T.If A = (o ;7) is 2 complex matrix, A'is
defined as A (a ), 1.e., found by swapping indices and taking the complex conjugate. If A represents
operator T, then Al represents T', which justifies the use of the same symbol ¥ in both cases. If T = T then T is
called a Hermitian operator or self-conjugate operator. If T = _T' ,then T is called an anti-Hermitian opera-
tor. If T preserves the inner product, that is, (Tu, Tv) = (u, v) for every u, vin V, then T is called a unitary
operator. If TT' = T'T, then T is called a normal operator. TWU vectors v and u are called orthogonal if

{v,uy = 0.

2.4 EIGENVECTORS AND EIGENVALUES

Let T be a linear operator on V. A complex number A is called an eigenvalue (also known as characteristic
value) of T if it satisfies Tv = Av for some v in V. The vector v is called the eigenvector of T corresponding to

1 Tha cama dafinitinn halde far matricac Nata that if IV hace n hacic that cancicte nf aicanvactare af T than Ticg
fu. 1 0e Same GCLNIUGH nGaGs 101 MArICEs, (NOWC g 11 v (dS & 04518 Ulal CONSISS O C1geniveliors O 1, UllTl 1 15

represented relative to that basis as a diagonal matrix. Diagonal matrices are not only easy to work with, but
also reflect important characteristics of the physical system such as quanta of energy, and so forth.

Characteristic Polynomial: Suppose that a given linear operator T is represented in some basis by the
matrix A. The characteristic polynomiai of T is defined by
A(f) = det (Al - A) (2.22)
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where A is the parameter (scalar) and { is the identity matrix. The characteristic equation of T is defined by
A =0 (2.23)

These expressions are independent of the basis chosen.
The following result provides a method for finding the eigenvalues of a matrix or operator: The scalar Als
an eigenvalue of an operator T if and only if it is a root of its characteristic polynomial, that is, A(f) =

£ A ITncmeitinm Aw 1 thanm thara awict tary mateiv FJ aneh that TTATT ' 0 o dAingana 1
il A LD 4 neimitian of uluuuy umuu\, then tnere exists a uuuan_y HidiA U Sulll ulalt vAauv 13 a ulapinai

matrix (this theorem will not be proved). Note also that if A and B are Hermitian matrices then a necessary and
sufficient condition that they can be simultaneously diagonalized is that they commute, i.e., AB = BA (see
Problem 2.13). These concepts have important physical meaning and will be discussed in greater detail in Chap-
ter 4.

2.5 FOURIER SERIES AND THE FOURIER TRANSFORM

Fourier Series: Consider a function f(x) over the interval 0 < x < /. The function is called square inte-

grable if
!

Jf | ool dx (2.24)
0

is defined (i.e., convergent). It can be shown that the set of all such functions is an infinite dimensional vector
space, denoted L,(0, [). We can define for L,(0, /) an inner product

(.8 = J flo)g(x) dx (2.25)
0
Every function f(x) in L,(0, ) can be expanded in a Fourier series,
L. ik 2n
foy= ) fe* k,=Tn (2.26)

= -0
According to this relation, we can consider the functions e, = :ﬁe'k"x as a ‘“‘basis” of the infinite dimensional
space L,(0, [): Every function (vector) in this space can be expanded as a linear combination of the basis vec-
tors. It can be shown that the { ¢, } form an orthonormal basis, that is, (e, ej) = 6,.1-. The coefficients f, in the
expansion are called Fourier coefficients and are derived using the relation

above holds also for perlodlc functions f(x) of penod 1

Fourier Transform: Now consider a function f(x) defined on (—ee, =) that is not necessarily periodic. We
can imagine f(x) to be an approximation of periodic functions whose period approaches c. The numbers &,
become progressively denser until we have in the limit a continuous range of functions e'**. This is the intuitive
basis of the following result:

fx) = 7;_—1; F (kye™ dk (2.28)
where F(k) is given by
L[ e,
F(k) = 72—‘;: f( e (2.29)
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F(k) and f(k) are said to be Fourier transforms of each other. The Parseval-Plancherel formula states that a
function and its Fourier transform have the same norm:

oo oo

TS N ,
] Foldx = | IFwl dk (2.30)

2.6 THE DIRAC DELTA FUNCTION

In Section 2.3 we used the Kronecker §,,,, function, which returns the value 1 whenever the integers n and
m are equal, and O otherwise. There is a continuous analogue to Kronecker’s 8-function—the Dirac delta func-
tion (Dirac &-function). Define the function 8 (x) as

£ £
z for -5<x<3
8,(x) = ] (2.31)
t 0 for x> 3

Consider the arbitrary function f(x), well defined for x = 0 with negligible variation over the interval
[-£/2, e/2]. If € is sufficiently small, then we have

oo

j 8 ()ftx) dx = f(O)I 8,(xydx = f(0) (2.32)

—ot --00

Taking the limit as € — 0 we define the 8-function by

limo{'[ 3, (0)Ax) dx} = j Hx)(x)dx =£(0) (2.33)

—oo

More generally, we can write

J' O (x~x)f () dx = fix) (2.34)

—oo

oo

One can easily show thatJ- d(x—y)dx = land that 8 (x—y) = 0for x#y. Although we use the term 8-

function, it is not a function in the regular sense; it is really a more complicated object called a distribution (it
is not defined at the point x = y). That is, we only consider it when it appears inside an integral:

oo

[
f ~+J FO3(x-y)dy (2.35)

As this is a linear operation that maps a function to a number, the 8-function can be viewed as a functional.
The &-function is often used to describe a particle located at a point ry = (x,, v, Z,) in a three-dimensional
Euclidian space by defining a 8 (r —r):

d(r-ry) =8 (x-x)8(y—y,)0(z-2p) (2.36}
[ o VPRSP TRl NP ISR, e DU S (RN.JUN [y SERSEES U JUPUTU IR - JP% RNEpuou Ry DERNY o VN INETS SN TUFUIE N~ g T
1nc uucglal Ul O UVCT LUIC WUIC bpau: 18 1, HIUI ALl lg LIC CARICHICC Ul LIIC palUCIC. WL LHE ULHCT Hallu, U VallldIIey

whenr #rg.
It is straightforward to demonstrate that the following results hold for the 8-function:

L 8(—x) = ()
1

fog 2

2. d(ox) =
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3. xd(x—xg) = x8(x —xp)

4-_[ 8(x-y)8(y-2)dy=8(y-2)

The 3-function and the Fourier Transform: The Fourier transform of the §-function is

1 -
S(k) = /_ [ S(X y) e lk\’ = e ikx
/\127{
The inverse Fourier transform then yields
] -iky ikx 1 ik (x-y)
O(x — y)—— e edk=2—n e dk

Solved Problems

(2.37)

(2.38)

2.1.  The complex conjugate of z = a+bi is a~ bi, denoted by 7. Show that (@) zz = |2|% (b) z + 7 is real;

(© 2%z, = 21+ 25 (d) 212, = niz5i (@) |z7,2] = |z)]|2)]-

(@) 7z = (a+bi) (a—bi) = a bt = |z|
(b) z+z = (a+bi)+ (a-bi) = 2a, which is real

{C) I, vz, = {a TU[)T\U:TUZI;) = \u Tbl)T\ulTuﬂ[
= (g, +ay) — (b +b))i= (al—bz)+(a2—bz)-z +2,
(d) z,z, = (a,+b;0) (a, + b)) = (aya,—b,by) + (ab,+a,b)i

a,a,—b by~ (a,b,+ayb))i = (a,-b,i) (a,—byi) =122

2 - - .- 22
(&) 2,7, = zy2,2,2, = 2,2,21270 = 2,212,70= |7)]7|z,]

1+i)3
2.2. Calculate 1=/
' 1+iy  [U+) (1 +D)7° (1+0) (1+D73 (2)5 P
Method a: (1-:‘) = [(l—i)(l+i)] :[ 2““"} =\3) =i =1
|IEAR J2 (cos 45° + sin 45°) 5 (e”m )5
Method b: T - = N - = Zins
(1—') [J’i(cos43”—sin45”)_} e ™)
= (e"H = ¢™? = cos 90° + i 5in 90° = i

2.3. Show that the sum and product of two linear operators are linear operators.

Suppose that T and S are linear operators, so

(T+8) (e+0ov) =T(u+av) +S (u+av)

T(u) +aT(v) +S(u) +asS(v)

= (T+8) (w) +a(T+S$5) (v)
and
(T-S) (u+ov) =T[S(u+oav)] = T[Sw) +as(v)]
= TIS(u)] +aT[S(v)] = (T-$) () +a(T-S) (v)

linear operator.

(22.1)

(2.22)

(2.3.1)
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d
We define the map e from Vto V:

d
= =f'® (24.1)

and using basic calculus we get

d d d
ZFrag) = [frogl =f'(x)+ogx) = () +az7(g) (24.2)

25. LetVbeC", i.e. the collection of n-tuples a = (a,,...,a,), where the a, are complex numbers. Show

that {(a, b) = zail-)i is an inner product of V.
i=1

We begin by checking the four conditions that an inner product on V' must satisfy:

! -,\_v T _‘nﬂ—, -7z O JPN I
(a,b) = D abi = ) apb, = (b,a) (2.5.0)
i=1

{(a+a,b) = 2 (a;+ad)b, = 2a,-5,+2a’, -bi = (a,b) + (a’, b) (2.5.2)

i=1 =1 =1

and

(aa,b) = ) (aa)b, = oY api = afa,b) (2.5.3)

1=1 t=1

(a,a) = Za,a, = ZIa,IZ (2.5.4)
i=1

i=1

and is greater than zero if one of the g; is different from zero.

2.6. If A and B are operators, prove (a) (AT) P e A; (B)(AB) "= BfAf; (0)A +AT, I(A —Af) , and AA1~ are
Hermitian operators.

(a) ForeveryuandvinV,

(Av,u) = (v A'w) = (Au, vy = (o, (AN = (AN v, w)

Thus we obtain A = (A*) T
(b) Foreveryuand vinV,

(v, (ABY ') = (ABv,u) = (Bv,A'w) = (v,B'A"W) (2.6.1)
Hence, B'A" = (AB) +.
(c) We write
A+AHY = AT+ (AN = AT+A = A+ 4 (2.6.2)
Here we use the fact that the sum of conjugates is the conjugate of the sum, (A + B) F= At B', whicb can
be easily verified, and we also use the result of part (a). .
Li(A-AN1 " =7TA-A"N" =-ia"'-4) =ia-4) (2.6.3)

where we have used the fact that the conjugate of a compiex number is the same as its conjugate as an operator,
ie., z* = z. And finally,

t +

+'\+ — AA
== nn

A AT — A A

—=
[ %]
=)

S

according to part (b).



18

2.7.

2.8,

2.9.

2.10.
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Show that the eigenvalues of a Hermitian operator are real.
Suppose A is an eigenvalue of T, and T = T'. For every v#0in 'V,
Av, vy = (v, v) = (Twv,v) = (v, TV) = (v, Av)
= (v, ) = Ay, v) (2.7.1)

Since {v, v) is a real positive number (v # 0), it follows that A = A, so A is a real number. The fact that the eigen-
values of Hermitian operators are real is of great importance, since these eigenvalues can represent physical
quantities.

Show that eigenvectors that correspond to different eigenvalues of a Hermitian operator are orthogonal.
Suppose Tv = Av and Tu = flu, where p#A.Now,
A,y = (M) = (Tvow) = (W T'w) = 0, Tu) = (v, ta) = p(v,u) (2.8.1)
SO,
M-y (rnwy = A=) (nu) = 0 (2.82)

(1 = 4, since T is Hermitian). But A — 1 # 0; therefore {v, u) = 0, i.e., v and u are orthogonal.

Show that Hermitian, anti-Hermitian, and unitary operators are normal operators.

If T=T then TT' = T'T = T°. Also, if T = T then TT = T'T = -T". If T is unitary, then
(Tu, Tv) = (u, v) forevery u, v in V, Using the definition of conjugate operator and taking 1 = v, we get

(u,u) = (Tu, Tu) = (u, TT u) (2.9.1)

{u, I -TTHu) = 0 (2.9.2)

for every u in V. Since I - TT' is a Hermitian operator, it follows {prove!) that / — TT' = 0.This also completes the
proof of T being a normal operator.

Let V be the space of nonzero square integrable continuous complex functions in one variable. For every
pair of functions, define

oo

.8 = f F0)g(x) dx (2.10.1)
Qlhormsy that with theio dafinitinnm 110 an tmnae mendinnt ceennna
WDJLIUYY LIIAL YYILLIL UL UGULIIHILIVLL ¥V 1D all 111IICh lJl vauct apa»c
We must check the following conditions:
(f,8) = J fglxde = _‘- g0fxydx = (g.f) (2.10.2)

F+f\ 8

J [f(x) 4 ()] g(x) dx = j f(X)@dHI f(x)g(x) dx

—oo

(2.10.3)

Fa+(.e

and

(af, g) = J af(x)g(x) dx =aj fg)dx = alf, g (2.104)

—oo
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2.11,

2.13.

2.14.

¢ =I Fh? dx (2.10.5)

Since f is continuous and f # 0 in a neighborhood, its integral also differs from zero; hence {f, /) # 0.

(@) Show that if (v, u) = (v, w) forevery v in V, then u = w. (b) Show that if T and § are two linear
operators in V that satisfy (Tv, u) = (Sv, u) foreveryu,vinV, then § =

(a) The condition {v, z) = {v,w) implies that {v, u —w) = 0 for every v in V. In particular, if v = u—w we
obtain
{u—-w,u—w) =0 (2.11.1)
Hence, u —w = O, thatis, u = w.
(b) According to part (a), (Tv, up = (Sv, u) forevery v,  in V implies thatTv = Sv;ie,T = §.

T at and B he Harmitian matricas Show that 4 and ran he cimultanennely diacsnanalizad (that 1o it
AL f1 SHILILE £7 U LAV LITIHAVI SR LIRCALL W nde LJIANTYY LILGAR 71 €AMW A7 Walll VL DLIEUILALIVAUS DR ul“sull““-bbu \Ll.u‘— IB, yviuil
the same matrix and only if AB = BA
P riarr) _ n rrprrl o Lo PV oA Y omo Al o o bt o e e
DUPPUDC Ay = ‘-}ly UDU = U2 WwWICTre Ul ana U2 arc dguudl Idakl ILCD ﬂC ) [ =
~1 -1 - - ~1
U(AB)U = UAU'UBU™ = D\D, = D,D, = UBU'UAU"' = U(BA)U (2.12.1)

Multiplying on the right with U and on the left with U™ we get AB = BA. We leave it to the reader to prove the
other direction. This result is of great importance in quantum mechanics.

Show that the modulus of the eigenvalues of a unitary operator is equal to 1.

Suppose T is a unitary operator, and let v # 0 be an eigenvector with an eigenvalue A. Then,

(v,v) = (Tv, Tv) = (Av,Av) = AA(v, 1) (2.13.1)
Hence,

o~
[
;N
w
ta

AL = A =

Suppose that f is an integrable function. (@) If A #0 is a real number and g(x) = f(Ax + y), prove
that

U e [ K
G = 5e ‘-“F(x) (2.14.1)
where F and & are the Fourier transforms of Fand o. respectively. (b) Prove that if xf ic algo integrable
...... anc {r are the Fourler franstorms of f ang g, respectively. (2) Prove tha X/ 15 also integrable,
then F(k) is a differentiable function, and
FIf'(x)] = Fl-ixf(x)] (2.14.2)
(a) By definition,
. : —tk/N) (Ax+v) iky al
Gk = J gx)e ™ dx = J fAx +y)e ™ dx = J f(lx+y)e( 4 Yot xd(?\x +y)
1. _ e
= e kyoh [ fls)e- itk Msdy = 3 b/kF( x) (2.14.3)
A o ! L

—oo

(b) Consider the expression

Fkehy-Fy 1| e 1
. 'JzTJ fe ( A )dx (2.14.4)




20

2.15.

2.19.

2.20.

2.21.

2.22.

2.23.

MATHEMATICAL BACKGROUND [CHAP. 2

—
—
(28]
[,
A
Ln
=

Show that (@) F [8(x—x,)] = F[8(n)]e™ ;5 FI8(an] = 5733 )].

(@) By definition,
1
Fl8(x-xp] = 72_7:." S(x—x,)yetdx = *—j 8 (2)e e ™o  dz = F [8(x)] e+ (2.15.1)
(b) _ }
—ixk —tkz/a 1 k
F[d(ax)] = J_ S(ax)e ™ dx = J_ -8(z)e dz = ;F[S po ] (2.15.2)

Supplementary Problems

Prove the triangle inequality for complex numbers; that is, show that |z, + z,| < |z| + |z,}.

Show that the vectors (1, 1, 0), (0, 0, J2), and (i, i, {) are linearly dependent over the complex field.

0 1
Find the eigenvalues and eigenveciors of the matrix A = ( | o/ Hint: If A is an eigenvalue, then Av = Av, or
(A- A v = 0forsome v #0; this implies that det (A — Ay = 0. Solve this equation for A, then substitute A and

find v. Ans. A =1, v,=(:), A, =—1, vzz(_ll).

Show that the matrix

cos® ~sin@
( ) (2.19.1)

sin@® cosB
x L . .
is unitary. If u = ( y) is a vector in the plane, what is the geometric interpretation of ¥ — Tu?

1 1 | | |
Demonstrate that the system ‘“ﬁ, 7‘ sin k, ﬁ sin 2k, ..., ﬁ cos k, ﬁ cos 2k, . .. } is also orthonormal,

Consider the space of polynomldls with degree less thdn or equal to n. We can think of each polynomial

p(x) = ay+a,x+---+a,x"as a vector in the space C" "', (ap a,, ..., a,). In fact, this is the representation of
A

p(x) relative to the basis{ 1, x, ..., x"}. What is the matrix that represents the operator dx relative to this basis?

ot 0 - 0

60 0 2 : O
Ans, :

0 0 n

0 0 0

2
Find the Fourier transform of e~* /. Ans. F(r) = e* 72
_ , , T~ X , T N (=D
(a) Find the Fourier series of f(x) = 7 0 < x £ 2x. (b) Using part (a), show that i n+l
4 1; X X —ie™ X sin (nx) n=0
@t DA 2,

= n=20
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3.1 WAVE FUNCTIONS OF A SINGLE PARTICLE

In quantum mechanics, a particle is characterized by a wave function y(r, 1), which contains information
about the spatial state of the particle at time ¢, The wave function y(r, ¢) is a complex function of the three coor-
dinates x, y, z and of the time ¢. The interpretation of the wave function is as follows: The probability dP(r, 1)
of the particle being at time ¢ in a volume element dr = dx dydz located at the point r is

dP(r,1) = Cly(r, 0|’ dr 3.1)

where C is a normalization constant. The rotal probability of finding the particle anywhere in space, at time £,
is equal to unity; therefore,

IdP(r, n=1 (3.2)
According to (3.7) and (3.2) we conclude:

(a) The wave function Y(r, r) must be square-integrable, i.e.,

2 .3
flw(r, nl"dr (3.3)
o
is finite.
(hY The normalization conctant ic oiven hy tha ralatinon
\U} L1IG HVINNIALLLQALLIVEL LUULIoLAdIL 105 slvbll UJ LI 1CiALLvVIL
1 2 3
¢ = |lw.nl"dr (3.4)

When C = 1 we say that the wave function is normalized. A wave function y(r, r) must be defined and contin-
uous everywhere.

3.2 THE SCHRODINGER EQUATION

Consider a particle of mass m subjected to the potential V(r, r). The time evolution of the wave function is

governed by the Schrodinger equation:

d t A
it WE(; ) = 2—V y(r, 1y + W(r, Hy(r, 1) {3.5)

where V7 is the Laplacian operator, 3*/3x* +3%/3 y +3%/92%. Pay attention to two important properties of the
Schrodinger equation:

(a) The Schrodinger equation is a linear and homogeneous equation in y. Consequently, the superposition
principle holds; that is, if y,(r, ), W,(r, 1), ..., ¥, (r, 1) are solutions of the Schrodinger equation, then
n

Y= zuiwi(r, 1) is also a solution.

21



22 THE SCHRODINGER EQUATION AND ITS APPLICATIONS [CHAP. 3

(b) The Schrédinger equation is a first-order equation with respect to time; therefore, the state at time ¢,
determines its subsequent state at all times.

3.3 PARTICLE IN A TIME-INDEPENDENT POTENTIAL

The wave function of a particle subjected to a time-independent potential V(r) satisfies the Schrédinger
equation:
2
. b d " 2
:ﬁT = —2—mV yir, )+ Viryy(r, 0 (3.6)
Performing a separation of variables y(r, 1) = &(r)x(r), we have x(r) = Ae *® (A and ® are constants), where

o(r) must satisfy the equation

ﬁ2
—2—mV2¢(r)+ V(r)o(r) = fiod(r) (3.7)

where i@ is the energy of the state E (see Problem 3.1). This is a stationary Schrédinger equation, where a
wave function of the form

w(r, 0 = o) = prye”t* (38)

is called a stationary solution of the Schrodinger equation, since the probability density in this case does not
depend on time [see Problem 3.1, part (b)]. Suppose that at time ¢ = () we have

wr, 0) = Y 6,@) (3.9)
n
where & (r) are the spatial parts of stationary states. W (r. 1) = 0(r)e '’ In this case. according to the super-
SERVIN g\t s PRV M SpORIaS paese L 355 a4 et TSR oUW 2313 La3L, 8L B~ L SUpS

position principle, the time-evolution of W(r, 0) is described by

fa A ( PR {4 £ 1N
yir, o) = 2 dirje {(3.10)
n
e o & e 1 L S O A — M P al O L el 3D . PR RO s S I PRPEY ORI R Wy R oS
rorajree particte we nave V(r, {) = U, and tne Scnrodinger equation is satisfied by solutions of the formn
i(k-r—omt
y(r,7) = Ae ¢ ) (3.11)

where A is a constant; & and o satisfy the relation ® = #%k>/2m. Solutions of this form are called plane waves.
Note that since the y(r, ) are not square-integrable, they cannot rigorously represent a particle. On the other
hand, a superposition of plane waves can yield an expression that is square-integrable and can therefore describe
the dynamics of a particle,

1 .
wr, 1) = 2’ J gk)e' kT o1 g% (3.12)

A wave function of this form is called a wave-packet. We often study the case of a one-dimensional wave-
packet,

o

1 .
W = = g(k)e' U= @l gp (3.13)

—oo

3.4 SCALAR PRODUCT OF WAVE FUNCTIONS: OPERATORS

With each pair of wave functions ¢(r) and y(r), we associate a complex number defined by

(0, y) = j¢*(r)w(r) d¥ (3.14)

where (0, ) is the scalar product of ¢(r) and y(r) (see Chapter 2).
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An operator A acting on a wave function y(r) creates another wave function y'(r). An operator is called a
linear operator if this correspondence is linear, i.e., if for every complex number o, and a.,,

A [0y Wy (r) +0,y,(r)] = 0 AY(r) + 0L,AY,(r) (3.15)

There are two sets of operators that are important:

(a) The spatial operators X, Y, and Z are defined by

[X\y(x, Y, 2,0 = xw(x,y,z 1)
Yw(x,y, 2,0 = yy(x, y, 2, 1) (3.16)
ZY(x, y, 2, 1) = 2Y(X, ¥, 2, 1)

(b) The momentum operators p,, p , and p_ are defined by

X

Py, 2,0 = T3V Y, 2,1)
A

py\"(X, ys 2: [) = l‘é;;‘-'!(xv )” Z, t) (317)
A o

Wy, 2 1) = T3, 7, 0)

The mean value of an operator A in the state y(r) is defined by

(A) = I\V“(r) [Aw(r)] dr (3.18)

AA = J(AY - (aY (3.19)
where A” is the operator A - A.

Consider the operator called the Humiltonian of the particle. It is defined by

H = ﬁ—zv2 Vi _P 20
= ~5m + (r,t)=2m+V(r,t) (3.20)

where p is a condensed notation of the operator pf + p% + p2 Using the operator formulation, the Schrodinger
equation is written in the form

d t
iﬁ—%{-’—) = Hy(r, 1) (3.21)

If the potential energy is time-independent, a stationary solution must satisfy the equation
Hor) = Eo¢(r) (3.22)

where E is a real number called the energy of state. Equation (3.22) is the eigenvalue equation of the operator
H; the application of H on the eigenfunction ¢(r) yields the same function, multiplied by the corresponding
eigenvalue E. The allowed energies are therefore the eigenvalues of the operator H.

p(r, ) = |y, n|° (3.23)
At time ¢, the probability dP(r, ) of finding the particle in an infinitesimal volume d’r located at r is equal to

dP(r,t) = p(r, ) d’r (3.24)
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The integral of p(r, 1) over all space remains constant at all times. Note that this does not mean that p(r, ¢) must
be time-independent at every point r. Nevertheless, we can express a local conservation of probability in the
form of a continuity equation,

ap(r, 1)
ot

where J(r, 1) is the probability current, defined by

+V-Jr,)=20 (3.25)

N R I P U € Ny
3, ) = 5 (W (V) -y (W) T = SRe| v V)|

(3.26)

Consider two regions in a space where their constant potentials are separated by a potential step or barrier,
see Fig. 3-1.

V(x) Vix)

(a) (&)
Fig. 3-1 (a) Potential step; (b) potential barrier.

We define transmission and reflection coefficients as follows. Suppose that a particle (or a stream of parti-
cles) is moving from region I through the potential step (or barrier) to region II. In the general case, a stationary
state describing this situation will contain three parts. In region I the state is composed of the incoming wave
with probability current J, and a reflected wave of probability current J,. In region Il there is a transmitted wave
of probability current J .

The reflecrion coefficient is defined by

Ir
= |= 3.27
R 7, (3.27)
The transmission coefficient is defined by
Jr
T = .T, (3.28)

Solved Problems

3.1.  Consider a particle subjected to a time-independent potential V(r). (@) Assume that a state of the particle
is described by a wave function of the form w(r, 1) = ¢(r)x(r). Show that ¥(r) = Ae™“ (A is constant)
and that ¢(r) must satisfy the equation

oo . ,

—ﬁ\/?(b(l') + V(r)dp(r) = hwd(r) (3.4.1)

where m is the mass of the particle, (b) Prove that the solutions of the Schrodinger equation of part

Sy L L2 QLI Y L 2 10 11 ThIC}

lead to a time-independent probability density.
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(a) We substitute y(r, r) = ¢(r)x(s) in the Schrodinger equation:

dy(t #
o0 B = 0| -2 Vorm) |+ oo (3.12)

In the regions in which the wave function y(r, 1) does not vanish, we divide both sides of (3.1.2) by ¢(r)x(s);
S0 we obtain

LXTORN A

X0 dr = om —2mV o) | + V(1) (3.1.3)
The left-hand side of (3./.3) is a function of ¢ only, and does not depend on r. On the other hand, the right-hand
side is a function of r only. Therefore, both sides of (3.1.3) depend neither on r nor on ¢, and are thus constants
that we will set equal to Z® for convenience. Hence,

1dxn .ﬁd[lnx(t)] _
x(n dr T! dt =

it Ao (3.14)

Therefore,

Iny(t) = J.—io)dr =—iwt+C = %) = Ae™'®' (3.1.5)
where A is constant. Substituting in (3./.3), we see that ¢(r') must satisfy the equation
#
7=V 60 + VO)) = Ag(r) (3.1.6)

(b) For a function of the form y(r, 1) = ¢(r)e™™, the probability density is by definition
pr 1) = Iwir, 0’ = [6me ™™ [or)e™) " = ar)e 0¥ e’ = o)’ (3.1.7)

We see that the probabiiity density does not depend on time. This is why this kind of solution is calied
“stationary.”

ime

3.2.  Consider the Hamiltonian for a one-dimensional system of two particles of masses m, and m, subjected
to a potential that depends only on the distance between the particles x; - x,,

2 2
TR A WL Y 32
= 2m] +2m2+ (x,—x,) (3.2.1)

(a) Write the Schridinger equation using the new variables x and X, where

mlxl + m2x2
X = x,—x, (relative distance) X = ————— (center of mass) (3.2.2)

m._ Lm
h T

(b) Use a separation of variables to find the equations governing the evolution of the center of mass and
the relative distance of the particles. Interpret your results.

(a) Interms of x, and x,, the wave function of the two particles is governed by the Schridinger equation:

(X, Xy, 1) PLI R CNE 0 B L RV C SN )
ih——=— = Hy(x, x,, t) = -5~ 2 -5
o1 I»2 2m;  9x? 2m,  9xl

+V (X )y, 6,0 (3.2.3)
In order to transform to the variables x and X, we have to express the differentiations E 4 Bxf and 3°/ axi in

terms of the new variables. We have

o x__m_ x__m
dx, ~ dx, dax, m, +m, ax,  m, +m,

(3.2.4)

Thus, for an arbitrary function f(x,, x,) we obtain

Fopx) _ FouX)ax FeXIX _FwX) ™ FuX
dx, —  ox ax, ¥ X o, ax Tmo+m, oX (3.2.3)
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Similarly,
Fx, ¥  FX)ox FXX  FnX) M X 326
dx, ox 8x2+ oX odx, ox +m,+m2 oX (3.2.6)
or
92 _9 M 9 9 __ 98, ™ 9 (3.2.7)
dx,  dx ~m +moX ax, dx m,+m,dX s

For the second derivatives in x, and x, we have

2
3 (a m, 3)(a m, 3)
é:% =\ xtm +moX \ax T m, +m,0x (3.2.8)
. m 23, m 33 (. m Vo
=32 T m A myoxdX T m +m,0Xoxt \m +m,) 5y
The wave function must be a smooth function for both x, and x,, so we can interchange the order of differen-
tiation and obtain

) 3 “

¢ & (Yo, m o3
5—3?? ) 3x2+ m, +m ax2+m,+mzaxax (3.2.9)
For x, we have
RNV Y A T
"\ m emdX N\ 5 m +max) T 3 \m v my/ 3x T m, +my0Xox (3.2.10)

a2
Substituting (3.2.9) and (3.2.10) in (3.2.3), we get
e, X,y B (az ( m )2 ¥ 2m a3

B T T2y g T\ vy ot e, +m28_Xa_x}‘|’("’X’ 0
A [az ( m, ) ¥ 2m aw
“2my| 32 T \m +my) 3% " m, +m,aXax | vx, X, 1) + V(i X, 1)
A1 1w X1 A’ 9’
= _5(\;—1 + ;—2) Y + V(i X, 1)~ —2'(m . mz)a—xz\y(x, X0 (3.2.11)

Since the Hamiltonian is time-independent, y(x, X, 1) = 0(x, X)) (s) (we separate the time and the spatial var-
iables; see Problem 3.1). The equation governing the stationary part &(x, X) is Ho(x, X) = E,,0(x, X), where
E,, is the total energy. Substituting in (3.2.1/) we arrive at

ff(m] + mz)32¢(x, X ﬁz( 1 )82(1)()(, X)

- + V)ox, X)— =5 = E _ox, X 3212
2 m ni, ax?- (x)0(x, ) 2 m, +m, aXZ lolal¢( » X) { )
Performing a separation of the variables §(x, X} = E(om(X), (3.2.12) becomes
2 2
£ 1 (’"1 +’"2)3 E(x) ﬁ_z ] 1 3amX)
'_EF{&‘\ m m ~ 2 + V('x) T oIniXm 4+ 2 + Emlal (3'2'13)
E(x) My /3y 20Xm +my 5%

The left-hand side of (3.2.J3) depends only on x; on the other hand, the right-hand side is a function only of X.
Therefore, neither side can depend on x or on X, and both are thus equal to a constant. We set
11 e

“Inm, +my, ax? - Eem (3.2.14)

21 M
“amam ez = EanX) (3.2.15)
- 1 2 OA

Note that the wave function corresponding to the center of mass of the two
LV Thig racn 1 n a 1 I

anagra on ta
Cilvigy L. s iU S Loampivie

Qg
=8
o
<]
g
=
=3
<
(13
w
B
w
=%
—
a3
o

E
)
o

of mace m L e and tha o 1
of mass m, +m, and the classical case. Returni
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(3.2.13), the equation for the relative position of the two particles is

RI(m + mz 8 e';( )
2\ Tmm, ), — 7 +VEWXx) = E, - E.. (3.2.16)
Equation (3.2.16) governs the stationary wave function of a particle of mass (m, + m,) /m m, held in a poten-
tial V(x) and having a total energy E,_ , — E_, . Thus the relative position of the two particles behaves as a
particie with an effective mass (m, + m,) /m ;m, and of energy £, — E. heid in an effective potentiai V(x).
This is also analogous to the classical case.

3.3.  Consider a particle of mass m confined in a finite one-dimensional potential well V(x); see Fig. 3-2.

Vix)
=
- Vo
-8
i n
I
Fig. 3-2
av
Prove that (a) c<it) = <51), and (b) —— d(p) = <—a>, where (x) and (p) are the mean values of the

. . dvy .
coordinate and momentum of the particle, respectively, and <_d—x> is the mean value of the force acting

on the particle. This result can be generalized to other kinds of operators and is called Ehrenfest’s
theorem.

(@) Suppose that the wave function y(x, 7) refers to a particle. The Schridinger equation is

oy(x, ) _ By
Tar " 2m ax? ﬁV(x)W(x, n (33.1)

Wny _ kAW

i
and its conjugate equation is —ar = " 9m Y + ﬁV(x)w*(x, t). [Notice that we assume V(x) to be
- X

o

real,] The integral-[ [y(x, t)I2 dx must be finite; so we get

—co

) 2. 2 . oy(x, 1) . oYy, D)
Xh_r.noo w(x, 0| = ;lln.lm lw(e, " =0 and XILmN % = xl_l)n}w 3 =0 (3.3.2)
Hence, the time derivative of {x) is
ay df” \v(,) ) (.0
% - FJ W, neylx, 1) dx = I YW, 1) dx+J. W, X "’ dx (33.3)

Substituting the Schrodinger equation and its conjugate gives

de) __ib [ vt
dr ~  2m 9x

—oo

i | [ " azw(x, 7) i *
+ 5"-1; \u (x, t)dex -3 \V (x, DV (xX)y(x, 1) dx

= _-1;?—’-1 i “. W ( 1) xY(x, 1) dx — '. v, 0x -—W(—xgd.x] (3.34)
mes-ld ]

LI F
b g

xy(x, dx + éJ. v (x, DV, 1) dx
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Integration by parts gives
d 1 oy*(x, 1) X,
SR 5'3‘{['%‘ s J PR v ol

[w (x, DX Wéx’ )L [ 55 (V6 D) ]—ﬂf’—dx} (3.3.5)
Using (3.3.2), the first and third terms equal to zero; so we have

] 3y a k4 a »
dx _ it {_J Av*(x D) L D s, 1 s — J v (x 0 wg{ )
_g

a $ ] bl
+I Wa(;c r)xa\v(x ')dx J Vi ) ) ] (3.3.6)

Eventually, integration by parts of the first term gives

§ §
d b . OV, D)
40 _ 2L i “I”’*("’ e r)]ig+2_‘. v t)—‘%—dx]

£

[ ,
=5j (,)- (" l)d_x——(p) (3.3.7)

—co

Consider the time derivative of {p):

d afl hay(x, ! Ayl @ , Doy(x,
%=ZJ (’)_\U(X )dx=7J. ‘l’a(;Y )_lH(_x_.dx JW(’)BI by dx (33.8)

Since y(x, ) has smooth derivatives, we can interchange the time and spatial derivatives in the second term.
Using the Schrédinger equation, (3.3.8) becomes

d 5 [ o%w*ex, nowiy, ’
ﬁh__J' MACLEVCT J FRPIC) ng )

dt 2m ox’
h? 3 wix, 1) d
*Im ‘l’ ", “\gxa_dx | V05 [V, nlde (3.39)
Integration by parts of the first term gives
g
_| ?vrenove f) . { Ay*(x, Hay(x, 1) ay*(x, N°w(x, 1) }
I= J‘:n ax ax éh_r;nm ——_ax __‘—ax ' - . ax axz dx (3.310)
[ ..l—g k]
Using (3.3.2), we arrive at
s *(x 00 yix
= Jim, [_J gy —‘—gx;de (3.3.11)
£
Again, integration by parts gives
'y, 3y, 1 Fyix, 1 3.
I = lim { [‘l’ , )J_]_é"'-r v 1)%5;__)[&} = J‘H v, 1)__‘3_’%_)0{1’ (3.3.12)
-§ ~—c0

dp T )

. Dw(x, 1) ! dv\
_.J v *(x, 1)V(x)—T—- = \—a—;) (3.3.13)
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ap(r, 1)
dt

CHAP. 3]
+ V.- J(r, 0 = 0isvalid,

THE SCHRODINGER EQUATION AND ITS APPLICATIONS
Consider a particle described by a wave function y(r, #). Calculate the time-derivative
P( ' 8

, Where

34. i
p(r, 1) is the probability density, and show that the continuity equation ——
h
where J(r, 1) is the probability current, equal to - Re [\y ( V\y)].
1lcino th Qe h riadinoer eanatinn
Using the Schriddinger equation,
oy(r,t #*
Wé! ) = —Evzw(r, 1)+ V(r, Hy(r, 1) (34.1)
ay (I, 1

v ) . 2mV v, 0+ V(r, Dy*(r, £). According

ot

Assuming V(x) is real, the conjugate expression is —ift

to the definition of p(r, £, p(F, 1) = y*(r, (T, 1); hence,
ap(r, ) ay(r,n ( )

p( ) Wat y(r, D+, Hn—=— \I’ 2 (34.2)

ot

Using (3.4.1) and its conjugate, we arrive at
1
[Zmzv yr(r z)]\p(r -V, oy, oy(r, n -y z)[zm,v w(r z)]
(3.4.3)

p(r, 1
ar
+ {f—lw*(r, DV(r, py(r, n = - [y*(r, t)VQ\y(r, H—y(r, t)Vz\y*(r, nl
We set
1 [ R
Jo, oy = -Re[ Vy ] 2,,,, Ly*(r, pVy(r, o —y(r, nVy*(r, 1] (344)
Using the theorem V- (UA) = (VU )-A + U(V - A), we have
Vodir, = 2m,[(V\v ) - (V) +y* (Vy) = (V) - (Vy™) -y (V)]
Zm,[w*V y-y V] (3.4.5)
$O
ap(r n
+V.Jie,n =0 (34.6)
3.5. Consider the wave function
(X t) - [Aeipx/fl +Be—iPX/ﬁ] —ip“1/2mh (351)
Find the probability current corresponding to this wave function
(3.5.2)

The probability current is by definition

Jx0 = 2”“(

Oy oy*
v ox ~ ox W)

P %

The complex conjugate of y is y*(x, 1) = (A%eP*'* 4+ B*eipr/hy o'P /2% o4 o direct calculation yields
eipx/fi_ %Be—ipx/fz) __( A —ipx/h + J B*elpx/fzj (Aeipx/fz + Be—lpx/ﬁ)]

f )
J D = zmi[(A*e"P"/"+B*e"”/")
V12 Y O Py P iny R
IBI%) = (—|A]* - A¥Be2ivx/h 4 AB* M0t 4 |u|2)_j

L(|A| —A¥Be2ivxih 4 4RT P
(3.5.3)

i
e

i ( 2 2
= ;L |4)* - 18] J
Note that the wave function W(x, 1) expresses a qunemnmtmn of two currents of namcleq mmnna in nnmmte direc-
-ip’t/2m lmphes that the

tions. Each of the currents is constant and time- mdependent in its magnitude. The term e
particles are of energy p*/2m. The amplitudes of the currents are A and B.
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3.6.

3.7.

3.8.
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Show that for a one-dimensional square-integrable wave-packet,

J. Jx)dx = %[:7) (3.6.1)
where j(x) is the probability current.
P
Consider the integral J Iy, t)Izdx. This integral is finite, so we have lim |y(x, x)I2 = 0. Hence,
X — too
[ Al 50 _ o) ( )
J joryd = MJ [ 0820y, n DL ED (3.62)

Integration by parts gives

- . -
J‘ Y, 5 v (5 1) ( 20 e = g11m {[w(x, ny¥(x, t)J a_J. a\"( : )w*(x t)dx} —J. vi n—a— "’( WD g (3.6.3)
—3 oo - -ﬁ o

£

lllCl’(‘:lUrB, we have

- [ )
j Jxydx = ,;Jf Wr(x, t) W0 dx = @ (3.64)

—oo —on

Consider a particle of mass m held in a one-dimensional potential V(x). Suppose that in some region V(x)
is constant, V(x) = V.Forthis region, find the stationary states of the particle when (@) E> V,(b) E<YV,
and (¢) E = V, where E is the energy of the particle.

(a) The stationary states are the solutions of

2.2
hJ 6(x) + Vo) = Edx) {3.7.1)
2m axz

For E > V, we introduce the positive constant £ defined by Bk 2m = E— V., so that
d
aq’(zx Lo = 0 (3.7.2)
The solution of this equation can be written in the form
O(x) = Ae* + A (3.7.3)
where A and A’ are arbitrary complex constants,
(b) We introduce the positive constant p defined by ﬁ2p2/2m = V- E;s0(3.7.1) can be written as
(x
P00 240 = g (3.7.4)
3x’
The general solution of (3.7.4) is &(x) = Be’" + B'e ™" where B and B' are arbitrary complex constants.
2
fay Whae EF = 1V s lauas a q)(x) = . g A ) ia Bamane fiimatine of o bl — Mo ' wwhaes 0 amd T oaea
\\'} ¥Yvuell . — ¥ Wi [jlavio a 2 - U, v q}\.&} 15 a 1uical 1UuniviIuan il A, lp\A} - LA TGO WIICIC U aliu o [
complex constants. X
Consider a particle of mass m confined in an infinite one-dimensional potential well of width a:
0 ~5<x<5
Vix) = 2 (38.1)
oo otherwise

— I..

| B cigensiates o
CHIU UIC Cl1ZCISLALes O

For x > a/2 and x < —a/2 the potential is infinite, so there is no possibility of finding the particle outside the
well. This means that

w(x>g) =0 w(x<§)=0 (3.8.2)

Since the wave function must be continuous, we also have W(a/2) = y(-a/2) = 0.For—-a/2 < x £ a/2 the poten-
tial is constant, V(x) = 0; therefore, we can rely on the results of Problem 3.7. We distinguish between three
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3 ’9'

possibilities concerning the energy E. As in Problem 3.7, part (a), for £ >0 we define the positive constant &,
#k*/2m = E;so we obtain ¢(x) = Ae™** + A'e™**. Imposing the continuous conditions, we arrive at

I Aetkar2 4 Arp-ikar2 = II Aeitar2p Aleikar2 = 0 {3.8.3)
Multiplying (3.8.31) by eik9-2 we obtain A' = —Ae'?, Substituting A’ into (3.8.31I) yields
Aeika’2 _ pgi*agikar2 = () (3.8.4)

Mulnplymg (3.8.4) by e-i*a’2 and dividing by A [if A = 0 then y(x) =0] we obtain e*¢ — ¢**¢ = (. Using the
relation e’ = cos @ + i sin & we have -2f sin (ka) = 0. The last relation is valid only if ke = n=, where # is an
integer, Also, since k must be positive, n must also be positive. We see that the possible positive eigenenergies of
the particle are

R B (any 2§22
(" ) _rh - (3.8.5)
2ma

The corresponding eigenfunctions are

Y. (0) = Ae' —AenTe ikt = ppinnisa_ ginnla-x)/a o g ginh/2 [ ginx(x/u-1/2) _ g-in%(x/a-1/2)]
n
. x 1
Csin| nn =73 (n=1,2..) (3.8.6)
where C is a normalization constant obtained by

'Cl—.i = j-a/z sin? [nn(;—j—%):‘dx (38.7)

-a/2

. x 1 dx
Defining y = 275 anddy = —, (3.8.7) becomes

| r’ oy - o
[ . _a _a sin(2®ny) _a
—C—i = aJ I51n2(mty) dy = 2J 1 [1-cos (2rny)]dy = 2L ~ " 3mn J =3 (3.8.8)
Therefore, C = /2/a. Finally,
2 1
v, (0 = Pgin el £~ 1) (3.8.9)
- Na” L " \a 2/

Consider now the case when E<0. As in Problem 3.7, part (b), we introduce the positive constant p,
#%p%/2m = -E. Stationary states should be of the form y(x) = Be" + B'¢™*. Imposing the boundary conditions,
we obtain

I Bera/24Bera2= Il BePa’24 Blepa2 =0 (3.8.10)
Multiplying (3.8.101) by ePa/2yields B' = —BeP?, s0 Be %2 — BeP“¢P*’? = 0. Multiplying by ”*/? and dividing
by B, we obtain 1 — #*P* = 0. Therefore, 2pa = 0. Since p must be positive, there are no states with corresponding

negative energy.
Finally, we consider the case when E = 0. According to Problem 3.7, part (c), we have y(x) = Cx+ C".
imposing the boundary conditions yieids

a a
C§+C'=O —C§+C'=O (38.11)

Solving these equations yields C = C' = 0, so the conclusion is that there is no possible state with E = 0.

Refer to Problem 3.8. At ¢ = 0 the particle is in a state described by a linear combination of the two
lowest stationary states:

wix, 0) = oy, (x) + 3\112(1) Iod + IBI (3.9.1)
PR o 7 I TP S [y A nind bbin etamnie srnliin A thn nemmmatasn v 2 onn o 11t A tiean
\a) Lalcuiaie uic dec lullbllUll W\J-, l) daliul Lll e dall chu O1 uic Pcld Ofs X anida p dad> a 1IUulIcLIvUlLl U1 LI

(b) Verify the Ehrenfest theorem, md{x)/ dt = (p).
(a) Consider part (¢) of Probiem 3.1. The time-evoiution of the stationary states is of the form

v, (x, 0 = y (x)exp (—(E1/h) (3.9.2)
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Consequently, using the superposition principle gives
yix, 1) = ay,(x, 1)+ By, 1)
v (—m2me]l [ B .1 (x 1M

[P r(x 5 (_n?i
= a'_,JEsm LnkE—EJJexpL P JJ +BL\/ESIH |27l Z-3 ) expL — JJ (3.9.3)

a/? a’/2
(ZZJ- x|y (x, :)|2 dx + ﬂZJ- x| yx, t)|2 dx + 2Re [a*BJ- G, Dy, 1) dx] (3.94)
—a/2 -a/2

-a/2

Consider each of the three elements separately:

as2
2 a r rix I\-|
I EJ x|y, (x, 0| dx = 5_' X sin nka )_I dx (3.95)
~a/2 —as2
. x | dx
Definlngy—a—i,dy— Pl
0 0 0
I, = aJ‘ (2y + 1) sin? (ry) dy = 2aJ‘ ysin? (my) dy +aJ‘ sin? (my) dy {3.9.6)
-1 -1 -l
Solving these integrals yields
C [y ysin@ry) cos2my)]” Ty sin@2ap1®  a . a _ , o
I = 2a|7 - an T e _I_,+al.2——4ﬂ |, =-3%3=0 (3.9.7)
One can repeat this procedure to show that
a/2 )
1
I,= [ x|y, tx, 1) = ;" x sin? lr2n(§—r,)—|dx =0 (3.9.8)

-a/2 —u/2

1
Note that this result can arise from different considerations. The function f(x) = sin? [21{(5 - i)] is an even

function of x:
1Y72 1172 1 2
[sin2n(—(—:—§ﬂ = [ sin2n(§+§):| = [—sin(Zn(§+§)+2n)]

(sm 21:( ﬂ - f®) (39.9)

f(=x)

On the other hand, f(x) = x is an odd function of x; therefore, x sin’ [2n (x/a—1/2)] is an even function
of x, and its integral vanishes from —a2/2 to a/2.Consider now the last term in (3.94):

ars/2 ars?
2 1 1 3n’ik
Iy= J- Xy, Dy, 1 dx = EL/szin [n( = i)] sin [zn( = inexp [_ 2’; la 2!} dx  (3910)

-a’/l

Defining y = x/a—~1/2, dy = dx/a, and ® = 3n°4/2ma?*, we obtain
{)

0
; -t ]
I ae““”J. (2y + 1) sin (my) sin (2ny) dy = ae J. (2y+ 1) [cos (ry) — cos (3my) ) dy

16a 1wt

= g;t—ze (3.9.11)

Finally, returning to (3.9.4) we obtain

32a

16a 32a
(x) = on —2 Re (a*fe™™) = —[Re(a B) cos (@f) + Re (ia*f) sin (@) ] (3.9.12)
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Consider the mean value of the momentum:

a/ arsl
X A AN 2
(po = _[ Va0 dx = ;I CAHEH R R [a 5 +B 5,( }dx (3.9.13)

a/ _a/
ala a/

We calculate separately each of the four terms in (3.9.13):

ma’

- ma/2
dy,(x, 1) 2n ]
J v ¢l3x dx = E;J sin [n(g—iﬂ cos [n(g—%ndx (3.9.14)
2 2

-a/ —-as

1 1
sin [n(g - i):l is an even function of x and cos [n[g - i)] is an odd function, so their product is an odd func-

tion, and therefore the integral of the product between x = —a/2and x = a/2 equals zero. Also,
a/2 a/2
Y, (%, 1) 22n 1 1
J. wz (x, 1) 3 dx = pas sin [2n(§ - Q)] cos [21{{1 2)} dx (3.9.15)
-as2 -a/2
NN PR SN R | P PRESR
sin| 2m| 7 —5 ) |is an odd function of x and cos |_‘m\ 23/ |isanevenone; therefore, their product is an odd
function, and thus the integral between x = —a/2 and a = 2 vanishes. We have
;) ;)
o Bw x, 1) an| .
I= yx 1 2 dx = — sin [n(f—-l-)] cos [27:('5—-1-)]53"“"617( (3.9.16)
] at a 2 a 2
—a/? —a/2
. x 1 dx .
Defining y = 573 and dy = L the integral / becomes
0
— 4_7! —iwt : — 4_7[[ cos(n:y) COS(37ty)]0 —twr E ~iwt
I= aze J.. sin(My) cos (2ny)dy = p TR o € = 3¢ (3.9.17)
Finally.
f"/z |I| (x, 7 21 f"/z - /X 13T - {X i\_
- — 3 - _= Z_- iot
I'= J /z\yz (x, D) 3x dx = aJ . sml_21tLa 2JJcos [nta ZJJe dx (3.9.18)
Using the same definitions used above, we arrive at
0
2R 2n pior[_ COS(MY) cos (3my)7® _ 8
I'= P J‘ 1 sin (2My) cos (Ry)dy = [ o o ]4 = -3 (3.9.19)
Substituting the results in equation (3.9.13), we finally reach
Sﬁ =i i
(P> = 37, [ o*Be” - apg*e “"1 (3.9.20)
(b) In part (a) we obtain
16al { 1tk \ /31‘1t2r'z A
280 o x *
{x()y = om {a exptuzmaztj+aﬁ expL 2ma21JJ (3.9.21)
Therefore, we have
dix) _ 16adin A 3ntik 3n’ih 84 o gk o
mr = 91t om { —a*Bexp _2ma21 + of*exp Zmazl = 3 [a*Be ape (3.9.22)
By inspection, the last expression is identical to {p ). Thus, for this particular case Ehrenfest’s theorem is

verified.

3.10. Refer again to Problem 3.8. Now suppose that the potential well is located between x = Oand x = a:

0 0<x<a
V(x) = { - . (3.10.1)

otherwise

T Ll

Find the stationary eigenstates and the corresponding eigenenergies.
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We begin by performing a formal shift of the potential well, X = x —a/2, so the problem becomes identical to
Problem 3.8:

{ 0 —a/2<x<u/2
V(%) e (3.10.2)

L= OIICTWiSe
Using the solution of Problem 3.8, the possible energies are
252,2
f
E, == (3.10.3)
2ma

where n is a positive integer. The corresponding eigenstates are

v, = J% sin[mr(g - %)} (3.104)

Or, in terms of the original coordinate, we have
2 (nnx )
Y, (0 = Lsm - (3.105)

Consider the step potential (Fig. 3-3):

v {Vo x>0 (3.11.1)
=10  x<0
Vi)
Yo
_— Y ——————————
_IP
1 I
X
Fig. 3-3
Consider a current of particles of energy E >V, moving from x = —oo to the right. () Write the station-

ary solutions for each of the regions. (b) Express the fact that there is no current coming back from
x = +oo to the left. (¢) Use the matching conditions to express the reflected and transmitted amplitudes
in terms of the incident amplitude. Note that since the potential is bounded, it can be shown that the
derivative of the wave function is continuous for all x.

(@) Referring to Problem 3.7, part (a), we define

RmE _ Rm(E_V)
ky = 52 ky = J g (3.11.2)

Then the general solutions for the regions I (x < 0) and II (x > 0) are

k. v ik i

Ox) = A"+ A} e Py(x) = Ay + Ay e (3.11.3)
(b) The wave function of form e'*" represents particles coming from x = —oo to the right, and e~** represents
particles moving from x = +e0to the left. ¢,(x) is the superposition of two waves. The first one is of incident
martinlac menmaocatino feam laft tn moht and 1c Af aomnlitinda A « thae cannnd waua ic nf amnlifnda and ronea_
P“ll-l\fl\tﬂ plupusutuls PR AVIS SN LD N A LV llslll LI L3 U wuputuu\.« lll’ Llv JLwiULLu wadve Lo Uy wllllllil-lu\/ nl anigy l\/l.’lv
sents reflected particles moving from right to left. Since we consider incident particles coming from x = —oo

to the right, it is not possible to find in II a current that moves from x = +oo to the left. Therefore, we set
A = 0.Thus, ¢;(x) represents the current of transmitted particles with corresponding amplitude A,,.
(c) First we apply the continuity condition of ¢(x) at x = 0, $(0) = ¢y(0). So substituting in (3./1.3) gives

A+ A = A, (3.11.4)
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Op(x
Secondly, —%572 should also be continuous at x = 0; we have

00,(x) dy(x) :
5 = kA ik Ay et — = ke (3.115)
. 00,0)  30,(0) ,
ApplymgT = 3, e obtain
ik (A, —A)) = ik,A, (3.11.6)
Substituting A, gives A, + A} = (A, — A})k,/k,, which yields
Al k-
-A—l = ek (3.11.7)
ki =k
Eventually, substituting (3./1.7) in (3./1.4) yields A;( 1+ m) = A,; therefore,
(IS
A, 2k
A_l = ik, (3.11.8)

3.12. Refer to Problem 3.11. (@) Compute the probability current in the regions I and Il and interpret each
term. (b) Find the reflection and transmission coefficients.

(@) For a stationary state ¢(x}, the probability current is time-independent and equal to

A [ x, 000 a¢*(x)]
Jx) = 2mf[¢ (x) ox -3 (3.12.1)
Using (3.11.3) for region I, we have
f * -~k x * 1k x : thox . v -tk x
Jix) = 5L (Aje™ +A e Y(ik (A et — ik Ale )
ik x o ik x > * _—ik x . v ® _akox ﬁk' 2 V|2
— (A et Aleht) (—iky ATe M ik AT ] = — (|47 -[41]) (3.12.2)
Similarly, for region II we have
i * —tkox g+ ik,x 1k x . —ik,x ﬂcz 2
J(x) = 2mi[A26 (k) et — Ayl (~iky) Y] = m IAzl (3.12.3)

The probability current in region [ is the sum of two terms: fik, |A,|2/ m corresponds to the incoming current
moving from left to right, and —#k, ]A', |z/ m corresponds to the reflected current (moving from right to left).
Note that the probability current in region II represents the transmitted wave.

(b) Using the definition of the reflection coefficient (see Summary of Theory, refer to Eq. 3.27), it equals

o]

_ |A\| ik, /m _ ’ﬁ

ARk /m A 3124)
Substituting (3.11.7), we arrive at
_ k) L (3.12.5)
(k, +ky)° (k, +ky)"
The transmission coefficient is
ARk /m kA 3126)
Ay Bk, /m Ga o
Substituting (3.11.8), we arrive at
k 2k, 2 4k k
_ f( 1 } ot (3.12.7)
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3.13. Consider a free particle of mass m whose wave function at time r = 0 is given by

a 2
Y, 0) = #J‘ g kg 4 gk gy (3.13.1)

Calculate the time-evolution of the wave-packet y(x, 7) and the probability density |y(x, t)| Sketch
qualitatively the probability density for + <0, s = 0, and > 0. You may use the following identity: For

idanvely e ODADI] adersly ‘, 1001 ny

any complex number o and B such that -n/4 < arg () <n/4,

S a2 Jr
J e—ﬂ (y+PB) dy = E (3‘13‘2)
. - Thx s . a k)i ..
The wave-packet at t+ = 0is a superposition of plane waves e'** with coefficients (2m) o7 this is

a Gaussian curve centered at k = k,. The time-evolution of a plane wave e'** has the form e'**e~F®0¥/* =

5o M1 am We set w(k) = fik’/2m, so using the superposition principle, the time-evolution of the wave-packet

ur(x, Q) is

h St i S

2 2 Ty
W, 1) = g kkg) /4 ot gy (3.13.3)

(2103/4 J_“

Our aim is to transform this integral into the form of (3.13.2). Therefore, we rearrange the terms in the exponent:

2 2 2 2
a 2 a iht a . a
-4 (k=ko) " +i[kx— (k)] —(—+t—m)k2+(§ko+zx)k—j4'kg

2 2 2 2
o | (S0
(2 itﬁ 2k0+zx 3k0+1x a22
AN 7

a
= -+ k- — - |+ = — =k (3.134)
4 z_ml 2(‘£+@]J 4(9—2 fit) 470
it Im it 2m
Substituting in (3.13.4) and using (3.13.2) yields
2,2
el ER) T Y
Ja P\ I\ Fkytix)
Xt = exp| —————— 3135
w(x, 1) 23/47174 a_2+@ Y az+2'_ﬁ_t ( )
4 " 2m m
The conjugate complex of (3.13.5) is
( aZk;) (az )2
expl ——— o
w¥rv N Ja P 4 EX“[ 2k0 a -| {3136\
¥\ E) 23/4 174 a_2 lﬁ_t l’[ az_gl-—ﬁ_t J [ )
4 2m m
Hence,
( azk;) (azko : a’k, :
eXp\ -5~ =) —x +iatkyx —~) - X —iakyx
hx, ) = exp +
mJ—J ,fu al iﬁg) a? + 2iht/m @’ 2ifit/m
4 2m 4 2m
[ @k aey (dk L) 4hka’ ]
5 1 2kaﬁ+m2 +2a\ - J e
= }———“—exp - 3
ma® {1 + 4K 2 /m2at a +4h°t" /m
L J
2~ 1 [ 24" (x—fkgt/my "]
e e e 3137)
nat 1 + 4t P /miat a +4h° 1" /m
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W(x, )2

NEN
n —
n. .

| N — N

Fig. 3-4

The probability density is a Gaussian curve for every tlme t entered at x. = (fik,/m)¢. (i.e., the wave-packet

moves with a velocnty V, = ﬁko/ m.) The value of ly(x, r)] is maximal for r = 0 and tends to zero when 1 — oo,
The Wl(lm of me wave-pacxe[ lS mlmmal I()l' i = { and iends {0 o wnen { — oo see l"lg .)-4

3.14. Consider a square potential barrier (Fig, 3-5):

0 x<0
0 I<x
Vix)
Vo
0 ) X
Fig. 3-5

(a) Assume that incident particles of energy E > V,, are coming from x = —e-. Find the stationary states.
Apply the matching conditions at x = 0 and x = . (b) Find the transmission and reflection coefficients.
Sketch the transmission coefficient as a function of the barrier’s width /, and discuss the results.

(@) Similar to Problem 3.7, part (a), we define

BmE Bm(E-Vy)
k= ‘F" ky = Aj——;{z_— (3.14.2)

Thus, the stationary solutions for the three regions 1 (x < 0),I1 (0 < x <), and II (x > /) are:

¢I(x) - Aleiklx'f Avle—iklx

by(x) = A€ 4+ AyeTh? (3.14.3)

. PN " ik x ik ox
Lq)m(X) = /'139 "+ Az )

Each of the solutions describes a sum of terms representing movement from left to right, and from n'ght to leﬁ

We consider incident pariicies from x = —oo, 50 there shouid be no particies in region Il moving from x = ee

to the left. Therefore, we set A’y = 0. The matching conditions at x = [ enable us to express A, and A’, in
terms of A,. The continuity of $(x) at x =/ yields ¢,(}) = o), so

Azeik2!+ A'ze_iklf = ASBikll (3.14.4)
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The continuity of ¢'(x) yields
ik Aot — ik, Aye ™! = ik Ay (3.14.5)
Equations (3.14.4) and (3.14.5) give

. ky— k, '(‘-|+k2]l-|A (3.14.6)
| 17 2k, 1™
The matching conditions at x = 0 yield
0,0 =0,00 = A +A =A4,+A, (3.14.7)
and
0:(0) = 0,(0) = kA ik A =ikA,- iKA, (3.14.8)
so we obtain
k +k, k,—k,
A = 2%, A + 2k, Az (3.14.9)

Using (3.14.6), we can express A, in terms of A;;

2
= M k, kQJI_M)_er(kpkzﬂ A
1 4k k, 4%k, 3
(k, + k) — (k- ky)° (k+k)+(k—k) )
- |: ‘ 24k|k2 l 2 cos (k h-i 24k1k2 : sin (k2[) e,LlIA3
[ i+ i 1
= {cos (kD) — le X, sin (kzl)Je’"l’A3 (3.14.10)
Similarly, we express Aj in terms of A;:
ki, +ky k +k)(k - k, +k )k, —k )
A = kzkk A+ * A' [( - ‘)( )p‘(kl"k1”+ e 2.)-( il et +k2)1}A3
(K —k§)+(k o) tk N S - S
= T cos (k,l)y +1 ik K, sin (k1) |A, _’2kk sm(k he*'A, (3.14.11)

(b) The reflection coefficient is the ratio of squares of the amplitudes corresponding to the incident and reflection
waves (compare to Problem 3.12):

v |2
R = |4 (3.14.12)
AI
Using the results of part (a), we obtain
['kZ _k2 12
[l;sin(kl)J - kD2 s (k]
2k k 2 (k5 — k7)™ sie? (k1)
R = — : = S — (3.14.13)
) R 4K + (k3= k3) " sin? (k,0)
cos?(k,ly + T,kz sin (k,/)
Finally, the transmission coefficient is
1 akik?
- A - = — — (3.14.14)
A K-k 41K+ (k] —k3) " sin? (kyl)

cos? (k,l) +L 2%k, J sin? (k,1)

The transmission coefficient oscnllates periodically as a function of  (see Fig. 3-6) between its maximum value
(one) and its minimum value [1 + V /4E(E-Vy)] . When/is an integral multiple of nt/k%,, there is no
reflection from the barrier; this is ca_lled resonance scartering (see (‘hanrer 15).
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3.15.

4k? k3
4k k3 + (k3 - k3)?

Consider the square potential barrier of Problem 3.14. Find the stationary states describing incident par-
ticles of energy £ < V. Compute the transmission coefficient and discuss the results.

The method of solution is analogous to that of Problem 3.14. Referring to Problem 3.7, we define

) 2mE 2m (vo ~E)
k, = ? p = _ﬁz— (3.45.1)
The stationary solutions for the three regions I (x < 0), I (0 <x <), and I (x > [} are

¢'1(x)
Oy(x) = A + Aye™ (3.15.2)

Alelklx+ A!]e—lklx

[QJ[”()C) = Aze'.k]x + A'z»e_jklx

We describe incident particies coming from x = —eo, so we set A3 = 0. Applying the matching conditions in x = |
gives
) =0y = Aye™+ Aye ™ =Aetn (3.15.3)
Ouly = Oinl) = A peP'—Aje P =ikiA et (3.15.4)
From (3.15.3) and (3.15.4) we obtain
A, = [p ;;k‘e“"l"”}A3 Ay = [p;—?e‘”‘l*””}t, (3.155)
The matching conditions at x = 0 yield
00)=0,0) = A, +A] =A,+A) (3.15.6)
010) = ou(0) = ik A, ~ik A} = pA,-pA; (3.15.7)
From (3.15.6) and (3.15.7) we obtain
ik, +p ik —p
A = 20k, A, + 20, A (3.15.8)

Using (3.15.5), we arrive at
[ (ik, +p) (ik, - p) 1 [ & p?

, : 1.
A = L_ii—k,'p—_"(lk'w_m—eﬂk'ww/‘*‘ = L—"W sinh (pl) + cosh(pl)Je"‘"A3 (3.15.9)

Finally, consider the transmission coefficient:

2

As

A
[7*1]

T =

1

kZ,AQ\Z = 2‘\2 (31510)

5 Jsinhz(pl) 1+
|

o|T
—
)
R
©
A
kgl
@,
=
=3
N
—_
o
~
A

(
cosh?(pl) +L
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where we used the identity cosh? ¢ — sinh? o = 1. Hence,

T 2o D) 3.45.11
) [P B G
4E (V- E) +V; sinh | —5— |

We see that in contrast to the classical predictions, particles of energy E < V, have a nonzero probability of crossing
the potential barrier. This phenomenon is called the tunne! effect.

In this problem we study the bound states for a finite square potential well (see Fig. 3-7). Consider the
one-dimensional potential defined by

0 (x<—-a/2)
Vix) = -V -a/2<x<a’? (3.16.1)
0 (a/2<x)
Vx)
~af2 af
X
I 11 11
_VO
Fig. 3-7

(a) Write the stationary solutions for a particle of mass m and energy ~V, < E < 0 for each of the regions
I(x<-a/2),1(-a/2<x<a/2), and 11 (a/2 < x). (b) Apply the matching conditions at x = —a/2
and x = a/2, Obtain an equation for the possible energies. Draw a graphic representation of the equa-
tion in order to obtain qualitative properties of the solution.

(@) Referring 1o Problem 3.7, we define

_2mE 2m(E +V)
k= '———;2—— (3.16.2)

f

2
h of the regiong are

Then the stationary solutions for eac

[q),(x) = AeP* + AleP*
dy(x) = Be* + B (3.16.3)
om0

C'eP*+Ce ™™

Since ¢(x) must be bounded in regions I and III, we set A' = C' = 0, therefore,

J‘Px(x) = Ae™
&) = Be'™ + Be™'™

l‘pm(x) = Ce™™ (3.16.4)

(b) The continuity of ¢$(x) and ¢'(x) at x = —a/2 yields

[Aefpaﬂ = Be-ika’2 4 Bigikas2
3.165
pAe—pa/2 = ikBe—ika/z_ikB-eikalz ( )
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Similarly, the matching conditions at x = a/2 yield

{ CePe/? = Beikart | g o-ikas2

) (3.16.6)
_pcefpa/Z = ikBeika/Q_ikae—lka/Z
Hence, we can express B and B' in terms of A:
(p+ik vitas2 | A X | SV
B=Seermer o B = (Fgpecremen a (3.16.7)
AW a arthesitriean 712 1A Nin 72 JK A 0n ~beal
YY O dDUUdLILULC \J L, 7 ) \J IU;U} LU vuuLal l
—_ p+lk ka p—lk —lka)
C_(Zike -k e A
i & (3.16.8)
E _(p+’ tka Pt —1ku)
“uC =\ ¢ e A
To obtain a nonvanishing solution of (3./6.8), we must have
p(p+ik .. p-tk ..\ [(p+ik .. p—ik .,
2k ¢ e )=z e Eme ™) (3.16.9)
which is equivalent to
p—ik)z _ J2ika
(p+ik =e (3.16.10)

Equation (3.16./0) is an equation for E, since p and k depend only on £ and on the constants of the problem.
The solutions of (3./6.10) in terms of E are the energies corresponding to bound states of the well.
We shall transform (3./6.10) to express it in terms of k only, There are two possible cases. The first one is
—ik 2
I (p -,] = —e'* (3.16.11)

~ sk
VP TR

The left-hand side of (3./6.1 /) is a complex number of modulus 1 and phase 2 tan-! (k/p). (p + ik is the com-

plex conjugate of p — i4.) The right-hand side of (3./6.11) is also a complex number of modulus 1, and its phase
fka Im tka (| + ka)

ist+ka{—e =¢ e =¢ ). Therefore, we have
(kY (r ka) k [(r kaY] (R ka) (ka) 1
mn“'k5)=—k§+?) = E=[anL_k§+?)J —tan| 5+ 2)=C0[k7)=———tan(ka/2) (3.16.12)
and
an %) - . (3.16.13)
2mV,

= Jk?+ p?, where the parameter k, is E-independent. Consider

1 ka) K2 4 p? ([ig)z
cos? (ka/2) 1+tan2( 27 =\ {3.16.14)

We define k, = 2

Equation (3./6.11) is thus equivalent to the following system of equations:

(’L‘E) _k
cos|\ 5 )| = k.
(3.16.15)
(5)
tan| 5 |> 0
where we used (3.1/6.13) and (3.7/6.14) together with the fact that both p and % are positive.
We turn to the second possible case, e,
—ik)2 ;
TR - (3.16.16)
Similar arguments as in case I lead us to
LN 1 1
_ a2 ke _ X
2 tan (p} ke = a7 =7 (3.16.17)
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Consider

' z(k_a) _ anf(ka/2y K
SN2/ T T+ an? (ka/2) ~ K+ p?

(3.16.18)

Thus,

(3.16.19)

In Fig. 3-8 we represent (3.16.15) and (3.16./9) graphically. The straight line represents the function £/, and

ol 5)
sin 2

the sinusoidal arcs represent the functions and . The dotted parts are the regions where the

(%)
COos 2

ka
condition on tan( —z‘j is not fulfilled.

n/a 2Tt/ 3n/a Arja ko Smia k

Fig. 3-8

The intersections marked with a circle represent the solutions in terms of k. From these solutions it is possible
to determine the possible energies. From Fig. 3-8 we see that if k, < /a, that is, if

n2h?
2ma’

l

Vo<V, (3.16.20)

then there exists only one bound state of the particle. Then, if V| £V < 4V there are two bound states, and so
on. If V,» V,, the slope 1/k; of the straight line is very small. For the lowest energy levels we have
approximately

k=— (n=1273....) (3.16.21)

a

and consequently,

n2hin?

2ma?

_ (3.16.22)

Consider a particle of mass m and energy £ > 0 held in the one-dimensional potential -V 8(x — a). (@)

Inteorate the stationary Schridineer equation between g — £ and g + £. Taking the limit £ — n show

Integrate stationary Schrodinger equ between g — € and Taking the limit
that the derivative of the eigenfunction ¢(x) presents a discontinuity at x = a and determine it. (b) Rely-
ing on Problem 3.7, part (a), ¢(x) can be written

J‘b(-’f)

[«b(x)

Ae*t + Aok x<a

-
w
~—
~
L

S

Azezk.t+ sze—ikx r>da
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where k = »/2mE/#?. Calculate the matrix M defined by

(%) L ™)

\A2 )/ VA
(@) Using the Schrédinger equation,
h? d(x)
g Vil a0l = Eox)

Integrating between a — € and a + € yields

ﬁz a+£d2 (x) ad + E a+E
“m d¢J,c2 dx+V, S(x—a)q)(x) dx = E o(x) dx

a-t

a-—

According to the definition of the 8- function (see the Mathematical Appendix), the integration gives

#2 (4o
Im\ dx |

A=a+¢€

do(x)|
T dx |

Since ¢(x) is continuous and finite in the in

iterval [a—£, a0+

AR dow) . de(x)
| 2, M gy
X>a x<a
We see that the derivative of ¢(x) presents a discontinuity at x = a that equals 2mV ¢(a) /4>
(b) We have two matching conditions at x = g. The continuity of ¢(x) at x = a yields

Ae*at Alemika = A o'% 4 Al pmike

where the second matching condition is given in relation (3./7.6) and yields

2o (Arike’™ — Ajike¥a — Aike™ + Ayike™ @) = —V (A" + Aje k)

Equations (3./7.6) and (3.17.7) enable us to express A, and A, interms of A; and A\:

mVO mV(} .
A, = (l+——)A + ——e ke A
2 k2T 2

We therefore have

where

mV(} mvg .
| + — +— —2ika
ITE ik
M =
Yo 2ika _m_VO
ikh? ikh?

3.18.

odic potential (see Fig. 3-9). We define a one-dimensional potential by

—

43

(3.17.2)

(3.17.3)

(3.174)

(3.17.6)

-
(7%}
Py
~
™~
~—

(3.17.8)

(3.17.9)

(3.17.10)

(3.17.11)

In this problem we study the posstble energies (£ > 0) of a particle of mass m held in a 3-function peri-

(%)
]
o5
~
—~—
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Referring to Problem 3.7, part (@), for each of the regions Q, [ra < x < (n+ 1) a), the stationary solu-
tion can be written in the form

0 (x) = Bt " 4 C g Hmna (3.18.2)

Vix) |

g
Bn +1 T Bn
c. )=l (3.18.3)

Prove that T is not a singular matrix. (b) Since T is a nonsingular matrix, we can find a basis (b, b,) of
c? consisting of eigenvectors of the matrix 7. We write

s BO\
LCOJ = B,b, +B,b, (3.184)
where B,, B, are complex numbers. Impose the condition that |Bn|2 +|C nI2 does not diverge for n — teo

to obtain a restriction on the eigenvalues of T. Express this restriction in terms of the possible energies E.

(@) We compare the definitions of ¢ (x) and ¢, , ,(x) according to (3./8.2) and the definition of ¢(x) in Problem
3.17, part (b). The analogy is depicted in Table 3-1.

Table 3-1
Problem 3.17 | Problem 3.18
A, B ¢ kne
A C et
A, Bn+le—i’((n+l]u
A) C’H-le:k(:n-l]a

Also, the boundary between the two regions €} and £,  is setin x = (n + 1) a, whereas in Problem 3.17
the boundary condition is imposed at x = a. Using this analogy we have
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ik{n+1)a -1na 1kna l)" =2ik{n+ ) u
B“le-,k( a _ ik (] 2ka) C"ek (Zka)e 2ik(n+ 1)
, (3.18.5)
C 'exk(n+l)u - -l‘tna( 17\, ) 21k(n+l)a+C llzna(l +nl_)\-)
ned B, \2ka/ \ 2ka/
We therefore have
B'H]V Bnr
c.. =T ¢ (3.186)
where
A A
(‘ 2ka] ~3ka®
T = i N (1 z_}\._) . (3.18.7)
*2ka® +Zka €
We see that T is not a singular matrix, since
(e R
det 7 ‘( * 3ka )(l"ua *\2%a) = ! (3.18.8)

and therefore det 7 0.

Since T is a nonsingular matrix, we can find a basis (b, b,) of C? consisting of eigenvectors of T with corre-
sponding eigenvalues ¢¢,and o,; these eigenvalues are the solutions of the cubic equation det(7T - 011) =
By definition,

{Tb, = o, b,
3189
Th, = a,b, ( )
Using (3.18.4), we have (forn = 1,2,...)
(B2 ppr [B) T"(B,b, +B,by) = Byoh, +Byoch, (3.18.10)
kC'J n times kCOJ
Consider
B iz 5 )
2 2 n
ani +|Cn[ = ll C Z’Bla,; l” (3'18'11)
| < 1; otherwise llm (|B | |Cn|2) = oco. Similarly, we must have |o,| < 1. We apply a similar
cons:deratlon for n — —oo:
BO B~n
~ =71 A for n=1,2... (3.18.12)
\‘“o/ \VYon/
Hence,
B—n " BO —n : B n B n
c ]= T c 1= T(B,b, +B,by) = [T (on]b,)] + [T (Otzbz)]
-n 0 1
Bl —n Pz B2 —n n B" B2
== [T Tb)l1+—=[T (Th)] = b+ b {3.18.13)
o o, a, 2
Therefore,
2 2 B—n 2 2 2
Bl +1C = o )t 2= v (3.18.14)
1%l
? iverges for n — —oo, and similarly we must have |&t,| 2 1. Summing our results,

-

, 1.e_, the eigenvalues of T must be of modulus 1. Therefore, we can write

-y 2230 LIH of 1 Oc O OIS 1 cIc cLdal

det(T— 1) = 0 (3.18.15)
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where ¢ is a real constant. So

(TSN (P S L S

A rearrangement of (3418.16) gives

( ’l r/ A 7 i ; n
L ia zJ - 2LaJe +Ll+2kaJ _'kaJeM’eM—(zka)z_

or
A ) Y
1- 2[cos (ka) +37= sin (ka)}e’¢+ et =0
Consider the real part of (3.78.18):
[ A ] ]
1-2| cos(ka) + ka sin(ka) [cos ¢ +cos (2¢) =
Using the relation cos (2¢) = 2 cos? ¢ — 1, we arrive at

A
cosd = cos(ka) +msin(i<a)

Note that since & = 2mE/#?,(3.18.20) is a constraint on the possible energies E:

A
cos (ka) + Tka Sin (ka) | <1
We can represent this inequality schematically in the following manner. The function

1
flky = cos (ka) +ﬁlsin (ka)

behaves for k — == as cos{4a) approximately. The schematic behavior of f{k} is depicted
+1 permmed bands

Fig. 3-10

[CHAP. 3

(3.18.16)

(3.18.18)

(3.18.19)

(3.1821)

(3.18.22)

We see that there are permitted bands of possible energies separated by domains where | k)| 2 1,and therefore
the corresponding energy £ does not correspond to a possible state. For E — oo the forbidden bands become

very narrow, and the spectrum of the energy is almost continuous.

3.19. Consider a particle of mass m held in a three-dimensional potential written in the form

- 1/1,\ P & AN THIr N

17( ¥, 2) = V(x) + U(y) + W(2)

(3.19.1)

Derive the stationary Schrddinger equation for this case, and use a separation of variables in order to
obtain three independent one-dimensional problems. Relate the energy of the three-dimensional state to

the effective energies of the one-dimensional problem,
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3.20.

3.21.

3.22.

In our case the stationary Schrédinger equation is

ﬁl
~ 3 VIW(E) + [V + UO) + WE@I¥(r) = E¥(r) (3.19.2)

where W(r) is the stationary three-dimensional state and E is the energy of the state. We assume that ¥(r) can be
written in the form W(r) = o)x(»)y(z), so substituting in (3.19.2) gives

dZ
2m[( o )Jx(y)wz)w(x)( "(”Jw(z)w(x)x(y)[ vz )H

+ [V + UQ) + W)l ¢)xO0)w(z) = Q)X W(2) (3.19.3)
Dividing (3.19.4) by W(r) and separating the x-dependent part, we get
AL dow 21 ) 1 de)
2m¢(x) dx 2 V(X) = F- U()’) + W(Z) “om x(y) dyz ‘I’(Z) dZ (3194)

The teft-hand side of (3.79.4) is a function of x only, while the right-hand side is a function of y and z, but does not
depend on x. Therefore, both sides cannot depend on x; thus they equal a constant, which we will denote by E,. We
have

—
[ %)
e
o
n

T

We see that ¢(x) is governed by the equation describing a particle of mass 7 held in the one-dimensional potential
V(x). Returning to (3.1/9.4), we can write

B 1 d0) 21 dPye)
2mx0) gyt U = (MO mye g2

(3.19.6)

In (3.19.6) the lefi-hand side depends only on y, while the right-hand side depends only on z. Again, both sides rnust
equal a constant, which we will denote by E,. We have

M (U - E 3.19.7)

~Im &y +UO) = EXO) (3.15.7)
Thus, %(y) is a stationary state of a fictitious particle held in the one-dimensional potential U(y). Finally, we have

# Pyz)

-3 P +Ww(z) = Ey(z) (3.19.8)

where wesetE, = E-E — Ey. Hence, the three-dimensional wave function ¥(r') is divided into three parts. Each
part is governed by a one-dimensional Schrédinger equation. The energy of the three-dimensional state equals the
sum of energies corresponding to the three one-dimensional problems, E = E, +E + E_.

Supplementary Problems

Solve Problems 3.11 and 3.12 for the case of particles with energy 0 < E< V. Ars. R=1land T=0.

Consider a particle held in a one-dimensional complex potential V(x)(1 + i§) where V(x) is a real function and Eisa

ﬁ( <0y M)an

real parameter, Use the Schridinger equation to show that the probability current j = S ™ 7 Y ox d
cmEtods sl o ao ] Aaemalsilewy Arviiagiea a} n QE 2§V(x)p inte n a
€ probanity aensiy p = Y Y salUsly K correc d Uuuuuu_y cquauuu a‘ + ot = % 1 1 Lompare

with Problem 3.4.)

Consider a particle of mass m held in a one-dimensional infinite potential well:

Vo  Osx<a (3.22.1)
Ve = 1

otherwise
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3.23.

3.25.

3.26.

3.27.

THE SCHRODINGER EQUATION AND ITS APPLICATIONS [CHAP. 3

Find the stationary states and the corresponding energies.

2,2 2
nh
Ans. E, = 5 Z_ +V, (n=1,2,3,...). The corresponding states are the same as in Problem 3.10,
ma

Consider an electron of energy 1 eV that encounters a potential barrier of width 1 A and of energy-height 2 eV, What
is the probability of the electron crossing the barrier? Repeat the same calculation for a proton.

Ans. Foranelectron T = 0.78; for a proton T =4 X 107",

oS
ILic U

o}

£ o TRy P S
1

{a) A P nass 7 and energy £ > 0 encounters a potential well o pin v,
0 x<0
Vi) = -V, O<x<xl (3.24.1)
0 f<x

Find the transmission coefficient. (Hint: Compare with Problem 3.14.) (b) For which values of / will the transmis-
sion be complete, if the particle is an electron of energy 1 eVand V,, = 4 eV?
1

Ans. (@) T = 5 - (Y EPNL A, where n is an integer.
Vs [ 2m(E+Vy) 1}

L+ ZEE+ v, S| %

An electron is held in a finite square potential well of width 1 A. For which values of the well’s depth V, are there
exactly two possible bound stationary states for the electron?

nh?
Ans. V, SV, <4V, whereV| = 3

2ma

= 376 eV.

. N .
Consider the wave function y(x) = — ol (a) Calculate the normalization constant N where o is a real constant.
o 2

f 3
(b) Find the uncertainty Ax Ap (be careful in calculating Ap!). Ans. (@) N = 2%; (b)Ax Ap = .

J2
Consider a particle of energy E > 0 confined in the potential (Fig. 3-11)
oo x<-a
0 —a<x<-b
Vix) = v, -b<x<bh (3.27.1)
0 b<x<a
o0 a<x

Show that for a stationary state with a nonvanishing probability of finding the particle to the right of the barrier (i.e.,
at b < x < a), there is also a nonvanishing probability of finding it to the left of the barrier (i.e., —a < x <—b). Note:
For E < V,, this is another example of the tunnel effect of Problem 3.15.

v
| w0 |
| |
Vo
—a - b i [7) X

Fig. 3-11
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3.28.

3.29.

Consider a particle of mass m confined in a one-dimensional infinite potential well;

0 O<x<L
Vix) = { . (3.28.1)
otherwise
s . 2 (nnx 2h2n?
Suppose that the particle is in the stationary state, ¢,(x) = psinl 7 of energy E, = 5 Calculate (a)

2 LZ'
(N and (V- (YD and (02 icY Ax An m
(X7 ANC (P (2) (X7 and (P ) ;) axap.

L 1 | n*hin? 1 1
Ans. (@) (x) =73, (p) = 0;(B)(x) = Lz(;—jﬁ],(;’z) = ,zn Q) AxAp = nmh = - ——.
2 |3 12 2.2

2nn”) L NS 2m°n

Consider a particle of mass m held in the potential

V(x) = -V, [6() + 8(x - N)] (3.29.1)

where / is a constant. Find the bound states of the particles. Show that the energies are given by the relation
e = 2 12 20) 3.29.2)
\ a / ) ’

where E = —#*p?/2mand o = 2mV,/h%
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4.1 INTRODUCTION

The State Space: In classical mechanics, the position of a particle is described by a vector having three
real number elements. Though an analogous description exists in quantum mechanics, there are many signifi-
cant differences. The state of a quantum mechanical system is described by an element of an abstract vector
space called the state space and denoted €. In Dirac notation, an element of this space is called a ket and is
denoted by the symbol | ).

Observables: In Chapter 2 the concept of a linear operator was introduced. The Hermitian operator is a
linear operator that is equal to its adjoint (see Section 4.6). A fundamental concept of quantum mechanics is the
observable. An observable is a Hermitian operator for which one can find an orthonormal basis of the state space
that consists of the eigenvectors of the operator, If the state space is finite-dimensional, then any Hermitian oper-
ator is an observable. In the Dirac notation, an operator is represented by a letter. Since the action of an operator
on a vector yields another vector, an expression of the form A|y) also represents a ket.

The Dual Space: Recall that a functional is a mapping from a vector space to the complex field. The dual
space of the state space € consists of all linear functionals acting on €. It is designated by €*. In Dirac notation
an element of £* is called a bra, and is designated by the symbol { |. We can associate with any ket |¢) of € an
element of £*, denoted by (¢|. The action of a bra {(y| on a ket [x) is expressed by juxtaposing the two symbols,
(yly). By definition, this expression is a complex number. (The terms bra and ker come from “bracket.”) The
correspondence between € and £* is closely related to the existence of a scalar product in €.

Scalar Product: The basic properties of the scalar product are summarized below:

I 0ly) = (ylo)* (4.1)
11 (WA 0, +R200) = A {w]d,) + A, (0, W) (4.2)
ML (g, +Rgtle) = AJ(0,1W) + A7 (0l) (43)
v {yiy) is reai and positive; it is zero if and only if jy) = 0 (44)
Projector onto a Subspace of €: Let 19,), 19,), .. .. [0,) be m normalized pairwise orthogonal vectors;
@l0) = 8, ij=1,2,...,m (4.5)

We denote by €, the subspace of € spanned by these » vectors. The projector into the subspace €, is defined
by the linear operator

Po= Y 100 (4.6)

i=1

Figure 4-1 presents a simple example of this concept. The set {0,), |9,), |¢,}} is an orthonormal set of vectors.
The projection of an arbitrary vector |y) into the plane spanned by I¢,) and |¢,) is given by P,ly) =

(O, [FD) 10,) + (0,1 I9,) -

50
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4.2 POSTULATES IN QUANTUM MECHANICS

Postulate I: The state of a physical system at time ¢, is defined by specifying a ket |y(1,) ) belonging to
the state space €.
Postulate II: A measurable physical quantity A is described by an observable A acting on €.

Measurement of Physical Quantities: The extent of validity of a physical theory is continuously investigated
by confronting results calculated by the theory with measurements obtained in experiments. In the context of
quantum mechanics the measurement of physical quantity involves three principal questions:

(a) What are the possible results in the measurement?
(b) What is the probability of obtaining each of the possible results?
(¢) What is the state of the system after the measurement?

The answers to these questions in the context of quantum mechanics is found in the following three postulates.

Postulate ITI: The possible results in the measurement of a physical quantity are the eigenvalues of the
corresponding observable A.

We can now answer the second question for the case of a discrete spectrum. The generalization to the case
of a continuous spectrum is treated in Problem 4.2.

Postulate IV: Let A be a physical quantity with corresponding observable A. Suppose that the system is
in a normalized state [y), so {yly) = 1.When A is measured, the probability P(a,) of obtaining the eigen-
value g, of A is

£n
2
Pa,) = 3 i) (4.7)
i=1
where g, is the degeneracy of 2, and lu:), iui), Ce iui‘) form an orthonormal basis of the subspace &, that
consists of eigenvectors of A with eigenvalues a,,.

In Problem 4.3 we introduce a different (though equivalent) formulation of postulate IV. The subspace €,
of the state space defined in postulate IV is also called the eigenspace associated with @, . The following postu-
late describes the state of the system after a measurement.

& otvem ke ¢l P P o P O Ly yaaps

a )
€ TIOTIM L _'..__ﬁ..n,.-
1C NOTTIL ILCU Pl UJCLLIUJI O1 |lp/ ULV UIC Clglidpalc

Postulate V: If the measurement of a quantity A on a physmal system in the state |y) gives the result
minediately after the measurement, the state is gi

—

¢, associated with a_; that 1s, «/WP _ly), where P, is the projector onto €, .
n
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4.3 MEAN VALUE AND ROOT-MEAN-SQUARE DEVIATION

Consider a state described by a normalized ket, (y|y) = 1. The mean value of an observable A in the state
|y is defined by

(A)y = (WAly) (4.8)

The mean value of an observable has a clear physical meaning. Suppose the physical quantity represented
by the operator A is measured a large number of times when the system is in the state |y). Then (A)w
expresses the average of the results of the measurements (that is, the sum of each result multiplied by the
probability of obtaining it). The derivation of this property is given in Problem 4.5.

The root-mean-square deviation of the observable A is defined by

AA = [(AT)y—(A), (4.9)

The root-mean-square deviation has a direct physical interpretation. It characterizes the dispersion of the meas-
urement results about (A)‘p (see Problem 4.6).

44 COMMUTING OBSERVABLES

P Y P
C 11Ul 1Uc

itical—multiplica

Consider two operaiors, A A and B. Iu geueral, ne c)\plcaaluub AB and BA ati
of operators is not commutative. An important concept in quantum mechanics is the commutator [A, B] of two
operators defined by

[A,B] = AB-BA (4.10)

Some useful properties of a commutator are given in Problems 4.7, 4.8, and 4.9. If [A, B] = 0, then A and B
are called commuting operators. Consider the following theorem.

Theorem: Observables A and B commute if and only if there exists a basis of eigenvalues common to both.

U‘

there exists a un lque onhonormal
factor.

4.5 FUNCTION OF AN OPERATOR

Assume that in a certain domain the function F of variable x can be expanded in a power series in x;

F(x) = Za"x” (4.11)
n=0
The corresponding function of the operator A is the operator F(A) defined by a series that has the same coeffi-

cients a,:

o

F(A) = Za"A" (4.12)

n=10

4.6 HERMITIAN CONJUGATION
The adjoint (or conjugate) of an operator A is denoted by A'. For every |¢) and |y) we have

(ylATIo) = (olAly)* (4.13)

The basic properties of the adjoint of an operator are derived in Problems 4.10 and 4.11. An operator A is Her-
mitian if it is identical to its adjoint:

A is Hermitian < A = At (4.14)
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An inspection of Eq. (4.13) shows that in order to obtain the Hermitian (or the adjoint) of any expression, it
suffices to apply the following procedure:

I. Replace the constants by their complex conjugates.
Replace the kets by the bras associated with them.
Replace the bras with the kets associated with them.

R 1 th t th t A t,
~CP1alt e Operawdrs u_y their auJGﬁ"u operators.

I. Reverse the order of the factors (the position of the constants is of no importance). For example,

A st s ol A P I U 1 o
A(0lABIy) — A* (wlB'A|o) (4.15)

4.7 DISCRETE AND CONTINUOUS STATE SPACES

A discrete set of kets {lu;), i = 1, 2, ...} is orthonormal if it satisfies the following relation:

(uu) = 8, (4.16)
For a continuous set of kets {|w,} [/, Sa </}, the orthonormalization relation is written as
Wow ) = 8 (a—-a) (4.17)

A set of kets constitutes a basis of the state space ¢ if every ket |y) belonging to € has a unique expansion on
these kets:

W) = 3.Cilu) (4.18)
i
and for the continuous case:
W) = JC (@) jw,) da. (4.19)

It can be proved that an orthonormal set of kets constitutes a basis if and only if it satisfies the closure relation
(see Problems 4.13 and 4.14):

X', 1 N ., v s s 1 s
L e = 1 ktor the continuous case, J|wa)§wa| do = lJ (4.20}

where 1 denotes the identity operator in €. Using the notion of the projector onto the space spanned by the set
of kets, we can write these relations in an equivalent form:

P{u} =1 (rP{w,} =1 (4.21)

4.8 REPRESENTATIONS

The validity of a physical theory is established by comparing experimentally obtained data with the data cal-
culated by theory. When a basis is chosen in the abstract state space, each ket, bra, and operator can be
characterized by specifying its coordinates for that basis. We say that the abstract object is represented by the
corresponding set of numbers. Using these numbers, the theory-prescribed calculations are performed. Choos-
ing a representation means choosing an orthonormal basis in the state space.

Representations of kets and bras: In a discrete basis { |#;) }, a ket |y) is represented by the set of numbers
= (uJy). These numbers can be arranged vertically to form a column matrix:

M

(C) =‘ : ‘ (4.22)
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A bra (9| is represented by the sets of numbers b;k = (®|u;), which are the complex conjugates the com-
ponents of the ket |¢) associated with (¢|. These numbers can be arranged horizontally to form a row matrix,
(b, . b, ,...). In a continuous basis {|w,)}, kets and bras are represented by a continuous infinity of numbers,

that is, by a function of . A ket ) ic renresented by the cet of numbers () = {w lud and a bra (&l is
1at 1s, DY ) 1S repr 1 vy n () W), an a

G UMD W W AR Ry vowiiivis U av ST i (33310 w3 I B ) L a Ui AW i

represented by b* (o) = (¢|w). Once a representation is chosen, we can use the components of the ket and the
bra to calculate their scalar product. In the discrete case,

v

(Oly) = Z b’fCi [in the continuous case, (¢|y) = [b*(a)C(a) do. :! (4.23)

Representations of Operators: In a discrete basis {|u;)}, an operator is represented by the numbers
A = (ulAl) (4.24)
These numbers can be arranged in a square matrix,

(Au A Alj”'\
A21 A22 Azj...

[A] = 74.95)
£ nuj . [ T.L0 )
LAH A Aij J
For a continuous basis { |w )}, we associate with A a continuous function of two variables:
(o, o) = (walAlwa_) (4.26)
As a consequence of (4.13),
(A", = A% (4.27)
or
At(o, @) = A™(a, o) (4.28)

If A is Hermitian operator (A" = A), we have A (o', ) = A*(0', o). (Note that for the discrete case
A; = Aj—‘i.) In particular, the diagonal elements of a Hermitian matrix are always real numbers.

Change of Representation: We provide a simple method to obtain the representation of a bra, ket, or
operator in a given basis when its representation in another basis is known. For simplicity, assume that we per-
form a transformation from one discrete orthonormal basis { |u,}} to another, {|v)}. Define the transformation
matrix;

Sie = ) (4.29)

(ST)“ = (Sik)* = (vkluj> (4.30)

To pass from the components of a ket |y represented in one basis to another, one applies the relation

Gw) = D (SN ity (4.31)
or the inverse relation, (u|y) = ZSE,((V,(W) . For a bra {¢| we have

k

Ol = X (0lu)s,, ’<¢|u,> = D Gohy) (S*)k,] (4.32)

[
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Finally, the matrix elements of an operator A transform as

WA = Y (SN (Al S, wIAl) = DS, (vJAlvY (ST, (4.33)

i L}
L Ko

|r) - and |p) -representations: In Section 4.1 we noted that to every ket |¢) there corresponds a bra (¢l.
The converse is not necessarily true; there are bras with no corresponding kets. Nevertheless, in addition to the
vectors belonging to €, we shall use generalized kets whose norm is not finite. At the same time, however, the
scalar product of those kets with every ket is finite. The generalized kets do not represent physical states; they
serve to help us analyze and interpret physical states represented by kets belonging to €.
Consider the physical system of a single particle. Together with the state space of the system we introduce
another vector space, called the wave function space, denoted by F. This space consists of complex functions
of the coordinates (x, v, z) having the following properties:

(a) The functions y(r) are defined everywhere, continuous and infinitely differentiable.

(b) The integral J-llp(r)l2 d¥ must be finite; i.e., W(r) must be square integrable.

To every function y(r) belonging to F there corresponds a ket |y) belonging to €. Using the wave functions
#(r) and y(r) corresponding to (¢| and |y), we define the scalar product of {¢| and |y):

(dly) = j@*(r)xp(r) d’r (4.34)

Consider two particular bases of F denoted { iru(r)} and { vpg(r) }. These bases are not composed of functions
belonging to F:

& (r) = 3 (r—ry) (4.35)
and
N ——N (4.36)
Pn (21h) 3/2 :

To each E,ro(r) we associate a generalized ket denoted by |r,), and similarly for qu(r) we associate a general-
ized ket |p,). The sets {|ry)} and {|py) } constitute orthonormal bases in €:

(ro 10) = 8(ry=-ry) J‘!r()(rol dr =1 (4.37)
where we also have the following relations:
f
(po| P> = 8(py— P} Jieded @ = 1 (4.38)

We obtain two representations in the state space of a (spinless) particle: the { |ry }- and { |p,) }-representations.
The correspondence between the ket |y} and the wave function associated with it is given by

y(rg) = (rg|W) (4.39)

and
WPy = (py|W) (4.40)

where qj(p) is the Fourier transform of y(r). The value y(r)' of the wave function at the point r is the com-
ponent of the ket |y) on the basis vector |r) of the |r)-representation. Also, the value y(p) of the wave function

L svmominm mambezemn sanems b ww hn ~n plu ;r\b Iued ;e thn hnoio snatme AfFtha lm\ ranracantatinn

in the momentum Spacc aL p is the componeiit of tne K&t |, On tnc vasis vecior |p/ 01 uic [P, -TCPresiiinaiion
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Exchanging between the |r)-representation and the |p)-representaion is accomplished analogously to the
case of continuous bases. Note that

1 i0-©
(rlp) = {(p|r)* = m—ep ’ (4.41)
4
Now, we have
riy =J.<rlp> (ply) db (4.42)
and inversely,
(plW) = j(plrﬂrl\u) d7 (4.43)
Therefore, using (4.41), we obtain
INUVZRN — 1 . r,ip r/h v 13 4 A4
yir) = (21tﬁ)3/2 J ¢ vip)ap (4.44)
and
- 1 -ip-r
y(p) = (2‘m'z)3/2 _[9 b /ﬁ\l/(r) d¥ (4.45)

The Operators R and P: Let |y) be a ket belonging to the state space and let y(x, y,z) = (r|y) = y(r)

be its corresponding wave function. The three observables X, Y, Z are defined by their action in the
[r)-representation;

(rlXly) = x(r|y} (rlYly) = y(r|w) (rlZly) = z(r|y) (4.46)
The operator X acting on |y) yields the ket |y, which corresponds to the wave function ' (x,y, 2),
= xVy (x, y, z}, and similarly for Y and Z. The operators X, ¥, and Z are considered to be the components of a vector
operator R, Similarly, the operators P , P and P _aredefined by their actionin the |p)-representation:

(p|PJ¥) = p.(plW) (p|P,JW) = p,{p|W) (p|P.lw) = p.(p|w) (4.47)

P, Py, and P_ are the components of the vector operator P. The observables R and P are of fundamental impor-
tance in quantum mechanics. Their commutation relations are called the canonical commutation relations:

(R.P] =i,  [R,R] =0 [P.P] =0 (4.48)

Quantization Rules: By gquantization rules we mean the method for obtaining the quantum-mechanics
analog of a classical quantity. Consider a system of a single particle. The observables (X, Y, Z) are associated
with the coordinates (x, y, z) of the particle; the observables (P, P P ) are associated with the momentum
(P Py P.). We shall often use the notation R for (X, Y, Z) and P for (P, P, P, In classical mechanics, a phys-
ical quantity A related to a particle is expressed in terms of the particle’s position vector r and the momentum p.
To obtain the corresponding quantum-mechanics observable, replace r - R and p — P. Since the expression
obtained is not always Hermitian, we apply a symmetrization between R and P to obtain a Hermitian operator.
In Problem 4.29 we demonstrate this method. Note that there exist quantum mechanical physical variables which

have no classical equivalent (as spin). These quantities are defined by the corresponding observables.

4.9 THE TIME EVOLUTION

In the previous sections we paid no attention to the time evolution of a system but rather considered a definite
static state. We shall now present methods for treating the time evolution of a system. Consider the following
postulate:
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Postulate VI: The time evolution of the state vector |y(r)} of a physical system is governed by the
Schrédinger equation:

L diy(®)
zﬁ%—) = H()|y(t) (4.49)

where H(r) is the observable corresponding to the classical Hamiltonian of the system.

Some important implications of the Schrédinger equation must be noted:

{aY Qinca tha Qchriddinocar
a; si

nce the Schrédinger equation is a first-order differential equation in ¢, it follows that

equation is a first-order differen quation in ¢, it follow i

Iw(z,)) is given, the state |y(¢)) is determined; therefore, the time evolution is deterministic. Note that inde-
terminacy appears only when a physical quantity is measured.

(b) Let |y () and |y,(1)) be two different solutions of the Schrodinger equation. If the initial state is
() = ajly, () +a, (lw,(t,)), where a; and a, are complex numbers, then at time ¢ the system is in
the state [y(1)) = a,ly, (1) + a, |y, ().

(c) At time ¢, the norm of the state vector remains constant:

TWDv) = 0 (4.50)

Time Evolution for a Conservative System: A physical system is conservative if its Hamiltonian does
not depend explicitly on time. In classical mechanics, the most important consequence of such an observation
is the conservation of energy. Similarly, in quantum mechanics, a conservative system possesses important
properties. Most of the problems in this book concern conservative systems.

The time evolution of a conservative system can be found rather simply. Suppose the Hamiltonian H does
not depend explicitly on time. The time evolution of the system that was initially in the state |y(z,)) is found

using the following procedure:

envactars of H-
envectors of

hy(t) = Z,Z_',a,z,((ro) 16,0 (4.51)

where a,,k(to) = (¢n,k|‘|’(fo)>-
(b) To obtain ly(t)) for ¢ > t,, multiply each coefficient a,,(t,) by e
H associated with the state |, >

~iEn(t-15)/ . .
=10 /% here E, is the eigenvalue of

O = 3 Dt e B Mo ) (4.52)
n k

This procedure can be generalized to the case of the continuous spectrum of H. So,

W) = Zj-ak (E. tg) e F 70 Rio, ) dE (4.53)
[

The eigenstates of H are called stationary states.

Time Evolution of the Mean Value: Let |y(r)) be the normalized ket describing the time evolution of a
physical system. The time evolution of the mean value of an observable A is governed by the equation

d{A 1 JdA
—§t> = 7([AHOD (57 (4.34)
If A does not depend explicitly on time, we have
d(A> — 1 rr

s
—
X
X
=
i
~—
.
'&h
n
(%)
ot
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By definition, a constant of motion is an observable A that does not depend explicitly on time and commutes
with the Hamiltonian H. In this case,
d(A)

== (4.56)
atr

4.10 UNCERTAINTY RELATIONS

As we have seen in previous sections, the position or momentum of a particle in quantum mechanics is not
characterized by a single number but rather by a continuous function. By the uncertainty of the position (or
momentum) of a particle, we mean the degree of dispersion of the wave function relative to a central value. This
quantity can be given a rigorous definition; however, that is beyond the scope of this volume.

The Heisenberg uncertainty relations give a lower limit for the product of the uncertainties of the position

and the momentum of a particle:
Ax Ap 2h/2 Ay Ap 2 Hh/2 Az Ap.2h/2 (4.57)

For the case of a conservative system, there is also a relation between the uncertainty of time At at which the
system evolves to an appreciable extent, and the uncertainty of energy AE:

*ArAE>h (4.58)

This relation is distinguished from the Heisenberg uncertainty relations by the fact that ¢ is the only parameter
without a corresponding observable.

4.11 THE SCHRODINGER AND HEISENBERG PICTURES

In the formalism described in the previous sections we considered the time-independent operators that cor-
respond to the observables of the system. The time evolution is entirely contained in the state vector [y(¢)). This
approach is called the Scarddinger picture. Nevertheless, since the physical predictions in quantum mechanics
are expressed by scalar products of bras and kets of matrix elements of operators, it is possible to introduce a
different formalism for the time evolution. This formalism is called the Heisenberg picture. In this formalism,
the state of the system is described by a ket that does not vary over time, |y, () = |y(7,)). The observables
corresponding to physical quantities evolve over time as

A 0y = U (1,10 A U1, 1) (4.59)
where A  is the observable in the Schrodinger picture and

—iH (- r(,)}

Ut t) = exp[ 7 (4.60)

The operator U(1, 1)) is called the evolution operator, and is a unitary operator. Note that this operator describes
the time evolution of the state vector in the Schrédinger picture:

W () = Ut ty) lw (1) (4.61)

Solved Problems

4.1.  Let ly,)and |y,) be two orthogonal normalized states of a physical system:
(Wylw) =0 and (g, |y) = (y,|y,y) =1 (4.1.1)

and let A be an observable of the system. Consider a nondegenerate eigenvalue of A denoted by o, to
which the normalized state |¢,) corresponds. We define P,(a) = !(oﬁl\y})!z and P, (a,) =
|(¢" L\pz)f. (a) What is the interpretation of P (o) and P,(a,)? (b) A given particle is in the state
3y, — 4ily,). What is the probability of getting o, when A is measured?
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4.3.

4.4.

(@) According to the postulates of quantum mechanics, P, () is the probability of obtaining o, when A is meas-
ured, while the system is in the state [y ,}. The same is the case with P, () in the state |y,).
(b) The normalized state of the particle is

W) = e T aitwh Oy vy Joeie 5w -dig) (+12)

Jsino the postulates of quantum mechanics (see Summarv of Theorv. Section 4.2V, the nrohahilitv of measur-
Using the postulateg of quantum mechanics (see summ ary of Theory, sechion 4.2}, the probabilit Yy O measur

ing o, is

-
Z

P, = [0, = 55[3¢0,)w) ~4i(0, w2

1
= 55 (300, |w) = 4i(0,[w2)) (B{0,[w)* +4i(8,|w)*)
1 2
= 55 1910, [l + 16]C0,[Wo" + 12000, W) (0,]w2)* = 120 (0, |w2) (0, w,)*]

1
= 35 {9P (@) + 16P(0t,) + 2R[12i(0, |, {9, w;)*] } (4.1.3)

Consider pnem!age IV introduced in the Summarv of The@ry {

-------- peid S AEELELLILFAEL L 222 %2 maRalilazy

a continuous spectrum.

Consider a physical observable A. Suppose that the system is in a normalized state [y); {(w|y) = 1. Let Ivg)
form an orthonormal basis of the state space consisting of eigenvectors of A:

Ay = aply (4.2.1)

The index P distinguishes between eigenvectors corresponding to the same degenerate eigenvalue o of A. This
index can be either discrete or continuous, and we assume that it is continuous and varies in the domain B(a). Since
the spectrum of A is continuous, it is meaningless to speak about the probability of obtaining an eigenvalue o, Alter-
natively, we shouid speak about the differential probability dP(c) of obtaining a result between o and o + dot, An

sl X

analogy to postulate IV for the discrete case, we then have

[[l(vm\y}lzdﬁl
dP(e) = 1.! eV

B(a)

do (4.2.2)

Consider postulate IV for the case of a discrete spectrum. Show that an equivalent form for the proba-
bility of obtaining the eigenvalue a, of the operator A is

P(a,) = (WP, P, |y (4.3.1)
where P 1s the projector onto the eigensubspace of A associated with a,,.
Assume that |} ), Iuﬁ), ...,and |u1:") form an orthonormal basis of the eigensubspace associated with a,. By
definition,
‘gﬂ
P, = Y )l (432)
=1

So,

Sy En £, £, L1
WPP I = Y k) = Y oulityalwds, = Y |G vl (433)
! Al dwed el Maed g Aed | J 1

i=1,=1 r=1 =1 i=1

Therefore, the two formulations are equivalent.

Consider two kets |y) and ') such that ') = e®}y) where 8 is a real number. (a) Prove that if |y) is
normalized, so 1s y'). (h) Demonstrate that the predicted probabilities for an arbitrary measurement are
the same for |w) and [y'); therefore, |y) and ') represent the same physical state.
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4.5.

4.6.
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(@) We assume that |y) is normalized, or {y|y) = 1. Then
(WIy) = (wle®e®ly) = Qly) = 1 (4.4.1)

(b) Accordingto postulate IV (see Summzary of Theogy, Section 4.2), the probabilities predicted for a measurement
1 1 | . |
depend on terms of the form |, fy)| or |(u,ly/)| . We have

NE i eVt i84,i Y I L
] = ety Q)™ = eSuitwe iy = [usiw) (442)
Therefore, the predicted probabilities for the states |y) and |y} are the same.

Consider a large number of measurements of an observable performed on the system. Show that the
mean value of an observable expresses the average of the results. Assume that the spectrum of the oper-
ator consists of both a discrete and a continuous part, but for simplicity assume it to be nondegenerate.

Consider first an eigenvalue a, belonging to the discrete part of the spectrum. From a quantity of N measure-
ments of A (the system being in the normalized state |y)) the eigenvalue a, will be obtained N(a,) times with

(N(a") \ n
\ =

N Jn—00 7

o~ )
(g,)

sA € 1
{91 )

where P(a,) is the probability of obtaining a, in a measurement. Similarly, if dN(a) expresses the number of
experiments that yieid a resuit between o and ¢ + do in the continuous part of the spectrum, we have

dN(o)
N Jrow dP(o) (452)
The average of the results of the N measurements is the sum of the values divided by N. It is therefore equal to
1 1
Average (N =N2a” N(a,) +ylo dN{o) (45.3)
For N — o, we obtain
) o N D e
Average (N 5 o0) = Lan P(a,) +J0t dr(o) (4.5.4)
Suppose now that ju,) forn = 1,2, ..., together with [v_}, where « is a continuous index, form an orthonormal
basis of the state space consisting of eigenvalues of A:
Aln,)y = a u,) Alvy) = ajyy) (455)

The closure relation of this basis is
D b+ Ilvu><vu| do=1 (456)
n

So, using (4.5.4) we arTive at
A B 7 r ) 2 € r
Average (N — co) = Lanl(\mun)] +J al(ylv,)|” do = Lan(wlun)(unw) +J a{ylv Hv ) do (4.5.7)
Using (4.5.5) we obtain

Average (N — o0) = EWIAIM,,)(u,,Iw) + J'(wIAIvQ(vO;Iw) da = (ylA {Zlun)(unl + J'Ivo)(val da} Iy)(4.5.8)

n

Substituting the closure relation we finally get

Average (N — o) = {ylA|y) (4.5.9)

Consider another formulation for the root-mean-square deviation of the operator A (in the normalized

state lun):
AA = N((A-(A)°) (4.6.1)

L ¥ 4
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(a) Show that this definition is equivalent to that given in (4.9). (b) Use the formulation (4.6.1) to inter-
pret the term root-mean-square deviation.

(a) By the given definition we have

(A=) = (wla- @) v (4.6.2)
Note that in this equation the term (A) s actualiy a shortened form of {A) 1 , where 1 isthe identity operator;
{A) is a scalar. Hence,
vl A -l = (wla?-2¢04a+ )y
Using the known definition of mean value, we have
(A%y - 2¢A)(A) +(A4)°

So the two definitions coincide.

(b) The root-mean-square deviation expresses the average of the square of the deviations of A from its mean value
(A). It therefore characterizes the dispersion of the measurement results about {A). For example, if the spec-
trum of A is continuous and the probability has a Gaussian shape, then {A) characterizes the peak of the curve
(the value of maximal probability), and AA characterizes the width of the Gaussian curve.

(wla’lwy — 2¢a) (wlal) + (A (wlw)  (4.6.3)

(A% - (a)’ 4.64)

ollowing identitiag ara valid-
ollowing idéntiies are vald:

B
»
e
p

(a) By definition,
(B,A] = BA-AB = —(AB - BA) = —[A, B] (4.7.1)
(b) By definition,
[A+B,C] = (A+B)C~-C(A+8) = AC+BC-CA-CB
= (AC-CA) + (BC-CB) = [A,C] + [B, (] (4.7.2)
(c) We write
(A, BC)} = A(BC) - (BCYA = (ABC-BAC) + (BAC-BCA) = [A,BYC+B{A,C] (4.7.3)

4.8. Supposethe operalors Aand B clommute with lhenr commutator ie,[B, [A,B]] = [A, [A,B]] =
el

Show that (a) [4, B"] = nB" '[A,B];(b)[A",B] = nA" [A Bl.

(a) Consider the following procedure:
(A,B") = AB"+B"A = ABB" ' —BAB" ' +B(AB)B" ' —-B(BA)B" ’+ - +B"'AB_B""'BA

= [A,BI1B" '+ B[A,BIB" ? +...+B" ' [4,B]

(4.8.1)
Using the fact that B commutes with [A, B], we obtain
A D"l:D”‘er p1 .+ p" lra pi ._i_.n"‘er D'|=.,.D"_1r»\ 1 A O
LA, 0 | D WO v D 1A, L] T D 1A, D] o 1A, D} {*.0.c)
(b) According to Problem 4.7, part (a), [A", B] = —[B, A"]. Using part (a) above, we obtain
(A" B] = —nA""'(B,4] = nA" (A, B] (4.8.3)

4.9. Consider the operators A and B presented in Problem 4.8. Prove that (a) for every analytic function F(x)
we have [A F(B)] = [A,B]F(B), where F'(x) denotes the derivative of F(x). (b) edef =

A +B _{A, B]
(@) First we prove using induction that for every n = 1, 2, ... we have
[A,B"] = n[A,B]8"" (4.9.1)
Proof: For n = 1, (4.9.1) is clearly true. Suppose that this equation is verified for ». Then, using part (c) in

Probiem 4.7 for # + 1, we have

[A,B"""] = [A,BB"] = [A,B]B"+B[A,B"] = [A,B]B +8Bn[A B8 (4.92)
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B and [A, B] commute, so we finally have
[A,B""'] = [A,B]B"+n[A.B1B" = (n+1) [A,B]B” (4.9.3)
Equation (4.9.7) is therefore established. Consider now the expansion of F(x) in a power series, F (x) =

Zanx" . Using (4.9.1) we obtain

' R R— -
(A, F(B)] = [A,LanB"J = La" [A,B"] = [A,B]LnanB"‘] (4.94)

n

The power series expansion of the derivative of F(x) is F(x) = Znanx”‘ I Therefore, by inspection we
can conclude that n
(A, F(B)l = A BIF'(B) (4.9.5)

(by Consider an operator F(s) depending on the real parameter s:
F(s) = e%eb? (4.9.6)

The derivative of F with respect to s is

d d
dr (d_seA.r)eBs_‘_eAx(IyeBs) - AeAseB.\ +eA:BeBs

ds =
= Ae* e 4 oM BeM e B = (A 4 e Be ) F(s) (4.9.7)
Using part (a) we can write
[e",B] = —|B,e*] = —s[B,Ale* = s[A, B (4.9.8)

Therefore, e™*B = Be™ +5[A, Ble* and ¢**Be™* = B +s[A, B]. Substituting in (4.9.7) we obtain

dF

ol (A+B+s[A,B))F(s) (4.9.9)
Since A + B and [A, B] commute, we can integrate this differential equation. This yields

F(s) = F( M LA+BYT L (A 8502 dOIm

)y — r\wuvje {*.7.1U)

Setting s = 0 we obtain F(0) = ¢* %% = 1.1 = 1. Finaily, substituting F(0) and 5 = 1in (4.9.10), we

Aleocio A B LJA+B A B|/2
Oootadin €'°¢ € €° U

Let (y| be the corresponding bra of the ket |y). We designate by |y') the result of the action of the oper-
ator A on |y), so [y') = A|y). Let {y| be the bra corresponding to [y). Prove that
. 1
(Wl = {yja (4.10.1)

Recall the basic definition of a bra as a functional acting on the state space. The two functionals
{y'| and (wIA are identical if their action on an arbitrary ket |¢) yields the same result; i.e., we have to show that

(v = (wla’loy (4.102)
Now, using Eq. (4./3) we have
(wla®ley = (olalw* = (ojy)* (4.10.3)
and according to the basic property of the scalar product [see Eq. (4./)], we have
(wla'ley = (w'|9) (4.104)

Derive the following properties of the adjm?t ofgn operator: (@) (A ) = A;(b) (AA) f= ?»*AT, where

b compl abiane £0N A AN A DN =D
A IS a Com plCA llulllUCl \L) \I“ITD} - /'1 '?'D \u) kﬂD} - D /‘1 .

First, recall that two operators are identical if their matrix elements in a basis of the state space are the same.

lllClCl DIc :ll 101 dlUllldly N)} dllu |l|}) we lldVC \q)lr‘l ILP} = \q)lr“l |l+l'), l[lCll. x‘ll d.llU 1‘12 are lUCIIllLdJ J.ll lllﬁ lUl'
lowing de nvatrons we also use some basic properties of conjugation of complex numbers, given in Chapter 2,

vl A"y loy = (olay 4.11.1)
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and using (4./3) again, we have
(ola'lvy = (wlalo)* (4.11.2)
Therefore,
Colatyley = colaludy* = ((wlaloyrs = (ylaio) (4.113)
(b) We write
(ul AaYle) = (olAlw* = [A(olalwI* = Aolalwy* = A"(vlaley = ol a*alley  rre)
{¢) We write
(wl (4 +8)]0) = (0l (A+B)|wy* = ((0laly)+ (0lBlw)]*
= (olAly)* + oIBlwY* = (yla'loy + (ylB'lo) = (wla™+BHle)  115)
(d) Let us define |x) = Bly). Using the results of Problem 4.10, we have (x| = (\plBT. Now,
(yl 48Y'lo) = (olaBlw)* = (olaln)* = (xlaley = (ylB'alo) (4.11.6)
4.12. Consider a Hermitian operator A that has the property A’ =1 Showthat A = 1,
First we find the possible eigenvaiues of A. Suppose Ajy) = oly), so we have
hyy = A'ly) = A° (aly)) = ad’ly) = oFAly) = oly) (4.12.1)
Therefore, o = 1. The possible values of o are then
1 M. 1 B
a=-5+514 —5-71f, 1 {4.12.2)
lue of A is @ = 1, We can choose

Since A is Hermitian its eigenvalues are real; therefore, the only possible eigenvalue of A i 1
) = lu). Every state |¢) can be

an orthonormal basis of the state space consisting of eigenvalues of A, so Alu
{4.12.3)

expanded as
) = Z]u,) [ or |¢) = J‘|u.‘,) ds if the basis has a continuous index]

(4.12.4)

i

Finally,
A =AY Juy = Y Aluy = Y lu) = Ioy

which implies A = 1.

4.13. Prove that if an orthonormal discrete set of kets { ;). /= 1,2, ...} constitutes a basis, then it follows that
(4.13.1)

> ) = 1

Let ly) be an arbitrary ket belonging to the state space. Since {|u )} is a basis, there exists, by definition, a

-~
LN
[0
Lo
XS]
N—

unique expansion jy) = ZC ). We use the orthonormalization relation (4./6) to obtain
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Note that since (u,.lq!) is a scalar we could change the place of this expression. We see that for any ket |y) the action

of the operator P({|u)}) = Zlu,)(uil on that ket yields the same ket |y). Therefore, it is, by definition, the iden-
i

tity operator, P({|ju)}) = 1.

Show that if the closure relation is valid for an orthonormal continuous set {|w )}, then this set consti-
tutes a basis.

Let [y) be an arbitrary ket belonging to the state space. Using the closure relation we have

i) = Ly = Ilwa)<wu|w> do (4.14.1)

Defining C(0) =(w,|y)we have [y) = JC(a)Iwu) do.. We see that any ket |y) has an expansion on the |w,). To

show that this expansion is unique we assume that we have iwo expansions:
) = '!'C((l)!w ) do )y = JrC'((I) w) do (4.14.2)
and subtracting we obtain
j[C((x)—C‘((x)] w, doo = 0 (4.14.3)
Applying {w_| on this ket, j [Cloy-C'(m)] (wa,|wu) do. = 0 and using the orthonormalization relation we obtain
P
J [Clo) -C'{)] d(o'—a) do = 0 (4.14.4)

Equation (4./4.4) is valid only if C(o') -C'(2') = 0. Therefore, for any o' we have C(a’) = C'(o), and the expan-
sion of any ket |y} on {|w_}} is unique.

Suppose that in a certain basis { Ju,} ] the operators A and B are represented by the matrices (A, ;)and (B,),
respectively; the ket [y) is represented by c,; and the bra (¢| by b (a) Obtain the matrix representatlon
of the operator AB. (b) Find the representatlon of the ket Aly). (¢) Obtain an expression for the scalar
{®|A|y) in terms of the various representations.

(@) Consider the matrix element of AB:
(4B), = (w]aBlu) = (u|al8lu) (4.15.1)

Using the closure relation we obtain

(4B), = Z(u|A|uk)(uk|B|u) = ) A8, (4.152)

k

(b) By definition, the ket A|y) is represented by the numbers ¢ = (i ]A|y). Using the closure relation between
A and |y), we can write

= (wfally) = Z(ui[Alul.)(qul) - ZA”(-I. (4.15.3)

and in a matrix form,

{4.154)
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(¢) We write

(¢|A|W) = Z(q’lui)(u,'lA["j)(“jlW) = zb?!!(AijCj (4.15.5)

L) i)

or in a matrix form,

A A - . ---\
Ay A A

AZI A22
(olAlyy = (bF b} ...0F ...y * . (4.156)
Ay Ay Ay
4.16. Suppose that |$,),where n = 1,2, ..., form an orthonormal basis for the state space of a physical sys-

tem. Let A be an operator with matrix elements A, = {¢,|Al¢, ). Show that the operator A can be

written as
WIIWLnl a8

A=Y ALIBG, (4.16.1)
H FEFL i3 i

mon=1

Recall that two operators are identical if and only if their matrix elements in a certain basis are identical. We
write, therefore, the matrix elements of the expression in (4./6.1) as

Wl D Ao ]16)

m.oa=1 m,n

(6,]0,0 (0,140, (6,0
=1

o0

Oim(0,1Al10,08,, = (¢,]Al0) (4.16.2)
=1

mon=

where we used the orthonormalization relations (¢;|¢} = 3,;.

4.17. Consider a two-dimensional physical system. The kets [y,) and |y,) form an orthonormal basis of the
state space. We define a new basis |¢,) and |9,} by
1
5 () = w,)) (4.17.1)

0 = 5 (W0 + 1) 0=

M2

An operator P is represented in the |y )-basis by the matrix

(g;) = ( : E W (4.17.2)
N LVELY

Find the representation of P in the basis |¢,), i.e., find the matrix a;; = (0,|P|¢ J).

Method 1: We define the transformation matrix T;; = (w,.|(p})‘ We calculate its elements; for example,

1 1 1
Tyo= w00 = :/—'i(w.l(lw.lez)) = :/-3(1 +0) = N (4.17.3)
and
1 1 1
Ty = {W,|0 = 75(‘1»’2'("1’1)‘“4’2)) = 7—"2'(0— 1) = —7—2' (4.17.4})

and so on. Then we find

- 1

afr)
T = ﬁL | —lJ (4.17.5)
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2
11 1
The adjoint matrix is T = 7—5( 1 -1 J Using the closure relation EN',)(‘I’.I = 1, we obtain

1=|
2
A
a,; = (¢’;|P|¢’1) = L <¢ﬁ|w.‘)<‘l’.‘|P|‘I’j)<‘I’j|¢’l> = L TuaqTﬂ (4.17.6)
=1 Lj=1

We can accomplish the calculation in matrix form:

- 11 \(IE!\_]_( 1) a1 ) 1we 1-e |
() Jikl—lﬂel}ﬁ( )T o L vee-tee )

1] 2+2¢ 1+¢
- = 4.17.7
2( 0 2+28) [ J ( )

Method 2: Observing that [¢,) are actually eigenvectors of P,

1
(lewl_(]1=—_(1+€)=(1+g)—1=(]] (4.17.8)
Vel /201 ) 20 1+e ) J2U 1)
and
1811J 1[1_8} 1[1]
- = (l-g&)—F 4.17.9
{ ]ﬁ[ N/ ( )ﬁ -1 ( )
Therefore,
Plo) = (1+8)$,) Ploy) = (1-€)l9y) (4.17.10)
This implies that in the |¢,)-representation P is diagonal:
( l+e O \
) = 4.17.11
(a;) L o 1-e J ( )
Refer to Problem 4.17 and obtain the representation of the ket e” [y,) in the |y )-basis.
Since P is diagonal in the basis, it is easier to work in this basis. Hence,
eflo,) = €' *lo) Mo,y = e i) (4.18.1)
so we obtain
1 1
ele]) = eP(J_|¢ )+ J_|¢2)) i +E|wl)+el+slw2)+e|—slwl)_el-£|w2)]
1
=50 " e )+ (e - T )] (4.182)
Therefore, e?|y,) is represented in the |y} -basis as
=< € e 4.183
elWI)_z e (4.18.3)

(a) Show that the ket |r), where r = (x, y, 2), is an cigenvector of the observable X with an eigenvalue
X. (b) Show that |p), where p = (p,, P, P.), is an eigenvector of P with an eigenvalue p,.

(a) Using 1he r-representation we have (I'|X|r) = x'(r'|r). Substituting the representation for {r'|r) we obtain

(rXIry =x8(r'=r) = x8(r-r) (4.19.1)
where ' = (x', ¥, ). Therefore, we have (I"l)(| r\ = r(r Ir\ Since this holds for all ' we have
X = ) (4.19.2)

(b) Inthe p-representation we apply the same method as in part (@), so

(P'IPIP) = pAP'IP) = PB(P'-p) = p8(P-P) = pAP|P) (4.19.3)
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Therefore, P|p) = p,|p). In conclusion, since analogous arguments can be applied to the y- and z-components,
ofie can write

(xiry = xir) [Py = pr)
Yir) = ylr) PIry = pr) (4.19.4)
Zlr) = z|r) P.Ir) = p_[r)

L fi
420, (a) Prove that (r|P|y) = ?V(rlw). (b) Write an expression for (¢|ij y) using the wave functions

corresponding to |¢) and |y).

(a) Consider, for example, the x-component (the y- and z-components can be treated in a completely analogous

b

manner). We have

(r|P vy = »[<r|p><plpx|w) &’p (4.20.1)

where we use the closure relation of the p-representation, Using Eqs. (4.41) and (4.47) in the Summary of The-
ory we abtain

1 ip-r -
(r|P|y) = 77 | e” /ﬂPJ‘U(P)fP (4.20.2)
2rnh)

This expression is the Fourier transform of p, \u(p) whlch is —% We therefore have

(rlpJw) = ; ax‘l’(” (4.20.3)

Suppose that ¢(r) and y(r) are the wave functions corresponding, respectively, to |¢) and |y); so
o(r) = (r|e) w(r) = (r|ly) (4.20.4)

Using the closure relation of the r-represemation together with the result of part (a) we obtain

(Op.jw) = J oIy (rlp |y d’r = Jq, (r)’j O gy (4.20.5)

4.21. Show that (@) [x,y] = 0; (B [p,p,] = 0;(c)[x,p,] = ih;(D[xp,] = 0.

(@)

(b)

(4]

T

Using the r-representation we obtain the action of [x, y] on an arbitrary ket |y):
(rllx yllw) = (rleyly) = (rlyxly) (4.21.1)

Using Eq. (4.46) in the Summary of Theory (Section 4.2), we arrive at {F| [x, y]|¥) = x (r|yly) - y{(r|x]y).
So

[RYPA w —_ A Y A

(Flx, yly) = xy(rly) Fly) =0 (4.21.2)

1
(=]

Since this is valid for any (r| and arbitrary [y}, we have [x, y] =
We apply the same metheod in the p-representation:

(p|lp.pl|W) = (plp.o,|w) - (PP, W)
= p.Aplp, W) - p,(PleW) =p.po PV} -pp (Ply) =0 (4.21.3)

We write (r|[x,p ]|y} = (rjxpjwy) - {r|p,.x]w); so

fi d i d fi d
(r[lx.p]|w) =X(rlpxlw>—;aj<rlxlw) = 735.4r|w) - 535 (x(r|y) (4.214)

If y(r) is the wave function cor have

|Il
rresponding to ly), w

3 W) 9( xw(r))} _ [

ay(r
-w(r)—x%} = ihy(r) = iA{r|y)  (4.21.5)

Since the calculation is valid for all [y) and for any |r), we obtain [x,p ] = iA.
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(d) Again applying the method used in part (c) we obtain

(r|fx,p, )W) = x{F|p |y - lay<r|xlw)

i o ﬁ&qf{r‘ A owry oy
= lxay\p(r) ay (xy(r)) ='l?[_x Jy -x Jy J=0 (4.21.6)
Consider the following operators:
Avrd ¥
O (x) = X’y (x) O,y (x) = x— (4.22.1)

Find the commutation relation [0 |, O,] .

Method 1: Substituting the operators O, and O, in the commutation relation we obtain

dy(x d
[0,,0,0y = 0, (09 (x)) ~0,(Oy (x}) = /‘:’[X ‘g)(c )] - Lﬁ[f"‘l’()‘)]
ad"\r'(x) r ;du(x)
= x —x[3x y(x) +4 e J = “3x0y (x) (4.22.2)

Method 2: According to the action of x and p in the x-representation, we have O, =x* and O, = ixp/fi.
Therefore,

;
[0,,0,] = 5 [¥, xp] (4.22.3)
Using Problem 4.2, part (b), we arrive at
i, 3,
[0,0,1= 7x°[xxp] = 32| [ xlp+x[xpl |=-3x3 (4.22.4)
1P -2 h ]

Or equivalently, [0, O,]1w (x) = -3x w (x).
The a mlsulcu momentum is defined b_y L=rx P \fOf example, LX = _yll — pr) US% the commutation

relations between r and p and the properties of the commutator derlved in Problem 4.7 to find the fol-
lowing commutation relations: (a) [L,,L 1; (b [L L] and [L,,L J; () [L L.].

(a) By definition,
(L, L] = [yp,~zp,zp,—xp.] = lyp.zp,] + lzpys xp,] (4.23.1)

where we used the fact that yp, commutes with xp, and zp  commutes with zp,. Using the relation derived
in Problem 4.1, part (¢), we then have

.y [pz’ Z] px+x [Z, pz] py = ‘iﬁ.ypx-lpiﬁxpy = l‘ﬁL: (4'23‘2)
(h) We write
2 . .
[Ly, L] = Ly (L,L]+ [Ly, L] Ly = —lﬁLyLz— zﬁLzLy (4.23.3)
[ e Y
Dlll.llla-ll.y,
[LLL) = L L, L]+ [L,LIL, = ihLL +iiL L, (4.23.4)
(¢) We write
(L L] = [Lx, L)+ [LL,L]+[L}L]

=0- :r‘er‘,Lz ziiL:Ly + iﬁLzLy + iﬁLyLz =0 (4.23.5)
This result also holds for [Lz, Ly] and [LZ, L)

A particle is described by the wave function

W) = (g\)_me'“*) 72 (4.24.1)
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4.25.

4.26.

We begin by considering the matrix element of x:

(0 = {wldyy = J (o)l dx = «/1%,[ xe dx = 0 (4.24.2)

2
—ax

where we used the fact that x&e " is an odd function. Also,

a a aT(1/2) 1
(xH = J Llyl dx = «[‘J e dx = 2[7—‘.[ e dx = zA/;—tT/z) =5 (4.24.3)
—oo —o2 0

= A - () = JZIa (4.24.4)

In order to find Ap we calculate the wave function in the momentum representation;

$0

- 1 [ 1 (n) 174 |' ; 2
— *Jp):/ﬁ = —ipuw/h _ax 2
‘I’(P) = A_z \U(.X) dI NP A Y € € “ dx

NI Y NZRTL J

1 (Tt‘ td 2n An/Zaﬁ _ _J_(LYM _—pI/Zaﬁ.2 VY EE
maala) ANt = \ma) ¢ (4.24.5)

Since \Tl(p) is an odd function we obtain {(p) = 0, and

J 2t g 2 Jn/2 at?

- P Yar? -
' ﬁJ‘J re P = Tan
so0 we obtain

= Joh - p Jz (4.24.7)

Eventually, the uncertainty relation willbe Ax Ap = #/2.

1}
This example demonstrates the basic nature of the uncertainty relation. If we choose a wave function with
smaller dispersion around the central position {x), we obtain a higher dispersion of the momentum around {x).

A particle is in the state |y) and its wave function is W(r) = {r|y). (a) Find the mean value of
the operator A = |r)(r|. (b) Calculate (r|p|ly). (¢) Find the mean value of the operator k =
[r){rlp + pIr){r|]] /2m, where p is the momentum operator and m is the mass of the particle.

(a) By definition,

(A = (ylAly) = (i) = v oy =yl (4.25.1)
(b) The x-component of {r|p|y) equals
fidy(r)
(rlply). = (rlpJw) = 775 (4.25.2)

I3 A
Therefore, {r|p|y), = l:-er\y (r)] . Similarly for y and z, so we obtain (r|ply) = 'I:V\u.
(¢) By definition, !

1
(Wlk W) = 35 KW (r[ply) + (wlp|r) (rly) ]

21,,,[w*(r) TVy(r) +7 A 7 Vy*(r) y(r) ] = ,,l, Re [w*@w]] (4.25.3)

This example demonstrates the basic nature of the uncertainty relation: If we choose a wave function with
smaller dispersion around the central position {x), we get a higher dispersion of the momentum around {p).

The parity operator T is defined by

=1
S
I
=)
S
—_
da
bt
O
L
~—
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(a) Let |y) be an arbitrary ket with corresponding wave function y(r). Find the wave funcnon corre-
sponding to T|y). (b) Show that T is a Hermitian operator. (¢) Find the operator TE What are the
possible eigenvalues of ? (d) We define the operators

i i
P, = Q(l-}-n) p_:i(l—ﬂ:) (4.26.2)
For an arbitrary ket {y) we also define
qu) = p,lw ) = p v (4.26.3)

Show that [y_) and |y_) are eigenvectors of T. (¢) Prove that the wave functions corresponding to |y )
and |y_) are even and odd functions, respectively.

(@) We begin by considering the ket |y) = anm d3r, S0

Ty = JW(") [TTr)| 7 = Jwr)l—ﬂd‘} (4.26.4)

Changing the integration variable to r' = —r, the wave function corresponding to TC[y) is
/-l‘ﬂ'l\u\ —_ r\ul_r'\ L |’y 143‘ = I‘g (o _ e’ e m'y ;"3 = Wi _m 4 YA £
\lllUlq’/ Jl{l\l]\lll/ul JU\I l)q’\ l’ul \'}\ i) lTL( JJ

(b) Using part (a) we have (rlﬂ:lw) ; (-r|y). Therefore, (r|t = (-r|. On the other hand, takmg the Hermitian
conjugate of (4.26.1) yields {r{Tt = (-r|. Since this is valid for any (r| it follows that 7T =

(¢) We have
Iy = TRy = Tp-r) = |r) (426.6)
Since this is valid for any |r), we have TU : = 1. Suppose that [¢) is an eigenvector of TU with an eigenvalue
p. o)y = pl¢?. So, on the one hand we have
o) = Lio) = 10) (4.26.7)

and, on the other hand, we have

o) = T(plo)) = pTuie) = p'l6) (4.26.8)

......

Therefore, p? = 1. But since TU is a Hermitian operator, its eigenvalues must be real. Therefore, the possible
eigenvalues are +1 and 1.
(d) Wehave

1 1
My,) = Tp.ly) = in(l +T0) |y) = §(n+n2)|w) (4.26.9)

Using part (¢) we arrive at

1 4.26.10
Ty, = 5T+ Dy = p,wy = ) (4.20.10)
Hence, [y, is an eigenvector of 7T with an eigenvalue + 1. Similarly, we can conclude that N’c> is an eigen-
vector of T with eigenvaiue —1.
(e) Using part (@) we have (rlJ‘t| W,y = y,(-r). On the other hand, relying on part (),

(T = (r|w,) = y,+1) (4.26.11)
Therefore, y,(-r) = y_ (+r), and y_ is an even function. Slmllarly,(r|1t]\4l Y = w.(-rjand

(rlmtlwy = —(rjyy =~y (4.26.12)
Therefore, W_(r) = —y_(r), and y_ is an odd function. Note that we can wrile any [y) as [W) = [y.,)+ |[y.).
Thus we have obtained a method for separating a wave funciion into even and odd parts.

4.27. Consider a one-dimensional physical system described by the Hamiltonian
2

- 2
H = 2m+V()c) (4.27.1)
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(a) Show that [H, x] = —ifip/m. (b) For a stationary state find {p) (consider only square integrable
states).

(a) Considering the commutation relation,

| » . 1 ih
[H.x] = 5-[p7x] + [V, x) = 522p[p.x] +0 = —p (4.27.2)

() In a stationary state we have H|y) = AJy), where A is the eigenvalue. Since H is a Hermitian operator, we
also have (ylH = A|y). Using part (@) we finally obtain

im im
(p) = (ylply) = 3 (ylix—xHly) = 7 [A(ylady) - Alylxdy)] = 0 (4.27.3)
Consider a free particle in one dimension whose wave function at t = 0 is given by
w(x, 0) = NJ e g (4.28.1)

—on

where N is a normalization constant and & is a real number. In a measurement of the momentum at time
t, find the probability P(p, f) of getting a result between —p; and p,.

First note that the relation between the wave function of the particle y(x, ) and its wave function in the
momentum representation y(p, !) is

w0

1 h
yix, 1 = ,f_ﬁj. o PVH y(p, 1) dp (4.28.2)
(This is a Fourier transform.) Substituting k = p/# in y(x, 0) we obtain
N1 pisme, iprs
ylx, 0y = 7 e 0e dp (4.28.3)
Therefore,
- N 3
W(p.0) = 3 2mhe M (4.28.4)

From the normalization condition of y(p, () we can find the constant N:

L] oo

2 R
~ 2 21N Ao/ 2nN” AhOY 5 pe I
J e, 0| dp = 5 J g gp = —=— [2(-{}'“”“ |(,]=2nk“N2=l (4.28.5)

—o0 —oo

~~2|p|/frk(l

WP 0) = 7= (4.28.6)

The Hamiltonian of a free particle is # = p° /2m. The basis [p) of the state space consists of eigenvectors of H:

Hp) = 2=1p) = E Ip)

Note that for every p, 111 (p, 1) is actually the coefficient of |p) in the expansion of the state of the particle |y(f) } in
the basis [p):

(4.28.7)

o

r
ly(n)y = J v (p.1)|py dp

oo

(4.28.8)

where \Il(p, 1) = {p|y). The time evolution of |y(r)} is described by

|\y(t)> — J W([},O) ec’,,,{/ll lp) d]) — _J c')'lPl/H\“ e I ~ ’lp) dp

- 4289
T (4.28.)
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Or equivalently,
(4.28.10)

- 1 _ipl/hk —F1/2mh
Wp.1) = —=e"Moe

[hk,
So finally we obtain

gl

- 2 1 s | 2 w2
P(p, D =J' |\|J(p, t)l dp = Ek_oJ. BXP{ZL;Wt_f!:LkOJ}d = F exp(ﬁ—;,l—z)) dp (4.28.11)

~p. —-n. o
Py Py 0

g

7

4.29. Consider a classical quantity f expressed in terms of the dynamic variables r and p, so that f(r, p). Sup-
pose that in f(r, p) there appears a term of the form r - p. Using the quantization rules, find the quantum
mechanical operator corresponding to the term r - p.

Let the operator R correspond to the classical coordinate r, and the operator P correspond to the classical

oot o Tl naeamittne movaentmi.

) ¢ BH
* LI KUL a 11CLiililiaik le dlUl

]

}

]

i

A
=

(R-P) = (XP,+YP +ZP) = PX+PY+PZ =P R (4.29.1)

In order to obtain the Hermitian operator corresponding to r - p, we must perform a symmetrization of the operator

R-P:
1 1
5[R-P+(R-P)'] =5(R-P+P.R) (4.29.2)

As an exercise, prove that this operator is indeed a Hermitian operator.

4.30. Consider a physical system with a three-dimensional state space. An orthonormal basis of the state space
is chosen; in this basis the Hamiltonian is represented by the matrix

(2 0
H =1 0
lo 0 3/

(a) What are the possible results when the energy of the system is measured? (b) A particle is in the state
i

=
Lo
D
~
-

< N -

1 .
|w) , represented in this basis as _ﬁ -t |. Find (H), (HZ), and AH,

(@) The possible energies are the eigenvalues of H that are found by solving the equation det (H — kl) =0, or
2-X 1 0

I 2-% 0 | =[@=2-110G=-2) = W-41+3) (3-1) (4.30.2)
0 0 3-A
= 3-0 (-2
Therefore, E, = |and £, = 3. Note that £ , 1s a nondegenerate eigenvalue where E, is degenerate, so a two-

dimensional subspace corresponds to it.
(h) Method 1: We write

1 1

(ylHly) = EEH i—i) (4.30.3)

(.oJILh

f\ i
_,'J =;(—t [—i)l _i} §(l+l+3)
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4.31.

Also,
2
| 210 i
HY = ylHly) = 3¢ 'l‘—i)(IZOW(—il
Coos )i (4.30.4)
1...210 '.\l...{[. 1
=3(=f i-)] 120 - |=30 0 =D =3—,(l+1+9)=-3—
L0033 3i) L o
and

AH = J(H)-(H} = .}%—2—95 = 2—3@ (4.30.5)

Method 2: We define

| ( i'\ (8\
r ) lee)) = EL;J luy) = L.J (4.30.6)
Thus, [y) = J%lu,)-&-J%qu).Nole that |«,) and |u,) are eigenvectors of H:
i 210 i 1 i
H = —= i === -i|= = E 4.30.
l) N (1)3(3) Ol N Ol lee ) o) (4.30.7)

u,) = E,lu,). The eigenvectors fu,) and |u,) are orthogonal since they correspond to dif-

og nf QA we nhtain
o5 O . . we OORAlN

eiger ]
(H) = [(u |+[(u2| f|u|)+f|u2) E (u||u1)+ 2 (uy|uy) = §+i = g (4.30.8)

Also,

Similarly, Hlu,)

fprnnf PI aen \rn 1
Vaill

, (R 1 1 ,
(H = ity W |+J3(“2I)HW3E Ju, )W;E qu)) 3E +36 =5 (4.30.9)

and AH = J(HY - (HY = 2.J2/3.

Refer to Problem 4.30. Suppose that the energy of the system was measured and a value of E = 1 was
found. Subsequently we perform a measurement of a variable A described in the same basis by

{ 3
500
A= 021 (4.31.1)
{0-i2)
(a) Find the possible results of A. (b) What are the probabilities of obtaining each of the results found in
part (a)?

(a) The possible results are the eigenvalues of A obtained by solving the secular equation
det(a-al) = 5-M -V -1 = -1 B-) (1-]) (4.31.2)

Therefore, a, = 1, a, = 3,anda, = 5.
(h) Theenergy E = 1isanondegenerate eigenvalue of the Hamiltonian, so after the energy measurement the state
of the system is well defined by the eigenvector

s i N
[— J (4.31.3)

(

NV

o

1
W=J§
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Now we can find the eigenvectors of A corresponding to each of the eigenvalues obtained in part (a). This can
be accomplished directly by solving the equation

(500 a] |

o
02il Bl=al B (4.31.5)
0-i2 Y Y
for each j. For example, for a, we have
( Sa = o
PBriy=p (4.31.6)
-2y =y

Therefore, o = 0. Choosing arbitrarily B = 1 we obtain y = i, so after normalization we get

o
g, = ,/5( I ] (4.31.7)
L)

In the same manner we obtain the eigenvectors of A corresponding to @, and a;:

0 l 1

1
_ L - 4318

Finally, the probability P(a,} of a measurement yielding a, is P(a) = |(?“;| |‘l’>‘2- Thus,
| AR

i i 1 i
Pa) = ‘E(O 1 —i)ﬁL-IJi = :1|—1|2 =3 (4.31.9)
0

Similarly, we obtain

A (L
! !
P(a,} = 3‘(0 i 1)[—1 =3 (4.31.10)
0
and
1 2
1 |
P(a;) = 5|(1 0 0} —Ol =5 (4.31.11)

A particle of mass m is confined within an infinite one-dimensional well, between x = 0 and x= L.
I

[ o) TR, P U U I G § L‘ l__ IS . P
111€ blallUI'ldfy SL4ics |q) } I11C PdI LICIC CO cspuuu I.U I.llC CIICl'glC\
ek n?
E = > n=12... (4.32.1)
" 2mL”

2 mnx
and to the wave functions ¢, (x) = N/; sin( T) Consider the case in which at time ¢ = 0 the particle

is in the state [y (0)) = [[0,) +[0,)] /A2 . (a) Find the time-dependent [y (7) ). (b) Calculate the wave
function Y(x, ).

(a) Since E| = k> /2mL* and E, = 21'1'.2f12/mL2 we have,

l 2l m,? 711!2!"1,3
IW(’)) = ﬁ[e—rb I/h'q, >+ —1E, l/fr|¢2> ﬁ [e—rn ht/2ml |¢1)+€2 hismi |¢2)] (432.2)
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(b) The wave function y(x, 1) is obtained by {x|y(s)); that is

1 .2 L2
Y, 0 = (x|w) = —ﬁ[(x'ld),) EXP{_;232'J+ x]9,) BXP[—JEL?’H

m
1 [ inzfn] . (TEX) l 2im*hry | {2nx (432.3)
="~ eXp| - s |+~ EXp| ———=" sm | 35— Je.
JL 2mL’ L/7 L mL’ L
4.33. Show that the norm of the state vector evolving from the Schridinger equation remains constant

Consider the Schrodinger equation:

d 1
d_[NJ(f)) = ZHO() (4.33.1)
Taking the Hermitian conjugates of both sides of (4.23./) we obtain
d | + 1
VOl = = (WlH () = ~5 (WOIH() (4.33.2)
since H(r) is an observable and it must therefore be a Hermitian operator. So we get

d{y(n) dyiy 11 1 rl 1
ar WO+ VOl g = | 7 WOIH© | W) +pOl | ZHOW@) | =0 (4.33.3)

d
WO p) =

4.34. The Hamiltonian of a particle in a potential V(r) is

.
H = P" + V(R) (4.34.1)
2m
{(a) Write the Schrodinger equation in the r-representation. (b) Repeat part (a) in the p-representation

(1) Consider the Schrodinger equation:

d
ih W) = Hiyay {4.34.2)
Projecting this equation into the r-basis, we obtain
., 0 l 2
ih g, (Fyn) = 5 (e[ P7ly) + (rVR)yan) (4.34.3)
The wave function corresponding to [y(1)) is W(r, ) = (r|y(:)}). We also have
2 2 p2 . p? 2 3 & ’ 2g2 (4.34.4)
Py = (r| P2+ P2 P oy = -1 Tataat s Y nn = AV 34
" dy o
and we have {r{V(R)|y(n) = V(ryy(r, r). Therefore,
L0 [ &, 1
gy, 0 = | =52V + V(0 y(r, 1) (4.34.5)
{b) We begin by projecting the Schrédinger equation onto the p-basis:
0 1 2
i3 (Ply) = ;_T,,<p|P [y + <plVIRI (o) (4.34.6)

The wave function in the momentum representation is defined by \—u(p, 1 = {p|w()). So we have

(P lwwy = pwp. (4.34.7)

In order to calculate the term {p|V(R)|y(t)) in (4.34.6), we insert the closure relation in the p-basis between
V(R) and |y(1)}, and obtain

(PIVIRYw(n) = J (pIVIR) P (p[w(n)y d ' (4.34.8)
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4.36.
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Using the closure relation in the r-basis we have

1 o ,
(plV(R)|p" = J‘(p|r)(r|V(R)|p') dr = er TP R P dr (4.34.9)
We also have
<ﬂVQm§>=vaﬂy>=vuwm"” (4.34.10)
So, using Eqs. (4.34.8) to (4.34.10) we see that
F
1 - = 3. .3
VIR)w() = ———|V(p-p 0)dyp' 434.11
(pIV(R) () (2nﬁ)3/2J (p-pHw(p.r)dp ( )
where
- . 1 ST (p-P)rh
Vip-p) = WJV(r)e LA £ (4.34.12)
Note that D\ } is the Fourier transform of V(r). Finally. we have
. aq’(p’ t) 2 1 l-_ [ ,
th—x — = w(me V(p-pHwip't)dp (4.34.13)
v (2Znn) " "o

Show that the operator exp (—ilp /) describes a displacement of a distance / along the x-direction.

Consider the problem in the x-representation, We search for an operator A acting on a wave function y(x), with
Ay(x) = ylx-1h (4.35.1)

Using the Taylor expansion, we can write

s
B

yx=0) = W) - + 55 () + -+ W () + (4.35.2)
T tha »_ranmacantatinn tha mamantiim anaratar aote ne m udf vy = _ jHAdd vV /Ay Thar, "
ALY LI A l\JPl\JD\J“lalIU“ LI L1V sILulll UIJ\J[“I.\}I avid as \A} frew ‘{I\Jl ’l VAL v

1(il\? —il
yix=0l) = W) —ﬁp,\v(x) +2—(’7J PLy(x) + e +n!(%) PoW(x) + e

exp (—i%)w(x) (4.35.3)

Assume the validity of all the postulates given in the Summary of Theory except postulate II; i.e., we
introduce a system whose Hamiltonian is not Hermitian. Consider a system whose state space is two-
dimensional. Suppose |¢,) and |¢,) form an orthonormal basis of the state space and are eigenvectors

nf tha Harmiltanian with aicanuanliece K = S4 and F - (A _ N\ % recnactivaly (2) Qunnnca that at
UL UV LECULIILALVENLIQUIR VY RLLS \JIEUIIVHLU\JJ Lll - aiiu & \ T l, FLy l\aﬂy\/\.rllV\JlJ- \u, UulJl,’UCI\/ Liialr au

time ¢ = O the system is in the state |¢,). What is the probability of finding the system at time ¢ in the
state |¢,)? (b) Repeat part (@) for [¢,). (¢) Interpret the results of parts (a) and (b).

(@) Using the postulates of quantum mechanics, the state vector at time ¢ is

ly(r)) = € 0, = ¢™lo,) (4.36.1)

12
The probability of finding the system in the state |¢,) attime ¢ is, then, P,(r) = le‘5"| = 1.
(&) In this case, we have

—iEI.'/ﬁ

W) = 10,y = g (4.36.2)

o I T A s oo | sita200)? 2

The probability of finding the sysiem in {¢,) is P,(r) = |¢ | = e .

(c) By inspection, we see that the state |¢,) is unstable. The probability of finding the system in this state decreases
exponentially. This is not the case for the state |¢,) , which is stable and remains in the initial state permanently.
This means that the Hamiltonian is not a Hermitian, and therefore cannot represent rigorously an independent
physical system. Nevertheless, the system could have been a part of a larger system, and then, phenomenolog-
ma]lv the notion of complex energies proves to he useful for rahno into account the mthuhru of states.
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4.37. Consider a particle in a stationary potential V(r). Show that
d(R) _ (P a(p) _

I — = no—= = —(VV(R)) (4.37.1)
I and II are known as the Ehrenfest equations and are analogous to the classical Hamilton-Jacobi
equations.
We begin by considering the Hamiltonian of the system:
2
Ir — p_. 17O rAd 27 2
1 2m1—vu\; (4.3/.2})
Since the observables p and V(R) do not depend explicitly on time, we have, according to Eq. (4.55),
dR) _ 1 L p_j
dr iﬁ< [R,H]) = m( R, 2m ) (4.37.3)
where we used the fact that R and V(R) commute. Using the canonical commutation relations we can obtain
2 .
p ih
IR, 2—,,,} = (P (4.374)
Hence, d{R)/dt = {p)/m. Also, using Eq. (4.55) for p and Problem 4.9,
d(p 1 1 L.
= = wURHD = F P VR = Z([-ikVVR]) = ~(VV(R)) (4.37.5)

Compare with Problem 3.3.

4.38. Assume that in the Schrodinger picture all the operators are time-independent. (@) Work in the Heisen-
berg picture and derive an equation expressing the time evolution of an operator A, (?). (b) Show that
Eq. (4.55) is also valid in the Heisenberg picture.

(@) Inthe Schrodinger picture, combining the Schrodinger equation and Eq. (4.61), we have
a .
3 Ul il (1)) = H U 19)ly (o)) (4.38.1)

Since this is valid for any ly (1,)) we obuain iAdU(z, 1)/0r = H U(1, 1p). H, is a Hermitian operator, so we

0
also have —iﬁa—th(t, ) = HSU*(t, t,). We differemiate Eq. (4.59) with respect 10 time and obtain

dAH(t) [2 + J + [—a- J
- = eV AU 1) + U 4 194, FULE 1) (4.38.2)
Substituting the time derivatives we artive at
dAH(t) ] t 1 +
=i WG igH AU )+ 5 U (¢ t)AH U, 1) (4.38.3)

Since Uit t))U f(t. t,) is equal to the identity operator, we insert this product between A, and A and obain

dA (1) 1 + + ] + +
—# =-3 LU (1t )H U@, t)] [U (4 1) AU 1)) + % (U (1, t)A U )] (U (8, e H UG 1)) (4.384)

dA (1)
Using (4.59) we finally obtain i% PT,

= [Ay(1), Hy(0)].

(#) The mean value of an operator in the Heisenberg picture is

(AD) = {yulA 0|vy) (4.38.5)
On the right-hand side of (4.38.5), only A,(r) depends on time. Therefore,
d(A dAy(n)
d[> = Yy [ dt WH) (4386)

We assume that A is time-independent in the Schrodinger equation, so using the result of part (a) we obtain

d{Ay1) 1
— = ([A Hyol) (4.38.7)

dar
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4.39.

4.40,

441.
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In this problem we show that for a conservative system the greater the energy’s uncertainty, the faster
the time evolution. Consider a Hamiltonian with a continuous spectrum, and assume that the spectrum

is nondegenerate. Consider a state [y(¢,)) with an uncertainty energy A£ and show that if At is the time
interval at the end of which the svstem evolves to an appreniahle extent. then

a Uik O W L 3vaib Lo tO Al ADDITELHADIE TALETIL , L1IEIY

At AE=2h (4.39.1)

(e, = Ja(E)chE) dE (4.39.2)

where [0} is an eigenstate of // with an eigenvalue E. We define a state for which loE)l’ has the form depicted in
Fig. 4-2.

la(E)2

J{
E, E
Fig. 4-2

In this case AE represents the uncertainty of the energy of the system. Using (4.53), the state [\(z,)) evolves to

" _ e T EU ) L P EY
Wiy = Jo(E)e iz dE {4.3%.3)

J

In order to estimate the time interval during which the system evolves to an appreciable extent, we calculate the
probability of finding the system in a state [). This probability is
p

s L2 r iEfr_ 1\ /R
PO 0 = [Kxlw)] = U oa(E)e 0T (X[ 0p) dE‘ (4.39.4)

If AE is sufficiently small, we can neglect the variation of (x| ¢.) relative to the variation of at(E); therefore, replac-

ing (% |0z by <X|¢En>’ we obtain
2

(4.39.5)

‘[(X(E)E_'E(r_l“) /ﬁa,E

PO = |1l

Thus, P(y, 1) is approximateiy the square of the moduius of the Fourier transform of w(F) and using the properties
of the Fourier transform, the width Ar of P(x, ) is related to AE by

At
EAE >1 (4.39.6)

where At is the time period during which there is an appreciable probability of finding the system in [y}, and there-
fore it can serve as an estimation of the time during which the system evolves to an appreciable extent.

Supplementary Problems

me

Consider the projector onto a subspace £, of € (see Section 4.1). Verify that P,i =P

Repeat Probiem 4.13 for the case of a continuous set of kets.
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4.42,

4.43.

4.44.

4.45.

4.46.

4.47,

4.48,

Repeat Problem 4.14 for the case of a discrete set of a kets.

Consider the following four expressions (A is an operator);

Ry 1A PRy A 21

) (wlaldy (v (D) (wioWiA (i) (yig AKXyl (iv) Aly) (¢lAlw)
{a) For each of the expressions, find whether it is a scalar, operator, ket, or bra. (b) Obtain the Hermitian conjugate

of each €XPression.

Ans. (@) () scalar; (i) bra; (i) operator; (i) ket. () () (ola’ly) (01w or (wlAloy* (w|o)*;

\ t
(1) (yjg)*A l‘l’) (i) {yipy* I‘I’)\‘Plﬂ » (V) {QlAlyy*(wia'.

Derive the expression of the scalar product

<¢|w>=2b’:€,~ and  {¢|y) = J-b (W C(a) da (4.44.1)

in terms of components of the ket and the bra in a given representation. (Hint: Use the closure relations.)
Show that 2™’ and ¢""** commute for every real number a. [Hint: Use Problem 4.9, part (b).]

Show that the transformation matrix between two orthonormal bases [Eq. (4.29)] is a unitary transformation, i.e.,
§§'=8's =

Derive Eqs. (4.31), (4.32), and (4.33) using the orthonormality and closure relations for the two bases
{lui)} and {Ivk>} .
Refer to Problem 4.28. (@) What is the form of the wave-packet at time ¢ = 07 (b) Calculate the product

Ax Apat t=0. Ans. (@) y(x0) s (by AxAp = b2

2k, 1
N 'J T kéx2+ i
Using the Schrodinger equation, derive Eq. (4.54).

[imt. Kiras find
L ORI CAESL THIG
Se

Find the operator describing a shift of p, in the x-direction momentum. (Hint: Compare to Problem 4.36.)

ipx/h
Ans, Po*



Chapter 5

Harmonic Oscillator

5.1 INTRODUCTION
In this chapter we consider a particle moving under the harmonic oscillator potential,
l
Vix) = ikx2 (k = constant) (5.1)

The general differential equation for the oscillator potential can be solved using a technique that is frequently
exploited in solving quantum mechanics problems. Many problems in physics can be reduced to a harmonic
oscillator with appropriate conditions. In classical mechanics, for example, in expanding potentials around a
classical eguilibrium point, to the second order, we obtain the harmonic potential kx?/2.

Schridinger Equation: The Hamiltonian for the one-dimensional harmenic oscillator is

H=j5-+5 (5.2)

where k = ma?. The variables « and m are, respectively, the angular frequency and the mass of the oscillator.
We have

2 2 2 2 2 2
0 B d- mw
H=2-4"5m = o= s (5.3)
LIrt £ Lllldx‘ “~
Thus the stationary Schrodinger equation is
2 2 )
K dv md
TIm g2 o2 XY = Ev) (54)
The eigenfunctions that are the solutions of the Schrédinger equation are
| \I74 ] PAREEIYE
(x =(_] —H(’)e 55
Y ) 7[)\.2 2,,”! Wy (3.3)

where A = JA/m@ and H (¢) are the Hermite polynomials. The eigenvalues of the harmonic oscillator that
are the eigenenergies are

AY
jﬁm n=0,1,2,... (5.6)

(ST

7
En = Ln+

5.2 THE HERMITE POLYNOMIALS

The Hermite polynomial 4 (<) is a polynomial of degree n that is symmetric for even n and antisymmetric
for odd n. The Hermite polynomial is a solution of the differential equation

LHG)  dH Q) (25,, )
dg2 +2¢ dc %—l H) =0 (5.7)
This equation can be reduced to
LHL)  dH,©)

g2 B dg

+2nH (g) = 0 (5.8)

80
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The Hermite polynomials also satisfy the following relations:
dt (c)
dg

= 2nH, (g) (5.9)

and
H, (9 = 2cH (5)-2nH, _,(q) (5.10)

The generating function of the Hermite polynomials is

oo

2 H (¢)
S(c,1) = ettt = z o " (5.11)
n=0
and
dﬂ
H () = — [S(s5 t)]l (5.12)
dt -0

More information on Hermite polynomials is given in the Mathematical Appendix.

5.3 TWO- AND THREE-DIMENSIONAL HARMONIC OSCILLATORS

Similar to the one-dimensional case, the Hamiltonian in the two-dimensional case is

u pf+pf ma’x* m(z)f,y2
2= Ty, YT YT

(5.13)

In this case the Hamiltonian is separable in x and y, so the problem is reduced to two one-dimensional harmonic
oscillators, one in x and the other in y. The eigenfunctions in this case are

Vo, (59) =W, (Y, () (5.14)

where y, (x)) is the eigenfunction of the one-dimensional harmonic oscillator. The eigenvalue corresponding to
i
Wnrny ('x’ y) Is

| 1
E .= ﬁmx(n_r+§)+ﬁmy(ny+§) (5.15)

vy

The generalization to the three-dimensional case is straightforward.

5.4 OPERATOR METHODS FOR A HARMONIC OSCILLATOR

Eigenfunctions can be thought of as an orthonormal basis of unit vectors in an n-dimensional vector space
that is obtained by solving the Schrodinger equation. Here we will go a step further. We will find+the eigenvalues
spectrum and eigenfunctions using operators alone. The lowering and raising operators, a and a , are defined by

_ ol i) R G P
a= Qﬁ(x+mm a =52\ " na (5.16)

These operators are very useful tools for the representation of the eigenfunctions of the harmonic oscillator,
Note that the Hamiltonian of the harmonic oscillator can be written as

H = ﬁm(a*a + %) (5.17)
or
7 + 1\
H = ﬁmtaa _EJ (5.18)
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It can be proved that the commutation relations for these operators are
[a, a*] =1 {H,a] = -fhwa (H, aT] = hoa' (5.19)

Let us denote the nth state of the harmonic oscillator w (x) as |n), so 2 and a satisfy (see Problem 5.10)
aln) = Jnln—1)

N 520
1a|n)=ajn+1|n+l) (.20)

Now we can justify the names lowering and raising operators for a and at respectively. Thus one can build the
state |n) as

1 n
Iy = J—n:,(a”‘) 10) (521)

where |0) is the vacuum state (7 = 0).

Solved Problems

5.1. A one-dimensional harmonic oscillator is characterized by the potential
1
Vix) = ikx (5.1.1)

where k is a real positive constant. It can be shown that the angular frequency is ® = Jk/m, where m
is the mass of the oscillator. (a) Solve the stationary Schrédinger equation for this potential and find the
stationary eigenstates for this system. (b) Refer to part (a), and find the energy eigenvalues of the oscil-
lator. What is the minimal energy eigenvalue? Explain.

(a) The Hamiltonian of this system can be written as

9

-1
H = §m+5kx2 (5.12)
or
- ﬁzd_z ”’_(Dz 2
H = —fndxz-’- 5 X (5.1.3)

Thus, the eigenvalue equation is

2 2
Ry (x) mw’ 2.

“Im o + Y () = Ey (%) (5.1.4)
. 2E ) mw
We define € = Zo and we change the variable to { = 75 hence, we have
Py d(dydt) dy(LY ol L
g2 dx\dbdx) = ge\dx) TR g (5-1.5)
Therefore,
hod y(8) Ao
5 ;ch +Ey (0) —TCZ‘V(C) =0 (5.1.6)
or
dZ\y L2
+(e-CHy =0 (5.1.7)

de’
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For large £ (large x) the dominant part of the differential equation (5.7.7) is

& 1y
g =0 518
e v (5.1.8)
The solution for this equation points to the asymptotic behavior of the wave function for large § :
y(l et (5.1.9)
So we can assume
WO = B ™ (5.1.10)
Substituting in (5.7.8) yields
dy _d <z
_=_[H'()f’ -CH(D)e
dgz dg § g
2 2, LN 2
= H(Qe -2 -G T CHE (5.0.11)
or
dz\u 2 22
¥ o H-2H + (-1 H]e Y (5.1.12)
dg’
Thus we have
(H' = 20H + (- DH] e P4 (e-CYHe " = 0 (5.1.13)
We obtain the Hermite polynomials differential equation,
dIHE) ), dHE)
=2 2 + (e-1YH g
a0 S +(E-DHE = (5.1.14)
The wave function’s behavior around ¢ = 0 (x = 0) is accounted for by these polynomiais. In order to solve
this equation we substitute H({) = y‘a” " sothat
d_zl-__]_e‘a . i‘un—l_e‘ . +2‘.~ v, e fl PY-2 T -
dCZ = 2 &n(n-Hg = 2 %2 (n+2) (n+ i (5.1.15)
n=0 n=0
and
dH . ]
. —2§d—c = —Z2nan§ (5.1.16)
n=0
Hence,
y‘ [a,,,(n+2)(n+1) -2na,+ (e-1)a,] "=0 (5.1.17)
n=0
Therefore all the coefficients of this series must vanish:
a,,,(n+2)y(n+ D+ (e-2n-1a, = (5.1.18)
or
2n+1-¢
T2 = n+2) (ne1)%n (5.4.19)
We set a,#20 and a, = 0 to obiain the values of a,, a,. . .. a,,, (m=positive integer), and similarly a, = 0
and a, = 0 to obtain the values of a,, a5, . . azm , (m = positive integer), The a, or a, values are com-
putea usmg a normalization condition for the wave function,
As in part (a) we wish the wave function to asymptotically approach e > for large §. Tobegin, set the values

of the coefficients of H({) to zero for some value ». For that n, we obtain

2n+l1l-e=20 (5.1.20)
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Thatis, € = 2n+ 1, or

|

E,,=(n+§)ﬁa) (5.1.21)
| & PPy - 2t slam mramamdlmadl e e Aigl e Fo s than A, Alsvameraliiac WhTale s s e crariamn bl s
nClle, we UUldllJ ine l.lud.llllLdllUll LUllUlllUll 1UT UlC CLIcs) y Clgtlivaluts. vy illuul alt Cll lgy SUUICC, LG )’bl 11
reaches its minimal energy eigenvalue E, = fim/2 at the temperature T = 0, This value is imposed by the

uncertainty relation

h

Ax Ap = 3 (5.1.22)

and is the minimal energy eigenvalue the system can have.

A particle with energy £ = fico/2 moves under the potential of a harmonic oscillator. Compute the
probability that the particle is found in the classically forbidden region. Compare this result to the prob-
ability of finding the particle in higher energy levels.

For the classical harmonic oscillator we have

x=A, cos{@n P = —mA @sin (@ (5.2.1)
Hence the energy is
2,2
71 12 Mm@ A
E, m +3mox = 5 (5.2.2)
2E
which yields A, = . The classically forbidden region is |x| >A, or |x| > . Thus the probability of
m(l)
finding the particle in the classically forbidden region is
P = J[ YO, (x) dx+j yh 0w, (x) dx = 2.’[ yh 0y, (x) dx
- A, A,
P n
= 1-2] yiow,m ds (52.3)

oo

Considering the ground state, we have

1 712 2
P, = 2j YY) dx = 2 ,RJ. e dy (5.2.4)
Ay Ag

Changing integration variables 1 = x/A we obtain

oo Ao/l
2 [ 2 .
Py = &= e dn = 1——J e dn (52.5)
ﬁz\o/l J;[ Q
We have A,/A = 1; hence,
1
P, =1 2 ’"2dn 5.2.6)
0 -_ J;[ e ( b

Solving this numerically we obtain P, = 0.1578 (see Problem 12.8).
For excited states the probability for being in the classically forbidden region is

t'Are N £ " ['An s

i A X\ 2.2 i Sf XY 2.2 (x)
P = 1_2J 5 e ax = 1-—-——"—_——J #3 ) al 3 (52.7)
o nx22nn! (?\‘J Jiz 17’1! o [?\.) (?\.
Putting 1 = x/A, we arrive at
A/
P pp— ( Hmye™ dn (5.2.8)
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5.3.

Using the known Hermite polynomials H,(m) = 1, H,(m) = 21, H,M) = 412 -2,and A,/A = /3, we obtain:

4 3
_n2

The numerical solution is P, = 0.1116. Also we find
o JNE
1 2 1 2
P,=1- —J (16n*~16n2+4)e " dy = 1——J 4n*—-4an?+ 1)e ™ dan = 0.0951 (5.2.10)
anl Jnd

Thus we have seen that P, = 0.1573, P, = 0.1116, and P, = 0.0951. Note that the value of P, is smaller for
higher energy levels. The reason for this is that particles with high energy are “more classical” than those with tower
energies, and hence the probability for particles in higher energy levels io be in the classically forbidden region is
less.

Using the uncertainty relation Ap Ax=>#/2, estimate the energy ground state of the harmonic
oscillator.

The Hamiltonian of the harmonic oscillator is

H=5-+—5x (5.3.1)
The expectation value of the energy is
mw?
(HY = E = % — (x%) (5.3.2)
We can write
AP = () - (pY’ A = (- () (5.33)

For the harmonic oscillator {p) = (x) = 0. The proof for these results is as follows:

oo o0
- -

<x>=J Wi () xy, () dx =J ey, ()] d (5.34)

—oa —oa

The integral of the antisymmetric function x|w,, (x)|” over a symmetric interval is zero; hence, (x) =
Similarly,

oo

dy, (x)
(p) = W) 3 dx (5.3.5)
Ml Tad f = X A 2 /’ﬁ— h
\,uanging variables to = X anag A = ’J%, WwWe nave
dwy, (§)
(p) = —zﬁJ vrQ—5g 4t (5.3.6)
50,
dy, (L)  OH, (L) 4~
aC = 79T J—* +Cy, (D) (53.7)
Thus we obtain
(p) =~ N w*(g)%(@z”dg— z‘ﬁrw*(ﬁ)w(C)CdC (5.3.8)
NTA2 nte " d% Y e

Notice that
~

<x>~J WO WO L =0 (5.3.9)
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oH (1)
As the Hermite polynomials are either symmetric or antisymmetric, the multiple 4, (J) _82;_ is always antisym-
metric, and for the same reason that {x) vanishes, {p) also vanishes. Thus,

ApE m@

E==—+— Ax {5.3.10)
Zm 2z
. . A
According to the uncertainty relation, the minimal value of Ap is Ap = 5727 hence,
A5 om@t
E = 7+TA,\" (5.3.11)
8m Ax®
Finally, the minimal value of E (Ax) is obtained by
n ,
ddE = - : T+ moy Ay = 0 (5.3.12)
(Ax) 4m(Ax)
A
So Axy = T Also,
I’ 34
d : = ———+ma’ >0 (5.3.13)
d(ax)" |, _,.  4m(Ayv)
Hence, the minimal value is
4 may' ;. hw Ao Ao
E =———=+""75 (A = T +—F = — {5.3.14)
4m(Axy” 2 0 4 7 4 2

as we expected. Here we obtained the exact solution by relying on the lower bound of the uncertainty relation
Ax Ap = #/2. This follows from the result that in the ground state we have a Gaussian form of the eigenfunction:

W) = (2rG) et g ) e (5.3.15)

Though the uncertainty relation is normally used to estimate the ground siate energy eigenvalue. for the case given
above we can evaluate it exactly.

Find the eigenfunctions and eigenvalues of a two-dimensional isotropic harmonic oscillator; find the
degeneracy of the energy levels. The Hamiltonian of this system is

2 b)
Pv A L2 2 2
H = 2m+2m+2m0) (x +3¥) {(5.4.1)

The Hamiltonian of the system can be separated into two parts, H = H, + H_, where

2 ) 2
P, mwx b= P, +mw2_v2
v 2m 2

{5.4.2)

Thus, the wave function can be written as a multiple of two functions, Wy (x) (the eigenfunction of H ) and vy ()
(the eigenfunction of A ) with eigenvalues £, = i (s, +1/2) and E, = hw (n + 1/2), respectively. So we
have Hy = Fy, where y(x, y) = y (x)y (¥): hence,

Hy(r.y) = (H + H)y 0y,0) = H y 0)w,0) + y (0H g ()
=Eyw,+Ey vy = (E+E)y vy, (54.3)
Therefore,
E=E+E = (n+n+Hho=(n+ o {(544)

The degeneracy of each state E (n,, n,) is computed as follows: (n + 1) is an integer that assumes all values from
0 to e. We can see from Fig. 5-1 that (n + 1) = const. defines a line in the 5 n_ space. One can also see that the
degeneracy of the state nis n + 1.
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5.5.

ny
N

N
1‘2\\n+l=n,+n'\,+l=4 K

Fig. 5-1

n+l=n+n+1=2

Consider a particle with charge +e moving under a three-dimensional isotropic harmonic potential:
1 59
V(iry = Fmw r (55.1)

in an electric field E = E %. Find the eigenstates and the energy eigenvalues of the particle.

The Hamiltonian of the system is
I'he Hamiltonian of the s ystem 1s

p? me?

H = 2Tn+—2"r2—eE(,)r (5.5.2)

We separate the Hamiltonian into three parts: H = H _+H_+H_, where

Pf mw
= 2_
H. = TR eE x
p: mw’ »
H =5 +737) (5.5.3)
P;z mo? 3
H. = Iat e

Notice that H_and H_ are identical to the Hamiltonian of the one-dimensional harmonic oscillator, so we can
write the wave function as w (x, ¥, z) = Y, (xX) ¥, (¥) ¥, (2), where y, (¥) and y, (z) are the wave functions of
the one-dimensional harmonic oscillator:

1 N
V. (y) = =—=H, (ne"’
NTA2 2 n,)
| y s (5.54)
W_1| (Z) - Hﬁq (Z) e—: 72N
( A/TE?LZ,HFH'. ’
with A = «/m_co The equation of y, (x) is
2
A0V me
Hwy, (x) = _mﬁ + 5y —eEpny, = By (5.5.5)
Changi iables to { = & Fo ield
anging variablesto § = = - ields
e A Jima’
dy, [2E, (eE)?) ¢ . 556
—_ ) — — = 5.0)
dCz ho A W, v,
We obtain the differential equaltion for a one-dimensienal harmonic oscillator with the solution
1 2
v (§) = =——H, (" (5.5.7)

NLYVAFS:
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or

(x) L H () [ l[x %o ﬂ (5.5.8)
v, (x) = /——=H, (x)exp|—5| 7 - 5.
1 Jma2"at AN fame?

2E, (eEy)
_—— =2n,+1 ($.5.9)
O Eme
so the energy eigenvaiues are
2
1 (eEu)
(E)y = (n +—)ﬁw— (5.5.10)
o 2 2moy
In conclusion, the wave functions are
(X, y, 2y = gy () g, (y)y;(2) (5.5.11)

and the energy eigenvalues are

E 2
- )

=E +£ +E, = (n thHy+tHy 5 (55.12)
| 2 3 ! 2 302 2m0)2

M Aamy

5.6. Consider a particle with mass m in a one-dimensional harmonic potential. At t+ = 0 the normalized
wave function is

1 174 2 2
yix) = (—2] e (5.6.1)
o
where o' #——isa constant. Find the probability that the momentum of the particle at r > 0 is positive.

m@

We denote by \;l(p, t) the wave function of the particle in the momentum space at time ¢. The probability P for

hotmmaItitrA Eev ot AT b § o
a positive Moy 13

£
3
—
La
&)
by
e

We can write y(p, 1) as a linear combination of the eigenfunctions in the momentum space:

\11(,0, 8 = ch‘sn(p)e_f(nn/z)w (5.6.3)

n=0

where a)n(p) are the stationary eigenfunctions in the momentum space and the coefficients are C, = (q’,_.(x)!\y(x)).
Note that here ¢,(x) are the eigenfunctions in the coordinate space. y(x, 1) can also be written as

-i(n+1/2)awr

1YY -

q’(l’, ") - Z

—
La
=
4

S

A vy
2PulX)e

The functions ¢,(x) are either symmetric or antisymmetric, as are (I),,(p) (their Fourier transform). This attribute is
conserved for every r; thus, y(p, 0) is symmetric, y(p, 0) = y(-p, 0), and also y(p, #) = y(-p, 1). Hence,

o o oo 0
I vz, ol dp = J. lvip, ol dp = —J‘ eep, ol dp = J. e, ol dp (5.6.5)
0 ) 0 —oa
Using the fact that \Il(p, 1) is normalized, that is,
Pm ~ 2 Pm ~ 2 FO -~ 2
J o, of dp = J v, o dp+J v, ol dp = 1 (5.66)

oo 0 —eo
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we obtain
v, ol v, ol dp = -
= | W0 dp = v, 0l dp = 5 (5.6.7)
0
(a) Refer to the initial condition in Problem 5.6 and calculate W(x, 1). (b) Given thatat ¢ = 0 the particle
is in state
(x) : [0 (x) +0,(x)] 5.7.1
X}y = —"F= x) + X 7.
Wyix) Nz 9o (x) +0, (x) { )

where ¢, (x) are the eigenfunctions of a one-dimensional harmonic oscillator. Compute the expectation
value of xat £ >0,

(@) First, note that the given y(x) is not y,(x) (the eigenfunction) since 6" % —, 50 to find WY(x, 1) we must write

y(x) as a linear combination of the eigenfunctions ¢,(x): me
y(x) = EC,,‘I),,(X) (5.7.2)
and
W, 1) = EC"q)n(x)e_'(“l/z)W (5.7.3)
where
¢, = ((Dn(x)f‘l’(x)) = J dH(NW(x) dx (5.7.4)
.. 2 A )
Now, writing A" = o Ve have
6.() = ——— 7n({) exp[—%(%y.‘ (5.7.5)
2" L .
so,
1 1 J'H(x] [12(1+1ﬂd 5.76)
= A7 jexpl-5xT =+ — ||dx e
(' ()P TR 2 \\

Recall that H, (x/}) are either symmetric (for even n) or antisymmetric (for odd »); hence, since H, (x/})

. . , 1,1 1 ) . .
is antisymmetric and exp [—§x2( T+ P):' is symmetric, C, vanishes for odd n. Thus we need only compute

! 1 26 +2A
G, = J. (%]exp[ 2( o ]]dx (3.7.7)

[m4” (2m)! Gl]

7 .2 7 2
+
Substituting variables 1 = g 3 lz and x = |———™ we obtain,
20°¢ A +o
C ! r ( 26’ \ -’ 210’ an (5.7.8)
= n e e
n 4" (2m)' Ac J L’\/ +G° J ’le-i-ﬁz

26 J ( 26" J _?
= H e ™"
A/7t4'"(2m)!(k2+<52) ) o Vlz+02n n
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Using the identity

oo

-.-2 2 ! m
[ H,, (ax)e " dv = it n'l';) (@ -1) (5.7.9)
we get
) f 2—}\’2\711
C,, = J i 2>\07(2"21)- z Loz 2} (5.7.10)
4" (m) (A +6)H)\G +A
or
yx, 1) = ZGZ"WZH (xye B (5.7.11)
n=0
It is given that at t = O we have
1
W, 0) = ;/EI(D(J(«")-"Q);(X)J (5.7.12)
Thus, for t >0,
! —r1f /X - 3iwr/2
Wix, 1) = 7 [9ne o T (5.7.13)
By definition, the expectation value of x is
l
(0 = Quix ol 0) = 5 [{0p)|xl9y(x)} + (0, (x4, (x))
+ e 00l 0,(0) + € (9, (1) x] 9y(x)) | (5.7.14)
Let us compute each part separately:
(5.7.15)

s o RS Lol s v oa o i ./,\21
(Do) ixdy(x)) = J 0uIe0 dx = | [P(x)] dx {
Since |¢y(x)|” is symmetric and x 1s an antisymmetric function, the integration vanishes on a symmetric inter-

val, (§(x)|x|9o(x)) = 0, and also (¢,(v)|x]¢,(x)) = 0. We trn now to compute

oo

[ | X X 2.2
(Q(D)xl, () = J. 050, () dx = = —TJ HD(X)H,(X)\W " dx (5.7.16)
. mAN2T R
We have H(x/A) = 1 and H, (x/A) = 2x/X (see the Mathematical Appendix). Therefore,
21 [ IRPT (1
(GoX) X[y (x)) = ﬁiij et Mde = o (5.7.17)
h
0r(¢a(x)|x|¢|(x}) = meand
I = ) * = ./L 5.7.18
(&,(0]xloy(x)) = (‘1’0(*‘)4""1)1(‘“» = MImo (5.7.18)
So, we finally obtain
JA ﬁ 7 Y 8 7 10
(L = ,\jzmwcos (i) {5.7.15)
5.8. Consider the one-dimensional harmonic oscillator with the Hamiltonian
. p2 I 22 o
H = m +§mm X (5.8.1)
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We define new operators

P=L and Q=x mﬁo)

Mok

91

(58.2)

ﬁu)
50 H = (Q2 + Pz). (a) Compute the commutation relation [P, Q]. (b) For the operators a and

a defmed as

J'(Q+'P) -Jm—z)x+ d

t . . . .
compute aln) and a |n), where |n) is the eigenfunction of the oscillator for the nth energy state.

(@) We nse the known commutation relation [x, p] = if, so

- mo] 1
(7. Q] L/_X’\’ 7| = Rlpal =

(b) Using the result obtained in part (@) we can write

1
d'a = 3(0-iP) (Q+iP) = 310°+ P~ i(PQ-0P)]

1 2 2 . L R
= 5(Q +P —ilP,Q]) =5(Q +P 1)
so substituting in (5.8.7), we have
H = fw)(aTa+%)

. . t
Now we turn to compute the commutation relation a and a :

)
Q
-
DI mme

We also need to compute the commutation relation of a and a' with H,

[a, H] = fw)[a,afa] = ﬁw[a,at]a = howa

Similariy,

PO B x .t t. L .t .t . +
{a,H] = hiwvfa,aa'}| = Aiw{a,ala = —hwa

Thus, using the eigenvalue equation of the energy Hlny = fw (n+ 1/2)|n), we can write

Hiny = ﬁm(a a+s )ln)
Therefore, a'aln) = nln). Similarly,
+ 1
Hn) = ﬁm(aa —§)|n)

1

S0 aaTIn) = (n+1)|ny. We apply a = “Fo [a H] on the state |n), so

t i

a'H Ha 1 Ha'
o' = Sy By = (e ) a4

or

R N , [ 3) ot
H(a'lm) = ho{ n+3 j(aim)

[O-iP,Q+iP] =i[Q,P] =-1

{58.3)

(5.84)

(5.8.6)

(5.8.7)

(5.8.8)

(5.8.9)

(5.8.10)

(5.8.11)

{5.8.12)

(5.8.13)

(5.8.14)

(5.8.15)
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Hence, we conclude that afln) is a state that is proportional to |n + 1}, i.e.,
ly)y=a'lny = a,ln+ 1) (5.8.16)
where @, is a constant given by
a; = {y,|v,) = (nlaa'in) (5.8.17)
We have already seen that aa*ln) = (n+ 1)|n); thus ai = (n+1). Choosing o, = Jn+l, we finally get

a'lny = Ja+ln+t) (5.8.18)

Similarly, we apply a = ﬁo [a, H] on the state |n) and find

alrd = Sty - 2y = (s 3 catn) - 25 (alo (5.8.19)
or
H(aln)) = ﬁw(n - %) (aln)) {5.8.20)
So we conclude that aln) is a state that is proportional to jn — 1}, i.e.,
ly_)=aln) = a_|n-1) (5.821)
where @_ is also a constant
& = (y_|y) = (nla’aln) (5.8.22)
We have seen that afaln) = nln); therefore o = n.Choosing a_ = Jn we get
ajn) = Jnin-1) (5.8.23)
Note that if we apply a to the ground state |0) we get
al0y = 0 (5.8.24)
Thus, we introduce the lowering and raising operators @ and a' defined above that satisfy
aln) = Jnjn - 1)
{ S = e Tina 1 (5.8.25)

Compute the matrix elements of the operators x and p for the one-dimensional harmonic oscillator,

X = {nl«dky = I o* (x) x9, (x) dx (59.1)
-
P = CnlplR) = | 05,00 p0y () (5.92)

where ¢, (x) are the eigenfunctions of the harmonic oscillator.

Let us write x and p using the lowering and raising operators a and a' (see Problem 5.8):

L AP I P 593
x =3 mw(a-«-a) = 2mw(a+a) (5.9.3)
Similarly,
p=_z'_»\/n_1—c_0(a_a) =i’J 5~ (@ -a) (5.94)
rOm ‘llhlf‘ WA Oan N onmmnaita
LAW/ILE VVillwil WY Wwalil 11V WY UUILIF“I\'
A I3

(nl(a+a")|ky =

= VImo ((nlalky + (nla" k) (5.9.5)

N2m@
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We have seen that

{alk) = JRklk-1)
a'ly = KT Ik + 1) (5.9.6)
Therefore, we have
(k= | (=1 4 SETTnlk 4 1)) = =T (B8 .+ JETT5. . ) (5.9.7)
A il Rl ,\lzmw\"c AN | 14 ~ LA | & Mzmw\w R k-1 ~ nk+ 7 | T
where
1 n=m
8,m = 0 n&m (5.9.8)
Hence,
fﬁ(n+ 1)
e k=n+1
(nlxlk) =\ [An P (5.9.9)
2mm =n-
0 otherwise
In the same way we can compute
. (mwh . imofh
(nlplk) = i, /—— (nl(a' -a)lk) = i 5 ((nla'lk) = (nlalk)) (5.9.10)

Now using the relation (5.9.6) we have

(nlplky = i ,ﬂg")-ﬁ(,./k+l(n|k+ 1y —Jk(nlk=1)) =i Cn—g)-ﬁ(,\/k+15"'hl ~Jk8, ) (59.11)

so we obtain
; .,mcgﬁn k= nel
= A
(nlplky = | _. Jmo (2n+1) k=n+l (5.9.12)

0 otherwise

We can express {2|x| &) and (a|pl4) in a matrix form as

01 0
1 02
0.2 0.3 -
s 3 . 3 L
(nixlk) = ,‘]m) 0O 0.3 0 ’ (5.9.13)
and
0 -1 O
1 0 -2
0 ﬁ O—ﬁ"'
Imot . .
(niplk) = lﬁj—z—‘ 0O 0 J3 o0 (5.9.14)

As expected, x and p are represented by Hermitian mairices.
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Consider a one-dimensional oscillator in the nth energy level. Compute the expectation values

<N, (D, B, (P

What can you say about the uncertainty relation Ax Ap?

Using the operators a and a', one can find that

f
() = m(zm 1) (5.10.1)

, moh
(PP = 5 (2n+ 1) (5.10.2)

A = [P @y
= (@ -(n = J-ﬁ—(znﬂ)

and (p) = 0, (x) = 0. Therefore,

w
]

fi
Ax Ap = 3 (2n+1) (5.10.3)
Hence, the ground state satisfies the minimum of the uncertainty relation:
h
Ax Ap = 3 (5.10.4)

The simplest molecular crystals are formed from noble gasses such as neon, argon, krypton, and xenon.
The interaction between the ions in such a molecular crystal is approximated by the Lennard—Jones

vor = a,[(2)°-(2)] s

The values of V, and © for the noble gasses are listed in Table 5-1.

Table 5-1
Ne Ar Kr Xe
Vy(eV) 0.0031 0.0104 0.0140 0.0200
G(R) 2.74 3.40 3.65 3.98

oy n‘F
Siivigy Wi

a
ed as a harmonic scnllator

cn'mrlp ion is suc
18 Suc

ronund ctate ener a
nd state encr as on uch H

We begin by approximating the potential V(r) near the minima to a polynomial of the form

k
V(r)=Vm+§(r~rm)2 +O0[(r-r)1 (5.11.2)
where V,, is the value of V(r,) and r,, are the minima. Hence,
dv(r)| { G2 ﬁ\
- =4V, L 2;; 4 6r J =0 = r,=2"% (5.11.3)
r=r. m
thus, V(r,) = —V,. Similarly,
d 14 ( o 0"1 vV
( | = 4V, 156—; - 42= | = 36. 2" (5.11.4)
.. v r') o
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Now we can approximate the behavior of an ion in the crystal to the behavior of a harmonic oscillator. The ground

k
state of a harmonic oscillator with potential V(r) = U, + ( i) (r—ry)? is

» > [+
Awm nojk
E0=7+U0:§J;+Uﬂ (5.11.5)
where m is the mass of the ion. Therefore,
Al 3m-2'7 v,
Eozvm+§ _= " ;_Vo (5.11.6)

Supplementary Problems

5.12. Show that the eigenfunctions of the harmonic oscillator in the ground state and in the first excited state have inflec-
tion points wherever the condition V(x) = E is satisfied, i.c.,

mw? 1
-5 2= ﬁw(n+§) (5.12.1)
5.13. Find the eigenenergies and eigenfunctions for a particle moving under the potential
maw’
5 x>0
V(x) = o (5.13.1)

Hint Itis easy to solve the Schrédinger equation for x > 0 and for x < 0 separateiy, and then demand that the eigen-
function for all values of x will be continuous.

Ans. The eigenfunctions are ¢, for n odd where ¢, are the eigenfunctions of the harmonic oscillator. The corre-
. . 1
sponding eigenenergies are £, = fw)( n+ i)'

5.14. Consider an isotropic three-dimensional harmonic oscillator. (¢) Perform a separation of variables and find the
eigenstates of the system. (b) Find the eigenenergies and determine the degeneracy of the levels.

| H, (OH, (WH, (2)
(7!?\.) ‘"‘,\/2@I +nyta;)

(3-1+n)! (n+1) (n+2)

B & = T3 - 7

—{x2+y2+22)/2lz

Ans. (@ w(ix,y,7) =
''nt ol
Ryl ong

5.15. The wave function of a harmonic oscillator at time ¢ = 0 is
1
v(x0) = J24¢, + Tqu:z +Af, (5.15.1)

where ¢, is the stationary eigenfunction of the oscillator for the #th state and A is a normalization constant. (a) Com-
pute the constant A. (b) Compute the eigenfunction ¥ (x, ) for all values of «. (¢) Calculate the average (E) at times

iC HIE COUIL ale Ul ARULS ¢)r4aiud

t=0,t=n/w, and t = 21/ . (d) Find the expectation values {x) and {p) for 1 >0,

Jiwi/2 51/ 2 . JI:mr/Z\_

_ kR 1.
Ans, (@A = ,sﬁ, b)) y(x, 1) = Aﬁk"ﬂq"e +J§¢2e + 0, ),

N AN _ AN — I — = PR
Ed, o = (£} = {8} = Jqho;

t=

gl1a
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5.16. Consider an isotropic two-dimensional harmonic oscillator. (@) Write the stationary Schrodinger equation for the
oscillator. Solve the equation in Cartesian coordinates. () Write the stationary Schridinger equation in polar coor-

dinates and solve it for the ground state. Is this state degenerate?

Ans. (a) Schrodinger equation:
L& L2 ) o+ ™ ey sy = Ewiny)
ol T ! -xa X y xv = ’
2m| 5, " 5,2 )V 0 T2 ’ ’
mw ()]
m
Wy (X, ) = JH exv[—T (x2+y2)}
(b) Schrodinger equation:
110 13°y(r,8) mo?
Tmrar VRO + 5T ST T 8) = EV(n8)

Voo (8 = [T oxp| -0

and the state is not degenerate (ground state).

8.17. Compute the matrix elements (n|x2‘ m) and (n|p2|m) for the one-dimensional harmonic oscillator.

Jm(m-1) n=m-2
|2’ h (2m+1) n=m
Ans. (nix m = Ime Jm+1) (m+2) n=m+?2
[ O otherwise
(,\/m(m—l) n=m-2
|| my = mﬁml ~(@2m+1) n=m
(nlp“im) = - 2 T £ 1Y {2 4 D) n=m+2
Af \l’l o l} \f!lT L} It e T oL
l(] otherwise

5.18. Compute (n|px|m) for the one-dimensional harmonic oscillator.

ih

5 m=n
ifi ——— "
2+ (n—-1)n m=n-2

Ans. {n|px]lm) =

ifi
FN(r+2) (n+1) m=n+2

5.19. Compute the matrix elements (rzlx3 |m) and (nlx‘lm) for the one-dimensionatl harmonic oscillator.

( Y32
m) J(n+3)(n+2)(n+l) m=n+3
A(n+1))3?
3 3( 2mm ) m=n+1
Ans. (nlxlm)z b Y372
(me] m=n-1
32
( ) ‘n(n_l)(n‘z) m:n_3

2mo

(5.16.1)

(5.16.2)

(5.16.3)

(5.164)
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f 2
(T) Jr+ D (n+2) (n+3) (n+4)

2
2
4(nj nd(n+1)(n+2)
\ /
I IIRY
2(—) (37 +2n+ 1)

2mm

(4n—2)(2—,%)]2m

ﬁ 2
(m) Jn(n~1) (n=2) (n-23)

[l

97

(5.19.1)



Chapter 6

6.1 INTRODUCTION

As in classical mechanics we introduce the quantum angular momentum as the quantity

L=rxp
In quantum mechanics L, r, and p are operators having representations in Cartesian coordinates:
L = (Lsty!Lz) p = (px’py7pz) r= (x’y!z)
Thus,
r T = v —7n = _7r (ni_ni\
‘-lx — _yl,l: pr lek)az J.ay)
(3-:2)
L,=zp —xp, =i S e
.ﬁ( 9 i)
L, =xp,-yp, = —i xay_yax
and also
2 2 2 2
L =L+ Ly +L,
Tn Clartecian conrdinatec the cammutation relatione hetween 7 (7 = v v 7) are
In Cartesian coordinates the commutation relations between L. (j = x, y,z) are
(L, Ly] = ikL,
[Ly, L] = iﬁLx
(L.L,] = ihL

6.2 COMMUTATION RELATIONS

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)
(6.6)
(6.7)

Using the commutation relations in Section 6.1, one can also find another useful commutation relation:

[L%L] = 0= [L%L]) = [L%L) = [LAL) =0

(Ly7)] = iﬁZE,ﬁLk
(L.p] = iﬁZEijkpk

[L,p') = [L,7'] = [L,r-p] =0

where
[ l ijk have cyclic permutation
g = —1 ijk have anticyclic permutation
0 otherwise

98

(6.8)

(6.9)

(6.10)

(6.11)
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6.3 LOWERING AND RAISING OPERATORS

We define the raising operator as

L, =L +iL, (6.12)
Similarly, the lowering operator is defined as
L =1L —ilL (6.13)
- x y (D15
SO we can write
L, +L_ L -L_
L= == L, =5 (6.14)
L, and L_ are not Hermitian operators, since it can be proved that
L,=1L' (6.15)
Moreover,
1
L' =L}+5(L,L_+L_L,) (6.16)
and aiso
Ll =L-L’+#L, (6.17)
L L, =L"-L+#L, (6.18)
Thus, we have the commutation relations:
[(L%L,] =0 (6.19)
[L,L,] = kL, (6.20)
[L,,L_] = 2&L, (6.21)

The operators L._ and L, enable us to represent all the eigenfunctions of L* and L using only one eigenfunc-
tion and the operators L, and L_.

6.4 ALGEBRA OF ANGULAR MOMENTUM

The operators L™ and L_ describe physical quantities; hence, they must be Hermitian operators, that is,

2

Ly =L =y =L (6.22)

One can verify that L? and L, are commutative operatzors, (L2, L] = 0 [see Problem 6.2, part (a)); it is thus
possible to find the simulation eigenfunctions of both L™ and L_ (|/m}), which comprise a complete orthonormal

basis:
LAimy = 1(1+ 1) & |lm) (6.23)
L |im) = mh|Im) (6.24)
Operating the lowering and raising operators on |/m) gives
Llimy= JI(l+ 1)y -m(m+ DA m+ 1) = J(I-m) (I+m+ 1) hil, m+ 1) (6.25)
Limy= I+ 1) —mm-Dall.m-1)= JU+m) (I-m+ D ALm-1) (6.26)

Note that if j/m) is an eigenvector of L? with eigenvalue / (! + 1), then for a fixed / there are (2! + 1) possible
eigenvalues for L.

m=-l, -I+1,...,0,...,1-1,1 (6.27)
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Thus,
LJ,1)=0 (6.28)
L |,-h)=0 (6.29)
The basis |[/m) is orthonormal, i.e,
{Lmllmy = 8 (6.30)
1]°2" 1,0, %m, m, 182

This basis is called the standard basis. The closure relation for the standard basis is

oo !
2 2 lim) {im) = 1 (6.31)

I=0m=-!

6.5 DIFFERENTIAL REPRESENTATIONS

The representation of eigenveciors and eigenvalues is often more convenient using spherical coordinaies
x = rsin® cosd y = rsin@sind z = rcosB (6.32)
The representation of the angular momentum operators in spherical coordinates is
( cosd d
L = "‘(S‘“‘P 36t tan98¢)
0 Slﬂ¢ 0 ) 6.33
{L =zﬁ( COS¢BB+tan98¢ (6.33)
0
L, = -iks
Z ow
which yields
) a2
2 3 1 1 0
L” = -k La 3 + tan @ aa sinZ@ _HWZ'J (634)
0
_ 4 e 9 0 )
L, = te (89“ cot@ 8¢ (6.35)
L —ﬁ“'*( ot tei) 6.36
= he —aezco 9 (6.36)

. 2 .
Thus, the eigenvectors of L™ and L, are functions that depend on the angles 8 and ¢ only; hence, we can repre-
sent the wave function as

v(r,8,9) = R(Y,(8,¢) (6.37)
For a central potential V(r) = V(r), we find that Y.,m (8, ¢) are the spherical harmonics, where
ltm) = ¥[8, ) (6.38)
The algebraic representation of Y,”’(e, o) for m>0is

m m 2L+ 1 (-m)! .
Y, (0,¢) = (-1) J an TH—m)!Pl(COSB)e‘m (6.39)

m fm (2041 (I=]mD)! imo
Y,(0,9) = (-1) “an —_(I+m)! P, (cosB)e (6.40)

P;"(x) are the associated Legendre functions defined by

and for m < 0,

m

- f 2 md
Pi(x) = N(1-x7) dx_'"P'(x) (6.41)
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where P, (x) are the Legendre polynomials,

P (x) = ———(1 —x2) (6.42)

Note that the Y,m (6, &) are uniquely defined except for sign, which is changeable. The spherical harmonic func-
tions, the associated Legendre functions, and Legendre polynomials are described in detail in the Mathematical
Appendix.

6.6 MATRIX REPRESENTATION OF AN ANGULAR MOMENTUM

We have already mentioned in Chapter 4 that an operator can be represented in matrix form; this
representation depends on the basis vectors (eigenvectors) that we choose. For an angular momentum
operator we usually use the standard basis |/m), so every matrix element A;; that represents the operator A
satisfies

A = (JilA|I) (6.43)
1 s i\

A4y T

Thus, for every / = const., we can write a (27 + 1) x (27 + 1) matrix for L? L, Ly, and L,; thatis,

(L7 = iy = 10+ 1A%, (6.44)
(L), = CHIL|lj) = /RS, (6.45)
(L, = (HILL) = g"[J(l—m) T+m+ D)3 +JU+m) (I-m+ 1§, ] (6.46)
(L), = (HIL|L) = g[gl(i—m) (I+m+ 1), =JU+m)y(I-m+1)§,;_|] (6.47)
For | = 1, for example, we have
iy 10y |1-1)
) (1 0 oyny
L’ = 2ﬁ‘t 0 1 0 J |10} (6.48)
0 0 11-1)
and
1y 10y [1-1) 1) 10y |1-1)
ﬁ(o 1 me ﬁ(o ~i o)m)
L =—F7|1 0 1|10} L =—Fl i 0 —i |10}
"o 1 o=y T Noe i o i
[ty 10y [i-1)
1 0 0 \I1)
L. =40 0 0 ]|10) (6.49)
0 0 -1/1-1

6.7 SPHERICAL SYMMETRY POTENTIALS

From classical mechanics we know that when a spherical symmetry potential V(x, y, z) = V(r)actsona
particle, its angular momentum is a constant of motion. In terms of quantum mechanics this means that the angu-
lar momentum operator L* commutes with the Hamiltonian:

2 R1a(.a) L2
H = ﬂ+V(r) -3 Zark ar)+ +V(r) (6.50)
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where the angular dependence of the Hamiltonian is found only in L*. We can thus split the wave function in two:
an angular part depending only on 8 and ¢, and a radial part depending only on r (see Problems 6.16 and 6.18).

6.8 ANGULAR MOMENTUM AND ROTATIONS

Let lu) be a state vector of a system in a certain coordinate system O. To represent the state vector in

another coordinate system O' we define the rotation operator U, such that the state vector in O is given by
!m') = [ !\u) (6.51)

For a system O’ obtained by the rotation of O around an axis in the direction of 7 with an angle 8, U, is given as

U, (8,7) = exp(—éeﬁ : L) (6.52)

where L is the angular momentum operator. L is said to be a generator of rotation. One can conclude from the
definition that

W'l = {ylUy (6.53)
Note that to obtain U, we usually use the infinitesimal rotation operator:
Ug(d8,7) = 1- 3 dOL - (6.54)
Note also that '
Up(2m, ) = Ug(0,7) = 1 (6.55)

Uy can be used as a rotation operator not only for state vectors, but also for other operators or observables. Thus,

n the cvctam ¢} ic trancformed to A' in the svstem (' cuch that
n the system {7 1s transiormead o A 1n the system (/ such that

A = UyAU, (6.56)
Or similarly,

Ih
1
~
Rﬁ—r

>
=
)
~
=
L
~

N—

Solved Problems

6.1. Using the definition of angular momentum, L = r X p, prove the following commutation relations:

@ [Lor) = i) €yres () [L,L] = ik > e L, (injk = x,2). Note that if A and B are

k %
vector operators, then the kth component of the vector operator A X B is
(AxB), = D e AB, (6.0.1)
iJ
Use also the identity Zeijk €pni = 0;0;, — 9,0, .

Ey

(@) Using the definition L. = r x p we obtain L, = Zek,,rkp,; thus,

k1

Lord = Y e lrppr) = ¥ eitrlpnr] + (rarlp) (6.12)

ki kT
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Using the commutation relations [r,, r] = 0 and [p, I'j] = —iﬁS,j, where
1 [=7]
5, = { I (6.1.3)
0 otherwise
we obtain
T T N, N T N T P
[L.l, r}J - Ltkﬂ(_lﬂj Url-rk = —in : bk}i"' = —me,k}rk = Ianljkrk (0.1.4}
ki k L &

We decompose the commutation relation [L,L ] = iﬁis, L into the three following commutation rela-
k
tions: [L,,L,] = ikl [L,L] = ikl and [L,L ] = iﬁLy. Note that
L = (rxp),=rp,-r.p, L, = (rxp), =r.p-rp. (6.1.5)
Thus,
[L,L) = lr,p.-r.p,r.p.—r.pl
= [r)_ p.t,pl - (rpprop)—Llr.p.r.pl+1Llr.p,r, py] (6.1.6)

We compute each part separately:

[I‘"_ P, p,\'] ry [p:’ re p.\'] + [ry’ r:p.r] p:

=r.(r.lp.pl+Ip,rIp)+ (r.lropl+1r,rlp)p, (6.1.7)
Now, using the known relations
lp.p] =0 (p..r.] = -ik (r.p =0 [r.r.1 =0 (6.1.8)
we obtain [r,p,. r,p,] = ~ifhrp,. Similarly,

[r}' D rxp:] = r)‘[p:’ r.rp:] + [r,\v’ rrp:] p:

=r.(r.lpap)+p,rdp)+ (lryrp.+rlr,p.1)p. =0 (6.1.9)
and
lr.ppr.p] =r.lp,rp)+lrorplp,
=r.({p.rlp.+r.lp.p )+ lr rlp+r.lr,p)p, =0 (6.1.10)
Also,
(rp,.rp.] = r.lp,rp.l + [r,rp.lp,
=r.(lpprdp.+rlp,p)) + (lrorlp. +r.lr.pl)p, = ifhrp, (6.1.11)
Thus, we obtain
(L, L] = ifi (r,p,—rp) = iR (rxp). =ikl (6.1.12)

We leave it to the reader to prove the other two relations.

6.2.  Prove the following relations for the angular momentum operator: (@) [L2,L.] = 0; (b)) LxXL = kL.
(@) The operator L? can be writtenas L* = L%+ L? + L%, and hence
[L2L) = [L2+L2+L3 L] = [L2 L]+ [L3 L]+ [LLL] (6.2.1)
We compute each part separately:
(230 =L [L,L]+[L,L])L, (6.2.2)
We have shown in Problem 6.1 that [L,L.] = -[L, L,] = -ihL,. Therefore,
[LLL] = ik (LL +LL) (6.2.3)

Similarly, using the commutation relation [Ly, L] = ikL,, wehave

(LLL) = LIL,L1+[L,LIL, = ifi(LL +L,L) (6.2.4)
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Since L, commutes with itself, [L2, L] = 0, we arrive at
(L%, L] = ~ih(LL,+LL) +ik(LL+LL) =0 (6.2.5)

(b) We will compute separately the components of L x L:

[(LxL), =LL-LL =I[L,L] =ikL,
FLXL) =LL~-LL =[L,L] =ikL, (6.2.6)
(LxLy,=LL -LL = I[L,L] =ikL,

Thus, summing over the three components we obtain L x L. = /L.

Consider a system of two particles; each particle has its own angular momentum operator, L., and L,.
Show that L = L, +L, is an angular momentum operator; in other words, show that L satisfies the

relation in part (&) of Problem 6.2.
As 1

c :
Cx5 A4

LxL = (L,+L,) x(L,+L;) = (L,xL)) + (L,xL,) + (L, xL;) + (L, xL)) (6.3.1)

nd !_.2 are both angular momentum operators, for the sum L = '—‘i + L2 we have

oth angular momentum operators, for the sur h

ED

In Problem 6.2, part (b), we saw that if L is an angular momentum operator, then L. x L. = iAL.. Thus,
LxL = iftL +isL,+ (L, xL)) + (L,x L)) = ifi(L, +L,) + (L xL,) + (L,xL))

=itL+ (L, xL,) + (L, xL)) (6.3.2)
We will now compute the term L, x L,:
LyxL, = (L, Ly~ L. L)%+ (L ,Ly,— L, L)y + (L, Ly, -L,,Ly) 2 (6.3.3)
Similarly,
L,xL, = (L,L,,-L,.L\)k+ (LyL,,~L, L )y+ (L, L, ,-L, L )2 (6.3.4)
Since L, and L, are ditferent operators, their components commutate; hence we obtain
(L, xL,) + (L, xL;) =0 (6.3.5)
So finally,
LxL = (L,+L)) x (L, +L,) = ica(L,+L,) = AL (6.3.6)
Consider the following relations:
L, =L, +iL, L =L —-iL, (6.4.1)
L)my=kJI(I+1)y —m(m+1)|l, m+ 1) (64.2)
Llm)=a 011+ —m(m-D}{, m-1) (6.4.3)
L im) = mh|lm) (6.4.4)
L2im) = 1 (I+ 1) R lim) (6.4.5)

Consider a system of / = 1, and find the matrix representations of L, L, L , and L? in the basis of
eigenvectors of L_and L2.

First we note that the L | L, L, and L? are Hermitian operators, as are their matrix representations; for each
component of the matrix a; we have a;; = ;. For asystem that has an angular momentum / = 1, the eigenvectors
of L, are

{1) correspondingto / = 1, =1
[0} correspondingto! = 1, m = 0 (6.4.6)

l |-1) correspondingto/ = |, m = -1
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6.5.

To find the matrix representation of L we need to compute the following relations:
ol Lok
x“) -2 (L++L_ ) |1> = 2L_ ”) = ,\/EIO)

| A
Ll0) = 5(L,+L )I0) = ALRIRN (64.7)

i i 2
Ll-1) = 5(L,+L)F1) = 5L-1) = J_§|O>

If we choose the siandard basis

1 0 0
H=| ¢ 0=l 1 Fh=( 0 (6.4.8)
0 0 1
then the matrix representation of L _is
(O 1 O]
L = 13 o1 (6.4.9)
ﬁLO 1 OJ
Cienilarly foar 7 vo havua
Ullllllml,, il ‘_ly o Lave
1 ik
LI = 3 (L.=L)ID) = 10
1 ik 64.10
1 B0 = 3L -L)I0 = F(-DH-11) (6.4.10)
1 ih
LD = 3 (L=L)ED = - 510)
Hence,
[0 —i 03
L —iti 0 —iJ (64.11)
y = 4.
J2 0 i« 0
Also, for L, we have L |1) = #{1), L |0) = 0,and L |-1) = -A|-1); thus,
I 0 0
L.=&0 1 0 (64.12)
0 0 1
For L? we have L2|1) = 2A2)1), L2|0) = 2A42|0, and L2}-1) = 2A2|-1); thus,
1 0 O
L2=28 0 1 O (64.13)

\ O

<
.

What is the probability that a measurement of L, will equal zero for a system with angular momentum

1
of one and is in the state 'ﬁ 2 |?

First we will find the eigenvectors of L, for / = 1 in the basis of L ; i.e., we want to find the eigenvectors and
eigenvalues of

L =

lﬁl;’"

010
—| 101 (6.5.1)
“\o10)
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Assuming that the eigenvalues of L, are %A/ /2, the secular equation of L, is

A1 0
det( 1 -A 1 }=—K(7\3—1)+7\= 2A-2=0 (6.5.2)

A 1 I (i Wy

Hence, A = 0, £./2 and thus the cigenvalues of L, are 34 or 0. The eigenvector corresponding to the eigenvalue

F A
i1y

11y L P LS AT\ IR RN (£ & 2
1, = L D J = apy + o+ oy (6.53}
¢
where |a|2 + |b|2 + |c|? = 1is the normalization condition. Therefore,
010 a a
—| 101 b |=*# b (6.5.4)
2
f 010 c c
I b=.2a I a+c = J2(a+h) I b= J2¢ (6.5.5)
From {6.5.51) and (6.5.55111) we obtain b = J2a = f2¢; thus, using the normalization condition, we have
1
a?+2a2+a2 =1 = a = 3 (6.5.6)
Hence, the eigenvector |1, is
1
1 1
D, =5 /2 |=501)+2I0)+]-1)) (6.5.7)
1
Similarly, the eigenvector corresponding to the eigenvalue zero is
1/ a
0}, = 5[ b J = all)+ bl0) + |- 1) (6.5.8)
¢
where a, b, and ¢ satisfy the normalization condition and
5 6010 a
5101 b | =0 (6.5.9)
010 ¢
or
I =20 Il a+c=0 (6.5.10)
Therefore, a2 +0+a> =1 = a = 1/2. Finally, the eigenvector |0), is
1 a 1
0y = —¢ = —=([1)- -1 6.5.11
10}, ﬁ_tolJ ﬁ(l)l)) (6.5.11)
Also, the eigenvector corresponding to the eigenvalue —# is
a
Dy = | b | = al}+b0)+ 1) (6.5.12)
¢
where @, b, and ¢ satisfy the normalization condition, and
 on e o NS AN rd A
s 010 a a
31101 b | ==k b (6.5.13)
.01 0 ¢ . C
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6.6.

or
I b=-J2a Il a+c=-2b m b=-.Jf2c (6.5.14)
Thus, b = ~2a = —.f2¢; using the normalization condition we obtain a? + 2a’+a? = 1| = a = 1/2. Hence,
1
. = 3 ﬂ = 3 (1)= J310) + 1)) (65.15)
\ )
So, we can write
Ll L
Ia>=Jl—4 ; = Jﬁ(“>+2'0>+3"1>) (6.5.16)
In the basis of the eigenvectors of L, we have
oy, = (i), + (01e)I0), + (~1loyk-1), (6.5.17)
We compute the terms separately:
2+ 42
lje 6.5.18
x(l) 2ﬁ(1+2ﬁ+3) A/—4 { )
O = —= -1 6.5.19
,|a—J2—8(1—3)—_ﬁ (0.5.19)
and
2-2
—1|ot — 6.5.20
x( oy = 2»./_4 (l 2./2 +3) = »,/_4 { )
The probability that a measurement of L yields zero is therefore
i
P_(0) = |(Olm)|? = 7 (6.5.21)

Apply the operators L, =L, +iL, and L =L - L ontheeigenstates of L% and L_ (|!m)) and interpret
the physical meaning of the results Follow the stages (a) Find the Hermman comugate of L. (b) Cal-
culate the norm of L_Jim) and L_|)im). (c) Calculate the eigenvalues of L? and L, for the state L, |lm)
and L_|im).

(@) The Hermitian conjugate of L, is L, = L,—iL}, butsince L, = L, and L, = L, wehave L} = L_.
(b) The norm of L |{m) is
IL |2 = (L JtmdTy (LMmY) = {ml(LIL)Wm) = {Im|(L_L,) |im) (6.6.1)

L L, = (L~iL) (L,+iL)=Li+Ly—iL L +iLL, =L2+L2+i[L,L) = L’~L1-4hL, (662
Thus, substituting L_ L, , we obtain
(L Jim)|? = {ml(L_L)\m) = (Im|(L 2= L2 —&L_)|im)
= R+ 1) —mi-m] = R2[L(I+1) -m(m+1)] (6.6.3)
The norm of L_|Im) is ||L_|Im)|? = {ImIL, L_lim). Again,
L = (Lo+il)(L,—iL)=L2+L2+iL L ~iLL =L2—L2—i[L L)=L2-L2+4L, (6.64)

Hence, we obtain

L Wm)||? = {imi(L? - L2+ &L, ) Im) = 2[I(I+1) - m?+m]
= h2[I{+1) —m(m=1)] (6.6.5)
(c) First consider the commutation relations:
(LR L] = [LZ,LX+iLy} = [LAL)+i[l3L]) =0 {6.6.6)
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and
[LL, L] = [LQ,LX-iLy] = [L2,Lx]—i[L2,Ly] =0 (6.6.7)

This means that L2L, = L, L2 and L2L_ = L_L2. The eigenvalues of L? for L,|/m) and L_|im) are

L (L)my) =L, (Llim)) = K11+ 1)L, \Im)
T S (6.6.8)

,_
I~
P
I~
3
G2
"
]
P~
P
™
3
=
e
1]
&
=
.’
=
.
3
<

That is, L |/m) and L_|Im) are eigenstates of L? with eigenvalues A2/ (! + 1). Before we continue to calculate
the eigenvalues of L, note that

[L,,L) = [L,+iL,L) = [L,L]+i[L,L] =ikl -AL = -AL, (6.6.9)
Hence, L L, -L.L = -AL, and L.L, = L,L, +AL,. Similarly,
(L,L) = (L, ~iL,L]) = [L,LY+i[L,L] = -ikL +hL = AL (6.6.10)

Therefore, L L —-L,L = #L_and L .L_ = L_L,-#L_.Thus, we can calculate
L.Lmy= (LL,+#L)) fmy = L+inim') +ﬁL+iim) = mAL,jim)+ kL |Im) = (m+ 1)AL,JIm)y (6.6.11)

and also

LL \m)= (L.L,-hL_)ilm)y= L_LJImy—#hL_]im)
mhL_|lm)y — KL _|Im) = (m— LYRL_|Im) (6.6.12)

We see that L,|Im) and L_ |Im) are eigenstates of L, with eigenvalues (m + 1) i and (m - 1) £, respectively.
To conclude:

(L m)| = AJI(I+ 1) —m(m+ 1)

(6.6.13)
lL_itm)| = 2SI+ 1) —m(m—-1)
L |
{Lz (L, |tm)) = R2A U +1) (L, im))
LL2 L ytmyy = B20¢0+ 1) (L_lim)) (66.14)
and,
(7 ¢F Waa\Y = % 73m 1Y &7 Haa\n
Jl‘_‘-\h"'"‘"‘/" = Ji\fre T 1) \‘_4+|lfll/]
6.6.15
L,(L,Jim) = & (m=1) (L_|im}) (66.15)

From (6.6.14) we see that L_|Im) and L_|/m) are proportional to |/m’) (note that m' is distinct from m). From
(6.6.15) we conclude that L, |/m) is proportional to |/ ', m + 1) and that L_[Im) is proportional to [I ', m — 1);

thus,
Lilmy~l,m+1); L )imy~|,m-1) (6.6.16)
Recall that the norm of |{ ', m + 1) and L_|Im) 1s 1; hence, from 6.6.13 we get
Ljimy=#aJI(I+ 1)y —m(m+1) |L,m+1) (66.17)
Lm)y =8I+ y-m(m-1) |l,m-1) {6.6.18)

So we see that the operators L, and L_ allow us to “travel” between the eigenvalues of L2 and L,. Note also
that L |,y = Oand L_|I,-I) = 0.

6.7. Compute the expressions {(Im|L2)im) and (Im| (L, Ly ) |!m) in the standard angular momentum basis.

We begin by representing L, and L, using L, and L_:

L, +L. L,-L
x= T2 and L, =7

(6.7.1)

Keeping in mind that

Limy=2aJI(I+1)—m(m+1) }, m+1) (6.7.2)
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and

Lim =k JI(+ ) =m(m=-1) L, m—1) (6.7.3)

the operator L? can be written as

1 1
L}=3(L,-L)?*=3g(L2-L2 +2L,L +2L L,) (6.7.4)
The terms L2 and L? do not contribute to the expression {/m|L2|lm) since
((ImiL2|Im) ~ {Im)l, m +2) = O
{mlL2 |tm) ~ Umll, m=2) = 0 (6.7.5)

Thus to compute {/m|L2|/m) we consider only the contributionof L L, and L L ; that s,

{ImiL2)im) = %(lml (L,L_+L_ L, Y|m)y = %[(Iml (L.L){Imy+ {mj(L_L,)|Im}}

_k

= SIS —m(m— D) {mlL o m =1y + JI(I+ 1) —m (m+ 1) ((mIL_)l, m+ 1)) ]

=fi;[~/l(l+ D —m(m- 1)y JI(I+1) —m(m-1){Im|lm)

+JI(I+ 1) =m(m+ D) JI(I+ 1) —m (m+1) Umltm) ]

f;[l(!+]) -m(m=1}y+I(I+ 1)y -m(m+1}]}

R+ 1) —m?) {6.7.6)

We turn now to compute {/m| (LXL_V) |/m}. Using the operators L, and L_, we obtain
1 | PP,
LXLy =7 (L,+L_Y(L,-L_) = T (L2-L*-L L +L_L)) (6.7.7)
Once again the terms of L2 and L? do not contribute to {/m| (L.L) {{m); thus

1 1
ml(LLYmy = T (Um| (L2 12 +1L_L ~L 1 ylm)) = 7 1dml(L_L,~L,L_)|Im)
(LLWmy = Z({Im| (L, - L2 + L L, -LL )lIm)] = 2z [{Iml( ) lim))

VR

1
=77 Weml (L_L ) ltm) - (im) (L L_) lim))

=4%[Jl(l+ Dy -m(m+ YmL |,m+ 1)-JI(I+1) -m(m- 1 {ImlL |1, m— 1)}

2
=Z—,-[«/l(1+1) —m(m+ 1) SI(I+1) —m(m+ 1) {Im)im)

ifilm

~Jld+ )y =mm-D AU+ 1)y —m(m-1){mlim) ] = 3 (6.7.8)
6.8. Consider a particle with a wave function
Y(x,y,z) = N(x+y+z)e lyrzhroll (6.8.1)

where N is a normalization constant and o is a parameter. We measure the values of L2 and L_. Find
the probabilities that the measurements yield: (a) L? = 242, L_ = 0; (b) L? = 242, L, = h; (0)
L? = 242, L, = -h. Use the known relations

Y (6,0) = —Jgtsine et Y (8,0) = -Ecose Y;'(8,0) = —jgtsine e (682)

First, we will express ¥ (x, y, z} in spherical coordinates:

x = r sin® cos¢ y = r sinb sind z = r cosB (6.8.3)
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where 2 = 2?7 +y? + 72, So,
v (r,8,0) = N[sinB(cosd + sind) + cos8] re—r’/e’ (6.84)
We write y (r, 6, ¢) as a multiple of two functions y (r, 8, ¢} = R (r)T (0, ¢) where R (r) = Nre—*/¢* and

T(8,¢) = za,m Y,"1 (8, 9) = sinB cos¢ +sinB sind + cosb (6.8.5)
im

The coefficients a,, are determined by
a,, = (Im[T (8, 9)) = Jr (V7Y T(8, §) d6 dp (6.8.6)
Using the properties of spherical harmonics one can prove that
ren = (T30 - -5 e r)] +£—“Y‘,’
=E[(l+i)Y,"—(l—i)Y:+ﬁY?] (6.8.7)

To compute the probabilities, we must normalize the function T (8, $); we denote the normalized function by
T'(8,9) = BT (6, ¢), where

2
szT* (6,0)T(8,0)d8 do = B2 (2+2+2) = 4np? = 1 (6.8.8)

orf = 1/./4n. Hence we have

1 -
T'0,0) = = [(1+0 Y, = (1=i) ¥, +./2V] ] (6.8.9)
JE 1 1 1
Thaus, the probabilities are compuied as follows
(@) ForL? = 2A% and L. = 0 we have
, R R
P = [1,0TH? = %ﬁ =3 {6.8.10)
(b) Forl? = 242 and L. = # we have
wa | 1=
P = |(1, T )? = %l =3 (6.8.11)
(c) ForL? = 2#2 and L, = —fi we have
, 1 + 2 1
P=1,-1TH? = T =3 (6.8.12)
A symmetrical top with moments of inertia /= I and /, in the body axes frame is described by the
Hamiltonian
! 2 2 1 2
H = 37 (L +Ly) + Z_ILZ (6.9.1)
X Zz

Note that moments of inertia are parameters and not operators. L, L , and L, are the angular momen-
tum operators in the body axes frame. (a) Calculate the eigenvalues and the eigenstates of the
Hamiltonian. (b) What values are expected for a measurement of L, + Ly + L_ for any state? (c) The
state of the top at time + = 0 1s |/ =3, m = 0). What is the probability that for a measurement of L,
at? = 4nl /h we will obtain the value #?

(@) We begin by writing the Hamiltonian as

l

RS

H = =
H

21 (L

LS
rd

L7
+ L

PR (LUSINS I PP TS L S T P (6.9.2)
+LF) T2 T 21 ) \ P

[
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where L is the total angular momentum. Recall that if A is an operator that has the eigenvalues A,
(i =1,...,n),the eigenvalues of f{A) (where f(A) is a function of A) are f(X)). Therefore, the eigenvalues
of the energy are
ﬁz
E, = 21 l+l)+L21 )ﬁzrrz2 (6.9.3)
So the eigenstates of the Hamiltonian are those of L? and L., i.e., the spherical harmonics Y7’ (8, ¢) with the
eigenenergies E,
(b) Measuring L +L ,+L, for the top, we find the top at eigenstate Y7 (6, ¢); that is, a measurement of

L +L 'rL .e}ds
x y y

L +L L -L

+

¥ (6,0 (L + L, + LYV 8,00) =7 (8,0 5 4 4L, I 0. 00)

= (178, 0)IL,I¥] (B, 0)) = Am (6.9.4)

(¢) Thestate ofthetopatt = Qisy(t=0,8,9) = Yg(B, ¢). which is an eigenstate of the Hamiltonian, A meas-
urement of L, for this state yiclds zero, and since it is an eigenstate of H, the top will always remain in this

state. Therefore the probability of the measurement of % is zero.

6.10. The spherical harmonic functions are defined by
Y'I"(G, 0) = C;"P;" (cos9) e (6.10.1)
where C ;" is a normalization constant and PT (x) are the associated Legendre functions defined by
2. m| /2 dlml
m ~m
P, (x) = (1-x7) ml’l (x) =P, (x) (6.10.2)
Compute the function Y7(8, ¢) for m = 0, £1.
d
Consider the Legendre polynomial P, (x} = x; so ax ¢ (P, (x)} = 1. Therefore, relying on (6./0.2} (see the
Mathematical Appendix), we have
n's v nl .o - |4 2 ETL L
Pi{x) =P (x) = Ni-x (6.10.3)
Similarly, P? (x) = x; thus, using (6.10.1) we obtain
Y| (8,0) = C,P)(cosB)e® = C|sinBe’ (6.10.4)
Also,
-1 -1, -ip 0 o
Y, (8,¢) = C, sinbe Y, (8,¢) = C|cosb (6.10.5)
Using the normalization condition we arrive at
27 4 2 W
o o,
J dcpJ (Y1) (8,0) Y/'(6,¢)sinBdé=1 = qu;J (C)) cos?8 db=1 (6.10.6)
0 a o

T

3
or, -2n (CO)2 cos? B d(cosB) = 1, thatis, = =, Similarly,
! ! 4n

[¢]

o rT V(T

C,=C, = LJ dq)J sin® &' sin® e7* sin® dUJ = Lu:J sin? 8 a‘ﬁJ = gz (6.10.7)
¢]

Finally, we have
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Solve the eigenvalue equation L2Y (6, ¢) = AAR2Y (6, ¢), and find the eigenvalues of L2. Use the
expression for L? in spherical coordinates.

)
1 d 1 P
Lz = —ﬁz[ = el i{ Sine:\—:ww {6_]_]_]]
Lsin’@ 9¢2  Sin6 06\ " "d8/ | (6.11.1)
We begin by substitting the expression for L? in the eigenvalue equation, so we obtain
l a_zLa("ei)Ye = —AY (8 6.112
| 56 oo 5in6 26\ %n0 35 |V (6. 9) = -A¥(6,0) (6.11.2)

We solve this equation using the variables separation method; thus we substitute ¥ (6, ¢) = @ (¢) © (8) and get

6 do o i( d_@)_ A (C] 6.11.3

Sinze d([): +sin9 de Sme de - CD(¢) (9) ( ) 1' )
CXGIE Y

Dividing (6.11.2) by ‘-QQ(—‘D) we obtain

sin B

1 d2® sinB® d 40\ (6.11.4)

P —-6'2-+ 2] deksme de}+7x sin"@ = 0
1 42 sin@ d( de)

We now have two parts: The first, & (l) d‘bz , is a function of ¢ only, and the second, o dB\ sinB PT) } + A sin B

is a function of 6 only; the sum of these parts yields zero. Therefore, each of them must be a constant by itself. We

set
1 d2@ ,
®dpr =™ (6.11.5)
and
sin@ do)
o) 26\ 5N gg ) +A sin’0 = m? (6.11.6)
The solution of (6.11.5) is
P(P) = emo (6.11.7)
To qualify as a periodic function, ¢ (¢) must satisfy the condition ® (¢ + 21) = ® (¢); thatis e?™™ = |, thus,m
must be an integer number, m = 0, 1, %2, . ... Now (6./3.5) can be expressed in terms of x = cos8, where
d dx d ..d d
76 = d6dx - -sin87- = “/]_xzdr (6.11.8)

(1-1“)—:'+l(]—x2)~m2 -0 (6.11.9)

We rearrange (6.//.9) in order to obtain the usual form of the generalized Legendre equation
d ( dO m?
Sla-a ]+ (a- o = 6.11.10
dx_( )d.Y_ x 1_":2> O ( )

Note that under the transformation x — —x, (6.1/1.1() is unchanged. This means that the solutions of the generalized
Legendre equation are either symmetric or antisymmetric in x. Consider the equation for m2? = 0:

d ,, dO
Lla-mF]+re =0 (6.11.11)
Assume that the solution can be represented by a power series; so © (x) = x Za x". We leave it for the reader
to show that by substituting we obtain Py
Y (s+ne2) senrDa, 8- LsHm) (s+n+ 1) -2l (@) = 0 (6.11.12)
e
n=10
Hence, each coefficient must vanish, and we have
(s+n+2)y(s+n+1)a,,, = [(1+n) (s+n+1)-Ala, (6.11.13)
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6.12.

or
o s+m(s+n+ ) -2

Y42 T sen+2)(s+n+ )% (6.11.14)

The function ©(x) is bounded at x = 1 {6 = 0}, so the condition (s + 1) (s + 7 + 1) —A = 0 must hold for A. That

is, A must be of the form A = /(/+ 1), where / is an integer number. Hence, the eigenvalues of L2 are A2/ (1 + 1) .
The solution of (6.11.11) can be represented as

1 d!

0,(xn) = o (-1 (6.11.15)

Similarly, the general solutions of (6.11.10) are
m (G sy 401 m mirz d”
©/(x) = i (=22 mps (= 1) = ()" (1 =" 2P () (6.11.16)

Consider a particle in a central potential. Given that |/m) is an eigenstate of L2 and L : (z) Compute the
sum AL? + AL}? . (b) For which values of ! and m does the sum in part (@) vanish?

(@) The uncertainties AL? and AL? are defined as

AL2 = (L2 - (L )? ALy = (L} —(L)* (6.12.1)
L,+L_ L. -L_
Using the raising and lowering operators L, and L_, we write L = 3 and L= 3 Therefore
we have
1 1
Li=3(L2+L?+L L +L L) L} =3 (LI+L? -L,L -L_L) (6.12.2)
So
( Y
(L) = {miL Jtm) = {Iml\ ——5— Jilm) = 0
(L, -L_\ (6.12.3)
(L) = UmiL Jim) = (ml =57 Jitm) = 0
since

{Lsz) = hfI(T+ 1) —m(m+ D, m+ 1)

6.12.4)
L limy=hJI(I+1)=m(m-1y)l, m-1) (
Similarly, we can compute
(LY = (mL2|Im) = 4_1 (m(L2+L% +L,L_+L_L,)|im)
Lo a2 g 2in o e e (6.12.5)
= Z(\lm|(1{r+ |m)+ tm (L, L_+ L,_b+)|lm)) !
Relying on the properties of the raising and lowering operators we have
L2)imy~|l, m+ 2) LI|im)~|l, m=2) (6.12.6)
We also have
LL |im)y=L, (hJI(I+1) =m(m-Dl.m=-1) = k2L (+1)=m m-1)]}|Im) (6.12.7)
and
L Lim)=L_(hJI(I+1) —m(m+ Dl m+1)) = R2[I(L+1)=m (m+ 1) ] |Im) (6.12.8)
Thus we obtain
LB = A2+ 1) —m(m=1) +1(I+1)-m(m+1)] = 2R2[1({+ 1) —m?} (6.12.9)
Similarly,
(LY = (LZ) = 2R2[1(I+ 1) —m?] (6.12.10)

Finally, we have
ALZ+ALY = (LY —(L)2+ (LY = (L)? = 4R2[I(I + ) -m?} (6.12.11)
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(b) Using the result of part (a), we see that ALZ+AL? vanishes when /(/+1) —m? = O; that is, m? =
I (! + 1). Using the fact that m and ! must be integers, we conclude that this condition is satisfied only when
I=m=0.

Consider a system with a state function

y(r,t=0) = NE exp _L_2 (6.13.1)
2r,

where & = x+iy; N is a normalization constant and r, is a given parameter. It is also given that the
eigenfunctions of £2 and L, are the spherical harmonic functions

3¢ 0 3z -1 3&*
Yi(xy.2) = - Rrr Yi(xy z) = A/;—n; Yy (6y.2) = = Jgay (6132)

(a) What are the values obtained from a measurement of L and L,? Find also the probability for each

meacuremeant (A Write the threa aiocanfunctione of 12 and I  carreacnaondino to the oiven enharical haro
PRIV S VIR WSS LWy | Y \U} TY ALy BIIV RINDIWA UIEUIIL\‘IIUI.IU&IO A" S (v igiV] l_lx UUIAUUVU]I\‘I]I& (AW R S § Lwg sl‘\lll L’yll\./l A% ga) Lican

monics. (¢) Find the values that are expected from a measurement of ,. What is the probability for each
value?

(@) Consider the operators L? and L_. They operate only on the part of the function that depends on the angles ¢
and 6. Note that we can write y as

-2
y(r,t=0) = —JETENr exp (2—:3)Y: (X, v 2) (6.13.3)

Hence, we see that the possible values in a measurement of L? and L, are 2A2 and #, respectively, with a prob-
ability of 100 percent (since L2 and L. operate only on Y (x, y, z), which is an eigenfunction of these
operators with these eigenvalues),

(b) Consider a systemn K of which the x', ¥, and z' axes are parallel to the x, y, and z axes of our system. In this
systemn the operator L is similar to L, in K thus the eigenfunction of L. is also the eigenfunction of L _ with
exchanging of X' = y; ¥ — z; ' = x. The eigenfunction of L. is

P [38 _ [3_x+iy 6.134
( 1( 5)’:‘-))L ,Jgnr - ,\lgn /xr2+y|2+zv2 (0.134)

Therefore the eigenfunction of L, is

I 3 y+iz 3 y+iz 6.13
(Y|(ny52))l_r nm T ([ 5)

Since L? commutes with L_and L, (y:) L is an eigenfunction of L ;
Similarly,

o_ [3x - 3 y-iz
(Yo), = J;m (Y1), = «/;:XT‘ (6.13.6)

(c) Following parts () and (b), we use the expansion theorem to write (see Chapter 4)

JE‘( (Y('))L‘+%2[(YT')L,+ (Y:)Lx]) (6.13.7)

Consider only the part of y that is an eigenfunction of L, and L?:

it is also an eigenfunction of L2.

2
y(r,t=0) = Nr exp{—r—2
2r,

Pey.2) = of e+ L, - *h.]) (6.13.8)

. Therefore,

-

. 11
where o is a normalization constant, { P| P) = ( I+ ;) =] = o=

i { _
P(xy.2) = ﬁ( (o, + 7 (e, - (Y})L,]) (6.13.9)
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The values expected from the measurements of L, and L? are therefore as follows: For L? = 2A2and L, = 0,

l I
the probability is ’((Y(‘,)LJP)F = 5.For L2 = 2%2and L, = #, the probability is [{ (¥)), |P>|2 = 3. Finally,

, \ 1
for L2 = 242 and L, = —h, the probability is i((Y;)LIP)iZ =7

6.14. Consider a particle in a spherical and infinite potential well:

Vi(r

o JO 0<r<a
= loo (6.14.1)

a<r
(a) Write the differential equations of the radial and angular parts, and solve the angular equation. (b)
Compute the energy levels and the stationary wave equation for / = 0.

(@) We begin by writing the Hamiltonian of the system:

p? 52
H = 2—m+V(r) = —2—mV2+V(r) (6.14.2)
where V2 in spherical coordinates is
2 2 2
Wz_l-a-/..\ ][ l i(-:..oi\ 1 ——-‘]_l-a—-t..\__é; (K 14 2
v =r r2\l) Tr2LS|n9 ae\al iv 39}1-91“29 aq)lJ = r r2 \F) ﬁ2r2 (U.1%.0)
Thus,
1P L?
m 7 a_rz(r) +m+V(T) (6.14.4)
The differential equation for the stationary wave function y (r, 8, ¢) is
hi21 9 L2y
Hy = —s———(rv) + —=+V(r)w = Evy (6.14.5)
T lmrari\ Y 7 }-mrl Vi o h g ' 7

It is evident that [H, L?] = 0: hence, we write v (7,0, ¢) = R, (r) ¥/ (8, ¢) and obtain
#2Y/(8,9) 3 R, (1) LY (8, 9)

S F é-rz[ar[(r)] + Sl

+R (NV(Y](8,0) = ER (1Y (8,0) (6.14.6)

Since Y,"l (0, ¢) is the eigenfunction of L2, 1.2 Y,m (6,¢0) = R2I(I+1) Y;" (8, ¢). Hence, the radial equation is

#2197 A2
_2_m;5—r2 [rR,, ()] + [Z_mr21(l+ D+ V("):IR::/(") = ER,,(r) (6.14.7)

(b) For! = 0 we have

219’
“Imrye [rR 4 (] +V(NR,,(r) = ER (1) (6.14.8)
We denote R, {r) = R(r). For r > a, the function must vanish [because V (r) is infinite]; therefore we have

for0<r<a:
2197
—2—m;ﬁ(rR(r)) = ER(r) (6.14.9)

2
We substitute U (r) = rR{r); hence, “Im3Z = EUr), or

2
2mE
37%% Ut = 0 (6.14.10)

The solution of (6.14.10) is
U(r) = A cos (kr) + B sin (kr) (6.14.11)

where k = 2mE/f". A and B are constants that can be determined using the boundary conditions:

I The value of U vanisheson r = 0: U(r=0) = [rR(1]],_, =0
II The value of U vanisheson r = a: U(r=a) = [rR(r)]| _,6 = 0.
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Thus, from condition I we have UV (0) = A = 0, and using the second condition,

U(a) = Bsin(ka) = 0 = ka = nxm (6.14.12)
we obtain
E =20 6.14.13
"= 2ma? " (6.14.13)
Finally, to compute the value of B we use the normalization condition of the wave function R(r):
J gSntn
Dy = U = r =r=a (£ 14 14)
ll\l) r . [U‘.(-' "’}
0 otherwise
Hence,
a o
sin? (k
J IR (r)|24mr2dr = J.4 B? ( ) ridr = 41EBZJ. sin (kr) dr
0 0 0
AmB2T 1 1 e 2p2
= BT L cosxsinx+2x] nm B (614.15)
kL2 2714, nv/a

s0 B = ——=.Thus, for / = 0 we have

Nina
1 1 _( PmE
y(r.8,0) = R(r) = E;sm( —;n—zr) (6.14.16)

6.15. Consider the Hamiltonian of a three-dimensional isotropic harmonic oscillator:
) mw?
H =5 (pi+pl+pl) + 5 (P +y?+12%) (6.15.1)

(@) Write the Hamiltonian in spherical coordinates. (b) Find the eigenfunctions of the Hamiltonian in
spherical coordinates. (¢) Find the energy eigenvalues.

{a) We begin by writing

{2 ~2 ~2
pipiep? = -ﬁ2(§%7+-a-‘-’y-;+-a-‘235 ) = —pav2 (6.15.2)
which, in spherical coordinates, becomes
19% (1) I a(, a) 1 3
-h2V? = —ﬁ{ 8r2 +3 5in638 sin® 30 +r2 sinzew (6.15.3)
1 3 19
Using L? = —ﬁz[emnjaa( sinﬂjﬁ) +— M‘Z—| we arrive at
SHVOBA Y¥4 sinT et
ﬁZEJ L?
peve = 22 L (6.15.4)
ot 7

In spherical coordinates, the Hamiltonian is therefore

h? la (r) L? mm? 5
“2mr a 2mr2+ 27

(6.15.5)

{b) The anguiar dependence of the Hamiltonian comes only from L?; therefore, writing the eigenfunction in the
form y (r,8,0) = R(r) Ym (6, ¢), we have

V (8 &Y 2

\Vs ¥ as

2 r dar?

R{r) m mo? m
Hy = - (rR{r)) + 5, 5L, (0,¢) + 5 r*R(nY, =Ly (6.15.6)
or

wY at R+ 1) mw? m m
HR(r)Y = -5, rdrz(rR(r))+—_——R(i)Y +——'R(r)Y + 5 r’R(nY, = ER(nY, (6157)
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We get the radial equation

#21d? B+l me
~Imrar CR{)) + |:—(z—l+Tr2 R(r) = ER(r) (6.15.8)
mr
i 142 2 2
By substituting # (r) = rR(r), (6.15.8) becomes ~2—m;%+(ﬁ-—-——12(’i;1) 2 )u(r) () ,or
d? 1({+1) me? 2mE
[d_ri_ r? )* h rt+ 52 ]u(r) = (6159)
s m2m? 2mE .
We denote p =77 and €= 27 ;50 we obtain
d?2 1{l+1)
[;};i_ 2 ‘BZ"Z"‘E]"(r) =0 (6.15.10)

d?
Note that for large r, the dominant part of (6.15.10) is ( - B2r 2)u(r) = (. Therefore, for large r,

(r) e-Brisz
\pE

_
(&}
Py
h
[
by

—

Let us compute
d2y A
(€ 37 Qa

ar = 3y (ge P Prge-bria) = (8'e P2 - PgePril2Brgle P2 4 B2r2gepris2)

= (¢"-Pg-Prg +Prig) e (6.15.12)
Hence we have
" ' [(1+ l)g 2
[g -Pe-2Prg +Pirrg- = -Pirig- g]e-ﬁ’ 2=0 (6.15.13)
The differential equation for g(r) is
! 1+l
g -2Prg+ (e-Pg-—77— ( ) =0 (6.15.14)

We substitute g(r) = r‘Zanr" (for a, #0),50 g' = Za,l (n+s)rs+7-1 and

n=0 n=0

g = Za"(rz+s)(n+s—l)r“’"‘2 = 2 A, (n+s+2)(n+s+1)rs+n (6.15.15)

n=0 n=-2

Note thalrﬁ2 = Za,,r“"‘2 = Zanzr“",so (6.15.14) becomes

n=0 n=-2

> A
2 G l(res+2)(nts+1) —1(1+1)]r“"+Lan[—2B(n+3) +e-Blrtn=0 (6.15.16)
n=-1 n=0
For n = -2 we have [s(s—1) —=i{i+1)]a, = 0. Since q,#0, it follows that s = {+ 1. For n = -1 we
have [(s+ 1})s—I(l+1)]a, = 0.Since s = I+ 1, we obtain a, = 0; so
B E-3B-2B(n+])
Qyer = (n+l+3)(n+l+2)—I(l+l)a'1

(6.15.17)

(¢) The eigenfunction must be bounded for large r, so we must demand that g(r) be a polynomial of a finite degree;
i.e., we set a, = 0 for a certain n,:

e-3B-2B(n,+1)
(g +1+3)(ng+1+2) -1(1+1)

-
(=
[
)
b,
Go

~—

ore = 3f+2B(ny+0) = ZmE,l /%2, Thus the energy eigenvalues are

ﬁ2 3
E, = [3|3+2|3(n +0H] = [3+2(n +0)] = (§+n'+l)ﬁm (6.15.19)
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Consider the infinitesimal rotation operator:
Ugd, i) = 1 -doL . (6.16.1)
Find the rotation operator for a finite angle 0. Hint: Define d6 = 0/N for N — oo,

W) = [Ugdd, t)]" ) (6.16.2)

Hence the rotation operator for a finite angle 8 is U, (0, i} = [Uy(d8, m]". Defining d0 = 0/N, we arrive at

U0, ) = F}iﬂn(l FL-# 9)

(6.16.3)
AL
Recall that !Jim (1 + ]Tl) = ¢% so using this identity we finally obtain
—3 o0
rl 1 iL. & NN / i \
U6, h) = 1i 5 0 0L - fi 6.
ey = fim |14 g{—=0)] = exp|-goL 4 (6.164)

(a) Refer to Problem 6.16 and compute the rotation operator around # = y for / = 1. (b) Use the rota-
tion operator obtained in part (), and find the representation of the eigenvectors of L _ in the standard
basis of L _.

1 A s
(@) Consider the rotation operator U, = exp ("51‘ : nJ, For # = ¥ we obtain

(6.17.1)
n=90
Let us compute
(0 —i 0) f0 -1 0)
! le 0 iJ . 0 -1 (6.17.2)
7 =5 =5 - 7.
2 0 [ O f2 0 1 O
-1 0 1
Ly 2 1
7) =5 0 -2 0 (6.17.3)
1 0 -1
and
0 2 0 0 -1 0
—’—‘202 Ay o ok
ﬁ = _/—é —sz' =Z (6.17.4)
YN0 -2 0/ \o 1 o0/
S0 we obtain
_ 1 oo ( 9)2::1—1( J o (-—i9)2"(5)2
=4t (2n+1)' +2(2n)! A
n=1
( l) 92n+l (Ly)z L (—l)n 2n
ﬁ_z (7n.|.l\| E Z (2';3}! (6175)
n=1
Note that
] (_l)"BZn-o-l had -1 nezn
sin@ = W cosf-1 = ((Z)n)! (6.17.6)

n=0 n=1
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therefore,

o~

L. .2
Up = 1-isin03 + (cose—l)(g’J

119

(6.17.7)

(6.17.8)

(6.17.9)

(6.17.10)

lOO) 9[0—10) (—10[
UF.'= 010 —i- - - (cosB-1) 0 -2 0
oo1/) Y*lo 1 o) 10 1)
I+ cosh sin | —cosO )
2 Nz 2
_ sinB cos® _sinb
J? V2
1 ~cosB sin0® I + cosB
-2 J2 2
(b) To obtain the eigenvectors of L, by using the eigenvectors of L_, we must rotate the eigenvectors of L. by
6 = .;/2, nence, i in this case we have
172 -1/42 172 ]
Up(m/2,5) = | 1742 0 -1/.42
L 1/2 1742 1/2 J
Thus,
T . T . .
1D, = Ug 3.5 )ID) 0), = Ug{ 3. /I0) FD, = Ul 5.7 )I-D
where

(N ( (0
ool el el
0 0 1
are the standard basis. Therefore,
1/2

—_ I I I
D, = | 1742 = 511 + —%=10) + 5/-1)
1/2J L
~1/.42

1
0}, = 0 = —72'(|l>—|~l>)

and

Supplementary Problems

6.18. Prove the following relations: (a) (L,p] = iﬁZe_‘ik p,-y[L,p?] = [L,r?] = [L,r-p] =0.

k
Recall that 4, j, and k can assume the values x, y, and z, and that €, , is

1 ijk cyclic permutation of xyz
-1 ijk anticyclic permutation of xyz
| 0 otherwise

(6.17.11)

(6.17.12)

(6.17.13)

(6.17.14)

(6.18.1)
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6.19.

6.20.

6.21.

6.22.

6.24.

6.25.
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Hint: By definition, L = rxpanduse L, = (rxp), = Zeukrj p;-
iy
Prove the following relations for the angular momentum operator: (@) L> =L L p-hL +L2 (b)
[(L,L,] = AL, .
Show that if the matrices of L, and Ly are real, 1.e.,

UmlL I'mY% = {Iml]
NPaL ey \?

17"y Liml I 1Pm’N% = Il 1) /620 11
n e my vENL My L my o (Bl ]

then the matrix of L_ is imaginary, {(!m|L |I'my* = (Im|L ['m"). Hint: Recall that [L , L] = ikL,.
For a system with an angular momentum / = 1, find the eigenvalues and eigenvectors of L xLy + LyL .

1 1
Ans. |v) = [1,0); |v) = :/-—Z‘(z‘ll, D+, =1)); vy = 'ﬁ(—f“, D+, -1)

In a system with an angular momentum / = |, the eigenvalues of L, are given by [+ 1), |0), and [-1), where

LJ+1y = AH1) L1y = —f-1) L, = |0) (6.22.1)

,
The Hamiltonian is H = _ﬁg (LI-L2), where W, is a constant. Find (a) The matrix representation of H in the
basis |+ 1}, [0), and |-1) ; (b) the eigenvalues and the eigenvectors.

Ans. (a) H 1) 10) |-1)

1 0 0\ H+ 1)
H = fw)OL 0 2 0 J [0Y
0 0 1/

(b) The eigenvalues and eigenstates are wyf (|+1), 20,4 (|0} ), and wyf (|-1)).

Prove that in spherical coordinates the operators L , L , and L, are written as
L = —?(sinq) a%+ cosd coth 8%)
1L, = ’—?(cosq)i—sinq) cot® i) (623.1)
y i a0 oh -
L _hd
L7~ id¢

The Hamiltonian of a three-dimensional isotropic harmonic oscillator is
1, . . 1 .
H = 5-(p; +p;+p]) +3me" (x> +y* +2%) (6.24.1)

1 1
Calculate the following commutation relations: (a) [H, L,]1,(b)[H, H_ ], (¢)[L, H_}, where H, = z—mpf + imwzzz.

Ans. (@) [H,L] = 0:(b) [H,H,] = 0;(c)[L,H] = 0.

Prove that the time derivative of the mean value of the angular momentum operator L is given by

C% = —{rxVV) (6.25.1)

where V is the potential. What can you say about the time derivative of L for a central potential?

Ans. Foracentral potential, VVecr = rxVV = 0, and the time derivative of L vanishes; thus, the eigenval-
ues of L~ are time-independent.
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6.26.

6.27.

Use the following data to compute P, (x): (@) P,(x) is a polynomial of the fourth degree; (b) P, (1) = 1;{¢)

1
P, (x) is orthogonal to 1, x,x2, and x°, ie., j x*P,(x)dx =0 for k = 0, 1, 2, 3. Hint: Choose P, (x) tobe of

4
I
the form P,(x) = EC&X". Ans. Py(x) = 3(35¢"+30x7+3).
k=0

Let [y) be a state function of a certain system and U, (6, n) be a rotation operator with angle 6 around n {n is a
unit vector), so that [y) = Ul) is the state function rotated by angle 8 about n. Using a marrix representation,

show thatfor/ =1, U, (8, n) = ex —ien - L ) (this operator is the rotation operator for all values of /).
r( PL~% pe



Chapter 7

Spin

7.1 DEFINITIONS

Spin is an intrinsic property of particles. This property was deduced from the Stern-Gerlach experiment.
The formal definition of the spin operator S is analogous to the angular momentum operator (see Chapter 6),

S’loy = S(S+ 1) Ao (7.1)
|o) being an eigenfunction of § >and S (5 + 1) the corresponding eigenvalues. We define also
' =S, +8,+5. (7.2)
where S,, 5, and §_ obey the following commutation relations
[S.5,1 = ifs. [5,5.] = RS, [S.S) = iAS, (7.3)
Analogous to angular momentum, the quantum number of spin in the z-direction is mg; = -5, -S+1,...,+§,
and
S.lo)y = mch|oy (74)
7.2 SPIN1/2
For particles (an electron, for example) with spin of 1/2 we have mg = + 1/2 and two distinct eigenvectors

1 1
of S’ and § . denoted by |+§) and I—i). These eigenvectors are called the standard basis, where

1. 3., 1 1 Ao
Szlii) = zﬁzliy S.k5) = 151+3) (7.5

As its name hints, it is this basis that is usually used, though alternative bases are of course available. Any wave
function in the spin space can be written as a linear combination of the standard basis.

7.3 PAULI MATRICES
The Pauli matrices ¢ = (0,, G, G_) are defined using

A
S = 50 (7.6)

SRR S B P
c,= L0 G, = i 0 6. = 0 -1 (7.7)

S being written in the standard basis. The commutation relations of the Pauli matrices are

where

{o.0,] =2ic. o, 0.1 =2io, 6,0} = 2io, (7.8)
Other useful relations for the Pauli matrices are
6,=0,=0 =1 (7.9)
and also
(6-A)(6-By = (A-Byl +i6- (AxB) (7.10)
where A and B are iwo spatial vectors

122
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7.4 LOWERING AND RAISING OPERATORS

Analogously to the angular momentum, we define the lowering and raising spin operators:

S, =5, +iS, § =5,.-iS, (7.11)
where
1 1 1
S,1+3) =0 S 13} = hi-3) (7.12)
S LI f l) h) Lo 0 7.13
+|_2> - |+2 6"'2) - ( - )

7.5 ROTATIONS IN THE SPIN SPACE

To find the representation of a state |c) in a given coordinate system that is rotated by an angle 6 around an
axis in the direction of the unit vector & (see Fig. 7-1), we compute

i

oy = exp(—f—ieﬁ : S)\a) (7.14)

P
AN

y
Fig. 7-1

Thus, the rotation matrix is

. cos (0/2) i 1o
‘I"]R = exp(_i@j? . S\ = [ id sin (8/2) e (7.15)
\ A /o \sin(6/2)e" cos (6/2) / '
Notice that for ¢ = 0 (rotation around the z-axis) we have
cos (0/2) -sin(6/2)
U, =1 .. (7.16)
R sin (6/2) cos (6/2)

which is a rotation of 62 around the z-axis. The rotation of a spin vector differs from that of a spatial vector.
This result is unique to the spin vector and can thus be used to define a spin vector. A spin vector is called a
spinor.

7.6 INTERACTION WITH A MAGNETIC FIELD

Consider a system consisting of particles with a spin S. Applying a magnetic tield B will introduce an addi-
tional term to the free Hamiltonian H,,. so that

eB
H=Hy+H, = Hj+—-8 (7.17)
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7.1.

7.2

SPIN [CHAP.7
Solved Problems
Calculate the commutation relation [ G, 0}.], where j = x,y,z and o, are the Pauli matrices.

We begin by considering the Pauli matrices:

Therefore, we see that

0 1 0 - 0 -i 0 1
(6,0,] =0,06,-6,0, = [ ][ ‘ ]~[ : )[ ]
; ’ {1 0 i 0 i 0 1 0
= [ ‘ 0, )~[ N 9 } = 2:‘[ 1o J = 2io, (7.1.1)
0 —i 0 i 0 -1

Also,
fo Y1 o) (1 oo =)
(o] :6- =00.-00¢ = —_
O W'Y WIND L FIY R
= 0 ! — 0 - = 2[6" (712)
i 0 -i 0 '
and, finally,
.61 coo—go | L 00 1] 01(1 0
P TR T 0 -1) 10 1 000 -1
—(0 1\—(0_1\—216 (7.1.3
L=t 0)701 o) o
So we conclude that
lo.0,] = 2ig 0, (7.1.4)
where
1 ijk have cyclic permutation
£y = -1 ijk have anticyclic permutation (7.1.5)

0 otherwise

1 1 1
Using the basis vectors of 5, eigenvectors, calculate S‘-|+§) and S:'"i) (i =x,y,2), where |+§) and

i~l> are the eigenvectors of §_ with eigenvalues +A/2 and —£i/2, respectively.
2

The basis vectors of S, eigenvectors are (see Summary of Theory, Section 4.2)

_ k01 ko A1 o
TR P T
f . 1 1 1 0 .
andS::ic.Denotmgby l+3) = 0 ,|—§)E | | we write
Loafoa 1) af0) &
S =3y o lo)T2( 1 )72 (7.2.2)
3

[PV S 4 A
a0 o) s 1) s
S’fl_i)_ZLl 0JL1J‘2L0J=2|+2> (7.23)

Note that §, produces a transition between the eigenstates of S, so that when 5 operates on one eigenstate it pro-
duces a multiple of the other. Similarly, for S :
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1, _ A 0 —i 1 _h 0 hi 1
S22 =30 o fo)T2 i) 2FY (7.24)
o N e L N ,
1 Al O i O A i) A1
Sk = 2[ i0 JL 1 J = 2[ 0 J =21 (7.2.5)
And so, as expected,
Ay |+3‘\ = frl( : 0 }( ! = f—?( 1 = frll.y.l\ (7263
FP =20 -1 072072
1 Al 0 1 0 il O Ao
S;I"z‘) = 2( 1 0 ][ 1 ] =- 5( ] } = - El_ ‘2‘> (7.2.7)

7.3.  (a) If the z-component of an electron spin is +# /2, what is the probability that its component along a
DR What 10 tha

Aienrtinn ~' thnt fAarmo an ancla ith tha = _avic apuale 1H /) Ar _H /") fona Fia T_9% AY
uu\;\.uuu L uaL 1uLiin ail a.uslu U Wllll l.ll'u LTANALD b\.lualb TICS & VI TR/ LqeLVlvay | 5 = L \ ] ¥y ual 1y uic
average value of the spin along z'?
/ ] '
Fig. 7-2
] . .
(a) The present state of the electron is |+'2'); the spin operator component along z' is
h
§S,=S-n= 56 -1t (7.3.1)
where I is a unit vector along z'. In our case, n = % sin® cos¢ + ¥ sin® sin¢ + £ cos 0 and therefore,
§. =8, sinBcosd + 5 sinBsing + 5, cosB (7.3.2)
The eigenvatues of S, are +%/2 or — £i/2, and the eigenvectors of S, with the basis eigenvectors of §, are
LN 1 b 1 7
[+3) = al+3}+bl-3) (73.3)
Spedy = 2Ly 734
z'|+2> - +2|+2> ( fadl )
and
1., 1 1
30" = cl+3) +d-3) (7.3.5)

sl AL,
z'l_§> - _2l—§>
where a, b, ¢, and d are complex constants. By substituting (7.3.2) and (7.3.3) into (7.3.4) we obtain

1 h ]
(S, sinB cosd + Sy sin@ sin ¢ + 5, cos ) (al+‘2') + bl—%)) = §(a|+'2') + bl—%)) (7.3.7)
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Using the known relations

1 Ao 1, &

S +3) = 3b3) { S -3 = 313
I, ik 1 1, ikl

S,+3) = 713 18,1—5) = —513) (7.38)
1l k1 N L

S5 =3k “S5) = 530

so (7.3.7 ) turns into the form

h hb - . 1 1
2a { schos¢|—2) + zsmesm(bl—z) + c059|+2)} + 5 {S‘"9C05¢|+2> — isin@sin¢lr3) - C059|—§)}
h 1 1
=5l a3+ bl_§> (7.39)
Hence, we obtain

asinf cos® + ia sin@ sing — b cosO = b

| @ cos® + b sind cos¢ — ib sinb sing = a {7.3.10)
- (1+cosB)b I1 T T T (1+cose)\
or d = sm9(c05¢+19m¢)) ) Musy pc a unit veoior, Lhua, |uiz~v-|b|2 = land |b|2k + T} =
1, so
.2 ¢] 2f 0
. 29 . 29 4sin 3 )08 \ 5 0
, _ _sin __sin B _ _2(_)
|b]? = 7008 = 7o = 70 sin’{ 3 (7.3.11)
4cos 3 4cos 2
We choose b = ¢/%sin (0/2); hence
of 8 ((;)\
(1 + cosB) (9) . 2cos kzjsmkzj (9)
a = Toaae sin 7)€%= ——mg - °os\3 (7.3.12)
so we obtain
b = cos( 3 e+ s §)
|+§) = cos\§_|+9)+sm e"‘l—,,) (7.3.13)
. 1. . 1,
Since 5 is orthogonal to +3)" we have
1 0 0 0
(+'|—1) = ccos| 5 |+dsin| 5 Je™® = 0 = ¢ = —tan| 5 Je~i*d (7.3.14)
202 2 2 2

»

1
Note that |-5) is also a unit vector, so |c|2 + |d|2 = 1. Substituting ¢ we obtain [tan2(9/2) +1] 142
2

or ld|? = cosz(9/2). We choose d = —cos (8/2), and so ¢ = —e'?sin (6/2). Therefore,

1 . (9 0
I—E)' = —sm(z)e ¢I+2)+ cos( ) 2) (7.3.15)
The present state of the electron represented by the basis eigenvectors of S is
IR IR TR TR T B W ) ]
[+3) = (+3k3)H5) + (+§|—§)|—§) = cos( )|+2) +sm( ) '¢|—2) (7.3.16)
Therefore, the probability that the spin component along z' is +A/2:
+h L, 112 o @
Pl 5 ) = |'tr33) = cos’| 3 (7.3.17)
and the probability thatitis -%£/2:
h 1 .28
P[—i) = \ (-3 = sin (i) (7.3.18)

1 1
(b) The average value of the spin along z' is {§.) = (+§|S:.|+§). Using the relation

S:.I+%) = Sz.( cos(g)H%)' + sin(g)e“ﬂ—%)') = ﬁ( cos(e)|+2) sm(e) r"|—2)') (7.3.19)
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7.4.

we obtain
o Yol ()
(8. = (+31S.1+3) = (+315| cos{ 5 JI+5) - sin| 5 Je~9|-5)
Ar (0}, 11 (8) L1
=3 tcosL iJ(+§|+§)' - SmLiJe '¢(+§|—§)'J
ﬁr /6\ /9\ /6\ /6\ —I
=3 [cos[ iJcos( 5)— sin( §Je'¢sm( iJe""’J
k 2 8 . 2( 8 3
= E[cos (ﬂ—sm (EH = c;se (7.3.20)

Consider a particle with spin § = 1/2. (@) Find the eigenvalues and eigenfunctions of the operator

S+ Sy where S, is the spin operator in the i-direction (i = x, y, z). (b) Assume that |o) designates the

eigenfunction of S, +S, that belongs to the maximal eigenvalue, and that the paﬂicle is in state IOL) If
A mmanoitea tha grie +ha Ay Az men vdant awrs tha wrnlina Al thato smcalnbiliei oD 7 I PLraS Py

WC LIICAasulc 111G DlJlll lll LllC Z- UlleLlUll, Wllal alrc l.llC valuca ana LllCll lJlUUaUlllllCB \L) J.,I.IC Pal UL ic lb lll

state |o) . Find, if possible, the direction n in which the spin measurement will with certainty yield the

value §, = h/2.

(a) We begin by writing 1he matrices

Bl 0 1 il 0 —i Bl 1 0
=3 S,=3 S.=3 4.1
v 2[ 1 OJ ¥ 2( i 0 J : 2[ 0 -1 ] (7 )
thus,
A {z( 0 i1 ]
A = Sl+S.‘. = 2\ P+l 0 (742)
To find the eigenvalues of this operator (A%/2), we must solve the equation det [/{ - (A/2) 1] = 0; that
is,
Y W ( @)4 . ) .
dct{z[ Y ]} =0= 3 AP (1-D)(1+D)] =0 (7.4.3)

So, A2—2 = 0, which yields A = +./2, and the eigenvalues of A are +h/./2. The eigenfunction of A cor-
responding to the eigenvalue + £/ /2 is

ﬁ _ _ . _ _ .
ker{i[ J2 l}} = ker[ 200 ’] (7.4.4)
1 +17 —ﬁ 1+ —ﬁ
1 |
That is the state a|+§) + bl—i), where
B » ~fa+ (1-)b=0
ﬁ =i 4= 0 = { . (7.4.5)
Ctvi 2 0k ) L0 (1+a=-s2b=0
J2 I 1 . . - 2
Thus, a = 77 b. For al+3) + b|—§> to be normalized we must satisfy the condition |a|2 + |b|2 = |; hence,
( 1£ + 1)|b|2 = 1 (74.6)
+1i
l 1 _l' e—in/4 . l
which yields b = 1742 and a = i Rk Therefore, the first eigenstate |v) = a|+§)

—-ir/4

1
+b|—2) isfoundtobe |v) = eﬁ |+2)+ fl 2) Similarly, for the second eigenfunction of A correspond-

ing to the eigenvalue -/ J2 we obtain

LR, R B S RIS B 47)
2 s )" e ) -
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1 1
Orlv) = cl+§) + dl_i)’ where

ﬁ 1—f}( (‘]_(0] {ﬁt‘+(l—i)d:0
(1.: /\f]/_\ﬂ/z? (l+l')(‘+,._/§_d=0 (748)

LN e ¥ V2 had >
2 . 1
so ¢ = _i_+id' The normalization condition of {v,) yields d = 1/, 2 and ¢ = 1" e3n/dys J2, and
In/4 1
therefore, {v,) = 7 |+2)+ f' ) so finally
A
(5, +5,)Iv) = —Tzlvo (S, + )1 = Bl (7.4.9)
(b) The maximal eigenvalue of S +5, is +h/ .42 thus,
e /4
oy = vy = N |+2)+[J 2) (7.4.10)
The values that can be obtained from a measurement of S_ are +A /2. The probability for S_ = A/2 is
ﬁ 2 -ni/4]2 1
P(E) = (+§|cx> = |2 =3 (7.4.11)
I 2

Therefore the probability for §. = -k /2 is

W)= 1-#(]) -} (7.4.12)

(c) If the measurement of an observable gives only one result, then the state of the system is an eigenstate of that
observable; thus, the state |o) is the eigenstate of a spin operator in a certain direction (the one we wish to
find). As we have seen in part (@),

in/4

—iRS4 ] i i
o) = ) = ﬁ f"'z) + ﬁ|—§> (7.4.13)
Jv,) is also an eigenstate of §, + §_with the eigenvalue h/ Jf'. , that is,
h 1 i}
(s +s)ly = Zloy = = (S +5) ey = 510 (7.4.14)
AT 2 J2

Hence, |c) is the eigenstate of (S, +8S)) / /2 and the measurement of (5, +85) /ﬁ always yields the result
fi/2 . Notethat (5, +5)) / 2 is the spin operator in the direction of the spatial unit vector n = & + § where
X and $ are unit vectors in the x and y directions, respectively.

7.5.  Consider a particle with spin 1/2. () What are the eigenvalues and eigenvectors of § , S and §,7(h)
Consider a particle in eigenstate §,. What are the possible results and their probabllmes 1f we measure
the z-component of the spin? (¢) At t = 0 the particle is in the eigenstate S, which corresponds to the

- . : e eB .
eigenvalue —# /2. The particle is in a magnetic ficld and its Hamiltonian is H = e Find the state

at 1> 0. (d) If we measure S, at 1 = ¢, what is the result? What is the result for a measurement of S, at
t = t,? Explain the difference in ¢ -dependence. (¢) Calculate the expectation values of § and S_ at
P =1t.
1

(@) Consider the matrices §,, S, and §_ written in the basis eigenvectors of §.,

h 1 R0 - i1
S‘ - 5( (1) N 1 v = 5( nl S: = 5 n 01 (75 1)
7\ 1 U } 7\ 14 u } 7\ U —1
Lo _ (1)
First we shall determine the eigenvectors of §_. For eigenvalue +# /2 we have !+§) = k (l) )a_nd for eigen-

1
value —fi/2 we have |-3) = \( (l) ) The eigenvalues of S, are #A/2, where det (S, - (£A/2) 1) = 0;
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or A2 -1 = 0. Therefore, we obtain the eigenvalues +# /2. The eigenvector corresponding to the eigenvalue

| {a\

1 1
+h/2 is i+5')x = ai+§>’+bi—§>'EL b J )

that is,
-A 1

L= (75.2)

1 fjl fj( 1\((4\_{1((:\
EREEEE S HE H

1
Solving (7.5.3) we obtain » = a. Now, |+5) must be normalized, so we set the condition lal* + {2 = 1
Substituting for a we obtain
|
b= 1=a=bh=-% (754)
~2

Thus, the eigenvector of §_ with eigenvalue +A/2 is

1
’+2> A,z( ij _(‘*"2) +|‘2>) (7.5.5)

The other eigenvector |—§) (with eigenvalue —f/2) is obtained either from orthogonality and normalization

conditions (since the two eigenvectors belong to different eigenvalues), or in the same manner in which the
first eigenvector was obtained. We will follow the former course:

Lok b I, |« 6
Fa), = cbv2) + bl =1 (7.5.6)
and
{ 1/'«/5 \
el = e @ R A (7.5.7)
2 2 2 Y l/ﬁ »,/i ﬁ -
giving ¢ = —d. Using the normalization condition, |c|2 +|d|2 = 1; we can choose ¢ = -d = 1/./2 and
obtain

1

1 1 (1 1
-3 = ﬁ[ N ) = Tz(“i);"‘i)j (75.8)

Similarly, the eigenvalues of S, are (%/2)X, where

(A 1\ rav o L)
det S, -3 ) = LEJL ; _”:0 (7.5.9)
- 12 1 — N. an tha aleawmcalivace A8 € nea aloa L& /T ned sha aloanmianta amsmncgmmm dime sn sha alo.
u AT — 1 U, 3du e CIBCIIVQIUCB Ul Jv O aixsu s L anu uic CIBC IVOL UL LU JCBIJUIIUI 15 i uIc CIBCII'
value +h/2 is
(g = alv3h. bl =l 75,10
3 = +3).F D|—35). = -
2 T diTy): 2/: b ( )
where
2o S a) e g
S,+3). = 51 Al I I §|+§))‘ (75.11)
Ve U0 ay (L

so ia = b. Using the normalization condition |a|2+|b|2 = 1 we obtain 2|h|2 = 1, so we can choose
b = 1/4';:4 and ¢ = —z‘/Ji. And finaiiy, we obtain

I+2> 1 z|+2) + |—2 (7.5.12)
)
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1 1 1 1 1
Using the orthogonality relation of J_§>v to I+§)y we have '_§>>‘ = c|+§)3 + dl_i)l and

N L ._(—i/ﬁ]u ic d _
S+, = (e a)L U J_—I’2+«/§_

d = ie, and from the normalization condition we
d ! the normalization condition we

<
—
~
U
-
w
e

w
=]

i

z/ﬁ therefore,

( + + l \ (75 14y
\ i} i) _} {7.5.1%4)

As we found in part (a), the cigenstates of §, are
|+ 2>\ - '\/5 |+2>: + |_2): |_2>[ = ﬁ |+2>: - I_—2>: (7. 15)

1
If we measure the spin component in the z-direction, the state of the particle will be either |+§):, giving

1
S, =h/2,0r |—'§):, giving §. = —A/2. The probability for §. = A/2 is

2
o) - PPN (7.5.16)
2/ T 2T 2 ' §
andfor S, = -h/2 is
(- Jebf - ,
P -5 ) = :(+2|_ =3 (7.5.17)

o ] 1 .
Note that if the initial state is either |+§).\ or |—§)‘ we obtain the same results.

At ¢ = 0 the particle is in initial state:

|+2) ﬁ(“‘z) + |- 2)) (7.5.18)

Hamiiltonian is time-independent, we write W (r, s, 1) = &, (r.8) b, (7); substituting in the Schradinger equa-
tion gives
00,(r)
0(rys) 5, = $.(DHY(rys) (7.5.19)

Assuming that ¢,(¢) is of the form ¢,(¢) = e-¥7* where E is a constant, we obtain
Ed(r,sye-Eh = 0 () HO(ry5) = Ed(r,8)0,(r) = d,(1)H (T,5) (7.5.20)

and we must require that ¢,(r,s) = E¢, (r,s). In other words, ¢ (r, s) must be an eigenfunction of the Ham-
iltonian AH. Note that

eB
H=""5§ = (const)S. (7.5.21)

Thus, the eigenstates of / are similar to the eigenstates of S_, where the eigenvalues of H are the eigenvalues
of S_ multiplied by the constant eB/mc . Therefore,

1 eBh
lw(r.s)) = |+3). E=35- (7.5.22)
and
1
Ly (T, s, nY = e-,em/zml-ﬁ—i): (7.5.23)
Also,
Tyie 7o oV Y — I_l\ E__ﬁ 77 & AN
ITYi\n, 3/, = | 2/: L = Ime (/I.c%}

which gives

Iy (r,s, ) = e"”"“z’""l—%), (7.5.25)
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Therefore, each state of the particle can be written as

‘ l |
JW(r,s, D) = aly,(r,s, 1)) +PlY(r,s1)) = oce-’“?’/?"’<‘|+§): + Be‘/?m"l—i)z (7.5.26)
For our system, the initial condition is
1 1 1 1 1
y(r,s,t=0)) = 3(I+§>z+l—§>z) = al+3). + Bl-3), (7.5.27)
hence a = f = 1/2, giving
it A 1 ( et/ Ime | l’ Br/2Zme | 1, \ 75 7
W(rs.0) = (e 3. + ercBrrame |5y | (7.5.28)
A measurement of S, or S, will give either +% /2 or —i /2. The probability for a measurement S, = +A/2 is
h 1 2 ] —ie me e me : 2 eB[l
&(*‘i) = | G3hwir s, 1)) = ’aw PO gt = coy (m) (7.5.29)
and for §, = —A/2 we have
{ ﬁ\ I 1 |2 [1 —ie81t, / 2mic ieBi /2mic |2 . 2/68“\\
PXL_§J = L(—il\y(r, s, Il)>l = |§(e ! —e )| = sin km) (7.5.30)
Similarly, the probability for S, = +A/2 is
h 1 2 1 _ieBt, /2md|” 1
P:(+§) = [(+3ly(r.s, 1)) = ‘E i =3 (7.5.31)
and for §, = -A/2,
h 1 z L g same]? 1
Pz(‘ﬁ) = ’f—il\v(r, s,1,)) = Iﬁe = (7.5.32)

We can calculate the expectation value of §, in two ways: the first by calculating y(r, s, 1){5,|w(r,s, #,)}
and the second by summing over the producis of the possibie vaiues muitipiied by their probability. In the sec-
ond possibility,

A (R R_( &N R[ afeBn)  {eBy\] g [ eBt\
(S,) = +§PXL+§J_§PXL_EJ = QLCOS k%}—sm km” =3 cosLTn'C—J (7.5.33)
Similarly,
f Ay A h R(1 1
(s} = +§P:(+5)—§P:(-5) - 3(3-3) =0 (7.5:34)

eB
Note that (S} is not conserved in time; this is because [H, §,] = ——[5.5] #0, while (S is conserved

since

eRB
(#,8] = -[8.8]1=0 (7.5.35)

7.6. (a)Provethat [S2,5.] = O where §2 = §2+ .S'y2 + §2. (b) Show that the eigenvectors’ basis of S, diag-
onalizes $2. Find the eigenvaiues of S2.

(a)

In Problem 7.1 we found that (6, 6,] = 2i6,; [0,,0,] = 2i0,;and [0, 0,1 = 2i0,; therefore, recalling
that S = AG/2 we write
(S, 8,1 = iAs, (5,.5.] = iAS, [S.S,] = iAS, (7.6.1)

Hence,

(5 = [S2+53+525.] = 3 (525.] (7.6.2)

where i = x, y, z. We see that
[$2,5,] = §25,-S.52+55.5,~5,5.5,
=5,(55,-5.5) + (55.-5.5)S, = $,[5,5.] + [5,5.15, (7.6.3)
so [S2,8,] = 0. Also

[535,] = S,[5.5.1+ (5,515, = -ih(5,5,+$,S,) (7.64)
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and

[S_\z,, S] = Sy[Sy, 5]+ [S_v, S:]S}, = —iﬁ(Sny-t-SxS},) (7.6.5)
And finally,

] = ) (S35 = ih(S,5,+5,5) ~ih(S,5,+5,5) =0 (7.6.6)
To obtain the matrix representation of S? we calculate it, using the matrices of §_, S, and S, in the basis of
the eigenvectors of §_; that is,

0 )

S_g(oﬂ S_g(o_i\ ¢ 767)
*_2L10 ’ QLioJ ~_2L0-1 o
hence,
£)\2
§2 = S2+852+82 = (5) (6l +02+02) (7.6.8)
Using the known result that 67 = 1, we obtain
h\2 3h2
§* = 3(5) 1- T( PO } (7.6.9)

Lo 1)
We see the §? is diagonalized (in the basis of the eigenvectors of §.). From linear algebra we know that if a
vecior basis diagonalizes the matrix of an operator, then the basis is comprised of the operaior’s eigenvectors,
1 1
ie., |+§) and '_i) are also the eigenvectors of §2, In other words, we conclude that if the commutation relation

of two operators is zero, then we can find similar eigenvectors for both of them. To find the eigenvalue of §2

J
1
So the eigenvalue of |+5 ) is 322/4 , and the eigenvalue of |- 2) is

1 3 1 0 0 382 0 3R 1

1
Thus the eigenvalue of |~ z) is also 3A2/4. Note that if we set § = 1/2 to be the guantum number of the

1
for the eigenvector |+§) we calculate

a2
SZH”:) 4 ( (1) { ][ (l)

o) (7.6.10)

=

total spin, then (like the angular momentum theory) the eigenvalue 3%2/4 can be written as 225 (S + 1),

1 1
Find the result of applying the operators S, + (S and §,~ iS, on the eigenvectors |+5) and l_§> of §,.
What is the importance of these operators?

X y
1 1
S +iSHl+z) = S 1+ + i8S I+;\ = 2 I—l\-&—(i?\:l-l& =0 (7.7.1)
yl .l/ x AI ¥ .l’ Z' L 2/ \ Z'/ 1 2/ 1 ’
and
. 1 1. . Ao Ay 1
(SX+IS),) !—5) = Sx|—§)+zS [~ 2) 3 |+ §)+ i3 :|+§) = h|+2) (7.7.2)
For the operator S,— i§, we have
_ 1 1 1. A AY. 1 1
(S-S, 1+3) = S,J+3) = iS,l+3) = 3b3) = 13 Jil5) = hl-3) (7.7.3)
and
, 1 ] ) 1 o1 *k ) 1
(5= iS)1-3) = S,-3) = iS,l-3) = 3k 3) = (i3 (=Dl 3) = 0 (7.7:4)
To conclude, we have
(‘l.l\=n [l l‘\_I.I_l\ [ |_i\_m.l\ [\ I_l\_n /77 &
U+|T2/ v U_ |1'2/ - ID| 2/ AJ+| 2/ — lbl"’z/ U_' 2/ -y l/-/ J}
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where S, =8 + iSy and §_ =8 - iSy. The latter relations justify calling S, a spin-raising operator, since it
increases the spin in z-direction from —%/2 to +#A/2. Similarly, we call S_ a spin-lowering operator, since it
lowers the z-component of the spin from +£/2 to —A/2. §, and §_ allow us to jump from one eigenstate of S,
to the other. They are very useful in spin calculation.

7.8.  Using the operators S, and S_compute the matrices S, and S ; show that §? = §2+ 52+ 82 is diag-
onalized in the basis of eigenvectors of S ,.

The spin-raising S, operator and the spin-lowering S_ operator are defined as
S, =8, +i§, S_ = 8,-1iS, {7.8.1)

Hence, we can write
1 1
S, =5(5,+8) S, = 5;(8,-8) {7.8.2)
Therefore,

1 1
S = 8§2+8t+ 82 = ST+7(S,+8)2-7(5,-5.)2
=S247(S2+5,5 +5 5, +52) —7(S2-5,5 —S S, +57)

1
=Sf+§(S+S_ +5_5)) (7.8.3)

To find the matrix representation of $? we compute

ey = (sre 5.5 055 by = stelye dss il o Ls sk
SI+2) = SZ+2( So+S8S) |+2) = S,|+2)+2S+S_|+2)+ZS_S+I+2)

a2 1 f 1 h? A2 1 3R 1
= (E) [+3) +§S+l_§>+0=(7f +§-)|+§) = 4 1+3) (7.84)
And also
n7|1\=(02.1r("(" (‘ﬁ\\ll\_lZl l\ i(’("ll\.lﬂ (“Il\
o'|—2) =9t +3.5) )|—2; = 7= )+ 30,9, |~—2/+2o_ o+|—§)
AV 1. A 1 A2 Azy 1 3h2
= (5) I-§)+§S_I+§)+O = (T+7)|_§) =7 (7.8.5)
Therefore,
1 1
|+2> l‘i)
' N\
| 1) 3h2 0
< 2
. 2| 4 _ Bf( 1 01
[S7] = . 32 —4\0!/ (7.8.0)

which is diagonalized.
7.9, For a particle with spin 1/2, compute in two ways the expectation value of is.8,S,, where the
oy - e e e
particle wave function is TQ(HE) +|—§)): (@) using §, and S_ operators, where §, = §, +i§,
and S§_ = § —iS; (b) in a direct way.

(a) Consider the matrices S, and §_:

|....

(§,+5) Sy = 33(5,+5.) (7.9.1)

[
]

S, =

i
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Therefore,

N ] 1
=iS, 5,5, = g7(5,+5.) (5.-5.) (S, +5) =3(S2-5,5_ +S_S. ~5§2) (5, +5 )

1 -0 3
=g(SI-S5.5.5,+5.51-525, +5,82-85.52+5 5.5 -5 (7.2.27
Recal] that
1 ! 1 1 1 1
S,H3) =0 S 3) = hlr3) S_l+3) = k- 3) S_I-3) =0 (7.9.3)
Hence, : |
Sik3) = 0 $i+3) = 0 (7.94)

Therefore, all the expressions in A that contain S2 or §- do not contribute to the expectation value, that is,

(A) = 2 ( (3l + & 2|)’Sr5\5r(|+%>+|‘ %>]]

Elledee3) (k3+15)]
gL\ {2l + 515 8.5 +8.8 S 3+ 1-35))] (79.5)
It can be seen that
1 1 1
S_S.S_l+3) =3 S 88 |-3=0 (7.9.6)
and also,
1 1 1
5,55, h3) =0 S, 8_S, h3) = A+3) (7.9.7)

Substituting in (7.9.5) we obtain

(b) The matrix representation of /S S.S  in the standard basis is

01](04](01)_@(01](01](01)

ojfi ofl1ro) Blirojl-1tofl1 o
o1 o 1 i 0 1

~ = = 9.9

A

n
E'q
c’,
cn
m N
—_—

=0 (7.9.10)

7.10. Consider the commutation relations:

[S,.8,] = ihS, (7.10.1)
(S, 8,1 = ihS, (7.10.2)
{5, 8,] = ihS (7.10.3)

v
Given that S, 5, and §, are Hermitian operators with eigenvalues +#/2, find the matrix representa-
tionof §, S and S. in a basis where §, is diagonalized.

Note that §,, S, and §_ each have two eigenvectors and that they are Hermitian operators; thus we conclude
that their matrix representation is 2 x 2; so,

( 1b1\ (az by ) v by )
57 L :| d, J T L € d J 5= l o dy J (7109
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7.11.

We want to express the matrices in a basis in which S, is diagonalized; thus we write

i/72 0 A1 0
S, = =3 7.10.
: ( 0 —h/2} 2[ 0 -1 J (7:10.5)
Substituting S, and S, in (7.10.3) gives
ﬁ/ 1 0 N/ a b A\ ﬁ/ a b NS 1 0 A s a b N\
5 -3 =ihl 7 (7.10.6)
0 -1 ¢, d, P 0 (- ¢, d,

fi 1, b a, —-b a, b
5{ SLEER T B } =i * 7 (7.10.7)
-, —d, ¢, —d, c, d,

b
= ( G 7 W =S, (7.10.8)

or

Thus, we obtain

o o o B ( 0 —zb,\ ( 0 —ic;
§, is a Hermitian matrix; i.c., ST = S, orL . ' J = . ' J.Therefore, b, = ¢, =0. Hence,
ic, 0 iby 0
s, = [ 0 Ao ] S, = ( “o o ] (7.10.9)
io 0 o d,
Substituting S, and S), in (7.10.2) gives
aff o —iw)( 1 o) (1 o) o wall_ fa )
2o 0 Jlo 1) Lo <t lio 0 )] T o4 ) e
or
Mo e} [ ol e o) o e e ) o
St 0y —ie 0 ) o at d ot 0 Lo od )
Thus, we obtain )
0 —ia 0 «
S, = [ o 0 ] S, = o 0 ] (7.10.12)
Finally, we substitute §_ and S| in (7./0.1) and obtain
[0 a) 0 —a) [ 0 ) o o« &1 o) 1013
uu‘OJLia' OJ_Lia‘ 0 Jka on_zko_lJ (7.1043)

—iloy? 0 —ila2 0 iR 1 0 [/ oz 0 #2( 1 o
B =7 =7 7.10.14
( 0 —iIaPJ { 0 ilaP] Lo o)7L o o 4| o 1 ( )

Thus, |a|2 = #A2/4. If we choose ¢ to be areal positive number (¢ = A/2), we obtain the standard representation
of §,5,, and §:

h h —i h
"\ 1 v } "\ { U j "k U -1 }

Using the Pauli matrices prove: (a) (0-A) (6-B) = (A- B)l +io- (AxB), where 6 = (0, G,

- ("‘9 \ -
o). 1 isa 2x2 matrix, A =(4,,A,4), B = (B,B,B); (b) expk'”lz—n-o')= cos (8/2)1 -
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R . 1 .
in - gsin (0/2). Recall that we can expand an operator A in a Taylor series, e4 = z’? (A)n (see
n

Chapter 4).

(a) We begin by considering the Pauli matrices:

o) e

0 A, 0 —iA, A, O
6 A=0A+0 A +0,A. = + volg :
a0 iA, 0 0 -A,

J\ (7.11.1)

w
[#]

A, A -iA,
= : (7.112)
A +iA, A,
" B, B.-iB,
Similarly, - B = N . Thus we obtain
B + IB_V -B.
A, A —iA, B, B -iB,
(6-A)(c-B) = . ' . “
A+ IAy -A, B, +iB, -B,
_ [ AB +AB +AB +iAB -iAB, AB, —iAB -AB_ +iAB, }
AB +iAB -AB —iAB, AB +AB +iAB —iAB +AB,
4 . . A
-l +[ i(AB,~AB) (AB -AB) +i(AB-AB) J
(A,B,-A.B) +i(AB ~AB) i(AB,~AB)
i 0 0 1 0
=(A-Byl+ AB,—A,B[' }+ AB-AB_[ L AB -AB [ )
( ) (.\'y ).r)‘o_’-,(:x x-)\_IO’ (yz zy)\l-ol
(7.11.3)
Note that
oy 2
AxB=| A A A\ = (AB -AB)I+ (AB -AB)Y+ (AB,-AB)? (7.11.4)
B, B, B,
so that

(6-A)(6-B) = (A Byl + (AxB)_ic_+ (AxB), ic,+ (AxB), io,
=A-B+ic- (AxB) (7.115)
(b) We expand the exponent as
8 = 1( 8 n
exp(—izn-o) = Zm(—iin-oj (7.11.6)
n=0

Note that

(n-o)" = l 1 for even n (i) = { 1 for even n

l n-o foroddn U (=i) (=1) n-Di/2 for odd n

Thus we obtain
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ol 50-0) = ¥ [ml3) 1) X [armls) @ o]

n=0 n=90
i E‘_, n (-~ /Q\ZH"I
= IZ(zn)l 2) —im 02(2“1)'(2 (7.11.7)
n=20
Using the known expansions of
a2 ©v_(b"
cosQ = L(Zn)l sino = L (2n+ 1),(1
n=0 n=0
we eventually obtain
(Fn-0) = cos(3)1-in-0sin(3)
exp| =3 N -0 | = cos{ 5 /L —in-Osin| 3 (7.11.8)
7.12. Consider the eigenvectors of S, the spin component in n-direction, where n is a unit vector:
n = X sin@ cosd + ¥ sinO sind + # cosO (7.12.1)
Find the rotation operator U, where
1 1 1 1,
Ugl+3) = |+3) Ugl-3) = 3) (7.12.2)

1 1 i
|+§) and |- 5) are the standard bases of S, eigenvectors; |+§)' and |- §>' are the eigenvectors of S

with eigenvalues +%/2 and — #/2, respectively. Recall that

J I+%)' = cos(e

2)|+2) + sm( Je *- 2)
i /IU\\ 1 /IU\\ 1 (7123)
k3 = = sin{ 5 Je#43) + cos\ 5 - 3)
1 / i A 1 { 0 A
We choose |+§) = L 0 Jand |- i) = L | J so that
I [ cos (8/2) J ] [ —sin(0/2)e-¢ )
5 = —5) = 124
k3 sin(8/2)e -3 cos (8/2) (7-124)

. . . b . 1 1
Assume that the matrix representation of U, is Uy = [ 4 ); then the condition (7,12.2) UR|_§> = |—§)' can
be written as ¢ d

( a b ]( 1 } _ [ (':os (8/2) 1 - ( a ) _ ( 'cos(9/2) } (7.12.5)
¢ d 0 sin(B/2)e1® b sin (B/2)e'®
\ AN / \ L Y yi \ y; \ L ) J
.. o1, . b | _ | -sin(B/2)e¢ | '
Similarly, for UR|‘§) = |_§> we obtain [ J ] = [ cos (8/2) J, so finally we get
A b | _ cos (8/2) -sin(B/2)e'o
R c d sin(0/2)e'® cos (8/2)
( cos 9 n o ) 0 sin(8/2) coso | | 0 +sin(8/2)sind |
+| . + .
L cos (8/2) J L sin(6/2) cos¢ 0 J L sin (8/2) sin¢ 0 J

Y« (8 7
) - smkij(cosnp)cy—x s1nL§J(—51n¢) o,

(e
cos| 3
(9 '_.:,A(Q\Iﬁ" y 1 L
kz lblHKZ)(u U) (/.lé.U]
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7.13.

7.14.

7.15.

7.16.

7.17.

SPIN [CHAP. 7

%*/
TN

x !

Fig. 7-3
. . . Zxn
where & = £ sindg + $ cos¢ (see Fig. 7-3). Note that & = 7, SO
|2 xmn|
| 3 : .
Zxn =

0 0 1 ‘ = —fsin@sin ¢+ #sin O cos o =>i§xn| = sinf (7.12.7)

sinBcosd sinBsing cosO

In Problem 7.11, part (b), we obtain the result

6 6 0
cos(i)l—i sin(i)(&AS) = Cxp(—%z‘z-S) (7.12.8)

9
Ug = exp(-—z& : S) (7.12.9)

[
X
=

=
=
»

where & is a unit vector in the direction of the axis around which we want to rotate the system, &

[
H
X

=l

unit vector in the direction of the new z-axis, and 6 is the angle between the new and old z-axis.

Supplementary Problems

Prove that 62 = 02 = G2 = 1. where Lisa 2 x 2 unit matrix.

A

A A A A A
Calculate the anticommutation relation [©, 0'1.] R where we defined [ A. B 1+ = AB +BA

Ans. [0, cj.] , =

Show that the matrix of §2 = §2+ SZ + SZ is diagonalized in the basis of eigenvectors of both S, and §,.
1 1 1

Calculate the value of (S and AS, (i = x, v, z) for the spinor E(WWZH,—,) + e 102 5)).

h fi f h
Ans. (S) = 5 cosp, AS, = 3 sing; (§) = -5 cos¢. AS, = 5 cos¢: (8. = 0, AS,

|

B &

0 . . .
. W Find the basis and the matrix representation

The matrix representation of §, in a certain basis is §, =
of §,and §..

| &

<o -
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1 1 ] 1 | ] | 1 fi i
Ans, |+§)‘ = ‘J—i(l+§)\+|— 5)\ ): i~ §>.- = E(HE)»—‘_ §>. ): § = 52[ (l)(l) J: S. = 2

~J
=Y
oo

Consider the rotation operator

. i0, R
Up(8,8) = expl Z&-8] =expl 580

By rotating the eigenvectors of S_, find the eigenvectors of S, and S, in the standard basis,

1
l+3) = UR(B =7—2t.f4 = —.i')l+§ = E(—Mz) +1= 2))
1 { = L | A T
2 = U8 =3 0=tk = Al ik )

(7.18.1)



Chapter 8

8.1 A PARTICLE IN A CENTRAL POTENTIAL

The Hamiltonian of a particle of mass M placed in a central potential V(r) is
P i
=tV = -3y

. 2. . .
where the Laplacian V" in spherical coordinates is

, 19 1[32 1 2 1 ai}

=V v (8.1

V= rarh 8_95 * tan 000 * sin? 93732 (8.2)

Comparing (8.2) with the expression for the operator L’ obtained in Chapter 6, we see that H can be written as
K19 )

ST L+ V(r) (8.3)

+
S 2Mr ort  2Mr?

The three components of L commute with L’ and therefore according to (8.3) they commute also with H:

[H, L] = [H, L] = [H L] =0 (84)
We can now solve the three eigenvalue equations:
Hy(r, 8, 9) = Ey(r, 0, §) (8.5)
L w(r. 8,9) = I(/ + DA W(r, 8, ) (8.6)
L.y(r, ,0) = mAy(r, 6, §) (8.7)

to determine those states that are eigenfunctions of H, L2, and L, (where we used the notations of Chapter 6).
Using separation of variables (see Problem 8.1), we get

W(r, 6,0) = R (NY] (0, ) (8.8)

where Ym is the spherical harmomc function and R, (r) is the radial function (which does not depend on the
quantum number /). Since the ¥, ", ¢) are normalized by definition:

)
e =N

j J (Y (¥ sin0do do = 85,8, (8.9)
0 Yo
the normalization condition is
J P R(M| dr = 1 (8.10)
0
According to Problem 8.1, the radial equation for R, (r) is

2 2 2
LA TR VLSRN PR

+ + V()[R R_{(n) (8.11)
L ZMI‘dr 2Mr2 LS }J nf ni\" 7’ \ I
We can simplify this equation by writing
1
R, (1) = ;Unl(r) (8.12)

140
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from which we have

#2d° 1+ A2
[_2—1-”‘—17 + %)2— + V(r)-l U (r)y = EU_(r) (8.13)

v LiVd -

Equation (8.13) is analogous to the one-dimensional problem of a particle of mass M moving in an effective

ntantial 1/ () whora
UL LiLial Veff\’ }, Yiloly

L({+ 1) #*
Viger) = Vi + “o L (8.14)
2Mr*
For the angular part we have the equations:
a L4 m
_ia_(bY[ ®,¢) = mY, (6, 9) (8.15)
1 a( . 2 1 | m m
~| 5026\ 5" 038 ) * §inTe5,2 | V18 @) = LU+ DY, 0) (8.16)

8.2 TWO INTERACTING PARTICLES

Consider a system of two spinless particles of mass #1; and m, and positions r, and r,. We assume the
potential energy to depend only on the distance between the particles, V(r, —r,). The study of the motion of the
two particles is simplified if we adopt the coordinates of the center of mass:

P, + BT
1M 2T
r_ = ——— (8.17)

cm m, + n,

and the relative coordinates:

o= R
LIl | H

1 2

-
o
—
So

“——

We can then derive the equations (see Problem 8.2):

ﬁz

2
S 2(m +my) Vool = Eqno(r,) (8.19)
and
2 .
-
A vy = B (820)
T, o tha cadanad camnoo nf tha ¢ martinlan
WIILIC M Id LILL feauled rridddy Ul LIIC LWwWU lJﬂlllLrlCB
nm.m
b= —— (8.21)
ml + m2

From Eq. (8.19) we conclude that the center of mass behaves like a free particle of mass 7, + m, and energy
E_.,- The relative motion of the two particles is determined by Eq. (8.20) and is analogous to the motion of a
particle of mass | placed in a potential V(r).

83 THE HYDROGEN ATOM

The hydrogen atom consists of a E)roton of mass m, = 1.67 x 107 kg and charge e = 1.6 x 107 C, and
an electron of mass m, = 0.91 x 10~ 0 kg and charge —e. The interaction between these two particles is essen-

tially electrostatic, and the potential energy is
2

(B

Vir) = - (8.22)

~
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where r is the distance between the two particles. Since m » is much greater than #1,, the reduced mass | of the
system is very close to m :

n it ni
p=—-> -;;(1._—") (8.23)
)

me+mp mp

n

This means that the center of mass of the system is practically in the same place as the proton; the relative
motion can be identified, to a good approximation, with the electron.
According to Egs. (8.8) and (8.12), we may write the states of the system in the form

]
v, (r.0,0) = ;Un,(r)Y,m(G, ) (8.24)
We introduce the Bohr radius a,, which characterizes atomic dimensions:
h’ o
a, = —=052A (8.25)
pe
and the fonization energy of the hydrogen atom:
pe*
E, = —=136 eV (8.26)
P o2
To solve the radial equation for the hydrogen atom, we define p = r/a, and A, = ,/-E,,/E, . The radial
equation (8.13) then becomes
2
d ((I+1) 2 _»
dp>  p P
where we use the index & instead of # (» = k + /), The radial equation is solved by performing a change of func-

tion (see Problem 8.1):

U dp) = e PMiE, (p) (8.28)
and expanding &,, in powers of p:
ulp) = pschpq {8.29)
g=0

C, (8.30)

. . 1L
q VK+ 1/ (K

The solution for R, (p) can be written in the form

_ 2V _(n=1-D o2 g 241
Rn[(p) - _/J(naﬂ) zn[(n+ ])'].‘ € pl‘n+[ (p) (8'31)

where L;i(p) are the associated Laguerre polynomials (for detailed information, see the Mathematical Appen-
dix). Some examples of the radial functions are

- —r/a,
Rooi, 1=olr) = 2(a) ™% (8.32)
_ r _r
R,_3 10 = 2(2a,) 3/2(] _ﬁ]e a (8.33)
0
=372 1 r ~r/2a,
R,_y 11N = (2ay)™ a.€ (8.34)

fha.
~N5%0
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8.4 ENERGY LEVELS OF THE HYDROGEN ATOM
For fixed /, there exists an infinite number of possible energy values:
E

_ n

T kD)

E, =- k= 1,23, ... (8.35)

Each of them is ar least (2] + 1)-fold degenerate, This essential degeneracy results from the radial equation’s

Al sCleas e A A 23 Ao/ E A A1 L) 1RWIar Wi

being independent of the quantum number /. Some of the energy values manifest accidental degeneracy. Her.
the E;; do not depend on k and / separately but only on their sum. We set » = k +/, and then

1 pet 1
E = - ;z—zE' = — hi —;x 13.6 eV (8.36)
The shell characterized by 7 is said to contain n subshells, each corresponding to one of the values of I
[=012,...,n-1 {8.37)
Each subshell contains 2/ + 1 distinct states corresponding to the possible values of m,
m=~-{+1,...,/-1,! (8.38)

The total degeneracy of the energy level E, is
+n =n {8.39)

If one takes into account the electron’s spin (which can be in one of two possible orientations) then the number
g, should be multiplied by 2.
For historical reasons (from the period in which the study of atomic spectra resulted i

re m
Tn T alum
nAg ratin alp

ation of the lines observed) the various values of ! are associated with letters of the Lati habet, as f"llows
(/I=0)es
1 r
(I=1ep
(] — 2\ e A
\l ‘./’ AN ¥ 4
(I=3)of (8.40)
(I=4) &g

in alphabetical order

8.5 MEAN VALUE EXPRESSIONS

In the following list we include some mean value expressions of r* that are useful in many problems:

(r*y= J:r* *2[R, (N1 ar (8.41)

(r = %"[3;12-1(1”)1 (8.42)
(ry = Ci%n—z[Sn2+l—3l(l+ ] (8.43)
() = == (8.44)

UOH
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and
1 1

_ L 8.45
ain®(1+1/2) (8.43)

8.6 HYDROGEN-LIKE ATOMS

The results obtained above originate in calculations for systems of two particles with mutual attraction
energy inversely proportional to the distance between them. There are many physical systems that satisfy this
condition: deuterium, tritium, ions that contain only one electron, muonic atoms, positronium, etc. The results
are applicable to these systems, provided that we properly select the constants introduced in the calculations.
For example, if the charge of a nucleus is Z, then e? — Ze? in all the calculations.

Solved Problems

8.1. (@) Write the eigenvalue equation for a particle in a central potential V(r), and perform the separation of
variables in the wave function. Obtain the radial equation and the two angular equations. (b) Solve the
radial equation for the potential of the hydrogen atom V(r) = —¢*/7.

(a) Consider the Hamiltonian of the system:
A1 0 L?

= 2o
v U vy,

+Vir) (8.1.1)

We have the following eigenvalue equation:

[ A%1d° L2
“2urg2 ) et V(r) |w(r, 8.9) = Ey(+, 8, ¢) (8.1.2)

-

The three observables H, L, and L_ commute. Thus we can look for functions y(r, 8, ¢) that are eigenfunc-
tions of LZand L. as well. We have the following system of differential equations:

Hy(r,8,0) = Ey(r, 8, ¢) (8.13)
L2y(r,8,0) = 1({+ )R y(r, 6, 0) (8.14)

and
Ly(r,8,0) = mhy(r, 9,¢) (8.1.5)

Note that we have three differential equations for y(r, 6, ¢), which is a function of three variables. Since

fa 12 1)

L = -f Lé—g_?’Lm%J'—sinz BWJ (8.1.6)
d
and L, = —iﬁgg) (see Chapter 6), (8./.4) and (8./.5) can be replaced by
d | d [ 2
- é?*'ma—eJ's_inE_ﬁaTﬂ Yy, 0,0) =11+ 1)y(r,6,¢) (8.1.7)

and
N an
_'_owu, 6, ¢)

do = my(r.8.0) (8.1.8)

The solutions W(r, 8, ) tothese equations corresponding to fixed values of / and m must be products of a func-

tion of r and the spherical harmonic ¥ ]m((-), 0):

y(r, 8,0) = R("NY, (B, 0) (8.1.9)
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Substituting (8./.9) in (8.1.2), (8.1.8), and (8./.9), we obtain

A1 d? [(I+1)R°
[— ﬁ;; (r) + ————211"2 +V(r) |R(r) = ER(r) {(8.1.10)
a 1 a 1 a m m
[_ 367 * 1anb3e * Sin? BW} V/0.0) =11+ DY, 0.0 (8.1.11)
and
. a n m

Equation (8.7.10) is the radial equation; (8././7) and (8.1.12) are the angular equations. From (8././2) we can
conclude that the ¢-dependence of ¥,(8, ¢) is of the form ¢'™¢ . Thus ¥,'(8, ¢) = G;'(8)e'™ , where G/'(8)
is a function of 0 only.
We write the radial equation in the form

{ Al 1(I1+ )&

“aurg? 0 e """} Rr) = EyRiy () (8.1.43)

Introducing the function u,(r) = rR,,(r) we arrive at

2 502 2
ﬁ_d_i"—(,'*'l)ﬁ + Vv -I..

| 2uar2 " a2 '(r)J”LJ(’"} = £yl (1) (8.1.14)
We define an effective potential:
LU+ DA
Ver = VID+ = 15— (8.1.15)

We may view (8././4) as a one-dimensional problem, i.e., a particte of mass | moving in the effective poten-
tial V 4, the one difference being that r assumes nonnegative values only. To express (8.7./4) in dimensionless
form, we define

=

6’4 ﬁZ —
g, = = A = = p=_ (8.1.16)
ue &t N2y dy

E =

[

&
Ti

]

Equation (8./.14) becomes

- -

¢ 1+l 2
L';p—z_ (pz ) +5‘XZ/J“/4(P) =0 (8.1.17)

Let us define u,(p) = e P%&, (p); we now obtain

d’ d (2 I(+1)
[@—2%,7‘)1“(5— o )]éu(p>=0 (8.1.18)

with the boundary condition £ (0) = 0. An expansion of £, (p) in a power series of p yieldsé, (p) =

psz C,p?, where C, 1s the first nonzero coefficient. Thus,

4=0
dg, =
é;;p) _ Z(qﬂ)cqu.l (8.1.19)
=0
and
) @
a0 2(q+S> (g+s-1)C,p*" " (5:1.20)

g=0
Substituting (8.1.19) and (8./.20) into (8./.18). we obtain a power series on the LHS and zero on the RHS; thus
the coefficients of the powers of p equal zero. We assume that the sotution of (&././3) behaves at the origin
as r’;

Ry(ry ~ Cr (8.1.21)

r—0
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Substituting (8.1.21) 1o (8./.13) we obtain

[CHAP. 8

I{+1)-s(s+1) = (8.1.22)
which is satisfied if s = [ or s = = (! + 1), Therefore, for a given valuc of Ek,, there are two linearly inde-
pendent solutions of (8.7.1/3). The solutions behave at the nglu as 7' and L/r'*!, respectively. The latter

solution must be rejected, as it can be shown that (1/r/*1) Y ( , &) is not a solution of the eigenvalue equation
(8.1.2y for r = 0. It follows that the solutions of (8.1.13) go to zero at the origin for all I, since
Uy, (r) ~ Cp'*'. Therefore the condition u,, (0) = O should be added to (8.1.13). In the power series that

r—0
we obtain we now take the lowest term and equate its coefficient to zero. It fotlows that

[+ +s(s-D]Cy; =0 (8.1.23)
Since C,#0, wehave s = -/ or s =1+ L. Next, we set the coefficient of the general term p?*<-? equal
to zero (for s = / + 1 ) and obtain the following recurrence relation:
q(q+2[+l)Cq=2[(q+1)1“—l]Cq_| (8.1.24)
Hence, assuming that C,, is known, we can calculate C,, C,, .... Since Cq/Cq_l — 0 when g — oo, the
series is convergent for all p. One can show that
2 )4 (k-1 21+ !
- 7
C,= =D [k+[ hi—g-Dl(g+2i+ 1)1 (8.1.25)
where C,, can be determined from the normalization condition:
j rz]R“(r‘)‘zdr = J |uk,(r)|2dr (8.1.26)
0 0

A hydrogen atom can be viewed as two point-charged particles—a proton and an electron with Cou-
lomb’s interacting potential between them. Write the Schrédinger equation for such a system and
separate i1 into two parts: one describing the moiion of the cenier of mass, and another describing the

relative motion of the proton and the electron.

The Schrodinger equation for the proton and the electron is

v: o3 )
( B [— + —2‘| +Viry lw = Ew
\ Zl—m n1 _] AY v’} T T

{8.2.1)

where m, and m, denote the mass of the proton and the electron, respectively. The indices | and 2 refer to the

proton and the electron, respectively. The potential between the particles is

t Ze?
Viry = V(r,—ry) = -Zé? - - s =~ (8.2.2)
A/(‘rl —X)T (Y y) + (5 -2y)
Define the relative coordinates:
X, =X, X Y, =¥ -y, 3, =2,—2, (8.2.3)
m I‘l +m 12
and the center of mass coordinates r,, = pmp " m: For the differential operators we have
az ( m )2 az 2m a2 az
— = (82.4)
A’ m,+m,J 32 m,+m, 0x,,,0X 3x2
and
aZ ( me ) az 2me az aZ (8 2 5
— = +— 2.5)
ax? m,+m.J) gx2 mp+m€axraxcm 3x2
2 2 P bY:
Similar relations hold for the operators 5 5 2+ 5> and . Substituting the operators into (8.2./), we obtain
gy 1 gy, OZl 022
ﬁZ( 1 ( 2 2 2 w ( 2 2 2 w Zez\
—_— ’V J a— + a— J a a —I w = Fw (8.2.6)

2 mrmd e, ez, e, ) Tilan Ty o) T YT Y
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8.3.

8.4.

m.m,

where U is the reduced mass, u = . We separate the wave function ¥ into two parts, The first part

m_+m

P 4

depends only on the center-of-mass coordinates, while the second part depends only on the relative coordinates,
= &(r_)x(r). Substituting into (8.2.6), we arrive at

[ol 1 1T A

# 1 # [ Ze? }
_2————-¢(rcm)[’”_p+m c,.1¢(er)-| X V +—+E\x(r) (8.2.7)

For (8.2.7) to be valid for all values of r_ and r,, each side of the equation must be equal to a constant. Therefore
we obtain two separate equations:

ﬁ?
[Z(m +m )V5m+Ecmj|¢(rcm) =0 (828)
’7 g
and
[
(211‘7 + Z_e +E, JX(r,) =0 (8.2.9)

E_ isthe translational kinetic energy of the center-of-mass frame and £, is the relative energy. Clearly we have

E =E_, +E,_. To obtain the wave function of a hydrogen atom’s clectron one must solve (8.2.9) (see Problem
8.1).

The wavefunction of an electron in a hydrogen-like atom is Wy (r) = Ce_"/a, where a = a,/Z;

a,~05 A is the Bohr radius (the nucleus charge is Ze and the atom contains only one electron)
(a) Compute the normalization constant. (£) If the nucleus number is A = 173 and Z = 70, what is the
probability that the electron is in the nucleus? Assume that the radius of the nucleus is
1.2xA"? fn. (¢) What is the probability that the electron is in the region x, y, z > 0?

eeer
(a) The normalization condition is J J\y dr = L. Substituting y we have

Ji‘
C,[ e e er- d¢J sin® d0 = 4nc2j Feidr = 1 (8.3.1)
0

The integral in (8.3.7) is

a0

2 2r/u a ! a : 03
re’’tdr = 3 I3y = 3 2! = T (8.3.2)
0
1 4\172 1
Therefore, C = (;ﬁ;) ==
a AT

(b) Denoting by R the radius of the nucleus, the probability that the electron is found in the nucleus is

K Zn g R
p= J rzlqj(r)|2er- d¢J $in@ do = 4nczj rle ¥4 gr (8.3.3)
0 0 0 0
. 5 . 2 .
Since R is small comparedtoa (R~ 1 fm = 10 A and a~1 ,X), we can consider |y~ as a constant in the
nucleus, i.e., ¢ 27 ~e2®/“~ 1 Thus, we have
4 4( Zry\?
f dr = : -1 = :(—"} A= Lix10® (r,=12fm) (8.3.4)
J 3\a 3\ a,/ Vo ) ! /

(¢) The wave function is independent of both 8 and ¢ (it is a symmetrical function). Thus the probability that the
electron is found in 1/8 of the space (i.e., in x, y, z > 0) is simply 1/8.

Compute the normalized momentum distribution of a hydrogen atom electron in states 1s, 2s, and 2p.
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The normalized momentum distribution is [w(p)|”, where (p) is the wave function in the momentum repre-
sentation. In order to find y(p), we perform a Fourier transform of the wave function y(r),

win) = S — [c“"’ Fhyr) dr (8.4.1)
y(p) J(znﬁ)"-’ J(r)
We then substitute in (8.4.7) the explicit forms of y, (r), y,(r), and y, (r), and obtain
ey
Vi, = 2l 7 [P/ 82+ 1) )
o 2a) | (8.4.2)
bw"(p)' i 9(7 [(pPa2/8 + 1)1
and
(2 ! {n 1J
Yalb) = 2nl L(prad/a2+1/4) L a2 4
- ] (2_0)3 i Llﬁ_ljz (8.4.3)
[‘%‘(pn Temn A peog g2y a0 824
There are three different eigenfunctions for the state 2p: m = -1, 0, 1. Thus,
B (a)”z ap.,
’%V(p) paY LA L)
m=0 ) (8.4.4)
[P s
e = 2\ B (PRt R+ 1/4)1°
and
1 (a)}? a(p,xip,)
Va2 2 TR R e )
m=tl; o IR (84.5)
i fay a’(p, tip,)
{ {W:,;(P)P - 2_7t2L%J ﬁz[(p2a2/ﬁ2+}l /a)1°
8.5. Consider a wave function for a hydrogen-like atom:
y(r, ) = f Y2 (6-2Zr)ZreZ? cosO (8.5.1)

where r is expressed in units of a,,. (@) Find the corresponding values of the quantum numbers », /, and
e, \U} Construct from ql\r, U) another wave function with the same values of # and /, but with a different
magnetic quantum number, m + 1. (¢) Calculate the most probable value of r for an electron in the state

corresponding to W and with Z = 1,

(a) Consider the exponential factor in y(r, 8); it has the form exp (~J~Er). Since E = -Z*/n>, we conclude
that n = 3. The angular quantum number / can be determined either by exploiting the factor r/, which multi-
plies the Laguerre polynomial in hydrogen-like wave functions, or by carrying out the following operation:

d 0
I y(r,0) = sz(r) cosO = f(r) [‘Trllea*e( sin® 30 cosB)]

ol d 1
=f(r)Lmd—9(sinB) J 2f(r) cos® = [ (I + 1) y(r, 0) (8.5.2)

Thus, [ = 1. To find the magnetic quantum number, we use the operator L.:

d
L y(r, 0 = —156 [f(r) cosB] = 0 = my(r, B) (8.5.3)

It follows then that m = 0.
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8.6.

(b) Inorder to generate a new hydrogen-like wave function with a magnetic quantum number m + |, we use the
raising operator L, (see Chapter 6). Since / = | and m = 0, we have

L+Wm= "/([_m) (,+m+l)“|’m+l = "/§an+1 (854)

We use the differential representation of L,:

d
L =L +iL =i(sind—i cosd))-g,.+i(cosd>+i sing) cotB3, (8.5.5)
* R ¥ ' T do i i g '
and obtain
Ay

L Wnoo = ¢ 5gf0) cos8 = —¢"f(r) sin® (8.5.6)

Combining (8.5.4) and (8.5.6) we obtain

1 .
Y. = ﬁf(r) sinBe'® = 81&2”(6-2@&("” sinfe'? (8.5.7)

(¢) The most probable value of r occurs when (ry)? assumes its maximum value. For Z = 1 we have

a(r\y) a 2 r/3 /1(}‘
37 =0=$(6—i‘)r€ = k3—5r +12r) (8.5.8)

We obtain the quadratic equation > — 15r + 36 = 0; its roots are » = 12 and r = 3. Evaluating |ry| we find
that it is maximal for » = 12. Therefore, the most probable value of r is 124,

Consider a particle in a central field and assume that the system has a discrete spectrum. Each orbital
quantum number / has a minimum energy value. Show that this minimum value increases as /
increases.

We begin by writing the Hamiltonian of the system:

#’ a( a) mid+1

2 EPYEPELaFR T+ V) (8.6.1)
Using H, = - zarkr ar)+V(r) we have
mr
A1I(1+1)
- 4 — /0 8 Xy
i = iy 1—2”1 r2 |9.0.2)

The minimum value of the energy in the state { is

2L+ 1
Er:un = j“ﬁ [Hl +ﬁ ( r2 )}Wldjs’. (863)

The minimum value of the energy in the state [ + 1 is given by

d r

. B+ 1)(1+2) ]
Erln ‘= J“"'Hl[H *am 2 v, dr (8.6.4)
Equation (8.6.4) can be written in the form
B+ 1 ﬁ21(1+1)
f+1
Emm = J.w:il; 2 Yoy dr + J“"T*A[H 2m 2 Y, d’r (8.6.5)

2

4 .
Since |y, , l|2 and m e e positive, the second term in (8.6.5) is always positive. Consider now the first term

fr I+ 1
of (8.6.5). w, is an eigenfunction of the Hamiltonian H = H, + 2m AL 2 ) and corresponds to the minimum
eigenvalue of this Hamiltonian. Thus,
{ .1 w2g+n] . [ L[, #10+n] ,
J T [H o T JW' d¥ < J \"’I+1LH0+ﬂ = J\u,+I d’r (8.6.6)
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%
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Write the Schrédinger equation for a two-dimensional hydrogen atom. Suppose that the potential is

- e’/r, where r = Jx' +y?. Using separation of variables, find the radial and the angular equations.
Solve the angular equation. Describe the guantum numbers that characterize the bound states and the
degeneracies of the system.

Consider the Schridinger equation in two dimensions:

212 0y 1ow]
“2m| rar\ " ar +’.3 36 TTY =Ly (8.7.1)
Performing a separation of variables y = R(")®(¢), we obtain the angular equation
3P
——(+¢) = —m* DY) (8.7.2)
do°
The constant m must be an imeger number, so the solution of (8.7.2) is
1
(b - — ,:md) 87
m(¢ A‘E( ( 3)
Consider the radial equation:
f‘zzl/d‘zR 'la’R\ 'LzmzR( ) EZR( ) = ER() (874)
— +- |+ SR — —R(r) = r 7.
2”’L dit J 2mi” !

Every state R, () is characterized by the principal quantum number # and the absolute value ot the angular quan-
tum number m. The energies of the system are £ Every state with »1 # 0 is twofold degenerate. and the states
with m = 0 are not degencrate.

nlmt

The muon is a particle with fundamental properties, excepting mass, similar to those of the electron.
m, = 207m, (8.8.1)

The physical system formed by a u* and an electron is called muonium. Muonium behaves like a light
isotope of hydrogen, and the c¢lectrostatic attraction is the same as for a proton and an electron. Deter-
mine the ionization energy and Bohr radius.

The reduced mass of 1the system is

_omam o207 ( L)

M, = m, +m, = 308 = 1_208 m, (8.8.2)

The Bohr radius is
. LU { | 1Y

a, (muonium) = W}g:a“( )k +200J (8.8.3)

where a, (H) is the Bohr radius of the hydrogen atom. The ionization energy is
il
F£, (muonium) :u—CZE(H)(lgL) (8.84)
-1 ( 2ﬁ2 = 1 200 e W

where £, (H) = 13.6 eV is the ionization energy of the hydrogen atom. The study of the muon is of greal interest.
The two particles that comprise the system are not subject to strong nuclear interactions, thus enabling energy levels
to be calculated with great precision.

Prove the following relation between the spherical harmonic functions:
Y, 20, 0)Y,, (8, 0) = const. (8.9.0)

m=-1
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Use the expansion of the Legendre polynomials (see the Mathematical Appendix):

(1_| I)' |m
(I+1m) 1

m=—/

P, (cosy) = l(cosQI)Pi,ml(cosez)e"”’(4’1 %) (8.9.2)

where Y is the angle between two directions given by 8, ¢, and 0,, ¢,.

We write the spherical harmonic functions in the form

(-1 STy (= Tm) !

Vinl® 0) = = T T oy “P,"(cos )eima (89.3)
Then,
=’ 2l+lm=+l(1—|m|)' 2
D NIOOY0.0 = G > o [Peose) (89.4)
=/ m=-f

We setin (8.9.2), 0, = 0, = 0, and ¢, = ¢, = ¢ and obtain

I—|m
P(cosy) = ? U= fmh! P ccos@)|” = POy = 1 (8.9.5)
RERD T Ly im i Y 1373

=~

Substituting (8.9.5) into (8.9.4) we arrive at

m=+

Z Y (8. 0)Y,,(8,0) = 4,! (8.96)

Since (2/+ 1) /4m is a constant, we have established the proof.

£.10. The parity operator is defined hv the replacement r — —r (sec Chap[e.r 4.
affect the electron’s wave functlon in a hydrogen atom?

S’
I
=]
€
(=%
Q
[y
w
=
[a"]

3

In a hydrogen atom we can express the wave functions using the spherical coordinates (r, 8, ¢); we determine
how the parity operation affects these coordinates (see Fig. 8-1).

Fig. 8-1

We see that under the parity operator r = r, 8 51— 0 and ¢ — m+ ¢. Since the radial part of the hydrogen
atom’s eigenfunctions depends only on r, we conclude that the parity operator affects only the spherical harmonics
part. For spherical harmonics we have Y,’(B, ®) = a,(sin®) "% thus,

Yin-0,m+6) = (-1)'Y/(0,0) (8.10.1)
Therefore, under the parity operator,
Y,0,0) = (-1)'Y}(8,0) (8.10.2)
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8.12.

8.13.

8.14.

8.15.

8.16.

o
-
=
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d d d
Moreover, since 30— _8%) and 30 - % it follows that the operators L, are not affected by the parity opera-

tion. Since we have oblaine

E)Q-

he explicit form of Y,'"(B, ¢) by applying the operator L_on Y,', we can conclude
h

hme ~n

1
WllllUul ally 1u1 tnct caicu

mn

Ym-0,n+0) = (-DY(0. 0) (8.10.3)
In other words, under the parity operation

YO, 0) = (-b)'Y/0,0) (8.10.4)

Supplementary Problems

Consider a hydrogen atom in a state n = 2,/ = 0, and m = 0. Find the probability that an electron has a value r
that is smaller than the Bohr radius. Ans. 0.176.

For an electron in the state n and | = » — t in a hydrogen-like atom, find the most probable value of r.

Ans. r = n*/Z inunitsof g,

Show that the degeneracy of the ath shell in a hydrogen atom equals 2#°. Take into account the spin of the electron
but not the spin of the proton.

The six wave functions of the state 2p for the hydrogen atom are

1 re’/%
m; = +1, m, = 15, ¥y, =A4 sinBe
] re’/29
m, =0, m, = t5, Yy, = B—cos® (8.14.1)
- - S o u[)
1 re—.r/2a0 . _it
m, = -1, m; = 15, y_, =C sinBe

where «, is the Bohr radius and A, B, and C are the normalization constants. (a) Compute the constants A, B, and
C.(b) Show that the sum I\p ‘ is a function of r only (¢y Compute {ry for m, = 0.

Ans. (a)A=— ,l—— B= s C= /—— () (r) = 5a,.

0!\}"’“0 ",V’LJLU) O,JJL(J

Consider a hydrogen atom in the state with the quantum numbers # and /. Calculate the dispersion of the distance

of the electron from the nucleus. Note that the dispersion is defined by + {r*) — (r}2.

Jnt (2 +2) — P+ 1)
. _

Ans.

In a hydrogen atom the wave function y(r) describes the retative motion of a proton and an electron. If the coordi-
nates of the center of mass of this system are x =0, y =0, and z = 0, show that the probability density of the
(mtMY| (m+M
U m )|‘4’\ m l'}|'

proton equals

For a two-dimensional hydrogen-like atom the Schridinger equation is (- V2 -2Z/r)y = Ey (in atomic units)
Use cylindrical coordinates to find the equations for R(r) and ®(o).
2
o 1d ( dR ( 22 m ,
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8.18. Consider a particle in a spherical well, V(r) =

0 rea Assuming that the angular momentum is zero find
the particle’s energy spectrums,

{ -V, r<a

A ¥ &2k
Ans. The energy.spectrums are given by ka = nm - arcsin JZ’TV—OJ and £ = T These equations can be
solved either graphically or numerically (see Chapter 12).




Chapter 9

Particle Motion in an Electromagnetic Field

9.1 THE ELECTROMAGNETIC FIELD AND ITS ASSOCIATED POTENTIALS

Consider an electromagnetic field, characterized by the values of the electric field E(r, f) and of the mag-
netic field B(r, r). The fields E(r, #) and B(r, f) are not independent; they must satisfy Maxwell’s equations. It
is possible to introduce a scalar potential ¢(r, t) and a vector potential A(r, t) such that

10A
E=-Vo-—5 (9.1)

and

B = V
ar LA

-3

/Q
(-~

L]

)
Using Maxwell’s equations, it is possible to show that we can always find ¢ and A. However, when E and B
are given, ¢ and A are not uniquely determined. When we choose a particular set of potentials, we say that we
choose a gauge. From one set of potentials (¢, A) we can obtain another set, (¢',A") by performing a gauge
transformation:

19f(r, t
¢ =0-2 fg; ) (9.3)

and
A = A+ Vf(r, 0 (9.4)

where f(r, t) is an arbitrary function of r and 7 (see Problem 9.2). The equations describing the physical system
involve the potentials ¢ and A, but we shall see that in quantum mechanics, as in classical physics, the predic-
tions of the theory do not depend on the gauge chosen (that is, the particular set of ¢ and A describing the
electromagnetic field). This important property is called the gauge invariance (see Problem 9.5).

Let us consider iwo exampies of gauges describing a constant magnetic fieid in the z-direction, B = B 2.
First we have the symmetric gauge,

, X 9 3
1
A=—§pr=—§x y z (9.5)
0 0 B,
B,
orA =5 (-y, x, 0) . Another gauge is the Landau gauge:
A= (-Byy, 0,0 (9.6)

9.2 THE HAMILTONIAN OF A PARTICLE IN THE ELECTROMAGNETIC FIELD

Consider a particle of mass m and charge ¢. The classical equation of motion in the presence of electric and
magnetic fields E and B is

d*r q
mP =4qE+ vxB (9.7)
The Hamiltonian that leads to this equation of motion is
1( ¢\ { g )
H=gu\P=cA) (p-cA) + 90 ©8)

154
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In this chapter we use a semiclassical theory for particle motion in an electromagnetic field. In this theory
the field is analogous to a classical field, while the system is treated according to the postulates of quantum
mechanics. Thus, the particle is described by a wave function y(r, 1), and the Hamiltonian is written as in (9.8),

hut now n. A, and ¢ represent the corresponding operators (see Probhlem 9, '1\
out new p, A, ang ¢ repre ne Correspoe ng operalors (sC rrobietl

When we perform a gauge transformation according to (9.3) and (9.4), the wave function describing the
particle transforms (see Problem 9.4) as

\II'(r, f) = exp [:T%f(r, [)J y(r, 1) (9.9)

9.3 PROBABILITY DENSITY AND PROBABILITY CURRENT

Given a wave function Wy(r, f), the probability density is
2
p = |yiry, 0| (9.10)

where p expresses the probability of finding the particle at time ¢ at the point r . For particles with mass m and
charge ¢ (without a magnetic moment), the probability current density is

2',,,,[':’ (W Py —yVy') - 2;" vw] (9.11)
If we consider a particle with spin $ and a magnetic moment p, we have
s = ﬁ[?(w*w—ww*) —%’Aw*w} +E§-CV>< (V*sy) (9.12)
The continuity equation
a_p,,_v.s:o (9.13)

ar

relates the probability density and the probability current (see Problem 9.3). Both p and s do not depend on the
gauge chosen, and they are said to be gauge-invariant; see Problem 9.5. The *‘real” current corresponding to
particle of charge g is defined by

I =gs (9.14)

9.4 THE MAGNETIC MOMENT

For a particle with a magnetic moment p in a magnetic field B, the interaction Hamiltonian is

H_ = =11 B /O_!q)
int Ly {A-477
This term should be added to the Hamiltonian (9.8). An electron of spin 8§ has a magnetic moment
8
H=-5,.8 (9.16)
where g, the gyromagnetic relation constant is very close to 2:
o
g=21+57—+-] =12002319 (9.17)
2n
9.5 UNITS
In dla\,ussli"lg electroma g"e“" pl" omena, it is customary 1o ado opt one of the many puaanblc sysieins of

1Cii
units. The MKS system is popular in solving practical or engineering problems. In the study of the interaction
of electromagnetic radiation with the fundamental constituents of matter, it is more convenient to adopt the
Gaussian system of units. Therefore, as in the other chapters of this book, we have preferred to use the latter
system,
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Solved Problems

The classical equation of motion for a particle with mass m and charge ¢ in the presence of electric and
magnetic fields E and B are

ma = qE+gv><B (9.1.1)

. dar . av ..
where a is the acceleration of the particle and v is its velocity (v =g;=r and a="p=r ) E and

B must satisfy Maxwell’s equations so it is possible to define the vector potential A (r, t) and the scalar
potential ¢ (r, ) such that

10A
I E=—V¢—E§; I B=VxA (9.1.2)
Show that the Hamiltonian
1
H = .—(n—gsA_)(n—gA_wi-ad) {9.13)
Zm\r ) AR T ey T AT

leads to the equation of motion. Use the Hamilton equations:

1 oe= I p= —%Fr—l (9.1.4)

You can follow the following steps: (a) Write r as a function of p and A. (b) Write r as a function of
p and A, (¢) Use (9.1 41I) to write p as a function of v and A. (d) Use the vector “chain rule,”

dA JA (dr dA
?;za—t+(E.V)A:§+(v-V)A (9.1.5)

and the vector identity
(v-V)A = -vyx (VxA)+V (v A (9.1.6)

dA
to find - (e) Combine parts (a) to (d) to get the equation of motion.

(a) Using (9.1.41) and (9.1.3) we get

N IETRENTPEN A ETRENT
(k) Asin part (@) we obtain
. ; y qdA
P4 alale-ta)] - R 21T - -l
(c¢) From (9.1.411) and (9.1.3) we arrive at
p = —‘;—": = _VH = —V[ﬁ(p—gAj-(p—gAjwq)] (9.4.9)

Recall that r and p are independent phase space variables in Hamilton’s approach, so V. p = 0. Using
V(p-p) = 0, we write (9.1.9) as

) 1
p = ;V[(p—gA)-(gAH—qV(b (9.1.10)
From (9.1.7) and from (9.1.10) we have
p= ‘gI.V(v-A) -qVo (9.1.11)

(d) From (9.1.5) and (9.1.6) we obtain
dA OJA

— = =—-vx (VxA)+V(v A) (9.4.12)
P TR T ( ) +V(v:A) (9.1.12)
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9.2.

9.3.

Finally, using (9.1.211) we have

d JA
A=—m =5 -vxB+V(v.A) (9.1.13)
{ n\ Naembinina (O T @y (0T TIN amd O 1 12) o ~htnie
\C} \,UlllUllllllE \7.1 .U}’ \7.1 A X }, ali \_7.1.1.}} YWo uuvilallil
. 1fq (1aA ]]
r =m[c(va)—q C§;+V¢ (9.1.14)

Multiplying (9.1.14) by m and using (9.1.21) we finally get
mr = g(va)+qE (9.1.15)

which is the equation of motion.

Let A (r, 1) and ¢ (r, 1) satisfy Eqgs. (9.1.2). For given electric and magnetic fields E and B, are the
potentials A and ¢ determined uniquely? If not, explain this freedom.

Assume that A, and A,, ¢, and 0, satisfy (9.1.2) with the same E and B, namely,

10A, ’ ]aAz)

E = _V(bl_; at = —[\V¢2+ET (92])

and
B=VxA =VxA, (9.2.2)
Now, if A and ¢ are determined uniquely, then we must have A; = A, and ¢, = ¢,. We define a= A, - A,
and ¢ = ¢, — ¢, and investigate whether a = 0 and ¢ = 0. From (9.2.2) we obtain
Vxa=0 {9.2.3)

Since the gradient of any function f(r, ¢) satisfies V x (Vf) = 0, one can show that a = VJ for some function
Fr, o). If we use (9.2.1) we obtain

Ud\;la—a. = N 70D A
'YTCat LV ‘7-&."}
1_(9f
From (9.2.4) we get V¢+;V 3;) =0or
idf
¢=-253,+CW (9.2.5)

where C(z) is a function of 7. Without loss of generality we can choose € = 0, since this corresponds to shifting
the energy by a constant. From (9.2.5) we therefore obtain

a=Vf =73 (9.2.6)

where f(T,t) is any function of r and ¢. We see that a and ¢ are not necessarily zero. The potentials A and ¢ are
not deiermined uniquely since f iy arbiirary, The nonuniqueness in (9.2.6) is caiied “gauge freedom.” This means
that if A and ¢ satisfy (9.1.2), then A' and ¢' obtained by the transformation equations

< s o, . l1of

A" = A+Vf 0 =0-:5, (9.2.7)

are also potentials.

(@) Write the quantum Hamiltonian for a particle with mass m and charge ¢ in the presence of an
electromagnetic field. (b)) What is the probability density for finding the particle in r = r; at
t = 1,7 (c) Obtain the equation of conservation of probability and find the probability current

UL

Ao
UCTISILY.

{@) From the classical Hamiltonian (9./.3) we reach the quantum Hamiltonian by replacing r and p with the oper-
ators r and p . Remember, however, that A (T, ¢) and ¢ (T, #) are functions of r, so we must aiso replace r
with F in these functions. Thus we obtain

2

S I PR N L
H=5-1p- A ) +q0(r,1) (9.3.1)
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(b) Let w(r, ) bethe wave function of the particle. Then the probability density of finding the particlein r = r,
ars = 1, is

Pirgiy) = |‘U(ru» rn)l2 = WPy, 1) W(Tg, 1) {9.3.2)

: dp
{¢) First, let us calculate o

QJ
*
QJ

y

a 2
UM A AR o (9
d
Using the Schrédinger equation and its complex conjugate —i& 8 = (Hy)* we get
d
a—f = —l.—ﬁ[(H\u*)w—w* (Hy)] (9.34)
We use the coordinates representation
F=r p=-ihV {9.3.5)
In a coordinate representation, A (¥, 7) becomes a vector function, so
AR 1) = A(r 1) (9.3.6)
and the quantum Hamiltonian is
= L( (1 \ ( ' ‘—I \ rih 70 2 7\
Zm\'” A \” Tett) TN tr=-)
Equation (9.3.4) then gives
% = vanl (V-4 )- (v« a ve]
3 = —;‘;i'{\uzmli —ihV + A ) | -iRV + A Jy*
[y 42 v,
- y¥5 ihV + CA ) zﬁV+CA v (9.3.8)
which can be written as
3p [ 2, 1]
3 = —Vlsz (W Vy - yVy) - TAy* \I’_” (9.3.9)
The equation describing the probability conservation is
PL.yv.s=
3 +V.s=0 (9.3.10)
where s is the probability current density. From (9.3.9) and (9.3./0) we conclude
1 1A N o 24,
S = 5| TV VY —yVy*) ——CAyty (93.11)

which is the probability current density for a particle moving in a region with an electromagnetic field. In a
vacuum in which there is no electromagnetic field, A = 0, and ($.3.11) is reduced to the known probability
current density described in Chapter 3.

According to the postulates of quantum mechanics, a given physical system is characterized by a state
vector |y). Consider a particle of mass 7 and charge g influenced by an electric field E and a magnetic
field B. In Problem 9.2 we have shown how different pairs of potentials A and ¢ can describe the same
E and B. In this problem we study how the state vector |y) depends on the choice of gauge (A and ).
Follow these steps: (@) Write the Hamiltonian with A and ¢; then with A' and ¢’ relate A and ¢ by
(9.2.7). (b) Write the Schridinger equation for the two cases. (¢) Show that if y is the solution of the
first Schrodinger equation, then

W(r, ©) = e/ ey (94.1)
is the solution of the second equation [where f is the same as in (9.2.7)). (d) Discuss the results.

{@) According to (9./.3), the Hamiltonian for A and ¢ is

- o 10} (o)
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Similarly, for A" and ¢' we have

H= -1—( QA')-( gA'j+ ) 943
= 2m\P ¢ P=¢ a9 (9.4.3)
Using (9.2.7) we obtain
S L1 9, g ) ( 9, 4 ) qof
= 2m(P‘cA‘ch A\ P-;A-2Vf)+q0 -5, (94.4)
{b) The Schrodinger equation for the first case is
Hly) = L"{o (9.4.5)

We can use (9.4.2) to write the Schrisdinger equation, in the coordinates representation, by replacing p with
—i#V, and obtain

1 awy(r, ¢
[E(—iﬁV—EA) v qo]wie.n = in D (9.4.6)
For the second case we have
[y
Hy) = ,,\f,’ (94.7)

Using (9.4.4) we have, in the coordinates representation.

\l 1)
v J

[ q g._\? a ’(",
|5\~ itV ~ZA-"Yf | +q0- Carjw(r N =ih—y— (94.8)

(¢) Suppose that y(r, ?) is a solution of (9.4.6). Define
Wr, 1) = el hy(r, gy (9.4.9)
We wish to show that \;/ is the solution of (9.4.8). Using (9.4.6) and (9.4.9) we have

ik a‘l’é‘;, ) = zaf( eI chyy(p 1) 4 1l T, zym( a"’g‘;’ ’))
= (clafg;’ t)"’( 0+ el 'yd'[z (—'ﬁv ) +¢i¢]6’"’“"’y‘*\]l(r, 2) (94.10)
So,
,.ba\vg ) [ Zaﬂarl r)+ }\p , 0+ et 'Y”"[zlm(:i.b‘?;g )2 g-iafE.1Vchyy(r, 1) {94.11)
We calculate the last term in the right-hand side of (9.4.11):
[(—iﬁV—gA)-(—iﬁV—gAﬂ L
= (—zﬁV g J [e“ff"~’y"'( gi(r 1n-ihV - %A)] (r,
= ewftn 'V""( ‘-g"’, ,L‘C’—g ) ( g —ihV —%A)*—qf(r, ) (94.12)

hence,

a..,;r’ Y - ’\/nr’ A - 7 \2— -

i = [— 1T qo+ 5| - Evr-inv -2 | J w(r. ) (94.13)
So wy(r, 1) is indeed the solution of the Schrédinger equation (9.4.8).

{d) We see that when we pass from one gauge to another, the state vector describing the system is transformed by
the unitary transformation e'¢/("-%Y¢& where f(r, 1) is the function relating the two gauges. For the wave func-
tion, the gauge transformation corresponds to a phase change that varies from one point to another and is
therefore not a global phase factor. However, the physical predictions obtained by using the wave functions y
and y are the same, since the operators that describe the physical quantities are also transformed when we
change between the gauges (see Problem 9.5).

9.5. In Problem 9.4 we have shown that when we perform a gauge transformation

[A-—)A'=A+Vf

10
]¢—>¢ o - La]:



160

9.6.

PARTICLE MOTION IN AN ELECTROMAGNETIC FIELD [CHAP. 9

The wave function describing a particle of mass m and charge g transforms according to
g ych

yir,H = Yy =e¢ y(r, 1) (9.5.2)

(@) Do the probability density and the probability current change when we pass from one gauge to
another? (b) Suppose that at time ¢ we want to measure a physical quantity Q . Does the probability of
obtaining an eigenvalue ¢ of Q depend on the gauge? (Assume for simplicity that ¢ is nondegenerate.)
(a) The probability density in the first gauge is

p(r, 0y = [y, nl* = wir, nv'(n, 9 (9.5.3)
After the gauge transformation, and according to (9.5.2),

tg fr. v ch

pe, = [y o = wi o' o= w(r, ) e S ayH e = yir, oyt ) (9.54)
We see that the probability density is gauge-invariant. Now, the probability current density in the first gauge is

|
s = 2m{ (V' Vy-yVyhH ——Aw \u} (9.5.5)
When we perform the gauge transformation (9.5.7) we have

L— 1 Jﬁf a"ﬂf(r /yfﬁiu V(ﬂ'Qﬂr [V"'\l pqull‘,f}/r‘fl‘"v[ p*qu(l'.!)/(ﬁ“‘*\]
2m t v ~ h A N Y s

w
|

2 )
_ (_fl (A +Vf) ( e—qu(l'.!}/('ﬁw*) (equ(r.l)/('h‘u)}

1 Jh[ig 29
z'“m{?[h_ Vf\u+\|1V\u+ wVfw WV\V]—T(“VJ‘W*‘V}

1

[ﬁr * *1 2({. 1
7m 7| VIV WY | - Ty

il

JURPRR .

WE see lIld.l l.llU pl'UUdUlllly CuITent UCllbiLy 1\ gdugc l]lle ldlll
{b) Suppose that ¢(r, 1) is the eigenfunction of Q corresponding to the eigenvalue ¢:

oolr, 1) = go(r, 1) (9.5.6)

According to the postulates of quantum mechanics (see Chapter 4), the probability of obtaining ¢ when the
system is in the state y(r, 7) is

= (0]¥) = ¢ (r, ny(r, 1) (9.5.7)
When we make the gauge transformation (9.5./), the wave function ¢(r, ) will transform to
or, ) — o, 1) = &7y (95.8)
The probability of abtaining g will be determined according to (9.5.2) and (9.5.9):
P;] — ¢v (r, HYr, 1) = e—:q,f(l'.rw-fgq)*(r, [)e:q[(r./wﬁw(r, = q)*(r, nyr. f = Pq {9.5.9)

We can conclude by saying that all the physical predictions do not depend on the gauge that has been chosen.

A one-dimensional harmonic oscillator consists of a particle with mass m and potential energy

1L,
V(x) = FmMO°x (9.6.1)
In addition, this particle has a charge ¢ and is placed in a uniform electric field E parallel to the x-axis,
E = E3%. (a) Find a suitable potential field ¢ (x) corresponding to the electric field. () Write the Ham-

iltonian of the particle. (¢) Perform a coordinate transformation y = ax + b (a and b are constants),
such that in the y-coordinate the Hamiltonian is similar to that of a one-dimensional harmonic oscillator
(with no charge). What are a and b? (d) Find the energy eigenvalues and eigenstates of the system.

(@) Wehave E = E% and we seek d(x, 1) such that
E =-V¢ (9.6.2)
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9.7.

Since B = 0, we seek a gauge in which A = 0. Integrating (9.6.2) we obtain ¢ (x) = —€x+c, wherecisa
constant of integration. Let us choose ¢ = 0; then
G(x) = —gx (9.6.3)
{# The total Hamiltonian is
AL
H = I, T ameixt —ex (9.6.4)

The first term on the right-hand side of (9.6.4) is the standard kinetic term, the second term is the harmonic
oscillator potential energy, and the third term is the electrical potential energy.

{c) We will now write ($.6.4) in the following form:

p; 1 ,

H, = T Em(oi,y'+H(, (9.6.5)
where H, is aconstantand v = ax + b. Consider the kinetic term. We see that p, = p_,s0 a = 1. Now we
can substitute y = x + b into (9.6.5) and obtain

& 2 pl 1 2.2 2 1 252
H, = 5 +5m@ (x+b)" + Hy = 50 + 5m@’x’ + mo’bx + 3mw’h* + H, (9.6.6)

From (9.6.4) and (9.6.6) we see that H, = H_onlyif b = —¢/m® and H, = -€*/2me?. To conclude, if
we perform the coordinate transformation y = x - £/m®?, we get a one-dimensional harmonic oscillator with
no charge, and the energy shifted by —°/2ma’.

{d) The energy eigenvalues of a one-dimensional harmonic oscillator are

] 1
E, = iﬁw("*'i) {9.6.7)
corresponding to the eigenstate |y,). We have a shifted harmonic oscillator; thus, the energy eigenvalues are
now,
N N O A I
f‘n = 2H(Dkfl+2}— 2mm2 (¥.0.8)
Its eigenfunctions are
£
v, () = W,,(X——J (9.6.9)
mno

As a function of y, (9.6.9) expresses the standard one-dimensional harmonic oscillators® eigenfunctions. Note
that as a function of x, however, those eigenfunctions are different,

Consider the constant magnetic field B = BZ. (a) Find the potential A corresponding to the symmetric

1
gauge A = T % B . (b) Find the potential A corresponding to a nonsymmetric gauge. (c) Compute the
gauge function f(r, #) relating the two gauges used in parts (a) and (b).

1
{a) Inthe symmetric gauge A = —5r % B we get

¥ § oz
1 |
A= o R —inO,\'+§xB(,y (9.7.1)
0 0 B
S0
B,
A= 7(—y.x,0) (9.7.2)

(b) We can use any other gauge and find a different A. As an example, we can try to find A only in the x-direction,
A = A.X.In that case,

7

L

>

= +(a;‘)y_(aa’~i‘}z = B,? (9.7.3)

Tl =

VxA =

St
=
o :i)l [«B
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By integrating (9.7.3) we obtain A, = - B,y + c. We can choose ¢ = 0, so

A = -B,y A, = A =0 (9.74)

(c) We want to find the gauge function f(r) such that A = A+ V£ (see Problem 9. 2). From (9.7.2) and (9.7.4)
we find that

(a2
A=5(-5nx0
_ (9.7.5)
A = B,(-y,0,0)
or, explicitly,
B, ~
A‘r = _—2_y = A"'+axf= - ()y+a,\‘f
B, . (9.7.6)
A, =5 = Ay+ayf= E)yf
Hence,
of &e of B
3= 2V E)_y = 3x (9.7.7)
By integrating (9.7.7) we finally obtain
B,
flx,y)= *-xy+const (9.7.8)

A particle with mass m and charge ¢ is in a region of a constant magnetic field B. Assume that B is in
the Z -direction and use the Landau gauge; i.e., A = (-By, 0, 0). (a) What is the Hamiltonian of the par-
ticle? (b) Show that the Hamiltonian commutes with p, and p.. (¢) Work with the basis of the eigenstates
of p, and p, and use a separation of variables to show that for the y-component, the Schrodinger equa-
tion reduces to a Schrodinger equation of a harmonic oscillator (see Problem 9.6). (d) Find the
eigenstates and eigenenergies of the Hamiltonian.

(@) The classical Hamiltonian is

1 7 - N 7 ~ N\ 7 I N\
- — P N - | 9n.s
H = ZmLp_c'AJ Lp (.'A) - 2mLp+ Bre. J Lp+CBye,‘-J (9.8.1)
where &, is a unit vector in the x-direction. The Hamiltonian operator is therefore
1 | 2q 2
p2 +p2) + Zm(p + qu) = 2m[ ?-+p2 +p2 + "-'Byp + (qB) y2] (9.8.2)
(b) To find the commutation relations between H and p_or p,, we use the known relations
lpop,) = Ip,p]) = lp.yl = Ip.zl = {p,y] =0 (9.8.3)
and obtain
[H 1 = L(fnz ] +2qB\1[n n]) (9.84)
LeSa iy J m\ LE P c WP 1 J

2
By definition, [p_t,px] = [pq,p:] = 0, sowe easily find that [H, px] = 0, and also for p.

[H,p] = 2,,, iP,pl = (9.8.5)

{c) Since H commutes with p, and p_, we can find eigenstates of /{ that are also eigenstates of p, and p_ (recall
also that [p,p ] = 0). We use a separation of variables; namely, ¥ (x, y,2) = ¥, (x) v, (M v, (2). For
y, (x) and y. (z) we choose the eigenstates of p, and p,. respectively:

ip xih

v, (x) =y, (x) = e
(9.8.6)

RN PR ip.z/h
L\p:(z) E\up:‘.?) - em;

SO

p xARip.c/h

Y yz) =e v e Ty, (y) (9.8.7)
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where p_and p, are now constant numbers (these are the eigenvalues). Using (9.8.2) and (9.8.7) we get the
Schrodinger equation:

Note that in (9.8.8), p, and p, are constant numbers and only p and y are operators. Let us denote

] X .
m (pf +p_f,) = g; then (9.8.8) can be written as

[, (98P 1(gBY ] .

L3P e Yo e ) Yy = (E-a)w(xy.2) (9.8.9)

~ |'~D

|
Hy = {P“pzﬂ?2 + ) }‘v(x,y. ) = Ey(x, 1) (9.8.8)

We see now that the y-component of the Schrodinger equation is similar to the Hamiltonian of Problem 9.6
[see, for example, (9.6.4)]. In order to show that the y-component is identical to the Hamiltonian of a harmonic
oscillator we make a transformation similar to the one in Problem 9.6; that is,

cp,
yoy=y+—g
98 (9.8.10)
LP,\ 2P =D,
The Schrodinger equation (9.8.9) then becomes
1, 1(gBY., pl|
T Gl il vl AU (E-a)y (9.8.11)
or
1 , 1(¢B ( P )
[ﬂp_;- Zm( ¢ )) ]‘V =\E-3, v (9.8.12)
If we denote E = E—pf/lm, (9.8.12) becomes
rr ., 1 P - ~ -
I.Z__mp; +§mm§ y‘J\y(x, y»z) = Ey(x,y, 2) (9.8.13)
2
where @2 = (@\ . We see that (9.8.13) is indeed a Schridinger equation for a one-dimensional harmonic
- B~ \cm)/ . ret AR PR T
oscillator.
(d) Since (9.8.13) is the Schrodinger equation of a harmonic oscillator, we know its eigenvalues and eigenstates:
= 1 1
E, = ﬁmg(n+ ) = ﬁ ( 5] (9.8.14)
and
~ mmﬂ]l/a ey g,
‘l‘;,()’) = ( h e FTTH () (9.8.15)
where H, (x) are Hermite polynomials. The eigenvalues of the original Hamiltonian (9.8.2) are E [see (9.8.8}].
Hence,
B LB 43( lj P (9.8.16
E,=E.+ *om h Y30 m ' )
where the eigenfunctions y, (x, y, z) are
mwB)l/“ , . [ mmB( cp )2} ( Cp)
_ in, W/ h lpf/fl _ x M
Y, (xy2) = (_Ttﬁ e e exp| — 57 y+qB H, _v+qB (9.8.17)

9.9. Solve Problem 9.8 for a particle of spin 1/2 (an electron, for example) and with a magnetic moment
Mh=puSs.

r ey

(@) We add to the Hamiltonian (9.8.2) the interaction energy between the spin and the magnetic field,

and obtain the total Hamiltonian:

H = -L(p—gA) ~u-B (9.9.2)
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The magnetic field is B = B2, and we use the gauge A = (—-By, 0, 0) to obtain the Hamiltonjan operator:

l 2qux qB 2 l“lsB
H=m[vi+f’3+v§+ z >’+(?) yz}-TSz

{9.9.3)

One can easily see that the Hamiltonian (9.9.3) commutes with p, and p_. The only term that we need to check

LB
{after using the results of Problem 9.8) is %SZ. Since the degrees of freedom of the spin are free from the
spatial ones, we have [p,S] = 0. Specifically,
[ WB_ H;B ] 0 o
[Pr"579:] = LIJ O (9.9.4)
Including the spin states, we use the basis of the eigenstates of p_ and p, as well as of S? and S, ; namely, our
wave function is

V5, 2) X = €77 Ny () X (S = 172, 8) (9.9.5)

where X (S = 1/2,5,) is the spin state of the electron that is an eigenstate of 52 and S :
SA(S=1/2,8) = #’S(S+ 1) x(S=1/2,8) = i—‘ﬁ?x(s=1/zgsz) (9.9.6)
SX(S=1/2,8) =aSx(S=1/2,8) = [ %)hx(S— 1/2,8)) (9.9.7)

fi 1 1
We will represent the operator S using the Pauli matrices 8 = 50. The states x[ tzj can be written as
1 1 1 1 0
X\2%3) =10 xN3-35) =1 (9.9.8)
see Chapter 7.

In order to find the eigenfunctions and eigenvalues, we follow Problem 9.8, part (d). and write the Schrodinger
equation:

1 1 1 (1
[57,;1) +3mey ¥+ 5 -p? — T BS, ]wx, ¥ 2) Xepn = EW(X 0 7) Aopin (9.99)
where [following Problem 9.8, part {d), see (9.8./0) and (9.8.13)]

(o -, P

y=y+_p

1 7 (9.9.10)
_ g8

D = m

and p,, S = 1/2,and S, = +1/2 are constants. Defining

qgB MK

E=F- c7n+§BS (99.11)

we obtain from (9.9.9) a standard one-dimensional harmonic oscillator Schridinger equation,

! 2, ] 2 32 E
Il 3meg Y)Y = Evy (9.9.12)

with the eigenvalues E= hg(n+1/2) and the eigenfunctions V¥ (x, y, 2) X, Where y (x,y,2) is as
given in (9.8.17). Hence, the eigenvalues of our Schrodinger equation (9.9.9) are

- ﬁ( l) p: W
E =t \n+3)+5--5BS. (9.9.13)

These eigenvalues are known as the Landau levels.

Consider the particle of Problem 9.8. (a) Assume that the particle is in a very large, but finite, box:
0<x<L,, L <y< L and 0<z < Lz. Write the eigenfunctions in that case. (5) Find the number of

PY LY Ve

states per unit area (in LllC Xy-plan

(a)

Consider the Schrodinger equation

Hy(x,y,2) = Ey(x,¥,2) (9.10.1)
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where H is given in (9.8.2). We also have the boundary conditions

l | Y(x=0) =y(x=L) =
zzy I y(y=-L) =y(=L) =0 (9.10.2)
M y(z=0) =y(z=L) =0

YTlotmna tha cnsmnantine ~Af vynainlhlan Af Denllams 0 Q nwd 70 1N AN nad i) N AN n ownaml o £ O L3 amiial
uat lg ulic acpmauull Ul varlavliCa Ul Iyuulcll]l 7.0 alld \ 7. fUV.41 ), allld \’.1 U-‘lll}, wo lcl)ldbc \’ (o] U} wilLll
1
[Wx(x) Ay o (p.X)
NEZoN
1 (9.10.3)
y.(2) sin (p,z
2L
where
.
P;=[Tﬁ”x n=012,...
X
- (9.10.4)
1%
lp, = Tt n=012,...

gB -
Assuming that L is very large such that ﬁLy » 1, the y-part of the wave function (9.8.15) will hardly be
affected by the boundary condition (9./0.211), as is the case for the W(y) wave function. The eigenstates are
therefore {see (9.8.17)]

(mm_.,)““ 1 A _ [»mmﬂ( cpxj } ( cpx)

y(x,y,z2) = s ILL sin (p, x) sin (p,z)exp| 57— ¥ + 7B H|y+ _qB (9.10.5)
The eigenenergies are [see (9.8.716)]

4 11 €1genCnergics [ 13

_ qB( 1) (nﬁ)
E, = A\ nt5 )+ 3, ) ™ (9.10.6)

where we used p, = nhn /L [see (9.10.4)]. Note that (9 10.6) does not depend on », , so we have a
degencracy.

The number of states in the xy-plane is the number of different possible #, and n,, such that the particle is
inside theregion 0<x<L_, -L <y<L . We note that in the y-direction we have a harmonic oscillator cen-
tered at y, = —cp /qB [see (9. 8 10) and (9.8.11)]. Assuming that the deviations from the equilibrium point
¥ = y, are small, we need only to demand that —Ly <yo<sL,.So

L <—;,'§ <L, (9.10.7)
c A\
Using (9.10.4) we get ~L < "-TBL Z_J
({ gB { gB
~\ A LLy <0, S g JLL, (9.10.8)

The number of different states in the region 0 Sx<L,  and ~L <y<L_ is the number of different »_in
(9.10.8), namely,

n,=3-LL (9.10.9)

Including the two spin states for each #, we finally find the total number of states:

= ZﬁCL L, (9.10.10)
The number of states per unit area is, therefore,
B
N Z?ECL-fLy g8
n=r —==—F7—— = 3= (9.10.11)
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Refer to Problem 9.10. In the case p, = 0, show that the current I is indeed zero.

Using the definition of the probability current density (see Problem 9.3) we obtain the probability current:

qa . L) 29,
=qs = 2m|_ k‘l’ Vy-yVy J- = AlI""“I’J (9.11.1)

Since Y is real, we have y*Vy - yVy* = 0, and so
J = 2m(Aw W (9.11.2)

We have shown in Problem 9.5 that the probability current js gauge-invariant. So we can choose, for example, the
vector potential A = (-By, 0,0) (see Problem 9.8). We have

J =1 =0

2 (9.11.3)
o= 2chyw v

Using (9.10.5Yand p, = 0, we easily see that y*y is an even function of y. The current I is

I= [J dx dy dz (9.11.4)
L J
Wehave /] =1 = 0,s0
s l.L L\ l.__
;=18 I ()% dy ()| dx (2) d= 9.11.5)
= ame| YOOy v (0] lw.(2)]"dz (9.11.
-L, 0 0
L\
Qinca lur (0 [2 i an auan funetion {anly in the aace whara = = N3 wa Finally sat r e vy 129 Av — 01 and
Uill\/\l | \le A3 dil UYWIL 1UulliviiiuviL \Ulll] L MV wdAddu wiilvi v },“ - u }7 wu llllnll] 5\4‘ J I\v \ V}| A‘ u) = U alg

{. = 0. The classical motion of the particle is a circle and so the total current in the x- or y-directions is zero.

For the particle in Problem 9.10 and electric field E = Ey: (@) Find the eigenstates and eigenvalues of
the particle. (b) If p, = O show that / #0 even though E is only in the y-direction. What is the drift
velocity?

(a) We add to the Hamiltonian (9.8.2) the potential energy:
= q¢ (9.12.1)

electric

where E = -V ¢. Since E = EJ, we have ¢ = —Ey, and the total Hamiltonian is

ir q N2 ir . , 5 2(10[} qB‘Z _’_‘
H = ﬂ(p—;A) +qb = 2—mlp;+p:+p‘+ v—2nrqEv+( )_wJ (9.12.2)
Working in a coordinate representation, we get the Schridinger equation:
L[ .. a° 3 3°) Z24Bp, gB\?
2_m['ﬁ (5;+;+7 +— y—-2mgEy+ >y 2ly(x,y,2) = EW(y,y,2) (9.12.3)
y z
where we use the fact that H . . commutes with p. and p.. The equation for W (y) is
1[..a° (24Bp, qB 2
27"[1‘1 5?+( -2mEq )y + Y2 |W(y) = ey(y) (9.12.4)
2 2
Py P
where € = E— 53— - > . Defining
(pr lD
y=y+op 4B " w, (9.12.5)

E B
where v, = % and w, = ?—m , we get from (9.2 3)
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1 .90 1 -
2—,,,(- fi gy— + 2mw3y )\v ¥) = Ew(y) (9.12.6)
where
Pop I LI
E = E—-z—m-i-vao—zmvo (9.12.7)
The eigenstates of (9./2.6) are the standard harmonic oscillator eigenfunctions, and the energy spectrum is
r - p.g ( 1 n2fl2 nflVD 1 2 /n 1 8
’j’lxﬂyn: = u"y+2 ~Pvp+ 2ﬂlVD = to 8l 7y 3 —k ) )n - i, +§?‘rIVD (9.12.6)

Note that, unlike (9.10.6), (9.12.8) depends on n, and the degeneracy is removed (due to the electric field).

The current (9.11.4) isI = j.l dx dy dz . Using (9.1/.3) we have I, = 1, = 0, and

L

¥

] = qz_B 2 d 12
= 2mc ) I (y)["y dy (9.12.9)

_Ly

. \ . . 2
Notice, however, that in contrast to Problem 9.11, here even in the case where p, = 0, the function [y (y)|
is not even since from (9.12.5) we can conclude that for p, = 0,

- VD
y = y—m—B (9.12.10)

hw (3) |2 is evenin y but not in y. If we make the coordinate transformation y — y in (9./2.9) we obtain

Ly—\'D/u)B
qu - ¥p -2 -
!, ch (y+a)|\V(y)| dy (9.12.11)
v ‘L‘*"D/“‘B i
Now using L), » = , we obtain
W, _
2
q°B (- :’2) -2 -
[ ~2mcj Tt lw (] (9.12.12)

— oo

The first term (linear with y ) will give zero since the integrand is antisymmetric. The second term will give

g°B Vp - 2B Vp
e = Imcw, I dy= T = 9% (9.12.13)

as we expected. v, is the drift velocity (v, = cE/B).

9.13. Consider a spinless particle of mass m and charge g, subjected simultaneously to a scalar potential V(r)

1

and a magnetic field B = B 2. Use the symmetric gauge A = 3t xB and find the Hamiltonian of the

particle. Write it as a sum of H, corresponding to the case of no magnetic field and additional term H .

We have

1 g \2
H = Im\P— A + V(r) (9.13.1)

Using Eq. (9.5), we calculate

(p-2a)

+3-[p- (rxB) + (vxB) - p]

il

9B, q’B;
p2+—( PY+PX=Yp +ap) + 77

L T8y L o, B 0B
=Pt pymyp) + T (K y) =pie T L

(2 +y%)

S (2 +yY) (9.132)
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Substituting (9./3.2) in (9.13.1), we obtain

2p?
1 q8B, q°B,

_ —— 2 -
H=5 p*+5. L+

P— (x*+y%) +V(r)
We see that H = H,+ H |, where

1
H, = 5_p*+ V(r)

and

H = -——+g; +y)

.u‘BﬂLz qu?‘

fi

where U denotes the Bohr magneton, b = 2_an£

[CHAP.9

(9.13.3)

(9.134)

(9.13.5)

Polarized electrons, with a spin polarization (+) in the z-direction, enter a region of constant magnetic
field B = B,%. The electrons move in the y-direction. After time T the electrons reach a Stern—Gerlach

annaratue in which tha maonatic fiald ic in tha z_diractinn {2) Writa tha intaraction Hamiltonian in the
uk)l.}ul CLLLE] 11 YYARIWAE UiEw ll.usll\lll\_ﬁ LAW/AWA 107 111 MIEw & whillwU LIV/IL. \u} Y LA0%W LIEW LLIAR I AR RAA/IL L RCQRANILI®A/ILAGAR]L 111 LIEW

region of a constant magnetic field. (b) In a detector D we can detect only electrons with spin polariza-
tion (-) in the z-direction. Find the values of B, such that all the electrons will reach the detector D. (c)
For the smallest value of B, [found in part (b)], what is the percentage of electrons that will reach D if

the traveling time in the constant magnetic field region is 7/2 (not T)?

(a) The interaction between the electron and the magnetic field is due to the magnetic moment of the electron

2
n, = mecS and the external magnetic field B = B, 2. The interaction Hamiltonian is
2¢eB, 2eB,
Hy=p -B="77"8-%=72-78

We can use the two-vector representation of the +z spin states (see Chapter 7),

- ' 1 N
+z) — LO)
{00
ll—z) - LlJ
In this representation, the electron spin operator can be described by the Pauli matrices:
_h
S = 50
where
01 0 i 10
G;=(| n) G..=(-n} 0:=(n 1\
1 U/ R N— U/ ANIL © I

Using (9./4.4), we can write (9.14.1) as

(9.14.1)

(9.14.2)

{9.14.3)

(9.14.4)

(9.14.5)

(b) In order to find the state of the electrons at time r we need to solve the time-dependent Schrédinger equation:

9w
"2 = Hiy)

The state |y) can be written as
V@) = o nHz) +a()]-2)

2 2 . .
where o, + a_ = 1, or in the two-vector representation,

|\|‘Pr('t\\ = gq_(;\( ,1‘ \ +a_{;\( 0\ = ((’1+ (t)\
1R/ VI 0 ) YLl \a (1) )

Using (9./4.5) and (9./4.8), the Schrodinger equation (9./4.6) becomes

pg(00) < (0 Lot dmeto)

(9.14.6)

(9.14.7)

-
O
~
a
B0

N

(9.14.9)
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Equation (9./4.9) is equivalent to the following two equations;

do (1) do (1)
= = W,0(1) II [ T = 00 (D) (9.14.10)
where w, = eB,/m,c. Making another derivative of (9./4./01l) we get
d*o(1) do. (1)
i T = WOy (9.14.11)
dr’ v ‘ ’
From (9.14.11) and (9.14.10 1) we obtain
d o (1) ,
57— = — Wy0_(1) (9.14.12)
dr
and similarly,
d o, (1) )
7T =~ W0L() (9.14.13)
dr
The solutions of (9./4.12) and (9.14.13) are
{a,r(t) = a,cos (©yr) + b, sin (W 1)
o () = a_cos (wyt) +b_sin (W) (9-14.14)
where a, and b, are constants determined by the initial condition. The initial condition is
1
lw(t=0) = |[+2) = ( O) (9.14.15)

Soa, = 1 and a_ = 0. From Oli+ai =1 wegeth, =0 and b_ = 1. Thus the solutions of (9.74.14) are
{a+(t) = cos (@)
o_(r) = sin (W) (9.14.16)

and the quantum state (9./4.5) is
cos (W) \

L sin (w,!) )

hp@)) = (9.14.17)

After a time T, the state of the electrons is

cos (w,T)
W@ = | o (@,T) (9.14.18)
If we want all the electrons to reach the detector [, we must demand that
0
ey = 12 = (1) (9.14.19)
since the detector D detects only electrons with polarization —z. From (9./4.77) and (9./4.18) we obtain
|cos (w,T}| = 0 and |sin (w,T)| = 1, or, equivaiently,
w,T = g+1tn n=0+1,%2, ... (9.14.20)
Using w, = eB,/m,c we finally get
mcin
B, = ?7—.(§+1tn) (9.14.21)
The minimum positive value for B, satisfying (9./4.20) is, forn = 1,
nm ¢
(Bo) i = 5o (9.14.22)
Assuming that B, equals (9./4.21), the quantum state |y(z)) after time T/2 is
cos (w,T/2)
w(T/2)) =] . (9.14.23)
PRSI sin (@, T/2) ! ’
Now, using (9.14.21), we have
€ (Bo)min n
@, = - m___._ec = 57 (9.14.24)
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Hence, from (9.74.22) and (9.74.23) we get

cos (w,7/2) 171
v (T/2)) = sin (w,T/2) ( )

The probability of finding the electron in the detector D is
| $ 1
P, = [(=zlw(T/2)) = L on(0)f =1 (9.14.26)
- N2 L Z

In this problem we examine how the energy levels of the hydrogen atom are modified in the presence of
a static magnetic field; this effect is called the Zeeman effect. We shall ignore here the effects of spin
(“normal” Zeeman effect). Suppose that the mass of the electron is m and its charge is g. (@) We denote
by H the Hamiltonian of the electron in the hydrogen atom (without magnetic field). Write the eigen-
states of H(, that are also eigenstates of £? and L.. What are the corresponding eigenvalues? () Suppose
that the atom is placed in a uniform magnetic field B along the Z-axis. Write the new Hamiltonian. Are
the states of part (a) also eigenstates of the new Hamiltonian? How are the energy levels modified?

A _

in<

H
Assume that the term (x%+y%)is negligible compared to XBBOL: (this can be shown by a detailed

8m
calculation).

(@) The eigenstates of the Hamiltonian of the hydrogen atom can be written in the form

Ouim (10, 0) = R, (NY](8, §) (9.15.1)
The number n determines the energy level, £, = -E, /n*. The energy levels in a hydrogen atom are degener-
ate; for each » the number { can assume one of the values / = 0, 1,2, ..., n—1, and m is an integer between

—! and /. The total degeneracy of the energy level £, is n* (without spin). The wave function ¢, isan eigen-
function of L2 with an eigenvalue / ({ + 1) %%, and also an eigenfunction of L. with an eigenvalue m#.
(b} According to Problem 9.13, the Hamiltonian is the sum of H|, and

152
o u, ., g8 5

L. s 1 "
- Byl {(x*+y%) {

a —_ 4
1, = <)

‘(3

Now we assume (without a detailed proof) that the second term in (9.15.2) is negligible when compared to the
first one. Since ¢,,, (r) is aneigenstate of L, we have

(H +H )q)nfm(r) = H0¢'nhn(r) B L ¢n[rn(r) - (E muBO)q)n}m(r) (9153)

We see that ¢,,,, (r) are also eigenstates of the new Hamiltonian, but the energies are shifted by muB,. Also,
the degeneracy is removed, because of the presence of the magnetic field,

An electron is constrained to move on a one-dimensional ring of radius R, see Fig. 9-1. At the center of
the ring there is a constant magnetic flux @ in the z-direction. (@) Find the vector potential A on the ring,
in the gauge in which it is independent of ¢. (b) Write the Schrédinger equation for the constrained elec-
tron. (¢) What are the general boundary conditions on the wave functions of the electron? (d) Find the
eigenstates and eigenenergies of the electron. Use functions of the form e*?.

Magnetic flux
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(@) The magnetic field is B = B2 . The magnetic flux through the surface bounded by the ring is

(D=Jld.t‘JlB CAdy = Jld.rJlB 3 dy 19.16.1)

nside nside
the ring the nng
We would liketofind Aonr = R suchthat B = V x A and A does notdepend on ¢ . From (9.16.]) we obtain
O= [[(VXA) c2dS (9.16.2)
JJ
5
where $ is the surface bounded inside the ring. Using Stokes’s theorem we can write (9./6.2) as
D = &A-dl (9.16.3)
g
where (" is the boundary of S, which is the ring p = R, and dl is along the curve C. Now,
dl = (Rd§)$ (9.16.4)
where 0 is a unit vector tangential to the ring (in the “*n-direction™). From (9./6.3) and (9./6.4) we find
2n
D = AR do (9.16.5)

0

Using the gauge in which A dees not depend on ¢, we get, from (9./6.5), ® = 2nRA,. Finally we obtain
JA, A =0
¢

[

(by Considering the symmetry of the problem. it is more convenient to use cylindrical coordinates. To write the
Schrédinger equation we have to express the gradient V in cylindrical coordinates as follows:

.
N
i
[
(=

)

21R

.0 .14 J
V = a1 h—— 1L 5— Q1A 7
v Pdeleaq)Y—d: |7.1U.I’
where p. ¢, and ? are unit vectors in the p-, ¢-, and z-directions, respectively. Since the electron is constrained
to move on the ring, we have ¢ = R = const. and = = const. Thus, the only nonvanishing part of Vin
.1a
(9.16.7)1s q)E% Applying (9.16.6) and (9./6.7) on the ring we get
'(. ¢ )3 L(.ii s"D)Z ! (.i 92)3
H=gp\~-hV A ) = 3\ ~ihgae = amk) = 5\ 56~ c2n (9.16.8)
and the Schrodinger equation is

l ( a (_)2\2..’()‘\ — Daeer by A0 1E O
SR\ 3G T c2n) W@ = EW@) (9.16.9)

(¢) Since ¢ is defined over 2R, the general boundary condition for any tunction of ¢ determines that the function
will be periodic in 27, so we have |y (¢ +21)| = |w(¢)| and similarly for a—:: We consider only absolute
values——as in quantum mechanics it is only |\|1|2 that has a real physical meaning.

(d) Check whether y(¢) = 1%/"‘“) (k = const.) are solutions of (9.16.9). First, we find the normalization constant N:

‘.Zn

RJ (o) do = 2me]\i]2 -1 (9.16.10)
{

1
2nR

o]

L
SoN = . Next, we use W(@) = we ' in (9.16.9) and obtain

;

z,,iRz[hzkg‘ﬁk(%)J‘“(zE%Jz} =E (9.16.11)
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or, equivalently,

(ﬁk—%)z = 2mRE (9.16.12)
We define = = and write (9.16.12) as ,
(k_ﬂ)—)z _ mR (9.16.13)
D, #* ‘

1 .
From the boundary condition and the wave function W (¢) = Nezko , we have

2Rk = 21n n=0%1,%2, ... (9.16.14)
From (9./6.13y and (9.16.14) we get the eigenenergies:
(o om)
= n—o/P 9.16.15
"7 2mR’ ¥ ( )

and the eigenstates:

1
V. (9) = mew (9.16.16)

Refer to Problem 9.16, Eqgs. (9.16.15) and (9.16.16). The magnetic field is zero on the ring (recall that
the flux is inside the ring but not or the ring). (a) In classical mechanics, a particle (electron), constrained
to move on the ring, will not be affected by the magnetic flux. Is this also the case in quantum mechan-
ics? Is the energy of the electron a function of the flux ®7 (b) Plot a graph describing the ground state
of the electron as a function of ® (or ®/®,). (¢) The current on the ring can be defined by
dH

do

where H 1s the Hamiltonian and & the flux. Write the current operator / in the coordinates representa-
tion. (d) Calculate the expectation value of / in state W, . Find the relation between the energy and the
current of the state .

I=c¢ (9.17.1)

(a) Using (9.16.15) we can easily see that the energy’s eigenvalues for the electron depend on @; thus, in contrast
to classical mechanics, in quantum mechanics a particle can be affected by a magnetic field even when the

natic fiald ic 7zarg in thoe vhich tha narticle maovag
magnetic field 1s zero 1n e IL/E.\UII i wiicn e particie moves.

Aharonov-Bohm effect.
(b) The energy eigenvalues are

Thic curnricinga nhanam e kmourm tha
11015 SUIprising }Ju»uuulvuuul 1S KnGwn as (he

2

h
E =
2mR

The ground states depend on @ (or ®/P). For -1/2 <®/d, < 1/2, the minimum energy in (9./7.2) cor-
responds with # = 0 (Fig. 9-2). For ®/®; > 1/2 , the value n = 0 is no longer the minimum energy (the ground

o 2
2(,7-(—50) (9.17.2)

i & 3 3 ® 5
state). For 5 < 5 < 5, the minimum energy in (9./7.2) corresponds to n = 1. For 5 < 7= < 3, _, isth
) 2°@,%2 gy In ( ) esp 2°0,%2 Va2 €
. on=1 _ n+] . ] , e
ground state, and so on. For —5— < ®/®, < 2 the ground state 1s . So the ground state is periodic in
® /P, with period 1, as shown in Fig. 9-2.

E ground state

4L
\ A N '

N N NN
-5/2 -2 -3/2 - -1/2 1/2 | 3/2 2 572 D/D,
n=-2 n=-1 ' n=0 n=1 : n=2
ground state - groundstate : groundstate  ground state . ground state

Fig. 9-2
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9.18.

-]
ot
)

9.20.

)O
[
[,

)
be
b

(¢) Using (9.1/7.1) and (9.16.8) we have

I ;( ~a 92)2 _L( e )( 5 52)
I= Ladn{szZ ¢ T e2n } = R\ I N3 cn

m
L A 9.1
= 4n2mR2(la¢—¢DJ ( . 73)
{d) The expectation value of / iy
2n 2n
i D = [ v [y, (0)1R dp = [ i N2 (i’/ti)\"“‘“’de
1D = J v, (o) Iy, (0)] ) '-J e L4nsz2J|_Ua¢— o}" J 0
0 0
eh eh
= 2TtmR(n—flJ/flbo) = —;n—R(n—d)/(DO) (9.174)
From (9.17.2) and (9.17.4) we obtain
- @(”)(n))z
E, = > " (9.17.5)

Supplementary Problems

Consider an electron in a region of a constant magnetic field of 1 gauss in the z-direction. Assume that the electron

I <v<{ and N< <7 Whatic tha numhar of ¢t
y=¥SsL,and U Sz 4. vwhalis tne numoer ol st

o, . a
& ’ Lo ) LU (aiiioe. Q@

1

) N
plane)? Ans, Accordingto (9.10.11), n = ;r_;l=80ﬁ'

1 qB \? gB \?
are the same (as they must be). Ans. H = —[ p+350y) H\py-50x +p§].

Using formula (9.9.2) solve Problem 9.3 for a charged particle with spin and a magnetic moment U, .

] 2
Ans. (a) H = 2—m(—iﬁV—%A) -u - B. (D) p(ry) = wE(rw(ry).

h q ujc ’
(c)s = rm(w*v\v—wV\v*)— meAVRY + TV x (yFSy). (9.20.1)
Conductivity is defined by
c = o (9.21.1)

where i, is the total current per unit length and V is the electric potential. Consider Problem 9.12. In this case,
E = Eyand ¢ = -Ey,so V = 2EL . The total current in the x-direction is (i), = Ni,, where N is the number
of states in a complete Landau level, which is given in (9.10.10). Find & for this case. Ans. © = e/h.

TTacenilemininie
Ilal

1 1
2 2 2 2 2
H, = E(px+p:+p:)—§m0)3(x +y) (9.22.1)
(a) Is it possible to find a basis of eigenstates that is common to H, and L,? () Assume that the oscillator has a

. . oo . | S
charge of ¢ and is placed in a region of constant magnetic field B = B,%. Use the gauge A = —3r % B and find the

corresponding Hamiltonian of the system.
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Ans. (a) Yes,since |H, L] = 0.
Loy o, o, ((qBo)z 1) ((ffBoZ 1) 48,
(b)H=2_m(P.r+P.-+P§)+2_m S ) tameg o+ F ) H3miey )yt + 5Py —PX).

Refer to Problem 9.22. (a) Is it possible to find a basis of eigenstates that is common to L_ and the Hamiltonian of
9.22, part (h)? (b) Are the eigenstates of part (b} also the eigenstates of part (a)?

Ans.  (a)y Yes,since [H,L.] = 0. (b) No,since [H, H,| #0.

Consider a hydrogen atom placed in a constant magnetic field of 10% gauss. Calculate the wavelengths correspond-
ing to the three transitions between the levels 34 and 2p.

eh et

Ans. E,=AE;,; E,=AEp+5 "B Ey=AEy -5 —B. & = 6500 Ash, 4 = 6500 + 0.2 A.



Chapter 10

Solution Methods in Quantum Mechanics—Part A

10.1 TIME-INDEPENDENT PERTURBATION THEORY

The quantum mechanical study of a conservative physical system (whose Hamiltonian is not explicitly
time-dependent) is based on the eigenvalue equation of the Hamiltonian operator. Some systems, for example,
the harmonic oscillator, are simple enough to be solved exactly. In general, the equation is not amenable to ana-
lytic solutions and an approximate solution is sought, usually using computer-based numerical methods.

In this section we present the widely used time-independent perturbation theory. The approach of this
method is often encountered in physics: We begin by studying the primary factors that produce the main prop-
erties of the system, then we attempt to explain the secondary effects neglected in the first approximation.

Perturbation theory is appropriate when ihe Hamiltonian / of the system can be put in the form

H=Hy+AW (10.1)

where the eigenstates and eigenvalues of H,, are known and A is a parameter. The operator AW must be “much
smaller” than H,, that is, the relation AW «H,,ie., A « 1 must hold and the matrix elements of W are compa-
rable in magnitude to those of H,. More precisely, the matrix elements of W are of the same magnitude as the
difference between the eigenvalues of H ;.

The Unperturbed State: We assume that the unperturbed energies (that is, the eigenvalues of H, ) form a dis-
crete spectrum £, where p is an integral index. We denote the corresponding eigenstates by |¢;), where the
additional index ! distinguishes between the different linearly independent eigenvectors corresponding to the
same eigenvalue in the case of a degenerate eigenvalue. We have

Hold')) = Elob) (10.2)

where |¢;,) form an orthonormal basis of the state space,

<¢;|¢2> = 8[348,‘1'
N (10.3)
> Doy @, =1

Possible Effects of the Perturbation: When the parameter A is equal to zero, H (A) is equal to the unperturbed
Hamiltonian H, . The eigenvalues E (1) of H () generally depend on A. Figure 10.1 represents possible forms
of the variation of energy levels with respect to A.

In the case of a nondegenerate energy level, the perturbation may either affect the energy level ( E , inFig.
10.1) or not affect it (as in case of E, ). For a degenerate energy level, it is possible that the perturbation “splits”
it into distinct energy levels, as in the case of E; in Fig. 10.1. We say then that the perturbation removes the
degeneracy of the corresponding eigenvalue of H . The perturbation may also leave the degeneracy of an
energy level, as in the case of Eg in Fig. 10.1.

Approximate Solution for the Eigenvalue Equation: We are looking for the eigenstates |y (A) ) and eigen-
values E (A) of the Hamiltonian H (A):

H(M iy ) = EA) Iy M) (10.4)
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EN

Fig. 10-1

We shall assume that £ (A) and [y (L)) can be expanded in a power series of A in the form

E(\) = £n+7L£l+---+lqeq (10.5)

Iy (A)) =10y + AJLy +- -+ A%|g) (10.6)

When the parameter is equal to zero, we have the energy level and eigenstate of the unperturbed Hamiltonian.
When A « 1, each element in the series expansions (/0.5) and (/0.6) is much smaller (in general) then the pre-
vious one; in practice, it usually suffices to consider only the first few elements. The element containing A is
called the first-order correction, the one containing A s called the second-order correction, etc.

10.2 PERTURBATION OF A NONDEGENERATE LEVEL

Consider a particular nondegenerate cigenvalue £, of the unperturbed Hamiltonian, with eigenvector b,)
(this eigenvector is unique to within a constant factor). We now give first- and second-order corrections for the

RS PRI [ TR SRR | PRI (R YR Y P

ClcIgy lCVCl d.llU. CUTIOS pulding ClgCrvouiur U.HC UCILlelUll ib glVCll l[l r[UUlCIlI lU l)

(¢, |Wlo,
E0) = Ey+A(,IW0,) +2% ) |quO—EO+0(x3> (10.7)
2" Tp

pza i

,(\) = 1o >”‘ZZ<¢ o |¢> "

pREr A

i
2O O ( (9,IW0,){,IW[0,) ~o~ {0, Wle,) (0 IW|¢,,)-| e s N
TN LT 0 02 - 0 o, | 1¥p/ TN (1v.8)
. (E)-EY) (E,~E) (E,~E,)
pEn i 14 gza |
Note that the first-order correction for the energy level is simply the mean value of the perturbation term AW
in the unperturbed state |¢,) .
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10.3 PERTURBATION OF A DEGENERATE STATE

Assume that the level ES is g, -fold degenerate. We present a method for calculating the first-order cor-
rection for the energies and the zero-order correction for the eigenstates. The derivation is given in Problem
10.8.

Arrange the numbers (q; |W|¢ ) ina g Xg matrix (i is the row index and /' the column index). This

o L

]
ety whinh wn danate m(’” e e et oF tha mantriy that samracanie W in tha [ 1AV hacic Nate thas 1170
11akl , Wlll\.ll WL ULliuviv rr s 1D vuL vuL 1 LIiC 11idakiiAa iat leIDBL 1L ¥r 111 L1iv 1 |\Pp/f Uddld,. 1YULL Lial V
, . . (4]
trdentrcal to W; it is an operator in the g, -dimensional space corresponding to the energy level E, .
The firct_nrdar carroct: 10ns C‘l nf the anearov lovsel FU arp aigonuah f tha matriv IU(") Th rn,nrrlor
lll\/ LHIOLUTUIULI vwliilvwuivily Ul UL Liiw \.Il\/ls IUVUI ‘Jn ﬂl \-IEUII'(‘!A 1 Ml L1IcALilA Fr 1 1UTUIUV

1,2,...f(1) be the roots of the

eigenstates corresponding to E are the eigenvectors of W' Let Ef
e degenerate energy level splits, to the first

characteristic equation of Wi g (that is, the eigenvalues of w' ]) Th
order, into f{1 distinct sublevels:

E, (A = E)+ ¢, j= 12, fh<g (10.9)

When f(! = g we say that to first order the perturbation W completely removes the degeneracy of the level
F . When f'(l) < g, the degeneracy is only nanm]ly removed, or not at all if f(]) = 1.

Suppose that a specrﬁc sublevel E, (7L) = E +M—:’ is g-fold degenerate in the sense that there
are ¢ linearly independent eigenvectors of w correspondmg to it. We distinguish between two com-

pletely different situations:

I.  Suppose that there is only one exact energy level £ () that is equal to the first order to E, ;. This energy
is g-fold degenerate. [In Fig, 10.1 for example, the energy E (A) that approaches E when k -» 0 is two-
fold degenerate.] In this case the zero-order eigenvector |0) of H (L) cannot be completely specified, since
the only condit