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Preface

Finite mathematics has in recent years become an integral part of the mathematical
background necessary for such diverse fields as biology, chemistry, economics, psychology,
sociology, education, political science, business and engineering. This book, in presenting
the more essential material, is designed for use as a supplement to all current standard
texts or as a textbook for a formal course in finite mathematics.

The material has been divided into twenty-five chapters, since the logical arrangement
is thereby not disturbed while the usefulness as a text and reference book on any of several
levels is greatly increased. The basic areas covered are: logic; set theory; vectors and
matrices; counting — permutations, combinations and partitions; probability and Markov
chains; linear programming and game theory. The area on vectors and matrices includes
a chapter on systems of linear equations; it is in this context that the important concept
of linear dependence and independence is introduced. The area on linear programming
and game theory includes a chapter on inequalities and one on points, lines and hyper-
planes; this is done to make this section self-contained. Furthermore, the simplex method
is given for solving linear programming problems with more than two unknowns and for
solving relatively large games. In using the book it is possible to change the order of
many later chapters or even to omit certain chapters without difficulty and without loss
of continuity.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so vital to effective learning. Proofs of theorems and derivations of basic results are
included among the solved problems. The supplementary problems serve as a complete
review of the material in each chapter.

More material has been included here than can be covered in most first courses. This
has been done to make the book more flexible, to provide a more useful book of reference
and to stimulate further interest in the topics.

I wish to thank many of my friends and colleagues, especially P. Hagis, J. Landman,
B. Lide and T. Slook, for invaluable suggestions and critical review of the manuscript.
1 also wish to express my gratitude to the staff of the Schaum Publishing Company,
particularly to N. Monti, for their unfailing cooperation.

S. LIPSCHUTZ

Temple University
June, 1966
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Chapter 1

Propositions and Truth Tables

STATEMENTS

A statement (or verbal assertion) is any collection of symbols (or sounds) which is either
true or false, but not both. Statements will usually be denoted by the letters

p,q7 ...
The truth or falsity of a statement is called its truth value.

Example 1.1: Consider the following expressions:
(i) Paris is in England. (ili) Where are you going?
(il) 2+2 =4 (iv) Put the homework on the blackboard.

The expressions (i) and (1/1) are statements; the first is false and the second is true.
The expressions (iii) and (iv) are not statements since neither is either true or false.

COMPOUND STATEMENTS

Some statements are composite, that is, composed of substatements and various logical
connectives which we discuss subsequently. Such composite statements are called com-
pound statements.

Example 2.1: “Roses are red and violets are blue” is a compound statement with substatements
“Roses are red” and “Violets are blue”.

Example 2.2: “He is intelligent or studies every night” is, implicitly, a compound statement with
substatements “He is intelligent” and “He studies every night”.

The fundamental property of a compound statement is that its truth value is completely
determined by the truth values of its substatements together with the way in which they
are connected to form the compound statement. We begin with a study of some of these
connectives.

CONJUNCTION, p A q

Any two statements can be combined by the word “and” to form a compound statement
called the conjunction of the original statements. Symbolically,

pnq
denotes the conjunction of the statements p and ¢, read “p and q”.

Example 3.1: Let p be “It is raining” and let ¢ be “The sun is shining”.
Then p A ¢ denotes the statement “It is raining and the sun is shining”.
The truth value of the compound statement p Aq satisfies the following property:
[T,] If pis true and ¢ is true, then p A q is true; otherwise, p A q is false.

In other words, the conjunction of two statements is true only in the case when each sub-
statement is true.
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Example 3.2: Consider the following four statements:

Il
Lol A

(i) Paris is in France and 2+2
(ii) Paris is in France and 2+2
(iii) Paris is in England and 242 =
(iv) Paris is in England and 242 = 5.

By property [Ty], only the first statement is true. Each of the other statements
is false since at least one of its substatements is false.

A convenient way to state property [T,] is by means of a table as follows:

p~q|p/\q
T | T T
T F F
F | T F
F | F F

Here, the first line is a short way of saying that if p is true and ¢ is true then p A q is true.
The other lines have analogous meaning. We regard this table as defining precisely the
truth value of the compound statement p A ¢ as a function of the truth values of p and of q.

DISJUNCTION, » v ¢q

Any two statements can be combined by the word “or” (in the sense of “and/or”) to
form a new statement which is called the disjunction of the original two statements.

Symbolically, D g

denotes the disjunction of the statements p and ¢ and is read “p or q”.

Example 41: Let p be “Marc studied French at the university”, and let ¢ be “Marc lived in
France”. Then pV q is the statement “Marc studied French at the university or
(Marc) lived in France”.

The truth value of the compound statement p v ¢ satisfies the following property:

[T,] If p is true or ¢ is true or both p and ¢ are true, then pv q is true; otherwise pvq
is false.

Accordingly, the disjunction of two statements is false only when both substatements are
false. The property |T,] can also be written in the form of the table below, which we

regard as defining pv ¢:
| ‘ PV q

q
T T
F
T
F

HH a3

T
T
F

Example 4.2: Consider the following four statements:
(i) Paris is in Franceor 242 =

ii) Paris is in Franceor 2+2 =

Ll A

(
(iii) Paris is in England or 2+2 =
(iv) Paris is in Englandor 2+2 = 5.

By property [Ty], only (iv) is false. Each of the other statements is true since at
least one of its substatements is true.
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Remark: The English word “or” is commonly used in two distinet ways. Sometimes
it is used in the sense of “p or ¢ or both”, i.e. at least one of the two alternates
occurs, as above, and sometimes it is used in the sense of “p or ¢ but not both”,
i.e. exactly one of the two alternatives occurs. For example, the sentence
“He will go to Harvard or to Yale” uses “or” in the latter sense, called the
exclusive disjunction. Unless otherwise stated, “or” shall be used in the
former sense. This discussion points out the precision we gain from our
symbolic language: pvgq is defined by its truth table and always means
“p and/or ¢".

NEGATION, ~p

Given any statement p, another statement, called the negation of p, can be formed by
writing “It is false that...” before p or, if possible, by inserting in p the word “not”.
Symbolically,

~p
denotes the negation of p (read “not p”).
Example 5.1: Consider the following three statements:
(i) Paris is in France.
(ii) It is false that Paris is in France.
(iii) Paris is not in France.
Then (ii) and (iii) are each the negation of (i).
Example 5.2: Consider the following statements:
4 2+2=5
(ii) It is false that 242 = 5.
(iii) 2+2 # 5
Then (ii) and (iii) are each the negation of (i).

The truth value of the negation of a statement satisfies the following property:

[T,] If pis true, then ~p is false; if p is false, then ~p is true.

Thus the truth value of the negation of any statement is always the opposite of the truth
value of the original statement. The defining property [T,| of the connective can also be
written in the form of a table:

P ~Pp
T F
F T
Example 5.3: Consider the statements in Example 5.1. Observe that (i) is true and (ii) and (iii),

each its negation, are false.

Example 5.4:  Consider the statements in Example 5.2. Observe that (i) is false and (ii) and (iii),
each its negation, are true.

PROPOSITIONS AND TRUTH TABLES

By repetitive use of the logical connectives (A, v, ~ and others discussed subsequently),
we can construct compound statements that are more involved. In the case where the
substatements p,q,... of a compound statement P(p,q,...) are variables, we call the
compound statement a proposition.

Now the truth value of a proposition depends exclusively upon the truth values of its
variables, that is, the truth value of a proposition is known once the truth values of its
variables are known. A simple concise way to show this relationship is through a truth
table. The truth table, for example, of the proposition ~(p A ~q) is constructed as follows:
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» | q § ~q \ pA~q | ~(pAr~q
T|T]| F F T
T|F | T T F
F|lT | F F T
F|lr | T F T

Observe that the first columns of the table are for the variables p,q, ... and that there
are enough rows in the table to allow for all possible combinations of T and F' for these
variables. (For 2 variables, as above, 4 rows are necessary; for 3 variables, 8 rows are
necessary; and, in general, for n variables, 2" rows are required.) There is then a column
for each “elementary” stage of the construction of the proposition, the truth value at each
step being determined from the previous stages by the definitions of the connectives A, v, ~.
Finally we obtain the truth value of the proposition, which appears in the last column.

Remark: The truth table of the above proposition consists precisely of the columns
under the variables and the column under the proposition:

p|a| ~or~q
T| T T
T|F F
F| T T
F|F T

The other columns were merely used in the construction of the truth table.

Another way to construct the above truth table for ~(p A ~q) is as follows. First
construct the following table:

~ » ~A ~ 9

e
H a3 a3

Step

Observe that the proposition is written on the top row to the right of its variables, and
that there is a column under each variable or connective in the proposition. Truth values
are then entered into the truth table in various steps as follows:

pl g~ (® A~ ~ 9 plag |~ (® A~ ~ 9
T T T T T T T F T
T| F T F T | F T T | F
F| T F T F|T F F|T
F | F F F F | F F T | F

Step 1 1 Step 1 2 1

(a) (b)

plaqg |~ P A~ ~ 9 pla|~ ® ~ ~ 9
T | T T | F|F |T T|T|T|T|F|F|T
T F T T T F T F 1) T T T F
F T F F F T F T T F F F T
F F F F T F F F T F F T F

Step 1 3 |2 |1 Step 4 1 {38 |2 1

(c) (d)
The truth table of the proposition then consists of the original columns under the variables
and the last column entered into the table, i.e. the last step.
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Solved Problems

STATEMENTS

1.1

1.2

Let p be “It is cold” and let ¢ be “It is raining.” Give a simple verbal sentence which
describes each of the following statements:
1) ~p, @) pnrg, B)pvae (4)gv~p, (6) ~pa~q, (6)~~q.

In each case, translate A, v and ~ to read “and”, “or” and “It is false that” or “not”,
respectively, and then simplify the English sentence.

(1) It is not cold. (4) It is raining or it is not cold.
(2) It is cold and raining. (5) It is not cold and it is not raining.
(3) It is cold or it is raining. (6) It is not true that it is not raining.

Let p be “He is tall” and let ¢ be “He is handsome.” Write each of the following
statements in symbolic form using » and gq.

1) He is tall and handsome.

) He is tall but not handsome.

) It is false that he is short or handsome.

) He is neither tall nor handsome.

) He is tall, or he is short and handsome.

) It is not true that he is short or not handsome.

(Assume that “He is short” means “He is not tall”, i.e. ~p.)

1) prgq @) ~(~pVvaq) () pv(~pAq)
(2) pr~q (4) ~p A ~q (6) ~(~pv ~q)

TRUTH VALUES OF COMPOUND STATEMENTS

1.3.

14.

1.5.

Determine the truth value of each of the following statements.

(i) 83+2 =17 and 4+4=8. (i) 2+1 =3 and 74+2 = 9. (iii) 6+4 = 10 and
1+1 = 3.

By property [T,], the compound statement “p and ¢” is true only when p and q are both true.
Hence: (i) False, (ii) True, (iii) False.

Determine the truth value of each of the following statements.
(i) Paris is in England or 3+4 = 7.

(i) Paris is in France or 241 = 6.

(ili) London is in France or 5+2 = 3.

By property [T;], the compound statement “p or ¢” is false only when p and q are both false.
Hence: (i) True, (ii) True, (iii) False.

Determine the truth value of each of the following statements.
(i) It is not true that London is in France.

(ii) It is not true that London is in England.

By property [T;], the truth value of the negation of p is the opposite of the truth value of p.
Hence: (i) True, (ii) False.
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Determine the truth value of each of the following statements.

(1)
(i)
(iii)

@

(i)

(iif)

It is false that 2+2 =4 and 1+1 = 5.

Copenhagen is in Denmark, and 1+1 =5 or 24+2 = 4.

It is false that 2+ 2 = 4 or London is in France.

The conjunctive statement “2+2 =4 and 1+ 1 = 5” is false since one of its substatements
“l141 = 5” is false. Accordingly its negation, the given statement, is true.

The disjunctive statement “1+1 = 5 or 2+ 2 = 4” is true since one of its substatements
“242 = 4” is true. Hence the given statement is true since it is the conjunction of two
true statements, “Copenhagen is in Denmark” and “1+1 =5 or 2+2 = 4”7,

The disjunctive statement “2+4 2 = 4 or London is in France” is true since one of its sub-
statements “2+2 = 4” is true. Accordingly its negation, the given statement, is false.

TRUTH TABLES OF PROPOSITIONS
Find the truth table of ~p A q.

1.7.

1.8.

1.9.

Pl a|~r| ~prg p|lal~ » A q
T| T | F F T|T|F|T|FI|T
T| F| F F T|F|F|T|F|F
F|T]|T T F|lT|T|F|T]|T
F|F|T F F|F|T|F|F|F
Step 2 1 3 1
Method 1 Method 2
Find the truth table of ~(pv q).
p| q l pPVa \ ~( v q) P qg |~ » Vv 9
T| T T F T|T|F|T|T]|T
T | F T F T|F|F|T|T]|F
F | T T F F|T|F|F|T]|T
F | F F T F|F|T|F|F|F
Step 3 1 2 1
Method 1 Method 2
Find the truth table of ~(p v ~q).
P qg | ~q¢ | pv~q ~(p Vv ~q) plag |~ v ~ ¢
T T F T F T T F T T F T
T F T T F T F F T T T F
F T F F T F T T F F 1) T
1 F T T ¥ F K r F T T F
Step 4 1 3 2 1
Method 1 Method 2

1.10. Find the truth table of the following: (i) pa(gvr), (i) @A Q) v D AT).

Since there are three variables, we will need 23 = 8 rows in the truth table.
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pla|r|agvr | palgvr) plalr|prg|vAar| Aagdvipar
T|T| T T T T|T|T T T T
T|T|F| T T T|T|F| T F T
T F, T T T TP T F T T
T| F|F F F TIF|F F F F
F|T| T T F F|{T|T F F 1)
F|T|F T F F|T|F F F F
F|F|T| T F F|F|T| F F F
F|F|F F F F|F | F F r F

—
—
=
—
o
]
=

Observe that both propositions have the same truth table.

MISCELLANEOUS PROBLEMS

1.1L.

1.12.

Let Apgq denote pAq and let Np denote ~p. Rewrite the following propositions
using A and N instead of A and ~.

(i) pA~q (ili) ~p A (~g ~7)
(ii) ~(~p ~q) (iv) ~(0 ~~q) A (~q A ~T7)
(i) »pA~qg = pANg = ApNgq
(i) ~(~pnrnqg = ~Np~rq) = ~(ANpg) = NANpq
(iii) ~pA(~gAr) = NpA(Nganr) = NpAn(ANqr) = ANpANgr
(iv) ~(p A ~q) A (~qg A ~7) = ~(ApNq) A (ANgNr) = (NApNq) A (ANgNr) = ANApNgANgNr
Observe that there are no parentheses in the final answer when A and N are used instead of
A and ~. In fact, it has been proved that parentheses are never needed in any proposition using

A and N.

Rewrite the following propositions using A and ~ instead of A and N.

(i) NApq (iii) ApNq (v) NAANpqr
(i) ANpq (iv) ApAqr (vi) ANpAgNr
(i) NApq = Nipnrqg = ~DAQ) (iii) ApNg = Ap(~q) = p A ~q
(i) ANpq = A(~p)g = ~pArgq (iv) ApAgqr = Ap(gAr) = pAlgAaT)

(v) NAANpqgr = NAA(~p)gr = NA(~pAgr = N[(~pAr g rr] = ~l(~p A~ q) A 7]
(vi) ANpAqNr = ANpAq(~7)

Notice that the propositions involving A and N are unraveled from right to left.

ANp(g A ~7) = A(~p)@ A ~7) = ~p A (g A ~7)

Supplementary Problems

STATEMENTS

1.13.

Let p be “Mare is rich” and let ¢ be “Marc is happy”. Write each of the following in symbolic form.
(i) Marc is poor but happy.

(ii) Marec is neither rich nor happy.

(iii) Mare is either rich or unhappy.

(iv) Marec is poor or else he is both rich and unhappy.
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1.14.  Let p be “Erik reads Newsweek”, let ¢ be “Erik reads Life” and let r be “Erik reads Time”.
Write each of the following in symbolic form.

(i) Erik reads Newsweek or Life, but not Time.
(ii) Erik reads Newsweek and Life, or he does not read Newsweek and Time.
(iii) It is not true that Erik reads Newsweek but not Time.

(iv) It is not true that Erik reads Time or Life but not Newsweek.

1.15. Let p be “Audrey speaks French” and let ¢ be “Audrey speaks Danish”. Give a simple verbal
sentence which describes each of the following.

(i) »pva (iii) p A ~q (v) ~~p
(i) pArgq (iv) ~pVv ~q (vi) ~(~p A ~q)

1.16. Determine the truth value of each of the following statements.
(i) 3+3=6 and 1+2 = 5.
(ii) It is not true that 3+3 =6 or 1+2 = 3.
(iif) It is true that 2+2 * 4 and 1+2 = 3.
(iv) It is not true that 34+8 6 or 1+2 % b.

TRUTH TABLES OF PROPOSITIONS
1.17. Find the truth table of each of the following.
(i) pv ~q, () ~pA~q, (i) ~(~p A @), (iv) ~(~pVv ~q).

1.18.  Find the truth table of each of the following.

i) A~y vr, () ~pvigna~r), (i) (pv ~r)Aalgv ~r), (iv) ~pVv ~q) A (~pV 7).

MISCELLANEOUS PROBLEMS

1.19. Let Apq denote p A g and let Np denote ~p. (See Problem 1.11.) Rewrite the following propositions
using A and N instead of A and ~.
(i) ~p~raq, () ~pA~q (iii) ~pA~q), (iv) (~pAg) A~r

1.20. Rewrite the following propositions using A and ~ instead of A and N.
(i) NApNgq, (ii) ANApgNr, (iii) AApNrAqNp, (iv) ANANpANqrNp.

Answers to Supplementary Problems
113. (i) ~pAgq, (i) ~pA~q, (i) pv ~gq, (iv) ~pVv (p A ~q)
L. () v a~r, (i) BAQv~@Aar), (i) ~@A~r), (v) ~[0Va A~

1.15. (i) Audrey speaks French or Danish.
ii) Awudrey speaks French and Danish.
iii) Audrey speaks French but not Danish.

(
(
(iv) Audrey does not speak French or she does not speak Danish,
(v) It is not true‘that Audrey does not speak French.

(

vi) It is not true that Audrey speaks neither French nor Danish.
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1.16. (i) F, (ii) F, (iii) F, (iv) F

7. p | g | pv~g | ~pa~qg | ~(=prg) | ~(~pv ~g)
T|T T F T T
T|F T F T F
F|T F F F F
F|F T T T F

s, p | g | v | @) ]G] Gi)]| Gv
T{T|T|T|F|T]|F
T|{T|F|F|T|T|F
T|F|T|T|F|F|F
T|F|F|T|F|T]|F
F|{T|T|T|T|F]|T
FlT|F|F|T|T|T
F{F|{T|T|T|F|F
FIF|F|FlT|T]|F

1.19. (i) ANpq, (ii) ANpNgq, (iii) NApNgq, (iv) AANpgNr

120. () ~(pA~q), (1) ~A@n~r, (i) @A~ Alga~p), (iv) ~[~PA(~gAr)]A~p



Chapter 2

Algebra of Propositions

TAUTOLOGIES AND CONTRADICTIONS

Some propositions P(p,q, ...) contain only 7 in the last column of their truth tables,
ie. are true for any truth values of their variables. Such propositions are called
tautologies. Similarly, a proposition P(p,q,...) is called a contradiction if it contains
only F in the last column of its truth table, i.e. is false for any truth values of its variables.

Example 1.1:  The proposition “p or not p”, ie. pv ~p, is a tautology and the proposition
“p and not p”, i.e. p A ~p, is a contradiction. This is verified by constructing
their truth tables:

p{~p\pV~p p|~p| pr~p
T’F' T T|F F
F| T T F| T F

Since a tautology is always true, the negation of a tautology is always false, i.e. is a
contradiction, and vice versa. That is,

Theorem 2.1: If P(p,q,...) is a tautology then ~P(p,q,...) is a contradiction, and
conversely.

Now let P(p,q, ...) be a tautology, and let P (p,q,...), P,(p,q,...), - .. be any propo-
sitions. Since P(p,q, ...) does not depend upon the particular truth values of its variables
»,q, ..., we can substitute P, for p, P, for ¢, ... in the tautology P(p,q,...) and still
have a tautology. In other words:

Theorem 2.2 (Principle of Substitution): If P(p,q,...) is a tautology, then P(P,P,, .. .)
is a tautology for any propositions P,P,, ... .

LOGICAL EQUIVALENCE
Two propositions P(p,q,...) and Q(p,q,...) are said to be logically equivalent, or
simply equivalent or equal, denoted by

P(p,q,...)
if they have identical truth tables.

Qp,q,...)

i

Example 2.1: The truth tables of ~(p A q) and ~p v ~q follow:

pla|vrrg| ~0ra plq\~p\~q‘~pV~q
T | T T F T|T|F|F F
T |F F T T|lF|F|T T
F|T F T FlT|T|F T
F | F F T Flr|T|T T

Accordingly, the propositions ~(p A q) and ~pv ~q are logically equivalent:

~(pAgqg) = ~pVv ~q

10
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Example 2.2: The statement
“It is false that roses are red and violets are blue”

can be written in the form ~(p A ¢) where p is “Roses are red” and q is “Violets
are blue”. By the preceding example, ~(p A q) is logically equivalent to ~pVv ~g;
that is, the given statement is equivalent to the statement

“Either roses are not red or violets are not blue.”

ALGEBRA OF PROPOSITIONS

Propositions, under the relation of logical equivalence, satisfy various laws or identities
which are listed in Table 2.1 below. In fact, we formally state:

Theorem 2.3: Propositions satisfy the laws of Table 2.1.

LAWS OF THE ALGEBRA OF PROPOSITIONS

Idempotent Laws

la. pvp = p 1. pAp = p
Associative Laws

2a. (pvgvr =pvigvr 2b. pA@Ar = parlgnar
Commutative Laws

3a. pVvqg = qVvp 3b. pAqg = qgAp
Distributive Laws

da. pv(gnar) = (pvg APV 4b. pAlgvr) = AV DA

Identity Laws

5a. pVvf =1p 5b. pAt = p

6a. pvit =t 6b. pnaf =F
Complement Laws

Ta. pv ~p =t Tb. pA~p = f

8a. ~~p = p 8b. ~t=f ~f=t
De Morgan’s Laws

9a. ~(pvq = ~pA~q 9b. ~(pngq) = ~pVv ~q

Table 2.1

In the above table, ¢ and f denote variables which are restricted to the truth values
true and false, respectively.



12

ALGEBRA OF PROPOSITIONS

Solved Problems

TAUTOLOGIES AND CONTRADICTIONS
2.1. Verify that the proposition p v ~(p~q) is a tautology.

Construct the truth table of pv ~(pAq):

Since the truth value of pv ~(p A q)

p| q | pArg ~(p A q pVv ~(pAQ)
T| T T F T
T | F F T T
F| T F T T
F | F F T T

is T for all values of p and q, it is a tautology.

2.2. Verify that the proposition (pAgq)A~(pvq) is a contradiction.

Construct the truth table of (pAg)A~(pV Q)

P \ q ‘ PAQ | pVvgq | ~(p Vv q) \ Prg)r~pVa

T
T
F
F

IR

I > B

H o 33

e I I T

F
¥
F
F

[CHAP. 2

Since the truth value of (pAg)A~(pvgq) is F for all values of p and ¢, it is a contradiction.

LOGICAL EQUIVALENCE

2.3. Prove the Associative Law:

PAQ) AT = DPA(QAT).
Construct the required truth tables:

plair | pnra prg@ar | gar | pa(gnam)
T|T|T T T T T
T|T|F T F F F
T|F | T F F F F
T| ¥ | F F F F F
F | T |T F F T F
F|T|F F F F F
F|F | T F F F F

Since the truth tables are identical, the

24. Prove that disjunction distributes
Law: pv(gar) =

Pva)Aa(@vr).
Construct the required truth tables:

propositions are equivalent.

over conjunction; that is, prove the Distributive
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p | g | T | gnr pV(qAT)J pvaeg | pvr pvaonpvr
T|T|T T T T T T
T | T|F F T T T T
TIF | T F T T T T
T |F | F F T T T T
F{T|T T T T T T
F|T|F F F T F F
F|F | T F F F T F

Since the truth tables are identical, the propositions are equivalent.

2.5. Prove that the operation of disjunction can be written in terms of the operations
of conjunction and negation. Specifically, pv g = ~(~p A ~q).

Construct the required truth tables:

p[qlpvq‘~p|~q|~p/\~q| ~(~p A ~q)
T | T T F | F F T
T|F T F|T F T
F | T T T | F F T
F | F F T| T T F

! }

Since the truth tables are identical, the propositions are equivalent.

2.6. There are exactly four non-equivalent propositions of one variable; the truth tables
of such propositions follow:

p | Pio) | Paw) | i) | Patw)
T T ‘ T ‘ F l F

F T F T F

Find four such propositions.
Observe that

p|~p|pv~p | pr~p
T F T F
F| T T F
Hence P,(p) = pv ~p, Py(p) = p, P3(p) = ~p, Pylp) = pA~p.

27. Determine the number of non-equivalent propositions of two variables p and q.

The truth table of a proposition P(p,q) will contain 22 = 4 lines. In each line T or F can
appear as follows:

pla| Py | Po| Py | PPy | Py | Pr| Py | Py | Pro| P | Pro| Prs| Pra| Pris| Pro
T|T| T T T T T T T T F F F F F F F F
T{F| T T T T F P F F T T T T F F F F
F|T| T T F F T T F F T T F F T T F F
F|F| T F T F T F T F T F T F T F T F
In other words, there are 2¢ = 16 non-equivalent propositions of two variables p and q.
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2.8. Determine the number of non-equivalent propositions of: (i) three variables p, ¢
and r; (ii) » variables p,p,, ..., D,

(1) The truth table of a proposition P(p, q,7) will contain 23 = 8 lines. Since in each line T or F
can appear, there are 28 = 256 non-equivalent propositions of three variables.

(i) The truth table of a proposition P(py, ..., p, will contain 2" lines; hence, as above, there are
22" non-equivalent propositions of n variables.

NEGATION
2.9. Prove De Morgan’s Laws: (i) ~(pr¢q) = ~pv~g; (ii) ~(pv@q) = ~pr~q.

In each case construct the required truth tables.

() Pl g | pnrg | ~prag ~p ~qJ ~pV ~q
T | T T F F F F
T |F F T F T T
F|T F T T F T
F | F F T T T T

i p | a| pve | ~pvae | ~p | ~4 ’ ~p AN ~q
T | T T F F F F
T | F T F F T F
F| T T F T F F
F|F F T T T '?

2.10. Verify: ~~p = p. p|~p | ~~p
T|F T
Pl T F

2.11. Use the results of the preceding problems to simplify each of the following propo-
gitions:

(i) ~v~q), (i) ~(~p~rq), (i) ~(~pv~q).

I

(i) ~pv~q = ~pnA~~q ~pAgq
(ii) ~(~pnrgq = ~~pv~¢ = pVv ~q
(ifi) ~(~pv ~q) = ~~pAr~~q = png

2.12. Simplify each of the following statements.
(i) It is not true that his mother is English or his father is French.
(ii) It is not true that he studies physics but not mathematics.
(iii) It is not true that sales are decreasing and prices are rising.
(

iv) It is not true that it is not cold or it is raining.
(i) Let p denote “His mother is English” and let ¢ denote “His father is French”. Then the

given statement is ~(pVv q). But ~(pv q) = ~p A ~q. Hence the given statement is logically
equivalent to the statement “His mother is not English and his father is not French”.
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Let p denote “He studies physics” and let ¢ denote “He studies mathematics”. Then the
given statement is ~(p A ~¢). But ~(pA~q) = ~pv~~qg = ~pvgq. Hence the given state-
ment is logically equivalent to the statement “He does not study physics or he studies
mathematics”.

Since ~(pAgqg) = ~pv ~q, the given statement is logically equivalent to the statement
“Sales are increasing or prices are falling”.

Since ~(~pvgq) = pa~gq, the given statement is logically equivalent to the statement
“It is cold and it is not raining”.

ALGEBRA OF PROPOSITIONS

2.13. Simplify the proposition (pv q) A ~p by using the laws of the algebra of propositions
listed on Page 11.

Statement Reason
1 vaa~p = ~palpvyg (1) Commutative law
(2) = (~pAp)V(~pArq) (2) Distributive law
(3) = fv(~pAagq) (3) Complement law
(4) = ~pAg (4) Identity law

2.14. Simplify the proposition pv (p A q) by using the laws of the algebra of propositions
listed on Page 11.

Statement Reason
1) pvipng = At)vipag) (1) Identity law
(2) = pAa(tvg) (2) Distributive law
(3) = pat (8) Identity law
(4) =p (4) Identity law

2.15. Simplify the proposition ~(pvq)v(~pAq) by using the laws of the algebra of
propositions listed on Page 11.

Statement Reason
1) ~evaovi~prg = (~pr~qV(~prg) (1) De Morgan’s law
(2) = ~pA(~qV Q) (2) Distributive law
(3) = ~pnt (8) Complement law
(4) = ~p (4) Identity law

MISCELLANEOUS PROBLEMS

2.16. The propositional connective v is called the exclusive disjunction; pvq is read
“p or ¢ but not both”.

(i)
(i)

(i)

Construct a truth table for pvq.

Prove: pvq = (pvq)a~(paq). Accordingly v can be written in terms of
the original three connectives A, v and ~.

Now pV q is true if p is true or if ¢ is true but not if both are true; hence the truth table of
pvVv q is as follows:
| | pva

H e a3
oo e
I I |
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(il) We construct the truth table of

Observe that the truth tables of

Pvar~pmnaq),

[CHAP. 2

by the second method, as follows:

P a | v @ A~ ~ (® A~ 9

T|T|T{T|T|F|F|T|T]|T

T|F|T|TT|F|T|T|T|F|F

F|lT|F|T|T|T|T|F|F|T

F| F|F|F|F|F|T|F|F|F

Step 1 2 1 4 3 1 2 1
pvq and (PVHA~DAQ)

pYq = (pvaor~(pnrg.

are identical; hence

2.17. The propositional connective | is called the joint denial, plq is read “Neither p

nor q”.

(i) Construct a truth table for p|laq.

(ii) Prove:

The three connectives v, A~ and ~ may be expressed in terms of the
connective | as follows:

(@ ~p =plp, (b) prg=(plp)l(elq), (¢) pve=(pla)l(pl9).

(i) Now p | ¢ is true only in the case that p is not true and g is not true; hence the truth table of
p | ¢ is the following:

P | q ] pla
T T ¥
T | F F
F T F
F F T
(ii) Construct the appropriate truth tables:
(@ p , ~p l plp (b) P | q I PAg l plp ' q)4q | lp )@l
T F' F T|T T F F T
F T T T F 1) F T F
t T F|T F T F F
F F F T T F
() »p | q I pVyq ‘ pla ‘(piq)i(plq)
T | T T F T
T | F T F T
F | T T F T
F F F T ?‘
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Supplementary Problems

LOGICAL EQUIVALENCE

2.18. Prove the associative law for disjunction: (pvg)vr = pv(gv ).

2.19. Prove that conjunction distributes over disjunction: pA(gvr) = (pAg Vv (gAar).

2.20. Prove (pvg)A~p = ~pAq by constructing the appropriate truth tables (see Problem 2.13).
2.21. Prove pv(pAgq) = p by constructing the appropriate truth tables (see Problem 2.14).

2.22. Prove ~(pvq)v(~pAgq) = ~p by constructing the appropriate truth tables (see Problem 2.15).

223. (i) ExpressV in terms of A and ~.

(ii) Express A in terms of v and ~.

NEGATION
2.24. Simplify: (1) ~(p A ~q), (i) ~(~pvq), (ili) ~(~p A ~q).
2.25. Write the negation of each of the following statements as simply as possible.
(i) He is tall but handsome.
(i) He has blond hair or blue eyes.
(iii) He is neither rich nor happy.
(iv) He lost his job or he did not go to work today.
(v) Neither Marc nor Erik is unhappy.

(vi) Audrey speaks Spanish or French, but not German.

ALGEBRA OF PROPOSITIONS

2.26. Prove the following equivalences by using the laws of the algebra of propositions listed on Page 11:

) palpve =, (i) PrQv~p = ~pvygq, (i) pr(~pva) = pag.

Answers to Supplementary Problems
223, () pvg = ~(~pr~q), (i) prg = ~(~pv~9.
224, (i) ~pvaq, (ii) pA~q, (iii) pvq.
2.25. (iii) He is rich or happy. (vi) Audrey speaks German but neither Spanish nor French.

226, @) pa(pve) = (pvHalpve = pvifrg = pvf = p



Chapter 3

Conditional Statements

CONDITIONAL, »~ ¢q

Many statements, particularly in mathematics, are of the form “If p then ¢”. Such
statements are called conditional statements and are denoted by

»—=>q
The conditional p- ¢ can also be read:
(i) p implies q (iii) p is sufficient for q
(ii) ponly if q (iv) q is necessary for p.

The truth value of p— q satisfies:
[T,] The conditional p— ¢ is true except in the case that p is true and ¢ is false.
The truth table of the conditional statement follows:

p|al| p-a

T T T
T F F
F T T
F F T
Example 1.1: Consider the following statements:

(i) If Paris is in France, then 242 = 4.

(ii) If Paris is in France, then 242 = 5.

(iii) If Paris is in England, then 242 = 4.

(iv) If Paris is in England, then 242 = 5.
By the property [T,], only (ii) is a false statement; the others are true. We em-
phasize that, by definition, (iv) is a true statement even though its substatements

“Paris is in England” and “2+42 = 5” are false. It is a statement of the type:
If monkeys are human, then the earth is flat.

Now consider the truth table of the proposition ~pv ¢q:

p|l a|~p]| ~pva
T T r T
T| F|F F
FlT|T T
F r T T

Observe that the above truth table is identical to the truth table of p>¢. Hence p->gq
is logically equivalent to the proposition ~pv q:

p=>q = ~pvq
In other words, the conditional statement “If p then q” is logically equivalent to the state-
ment “Not p or ¢”” which only involves the connectives v and ~ and thus was already a

part of our language. We may regard p— ¢ as an abbreviation for an oft-recurring
statement.

18
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BICONDITIONAL, p < ¢q

Another common statement is of the form “p if and only if ¢” or, simply, “p iff ¢”.

Such statements, denoted by
Peq

are called biconditional statements. The truth value of the biconditional statement p < ¢
satisfies the following property:

[T,]1 If p and ¢ have the same truth value, then p < ¢ is true; if p and q have opposite
truth values, then p < q is false.

The truth table of the biconditional follows:

P l q ‘ P <q
T T T
T P F
F T F
F F T
Example 2.1: Consider the following statements:

(i) Paris is in France if and only if 242 =

4
(ii) Paris is in France if and only if 2+2 = 5.
(iii) Paris is in England if and only if 2+2 = 4
(iv) Paris is in England if and only if 2+2 = 5

By property [T;], the statements (i) and (iv) are true, and (ii) and (iii) are false.

Recall that propositions P(p,q,...) and Q(p,q,...) are logically equivalent if and
only if they have the same truth table; but then, by property [T.], the composite proposi-
tion P(p,q,...) « Q(p,q,...) is always true, i.e. is a tautology. In other words,

Theorem 3.1: P(p,q,...) = Q(p,q, ...) if and only if the proposition

Pp,q,...) & Qp,q,...)
is a tautology.

CONDITIONAL STATEMENTS AND VARIATIONS

Consider the conditional proposition »—> ¢ and the other simple conditional proposi-
tions which contain p and ¢:
q>p, ~p>~q and ~q>~p
called respectively the converse, inverse, and contrapositive propositions. The truth tables
of these four propositions follow:

Conditional Converse Inverse Contrapositive
p q p=>q q=p ~p = ~q ~q > ~p
T T T T T T
T F F T T F
F T T F F T
F F T T T T

Observe first that a conditional statement and its converse or inverse are not logically
equivalent. On the other hand, the above truth table establishes

Theorem 3.2: A conditional statement p - ¢ and its contrapositive ~g = ~p are logically
equivalent.
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Example 3.1: Consider the following statements about a triangle A:
p—q: If A is equilateral, then A is isosceles.
q—p: If A is isosceles, then A is equilateral.

Note that p = ¢ is true, but ¢ = p is false.

Example 3.2: Prove: (p—¢) If 22 is odd then x is odd.

We show that the contrapositive ~q = ~p, “If « is even then 22 is even”,
is true. Let x be even; then ® = 2n where n is an integer. Hence 22 = (2n)(2n) =
2(2n2) is also even. Since the contrapositive statement ~q - ~p is true, the
original conditional statement p - ¢ is also true.

Solved Problems

CONDITIONAL

3.1.

3.2

3.3.

Let p denote “It is cold” and let ¢ denote “It rains”. Write the following statements
in symbolic form.

(i) It rains omly if it is cold.

(ii) A necessary condition for it to be cold is that it rain.

(iii) A sufficient condition for it to be cold is that it rain.
(iv) Whenever it rains it is cold.
(v) It never rains when it is cold.

» o«

Recall that p— g can be read “p only if ¢”, “p is sufficient for ¢” or “q is necessary for p”.
(i) g—p (i) p—q (i) ¢—p
(iv) Now the statement “Whenever it rains it is cold” is equivalent to “If it rains then it is cold”.
That is, ¢ p.

(v) The statement “It never rains when it is cold” is equivalent to “If it is cold then it does not
rain”. That is, p—> ~q.

Rewrite the following statements without using the conditional.

(i) If it is cold, he wears a hat.
(ii) If productivity increases, then wages rise.

Recall that “If p then ¢” is equivalent to “Not p or ¢”.
(i) It is not cold or he wears a hat.

(ii) Productivity does not increase or wages rise.

Determine the truth table of (p - q)=> (P A q).

p| a]lr>a] prg | @0 mrg
TiT]| T T T
T|F | F F T
F|T | T F P
FlF | T F F
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3.4. Determine the truth table of ~p - (¢~ p).
p | ’~p’q—>p| ~p = (g = p)
T T F T T
T F F T T
F T T r F
F F T T T
3.5. Verify that (p ~ ¢) > (p v q) is a tautology
P l ¢ | pra | pva ‘ Prg=>(pVva
T | T T T T
T | F ¥ T T
F | T F T T
F|F F F T
3.6. Prove that the conditional operation distributes over conjunction:
p=>(@ar)=@>0) A7)
p | q| r gnr | p=lgnr) p=>q | poT = AP
T! T | T T T T T T
T | T | F F F T F F
T|F | T F F F T F
T | F | F F F F F F
F|T| T T T T T T
F|T| F F T T T T
F|F | T F T T T T
F|F| F F T T T J'1‘
BICONDITIONAL
3.7. Show that “p implies ¢ and ¢ implies p” is logically equivalent to the biconditional
“p if and only if ¢”; that is, (p~> Q) A(g> D) = peq.
p|la|lprod| poa]| g | G2nr@>p
T T T T T T
T F F F T F
F | T F T F F
F | F T T T T
3.8. Determine the truth value of each statement.

i) 2+2=4 iff 3+6 =9
(ify 2+2 =7 ifandonlyif 5+1 =2
(i) 1+1 =2 iff 3+2 = 8
(iv) 142 =5 ifandonlyif 3+1 = 4

Now p <> q is true whenever p and q have the same truth value; hence (i) and (ii) are true
statements, but (iii) and (iv) are false. (Observe that (ii) is a true statement by definition of the
conditional, even though both substatements 2+2 = 7 and 5+1 = 2 are false.)
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3.9. Show that the biconditional p <> ¢ can be written in terms of the original three
connectives v, A and ~.
Now p—>q = ~pvg and g— p = ~gVv p; hence by Problem 3.7,
peqg = p2dAalg—p) = (~pV O A(~gV D)

3.10. Determine the truth value of (p— q)v ~(p & ~q).

p qg | - 9 Vv ~ » © ~ 9
T|T|T|]T|T|T)|T|T|F|F|T
T|F|T|F|FP|F|F|T|T|T]|F
F|T|F|{T|T|T|F|F|T|F T
F|F|F|T|P|]T|T|F |F|T]|F

Step 1 2 |1 5 4 |1 3 |2 |1

3.11. Determine the truth value of (p < ~¢) < (¢~ D).
p|al~a|po~a]| qop | PO~ @>p

T T F F T F
T F T T T T
F T P T F F
F F T F T F
Method 1
p|la |l <& ~ 9o < (@ - p
T T T F F T F T T T
T F T T T F T F T T
F T F T F T F T F F
F F F F T F F F T F
Step 1 3 2 1 4 1 2 1
Method 2

NEGATION

3.12. Verify by truth tables that the negation of the conditional and biconditional are as
follows: (i) ~p—>q) = par~q, (i) ~Ppeq) = pe~qg = ~poq.

@ »lag|p2qg] ~w-0| ~q|pr~q
T T T F F F
T F F T T T
F T T F F F
F F T F T F
@ »|a|red| ~0og|~p|~poq]~|po~
T T T F F F F F
T F F T F T T T
F T F T T T F T
F F T F T F T F
Remark: Since p—>q = ~pvq, we could have used De Morgan’s law to verify (i) as follows:

~p-q) = ~(~pVq = ~~PA~q = pA~q
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3.13. Simplify: (i) ~(p & ~q), (ii) ~(~p < q), (iii) ~(~p = ~q).
i) ~pe~q = p~~q = poyg
(i) ~(~pq) = ~~pq = pog

(iii) ~(~p=>~q) = ~pA~~q¢ = ~pAryg

3.14. Write the negation of each statement as simply as possible.
(i) If he studies, he will pass the exam.
(ii) He swims if and only if the water is warm.
(iii) If it snows, then he does not drive the car.

(i) By Problem 38.12, ~(p—q) = p A ~q; hence the negation of (i) is

He studies and he will not pass the exam.

(i) By Problem 3.12, ~(p<>q) = p<>~q = ~p<>q; hence the negation of (ii) iz either of the
following:

He swims if and only if the water is not warm.
He does not swim if and only if the water is warm.
(iii) Note that ~(p—> ~q) = p A ~~q = pAq. Hence the negation of (iii) is

It snows and he drives the car.

3.15. Write the negation of each statement in as simple a sentence as possible.
(i) If it is cold, then he wears a coat but no sweater.
(ii) If he studies, then he will go to college or to art school.

(i) Let p be “It is cold”, ¢ be “He wears a coat” and » be “He wears a sweater”. Then the given
statement can be written as p— (¢ A ~7). Now

~p=lgnA~1] = pAr~@gr~r) = pA(~qVvrT)
Hence the negation of (i) is
It is cold and he wears a sweater or no coat.
(ii) The given statement is of the form p— (¢vr). But
~po(@vr)] = pa~@vr) = pA~qgn~r
Thus the negation of (ii) is

He studies and he does not go to college or to art school.

CONDITIONAL STATEMENTS AND VARIATIONS
3.16. Determine the contrapositive of each statement.
(i) If John is a poet, then he is poor.
(i) Onmly if Marc studies will he pass the test.
(ii1) It is necessary to have snow in order for Eric to ski.
(iv) If @ is less than zero, then z is not positive.

(i) The contrapositive of p— q is ~¢— ~p. Hence the contrapositive of (i) is
If John is not poor, then he is not a poet.

(i) The given statement is equivalent to “If Marc passes the test, then he studied”. Hence the
contrapositive of (ii) is

If Marc does not study, then he will not pass the test.
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(iii) The given statement is equivalent to “If Eric skis, then it snowed”. Hence the contrapositive

of (iii) is L . R .
If it did not snow, then Eric will not ski.

(iv) The contrapositive of p—> ~q is ~~q—= ~p = q—> ~p. Hence the contrapositive of (iv) is

If x is positive, then x is not less than zero.

3.17. Find and simplify: (i) Contrapositive of the contrapositive of p—-g¢. (ii) Contra-

positive of the converse of p— ¢q. (iii) Contrapositive of the inverse of p-— q.

(i) The contrapositive of p—> q is ~g— ~p. The contrapositive of ~gq—> ~p is ~~p—> ~~q =
p—q, which is the original conditional proposition.

(ii) The converse of p— ¢ is ¢ p. The contrapositive of ¢— p is ~p—> ~q, which is the inverse
of p-q.

(iii) The inverse of p— q is ~p— ~q. The contrapositive of ~p—> ~q is ~~q—> ~~p = q-p,
which is the converse of p— q.

In other words, the inverse and converse are contrapositives of each other, and the conditional
and contrapositive are contrapositives of each other!

Supplementary Problems

STATEMENTS

3.18.

3.19.

3.20.

Let p denote “He is rich” and let q denote “He is happy”. Write each statement in symbolic form
using p and gq.

(i) If he is rich then he is unhappy.

(ii) He is neither rich nor happy.

(iii) It is necessary to be poor in order to be happy.
(iv) To be poor is to be unhappy.

(v) Being rich is a sufficient condition to being happy.
(vi) Being rich is a necessary condition to being happy.
(vii) One is never happy when one is rich.

(viii) He is poor only if he is happy.

(ix) To be rich means the same as to be happy.

(x) He is poor or else he is both rich and happy.

Note. Assume “He is poor” is equivalent to ~p.

Determine the truth value of each statement.

(i) If 5<3, then —3 < —5.

(ii) It is not true that 1+1 = 2 iff 3+4 = b.

(iii) A necessary condition that 1+2 = 3 is that 4+4 = 4.
(iv) It is not true that 1+1 =5 iff 34+3 = 1.

(v) If 3<5, then —3 < —5.

(vi) A sufficient condition that 142 = 3 is that 4+4 = 4.

Determine the truth value of each statement.

(i) It is not true that if 2+ 2 = 4, then 3+3 =5 or 1+1 = 2.
(i) If 242 = 4, then it is not true that 2+1 =3 and 5+5 = 10.
(iii) If 24+2 =4, then 3+83 =7 iff 1+1 = 4.
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3.21.

Write the negation of each statement in as simple a sentence as possible.
(i) If stock prices fall, then unemployment rises.

(ii) He has blond hair if and only if he has blue eyes.

(ii1) If Marc is rich, then both Eric and Audrey are happy.

(iv) Betty smokes Kent or Salem only if she doesn’t smoke Camels.

(v) Mary speaks Spanish or French if and only if she speaks Italian.
(vi) If John reads Newsweek then he reads neither Life nor Time.

TRUTH TABLES
Find the truth table of each proposition: (i) (~pv q)—=>p, (i) ¢<> (~q Ap).

3.22

3.23.

3.24.

3.25.

Find the truth table of each proposition:
(i) e~ - (~prg), () (~qgvp) < (¢g- ~p).

Find the truth table of each proposition:

() [pA(~g=p)] A ~[lpe ~q) = (gv ~p)], (i) [ge (= ~p)] Vv [(~g- p) 7]

Prove: (i) (prg)>r = (p=>7r)vig—>r), (i) p>(g=>7) = PA~7)~> ~q.

CONDITIONAL AND VARIATIONS

3.26.

3.27.

3.18.

3.19.

3.20.

3.21.

3.22,

3.23.

3.24.
3.25.
3.26.

3.27.

Determine the contrapositive of each statement.

(i) If he has courage he will win.

(ii) It is necessary to be strong in order to be a sailor.

(iii) Only if he does not tire will he win.

(iv) It is sufficient for it to be a square in order to be a rectangle.

Find: (i) Contrapositive of p —> ~q. (iii) Contrapositive of the converse of p — ~q.
(i1) Contrapositive of ~p — gq. (iv) Converse of the contrapositive of ~p — ~q.

Answers to Supplementary Problems

(i) »-~q (iti) ¢ ~p (v) p—=¢q (vii) p-~q
(i) ~pA~gq (iv) ~p < ~q (vi) ¢~ p (viii) ~p—q
(T, (i) T, (i) F, (iv) F, (v) F, (vi) T

i) F, (i) F, (iii)) T

(i)  Stock prices fall and unemployment does not rise.

(ii) He has blond hair but does not have blue eyes.

(iii) Marc is rich and Eric or Audrey is unhappy.

(iv) Betty smokes Kent or Salem, and Camels.

(v) Mary speaks Spanish or French, but not Italian.
(vi) John reads Newsweek, and Life or Time.

(i) TTFF, (ii) FFFT

(i) TFTT, (ii) FTFT

(i) FTFF, (ii) TTTFTTFT

Hint. Construct the appropriate truth tables.

(i) If he does not win, then he does not have courage.
(ii) If he is not strong, then he is not a sailor.

(iii) If he tires, then he will not win.

(iv) If it is not a rectangle, then it is not a square.

(i) g ~p, (i) ~¢-p, (iii) ~p~>gq, (iv) p=>gq

(ix) p<>gq
(x) ~pVv(pAQ)
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Chapter 4

Arguments, Logical Implication

ARGUMENTS

An arguwment is an assertion that a given set of propositions P,P,, ...,P , called
premises, yields (has as a consequence) another proposition @Q, called the conclusion. Such

an argument is denoted by
P,P,,..,P, - Q

The truth value of an argument is determined as follows:

[T,] An argument P,P, ...,P, + Q is true if @ is true whenever all the premises
P, P, ..., P, are true; otherwise the argument is false.

Thus an argument is a statement, i.e. has a truth value. If an argument is true it is called
a valid argument; if an argument is false it is called a fallacy.

Example 1.1: The following argument is valid:
p, p>q + q (Law of Detachment)
The proof of this rule follows from the following truth table.

pla| pg

T T T
T F F
F T T
F F T

For p is true in Cases (lines) 1 and 2, and p = ¢ is true in Cases 1, 3 and 4; hence
p and p > q are true simultaneously in Case 1. Since in this Case q is true, the
argument is valid.

Example 1.2: The following argument is a fallacy:
P24 q9 - p
For p— ¢ and ¢ are both true in Case (line) 3 in the above truth table, but in
this Case p is false.

Now the propositions P, P,, ..., P, are true simultaneously if and only if the propo-
sition P, AP, A +- AP, is true. Thus the argument P,P, ...,P + Q is valid if and
only if @ is true whenever P AP, A -+ AP is true or, equivalently, if the proposition
(P,AP,~n-++AP,)>Q is a tautology. We state this result formally.

Theorem 4.1: The argument P,P, ...,P, — Q is valid if and only if the proposition
(P,AP,n---AP)~> Q is a tautology.

Example 1.3: A fundamental principle of logical reasoning states:
“If p implies ¢ and ¢ implies », then p implies r”
that is, the following argument is valid:
p—>dq,q>7r + p—>r (Law of Syllogism)

This fact is verified by the following truth table which shows that the proposition
=9 A(g=>7)] = (p—~7r) is a tautology:

26
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p |l g ||l » @& ~ (@ > n == (p > 1
T|T|T | T|T|T|T|T|T|T|T|T|T/|T
T T F T T T r T F F T T F F
T F T T F F F F T T T T T T
T r F T F F F F T F T T F F
F|lT{T|F|T|T|T|T|T|T|T|]F|T|T
F|l|T|*|F|T|T|F|T|F|F|T|F|T) F
F|F|T|F|T|F|T|F T|T|T|F|T]|T
F|F|FF|F|T|F|T|F|T|F|T|F|T]|F

Step 1|2 |1 |31 2 |1 411|241

Example 14: The following argument is a fallacy:
p~4q ~p - ~q

For the proposition [(p—¢) A ~p] = ~q 1is not a tautology, as seen in the truth
table below.

P \ q \ p=q \ ~p | (p—>q)/\~p‘ ~q | [~ q) A ~p] > ~q
T | T T F F F T
T | F F F F T T
F| T T T T F F
F | F T T T T T

Equivalently, the argument is a fallacy since, in Case (line) 3 of the truth table,
p—q and ~p are true but ~q is false.

An argument can also be shown to be valid by using previous results as illustrated in
the next example.

Example 1.5: We prove that the argument p—-> ~q, ¢ ~ ~p is valid:

Statement Reason
(1) q is true. (1) Given
(2) p—>~q is true. (2) Given
(3) ¢ > ~p is true. (3) Contrapositive of (2)
(4) ~p is true. (4) Law of Detachment (Example 1.1)

using (1) and (3)

ARGUMENTS AND STATEMENTS
We now apply the theory of the preceding section to arguments involving specific
statements. We emphasize that the validity of an argument does not depend upon the

truth values nor the content of the statements appearing in the argument, but upon the
particular form of the argument. This is illustrated in the following examples.

Example 2.1: Consider the following argument:
Si: If a man is a bachelor, he is unhappy.
S,: If a man is unhappy, he dies young.

S: Bachelors die young.

Here the statement S below the line denotes the conclusion of the argument, and
the statements S; and S, above the line denote the premises. We claim that the
argument S;,S; — S is valid. For the argument is of the form

P29 q>r = pr

where p is “He is a bachelor”, q is “He is unhappy” and r is “He dies young”;
and by Example 1.8 this argument (Law of Syllogism) is valid.
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Example 2.2: We claim that the following argument is not valid:
S;: If two sides of a triangle are equal, then the opposite angles are equal.

Sy: Two sides of a triangle are not equal.

S: The opposite angles are not equal.

For the argument is of the form p—q, ~p — ~q, where p is “Two sides of a
triangle are equal” and ¢ is “The opposite angles are equal”; and by Example 1.4
this argument is a fallacy.

Although the conclusion S does follow from S, and axioms of Euclidean geom-
etry, the above argument does not constitute such a proof since the argument is
a fallacy.

Example 2.3: We claim that the following argument is valid:
S;: If 5 is a prime number, then 5 does not divide 15.
S,: 5 divides 15.

S: b is not a prime number.

For the argument is of the form p—->~q, ¢ ~ ~p where p is “5 is a prime
number” and ¢ is “5 divides 15”; and we proved this argument is valid in Ex-
ample 1.5.

We remark that although the conclusion here is obviously a false statement,
the argument as given is still valid. It is because of the false premise S; that
we can logically arrive at the false conclusion.

Example 24: Determine the validity of the following argument:
S;: If 7 is less than 4, then 7 is not a prime number.
S,: 7 is not less than 4.

S: 7 is a prime number.

We translate the argument into symbolic P
form. Let p be “7 is less than 4” and ¢ be

“7 is a prime number”. Then the argument is T

of the form T

F

F

p>~q, ~p +~ ¢q
The argument is a fallacy since in Case (line)

4 of the adjacent truth table, p > ~q and ~p
are true but ¢ is false.

HARA=S9"
S Aa"a

The fact that the conclusion of the argument happens to be a true statement
is irrelevant to the fact that the argument is a fallacy.

LOGICAL IMPLICATION

A proposition P(p,q,...) is said to logically imply a proposition Q(p,q,...) if
Q(p,q, ...) is true whenever P(p,q, ...) is true.

p|a|pvy
Example 3.1: We claim that p logically implies p v ¢q. For consider the T T T
truth tables of p and p vV ¢q in the adjacent table. Observe
that p is true in Cases (lines) 1 and 2, and in these Cases T F T
pVv q is also true. In other words, p logically implies F T T
pVaQ. F | F F

Now if Q(p,q, ...) is true whenever P(p,q, ...) is true, then the argument

P, q,...) - Q. q, ...)

is valid; and conversely. Furthermore, the argument P @ is valid if and only if the
conditional statement P - Q is always true, i.e. a tautology. We state this result formally.
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Theorem 4.2: The proposition P(p,q,...) logically implies the proposition Q(p,q, ...

if and only if

(i) the argument P(p,q,...) - Q(,q, ..

or, equivalently,

(1i) the proposition P(p,q,...) = Q(p,q, ..

Remark: The reader should be warned that logicians and many texts use the word
“implies” in the same sense as we use “logically implies”, and so they dis-
tinguish between “implies” and “if ...

.) 1s valid

.) is a tautology.

are, of course, intimately related as seen in the above Theorem 4.2.

Solved Problems

ARGUMENTS

4.1. Show that the following argument is valid: p<q,q¢ — p.

Method 1.

Construct the truth table on the right. Now p <> q is true in Cases
(lines) 1 and 4, and q is true in Cases 1 and 3; hence p <> ¢ and q are true
simultaneously only in Case 1 where p is also true.

p<>q,q +— p is valid.

Method 2.

Construct the truth table of [(p<>q)Ag] = p:

Thus the argument

P ‘ q ‘ P q [ P9 g ‘ (pe=g)ngl—>p

then”. These two distinet concepts

T T T
T F F
F T F
F F T

T
F
F
F

B A

Since [(p€>q)Aq] » p is a tautology, the argument is valid.

4.2, Determine the validity of the argument p-q, ~¢ — ~p.
Construct the truth table of [(p— q)A~q] > ~p:

0 a3

p | ¢ | » @ A~ ~ qg > ~ p
T{tT|T|T|T|F|F|{T|T|F|T
T|FP|T|F|F|F|T|F|T|F|T
F{T|F|T|T|F|F|T|T|T|F
F|F|F|T|F|T|T|F|T|T]|F

Step 121|382 |114]|¢2]1

oI TS B I Y

Since the proposition [(p— q) A ~q] = ~p is a tautology, the given argument is valid.

4.3. Determine the validity of the argument

~p>q¢Dp = ~q.

Construct the truth table of [(~p—> q)Ap] > ~q:

Amm ]
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'~p‘ ~pq ‘ (~p~>q) A p ] ~q ’ [(~p~>q) A p] > ~q

H H S 9|

= A" Al

Since the proposition

is a fallacy.

F T T F F
F T T T T
T T F F T
T F F T T

[(~p—>4q) Ap] > ~q is not a tautology, the argument ~p->gq, p+ ~q

Observe that ~p— q and p are both true in Case (line) 1 but in this Case ~g¢ is false.

Prove that the following argument is valid: p—>~q,r—>q,r - ~p.

Method 1.

Construct the following truth tables:

<
<
!
<
14
=]

> ~q

=

e = IS BTN VU SR
HHE A" " 3
HE A" a3

o B T I I R A |
e I B N B - B

HHEEREE 33
o B T T B B B B

o]
|
=

8

Now p— ~q, r— q and r are true simultaneously only in Case (line) 5, where ~p is also true; hence
the given argument is valid.

Method 2.

Construct the truth table for the proposition

(=~ A(r>q) Ar] = ~p

It will be a tautology, and so the given argument is valid.

Method 3.

®
(2)
3)
(4)

Statement Reason
p—~q is true. (1) Given
r—gq is true, (2) Given
~q - ~r is true, (8) Contrapositive of (2)
p—~7r is true. (4) Law of Syllogism, using (1) and (3)
r—=>~p is true. (5) Contrapositive of (4)
r is true. (6) Given
Hence ~p is true. (7) Law of Detachment, using (5) and (6)

ARGUMENTS AND STATEMENTS
Test the validity of each argument:
(i) If it rains, Erik will be sick. (i) If it rains, Erik will be sick.

It did not rain.

4.5.

Erik was not sick.

.........................

Erik was not sick. It did not rain.

First translate the arguments into symbolic form:

(i) p—=q, ~p - ~q (i) p~>¢ ~¢ - ~p

where p is “It rains” and ¢ is “Erik is sick”. By Example 1.4, the argument (i) is a fallacy; by
Problem 4.2, the argument (ii) is valid.
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4.6.

4.7.

4.8.

Test the validity of the following argument:
If 6 is not even, then 5 is not prime.

But 6 is even.

Therefore 5 is prime.

Translate the argument into symbolic form. Let p be P ‘ q ‘ ~p { ~q ‘ ~p = ~q
“6 is even” and let ¢ be “5 is prime.” Then the argument is
of the form T T F F T
Now in the adjacent truth table, ~p > ~q and p are both F | T )| T]|F F
true in Case (line) 2; but in this Case ¢ is false. Hence the F F T T T

argument is a fallacy.

The argument can also be shown to be a fallacy by constructing the truth table of the
proposition [(~p— ~q) Ap] = ¢ and observing that the proposition is not a tautology.

The fact that the conclusion is a true statement does not affect the fact that the argument
is a fallacy.

Test the validity of the following argument:
If T like mathematics, then I will study.
Either I study or I fail.

If I fail, then I do not like mathematics.

First translate the argument into symbolic form. Let p be “I like mathematics”, ¢ be “I study”
and 7 be “I fail”. Then the given argument is of the form

pP>¢ qVvVr = TP

To test the validity of the argument, construct the truth tables of the propositions
p=>q, qvr and r—> ~p:

p q 7 p=q qvr | ~p | *r>~p
T T T T T F F
T T F T T F T
T F T F T F F
T F F F F F T
F T T T T T T
F T F T T T T
F F T T T T T
F F F T F T T

Recall that an argument is valid if the conclusion is true whenever the premises are true.
Now in Case (line) 1 of the above truth table, the premises p— ¢ and qv » are both true but the
conclusion »— ~p is false; hence the argument is a fallacy.

Test the validity of the following argument:
If I study, then I will not fail mathematics.
If I do not play basketball, then 1 will study.
But I failed mathematics.

Therefore, I played basketball.
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First translate the argument into symbolic form. Let p be “I study”, q be “I fail mathematics”
and » be “I play basketball”. Then the given argument is as follows:

pP=>~q ~r—p,q - 7
To test the validity of the argument, construct the truth tables of the given propositions
p—> ~q, ~*—=p, q and 7:
pr~q | ~r | ~r=p

F

14
S

R IR B S
g g g 3 e
Rg A" 9
I I I B B B
HRAaAaad
I I R
HE AR AaR

=

F T

=
!

Now the premises p— ~q, ~r— p and ¢ are true simultaneously only in Case (line) 5, and
in that case the conclusion # is also true: hence the argument is valid.

LOGICAL IMPLICATION

4.9.

4.10.

4.11.

Show that p ~ q logically implies p < q.
Construct the truth table for (p Aq) = (p <> q):

P | q | PAq | p<q l prg)— (pegq)

T T T T T
T F F F T
¥ T F F T
F F F T T

Since (pAq) = (p<>q) is a tautology, p A ¢q logically implies p <> q.

Show that p & ¢ logically implies p— q.
Consider the truth tables of p<>q and p- ¢q:

p|a|poa|pa
T| T T T
T F F ¥
F T F T
F F T T

Now p<> ¢ is true in lines 1 and 4, and in these cases p— ¢ is also true. Hence p <> q logically
implies p - q.

Prove: Let P(p,q,...) logically imply Q(p,q,...). Then for any propositions
P,P, ..., P(P,P,...) logically implies Q(P,P,,...).

By Theorem 4.2, if P(p,q, ...) logically implies Q(p,q, ...) then the proposition P(p,q,...) =
Q(p,q,...) is a tautology. By the Principle of Substitution (Theorem 2.2), the proposition
P(Py,P,,...) » Q(P{, Py, ...) is also a tautology. Accordingly, P(P;, P,,...) logically implies
QP Py, ...).
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4.12. Determine the number of nonequivalent propositions P(p,q) which logically imply
the proposition p < q. ‘

P | q | » g
Consider the adjacent truth table of p<>q. Now P(p, q) logically im- T T T
plies p <> q if p <> ¢ is true whenever P(p, q) is true. But p<> ¢ is true
only in Cases (lines) 1 and 4; hence P(p, q) cannot be true in Cases 2.and 3. T F F
There are four such propositions which are listed below: F T F
Polpy | p | pe FIF T
F T F T T
F F F F F
F F F F F
F F T T T

4.13. Show that p < ~¢q does not logically imply p- q.
Method 1. Construct the truth tables of p<> ~q and p—¢q:

P ‘Q"“I.p(_)"q pP=q

T T F F T
T F T T F
F T F T T
F F T P T

Recall that p <> ~¢ logically implies p = q if p— ¢ is true whenever p <> ~q is true. But p < ~q
is true in Case (line) 2 in the above table, and in that Case p—~ q is false. Hence p <> ~q does not
logically imply p— q.

Method 2. Construct the truth table of the proposition (p<>~q)—>(p—¢q). It will not be a
tautology; hence, by Theorem 4.2, p <> ~q does not logically imply »—q.

Supplementary Problems

ARGUMENTS
4.14. Test the validity of each argument: (i) ~p—->q,p - ~q; (i) ~p—> ~q,q +~ p.

4.15. Test the validity of each argument: (i) p=>q,r> ~q + r— ~p; (i) p> ~q, ~r—=> ~q + p—> ~7r.

416. Test the validity of each argument: (i) p—> ~q, 7= p,q + ~7;, (i) p>q,rv ~q, ~r +~ ~p.

ARGUMENTS AND STATEMENTS
4.17. Test the validity of the argument:
If London is not in Denmark, then Paris is not in France.

But Paris is in France.

Therefore, London is in Denmark.

4.18.  Test the validity of the argument:
If T study, then 1 will not fail mathematics.
I did not study.

I failed mathematics.
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4.19.
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Translate into symbolic form and test the validity of the argument:
(a) If 6 is even, then 2 does not divide 7.

Either 5 is not prime or 2 divides 7.

But 5 is prime.

Therefore, 6 is odd (not even).

(b)) On my wife’s birthday, I bring her flowers.
Either it’s my wife’s birthday or I work late.
1 did not bring my wife flowers today.

............................................

Therefore, today I worked late.

(¢) If I work, I cannot study.
Either I work, or I pass mathematics.
I passed mathematics.

Therefore, I studied.

(d)y If I work, I cannot study.
Either 1 study, or I pass mathematics.
I worked.

Therefore, I passed mathematics.

LOGICAL IMPLICATION

4.20.
4.21.
4.22.
4.23.

4.24.

4.14.
4.15.
4.16.
4.17.
4.18.

4.23.

4.24.

Show that (i) p A q logically implies p, (ii) pv q does not logically imply p.

Show that (i) ¢ logically implies p— q, (ii) ~p logically implies p— q.

Show that p A (g Vv 7) logically implies (p A q) Vv 7.

Determine those propositions which logically imply (i) a tautology, (ii) a contradiction.

Determine the number of nonequivalent propositions P(p,q) which logically imply the proposition
p— ¢, and construct truth tables for such propositions (see Problem 4.12).

Answers to Supplementary Problems
(i) fallacy, (ii) valid
(i) valid, (ii) fallacy
(i) valid, (ii) valid

valid

fallacy

(@) p—~q, ~rvygq,r — ~p; valid. (¢) p—=>~q,pvr,r + q; fallacy.
(0) p=q,pvr, ~q  r; valid (d) p>~q,qvr,p +~ r; valid.

(i) Every proposition logically implies a tautology. (ii) Only a contradiction logically implies a
contradiction.

There are eight such propositions:
P | q ‘Pl‘PZlP.'iLP4JP5‘P6‘P7.P8|p—)q

CE R
SRR
T
B
O
!
g g
HAada



Chapter 5

Set Theory

SETS AND ELEMENTS

The concept of a set appears in all branches of mathematics. Intuitively, a set is any
well-defined list or collection of objects, and will be denoted by capital letters A,B, X,Y,....
The objects comprising the set are called its elements or members and will be denoted by
lower case letters a,b,x,y,.... The statement “p is an element of A” or, equivalently,
“p belongs to A” is written

pEA
The negation of p € A is written p € A.

There are essentially two ways to specify a particular set. One way, if it is possible,
is to list its members. For example,

A = {a,e1,0,u}

denotes the set A whose elements are the letters a,e¢,%,0,4. Note that the elements are
separated by commas and enclosed in braces { }. The second way is to state those proper-
ties which characterize the elements in the set. For example,

B = {x: xis an integer, ¥ > 0}

which reads “B is the set of = such that x is an integer and x is greater than zero,” denotes
the set B whose elements are the positive integers. A letter, usually z, is used to denote a
typical member of the set; the colon is read as “such that” and the comma as “and”.

Example 1.1: The set B above can also be written as B = {1,2,8,...}.
Observe that —6 &€ B, 3 € B and = &€ B.

Example 1.2: The set A above can also be written as

A = {x: xis a letter in the English alphabet, z is a vowel}
Observe that b€ A, e€ A and p € A.

Example 1.3: Let E = {x: «2—38x+2 =0}. In other words, E consists of those numbers
which are solutions of the equation x2—3x+2 = 0, sometimes called the solution
set of the given equation. Since the solutions of the equation are 1 and 2, we
could also write E = {1,2}.

Two sets A and B are equal, written A =B, if they consist of the same elements, i.e.
if each member of A belongs to B and each member of B belongs to A. The negation of
A =B is written A + B.

Example 14: Let E = {&: 22—3x+2=0}, F = {2,1} and G = {1,2,2,1,6/3}.

Then E = F = G. Observe that a set does not depend on the way in which
its elements are displayed. A set remains the same if its elements are repeated or
rearranged.

35
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FINITE AND INFINITE SETS

Sets can be finite or infinite. A set is finite if it consists of exactly n different elements,
where n is some positive integer; otherwise it is infinite.

Example 2.1: Let M be the set of the days of the week. In other words,
M = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
Then M is finite.

Example 2.2: Let Y = {2,4,6,8,...}. Then Y is infinite.

Example 23: Let P = {x: x is a river on the earth}. Although it may be difficult to count the
number of rivers on the earth, P is a finite set.

SUBSETS
A set A is a subset of a set B or, equivalently, B is a superset of A, written
ACB or BDA

iff each element in A also belongs to B; that is, x €A implies x € B. We also say that
A is contained in B or B contains A. The negation of A C B is written A¢ Bor B2 A
and states that there is an x € A such that « & B.

Example 3.1: Consider the sets
A = {1,857 ...}, B = {510,15,20, ...}
C = {«x: «xis prime, x > 2} = {8,5,7,11, ...}

Then C C A since every prime number greater than 2 is odd. On the other hand,
B¢ A since 10 €B but 10 & A.

Example 3.2: Let N denote the set of positive integers, Z denote the set of integers, @ denote
the set of rational numbers and R denote the set of real numbers. Then

N cZ c @ c R

Example 3.3: The set E = {2,4,6} is a subset of the set F = {6,2,4}, since each number 2, 4
and 6 belonging to E also belongs to F. In fact, £ = F. In a similar manner
it can be shown that every set is a subset of itself.

As noted in the preceding example, A C B does not exclude the possibility that 4 = B.
In fact, we may restate the definition of equality of sets as follows:

Definition: | Two sets 4 and B are equal if A CB and B C A.

In the case that A C B but A # B, we say that A is a proper subset of B or B contains
A properly. The reader should be warned that some authors use the symbol C for a subset
and the symbol C only for a proper subset.

The following theorem is a consequence of the preceding definitions:

Theorem 5.1: Let A, B and C be sets. Then: (i) A CA; (ii) if A CB and B C A, then
A=B; and (iii) if ACB and BCC, then A CC.

UNIVERSAL AND NULL SETS

In any application of the theory of sets, all sets under investigation are regarded as
subsets of a fixed set. We call this set the universal set or universe of discourse and
denote it (in this chapter) by U.

Example 41: In plane geometry, the universal set consists of all the points in the plane.

Example 4.2: In human population studies, the universal set consists of all the people in the
world.
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It is also convenient to introduce the concept of the empty or null set, that is, a set
which contains no elements. This set, denoted by @, is considered finite and a subset of
every other set. Thus, for any set 4, @ C A C U.

Example 43: Let A = {x: 22=4, zis odd}. Then 4 is empty, ie. 4 = Q.

Example 44: Let B be the set of people in the world who are older than 200 years. According
to known statistics, B is the null set.

CLASS, COLLECTION, FAMILY

Frequently, the members of a set are sets themselves. For example, each line in a set
of lines is a set of points. To help clarify these situations, other words, such as “class”,
“collection” and “family” are used. Usually we use class or collection for a set of sets,
and family for a set of classes. The words subeclass, subcollection and subfamily have
meanings analogous to subset.

Example 51: The members of the class {{2,3}, {2}, {5,6}} are the sets {2,3}, {2} and {5, 6)}.
Example 5.2: Consider any set A. The power set of A, denoted by P(A) or 24, is the class of all
subsets of A. In particular, if 4 = {a,b,c}, then
P(A) = {A, {a,b}, {a,¢}, {b,c}, {a}, {B}, {c}, D}

In general, if A is finite and has n elements, then P(A) will have 2" elements.

SET OPERATIONS

The union of two sets A and B, denoted by A U B, is the set of all elements which

belong to A or to B:
AUB = {x:x2€A or x €B}

Here “or” is used in the sense of and/or.

The intersection of two sets A and B, denoted by 4 N B, is the set of elements which
belong to both A and B:
ANB = {x:x€A and x € B}

If AnNB = @, thatis, if A and B do not have any elements in common, then A and B
are said to be disjoint or non-intersecting.

The relative complement of a set B with respect to a set A or, simply, the difference of
A and B, denoted by A\ B, is the set of elements which belong to A but which do not

belong to B:
AN\B = {x:2€A, v &B}

Observe that A\ B and B are disjoint, i.e. (AN B)NB = Q.

The absolute complement or, simply, complement of a set A, denoted by A¢, is the set
of elements which do not belong to A:

Ac = {x:x€U, x&A)}
That is, A¢ is the difference of the universal set U and A.
Example 6.1: The following diagrams, called Venn diagrams, illustrate the above set operations.

Here sets are represented by simple plane areas and U, the universal set, by the
area in the entire rectangle.
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A U B is shaded. A N B is shaded.

A\ B is shaded. Ac is shaded.

Example 6.2: Let A = {1,2,3,4} and B = {3,4,5,6} where U = {1,2,8,...}. Then:
AUB = {1,2,8,4,5,6} ANB = {84}
AN\B = {1, 2} Ac = {5,6,7,...}

Sets under the above operations satisfy various laws or identities which are listed in
Table 5.1 below. In fact we state:

Theorem 5.2: Sets satisfy the laws in Table 5.1.

LAWS OF THE ALGEBRA OF SETS

Idempotent Laws

la. AudA = A 1b. ANA = A
Associative Laws

2a. (AUB)UC = AU(BUCQ) 2b. (AnB)NC = An(BNC)
Commutative Laws

3a. AUB = BUA 3b. ANB = BnNA
Distributive Laws

4a. AU(BNnC) = (AUB)N(AUCQ) 4b, AN(BUC) = (AnB)U(ANC)

Identity Laws

ba. Aup = A 5b. AnU = A

6a. AuU = U 6b. ANQ® = @
Complement Laws

Ta. AUAc = U Th. ANndc = @

8a. (A¢)e = A 8b. Uce=¢@Q, 9pc=U
De Morgan’s Laws

9a. (AUB) = A¢nBc 9b. (ANB)t = AcUBc

Table 5.1

Remark: Each of the above laws follows from the analogous logical law in Table 2.1,
Page 11. For example,

ANB = {x:x€A and x€B} = {r:vx€Band t€A} = BNA
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Here we use the fact that if p is t €A and ¢ is x € B, then p Aq is logically
equivalent to g Ap: PAq = qAp.

Lastly we state the relationship between set inclusion and the above set operations:

Theorem 5.3: FEach of the following conditions is equivalent to A C B:
i) AnB=A4 (iii) B C A¢ (v)y BUAc = U
(ii) AUB = B (iv ANB =@

ARGUMENTS AND VENN DIAGRAMS

Many verbal statements can be translated into equivalent statements about sets which
can be described by Venn diagrams. Hence Venn diagrams are very often used to determine
the validity of an argument.

Example 7.1: Consider the following argument:
Si: Babies are illogical.
Syt Nobody is despised who can manage a crocodile.

Ss: Illogical people are despised.

S: Babies cannot manage crocodiles.

(The above argument is adapted from Lewis Carroll, Symbolic Logic; he is also the
author of Alice in Wonderland.) Now by S;, the set of babies is a subset of the
set of illogical people:

illogical people

By S, the set of illogical people is contained in the set of despised people:

despised people

illogical people

Furthermore, by S,, the set of despised people and the set of people who can
manage a crocodile are disjoint:

despised people

people who can
manage
crocodiles

illogical people

But by the above Venn diagram, the set of babies is disjoint from the set of people
who can manage crocodiles, or “Babies cannot manage crocodiles” is a consequence
of Sy, S, and S3. Thus the above argument,

Sy Se, Sy = S
is valid. L on s



40

SET THEORY [CHAP. 5

Solved Problems

SETS, ELEMENTS

51. Let A = {x:3x = 6}. Does A=27?
A is the set which consists of the single element 2, that is, 4 = {2}. The number 2 belongs
to A; it does not equal A. There is a basic difference between an element p and the singleton
set {p}.
5.2. Which of these sets are equal: {rt,s}, {(s,trs}, {¢st,r}, {s,751t}?
They are all equal. Order and repetition do not change a set.
5.3. Which of the following sets are finite?
(i) The months of the year. (iv) {z : 2 is an even number}
(i) {1,2,38,...,99,100} v) {1,238, ...}
(iii) The number of people living on the earth.
The first three sets are finite; the last two sets are infinite.
54. Determine which of the following sets are equal: @, {0}, {D}.
Each is different from the other. The set {0} contains one element, the number zero. The
set () contains no elements; it is the empty set. The set {)} also contains one element, the null set.
5.5. Determine whether or not each set is the null set:
() X ={x:a2=9, 20 =4}, (ii) ¥ = {xw: 2 + x}, (i) Z = {x:2x+8 = 8}.
(i) There is no number which satisfies both 2 =9 and 2x = 4; hence X is empty, ie. X =0.
(ii) We assume that any object is itself, so ¥ is also empty. In fact, some texts define the null
set as follows:
D = {x: «#=x}
(iii) The number zero satisfies -+ 8 = 8; hence Z = {0}. Accordingly, Z is not the empty set
since it contains 0. That is, Z+# Q.
SUBSETS
5.6. Prove that A = {2,8,4,5} is not a subset of B = {x:x iseven}.
It is necessary to show that at least one element in A does not belong to B. Now 3 € A and,
since B consists of even numbers, 8 & B; hence A is not a subset of B.
5.7. Prove Theorem 5.1(iii): If A CB and B CC, then A CC.
We must show that each element in A also belongs to C. Let 2 € A. Now A C B implies
x € B. But BC C; hence x € C. We have shown that « € A implies « € C, that is, that A c C.
5.8. Find the power set P(S) of the set S = {1,2,3}.

The power set P(S) of S is the class of all subsets of S; these are {1,2,3}, {1,2}, {1,3}, {2,3},
{1}, {2}, {3} and the empty set (». Hence

PS) = {S,{1,3},{2,8}, {1,2}, {1}, {2}, {3}, ©}
Note that there are 23 = 8 subsets of S.
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5.9.

5.10.

Let V={d}, W= {cd}, X ={a,b,c}, Y ={a,b} and Z = {a,b,d}. Determine
whether each statement is true or false:
) YCX, i)y W2, (ili)ZDV, (ivyVCX, (v) X=W, (vif WCY.

(i) Since each element in ¥ is a member of X, Y C X is true.

(ii) Now ¢ € Z but a € W; hence W # Z is true.

(i1i) The only element in V is d and it also belongs to Z; hence ZDV is true.
(iv) V is not a subset of X since d € V but d € X; hence VcX is false.

(v) Now ¢ € X but a € W; hence X = W is false.

(vi) W is not a subset of ¥ since ¢ € W but ¢ € Y; hence WCY is false.

Prove: If A is a subset of the empty set (9, then 4 =¢@.

The null set @ is a subset of every set; in particular, ¢ C A. But, by hypothesis, A C 0;
hence A = Q.

SET OPERATIONS

5.11.

5.12.

Let U=1{1,2,...,8,9}, A= {1,2,8,4}, B = {2,4,6,8} and C = {38,4,5,6). Find:
(i) A¢, (ii)) ANC, (iii) (4 N C)s, (iv) AU B, (v) B\ C.

(i) Ac consists of the elements in U that are not in A; hence A¢ = {5,6,7,8,9}.

(ii) ANC consists of the elements in both A and C; hence ANC = {3,4}.

(iii) (ANC)c consists of the elements in U that are not in ANC. Now by (ii), ANC = {3,4} and
so (AnC) ={1,2,5,6,7,8,9}.

(iv) AUB consists of the elements in A or B (or both): hence AUB = {1,2,3,4,6,8}.
(v) B\ C consists of the elements in B which are not in C; hence B\ C = {2,8}.

In each Venn diagram below, shade: (i) A U B, (ii) A N B.

0 ) o) ©@

(i) A U B consists of those elements which belong to A or B (or both); hence shade the area in A
and in B as follows:

A UB is shaded.

(i) A N B consists of the area that is common to both A and B. To compute A N B, first shade
A with strokes slanting upward to the right (////) and then shade B with strokes slanting
downward to the right (\\\\), as follows:

Then A N B consists of the cross-hatched area which is shaded below:
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D>

ANB is shaded.

Observe the following:

(¢) ANB is empty if A and B are disjoint.
(b)) AnB =B if BCA.

(¢y AnB=A if AcCB.

5.13. In the Venn diagram below, shade: (i) B¢, (ii) (AUB)e, (iii) (B\\4)¢, (iv) A°NB-.

(i) Brc consists of the elements which do not belong to B; hence shade the area outside B as follows:

Be is shaded.

(ii) First shade AUB; then (AUB)¢ is the area outside AUB:

A UB is shaded. (A UB)c is shaded.

(iii) First shade B\ 4, the area in B which does not lie in A; then (B\ A4)¢ is the area outside

B\ 4:
{
(D
(

B\ A is shaded. (B\\ A)¢ is shaded.

(iv) First shade A¢, the area outside of A, with strokes slanting upward to the right (////), and
then shade B¢ with strokes slanting downward to the right (\\\\); then AcnBc¢ is the
cross-hatched area: .
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Ac and Bc¢ are shaded. Acn Be¢ is shaded.

Observe that (AUB)c = A¢nB¢, as expected by De Morgan’s law.

(i) AN(BUC), (i) (ANB)U(ANC).

A
8%

5.14. In the Venn diagram below, shade

First shade A with upward slanted strokes, and then shade BUC with downward slanted

(i)
strokes; now AN(BUC) is the cross-hatched area:

o
SN

o
X

N
3

o

X
0

A and BUC are shaded. AN(BUCQ) is shaded.

(ii) First shade ANB with upward slanted strokes, and then shade ANC with downward slanted
strokes; now (ANB)U(ANC) is the total area shaded:

ANB and ANC are shaded. (ANB)U(ANC) is shaded.
Notice that AN(BUC) = (ANB)U(ANC), as expected by the distributive law.

5.15. Prove: B\ A = BN Ac. Thus the set operation of difference can be written in
terms of the operations of intersection and complementation.
B\A = {: 2€B,x @A} = {x: x€B, x €A} = BnNAc
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5.16.

5.17.

5.18.

5.19.

5.20.
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Prove the Distributive Law: ANBUC) = (ANB)UANC).
AN(BUC) {x: x€A;, x €BUC}
= {#: x€EA;xE€B or x €C}
= {x: x€A, xEB;or x €A, x €C}
= {x: x€EANB or x € ANC}
— (ANB)UANC)

1)

Observe that in the third step above we used the analogous logical law

pAalgvr) = ArqVv(pAar)

Prove: (ANB)NB = .

(ANBYNnB = {x: x€ A\ B, x € B}
= {x: x€A, x&B; x € B}
= 0

The last step follows from the fact that there is no element » satisfying *€B and x & B.

Prove De Morgan’s Law: (AUB)c = A°NBe.
(AuB) = {x: x& AUB}
{x: x &€ A, & B}
= {x: x € A¢, x € B¢}
= AcnB¢

Observe that in the second step above we used the analogous logical law

~(pvq = ~pA~q

Prove: For any sets A and B, ANBCA C AUB.

Let x € ANB; then x€A and * € B. In particular, x € A. Since # € ANB implies x €A,
AnB c A. Furthermore, if x €A, then xt€A or x€B,ie. * € AUB. Hence A C AUB. In other
words, ANBCA c AUB.

Prove Theorem 5.3(i): ACB if and only if ANB = A.

Suppose ACB. Let x €A; then by hypothesis, x€B. Hence xr€A and € B, i.e. x € ANB.
Accordingly, A C AnB. On the other hand, it is always true (Problem 5.19) that ANnB C A.
Thus ANB = A.

Now suppose that ANB = A. Then in particular, A C AnB. But it is always true that
AnBcB. Thus AcCcAnBcB and so, by Theorem 5.1, A C B.

ARGUMENTS AND VENN DIAGRAMS

5.21.

Show that the following argument is not valid by constructing a Venn diagram in
which the premises hold but the conclusion does not hold:

Some students are lazy.

All males are lazy.

Some students are males.

Consider the following Venn diagram:
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lazy people

Notice that both premises hold, but the conclusion does not hold. For an argument to be valid, the
conclusion must always be true whenever the premises are true.

Since the diagram represents a
case in which the conclusion is false, even though the premises are true, the argument is false.

It is possible to construct a Venn diagram in which the premises and conclusion hold, such as

lazy people

=D

5.22. Show that the following argument is not valid:

All students are lazy.
Nobody who is wealthy is a student.

Lazy people are not wealthy.

Consider the following Venn diagram:

lazy people

wealthy people

Now the premises hold in the above diagram, but the conclusion does not hold; hence the argument
is not valid.

5.23. For the following set of premises, find a conclusion such that the argument is valid:
S, All lawyers are wealthy.
S,: Poets are temperamental.

S,: No temperamental person is wealthy.

By S,, the set of lawyers is a subset of the set of wealthy people; and by Sj, the set of wealthy
people and the set of temperamental people are disjoint. Thus

wealthy people

temperamental people
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By S,, the set of poets is a subset of the set of temperamental people; hence

wealthy people temperamental people

Thus the statement “No poet is a lawyer” or equivalently “No lawyer is a poet” 1is a valid
conclusion.

The statements “No poet is wealthy” and “No lawyer is temperamental” are also valid
conclusions which do not make use of all the premises.

MISCELLANEOUS PROBLEMS
5.24. Let A = {2, {4,5},4}. Which statements are incorrect and why?
() (4,5} CA, (i) (4,5) €4, (i) {{4,5)} C A.

The elements of A are 2, 4 and the set {4,5}. Therefore (ii) is correct, but (i) is an incorrect
statement. Furthermore, (iii) is also a correct statement since the set consisting of the single
element {4,5} which belongs to A is a subset of A.

5.25. Let A = {2, (4,5},4}. Which statements are incorrect and why?
(i) 5e€ 4, (ii) {(byed, (i) {5) C 4.

Each statement is incorrect. The elements of A are 2, 4 and the set {4,5}; hence (i) and (ii)
are incorrect. There are eight subsets of A and {5} is not one of them; so (iii) is also incorrect.

5.26. Find the power set P(S) of the set S = {3, {1,4}}.

Note first that S contains two elements, 3 and the set {1,4}. Therefore P(S) contains
22 = 4 elements: S itself, the empty set ), and the two singleton sets which contain the elements
3 and {1,4} respectively, i.e. {3} and {{1,4}}. In other words,

P(S) = {8, {3}, {{1,4}}, 9}

Supplementary Problems

SETS, SUBSETS

527, Let A = {1,2,...,8,9}, B = {2,4,6,8}, C = {1,38,5,7,9}, D = {8,4,5} and E = {3,5}.
Which sets can equal X if we are given the following information?
(i) X and B are disjoint. (i) X C D but X ¢ B. (ili) XC A but X ¢ C. (iv) X c C but X ¢ A.

5.28. State whether each statement is true or false:
(i) Every subset of a finite set is finite. (ii) Every subset of an infinite set is infinite.

5.29. Find the power set P(A) of A = {1,2,3,4} and the power set P(B) of B = {l, (2,3}, 4}.
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530. State whether each set is finite or infinite:
(i) The set of lines parallel to the x axis.
(ii) The set of letters in the English alphabet.
(iit) The set of numbers which are multiples of 5.
(iv) The set of animals living on the earth.
(v) The set of numbers which are solutions of the equation 227+ 26218 — 17211+ 743 —10 = 0.

(vi) The set of circles through the origin (0, 0).

5.31. State whether each statement is true or false:

i {1,483} = {3,4,1} (iv) {4} €{{4}}
(i) {1,3,1,2,3,2} c {1,2,3} V) {4} c{{4}}
i) {1,2} ={2,1,1,2,1} (vi) @ c {{4}}

SET OPERATIONS

532. Let U = {a,b,¢,d,e,f,9}, A = {a,b,¢,d,e}, B = {a,c,e,g} and C = {b,e, f,g}. Find:
(i) AuC (iii) C\ B (v) CcnA (vil) (A \\ B¢)c
(ii) Bn4 (iv) BeuC (vi) (AN\CO)e (viii) (AnNAc)e

533. In the Venn diagrams below, shade (i) W\ V (i) VeUW  (iii) VnWe  (iv) Ve\ We,

(a) (b)

5.34. Draw a Venn diagram of three non-empty sets A, B and C so that A, B and C have the following

properties:
(i) AcB, CCB, AnC=0 (iii) AcC, A#C, BnC=9

(ii) AcB, C¢B, AnC# @ (iv) Ac(BnC), BcC, C#B, A#C

5.35. The formula AN\ B = AnBc defines the difference operation in terms of the operations of
intersection and complement. Find a formula that defines the union of two sets, AUB, in terms of
the operations of intersection and complement.

5.36. Prove Theorem 5.3(ii): ACB if and only if AUB = B.

5.37. Prove: If AnB = (), then ACBe.

5.38. Prove: Ac¢\ B¢ = B\ A.

5.39. Prove: ACB implies AU(B\ 4)=B.

540. (i) Prove: AN(B\C) = (AnB)\(An{().
(ii) Give an example to show that AU(B\ C)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>