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Preface

Finite mathematics has in recent years become an integral part of the mathematical
background necessary for such diverse fields as biology, chemistry, economics, psychology,
sociology, education, political science, business and engineering. This book, in presenting
the more essential material, is designed for use as a supplement to all current standard
texts or as a textbook for a formal course in finite mathematics.

The material has been divided into twenty-five chapters, since the logical arrangement
is thereby not disturbed while the usefulness as a text and reference book on any of several
levels is greatly increased. The basic areas covered are: logic; set theory; vectors and
matrices; counting — permutations, combinations and partitions; probability and Markov
chains; linear programming and game theory. The area on vectors and matrices includes
a chapter on systems of linear equations; it is in this context that the important concept
of linear dependence and independence is introduced. The area on linear programming
and game theory includes a chapter on inequalities and one on points, lines and hyper-
planes; this is done to make this section self-contained. Furthermore, the simplex method
is given for solving linear programming problems with more than two unknowns and for
solving relatively large games. In using the book it is possible to change the order of
many later chapters or even to omit certain chapters without difficulty and without loss
of continuity.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so vital to effective learning. Proofs of theorems and derivations of basic results are
included among the solved problems. The supplementary problems serve as a complete
review of the material in each chapter.

More material has been included here than can be covered in most first courses. This
has been done to make the book more flexible, to provide a more useful book of reference
and to stimulate further interest in the topics.

I wish to thank many of my friends and colleagues, especially P. Hagis, J. Landman,
B. Lide and T. Slook, for invaluable suggestions and critical review of the manuscript.
1 also wish to express my gratitude to the staff of the Schaum Publishing Company,
particularly to N. Monti, for their unfailing cooperation.

S. LIPSCHUTZ

Temple University
June, 1966
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Chapter 1

Propositions and Truth Tables

STATEMENTS

A statement (or verbal assertion) is any collection of symbols (or sounds) which is either
true or false, but not both. Statements will usually be denoted by the letters

p,q7 ...
The truth or falsity of a statement is called its truth value.

Example 1.1: Consider the following expressions:
(i) Paris is in England. (ili) Where are you going?
(il) 2+2 =4 (iv) Put the homework on the blackboard.

The expressions (i) and (1/1) are statements; the first is false and the second is true.
The expressions (iii) and (iv) are not statements since neither is either true or false.

COMPOUND STATEMENTS

Some statements are composite, that is, composed of substatements and various logical
connectives which we discuss subsequently. Such composite statements are called com-
pound statements.

Example 2.1: “Roses are red and violets are blue” is a compound statement with substatements
“Roses are red” and “Violets are blue”.

Example 2.2: “He is intelligent or studies every night” is, implicitly, a compound statement with
substatements “He is intelligent” and “He studies every night”.

The fundamental property of a compound statement is that its truth value is completely
determined by the truth values of its substatements together with the way in which they
are connected to form the compound statement. We begin with a study of some of these
connectives.

CONJUNCTION, p A q

Any two statements can be combined by the word “and” to form a compound statement
called the conjunction of the original statements. Symbolically,

pnq
denotes the conjunction of the statements p and ¢, read “p and q”.

Example 3.1: Let p be “It is raining” and let ¢ be “The sun is shining”.
Then p A ¢ denotes the statement “It is raining and the sun is shining”.
The truth value of the compound statement p Aq satisfies the following property:
[T,] If pis true and ¢ is true, then p A q is true; otherwise, p A q is false.

In other words, the conjunction of two statements is true only in the case when each sub-
statement is true.
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Example 3.2: Consider the following four statements:

Il
Lol A

(i) Paris is in France and 2+2
(ii) Paris is in France and 2+2
(iii) Paris is in England and 242 =
(iv) Paris is in England and 242 = 5.

By property [Ty], only the first statement is true. Each of the other statements
is false since at least one of its substatements is false.

A convenient way to state property [T,] is by means of a table as follows:

p~q|p/\q
T | T T
T F F
F | T F
F | F F

Here, the first line is a short way of saying that if p is true and ¢ is true then p A q is true.
The other lines have analogous meaning. We regard this table as defining precisely the
truth value of the compound statement p A ¢ as a function of the truth values of p and of q.

DISJUNCTION, » v ¢q

Any two statements can be combined by the word “or” (in the sense of “and/or”) to
form a new statement which is called the disjunction of the original two statements.

Symbolically, D g

denotes the disjunction of the statements p and ¢ and is read “p or q”.

Example 41: Let p be “Marc studied French at the university”, and let ¢ be “Marc lived in
France”. Then pV q is the statement “Marc studied French at the university or
(Marc) lived in France”.

The truth value of the compound statement p v ¢ satisfies the following property:

[T,] If p is true or ¢ is true or both p and ¢ are true, then pv q is true; otherwise pvq
is false.

Accordingly, the disjunction of two statements is false only when both substatements are
false. The property |T,] can also be written in the form of the table below, which we

regard as defining pv ¢:
| ‘ PV q

q
T T
F
T
F

HH a3

T
T
F

Example 4.2: Consider the following four statements:
(i) Paris is in Franceor 242 =

ii) Paris is in Franceor 2+2 =

Ll A

(
(iii) Paris is in England or 2+2 =
(iv) Paris is in Englandor 2+2 = 5.

By property [Ty], only (iv) is false. Each of the other statements is true since at
least one of its substatements is true.
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Remark: The English word “or” is commonly used in two distinet ways. Sometimes
it is used in the sense of “p or ¢ or both”, i.e. at least one of the two alternates
occurs, as above, and sometimes it is used in the sense of “p or ¢ but not both”,
i.e. exactly one of the two alternatives occurs. For example, the sentence
“He will go to Harvard or to Yale” uses “or” in the latter sense, called the
exclusive disjunction. Unless otherwise stated, “or” shall be used in the
former sense. This discussion points out the precision we gain from our
symbolic language: pvgq is defined by its truth table and always means
“p and/or ¢".

NEGATION, ~p

Given any statement p, another statement, called the negation of p, can be formed by
writing “It is false that...” before p or, if possible, by inserting in p the word “not”.
Symbolically,

~p
denotes the negation of p (read “not p”).
Example 5.1: Consider the following three statements:
(i) Paris is in France.
(ii) It is false that Paris is in France.
(iii) Paris is not in France.
Then (ii) and (iii) are each the negation of (i).
Example 5.2: Consider the following statements:
4 2+2=5
(ii) It is false that 242 = 5.
(iii) 2+2 # 5
Then (ii) and (iii) are each the negation of (i).

The truth value of the negation of a statement satisfies the following property:

[T,] If pis true, then ~p is false; if p is false, then ~p is true.

Thus the truth value of the negation of any statement is always the opposite of the truth
value of the original statement. The defining property [T,| of the connective can also be
written in the form of a table:

P ~Pp
T F
F T
Example 5.3: Consider the statements in Example 5.1. Observe that (i) is true and (ii) and (iii),

each its negation, are false.

Example 5.4:  Consider the statements in Example 5.2. Observe that (i) is false and (ii) and (iii),
each its negation, are true.

PROPOSITIONS AND TRUTH TABLES

By repetitive use of the logical connectives (A, v, ~ and others discussed subsequently),
we can construct compound statements that are more involved. In the case where the
substatements p,q,... of a compound statement P(p,q,...) are variables, we call the
compound statement a proposition.

Now the truth value of a proposition depends exclusively upon the truth values of its
variables, that is, the truth value of a proposition is known once the truth values of its
variables are known. A simple concise way to show this relationship is through a truth
table. The truth table, for example, of the proposition ~(p A ~q) is constructed as follows:
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» | q § ~q \ pA~q | ~(pAr~q
T|T]| F F T
T|F | T T F
F|lT | F F T
F|lr | T F T

Observe that the first columns of the table are for the variables p,q, ... and that there
are enough rows in the table to allow for all possible combinations of T and F' for these
variables. (For 2 variables, as above, 4 rows are necessary; for 3 variables, 8 rows are
necessary; and, in general, for n variables, 2" rows are required.) There is then a column
for each “elementary” stage of the construction of the proposition, the truth value at each
step being determined from the previous stages by the definitions of the connectives A, v, ~.
Finally we obtain the truth value of the proposition, which appears in the last column.

Remark: The truth table of the above proposition consists precisely of the columns
under the variables and the column under the proposition:

p|a| ~or~q
T| T T
T|F F
F| T T
F|F T

The other columns were merely used in the construction of the truth table.

Another way to construct the above truth table for ~(p A ~q) is as follows. First
construct the following table:

~ » ~A ~ 9

e
H a3 a3

Step

Observe that the proposition is written on the top row to the right of its variables, and
that there is a column under each variable or connective in the proposition. Truth values
are then entered into the truth table in various steps as follows:

pl g~ (® A~ ~ 9 plag |~ (® A~ ~ 9
T T T T T T T F T
T| F T F T | F T T | F
F| T F T F|T F F|T
F | F F F F | F F T | F

Step 1 1 Step 1 2 1

(a) (b)

plaqg |~ P A~ ~ 9 pla|~ ® ~ ~ 9
T | T T | F|F |T T|T|T|T|F|F|T
T F T T T F T F 1) T T T F
F T F F F T F T T F F F T
F F F F T F F F T F F T F

Step 1 3 |2 |1 Step 4 1 {38 |2 1

(c) (d)
The truth table of the proposition then consists of the original columns under the variables
and the last column entered into the table, i.e. the last step.
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Solved Problems

STATEMENTS

1.1

1.2

Let p be “It is cold” and let ¢ be “It is raining.” Give a simple verbal sentence which
describes each of the following statements:
1) ~p, @) pnrg, B)pvae (4)gv~p, (6) ~pa~q, (6)~~q.

In each case, translate A, v and ~ to read “and”, “or” and “It is false that” or “not”,
respectively, and then simplify the English sentence.

(1) It is not cold. (4) It is raining or it is not cold.
(2) It is cold and raining. (5) It is not cold and it is not raining.
(3) It is cold or it is raining. (6) It is not true that it is not raining.

Let p be “He is tall” and let ¢ be “He is handsome.” Write each of the following
statements in symbolic form using » and gq.

1) He is tall and handsome.

) He is tall but not handsome.

) It is false that he is short or handsome.

) He is neither tall nor handsome.

) He is tall, or he is short and handsome.

) It is not true that he is short or not handsome.

(Assume that “He is short” means “He is not tall”, i.e. ~p.)

1) prgq @) ~(~pVvaq) () pv(~pAq)
(2) pr~q (4) ~p A ~q (6) ~(~pv ~q)

TRUTH VALUES OF COMPOUND STATEMENTS

1.3.

14.

1.5.

Determine the truth value of each of the following statements.

(i) 83+2 =17 and 4+4=8. (i) 2+1 =3 and 74+2 = 9. (iii) 6+4 = 10 and
1+1 = 3.

By property [T,], the compound statement “p and ¢” is true only when p and q are both true.
Hence: (i) False, (ii) True, (iii) False.

Determine the truth value of each of the following statements.
(i) Paris is in England or 3+4 = 7.

(i) Paris is in France or 241 = 6.

(ili) London is in France or 5+2 = 3.

By property [T;], the compound statement “p or ¢” is false only when p and q are both false.
Hence: (i) True, (ii) True, (iii) False.

Determine the truth value of each of the following statements.
(i) It is not true that London is in France.

(ii) It is not true that London is in England.

By property [T;], the truth value of the negation of p is the opposite of the truth value of p.
Hence: (i) True, (ii) False.
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Determine the truth value of each of the following statements.

(1)
(i)
(iii)

@

(i)

(iif)

It is false that 2+2 =4 and 1+1 = 5.

Copenhagen is in Denmark, and 1+1 =5 or 24+2 = 4.

It is false that 2+ 2 = 4 or London is in France.

The conjunctive statement “2+2 =4 and 1+ 1 = 5” is false since one of its substatements
“l141 = 5” is false. Accordingly its negation, the given statement, is true.

The disjunctive statement “1+1 = 5 or 2+ 2 = 4” is true since one of its substatements
“242 = 4” is true. Hence the given statement is true since it is the conjunction of two
true statements, “Copenhagen is in Denmark” and “1+1 =5 or 2+2 = 4”7,

The disjunctive statement “2+4 2 = 4 or London is in France” is true since one of its sub-
statements “2+2 = 4” is true. Accordingly its negation, the given statement, is false.

TRUTH TABLES OF PROPOSITIONS
Find the truth table of ~p A q.

1.7.

1.8.

1.9.

Pl a|~r| ~prg p|lal~ » A q
T| T | F F T|T|F|T|FI|T
T| F| F F T|F|F|T|F|F
F|T]|T T F|lT|T|F|T]|T
F|F|T F F|F|T|F|F|F
Step 2 1 3 1
Method 1 Method 2
Find the truth table of ~(pv q).
p| q l pPVa \ ~( v q) P qg |~ » Vv 9
T| T T F T|T|F|T|T]|T
T | F T F T|F|F|T|T]|F
F | T T F F|T|F|F|T]|T
F | F F T F|F|T|F|F|F
Step 3 1 2 1
Method 1 Method 2
Find the truth table of ~(p v ~q).
P qg | ~q¢ | pv~q ~(p Vv ~q) plag |~ v ~ ¢
T T F T F T T F T T F T
T F T T F T F F T T T F
F T F F T F T T F F 1) T
1 F T T ¥ F K r F T T F
Step 4 1 3 2 1
Method 1 Method 2

1.10. Find the truth table of the following: (i) pa(gvr), (i) @A Q) v D AT).

Since there are three variables, we will need 23 = 8 rows in the truth table.
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pla|r|agvr | palgvr) plalr|prg|vAar| Aagdvipar
T|T| T T T T|T|T T T T
T|T|F| T T T|T|F| T F T
T F, T T T TP T F T T
T| F|F F F TIF|F F F F
F|T| T T F F|{T|T F F 1)
F|T|F T F F|T|F F F F
F|F|T| T F F|F|T| F F F
F|F|F F F F|F | F F r F

—
—
=
—
o
]
=

Observe that both propositions have the same truth table.

MISCELLANEOUS PROBLEMS

1.1L.

1.12.

Let Apgq denote pAq and let Np denote ~p. Rewrite the following propositions
using A and N instead of A and ~.

(i) pA~q (ili) ~p A (~g ~7)
(ii) ~(~p ~q) (iv) ~(0 ~~q) A (~q A ~T7)
(i) »pA~qg = pANg = ApNgq
(i) ~(~pnrnqg = ~Np~rq) = ~(ANpg) = NANpq
(iii) ~pA(~gAr) = NpA(Nganr) = NpAn(ANqr) = ANpANgr
(iv) ~(p A ~q) A (~qg A ~7) = ~(ApNq) A (ANgNr) = (NApNq) A (ANgNr) = ANApNgANgNr
Observe that there are no parentheses in the final answer when A and N are used instead of
A and ~. In fact, it has been proved that parentheses are never needed in any proposition using

A and N.

Rewrite the following propositions using A and ~ instead of A and N.

(i) NApq (iii) ApNq (v) NAANpqr
(i) ANpq (iv) ApAqr (vi) ANpAgNr
(i) NApq = Nipnrqg = ~DAQ) (iii) ApNg = Ap(~q) = p A ~q
(i) ANpq = A(~p)g = ~pArgq (iv) ApAgqr = Ap(gAr) = pAlgAaT)

(v) NAANpqgr = NAA(~p)gr = NA(~pAgr = N[(~pAr g rr] = ~l(~p A~ q) A 7]
(vi) ANpAqNr = ANpAq(~7)

Notice that the propositions involving A and N are unraveled from right to left.

ANp(g A ~7) = A(~p)@ A ~7) = ~p A (g A ~7)

Supplementary Problems

STATEMENTS

1.13.

Let p be “Mare is rich” and let ¢ be “Marc is happy”. Write each of the following in symbolic form.
(i) Marc is poor but happy.

(ii) Marec is neither rich nor happy.

(iii) Mare is either rich or unhappy.

(iv) Marec is poor or else he is both rich and unhappy.
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1.14.  Let p be “Erik reads Newsweek”, let ¢ be “Erik reads Life” and let r be “Erik reads Time”.
Write each of the following in symbolic form.

(i) Erik reads Newsweek or Life, but not Time.
(ii) Erik reads Newsweek and Life, or he does not read Newsweek and Time.
(iii) It is not true that Erik reads Newsweek but not Time.

(iv) It is not true that Erik reads Time or Life but not Newsweek.

1.15. Let p be “Audrey speaks French” and let ¢ be “Audrey speaks Danish”. Give a simple verbal
sentence which describes each of the following.

(i) »pva (iii) p A ~q (v) ~~p
(i) pArgq (iv) ~pVv ~q (vi) ~(~p A ~q)

1.16. Determine the truth value of each of the following statements.
(i) 3+3=6 and 1+2 = 5.
(ii) It is not true that 3+3 =6 or 1+2 = 3.
(iif) It is true that 2+2 * 4 and 1+2 = 3.
(iv) It is not true that 34+8 6 or 1+2 % b.

TRUTH TABLES OF PROPOSITIONS
1.17. Find the truth table of each of the following.
(i) pv ~q, () ~pA~q, (i) ~(~p A @), (iv) ~(~pVv ~q).

1.18.  Find the truth table of each of the following.

i) A~y vr, () ~pvigna~r), (i) (pv ~r)Aalgv ~r), (iv) ~pVv ~q) A (~pV 7).

MISCELLANEOUS PROBLEMS

1.19. Let Apq denote p A g and let Np denote ~p. (See Problem 1.11.) Rewrite the following propositions
using A and N instead of A and ~.
(i) ~p~raq, () ~pA~q (iii) ~pA~q), (iv) (~pAg) A~r

1.20. Rewrite the following propositions using A and ~ instead of A and N.
(i) NApNgq, (ii) ANApgNr, (iii) AApNrAqNp, (iv) ANANpANqrNp.

Answers to Supplementary Problems
113. (i) ~pAgq, (i) ~pA~q, (i) pv ~gq, (iv) ~pVv (p A ~q)
L. () v a~r, (i) BAQv~@Aar), (i) ~@A~r), (v) ~[0Va A~

1.15. (i) Audrey speaks French or Danish.
ii) Awudrey speaks French and Danish.
iii) Audrey speaks French but not Danish.

(
(
(iv) Audrey does not speak French or she does not speak Danish,
(v) It is not true‘that Audrey does not speak French.

(

vi) It is not true that Audrey speaks neither French nor Danish.
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1.16. (i) F, (ii) F, (iii) F, (iv) F

7. p | g | pv~g | ~pa~qg | ~(=prg) | ~(~pv ~g)
T|T T F T T
T|F T F T F
F|T F F F F
F|F T T T F

s, p | g | v | @) ]G] Gi)]| Gv
T{T|T|T|F|T]|F
T|{T|F|F|T|T|F
T|F|T|T|F|F|F
T|F|F|T|F|T]|F
F|{T|T|T|T|F]|T
FlT|F|F|T|T|T
F{F|{T|T|T|F|F
FIF|F|FlT|T]|F

1.19. (i) ANpq, (ii) ANpNgq, (iii) NApNgq, (iv) AANpgNr

120. () ~(pA~q), (1) ~A@n~r, (i) @A~ Alga~p), (iv) ~[~PA(~gAr)]A~p



Chapter 2

Algebra of Propositions

TAUTOLOGIES AND CONTRADICTIONS

Some propositions P(p,q, ...) contain only 7 in the last column of their truth tables,
ie. are true for any truth values of their variables. Such propositions are called
tautologies. Similarly, a proposition P(p,q,...) is called a contradiction if it contains
only F in the last column of its truth table, i.e. is false for any truth values of its variables.

Example 1.1:  The proposition “p or not p”, ie. pv ~p, is a tautology and the proposition
“p and not p”, i.e. p A ~p, is a contradiction. This is verified by constructing
their truth tables:

p{~p\pV~p p|~p| pr~p
T’F' T T|F F
F| T T F| T F

Since a tautology is always true, the negation of a tautology is always false, i.e. is a
contradiction, and vice versa. That is,

Theorem 2.1: If P(p,q,...) is a tautology then ~P(p,q,...) is a contradiction, and
conversely.

Now let P(p,q, ...) be a tautology, and let P (p,q,...), P,(p,q,...), - .. be any propo-
sitions. Since P(p,q, ...) does not depend upon the particular truth values of its variables
»,q, ..., we can substitute P, for p, P, for ¢, ... in the tautology P(p,q,...) and still
have a tautology. In other words:

Theorem 2.2 (Principle of Substitution): If P(p,q,...) is a tautology, then P(P,P,, .. .)
is a tautology for any propositions P,P,, ... .

LOGICAL EQUIVALENCE
Two propositions P(p,q,...) and Q(p,q,...) are said to be logically equivalent, or
simply equivalent or equal, denoted by

P(p,q,...)
if they have identical truth tables.

Qp,q,...)

i

Example 2.1: The truth tables of ~(p A q) and ~p v ~q follow:

pla|vrrg| ~0ra plq\~p\~q‘~pV~q
T | T T F T|T|F|F F
T |F F T T|lF|F|T T
F|T F T FlT|T|F T
F | F F T Flr|T|T T

Accordingly, the propositions ~(p A q) and ~pv ~q are logically equivalent:

~(pAgqg) = ~pVv ~q

10
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Example 2.2: The statement
“It is false that roses are red and violets are blue”

can be written in the form ~(p A ¢) where p is “Roses are red” and q is “Violets
are blue”. By the preceding example, ~(p A q) is logically equivalent to ~pVv ~g;
that is, the given statement is equivalent to the statement

“Either roses are not red or violets are not blue.”

ALGEBRA OF PROPOSITIONS

Propositions, under the relation of logical equivalence, satisfy various laws or identities
which are listed in Table 2.1 below. In fact, we formally state:

Theorem 2.3: Propositions satisfy the laws of Table 2.1.

LAWS OF THE ALGEBRA OF PROPOSITIONS

Idempotent Laws

la. pvp = p 1. pAp = p
Associative Laws

2a. (pvgvr =pvigvr 2b. pA@Ar = parlgnar
Commutative Laws

3a. pVvqg = qVvp 3b. pAqg = qgAp
Distributive Laws

da. pv(gnar) = (pvg APV 4b. pAlgvr) = AV DA

Identity Laws

5a. pVvf =1p 5b. pAt = p

6a. pvit =t 6b. pnaf =F
Complement Laws

Ta. pv ~p =t Tb. pA~p = f

8a. ~~p = p 8b. ~t=f ~f=t
De Morgan’s Laws

9a. ~(pvq = ~pA~q 9b. ~(pngq) = ~pVv ~q

Table 2.1

In the above table, ¢ and f denote variables which are restricted to the truth values
true and false, respectively.
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Solved Problems

TAUTOLOGIES AND CONTRADICTIONS
2.1. Verify that the proposition p v ~(p~q) is a tautology.

Construct the truth table of pv ~(pAq):

Since the truth value of pv ~(p A q)

p| q | pArg ~(p A q pVv ~(pAQ)
T| T T F T
T | F F T T
F| T F T T
F | F F T T

is T for all values of p and q, it is a tautology.

2.2. Verify that the proposition (pAgq)A~(pvq) is a contradiction.

Construct the truth table of (pAg)A~(pV Q)

P \ q ‘ PAQ | pVvgq | ~(p Vv q) \ Prg)r~pVa

T
T
F
F

IR

I > B

H o 33

e I I T

F
¥
F
F

[CHAP. 2

Since the truth value of (pAg)A~(pvgq) is F for all values of p and ¢, it is a contradiction.

LOGICAL EQUIVALENCE

2.3. Prove the Associative Law:

PAQ) AT = DPA(QAT).
Construct the required truth tables:

plair | pnra prg@ar | gar | pa(gnam)
T|T|T T T T T
T|T|F T F F F
T|F | T F F F F
T| ¥ | F F F F F
F | T |T F F T F
F|T|F F F F F
F|F | T F F F F

Since the truth tables are identical, the

24. Prove that disjunction distributes
Law: pv(gar) =

Pva)Aa(@vr).
Construct the required truth tables:

propositions are equivalent.

over conjunction; that is, prove the Distributive
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p | g | T | gnr pV(qAT)J pvaeg | pvr pvaonpvr
T|T|T T T T T T
T | T|F F T T T T
TIF | T F T T T T
T |F | F F T T T T
F{T|T T T T T T
F|T|F F F T F F
F|F | T F F F T F

Since the truth tables are identical, the propositions are equivalent.

2.5. Prove that the operation of disjunction can be written in terms of the operations
of conjunction and negation. Specifically, pv g = ~(~p A ~q).

Construct the required truth tables:

p[qlpvq‘~p|~q|~p/\~q| ~(~p A ~q)
T | T T F | F F T
T|F T F|T F T
F | T T T | F F T
F | F F T| T T F

! }

Since the truth tables are identical, the propositions are equivalent.

2.6. There are exactly four non-equivalent propositions of one variable; the truth tables
of such propositions follow:

p | Pio) | Paw) | i) | Patw)
T T ‘ T ‘ F l F

F T F T F

Find four such propositions.
Observe that

p|~p|pv~p | pr~p
T F T F
F| T T F
Hence P,(p) = pv ~p, Py(p) = p, P3(p) = ~p, Pylp) = pA~p.

27. Determine the number of non-equivalent propositions of two variables p and q.

The truth table of a proposition P(p,q) will contain 22 = 4 lines. In each line T or F can
appear as follows:

pla| Py | Po| Py | PPy | Py | Pr| Py | Py | Pro| P | Pro| Prs| Pra| Pris| Pro
T|T| T T T T T T T T F F F F F F F F
T{F| T T T T F P F F T T T T F F F F
F|T| T T F F T T F F T T F F T T F F
F|F| T F T F T F T F T F T F T F T F
In other words, there are 2¢ = 16 non-equivalent propositions of two variables p and q.
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2.8. Determine the number of non-equivalent propositions of: (i) three variables p, ¢
and r; (ii) » variables p,p,, ..., D,

(1) The truth table of a proposition P(p, q,7) will contain 23 = 8 lines. Since in each line T or F
can appear, there are 28 = 256 non-equivalent propositions of three variables.

(i) The truth table of a proposition P(py, ..., p, will contain 2" lines; hence, as above, there are
22" non-equivalent propositions of n variables.

NEGATION
2.9. Prove De Morgan’s Laws: (i) ~(pr¢q) = ~pv~g; (ii) ~(pv@q) = ~pr~q.

In each case construct the required truth tables.

() Pl g | pnrg | ~prag ~p ~qJ ~pV ~q
T | T T F F F F
T |F F T F T T
F|T F T T F T
F | F F T T T T

i p | a| pve | ~pvae | ~p | ~4 ’ ~p AN ~q
T | T T F F F F
T | F T F F T F
F| T T F T F F
F|F F T T T '?

2.10. Verify: ~~p = p. p|~p | ~~p
T|F T
Pl T F

2.11. Use the results of the preceding problems to simplify each of the following propo-
gitions:

(i) ~v~q), (i) ~(~p~rq), (i) ~(~pv~q).

I

(i) ~pv~q = ~pnA~~q ~pAgq
(ii) ~(~pnrgq = ~~pv~¢ = pVv ~q
(ifi) ~(~pv ~q) = ~~pAr~~q = png

2.12. Simplify each of the following statements.
(i) It is not true that his mother is English or his father is French.
(ii) It is not true that he studies physics but not mathematics.
(iii) It is not true that sales are decreasing and prices are rising.
(

iv) It is not true that it is not cold or it is raining.
(i) Let p denote “His mother is English” and let ¢ denote “His father is French”. Then the

given statement is ~(pVv q). But ~(pv q) = ~p A ~q. Hence the given statement is logically
equivalent to the statement “His mother is not English and his father is not French”.
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Let p denote “He studies physics” and let ¢ denote “He studies mathematics”. Then the
given statement is ~(p A ~¢). But ~(pA~q) = ~pv~~qg = ~pvgq. Hence the given state-
ment is logically equivalent to the statement “He does not study physics or he studies
mathematics”.

Since ~(pAgqg) = ~pv ~q, the given statement is logically equivalent to the statement
“Sales are increasing or prices are falling”.

Since ~(~pvgq) = pa~gq, the given statement is logically equivalent to the statement
“It is cold and it is not raining”.

ALGEBRA OF PROPOSITIONS

2.13. Simplify the proposition (pv q) A ~p by using the laws of the algebra of propositions
listed on Page 11.

Statement Reason
1 vaa~p = ~palpvyg (1) Commutative law
(2) = (~pAp)V(~pArq) (2) Distributive law
(3) = fv(~pAagq) (3) Complement law
(4) = ~pAg (4) Identity law

2.14. Simplify the proposition pv (p A q) by using the laws of the algebra of propositions
listed on Page 11.

Statement Reason
1) pvipng = At)vipag) (1) Identity law
(2) = pAa(tvg) (2) Distributive law
(3) = pat (8) Identity law
(4) =p (4) Identity law

2.15. Simplify the proposition ~(pvq)v(~pAq) by using the laws of the algebra of
propositions listed on Page 11.

Statement Reason
1) ~evaovi~prg = (~pr~qV(~prg) (1) De Morgan’s law
(2) = ~pA(~qV Q) (2) Distributive law
(3) = ~pnt (8) Complement law
(4) = ~p (4) Identity law

MISCELLANEOUS PROBLEMS

2.16. The propositional connective v is called the exclusive disjunction; pvq is read
“p or ¢ but not both”.

(i)
(i)

(i)

Construct a truth table for pvq.

Prove: pvq = (pvq)a~(paq). Accordingly v can be written in terms of
the original three connectives A, v and ~.

Now pV q is true if p is true or if ¢ is true but not if both are true; hence the truth table of
pvVv q is as follows:
| | pva

H e a3
oo e
I I |
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(il) We construct the truth table of

Observe that the truth tables of

Pvar~pmnaq),

[CHAP. 2

by the second method, as follows:

P a | v @ A~ ~ (® A~ 9

T|T|T{T|T|F|F|T|T]|T

T|F|T|TT|F|T|T|T|F|F

F|lT|F|T|T|T|T|F|F|T

F| F|F|F|F|F|T|F|F|F

Step 1 2 1 4 3 1 2 1
pvq and (PVHA~DAQ)

pYq = (pvaor~(pnrg.

are identical; hence

2.17. The propositional connective | is called the joint denial, plq is read “Neither p

nor q”.

(i) Construct a truth table for p|laq.

(ii) Prove:

The three connectives v, A~ and ~ may be expressed in terms of the
connective | as follows:

(@ ~p =plp, (b) prg=(plp)l(elq), (¢) pve=(pla)l(pl9).

(i) Now p | ¢ is true only in the case that p is not true and g is not true; hence the truth table of
p | ¢ is the following:

P | q ] pla
T T ¥
T | F F
F T F
F F T
(ii) Construct the appropriate truth tables:
(@ p , ~p l plp (b) P | q I PAg l plp ' q)4q | lp )@l
T F' F T|T T F F T
F T T T F 1) F T F
t T F|T F T F F
F F F T T F
() »p | q I pVyq ‘ pla ‘(piq)i(plq)
T | T T F T
T | F T F T
F | T T F T
F F F T ?‘
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Supplementary Problems

LOGICAL EQUIVALENCE

2.18. Prove the associative law for disjunction: (pvg)vr = pv(gv ).

2.19. Prove that conjunction distributes over disjunction: pA(gvr) = (pAg Vv (gAar).

2.20. Prove (pvg)A~p = ~pAq by constructing the appropriate truth tables (see Problem 2.13).
2.21. Prove pv(pAgq) = p by constructing the appropriate truth tables (see Problem 2.14).

2.22. Prove ~(pvq)v(~pAgq) = ~p by constructing the appropriate truth tables (see Problem 2.15).

223. (i) ExpressV in terms of A and ~.

(ii) Express A in terms of v and ~.

NEGATION
2.24. Simplify: (1) ~(p A ~q), (i) ~(~pvq), (ili) ~(~p A ~q).
2.25. Write the negation of each of the following statements as simply as possible.
(i) He is tall but handsome.
(i) He has blond hair or blue eyes.
(iii) He is neither rich nor happy.
(iv) He lost his job or he did not go to work today.
(v) Neither Marc nor Erik is unhappy.

(vi) Audrey speaks Spanish or French, but not German.

ALGEBRA OF PROPOSITIONS

2.26. Prove the following equivalences by using the laws of the algebra of propositions listed on Page 11:

) palpve =, (i) PrQv~p = ~pvygq, (i) pr(~pva) = pag.

Answers to Supplementary Problems
223, () pvg = ~(~pr~q), (i) prg = ~(~pv~9.
224, (i) ~pvaq, (ii) pA~q, (iii) pvq.
2.25. (iii) He is rich or happy. (vi) Audrey speaks German but neither Spanish nor French.

226, @) pa(pve) = (pvHalpve = pvifrg = pvf = p



Chapter 3

Conditional Statements

CONDITIONAL, »~ ¢q

Many statements, particularly in mathematics, are of the form “If p then ¢”. Such
statements are called conditional statements and are denoted by

»—=>q
The conditional p- ¢ can also be read:
(i) p implies q (iii) p is sufficient for q
(ii) ponly if q (iv) q is necessary for p.

The truth value of p— q satisfies:
[T,] The conditional p— ¢ is true except in the case that p is true and ¢ is false.
The truth table of the conditional statement follows:

p|al| p-a

T T T
T F F
F T T
F F T
Example 1.1: Consider the following statements:

(i) If Paris is in France, then 242 = 4.

(ii) If Paris is in France, then 242 = 5.

(iii) If Paris is in England, then 242 = 4.

(iv) If Paris is in England, then 242 = 5.
By the property [T,], only (ii) is a false statement; the others are true. We em-
phasize that, by definition, (iv) is a true statement even though its substatements

“Paris is in England” and “2+42 = 5” are false. It is a statement of the type:
If monkeys are human, then the earth is flat.

Now consider the truth table of the proposition ~pv ¢q:

p|l a|~p]| ~pva
T T r T
T| F|F F
FlT|T T
F r T T

Observe that the above truth table is identical to the truth table of p>¢. Hence p->gq
is logically equivalent to the proposition ~pv q:

p=>q = ~pvq
In other words, the conditional statement “If p then q” is logically equivalent to the state-
ment “Not p or ¢”” which only involves the connectives v and ~ and thus was already a

part of our language. We may regard p— ¢ as an abbreviation for an oft-recurring
statement.

18
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BICONDITIONAL, p < ¢q

Another common statement is of the form “p if and only if ¢” or, simply, “p iff ¢”.

Such statements, denoted by
Peq

are called biconditional statements. The truth value of the biconditional statement p < ¢
satisfies the following property:

[T,]1 If p and ¢ have the same truth value, then p < ¢ is true; if p and q have opposite
truth values, then p < q is false.

The truth table of the biconditional follows:

P l q ‘ P <q
T T T
T P F
F T F
F F T
Example 2.1: Consider the following statements:

(i) Paris is in France if and only if 242 =

4
(ii) Paris is in France if and only if 2+2 = 5.
(iii) Paris is in England if and only if 2+2 = 4
(iv) Paris is in England if and only if 2+2 = 5

By property [T;], the statements (i) and (iv) are true, and (ii) and (iii) are false.

Recall that propositions P(p,q,...) and Q(p,q,...) are logically equivalent if and
only if they have the same truth table; but then, by property [T.], the composite proposi-
tion P(p,q,...) « Q(p,q,...) is always true, i.e. is a tautology. In other words,

Theorem 3.1: P(p,q,...) = Q(p,q, ...) if and only if the proposition

Pp,q,...) & Qp,q,...)
is a tautology.

CONDITIONAL STATEMENTS AND VARIATIONS

Consider the conditional proposition »—> ¢ and the other simple conditional proposi-
tions which contain p and ¢:
q>p, ~p>~q and ~q>~p
called respectively the converse, inverse, and contrapositive propositions. The truth tables
of these four propositions follow:

Conditional Converse Inverse Contrapositive
p q p=>q q=p ~p = ~q ~q > ~p
T T T T T T
T F F T T F
F T T F F T
F F T T T T

Observe first that a conditional statement and its converse or inverse are not logically
equivalent. On the other hand, the above truth table establishes

Theorem 3.2: A conditional statement p - ¢ and its contrapositive ~g = ~p are logically
equivalent.
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Example 3.1: Consider the following statements about a triangle A:
p—q: If A is equilateral, then A is isosceles.
q—p: If A is isosceles, then A is equilateral.

Note that p = ¢ is true, but ¢ = p is false.

Example 3.2: Prove: (p—¢) If 22 is odd then x is odd.

We show that the contrapositive ~q = ~p, “If « is even then 22 is even”,
is true. Let x be even; then ® = 2n where n is an integer. Hence 22 = (2n)(2n) =
2(2n2) is also even. Since the contrapositive statement ~q - ~p is true, the
original conditional statement p - ¢ is also true.

Solved Problems

CONDITIONAL

3.1.

3.2

3.3.

Let p denote “It is cold” and let ¢ denote “It rains”. Write the following statements
in symbolic form.

(i) It rains omly if it is cold.

(ii) A necessary condition for it to be cold is that it rain.

(iii) A sufficient condition for it to be cold is that it rain.
(iv) Whenever it rains it is cold.
(v) It never rains when it is cold.

» o«

Recall that p— g can be read “p only if ¢”, “p is sufficient for ¢” or “q is necessary for p”.
(i) g—p (i) p—q (i) ¢—p
(iv) Now the statement “Whenever it rains it is cold” is equivalent to “If it rains then it is cold”.
That is, ¢ p.

(v) The statement “It never rains when it is cold” is equivalent to “If it is cold then it does not
rain”. That is, p—> ~q.

Rewrite the following statements without using the conditional.

(i) If it is cold, he wears a hat.
(ii) If productivity increases, then wages rise.

Recall that “If p then ¢” is equivalent to “Not p or ¢”.
(i) It is not cold or he wears a hat.

(ii) Productivity does not increase or wages rise.

Determine the truth table of (p - q)=> (P A q).

p| a]lr>a] prg | @0 mrg
TiT]| T T T
T|F | F F T
F|T | T F P
FlF | T F F
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3.4. Determine the truth table of ~p - (¢~ p).
p | ’~p’q—>p| ~p = (g = p)
T T F T T
T F F T T
F T T r F
F F T T T
3.5. Verify that (p ~ ¢) > (p v q) is a tautology
P l ¢ | pra | pva ‘ Prg=>(pVva
T | T T T T
T | F ¥ T T
F | T F T T
F|F F F T
3.6. Prove that the conditional operation distributes over conjunction:
p=>(@ar)=@>0) A7)
p | q| r gnr | p=lgnr) p=>q | poT = AP
T! T | T T T T T T
T | T | F F F T F F
T|F | T F F F T F
T | F | F F F F F F
F|T| T T T T T T
F|T| F F T T T T
F|F | T F T T T T
F|F| F F T T T J'1‘
BICONDITIONAL
3.7. Show that “p implies ¢ and ¢ implies p” is logically equivalent to the biconditional
“p if and only if ¢”; that is, (p~> Q) A(g> D) = peq.
p|la|lprod| poa]| g | G2nr@>p
T T T T T T
T F F F T F
F | T F T F F
F | F T T T T
3.8. Determine the truth value of each statement.

i) 2+2=4 iff 3+6 =9
(ify 2+2 =7 ifandonlyif 5+1 =2
(i) 1+1 =2 iff 3+2 = 8
(iv) 142 =5 ifandonlyif 3+1 = 4

Now p <> q is true whenever p and q have the same truth value; hence (i) and (ii) are true
statements, but (iii) and (iv) are false. (Observe that (ii) is a true statement by definition of the
conditional, even though both substatements 2+2 = 7 and 5+1 = 2 are false.)
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3.9. Show that the biconditional p <> ¢ can be written in terms of the original three
connectives v, A and ~.
Now p—>q = ~pvg and g— p = ~gVv p; hence by Problem 3.7,
peqg = p2dAalg—p) = (~pV O A(~gV D)

3.10. Determine the truth value of (p— q)v ~(p & ~q).

p qg | - 9 Vv ~ » © ~ 9
T|T|T|]T|T|T)|T|T|F|F|T
T|F|T|F|FP|F|F|T|T|T]|F
F|T|F|{T|T|T|F|F|T|F T
F|F|F|T|P|]T|T|F |F|T]|F

Step 1 2 |1 5 4 |1 3 |2 |1

3.11. Determine the truth value of (p < ~¢) < (¢~ D).
p|al~a|po~a]| qop | PO~ @>p

T T F F T F
T F T T T T
F T P T F F
F F T F T F
Method 1
p|la |l <& ~ 9o < (@ - p
T T T F F T F T T T
T F T T T F T F T T
F T F T F T F T F F
F F F F T F F F T F
Step 1 3 2 1 4 1 2 1
Method 2

NEGATION

3.12. Verify by truth tables that the negation of the conditional and biconditional are as
follows: (i) ~p—>q) = par~q, (i) ~Ppeq) = pe~qg = ~poq.

@ »lag|p2qg] ~w-0| ~q|pr~q
T T T F F F
T F F T T T
F T T F F F
F F T F T F
@ »|a|red| ~0og|~p|~poq]~|po~
T T T F F F F F
T F F T F T T T
F T F T T T F T
F F T F T F T F
Remark: Since p—>q = ~pvq, we could have used De Morgan’s law to verify (i) as follows:

~p-q) = ~(~pVq = ~~PA~q = pA~q
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3.13. Simplify: (i) ~(p & ~q), (ii) ~(~p < q), (iii) ~(~p = ~q).
i) ~pe~q = p~~q = poyg
(i) ~(~pq) = ~~pq = pog

(iii) ~(~p=>~q) = ~pA~~q¢ = ~pAryg

3.14. Write the negation of each statement as simply as possible.
(i) If he studies, he will pass the exam.
(ii) He swims if and only if the water is warm.
(iii) If it snows, then he does not drive the car.

(i) By Problem 38.12, ~(p—q) = p A ~q; hence the negation of (i) is

He studies and he will not pass the exam.

(i) By Problem 3.12, ~(p<>q) = p<>~q = ~p<>q; hence the negation of (ii) iz either of the
following:

He swims if and only if the water is not warm.
He does not swim if and only if the water is warm.
(iii) Note that ~(p—> ~q) = p A ~~q = pAq. Hence the negation of (iii) is

It snows and he drives the car.

3.15. Write the negation of each statement in as simple a sentence as possible.
(i) If it is cold, then he wears a coat but no sweater.
(ii) If he studies, then he will go to college or to art school.

(i) Let p be “It is cold”, ¢ be “He wears a coat” and » be “He wears a sweater”. Then the given
statement can be written as p— (¢ A ~7). Now

~p=lgnA~1] = pAr~@gr~r) = pA(~qVvrT)
Hence the negation of (i) is
It is cold and he wears a sweater or no coat.
(ii) The given statement is of the form p— (¢vr). But
~po(@vr)] = pa~@vr) = pA~qgn~r
Thus the negation of (ii) is

He studies and he does not go to college or to art school.

CONDITIONAL STATEMENTS AND VARIATIONS
3.16. Determine the contrapositive of each statement.
(i) If John is a poet, then he is poor.
(i) Onmly if Marc studies will he pass the test.
(ii1) It is necessary to have snow in order for Eric to ski.
(iv) If @ is less than zero, then z is not positive.

(i) The contrapositive of p— q is ~¢— ~p. Hence the contrapositive of (i) is
If John is not poor, then he is not a poet.

(i) The given statement is equivalent to “If Marc passes the test, then he studied”. Hence the
contrapositive of (ii) is

If Marc does not study, then he will not pass the test.
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(iii) The given statement is equivalent to “If Eric skis, then it snowed”. Hence the contrapositive

of (iii) is L . R .
If it did not snow, then Eric will not ski.

(iv) The contrapositive of p—> ~q is ~~q—= ~p = q—> ~p. Hence the contrapositive of (iv) is

If x is positive, then x is not less than zero.

3.17. Find and simplify: (i) Contrapositive of the contrapositive of p—-g¢. (ii) Contra-

positive of the converse of p— ¢q. (iii) Contrapositive of the inverse of p-— q.

(i) The contrapositive of p—> q is ~g— ~p. The contrapositive of ~gq—> ~p is ~~p—> ~~q =
p—q, which is the original conditional proposition.

(ii) The converse of p— ¢ is ¢ p. The contrapositive of ¢— p is ~p—> ~q, which is the inverse
of p-q.

(iii) The inverse of p— q is ~p— ~q. The contrapositive of ~p—> ~q is ~~q—> ~~p = q-p,
which is the converse of p— q.

In other words, the inverse and converse are contrapositives of each other, and the conditional
and contrapositive are contrapositives of each other!

Supplementary Problems

STATEMENTS

3.18.

3.19.

3.20.

Let p denote “He is rich” and let q denote “He is happy”. Write each statement in symbolic form
using p and gq.

(i) If he is rich then he is unhappy.

(ii) He is neither rich nor happy.

(iii) It is necessary to be poor in order to be happy.
(iv) To be poor is to be unhappy.

(v) Being rich is a sufficient condition to being happy.
(vi) Being rich is a necessary condition to being happy.
(vii) One is never happy when one is rich.

(viii) He is poor only if he is happy.

(ix) To be rich means the same as to be happy.

(x) He is poor or else he is both rich and happy.

Note. Assume “He is poor” is equivalent to ~p.

Determine the truth value of each statement.

(i) If 5<3, then —3 < —5.

(ii) It is not true that 1+1 = 2 iff 3+4 = b.

(iii) A necessary condition that 1+2 = 3 is that 4+4 = 4.
(iv) It is not true that 1+1 =5 iff 34+3 = 1.

(v) If 3<5, then —3 < —5.

(vi) A sufficient condition that 142 = 3 is that 4+4 = 4.

Determine the truth value of each statement.

(i) It is not true that if 2+ 2 = 4, then 3+3 =5 or 1+1 = 2.
(i) If 242 = 4, then it is not true that 2+1 =3 and 5+5 = 10.
(iii) If 24+2 =4, then 3+83 =7 iff 1+1 = 4.
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3.21.

Write the negation of each statement in as simple a sentence as possible.
(i) If stock prices fall, then unemployment rises.

(ii) He has blond hair if and only if he has blue eyes.

(ii1) If Marc is rich, then both Eric and Audrey are happy.

(iv) Betty smokes Kent or Salem only if she doesn’t smoke Camels.

(v) Mary speaks Spanish or French if and only if she speaks Italian.
(vi) If John reads Newsweek then he reads neither Life nor Time.

TRUTH TABLES
Find the truth table of each proposition: (i) (~pv q)—=>p, (i) ¢<> (~q Ap).

3.22

3.23.

3.24.

3.25.

Find the truth table of each proposition:
(i) e~ - (~prg), () (~qgvp) < (¢g- ~p).

Find the truth table of each proposition:

() [pA(~g=p)] A ~[lpe ~q) = (gv ~p)], (i) [ge (= ~p)] Vv [(~g- p) 7]

Prove: (i) (prg)>r = (p=>7r)vig—>r), (i) p>(g=>7) = PA~7)~> ~q.

CONDITIONAL AND VARIATIONS

3.26.

3.27.

3.18.

3.19.

3.20.

3.21.

3.22,

3.23.

3.24.
3.25.
3.26.

3.27.

Determine the contrapositive of each statement.

(i) If he has courage he will win.

(ii) It is necessary to be strong in order to be a sailor.

(iii) Only if he does not tire will he win.

(iv) It is sufficient for it to be a square in order to be a rectangle.

Find: (i) Contrapositive of p —> ~q. (iii) Contrapositive of the converse of p — ~q.
(i1) Contrapositive of ~p — gq. (iv) Converse of the contrapositive of ~p — ~q.

Answers to Supplementary Problems

(i) »-~q (iti) ¢ ~p (v) p—=¢q (vii) p-~q
(i) ~pA~gq (iv) ~p < ~q (vi) ¢~ p (viii) ~p—q
(T, (i) T, (i) F, (iv) F, (v) F, (vi) T

i) F, (i) F, (iii)) T

(i)  Stock prices fall and unemployment does not rise.

(ii) He has blond hair but does not have blue eyes.

(iii) Marc is rich and Eric or Audrey is unhappy.

(iv) Betty smokes Kent or Salem, and Camels.

(v) Mary speaks Spanish or French, but not Italian.
(vi) John reads Newsweek, and Life or Time.

(i) TTFF, (ii) FFFT

(i) TFTT, (ii) FTFT

(i) FTFF, (ii) TTTFTTFT

Hint. Construct the appropriate truth tables.

(i) If he does not win, then he does not have courage.
(ii) If he is not strong, then he is not a sailor.

(iii) If he tires, then he will not win.

(iv) If it is not a rectangle, then it is not a square.

(i) g ~p, (i) ~¢-p, (iii) ~p~>gq, (iv) p=>gq

(ix) p<>gq
(x) ~pVv(pAQ)
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Chapter 4

Arguments, Logical Implication

ARGUMENTS

An arguwment is an assertion that a given set of propositions P,P,, ...,P , called
premises, yields (has as a consequence) another proposition @Q, called the conclusion. Such

an argument is denoted by
P,P,,..,P, - Q

The truth value of an argument is determined as follows:

[T,] An argument P,P, ...,P, + Q is true if @ is true whenever all the premises
P, P, ..., P, are true; otherwise the argument is false.

Thus an argument is a statement, i.e. has a truth value. If an argument is true it is called
a valid argument; if an argument is false it is called a fallacy.

Example 1.1: The following argument is valid:
p, p>q + q (Law of Detachment)
The proof of this rule follows from the following truth table.

pla| pg

T T T
T F F
F T T
F F T

For p is true in Cases (lines) 1 and 2, and p = ¢ is true in Cases 1, 3 and 4; hence
p and p > q are true simultaneously in Case 1. Since in this Case q is true, the
argument is valid.

Example 1.2: The following argument is a fallacy:
P24 q9 - p
For p— ¢ and ¢ are both true in Case (line) 3 in the above truth table, but in
this Case p is false.

Now the propositions P, P,, ..., P, are true simultaneously if and only if the propo-
sition P, AP, A +- AP, is true. Thus the argument P,P, ...,P + Q is valid if and
only if @ is true whenever P AP, A -+ AP is true or, equivalently, if the proposition
(P,AP,~n-++AP,)>Q is a tautology. We state this result formally.

Theorem 4.1: The argument P,P, ...,P, — Q is valid if and only if the proposition
(P,AP,n---AP)~> Q is a tautology.

Example 1.3: A fundamental principle of logical reasoning states:
“If p implies ¢ and ¢ implies », then p implies r”
that is, the following argument is valid:
p—>dq,q>7r + p—>r (Law of Syllogism)

This fact is verified by the following truth table which shows that the proposition
=9 A(g=>7)] = (p—~7r) is a tautology:

26
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p |l g ||l » @& ~ (@ > n == (p > 1
T|T|T | T|T|T|T|T|T|T|T|T|T/|T
T T F T T T r T F F T T F F
T F T T F F F F T T T T T T
T r F T F F F F T F T T F F
F|lT{T|F|T|T|T|T|T|T|T|]F|T|T
F|l|T|*|F|T|T|F|T|F|F|T|F|T) F
F|F|T|F|T|F|T|F T|T|T|F|T]|T
F|F|FF|F|T|F|T|F|T|F|T|F|T]|F

Step 1|2 |1 |31 2 |1 411|241

Example 14: The following argument is a fallacy:
p~4q ~p - ~q

For the proposition [(p—¢) A ~p] = ~q 1is not a tautology, as seen in the truth
table below.

P \ q \ p=q \ ~p | (p—>q)/\~p‘ ~q | [~ q) A ~p] > ~q
T | T T F F F T
T | F F F F T T
F| T T T T F F
F | F T T T T T

Equivalently, the argument is a fallacy since, in Case (line) 3 of the truth table,
p—q and ~p are true but ~q is false.

An argument can also be shown to be valid by using previous results as illustrated in
the next example.

Example 1.5: We prove that the argument p—-> ~q, ¢ ~ ~p is valid:

Statement Reason
(1) q is true. (1) Given
(2) p—>~q is true. (2) Given
(3) ¢ > ~p is true. (3) Contrapositive of (2)
(4) ~p is true. (4) Law of Detachment (Example 1.1)

using (1) and (3)

ARGUMENTS AND STATEMENTS
We now apply the theory of the preceding section to arguments involving specific
statements. We emphasize that the validity of an argument does not depend upon the

truth values nor the content of the statements appearing in the argument, but upon the
particular form of the argument. This is illustrated in the following examples.

Example 2.1: Consider the following argument:
Si: If a man is a bachelor, he is unhappy.
S,: If a man is unhappy, he dies young.

S: Bachelors die young.

Here the statement S below the line denotes the conclusion of the argument, and
the statements S; and S, above the line denote the premises. We claim that the
argument S;,S; — S is valid. For the argument is of the form

P29 q>r = pr

where p is “He is a bachelor”, q is “He is unhappy” and r is “He dies young”;
and by Example 1.8 this argument (Law of Syllogism) is valid.
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Example 2.2: We claim that the following argument is not valid:
S;: If two sides of a triangle are equal, then the opposite angles are equal.

Sy: Two sides of a triangle are not equal.

S: The opposite angles are not equal.

For the argument is of the form p—q, ~p — ~q, where p is “Two sides of a
triangle are equal” and ¢ is “The opposite angles are equal”; and by Example 1.4
this argument is a fallacy.

Although the conclusion S does follow from S, and axioms of Euclidean geom-
etry, the above argument does not constitute such a proof since the argument is
a fallacy.

Example 2.3: We claim that the following argument is valid:
S;: If 5 is a prime number, then 5 does not divide 15.
S,: 5 divides 15.

S: b is not a prime number.

For the argument is of the form p—->~q, ¢ ~ ~p where p is “5 is a prime
number” and ¢ is “5 divides 15”; and we proved this argument is valid in Ex-
ample 1.5.

We remark that although the conclusion here is obviously a false statement,
the argument as given is still valid. It is because of the false premise S; that
we can logically arrive at the false conclusion.

Example 24: Determine the validity of the following argument:
S;: If 7 is less than 4, then 7 is not a prime number.
S,: 7 is not less than 4.

S: 7 is a prime number.

We translate the argument into symbolic P
form. Let p be “7 is less than 4” and ¢ be

“7 is a prime number”. Then the argument is T

of the form T

F

F

p>~q, ~p +~ ¢q
The argument is a fallacy since in Case (line)

4 of the adjacent truth table, p > ~q and ~p
are true but ¢ is false.

HARA=S9"
S Aa"a

The fact that the conclusion of the argument happens to be a true statement
is irrelevant to the fact that the argument is a fallacy.

LOGICAL IMPLICATION

A proposition P(p,q,...) is said to logically imply a proposition Q(p,q,...) if
Q(p,q, ...) is true whenever P(p,q, ...) is true.

p|a|pvy
Example 3.1: We claim that p logically implies p v ¢q. For consider the T T T
truth tables of p and p vV ¢q in the adjacent table. Observe
that p is true in Cases (lines) 1 and 2, and in these Cases T F T
pVv q is also true. In other words, p logically implies F T T
pVaQ. F | F F

Now if Q(p,q, ...) is true whenever P(p,q, ...) is true, then the argument

P, q,...) - Q. q, ...)

is valid; and conversely. Furthermore, the argument P @ is valid if and only if the
conditional statement P - Q is always true, i.e. a tautology. We state this result formally.
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Theorem 4.2: The proposition P(p,q,...) logically implies the proposition Q(p,q, ...

if and only if

(i) the argument P(p,q,...) - Q(,q, ..

or, equivalently,

(1i) the proposition P(p,q,...) = Q(p,q, ..

Remark: The reader should be warned that logicians and many texts use the word
“implies” in the same sense as we use “logically implies”, and so they dis-
tinguish between “implies” and “if ...

.) 1s valid

.) is a tautology.

are, of course, intimately related as seen in the above Theorem 4.2.

Solved Problems

ARGUMENTS

4.1. Show that the following argument is valid: p<q,q¢ — p.

Method 1.

Construct the truth table on the right. Now p <> q is true in Cases
(lines) 1 and 4, and q is true in Cases 1 and 3; hence p <> ¢ and q are true
simultaneously only in Case 1 where p is also true.

p<>q,q +— p is valid.

Method 2.

Construct the truth table of [(p<>q)Ag] = p:

Thus the argument

P ‘ q ‘ P q [ P9 g ‘ (pe=g)ngl—>p

then”. These two distinet concepts

T T T
T F F
F T F
F F T

T
F
F
F

B A

Since [(p€>q)Aq] » p is a tautology, the argument is valid.

4.2, Determine the validity of the argument p-q, ~¢ — ~p.
Construct the truth table of [(p— q)A~q] > ~p:

0 a3

p | ¢ | » @ A~ ~ qg > ~ p
T{tT|T|T|T|F|F|{T|T|F|T
T|FP|T|F|F|F|T|F|T|F|T
F{T|F|T|T|F|F|T|T|T|F
F|F|F|T|F|T|T|F|T|T]|F

Step 121|382 |114]|¢2]1

oI TS B I Y

Since the proposition [(p— q) A ~q] = ~p is a tautology, the given argument is valid.

4.3. Determine the validity of the argument

~p>q¢Dp = ~q.

Construct the truth table of [(~p—> q)Ap] > ~q:

Amm ]
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'~p‘ ~pq ‘ (~p~>q) A p ] ~q ’ [(~p~>q) A p] > ~q

H H S 9|

= A" Al

Since the proposition

is a fallacy.

F T T F F
F T T T T
T T F F T
T F F T T

[(~p—>4q) Ap] > ~q is not a tautology, the argument ~p->gq, p+ ~q

Observe that ~p— q and p are both true in Case (line) 1 but in this Case ~g¢ is false.

Prove that the following argument is valid: p—>~q,r—>q,r - ~p.

Method 1.

Construct the following truth tables:

<
<
!
<
14
=]

> ~q

=

e = IS BTN VU SR
HHE A" " 3
HE A" a3

o B T I I R A |
e I B N B - B

HHEEREE 33
o B T T B B B B

o]
|
=

8

Now p— ~q, r— q and r are true simultaneously only in Case (line) 5, where ~p is also true; hence
the given argument is valid.

Method 2.

Construct the truth table for the proposition

(=~ A(r>q) Ar] = ~p

It will be a tautology, and so the given argument is valid.

Method 3.

®
(2)
3)
(4)

Statement Reason
p—~q is true. (1) Given
r—gq is true, (2) Given
~q - ~r is true, (8) Contrapositive of (2)
p—~7r is true. (4) Law of Syllogism, using (1) and (3)
r—=>~p is true. (5) Contrapositive of (4)
r is true. (6) Given
Hence ~p is true. (7) Law of Detachment, using (5) and (6)

ARGUMENTS AND STATEMENTS
Test the validity of each argument:
(i) If it rains, Erik will be sick. (i) If it rains, Erik will be sick.

It did not rain.

4.5.

Erik was not sick.

.........................

Erik was not sick. It did not rain.

First translate the arguments into symbolic form:

(i) p—=q, ~p - ~q (i) p~>¢ ~¢ - ~p

where p is “It rains” and ¢ is “Erik is sick”. By Example 1.4, the argument (i) is a fallacy; by
Problem 4.2, the argument (ii) is valid.



CHAP. 4] ARGUMENTS, LOGICAL IMPLICATION 31

4.6.

4.7.

4.8.

Test the validity of the following argument:
If 6 is not even, then 5 is not prime.

But 6 is even.

Therefore 5 is prime.

Translate the argument into symbolic form. Let p be P ‘ q ‘ ~p { ~q ‘ ~p = ~q
“6 is even” and let ¢ be “5 is prime.” Then the argument is
of the form T T F F T
Now in the adjacent truth table, ~p > ~q and p are both F | T )| T]|F F
true in Case (line) 2; but in this Case ¢ is false. Hence the F F T T T

argument is a fallacy.

The argument can also be shown to be a fallacy by constructing the truth table of the
proposition [(~p— ~q) Ap] = ¢ and observing that the proposition is not a tautology.

The fact that the conclusion is a true statement does not affect the fact that the argument
is a fallacy.

Test the validity of the following argument:
If T like mathematics, then I will study.
Either I study or I fail.

If I fail, then I do not like mathematics.

First translate the argument into symbolic form. Let p be “I like mathematics”, ¢ be “I study”
and 7 be “I fail”. Then the given argument is of the form

pP>¢ qVvVr = TP

To test the validity of the argument, construct the truth tables of the propositions
p=>q, qvr and r—> ~p:

p q 7 p=q qvr | ~p | *r>~p
T T T T T F F
T T F T T F T
T F T F T F F
T F F F F F T
F T T T T T T
F T F T T T T
F F T T T T T
F F F T F T T

Recall that an argument is valid if the conclusion is true whenever the premises are true.
Now in Case (line) 1 of the above truth table, the premises p— ¢ and qv » are both true but the
conclusion »— ~p is false; hence the argument is a fallacy.

Test the validity of the following argument:
If I study, then I will not fail mathematics.
If I do not play basketball, then 1 will study.
But I failed mathematics.

Therefore, I played basketball.
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First translate the argument into symbolic form. Let p be “I study”, q be “I fail mathematics”
and » be “I play basketball”. Then the given argument is as follows:

pP=>~q ~r—p,q - 7
To test the validity of the argument, construct the truth tables of the given propositions
p—> ~q, ~*—=p, q and 7:
pr~q | ~r | ~r=p

F

14
S

R IR B S
g g g 3 e
Rg A" 9
I I I B B B
HRAaAaad
I I R
HE AR AaR

=

F T

=
!

Now the premises p— ~q, ~r— p and ¢ are true simultaneously only in Case (line) 5, and
in that case the conclusion # is also true: hence the argument is valid.

LOGICAL IMPLICATION

4.9.

4.10.

4.11.

Show that p ~ q logically implies p < q.
Construct the truth table for (p Aq) = (p <> q):

P | q | PAq | p<q l prg)— (pegq)

T T T T T
T F F F T
¥ T F F T
F F F T T

Since (pAq) = (p<>q) is a tautology, p A ¢q logically implies p <> q.

Show that p & ¢ logically implies p— q.
Consider the truth tables of p<>q and p- ¢q:

p|a|poa|pa
T| T T T
T F F ¥
F T F T
F F T T

Now p<> ¢ is true in lines 1 and 4, and in these cases p— ¢ is also true. Hence p <> q logically
implies p - q.

Prove: Let P(p,q,...) logically imply Q(p,q,...). Then for any propositions
P,P, ..., P(P,P,...) logically implies Q(P,P,,...).

By Theorem 4.2, if P(p,q, ...) logically implies Q(p,q, ...) then the proposition P(p,q,...) =
Q(p,q,...) is a tautology. By the Principle of Substitution (Theorem 2.2), the proposition
P(Py,P,,...) » Q(P{, Py, ...) is also a tautology. Accordingly, P(P;, P,,...) logically implies
QP Py, ...).
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4.12. Determine the number of nonequivalent propositions P(p,q) which logically imply
the proposition p < q. ‘

P | q | » g
Consider the adjacent truth table of p<>q. Now P(p, q) logically im- T T T
plies p <> q if p <> ¢ is true whenever P(p, q) is true. But p<> ¢ is true
only in Cases (lines) 1 and 4; hence P(p, q) cannot be true in Cases 2.and 3. T F F
There are four such propositions which are listed below: F T F
Polpy | p | pe FIF T
F T F T T
F F F F F
F F F F F
F F T T T

4.13. Show that p < ~¢q does not logically imply p- q.
Method 1. Construct the truth tables of p<> ~q and p—¢q:

P ‘Q"“I.p(_)"q pP=q

T T F F T
T F T T F
F T F T T
F F T P T

Recall that p <> ~¢ logically implies p = q if p— ¢ is true whenever p <> ~q is true. But p < ~q
is true in Case (line) 2 in the above table, and in that Case p—~ q is false. Hence p <> ~q does not
logically imply p— q.

Method 2. Construct the truth table of the proposition (p<>~q)—>(p—¢q). It will not be a
tautology; hence, by Theorem 4.2, p <> ~q does not logically imply »—q.

Supplementary Problems

ARGUMENTS
4.14. Test the validity of each argument: (i) ~p—->q,p - ~q; (i) ~p—> ~q,q +~ p.

4.15. Test the validity of each argument: (i) p=>q,r> ~q + r— ~p; (i) p> ~q, ~r—=> ~q + p—> ~7r.

416. Test the validity of each argument: (i) p—> ~q, 7= p,q + ~7;, (i) p>q,rv ~q, ~r +~ ~p.

ARGUMENTS AND STATEMENTS
4.17. Test the validity of the argument:
If London is not in Denmark, then Paris is not in France.

But Paris is in France.

Therefore, London is in Denmark.

4.18.  Test the validity of the argument:
If T study, then 1 will not fail mathematics.
I did not study.

I failed mathematics.
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4.19.

ARGUMENTS, LOGICAL IMPLICATION [CHAP. 4

Translate into symbolic form and test the validity of the argument:
(a) If 6 is even, then 2 does not divide 7.

Either 5 is not prime or 2 divides 7.

But 5 is prime.

Therefore, 6 is odd (not even).

(b)) On my wife’s birthday, I bring her flowers.
Either it’s my wife’s birthday or I work late.
1 did not bring my wife flowers today.

............................................

Therefore, today I worked late.

(¢) If I work, I cannot study.
Either I work, or I pass mathematics.
I passed mathematics.

Therefore, I studied.

(d)y If I work, I cannot study.
Either 1 study, or I pass mathematics.
I worked.

Therefore, I passed mathematics.

LOGICAL IMPLICATION

4.20.
4.21.
4.22.
4.23.

4.24.

4.14.
4.15.
4.16.
4.17.
4.18.

4.23.

4.24.

Show that (i) p A q logically implies p, (ii) pv q does not logically imply p.

Show that (i) ¢ logically implies p— q, (ii) ~p logically implies p— q.

Show that p A (g Vv 7) logically implies (p A q) Vv 7.

Determine those propositions which logically imply (i) a tautology, (ii) a contradiction.

Determine the number of nonequivalent propositions P(p,q) which logically imply the proposition
p— ¢, and construct truth tables for such propositions (see Problem 4.12).

Answers to Supplementary Problems
(i) fallacy, (ii) valid
(i) valid, (ii) fallacy
(i) valid, (ii) valid

valid

fallacy

(@) p—~q, ~rvygq,r — ~p; valid. (¢) p—=>~q,pvr,r + q; fallacy.
(0) p=q,pvr, ~q  r; valid (d) p>~q,qvr,p +~ r; valid.

(i) Every proposition logically implies a tautology. (ii) Only a contradiction logically implies a
contradiction.

There are eight such propositions:
P | q ‘Pl‘PZlP.'iLP4JP5‘P6‘P7.P8|p—)q

CE R
SRR
T
B
O
!
g g
HAada



Chapter 5

Set Theory

SETS AND ELEMENTS

The concept of a set appears in all branches of mathematics. Intuitively, a set is any
well-defined list or collection of objects, and will be denoted by capital letters A,B, X,Y,....
The objects comprising the set are called its elements or members and will be denoted by
lower case letters a,b,x,y,.... The statement “p is an element of A” or, equivalently,
“p belongs to A” is written

pEA
The negation of p € A is written p € A.

There are essentially two ways to specify a particular set. One way, if it is possible,
is to list its members. For example,

A = {a,e1,0,u}

denotes the set A whose elements are the letters a,e¢,%,0,4. Note that the elements are
separated by commas and enclosed in braces { }. The second way is to state those proper-
ties which characterize the elements in the set. For example,

B = {x: xis an integer, ¥ > 0}

which reads “B is the set of = such that x is an integer and x is greater than zero,” denotes
the set B whose elements are the positive integers. A letter, usually z, is used to denote a
typical member of the set; the colon is read as “such that” and the comma as “and”.

Example 1.1: The set B above can also be written as B = {1,2,8,...}.
Observe that —6 &€ B, 3 € B and = &€ B.

Example 1.2: The set A above can also be written as

A = {x: xis a letter in the English alphabet, z is a vowel}
Observe that b€ A, e€ A and p € A.

Example 1.3: Let E = {x: «2—38x+2 =0}. In other words, E consists of those numbers
which are solutions of the equation x2—3x+2 = 0, sometimes called the solution
set of the given equation. Since the solutions of the equation are 1 and 2, we
could also write E = {1,2}.

Two sets A and B are equal, written A =B, if they consist of the same elements, i.e.
if each member of A belongs to B and each member of B belongs to A. The negation of
A =B is written A + B.

Example 14: Let E = {&: 22—3x+2=0}, F = {2,1} and G = {1,2,2,1,6/3}.

Then E = F = G. Observe that a set does not depend on the way in which
its elements are displayed. A set remains the same if its elements are repeated or
rearranged.

35
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FINITE AND INFINITE SETS

Sets can be finite or infinite. A set is finite if it consists of exactly n different elements,
where n is some positive integer; otherwise it is infinite.

Example 2.1: Let M be the set of the days of the week. In other words,
M = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
Then M is finite.

Example 2.2: Let Y = {2,4,6,8,...}. Then Y is infinite.

Example 23: Let P = {x: x is a river on the earth}. Although it may be difficult to count the
number of rivers on the earth, P is a finite set.

SUBSETS
A set A is a subset of a set B or, equivalently, B is a superset of A, written
ACB or BDA

iff each element in A also belongs to B; that is, x €A implies x € B. We also say that
A is contained in B or B contains A. The negation of A C B is written A¢ Bor B2 A
and states that there is an x € A such that « & B.

Example 3.1: Consider the sets
A = {1,857 ...}, B = {510,15,20, ...}
C = {«x: «xis prime, x > 2} = {8,5,7,11, ...}

Then C C A since every prime number greater than 2 is odd. On the other hand,
B¢ A since 10 €B but 10 & A.

Example 3.2: Let N denote the set of positive integers, Z denote the set of integers, @ denote
the set of rational numbers and R denote the set of real numbers. Then

N cZ c @ c R

Example 3.3: The set E = {2,4,6} is a subset of the set F = {6,2,4}, since each number 2, 4
and 6 belonging to E also belongs to F. In fact, £ = F. In a similar manner
it can be shown that every set is a subset of itself.

As noted in the preceding example, A C B does not exclude the possibility that 4 = B.
In fact, we may restate the definition of equality of sets as follows:

Definition: | Two sets 4 and B are equal if A CB and B C A.

In the case that A C B but A # B, we say that A is a proper subset of B or B contains
A properly. The reader should be warned that some authors use the symbol C for a subset
and the symbol C only for a proper subset.

The following theorem is a consequence of the preceding definitions:

Theorem 5.1: Let A, B and C be sets. Then: (i) A CA; (ii) if A CB and B C A, then
A=B; and (iii) if ACB and BCC, then A CC.

UNIVERSAL AND NULL SETS

In any application of the theory of sets, all sets under investigation are regarded as
subsets of a fixed set. We call this set the universal set or universe of discourse and
denote it (in this chapter) by U.

Example 41: In plane geometry, the universal set consists of all the points in the plane.

Example 4.2: In human population studies, the universal set consists of all the people in the
world.
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It is also convenient to introduce the concept of the empty or null set, that is, a set
which contains no elements. This set, denoted by @, is considered finite and a subset of
every other set. Thus, for any set 4, @ C A C U.

Example 43: Let A = {x: 22=4, zis odd}. Then 4 is empty, ie. 4 = Q.

Example 44: Let B be the set of people in the world who are older than 200 years. According
to known statistics, B is the null set.

CLASS, COLLECTION, FAMILY

Frequently, the members of a set are sets themselves. For example, each line in a set
of lines is a set of points. To help clarify these situations, other words, such as “class”,
“collection” and “family” are used. Usually we use class or collection for a set of sets,
and family for a set of classes. The words subeclass, subcollection and subfamily have
meanings analogous to subset.

Example 51: The members of the class {{2,3}, {2}, {5,6}} are the sets {2,3}, {2} and {5, 6)}.
Example 5.2: Consider any set A. The power set of A, denoted by P(A) or 24, is the class of all
subsets of A. In particular, if 4 = {a,b,c}, then
P(A) = {A, {a,b}, {a,¢}, {b,c}, {a}, {B}, {c}, D}

In general, if A is finite and has n elements, then P(A) will have 2" elements.

SET OPERATIONS

The union of two sets A and B, denoted by A U B, is the set of all elements which

belong to A or to B:
AUB = {x:x2€A or x €B}

Here “or” is used in the sense of and/or.

The intersection of two sets A and B, denoted by 4 N B, is the set of elements which
belong to both A and B:
ANB = {x:x€A and x € B}

If AnNB = @, thatis, if A and B do not have any elements in common, then A and B
are said to be disjoint or non-intersecting.

The relative complement of a set B with respect to a set A or, simply, the difference of
A and B, denoted by A\ B, is the set of elements which belong to A but which do not

belong to B:
AN\B = {x:2€A, v &B}

Observe that A\ B and B are disjoint, i.e. (AN B)NB = Q.

The absolute complement or, simply, complement of a set A, denoted by A¢, is the set
of elements which do not belong to A:

Ac = {x:x€U, x&A)}
That is, A¢ is the difference of the universal set U and A.
Example 6.1: The following diagrams, called Venn diagrams, illustrate the above set operations.

Here sets are represented by simple plane areas and U, the universal set, by the
area in the entire rectangle.
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A U B is shaded. A N B is shaded.

A\ B is shaded. Ac is shaded.

Example 6.2: Let A = {1,2,3,4} and B = {3,4,5,6} where U = {1,2,8,...}. Then:
AUB = {1,2,8,4,5,6} ANB = {84}
AN\B = {1, 2} Ac = {5,6,7,...}

Sets under the above operations satisfy various laws or identities which are listed in
Table 5.1 below. In fact we state:

Theorem 5.2: Sets satisfy the laws in Table 5.1.

LAWS OF THE ALGEBRA OF SETS

Idempotent Laws

la. AudA = A 1b. ANA = A
Associative Laws

2a. (AUB)UC = AU(BUCQ) 2b. (AnB)NC = An(BNC)
Commutative Laws

3a. AUB = BUA 3b. ANB = BnNA
Distributive Laws

4a. AU(BNnC) = (AUB)N(AUCQ) 4b, AN(BUC) = (AnB)U(ANC)

Identity Laws

ba. Aup = A 5b. AnU = A

6a. AuU = U 6b. ANQ® = @
Complement Laws

Ta. AUAc = U Th. ANndc = @

8a. (A¢)e = A 8b. Uce=¢@Q, 9pc=U
De Morgan’s Laws

9a. (AUB) = A¢nBc 9b. (ANB)t = AcUBc

Table 5.1

Remark: Each of the above laws follows from the analogous logical law in Table 2.1,
Page 11. For example,

ANB = {x:x€A and x€B} = {r:vx€Band t€A} = BNA
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Here we use the fact that if p is t €A and ¢ is x € B, then p Aq is logically
equivalent to g Ap: PAq = qAp.

Lastly we state the relationship between set inclusion and the above set operations:

Theorem 5.3: FEach of the following conditions is equivalent to A C B:
i) AnB=A4 (iii) B C A¢ (v)y BUAc = U
(ii) AUB = B (iv ANB =@

ARGUMENTS AND VENN DIAGRAMS

Many verbal statements can be translated into equivalent statements about sets which
can be described by Venn diagrams. Hence Venn diagrams are very often used to determine
the validity of an argument.

Example 7.1: Consider the following argument:
Si: Babies are illogical.
Syt Nobody is despised who can manage a crocodile.

Ss: Illogical people are despised.

S: Babies cannot manage crocodiles.

(The above argument is adapted from Lewis Carroll, Symbolic Logic; he is also the
author of Alice in Wonderland.) Now by S;, the set of babies is a subset of the
set of illogical people:

illogical people

By S, the set of illogical people is contained in the set of despised people:

despised people

illogical people

Furthermore, by S,, the set of despised people and the set of people who can
manage a crocodile are disjoint:

despised people

people who can
manage
crocodiles

illogical people

But by the above Venn diagram, the set of babies is disjoint from the set of people
who can manage crocodiles, or “Babies cannot manage crocodiles” is a consequence
of Sy, S, and S3. Thus the above argument,

Sy Se, Sy = S
is valid. L on s
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Solved Problems

SETS, ELEMENTS

51. Let A = {x:3x = 6}. Does A=27?
A is the set which consists of the single element 2, that is, 4 = {2}. The number 2 belongs
to A; it does not equal A. There is a basic difference between an element p and the singleton
set {p}.
5.2. Which of these sets are equal: {rt,s}, {(s,trs}, {¢st,r}, {s,751t}?
They are all equal. Order and repetition do not change a set.
5.3. Which of the following sets are finite?
(i) The months of the year. (iv) {z : 2 is an even number}
(i) {1,2,38,...,99,100} v) {1,238, ...}
(iii) The number of people living on the earth.
The first three sets are finite; the last two sets are infinite.
54. Determine which of the following sets are equal: @, {0}, {D}.
Each is different from the other. The set {0} contains one element, the number zero. The
set () contains no elements; it is the empty set. The set {)} also contains one element, the null set.
5.5. Determine whether or not each set is the null set:
() X ={x:a2=9, 20 =4}, (ii) ¥ = {xw: 2 + x}, (i) Z = {x:2x+8 = 8}.
(i) There is no number which satisfies both 2 =9 and 2x = 4; hence X is empty, ie. X =0.
(ii) We assume that any object is itself, so ¥ is also empty. In fact, some texts define the null
set as follows:
D = {x: «#=x}
(iii) The number zero satisfies -+ 8 = 8; hence Z = {0}. Accordingly, Z is not the empty set
since it contains 0. That is, Z+# Q.
SUBSETS
5.6. Prove that A = {2,8,4,5} is not a subset of B = {x:x iseven}.
It is necessary to show that at least one element in A does not belong to B. Now 3 € A and,
since B consists of even numbers, 8 & B; hence A is not a subset of B.
5.7. Prove Theorem 5.1(iii): If A CB and B CC, then A CC.
We must show that each element in A also belongs to C. Let 2 € A. Now A C B implies
x € B. But BC C; hence x € C. We have shown that « € A implies « € C, that is, that A c C.
5.8. Find the power set P(S) of the set S = {1,2,3}.

The power set P(S) of S is the class of all subsets of S; these are {1,2,3}, {1,2}, {1,3}, {2,3},
{1}, {2}, {3} and the empty set (». Hence

PS) = {S,{1,3},{2,8}, {1,2}, {1}, {2}, {3}, ©}
Note that there are 23 = 8 subsets of S.
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5.9.

5.10.

Let V={d}, W= {cd}, X ={a,b,c}, Y ={a,b} and Z = {a,b,d}. Determine
whether each statement is true or false:
) YCX, i)y W2, (ili)ZDV, (ivyVCX, (v) X=W, (vif WCY.

(i) Since each element in ¥ is a member of X, Y C X is true.

(ii) Now ¢ € Z but a € W; hence W # Z is true.

(i1i) The only element in V is d and it also belongs to Z; hence ZDV is true.
(iv) V is not a subset of X since d € V but d € X; hence VcX is false.

(v) Now ¢ € X but a € W; hence X = W is false.

(vi) W is not a subset of ¥ since ¢ € W but ¢ € Y; hence WCY is false.

Prove: If A is a subset of the empty set (9, then 4 =¢@.

The null set @ is a subset of every set; in particular, ¢ C A. But, by hypothesis, A C 0;
hence A = Q.

SET OPERATIONS

5.11.

5.12.

Let U=1{1,2,...,8,9}, A= {1,2,8,4}, B = {2,4,6,8} and C = {38,4,5,6). Find:
(i) A¢, (ii)) ANC, (iii) (4 N C)s, (iv) AU B, (v) B\ C.

(i) Ac consists of the elements in U that are not in A; hence A¢ = {5,6,7,8,9}.

(ii) ANC consists of the elements in both A and C; hence ANC = {3,4}.

(iii) (ANC)c consists of the elements in U that are not in ANC. Now by (ii), ANC = {3,4} and
so (AnC) ={1,2,5,6,7,8,9}.

(iv) AUB consists of the elements in A or B (or both): hence AUB = {1,2,3,4,6,8}.
(v) B\ C consists of the elements in B which are not in C; hence B\ C = {2,8}.

In each Venn diagram below, shade: (i) A U B, (ii) A N B.

0 ) o) ©@

(i) A U B consists of those elements which belong to A or B (or both); hence shade the area in A
and in B as follows:

A UB is shaded.

(i) A N B consists of the area that is common to both A and B. To compute A N B, first shade
A with strokes slanting upward to the right (////) and then shade B with strokes slanting
downward to the right (\\\\), as follows:

Then A N B consists of the cross-hatched area which is shaded below:
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D>

ANB is shaded.

Observe the following:

(¢) ANB is empty if A and B are disjoint.
(b)) AnB =B if BCA.

(¢y AnB=A if AcCB.

5.13. In the Venn diagram below, shade: (i) B¢, (ii) (AUB)e, (iii) (B\\4)¢, (iv) A°NB-.

(i) Brc consists of the elements which do not belong to B; hence shade the area outside B as follows:

Be is shaded.

(ii) First shade AUB; then (AUB)¢ is the area outside AUB:

A UB is shaded. (A UB)c is shaded.

(iii) First shade B\ 4, the area in B which does not lie in A; then (B\ A4)¢ is the area outside

B\ 4:
{
(D
(

B\ A is shaded. (B\\ A)¢ is shaded.

(iv) First shade A¢, the area outside of A, with strokes slanting upward to the right (////), and
then shade B¢ with strokes slanting downward to the right (\\\\); then AcnBc¢ is the
cross-hatched area: .
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Ac and Bc¢ are shaded. Acn Be¢ is shaded.

Observe that (AUB)c = A¢nB¢, as expected by De Morgan’s law.

(i) AN(BUC), (i) (ANB)U(ANC).

A
8%

5.14. In the Venn diagram below, shade

First shade A with upward slanted strokes, and then shade BUC with downward slanted

(i)
strokes; now AN(BUC) is the cross-hatched area:

o
SN

o
X

N
3

o

X
0

A and BUC are shaded. AN(BUCQ) is shaded.

(ii) First shade ANB with upward slanted strokes, and then shade ANC with downward slanted
strokes; now (ANB)U(ANC) is the total area shaded:

ANB and ANC are shaded. (ANB)U(ANC) is shaded.
Notice that AN(BUC) = (ANB)U(ANC), as expected by the distributive law.

5.15. Prove: B\ A = BN Ac. Thus the set operation of difference can be written in
terms of the operations of intersection and complementation.
B\A = {: 2€B,x @A} = {x: x€B, x €A} = BnNAc
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5.16.

5.17.

5.18.

5.19.

5.20.
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Prove the Distributive Law: ANBUC) = (ANB)UANC).
AN(BUC) {x: x€A;, x €BUC}
= {#: x€EA;xE€B or x €C}
= {x: x€A, xEB;or x €A, x €C}
= {x: x€EANB or x € ANC}
— (ANB)UANC)

1)

Observe that in the third step above we used the analogous logical law

pAalgvr) = ArqVv(pAar)

Prove: (ANB)NB = .

(ANBYNnB = {x: x€ A\ B, x € B}
= {x: x€A, x&B; x € B}
= 0

The last step follows from the fact that there is no element » satisfying *€B and x & B.

Prove De Morgan’s Law: (AUB)c = A°NBe.
(AuB) = {x: x& AUB}
{x: x &€ A, & B}
= {x: x € A¢, x € B¢}
= AcnB¢

Observe that in the second step above we used the analogous logical law

~(pvq = ~pA~q

Prove: For any sets A and B, ANBCA C AUB.

Let x € ANB; then x€A and * € B. In particular, x € A. Since # € ANB implies x €A,
AnB c A. Furthermore, if x €A, then xt€A or x€B,ie. * € AUB. Hence A C AUB. In other
words, ANBCA c AUB.

Prove Theorem 5.3(i): ACB if and only if ANB = A.

Suppose ACB. Let x €A; then by hypothesis, x€B. Hence xr€A and € B, i.e. x € ANB.
Accordingly, A C AnB. On the other hand, it is always true (Problem 5.19) that ANnB C A.
Thus ANB = A.

Now suppose that ANB = A. Then in particular, A C AnB. But it is always true that
AnBcB. Thus AcCcAnBcB and so, by Theorem 5.1, A C B.

ARGUMENTS AND VENN DIAGRAMS

5.21.

Show that the following argument is not valid by constructing a Venn diagram in
which the premises hold but the conclusion does not hold:

Some students are lazy.

All males are lazy.

Some students are males.

Consider the following Venn diagram:
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lazy people

Notice that both premises hold, but the conclusion does not hold. For an argument to be valid, the
conclusion must always be true whenever the premises are true.

Since the diagram represents a
case in which the conclusion is false, even though the premises are true, the argument is false.

It is possible to construct a Venn diagram in which the premises and conclusion hold, such as

lazy people

=D

5.22. Show that the following argument is not valid:

All students are lazy.
Nobody who is wealthy is a student.

Lazy people are not wealthy.

Consider the following Venn diagram:

lazy people

wealthy people

Now the premises hold in the above diagram, but the conclusion does not hold; hence the argument
is not valid.

5.23. For the following set of premises, find a conclusion such that the argument is valid:
S, All lawyers are wealthy.
S,: Poets are temperamental.

S,: No temperamental person is wealthy.

By S,, the set of lawyers is a subset of the set of wealthy people; and by Sj, the set of wealthy
people and the set of temperamental people are disjoint. Thus

wealthy people

temperamental people
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By S,, the set of poets is a subset of the set of temperamental people; hence

wealthy people temperamental people

Thus the statement “No poet is a lawyer” or equivalently “No lawyer is a poet” 1is a valid
conclusion.

The statements “No poet is wealthy” and “No lawyer is temperamental” are also valid
conclusions which do not make use of all the premises.

MISCELLANEOUS PROBLEMS
5.24. Let A = {2, {4,5},4}. Which statements are incorrect and why?
() (4,5} CA, (i) (4,5) €4, (i) {{4,5)} C A.

The elements of A are 2, 4 and the set {4,5}. Therefore (ii) is correct, but (i) is an incorrect
statement. Furthermore, (iii) is also a correct statement since the set consisting of the single
element {4,5} which belongs to A is a subset of A.

5.25. Let A = {2, (4,5},4}. Which statements are incorrect and why?
(i) 5e€ 4, (ii) {(byed, (i) {5) C 4.

Each statement is incorrect. The elements of A are 2, 4 and the set {4,5}; hence (i) and (ii)
are incorrect. There are eight subsets of A and {5} is not one of them; so (iii) is also incorrect.

5.26. Find the power set P(S) of the set S = {3, {1,4}}.

Note first that S contains two elements, 3 and the set {1,4}. Therefore P(S) contains
22 = 4 elements: S itself, the empty set ), and the two singleton sets which contain the elements
3 and {1,4} respectively, i.e. {3} and {{1,4}}. In other words,

P(S) = {8, {3}, {{1,4}}, 9}

Supplementary Problems

SETS, SUBSETS

527, Let A = {1,2,...,8,9}, B = {2,4,6,8}, C = {1,38,5,7,9}, D = {8,4,5} and E = {3,5}.
Which sets can equal X if we are given the following information?
(i) X and B are disjoint. (i) X C D but X ¢ B. (ili) XC A but X ¢ C. (iv) X c C but X ¢ A.

5.28. State whether each statement is true or false:
(i) Every subset of a finite set is finite. (ii) Every subset of an infinite set is infinite.

5.29. Find the power set P(A) of A = {1,2,3,4} and the power set P(B) of B = {l, (2,3}, 4}.
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530. State whether each set is finite or infinite:
(i) The set of lines parallel to the x axis.
(ii) The set of letters in the English alphabet.
(iit) The set of numbers which are multiples of 5.
(iv) The set of animals living on the earth.
(v) The set of numbers which are solutions of the equation 227+ 26218 — 17211+ 743 —10 = 0.

(vi) The set of circles through the origin (0, 0).

5.31. State whether each statement is true or false:

i {1,483} = {3,4,1} (iv) {4} €{{4}}
(i) {1,3,1,2,3,2} c {1,2,3} V) {4} c{{4}}
i) {1,2} ={2,1,1,2,1} (vi) @ c {{4}}

SET OPERATIONS

532. Let U = {a,b,¢,d,e,f,9}, A = {a,b,¢,d,e}, B = {a,c,e,g} and C = {b,e, f,g}. Find:
(i) AuC (iii) C\ B (v) CcnA (vil) (A \\ B¢)c
(ii) Bn4 (iv) BeuC (vi) (AN\CO)e (viii) (AnNAc)e

533. In the Venn diagrams below, shade (i) W\ V (i) VeUW  (iii) VnWe  (iv) Ve\ We,

(a) (b)

5.34. Draw a Venn diagram of three non-empty sets A, B and C so that A, B and C have the following

properties:
(i) AcB, CCB, AnC=0 (iii) AcC, A#C, BnC=9

(ii) AcB, C¢B, AnC# @ (iv) Ac(BnC), BcC, C#B, A#C

5.35. The formula AN\ B = AnBc defines the difference operation in terms of the operations of
intersection and complement. Find a formula that defines the union of two sets, AUB, in terms of
the operations of intersection and complement.

5.36. Prove Theorem 5.3(ii): ACB if and only if AUB = B.

5.37. Prove: If AnB = (), then ACBe.

5.38. Prove: Ac¢\ B¢ = B\ A.

5.39. Prove: ACB implies AU(B\ 4)=B.

540. (i) Prove: AN(B\C) = (AnB)\(An{().
(ii) Give an example to show that AU(B\ C) #* (4 UB)\ (AUC).

ARGUMENTS AND VENN DIAGRAMS

5.41. Determine the validity of each argument for each proposed conclusion.
No college professor is wealthy.
Some poets are wealthy.

(i) Some poets are college professors.
(ii) Some poets are not college professors.
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5.42. Determine the validity of each argument for each proposed conclusion.
All poets are interesting people.

Audrey is an interesting person.

(i) Audrey is a poet.
(ii) Audrey is not a poet.

5.43. Determine the validity of the argument for each proposed conclusion.
All poets are poor.
In order to be a teacher, one must graduate from college.

No college graduate is poor.

(i) Teachers are not poor.
(i) Poets are not teachers.

(iii) If Mare is a college graduate, then he is not a poet.

5.44. Determine the validity of the argument for each proposed conclusion.
All mathematicians are interesting people.
Some teachers sell insurance.

Only uninteresting people become insurance salesmen.

(i) Insurance salesmen are not mathematicians.
(ii) Some interesting people are not teachers.
(iii) Some teachers are not interesting people.

(iv) Some mathematicians are teachers.

(v) Some teachers are not mathematicians.

(vi) If Eric is a mathematician, then he does not sell insurance.

Answers to Supplementary Problems
5.27. (i) C and E, (ii) D and E, (iii) 4, B and D, (iv) None
528. ()T, (i) F
5.20. P(B) = {B,{1,{2,3}}, (1,4}, {{2,3), 4}, {1}, {{2,3}}, {4}, ©)
5.30. (i) infinite, (ii) finite, (iii) infinite, (iv) finite, (v) finite, (vi) infinite

531. ()T, ()T, (i) T, (iv) T, (v) F, (vi) T

532, (i) AuC=U v) CccnA = {a,e,d} = Cc
(i) BnA = {a,c,e} (vi) (ANO)re ={b,ef g}
(i) C\B =1{b,f} (vil) (AN B =1{b,d,f,g}
(iv) BeuC = {b,d,e,f,g} (viii) (And)e=U

533. (a)

WN\V Vnwe VeN\ We



CHAP. 5] SET THEORY 49

(d)
‘
Vnwe
Observe that VeUW = U and VNWe¢ = in case (b) where VCW.
534. (i)

(iii)
B
© e
(if) (iv)
D ()

5.35. AUB = (AcnBe)¢

5.40. (i)

AU(B\ C) is shaded. (AUB) \\ (AUC) is shaded.
541. (i) fallacy, (ii) valid
5.42. (i) fallacy, (ii) fallacy
5.43. (i) valid, (i) valid, (iii) valid

5.44. (i) valid, (ii) fallacy, (iii) valid, (iv) fallacy, (v) valid, (vi) valid

The following Venn diagrams show why (ii) and (iv) are fallacies:

insurance
salesmen

interesting
people

mathematicians

interesting
people

mathematicians

teachers

insurance
salesmen

N

teachers

(i) (iv)



Chapter 6

Product Sets

ORDERED PAIRS

An ordered pair consists of two elements, say a and b, in which one of them, say q,
is designated as the first element and the other as the second element. Such an ordered
pair is written (a, b)

Two ordered pairs (e, b) and (c,d) are equal if and only if a=c and b=d.

Example 1.1: The ordered pairs (2,3) and (3,2) are different.

Example 1.2: The points in the Cartesian plane in Fig. 6-1 below represent ordered pairs of
real numbers.

Example 1.3: The set {2,3} is not an ordered pair since the elements 2 and 3 are not dis-
tinguished.

Example 14: Ordered pairs can have the same first and second elements, such as (1,1), (4,4) and
(5, 5).

Remark: An ordered pair (a,b) can be defined rigorously as follows:

(@ b) = {{a}, {a,b}}
the key here being that {a} C {a,b} which we use to distinguish a as the
first element.

From this definition, the fundamental property of ordered pairs can be

proven:
(a,b) = (¢,d) ifandonlyif a=c and b=4d

PRODUCT SETS

Let A and B be two sets. The product set (or Cartesian product) of A and B, written
A X B, consists of all ordered pairs (a,b) where a €A and b €B:
AXB = {(a,b): a €A, bEB)
The product of a set with itself, say A X A, is sometimes denoted by A2

Example 2.1: The reader is familiar with the Cartesian plane R2 = RX R (Fig. 6-1 below).
Here each point P represents an ordered pair (a, b) of real numbers and vice versa;
the vertical line through P meets the x axis at e, and the horizontal line through P
meets the y axis at b.

}: B
P
b~-2 b P
1
32 1 1 2] 8
L o L Va o a
.
-r_z
1, " - . A
Fig. 6-1 Fig. 6-2

50
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Example 2.2: Let 4 ={1,2,3} and B = {a,b}. Then
AXB = {(1,a),(1,b),(20a), (2,b),(3,a), (3,b)}

Since A and B do not contain many elements, it is possible to represent A X B by
a coordinate diagram as shown in Fig, 6-2 above. Here the vertical lines through
the points of A and the horizontal lines through the points of B meet in 6 points
which represent A X B in the obvious way. The point P is the ordered pair (2, b).

In general, if a finite set A has s elements and a finite set B has { elements, then
A X B has s times ¢ elements. If either A or B is empty, then 4 X B is empty. Lastly, if
either A or B is infinite, and the other is not empty, then A X B is also infinite.

PRODUCT SETS IN GENERAL

The concept of a product set can be extended to more than two sets in a natural way.
The Cartesian product of sets 4, B, C, denoted by A X B X C, consists of all ordered triplets
(a,b,c) where a €A, bEB and ceC:

AXBXC = {{ab,c): a€A, bEB,ceC}
Analogously, the Cartesian product of n sets A ,A,,...,A , denoted by A XA, X -+ XA,
consists of all ordered n-tuples (a,a,, ...,a,) where a, €A, ...,a €A
A XA X+ XA = {@,...,e):a,€A4,...,0, €A4)

Here an ordered n-tuple has the obvious intuitive meaning, that is, it consists of n elements,
not necessarily distinet, in which one of them is designated as the first element, another
as the second element, etc. Furthermore,

La,) = (b ,0) it e =0, ...,0,=0

PRI n

(@, ..

Example 3.1: In three dimensional Euclidean geometry each point represents an ordered triplet:
its xz-component, its y-component and its z-component.

Example 3.2: Let A = {a,b}, B=1{1,2,8} and C = {z,y}. Then:
AXBxC = {lol,2),(e1y),(e?272),(2y),
(a, 3, %), (2,3,9), (b,1,2), (b,1,%),
(0,2, ), (b,2,9), (b,3,%), (b,3,9)}

TRUTH SETS OF PROPOSITIONS

Recall that any proposition P containing, say, three variables p, ¢ and r, assigns a truth
value to each of the eight cases below:

S HE SR AAEas

"dﬂ'ﬁ'ﬂl—]'%r—lﬁl"e
I T B B B S

=

Let U denote the set consisting of the eight 3-tuples appearing in the table above:
U = (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF)

(For notational convenience we have written, say, TTT for (T, T, T).)
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Definition: The truth set of a proposition P, written T(P), consists of those elements

Example 41: Following is the truth table of (p > q) A (g = 7):

of U for which the proposition P is true.

p|la | 7| p>qg g2 [ 29 Arlg=7)
T T T T T T
T T F T F F
T F T F T F
T F ¥ F T F
F T T T T T
F T F T F F
F F T T T T
F F F T T T
Accordingly, the truth set of (p—>q) A(g—=>7) is
T{(p->9¢ »~(g—=>7») = {TTT, FTT, FFT, FFF}

The next theorem shows the intimate relationship between the set operations and the

logical connectives.

Theorem 6.1: Let P and @ be propositions. Then:

(i)

i) T(Pv Q)

T(P A Q)

(
(ili) T(~P)
(

iv) P logically implies @ if and only if T(P) C T(Q)

Il

I

T(P) N T(Q)
T(P) U T(Q)
(T(P))

The proof of this theorem follows directly from the definitions of the logical connectives

and the set operations.

ORDERED PAIRS

6.1. Let W = {John,Jim, Tom} and let V = {Betty, Mary}.

Solved Problems

W X V consists of all ordered pairs (a,b) where a €W and b€V. Hence,
W XV = {(John, Betty), (John, Mary), (Jim, Betty), (Jim, Mary), (Tom, Betty), (Tom, Mary)}

6.2. Suppose (x+y,1) = (3, x~—y).

If (x+y,1) =@, x-—-y)

x+y

Find 2« and y.

3

and 1 =

x—y

then, by the fundamental property of ordered pairs,

The solution of these simultaneous equations is giver~by =2, y=1.

Find WX V.
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63. Let A= {a,b,c,d,ef} and B = {a,e,1,0,u}. Determine B
the ordered pairs corresponding to the points P, P,, P, Ps
and P, which appear in the coordinate diagram of A X B
on the right. P,

o 8

-,

The vertical line through P; crosses the A axis at b and the Py
horizontal line through P, crosses the B axis at 7; hence P; corre- P,
sponds to the ordered pair (b,7). Similarly, P, = (a,a), P = (d,u)
and P, = (e, e).

@

A
a b cd e f

PRODUCT SETS
64. Let A = (1,2,3), B = (2,4} and C = {3,4,5). Find AXBxC.

A convenient method of finding A X B X C is through the so-called “tree diagram” shown below:

3 (1,2, 3)
2 < 4 1,2, 4)
1/ 5 1,2,5)
T~ 3 (1,4,3)
4 < 4 (1, 4, 4)

5 (1, 4, 5)

3 2,2, 3)

2 <4 (2,2, 4)
2/ 5 2,2, 5)
T~ 3 (2, 4, 3)
4 < 4 (2, 4, 4)

5 (2, 4, 5)

3 (3, 2, 3)

2 < 4 3,2, 4)
3/ 5 (3,2,5)
T~ 3 (3, 4, 3)
4 <4 (3, 4, 4)

5 (3, 4, 5)

~

The “tree” is constructed from the left to the right. A X B X C consists of the ordered triples
listed to the right of the “tree”.

6.5. Let A = {a,b}, B= {2,383} and C = {3,4). Find:
(i) Ax (BuUC), (ii) (AxB)U(AxC(C), (iii)) Ax(BNnC(C), (iv) (AXB)N(AXC).

(i) First compute BUC = {2,3,4}. Then
AX(BUC) = {(a,?2),(a,3), (a,4), (b, 2),(b,38),(b,4)}

(ii) First find A X B and A X C:
AXB = {(,2),(a,3),(b,2),(b,3)}
AXC = {a,3),(a,4),(b,3),(b,4)}
Then compute the union of the two sets:
AXB)Uu@AXC) = {a2),(a3),2),3),(a4), (4}

Observe, from (i) and (ii), that
AX(BUC) = AXBYUAXC)

(iii) First compute BNC = {3}. Then
A X(BnC) = {(a,3),(b,3)}
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6.6.

6.7.

6.8.

PRODUCT SETS [CHAP. 6

(iv) Now A X B and A X C were computed above. The intersection of A X B and A X C consists of
those ordered pairs which belong to both sets:

(AXB)n(AXC) = {(a,3), (b,3)}

Observe from (iii) and (iv) that
AX(BNC) = (AXB)Nn (4 XC)

Prove:. A X (BNC) = (A X B)yn (A x ().
AXBNC) = {(xy): €A yE€BNC}
= {(x,¥): x€A, yEB, y e}
{(x,y) : (x,y) €EAXB, (2,y) €EAXC}
= (AXB)n((AXC)

Let S={ab), W={1,2;3,4,56) and V = {3,5,7,9}. Find (Sx W)n (Sx V).

The product set (SX W) N (S X V) can be found by first computing SX W and SXV, and
then computing the intersection of these sets. On the other hand, by the preceding problem,
SXW)YN(SXV) = SX(WnV). Now WnV ={3,5}, and so

SXW)N(EXV) = SX(WnV) = {(a,3), (a,5), (b,3), (b,5)}

Prove: Let ACB and C C D; then (A X C) C (B X D).

Let (x,y) be any arbitrary element in A X C; then x €A and y €C. By hypothesis, ACB and
CcD; hence x€B and yE€D. Accordingly, (x,y) belongs to BXD. We have shown that
(z,y) €A X C implies (x,y) € B X D; hence (A XC)C (BXD).

TRUTH SETS OF PROPOSITIONS

6.9.

Find the truth set of p A ~q.
First construct the truth table of p A ~q:

p |l a|~a] pr~qg

T T F F
T F T T
F T F F
F F T F

Note that p A ~q is true only in the case that p is true and ¢ is false; hence

T(p~n~q) = {TF}

6.10. Find the truth set of ~p- q.

First construct the truth table of ~p— gq:

p| a|~p]| ~p>q
T|T|F T
T|F|F T
F|{T]|T T
F r T F

Now ~p— q is true in the first three cases; hence

T(~p~q) = {TT,TF,FT}
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6.11. Find the truth set of the proposition (p v q) A r.

6.12.

6.13.

6.14.

6.15.

First construct the truth table of (pvq)Aar:

p|la| 7| pvae pvagnar
T | T | T T T
T | T | F T F
T|F | T T T
T|F | F T ®
F | T|T T T
F|T|F T F
F|F [T F F
F|F|F F F

Now the proposition (pvVv q)Ar is true only in the first, third and fifth cases. Hence

T(pvq) Ar) = {TTT,TFT, FTT}

Suppose the proposition P = P(p,q,...) is a tautology. Determine the truth set
T (P) of the proposition P.

If P is a tautology, then P is true for any truth values of its variables. Hence the truth set
of P is the universal set: T(P) = U.

Suppose the proposition P = P(p,q,...) is a contradiction. Determine the truth
set T(P) of the proposition P.

If P is a contradiction, then there is no case in which P is true, i.e. P is false for any truth
values of its variables. Hence the truth set of P is empty: T(P) = Q.

Let P = P(p,q,...) and @ = Q(p,q,...) be propositions such that PAQ is a
contradiction. Show that the truth sets T(P) and T(Q) are disjoint.

If P A Q is a contradiction, then its truth set is empty: T(P A Q) = @. Hence, by Theorem 6.1(i),
TP)NTQ) = TPAQ) = @

Suppose that the proposition P = P(p,q,...) logically implies the proposition
Q = Q(p,q, ...). Show that the truth sets T(P) and T(~Q) are disjoint.

Since P logically implies @, T(P) is a subset of T7(Q). But by Theorem 5.3,
T(P) C T(Q) isequivalentto T(P)N (T@Q) = O
Furthermore, by Theorem 6.1(iii), (7(Q))c = T(~Q). Hence
TP)NT(~Q) = O
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Supplementary Problems

ORDERED PAIRS, PRODUCT SETS

6.16. Suppose (y—2,2¢+1) = (x—1,y+2). Find = and .

6.17. Tind the ordered pairs corresponding to the points Py, Py, P; and P, which appear below in the
coordinate diagram of {1,2,38,4} X {2,4,6,8}.

P,

Py

P,

P,

D e o

6.18. Let W = {Mark, Eric, Paul} and let V = {Eric, David}. Find:
Gy WXV, () VXW, (i) V2 = VxV.

619. Let A = {2,383}, B = {1,3,5} and C = {8,4}. Construct the “tree diagram” of A X B X C, as
in Problem 6.4, and then find A X B X C.

6.20. Let S = {a,b,¢}, T = {b,e,d} and W = {a,d}. Construct the tree diagram of SX 7 X W and
then find SX T X W.

6.21.  Suppose that the sets V, W and Z have 3, 4 and 5 elements respectively. Determine the number
of elements in (i) VXWX Z, (ii) ZX VX W, (iii) WXZXV.

6.22. Let A = BNnC. Determine if either statement is true:
(i) AXA = BXB)n(CxXC(C), (i) AXA = (BXC)n (CXB).

6.23. Prove: A X (BUC) = (AXB)U ((AXCQC).
TRUTH SETS OF PROPOSITIONS

6.24. Find the truth set of p < ~q.

6.25. Find the truth set of ~p v ~q.

6.26.  Find the truth set of (p v q) = ~r.

6.27.  Find the truth set of (p = q) A (p © 7).

6.28. Let P = P(p,q,...) and @ = Q(p,q,...) be propositions such that P v @ is a tautology. Show
that the union of the truth sets T(P) and T(Q) is the universal set: T(P)U T(Q) = U.

6.29. Let the proposition P = P(p,q,...) logically imply the proposition @ = Q(p,q,...). Show that
the union of the truth sets T(~P) and T(Q) is the universal set: T(~P)U T(Q) = U.

Answers to Supplementary Problems
6.16. x=2, y=3.
617. P, = (1,4), P, = (2,8), Py = (4,6) and P, = (3,2).

6.18. (i) WXV = {(Mark,Eric), (Mark, David), (Eric, Eric), (Eric, David), (Paul, Eric), (Paul, David)}
(i) VX W = {(Eric, Mark), (David, Mark), (Eric, Eric), (David, Eric), (Erie, Paul), (David, Paul)}
(ifi) VXV = {(Eric, Eric), (Eric, David), (David, Eric), (David, David)}



CHAP. 6] PRODUCT SETS

=7 Gl
e —s<} i

<71 Gy

<7i  Grd

3 3,3, 3)

8 3 =__, (3, 3, 4)
3 (3,5, 3)

5<—_1 (3,5, 4)

The elements of A X B X C are the ordered triplets to the right of the tree diagram above.

6.20. b <g EZ z t(zlg
@ =5 (wea

e

=3 0

b =% G

==i G0

p=—"02 (b0

(cl b’ d)

a (c, ¢, a)

¢ =4 (c, ¢, d)
a (e, d, a)

d=—" . d. d)

The elements of S X T X W are the ordered triplets listed to the right of the tree diagram.

6.21. Each has 60 elements.

6.22. Botharetruee AXA = (BXB)N(CXC) = (BXC)n (CXB).
6.23. A X(BuUQ) {(x,y): x €A, yEBUC}

{(x,y): x€EA; yEB or y €EC}

= {(w,y): x€A,yEB;or x €A, yeC}
= {(,¥9): (x,y) EAXB; or (x,y) €EAXC}
= (AXBYUAXCO)

Observe that the logical law pA(gv7) = (pAq)Vv(pAr) was used in the third step above.
624, T(p < ~q) = {TF,FT}
6.25. T(~pv ~q) = {TF, FT, FF}
6.26. T((pv q)—~r) = {TTF, TFF, FTF, FFT, FFF}

6.27. T({(p—=>9) A(per) = {TTT, FTF, FFF}



Chapter 7

Relations

RELATIONS

A binary relation or, simply, relation R from a set A to a set B assigns to each pair
(a,b) in A X B exactly one of the following statements:

(i) “a is related to b”, written a R b
(ii) “@ is not related to b”, written alk b

A relation from a set A to the same set 4 is called a relation in A.

Example 1.1: Set inclusion is a relation in any class of sets. For, given any pair of sets A and B,
either ACRB or A¢B.

Example 1.2: Marriage is a relation from the set M of men to the set W of women. For, given
any man m € M and any woman w € W, either m is married to w or m is not
married to w.

Example 1.3: Order, symbolized by “<”, or, equivalently, the sentence “x is less than y”, is a
relation in any set of real numbers. For, given any ordered pair (a,b) of real

umbers, either
n ’ a<b or a<b

Example 14:  Perpendicularity is a relation in the set of lines in the plane. For, given any pair
of lines @ and b, either a is perpendicular to b or e is not perpendicular to b.

RELATIONS AS SETS OF ORDERED PAIRS

Now any relation R from a set A to a set B uniquely defines a subset R* of A X B as

follows: .
R* = {(a,b): aisrelatedtob} = {(a,b): aRb)

On the other hand, any subset R* of A X B defines a relation R from A to B as follows:
aRb iff (a,b) ER*

In view of the correspondence between relations R from A to B and subsets of A X B, we
redefine a relation by

Definition: A relation R from A to B is a subset of A X B.

Example 2.1: Let R be the following relation from A = {1,2,3} to
B = {a, b}:
R = {(1,a), (1,b), (3,a)} @
Then 1R a, 217%1), 3R a, and 34? b. The relation R is dis-
played on the coordinate diagram of A X B on the right.

Example 2.2: Let R be the following relation in W = {a, b,¢}:
R = {(a,0), (a,0), (¢, 0), (¢, b)}
Then aﬁa, aRb, cRc¢ and c4€a.

58
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Example 2.3: Let A be any set. The identity relation in A, denoted by A or A,, is the set of all
pairs in A X A with equal coordinates:

Ay = {(a,a): a€ A}
The identity relation is also called the diagonal by virtue of its position in a coordi-
nate diagram of A X A,

INVERSE RELATION

Let R be a relation from A to B. The inverse of R, denoted by R~!, is the relation
from B to A which consists of those ordered pairs which when reversed belong to R:

R~ = {(b,a): (a,b) ER)

Example 3.1: Consider the relation
B = {(1,2),(1,3), (2,3)}
in A ={1,2,3}). Then
R-1 = {(2,1),(3,1), (3,2)}

Observe that B and R~! are identical, respectively, to the relations < and >
in A, i.e.,
(¢, 5) ER iff a<b and (¢, b)) ER1 iff a> b
Example 3.2: The inverses of the relations defined by
“x is the husband of y” and “x is taller than y”
are respectively

“x is the wife of y” and “x is shorter than y”

EQUIVALENCE RELATIONS
A relation R in a set A is called reflexive if a Ra, ie. (a,a) € R, for every a € A.

Example 41: (i) Let R be the relation of similarity in the set of triangles in the plane. Then
R is reflexive since every triangle is similar to itself.

(ii) Let R be the relation < in any set of real numbers, ie. (a,b) € R iff a <b.
Then R is not reflexive since a € a for any real number a.

A relation R in a set A is called symmetric if whenever ¢ Rb then bRa, ie. if
(a,b) € R implies (b,e) € R.

Example 4.2: (i) The relation R of similarity of triangles is symmetric. For if triangle a is
similar to triangle 8, then g8 is similar to a.

(ii) The relation R = {(1,3), (2,3), (2,2), (3,1)} in A = {1,2,8} is not symmetric
since (2,3) € R but (3,2) € R.

A relation R in a set A is called transitive if whenever a Rb and bRc¢ then aRec,
ie if (a,b) € R and (b,c¢) € R implies (a,c) €ER.

Example 4.3: (i) The relation R of similarity of triangles is transitive since if triangle « is
similar to 8 and B is similar to y, then « is similar to 7.

(ii) The relation R of perpendicularity of lines in the plane is not transitive.
Since if line a is perpendicular to line b and line b is perpendicular to line ¢,
then a is parallel and not perpendicular to c.

A relation R is an equivalence relation if R is (i) reflexive, (ii) symmetric, and
(iii) transitive.

Example 44: By the three preceding examples, the relation B of similarity of triangles is an
equivalence relation since it is reflexive, symmetric and transitive.
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PARTITIONS

A partition of a set X is a subdivision of X into subsets which are disjoint and whose
union is X, i.e. such that each ¢ € X belongs to one and only one of the subsets. The
subsets in a partition are called cells.

Thus the collection {4 ,A4,,...,A4,} of subsets of X is a partition of X iff:
(i) X = AJUA,U---UA_; (ii) for any 4,4, either A, =A, or ANA,=0

Example 5.1: Consider the following classes of subsets of X = {1,2,...,8,9}:
(i) [{1,8,5}, {2,6}, {4,8,9}]
(i) [{1,8,5}, {2,4,6,8}, {5,7,9}]
(iii) [{1,8,5}, {2,4,6,8}, {7,9}]

Then (i) is not a partition of X since 7€ X but 7 does not belong to any of the cells.
Furthermore, (ii) is not a partition of X since 5 € X and 5 belongs to both {1, 3,5}
and {5,7,9}. On the other hand, (iii) is a partition of X since each element of X
belongs to exactly one cell.

EQUIVALENCE RELATIONS AND PARTITIONS

Let R be an equivalence relation in a set A and, for each a € A4, let [¢], called the
equivalence class of A, be the set of elements to which a is related:

[@] = {z: (a,2) ER}
The collection of equivalence classes of A, denoted by A/ R, is called the quotient of A by R:
A/R = {[a]: a €A}

The fundamental property of a quotient set is contained in the following theorem.

Theorem 7.1: Let R be an equivalence relation in a set A. Then the quotient set A/R
is a partition of A. Specifically,

(i) a€]|a], for every a €A;
(ii) [a] =[b] if and only if (a,b) € R;
(iii) if [a] # [b], then [a] and [b] are disjoint.

Example 6.1: Let R5 be the relation in Z, the set of integers, defined by
=y (mod5)

which reads “x is congruent to y modulo 5” and which means that the difference
¢ — vy is divisible by 5. Then Rj is an equivalence relation in Z. There are exactly
five distinct equivalence classes in Z/Rjy:

4, = {..., 10, =5, 0, 5, 10, ...}
Ay = {..., =9, —4,1,6, 11, ...}
A, = {..., -8, -3,21712 ...}
A; = {..., —17,-2,8, 813, ...}
Ay = {..., —6,—1,4,9, 14, ...}

Observe that each integer x which is uniquely expressible in the form « = bq+7r
where 0 =7 <5 is a member of the equivalence A, where r is the remainder. Note
that the equivalence classes are pairwise disjoint and that

Z = AoUAIUA2UA3UA4
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Solved Problems

RELATIONS

7.1

7.2

7.3.

Let

R be the relation < from A = {1,2,3,4) to B = {1,3,5}, ie. defined by

“x is less than y”.

(i)
(ii)
(iii)
(i)

(i)

(iii)

Write R as a set of ordered pairs.
Plot R on a coordinate diagram of A X B.
Find the inverse relation R~

R consists of those ordered pairs (a,b) € A XB for
which a < b; hence

R = {(1,3),(1,5), (2,3), (2,5), (3,5), (4,5)}

R is sketched on the coordinate diagram of A X B as
shown in the figure.

The inverse of R consists of the same pairs as are in R
but in the reverse order; hence

R-1 = {(3,1),(5,1), (3,2), (5,2), (5,3), (5,4)}

Observe that R—1! is the relation >, i.e. defined by “x is
greater than ¥”.

Let R be the relation from E = {2,3,4,5) to F = {3,6,7,10} defined by “z divides y”.

(i)
(i)
(iii)

()

(i1)

(iii)

Let

consisting of those points which are displayed on the d
coordinate diagram of M X M on the right.

(i)

(if)

(iii)

Write R as a set of ordered pairs.
Plot R on a coordinate diagram of F X F'.
Find the inverse relation R—!.

Choose from the sixteen ordered pairs in E X F' those in
which the first element divides the second; then

B = {(2,6), (2,10), (3,3), (3,6), (5,10)} 7

10

R is sketched on the coordinate diagram of E X F as 6
shown in the figure.

To find the inverse of R, write the elements of R but in
reverse order:

R-1 = {(6,2), (10,2), (3,3), (6,3), (10,5)}

M = {a,b,c¢,d} and let R be the relation in M

Find all the elements in M which are related to b,

that is, {z: (z,b) € R}. b

Find all those elements in M to which d is re- a

lated, that is, {«: (d,z) € R)}.

Find the inverse relation R~ a b ¢ d

The horizontal line through b contains all points of B in which b appears as the second
element: (a,b), (b,b) and (d,b). Hence the desired set is {a,b,d}.

The vertical line through d contains all the points of R in which d appears as the first element:
(d,a) and (d,b). Hence {a,b} is the desired set.

First write B as a set of ordered pairs, and then write the pairs in reverse order:
R = {(a,b), (b,a), (b,b), (b,d), (¢, 0), (d, a), (d,])}
Rt = {(b,a), (a,b), (b,b), (d, ), (¢, 0), (a,d), (b, d)}
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EQUIVALENCE RELATIONS

74.

7.5.

7.6.

7.7.

Let R be the relation =in N = {1,2,8,...}, ie. (a,b) ER iff a=0>b. Determine
whether R is (i) reflexive, (ii) symmetric, (iii) transitive, (iv) an equivalence
relation.

(i) R is reflexive since a =a for every a €N.
(ii) R is not symmetric since, for example, 3 =5 but 57é 8, ie. (3,5)€ER but (53)ER.
(iii) R is transitive since a =b and b =¢ implies a=c.

(iv) R is not an equivalence relation since it is not symmetric.

Let R be the relation || (parallel) in the set of lines in the plane. Determine whether
R is (i) reflexive, (ii) symmetric, (iii) transitive, (iv) an equivalence relation.
(Assume that every line is parallel to itself.)

(i) R is reflexive since, by assumption, « ||« for every line a.

(ii) R is symmetric since if «|| 8 then 8]|qa, ie. if the line a is parallel to the line B then g8 is
parallel to a.

(iii) R is transitive since if «|] 8 and g ||y then «l|y.

(iv) R is an equivalence relation since it is reflexive, symmetric and transitive.

Let W = {1,2,8,4}. Consider the following relations in W:
B, = {(1,2),(43), (2,2),(2,1), (3, 1)}
R, = {(2,2),(2,3),(3,2)}
R, = {(1,3)}
Determine whether each relation is (i) symmetric, (ii) transitive.

(i) Now a relation R is not symmetric if there exists an ordered pair (a,b) € R such that
(b,a) € R. Hence:

R, is not symmetric since (4,3) € R; but (3,4) € R,
R; is not symmetric since (1,3) € B3 but (3,1) € B,
On the other hand, R, is symmetric.
(ii) A relation R is not transitive if there exist elements a, b and ¢, not necessarily distinet, such
that @,b)ER and (b,c) ER but (a,¢) €R
Hence R; is not transitive since
4,8) € R, and (8,1)€R; but (4,1)€R,
Furthermore, R, is not transitive since
(3,2) ER, and (2,3) ER, but (3,3) &R,

On the other hand, Rg is transitive.

Let R be a relation in A. Show that:
(i) R is reflexive iff A C R; (ii) R is symmetric iff R=R".

(i) Recall that A = {(a,a): a € A}. Thus R is reflexive iff (a,a) € R for every a€A iff
ACR.

(ii) Suppose R is symmetric. Let (a,b) € R, then (b,a) € R by symmetry. Hence (a,b) € R—1,
and so R C R~!. On the other hand, let (a,b) € R—1; then (b,a) € B and, by symmetry,
(¢,b) € R. Thus R-!'CR, and so R=R™1

Now suppose R =R~1, Let (a,b)E€R; then (b,a) ER-1=R. Accordingly R is
symmetric.
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7.8. Consider the relation R = {(1,1),(2,3),(3,2)} in X = {1,2,3}. Determine whether
or not R is (i) reflexive, (ii) symmetric, (iii) transitive.
(i) R is not reflexive since 2€ X but (2,2) € R.
(ii) R is symmetric since R-1 = {(1,1),(3,2),(2,3)} = R.
(iii) R is not transitive since (3,2) €ER and (2,3) €ER but (3,3) € R.

7.9. Let N={1,2,3,...}, and let R be the relation = in N X N defined by
(@, b) = (¢,d) iff ad = be
Prove that R is an equivalence relation.
For every (a,b) € NXN, (e,b) = (a,b) since ab = ba; hence R is reflexive.

Suppose (a,b) = (¢,d). Then ad = be, which implies that ¢b = da. Hence (¢,d) = (a,b)
and so R is symmetric.

Now suppose (¢, b) = (¢,d) and (c,d) = (¢,f). Then ad =be and c¢f = de. Thus
(ad)(cf) = (be)(de)
and, by cancelling from both sides, af = be. Accordingly, (a,b) = (e,f) and so R is transitive.
Since R is reflexive, symmetric and transitive, R is an equivalence relation.

Observe that if the ordered pair (a, b) is written as a fraction ﬂ, then the above relation R is,

in fact, the usual definition of equality between fractions, i.e. % = 5 iff ad = be.

7.10. Prove Theorem 7.1: Let R be an equivalence relation in a set A. Then the quotient
set A/ R is a partition of A. Specifically,
(i) a € a], for every a € A;
(ii) [a] = [b] if and only if (a,b) € R;
(iii) if [a] - |b], then [a] and [b] are disjoint.
Proof of (i). Since R is reflexive, (a,a) ER for every a €A and therefore a € [a].

Proof of (ii). Suppose (a,b) €ER. We want to show that [a] =[b]. Let xz €[b]; then (b,x)ER.
But by hypothesis (a, b)) €ER and so, by transitivity, (a,2) €ER. Accordingly x € [a]. Thus [b]C[al.
To prove that [a] C[b], we observe that (e, b) € R implies, by symmetry, that (b,a) ER. Then by a
similar argument, we obtain [a]C[b]. Consequently, [a} = [b].

On the other hand, if [¢] = [b], then, by (i), b € [b] =[a]; hence (a, b) ER.
Proof of (iii). We prove the equivalent contrapositive statement:
if [a]n[b] # @ then [a] = [b]
If [a]N[b] # (), then there exists an element *€A with x & [a]N[b]. Hence (a,2) ER and
(b,2) ER. By symmetry, (x,b)ER and by transitivity, (¢, b) ER. Consequently by (ii), [a] = [b].

PARTITIONS

711. Let X = {a,b,c¢,d,e,f, g}, and let:
(i) A1 ={a,c, e}, A2 = {b}! A3 = {d,g}Q
(11) B1 = {a,e,9}, Bg = {¢,d}, Bg = {b’ e!f};
(iii)y C, = {a, b,¢,9}, C,= {c}, C, = {d, f};
(iv) D, ={a,b,c,d,¢,f,9}.

Which of {A,A, A}, {B,B,B,}, {C,C,C,}, {D,} are partitions of X?
(i) {A;,As Ay} is not a partition of X since fE€X but f does not belong to either Ay, 4y, or A;.
(ii) {B;, By, B3} is not a partition of X since ¢ € X belongs to both B, and Bj.

(iii) {C,,Cy C3} is a partition of X since each element in X belongs to exactly one cell, ie.
X = C,UCy,UC; and the sets are pairwise disjoint.

iv) {D,} is a partition of X.
1
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7.12. Find all the partitions of X = {a,b,¢,d}.

Note first that each partition of X contains either 1, 2, 3, or 4 distinct sets. The partitions

are as follows:
(1) [{a, b,c,d}]

@) [{a}, {b,e,d}], [{b}, {a,¢,d}], [{e}, {a,b,d}], [{d}, {a,],¢}],
[{a, b}, {c,d}], [{a,c}, {b,d}], [{e,d}, {b,c}]

@) [{a}, (8}, {e,d}], [la}, {c}, {b,d}], [{a}, {d}, {b,c}],
[{6}, {c}, {a,d}], [{b}, {a}, {a,c}], [{e}, {d}, {a,D}]

4 [a}, {8}, {c}, {d}]

There are fifteen different partitions of X.

Supplementary Problems

RELATIONS

7.138. Let R be the relation in A = {2,3,4,5} defined by “x and y are relatively prime”, i.e. “the only
common divisor of z and y is 1”.

(i) Write R as a set of ordered pairs. (ii) Plot R on a coordinate diagram of A X A. (iii) Find B~1.

714, Let N = {1,2,3,...} and let R be the relation in N defined by «+2y = 8, ie,
R = {(x,y): =, y€EN, x+2y =8}

(i) Write B as a set of ordered pairs. (ii) Find R—1

715. Let C = {1,2,3,4,6} and let R be the relation in C consisting of the points displayed in the
following coordinate diagram of C X C:

2——T
1 2 3 4 6

(i) State whether each is true or false: (a) 1R 4, (b) 2R5, (¢) 3 Ié 1, (d) 5 13 3.

(ii) Find the elements of each of the following subsets of C:
(@) {x:3Rx}, () {x: (4x)ER}, (c) {x: (x,2) &R}, (d) {xr:axR5}

-

7.16. Consider the relations < and = in N = {1,2,3,...}. Show that <UA = = where A is the
diagonal relation.

EQUIVALENCE RELATIONS
717. Let W = {1,2,3,4}. Consider the following relations in W:

Rl = {(1, 1): (1; 2)} R4 = {(11 1); (2, 2): (3) 3)}
R2 = {(ly 1), (2; 3)! (4’ 1)} Rs = WXW
RS = {(1) 3)! (2y 4)} RG = @

Determine whether or not each relation is reflexive.
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7.18. Determine whether or not each relation in Problem 7.17 is symmetric.
7.19. Determine whether or not each relation in Problem 7.17 is transitive.
7.20. Let R be the relation L of perpendicularity in the set of lines in the plane. Determine whether
R is (i) reflexive, (ii) symmetric, (iii) transitive, (iv) an equivalence relation.
7.21. Let N = {1,2,3,...} and let = be the relation in N X N defined by
(a,b) = (¢,d) If a+d = >b+ec
(i) Prove = is an equivalence relation. (ii) Find the equivalence class of (2,5), i.e. [(2,5)].
7.22. Prove: If R and S are equivalence relations in a set X, then RN S is also an equivalence
relation in X.
7.23. (i) Show that if relations B and S are each reflexive and symmetric, then RUS is also
reflexive and symmetric.
(il) Give an example of transitive relations R and S for which R U S is not transitive.
PARTITIONS
7.24. Let W = {1,2,3,4,5,6}. Determine whether each of the following is a partition of W:
(1) [{1,8,5}, {2,4}, {3,6}] . (iif) [{1,5}, {2}, {4}, {1, 5}, {8, 6}]
(i) [{1,5}, {2}, {8, 6}] (iv) [{1,2,8,4,5,6}]
7.25. Find all partitions of V = {1,2,3]}.
7.26. Let [A;, A, ...,4,] and [By, By, ...,B,] be partitions of a set X. Show that the collection of sets
[A;nB;: i=1,...,m,j=1,...,m]
is also a partition (called the cross partition) of X.
Answers to Supplementary Problems
713. R = R' = {(2,3), (3,2), (2,5), (5,2), (3,4), (4,3), (3,5), (5,3), (4,5), (5,4)}
.14 R = {(2,3), 4,2), (6,1)}; R~ = {(3,2), (2,4), (1,6)}
715. () T, F, F, T. (i) (a) {1,4,5}, (b) @, (c) {2,3,4}, (d) {3}
7.17.  Rj is the only reflexive relation.
718. R, R; and Rg are the only symmetric relations.
7.19.  All the relations are transitive.
7.20. (i) no, (ii) yes, (iii) no, (iv) no
7.21. (i) [(2,5)] = {(a,b): a+5=0b+2, a,b €N}
= {(@,a+38): e EN} = {(1,4),(2,5),(3,6), 47, ...}
7.23. (i) R ={(1,2)} and S = {(2,3)}
7.24. (i) no, (ii) no, (iii) yes, (iv) yes
7.25.  [{1,2,3}], [{1}, {2, 8}], [{2}, {1,3}], [{3}, {1,2}] and [{1}, {2}, {3}]



Chapter 8

Functions

DEFINITION OF A FUNCTION

Suppose that to each element of a set A there is assigned a unique element of a set B;
the collection, f, of such assignments is called a function (or mapping) from (or on) A

into B and is written

f:A—>B or A->B

The unique element in B assigned to a € A by f is denoted by f(e), and called the image of
a under f or the value of f at a. The domain of f is A, the co-domain B. The range of f,
denoted by f[A] is the set of images, i.e,

Example 1.1:

Example 1.2:

Example 1.3:

Example 14:

Example 1.5:

f[Al = {f(a): a € A}

Let f assign to each real number its square, that is, for every real number x let
f(x) = «2. Then the image of —3 is 9 and so we may write f(—3) =9 or f: =3~ 9,

Let f assign to each country in the world its capital city. Here the domain of f is
the set of countries in the world; the co-domain is the list of cities of the world.
The image of France is Paris, that is, f(France) = Paris.

Let A = {a,b,c,d} and B = {a,b,¢}. The assignments
a—>b, b>¢, c>c¢c and d->b

define a function f from A into B. Here f(a) = b, f(b) = ¢, f(¢) = ¢ and f(d) = b.
The range of f is {b, ¢}, that is, f[A] = {b,¢}.

Let R be the set of real numbers, and let f: R — R assign to each rational number
the number 1, and to each irrational number the number —1. Thus

@) = 1 if « is rational
( - —1 if « is irrational
The range of f consists of 1 and —1: f[R] = {1,—1}.

Let A = {a,b,c,d} and B = {x,y,2}. The following diagram defines a function
f:A~>B.

Here f(a) =y, f(b) = «, f(¢c) =z and f(d) =y. Also f[A] = B, that is, the range
and the co-domain are identical.

66
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GRAPH OF A FUNCTION
To each function f:A - B there corresponds the relation in A X B given by
{(a,f(a)): e € A}
We call this set the graph of f. Two functions f: A~ B and ¢g: A - B are defined to be
equal, written f=g, if f(a) = g(a) for every a € A, that is, if they have the same graph.

Accordingly, we do not distinguish between a function and its graph. The negation of
f=g¢ is written f+ ¢ and is the statement:

there exists an ¢ € A for which f(a) # g(a)

A subset f of A X B, i.e. a relation from A to B, is a function if it possesses the following
property:

[F] Each a €A appears as the first coordinate in exactly one ordered pair (a,b) in f.
Accordingly, if (a,b) €f, then f(a)="20.

Example 2.1: Let f:A -~ B be the function defined by the diagram in Example 1.5. Then the
graph of f is the relation
{(a, ), (b, %), (¢,2), (d, )}

Example 2.2: Consider the following relations in A = {1,2,3}:

f {(1,3),(2,3), 3,1)}
g = {(1,2), 3,1}
o= {(1,38),(2,1),(1,2), 3,1)}

f is a function from A into A since each member of A appears as the first coordi-
nate in exactly one ordered pair in f; here f(1) =3, f(2) =3 and f(3)=1. g is not
a function from A into A since 2€ A is not the first coordinate of any pair in g
and so g does not assign any image to 2. Also k is not a function from 4 into A
since 1€ A appears as the first coordinate of two distinct ordered pairs in 7,
(1,8) and (1,2). If h is to be a function it cannot assign both 8 and 2 to the
element 1€A.

11

Example 2.3: A real-valued function f:R — R of the form
fl@) = ax + b (or: defined by y = ax + b)
is called a linear function; its graph is a line in the Cartesian plane R2, x | fx)
The graph of a linear function can be obtained by plotting (at least)

two of its points. For example, to obtain the graph of f(x) = 2x —1, —2| -5
set up a table with at least two values of « and the corresponding 0] —1
values of f(x) as in the adjoining table, The line through these 2 3
points, (—2, —5), (0, —1) and (2, 3), is the graph of f as shown in the
diagram,
+s
14
T (2,3)
42
L L 1 | 1 L [
T 1 1 1 1 U 1
-4 -2 2 4
(07 —1)
- —2
44
(—2,—5) T
4 -6

Graph of f(x) =2x—1
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Example 24: A real-valued function f:R -~ R of the form z | f(x)
fley = e+ ayen 4+ - +a,_ 2+ a, —92 5

is called a polynomial function. The graph of such a function is -1 0

sketched by plotting various points and drawing a smooth continuous 0ol —3

curve through them. 1] —4

Consider, for example, the function f(x) = 22—2x—3. Set up 2| —3

a table of values for x and then find the corresponding values for 3 0

f(z) as in the adjoining table. The diagram shows these points and 4 5

the sketch of the graph.

Graph of f(x) = 22—2x—3

COMPOSITION FUNCTION
Consider now functions f: A= B and g¢: B - C illustrated below:

RO=
Let a € A; then its image f(a) is in B, the domain of g. Hence we can find the image of
f(a) under the function g, i.e. g(f(a)). The function from A into C which assigns to each

a €A the element g(f(a)) € C is called the composition or product of f and g and is
denoted by gof. Hence, by definition,

(gof)l@) = g(f(a))

Example 3.1: Let f:A—>B and g:B - C be defined by the following diagrams:
A f B g c

We compute (gof):A - C by its definition:

(geNla) = g(fla) = gly) = ¢
(geNd) = g(f() = 9(z) = r
(9oNe) = 9(fle)) = gly) =t

Notice that the composition function gof is equivalent to “following the arrows”
from A to C in the diagrams of the functions f and g.
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Example 3.2: Let R be the set of real numbers, and let f:R—>R and g:R - R be defined as

follows:
flx) = «2? and glz) = ©+3

Then (feg)@) = f(g(2) = f(6) = 25
(gof)2) = g(f2) = 9(4) = 7

Observe that the product functions fog and gof are not the same function.
We compute a general formula for these functions:

(fog)x) = flg(x) flea+3) = (x+3)2 = 22+ 6x+9
(gohHx) = g(f(x)) g(x?) = 2243

ONE-ONE AND ONTO FUNCTIONS

A function f:A - B is said to be one-to-one (or: one-one or 1-1) if different elements
in the domain have distinet images. Equivalently, f: A » B is one-one if

fla) = f(a’) implies a=a’
Example 41: Consider the functions f:A > B, g:B—C and h:C~— D defined by the follow-

ing diagram:

A f

4

Now f is not one-one since the two elements ¢ and ¢ in its domain have the same
image 1. Also, g is not one-one since 1 and 3 have the same image y. On the other
hand, % is one-one since the elements in the domain, x, ¥ and z, have distinct images.

A function f:A4 - B is said to be onto (or: f is a function from A onto B or f maps
A onto B) if every b € B is the image of some a € A. Hence f:A~- B is onto iff the range
of f is the entire co-domain, i.e. f[A] = B.

Example 4.2: Consider the functions f, g and h in the preceding example. Then f is not onto
since 2€ B is not the image of any element in the domain A. On the other hand,

both g and h are onto functions.

Example 43: Let R be the set of real numbers and let f:R—>R, g:R>R and h:R—->R be
defined as follows:
flx) = 27, gx) = x8—« and h(x) = «?

The graphs of these functions follow:

flx) = 2% glx) = 23—« h(x) = «2
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The function f is one-one; geometrically, this means that each horizontal line does
not contain more than one point of f. The function g is onto; geometrically, this
means that each horizontal line contains at least one point of g. The function A
is neither one-one or onto; for h(2) = h(—2) = 4, i.e. the two elements 2 and —2
have the same image 4, and h[R] is a proper subset of R; for example, —16 & h[R].

INVERSE AND IDENTITY FUNCTIONS

In general, the inverse relation f~! of a function f C A X B need not be a function.
However, if f is both one-one and onto, then f~! is a function from B onto A and is called
the inverse function.

Example 5.1: Let A = {a,b,¢} and B = {r,s,t}. Then
f = {a,s), (b, 1), (c,7)}

is a function from A into B which is both one-one and onto. This can easily be
seen by the following diagram of f:

Hence the inverse relation
f~1 = {(s,a), (t,b), (r,c)}

is a function from B into A. The diagram of f—! follows:

Observe that the diagram of f—1 can be obtained from the diagram of f by revers-
ing the arrows.

For any set A, the function f:A > A defined by f(x) =, ie. which assigns to each
element in A itself, is called the identity function on A and is usually denoted by 1, or
simply 1. Note that the identity function 1, is the same as the diagonal relation: 1, = 4A,.
The identity function satisfies the following properties:

Theorem 8.1: For any function f:A - B,
1,0f = f = fol,

Theorem 82: If f:A - B is both one-one and onto, and so has an inverse function
f~1:B- A, then
f7lef =1, and fof™' =1,

The converse of the previous theorem is also true:
Theorem 83: Let f:A->B and ¢g:B~-> A sgatisfy
gef =1, and fog =1,

Then f is both one-one and onto, and g = f~%



CHAP. 8] FUNCTIONS 71

Solved Problems

FUNCTIONS
8.1. State whether or not each diagram defines a function from A = {a,b,¢} into
B = {z,y,2).

8.2.

8.3.

8.4.

B | > |
> ‘ > 4
Y
() (ii) (iii)
(i) No. There is nothing assigned to the element b€ A.

(ii) No. Two elements, x and z, are assigned to c€ A.
(iii) Yes.

Rewrite each of the following functions using a formula:

(i) To each number let f assign its cube.

(ii) To each number let g assign the number 5.

(iii) To each positive number let & assign its square, and to each non-positive number
let 2 assign the number 4.

(i) Since f assigns to any number z its cube 23, f can be defined by f(x) = 3.
(ii) Since g assigns 5 to any number x, we can define g by g¢g(x) = 5.
(ili) Two different rules are used to define h as follows:

ey J@ife>0
@ = 14 tw=o0

Let f,¢g and & be the functions of the preceding problem. Find:

(i) 7(4), £(=2), £(0); (i1) 9(4), 9(=2), g(0); (iii) h(4), h(=2), 1(0).

(i) Now f(x) = 3 for every number x; hence f(4) = 43 = 64, f(—2) = (—2)3 = —8, f(0) = 03 = 0.
(ii) Since g(x) =5 for every number z, g(4) =5, g(-2)=5 and g(0) =5.

(iii) If « >0, then &(x) =22 hence h(4) =42=16. On the other hand, if « =0, then
h(x) = 4; thus h(—2) =4 and h(0) = 4.

Let A = {1,2,3,4,5}) and let f:A—>A be the function defined in the diagram:

———

=<

(i) Find the range of f.
(ii) Find the graph of f, i.e. write f as a set of ordered pairs.

(i) The range f[A] of the function f consists of all the image points. Now only 2, 3 and 5 appear
as the image of any elements of A; hence f[A] = {2,3,5}.

(ii) The ordered pairs (a, f(a)), where a €A, form the graph of f. Now f(1) = 3, f(2) =5,
f() =5, f(4) =2 and f(5) = 3; hence f = {(1,3),(2,5), (3,5), 4,2), (5,3)}.
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8.5.

8.6.

8.7.

FUNCTIONS [CHAP. 8

Let X = {1,2,3,4). Determine whether or not each relation is a function from
X into X.
i f = {(2,3), (1,4), (2, 1), (3, 2>’ (4,4)}
(i) 9 = {3,1),(42),(1,1)}
(iii> h = {(2! 1), (3’4)r (1’ 4>’ (2, 1)! (4! 4>}
Recall that a subset f of X X X is a function f: X - X if and only if each a € X appears
as the first coordinate in exactly one ordered pair in f.
(i) No. Two different ordered pairs (2,3) and (2,1) in f have the same number 2 as their first
coordinate.
(ii) No. The element 2€ X does not appear as the first coordinate in any ordered pair in g.

(iii) Yes. Although 2€ X appears as the first coordinate in two ordered pairs in h, these two
ordered pairs are equal.

Find the geometric conditions under which a set f of points on the coordinate diagram
of A X B defines a function f:4 - B.

The requirement that each ¢ €A appear as the first coordinate in exactly one ordered pair
in f is equivalent to the geometric condition that each vertical line contains exactly one point in f.

Let W = {a,b,c,d}. Determine whether the set of points in each coordinate diagram
of Wx W is a function from W into W.

d d d
c ¢ c
b b b
a T— a a
a b ¢ d a b ¢ d a b ¢ d

(i) (i) (iii)
(i) No. The vertical line through b contains two points of the set, i.e. two different ordered pairs
(b,b) and (b,d) contain the same first element b. )

(ii) No. The vertical line through ¢ contains no point of the set, i.e. ¢€ W does not appear as
the first element in any ordered pair.

(iii) Yes. Each vertical line contains exactly one point of the set.

GRAPHS OF REAL-VALUED FUNCTIONS

8.8.

Sketch the graph of f(x) = 3x—2.

This is a linear function; only two points (three as a check) are needed to sketch its graph.
Set up a table with three values of «x, say, ¥ = —2, 0,2 and find the corresponding values of f(x):

f(=2) = 3(=2)—2 = =8, f(0) = 3(0)—2 = -2, f(2) =32 -2 =4

Draw the line through these points as in the diagram.
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8.9. Sketch the graph of (i) f() = 2>+ —6, (ii) g(z) = 2*— 8a2—2+3.

In each case, set up a table of values for # and then find the corresponding values of f(x).
Plot the points in a coordinate diagram, and then draw a smooth continuous curve through the

points:
G) o« | A=) 1 i = g 1
+s
—4 6 1 -2 1 -15 415
—3 0 . -1 0 412
—2 ! -4 1 0 3 1,
-1 | —8 1, 1 0 16
0| -6 1 2| -3 3
1 —4 t 1 3 0 } 1 1 /\ 1 1
20 0 L 4 | 15 -4 -2 : /) 4
3| 6 "“;\'/
T-6
T-9
|

115

Graph of f. Graph of g.

COMPOSITION OF FUNCTIONS
8.10. Let the functions f:A—>B and ¢:B - C be defined by the diagram

A f B 9 c

N

(i) Find the composition function gof: A > C. (ii) Find the ranges of f, ¢ and gof.

(i) We use the definition of the composition function to compute:
(gofia) = g(f(a)) = gy) =t
(o) = g(f(b)) = glx) = s

(gohle) = g(f(e) 9(y) =t

Note that we arrive at the same answer if we ‘“follow the arrows” in the diagram:
a->y—t b-ox-—>s co>y—t

(ii) By the diagram, the images under the function f are » and y, and the images under g are

r, s and t; hence
range of f = {x,y} and range of ¢ = {r,s,t}

By (i), the images under the composition function are ¢ and s; hence
range of gof = {s,t}
Note that the ranges of ¢ and g o f are different.

8.11. Consider the functions
f = 1{13),(25),(3,3), (4,1), (52)}

g {(1, 4)’ (2, 1): (3, 1)’ (4, 2)! (5’ 3)}

from X = {1,2,8,4,5} into X. (i) Determine the range of f and of ¢. (ii) Find
the composition functions gof and fog.

f
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(i) The range of a function is the set of image values, ie. the set of second coordinates; hence
range of f = {8,5,1,2} and rangeof ¢ = {4,1,2,3}

(ii) Use the definition of the composition function and compute:

(goNH1) = g(f1)) = 93 = 1 (feg)1) = flo(1)) = f4) =1

(goN@) = g(f(2) = 9(5) = 3 (fog)2) = f(g2)) = f1) = 3

(goH@B) = g(f8) = 9(8) = 1 (feg)®B) = f(g(8) = f(1) = 3

(9°H4) = g(f4)) = g(1) = 4 (feg)4) = flg4) = f2) =5

(gof)B) = g(f(5)) = 9(2) = 1 (feg)5) = flg5)) = f(3) = 3
In other words, geof = {(1,1),(2,3), (8,1), (4,4), 5,1)}

fog = {(1,1),(2,3),(8,3), (4,5), (5,3)}
Observe that gof # fog.

8.12. Let the functions f and g be defined by f(z) = 2¢4+1 and g(x) = 2*—2. Find
formulas defining the composition functions (i) gof and (ii) feg.

(i) Compute gof as follows: (gof)(®) = g(f(x)) = g@x+1) = Qe+1)2—2 = 4o+ 4o —1.
Observe that the same answer can be found by writing
y = fl) = 2¢+1 and 2 = gly) = y2—2
and then eliminating y from both equations:
z = y2—2 = 2x+1)2—-2 = 4x2+ 4o —1

(i) Compute fog as follows: (fog)x) = flg(w)) = f(*2—2) = 2(2—2)+1 = 222 —38.
Note that fog #= gof.

8.13. Prove the associative law for composition of functions: if
ALBScS5D
then (hog)of = ho(gof).
For every a €A, ((hog)ef)la) (hog)(f(a)) h(g(f(a)))

(ho(gofNla) = h((gofia) = h(g(f(a))

Hence (hog)of = ho(gof), since they each assign the same image to every a €A. Accordingly,
we may simply write the composition function without parentheses: hogof.

ONE-ONE AND ONTO FUNCTIONS

814. Let A = {a,b,c,d,e}, and let B be the set of letters in the alphabet. Let the
functions f, ¢ and & from A into B be defined as follows:

f g h
a—r a—>z o—a
b—a b—y b—>c
c—s c—> c—>e
d—7r d—>y d—r
e—>e e —>z e —8

0 (i) (i)

Are any of these functions one-one?
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8.15.

8.16.

8.17.

8.18.

Recall that a function is one-one if it assigns distinct image values to distinct elements in
the domain.

(i) No. For f assigns r to both a and d.
(i) No. For g assigns z to both @ and e.
(iii} Yes. For h assigns distinct images to different elements in the domain.

Determine if each function is one-one.

(i) To each person on the earth assign the number which corresponds to his age.
(ii) To each country in the world assign the latitude and longitude of its capital.
(iii) To each book written by only one author assign the author.
(

iv) To each country in the world which has a prime minister assign its prime
minister.

(i) No. Many people in the world have the same age.
(ii) Yes.
(ili) No. There are different books with the same author.

(iv) Yes. Different countries in the world have different prime ministers.

Prove: If f:A~>B and ¢g:B-C are one-one functions, then the composition
function gof:A - C is also one-one.

Let (gof)(a) = (g°f)a); ie. g(f(a)) = g(f(¢)). Then f(a) = f(a’) since g is one-ome.
Furthermore, a = a’ since f is one-one. Accordingly, gof is also one-one.

Let the functions f:A-> B, g:B->C and h:C—->D be defined by the diagram.

A f B g c h

(i) Determine if each function is onto. (ii) Find the composition function hogof.

D
4
6
6

(i) The function f:A4 = B is not onto since 3 € B is not the image of any element in A.
The function ¢:B — C is not onto since z € C is not the image of any element in B.

The function h:C — D is onto since each element in D is the image of some element of C.

(i) Now a—-2-x-4, b>1->y—6, ¢c>2->x->4. Hence hogof = {(a, 4), (b, 6), (c,4)}.

Prove: If f:A->B and g:B - C are onto functions, then the composition function
gof:A~C is also onto.

Let ¢ be any arbitrary element of C. Since g is onto, there exists a b € B such that g(b) = c.
Since f is onto, there exists an a €A such that f(a) = b. But then

(gofia) = g(f(a)) = g(b) = ¢
Hence each ¢ € C is the image of some element a €A. Accordingly, gof is an onto function.
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INVERSE FUNCTIONS

8.19.

8.20.

8.21.

Let W = (1,2,3,4,5) andlet f:W~W, g:W~->W and h:W->W be defined by
the following diagrams:

f 9
1 1
\ > : :
3 3
] 4 4
b 6

Determine whether each function has an inverse function.

In order for a function to have an inverse, the function must be both one-one and onto.
Only h is one-one and onto; hence k, and only k, has an inverse function.

Let f:R— R be defined by f(x) = 2x—3. Now f is one-one and onto; hence f has
an inverse function f~!. Find a formula for f~1.

Let y be the image of x under the function f:
y = flx) = 20— 3
Consequently, » will be the image of y under the inverse function f~1. Solve for x in terms of y
in the above equation: v = (y+3)2
Then ) = (y+3)y2

is a formula defining the inverse function.

Let A = {a,b,¢,d}. Then f = {(a,b), (b,d), (¢,a), (d,c)} is a one-one, onto function
from A into A. Find the inverse function f~!.

To find the inverse function f—1, which is the inverse relation, simply write each ordered pair

in reverse order:
f71 = {(b,a), (d,b), (a,c), (c,d)}

MISCELLANEOUS PROBLEMS

8.22.

Let the function f:R - R be defined by f(x) = 2*—3x+2. Find:

(a) f(-3) (e) f(a?) () f(2x—3) (m) f(f(x + 1))

() 1) —f(=4) () fly—2) (7) f(2z—3) + f(x +3) (n) f(z+h)— f(x)

(¢) 1) (9) f(x+h) (k) f(a*—3x +2) (0) [f(x+h)— f(x)i/h
(d) f(a?) () f(x+3) 0 f(f(x))

The function assigns to any element the square of the element minus 3 times the element plus 2.
(@) f(-=38) = (-8)2—3(-3)+2 =9+9+2 = 20
) f2 = 22—32)+2 =0, f(—4) = (—4)2—3(—4)+2 = 30. Then
f@) —f(—4) = 0—30 = —30

(¢) fly) = W*—38+2 =y2—3y+2

(d) f(@?) = (a?)2—3(a?) +2 = a* —3a®+ 2

(e) flax?) = ()2 —3(22) +2 = at— 322+ 2

) fly—2) = (y—22—-3@y—2)+2 = y>2—2yz+22—3y + 32+ 2

(N £
(9) flea+h) = (x+h)2—8x+h)+2 = 22+ 20h+ h2—3x—3h+2
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(h) flx+3) = (x+3)2—3x+3)+2 = (224+6x+9) —8x—9+2 = %2+ 3z + 2
() fCr—38) = (2x—38)2~32x—8)+2 = 422 — 120+ 9 —6x + 9+ 2 = 4a2 — 18x + 20
(j) Using (k) and (i), we have

f2x—3) + flx +3) = (422 —18x +20) + (x24+ 32 +2) = 522 — 15x + 22
(k) fx2—8x+2) = (22—30+2)2 — 3(a2—8x+2) +2 = at — 623 + 1022 — 3z
O f(f®) = f@2—3w+2) = x*— 6x% + 1022 — 3z
(m) f(fx+1) = f(((x+1)2—3@+1) +2) = f((22+ 2z + 1 — 3z — 3 + 2])

= f(@2—2x) = (22— )2 —3(22—2a)+2 = 2t —2x3 — 202+ 32 + 2
(n) By (9), flx+h) = 22+ 2xh + h2 — 3x — 3h + 2. Hence

flx+h) — f(®) = (x24+2xh+h2—3x—8h+2) — (#2—3x+2) = 2xh + h2— 3h

(o) Using (n), we have
[f(®+ k) — f(x)]/h = (2xh+ h2—38h)/h = 2x + h — 3

>

8.23. Prove Theorem 8.1: For any function f:A->B, 1,0f =f = fol,.
Let @ be any arbitrary element in A; then
(Ige @) = 1p(f(@) = fla) and (Felxe) = f(la(@) = f(a)
Hence 1gof = f = fol, since they each assign f(a) to every element a € A.
Supplementary Problems
FUNCTIONS
8.24. State whether each diagram defines a function from {1,2,3} into {4,5, 6}.
@) (id)

8.25. Define each function by a formula:

(i) To each number let f assign its square plus 3.

(ii) To each number let ¢ assign its cube plus twice the number.

(iii) To each number greater than or equal to 3 let h assign the number squared, and to each

number less than 3 let k& assign the number —2.

8.26. Determine the number of different functions from {a, b} into {1,2,3}.
827. Let f:R—-> R be defined by f(x) = a22—4x+3. Find (1) f(4), (i) f(—3), (iii) f(y —2x),

(iv) f(x—2).

2 — 3x if x =2
828. Let g:R—~R bedefinedby g(@) = 4~ o = %% Find (i) g(5), (ii) 9(0), (iii) g(~2).
x+2 ife<2

8.29. Let W = {a,b,c,d}. Determine whether each set of ordered pairs is a function from W into W.

i) {(®,a), (c,d), (d,0), (¢,d), (a,d)} (iii) {(a, b), (b,d), (c,d), (d, b)}
(i) {(d,d), (¢, a), (a,b), (d, b)} @(iv) {(a,a), (b,a), (a,b), (¢,d)}
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8.30.

8.31.

8.32.

FUNCTIONS [CHAP. 8

Let the function g assign to each name in the set {Betty, Martin, David, Alan, Rebecca} the number
of different letters needed to spell the name. Find the graph of g, i.e. write g as a set of ordered
pairs.

Let W = {1,2,3,4} and let g: W —> W Dbe defined by the diagram

(i) Write g as a set of ordered pairs. (ii) Plot g on the coordinate diagram of W X W. (iii) Find
the range of g.

Let V = {1,2,3,4}. Determine whether the set of points in each coordinate diagram of VXV
is a function from V into V.

4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1
1 2 3 4 1 2 3 4 1 2 3 4 1 2 4
(i) (ii) (iii) (iv)

GRAPHS OF REAL-VALUED FUNCTIONS

8.33.

8.34.

Sketch the graph of each function:
(i) fl@)=2, (i) g) = fae—1, (i) h(x) = 222 — 42— 3.

Sketch the graph of each function:
0 ifx=0
(i) flx) =a3—8x+2, (i) gx) =axt—1022+9, (iii) h(x) =

8|

if o0

COMPOSITION OF FUNCTIONS

8.35.

8.36.

The functions f:A—> B, g:B—-> A, h:C~> B, F:B-> C, G:A -> C are pictured in the diagram
below.

Determine whether each of the following defines a product function and if it does, find its domain
and co-domain: (i) gof, (ii) hof, (iii) Fof, (iv) Gof, (v) goh, (vi) Foh, (vii) hoGog,
(viil) heo@.
The following diagrams define functions f, ¢ and » which map the set {1,2,3,4} into itself.

f g

) (B8 (0

(i) TFind the ranges of f, g and h.
(i) Find the composition functions (1) fog, (2) hof, (3) g2, ie. gog.
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837. Let f:R—> R and g:R~ R be defined by f(x) = «2+3x+1 and g(x) = 2x— 3. Find formulas
defining the product functions (i) fog, (ii) gof, (iii) gog, (iv) fof.

ONE-ONE, ONTO AND INVERSE FUNCTIONS

8.38 Let f:X - Y. Which conditions define a one-one function:
(i) f(a) = f(b) implies ¢ = b (iii) f(a) # f(b) implies a #= b
(i) @ = b implies f(a) = f(b) (iv) a# b implies f(a) # f(b)

8.39. (i) State whether or not each function in Problem 8.36 is one-one.
(ii) State whether or not each function in Problem 8.36 is onto.

8.40. Prove Theorem 8.2: If f:A - B is one-one and onto, and so has an inverse function f—1, then
(i) fmlof =1, and (ii) fof~1 =1y

841. Prove: If f:A~> B and ¢g:B - A satisfy gof = 1,, then f is one-one and ¢ is onto.
8.42. Let f:R -~ R be defined by f(x) = 8x—7. Find a formula for the inverse function f-1:R - R.
8.43. Let g:R— R be defined by g(x) = 23+ 2. Find a formula for the inverse function g—1:R ~ R.

8.44. Let R be an equivalence relation in a non-empty set A. The function » from A into the quotient
set A/R is defined by n(a) = [a], the equivalence class of a. Show that » is an onto function.

8.45. Prove Theorem 83: Let f:A—> B and g¢g:B—-> A satisfy gof = 1, and fog = 1z. Then
{ is one-one and onto, and g = f—1,

Answers to Supplementary Problems

8.24. (i) No, (ii) Yes, (iii) No
8.25. (i) flx)=a2+3, (i) g(&) =ad+2, (i) hx) = {fzz i: f:g
8.26.  Nine.

8.27. (i) 8, (ii) 24, (iii) y2 — 4wy + 402 — 4y + 82 -+ 3, (iv) 22— 8z +15
8.28. (i) g(5) = 10, (ii) g(0) =2, (iii) g(~2) =0

8.29. (i) Yes, (ii) No, (iii) Yes, (iv) No

830. ¢ = {(Betty,4), (Martin,6), (David,4), (Alan,3), (Rebecca, 5)}
831. (i) ¢ = {(1,2),(2,3), 3,1), (4,3)}, (i) {2,3,1}
8.32. (i) No, (ii) No, (iii) Yes, (iv) No

833. (i)

i 1
———t ——t _—
-3 -2-1 L 1 2 3 —4 —2 2 4
T—Z / 2
1-3 1

Graph of f Graph of g
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8.35.

8.36.

(i1) No,

Git) o |h()
—2 13
—1 3
0] —3
1| -5
21 -3
3 3
oy x| f=)
-3 | —16
-2 0
-1 4
0 2
1 0
2 4
3 20
i) = | g
—4 1 105
—3 0
—2 | —16
-1 0
0 9
1 0
2| —15
3 0
4| 105
Gil) = | A=)
A
2| 4
1 1
% 2
1 4
0 0
_i_ —4
_% -2
-1 | -1
—4 | -1
(i) gef:A—>A,
(iv) No, (v) goh:C— A,
(vii) heGog:B - B,

(i) range of f = {1,2,4},
range of ¢ = {1,2,3,4}, range of h = {1, 3}

(i) = | (o) | (hoNH@ | o)

FUNCTIONS

[CHAP. 8

(iii) Fof:A-C,
(vi) Foh:C~C,
(viii) hoG:A > B

Graph of h

R S

1

4
2
1

3

o =

°

4

= oW

8.37.

8.38.

8.39.

8.42.

8.43.

) (fog)z) = 42 —62x+1
(i) (gof)x) = 202+ 6x—1

(iii) (geog)w) = 4 —9

(Gv) (fof)(x) = wx*-+ 623+ 1422+ 152 +5

(i) Yes, (ii) No, (iii) No, (iv) Yes
(i) Only g is one-one. (ii) Only g is onto.
7l (x) = (w+17)/3

g1 (@) = Va2



Chapter 9

Vectors
COLUMN VECTORS
A column vector u is a set of numbers u,u,, ...,u, written in a column:
ul
uZ
u = .

The numbers u, are called the components of the vector u.
Example 1.1: The following are column vectors:

0 () () = (5)

The first two vectors have two components; whereas the last two vectors have three
components.

Nl

Two column vectors u and v are equal, written = v, if they have the same number of
components and if corresponding components are equal. The vectors

1 2
2] and |3
3 1

are not equal since corresponding elements are not equal.

Example 1.2: Let x—y 4
x+y = 2
z—1 3

Then, by definition of equality of column vectors,

x—y = 4
x+y = 2
z—1 =3
Solving the above system of equations gives « =3, y = —1, and 2z = 4.

Remark: In this chapter we shall frequently refer to numbers as scalars.

VECTOR ADDITION

Let # and v be column vectors with the same number of components. The sum of u
and v, denoted by u + v, is the column vector obtained by adding corresponding components:

81
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U, v, U, + v,

U, vy U, + v,
u +v = + =

u, v, u, +v,

Note that # + v has the same number of components as # and »v. The sum of two vectors
with different numbers of components is not defined.

Example 2.1: 1 4 144 5
-2 1 + 5 = 245 = 3
3 —6 3—-6 —3

Example 2.2: The sum < 1

is not defined since the vectors have different numbers of components.

A column vector whose components are all zero is called a zero vector and is also denoted
by 0. The next Example shows that the zero vector is similar to the number zero in that,
for any vector u, u+0 = u.

Example 2.3:

Uy 0 u;+0 Uy
Uy 0 Uy + 0 Uy

v + 0 = ’ + ) = ) = : = u
Uy 0 u, +0 Uy

SCALAR MULTIPLICATION

The product of a scalar k and a column vector u, denoted by k-u or simply ku, is the
column vector obtained by multiplying each component of u by k:

u, ku,
u, ku
keu = k =
u, ku,

Observe that w and %+ have the same number of components. We also define:

—u = —1-u and U—v = u+(-v)

@00
o(4) - (8 () - (3

The main properties of the column vectors under the operations of vector addition and
scalar multiplication are contained in the following theorem:
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Theorem 9.1: Let V, be the set of all n-component column vectors, and let wu,v,w € V,
and let &, k' be scalars. Then:
iy (w+v)+w = u+(v+w), ie. addition is associative;

i %+ = v+ u, ie. addition is commutative;

—

(
(iii)y #+0=0+u = u;
(iv) -+ (—u) = (—u) +u = 0;
(vy  klu+v) = ku+ kv;
(viy (k+kYu = ku+ Ku;
(vil) (EEYu = k(k'u);
(vill) 1u = u.
The properties listed in the above theorem are those which are used to define an

abstract mathematical system called a linear space or wvector space. Accordingly, the
theorem can be restated as follows:

Theorem 9.1: The set of all n-component column vectors under the operations of vector
addition and scalar multiplication is a vector space.

ROW VECTORS

Analogously, a row vector u is a set of numbers u ,u,, ...,%, Wwritten in a row:
o= (g, Uy .., U

The numbers u, are called the components of the vector u. Two row vectors are equal if
they have the same number of components and if corresponding components are equal.
Observe that a row vector is simply an ordered n-tuple of numbers.

The sum of two row vectors u and v with the same number of components, denoted by
u + v, is the row vector obtained by adding corresponding components from % and v:

w+v o= (U, Uy, o, u) (U0, ,0) = (U, U0, L w, )

The product of a scalar & and a row vector u, denoted by k-u or simply ku, is the row
vector obtained by multiplying each component of % by k:

kew = klu,u, ...,u) = (ku,ku, ..., ku)

We also define -4 = —l-u and wu—v = u+(-v)
as we did for column vectors.
Example 4.1: (1,~2,3 ~4) + (0,5, —7,11) = (1,3, —4,7)
5+(1,—2,38,—4) = (5, 10,15, —20)

We also have a theorem for row vectors which corresponds to Theorem 9.1.

Theorem 9.2: The set of all n-component row vectors under the operations of vector
addition and scalar multiplication satisfies the properties listed in Theorem
9.1, that is, is a vector space.

MULTIPLICATION OF A ROW VECTOR AND A COLUMN VECTOR

If a row vector w and a column vector v have the same number of components, then
their product, denoted by wu-v or simply wuv, is the scalar obtained by multiplying cor-
responding elements and adding the resulting products:
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ROW VECTORS
96. Let »=(2,-7,1), v = (-3,0,4) and w = (0,5,~8). Find: (i) v+, (ii) v+w,
(iii) —3u, (iv) —w.
(i) Add corresponding components:
u+v = (2,-7,1)+(-3,0,4) = (2-38,-7+0,1+4) = (-1,-17,5)
(ii) Add corresponding components:
v»+w = (—3,0,4) + (0,5, —8) = (—3+0,0+5,4—-8) = (-3,5,—4)
(iii) Multiply each component of u by the scalar —8: —3u = -3(2,—7,1) = (—6,21,-3).

(iv) Multiply each component of w by —1, i.e. change the sign of each component:
—w = —(0,5, —8) = (0,5, 8)

9.7. Let u, v and w be the row vectors of the preceding problem. Find (i) 3u —4v,
(ii) 2u + 3v — 5w.

First perform the scalar multiplication and then the vector addition.
(i) 3u—4v = 3(2,—7,1) — 4(-3,0,4) = (6,—21,8) + (12,0,—16) = (18,—21,—13)

(ii) 2w+ 8v —bw = 2(2,-7,1) + 3(—3, 0,4) — 5(0, 5, —8)
= (4, —14, 2) + (=9, 0, 12) + (0, —25, 40)
= (4—9+0,—1440—25,2+12+40) = (-5, —39, 54)

98, Find z, y and 2z if (2%,3,y) = (4, x +2, 22).

Set corresponding components equal to each other to obtain the system of equations

20 = 4
3 = x+z2
¥y = 2z

Then =2, z=1 and y = 2.

99. Find ¢ and y if 2(1,1)+y2,—-1) = (L4).
First multiply by the scalars « and y and then add:
(1, 1) +y(@2,-1) = (w2 + 2y, —y = @+2y,2—y) = 1,4
Now set corresponding components equal to each other to obtain

x+2y =1
x—y = 4

Solve the system of eguations to find # =3 and y = —1.

MULTIPLICATION OF A ROW VECTOR AND A COLUMN VECTOR

4
8 3

9.10. Compute: (i) (2,-3,6)| 2|, (i) (1,-1,0,5) |1, (i) (3,-5,21) _;
-3 4

5

(i) Multiply corresponding components and add:

it
|
©

8
(2,—3,6)< 2> = 28+ (-3)*2+6+(-3 = 16 —6 — 18
—3
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(ii) The product is not defined since the vectors have different numbers of components.

(iii) Multiply corresponding components and add:

4
3,—5,2,1) _; = 34+ (51 +2(-2)+15 = 12—-5—-4+5 = 8
5
2
9.11. Let w = (1,k,—8) and v = |—5|. Determine k so that u-v = 0.
4

Compute u+*v and set it equal to 0:

2

wev = (1, k —3)|—5 = 1.2+ (-5)*k+(-3)+*4 = 2—-—5k—-12 = —-10—-5k = 0
4

The solution to the equation —10—5k =0 is k = —2,

MISCELLANEOUS PROBLEMS

9.12. Prove Theorem 9.1(i): For any vectors u, v and w, (u+7?v)+w = u+ (v+w).

Let u;, v; and w; be the ith components of #, v and w respectively. Then u;+ v; is the ith
component of -+ v and so (u; +v;) +w; is the ith component of (x+v)+w. On the other hand,
v;+w; is the ith component of v+ w and so u;+ (v;+w;) is the ith component of u+ (v+ w).
But u;, »; and w; are numbers for which the associative law holds, that is,

(w+v) +w; = u,+ (v;+w), for eachi

Accordingly, (u+v)+w = u-+(v+w) since all their corresponding components are equal.

9.13. Let 0 be the number zero and ¢ the zero vector. Show that, for any vector u, Qu=4.

Method 1:

Let u; be the ith component of u. Then Ou; =0 is the ith component of Ou. Since every
component of Ou is zero, Ou is the zero vector, ie. Ou=o¢.

Method 2:

‘We use Theorem 9.1:
0w = (04+0)u = Ou -+ Ou

Now adding —O0u to both sides gives
¢ = O0u+ (—0u) = Ou-+ [Ou-+(—0u)] = Ou+6 = Ou

9.14. Prove Theorem 9.1(vi): (k+k)u = ku + k'u.

Observe that the first plus sign refers to the addition of the two scalars k and k' whereas
the second plus sign refers to the vector addition of the two vectors ku and k'u.

Let u; be the ith component of u. Then (k+ k')u; is the ith component of (k+ k’)u. On the
other hand, ku; and k’u; are the ith components of the vectors ku and k'u, respectively, and so
ku; + k'w; is the ith component of the vector ku -+ k'u. But k, k' and w; are numbers; hence

(k+k)u; = ku; + k'u;,  for eachi

Thus (k- k)u = ku+ k'v, as corresponding components are equal.

9.15. The norm |[u|| of a vector u = (u,u, ...,u,) is defined by

lull = Vg +us+ - +u;
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(i) Find ||(3,—4,12)|.

(ii) Prove: |jkul] = |k||ju||, for any real number k.
G 1(3,—4,12)| = V& (=42 +122 = V9 + 16 + 144 = /169 = 13
) |hul] = ||k, wgy ooy uy) || = || (kg Fug, ..., kuy) ||

= Vikup?® + (kug)® + + -+ + (ku,)®2 = VE>u2 + k2uZ + -+ - + k2
= V2 ¥ 2+ - +u) = VEVZ +ul+ - +ud = k] [ful]

Supplementary Problems

COLUMN VECTORS

2 -3 1 1 6 9
R —4 4 . —2 -3 . -1
9.16. Compute: (1) + (ii) + (-5 (iii) 4 (iv) —
5 0 7 3 —5 —2
—1 -1 6 1 —1
0 6 -1 2 —5 3
o -2 -3\ . o) _ (-3 |4} 7
9.17. Compute: (i) 3 4 + 5 9 (i) 3 _5 2 1 (iii) —o 4 9
—4 1 4 5 1 -1
1 —2 0 -3 1 -3
L 0 6 -3\ . o 4) (-1 ~1
9.18. Compute: @) 5 _3 + 2 1~ 4 _3 (i) —2 1 6 1 + 3 0
-1 —2 1 2 ~2 3

9.19. Determine x and y if: (i) <x _T_ y> = <y E 2) (il) = <g> =2 <_?/1> .

1 1 1 3
9.20. Determine , ¥ and z if (1) +y{—1] + 2( 0 = —-1].
1 0 0 2

9.21. Determine « and y if =« (?2/> = y( L > .

ROW VECTORS
922, Let u = (2,-1,0,-3), v = (1,—1,-1,8) and w = (1,8,—2,2). Find:
(i) 8w, (i) w+wv, (iii) 2u—8v, (iv) bu—3v—4w, (v) —u+ 2v—2w.

9.23. Find « and y if «(1,2) = —4(y, 3).

9.24. Find 2, y and z if (1,1,0) + (2,0,—1) + 2(0,1,1) = (~-1,3,3).

MULTIPLICATION OF A ROW VECTOR AND A COLUMN VECTOR

1
4 -3

9.25. Compute: (i) (2, -3, —1)< 1> (ii) (1, =3, —2, 4) < 2> (iii) (3, -1, 2, 0) :;
~ 1

5
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3
9.26. Determine k so that (1, k, —2, —3) i = 0.
1
9.27. Prove: If u = (uy,...,u,) is a row vector such that w+v = 0 for every column vector v with

n components, then u is the zero vector.

MISCELLANEOUS PROBLEMS

9.28.  Prove Theorem 9.1(v): For any vectors u and v and scalar k, k(u+v) = ku+ kv.
9.29.  Prove Theorem 9.1(vii): For any vector u and scalars k, k', (kk')u = k(k'u).

9.30. Find (i) ||(3,5,—4) |, (i) ||(2,—3,6,4)]|.

Answers to Supplementary Problems

—1 24 —9
. 0 " Loy | —12 . 1
9.16. (i) 5 (ii) Not defined. (iii) _og (iv) 9
-8 4 1
30 -7 -7
o | —21 . 6 —32
9.17. (i) 9 (i1) 17 (iii) 10
-7 2 3
1 —9
. 24 .t -5
9.18. (i) s (ii) 4
—13 17

919. () x=2, y=4 (i) x=-1, y=-3/2

921. =0, y=0 or x =2, y=—4

922, 3u=(6,-8,0,—9), utv =(3,—2,—1,0), 2u—3v = (1,1,3,—15), bu—3v— 4w = (3, —14,11,—32),
—u+20—2w = (-2,—1,2,5)

9.23. x=-—6, y=3/2

924, =1 y=-1, 2=2

9.25. (i) 7 (ii) Not defined  (iii) 0
9.26. k=—4

9.30. (i) 5V2, (i) V65



Chapter 10

Matrices

MATRICES

A matriz is a rectangular array of numbers; the general form of a matrix with m rows
and n columns is

ain 012 O3 Q1n
Qo1 Q22 Q23 A2n
Am1  Om2 Oms Amn,

We denote such a matrix by

(@i)m,n  Or simply  (ai)
and call it an m X n matrix (read “m by n”). Note that the row and column of the element
a.. is indicated by its first and second subscript respectively.

1}

Example 1.1: Consider the 2 X 8 matrix <3 —i ;>

Its rows are (1,—3,4) and (0,5, —2) and its columns are <1> , <—3>, and < ;>

0 5
In this chapter, capital letters 4, B, ... denote matrices whereas lower case letters
a,b, ... denote numbers, which we call scalars. Two matrices A and B are equal, written

A = B, if they have the same shape, i.e. the same number of rows and the same number of
columns, and if corresponding elements are equal. Hence the equality of two m Xn
matrices is equivalent to a system of mn equalities, one for each pair of elements.

Example 1.2: The statement <x ty 22+ w> - <3 5
r—Yy Z2—w 1 4

is equivalent to the system of equations

x+y = 3
x—y =1
28 +w = b
z—w = 4
The solution of the system of equations is x =2, y=1, 2 =38, w=—1.

Remark: A matrix with one row is simply a row vector, and a matrix with one column
is simply a column vector. Hence vectors are a special case of matrices.

MATRIX ADDITION

Let A and B be two matrices with the same shape, i.e. the same number of rows and
of columns. The sum of A and B, written A + B, is the matrix obtained by adding cor-
responding elements from A and B:

90
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Q11 Q2 v Qi bu b - b a1 +by @+ b ot Gt b
Qa1 Q22+ o " bar  baa v+ bam | [@2+ b2 G2+ ba ce G2t ba
Am1 (1290} e Amn bml me tre bmn Uy + bml Umo + bm2 tee Omn + bmn

Note that A + B has the same shape as A and B. The sum of two matrices with different
shapes is not defined.

Example 2.1: <1 —2 3) T <3 0 —6> _ <1+3 —2+0 3+(—6)> _ <4 —2 —3>
0 4 5 2 -3 1 0+2 4+(=3) b5+1 2 1 6
Example 2.2: The sum (1 -2 + <0 5 _2>
3 4 1 -3 —1

is not defined since the matrices have different shapes.

A matrix whose elements are all zero is called a zero matrixz and is also denoted by 0.
Part (iii) of the following theorem shows the similarity between the zero matrix and the
scalar zero.

Theorem 10.1: For matrices A, B and C (with the same shape),
i) (A+B)+C = A+ (B+C(), i.e. addition is associative;
(ii)y A+B = B+ A, i.e. addition is commutative;
(iii)y A+0 =0+A4 = A.

SCALAR MULTIPLICATION

The product of a scalar k and a matrix A, written kA or Ak, is the matrix obtained
by multiplying each element of A by k:

a a1z LR A1) ka1 kaiz coo kan
I Qd21 Q22 -+ Oon . kasy  kase -+ kas
Am1 Am2 Amn kaml kamz ka/mn
Note that A and kA have the same shape.
E le 8.1: 3 1 -2 0 _ <3'1 3+ (—2) 30 > — (3 —6 0>
xampie 2.1 4 3 -5 3.4 3.3  3+(=5) 12 9 —15

We also introduce the following notation:
—-A =(-1)A and A—-B = A+ (—-B)

The next theorem follows directly from the above definition of scalar multiplication.

Theorem 10.2: For any scalars k, and k&, and any matrices A and B (with the same shape),
(i)  (kik2)A = ki(k24) (iv) 14 = A, and 04 =0
(ii) k(A +B) = kA + kB (v) A+(—4) = (w4)+A4 = 0.
(iii) (k1 + ko)A = kA + kA
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Using (iii) and (iv) above, we also have that
A+A =24, A+A+A = 34,

MATRIX MULTIPLICATION

Let A and B be matrices such that the number of columns of A is equal to the number
of rows of B. Then the product of A and B, written AB, is the matrix with the same
number of rows as 4 and of columns as B and whose element in the ith row and jth column
is obtained by multiplying the ith row of A by the jth column of B:

a1 e Qip bll . e bljf e bln C1 . Cin

dir e Qip . e ‘.',’ e . = . Cii

i . Amp bpl N bp'j: e bzm Cmi . Cmn
where ¢i; = @ubi + Qiebs; + - -+ + aipby;.

In other words, if A = (ay) is an m X p matrix and B = (b;) is a p X n matrix, then
AB = (cy) is the m X n matrix for which

p
¢y = Quby + apby + - + apbpy = E ik
k=1

If the number of columns of A4 is not equal to the number of rows of B, say A is m X p
and B is ¢ X n where p +# ¢, then the product AB is not defined.

le 41 r s a; @y a3 B ray + sby ras + sby ras + sbg
Example 4.1: t <b, by by) <ta1+ub1 tay - uby tas + ubs
1 2\ /1 1 1:1+42+0 1-1+2-2> <1 5>
E 1 4.2: = =
xample <3 4><0 2> <3-1+4-0 31442 3 11
<1 1><1 2> _ (1-1+1-3 1-2+1-4> _ <4 6
0 2/\8 4/ = \0+1+2:3 0-2+2-4/ =~ \6 8

We see by the preceding example that matrices under the operation of matrix multipli-
cation do not satisfy the commutative law, i.e. the products AB and BA of matrices need
not be equal.

Matrix multiplication does, however, satisfy the following properties:

Theorem 103: (i) (AB)C = A(BC)

’
(i) A(B+C) = AB + AC
(ili) (B+C)A = BA + CA

(iv) kE(AB) = (kA)B = A(kB), where k is a scalar.

We assume that the sums and products in the above theorem are defined.

Remark: In the special case where one of the factors of AB is a vector, then the product
is also a vector: »
bll b12 cre bln

by ba -+ bon < < <
(ay, @, .. .,ap) = < > aibi, X abiz, ..., D @b >
i=1 =1 =1
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(1351 (13T e Ay bl (lnbl + .-+ (l1pbp
Qo1 Qa2 - Q2p \[bs _ Qorby + -+ + @%by
Ami Ome  ***  Omp bp Umiby + -+ + ampbp
Example 4.3:
1 -3
2, —3, 4) 5 0 = 21+ (=3)+*b+4+(—2),2(—8)+(-3)0+4-4) = (—21,10)
—2 4
1 -3 1 1¢(—1) +(—8)+2 -7
5 0 < 2> = 5e(—1) +0+2 = —5
—2 4 (=2)s(—1) +4+2 10
Example 4.4:

A system of linear equations, such as
x+2y—382 = 4
bx — 6y + 82 = 8

is equivalent to the matrix equation

12 =3\/*\ _ /4
5 -6 8/)\Y) T \s
2
That is, any solution to the system of equations is also a solution to the matrix equation, and
vice versa.

SQUARE MATRICES

A matrix with the same number of rows as columns is called a square matrix. A
square matrix with n rows and n columns is said to be of order n, and is called an n-square
matriz. The main diagonal, or simply diagonal, of a square matrix A = (%) is the

numbers a ,a, L Q

11° 20 nn*

Example 5.1:
1 -2 0
The matrix 0 —4 —1
5 3 2
is a square matrix of order 3. The numbers along the main diagonal are 1, —4 and 2.

The n-square matrix with 1’s along the main diagonal and 0’s elsewhere, e.g.,

1 0 0 O
0 1 0 O
0 01 0
0 0 0 1

is called the unit matrix and will be denoted by I. The unit matrix I plays the same role
in matrix multiplication as the number 1 does in the usual multiplication of numbers.
Specifically,

Theorem 10.4: For any square matrix A4,
Al = JA = A
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ALGEBRA OF SQUARE MATRICES

Recall that not every two matrices can be added or multiplied. However, if we only
consider square matrices of some given order 7, then this inconvenience disappears.
Specifically, any # X n matrix can be added to or multiplied by another n X n matrix, or
multiplied by a scalar, and the result is again an n X n matrix.

In particular, if A is any n-square matrix, we can form powers of A:
A?2=AA, A3=A%A, ... and A°=1]
We can also form polynomials in A. That is, for any polynomial
f®) = a + ax + a2 + -+ + "
we define f(A) to be the matrix
f(A) = ao + 14 + a4? + -+ + a.A"

In the case that f(A4) is the zero matrix, then A is said to be a zero or root of the poly-
nomial f(x).

) _ /1 2\, s — (T —6
Example 61: Let 4 = <3 _4>’ then AZ = <—9 22>'

If f(x) = 222 — 3x + 5, then
_ 7 ~6\ _ 1 2 1 0 _ 16 —18
fa) = 2<—9 22> 3<3 —4> + 5(0 1> = <—27 61>
On the other hand, if g(x) = 22+ 3x — 10 then

_ /1 -6 1 2 1 0)_ (00
gid) = <—9 22> +3<3 —4>_ 1°<o 1>—<0 0>

Thus A is a zero of the polynomial g(x).

TRANSPOSE

The transpose of a matrix A, written At, is the matrix obtained by writing the rows
of A, in order, as columns:

a as e an t ay bl e Cy
by by -+ bal _ [az by -+ e
1 C2 Cn an b Cn

Note that if A is an m X n matrix, then At is an n X m matrix.

t 1 4
Example 7.1: ‘ <‘11 _2 2) = 2 —5
3 6

The transpose operation on matrices satisfies the following properties.

Theorem 10.5: (i)
()
(iii) (kA)* = EkAt, for k a scalar
(iv) (AB)! = BtA"

(A+B) = At + Bt
(49 = 4



CHAP. 10] MATRICES 95

Solved Problems

MATRIX ADDITION AND SCALAR MULTIPLICATION
10.1. Compute:

/12 8\ (1 -1 2
() <456>+<0 3—5>

1 2 -3 3 5 (iii)<1 2 4>+<3 > 8 _1>
(i) <0 2 1>+<1 _2> 0 -5 1 -1 2 0 -2 -3

(i) Add corresponding elements:
1 2 3 " 1 -1 2 . 1+1 24+(-1) 8+2
4 5 6 0 3 —b - 440 5+3 6 + (—b)
2 1 5
4 8 1
(i) The sum is not defined since the matrices have different shapes.

(iii) Add corresponding elements:

1 2 -3 4>+<3 -5 6 —1> _ <1+3 24 (=5) (-3)+6 4+ (-1)
0 -5 1 -1 2 0 -2 =3/ 7 \0+2 (=5)+0 1+(-2) (-1)+(-3)

/4 -3 3 3
- \2 =5 -1 —4

1 7
. 2 4 " 2 -3 8
10.2. Compute: (i) 3 <_3 1) (i) —2 (2) :? (iif) — <1 _9 —6>

(i) Multiply each element of the matrix by the scalar 3:
3 2 4 _ 3+2 3+4 _ 6 12
-3 1 - 3+(—3) 3-1 -9 3
(ii) Multiply each element of the matrix by the scalar —2:
1 7 (-2)-1 (—2)7 —2 —14
—2[92 —3 = (—2)+2 (=2)+(—-3) = -4 6
0 -1 (—2)+0 (—2)+(—1) 0 2

(iii) Multiply each element of the matrix by —1, or equivalently change the sign of each element

in the matrix:
2 -3 8 _ —2 3 —8
T\l -2 -6 - -1 2 6

2 -5 1 1 -2 -3 0 1 -2
10.3. Compute: 3<3 0 _4> —2<0 _1 5>+4<1 -1 _1>

First perform the scalar multiplication, and then the matrix addition:
2 —5 1\ _ 1 -2 -3 0 1 -2
3<3 0 —4> 2<o —1 5> * 4<1 -1 —1)
_ 6 —15 3 —2 4 6 0 4 -8
- <9 0 —12> + < 0 2 -1o> + <4 —4 —4>

<6+(—2)+0 —15+4+4 3+ 6+ (—8) > _ <4 -7 1>
9+0+4 0+2+(—4) —124(-10)+(—4)/  \18 -2 -26
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104. Find x, ¥, 2 and w if:

x Y\ x 6 4 x+Yy
3<z w> - <—1 2w>+<z+w 3 >

First write each side as a single matrix:

3x 3y _ x+ 4 x+y+6
3z 3w - z+w—1 2w+3
Set corresponding elements equal to each other to obtain the four linear equations
3x = xw+ 4 20 = 4
3y = x+y+6 2y = 6+
or

32 = z4+w—1 22 = w—1
3w = 2w+ 3 w = 3

The solution of this system of equations is z =2, y=4, 2=1, w=3.

MATRIX MULTIPLICATION

10.5. Let (r X s) denote a matrix with shape » xs. When will the product of two matrices
(r X 8)(t X u) be defined and what will be its shape?

The product (r X 8)(t X %) of an r X s matrix and a ¢ X u matrix is defined if the inner numbers

s and t are equal, i.e. s=¢. The shape of the product will then be the outer numbers in the given
order, i.e. ¥ X u.

10.6. Let (r X s) denote a matrix with shape » X s. Find the shape of the following products
if the product is defined:

(i) (2x3)3x4) (iv) (5X2)(2X3)
(i) (4x1)(1x2) (v) (4Xx4)(3%3)
(iii) (1Xx2)(8x1) (vi) (2x2)(2 X 4)

In each case the product is defined if the inner numbers are equal, and then the produet will
have the shape of the outer numbers in the given order.

(i) The product is a 2 X 4 matrix.
(ii) The product is a 4 X 2 matrix.
(iii) The product is not defined since the inner numbers 2 and 3 are not equal.
(iv) The product is a 5 X 3 matrix.
(v) The product is not defined since the inner numbers 4 and 3 are not equal.

(vi) The product is a 2 X 4 matrix.

1 3 2 0 —4 . . "
10.7. Let A = <2 _1> and B = <3 _o 6>' Find (i) AB, (ii) BA.

(i) Now A is 2X 2 and B is 2 X 8, so the product matrix AB is defined and is a 2 X 3 matrix.
To obtain the elements in the first row of the product matrix AB, multiply the first row

(1,8) of A by the columns <2> , <_g> and <_4> of B, respectively:

3 6
Tig\/g b -
2 -1/\38 -2 8
_ <1-2+3-3 1:0+38+(-2) 1-(—4)+3-6> B <11 -6 14>

To obtain the elements in the second row of the product matrix AB, multiply the second row
(2,—1) of A by the columns of B, respectively:
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(k) (3 2558)

_ < 11 —6 14 > /11 —6 14

T o\2:24(-1)*3 240+ (=1)+(=2) 2-(—4)+ (-1)+6/ 1 2 -14
/11 -6 14
Thus AB = <1 9 _14>

(i) Now B is 2X 3 and A is 2 X 2. Since the inner numbers 3 and 2 are not equal, the product
BA is not defined.

1 -2 0

4 5 -3

(i) Now A is 1 X2 and B is 2 X 3, so the product AB is defined and is a 1 X 8 matrix, i.e. a row
vector with 3 components.

To obtain the elements of the product AB, multiply the row of A by each column of B:

108. Let A = (2,1) and B = < > Find (i) AB, (ii) BA.

AB = (2,1)(1 —52) _g> = (221414, 2+(=2)+1+5,2:0+1+(-3) = (6,1,—3)

(ii) Now B is 2X 3 and A is 1 X 2. Since the inner numbers 3 and 1 are not equal, the product
BA is not defined.

2 -1
109. Let A = 1 0| and B = <
-3 4

(i) Now A is 3 X 2 and B is 2 X 3, so the product AB is defined and is a 3 X 3 matrix. To obtain
the first row of the product matrix AB, multiply the first row of A by each column of B,
respectively:

?“3<1—2~»5>
BN )

2e14 (=1)+8 2+(=2) + (=1)-4 2-(~5)+(—1)-o> -1 -8 —10>

1 -2 -5

s 1 0>. Find (i) AB, (ii) BA.

To obtain the second row of the product matrix AB, multiply the second row of A by each
column of B, respectively:

i —‘1] <1 -2 -—5>
4
BEAE 0
-1 -8 ~10 —1 -8 —10
= (1°14+0+8 1+(-2)+0+4 1+(=5)+0+0] = 1 -2 -5

To obtain the third row of the product matrix AB, multiply the third row of A by each
column of B, respectively:

?‘$<1—2~5>
DA

-1 -8 —-10 -1 -8 —10
= 1 -2 -5 = 1 -2 -5
(—8)*1+ 43 (—8)*(—2) +4+4 (=3)+(=5) +4+0 9 22 15
-1 -8 —10
Thus AB = 1 -2 —5
9 22 15

(ii) Now B is 2X 3 and A is 3 X 2, so the product BA is defined and is a 2 X 2 matrix. To obtain
the first row of the product matrix BA, multiply the first row of B by each column of A,
respectively:
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<1;~‘2*—5> ﬁ_(l)
3 4 0
-3 4

<1 c2 4 (—2)+1 4 (=5)+(=8) 1e(=1) + (=2)+0 + (—5)* 4> <15 —21>

To obtain the second row of the product matrix BA, multiply the second row of B by each
column of A:

1 -2 —5 ¢ 4
gy P
-3 4

_ 15 —21 _ (15 —21>
- 3¢2+4+1+0+(—8) 3e(—1)+4-0+04 10 -3
Thus BA = <ig __2;>

Remark: Observe that in this case both AB and BA are defined, but AB and BA are not equal;
in fact, they do not even have the same shapes.

1 —4 0 1
> and B =2 -1 3 -1
4 0 -2 0

(i) Determine the shape of AB. (ii) Let ¢y denote the element in the ith row and
jth column of the product matrix AB, that is, AB = (¢i;). Find: e¢s3, €14, 21 and cia.

2 -1 0

10.10. Let A = < T o 3

(i) Since A is 2X 3 and B is 3 X 4, the product AB is a 2 X 4 matrix.
(ii) Now c; is defined as the product of the ith row of A by the jth column of B. Hence:

0
ey = (1,0,_3)< 3> = 1:040:3+(-3)+(—2) = 0+0+4+6 = 6
—2
1
ey = (2,-1,0[—-1] = 2:1+4(-1)+(-1)+0:0 = 24+140 = 3
0
1
¢y = (1,0,—3) 2 = 1:140:2+(-3)*4 = 140—-12 = —11
4
—4
e, = (2,-1,0) —1] = 2:(=4) 4+ (-1 (1) +0:0 = —8+1+0 = —7
0

10.11. Compute: (i) <_é g)(; _g) (iii)(_é)(_; g>
(i) (_; §>(j> (iv) (é)(s,m ) (2,—1><_é>

(i) The first factor is 2 X 2 and the second is 2 X 2, so the product is defined and is a 2 X 2 matrix:

<1 6><4 o> _ <1-4+6-2 1:0 4 6+(—1) _ 16 —6
-3 5/\2 -1/ = \(-3)+4+5+2 (=3)+0+5+(-1)/) ~ \-2 -5
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The first factor is 2 X 2 and the second is 2 X 1, so the product is defined and is a 2 X 1 matrix:

1 6 2 _ 142+ 6(—7) . —40
—3 5/\-7 o (—8)*2 + 5+(=17) - —41
Now the first factor is 2 X 1 and the second is 2 X 2. Since the inner numbers 1 and 2 are
distinct, the product . is not defined..

Here the first factor is 2 X 1 and the second is 1 X 2, so the product is defined and is a 2 X 2

matrix:
1 _ 13 1-2 . 3 92
<6><3,2> <6,3 6,2> = <18 12)

The first factor is 1 X 2 and the second is 2 X 1, so the product is defined and is a 1 X 1 matrix
which we frequently write as a scalar.

<2,—1><_é> = @1+ (D6 = (8 = 8

MATRICES

4 -3
Show that A is a zero of the polynomial ¢(x) = x* + 2x — 11.

1 2 1 2
2 = = B
A AA <4 “3><4 _3> ‘

A = <1 2>_ Find (i) A%, (ii) A3, (iii) f(4), where f(z) = 22— 4z +5.

_ 11+ 2+4 124 2+(—8) > _ 9 —4>
- 41+ (—8)*4 4+2+ (—=3)-(—3) T \-8 17
- /1 2 9 —4
Al = AAr = <4 —3><—8 17>
. 19+ 2-(—8) 1e(—4) +2+17 _ <—7 30>
T \4°9 4 (—8)+(—8) 4+(—4)+ (—8)+17 - 60 —67

To find f(A), first substitute A for « and 51 for the constant 5 in the given polynomial
fle) = 223 — 4o +5:

-7 30 1 2 1 0
- 3 — _
fl(Ay = 24 44 + 51 = 2<60 —67> 4<4 _3>+5<0 1>
Then multiply each matrix by its respective scalar:
—14 60 —4 -8 5 0
= <120 —134> * <716 12> + <o 5>
Lastly, add the corresponding elements in the matrices:
_ —14—-4+5 60 —8+0 — ~13 52
- 120 —16 +0 —134+ 12+ 5 104 —117

Now A is a zero of g(x) if the matrix g(A) is the zero matrix. Compute g(4) as was done
for f(A), i.e. first substitute A for x and 11/ for the constant 11 in g(x) = %2+ 2x —11:

_ 5 _ 9 —4 1 2\ 1 0
g(Ad) = A2 + 24 — 11I = <—s 17>+2<4 _3> 11<0 1>

Then multiply each matrix by the scalar preceding it:

9 —4 2 4 “11 0
gd) = <—8 17> +<8 ‘6>+ < 0 #11>
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Lastly, add the corresponding elements in the matrices:

4 = <9+2#11 —4+4+o> _ <0 o>
g ~8+8+0 17—6—11 0 0
Since g(A) =0, A is a zero of the polynomial ¢(x).
1 2 0
10.13. Let B = |3 —4 5] andlet f(x) = «*2—4a + 3. Find f(B).
0 -1 2

First compute B2

1 2 0 1 2 0
B> = BB = 3 —4 5 3 —4 5
0 -1 2 0 -1 2

114283400  1°2+2¢(—4) + 0+ (—1) 1°0+2:5+0-2
= (814 (—4)+8+5+0 32+ (—4)+(—4) +5+(—1) 3+0+ (—4)+5+5-2
0°1+4 (—1)+3+2+0 0+2+ (=1)+(—4) +2+(=1) 0+0+ (=1)+5+2-2

7 —6 10
= —9 17 —10
—3 2 -1
Then
7T —6 10 1 2 0 1 0 0
fB) = B2—4B +3 = (-9 17 —-10] —4|(3 —4 5] +3(0 1 0
-3 2 -1 0 -1 2 0 0 1
7 —6 10 —4 -8 0 3 0 0
= -9 17 —-10 + | —12 16 —20) 10 3 0
—3 2 —1 0 4 —8 0 0 3
7T—4+3 —-6—8+0 10+04+0 6 —14 10
= -9 —124+0 174+ 16+3 —10—20+0 = —21 36 —30
—3+0+0 24+4+4+0 —1—8+3 —3 6 -6

10.14. Let A = <1 g) Find a non-zero column vector u = <;> such that Awu = 3u.

First set up the matrix equation Au = 3u:

GG = 0)
Write each side as a single matrix (column vector):
< x +3y> _ <3x>
4 — 3y 3y
Set corresponding elements equal to each other to obtain the system of equations

r+ 3y = 3x —2x+3y =0
or
4dr — 3y = 3y 4r — 6y = 0

The two linear equations are the same (see Chapter 11) and there exist an infinite number of

3
solutions. One such solution is =3, y =2. In other words, the vector u = <2> is non-zero and
has the property that Awu = 3u.
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TRANSPOSE 1 0 1 0
10.15. Find the transpose A’ of the matrix 4 = |2 3 4 5
\4 4 4 4

1 2 4

Rewrite the rows of A as the columns of At: At = (1) i’ j

0 5 4

10.16. Let A be an arbitrary matrix. Under what conditions is the product AA¢ defined?

Suppose 4 is an m X n matrix; then At is n X m. Thus the product AAt is always defined.
Observe that AtA is also defined. Here AA! is an m X m matrix, whereas A!4 is an n X n matrix.

1 2 0

1017. Let A = <3 oy

>. Find (i) AAY, (i) A'A.
1 3
To obtain At, rewrite the rows of A as columns: At = {2 —1]. Then
1 3
A4t = <?1) 2 2) 2 -1
0 4

_ 1°1+2240+0 1+34+2+(-1)+0-4 /5 1
- 3e1+(—1)*2+4+0 8°3+ (—1)«(—1)+4-4 - 1 26

1 3
a4 = (2 -1 <§ 2 g>
0 4

1+1+3-3 142+ 8+(-1) 1.0+ 3-4 10 -1 12
= (214 (=18 2.2+ (-1)+(=1) 2:0+(-1)-4) = (—1 5 —4

0+1+4-3 0+2+ 4+(-1) 0:0+4-4 12 —4 16

PROOFS
10.18. Prove Theorem 10.3(i): (AB)C = A(BC).

Let A =(a;), B=(by) and C =(¢,). Furthermore, let AB=S=(s;) and BC=
T = (ty). Then

m
Sk = @by + oapby + 0+ Gpbpr = '21 @ik
P
n
ty = buey t bjpey + o0 A+ bjpey =3 bl
k=1
Now multiplying S by C, i.e. (AB) by C, the element in the ith row and I/th column of the matrix
(AB)C is n n m
spen 1 SipCayy + 000+ Syl = REI SikCr1 = kEI '21 (aidje)er
< e

On the other hand, multiplying A by T, i.e. A by BC, the element in the ith row and Ith column
of the matrix A(BC) is

n

m
agte = 3 3 abpeck)
i=1 k=1

apty T oapty + oo Gty =

Tl'Ms

Since the above sums are equal, the theorem is proven.



102 MATRICES [CHAP. 10

10.19. Prove Theorem 10.3(ii): A(B+C) = AB + AC.

Let A = (a;), B = (by) and C = (cj). Furthermore,let D = B+ C = (dy), E = AB = (ey,)
and F = AC = (fy). Then

dy, = by + e
m

ey = apby + apby + ot F Qb = ]_21 @ijbik
m

fik = @iy + Gplo t o0t T Gl S aieq

I
—

K

Hence the element in the ith row and kth column of the matrix AB+ AC is

m m m
€ix + fik = .21 aijbjk + .21 @;iCik = '21 aij(bjk + C]'k)
i= i= i=
On the other hand, the element in the ith row and kth column of the matrix AD = A(B+C) is
m m
apdye + gdy, + 000t Gt = ,21 aidy, = ‘21 a;i(by + )
. = 1=

Thus A(B+ C) = AB+ AC since the corresponding elements are equal.

10.20. Prove Theorem 10.5(iv): (AB)t= BtAt

Let A =(a;) and B = (by). Then the element in the ith row and jth column of the
matrix AB is
@irby; + gy + 0t + by (1)

Thus (1) is the element which appears in the jth row and ith column of the transpose matrix (4 B)t.
On the other hand, the jth row of Bt consists of the elements from the jth column of B:
(byj by by (2)
Furthermore, the ith column of A! consists of the elements from the ith row of A:

Qi1
Qo

@)

Aim
Consequently, the element appearing in the jth row and ith column of the matrix BtAt is the
product of (2) by (3) which gives (7). Thus (AB)t = B!At,

Supplementary Problems

MATRIX OPERATIONS
For Problems 10.21-23, let

2 -3 0 1 2
_ /1 -1 2 /4 0o -3 _ e _
~1 0
10.21. Find: (i) A+ B, (ii) A+ C, (iii) 34 —4B. '
10.22. Find: (i) 4B, (ii) AC, (iii) AD, (iv) BC, (v) BD, (vi) CD.

10.23. Find: (i) A, (i) AtC, (iii) DtAt, (iv) Bt4, (v) DD, (vi) DDt
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SQUARE MATRICES

1024. Let A = <§ _?> (i) Find A2 and A43. (i) If f(x) = 23—8a2—2x+4, find f(4). (iii) If

glx) = x2—x—8, find g(4).

10.25. Let B = <; 2> (i) If f(x) = 222 —4dx+ 8, find f(B). (i) If g(x) = 22—4x—12, find g(B).

(iii) Find a non-zero column vector u — <x> such that Bu = 6u.
)
10.26. Matrices A and B are said to commute if AB=BA. Find all matrices <z g)) which commute
with (1 1),
0 1
10.27. Let A = <(1) i‘) Find A",

PROOFS
10.28. Prove Theorem 10.2(ifi): (k; + ko)A = kA + kyA.

10.29. Prove Theorem 10.4(iii): k(AB) = (kA)B = A(kB).

10.30. Prove Theorem 10.5(i): (4 + B)t = At + Bt.

Answers to Supplementary Problems

1 — - -3 18
1021, (i) <_? i ;> (i) Not defined. (i) < 12 5 0>
. 9 —1
10.22. (i) Not defined. (iii) <9> (v) < 9>
o [ =2 4 5 . 11 —12 0 —5 . d
(ii) < 11 -3 —12 18) (iv) <_15 5 8 4> (vi) Not defined.

1 0 4 -7 4 4 -2 6
10.23. (i) <—1 3> (i) Not defined. (iii) (9,9) (iv) [ 0 —6 —8] (V)14 (vi)|{-2 1 -3
2 4 -3 12 6 6 —3 9

1024, (i) A2 = <1g ?z> A3 = @S _1§> (i) f(4) = <_1‘21 _1§> (i) g(4) = <g g)
10.25. (i) f(B) = @’é ;g) (ii) g(B) = <g g) (i) w = <§> or <§Z> k0.

10.26. Only matrices of the form <g‘ ab> commute with <(1) })

1 2n
271, An =
10.27 <0 1>



Chapter 11

Linear Equations

LINEAR EQUATION IN TWO UNKNOWNS
A linear equation in two unknowns x and y is of the form
ax +by = ¢

where a, b, ¢ are real numbers. We seek a pair of numbers « = (k,,k,) which satisfies

the equation, that is, for which
E ak, + bk, = ¢

is a true statement. Solutions of the equation can be found by assigning arbitrary values
to # and solving for y (or vice versa).

Example 1.1: Consider the equation
20 +y = 4 x Y
If we substitute x = —2 in the equation, we obtain -2 8
2¢(=2)+y = 4 or —4+y =4 or y = 8 -1 6
Hence (—2,8) is a solution. If we substitute « = 38 in the 0 4
equation, we obtain 1 2
2:3+y =4 or 6+y =14 or y = —2 2 0
3 —2

Hence (3, —2) is a solution. The table on the right lists six
possible values for « and the corresponding values for y,
i.e. six solutions of the equation.

Now any solution « = (k,, k,) of the linear equa-
tion ax + by = ¢ determines a point in the Cartesian
plane R2. If a,b are not both zero, the solutions of
the linear equation correspond precisely to the points
on a straight line (whence the name linear equation).

Example 1.2: Consider the equation 2x +y = 4
of the preceding example. On the
right we have plotted the six solu-
tions of the equation which appear
in the table above. Note that they 1
all lie on the same line. We call this 1 3, —2)
line the graph of the equation since
it corresponds precisely to the solu-
tion set of the equation. Graph of 2x+y = 4

TWO LINEAR EQUATIONS IN TWO UNKNOWNS
We now consider a system of two linear equations in two unknowns 2 and y:
ax+by = c
a,x +by = ¢

2

104
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A pair of numbers which satisfies both equations is called a simultaneous solution of the
given equations or a solution of the system of equations. There are three cases which
can be described geometrically. (Here we assume that the coefficients of « and ¥ in each
equation are not both zero.)

r—y = —3 x+y =1 cx+y =1
x+2y = 3 20 +2y = 6 3x+3y = 3
(@) (8) \ (©
Fig.10-1

1. The system has exactly one solution. Here the lines corresponding to the linear equa-
tions intersect in one point as shown in Fig. 10-1(a) above.

2. The system has mo solutions. Here the lines corresponding to the linear equations are
parallel as shown in Fig. 10-1(D) above.

3. The system has an infinite number of solutions. Here the lines corresponding to the
linear equations coincide as shown in Fig. 10-1(c) above.

Now the special cases 2 and 3 can occur if and only if the coefficients of x and the
coefficients of y are proportional: o b

There are then two possibilities:

(i) If the constant terms of the equations are in the same proportion, i.e.

o _ b o_ oo

a, bz G

then the lines are coincident. Hence the system has an infinite number of solutions
which correspond to the solutions of either equation.

(ii) If the constant terms of the equations are not in the same proportion, i.e.

then the lines are parallel. Hence the system has no solution.
Example 2.1: Consider the system Sx +6y = 9
o + 4y = 6

Note that 3/2 = 6/4 = 9/6. Hence the lines are coincident and the system has an
infinite number of solutions which correspond to the solutions of either equation.
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Particular solutions of the first equation and hence of the system can be
obtained as shown in Example 1.1. For example, substitute « =1 in the first
equation to obtain

3¢«1+6y =9 or 3+6y =9 or 6y =6 or y =1
Thus 2 =1 and y =1 or, in other words, the pair of numbers « = (1,1) is a
solution of the system. By substituting other values for « (or y) in either equa-
tion, we obtain other solutions of the system.

Example 2.2: Consider the equations 3 +6y = 9
2¢+4y = 5
Note that 3/2 = 6/4 but 3/2 = 6/4 # 9/5. Hence the lines are parallel and the
system has no solution.
On the other hand, if the coefficients of the unknowns are not proportional, i.e.
a, b,

a b

2 2

then case 1 occurs; that is, the system has a unique solution. This solution can be obtained
by a process known as elimination, i.e. by reducing the equations in two unknowns to an
equation in only one unknown. This is accomplished by:

(i) multiplying each of the given equations by numbers such that the coefficients of
one of the unknowns in the resulting equations are negatives of each other;

(ii) adding the resulting equations.
We illustrate this method in the following example.

Example 23: Consider the equations (1) 3x+2y = 8
2) 2z — by = —1
Note that 3/2 # 2/—5, so the system has a unique solution. Multiply () by 2
and (2) by —38 and then add in order to “eliminate” z:
2 X (1) 6x + 4y = 16
—3 X (2): —6x+ 15y = 3
Addition: 19y = 19 or y=1

Substitute ¥ = 1 in (I) to obtain
38z +2-1 = 8 or 3x+2 = 8 or 3x = 6 or x = 2

Thus =2 and y =1 or, in other words, the pair « = (2,1) is the unique solu-
tion to the given system.

GENERAL LINEAR EQUATION

We now consider a linear equation in any arbitrary number of unknowns, say
x .,% . Such an equation is of the form

x
n
ax, +ax,+ - +taxr = b

2Ty o
where a,,a,, ...,a, b are real numbers. The numbers a; are called the coefficients of z,
and b is called the constant of the equation. An n-tuple of real numbers « = (k, k%, ..., k),
i.e. an m-component row vector, is a solution of the above equation if, on substituting
k. for x,, the statement

' ' ak +ak,+---+ak =0b

is true. We then say that « satisfies the equation.
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Example 3.1: Consider the equation r+2y—4z+w = 3
Now a = (3,2,1,0) is a solution of the equation since
3+2+2—4+14+0 = 3 or 83+4—4+0 = 3 or 3 = 3

is a true statement. On the other hand, B8 = (1,1,2,2) is not a solution of the
equation since

1+2¢1—4242 =3 or 1+2—-84+2 =3 or -3 =3

is not a true statement.

A linear equation is said to be degenerate if the coefficients of the unknowns are all
zero. There are two cases:

(i) The constant is not zero, i.e. the equation is of the form
O0zy + 0wz + -+ + 02, = b, with b#0
Then there is no solution to the linear equation.

(i) The constant is also zero, i.e. the equation is of the form
Oxy+0x2+ -+ +0x, = 0
Then every n-tuple of real numbers is a solution of the equation.

GENERAL SYSTEM OF LINEAR EQUATIONS

A system of m equations in n unknowns z,,2,, ...,z, is of the form
¥ + AQpX: + -0 + Qs = by
1% + Qs + o+ + QmTn = b (1)
Om1i&1 + AmeZe + <+ 4+ Amualn = bm

where the a,,b, are real numbers. An n-tuple of numbers « = (k,k, ..., k,) which
satisfies all the equations is called a solution of the system.

We first consider the special case where all the above equations are degenerate, i.e.
where every a,=0. There are two cases:

(i) If one of the constants b,#0, i.e. the system has an equation of the form
0xy + 022+ -+« +0xn = by, with b;# 0
then this equation, and hence the system, has no solution.

(i) If every constant b,=0, i.e. every equation in the system is of the form
0x1+0x2+ -+ +0x, = 0
then each equation, and hence the system, has every n-tuple of real numbers as a

solution.

Example 41: The system Ox +0y +0z+ 0w = 0
0x +0y +0z+ 0w = 4
0x + 0y + 0z + 0w = —1

has no solution since one of the constants on the right is not zero.

On the other hand, the system
Ox + 0y + 0z + 0w = 0
Ox +0y +0z+0w = 0
Ox +0y +0z2+0w = 0

has every 4-tuple o = (k,, ko, k3,k,) as a solution since all the constants on the
right are zero.
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In the usual case where the equations are not all degenerate, i.e. where one of the
a0, we reduce the system (1) to a simpler system which is equivalent to the original
system, i.e. has the same solutions. This process of reduction, known as (Gauss) elimina-
tion, is as follows:

(i) Interchange equations and the position of the unknowns so that a  +0.
(ii) Multiply the first equation by the appropriate non-zero constant so that a,, =1.

(iii) For each i>1, multiply the first equation by —a, and add it to the ith equation
so that the first unknown is eliminated.

Then the system (1) is replaced by an equivalent system of the form

EY * & s

X1 + QaXs + @3xs + o+ + GinZa = by
U %2 + ;s + -0 + @mxn = bj

Umz X2 + Ama Xz + + @ua%n = b

Example 4.2: Consider the system

20 + 6y — 2z = 4
3x — 2y — z =
52 + 9y — 2z = 12

Multiply the first equation by % so that the system is replaced by

x+ 3y — 3z = 2
3 — 2y — 2z = 1
be + 9y — 2z = 12

Multiply the new first equation by —3 and add it to the second equation so that
the system is replaced by

x+ 3y — iz = 2
-1y + 4z = -5
5 + 9%y — 22z = 12

Lastly multiply the first equation by —5 and add it to the third equation so that
the system is replaced by the following which is in the desired form:

®x+ 3y — f=z = 2
—1ly + 4z = -5
—6y + 1z = 2

Example 43: Consider the system of the preceding example. Here we reduce the system to a
simpler form without first changing the leading coefficient to 1. This method has
the advantage of minimizing the number of fractions appearing.

Multiply the first equation by 8 and the second by —2 and then add to elimi-
nate « from the second equation:

3 X first: 6x + 18y — 3z = 12
—2 X second: —6x + 4y +2z = —2
Addition: 2y — 2z = 10

Now multiply the first equation by 5 and the third equation by —2 to eliminate x
from the third equation:

5 X ﬁrst 10x + 30y — 52

= 20
—2 X third: —10x — 18y + 42z = —24
Addition: 12y — 2 = —4
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Thus the system is equivalent to

2¢ + 6y —z = 4 z+ 3y—dz = 2
22y —z = 10 or 22y — z = 10
12y — 2z = —4 12y — 2z = —4

Continuing the above process, we obtain the following fundamental result:
Theorem 11.1: Every system of m equations in # unknowns can be reduced to an
equivalent system of the following form:
it e+ C3Xs+ - FCurt+ c FCaln = di, T=mM
X2+ Coaks + c -+ Coulr + -+ Contn = da
s+ cc o+ Cylr+ 0+ Caaln = ds

: ()
Tr+ 0+ Con = dy
Ozdr+1
0 =dn

Remark: A system of linear equations in the above form, where the leading coefficient
is not zero, is said to be in echelon form.

The solutions of a system of equations in the echelon form (2) can easily be described
and found.

(i) Inconsistent Equations. 1f the numbers d, vy - --»d, are not all zero, i.e. there is an
equation of the form
Oxy +0xs+ -+« +0x, = dr, with d+#0

then the system is said to be inconsistent, and there are no solutions.
(ii) Consistent Equations. If the numbers d ,,...,d, are all zero, then the system is
said to be consistent and there does exist a solution. There are two cases:

(a) r=mn, that is, there are as many non-zero equations as unknowns. Then we can
successively solve uniquely for the unknowns z, x, ,,...,2, and so there exists
a unique solution for the system.

1?

(b) r <m, that is, there are more unknowns then there are non-zero equations. Then
we can arbitrarily assign values to the unknowns z_,,...,x, and then solve
uniquely for the unknowns x, ...,2,. Accordingly there exists an infinite number
of solutions.

The following diagram shows the various cases:

System of linear equations

[ 1
Inconsistent Consistent
No Unique Infinite number
solution solution of solutions
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Example 44:

Example 45:

Example 4.6:
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Consider the system

x+2y—32z = 4 x+ 2y —82 = 4
Ox+ y+2z = 5 or y+2: =5
Ox + 0y + 0z = 3 0 =3

Since the system has an equation of the form 0 =¢ with ¢ # 0, the system is
inconsistent and has no solution.

Consider the system

x+2y—32 = 4 x+2y—32 = 4 x+ 2y —32 = 4
Ox+ y+ 2z = 5 y+22 =5 y+2 =5
or or
Ox+0y+ 2z =1 z =1 z =1

Ox +0y+0z = 0 0 =20

Since there is no equation of the form 0 = ¢, with ¢ # 0, the system is consistent.
Furthermore, since there are three unknowns and three non-zero equations, the
system has a unique solution. Substituting z = 1 in the second equation we obtain

y+2¢1 =5 or y+2 =5 or y =3
Substituting 2z =1 and y = 3 in the first equation, we obtain
x+248—31 =4 or x+6—83 =4 or x+3 =4 or =z =1

Thus « =1, y =8 and z =1 or, in other words, the ordered triple (1,3,1) is
the unique solution of the system.

Consider the system

r+2y—32+ w = 4 xr+2y—32+ w = 4
O+ y+22+3w = or y+22+3w = 56
Ox + 0y + 0z + 0w = 0 =0

r+2y—32+ w = 4
y + 2z + 3w 5

The system is consistent, and since there are more unknowns than non-zero equa-
tions the system has an infinite number of solutions. In fact, we can arbitrarily
give values to z and w and solve for x and y. To obtain a particular solution sub-
stitute, say, 2 =1 and w = 2 in the second equation to obtain

y+2+14+82 =5 or y+2+6 =5 or y+8 =5 or y = -3

or

1l

Substitute y = —3, 2 =1 and w =2 in the first equation to obtain
x+2(—3)—31+2=4 or x—6—3+2 =4 or x—T7T =4 or z = 11

Thus « =11, y=-8, 2=1 and w =2 or, in other words, the row vector
(11,-3,1,2) is a specific solution to the system.

To obtain the general solution to the system substitute, say, 2 =a and w =05
in the second equation to obtain

y+2a+3 =5 or y = 5—2a—3b
Substitute ¥y = 5—2a4—38b, 2 =« and w = b into the first equation to obtain
x+26—-20—3b) —3a+b =4 or x+10—4dea—6b—3a+b = 4
or z+10—Ta—5b =4 or « = Ta+5b—6
Thus the general solution of the system is
(Ta+5b—6, 5—2a—3b, @, b), where ¢ and b are real numbers

Frequently, the general solution is left in terms of z and w (instead of @ and b)

11 :
as follows (T2 + 5w ~6, 5 — 22— 3w, z, w)

or,
x = Tz+5w—6

5 — 2z — 3w

Y
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The previous remarks give us the next theorem.

Theorem 11.2: A system of linear equations belongs to exactly one of the following cases:
1. The system has no solution.
2. The system has a unique solution.
3. The system has an infinite number of solutions.

Recall that, in the special case of two equations in two unknowns, the
above three cases correspond to the following cases described geometrically:

1. The two lines are parallel.
2. The two lines intersect in exactly one point.
3. The two lines are coincident.

HOMOGENEOUS SYSTEMS OF EQUATIONS
A system of linear equations is called homogeneous if it is of the form

anxy + @px: + -+ + AQmxn = 0
A&y + QoaZz + 0+ Gwman = 0 ()
Omy1 Xy + Am2 X2 + e+ Amn Tn == 0

that is, if all the constants on the right are zero. By Theorem 11.1, the above system is
equivalent to a system of the form

X1 + Ccpx: + -+ Cpr + 0+ Cm¥a = 0, r=m
Lo + o+ Corky + o+ ConXn = 0
xr+"'+c'rnxn = 0
0 = 0
0 = 0

Clearly, the above system is consistent since the constants are all zero; in fact, the system
(3) always has the zero solution (0,0, ...,0) which is called the trivial solution. It has a
non-trivial solution only if » <n. Hence if we originally begin with fewer equations than
unknowns in (3), then » <% and so the system always has a non-trivial solution. That is,

Theorem 11.3: A homogeneous system of linear equations with more unknowns than
equations has a non-zero solution.

Example 51: The homogeneous system
x+2y—32+ w =0

xr—3y+ z2—2w = 0
22+ y—382+b5w = 0

has a non-trivial solution since there are more unknowns than equations.

Example 5.2: We reduce the following system to echelon form:
x+ y— 2z =0 x+ y— 2 =0 x+y— 2 =0
20 —3y+ 2z =0 to -5y +383 = 0 to y— 8z
xr— 4y + 2z

il

I
=
|
o

<x°
+
w
R
Il
o
1=}
|



112 LINEAR EQUATIONS [CHAP. 11

The system has a non-trivial solution since we finally have only two non-zero
equations in three unknowns. For example, choose 2 =5; then ¥y =3 and « = 2.
In other words (2, 3,5) is a particular solution.

Example 5.3: We reduce the following system to echelon form:
xt+ y— 2 =0 x+y—2z2 =0 x+y— 2z =0
2¢+4y— 2z = 0 to 2y+2z =0 to y+iz = 0
3x+2y+ 22z = 0 -y—2z =0 —1z =0

x+y— 2z =0

to y+3z =0

z =0

Since in echelon form there are three non-zero equations in the three unknowns,
the system has a unique solution, the zero solution (0,0, 0).

MATRICES AND LINEAR EQUATIONS
The system (1) of linear equations is equivalent to the matrix equation

X1 bl
ayr Q12 o Qi s bs
A21 Q22 Qan _ .
Am1 Am2 Amn :

Xn bm

in that every solution to (1) is a solution to the above matrix equation and vice versa. In
other words, if A=(a, ) is the matrix of coefficients, X =(x) is the column vector of
unknowns, and B = (b)) is the column vector of constants, then the system (1) is equivalent
to the simple matrix equation

AX =B
In particular, the homogeneous system of linear equations (3) is equivalent to the matrix
equation
AX =0
Example 6.1: The following system of linear equations and the matrix equation are equivalent:
2v+ 8y —4dz = T 2 3 —a\[®\ _ /7
x—2y—5z = 3’ 1 —2 —5 ?z/ - 3

In studying linear equations, it is usually simpler to use the language and theory of
matrices.

Theorem 11.4: The general solution of a non-homogeneous system of linear equations
AX =R is obtained by adding the general solution of the homogeneous
system AX =0 to a particular solution of the non-homogeneous system
AX =B,

Proof. Let «, be a fixed solution of AX =B. If B is any solution of the homogeneous
system AX =0, then Afe,+f) = Aa,+ AR = B+0 = B
That is, the sum o, + 8 is a solution to the non-homogeneous system AX = B.
On the other hand, suppose «, is a solution of AX =B distinct from «,. Then
Ay~ a,) = Aay—~Aa;, = B—B = 0
That is, the difference a, —«, is a solution of the homogeneous system AX=0. But
a, = a; + (a,—a,)

hence every solution of AX =B can be obtained by adding a solution of AX=0 to the

particular solution «, of AX =B.
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Theorem 11.5: If «,a, ...,a, are solutions to the homogeneous system of linear equa-
tions AX =0, then every linear combination of the «, of the form

ko + ka,+ -+ + ke, where the k, are scalars,

is also a solution of the homogeneous system 4X =0.

Proof. We are given that A« =0, ..., Ao, =0. Hence
A(l{lloz1 + o +knozn) = ICIAozl + -0+ knAozn = chO + -+ knO =0
Accordingly, k.« + -+ + k «, is also a solution of the homogeneous system AX =0.

In particular, every multiple ke of any solution « of AX =0 is also a solution of AX=0.

Example 6.2: Consider the homogeneous system in Example 5.2:
x+ y— 2 =0

2¢ —3y+ z =0

x—4dy+2z = 0

As was noted, « = (2,8,5) is a solution of the above. Hence every multiple of «,
such as (4,6,10) and (—6, —9, —15), is also a solution.

We now restate Theorem 11.2 using the language of matrix theory, and give an inde-
pendent proof of the theorem.

Theorem 11.2: If AX =B has more than one solution, then it has an infinite number of
solutions.

Proof. Let o« and B8 be distinct solutions to AX =B. Then the difference « —p is a
non-trivial solution to the homogeneous system AX =0:

A(a—fB) = A«a—AB = B—-B =0
Hence every multiple k(«—p) of «—p is a solution of AX=0. Accordingly, for each
scalar I,
a + kla—B)

is a distinct solution to AX=B. Thus AX =B has an infinite number of solutions as
claimed.

VECTORS AND LINEAR EQUATIONS

The system (1) of linear equations is also equivalent to the vector equation

11 Q12 Qin by
(4251 (157 Uan b
x| @2 + e+ Za| = |
Am1 Um2 Umn bm
In other words, if a,,a, ...,a, and B denote the above column vectors respectively, then

the system (1) is equivalent to the vector equation
X, + Xy, + 200 + T @ = B

If the above equation has a solution, then B is said to be a linear combination of the vectors
a, or is said to depend upon the vectors a,. We restate this concept formally:

Definition: | The vector g is a linear combination of the vectors «a,, ...,e, if there exist

scalars k, ...,k such that
B = klal+k2a2+ oot ka

nn
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i.e. if there exists a solution to
B = x1a1+x2a2+ e+ T a

nn

where the z, are unknown scalars.

Remark: The above definition applies to both column vectors and row vectors, although
our illustration was in terms of column vectors.

2 1 1 1
B = 3], oo =1(1), a = (1 and a3 = [ 0
—4 1 0 0

Then B8 does depend upon the vectors a;, a; and a3 since

Example 71: Let

B = —da; + Tag — a3

that is, the equation (or system)

-0 - L

has a solution (—4,7,—1).

x+y+z
x+y

e

T

VECTORS AND HOMOGENEOUS LINEAR EQUATIONS

The system (3) of homogeneous linear equations is equivalent to the vector equation

a1 Q2 Ain 0
21 Q22 Qon 0
@ + @2 + oo+ @l -

Am1 Am2 Omn 0
That is, if ,, a,, . .., «, denote the above column vectors respectively, then the homogeneous
system (3) is equivalent to the vector equation

x1a1+x2a2+ s+ X, = 0

If the above equation has a non-zero solution, then the vectors «,,...,a, are said to be

dependent; on the other hand, if the above equation has only the trivial (zero) solution,
then the vectors are said to be independent. We restate this concept formally:

Definition: | The vectors «,a,, ...,«, are dependent if there exists scalars k Lk

1?72 n?

not all zero, such that
k1a1+kza2+ +ka = 0

nn
i.e. if there exists a non-trivial solution to
o, + Ty, + 0 + 20, = 0
where the x, are unknown scalars. Otherwise, the vectors are said to be

independent.

Remark: The above definition applies to both column vectors and row vectors although
our illustration was in terms of column vectors.
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Example 8.1: The only solution to

1 1 1 0 r+y+z =0
x| 1] +yl{1] + 2(0 = 0 or x+y =90
1 0 0 0 x =0
is the trivial solution # =0, y =0 and 2z = 0. Hence the three vectors are inde-
pendent.
Example 8.2: The vector equation (or: system of linear equations)
1 2 1 0 x+2y+ 2 =0
z{1}) +yi{—-1}) + z{-5 = 0 or r— y—5z =0
1 3 3 0 z+3y+38 =0

has the non-trivial solution (3, —2,1). Accordingly, the three vectors are dependent.

Solved Problems

LINEAR EQUATIONS IN TWO UNKNOWNS
11.1. Determine three distinct solutions of 2x —3y = 14 and plot its graph.

Choose any value for either unknown, say x = —2. Substitute x = —2 into the equation to obtain
2¢(—2) — 83y = 14 or —4—3y =14 or -3y =18 or y = —6
Thus © = —2 and y = —6 or, in other words, the pair (—2,—6) is a solution.

Now substitute, say, £ =0 into the equation to obtain
2¢0—3y = 14 or -8y = 14 or y = —14/3
Thus (0, —14/3) is another solution.
Lastly, substitute, say, ¥y =0 into the equation to obtain
2c —3+0 = 14 or 2¢x = 14 or « =T
Hence (7,0) is still another solution.

Now plot the three solutions on the Cartesian plane R2 as shown below; the line passing through
these three points is the graph of the equation.




116 LINEAR EQUATIONS [CHAP. 11

3x—2y =7
11.2. Solve the system: 42 =1

Since 3/1 % —2/2, the system has a unique solution. Now the coefficients of y are already
the negatives of each other; hence add both equations:

3x — 2y = 17
42y =1
Addition: 4x =8 or x = 2

Substitute ¥ =2 into the second equation to obtain

2+2y =1 or 2y = -1 or y:—_é_

Thus ® =2 and y = —} or, in other words, the pair « = (2,—}) is the solution of the system.

Check your answer by substituting the solution back into both original equations:

832—2(=1) =7 or 6+1 =7 or 7 =17
and
2+2:(—4 =1 or 2—-1 =1 or 1=1

1) 22 +5y = 8
11.3. Solve the system: @) y .
(2) 3x—2y = -7

Note that 2/3 ¢ 5/—2; hence the system has a unique solution. To eliminate x, multiply
(I) by 8 and (2) by —2 and then add:

3 X (1): 6x+ 1by = 24
—2 X (2): —6x+ 4y = 14
Addition: 19y = 38 or y = 2

Substitute ¥ = 2 into one of the original equations, say (1), to obtain
2¢ +5+2 =8 or 2¢x+10 = 8 or 2 = —2 or « = -1
Hence x =1 and y =2 or, in other words, the pair (—1,2) is the unique solution to the system.
Check your answer by substituting the solution back into both original equations:
(1): 2¢(—=1)+5-2 8 or —2+10 = 8 or 8 =8
(2): 3e(—-1)—2-2

Il

Il

-7 or —-3—4 = -7 or -7 = -7

We could also solve the system by first eliminating y as follows. Multiply (Z) by 2 and
(2) by 5 and then add:

2 X (1): 4z + 10y = 16
5xX(2): 150 — 10y = —35
Addition: 19« = —-19 or =z = -1
Substitute # = —1 in () to obtain
2¢(-1)+5y =8 or —2+5y =8 or by =10 or y = 2

Again we get (—1,2) as a solution.

(1) x—2y =5

11.4. Solve the system: .
(2) —3x+6y = —10

Note that 1/—3 = —2/6; hence the system does not have a unique solution. But
R
e =)

Hence the lines are parallel and the system has no solution.
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(1) br—2y = 8

11.5. Solve the system: .
(2) 3z +4y = 10

Note that 5/3 = —2/4; hence the syStem has a unique solution. To eliminate y, multiply
(Z) by 2 and add it to (2):
2 X (1): 10w —4y = 16

(2): 8¢+ 4y = 10
Addition: 13w =26 or x = 2

Substitute x = 2 in either original equation, say (2), to obtain
3:24+4y = 10 or 6+4y = 10 or 4y =4 or y =1
Thus the pair (2,1) is the unique solution to the system.
Check the answer by substituting the solution back into both original equations:
(1): 5¢2—2+1 = 8 or 10—-2 = 8 or 8§ = 8
(2): 3.2+4+1 = 10 or 6+4 = 10 or 10 = 10

(1) 2x-2y=25
(2) —8x+6y = —15"
1 -2 5

11.6. Solve the system:

= - 6 T 15
Accordingly, the two lines are coincident. Hence the system has an infinite number of solutions
which correspond to the solutions of either equation.

Note that

Particular solutions can be found as follows: Let ¥ =1 and substitute in (Z) to obtain
x—21 =5 or x—2 =5 or x =T
Hence (7,1) is a particular solution. Let ¥ = 2 and substitute in (Z) to obtain
x—2+2 =5 or xz—4 =5 or x =9
Then (9, 2) is another specific solution of the system. And so forth.

The general solution to the system is obtained as follows. Let y =a and substitute in (7) to
btai
obtain x—2y = b or x = 5+ 2a

Accordingly, the general solution to the system is (5+ 2a, @), where a is any real number.

GENERAL SYSTEMS OF LINEAR EQUATIONS
11.7. Solve the following system in echelon form:

r+2y—32z+4w = 5 x+2y—32+4w = 5
Ox+ y+5z2+2w =1 or y+56z2+2w =1
0x + 0y +0z +0w = 2 0 =2

The system is inconsistent since it has an equation of the form 0=¢ with ¢5=0. Hence the
system has no solution.

11.8. Solve the following system in echelon form:

x+3y—22 = 4 x+3y—22 = 4
Ox+ y—5z = 2 y—5z = 2
Ox+0y+ 2z = —1 or z = —1
Ox +0y+0z = 0 0= 0
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The system is consistent since it has no equation of the form 0=¢ with ¢+#0; hence the
system has a solution. Furthermore, since there are three unknowns and three non-zero equations,
the system has a unique solution.

Substitute z = —1 into the second equation to obtain
y—5+(-1) =2 or y+5 =2 or y = -3
Then substitute ¥ = —38 and z = —1 into the first equation to obtain
2+83(—8) —2(—1) =4 or z—9+2 =4 or 2—7 =4 or x =11

Thus # =11, y = —3 and z=—1 or, in other words, the ordered triple (11, —3, —1) is the unique
solution to the system.

11.9. Solve the following system in echelon form:

r+2y—3z+4w = b x+2y—3z+4w = 5
Ox+ y+5z+2w =1 or y+56z2+2w =1
0x+0y+0z+0w =0 0=20

The system is consistent and so has a solution. Furthermore, since there are four unknowns
and only two non-zero equations, the system has an infinite number of solutions which can be
obtained by assigning arbitrary values to the unknowns z and w.

To find the general solution to the system let, say, 2 =a and w=b, and substitute into the
second equation to obtain
y+5a+2h =1 or y = 1—5a—2b

Now substitute 2z = a, w =b and y = 1—5a—2b into the first equation to obtain
x+21—5a—2b) —8a+4b =5 or w+2—10a—4b—3a+ 4 = 5
or' x+2—18¢ = 5 or « = 3+ 13a
Thus the general solution is
(83+13a, 1 —5a — 2b, a, b) where o and b are real numbers
To find a particular solution to the system let, say, a=1 and b=2 to obtain

(8+13+1,1—-5-1—-2+2,1,2) or (16, —8,1,2)

Note. Some texts leave the general solution in terms of 2 and w as follows:

x = 3+ 13z
y = 1—5z2— 2w
or, (84132, 1 —5z— 2w, z, w) where z and w are any real numbers

(1) x+2y—4z = —4
11.10. Solve the following system: (2) 5x -3y — Tz = 6.
8) 3x—2y+38z = 11
Reduce the system to echelon form by first eliminating x from the second and third equations.
Multiply (Z) by —5 and add to (2) to eliminate x from the second equation:
=5 X (1): —bx — 10y + 20z = 20
(2): S0 — 3y— Tz = 6
Addition: —13y + 132 = 26 or y—2z = —2

Now multiply (Z) by —8 and add to (3) to eliminate x from the third equation:
—3 X (1): =3z —6y+ 12z = 12
3): 3x —2y+ 3z = 11
Addition: —8y + 152 = 23
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Thus the original system is equivalent to the system

2+ 2y — 4z = —4
y— 2 = —2
—8y + 162 = 23
Next multiply the second equation by 8 and add to the third equation to eliminate y from the third
equation:
8 X second: 8y — 8 = —16
third: —8y + 15z = 23
Addition: Tz = 7 or z =1

Thus the original system is equivalent to the following system in echelon form:

x+ 2y — 4z = —4
y— 2z = —2
z = 1

The system is consistent since it has no equation of the form 0 =c¢ with ¢+ 0; hence the system
has a solution. Furthermore, since there are three unknowns and also three non-zero equations,
the system has a unique solution.

Substitute 2z =1 into the second equation to obtain

y—1 = -2 or y = —1
Now substitute z =1 and y = —1 into the first equation to obtain
z+2¢(-1)~—4°1 = —4 or x—2—4 = —4 or x—6 = —4 or zx = 2
Thus x =2, y =—1 and z =1 or, in other words, the ordered triple (2, —1,1) is the unique solution

to the system.

(1) x+2y—32z = -1
11.11. Solve the following system: (2) —-3x+ y—2z = —7.
(8) bxr+3y—4z = 2

Reduce to echelon form by first eliminating «# from the second and third equations. Multiply
(1) by 8 and add to (2) to eliminate x from the second equation:

3 X (1): 3x+6y— 92 = -3
(2): —Bx+ y— 22 = -7
Addition: Ty — 11z = —-10

Now multiply () by —5 and add to (3) to eliminate = from the third equation:

—B X (1): —bw—10y+ 152 = 5
(8): br+ Sy— 4z = 2
Addition: —Ty+ 11z = 7

Thus the system is equivalent to the system

x+2y— 8 = -—1
Ty — 11z = —10
—Ty + 11z = 7

However, if we add the second equation to the third equation, we obtain
0 +0y+0z = —83 or 0 = -3

Thus the system is inconsistent since it gives rise to an equation 0 =c¢ with ¢ # 0; accordingly, the
system has no solution.
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11.12.

11.13.

LINEAR EQUATIONS

(1) z+2y—38z =

Solve the following system: (2) 2z — y + 4z
(8) 4x +3y — 22

2
14

[CHAP. 11

Reduce the system to echelon form by first eliminating « from the second and third equations.

Multiply (Z) by —2 and add to (2):

Multiply (1) by —4 and add it to (3):

—2 X (1) —2x—4y+ 62 = —12
(2): 20 — y + 4z = 2
Addition: —by + 10z = —10
—4 X (1): —4x — 8y + 12z = —24
(3): dx+ 3y — 2z = 14
Addition: —b5y + 10z = —10

Thus the system is equivalent to
x+ 2y —32 = 6

y—2z = 2 or simply

y—2z = 2

or Yy — 2z
or ¥y — 2z
x4+ 2y — 3z

y — 22

2

= 2

(Note. Since the second and third equations are identical, we can disregard one of them. In fact,
if we multiply the second equation by —1 and add to the third equation we obtain 0=0.)

The system is now in echelon form. The system is consistent and since there are three unknowns
but only two non-zero equations, the system has an infinite number of solutions which can be

obtained by assigning arbitrary values to z.

To obtain the general solution to the system let, say, z=a.

second equation to obtain
y—2a = 2 or

Now substitute z = ¢ and y = 2+ 2a into the first equation to obtain

x+22+21) —83a¢ = 6 or wvx+4+4a—3¢ =6 or xz+4+a
Thus the general solution to the system is
2—~a, 2+ 2a, a) where a is any real number.

y__‘

24 2a

Then substitute 2 =a into the

=6 or x =2—a

To obtain a particular solution of the system let, say, a =1 and substitute into the general

solution to obtain (2—1, 2+2+1, 1) or (1,4,1)

(1) 22+ y—382
Solve the system: (2) 3x — y — 4z
(8) b5z + 2y — 62

il
U -3

I

Method 1.

Reduce to echelon form by first eliminating # from the second and third equations. Multiply

(1) by —8 and (2) by 2 and then add to eliminate x from the
—3 X (1): ~—6x — 3y + 92
2 X (2): 6x — 2y — 8z

-3

= 14

Addition: -5y + =z

11

second equation:

Multiply (Z) by —5 and (8) by 2 and then add to eliminate x from the third equation:

-5 X (I): —10x — 5y + 152 = —5
2 X (3): 10x + 4y — 122 = 10
Addition: —y+ 32 = b

or

y— 3 =

—b
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Thus the system is equivalent to the system

2r+y—3z2 = 1 20 +y—32 = 1
—by+ 2z = 11 or, interchanging equations, y—3z = =5
y—32 = =5 ~by+ 2z = 11
Now multiply the second equation by 5 and add to the third equation to eliminate y from the third
equation:
5 X second: 5y — 15z = —25
third: -5y + 2z = 11
Addition: —14z = =14 or =z =1

Thus the original system is equivalent to the system

22+y—3 = 1
y—3 = —5
z = 1

Substitute z =1 into the second equation to obtain
y—3*1 =5 or y—3 = -5 or y=-2
Substitute z=1 and y = —2 into the first equation to obtain
22+ (—2)—81 =1 or 20—2-3 =1 or 2¢x—5 =1 or 2x =6 or 2x2=3
Thus * =8, y=—2 and z=1 is the unique solution to the system.
Method 2.

Consider y as the first unknown and eliminate y from the second and third equation. Add
(1) to (2) to obtain

b5 — Tz = 8
Multiply (Z) by —2 and add to (3):
—2 X (1): —dx —2y+ 6z = —2
3): be + 2y — 62 =
Addition: x =
Thus the system is equivalent to
2 +y—32z = 1 y—3+2x = 1
S5z — Tz = 8 or —Tz+5x = 8
x =3 x =3

Substitute = 3 into the second equation to obtain
—Tz4+15 =8 or —Tz = -7 or 2z =1
Substitute £ =3 and z =1 into the first equation to obtain
y—8+6 =1 or y+83 =1 or y = —2

Thus # =3, y = —2 and z =1 is the unique solution of the system.

VECTORS AND LINEAR EQUATIONS
11.14. Reduce the following vector equation to an equivalent system of linear equations

and solve:
2 1 1 1
—4 = 2|1 +y|1] + =20
7 1 0 0
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Multiply the vectors on the right by the unknown scalars and then add:

2 1 1 1 x Y z x+y+z
—4 = (1] + y{1) + 210 = x| +(y] +10 = x+y
7 1 0 0 x 0 0 x

Set the corresponding components of the vectors equal to each other to form the system

xt+y+z = 2 ztyt+a = 2
x+y = —4 or y+m=—4
x = 7 x = T

Substitute # =7 into the second equation to obtain
y+T7=—-4 or y = -—11
Substitute 2 =7 and y = —11 into the first equation to obtain
2—114+7 =2 or 2z—4 =2 or z =6

Thus =7, ¥y = —11 and z = 6 is the solution of the vector equation.

11.15. Write the vector v = (1,—2,5) as a linear combination of the vectors e, = (1,1,1),
e, = (1,2,3) and ¢, = (2,—1,1).
We wish to express v as v = we; + yep + ze3, with x, ¥ and z as yet unknown. Thus we require:
1,—-2,5) = =«(1,1,1) + »(1,2,3) + 22, —1,1)
= (z,%, 2 + (¥, 2y, 3y) + (22, —2, 2)
= (e+y+2z 2+2y—=z, x+3y+2)

Hence
x+ y+2 = 1 x+y+2: = 1 c+y+22 = 1
x+2y— 2z = —2 or y—3 = -3 or y—3 = —3
x+3y+ 2z = b 2y — z = 4 5z = 10
x+y+2 = 1
or y—32 = —3
z = 2

Substitute z =2 into the second equation to obtain

y—38+2 =-3 or y—6 = -3 or y = 3

Substitute 2 =2 and y = 3 into the first equation to obtain

r+8+2+2 =1 or #+3+4 =1 or 2+7 =1 or &« = —6
Consequently, v = —6e; + 3ey + 2e5
2 1 2 1
11.16. Write v = 3 | as a linear combination of e, = 2|, e,=|—1]|and e, = 7
-5 -3 —4 -5
Set v as a linear combination of the e; using unknowns z, ¥ and z: v = we; + yey + zes.
2 1 2 1 x 2y z r+2y+z
8 = x 2 +yl|—1) 4+ 2 7 = 2¢ | + | —y | + Tz | = 20—y -+ Tz

—b —3 —4 -5 —3x —4y —bz —3x — 4y — bz
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Hence
x+2y+ 2z = 2 x+2+ z = 2 x+2y+ 2z = 2
2¢ — y+ 7z = 3 or —5y + 5z = —1 or y— z = %
—3x —4y — b5z = —H 2y — 2z = 1 —by + 5z = —1
x+2y+2 = 2
or y—z:%
0=

The system is inconsistent and so has no solution. Accordingly, v cannot be written as a linear
combination of the vectors e;, ¢, and ej.

DEPENDENCE AND INDEPENDENCE

11.17. Determine whether the vectors (1,1,—1), (2,—3,1) and (8,—7,1) are dependent or
independent.
First set a linear combination of the vectors equal to the zero vector:
0,0,00 = «(1,1,-1) + y(2,—3,1) + 2(8,—7,1)
Then reduce the vector equation to an equivalent system of homogeneous linear equations:
(Oy 0; 0) = (.'E, x, "'CIJ) + (22/, _3yr y) + (Szy _72; 2)
= (x+2y+82 x—3y—"Tz2, —x+y+2z)

or, x+2y+8 = 0
x—3y—T2 = 0
—x+ y+ 2 =0
Lastly, reduce the system to echelon form. Eliminate x from the second and third equation to obtain
x+2y+ 8 = 0 x+2y+8 =0 rx+2y+8 =0
—by — 162 = 0 or y+3 =0 or y+32 =0
3y+ 92 = 0 y+8z =0 0 =

Since there are three unknowns but only two non-zero equations, the system has a non-trivial
solution. Thus the original vectors are dependent.

Remark: We do not need to solve the system to determine dependence or independence; we
only need to know if a non-zero solution exists.

1 2 3
11.18. Determine whether the vectors | —2],| 3| and |2 ) are dependent or independent.
-3 -1 1

First set a linear combination of the vectors equal to the zero vector; and then obtain an
equivalent system of homogeneous linear equations:

0 1 2 3 x 2y 3z x + 2y + 32

0 = x| —2) +vy 3+ z( 2 = —2x | +| 3y | +1| 22 = —2x + 3y + 22

0 —3 -1 1 —3 —y z —3x—y+=z
or, x+2y+3 = 0
—2x+ 3y +22 = 0
-8 — y+ 2 =0

Eliminate z from the second and third equations to obtain
x+ 2y + 3z 0 x + 2y + 3z

Ty + 8z 0>M_<y+22
0 Ty + 82

b5y + 10z

Il
i
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Eliminate y from the third equation to obtain

z+2y+32 = 0 z+2y+32 = 0
y+2 =0 or y+2z =0
—6z = 0 z =0

In echelon form the system has three unknowns and three non-zero equations; hence the system
has the unique solution # =0, y =0, 2 =0, i.e. the zero solution. Hence the original vectors are

independent.

1 1 3 2 -8
11.19. Show that the vectors _2 , ? R —g s _g and _; are dependent.
-4 5 2 -5 4

Reduce the problem to a homogeneous system of equations by setting a linear combination of
the vectors equal to the zero vector:

0 1 1 ( 3 2 -8
o) _ -2 2 —7 0 1
0 = 3 + ¥ 1 + z 0 + v g + w 7
0 -4 5 \ 2 -5 4
x v 3z 2v —8w
2 2y —z 0 w
- 3z + Y + 0 + ~6v + —Tw
—4x 5y 2z —5v 4w

x+y+ 32+ 2v— 8w
2+ 2y — Tz +w
3x +y— 6v—Tw
—4x + 5y + 22 — bv + 4w

or,
x4+ y+382+20—8w = 0

—2x + 2y — Tz + w =0

3x+ y —6v—Tw = 0

0

—4x + 5y + 22 — bv + 4w =

Now the system of homogeneous equations has five unknowns but only four equations. Hence,
by Theorem 11.3, the system has a non-trivial solution and so the vectors are dependent.

11.20. Let v, v,, ...,v, be n-component vectors. Show that if the number of vectors is

greater than the number of components, i.e. m >n, then the vectors are dependent.
Note, as in the preceding problem, that the vector equation
Xy + v+ -+ XUy = 0

gives rise to a homogeneous system of linear equations in which the number of unknowns equals
the number of vectors and the number of equations equals the number of components. Hence if
the number of vectors is greater than the number of components, then the system has a non-zero
solution by Theorem 11.83 and so the vectors are dependent.



CHAP. 11] LINEAR EQUATIONS 125

Supplementary Problems

LINEAR EQUATIONS IN TWO UNKNOWNS

11.21. Solve:
. 2¢ — by = 1 . 2¢ +3y = 1 e —2y = 7
(1) _ (ii) _ (iii)
3x + 2y = 11 Sx+ Ty = 3 x+ 3y = —16
11.22. Solve:
. 22 + 4y = 10 . 4 — 2y = b 2¢ — 3y = bt
() _ (ii) (iii)
3x +6y = 15 —6x+3y =1 3x+ y = 2t
11.23. Solve:
- 2
.Y _ g 2ol yt?
i 3 "2 (i) 3 4 (i) 22z —4 = 3y
6 4 2 3
GENERAL SYSTEMS OF LINEAR EQUATIONS
11.24. Solve:
20+ y—382 = b 2¢ +3y—2z = b rx+2y+ 32z = 3
Q) <8x—2+2 =5 i) f 2 —2+3 = 2 (iil) {20 + 3y + 8 = 4
be —8y — z = 16 4 — y+4z = 1 3x+2y+172 = 1
11.25. Solve:
2¢ 4+ 3y = 3 x+2y—382+2w = 2 x+2y— 2+3w = 3
(i) x—2y = b (ii) 42x+ 5y — 8+ 6w = 5 (ili) 22+ 4y +42+3w = 9
3x+2y =7 3 +4y —bz+ 2w = 4 3x+6y —z+ 8w = 10
11.26. Solve:
20+ 22z = 2
3:i2y_:_5 ©+ b5y +dz—13w = 3
(i) v - (i) 8c— y+2:+ bw = 2
20 —by+3 = —4 2 + 2y + 82— 4w = 1
o+ 4y +6z = 0 v -

VECTORS AND EQUATIONS
11.27. Write v = (9,5,7) as a linear combination of the vectors e; = (1,1,1), e = (1,—1,0) and
eg = (2,0,1).

11.28. Determine whether the vectors (1, —2,3,1), (3,2,1,—2) and (1,6, —5, —4) are dependent or
independent.

1 2 —1
11.29. Determine whether the vectors 1], <1> and< 1> are dependent or independent.
-1 0 2

11.30. Prove: If the vectors e;, e, and e; are independent, then any vector v can be written in at most
one way as a linear combination of the vectors ey, e¢; and ey.
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Answers to Supplementary Problems

i) 3,1), or =3, y=1 (ii) (2, -1), or =2, y=—1 (iii) (-1, —=5), or w=—1, y=—5

(i) (6—2a,a), or * = b—2a, y=a (ii) no solution

(i) 6,8) (i) (5,2)  (iii) (5, 2)

(i) 1,-—3,-2) (ii) no solution (iii) (—1—T7a, 2+ 2a, a), or {

i 6,-1)

(iii) (6 —2a — 5b, a, b, 2b — 1), or {

i) 2,1,-1)

x =

(ii) (—a+2b,1+ 2a —2b, a, b), or {

x =6—2y—>5z
w=2z—1

(ii) no solution

v = 2e; — 3ey + beg

Dependent

Independent

(iii) (¢, —t), or x=t, y=—t

x=—1—"1Tz
y=2+2z

—z+ 2w

y=1+42z—2w

Proof: Suppose v = a€; + ases + azes and v = bjey + byey + bges.  Subtracting, we obtain

0 =v—v = (al_ bl)el + (0/2-* b2)62 + (a3 - b3)€3

Since the vectors are independent, the coefficients must be zero, i.e.

Accordingly,

al—b1=0, az‘—b2:0

a3 =by, ap=by and az=bs.

and

03—b3 =0



Chapter 12

Determinants of Order Two and Three

INTRODUCTION

To every square matrix there is assigned a specific number called the determinant of
the matrix. This determinant function, first discovered in the investigation of systems
of linear equations, has many interesting properties in its own right.

In this chapter we define and investigate the determinant of square matrices of order
two and three, including its application to linear equations. Determinants of matrices
of higher order are beyond the scope of this text.

DETERMINANTS OF ORDER ONE

Write det(4) or |A| for the determinant of the matrix A4; it is a number assigned to
square matrices only.

The determinant of a 1 x 1 matrix (¢) is the number «a itself: det(a) = a.
Observe that in the linear equation in one unknown z,
ar = b
we can view a as a 1 X 1 matrix (a) applied to the one-component vector x. If det(a)+#0,
i.e. if ¢ # 0, then the equation has the unique solution x = %b. However, if det(a) =0, i.e.

if @ =0, then the equation has no solution if b+ 0, and every number is a solution if b=0;
hence the solution is not unique.

As we shall subsequently see, the preceding result holds true in general, i.e. det(4) #0
is a necessary and sufficient condition for the linear equation Ax=0b to have a unique
solution.

DETERMINANTS OF ORDER TWO

The determinant of the 2 X 2 matrix <ccl b> is denoted and defined as follows:

d
a b
= ad — be
¢ d‘
Example 1.1:
5 4 = 5+3—4+2 = 156—-8 =17 21 = 26—1+(—4) = 12+ 4 = 16
2 3 -4 6

We emphasize that a square array of numbers enclosed by straight lines is not a
matrix but denotes the number that the determinant function assigns to the enclosed
array of numbers, i.e. to the enclosed square matrix.

127
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A very important property of the determinant function is that it is multiplicative;
that is,

Theorem 12.1: The determinant of a product of matrices is the product of the determi-
nants of the matrices: det(AB) = det(A4) det(B).

Remark: The diagram on the right may help the reader obtain the
determinant of a 2 X 2 matrix. Here the arrow slanting
downward connects the two numbers in the plus term of
the determinant ad — be, and the arrow slanting upward
connects the two numbers in the minus term of the - +
determinant ad — be.

LINEAR EQUATIONS IN TWO UNKNOWNS AND DETERMINANTS
Consider two linear equations in two unknowns:
amx + by = ¢

asx + by = c2

Let us solve the system by eliminating y. Multiply the first equation by b, and the second
equation by —b,, and then add:

by X first: aibox + biboy =  bacy
—b; X second: —azbix — bibay = —Dbics
Addition: (a1b2 — (lzbl)x = szl — blcz

Now the system has a unique solution if and only if the coefficient of « in this last equation

is not zero, i.e.

b
D = N ' = (hbz-dzbl # 0
asz bz

Observe that D is the determinant of the matrix of coefficients of the system of equations.
In this case, where D+ 0, we can uniquely solve for x and y as quotients of determinants
as follows:

C1 b1 as Ci

x = N: _ baci —bics _ 2 b and y = N, acs—ase; _ | %2 @
D a1bs — a2b1 a1 by D a1b2 - a2b1 as bl

az b: a b

Here D, the determinant of the matrix of coefficients, appears in the denominator of both
quotients. The numerators N, and N, of the quotients for z and ¥, respectively, can be
obtained by substituting the column of constant terms in place of the column of coefficients
of the given unknown in the matrix of coefficients.

Example 2.1: Solve using determinants:
20 —3y =17
3x +b5y =1

The determinant D of the matrix of coefficients is

2 -3

3 5

D = 2¢5 —3+(—8) = 10+9 = 19
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Example 2.2:

Example 2.3:
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Since D # 0, the system has a unique solution. To obtain the numerator N,
replace, in the matrix of coefficients, the coefficients of « by the constant terms:

7 —3

Ne = 11

= 7T+5 —1+(—8) = 35+ 3 = 38

To obtain the numerator N, replace, in the matrix of coefficients, the coefficients
of y by the constant terms:

2 17

N, =
Y 3 1

21 —87 = 2—-21 = —19

Thus the unique solution of the system is

N, 38 Ny, _ —19
Solve using determinant 2r = 5ty
e us er nts: .
olv ing determinants 342y 430 = 0
First arrange the equations in standard form:
20 — y = 5
3x +2y = —38
The determinant D of the matrix of coefficients is
2 —1
= = 2+2 —3+(-1) = 4 =
D 3 9 (—1) + 38 7
Since D # 0, the system has a unique solution. Now,
N, = | 3 T = ez (a1 = 10-8 = 71
—3 2
2 5
and N, = 3 —g = 2¢(—-8) — 85 = —6—15 = -—21
Thus the unique solution of the system is
N, 1 _ Ny _ 21 _
vr=p=g=1 ad y=3 = =3
Solve using determinants: 4 -~ Y = 7
olve using determinants: 3z — 6y = 5
The determinant D of the matrix of coefficients is
D = : _Z = 24(—6) —3+(—4) = —12+12 = 0

Since D = 0, the system does not have a unique solution, and we cannot solve the
system by determinants. (The discussion of the previous chapter shows that the
system has no solution since 2/3 = —4/—6 % 7/5.)

DETERMINANTS OF ORDER THREE
The determinant of a 83 by 3 matrix is defined as follows:

(151 b1
A bz
as bs

C1
C2 = aibecs + azbsci + asbica — aibscs — asbics - asbacy
C3

This may be written as
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a1(bacs — bscs) — bi(@ecs — ascs) + ci(a2bs — asbe)

asz bz
as bs

by ¢
b3 C3

Az C2
as Cs

or a1 — by + ¢

which is a linear combination of three determinants of order two whose coefficients (with
alternating signs) are the first row of the given matrix. Note that each 2 X 2 matrix can
be obtained by deleting, in the original matrix, the row and column containing its coefficient:

a bt ¢ a b @ ar b
ailae be co| — bijaz bs c2| + cijaz by €
as b3 c3 as bsi cs3 as bz ¢

le 3.1:
Example 9 3 —4
Compute the determinant of A = {0 —4 2 1.

1 -1 5
2 3 -4 2 3 4 2 38 4
det(4) = 2|0 —4 2] — 3i0 -4 2| + (—4H|0 —4 2
1 -1 5 1 -1 5 1 -1 B
-4 2 0 2 0 —4
—2‘—15‘_315+(—4)1—1
= 2(—20+2) — 30—2) — 40+4) = —-36 + 6 — 16 = —46
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