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2 PROBABILITY AND STATISTICS

v/ Binomial Coefficients
v Stirling’s Approximation to n!

Random Experiments

We are all familiar with the importance of experi-
ments in science and engineering. Experimentation
1s usetul to us because we can assume that if we
perform certain experiments under very nearly
identical conditions, we will arrive at results that
are essentially the same. In these circumstances,
we are able to control the value of the variables
that affect the outcome of the experiment.

However, in some experiments, we are not able to ascertain or con-
trol the value of certain variables so that the results will vary from one
performance of the experiment to the next, even though most of the con-
ditions are the same. These experiments are described as random. Here
1s an example:

Example 1.1.  If we toss a die, the result of the experiment is that it
will come up with one of the numbers in the set {1, 2, 3,4, 5, 6}.

Sample Spaces

A set S that consists of all possible outcomes of a random experiment 18
called a sample space, and each outcome 1s called a sample poins. Often
there will be more than one sample space that can describe outcomes ot
an experiment, but there 1s usually only one that will provide the most
information.

Example 1.2.  If we toss a die, then one sample space 1s given by
{1, 2, 3,4, 5, 6} while another is {even, odd}. It is clear, however, that
the latter would not be adequate to determine, for example, whether an
outcome 18 divisible by 3.

It 1s often usetul to portray a sample space graphically. In such cases,
it 1s desirable to use numbers in place of letters whenever possible.
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It a sample space has a finite number of points, it 1s called a finife
sample space. 1t 1t has as many points as there are natural numbers 1, 2,
3, ...., 1t 1s called a countably mfintte sample space. 1t 1t has as many
points as there are in some interval on the x axis, suchas 0 <x <1, 1t 18
called a noncountably infinite sample space. A sample space that 1s
finite or countably finite 1s often called a discrete sample space, while
one that 1s noncountably infinite 1s called a nondiscrete sample space.

Example 1.3.  The sample space resulting from tossing a die yields
a discrete sample space. However, picking any number, not just inte-
gers, from 1 to 10, yields a nondiscrete sample space.

Events

An evenr 1s a subset A of the sample space 3, 1.e., 1t 18 a set of possible
outcomes. If the outcome of an experiment 1s an element of A, we say
that the event A has occurred. An event consisting of a single point of .5
1s called a stmple or elementary event.

As particular events, we have § itself, which 1s the sure or certain
event since an element of .5 must occur, and the empty set (3, which is
called the impossible event because an element of ¢ cannot occur.

By using set operations on events in .S, we can obtain other events
in 5. For example, if A and B are events, then

1. A B is the event “‘either A or B or both.” A W B is called the
union of A and B.

2. A Bisthe event “both A and B.” 4 m B 1s called the nier-
seclion of A and B.

3. A’ is the event “not A.” A’ is called the complement of A.

4. A-B=An B isthe event “A but not B.” In particular, A" =
S — A.

It the sets corresponding to events A and B are disjoint, 1.e., A " B
= &, we often say that the events are mutually exclusive. This means
that they cannot both occur. We say that a collection of events A, 4, ...,

A 1s mutually exclusive if every pair in the collection 1s mutually exclu-

sive,
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The Concept of Probability

In any random experiment there 1s always uncertainty as to whether a
particular event will or will not occur. As a measure of the chance, or
probability, with which we can expect the event to occur, it 18 conve-
nient to assign a number between O and 1. If we are sure or certain that
an event will occur, we say that its probability 1s 100% or 1. If we are
sure that the event will not occur, we say that its probability 1s zero. If,
for example, the probability is %4, we would say that there is a 25%
chance it will occur and a 75% chance that it will not occur.
Equivalently, we can say that the odds against occurrence are 75% to

25%, or 3 to 1.

There are two 1important procedures by means of which we can esti-
mate the probability of an event.

1. CLASSICAL APPROACH: It an event can occur mn A
different ways out of a total of n possible ways, all of which
are equally likely, then the probability of the event 1s A/k.

2. FREQUENCY APPROACH: If after » repetitions of an
experiment, where » 15 very large, an event 1s observed to
occur 1n £ of these, then the probability of the event 1s Ai/n. This
18 also called the empirical probability of the event.

Both the classical and frequency approaches have serious drawbacks,
the first because the words “equally likely” are vague and the second
because the “large number” involved 1s vague. Because of these ditficulties,
mathematicians have been led to an axiomartic approach to probability.

The Axioms of Probability

Suppose we have a sample space §. It S 1s discrete, all subsets corre-
spond to events and conversely; if S 1s nondiscrete, only special subsets
(called measurable) correspond to events. To each event A in the class
(' of events, we associate a real number P(A). The P 1s called a proba-
pility function, and P(A) the probability of the event, if the tollowing
axioms are satisfied.
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Axiom 1. For every event A in class C,
P(A) = 0
Axiom 2. For the sure or certain event 5 in the class
PiS)=1
Axiom 3. For any number of mutually exclusive events A, A , ...,

in the class

P T E ) e J= BIAY + PAGTF 5

In particular, for two mutually exclusive events A, and 4,
PA oA, J=PA )+ Pld,)

Some Important Theorems on Probability

From the above axioms we can now prove various theorems on proba-
bility that are important in further work.

Theorem 1-1: ItA <A, , then (1)
P4, < P(4,) and P(4,— A,) = P(4,) — P(4,)

Theorem 1-2:  For every event A, (2)
0<PA) <1,
1.e., a probability between O and 1.

Theorem 1-3:  For &, the empty set, (3)
P()=0

1.e., the impossible event has probability zero.

Theorem 1-4: If A’ is the complement of A, then (4)
P(A"y=1—P(4)

Theorem1-5: ItA=A VA U.. VA , where ALAZ 5Aﬂ are

mutually exclusive events, then
PA)=P@A,)+PA)+...+PA4) (5)
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Theorem 1-6: It A and B are any two events, then (6)
P(A w B)=P(A) + P(B) - P(A " B)
More generally, it Al, Az* Az are any three events,

then
PA, VA, UA)=P4,) + P4, + P(4;) -
PA, MA)-PA, nA) -PA;,NA)+
PA, " A, N AY).
(Generalizations to n events can also be made.

Theorem 1-7:  For any events A and B, (/)
PAY=PAB)+PANB")

Assignment of Probabilities

It a sample space S consists of a finite number of outcomes &, 4., ...,

a , then by Theorem 1-3,
PA)+PA)+...+PA)=1 (5)
where A, A, ..., A are elementary events given by A = {« }.

It tollows that we can arbitrarily choose any nonnegative numbers
for the probabilities of these simple events as long as the previous equa-
tion 1s satistied. In particular, it we assume equal probabilifies tor all
simple events, then

1
PA4)==, k=12 .. (9)

And if A 1s any event made up of A such simple events, we
have

h
P(A)=— (10)
n
This 1s equivalent to the classical approach to probability. We could
of course use other procedures for assigning probabilities, such as fre-

quency approach.
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Assigning probabilities provides a mathematical model, the success
of which must be tested by experiment in much the same manner that
the theories in physics or others sciences must be tested by experiment.

Remember

The probability for any event must be
between 0 and 1.

Conditional Probability

Let A and B be two events such that P(A) > 0. Denote P(B | A) the prob-

ability of B given that A has occurred. Since A 1s known to have
occurred, it becomes the new sample space replacing the original .
From this we are led to the defimtion

P(AN B)

P(BIA)= =

(41)

or
P(A~B)= P(A)P(B| A) (12)

In words, this 1s saying that the probability that both A and B occur
1s equal to the probability that A occurs times the probability that B
occurs given that A has occurred. We call P(B | A) the condttional prob-
abiity of B given A, 1.e., the probability that B will occur given that A
has occurred. It 1s easy to show that conditional probability satisfies the
axioms of probability previously discussed.

Theorem on Conditional Probability

Theorem 1-8:  For any three events A 1 Az* AS, we have

P(A mA, MAy) = P(ADP(A 1ADP(Az 1A N A,)) (13)
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In words, the probability that 4, and 4, and A, all occur 1s equal
to the probability that A, occurs times the probability that A, occurs
given that A, has occurred times the probability that A, occurs given

that both A, and 4, have occurred. The result 18 easily generalized to
events.

Theorem 1-9:  If an event A must result in one of the mutually
exclusiveevents 4, , A, ... , A4 , then P(A)

= P(A)P(A | A,) + PLAA)YP(A | A) +...
+ P(A)PA|A) (14)

Independent Events

It P(B | A)=P(B), 1.e., the probability of B occurring 1s not atfected by
the occurrence or nonoccurrence of A, then we say that A and B are
independent events. This 1s equivalent to

P(A~B)= P(A)P(B) (15)

Notice also that if this equation holds, then A and B are indepen-
dent.

We say that three events Al, A2, A3 are tndependent if they are
pairwise independent.

P(Aj MNA)= P(AJ)P(AE) jFk where k=123 (16)
and
P(A; N Ay " Ag) = P(ADP(A,)P(A3) (17)

Both of these properties must hold in order for the events to be

independent. Independence of more than three events 1s easily
defined.
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* Note!

In order to use this multiplication rule, all of your events
must be independent.

Bayes' Theorem or Rule

Suppose that A, 4., ... , A are mutually exclusive events whose union
1s the sample space §, 1.e., one of the events must occur. Then if A 1s any
event, we have the important theorem:

Theorem 1-10 (Bayes’ Rule):
P(A)P(AIA)

7l

D P(AHP(AIA)
j=1

P(A, 1 A) = (18)

This enables us to find the probabilities of the various events A,
A, ..., A that can occur. For this reason bayes’ theorem is often
reterred to as a theorem on the probability of causes.

Combinatorial Analysis

In many cases the number of sample points
in a sample space 1s not very large, and so
direct enumeration or counting of sample
points needed to obtain probabilities 1s not
difficult. However, problems arise where
direct counting becomes a practical 1mpos-
sibility. In such cases use 1s made of combinatorial analysis, which
could also be called a sophisticated way of couniing.
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Fundamental Principle of Counting

It one thing can be accomplished z, ditferent ways and atter this a sec-
ond thing can be accomplished », different ways, ... , and finally a kth
thing can be accomplished in », different ways, then all £ things can be

accomplished in the specified order m ».n,...n, different ways.

Permutations

Suppose that we are given n distinct objects and wish to arrange r ot
these objects in a line. Since there are n ways of choosing the first
object, and after this 1s done, » — 1 ways of choosing the second object,
..., and finally » — r + 1 ways of choosing the rth object, it follows by
the fundamental principle of counting that the number ot different
arrangements, or permutations as they are often called, 1s given by

P =n(n-1..n—r+1) (19)

where it 18 noted that the product has » factors. We call P, the number

of permutalions of n objects taken r at a fime.

Example 1.4. It is required to seat 5 men and 4 women in a row so
that the women occupy the even places. How many such arrangements

are possible?

The men may be seated n P, ways, and the women ,P, ways. Each

arrangement of the men may be associated with each arrangement of the
women. Hence,

Number of arrangements = P, ,P,= 5! 4! = (120)(24) = 2880

In the particular case when r = n, this becomes

P =nn—-1)n-2)..1=n! (20)
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which 1s called » factorial. We can write this formula in terms of facto-
rials as

p= n!
(n—r)!

It » = n, we see that the two previous equations agree only if
we have 0! = 1, and we shall actually take this as the definition ot 0!,

(21)

Suppose that a set consists of # objects of which », are of one
type (1.e., ndistinguishable trom each other), n, are of a second type, ...,
n, are of a kth type. Here, of course, n=n, +n, +...+n;. Then the
number of ditferent permutations of the objects 1s

n!
P Y o ! (22)
57 peens & HI'HE'“*HIC'

l

Combinations

In a permutation we are interested in the order of arrangements ot the
objects. For example, abc 1s a different permutation from bca. In many
problems, however, we are only interested in selecting or choosing
objects without regard to order. Such selections are called combina-
fions. For example, abe and bca are the same combination.

The total number of combinations of r objects selected from # (also
called the combinations of n things laken r al a fime) 18 denoted by C

or [”’] . We have
r

i n!
U =G = ri(n—r)! (£9)

It can also be written

(H)=H(H—l)“*(ﬂ—f"+1)=ﬂg 24

r 7! 7!

It 1s easy to show that



12 PROBABILITY AND STATISTICS

ny ( n
(?’J_(”—r] of 0= (25)

Example 1.5. From 7 consonants and 5 vowels, how many words
can be tformed consisting of 4 different consonants and 3 ditferent vow-
els? The words need not have meaning.

The four different consonants can be selected in ,C, ways, the three dif-
ferent vowels can be selected m (C; ways, and the resulting 7 different
letters can then be arranged among themselves in .2, = 7! ways. Then

Number of words = ,C, - .C;» 7! = 35-10-5040 = 1,764,000

Binomial Coefficients

The numbers from the combinations formula are often called binomial
coeffictents because they arise in the binomial expansion

1

i o i A a—1 A2 A 7l
(x+y) =X +[1]x y+(2]x y ++~+[1Jy (26)

Stirling’s Approximation to n!

When » 1s large, a direct evaluation of n! may be impractical. In such
cases, use can be made of the approximate formula

ne~al2mnn'e " (27)

where e = 2.7182% ... , which 1s the base of natural logarithms. The
symbol ~ means that the ratio of the left side to the right side approach-
es 1 as n — oo,
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Computing technology has largely eclipsed the value of Stirling’s
formula for numerical computations, but the approximation remains
valuable for theoretical estimates (see Appendix A).
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Descriptive Statistics

When giving a report on a data set, it 1s useful to describe the data set
with terms familiar to most people. Theretore, we shall develop widely
accepted terms that can help describe a data set. We shall discuss ways
to describe the center, spread, and shape of a given data set.

14
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Measures of Central Tendency

A measure of cenfral fendency gives a single value that acts as a repre-
sentative or average of the values of all the outcomes of your experi-
ment. The main measure of central tendency we will use 1s the arith-
metic mean. While the mean 1s used the most, two other measures of
central tendency are also employed. These are the median and the mode.

* Note!

There are many ways to measure the central tendency of a
data set, with the most common being the arithmetic mean,
the median, and the mode. Each has advantages and dis-
advantages, depending on the data and the intended pur-

POSE.

Mean

It we are given a set of » numbers, say x G Xgrinina X then the mean, usu-
ally denoted by x or 1, 18 given by

(£)

=
Pl

Example 2.1.  Consider the following set of integers:
S= {]‘? 2? 3? 41‘ 5? 6? 7? 8? 9}

The mean, X, of the set S 1s




10 PROBABILITY AND STATISTICS

1+2+3+4+5+6+7+8+9
9

5

b —

Median

1 1
The median 1s that value x for which P(X <x) < Py and P(X > x) < R

In other words, the median 1s the value where half of the values of x,,

X, ..., X, are larger than the median, and half of the values of x,, x,, ...,

2?
X, are smaller than the median.

Example 2.2.  Consider the following set of integers:
S=1{1,6,3,8, 2,4, 9}

If we want to find the median, we need to find the value, x, where
half the values are above x and halt the values are below x. Begin by
ordering the list:

S={1?2?3?4?6? 8?9}

Notice that the value 4 has three scores below 1t and three
scores above it. Theretore, the median, 1n this example, 1s 4.

In some instances, it 1s quite possible that the value of the
median will not be one of your observed values.

Example 2.3.  Consider the following set of integers:
S=1{1,2,3,4,6, 8,9, 12}

Since the set 1s already ordered, we can
skip that step, but if you notice, we don’t
have just one value in the middle of the list.
Instead, we have two values, namely 4 and
6. Theretore, the median can be any number
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between 4 and 6. In most cases, the average of the two numbers 1s
reported. So, the median for this set of integers is

4+6
2

5

In general, if we have n ordered data points, and » 1s an odd
number, then the median 1s the data point located exactly in the middle

n+1

of the set. This can be found in location of your set. If » 1s an

even number, then the median 1s the average of the two middle terms of

i) i

the ordered set. These can be found in locations E and E +1.

Mode

The mode of a data set is the value that occurs most often, or in other
words, has the most probability of occurring. Sometimes we can have
two, three, or more values that have relatively large probabilities of
occurrence. In such cases, we say that the distribution 1s bimodal, iri-
modal, or multimodal, respectively.

Example 2.4.  Consider the following rolls of a ten-sided die:
R= {2? 8!‘ ]'? 9!‘ 5!‘ 2!‘ 7!‘ 2? 7!‘ 9? 4? 7!‘ ]'? 5? 2}

The number that appears the most 1s the number 2. It appears tour
times. Therefore, the mode for the set R 1s the number 2.

Note that if the number 7 had appeared one more time, it would
have been present four times as well. In this case, we would have had a
bimodal distribution, with 2 and 7 as the modes.
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Measures of Dispersion

Consider the following two sets of integers:
S=1{55,5,555} and R={0, 0,0, 10, 10, 10}

If we calculated the mean for both S and R, we
would get the number 5 both times. However, these are
two vastly different data sets. Theretore we need another
descriptive statistic besides a measure of central tenden-
cy, which we shall call a measure of dispersion. We shall
measure the dispersion or scatfer of the values of our
data set about the mean of the data set. It the values tend
to be concentrated near the mean, then this measure shall
be small, while if the values of the data set tend to be dis-
tributed far from the mean, then the measure will be
large. The two measures of dispersions that are usually
used are called the variance and standard deviation.

Variance and Standard Deviation

A quantity of great importance in probability and statistics 1s called the
variance. The variance, denoted by 62, for a set of » numbers x . N—
X , 18 given by

2[00 =) + 00 = 1)+ 4 (x, — )° ]
H

g

(2)

The variance 1s a nonnegative number. The positive square
root of the variance 1s called the standard deviation.

Example 2.5.  Find the variance and standard deviation for the fol-
lowing set of test scores:

T = {75, 80, 82, 87, 96}
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Since we are measuring dispersion about the mean, we will need to
find the mean for this data set.

_ 75+80+82+87+96
= . =

84

u

Using the mean, we can now find the variance.

> _ [(75—84)" + (80— 84)" +(82 — 84)* + (87 —84)* + (96— 84)" ]
5

)

Which leads to the following:

52 B0+ U+ D+ G+ Qi g,

Therefore, the variance for this set of test scores is 50.8. To get the
standard deviation, denoted by G, simply take the square root of the

variance.

G =G> =+/50.8 =7.1274118

The variance and standard deviation are generally the most used
quantities to report the measure of dispersion. However, there are other
quantities that can also be reported.

You Need to Know /

It is also widely accepted to divide the variance by (n— 1)
as opposed to n. While this leads to a different result, as
n gets large, the difference becomes minimal.
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Percentiles

It 1s often convenient to subdivide your ordered data set by use ot ordi-
nates so that the amount of data points less than the ordinate 1s some
percentage of the total amount of observations. The values correspond-
ing to such areas are called percentile values, or brietly, perceniiles.
Thus, for example, the percentage of scores that fall below the ordinate
at x_ 18 of. For instance, the amount of scores less than x. .. would be

0.10
0.10 or 10%, and x,,, would be called the 10th percenfile. Another

example 1s the median. Since half the data points tall below the medi-

an, it 18 the 50th percentile (or fifth dectle), and can be denoted by X, ., -

The 25th perceniile 18 otten thought of as the median of the scores
below the median, and the 75th percenifile is otten thought of as the
median of the scores above the median. The 25th percentile is called the
first quartile, while the 75th percentile is called the third quartile. As you
can 1magine, the median 1s also known as the second quartile.

Interquartile Range

Another measure of dispersion is the mterquariile range. The interquar-
tile range i1s defined to be the first quartile subtracted from the third

quartile. In other words, X, ;5 — X,

Example 2.6.  Find the interquartile range from the following set of
golf scores:

S=1{67, 69,70, 71,74, 77, 78, 82, 89}

Since we have nine data points, and the set 1s ordered, the median 1s

; : , or the 5th position. That means that the medi-

an for this set is 74.

located in position

The first quartile 1s the median of the scores below the fitth

» %0250
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position. Since we have four scores, the median 15 the average of the
second and third score, which leads us to x, .. = 69.5.

The third quartile, x, .., 1s the median of the scores above the fifth

position. Smce we have four scores, the median 15 the average of the

seventh and eighth score, which leads us to x, ;. = §0.
Finally, the interquartile range is x,,. — x, .. = 80— 69.5 =11.5.

(Une final measure of dispersion that 1s worth mentioning 15 the
semiinterqudrtile range. As the name suggests, this 15 simply half of the
interquartile range.

Example 2.7.  Find the semiinterquartile range for the previous data
sef.

%(Iﬂlﬁ — Xy p5) = %(3{:}— 69.5)=5.75

Skewness

The final descriptive statistics we will address in this section deals with
the distribution of scores in your data set. For instance, you might have
a symmetrical data set, or a data set that 1s evenly distributed, or a data
set with more high values than low values.

Often a distribution 1s not symmetric about any value, but
instead has a few more higher values, or a few more lower values. If the
data set has a few more higher values, then it 15 said to be skewed 1o the
right.

Skewed to
the nght

Figure 2-1
skewed to the right.
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If the data set has a few more lower values, then it 1s said to be skewed
to the left.

Skewed to
the left

Figure 2-2
Skewed to the left.

* Important!

If a data set is skewed to the right or to the left, then there
IS a greater chance that an cutlier may be in your data set.
Cutliers can greatly affect the mean and standard deviation
of a data set. So, if your data set is skewed, you might want
to think about using different measures of central tendency
and dispersion!
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DISCRETE
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Random Variables

Suppose that to each point of a sample space we assign a number. We
then have a funchion defined on the sample space. This tunction 1s called
a random variable (or stochastic variable) or more precisely, a random

23
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function (stochastic function). It 15 usually
denoted by a capital letter such as X or ¥. In
general, a random variable has some speci-
fied physical, geometrical, or other signifi-
cance.

A random variable that takes on a finite
or countably infinite nmamber of values 1is
called a discrete random variable while one
that takes on a noncountably mfinite number
of values 15 called a nondiscrete random variable.

Discrete Probability Distribution

Let X be a discrete random variable, and suppose that the possible val-

ues that it can assume are givenby x, x , x, ... , arranged in some order.

suppose also that these values are assumed with probabilities given by
PX=x,)=f(x;) k=124 (1)

It 13 convenient to introduce the probability furnction, also referred
to as probability distribution, given by

PX=x)= flx) (2)

For x =x, , this reduces to our previous equation, while for other

values of x, fix) =0,

In general, f{x) is a probability function if

1. f(x)=0
2. Y fln=1
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where the sum n the second property above 1s taken over all possible
values of x.

Example 3.1.  Suppose that a coin 1s tossed twice. Let X represent
the number of heads that can come up. With each sample point we can
assoclate a number tor X as follows:

Sample Point HH HT TH TT

X 5 1 1 0

Now we can find the probability function corresponding to
the random variable X. Assuming the coin is fair, we have

P(HH)=% P(HT)=§ P(TH)=% P(TT):%

Then

P(X=0)=P(TT)=%

P(X=1)= P(HT UTH) = P(HT) + P(TH) = i + i = ;

P(X =2)= P(HH) = i

Thus, the probability function 1s given by

% 0 1 2
fix) /4 | 172 | 1/4

Distribution Functions for Random Variables

The cumulattve distribulion function, or brietly the distribution func-
fion, tor a random variable X i1s defined by
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Flx)=P(X<Xx) (3)
where x 1s any real number, 1.€., —oe < X < oo,
In words, the cumulative distribution function will determine
the probability that the random variable will take on any value x or less.

The distribution function f(x) has the following properties:

1. F(x)1s nondecreasing [1.e., F(x) £ F(y) it x < y].
2. lim F{x)=0; hm F(x)=1

X—»—o0 X —300
3.  F(x)1s continuous from the right [1.e., lim+ Flx+h)=F(x)
for all x]. r

Distribution Functions for
Discrete Random Variables

The distribution function for a discrete random wvariable X can be
obtained from its probability tunction by noting that, for all x i {-ee,e0),

0 —oo < X < Xy
fixy) X SX <X,

Fx)=<flx)+ f(x,) Xo £X < Xg

S+ fx,) X, Sx <eo (4)

It 1s clear that the probability function of a discrete random variable
can be obtained from the distribution function noting that

J@)=1F(x)— lim F(u) (9)

H—3X
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Expected Values

A very 1important concept in probability and statistics 1s that of mathe-
malical expectafion, expected value, or brietly the expectation, of a ran-
dom variable. For a discrete random variable X having the possible val-

ues x,, x,, ..., X,, the expectation of X 1s defined as

EX)=x,P(X=x)++x,P(X=x,)= iij(X=xj) (6)
=1

or equivalently, if P(x=x)=f(x,),

E(X)=x f(x)++x,f(x,)=D x,f(x,)=> xf(x) (/)
=1 X

where the last summation 1s taken over all appropriate values of x.
Notice that when the probabilities are all equal,

(8)

1

which 1s simply the meanof x,, x,, ..., x_ .

Example 3.2.  Suppose that a game 1s to be played with a single die
assumed fair. In this game a player wins $20 if a 2 turns up; $40 if a 4
turns up; loses $30 if a 6 turns up; while the player neither wins nor
loses it any other face turns up. Find the expected sum of money to be
won.

Let X be the random variable giving the amount of money won on
any toss. The possible amounts won when the dieturnsup 1, 2, ..., 6

are X, x,, ..., X, respectively, while the probabilities of these are f{x ),

fix,), ..., fix ). The probability function for X 18 given by:
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b O | +20 | O | +40 0 —30
fix) /6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6

Theretore, the expected value, or expectation, 18

1 1 1 1 | 1
E(X)= (0)[5] #H (20)[Ej HF (0)[g] + (40)[5] o (0)[5] o (_SOJ[E] =5

It follows that the player can expect to win $5. In a fair
game, therefore, the player should expect to pay $5 in order to play
the game.

Remember

The expected value of a discrete ran-
dom variable I1s its measure of central
tendency!

Variance and Standard Deviation

We have already noted that the expectation of a random variable X 1s
often called the mean and can be denoted by u. As we noted in Chapter
Two, another quantity of great importance in probability and statistics 1s
the variance. If X 1s a discrete random variable taking the values x, x,,
..., X,, and having probability function f(x), then the variance is given

by
ox =E(X-u’ |=Y (x, -’ fx)=D x-w)’ fx)  ©
=1 X

In the special case where all the probabilities are equal, we have
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=(Il—ﬂ)z+(I2—J£;)2++“+(Xﬂ—ﬂ)2 (10)

et D2

g

which 1s the variance we found for a set of » numbers values x,, x,

ey K

Example 3.3. Find the variance tor the game played in Example
Dl

Recall the probability function for the game:

X 0 | +20 0 |+0 | O =30
ﬁ’xj) /6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6

We have already found the mean to be u = 3, therefore, the variance is
given by

J§=(0—5)E[a (20—5)2[3 (0—5)2&] (40—5)2[3

+(0— 5){% (=30 — 5){% _ 2P0 _ 458333
6 6 6

The standard deviation can be found by simply taking the square root of
the variance. Therefore, the standard deviation 1s

o =458.333 = 21.40872096

Notice that if X has certain dimensions or units, such

as centimeters (cm), then the variance of X has units cm?
while the standard deviation has the same unit as X, 1.e.,
cm. It 1s for this reason that the standard deviation is
often used.
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Some Theorems on Expectation

Theorem 3-1:  If ¢ 1s any constant, then
ElcX)=cE(X) (11)

Theorem 3-2: It X and Y are any random variables, then
EX+Y)=E(X)+ E(Y) (12)
Theorem 3-3: If X and Y are independent random variables, then

E(XY)=E(X)E(Y) (13)

* Note!

These properties hold for any random variable, not just dis-
crete random variables. We will examine another type of
random variable in the next chapter.

Some Theorems on Variance

Theorem 3-4:
o =E[(X-w)’]=EX*)-u*=EX")-[EX)] (14)

where = £E(X).
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Theorem 3-5:  If ¢ is any constant,
Var(cX) = c*Var(X) (13]

Theorem 3-6: The quantity E[(X — a)*] is a minimum when (/6)
a=p=EX)

Theorem 3-7: It X and ¥ are independent random variables,

Var(X +Y) =Var(X) + Var(Y) or  G%.y =0%+05 (17)

Var(X —=Y) = Var(X) + Var(Y) or 0%y =03 +0>

Don’t Forget

These theorems apply to the vari-
ance and not to the standard devi-
ation! Make sure you convert your
standard deviation Into vanance
before you apply these theorems.

Generalizations of Theorem 3-7 to more than two independent ran-
dom variables are easily made. In words, the variance of a sum of inde-
pendent variables equals the sum of their variances.

Again, these theorems hold true for discrete and nondiscrete ran-
dom variables.
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Example 3.4. Let X and Y be the random independent events of

rolling a fair die. Compute the expected value of X + Y, and the variance
of X+ Y.

The following 1s the probability function for X and ¥, individually:

X 1 2 3 4 5 6

Jixp | U6 | 16 16 | 16 | 1/6 | 1/6

From this, we get the following:
n,=pn,=35 and  ©% =07 =2.91666

There are two ways we could compute £(X + Y) and Var(X + Y).
First, we could compute the probability distribution of X + ¥, and find
the expected value and variance from there. Notice that the possible val-
nesforX +Yare?2 3, ..., 11, 12.

X +y 2 3 4 5 6
fix +y) | 1/36 | 2/36 |3/36 |4/36 | 5/36

X+ 7 8 9 10 |11 12
filx +y) | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36

We can find the expected value as follows:

1 2 2 1 252
E(X+Y)= (2)[£] # (3)[%j +--:+ (1 1)[£] % (IQ)KEJ BT 7

It then follows that the variance 1s:

ool 2 Ve as_ 2 L) 210 _ 3
Var(X+Y)—[(2 7) [36]+ (12—7) [36]} o = 9-8333
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However, using Theorems 3-2 and 3-7 makes this an easy task.
By using Theorem 3-2,
EX+Y)=EX)+EY)=35+35=17.

By using Theorem 3-7,

Var(X +Y)=Var(X)+ Var(Y)=2.91666 +2.91666 = 5.8333

since X = Y, we could have also found the expected value using
Theorems 3-1:

EX+Y)=EX+X)=EQX)=2[EX)]|=2(35)=7

However, we could rnof have used Theorem 3-5 to find the variance
because we are basically using the same distribution, X, twice, and X 18
not independent trom itself. Notice that we get the wrong variance when

we apply the theorem:

Var(X + X) = Var(2X) = (22 ) Var(X)=4Var(X)=11.666
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Continuous Random Variables

A nondiscrete random variable X 1s said to be absolutely continuous, or
simply continuous, if its distribution function may be represented as
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Flx)=P(X£x)= j fu) du (1)
where the function f(x) has the properties
1. fx)=0

3 Tf(x)dx=1

Continuous Probability Distribution

It follows from the above that if X i1s a continuous random variable, then
the probability that X takes on any one particular value 1s zero, where-
as the interval probability that X lies between two different values, say
a and b, 1s given by

P(a-::X-::b)=jf(x)dx (2)
b

Example 4.1.  If an individual were selected at random from a large
group of adult males, the probability that his height X 1s precisely 68
inches (1.e., 68.000... inches) would be zero. However, there 1s a prob-
ability greater than zero that X 18 between 67.000... inches and
68.000... mches.

A function f(x) that satisties the above
requirements is called a probability function
or probability distribufion for a continuous
random variable, but it 1s more often called
a probability density function or simply den-
sity function. Any function fix) satistying the two properties above will
automatically be a density function, and required probabilities can be
obtaimed from (2).
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Example 4.2.  Find the constant ¢ such that the tunction

cx® 0<x<?3

f(x)=

k 0  otherwise

18 a density function, and then find P(1 < X < 2).

Notice that if ¢ = 0, then Property 1 1s satisfied. So f(x) must satisty
Property 2 in order for it to be a density function. Now

o 3 3|3
[ rade=fexr? dx=% = 9¢
— oo ()

0

1
and since this must equal 1, we have ¢ = 9’ and our density function
1S
. 3
EI G aer s
JE )=
0 ortherwise
Next,
2 3 [2
1 g8 1 7
Pl<X<2)=[<x’ o I . N
' & 27 | 2F Al A

Distribution Functions for Continuous Random
Variables

Recall the cumulative distribution function, or distribution function, for
a random variable 1s defined by
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F(x)=PX <x) (3)

where x 1s any real number, 1.e., —ec £ X < oo, S0,

Fix)= | f(x)dx )
Example 4.3.  Find the distribution function tor example 4.2.

3
X

F(x)=f f(x)dx =I;x2 dx .

where x < 3.
There 18 a nice relationship between the distribution function and
the density function. To see this relationship, consider the probability

that a random variable X takes on a value, x, and a value fairly close to
X, say X + AX.

The probability that X 1s between x and x + Ax 1s given by

x+Ax

Px<X<x+Av)= | f(u)du (5)

so that if Ax 1s small, we have approximately
Px<sX<x+ Ax) + f(x)Ax (6)

We also see from (1) on differentiating both sides that

dF (x)
dx

= f(x) (7)

at all points where f(x) 1s continuous, 1.e., the derivative of the distribu-
tion tfunction is the density tunction.
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Expected Values

It X 18 a continuous random variable having probability density function
fix), then 1t can be shown that

E[g(x)]= | g(x) f(x) dx (8)

Example 4.4,  The density function of a random X 18 given by

lx O<x<?

O

| O otherwise

The expected value of X 1s then

i

E(X)= j X f(x) dx=?x[ix] dx =
{

— 0

o’ 3|2
2 x4
73 6 3

0 M— [

Variance

It X 18 a continuous random variable having probability density function
fix), then the variance 1s given by

0% = E|(X-p)’|= [ i f0) d (9)

provided that the integral converges.

Example 4.5.  Find the variance and standard deviation of the ran-
dom variable from Example 4.4, using the tact that the mean was found
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to be ‘qu(X)zg-

o<l fx-3) [ o3 o= (o3 o)

2 2
and so the standard deviation 18 ¢ = J; = % .

Recall that the variance (or standard deviation) 15 a measure of the
dispersion, or scatter, of the values of the random wvariable about the
mean L. If the values tend to be concentrated near the mean, the vari-
ance 15 small; while if the values tend to be distributed far from the
mean, the variance i1s large. The situation 1s indicated graphically in
Figure 4-1 for the case of two continuous distributions having the same
mean {.

-~ Small variance

- Large variance

I

Figure 4-1

Properties of Expected Values and Variances

In Chapter Three, we discussed several theorems that applied to expect-
ed values and variances of random variables. Since these theorems
apply to any random variable, we can apply them to continuous random
variables as well as their discrete counterparts.
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Example 4.6.  Given the probability density function in Example
4.4, find £(3X) and Var(3X).

Using our the direct computational method,

1 3
E(3X)= | 3x f(x)dx=j3x[§x]dx= Eﬁdx=% =4
— 0 0

Using Theorems 3-1 and 3-2, respectively, we could have tound these
much easier as tollows:

EGX)=3E(X) = 3[%] _4

or

E(SX)=E(X+X+X)=E(X)+E(X)+E(X)=j+i+j=4

Using Theorem 3-53, the variance is also quite simple to find:

Var(3X)=3*Var(X)=9 [éj =2

* Note!

These theorems aren't just for show! They can make your
work much easier, so learn them and take advantage of them.
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Graphical Interpretations

If fix) 1s the density function for a random variable X, then we can rep-
resent y = fix) by a curve, as seen below in Figure 4-2. Since filx) = O,
the curve cannot fall below the x-axis. The entire area bounded by the
curve and the x-axis must be 1 because of property 2 listed above.
Geometrically, the probability that X 15 between a and b, 1e.,
Pia < X < b), 15 then represented by the area shown shaded, m Figure

4-2.

f(x)

d b X
Figure 4-2

The distribution function Fix) = P(X < x) 18 a monotonically
increasing function that increases from O to 1 and 1s represented by a
curve as in the following figure:

Figure 4-3
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Binomial Distribution

suppose that we have an experiment such as
tossing a coin or die repeatedly or choosing a
marble from an urn repeatedly. Each toss or
selection 15 called a #rial. In any single trial
there will be a probability associated with a
particular event such as head on the comn, four
on the die, or selection of a specific color mar-
ble. In some cases this probability will not
change from one trial to the next (as m tossing
a coin or die). Such trials are then said to be independernt and are often
called Bemoulli trials after James Bernoulli who mvestigated them at
the end of the seventeenth century.

Let p be the probability that an event will happen m any single
Bernoulli trial (called the probability of success). Then ¢ =1 — p 15 the
probability that the event will fail to happen in any single trial (called
the probability of failure). The probability that the event will happen
exactly x times in # trials (1.e., x successes and n — x failures will occur)
is given by the probability function

72 71!
Fx)=PX=x)= (I] prgTt = reg " ({)

xlm—x)!

where the random variable X denotes the number of successes in 7 tri-
als and x=0,1, ..., 7.

Example 5.1.  The probability of getting exactly 2 heads m 6 tosses
of a fair com 1s

(A6 - T2

The discrete probability function fix) 1s often called the Binorial distri-
bution since x =0, 1, 2, ..., n, it corresponds to successive terms n the
binomial exparsion
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K= X

#l 7l Al— 7l Al— Al L H X A—x
(4+p)" =4 +mq 1p+(2]q ptp =2{ )p " @

The special case of a binomial distribution with n = 1 1s also called the
Bernoullt distribution.

Properties of Binomial Distributions

As with other distributions, we would like to know the descriptive sta-
tistics tor the binomial distribution. They are as tfollows:

Mean w=mnp
Variance a=np (1-p)

Standard Deviation &= Jﬂp(l — D)
Example 5.2.  Toss a fair coin 100 times, and count the number of
heads that appear. Find the mean, variance, and standard deviation of

this experiment.

In 100 tosses of a fair coin, the expected or mean number of heads 1s
= (100)(0.5) = 50.

The variance is found to be ¢ = (100)(0.5)(0.5) = 25.

This means the standard deviation is & = 4{(100)(0.5)(0.5) =4/25=35.
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The Normal Distribution

One of the most important examples of a continuous probability distri-
bution is the normal distribution, sometimes called the Gaussian distri-
bution. The density function for this distribution i1s given by

1 C(a—

where 1 and ¢ are the mean and standard deviation, respectively. The
corresponding distribution function 1s given by

F(x)=P(X <x)=

| g~ W 126" 4 )

1
ov2n

It X has the distribution function listed above, then we say that the

random variable X is normally distributed with mean p and variance 2.
It we let Z be the random vanable corresponding to the following

Z=2"F (5)

then Z 1s called the standard variable corresponding to X. 'The mean or
expected value of Z 1s O and the standard deviation 1s 1. In such cases
the density function tor Z can be obtamned from the definition of a nor-

mal distribution by allowing ¢ = 0 and ¢ = 1, yielding

F)= J;Tc 12 (6)

This 1s often referred to as the standard normal density funclion.
The corresponding distribution function 1s given by
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FR)=P(Z<s)=—7— | e " du=—+

We sometimes call the value z of the standardized variable Z the
standard score.

A graph of the standard normal density function, sometimes called
the sitandard normal curve, is shown in Figure 5-1. In this graph we
have indicated the areas within 1, 2, and 3 standard deviations of the
mean (1.e., between z = -1 and +1, z = -2 and +2, z = -3 and +3) as
equal, respectively, to 68.27%, 95.45%, and 99.73% of the total area,
which is one. This means that

P(-1<Z<1)=0.6827
P(2<7Z<2)=0.9545
P(=3<7Z<3)=0.9973

* Note!

The normal distribution is very important! It will guite often
come up In practice, so make sure you understand how to
use this distribution.
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fz)

4

o 68 2T% —

- 95.45% ——————

- GO T31%6 -

Figure 5-1

A table giving the areas under the curve bounded by the ordinates
at z = 0 and any positive value of z 15 given in Appendix B. From this
table the areas between any two ordinates can be found by using the
symmetry of the curve about z =0.

Examples of the Normal Distribution

since thig distribution 1z so important, we will now run through a few
examples of how to use the distribution.

Example 5.3. Find the area under the standard normal curve
betweenz=0and z=1.2.

Using the table in Appendix B, proceed down the column marked
zuntil entry 1.2 15 reached. Then proceed right to column marked 0. The
result, 0.3849, 15 the required area and represents the probability that £
15 between O and 1.2. Therefore, PO £ 272 £1.2) = 0.3549.
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Example 54. Find the area under the standard normal curve

between z = 046 and 7 =2.21.

r=0 gr=)2
Figure 5-2

Consider the following picture of the density curve.

-0.46 2.21

Figure 5-3

The required area can be broken down into two parts. First, the area
between 7 = —0.40 and z =0, and secondly, the area between 7z =0 and
z=0and z=2.21.

since the normal curve is symmetric, the area between 7 = —0.46
and z = O 15 the same as the area between z =0 and z = 0.46. Using
Appendix B, we can see that this area 15 0.1772. In other words,

P46 =Z220=0<72<0406)=0.1772

Using Appendix B to find the area between z =0 and z = 2.21 15
found to be 0.4864. This means

PO=Z2<221)=048064

This allows us to determine the required area as follows:
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Total Area = {area between z =—-0.46 and 7z = 0) +
(area between z=0and z=2.21)
= 01722 +0.4864
= 0.65806

Therefore P{—0.46 =7 <2.21)=0.6036.

Example 5.5. The mean weight of 500 male students at a certain
college is 151 1b and the standard deviation is 15 Ib. Assuming the

weights are normally distributed, find how many students weigh (a)
between 120 and 155 b, (b} more than 185 1b.

(a) If weights are recorded to the nearest pound, then weights recorded

as being between 120 and 155 1b can actually have any value from 119.5
to 155.5 Ib.

We need to find the standard scores for 119.5 and 155.5.

119.5 Ib in standard units = (1195-151)/715
= =210

155.5 Ib in standard units = (1555-151)/15
= 0.30

=-2.10 030

Figure 54
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Required proportion of students
= {area between 7 =—2.10 and 7z = 0.30)
= {area between 7z =—2.10 and z = 0}
+ {area between z = 0 and z = 0.30)
04821 + 0.1179
(.6000

This means that of the 500 male students polled, 60% of them weigh
between 120 and 155 1b. Then the number of students in this range is
(500 0.6000) = 300.

(b) Notice that students weighing more than 185 b must weigh at least
185.5 Ib.

185.5 b in standard units (185.5-151)/15

2.30

T30
Figure 5-5

Required proportion of students
= (area to the right of 7 = 2.30)
= (area to the right of 7 =0)
— {area between z = 0 and z = 2.30)
0.5 -0.4893
0.0107

Then the number weighing more than 185 Ib is (500%(0.0107) = 5.
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It W denotes the weight of a student chosen at random, we can sum-
marize the above results i terms of probability by writing

P(119.5 < W<1555=0.6000  P(W=185.5)=0.0107

Poisson Distributions

Let X be a discrete random variable that can take on the values 0, 1, 2,...
such that the probability function of X is given by

x _—A
f = PX = )= E! x=0,12,... (8)
X!

where A is a given positive constant. This distribution is called the
Potsson distribution (after S. D. Poisson, who discovered it in the early
part of the nineteenth century), and a random variable having this dis-
tribution 1s said to be Powsson distributed.

The values of the Poisson distribution can be obtained by using
Appendix F, which gives values of e*for various values of A.

Example 5.6.  If the probability that an individual will suffer a bad
reaction from injection of a given serum 1s 0.001, determine the proba-
bility that out ot 2000 individuals, (a) exactly 3, (b) more than 2, indi-
viduals will sutter a bad reaction.

Let X denote the number of individuals suttering a bad reaction. X
1s Bernoulli distributed, but since bad reactions are assumed to be rare
events, we can suppose that X 1s Poisson distributed, 1.e.,

X _—h
PX=x)=2 E! where A = np = (2000)(0.001) = 2
X




52 PROBABILITY AND STATISTICS

(a)
3 2
P(X=3)=2; = 0.180
(b)
PX>2) = 1-[P(X=0)+P(X=1)+P(X=2)]
_208_2 e 228_2_
= 1- + +
0! 1! 2!
= 1-5¢72
= 0323

An exact evaluation of the probabilities using the binomial distrib-
ution would require much more labor.

Relationships between Binomial
and Normal Distributions

If » 1s large and 1f neither p nor ¢ 1s too close to zero, the binomial dis-
tribution can be closely approximated by a normal distribution with
standardized random variable given by

X —np

9
e ()

Here X 1s the random variable giving the number of successes in n
Bernoulh trials and p 1s the probability of success. The approximation
becomes better with increasing » and 1s exact in the limiting case. In
practice, the approximation is very good if both »p and ng are greater
than 5. The fact that the binomial distribution approaches the normal
distribution can be described by writing
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: X = np : —u?i2
lim P| a < e au (10)

e \ "= g e

i

In words, we say that the standardized random variable (X —np)/
ﬁ/npq 18 asymprotically normal.

Example 5.7.  Find the probability of getting between 3 and 6 heads
inclusive m 10 tosses of a fair coin by using (a) the binomial distribu-
tion and (b) the normal approximation to the binomial distribution.

(a) Let X have the random variable giving the number of heads that
will turn up in 10 tosses. Then

Px=3)=(" [1]3[1]?—15 PX=dy=| [1]4[1]6_105
s N2/ \2) s =D=1413) 2] 50
P(X=5)=(10M1T[1T © px=6)= (101[1]6[1]2105
S5)\2/\2/ 256 6 \2/)\2) 512

Then the required probability 1s

P(SfiXﬂ‘iG)—ﬁ 105 = 105—0.7’734

28 512 256 512

(b) Treating the data as continuous, it follows that 3 to © heads can be
considered 2.5 to 6.5 heads. Also, the mean and the variance for the

1
binomial distribution 1s given by p=np= (10)[5] =5 and

oo
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2.5 in standard units = 239 ~1.58
1.58

6.5 in standard units = 8.5-5_ 0.95
1.58

-1.38 0.95

Figure 5-6

Required probability = (area between z=—1.58 and 7 =0.95)
— {area between 7 =-1.58 and 7 = 0)
+ (area between z =0 and z = 0.95)
= 04429 +0.3289
= 07718

which compares very well with the true value 0.7734 obtamed m part
(a). The accuracy 1s even better for larger values of #.

Relationships between Binomial
and Poisson Distributions

In the binomial distribution, if 7 18 large while the probability p of
occmrence of an event 1s close to zero, so that ¢ = 1 — p 15 close to one,
the event 1s called a rare evert. In practice, we shall consider an event
as rare if the number of trials is at least 50 (z = 50) while z1p is less than
5. For such cases, the binomial distribution is very closely approximat-
ed by the Poisson distribution with A = #sp. This is to be expected on
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comparing the equations for the means and
variances tor both distributions. By substi-
tuting A=np, g = 1 and p = 0 into the equa-
tions for the mean and variance of a bino-
mial distribution, we get the results for the
mean and variance for the Poisson distribu-
tion.

Relationships between Poisson
and Normal Distributions

Since there 1s a relationship between the binomial and normal distribu-
tions and between the binomial and Poisson distributions, we would
expect that there should be a relation between the Poisson and normal
distributions. This 1s n fact the case. We can show that it X 1s the fol-

lowing Poisson random variable

Are ™t
X!

J(x)=

and
X-A

VA

1s the corresponding standardized random variable, then

A —>oa ﬁ m

b
limP(aix_AiibJ= ! je_“zmdu

(41)

(12)

(45)

1.e., the Poisson distribution approaches the normal distribution as

A—>eor (X—u)/ JA s asymptotically normal.
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Central Limit Theorem

The similarities between the binomial, Poisson, and normal distribu-
tions naturally lead us to ask whether there are any other distributions
besides the binomial and Poisson that have the normal distribution as
the limiting case. The following remarkable theorem reveals that actu-
ally a large class of distributions have this property.

Theorem 5-1:  (Central Limit Theorem) Let X, X,,..., X be inde-

pendent random variables that are identically distrib-
uted (1.e., all have the same probability tunction in the
discrete case or density function in the continuous

case) and have finite mean W and variance ¢2. Then if
S =X +X,+--+X (=172 ..),

b
S e 1
lim P(a <O T b] = je—“lf’z du (14)

Fl—poa (}"JE -

that 1s, the random variable (S, —nu)/ o4n , which
is the standardized variable corresponding to 5 , 18

asymptotically normal.

The theorem 1s also true under more general conditions; for exam-
ple, it holds when X, X, ..., X are independent random variables with

the same mean and the same variance but not necessarily identically
distributed.

Law of Large Numbers

Theorem 3-2: (Law of Large Numbers) Let Xis Xy ooes X, be mutu-

ally independent random variables (discrete or con-

tinuous), each having finite mean u and variance 2.
ThenitS =X, +X, +---+X (=172 ..)
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Su
R

limP{ —JuEEJ=0 (15)
A—yoa

Since 5 /n 18 the arithmetic mean of X, + X, + --- + X, this theo-
rem states that the probability of the arithmetic mean 5 /»n differing

from its expected value L by more than € approaches zero asn — o=, A

stronger result, which we might expect to be true, is that lim S, /n = u,
A—yoa

but that 1s actually false. However, we can prove that [im S, L=y
fl—y o0

with probability one. This result 1s often called the sirong law of large

numbers, and by contrast, that of Theorem 5-2 is called the weak law of
large numbers
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Population and Sample

(Often in practice we are interested in drawing valid conclusions about a
large group of individuals or objects. Instead of examining the entire
group, called the popuiation, which may be difficult or impossible to do,
we may examine only a small part of this population, which 15 called a
sample. We do this with the aim of inferring certain facts about the pop-
ulation from results found m a sample, a process known as statistical
infererce. The process of obtaining samples 1s called sampling.

Example 6.1. We may wish to draw con-
clusions about the percentage of defective bolts
produced m a factory during a given 6-day
week by examming 20 bolts each day produced
at various times during the day. In this case all
bolts produced during the week comprise the
population, while the 120 selected bolts consti-
tute a sample.

several things should be noted. First, the word popuiation does not
necessarily have the same meaning as in everyday language, such as
“the population of Shreveport 1 180,000.” Second, the word popuiation
15 often used to denote the observations or measurements rather than
individuals or objects. Third, the population can be finite or infinite,
with the number being called the population size, usually denoted by N.
Similarly, the mamber in the sample i1s called the sample size, denoted
by 7, and 1s generally finite.

Sampling

If we draw an object from an urn, we have the choice of replacing or not
replacing the object into the urn before we draw again. In the first case
a particular object can come up again and again, whereas i the second
it can come up only once. Sampling where each member of a popula-
tion may be chosen more than once 1s called sampling with replacemert,
while sampling where each member cannot be chosen more than once
is called sarmpling without replacement.
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You Need to Know /

A finite population that 1s sampled with replacement can
theoretically be considered infinite since samples of any
size can be drawn without exhausting the population. For
most practical purposes, sampling from a finite population
that I1s very large can be considered as sampling from an
infinite population.

Random Samples, Random Numbers

Clearly, the reliability of conclusions drawn concerning a population
depends on whether the sample 1s properly chosen so as to represent the
population sufficiently well, and one of the important problems of sta-
tistical inference 1s just how to choose a sample.

One way to do this tor fimite populations 1s to make sure that each
member of the population has the same chance of being in the sample,
which 1s often called a random sample. Random sampling can be
accomplished for relatively small populations by drawing lots, or equiv-
alently, by using a table of random numbers (Appendix G) specially
constructed for such purposes.

Because interence from sample to population cannot be certain, we
must use the language ot probability 1in any statement of conclusions.

Population Parameters

A population is considered to be known when we know the probability
distribution f{x) (probability function or density function) ot the associ-
ated random variable X. For instance, in Example 6.1, if X 1s a random
variable whose values are the number of defective bolts found during a
given 6-day week, then X has probability distribution f{x).
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It, tor example, X 1s normally distributed, we say that the popula-
tion 1s normally disirtbuted or that we have a normal population.
Stmilarly, 1f X 1s binomially distributed, we say that the population is
Dinomially distributed or that we have a binomial population.

There will be certain quantities that appear in fix), such as L and G
in the case of the normal distribution or p in the case of the binomial dis-
tribution. Other quantities such as the median, mode, and skewness can
then be determined in terms of these. All such quantities are often called
population paramefers.

Remember

When we are given the population so that
we know f(x), then the population parame-
ters are also known.

An 1mportant problem that arises when the probability distribution
fix) of the population 1s not known precisely, although we may have
some 1dea of, or at least be able to make some hypothesis concerning,
1s the general behavior of f(x). For example, we may have some reason
to suppose that a particular population i1s normally distributed. In that
case we may not know one or both of the values 1 and ¢ and so we
might wish to draw statistical interences about them.

Sample Statistics

We can take random samples from the population and then use these
samples to obtain values that serve to estimate and test hypothesis about
the population parameters.

By way of illustration, let us consider an example where we wish
to draw conclusions about the heights of 12,000 adult students by exam-
ining only 100 students selected trom the population. In this case, X can
be a random variable whose values are the various heights. To obtain a
sample ot size 100, we must first choose one individual at random from
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the population. This individual can have any
one value, say x;, of the various possible

heights, and we can call x, the value of a

random variable X, where the subscript 1 1s

used since it corresponds to the first individ-

ual chosen. Similarly, we choose the second individual for the sample,
who can have any one of the values x, ot the possible heights, and x,

can be taken as the value of a random variable X,. We can continue this
process up to X ., since the sample 1s size 100. For simplicity let us

assume that the sampling 1s with replacement so that the same individ-
ual could conceivably be chosen more than once. In this case, since the
sample size 18 much smaller than the population size, sampling without
replacement would give practically the same results as sampling with
replacement.

In the general case a sample of size » would be described by the

values LigoAsyy wonieg s of the random variables Xl, Xz’ - XH . In this case

of sampling with replacement, X,, X,, ..., X would be independent,

identically distributed random wvariables having probability function
fix). Their jomnt distribution would then be

PX, =%, X, =X, X, = X ) = f(X) fx,) -+ f(%)

Any quantity obtained from a sample tor the purpose of estimating a
population parameter 1s called a sample stanstic. Mathematically, a sam-
ple statistic for a sample of size n can be defined as a function of the ran-
dom variables X, X, ..., X , 1.e. g(X,,...,X ). The function g(X,,...,X )
1s another random variable, whose values can be represented by
g(X X))
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* Note!

The word stalistic 1s often used for the random variables or
for its values, the particular sense being clear from the con-
text.

In general, corresponding to each population parameter there will
be a statistic computed trom the sample. Usually the method for obtain-
ing this statistic trom the sample is similar to that for obtaimng the
parameter from a finite population, since a sample consists of a finite set
of values. As we shall see, however, this may not always produce the
“best estimate,” and one of the important problems of sampling theory
1s to decide how to form the proper sample statistic that will be estimate
a given population parameter. Such problems are considered later.

Where possible we shall use Greek letters, such as L or ¢ for val-
ues of population parameters, and Roman letters, m, s, etc., for values
corresponding to sample statistics.

Sampling Distributions

As we have seen, a sample statistic that 1s computed from X,,..., X 1s a

function of these random variables and is theretore itself a random vari-
able. The probability distribution of a sample statistic 1s often called the
sampling distribufion of the statistic.

Alternatively, we can consider all possible sample of size n that can
be drawn from the population, and for each sample we compute the sta-
tistic. In this manner we obtain the distribution of the statistic, which 1s
its sampling distribution.

For a sampling distribution, we can of course compute a mean,
variance, standard deviation, etc. The standard deviation i1s sometimes
also called the standard error.
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The Sample Mean

LetX,, X,,..., X denote the independent, identically distributed, random

variables for a random sample of size n as described above. Then the
mean of the sample or sample mearn 15 a random variable defined by

Fl

X = (4)

It Kiskszeanit, denote the values obtained in a particular sample of size =,

then the mean for that sample 1s denoted by

Xl'l'.xz +“*X

: (2)

Xo=
Fl

Sampling Distribution of Means

Let fix) be the probability distribution of some given population from
which we draw a sample of size x. Then 1t 1s natural to look for the prob-
ability distribution of the sample statistics X, which is called the san-
pling distribution for the sample mean, or the sampling distribution of
mean. The tollowing theorems are important in this connection.

Theorem 6-1: The mean of the sampling distribution of means,
denoted by u, 1s given by

EX) = pig =i (3)

where L 1s the mean of the population.
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Theorem 6-1 states that the expected value of the sample mean 1s
the population mean.

Theorem 6-2: If a population 1s infinite and the sampling 1s random
or if the population is finite and sampling is with
replacement, then the variance of the sampling distri-

bution of means, denoted by 0‘% , 18 given by

{TZ

7 _uVl=ng2 9
Elee-s

where 6 is the variance of the population.

E

Theorem 6-3: It the population 1s of size N, if sampling 1s without
replacement, and if the sample size 1s » < N, then the
previous equation 1s replaced by

Jg_JE[N—H] 5
X p \N=1 ©)

while g 1s from Theorem 6-1.

Note that Theorem 6-3 1s basically the same as 6-2 as N — oo,

Theorem 6-4: It the population tfrom which samples are taken is
normally distributed with mean w and variance 62,
then the sample mean i1s normally distributed with

mean W and variance &7 /.

Theorem 6-5:  Suppose that the population from which samples are

taken has a probability distribution with mean (1 and
variance 62, that is not necessarily a normal distribu-
tion. Then the standardized variable associated with

X, given by

P (6)
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is asympiotically normal, 1.e.,

lim F{Z iz)zL

Jr .-.,{I o

E-[ E-fﬁfz Tig (7)

Theorem 6-5 is a consequence of the central limit theorem. It is
assumed here that the population 1s mfinite or that sampling 1s with

replacement. Otherwise, the above is correct if we replace ¢/ AJn in

Theorem 6-5 by c?% as given in Theorem 6-3.

Example 6.2.  Five hundred ball bearings have a mean weight of
5.02 oz and a standard deviation of 0.30 oz. Find the probability that a
random sample of 100 ball bearings chosen from this group will have a
combined weight of more than 510 oz.

For the sampling distribution of means, y; = ¢ = 502 oz and

. N-n 030 [500-100
L mYN-1 f100Y 500-1

The combined weight will exceed 510 oz if the mean weight of the 100
bearings exceeds 5.10 oz.

=0.027

5.10 in standard units = 5.10-502 _ 2.96
0.027
254

Figure 6-1
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(area to the right of z = 2.96)

= (area to the right of z =0) —
(area between z =0 and z = 2.96)
0.5 — 0.4985 =0.0015

Required Probability

Theretore, there are only 3 chances in 2000 of picking a sample of 100
ball bearings with a combined weight exceeding 510 oz.

Sampling Distribution of Proportions

Suppose that a population 1s mfinite and binomially distributed, with p
and g = I — p being the respective probabilities that any given member
exhibits or does not exhibit of a certain property. For example, the pop-
ulation may be all possible tosses of a fair coin, in which the probabili-

ty of the event heads is p = 1%.

Consider all possible samples of size n drawn trom this population,
and for each sample determine the statistic that is the proportion P ot
successes. In the case of the coin, P would be the proportion of heads
turning up in » tosses. Then we obtain a sampling distribufion whose
mean [, and standard deviation G, are given by

1—
Hp =P JP=J%=JP(HP) (3)

which can be obtained using Theorem 5-1 and Theorem 3-2, respec-

tively, by placing u=p, 6 = JE :

For large values of n (n = 30), the sampling distribution is very
nearly a normal distribution, as is seen from Theorem 6-3.

For finite populations in which sampling 1s without replacement,
the equation for ¢, given above, 1s replaced by @ as given by Theorem

6-3 with 6 = +/pg .
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Note that the equations for 1, and ¢, are obtained most easily on divid-

ing by n the mean and standard deviation (np and ﬁ/ﬂpq ) of the bino-
mial distribution.

Sampling Distribution
of Differences and Sums

Suppose that we are given two populations. For
each sample of size n, drawn from the first popu-
lation, let us compute a statistic 5,. This yields a
sampling distribution for .5, whose mean and stan-
dard deviation we denote by iy and o , respec-

tively. Similarly for each sample of size n, drawn
from the second population, let us compute a statistic .5, whose mean
and standard deviation are g and o , respectively.

Taking all possible combinations of these samples from the two
populations, we can obtain a distribution of the differences, 5, — 5.,
which 1s called the sampling distribution of differences of the statistics.

The mean and standard deviation of this sampling distribution, denoted
respectively by py_g and 05 ¢ , are given by

_ _ L5 2
Hs 5, =Hg —Hg, Os5 s, _'JO-SI t05 (9)

provided that the samples chosen do not in any way depend on each
other, 1.e., the samples are independent (in other words, the random
variables 5, and .5, are independent).

It, for example, 5, and 5, are the sample means from two popula-
tions, denoted by X s )_fz, respectively, then the sampling distribution of
the ditterences of means 1s given tor mnfinite populations with mean and
standard deviation u,, ¢, and W, G,, respectively, by
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Uy 5 =Hg —Ug == (10)
and
2 2
o 2 _ (01 , Oy
0% %, —\/%1 t03, —JHI o (11)

using Theorems 6-1 and 6-2. This result also holds for finite populations
it sampling 1s done with replacement. The standardized variable

AN -
01,9
My

in that case is very nearly normally distributed if », and », are large
(n,, n, 2 30). Similar results can be obtained for infinite populations in
which sampling i1s without replacement by using Theorems 6-1 and 6-3.

Corresponding results can be obtained for sampling distributions ot
differences of proportions from two binomially distributed populations
with parameters p,, ¢, and p,, g,, respectively. In this case, 5, and .5,
correspond to the proportion of successes P, and P,, whose mean and
standard deviation of their ditference 1s given by

Hp_p =Hp —Hp =D — Do (13)

and

UPl -P, = JJ; 3 Ji%z =\IP;QI + pj;jg (14)
1
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Instead of taking differences of statistics, we sometimes are inter-
ested in the sum of statistics. In that case, the sampling distribution of
the sum of statistics 5, and S, has mean and standard deviation given by

= " 2 2

assuming the samples are independent. Results similar to b % and

0= _7, can then be obtamed.

Example 6.3. It has been found that 2% ot the tools produced by a
certain machine are defective. What 1s the probability that in a shipment
of 400 such tools, 3% or more will prove detective?

v [0.020098) 0.14
=p=002 and o,= | = =——=0.007
Hp=Pp Ak \/ 400 20

Using the correction for discrete variables, 1/(2r) = 1/800
0.00125, we have (0.03 — 0.00125) in standard units

0.03-0.00125-0.02

=.23
0.007
Required probability =  (area under normal curve to right ot
z="1.23)
= 0.1036

If we had not used the correction, we would have obtained 0.0764.
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The Sample Variance

ItX,X,, ..., X_denote the random variables for a sample of size #, then

the random variable giving the variarnce of the sample or the sample
variance 1s defined by

) XX ) (= X) oot (X - X)

(16)

Now in Theorem 6-1 we found that E{X) = u, and it would be nice
if we could also have E(5?) = . Whenever the expected value of a sta-
tistic 1s equal to the corresponding population parameter, we call the sta-
tistic an irrbiased estimator, and the value an wmbiased estimate, of this
parameter. It turns out, however, that

r—1 7

C ({7}

E($*)=pp =—

which is very nearly ¢* only for large values of # (say, # = 30). The
desired unbiased estimator 15 defined by

20 that

ESH=0" (19}
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Because of this, some statisticians choose to define the sample vari-
ance by S?rather than 5% and they simply replace # by 7 — 1 in the
denominator of the definition of 5% because by doing this, many later
results are simplified.

Frequency Distributions

If a sample (or even a population) 15 large, it 15 difficult to observe the
various characteristics or to compute statistics such as mean or standard
deviation. For this reason it 15 useful to organize or group the raw data.
As an illustration, suppose that a sample consists of the heights of 100
male students at XYZ University. We arrange the data mto classes or
categories and determine the number of individuals belonging to each
class, called the class frequernicy. The resulting arrangement, Table 6-1,
is called a frequency distribution or frequency table.

Table 6-1 Heights of 100 Male Students at XY Z University

Height Number of

(inches) Students
6062 5
63-65 I8
666 42
69-T1 27
72-74 b
TOTAL 100

The first class or category, for example, consists of heights from 60
to 62 inches, indicated by 60—62, which is called class irterval. Since 5
students have heights belonging to this class, the corresponding class
frequency is 5. Since a height that is recorded as 60 inches i1s actually
between 59.5 and 60.5 inches while one recorded as 62 inches is actu-
ally between 61.5 and 62.5 inches, we could just as well have recorded
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the class interval as 59.5 — 62.5. The next
class interval would then be 62.5 — 63.5, etc.
In the class interval 59.5 — 62.5, the num-
bers 59.5 and 62.5 are often called class
boundaries. The width of the jth class inter-
val, denoted by C which is usually the same for all classes (in which

case it 15 denoted by ), 15 the difference between the upper and lower
class boundaries. In this case, e = 62.5 — 59.5=3.

The midpoint of the class interval, which can be taken as represen-
tative of the class, 15 called the class mark. In Table 6.1 the class mark
corresponding to the class interval 60-62 15 61.

A graph for the frequency distribution can be supplied by a his-
togram, as shown in the figure below, or by a polygon graph (often
called a frequericy polygon) comnecting the midpomts of the tops mn the
histogram. It 15 of interest that the shape of the graph seems to indicate
that the sample 1s drawn from a population of heights that is normally
distributed.

B o
=
-
E ¥r
5
g :ﬂ _
o
° 10f
S
8
— 1 : ! T T 1
48 61 5 67 0 N 16
Height (inches)
Figure 6-2

Relative Freguency Distributions

If in Table 6.1 we recorded the relative frequency or percentage rather
than the number of students i each class, the result would be a relative
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or percentage frequency distribufion. For example, the relative or per-
centage frequency corresponding to the class 63—65 is 18/100 or 18%.
The corresponding histogram 1s similar to that in Figure 6-1 except that
the vertical axis 1s relative trequency instead of frequency. The sum of
the rectangular areas is then 1, or 100%.

We can consider a relative trequency as a probability distribution in
which probabilities are replaced by relative frequencies. Since relative
frequencies can be thought ot as empirical probabilinies, relative fre-
quency distributions are known as empirical probability distributions.
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ESTIMATION
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IN THIS CHAPTER:

v/ Unbiased Estimates and
Efficient Estimates

v/ Point Estimates and Interval Estimates

v/ Confidence Interval Estimates of
Population Parameters

v/ Confidence Intervals for Means

v/ Confidence Intervals for Proportions

v/ Confidence Intervals for Differences
and Sums

Unbiased Estimates and Efficient Estimates

As we remarked 1in Chapter 6, a statistic 1s called an unbiased estimator
of a population parameter if the mean or expectation ot the statistic 1s
equal to the parameter. The corresponding value of the statistic 1s then
called an unbiased estimate of the parameter.
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It the sampling distribution of two statistics
have the same mean, the statistic with the smaller
variance 1s called a more éefficient estimator of the
mean. The corresponding value of the efficient sta-
tistic 1s then called an efficient estimate. Clearly
one would 1n practice prefer to have estimates that
are both efficient and unbiased, but this is not
always possible.

Point Estimates and Interval Estimates

An estimate of a population parameter given by a single number i1s
called a point esfimate of the parameter. An estimate of a population
parameter given by two numbers between which the parameter may be
considered to lie 1s called an inferval estimate of the parameter.

Example 7.1.  If we say that a distance is 5.28 feet, we are giving a
point estimate. If, on the other hand, we say that the distance is
5.28 £ 0.03 feet, i.e., the distance lies between 5.25 and 5.31 feet, we

are giving an interval estimate,

A statement of the error or precision of an estimate 1s often called
its reltability.

Confidence Interval Estimates
of Population Parameters

Let . and 6, be the mean and standard deviation (standard error) of the

sampling distribution of a statistic 5. Then, if the sampling distribution
of .5 1s approximately normal {(which as we have seen 1s true for many
statistics if the sample size rn = 30), we can expect to find 5 lying in the
interval L, — G to U, + O, L. — 20,10 U+ 26, or L. — 30, to U, + 30,
about 68.27%, 95.45%, and 99.73% of the time, respectively.
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Equivalently we can expect to find, or we
can be confident of finding |1, in the intervals .S
— G0 5+G, 526, to 5+ 26, or S— 3G to
S+ 30, about 68.27%, 95.45%, and 99.73% of
the time, respectively. Because of this, we call
these respective intervals the 68.27%, 95.45%,

and 99.73% confidence intervals for estimating
. (1e., for esimatng the population parame-

ter, in this case of an unbiased 5). The end numbers of these intervals

(St o0, 5 £20,, §* 305;) are then called the 68.37%, 95.45%, and

90.73% confidence limits.

Similarly, S +1.96¢, and § £ 2.58 ¢, are 95% and 99% (or 0.95 and
0.99) confidence limits for y.. The percentage confidence 1s often called
the cortfidence level. The numbers 1.96, 2.58, etc., in the confidence
limits are called critical values, and are denoted by z.. From confidence
levels we can find critical values.

In Table 7.1 we give values of 7. corresponding to various confi-
dence levels used in practice. For confidence levels not presented in the
table, the values of 7. can be found from the normal curve area table in
Appendix B.

Table 7-1

Confidence Level | 99.73% 09% | 98% | 96% | 95.45%
Z- 3.00 2.58 2.33 | 208 2.00

Confidence Level 05% 90% 80% | 68.27% | 50%
2¢ 1.96 1.645 | 1.28 1.00 0.6745

In cases where a statistic has a sampling distribution that 1s differ-
ent from the normal distribution, appropriate modifications to obtain
confidence intervals have to be made.
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Confidence Intervals for Means

We shall see how to create confidence intervals for the mean of a pop-
ulation using two ditferent cases. The first case shall be when we have a
large sample size (n = 30), and the second case shall be when we
have a smaller sample (n < 30) and the underlying population 1s normal.

Large Samples (n = 30)

If the statistic .S is the sample mean X, then the 95% and 99% confi-

dence limits for estimation of the population mean |1 are given by X+
1.9605 and X * 2.580%, respectively. More generally, the confidence

limits are given by X + z.07 where z , which depends on the particular
level of confidence desired, can be read trom Table 7.1. Using the vales
of g obtained in Chapter Six, we see that the confidence limits for the

population mean are given by

Xl

(4)

g
H

In case sampling from an infinite population or if sampling is done with
replacement from a finite population, and by

— o |N—n
Xiz{;ij_l &

it sampling 1s done without replacement from a population of finite size V.
In general, the population standard deviation ¢ 1s unknown, so that
to obtain the above confidence limits, we use the estimator S or 5.



CHAPTER 7: Estimation Theory 79

Example 7.2.  Find a 95% confidence interval estimating the mean
height of the 1546 male students at XYZ University by taking a sample
of size 100. (Assume the mean of the sample, X, is 67.45 and that the
standard deviation of the sample, §, 1s 2.93 inches.)

The 95% confidence limits are X % 1.96i :

n
Using X = 67.45 inches and § = 2.93 inches as an estimate of ¢, the
confidence limits are

67.45i1.96( 293 )incheg

4100

or
67.45 £ 0.57 inches

Then the 95% confidence interval for the population mean [ is
66.88 to 68.02 inches, which can be denoted by 66.88 < 1 < 68.02.

We can therefore say that the probability that the population mean

height lies between 66.88 and 68.02 inches is about 95% or 0.95. In
symbols, we write P(66.88 < 1 < 68.02) = 0.95. This is equivalent to

saying that we are 95% confident that the population mean (or true
mean) lies between 66.88 and 68.02 inches.

Small Samples (# < 30) and Population Normal

In this case we use the f distribution (see Chapter Ten) to obtain contfi-

dence levels. For example, if —f, . and f,,., are the values of I for

which 2.5% of the area lies in each tail of the ¢ distribution, then a 95%
confidence interval tor T 1s given by
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(X —wn

< [ 3
R 0.975 (3)

—lpo75 <

from which we can see that |1 can be estimated to lie in the mterval

A A

- S . S
X —1lp975 In <p <X +15975 I (4)

with 95% confidence. In general the confidence limits for population
means are given by

o

X +1, LS (5)

Jn

where the /_ values can be read from Appendix C.

A comparison of (5) with (/) shows that tor small samples we
replace z, by f.. For n > 30, z_ and f, are practically equal. It should be

noted that an advantage of the small sampling theory (which can of
course be used tor large samples as well, 1.e., it 18 exact) in that S appears
in {5) so that the sample standard deviation can be used instead of the
population standard deviation (which 1s usually unknown) as i (J).

Sample size Is very important! We con-
struct different confidence intervals
based on sample size, so make sure
you know which procedure to use.
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Confidence Intervals for Proportions

Suppose that the statistic .5 1s the proportion of “successes™ in a sample
of size n = 30 drawn from a binomial population in which p 1s the pro-
portion of successes (1.e., the probability of success). Then the confi-
dence limits for p are given by P £ z 0, where P denotes the propor-

tion of success in the sample of size #. Using the values of ¢, obtained

in Chapter Six, we see that the confidence limits for the population pro-
portion are given by

1 —
Ptz E=PichF( P) (©)

1 n
in case sampling from an infinite population or it sampling is with
replacement from a fimte population. Similarly, the confidence limits
are

Pi@Jpg N 7)

it sampling 1s without replacement from a population of finite size .
Note that these results are obtained tfrom (/) and (2) on replacing X by

P and ¢ by ..,qu :
To compute the above confidence limits, we use the sample esti-

mate P for p.

Example 7.3. A sample poll of 100 voters chosen at random from
all voters in a given district indicate that 55% of them were in favor of
a particular candidate. Find the 99 % contidence limits for the proportion
of all voters in favor of this candidate.

The 99% contidence limits for the population p are
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P+1580, = Piz.ﬁs‘jp(l_p)
Pl

(0.55)(0.45)
100

0.55+2.58

055 (.13

Confidence Intervals for
Differences and Sums

It .5, and S, are two sample statistics with approximately normal sam-

pling distributions, confidence limits tfor the differences of the popula-
tion parameters corresponding to .5, and .5, are given by

2 2
S, =S, 12,05 5, =S =S, £2,4/0% +0%, (8)

while confidence limits for the sum of the population parameters are
given by

5 i 0
oy 5, £2.04 45, =S1+52J—r3c'\{531 ey (9)

provided that the samples are independent.

For example, confidence limits for the difference of two population
means, in the case where the populations are infinite and have known
standard deviations G, 0,, are given by

2 2
X, -X,+7,06- - =X1—X2J_rch0-1 e (10)

X —-X
1 2 Hl n_z

where X, n, and X, n, are the respective means and sizes of the two

samples drawn from the populations.
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Similarly, confidence limits for the difference of two population
proportions, where the populations are infinite, are given by

RU-B) BI-B)
iy )

H—%i@J (1)

where P, and P, are the two sample proportions and », and », are the

sizes of the two samples drawn from the populations.

Remember

The variance for the difference of
means I1s the same as the variance
for the sum of means! In other words,

5 9
Oy,y =0yxy_v

Example 7.4.  In a random sample of 400 adults and 600 teenagers
who watched a certain television program, 100 adults and 300 teenagers
indicated that they liked 1it. Construct the 99.73% confidence limits tor
the difference in proportions of all adults and all teenagers who watched
the program and liked it.

Confidence limits for the ditference in proportions of the two
groups are given by (/1), where subscripts 1 and 2 refer to teenagers and

adults, respectively, and Q1 =] - P1=' Q’z =1 P’z* Here P1 = 300/600 =
0.50 and P, = 100/400 = 0.25 are, respectively, the proportions of

teenagers and adults who liked the program. The 99.73% confidence
limits are given by
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(0.50)(0.50) _ (0.25)(0.75)

=0.25+0.00 (I2)
600 400

0.50-0.25% SJ

Therefore, we can be 99.73% confident that the true difference n
proportions lies between 0.16 and 0.34.
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Statistical Decisions

Very often in practice we are called upon to make decisions about pop-
ulations on the basis of sample information. Such decisions are called
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statistical decisions. For example, we may wish to decide on the basis
of sample data whether a new serum is really effective in curing a dis-
ease, whether one educational procedure 1s better than another, or
whether a given coin 15 loaded.

otatistical Hypothesis

In attempting to reach decisions, it 15 useful to make assumptions or
guesses about the populations mvolved. Such assumptions, which may
or may not be true, are called statistical hypotheses and m general are
statements about the probability distributions of the populations.

For example, 1f we want to decide whether
a given coin i1s loaded, we formulate the
hypothesis that the coin 15 fair, 1.e., p = 0.5,
where p 15 the probability of heads. Similarly, if
we want to decide whether one procedure i1s
better than another, we formulate the hypothe-
sig that there 15 1o differerice between the two
procedures (1.e., any observed differences are
merely due to fluctuations n sampling from the

same population). Such hypotheses are often
called null hypotheses, denoted by H

Any hypothesis that differs from a given null hypothesis 1s called
an afternative hypothesis. For example, if the null hypothesis is p = 0.5,
possible alternative hypotheses are p =0.7, p 0.5, or p > 0.5. A hypoth-
esis alternative to the null hypothesis 15 denoted by H..

Tests of Hypothesis and Significance

If on the supposition that a particular hypothesis i1s true we find that
results observed in arandom sample differ markedly from those expect-
ed under the hypothesis on the basis of pure chance using sampling the-
ory, we would say that the observed differences are sigrificart and we
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would be mnclined to reject the hypothesis (or at least not accept it on the
basis of the evidence obtained). For example, 1f 20 tosses of a coin yield
16 heads, we would be inclined to reject the hypothesis that the coin 1s
fair, although it 1s conceivable that we might be wrong.

You Need to Know /

Procedures that enable us to decide whether to accept or
reject hypothesis or to determine whether observed samples
differ significantly from expected results are called fesfs of
hypotheses, tests of significance, or decision rules.

Type | and Type Il Errors

It we reject a hypothesis when 1t happens to be true, we say that a Iype
{ error has been made. If, on the other hand, we accept a hypothesis
when 1t should be rejected, we say that a fype If error has been made.
In either case a wrong decision or error in judgment has occurred.

In order tor any tests of hypotheses or decision rules to be good,
they must be designed so as to minimize errors of decision. This 1s not
a simple matter since, for a given sample size, an attempt to decrease
one type of error 18 accompanied in general by an increase in the other
type of error. In practice one type of error may be more serious than the
other, and so a compromise should be reached in favor of a limitation of
the more serious error. The only way to reduce both types of errors 1s to
increase the sample size, which may or may not be possible.

Level of Significance

In testing a given hypothesis, the maximum probability with which we
would be willing to risk a Type 1 error 1s called the level of significance
of the test. This probability 1s often specified before any samples are
drawn so that results obtained will not influence our decision.



88 PROBABILITY AND STATISTICS

In practice a level of significance of 0.05 or 0.01 is customary,
although other values are used. If for example a 0.05 or 5% level of sig-
nificance 1s chosen in designing a test of a hypothesis, then there are
about 5 chances in 100 that we would reject the hypothesis when it
should be accepted; 1.e., whenever the null hypothesis 15 true, we are
about 95% confident that we would make the right decision. In such
cases we say that the hypothesis has been rejected at a 0.05 level of sig-
#ificarice, which means that we could be wrong with probability 0.05.

* Note!

Choosing your level of significance before you begin testing
will greatly aid you in choosing whether to accept or reject a
null hypothesis.

Test Involving the Normal Distribution

To i1llustrate the i1deas presented above, suppose that under a given
hypothesis, the sampling distribution of a statistic 5 1s a normal distri-
bution with mean 1, and standard deviation G... The distribution of that
standard variable Z = (§ — i)/ 0, is the standard normal distribution

(mean O, variance 1) shown m Figure 8-1, and extreme values of £
would lead to the rejection of the hypothesis.

Critical
regLon

' Critical
| Tegion

z= =196 z= 1.96

Figure 8-1
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As indicated in the figure, we can be 95% confident that, if the
hypothesis 1s true, the z score of an actual sample statistic S will be
between —1.96 and 1.96 (since the area under the normal curve between
these values is 0.95).

However, if on choosing a single sample at
random we find that the z score of 1ts statistic lies
outside the range —1.96 to 1.96, we would con-
clude that such an event could happen with the
probability of only 0.05 (total shaded area in the
figure) if the given hypothesis was true. We would
then say that this z score ditfered significantly from
what would be expected under the hypothesis, and
we would be inclined to reject the hypothesis.

The total shaded area 0.05 is the level of significance of the test. It
represents the probability of our being wrong in rejecting the hypothe-
sis, 1.€., the probability of making a Type I error. Therefore, we say that
the hypothesis is rejected af a 0.05 level of significance or that the z
score of the given sample statistic is significant at a 0.05 level of signif-
icance.

The set of z scores outside the range —1.96 to 1.96 constitutes what
1s called the crifical region or region of rejection of the hypothests or the
region of significance. The set of z scores inside the range —1.96 to 1.96
could then be called the region of acceptance of the hypothesis or the
region of nonsignificance.

On the basis of the above remarks, we can formulate the following
decision rule:

(a) Reject the hypothesis at a 0.05 level of significance if the z
score of the statistic .S lies outside the range —1.96 to 1.96 (i.e.,
if either z > 1.96 or 7z < -1.96). This 1s equivalent to saying that
the observed sample statistic is significant at the 0.05 level.

(b) Accept the hypothesis (or, if desired, make no decision at all)
otherwise.

It should be noted that other levels of sigmficance could have been
used. For example, if a 0.01 level were used we would replace 1.96
everywhere above by 2.58 (see Table 8.1). Table 7.1 can also be used

since the sum of the level of significance and level of confidence 1s
100%.
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One-Tailed and Two-Tailed Tests

In the above test we displayed interest in extreme values of the statistic
S or its corresponding 7 score on both sides of the mean, 1.e., in both
tails of the distribution. For this reason such tests are called two-tailed
tests or two-sided tests.

Often, however, we may be interested only mn extreme values
to one side of the mean, 1.e., 1n one tail of the distribution, as for exam-
ple, when we are testing the hypothesis that one process 1s better that
another {which 1s different from testing whether one process 1s better or
worse than the other). Such tests are called one-tailed tests or one-sided
tests. In such cases the critical region 1s a region to one side of the dis-
tribution, with area equal to the level of significance.

Table 8.1, which gives values of z for both one-tailed and two-
tailed tests at various levels of signihicance, will be useful for reference
purposes. Critical values of 7 for other levels of significance are found
by use of the table of normal curve areas.

Table §-1
Level of Sigmificance o 0.10 0.05 0.01 0,005
Critical Values of z for -].28 —1.645 -2.13 -2 58
One-Tailed Tests or 1.28 or 1.645 or 2.33 or 2.58
Cntical Values of z for —1.645 -1.96 -2.58 —2.81
Two-Tailed Tests and 1.645 and 1.96 and 2.58 and 281

F Value

In most of the tests we will consider, the null hypothesis H, will be an

assertion that a population parameter has a specific value, and the alter-
native hypothesis 5, will be one of the following two assertions:

(1) The parameter is greater than the stated value (right-tailed
test).
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(11) The parameter 1s less that the stated value (left-tailed test).
(111) The parameter 1s either greater than or less than the stated
value (two-tailed test).

In Cases (7) and (z7), H, has a single direction with respect to the
parameter, and in case (i77), H, 18 bi-directional. After the test has been

pertormed and the test statistic S computed, the P value of the test 1s the
probability that a value of .5 in the direction(s) of A, and as extreme as

the one that actually did occur it H, were true.

For example, suppose the standard deviation 6 of a normal popula-
tion 1s known to be 3, and H, asserts that the mean L 1s equal to 12. A

random sample of size 36 drawn from the population yields a sample
mean x = 12.95. The test statistic is chosen to be

X2 X1
c/dn 03

which, it H 1s true, 1s the standard normal variable. The test value of Z

Z

1s the following:

1295-12
0.5

The P value for the test then depends on the alternative hypothesis H,

Z 1.9.

as follows:

(1) For H:u > 12 [case (7) above], the £ value 1s the probability

that a random sample of size 36 would yield a sample mean ot
12.95 or more if the true mean were 12, i.e., P(Z = 19)= 0.029.

In other words, the chances are about 3 in 100 that X = 12.95
if u=12.

(11) For H.: n <12 [case (z7) above], the P value 1s the probability
that a random sample of size 36 would yield a sample mean ot
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12.95 or less if the true mean were 12, i.e., P(Z <19)=0.971.
In other words, the chances are about 97 in 100 that x < 12.95
if w=12.

(1) For H.: w# 12 [case (zzz) above], the P value 18 the probability
that a random sample mean 0.95 or more units away from 12,
le, X 21295 orXx <11.05, if the true mean were 12. Here the
P value is P(Z = 19) + P(Z £ —-19) = 0.057, which says the
chances are about 6 in 100 that [v — 12| = 0.095 if u = 12.

small P values provide evidence for rejecting the null hypothesis in
favor of the alternative hypothesis, and large P values provide evidence
tor not rejecting the null hypothesis in favor of the alternative hypothe-
sis. In case (1) of the above example, the small P value 0.029 1s a fairly
strong indicator that the population mean 1s greater than 12, whereas in
case (1), the large P value 0.971 strongly suggests that H, 1 u = 12

should not be rejected in favor of H, : u < 12. In case (z7), the P value
0.057 provides evidence for rejecting H, in favor of H : g # 12 but not
as much evidence as is provided for rejecting H, in favor of H,: u > 12.

It should be kept in mind that the P value and the level of signifi-
cance do not provide criteria for rejecting or not rejecting the null
hypothesis by itself, but tor rejecting or not rejecting the null hypothe-
sis in favor of the alternative hypothesis. As the previous example illus-
trates, identical test results and different significance levels can lead to
different conclusions regarding the same null hypothesis in relation to
different alternative hypothesis.

When the test statistic .S 1s the standard normal random variable, the
table in Appendix B 1s sufficient to compute the P value, but when § 1s
one of the f, I, or chi-square random variables, all of which have dit-
ferent distributions depending on their degrees of freedom, either com-
puter software or more extensive tables than those in Appendices C, D,
and E will be needed to compute the P value.

Example 8.1. The mean lifetime of a sample ot 100 tHluorescent
light bulbs produced by a company is computed to be 1570 hours with
a standard deviation of 120 hours. If 1L 1s the mean lifetime of all the
bulbs produced by the company, test the hypothesis 1L = 1600 hours
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against the alternative hypothesis 1 # 1600 hours. Use a significance
level of 0.05 and find the P value of the test.
We must decide between the two hypotheses

H, 1 =1600 hours  H,:u# 1600 hours

A two-tailed test should be used here since g # 1600 includes both val-
ues large and smaller than 1600.

For a two-tailed test at a level of significance of 0.05, we have the
tollowing decision rule:

1. Reject H, it the z score of the sample mean 18 outside the range

—1.96 to 1.96.
2. Accept H,, (or withhold any decision) otherwise.

The statistic under consideration is the sample mean X. The sam-
pling distribution of X has a mean 5 = g and standard deviation

O;=0 / \E , where W and ¢ are the mean and standard deviation of the

population of all bulbs produced by the company.
Under the hypothesis H,, wehave g=1600 and o5 =0/ Nn =120/

7100 =12, using the sample standard deviation as an estimate of ©.

Since Z = (X — 1600)/12 = (1570 — 1600)/12 = —2.50 lies outside the

range —1.96 to 1.96, we reject H at a 0.05 level of significance.
The P value of the two tailed test is P(Z < -2.50) + P(Z = 2.50) =

0.0124, which is the probability that a mean lifetime of less than 1570
hours or more than 1630 hours would occur by chance if H, were true.

Special Tests

For large samples, many statistics .5 have nearly normal distributions
with mean [, and standard deviation 6. In such cases we can use the
above results to formulate decision rules or tests of hypotheses and sig-
nificance. The following special cases are just a few of the statistics of
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practical interest. In each case the results hold tor infinite populations or
tor sampling with replacement. For sampling without replacement from
finite populations, the results must be modified. We shall only consider
the cases for large samples (n = 30).

1

Means. Here 5 =X, the sample mean; u, = g = u, the popu-

lation mean; Oy =05 =0/ Wn, where ¢ is the population
standard deviation and # 1s the sample size. The standardized
variable 1s given by

X-u

P )

When necessary the observed sample standard deviation, § (or
§), 1s used to estimate G.

To test the null hypothesis H, that the population
mean 18 ¢ = ¢, we would use the statistic (/). Then, if the alter-
native hypothesis is { = @, using a two-tailed test, we would
accept H, (or at least not reject it) at the 0.05 level if for a par-
ticular sample of size » having mean x

4 <196 2)

o/n

—-1.96 <

and would reject it otherwise. For other significance levels we
would change (2) appropriately. To test H, against the alterna-
tive hypothesis that the population mean 1s greater than a, we

would use a one-tailed test and accept H,, (or at least not reject
it) at the 0.05 level if

C <1645 (3)
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(see Table 8.1) and reject it otherwise. To test H, agamnst the
alternative hypothesis that the population mean 1s less than a,
we would accept H at the 0.05 level if

— 9 .1.645 4)

X
o/n

Proportions Here § = P, the proportion of “successes”™ in
a sample; p. = p, =P, where p 18 the population proportion of

successes and » 1s the sample size;, G, =0, = ...f pg/n , where
g = 1 — p. The standardized variable 18 given by

P—p

(3)
Jpq!n

In case P = X/n, where X is the actual number of suc-
cesses 1n a sample, (5) becomes

-

X—np

(0)
Jnpq

Remarks similar to those made above about one- and
two-tailed tests for means can be made.

Ditferences of Means Let X , and X , be the sample means
obtained in large samples of sizes n, and »n, drawn from respec-
tive populations having means u, and W, and standard devia-
tions o, and ©,. Consider the null hypothesis that there is no
daifference between the population means, 1.e., U, = W,. From
our discussion on the sampling distributions of differences and
sums (Chapter 6), on placing u, = 1, we see that the sampling
distribution of ditferences 1in means i1s approximately normal
with mean and standard deviation given by
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2 2

0] 0]

= = = Cs - = |42
ﬂX1 — X3 A~ n My )

where we can, if necessary, use the observed sample standard
deviations s, and s, (or §, and §,) as estimates of ¢, and ©,.

By using the standardized variable given by

(8)

in a manner similar to that described in Part 1 above, we can
test the null hypothesis against an alternative hypothesis (or
the significance ot an observed difference) at an appropriate
level of significance.

4. Diftterences of Proportions Let P, and P, be the sam-
ple proportions obtained in large samples of sizes n, and n,
drawn from respective populations having proportions p, and
p,. Consider the null hypothesis that there 18 no difference
between the population proportions, 1.e., p, = p,, and thus that
the samples are really drawn from the same population.

From our discussions about the differences ot propor-
tions in Chapter 6, on placing p, = p, = p, we see that the sam-
pling distribution ot ditferences in proportions 1s approximate-
ly normal with mean and standard deviation given by

1 1
Hp p =0 Uﬂﬁ:\/ﬁ?ﬂ—ﬁ?)[ T ] (9)

K2
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= B +n,B | .
where P=—"11_"2"2 jgysed as an estimate of the popula-
+ 1
tion proportion p.

By using the standardized variable

_h-5-0_H-Fh

JPI_PE JPl_Pz

Z (10)

we can observe differences at an appropriate level of signifi-
cance and thereby test the null hypothesis.

Tests involving other statistics can similarly be
designed.

Relationship between Estimation
Theory and Hypothesis Testing

From the above remarks one cannot help but notice that there is a rela-
tionship between estimation theory involving confidence intervals and
the theory of hypothesis testing. For example, we note that the result (2)
for accepting H, at the 0.05 level is equivalent to the result (/) in

Chapter 7, leading to the 95% confidence interval

1.960 1.960

<UL X —
JE 7 7

X — (41)

Thus, at least in the case of two-tailed tests, we could actually
employ the confidence intervals of Chapter 7 to test the hypothesis. A
similar result for one-tailed tests would require one-sided confidence
intervals.

Example 8.2.  Consider Example 8.1. A 95% confidence interval for
Example ¥.1 1s the following
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(1.96)(120)

4100

(1.96)(120)

4100

1570 — < <1570 +

which 18
1570 —23.52 < 4 <1570 + 23.52

This leads to an interval of (1546.48, 1593.52). Notice that this
does not contain the alleged mean of 1600, thus leading us to reject H,,.
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Curve Fitting

Very often m practice a relationship 1s found
to exist between two (or more) variables,
and one wishes to express this relationship
in mathematical form by determining an
equation connecting the variables.

A first step 15 the collection of data showing corresponding values
of the variables. For example, suppose x and y denote, respectively, the
height and weight of an adult male. Then a sample of # individuals
would reveal the heights x, x, ..., x_and the corresponding weights y,,

[
Yopres ¥,

A next step 1s to plot the pomts (x), ¥), (x., y,),..., (X, ¥ ) on arec-

tangular coordinate system. The resulting set of points 18 sometimes
called a scatter diagram.

From the scatter diagram it 1s often possible to visualize a smocth
curve approximating the data. Such a curve 15 called an approximating
cirve. In Figure 9-1, for example, the data appear to be approximated
well by a straight line, and we say that a linear relationship exists
between the variables. In Figure 9-2, however, although a relationship
exists between the variables, it 1s not a linear relationship and so we call
it a nonlinear relationship. In Figure 9-3 there appears to be no rela-
tionship between the variables.

Figure 9-1
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y

Figure 9-2

Figure 9-3
The general problem of finding equations approximating curves
that fit given sets of data 15 called curve fitting. In practice the type of
equation 1s often suggested from the scatter diagram. For Figure 9-1 we
could use a straight line:
y=da+ bx
while for Figure 9-2 we could try a parabola or guadratic curve:

y=a+ bx+cx’

For the purposes of this book, we will only concem ourselves with
the data sets exhibiting a linear relationship.
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Sometimes it helps to plot scatter diagrams in terms of fransformed
vartables. For example, if log y vs. log x leads to a straight line, we
would try log y = ¢ + &x as an equation for the approximating curve.

Regression

One of the main purposes of curve fitting 1s to esti-
mate one of the variables (the dependent vartable)
from the other (the independent variable). The
process of estimation 1s often referred to as a
regression. It v 1s to be estimated from x by means
of some equation, we call the equation a regresston
equalion of y on x and the corresponding curve a
regression curve of y on x. Since we are only con-
sidering the linear case, we can call this the regres-
ston line of y on X.

The Method of Least Squares

Generally, more than one curve of a given type will appear to fit a set of
data. To avoid individual judgment 1n constructing lines, parabolas, or
other approximating curves, it 1s necessary to agree on a definition of a
“best-fitting line,” “best-fitting parabola,” etc.

To motivate a possible definition, consider Figure 9-4 in which the
data points are (x,,y,),...,(x ,¥, ). For a given value of x, say x,, there will
be a difference between the value y, and the corresponding value as
determined by the curve C. We denote the difference by 4, which 1s
sometimes referred to as a deviation error, or restdual and may be pos-
itive, negative, or zero. Similarly, corresponding values x,, ..., X, wWe
obtain the deviations 4, ,..., d..

b

21‘
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(% )
d| /¢
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(X ¥1) .
’
.ﬂ'llE n . ™
P
(23, y'3)
X
Figure 94

A measure of the fit of the curve C to the set of data 15 provided by

the quantity d’ +d; +---d2 . If this is small, the fit is good; if it is large,
the fit 15 bad. We therefore make the following definition.

Definution  Of all curves in a given family of curves approximat-
ing a set of # data points, a curve having the property
that

dli +d§ + - -djf: a minimum
is called a best-fitting curve in the family.

A curve having this property 1s said to fit the data in the least-
squdres sense and 1s called a least-squares regression curve, or simply
a least-squdares curve. A line having this property i1s called a least-
squares fine; a parabola that has this property 15 called a least-squdares
parabola; etc.

It 15 customary to employ the new definition when x 15 the inde-
pendent variable and y 1s the dependent variable. If x 15 the dependent
variable, the definition 1s modified by considering horizontal deviations
instead of vertical deviations, which amounts to interchanging the x and
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y axes. These two definitions lead in general to two different least-
squares curves. Unless otherwise specified we shall consider y the
dependent and x the independent variable

You Need to Know \/

It Is possible to define another least-squares curve by
considering perpendicular distances from the data points
to the curve instead of either vertical or horizontal dis-

tances. However, this i1s not used very often.

The Least-Squares Line

By using the above definition, we can show that the least-squares line
approximating the set of points (x,,y,),....(x ,¥ ) has the equation

y=a+ bx (1)

where the constants ¢ and b are determined by solving simultaneously
the equations

Ey = an+b£x
2ch= ::123: +52x2 (2)

which are called the normal eguations tor the least-squares line. Note

that we have for brevity used 2 y, ny mstead of Z Yoo ZI i¥;.
j=1 =1
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The normal equation (2) 1s easily remembered by observing that the
first equation can be obtained tormally by summing on both sides ot (1),
while the second equation i1s obtained formally by first multiplying both
sides of (/) by x and then summing. Of course, this 1s not a derivation
of the normal equations but only a means for remembering them.

The values of @ and & obtained from (2) are given by

(ENEZ) - NEw) | nEo-(ENE)

= 5 2 > (9
HZI —(23:) HEJEZ —(Zx)
The result for # can also be written as
bzi(x—f)(y—?) ”

Z(X—f)z

Here, as usual, a bar indicates mean, e.g. x = (2 x)! n . Division
of both sides of the first normal equation 1n (2) by »n yields

v =a+bx (5)

If desired, we can first find & from (3) or (4) and then use () to find
a =y — bx. This 1s equivalent to writing the least-squares line as

D (x—x)y-7)

y=-y=0bx—-X) or y-y= (x—-x) ()

Y (x-%)

The result (6) shows that the constant #, which is the slope ot the
line (1), 1s the fundamental constant in determining the line. From (6) it
18 also seen that the least-squares line passes through the point (x,y),
which is called the cenirotd or center of gravity of the data.
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The slope & of the regression line 1s independent of the origin of the
coordinates. This means that if we make the transformation (often
called a fransiation of axes) given by

x=x"+h y=y"+k (7)
where i and k are any constants, then & 1s also given by

XXy -(FRNEY) Y e-T0-3)
3= (Xay > (x-x)

(&)

where x, y have simply been replaced by x’, y’ [for this reason we say
that & 1s tnvariant under the transformation (/)]. It should be noted,
however, that @, which determines the intercept on the x axis, does
depend on the origin (and so 1s not invariant).

In the particular case where A=Xx,k=Yy, (&) simplifies to

po 25
Zx;z

(9)

The results (8) and (9) are otten useful i simplifying the labor
involved in obtaining the least-squares line.

The above remarks also hold tor the regression line of x on y. The
results are formally obtamned by simply interchanging x and y. For
example, the least-squares regression line of x on y 18

2 (x-%)y-7)

X—X = (y-9) (10)

Y (y-3)

It should be noted that in general (/0) 1s not the same as (6).
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Remember

You should try to find the equation for
the regression line if and only If your
data set has a linear relationship.

Example 9.1.  Table 9-1 shows the respective heights x and y of a
sample of 12 fathers and their oldest sons. Find the least-squares regres-
sion line of y on x.

Table 9-1

Height x of Father (inches) | 65 63 67 64 68 62
HcighlvufSnn{inchESJ 68 66 68 65 69 66

Height x of Father (inches) | 70 66 68 67 69 71
Height y of Son (inches) 68 65 71 67 68 70

The regression line of ¥ on x 1s given by y = ax + b are obtained by solv-
ing the normal equations

zyzmz—l—bzx and nyzazx—l—bzxz

The sums are computed as follows:
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Table 9-2
T N | :

X X 1 Xy | Y

65 68 4225 4420 4624
63 66 3969 4158 4356
67 68 4489 4556 4624
64 65 4096 4160 4225
68 69 4624 4692 4761
62 66 3844 4092 4356
70 68 4900 4760 4624
66 65 4356 4290 4225
68 71 4624 4828 5041
67 67 4489 4489 4489
69 68 4761 4692 4624
71 70 5041 4970 4900

Tx=800 | T y=811| Y x*=53418]| Txy=54107 | 3 y° =54,849

Using these sums, the normal equations become

12a + 8006

811

800a + 53,4185

54,107 |

For which we find & = 35.82 and b = 0.476, so that y = 35.82 + 0.476x

is the equation for the regression line.

The Least-Squares Regression Line in Terms
of Sample Variances and Covariance

The sample variances and covariance of x and y are given by

2503

Fi Fi Fi
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In terms of these, the least-squares regression lines of y on x and x
on y can be written, respectively, as

A) ) .
y—?=5—§(x—f) and x—x=3—5‘§(y—y) (12)
X 3

it we formally define the sample correlation coeffictent by

p=_—27 (13)
5.8,
then ({2) can be written
3 _ A8 g B D-F) (14)
s, 5. S 5,

In view of the fact that (x —x)/s_and (y —y)/ s, are standardized

sample values or standard scores, the results in (/4) provide a simple
way of remembering the regression lines. It 1s clear that the two lines in
(/4) are difterent unless r = 11, in which case all sample points lie n a
line and there 1s perfect linear correlafion and regression.

It 1s also of interest to note that if the two regression lines (/4) are
written as vy =ax + b, x = ¢ + dy, respectively, then

bd = r? (15)

Up to now we have not considered the precise significance of the
correlation coefficient but have only defined it formally 1n terms of the
variances and covariance.
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Standard Error of Estimate

It we let y_ . denote the estimated value of y for a given value of x, as

obtained from the regression curve of y on x, then a measure of the scat-
ter about the regression curve 1s supplied by the quantity

< =V2(y_y€ﬂ)2 (16)

fl

which 1s called the standard error of estimate y on x. Since

E(y -V 5 )2 = 2 d? , as used 1n the definition we saw earlier, we see

that out of all possible regression curves the least-squares curve has the
smallest standard error ot estimate.
In the case of a regression line y, .= a + bx, with ¢ and b given by

(2), we have

(17)

S}?,x

, _ Y —ay-byxy
P!

or

, _ 2= -0y =-D)y-)

Y A

s (45)

We can also express Si{ for the least-squares regression line in

terms of variance and correlation coefficient as
% O 2
Sy =8, (1=r7) (19)

from which it incidentally follows as a corollary that r* < 1, ie., =1 <r
< 1.
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The standard error of estimate has properties analogous to those of
standard deviation. For example, 1if we construct pairs ot lines parallel
to the regression line of y on x at respective vertical distances S, and
QSP » and 315':? , from it, we should find if » 1s large enough that there
would be included between these pairs of lines about 68%, 95%, and
09.7% ot the sample points, respectively.

Just as there 1s an unbiased estimate of population variance given
by §* =ns*/(n — 1), so there is an unbiased estimate of the square of the
standard error of estimate. This is given by fﬁi = Hfﬁi /(n — 2). For this
reason some statisticians pretfer to give (16) with n — 2 instead of »n in
the denominator.

The above remarks are easily modified tor the regression line of x
on y (in which case the standard error ot estimate 1s denoted by SLP) or

for nonlinear or multiple regression.

The Linear Correlation Coefficient

Up to now we have defined the correlation coetficient formally by (15)
but have not examined its significance. In attempting to do this, let us
note that from (/&) and the definitions of S, and S, We have

2
F_g:l_Z(y_yesr) (20)

Yy (y-y)°

Now we can show that

2(})—?)2=2(y_yesf)2+2(yesf_?)2 (21)
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The quantity on the left of (21) 1s called the fotal vartation. The first
sum on the right of (21) 1s then called the unexplammed variation, while
the second sum 1s called the explained variation. 'This terminology aris-
es because the deviations y — y, _ behave in a random or unpredictable
manner while the deviations y, . —y are explained by the least-squares
regression line and so tend to follow a defimte pattern. It tollows from

(20) and (21) that

ro= = explained variation
2.0=9) total variation (22)

Therefore, r* can be interpreted as the fraction

of the total variation that is explained by the least-
squares regression line. In other words, r measures
how well the least-squares regression line fits the
sample data. It the total variation 1s alf explained
by the regression line, i.e., r>=1 or r =11, we say
that there 1s a perfect linear correlafion (and in
such case also perfect linear regression). On the
other hand, 1if the total variation 1s all unexplained, then the explained
variation is zero and so » =0. In practice the quantity »*, sometimes call
the coeffictent of defernunation, lies between U and 1.

The correlation coetficient can be computed from either of the
results

Sy _ Y x—X)(y—) 23

S8y Y =% D=

or

re= —» = explamned variation
2(}2 -¥) total variation (24)
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which for linear regression are equivalent. The formula (23) 1s often
reterred to as the product-moment formutla tor linear regression.

Formulas equivalent to those above, which are otten used in prac-
tice, are

(3 f3y)

p= (25)

J[nzxz () I3y ()

and

pm XYE) 26)
J&2 -7 - 72)

If we use the transformation on (/), we find

o 2y - (Y
\/[Hzx“’z () Ty - (T )

(27)

which shows that 7 1s invariant under a translation ot axes. In particular,
ith=x,k=y, (27) becomes

=) -

which 1s often usetul n computation.

The linear correlation coetficient may be positive or negative. It
1s positive, y tends to mcrease with x (the slope of the least-squares
regression line 1s positive) while if r 1s negative, y tends to decrease
with x (the slope 1s negative). The sign 1s aufomatically taken into

account if we use the result (23), (23), (26), (27), or (28). However, 1f
we use (24) to obtain r, we must apply the proper sign.
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Generalized Correlation Coefficient

The definition (23) [or any equivalent forms (25) through (28)] for the
correlation coefficient mvolves only sample values x, y. Consequently,
it yields the same number for all torms of regression curves and 18 use-
less as a measure of fit, except in the case of linear regression, where it
happens to coincide with (24). However, the latter definition, 1.e.,

e
re = Z(J@S; ) explained variation

= —7
2= total variation (20)

does reflect the form of the regression curve (via the y, ) and so 1s suit-

able as the definition of a generalized correlation coefficient r. We use
(29) to obtain nonlinear correlation coefficients (which measure how
well a nonlinear regression curve fits the data) or, by appropriate gen-
eralization, multiple correlation coeffictents. The connection (19)
between the correlation coefficient and the standard error of estimate
holds as well tor nonlinear correlation.

Example 9.2,  Find the coetficient of determination and the coetfi-
cient of correlation trom Example 8.2.

Recall that the correlation of determination is 72 :

= explained variation= AR 0.4938

total variation 38.92

The coetficient of correlation is simply r.

r® = +4J0.4938 = +0.7027
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Since the variable y_ increases as x increases (i.e., the slope of the
regression line 1s positive), the correlation 1s positive, and we theretore

write r = 0.7027, or r = 0.70 to two significant figures.
Since a correlation coetficient merely measures how well a given

regression curve (or surface) fits sample data, it 1s clearly senseless to
use a linear correlation coetficient where the data 1s nonlinear. Suppose,
however, that one does apply (25) to nonlinear data and obtains a value
that 1s numerically considerably less than 1. Then the conclusion to be
drawn 1s not that there 1s lifile correlation (a conclusion sometimes
reached by those unfamiliar with the fundamentals of correlation theo-
ry) but that there 1s liftle linear correlation. There may be in tact a large
nonlinear correlation.

Correlation and Dependence

Whenever two random variables X and Y have a nonzero correlation
coetficient, r, we know that they are dependent in the probability sense.

Furthermore, we can use an equation of the form (6) to predict the value
of Y trom the value of X.

You Need to Know /

It is important to realize that “correlation” and “depen-
dence” in the above sense do not necessarily imply a
direct causation interdependence of X and Y.
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Example 9.3. It X represents teachers’ salaries over the years while
Y represents the amount of crime, the correlation coetficient may be dif-
ferent from zero and we may be able to find a regression line predicting
one variable trom the other. but we would hardly be willing to say that
there 1s a direct interdependence between X and Y.
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The Multinomial Distribution

Suppose that events A, 4,,..., A, are mutually exclusive, and can occur
with respective probabilities p., p,, ..., p, where p, +p,+---+p + 1. If
X, X,, ..., X, are the random variables, respectively, giving the number
of times that 4,, A,,..., A, occur in a total of » trials, so that X, + X, +

--—Xk=ﬂ, then

A 7l 7l Al
P(Xy=m, X =ty Xy =m)=—— ——p'pi* - ppt (D)
Hl.ﬂz.“*ﬂk.

where n, +n, +--- n,=n, 1s the joint probability function tor the random

variables Xv er . Xk.

This distribution, which 1s a generalization of the binomial distrib-
ution, 1s called the mulfinonual distribution since the equation above 18

the general term in the multinomial expansion of (p, + p, +--- p )"

The Hypergeometric Distribution

Suppose that a box contains # blue marbles and r red marbles. Let us
pertorm » trials of an experiment in which a marble 1s chosen at ran-
dom, 1ts color observed, and then the marble 1s put back in the box. This
type of experiment is often referred to as sampling with replacement. In
such a case, 1f X 1s the random variable denoting the number of blue
marbles chosen (successes) in » trials, then using the binomial distribu-
tion we see that the probability of exactly x successes 1s

H bj{rﬂ—j{
P(X—x)—[xl(b_l_r)w x=0,1,...n (2

sincep=0b/b+r),g=1—-p=ri{b+r).
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It we modity the above so that sampling is withour replacement,
1.e., the marbles are not replaced after being chosen, then

I

(b +r] ,  x=max(0, n —r),..., min(n,p) (3)

fl

This 18 the Aypergeomerric distribufion. The mean and variance tor
this distribution are

_nb . nbrib+r—n)
b+r (b+7r) (b+r—1)

u (4)

If we let the total number of blue and red marbles be N, while the

proportions of blue and red marbles are p and g = 1 — p, respectively,
then

- b _b ] r r
b+r N’

b+r N o b—Np, r=Ng

This leads us to the following

B v
=,

2 =HP@'(N—”)
N-1

(9)

H=np, o (0)



120 PROBABILITY AND STATISTICS

Note that as N — < {or N 1s large when compared with »n), these
two tormulas reduce to the following

P(X = x)= [ﬂpq %

u=np, O =npq (8)

Notice that this 1s the same as the mean and variance for the bino-
mial distribution. The results are just what we would expect, since for
large N, sampling without replacement is practically identical to sam-
pling with replacement.

Example 10.1 A box contains 6 blue marbles and 4 red marbles. An
experiment 1s performed in which a marble 1s chosen at random and 1ts
color 1s observed, but the marble 1s not replaced. Find the probability that
after 5 trials of the experiment, 3 blue marbles will have been chosen.

The number of different ways of selecting 3 blue marbles out of 6

marbles 18 {3} . The number of different ways of selecting the remaining

4
2 marbles out of the 4 red marbles is (2) . Therefore, the number of dif-

3N 2
Now the total number of different ways of selecting 5 marbles out

6y 4
ferent samples containing 3 blue marbles and 2 red marbles 1s [ ][ J :

10
of the 10 marbles (6 + 4) 1n the box 1s ( 5] . Theretore, the required
probability 1s given by
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9.
i

The Uniform Distribution

A random variable X is said to be uniformly distributed na <x < b it
its density function 1s

1/(b—a) a<x<£b
f(x)={ (9)

0 otherwise

and the distribution 1s called a uniform distribution.
The distribution function 18 given by

0 xX<d
Flx)y=PX=£x)=<(x—-a)/(b—a) asx<b (10)
| xzb

The mean and variance are, respectively

_1 2_ L g v
p=_(a+b), o*=—(b-a (1)

The Cauchy Distribution

A random variable X 1s said to be Cauchy distributed, or to have the
Cauchy distrtbution, if the density tunction of X 1s
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a
>0, —co< X oo

E(JE2+{IZ) (12)

Jx)=

The density function is symmetrical about x = 0 so that its median
1s zero. However, the mean and variance do not exist.

The Gamma Distribution

A random variable X 1s said to have the gamma distribution, or to be
gamma distributed, 1t the density function 1s

"I.:x—1€—xf[3
=1 g 70  (@B>0) U3
0 x<0

where 1 (o) 1s the gamma function (see Appendix A). The mean and
variance are given by

u=af =0 (14)

The Beta Distribution

Arandom variable 1s said to have the befa distribution, or to be befa dis-
Iributed, 1t the density function 1s

2% = )P
fxy=q  PEf)

O<x <l

0 otherwise (o, B>0) (I15)



CHAPTER 10: Other Probability Distributions 123

where B(eo, ) is the beta function (see Appendix A). In view of the rela-
tion between the beta and gamma functions, the beta distribution can
also be defined by the density function

rr((“); (’?) -t 0<x<l
o
Jx)=- (10)
0 otherwise
where o, [3 are positive. The mean and variance are
o 2 ofp
= . O = (17)
a o+ f3 (o0 + B (o + B+1)
For x> 1, B> 1 there is a unique mode at the value
o—1
b S i5
motel g Bl ol

The Chi-Square Distribution

Let X,, X,, ....X be v independent normally distributed random vari-

ables with mean zero and variance one. Consider the random variable
ro=Xi+X5++X° (19)

where y 2 is called chi square. Then we can show that for all x = 0,
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1 F .
Piv® <x)= gerlmul2 gy 20
Y ) z‘ff’zr(vfz)! <)

and P(y* <x)=0for x> 0.

The distribution above 1s called the chi-square distribution, and v 1s
called the number of degrees of freedom. The distribution defined above
has corresponding density function given by

1 o
£ (P/2)=1 =2

x>0
22T (v /2)

Jx)=+ (21)

0 x <0

It 1s seen that the chi-square distribution 1s a special case of the
gamma distribution with o¢=v/2 and 8= 2. Therefore,

u=v, 2= (22)

For large v (v 2 30), we can show that ,,/sz _Af2v—1is VEry near-
ly normally distributed with mean O and variance one.

Three theorems that will be useful in later work are as follows:

Theorem 10-1: Let Xl, Xz" i Xv be independent normally random
variables with mean O and variance 1. Then x* = X% +
X% +---+ X2 is chi square distributed with v degrees of
freedom.

Theorem 10-2: Let U, U, ..., U, be independent random variables

that are chi square distributed with Vs Vs vy Wy
degrees of freedom, respectively. Then their sum W =
U, + U, +--U, 1s chi square distributed with v, + v, +

el degrees of freedom.
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Theorem 10-3: Let V|, and V, be independent random variables.
Suppose that V| 15 chi square distributed with v,
degrees of freedom while V=V, =V, 15 ch1 square
distributed with v degrees of freedom, where v > v,.
Then V, 1s chi square distributed with v — v, degrees
of freedom.

In connection with the chi-square distribution, the ¢ distribution, the
F distribution, and others, it 15 common in statistical work to use the
same symbol for both the random variable and a value of the random
variable. Therefore, percentile values of the chi-square distribution for

v degrees of freedom are denoted by Iijﬂ , or briefly x; if v 15 under-
stood, and not by %;*%n* or X (>ee Appendix D.) This 1s an ambiguous

notation, and the reader should use care with it, especially when chang-
ing variables m density functions.

Example 10.2. The graph of the chi-square distribution with 5

degrees of freedom 15 shown m Figure 10-1. Find the values for qu ; I%
for which the shaded area on the right = 0.05 and the total shaded area
=0.05.

2 2
t & X

Figure 10-1
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If the shaded area on the right is 0.05, then the area to the left of X% 18

(1 -0.05)=10.95, and x% represents the 95% percentile, X%_QS .
Referring to the table in Appendix D, proceed downward under
the column headed v until entry 5 is reached. Then proceed right to the

column headed 13_95 . The result, 11.1, is the required value of ¥7.

Secondly, since the distribution 1s not symmetric, there are many
values for which the total shaded area = 0.05. For example, the right-
handed shaded area could be 0.04 while the left-handed area 1s 0.01. It
18 customary, however, unless otherwise specified, to choose the two
areas equal. In this case, then, each area = 0.025.

If the shaded area on the right is 0.025, the area to the left of X% 18

1 —0.025=10.975 and 3 represents the 97.5% percentile ¥ 75, which

from Appendix D 1s 12.5.
Similarly, if the shaded area on the left is 0.025, the area to the left

of %% is 0.025 and 7 represents the 2.5™ percentile, y2 ., which

equals 0.831.
Therefore, the values are 0.831 and 12.8.

Student’s f Distribution

It a random variable has the density tunction

it 1s said to have the Student's © distribution, brietly the f distribution,
with v degrees of freedom. If v 1s large (v 2 30), the graph of f{f) close-
ly approximates the normal curve, as indicated in Figure 10-2.
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J)

04

Figure 10-2

Percentile values of the ¢ distribution for v degrees of freedom
are denoted by t,, oL briefly t, if v 15 understood. For a table giving
such values, see Appendix C. Since the ¢ distribution 1s symmetrical,
by =t for example, ¢, ; =1, ...

1=
For the ¢ distribution we have

u=0  and  o’= "’2 ws2) (24

vV —

The following theorem is important in later work.

Theorem 10-4: Let ¥ and Z be independent random variables, where
¥ 15 normally distributed with mean 0 and variance 1
while Z 1s chi square distributed with v degrees of
freedom. Then the random variable

Y

1 =

hag the t distribution with v degrees of freedom.
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Example 10.3. The graph of Student’s ¢ distributionn with 9 degrees
of freedom 1s shown mn Figure 10-3. Find the value of #, for which the

shaded area on the right = 0.05 and the total unshaded area = 0.99,

Figure 10-3

If the shaded area on the right is 0.05, then the area to the left of 7, is (1
—0.05) =0.095, and ¢, represents the 95th percentile, #, ,;. Referring to
the table in Appendix , proceed downward under the column headed v
until entry 9 1s reached. Then proceed right to the column headed ¢, ..
The result 1.83 1s the requured value of ¢.

Next, if the total unshaded area 15 0.99, then the total shaded area
is (1 — 0.99) =0.01, and the shaded area to the right is 0.01 / 2 = 0.005.
From the table we find #, .., = 3.25.

The F Distribution

A random variable 1s said to have the F distribution (named after R. A.
Fisher) with v, and v, degrees of freedom if its density function 1s given

by
i r[vl +v3j
2 1?1:‘}1;21?;2 IEHWIIEJ—I (1”2 -I—‘b’ll-ﬂ)_wl-% W2 >0
Fla) =+ r(%}r(%ﬂj (26)
0 =0
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Percentile values of the F distribution for v,, v, degrees of freedom

1

are denoted by F ) or brietly ¥ ; if v; and v, are understood.

v, v2?
For a table giving such values in the case where p = 0.95 and p =
0.99, see Appendix E.

The mean and variance are given, respectively, by

2 (,>2) and i Ea +2)2

u= (27)

The distribution has a unique mode at the value

v, — 2 %
"= { " ]{vzizj v,>2)  (28)

The tollowing theorems are important in later work.

Theorem 11-5: Let V. and V, be independent random variables that
are chi square distributed with v, and v, degrees of

freedom, respectively. Then the random variable

V= Vifvl
V, I'v,

(29)

has the I distribution with v, and v, degrees of free-

dom.

Theorem 10-6: B g = 3 (30

Fi¥1:¥g
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Remember

While specially used with small sam-
ples, Student’s f distribution, the chi-
square distribution, and the F distri-
bution are all valid for large sample
sizes as well.

Relationships Among Chi-Square,
f, and F Distributions

Theorem 10-7: TR 2 S e (31)

Theorem 10-8: F —g (32)

LV,

Example 10.4. Verify Theorem 10-7 by showing that F, 45 = 575 -

Compare the entries i the first column of the £, ., table in Appendix B
with those in the f distribution under £, ... We see that

161 = (12.71)%, 18.5=(4.30)%, 10.1 =(3.18)%, 7.71 = (2.78), etc.,
which provides the required verification.
Example 10.5. Verify Theorem 10-8 for p = 0.99.

Compare the entries in the last row of the £, o, table in Appendix E (cor-

responding to v, = =) with the entries under X% - in Appendix D. Then
we see that
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6.63=@, 4.61=&, 3.78=£, 3.32=g, el
1 2 3 4

which provides the required verification.



Appendix A

Mathematical Topics

Special Sums

The tollowing are some of the sums of series that arise in practice. By
definition, 0! = 1. Where the series 1s infinite, the range of convergence
1s indicated.

1. 2j=1+2+3++~+m=m(m+1)
j=1 2
5 ij=12+22+32++~m2=m(m+1)(2m+1)
Jj=1 6
7 ‘4 oo j
3 €I=1+I+X +.JL' 4+ = X_ all x
2! 3! =0 ‘)1!
3 wd ol ooy s s ) s
= SjIl.x=I—-x +I _I +_2( ]-)-x e
| 5! 7! s (2j+1)!
2 4 6 B o a0
5  cospml-t ol ooy =2( 1).-17 .
A & W = @25
1 &
6 =1+.I+_x2+x3+“.=2_xf |I"i1
1—x =
2 3 4 i
ARy S T I I, .} AP TS
2 3 4 = J
132
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Eulers’ Formulas

8. EIH=CDSQ+I'S]'HQ? e = cos@—isin®
0 i 0 —i0
e’ +e , e’ —e
9. cosf= sind = .
) 21

The Gamma Function

The gamma function, denoted by 1'(»n) 1s denoted by
Tmy=[t""e"dt n>0
0

A recurrence formitla 1s given by
I(n+1)=nl{n
where 1'(1) = 1. An extension of the gamma function to n < 0 can be
obtained by use of the recurrence function above.
If » 18 a positive integer, then

I'(n+1)=n!

For this reason I (n) sometimes called the factorial funciion. An impor-
tant property ot the gamma function 1is that

T

I'ipl{d-p)= A—

1
For p= 3 this gives



134 PROBABILITY AND STATISTICS

For large values of n we have Sirling’s asymprofic formula:

T(n+1)~+2mnne”

The Beta Function

The beta funchion, denoted by B(m, n), 1s defined as
1
Bimm)=|u""1-u)"" du  m>0,n>0
0

It 1s related to the gamma function by

T(m)[(n)
B -
)= )
Special Integrals
10 jeﬂzdml 2 g
5 2¥a
r[m+1)
1. fxme ™ ax Za(mfm a>0,m>-1

a

13 e " coshx dx = ag>0
i a® + b?
K —ax . b

14 je Smbxdx_a2+b2 a>0
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i

1 - I
15. j).:p o™ dx = (f) a>0,p>0
0

a
16. TE—(EIZ-I—E?I-I—C) Jx = ’EE(EPZ—JHIC)M.:I 550
a

P 1 {7 2 b
17. P (ax”+bx+c) dx = — _E(E:a 4ac)ifda P C[ ] a0
! 2\/ a d 24a

where

2

erfeli) = 1— erf(u) = 1-%&:*‘?2 dx = % e d

B — B

1s called the complementary error funcrion.

15. dx=—2e"" a>0,0>0

x> +a° 24

]3 COS (X T
0

w2
19. j sin®™ 19 cos?™ 10 4o =
0

I'{n)l (n)
2l (m+n)

m> 0, n
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