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Preface

This book is designed to be used for a one-semester course in differential geometry for
senior undergraduates or first year graduate students. It presents the fundamental concepts
of the differential geometry of curves and surfaces in three-dimensional Euclidean space
and applies these concepts to many examples and solved problems.

The basic theory of vectors and vector calculus of a single variable is given in Chapters
1 and 2. The concept of a curve is presented in Chapter 3, and Chapters 4 and 5 discuss
the theory of curves in E?, including selected topics in the theory of contact, a very natural
approach to the classical theory of curves.

Considerable care is given to the definition of a surface so as to provide the reader with
a firm foundation for the treatment of global problems and for further study in modern
differential geometry. In order to accomplish this, background material in analysis and ’
point set topology in Euclidean spaces is presented in Chapters 6 and 7. The surface is
then defined in Chapter 8 and Chapters 9 and 10 are devoted to the theory of the non-
intrinsic geometry of a surface, including an introduction to tensor methods and selected
topics in the global geometry of surfaces. The final chapter presents the basic theory of
the intrinsic geometry of surfaces in E3.

Numerous illustrations are presented throughout the book to help the reader visually,
and many graded supplementary problems are included at the end of each chapter to
help the reader test his understanding of the subject matter.

It is a pleasure to acknowledge the help of Martin Silverstein and Jih-Shen Chiu who
made many useful suggestions and criticisms. I am also grateful to Daniel Schaum and
Nicola Monti for their splendid editorial cooperation and to Henry Hayden for typographical
arrangement and art work for the figures. Finally I wish to express my appreciation to
my wife Sarah for carefully typing the manuscript.

MARTIN M. LIPSCHUTZ

Bridgeport, Conn.
March 1969
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Chapter 1

Vectors

INTRODUCTION

Differential geometry is the study of geometric figures using the methods of calculus.
In particular the introductory theory investigates curves and surfaces embedded in three
dimensional Euclidean space E3.

Properties of curves and surfaces which depend only upon points close to a particular
point of the figure are called local properties. The study of local properties is called dif-
ferential geometry in the small. Those properties which involve the entire geometric
figure are called global properties. -The study of global properties, in particular as they
relate to local properties, is called differential geometry in the large.

Example 1.1. :

Let @ and R be two pomts near a point P on a curve T in a plane and let Cgqp be the circle through
P, @ and R, as shown in Fig. 1-1. Now consider the limiting position of the circles Cqr as @ and R
approach P. In general, the limiting position will be a circle C tangent to T at P. The radius of C is the
radius of curvature of T at P. The radius of curvature is an example of a local property of the curve,
for it depends only on the points on T' near P.

P

TN

T

Fig.1-1 Fig.1-2

Example 1.2. N
The Moebius strip shown in Fig. 1-2 is an example of a one-sided surface. One-sidedness is an example
of a global property of a figure, for it depends on the nature of the entire surface. Observe that a small
part of the surface surrounding an arbitrary point P is a regular two-sided surface, i.e. locally the Moebius
strip is two-sided.
We first investigate local properties of curves and surfaces and then apply the results to
problems of differential geometry in the large. We begin with a review of vectors in E3,

VECTORS

By Euclidean space E? we mean the set of ordered friplets a = (a1, @2, as) with a, 02,43
real. A vector is a point in E® and in general will be denoted by a, b, ¢, x,y,... or P,Q,R, ...
The negative of a vector a is the vector —a defined by —a = (—a1, —a2, —as). The zero vector
is the vector 0= (0,0,0). The lengtk or magnitude of a vector a = (a1, az as) is the real

number |a| = yai+ a; +ai. Clearly |a|=0 and |a| =0 if and only if a=0.
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ADDITION OF VECTORS

Given two vectors a = (a1, as,as) and b = (by, bs, bs) in E3, their sum a-+b is the vector
defined b;
e» e oy at+b = (a1~:«b1,a2+b2,a3+bg)
The difference of two vectors a and b is the vector a—b = a + (—b). In Problem 1.1 we
prove that vector addition satisfies

[A)] a+b=Db+a (Commutative Law)
[A:] (a+b)+c = a+ (b+c) (Associative Law)
[As] 0+a = a foralla

[A a+(—a) = 0 foralla

Example 1.3.
Let a=(1,—2,0) and b=(0,1,1). Then a+b = (1,-1,1), —a = (-1,2,0), b—a = (-1,3,1),
la] = V8.

Example 1.4.
Using [A,] through [A4] we see that for any a and b,
a+((—a) =a+(b+(—a) = a+(—a)+b =0+b =D>
‘Thus the vector equation a+x = b has a solution x = b —a. It is also the only solution. For if
a+y =b, then
(—a)+a+y = (—a)+b =b—a, or 0+y =b—a, or y =b-—a

Given two points P and Q in E® (that is, two vectors P and Q) we
introduce the special notation PQ for their difference Q@ — P and we Q
picture PQ as an arrow drawn from P to @ as shown in Fig. 1-3. By
the distance from P to Q we mean the length [PQ|. Evidently
PQ=-QP, |PQ =|QP|, PQ=P'Q" ifandonlyif Q —P = Q" — P, P

and PP =0 for all P. Fig.1-3
Example 15.
Let a=PQ, b=QR and ¢ =RS, d = SP as shown in Fig. 1-4. Q b
Then R
a+b =PQ+QR = Q@Q—-P+R-Q@ = R—P = PR a <
. X c
atb+c =PR+RS = R—P+S—R=S—P ’ *
’ = PS = —d ) - d S
at+b+c+d =PS+SP =S—P+P-S =0 Fig.1-4

MULTIPLICATION OF A VECTOR BY A SCALAR

If & is a real number and a = (a3, @z, as) a vector, we define the product k¥a to be the
vector. ka = (kay, kas, kas)
Clearly 0a=£k0=0 for all k¥ and a.

In the study of vectors we usually refer to the real numbers as scalars. The product ka
is called multiplication of a vector by a scalar.

In Problem 1.4 we prove that multiplication of vectors by scalars satisfies
[Bi] ki(kea) = (kikz)a = kikea ‘
(k1 +Ek2)a = kia + kea
2l ka+b) = ka+ kb
[Bs] la=a

Finally, if a = (a1, as,as), then

(Distributive Laws)
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‘

[ka| = V(ke1)? + (ka2)® + (kas)® = VEEVaE+ a2+ a3

Thus for all k and a, |ka] = |k |a| (1.1)

Example 1.6. .
Let a= (1,7,0) and b=(0,2,—1). Then 2a = (2,27,0), (—a=(-1,—-7,0)=—a, and a—3b=
1, =~ —86, 3). '

Example 1.7. .
Let uy, uy, ug be given vectors and let a=wu;— 2u,, b= —uy,+2u; and c=wuy +uy +ug. Then

a—2b—¢c = (u1—2u2)— 2(—u2+2u3) - (u1+u2+u3)
= uy — 2up + 2upy — duz — Uy — Uy — Uy = —u,; — bug

A vector a is said to have the same direction as a nonzero vector b if for some k=0,
a=kb. If a has the same direction as b and also the same length as b, then from equa-
tion (1.1), |a| = |k|[b] = k|b| = [b|. Thus k=1, and a equals b. A vector is thus uniquely
determined by its direction and length. If a=kb, b+#0 and k=0, then a has the
opposite direction tob. If a=0, b =0 or a has the same or opposite direction to b, i.e.
a = kb for some real k, then a is parallel to b.

We call a vector u of unit length a unit vector. In general ua. shall denote the unit vector
in the direction of a nonzero vector a. Clearly this is obtained by multiplying a by 1/ |al, ie.
Us = a/lal (z.2)
Example 1.8.
Let a=(1,—-1,8), b=(2,—2,6) and ¢= (-3,8,—9). Since a= 1b, the vectors a and b have the
same direction. The vectors b and ¢ have opposite directions since b = —(2/8)e. The unit vector in the
direction of a is the vector u, = a/[a] = a1, —1/V/11, 3/V11).

Example 1.9.
In the triangle OAB shown in Fig. 1-5,let a = OA and b =O0B, A
and let M be the midpoint of side AB. Then the vector OM can be
expressed in terms of a and b as follows: Y, M
OM = a+ AM = a+ }AB

' 0 b —>B
= a-tib—a) = a+ib— la
= la+ib Fig.1-5

LINEAR DEPENDENCE AND INDEPENDENCE

We now define the very important concepts of linear dependence and linear independence.
Namely, the vectors w, us, ..., un are said to be linearly dependent if there exist scalars
ks, k2, . . <, Kn mot all zero such that

kg + kouz + -+ + Eatta = 0 (1.3)

The vectors u, 9z, . . -, U, are said to be linearly independent if they are not linearly depend-
ent. That is, us, us, . . ., Ua are linearly independent if (1.8) implies all ki=ks=--=k.=0.

Note that a set of vectors which includes the zero vector is dependent; for we can always
write 10+0u; + - -+ +0u, = 0. ’

Example 1.10.
The vectors a = (1,—1,0), b= (0,2,—1), ¢ = (2,0,—1) are linearly dependent, since 2a+b—c= 0.

Example 1.11.

Suppose a is parallel to b. Then a= 0, b=0 or a=kb, ie. a—kb=0. Thus a and b are
dependent. Conversely, suppose a and b are dependent. Then kja+ kb = 0 where, say, k; # 0. But
then a = —(ko/ky)b. Thus two vectors are dependent if and only if they are parallel.
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In Problem 1.10 we prove the following 1mportant property of linearly independent
vectors

Theorem 1.1. If a vector is expressed as a linear function of independent vectors, then it
~ is expressed so uniquely. That is, if wy, us, ..., u, are independent, and if
u=kwt+ku+ - +kttn = kiws+ksuz+ -+ + knun
then kl-—kl, kz kz, ceey kn=k1’;.

BASES AND COMPONENTS

The three vectors e; =(1,0,0), e;=(0,1,0) and es=(0,0,1) are independent. For
kier + ksex + kses = (ky, ks, ks) and so if kies + koex + kses = 0, then ki =lk.=ks=0. Also
any vector a = (ai,as,as) can be written a = aie; + ase; + ases as a linear combination of
ey, €2 and es, and by Theorem 1.1 this representation is unique.

"In general we call a set of vectors B a basis for E® if (i) every vector in E® can be written
as a linear combination of the vectors in B, (ii) B is a linearly independent set of vectors.

In Problem 1.11 we prove

Theorem 1.2. Any three linearly independent vectors form a basis in E3. Conversely,
every basis in E® consists of three linearly independent vectors.

Let uy, us, us be a basis in space and let a = a;u; + aq2uz + asus. The scalars ay, as, as,
for short, a;, ©=1,2,3, are called the components of a with respect to the basis w, ug, us.

It follows from Theorem 1.1 that the components of a vector with respect to a given basis
are unique. However, note that the components of a vector depend upon the basis chosen
and in general the components will change if there is a change in bas1s An exception is
the vector 0 whose components are always 0, 0, 0.

In general we shall denote the components of vectors a, b, x,y, u, . .. with respect to some
prescribed basis by a;, by, @i, ¥i, %, . .. .

Example 1.12.
Let uy, uy, uy be a basis and let a = 2u; —uy, b =uy,— 2u3, and ¢ = 3u; +uz We will show that
a, b, ¢ are linearly independent and hence also form a basis. For, suppose

kla + kzb + kgc = (2k1 + 3k3)|.l1 + (_kl + kz)uz + (—2k2 + ks)u_g =90
Since the u; are independent, it follows that
2k, +8ks = 0, —ki+ky =0, —2ky+k; =20

Thls is a system of three homogeneous lmear equatlons in ky, kg, k3. Since the determinant of the coef-

ficients . :
. 2 0 3\

det{—1 1 0] = 8 # 0
0 -2 1

the only solution is k; = ky = k3 = 0. Hence the vectors a, b, c are mdependent Observe that the com-
ponents of a, b, ¢ appeat as the columns in the above determinant. :

As suggested in the above example, we have in general
Theorem 1.3. Let uy, ilz, us be a basis and let
‘ Vi = @y + iUz + dz1Us
Ve = QiaU1 + A2ou2 + ds2Us

Vs = Qislq + Gzsuz + Asslls
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. ,
or, in short, v;= 2 &, j =1,2,3. Then vy, vs, vs is a basis if and only if
i=1 .

air Q12 O13
det | @21 @22 Q2 # 0
a3 Q32 (Qss

SCALAR PRODUCT OF VECTORS

The dot or scalar product of two vectors a= (a1, a2,03) and b= (b1, ba, ba) is the real

number
) a‘bh = aibs +arzb2+asb8

In particular, for a=b we have the formula
aca = |a]? (1.4
In Problem 1.14 we prove that scalar multiplication satisfies

[C] a'b = b-a (Symmetric Law)
[Cs] (ka)-b = K(a- b) (k =scalar)
. [Cs] a+(b+¢) = ab+a-c (Distributive Law)
[Cs] Scalar multiplication is positive definite; that is,

(i) a-a=0 for all a

(ii) a-a=0 if and onlyif a=0

Clearly, from the definition, a-0= 0 for all a. Also, if a-b=0 for all a, then
b-b =0, and hence from [Ci](ii), b=0.

Example 1.13.
Let a=(—2,1,0) and b=(2,1,1). Then a*b=-3 and ara=>5=|a]%

Example 1.14.
Let u; and u, be given vectors and let a=u;—u, and b=2u;+u, Then

ash = (u—upe @u+uy) = 2uycu — 2uycuy + Ut~ weruy, = 2w — wgcuy — jug|?

In Problem 1.16 we prove the Cauchy-Schwarz inequality
lasb| = |a| [b|
with equality holding if and only if a and b are linearly dependent. The angle between two
nonzero vectors a and b, denoted by 6 = %.(a,b), is the unique solution of

a*b = |a||b] cosd (1.5)
" satisfying 0=60=n.

Example 1.15.
In the triangle ABC shown in Fig. 1-6, let a=BC, b=AC,
¢c=BA=a—b, and 6= A_A'CB =X (a, b). If we consider

le2 = ja—bP2 = (a—b)e(a—b) = asa — 2a*b + beb

we have the law of cosines .
lelz2 = la|z2 — 2]a]|b|cose + Ibj2 Fig.1-6

Let b be a nonzero vector. The scalar projection of a onto b, denoted by Py (a), i_s the
scalar P,(a) = (a*h)/|b|. The vector Py (a)up, where u, is the unit vector in the direction of
b, is called the vector projection of a onto b and is denoted by P, (a). It follows that
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a*b)b

P, (a) = Py(a)u, = ((a*b)/b])(b/b]) = ( |b|2) (1.6)
Clearly P,(0)=0 and P,(0)=0. If ax 0, then from equation (1.5), P,(a) = |a] cos @
and P,(a) = |a| cos du,, where 4 = % (a,b). It follows that P, (a) and P, (a) are independent
of the length of b but depend only on its direction as indicated in Fig. 1-7. In fact, the

vector P, (a) is also independent of the sense of b; that is, P-p(a) =P,(a). For
' a*(—bh) _ a'b
=R

Poy(a) = b = Py(a)

The scalar P, (a) changes sign with a change in the sense of b.

a a
g b j b |
P, (a)
| b Py(a)
Fig.1-7

ORTHOGONAL VECTORS

Two vectors a and b are said to be orthogonal, written alb, if a:b=0. It follows
from equation (1.5) that a and b are orthogonal if and only if either a=0, b=0 or
0=X(a,b)=x/2.

Example 1.16.

Let a and b be linearly independent and let ¢ = a — P,(a). Then ¢ is a nonzero vector. orthogonal to b.
- For suppose ¢ = 0; then from equation (1.6), 0=1a=—P,(a) =1a—kb, where k= (a *b)/|b|2, which is
impossible since a and b are independent. Hence ¢ = 0. Finally,

o (a-b)b _ (a*b)beb) _ _
c-vb = <8_W>.b = a.b—T = (a*b) — (a*h) = ¢

Thus ¢ L b.

- ORTHONORMAL BASES

Let ej, e, e; be three mutually orthogonal unit vectors
-as shown in Fig. 1-8. These vectors are independent; for if
fier + kees + kses = 0, then 0= -0 = e- (klel + kses + k3e3) =
ei*kiei=1k; or k=0 for each i. Therefore they form a basis
called an orthonormal basis.

We observe that e;, i=1,2,3, is an orthonormal basis if and
only if

ei*e; = ex'e; = eztes = 1 (Unit vectors)
ei"e; = exre; = erres = 0 (Mutually orthogonal) Fig.1-8
or, in short, ]
1, if j=4 .
ice = & = . ,7=1,2,8 , 1.7
€i° e j JL 0, if j~i ( ) ‘ ( )

The quantity §; is called the Kronecker symbol and will be used repeatedly.
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In Problem 1.23 we prove
Theorem 14. Let ei,eses be an orthonormal basis and let a = aie; + aze; + azes and
b = bie; + bee: + bses. Then ‘

3
(i) a*b = aibi+ asb2 + asbs = 2, aibi
=1

. 3
(i) Ja| = Vara = Ve +a+a; = ,/ > a?
i=1
(lll) a; = a’*ei (’L = 1, 2, 3)
Example 1.17.
Let a = e; + 2e3, b = 2e;+e;—2e; and ¢ = —2e,+e3. Then
(@ a+b = (1)@2) + @1+ @)(-2) = —2
(®) (aceb = [(1)(0)+ (0)(—2) + (2)(1)] (2e; + ey — Z2e;) = 4de; + 2e; — 4ey
(@ ] = VE+2 = V5
@ w = o = AVBe + (2/V5)e

fal

(e) cos X (a,b) = abh _ -2

lal bl 3V/6
Let a nonzero vector a = aie; + dze: 1+ dses and let
0:= % (a,e), =1,2,8, as shown in Fig. 1-9. The scalars
cos 01, cosfz, cos s are called the direction cosines of a.
Since a-e; = |a| cos6; = a;, we have
cos 6; = ai/flal, i=1,2,3

Note that a a @ a
— 2 _ 1 G2 4 38
U= Tl Rl T el
= (cos f1)e; + (cos fz)ez + (cos fs)es Fig.1-9

That is, the direction cosines of a are the components of the unit vector in the direction of a.

ORIENTED BASES

Let (e, ez, es) and (g1, g2 g3) be ordered orthonormal bases and imagine that the triad
(g1, g2, gs) is rotated to make g and g» coincide with e; and e respectively. Then gs will
either coincide with es in which case we say that (gi, g2, gs) has the same orientation as
(e1, ez, e3), or gs will point in the direction opposite to es, in which case the bases are said
to have opposite orientation. To formulate this concept of orientation in a precise manner,
.not only for orthonormal bases but for arbitrary bases, we proceed as follows:

3
Let (uy, uz, us) and (vi, vz, s) be ordered bases and let v; = E ai;wi. Then (vy,vs,vs) has

i=1
the same orientation as (uy, uz, us) if det(ay) > 0. In Problem 1.27 we show that this defines
an equivalence relation on the set of all ordered bases in E3. This relation partitions the
bases into exactly two equivalence classes. Ordered bases in the same class have the same
orientation and ordered bases in different classes have opposite orientation.

In order to distinguish graphically one orientation of an ordered basis, we say (i, Uz, u3)
is a right-handed basis if the vectors assume the same directions in space as the thumb,
index finger and middle finger of the right hand; otherwise the bagis is said to be a
left-handed system. ‘
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Example 1.18.

The triplets (uy, uy, ug) in Fig, 1-10(a) and (c) are right-handed bases. In Fig. 1-10(b) and (d) they are
left-handed bases.

(@) @

Fig.1-10

Note. Unless stated otherwise, our bases shall be right-handed orthonormal bases.

VECTOR PRODUCT OF VECTORS

Let (es, ez e3) be a'right-handed orthonormal basis and let a = aie; + ase; + ases and
b = bie: + bses + bses. The cross or vector preduct of a and b, denoted by a X b, is the vector

axXhbh = (a2b3 - asb2)81 + (a3b1 - albs)ez + (albz - a2b1)e3

As an aid in computing the above, we observe that it can be obtained as the expansion of the
determinant

e b b b b
axb = det|es as bs| = eldet<a'2 2>-e2det<a1 ‘) +e3det<“‘ b‘)
es 4 b as b3 as bs az Py

=  (abs—asbs)e; + (asbi— t1bg)es + (a1bs — azbi)es

Example 1.19.

Let a=e,—e; b=e,+2e3 ¢ =—2e, —e;. Then
€y 1 0
aXb = det|e —1 1 = —2e; — 2, + €3
e3 0 2 V

In Problem 1.32 we prove that the vector product is in fact independent of the right-
handed orthonormal basis chosen. Also in Problem 1.81 we prove

Theorem 1.5. (i) |axb| = |a||b|sing, where 6 = X (a,b)
(i) a. (axb)La and (axh)Lb

b. If axb 0, then (a, b, axb)is a right-handed linearly independent
triplet.

Since |a||b| sin6 =0 if and only if |aj=0, |b|=0, =0, or § ==, we have from
(i) above and the strict form of the Schwarz inequality (that is, |a-b| = |a|[b| if and only
if a and b are linearly dependent),

Theorem 16. aXxb =0 if and only if a and b are linearly dependent.
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If a and b are not linearly dependent, i.e.
if axb+0, Theorem 1.5(ii) states that axXb
is orthogonal to a and to b and such that
(a,b,axb)is a right-handed triplet, as shown
in Fig. 1-11(a).

Observe that the vector product is in gen-
eral not commutative. Although b X a has the
same magnitude as a X b (Theorem 1.5(i)) and
is parallel to a x b (Theorem 1.5(ii)a), it has the
opposite direction (Theorem 1.5(ii)b). Thus (@) (b
bxa=—(axbh), as shown in Fig. 1.11(b). Fig.1-11

Example 1.20.

For an orthonormal basis (g1, &2, 85) shown in Fig. 1-12, it follows
from Theorem 1.5 that -

g Xg =0 go X 8- — 83 g83X8 = &
g1 X8 = & g2 Xg =0 g3 X g = —&1
g1 X8 = —8 g X8 = & g3Xg3 =0 Fig.1-12

In Problem 1.29 we prove that the vector product satisfies

[E] axb = —(bXxa) (Anticommutative Law)
[Ez) aX(b+¢c) = aXb+aXe (Distributive Law)
[Es| (ka)xb = k(axb) (k = scalar)

[Eq] axa =0

Note that the vector product is not onlyb not commutative but also not associatiVe; that is,
in general a X (bXc) # (axXbh)Xe. For as shown in Example 1.20, giX (g1Xg2) =
g1 X g3 = —g», whereas (giXg:) X g =0Xg = 0.

Example 1.21.
Consider the triangle ABC shown in Fig. 1-13. Let a=BC,b=AC, c=AB= b—a, a= A(b, c),
B = X (c,a), and y = X (a,b). Now,

0 = ¢cXec = exX(b—a) = ¢Xb—cXa

or ' cXb = ¢Xa
Similarly,
eXb = (b—a)Xb = bXb—aXb = bXa
Hence eXb = ¢Xxa = bXa
But then lexb| = lexal = [bXa]
or le| [b] sine = lc|la[sing = |b| ja| siny

which gives the law of sines

sine _ sing _ sin y ,
fal [b} lel Fig.1-13

- TRIPLE PRODUCTS AND VECTOR IDENTITIES

The product a*b X ¢ is called the mixed or triple scalar product. Note that parentheses
are not required; for this can only mean a- (b Xc), the scalar product of the vector a and
the vector b X ¢. - This product is also conveniently given in terms of a determinant. For, let
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a = aie1 + ez + aszes, b = bie; + boes +-bses, ¢ = cie: + coe2 + cae3

Then er bi o
arbXe = (aie1+azes+ases) - det| e by e
es b3 Cs
= (D63 — bscz) — as(csby — c1bs) + as(bics— b2c1) (1.8)
a: by ¢
= det|a: b oo
as by cs

It follows from properties of the determinant that ‘
abXe = craxb = brexXa = —(b-aXe) = —(c*bXxa) = —(a~cXxb) (1.9)
In particular, it follows that abxe¢ = aXb+c. Thus we can drop the dot and cross in
the notation of the triple scalar product and use instead the notation
[abc] = a*bXc = aXb ¢
As immediate consequence of Theorem 1.8 and equation (1.8) we have

Theorem 1.7. [abc] =0 if and only if a, b, ¢ are linearly dependent.
A number of useful identities relate vector and scalar products of vectors. A basic
identity, which is derived in Problem 1.85, is
Theorem 1.8. aX (bxc) = (a*c)b— (a-b)e
Others, easily derived from the above, are
[Fi] (axb)-(exd) = (a*¢)(b-d) — (a-d)(b-c)
[F2] (axb) X (exd) = [abd]ec — [abc]d

Example 1.22.
Let u =c¢Xd. ‘Then

aXbeu = a*bXu = a*bX((xd)] = as[(bedjc— (b-c)d]
where we used (1.9) and Theorem 1.8. It follows that

(@Xb)s(cXd) = (asc)(b+d) — (asd)(b-c)
which proves [Fy] above.

Solved Problems

VECTOR ADDITION

1.1. Prove properties [Ai] through [A4] for vector addition. That is, prove that [Ai]
atb=Db+a, [A(a+b)+c=a+ (b+c), [As]a+0=a, [A]a+ (—a) = 0.

[Al]: a+b = (‘11+b1,a2+b2,a3+b3) - (b1+a1,b2+012,b3+a3) = b-+a

[A: (@+Db)+e = [(ay+Dby) + ¢, (@s+ by) + ¢y, (a3 + bg) + c5]
= [ay + (by+ ¢y, ag + (by+¢5), ag + (bg+ c3)] = a+(b+e)

[As): a+0 = (a;+0,a,+0,a3+0) = (ag,a9,05) = a
[Ad: a+(~a) = (g;—~aj,a0—as, a3—ag) = (0,0,0) = 0
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1.2. In the parallelepiped shown in Fig. 1-14
let a=0P, b=OR, ¢=0S. Find OV,
VQ and RT in terms of a,b,c.

OV = OR + RV OR+0S = b+t+e

Il

vQ = VR+ RQ = —RV + RQ
= —0S+0P = —c+a
RT = RS+ ST = RO+ OS + ST
= —-b+c+a Fig.1-14

1.3. It has been shown (Example 1.4.) usihg the properties [Ai] through [A4] that the
vector equation a + x = b has a unique solution x = b + (—a) = b—a, Using this
result, show that: »

(¢) the vector 0 is unique, that is, if 0’+a=a, then 0’ = 0;
(b) the vector —a is unique, that is if a’+a = 0, then a’ = —a;
(¢) —(—a)=a for all a. '
(a) follows fronzn the uniqueness of the solution to the equation x+a=a.

(b) follows from the uniqueness of the solution to the equation x+a =0.

(¢) follows when we consider the equation _a+x =0. This has the solution x =0—(—a)=
—(—a), But also —a+a=0; thus —(—a) = a, by uniqueness of the solution to the equation.

MULTIPLICATION BY A SCALAR

14. Prove properties [B;] through [Bs] for multiplication of a vector by a scalar. That
is, prove that: [Bi] ki(k:a) = (kiko)a; [Bs] (Ki+ke)a= ki + koa, k(a-+b) =Fka + kb;
[Bs] la=a.
[By]: FKulkoa) = (Foy(leg@y), F1(Ka@o), F1(Koes))
= ((kikg)ay, (kikg)ag, (kikg)as) = (kiks)a
Bol: (ks +kda = ((oy+ koday, (kg + kgay, (ky + ko)ag)
= (ky@y + Koty ks + kot, kiag + kaag) = Fqa + kaa
(k(@y + by), k(ag + by), k(as + by)) ,
(leay + by, kay + Kby, kag+ kbg) = ka + kb .

k(a+b)

Il

[Bs]: 1la = (lay, lag, lag) = (@, az, a3 = a

15. If a=w—2u:+3us, b=u:—u and ¢ = w +2uy, find 2a — 3(b—e¢) in terms of
U, Ug, Us. ) .
2a—3(b—c¢) = 2a—38b+3c = 2(u, — 2uy + 8ug) — 3(ug — ug) + 3(uy + 2uy)
' = 2n1—4u2+6u3—3u2+3u3+3u1+6u2 = 5u1—u2+9u3'

1.6. Prove that the line joining the midpoints of two A
sides of a triangle is parallel to the third side and
has one-half its magnitude.
Let M and M’ be the midpoints of the sides AB and AC re-
spectively of a triangle ABC shown in Fig. 1-15. Then AM =
3AB, AM' = JAC and MM = AM' — AM = }(AC — AB) =~ B
4BC. Thus MM’ is parallel to BC and has half the magnitude. Fig.1-15
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1.7.
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Let a=0A, b=0B,b+#a and ¢=0C
as shown in Fig. 1-16. Show that C lies on
the line L determined by A and B if and
only if ¢ = kia+ ksb where ki + ks = 1.

If C is on L, then BA=a—b and BC=
¢—b are parallel. Hence there exists % such that Fig.1-16

c—b = kla—b) or e = kat+(1—kb = kja + kob
where ky+ky =k+1—k =1 Conversely, if ¢= kja+ kob, where k;+k, =1, b+ a, then
c—b = kat+kb—Db = ka—(1—Fky)b = kja—Fkb = k(a—h)
That is, ¢c~b=BC and a—b =BA are parallel, so that C is on the line determined by A and B.

LINEAR DEPENDENCE AND INDEPENDENCE

1.8.

1.9.

1.10.

Show that the veetors u, u, ..., u, are dependent if and only if one of the vectors
is'a linear combination of the others. :

Suppose, say, u; is a linear combination of Up, ..., Uy ie. wy = kguy+ -+ +k,u,. Then
uy —kgus— + -+ —k,u, =0 where at least the coefficient 1 of u; is not zero. Hence uy,...,u, are
dependent.

Conversely, if uy,...,u, are dependent, then there exists ky, ..., k, not all zero such that
kywy +kyap+ -+ - 4+ kou, = 0. Suppose, say, %y 7 0; then wy; = —(ko/k)uy— +++ — (k./k)u, and so
u; is a linear combination of u,, ..., u,.

Prove that a set of vectors which contains a linearly dependent subset is linearly
dependent.

Suppose, say, the subset {u,u,, .. .Uy of the set {ug,u,,...,u, Weyg, ...,U,) is dependent.
Then there exist k;, ..., k; not all zero such that kquy + koug -+ -+ + kuy, = 0. But then

k1u1+k2u2+ ce +kkuk+ Ollk+1+ b +0u-,‘: 0

and so u;, Uy, ..., u, are dependent.

Prove Theorem 1.1: if uy, ..., U, are independent and
Fauy + kouz + -+ + Eyun = Elug + Esus + - -+ + Kpun
then ki=Fki, ka=ks, ..., ka=F,.
Suppose some k; = k,'-; then
(e —kp)uy + ey —Teg)uy + -+ + (oy—kDuy+ -+ + (p—kl)u, = 0

where k; —k,f 7 0. But this implies uy, ...,u, are dependent, which is a'contradiction.

BASES AND COMPONENTS

1.11.

Show that any vector in E® can be written as a linear combination of three inde-
pendent vectors; hence three independent vectors form a basis in E5.

If a, b, ¢ are linearly independent, then the equation
za+yb-+ze = 0
_has only the solution # =y =2 = 0. Equivalently, the system
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1.13.

xa; +yby+ze; = 0
2y + yby + 2¢5 = 0
xag + ybg +ze3 = 0
has only the trivial solution x =y =z = 0, which is the case only if the matrix of coeﬂ‘ic1ents has
determinant not zero, that is, .
a; b o
det | a3 by ¢ #*= 0
az by ¢

But then for any vector u = (ug, Uy, ug) in ES the system

xay + yby + 2 = Uy
xay + ybg + 265 = ug
xag + ybg + zeg = ug

has a solution # =k, y = ks, z = k3 which means that u = ksa + kb + ke as required.

Show that any four or more vectors in E® are linearly dependent.

Consider the vectors uy, Wy, Ug, Uy, ..., U, We can assume that u,, uy, ug, are independent. For
otherwise, u,, Us, Uz, Uy, ..., U,, having a dependent subset, would be dependent. But if wy, uy, u;
are independent, they form a basis and so uy = kquy + ksup + Kzus, which implies u,, u,, ug, u,
are dependent. Hence uy, uy, ug, uy, ..., U, are dependent.

Let uy, us, us be a basis and let a = uy —us +2u3, b = w2 —us and ¢ = —ua. Find

the components of 2a — b — 2¢ in terms of wy, uz, us.
2a —b — 2¢ = 2(u; — ug+ 2ug) — (uy—ug) — 2(—uy)

= 2u; — 2uy + 4dug — wy + ug + 20, = 2u; — uy + Suy

Thus the components of 2a —b — 2¢ with respect to wu,, uy, u; are 2,—1,5,

SCALAR PRODUCT

1.14.

1.15.

Prove properties [Ci] through [C4], page 5, for the scalar product of vectors.
[Cl]: a*bh = alb_l + a2b24 + a3b3 = blal + bzaz + b3a3 = b-a
[Cz]: (ka) b = kalbl + kazbz + ka3b3 = k(albl + a2b2 + asbg) = k(a * b)

[Csl: ac(b+e) = ay(by+eq) + ax(by + ¢g) + agbs+ ¢y
= a,b; + aghy + asbg + aje; + agey + agc3 = a*btacc

[C4]: Clearly a-a=a§+a§+a§30 and a-a:a?+a§+a§:0 iff oy =ag=a3=0.

In the triangle OAB shown in Fig. 1-17, let
=0QA and b=0B. If ]0A|=2, |0B|=
and X AOB = 30°, find (a) a* b, (b) Pa (b), (¢) Pa(b).

(ay a-+b

1

la] |b] cos X (a,b)
= (2)(3) cos30° = 3V3

(a+b)/|a] = 3V3/2
= (8V3/4)a

(b) Pa(b)

() Pa(b) = Py (b)lf‘;l
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1.16.

1.17.

1.18.

VECTORS [CHAP. 1

Prove the Cauchy-Schwarz inequality, la-b| = |a||b|, with equality holding if and
only if a and b are linearly dependent.
The inequality is clearly valid if a=0 or b=260, and so we may assume that a,b+#0.

Then from [C,],
b
(V;I: =\ >'<\/Hai\/%b> = 2falb| = 2a-h

or *2a-b = 2|a] fb| which gives the desired inequality |a*b| = |a||bl. The remaining statement
bl fal
B " Tl Nl
\/I: \/I: = 0 which is the case if and only if a and b are linearly dependent.

follows from the fact that equality can hold if and only if either —b =0 or

Prove the triangle inequality, |a=h| = |a|+ |b).
jazb|2 = (axb)-(axb) = [a2+ |b2=2(ab) = |a2 + [b]2 + 2]a] [b] = (|a| + |b])2

and the desired result follows upon taking square roots.

Show that |la] — [b|| = [a=b| for all a and b.
From the triangle inequality,
fal = laxb=xb] = Jaxb|+ |b] or [a]—|b] = |axbh]

Also bl = |*b] = [axb—a| = Jaxb|+]a] or |b]—Ja] = |ath|
Thus [la] — |b]| = Max (jaj— [b, [b| —|a]) = |a=b|, which is the required result.

ORTHOGONAL VECTORS

1.19.

1.20.

Let ¢ be orthogonal to a and b. Show that ¢ is orthogonal to kia + %.b for all ki, k.
Since ¢ is orthogonal to a and b, c*a =0 and e*b=0. Hence
o (ka+kyb) = ky(cea) + kylcob) =

- Thus ¢ is orthogonal to k;a + kob.

Let wy, us, us be a basis and define

a=u, b=u2—Pa(u2), c=ua—Pa(u3)—Pb(u3) -

‘S'how that a, b, ¢ are nonzero mutually orthogonal vectors.

a*b = a-(u, — a (W) = a-[u; — (aruy)a/lal?]

= a*upy— (a*uy)(a-a)/lal2 = acuy, —asu, = 0
and so a L b. Also, i

ase = a-[us — Pa(uy) — Py(uy)] = a-[us — (a~uga/laf® — (b ug)b/[bj2]
= a-ug —a*ug — (b-ug)(a+b)/|b2
Since a*b =0, a*c =a‘u;—a‘u; =0 andso alc Finally,
bre = b+ [uy — (a-up)a/faf2 — (b ugb/[bj2]
= (b+ug) — @ uz)@-b)/[al2 — (b-u)be b)/b2 = (b+ug) — (bouz) = 0
Thus a, b, ¢ are mutually orthogonal. They are also nonzero vectors, because: a = u; #0; if b=20,
0 = b = uy~Py(uy) = up —ka = wuy ~ kuy

which is impossible since u; and u, are independent; if ¢ =0,

0= ¢ = u3— Pa(ug) —Pa(ug) = ug—kja— kb = ug— kjuy — ko(uy— kuy) = ug — kguy; — kouy

which is impossible since uy, uy, u; are independent,
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ORTHONORMAL BASES .
1.21. Show that (a) 23,, + 35,, +48,, = 8, (b) 2 8,b, =
i=1

1 ifj=1
(a,), Sij = {0 if ], o~ . Hence 2621 + 3822"‘ 4823 = 2(0) -+ 3(1) -+ 4(0) =3.

3
() As above, the only contribution comes from §;. Thus 21 S;b; = &by = by
= .

1.22. Let w, us, us be a basis and let v; = 2 a;w and w; = 2 bivi. Show that 2 @b = Su.
3

We write w; = 2 dm = kE by;viy where we have changed the name of the index from
i=1 =1

3
S agw;. Substituting,
=1 .

il

ito k. Also, v

3 3 3 3 -3
S = .= b 1w
i§1 it g §1 Kt i§1 likgl b k’] ¥
3
Since uj, uy, U are independent equate components and obtain §; = kE iy
=1

1.23. Prove Theorem 1.4: If e, €2, e3 is an orthonormal basis and a = ae: + aze: + ases
and b = bie; + bees + bses, then
(a) a*b=aib: +a2b2+a3b3, (b) !al = \/af+a§+a§, (c) a=a‘e, t=1,2,3.
(@) a*b = (a;e;+ aze; + ages) * (bre; + boey + bges)
= a;by(e; > e;) + a;byle; * e5) + ajbsle; * ;)
+ a2b1(02 . el) + a2b2(e2 i e2) + azbs(ez . e3)
+ a3bl(e3 d el) + a'3b2(e3 . 02) + ﬂ:3b3(33 . e3)

- albl + azbz + a3b3

In short, we have 3 3 3 3
S = (3 o) (Zoe) = 33 avsere
‘ i=1 i=1 i=1 j=1
3 3 3
or a*hb = E 2 a*ibjsw - 2 a’ibi
=1 j=1 i=1

®) la|=Va+a = Val+al+al
(c) are; = (21 aje,->-ei = ;aj(e,ﬂei) = JZajsﬁ = g

124. Let a = e —2e:+3es and b = ex—es. Find (a) a-b, (b) |a], (¢) wa, (d) Pu(b),
() P.(b), (f) cosX%(a,b), (g) a-es, a*es a-e; (k) direction cosines of a.

(@ asb = (1)(0) + (=2)@) + 3)(-1) = —
@®) lal = Vara = V(1)2+(-2)2+ @) =
(¢) ua = a/la] = (1/V14)(e; — 2e,+ 3ey)

@ Pa(®) = (a-b)ja] = —5//14

(©) Ba(b) = Pa(bug = —(5/14)(e; —2e5+3eq)

() cosX(a,b) = (a-bYlal{p] = (~5/VILVZ) = —5/@VT)
(9) a;'el =1, a*e; = —2, a*eg = 3

(h) cosX(a,e)) = ay/(al = 1/V14, cos X (a,e;) = ayflal = —2/\/14 , cos X (a,e3) = ag/la| = 314
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1.25." Let u, us, us be an arbitrary basis.

such that
vi*t = 1
Vi*lz = 0
vicuz = 0

VECTORS

[CHAP. 1

Show that there exists a unique basis vy, v, vs

Vz* Ui — 0
veeueg = 1
verus = 0

Vz*up = 0
Vz* Uz = 0
vicus = 1

or vi*u; =8, ¢,J=1,2,3. The basis vi, vs, vs is called the dual or reciprocal basis
to ui, uz, us. Accordingly if a = a;u; + asuz + asus and b = byvi + byvs + bsvs, then

arb = <i2 a,;w) . <; b,-v,> = 2 ,2 abiwi vy = Z ; ab;dy = Z a:b;

Observe that an orthonormal basis is its own dual.

Let ey, €5, €3 be an orthonormal basis and let

uy
Uy
U

and v

Then vicuy
Victug

Vicug

ay181 + @085 + g3

agie; -+ Ggge + Gngeg
agie; + dggey + aggeg

zie; + x0e5 + xzeg

@ %y F G1a®p + @1y =

Ag1%y t Age%y T+ Gg3®y

@31% + g%y + agaws

is a system of three equations for x,,p, 5. Since det(ay) 0, there exists a unique solution
vy = %@y + 29, + wge3. Similarly we have unique solutions for v, and v;. It remains to show
that vy, vy, v; are independent and hence form a basis. We consider

k1V1 + ksz + k3V3 =

3

E k,;vi = 0
If we multiply by u;, j =1,2,83, we obtain
3 3 3
I:i§1 kivi] * 'I.Ij = igl ki(v,- b uj) = igl kisij = kJ = 0, ]. = 1, 2, 3

Thus ky =k; = k3 =0 and 8o v;, vy, V3 are independent and form a basis.

ORIENTATION
1.26. Show that the triplet (vi, vs, vs), where vi = 2u;— w2+ 2us, v2 = uz +us and
vs = —w + 2uz + us, has the same orientation as (uy, us, us).
2 0 -1

The determjnant of the components is det { -1 1 2

2 1 1

Hence (vy, vy, v3) has the same orientation as (uy, u,, ug).

1.27. Show that orientation is an equivalence relation o

That is, show that:

= 1>0

n the set of all ordered bases in E3

(@) (vi, vz, v3) has the same orientation as (vi, ve, vs) for all (vi, vz, vs).
(b) If (v1, v, vs) has the same orientation as (ui, ug, us), then (u, ue, us) has the same

orientation as (vi, vs, vs).

(¢) If (w1, w, ws) has the same orientation as (vi, vo, vs) and (v, vs, vs) has the same
orientation as (s, us, us), then (w1, ws, ws) has the same orientation as (u, us, us).
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3
We write v; = g 8;vi, § =1,2,8. Since det (8;) =1, (v4,Vy, vy) has the same orientation as
(Vl, Vo, V3). =1

3 , . _ :
Let v; = Eaﬁui and w; = ) b;iv;. From Problem 1.22, kEI Qigby; = 8. It is also easily -
i 3 <

3 .
verified by expanding that det < 3 a,ikbkj> = det (a;;) det (b;;), and so
k=1

det (81]) _ 1
det (au) T det (aij)

det (bij) =

Since (vy, Vs, Vs) has the same orientation as (u;,up, ug), det(ay) > 0. Hence. det (b;;) > 0,
and thus (uy, U, ug) has the same orientation as (vy; vy, Vg)-

3 3
Let vy = 3 agw; and w; = 3 byvi. Substituting, we obtain
=1 k=1

3 3 3 3
w; = 3 by =21 oy = 2 <k§1 aikbki> u;

i=1
3 3
Thus w; = '21 Cill; where G5 = kzl a,ikbkj, ’L,j = 1, 2, 3. AISO,
i= =

det (cij) = det <2 aikbk]) = det (a'ij) det (b”)

Since (W, W, W3) has the same orientation as (vy, Vg, v3) and (vy, Vs, V3) has the same orienta-
tion as (uy,uy, ug), then det(by) >0 and det(a;) > 0; hence det (e;;) > 0. Thus (W, Wy, Wg)
has the same orientation as (uy, uy, ug).

VECTOR PRODUCT

1.28. Let a = 2e; —ex+e3, b = e; + 2e2 — €3, ¢ = e; + 2es. Determine (a) axb, (b)) bXa,
(¢)ax(bxe), (d) (axb)xXe, (e) (aXb)-c, (f)aX(b+ec)—axb—aXe.

e; 2 1
(@) aXb = det|e —1 2 = eldet<_1 2>—e2det<2 1>+ egdet< 2 1>
1 -1 1 -1 -1 2
es 1 —1
= —e; + 3e, + beg
e 1 2
() bxa = det|e, 2 —1| = e — 83e; — beg.  Observe that aXb = —(b X a).
ez —1 1
e, 1 0
() aX(bXe) = (2e;—ey+ez)Xdetje 2 1
eg —1 2
e 2 5
= (Ze,—eyteg) X (he;—2e,+e) = det|{e —1 —2| = e + 3e; + e
‘ e; 1 1
. e, -1 0 .
(d (@aXb)Xe = (—e;+3e,+5eg)X (ex+2e5) = detje; 3 1 = e 1 2e; — ¢3
ez 5 2

Observe that a X (bb>< ¢) # (aXb)Xe

(¢) (axXb)+c = (—e;+3es+bes):(eg+2e3) = (—1)(0) + (8)(1) + (5)(2) = 13
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1.29.

1.30.

1.31.

VECTORS [CHAP. 1
€; 2 1

() aX(b+ec) =det| e —1 8 |= —de; —e,+ Tey, aXbh = —e; +3e;+ 5e3, and aXe = —3e, —
egs 1 1

4e; +2e3. Then
axX(b+e)—axXb—aXe = (—4de;—e,+ Tes) — (—e; + 3e, + 5ey) — (—3e; —4dey,+2e;) = 0

Prove that (a) ax (b+¢) = axb+aXe, (b) (ka)Xb = k(axbh).
Let a = aje; + ase, + aze3, b = bye; + bye, + bges, ¢ = cie; + coes + cgeq.
(@) axX(b+c) = [aybs+ c3) — ag(by+ co)ler + [as(by + ¢1) — ay(bs+ cs)le,
+ [a1(bg + ¢5) — ay(by +- c1)les
(agbs — agbo)e; + (agh; — asbg)e; + (a1by — aghs)es
T (@903 — azco)e; + (ase; — aics)es + (@105 — ageydes
= aXb+4+aXe

Il

(b) (ka) Xb = (kagbs —kagby)e; + (kagh; — ka;bs)e, + (kaybg — kayb,)eg
kl(azbs — agbs)e; + (ashy — asbs)e, + (a1by — asby)es] = k(a X b)

Show that |a X bj? = |a]? b2 — |a*b|2.
Let a = ase; + age; +aze; and b = bye; + bye, + bes.
laxb2 = (aXb)+(aXb) = [(azhs—agbsde; + (agb; — asbs)e; + (asby— asb)es]
* [(agb3 — agbo)e; + (ash; — arbs)e, + (a1by — asb,)es)
(a3b3 — a3b2)? + (agby — a;b)? + (@105 — aghy)?
= agbg + a§b§ + agbf + a%bg + a,?bg + a;bf
— 2a9byasbs — 2a,bya3b3 — 2a,b,ab,
(a<a)}b+b) — (a*b)(a*b)
= (a]+ a5+ ag)(b? + b2 +b2) — (a;b; + azby -+ aghy)?
= a3b; + a3b; + aZb? + aZb? + a2b? + aZb? — 2a;biasby — 2a,byaghs — 2a0byashs

The required identity follows by comparing the above.

[al? [b[2 — Ja - bj2

Prove Theorem 1.5:
(i) |axb| = |a|[b|sing, ¢ = X(a,b)
(ii) a. (axb)La and (axb) L b
b. If (aXb)+*0, then (a, b, a X b) has the same orientation as (e, e, es).
(i) Using the preceding problem,

laxb[> = Ja?[b2 — Ja-b2 = [a[2[b2 — [a]2[b]? cos?s
= |a2b2(1 —cos26) = |a]2[b2sin2¢ = (|a] b sins)2
Since sing =0 for 0 =6 =, we have |a X b| = |a||b| sine.

(i) a. Let a=aje; +ase;+azes and b = bie; + boe, + bges.
(axXb)ra = [(ahs— agbs)e; + (ash; — ayby)es + (a;by— ashy)es] * (a.ey + ase, + ages)
= ayasbg — alq,3bz + aga3b; — apa;1by + aga.by — azah; = 0
Similarly, (aXb)*b=0. Hence (aXb) L a and (aXh) Lb.
b. The determinant of the components of (a, b, aXb) is
ay by (agbs—aghy)
det | ap by (agh; —azbs) | = (@gbs— aghy)? + (agh; — a1b)2 + (a1by— agby)? = |a X b)2
az by (a1by— aghy)
If aXb+0, then |aXb|2>0 and (a, b, aXb) has the same orientation as (e, e,, e3).



CHAP. 1] VECTORS ; 19

1.32.

Prove that the definition of the vector product is independent of the basis.

Let ¢ and ¢ be the vector products of a and b with respect to two different right-handed
orthonormal bases. We may assume that a and b are independent. Otherwise, from Theorem 1.6,
c=¢ =0, From Theorem 1.5(ii), (a,b,¢) is a basis and we can write ¢/ =ca+gb+ve. Also
from Theorem 1.5(ii), a*¢’ =qal2+B(a*b) =0 and be¢’ =a(b-a)+y[bj2=0. Since a and b
are independent, |a|2|b]2—|a*b2 = 0. Hence «a=pB=0 and ¢ =yc. Since (a,b,¢’) and
(a,b,¢c) are both right-handed, y > 0. From Theorem 1.5(i), |¢/| =[e¢]|=1y|¢, Thus y=1 and
c=c. '

TRIPLE PRODUCTS

1.33.

1.34.

1.35.

1.36.

1.37.

1.38.

Let a=e +2e:—e3, b= —e1+e, ¢ = —ex+2e. Find a-bXe.

1 -1 0
a*bXe = det 2 1 -1 = b
-1 0 2

Show that a*bXe =aXb-ec.

Let a= ae; + o€y + A3€3, b= blel + b2e2 + b383, C = ¢€y + Co€so + C3€3. Then

ay by ¢ a; ¢ by ey ay by
a*bxXe = det | ay by co | = —det [ @y ¢ by | = det [ ¢y ay by | = e*aXb = aXb-e¢
ag b3 C3 ag C3 b3 c3 Q3 b3

Prove Theorem 1.8: aX (bXe) = (a*c)b — (a*b)e.
Let a = aje, + ase, + agze;, b = bie; + boey + bges, ¢ = cre; + coey +cze;.  Then

aX(bXc) = (aje; + azes + ageg) X [(byog — bacoley + (bae; — ezby)ey + (b1cy — bacyi)eg]

(@gbyco — asbacy — agbge; + agbicgle;
+ (agbocs — azbgcs — a1bics + asbociley
+ (a1bsey — a1bye3— azbocs + azbsesles
Thus comparing with the above,
(a*c)b — (a*b)e

(alcl + AoCo + a303)(b1e1 -+ b202 + b303)

- (a1b1 -+ azbz + a.3b3) (0101 + Co€o + 0303)
‘ = (agbycp + agbio; — age;by — ageibgle;
+ (bgayey + baagcg — coa1by — coa3bsz)es

+ (bgaycq + baages — €301b; — czazbo)es
axX(Xe

Supplementary Problems

In the tetrahedron OPQR shown in Fig. 1-18, let a =O0P, b =09,
¢ = OR and let M be the midpoint of edge BQ. Find PM in terms of
a,b,c. Ans. PM=1b+ Ic—a

Let a=2u;+uy,—3ug, b=u; —2uy+us, ¢=-—u;+2u,—u;. Find
3a—2b+c in terms of uy, u, ug. Ans. 3u; + 9uy — 12uy

Show that [axbzxe| = |a| + |b] + |e|.
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1.39.

1.40.
1.41.
1.42,
1.43.
1.44.
1.45.

1.46.

1.47.

1.48.

1.49.
1.50.
1.51.
1.52.

1.53.

1.54.
1.55.

1.56.

1.57.

1.58.

1.59.
1.60.
1.61.

1.62.

1.63.
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.

Show that the midpoints of the lines joining the midpoints of opposite sides of a quadrilateral
coincide.

Show that the angle bisectors of a triangle meet at a point. \
Show that the medians of a triangle meet at a point.

Prove that a subset of a linearly independent set of vectors is linearly independent.
Prove that two linearly independent vectors in E2 form a basis in E2.

Prove that three or more vectors in E? are linearly dependent.

Prove that if a;, b;, ¢; are the components of a,b,c with respect to a basm, then (i) a=b iff a;=b;,
(i) e=a+b iff ¢;=a;+b;; (iii) b=ka if b, = ka;.

Let uy,uyu; be a basis. Determine whether a = u; —2uyt+ug, b=w;—u; c=2u —uy+5ug
are linearly independent. Ans. Yes

Let uy, uy, u; be a basis and let v; = —u; +uy—u;, vy = uy +2uy —ug; v3 = 2u, +u;. Show that
Vi, Vo, V3 is a basis and find the components of a = 2u; —uz in terms of vy, vy, vs.
Ans. w3 = —2v;+ vy — Vg, Wy = 3vy —Vy+ 2vs, ugz = 4v; —2v,+ vy, a = —8v, + dv, — bv,

Let a=—e;+e,—2e; and b =e; —e, + €3 Find (a) a*b, (b) |a], (¢) cos X (a,b), (d) Py (a), () Py(a).
Ams. (@) —4, (0) V6, () ~4/(8V2), (d) —4/V3, (¢) —(4/3)(e;— ey +ey)

Find the direction cosines of the vector a = 2e; + e, — 3e;. Ans. 2/V14, 1/\/14, —8//14

Determine x so that a = ze; + e, —e; and b = 2e; —xe, +e; are orthogonal. Ans. z=1
Factor aylal2 — (a8 + By)(a*b) + B85]bj2. Ans. (aa— Bb) e« (ya— sb)

Let a=e;+e;—e; and b= —e;+2e,—2e;3. Find a vector ¢ so that a,b,c form the sides of a
right triangle, Ans. ¢ = *(2e; —ey+ €3)

Show that g; = (1/3)(2e; —2e,+e3), g, = (1/3)(e; +2e;+ 2e5) and g5 = (1/3)(2e, + e, —2e,) form
an orthonormal basis and find (ey, ey, e3) in terms of (g, g5, 83)-

Amns. e = (1/3)(2g1 -+ -0 + 2g3), ey = (1/3)(—2g1 + 2g2 + g;;), €3 = (1/3)(g1 + 2g2 b 2g3)
Show that the sum of the squares of all the sides of a parallelogram is equal to the sum of the

‘'squares of its diagonals.

If-a=e —~2e;+3e3, b=2e;—e;~—e; and c —e;+e,, find () axXb, (b)) bXa, (c)abXe = [abe],
(d) aX (bXe). Ans. (a) bey + Tey + 3es, (b) —5e; — Te, — 3es, (¢) 10, (d) 2e; — 2e, — e,

Find a unit vector orthogonal to a = e; +e;—e; and b = —e; — 2e, -+ e5. Ans. £(1/V/2)(e; + e5)

Find the distance d from the point P to the plane S where a = OP = e;+ e, —e; is the vector
from a point O on S to P and b= —e; +e3 and ¢ =e, —e, are along S. Ans. d = |Ppxc(a)l °

Uyp*vy U3cvy uptvg
Prove that [wjupug][vyvevs] = det| upevy upevy uyevy
Ug*Vvy U3°ve Uz* Vg
Prove that (aXb)+(cXd)+ (bXc)*(axXd)+ (exXa)*(bxd) =
Prove that [(a X b)(c X d)(e Xf)] = [abd][cef] — [abc][def].
Show that if a and b lie in a plane normal to a plane containing ¢ and d, then (é X b)e+(eXd) =0.
u, X ug ug X u, o uy Xug

Let (uj,uy, uz) be an arbitrary basis and let v; = [u1u2u3] Vy = [111112“3] y Vg = [ul_uzu_?,]- . Show

that (vq, vy, vg) is dual to (uy, uy, uy), ie. wov; = 8y, 4,§=1,2,3

Let (uy,uyus) and (v, vy, vg) be dual bases Show that (vy, vy, v3) has the same orientation as
(uy, ug, ug). '

Show that there exist two equivalent classes of oriented bases. Namely, show that if (v, vy, vs)
and (wy, Wy, w3) do not have the same orientation as (uy, uy, ug), then (vy,vy,vg) and (w;, Wy, Wg)
have the same orientation. Thus we can say that two ordered bases have the same or opposite
orientation.



Chapter 2

Vector Functions of a Real Variable

LINES AND PLANES
Let a and u be vectors in E3 with u0. By the straight line through a parallel to u
we mean the set.of x in E® which can be represented by

= ku+ a, —o << ‘ (2.1)
or in component form,

21 = kui+a:, 2 = kua+ a2, 23 = kus + as, —o << (2.2)

The equations (2.1) or (2.2) are called the parametric equations of the line. We say that the
point x generates the line as the parameter k varies over the real line. Any vector which is
linearly dependent on u will be said to be parallel to this line. Two lines will be said to be
parallel if their respective vectors u are linearly dependent.

Example 2.1. B
The parametric equation of the line through a = e; + 2e, parallel to u =e¢; —e; is
= ku+a = kie;—eg) + (e, +2e;) = (k+ 1lje;+ 2e;, — ke
or w3 =k+1, 2,=2, x3=—Fk.
Example 2.2.

" If a and b are distinct points on a line, then b —a is a nonzero vector parallel to the hne Thus the
equation of the line through a and bis x = k(b—a)+a, or

= Kby—ay) +tay, %3 = kibg—ay) + a3, w3 = K(bg—ag) + a3

By the plane through a parallel to two independent vectors u and v we mean the set of

x in E? which can be represented by .
' = hu+kv+a —o<h<owo —0o<<k<® (2.9)

or, equating components,
X = hul + k’l)1 + ay, X2 = huz + k’l]z + as, ¥3 = hus + IC’Us + as (24)

The equations (2.3) and (2.4) are called the parametric equations of the plane. We say that
x generates the plane as the parameters & and % vary independently over the real numbers.
A vector will be said to be parallel to the plane if it is linearly dependent upon u and v, and
it will be said to be normal to the plane if it is orthogonal to both u and v.

If n is a nonzero vector normal to the plane x = hu + kv + a, then the point x lies on
the plane 1f and only if x — a is orthogonal to n, or

(x—a)'n =0 - (2.5)
In terms of the components of x, a and u, this becomes .
(%1 — a)n + (B2 —az)nz + (X3 —azyns = 0 (2.6)

21

A
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If a, b, ¢ are noncollinear points on a
plane, then b — a and ¢ — a are linearly inde-
pendent vectors parallel to the plane and
(b —a) X (c—a) is a nonzero vector normal to
the plane as indicated in Fig. 2-1. It follows
from equation (2.5) that the equation of the
plane through a, b, ¢ is

[(x—a)b—a)c—a)] = 0  (2.7) Fig. 21
Example 2.3.
The parametric equation of the plane through a —e, parallel to u=e, and v=—e teg is

x = hu+kv+a = (h—kle, te,+keg or x =h—k x =1 w3 =%

The plane is also given by .
Ty 1 -1

[x—a)uv] = det|x,—1 0 0| = 0 or 23—1=20
XT3 0 1 )

NEIGHBORHOODS

Local properties of functions are conveniently described in terms of the concept of a
spherical neighborhood. Namely, the -open sphere or e-spherical netghborhood of a vector
a, denoted by S (a), is the set of x satisfying |x —a| <e As shown in Fig. 2-2, a point x is
in S, (a) if and only if x is in the interior of the sphere of radius ¢ about a. In E?, S (a) is
the interior of the circle of radius ¢ about a; and in E", S,(a) is the open interval of length
2¢ with a at its center, as shown in Fig: 2-8.

==

Fig. 2-2 _ Fig. 2-3

It is also convenient to consider a spherical neighborhood of a lesé a itself. The set
S.(a) excluding a is called the e-deleted spherical neighborhood of a and is denoted by S:(a).
Since [x—a| = 0 if and only if x = a, S.(a) consists of the vectors x satisfying 0 <|x—a|<e

Example 2.4. ‘
The 1/10 spherical neighborhood of the vector a = e; + 2e;+ 3e3, ie. Sy/i(e; + 2e, + 3e3), consists of
the vectors x = 2,e; + x.e, + xze3 satisfying

k—al = [@— 12+ (2,—2)2 + (@3- 322 < /10 or (w— 12+ (3= 20 + (w3 —3)> < 1/100

Ekample 25.

S1/100(5) on E1 is the set of numbers « satisfying le— 5| < 1/100 or 5—1/100 < 2 < 5+1/100. Note
that Sy,100 is the open interval of length 1/50 centered about 5.
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VECTOR FUNCTIONS

The assignment of a vector f(£) to each real number ¢ of a set of real numbers S defines
a vector function f of the single real variable t in S. As in the case of scalar functions of a
real variable, the set S is called the domain of definition of f; and the set of assigned vectors,
denoted by £(S), is called the image of f.

Example 2.6.
Let a,b, ¢ be fixed vectors in space. The equation

£(f) = a— 2th + t2, —2=t=29

defines a vector function of ¢ with domain —2 =t = 2. A table of some assigned vectors is

t -2 . -1 0 1 2

£(t) a+ 4b + 4¢ a+2b+c a a—2b+e¢ a—4b + 4c

Example 2.7.
In Example 2.6 suppose that a —e; -+ 2ey, b —e;—e3 ¢ =e;,—e3. Then

() = (e;+ 2e;) — 2t(ey —e3) + t2(e; —ez) = (1+ t2)e; + (2 —2t)e, + (28 — 12)eg

Here f is expressed in terms of the three scalar functions f(f) = 1+1¢2, fof) = 2—2t, f3(t) = 2t —¢t2,

* its components with respect to (e, ey, ¢;).

As indicated in the example above, f(f) uniquely determines three scalar fur,ictions
f1(2), fa(?), fa(t), its components with respect to the basis. Conversely, three scalar functions
f1(%), f2(t), f3(t) on a common domain S uniquely define a vector function

f(t) = fi(t)er + fa(t)ez + fa(t)es
on S whose components with respect to (ey, ez, es) are fi, f2, fs. .

Vector functions will be used to define curves. Let x = f£(f); then as t varies, the point
x will trace out a curve, as shown in Fig. 2-4. The equation x = £(¢) or, componentWISe, the
three scalar equations

1 = f1(f), ®2 = fo(f), x5 = fs(t)

will be called a parametric representatioﬁ of the curve, and the variable ¢ will be the
parameter. '

(2
X
€,
€ %1
Fig. 2-4 . . Fig. 2-5
Example 2.8.
The equation x = alcos t)e; + a(sint)e, or x, = acost, ¥y =asint, ¢ >0, 0=1¢t=2r isa para-

metric representation of the circle of radius a about the origin. As t increases through the interval
0 =t = 2, the circle is traced in a counterclockwise direction, as shown in Fig. 2-56 above. -
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For the most part we shall assume that our functions are defined on intervals. These
consist of the finite open and closed intervals ¢ <t <b and a=1t{=2>5, the finite half-open
intervals ¢ =t < b and a <t=">, and the infinite intervals such ag —0o <t <x», a=t < »,
-0 <t<a, ete.

BOUNDED FUNCTIONS

A function f(t) is said to be bounded on the interval I if there exists a scalar M >0
such that |f(t)] =M for ¢ in I. Observe in Fig. 2-6 that if x= f(t), then f(¢) is bounded
on I if and only if there exists a sphere of radius M about the origin such that the point x
is in the sphere for ¢ in I.

zy = tant

€,

—/2 e

Fig. 2-6 ‘ Fig. 2-7

Example 2.9.

The curve traced by x = te; + (tant)e, on —=/2 < t < 7/2 is shown in Fig. 2-7. Observe that |x]
becomes arbitrarily large for ¢ close to »/2. Thus x is not bounded on —7/2 <t < #/2. Note, however,
that x is bounded on the interval —#/2+e¢ <t < #/2—e for any ¢ > 0. ¥or these i,

|x| = lte, + (tant)ey| = |t|les] + |tant||ey] = [f[ + [tant| = M
where M = 7/2 — ¢+ tan (z/2 —¢).

A functlon £(t) is said to be bounded at ¢ =t, if there exists an ¢> 0 such that £(¢) is
bounded for ¢ in S, (¢); or, equivalently, £() is bounded at ¢, if there exists an M >0 and an
¢> 0 such that |f(t)] =M for |t—it<e.

Clearly if £(¢) is defined and bounded on an interval I, then it is bounded at each %, in I.
However, the converse is not true, as shown by the example above, where f(f) is bounded at
each £, in —7/2 < t < 7/2 but not on the whole interval.

- LIMITS

A vector function £(¢) has a limit
L as t approaches £,, written
lim () =
t=rty
or f({)->L as t—>t, if for every
e > 0,one can find a § > 0, depending
on ¢ such that the vectors f(f) are —o o
in S.(L) for ¢ in Sj(t). Observe in o8 f hES
Fig., 28 that x=f({)>L as t->1
if and only if for every open sphere
S.(L) about the point L, one can find
a deleted S;(%) such that the points x :
are in S.(L) for ¢ in S5(to). Fig. 2-8
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Note that the existence of a limit at &, is a local property of a function, depending only -
on the nature of the function in a deleted neighborhood of t,. Moreover, f(t) need not be
defined at ¢,. For example, its domain could be the open interval a < ¢ < t,.

Example 2.10.

Let f(f) = a = constant. Then for any %, lim £(f) = a. For £(f) =a is in every S.(a) for all ¢
and hence for all Ss(ty) for all ¢, =ty

Example 2.11.

te; +e, t=0 1,t=0
The function x = f(f) = { , z, ={ :
te; — ey, t<0 -1, t<0
= // B \\
or @ = fi(t) = t, my = folt) = Lot=o {0 7 =1
1 1 t4 2. 2 _1, t<0 ’ l\ e /,
\
shown in Fig. 2-9, does not have a limit as ¢ — 0; N g /
for any point L has a neighborhood S (L) which does o o—
not intersect both the line %, =1 and the line t—3 t+38
%y = —1. (For example, as shown, S;,5(0,1) will not
include points on z, = —1.) For these S(L) there o—
will not exist a 8 > 0 such that for all 0 < || < & zp=-1 .
the points x = f(¢) are in S(L). Since L is arbi- .
trary, there is no limit. On the other hand, the
function does have a limit for any other choice of ¢,.
For example, as t > ] the limit is le; +e,. Fig. 2-9

Now, we recall that a scalar function g(f) >0 as t—> %, if for every ¢> 0 there exists
a 8>0 such that |g(f)] <e for ¢t in S’'(t). If we let g(¢) =|f(t)—L|, then |g(t)]=
[£(f) — L| < ¢ if and only if £(£) is in Se(L). Thus we have the important

Theorem 21. f(t)>L as t->t iff [f(t)—L|~>0 as t-to.
Example 2.12. ‘
}1»11; (t%e; — (t+1)ey)) = ey — 2e,, since

lim [f(5) —L| = lim [(2—1)e; — (t~1)es] = lim [(—12+ @E—12v2 = 0
Tt - —

Finally, suppose . f(f) > L as t—>t. Then for an arbitrary > 0, there exists 5§ >0
such that |f(f) —L| < for ¢ in S;(to). Hence for ¢ in Ss(to),

[£®)] = [f(®) —L+L[ = ji()-L| + |L| = M
where M = Max (e, |f(fo) —L|) + |L|. Thus we have

Theorem 2.2. 1If f(t) has a limit as ¢ - t,, then f(¢) is bounded at fo.

PROPERTIES OF LIMITS
Suppose }Lrg fi(®) =L, ©=1,2,8; then
lim [f1(t)es + fo(t)es + fo(t)es] = Lies + Loz + Loes
For, let f(t) = fi(f)e1 + f2(t)ez + fs(t)es and L = Lies + Lee; + Lses; then
}g? KO —L) = lim |(fs(Bes + fa(t)es + Fo(t)er) — (Eres + Laes + Loes)
= tﬁfﬁ [(fu(t) — L1)? + (fa(t) — La)* + (f3(t) — La)?] /2
=0
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The converse of the above is also true. Namely, we have
Theorem 2.3. The function f(t) = fi(t)er+ fz(t)ez + fa(t)es has a limit as ¢ > %o if and only
if fi(t), i =1,2,8, have limits as £ > &, in which case

i 19 = (1 0)e (1 50) v+ (1m 1e0)

lim sin ¢ + {1l t lim ¢ = e
<t1_% sin >e1 <tgx(1) cos >e2 + <t1_r'rt >e3 o

Example 213,
tlinr(x) ((sin t)e; + (cos t)e, + teg)

I

Exa.mple; 2.14.
Let £(t) = t%; + te;, Then

. f2+h) — 12 _ (24 h)2%e, + (2 + h)ey) — (de; + 2ey)
lim>2**————= = lim
vh—'() h h—=0 h
o 2+ h)2 — 4)e; h
= lim L_)_L_;_ _e_z_ = de; + e,
h=0 h h

- Now suppose f(t) > L as t > to; then |f(f)| > [L| as t > &. For, letting £(t) = fi(t)er +
fa(t)es + fs(t)es and L = Lies + Lez + Lses,

lim 50 = lm (0 + £ + 6P
B [< o fl(t)>2 * <£.nsf, f2(t)>2 + <}g§1 f:.‘,(t)>2]”2
= [Lf + L + L§]1/2 __—

Note, however, that the converse of the above is not true. That is, |£(t)| may have a
limit even though £(¢) does not. This happens in Example 2.11 at = 0. '

We state the above result formally as
Theorem 24. If f(t) > L as ¢t~ &, then [f(f)| > [L| as t > to.
Finally, we have: If %im f(t) =L, }im g(t)=M and !m} h(t) = N, then
=ty >t

-t
[B] lim (E0)+g() = lmf@®) + lmeg@) = L+ M
=ty =ty 1y
() lim (bHe®) = lm k() limg® = NM

(] If N0, then lim ((t)/A(t) = lim £(t)/lim h() = L/N.

B lm (§¢)-g®) = lm i) lmg) = LM
B, lim (§¢)xg®) = lmf(H)xlmgt) = LXM

(B If lim f(tfy = f(t) and lim h(s) = to, then lim £((6)) = £< lim h(e)) = f(to).
=g . d ) add) —+8

Example 2.15.
Let  lim £(t) = L, tlim glt) = M, tlintl h(t) = N. Then
: —1o had)

£ty

Lim [£(2) g)h@®)] = lim () - g(t) X h(t)) = lm £(2) - tl_lfrtlo (g(t) X h(®))

lim £(t) * lim g(t) X lim h(t) = [LMN]
t=tp t=rty t=rto
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CONTINUITY

A vector function £() defined at ¢, is continuous at t, if for every > 0 there exists a
8 > 0, depending on ¢, such that £(£) is in S_(f(to)) for all ¢ in S;(to); or, equivalently, £(t) is

continuous at {, if m? f(t) = £(to) (2.8)
trty

The function f(t) is-said to be continuous on I if it is continuous at all £¢=1%o in I.

It follows from Theorem 2.3 that f(f) is continuous if and only if its components
fit), i=1,2,8, are continuous. Also it follows from [Hi] through [Hs] that the sum,
product, and scalar and vector products of continuous functions are continuous and that a
continuous function of a continuous function is continuous.

Finally, we note that (2.8) is equivalent to

lim (§t) — £(t) = O
or, if we let k = t — t,, lim (f(fo+ ) — ft)) = 0

Example 2.16.
Let f(t) = a+bt+ct?2 with a,b,c = constants. Then

lim f(t) = lim @a+bt+et) = a+ bty + et = f(to)
g ]

t=+1y

Hence f(t) is continuous for all t.

Example 2.17.

9 _
H e + ey, t+#1
Let f£(f) = . Then £(t) is continuous for all t. For ¢, +# 1,

2e1 + €y, t=1
lim £(f) = lim (L le + ffey) = Bl 4 e = £(ty)
t}gt’ = t_lglo t—1 ¢t 2/ T Hp—191 2 = 0
For t, =1,
. S e | s _ —
21_{:} ft) = }gri < =1 & + t3e2> = }gx} ((t+1e, + ;) = 2¢ + e = £(1)
Example 2.18. te, + €5 t=0
The function £(¢f) = in Example 2.11 is continuous at all ¢ except ¢ =0 where
te, — ey, t<0

the limit does not exist.

DIFFERENTIATION
The limit « f(t) = lim O —1) 2.9)

t—r ity t - to
if it exists, defines the derivative of £(t) at ¢t = to. If £(to) exists, we say £(t) is differentiable
at to.
Observe that if we substitute ¢ = f, + At in the above, the derivative at # is also
given as _
#(ty) = lim £(to + AY) (o)

At=>0 At

(2.10)

Example 2.19.
Let f(t) = a+ bt -+ ct?, with a,b,c = constants. Then

ey = 1 Hto+af) —ft) _ . [a+hltotan+ c(to+ ALY — (a+bty+etd)
eI At = A At
bAt + 2ctoAt + c(Af)?
= lim = lim (b+ 2ty +cAf) = b + 2¢ty
At=+0 At At—0

Thus £(t) is differentiable at ¢, with derivative f'(tj) = b+ 2ct,.

)
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Now, if £(t) = fi(t)es + f2(t)ez + fs(f)es, then it follows from Theorem 2.3 that

F(t) = tllglf_(t)_:%
= m[MO=S0),, | EO_LO,,  OZJ, )
= [ 2QZ2 e+ [im PO=FE e 4 [1im PG e

= filtes + fa(to)e: + flto)es
Thus we have
Theorem 2.5. A function f(f) = fi(t)e: + fa(t)e: + fs(t)es is differentiable at to if and only
if each component fi(t), i=1,2,8, is differentiable at fo, in which case
F(to) = fi(to)er + fa(to)ez + fa(to)es
If £(t) is differentiable on an interval I, then f'(f) is again a vector function on I which

may again be differentiable. This will give the second order derivative of f(f), denoted by
f7(t). Higher order derivatives are defined similarly.

As with scalar functions, if u = £(f), we use the notation
, _du _ o , _ 4 [(du) _ du _ ., ' :
u = % = f(t), u’ = 'd_t<dt> - de =f (t)’ ete.
Example 2.20. '
If u = (84 2t)e; + (sint)e, + etey, then

du d d, . d

vo= = E(t:i—i—%)el + gz (sintley + e = (312 + 2)e; + (costle, + eley
d [du d d d . .

o= - <—£> = E(3t_2+2)e1 + ggleos t)e, + d—t(et)g3 = ‘6te; — (sint)e, + eleg
d d2u d d, . d

uf” = EW = E(Gt)e1 - az(sm tle, — a—t(et)e3 = 6e; — (costle, + eleg

Example 2.21.

x = afcos t)e; + a(sin t)e, traces the circle of radius a about the origin, as shown in Fig. 2-10. The

derivative x’ = dx/dt = — a(sint)e; + a(cos t)e, is tangent to the circle at x and, as we expect, orthog-
onal to x, since x*x''=0.

£2)
dx/dt
x
€
€; >
Fig. 2-10

- Many properties of scalar functions carry over to vectors. For example, in Problem
2.26 we prove

Theorem 2.6. If f(t) is differentiable at fo, then £(t) is continuous at to.
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DIFFERENTIATION FORMULAS .
If u, v, b are differentiable functions of £ on I, then

[J] wu+ v is differentiable on I and %(u +v) = % + %

[J:] hu is differentiable on I and %(hu) = h‘;—g + %—? u

[Js] w-v is differentiable on I and %(u-v) = u- z—‘tr+ %%-v

[Js] wuXvis differentiable on I and gi(d Xv) = uX % + ?i—‘: X v

Finally we have the chain rule:
[Js] If u=£(@t) is differentiable on I: and ¢ = R(f) is differentiable on I, where the image
k(1) is contained in I;, then u = g(6) = £((9)) is differentiable on I, and
du du di

dg ~ dtde
Example 2.22.
Let u = a(costle; — a(sintle,, 6 = (1 +)1/2, t>0. Then

du du dt du /de

B - dtde - at/ d@ < (—a{sin t)e; — alcos t)ey)/[#(1 + 12)—1/2]
—(a/t)(1 + t2)1/2((sin t)e; + (cos t)ey)

where we used the fact that for scalar functions 6 = h(t) such that de/dt = 0, we have dt/de = 1/(ds/dt).

Example 2.23.
d(dn) .4 e e dup
iar) T Rlat\de at"dt ~ "ae T |at
Example 2.24.

dt
a ud_uﬂ] - 4 ,da_du\ _  d/fdu, dfu) A du (du  d’u
at|%acde]| T @\ @ ae) T “dt\at e dt \dt = dt
du ., d*u u  du - du, dlu) _ | dudiu
“'[<dtxdt3>+<wxdt2)] t0 = <dtxdt3> = [“ at dt3:|

Finally, if u is a vector function of constant magnitude, i.e. if |u| = constant, then
‘u+u = constant, and, differentiating, we obtain
‘ du du du

“'Et‘ﬁ“?z?'“ =0 or u-E = 0

Hence u is orthogonal to du/dt. In particular we have
Theorem 2.7. If u is a unit vector function, then du/dt is orthogonal to u.

This theorem is an important result which will be used often.

FUNCTIONS OF CLASS C™

In general we require that our functions can be differentiated at least once and usually
twice, or more often. Also we will want to know the largest class of functions for which a
result will be valid. Accordingly we say a scalar or vector valued function £ belongs to
class C™ on an interval I if the mth order derivative of f exists and is continuous on I.- We
denote the class of continuous functions by C° and the class of functions which have deriva-
tives of all orders by C~. ‘ *
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Since a vector function is continuous or has a derivative if and only if all components
are continuous or have derivatives, we have

Theorem 2.8. A vector function £(t) = f, (t)e1 + f2(t)es + f3(t)es belongs to C™ on I if and
only if its components fi(t), f2(t) and f3(t) belong to C™ on I.
Note that since a dlfferentlable function is continuous, if a functlon belongs to C™ it
belongs to C? for all j =
Example 2.25, ‘ ‘ .
Consider the vector function £(t) = t%e; + (sin t)e, + t8/%e;, —» < ¢t < =. Here
f'(t) = 8t%; + (cost)e, + (8/3)t5/3e; and /() = 6te; — (sint)e, + (40/9)t2/3e,

are continuous for all ¢. However, f’/(f) = 6e; — (cos t)e, + (80/27)t~1/3¢; does not -exist at t =0,
since ¢1/3 appears in the denominator. Hence f(f) is in C2 on —» < ¢ < = but not in C3. In any interval
not containing the origin, f has continuous derivatives of all orders and hence in such an mterval f belongs
to class C~.

As a consequence of the differentiation formulas [Ji] through [Js] we have
Theorem 2.9. 1If f, g; h belong to C™ on I, then hf, £+ g, £+ g and £ X g belong to C™ on 1.
Theorem 2.10. 1If f(t) belongs to C™ on I; and if ¢(6) belongs to C™ on I, where #(I) is con-
tained in I:, then the composite function g(¢) = £(£(9)) belongs to class C™

on I,. In other words, a function of class C™ of a function of class C™ is a .
function of class C™.

TAYLOR’S FORMULA
Let () be of class C™ on I. Then (Taylor’s formula) for every ¢ and &, in I,

. ’ (m)
&) = f(t) + I@(t—to) + - 4+ I—%(—:to—)(t—to)m + Ru(t, to)
where the remainder Ru(t, to) has the property that
Rm(t, t())
m > 0 as t—>1t

. Clearly, by applying the formula to the components of a vector function f(t) we have

Theorem 2.11. Taylor’s Formula. Let f(t) belong to C™ on I; then for every ¢ and t, in I,

f(t) = ‘f(to)+f’(f°)

(m)
f—m(!t—")(t —to)™ + Rlt, o)

(t —to) +

where %%%—* 0 as t—=to
Example 2.26. ’
If f(f) = (costle; + (sint)e,, then £(0)=e;, f'(0)=-ey; £/(0)=—e;, £7(0)=—e, £D0)= e
Hence about ), = 0 we have
(sin t)e; + (costle, = e; + et — (e,/21)i2 — (ex/3)3 + (e /A1)E: + Ry(t)
where Ry (t)/t*~>0 as t=0.

It is often convenient to use the Landau symbols o and 0, to investigate the behavior of
a function in the neighborhood of a point. Namely, let a scalar function g(t) be different
from zero in some deleted neighborhood of ¢. A scalar or vector function £(t) is said to be
“small oh” of g(t) at t,, denoted by £(t) =o(g(t)), if £(t)/g(t)>0 as t->t,.. A scalar or
vector function £(f) is said to be “big oh” of g(t) at t,, denoted by £(£) = O(g(t)), if £(¢)/g(t)
is bounded at t,. '



CHAP. 2] VECTOR FUNCTIONS OF A REAL VARIABLE . 31

Example 2.27.
If £(f) = ai*+bt5+ctb, a,b,c = constants, then f(f) = o(t?) at £ =0. For, »
gin% f(t)y/8 = 1in‘(1} (at+bi2+ct3) = 0

Note also that f(¢) = o(t?). However, f(t) # o(t?) for integers = > 3.

Example 2.28.
If £(t) = (sin2t)e; + (12+ e, + tte;, then £(f) = O(f2). For,

lim £(¢)/82 = lim [s"t‘ bey+ (1+t)ey + tzes} = e + e

Since the limit exists, f(t)/¢2 is bounded; thus f£(#) = O(t2). Note that f(t)/t>0 as t—0; thus also
f(t) = O(t). But O(#?) is the best estimate, since [f(f)/t?] > = as t=>0 for a> 2. .

Example 2.29.
Let £(¢) be of class Cm on I. It follows from Taylor’s formula that at ¢,

£(t) . (to)

f(t) = o4 ]

(E—tg™ + of(t— ty)m]

'ANALYTIC FUNCTIONS
Suppose £(f) is of class C~ on I. Then for every m and all ¢ and %, in I, we have

'’ (m)
i) = g + 0 4 B g Rt
Now, if in addition, lim Rm(t,t) = 0, then £(f) can be expressed in I as a power series
f( ) = 2 fr (to)

When such is the case, £(t) is said to be analytic in I, or, more generally, f(f) is analytic in
I if for every f, in I, there exists a neighborhood S,(t,) such that f(t) has a power series’

expansion .
f(t) = za,,(t to)®

n=0

(t — toyr

which converges to f(f) for all ¢ in S;(to)._ The class -of analytic functions -on I shall be
denoted by CA. '

As shown in the example below, a funection of class C* need not be analytic.  However, it
can be shown that any function represented by a power series can be differentiated in the
interior of the interval of convergence and the derivative is represented by the power series
formed by differentiating the original power series term by term. Thus every analytic
function is of class C*. Moreover, £™(t,) = an!

It follows from the sum, product and substitution theorems for power series that the
sum, product and scalar -and vector products of analytic functions are analytic and that an
analytic function of an analytic function is again analytic.

Example 2.30.

The function f(f) = e—1/t* . is continuous for all ¢ except ¢t =0. If we define f(0) =0, then f(£)
will be continuous and in fact will belong to C* for all —« <t < «», However, f(t) is not analytic in
any interval containing ¢ = 0. For it can be shown that f(0) =0, f(0) =0, f’(0) =0, ete., so that if
f(¢) did have a power series expansion in some S5(0), the series would converge to zero for every ¢ in S5(0),
which is impossible since f(f) is not identically zero in any S5(0).

Finally we note that the elementary functions, i.e. polynomials, rational functions,
trigonometric functions and exponential functions, are analytic in any interval in which
they are continuous and that their inverses are analytic in any interval in which they are
differentiable.
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Solved Problems

LINES AND PLANES

2.1

2.2,

2.3.

24.

2.5.

Find a unit vector normal to the plane S containing P(0, 1, 1), Q(1,0,—1), RE(1, ~1, 0).

€4 1 1
PQ X PR = €y -1 -2 = —331 — € — €3
€3 -2 -1

X
is normal to S, and i%%g_l = =(1/y/11)(3e,+ e, + e;) are unit normals to S.

Find the equation of the line through A(1, —1,2) and parallel to the x5 axis.
Let x = OP, a = OA. Then P is on the line if and only if AP = (x — a) = keg or
(g — 1)ey + (x5 + 1)ey + (w3 —2)eg = ke,
or ®, =1, 23 =-—1, 23=k+2 (—o<k<w)

Let d=0 andlet n = nie: + nse: + nses be a unit vector. Show that
My + Motz + Na®s = d
is the equation of the plane S whose distance from the origin is d and whose unit
normal vector directed away from the origin is n.
- Let x be a general point on S. Then
m®;, + Ngfiy + mgwg = mex = [x|cosX(mx) = d = 0

implies cosX(m,x) =0 or 0= X.(n,x) = #/2. That is, n is directed from the origin to S.
As indicated in Fig. 2-11, the distance from the origin to Sis

Pa)| = Inx|/|n| = jn-x| = |d| =d

Fig. 2-11 Fig. 2-12

Derive the equation_ of the sphere of radius r about a.

[x—a] = r or (x—a)*(x—a) = 72

Let a be the vertex of a right circular cone with axis in the direction of a unit vector
n, and half angle § =cos™'k, k> 0. Show that the equation of the cone is

[(x—a)-n]? — k¥(x—a):(x—a) = 0
As shown in Fig. 2-12, x lies on the cone if and only if X (x—a, n)=¢6 or (r—a), ie. iff
lcos X (x —a,m)| = [cosé] =k  or (x—a)sn| = klx—a] .

or, squaring, [(x—a)e*n]2 = k2(x —a)+(x —a) from which the result follows.
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2.6. Let (w,uz, us) be an arbitrary basis in E3, let O be a fixed point in E3, and let the
coordinates (zi, x2, #3) of P be defined as the components of the vector

x = OP = zmwm + Zu: + wxsus

with respect to the basis (uj, uz,us). A coordinate system established in this way is
called an affine coordinate system. Show that in an affine coordinate system the
square of the distance between P(z1, %2, #s) and Q(¥1, ¥z, ¥s) is given by

PQP = gu(@:— Y1)? + g12(1 — Y1)(X2 — Y2) + G1s(21 — Y1) (%3 — Ys)
+ go1(2 — Y2) (X1 — Y1) + goo(w2 — Y2)® + gos(2 — Y2)(%s — Ys)
+ gsi(xs — Ys)(@1 — Y1) + Gsa(s — Ys)(¥2 — Y2) + Gas(w3 — Ys)®

or, in short, PQE = X3 gu(@i—wy)(xi—v), 47=123
T3

where the gy satisfy (a) g4 = g5, (b) det(gy) > 0.

QP2 = [oP—0Q)2 = [x—y2 = (x—y)(x—y)

[% (o; — 'l/i)ui] . [? (z;— yj)uj] = ? > (g * wy) (o — Y% — ¥y)

3

[PQf?

or [PQ|Z = 2 § 9i(%; — y;)(x;—y;) where ‘ g =weu 4,j=123.
1 .
Clearly (a) gy = w uw; = w;°w; = g5 47 =1,2,8. Also, from Problem 1.58,

uycuy; uy "“2 u; *ug
(b) det (g,j) = det Usg*Uy U°Uy Ug*Ug = [u1u2u3]2 > 0
Uzcu; UgclUy Uz°lUg

FUNCTIONS
277. Compute the vectors x = t%e; + (1 —t)e: for ¢t any integer between —4 and 4 and
sketch the curve traced by the terminal points of x.

t x 2}
—4 16e; + bey ;
—3 9e; -+ 4de, ) (16,5)
-2 4e; + 3e, (4,8)
-1 e + 2e;, - '

0 e, 1

1 & \\K_

2 de; — e, (16,—3)

3 9e; — 2e, -

4 16e; — 3e, Fig. 2-13

28. Let f(t) = (1+ e + (2t — e + tes, g(t) = (L +t)es + t%e, R(t) = (2t—1). Find
(a) 2)(E(1) + g(—1)), (b) [@)], () f(a)-£(b), (d) £(t) X g(t), () g2a—1b), () fto+At)—
f(t), (9) £(R(2)).
(@) h(2)(£(1)+g(—1)) = (3)[(2e,+ ey +e3) + (2e; —e5)] = 12e; + e,
(6) |g(2)] = |5e,+8ey] = V89
() f(a)+g(d) = [(1+ ade; + (2a — a?)e, -+ aes] « [(1 + b2)e; + b3ey]

1+ a®)(1 + b2) + b3(2a — a?)

Il
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e, (1+8) 1+
det| e, (2t—1?) 3

e; t 0
—tte, + (t+ t9)e, + (154 4 — 13 + £2 — 2t)e,
(¢) g(2a—b) = (1 + (2¢— b)?)e; + (2a — b)3e,
(f) fto+At) —£(t) = [1+ (to+ At)3ley + [2(tg + AL) — (tg + At)Z]e,

- + (to+ At)es — (1 + t)e; — (2tg — 2)ey — toeg
= (3tIAt + 3ty A2 + Atd)e; + (2At — 2ty At — At2e; + Ateg
(9) #a@) = f2t—1) = (1+(2t—1)%)e, + (2(2t — 1) — (2t —1)2)e, + (26— 1)eg
= (818 — 1262 + 6t)e; + (—42+ 8t — 3)e, + (2t — 1)eg

(@) £(t) X g®)

2.9, Show that the curve generated by
= (—1 + sin 2t cos 8t)e; + (2 + sin 2t sin t)e; + (—3 + cos 2t)es
lies on the sphere of radius 1 about a = —e: + 2e2 — 3es.
|x —a] = |(sin 2¢ cos 3t)e; + (sin 2¢ sin 3t)e, + (cos 2t)eg)
= (sin2 2¢ cos? 8t + sin2 2¢ sin? 3t + cos? 2t)1/2. = (sin2 2t + cos22f)1/2 = 1
from which the result follows.

2.10. Show that the curve generated by
= (-2 + sint)e; + (2+2)ex + (£ — 1 + 2 sint)es
lies on the plane through a = e: + 2e; and normal to N = 2e; + e; — es.
(x—a)*N = [(—2+ sint)e; + (2+ 1)ey + (2 — 3 + 2 sint)es] *[2e, +e;—e3] = 0
It follows that x lies on the plane through a and normal to N.

211. Let a = e;—2e:+e; and b = 2e; — 3es + e. () Show that b is in Ss(a). (b) Find a
8 > 0 such that S;(b) is contained in Ss(a). (c) Find ¢, and e, such that S¢,(a) and S,(b)
are disjoint.

(@) Since |b—a] =V2< 3, b is in Si(a).
(b) Let 8 =3—|b—a| =38—V2. If x belongs to Ssb), i.e. if [x—b| <35, then
x—a] = [x—b+b—a] = [x—b|+ b—a] < §+V2 = 3—V2+V2 =

that is, |[x—a| < 8 and x is in Sa(a). Since any x in Sj(b) is in Sy(a), Ss(b) is contained in
Sz(a). See Fig. 2-14.

3=3-V2 6 = e = V2/2
Fig. 2-14
(c) Let ¢g=e = }|b—a| = V2/2; then Sel(a) and S (b) are disjoint. For suppose otherwise, i.e.
suppose y is in Sel(a) and Sez(b); then |y —al < V2/2 and ly—b| < V2/2. But
' VZ = b—a] = b—y+y—a| = |y—b|+[y—a < V2/2+V2/2
which is impossible. Thus S, 1(a) and SEz(b) are disjoint.
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2.12.

2.13.

Show that the points P(t2, —t,2¢) lie in Sys(1, —1,2) for all ¢ in Si/10(1).
If ¢ is in Sy10(1), then |t—1| < 1/10 or (t—1)2.<1/100. Also,
(t+1)2 = (t—1)+2)2 = (t—1)2+4(¢—1)+4

= (t—1)2+4jt—1] +4 = (1/100) + (4/10) +4 = 5
Now, for these ¢, the distance between P(t2,—t,2t) and (1,—1,2) is

[(2—1)2 + (—t+1)2 + @t — 2212 = [(t+D2At—1)2 + (E—1)2 + 4t —1)%/2
= [(5/100) + (1/100) + (4/100)]V/2 = 1/V/10 < 1/3
Thus P is in Sy,3(1,—1,2) for all ¢ in Sy/10(1).

Find a 8 > 0 such that the vectors x = t%; — tex + 2tes are in Si/i0(e1 — ez + 2eq)
for all ¢ in Sy(1).

Let a =e; —e;+2e;. Then
(82— 1)e; — (¢ — Ley + (2t — 2)eg|
[2—1|leg] + [t—1]leg] + [2t—2[leg] = [t—1][t+1] + [t—1] + 2|t—1]
[t—1](t+1]+38) = [t—1(t—1+2/+3) = [¢e—1(t—-1]+ 5)
Now suppose |t—1|<1; then |x—a|=|t—1|6<1/100 if |t—1| <1/600. Thus if t—1| <
1/600, ie. if ¢ is in Ss(1) where & = 1/600, then certainly [t—1] <1 and

lk—a] = |t—1|(t—1|+5) = [t—1]6 < (1/6006 = 1/100

that is, x is in Sy,100(a), which is the required result.

x —al

NN

LIMITS AND CONTINUITY

2.14.

2.15.

2.16.

2.17.

Evaluate ltmzl [(8% + 1)es — t%ez + es].

lim [(3¢%+ 1)e; — %, + €] = <¥in; (3t2+1)> e — <1in'; t3>e2 + <}in; 1> e; = 13¢; — 8e; + e

Let £(f) = (sinf)es +tes and g(t) = (B+1)es+ e Find (2) lLim (£(t)- g(t)),
(b) lim (£(t) X g(2))- 0
(@) lim (£(¥)-g(®)) = lim £(¢) « lim g(?)
t=>0 t—=0 t~0
= }1_13(1) ((sin t)e; + teg) * }1_% (82 4 1)e, + etey)

0+(e;+e) = 0

lim f(t) X lim g(®)

}i_r.r(\) ((sin t)e, + teg) X girt(l) [(#2 + 1)e; + etey)

il

(b)  lim (£(£) X g(t))

= 0X(e;+e) = 0
Define the function £(t) = SI?t e: + (cost)e; at t=0 so that f(t) is continuous at
t=0. '
. in ¢
lim (1) = lim (% e, + (cos t)e2> = e1‘+ e

Thus if we define £(0) = e; + e, then }ina f(f) = £(0) and £(f) will be continuous at ¢=0.

Prove that if £(£), g(t) and h(t) are continuous at to, then [£(t) g(f) h(f)] is continuous
at fo. )
It is given that lim £(£) = £(f,), lim g(f).= g(f,), and lim h(t) = h(t). It follows from
Example 2.15 that % t=rto torty
’ lim [£(2) g B(t)] = [£(t0) &(t0) ho)]
o

Hence [f(t) g(t) h()] is continuous at &,.
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2.18. Using the definition of the limit, show that
ltinll (tPe1r + (f+1)es) = e + 2e

Let f(t) = t%e,;+ (t+ 1)e; and L = e; + 2e,, and consider
() —L] = |(B—1)e; + (t—1)ey] = [2—1||ey| + |[t—1|]e,]
fE—=1jt+1 + |t—1] = p—-1(t—1+2+1) = [t—1|(t—1]+ 3)
If we take |t— 1| <1, it follows further that
B —L| = |t—1]4 < ¢ if |t—1] < ¢4

Thus given an arbitrary e> 0, we are led to choose & = min (1,¢/4). Then if |[t—1]| <38, ie.
if t is in S5(1), we have both |t—1| <1 and |t—1]| < ¢/4; and for these ¢,

(&) —L| = |[t—1(t—1]+8) = |t—1]4 < ¢

i.e. £(t) is in S/(L), which is the required result.

I\

2.19. If £(?) is bounded at £, and g(t) ~> 0 as ¢ > %o, show that £(t) X g(t)> 0 as t > L.

Let ¢ > 0 be arbitrary. Since f(f) is bounded at t,, there exist M >0 and 8§; > 0 such that
[£(8)] = M for all 0 < |t —¢y] < §;. Also, since g(t) >0 as t— 1, there exists 8, > 0 such that
lg(®)] < /M for 0 < |t—ty| < 8;. Now choose &= min (5;,8,); then for 0 < [t—12y| < & we have
0<|t—ty)] <8, and 0 < |t— ¢ty < 5. Hence ,

[i(t) X g(t) — 0| = |f(t) X g(®)] = [£(t)] [g(t)] |sin X.(£,8)] = [|£(t)]|g(t)] < M(/M) = e
Thus f(t) X g{t) >0 as t— ¢,

2.20. If f(t)~> L and g(f) > M as t - t,, show that £(t) X g(£) > L X M as t - to.

Now let ¢>0 be arbitrary. Since g(f)—= M as t—>¢, there exists a 8§; > 0 such that
lg(t) —M| < ¢/(2|L]|) for 0 <|t—1tp] < &;. Also g(t) is bounded at ¢, and so there exist 8, >0
and K >0 such that [g(t)] = K for 0 < |t—ty] < 8, Finally, since f(£) >L as t—>£, there
exists a 83 > 0 such that [f(f) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>