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Chapter 1

Argument Structure

1.1 WHAT IS AN ARGUMENT?

Logic is the study of arguments. An argument is a sequence of statements of which one is intended
as a conclusion and the others, the premises, are intended to prove or at least provide some evidence
for the conclusion. Here are two simple examples:

All humans are mortal. Socrates is human. Therefore, Socrates is mortal.
Albert was not at the party, so he cannot have stolen your bag.

In the first argument, the first two statements are premises intended to prove the conclusion that
Socrates is mortal. In the second argument, the premise that Albert was not at the party is offered as
evidence for the conclusion that he cannot have stolen the bag,.

The premises and conclusion of an argument are always statements or propositions,' as opposed to
questions, commands, or exclamations. A statement is an assertion that is either true or false (as the
case may be) and is typically expressed by a declarative sentence.” Here are some more examples:

Dogs do not fly.

Robert Musil wrote The Man Without Qualities.
Brussels is either in Belgium or in Holland.
Snow is red.

My brother is an entomologist.

The first three sentences express statements that are in fact true. The fourth sentence expresses a false
statement. And the last sentence can be used to express different statements in different contexts, and
will be true or false depending on whether or not the brother of the speaker is in fact an entomologist.
By contrast, the following sentences do not express any statements:

Who is the author of The Man Without Qualities?
Please do not call after 11pm.
Come on!

Nonstatements, such as questions, commands, or exclamations, are neither true nor false. They may
sometimes suggest premises or conclusions, but they are never themselves premises or conclusions.

SOLVED PROBLEM
1.1 Some of the following are arguments. Identify their premises and conclusions.

(a) He’s a Leo, since he was born in the first week of August.
(b) How can the economy be improving? The trade deficit is rising every day.

'Philosophers sometimes draw a distinction between statements and propositions, but it is not necessary to make that
distinction here.

*The distinction between a statement or proposition and the sentence used to express it is important. A sentence can be
ambiguous or context-dependent, and can therefore express any of two or more statements—even statements that disagree in
their being true or false. (Our fifth example below is a case in point.) However, where there is no danger of confusion we shall
avoid prolixity by suppressing the distinction. For example, we shall often use the term ‘argument’ to denote sequences of
statements (as in our definition) as well as the sequences of sentences which express them.

1



ARGUMENT STRUCTURE [CHAP. 1

(c) 1can’t go to bed, Mom. The movie’s not over yet.

(d) The building was a shabby, soot-covered brownstone in a decaying neighbor-
hood. The scurrying of rats echoed in the empty halls.

(e) Everyone who is as talented as you are should receive a higher education. Go to
college!

(f) We were vastly outnumbered and outgunned by the enemy, and their troops
were constantly being reinforced while our forces were dwindling. Thus a direct
frontal assault would have been suicidal.

(g) He was breathing and therefore alive.

(h) Is there anyone here who understands this document?

(i) Many in the US. do not know whether their country supports or opposes an
international ban on the use of land mines.

(j) Triangle ABC is equiangular. Therefore each of its interior angles measures 60
degrees.

Solution

(a) Premise: He was born in the first week of August.

Conclusion: He’s a Leo.

(b) Technically this is not an argument, because the first sentence is a question; but the
question is merely rhetorical, suggesting the following argument:
Premise: The trade deficit is rising every day.

Conclusion: The economy cannot be improving.
(¢) Premise: The movie’s not over yet.
Conclusion: I can’t go to bed.

(d) Not an argument; there is no attempt here to provide evidence for a conclusion.

(¢) Not an argument; ‘Go to college!’ expresses a command, not a statement. Yet the
following argument is suggested:

Premise: Everyone who is as talented as you are should receive a higher education.
Conclusion: You should go to college.

(f) Premise: We were vastly outnumbered and outgunned by the enemy.

Premise: Their troops were constantly being reinforced while our forces were dwindling,
Conclusion: A direct frontal assault would have been suicidal.

(g) Though grammatically this is a single sentence, it makes two distinct statements, which
together constitute the following argument:
Premise: He was breathing.

Conclusion: He was alive.

(k) Not an argument.

({) Not an argument.

() Premise: Triangle ABC is equiangular.

Conclusion: Each of its interior angles measures 60 degrees.

Though the premises of an argument must be intended to prove or provide evidence for the
conclusion, they need not actually do so. There are bad arguments as well as good ones. Argument
1.1(c), for example, may be none too convincing; yet still it qualifies as an argument. The purpose of
logic is precisely to develop methods and techniques to tell good arguments from bad ones.?

*For evaluative purposes, it may be useful to regard the argument in 1.1(c) as incomplete, requiring for its completion the implicit
premise ‘I can’t go to bed until the movie is over’. (Implicit statements will be discussed in Section 1.6.) Even so, in most contexts
this premise would itself be dubious enough to deprive the argument of any rationally compelling persuasive force.

Since we are concerned in this chapter with argument structure, not argument evaluation, we shall usually not comment on the
quality of arguments used as examples in this chapter. In no case does this lack of comment constitute a tacit endorsement.
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Notice also that whereas the conclusion occurs at the end of the arguments in our initial examples
and in most of the arguments in Problem 1.1, in argument 1.1(c) it occurs at the beginning. The
conclusion may in fact occur anywhere in the argument, but the beginning and end are the most
common positions. For purposes of analysis, however, it is customary to list the premises first, each on
a separate line, and then to give the conclusion. The conclusion is often marked by the symbol “.-’,
which means “therefore.” This format is called standard form. Thus the standard form of our initial

example is:

All humans are mortal.
Socrates is human.
. Socrates is mortal.

1.2 IDENTIFYING ARGUMENTS

Argument occurs only when someone intends a set of premises to support or prove a conclusion.
This intention is often expressed by the use of inference indicators. Inference indicators are words or
phrases used to signal the presence of an argument. They are of two Kinds: conclusion indicators, which
signal that the sentence which contains them or to which they are prefixed is a conclusion from
previously stated premises, and premise indicators, which signal that the sentence to which they are
prefixed is a premise. Here are some typical examples of each (these lists are by no means
exhaustive):

Conclusion Indicators Premise Indicators
Therefore For

Thus Since

Hence Because

So Assuming that

For this reason Seeing that
Accordingly Granted that
Consequently This is true because
This being so The reason is that

It follows that For the reason that
The moral is In view of the fact that
Which proves that It is a fact that

Which means that As shown by the fact that
From which we can infer that Given that

As a result Inasmuch as

In conclusion One cannot doubt that

Premise and conclusion indicators are the main clues in identifying arguments and analyzing their
structure. When placed between two sentences to form a compound sentence, a conclusion indicator
signals that the first expresses a premise and the second a conclusion from that premise (possibly along
with others). In the same context, a premise indicator signals just the reverse. Thus, in the compound
sentence

He is not at home, so he has gone to the movie.

the conclusion indicator ‘so’ signals that ‘He has gone to the movie’ is a conclusion supported by the
premise ‘He is not at home’. But in the compound sentence

He is not at home, since he has gone to the movie.
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the premise indicator ‘since’ indicates that ‘He has gone to the movie’ 1s a premise supporting the
conclusion ‘He is not at home’. We can also have

Since he is not at home, he has gone to the movie.

In this case, the premise indicator at the beginning of the sentence signals that the first subsentence is
a premise supporting the second. Premise indicators seldom occur at the beginning of a noncompound
sentence (except for ‘It is a fact that’, ‘One cannot doubt that’, and the like); but when they do, they
indicate that the sentence is a premise supporting a previously stated conclusion.

SOLVED PROBLEMS

1.2 Use the inference indicators of the argument below to determine its inferential
structure. Then write 1t in standard form.

®[Gold-argon compounds are not likely to be produced even in the laboratory, much less

In nature, | @[it is difficult to make argon react with anything,] and ®[gold,

too, forms few compounds. ]

Solution

We have circled the inference indicators for emphasis and bracketed and numbered each

statement for ease of reference. Grammatically, the argument consists of a compound sentence
whose three component sentences are linked together by two occurrences of the premise

indicator ‘since’. Each occurrence of ‘since’ introduces a premise. Statement 1, which is linked
to statements 2 and 3 by the occurrences of ‘since’, 1s the conclusion. In standard form the
argument 1s:

It 18 difficult to make argon react with anything.
Gold, too, torms few compounds.

. Gold-argon compounds are not likely to be produced even in the laboratory, much less in
nature.

1.3 Use the iference indicators of the argument below to determine its inferential
structure. Then write 1t 1n standard form.

OfInflation has dropped considerably, while interest rates have remained high.]
Therefore) @[in real terms borrowing has become more expensive,)

@ [under these conditions borrowed money cannot (as it could when inflation was higher)
be paid back in highly inflated dollars.]

Solution

The conclusion indicator ‘therefore’ typically introduces a conclusion. But what follows it

here 1s the compound sentence consisting of sentences 2 and 3 linked by the premise indicator
'since’. “Since’ signals that statement 2 is a conclusion from statement 3. And ‘therefore’, since

It 1s prefixed to statement 2, indicates that 2 is a conclusion from 1. Thus the argument consists

of two premises, statements 1 and 3, supporting a single conclusion, statement 2. In standard
form 1t 1s:

Inflation has dropped considerably, while interest rates have remained high.

Under these conditions borrowed money cannot (as it could when inflation was higher)
be paid back in highly inflated dollars.

. In real terms borrowing has become more expensive.

Expressions which function in some contexts as inference indicators generally have other functions

in other contexts. Thus, the notion of an inference indicator should not be taken too rigidly. For
example, the word ‘since’ in
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It has been six years since we went to France.

indicates duration, not an inference, and hence it is not functioning as a premise indicator. Likewise, the
word ‘thus’ in

He was angry, and he remained thus for several days.

is not a conclusion indicator. It means “in this condition,” not “therefore.” Explanations of motives or
causes which use words like ‘since’ or ‘because’ are especially difficult to distinguish from arguments.
If, for example, you ask a man the question

Why did you sell your bike?
and he replies

[ sold it because I needed the money.

this reply is merely an explanation. In this context ‘because’ is not a premise indicator. No argument
is present; the respondent is merely explaining why he sold his bicycle, not trying to prove that he
did so.

Some arguments have no indicators at all (we have seen an example in 1.1(c)). In such cases, we
must rely on contextual clues or our understanding of the author’s intentions in order to differentiate
premises from conclusions.

SOLVED PROBLEMS

1.4 Rewrite the argument below in standard form.

®[Al Capone was not all that clever.] @[Had he been cleverer, the IRS would never
have gotten him convicted on income tax evasion charges.]

Solution

It is clear that sentence 2 is intended 1o serve as evidence for sentence 1, even though the
argument contains no indicators, and even though the evidence that sentence 2 actually provides
is flimsy. The argument is:

Had Al Capone been cleverer, the IRS would never have gotten him convicted on
income tax evasion charges.
. Al Capone was not all that clever.!

1.5 Rewrite the argument below in standard form.

@[Some politicians are hypocrites.] @[They say we should pay more taxes if the
national deficit is to be kept under control.] But then @[they waste huge amounts of
money on their election campaigns.]

Solution
The author’s intention is to establish that some politicians are hypocrites. In standard form:

Some politicians say we should pay more taxes if the national deficit is to be kept under
control.
They waste huge amounts of money on their election campaigns.

. They are hypocrites.

*Like argument (c) of r'roblem 1.1, this argument may be regarded as incomplete, for the author obviously also assumes that the
IRS did get Capone convicted on an income tax dodge, though this assumption is not explicitly stated.
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1.3 COMPLEX ARGUMENTS

Some arguments proceed in stages. First a conclusion is drawn from a set of premises; then that
conclusion (perhaps in conjunction with some other statements) is used as a premise to draw a further
conclusion, which may in turn function as a premise for yet another conclusion, and so on. Such a
structure is called a complex argument. Those premises which are intended as conclusions from
previous premises are called nonbasic premises or intermediate conclusions (the two names reflect their
dual role as conclusions of one step and premises of the next). Those which are not conclusions from
previous premises are called basic premises or assumptions. For example, the following argument is
complex:

All rational numbers are expressible as a ratio of integers. But pi is not expressible as a ratio of integers.
Therefore pi is not a rational number. Yet clearly pi is a number. Thus there exists at least one
nonrational number.

The conclusion is that there exists at least one nonrational number (namely, pi). This is supported
directly by the premises ‘pi is not a rational number’ and ‘pi is a number’. But the first of these premises
is in turn an intermediate conclusion from the premises ‘all rational numbers are expressible as a ratio
of integers’ and ‘pi is not expressible as a ratio of integers’. These further premises, together with the
statement ‘pi is a number’, are the basic premises (assumptions) of the argument. Thus the standard
form of the argument above is:

All rational numbers are expressible as a ratio of integers.
Pi is not expressible as a ratio of integers.

", Pi is not a rational number.
Pi is a number.

". There exists at least one nonrational number.

Each of the simple steps of reasoning which are linked together to form a complex argument is an
argument in its own right. The complex argument above consists of two such steps. The first three
statements make up the first, and the second three make up the second. The third statement is a
component of both steps, functioning as the conclusion of the first and a premise of the second. With
respect to the complex argument as a whole, however, it counts as a (nonbasic) premise.

SOLVED PROBLEMS
1.6 Rewrite the argument below in standard form.

®[You needn’t worry about subzero temperatures in June even on the highest peaks.]
@[It never has gotten that cold in the summer months,] and ®[it probably never
will.]

Solution

‘So’ is a conclusion indicator, signaling that statement 3 follows from statement 2. But the
ultimate conclusion is statement 1. Hence this is a complex argument with the following
structure:

[t never has gotten below zero even on the highest peaks in the summer months.
. It probably never will.

. You needn’t worry about subzero temperatures in June even on the highest peaks.

1.7 Rewrite the argument below in standard form:

O[Arthur said he will go to the party,] w ®[Judith will go too.] (So)

®[she won’t be able to go to the movie with us.]
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Solution

‘Which means that’ and ‘so’ are both conclusion indicators: the former signals a preliminary
conclusion (statement 2) from which the ultimate conclusion (statement 3) is inferred. The
argument has the following standard form:

Arthur said he will go to the party.
.. Judith will go to the party too.
. She won’t be able to go to the movie with us.

1.4 ARGUMENT DIAGRAMS

Argument diagrams are a convenient way of representing inferential structure. To diagram an
argument, circle the inference indicators and bracket and number each statement, as in Problems 1.2
to 1.7. If several premises function together in a single step of reasoning, write their numbers in a
horizontal row, joined by plus signs, and underline this row of numbers. If a step of reasoning has only
one premise, simply write its number. In either case, draw an arrow downward from the number(s)
representing a premise (or premises) to the number representing the conclusion of the step. Repeat this
procedure if the argument contains more than one step (a complex argument).

SOLVED PROBLEM

1.8 Diagram the argument below.

®[Today is either Tuesday or Wednesday.] But @[it can’t be Wednesday,)
®Jthe doctor’s office was open this morning,] and ®[that office is always closed on

Wednesday.] (Therefore,) ®[today must be Tuesday.]

Solution

The premise indicator ‘since’ signals that statements 3 and 4 are premises supporting
statement 2. The conclusion indicator ‘therefore’ signals that statement 5 is a conclusion from
previously stated premises. Consideration of the context and meaning of each sentence reveals
that the premises directly supporting 5 are 1 and 2. Thus the argument should be diagramed as
follows:

w
+
N

—
+
N —

W

The plus signs in the diagram mean “together with” or “in conjunction with,” and the arrows mean
“is intended as evidence for.” Thus the meaning of the diagram of Problem 1.8 is: “3 together with 4
is intended as evidence for 2, which together with 1 is intended as evidence for 5.”

An argument diagram displays the structure of the argument at a glance. Each arrow represents a
single step of reasoning. In Problem 1.8 there are two steps, one from 3 and 4 to 2 and one from 1 and
2 to 5. Numbers toward which no arrows point represent basic premises. Numbers with arrows pointing
both toward and away from them designate nonbasic premises. The number at the bottom of the
diagram with one or more arrows pointing toward it but none pointing away represents the final
conclusion.’ The basic premises in Problem 1.8 are statements 1, 3, and 4; statement 2 is a nonbasic
premise, and statement S is the final conclusion.

*Some authors allow diagrams that exhibit more than one final conclusion, but we will adopt the convention of splitting up such
diagrams into as many separate diagrams as there are final conclusions (these may all have the same premises).
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Argument diagrams are especially convenient when an argument has more than one step.

SOLVED PROBLEM

1.9 Diagram the following argument:

®[Watts is in Los Angeles] and @l[is in the United States] and Chence)
@

®Jis part of a fully industrialized nation.] @[It is (thus) not a part of the third world,]
®][the third world is made up exclusively of developing nations] and
®[developing nations are by definition not fully industrialized.]

Solution

The words ‘therefore’, ‘hence’, and ‘thus’ are conclusion indicators, signifying that the
sentence following or containing them is a conclusion from previously stated premises. (2 and
3 are not complete sentences, since the subject term ‘Watts’ is missing. Yet it is clear that each
expresses a statement; hence we bracket them accordingly.) ‘Since’ is a premise indicator, which
shows that statements 5 and 6 are intended to support statement 4. The term ‘thus’ in statement
4 shows that 4 is also a conclusion from 3. Thus, 3, 5, and 6 function together as premises for 4.
The argument can be diagramed as follows:

L — DN =

AW

Because of the great variability of English grammar, there are no simple, rigorous rules for bracket
placement. But there are some general principles. The overriding consideration is to bracket the
argument in the way which best reveals its inferential structure. Thus, for example, if two phrases are
joined by an inference indicator, they should be bracketed as separate units regardless of whether or
not they are grammatically complete sentences, since the indicator signals that one expresses a premise
and the other a conclusion. Problems 1.8 and 1.9 illustrate this principle.

It is also generally convenient to separate sentences joined by ‘and’, as we did with statements 3
and 4 in Problem 1.8 and statements 5 and 6 in Problem 1.9. This is especially important if only one of
the two is a conclusion from previous premises (as will be the case with statements 2 and 3 in Problem
1.21, below), though it is not so crucial elsewhere. Later, however, we shall encounter contexts in which
it is useful to treat sentences joined by ‘and’ as a single unit. ‘And’ usually indicates parallel function.
Thus, for example, if one of two sentences joined by ‘and’ is a premise supporting a certain conclusion,
the other is likely also to be a premise supporting that conclusion.

Some compound sentences, however, should never be bracketed off into their components, since
breaking them up changes their meaning. Two common locutions which form compounds of this sort
are ‘either .. .or’ and ‘if . . . then’. (Sometimes the terms ‘either’ and ‘then’ are omitted.) Someone who
asserts, for example, ‘Either it will stop raining or the river will flood” is saying neither that it will stop
raining nor that the river will flood. He or she is saying merely that one or the other will happen. To
break this sentence into its components is to alter the thought. Similarly, saying ‘If it doesn’t stop
raining, the river will flood’ is not equivalent to saying that it will not stop raining and that the river will
flood. The sentence means only that a flood will occur if it doesn’t stop raining. This is a conditional
statement that must be treated as a single unit.

Notice, by contrast, that if someone says ‘Since it won’t stop raining, the river will flood’, that
person really is asserting both that it won’t stop raining and that the river will flood. ‘Since’ is a premise
indicator in this context, so the sentences it joins should be treated as separate units in argument
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analysis. Locutions like ‘either . .. or" and ‘if . . . then’ are not inference indicators. Their function will
be discussed in Chapters 3 and 4.

SOLVED PROBLEM

1.10 Diagram the argument below.

®[Either the UFOs are secret enemy weapons or they are spaceships from an alien
world.] @[If they are enemy weapons, then enemy technology is (contrary to current
thinking) vastly superior to ours.] Q[If they are alien spacecraft, then they display a

technology beyond anything we can even imagine.] In any case, (therefore )®[their
builders are more sophisticated technologically than we are.}

Solution
The conclusion indicator ‘therefore’ (together with the qualification ‘in any case’) signals
that statement 4 is a conclusion supported by all the preceding statements. Note that these are
bracketed without breaking them into their components. Thus the diagram is:
1+2+4+3

|
4

In addition to ‘either . .. or’ and 4f . .. then’, there are a variety of other locutions which join two or
more sentences into compounds which should always be treated as single units in argument analysis.
Some of the most common are:

Only if
Provided that
If and only if
Neither . . . nor
Unless

Until

When

Before

‘Since’ and ‘because’ also form unbreakable compounds when they are not used as premise
indicators.

SOLVED PROBLEMS

111 Diagram the argument below.

@[T knew her even before she went to Nepal,] (50 )@[it was well before she returned
that I first met her.}(Since) @ [you did not meet her until after she returned,] @[I met
her before you did.]

Solution

Notice that the compound sentences formed by ‘before’ and ‘until’ are treated as single units.
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1.12 Diagram the argument below.
®[The check is void unless it is cashed within 30 days.] ®@[The date on the check is

September 2,] and @(it is now October 8.] (Therefore ) @[the check is now void.]
®

®[You cannot cash a check which is void.] (S0) ®[you cannot cash this one.]
Solution
1 +2 +3
!
4 + 5
!
6

Notice that premise 1, a compound sentence joined by ‘unless’, is treated as a single unit.

Often an argument is interspersed with material extraneous to the argument. Sometimes two or
more arguments are intertwined in the same passage. In such cases we bracket and number all
statements as usual, but only those numbers representing statements that are parts of a particular
argument should appear in its diagram.

SOLVED PROBLEM

1.13 Diagram the argument below.

®[She could not have known that the money was missing from the safe,] ®[she
had no access to the safe itself.] @[If she had known the money was missing, there is
no reason to think that she wouldn’t have reported it.] But Gince )@ she couldn’t have
known,] @[there was nothing she could have done.] And ®[even if she could have
done something, it was already too late to prevent the crime;] ®[the money was gone.]

(Therefore, ) @[she bears no guilt in this incident.]

Solution

D S

7

Notice that statement 1 occurs twice, the second time in a slightly abbreviated version. To
prevent the confusion that might result if the same sentence had two numbers, we label it 1 in
both its first and second occurrences. Statements 3, 5, and 6 make no direct contribution to the
argument and thus are omitted from the diagram. However, 5 and 6 may be regarded as a
separate argument inserted into the main line of reasoning, with 6 as the premise and 5 as the
conclusion:

6

l
5

1.5 CONVERGENT ARGUMENTS

If an argument contains several steps of reasoning which all support the same (final or
intermediate) conclusion, the argument is said to be convergent. Consider:

One should quit smoking. It is very unhealthy, and it is annoying to the bystanders.
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Here the statements that smoking is unhealthy and that it is annoying function as independent reasons
for the conclusion that one should quit smoking. We do not, for example, need to assume the first
premise in order to understand the step from the second premise to the conclusion. Thus, we should not
diagram this argument by linking the two premises and drawing a single arrow to the conclusion, as in
the examples considered so far. Rather, each premise should have its own arrow pointing toward the
conclusion. A similar situation may occur at any step in a complex argument. In general, therefore, a
diagram may contain numbers with more than one arrow pointing toward them.

SOLVED PROBLEM

1.14 Diagram the argument below.

®[The Bensons must be home.] @[Their front door is open.] ®[their car is in the
driveway,] and @[their television is on,] (ince) ®[I can see its glow through the
window.]

Solution

W

S —

2 3
N
1

The argument is convergent. Statements 2, 3, and 4 function as independent reasons for the
conclusion, statement 1. Each supports statement [ separately, and must therefore be linked to
it by a separate arrow.

Premises should be linked by plus signs, by contrast, when they do not function independently, i.e.,
when each requires completion by the others in order for the argument to make good sense.

SOLVED PROBLEM

1.15 Diagram the argument below.
®[Everyone at this party is a biochemist.] and @[all biochemists are intelligent.]
®[Sally is at this party,] @[Sally is intelligent.]

Solution

1+2+3

l
4

The argument is not convergent; each of its premises requires completion by the others. Taken
by themselves, none of the premises would make good sense as support for statement 4.

Incidentally, note that the argument contains a premise indicator, ‘since’, immediately following a
conclusion indicator, ‘therefore’. This is a relatively common construction. It signals that the first
statement following the premise indicator (in this case, 3) is a premise supporting the second (in this
case, 4), and also that the second is supported by previously given premises.

Convergent arguments exhibit many different patterns. Sometimes separate lines of reasoning

converge on intermediate conclusions, rather than on final conclusions. Sometimes they converge on
both.
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SOLVED PROBLEM

1.16 Diagram the argument below.

®[The Lions are likely to lose this final game,] (for three reaons)®|their star

quarterback is sidelined with a knee injury,] @[morale is low after two disappointing
defeats,] and ®[this is a road game] and ®[they’ve done poorly on the road all season.]
®[If they lose this one, the coach will almost certainly be fired.] But (that’s not the
only reason to think that) @[his job is in jeopardy.] ®[he has been accused by
some of the players of closing his eyes to drug abuse among the team,] and @[no coach
who lets his players use drugs can expect to retain his post.]

Solution

This argument exhibits a complex convergent structure:
2 3 4 + 5

N

1+ 6 8 + 9

N,

7

1.6 IMPLICIT STATEMENTS

It is often useful to regard certain arguments as incompletely expressed. Argument 1.1(c) and the
argument of Problem 1.4, for instance, can be thought of as having unstated assumptions (see the
footnotes concerning these arguments). There are also cases in which it is clear that the author wishes
the audience to draw an unstated conclusion. For instance:

One of us must do the dishes, and it’s not going to be me.

Here the speaker is clearly suggesting that the hearer should do the dishes, since no other possibility
is left open. ‘

SOLVED PROBLEM

1.17 Complete and diagram the following incomplete argument:

@[It was certain that none of the President’s top advisers had leaked the information,]
and yet @[it had indeed been leaked to the press.]

Solution
These two statements are premises which suggest the implicit conclusion:

®[Someone other than the President’s top advisers leaked the information to the
press.]

Thus the diagram is:

Implicit premises or conclusions should be “read into” an argument only if they are required to
complete the arguer’s thought. No statement should be added unless it clearly would be accepted by the
arguer, since in analyzing an argument, it is the arguer’s thought that we are trying to understand. The
primary constraint governing interpolation of premises and conclusions is the principle of charity: in
formulating implicit statements, give the arguer the benefit of the doubt; try to make the argument as
strong as possible while remaining faithful to what you know of the arguer’s thought. The point is to
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minimize misinterpretation, whether deliberate or accidental. (Occasionally we may have reason to
restructure a bad argument in a way that corrects and hence departs from the arguer’s thought. But in
that case we are no longer considering the original argument; we are creating a new, though related,
argument of our own.)

SOLVED PROBLEM

1.18 Complete and diagram the following incomplete argument:

®[Karla is an atheist,](which just goes to show thaD@[you don’t have to believe in
God to be a good person.|

Solution

We first consider a solution which is incorrect. Suppose someone were to reply to this
argument, “Well, that’s a ridiculous thing to say; look, you’re assuming that all atheists are good
people.” Now this alleged assumption is one way of completing the author’s thought, but it is not
a charitable one. This assumption is obviously false, and it is therefore unlikely to have been
what the author had in mind. Moreover, the argument is not meant to apply to all atheists; there
is no need to assume anything so sweeping to support the conclusion. What is in fact assumed
is probably something more like:

®[Karla is a good person.]

This may well be true, and it yields a reasonably strong argument while remaining faithful
to what we know of the author’s thought. Thus a charitable interpretation of the argument is:

1+ 3
l
2

Sometimes, both the conclusion and one or more premises are implicit. In fact, an entire argument may
be expressed by a single sentence.

SOLVED PROBLEMS
119 Complete and diagram the following incomplete argument.
@[If you were my friend, you wouldn’t talk behind my back.]

Solution

This sentence suggests both an unstated premise and an unstated conclusion. The
premise is:

®[You do talk behind my back.]
And the conclusion is:
®[You aren’t my friend.]

Thus the diagram is:

1.20 Complete and diagram the following incomplete argument.

®[The liquid leaking from your engine is water.] @[There are only three liquids in the
engine: water, gasoline, and oil.] @[The liquid that is leaking is not oil,] @Jit
is not viscous,] and ®[it is not gasoline,] Gince) @it has no odor.]
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Solution

The premise indicator ‘because’ signals that statement 4 is a premise supporting statement
3. But this step obviously depends on the additional assumption:

@[0Oil is viscous.]

Likewise, the premise indicator ‘since’ shows that statement 6 supports statement 5, again
with an additional assumption:

®[Gasoline has an odor.]

The conclusion of the argument is statement 1. Though no further inference indicators are
present, it is clear that statements 2, 3, and 5 are intended to support statement 1. For the sake
of completeness, we may also add the rather obvious assumption:

®[A liquid is leaking from your engine.]

The diagram is:

4 + 7 6 + 8
! l
9 + 2 + 3+ 5

—_——

Many arguments, of course, are complete as stated. The arguments of our initial examples and of
Problems 1.8 and 1.10, for instance, have no implicit premises or conclusions. These are clear examples
of completely stated arguments. In less clear cases, the decision to regard the argument as having an
implicit premise may depend on the degree of rigor which the context demands. Consider, for instance,
the argument of Problem 1.3. If we need to be very exacting—as is the case when we are formalizing
arguments (see Chapters 3 and 6)—it may be appropriate to point out that the author makes the
unstated assumption:

Borrowed money paid back in highly inflated dollars is less expensive in real terms than borrowed money
paid back in less inflated dollars.

In ordinary informal contexts, however, this much rigor amounts to laboring the obvious and may not
be worth the trouble.

We conclude this section with a complex argument that makes several substantial implicit
assumptions.

SOLVED PROBLEM

1.21 This argument is from the great didactic poem De rerum natura (On the Nature
of the Universe) by the Roman philosopher Lucretius. Diagram it and supply missing
premises where necessary.

®[{The atoms that comprise spirit} are obviously far smaller than those of swift-
flowing water or mist or smoke,] @it far outstrips them in mobility] and ®[is
moved by a far slighter impetus.] Indeed, ®([it is actually moved by images of smoke
and mist.] So, for instance, ® [when we are sunk in sleep, we may see altars sending up
clouds of steam and giving off smoke;] and (we cannot doubt that)®[we are here
dealing with images.] Now we see that @[water flows out in all directions from a
broken vessel and the moisture is dissipated, and mist and smoke vanish into thin air.]
Be assured, that ®[spirit is similarly dispelled and vanishes far more
speedily and is sooner dissolved into its component atoms once it has been let loose
from the human frame.]
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In logic and mathematics, letters themselves are sometimes used as names or variables standing for
various objects. In such uses they may stand alone without quotation marks. In item (b), for example,
the occurrences of the letters ‘x’ and ‘y’, without quotation marks, function as variables designating
numbers.

Another point to notice about item (b) (and item (d)) is that the period at the end of the sentence
is placed after the last quotation mark, not before, as standard punctuation rules usually dictate. In
logical writing, punctuation that is not actually part of the expression being mentioned is placed outside
the quotation marks. This helps avoid confusion, since the expression being mentioned is always
precisely the expression contained within the quotation marks.

1.8 FORMAL VS. INFORMAL LOGIC

Logic may be studied from two points of view, the formal and the informal. Formal logic is the study
of argument forms, abstract patterns common to many different arguments. An argument form is
something more than just the structure exhibited by an argument diagram, for it encodes something
about the internal composition of the premises and conclusion. A typical argument form is exhibited
below:

If P, then
P

w0

This is a form of a single step of reasoning with two premises and a conclusion. The letters ‘P’ and ‘Q’
are variables which stand for propositions (statements). These two variables may be replaced by any
pair of declarative sentences to produce a specific argument. Since the number of pairs of declarative
sentences is potentially infinite, the form thus represents infinitely many different arguments, all having
the same structure. Studying the form itself, rather than the specific arguments it represents, allows one
to make important generalizations which apply to all these arguments.

Informal logic is the study of particular arguments in natural language and the contexts in which
they occur. Whereas formal logic emphasizes generality and theory, informal logic concentrates on
practical argument analysis. The two approaches are not opposed, but rather complement one another.
In this book, the approach of Chapters 1, 2, 7, and 8 is predominantly informal. Chapters 3, 4, 5, 6, 9,
and 10 exemplify a predominantly formal point of view.

Supplementary Problems

I Some of the following are arguments; some are not. For those which are, circle all inference indicators,
bracket and number statements, add implicit premises or conclusions where necessary, and diagram the
argument.

(1)  You should do well, since you have talent and you are a hard worker.

(2) She promised to marry him, and so that’s just what she should do. So if she backs out, she’s definitely
in the wrong.

(3) We need more morphine. We've got 32 casualties and only 12 doses of morphine left.
(4) lcan’t help you if I don’t know what’s wrong—and I just don’t know what’s wrong,
(5) If wishes were horses, then beggars would ride.

(6) If there had been a speed trap back there, it would have shown up on this radar detector, but
none did.
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(15)

(16)

(17)

(18)

(19)
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The earth is approximately 93 million miles from the sun. The moon is about 250,000 miles from the
earth. Therefore, the moon is about 250,000 miles closer to the sun than the earth is.

She bolted from the room and then suddenly we heard a terrifying scream.

I followed the recipe on the box, but the dessert tasted awful. Some of the ingredients must have
been contaminated.

Hitler rose to power because the Allies had crushed the German economy after World War L.
Therefore if the Allies had helped to rebuild the German economy instead of crushing it, they would
never have had to deal with Hitler.

[The apostle Paul’s] father was a Pharisee. . . . He [Paul] did not receive a classical education, for no
Pharisee would have permitted such outright Hellenism in his son, and no man with Greek training
would have written the bad Greek of the Epistles. (Will Durant, The Story of Civilization)

The contestants will be judged in accordance with four criteria: beauty, poise, intelligence, and
artistic creativity. The winner will receive $50,000 and a scholarship to attend the college of her
choice.

Capital punishment is not a deterrent to crime. In those states which have abolished the death
penalty, the rate of incidence for serious crimes is lower than in those which have retained it.
Besides, capital punishment is a barbaric practice, one which has no place in any society which calls
itself “civilized.”

Even if he were mediocre, there are a lot of mediocre judges and people and lawyers. They are
entitled to a little representation, aren’t they, and a little chance? We can’t have all Brandeises and
Frankfurters and Cardozos and stuff like that there. (Senator Roman Hruska of Nebraska,
defending President Richard Nixon’s attempt to appoint G. Harrold Carswell to the Supreme Court
in 1970)

Neither the butler nor the maid did it. That leaves the chauffeur or the cook. But the chauffeur was
at the airport when the murder took place. The cook is the only one without an alibi for his
whereabouts. Moreover, the heiress was poisoned. It’s logical to conclude that the cook did it.

The series of integers (whole numbers) is infinite. If it weren’t infinite, then there would be a last (or
highest) integer. But by the laws of arithmetic, you can perform the operation of addition on any
arbitrarily large number, call it n, to obtain n + 1. Since n + 1 always exceeds n, there is no last (or
highest) integer. Hence the series of integers is infinite.

The Richter scale measures the intensity of an earthquake in increments which correspond to
powers of 10. A quake which registers 6.0 is 10 times more severe than one which measures 5.0;
correspondingly, one which measures 7.0 releases 10 times more energy than a 6.0, or 100 times
more than a 5.0. So a famous one such as the quake in San Francisco in 1906 (8.6) or Alaska in 1964
(8.3) is actually over a thousand times more devastating than a quake with a modest 5.0 reading on
the scale.

Can it be that there simply is no evil? If so, why do we fear and guard against something which is
not there? If our fear is unfounded, it is itself an evil, because it stabs and wrings our hearts for
nothing. In fact, the evil is all the greater if we are afraid when there is nothing to fear. Therefore,
either there is evil and we fear it, or the fear itself is evil. (St. Augustine, Confessions)

The square of any number n is evenly divisible by n. Hence the square of any even number is even,

since by the principle just mentioned it must be divisible by an even number, and any number
divisible by an even number is even.

The count is 3 and 2 on the hitter. A beautiful day for baseball here in Beantown. Capacity crowd
of over 33,000 people in attendance. There’s the pitch, the hitter swings and misses, strike three.
That’s the tenth strikeout Roger Clemens has notched in this game. He has the hitters off stride and
is pitching masterfully. He should be a candidate for the Cy Young award.

Parents who were abused as children are themselves more often violent with their own children than
parents who were not abused. This proves that being abused as a child leads to further abuse of the
next generation. Therefore the only way to stop the cycle of child abuse is to provide treatment for
abused children before they themselves become parents and perpetuate this sad and dangerous
problem.
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Assume a perfectly square billiard table and suppose a billiard ball is shot from the middle of one
side on a straight trajectory at an angle of 45 degrees to that side. Then the ball will hit the middle
of an adjoining side at an angle of 45 degrees. Now the ball will always rebound at an angle equal
to but in the opposite direction from the angle of its approach. Hence it will be reflected at an angle
of 45 degrees and hit the middle of the side opposite from where it started. Thus by the same
principle it will hit the middle of the next side at an angle of 45 degrees, and hence again it will return
to the point from which it started.

II Supply quotation marks in the following sentences in such a way as to make them true.

)
@)
3)
4)

®)
(6)
M

I (2

“)

®)
(10)

(1n

The capital form of x is X.
The term man may designate either all human beings or only those who are adult and male.
Love is a four-letter word.

Rome is known by the name the Eternal City. The Vatican is in Rome. Therefore, the Vatican is in
the Eternal City.

Chapter 1 of this book concerns argument structure.
In formal logic, the letters P and Q are often used to designate propositions.

If we use the letter P to designate the statement It is snowing and Q to designate It is cold outside,
then the argument It is snowing; therefore it is cold outside is symbolized as P; therefore Q.

Answers to Selected Supplementary Problems

®[She promised to marry him,] and ®@[that’s just what she should do.] ®Jif she backs out,
she’s definitely in the wrong.}

W &= D) ¢ ma

®[I can’t help you if I don’t know what’s wrong]—and @[I just don’t know what’s wrong,] ®[I can’t
help you.]

Not an argument.

®[Hitler rose to power because the Allies had crushed the German economy after World War 1.]
(Therefore, Y[if the Allies had helped to rebuild the German economy instead of crushing it, they
would never have had to deal with Hitler.]

1
!
2

O®[The apostle Paul’s father was a Pharisee.] @{Paul did not receive a classical education,]
®[no Pharisee would have permitted such outright Hellenism in his son,} and ®[no man with Greek
training would have written the bad Greek of the Epistles.]

1 + 3 4

\

2
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®[The series of integers (whole numbers) is infinite.] @[If it weren’t infinite, then there would be a
last (or highest) integer.] But @by the laws of arithmetic, you can perform the operation of addition
on any arbitrarily large number, call it n, to obtain n + 1.](Since Y®[n + 1 always exceeds n,]
®]there is no last (or highest) integer.] ®[the series of integers is infinite.]

W
+
-

@[a billiard table is perfectly square] and (suppose) @[a billiard ball is shot from the
middle of one side on a straight trajectory at an angle of 45 degrees to that side.] @[the ball

will hit the middle of an adjoining side at an angle of 45 degrees.] Now ®[the ball will always
rebound at an angle equal to but in the opposite direction from the angle of its approach.]
®[it will be reflected at an angle of 45 degrees and hit the middle of the side opposite from where
it started.] CThus by the same principle ®[it will hit the middle of the next side at an angle of 45
degrees,] andChence Dagain @[it will return to the point from which it started.]

1+ 2

The capital form of ‘x’ is ‘X’.
‘Love’ is a four-letter word.
Chapter 1 of this book concerns argument structure. (No quotation marks)

If we use the letter ‘P’ to designate the statement ‘It is snowing’ and ‘Q’ to designate ‘It is
cold outside’, then the argument ‘It is snowing; therefore it is cold outside’ is symbolized as ‘P;
therefore Q’.



Chapter 2

Argument Evaluation

2.1 EVALUATIVE CRITERIA

Though an argument may have many objectives, its chief purpose is usually to demonstrate that a
conclusion is true or at least likely to be true. Typically, then, arguments may be judged better or worse
to the extent that they accomplish or fail to accomplish this purpose. In this chapter we examine four
criteria for making such judgments: (1) whether all the premises are true; (2) whether the conclusion
is at least probable, given the truth of the premises; (3) whether the premises are relevant to the
conclusion; and (4) whether the conclusion is vulnerable to new evidence.

Not all of the four criteria are applicable to all arguments. If, for example, an argument is intended
merely to show that a certain conclusion foliows from a set of premises, whether or not these premises
are true, then criterion 1 is inapplicable; and, depending on the case, criteria 3 and 4 may be
inapplicable as well. Here, however, we shall be concerned with the more typical case in which it is the
purpose of an argument to establish that its conclusion is indeed true or likely to be true.

2.2 TRUTH OF PREMISES

Criterion 1 is not by itself adequate for argument evaluation, but it provides a good start: no
matter how good an argument is, it cannot establish the truth of its conclusion if any of its premises
are false.

SOLVED PROBLEM
2.1 Evaluate the following argument with respect to criterion 1:

Since all Americans today are isolationists, history will record that at the end of the
twentieth century the United States failed as a defender of world democracy.
Solution

The premise ‘All Americans today are isolationists’ is certainly false; hence the argument
does not establish that the United States will fail as a defender of world democracy. This does
not mean, of course, that the conclusion is false, but only that the argument is of no use in
determining its truth or falsity. (One way to produce a better argument would be to make a
careful study of the major forces currently shaping American foreign policy and to draw
informed conclusions from that.)

Often the truth or falsity of one or more premises is unknown, so that the argument fails to
establish its conclusion so far as we know. In such cases we lack sufficient information to apply criterion
1 reliably, and it may be necessary to suspend judgment until further information is acquired.

SOLVED PROBLEM

2.2 Evaluate the following argument with respect to criterion 1:

There are many advanced extraterrestrial civilizations in our galaxy.
Many of these civilizations generate electromagnetic signals powerful (and often)
enough to be detected on earth.

. We have the ability to detect signals generated by extraterrestrial civilizations.

21
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Solution

We do not yet know whether the premises of this argument are true. Hence we can do no
better than to withhold judgment on it until we can reliably determine the truth or falsity of
the premises. This argument should not convince anyone of the truth of its conclusion —at least
not yet.

Criterion 1 requires only that the premises actually be true, but in practice an argument successfully

communicates the truth of its conclusion only if those to whom it is addressed know that its premises
are true. If an arguer knows that his or her premises are true but others do not, then to prove a
conclusion fo them, the arguer must provide further arguments to establish the premises.

SOLVED PROBLEM

2.3 A window has been broken. A little girl offers the following argument: “Billy
broke the window. I saw him do it.”” In standard form:

1 saw Billy break the window.
". Billy broke the window.

Suppose we have reason to suspect that the child did not see this. Evaluate the
argument with respect to criterion 1.

Solution

Even if the child is telling the truth, her argument fails to establish its conclusion to us, at
least so long as we do not know that its premise is true. The best we can do for the present is
to suspend judgment and seek further evidence.

Another limitation of criterion 1 is that the truth of the premises—or their being known to be

true —is no guarantee that the conclusion be also true. It is a necessary condition for establishing the
conclusion, but not a sufficient condition. In a good argument, the premises must also support the

conclusion.

SOLVED PROBLEMS
2.4 Evaluate the following argument with respect to criterion 1:

All acts of murder are acts of killing.
. Soldiers who Kkill in battle are murderers.

Solution

Since the premise is true, the argument satisfies criterion 1. It nevertheless fails to establish
its conclusion, for the premise leaves open the possibility that some kinds of killing are not
murder. Perhaps the killing done by soldiers in battle is of such a kind; the premise, at least,
provides no good recason to think that it is not. Thus the premise, though true, does not
adequately support the conclusion; the argument proves nothing,

2.5 Evaluate the following argument with respect to criterion 1:

Snow is white.
. Whales are mammals.
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Solution

Also in this case, the argument satisfies criterion 1: the premise is true. As a matter of fact
the conclusion is true as well. Yet the argument does not itself establish the conclusion, for the
premise does no job in supporting the conclusion.

These examples demonstrate the need for further criteria of argument evaluation, criteria to assess
the degree to which a set of premises provides direct evidence for a conclusion. There are two main
parameters one must take into account. One is probabilistic: the conclusion may be more or less
probable relative to the premises. The other parameter is the relevance of the premises to the
conclusion. These two parameters are respectively the concerns of our next two evaluative criteria.

2.3 VALIDITY AND INDUCTIVE PROBABILITY

Criterion 2 evaluates arguments with respect to the probability of the conclusion given the truth of
the premises. In this respect, arguments may be classified into two categories: deductive and inductive.
A deductive argument is an argument whose conclusion follows necessarily from its basic premises.
More precisely, an argument is deductive if it is impossible for its conclusion to be false while its basic
premises are all true. An inductive argument, by contrast, is one whose conclusion is not necessary
relative to the premises: there is a certain probability that the conclusion is true if the premises are, but
there is also a probability that it is false.'

The probability of a conclusion, given a set of premises, is called inductive probability. The
inductive probability of a deductive argument is maximal, i.e., equal to 1 (probability is usually
measured on a scale from 0 to 1). The inductive probability of an inductive argument is typically
(perhaps always) less than 1.% Traditionally, the term ‘deductive’ is extended to include any argument
which is intended or purports to be deductive in the sense defined above. It thus becomes necessary to
distinguish between valid and invalid deductive arguments. Valid deductive arguments are those which
are genuinely deductive in the sense defined above (i.e., their conclusions cannot be false so long as
their basic premises are true). Invalid deductive arguments are arguments which purport to be
deductive but in fact are not. (Some common kinds of “invalid deductive” arguments are discussed in
Section 8.6.) Unless otherwise specified, however, we shall use the term ‘deductive’ in the narrower,
nontraditional sense (i.e., as a synonym for ‘valid’ or ‘valid deductive’). We adopt this usage because
in practice there is frequently no answer to the question of whether or not the argument “purports” to
be valid; hence, the traditional definition is in many cases simply inapplicable. Moreover, even where
it can be applied it is generally beside the point; our chief concern in argument evaluation is with how
well the premises actually support the conclusion (i.e., with the actual inductive probability and degree
of relevance), not with how well someone claims they do.

SOLVED PROBLEM

2.6 Classify the following arguments as either deductive or inductive:

(a) No mortal can halt the passage of time.
You are mortal.
. You cannot halt the passage of time.

'The distinction between inductive and deductive argument is drawn differently by different authors. Many define induction in
ways that correspond roughly with what we, in Chapter 9, call Humean induction. Others draw the distinction on the basis of the
purported or intended strength of the reasoning,

*This is a matter of controversy. According to some theories of inductive logic it is possible for the conclusion of an argument to
be false while its premises are true and yet for the inductive probability of the argument to be 1. (See R. Carnap, Logical
Foundations of Probability, 2d edn, Chicago, University of Chicago Press, 1962.)
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(b) Tt is usually cloudy when it rains.
It is raining now.
.. It is cloudy now.

(¢) There are no reliably documented instances of human beings over 10 feet tall.
.. There has never been a human being over 10 feet tall.

(d) Some pigs have wings.
All winged things sing.
. Some pigs sing.
(e) Everyone is either a Republican, a Democrat, or a fool.
The speaker of the House is not a Republican.
The speaker of the House is no fool.
-. The speaker of the House is a Democrat.

(f) If there is a nuclear war, it will destroy civilization.
There will be a nuclear war.
-, Civilization will be destroyed by a nuclear war.

(g) Chemically, potassium chloride is very similar to ordinary table salt (sodium
chloride).
*. Potassium chloride tastes like table salt.

Solution

(a) Deductive
(b) Inductive
(¢) Inductive
(d) Deductive
(e) Deductive
(f) Deductive
(g) Inductive

Problem 2.6 illustrates the fact that deductiveness and inductiveness are independent of the actual
truth or falsity of the premises and conclusion; hence criterion 2 is independent of criterion 1 and is
not by itself adequate for argument evaluation. Notice, for example, that each of the deductive
arguments exhibits a different combination of truth and falsity. The premises and conclusion of
Problem 2.6(a) are all true. All the statements in Problem 2.6(d), by contrast, are false. Problem 2.6(e)
is a mix of truth and falsity; its first premise is surely false, but the truth and falsity of the others vary
with time as House speakers come and go. None of the statements that make up Problem 2.6(f) is yet
known to be true or to be false. Yet in items (e) and (f) alike the conclusion could not be false if the
premises were true. Any combination of truth or falsity is possible in an inductive or a deductive
argument, except that no deductive (valid) argument ever has true premises and a false conclusion,
since by definition a deductive argument is one such that it is impossible for its conclusion to be false
while its premises are true.

A deductive argument all of whose basic premises are true is said to be sound. A sound argument
establishes with certainty that its conclusion is true. Argument 2.6(a), for example, is sound.

SOLVED PROBLEM

2.7 Evaluate the following argument with respect to criteria 1 and 2:
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Everyone has one and only one biological father.
Full brothers have the same biological father.
No one is his own biological father.
.. There is no one whose biological father is also his full brother.

Solution
The argument is sound. (Its assumptions are true and it is deductive.)

Notice that when we say it is impossible for the conclusion of a deductive argument to be false
while the premises are true, the term “impossible” is to be understood in a very strong sense. It means
not simply “impossible in practice,” but logically impossible, i.e., impossible in its very conception.’ The
distinction is illustrated by the following problem.

SOLVED PROBLEM

2.8 Is the argument below deductive?

Tommy T. reads The Wall Street Journal.
. Tommy T. is over 3 months old.

Solution

Even though it is impossible in a practical sense for someone who is not older than 3
months to read The Wall Street Journal, it is still coherently conceivable; the idea itself embodies
no contradiction. Thus it is logically possible (though not practically possible) for the conclusion
to be false while the premise is true. In other words, the conclusion, though highly probable, is
not absolutely necessary, given the premise. The argument is therefore not deductive (not
valid).

On the other hand, the argument can be transformed into a deductive argument by the
addition of a premise:

All readers of The Wall Street Journal are over 3 months old.
Tommy T. reads The Wall Street Journal.
. Tommy T. is over 3 months old.

Here it is not only practically impossible for the conclusion to be false while the premises are
true; it is logically impossible. This new argument is therefore deductive.

As explained in Section 1.5, it is often useful to regard arguments like that of Problem 2.8 as
incomplete and to supply the premise or premises needed to make them deductive.* In all such cases,
however, one should ascertain that the author of the argument would have accepted (or wanted the
audience to accept) the added premise as true. Supplying a premise not intended by the author unfairly
distorts the argument. It is also useful to compare the argument of Problem 2.8 with the deductive
arguments of Problem 2.6. In no context would any of these latter inferences require additional
premises.

*Some authors define logical impossibility as violation of the laws of logic, but this presupposes some fixed conception of logical
laws. Typically, these are taken to be the logical truths of formal predicate logic (see Chapter 6). But since we wish to discuss
validity both in formal logical systems more extensive than predicate logic (see Chapter 11) and in informal logic, we require this
broader and less precise notion.

“Some authors hold that all of what we are here calling “inductive arguments” are mere fragments which must be “completed”
in this way before analysis, so that there are no genuine inductive arguments.
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Thus far our examples have concerned only simple arguments, arguments consisting of a single step
of reasoning. We now consider inductive probability for complex arguments, those with two or more
steps (see Section 1.3). For this purpose, it is important to keep in mind that deductive validity and
inductive probability are relations between the basic premises and the conclusion. Thus, for example,
a deductive argument is one whose conclusion cannot be false while its basic premises are true.
Nonbasic premises are not mentioned in this definition.

Arguments contain nonbasic premises (intermediate conclusions) primarily as a concession to the
limitations of the human mind. We cannot grasp very intricate arguments in a single step; so we break
them down into smaller steps, each of which is simple enough to be readily intelligible. However, for
evaluative purposes we are primarily interested in the whole span of the argument—i.e., in the
probability of the conclusion, given our starting points, the basic premises.

Nevertheless, each of the steps that make up a complex argument is itself an argument, and each
has its own inductive probability. One might suspect, then, that there is a simple set of rules relating the
inductive probabilities of the component steps to the inductive probability of the entire complex
argument. (One obvious suggestion would be simply to calculate the inductive probability of the whole
argument by multiplying the inductive probabilities of all its steps together.) But no such rule applies
in all cases. The relation of the inductive probability of a complex argument to the inductive
probabilities of its component steps is in general a very intricate affair. There are, however, a few
helpful rules of thumb:

(1) With regard to complex nonconvergent arguments, if one or more of the steps is weak, then
usually the inductive probability of the argument as a whole is low.

(2) If all the steps of a complex nonconvergent argument are strongly inductive or deductive, then (if
there are not too many of them) the inductive probability of the whole is usually fairly high.

(3) The inductive probability of a convergent argument (Section 1.4) is usually at least as high as the
inductive probability of its strongest branch.

Yet, because the complex ways in which the information contained in some premises may conflict with
or reinforce the information contained in others, each of these rules has exceptions. Rules 1 to 3 allow
us to make quick judgments which are wusually accurate. But the only way to ensure an accurate
judgment of inductive probability in the cases mentioned in these rules is to examine directly the
probability of the conclusion given the basic premises, ignoring the intermediate steps.

There is only one significant exceptionless rule relating the strength of reasoning of a complex
argument to the strength of reasoning of its component steps:

(4) If all the steps of a complex argument are deductive, then so is the argument as a whole.

It is not difficult to see why this is so. If each step is deductive, then the truth of the basic premises
guarantees the truth of any intermediate conclusions drawn from them, and the truth of these
intermediate conclusions guarantees the truth of intermediate conclusions drawn from them in turn,
and so on, until we reach the final conclusion. Thus if the basic premises are true, the conclusion must
be true, which is just to say that the complex argument as a whole is deductive.

SOLVED PROBLEMS

2.13 Diagram the following argument and evaluate it with respect to criterion 2.

@ [All particles which cannot be decomposed by chemical means are either subatomic
particles or atoms.] Now @ [the smallest particles of copper cannot be decomposed by

chemical means,] yet @ [they are not subatomic.] @ [the smallest particles of
copper are atoms.] ® [Anything whose smallest particles are atoms is an element.]

(Thus) ® [copper is an element.] And @ [no clements are alloys.]

copper is not an alloy.]
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Solution

The argument is diagramed as follows:

1+ 2 + 3
| D
4+ 5
I D
¢ + 7 o]
| D
8

Each of the three steps is deductive. We indicate a deductive step on the diagram by placing a
‘D’ next to the arrow representing the step. Since zach step is deductive, so is the argument as
a whole (rule 4). We signify this by placing a ‘D’ in a box beside the diagram.

2.14 Diagram the argument below and evaluate it.

® [Random inspections of 50 coal mines in the United States revealed that 39 were in
violation of federal safety regulations.] (Thus we may infer that ) @ [a substantial
percentage of coal mines in the United States are in violation of federal safety
regulations.] @ [all federal safety regulations are federal law,] (it follows
that) @ [a substantial percentage of coal mines in the United States are in violation of
federal law.]

Solution

Here the diagram is:

—

(Strong)
3

| I (Strong) I

I
+
{ D
4
The ‘P next to the first arrow indicates that the step from statement 1 to statement 2 is inductive.
The ‘D’ next to the second arrow indicates that the step from statements 2 and 3 to statement
4 is deductive. This makes the argument as a whole inductive, which we indicate by placing an
‘I’ in a box next to the diagram. The inductive probability of the first step and hence of the
argument as a whole is fairly high; that is, the reasoning both of this step and of the argument
as a whole is strong. The step from statement 1 to statement 2 is strong because, even though
a sample of 50 may be rather small, statement 2 is a very cautious conclusion. It says only that
a “substantial percentage” of mines are in violation, which is indeed quite likely, given
statement 1. Had it said ““most,” the reasoning would be weaker; had it said “almost all,” the
reasoning would be even weaker. (For a more detailed discussion of the evaluation of this sort
of inference, see Section 9.3.)

One can see clearly that the reasoning of the argument as a whole is strong by noting that

the conclusion, statement 4, is quite likely, given the basic premises, statements 1 and 3. This
accords with rule 2.

2.15 Diagram the argument below and evaluate it.

@ [The MG Midget and the Austin-Healy Sprite are, from a mechanical point of view,
identical in almost all aspects.] @ [Sprites have hydraulic clutches.] CThus it seems safe
to conclude that) ® [Midgets do as well.] But ® [hydraulic clutches are prone to

malfunction due to leakage.| ® [both Sprites and Midgets are poorly
designed cars.]
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Solution

The diagram is:

1 + 2
| I (Strong)
2 + 3 4 4
! I (Weak)
5

Statement 3 is reasonably probable, though not certain, given 1 and 2, so that the first step is
reasonably strong. But 5 is not very likely, given 3 and 4. Statement 5 says that each car as
a whole is poorly designed, whereas statements 3 and 4 tell us at most that one part (the clutch)
is poorly designed. Actually, they don’t even tell us that much, since the fact that hydraulic
clutches in general are prone to leakage does not guarantee that the particular clutches found
in these two cars are poorly designed. Thus the second step is very weak. For the same reason
it is clear that the probability of statement 5, given the basic premises of statements 1, 2, and
4, is low, so that the reasoning of the argument as a whole is quite weak. This accords with
rule 1.

216 Diagram the following argument and evaluate it.

® [Mrs Compson is old and frail,] and @ [it is unlikely that anyone in her physical
condition could have delivered the blows that killed Mr. Smith.] Moreover, @ [two
reasonably reliable witnesses who saw the murderer say that she was not Mrs.
Compson.] And finally, ® [Mrs. Compson had no motive to kill Mr. Smith,] and ® [she
would hardly have killed him without a motive.] @ ® {she is innocent of Mr.
Smith’s murder.]

Solution

1+ 2 3 4 + 5

\ I (Strong) é I (Strong) /mng) | I (Very strong) l

This argument is convergent. Each step is strongly inductive; and when taken together, the steps
reinforce one another. The inductive probability of the whole argument is therefore (in accord
with rule 3) greater than the inductive probability of any of its component steps; its reasoning
is quite strong.

In convergent arguments, unlike nonconvergent ones, a single weak step generally does not lessen
the strength of the whole. For example, if we added the weak step

Mrs. Compson denies being the murderer.
*. She is innocent of Mr. Smith’s murder.

as an additional branch to the argument above, the overall inductive probability of this argument would
remain about the same. This is because in a convergent argument no single branch is crucial to the
derivation of the conclusion. In nonconvergent arguments, by contrast, each step is crucial, so that (as
in Problem 2.15) one weak step usually drastically weakens the argument as a whole. This is the

rationale behind our first rule of thumb. There are exceptions, however, as the following problem
illustrates.
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SOLVED PROBLEM

2.17 Diagram the argument below and evaluate its reasoning,

@ [All your friends are misfits.] Csince ) ® [Jeff is a misfit,] @ [he must be one

of your misfit friends.] But @ [misfits can’t be good friends.] And ® [Jeff is not
a good friend to you.]

Solution
1 + 2

|

I (Weak)
3 0+ 4
|

[o]

D
5

The step from statements 1 and 2 to statement 3 may appear to be deductive, but it is not. It is
perfectly possible for all of someone’s friends to be misfits and for Jeff to be a misfit and yet for
Jeff not to be that person’s friend. In fact, statement 3 is not very probable at all, given
statements 1 and 2. The step from statements 3 and 4 to statement 5, however, is clearly
deductive. And, surprisingly, so is the argument as a whole; for if the basic premises 2 and 4 are
true, then S must be true as well. That is, if Jeff is a misfit and misfits can’t be good friends, then
(regardless of whether or not all your friends are misfits —a now superfluous premise) Jeff is not
a good friend to you. (He may not be a friend at all.)

Despite its overall deductiveness, this argument is unacceptably flawed by its faulty initial
step and hence would be objectionable as a means of establishing its conclusion.

24 RELEVANCE

Not every argument with true premises and high inductive probability is a good argument, even if
all of its component steps have high inductive probabilities as well. A conclusion may be probable or
certain, given a set of premises, even though the premises are irrelevant to the conclusion. But any
argument which lacks relevance (regardless of its inductive probability) is useless for demonstrating the
truth of its conclusion. For this reason, it is said to commit a fallacy of relevance.

Relevance is the concern of our third evaluative criterion for arguments. Like inductive probability,
it is a matter of degree. Among the examples of simple arguments given thus far in this chapter, the
premises are highly relevant to the conclusion in Problems 2.2, 2.3, 2.6 (all seven arguments), 2.7, 2.10
(both arguments), and 2.12-2.16.

SOLVED PROBLEM

2.18 Evaluate the argument below with respect to criteria 2, inductive probability,
and 3, degree of relevance.

I abhor the idea of an infinitely powerful creator.
. God does not exist.

Solution

One’s likes or dislikes have nothing to do with the actual existence of God; hence the
premise is hardly relevant. It is difficult to assign any clear inductive probability to an argument
like this, but certainly we should judge it not to be high.

Relevance and inductive probability do not always vary together. Some arguments exhibit high
inductive probability with low relevance or low inductive probability with high relevance. Perhaps the
simplest cases of high inductive probability with low relevance occur among arguments whose
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conclusions are logically necessary. A logically necessary statement is a statement whose very
conception or meaning requires its truth; its falsehood, in other words, is logically impossible. Here are
some examples:

Either something exists, or nothing at all exists.
2+2=4

No smoker is a nonsmoker.

If it is raining, then it is raining.

Everything is identical with itself.

(One important class of logically necessary statements, tautologies, will be studied in Chapter 3.)

Logically necessary statements have the peculiar property that if one occurs as the conclusion of
an argument, then the argument is automatically deductive, regardless of the nature of the premises.
This follows from the definition of deduction. A deductive argument is one whose conclusion cannot
(i.e., logically cannot) be false while its premises are true. But logically necessary statements cannot be
false under any conditions. Hence, trivially, if we take a logically necessary statement as a conclusion,
then for any set of true premises we supply, the conclusion cannot be false.

SOLVED PROBLEM

2.19 Evaluate the inductive probability and degree of relevance of the following
argument:

Some sheep are black.
Some sheep are white.
-. If something is a cat, then it is a cat.

Solution

This preposterously artifical argument has a logically necessary conclusion and is therefore
deductive, though its premises are wholly irrelevant to its conclusion.

Such an argument is, of course, useless as a means of demonstrating the truth of its conclusion, since
the premises, being irrelevant to the conclusion, provide no reason to believe it. But since the
conclusion is logically necessary, no further reason is needed to believe it; its truth is obvious as soon
as it is understood.

Intuitively, lack of relevance is signaled by a kind of oddity or discontinuity which we feel in the
inference from premises to conclusion. Where the premises are highly relevant, by contrast, the
inference is usually natural and obvious.

SOLVED PROBLEM

2.20 Evaluate the inductive probability and degree of relevance of the argument
below.

All of Fred’s friends go to Freeport High.

All of Frieda’s friends go to Furman High.

Nobody goes to both Freeport and Furman.
*. Fred and Frieda have no friends in common.

Solution

The argument is deductive, and so its inductive probability is 1. Its premises are highly
relevant to its conclusion.
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Having a logically necessary conclusion is not the only way an argument can be deductive and yet
lack relevance. This may also occur if an argument has inconsistent premises. A set of statements is
inconsistent if it is logically impossible for all of them to be true simultaneously. Each of the following
sets of statements, for example, is inconsistent:

(a) All butterflies are insects.
Some butterflies are not insects.

(b) Jim is taller than Bob.
Bob is taller than Sally.
Sally is taller than Jim.

(c) This pole is either positively or negatively charged.
It is not positively charged.
It is not negatively charged.

(d) Today is both Wednesday and not Wednesday.
Today I play golf.

Case (d) is slightly different from the other cases. In all the others, the statements are inconsistent
because they are in logical conflict. There is no conflict between the two statements of case (d). Rather,
the first of these two contradicts itself. Hence this pair is inconsistent simply because the first statement
can’t be true under any circumstances (and hence they can’t both be true).

Any argument with inconsistent premises is deductive, regardless of what the conclusion says.
Again this follows from the definition of deduction. An argument is deductive if it is impossible for its
premises all to be true while its conclusion is false. Thus since it is impossible (under any conditions)
for inconsistent premises all to be true, it is clearly also impossible for these premises to be true while
some conclusion is false. Hence, any conclusion follows deductively from inconsistent premises.

SOLVED PROBLEM

2.21 Evaluate the inductive probability and degree of relevance of the argument
below.

This book has more than 900 pages.
This book has fewer than 800 pages.
.. This is a very profound book.

Solution

Since it is logically impossible for the book to have more than 900 and fewer than 800 pages,
it is clearly impossible for both premises to be true while the conclusion is false. Therefore the
argument is deductive.’ The premises, however, are wholly irrelevant to the conclusion. (The
first is also false, if ‘this book’ designates the book you are now reading.)

Note that although any argument with inconsistent premises is deductive, no such argument is
sound, since inconsistent premises cannot all be true. Hence no conclusion can ever be proved by
deducing it from inconsistent premises.

Just as the premises of some deductive arguments are irrelevant to their conclusions, so too the
premises of some strongly inductive arguments exhibit little relevance. This occurs primarily when the

Here we would like to add, *... and hence its inductive probability is 1.” But unfortunately matters are not so simple. Under
some interpretations of probability, the inductive probability of an argument with inconsistent premises is undefined (see Section
10.3). Hence under these interpretations, arguments with inconsistent premises are exceptions to the rule that the inductive
probability of a deductive argument is 1. (They are the only exceptions.) This, however, is essentially a matter of convention
and convenience; nothing substantial turns on it. It is simply easier to state the laws of probability if this particular exception
is made.
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conclusion is a very weak statement. A statement is weak if it is logically probable—i.e., probable even
in the absence of evidence. (See Section 9.1.) As a result, it will also be probable given most sets of
irrelevant or weakly relevant premises.

SOLVED PROBLEM

2.22 Evaluate the inductive probability and degree of relevance of the argument
below.

You haven’t proved that there are exactly 2,000,001 angels dancing on the head of
this pin.
.. There are are not exactly 2,000,001 angels dancing on the head of this pin.

Solution

The fact that one hasn’t proved a proposition P is slightly relevant, but not strongly
relevant, to the truth of P. One may not be competent to produce such a proof, or perhaps the
effort has never been made. Yet it is highly probable in a logical sense that there are not exactly
2,000,001 angels dancing on the head of the pin. As a result, this conclusion is highly probable
given the premise. That is, the argument is inductively strong. It is nevertheless a bad argument,
because the premise is not strongly relevant to the conclusion.

A good argument, then, requires not only true premises (criterion 1) and high inductive probability
(criterion 2), but also a high degree of relevance (criterion 3). Many treatments of logic tend to slight
relevance as a factor in argument evaluation because it is difficult to characterize precisely. Some
logicians have argued that relevance is a purely subjective notion and therefore not a proper subject
matter for logic. Yet clearly any account of argument evaluation which ignores relevance is
incomplete.

In recent years a formal discipline called relevance logic has emerged. Relevance logic is the study
of the relation of entailment. A set of premises is said to entail a conclusion if the premises deductively
imply the conclusion and in addition are relevant to it. In relevance logic, therefore, deductiveness and
relevance are studied in combination as a single relation. Here, however, we shall follow the more
standard approach of classical logic, in which inductive probability and relevance are considered as
separate factors in argument evaluation. We shall come back to issues of relevance in Chapter 8.

2.5 THE REQUIREMENT OF TOTAL EVIDENCE

One crucial respect in which inductive arguments differ from deductive arguments is in their
vulnerability to new evidence. A deductive argument remains deductive if new premises are added
(regardless of the nature of the premises). An inductive argument, by contrast, can be either
strengthened or weakened by the addition of new premises. Consequently, the probability of a
conclusion inferred inductively from true premises may be radically altered by the acquisition of new
evidence, while the certainty of a conclusion inferred deductively from true premises remains
unassailable.

SOLVED PROBLEMS

2.23 Evaluate the inductive probability and degree of relevance of the argument
below.

Very few Russians speak English well.
Sergei is Russian.
". Sergei does not speak English well.
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Solution

This argument is strongly inductive (i.e., has a high inductive probability) and its premises
are quite relevant to its conclusion.

2.24 Evaluate the inductive probability and degree of relevance of the argument

below.
Very few Russians speak English well.
Sergei is Russian.
Sergei is an exchange student at an American university.
Exchange students at American universities almost always speak English well.
*. Sergei does not speak English well.
Solution

This argument is obtained from the previous cne by adding two more premises. Once again
the premises are quite relevant, but now the inductive probability of the argument is quite low.
The premises of this new argument are in conflict. The first two support the conclusion; the
second two are evidence against it. As a result, the inductive probability of this argument is
considerably less than that of the original argument in Problem 2.23. Indeed, it seems more
reasonable, given this evidence, to draw the opposite conclusion—namely, that Sergei does
speak English well.

Because of its conflicting premises, the argument of Problem 2.24 would not be an effective tool for
demonstrating the truth of its conclusion to an audience. Hence we would not expect to encounter such
an argument in practice. Rather, we should think of the addition of premises exhibited in Problem 2.24
as representing our acquisition of new evidence about Sergei. As the evidence available to us increases,
the probability of the proposition that Sergei does not speak English well, relative to the available
evidence, may fluctuate considerably.

Problem 2.24 shows how this probability may diminish. The next example shows how it may
increase.

SOLVED PROBLEM

2.25 Evaluate the inductive probability and degree of relevance of the argument
below.

Very few Russians speak English well.
Sergei is Russian.
Sergei is an exchange student at an American university.
Exchange students at American universities almost always speak English well.
Sergei is a deaf-mute.
-. Sergei does not speak English well.

Solution

The argument is now deductive and hence its inductive probability is 1. The premises are
all relevant to the conclusion, though the first four are now superfluous in establishing it, since
the conclusion follows deductively from the final premise, ‘Sergei is a deaf-mute’, alone.

Once a deductive argument has been achieved, no further additions can alter the inductive probability;
it remains fixed at 1. If all the premises are true (and remain true), then the conclusion is certainly true;
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no further evidence can decrease its certainty. Indeed, the argument remains deductive even if we add
the premise ‘Sergei speaks perfect English’, for that premise is inconsistent with the premise ‘Sergei is
a deaf-mute’, and as we saw in Section 2.4, inconsistent premises deductively imply any conclusion. (Of
course, in this case the premises cannot both be true.)

In summary, inductive arguments, unlike deductive arguments, can be converted into arguments
with higher or lower inductive probability by the addition of certain premises. Thus in inductive
reasoning the choice of premises is crucial. Using one portion of the available evidence as premises
may make a conclusion seem extremely probable, while using another portion may make it seem
extremely improbable. By selectively manipulating the evidence in this way, we may be able to make
a conclusion appear as probable or as improbable as we like, even though all the assumptions we make
may be true.

Now, this selective manipulation of the evidence is of course illegitimate. It is precisely this
illegitimacy that defines the concern of our fourth criterion of argument evaluation, which is called the
requirement of total evidence or the total evidence condition. It stipulates that if an argument is
inductive, its premises must contain all known evidence that is relevant to the conclusion. Inductive
arguments which fail to meet this requirement, particularly if the evidence omitted tells strongly against
the conclusion, are said to commit the fallacy of suppressed evidence.

SOLVED PROBLEM
2.26 Evaluate the following argument with respect to criteria 1, 2, 3, and 4:

Most cats do well in apartments.
They are very affectionate, and love being petted.
. This cat will make a good pet.

Solution

This argument fares well with respect to the first three criteria: the premises are true and
relevant to the conclusion, and the inductive probability is certainly high. (Notice that this is a
convergent argument, each branch providing independent good evidence for the conclusion.)
However, if the arguer is withholding that the cat in question has lived most of its life in a cat
shelter, where it became aggressive and dirty, then the argument is irremediably flawed by a
fallacy of suppressed evidence.

Fallacies of suppressed evidence may be committed either intentionally or unintentionally. If the
author of the argument intentionally omits known relevant information, the fallacy is a deliberate
deception. The omission of relevant evidence which the author knows may, however, be a simple
blunder; the author may simply have forgotten to consider some of the available relevant facts. It may
also happen that an author has included among the premises all the relevant information he or she
knows, but that others know relevant information of which the author is unaware. Here again, the
argument commits a fallacy of suppressed evidence, but again the fallacy is unintentional. The author
has done his or her best with the available information.

It should be noted that even if an inductive argument meets the requirement of total evidence, it
may still lead us from true premises to a false conclusion. Inductive arguments provide no guarantees.
It is possible, though (we hope) unlikely, that the entire body of known relevant evidence is
misleading.

Suppressed evidence should not be confused with implicit premises (Section 1.6). Implicit premises
are assumptions that the author of an argument intends the audience to take for granted. Suppressed
evidence, by contrast, is information that the author has deliberately concealed or unintentionally
omitted. Implicit assumptions are part of the author’s argument. Suppressed evidence is not.
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After sniffing pepper, I always sneeze.

Yesterday I sniffed pepper.

Yesterday I sneezed.

We saw an eagle in the park.

There are only two species of eagles in the park, bald and golden.
The golden eagle is commonly seen in the park.

The bald eagle is rarely seen in the park.

The eagle we saw in the park was a golden eagle.

Conservatives are always strong proponents of law and order.

Adams is a strong proponent of law and order.

Adams is conservative.

You’re not convinced that I'm innocent.

You must think that I'm guilty.

The fortune-teller said that Anne would be murdered, but not by a man or boy.
Anne will be murdered by a woman or girl.

Aspirin does not cure arthritis.

Drug X is just aspirin.

Drug X does not cure arthritis.

All life forms observed thus far on earth are DNA-based.
All earthly life forms are DNA-based.

All life forms observed thus far on earth are DNA-based.

All life forms in the universe are DNA-based.

Joe was the only person near the victim at the time of the murder.
Joe is the murderer.

All human creations will eventually perish.

Whatever perishes is ultimately meaningless.

All human creations are ultimately meaningless.

There are more people in the world than hairs on any one person’s head.
At least two people’s heads have an equal number of hairs.

There are more people in the world than hairs on any one person’s head.
No one is bald.

At least two people’s heads have an equal number of hairs.

God made the universe.

God is perfectly good.

Whatever is made by a perfectly good being is perfectly good.

Whatever is perfectly good contains no evil.
The universe contains no evil.

If there were more than one null set (set with no members), then there would be more than one set
with exactly the same members.

No two sets have exactly the same members.

There is at most one null set.

Jody has a high fever, purple splotches on her tongue, and severe headaches, but no other
symptoms.

Jeff has the same set of symptoms, and no others.

Jody and Jeff have the same disease.

We priced bicycle helmets at a number of retail outlets.
We found none for under $25 that passed the safety tests.

If you buy a new bicycle helmet that passes the safety tests from a retail outlet, yow’ll have to pay
at least $25.
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II For each of the following arguments, circle inference indicators, bracket and number each statement, and
diagram the argument. Place a ‘D’ or an ‘I’ next to each arrow of the diagram to indicate whether the
corresponding step of reasoning is deductive or inductive. If it is inductive, indicate its strength. If the
argument is complex, place a ‘D’ or an ‘I’ in a box next to the diagram to indicate whether the argument
as a whole is deductive or inductive. Again if it is inductive, indicate its strength.
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There is no greatest prime number. But of all the prime numbers we shall have ever thought of, there
certainly is a greatest. Hence there are primes greater than any we shail have ever thought of.
(Bertrand Russell, “On the Nature of Acquaintance”)

Since you said you would meet me at the drive-in and you weren’t there, you're a liar. So I can’t
believe anything you say. So [ can’t possibly feel comfortable with you.

Argument 2 is unsound, for two reasons: (i) I was at the drive-in, but you must have missed me, and
so one of your premises is false, and (ii) your reasoning is invalid.

The square of any integer n is evenly divisible by n. Hence the square of any even number is even,
since by the principle just mentioned it must be divisible by that even number, and any number
divisible by an even number is even.

When he was 40, De Chirico abandoned his pittura metafisica; he turned back to traditional modes,
but his work lost depth. Here is certain proof that there is no “back to where you came from” for
the creative mind whose unconscious has been involved in the fundamental dilemma of modern
existence. (Aniela Jaffe, “Symbolism in the Visual Arts”)

Since habitual overeating contributes to several debilitating diseases, it can contribute to the
destruction of your health. But your health is the most important thing you have. So you should not
habitually overeat.

The forecast calls for rain, the sky looks very threatening, and the barometer is falling rapidly, all of
which are phenomena strongly correlated with rain. Therefore it’s going to rain. But if it rains, we’ll
have to cancel the picnic. So it looks as if the picnic will be canceled.

There is no way to tell whether awareness continues after death, so we can only conclude that it does
not. But we are nothing more than awareness, since without awareness we experience nothing, not
even blackness. Thus we do not survive death. Any moral system based on the certainty of reward
or punishment in the hereafter is therefore fundamentally mistaken.

All citizens of voting age have the right to vote unless they are mentally disabled or have been
convicted of a crime. Jim is a citizen of voting age, and yet he has said he did not have the right to
vote. He’s not mentally disabled. So either what he said is false, or he’s been convicted of a crime.
But he also told me he’d never been arrested, and it’s impossible to be convicted of a crime if you’ve
never been arrested. Thus at least one of the things he said is false.

Just as without heat there would be no cold, without darkness there would be no light, and without
pain there would be no pleasure, so too without death there would be no life. Thus it is clear that our
individual deaths are absolutely necessary for the life of the universe as a whole. Death should
therefore be a happy end toward which we go voluntarily, rather than an odious horror which we
selfishly and futilely fend off with our last desperate ounce of energy.

I Provide a rough estimate of the inductive probability and degree of relevance of each of the following

arguments.
(1) Roses are red.
Violets are blue.
.. The next rose I see will not have exactly 47 petals.
(2) All my friends say that snorting a little nutmeg now and then is good for you.
. Snorting a little nutmeg now and then is good for you.
(3) All my friends say that snorting a little nutmeg now and then is good for you.

My friends are never wrong,
Snorting a little nutmeg now and then is good for you.
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Mr. Plotz owns a summer home in New Hampshire.
He also owns his family residence in Washington, D.C.
He owns at least two homes.

I looked cross-eyed at a toad once, and that very same day I broke my toe.
Looking cross-eyed at a toad is bad luck.

Sue is an intellectual.
Sara is not an intellectual.
No one both is and is not an intellectual.

Albert wears ridiculous-looking clothes.
Albert is always bumping into things.
Albert is stupid.

I both love you and do not love you.

I love you.
2+2=4
4=22

2+2=2?%
2+3=5
3+7=10
2+2=2%

Evaluate each of the following arguments with respect to the four criteria discussed in this chapter by
answering the following questions:

(1
o2
(3)
@

Are the premises known to be true?

How high is the argument’s inductive probability?

How relevant are the premises to the conclusion?

If the argument is inductive, is any evidence suppressed?

On the basis of your answers to questions 1 to 4, assess the degree to which the argument accomplishes the
goal of demonstrating the truth of its conclusion.

n

@)

®3)
4)
®)

(6

Very few presidents of the United States have been Hollywood actors.
Ronald Reagan was a president of the United States.
Ronald Reagan was not a Hollywood actor.

If Topeka is in the United States, then it is either in the continental United States, in Alaska, or in
Hawaii.

Topeka is not in Alaska.

Topeka is not in Hawaii.

Topeka is in the United States.

Topeka is in the continental United States.

Human beings are vastly superior, both intellectually and culturally, to modern apes.
Human beings and modern apes did not evolve from common ancestors.

The enemies have possessed nuclear weapons for many years.
They have never used nuclear weapons in battle.
The enemies will use their nuclear weapons in battle soon.

Of all the known planets, only one, Earth, is inhabited.
At least nine planets are known.
The proportion of inhabited planets in the universe at large is not high.

For any integer n, the number of positive integers smaller than » is finite.

For any integer n, the number of positive integers larger than » is infinite.

Any infinite quantity is larger than any finite quantity.

For any integer n, there are more positive integers larger than n than there are positive integers
smaller than n.
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Without exception, all matter thus far observed has mass.
There is matter in galaxies beyond the reach of our observation.
The matter in these unobserved galaxies has mass.

No promise is ever broken.
John F. Kennedy promised that the United States would put a man on the moon by 1970.
The United States did put a man on the moon by 1970.

No human being has ever reached the age of 100 years.
No one now alive will reach the age of 100 years.

Many people find the idea of ghosts and poltergeists fascinating.
Ghosts and poltergeists exist.

Answers to Selected Supplementary Problems

Inductive (strong).

Deductive. Since most means “more than half,” the two groups mentioned in the premises cannot
fail to overlap if the premises are true. Therefore, given the premises, there must be some people
(i.e., at least one person) with two arms and two legs.

Inductive. The premises do not say that the sneezing occurs immediately; hence it may be that the
sniffing occurred shortly before midnight yesterday though a sneeze did not result until shortly after
midnight. The strength of this inference is difficult to estimate, since the argument itself provides no
guidelines to how long a delay we might imagine. (Could one have sniffed pepper yesterday and not
sneeze until a week hence? This is at least logically possible.) But if for practical purposes we
discount such wild possibilities, then the reasoning is fairly strong.

The word ‘just’ means “nothing more than”; hence the argument is deductive.

Inductive. Suppose, for example, that there were only two people left in the world, one totally bald
and one with just a single hair. Then the premise would be true and the conclusion false, so that the
argument is not deductive. The argument is, however, fairly strong, since under most conceivable
circumstances which make the premise true the conclusion would be true as well.

Inductive (moderately strong).

O] [When he was 40, De Chirico abandoned his pittura metafisica; he turned back to traditional
modes, but his work lost depth.](CHere is certain proof that ) @ [there is no “back to where you
came from” for the creative mind whose unconscious has been involved in the fundamental dilemma
of modern existence.]

1
I T (Weak)
2

Comment: The example of a single artist hardly suffices to establish so general a thesis as statement
2 with any substantial degree of probability. Premise 1 could be broken up into two or three separate
statements or kept as a single unit as we have done here; this is a matter of indifference.

Just as @ [without heat there would be no cold,] @ [without darkness there would be no light,] and
® [without pain there would be no pleasure,] too @ [without death there would be no life.]
Thus it is-clear that D® [our individual deaths are absolutely necessary for the life of the universe
as a whole.] ® [Death should be a happy end toward which we go voluntarily, rather
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than an odious horror which we selfishly and futilely fend off with our last desperate ounce of
energy.]

1 + + 3

|
l I (Weak) I

A\ — Ne— B— |

Comment: All three steps in this argument suffer from vagueness, so that it is difficult to evaluate any
of them accurately. The first is not strong, because it establishes no clear and significant parallel
between the pairs of opposites mentioned in the premises (statements 1, 2, and 3) and the pair
mentioned in the conclusion (statement 4). (That conclusion may well be true, but it is not extremely
likely, given just the information contained in the premises.) The second step is also not as strong as
it may at first appear. It may be true in general that without death there would be no life, but this
does not by itself imply that all living things must die or that we in particular must die. Likewise, the
third inference is hardly airtight. It seems to require the additional assumption that we should
happily and voluntarily accept what is necessary for the life of the universe as a whole, but the truth
of this assumption is far from obvious. With the addition of this assumption, the final inference
would be deductive, though based on at least one dubious premise. Taken just as it stands it is not
deductive, and its inductive strength is not clearly determinable.

Low inductive probability, low relevance.

Since the conclusion is logically necessary, the argument is deductive and has maximal inductive
probability. But (in contrast to the previous problem) the premises are not directly relevant to the
conclusion.

The premises are true and relevant to the conclusion. The argument is at best moderately inductive,
since the nine known planets constitute a very small (and nonrandom) sample upon which to base
the extensive generalization of the conclusion. We know of no suppressed contrary evidence. Thus
the argument provides some evidence for its conclusion, though this evidence is far from
conclusive.

The premise is true, but it lacks relevance, and the inductive probability of the argument is low. This
is a very bad argument.



Chapter 3

Propositional Logic

3.1 ARGUMENT FORMS

This chapter begins our treatment of formal logic. Formal logic is the study of argument forms,
abstract patterns of reasoning shared by many different arguments. The study of argument forms
facilitates broad and illuminating generalizations about validity and related topics. We shall initially
focus on the notion of deductive validity, leaving inductive arguments to a later treatment (Chapters 8
to 10). Specifically, our concern in this chapter will be with the idea that a valid deductive argument is
one whose conclusion cannot be false while the premises are all true (see Section 2.3). By studying
argument forms, we shall be able to give this idea a very precise and rigorous characterization.

We begin with three arguments which all have the same form:

(1) Today is either Monday or Tuesday.
Today is not Monday.
*. Today is Tuesday.

(2) Either Rembrandt painted the Mona Lisa or Michelangelo did.
Rembrandt didn’t do it.
*. Michelangelo did.

(3) Either he’s at least 18 or he’s a juvenile.
He’s not at least 18.
. He’s a juvenile.

It is easy to see that these three arguments are all deductively valid. Their common form is known by
logicians as disjunctive syllogism, and can be represented as follows:

Either P or Q.
It is not the case that P.

The letters ‘P’ and ‘Q’ function here as placcholders for declarative! sentences. We shall call such
letters sentence letters. Each argument which has this form is obtainable from the form by replacing the
sentence letters with sentences, each occurrence of the same letter being replaced by the same sentence.
Thus, for example, argument 1 is obtainable from the form by replacing ‘P’ with the sentence ‘Today
is Monday’ and ‘Q’ with the sentence ‘Today is Tuesday’. The result,

Either today is Monday or today is Tuesday.
It is not the case that today is Monday.
.. Today is Tuesday.

is for our present purposes a mere grammatical variant of argument 1. We can safely ignore such
grammatical variations here, though in some more sophisticated logical and philosophical contexts they
must be reckoned with. An argument obtainable in this way from an argument form is called an
instance of that form.

'From now on we shall omit the qualification ‘declarative’, since we shall only be concerned with sentences that can be used to

express premises and conclusions of arguments (and by definition these can only be expressed by declarative sentences; see
Section 1.1).

44
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SOLVED PROBLEM
3.1 Identify the argument form common to the following three arguments:

(a) If today is Monday, then I have to go to the dentist.
Today is Monday.
. T have to go to the dentist.

(b) 1f you have good grades, you are eligible for a scholarship.
You have good grades.
. You are eligible for a scholarship.

(c) 1 passed the test, if you did.
You passed the test.
. I passed the test.

Solution

The three arguments have the following form (known by logicians as modus ponens, or
“assertive mode”):

If P, then Q.
P.

L Q.

The word ‘then’ is missing in the first premise of argument (b), but this is clearly immaterial: the
meaning would not change by rewriting the premise as

If you have good grades, then you are eligible for a scholarship.
Likewise, the first premise of argument (¢) is just a grammatical variant of the following:

If you passed the test, then I passed the test.

Notice that one can detect more than one form in a particular argument, depending on how much detail
one puts into representing it. For example, the following argument is clearly an instance of disjunctive
syllogism, like arguments 1 to 3:

(4) Either we can go with your car, or we can’t go at all.
We can’t go with your car.
. We can’t go at all.

We can see that 4 has the form of a disjunctive syllogism by replacing ‘P’ with ‘We can go with your
car’ and ‘Q’ with ‘We can’t go at all’. However, one can also give the following, more detailed
representation of argument 4:

Either P, or it is not the case that Q.
It is not the case that P.
. It is not the case that Q.

It is clear that argument 4 is an instance of this form, too, since it can be obtained by replacing ‘P’ with
‘We can go with your car’ and ‘Q’ with “We can go at all’. Arguments 1 to 3, by contrast, are not
substitution instances of this argument form. As will become clear, recognizing the appropriate
argument forms is a crucial step towards applying formal logic to everyday reasoning.
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SOLVED PROBLEM

3.2 Identify an argument form common to the following two arguments:

(a) If Murphy’s law is valid, then anything can go wrong.
But not everything can go wrong.
. Murphy’s law is not valid.

(b) If you passed the test and Jane also passed, then so did Olaf.
Olaf did not pass.
.. It’s false that both you and Jane passed the test.

Solution

One form common to both argument is the following (known by logicians as modus tollens,
or “denying mode”):

If P, then Q.
It is not the case that Q.
.. It is not the case that P.

Argument (b) can also be analyzed as having the following form:

If P and Q, then R.
It is not the case that R.
.. It is not the case that P and Q.

This form, however, is not common to argument (a), since in (a) there are no sentences to
replace ‘P’ and ‘Q’ as required. It should also be noted that the two arguments have the
following form in common:

P.

0.
. R.

However, this form is common to all nonconvergent arguments with two premises; it exhibits no
logically interesting feature, so it may be ignored for all purposes.

This problem shows that one can obtain instances of an argument form by replacing its sentence
letters with sentences of arbitrary complexity. If every instance of an argument form is valid, then the
argument form itself is said to be valid; otherwise the argument form is said to be invalid. (Thus, one
invalid instance is enough to make the argument form invalid.) Disjunctive syllogism, for example, is
a valid argument form: every argument of this form is such that if its premises were true its conclusion
would have to be true. (Of course, not all instances of disjunctive syllogism are sound; some—e.g.,
argument 2 above —have one or more false premises.) The argument forms modus ponens and modus
tollens in Problems 3.1 and 3.2 are likewise valid. By contrast, the following form (known as affirming
the consequent) is invalid:

If P, then Q.

Q.
. P.

Though some instances of this form are valid arguments, others are not. Here is an instance which is
valid—and indeed sound:

(5) If April precedes May, then April precedes May and May follows April.
April precedes May and May follows April.
-. April precedes May.
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The conclusion of this argument follows necessarily from its premises, both of which are true. But here
is an argument of the same form which is invalid:

(6) 1If you are dancing on the moon, then you are alive.
You are alive.
*. You are dancing on the moon.

The premises are true, but the conclusion is false; hence the argument is invalid.

Since any form that has even one invalid instance is invalid, the invalidity of argument 6 proves the
invalidity of affirming the consequent. Though affirming the consequent also has valid instances (such
as argument 5), these are not valid as a result of being instances of affirming the consequent. Indeed,
the reason for the validity of 5 is that its conclusion follows validly from the second premise alone; the
first premise is superfluous and could be omitted from the argument without loss.

3.2 LOGICAL OPERATORS

The domain of argument forms studied by logicians is continuously expanding. In this chapter we
shall be concerned only with a modest selection, namely those forms consisting of sentence letters
combined with one or more of the following five expressions: ‘it is not the case that’, ‘and’, ‘either . ..
or’, ‘if ... then’, and ‘if and only if’. These expressions are called logical operators or connectives. This
modest beginning is work enough, however; for very many different forms are constructible from these
simple expressions, and some of them are among the most widely used patterns of reasoning.

The operator ‘it is not the case that’ prefixes a sentence to form a new sentence, which is called the
negation of the first. Thus the sentence ‘It is not the case that he is a smoker’ is the negation of the
sentence ‘He is a smoker’. There are many grammatical variations of negation in English. For example,
the sentences ‘He is a nonsmoker’, ‘He is not a smoker’, and ‘He is no smoker’ are all ways of
expressing the negation of ‘He is a smoker’. The particles ‘un-’, ‘ir-’, ‘in-’, ‘im-’, and ‘a-’, used as prefixes
to words, may also express negation, though they may express other senses of opposition as well. Thus
‘She was unmoved’ is another way of saying ‘It is not the case that she was moved’, and ‘It is impossible’
says the same thing as ‘It is not the case that it is possible’. But ‘It is immoral’ does not mean “It is not
the case that it is moral.” ‘Immoral’ means “wrong,” and ‘moral’ means “right,” but these two
classifications are not exhaustive, for some actions (e.g., scratching your nose) are amoral—i.e., neither
right nor wrong, but morally neutral. These actions are not moral, but they are not immoral either; so
‘not moral’ does not mean the same thing as ‘immoral’. True negation allows no third or neutral
category. Thus care must be used in treating particles like those just mentioned as expressions of
negation.

The other four operators each join two statements into a compound statement. We shall call them
binary operators.

A compound consisting of two sentences joined by ‘and’ (or ‘both ... and’) is called a conjunction,
and its two component sentences are called conjuncts. Conjunction may also be expressed in English
by such words as ‘but’, ‘yet’, ‘although’, ‘nevertheless’, ‘whereas’, and ‘moreover’, which share with
‘and’ the characteristic of affirming both the statements they join—though they differ in expressing
various shades of attitude toward the statements thus asserted.

A compound statement consisting of two statements joined by ‘either . .. or’ is called a disjunction
(hence the name ‘disjunctive syllogism’ for the argument form discussed above). The two statements
are called disjuncts. Thus the first premise of argument 1, ‘Today is either Monday or Tuesday’—which
for logical purposes is the same as ‘Either today is Monday or today is Tuesday’ —is a disjunction whose
disjuncts are ‘Today is Monday’ and “Today is Tuesday’. The term ‘either’ is often omitted. The same
proposition can thus be expressed even more simply as “Today is Monday or Tuesday’.

Statements formed by ‘if ... then’ are called conditionals. The statement following ‘if’ is called the
antecedent, the other statement is the consequent. In the sentence ‘If you touch me, then I'll scream’,
“You touch me’ is the antecedent and ‘I'll scream’ is the consequent. The word ‘then’ may be omitted.
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SOLVED PROBLEM

3.4 Express the following argument forms in symbolic notation, using the horizontal
format:

(a) If P, then Q.
It is not the case that P.
- It is not the case that Q.
(b) Pand Q.
P.
.. It is not the case that Q.

(c) P if and only if Q.
It is not the case that Q.
.. It is not the case that P.

(d) P.
.. Either P or Q.

(e) If P then Q.
If Q then R.
.. If P then R.

Solution

(a) P—Q,~P+~0.

(b) P&Q,P+~Q.

(¢) P—Q,~QF~P.

(d) P+-P\/ Q.

(&) P-Q0,Q—R+tP—R.

3.3 FORMALIZATION

The language consisting of the symbolic notation introduced in the previous section is called the
language of propositional logic. We shall now examine the syntax of this language first by showing how
the forms of various English sentences may be expressed as symbolic formulas (i.e., how these
sentences may be formalized), and then by stating explicit grammatical rules (formation rules) for the
language itself.

The process of formalization converts an English sentence or argument into a sentence form or
argument form, a structure composed of sentence letters and logical operators. The sentence letters
have no meaning in themselves; but in the context of a particular problem, they may be interpreted as
expressing definite propositions or statements. This interpretation, however, is inessential to the form.
In a different problem, the same sentence letters may stand for different statements. Whenever we talk
about the meaning of a sentence letter, we are speaking of its meaning under the particular
interpretation specified by the problem at hand.

The formalization of simple English sentences is quite easy. If we interpret the sentence letter ‘M’,
for example, as ‘“Today is Monday’, then the sentence “Today is not Monday’ will be formalized simply
as ‘~M’. But where English sentences contain several logical operators, formalization requires care.
Suppose, for example, that we wish to formalize the sentence “Today is not both Monday and Tuesday’.
We cannot simply write ‘~M & T’. The operator ‘~’, like the negative sign in algebra, applies to the
smallest possible part of the formula. In the algebraic formula ‘=1 + 3°, for example, the ‘-’ sign
applies just to ‘1’, so that the whole formula denotes the number 2. Similarly, in ‘~M & T, the ‘~’ sign
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applies just to ‘M’, so that ‘~M & T’ means “Today is not Monday, and today is Tuesday,” which is not
what we wanted to say. We can, however, extend the part of the formula to which the operator applies
in each case by adding brackets. In the algebraic case, this yields the formula ‘—(1 + 3)’, which denotes
the negative number —4. In the logical case, it yields ‘~(M & T)’, which means “It is not the case that
today is (both) Monday and Tuesday,” which is precisely what we wanted to say.

To take a different example, suppose we wish to formalize the sentence ‘Either today is Monday,
or today is Tuesday and election day’. This is a disjunction whose second disjunct is the conjunction
“Today is Tuesday and election day’. It is formalized as ‘M \/ (T & E)’. If we leave out the brackets and
simply write ‘M \/ T & E’, the meaning is not clear. For this could be read as a conjunction whose first
conjunct is the disjunction “Today is Monday or Tuesday’, so that it would express the sentence ‘Today
is Monday or Tuesday, and it’s election day’, which is quite different from our original statement.

SOLVED PROBLEM

3.5 Interpreting the sentence letter ‘R’ as ‘It is raining’ and the letter ‘S’ as ‘It is
snowing’, express the form of each of the following English sentences in the language
of propositional logic:

(a) It is raining

(b) Itis not raining.

(¢) Itis either raining or snowing.

(d) It is both raining and snowing,

(e)  Itisraining, but it is not snowing.

(f) Itis not both raining and snowing,

(g) Ifitisnot raining, then it is snowing.

(h) Itis not the case that if it is raining then it is snowing.

(i)  Itis not the case that if it is snowing then it is raining.

(/) Itisraining if and only if it is not snowing,

(k) Itis neither raining nor snowing.

() Ifitis both snowing and raining, then it is snowing.

(m) If it’s not raining, then it’s not both snowing and raining.

(n) Either it’s raining, or it’s both snowing and raining.

(o)  Either it’s both raining and snowing or it’s snowing but not raining,

Solution

(a) R

() ~R

(¢) RvS

(dy R&S

() R&~S
(f) ~(R&S)
(&) ~R—S
(h) ~(R—S)
@ ~E—R)

() Re-~S
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(k) ~(R\/S) or, alternatively, ~R & ~S; these two ways of formalizing the statement are
equivalent and equally correct (compare Problem 3.8 below).

) (S&R)—S

(m) ~R—~(S&R)

(n) RV(S&R)

(0) (R&S)V(S&~R)

Observe that these formulas are all constructed from the following three sets of symbols:

Sentence letters: Any capital letter counts as a sentence letter; occasionally we may add numerical
subscripts to produce additional sentence letters. Thus, for example, ‘Sy’, ‘S,’, “S3’, etc., are all sentence
letters distinct from “S’.

Logical operators: ~, &,\/, —, <
Brackets: (,)

These three sets of symbols constitute the vocabulary of the language of propositional logic. The
vocabulary of a formal language is usually divided into logical and nonlogical symbols. The logical
symbols of our formal language are the logical operators and brackets; the nonlogical symbols are the
sentence letters. We have already pointed out that nonlogical symbols have different interpretations in
different contexts; the sentence letter ‘P’, for example, may stand for ‘“Today is Tuesday’ in one problem
and ‘The princess dines’ in another. By contrast, the function or interpretation of logical symbols
always remains fixed.

A formula of the language of propositional logic is any sequence of elements of the vocabulary.
Thus the answers to Problem 3.5 are all formulas, but so are such nonsense sequences as ‘((&(P’. To
distinguish these nonsense sequences from meaningful formulas, we introduce the concept of a
grammatical or well-formed formula—wff, for short. This concept is defined by the following rules,
called formation rules, which constitute the grammar of the formal language. The rules use Greek
letters (which do not belong to the vocabulary of the formal language) to denote arbitrary formulas.

(1) Any sentence letter is a wff.
(2) 1If ¢ is a wif, then so is ~¢.
(3) If ¢ and ¢ are wfifs, then so are (b & W), (b \/ ¥), (d— ), and (b < ).

Anything not asserted to be a wff by these three rules is not a wif.

Complex wifs are built up from simple ones by repeated application of the formation rules. Thus,
for example, by rule 1 we see the ‘P’ and ‘Q’ are both wffs. It follows from this by rule 3 that ‘(P & Q)
is a wif. Hence, by rule 2, ‘~(P & Q)’ is a wff. Or again, by rule 1, ‘P’ is a wff, whence it follows by 2
that ‘~P’ is a wif, and again by 2 that ‘~ ~ P’ is a wif. (We can go on adding as many negation signs
as we like; indeed, ‘~ ~ ~ ~ ~ ~ ~ P’ is a wff!)

Notice that rule 3 stipulates that each time we introduce one of the binary operators we also
introduce a corresponding pair of brackets. Thus, whereas ‘(P & ~Q)’ is a wff, for example, ‘P & ~Q’
is not. However, pairs of brackets which enclose everything else in the formula are not actually
necessary to make the meaning of the formula clear. Thus we will adopt the unofficial convention that
such outer brackets may be omitted, even though officially the resulting formula is not a wff. This
convention was used implicitly in the solutions to Problems 3.4 and 3.5. If we had been following the
formation rules to the letter, 3.5(c), for example, would have been ‘(R\/S)’, rather than ‘R\/S’.
Omission of outer brackets is the only deviation from the formation rules that we will allow.
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SOLVED PROBLEM

3.6

Use the formation rules to determine which of the following formulas are wfts

and which are not. Explain your answer.

(a) ~~~R

(b) (~R)

(c) PQ

(d)y P—Q

(e) (P—0)

(fH ~FP—-0)

() ((P&Q)—R)

(h) (P&Q)—R

@ ~(P&~0Q)

() (P&Q)V(R&S))

k) (P)—=(@))

() (PVQVRE)

(m) (~P+<(Q&R))

(n) ~(P=(Q&R))

(0) ~~(P&P)

Solution

(a) ‘R’ is a wff, by rule 1; so ‘~ ~ ~R’ is a wif, by three applications of rule 2.

(b) Not a wff. Brackets are introduced only with binary operators (rule 3).

(¢) Not a wff. Two or more sentence letters can produce a wff only in combination with a
binary operator (rule 3).

(d) Not officially a wif; outer brackets are missing. But we shall use such formulas
“unofficially.”

(¢) ‘P’and‘Q’ are wifs, by rule 1; so ‘(P — Q) is a wff, by rule 3. This is the “official” version
of formula (d).

(f) This is a wif, by application of rule 2 to formula (e).

(g) ‘P, ‘Q’, and ‘R’ are all wffs, by rule 1. Thus ‘(P & @) is a wff, by rule 3, and so
‘(P & Q)— R) is a wif, by a second application of rule 3.

(h) Not officially a wff. This is the result of dropping the outer brackets from formula (g).

(i) ‘P’ and ‘Q’ are wifs, by rule 1; hence ‘~P’ and ‘~Q’ are wifs, by rule 2. But then
‘(~P & ~QY) is a wif, by 3, and so ‘~(~P & ~Q)’ is a wff, by 2.

() ‘P,Q’ ‘R’, and ‘S’ are all wifs, by 1. Hence ‘(P & Q) and ‘(R & §)’ are wffs, by 3, and
50 ‘(P& Q) (R&S)) is a wff, again by 3.

(k) Not a wff. No rule allows us to surround sentence letters with brackets.

({)  Not a wif. Rule 3 allows us to combine only two sentence letters at a time.

(m) “P’,*Q’, and ‘R’ are wifs, by 1. So ‘~P’ is a wff, by 2, and ‘(Q &R)’ is a wff, by 3. Hence
(~P«—(Q &R)) is a wif, by 3.

(n) Asin part (m), ‘P’ and ‘(Q & R)’ are wifs. Therefore ‘(P «— (Q & R))’ is a wff, by 3. So
‘~(P—(Q & R)) is a wff, by 2.

(0) ‘P’ is a wif; hence ‘(P& P) is a wif, by 3, and so ‘~~ (P& P) is a wff, by two

applications of rule 2.
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Sentence letters are called atomic wffs; all other wiffs are said to be molecular or compound. A
subwffis a part of a wff which is itself a wff. Thus ‘P’ is a subwff of ‘~(P & Q)’ and ‘~R’ is a subwif
of ‘~ ~ R’. Each wff is regarded as a subwif of itself.

A particular occurrence of an operator in a wif, together with the part of the wif to which that
occurrence of the operator applies, is called the scope of that occurrence of the operator. Equivalently,
we may say that the scope of an occurrence of an operator in a wif is the smallest subwff that contains
that occurrence. Thus in the formula ‘(~P & (Q — ~R))’, the scope of the first occurrence of ‘~’ is
“~P’, the scope of the second occurrence of ‘~’ is ‘~R’, the scope of ‘=’ is ‘(Q — R)’, and the scope
of ‘&’ is the whole formula. And in the formula ‘~(P & (Q \/ R))’, the scope of “\/’ is (Q \/ R)’, the
scope of ‘&’ is ‘(P & (@ \/ R))’, and the scope of ‘~’ is the whole formula.

Each wif has exactly one operator whose scope is the entire wff. This is called the main operator
of that wif. A wif whose main operator is ‘&’ (regardless of how many other operators it contains) is
called a ¢onjunction; a wif whose main operator is ‘~’ is a negation; and so on.

Having rigorously defined our formal language, we can now use it to display the forms of English
arguments. Ultimately, this will lead us to a method for proving deductive validity.

SOLVED PROBLEM

3.7 Formalize the following arguments in a horizontal format, using the sentence
letters indicated. Use premise and conclusion indicators to distinguish premises from
conclusions (see Section 1.2). Omit outer brackets, according to our “unofficial”
convention, stated above.

(a) If God exists, then life is meaningful. God exists. Therefore life is meaningful.
(L, G)

(b) God does not exist. For if God exists, life is meaningful. But life is not
meaningful. (G, L)

(c) If the plane had not crashed, we would have had radio contact with it. We had no
radio contact with it. Therefore, it crashed. (C, R)

(d) Since today is not Thursday, it must be Friday. For it is either Thursday or Friday.
(T, F)

(e) If today is Thursday, then tomorrow is Friday. If tomorrow is Friday, then the day
after tomorrow is Saturday. Consequently, if today is Thursday, then the day after
tomorrow is Saturday. (T, F, §)

(f) TItis on a weekend if and only if it is on either a Saturday or Sunday. Therefore,
it is on a weekend, since it is on a Sunday. (W, Sy, S,)

(g) 1Itis on a weekend if it is on either a Saturday or a Sunday. But it is not on a
weekend. So it is not on a Saturday and it is not on a Sunday. (W, S;, S,)

(h) TItis on a weekend only if it is on either a Saturday or a Sunday. It is not on a
Saturday. It is not on a Sunday. Therefore, it is not on a weekend. (W, S, S,)

(i) The grant proposal is in the mail. If the referees receive it by Friday, they’ll give
it due consideration. Therefore, they’ll give it due consideration, since if the
proposal is in the mail, they will receive it by Friday. (M, F, C)

(j) She’s either not at home or not answering the phone. But if she’s not at home,
then she’s been kidnapped. And if she’s not answering the phone, she is in some
other danger. Therefore, either she has been kidnapped or she’s in some other
danger. (H, A, K, D)

Solution

(@) G—L,GFL
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(b) G—L,~L+~G

(¢) ~C—R,~R+C

d) TvF, ~TFrF

() T—oF,F—S+rT—S

() We SV S), Sk W

8 WVS)—W, ~Wt~§ &~S5,

(hy W—(S5:VS$), =8, ~S:F~W

(i), M,F-C,M—F+C

() ~H\y~A, ~H—-K, ~A—D+-KvyD

3.4 SEMANTICS OF THE LOGICAL OPERATORS

At this point we give a rigorous formulation of the intended interpretation (semantics) of the five
logical operators. The semantics of an expression is its contribution to the truth or falsity of sentences
in which it occurs (more precisely, to the truth or falsity of the statements expressed by those
sentences®). The truth or falsity of a statement is also called the truth value of the statement. So, in
particular, the semantics of a logical operator is given by a rule for determining the truth value of any
compound statement involving that operator on the basis of the truth values of the components.

Note that in describing these semantic rules we shall assume the principle of bivalence, to the effect
that true and false are the only truth values and that in every possible situation each statement has one
and only one of them. Philosophers have argued that certain kinds of statements (e.g., vague or
spurious statements, statements about the future, statements about infinite processes, or paradoxical
statements such as ‘I am lying’) may have truth values other than true and false, or no truth value at all,
and hence are not bivalent. Some have also argued that certain statements may have both truth values.
These views cannot be examined here. But it is important to note that classical logic, the kind of logic
presented in this book, applies only to bivalent statements. This is a limitation; on the other hand,
nonclassical logics are invariably more complicated than classical logic and are best understood in
contrast to classical logic, so it is convenient to master classical logic thoroughly before attempting the
study of nonclassical logics.*

Let us then assume the principle of bivalence. The semantic rule for negation is simple. The
negation of a statement ¢ is true if ¢ is false and false if ¢ is true. (This applies regardless of whether
¢ is atomic or compound.) Using the abbreviations ‘T’ for “true” and ‘F’ for “false,” we may summarize
this rule as follows:

$ | ~¢
T F
F T

This summary is called a truth table. Under ‘¢’, two possibilities are listed: either ¢ is true or ¢ is false.
The entries under ‘~¢’ indicate the truth value of ~¢ in each case. In this way, each horizontal line of
truth values represents a class of possible situations. The first line represents situations in which ¢ is
true. In these situations ~¢ is false. The second represents situations in which ¢ is false. In these, ~¢
is true. Given bivalence, these are the only possibilities; hence the table completely describes the truth
value of ~¢ in every possible situation.

*Recall that the same sentence can be used to express different statements in different circumstances—even statements that
disagree in their being true or false (see Chapter 1, footnote 2). However, where there is no danger of confusion, we shall suppress
the distinction and speak freely of the truth value of a sentence (or of a wff).

“*Some important families of nonclassical logics are surveyed in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical
Logic, Volume 3: Non-Classical Logics, Dordrecht, Reidel, 1986.
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The truth table for conjunction is equally straightforward. A conjunction is true if both of its
conjuncts are true, and false otherwise. Thus the table is:

d v | d&Y
T T T
T F F
F T F
F F F

Since conjunction operates on two statements, there are four kinds of possible situations to consider:
those in which ¢ and  are both true, those in which ¢ is true and s is false, those in which ¢ is false
and \ is true, and those in which both ¢ and  are false. These are represented, respectively, by the four
horizontal lines of truth values. The column under ‘¢ & U’ lists the truth value of ¢ & s in each.

A disjunction is true if at least one of its disjuncts is true, and false otherwise:

o ¥ | ove
T T T
T F T
F T T
F F F

There is also a sense of disjunction in which ‘either P or O’ means ‘either P or Q, but not both’. This
is the exclusive sense of disjunction, as opposed to the inclusive sense characterized by the true table
above. The operator “\/’ symbolizes the inclusive sense. If we use ‘xor’ for the exclusive sense of ‘or’,
we may write its truth table as follows:

¢ 4 | exory
T T F
T F T
F T T
F F F

In logic, the inclusive sense of ‘or’ is standard. But in English, the exclusive sense is quite common,
especially when ‘or’ is preceded by ‘either’. However, there is no need to add ‘xor’ to our stock of
logical operators, since statements of the form ‘P xor Q’ may be formalized as ‘(P\/ Q) & ~(P & Q)’
(see Problem 3.11, below). Thus, for example, if the boss says, “You may take either Thursday or Friday
off’, what’s meant is undoubtedly the exclusive disjunction ‘You may take either Thursday or Friday
off, but not both’. The best formalization is therefore ‘(T\/ F) & ~(T & F)’. By contrast, the statement
‘She must be intelligent or rich’ seems not to exclude the possibility that the person referred to is both
intelligent and rich, and hence is best formalized as the inclusive disjunction ‘7\/ R’. We shall treat
English disjunctions as inclusive unless there is some compelling reason not to. (Of course, we could as
well use ‘xor’ instead of “\/’ and express every statement of the form ‘P\/Q’ as ‘(P xor Q) xor
(P & Q). In this sense, our preference for “\/’ is dictated merely by standard practice.)

Of all the logical operators, ‘—’ is least like its English translations in meaning. The meanings of
conditionals in English are still a matter of dispute. It is widely held that there are several different
kinds of conditionals, which assert different relationships between antecedent and consequent. The
conditional expressed by our symbol ‘—" is called the material conditional. What is asserted by ‘P — Q’
is precisely this: It is not the case that P and not Q. Thus if someone says, “If Paul goes, then Quinton
will go too,” using ‘If . . . then’ in the material sense, then that person is saying that it is not the case that
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Paul will go and Quinton won’t. This statement has the form ‘~ (P & ~Q)’, and since it has the same
meaning as ‘P - Q’, it is true under precisely the same circumstances. We can therefore obtain the
truth table for ‘P — Q’ by finding the truth table for ‘~(P & ~Q)’. We can do this by using the tables
for ‘~” and ‘&’.

To construct a truth table for a complex wff, we find the truth values for its smallest subwffs and then
use the truth tables for the logical operators to calculate values for increasingly larger subwffs, until we
obtain the values for the whole wff. The smallest subwffs of ‘~(P & ~Q) are ‘P’ and ‘Q’, and so we
copy the columns for the sentence letters ‘P’ and ‘Q’ under the occurrences of these sentence letters
in the formula:

P o] ~r&~0
T T T T
T F T F
F T F T
F F F F

The next-smallest subwff of the formula is ‘~Q’. The truth values for ‘~Q" are just the opposite of the
truth values for ‘Q’; we write them under the ‘~’in ‘~Q™

P 0| ~(P&~0)
T T T FT
T F T TF
F T F FT
F F F TF

Actually, we could have saved a bit of work and clutter by skipping the first step in the case of ‘~Q’.
That is, we could have written the reverse of the ‘Q’ column directly under the ‘~’ in ‘~Q’ without first
writing the column for ‘Q’. In succeeding problems, we sometimes skip this first step for negated
sentence letters.

Now the formula ‘P & ~Q’, being a conjunction, is true only if both conjuncts are true. The only
case in which this occurs is the second line of the table. Hence this formula is true on the second line
and false on the others, a fact which we record by writing these truth values under ‘&’

P Q| ~(P &~ Q)
T T TFFT
T F TTTF
F T FFFT
F F FFTF

Finally, since ‘~(P & ~Q)’ is the negation of ‘P & ~Q’, its truth values in each of the four kinds of
situations are just the reverse of those listed under ‘&’. We write them under the initial negation sign
and circle them to indicate that they are the truth values for the whole formula:

P ol~r&~0
T T TNTF FT
T F FITTTF
F T TIFF FT
F F I) F FTF
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This, then, is the truth table for the material conditional:

o ¥ | o=
T T T
T F F
F T T
F F T

The material conditional is false if its antecedent is true and its consequent false; otherwise it is
true. It is therefore true whenever its antecedent is false. It is also true whenever its consequent is true.
As a result, material conditionals often have a paradoxical flavor. The sentence ‘If you’re dead, then
you’re alive’, for example, is currently true, taking ‘you’ to refer to you and reading ‘if ... then’ as
the material conditional. Since you are in fact alive (otherwise you wouldn’t be reading this), the
antecedent is false and the consequent true, which makes the whole conditional true. Similarly, the
sentences ‘If you are alive, then you are reading this book) (antecedent and consequent both true) and
‘If you are dead, then you can run at the speed of light’ (antecedent and consequent both false) are,
oddly, true when ‘if ... then’ is understood in the material sense. Such oddities reveal the disparity
between the material conditional and conditionals as ordinarily understood in English. Yet the material
conditional is by far the simplest kind of conditional, and it is the only one whose meaning can be
represented on a truth table. Moreover, experience has shown that it is adequate for most logical and
mathematical purposes, so that it has been accepted as the standard conditional of logic and
mathematics. The material conditional is the only kind of conditional considered in this chapter, though
at the end of Section 10.7 we briefly consider two others.

As for the biconditional, we have seen that a statement of the form ‘P < O’ means the same thing
as ‘(P— Q) & (O — P)’, where ‘=’ is the material conditional. Accordingly, ‘~’ is called the material
biconditional. (The meanings of other kinds of biconditionals are similarly related to the corresponding
conditionals, but we shall not discuss other kinds of biconditionals here.) The truth table for ‘P — Q’
may thus be obtained by constructing a truth table for ‘(P — Q) & (Q — P)’ from the tables for the
material conditional and conjunction. We begin by copying the columns from beneath the letters ‘P’
and ‘Q’ at left below the occurrences of these letters in the formula:

P Ol (P=0) & (0—P)
T T| T T T T
T F| T F F T
F T| F T T F
F FI| F F F F

Now the truth values for ‘P — @’ and ‘Q — P’ may be computed from the truth table for the material
conditional. A material conditional is false when its antecedent is true and its consequent false;
otherwise, it is true. Hence ‘P — Q’ is false at the second line and ‘Q — P’ is false at the third, and both
are true at all the other lines. We record this by writing the appropriate truth values under the
respective occurrences of ‘—’:

P o (P =0 & (Q— P
T T TTT TTT
T F T FF FTT
F T FTT T F F
F F F TF F T F
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3

‘neither P nor Q’ is ‘~(P\/ @Q)’, which uses only negation and disjunction; see Problem
3.5(k).)

It is remarkable that if we did add the ‘neither ... nor’ operator, then our five operators
would all become redundant. For we could express every statement of the form ‘~P’ as ‘neither
P nor P’ and every statement of the form ‘P & Q’ as ‘neither ~P nor ~Q’, and we have seen

that this gives us sufficient resources to express the other operators as well.

3.5 TRUTH TABLES FOR WFFs

Our presentation of the semantic rules for ‘—’ and ‘<’ in Section 3.4 exemplified the construction
of truth tables for complex wffs. Here we discuss this procedure more systematically.

The number of lines in a truth table is determined by the number of sentence letters in the formula
or formulas to be considered. If there is only one sentence letter, there are only two possibilities: the
sentence it stands for is either true or false. Hence the table will have two lines. If there are two sentence
letters, there are four possible combinations of truth and falsity and the table has four lines. In general,
if the number of sentence letters is #, the number of lines is 2”. Thus if a formula contains three different
sentence letters, its truth table has 2° = 8 lines, and so on.

To set up a truth table for a formula, write the formula at the upper right side of the table and list
the sentence letters it contains in alphabetical order to the left. Now where n is the number of sentence
letters, write beneath the rightmost of them a column of 2" alternating T’s and F’s, beginning with T.
Then, under the next letter to the left (if any remains), write another column of 2" T’s and F’s, again
beginning with T, but alternating every two lincs. Repeat this procedure, moving again to the left and
doubling the alternation interval each time, until each sentence letter has a column of T’s and F’s
beneath it. If, for example, the formula contains three sentence letters, P, Q, and R, the left side of the
table looks like this:

Q

mmmm A =S S Ay
Mmoo =
mHm A= Al

Finally, using the truth tables for the logical operators, calculate the truth values of the formula by
determining the values for it smallest subwffs first and then obtaining the values for larger and larger
subwifs, until the values for the whole formula are discovered. The column for any wff or subwff is
always written under its main operator. Circle the column under the main operator of the entire wff to
show that the entries in it are the truth values for the whole formula.

SOLVED PROBLEMS

3.9 Construct a truth table for the formula
~~p

Solution
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The table has two lines, since there is only one sentence letter. We copy the column for the
sentence letter ‘P’ beneath the occurrence of ‘P’ in the formula. The negation sign to its
immediate left reverses the values in this column, and the negation sign to its left (which is the
main operator of the whole formula) reverses them again, so that ‘~ ~P’ has the same truth
value as ‘P’ in every possible situation.

3.10 Construct a truth table for the formula

~PvQ
Solution
P Q)| ~P Vv Q
T T F T
T F F F| F
F T T T T
F F T T/ F

We begin by copying the ‘Q’ column under ‘Q’ and the reverse of the ‘P’ column under the
negation sign in ‘~P’ (skipping the unnecessary step of copying the ‘P’ column under ‘P’). We
then determine the truth values for ‘~P\/ Q’ from those for ‘~P’ and ‘Q’, using the disjunction
table. Since a disjunction is false if and only if both disjuncts are false, and since ‘~P’ and ‘Q’
are both false only at line 2, ‘~P\/ Q’ is false at line 2 and true at all the other lines. We circle
the column containing the values for ‘~P\/ Q’. Note that these values are the same as for
‘P — (. This shows that for logical purposes ‘~P\/ Q’ and ‘P— (Q’ are synonymous, just as
‘~(P& ~Q) and ‘(P — Q) are.

3.11 Construct a truth table for the formula
(PVQ)&~(P&Q)

Solution
POl ®v O &~ (P &0
T T T T T (F\F T T T
T F T T F |(T\ T T F F
F T F T T |TIT F F T
F F F F F \&WT F F F

This formula is the formalization of the exclusive disjunction of P with O (see Section 3.4).
In fact, the circled column is the correct truth table for exclusive disjunction. The truth values
for the formula are entered in the following order. First, copy the columns for the sentence
letters ‘P’ and ‘Q’ under the occurrences of these letters in the formula. Next, using the truth
tables for disjunction and conjunction, determine the values for the formulas ‘P\/ Q’ and
‘P&’ and write these under %/’ and the second occurrence of ‘&’, respectively. The truth
values for ‘~(P & Q)’ are just the reverse of those for ‘P & Q’; write them under ‘~’. Finally,
the truth values for the entire formula are determined from the truth values for ‘P\/ Q’ and

‘~(P & Q)’, using the conjunction table. These are written under the main operator ‘&’ and
circled.

SOLVED PROBLEM

3.12 Construct a truth table for the formula
P\/~P
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Solution
p|l P v ~p

T| T F
Fl F T

The truth table shows that the formula ‘P\/ ~P’ is true in every possible situation.

Formulas which, like ‘P \/ ~P’, are true at every line of the truth table are called tautologies, as are
the statements they represent. Their truth tables show that tautologies are true in all possible
circumstances. Thus tautologousness is a kind of logical necessity, the kind generated by the semantics
of the operators of propositional logic.

SOLVED PROBLEM
3.13 Construct a truth table for the formula
P&~P

Solution
p|l P & ~p

TI T F
Fl F T

The table shows that ‘P & ~P’ is false in every possible situation.

Any formula whose truth table contains only F’s under its main operator is called a contradiction
and is said to be truth-functionally inconsistent, as are all specific statements of the same form.
Truth-functional inconsistency is one kind of inconsistency, the kind generated by the operators of
propositional logic. Since it is the only kind that concerns us in this chapter, we will frequently refer to
it here simply as “inconsistency’; but it should be kept in mind that not all inconsistency is
truth-functional. The statement ‘George is not identical to himself’, for example, is inconsistent, but its
inconsistency is due to the semantics of the expression ‘is identical to’ (see Section 6.7) as well as to the
semantics of ‘not’, and hence it is not purely truth-functional.

Formulas which are true at some lines of their truth tables and false at others are said to be
truth-functionally contingent, as are the statements they represent. A truth-functionally contingent
statement is one that could be either true or false, so far as the operators of propositional logic are
concerned. Not all truth-functionally contingent statements, however, are genuinely contingent, i.e.,
capable of being either true or false, depending on the facts. The statement ‘Jim is a bachelor and Jim
(the same Jim) is married’, for example, has the propositional form ‘B & M’, and hence is
truth-functionally contingent, as this truth table reveals:

B M| B & M
T T|TMT
T F| TI|F|F
F T | FI|F|T
F FIl F\F) F

But this statement is inconsistent, not contingent; what it asserts is impossible in a logical or conceptual
sense. Its inconsistency, however, is non-truth-functional, being a consequence of the semantics of the
expressions ‘is a bachelor’ and ‘is married’, in addition to the logical operator ‘and’.
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To summarize: If a wif is tautologous, then any statement of the same form is logically necessary
and must always be true. If a wif is truth-functionally inconsistent, then any statement of the form is
inconsistent and must always be false. But if a wff is truth-functionally contingent, then it is contingent
only so far as the operators represented in the wff are concerned. Some specific statements of the form
will be genuinely contingent, while others will be non-truth-functionally necessary or inconsistent as a
result of factors not represented in the wif.

SOLVED PROBLEMS

3.14 Construct a truth table to determine whether the following wff is tautologous,
inconsistent, or truth-functionally contingent:

(~PV~Q)=(P&Q)

Solution
POo| P v ~0 ~ (P & Q)
T T F F F F\ T T T
T F F T T F| T F F
F T T T F F| F F T
F F T T T F/) F F F

Because the column under the main operator ‘=’ consists entirely of F’s, the wif is
inconsistent.

3.15 Construct a truth table to determine whether the following wff is tautologous,
inconsistent, or truth-functionally contingent:

P—(QV ~R)

Solution
P

S

H4mAaAaAamaAaL
z
=

Mmoo S
el I I B s Bie s I B B N ()
ey I e s e Mo s B Ml s B I I )
mm T~ A
mm 34T~ A
S m a3 =TT

EEEEEEDR R

This wif is truth-functionally contingent, because both T’s and F’s occur in the column
under the main operator ‘—’.

3.16 Construct a truth table to determine whether the following wff is tautologous,
inconsistent, or truth-functionally contingent:

(P& Q)& (R&S))—P
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Solution
P
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The wff is tautologous, because only T’s occur in the column under the main connective ‘—’.

3.6 TRUTH TABLES FOR ARGUMENT FORMS

We are now finally in a position to provide a rigorous account of deductive validity based on the
semantics of the logical operators. An argument form is valid if and only if all its instances are valid. An
instance of a form is valid if it is impossible for its conclusion to be false while its premises are true, i.e.,
if there is no possible situation in which its conclusion is falsc while its premises are true. Now a truth
table is in effect an exhaustive list of possible situations. Hence if we put not just a single wft on a truth
table but an entire argument form, we can use the table to determine whether or not that form is

valid.

If the form turns out to be valid, then (since by definition a valid form is one all instances of which
are valid; see Section 3.1) any instance of it must be valid as well. Hence we can use truth tables to
establish the validity not only of argument forms, but also of specific arguments. Consider, for example,

the disjunctive syllogism

Either the princess or the queen attends the ceremony.
The princess does not attend.

. The queen attends.

We may formalize this as

P\/Q,~PFQ.

We can then construct a truth table for this form as follows:

P Q P N Q ~PrQ
T T TM T F T
T F TIT{ F F F
F T FI|T, T T T
F F F\F) F T F



CHAP 3] PROPOSITIONAL LOGIC 65

This table is computed in the same way as tables for single wifs, but it displays three separate wffs,
instead of just one. We may think of these wifs as expressing an abstract argument form, a structure
with many instances, or we may give them a specific interpretation, as when we stipulate that ‘P’ means
“the princess attends the ceremony” and ‘Q’ means “‘the queen attends the ceremony.” Under this
specific interpretation, this sequence of wifs expresses only the argument above, which is just one
instance of the abstract form.

Let us consider the wffs under this specific interpretation first. The four lines of the truth table then
stand for four distinct possibilities: either the princess and the queen both attend, the princess attends
but the queen doesn’t, the queen attends but the princess doesn’t, or neither attends. Under the
presupposition of bivalence, these are the only possible situations. In only one of these, the third, are the
premises both true; but in this situation the conclusion is true as well. Thus there is no possible situation
in which the premises are true and the conclusion false; the table shows that the argument is valid.

Indeed, it shows that every argument of this form is valid. Since any such argument is composed
of sentences P and Q which (again by the principle of bivalence) are either true or false, and since the
table shows thalt no matter what combination of truth and falsity they exhibit, there is no possible
situation in which the premises are both true and the conclusion is false, so that no instance of the form
can be invalid. Hence the validity of the form itself is apparent.

SOLVED PROBLEM

3.17 Construct a truth table for the following form and use it to verify that the form

is valid:
P-0,0—RF-P—R

Solution
P O R| P —- Q0 Q0 — R+ P — R
T T T|TMT TM T T (T T
T T F| T|T| T TI|F|F T |F| F
T F T| T|F| F EFI|T| T TIT|T
T F F| T|F| F F|T|F T |F| F
F T T| FI{T| T TI|T| T FIT| T
F T F| F|{T| T TI|FlF F|T| F
F F T| FIT|F F|T| T FIT| T
F F F F@FF@F FA\T) F

There are four possible situations in which both premises are true, corresponding to the first,
fifth, seventh, and eighth lines of the table. In all these situations the conclusion is also true.
Therefore the form is valid.

If a form is invalid, its truth table shows its validity by exhibiting one or more lines in which all the
premises get the value T while the conclusion gets the value F. Such lines are called counterexamples.
The existence of even one counterexample is sufficient to establish that the argument is invalid.

SOLVED PROBLEM

3.18 Construct a truth table for the following form and use it to show that the form
1s invalid:

P—Q,0+P
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Solution
P Q P — Q, QrP
T T T(M T T T
T F TI|Fl F F T
F T F|T| T T F X
F F F\T)/ F F F

The table shows that there are two kinds of possible situations in which the premises are
both true, those represented by the first and third lines. At the first line, the conclusion is also
true; but at the third line it is false. The third line is therefore a counterexample (we write an ‘X’
on its right to indicate this). It is in effect a prescription for constructing instances of the form
with true premises and a false conclusion. Any instance constructed from sentences P and Q,
where P is false and Q is true, will fill the bill. For example, if we interpret ‘P’ as “whales are
fish” and ‘Q’ as “whales inhabit bodies of water,” we obtain:

If whales are fish, they inhabit bodies of water.
Whales inhabit bodies of water.
. Whales are fish.

This is an instance of the form with true premises and a false conclusion (whales are mammals, not
fish). Since a form is invalid if it has even one such instance, this form is clearly invalid. It is in fact
the form known as affirming the consequent which was discussed at the end of Section 3.1.

In summary: To determine whether an argument form of propositional logic is valid, put the entire
form on a truth table, making as many lines as determined by the number of distinct sentence letters
occurring in the relevant formulas. If the table displays no counterexample, then the form is valid (and
hence so is any instance of it). If the table displays one or more counterexamples, then the form is invalid.
Since invalid forms may have valid as well as invalid instances, the truth table test does not establish the
invalidity of specific arguments. If we formalize an argument and then show that the resulting form is
invalid, we are not thereby entitled to infer that the argument is invalid. But if a truth table shows a
form to be invalid, then it shows that none of its instances is valid solely in virtue of having that form.
Any valid instances must derive their validity at least in part from some feature of the argument which
has been lost in the process of formalization. Argument 5 of Section 3.1, for example, is valid despite
being an instance of affirming the consequent, which is invalid by the truth table test; when it is
formalized as affirming the consequent (i.e., as P— Q, Q+ P), the information that the conclusion
follows from the second premise is lost.

In Section 3.1 we have seen that a particular argument may in fact be an instance of several forms,
some of which are valid and some of which are not. But if it is an instance of any valid form, then it is
valid. For example, the argument

If she loves me, then she doesn’t hate me.
It’s not true that she doesn’t hate me.
. She doesn’t love me.

is an instance of each of the following forms, only the first two of which are valid:

L—~H,~~Ht~L
L—D,~Dr~L
L—D,NF~L
L—D,N+S
LNES

In the third case, for example, we have formalized ‘She loves me’ as ‘L’, ‘She doesn’t hate me’ as ‘D,
and ‘It’s not true that she doesn’t hate me’ as ‘N’. And even this list is not complete. The reader can
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probably discover several more forms of which this argument is an instance. In formalizing an
argument, we generally select the form which displays the most logical structure (in this case the first
form), since if the argument is valid in virtue of any of its forms, it will be valid in virtue of that one.
However, if a form with less structure is valid (as is the second form on this list), then it too is an
adequate formalization for demonstrating the validity of the argument.

SOLVED PROBLEMS

3.19 Construct a truth table for the following form, and use the table to determine
whether the form is valid:

P—Q P—~QF~P

Solution

Po| P — 0 P — ~Qr~p
TT|T(T\T T(F\ F F
TF|{T|FlF T|T| T F
FT|F|T|T F|T| F T
FFIF\T)F FiT/T T

The only possible situations in which the premises are both true are those represented by
the third and fourth lines of the table. But in these situations the conclusion is also true; hence
the form is valid.

3.20 Construct a truth table for the following form, and use the table to determine
whether the form is valid:

P—QF~(Q—P)
Solution
POQ|P = Qr~ (Q = P)
T T TMYT(EH T T T X
T F T |F| FJ|JF| F T T
F T F|T| T |T| T F F
F F F\I) F\F) F T F X

The table displays two kinds of counterexamples. The first is when ‘P’ and ‘Q’ are both true
(first line of the table); the second when they are both false (last line of the table). Hence the
form is invalid.

3.21 Construct a truth table for the following form, and use the table to determine
whether the form is valid:

P\ O, O\RFP\/R

Solution

P O R| PV QO 0 v R-P v R
T TT|TMTTMTTMT
T T F|T|T|T T|T|/F TI|T|F
T F t|T|T|F F|T|T T|T|T
T F F| T|T|F F|F|F T|T|F
F T T|F|TlT TI|T|T F|T| T
F T F|FI|T|T T|T|F FI|F|F x
F F T|F|FlF FIT|T F|T| T
FF FIFWEF FWEFF\EF



68 PROPOSITIONAL LOGIC [CHAP. 3

The form is invalid, because in situations in which ‘P’ and ‘R’ are false and ‘Q’ is true (line
6 of the table), the premises are both true while the conclusion is false.

3.22 Construct a truth table for the following form, and use the table to determine
whether the form is valid:

P,~P+Q
Solution
P QO P, ~P+Q
T T T F T
T F T F F
F T F T T
F F F T F

Since the premises are mutually inconsistent, there is no possible situation in which both
are true. Hence there are no counterexamples; the form is valid. However, notice that every
argument of this form is unacceptably flawed as a means of proving its conclusion: in the
terminology of Chapter 2, criterion 1 (truth of premises) is violated, so the argument cannot be
sound. In addition, such an argument may well violate criterion 3 (relevance). Compare
Problem 2.21.

3.23 Construct a truth table for the following form, and use the table to determine
whether the form is valid:

RFP—(P\V(P&Q))
Solution
P Q R| RtP - (P v (P & Q)
T TT|TTMTTTTT
T T F|FTI|Tfl TT TTT
T F T|TTI|T| TT TF F
T F F|F T|T| TT TF F
F T T|TFI|Tl FF FF T
F T F|F F|T| FF FF T
F F T| T F|T| FF FF F
F F FIF F\T)/ FF FF F

The conclusion of this argument is a tautology, so there is no situation in which the premise
is true and the conclusion false. The argument is therefore valid. As in the previous example,
however, arguments of this form lack relevance, since their validity is totally independent of the
relationship between premise and conclusion (compare Problem 2.19).

3.7 REFUTATION TREES

Truth tables provide a rigorous and complete test for the validity or invalidity of propositional logic
argument forms, as well as a test for tautologousness, truth-functional contingency, and inconsistency
of wifs. Indeed, they constitute an algorithm, the sort of precisely specifiable test which can be
performed by a computer and which always yields an answer after a finite number of finite operations.
When there is an algorithm for determining whether or not the argument forms expressible in a formal
system are valid, that system is said to be decidable. Thus the truth tables ensure the decidability of
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predicate logic. But they are cumbersome and inefficient, especially for problems involving more than
two or three sentence letters. Refutation trees, the topic of this section, provide a more efficient
algorithm for performing the same tasks.

Given a list of wifs, a refutation tree is an exhaustive search for ways in which all the wffs on the
list can be true. To test an argument form for validity using a refutation tree, we construct a list
consisting of its premises and the negation of its conclusion. The search is carried out by breaking down
the wffs on the list into sentence letters or their negations. If we find any assignment of truth and falsity
to sentence letters which makes all the wffs on the list true, then under that assignment the premises
of the form are true while its conclusion is false. Thus we have refuted the argument form,; it is invalid.
If the search turns up no assignment of truth and falsity to sentence letters which makes all the wffs on
the list true, then our attempted refutation has failed; the form is valid. To illustrate, we examine some
simple examples.

SOLVED PROBLEMS
3.24 Construct a refutation tree to show that the form ‘P & Q F ~ ~P’ is valid.

Solation

We begin by forming the list consisting of the premise and the negation of the
conclusion:

~~~P

Now the premise is true if and only if ‘P’ and ‘Q’ are both true. Hence we can without
distortion replace ‘P & Q’ by these two sentence letters. We show this by writing ‘P’ and ‘Q’ at
the bottom of the list and checking off the formula ‘P & Q’ to indicate that we are finished with
it. A checked formula is in effect eliminated from the list:

/S P&Q
~~~P
P
Q
Moreover ‘~ ~ ~P’ is true if and only if the simpler formula ‘~P” is true; hence we can check
‘~ ~ ~P’ and replace it by ‘~P":
JoooP&Q
/P
P
Q
~P

We have now broken down the original list of formulas into a list of sentence letters or
negations of sentence letters, all of which must be true if all the members of our original list are
to be true. But among these sentence letters and their negations are both ‘P’ and ‘~P’, which
cannot both be true. Hence it is impossible for everything on the finished list to be true. We
express this by writing ‘X" at the bottom of the list.

J o P&Q
J ~~~P
P
Q
~P
X

‘The refutation tree is now complete. Our search for a refutation of the original argument form
has failed; hence this form is valid.
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3.25 Construct a refutation tree to show that the form ‘P\/ Q, ~P+ @’ is valid.

Solution

As before, we begin with a list consisting of the premises followed by the negation of the
conclusion:
PvQ
~P
~Q
Since both ‘~P’ and ‘~Q’ are negations of sentence letters, they cannot be analyzed
further; but ‘P\/ Q’ is true if and only if either ‘P’ or ‘Q’ is true. To represent the fact that
‘P\/ Q’ can be true in either of these two ways, we check ‘P\/ Q’ and “branch” the tree,
like this:

JooPvQ
~P

~0
7\

The tree now contains two paths, each starting with the checked formula ‘P\/ Q’. The first
branches to the left and ends with ‘P’; the second branches to the right and ends with ‘Q’. The
three formulas on the initial list can be true if and only if all the formulas on one or both of these
paths can be true. But the first path contains both ‘P’ and ‘~P’, and the second contains both
‘Q’ and ‘~Q’. Hence not all the formulas on either path can be true. As in the previous
problem, we indicate this by ending each path with an X:

v/ P}J/Q
~Q
P/ \Q
X e

This is the finished tree. Since the attempted refutation fails along both paths, the original
argument is valid.

3.26 Construct a refutation tree to determine whether the following form is valid:
P\/Q,P+~Q
Solution
Again, we form a list consisting of the premises and the negation of the conclusion:

PvQ
P

~~0
‘~ ~()’ is equivalent to the simpler formula ‘Q’, so we check it and write ‘Q’ at the bottom

of the list. Then, as in the previous problem, we check ‘P\/ Q’ and show its truth possibilities
by branching the tree:

JSoooPvQ
P

S ~~0
Q\

P Q

The tree is now finished. All formulas on the tree have been broken down into sentence letters
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or their negations. Moreover, both paths represent possible truth value assignments, since
neither contains both a sentence letter and its negation. Since each path contains both ‘P’ and
‘Q’, each represents an assignment on which both these letters are true. Moreover, the tree
indicates that under this truth value assignment all three formulas on the original list are true,
i.e., that the premises of the form ‘P\/ Q, P+ ~Q’ are true while its conclusion is false. Hence
this form is invalid.

The reader may wish to confirm the findings of these three problems by constructing truth tables
for their respective forms. We now consider more systematically the procedure by which these
problems were solved.

A refutation tree is an analysis in which a list of statements is broken down into sentence letters or
their negations, which represent ways in which the members of the original list may be true. Since the
ways in which a statement may be true depend on the logical operators it contains, formulas containing
different logical operators are broken down differently. All wifs containing logical operators fall into
one of the following ten categories:

Negation Negated negation
Conjunction Negated conjunction
Disjunction Negated disjunction
Conditional Negated conditional
Biconditional Negated biconditional

Corresponding to each category is a rule for extending refutation trees. Problems 3.24 to 3.26 illustrated
four of these rules. In order to state them, we need first to define the concept of an open path. An open
path is any path of a tree which has not been ended with an ‘X’. Paths which have been ended with an
‘X’ are said to be closed. The four rules may now be stated as follows:

Negation (~): If an open path contains both a formula and its negation, place an ‘X’ at the
bottom of the path.

The idea here is that any path which contains both a formula and its negation is not a path all of
whose formulas can be true, which is what we are searching for in constructing a refutation tree. Hence
we can close this path as a failed attempt at refutation. The negation rule was used in Problems 3.24
and 3.25.

Negated Negation (~ ~): If an open path contains an unchecked wff of the form ~ ~d,
check it and write ¢ at the bottom of every open path that contains this newly checked wff.

This rule was used in Problems 3.24 and 3.26.

Conjunction (&): If an open path contains an unchecked wff of the form ¢ & s, check it and
write ¢ and ¢ at the bottom of every open path that contains this newly checked wff.

This rule was used in Problem 3.24.

Disjunction (\/): If an open path contains an unchecked wif of the form ¢ \/ , check it and
split the bottom of each open path containing this newly checked wif into two branches, at the
end of the first of which write ¢ and at the end of the second of which write .

This rule was used in Problems 3.25 and 3.26.

A path is finished if it is closed or if the only unchecked wffs it contains are sentence letters or their
negations, so that no more rules apply to its formulas. A tree is finished if all its paths are finished. If
all the paths of a finished tree are closed (as in Problems 3.24 and 3.25), then the original formulas from
which the tree is constructed cannot be true simultaneously. Thus, if the list is constructed from an
argument form by negating its conclusion, that form is valid. On the other hand, if one or more of the
paths of a finished tree are open (as in Problem 3.26), then the original formulas from which the tree
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is constructed can be true simultaneously. If the list is constructed from an argument form by negating
its conclusion, this means that the form is invalid.

Indeed, the finished tree displays more than just the validity or invalidity of the argument form.
Each open path of the finished tree is a prescription for constructing counterexamples. The only
unchecked formulas on a finished open path are sentence letters or their negations. Any situation in
which the unnegated sentence letters on the path are true and the negated ones are false is a
counterexample. For example, the finished tree of Problem 3.26 shows two open paths, each containing
both ‘P’ and ‘Q’; thus, any situation in which ‘P’ and ‘Q’ are both true is a counterexample to the form
‘P Q,PF~Q.

It is useful to annotate trees by numbering the lines they contain and indicating which rules and
lines have been used to add formulas to the tree. We number lines in a column to their left and indicate
the lines from which they are derived and the rules used to derive them to their immediate right. Rules
are designated by the signs for the connectives they employ. Thus, for example, the annotated version
of the tree of Problem 3.25 is as follows:

1 /S PvO
~P
/Q\
4 P 1V 0 1y
5 X 2,4~ X 3,4~

We now state and illustrate the remaining six rules for generating refutation trees. Together with
the four rules already given, they enable us to construct a tree for any finite set of wffs of propositional
logic.

Conditional (—): If an open path contains an unchecked wif of the form ¢ — s, check it and
split the bottom of each open path containing this newly checked wff into two branches, at the
end of the first of which write ~¢ and at the end of the second of which write .

This rule is based on the fact that ¢ — ¥ is true if and only if either ¢ is false or y is true (see the truth
table for the material conditional).

SOLVED PROBLEM

3.27 Construct a refutation tree to determine whether the following form is valid:

P—Q.0—R. PR

Solution
1 J P—Q
2 J O—R
3 P
4 ~R
5 ~P]—»/ _ \Q<
6 X 3,5~
7 ~Q4 R 2—
8 X 5,6~ X 4,6~

We begin by writing the premises and then the negation of the conclusion (lines 1 to 4). The
conditional rule is then applied to line 1 to obtain line 5. The left branch closes at 6, by the
negation rule, but the right branch remains open, and so the conditional rule is applied to 2 to
obtain line 7. The negation rule then closes the two remaining paths. Since the finished tree is
closed, the attempted refutation has failed and the form is valid.
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Biconditional («): If an open path contains an unchecked wff of the form ¢ < ¢, check it and
split the bottom of each open path containing this newly checked wif into two branches, at the
end of the first of which write both ¢ and s, and at the end of the second of which write both
~¢ and ~.

This rule is an expression of the fact that ¢ < s is true if and only if ¢ and s are either both false or
both true.

SOLVED PROBLEM

3.28 Construct a refutation tree to determine whether the following form is valid:

P—Q,~PF~0Q
Solution
1 J PeQ
2 ~P
4 P 1 ~P 1e
6 X 2,4~ X 3,5~

Notice that it is not necessary to apply the negated negation rule in line 3 in this problem.
The tree closes even without this move, since lines 3 and S are one the negation of the other. The
form is valid.

Negated Conjunction (~ &): If an open path contains an unchecked wff of the form
~(¢d & ), check it and split the bottom of each open path containing this newly checked wff
into two branches, at the end of the first of which write ~¢ and at the end of the second of
which write ~s.

This rule depends upon the fact that ~($ & ¢) is true if and only if cither ¢ or ¢ is false.

SOLVED PROBLEM

3.29 Construct a refutation tree to determine whether the following form is valid:

~P&Q)Fr~P&~Q

Solution

1 /S ~(P&Q)
2 /(=P &=0)

— \

-

3 /” 1~& =01
4 ~~p 2 /\Q 1-& ~4& XQ 2-&
s X 34~ Q 4~~ P 4~~ X 34~

Again, we begin with the premise and the negation of the conclusion. We analyze these by
two steps of negated conjunction (lines 3 and 4). Two of the four paths then close, but two
rcmain open, even after the applications of negated negation at line 5. Since no more rules
apply, the tree is finished. And since there are two open paths, the form is invalid. The open
paths indicate that situations in which ‘P’ is false and ‘Q’ true or ‘Q’ false and ‘P’ true are
counterexamples.
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Negated Disjunction (~\/): If an open path contains an unchecked wff of the form
~(¢ \/ ), check it and write both ~¢ and ~{ at the bottom of every open path that contains
this newly checked wiff.

This rule is an expression of the fact that ~(¢ \/ ) is true if and only if both ¢ and  are false.

SOLVED PROBLEM

3.30 Construct a refutation tree to determine whether the following form is valid:

P—-QFrP\VQ
Solution
1 J P—Q
2 J  ~(PVvQ)
3 ~P 2~V
4 ~Q\2~\/
5 ~P 1— 0 1-—
6 X 45~

The negated disjunction rule is applied to line 2 to yield lines 3 and 4. The open path in the
finished tree indicates that the form is invalid, and that any situation in which ‘P’ and ‘Q’ are
both false is a counterexample.

Negated Conditional (~—): If an open path contains an unchecked wff of the form
~(¢b — 1), check it and write both ¢ and ~ at the bottom of every open path that contains this
newly checked wif.

A negated conditional ~(¢ — ) is true if and only if the conditional ¢ — Vs is false, hence if and only
if & is true and y is false; that is the justification for this rule.

SOLVED PROBLEM
3.31 Construct a refutation tree to determine whether the following form is valid:
~P—~QFP—Q

Solution
1 J ~P—~Q
2 v ~(P—Q)
3 P 2~—
4 /Q\ T
5 J ~~P 1— ~0 1—
6 P S~~

The tree has two open paths, each indicating that the premise is true and the conclusion
false when ‘P’ is true and ‘Q’ false. Hence the form is invalid.

Negated Biconditional (~ «): If an open path contains an unchecked wif of the form
~(¢b < ), check it and split the bottom of each open path containing this newly checked wff
into two branches, at the end of the first of which write both ¢ and ~s, and at the end of the
second of which write both ~¢ and .

This rule is an expression of the fact that a negated biconditional ~(¢ « ) is true if and only if the
biconditional is false, hence if and only if ¢ is true and s false or ¢ is false and ¢ true.
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SOLVED PROBLEM
3.32 Construct a refutation tree to determine whether the following form is valid:
P,P—QFP=Q

Solution
1 P
2 J  P=0Q
L Lo
4 ~P 2 0_2—
s X 1,4~ AN
6 P7 3w 2P 3~o
7 ~0 3~ 0 3~
8 X 47~ X 16~

Since the finished tree is closed, the form is valid.

Refutation trees are useful for purposes other than testing the validity of argument forms. A list of
wifs is truth-functionally consistent if the tree beginning with those formulas (and including no other
formulas except for those obtained by applying the rules) contains at least one finished open path. Thus,
a consistent list of wffs is one all members of which can be true simultaneously, since a finished open
path represents a way to make all the formulas on the list true. If a finished tree contains no open paths,
the list of formulas from which it is constructed is inconsistent.

The list may consist of just one formula. If the finished tree for a single formula contains no open
paths, then the formula is truth-functionally inconsistent. If it contains more than one open path, then
the formula is either tautologous or truth-functionally contingent.

Indeed, refutation trees can also be used to test specifically for tautologousness. A wff is
tautologous if and only if its negation is truth-functionally inconsistent. Therefore for any wif &, ¢ is
tautologous if and only if all the paths on the finished tree for ~& are closed (i.e., if and only if ~¢ is
truth-functionally inconsistent).

SOLVED PROBLEMS

3.33 Construct a refutation tree to determine whether the following wif is
tautologous:

(P=0)Vv(P&~Q)

Solution

1 J oo (PO Vv (P&~Q))

2 Joo ~(P=0) 1~v
3 v ~(P&~Q) 1 ~v
4 P 2 ~—
5 /Q 2
6 ~P 3~& \~ ~0 3~&
7 X 4,6~ X 5,6~

We construct the tree for the negation of the wif in question. Since all paths close, our
attempt to find a way to make its negation true has failed; it is therefore tautologous.
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3.34 Construct a refutation tree to determine whether the following wif is

tautologous:
~(Q@— (P& ~P))
Solution
1 /oo =~(Q—(P&~P))
2 / QO—(P&~P) 1~~
3 ~0 2— P& ~P 2—
4 P 3&
5 ~P 3&
6 X 4,5~

The left-branching path remains open, showing that ‘~ ~(Q — (P & ~P)) is true if ‘Q’ is
false. Hence ‘~(Q — (P & ~P))’ is not tautologous.

The reader should keep the following points in mind when constructing refutation trees:

The rules for constructing trees apply only to whole formulas, not to mere subformulas. Thus, for
example, the use of negated negation in the following tree is impermissible:

1 J P& ~~Q

2 v P& Q 1 ~ ~ (incorrect)
3 P 2&

4 Q 2&

Although removing double negations from subformulas does not produce wrong answers, it is
unnecessary and makes trees more difficult to read. More serious problems may result from trying
to apply some of the rules for binary operators to subformulas, since we have not defined a
consistent procedure for doing so.

The order in which rules are applied makes no difference to the final answer, but it is usually most
efficient to apply nonbranching rules first. After branching rules have been applied, further steps
may require formulas to be written at the bottoms of several paths, which may necessitate more
writing than if nonbranching rules had been applied first. Consider, for example, what happens if
we apply the branching rule ‘—’ first in Problem 3.30. Then the tree is:

1 JSooP—=Q

/S ~(PVvQ)
3 ~P 1— Q0 1-
4 ~P 2~V ~P 2~
5 ~Q 2~v ~Q 2~v
6 X 3,5~

Here the formulas ‘~P’ and ‘~Q’ must each be written twice, whereas if we apply the non-
branching rule negated disjunction first, as in Problem 3.30, we need write them only once.

The open paths of a finished tree for an argument form display all the counterexamples to that form.
This is true even if not all the sentence letters of the form occur among the unchecked formulas
of some open paths. Consider, for example, the invalid form ‘P — Q + P’. Its tree is:

1 J o P—=Q
~P

RN

3 ~F 1—» Q0 1—
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Both paths are open. The right-branching path indicates that situations in which ‘P’ is false while
‘@’ is true are counterexamples; on the other hand, the left-branching path indicates simply that
situations in which ‘P’ is false are counterexamples. The letter ‘Q’ does not occur among the
unchecked formulas of this path. This shows that the falsity of ‘P’ is by itself sufficient for a
counterexample, i.e., that any situation in which ‘P’ is false is a counterexample, regardless of the
truth value of ‘Q’. Thus the tree indicates that there are two kinds of counterexamples to the form:
situations in which ‘P’ is false and ‘Q’ true, and situations in which both are false.

Table 3-1 Refutation Tree Rules

Negation (~): If an open path contains both a formula and its negation, place an ‘X’ at the
bottom of the path.

Negated Negation (~ ~): If an open path contains an unchecked wiff of the form ~ ~¢, check
it and write ¢ at the bottom of every open path that contains this newly checked wiff.

Conjunction (&): If an open path contains an unchecked wif of the form ¢ & W, check it and
write ¢ and ¢ at the bottom of every open path that contains this newly checked wiff.

Negated Conjunction (~&): If an open path contains an unchecked wff of the form ~(¢ & W),
check it and split the bottom of each open path containing this newly checked wff into two
branches, at the end of the first of which write ~¢ and at the end of the second of which
write ~.

Disjunction (\/): If an open path contains an unchecked wff of the form ¢ \/ {, check it and
split the bottom of each open path containing this newly checked wff into two branches, at
the end of the first of which write ¢ and at the end of the second of which write .

Negated Disjunction (~\/): If an open path contains an unchecked wif of the form ~(&b \/ ¥),
check it and write both ~¢ and ~{ at the bottom of every open path that contains this
newly checked wiff.

Conditional (—): If an open path contains an unchecked wif of the form ¢ — i, check it and
split the bottom of each open path containing this newly checked wff into two branches, at
the end of the first of which write ~¢ and at the end of the second of which write .

Negated Conditional (~—): If an open path contains an unchecked wff of the form ~(¢ — ),
check it and write both ¢ and ~{ at the bottom of every open path that contains this newly
checked wif.

Biconditional («): If an open path contains an unchecked wff of the form ¢ «— \, check it and
split the bottom of each open path containing this newly checked wff into two branches, at
the end of the first of which write both ¢ and 4, and at the end of the second of which
write both ~¢ and ~{.

Negated Biconditional (~«): If an open path contains an unchecked wff of the form
~(¢ <> ), check it and split the bottom of each open path containing this newly checked
wif into two branches, at the end of the first of which write both ¢ and ~, and at the end
of the second of which write both ~¢ and y.
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Supplementary Problems

1 Formalize the following statements, using the interpretation indicated below:

M
@
)
“4)
®)
©)
O
®)
)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

Sentence Letter Interpretation
P Pam is going.
Q Quincy is going.
R Richard is going.
S Sara is going.

Pam is not going.

Pam is going, but Quincy is not.

If Pam is going, then so is Quincy.

Pam is going if Quincy is.

Pam is going only if Quincy is.

Pam is going if and only if Quincy is.

Neither Pam nor Quincy is going.

Pam and Quincy are not both going.

Either Pam is not going or Quincy is not going.

Pam is not going if Quincy is.

Either Pam is going, or Richard and Quincy are going.

If Pam is going, then both Richard and Quincy are going.

Pam is staying, but Richard and Quincy are going.

If Richard is going, then if Pam is staying, Quincy is going.

If neither Richard nor Quincy is going, then Pam is going.

Richard is going only if Pam and Quincy are staying.

Richard and Quincy are going, although Pam and Sara are staying.

If either Richard or Quincy is going, then Pam is going and Sara is staying.
Richard and Quincy are going if and only if either Pam or Sara is going.

If Sara is going, then either Richard or Pam is going, and if Sara is not going, then both Pam and
Quincy are going.

II Determine which of the following formulas are wffs and which are not. Explain your answer.

(1)
@
@

)
5)
©
)
®
©)

(10)

~(~P)

P~0Q

(P—P)

P—P
~~~(~P&Q)
(P—0Q)

~(P& Q)& ~R
(P (P (P = P)))
(P—(Q— (R&S))
(P—(QVRVS))

III' Determine whether the following formulas are tautologous, truth-functionally contingent, or inconsistent,
using either truth tables or refutation trees.
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™
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)
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P—P

P—~P

~(P—P)

P—Q

(PvVQ)—P

(P& Q)—P
P—~(PVvQ)

~(P& Q)= (PVQ))
(P& Q)& ~(PVR)
(P—(Q&R))— (P—R)

IV Test the following forms for validity, using either truth tables or refutation trees.

1)
@
&)
(4)
®)
(6)
%
®
)
(10)

~P+P—~P

PyO+rP&Q
P—~Qt~(P&Q)
Pr(P—(Q&P)—(P&Q)
P\/Q,~P,~0FrR

(Q&R)— P,~Q,~R+~P
~(Pv Q), R—Pr~R
~(P&Q),R~ Pr~R
P—~Q,Q—~Rr-P—R
P—(RVS),(R&S)—=Q+rP—-Q

V Formalize the following arguments, using the interpretation given below, and test their forms for validity
using either truth tables or refutation trees.

6
@
3)
4)
®)

Sentence Letter Interpretation

C Argument form F has a counterexample.

I The premises of argument form F are inconsistent.

o The finished tree for argument form F contains an open path.
| % Argument form F is valid.

If argument form F is valid, then its finished tree contains no open paths. Hence if its finished tree
contains an open path, it is invalid.

If the premises of argument form F are inconsistent, then Fis valid. Therefore, if the premises of form
F are not inconsistent, then form F is invalid.

If argument form F has a counterexample, then its premises are not inconsistent. For it is not the case
both that it has a counterexample and that its premises are consistent.

Either argument form F has a counterexample or it is valid, but not both. Hence form F is valid if and
only if it has no counterexample.

The premises of argument form F are inconsistent. If the premises of F are inconsistent, then F is
valid. F is valid if and only if its finished tree contains no open path. If its finished tree contains no
open path, then it has no counterexample. Form F has a counterexample. Therefore, the premises of
form F are not inconsistent.
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)
(10)
(15)
(20)

®)
(10)

@)
4)
(6)
8
(10)

@
4)
(6)
®)
(10)

@)
4)
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Answers to Selected Supplementary Problems

P— Q.

Q— ~P.

~(R\/ Q)— P, or equivalently (~R & ~Q)— P.
= (RVP)&(~S—(P&Q)).

‘P’ and ‘Q’ are wifs by rule 1 in Section 3.3; so “~P" is a wff by rule 2. Hence ‘(~P & Q) is a wff
by rule 3, whence by three applications of rule 2 it follows that ‘~ ~ ~(~P & Q)" is a wif.

Not a wff. No rule allows us to disjoin three statements at once.

Truth-functionally contingent
Truth-functionally contingent
Tautologous

Truth-functionally contingent

Tautologous

Invalid
Valid

Invalid
Invalid

Invalid

Invalid form (indeed, the argument itself is invalid)
Valid form



Chapter 4

The Propositional Calculus

41 THE NOTION OF INFERENCE

Chapter 3 dealt with propositional logic from a semantic point of view, using techniques for testing
the deductive validity of argument forms based on the intended interpretation of the logical operators.
In this chapter we present a different method for establishing deductive validity, which makes no
explicit reference to the notion of a truth value. It is based on the idea that if an argument is deductively
valid, one should be able to infer or derive the conclusion from the premiscs, that is, to show how the
conclusion actually follows from the premises. Typically, this is how one proceeds when one offers an
argument to support a certain statement. One does not simply list the premises and conclusion, and
then issue a challenge to describe a possible situation in which the conclusion is false while the premises
are true. Rather, one tries to show how the conclusion can actually be reached through a finite number
of successive steps of reasoning, cach of which is fully explicit and indisputable. Obviously this
inferential process is not captured by the method of truth tables, nor by the technique of refutation
trees.

The key to proving validity by means of step-by-step deductions lies in mastering the principles
which can be appealed to in making the successive steps. These principles are called rules of inference.
In this chapter we shall formulate them with reference to the language of propositional logic, though
it will be clear that the same approach can be extended to cover other patterns of reasoning (see
Chapters 7 and 11). Overall we shall formulate ten such rules: two—an introduction and an elimination
rule —for each of the five logical operators. The elimination rule for an operator is used to reason from
premises in which that operator is the main operator. The introduction rule for an operator is used to
derive conclusions in which it is the main operator. These rules form a system called the propositional
calculus. (The term means simply “system for performing calculations with propositions”; it indicates
no close relationship with the differential or integral calculus of advanced mathematics.) A deduction
in the propositional calculus is thus a series of formulas in the language of propositional logic, each of
which is either used as a premise or obtained by applying a rule of introduction or a rule of elimination.
A deduction is also called a derivation or proof; we shall use these terms synonymously.

Other versions of the propositional calculus employ different rules from the ones used here.
However, all commonly used sets of rules are equivalent, in the sense that they establish the validity of
exactly the same argument forms, namely all and only the valid argument forms expressible in the
language of propositional logic. This means that if a form can be shown to be valid by the semantic
methods of Chapter 3, then it is also provable by the rules of the calculus. We can also express this fact
by saying that the calculus is complete. In addition, the calculus is valid, i.e., it does not allow one to
generate an argument which is not valid. These properties of the calculus are of course crucial if we
want to say that the propositional calculus provides an alternative but equivalent account of the notion
of deductive validity. Their demonstrations, however, are bevond the scope of this book.'

4.2 NONHYPOTHETICAL INFERENCE RULES

In this section we introduce eight of the ten basic inference rules. The other two (the conditional
and negation introduction rules) are different in character and will be discussed in Section 4.3.

'The validity and completeness of a propositional calculus very similar to the one presented here are demonstrated in E. 1.
Lemmon, Beginning Logic, Indianapolis, Hackett, 1978, pp. 75-91.
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To illustrate the concept of a derivation, consider the following argument form:
P,O—R P—-QFR

This form is valid (see Problem 3.7(i)); hence the conclusion should be derivable from the premises.
The derivation is as follows:

1 P A

2 O0—R A

3 P>Q A
4 0 13—E
5 R 2,4 —E

We list the three assumptions on the first three lines of the derivation, number each line, and add the
label ‘A’ to indicate that each is an assumption (a premise of the argument). Then we deduce the
conclusion ‘R’ by two steps of reasoning. The first step is from lines 1 and 3 to line 4; the second is from
2 and 4 to 5. The numbers at the right denote the lines from which 4 and 5 are derived. The two steps
have the same form; each is an instance of the first of our ten inference rules, conditional elimination,
which we designate by ‘—E”:

Conditional Elimination (—E): From a conditional and its antecedent we may infer its
consequent.

This rule is also known as modus ponens (see Problem 3.1). Its validity is obvious; and since a complex
argument consisting entirely of valid steps must itself be valid (see Section 2.3), this complex derivation
proves the validity of our original argument form.

Note that the rule says nothing about the complexity of the conditional to which it is applied:
the antecedent and the consequent may be atomic (sentence letters) or they may themselves be
compound wifs.

SOLVED PROBLEM
4.1 Prove:
~P—(Q—R), ~P,QFR

Solution
1 ~P—(Q—R) A
2 ~P A
3 Q0 A
4 Q—R 1,2 —E
5 R 3,4—E

(We omit the triple dots in front of conclusions here and in all subsequent derivation problems,
since the citation of line numbers at right is sufficient to indicate that they are conclusions.) The
first premise is a conditional whose antecedent is negated and whose consequent is itself a
conditional. Line 2 contains its antecedent. Thus the derivation of its consequent at 4 is clearly
an instance of conditional elimination, as is the step from lines 3 and 4 to line 5.

Notice also that we drop the outer brackets from the expression ‘(Q — R)’ at step 4, where we
detach it by conditional elimination from the assumption given in line 1. This is a result of the
convention for dropping outer brackets (see Section 3.3), as is the fact that we write line 1 as

‘~P— (Q— R) rather than ‘(~P— (Q— R))’. We shall employ this convention throughout this
chapter.
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Our second inference rule is the negation elimination rule, which we designate by the notation
‘~E’. This rule allows us to reason from premises which are negations of negations:

Negation Elimination (~E): From a wif of the form ~~¢, we may infer ¢.

(We use the Greek letter ‘¢’ to indicate that this rule is perfectly general, applying to all wffs whether
atomic or compound; see Section 3.3.) The validity of negation climination follows immediately by the
truth table for ‘~’ (see Problem 3.9). Invariably the negation of a false statement is true, and the
negation of a true statement is false. Thus if we begin with a true doubly negated sentence (e.g., ‘It is
not the case that Richard Nixon was not president’) and remove one of the negations (‘Richard Nixon
was not president’) we get a falsehood. If we remove both, however (‘Richard Nixon was president’),
the result is again true. Thus any inference from a doubly negated statement to the result of removing
both negations is valid. The following problem employs ~E:

SOLVED PROBLEM

4.2 Prove:
~P— ~~Q, ~~~PFQ
Solution
1 ~P—->~~Q A
2 ~~~P A
3 ~P 2 ~E
4 ~~Q 1,3 —E
5 Q 4 ~E
The assumption in step 1 is a conditional with a negated antecedent and a doubly negated
consequent. We derive its antecedent at line 3 by applying ~E to line 2 (‘~~~P’ is the double

negation of ‘~P’). This allows us to deduce its consequent at line 4 by —E. Then another step
of ~E yields our conclusion.

It is important to note that ~E would not permit us to reason from line 1 to ‘~P— Q’, though that
would in fact be a valid argument (check this by computing the truth table). Line 1 is a conditional, not
a doubly negated wif (i.e., a wif of the form ~~¢). We must detach ‘~~Q" from step 1 before we can
apply ~E. Negation elimination allows us to remove two negation signs only if they are the leftmost
symbols of a wif and all the rest of the wif is included in their scope.

The next two rules, conjunction introduction and conjunction elimination, are both extremely
simple and obviously valid:

Conjunction Introduction (&I): From any wifs ¢ and {, we may infer the conjunction ¢ & .

Conjunction Elimination (&E): From a conjunction, we may infer either of its conjuncts.

Some authors call &I conjunction, and &E simplification. Both are used in the following problems.

SOLVED PROBLEMS

4.3 Prove:
P&QOQrQ &P

Solution
1 P&Q A
2 P 1 &E
3 Q 1 &E
4 Q&P 2,3 &I
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4.4 Prove:
P—(Q&R),PFP&Q
Solution
1 P-(Q&R) A
2 P A
3 Q&R 1,2—E
4 Q 3 &E
5 P&Q 2,4 &1
4.5 Prove:
(P& Q)—(R&S), ~~P,QFS
Solution
1 P&Q)—(R&YS) A
2 ~~P A
3 Q A
4 P 2 ~E
5 P&Q 3,4 &I
6 R&S 1,5—E
7 S 6 &E

The fact that two different Greek letters, ‘¢’ and ‘y7’, are used in the statement of the &I rule does
not imply that the wifs designated by these letters need be distinct. Thus the use of &I in the following
problem, though unusual, is perfectly correct:

SOLVED PROBLEM

4.6 Prove:
PrP&P
Solution
1 P A
2 P&P 1,1 &l

Though the conjunction of a statement with itself is redundant (and hence unlikely to be uttered
in practice), it is grammatically well formed, and thus permissible in theory. Line 1 does double
duty in this proof, serving as the source of both of the conjuncts of line 2, so we cite it twice at
line 2.

The fifth rule is used to prove disjunctive conclusions:

Disjunction Introduction (\/I): From a wff ¢, we may infer the disjunction of ¢ with any wif.
(& may be either the first or second disjunct of this disjunction.)

Disjunction introduction is sometimes called addition. Its validity is an immediate consequence of the
truth table for “\/’. If either or both of the disjuncts of a disjunction are true, then the whole disjunction
is true. Thus, for example, if the statement “Today is Tuesday’ is true, then the disjunction ‘Today is
either Tuesday or Wednesday’ must also be true (as well as ‘Today is either Wednesday or Tuesday’,
in which ‘Today’ is the second disjunct). Indeed, if today is Tuesday, then the disjunction of ‘Today is
Tuesday’ with any statement (including itself) is true. Disjunction introduction is illustrated in the
following proofs.
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SOLVED PROBLEMS

4.7 Prove:
PH(P\V Q)& (PVVR)
Solution
1 P A
2 PyO 11
3 PVR 1vI
4 (PvQ)&(PVR) 2,3 &1
4.8 Prove:
P,~~(P—=Q)FR&S)VO
Solution
1 P A
2 ~~(P—-0Q) A
3 P-Q 2 ~E
4 Q 1,3—-E
5 R&S)VQ 4\/I
4.9 Prove:
PHP\/P
Solution
1 P A
2 P\P 11

85

It is instructive to compare this problem with Problem 4.6. Note that in the second step we cite

line 1 only once, since \/I is a rule that applies to only one premise.

The disjunction elimination rule is a bit more complicated than \/I, but on reflection its validity, too,
should be apparent:

Disjunction Elimination (\/E):

the wif x.?

From wifs of the forms ¢ \/ {, & — x, and ¥ — x, we may infer

This rule is sometimes called constructive dilemma. To illustrate, assume that today is either Saturday
or Sunday (a disjunction). Moreover, assume that if it is Saturday, then tonight there will be a concert,
and if it is Sunday, then again tonight there will be a concert. Then we can infer that tonight there will
be a concert even without knowing with certainty whether it is Saturday or Sunday. Our disjunctive

assumption covers all relevant cases, and in each case we know there will be a concert.

SOLVED PROBLEMS
4.10 Prove:
P\yO,P—-R QOQ—R}FR

It is also possible to formulate this rule without mentioning the two conditionals ¢ — x and ¢ — x. Such a formulation would be
more elegant, except that \/E would become a hypothetical rule (see next section). Our treatment is dictated primarily by reasons

of simplicity.
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Solution
1 PyvQ A
2 P—R A
3 OQ—R A
4 R 1,2,3\VE

This is the formal counterpart of the concert example. At the right side of line 4 we cite the three
assumptions needed to apply the rule.

411 Prove:
(PVQ)& (PVR),P—S,Q—S,P->T,R>T+rS&T
Solution
1 (PvQ)&(PVR) A
2 P—S§ A
3 0—S A
4 P—T A
5 R—T A
6 PVvQ 1 &E
7 S 2,3,6 \VE
8 PVR 1 &E
9T 4,5,8\E
10 S&T 7,9 &I

s

As usual, the use of three different Greek variables in the statement of the \/E rule indicates only that
the wffs they denote may be different, not that they have to be. The following proof contains an
application of \/E (line 3) in which the variables ‘¢’ and “{’ stand for the same formula.

SOLVED PROBLEM
412 Prove:
PP, P—-(Q&R)FR

Solution
1 PyP A
2 P—(Q&R) A
3 Q&R 1,2,2\E
4 R 3 &E

With respect to the statement of the \/E rule, ¢ is ‘P’, ¢ 