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Preface

This third edition of the well-known caicuius review book by Frank Ayres,
Jr., has been thoroughly revised and includes many new features. Here are some
of the more significant changes:

1. Analytic geometry, knowledge of which was presupposed in the first two
editions, is now treated in detail from the beginning. Chapters 1 through
5 are completely new and introduce the reader to the basic ideas and
results.

2. Exponential and logarithmic functions are now treated in two places.
They are first discussed briefly in Chapter 14, in the classical manner of
earlier editions. Then, in Chapter 40, they are introduced and studied
rigorously as is now customary in calculus courses. A thorough treatment

of exponential erowth and decav also is included in that chapter

Ui LAPpUBTIILIGL giUMWLL anlld Lay sl LIS Lot ) Tiidas LEL=S S A0

3. Terminology, notation, and standards of rigor have been brought up to
date. This is especially true in connection with limits, continuity, the
chain rule, and the derivative tests for extreme values.

4. Definitions of the trigonometric functions and information about the
important trigonometric identities have been provided.

5. The chapter on curve tracing has been thoroughly revised, with the
emphasis shifted from singular points to examples that occur more

frequently in current calculus courses.

The pu urpose and method of the nrmmal text have nonetheless been pre-

r= r
served. In particular, the direct and concise exposition typical of the Schaum
Outline Series has been retained. The basic aim is to offer to students a collection
of carefully solved problems that are representative of those they will encounter
in elementary calculus courses (generally, the first two or three semesters of a
calculus sequence). Moreover, since all fundamental concepts are defined and the
most important theorems are proved, this book may be used as a text for a
regular calculus course, in both colleges and secondary schools.

Each chapter begins with statements of definitions, principles, and theorems.
These are followed by the solved problems that form the core of the book. They
give step-by-step practice in applying the principles and provide derivations of
some of the theorems. In choosing these problems, we have attempted to
anticipate the difficulties that normally beset the beginner. Every chapter ends
with a carefully selected group of supplementary problems (with answers) whose
solution is essential to the effective use of this book.

ELLioTT MENDELSON
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Chapter 1

Absolute Value; Linear Coordinate Systems;
it

inequalities

v

THE SET OF REAL NUMBERS consists of the rational numbers (the fractions a/b, where @ and b
are integers) and the irrational numbers (such as V2=14142. .. and 7 =3.14159. . ), which
are not ratios of integers. Imaginary numbers, of the form x + y\/—l will not be con51dcrcd
Since no confusion can result, the word number will always mean real number here.

v ka"
NUMoCT

Zero or a positive number
ane en

For example, |3| =|-3|=3 and |0| =
In general, if x and y are any two numbers, then

—|x| = x = |x]| (1.1
I=x|=[x] and |x-y|l=]y-x| (1.2)
|x| = |y| implies x = %y (1.3)
x| x|,
by[=lal-Iyl (D)= 7 iy 0 (1.4)
x+yl=|x|+ Triangle inequality) 1.5
y y g q

A LINEAR COORDINATE SYSTEM is a graphical representation of the real numbers as the points
of a straight line. To each number corresponds one and only one point, and conversely.
To set up a linear coordinate system on a given line: (1) select any point of the line as the
origin (corresponding to 0); (2) choose a positive direction (indicated by an arrow); and (3)
choose a fixed distance as a unit of measure. If x is a positive number, find the point
corresponding to x by moving a distance of x units from the origin in the positive direction. If x
is negative, find the point corresponding to x by moving a distance of |x| units from the origin in
the negative direction. (See Fig. 1-1.)

i i 1 i I } —t i 4 | 4 11 4 y—
) T L) T L T T T 1 LS L 1 | =
— -3 -5/2 -2 —8/2 —1 0 1/2 1 Yz 2 8T 4

Fig. 1-1

The number assigned to a point on such a line is called the coordinate of that point. We
often will make no distinction between a point and its coordinate. Thus, we might refer to *‘the
point 3” rather than to “the point with coordinate 3.”

If points P. and P. on th A\
f points 7, and P, on the line have coordinates x, and x, (as in Fig. 1-2), then
|x, — x,| = P, P, = distance between P, and P, (1.6)

As a special case, if x is the coordinate of a point P, then

|x| = distance between P and the origin (1.7)

1



ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS; INEQUALITIES [CHAP. 1

x <+

™ o
fale aiin -]

Fig. 1-2

FINITE INTERVALS. Let a and b be two points such that a < b. By the open interval (a, &) we mean
the set of all points between a and b, that is, the set of all x such that a < x < . By the closed
interval [a, b] we mean the set of all points between a and b or equal to a or b, that is, the set of

all x such that a=x=b. (See Fig. 1-3.) The points a and b are called the endpoints of the
intervals (a, b) and [a, b].

2 0 —&
a b a
Open interval (a. b): a<x<b Closed interval {a,b]: a<x=<b

. -
Fig. 1-3

By a half-open interval we mean an open interval (a, b) together with one of its endpoints.

There are two such intervals: [a, &) is the set of all x such that a < x < b, and (a, b] is the set of
all x such that a<x < b.

For any positive number c,

|x}=<c if and only if —csx=¢ (1.8)
|x] <c if and only if —c<x<¢ (1.9)
See Fig. 1-4.
Ixl=¢ x| <e

-— , o - : o

® T 4 — —O- T Q-

-c 0 c -c 0 c

Fig. 1-4

INFINITE INTERVALS. Let a be any number. The set of all points x such that a < x is denoted by
(a, *); the set of all points x such that 2 < x is denoted by [a, ). Similarly, (==, b) denotes the
set of all points x such that x < b, and (—=, b] denotes the set of all x such that x <b.

INEQUALITIES such as 2x — 3> 0 and 5 <3x + 10 < 16 define intervals on a line, with respect to a
given coordinate system.

EXAMPLE 1: Solve 2x - 3>0.

2x-3>0
2x>3 (Adding 3)
x> 3 (Dividing by 2)

Thus, the corresponding interval is (3, »).



CHAP. 1] ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS; INEQUALITIES 3

EXAMPLE 2: Solve 5<3x+10=16.

5<3x+10=16
—-5< 3x =6 (Subtracting 10)
-3< x <=2 (Dividing by 3)

Thus, the corresponding interval is (—5/3, 2].

EXAMPLE 3: Solve —2x+3<7.

—-2x+3<7
—2x<4  (Subtracting 3)
x> -2 (Dividing by -2)

Note, in the last step, that division by a negative number reverses an inequality (as does multiplication by
a negative number).

Solved Problems

1. Describe and diagram the following intervals, and write their interval notation: (a) —3 <
x<5 (D) 2=x<6;(c) —4<x=0;(d)x>5;(e) x=2;(f)3x—4=8;(g) 1 <5-3x <1l

(a) All numbers greater than —3 and less than 5; the interval notation is (-3, 5):

O .
n®s )
-3 s

(6) All numbers equal to or greater than 2 and less than or equal to 6; |2, 6]:

—o— -o- —
2 6

(c) All numbers greater than ~4 and less than or equal to 0; (—4,0]:

4
0

£y AN b e Ao ow a
\u} ALl 1TUIHIuCDd ElCdICl Lilal

Mr

(e) All numbers less than or equal to 2; (—=,2]:

-
2

(f) 3x — 4=8 is equivalent to 3x =12 and, therefore, to x =4, Thus, we get (—=, 4]:

m—
4
(8) 1<5-3x<11
—4< _3x <6 {Cuhtrantinag §)
- A ™~ \JUUIIGUIIIIE J’
-2< x <4% (Dividing by —3; note the reversal of inequalities)

Thus, we obtain {(—2, 3):




ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS; INEQUALITIES [CHAP. 1

Describe and diagram the intervals determined by the following inequalities: (a) |x| <2; (b)
|x| >3; (¢) |x — 3| <1; (d) |x —2| <8, where 8 >0; (e) |x+2|=<3; (f) 0<|x— 4] <8, where
6 <0.

(a) This is equivalent to —2 < x <2, defining the open interval (—2,2):

wat Y o .
- s

-2 2

(b) This is equivalent to x >3 or x< -3, defining the union of the infinite intervals (3,=) and
(_oc! _3)
3

-3

(c) This is equivalent to saying that the distance between x and 3 is less than 1, or that 2 < x <4, which
defines the open interval (2, 4):

)
L n g -
4

We can also note that |x — 3| <1 is equivalent to —1<x —3<1, Adding 3, we obtain 2<x <4,
(d) This is equivalent to saying that the distance between x and 2 is less than 8, orthat 2 - § <x <2+ §,
which defines the open interval (2 — 8,2 + &). This interval is called the &-neighborhood of 2:

> "
S

had Al
2-5 2 2+ 8

(€) |x +2| <3 is equivalent to —3 < x +2<3. Subtracting 2, we obtain —5 < x <1, which defines the
open interval (=5, 1):

O e e
\p—
-5 1

(f) The inequality [x —4| <& determines the interval 4 — & <x <4+ 8. The additional condition
0 < |x — 4| tells us that x # 4. Thus, we get the union of the two intervals (4 — §,4) and (4,4 + 8).
The result is called the deleted 8-neighborhood of 4:

- — ¥ o
"~ e A
4-5 4 4+

Describe and diagram the intervals determined by the following inequalities: (a) |5 — x| <3;
(b) 12x = 3| <5; (¢) 1 —4x| < 3.

(a) Since |5 — x| = |x — 5|, we have |x — 5| <3, which is equivalent to —3 < x — 5=<3. Adding 5, we get
2 = x =8, which defines the open interval (2, 8):

® - -
2 8
(b) |2x — 3| <5 is equivalent to —5 <2x — 3 <5. Adding 3, we have —2< 2x <8; then dividing by 2
yields —1 < x <4, which defines the open interval (—1, 4):

oY -
2@ L~ —
4

(¢) Since |1 - 4x| = |4x — 1|, we have |[4x — 1| <}, which is equivalent to —} <4x — 1< 1. Adding 1, we
get § <4x < 3. Dividing by 4, we obtain 3 <x < §, which defines the interval (§, 3):

—

gt
ol

et
ot
18 3/8



CHAP. 1] ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS; INEQUALITIES 5

Solve the inequalities (a) 18x — 3x* >0, (b) (x +3)(x — 2)(x - 4) <0, and
(¢) (x + 1)’(x = 3) >0, and diagram the solutions.

(@) Set 18x — 3x* = 3x(6 — x) = 0, obtaining x = 0 and x = 6. We need to determine the sign of 18x — 3x°
on each of the intervals x <0, 0< x <6, and x > 6, to determine where 18x — 3x* > 0. We note that
it is negative when x < {, and that it changes sign when we pass ihrough 0 and 6. Hence. it is positive
when and only when 0 <x <6:

e

0 6

(b) The crucial points are x = -3, x =2, and x =4. Note that (x + 3)(x - 2)(x — 4) is negative for
x < —3 (since each of the factors is negative) and that it changes sign when we pass through each of
the crucial points. Hence, it is negative for x < —3 and for 2<x <4:

-3 ks Y -
(c) Note that (x + 1)’ is always positive (except at x = —1. where it is 0). Hence (x + 1)’(x —3)>0

when and only when x —3>0, that is, for x> 3:

3
Solve |3x —7|=8.
In general, when ¢ =0, |u| = c if and only if u = ¢ or u = —c. Thus, we need to solve 3x - 7 =8 and
3x — 7= -8, from which we get x =5 or x = —§.
2x + 1
Solve >3.
x+3

Case 1: x + 3> 0. Multiply by x + 3 to obtain 2x + 1> 3x + 9, which reduces to —8 > x. However,
since x +3>0, it must be that x > —3. Thus, this case yields no solutions.

Case 2: x + 3 <0. Multiply by x + 3 to obtain 2x + 1 <3x + 9. (Note that the inequality is reversed,
since we multiplied by a negative number.) This yields —8 <x. Since x + 3 <0, we have x < 3.

Thus, the only solutions are —8<x < -3,

Solve

2
——3l<5.
x

The given inequality is equivalent to —5 < 2 3<5. Add 3 to obtain —2<2/x <8, and divide by 2
to get ~1<1/x<4. *

Case 1: x> 0. Multiply by x to get —x <1<4x. Then x > § and x > — 1; these two inequalities are
equivalent to the single inequality x > §.

Case 2: x <(. Multiply by x to obtain —x > 1> 4x. (Note that the inequalities have been reversed.
since we multiplied by the negative number x.) Then x < and x < —1. These two inequalities are
equivalent to x < — 1.

Thus, the solutions are x > } or x < — 1, the union of the two infinite intervals (. <) and (-=, —1).

Solve |2x — 5| =3.

Let us first solve the negation |2x — 5| <3. The latter is equivalent to —3<2x —5<3. Add 5 to
obtain 2 <2x <8, and divide by 2 to obtain 1 <x <4. Since this is the solution of the negation. the
original inequality has the solution x <1 or x 4.

Prove the triangle inequality, |x + y| < |x| + | y|.
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11.
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13.

14.

ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS; INEQUALITIES [CHAP. 1

Add the inequalities - |x| < x =< |x| and —|y| =y =]y| to obtain
—(Ixl+lyh=x+y=|x|+y|

Then, by (1.8), [x + y| =< |x| +|y].

Supplementary Problems

Describe and diagram the set determined by each of the following conditions:

(a) -5<x<0 () x=0 (c) 2=x<3 (dyx=1
(e) {x|<3 (f) x| =5 (8) |x—2|<: () lx +3]>1
() 0<ix—-2|<1 (NOo<|x+3[<} (k) [x=2[=1.

Ans. (&) —3<x<3;(flx=Sorxs=s-5;(g)i<x<3;(h)x>-2o0rx<—4;(i)x#2and 1 <x<3;
(j) " ¥<x<-%¥;(k)x=3o0rx=1

Describe and diagram the set determined by each of the following conditions:
(a) 3x-7| <2 ) [4x-1=1 (¢) ——2‘<4

3 1 ‘_1
(d)‘x 2’54 (e) ‘2+x’>1 ) o <3

Ans. (@)3<x<3;(b)xzjorx=0,(c) -6=x=<18 (d)x=-3orx=
(e)x>0orx<—-lor—j<x<0;(f)x>%orx<—4%

Ni—

»

Describe and diagram the set determined by each of the following conditions:

(a) x(x-5)<0 (b (x—2)(x-6)>0 () (x+D(x-2)<0

(d) x(x—2)(x+3)>0 () (x+2)(x+3)(x+4)<0 (H)x-Dx+1)(x=-2)(x+3)>0
(8) G- D’(x+4)>0 (h) (x=3)(x+5)(x—4)*<0 (1) (x=2)>0

() (x+ 1)’ <0 (k) x-2)’'(x+ 1)<0 ) -1+ 1)'<0

(m)3x - 1)(2x +3)>0 (n) (x—4)(2x-3)<0

Ans. (@) 0<x<S5;(b)x>6o0rx<2;(c) ~1<x<2;(d)yx>2o0r ~3<x<0;
() —3<x<-2orx<-4; (flx>2or —1<x<lorx<-3;(g)x>-4and x#1;
(h) —5<x<3; (Dx>2, (Hx<-1; (k) - 1<x<2; () x<land x# —1;
(myx>iorx<—3;(n)3<x<4

Describe and diagram the set determined by each of the following conditions:

(a) x* <4 (b) x* =9 (€) (x-2)=16 (d) 2x + 1) >1
(e) x* +3x-4>0 (f)x*+6x+8=0 (g) x*<5x+14 (h) 2x*>x+6
() 6x° +13x <5 (/) x' +3x*>10x

Ans. (a) —2<x<2;(b)yx=3orx=<-3;(c) “2=x=<6;(d)x>0orx<—1;
(e)x>lorx<-4;(f) "4=x=-2,(g) “2<x<T, (W) x>2orx<—

() —3i<x<ii(j) -5<x<0orx>2
Solve: (a) ~4<2-x<7 B) 2x 1<3 ) Y <1
‘ * ( (c x+2
3x—-1 2x — 1
@ 3373 (e) ‘>2 (N | —5|=2




CHAP. 1]

Ans.
15. Solve:

Ans
16. Prove:

(Hint:

ABSOLUTE VALUE, LINEAR COORDINATE SYSTEMS; INEQUALITIES

(@) -5<x<6; (B)x>0orx<—1;(c)x>-2;(d) ~¥<x<-3;
() x<0or0<x<g;(f)xs-dorxz=-1

(@) |4x -5/ =3 () |x+6]=2 (€) |3x—4|=|2x + 1|

(d) |x+1|=|x+2 (&) |[x+1]=3x-1 (H]x+1<|3x -1

(8) 3x—4|=2x + 1]

(@x=2orx=%;(B)x=—-dorx=-8 ()x=50rx=3;()x=-3;(e) x=1;

(f)x>1orx<0;(g)x>50rx<3}

@l=bb o [F[=Eiyeo @ =k
(@) lx—yl=lx[+]y[ (&) lx—yl=]|x[ 1yl

In (e), prove that [x — y| = |x| = |y| and |x — y|=]y| - |x].)



Chapter 2

The Rectangular Coordinate System

COORDINATE AXES. In any plane 2, choose a pair of perpendicular lines. Let one of the lines be
horizontal. Then the other line must be vertical. The horizontal line is called the x axis, and the
vertical line the y axis. (See Fig. 2-1.)

y
| Pla. b)
a,
e b= — — — 4 _____
|
|
!
it l
f
- |
[
1+ |
|
- i i 1 1 1 | 1 x
-2 1 0 ] T 3 4 5 g
_ )
1) |
I

Fig. 2-1

Now choose linear coordinate systems on the x axis and the y axis satisfying the following
conditions: The origin for each coordinate system is the point O at which the axes intersect.
The x axis is directed from left to right, and the y axis from bottom to top. The part of the x
axis with positive coordinates is called the positive x axis, and the part of the y axis with positive
coordinates is called the positive y axis.

We shall establish a correspondence between the points of the plane % and pairs of real
numbers.

is =1}, THC VClllbdl llllC llllngll I
intersects the x axis at a unique point; let a be the coordinate of this point on the x axis. The
number a is called the x coordinate of P (or the abscissa of P). The horizontal line through P
intersects the y axis at a unique point; let b be the coordinate of this point on the y axis. The
number b is called the y coordinate of P (or the ordinate of P). In this way, every point P has a
unique pair (a, b) of real numbers associated with it. Conversely, every pair (a, b) of real
numbers is associated with a unique point in the plane.

The coordinates of several points are shown in Fig. 2-2. For the sake of simplicity, we have
limited them to integers.

MNADNE A < ~ A D -~ shh . wlamas
VUUVURLDLINA LEAD, LOUIDIUCL ally PUllll I Ul uce pidaic oy

EXAMPLE 1: In the coordinate system of Fig. 2-3, to find the point having coordinates (2, 3), start at
the origin move two units to the right, and then three units upward.

To find the pOIﬁt with coordinates \_‘1 L) start at the Gl‘lgiﬁ, move four uniis to t
two units upward.

To find the point with coordinates (—3, — 1), start at the origin, move three units to the left, and then
one unit downward.

The order of these moves is not important. Hence. for example, the point (2, 3) can also be reached

by starting at the origin, moving three units upward, and then two units to the right.

PR W
ne ieji,

8
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y
8
(-3.7e Tr
L
5P
o b e (5.4}
3 ® (3. 1)
(-4.2)® 2
1 (6,0)
S I U | | W W S S B ¥ X
-4 -3 -2 -1 0 i 2 3 4 5 6
_I p—
_2 -
-3¢ (0.-3)
-l-Ye -4 b e -4
_S —
Fig. 2-2
y
4'—
kY o e (2.3
{
{
®(-4,2) i o |
) ]
I
| 1+ |
) |
1 | 1.1 1 | | X
-4 -3 -2 -1 0 1 2 3
(-3, -ne -1
_2-—
-aF
Fig. 2-3

QUADRANTS. Assume that a coordinate system has been established in the plane ?. Then the

£, e o
whole plane 2, with the exception of the coordinate axes, can be divided into four equal parts,

called quadrants All points with both coordinates positive form the first quadrant, called
quadrant I, in the upper right-hand corner. (See Fig. 2-4.) Quadrant Il consists of all points

with negative x coordinate and positive y coordinate. Quadrants 11 and IV are also shown in
Fig. 2-4.
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y
il i
(-.+) (+.+)
(-1.ne 21
1 ®3 1)
1 1 1 1 1 x
-3 -2 -1 0 1 2 3
(-2.-ne L
-2} ®(2,-2)
11| v
(-.-) (+.-)
Fig. 2-4

The points on the x axis have coordinates of the form (a,0). The y axis consists of the
points with coordinates of the form (0, b).

Given a coordinate system, it is customary to refer to the point with coordinates (a, b) as
“the point (a, b).”” For example, one might say, “The point (0, 1) lies on the y axis.”

DISTANCE FORMULA. The distance P, P, between points P, and P, with coordinates (x,, y,) and
(%3, y2) 18

P_P_z\/(_l: —x Y r(v — vy
1£72 VA J \ 7 Yz

—
[
e

A

1 1

EXAMPLE 2: (a) The distance between (2, 5) and (7, 17) is
V-7 +G-17) 7 =V(=5)7 +(-12)'= V25 + 144 = VT69 = 13
(b) The distance between (1. 4) and (5, 2)
VI=-5Y +(4-2Y =V(-4)  +(2)’=V16+4=V20=V3 5=V4-V5=2V5

MIDPOINT FORMULAS. The point M(x, y) that is the midpoint of the segment connecting the
points P (x,, y,) and P,(x,, y,) has coordinates

BRI A T
x=— y="73 (2.2)
The coordinates of the midpoint are the averages of the coordinates of the endpoints.
S . . (2+4 943
EXAMPLE 3: (a) The midpoint of the segment connecting (2,9) and (4, 3) is (—2— T) =(3,6).

-5+1 1+4 5
(b) The point halfway between (—5,1) and (1,4) is ( 52 , T) = (—2, 5)

PROOFS OF GEOMETRIC THEOREMS can often be given more easily by use of coordinates than
by deduction from axioms and previously derived theorems. Proofs by means of coordinates are
called analytic, in contrast to the so-called synthetic proofs from axioms.
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EXAMPLE 4: Let us prove analytically that the segment joining the midpoints of two sides of a triangle
is one-half the length of the third side. Construct a coordinate system so that the third side AB lies on the

el s nwio A o A eioim o o fedd wiactaw fag o . + H 1 1 _
positive x axis, A is the origin, and the third vertex C lies above the x axis, as in Fig. 2-5.

Y

(0.0)

C(u, v)

Fig. 2-5

(b,0)

Let b be the x coordinate of B. (In other words, let b = AB.) Let C have coordinates (u, v). Let M,
and M, be the midpoints of sides AC and BC, respectively. By the midpoint formulas (2.2). the

u v

+b
coordinates of M, are (5, 5)’ and the coordinates of M, are (uT %) By the distance formula (2.1).

which is half the iength of side AB.

Solved Problems

Derive the distance formula (2.1).

Given points P, and P, in Fig. 2-6, let Q be the point at which the vertical line through P, intersects
the horizontal line through P,. The x coordinate of Q is x,, the same as that of P,. The y coordinate of

Q is y , the same as that of P .

Y

Pi(x,y)

Py(x3. ¥2)

q Q(X2- yl)

pS
o) Coup

Fig. 2-6
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By the Pythagorean theorem,

(P1P2)2=(P|Q)2+(P2Q)2 (1)

If A, and A, are the projections of P, and P, on the x axis, then the segments P,0 and A, A4, are
opposite sides of a rectangle. Hence, P,Q = A A,. But A A, =|x, — x,| by (1.6). Therefore, P Q =
|x, = x,|. By similar reasoning, P,Q = |y, — y,|. Hence, by (1),

P1P22=|X| _x2|2+|)’|_)’2|2=(x1 _xz)2+()’| _yz)2

Taking square roots yields the distance formula (2.1).

Show that the distance between a point P(x, y) and the origin is Vx* + 7.

Since the origin has coordinates (0, 0), the distance formula yields V(x — 0)° + (y = 0)° = \/x* + y°.

Prove the midpoint formuias (2.2).

We wish to find the coordinates (x, y) of the midpoint M of the segment P P, in Fig. 2-7. Let A, B,
and C be the perpendicular projections of P,, M, and P, on the x axis.

y
Py(x,. y;)
|
M(x, y) |
[
P 1 |
(xy, y0) . .
1 i
T |
| | |
Ay By cl x
x, x X,

Fig. 2-7

The x coordinates of A, B, and C are x|, x, and x,, respectively. Since the lines P, A, MB, and P,C
are parallel, the ratios P, M/MP, and AB/BC are equal. (In general, if two lines are intersected by three
parallel lines, the ratios of corresponding segments are equal.) But, P,M = MP,. Hence, AB = BC.
Since AB = x — x, and BC = x, — x, we obtain x — x, = x, — x, and therefore 2x = x, + x,. Dividing by
2, we get x=(x, +x,)/2. (We obtain the same result when P, is to the left of P,. In that case,
AB=x, - xand BC=x— x,.) A similar argument shows that y = (y, +y,)/2.

Is the triangle with vertices A(1,5), B(4,2), and C(5, 6) isosceles?

Vi - 4)+5 2 =V(=3)’+(3)’=V9+9=VI8
=\F ) -6 =V () = VIEFT=VTT

Iz T e

V( -5y +(.¢—o)’—v(—1) + (-4 =VI+16=Vi

1

t"I Al 5

Since AC = BC, the triangle is isosceles.

Is the triangle with vertices A(—5, 6), B(2,3), and C(5, 10) a right triangle?
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AB=V(-5-2Y+(6-3) =\V(-1)'+ (3= Va9 +9=V58
AC=V(-5-5) +(6-10) = \(-10)° + (-4)’ = VIDO + 16 = V116

BC=V(2-5"+(3-10) =V(=3) +(-7) = VI+ 49 = V58

Since AC’=AB’ + BC’, the converse of the Pythagorean theorem tells us that AABC is a right
triangle, with right angle at B; in fact, since AB = BC, AABC is an isosceles right triangle.

Prove analytically that, if the medians to two sides of a triangle are equal, then those sides are
equal. (Recall that a median of a triangle is a line segment joining a vertex to the midpoint of
the opposite side.)

In AABC, let M, and M, be the midpoints of sides AC and BC, respectively. Construct a
coordinate system so that A is the origin, B lies on the positive x axis, and C lies above the x axis (see
Fig. 2-8). Assume that AM, = BM,. We must prove that AC = BC. Let b be the x coordinatc of B, and

S . u v
let C have coordinates (u, v). Then, by the midpoint formulas, M, has coordinates \7- E) and M, has
. u+b v
coordinates >3/ Hence,

(2w e ()

y
/A\C(u, v)
Ml MZ
A / NB i
Fig. 2-8

Since AM, = BM,,

() (5) = (4-0) + (5) - (5220 (%)
2 2 2 2 2 2

2 2 2 2
(urd) | % = (“—_42[1 + UT and, therefore, (1 + b)> = (u — 2b)>. So, u+ b=+ (u—2b). If
u+b=u-2b, then b =—2b, and therefore, b = 0, which is impossible, since A # B. Hence, u+ b =
—(u—2b)=—u+2b, whence 2u=b. Now BC=V(u-b) + v’ =V(u-2u) +v' =V(-uy +v° =
Viu? +v°, and AC = Vu® + v°. Thus, AC = BC.

Hence,

Find the coordinates (x, y) of the point Q on the line segment joining P (1, 2) and P,(6, 7),
such that Q divides the segment in the ratio 2:3, that is, such that P,Q/QP,=2/3.

Let the projections of P,, Q, and P, on the x axis be A,, Q’, and A,, with x coordinates 1, x, and 6,
respectively (see Fig. 2-9). Now A ,Q'/Q'A,=P,Q/QP,=2/3. (When two lines are cut by three
parallel lines, corresponding segments are in proportion.) But A, Q'=x—1, and Q’'A,=6—-1x. So
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y
s Py{6,7)
/
B |
s !
Q !
i |
- !
P, | |
- X ' I
4 { { IA
) | AQI P4 x
1 X 6
Fig. 2-9
-1 2 o . .
)(‘, =3 and2 cross-multiplying yields 3x - 3=12 - 2x. Hence 5x =15, whence x=3. By similar
- n
reasoning, =—— = 3, from which it follows that y = 4.
[ Y 7
Supplementary Problems
8 In Fig. 2-10, find the coordinates of points A, B, C, D E, and F,
y
L Ee
ar
3t Ce
bl o o F
Ae 1+
] 1 1 1 | 1 1 i T | 1 —l 1 x
-5 -4 -3 -2 -] 1 T 3 4 5 6 1
-1}
De -2k
Fig. 2-10

Ans. A=(-2,1); B=(0,-1); C=(1,3); D=(—4,-2), E=(4,4); F=(7,2).

9. Draw a coordinate system and show the points having the following coordinates: (2, —3), (3, 3), (- 1, 1),
(2, -2), (0,3). (3.0), (-2,3).

10. Find the distances between the following pairs of points:
(a) (3.4) and (3,06) (&) (2,5) and (2, -2) (c) (3,1) and (2,1)
(d) (2,3) and (5.7) (e) (-2.4) and (3,0) (f)(=2,%)and (4, -1)

Ans. (a) 2; (b) 7; (c) 1; (d) 5; (e) V4AT; (f) V17
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11.

12.

13.

14.

15.

16.

17.

18.

19.

21,

22,

N

Draw the triangle with vertices A(2,5), B(2, —5), and C(-3,5), and find its area.

Ans., area=25

If (2,2), (2, —4), and (5, 2) are three vertices of a rectangle, find the fourth vertex.

Ans. (5, —4)

If the points (2,4) and (—1,3) are opposite vertices of a rectangle whose sides are parallel to the
coordinate axes (that is, the x and y axes), find the other two vertices,

Ans. (—1,4) and (2,3)

Determine whether the following triples of points are the vertices of an isosceles triangle: (a) (4, 3),
(1,4), (3,10); (b) (-1,1), (3,3), (1, = 1); (¢) (2,4), (5,2), (6,9).

Ans. (a) no; (b) yes; (c) no

Determine whether the following triples of points are the vertices of a right triangle. For those that are,
find the area of the right triangle: (@) (10,6, (3,3), (6, —4); (B) (3, 1), (1, -2), (=3, -1} {¢) (5, —2),

(0,3), (2. 4).

Ans. (a) yes, area=29; (b) no; (c) yes, area= ¥

Find the perimeter of the triangle with vertices A(4,9), B(—3.2), and C(8, —5).
Ans.  TV2+ V170 +2V53

Find the value or values of y for which (6, y) is equidistant from (4,2) and (9, 7).

Ans. 5

Find the midpoints of the line segments with the following endpoints: (a) (2, =3) and (7, 4); (b) (3.2)
A fA 1Y /n\ r\/_ M and (1.4

jyle] \"f } \C }dlu\l,‘f}

w0 (3o (30 (252

Find the point (x, y) such that (2, 4) is the midpoint of the line segment connecting (x, y) and (1, 5).
Ans.  (3,3)

P

Determine the point that is equidistant from the points A(—1,7), B(6,6), and C(5, —1).

Ans. (3,8

Prove analytically that the midpoint of the hypotenuse of a night triangle is equidistant from the three
vertices.

Show analytically that the sum of the squares of the distances of any point P from two opposite vertices
of a rectangle is equal to the sum of the squares of its distances from the other two vertices.

Prove analytically that the sum of the squares of the four sides of a parallelogram is equal to the sum of
the squares of the diagonals.

Prove analyticaliy that the sum of the squares of the medians of a triangie is equai to three-fourths the
sum of the squares of the sides.

Prove analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect
each other,
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Prove that the coordinates (x, y) of the point Q that divides the line segment from P,(x,.y,) to
. . . . _nxa X, _nhy.tr.y, .
P.(x,. y,) in the ratio r :r, are determined by the formulas x = ? and y = —T (Hint:

Use the reasoning of Problem 7.)

P,=(7.9) (b) P,=(-1,0), P,=(0,7); (c) P,=(=7,-2), P,=(2,7); (d) P, =(1,3). P, =(4.2).
Ans. (@) (§.2). () (=3, 9): () (=5, %) (d) (§. %)



Chapter 3

Lines

THE STEEPNESS OF A LINE is measured by a number called the slope of the line. Let ¥ be any
line, and let P,(x,, y,) and P,(x,, y,) be two points of £. The slope of £ is defined to be the
number m = u. The slope is the ratio of a change in the y coordinate to the correspond-

2
ing change in the xlcoordinate. (See Fig. 3-1.)

y )/EZ
Py(x;. ¥,
:
Y70
Py(x,, y,), e
X, —x,
x
/
7
Fig. 3-1

For the definition of the slope to make sense, it is necessary to check that the number m is
independent of the choice of the points P, and P,. If we choose another pair P,(x,, y,) and
P,(x,, y,), the same value of m must result. In Fig. 3-2, triangle P,P,T is similar to triangle
P,P,Q. Hence,

P, P, Y27 Y1 _Ya— Y3

PQ P,T X=X, X, X,

Therefore, P, and P, determine the same slope as P, and P,.

S

Py(x,, ¥,)

P,(x,. ¥s)

~

Fig. 3-2

17
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. 6-2

EXAMPLE 1: The slope of the line joining the points (1, 2) and (4, 6) in Fig. 3-3 is i-1-3 Hence, as
a point on the line moves 3 units to the right, it moves 4 units upward. Moreover, the slope is not affected
. . . . 2-6 -4 4 Y= »o_r»r—vy

by the order in which the points are given: = — = -, In general, 22—~ = -+ =2

1-4 -3 3 X,—Xx, X, —x
y
-
o (4,6)
9
r—
"/ a

TR Y. S S S U T

X
5

-

7/

Fig. 3-3

THE SIGN OF THE SLOPE has significance. Consider, for example, a line £ that moves upward as
it moves to the right, as in Fig. 3-4(a). Since y, >y, and x, > x,, we have m = i—z_—il >0. The
slope of £ is posttive. r

Now consider a line £ that moves downward as it moves to the right, as in Fig. 3-4(b).

Here y, <y, while x, > x,; hence, m = H <0. The slope of £ is negative,

Now let the line £ be horizontal, as in F1g 3-4(c). Here y, = y,, so that y,—y, =0. In

addition, x, — x, #0. Hence, m = = 0. The slope of £ is zero.

Xy~ X
Line £ is vertical in Fig. 3-4(d), where we see that y, — y, > 0 while x, — x, =0. Thus, the

expression Y2 Ny is undefined. The slope is not defined for a vertical line £. (Sometimes we

X T X
describe this situation by saying that the slope of £ is “infinite.”)

y

N
/2(12. P,(x,, yN
Tk ~ \\P;(Iz,h)
// ' \ '

¥
(a) (b)
¥y
y
Py(x;. ¥5)
> * ¥
P(x,, y,) Py(x,. y,) PPy (x1, ¥y)
X b 4
d
© (d)

Fig. 3-4
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SLOPE AND STEEPNESS. Consider any line £ with positive slope, passing through a point
P\(x,, y,); such a line is shown in Fig. 3-5. Choose the point P,(x,, y,) on £ such that
x, —x, = 1. Then the slope m of & is equal to the distance AP,. As the steepness of the line
increases, AP, increases without limit, as shown in Fig. 3-6(a). Thus, the slope of .£ increases
without bound from 0 (when ¥ is horizontal) to +c (when the line is vertical). By a similar

argument, using Fig. 3-6(b), we can show that as a negatively sloped line becomes steeper, the
slope steadily decreases from 0 (when the line is horizontal) to —« (when the line is vertical).

&£

sz y2)
|

Fig. 3-5

m=0
/ X
) 3 NN
/ -
(a) (b)
Fig. 3-6

EQUATIONS OF LINES. Let £ be a line that passes through a point P,(x,, y,) and has slope m, as
in Fig. 3-7(a). For any other point P(x, y) on the line, the slope m is, by definition, the ratio of
y — ¥, to x — x,. Thus, for any point (x, y) on Z,

_Y "N
m= " Py 3.1)
Conversely, if P(x, y) is not on line £, as in Fig. 3-7(b), then the slope % of the line PP, is
1

different from the slope m of Z; hence (3.1) does not hold for points that are not on .¥#. Thus,
the line Z consists of only those points (x, y) that satisfy (3.1). In such a case, we say that L is
the graph of (3.1).
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¥

/ e

/’.(xl,y,) /Plﬁl.y,)
/ =
/ /

() (b)
Fig. 3-7

A POINT-SLOPE EQUATION of the line £ is any equation of the form (3.1). If the slope m of Lis

known then each point (x,, y,) of £ yields a point-slope equation of .#. Hence, there are
‘l‘\!‘ (ﬁ

nfin int_ clAana annatianc
lll.llllll.'vly lllally P\Illl‘ QIUPM U\l““llulla LV ol

EXAMPLE 2: (a) The line passing through the point (2,5) with slope 3 has a pomt slope equatlon
3-(¢1 _

‘;' > = 3. (b) Let & be the line through the points (3 - 1) and (2, 3). Its slope is m = 33 _1

+1
-4. Two point-siope equations of ¥ are Y 3= and —-—2 = —4.
. -

SLOPE-INTERCEPT EQUATION. If we multiply (3.1) by x — x,, we obtain the equationy — y, =

m(x — x,), which can be reduced firsttoy —y, = mx — mx,, and then to y = mx + (y, — mx).

Let b stand for the number y, — mx,. Then the equation for line £ becomes

y=rmx+b (3.2)

Equation (3.2) yields the value y = b when x = 0, so the point (0, b) lies on .Z. Thus, b is the y

coordinate of the intersection of £ and the y axis, as shown in Fig. 3-8. The number b is called
the y intercept of £, and (3.2) is called the slope-intercept equation for Z.

P4

}/

/

EXAMPLE 3: The line through the points (2,3) and (4,9) has slope
9-3 6

o

Fig. 3-8

=3

4-2 2
Its slope-intercept equation has the form y =3x + b. Since the point (2, 3) lies on the line, (2,3) must
satisfy this equation. Substitution yields 3 =3(2) + &, from which we find b= —3. Thus, the slope-

m=

intercept equation is y = 3x — 3.
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Another method for finding this equation is to write a point-slope equation of the line, say i = 3.
Then multiplying by x — 2 and adding 3 yield y = 3x — 3.

PARALLEL LINES. Let ¥, and %, be parallel nonvertical lines, and let A, and A, be the points at
which &, and %, intersect the y axis, as in Fig. 3-9(a). Further, let B, be one unit to the right of
A,, and B, one unit to the right of A,. Let C, and C, be the intersections of the verticals
through B, and B, with £, and &,. Now, triangle A,B,C, is congruent to triangle A,B,C, (by
the angle-side-angle congruence theorem). Hence, B,C, = B,C, and
BC _BG

Slope of %, = I -1 " slope of &,

Thus, parallel lines have equal slopes.

EE AN

Fig. 3-9

-
s
~—

Conversely, assume that two different lines £, and %, are not parallel, and let them meet at
point P, as in Fig. 3-9(b). If £, and %, had the same slope, then they would have to be the same

line. Hence, ¥, and %, have different slopes.

Theorem 3.1: Two distinct nonvertical lines are parallel if and only if their slopes are equal.

EXAMPLE 4: Find the slope-intercept equation of the line # through (4, 1) and parallel to the line #
having the equation 4x — 2y = 5.

By solving the latter equation for y, we see that # has the slope-intercept equation y = 2x — 3.
Hence, # has slope 2. The slope of the parallel line 2 also must be 2. So the slope-intercept equation of £
has the form y =2x + b. Since (4, 1) lies on ¥, we can write 1=2(4)+ b. Hence, b= —7, and the
slope-intercept equation of Lis y =2x - 7.

PERPENDICULAR LINES, In Problem 5 we shall prove the following:

Theorem 3.2: Two nonvertical lines are perpendicular if and only if the product of their slopes is —1.

If m, and m, are the slopes of perpendicular lines, then m,;m, = —1. This is equivalent to

1 . . . .
my= - hence, the slopes of perpendicular lines are negative reciprocals of each other.
L
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Solved Problems

Find the slope of the line having the equation 3x — 4y = 8. Draw the line. Do the points (6, 2)
and (12, 7) lie on the line?

Solving the equation for y yields y = 3x — 2. This is the slope-intercept equation; the slope is 7 and
the y intercept is —2.

Substituting 0 for x shows that the line passes through the point (0, —2). To draw the line, we need
another point. If we substitute 4 for x in the slope-intercept equation, we get y = 3(4) —2=1. So, (4. 1)
also lies on the line, which is drawn in Fig. 3-10. (We could have found other points on the line by
substituting numbers other than 4 for x.)

“4.1

Fig. 3-10

To test whether (6,2) is on the line, we substitute 6 for x and 2 for y in the original equation,
3x — 4y = 8. The two sides turn out to be unequal; hence, (6, 2) is not on the line. The same procedure
shows that (12, 7) lies on the line.

Line £ is the perpendicular bisector of the line segment joining the points A(—1,2) and
B(3, 4), as shown in Fig. 3-11. Find an equation for Z.

Fig. 3-11
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& passes through the midpoint M of segment AB. By the midpoint formulas (2.2), the coordinates

- 2
of M are (1, 3). The slope of the line through A and B is-—4—2— = % Let m be the slope of . By

3-(-1) 4 2
Theorem 3.2, im = -1, whence m = -2,
The slope-intercept equation for £ has the form y = —2x + b. Since M (1, 3) lies on ¥, we have
3=-2(1)+ b. Hence, b =5, and the siope-iniercept equaiion of Fis y=—2x + 5.

Determine whether the points A(1, — 1), B(3,2), and C(7, 8) are collinear, that is, lie on the
same line.

A, B, and C are collinear if and only if the line AB is identical with the line AC, which is equivalent

-(-1
to the slope of AB being equal to the slope of AC. (Why?) The slopes of AB and AC are 2—3%1—) = %
and 8;—(__—1—1—) = g = 3 Hence, A, B, and C are collinear.

Prove analytically that the figure obtained by joining the midpoints of consecutive sides of a
quadrilateral is a parallelogram.

Locate a quadrilateral with consecutive vertices A, B, C, and D on a coordinate system so that A is
the origin, B lies on the positive x axis, and C and D lie above the x axis. (See Fig. 3-12.) Let b be the x
coordinate of B, (i, v) the coordinates of C, and (x, y) the coordinates of D. Then, by the midpoint
formula (2.2), the midpoints M,, M,, M,, and M, of sides AB, BC, CD, and DA have coordinates

b u+b v xtu y+v xy . .

(5,0), ( 3 ,5), ( ) ), and (5’ 5), respectively. We must show that M M, M .M, is a
parallelogram. To do this, it suffices to prove that lines M, M, and M,M, are parallel and that lines
M, M, and M M, are parallel. Let us calculate the slopes of these lines:

v v y y+tuv v

270 1y 37T T
SlopetM M) = 5 b= w w  SOPEMI = T T Ty

2 2 2 2 2 2

y+U_l_} X X_O

2 22y 270y

smthMQ—X+u_u+b—x_b—x_b smmMLMJ—£~é—X_b

2 2 2 22

Since slope(M,M,) =slope(M,M,), M M, and M, M, are parallel. Since slope(M,M,) = slope(M M,).
M,M, and M M, are parallel. Thus, M,M,M .M, is a parallelogram.
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Prove Theorem 3.2.

First we assume ¥, and ¥, are perpendicular nonvertical lines with slopes m, and m,. We must
show that m,m, = 1 Let 4, and A, be the lines through the origin O that are parallel to £, and .%,,
as shown in Fig. 3- ) Then the slope of #, is m,, and the slope of #, is m, (by Theorem I).

Maoranuser 4 and ll nnrnnnrhrulnr since Cp and are nernendicular.
Migregver, o anc 40, a perpenaicuiar e L) ang L, are perpendic uiar

y
M,
B(1,.m,)
X
N |
VA(I,ml)
\
(a) ®)

Fig. 3-13

Now let A be the point on A, with x coordinate 1, and let B be the point on A, with x coordinate 1,
as in Fig. 3-13(b). The slope-intercept equation of .# | is y = m x; therefore, the y coordinate of A is m,,
since its x coordinate is 1. Simtlarly, the y coordinate of B is m,. By the distance formula (2.1),
OB = \F(l ~0) +(m, - 0) = \/l + m
OA=V(1-0Y+(m ~0)Y=V1+m
BA = \m -1y +(m,—-m,) = \/(m2 -my
Then by the Pythagorean theorem for right triangle BOA,
BA*= OB’ + 04°
or (m,-m) = +m)+(1+m)
m:-2m,m,+m =2+m +m

m,m, = —1
Now, conversely, we assume that m,m, = —1, where m, and m, are the slopes of nonvertical lines
£, and f-. Then ¥, is not parallel to J.’_ (Otherwise, by Theorem 3.1 m, =m, and, therefore,
y
¥, £,
\ &,

Fig. 3-14
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mi = —1, which contradicts the fact that the square of a real number is never negative.) W st show
that &, and %, are perpendicular. Let P be the intersection of & and %, (see Fig. 3-14). Le be the
lirna thenioh D that ic aareandionlar ¢t @ T tha clyna of tha tha fi- of I-. raanf
[pe) = l.lllUus.ll I uiat 1> }ILIPLIIUI\-UIGI (39 nbl a1 I’l3 13 lllL DJUPM Ul aL3, lllbll, U] lllb IIIOL Pal i lll\- lJlUUl,

m,m, = —1 and, therefore, m m, = mm,. Since m m, = —1, m, #0; therefore, m, = m,. Since £, and
¥, pass through the same point P and have the same slope, they must coincide. Since &, and &, are
perpendicular, &, and ¥, are also perpendicular.

Show that, if @ and b are not both zero, then the equation ax + by = c is the equation of a line
and, conversely, every line has an equation of that form.

Assume b #0. Then, if the equation ax + by = ¢ is solved for y, we obtain a slope-intercept
equation y = (—a/b)x + c¢/b of a line. If b=0, then a#0, and the equation ax + by = ¢ reduces to
ax = c; this is equivalent to x = c/a, the equation of a vertical line.

Conversely, every nonvertical line has a slope-intercept equation y = mx + b, which is equivalent to
—mx + y = b, an equation of the desired form. A vertical line has an equation of the form x = ¢, which
is also an equation of the required form with a=1 and b =0.

Show that the line y = x makes an angle of 45° with the positive x axis (that is, that angle
BOA in Fig. 3-15 contains 45°).

A(1, 1)

——
AN

=)

T

Fig. 3-15

Let A be the point on the line y = x with coordinates (1,1). Drop a perpendicular AB to the
positive x axis. Then AB =1 and OB =1. Hence, angle OAB = angle BOA, since they are the base
angles of isosceles triangle BOA. Since angle OBA is a right angle,

Angle OAB + angle BOA = 180° — angle OBA = 180° — 90° = 90°

Since angle BOA = angle OAB, they each contain 45°,

Show that the distance d from a point P(x,, y,) to a line .£ with equation ax + by = c is given
lax + by — ¢|

by the formula 4 =
y Va® + b?

Let A be the line through P that is perpendicular to ¥. Then # intersects £ at some point Q with
coordinates (u, v), as in Fig. 3-16. Clearly, d is the length PQ, so if we can find u and v, we can compute
d with the distance formula. The slope of £ is —a/b. Hence, by Theorem 3.2, the slope of M is b/a.

. y—y
Then a point-slope equation of A is xl = —. Thus, « and v are the solutions of the pair of equations
X — a
V= vy, b L
au + bv = ¢ and < " a Tedious algebraic calculations yield the solution
1

2 2
uzac+bx,+abyl and U=bc—abx,+ayl

a+bp’ a’+ b’



26

10.

11.

12.

LINES [CHAP. 3

P y M
\ y
\ /P/(X.,yl)

Q(u, v}

yd :
7 \\

Fig. 3-16

The distance formula, together with further calculations, yields

lay + b

d=PQ =V, —w (v~ o = =

Supplementary Problems

Find a point-slope equation for the line through each of the following pairs of points: (a) (3. 6) and
(7 —.1\ {h\ (R Q\ and {A n\ ( )( N ) and the I’\I‘Iglﬂ (/i\ {7 d\ and (—7 A\~

Ans. (a):::ﬁ—]() (b) 5—2 (c) ;(d)%=0

Find the slope-intercept equation of each line:

(a) Through the points (4, ~2) and (1,7)

(&) Having slope 3 and y intercept 4

(¢) Through the points (-1, 0) and (0, 3)

(d) Through (2, —3) and parallel to the x axis

(e} Through (2 3) and rising 4 units for every unit increase in x

{ f) Through (~2, 2) and falling 2 units for every unit increase in x

(g) Through (3, —4) and parallel to the line with equation Sx — 2y =4

(#) Through the origin and parallel to the line with equation y =2

({) Through (-2, 5) and perpendicular to the line with equation 4x + 8y =3
(/) Through the origin and perpendicular to the line with equation 3x — 2y =1
(k) Through (2.1) and perpendicular to the line with equation x =2

(/) Through the origin and bisecting the angle between the positive x axis and the positive y axis

Ans. (@) y=-3x+10; (b) y=3x+3, (c)y=3x+3;, (d)y=-3;(e) y=4x—-5,(f) y=-2x-2;
(y=3x-F:(My=0(D)y=2x+% (Hy=-x K y=L({)y=x

(a) Describe the lines having equations of the form x = a.
(&) Describe the lines having equations of the form y = b.
(c) Describe the line having the equation y = —x.

(a) Find the slopes and y intercepts of the lines thal havc the following equations: (1) y = 3x - 2; (ii)
2x =5y =3; (i) y=4x -3, (iv) y = -3; (v)§+ 5—1
(b) Find the coordinates of a point other than (0, b) on each of the lines of part (a).
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13.

14.

15.

bk
[-.%
h

17.

18.

19.

20.

|3
[T

22.

Ans. (a) () m=3,b=-2; (i) m=2% b=-3; (iiiym=4,b=-3, (ivym=0, b=-3;
W m=—4 b=2. (b) (i) (1 1): (i) (—6, ~3); GiD) (L, 1) (iv) (1, =3); () (3.0)

If the point (3, k) lies on the line with slope m = —2 passing through the point (2, 5), find £.
Ans. k=3

Does the point (3, —2) lie on the line through the points (8,0) and (-7, —6)?

Ans.  yes

Use slopes to determine whether the points (7, —1), (10,1), and (6,7) are the vertices of a right
triangle.

Ans.  They are.

Under what conditions are the points (&, v + w), (v, u + w), and (w, u + v) collinear?

Ans.  always

Determine k so that the points A(7, 3), B(—1,0), and C(k, —2) are the vertices of a right triangle with
right angle at B.

Ans. k=1

Determine whether the following pairs of lines are parallel, perpendicular, or neither:

(a) y=3x+2and y=3x-2 (b) y=2x—4and y=3x+5
(c) 3x —2y=5and 2x +3y =4 (d)6x+3y=1and dx +2y =3
() x=3and y=—4 (f)Sx+4y=1and 4x +5y =2

(g)x=—-2and x=17.

Ans.  (a) parallel; (b) neither; (c) perpendicular; (d) parallel; (¢) perpendicular; (f) neither;
(g) parallel

Draw the lines determined by the equation 2x + 5y = 10. Determine if the points (10,2) and (12, 3) lie
,.

Earwhat unlinae af L« ill tho lina v . Tu=A4L haus tha fallawinsg nranaetings £ hoavun clama 1. BV |
1 VUL WIIAL YAaluvdy uL 11 RIIC JMIBC A J)' =N lldyYo wuao lUlllells PI U}I\rl [SL e \u} ave alU}’L l’ \U} 11avyc y
intercept 2; (c) pass through the point (2, 4); (d) be parallel to the line 2x — 4y = 1; (¢) be perpendicular

to the line x — 6y = 27
Ans. (a) k=3, (b) k=—3;(c) k=—6;(d) k=13; (¢) k=-18

Describe geometrically the families of lines (a) y = mx — 3 and (b) y =4x + b, where m and b are any
real numbers.

Ans. (a) lines with y intercept —3; (b) lines with slope 4

In the tniangle with vertices A(0, 0), B(2,0), and C(3, 3), find equations for (a) the median from B to
the mndpomt of the opposite side; (b) the perpendicular bisector of side BC; and (¢) the altitude from B
to the opposiie side.

Ans, (@)y=-3x+6,(L)x+3y=T7,(c)y=-x+2
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In the triangle with vertices A(2,0), B(1,6), and C(3,9), find the slope-intercept equation of (a) the
median from B to the opposite side; (b) the perpendicular bisector of side AB; (¢) the altitude from A to
tha Aannacita cid

pPpPLUsn SiGE.

Ans. (@) y=-x+7;B)y=ix+ 8. () y=—3x+ 3%

Temperature is usually measured in either Fahrenheit or Celsius degrees. Fahrenheit (F) and Celsius (C)
temperatures are related by a linear equation of the form F = aC + b. The freezing point of water is 0°C
and 32°F, and the boiling point of water is 100°C and 212°F. (a) Find the equation relating F and C. ()
What temperature is the same in both scales?

Ans. (a) F=1C+32; (b) —40°

The x intercept of a line Z is defined to be the x coordinate of the unique point where & intersects the x

axis. It is the number a for which (a, 0) lies on Z.

(a) Which lines do not have x intercepts?

(b) Find the x intercepts of (i) 3x —4y =2; (ii) x + y=1; (iii) 12x — 13y =2; (iv) x =2, (v) y = 0.

(c) If a and b are the x intercept and y intercept of a line, show that x/a + y/b = 1 is an equation of the
line.

(d) f x/a + y/b =1 is an equation of a line, show that a and b are the x intercept and y intercept of the
line.

Ans. (a) horizontal lines. (b) (i) §; (ii) 1; (iii) &; (iv) 2 (V) none

Prove analytically that the diagonals of a rhombus (a parallelogram of which all sides are equal) are
perpendicular to each other.

(a) Prove analytically that the altitudes of a triangle meet at a point. [Hins: Let the vertices of the
triangle be (2a,0), (2b,0) and (0, 2¢).]

(&) Prove analytically that the medians of a triangle meet at a point (called the centroid).

(c) Prove analytically that the perpendicular bisectors of the sides of a triangle meet at a point.

(d) Prove that the three points in parts (a) to (¢) are collinear.

Prove analytically that a parallelogram with perpendicular diagonals is a rhombus.
Prove analytically that a quadrilateral with diagonals that bisect each other is a parallelogram.

Prove analytically that the line joining the midpoints of two sides of a triangle is parallel to the third side.

(a) If a line & has the equation 5x + 3y =4, prove that a point P(x, y) is above & if and only if
Sx+ 3y >4,

(b) If a line £ has the equation ax + by = ¢ and b >0, prove that a point P(x, y) is above £ if and only
if ax + by > c.

(c) If a line &£ has the equation ax + by = ¢ and b <0, prove that a point P(x, y) is above £ if and only
if ax + by <c.

Use two inequalities to describe the set of all points above the line 3x + 2y = 7 and below the line
4x — 2y = 1. Draw a diagram showing the set.

Ans. 3x+2y>7;4x -2y <1

Find the distance from the point (4,7) to the line 3x + 4y = 1.

M <1 L —_ AN L L . Q

Lot | P S P TR S S | \ 1
rind tne astdnce 1rom (n€ point {(— 1, £) 10 ne nne

Ans. 3

1z .
x — 1oy =3,

rs

1

~a
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37.

39.

41.

&
!\)

43.

45.

47.

Find the area of the triangle with vertices A(0, 1), B(5, 3), and {(2, —2).
Ans.

M

e MY sl o o aileralae
ul

Show that two equations a,x + b,y =¢, and a,x + b,y = ¢, determine parallel lines if and only if
b is is equivalent to a,/a, = b,/b,.)

nor

P R FA § ¥4 "SR P B N
Q105 — U0 . L YWWHCH DCIHCT dy 1Y 2 13 U,

Show that two equations a,x + b,y = ¢, and a,x + b,y = ¢, determine the same line if and only if the
coefficients of one equation are proportional to those of the other, that is, there is a number r such that
a,=ra,, b,=rb,, and ¢, = rc,.

If ax + by = c is an equation of a line ¥ and ¢ =0, then the normal equation of £ is defined to be
a c+ b _ c
Vai +b? Va’ + b’ Y Va +p?

(a) Show that |c| /V a® + b? is the distance from the origin to &.
(b) Find the normal equation of the line 5x — 12y = 26 and compute the distance from the origin to the

Ans. (b) H5x— 13y =2; distance =2

Find equations of the lines parallel to the line 3x + 4y = 7 and at a perpendicular distance of 4 from it.

Ans, 3x+4y=-13; 3x +4y =27

Show that a point-slope equation of the line passing through the points (x,, y,) and (x,, y,) is
Y rh_nTy
xX—x, Xx,—Xx;

Find the values of k such that the distance from (-2, 3) to the line 7x — 24y = k is 3.
Ans. k=-11; k=-161
Find equations for the families of lines (a) passing through (2,5); (b) having slope 3; (¢) having vy

intercept 1; (d) having x intercept —2; (e) having y intercept three times the x intercept; ( f) whose x
intercept and y intercept add up to 6.

Ans. (@) y—S=m(x—-2); (b)) y=3x+b;(c)y=mx+1;(d) y=m(x +2); (¢) 3x + y = 3a;
X y
Na*te=a

Find the value of k such that the line 3x — 4y = k determines, with the coordinate axes. a triangle of area
6.

Ans. k==x12

Find the point on the line 3x + y = —4 that is equidistant from (-5, 6) and (3, 2).

Ans. (-2,2)

Find the equation of the line that passes through the point of intersection of the lines 3x — 2y = 6 and
x + 3y =13 and whose distance from the origin is 5.

Ans. 4x +3y =125

Find the equations of the two lines that are the bisectors of the angles formed by the intersection of the
lines 3x + 4y =2 and 5x — 12y = 7. (Hint. Points on an angle bisector are equidistant from the two
sides.)

Ans.  lax + 112y +9=0; 64x — 8y — 61 =0
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(a) Find the distance between the parallel lines 3x + 4y =2 and 6x + 8y = 1. (b) Find the equation of the
line midway between the lines of part (a).

Ans. (@) . (B) 12x + 16y =5

What

nNra b
¥Y LidLr dalv

coordinate axes?

Ans. la| =|b|

Show/that, if a, b. and ¢ are nonzero, the area bounded by the line ax + by = ¢ and the coordinate axes
is }c*/ab].

Show that the lines ax + by = ¢, and bx — ay = ¢, are perpendicular.

Show that the area of the triangle with vertices A(x,.y,). B(x,, y;), and C(x,,y,) is
Hx, = x,)(y, — yi) = (y, = y,:)(x, — x3)]. (Hint: The altitude from A to side BC is the distance from A
to the line through B and C.)

: : . tcl B C“'{
Show that the distance between parallel lines ax + by = ¢, and ax + by = ¢, is —=.
Yo ey

Prove that, if the lines a,x + b,y = ¢, and a,x + b,y = ¢, are nonparallel lines that intersect at point P,
then, for any number &, the equation (a,x + b,y — ¢,) + k{a,x + b,y — ¢,) =0 determines a line through
P. Conversely, any line through P other than a,x + b,y = ¢, is represented by such an equation for a
suitable value of k.

Of all the lines that pass through the intersection point of the two lines 2x — 3y =5 and 4x + y =2, find
an equation of the line that also passes through (1, 0).

Ans. 16x —3v =16



Chapter 4

Circles

EQUATIONS OF CIRCLES. For a point P(x, y) to lie on the circle with center C(a, b) and radius
r, the distance PC must be equal to » (see Fig. 4-1). By the distance formula (2.1),

PC=V(x—a)’+(y-b)

y ———

// \ P(X y)
/ \
/ ’
{
{
C b
\\ (a, b) /
\ /
N /
i x
\\\ ///
Fig. 4-1

(x—a) +(y-b)Y=r (4.1)

Equation (4.1) is called the standard equation of the circle with center at (a, b) and radius r.

EXAMPLE 1: (a) The circle with center (3,1) and radius 2 has the equation (x —3)* + (y — 1)’ =4.
(b) The circle with center (2, —1) and radius 3 has the equation (x —2)* + (y +1)*=9.
(c) What is the set of points satisfying the equation (x — 4)* + (y — 5)* = 25?

By (4.1), this is the equation of the circle with center at (4, 5) and radius 5. That circle is said to be
he graph of the given equanon that is, lhe set of pomts sausfymg the cquahon
A

A\ Tha oranh ~Ff sha L AN - b 3.0) and radius /A
J i1uc grapmn o1 KIIC CqudlIUll \A TJ) . _y = ]b K”C L"LIC V\'l“l vonict d‘ \ <, V) aliul (aulud v o,

t

(
THE STANDARD EQUATION OF A CIRCLE with center at the origin (0,0) and radius r is

X +y=r (4.2)

For example x + y* = 1 is the equation of the circle with center at the origin and radius 1. The
graph of x’ + y* =5 is the circle with center at the origin and radius V5.
The equation of a circle sometimes appears in a disguised form. For example, the equation

X +y +8x—6y+21=0 (4.3)
turns out to be equivalent to
(x+4) +(y—3) =4 (4.4)

Equation (4.4) is the standard equation of a circle with center at (-4, 3) and radius 2.

N
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Equation (4.4) is obtained from (4.3) by a process called completing the square. In general

terms, the process involves finding the number that must be added to the sum x* + Ax to obtain
AN

/ AN2
a square. Here, we note that (x + —) =x"+ Ax + (E) Thus, in general, we must add
(AY A - . c

\2/ 0 x° fﬂxmovrammeaquurc'\'f 3/ For exampie, 10 gei a square {r om x° + 8x, we

add (2)°, that is, 16. The result is x* + 8x + 16, which is (x + 4). This is the process of
completing the square.

Consider the original (4.3): x* + y° + 8x — 6y + 21 = 0. To complete the square in x° + 8x,
we add 16. To complete the square in y* — 6y, we add (— §)°, which is 9. Of course, since we
added 16 and 9 to the left side of the equation, we must also add them to the right side,
obtaining

\N

(x’ +8x+16)+(y —6y+9)+21=16+9
This is equivalent to
(x +4)Y +(y-3)"+21=25
and subtraction of 21 from both sides yields (4.4).
EXAMPLE 2: Consider the equation x* + y> — 4x — 10y + 20 = 0. Completing the square yiclds

(" —dx+4)+ (y° — 10y +25) +20=4 +25
(x=2) +(y—=5)=9

Thus, the original equation is the equation of a circle with center at (2, 5) and radius 3.

The process of completing the square can be applied to any equation of the form

X"y + Ay 4+ By 4+ =0 (4 5\
Ty [ = S u)« + C i) \ 7
to obtain
(+ )+( + )~+C A2+Bz
x+ = = =—+ —
2 YT 44
A)2 ( 3)2 A’ + B -4C
or (x +Z) +{y+3) =——— 4.6
2 Y2 4 (4.6)
There arc three different cases, depending on whether A*+ B® — 4C is positive, zero, or
negative.
Case 1: A+ B>~ 4C>0. In this case, (4. ) is the standard equation of a circle with
A B . VA'+ B 4C
center at \ — =5, — 7 and radius

Case 2: A+ B> —4C=0. A sum of the squares of two quantities is zero when and only
when each of the quantities is zero. Hence, (4.6) is equivalent to the conjunction of the
equations x + A/2=0 and y + B/2 =0 in this case, and the only solution of (4.6) is the point
(—A/2, - B/2). Hence, the graph of (4.5) is a single point, which may be considered a
degenerate circle of radius 0.

Case 3: A*+ B> —4C <0. A sum of two squares cannot be negative. So, in this case,
(4.5) has no solution at all.

We can show that any circle has an equation of the form (4.5). Suppose its center is (a, b)

and its radius is r; then its standard equation is

(x=a) +(y-b)=r’

X +y —2ax-2by+(a’+ b’ —r’)=0
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Solved Problems

Identify the graphs of (a) 2x° + 2y’ —dx+ y+1=0; (b) x’ + y* =4y +7=0;
() x*+y*—6x—2y +10=0.

(@) First divide by 2, obtaining x* + y> —2x + }y + } =0. Then complete the squares:

=
It
(]

(=2 + 1)+ (Y +iy+ k) +i=1+7
-1+ (y+4)y=4-

= o
I

- ]

~ &

[

i
e
|
ale

=Y

Thus, the graph is the circle with center (1, — 1) and radius 3.
(&) Complete the square:
X+ (y-2) +7=4
4 (y-2y=-3
Because the right side is negative, there are no points in the graph,
(c) Complete the square:

foo M2 182 1y —
(X —J) Ty 1) T =
4

(=3 +(y-1

1
T 1

i
j==JNo)

The only solution is the point (3, 1).

Find the standard equation of the circle with center at C(2, 3) and passing through the point
P(—1,5).
The radius of the circle is the distance

CP=V(5-3P2+(-1-2V=V2" +(-3)

p—
Il

&
+

O
Il

so the standard equation is (x —2)> + (y — 3)* = 13.

Find the standard equation of the circle passing through the points P(3,8), Q(9, 6), and
R(13, -2).

First method: The circle has an equation of the form x* + y° + Ax + By + C =0. Substitute the
values of x and y at point P, to obtain 9+ 64 +34A+8B + C=0or

3JA+8B+(C=-73 1)

A similar procedure for points Q and R yields the equations
9A+6B+ C=-117 (2)
13A-2B+C=-173 3)

Eliminate C from (1) and (2) by subtracting (2) from (1):
-6A+2B=4  or -3A+B=22 4)

Eliminate C from (1) and (3) by subtracting (3) from (1):
~10A+10B=100 or —-A+B=10 (5)

Eliminate B from (4) and (5) by subtracting (5) from (4), obtaining A = — 6. Substitute this value in
(5) to find that B =4, Then solve for Cin (1): C= —-87.

Hence, the original equation for the circle is x° + y° — 6x + 4y — 87 = 0. Completing the squares
then yields

(x=3)V+(y+2)=87+9+4=1

Thus, the circle has center (3, —2) and radius 10.
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Second method. The perpendicular bisector of any chord of a circle passes through the center of the
circle. Hence, the perpendicular bisector ¥ of chord PQ will intersect the perpendicular bisector M of
chord OR at the cen

tar of tha circla feaa Fis 4.9}
el UL LI vl \0\4\4 1 IE- = L}-

Y P(3,8) Z

Q(9.6)

=\

R(13.-2)

-~

- '

Fig. 4-2

The slope of line PQ is — ;. So, by Theorem 3.2, the slope of ¥ is 3. Also, £ passes through the

midpoint (6,7) of segment PQ. Hence a point-slope equation of £ is y: =3, and therefore its

slope-intercept equation is y = 3x — 11. Similarly, the slope of line QR is —2, and therefore the slope of
M is }. Since .# passes through the midpoint (11, 2) of segment QR, it has a point-slope equation

%_—*121 = % which yields the slope-intercept equation y = 3x — ;. Hence, the coordinates of the center
of the circle satisfy the two equations y =3x — 11 and v = $x — ], and we may write
3x—-11=3x -}
from which we find that x = 3. Therefore,
y=3x—-11=33)~-11=-2
So the center is at (3, —2). The radius is the distance between the center and the point (3, 8):
V(=2-8) +(3-3) 7 =V(~10)*= V100 =10

Thus, the standard equation of the circle is (x — 3)* + (y +2)> = 100.

Find the center and radius of the circle that passes through P(1, 1) and is tangent to the line
y =2x — 3 at the point Q(3, 3). (See Fig. 4-3.)

The line & perpendicular to y =2x — 3 at (3, 3) must pass through the center of the circle. By
Theorem 3.2, the slope of £ is — . Therefore, the slope-intercept equation of £ has the form
y=—4ix+b. Since (3,3) is on ¥, we have 3=—1(3) + b; hence, b =13, and ¥ has the equation
y=—-ix+3%.

The perpendicular bisector # of chord PQ in Fig. 4-3 also passes through the center of the circle, so
the intersection of £ and # will be the center of the circle. The slope of PQ is 1. Hence, by Theorem
3.2, the slope of .4 is ~1. So 4 has the slope-intercept equation y = —x + b". Since the midpoint (2, 2)

of chord PQ is a point on 4, we have 2= —(2) + b'; hence, b’ =4, and the equation of Hisy = —x + 4.

We must find the common solution of y = —x +4 and y = — jx + 3. Setting
-x+4=-ix+}
yields x = ~ |. Therefore, y= —-x+4=—(—1)+4 =5, and the center C of the circle is (—1,5). The

radius is the distance PC = \/(=1 —3)* + (5 - 3)’ = V16 + 4 = VZ0. The standard equation of the circle
is then (x + 1)° + (y — 5)* = 20.
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3.3)

P(1,1)

oo /

/
/

Fig. 4-3

5. Find the standard equation of every circle that passes through the points P(1, —1) and Q(3, 1)

and is tangent to the line y = —3x.

’
1 4

Let C(c, d) be the center of one of the circles, and let A be the point of tangency (see Fig. 4-4).

CP’=CQ0°> or (c~1P2+d+1)Y=(c-3)P+(d-1)
Expanding and simplifying, we obtain

c+d=2 (1)
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- —_ + —_— ——

In addition, CP = CA, and by the formula of Problem 8 in Chapter 3, TA = 33—mg. Setting CP* = CA’
e a2 o Betdy oo oYY
thus yieids (¢ — l)2 +{d + 1)2 = (CI—O) Substituting (/) in the right-hand side and multiplying by 10

then yields
10{(c- 1)’ +(d + 1)’]=(2c+2)*  from which 3c*+5d° - 14c+10d+8=0
By (1), we can replace d by 2 — ¢, obtaining
2~ 11c+12=0 or (2c—-3)c—4)=0

Hence, ¢ = § or ¢ =4. Then (1) gives us the two solutions c =%, d= ! and ¢ =4, d=—2. Since the

+ V10
radius CA = 3c_\/1_0d_ these solutions produce radii of % = 2 and \/1% = V10. Thus, there are two

such circles, and their standard equations are

(x=3)+(y-3) =3 and (x-4)7+(y+20=10

Supplementary Problems

Find the standard equations of the circles satisfying the following conditions:
(a) center at (3, 5) and radius 2 (b) center at (4, — 1) and radius 1
(c) center at (5,0) and radius V3 (d) center at (=2, —2) and radius 5V2
(e) center at (-2, 3) and passing through (3, —2)
( f) center at (6, 1) and passing through the origin
Ans. (@) (x=3)+(y=5F =4 (b) G -4 + (y+1) =1, () (x=5) +y'=3;
(d) (x+2F + (y+2)>=50; () (x +2)°+(¥y—=3)=50; (f) (x —6)° +(y~1)"=37

Identify the graphs of the following equations:
(@) x* +y* +16x - 12y +10=0 (b) x*+y* —4x +5y +10=0 () ¥*+y’+x—-y=0
(d)4x’ +4y° + 8y - 3=0 () x> +y’—x~2y+3=0 (Hx*+y*+V2x-2=0

Ans. (a) circle, center at (—8, 6), radius 3V10; (b) circle, center at (2, — }), radius }; (¢) circle, center
7

at (=%, 1), radius V2/2; (d) circle, center at (0, — 1), radius 3; (¢) empty graph; ( f) circle,
center at (—V2/2,0), radius V5/2

Find the standard equations of the circies through (a) (—2, 1), (1, 4), and (-3, 2); () (0, 1), (2. 3), and
(1,1 +V3): (¢) (6,1), (2, -5), and (1, —4); (d) (2,3), (-6, -3), and (1, 4).
Ans. (@) (x+ 1)+ (y=3) =5 (b) (x =2’ +(y—1)* =4; (c) (x — 4)* + (y +2)* = 13;
(d) (x +2)*+y* =25
For what values of k does the circle (x + 2k)* + (y — 3k)* = 10 pass through the point (1.0)?

Ans. k=JZork=-1

Find the standard equations of the circles of radius 2 that are tangent to both the lines x = 1 and y = 3.
Ans. (x+ 1Y +(y=17 =4 x+1) ' +(y-5>=4 (x -3V +(y—1)’=4; x -3+ (y-57=4
Find the value of k so that x* + y* + 4x — 6y + k = 0 is the equation of a circle of radius 5.

Ans. k=-12
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12.

13.

14.

15.

16.

17.

18.

19,

21,

Find the standard equation of the circle having as a diameter the segment joining (2, —3) and (6.5).

Ans. (x—4)+(y—1Y¥=20

Find the standard equation of every circle that passes through the origin, has radius 5, and is such that

PR |

the y coordinate of its center is —4.

Ans. (x—3)'+(y+4)Y¥=250r (x+3)°+(y+4)°=25

Find the standard equation of the circle that passes through the points (8. —5) and (—1, 4) and has its
center on the line 2x + 3y = 3.

Ans. (x =3+ (y+1) =41
Find the standard equation of the circle with center (3, 5) that is tangent to the line 12x — 5y + 2=0.
Ans. (x=3)V +(y—-57=1

Find the standard equation of the circle that passes through the point (1, 3 + V2) and is tangent to the
line x + y =2 at (2,0).

Ans. (x=57+(y—-3)Y=18

Prove analytically that an angle inscribed in a semicircle is a right angle. (See Fig. 4-5.)

y

s S e

// A\

y
AN (D
// / \\Q‘L \

A\ :

(-r.0) (r,0) \

(6,-2)

Fig. 4-5 Fig. 4-6

Find the length of a tangent from (6, —2) to the circle (x — 1)’ + (y — 3)* = 1. (See Fig. 4-6.)

Ans. 7

Find the standard equations of the circles that pass through (2, 3) and are tangent to both the lines
3x —4y=-1and 4x + 3y =7.

Ans. (x=2)  +(y-8)=25and (x - §)’ +(y- %)’ =1

Find the standard equations of the circles that have their centers on the line 4x + 3y = 8 and are tangent
to both the lines x + y=—-2 and 7x —y = —6.

Ans. (x=2Y+y*=2and (x+4)°+(y—8)°=18

Find the standard equation of the circle that is concentric with the circle x> + y> — 2x —8y + 1 =0 and is
tangent to the line 2x — y = 3.

Ans. (x-1 +(y—-4)y’=5
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22,

25.

27.

29.
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Find the standard equations of the circles that have radius 10 and are tangent to the circle x° + y* =25 at
the point (3, 4).

Ans. (x—9) +(y—12)"=100 and (x +3)> + (y +4)* =100

1 19
7,14

A
—
=)
~
=
=
o
s
2.
-t
o
j £
)
=t

Let €, and ¢, be two intersecting circles determined by the equations x> + y* + A x + B,y + C, =0 and
x*+y’+ A,x + B,y + C,=0. For any number k # — 1, show that

XY+ Ax+By+C Hk(xP+y +Ax+B,y+C)=0
is the equation of a circle through the intersection points of €, and €,. Show, conversely, that every such
circle may be represented by such an equation for a suitable k.
Find the standard equation of the circle passing through the point (-3, 1) and containing the points of
intersection of the circles x> +y> +Sx=land x’ +y’ +y=17.
Ans. (x+3)Y +(y+ &) =18
Find the standard equations of the circles that have centers on the line 5xr —2y = —21 and are tangent to
hoth coordinate axes.
Ans. (x+7) ' +(y+7)Y =49 and (x +3) +(y -3y =9
(a) If two circles x*+y'+ A x+By+C,=0 and x>+ y’ + A,x + B,y + C, =0 intersect at two

points, find an equation of the line through their points of intersection.
(b) Prove that if two c1rcles intersect at two points, then the line through their points of intersection is

Find the points of intersection of the circles x* + y* +8y —64 =0 and r’ + y* - 6x = 16 =10.
Ans. (8.0)and (§. %)

Find the equations of the lines through (4, 10) and tangent to the circle x* + y* — 4y - 36 =0,
Ans. y=-3x+22and x — 3y +26 =0



Chapter 5

Equations and Their Graphs

THE GRAPH OF AN EQUATION involving x and y as its only variables consists of all points (x, y)
satisfying the equation.

EXAMPLE 1: (a) What is the graph of the equation 2x — y = 3?
The equation is equivalent to y = 2x — 3, which we know is the slope-intercept equation of the line
with slope 2 and y intercept —3.
(b) What is the graph of the equation x* + y* —2x + 4y — 4 =0?
Completing the square shows that the given equation is equivalent to the equation
(x —1)* + (y +2)’ =9. Hence, its graph is the circle with center (1, —2) and radius 3.

ARABOLAS. Consider the equation y = x°. If we substitute a few values for x and caiculate the
associated values of y, we obtain the results tabulated in Fig. 5-1. We can plot the correspond-
ing points, as shown in the figure. These points suggest the heavy curve, which belongs to a
family of curves called parabolas. In particular, the graphs of equations of the form y = ex’,
where ¢ is a nonzero constant, are parabolas, as are any other curves obtained from them by

translations and rotations.

3 9 (—x.y)
2 4
1 1
0 0
-1 1
-2 4
-3 9
IS W R B x
-3 -2 -1
Fig. 5-1

In Fig. 5-1, we note that the graph of y = x” contains the origin (0, 0) but all its other points
lie above the x axis, since x” is positive except when x =0. When x is positive and increasing, y
increases without bound. Hence, in the first quadrant, the graph moves up without bound as it
moves right. Since (—x)’ = x’, it follows that, if any point (x, y) lies on the graph in the first
quadrant, then the point (—x, y) also lies on the graph in the second quadrant. Thus, the graph
is symmetric with respect to the y axis. The y axis is called the axis of symmetry of this

rpa:-qhn‘q

auvtria.

ELLIPSES. To construct the graph of the equation alg ‘% =1, we again compute a few values and
plot the corresponding points, as shown in Fig. 5-2. The graph suggested by these points is also

39
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X Yy ¥
3 0
2 +VEi=+15
1 *HV2=z+19
0 +2
-1 ={V2
-2 +3V3

Fig. 5-2

drawn in the figure; it is a memzber 02f a family of curves called ellipses. In particular, the graph

: x oy . . . : .
of an equation of the form — + ;)—2 =1 1s an ellipse, as is any curve obtained from it by
: _ a
translation or rotation.

Note that, in contrast to parabolas, ellipses are bounded. In fact, if (x, y) is on the graph of
2 2 2 2 2
Xy xT _x .y

— —_ = — —_ — = 2< — e
9t 3 1, then 9=79 + 2 1, and, therefore, x* =9. Hence, —3 =x = 3. So, the graph

lies between the vertical lines x = —3 and x = 3. Its rightmost point is (3,0), and its leftmost
point 1s (—3,0). A similar argument shows that the graph lies between the horizontal lines
y=—2and y =2, and that its lowest point is (0, —2) and its highest point is (0, 2). In the first
quadrdm as x increases from 0 to 3, y decreases from 2 to 0. If (x, y) is any point on the graph
then (—x, y) also is on the graph. Hence, the graph is symmetric with respect to the y axis.

Similarly, if (x, y) is on the graph, so is (x, —y), and therefore the graph is symmetric with
respect to the x axis.

2 2
X . 2 2 2 .
When a = b, the ellipse — Z =1 is the circle with the equation x” + y~ = a°, that is, a
,,,,,,,,,, e a i ~a bl _,A;:a__ PR IR | _ L. IS RV [ JE 1 _
Lll'LIC Wl[ CENECT al Lnc Origin 4nd radius d. 1 nud, CIrcied dare >pecidl €ascdy ol CHIPSEs

2

HYPERBOLAS. Consider the graph of the equation % - % = 1. Some of the points on this graph

are tabulated and plotted in Fig. 5-3. These points suggest the curve shown in the figure, which

is, a member of a family of curves called hyperbolas. The graphs of equations of the form
x- ,h h 1 - 1 1 1 M L] .
PR = | are hyperbolas, as are any curves obtained from them by transiations and rotations.
a P

X . . . X .
Let us look at the hyperbola 9 % =1 in more detail. Since 5" 1+ % =1, it follows

lines x = —3 and x = 3. If (x, y) is on the graph, so is (—x, y); thus, the graph is symmetric with
respect to the y axis. Similarly, the graph is symmetric with respect to the x axis. In the first
quadrant, as x increases, y increases without bound.

Note the dashed lines in Fig. 5-3; they are the lines y = 3x and y = - }x, and they called
the asymptotes of the hyperbola: Points on the hyperbola get closer and closer to these
asymptotes as they recede from the origin. In general, the asymptotes of the hyperbola

xa ywzlarethelinesyzllxandy=——x_
b- a a

CONIC SECTIONS. Parabolas, ellipses, and hyperbolas together make up a class of curves called

conic sections. They can be defined geometrically as the intersections of planes with the surface
of a right circular cone, as shown in Fig. 5-4.
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Solved Problems

1. Sketch the graph of the cubic curve y = x°

The graph passes through the origin (0, 0). Also. for any point (x, y) on the graph, x and y have the
same sign; hence, the graph lies in the first and third quadrants. In the first quadrant, as x increases, y
increases without bound. Moreover, if (x, y) lies on the graph, then (—x, —y) also lies on the graph.
Since the origin is the midpoint of the segment connecting the points (x, y) and (—x, —y), the graph is
symmetric with respect to the origin. Some points on the graph are tabulated and shown in Fig. 5-5;
these points suggest the heavy curve in the figure.

x y
0 0
172 1/8
1 1
32 | 2778
2 8

-2 | -8

-1 -1

-3/2 -27/8

-2 -8

Fig. 5-5

2. Sketch the graph of the equation y = —x°,

If (x. y) is on the graph of the parabola y = x* (Fig. 5-1), then (x, —y) is on the graph of y = —x°,
and vice versa. Hence, the graph of y = ~x” is the reflection in the x axis of the graph of y = x°. The
result is the parabola in Fig. 5-6.

y
-3 -2 -1 o1 2
T T *

+4-1

4-2

43

.

-4 -5

.

-7

d s
|5

Fig. 5-6
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3. Sketch the graph of x = yz.

This graph is obtained from the parabola y = x* by exchanging the roles of x and y. The resulting
curve is a parabola with the x axis as its axis of symmetry and its “‘nose" at the origin (see Fig. 5-7). A
p01nt (x y) is on the graph of x = y” if and only if (y, x) is on the graph of y = x°. Since the segment

pomts (.‘t‘, y) and (y.,t) is pﬁf’péﬁumuml to the uiagonan line y=x \wuy ), and the

. . xty x+y . . . 2.
midpoint ( 73 ) of that segment is on the line y = x (see Fig. 5-8), the parabola x = y* is

obtained from the parabola y = x* by reflection in the line y = x.

>

Fig. 5-7 Fig. 5-8

4. Let £ be aline, and let F be a point not on £. Show that the set of all points equidistant from
F and Zis a parabola.

Construct a coordinate system such that F lies on the positive y axis, and the r axis is parallel 10 ¥
and halfway between F and ¥. (See Fig. 5-9.) Let 2p be the distance between F and . Then ¥ has the
equation y = —p, and the coordinates of F are (0, p).

Consider an arbitrary point P(x, y). Its distance from ¥ is |y + p|, and its distance from F is
Vx* +(y—p)> Thus, for the point to be equidistant from F and & we must have [y +p|=
V' + (y — p)’. Squaring yields (y + p)° = x* + (y — p)° from which we find that 4py = x°. This is the
equation of a parabola with the y axis as its axis of symmetry. The point F is called the focus of the
parabola, and the line ¥ is called its directrix. The chord AB through the focus and parallel to £ is called
the latus rectum. The “nose” of the parabola at (0, 0) is called its vertex.

\ /

P(x, y)

Fig. 5-9
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Find the length of the latus rectum of a parabola 4py = x°.

The y coordinate of the endpoints A and B of the latus rectum (see Fig. 5-9) is p. Hence, at these
points, 4p° = x* and, therefore, x = *2p. Thus, the length AB of the latus rectum is 4p.

Find the focus, directrix, and the length of the latus rectum of the parabola y = {x°, and draw
its graph.

The equation of the parabola can be written as 2y = x> Hence, 4p =2 and p = }. Therefore, the
focus is at (0, }), the equation of the directix is y = — ;. and the length of the latus rectum is 2. The

graph is shown in Fig. 5-10.
\ ,

~—

=
V-
F
A B
1 I 1 1 1 1 x
- -2 -1 1 2 3
Fig. 5-10

Let F and £’ be two distinct points at a distance 2¢ from each other. Show that the set of all
points P(x. y) such that PF + PF' =2a, a>c, is an ellipse.

Construct a coordinate system such that the x axis passes through F and F’, the origin is the
midpoint of the segment FF’, and F lies on the positive x axis. Then the coordinates of F and F' are
(c.0) and (—c, 0). (See Fig. 5-11.) Thus, the condition PF + PF’ = 2a is equivalent to V(x — ¢)* + y* +
V(x + c)® + y* = 2a. After rearranging and squaring twice (to eliminate the square roots) and perform-
ing indicated operations, we obtain

2 2 2 2.2 2 2 2
(a* - ¢)x* + 'y = a*(a - &) (1)
: 2 2 2 2 2 252 .
Sincea>c, a8 —c®>0. Let b=Va’ - ¢. Then (1) becomes b'x” + a’y’ = a’b°. which we may rewrite
2 2
X ) .
as — + ;;—2 =1, the equation of an ellipse.
a
y
P(x, y) B(0, b)

A'(—a,O)Qc. 0 O F(yA(a. 0) *

\-0-—"'/
B'(0, - b)

Fig. 5-11
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10.

When y =0, x* = a°; hence, the ellipse intersects the x axis at the points A’(—a,0), and A(a, 0),

called the vertices of the ellipse (Fig. 5-11). The segment A'A is called the major axis; the segment OA is

CoMeIr AT aAr Tvio P Th Ened K Nad tha
called the .)Cllumujvl" axis and has lcusul G. 10 U||5u| is the center of the ‘,ll.pse & &nda &~ are cancda tne

foci (each is a focus). When x =0, y* = b’. Hence, the ellipse intersects the y axis at the points B'(0, — b)
and B(0, b). The segment B'B is called the minor axis; the segment OB is called the semiminor axis and
has length b. Note that b=Va’-c¢*< Vai=a. Hence, the semiminor axis is smaller than the
semimajor axis. The basic relation among a, b, and c is 2= b+ 3

The eccentricity of an ellipse is defined to be e=c/a. Note that 0<e<1. Moreover, e=
Via® - b%/a =V1— (b/a)’. Hence, when e is very small, b/a is very close to 1, the minor axis is close in
size to the major axis, and the ellipse is close to being a circle. On the other hand, when e is close to 1,
b/a is close to zero, the minor axis is very small in comparison with the major axis, and the ellipse is very
“flat.”

Identify the graph of the equation 9x® + 16y° = 144,

The given equation is equivalent to x”/16 + y79 = 1. Hence, the graph is an ellipse with semimajor

axis of length a =4 _and semiminor axis of length b= 3. (See Fig. 5-12.) The vertices are (—4,0) and
(A 0Y Since r'—\/n —h‘“\/lﬁ 0_\/_ ﬂ'\n eccentricity e is r/n—\/_//l-vnéfﬁ/l

yuj e SIC L cLic: Ly Ui

m
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The given equation is equwalent to x”/4 + y*/25=1, an ellipse. Since the denominator under yiis
larger than the denominator under x°, the graph is an elllpse with the major axis on the y axis and the
minor axis on the x axis (see Fig. 5- 13) The vertices are at (0, —5) and (0, 5). Since c=Va’ - b’ =
V21, the eccentricity is V21/5 ~0,9165.

Let F and F’ be distinct points at a distance of 2¢ from each other. Find the set of all points
P(x, y) such that [PF - PF'| = 2a, for a<c.

Choose a coordinate system such that the x axis passes through F and F', with the origin as the
midpoint of the segment FF’ and with F on the positive x axis (see Fig. 5-14). The coordinates of F and
F’ are (c,0) and (—c,0). Hence, the given condition is equivalent to \(x — ¢)* + y° = V(x + ¢)’ + " =

-~

+2a. After manipulations required to eliminate the square roots, this yields

(cz—az)xz—azy2=az(cz—a2) (1)
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X

Fig. 5-13 Fig. 5-14

Since ¢ >a, ¢*—a’ >0. Let b :Z\/CZ —a”. (Notice that a* + b™ = ¢*) Then (1) becomes b'x" — a'y’ =
a’b®, which we rewrite as — — 25 = 1, the equation of a hyperbola.

When y =0, x = =a. Hence, the hyperbola intersects the x axis at the points A'(—a. 0) and A(a. 0).
which are called the vertices of the hyperbola. The asymptotes are y = = — x. The segment A’A is called

the transverse axis. The segment connecting the points (0, —b) and (0, b) is called the cenjugate axis.

The center of the hyperbola is the origin. The points F and F' are called the foci. The eccentricity is
. c Vai+b [ by , .
defined to be e = Pl Vl +( ) . Since ¢ >a, e>1. When ¢ is close to 1. b is very small

a
relative to a, and the hyperbola has a very pointed “‘nose”: when e is very large. b is very large relative
to a, and the hyperbola is very “flat.”

11,  Identify the graph of the equation 25x° — 16y” = 400.

The given equation is equivalent to x”/16 — y*/25 = 1. This is the equation of a hyperbola with the x

axis as its transverse axis, vertices (~4.0) and (4, 0), and asymptotes y = + 1x. (See Fig. 5-15.)
y
W ‘ 7
\ /
/
\\\ r / /
\ y
\ d
A /
Ny s
N 2
X
-4 / 4
/ AN
7/ N
/ \
/ sk \
/7 \
/ AN
2 \

Fig. 5-15



CHAP. 5] EQUATIONS AND THEIR GRAPHS 47

12.  Identify the graph of the equation y' —4x’=4.
2 2

The given equation is equivalent to X; — 5 =1, This is the equation of a hyperbola, with the roles

of x and y interchanged. Thus, the transverse axis is the y axis, the conjugate axis is the x axis, and the
vertices are (0, —2) and (0, 2). The asymptotes are x = *+ 1 y or, equivalently, y = +2x. (See Fig. 5-16.)

Fig. 5-16

13.  Identify the graph of the equation y = (x — 1)%.

A point (u, v) is on the graph of y = (x — 1) if and only if the point (u — 1, v) is on the graph of
y = x° Hence, the desired graph is obtained from the parabola y = x* by moving each point of the latter
one unit to the right. (See Fig. 5-17.)

Fig. 517
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x-1 (-2
+ =
9
A point (u, v) is on the graph if and oniy if the point (4 — 1, v — 2) is on the graph of the equation
x*4+ /9 = 1. Hence, the desired graph is obtained by moving the ellipse x”/4 + y/9 =1 one unit to
the right and two units upward. (See Fig. 5-18.) The center of the ellipse is at (1, 2), the major axis is
along the line x = 1, and the minor axis is along the line y =2.

14.  Identify the graph of the equation 1.

y
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Fig. 5-18

P

15. How is the graph of an equation F(x —a, y — b) =0 related to the graph of the equation
F(x, v)=0?

A point (u. v) is on the graph of F(x — a, y — b) =0 if and only if the point (u — a, v — b) is on the
graph of F(x. y) =0. Hence, the graph of F(x —a, y — b) =0 is obtained by moving each point of the
graph of F(x, y) =0 by a units to the right and b units upward. (If a is negative, we move the point |a|
units to the left. If b is negative, we move the point |b| units downward.) Such a motion is called a

transiation.

16.  Identify the graph of the equation y = x* ~ 2x.

Completing the square in x, we obtain y + 1 = (x — 1)>. Based on the results of Problem 15, the
graph is obtained by a translation of the parabola y = x” so that the new vertex is (1, — 1). [Notice that
y+1is y—(—1).] It is shown in Fig. 5-19.

y
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Identify the graph of 4x> —9y* — 16x + 18y — 29 =10.

Factoring yields 4(x* —4x) —9(y* —2y) - 29=0, and then completing th; square in x and y
produces 4(x — 2)* — 9(y — 1)* = 36. Dividing by 36 then yields (x _92)2 . ; 1)2.
Probiem 15, the graph of this equation is obtained by transiating the hyperbola - i 1 two units to

= 1. By the results of
2

the right and one unit upward, so that the new center of symmetry of the hyperbola is (2, 1). (See Fig.
5-20.)

Fig. 520

Draw the graph of the equation xy =1.

Some points of the graph are tabulated and plotted in Fig. 5-21. The curve suggested by these points
is shown dashed as well. It can be demonstrated that this curve is a hyperbola with the line y = x as
transverse axis, the line y = —x as converse axis, vertices (—1, —1) and (1, 1), and the x axis and y axis
as asymptotes. Similarly, the graph of any equation xy = d, where d is a positive constant, is a hyperbola

with y = x as transverse axis and y = —x as converse axis, and with the coordinate axes as asymptotes.

Such hyperbolas are called equilateral hyperbolas. They can be shown to be rotations of hyperbolas of
the form x%/a’> — y’/a’ = 1.
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Supplementary Problems

On the same sheet of paper draw the graphs of the following parabolas: (a) y =2x°; (b) y = 3x”; (c)
y=4x’ (d)yy=1x'; (e) y=

On the same sheet of paper, draw the graphs of the following parabolas, and indicate points of
intersection: (@) y = x*; (b) y = ~x%; (¢) x = y%; (d) x = —)~.

Draw the graphs of the following equations:

(a) y=x"-1 (b) y=(x-2) () y=(x+1y-2

(d) y=-x (&) y=-(x—-1 (f)y=—(x—-1)Y+2

Identify and draw the graphs of the following equations:

(a) y¥ —x' =1 (b) 25x° + 36y =900 (c) 2x’ -y =4 (d) xy =4

(e) 4x” +4y* =1 (f)8x=y* () 10y =x° (hy 4x° + 9 =16
(i) xy=-1 (jy y'-x*=9

L, [N

Ans. (a) hyperbola, y axis as transverse axis, veriices (0, = 1), asympioies y = = x; () ellipse, vertices
(6, 0) foci (= V11, 0); (c) hyperbola, x axis as transverse axis, vertices (+\/_ 0), asymptotes
y = £ V2x; (d) hyperbola, y = x as transverse axis, vertices (2, 2) and (—2, —2), x and y axes as
asymptotes; (e) circle, center (0, 0), radius ;; (f) parabola, vertex (0, 0), focus (2, 0), directrix
x = —2; (g) parabola, vertex (0, 0), focus (0, 1), directrix y = —3; (k) ellipse, vertices (=2, 0),
foci (= 3V'5,0); (i) hyperbola, y = —x as transverse axis, veruces (—1 1) and (1, —1), x and ¥
axes as asymptotes; (j) hyperbola, y axis as transverse axis, vertices (0, +V3), asymptotes

y==V3x/3
Identify and draw the graphs of the following equations:
(a) 4 =3y’ +8x+12y —4=0 (b) 5> +y* ~20x + 6y +25=0
(¢) ¥ —6x—4y+5=0 (d) 2> +y’ ~4x +4y +6=0
(&) 3x  +2y" +12x 4y +15=0 (NE-D(y+2)=1
(g) xy —3x — 2y + 5=0 [Hint: Compare (f).] (h)dx* +y? +8x+4d4y+4=0
(i) 2x° -8x—y+11=0 () 25x* + 16y° — 100x — 32y — 284 =0

Ans.  (a) empty graph; (b) ellipse, center at (2, —3); (c) parabola, vertex at (3, —1); (d) single point
(1, —=2); (e) empty graph; (f) hyperbola, center at (I, —2); (g) hyperbola, center at (2, 3);
(h) ellipse, center at (—1,2); ({) parabola, vertex at (2, 3); () ellipse, center at (2,1)

Find the focus, directrix, and length of the latus rectum of the following parabolas: (a) 10x° = 3y;

(b) 2y* =3x; () 4y = x” + 4x +8; (d) 8y = —x°.

Ans. (a) focus at (0, &), directrix y = — &, latum rectum g5; (b) focus at (3,0), directrix x = — },
latus rectum 3 ; (¢) focus at (-2, 2}, directrix y = 0, latus rectum 4; (d) focus at (0, —2), directrix
y =2, latus rectum 8

Find an equation for each parabola satisfying the following conditions:

(a) Focus at (0, —3), directrix y =3 (b) Focus at (6, 0), directrix x =2

(¢) Focus at (1,4), directrix y =0 (d) Vertex at (1, 2) focus at (1,4)

(e) Vertex at (3, 0), directrix x =1

(f) Vertex at the ongin, y axis as axis of symmetry, contains the point (3, 18)

(g) Vertex at (3, 5), axis of symmetry parallel to the y axis, contains the point (5,7)
(h) Axis of symmetry parallel to the x axis, contains the points (0, 1), (3,2), (1, 3)

() Latus rectum is the segment joining (2, 4\ and (6, 4), contains the point (8 1\

aily IR IR RG, 2

(]) Contains the points (1, 10) and (2, 4) axis of symmetry is vertical, vertex is on the line 4x -3y =6

Ans. (a) 12y = —f,(h\g(r—m—y?; r)R(y—7)_(r-n2 (d) 8(y-2)=(x-1)%
2,

(€) 8(x—=3)=y"; (f)y 2% (g) Ay —5)=(x =3 (h) 2(x — )= - 5()’—%2;
() 4(y -5 =—(x—4)%; (])y 2=2(x - 3)° ory———Zt')(x——2
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27.

Find an equation for each ellipse satisfying the following conditions:

(a) Center at the origin one focus at (0, 5), length of semimajor axis is 13
\u; Center at the origin, major axis on the y axis, contains the points (1, 2‘v3 na (% \v/ﬁ)
(c) Center at (2, 4), focus at (7, 4), contains the point (5, 8)
(d) Center at (0, 1), one vertex at (6, 1), eccentricity 3
(e) Foci at (0, =3%), contains (3,1)
(f) Foci (0, £9), semiminor axis of length 12
XZ yZ 2 yZ (x_z) (y_4)2 xl (_)/_1):
Ans. (a)— 169 =1; (b)2 16—1 () 20 —1,(d)3—6+T~1,
9_ Y _
(e) x* + 1; (f) +225—1

Find an equation for each hyperbola satisfying the following conditions:

(a) Center at the origin, transverse axis the x axis, contains the points (6,4) and (-3, 1)
(b) Center at the origin, one vertex at (3, 0), one asymptote is y = ix

(c) Has asymptotes y = = V2x, contains the point (1,2)

(d) Center at the origin, one focus at (4,0), one vertex at (3,0)

2

5x z
Ans. @53—%=nm

2 2

2 2
y 4 2 _ s
Lol -=1,d
T =L ©@©% =L@

x* <y
9 9 7

51

Find an equation of the hyperbola consisting of all points P(x, y) such that |PF — PF'| = 2V2, where

F=(V2,V2) and F' = (-V2, -V2).
Ans. xy=1



Chapter 6

Functions

FUNCTION OF A VARIABLE. A function is a rule that associates, with each value of a variable x
in a certain set, exactly one value of another variable y. The variable y is then called the
dependent variable, and x is called the independent variable. The set from which the values of x
can be chosen is called the domain of the function. The set of all the corresponding values of y
is called the range of the function.

EXAMPLE 1: The equation xi- y =10, with x the independent variable, associates one value of y with
each value of x. The function can be calculated with the formula y = x* — 10. The domain is the set of all
real numbers. The same equation, x*— y =10, with y taken as the independent variable, sometimes
associates two values of x with each value of y. Thus, we must distinguish two functions of y: x =10+ y
and x = — V10 + y. The domain of both these functions is the set of all y such that y = - 10, since /10 + y

is not a real number when 10+ y <0.

If a function is denoted by a symbol £, then the expression f(b) denotes the value obtained
when f is applied to a number b in the domain of f. Often, a function is defined by giving the
formula for an arbitrary value f(x). For example, the formula f(x) = x> — 10 determines the first
function mentioned in Example 1. The same function also can be defined by an equation like

2
y=x"-10.
3
EXAMPLE 2: (a) If f(x) = x’ —4x + 2, then
IV =1V AV LD =1 A4 = _1 M =M AV LD = _ Q1L Q19 -9
j\’ \j] -'\llT(- 1 n d rS 1 3 j\ Ll LJ -'\ LITL o7 OT & &~

{(b) The function f{x) = 18x — 3x” is defined for every number x; that is, without exception, 18x —3x7is a
real number whenever x is a real number. Thus, the domain of the function is the set of all real numbers.
(¢) The area A of a certain rectangle, one of whose sides has length x, is given by A = 18x — 3x°. Here,
both x and A must be positive. By completing the square, we obtain 4 = —3(x —3)* + 27. In order to
have A >0, we must have 3(x — 3)2 <27, which limits x to values below 6; hence, 0<<x < 6. Thus, the
function determining A has the open interval (0, 6) as domain. From Fig. 6-1, we see that the range of the
function is the interval (0,27).

Notice that the function of part (¢) here is given by the same formula as the function of part (&), but
the domain of the former is a proper subset of the domain of the latter.

P2A d

Fig. 6-1

52
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THE GRAPH of a function f is the graph of the equation y = f(x).

EXAMPLE 3: (ﬁ) Consider the funiciion f A) = |x| Its BI apu is the grapn o1 in¢ ony= [A|. showii
in Fig. 6-2. Notice that f(x) = x when x = 0, whereas f(x) = —x when x = 0. The domain of f consists of all
real numbers, but the range is the set of all nonnegative real numbers.

(b) The formula g(x) =2x + 3 defines a function g. The graph of this function is the graph of the equation
y = 2x + 3, which is the straight line with slope 2 and y intercept 3. The set of all real numbers is both the

domain and range of g.

A function is said to be defined on a set B if it is defined for every point of that set.

ANy /

N 7

Fig. 6-2

Soived Probiems

Given f(x) = 5. find (a) f(0); (6) f(=1); () f(2a); (d) f(1/x): (€) flx + ).

(@) f(0)=0—}—;=—§ by f-1=S5 =2 () fi2a)= o

(@) f(1x)=1 ;12_;:;:2 () f(x”’):(;::)::2:x2+x2;xh+_hl’+2

If f(x) =2", show that (a) f(x + 3) — flx — 1) = % f(x) and (b) ;E ; = f(4).

@ fr D= n=20 -2 =@ =t o) BRI g

Determine the domains of the functions
1
(a) y=Vd4-x% (b) y=Vx'~16; (© y=1=5;
@) y=— (&) y=—
= = e = .
YT ) YT +4
(a) Since y must be real, 4 — x* =0, or x* =4. The domain is the interval —2=< x=<2.
(b) Here, x* = 16=0, or x*=16. The domain consists of the intervals x = —4 and x =4,
(c) The function is defined for every value of r except 2.
(d) The function is defined for x # +3.
(e) Since x> +4 0 for all x, the domain is the set of all real numbers.
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Sketch the graph of the function defined as follows:

fx)=5when 0<x=1 f(x)=10 when 1 <x=2
f(x)=15when2<x=3 f(x)=20 when 3<x=4 etc.

The graph is shown in Fig. 6-3. The domain is the set of all positive real numbers, and the range is
the set of integers, 5, 10, 15, 20,. ...

y
x| O—— —
20 o —
15 [0 e —
o} o—
5<‘r———

] i i 1 X

I7) 1 2 3 4 s

Fig. 6-3

A rectangular plot requires 2000 ft of fencing to enclose it. If one of its dimensions is x (in
feet), express its area y (in square feet) as a function of x, and determine the domain of the
function.

Since one dimension is x, the other is 3 (2000 ~ 2x) = 1000 — x. The area is then y = x(1000 - x), and
the domain of this function is 0 < x < 1000.

Express the length [ of a chord of a circle of radius 8in as a function of its distance x (in
inches) from the center of the circle. Determine the domain of the function.

From Fig. 6-4 we see that ${ = V64 — x°, so that / = 2V 64 — x° The domain is the interval 0= x <8.

&1

From each corner of a square of tin, 12 in on a side, small squares of side x (in inches) are
removed, and the edges are turned up to form an open box (Fig. 6-5). Express the volume V
of the box (in cubic inches) as a function of x, and determine the domain of the function.

The box has a square base of side 12 —2x and a height of x. The volume of the box is then
V=x(12 — 2x)* = 4x(6 — x)’. The domain is the interval 0 < x <6.
As x increases over its domain, V increases for a time and then decreases thereafter. Thus, among

necessary to locate the precise value of x at which V ceases to increase. This problem will be studied in a
later chapter.
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10.

flat h) - f(a)
h

flat )= fla) _lla+h) +2a+ h)|=(a” +2a)

If f(x) = x> +2x, find and interpret the result.

=2a+2+h

o ,AZA_ F o -PUEERY 43 4 U [ Uiy iy g .._,l M W
unciuon (\r g U'U), lULd [L~} [J‘Jll]lb r ald L w
en

1
rdinate of P is f(a), and that of Q is f(a + k). The

fla + k) — f(e) _ difference of ordinates
h difference of abscissas

‘\ /
\Q(a+h.l(a+h))-i
/ (21 k) — fla
0 A A} Ry AL
x
P(a, f(a)) l

h

..LA..A cacienmdlin alcaliion aen P |
MUBC [CHPCLLIVE aUstiadad Al d alid

= slope of PQ

Fig. 6-6

Let f(x)=x2—2x+3. Evaluate (a) f(3); (b) f(—3); (¢) f(—x); (d) f(x+2); (&) flx—2);
. o T )

{FY fly 4 LY (o) fly 4+ LY — v
JIJ\ VIE)s AB) I\ T ) J\A) ) h
(a) i3)=3"-2(3)+3=9-6+3=6 b) f(-3)=(-3Y-2(-3)+3=9+6+3=18

() f(—x)=(—x)2—2(-x)+3=x2+2x+3

(d)f(x+2)—(x+2) —2(x+2)+3= x +tdx+4-2x-4+3= x +2x+3

() fx=2)=(x-2) —2(x—2)+3 X -ax+4-2x+4+3=x" —6x+11

(Y fix+h)=(x+h)}?—2x+h)+3=x"+2hx + B* —2x—2h +3=x"+ 2h = Dx + (K" = 2h + 3)
(8) fix+h) = f)=[x"+Rh—x + (K —2h +3)] - (x* - 2x +3)=2hx + K» - 2h = h(2x + h - 2)
(h)f(x+h’? f(x)zh(2x+hh 2) BEP

Draw the graph of the function f(x) = V4 — x° and find the domain and range of the function,

The graph of f is the graph of the equation y = V4 — x’. For points on this graph, y*> =4 — x?; that
is, x° + y° = 4. The graph of the last equation is the circle with center at the origin and radius 2. Smce
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TN

Fig. 6-7

y=V4—x?=0, the desired graph is the upper half of that circle. Figure 6-7 shows that the domain is
the interval —2 = x =<2, and the range is the intervai 0=y =2

Supplementary Problems
If flx)=x"—4x+6, find (a) f(0); (b) f(3); (¢) f(~2). Show that f(})=f(]) and f(2- k)=
f(2+ h). Ans. (a) —6; (b) 3; (c) 18

x-—1

If f(x)= 7. find (a) f(O); (&) f(1); (c) f(~2). Show that f(%)= ~f(x) and f(—£)=

Ans. (a) —1; (b)) 0;(c) 3

|
_f(;_)_

If fix) = x* — x, show that f(x + 1) = f(—x).

If f(x) = 1/x, show that f(a) — f(b) :f(b(f)a)'

If y = flx) = %i—j—% show that x = f(y).

Determine the domain of each of the following functions:

(@) y=x"+4 (b) y=V¥+d (9 y=Vi4  (@y=-3
2x 1 =1 T x
(e)y"(T——Z)_(}Ti_) ('f)y_Vﬁ (8)y—xz+1 (W y=vN3—
Ans.  (a), (b), (g) all values of x; (c) |x|=2; (d) x#-3; () x=—1,2; (f) —3<x<3;
(h) 0= x<2
Compute Mz—_ﬂ—a) in the following cases: (a) f(x) = x—l—z when a#=2 and a + h =2, (b) f(x)=

Vx-4whena=z4d4anda+ h=4 (c)f(x)=x—xﬁwhen a#*—landa+h+=-1

~ | i ‘ 1
(@) (a—2)(a+h—2);(b)\/ﬁh—4+\/a—4'(C) (@+1)a+h+1)

Ans.

Draw the graphs of the following functions, and find their domains and ranges:

\ x‘;“_l if0<x<1
PV 2k ifl<x

(¢) f(x)=[x]= the greatest integer less than or equal to x
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19.

21.

o~ -4

(@) fl="2 (€) fm=5-% (f) flr)= —4vE
(8) flx)=|x-3] (W) fo=dix (f) f(x)=|x]ix
. _ _fx ifx=
() f=y=x- Ix] ) fo={3 £3=0
Ans. (a) domain, all numbers; range, y=1 (b) domain, x >0; range, -1 <y<0ory=2
(¢) domain, all numbers; range, all integers (d) domain, x # 2; range, y #4
(e) domain, all numbers; range, y =3 (f) domain, x = 0; range, y <0
(g) domain, all numbers; range, y =0 (h) domain, x # 0; range, y #0
(/) domain, x # 0; range, {—1,1} (j) domain, all numbers; range, y <0

(k) domain, all numbers; range, y =0
Evaluate the expression MhT)_—f@ for the following functions f: (a) f(x) = 3x — x7; (b) f(x) = V2x;
(¢) f(x) =3x - 5; (d) flx) = £> 2.

2 2 2
= h; (b) \/2(x+h)+\/27’(c)3; (d) 3x° +3xh + h

Find a formula for the function f whose graph consists of all points (x, y) satisfying each of the following

Ans. (a) 3—-2x

equations (in plain language, solve each equation for y): (a) x’y +4x —2=0; (b) x = - y;
(c) 4x* —4xy + y* =0,

2-4 ~1
3 0) 0 = 2 (@ fw = 2x

Ans. (a) f(x)= T 1

(a) Prove the vertical-line test: A set of points in the xy plane is the graph of a function if and only if the
set intersects every vertical line in at most one point. (&) Determine whether each set of points in Fig.
6-8 is the graph of a function.

Ans. only (b) is a function

[~
g

(a) ) \

/
(
\

~— id)
Fig. 6-8




Chapter 7

Limits

AN INFINITE SEQUENCE is a function whose domain is the set of positive integers. For example,

when n is given in turn the values 1, 2, 3, 4, .. ., the function defined by the formula P
yields the sequence }, }, i, 4,.... The sequence is called an infinite sequence to indicate that
there s no last term.

By the general or nth term of an infinite sequence we mean a formula s, for the value of the
function determining the sequence. The infinite sequence itself is often denoted by enclosing

the general term in braces, as in {s,}, or by displaying the first few terms of the sequence. For

and that

y Gilld tiian

.
o
-
“n

g
1
sequence can be denoted by{n+1} orby i, i, 4,4, .. ..

LIMIT OF A SEQUENCE. If the terms of a sequence {s,} approach a fixed number ¢ as n gets
larger and larger, we say that c is the limit of the sequence, and we write either s, — ¢ or

lim s, =c.
n—+tx .
As an example, consider the sequence
i 3579 5 1 (7 1)
’2v3$475""7 nv-'- ( )

some of whose terms are plotted on the coordinate system in Fig. 7-1. As n increases,
consecutive points cluster toward the point 2 in such a way that the distance of the points from
2 eventually becomes less than any positive number that might have been preassigned as a

measure of closeness, however small. For example, the point 2 — 5 = feor and all subsequent

points are at a distance less than g from 2, the point S0t and all subsequent points are at a

1 1
distance less than g0 from 2, and so on. Hence, {2 - ;}—*2 or lim (2 - ;) =2.

n—s+x

-+ 714

v,
E=2
y|

+
-v.

{ i 4 J .
T T

Y] 1 32 5/3 2

Fig. 7-1

=TT T -

The sequence (7.1} does not contain its limit 2 as a term. On the other hand, the sequence
I, 5. 1,3. 1,4, 1,... has 1 as limit, and every odd-numbered term is 1. Thus, a sequence
having a limit may or may not contain that limit as a term.

Many sequences do not have a limit. For example, the sequence {(—1)"}, thatis, —1, 1,
-1.1. -1, 1,. .., keeps alternating between — 1 and | and does not get closer and closer to
any fixed number.

LIMIT OF A FUNCTION. If fis a function, then we say that lim fix)=Aif the value of f(x) gets
arbitrarily close to A as x gets closer and closer to a. For example llm Xl = =9, since X’ gets
arbitrarily close to 9 as x approaches as close as one wishes to 3.

Thia Anfmitine ~om ha ctotad manes saeanioale o FAllAvaas i | on Y Y

LI dCninuivil tafl UC Stdicd mMulc proeidcly as [onows, lllll j\.&) - 1‘1 ll. anda on y 1, 1ur dily
chosen positive number €, however small, there exists a posmve number & such that, whenever
0<|x —al <8, then |f(x) — A|<e.

58
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The gist of the definition is illustrated in Fig. 7-2: After € has been chosen [that is, after
interval (ii) has been chosen], then & can be found [that is, interval (i) can be determined] so
that, whenever x # a is on interval (i), say at x,, then f(x) is on interval (ii), at f(x,). Notice the
important fact that whether or not llm f(x)= A is true does not depend upon the value of f(x)

when ¥ = g. In fact f(r\ need not sven he defined when r = a.

YYIIT N A aii AL, 1T T WL TYVAI UT uviaaivia Evii A

X flxa)
—O- Ot O—————— X O— —t —0— f(x)
a—2& a a+é A-¢€ A A+te
() Fig. 7-2 (i)
. xf-4 -4 . -4
EXAMPLE 1: lim =4, although is not defined when x=2. Since =
=2 x—2 2 -2 x—2
(x-2)(x+2) i . x—4 L A
——————= = x + 2, we see thal approaches 4 as x approaches 2.
x—2 x=2
EXAMDPLE 2: Let us use the precise definition to show that hm (£ + 3x)=10. Let € >0 be chosen. We
must produce a & >0 such that, whenever 0< |x — 2| <8 then |(x + 3x) — 10| < €. First we note that

(2 +32) = 10| =|(x —2)° + (x = 2)| = |x = 2)" + 7|x - 2|

Also, if 0< 6 =1, then 8% =6. Hence, if we take & to be the minimum of 1 and €/8, then. whenever
0<]x—2| <8,
[(x* +3x)— 10| <8’ +76<6+76=80<¢

The definition of lim f(x) = A given above is equivalent to the following definition in terms of
r—ga

infinite sequences: Iim flv\_ A if and onlv if for anv ceauence {c Y such that lim ¢ =g

infinite sequences: lim A if and only if, for any sequence {s,} such that lim s, =a,
lim f(s,)=A.In other words, no matter what sequence {s,} we may consider such that s,
n—+x< .

approaches a, the corresponding sequence { f(s,)} must approach A.

RIGHT AND LEFT LIMITS. By lim f(x) = A we mean that f(x) approaches A as x approaches a
through values less than a, that is, as x approaches a from the left. Similarly, lim f(x)=

means that f(x) approaches A as x approaches a through values greater than a, that is, as x
approaches a from the right. The statement Jlrm f(x) = A is equivalent to the conjunction of the

two statements lim_ f(x)= A and lim f(x)= A. The existence of the limit from the left does

x—b
not imply the existence of the limit from the right, and conversely.
When a function f is defined on only one side of a point a, then llm f(x) 1s identical with

the one-sided limit, if it exists. For example, if f(x) = VX, then fis defined only to the right of
zero. Hence, hm vx = lim vx =0. Of course, llm vx does not exist, since Vx is not defined

-0
when x <0. On the other hand, consider the functlon g(x) = V1/x, which is defined only for
x>0. In this case, lim V1/x does not exist and, therefore, llm V1/x does not exist.

x—0"

EXAMPLE 3: The function f(x) = V9 — x? has the interval =3 = X =3 as its domain of deﬁnition. Ifais
any number on the open interval —3 <x <3, then lim V9 -~ x° exlsts and is equal to V9 - a". Now
consider a = 3. First, let x approach 3 from the left; then l|m V9 — x* = 0. Next, let x approach 3 from

the ht then lim VO — vz doeg not evict  cince for t >3 Vo-— v2 is not a real number. Thus
me L o@omen uam v QOCs nel eXist, singd ior x » 3, iS5 Bot a réa: numoclr. 1us,
—3°
2

lim V9—- 1’ = lim V9-x*=0.
x—3 x—-3 3 . . . . " —s

Dlmllarly, im V9-— x CXISIS and 1s €qual o U, but llm V9 - X does not exist. anS,

x—-3* x— —

lim V9-x"=0.

x—=—3
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THEOREMS ON LIMITS. The following theorems on limits are listed for future reference.
Theorem 7.1: If f(x) = ¢, a constant, then lim f(x) = c.
If lim f(x)= A and lim g(x) = B, then:
Theorem 7.2: lim 4f(x) = kA, k being any constant.
Theorem 7.3: lim [f(x) £ gx)] = lim f(x) * lim g(x) = A * B.
Theorem 7.4: lim [f(x)g(x)] = lim f(x) lim g(x) = AB.

x—+a

o f® llm f(x) A .
Theorem 7.5: )lrlj.l"lz 2(x) = hm g(x) B provided B =0,

Theorem 7.6: limV/f(x) =V/lim f(x) =V'A, provided V4 is a real number.

INFINITY. We say that a sequence {s,} approaches +, and we write s, > +x<or lim s, = +x,

n—s+x

if the values s, eventually become and thereafter remain greater than any preassigned positive
number, however large. For example, lim vii=+%and lim »n°= +=.

n—+w n—+

We say that a sequence {s,} approaches —x, and we write s, — —x< or lim s, = —x, if
n—s 4+
the values s, eventually become and thereafter remain less than any preassrgned negative
number, however small. For example, lim —n=— and lim (10— n’)= —o.
- 4 —_+

The correSpondmg notions for functions are the followmg

We say that j\.x.) approac::es +% as x appr‘OaCuca a, and we write u_'u': j\x) = +=, if, as x
approaches its limit a (without assuming the value a), f(x) eventually becomes and thereafter
remains greater than any preassigned positive number, however large. This can be given the
followmg more precise deﬁmtlon hm f(x) = +oo if and only if, for any positive number M,
there exists a positive number & such that whenever 0 < |x —a| < §, then f(x)> M.

We say that f(x) approaches —o as x approaches a, and we write lim f(x) = —x, if, as x
approaches its limit a (without assuming the value a), f(x) eventually becomes and thereafter
remains less than any preassigned negatrve number. By lrm f(x) =~ we mean that, as x
approaches its limit a (without assuming the value a), | f(x)| eventually becomes and thereafter
remains larger than any preassigned number. Thus, lim f(x) == if and only if lim | f(x)] = +oe.

e acsm: = A 1 - 1
EAAMPLE 4§ (a) }l{lil‘l ;— = +x (0) PB} ﬁ = - (C) llng ; = o

These ideas can be extended to one-sided (left and right) limits in the obvious way.

1
EXAMPLE 5: (a) lim P +, since, as x approaches 0 from the right (that is, through positive

x—0

numbers) - is positive and eventually becomes larger than any preassinged number.

. 1 . . . 1. .
() lim L = T since, asx approaches O from the left (that is, through negative numbers), s negative
x—0
and eventually becomes smaller than any preassigned number.

The limit concepts already introduced also can be extended in an obvious way to the case in
which the variable approaches +o or —<. For example, ‘ljjfm f(x)= A means that f(x)
approaches A as x — +; or, in more precise terms, given any positive €, there exists a number
N such that, whenever x > N, | f(x) — A| <e.

Similar definitions can be given for the statements lim_f(x) = A, xl-l.Tz flx)y=+=
xﬁrpx flx) = —==, llm fx)=—=_ and lrm flx) = +==
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EXAMPLE 6: lim L 0 and lim (2+ —1—2) =2.

x—~e4+x X X—e 4+ 2 X

Caution: When lim f(x)=*x and lim g(x) = *oc, Theorems 3.3 to 3.5 do not make

1 1 1752
sense and cannot be used. For example, hm — =+ and 1irr(|] % = +=; however, llm ;u =
0 x =0 x /x
lim x*=0.
x—0
Solved Problems
1. Write the first five terms of each of the following sequences.
[, 11 _ 1 _ 11 _ 1 3 1 5
(a) {1 Zn}' Set 5, =1 0 then s‘_l_Z_-l_i’ sz—l—ﬁ—z, S,—l—ﬁ=6, 5, =
1_L=z and ¢ = 2 Tha vranniva A tosre ava 1 3 5 7 9
1 24 8, anu 5¢ 10« LG TOQUiICy Wrind arc 2, 34 65 8> 10
1 1 1 , 1 1
_ n+l — (= 2 = = —(_ = -,
) {1 g fi Here s, = ) gy = 5 m =1 5=y =
s,=(—-1)* 3_31_1 =%,s4=—l—‘l,sﬁ= % . The required terms are 3, — 5, 3, — i1, 14.

2n
(c) {l+n2}: The terms are 1, #, 2, &, 5.

_ __"_} 1oz 3 45
@ {1 (n+ Dn+2)) T emsare 33 3 155667

(e) {i[(—1)" +1]}: The terms are 0, 1, 0, 1, O.

2. Write the general term of each of the following sequences.
(@) 1,4, 4,4, 4,...: The terms are the reciprocals of the odd positive integers. The general term is
1

2n—1

() 1, =3,%, —1,4,...: Apart from sign, these are the reciprocals of the positive integers. The general

1
. _1n+l__ _ln—l_'

term is (—1) nor( ) .

() 1,4,45, &, %,...: The terms are the reciprocals of the squares of the positive integers. The general
term is l/n2
i 13 1-3:5 1:3:5-7 . 13- (/.n"l)
-y et 1t

() 3575 7476 74 6§ The general term is —— - (2n)

(e) 4, —%., %, —%,...: Apart from sign, the numerators are the squares of positive integers and the
denominators are the cubes of these integers increased by 1. The general term is (—1)""' %

n
3. Determine the limit of each of the following sequences.

(a) 1,3,3,3,%4,...: The general term is 1/n. As n takes on the values 1, 2, 3, 4,... in turn, 1/n
decreases but remains positive. The limit is 0.

(b) 1,4, %, &, %,...: The general term is (1/n)°; the limit is 0.

(¢) 2,3, %, 4,%,...: The general term is 3 — 1/n; the limit is 3.

(d) 5. 4 uoz g : The general term is 3 + 2/n; the limit is 3.

(&) 1.4, é =, %2, : The general term is 1/2”; the limit is 0.

(£)0.9, 099, 0.999, 0 9999 0.99999, . . .. The general term is 1 — 1/10"; the limit is 1.
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Evaluate the limit in each of the following.

(@) imSx=5limx=5-2=10 ()llm(2x+3) 2I|mx+l|m3 2:2+3=7
N -2 x—=2 x—=Z
—12 llm(x—2) 1
(c) im(x*-4x+1)=4-8+1=-3 (dy lim —= =23~ = _ 2
x—=2 x—=3 X+ 2L Il_l.l';[X‘f'L) J
x2_4 —4 2
(¢) lim =— =0 (f)lin}\fZS—x =\/lin3(25—x2)=\/§=3

x——2 x2 +4 4+4
Note: Do not assume from these problems that lim f(x) is invariably f(a)

2

(g) lim *—2> lim_(x - 5)=-10

-5 X+ 5
Examine the behavior of f(x) =(—1)" as x ranges over the sequences (a) 5, }, 5, 5,... and
(b)%,%,%, %, ....(c) What can be said concerning lim (—1)" and £(0)?

(@) (—1)"— —1 over the sequence }, %, %,

(b) (—1)"— +1 over the sequence 3, £,3,3,....

(c) Since (—1)* approaches different limits over the two sequences, lin(m) (—1)" does not exist;
P

fO)=(-1)°=+1,

Ny ‘Ole=

Evaluate the limit in each of the following.

. x—4 . x—4 . 1 1
(a) hm 2 . = llm s NS AN = llm P ) = -
—d X —x — 14 x4 (x*oj(x %) x—=4 X T O [

The division by x — 4 before passing to the limit is valid since x ¥4 as x— 4, hence, x — 4 is

nnnnn
néver Zere.

L X127 (x-HNETH3x+9) . X 43x+9 9
(b) lim "7 g = lim (x-3)x+3) m x+3 2
Ik’ y2hx + R —xF 2hx + h*
(c) lim(x—+—h—)——x—=limx h—x = lim h = lim (2x + h) = 2x
h—0 h A= h h—0 h h—0

Here, and again in Problems 8 and 9, f is a variable so that it could be argued that we are in reality
dealing with functions of two variables. However, the fact that x is a variable plays no role in these
problems; we may then for the moment consider x to be a constant, that is, some one of the values of its
range. The gist of the problem, as we shall see in Chapter 9, is that if x is any value, say x = x,, in the

(.. 2

AT —
T rn .
! is always twice the selected value of x.

21V x21 5

»<) \
&,J VA'.)’

domain of y = x°, then ‘I‘im

>

2

=i Cha
@ S V+s \/’_—5 552(3 \Fz+5)(3+\fx2 +¥5) - 4-x

=lin;(3+\/x +5)=6

2
L ox+x=2 . (x-Dx+2) . ox+2 L
(@ lim = 7 =lim o7 T lim T = no imit exists.

In the following, interpret llm as an abbreviation for lim or hm Evaluate the limit by

]

first dividing numerator and denommator by the h]ghest power of x present and then using

lim - =0.

Xx—% X

3x-2 .. 3-2/x 3-0 1

(@ lim =My 5,970 3
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6x*+2x+1 . 6+2/x+1/x* _6+0+0
(b) lim ~——————— = lim 5 = =1
= G’ —3x+4 == 6-3/x+4/x 6~0+0
© lim Xx=2 1/x+1/x’—2/x3=9=0
xm= 4 =1 xm= 4-1/x° 4
2%’ . 2 .. .
| = —oo; limit exists
(d)f!l-'-'lx +1 xl—r-r‘l=’1/x+1/x3 ne

lim ————— = +=; no limit exists
== 1/x +1/x° ’

8.  Given f(x) =" - 3x, find lim &f—hz—_ﬁ

Since f(x) = x* — 3x, we have f(x + k)= (x + h)* = 3(x + ) and
2 2 _ _ _ 2 _ 2 _
f(x + h) fx) _ im (x”+2hx + h" —3x —3h)— (x" —3x) _ lim 2hx +: 3k

A-—o h—0 h h—0

=lim2x+h-3)=2x-3
A—0

+h) -
9. Given f(x)=V5x +1, find ’l'ln’(l]&—_z_—&l when x > — 5

fx+ R —f(x) .. V5x+Sh+1-V5x+1

= lim
h—0 h—0 h

_l.m\/5x+5h+1—\/5x+l\/5x+5h+1+\/5x+1
= h Vox +5h+1+Vox +1
- jim (Sx+5h+1)=(5x+1)

r=0 R(V5x +5h+ 1+ V3x +1)

. 5 - 5
S S Srishiis Voral 2Vril

10.  In each of the following, determine the points x = a for which each denominator is zero. Then
examine y as x—>a and x—a".

(a) y = f(x) =2/x: The denominator is zero when x =0. As x—07, y— ~; as x> 0", y—> +

X —
(b) y=flx)= m the denominator is zero for x=-3 and x=2. As x> -37, y— —; as
x> -3y +m Asx—>2, y>-» as x> 2%, yo +=
x—3
(©) y=f(x)= m(x__l—) The denominator is zero for x=—2andx=1. Asx— -2, y—> —=; as

x—-27, y-—++°° Asx—>1 y—o+o,as x> 17, yo> -,
\J‘TL)\J 1}

(d) y=fix)= (x—3)2 : The denominator is zero for x =3. As x—37, y— +®; as x—>3",
y—> +o>o. 5
+2)(1 -
(&) y=fx)= E—xl_(—:;-—x—): The denominator is zero for x=3. As x—37, y— +>; as x—3",
y— —x®,
11.  Examine (a) lim — d (b) lin 1+2~
. xamine (a) lim an im ———
=0 34217 0342
(a) Let x—>07; then 1/x— —, 2°"* >0, and llm 3 121,,‘ =§.
Let x—0"; then 1/x— +0, 2''*— + 0, and lim ;m =0.
0" 3+2
Thus lim does not exist

—0 3 4 - T ix
z ‘e .o 1+2 1
(b) Let x—07; then 2''*— 0 and lim o =3




o
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13.

14.

15,
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Let x> 0" For x»0, A7 2 = 241 i ince lim 2% =0, lim 2L —
-0 = and since lim =0, lim ———— =1.

A AT e Ty o’ o 32 T

Thise lim Anac nnt avice

Thus, lim 3~y does ot exist.

For each of the functions of Problem 10, examine y as x — — and as x — +=.

(a) When |x| is large, |y| is small.

For x = —1000, y <0; as x— —=, y— 07, For x = +1000, y >0; as x— +x, y—0",
(b), (c) Same as (a).
(d) When |x| is large. | y| is approximately 1.

For x=—1000, y<1;asx— —=, y— 1, For x = +1000, y>1; as x =+, y—> 1",
(¢) When |x| is large, |y| is large.

For x = — 1000, y >0; as x— —x, y— +x. For x = +1000, y <0; as x—= +x, y—> ~x,

Examine the function of Problem 4 in Chapter 6 as x—a~ and as x— a’ when a is any
positive integer.

Consider, as a typical case, a=2, As x—27, f(x)—=10. As x— 2", f(x)— 15. Thus, lnm f(x) does
not exist. In general, the limit fails to exist for all positive integers. (Note, however, that hm flx)=
lim f(x) =S5, since f(x) is not defined for x <0.)

)"
Use the prec1se definition to show that (a) llm (4x> + 3x" —24x +22) =5 and
)] hm (—2x' +9x+4)=-3.

(a) Let € be chosen, For 0<|x—1l<Aa <,

t e For 0 <|x
|(4x" + 3x7 = 24x +22) — 5| = |4(x — 1)* + 15x% = 36x + 21| = |[4(x — 1)° + 15(x — 1) — 6(x — 1)
=4lx— 1"+ 150 - 1P + 6]x — 1
<4A+ 152+ 6A=25A
Now |(4x” + 3x” — 2dx + 22) - 5| < € for A < €/25; hence, any positive number smalier than both 1
and €/25 is an effective 8, and the limit is established.
(b) Let € be chosen. For 0 <|x + lj<A <1,
(=26 +9x +4) + 3] =|-2(x + 1)’ + 6(x + 1)* +3(x + 1)
<2x+ 1 +6lx + 17 +3[x + 1] <11

Any positive number smaller than both 1 and €/11 is an effective 8, and the limit is established.

Given im f(x) = A and lim g(x) = B, prove:
lim f(x) lim g(x) P o fw A
' ag) B
Since llm f(x)= A and l|m g(x) = B, it follows by the precise definition that for numbers €, > () and

€, >, howcver small, there exnst pumbers &, >0 and §, >0 such that:

Whenever 0< [x — a| < §,, then | f(x) — A| <, (1)
Whenever 0 < |x — a| <8,, then |g(x) — Bl <, (2)

(@ lim [f)+g)=A+B () lim fg(x) = A ‘

(c

n_:n
D >V

Let A denote the smaller of 8, and §,; now
Whenever 0< |x — a| < A, then |f(x) — A| <€, and |g(x) — B] <e¢, (3)
(a) Let € be chosen. We are required to produce a § >0 such that
Whenever 0 < |x — a| < §, then |[f(x) + g(x)] — (A + B)| <¢

Now |[f(x) + g(x)] — (A + B)| = |[ f(x) — A] +[g(x) — B}l =|f(x) - A| +|g(x) - B|. By (3),
| f(x) — A| <€, whenever 0<|x —a| < A and |g(x) ~ Al < e, whenever 0 <|x — a| < A, where A is the
smaller of 8, and &,. Thus,
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I[f(x) + g(x)] — (A + B)| < ¢, + ¢, whenever 0 < |x —a| <A
Take €, =¢, = Le and & = A for this choice of €, and ¢,; then, as required,

1 1
[ f(x) + (x)]—(A+B)|<Ee+ie—ewhenever0<|x—a|<6

PP e T T s POyt N JIC Y § WP, T e )
1nUsen. vy alc rcguuicu v pIUUUbC a o -~ Y SULll lalt

Whenever 0< |x — a| < & then |f(x)g(x) - AB|<e¢
Now | f(x)g(x) — ABL = [ f(x) — A][g(x) — B] + B[ f(x) — A] + A[g(x) - B]|
=|fix) = Al g(x) = B| + |BI| f(x) - A| + | Al g(x) - B]
so that, by (3), |f(x)g(x) - AB|<e €, +|B|e +|Ale, whenever 0<|x —a| < A. Take ¢, and e,
are simultaneously satisfied and let 8 = A for this

1
such that €,6, < = €, €, < = and ¢, <

1
3 3 |3|

3 IAI
choice of €, and ¢,. Then, as required,
| f(x)g(x) — AB| < § + g + § = ¢ whenever 0<|x —a|< 8
Since fx) = f(x) ! , the theorem follows from (&) provided we can show that lim 1 for
8(x) 8(x) e g(x) B’
B#0.
Let € be chosen. We are required to produce a § >0 such that
Whenever 0< |x — a| < & then |—— — 1
( ) B
Now R e 'g‘f’,: A
1 8LX) o1 Dgx) D] 8LX)| | 2] | 8\X)]
By (2),

|g(x) — B| < €, whenever 0< |x — a[ < §,

However, we are also dealing with 1/g(x), so we must be sure §, is sufficiently small that the
interval @ — 8, <x < a + §, does not contain a root of g(x) = 0. Let §, < §, meet this requirement so
that | g(x) ~ B| <, and | g(x)| >0 whenever 0 <|x — a| = &,. Now | g(x)| >0 on the interval implies

1
lg(x)|>b>0and ——— 3 on the interval for some b. Thus, we have

1 1 €
—— — = | < =% + whenever 0<|x — a| <3
gx) B |B| b
[ .
Take ¢, < eb|B|, so that B[b < e and § = §, for this choice of ¢,. Then, as required,

2
16. Prove (a) lim —= = —; (b) lim —— =1; (¢) lim = +®
()x—427 (x—2)3 ()x—>+:nx+1 ()x—-o+¢x—
(a) Let M be any negative number. Choose & positive and equal to the minimum of 1 and |17| Assume
1
x<2 and 0<|x—2/<& Then |x-2°<8’<s =< M Hence, ﬁ>|M| = —M. But

(b)

(<)

1 1
(x —2)° < 0. Therefore, =2y =~ P <M.

Let ¢ be any positive number, and let M = 1/¢. Assume x > M. Then
= = — - — =
1] =] | 11
Ix+1 o lx+1 x+1 x M
2 2
Let M > 1 be any positive number, Assume x > M. Then xx_ 1 = % =x>M
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18.

19.

21.

22.
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Supplementary Problems

Write the first five terms of each sequence:

@l ] T
l nJ \)lnn+1)} L7 1 [\ 16 ] @) i\—1 ar ]
ols] ol @ {1 % {12}

Ans. (a)2,%,i,%,%;(b)i,é,i‘;,ﬂs,is;(c)a,a+d,a+2d,a+3d,a+4d;(d)a —ar, ar’, —ar’, ar®;
(e) 1/V2,2/VS, 3/V10, 4/V17,5/V26; (f) V2,5V3, 8 W5, Ve (g) 1, — 4,3, — &, &
n 2 022 2t 7.2 728
"3 33535 37535

Determine the general term of each sequence:

(a) 1/2, 2/3, 3/4, 4/5, 5/6, ... () 172, =176, 1/12, —1/20, 1/30, . ..
(c) 172, 1712 1730, 1456, 1/90, .. (d) 1/5°, 3/5%, 5¢57, 715°, 915", . ..
(e) 1/2!, —1/4 1/6!, —1/8!, 1/10!, ...
a-1 1 . ]. i Zn—l n-1 1
Ans. ( ) n+ l 7 (b) ( 1) 2 +n ] (C) (2'1_ l)znv (d) 52n4-l ) (e) (—1) (2")'
Evaluate: R
_1 “
(a) lim (x* - 4x) (b) lim (x*+2x* = 3x - 4) (c) lim (( ))
. 3 -3 oox—1 xX-4
(d) lim 2 == (e) 1 - (f) P—-Zm
43042 x-2 . X=2
(g) lim 773 (h) lim 5 () ‘l[l__";'—;?;
Vx—2 . (x+h)y-x° x—1
(j) lim —— (k) lim == 1) tim e
Ans. (a) —4; (b) 0; (¢) 35 (d) 0; (&) 35 (f) =45 (8) 13 (h) &5 (i) 0; () =, no limit; (k) 3x%; ({) 2
Evaluate
2 2
(a) lim 2x +3 () lim M‘d (c) lim X (dy lim m
Y ax 4x =S V= 64 x - 3x° R YU x4
x+3 . 3x_37x ] 31_3--1
(e) rh-r‘ll X +5x+6 (N xlam?t 3F+3F (e) xl-l-n:w 3 +37F

Ans. (a) 1; (b) — 3 (c) 0; (d) =, no limit; (e) 0; (f) 1; (g) —1

Find ;l.m?: f(_a+_h’2_—fi) for the functions f in Problems 11, 12, 13, 15, 16(a), (b), (d), and (g), and
18(d). (c), (g), and (i) of Chapter 6.

2 27 a
Ans. 11 2a-4;12. ———;13. 2a-1;15. - ———;: 6. (b ———,
o L 2a-4 12 20115~ 16 (@) 20, (0) s
3 4 .
(d) 7——=a-(8) /= fnzz 18. (a) —2a, (b) 1, (c) no limit, (g) —1, (i) no limit
(a +3) (@ +1)

o axT+ax" 't ta, PP . o .
What s lim — — 1 , where a,0,7U and m and n are positive integers, when
x—.x box +blx +...+b’l

(@ym>n, (bym=n; (¢c) m<n? Ans. (a) no limit; (b) a,/b,; (¢) 0




CHAP. 7 LIMITS 67

23. Investigate the behavior of f(x) = |x| as x — 0. Draw a graph. (Hint: Examine liry_ fix) and lim f(x).)
x— x—0"

Ans.  lim|x|=0

x—0

24, Investigate the behavior of {;g; _ :: 1 :50 as x—0. Draw a graph.

Ans.  lim f(x) does not exist.
=0

25, (@) Use Theorem 7.4 and mathematical induction to prove lim x” = a", for n a positive integer.
(b) Use Theorem 7.3 and mathematical induction to prove

lm [£,(x) + f(x) + -+ £,()] = lim f,(x) + lim f,(x) + -+ + lim £, (x)

26. Use Theorem 7.2 and the results of Problem 25 to prove llﬂ P(x) = P(a), where P(x) is any polynomial
in x.

27.  For f(x)=5x—6, find a >0 such that whenever 0<|x — 4| <§, then | f(x) — 14| <e¢, when (a) € = }
and (b) € =0.001. Ans. (a) &; (b) 0.0002

28. Use the precise definition to prove (a) lin; 5x=15; (b) lin} x’=4; (c) limz (x* =3x+5)=3.

29. Use the precise definition to prove
.1 . x . x . _
(a) lim + == (b) lim T=3 == (¢) fim =5 =1 (d) lim =57 =~
30. Prove: If f(x) is defined for all x near x = a and has a limit as x — a, that limit is unique. (Hinr; Assume

lim f(x) = A, lim f(x) = B, and B # A. Choose ¢, €, < ;[A — B|. Determine 5, and 5, for the two limits
and take & the smaller of &, and §,. Show that then |A - B|=|[A - f(x)] +[fix)— B)|<|A- B|. a

31 Let f(x), g(x), and h(x) be such that (1) f(x) =< g(x) =< h(x) for all values of x near x =a and (2)
lim flx)= lim h(x) = A. Show that lim g(x) = A. (Hint: For a given € >0, however small, there exists a

& >0 such that whenever 0 < |x — a| <& then | f(x) — A| <eand |A(x) - A|<eorA—e<flx)=g(x)=
h(x)< A +¢€)

32, Prove: If f(x)=M for all x and if lim f(x)= A, then A=M., (Hint; Suppose A> M. Choose
€ = (A — M) and obtain a contradiction.)



Chapter 8

Continuity

A FUNCTION f(x) IS CONTINUOUS at x = x, if
f(x,) is defined lim f(x) exists lim f(x)= f(x,)
1—*.X0 X—*.XO

For example, f(x) = x* + 1 is continuous at x =2 since Iin} f(x) =5= f(2). The first condition
above implies that a function can be continuous only at points of its domain. Thus, f(x) =
4 — x* is not continuous at x =3 because f(3) is imaginary, i.e., is not defined.

A function f(x) is called continuous if it is continuous at every point of its domain. Thus,
f(x)=x*+1 and all other polynomials in x are continuous functions; other examples are ¢”,
sin x, and cos x.

A function f is said to be continuous on a closed interval [a, b] if the function that restricts f
to [a, b] is continuous at each point of [a, b]; in other words, we ignore what happens to the
left of a and to the right of b. Consider, for example, the function f such that f(x) = x for
0=x=1, f(x) = —1 for x <0, and f(x) = 2 for x > 1. This function is continuous at every point
except x =0 and x = 1. However, the function is continuous on the interval [0, 1] because, for
that interval, we are considering the function g whose domain is [0, 1] such that g(x) = x for x in
[0, 1]. Because

lim g(x)= lim g(x)=0 and lim g(x) = lim g(x)=1

1—0 x—0t x—1 x—1"

A FUNCTION f(x) IS DISCONTINUOU!

\~; a - o

fails there.

=
3
5]
=
a
o
.
>
&
a
2]
3
2
o)
3
w
vy
S
1
a
&
3
=
3

at y = x _if one o
atx=x,1oneo

ot H

EXAMPLE 1: (a) f(x)=
denominator) and because lim f(x) does not exist (equals *). The function is, however, continuous
x—2

is discontinuous at x =2 because f(2) is not defined (has zero as

everywhere except at x =2, where it is said to have an infinite discontinuity. See Fig. 8-1.
2

e
(b) flx) ="

are zero) and because lim f(x) = 4 The discontinuity here is called removable since it may be removed by
x—2

4. . . .
is discontinuous at x = 2 because f(2) is not defined (both numerator and denominator

redefining the function as f(x) = for x #2, f(2) =4. (Note that the dlscontmmty in (a) cannot be so

removed because the limit also does not exist.) The graphs of f(x) = Ax and g(x) = x + 2 are identical

2
except at x =2, where the former has a ‘hole’ (see Fig. 8-2). Removing the discontinuity consists simply of

filling the ‘hole.’

v
v I 44
J
|
|
|
0 [ /
la ~
— T2 x
[ / =z
| / 0 2
|‘ ‘
I
Fig. 8-1 Fig. 8-2

68
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3
-27 - .
(c) fix)= xx =3 for x # 3; f(3) = 9 is discontinuous at x = 3 because f(3) =9 while Ilm f(x) 27, so that
, Yyt -27
um f(x)# f(3). The disconiinuity may be removed by redefining the function as f(x) i forx#3
f(3) 27.

(d) The function of Problem 4 of Chapter 6 is defined for all x>0 but has discontinuities at x =1, 2,
.. (see Problem 13 of Chapter 7) arising from the fact that

lim f(x)# lim f(x) for s any positive integer

These are called jump discontinuities. (See Problems 1 and 2.)

PROPERTIES OF CONTINUOUS FUNCTIONS. The theorems on limits in Chapter 7 lead readily
to theorems on continuous functions. In particular, if f(x) and g(x) are continuous at x = a, so
also are f(x)+g(x) f(x)g(x) and f(x)/g(x) pr0vided in the latter that g(a)#0. Hence,
pUIyllUlllldlb in x are cvcnywuclc continuous whereas rational functions of x are continuous
everywhere except at values of x for which the denominator is zero.

You have probably used certain properties of continuous functions in your study of algebra:

1. In sketching the graph of a polynomial y = f(x), any two points (a, f(a)) and (b, f(b))
are joined by an unbroken arc.

2. If f(a) and f(b) have opposite signs, the graph of y = f(x) crosses the x axis at least
once, and the equation f(x) = 0 has at least one root between x =a and x = b,

The property of continuous functions used here is

Pronarty 8 1: If f{x\ is continucus o tho ietamunl oo ooor b oo d € KON ot FTEY ks ooz oo oo
IVpvILy W 11 fRA Y S vwnuaauos On Nt iméiIva1 a =X = p ana i1 JRd} 7 Jlo ), LHNCll 1Ul ally Huimoct ¢
between f(a) and f(b) there is at least one value of x, say x = x,,, for which f(x,)=canda=sx,<b
Fioure 8-3 |||||era[9c the two qnnllr‘ahnnc of this pronerty. and Fig 84 chows that
gu ] s N0 WO aginiCcalions of il pripvily, dnu g, &-5 Sn0WSs uiadt
y
|
|
!
|
1
|
]
a J
T
1 o b
|
y ;

(a) (b) f{x) =90 has three roots
Fig. 8-3 between x =g and x = b.

Other properties of continuous functions are important here:

Property 8.2: If f(x) is continuous on the interval a < x = b, then f(x) takes on a least value m and a
greatest value M on the interval.

Although a proof of Property 8.2 is beyond the scope of this book, the property will be
used freely in later chapters. Consider Figure 8-5(a)-(c). In Fig. 8-5(a) the function is

SAntinIinne A o2 < y == h: tha lacect valuia nd tha graatact vals A Ao at v — amd v = A
WAJLILILIUUUY ULl A v, ‘ll\/ 1Ivddst vailuu ”‘ allu ‘ll\/ 5.\/0‘\/3‘ Vﬂlu\/ iry Ubbul a‘ A T L ajllu A — W

respectively, both points being within the interval. In Fig. 8-5(b) the function is continuous on
a = x < b; the least value occurs at the endpoint x = @, while the greatest value occurs at x = ¢
within the interval. In Fig. 8-5(c) there is a discontinuity at x = ¢, where a < ¢ < b; the function
has a least value at x = a but no greatest value.
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=b.

(v)

v
a
\
(6) A(x) =0 has no root
between x = g and x

¢c ¢+

Fig. 8-4
|
E
|
|
]
|
I
!
|
|
1
!
[
(c)
Fig. 8-5
c— A
Fig. 8-6

CONTINUITY

(@)
(@)
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|
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|
|
|
I
|
b
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un

Property 8.3: If f(x) is continuous on the interval 2 < x < b, and if ¢ is any number between a and b and
f(c) >0, then there exists a number A >0 such that whenever ¢ — A <x < c + A, then f(x) >0.

This property is illustrated in Fig. 8-6. For a proof, see Problem 4.

Solved Problems

Use Problem 10 of Chapter 7 to find the discontinuities of:

(a) f(x) =2/x: Has an infinite discontinuity at x=0.
x—1
(b) flx)= m
x+2)(x—-1)
(x - 3)°

Has infinite discontinuities at x = =3 and x = 2.

: Has an infinite discontinuity at x = 3.

(@ fx)=

Use Problem 6 of Chapter 7 to find the discontinuities of:
3

(@ f(0) = ’if_

27 . - . P -
: Has a removable discontinuity at x = 3. There is also an infinite discontinuity at

x=-3,
£
() f(x : Has a removable discontinuity at x = 2. There is also a removable discontinuit
at x = —2
2+x-2
(¢) f(x) = =—: Has an infinite discontinuity at x = 1.

= 1)
(SR Y

fla + h) — (g

Show that the existence of hm — ,:

The existence of the limit 1mpl|es that f(a + h) — f(a)—> 0 as h— 0. Thus, hm f(a + k)= f(a) and
f(x) is continuous at x = a.

=~ implies f(x) is continuous at x = a.

Prove: If f(x) is continuous on the interval a < x < b, and if ¢ is any number between a and b
and f(c) >0, then there exists a number A >0 such that whenever ¢ — A <x <c+ A, then

fx)> 0.
J\*)

Since f(x) is continuous at x = ¢, lim f(x) = f(c) and for any € >0 there exists a 4 >0 such that
Whenever 0 < |x — ¢| <8 then | f(x) — f(c)| < e (1)

Now f(x) >0 at all points on the interval ¢ — § <x < ¢ + § for which f(x) = f(c). At all other points of
the interval f(x) < f(c) so that | f(x) — f(c)| = f(c) — f(x) < € and f(x) > f(c) — €. Thus, at these points,
f(x) >0 unless € = f(c). Hence, to determine an interval meeting the requirements of the theorem, select
€ < f(c), determine & satisfying (1), and take A < &. (See Problem 10 for the companion theorem.)
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Show that f(x) = |x| is everywhere continuous.

_lx
1 + 21/x

Show that at x =0, (a) f(x) = 77—
- 37 +1

Show that f(x) = has a jump discontinuity at x = 0.

. . L X
has a jump discontinuity and (b) f(x) = T 11 has a removable

discontinuity.

P —4x - 21
If Fig. 8-4(a) is the graph of f(x) = ’i___x7_

and that ¢ = 10 there.

, show that there is a removable discontinuity at x =7

Prove: If f(x) is continuous on the interval a=x =< b, and if ¢ is any number between 2 and b and
f(c) <0. then there exists a number A >0 such that whenever ¢ — A<x < ¢+ A then f(x) <0.

Sketch the graph of each of the following functions, find any discontinuities, and state why the function

....................... .

£ ey i @t b e T A ioan btk dro . Skl
1alld W Ue CUINLLIIIUOUUY dal LHusc pUl 1. 1HIUILAlC WHILH JUDVOILIIUILICS d41C ICTNovdulc.

1y — x+3 ifx=2
(@) f_r\:m (h) fipy= X —3x—10 () f(ﬂ:[
AT AT A B N § x+2 Y7 J\TJ l.x?_+1 lfx<2
4-x fx=3 -1
(d) f(x)=Ix|—x (&) f(y=4x-2 f0<x<3 (f) f(x) = T
x—1 ifx=<0 x
x'+xT-17x+15
(&) flx)=

X +2x-15

Ans. (a) x=0; (b) x=—2 (removable); (¢), (d) no discontinuities; (¢) x=0; (f) x=1. —1 (both
removable); (g) x =3, —5 (both removable)

Sketch the graphs of the following functions. and determine whether they are continuous on the closed
interval [0, 1].

-1 forx<0

1
(@) f(x)=1 0 for0=x=<1 (b) f(x)=[§
1

0 forx>1

-1 forx<0

for x>0
() f(x)={xz for x=0

for x<0

x forx=0
(d) fx)=1for0<x=1 (&) f(x}=40 for0<x<1
x forx=1



Chapter 9

The Derivative

INCREMENTS. The increment Ax of a variable x is the change in x as it increases or decreases
from one value x = x, to another value x = x, in its domain. Here, Ax = x, — x, and we may
write x; = x, + Ax.

If the variable x is given an increment Ax from x = x, (that is, if x changes from x = x, to
x = x, + Ax) and a function y = f(x) is thereby given an increment Ay = f(x, + Ax) — f(x,) from
¥y = f(x,), then the quotient

Ay _ change in y
Ax  change in x

is called the average rate of change of the function on the interval between x = x, and
x=x,+ Ax.

EXAMPLE 1: When x is given the increment Ax =0.5 from x, = 1. the function y = f(x) = x" + 2x is

given the increment Ay = f(1 + 0.5) — f(1) = 5.25 — 3 =2.25. Thus, the average rate of change of y on the

. _ _ Ay 225
interval between x =1 and x = 1.5 is Ax - 05 =4.5.

(See Problems 1 and 2.)

THE DERIVATIVE of a function y = f(x) with respect to x at the point x = x, is defined as

lim ﬂ = lim flxy + &x) — f(x,)
ax—0 Ax  4zx—0 Ax

provided the limit exists. This limit is also called the instantaneous rate of change (or simply, the
rate of change) of y with respect to x at x = x,.

EXAMPLE 2: Find the derivative of y = f(x) = x* + 3x with respect to x at x = x,. Use this to find the
value of the derivative at (a) x, =2 and (b) x,= —4.

Yo=flxp) = x(z) +3x,
Yo + Ay = flx, + Ax) = (x, + Ax)® + 3(x, + Ax)
=x} +2x,Ax + (Ax)” + 3x, + 3 Ax
Ay = fixo + &x) — (x5) = 2x, Ax +3 Ax + (Ax)’

Ay _ flxo + Ax) - flx,)

Ax Ax =2x,+ 3+ Ax
The derivative at x = x,, is
. Ay _
Al:r_n.0 Ax AI:TO (2x, +3+Ax)=2x,+3

(a) At x,=2, the value of the derivative is 2(2) +3 =7,
(b) At x, = —4, the value of the derivative is 2(—4) + 3= —35.

IN FINDING DERIVATIVES it is customary to drop the subscript 0 and obtain the derivative of
y = f(x) with respect to x as
+Ax) —
lim 22y [ 20 2 /()
ax—0 Ax  ax—0 Ax

73
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The derivative of y = f(x) with respect to x may be indicated by any one of the symbols
d dy .
i’ ax U,y Yy J
(See Problems 3 to 8.)

’ AN

(x}

f(x)

4
dx

DIFFERENTIABILITY. A function is said to be differentiable at a point x = x,, if the derivative of
the function exists at that point. Problem 3 of Chapter 8 shows that differentiability implies
continuity. The converse is false (see Problem 11).

Solved Problems

1. Given y = f(x) = x*+5x—8, find Ay and Ay/Ax as x changes (a) from x, = 1 to
X, =x,+Ax=1.2 and (b) from x,=1 to x, =0.8.

(a) Ax=xl -x,=12-1=02 and

Ay = flx, + Ax) — f(x,) = f(1.2) - f(1) = -0.56 - (-2) = 1.44. So % = 1;424 72
(b) Ax=0.8-1=-0.2 and |36 '
Ay = f(0.8) - f(1) = -3.36 — (-2) = —1.36. So 2 ix _0'2 -6.8
("-anptrl(‘nllu A\///\r in ) is the SIO e of the secant line }n!n!_n_g the Pnlnrc (1, —-7\ and

(1.2, -0.56) of the parabola y= xz +5x — 8, and in (b) is the slope of the secant line joining the pomts
(0.8. —3.36) and (1, —2) of the same parabola.

2. When a body freely falls a distance s feet from rest in f seconds, s = 16t°. Find As/At as ¢
changes from ¢, to ¢, + Ar. Use this to find As/Af as f changes (a) from 3 to 3.5, (b) from 3 to
3.2, and (c) from 3 to 3.1.

As _ 16(1y + A1)’ — 1615 321, Ar + 16(Ar)°
At Y, - At
(a) Here 1, =3, Ar=0.5, and As/Ar=32(3) + 16(0.5) = 104 ft/s.
(b} Here t, =3, At=0.2, and As/At=32(3) + 16(0.2) =99.2 ft/s.
(¢) Here t, =3, Ar=0.1, and As/At = 97.6 ft/s.
Since As is the displacement of the body from time =1, to r =1, + As,

=321, + 16 At

As  displacement s e e T . ]
Kl‘ = T = average velocity or tne 0Dody over ine ume nterval
3. Find dy/dx, given y = x’ — x>~ 4. Find also the value of dy/dx when (a) x=4, (b) x=0
(c) x=—~1.
y+Ay=(x+Ax) - (x +Ax)’ -4
= x* + 3x%(Ax) + 3x(Ax)” + (Ax)’ — x° — 2x(Ax) — (Ax)* — 4
Ay = (3x’ - 2x) Ax + (3x — 1)(Ax)’ + (Ax)’

Ay ..o _ 2
Ax_3x 2x + (3x - 1) Ax + (Ax)

Q_ . 2 _ _ P 2
dx—.sl:To[:;x 2x + (3x - 1) Ax + (Ax)* ) =3x" - 2x

|=3(—1)2—2(—1)=5

. , d
@ 2| =sar-2m=m ¢) D] <307 -20=0 0 2|

dx
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7.

Find the derivative of y = x* + 3x + 5.

THE DERIVATIVE

y+Ay=(x+AxY¥ +3(x+Ax)+5=x"+2x Ax + Ax’ + 3x + 3Ax +5
Ay = (2x +3) Ax + AX®

Ay (2x+3)Ax +Ax’

Ax Ax

dx

1
Find the derivative of y = P

1
x+Ax -2
1 1

y+Aay=

=2x+3+ Ax

d
= lim (2r+3+40)=2x+3

at x=1and x=3.

=(x-2)—(x+Ax—2)= - Ax

Ax (x—2)(x+A4x—-12)
-1

(x—2)(x+A4x-2) (x=2)(x +Ax—2)

-1

@vy_ g -
& A ATt A—2) | (x-2)

dy -1 dy -1
Atx=1, —=——FS=—-latx=3, —=-—S =—
ThaT -2y Th TGy
Find the derivative of f{x) = 2x-3
A7 3+ 4
():-{—Ax\:E(_xLA_{)__E
o 7 3(xr+Ax)+4

=2x+2Ax—3 _2x-—3

fx + Ax) - f(x)

3x+3Ax+4 3x+4

_ Bx+4)(2xr—3)+2Ax} - (2x = 3)[(3x +4) + 3 Ax]

(3x+4)(3x+3Ax+4)
(6x +8—6x +9) Ax

17 Ax

T Bx+)(x+3Ax+4) (Bx+4)(3x+ 3Ax+4)

fx + Ax) = f(x) _

Ax (3x+4)(3x +34Ax +4)

17

frx)=li

Find the derivative of y = V2x + 1.
y+Ay=(2x+24ax+1)'"?

Ay=(2x+2Ax+ 1) - (2x +1)'"?

=[(2x +2Ax + )2 - 2x + 1)}

ado 3x+4)(3x +3Ax +4)  (3x + 4)

Qx+2Ax+ 1)+ 2+ 1)'7?

(2x+2Ax+1)-(2x+1)

Rx+2ax+ 1)+ 2x +1)'"?

2Ax

T A28x+ D)+ (2412

Ay 2

Ax  (2x+2Ax+ 1D+ 2+ 1)'7

2

x+28x+ 1)+ (2x+ 1)

1

A 28 )t

(2x +1)'"?
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For the function f(x)=V2x +1, lim f(x)=0=f(-14) while (lirln“ f(x) does not exist. the
x—{ 1.2)" x—(- 1’

function has right-hand continuity at x = — 4. At x = — }_ the derivative is infinite.
8 y

8. Find the derivative of f(x)=x'"". Examine f'(0).

flx +Ax)=(x + Ax)""
flx +Ax) = flx) = (x + Ax)'"* = x'"’

x+A0 T - e+ A0 xt oA T e
_ ( )
(x +Ax)"" + X'+ Ax)" T + 27

_ x+Ax—x
(x+Ax)" "+ x'"P(x+ Ax)' + X2
flx +Ax) — flx) _ |
Ax (x+Axy T+ x' M+ A+ 70

—

£(x) = lim !

arso (x + AX) 7+ XA e 30

The derivative does not exist at x = 0 because the denominator is zero there. However, the function
is continuous at x = 0. This, together with the remark at the end of Problem 7, illustrates: If the
derivative of a function exists at x = a then the function is continuous there, but not conversely.

9. Interpret dy/dx geometrically.

From Fig. 9-1 we see that Ay/Ax is the slope of the secant line joining an arbitrary but fixed point
P(x. v) and a nearby point Q(x + Ax, y + Ay) of the curve. As Ax— 0, P remains fixed while 0 moves
along the curve toward P, and the line PQ revolves about P toward its limiting position, the tangent line

PT to the curve at P. Thus, dy/dx gives the slope of the tangent at P to the curve y = f(x).

v y = f(x)
Qlx + Ax, y + Ay)
Ay /T
S
P(z,y)
=7 2z B
x
(4]
Fig. 9-1

For example, from Problem 3, the siope of the cubic y = x* = x*—4is m = 40 at the point x = 4; it is
m = () at the point x =0; and it is m =5 at the point x = —1.

10.  Find ds/dr for the function of Problem 2 and interpret it physically.
Here
As

ds .
A 32t, + 16 At and o 313_"30 (32t, + 16 At) = 32¢,
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-t
-

12,

13.

14.

15.

16.

17.

As At— 0, As/At gives the average velocity of the body for shorter and shorter time intervals Az. Then

we can define ds/dt to be the instantaneous velocity v of the body at time ¢ = t,. For example, at ¢ = 3,
2= VI =0K Ft /g

v = JG\-J} T VLMD,
Find f'(x), given f(x) = |x|.
The function is continuous for all wvalues of x. For x<0, flx)=-x and f'(x)=
. -{(x+Ax)—(~x) v
lim Ax =—1;for x>0, f(x)=x and f'(x)= 1.
fro — A A
Atx =0, f(x)=0and lim f0+8) = f(0) lim M As Ax—07, M—>—l; but as Ax—0",
|Ax]| ax—0 Ax ax—0 Ax Ax
Ax — 1. Hence, the derivative does not exist at x = 0.
Compute € = Ar d—i for the function of (a) Problem 3 and (b) Problem 5. Verify that e > 0
X
as Ax—0.
(a) € =[3x" = 2x + (3x — 1) Ax + (Ax)’} - (3x" — 2x) = (3x — 1 + Ax) Ax
b) €= -1 It S € ) ol G ) B 1 Ax
(b) e (x=-2)(x+Aax-2) (x-2) (x —2)(x + Ax — 2) (x =2)(x + Ax —2)

Both obviously go to zero as Ax— 0.

d .
Interpret Ay = d_i Ax + € Ax of Problem 12 geometrically.

In Fig. 9-1, Ay = RQ and % Ax = PR tan £ TPR = RS, thus, € Ax = $Q. For a change Ax in x from
P(x, y), Ay is the corresponding change in y along the curve while 7% Ax is the corresponding change in
y along the tangent line PT. Since their difference € Ax is a multipl?of (Ax)’, it goes to zero faster than

Ax, and zy Ax can be used as an approximation of Ay when |Ax| is small.

Supplementary Problems

Find Ay and Ay/Ax, given

(a) y=2x —3 and x changes from 3.3 to 3.5.
(b) y=x"+4x and x changes from 0.7 to 0.85.
(¢) y=2/x and x changes from 0.75 to 0.5.

Ans.  (a) 0.4 and 2; () 0.8325 and 5.55; (¢) $ and —

Find Ay, given y=x’—3x+5, x =5, and Ax = —0.01. What then is the value of y when x = 4,997
Ans. Ay =-0.0699; y = 14 9301
Find the average velocity, given

(@) s = (3¢5 +5)ft and ¢ changes from 2 10 3 s.
(b) s = (2 + 5t —3) ft and 1 changes from 2 to 5 s.

Ans.  (a) 15 ft/s; (b) 19 ft/s

Find the increase in the volume of a spherical balloon when its radius is increased (a) from r to r + Ar in;
(b) from 2 to 3in.  Ans. (a) iw(3r° +3rAr+Ar)’ Arin’; (b) 7 in’
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18.

19.

21,

22.

THE DERIVATIVE [CHAP. 9

Find the derivative of each of the following:

(@) y=ax-3 (b) y=4-3x () y=x*+2x-3
(d) y=1/x" (&) y=0x—-1)/(2x+1) () y=Q+2x)/(1 -2x)
(&) y=vx (h) y=1/vx () y=Vi+2x

(j)) y=1W7Z+x
Ans. (a) 4 (b) =3; (0) 2x +1); (d) ~2/x’; (e)
1

(l)ﬁ; (N R

Find the slope of the following curves at the point x = 1:

1

G D s

2
a) y=8-5x ) y=
(@) y — © y= 33
Ans. (a) —10; (b) —1; (¢) — 1}
Find the coordinates of the vertex v of the parabola y = x* — 4x + 1 by making use of the fact that at the
vertex the slope of the tangent is zero Ans. V(2,-3)

Find the slope of the tangents to the parabola y = —x” + 5x — 6 at its points of intersection with the x
axis. Ans. atx=2, m=1;atx=3, m=-1

When s is measured in feet and ¢ in seconds, find the velocity at time ¢ =2 of the following motions:

(a) s=1"+3 (by s=1-3r () s=Vi¥F2
Ans.  (a) 7ft/s; (b) Oft/s; (c) § ft/s

Show that the instantaneous rate of change of the volume of a cube with respect to its edge x in inches is
12in*/in when x = 2 in.



Chapter 10

Rules for Differentiating Functions

DIFFERENTIATION. Recall that a function f is said to be differentiable at x = x,, if the derivative
f'(x,) exists. A function is said to be differentiable on an interval if it is differentiable at every
point of the interval. The functions of elementary calculus are differentiable, except possibly at
isolated points, on their intervals of definition. The process of finding the derivative of a
function is called differentiation.

DIFFERENTIATION FORMULAS. In the following formulas «, v, and w are differentiable
functions of x, and ¢ and m are constants,

1 i’c“=0 2 i’x‘=1
. dx\} dx\ )
d d d d d
3, dx(u+v+ ) dx(u)+21;(v)+ 4 a(cu)—ca(u)
d d
5. a(uv)—ua(v)+vd—(u)
A i {nu) = un ..(1 FEYT) S YIYN d {9} L d {12}
U g WuWym R g Wy Gy T ow s W
, d(wy\_1d . 4
o d(\_ d(1y__cd o
Code \u/ de \u/ W ode V0
d d
i(g) Ud_(“)_ua(v) #0 10 Yy =
dx \v/ v’ v ) dx(x - m
d my m—li
11. i (W")y=mu dx(u)

(See Problems 1 to 13.)

INVERSE FUNCTIONS. Two functions f and g such that g( f(x)} = x and f(g( y)) = y are said to be
inverse functions. Inverse functions reverse the effect of each other.

EXAMPLE 1: (a) The inverse of f(x) = x + 1 is the function g(y)=y — 1.
(b) The inverse of f(x) = —x is the same function.
(¢) The inverse of f(x) = VX is the function g(y) = y° (defined for y = 0),
+

(d) The inverse of f(x) =2x ~ 1 is the function g(y) = y—z—l

Not every function has an inverse function. For example, the function f(x) = x° does not
possess an inverse. Since f(1) = f(—1) =1, an inverse function g would have to satisfy g(1) = 1
and g(1) = — 1, which is impossible. However, if we restrict the function f(x) = x” to the domain
x =0, then the function g(y)= vy would be an inverse of f. The condition that a function f
must satisfy to have an inverse is that fis one-to-one; that is, for any x, and x, in the domain of

[ if x; # x,, then f(x,) # f(x,).

79
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Notation: The inverse of f is denoted f ' If y = f(x), we often write x = f i (y). If fis

differentiable, we write, as usual, dy/dx for the derivative f'(x), and dx/dy for the derivative
£ vep oy

{
uooowy)
If a function f has an inverse and we are given a formula for f(x), then to find a formula for

. -1 . . .
the inverse f, we solve the equation y = f(x) for x in terms of y. For example, given

-2 . . .
5 and a formula for the inverse function is

f(x)=5x+2, set y=5x+2. Then, x=12
_ -2
fy =5

DIFFERENTIATION FORMULA for finding dy/dx given dx/dy:

dy 1
dx  dx/dy

12.

EXAMPLE 2: Find dy/dx, given x =y + 5.
First method: Solve for y = (x — 5)°. Then dy/dx = 2(x - 5).

. D : de 1 oop_ ] e -
Second method: Differentiate to find dy =5 y = NG Then, by rule 12, v 2Vy =2(x - 5).

(See Problems 14, 15, and 57 to 62))

COMPOSITE FUNCTIONS; THE CHAIN RULE. For two functions f and g, the function given by
the formula f( g(x)) is called a composite function. If f and g are differentiable, then so is the
composite function, and its derivative may be obtained by either of two procedures. The first is
to compute an explicit formula for f( g(x)) and differentiate.

E2Q AN =x*+3and ofx)=2x +1 then
E3 Iffix)=x"+3and g{x)=2x+1, then

y=fgx))=(x+ 1) +3=4x"+4x+4  and %=8x+4

The derivative of a composite function may also be obtained with the following rule:

13.  The chain rule: D (f(g(x) = f'(g(x))g'(x)

If f is called the outer function and g is called the inner function, then D ( f( g(x))) is the
product of the derivative of the outer function (evaluated at g(x)) and the derivative of the
inner function.

EXAMPLE 4: In Example 3, f'(x) =2x and g'(x) = 2. Hence, by the chain rule,
D (f(g(x) = f'(g(x))g'(x) = 2g(x) - 2=4g(x)=4(2x + 1) =8x + 4

ALTERNATIVE FORMULATION OF THE CHAIN RULE. Write y = f(u) and u = g(x). Then the
composite function is y = f(«) = f(g(x)), and we have:
. ~dy dy du
The chain rule: i du dx
EXAMPLE 5: Let y =u’ and u =4x’ - 2x + 5. Then the composite function y = (4x” — 2x + 5)" has the
derivative
dy _dy du _ 4 oigr 9y =304y - 28y —
o i 3u'(Bx —2)=3(4x" - 2x + 5)°(8x — 2)

U
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Notes: (1) In the second formulation of the chain rule, ==

it Foren bl

otes the COmMpOsItC 1unclion of Xy whereas th i€
u (what we called the outer function before). (2) Differentiation
chain rule. (See Problems 16 to 20.)

CL

+ 1 £.. ~F
uic llslllal uul\.uuu 01

_y on l.llC llslll de
ru a special case of the

_
[g']
—
—
Vi

HIGHER DERIVATIVES. Let y = f(x) be a differentiable function of x, and let its derivative be
called the first derivative of the function. If the first derivative is differentiable. its derivative is

y", or f"(x). In turn, the derivative of the second derivative is called the third derivative of the

function and is denoted by one of the symbols —5, y“, or f”"(x). And so on.

dxj’

Note: The derivative of a given order at a point can exist only when the function and all
derivatives of lower order are differentiable at the point. {See Problems 21 to 23))

Solved Problems

d d d
L. Prove: (a) pp (c) =’9, where c is any constant; (b) 2 (x)=1; () P (cx) = ¢, where c is any

n—1

constant; and (d) — (x") =nx""", when n is a positive integer.

Since - f(x)— hm =

Ax ’
s _d_ s c—¢ —_ s ~ o~
(@) g (= jim 3% = Jim 0=0
d (x+A)-x . Ax _
O g W= dim =g T dm g T fim !
d _oclx+Ax)—ex _
© Z £ ()= dm, Ax = jimc=c
a n nwn = 1 n 2 2 ”n
d (x+ A0 — 1" [x +nx" " Ax + ("2) (Ax)+.--+(Ax)]—
(@) g 67)= Jim, Ax = dim, Ax
= lim ﬁxn—1+"(""l) n-2a4 f/Ax\n—llznxn—l
aro 1-2 waye
2. Let u and v be differentiable functions of x. Prove: (a) (u v) = d (u)+ (v);
d d {u) dx (u)——u (U)
(b)d (uv)*u—(v)+v (u) (c)a;(;) = ,#0

(a) Set f(x)=u+ v =u(x)+ v(x); then

fix +Ax) — f(x) _ u(x + Ax) + v(x + Ax) —u(x) —v(x) u(x + Ax)— u(x) v(x +Ax) - v(x)
Ax = Ax - Ax * Ax

Taking the limit as Ax— 0 ylelds f(x) dx (utv)= i u(x) + 4 v(x) d (u) + ad; (v).
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(b) Set f(x) = uv = u{x)v(x); then
flx + Ax) ~ f(x) _ u(x + Ax)u(x + Ax) — u(x)u(x)

Ax Ax
- {u(x + Ax)u(x + Ax) — v{x)u(x + Ax)] + {v(x)u(x + Ax) — u(x)v(x))
Ax
= u(x + Ax) v(x + AAxi - v(x) + v(x) u(x + Asz - u(x)

and for Ax—0, % flx)= % (uv) = u(x) % v(x) + v(x) g; u(x)=u g; (v)+v d.ix ().

(c) Set fx)= 5 = ﬁi); then

u(x +Ax)  u(x)
fx+Ax)—flx) _ v(x+Ax) wu(x) u(x+Ax)u(x) - u(x)v(x + Ax)
Ax B Ax ; Ax{v(x}v(x + Ax)}
_ ulx + Ax)u(x) ~ u(x)v(x)] ~ [u(x)vix + Ax) — u(x)v(x)]
B Ax[v(x)v(x + Ax))
u(x + Ax) ~u(x) u(x + Ax) — v(x)
ux) = ) T
v(x)u(x + Ax)

i u(x) —u(x) - dx v(x) v % (u) —u % (v)
() v’

(4)-"

d d
and for Ax—0, i fix)= ix

3. Differentiate y = 4+ 2x — 3x> = 5x° — 8x" + 9x°

d
a.x—y =0+ 2(1) - 3(2x) — 5(3x%) — 8(4x7) + 9(5x*) =2 — 6x — 15x% — 32x* + 45x°

4, Differentiate y = % % N é N ST IND I

%=—x‘ 3(=2x ) +2(-3x Y= - —6x1—6x°=-$—?—%
5 Differentiate y =2x""? + 6x'"* - 2x*2
6. Differentiate y = % + % - % — % I I ANP IS (D WS 1 SRR

x
B! ) (_1 ) g ) (3 e
dx—z 2x +6 3% 2 53X 4 4x )

= —x -3,2 ~8:2 Sra
= -2x 7 4 3x +3x =——=3 - + ==+ =5

. . 1 -
7. Differentiate y =V3x? - v GBxH' = (5x)7 V2
dy _ 2x 5 2 1

l —2/3 ___1_ -3:2 - -
1 =3 06x) 760 - ( 2)(5x) )= G 25060~ Vox t 2xVx
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10.

11.

-
(34

13.

14.

15.

Differentiate s = (¢* — 3)".

é = A2 2V 2 =g — )
a vl &)= Ok 2)
. . 3 -
Differentiate z = ———— =3(a’ ~ y*)72
(a” =)
fif _ 2_ 2y _ag_ 2 2\=3, _ __12)’__
dy—3( e -y y(a y)=3(=2)a"-y") 2y)—(a2_y2)3
Differentiate f(x)=Vx’ +6x +3=(x" + 6x + 3)"~.
x+3

’x=1x2+6x+3_“2——x2+6x+3=lx2+6x+3_”22x+6=———————
frx)=z( )« )= 3( ) ) Viioess

Differentiate y = (x* + 4)*(2x° — 1)°.
y = +4) 5; -1+ @2 -1) % (x* +4)
d d
= (x?+4)°(3)(2x* - 1)’ i (2> = 1)+ 2x° - 1D’ (2Q)(x* + 4) o (x* +4)

= (7 +4)’(3)(2x° = 1)}(6x7) + (2x* = 1)} (2)(x* + 4)(2x)
=2x(x* + 4)(2x> = 1)’(13x> + 36x - 2)

D‘ﬁefﬁ-“t'ate v = 3 - ZX '

7T 342

d d
(3+2x) — (3—=2x)—(3—=2x) — (3 + 2x)
L 2 e N } L s dx T3+ 20)(-2)-3-2)(2) _ -12
y (3 + 2x)2 (3 + 2x)2 (3 " 2x)2
x? e

Differentiate y = - '

¢ 4—x* (4- xl)uz

D L o T e T T e

dx - 4-x’ 4-x°

_(4-x P2+ x’@-x7) " (4-xN)'"? 2x(d-xP)+ x° _ 8x — 2
4 — x° (4 x )uz - (4~x2)3/2 (4-x2)3’2

Find dy/dx, given x = y\/1— y°.
1-2y? dy 1 VI-)y°

dx 24112 2y
= -a- +3y(1-y) (=2 = = -
dy (1-y) :y(1—y7) (=2y) Vie ) A T dvdy T 1-2y

Find the slope of the curve x = y* — 4y at the points where it crosses the y axis.

dx dy 1 1
The points of crossing are (0, 0) and (0,4). We have -Ey- 2y — 4 and so -~ ol dx/dy 2—)’—‘_3

(0,0) the slope i1s —§, and at (0, 4) the slope s ;.

At
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84
THE CHAIN RULE
16,  Derive the alternative chain rule, dy = dy ﬂ
dx du dx
Let Au and Ay be, respectively, the increments given to y and ¥ when x is given an increment Ax
v A\) All Il\! fl\i /Ill
= =L =2 H it A Sl P
. A Au Ax’ and, provided Au #0 as Ax—0, i du x as required.
The restriction on Au can usually be met by taking |Ax| sufficiently small. When this is not possible,
the chain rule may be established as follows:
Set Ay = a—ﬁ Au+ € Au, where e >0 as Ax— 0. (See Problem 13 of Chapter 9.) Then
By _dy Bu _Au
Ax du Ax Ax
. - . dy _dy du du dy du
and. taking the limits as Ax —0 yields de = da dx 0 o de e before.
2
. u —1
17.  Find dy/dx, given y = ——— and u =Vii+2.
u +1
dy 4w w2 x
du (W’ +1) a dx  3(x*+2)7 34
8x

dy _dy du _  4u 2x _ Bx
dx  du dx  (u®+ 1) 3w’ Bu(’+ 1)

Then
18. A point moves along the curve y = x* — 3x +5 so that x = V1 + 3, where  is time. At what
rate is y changing when ¢ =4?
We are to find the value of dy/dt when t =4. We have
Q_—)/.,Z,l\ and £=; <G d:y dy dx %L_j
Y WM T Y T & dl T ava
dy _3(16-1) _
- 1 = @y Sl A
When r=4, x = V4+3=4, and 4 ) 8 umts per unit of time.
19. A point moves in the plane according to the equations x = ¢ +2rand y =2’ — 6t. Find dy/dx

when t =0, 2, and 5.
Since the first relation may bedsolved for t and &t;is result substituted for iIln the slecond relation, y is
Y 6t — 6 and — =2¢ + 2, from which @ . Then
dx  2t+2

clearly a function of x, We have i ar

L G P sk

The required values of dy/dx are —3 at¢t=0,3 atr=2,and 12 at =5

20. Ify= x*—4x and x =V2* + 1, find dy/dt when t = V2.
dy _ o dc _ _ xn dy _dy dx  41x-2)
o “Ax2) and g @f+1y? 0 W T ddi T @21y

B B dy _4V2(V5-2) _aVv2
When t = V2, x =V5 and ir v 5 (5~ 2VS).

21.  Show that the function f(x) = x* + 3x” — 8x + 2 has derivatives of all orders at x = a
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fi(x)=3x"+6x—8 and  f'(a)=3a"+6a—8
fl(x)=6x+6 and flay=6a+6
fr(x)=6 and f"(a)=6

All derivatives of higher order exist and are identically zero.

4/3

22.  Investigate the successive derivatives of f(x)=x""" at x=0.

4
f:(x)z _xlIJ and f’(0)=
frx) = 9 —573 and £"(0) does not exist
Thus the first derivative, but no derivative of higher order, exists at x = 0.

s ]

1 = ~=21-x7" find f ().

23. Given f(x)=
F=2-1)1-x)" 2\~1J—2(1—IJ 2 =201
£ =2(1=2)1 -0 (= 1) =2(2)(1 - x)°
frx)=2)(=-3)(1- 0" (- =203H01-x*

which suggest f(x) = 2(n")(1 — x) """, This result may be established by mathematical induction by
showing that if £f*(x) = 2(k!)(1 - x)"**", then

4700 = =20k + (1= x)" =1 =2k + DI - x) 4D

Supplementary Problems

1
. Establish formula 10 for m = —1/n, n a positive integer, by using formula 9 to compute ad; (17) (For
the case m = p/q, p and g integers, see Problem 4 of Chapter 11.)

In Problems 25 to 43, find the derivative.

25, y=x"+5x"-10x"+6 Ans.  dylde=5x(x" + 4x* - 4)
’ / -1/ 3 4
26. y=3x'"-x7+2x7"7? Ans. dy/dx=m—%\/ﬂ?—l/x32
27 —i i_l "2 gy 12 A dy 1 2
. YEsat R T X T tax O s R T
28. y=V2x +2Vx Ans. y'=(1+V2)W2x
2 6 , 172 4220
29, fle) = ’“\/—; +\37:[ Ans. f'()y=- t—z
30. y={(1-5x)° Ans.  y'=-30(1-5x)°
3. fl)=0Cx-x'+1) Ans. ') =121-x)3x - x>+ 1)°
R, y=CG+dx-x)'"? Ans. y' =(2-x)ly
3, g=1*2 Ans, Lo 3

2r+3 dr  (2r+3)
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3 —( X ) Ans. yr= X
=T S Ty
3s. y=2*V2-x Ans. y'= %
5 , 3—4x?
36.  f(x)=xV3-2ux Ans.  f'(x) = —=
3-2x
dy 2x°-4x+3
37. =(x-DVx'-2x+2 Ans. = = —/———
y=t=b " Vi —2x 2
w dz 1
38. e Ans. dw ~ (1-4w?)""?
SRS S
39, y=V9I++vx Ans. y_4\/§\/T—+—\/_i
0. flx) \/"_i Ans. f'(x) i
. x) = . RN S e
x+1 (x+ VX’ -1
4.  y=("+'(2 -5 Ans.  y'=2x(x" +3)°(2x* - 5)7(17x> + 27x - 20)
g U2 YR (U
. 5= 3¢ e 3-1)
(x'-1 ) , 36’ (- 1)’
e s TGy

M. For each of the following, compute dy/dx by two different methods and check that the results are the
same: (a) x =(1+2y)% (&) x =1/(2+ y).

In Problems 45 to 48, use the chain rule to find dy/dx.

u-1 dy 1
45, y—u+1.u~\/f Ans. dx_\/jf(1+\/I)2
4. y=u+4 u=x"+2x Ans.  dyfdx =6x*(x +2)’(x + 1)
47. y=Vi+u u=vx Ans. See Problem 39.
_ _ 2 /H' d\y _ day du dv \ A
48. y=vu.u=v(3-2v),v=x ( int; 2= = = Z') ns. See Problem 36.

In Problems 49 to 52, find the indicated derivative.

49‘ y= 3X4 - 2)’2 +x— 5, ym Ans. ym - 72x
105
50. =1 \/—; L ) (v) _
y VX y Ans. y 5
51, f(x)=V2-3x" f(x) Ans.  f'(x)=—6/(2-3x%)"
2. y=eVELy PR T
. y=xVx-l.y T

In Problems 53 and 54, find the nth derivative.
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~1)[(n +1)!
3. y=1/° Ans. y('"=——-——————( )x[STZ DY

3"(n?)

54.  f(x)=1/(3x+2) Ans. ) =(-1) Grr2y

8. If y = f(u) and u = g(x), show that

d’y dy d’u d’ (du)2 d’y dy d’u d’y d’u du d (du)3
@ &t w \& O w T w w atw\&
56 Fromé——l— derived_zx___ y andd_’x=M—_y')ﬂ
) dy y" ay*  (y)y @y 'y

In Problems 57 to 62, determine whether the given function f has an inverse; if it does, find a formula
for the inverse f ™' and calculate its derivative,

57. fx)=1/x Ans. x=f"Y(y)=1/y; dxidy=—x>=—1/y’
$8. f()=i4x+4 Ans. x=f"Y(y)=3y-12;dx/dy=3

8. f(x)=Vx-5 Ans. x=f"'(y)=y>+S;dxidy=2y=2Vx -5
0. flx)=x"+2 Ans. no inverse function

1 PR . a1, o3 dx 1 1 .,

o Jx)=x Ans. x=f(N=VY =333 Y

62. fx)= Zxx+—21 Ans. x=f"l(y)=- iyj; ; % T _5 27



Chapter 11

Implicit Differentiation

IMPLICIT FUNCTIONS. An equation f(x, y) =0, on perhaps certain restricted ranges of the

variables, is said to define y implicitly as a function of x.

EXAMPLE 1: (@) The equation xy + x ~ 2y — I =0, with x # 2, defines the function y = ; :x

2 2 . 2 2 .
(b) The equation 4x” +9y” — 36 = 0 defines the function y = 3V 9 — x* when |x| =3 and y = 0. and the
function y = — iV 9 - x* when |x| 3 and y 0. The ellipse determined by the given equation should be
thought of as consisting of two arcs joined at the points (—3,0) and (3.0).

s u!l oy ha Alhtainad hy Ana ~F ¢
1113 vl vuiaintlu vy onc Gi

1. Solve, when possible, for y and differentiate with respect to x. Except for very simple
equations, this procedure is to be avoided.

2. Thinking of y as a function of x, differentiate both sides of the given equation with
respect to x and solve the resulting relation for y'. This differentiation process is known
as implicit differentiation.

EXAMPLE 2: («) Find y', given xy + x —2y — 1 =0.
Wehavex%(y)+y%(x)+a(x)~2%(y)~d—;(l)=%(0)
orxy'+y+1—2y'=0;theny'=;ii.
(b) Find y* when x = V3, given ax® +9y* —-36 0.
Wehave4-di( )+9—(y)“8x+9d— )—~8x+18yy'=0

or y'=—4x/9y. When x=V35, y=+4/3. At the point (V5,4/3) on the upper arc of the ellipse,
y' = ~V/5/3, and at the point (V5, —4/3) on the lower arc, y' = V5/3,

DERIVATIVES OF HIGHER ORDER may be obtained in two ways. The first is to differentiate

implicitly the derivative of one lower order and replace y’ by the relation previously found.

EXAMPLE 3: From Example 2(a), y' = ;ii

(Z—x)( )+1 +y 242y

(2—-x)’ 2~ x) (2-x)°

- __d_ I+y _(2—x)y’+l+y
dx(v) —dx( )_

The second method is to differentiate implicitly both sides of the given equation as many
times as is necessary to produce the required derivative and eliminate all derivatives of lower
order. This procedure is recommended only when a derivative of higher order at a given point
is required.

DIE A. LTind the value nf u” at th
- v

t ' e poi
LR 1 lllu Ly ¥ L Vﬂlu\a v ] atb Lklwe PUIII
We differentiate implicitly with respect to

2

3
=3
—~

—
—
~—

v+ 2xy + 3y’ =0 and Y LYy £ 2xy L2y L =0
¥ Xy + 3y Y ana X + + LX Y+ 35 v

We substitute x = — 1, y = | in the first relation to obtain y’ = §. Then we substitute x = -1,y =1, ' =
in the second relation to get y*"=0.

88
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Solved Problems

1. Find y’, given x°y — xy’+xt+yt=0.

d oy 4 2+£ 2‘+£'3‘—U
d—x(xy) dx(xy) dX(X) dx()’)—

. d d 2 d 2 21 i 2 ﬁ. Iy
xa(y)"_yzg(x)“xzx_(y)_y dx(x)+dx(x)+dx(y)—o

Hence Xy +2xy —2xyy' —y 4+ 2x +2yy =0 and y'=y—2;2'—rix—y
X"+ 2y —2xy
2. Find y’ and y", given x> — xy + y* =3.
d/Z\ d/ \ d/Z\ ~ ’ s t n Q ZX"_V
ZKXJ—E\XYJTEU./‘)=LX—X)/ —y-rL)/‘)/‘ =u. 30 y“x_,zy
d d
(x_zu\_.(zx_—n\—(zx—n\—(x—zn\ , s
Then yim oo @ 0T T (r o 20)@ oy - (e )01 22
(x = 2y)° (x—2y)
(Zx - y) -3
_3xy' =3y x—2y 6(x" —xy +y7) _ 18
(x = 2y)° (x =2y)° (x =2y) (x=2y)
. ' " 3 3 —
3 Find y' and y", given x’y + xy" =2 and x =1.
We have
<y 430y + 3’y +y =0
and Xy 4 3x%y’ 4+ 3x%y 4 6xy + 3xyty  + 6xy(y )+ 3y7y "+ 3y7y =0
When x =1, y =1; substituting these values in the first derived relation yields y’ = ~1. Then
substituting x =1, y = 1, ¥y’ = —1 in the second relation yields y" =0,

Supplementary Problems

4. Establish formula 10 of Chapter 10 for m = p/q, p and g integers, by writing y = x”'% as y9 = x" and
differentiating with respect to x.
5. Find y", given (a) x +xy+ y=2; (b) X ~3xy +y’ = 1.

2(1+y) " 4xy
=T )y =TT
TR A T

6. Find y', y", and y" at (a) the point (2,1) on x* = y* — x = 1; (b) the point (1,1) on x* +3x’y — 6xy” +
2y’ =0. Ans. (a)3/2. —5/4,45/8,(b) 1,0,0

Ans. (a) y"

7. Find the slope at the point (x,. y,) of (a) b’ +a’y* =a’b’; (b) b’ —a’y* =a'b’; (c) x +y' -

6x’y = 0. .
-DZ bZ 4 I
Ans. (@) == (b) T2t (€) —3
aye ay Yo~ 2xq
8. Prove that the lines tangent to the curves S5y —2x +y’ — x’y =0 and 2y + 5x + x* — x’»* =0 at the

origin intersect at right angles.
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(a) The total surface area of a rectangular parallelepiped of square base y on a side and height x is given
by § =2y’ +4xy. If S is constant, find dy/dx without solving for y.

(b) The total surface area of a right circular cylinder of radius r and height A is given by
2 .
S=2mr"+2nrh. If Sis constant, find dr/dh.
r
Ans. (a) - Y (b)) -
x+y 2r+ h

Given S = wx(x +2y) and V = 7x’y, show that dS/dx = 2m(x — y) when V is a constant and dV/dx =
~7x(x — y) when § is a constant.

-1
==

For the circle x* + y* = r? show that




Chapter 12

Tangents and Normals

IF THE FUNCTION f(x) has a finite derivative f'(x,) at x = x,, the curve y = f(x) has a tangent at
Py(x4, y,) whose slope is
m=tané = f'(x,)

If m =0, the curve has a horizontal tangent of equation y =y, at Py, as at A, C, and E of Fig.
2-1. Otherwise the equation of the tangent is

Y = yo=mlx = x,)
If f(x) is continuous at x =x, but lim f'(x) ==, the curve has a vertical tangent of
equation x = x,, as at B and D of Fig. 12-1.

v
A
C
jz
o’ v D 4
B \-/
Fig. 12-1

The normal to a curve at one of its points is the line that passes through the point and is
perpendicular to the tangent at the point. The equation of the normal at Py(x,, y,) is
x = x, if the tangent is horizontal
y =y, If the tangent is vertical

1 .
¥ — ¥o=— — (x — x,) otherwise
m
(See Problems 1 to 8.)

THE ANGLE OF INTERSECTION of two curves is defined as the angle between the tangents to the
curve at their point of intersection.
To determine the angles of intersection of two curves:

1. Solve the equations simultaneously to find the points of intersection.
2. Find the slopes m, and m, of the tangents to the two curves at each point of
intersection.

3. If my=m,, the angle of intersection is ¢ =0° and if m, = —1/m,, the angle of
intersection is ¢ = 90°; otherwise it can be found from
) , _ Mmy—m,
tan @ = 1+ mm,

¢ is the acute angle of intersection when tan ¢ >0, and 180° — ¢ is the acute angle of
intersection when tan ¢ <0,

(See Problems 9 to 11.)
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Solved Problems

Find the points of tangency of horizontal and vertical tangents to the curve x> — xy + y* = 27.

. .. R —~ 2x
Differentiating yields y' = gy

- X

For horizontal tangents: Set the numerator of y’ equal to zero and obtain y = 2x. The points of
tangency arc the points of intersection of the line y = 2x and the given curve. Simultaneously solve the
two equations to find that these points are (3,6) and (-3, ~6).

For vertical tangents: Set the denominator of y’ equal to zero and obtain x = 2y. The points of
tangency are the points of intersection of the line x = 2y and the given curve. Simultaneously solve the
two equations to find that these points are (6, 3) and (—6, —3).

Find the equations of the tangent and normal to y = > =2x*+4 at (2,4).

FixY=13x2 — dx: hence the slope of the tancent at (7 4 icm = F'(IY=4
f'(x) = 3x" — 4x; hence the slope of the tangent at (2,4)ism f'(2)=4
The equation of the tangent is y —4=4(x — 2) or y = 4x — 4.

The equation of the normal is y —4= — {(x — 2) or x + 4y = 18.

Find the equations of the tangent and normal to x* + 3xy + y* =5 at (1, 1).
dy  2x+3y

dx  3x+2y
The equation of the tangent is y~1=-1(x —-1) orx + y =2,

The equation of the normal is y —1=1(x - 1) or x —y =0.

; hence the slope of the tangent at (1,1) is m= —1.

Find the equations of the tangents with slope m = — 2 to the ellipse 4x° + 9y’ = 40,

Let P,(x,, y,) be the point of tangency of a required tangent. P, is on the ellipse, so

4x5 +9ys =40 (1)
d 4 .
Also, Ii = —g—;. Hence, at (x,, y,), m= —6';—)3 = - % So y, =2x,. The points of tangency are the

simultaneous solutions (1,2) and (—1, —2) of (1) and the equation y, = 2x,,.
The equation of the tangent at (1,2) isy ~2=—§(x ~ 1) or 2x + 9y =20.
The equation of the tangent at (=1, —=2) is y +2=—3(x + 1) or 2x + 9y = - 20.

Find the equation of the tangent, through the point (2, ~2), to the hyperbola =yt =16.

Let P,(x,. ¥,) be the point of tangency of the required tangent. P, is on the hyperbola, so

X -y, =16 N
dy x X,y t+2 . _
Also, "y Hence, at (x,, y,), m= Yo X, =2 slope of the line joining P, and (2, —2); then
2x,+2y,=x5-ya=16 Oof  x,+y,=8 (2)

The point of tangency is the simultaneous solution (5,3) of (1) and (2). Thus the equation of the
tangent is y — 3= 3(x —5) or 5x — 3y = 16.

Find the equations of the vertical lines that meet the curves (1) y = x” +2x* —4x + 5 and (2)
3y =2x" +9x° — 3x — 3 in points at which the tangents to the respective curves are parallel.

Let x = x, be such a vertical line. The tangents to the curves at x, have the slopes

For(1): y =3x'+4x—4;atx=x,,m, =3x;+4dx,—~4
For (2): 3y =6x"+18x—~3;at x =x,, m, =2x_ + 6x, — |
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Since m, = m,, we have 3x2 +4x,— 4 =2x2 + 6x,— 1, from which x,= —1 and x, =3. The lines are
x=-1and x=3.

7. (a) Show that the equation of the tangent of slope m#0 to the parabola y’=4px is
y=mx+pim.
(b) Show that the equation of the tan%ent to the ellipse b°x* + 2’y’ = a’h* at the point
Po(xo. yo) On the ellipse is b7x,x + @’ y,y = a’b>

(@) y'=2pi/y. Let P,(x,, y,) be the point of tangency, then y}=4px, and m=2p/y,. Hence,
yo=2p/m and x, = § yi/p = p/m’. The equation of the tangent is then y — 2p/m = m(x — p/m?®) or
y=mx+p/m.

bx 2)co . . 2x0

(b) y'=——. At P, m= - ——, and the equation of the tangent is y —y,=——— (x — x,) or

ay ) 4y, Y,
bixx + a’y,y = b’x} + a’yl = a’b’.

8 Show that at a point P,(x,, on the hyperbola b*x* — a’y* = azbz, the tangent bisects the
p olXos Yo yp y g
angle included by the focal radii of P,

At P, the slope of the tangent to the hyperbola is b’x,/a’y, and the slopes of the focal radii P,F’
and P,F (see Fig. 12-2) are y,/(x, + ¢) and y,/(x, — ¢), respectively. Now

bzxo _ Yo
@y, Kt _(xi-ay) b, ab b, @) b
- 2 - 1 Fl Fl -2 2 - 2 -
1+ bxy o (@ + b )xy, + a’cy, cxpy,ta cy,  cyofa tcx,) €y,

2 [T
a y[) Ag T L

- 2
since b’x; ~ a’yj = a’h’ and a® + b’ = ¢’, and

2
Yo b'x,
] 2 12 22 2 2,2 2
oo R Xo—C ay, biexy— (b'xy —a'y,) bcx,—ab b
an ) e = -
fan g z 7 7 7 =z ;P
b’x, Yo (a” +b%)xoy, —a’cy, cxoy,—acy,

1+ ==9.

a’y, x,—c¢
Hence, 4 = 8 because tan a = tan g.

\ :’c(h. o) /
P Yl .

(—e, OYF' 0 / F(e,0)

Fig. 12-2

9. Find the acute angles of intersection of the curves (1) y* =4x and (2) 2x° =12 - Sy.

The points of intersection of the curves are P,(1,2) and P,(4, —4).
For (1), y' =2/y; for (2), y' = —4x/5. Hence,
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10.

11.

12.

13.

14.

-
EJ"I
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m,—m, 1+4/5
L+mm, 1-4/5

AtP:m =1land m,=-1%,s0otan¢ = =9 and ¢ = 83°40’ is the acute angle of

intarsaction
...............

-1/2 +16/5
1+8/5

AtP:m =—-land m,=~% sotan¢g =

intersection.

=1.0385 and ¢ =46°5' is the acute angle of

Find the acute angles of intersection of the curves (1) 2x* + y* =20 and (2) 4y* — x* =8.

The points of intersection are (2V?2,2) and (*2V2, -2).

For (1), y' = —2x/y; for (2), y' = x/4y.

At the point {2V2,2), m, = —-2V2 and m, = {V 2. Since m m, = -1, the angle of intersection is
¢ = 90° (i.e., the curves are orthogonal). By symmetry, the curves are orthogonal at each of their points
of intersection.

A cable of a certain suspension bridge is attached to supporting pillars 250 ft apart. If it hangs
in the form of a parabola with the lowest point 50 ft below the point of suspension, find the

nnala hatwaan tha o and tha nilla
vet e ™ FPAV I ¥ Y A 1114

ahla
augiv williot vaviv a 1Y 1.

Take the origin at the vertex of the parabola, as in Fig. 12-3. The equation of the parabola is
y = Jx’, and y' = 4x/625.

At (125,50), m =4(125)/625 = 0.8000 and ¢ = 38°40". Hence, the required angle is ¢ =90° -0 =
512200,

y
/s
//
Ve
/4
éso)
¢
SN 2\ 0 .
7] il |
Vd
Fig. 12-3

Suppliementary Problems

Examine x* + 4xy + 16y’ = 27 for horizontal and vertical tangents.

Ans. horizontal tangents at (3, —3/2) and (-3, 3/2); vertical tangents at (6, —3/4) and (—6.3/4)

Find the equations of the tangent and normal to x* — y* =7 at the point (4, —3).
Ans. 4x+3y=7;3x—4y=24

At what points on the curve y=x’+5 is its tangent (a) parallel to the line 12x-y=17,
(b) perpendicular to the line x + 3y =2? Ans. (@) (2,13), (—2,-3) (&) (1,6), (—1.4)

-1 .l hn b mmmbe b 2 L 1.2 €A el
ring Lu [§ 11+ lauscuta v 77X T lUy = J&

=}
="

ms

o
=)

equatu

1+
)

Ans. 9x -8y ==*26
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16.

17.

18.

19.

20.

N
—

22,

27.

29.

Find the equations of the tangents to the hyperbola xy = 1 through the point (-1, 1).

Ans. y=(VZ-Nx+2V2-2,y=-(2V2+3)x-2V2-2

For the parabola y® = 4px, show that the equation of the tangent at one of its points P(x,. y,) is
YYo= 2p{x + x,).

For the ellipse b°x’+ a’y’ =a’h’, show that the equations of its tangents of slope m are

y=mx*=Va'm* + b

For the hyperbola bx* — a’y®=a’h’ show that (a) the equation of the tangent at one of its
points P(x,, y,) is b’x,x —a’y,y =a’b® and (b) the equations of its tangents of slope m are

y=mx*=Va'm' - b

Show that the normal to a parabola at any of its points P, bisects the angle included by the focal radius
of P, and the line through P, parallel to the axis of the parabola.

Prove: Any tangent to a parabola, except at the vertex, intersects the directrix and the latus rectum

(produced if necessary) in points equidistant from the focus.

Prove: The chord joining the points of contact of the tangents to a parabola through any point on its
directrix passes through the focus.

Prove: The normat to an ellipse at any of its points P, bisects the angle included by the focal radii of P,,.

Prove: The point of contact of a tangent of a hyperbola is the midpoint of the segment of the tangent
included between the asymptotes.

Prove: (a) The sum of the intercepts on the coordinate axes of any tangent to VX +Vy=+Va is a
constant. (b) The sum of the squares of the intercepts on the coordinate axes of any tangent to

23 213

x*? 4+ y¥? =4 is a constant.
Find the acute angles of intersection of the circles x’ —4x + y>=0and x* + y* =8,  Ans. 45°

Show that the curves y = x* + 2 and y = 2x° + 2 have a common tangent at the point (0, 2) and intersect
at an angle ¢ = Arctan 35 at the point (2, 10).

Find the equations of the tangent and normal to the parabola y = 4x° at the point (-1, 4).

Ans. y+8x+4=0;8y-x-33=0

At what points on the curve y =2x> + 13x* 4+ 5x + 9 does its tangent pass through the origin?

Ans. x=-3,-1,3/4



Chapter 13

Maximum and Minimum Values

INCREASING AND DECREASING FUNCTIONS. A function f(x) is said to be increasing on an
open interval if u < v implies f(u) < f(v) for all ¥ and v in the interval. A function f(x) is said to
be increasing at x = x, if f(x) is increasing on an open interval containing x,. Similarly, f(x) is
decreasing on an open interval if u <v implies f(u) > f(v) for all ¥ and v in the interval, and
f(x) is decreasing at x = x, if f(x) is decreasing on an open intervai containing x,,.

If f'(x,) >0, then it can be shown that f(x) is an increasing function at x = x,; similarly, if
f'(xy) <0, then f(x) is a decreasing function at x = x,. (For a proof, see Problem 17.) If
f'(x4) =0, then f(x) is said to be stationary at x = x,.

" r--——-——-}u

°

Fig. 13-1

In Fig. 13-1, the curve y = f(x) is rising (the function is increasing) on the intervals
a <x<randt<x<u; the curve is falling (the function is decreasing) on the interval r <x <t.
The function is stationary at x = r, x = s, and x = ¢; the curve has a horizontal tangent at the
points R, S, and 7. The values of x (that is, r, s, and t), for which the function f(x) is stationary
(that is, for f'(x) = 0) are frequently called critical values (or critical numbers) for the function,
and the corresponding points (R, S, and T) of the graph are called critical points of the curve.

RELATIVE MAXIMUM AND MINIMUM VALUES OF A FUNCTION. A function f(x) is said to
have a relative maximum at x = x,, if f(x,) = f(x) for all x in some open interval containing x,,,
that is, if the value of f(x,) is greater than or equal to the values of f(x) at all nearby points. A
function f(x) is said to have a relative minimum at x = x if f(x,) < f(x) for ali x in some open
interval containing x,, that is, if the value of f(x,) is less than or equal to the values of f(x) at
all nearby points. (See Problem 1.)

In Fig. 13-1, R(r, f(r)) is a relative maximum point of the curve since f(r)> f(x) on any
sufficiently small neighborhood 0 <|x — r| < 8. We say that y = f(x) has a relative maximum
value (= f(r)) when x = r. In the same figure, T(¢, f(t)) is a relative minimum point of the curve
since f(t) < f(x) on any sufficiently small neighborhood 0 < |x — 1| < 8. We say that y = f(x) has
a relative minimum value (=f(t)) when x =r. Note that R joins an arc AR which is rising
(f'(x) >0) and an arc RB which is falling ( f’'(x) <0), while T joins an arc CT which is falling
(f'(x) <0) and an arc TU which is rising ( f'(x) >0). At S two arcs BS and SC, both of which
are falling, are joined; § is neither a relative maximum point nor a relative minimum point of
the curve.

If f(x) is differentiable on a < x < b and if f(x) has a relative maximum (minimum) value at
x =x,, where a <x,<b, then f'(x,) =0. For a proof, see Problem 18.
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FIRST-DERIVATIVE TEST. The following steps can be used to find the relative maximum (or
minimum) values (hereafter called simply maximum [or minimum] values) of a function f(x)

Iﬂﬂ[ IOgCIHCI’ with 1is first QCanIlVC is continuous.

Solve f'(x) =0 for the critical values.

Locate the critical values on the x axis, thereby establishing a number of intervals.
Determine the sign of f'(x) on each interval.

Let x increase through each critical value x = x,; then:

e

f(x) has a maximum value f(x,) if f'(x) changes from + to — (Fig. 13-2(a)).
f(x) has a minimum value f(x,) if f’(x) changes from — to + (Fig. 13-2(b)).

f(x) has neither a maximum nor a minimum value at x = x if f'(x) does not
change sign (Fig. 13-2(c) and (d)).

(See Problems 2 to 5.)
A function f(x), necessarily less simple than those of Problems 2 to 5, may have a

mavimnm ar minimnm valiya €y ) althouoh f(y ) doec nnt exist. The valuyes ¥ = x. for urh-t‘h
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f(x) is defined but f'(x) does not exist will also be called critical values for the function. They,
together with the values for which f’'(x) =0, are to be used as the critical values in the
first-derivative test. (See Problems 6 to 8.)

CONCAVITY. An arc of a curve y = f(x) is called concave upward if, at each of its points, the arc
lies above the iangent at that point. As x increases, f’'(x) either is of the same sign and
increasing (as on the interval b < x <s of Fig. 13-1) or changes sign from negative to positive
(as on the interval ¢ < x < u). In either case, the slope f'(x) is increasing and f"(x)>0.

An arc of a curve y = f(x) is called concave downward if, at each of its points, the arc lies
below the tangent at that point. As x increases, f'(x) either is of the same sign and decreasing
(as on the interval s < x < c¢) or changes sign from positive to negative (as on the interval

a <x <b). In either case, the slope f'(x) is decreasing and f"(x) <0.

A POINT OF INFLECTION is a point at which a curve changes from concave upward to concave
downward, or vice versa. In Fig. 13-1, the points of inflection are B, §, and C.
A curve y = f(x) has one of its points x = x,, as an inflection point if f*(x,) =0 or is not
defined and f"(x) changes sign as x increases through x = x;,. The latter condition may be
replaced by f"(x,) # 0 when f”(x,) exists. (See Problems 9 to 13.)

SECOND-DERIVATIVE TEST. There is a second, and possibly more useful, test for maxima and
minima:

1. Solve f'(x,) =0 for the critical values.
2. For a critical value x = x:

f(x) has a maximum value f(x,) if f"(x,) <0 (Fig. 13-2(a)).
f(x) has a minimum value f(x,) if f"(x,) >0 (Fig. 13-2(b)).
The test fails if f"(x,) =0 or is not defined (Fig. 13-2(¢) and (d)).
In this case, the first-derivative test must be used.

(See Problems 14 to 16.)
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AN\ \ /
\

X, Xo

(a) (b)

Xq X,

(3] (4)

Fig. 132

Solved Problems

TV ommnta ol o ol o A s lamloamcian el Py
Locate tne maximum Or muiflimum vaiuca ul

and (d) y=Vx - 4.

(a) y=—x has a relative maximum value (=0) when x =0, since y =0 when x =0 and y <0 when
x#0.

(b) y = (x —3)’ has a relative minimum value (=0) when x = 3, since y = 0 when x = 3 and y >0 when
x #3.

(¢) y=V25-4x" has a relative maximum value (=5) when x =0, since y =5 when x =0 and y <5
when —1<x<1.

(d) y=Vx ~ 4 has neither a relative maximum nor a relative minimum value. (Some authors define

relative maximum (minimum) values so that this function has a relative minimum at x = 4. See
Problem 30.)

Given y = lx’+ Ix* — 6x + 8, find (a) the critical points; (b) the intervals on which y is
increasing and decreasing; and (¢) the maximum and minimum values of y.

(@) y'=x*+x—6=(x+3)(x—2). Setting y’' =0 gives the critical values x = —3 and 2. The critical
points are (-3, ¥) and (2, }).
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(b) When y’ is positive, y increases; when y’ is negative, y decreases.

When x < -3, say x = —4, y'=(=)(-) =+, and y is increasing.
When ~3<x <2, say x =0, y'={+}-)=—, and y is decreasing.
When x >2, say x =3, y'=(+)}+)=+, and y is increasing.
These results are illustrated by the following diagram (see Fig. 13-3):
x<-3 x=-3 -3<x<2 x=2 x>2
y' =+ y'=- y'=+
y increases y decreases y increases
(-3,43/2) ¥

N\
[\

0 (2, 2/3)
k4

Fig. 13-3

{c) We test the critical values x = —3 and 2 for maxima and minima:
As x increases through —3, y’ changes sign from + to —; hence at x = —3, y has a maximum

value %
As x increases through 2, y' changes sign from — to +; hence at x =2, y has a minimum

value 3.

Given y = x* + 2x* — 3x” — 4x + 4, find (@) the intervals on which y is increasing and decreas-
ing, and (b) the maximum and minimum values of y.

We have y’ =4x” +6x’ — 6x — 4 =2(x +2)(2x + 1)(x — 1). Setting y’' =0 gives the critical values
x=-2, -3, and 1. (See Fig. 13-4.)

(—1/2,81/18)
0 x
(~2,0) (1,0)
Fig. 13-4
(a) When x < -2, y =2(=)(-)X~-) = -, and y is decreasing.
When —2<x< -1, Y =2+ )W) = +, and y is increasing,
When -4 <x <1, y =2(+)(+)(— ) = —_ and y is decreasing.
When x > 1, y ' =2(+)(+)(+)=+, and y is increasing.
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These results are illustrated by the following diagram (see Fig. 13-4):

x< -2 x==2 -2<x<-14 x=-1 - <x<t x=1 x>1
y'=- y' =+ y'=- F y'=+
y decreases ] y increases | y decreases ] y increases
(b) We test the critical values x = —2, — }, and 1 for maxima and minima:
As x increases through —2, y’ changes from — to +; hence at x = — 2, y has a minimum value 0.
As x increases through — 3, y' changes from + to —; hence at x = — 3, y has a maximum value
81/16.

As x increases through 1, y’ changes from ~ to +; hence at x =1, y has a minimum value 0.

Show that the curve y = x° — 8 has no maximum or minimum value.

Setting ¥’ = 3x” =0 gives the critical value x = 0. But y’ >0 when x < 0 and when x > 0. Hence y
has no maximum or minimum value.

Tha Aruas hae A it AF inflantinae ar v =N
¢ CUIYC 1ids a poiniy Of ITHICiRion at X v.

. 1 . - . .
Examine y = f(x) = P for maxima and minima, and locate the intervals on which the

function is increasing and decreasing.
o1
f (x) - (x _ 2)2 :

is no cnitical value. However, x = 2 may be employed to locate intervals on which f(x) is increasing and
decreasing.

f'(x) <0 for all x #2. Hence f(x) is decreasing on the intervals x <2 and x> 2. (See Fig, 13-5.)

Since f(2) is not defined (that is, f(x) becomes infinite as x approaches 2), there

0.2)

o

Fie. 13-§ Fio 13.4
g Fig. 13-6

Locate the maximum and minimum values of f(x) =2+ x*"> and the intervals on which the
function is increasing and decreasing.

2 .. . . s
f(x)= EMEE The critical value is x =0, since f'(x) becomes infinite as x approaches 0.
X

When x <0, f'(x)= —, and f(x) is decreasing. When x>0, f'(x} = +, and f(x) is increasing.
Hence, at x = 0 the function has the minimum value 2. (See Fig. 13-6.)

Examine y = x*>(1 — x)'’* for maximum and minimum values.
13
4-5 .
Here y' = H and the critical values are x =0, 3, and 1.
- X
When x <0, y' <0. When 0<x< ¢,y >0. When % <x<1, y’<0. When x>1, y' <0.

The function has a minimum value (=0) when x =0 and a maximum value (= 4V/20) when x = ¢.

Examine y = |x| for maximum and minimum values.
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The function is everywhere defined and has a derivative for all x except x = 0. (See Problem 11 of
Chapter 9.) Thus, x =0 is a critical value. For x <0, f'(x) = —1; for x >0, f'(x) = + 1. The function has

a minimum {(=0) when x = §. This result is immediate from a figure
e a4 3 142 N M C mmmmecribey memd cmmisitn f oAt
9. Examine y=s3x — 10x” — 12x° + 12x — 7 for concavily and poi its of inflection.

We have
y =121 - 30x" — 24x + 12
y*=36x" — 60x — 24 = 12(3x + 1)}(x - 2)

Set y” =0 and solve to obtain the possible points of inflection x = — 1 and 2. Then:

When x < — 3, y” =+, and the arc is concave upward.
When - 4§ <x<2, y"=—, and the arc is concave downward.
When x > 2, y” =+, and the arc is concave upward.
The points of inflection are (— ., — ¥ ) and (2, —63), since ¥” changes sign at x = — 3 and x = 2 (see Fig.
13-7).
v
x

(—1/8, —322/2T) \
2,-69]

Fig. 13-7

10. Examine y = x* — 6x + 2 for concavity and points of inflection. (See Fig. 13-8.)

We have y” = 12x” The possible point of inflection is at x = 0.

On the intervals x <0 and x>0, y" = +, and the arcs on both sides of x = 0 are concave upward.
The point (0, 2) is not a point of inflection.
¥ ¥
x
(0,2) o
0 z
(_21_6)

- - |

Fig. 13-8 Fig. 13-9

11.  Examine y = 3x + (x + 2)*'° for concavity and points of inflection. (See Fig. 13-9.)
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12.

13.

14.

18.

16.

17.
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3 -6
’ = + ; "
Here y' =3 —ﬁ_——S(x ) and y

T+
The possible point of inflection is at x = -2,
When x> -2, y"=— and the arc is concave downward, When x < -2, y"=+ and the arc is

concave upward. Hence, {(—2, —6) is a point of inflection

Find the equations of the tangents at the points of inflection of y = f(x) = x* — 6x* + 12x* -
8x.

A point of inflection exists at x = x, when f"(x,) =0 and f"(x,) #0. Here,

fl(x)=dx’ ~ 18x” +24x - 8
fi(x) =12x" = 36x + 24 =12(x — 1)(x — 2)
f(x) =24x ~ 36 =12(2x - 3)

Th. ool Ll ot i o€ S0 et o e o 1 23 QLo I 2 —~
1nc pUBblUIC p\]llllb Ul HUICCUU daic dlt A — 1 dIiu £, DIIICC ]

(2.0) are points of inflection.
At (1, — 1), the slope of the tangent is m = f'(1) =2, and its equation is

172}

1) N .__.1 0 AV o TS TP & | 41 [
LL)7vdanujy {<£) 7 U, HIC pomnis {1, —1) ana

y—-y,=m(x-x,) or y+1=2(x-1) or y=2x-3
At (2,0), the slope is f'(2) =0, and the equation of the tangent is y =0.

. . . a—x .. . . . .
Show that the points of inflection of y = ——; lie on a straight line, and find its equation.
X +a

H . x =2ax—a’ and Y 2x3 -3ax’ - 3d’x+a’
ere = e——— = —
y  + az)z Y (x2 N 02)3
Now x* — 3ar® — 3a’xr + a* =0 when x = ~a and a(2 + V3); hence the points of inflection are (—a, 1/a),

(a(2 + V3), (1 - V3)/4a), and (a(2 - V3), (1 + V3)/4a). The slope of the line joining any two of these
points is —1/4a’, and the equation of the line of inflection points is x + 44’y = 3a.

Examine f(x) = x(12 - 2x)2 for maxima and minima using the second-derivative method.

Here f'(x) = 12(x* — 8x + 12) = 12(x — 2)(x ~ 6). Hence, the critical values are x =2 and 6.
Also, f’(x) = 12(2x — 8) = 24(x — 4). Because f"(2) <0, f(x) has a maximum value (=128} at x = 2.
Because f"(6) >0, f(x) has a minimum value (=0) at x =6.

Examine y = x° + 250/x for maxima and minima using the second-derivative method.

3
Here y' =2x - 2—529- = w so the critical value is x =S.

500
Also, y" =2+ —5. Because y" >0 at x =5, y has a minimum value (=75) at x = 5.
X

Examine y = (x — 2)*’* for maximum and minimum values.
o g - =173 __ 2
y = 3 (x 2) - 3(x_2)113'
n__ g - —4/3 _
Y =79 (x=2) 9(x — 2)4/3

tive test fails, and we employ the first-derivative method: When x<2, y'= —; when x>2, y' = +.
Hence y has a relative minimum (=0) at x =2,

Hence, the critical value 1s x = 2.

becomes infinite as x approaches 2. Hence the second-deriva-

A function f(x) is said to be increasing at x=x, if for A>0 and sufficiently small,
flxy — h) < f(xg) < f(x, + h). Prove: If f'(x,) >0, then f(x) is increasing at x = x,.
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18'

19.

20.

21.

+ Ax) -
Since lim flxo + &%) = f(%o)
Ax—0 Ax
by Problem 4 of Chapter 8.
If Ax <0, then f(x, + Ax) — f(x,) <0, and setting Ax = —h yields f(x, — h) < f(x,). If Ax >0, say
Ax = h, then f(x, + h}> f(x,). Hence, f(x, — h) < f(x,) < f(x, + h) as required in the definition. (See
Probiem 33 for a companion theorem.)

flxo + Bx) = f(xo)
Ax

= f'(x,) >0, we have > 0 for sufficiently small |Ax|

Prove: If y = f(x) is differentiable on a < x < b and f(x) has a relative maximum at x = x,,
where a < x, < b, then f'(x,) =0.

Since f(x) has a relative maximum at x = x,,, for every Ax with |Ax| sufficiently small we have

flxo + Ax)<f(x,);  so  flxo+Ax)— f(x,) <0

When Ax <0,
f(XU+Ax)_f(X0) -0 and f(x Y= lim f(x“+Ax)-_f(xﬂ) =0
AX v 4 J 2ol A:—-O AI -
When Ax >0,
flxg + Ax) = f(x,) ) _ 1 Jlxg + Ax) = f(x,)
Ar <0 and f'(xg)= _JT}; Ax =0

Thus, 0= f'(x,) <0 and f'(x,) =0, as was to be proved. (See Problem 34 for a companion theorem.)

Prove the second-derivative test for maximum and minimum: If f(x) and f'(x) are differenti-
able ona < x < b, if x = x, (Where a < x, < b) is a critical value for f(x), and if f"(x,) >0, then
f(x) has a relative minimum value at x = x,,.

Since f"(x,)> 0, f'(x) is increasing at x = x_ and there exists an A > 0 such that f'(x, — h) < f'(xo) <
f'{x  + h). Thus, when x is near to but less than x_, £'{x) < f'(x.); when x is near to but greater than x
J \ra 7 ’ a*J \*7 PNV P o .0‘
f1(x)>f'(xy). Now since f'(x,)=0, f'(x) <0 when x <x, and f'(x) >0 when x > x,. By the First-
Derivative Test, f(x) has a relative minimum at x = x,. (It is left for the reader to consider the
companion theorem for relative maximum.)

Consider the problem of locating the point (X, Y) on the hyperbola x* — y* = 1 nearest a
given point P(a, 0), where a >0. We have D? = (X — a)2 + Y’ for the square of the distance
between the two points and X*—Y?=1, since (X, Y) is on the hyperbola.

Expressing D? as a function of X alone, we obtain
fiX)=(X-a)+X'~1=2X"-2aX+a’ -1

with critical value X = }a.

Take a= 5. No point is found, since Y is imaginary for the critical value X = ;. From a figure,
however, it is clear that the point on the hyperbola nearest P(},0) is V(1, 0). The trouble here is that we
have overlooked the fact that f(X)=(X - )"+ X —1 is to be minimized subject to the restriction
X = 1. (Note that this restriction does not arise from f(X) itself. The function f(X'), with X unrestricted,
has indeed a relative minimum at X = {.) On the interval X = 1, f(X) has an absolute minimum at the
endpoint X = 1, but no relative minimum. It is left as an exercise to examine the cases a = V2 anda=3.

Supplementary Problems

Examine each function of Problem 1 and determine the intervals on which it is increasing and
decreasing,.
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22,

27,

31.
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Ans. (a) increasing x <0, decreasing x >0; (b) increasing x >3, decreasing x < 3; {(c) increasing
-3 <x<0, decreasing 0< x < 3; (d) increasing x >4

(a) Show that y = x* + 20x — 6 is an increasing function for all values of x.
(b) Show that y =1— x* — x’ is a decreasing function for all values of x.

Examine each of the following for relative maximum and minimum values, using the first-derivative test.

(@ f(x)=x*+2x-3 Ans. x = —1 yields relative minimum —4

() f(x)y=3+2x-x° Ans. x =1 yields relative maximum 4

(c) flx)=x"+2x>-4x-8 Ans. x =1 yields relative minimum — ¥2; x = — 2 yields
relative maximum 0

(d) f(x)=x"-6x’+9x -8 Ans. x =1 yields relative maximum -4; x =3 yields relative
minimum —8§

(e) fx)y=2-x) Ans. neither relative maximum nor relative minimum

(f) f(x) = (x> ~4) Ans.  x =0 yields relative maximum 16; x = %2 yields relative
minimum §

(g) flx)=(x—-4)'(x+3) Ans.  x =0 yields relative maximum 6912; x = 4 yields relative
minimum 0; x = —3 yields neither

(h) flx)=x*+48/x Ans.  x = —2 yields relative maximum —32; x =2 yields
relative minimum 32

(i) fx)=@x-1"(x+2)"" Ans. x = —2 yields relative maximum 0; x = 0 yields relative

minimum -V4; x = 1 yields neither

Examine the functions of Problem 23(a) to (f) for relative maximum and minimum values using the
second-derivative method. Also determine the points of inflection and the intervals on which the curve is

concave upward and concave downward.

cLiisay pral 12 COIICa

Ans. (@) no inflection point, concave upward everywhere
(c) inflection point x = — §; concave up for x > — %, concave down for x < — §
(d) inflection point x = 2; concave up for x > 2, concave down for x <2
(e) infiection point x = 2; concave down for x > 2, concave up for x <2
(f) inflection point x = +2V3/3; concave up for x >2V3/3 and x < —2V3/3, concave down for
-2V3/3<x<2V3/3

+b
Show that y = z‘; "

has neither a relative maximum nor a relative minimum, if lg‘[; # 0.
Examine y = x* — 3px + g for relative maximum and minimum values.

Ans.  minimum = g — 2p*"?, maximum = q + 2p"’? if p > 0; otherwise neither.

Show that y = (a, — x)* + (a, — x)° + - - - + (a_ — x)° has a relative minimum when
x=(a, +a,+ - +a,)ln.

Prove: If f"(x,) =0 and f"(x,) # 0. then there is a point of inflection at x = x,,.

Prove: If y = ax’ + bx’ + cx + d has two critical points, they are bisected by the point of inflection. If the
curve has just one critical point, it is the point of inflection.

A function f(x) is said to have an absolute maximum (minimum) value at x = x, provided f(x,) is greater
(less) than or equal to every other value of the function on its domain of definition. Use graphs to verify:
(a) y = —x* has an absolute maximum at x = 0; () y = (x — 3)” has an absolute minimum (=0) at x = 3;
(¢) y = V25 - 4x" has an absolute maximum (=5) at x =0 and an absolute minimum (=0) at x = +5/2;
(d) y =Vx —4 has an absolute minimum (=0) at x = 4.

Examine the following for absolute maximum and minimum values on the given interval only:
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32.

33.

3s.

37.

(@) y=-x"on -2<x<?2 Ans.  maximum (=0) at x =0

(b) y=(x-3) on0=x=4 Ans.  maximum (=9) at x =0; minimum (=0) at x =3
() y=V25—-4ax’on —2=x=2 Ans. maximum (=35) at x = 0; minimum (=3)atx==x2
(d) y=Vx—4ond=x<29 Ans.  maximum (=5) at x = 29; minimum (=0) atx = 4

Note: These are the greatest and least values of Property 8.2 for continuous functions.

Verify: A function f(x) is increasing (decreasing) at x = x,, if the angle of inclination of the tangent at
x = x, to the curve y = f(x) is acute (obtuse).

Prove the companion theorem of Problem 17 for a decreasing function: If f'(x,) <0, then f(x) is
decreasing at x,.

State and prove the companion theorem of Problem 18 for a relative minimum: If y = f(x) is
differentiable on a < x < b and f(x) has a relative minimum at x = x,, where a < x, < b, then f'(x,) = 0.

Examine 2x° — 4xy + 3y° — 8x + 8y — 1 =0 for maximum and minimum points.
Ans.  maximum at (5, 3}; minimum at (-1, —3)

573 O a sma
( 2 rz)_ ’2

magnet located a distance x above the center of the coil. Show that F is maximum when x = ir.

An electric current, when flowing in a circular coil of radius r, exerts a force F =

The work done by a voltaic cell of constant electromotive force E and constant internal resistance 7 in
passing a steady current through an external resistance R is proportional to E’R/(r + R)”. Show that the
work done is maximum when R = r.



Chapter 14

Applied Problems Involving Maxima and Minima

PROBLEMS INVOLVING MAXIMA AND MINIMA. In simpler applications, it is rarely necessary
to rigorously prove that a certain critical value yields a relative maximum or minimum. The
correct determination can usually be made by virtue of an intuitive understanding of the
problem. However, it is generally easy to justify such a determination with the first-derivative
test or the second-derivative test.

A relative maximum or minimum may also be an absolute maximum or minimum (that is,
the greatest or smallest value) of a function. For a continuous function f(x) on a closed interval
[a, b], there must exist an absolute maximum and an absolute minimum, and a systematic
procedure for finding them is available. Find all the critical values c,, ¢,,...,c, for the
function in [a, b], and then calculate f(x) for each of the arguments ¢, c,, .. ., c,, and for the
endpoints a and b. The largest of these values is the absolute maximum, and the least of these
values is the absolute minimum, of the function on [a, b].

Solved Problems

1. Divide the number 120 into two parts such that the product P of one part and the square of
the other is a maximum.

Let x be one part, and 120 — x the other part. Then P = (120 — x)x°, and 0 < x < 120.
Since dP/dx = 3x(80 — x). the critical values are x =0 and x = 80. Now P(0) = 0. P(80) = 256.000,
and P(120) = 0; hence the maximum value of P occurs when x = 80. The required parts are 80 and 40.

2. A sheet of paper for a poster is to be 18 ft” in area. The margins at the top and bottom are to
be 9 in wide, and at the sides 6 in. What should be the dimensions of the sheet to maximize
the printed area?

Let x be one dimension of the sheet, in feet. Then 18/x is the other dimension. (See Fig. 14-1.) The
1 3
only restriction on x is that x >0. The printed area (in square feet) is A =(x - 1)(—8 - 5) and
dA _ 18 3 x
de & 2 A _ 3%
Solving dA/dx = 0 yields the critical value x = 2V3. Since w7 is negative when x = 2V3, the
X

second-derivative test tells us that A has a relative maximum at that value. Since 2V3 is the only critical
value, A must achieve an absolute maximum at x = 2V3. (Why?) Thus, one side is 2V/3 ft, and the other

is 18/(2V3) = 3V3 ft.

3/4 Ao B,

+ ) _V *
12 18/2 16¢ -

D
A,

- I
Fig. 14-1 Fig. 14-2

B,

et

106
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At 9 A.M. ship B is 65 mi due east of another ship A. Ship B is then sailing due west at
10 mi/h, and A is sailing due south at 15 mi/h. If they continue on their respective courses,
when wili they be nearest one another, and how near? (See Fig. 14-2.)

Let A, and B, be the positions of the ships at 9 A.M., and A, and B, be their positions ¢ hours later.
The distance covered in ¢ hours by A is 15¢ miles; by ". 10t miles,

. L dD 3251 - 650

Thedcli)lstance D between the ships is given by D’ = (151)> + (65 — 10r). Then —- - D -
Solving —— = 0 gives the critical value t =2, Since D >0 and 3251 — 650 is positive to the right of t =2
and negative to the left of r =2, the first-derivative test tells us that r =2 yields a relative minimum for

D, Since ¢ =2 is the only critical value, that relative minimum is an absolute minimum.
Putting ¢ =2in, D?=(15r)* + (65 - 10t)* gives D =15V13 mi. Hence, the ships are nearest at

11 a.M., at which time they are 15V13 mi apart.

A cylindrical container with circular base is to hold 64 in”. Find its dimensions so that the
amount (surface area) of metal required is a minimum when the container is (a¢) an open cup
and (b) a closed can.

Let r and h be, respectively, the radius of the base and the height in inches, A the amount of metal,

and V the volume of the container.
(@) Here V= nr’h =64, and A =27rh + mr®. To express A as a function of one variable, we solve for A
in the first relation (because it is easier) and substitute in the second, obtaining
dA 128 2wrt —64
: and —— +2nr= —(—2——)
dar r
and the critical value is r = 4/v7. Then h =64 /mr’ = 4/V 7. Thus, r = h =4/7 in.
Now dA/dr >0 to the right of the critical value, and dA/dr <0 to the left of the critical value.
So, by the first-derivative test, we have a relative minimum. Since there is no other critical value,
that relative minimum is an absolute minimum.

(b) Here again V= nr*h =64, but A =27rh + 277> =27r(64/mr°) + 27r® = 128/r + 27’ Hence,
dA 128 .  4(wr'-32)

g T A=
and the critical value is r = 2V %/m. Then h = 64/mr’ = 4Va /7. Thus, h=2r= 4y 4 /7 in. That we
have found an absolute minimum can be shown as in part (a).

64 12
A=2mr—+7r'=—"—+mxr
wr r

The total cost of producing x radio sets per day is $( i x* + 35x + 25), and the price per set at
which they may be sold is ${(50 — 1x).

(a) What should be the daily output to ubtain a maximum total profit?

(b) Show that the cost of producing a set is a relative minimum at that output.

PR (50 Ny B, o 3
{4) The profit on the saie of x sets per day is £ = x(50— 3x) — (ix” + 35x + 25). Then =55

solving dP/dx = 0 gives the critical value x = 10.
Since d’Pldx’ = -2 <0, the second-derivative test shows that we have found a relative

maximum. Since x = 10 is the only critical value, the relative maximum is an absolute maximum,
Thus, the daily output that maximizes profit is 10 sets per day.
1.2
Ix+35x+25 1 25 1 S
(&) The cost of preducing a set is C= % =xt 35+ —. Then %‘ =2 Z—L solving
x
dCidx =0 glves the critical value x = 10.

_50
5 >0 when x =10, we have found a relative minimum. Since there is only one

critical value, this must be an absolute minimum.

The cost of fuel to run a locomotive is proportional to the square of the speed and is $25/h for
a speed of 25 mi/h. Other costs amount to $100/h, regardless of the speed. Find the speed
that minimizes the cost per mile.
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Let v =required speed, and C = total cost per mile. The fuel cost per hour is kv®, where the
constant k is to be determined. When v =25 mi/h, kv’ =625k =25; hence k = %.

C (in $/mi) = costin§/h _ v¥25+100 v . 100
( ')'= Speed in mi/h v 235" o
1 00 - 50)(v + 50
and ac _ 1 _ 1—3- = (_v__S_)_(u_S_) Since v >0, the only relevant critical value is v = 50.

d 25 v 25p°

Because d°C/dv® is positive to the right of v =50 and negative to the left of v =150, the
first-derivative test tells us that C assumes a relative minimum at v = 50. Since v = 50 is the only positive
critical number, the most economical speed is 50 mi/h.

A man in a rowboat at P in Fig. 14-3, 5 mi from the nearest point A on a straight shore,
wishes to reach a point B, 6 mi from A along the shore, in the shortest time. Where should he
land if he can row 2 mi’h and walk 4 mi/h?

P
5 VZE+ 29
C B
Y A— =
Fig. 14-3

Let C be the point between A and B at which the man lands, and let AC = x.
The distance rowed is PC = V25 + x° and the rowing time required is ¢, = G;t::;e = Vb; X
The distance walked is CB = 6 — x, and the walking time required is ¢, = (6 — x)/4. Hence, the total time

required is

5 di X 1 2x-V25+x?
r=t +t,=V25+x7+ 36—« and = e - =
ot (6-x) dc V254 4 V2541

The critical value, obtained from 2x — V25 + x> =0, is x = }V' 3~ 2.89. Thus, he should land at a point
2.89 mi from A toward B. (How do we know that this point yields the shortest time?)

A given rectangular area is to be fenced off in a field that lies along a straight river. If no
fencing is needed along the river, show that the least amount of fencing will be required when
the length of the field is twice its width.

Let x be the length of the field, and y its width. The area of the field is A = xy. The fencing required

isF=x+2y,andd—F=1+ZQ.Whend—F=0,Q=—%.
dA dx dya'x dx dx .
Also, i =0=y+x I Then y — 4x =0, and x = 2y as required.
2
To see that F has been minimized, note that % = - yz and
d°F __d’y ( ydy) y(l) y y _ 1
o i TR )= maq\ng) =g >0 when g =3

Now use the second-derivative test and the uniqueness of the critical value.

Find the dimensions of the right circular cone of minimum volume V that can be cir-
cumscribed about a sphere of radius 8 in.
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10.

o
o
»

12.

Let x = radius of base of cone, and y + 8 = altitude of cone (Fig. 14-4). From similar right triangles
ABC and AED, we have

x_ y+8 or g1l 08 64(y+8)

8 V) —64 y 64 y—8

(mx’)(y +8) _ 64m(y +8)° dV _ 6dm(y +8)(y - 24)
= = and - = 3
3 3(y-8) dy 3(y - 8)
The pertinent critical value is y = 24. Then the altitude of the cone is y + 8 = 32 in, and the radius of the
base is x = 8V2 in. (How do we know that the volume has been minimized?)

Also,

Vv

Find the dimensions of the rectangle of maximum area A that can be inscribed in the portion
of the parabola y = 4px intercepted by the line x = a.

Let PBB'P’ in Fig. 14-5 be the rectangle, and (x, y) the coordinates of P. Then

2 3 2
A=2y(a—x) Zy(a i 2ay % and dy 2a 2

Solving dA/dy = 0 yields the critical value y = \/4ap/3. The dimensions of the rectangle are 2y = 3V 3ap
anda-x=g —y%4p =2a/3.
d

. 3 A ) -
Since = —= y <0, the second-derivative test and the uniqueness of the critical value ensure

dy2
that we have found the maximum area.

Find the height of the right circular cylinder of maximum volume V that can be inscribed in a
sphere of radius R. (See Fig. 14-6.)

Let r be the radius of the base, and 2k the height, of the cylinder. From the geometry, V=2nr’h
and r’+ h* = R’ Then

Yo o) an _
ar =2x\r dr+2rh and 2r+2h dr—()

. dh r dav r ) .
From the last relation, " T n SO ar =2 u +2rh). When V is a maximum, dV/dr =0, from
. r
which r* = 2k%
Then R2=r? + k2 =2k + k’, so that h = R/V3 and the height of the cylinder is 24 = 2R/V3. The

B LICEE IN ¥ O G QLI wHic v

second-derivative test can be used to verify that we have found a maximum value of V.

A wall of a building is to be braced by a beam which must pass over a parallel wall 10 ft high
and 8 ft from the building. Find the length L of the shortest beam that can be used.
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14.
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19.
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e,
S ..,
e

Let x be the distance from the foot of the beam to the foot of the parallel wall, and y the distance

from the ground to the top of the beam, in feet. (See Fig. 14-7.) Then L = \/(x + 8)° + y*. Also, from
y x+8 10(x +8) .
= ——, 80 y = ., 1

1 x X

han
T

/ . 100 2 :
L= sy - D20\ rg

dL  x[(x* +100)" 7+ x(x + 8)(x" + 100) '] = (x +8)(x” +100)"* x’ — 800
oy 2

dx X _xz\/x2+100

The relevant critical value is x = 2V100. The length of the shortest beam is

2V100 + .
—2&?08 V/4y/T0,000 + 100 = (VIO0 + 4)> ft

The first-derivative test guarantees that we really have found the shortest length.

Supplementary Problems

The sum of two positive numbers is 20. Find the numbers (a) if their product is a maximum; (b) if the
sum of their squares is a minimum; (¢) if the product of the square of one and the cube of the other is a
maximum. Ans. (a) 10, 10; (b) 10, 10; (c) 8, 12

The product of two positive number is 16. Find the numbers (@) if their sum is least; (b) if the sum of
one and the square of the other is least. Ans. (a) 4, 4; (b) 8,2

An open rectangular box with square ends is to be built to hold 6400 ft* at a cost of $0.75/ft* for the base
and $0.25/1t” for the sides. Find the most economical dimensions. Ans. 20x20x16 ft

A wall 8 ft high is 3} ft from a house. Find the shortest ladder that will reach from the ground to the
house when leaning over the wall. Ans. 151 ft

A company offers the following schedule of charges: $30 per thousand for orders of 50,000 or less, with
the charge per thousand decreased by 373¢ for each thousand above 50,000. Find the order size that
makes the company’s receipts a4 maximum. Ans. 65,000

Find the equation of the line through the point (3, 4) which cuts from the first quadrant a triangle of
A 4y +3y—24=0

minimmoam aran ne
miainuing dica. Ans. Yy

At what first-quadrant point on the parabola y =4 — x* does the tangent, together with the coordinate
axes, determine a triangle of minimum area. Ans. (2V3/3,8/3)
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27.

Find the minimum distance from the point (4,2) to the parabola y* =8x.  Ans. 2V2 units

A bomoan ¢ e Aenan 60 tha allinca 22/98 L w2/ 1€ = 1 on 4hint $hio svnct fmd ooy JEN TS TR LA S
o lﬂllsclll 19 UlaWwil W LUV CUIPOV A /140 T ¥ /10 = 1 dU LAl Ui pail lluﬁ:lwpu:u Uy HIT CUULULILALT AATH IdD d
minimum. Show that its length is 9 units

A rectangle is inscribed in the ellipse x”/400 + y/225 = 1 with its sides parallel to the axes of the ellipse.
Find the dimensions of the rectangle of (a) maximum area and (b) maximum perimeter which can be so
inscribed.  Ans. (@) 20V2 X 15VZ; (b) 32 x 18

Find the radius R of the right circular cone of maximum volume that can be inscribed in a sphere of
radius r. Ans. R=13%rV2

A right circular cylinder is inscribed in a right circular cone of radius r. Find the radius R of the cylinder
(a) if its volume is a maximum; (&) if its lateral area is a maximum.

Ang (MY R= r
Ans. a) ’

iR

r- (b)Y R =
b)Y R

Ty

i

Show that a conical tent of given capacity will require the least amount of material when its height is V2
times the radius of the base.

Show that the equilateral triangle of altitude 37 is the isosceles triangle of least area circumscribing a
circle of radius r.

Determine the dimensions of the right circular cylinder of maximum lateral surface that can be inscribed
in a sphere of radius 8in.  Ans. h=2r=8V2in

Investigate the possibility of inscribing a right circular cylinder of maximum total area in a right circular
cone of radius r and height A. Ans. if h>2r, radius of cylinder = 3hAr/(h —r)



Chapter 15

Rectilinear and Circular Motion

RECTILINEAR MOTION. The motion of a particle P along a straight line is completely described

by the equation s = f(¢}, where ¢ is time and s is the directed distance of P from a fixed point O
in its path.
The velocity of P at time ¢ is v =ds/dt. If v>0, then P is moving in the direction of
increasing s. If v <0, then P is moving in the direction of decreasing s.
The speed of P is the absolute value |v] of its velocity.
d’ ds

. . v
The acceleration of P at time tisa = i T .If a>0, then v is increasing; if a <0, then v

is decreasing.
If v and a have the same sign, the speed of P is increasing. If v and a have opposite signs,
the ed of Pig de (Svp Problems 1 to 5. \

l‘ P C no
i~ eed ‘b CUiCinas

CIRCULAR MOTION. The motion of a particle P along a circle is completely described by the

equation @ = f(t), where @ is the central angle (in radians) swept over in time ¢ by a line joining
P to the center of the circle,
The angular velocity of P at time t is w = d6/dt.
de d%6
dt

The angular acceleration of P at time 18 a = i

If o = constant for all 1, then P moves with constant ang _|Iar acceleration. If o =0 for all ¢
then P moves with constant angular velocity. (See Problem 6.)

Solved Problems

In the following problems on straight-line motion, distance s is in feet and time ¢ is in seconds.

A body moves along a straight line according to the law s = {1’ — 21. Determine its velocity
and acceleration at the end of 2 seconds.

ds 3
= :1—: =5 t* - 2; hence, when t =2, v = 3(2)* ~2 =4 ft/sec.
dv

a= —- =3r; hence, when t =2, a =3(2) = 6 ft/sec’.

dr

The path of a particle moving in a straight line is given by s=1" — 6f° + 91 + 4.
(a) Find s and @ when v =0,

(b) Find s and v when a =0.

{c) When is 5 increasing?

(d) When is v increasing?

(¢) When does the direction of motion change?

ds
We have v= " =3 - 12r+9= 3(t—-1)(t~-3) a=

7 =6(r - 2)

F

112
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(@) Whenv=0,1=1and 3. Whent=1,s=8and a=—-6. Whent=3,s=4 and a =6.

(b) Whena=0,t=2. Att=2,s=6and v=-3.

Fd oo lmarancima wham s N kot lo whan 21 oamd 22

\C) 2 D INVICAdIIlE WIICH UV -~ U, Ulal 15, WICIL ¢ ™~ 1 dllJd ¢ —~ o,

(d) v is increasing when g >0, that is, when £>2.

(e) The direction of motion changes when v =0 and a # 0. From (a) the direction changes when ¢ =1

and ¢t = 3.

A body moves along a horizontal line according to s = f(1) = £ =9 + 241,
(@) When is s increasing, and when is it decreasing?

(b) When is v increasing, and when is it decreasing?

(c) When is the speed of the body increasing, and when is it decreasing?
(d) Find the total distance traveled in the first 5 seconds of motion.

We have v=—=3—18:+24=3(t-2)(¢t - 4) a=%?=6(:—3)

|4

!

(a) s is increasing when v >0, that is, when <2 and ¢ > 4.
s is decreasing when v <0, that is, when 2 <t <4,

(b) v 1s increasing when a > 0, that is, when ¢ >3,

v is decreasing when a <0, that is, when ¢ <3.

(c) The speed is increasing when v and @ have the same sign, and decreasing when v and a have opposite
signs. Since v may change sign when ¢ = 2 and ¢ =4 while 2 may change sign at ¢ = 3, their signs are
to be compared on the intervals 1 <2, 2<1<3,3<t<4, and 1 >4:

On the interval t <2, v >0 and a <0; the speed is decreasing.
On the interval 2<r <3, v <0 and a <0; the speed is increasing.
On the interval 3<r<4, v <0 and a >0; the speed is decreasing.
On the interval >4, v >0 and a >0; the speed is increasing.

(d) When t=0, s =0 and the body is at O. The initial motion is to the right (v >0) for the first 2

seconds; when 1 = 2, the body is 5 = f(2) = 20 fi from G.

During the next 2 seconds, it moves to the left, after which it is s = f(4) = 16 ft from O.

It then moves to the right, and after 5 seconds of motion in all, it is s = f(5) = 20 ft from O. The
total distance traveled is 20 + 4 + 4 = 28 ft (see Fig. 15-1.)

o 20
1

Fig. 15-1

A particle moves in a horizontal line according to s = f(¢) = * — 61> + 12¢* — 101 + 3.
(a) When is the speed increasing, and when decreasing?

(b) When does the direction of motion change?

(c) Find the total distance traveled in the first 3 seconds of motion.

Here

v= % =42 - 18 + 24t -10=2(t - 1)’(2t-5) a= %:i =12(¢-1)(t - 2)
(a) v may change sign when ¢ =1 and ¢ =2.5; a may change sign when t=1 and ¢ =2.
On the interval t <1, v <0 and a >0; the speed is decreasing.
On the interval 1<t<2, v <0 and a <0; the speed is increasing.
On the interval 2 <r<2.5, v <0 and a>0; the speed is decreasing.
On the interval ¢>2.5, v >0 and a >0; the speed is increasing.
(b) The direction of motion changes at ¢ = 2.5, since v =0 but a # 0 there; it does not change at ¢ =1,

since v does not change sign as ¢ increases through t = 1. Note that when t=1, v =0 and 2= 0, so
that no information is available.
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(¢) When ¢t =0, s =3 and the particle is 3 ft to the right of . The motion is to the left for the first 2.5
seconds, after which the particle is 4 ft to the left of O.

When =3, s =0; the particle has moved 27 ft to the richt. The total distance traveled is
Xy r (i llslll. 1 1% LUVLAL JIgwdlive LAY LILW 19
3+ +8=3 ft (see Fig. 15-2).
o 1
[ ——_—— B
h
L ——— — — —— — — >
2716
Fig. 152

A stone, pr 2'ected vertically upward with initial velocity 112 ft/sec, moves according to
s =112¢ — 16¢°, where s is the distance from the starting point. Compute (a) the velocity and

acceleration when ¢ =3 and when ¢ = 4, and (b) the greatest height reached. (¢) When will its

haiahkt ha Q4 £t
ll\vlslll UV U AL

We have v =ds/dt =112 — 32t and a = dv/dt = —32.

{a) At 1=3, v=16 and @ = —32, The stone is rising at 16 ft/sec.
Atr=4,v=—16 and a = —32. The stone is falling at 16 ft/sec.

(b) At the highest point of the motion, v =0. Solving v =0=112 - 32¢ yields t =3.5. At this time,
s = 196 ft.

(c) Letting 96 = 112t — 1617 yields 1 — 7t + 6 =0, from which =1 and 6. At the end of 1 second of
motion the stone is at a height of 96 ft and is rising, since v > 0. At the end of 6 seconds it is at the

same height but is falling since v <0.

o

A particle rotates counterclockwise from rest according to @ = ¢/50 ~ ¢, where @ is in radians
and ¢ in seconds. Calculate the angular displacement 6, the angular velocity w, and the angular

acceleration a at the end of 10 seconds.
I do 3r dw

6t 6
#=_-—t=10rad w=—=——~1=5rad/sec @ =— = o, = ¢ rad/sec’
ou at ou at Su 3
Supplementary Problems
A nartinla mov ;n n ctvniaht lina asrnnrding ¢tn 0 — 3 _ &2 4 Or tha nnite haing font and connnde [ Anata
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the particle w h respect to its initial position (z =0) at O, find its direction and velocity, and determine
whether its speed is increasing or decreasing when (@} ¢= 34, () t=3, (c) t=1, (d) 1 =4.
Ans. (a) % ft to the right of O; moving to the right with v '7 ft/sec; decreasing
(b) ¥ ft to the right of O; moving to the left with v = — 3 ft/sec; increasing
(c) i ft to the right of O; moving to the left with v=—3} ft/sec, decreasing

(d) 4 ft to the right of O; moving to the right with v =9 ft/sec; increasing

The distance of a locomotive from a fixed point on a straight track at time r is given by s =
3" ~ 447’ + 1447 When is it in reverse?  Ans. 3<r<8

Examine, as in Problem 2, each of the following straight-line motions: (a) s =" —9¢° + 24r; (b)
s=0 =3 +3t+3; (c) s=20 ~ 125 + 18¢ — 5; (d) s = 3¢* - 281> + 90¢* - 108¢.

Ans. (a) stops at =2 and ¢t =4 with change of direction
(b) stops at t =1 without change of direction
(c) stops at =1 and r =3 with change of direction
(d) stops at t =1 with, and ¢ =3 without, change of direction
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11.

12,

13.

A body moves vertically up from the earth according to s = 64t — 16¢°. Show that it has lost one-half its
velocity in its first 48 ft of rise.

A ball is thrown vertically upward from the edge of a roof in such a manner that it eventually falls to the
street 112 ft below. If it moves so that its distance s from the roof at time ¢ is given by s = 96¢ — 161>, find
(a) the position of the ball, its velocity, and the direction of motion when r =2, and () its velocity when
it strikes the street. (s is in feet, and r in seconds.)

Ans. (a) 240 ft above the street, 32 ft/sec upward; (&) —128 ft/sec

A wheel turns through an angle 6 radians in time ¢ seconds so that @ = 1287 ~ 12¢*. Find the angular
velocity and acceleration at the end of 3 sec. Ans.  =56rad/sec; a = - 24 rad/sec’

Examine Problems 2 and 9 to conclude that stops with reversal of direction occur at values of ¢ for which
s = f(r) has a maximum or minimum value while stops without reversal of direction occur at inflection
points.



Chapter 16

Related Rates

RELATED RATES, If a quantity x is a function of time ¢, the time rate of change of x is given by

[
-

N

dx/dt.

When two or more quantities, all functions of ¢, are related by an equation, the relation

between their rates of change may be obtained by differentiating both sides of the equation.

PO VY 1.

Gas is cb\.apmg iTom a Spuei“iCﬁ
shrinking when the radius is 12 ft?

At time ¢ the sphere has radius 7, volume V= 4 rr®, and surface S = 4#r% Then

dv . dr ds dr ds _2dv _ 1
I =ds7r @ and i =8mr - So &y 12( 2)= ft /min

Water is running out of a conical funnel at the rate of 1 in®/sec. If the radius

=i A3 ip MR UL Lall 1

a n/S€c. 1
funnel is 4 in and the altitude is 8 in, find the rate at which the water level i
is 2 in from the top.

Let r be the radius and h the height of the surface of the water at time r, and V the volume of water
in the cone (see Fig. 16-1). By similar triangles, r/4 = k/8 or r = 1h. Also

IS v _1 . dh
V—sﬂrh 1277}1 So dt-4'nh i

When dVidt = —1 and h =8—2 =6, then dh/dt= —1/94 in/sec.

Sand falling from a chute forms a conical pile whose altitude is always equal to 3 the radius of
the base. (@) How fast is the volume increasing when the radius of the base is 3 ft and is
increasine at the rate of 3 in/min? (h\ How fast is the radius mnreac_no when it is 6 ft and the

AILESINg B8 v 16w PP LOL i ¥ 21 LD Laguy o LU LV S 0 0§ L wta 8. it af

volume is increasing at the rate of 24 ft>/ min?

T nt - hhr ¢tha w-Adiven A€ tha lasa Lo AL thae hataht Af tha mila af tivean 3 Tham
L.CL 7 UC LIIC [AUiUd Ul LiIe UGSC, dalig ¢ Lig IICIEIII Ul LiLC lJllC i uiLiic « LHCI1L
4 1 4 3 dV 4 2 dr
h=<r and V== mr’h== nr’. So — == qr- —
3 3 9 dat 3 dt
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(@) When r =3 and dr/dt =}, dV/dt = 37 ft’/min.
(b) When r =6 and dV/dt =24, dr/dt = 1/2m ft/min.

Ship A is sailing due south at 16 mi/h, and ship B, 32 miles south of A, is sailing due east at
12 mi/h. (a) At what rate are they approaching or separating at the end of 1 h? () At the end
of 2h? (c) When do they cease to approach each other, and how far apart are they at that
time?

Let A, and B, be the initial positions of the ships, and A, and B, their positions ¢ hours later. Let D

be the distance between them ¢ hours later. Then (see Fig. 16-2)

dD _ 400: - 512

dt D

(a) When t=1, D =20 and dD/dt = —5.6. They are approaching at 5.6 mi/h.

(b) When t =2, D =24 and dD/dr = 12. They are separating at 12 mi/h.

(c) They cease to approach each other when dD/dt =0, that is, when ¢ =512/400=1.28 h, at which
time they are D = 19.2 mi apart.

D*=(32-16:°+ (12r)°  and

Ao

A

-ly 166
l=

32~

-
[2-4
-

o]

-

B,
Fig. 16-2

Two parallel sides of a rectangle are being lengthened at the rate of 2 in/sec, while the other
two sides are shortened in such a way that the figure remains a rectangle with constant area
A =50in’. What is the rate of change of the perimeter P when the length of an increasing side
is (a) 5in? (b) 10in? (c) What are the dimensions when the perimeter ceases to decrease?

Let x be the length of the sides that are being lengthened, and y the length of the other sides, at
time ¢. Then
P/

Av Av Ay
= + L T a4 =xy = 2l o= ==
P=2(x+y) dt 2(dt+dt) A=xy=50 ! 'td1+ydt 0
(a) When x =5, y =10 and dx/dt = 2. Then
dy _ i}.’ _ d_P _ _ A .
5 & +10(2)=0. So - 4 and i 2(2 — 4) = -4 in/sec (decreasing)
() When x =10, y =5 and dx/dr = 2. Then
dy _ dy _ dpP _ . . .
10 7 +5(2)=0. So i 1 and a 2(2 — 1) = 2 in/sec (increasing)

(c) The perimeter will cease to decrease when dP/dt =0, that is, when dy/dt = —dx/dt = —2. Then
x(—2) + y(2) =0, and the rectangle is a square of side x = y = 5V2in.

The radius of a sphere is r in time ¢ sec. Find the radius when the rates of increase of the
surface area and the radius are numerically equal.

The surface area of the sphere is § = 477’ so % =8wr %:. When gd; = Z—:, 8arr =1 and the radius

is r=1/8min.
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A weight W is attached to a rope 50 ft long that passes over a pulley at point P, 20 ft above the
ground. The other end of the rope is attached to a truck at a point A, 2 ft above the ground as
shown in Fig. 16-3. If the truck moves off at the rate of 9 ft/sec, how fast is the weight rising
when it is 6 ft above the ground?

P
h b,
8 -+
w
! :‘N y >4
f ¥
77T T 7T T T 77
Fig. 16-3

Let x denote the distance the weight has been raised, and y the horizontal distance from point A,
where the rope is attached to the truck, to the vertical line passing through the pulley. We must find
dx/dt when dy/dt =9 and x =6,

Now
2 _ 2 _ 2 Q _ 30+x E
y =(30+x) - (18) and &=y
30+ 6 dx _dx 9
When x =6, y = 18V3 and dy/dt =9. Then 9 = V3 d@r from which — = > V73 ft/sec.

A light L hangs H ft above a street. An object 4 ft tall at O, directly under the light, is moved
in a straight line along the street at v ft/sec. Investigate the velocity V of the tip of the shadow
on the street after t sec. (See Fig. 16-4.)

LN

.
1

f v

Fig. 16-4

After ¢ seconds the object has been moved a distance vs. Let y be the distance of the tip of the
shadow from O. Then

y—uvt h Huyt d ay Hy H
y CH 7 Y H-r ™Mo Ve TH R T-mEY

Thus the velocity of the tip of the shadow is proportional to the velocit

v
proportionality depending upon the ratio #/H. As h— 0, V— v, while as h— H, V increases ever more
rapidly.

of the object, the factor of
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10.

11.

12.

13.

14,

[ L
un
.

16.

17.

18.

19.

21.

Supplementary Problems

A rectangular trough is 8 ft long, 2 ft across the top, and 4 ft deep. If water flows in at a rate of
2 ft*/min, how fast is the surface rising when the water is 1 ft deep? Ans.  § ft/min

A liquid is flowing into a vertical cylindrical tank of radius 6 ft at the rate of 8 ft’/min. How fast is the
surface rising? Ans.  2/9w ft/min

A man 5 ft tall walks at a rate of 4 ft/sec directly away from a street light that is 20 ft above the street.
(a) At what rate is the tip of his shadow moving? (b) At what rate is the length of his shadow
changing? Ans.  (a) % ft/sec; (b) § ft/sec

A balloon is rising vertically over a point A on the ground at the rate of 15 ft/sec. A point B on the
ground is level with and 30 ft from A. When the balloon is 40 ft from A, at what rate is its distance from
B changing? Ans. 12 fi/sec

A ladder 20 ft long leans against a house. Find the rates at which (a) the top of the ladder is moving
downward if its foot is 12 ft from the house and moving away at a rate of 2 ft/sec and (&) the slope of the
ladder is decreasing. Ans. (@) 3 ft/sec; (b) B per sec

Water is being withdrawn from a conical reservoir 3 ft in radius and 10 {t deep at 4 ft*/min. How fast is
the surface falling when the depth of the water is 6 ft? How fast is the radius of this surface
diminishing? Ans. 100/81% ft/min; 10/27 4 ft/min

A barge, whose deck is 10 ft below the level of a dock, is being drawn in by means of a cable attached to
the deck and passing through a ring on the dock. When the barge is 24 ft away and approaching the dock
at 3 ft/sec, how fast is the cable being pulled in? (Neglect any sag in the cable.) Ans. 5 ft/sec
A boy is ﬂyl g a kite at a height of 150 ft. If the kite moves horizontally away from the boy at 20 ft/sec
how fast is the s!..ng being paid out when the kite is 250 ft from him? Ans. 16 ft/sec

One train, starting at 11 A.M., travels east at 45 mi/h while another, starting at noon from the same
point, travels south at 60 mi/h. How fast are they separating at 3 p.M.? Ans. 105V2/2 mi/h

A light is at the top of a pole 80 ft high. A ball is dropped at the same height from a point 20 ft from the
light. Assuming that the ball falls according to s = 16¢°, how fast is the shadow of the ball moving along

the ground 1 sec later? Ans. 200 ft/sec

Ship A is 15 mi east of O and moving west at 20 mi/h; ship B is 60 mi south of @ and moving north at
15 mi/h. (a) Are they approaching or separating after 1 h and at what rate? (b) After 3 h? (¢) When are

they nearest one another?

Ans.  (a) approaching, 115/V82 mi/h; (b) separating, 9V10/2 mi/h; (¢) 1 h 55 min

Water, at a rate of 10 ft*/min, is pouring into a leaky cistern whose shape is a cone 16 ft deep and 8 ft in
diameter at the top. At the time the water is 12 ft deep, the water level is observed to be rising at
4 in/min. How fast is the water leaking away? Ans. (10— 34) ft*/min

A solution is passing through a conical filter 24 in deep and 16 in across the top, into a cylindrical vessel
of diameter 12 in. At what rate is the level of the solution in the cylinder rising if, when the depth of the

4
4

solution in the filter is 12 in, its level is falling at the rate 1 in/min? Ans. 3 in/min



Chapter 17

Differentiation of Trigonometric Functions

RADIAN MEASURE. Let s denote the length of an arc AB intercepted by the central angle AOB
on a circle of radius r, and let S denote the area of the sector AOB (see Fig. 17-1). (If s is 555 of
the circumference, then angle AOB has measure 1° if s = r, angle AOB has measure 1 radian
(rad). Recall that 1 rad = 180/# degrees and 1°= #/180 rad. Thus, 0° =0 rad; 30° = 7/6 rad,
45° = /4 rad; 180° = 7 rad; and 360° =2 rad.)

Suppose £ AOB is measured as a degrees; then

m m™ 2

= — = — 17.1
S=1g0 & and S 360 & ( )
Suppose next that £ AOB is measured as 6 radians; then
s=6r and S=1i6r (17.2)

A comparison of (17.1) and (17.2) will make clear one of the advantages of radian measure.

v
\ e P(z_.;k

\
X

<o
=
>

0

Fig. 17-1 Fig. 17-2

TRIGONOMETRIC FUNCTIONS. Let 6 be any real number. Construct the angle whose measure
is 8 radians with vertex at the origin of a rectangular coordinate system, and initial side along
the positive x axis (Fig. 17-2). Take P(x, y) on the terminal side of the angle a unit distance
from O; then sin & = y and cos § = x. The domain of definition of both sin # and cos 8 is the set
of real numbers; the range of sin@is —1=<y =1, and the range of cos 8 is ~1 <x=<1. From

sin @

tan § = o5 0 and sec = cos 0

For both tan 8 and sec 8 the domain of definition (cos § #0) is 6 % + 2n — 1 m (n=1, 2,

3,...). It is left as an exercise for the reader to consider the functions

s 6 1
cot0=g?— and csc = ——
sin @ sin 8

Recall that, if 6 is an acute angle of a right triangle ABC (Fig. 17-3), then
opposite side _ BC

BC _ adjacent side  AC
hypotenuse  AB

opposite sid BC
0s 6 = _ opposite side

sind = tan 6 = —

hypotenuse AB adjacent side AC

The slope m of a nonvertical line is equal to tan a, where a is the counterclockwise angle
from the positive x axis to the line. (See Fig. 17-4.)

120
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Fig. 17-4

Table 17-1 lists some standard trigonometric identities, and Table 17-2 contains some useful
s

values of the trigonometric functions.

Table 17-1

sin @ + cos’ 0 =1

sin (—8) = —sin 6, cos (—@) = cos @

sin (a + B) = sin a cos B + cos a sin B

sin (@ — B) = sin a cos B — cos a sin B

cos (a + B)=cos a cos B — sin a sin

cos (a — B) = cos a cos B + sin a sin B

sin 2a = 2sin a cos a

cos2a =cos’a—sin“a=1-2sin’ a=2cos’ a — 1
sin (a + 27) =sin a, cos (a + 27) = cos a

sin (@ + ) = —sina, cos (a + w)= —cos a, tan (a + 7) = tan a
. m s ,

sm(a - a) = ¢cos a, COS(E - a) =sina

sin (m — a) =sin a, cos (7 — a) = ~cos a

sec’ a =1+tan’ a

tana +tan 8
tan(a + f)= ————
(a +8) 1—tan a tan 8

tan (a = B) = 1+tan a tan B
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Table 17-2
X sin x cos X tan x
0 0 1 0
/6 1/2 V312 V3/3
mi4 V272 V272 1
73 V372 1/2 V3
w2 1 (] x
w 0 -1 0
3n/2 -1 0 %
In Problem 1, we prove that
. sin@
hm =g =1
(Had the angle been measured in degrees, the limit would have been 7/180. This is another
reason why radian measure is always used in the calculus.)

DIFFERENTIATION FORMULAS

d . d .
14. o (sin x) = cos x 15. Ir (cosx) = —sinx
d _ 2 i = rep?
16. p (tan x) =sec” x 17. I (cot x) csc x
18 4 cx)=secxtanx 19 i.(csc = —cscxcotx
I (sec x) =se n I x)

(See Probiems 2 to 23.)

Solved Problems

, o o sin@ . cos@—1
1. Prove: (a) lim — = =1 and (b) lim —~— =0.

sin(—8) siné )

) , o sin e I .
(a) Since o~ g Ve need consider only lim o In Fig. 17-5, let § = L AOB be a small

0—0
positive central angle of a circle of radius OA =1. Denote by C the foot of the perpendicular
dropped from B onto OA, and by D the intersection of OB and an arc of radius OC. Now

Sector COD < ACOB =sector AOB

so that f0cos’8=<isinfcos@=<ig
D B
[}
0=t cl la

OC =coad, CB = sin e

Fig. 17-5
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Dividing by 18 cos 8 >0, we obtain
1

Cnsgsms
0

- cos ¢
1 . in @ . in @
Let 8—0"; then cos0—1, —— — 1, and 1= lim 0 =1, hence, lim S =1,
cos v 80" ] 80" v
cos @ —1 . cos@-1cos@+1

) b M T s+

- lim cos’ 0 — 1  lim - sin” @

o—0 O(cos 6 +1) o O(cos 6 + 1)
_ .. sin@ . sing (0)_
= hm — Im ese 1 - TU\3)=0

d
Derive: —— (sin x) = cos x.

Z, e
Let y =sin x. Then y + Ay =sin (x + Ax) and
Ay =sin(x + Ax) — sin x = cos x sin Ax + sin x cos Ax —sin x
= cos x sin Ax + sin x(cos Ax — 1)
dy _ I Ay _ i (0 sinAx+ N cosAx—l)
dr a0 Ax e \TF Tay TRE TR
. sinAx . . cosAx -1
= (cosx) Jim, T Flinn fim T
= (cos x)(1) + (sin x)(0) = cos x
3 Derive d (cos x) sin x
. 1= (c = - .
dx
a 4 r { A { T \
e (cos x) = p lsin‘i - x)J = —cos (5 - x) = —sinx
4 Deri 'i(ta x) = sec’
. e: - (tan ) c x
i([anx)_i(sin_t)_cosxcosx—sinx(—sinx)
dx dx \cosx/ cos’ x
cos’ x + sin® x | ,
= 5 =———=sec’ x
cos” x cos” x
In Problems 5 to 12, find the first derivative.
. , d . d .
5. y =sin3x + cos 2x: y' =cos3x p (3x) ~sin 2x e (2x) =3 cos 3x ~ 2sin 2x
2 ' 2 2 d 2 2 2
6. y=tan x": y =sec’x a(x)=2xsec_r
2 2 , d 2
7. y =tan” x = (tan x)": y =2(anxa(tanx)=2(anxscc X
- 2 ’ 2 2 d 2 2 2
8. y=cot(l-2x"): y' = —csc (1—2x)3(1—2x)=4xcsc (1-2x%)

3 3 /2
9. y =sec’ Vx =sec’ x''%:
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2 142 2

2 i2 2 3
y=3sec’ x'"*secx'*tanx''? — ~—= sec’ VXtan VX

I=3 2 1/ 1!2=
y sec” x dx(_t ) Ve

4
dx SEecC x

10, p=Vesc20 = (csc20)':

p = % (csc 20)71"? % (csc 20) = —% (csc20)™""? (csc 20 cot 20)(2) = — Vesc 20 cot 20
— 2 . ' _ .2 d . . d 2 2 -
1. f(x) = x"sin x; fl(x)=x a(sm.r)+smxa(x)=x cos x + 2x sin x
x 4 (cosx) —cos x 4 (x)
cos x , dx dx —X Sin X — COS x
12. fx)= < : f(x)= e = e

13. Let y = xsinx; find y™

y' =xcosx+sinx
y'=x(—sinx)+cosx+cosx=—~xsinx+2cosx

"

y"=—xcosx—sinx—2sinx=-xcosx—3sinx

4. Lety= tan’ (3x — 2); find y”.

y' =2tan (3x — 2)sec’ (3x —2)-3 =6 tan (3x — 2) sec’ (3x — 2)
y" =6 tan (3x — 2)-2sec (3x — 2)- sec (3x — 2) tan (3x — 2) - 3+ sec’ (3x — 2) sec’ (3x — 2)- 3]
=36tan’ (3x — 2) sec’ (3x —2) + 18 sec’ (3x —2)

15. Let y=sin(x+y); find y'.

ro _Coslrty)
1 —cos(x+y)

y =cos{x+y)-(1+y'), s0 that

16. Letsin y +cos x =1; find y".

. sin x
cosy-y —sinx=0. So y' =
cos y
. COSycosx—sinx({—siny)-y cosxcosy+sinxsiny-y
Then y'= = 2
cos’ y cos” y
Ane v ene U A cin yain v lcin v) /{ane ) cne v e0cl v L ein® v cin
— wUO A WUD ] T oLl A 311 J \Blll Al ‘ \\4\-’3 J, _ wUO A WS J‘ LY 8 3 A Oli} ]
- 2 - 3
cos” y cos” y

17.  Find f'(w/3), f"(w/3), and f"(w/3), given f(x) = sin x cos 3x.

f'(x) = —3sinxsin3x + cos3x cos x

= (cos 3.x cos x — sin 3x sin x) — 2sin x sin 3x

= cos 4x — 2 sin x sin 3x
—} ~2(V3n2)0)= -}
—4sindx — 2(3 sin x cos 3x + sin 3x cos x)
—4 sin 4x — 2(sin x cos 3x + sin 3.x cos x) — 4 sin x cos 3x

= —65sin 4x — 4f(x)
So f(mi3)=—6(-V3/2) —4V3/2)(-1)=5V3
f(x)=—24cosdx ~ 4f'(x). So f(mi3)y=-24(-1)-4(-3)=14

]

So f(m/3)
fe)

I

il
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18.  Find the acute angles of intersection of the curves (1) y = 2sin’ x and (2) y = cos 2x on the
interval 0 < x <2mw. (See Fig. 17-6.)

Cin 17_£
1ig, 1/-V
We solve 2sin’ x =cos2x = 1 — 2sin’ x to obtain m/6, Sw/6, 77/6, and 117/6 as the abscissas of
the points of intersection.
Moreover, y' =4 sin x cos x for (1), and y’ = —2sin 2x for (2). Hence, at the point 7/6, the curves
have slopes m, = \/\Z_i/_and\/nl2 = —V3, respectively.
. 3+Vv3 . Lo .
Since tan ¢ = 43 - ~V3, the acute angle of intersection is 60°. At each of the remaining

intersection points, the acute angle of intersection is also 60°.

19. A rectangular plot of ground has two adjacent sides along Highways 20 and 32. In the plot is a
small lake, one end of which is 256 ft from Highway 20 and 108 ft from Highway 32 (see Fig.

highway to the other and touches the end of the lake.
Let s be the length of the path, and 6 the angle it makes with Highway 32. Then
s= AP+ PB =108 csc @ + 256 sec @

ds - Yo+ in’®
—=—108cscfcot @ +256sec@tan @ = 108cos 6 + 236sin” 6

do sin® 6 cos” @
Now ds/d@ =0 when —108cos’ @ + 256sin® @ =0, or when tan’ 8 =27/64, and the critical value is
0 = arctan 3/4. Then s = 108 csc @ + 256 sec & = 108(5/3) + 256(5/4) = 500 ft.

B
N
(=]
=) ]
2 e
_g 256
ﬁ P
g
[)
; A
Highway 32
Fig. 17-7

20.  Discuss the curve y = f(x) = 4sin x — 3 cos x on the interval [0, 27].

When x =0, y = f(0) = 4(0) ~ 3(1) = —3.
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Setting f(x) = 0 gives tan x = 3/4, and the x-intercepts are x =0.64 rad and x = 7 + 0.64 = 3.78 rad.
f'(x) = 4cosx+3sinx. Setting f'(x) = 0 gives tanx = -3, and the critical values are
x=7~-093=221and x =27 - 093 =535
f(x)=—~4sinx + 3cos x. Setting f"(x) =0 gives tan x =3/4, and the possible points of inflection
are x =0.64 and x = = + 0.64 =3.78.
f"(x)= —4cosx —3sinx. In addition,
1. When x=221, sinx=4/5 and cos x = —3/5; then f'(x)<0, so x =2.21 yields a relative
maximum of 5. x = 5.35 yields a relative minimum of —3.
2. f"(0.64) #0 and f”(3.78) # 0. The points of inflection are (0.64,0) and (3.78, 0).
3. The curve is concave upward from x = 0 to x = 0.64; concave downward from x = 0.64 to 3.78;
and concave upward from x =378 to 2#. (See Fig. 17-8.)

ra\

Fig. 17-8 Fig. 17-9

21.  Four bars of lengths a, b, ¢, and d are hinged together to form a quadrilateral (Fig. 17-9).
Show that its area A is greatest when the opposite angles are supplementary.

Denote by 6 the angle included by the bars of lengths a and b, by ¢ the opposite angle, and by h the
length of the diagonal opposite these angles. We are required to maximize

A=labsin8 + icdsin ¢
subject to R =a’+b*—2abcos=c"+d* ~2cdcos ¢

Differentiation with respect to @ yields, respectively,

dA 1 | d¢ . . d¢
d—9=§abc050+§cdcos¢{Te=0 and absm6=cdsm¢@-

We solve for d¢/d8 in the second of these equations and substitute in the first to obtain
absin 8

cd sin ¢ =0
Then ¢ + 8 =0 or =, the first of which is easily rejected.

abcos 8+ cdcos ¢ or sin g cosf +cos@sinf=sin(¢ +6)=0

22. A bombardier is sighting on a target on the ground directly ahead. If the bomber is flying 2 mi
above the ground at 240 mi/h, how fast must the sighting instrument be turning when the
angle between the path of the bomber and the line of sight is 30°?

We have dx/dt = —240 mi/h, 8 = 30°, and x =2 cot 8 in Fig. 17-10. From the last equation,
dx

o ecie X 0= 24) 2 9 30 rad/h = 2 d /
priit e or = ()dt $0 4~ 30rad/h = 5— degree/sec

23. A ray of light passes through the air with velocity v, from a point P, a units above the surface
of a body of water, to some point O on the surface and then with velocity v, to a point Q, b



CHAP. 17] DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS 127

P
™. ]
| g
240 mi/hr al
() i B
A [9) !
!
2 |- & lb
{
0 x
Q
Fig. 17-10 Fig. 17-11

units below the surface (Fig. 17-11). If OP and OQ make angles of 8, and 8, with a
perpendicular to the surface, show that passage from P to Q is most rapid when sin 6,/sin 8, =
v,/v,.
Let ¢ denote the time required for passage from P to @, and c the distance from A to B; then
asec8, bsech,

t= + and c=atan + btané,
U, U,

Differentiating with respect to 6, yields

dt  asecf tan§ 4 b tan 6, sec 8, dé,

- - 4 0=asec’ 8, + bsec’ 6, 2
do, , v, del an asec b, s€cC

2 4o,

. ds, asec’ 8, o o
From the last equation, —- = — ————. For ¢ to be a minimum, 1t is necessary that
h ag, bsec” 6, ’

dt _asech tang, bsecd,tand, {_ascc:(),\_n
de, v, ' v, \' bsec’ 8,/

from which the required relation follows.

Supplementary Problems

" . . .3 2
24.  Evaluate: (a) fim S22 =2 fim 202X,y fim 309 ) i S0 2
ARG =0 2x TV oesinbx’ Y x—o xsin® 3x
Ans. (a) 2; (b) alb; (c) 8/9
. . . . cOS U 1 .

2s. Derive differentiation formula 17, using first (a) cot u = <in and then (b) cot u = Gna Also derive

differentiation formulas 18 and 19.
In Problems 26 to 45, find the derivative dy/dx or dp/d®.
26. y = 3sin2x Ans, 6cos2x 27. y=4dcos ix Ans. —=2sin ix
28. y = 4tan Sx Ans. 20sec’5x 29, y=1cot8x Ans. —2c¢sc’ 8x
30. y =9sec ix Ans. 3sec ixtan ix k) 1 y=1icscax Ans. —cscdxcotdx
3. y=sinx-xcosx+x’+dx +3 Ans. xsinx+2x+4
3. p=Vsinb Ans. (cos 8)/(2Vsin 6) 4.  y=sin2/x Ans. (—2cos2/x)/x’
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3s.

37.

39.

41.

42.

43.

49.

S0.

S1.

52.

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS [CHAP. 17

y=cos(l-x") Ans. 2xsin (1 - x%)
y =cos (1— x)° Ans. 2(1 = x)sin (1 — x)°
y=sinz(3x—2) Ans. 3sin (6x — 4)
y=sin’ (2x - 3) Ans.  —3{cos (6x — 9) — cos (2x — 3)}
y =} tan x sin 2x Ans. sin2x
1 —3sec 260 tan 29
p= 5 Ans.  — T
(sec20 — 1) (sec28 — 1)
tan 26 sec’ 20 — 4 csc 40
p= Dl Ans, 2 T2 25X
1 —cot 28 (1 —cot 28)
y=xsinx+2xcos x —2sin x Ans. x*cos x
sin y =cos 2x Ans. —2sin2x/cos y
cos 3y =tan 2x Ans. —2sec’ 2x/3sin 3y

cos y —cos (x +y)
xsiny+cos(x+y)
. d’x d*x

= —k’x and L =(—1)"k"x.

xcos y=sin(x +y) Ans.

If x = Asinkt + Bcos kt for A, B, and k constants, show that e
-

Show: (a) y"+4y =0 when y =3sin(2x +3); (b) y"+ y"+y" +y =0 when y =sinx + 2 cos x.

Discuss and sketch on the interval 0= x <27
(@) y= %sin2x (b) y=cos’ x —cosx

A7 LS A

(d) y=sinx (1 +cosx) () y=4cos’ x—3cosx

—~
™
R

e
I
=
|
o
e
=
-

Ans.  (a) maximum at x = #/4, S57/4; minimum at x = 3x/4, 77/4, inflection point at x =0, =/2, =,

Im/2

(b) maximum at x =0, m; minimum at x = «/3, 5#/3; inflection point at x = 32°32’, 126°23’,
233°37', 327°28°

(c) maximum at x = 57 /3. minimum at x = =/3; inflection point at x =0, =

(d) maximum at x = 7/3; minimum at x = 57/3; inflection point at x =0, =, 104°29', 255°31"

(e) maximum at x =0, 27/3, 47/3; minimum at x = /3, 7, 57 /3; inflection point at x = 7/2,
3m/2, m/6, 57/6, Tw/6, 11m/6

If the angle of elevation of the sun is 45° and is decreasing at § rad/h, how fast is the shadow cast on
level ground by a pole 50 ft tall lengthening? Ans. 25ft/h

A kite, 120 ft above the ground, is moving horizontally at the rate of 10 ft/sec. At what rate is the
inclination of the string to the horizontal diminishing when 240 ft of string are paid out?

Ans. % rad/sec

A revolving beacon is situated 3600 ft off a straight shore. If the beacon turns at 47+ rad/min, how fast
does the beam sweep along the shore at (a) its nearest point, (b) at a point 4800 ft from the nearest
point? Ans.  (a) 240n ft/sec: (b) 20007 /3 ft/sec

Two sides of a triangle are 15 and 20 ft long, respectively. (¢) How fast is the third side increasing if the
angle between the given sides is 60° and is increasing at the rate 2°/sec? (b) How fast is the area
increasing?  Ans. (@) m/V39 ft/sec; (b) 3 ft*/sec
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Differentiation of Inverse Trigonometric Functions

THE INVERSE TRIGONOMETRIC FUNCTIONS. If x=sin y, the inverse function is written
y = arcsin x. (An alternative notation is y = sin”’ x.) The domain of arcsinx is ~1=x=1,
which is the range of sin y. The range of arcsin x is the set of real numbers, which is the domain
of sin y. The domain and range of the remaining inverse trigonometric functions may be
established in a similar manner.

The inverse trigonometric functions are multivalued. In order that there be agreement on
separating the graph into single-valued arcs, we define in Table 18-1 one such arc (called the
principal branch) for each function. In Fig. 18-1, the principal branches are indicated by a

thonk ae acioc.a
LILHCACLL CULIYL.

Table 18-1
Function Principal Branch
y = arcsin x —-dr=y=in
y = arccos x Osy=En
y = arctan x —ir<y<im
y = arccot x O<y<m
y = arcsec x —rE=y<-in 0=yp<iw
y = arcesc x —r<y=-im 0<y=ir
¥ ]
{ T
\ )
“N /]
\ [ t-v
y = arcsin x y = arccos x y = arctan x
Fig. 18-
DIFFERENTIATION FORMULAS
. 1 d 1
20. —— (arcsin x) = 21. = (arccos x) = —
dx 1-x dx 1-x*
d d 1
22. — (arctan x) = 23, — = -
e ( ) T 5 o (arccot x) 1T o
1 d 1

d
24. o (arcsec x) =

—_—— 25. — (arccsc x) = — ———
*Vxi-1 d"( ) xVxi -1
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Solved Problems

d 1 d 1
1.  Derive: (a) 5 (arcsin x) = ———==; (b) 5 (arcsec x) = —=—=.
dx Vi-x’ dx Vx' -1
(a) Let y = arcsin x. Then x =sin y and
L =L Giny =L iny) P zcosy X = 3 dy
l—dx(x) dx(smy)—dy(smy)dx—cosydx— 1 X g
N L , ; 1 dy !
the sign being positive since cos y =0 on the interval — ;7 =y =< } . Thus, ol T
- x

(b) Let y = arcsec x. Then x =sec y and

4 -4 -4 4 _ Y _ VeI Y
l-g(x)—dx(sccy)—dy(sccy)dx—sccylanydx—x x ldx

the sign being positive since tan y =0 on the intervals 0=y < 17 and —m =y < —-}m Thus,

— (arcsec x) = ————.
dx( ) WVxl-1

In Problems 2 to 8, find the first derivative.

. dy 1 d 1
2. = arcsin (2x — 3): ot A N S s TV G —
Y ( ) dx \/1—(2x—3)2dx( ) 3x—x'-2
= 2, dy 1 d o, 2
3. y = arccos x°: o \/l___xzdx(x).. e
4 _ 32. dy_ 1 d 24 61'
. y = arctan 3x”: & 170 Z)de(x)—1+9x4

1+
5. f(x) = arccot ad

1—x
o 1 d (1+x 1 (1-x)— (1+x)(-1) 1
X)= - £ - - L S
A 1+{1+x\2dx(1—x) 1_!_(1+Jc\2 (1—x) 1+x
\1—x/ \l1—x/

6. f(x)=xV a’ — x* + a® arcsin i:

f(x) = x[ 4@ - ) (=20)) + (a° - x}) 2+ a? T _l(x/a)z }z =Va -1

1
7. y=xarccsc;+V1—x2:

"= ——11(1) 1_‘_1_ 1 IS V2 PR _ 1
y —x[l A'_—l ~ & \x ]+arccscx dx(x)+2(1 x7) Y 2x)—arccscx
I.X\Jx2 ’ _I
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9.

10.

11.

yo L 4l )]al b
_ab b \zdx a an x ab a*+ b’tan’ x a o
L! ;a'”/ J

sec’ x _ 1
a’+b*tan*x a’cos’x+ bisin’x

y*sin x + y = arctan x; find y".

2yy’sinx + ycosx + y' = 5

1+x

, . _ 1 . 1-(1+x*)y’cos x
Hence, y'(2ysinx +1) = To & Y cosx and y'= A+ )2y sinx + 1)

In a circular arena (Fig. 18-2) there is a light at L. A boy starting from B runs at the rate of
10 ft/sec toward the center O. At what rate will his shadow be moving along the side when he
is halfway from B to O?

Let P, a point x feet from B, be the position of the boy at time t; denote by r the radius of the arena,
by @ the angle OLP, and by s the arc intercepted by 6. Then s = r(26), and 8 = arctan OP/LO =
arctan (r — x)/r. Hence,

2

ds 5 dB 5 1 ( l)dx_ =2r dx
:h_ r = r14_lf.._.,\f..12 r) odt vZ _ 9.y 1942 dt
a l\l A,I’] v —“we A “FA U oar e

When x = 3r and dx/dt = 10, ds/dt = — 16 ft/sec. The shadow is moving along the wall at 16 ft/sec.

The lower edge of a mural, 12 ft high, is 6 ft above an observer’s eyes. Under the assumption
that the most favorable view is obtained when the angle subtended by the mural at the eye is a
maximum, at what distance from the wall should the observer stand?

Let 8 denote the subtended angle, and x the distance from the wall. From Fig. 18-3, tan (8 + ¢) =
18/x, tan ¢ = 6x, and
tan(f +d)—taned _ 18/x-6/x  12x
1+tan (8 +¢)tang 1+ (18/x)(6/x) x*+ 108

tan 0 =tan [(@ + @) — @] =

de 12(—x? + 108) -
and —— = o — The critical value is x =6V3~ 10.4. The

12
d .
+108 dx  x* +360x® + 11,664
observer should stand 10.4 ft in front of the wall.

Then 68 = arctan
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12.

13.

15,

17.

18.

21,

22,

™_ 11 . 4 . AN £~ . | !
rrooiems 15 10 LU, 1Ind 4dy/dadx.

DIFFERENTIATION OF INVERSE TRIGONOMETRIC FUNCTIONS [CHAP. 18

Supplementary Problems

Derive differentiation formulas 21, 22, 23, and 25.

A A

3 1
y = arcsin 3x Ans. ———— 14, y = arccos 3x Ans. - =
V1-9x 4—-x"
t 3 A 3 16 arcsin (x — 1) Ans L
= arctan - ns. - . = - . -
yTardan 2+9 ’ Voy - x°
2 1
y = x" arccos 2/x Ans. 2x(arccos -+ = )
X x4
_ X X A x°
y= Vo arcsin - ns. @

X — & . S m 3

, N e .
y=(x—a)Vliax - x" + g arcsin

Vx' -4

1 X
= + > = Ans. ——F——
y pe 2 arcsec 3 Yy

A light is to be placed directly above the center of a circular plot of radius 30 ft, at such a height that the
edge of the plot will get maximum iilumination. Find the height if the intensity at any point on the edge
1s directly proportional to the cosine of the angle of incidence (angle between the ray of hight and the
vertical) and inversely proportional to the square of the distance from the source. (Hint: Let x be the
required height, y the distance from the light to a point on the edge, and 6 the angle of incidence. Then

55-)  Ans. 1SV2fi

cos 8 kx
I=k —=—
y (x° +900)

Two ships sail from A at the same time. One sails south at 15 mi/h; the other sails east at 25 mi/h for 1 h
and then turns north. Find the rate of roiation of the line joining them after 3 h. Ans. & rad/h



Chapter 19

Differentiation of Exponential
and Logarithmic Functions

DEFINE THE NUMBER ¢ by the equation

1 h
L/k

Then e also can be represented by lim (1 + k). In addition, it can be shown that
P y im

e=1+1+——+—-+~-+;—+~-=2ﬂ8%.”

The number e will serve as a base for the natural logarithm function (See Problem 1.)

LOGARITHMIC FUNCTIONS. Assume ¢ >0 and a # 1. If a” = x, then define y = log, x. Another
definition of log, x will be given in Chapter 40.

NOTATION. Let Inx=log, x. (Then In x is called the natural logarithm of x.) See also Fig. 19-1.
Let log x =log,, x.

The domain of log, x is x >0; the range is the set of real numbers.

o
v=Inz y= e I
Fig. 19-
DIFFERENTIATION FORMULAS
26. d—‘i(logax)=%logae,a>0,a¢l 27. %(lnx)=—
28. dix(a’)=a’ lna, a>0 29. %(e“)=e"

(See Problems 2 to 17.)

LOGARITHMIC DIFFERENTIATION. If a differentiable function y = f(x) is the product and/or
quotient of several factors, the process of differentiation may be simplified by taking the natural

133



134 DIFFERENTIATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS [CHAP. 19

logarithm of the function before differentiation. This amounts to using the formula
d d

N L uY = {1 )
N WIEy g uny)
(See Problems 18 and 19.)

BASIC PROPERTIES OF LOGARITHMS
Property 19.1: log, 1 =0 (In particular, In1=0.)
Property 19.2; log, 4 = | (In particular, Ine =1,)
Property 19.3: log, uv =log, u +log, v

Property 19.4: log, % =log, u —log, v

Property 19.5: log, u" =rlog, u

Solved Problems

-
.

Verify: 2< tim {1+ 1) <3,
\ /

or
verily.
n—+x

By the binomial theorem, for n a positive integer,

(18 =vend o IS (L)  mrs ot (1) et (1)

e (=) g+ (-0 2) e =200 20022 o

1 n
(Ezlcarly, for every value of n # 1, (1+ ;) > 2. Also, if in (1) each difference (1 - l)

i

n
1—; .. .. iIs replaced by the larger number 1, we have
l’l
(l+—} <2+%+%+---+i,
\ n/ 20 3 n!
2+1+,_1_ _1_ v (5incci<.1_)
< 2 22 + 23 + + 2n-| \ n! 2"“,
. 1 1 1 1
<3 (smce§+?+—2—,+---+5;q<l)
Hencc.2<(1+%) <3.
Let n— = through positive integer values; then
e (=220 g
1 n 1,1 n l...., and 1 n 1 n "1—'—1 F—PF
. 1y 1 1 1
This suggests that "ilill(lf;l) =1+1+5T§+ 1";(_'1‘ = 2.71828
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Let y =log, x. Then
y+Ay=log, (x + Ax)

+ a
Ay =log, (x + Ax) —log, x = log, al XAX = log, (1 + TX)

Ay 1 ( Ax) 1 x ( Ax) 1 ( Ax)““
—_— = — + — = - — _— = - —_—
Ax  Ax log, 1 X x Ax log.\1+ X X log,\1 + X
x/dx
ll [llm (1+A—£) ]=llogde
X aAx—0 X X

Whena=e, log,e=log, e=1 and—-(lnx)——

I

d dy_1 im @+;QM’
an Ir ¢ dim log, .

X Ax—0

In Problems 3 to 9, find the first derivative.

= 2_ 5. dy _ 1 d a2 o 6%

3. y=log,(3x" —3): [ 3x2—5(10g"e) ir (3x 5)—3x2_slogqe
_ 2 _ . dy_ 1 d _ 2

4, y=In(x+3) =2In(x+3): o —2x+3 o (x+3)—x+3

5. y=In*(x+3):

2ln(x +3)
y’ -2]n(x+3)dx[ln(x+3)]-21n(x+3) +3d (x+3)= i3
6. y=In(x’+2)(x**+3)=In(x’+2)+1In(x’ +3):
,_ 1 14y 3 2
y_x +2dx( D)+ 3dx(x +3) x3+2+x2+3
4
7. f(x)—ln( ~2) =lnx'-In(Bx -4 =4Inx—2In(3x — 4):
=4l 4 L S W .
f(x)_4x dx dx(3x 9= 3x—4
8 =Insin 3x: ! d in3 —3COS3X—3ct3x
Lo yTinsmo Y= Gnax dx SM3N T3 g5, 7000
9. y=In(x+Vi+x’):
,_ 1+ %(1+X2)_l/2(2X) _ 1+x(1+xz) /2 (1+x:)1'2 _ 1
y X+(1+x2)”2 = x+(]+x2)”2 (1+x2)“2 Vit
d d
10, Denve——(a )=(ln a)a" and — (e )y=¢€".
Lcty=a.Thenlny=xlnaand
d 1 dy dy

—.*(lny)=;a=lna or ax—*—ylna:a"lna

dx

Whena=¢, Ina=Ine=1 and we have % (e?)=¢"

In Problems 11 to 15, find the first derivative.
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11.

12.

13.

14.

15.

J—
-]

17.

DIFFERENTIATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

“hx Y o,
y=e y =€ E —ix =—-z €
2?2 02
y=e y' =e¢ —c,i(xz)=2)ce‘z
dx
_ 3 ;3T d 2\ X’
y=a y =a (Ina)a;(lt )=6xa " lna
— 2ax, " 2i x xi 2y __ JIx X _ x
y=x3": y =x dx(3)+3 dx(x)—x.'}ln3+32x—x3(xln3+2)
( av + e HX) i ax — at . arx — ax i ax + ax
_ ax_e*a.x- - e dx (e e ) (e € )dx(e 4 )
y gax+e-a.t- y (Enx+e—ax)2
(e M@ re M)~ (€ e TYa)e" —e ™)
(eax+e~ax)2
— (e2nx +2+€ 2a1)_(62ax _2+e»2ax) 4(1

(eax+efa:)2 = (eax+e—nx)2

[CHAP. 19

Find y", given y
L d d o_e" e’
y'=¢* —(Inx}+Inx — (e ,)‘__e” —e “lnx= -y
ax ax A x
d . d
LT & et et (2L )
y'= x y = x o re mxEme izt eE Ty

2 d (sin 3x) + sin 3x % (e")=23e * cos3x —2¢ **sin 3Ix=3¢""

o AN

~as P 2725 2y
cos dxj + 3cos 3x (e7™)-2

dx 4
—9¢ " sin3x — 6e > cos3x — 2(3e” 7" cos 3x — 2¢ ¥ sin 3x)

= —¢ ?(12cos 3x + Ssin3x)

In Problems 18 and 19, use logarithmic differentiation to find the first derivative.

18.

19.

y= (x*+2)'(1 - xY)?
Iny=In(x*>+2)’(1-x)"=3In(x’+2) +4In(1 - x")

y' =y % Bln(x*+2)+4In(1-x)=(F +2)’(1—x3)‘(12 3

=6x(x” +2)°(1 - x*)’(1 — 4x — 3x%)

_x(1— ch)2
(1+ )"

o 1
1-x°

*cos3x — 2y
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Iny=Inx+2In(1 —x*)~ }In(1 + x°)
x(1-x*) {1 4x x V. (Q-x)y afa-x) xFa-xy

A+ T 1 T aex)? (x4 x)?

L—

(-5 —4x)(1 - XY
- (1+x2)3./2

20. Locate (a) the relative maximum and minimum points and (b) the points of inflection of the
curve y = f(x) = x’¢" (Fig. 19-2).
fl(x) =2xe" + x’e* = xe*(2 + x)
fl(x)=2e" +4xe" + x7¢" = (2 + 4x + x7)
f(x) = 6€" + 6xe* + x%e* = e*(6 + 6x + x°)
(@) Solving f'(x) =0 gives the critical values x =0 and x = =2. Then f"(0} > 0; so (0,0) is a relative

minimum point. Also, f'(~2)<0; so (~2,4/e*) is a relative maximum point. _
(b) Solving f"(x)=0 gives possible points of inflection at x = -2 % V2. Since f"(-2-Vv2)#0 and

fr(=2+ \/?:) # 0, the points at x = =2 = V7 are points of inflection.
Y y
—t a
—2-v2 -2 -2+4V2 _ R
—Vares O] ey *

21.  Discuss the probability curve y = gae” ™, a >0 (Fig. 19-3).
The curve lies entirely above the x axis, since e ®* >0forall x. As x— ==, y — 0; hence the x axis
is a horizontal asymptote.
The first two derivatives are
y' = —2ab’xe " and vy =2ab’(2b7x° - l)e’b:’:

When y'=0. x =0, and when x =0, »”"<0. Hence the point (0, g) is a maximum point of the curve.
When y” =0, 2b°x* — 1 = 0. yielding x = =V/2/2b as possible points of inflection. We have:

-V2/2b V2i2b
! 0
y' >0 i y' <0 ' y'>0
concave up ‘ concave down concave up

Hence the points (=V2:2b.ae”" *) are points of inflection.

22.  The equilibrium constant K of a balanced chemical reaction changes with the absolute
temperature T according to K = K,e %777 707 where K,. ¢, and T, are constants. Find the

percentage rate of change of K per degree of change of T.

100 4K d .
The percentage rate of change of K per degree of change of T is given by K 41 100 dr (In k).
Then.,
B 1 T-T, d _100q _ _350¢q .
]nK_]nKD_iq_TUT and lOOdT(]nK)— T T 3
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Discuss the damped-vibration curve y = f(f) = e Y sin 2m1.

When ¢ =0, y =0. The y intercept is thus 0,

When y =0, we have sin2m¢t=0and t=...,—-3, -1, -4, 0,1, 1,2 .. .. These are the ¢
intercepts.

Whent=...,-3, -2, 4. %....,we have sin2mt=1land y=¢ ! Whent=..., -3, - 1, 1.
I,....,wehavesin2mr=—-land y= —e ! The given curve oscillates between the two curves y = el

and y = ~e'%’, touching them at these points, as shown in Fig. 19-4.

Fig. 19-4

Differentiation yields

y =f(t)= e_i'(21r cos 2t — 1 sin 2me)
Yy =) = e'i'[(% ~ 47?)sin 29t — 27 cos 27m!)

When y' =0, then 2w cos 2wt - Ysin2me=0; that is, tan2we =47 If = £=0.237 is the smallest
positive angle satisfying this relation, then t=..., §—3, £-1, §-4, & €+ 4. E+1,... are the
critical values.

Forn=0,1,2 ..., 7 (&= 5n)y and f(g‘ *

2
n+2 . .. . . .
f"(g * 3 ) have the same sign; hence, the critical values yield alternate maximum and minimum

1y, o .
) have opposite signs, whereas (£ = in) and

- —_— _ S - sz P - - Ll s 1,
points of the curve. These points are slightly to the left of the points of contact with the curvesy = ¢ %

and y = ~e %

2
When y"=0, tan2nt= ul 5 = ki 5. If t=%=0475 is the smallest positive angle
1/4- 4w 1- 16w
satisfying this relation, then t=...,9~1, n -4, n, p+ i, n+1,... are the possible points of

inflection. These points, located slightly to the left of the points of intersection of the curve and the ¢
axis, are points of inflection.

The equation s = ce ” sin (ks + ), where ¢, b, k, and @ are constants, represents damped
vibratory motion. Show that @ = —2bv — (k> + b*)s, where v = ds/dt and a = dv/dt.

v= % = ce "[—bsin (kt + 0) + kcos (kt + 0)]
a= %%= ce "[(b* — k) sin (kt + ) — 2bk cos (kt + 6))

=ce ™{—2b[~bsin (kt + ) + k cos (k¢ + 0)] — (kK* + b?) sin (kt + 6))
=-2bv— (k' + b*)s

Supplementary Problems

In Problems 25 to 35, find dy/dx.

25,

y=In(4x - 5) Ans. 4/(4x=5) 26. y=InV3i-x’ Ans. x/(x* = 3)
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27,

8

29.

31.

32.

33.

3

35.

37.

y=1In3x’ Ans. 5/x

y=in(x>+x-1)° Ans. (6x+3)/(x*+x—1)
y=x:'Inx—x Ans. Inx

y = In (sec x + tan x) Ans. secx

y =In(Intan x) Ans. 2/(sin 2x Intan x)
y=(Inx*)/x’ Ans. (2-4Inx)/x’
y=1ix(lnx-1}) Ans. x'lnx

y = x[sin (In x) — cos (In x}] Ans. 2sin(Inx)
y=xIn(4+ x’) +4arctan ix — 2x Ans. In(4+x%)

Find the equation of the line tangent to y = In x at any one of its points (x,. y,). Use the y intercept of
the tangent line to obtain a simple construction for the tangent line.

Ans. ¥y = yo=(1/x,)(x — x,)

Discuss and sketch: y = x*In x. Ans. minimum at x = 1/v/¢; inflection point at x = 1/¢*"*

Show that the angle of intersection of the curves y =In (x —2) and y = x* — 4x + 3 at the point (3, 0) is
¢ = arctan }.

In Problems 39 to 46, find dy/dx.

39.

41.

43.

45.

47.

48.

49.

h
-
.

% 2 1t

y=e" Ans. S5e* 40. y=e Ans. 3x’e

y=e"" Ans. 3e"" ¥ cos3x 42, y=37" Ans. —2x(37* In3)
y=e "cosx Ans. —e *(cos x +sin x) 4. y = arcsin e’ Ans. eNV1-¢e™"
y = tan’ e Ans. 6e* tan e> sec” * 46. y=¢e" Ans. e

If y = x°¢*, show that y” = (x* + 6x + 6)e".

If y = ¢”*(sin 2x + cos 2x), show that y" + 4y’ + 8y =0.

-
x

Discuss and sketch: (a) y =x% " and (b) y = x’e¢ ",

Ans. (@) maximum at x = 2; minimum at x = 0; inflection points at x =2 = V2
(b) maximum at x = *1; minimum at x = 0; inflection points at x = *1.51, x = £0.47

Find the rectangle of maximum area, having one edge along the x axis, under the curve y = e . (Hint:
A=2xy=2xe™, where P(x, y) is a vertex of the rectangle on the curve.)  Ans. A=V2/e

same points.
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52, For the curve y = xe®, show (a) (-1, —1/e) is a relative minimum point, (b) (-2, —2/€%) is a point of
inflection, and (c) the curve is concave downward to the left of the point of inflection, and concave

unward to the right of it
upward to the nght of it.

In Problems 53 to 56, use logarithmic differentiation to find dy/dx.

53. y=x Ans. x'(1+Inx)

54. y = x’e* cos 3x Ans.  x’e** cos 3x(2/x +2— 3 tan 3x)
sS. y=x"* Ans. 2x"  Vinx

56 y =5 Ans. e"’zx'_xz(llx—Zx In x)

57. Show (a) Z:,. (xe"y=(x + m)e*, (b) g,, (x* '"lnx)= (n-1) ; 1) .



Chapter 20

Differentiation of Hyperbolic Functions

DEFINITIONS OF HYPERBOLIC FUNCTIONS. For x any real number, except where noted, the

hyperbolic functions are defined as

X

x -
€ —¢€

X

e +e

sinh x = cothx = =, x#0
2 tanhx e " —¢™ "
h e +e” h i 2
coshx = sechx = = —
2 coshx e +e"
. X -X
sinh x —e 1
tanh x = inh =e, =3 cschx= = — 2 =, x7#0
coshx e +e sinhx ¢ —e

DIFFERENTIATION FORMULAS

. d .
31. o (sinh x) = cosh x 32. ax (cosh x) =sinh x
— 2 d _ 2
33. Ir (tanh x) =sech” x 34. p (coth x) = —csch” x
d
35. T (sech x) = —sech x tanh x 36. e (csch x) = —csch x coth x

(See Probiems 1 to 12.)

DEFINITIONS OF INVERSE HYPERBOLIC FUNCTIONS

— 2 - +1
sinh ' x=In(x+V1+x’) forallx coth 'ngln"_l, >
- . 1+V1-x*
cosh x=In(x+Vx—1), x=1 sech ‘x=ln-———x——x—, 0<x=<1
_ 1+ N 1 Vi+x?
tanh 'x=%ln x’ ’«1 csch 'x=ln(—+——x), x#0
1- x x|
(Only principal values of cosh™' x and sech™' x are included here.)
DIFFERENTIATION FORMULAS
37 i(sinh_'x)— 1 38. -— (cosh™'x)= 1 x>1
- dx 14x° - d -1
d _ d - 1
39. — (tanh ' x) = s, 20 <1 40. — (coth ' x) = =, x >1
ax - x° ax S 1=x"
4. L (sech™ x)= —— 0<x<1 2. Lischt xy= — x #0
a T V1= odx Tk Vi

(See Problems 13 to 19.)
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Solved Problems

1. Prove that cosh’ u —sinh? u = 1.

R . K e w2 o, B
cosh® u — sinh” u (5;72{ ) ~(e 2e ) =l +2+e ) - (e -2+ e ) =1
2. Derive e (sinh x) = cosh x.
d . _d 'e”—e")_e"+e"_
o (sinh x)—dx( ) = ) = cosh x
In Problems 3 to 10, find dy/dx.
. d
3. =sinh 3x: Ty = cosh 3x Ji (3x) =3 cosh 3x
’ dx dx
d d
3. y =cosh %4 d_i =sinh 3x . (ix) = 3sinh 3x
— ¢, 2y, d_y_ 2 2 _d_ 2y 2 2
§. y=tanh(l+x7): =sech” (1 + x°) 5= (1 + x")=2xsech” (1 + x°)
dx dx
B 1 dy _ 2ld(l)_l 2 |
6. y—colhx. g = Coseht o —?csch .

7.  y=xsechx’:
dy  d 2 2 d _ 2 2 2
i X dx (sech x”) + sech x ! (x) = x(—sech x" tanh x*)2x + sech x

= —2x%sech x* tanh x? + sech x’

8. y=csch’ (x* +1):

% =2c¢sch (x® + 1) % [esch (x* + 1)] =2 csch (x* + 1) —csch (x* + 1) coth (x* + 1) 2x]

= —4x csch” (x* + 1) coth (x* + 1)

9, y = 1sinh2x - lx: % I(cosh2x)2 — { = {(cosh2x — 1) =sinh’ x
- _ dy 1 200y = 2 -
10. y=Intanh2x: I = tanh o (2sech® 2x) = Smh3x col 2x 4 csch 4x

. . . . x
11.  Find the coordinates of the minimum point of the catenary y = a cosh pe

)= 1 (asinb %) <sinh £ = Yeosn X1 € e
f(x)—a asmha ~smha and f(x)—acosha~a >
When f'(x) = i_z—e =0, x =0; and f"(0) > 0. Hence, the point (0, @) is the minimum point.

12.  Examine (@) y =sinh x, (b) y = coshx, and (c¢) y = tanh x for points of inflection.
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LYy £ — cimbh « amd £ — ok £ma A Thawa :h e emmiemd o~ At e
\Y) J (A) AT A, allu [ (A J — LUsl X 7" U 101 dll leucb Ul X. 11T€ 15 1o pUl il O1 InNnecuioii.
, sinh x sinh® x — 2
(¢) f'(x)=sech’®x, f'(x) = —2sech® x tanh x = -2 5—, and f"(x) = .
cosh” x cosh

f"(x)=0 when x =0, and f™(0) # 0. The point (0,0) is a point of inflection.

13.  Derive: (a) sinh™' x =In(x + Vx’ + 1), for all x

1 l 1+V1-x*

(b) sech™ x =cosh™' T/ for0<x=1

(a) Let sinh™' x = y; then x =sinh y = {(e’ — e””) or, after multiplication by 2¢”, ¢* — 2xe* — 1 =0.
Solving for e’ yields e’ = x + Vx’ + 1, since e” >0. Thus, y = In(x + VX’ + 1).

e _ __1 _1 —cosh ' L —sech”!
(b) Let sech x=y; thcnx—sechy—coshy,so coshy—x.Hencey—cosh x—sech x. Also,

x=sech y= —e—yTzeT,, from which ”x = 2e” + x =0.
1+Vi-x? 1+V1—x?
Solving for e” yields e” = _x—x for y=0. Thus, y =In -—x——x, O<x=1l.

14.  Derive % (sinh ™' x) = _;\/1+;x_2
Let y =sinh ™' x. Then sinh y = x and differentiation yields cosh y % =1; so
dy 1 - 1 _ 1
dx coshy 1isinh®’y Vi+xd
In Problems 15 to 19, find dy/dx.

i 3 dy 1 4. 3
15. y=sinh " 3x: &= oyl & (3x) = Vor s
- dy 1 d e
16. =cosh ' ¢*: Y_o_ 1 L=
y dx er_l dx( ) e}x_l
= -t 1. dy _ 1 _ 4 L
17. y=2tanh  (tan jx): I =2 I <tan® Ix dr (tan 3x)
1 sec’ ix -
=2——l—tan2§' (sec’ in(iy= -————anz o =gec X
a1 dy 1 d {1 —1/x’ -1
18. =coth™' =: —=————(_)= =
y X & 1-(1/x) dx \x/ 1-1/2 -1

dy -1 sin x

19. =sech "’ (cos x): == €Os X} = ——————=— =3secx
y ( ) dx cosle—cosxdx( )= cosxV1—cos’x

Supplementary Problems

20 (a) Sketch the curves of y = ¢ and y = —¢7*, and average the ordinates of the two curves for various

Y. REj SX LS

values of x to obtain points on y =sinh x, Complete the curve,
(b) Proceed as in (a), using y = ¢" and y = ™" to obtain the graph of y = cosh x.
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21.  For the hyperbola x* — y* = 1 in Fig. 20-1, show that (a) P(cosh u, sinh ) is a point on the hyperbola;
(b) the tangent line at A intersects the line OP at T(1, tanh u).

N\ v V4

Fig. 20-1

22, Show: (a) sinh (x + y) = sinh x cosh y + cosh x sinh y
(b) cosh (x + y) = cosh x cosh y + sinh x sinh y
(¢) sinh 2x = 2 sinh x cosh x
(d) cosh 2x = cosh® x + sinh” x =2 cosh’ x — 1 =2sinh’ x + 1
2tanh x

(¢) tanh2x = 17 tanh® »

In Problems 23 to 28. find dy/dx.

23. y = sinh ix Ans. }cosh ix 24. y = cosh” 3x Ans. 3sinh6x
25. y =tanh 2x Ans. 2sech’2x 26. y =Incoshx Ans. tanh x
27. y = arc tan sinh x Ans. sechx 28. y = InV'tanh 2x Ans, 2cschdx

1 3
29, Show: (@) If v = a cosh 2, then y" = p Vi+(y').
(b) If y = A cosh bx + B sinh bx, where b, A, and B are constants, then y” = b’y.

i

1+ u
%ln—u,u“<l.

30. Show: (@) cosh 'u=In(u+Vu' —1), u=1, and (b) tanh 'u -

3t (@) Trace the curve y =sinh ™' x by reflecting the curve y =sinh x in the 45° line.
(b) Trace the principal branch of y = cosh™' x by reflecting the right half of y = cosh x in the 45° line.

32. Derive differentiation formulas 32 to 36, 38 to 40, and 42.

In Problems 33 to 36, find dy/dx.

1 1 1
33. y=sinh ' ix Ans. = 34. y =cosh ' = Ans. — ————
x“+4 X xVI1-x"
35, y = tanh "' (sin x) Ans. secx
2 e et Y A/ .2 . Ao _ y
U A — @ 3CL] ; - v“ ”_Y SATLS . 3 >



Chapter 21

Parametric Representation of Curves

PARAMETRIC EQUATIONS. If the coordinates (x, y) of a point P on a curve are given as
functions x = f(u), y = g(«) of a third variable or parameter u, the equations x = f(u) and
y = g(u) are called parametric equations of the curve.

EXAMPLE 1: (a) x =cos 6, y =4sin’ § are parametric equations, with parameter 6, of the parabola
4x’ + y =4, since 4x* + y =4 cos’ @ + 4sin”> § = 4.
(b) x = 4t, y =4—¢® is another parametric representation, with parameter ¢, of the same curve.

It should be noted that the first set of parametric equations represents only a portion of the parabola
(Fig. 21-1(a)), whereas the second represents the entire curve (Fig. 21-1(b)).

v
)= §r
‘=!r/ ‘=*r
0=14 t x
0 =0
() (b)

Fig. 21-1

EXAMPLE 2: () The equations x = r cos 6, y = r sin @ represent the circle of radius r with center at the
origin, since x* + y* = r’ cos’ 8 + r’ sin® § = r’(cos’ 8 + sin° 8) = r> The parameter 8 can be thought of as
the angle from the positive x axis to the segment from the origin to the point P on the circle (Fig. 21-2).
(b) The equations x = a + rcos 6, y = b + rsin 6 represent the circle of radius r with center at (a, b), since
(x—a)* + (y—b)’=r*cos’ 6 + r’sin’> @ = r*(cos® 6 + sin® 8) = r~.

P(x, y)

\
N

Fig. 21-2

145
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dy _dyldu

dy
THE FIRST DERIVATIVE c_i_ is given by —— I doida

dy . dly d (dy\d
E SECOND DERIVATIVE —s is given by —5 = Vo) ox
dx dx du \dx d
Solved Problems
dy  d’y ,
Find d—and s given x =0 —sin 6, y=1—cos 6.
dx dy dy dy/ldé  sing
g~ lTcos® and o gg=sinb. So O = de - T-cos6
Al dy 1( sin § )@_ cos 6 — 1 1 _ 1
50, dx® d6\1-cos6/ dx (1-cos6)’ 1-cos®  (1-cosB)
ody dly , L
Find e and g given x =€ Cost, y =€ sint.
X
dx dy dy dyldt sint+cost
— =4 — si —Z = ¢'(si + =L = =
ar ¢ (cos = sin 1) dr =€ (sin £ + cos £) dx dx/dt cost~—sint
42 J /aie cae t N A o) 1 b}
(4] _y u QU T T LWUd | [Z9 9 < 1 r' s
Also, -5 = T - = . 1 - == .
50 dx® dt (cos t—sin t) dt  (cost-sint) e'(cost—sint) e(cost—sint)’

Find the equation of the tangent to x = V', y =t — 1/V1 at the point where 1= 4.

de 1 dy 1 dy dy/dt 1
a- i ™ a TV avi P T goa oVt
Att = 4, x = 2,y = 7/2, and m = dy/dx = 17/4. The equation of the tangent is then

(y—7/2)=(17/4)(x —2) or 17x —4y =20.

The position of a particle that is moving along a curve is given at time ¢ by the parametric
equations x =2 —3cost, y =3+ 2sin t, where x and y are measured in feet, and ¢ in seconds.
Find the time rate and direction of change of (a) the abscissa when t = 7r/3, (b) the ordinate
when t=35m/3, (c) 6, the angle of inclination of the tangent, when ¢t =2x/3. (See Fig. 21-3.)
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dx dy dy
—_— = 1 _ = = - = £ 1 t
a 3Isint and i 2cost. So tan 8 el co

(@) When t = /3, dx/dt = 3V3/2. The abscissa is increasing at 3V3/2 fu/sec.
(b) When t =5#/3, dy/dt=2(})=1. The ordinate is increasing at the rate 1 ft/sec.

6 = arcta ot ¢ addﬂ _—_6cs_c__r_ When (= 2m df —_ﬁz—/—\/——)ﬂ———ﬁ The angie
(€) 6 =arctan (§ cot ), and - = g7 0 When 3d 9ra-IVI 3l &

of inclination of the tangent is decreasing at a rate of 3t rad/sec.

Supplementary Problems

In Problems 5 to 9, find (a) dy/dx and (b) d’y/dx’.

10.

11.

12.

13.

14.

x=2+ty=1+1¢ Ans. (a) 2t; (b) 2

x=t+1/t,y=1t+1 Ans. (a) 17(1* = 1); (b) =202 - 1y’

x=2sint, y =cos2t Ans. (a) —2sint; (b) -1

x=cos’ 6, y=sin’ 6 Ans. (a) —tan#8; (b) 1/(3cos’ 6 sin 6)

x=afcos ¢ + psingd), y = a(sin ¢ — ¢ cos $) Ans. (a)tan ¢; (b) 1/(ag cos’ )

-2r

Find the slope of the curve x = ¢ 'cos2t, y = e~ sin 2t at the point 1 =0, Ans. -2

Find the rectangular coordinates of the highest point of the curve x = 961, y = 96t — 16¢>. (Hint: Find ¢
for maximum y \ Anc {288 IAA\

A0 dnaAnnaen Fg Y40 EC0,

Find the equation of the tangent and the normal to the curve (a) x = 3¢,y = Se "att = 0Q;
(b)y x=acos' 0, y=asin' fat 6 =}m

Ans. (a) 5x+3y—-30=0,3x-5y+16=0; (b)2x+2y —a=0,x~-y =0

Find the equation of the tangent at any point P(x, y) of the curve x = acos’ t, y = a sin’ t. Show that the
lenmh of the segment of the tangent mterrpngpd hv the coordinate axes is a.

Ans. xsint+ycost=lasin2f

For the curve x =t* — 1, y =’ — ¢, locate the points where the tangent line is (a) horizontal and (b)
vertical. Show that at the point where the curve crosses itself, the two tangents are mutually
perpendicular, Ans. (a)t==V3/3;(b) t=0



Chapter 22

Curvature

DERIVATIVE OF ARC LENGTH. Let y = f(x) be a function having a continuous first derivative.
Let A (see Fig. 22-1) be a fixed point on the graph, and denote by s the arc length measured
from A to any other point on the curve. Let P(x, y) be an arbitrary point, and Q(x + Ax, y +
Ay) a neighboring point on the curve. Denote by As the arc length from P to Q. The rate of
change of s (= AP) per unit change in x and its rate of change per unit change in y are given
respectively by

2

ds As ( dy)z ds s (dx)
 — = + _ _— = e —aat _
/Jx Al =N A v - Y 1 + \ Ay Avy Al.l..,l\ Avu - Y 1 + Ay J
i ax—v A L ¥ Oy Ly SBFTEY Ay Sy
The plus or minus sign is to be taken in the first formula according as s increases or decreases as

v increases. and in tl-\p cﬂr‘nnri formula accordine ag s increases or decreases as v increases

A LUMVIVADCY, allu i Swasina tuia avvUiuiing as o e =1 holwhd LLLIRASTYS ad y aavivansvys.

When a curve is given by the parametric equations x = f(u), y = g(u), the rate of change of
. ds de\?  (dy)’ . o
s with respect to u is given by I * \/<£) + <£) . Here the plus or minus sign is to be
taken according as s increases or decreases as u increases.
To avoid the repetition of ambiguous signs, we shall assume hereafter that direction on
each arc has been established so that the derivative of arc length will be positive. (See Problems

1to035)

e

Q(z + Az, y + A¥)

-/ Ay

Pz, y)
Ax

Fig. 22-1 Fig. 22-2

CURVATURE. The curvature K of a curve y = f(x), at any point P on it, is the rate of change in
direction (i.e., of the angle of inclination 7 of the tangent line at P) per unit of arc length s.
(See Fig. 22-2.) Thus,

2 P4
/dx —
K=é=lim£— 4y or dxidy 13
[1 + (dx/dy)’]

ds a0 As [1+ (dy/dx)z]m (22.1)

From the first of these formulas, it is clear that X is positive when P is on an arc that is concave
upward, and negative when P is on an arc that is concave downward.

K is sometimes defined so as to be positive, that is, as only the numerical values given by
(22.1). With this latter definition, the sign of K in the answers below should be ignored.

THE RADIUS OF CURVATURE R for a point P on a curve is given by R = |1/K], provided K # 0.

148
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THE CIRCLE OF CURVATURE or osculating circle of a curve at a point P on it is the circle of
radius R lying on the concave side of the curve and tangent to it at P (Fig. 22-3).
To construct the circie of curvature: On the concave side of the curve, construct the normal

at P, and on it lay off PC = R. The point C is the center of the required circle.

P z

Fig. 223

THE CENTER OF CURVATURE for a point P(x, y) of a curve is the center C of the circle of
curvature at P. The coordinates (a, 8) of the center of curvature are given by

d dy\’ dy\’
e e
d’y/dx d y/dx
(dx\’ de [ (dx\"]
1+ 5 17\ ]
or by T Tahdy” By = "y

THE EVOLUTE of a curve is the locus of the centers of curvature of the given curve. (See Problems

6 to 13.)

Solved Problems

Refer to Fig. 22-1. On the curve y = f(x), where f(x) has a continuous derivative, let s denote the
arc length from a fixed point A to a variable point P(x, y). Denote by As the arc length from P to a
neighboring point Q(x + Ax, y + Ay) of the curve, and by PQ by the length of the chord joining P and

Q. Now 2—i = % Z—g— and, since (PQ)* = (Ax)? + (8y)°
8- () (50) - (2g) 2 - () 12
As arc PQ . (For a proof of the

As Q approaches P along the curve, Ax—0, Ay—0, and PO = m —

lattel , S€¢€ [ IObleln 22 Of Chaptel 4 ; .) Ihe"
d!) 1;-.()([‘!) 3;—.][ ((‘yl) } (dx)
( = hm = hm =
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6.

CURVATURE [CHAP. 22

Find ds/dx at P(x, y) on the parabola y = 3x’

& i (2) VT 6o = Vit aer
P AV A o

Find ds/dx and ds/dy at P(x, y) on the ellipse x* + 4y =8,

- dy o WX g By
Since 2x + 8y dx_o' A~y and - x . Then
dy\’ XX X +16yT 32 -3x° ds 132 — 357
l+(dx) —l+16y2- 16y° 32-4x and T 32— 4x*

A\’ 16v2 74 16y? . z
1+(_) oy oy ey 2ty and B 23y
dy x x 2-y° dy 2-y

Find ds/df at P(8) on the curve x =sec f, y =tan 6.

gz\/( ;\)+(

o)

’

0

§
It
Ry

\: K 5 s . 5 .
) =Vsec® ftan’ 0 +sec’ § = |sec 8| Vian® 6 + sec” 6§

a,
&If
2

The coordinates (x, y) in feet of a moving particle P are givenby x=cost— 1,y =2sint + 1,
where ¢ is the time in seconds. At what rate is P moving along the curve when (a) t = 57/6,
(b) t=5m/3, and (c) P is moving at its fastest and slowest?

é :‘/{ld*{\>+{ﬂ‘_; /'-pzl'_lL:j'C(\':l':\/lJr}cn 2;
dt Y\ dr/ \ /
(@) When (= 5m/6, ds/dt =V1+3(3)=V13/2 ft/sec.
(b) When t=dS1r/3, dside=\1+ 3(§)ng7/23ft/sec._
(¢) Let §= j: =V1+3cos"t. Then - = —M. Solving dS/dt =0 gives the critical values

dt S
t=0, =/2, . 3n/2.
When t =0 and 7, the rate ds/dt = 1 + 3(1) = 2 ft/sec is fastest. When t = /2 and 3#/2, the
rate ds/dt=V1 + 3(0) = 1 ft/sec is slowest. The curve is shown in Fig. 22-4,

t=-§r v
t=§r/ \
-1,1
t=r¢ b =10
t=§f 2
(0]
t=§r
Fig. 22-4

Find the curvature of the parabola y’> = 12x at the points (a) (3, 6); (b) (2,-3); (¢) (0,0).
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10.

dy 6 (dy) 36 d’y 6 dy 36
— == — —_ ] = + — —_— = = = - —
/ 3 50 1+ [ 1 = and i v d 7
_ dy)z_ Zy__l _—1/6 V2
(a) At (3,6): 1+( —12 and 25— 6 50 K= SE LTy
3o dy)’_ d‘y_f _4/3 _4vH
(b) At (3, 3).1+(—dx —5and——2—3,soK—53,22 =75 ;
dy . de _y (dx)_ dx 1 _ 1
(c) At (0,0), i 1 undefined. But 6 =0,1+ d_y =1, _dy" =& and K = 5

Find the curvature of the cycloid x =8 —sin 6, y =1 —cos @ at the highest point of an arch
(see Fig. 22-5).

To find the highest point on the interval 0<x <2w. dy/d# = sin 6, so that the critical value on the
interval is x = 7. Since d’y/d8” = cos 6 <0 when 6 = 7, the point § = = is a relative maximum point and
is the highest point of the curve on the interval.

To find the curvature,

dy . dy sin 6 dy d sing \ db 1
=1- —_— = -_ —— -— —_——
cos 8 dg = Sin® dx  1—cos#@ de>  do ( )

S

At =7, dy/de =0, d’y/dx’ =—}, and K=-1}.

Ve \

Fig. 22-5 Fig. 226

Find the curvature of the cissoid y*(2 — x) = x* at the point (1,1). (See Fig. 22-6).
Differentiating the given equation implicitly with respect to x, we obtain
=y  +(2-x)2yy' =34 (1)
and =2yy" + (2= X)2yp" + (2 - x)2(¥' ) ~ 2yy' = 6x (2)

From (1), forx=y=1, ~1+2y'=3 and y' =2. Similarly, from (2), forx =y =1 and y' =2, we find
y"=3. Then K =3/(1+4)*"*=3V5/25.

Find the point of greatest curvature on the curve y =Inx.

dy 1 d’y 1 _ - X dK 2x* -1
=y ™M ogTTE e KT ™ R Taia.

The critical value is thus x = 1/V2. The required point is (1/V2, -} In2).

Find the coordinates of the center of curvature C of the curve y = f(x) at a point P(x, y) at
which y’' # 0. (See Fig. 22-3.)

The center of curvature C(a, B) lies (1) on the normal line at P and (2) at a distance R from P
measured toward the concave side of the curve. These conditions give, respectively,
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1 . l+ 1\2313
B-y=-s@-x and (@-x7+(-y=r=TOI]

y (¥)
From the first, a — x = —y'(8 — y); substituting in the second yields

2{1 L w2 = M

VI o gy tOY
(y!l)..

¥ yn

To determine the correct sign, note that when the curve is concave upward y* > 0 and, since C then lies
above P, B - y > 0. Thus, the proper sign in this case is +. (You should show that the sign is also +
when y” < 0.) Thus,

[ 2 EPAY
e y)

l+ NAYA rl+ 182
ﬁ=y+*—%)-—)* and asx—X—[——-;;X-l—]

11.  Find the equation of the circle of curvature of 2xy + x + y =4 at the point (1, 1).

Differentiating yields 2y + 2xy’ + 1 +y' =0. At (1, 1), y'=—1and 1+ (y’) = 2.
Differentiating again yields 4y’ +2xy” + y"=0. At (1, 1), y"= 4. Then
_4/3 32 I (VI .23
K=svi R=7 «=l-733 =3 P=1*3372
The required equation is (x —~a)’ +(y— B8)Y =R’or(x - ) +(y- )’ =1%.
12.  Find the equation of the evolute of the parabola y* = 12x.
At P(x, y).
dy 6 V3 dy)z_ % 03 dy _ 3% V3
dx 'y Vx lﬁp(dx _1+y2—]+x dx® yooo 2t
V37x(1 +3/x) 2V3(x +3)
=X~ ——— =Xt ——=" =
Then a=x A x 3 Ix+6
B 1+36/y° y' +36y
and B=y* 37 7Y T3 T T3

The equations & =3x + 6, 8 = —y"/36 may be regarded as parametric equations of the evolute with
x and y, connected by the equation of the parabola, as parameters. However, it is relatively simple in
this problem to eliminate the parameters. Thus, x = (a - 6)/3, y = -y 368, and substituting in the
equation of the parabola, we have

(362 > = Ay — 6) ar R12% = A5 — /Y
(368) Mo ~6) or 813 4(a —6)

The parabola and its evolute are shown in Fig. 22-7.

—

Evolute mj
(Circle)

Fig. 22-7 Fig. 22-8

13. Find the equation of the evolute of the curve x =cos @ + @sinf, y =sin & — @ cos 6.
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At P(x, y):
2 2 3
g=9cos€ Q=9smf} £il—ta:h‘} d—{=SCC6=S€C8
de de dx dx @ cos b 0
tan 9 sec> § .
Then a=x—————=x—0sinf=cos o
(sec” 0)/0
2
e
and B=y+ sec 8 =y+fcosf =sind

(sec* 6)/6

and a =cos 0, 8 = sin § are parametric equations of the evolute (see Fig. 22-8).

Supplementary Problems

In Problems 14 to 16, find ds/dx and ds/dy.

4. X +y’=25 Ans. ds/dx=5/N25—x° dsidy =5/\/25 - y°
15. y'=x Ans. dsidx = VEF9x, dsidy = V4 + 9y 3y *
16. 2yt =g Ans. ds/dx = (a/x)'", ds/dy = (aly)""*

In Problems 17 to 19, find ds/dx.

17.  6xy=x"+3 Ans. ds/dx = (x* +1)/2¢°

18. 27ay” = 4(x — a)’ Ans. ds/dx=\/(x + 2a)/3a

19. y=acoshx/a Ans. ds/dx = cosh x/a

20.  For the curve x = f(u), y = g(u), derive (ds/du)’ = (dx/du)’ + (dy/du)’.

In Problems 21 to 24 find ds/dr.

2. x=tiy=rt Ans. tV4+9¢ 22, x=cost, y=sint Ans. 1
x=2cost, y=3sint Ans. V4 +5cos’t 2.  x=cos’t, y=sin’t Ans. 3sin2¢

25. Use dy/dx = tan 7 to obtain dx/ds = cos 7, dy/ds = sin 1.

dy . dr  dr dx "
26. Use rzarctan(a) to obtain K=£=EE=W-

27. Find the curvature of each curve at the given points.
(@) y=x3atx=0,x=1,x=-2 (b) x*=4day at x=0, x=2a
2
(¢) y=sinxat x=0,x=1im (dyy=e ™ atx=0

Ans. (a) 0, V2/2, —4V17/289; (b) 1/2a, V2/8a; (¢) 0, —1; (d) —2

28. Show that (@) the curvature of a straight line is zero and (b) the curvature of a circle is numerically the
reciprocal of its radius.
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29.

31.

32.

3.

CURVATURE {CHAP. 22

Find the points of maximum curvature of (a) y = ¢*, (b) y = x/3.

Ans. (a)x=iIln}, () x=1~3

Find the radius of curvature of (@) x* + xy> —6y* =0 at (3,3); (b) x =asech ' y/a—Va’ -y at(x, y);
()x=2a a.u,y—ataﬁzz‘},\d):;':am‘ =asin' 9.

y
3

Ans.  (a) 5VS; (b) aVa® — y¥I|yl; (c) 2a|sec’ 8]; (d) 2a(sin* @ + cos* 8)°

Find the center of curvature of (a) Problem 30(a); (b) y = sin x at a maximum point.

Ans. (a) C(—7.8); (b) C(37,0)

Find the equation of the circle of curvature of the parabola y? = 12x at the points (0,0) and (3, 6).
Ans. (x—6) +y*=36; (x—15)" +(y+6)° =288

Find the equation of the evolute of (@) b°x” + a’y® = a’b?; (b) x** + y*'* = a®';

y = 2sint+sin 2t

Ans. (a) (@)’ + (b)Y = (a* = b*)""; (b) (a + B)*" + (a — BY" =2a°"
(¢) @ = 4(2cost—cos2t), B=5(2sint—sin2t)

; (€) x =2cos t + cos 2t,



Chapter 23

Plane Vectors

SCALARS AND VECTORS. Quantities such as time, temperature, and speed, which have mag-
nitude only, are called scalar quantities or scalars. Scalars, being merely numbers, obey all the
laws of ordinary algebra; for example, 5 sec + 3 sec = 8 sec.

Quantities such as force, velocity, acceleration, and momentum, which have both mag-
nitude and direction, are called vector quantities or vectors. Vectors are represented geometri-
cally by directed line segments (arrows). The direction of the arrow (the angle which it makes
with some fixed line of the plane) is the direction of the vector, and the length of the arrow (in
terms of a chosen unit of measure) represents the magnitude of the vector. Scalars will be
denoted here by letters a, b, ¢,. .. in ordinary type; vectors will be denoted in bold type by

letters a, b, ¢, .. . or OP (see Fig. 23-1(a)). The magnitude of a vector a or OP will be denoted

la| or |OP].
b P P/

a/ b
VAR A 4
o _
a—
(a) (%) () (d)

Fig. 23-1

Two vectors a and b are called equal (a = b) if they have the same magnitude and the same
direction. A vector whose magnitude is that of a but whose direction is opposite that of a is
defined as the negative of a and is denoted —a.

If a is a vector and k is a scalar, then ka is a vector whose direction is that of a and whose
magnitude is k times that of a if k is positive, but whose direction is opposite that of a and
whose magnitude is |k| times that of a if & is negative.

Unless indicated otherwise, a given vector has no fixed position in the plane and so may be
moved under parallel displacement at will. In particular, if a and b are two vectors (Fig.
23-1(b)), they may be placed so as to have a common initial or beginning point P (Fig. 23-1(c))
or so that the initial point of b coincides with the terminai or end point of a (Fig. 23-1(d)).

We also assume a zero vector 0 with magnitude 0 and no direction.

SUM AND DIFFERENCE OF TWO VECTORS. If a and b are the vectors of Fig. 23-1(b), their
sum or resultant a + b is found in either of two ways:

1. By placing the vectors as in Fig. 23-1(c) and completing the parallelogram PAQB of
Fig. 23-2(a). The vector PQ is the required sum.
2. By placing the vectors as in Fig. 23-1(d) and completing the triangle PAB of Fig.
23-2(b). Here, the vector PB is the required sum.
It follows from Fig. 23-2(b) that three vectors may be displaced to form a triangle provided
one of them is either the sum or the negative of the sum of the other two.
If a and b are the vectors of Fig. 23-1(b), their difference a — b is found in either of two
ways:
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(b) (c) (d)
Fig. 23-2

1. From the relation a—b=a+ (—b) as in Fig. 23-2(c).

2. By placing the vectors as in Fig. 23-1(c) and completing the triangle. In Fig. 23-2(d),
the vector BA=a—b.

If a, b, and c are vectors and k is a scalar, then
Property 23.1 (commutative law): a+b=b+a
Property 23.2 (associative law): a+(b+c)=(a+h)+c
Property 23.3 (distributive law): k(a+b)=ka + kb
(See Problems 1 to 4.)

COMPONENTS OF A VECTOR. In Fig. 23-3(a), let a=PQ be a given vector, and let PM and PN
be any two other lines (directions) through P. Construct the parallelogram PAQB. Now

a=PA+PB

and a is said to be resolved in the directions PM and PN. We shall call PA and PB the vector
components of a in the pair of directions PM and PN.

v
P
B s\--%F
E:
\ N asj 2
A~ {
¢ 4 I Q
1 !
\ G x
M 0i M N
(a) (b)

Fig. 23-3

Consider next the vector a in a rectangular coordinate system (Fig. 23-3(b)) having equal
units of measure on the two axes. Denote by i the vector from (0,0) to (1,0), and by j the
vector from (0, 0) to (0, 1). The direction of i is that of the positive x axis, the direction of j is
that of the positive y axis, and both are unit vectors, that is, vectors of magnitude 1.

From the initial point P and the terminal point Q of a, drop perpendiculars to the x axis
meeting it in M and N, respectively, and to the y axis meeting it in § and 7, respectively. Now
MN = g,i, with a, positive, and ST = qg,j, with a, negative. Then MN=RQ =gq,i, ST=PR =
a,j, and

a=a,i+ta,j (23.1)
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We shall call a,i and a,j the vector components of a (the pair of directions need not be
mentioned). and the scalars @, and a, the scalar components or x and y components or simply
components of a. Note that the zero vector 0 = 0i + Uj.

Let the dircction of a be given by the angle 6, for 0 < 6 < 27, measured counterclockwise

fraam thoe macitive v avie tiy tha veoior. Than
1ITOM i€ PoOSIiiive X aAals G wuic vCQOr., 2qich
2 2
|a| = Va, +a, (23.2)
and tan 6 = a,/a, (23.3)

with the quadrant of 4 being determined by
a, = |a] cos 8 a,=la|sin@
Ifa=ai+a,jand b=b i+ b,j, then
Property 23.4: a="b if and only if a, = b, and 4, = b,
Property 23.5: ka= ka i+ ka,j

Runmavi.. DD L. o L h — (. 1 kMo, T S ¥
l'lupvll' &d.V, aT v (¥ T U|117' \ulv- UE’J
Property 23.7: ( b))+ (a,— b,)j

(See Problem 5.)

SCALAR OR DOT PRODUCT. The scalar or dot product of two vectors a and b is defined by

b.)
\./

a-b=la||b| cos 6 (2
wherc 6 is the smallcr angle between the two vectors when they are drawn with a common
imtial point (see Fig. 23-4). We also let a*0=0-a=10

From (23.4) we have
Property 23.8 {(commutative law): a-b=b-a
Property 23.9: a-a=|aj|a] =|a]’ and Ja]=va~a
Property 23.10: a'b=0if a=0 or b=10 or a is perpendicular t0 b
Property 23.11: i-i=j-j=1andi-j=0
Property 23.12: a-b=(a,i+ a,j) (b|i+ b,j)=a,b, +a.b,
Property 23.13 (distributive faw): a-(b+cj=a-b+a-c

Property 23.14: (a+b)‘(c+d)=a-c+a-d+b'c+b-d

B

Fig. 23-4 Fig. 23-5

SCALAR AND VECTOR PROIJECTIONS. In (23.1), the scalar a, may be called the scalar
projection of a on any vector whose direction is that of the positive x axis, while the vector a,i
may be called the vector projection of a on any vector whose direction is that of the positive x
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b by b
axis. In Proble he scalar projection a- I—b—l and the vector projection |a- H ol of a
vector a 0‘1ba"|0|'.h“r vector b are found. (Note that when b has the direction of the positive x
axis, then — =i.)
[b|

There follows

Property 23.15: a‘b is the product of the length of a and the scalar projection of b on a, or the product
of the length of b and the scalar projection of a on b. (See Fig. 23-5.)

(See Problems 8 and 9.)

DIFFERENTIATION OF VECTORS. Let the curve of Fig. 23-6 be given by the parametric
equations x = f(u) and y = g(u). The vector
r=xityj=iflu) +jgu)

joining the origin to the point P(x, y) of the curve is called the position vector or radius vector
of P. (Hereinafter, the letter r will be used exclusively to denote position vectors; thus,
a=3i+4jis a “free” vector, while r = 3i + 4j is the vector joining the origin to P(3, 4).)

\
L
"t

2
=

x
0
Fig. 23-6

The derivative of v with respect to « is given by

dr dx y

— =i+ - 23.5

du  du du ( )
T ot o Aot tbho nen Jaocmath e ncicnn Fomione ‘-‘.- nmimd I AF tha ctivua s that o laasaacag
LCL > UCHULC LIIC dIb ICTIgLLL mcaauncu (IO a xe pU HLU I UL LG LULYE DU LHal lll\.lCdaCb

with «. If 7 is the angle that dr/du makes with the positive x axis, then
dy/du d
tan 7 = Gyl _ % - slope of curve at P

dx/du  dx
Moreover, dr/du is a vector of magnitude
dr

(2 -
dul du du/ ~ du

whose direction is that of the tangent to the curve at P. It is customary to show this vector with
P as initial point.
If now the scalar variable u is the length of arc s, (23.5) becomes

dr _ dx dy

LT !

(23.6)
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1.

The direction of t is = as before, while its magnitude is \/(dx/ds)2+(dy/ds)2= 1. Thus,
t = dr/ds is the unit tangent to the curve at P.

vector at P having the direction of dt/ds. As P moves along the curve shown in Fig. 23-7, the
magnitude of t remains constant; hence, dt/ds measures the rate of change of the direction of t.
Thus, the magnitude of dt/ds at P is the numerical value of the curvature at P, that is,
|dt/ds| =|K|, and

dt
i [Kn (23.7)
(See Problems 10 to 13.)
¥
\ /
| =4
4 ——7p !
r
x
(0]
Fig. 23-7
Solved Problems
Prove a+b=0>b +a.
From Fig. 23-8, a+b=PQ=b +a.
X AN
’—)/ﬁ <
< '~ ‘-2 B
° \X xb A
b vxx” b xy @ ¢ 4
* &/ % b
a - A
P P
Fig. 23-8 Fig. 23-9

Prove (a+b)+c=a+(b+¢)
From Fig. 239, PC=PB+BC=(a+b)+c. Also, PC=PA+AC=a+(b+0).

Let a, b, and ¢ be three vectors issuing from P such that their endpoints A, B, C lie on a line
as shown in Fig. 23-10. If C divides BA in the ratio x:y where x + y =1, show that
c=xa+ yb.
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\

P
Fig. 23-10 Fig. 23-11

c=PB+BC=b+x(a—b)=xa+(l-x)b=xa+yb

Pt o

Let the diagonals intersect at Q, as in Fig. 23-11. Since PB = PQ + QB = PQ - BQ, there are
positive numbers x and y such that b=x(a+ b}~ yla—b)=(x —y)a+ (x +)b. Then x+ y=1 and
x—y=0. Solving for 1 and y yields x =y = 1, and Q is the midpoint of each diagonal.

For the vectors a=3i+ 4j and b =2i —j, find the magnitude and direction of (a) a and b,
(by a+b, (c)b—a.

(@) For a=3i+4j: |Jaj]=Va  +a2=V3 +4° =5 tan6=a,/a, = $ and cos 6 = a,/|aj = }: then B is a

first quadrant angle and is 53°8".
For b=2i—j: |bl=V3a+ 1=V5; tan6 = -} and cos § =2/V'5; 6 = 360° — 26°34' = 333°26'.

(b) a+b=(3i+4j)+ (2i—j)=5i+3}. Then |a+b|=V5" +3’=+V34 Since tan 6 =1} and cos =
5/v34, 9 =30°58".

() b—a=(2i—j)—(3i+4j)= —i—5j. Then |b—a| = V26. Since tan§ =5 and cos 6 = —1/V26, =
258°41".

Prove: The median to the base of an isosceles triangle is perpendicular to the base. (In Fig.

23-12, al = |b|)
From Problem 3, since m bisects the base,
m= i{a+h)
Then m-(h—at= ‘{aihr(h—a)
""" \ 7 <N i’ B N
2

! =’
ab—a-a+b-b-b-ay=3;(b-b—a-a)=0
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7.  Resolve a vector a into components a, and a,, respectively parallel and perpendicular to b.
In Fig. 23-13, we have a=a, +a,, a, =cb, and a,~b=0. These relations yield
ab

a,=a—-a,=a—-cb and a,cb=(a—cb):-b=a-b—¢|b/’=0 or €= 57

a‘b
|b|2 band a,=a—cb=a- |b

b . b b
The scalar a* I—bl is the scalar projection of a on b; the vector (a- ]_bl) |b| is the vector projection of

Thus, a, = cb = '2 b

aonb.

8. Resolve a=4i+ 3j into components a, and a,, parallel and perpendicular to b =3i+ j.

a‘b 12+3 3 . . . .
From Problem 7, c= =5 = —~—=35. Thena, =cb=3i+ 3jand a,=a—a, = —}i+3j
%] s ad
9, Find the work done in moving an object along a vector a =3i + 4j if the force applied is
b=2i+j

Work done = (magnitude of b in the direction of a)(distance moved)
=(|blcos 8)|a] =b-a=(2i+j)-(3i+4j)=10

. . . , d da
10.  If a=ifj(u) +jfi(u) and b=ig,(u) + jg,(u), show that an (a*b)= au ‘b+a- u
By Property 23.12, a-b = (if, +if,)" (ig, +i8,) = f,8, + f,8,- Then
d / df, (1) \
(9 b)=flg, +/.8 +/8 +1& \fl Tdu

=(f18, +1:8)+(fi8:.+1.85)

=(if, +jf)(ig, +jg)+(if, +if)- (lg1+.|gz)— b+a-z

11.  If a=if,(u) +jf,(u) is of constant magnitude, show that a and da/du are perpendicular.

. . . d
Since [a| is constant, a-a = constant # 0, and we obtain, by Problem 10, du {a-a) =
8 e %20 % Thenar 92 =0 0 that a and 22 . dicul: ’
du'® " dn du ena: - so that a and - are perpendicular.
Thus (as a geometric example), the tangent to a circle at one of its points P is perpendicular to the
radine dravrn p

12. Givenr=icos’ 8+ jsin’ 6, find t.

. .. ds _|dr dr
Jg = "isin20+jsin26  and 7~ |78 i d6 =V2sin26
Hence t=£=£ﬁ=__l_'+L'
s doeds  V2'tvad
13. Givenx=acos’ 6, y=asin’ 6, find t and n when 6 = !
We have r = aicos’ 8 + ajsin’ 8. Then
d . ds
a%=—3aic05265m6+3ajsin20c050 and rri %'=3asin0c056
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S B
Hence A D i cos jsin
dat . de _ 1 1 .
and E—(lsmewﬂcose)ds——3acosei+3asin01
A 1 —-___]_‘+-1_ i‘. _\/_: +\/_ 'Kl dt —i andnz_l_ﬂ=_]_i+_]__‘
to=qm t=-351 \/ﬁj’ds 3a | 3a’ |K| ds V2 vz

14. Show that the vector a = gi + bj is perpendicular to the line ax + by + ¢ = 0.

Let P,(x,.y,) and P,(x,, ¥,) be two distinct points on the line. Then ax, + by, + ¢ =0 and
ax, + by, + ¢ = 0. Subtracting the first from the second yields

a(x,—x)+b(y,~y,)=0 1
Now a(x; —x)+ b(y,—y)=(ai+bj) [(x; — x,)i+ (y;— y)il
=a*PP,
By (1), the left side is zero. Thus, a is perpendicular (normal) to the line.

15.  Use vector methods to find:
(a) The equation of the line through P,(2, 3) and perpendicular to the line x +2y +5=0
(b) The equation of the line through P,(2, 3) and P,(5, 1)
Take P(x, y) to be any other point on the required line.

{4) By Probiem 14, the vector a =i+ 2j is normal to x + 2y +5=0. Then P,P=(x ~2)i + (y — 3)j is
parallel to a if

Equatmg components, we have x —2=k and y — 3 =2k. Eliminating X, we obtain the required
\.\.lua.uuu as y - 3= 2(}( - 2) of 2x — y 1=0,
(b) We have PP=(x-2)i+(y—3)j and PP,=3i—

Now a = 4i + 3j is perpendicular to P,P, and, hence, to P,P. Thus, we may write

O=a-PP=(4i+3j)-[(x—2i+(y-3)j] or 4x+3y—-17=0

14 Toa vantnr mathade ¢ And tha Aictancso ~Af tha natnt P (2 2) fream tha lina v A 4A4u — 12 =10
AWFe A0 VALLUZL JHIACLIIVUARD LU LILIAS LEIW WAIDLALILL UL LI PUIIII. i l\l—, J} LINFIRL RLIIN MMM A ' ‘Y] 1 &L v
At any convenient pomt on the line, say A(4,0), construct the vector a = 3i + 4j perpendicular to
tha lina Tha canica ie A =AD | ;e Ain Fig 7214 Neawa-AD — . AD | nne 8 = 1ol A hanca
LILIC LILlL. L liu u\iuu\.u ulaldll\. D Iﬂl Il LUdD DL Is. LJTAi. INUW A ﬂrl |u| |l"ll ll wuUa v |ﬂ| “, Hulive

d—a AP1=(3i+4j)-(—2i+3j)=—6+12 9

|a] 5 5 5

- x
Y A4, 0)

~

Fig. 23-14



CHAP. 23] PLANE VECTORS 163

17.

18.

19.

21.

22.

Supplementary Problems

Given the vectors a, b, ¢ in Fig. 23-15, construct (a) 2a; (b) —3b; (c) a+2b; (d) a+b—c; (€)
a—2b+3c

Fig. 23-15 Fig. 23-16

Prove: The line joining the midpoints of two sides of a triangle is parallel to and one-half the length of
the third side. (See Fig. 23-16.)

If a, b, c, d are consecutive sides of a quadrilateral (see Fig. 23-17), show thata+ b+ c¢+d =0. (Hint:
Let P and Q be two nonconsecutive vertices.) Express PQ in two ways.

C R B

\ c

P ~
— S /8 v o< /:)k
R 8 © Vet Q X
P fa a4 c A

L -a P
™o N.17 Fio 23.18 Fie. 23-19
rig. &J-1+ ig. «0°10 Tig. <3727

Prove: If the midpoints of the consecutive sides of any quadrilateral are joined, the resulting
quadrilateral is a parallelogram. (See Fig. 23-18.)

Using Fig. 23-19, in which [a] = |b| is the radius of a circle, prove that the angle inscribed in a semicircle
is a right angle.

Find the length of each of the following vectors and the angle it makes with the positive x axis: (a) i +j;
(b) —i+j; (c) i+ V3j; (d) i~ V3
Ans. (a) V2, 8=}m; (b) V2,6=3m/4;(c) 2, 0=m/3;(d) 2, 6=57/3

Prove: If u is obtained by rotating the unit vector i counterclockwise about the origin through the angle
6, then u=icos @ + jsin 6.

Use the law of cosines for triangles to obtain a-b = |a||b] cos 8 = {(|al* + |b]* — |c|?).

Write each of the following vectors in the form ai + bj:

(a) The vector joining the origin to P(2, —3) (b) The vector joining P (2,3) to P,(4,2)
(c) The vector joining P,(4,2) to P,(2,3) (d) The unit vector in the direction of 3i + 4j
(e) The vector having magnitude 6 and direction 120°

Ans.  (a) 2i—3j; (b) 2i—j; (¢) —2i+]§; (d) 3i+ j; (¢) —3i+3V3j

Using vector methods, derive the formula for the distance between P,(x,, ¥,) and P,(x,, y,).
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27.

29.

W
!0
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Given O(0, 0), A(3,1), and B(1, 5) as vertices of the parallelogram OAPB, find the coordinates of P.
Ans.  (4,6)

(4) Find & so that a =3i—2j and b =i+ kj are perpendicular.
(b) Write a vector perpendicular to a =2i + §j.

Prove Properties 23.8 to 23.15.

Find the vector projection and scalar projection of b on a, given: (@) a=i—2j and b= -3i+j;
(b) a=2i+ 3j and b = 10i + 2j. Ans. (@) —i+2f, —VS; (b) 4i+6j, 2V13

Prove: Three vectors a, b, ¢ will, after parallel displacement, form a triangle provided (a) one of them is
the sum of the other two or () a+b+c=0.

Show that a=3i —6i h=4i+2i and e =~7i+ 4i are the sides of the right triangle. Verifv that the
......... a=31-0), b=41+4} and ¢ /t+4j are the sides of the nght tnangle. Vernfy that the

midpoint of the hypotenuse is equidistant from the vertices.

Find the unit tangent vector t = dr/ds, given: (a) r = 4dicos8 + 4jsiné, (byr = i + 7%,
(c) r=6i+ 6%. ,
. fi—-e’j i+26j
Ans. —isinf +jcos8; (b = ; (c
re ) misinbrieos 6 (0) T O e
(a) Find n for the curve of Problem 33(q).
(b) Find n for the curve of Problem 33(c).
(c) Find t and n given x =cos 8 + @sin 8, y =sin § — 6 cos 8.

-26 .
Ans. (a) —icos 8 —jsin8; (b) \/1+402i+\/11402j; (c) t=icos@+jsinh, n=—isin @+ jcos b




Chapter 24

Curvilinear Motion

VELOCITY IN CURVILINEAR MOTION. Consider a point P(x, y) moving along a curve with the
equations x = f(t), y = g(t), where ¢ is time. By differentiating the position vector

r=ix+jy (24.1)
with respect to f, we obtain the velocity vector
dr dx dy
_ar_.dx LAy .o 2
7 i a +j i iv, +ju, (24.2)

where v, = dx/dt and v, = d\)/dt
The magnitude of v is called the speed and is given by
ds
T dt
The direction of v at P is along the tangent to the path at P, as shown in Fig. 24-1. If 7 denotes

the direction of v (the angle between v and the positive x axis), then tan 7 = v /v, with the
quadrant being determined by v, = |v|cos 7 and v, = |v|sin 7.

lv| = vv —\,/v +v

¥
A
@
ayil Y
a.i P
r
x x
0
Fig. 24-1 Fig. 24-2

ACCELERATION IN CURVILINEAR MOTION. Differentiating (24.2) with respect to f, we
obtain the acceleration vector

dv _d'r _dx _dYy .
azE:F=l?+J?=IRx+Ja" (243)

where a_ = d’x/dt* and a, = d’y/dr’. The magnitude of a is given by

N P % R
laj=vaa=Va, +a;
The direction ¢ of a is given by tan ¢ =a /a ., with the quadrant being determined by
= |a| cos ¢ and a, = |a| sin ¢. (See Fig. 24-2.)
in Probiems I to 3, two methods of evaluating v and a are offered. One uses the position vector

(24.1), the velocity vector (24.2), and the acceleration vector (24.3). This solution requires a
parametric representation of the path. The other and more popular method makes use only of the x
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and y components of these vectors; a parametric representation of the path is not necessary. The two
techniques are, of course, basically the same.

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION. By (23.6),

dr dr ds ds
VG h 4 d (24.4)

4

Th vy dvds 4 dvdsy’
en T w T Tdrd taf T ds \di
_d’s (ds)2
-tdl2+|x|n yr (24.5)
by (23.7).

Equation (24.5) resolves the acceleration vector at P along the tangent and normal there.
Denoting the components by a, and a,, respectively, we have, for their magnitudes

d’s _ (ds/dr)’

dr R

where R is the radius of curvature of the path at P. (See Fig. 24-3))
Since |a]’ = al + a’ = a’ + a, we have

Iv|®
la,|= and |a,| =R

=Jal’ - o}

;o

(See Problems 4 to 8.)

2

n

|
nl

as a second means for determining |a

Fig. 24-3

Solved Problems

1. Discuss the motion given by the equations x = cos 27¢, y = 3 sin 27¢. Find the magnitude and
direction of the velocity and acceleration vectors when (@) ¢ = { and (b) (= 3.

The motion is along the ellipse 9x° + y* =9. Beginning (at 1 =0) at (1,0), the moving point
traverses the curve counterclockwise.
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First solution:
r=ix+jy=icos2ms+ 3jsin2nt

v= % =iv, +ju, = —2misin 27 + 6mj cos 2t

v s .
=ia, +ja, = —4n’icos2mt — 127 jsin 2t

a= —
di
(a) Atr=g: v=—-V3ni+3nj and a=-2m’i-6V3irl
Iv| = vv=v = V(- V37m)? + 3m)* =2V3n
tan7=ﬂ=—\/§, COST=&=—1; 50 r=120°
v v 2

x

la| =vaa=V(-272) + (-6V3r' ) =4VTn’

. 1 . Aok
s = - 50 & = 259°6°

= 7 ;

&
b~

. : i EYVLY
lan@g=— =3vJy,

Cos ¢p =

LA
()

= D2 L KV
2 £ 7

W IV O

+

|v| =2V3=m, tan—r=—\/§cosr=%; 0 7=30
1

la| =4vVin®, tan ¢ =3V3cos ¢ = A ¢ = 79°6'
Second solution:
dx d’x
x =cos 2wt v,=—=-27wsin2mt a =-—5 =-4n’cos2nt
dt dt
. dy d’y )
y =3sin2mt v, = = 6 cos2mt a,=5 =" 1277 sin 2t
(a) At 1=1¢: v,==V3x  v,=3m  |v=Vv]+v]=2V3r
v,
tant= —* =-V3, cosr=&=—l; o 7=120°
v, v 2
a,=-2n" a,=-6V3x® |a|=Val+al=4VTr’
a" — - [ 1 . — og 1
tanqb—g—x—3\/§, cosd>~!a—!— A 0 =259
(b) Att=1%: v,=V3r v =-3r |v=2V3x
S
tant=-V3, cost=1; o T=?ﬂ
a ,=2xn’ a, =6V3n’ la| =4VTx?
1 Oyt
tan ¢ = 3V3, cosqS—z—ﬁ, S0 @ =796
2. A point travels counterclockwise about the circle x* + y* = 625 at the rate |v| = 15. Find , ja|,

and ¢ at (a) the point (20, 15) and (b) the point (5, —10V6). Refer to Fig. 24-4.

First solution: We have
|v|2=vf+vi=225 (1)

and, by differentiation with respect to 1,

v.a, +v.a,=0 (2)
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vy \
(20, 1b)
i |

L
4]
vli v
(6, —10v/%)
Fig. 24-4
From x° + y° = 625, we obtain by repeated differentiation
xv, +yv =0 (3)
and xa, +vi+ya +vy=0
or xa, +ya = —225 (4)
Solving () and (3) simultaneously, we have
b, =*3y (5)
Solving (2) and (4) simultaneously, we have
225v, p
4= yu, —av, ( )

(a) From Fig. 244, v <0 at (20,15). From (5), v, =-9; from (3), v, =12. Then tan7= -3,
cos 7= —;,and 7 =126°52". From (6), a, = — % from (4), a, = — ¥; hence |a| =9. Then tan ¢ =
i.cosp=—1, and ¢ = 216°52".

(b) From the figure. v >0 at (5, - 10/\/3). From (5).v, = 6V'6; from (3), v, =3. Thentant = V612,
sinr =4, and 7=11°32". From (6), a, = - ¥; from (4), a, = 18V6/5; hence |a| =9. Then tan ¢ =
-2V6. cos¢p = — 1, and ¢ = 101°32".

Second solution: Using the parametric equations x = 25cos #, y = 25sin 8, we have at P(x, y)

r=25icos § + 25jsin ¢

v= 25 = (~25isin 6 + 25jcos ) & = —15isin 8 + 15§ cos 8
di dt

dv . . . 0 Ry
a= o = —15icos & — 15jsin 8) a Qicos 8 — 9jsin @

since |v| = 15 is equivalent to a constant angular speed of df/dr= 3.

(@) At the point (20, 15), sin 8 = { and cos 8 = §. Thus,
v=—-9i+12j, tant=—1%. cosT=—1; 50 T = 12652

a=-%i-¥j, la|=9. tan ¢ = 3 , cosp=—1: 50 & = 216°52

(b) At the point (5, —10V6). sin§ = — V6 and cos 8 = .. Thus,
v=6V6i+3j. tant=V6/12, cosT=3iV6;, so =113
a=-1i+ &V, la| =9, tan ¢ = —2V6 cosgp=-1: 50 é =101°32
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3.

A particle moves on the first-quadrant arc of x> = 8y so that v, =2. Find |v|, 7, |a|, and ¢ at
the point (4, 2).
First solution: Differentiating x* = 8y twice with respect to ¢ and using v, =2, we have

2xv,=8v, =16 or xw,=8 and xa,+v,=0

At (4,2); uv,=-=2V, |v=2V2, tanr=1, cost=3V2; so r=im

a =-1 a, =0, la|=1, tanp =0, cosp=—1; 50 b=

X M ¥

Second solution: Using the parametric equations x =44, y = 28% we have

=4ip +2j9°  and PPl
r=4i9 + 2j v=aio 4 dje
. de de 1
Since v, =49 i 2 and 9290 e have
2 . 1.
v=5i+2,| and a=—;1
At the point (4,2). 8 =1. Then
v=2i+2j., |v|=2V2, tanr=1, cost=3%V2; so r=inw
a=—i, la|=1, tang =0, cosgp=—1; O b=7

Find the magnitudes of the tangential and normal components of acceleration for the motion
x=e' cost, y=e'sint at any time ¢.

We have r=ix+jy=ie cost+je sint
v=1ie'(cost —sin 1) + je'(sinr + cos 1)
a=—2ic'sint+ 2je cos!t
' dS 1 dzs 3 . 2 2 ]
Then |a] = 2¢". Also, - =|v| = V2e¢' and |a,| = | 55| = VZe'" Finally, |a | = V|a|’ — a] = VZe"

A
a

Su

I ar

A particle moves from left to right along the parabola y = x* with constant speed 5. Find the
magnitude of the tangential and normal components of the acceleration at (1, 1).

dZ
Since the speed is constant, [a,] = —f = .
L o : [L+ (v 5V3
At (1. 1), y'=2x=2and y" = 2. The radius of curvature at (1, 1) is then R = —ly,,l—— =5

R 7k _
Hence |a,| = "Yff =25,

The centrifugal force F exerted by a moving particle of weight W (both in pounds) at a point
in its path is F = — |a,|. Find the centrifugal force exerted by a particle, weighing 5 Ib, at the
ends of the major and minor axes as it traverses the elliptical path x =20 cos ¢, y = 15 sin ¢, the
measurements being in feet and seconds. Use g = 32 ft/sec’

We have r=20icost+ 15jsin¢t
v=—20isin¢+ 15jcos ¢
a=—20icost— 15jsin¢

as _ .
dr

— ds 175 sin ¢ cos ¢

d®  Va00sin® 1 + 225 cos® ¢

At the ends of the major axis (1 =0 or t = 7):

dZS 2 2 — 5 = 1
7|70 la, =V20°-0"=20  F=220=371b

laj=20 |a,|=
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At the ends of the minor axis (t= m/2 or t =37/2):

lal = 1§ lal=0 la =18 F:——5—|5‘—"Z§!b
= = 12 (T 18n1 — 2 32" 12
7. Assuming the equations of motion of a projectile to be x = vyt cos ¢, y = vyt sin ¢y — 5 gt’,

where v, is the initial velocity, ¢ is the angle of projection, g =32 ft/sec’, and x and y are
measured in feet and ¢ in seconds, find: (a) the equation of motion in rectangular coordinates;
(b) the range; (c) the angle of projection for maximum range; and (d) the speed and direction
of the projectile after 5sec of flight if v, = 500 ft/sec and ¢ = 45°. (See Fig. 24-5.)

Fig. 24-5

. X . .
(a) We solve the first of the equations for ¢ = —) and substitute in the second:
0
/ v 2 2
y=u———sinw—1g( )=xland;——&x—
 p, cos i 5\, cos i 2v] cos’ ¢

(b) Solving y = v,tsin ¢ — lgr’=0fort, we get =0 and t = (2v, sin y)/g. For the latter, we have
2, sing _ vi sin 24
g 8

d 20} cos 2
I; = —Qg_Sl’ =0; hence cos 2y =0 and ¢ = S .
(d) For v, =500 and § = Y, x =250V2¢ and y = 250V2¢ — 16¢°. Then v, =250V2 and v, =250V2
32
When =5, v, =250V2 and v, = 250V2 - 160. Then

(¢) For x a maximum,

tan 7 = ;— =0.5475 . So T=128°42 and [v| =V, + v, =403 ft/sec
8. A point P moves on a circle x =rcos 8, y = rsin 8 with constant speed v. Show that, if the

radius vector to P moves with angular velocity w and angular acceleration a, (4) v = rw and
4 2
bya=rVo +a’

d d
(a) v =—rsinB—B=—rwsinB and vv=rcosB—§=rwcos,8
* dr dr
Then v=\ﬁzf+vﬁ=\/(r2 sin® B+ r? cos® Blw’ = rw
dv 4 d
(b} a,_=-—.—‘=—rmcosﬁ—.B—rsin_Bn2=—rwzcos,B—rasin_B
at dat at
dv, d d
a,=— =—rwsin[3—£+rc0537(?=—rwzsin{3+racosﬁ
u (414 (214

Then a= \V/ai+az.~:\/72(w4+az)=r\/w‘+a2
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10.

11.

12.

13.

14.

15.

16.

17.

Supplementary Problems

Find the magnitude and direction of velocity and acceleration at time ¢, given

(@) x=¢,y=e"—4¢e' +3;at (=0 Ans. (a) [v|=V35, 7=296°34"; |a|=1, ¢ =0

(b) x=2—1,y=20 —r;at =1 Ans. (b) |V|—V/£—(; 7—101°19',|a| 12, ¢ =

(¢) x=cos3t, y=sint;att=i= Ans. (¢) [v|= =161°34; |a| = V4T, ¢ = 353"40’
(dYx=¢€"cost,y=¢e'sint; at t=0 Ans. (d)|v|=\/§,r=%7r; la| =2, 6 =3m

A particle moves on the first-quadrant arc of the parabola y* = 12x with v, = 15. Find v,, |v|, and 7; and
a,, a,, |a|, and ¢ at (3,6).
Ans. v, =15, |v|= 15V2, r=1iu =0,a,=-75/2, |a|=75/2, ¢ =37/2

A particle moves along the curve y = x”/3 with v, = 2 at all times. Find the magnitude and direction of
the velocity and acceleration when x=3.  Ans. |v|=2V82 7 =283%40"; |a| =24, ¢ =}
A

particle moves around a circle of radius 6 ft at the constant speed of 4 ft/sec. Determine the
nn-. ity
agli

ide of its acce!e tion at any position Ans. lal=0, la|=la,|=8/3 ft/sec’

any postuon,

Find the magnitude and direction of the velocity and acceleration, and the magnitudes of the tangential
and normal components of acceleration at time ¢, for the motion

(@) x=31,y=9t—3* at1=2

(by x=cost+1tsint, y=sint—tcost; at t=1.

a) v|=3V2, 7r=7w/4; |a|=6, ¢ =37/2; |a|=a,| =
by W =1, 7=1; |a| = V2, ¢ = 102°18"; la]=la !=.

n

A particle moves along the curve y = x” ~ § In x so thatx = 1s° for1>0. Findv,, v, vl and 7, a, . a,.

|aj, and ¢; |a,| and |a,| when 1 =1.
Ans. v, =1,v,=0,|v|=1,7=0;a,=1,a,=2, la|=V5, ¢ =632 la|=1,[a,]=2

A particle movés along the path y =2x — x’ with v, =4 at all times. Find the magnitudes of the
tangential and normal components of acceleration at the position (a) (1, 1) and (&) (2,0).

Ans. (a) |a,|=0, |a,|=32; (b) la|=64/V5, |a,|=32/V5

If a particle moves on a circle according to the equations x = r cos wt, y = r sin wt, show that its speed is
wr.

Prove that if a particle moves with constant speed, then its velocity and acceleration vectors are
perpendicular; and, conversely, prove that if its velocity and acceleration vectors are perpendicular, then

its speed is constant.



Chapter 25

Polar Coordinates

THE POSITION OF A POINT P in a given plane, relative to a fixed point O of the plane, may be
described by giving the projections of the vector OP on two mutually perpendicular lines of the
plane through O. This, in essence, is the rectangular coordinate system. [ts position may also be
described by giving the directed distance p = OP and the angle & which OP makes with a fixed
half-line OX through O. This is the polar coordinate system (Fig. 25-1), in which point O is
called the pole.

To each number pair (p, 8) there corresponds one and only one point. The converse is
not true; for examplc the pomt P in the ﬁgure may be described as (p 0+2n7r) and
[ p. 6 T(/n + 1)71') where n 1s any pUblllVU uucgc; muuumg 0. In pdlllbuldl tne ﬁO'lal'
coordinates of the pole may be given as (0, 8) with 8 perfectly arbitrary.

The curve whose equation in polar coordinates is p = f(8) or F(p, 8) =0 consists of the
totality of distinct points ( p, ) that satisfy the equation.

P(p, 8)

Ple, 8)
(Y p v
A / . {
@ x
Y 8 b‘x
Y T
Fig. 25-1 Fig. 25-2

THE ANGLE ¢ from the radius vector OP to the tangent PT to a curve, at a point P(p. #) on it, is
given by

de p

d
tan(p=pc—1;:;7 where p,:_g

do

Tan ¢ plays a role in polar coordinates somewhat similar to that of the slopc of the tangent in
rectanguiar coordinates. (See Problems 1 to 3.)

THE ANGLE OF INCLINATION 7 of the tangent to a curve at a point P(p, ¢) on it is given by

pc050+p sin 6
—psin® +cos O

tan 7

(See Problems 4 to 10.)

THE POINTS OF INTERSECTION of two curves whose equations are p = f,(6) and p = f,(6) may
frequently be found by solving

fi(8) = f£,(8) (25.1)
EXAMPLE 1: Find the points of intersection of p= 1 +sin® and p =5 — 3sin 8.

Sctting 1 +sinf =5-3sin 6§, we have sinf=1. Then #=4im and (2. i) is the only point of
intersection.

172
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Since a point may be represented by more than one pair of polar coordinates, the
intersection of two curves may contain points for which no single pair of polar coordinates
satisfies (23.7).

2sin28 =1 yields sin28= ! and 8 = #/12, 57/12, 137/12, 177/12. We have found four points of
intersection: (1, 7w/12), (1,5x/12), (1, 13m/12), and (1, 177/12).

But the circle p=1 also can be represented as p = —1. Now solving 2sin28 = — 1, we obtain
0=7mx/12, 117/12, 197/12, 237/12 and the four additional points of intersection (—1,7m/12),
(~1.117/12), (= 1,197/12), (—1,237/12).

EXAMPLE 2: Find the points of intersection of p=2sin28 and p = 1. Solution of the equation

When the pole is a point of intersection, it may not appear among the solutions of (25.1).
The pole is a point of intersection provided there are values of 6, say 6, and 6,, such that

f1(8,) =0 and f,(6,) = 0.

EXAMPLE 3: Find the points of intersection of p =sin# and p = cos 6.

From the equation sin § = cos §, we obtain the point of intersection (1V'2, ! m). The curves are,
however, circles passing through the pole. But the pole is not obtained as a point of intersection from
sin 8 = cos 8, since on p =sin 8 it has coordinate (0, 0) whereas on p = cos § it has coordinate (0. ! ).

EXAMPLE 4: Find the points of intersection of p = cos 28 and p = cos 6.

Setting cos 20 =2cos> § — 1 =cos 8, we find (cos & — 1)(2cos§ + 1) =0.

Then § =0, 27/3, 47/3. and we have as points of intersection (1,0), (— 3, 27/3), (= 3.4m/3). The
pole is also a point of intersection.

THE ANGLE OF INTERSECTION ¢ of two curves at a common point P(p, 8), not the pole, is
given by

tan ¢ — tan ¢,

1 + tan y, tan 4.

PN 1 —
an ¢ =

where ¢, and , are the angles from the radius vecor OP to the respective tangents to the

curves at P (Fig. 25-3).
Cs
Cl - \ \ /

F(p, 8)

Ty T,

Fig. 25-3

The procedure for finding ¢ here is similar to that in the case of curves given in rectangular
coordinates; the use of the tangents of the angles from the radius vector to the tangent instead
of the slopes of the tangents is a matter of convenience in computing.

EXAMPLE 5. Find the (acute) angles of intersection of p = cos 8 and p = cos 28.

The points of intersection were found in Example 4. We also need , and ¢,: For p=cos 8,
tan ¢, = —cot 8; for p = cos 28, tan y, = — j cot 26.
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At the pote: On p = cos 8, the pole is given by 8 = m/2; on p = cos 20, the pole is given by 8 = 7/4
and 3#7/4. Thus, at the pole there are two intersections, the acute angle being 7/4 for each.

At tho ~nint (l ﬂ\ tan nh = —¢ot ﬂ - und tan s, = @, Thnn d, = i = i) and J\ — ﬂ
At tne point e,y lan = — 0l v = % an an i, ¥ L ula\c;n_- 3 \/_ 6
. / + V3/
At the point (— %, 27/3): tan ¢, = V3/3 and tan , = — V3/6. Then tan ¢ = —————— =3V3/5

—-1/6

and the acute angle of intersection is ¢ = 46°6".

By symmetry, this is also the acute angle of intersection at the point (—4,4m/3).

(See Problems 11 to 13.)

THE DERIVATIVE OF ARC LENGTH is given by ds/df = \/p2 + (p')z, where p’ = dp/d6, and with
the understanding that s increases as # increases. (See Problems 14 to 16.)

o’ +2(p') - pp"
[p* + (o))"

THE CURVATURE of a curve is given by K = . (See Problems 17 to 19.)

CURVILINEAR MOTION. Suppose as in Fig. 25-4, a particle P moves along a curve whose
equation is given in polar coordinates as p = f(6). If the curve is represented parametrically as

x=pcosd = g) y = psing = h(h)
then the position vector of P becomes
r=0P=xi+ yj=picos8 + pjsing = p(icos & + jsin §)

and the motion may be studied as in Chapter 24.

[

Fig. 25-4

An alternative procedure is to express r and, thus, v and a in terms of unit vectors along
and perpendicular to the radius vector of P. For this purpose, we define the unit vector

u, =icosd+jsiné
along r in the direction of increasing p, and the unit vector

u,,=—isin0+jc059

du, du, do de du, 0
- — - =u, — and — =—1u, —
! de ar ° dt 4 b dt

From r=pu,
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we obtain, in Problem 20,

dr dp | de L
vzz:“PETPuOF:UpﬁpTUO“O
4 _dv_ [dp d‘\l [ da , do d6)
an 8=~ Vel TP \@) 1T le v

=a,u, + a,u,
Here v, = dp/dt and v, = p dB/dt are, respectively, the components of v along and perpendicu-

dzp (d8)2 de _dp do
=— - = +2 = — R
lar to the radius vector, and a, e P\ anda, =p P 2 40 di are the correspond

ing components of a. (See Problem 21.)

1. Derive tan ¢ = p d68/dp, where y is the angle measured from the radius vector OP of a point
P(p, 8) on the curve of equation p = f(8) to the tangent PT.
In Fig. 25-5, Q{p + Ap, 8 + AB) is a point on the curve near P. From the right triangle PSQ,

sin A@
P "As

+8p~ 1-cosA8 Ap
P h8 A6

[:>
't)

sin A9
)+

SQ OQ—os=p+Ap— v = p(1=cos

Now as Q — P along the curve, A9 —0, OQ— OP, PQ — PT, and LA — L.

sin A@ 1 —cos AB
As A9—0, — — 1 and a8 — 0 (see Chapter 17). Thus,
. p de
tany = lim tan A= —— =p —
Y= Jm, dpids =P dp
In Problems 2 and 3, find tan  for the given curve at the given point.

Sl
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Fig. 25-6 Fig. 25-7

3. p=2sin38; 6 = /4. (See Fig. 25-7.)

| —

)= -3V2, and tan ¢ =

A~ "b

&—

At0—4 p= 2 ! —\/— p' =6cos 30 = 6(
pcos@+ p’sin@
~psin@+p'cos @’

From Fig. 25-5. 7= ¢ + 6 and

&
»/
&
o
P
L

n - =
i

dé sin@

p— +
tan ¢ + tan 6 dp _cosb
= + = =
tan 7 = tan (¢ + 9) 1~ tan ¢ tan 0 | do sin @

P dp cos 0

+ — .
pcosB desmﬂ_ pcosh +p'sind

—ncmﬂﬁ—n cos @

do mn
a6 cos® — psin @

S. Show that if p = f(#) passes through the pole and 8, is such that f(8,) = 0, then the direction of
the tangent to the curve at the pole (0, 6,) is 8,. (See Fig. 25-8.)

Fig. 25-8

At (0,6,), p=0and p' =f'(9,). If p"#0, then

_ pcos@+p'sing  0+f'(0)sinh,
tan 1 —psin0+p’cose_0+f’(0,)cosﬂl_tano'

If p' =0, tan r = lim r (0)sm0

Jm (9) =tan §,

In Problems 6 to 8, find the slope of the given curve at the given point.

6. p=1-cos®; 6=ml2. (See Fig. 25-9.)
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Fig. 25-9 Fig. 25-10

At 0=7/2:s5in0=1,¢c0s0=0,p=1, p'=sinf =1, and
pcos@+p'sind  1-0+1-1
—psin®+p'cos® —1-1+1-0

tan T = -1

7. p = cos 38; pole. (See Fig. 25-10.)

When p =0, cos30=0. Then 30 ==/2, 37/2, 57/2, and 8 = =/6, =/2. 57/6. By Problem 3,
tant=1/V3, =, and - 1/V3,

8. p8=a; 8 =m/3.

At 9=m/3:sin8=V3/2 cos8=1) p=3alm and p' = —a/8’ = —%a/m". Then
_ pcosB+p'sing _ w-3V3
tan 7 —n<in9+p’co38_ Vizr +3
9. Investigate p = 1 + sin @ for horizontal and vertical tangents. (See Fig. 25-11.)
.k! IO lA x
Fig. 25-11
At P(p, 0):
tan 7 = (1+sinf)cos®+cosfsin®  cos b (1+2sin#)
—(1 +sin ) sin 8 + cos’ 9 (sin®+ 1)(2sinf — 1)

We set cos 8(1 + 2sin @) = 0 and solve, obtaining 6 = 7/2, 37/2, 7/6, and 117/6. We also set
(sin @ + 1)(2sin @ — 1) = 0 and solve, obtaining 0 =37/2, #/6, and 57/6.

For 8 = #/2: There is a horizontal tangent at (2, #/2).

For 8 = 7m/6 and 11%/6: There are horizontal tangents at (1/2, 7#/6) and (1/2, 117/6).

For = 7#/6 and S#/6: There are vertical tangents at (3/2, #/6) and (3/2,5#/6).

For 8 = 3w/2: By Problem 5, there is a vertical tangent at the pole.
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Show that the angle that the radius vector to any point of the cardioid p = a(1 — cos 0) makes
with the curve is one-half that which the radius vector makes with the polar axis.

At any point P(p, @) on the cardioid, p* = asin 8 and

w
]
Il

€
B =
G

In Problems 11 to 13, find the angles of intersection of the given pair of curves.

11.

12.

13.

p=3cosh, p=1+cosb. (See Fig. 25-12))

)
N

Fig. 25-12

Solve 3 cos 8 =1+ cos # for the points of intersection, obtaining (3/2, #/3) and (3/2,5#/3). The
curves also intersect at the pole.

For p =3cos 0: p'=—3sind and tan y, = —cot
+
Forp=1+cos8: p':—si_n_‘ﬁ) and tan {’I’,z:—.__..__l 'CO_SG
g sin

At 8= 7/3, tan y, = —~1/V3, tan ¢, = — V3, and tan ¢ = 1/V 3. The acute angle of intersection at
(3/2, w/3) and, by symmetry, at (3/2,5#%/3) is w/6.
At the pole, either a diagram or the result of Problem 5 shows that the curves are orthogonal.

p=sec’ 10, p=3csc? 16,

Solve sec’ 10 = 3csc® 10 for the points of intersection, obtaining (4, 27/3) and (4, 47/3).

For p =sec” 10: p' =sec’ lotan 10 and  tan , = cot 14
For p = 3csc” 30: p'=—-3csc’ 10 cot 10 and tan ¢, = ~tan %9

L]

At 0=2x/3,1an ¢, = 1/V3, tan g, = -V3, and ¢ = } #; the curves are orthogonal. Likewise, the
curves are orthogonal at 6 = 4w/3.

p =sin 26, p = cos 8. (See Fig. 25-13))
The curves intersect at the points (V3/2, 7/6) and (—V3/2,5%/6) and the pole.
For p =sin 20: p'=2cos 20 and tan y, = } tan 20

'

For p = cos @: p' = -sin@ and tan 5, = —cot

At 0= 7/6, tan ¢, = V3/2, tan §, = — V3, and tan ¢ = —3V3. The acute angle of intersection at
the point (V3/2, 7/6) is ¢ = arctan 3V3 = 79°%'. Similarly, at 8 = 57/6, tan ¢, = —V3/2, tan ¢, = V3,
and the angle of intersection is arctan 3v/3.

At the pole, the angles of intersection are 0° and =/2.

In Problems 14 to 16, find ds/de at the point P(p, 9).



CHAP. 25] POLAR COORDINATES 179

)
\

14. p=cos2s.

p’'=—2sin20  and % =Vp2+(p’) =Vcos 20 +4sin>20 = V1 + 3sin’ 20

15. p(1+cos@)=4.
Differentiation yields —psin @ + p’(1 + cos 8) =0. Then

,_ psin8  dsing d 'dﬁ_\/z—‘*'—')_z* 432
P " TFcos® (1+cos0) an do VP (e T (1+cos 8)*?
16. p=sin’ 16. (Also evaluate ds/df at § = im.)
p'=sin’ §0cos 0  and % =Vsin® 16 + sin* 1@ cos® 19 =sin’ 19
At 9= lm ds/de=sin® tm=1.
i7 Derive K = 'p2 hl 2(_p’)2 —pp"
. - 2 14213/2
[p"+(p')]
By definition, K = dr/ds. Now 1 =8 + ¢ and
dr do _dy do d;pd()_df)( d;p) _ p
il e » —ds+d0 - ds +d0 where ¥ = arctan o
Also,
dy _ [0 = op")e') _ (0= L () et pl+2p) — oo’
; F] VIR 2 N2 2 ,
do 1+ (plp') pi+(p) de pi+(p') p’+(p)
Thus K=ﬂ’(1+d_¢’)= 1+ dy/do _ 1+dyldd _ p*+2p') — pp’
’ 2 1y2y3/2
ds de ds/dé sz'f'(p')z [p +(p)]

18. Let p =2 + sin @. Find the curvature at the point P(p, 8).

_ pi+2p') — pp” _ (2+sin 8) +2cos’ @ + (sin B)(2 + sin 9) _ 6(1 +sin 0)
[p*+ (p)']" [(2 +sin 8)° + cos® 9]*"* (5 +4sin 9)*"”
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19. Let p(l —cos®)=1. Find the curvature at 8 = 7/2 and at § =4=x/3.

., —sin@ - ,_  —cos® . 2sin’@ N p_ 39
P 7 (1= cos 8)° P T 1-cos8)’ (1-cosg)) 0 T2
At 0=7/2, K=(1/V2) =V2/4;at 0 =47/3, K=(V3/2) =3V3/8.
20. From r = pu,, derive formulas for v and a in terms of u, and u,.
Differentiation yields
_dr_ dp Ay, dp dé
VER TS w TP T T TPy
_dv _dp dp do d’e dp do (d@)z
and n~dt—u" ar TV drdr TP g Y g @ T P\

~uf 58l G) [ eulo 2% G

21. A particle moves counterclockwise along p = 4sin 20 with df/dt = ; rad/sec. (a) Express v
and a in terms of u, and u,. (b) Find |v| and |a|] when 6 = 7/6.

We h =4sin26 d~p—8co 20—d—q—4cos26 i-22——4 20
e have r=4sin26u, i = $20 - = yri sin
d do
(a) v=e, o . +pu, X = 4u, cos 20 + 2u, sin 20

Z
[Ip— (dr)]+ [piz+2ip —0]=—5upsin20+4u9cos20

V3 5
\/T_i+1janduo=— j.Thenv=——i+5jand|v|=\/7;

(b) At 0 = 7/6 3

P

j and |a] = VO1/2.

**I&‘:

L
a= 4l

Supplementary Problems

In Problems 22 to 25, find tan ¢ for the given curve at the given points.

22. p=3-sinfat@=0,0=37/4 Ans. -3 3V2-1
23. p=a(l-cos@)at =x/4, 0=3m/2 Ans. V2-1, -1
24. p(l-cos@)=aat9=mn/3, 0=57/4 Ans. —-V3/3;1+V2
25. p’=4sin20at 6=57/12, 0=27/3 Ans. -1V3;, V3

In Problems 26 to 29, find tan r for the given curve at the given point.
26. p=2+singatd=mn/6 Ans. —3V3 27.  p*=9cos20at 9= m/6 Ans. 0

28. p=sin’(0/3) at 9=7w/2  Ans. -\V3 29. 2p(1-sin®)=3 at 6=7/4 Ans. 1+V32
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30.

31.

32.

3.

3s.

37.

39.

41.

42.

43,

Do Ll 21« 27 U I DRE
TODICIS 21 LU 22, ITHU LG atult dligicy Ul llllCleLllUl O

Investigate p =sin 26 for horizontal and vertical tangents.

Ans. horizontal tangents at 8 =0, 7, 54°44', 125°16', 234°44’, 305°16’; vertical tangents at 6 = 7/2,

3m/2, 35°16°, 144°44’, 215°16’, 324°44’

AAAAAAAAAAAA AF A Al ol P
1

p=sinf, p=-sin20 Ans. ¢ =79°" at 0 = 7/3 and S7/3; ¢ =0 at the pole
p=V2sing, p’ =cos 20 Ans. ¢=m/3at 6=m/6, 57/6, ¢ = 7/4 at the pole
=16sin 26, p° = dcsc 20 Ans. ¢ = m/3 at each intersection

Show that each pair of curves intersects at right angles at all points of intersection.

(a) p=4cosb, p=4sin @ (b) p=e€’,p=e€"’
(c) picos26=4, p’sin26=9 (dy p=1+cosé, p=1-cosé
Find the angle of intersection of the tangents to p =2 — 45sin 8 at the pole. Ans. 2w/3

Find the curvature of each of these curves at P(p.0): (a) p =€’ (b) p=sin8; (¢) p° =4cos20;
(d) p=3sin@ +4cos b

Ans.  (a) 1/(V2e°); (b) 2: (¢) 3V cos 20; (d) 2/5

Let p =f(6) be the polar equation of a curve, and let s be the arc length along the curve. Using
X =pcos® y=psin @ and recalling that (7\ = (Z;) + (‘;2) derive (j;) =p*+{p') .

Find ds/df for each of the following, assuming s increases in the direction of increasing 6:
(a) p=acos @, (b) p=a(l +cosf); (c) p=-cos 28

Ans. (a) a; (b) aV2+2cos 09; (¢) V1 +3sin’ 20

Suppose a particle moves along a curve p = f(8) with its position at any time r given by p = g(1),

0 = h(t). ) )
(a) Multiply the relation obtained in Problem 37 by (%’) to obtain v’ = (j—f) = pz(%> + (%’)h
(b) From tan g = p 22—, 90140 " htain sin = 2 % and cos = L % ‘
om tan pdp pdp/dr’o amsmd;—ud,an cosl[l_vdt'
da,  do du, do
Show that 2 "W g and g =-u, o

A particle moves counterclockwise about the cardioid g =4(1 +cos8) with df/dt= =/6 rad/sec.
Express v and a in terms of u, and u,.

2 , 2 w’ 2 :
Ans. v= —Tﬂ u,sin@ + —31 w,(1+cosf);a=——- u,(1+2cosf)— —— u,sinéd
A particle moves counterclockwise on p = 8 cos 8 with a constant speed of 4 units/sec. Express v and a in
terms of u, and u,. Ans. v=—du_sin @ +4u,cosd; a=—4u, cos 8 —4du, sin #

If a particle of mass m] moves along a path under a force F which is always di:i%cted toward the origin, we

Love B e oo o Ae o — - I o (O slhiaa o =L 4 canctant aod sl
nave ¥ = rifia Or a — ¥, SO that a, = = (. Show that when dgy U, ten g dr = K, a constant, ana ine

radius vector sweeps over area at a constant rate.

. 2
A particle moves along p = T cosd with a, = 0. Show thata, = - 5 3 . where k is defined in Problem
- P
43.
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In Problems 45 to 48, find all points of intersection of the given equations.

45. p=3cosd, p=3siné Ans. (0,0), 3V2i2, mid)

46. p=cosf p=1—cosé Ans. (0,0), (1/2, =/3), (1/2, —=/3)

47. p=0,p=m Ans. (m, 7)), (-7, —m)

48. p=sin20, p =cos 20 Ans. (O,O),(\/Ti,(z—n;;)ﬂ) forn=0,1,2,3,4,5



Chapter 26

The Law of the Mean

ROLLE’S THEOREM. If f(x) is continuous on the interval a < x = b, if f(a) = f(b) =0, and if f'(x)
exists everywhere on the interval except possibly at the endpoints, then f'(x) = 0 for at least
one value of x, say x = x,, between a and b.
Geometrically, this means that if a continuous curve intersects the x axisat x =a and x = b,
and has a tangent at every point between a and b, then there is at least one point x = x,,
between a and b where the tangent is parallel to the x axis. (See Fig. 26-1. For a proof, see
Problem 11.)

="~
_

R
=

o)
Al
d
R
)
Ap———
$—————

Fig. 26-1 Fig. 26-2

Corollary: If f(x) satisfies the conditions of Rolle’s theorem, except that f(a) = f(b) # 0,
then f'(x) =0 for at least one value of x, say x = x,, between a and b.
(See Fig. 26-2 and Problems 1 and 2.)

THE LAW OF THE MEAN. If f(x) is continuous on the interval a=x<b, and if f'(x) exists
everywhere on the interval except possibly at the endpoints, then there is at least one value of
X, say x = x,, between a and b such that

ftb) - fla)y
=g [x)

Geometrically, this means that if P, and P, are two points of a continuous curve that has a
tangent at each intervening point, then there exists at least one point of the curve between P,
and P, at which the slope of the curve is equal to the slope of P, P,. (See Fig. 26-3. For a proof

see Problem 12))
The law of the mean may be put in several useful forms. The first is obtained by

multiplication by b — a:

fib)=fay+ (b —a)f'(x,) for some x, between a and b (26.1)
A simple change of letter yields

fx)=fa)+ (x —a)f'(x,) for some x, between a and x (26.2)

It is clear from Fig. 26-4 that x,=a + 8(b — a) for some @ such that 0<8 <1. With this
replacement, (26.1) takes the form

f(b)=fla) + (b —a)f'[a + 0(b — a)] for some @ such that 0<g <1 (26.3)

183
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Y
[ \F2(b, f(b))
/ 1
P:(GJW \

|
|
o
| | |
| fta) | |/®)
I |
I | |
x b

i i i
O a [ (') a x'o b
Fig. 26-3 Fig. 26-4
Letting b — a = h. we can rewrite (26.3) as
fla + i) = f(a) + hf '(a + 6h) for some & such that 0 <6 <1 (26.4)

Finally, if we let a = x and h = Ax, (26.4) becomes
flx + Ax) = f(x) + Ax f'(x + 6 Ax) for some # such that 0 <6 <1 (26.5)
(See Problems 3 t0 9.)

GENERALIZED LAW OF THE MEAN. If f(x) and g(x) are continuous on the interval a < x < b,
and if f'(x) and g’(x) exist and g'(x) # 0 everywhere on the interval except possibly at the
endpoinis. then there exists at least one value of x, say x = x,,, beiween a and b such that

f(b) — fa) - f'(xa)
g(b) — gla)  g'(xo)
For the case g(x) = x, this becomes the law of the mean. (For a proof, see Problem 13.)

EXTENDED LAW OF THE MEAN. If f(x) and its first n — 1 derivatives are continuous on the
interval @ < x = b, and if f")(x) exists everywhere on the interval except possibly at the
endpoints, then there is at least one value of x, say x = x,, between a and b such that

#6)= fla) + X b - oy + L0 -
n-1) (n)
f(,u,g,(\.)(b @y “+f—ff;—'“—)(b—a)" (26.6)

(For a proof, see Problem 15.)
When b is replaced with the variable x, (26.6) becomes

s =fa+ EE g+ B -yt
oD U " 26.7
+f(n_l(;)(x_a) l+fn('xo)(x_a) (26.7)
for some x, between a and x
When «a 1s replaced with 0, (26.7) becomes
' "0 (n—1) 0 (n) ( .
f("):f(o)+f1(') er et fv.—i()') o s (26.8)

for some x, between 0 and x
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E’II

Solved Problems

Find the value of x, prescribed in Rolle’s theorem for f(x)=x"—12x on the interval
0=x=2V3.

f'(x)=3x"—12=0 when x = £2; then x, = 2 in the prescribed value.

2 2
X - x° —dx

4x
2 and (b) f(x) = )

(a) f(x)=0 when x =0,4. Since f(x) is discontinuous at x =2, a point on the interval 0= x =4, the
theorem does not apply.

(b) f(x)=0 when x =0,4. Here f(x) is discontinuous at x = —2, a point not on the interval 0 = x <4,
Moreover, f'(x) = (x> + 4x — 8)/(x + 2)? exists everywhere except at x = —2. Hence, the theorem
applies and x, = 2(V3 — 1), the positive root of x* + 4x —8 = 0.

7

Does Rolle’s theorem apply to the functions (a) f(x) =

Find the value of x, prescribed by the law of the mean, given f(x) = 3xP+4x~3,a=1,b=3,

Using (26.1) with f(a) = f(1) =4, f(b) = f(3) =36, f'(x,) =6x,+4, and b — a =2, we have 36 =
4+ 2x,+4)=12x,+ 12 and x, = 2.

Use the law of the mean to approximate V65.
Let f(x) =VZX. a=64. and b =65, and apply (26.1). obtaining

f(65) = f(64) + o . 64<x,<65

5/6
6x,

Pl . ] . N o oa Y . - 1 .6/F _hf‘ 4 I‘\bll.\ " 4 7 4dnmm Y ATAY 4
Since x, is not known, take x, = 64; then approximately, V65 =vV64 + 1/{6V64°) =2 + 1/192 = 2.00521.
A circular hole 41in in diameter and 1 ft deep in a metal block is rebored to increase the
diameter to 4.12 in. Estimate the amount of metal removed.

The volume of a circular hole of radius x in and depth 12 in is given by V= f(x) = 127x’. We are to
estimate f(2.06) — f(2). By the law of the mean,

f(2.06) — f(2) = 0.06f'(x,) = 0.06(247x,) , 2<x,<2.06
Take x, =2: then, approximately, f(2.06) — f(2) = 0.06(24 7)(2) = 2.88 7 in’.

Apply the law of the mean to y = f(x), a = x, b = x + Ax with all conditions satisfied to show
that Ay = f'(x) Ax approximately.

We have Ay = f(x + Ax) — flx) = (x + Ax —x)f'(x,), x<x,<x+Ax
Take x, = x; then approximately Ay = f'(x) Ax.

Use the law of the mean to show sin x < x for x> 0.

Since sin x < 1, obviously sin x < x when x > 1. For 0 = x < 1, take f(x) =sin x with a = 0 and apply
(26.2):
sinx =sin 0+ x cos x, = X COs X, , O<x,<ux

Now on this interval cos x, <1 s0 x cos x, < x; hence, sin x < x.

Use the law of the mean to show <In(l+x)<xfor —1<x<0 and for x>0.

1+x



186 THE LAW OF THE MEAN [CHAP. 26

Apply (26.4) with f(x)=Inx,a=1, and h = x:

1 X
i =1n1 4 = Ne-0a_~1
Ay i1 1 7 A R T N

1+6x 1+06x°
1

In {1
iy a7

When x>0, 1<l+0x<1l+ux; hence, 1 > ——— > - x> - > - .
i+6x 1+x I+6x 1+«x

When -1 <x<0,1>1+8x>1+x; hence, 1 <
x X

1+ 6x 1+9x>1+x

<In(1 +x)<x when —1 <x <0 and when x> 0.

X
<
1+6x 1+x >1+15L\' 1+x°
< x; also, and In(l1+x)=

In each case, <x and In(t+x)=
X

- X
1+6x 1+x

X
1+ 0x
. Hence,

X
1+x
9.  Use the law of the mean to show V1+x <1+ ix for —1<x <0 and for x > 0.

Take f(x) = vx and use (26.4) witha=1 and h = x:

Vitr=1+ ———n ., 0<08<l
2Vl + ox
I —n A f————  f— . X ) X . . ~ ———— f——— R
when x>U, vi+ox<Vi+x and > ———=, when —1I<x<U, VIi+0x>VI+x and
T X 2VIi+6x  2V1i+x
> .
2Vi+0x  2V1i+x Y

x
h Vit x=1+ > . iplyi i i Vv
In each case x=1 NI 1+ NI Multiplying the outer inequality by V1 + x >

0,wehave |+x>V1i+r+ixor VI+r<t+ lx

10.  Find a value x, as prescribed by the generalized law of the mean, given f(x) =3x +2 and
g)=x"+1,1=sx=4

We are to find x, so that

fb)=f@) _f-f(1) W-5 3 fix) 3
gb)—gl@) g -gl) 17-2 3

Then 2x,=5 and x, = 1.

11.  Prove Rolle’s theorem: If f(x) is continuous on the interval a < x < b, if f(a) = f(b) =0, and if
f'(x) exists everywhere on the interval except possibly at the endpoints, then f'(x) = 0 for at
least one value of x, say x = x,, between a and b.
If f(x) = 0 throughout the interval, then also f’'(x) = 0 and the theorem is proved. Otherwise, if f(x)
is positive (negative) somewhere on the interval, it has a relative maximum (minimum) at some x = x,,
a<x,<b (see Property 8.2), and f'(x,) =0.

12.  Prove the law of the mean: If f(x) is continuous on the interval a < x < b, and if f'(x) exists
everywhere on the interval except possibly at the endpoints, then there is a value of x, say

)

f(b)Reff(er) to Fig. 26-3. The equation of the secant line P, P, is y = f(b) + K(x — b) where K=
- fla

—————_ At any point x on the interval @ <x < b, the vertical distance from the secant line to the

x = x,, between a and b such that

curve is F(x) = f(x) ~ f(b) — K(x — b). Now F(x) satisfies the conditions of Rolle’s theorem (check this);
hence, F'(x} = f'(x) — K =0 for some x = x,, between a and b. Thus,

flb) — f(a)
b-a

K =1f"(r
4

(x }=
" (L))

as was to be proved.
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13.

4.

Prove the generalized law of the mean: If f(x) and g(x) are continuous on the interval
a<x=bh, and if f'(x) and g'(x) exist and g'(x) # 0 everywhere on the interval except possibly
at the endpoints, then there exists at least one value of x, say x = x,, between a and b such

fo) - fla) _ f'(x)

a(h\—o(n\ a(r '

o\v/J \ro/’
Suppose g(b) = g(a); then by the corollary to Rolle’s theorem, g'(x) = 0 for some x between a and
b. But this is contrary to the hypothesis; thus g(b) # g(a).

b —_
Now set ﬁb—_;‘% = K, a constant, and form the function F{x) = f(x) - f(b) — K[g(x) — g(b)].
This function satisfies the conditions of Rolle’s theorem (check this), so that F'(x)= f'(x)— Kg'(x) =0

for at least one value of x, say x = x,,, between a and b, Thus,

_f'(xo) _ f(b) - fla)
g'(x,) gb) - g(a)

that

as was to be proved.

A curve y = f(x) is concave upward on a < x <b if, for any arc PQ of the curve in that

mgancaal o Walaw, tha chasd DYy aad it LANAOY Anvasress sard € ¢ Liac ahava all
llllCl.Vcll, the curve lies OEIOW i€ CiioTa 14/, and it is concave downward if it lics above all

such chords. Prove: If f(x) and f'(x) are continuous on a <x < b, and if f'(x) has the same
sign on a < x < b, then

1. f(x) is concave upward on a < x < b when f"(x) > 0.
2. f{x) is concave downward on a < x <b when f"(x) <O0.

The equation of the chord PQ joining P(a, f(a)) and Q(b. f(b)) is y = f(a) + (x — a) “bh"a -

rely  havino abgeigg
[ CISS!

1y, HBAVig alls

an tha are and chard racnacti y = pr
on tn¢ arc and Cora, respect X C

te
The corresponding ordinates are f{c) and

N f(h\—f(a\ (b —c)f(a) + (c — a)f(b)
fay+ (- a) 2L L

v = f(x)

1Q(b, (b))

|
|
!
|
I
!
[
b

-

x
o
Fig. 26-5
We first must prove f(c) < ¢ —c)f(a;iic—a)f(b) when f“(x)>0. By the law of the mean,
fle) - fla) f(b) - f(C)

= f'(£), where £ is between a and ¢, and
Since f(x)>0 on a<x<b, f'(x) is an increasing functlon on the interval and f'(£)< f'(n). Thus

fe) = ) f(b) f(c) , from which it follows that
c—a b - -

= f'(n), where 7 is between ¢ and b.

(b~ c)f(a) + (c ~ a)f(b)

u—a

fla<

as required.
The proof of the second part is left as an exercise for the reader.
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18,

16.

17.

19.

20.

THE LAW OF THE MEAN [CHAP. 26

Prove: If f(x) and its first (n ~ 1) derivatives are continuous on the interval a < x < b, and if
f‘")(x) exists everywhere on the interval except possibly at the endpoints, then there is a value
of x, say x = x,, between a and b such that

24 ... f__"“”(a) FL
TN S TR

For the case n = 1, this becomes the law of the mean. The following proof parallels that of Problem
12. Let K be defined by

n

(n)
n-1, fn(xu),
PR Sod 14

(6 —a)

" (m—=1)
oy =g+ N -+ B o-ap e s I ooy a ka1
and consider
o n 1)
F = 0 - fib) + E 5 -0 o L oy B e g -y

(n—1)!

Now F(a) =0 by (1). and F(b) = 0. By Rolle's theorem, there exists an x = x,, where a < x, < b. such
that

) = F00) + U = 2 = )l [ o) (b~ = a6 - x,)|
bt H’:)_("I")), (b-x,)" ' - f((n _Hg_’;‘,') (b—x(,)"'z] ~ Kn(b - x,)" "
{;J_ 1’)), (b-x,) "= Knb-x,) '=0
Then K—fw %) und (1) becomes
i) =@+ L2 -+ LD -y v Lo gy ST gy

Supplementary Problems

Find a value for x, as prescribed by Rolle’s theorem, given:

(@) fix)y=x’—4x+3, 1=x=3 Ans. x,=2
(b) f(x)=sinx, 0=x=x Ans. x,=1m
(¢) fixy=cosx. w/2<x<3m/2 Ans. x,=m

Find a value for x, as prescribed by the law of the mean. given:

(@) y=x.0=x<6 Ans. x,=2V3

(b) y=ax’ + bx+c. x, =x=x, Ans. x,=3(x, +x,)
2e -1

(c) y=Inx, I =x=<2e Ans. %= 15 n2

Use the law of the mean to approximate (a) V15; (b) (3.001)"; () 1/999.
Ans.  (a) 3.875, (b) 27.027. (c) 0.001 001

Use the law of the mean to prove (a) tanx>x, 0<x<im; (b)

X
1 7 < arctan x <x, x>0
. X X
(¢) x < arcsin x < ‘\TT———XZ‘, O<x<l1.

Show that | f(x) - f(x,)| =|x — x,I. x, being any number, when (a) f(x) = sin x; (b) f(x) = cos x.
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21.

22.

23.

25.

26.

Use the law of the mean to prove:

(a) If f(x) =0 everywhere on the interval a = x = b, then f(x) = f(a) = ¢, a constant. everywhere on the
HEY VPN |

(b) On a given interval a = x = b, f(x) increases as x increases if f'(x) > 0 throughout the interval. (Hint:
Let x, < x, be two points on the interval; then f(x,) = flx,} + (x. — x,)f"(x,). X, < x, < x,.)

Use the theorem of Problem 21(a) to prove: If f(x) and g(x) are different but f'(x) = g'(x) throughout an
interval, then f(x) — g{x) = ¢ #0, a constant. on the interval.

Prove: If f(x) is a polynomial of degree n and f(x) = 0 has n simple real roots, then f'(x) = 0 has exactly
n — 1 simple real roots.

Show that x* + px + g = 0 has (a) one real root if p >0, and (b) three real roots if 4p* +27¢" <0.

Find a value x, as prescribed by the generalized law of the mean, given:
(@) flx)=x +2x-3, gx)=x"—4x+6;a=0,b=1 Ans. 3}
(b) flx)y=sinx, g(x)=cosx; a= w/6, b=m/3. Ans. im

Use (26.8) to show:

(a) sinx can be approximated by x with allowable error 0.005 for x<0.31. (Hint: For n =3,
sinx =x— lx'cosx, Seti|x’cosx,|=1ilx’<0.005)

(b) sin x can be approximated by x — x"/6 with allowable error 0.00005 for x <0.359.



Chapter 27

Indeterminate Forms

THE DERIVATIVE of a differentiable function f(x) is defined as
+ .
fx + 4% — fx) 27.1)

Ax—0 (x + AX) - X

Since the limit of both the numerator and the denominator of the fraction is zero, it is
customary to call (27.1) indeterminate of the type 0/0. Other examples are found in Problem 6
of Chapter 7. 3x— 2
. - . X — . .

Similarly, it is customary to call lim 9+ T (see Problem 7 of Chapter 7) indeterminate of
the type =/x. These symbols 0/0, =/x, and others (0-, -, 0° «' and 17) to be
introduced later must not be taken literally; they are merely convenient labels for distinguishing
types of behavior at certain limits.

INDETERMINATE TYPE 0/0; L’HOSPITAL’S RULE. If 4 is a number, if f(x) and g(x) are
differentiable and g(x) 0 for all x on some interval 0<|x — a| <3, and if lim f(x) =0 and

lim g(x) =0, then, when lim ~— exists or is infinite,
x—a x—=a g (x)

@ )

.x-oa g(x) x—a g (x)

(L’Hospital’s rule)

4
.ox =81
EXAMPLE 1: -3 S indeterminate of type /0. Because
v} -
d
3
o (& 8D s
lim ] =lim 4x" = 108, we have im 3" 108
T—3 r— t-*3
— (x—3
PR
(See Problem 1to7)
Note: L'Hospital's rule remains valid when lim is replaced by the onec-sided limits lim or
r—a x—sa*

INDETERMINATE TYPE =/«. The conclusion of I'Hospital’s rule is unchanged if one or both of
the following changes are made in the hypotheses:
[. “lim f(x)=0 and lim g(x) =0" is replaced by “lim f(x) = = and lim g(x) ="
2. “ais a number” is replaced by “a = +x, —x, or =" and “0< |x — a| < 8" is replaced
by u|xl ~ M."

2

EXAMPLE 2: lim f; is indeterminate of type %/x. Then I'Hospital’s rule gives

T—e 4=

(See Problems 9 to 11.)
190
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INDETERMINATE TYPES 0 and « — «, These may be handled by first transforming to one of

the types 0/0 or »/x. For example:

lim x’™* is of type 0- but lim )—[; is of type x/x

x4+ x x—+x

. I), ) (x—sinx).
— - - t ] _— ft 0/0
im (s r— ) s of tpe o0 but tim (755 ) s of wpe

(See Problems 13 to 16.)

INDETERMINATE TYPES 0°, 