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This book is for people who want to learn basic physics without taking a
formal course. It can also serve as a supplemental text in a classroom,
tutored, or home-schooling environment. I recommend that you start at the
beginning of this book and go straight through, with the possible exception
of Part Zero.

If you are confident about your math ability, you can skip Part Zero. But
take the Part Zero test anyway, to see if you are actually ready to jump into
Part One. If you get 90 percent of the answers correct, you’re ready. If you
get 75 to 90 percent correct, skim through the text of Part Zero and take
the chapter-ending quizzes. If you get less than three-quarters of the
answers correct in the quizzes and the section-ending test, find a good desk
and study Part Zero. It will be a drill, but it will get you “in shape” and
make the rest of the book easy.

In order to learn physics, you must have some mathematical skill. Math
is the language of physics. If I were to tell you otherwise, I'd be cheating
you. Don’t get intimidated. None of the math in this book goes beyond the
high school level.

This book contains an abundance of practice quiz, test, and exam questions.
They are all multiple choice, and are similar to the sorts of questions used
in standardized tests. There is a short quiz at the end of every chapter. The
quizzes are ‘“‘open-book.” You may (and should) refer to the chapter texts
when taking them. When you think you’re ready, take the quiz, write down
your answers, and then give your list of answers to a friend. Have the
friend tell you your score, but not which questions you got wrong. The
answers are listed in the back of the book. Stick with a chapter until you
get most of the answers right.

This book is divided into three major sections after Part Zero. At the end
of each section is a multiple choice test. Take these tests when you’re done
with the respective sections and have taken all the chapter quizzes. The
section tests are “closed-book.” Don’t look back at the text when taking
them. The questions are not as difficult as those in the quizzes, and they
don’t require that you memorize trivial things. A satisfactory score is three-
quarters of the answers correct. Again, answers are in the back of the book.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.



There is a final exam at the end of this course. The questions are practical,
and are less mathematical than those in the quizzes. The final exam contains
questions drawn from Parts One, Two, and Three. Take this exam when you
have finished all the sections, all the section tests, and all of the chapter
quizzes. A satisfactory score is at least 75 percent correct answers.

With the section tests and the final exam, as with the quizzes, have a friend
tell you your score without letting you know which questions you missed.
That way, you will not subconsciously memorize the answers. You might
want to take each test, and the final exam, two or three times. When you
have gotten a score that makes you happy, you can check to see where your
knowledge is strong and where it is not so keen.

I recommend that you complete one chapter a week. An hour or two
daily ought to be enough time for this. Don’t rush yourself; give your mind
time to absorb the material. But don’t go too slowly either. Take it at a
steady pace and keep it up. That way, you’ll complete the course in a few
months. (As much as we all wish otherwise, there is no substitute for “good
study habits.”) When you’re done with the course, you can use this book,
with its comprehensive index, as a permanent reference.

Suggestions for future editions are welcome.

Stan Gibilisco
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Equations, Formulas,
and Vectors

An equation is a mathematical expression containing two parts, one on the
left-hand side of an equals sign (=) and the other on the right-hand side. A
formula is an equation used for the purpose of deriving a certain value or
solving some practical problem. A vector is a special type of quantity in
which there are two components: magnitude and direction. Physics makes
use of equations, formulas, and vectors. Let’s jump in and immerse our-
selves in them. Why hesitate? You won’t drown in this stuff. All you need
is a little old-fashioned perseverance.

Notation

Equations and formulas can contain coefficients (specific numbers), con-
stants (specific quantities represented by letters of the alphabet), and/or vari-
ables (expressions that stand for numbers but are not specific). Any of the
common arithmetic operations can be used in an equation or formula. These
include addition, subtraction, multiplication, division, and raising to a power.
Sometimes functions are also used, such as logarithmic functions, exponen-
tial functions, trigonometric functions, or more sophisticated functions.
Addition is represented by the plus sign (+). Subtraction is represented
by the minus sign (—). Multiplication of specific numbers is represented

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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either by a plus sign rotated 45 degrees (X) or by enclosing the numerals
in parentheses and writing them one after another. Multiplication involving
a coefficient and one or more variables or constants is expressed by writing
the coefficient followed by the variables or constants with no symbols in
between. Division is represented by a forward slash (/) with the numerator
on the left and the denominator on the right. In complicated expressions, a
horizontal line is used to denote division, with the numerator on the top and
the denominator on the bottom. Exponentiation (raising to a power) is
expressed by writing the base value, followed by a superscript indicating
the power to which the base is to be raised. Here are some examples:

Two plus three 2+3

Four minus seven 4—17

Two times five 2 X 50r (2)(5)
Two times x 2x

Two times (x + 4) 2(x + 4)

Two divided by x 2/x

Two divided by (x + 4) 2(x +4)
Three to the fourth power 3¢

x to the fourth power X

(x + 3) to the fourth power (x+3)*

SOME SIMPLE EQUATIONS

Here are some simple equations containing only numbers. Note that these
are true no matter what.

3=3
3+5=4+4

1,000,000 = 10°

—(—20) =20

Once in a while you’ll see equations containing more than one equals sign
and three or more parts. Examples are

345=4+4=10-2
1,000,000 = 1,000 X 1,000 = 10° X 10> = 10°
—(=20) = —1 X (=20) = 20
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All the foregoing equations are obviously true; you can check them eas-
ily enough. Some equations, however, contain variables as well as num-
bers. These equations are true only when the variables have certain values;
sometimes such equations can never be true no matter what values the vari-
ables attain. Here are some equations that contain variables:

x+5=8
x=2y+3
x+y+z=0
=y
y=3x-—-5

P4+ +1=0

Variables usually are represented by italicized lowercase letters from near
the end of the alphabet.

Constants can be mistaken for variables unless there is supporting text
indicating what the symbol stands for and specifying the units involved.
Letters from the first half of the alphabet often represent constants. A com-
mon example is ¢, which stands for the speed of light in free space (approx-
imately 299,792 if expressed in kilometers per second and 299,792,000 if
expressed in meters per second). Another example is e, the exponential
constant, whose value is approximately 2.71828.

SOME SIMPLE FORMULAS

In formulas, we almost always place the quantity to be determined all by
itself, as a variable, on the left-hand side of an equals sign and some
mathematical expression on the right-hand side. When denoting a for-
mula, it is important that every constant and variable be defined so that
the reader knows what the formula is used for and what all the quantities
represent.

One of the simplest and most well-known formulas is the formula for
finding the area of a rectangle (Fig. 1-1). Let b represent the length (in
meters) of the base of a rectangle, and let 4 represent the height (in meters)
measured perpendicular to the base. Then the area A (in square meters) of
the rectangle is

A = bh
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5

Fig. 1-1. A rectangle with base length b,
height /, and area A.

A similar formula lets us calculate the area of a triangle (Fig. 1-2). Let b
represent the length (in meters) of the base of a triangle, and let / represent
the height (in meters) measured perpendicular to the base. Then the area A
(in square meters) of the triangle is

A

Yy

<

Fig. 1-2. A triangle with base length b,
height £, and area A.

A = bh/2

Consider another formula involving distance traveled as a function of
time and speed. Suppose that a car travels at a constant speed s (in meters
per second) down a straight highway (Fig. 1-3). Let ¢ be a specified length
of time (in seconds). Then the distance d (in meters) that the car travels in
that length of time is given by
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Fig. 1-3. A car traveling down a straight highway over distance d at
constant speed s for a length of time 7.

d = st

If you’re astute, you will notice something that all three of the preceding
formulas have in common: All the units “agree” with each other. Distances
are always given in meters, time is given in seconds, and speed is given in
meters per second. The preceding formulas for area will not work as shown
if A is expressed in square inches and d is expressed in feet. However, the
formulas can be converted so that they are valid for those units. This
involves the insertion of constants known as conversion factors.

CONVERSION FACTORS

Refer again to Fig. 1-1. Suppose that you want to know the area A in
square inches rather than in square meters. To derive this answer, you
must know how many square inches comprise one square meter. There
are about 1,550 square inches in one square meter. Thus we can restate
the formula for Fig. 1-1 as follows: Let b represent the length (in meters)
of the base of a rectangle, and let & represent the height (in meters) meas-
ured perpendicular to the base. Then the area A (in square inches) of the
rectangle is

A = 1,550bh

Look again at Fig. 1-2. Suppose that you want to know the area in square
inches when the base length and the height are expressed in feet. There are
exactly 144 square inches in one square foot, so we can restate the formula
for Fig. 1-2 this way: Let b represent the length (in feet) of the base of a tri-
angle, and let & represent the height (in feet) measured perpendicular to the
base. Then the area A (in square inches) of the triangle is
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= 144bh/2
(144/2) bh
= T72bh

Give Fig. 1-3 another look. Suppose that you want to know how far the
car has traveled in miles when its speed is given in feet per second and the
time is given in hours. To figure this out, you must know the relationship
between miles per hour and feet per second. To convert feet per second
approximately to miles per hour, it is necessary to multiply by 0.6818. Then
the units will be consistent with each other: The distance will be in miles,
the speed will be in miles per hour, and the time will be in hours. The for-
mula for Fig. 1-3 can be rewritten: Suppose that a car travels at a constant
speed s (in feet per second) down a straight highway (see Fig. 1-3). Let 7 be
a certain length of time (in hours). Then the distance d (in miles) that the
car travels in that length of time is given by

d = 0.6818st

You can derive these conversion factors easily. All you need to know is
the number of inches in a meter, the number of inches in a foot, the num-
ber of feet in a mile, and the number of seconds in an hour. As an exercise,
you might want to go through the arithmetic for yourself. Maybe you’ll
want to derive the factors to greater precision than is given here.

Conversion factors are not always straightforward. Fortunately, databases
abound in which conversion factors of all kinds are listed in tabular form. You
don’t have to memorize a lot of data. You can simply look up the conversion
factors you need. The Internet is a great source of this kind of information.
At the time of this writing, a comprehensive conversion database for physi-
cal units was available at the following location on the Web:

http:/lwww.physics.nist.gov/Pubs/SP811/appenB8.html

If you’ve used the Web very much, you know that uniform resource loca-
tors (URLSs) are always changing. If the preceding URL does not guide you
to conversion factors, point your browser to the National Institute of
Standards and Technology (NIST) home page and search the site for tables
of conversion factors:

http:/lwww.nist.gov

If the manner in which units are expressed on academic Web sites seems
unfathomable, don’t worry. As you work your way through this book, you
will get used to scientific notation, and such expressions will evolve from
arcane to mundane.
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One-Variable First-Order Equations

In algebra, it is customary to classify equations according to the highest
exponent, that is, the highest power to which the variables are raised. A
one-variable first-order equation, also called a first-order equation in one
variable, can be written in the following standard form:

ax+b=0

where a and b are constants, and x is the variable. Equations of this type
always have one real-number solution.

WHAT'S A “REAL” NUMBER?

A real number can be defined informally as any number that appears on a
number line (Fig. 1-4). Pure mathematicians would call that an oversimpli-
fication, but it will do here. Examples of real numbers include 0, 5, —7,
22.55, the square root of 2, and .

If you wonder what a “nonreal” number is like, consider the square root
of —1. What real number can you multiply by itself and get —1? There is
no such number. All the negative numbers, when squared, yield positive
numbers; all the positive numbers also yield positive numbers; zero
squared equals zero. The square root of —1 exists, but it lies somewhere
other than on the number line shown in Fig. 1-4.

—t 1ttt
8 -6 4 2 0 2 4 6 8

Fig. 1-4.  The real numbers can be depicted graphically as
points on a straight line.

Later in this chapter you will be introduced to imaginary numbers and
complex numbers, which are, in a certain theoretical sense, “nonreal.” For
now, however, let’s get back to the task at hand: first-order equations in one
variable.

SOME EXAMPLES

Any equation that can be converted into the preceding standard form is a
one-variable first-order equation. Alternative forms are
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cx=d
x = min

where ¢, d, m, and n are constants and n # 0. Here are some examples of
single-variable first-order equations:

4 —8=0
—mx =22
3ex = ¢

x =mlc

In these equations, m, e, and ¢ are known as physical constants, repre-
senting the circumference-to-diameter ratio of a circle, the natural expo-
nential base, and the speed of light in free space, respectively. The
constants 7 and e are not specified in units of any sort. They are plain num-
bers, and as such, they are called dimensionless constants:

= 3.14159
e=2.7 1828

The squiggly equals sign means “is approximately equal to.” The constant
c does not make sense unless units are specified. It must be expressed in
speed units of some kind, such as miles per second (mi/s) or kilometers per
second (km/s):

¢ = 186,282 mi/s
¢ = 299,792 km/s

HOW TO SOLVE

To solve a single-variable equation, it must in effect be converted into a for-
mula. The variable should appear all by itself on the left-hand side of the
equals sign, and the expression on the right-hand side should be reducible
to a specific number. There are several techniques for getting such an equa-
tion into the form of a statement that expressly tells you the value of the
variable:

* Add the same quantity to each side of the equation.

 Subtract the same quantity from each side of the equation.
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e Multiply each side of the equation by the same quantity.
» Divide each side of the equation by the same quantity.

The quantity involved in any of these processes can contain numbers,
constants, variables—anything. There’s one restriction: You can’t divide by
zero or by anything that can equal zero under any circumstances. The rea-
son for this is simple: Division by zero is not defined.

Consider the four equations mentioned a few paragraphs ago. Let’s
solve them. Listed them again, they are

4x —8=0
—mx = 22
3ex = ¢
x =m/c

The first equation is solved by adding 8 to each side and then dividing
each side by 4:

4x—-—8=0
4x = 8
x=8/4=2

The second equation is solved by dividing each side by 7 and then mul-
tiplying each side by —1:

—mx =22
—x =22/m
x = =22/
x= —22/3.14159
x = —7.00282

The third equation is solved by first expressing c (the speed of light in free
space) in the desired units, then dividing each side by e (where e = 2.71828),
and finally dividing each side by 3. Let’s consider c in kilometers per second;
¢ = 299,792 km/s. Then

3ex = ¢

(3 X 2.71828) x = 299,792 km/s
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3x = (299,792/2.71828) km/s = 110,287 km/s
x = (110,287/3) km/s = 36,762.3 km/s

Note that we must constantly keep the units in mind here. Unlike the first
two equations, this one involves a variable having a dimension (speed).
The fourth equation doesn’t need solving for the variable, except to
divide out the right-hand side. However, the units are tricky! Consider the
speed of light in miles per second for this example; ¢ = 186,282 mi/s. Then

x = ml/c

3.14159/ (186,282 mi/s)

0

X

When units appear in the denominator of a fractional expression, as they do
here, they must be inverted. That is, we must take the reciprocal of the unit
involved. In this case, this means changing miles per second into seconds
per mile (s/mi). This gives us

x = (3.14159/186,282) s/mi
x = 0.0000168647 s/mi

This is not the usual way to express speed, but if you think about it, it
makes sense. Whatever “object x”” might be, it takes about 0.0000168647 s
to travel 1 mile.

One-Variable Second-Order Equations

A one-variable second-order equation, also called a second-order equation
in one variable or, more often, a quadratic equation, can be written in the
following standard form:

ax2+bx+c=0

where a, b, and ¢ are constants, and x is the variable. (The constant ¢ here does
not stand for the speed of light.) Equations of this type can have two real-num-
ber solutions, one real-number solution, or no real-number solutions.

SOME EXAMPLES

Any equation that can be converted into the preceding form is a quadratic
equation. Alternative forms are
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mx2 +nx=p
gx> =rx+s
x+Hx+u=0

where m, n, p, g, 1, s, t, and u are constants. Here are some examples of
quadratic equations:

X2+2x+1=0

—3x2—4x=2
4x2 = —3x+5

x+4dHx—5=0

GET IT INTO FORM

Some quadratic equations are easy to solve; others are difficult. The first
step, no matter what scheme for solution is contemplated, is to get the
equation either into standard form or into factored form.

The first equation above is already in standard form. It is ready for an
attempt at solution, which, we will shortly see, is rather easy.

The second equation can be reduced to standard form by subtracting 2
from each side:

—3x2—4x=2
—3x2—4x—-2=0

The third equation can be reduced to standard form by adding 3x to each
side and then subtracting 5 from each side:

4x2 = =3x + 5
4x2+3x =5
4x2+3x—5=0

The fourth equation is in factored form. Scientists and engineers like this
sort of equation because it can be solved without having to do any work.
Look at it closely:

@+4Hx—5=0

The expression on the left-hand side of the equals sign is zero if either of
the two factors is zero. If x = —4, then the equation becomes
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(—4+4H(4-5=0
0X-9=0 (It works)
If x = 5, then the equation becomes
S+4)65-5=0
9X0=0 (It works again)

It is the height of simplicity to “guess” which values for the variable in a
factored quadratic will work as solutions. Just take the additive inverses
(negatives) of the constants in each factor.

There is one possible point of confusion that should be cleared up.
Suppose that you run across a quadratic like this:

x(x+3)=0
In this case, you might want to imagine it this way:
x+0)x+3)=0

and you will immediately see that the solutions are x = 0 or x = —3.

In case you forgot, at the beginning of this section it was mentioned that
a quadratic equation may have only one real-number solution. Here is an
example of the factored form of such an equation:

x—7Hx—7=0

Mathematicians might say something to the effect that, theoretically, this
equation has two real-number solutions, and they are both 7. However, the
physicist is content to say that the only real-number solution is 7.

THE QUADRATIC FORMULA
Look again at the second and third equations mentioned a while ago:
—3x2—4x=2
4x2=—-3x+5
These were reduced to standard form, yielding these equivalents:
—3x2—-4x—-2=0
42 +3x—5=0



Equations, Formulas, and Vectors ——

You might stare at these equations for a long time before you get any ideas
about how to factor them. You might never get a clue. Eventually, you
might wonder why you are wasting your time. Fortunately, there is a for-
mula you can use to solve quadratic equations in general. This formula uses
“brute force” rather than the intuition that factoring often requires.

Consider the standard form of a one-variable second-order equation
once again:

ax?+bx+c=0
The solution(s) to this equation can be found using this formula:
x = [—b* (b2 — dac)"?]/2a

A couple of things need clarification here. First, the symbol *. This is read
“plus or minus” and is a way of compacting two mathematical expressions
into one. It’s sort of a scientist’s equivalent of computer data compression.
When the preceding “compressed equation” is “expanded out,” it becomes
two distinct equations

x=[=b+ (b2 — 4ac)"”]/2a
x =[—=b— (b2 — 4ac)"*)/2a

The second item to be clarified involves the fractional exponent. This is not
a typo. It literally means the 2 power, another way of expressing the square
root. It’s convenient because it’s easier for some people to write than a rad-
ical sign. In general, the zth root of a number can be written as the 1/z
power. This is true not only for whole-number values of z but also for all
possible values of z except zero.

PLUGGING IN

Examine this equation once again:
—3x2—-4x—-2=0

Here, the coefficients are
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Plugging these numbers into the quadratic formula yields
x={4£[(—H2— 4 X =3 X =D]"}/(2 X =3)
=4 =* (16 — 24)'?/-6
=4+ (—8)/—6

We are confronted with the square root of —8 in the solution. This a “non-
real” number of the sort you were warned about a while ago.

THOSE “NONREAL” NUMBERS

Mathematicians symbolize the square root of —1, called the unit imaginary
number, by using the lowercase italic letter i. Scientists and engineers more
often symbolize it using the letter j, and henceforth, that is what we will do.

Any imaginary number can be obtained by multiplying j by some real
number g. The real number ¢ is customarily written after j if ¢ is positive
or zero. If g happens to be a negative real number, then the absolute value
of g is written after —j. Examples of imaginary numbers are j3, —j5,
j2.787, and —jmr.

The set of imaginary numbers can be depicted along a number line, just
as can the real numbers. In a sense, the real-number line and the imaginary-
number line are identical twins. As is the case with human twins, these two
number lines, although they look similar, are independent. The sets of
imaginary and real numbers have one value, zero, in common. Thus

j0=0

A complex number consists of the sum of some real number and some
imaginary number. The general form for a complex number  is

k=p+jq
where p and ¢q are real numbers.

Mathematicians, scientists, and engineers all denote the set of complex
numbers by placing the real-number and imaginary-number lines at right
angles to each other, intersecting at zero. The result is a rectangular coor-
dinate plane (Fig. 1-5). Every point on this plane corresponds to a unique
complex number; every complex number corresponds to a unique point on
the plane.

Now that you know a little about complex numbers, you might want to
examine the preceding solution and simplify it. Remember that it contains



Equations, Formulas, and Vectors ——— ¥ J»

Imaginary
number line
Real number j4T
line
2T
I ] ] ] ] ] ] ] ]
I T T T T T T 1 T 1
-4 -2 2 4
- /2 -4
-+ Zero point
(common to both
-ja+ number lines)

Fig. 1-5. The complex numbers can be depicted graphically as points
on a plane, defined by two number lines at right angles.

(—8)". An engineer or physicist would write this as 78", so the solution to
the quadratic is

x=4=*;8"%—-6

BACK TO “REALITY”
Now look again at this equation:

4 +3x—-5=0
Here, the coefficients are
a=4
b=3
c=-5

Plugging these numbers into the quadratic formula yields
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x= {3+ 32— (@4 X4X =522 X 4)
—3 + (9 + 80)/8
= —3 + (89)/8

The square root of 89 is a real number but a messy one. When expressed
in decimal form, it is nonrepeating and nonterminating. It can be approxi-
mated but never written out precisely. To four significant digits, its value is
9.434. Thus

x=—6 + 9.434/8

If you want to work this solution out to obtain two plain numbers without
any addition, subtraction, or division operations in it, go ahead. However,
it’s more important that you understand the process by which this solution
is obtained. If you are confused on this issue, you’re better off reviewing
the last several sections again and not bothering with arithmetic that any
calculator can do for you mindlessly.

One-Variable Higher-Order Equations

As the exponents in single-variable equations become larger and larger,
finding the solutions becomes an ever more complicated and difficult busi-
ness. In the olden days, a lot of insight, guesswork, and tedium were
involved in solving such equations. Today, scientists have the help of com-
puters, and when problems are encountered containing equations with vari-
ables raised to large powers, brute force is the method of choice. We’ll
define cubic equations, quartic equations, quintic equations, and nth-order
equations here but leave the solution processes to the more advanced pure-
mathematics textbooks.

THE CUBIC

A cubic equation, also called a one-variable third-order equation or a
third-order equation in one variable, can be written in the following stan-
dard form:

a3+ b +ex+d=0
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where a, b, ¢, and d are constants, and x is the variable. (Here, ¢ does not
stand for the speed of light in free space but represents a general constant.)
If you’re lucky, you’ll be able to reduce such an equation to factored form
to find real-number solutions 7, s, and ¢:

x—-—rNx—9x—0n=0

Don’t count on being able to factor a cubic equation into this form. Sometimes
it’s easy, but usually it is exceedingly difficult and time-consuming.

THE QUARTIC

A quartic equation, also called a one-variable fourth-order equation or a
fourth-order equation in one variable, can be written in the following stan-
dard form:

axt*+ b3+ cex2+de+e=0

where a, b, ¢, d, and e are constants, and x is the variable. (Here, ¢ does not
stand for the speed of light in free space, and e does not stand for the expo-
nential base; instead, these letters represent general constants in this con-
text.) There is an outside chance that you’ll be able to reduce such an
equation to factored form to find real-number solutions 7 s, ¢, and u:

x—-1rNkx—9x—0Hx—uw=0

As is the case with the cubic, you will be lucky if you can factor a quartic
equation into this form and thus find four real-number solutions with ease.

THE QUINTIC

A quintic equation, also called a one-variable fifth-order equation or a
fifth-order equation in one variable, can be written in the following stan-
dard form:

ax> +bx*+cxd3+d2+ex+f=0

where a, b, ¢, d, e, and f are constants, and x is the variable. (Here, ¢ does
not stand for the speed of light in free space, and e does not stand for the
exponential base; instead, these letters represent general constants in this
context.) There is a remote possibility that if you come across a quintic,
you’ll be able to reduce it to factored form to find real-number solutions 7
s, t, u, and v:
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x-rNxx—9x—"DHx—-—uwkx—-v)=0

As is the case with the cubic and the quartic, you will be lucky if you can
factor a quintic equation into this form. The “luck coefficient” goes down
considerably with each single-number exponent increase.

THE nTH-ORDER EQUATION

A one-variable nth-order equation can be written in the following standard
form:

ax" + ax" '+ apx" 2+ L+ a, 2+ a,_x+a,=0

where a;, a,,..., a, are constants, and x is the variable. We won’t even think
about trying to factor an equation like this in general, although specific
cases may lend themselves to factorization. Solving equations like this
requires the use of a computer or else a masochistic attitude.

Vector Arithmetic

As mentioned at the beginning of this chapter, a vector has two independent-
ly variable properties: magnitude and direction. Vectors are used commonly in
physics to represent phenomena such as force, velocity, and acceleration. In
contrast, real numbers, also called scalars, are one-dimensional (they can be
depicted on a line); they have only magnitude. Scalars are satisfactory for rep-
resenting phenomena or quantities such as temperature, time, and mass.

VECTORS IN TWO DIMENSIONS

Do you remember rectangular coordinates, the familiar xy plane from your
high-school algebra courses? Sometimes this is called the cartesian plane
(named after the mathematician Rene Descartes.) Imagine two vectors in that
plane. Call them a and b. (Vectors are customarily written in boldface, as
opposed to variables, constants, and coefficients, which are usually written in
italics). These two vectors can be denoted as rays from the origin (0, 0) to
points in the plane. A simplified rendition of this is shown in Fig. 1-6.

Suppose that the end point of a has values (x,, y,) and the end point of
b has values (x;, y,). The magnitude of a, written lal, is given by
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4 a+b

Fig. 1-6.  Vectors in the rectangular xy plane.

lal = (x2 + y2)'?
The sum of vectors a and b is

a+b=I[(x,+x), 0+l

This sum can be found geometrically by constructing a parallelogram
with a and b as adjacent sides; then a + b is the diagonal of this paral-
lelogram.

The dot product, also known as the scalar product and written a - b, of
vectors a and b is a real number given by the formula

a-b=uxx,tyy

The cross product, also known as the vector product and written a X b,
of vectors a and b is a vector perpendicular to the plane containing a and
b. Suppose that the angle between vectors a and b, as measured counter-
clockwise (from your point of view) in the plane containing them both, is
called g. Then a X b points toward you, and its magnitude is given by the
formula

la X bl = lal Ibl sin g
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VECTORS IN THREE DIMENSIONS

Now expand your mind into three dimensions. In rectangular xyz space,
also called cartesian three-space, two vectors a and b can be denoted as
rays from the origin (0, 0, 0) to points in space. A simplified illustration of
this is shown in Fig. 1-7.

Suppose that the end point of a has values (x,, y,, z,) and the end point
of b has values (x;, y,, z,). The magnitude of a, written lal, is

lal = (x2 + y2 + z2)!?
The sum of vectors a and b is

athb=I[k+x), 0t @+ )]

a+b b

Fig. 1-7.  Vectors in three-dimensional xyz space.

This sum can, as in the two-dimensional case, be found geometrically by
constructing a parallelogram with a and b as adjacent sides. The sum a + b
is the diagonal.

The dot product a - b of two vectors a and b in xyz space is a real num-
ber given by the formula

a b =uxx,+yy,t+ 2.2
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The cross product a X b of vectors a and b in xyz space is a little more
complicated to envision. It is a vector perpendicular to the plane P con-
taining both a and b and whose magnitude is given by the formula

la X bl = lal Ibl sin g

where sin g is the sine of the angle g between a and b as measured in P. The
direction of the vector a X b is perpendicular to plane P. If you look at a
and b from some point on a line perpendicular to P and intersecting P at
the origin, and ¢ is measured counterclockwise from a to b, then the vec-
tor a X b points toward you.

Some Laws for Vectors

When it comes to rules, vectors are no more exalted than ordinary numbers.
Here are a few so-called laws that all vectors obey.

MULTIPLICATION BY SCALAR

When any vector is multiplied by a real number, also known as a scalar, the
vector magnitude (length) is multiplied by that scalar. The direction
remains unchanged if the scalar is positive but is reversed if the scalar is
negative.

COMMUTATIVITY OF ADDITION

When you add two vectors, it does not matter in which order the sum is per-
formed. If a and b are vectors, then

a+b=b+a

COMMUTATIVITY OF VECTOR-SCALAR
MULTIPLICATION

When a vector is multiplied by a scalar, it does not matter in which order
the product is performed. If a is a vector and k is a real number, then

ka = ak



A Review of Mathematics

COMMUTATIVITY OF DOT PRODUCT

When the dot product of two vectors is found, it does not matter in which
order the vectors are placed. If a and b are vectors, then

a-b=Db-a

NEGATIVE COMMUTATIVITY OF CROSS PRODUCT

The cross product of two vectors reverses direction when the order in
which the vectors are “multiplied” is reversed. That is,

bXa=—(axh)

ASSOCIATIVITY OF ADDITION

When you add three vectors, it makes no difference how the sum is
grouped. If a, b, and ¢ are vectors, then

(@at+b)+tc=a+(®d+c

ASSOCIATIVITY OF VECTOR-SCALAR
MULTIPLICATION

Let a be a vector, and let k; and k, be real-number scalars. Then the fol-
lowing equation holds:

k] (k2a) = (k]kz) a

DISTRIBUTIVITY OF SCALAR MULTIPLICATION
OVER SCALAR ADDITION

Let a be a vector, and let k; and k, be real-number scalars. Then the fol-
lowing equations hold:

(kl + kz) a= kla + k2a
a(k; + k) = ak; + ak, = kja + kya
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DISTRIBUTIVITY OF SCALAR MULTIPLICATION
OVER VECTOR ADDITION

Let a and b be vectors, and let k£ be a real-number scalar. Then the follow-
ing equations hold:

k(a+b)=ka+ kb
(a+b)k=ak+bk=ka+ kb

DISTRIBUTIVITY OF DOT PRODUCT OVER VECTOR

ADDITION

Let a, b, and ¢ be vectors. Then the following equations hold:
a(b+c)=a-bt+a-c

b+c¢c)ra=b-at+tc-a=a-b+a-c

DISTRIBUTIVITY OF CROSS PRODUCT OVER
VECTOR ADDITION
Let a, b, and ¢ be vectors. Then the following equations hold:
axX(Mb+c)=aXb+aXece
(b+c)Xa=bXa+cXa
= —(@Xb)—(aXec)

= —(@aXb+aXcg

DOT PRODUCT OF CROSS PRODUCTS
Let a, b, ¢, and d be vectors. Then the following equation holds:
@xXb)y-cexXdy=(@-c)(b-d)—(a-d)y(b-c

These are only a few examples of the rules vectors universally obey. If
you have trouble directly envisioning how these rules work, you are not
alone. Some vector concepts are impossible for mortal humans to see with
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the “mind’s eye.” This is why we have mathematics. Equations and formu-
las like the ones in this chapter allow us to work with “beasts” that would
otherwise forever elude our grasp.

Refer to the text in this chapter if necessary. A good score is eight correct.
Answers are in the back of the book.

1. The equation (x — 4)(x + 5)(x — 1) = 0 is an example of
(a) a first-order equation.
(b) a second-order equation.
(c) a third-order equation.
(d) a fourth-order equation.

2. The real-number solutions to the equation in problem 1 are
(a) —4,5,and —1.
(b) 4, =5, and 1.
(c) There are no real-number solutions to this equation.
(d) There is not enough information to tell.

3. Suppose that there are two vectors in the xy plane as follows:
a=(x;,5)=0,0)
b= (xb, yb) =(0,4)

What is the length of the sum of these vectors?
(a) 5 units
(b) 7 units
(c) 12 units
(d) There is not enough information to tell.

4. Consider two vectors a and b, where a points east and b points north. In what
direction does a - b point?
(a) Northeast
(b) Straight up
(c) Straight down
(d) Irrelevant question! The dot product is not a vector.
5. Consider the two vectors a and b of problem 4. In what direction does a X b
point?
(a) Northeast
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(b) Straight up
(c) Straight down
(d) Irrelevant question! The cross product is not a vector.

When dividing each side of an equation by a quantity, what must you be care-
ful to avoid?

(a) Dividing by a constant

(b) Dividing by a variable

(c) Dividing by anything that can attain a value of zero

(d) Dividing each side by the same quantity

. Consider a second-order equation of the form ax® + bx + ¢ = 0 in which the

coefficients have these values:

a=2
b=0
c=28

What can be said about the solutions to this equation?
(a) They are real numbers.

(b) They are pure imaginary numbers.

(c) They are complex numbers.

(d) There are no solutions to this equation.

. Consider the equation 4x + 5 = 0. What would be a logical first step in the

process of solving this equation?
(a) Subtract 5 from each side.
(b) Divide each side by x.

(c) Multiply each side by x.

(d) Multiply each side by 0.

. When two vectors a and b are added together, which of the following state-

ments holds true in all situations?

(a) The composite is always longer than either a or b.

(b) The composite points in a direction midway between a and b.
(c) The composite is perpendicular to the plane containing a and b.
(d) None of the above.

. An equation with a variable all by itself on the left-hand side of the equals sign

and having an expression not containing that variable on the right-hand side of
the equals sign and that is used to determine a physical quantity is

(a) a formula.

(b) a first-order equation.

(c) a coefficient.

(d) a constant.
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Scientific Notation

Now that you’ve refreshed your memory on how to manipulate unspecified
numbers (variables), you should know about scientific notation, the way in
which physicists and engineers express the extreme range of values they
encounter. How many atoms are in the earth? What is the ratio of the volume
of a marble to the volume of the sun? These numbers can be approximated
pretty well, but in common decimal form they are difficult to work with.

Subscripts and Superscripts

Subscripts are used to modify the meanings of units, constants, and vari-
ables. A subscript is placed to the right of the main character (without spac-
ing), is set in smaller type than the main character, and is set below the
baseline.

Superscripts almost always represent exponents (the raising of a base
quantity to a power). Italicized lowercase English letters from the second
half of the alphabet (n through z) denote variable exponents. A superscript
is placed to the right of the main character (without spacing), is set in
smaller type than the main character, and is set above the baseline.

EXAMPLES OF SUBSCRIPTS

Numeric subscripts are never italicized, but alphabetic subscripts some-
times are. Here are three examples of subscripted quantities:

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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Z, read “Z sub nought”; stands for characteristic impedance of a transmis-
sion line

R, read “R sub out”; stands for output resistance in an electronic
circuit

Y read “y sub n”’; represents a variable

Ordinary numbers are rarely, if ever, modified with subscripts. You are not
likely to see expressions like this:

35
~9.7755,
~16,

Constants and variables, however, can come in many “flavors.” Some
physical constants are assigned subscripts by convention. An example is
m,, representing the mass of an electron at rest. You might want to repre-
sent points in three-dimensional space by using ordered triples like (x;, x,,
x5) rather than (x, y, z). This subscripting scheme becomes especially con-
venient if you’re talking about points in a higher-dimensional space, for
example, (x;, x,, X3, ..., X;;) in cartesian 11-space. Some cosmologists
believe that there are as many as 11 dimensions in our universe, and per-
haps more, so such applications of subscripts have real-world uses.

EXAMPLES OF SUPERSCRIPTS

Numeric superscripts are never italicized, but alphabetic superscripts usu-
ally are. Examples of superscripted quantities are

2} read “two cubed”; represents 2 X 2 X 2
e read “e to the xth”; represents the exponential function of x
y”2 read “y to the one-half”’; represents the square root of y

There is a significant difference between 2% and 2! There is also a differ-
ence, both quantitative and qualitative, between the expression e that sym-
bolizes the natural-logarithm base (approximately 2.71828) and ¢, which
can represent e raised to a variable power and which is sometimes used in
place of the words exponential function.
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Power-of-10 Notation

Scientists and engineers like to express extreme numerical values using an
exponential technique known as power-of-10 notation. This is usually what
is meant when they talk about “scientific notation.”

STANDARD FORM

A numeral in standard power-of-10 notation is written as follows:
m.n X 10°

where the dot (.) is a period written on the baseline (not a raised dot indi-
cating multiplication) and is called the radix point or decimal point. The
value m (to the left of the radix point) is a positive integer from the set {1,
2,3,4,5,6,7,8,9}. The value n (to the right of the radix point) is a non-
negative integer from the set {0, 1, 2, 3,4, 5, 6, 7, 8, 9}. The value z, which
is the power of 10, can be any integer: positive, negative, or zero. Here are
some examples of numbers written in standard scientific notation:

2.56 X 10°
8.0773 X 10 '®
1.000 % 10°

ALTERNATIVE FORM

In certain countries and in many books and papers written before the mid-
dle of the twentieth century, a slight variation on the preceding theme is
used. The alternative power-of-10 notation requires that that m = 0 rather
than m = 1. When the preceding quantities are expressed this way, they
appear as decimal fractions larger than O but less than 1, and the value of
the exponent is increased by 1 compared with the standard form:

0.256 % 10’
0.80773 x 10"
0.1000 X 10"
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These are the same three numerical values as the previous three; the only
difference is the way in which they’re expressed. It’s like saying that you’re
driving down a road at 50,000 meters per hour rather than at 50 kilometers
per hour.

THE “TIMES SIGN”

The multiplication sign in a power-of-10 expression can be denoted in
various ways. Most scientists in America use the cross symbol (X), as in
the preceding examples. However, a small dot raised above the baseline
(+) is sometimes used to represent multiplication in power-of-10 notation.
When written this way, the preceding numbers look like this in the stan-
dard form:

256 - 10°
8.0773 - 10 '®
1.000 - 10°

This small dot should not be confused with a radix point, as in the expres-
sion

m.n - 10°

in which the dot between m and » is a radix point and lies along the base-
line, whereas the dot between n and 10° is a multiplication symbol and
lies above the baseline. The dot symbol is preferred when multiplication
is required to express the dimensions of a physical unit. An example
is kilogram-meter per second squared, which is symbolized kg - m/s” or
kg -m-s .

When using an old-fashioned typewriter or a word processor that lacks
a good repertoire of symbols, the lowercase nonitalicized letter x can be
used to indicate multiplication. But this can cause confusion because it’s
easy to mistake this letter x for a variable. Thus, in general, it’s a bad idea
to use the letter x as a “times sign.” An alternative in this situation is to
use an asterisk (*). This is why occasionally you will see numbers writ-
ten like this:

2.56%10°
8.0773%10 '*
1.000%10°
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PLAIN-TEXT EXPONENTS

Once in awhile you will have to express numbers in power-of-10 notation
using plain, unformatted text. This is the case, for example, when trans-
mitting information within the body of an e-mail message (rather than as
an attachment). Some calculators and computers use this system. The
uppercase letter E indicates 10 raised to the power of the number that fol-
lows. In this format, the preceding quantities are written

2.56E6
8.0773E — 18
1.000EO

Sometimes the exponent is always written with two numerals and always
includes a plus sign or a minus sign, so the preceding expressions appear as

2.56E + 06
8.0773E — 18
1.000E + 00

Another alternative is to use an asterisk to indicate multiplication, and the
symbol " to indicate a superscript, so the expressions look like this:

2.56%10"6
8.0773*10" — 18
1.000*10"0

In all these examples, the numerical values represented are identical.
Respectively, if written out in full, they are

2,560,000
0.0000000000000000080773
1.000

ORDERS OF MAGNITUDE

As you can see, power-of-10 notation makes it possible to easily write down
numbers that denote unimaginably gigantic or tiny quantities. Consider the
following:
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2.55 x 10°°%
—9.8088 X 10 034321

Imagine the task of writing either of these numbers out in ordinary decimal
form! In the first case, you’d have to write the numerals 255 and then fol-
low them with a string of 45,587 zeros. In the second case, you’d have to
write a minus sign, then a numeral zero, then a radix point, then a string of
7,654,320 zeros, and then the numerals 9, 8, 9, 8, and 8.

Now consider these two numbers:

2.55 x 10™?
—9.8088 X 10 034318

These look a lot like the first two, don’t they? However, both these new num-
bers are 1,000 times larger than the original two. You can tell by looking at
the exponents. Both exponents are larger by 3. The number 45,592 is 3 more
than 45,589, and the number —7,754,318 is 3 larger than —7,754,321.
(Numbers grow larger in the mathematical sense as they become more posi-
tive or less negative.) The second pair of numbers is three orders of magni-
tude larger than the first pair of numbers. They look almost the same here,
and they would look essentially identical if they were written out in full dec-
imal form. However, they are as different as a meter is from a kilometer.

The order-of-magnitude concept makes it possible to construct number
lines, charts, and graphs with scales that cover huge spans of values. Three
examples are shown in Fig. 2-1. Part a shows a number line spanning three
orders of magnitude, from 1 to 1,000. Part b shows a number line spanning
10 orders of magnitude, from 107 to 10”. Part ¢ shows a graph whose hor-
izontal scale spans 10 orders of magnitude, from 1072 to 107, and whose
vertical scale extends from O to 10.

If you’re astute, you’ll notice that while the O-to-10 scale is the easiest to
envision directly, it covers more orders of magnitude than any of the others:
infinitely many. This is so because no matter how many times you cut a
nonzero number to /10 its original size, you can never reach zero.

PREFIX MULTIPLIERS

Special verbal prefixes, known as prefix multipliers, are used commonly by
physicists and engineers to express orders of magnitude. Flip ahead to
Chapter 6 for a moment. Table 6.1 shows the prefix multipliers used for
factors ranging from 10™** to 10**.
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0 1 1 1 1 1 1 1 1 1 ]

1073 107" 10 103 10° 107

Fig. 2-1.  (a) A number line spanning three orders of magnitude. (b) A number
line spanning 10 orders of magnitude. (¢) A coordinate system whose horizontal
scale spans 10 orders of magnitude and whose vertical scale extends from O to 10.

Rules for Use

In printed literature, power-of-10 notation generally is used only when the
power of 10 is large or small. If the exponent is between —2 and 2 inclu-
sive, numbers are written out in plain decimal form as a rule. If the expo-
nent is —3 or 3, numbers are sometimes written out and are sometimes
written in power-of-10 notation. If the exponent is —4 or smaller, or if it is
4 or larger, values are expressed in power-of-10 notation as a rule.
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Some calculators, when set for power-of-10 notation, display all num-
bers that way. This can be confusing, especially when the power of 10 is
zero and the calculator is set to display a lot of digits. Most people under-
stand the expression 8.407 more easily than 8.407000000E + 00, for exam-
ple, even though they represent the same number.

With this in mind, let’s see how power-of-10 notation works when we
want to do simple arithmetic using extreme numbers.

ADDITION

Addition of numbers is best done by writing numbers out in ordinary dec-
imal form if at all possible. Thus, for example,

(3.045 X 10%) + (6.853 X 10%) = 304,500 + 6,853,000
= 7,157,500
=17.1575 X 10°

(3.045 X 10°% + (6.853 X 10~ = 0.0003045 + 0.0000006853
= 0.0003051853
=3.051853 X 10°*

(3.045 X 10%) + (6.853 X 107 7) = 304,500 + 0.0000006853
= 304,500.0000006853
= 3.045000000006853 X 10°

SUBTRACTION
Subtraction follows the same basic rules as addition:

(3.045 X 10°) — (6.853 X 10°%) = 304,500 — 6,853,000
—6,548,500
—6.548500 X 10°

(3.045 X 107%) — (6.853 X 107") = 0.0003045 — 0.0000006853
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= 0.0003038147
=3.038147 x 10°*

(3.045 X 10°) — (6.853 X 10~7) = 304,500 — 0.0000006853
= 304,499.9999993 147
= 3.044999999993147 X 10°

Power-of-10 notation may, at first, seem to do more harm than good
when it comes to addition and subtraction. However, there is another
consideration: the matter of significant figures. These make addition and
subtraction, in the inexact world of experimental physics, quite easy and
sometimes trivial. If the absolute values of two numbers differ by very
many orders of magnitude, the one with the smaller absolute value (that
is, the one closer to zero) can vanish into insignificance and, for practi-
cal purposes, can be ignored. We’ll look at this phenomenon later in this
chapter.

MULTIPLICATION

When numbers are multiplied in power-of-10 notation, the decimal num-
bers (to the left of the multiplication symbol) are multiplied by each
other. Then the powers of 10 are added. Finally, the product is reduced to
standard form. Here are three examples, using the same three number
pairs as before:

(3.045 X 10°) X (6.853 X 10%) = (3.045 X 6.853) X (10° X 10°)
20.867385 X 10°7°

= 20.867385 x 10"

= 2.0867385 X 10"

(3.045 X 107*) X (6.853 X 1077) = (3.045 X 6.853) X (10™* x 107)
= 20.867385 x 10!+
= 20.867385 x 10"
=2.0867385 X 10"
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(3.045 X 10°) X (6.853 X '"77) = (3.045 X 6.853) X (10° X 107)
= 20.867385 X 10°7"
= 20.867385 X 10°
= 2.0867385 X 10~
= 0.20867385

This last number is written out in plain decimal form because the exponent
is between —2 and 2 inclusive.

DIVISION

When numbers are divided in power-of-10 notation, the decimal numbers
(to the left of the multiplication symbol) are divided by each other. Then
the powers of 10 are subtracted. Finally, the quotient is reduced to standard
form. Let’s go another round with the same three number pairs we’ve been
using:

(3.045 X 10°)/(6.853 X 10°) = (3.045/6.853) X (10°/10%
~ 0.444331 x 10°79
= 0.444331 X 10"
= 0.0444331

(3.045 X 10 H/(6.853 X 1077) = (3.045/6.853) X (10~*/1077)
~ 0.444331 x 10747
= 0.444331 X 10°
= 4.44331 X 10°
= 444331

(3.045 X 10°)/(6.853 X 107") = (3.045/6.853) X (10°/107)
~0.444331 x 10"
= 0.444331 X 10"
= 4.44331 x 10"
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Note the “approximately equal to” sign (=) in the preceding equations. The
quotient here doesn’t divide out neatly to produce a resultant with a rea-
sonable number of digits. To this, you might naturally ask, “How many dig-
its is reasonable?” The answer lies in the method scientists use to determine
significant figures. An explanation of this is coming up soon.

EXPONENTIATION

When a number is raised to a power in scientific notation, both the coeffi-
cient and the power of 10 itself must be raised to that power and the result
multiplied. Consider this example:

(4.33 X 10°)’ = (4.33)’ X (10°)’
= 81.182737 x 10"
= 81.182737 x 10"
= 8.1182727 X 10'°

If you are a mathematical purist, you will notice gratuitous parentheses in the
first and second lines here. From the point of view of a practical scientist, it
is more important that the result of a calculation be correct than that the
expression be as mathematically lean as possible.

Let’s consider another example, in which the exponent is negative:

(527 X 10°H = (5.27) X (107%?
=27.7729 x 1042
=27.7729 X 10
=2.77729 X 107’

TAKING ROOTS

To find the root of a number in power-of-10 notation, the easiest thing to
do is to consider that the root is a fractional exponent. The square root is
the same thing as the % power; the cube root is the same thing as the %3
power. Then you can multiply things out in exactly the same way as you
would with whole-number powers. Here is an example:

(527 x 109" = (5.27)" x (104"
~ 2.2956 x 104<1”2)
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=2.2956 X 10>
= 0.02956

Note the “approximately equal to” sign in the second line. The square root
of 5.27 is an irrational number, and the best we can do is to approximate its
decimal expansion. Note also that because the exponent in the resultant is
within the limits for which we can write the number out in plain decimal
form, we have done so, getting rid of the power of 10.

Approximation, Error, and Precedence

In physics, the numbers we work with are not always exact values. In fact,
in experimental physics, numbers are rarely the neat, crisp, precise animals
familiar to the mathematician. Usually, we must approximate. There are
two ways of doing this: truncation (simpler but less accurate) and rounding
(a little more difficult but more accurate).

TRUNCATION

The process of truncation deletes all the numerals to the right of a certain
point in the decimal part of an expression. Some electronic calculators use
this process to fit numbers within their displays. For example, the number
3.830175692803 can be shortened in steps as follows:

3.830175692803
3.83017569280
3.8301756928
3.830175692
3.83017569
3.8301756
3.830175
3.83017

3.83
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3.8
3

ROUNDING

Rounding is the preferred method of rendering numbers in shortened form.
In this process, when a given digit (call it r) is deleted at the right-hand
extreme of an expression, the digit ¢ to its left (which becomes the new r
after the old r is deleted) is not changed if 0 = r =4. If 5 =r = 9, then ¢
is increased by 1 (“rounded up”’). Some electronic calculators use rounding
rather than truncation. If rounding is used, the number 3.830175692803
can be shortened in steps as follows:

3.830175692803

3.83017569280

3.8301756928

3.830175693

3.83017569

3.8301757

3.830176

3.83018

3.8302

3.830

3.83

3.8

4

ERROR

When physical quantities are measured, exactness is impossible. Errors
occur because of imperfections in the instruments and in some cases
because of human error too. Suppose that x, represents the actual value of
a quantity to be measured. Let x, represent the measured value of that
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quantity, in the same units as x,. Then the absolute error D, (in the same
units as x,) is given by

D,=x, —x,
The proportional error D, is equal to the absolute error divided by the actu-
al value of the quantity:

D, = (x,, = x)/x,

The percentage error D, is equal to 100 times the proportional error
expressed as a ratio:

D, = 100 (x,, — x,)/x,

Error values and percentages are positive if x,, > x, and negative if x,, < x,.
This means that if the measured value is too large, the error is positive, and
if the measured value is too small, the error is negative.

Does something seem strange about the preceding formulas? Are you a
little uneasy about them? If you aren’t, maybe you should be. Note that the
denominators of all three equations contain the value x,, the actual value of
the quantity under scrutiny—the value that we are admitting we do not
know exactly because our measurement is imperfect! How can we calcu-
late error based on formulas that contain a quantity subject to the very error
in question? The answer is that we can only make a good guess at x,. This
is done by taking several, perhaps even many, measurements, each with its
own value x,,;, X,,,, X3, and so on, and then averaging them to get a good
estimate of x,. This means that in the imperfect world of physical things,
the extent of our uncertainty is uncertain!

The foregoing method of error calculation also can be used to deter-
mine the extent to which a single reading x,, varies from a long-term aver-
age x,, where x, is derived from many readings taken over a period of
time.

PRECEDENCE

Mathematicians, scientists, and engineers have all agreed on a certain order
in which operations should be performed when they appear together in an
expression. This prevents confusion and ambiguity. When various opera-
tions such as addition, subtraction, multiplication, division, and exponenti-
ation appear in an expression and you need to simplify that expression,
perform the operations in the following sequence:
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Simplify all expressions within parentheses from the inside out.
* Perform all exponential operations, proceeding from left to right.
¢ Perform all products and quotients, proceeding from left to right.
¢ Perform all sums and differences, proceeding from left to right.

Here are two examples of expressions simplified according to these
rules of precedence. Note that the order of the numerals and operations is
the same in each case, but the groupings differ.

(2 +3) (=3 -7
[5 X (=41
(5 X 16)°
807
6400

{2 +3x(=3)— 11}
{2+ =9 - 117
(8%’
64°
4096

Suppose that you’re given a complicated expression and that there are
no parentheses, brackets, or braces in it? This does not have to be ambigu-
ous as long as the preceding rules are followed. Consider this example:

7= -3 + 4x2y - 12xy2 - Sy3

If this were written with parentheses, brackets, and braces to emphasize the
rules of precedence, it would look like this:

2=[-30)]+ {41y — (12 [x 6D — [5 0]

Because we have agreed on the rules of precedence, we can do without the
parentheses, brackets, and braces. This will help to keep pure mathemati-
cians happy. It might someday keep one of your research projects from
going awry! Nevertheless, if there is any doubt about a crucial equation,
you’re better off to use a couple of unnecessary parentheses than to make a
costly mistake.
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Significant Figures

When multiplication or division is done using power-of-10 notation, the
number of significant figures in the result cannot legitimately be greater
than the number of significant figures in the least-exact expression. You
may wonder why, in some of the preceding examples, we come up with
answers that have more digits than any of the numbers in the original
problem. In pure mathematics, this is not an issue, and up to this point we
haven’t been concerned with it. In physics, however, things are not so
clear-cut.

Consider the two numbers x = 2.453 X 10* and y=172X 10”. The fol-
lowing is a perfectly valid statement in arithmetic:

xy = 2453 X 10* X 7.2 X 10’
2.453 x 7.2 x 10"
17.6616 X 10"

1.76616 X 10"

However, if x and y represent measured quantities, as they would in exper-
imental physics, the preceding statement needs qualification. We must pay
close attention to how much accuracy we claim.

HOW ACCURATE ARE WE?

When you see a product or quotient containing a bunch of numbers in sci-
entific notation, count the number of single digits in the decimal portions
of each number. Then take the smallest number of digits. This is the num-
ber of significant figures you can claim in the final answer or solution. In
the preceding example, there are four single digits in the decimal part of x,
and two single digits in the decimal part of y. Thus we must round off the
answer, which appears to contain six significant figures, to two. It is impor-
tant to use rounding and not truncation! We should conclude that

xy = 2453 X 10* X 7.2 X 10’
=18 x 10"

In situations of this sort, if you insist on being 100 percent rigorous, you
should use squiggly equals signs throughout because you are always deal-
ing with approximate values. However, most experimentalists are content
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to use ordinary equals signs. It is universally understood that physical
measurements are inexact, and writing squiggly lines can get tiresome.

Suppose that we want to find the quotient x/y instead of the product xy?
Proceed as follows:

xly = (2.453 x 10H/(7.2 X 10"
= (2.453/7.2) X 107
= (0.3406944444 --- X 10~
= 3.406944444 --- X 107"
=34x10"*

3

WHAT ABOUT ZEROS?

Sometimes, when you make a calculation, you’ll get an answer that lands
on a neat, seemingly whole-number value. Consider x = 1.41421 and y =
1.41422. Both of these have six significant figures. The product, taking sig-
nificant figures into account, is

1.41421 X 1.41422
2.0000040662
= 2.00000

Xy

This looks like it’s exactly equal to 2. In pure mathematics, 2.00000 = 2.
However, not in physics! (This is the sort of thing that drove the famous
mathematician G. H. Hardy to write that mathematicians are in better con-
tact with reality than are physicists.) There is always some error in physics.
Those five zeros are important. They indicate how near the exact number 2
we believe the resultant to be. We know that the answer is very close to a
mathematician’s idea of the number 2, but there is an uncertainty of up to
+0.000005. If we chop off the zeros and say simply that xy = 2, we allow
for an uncertainty of up to £0.5, and in this case we are entitled to better
than this. When we claim a certain number of significant figures, zero gets
as much consideration as any other digit.

IN ADDITION AND SUBTRACTION

When measured quantities are added or subtracted, determining the number
of significant figures can involve subjective judgment. The best procedure is
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to expand all the values out to their plain decimal form (if possible), make
the calculation as if you were a pure mathematician, and then, at the end
of the process, decide how many significant figures you can reasonably
claim.

In some cases the outcome of determining significant figures in a sum
or difference is similar to what happens with multiplication or division.
Take, for example, the sum x + y, where x = 3.778800 X 107° and y =
9.22 X 10”". This calculation proceeds as follows:

x = 0.000003778800
y = 0.000000922
x + y = 0.0000047008
= 47008 X 107°
=470 % 10°°

In other instances, however, one of the values in a sum or difference is
insignificant with respect to the other. Let’s say that x = 3.778800 X 10%,
whereas y = 9.22 X 10™". The process of finding the sum goes like this:

x = 37,788.00
y = 0.000000922
x +y = 37,788.000000922
= 3.7788000000922 X 10"

In this case, y is so much smaller than x that it doesn’t significantly affect
the value of the sum. Here it is best to regard y, in relation to x or to the sum
x + y, as the equivalent of a gnat compared with a watermelon. If a gnat
lands on a watermelon, the total weight does not change appreciably, nor
does the presence or absence of the gnat have any effect on the accuracy of
the scales. We can conclude that the “sum” here is the same as the larger
number. The value y is akin to a nuisance or a negligible error:

x +y = 3.778800 x 10

G. H. Hardy must be thanking the cosmos that he was not an experi-
mental scientist. However, some people delight in subjectivity and impre-
cision. A gnat ought to be brushed off a watermelon without giving the
matter any thought. A theoretician might derive equations to express the
shape of the surface formed by the melon’s two-dimensional geometric
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boundary with surrounding three-space without the gnat and then again
with it and marvel at the difference between the resulting two relations. An
experimentalist would, after weighing the melon, flick the gnat away, cal-
culate the number of people with whom he could share the melon, slice it
up, and have lunch with friends, making sure to spit out the seeds.

Refer to the text in this chapter if necessary. A good score is eight correct.
Answers are in the back of the book.

1.

Two numbers differ in size by exactly six orders of magnitude. This is a factor
of

(a) 6.

(b) 36.

(c) 10°.

(@) 6°.

. Suppose that we invent a new unit called the flummox (symbol: Fx). What

might we logically call 10~ flummox?
(a) One milliflummox (1 mFx)

(b) One nanoflummox (1 nFx)

(c) One picoflummox (1 pFx)

(d) One kiloflummox (1 kFx)

. What is the value of 2 X 4> — 67

(a) 26
(b) 58
(c) 20
(d) There is no way to tell; this is an ambiguous expression.

. What is another way of writing 78,303?

(a) 7.8303 x 10

(b) 7.8303E + 04

(c) 0.78 X 10

(d) This number is in its most appropriate form already.

. Suppose that we measure the speed of an Internet connection 100 times and

come up with an average of 480 kilobits per second (kbps). Suppose that the
speed of the connection is absolutely constant. We go to a test site and obtain
a reading of 440 kbps. What is the error of this measurement in percent?
Express your answer to three significant figures.
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10.

(a) 440/480, or 91.7 percent

(b) (480 — 440)/440, or 9.09 percent
(c) (440 — 480)/480, or —8.33 percent
(d) 440 — 480, or —40.0 percent

. Suppose that we measure a quantity and get 8.53 X 10* units, accurate to three

significant figures. Within what range of whole-number units can we say the
actual value is?

(a) 85,250 units to 85,349 units

(b) 85,290 units to 86,310 units

(c) 85,399 units to 86,301 units

(d) We can’t say.

. What is the difference 8.899 X 10° minus 2.02 X 10~ ' taking significant fig-

ures into account?
() 2.02 X 107"
(b) 8.9 X 10°

(c) 6.88 X 10°

(d) 8.899 X 10°

. What is the order in which operations should be performed in an expression

containing no parentheses?

(a) Addition, subtraction, multiplication, division, exponentiation

(b) Exponentiation, multiplication and division, addition and subtraction
(c) From left to right

(d) It is impossible to know

. Suppose that the population of a certain country is found to be 78,790,003 peo-

ple. What is this expressed to three significant figures?
(a) 7.88 X 10

(b) 7.879 X 10’

(c) 78,800,000

(d) 78E + 06

What is the product of 8.72 X 10’ and 6.554 X 10°° taking significant figures
into account?

(a) 57.15088

(b) 57.151

(c) 57.15

(d)57.2



Graphing Schemes

Graphs are diagrams of the functions and relations that express phenom-
ena in the physical world. There are all kinds of graphs; the simplest are
two-dimensional drawings. The most sophisticated graphs cannot be envi-
sioned even by the most astute human beings, and computers are required
to show cross sections of them so that we can get a glimpse of what is
going on. In this chapter we will look at the most commonly used methods
of graphing. There will be plenty of examples so that you can see what the
graphs of various relations and functions look like.

Rectangular Coordinates

The most straightforward two-dimensional coordinate system is the carte-
sian plane (Fig. 3-1), also called rectangular coordinates or the xy plane.
The independent variable is plotted along the x axis, or abscissa; the
dependent variable is plotted along the y axis, or ordinate. The scales of
the abscissa and ordinate are usually (but not always) linear, and they are
perpendicular to each other. The divisions of the abscissa need not repre-
sent the same increments as the divisions of the ordinate.

SLOPE-INTERCEPT FORM OF LINEAR EQUATION

A linear equation in two variables can be rearranged from standard form to
a conveniently graphable form as follows:

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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-+ -4

+ 5
\ 4

Fig. 3-1. The cartesian coordinate plane.

ax+by+c=0
ax + by = —c
by = —ax — ¢
y = (—a/b)x — (c/b)
where a, b, and c are real-number constants, and b # 0. Such an equation
appears as a straight line when graphed on the cartesian plane. Let dx rep-
resent a small change in the value of x on such a graph; let dy represent the
change in the value of y that results from this change in x. The ratio dy/dx
is defined as the slope of the line and is commonly symbolized m. Let k rep-

resent the y value of the point where the line crosses the ordinate. Then the
following equations hold:

m = —alb

k= —clb
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The linear equation can be rewritten in slope-intercept form as
y=mx +k
To plot a graph of a linear equation in cartesian coordinates, proceed as
follows:
» Convert the equation to slope-intercept form.
* Plot the point y = k.
* Move to the right by n units on the graph.
* Move upward by mn units (or downward by —mn units).
* Plot the resulting point y = mn + k.
» Connect the two points with a straight line.

Figures 3-2 and 3-3 illustrate the following linear equations as graphed
in slope-intercept form:

y=5x-—73
y=—-x+2
y
6
(0+1,-3+5) 4
e
«l 1 1 1 1 1 [ T A [ H
T T T 11 N N R N N B
-6 -4 -2 _ 4 6

Fig. 3-2. Slope-intercept plot of the equation y = 5x — 3.
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(0+2,2-2)

Fig. 3-3.  Slope-intercept plot of the equation y = —x + 2.

A positive slope indicates that the graph “ramps upward” and a negative
slope indicates that the graph “ramps downward” as you move toward the
right. A zero slope indicates a horizontal line. The slope of a vertical line is
undefined because, in the form shown here, it requires that something be
divided by zero.

POINT-SLOPE FORM OF LINEAR EQUATION

It is not always convenient to plot a graph of a line based on the y-intercept
point because the part of the graph you are interested in may lie at a great
distance from that point. In this situation, the point-slope form of a linear
equation can be used. This form is based on the slope m of the line and the
coordinates of a known point (x,, y,):

Y=Yy = m(x — Xy

To plot a graph of a linear equation using the point-slope method, you
can follow these steps in order:
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* Convert the equation to point-slope form.

* Determine a point (x,, y,) by “plugging in” values.
¢ Plot (x5
* Move to the right by n units on the graph.

¥,) on the plane.

* Move upward by mn units (or downward by —mn units).
* Plot the resulting point (x,, y,).
¢ Connect the points (x;, y,) and (x,, y,) with a straight line.
Figures 3-4 and 3-5 illustrate the following linear equations as graphed in
point-slope form for regions near points that are a long way from the origin:
y—104 =3 (x — 72)
y+55=-2x+85

y
110
(X4,Y7) = (72+1,104+3)
105 —+
(Xoyyo) = (72,104)
100 —t—t—t——t—+—F+—+—
70 75 80

Fig. 3-4.  Point-slope plot of the equation y — 104 = 3(x — 72).
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(Xo.Y,) = (-85,-55)

(x4,¥4) = (-85+2,-55-4)

Fig. 3-5.  Point-slope plot of the equation y + 55 = —2(x + 85).

FINDING LINEAR EQUATION BASED ON GRAPH

Now suppose that we are working in rectangular coordinates, and we know
the exact values of two points P and Q. These two points define a straight
line; this is one of the fundamental rules of geometry. Call the line L. Let’s
give the coordinates of the points these names:

P=(x,y,)
0=(x,y)
The slope m of the line L is given by either of the following formulas:
m=(y, = y)x, —x,)
m=(, -y, - x)
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The point-slope equation of L can be determined based on the known coor-
dinates of P or Q. Therefore, either of the following formulas represent the
line L:

y—y,=mx—x)

YTy, = mx —x)

EQUATION OF PARABOLA

The cartesian-coordinate graph of a quadratic equation where y is substi-
tuted for O in the standard form (recall this from Chapter 1) is a parabola:

y=ax +bx +c¢

where a # 0. (If a = 0, then the equation is linear, not quadratic.) To plot a
graph of the preceding equation, first determine the coordinates of the point
(x4 ¥,) Where

o

Yo

This point represents the base point of the parabola; that is, the point at
which the curvature is sharpest and at which the slope of a line tangent to
the curve is zero. Once this point is known, find four more points by “plug-
ging in” values of x somewhat greater than and less than x,, and determin-
ing the corresponding y values. These x values, call them x_ X_, x;, and
x,, should be equally spaced on either side of x,, such that

—bl(2a)
¢ — b'l(4a)

2

3672<)c71<)c()<)c1<)c2

Xy T X T X TX T T TS TN

This will give you five points that lie along the parabola and that are sym-
metrical relative to the axis of the curve. The graph can then be inferred (this
means that you can make a good educated guess), provided that the points are
chosen judiciously. Some trial and error may be required. If a > 0, the
parabola will open upward. If a < 0, the parabola will open downward.

EXAMPLE A
Consider the following formula:

y:x2+2x+]
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The base point is
X, =—22=-1
Vo=1—-44=1-1=0

Therefore, (x,, y,) = (= 1,0)
This point is plotted first. Next, plot the following points:
X_, = Xy — 2=-3
Y,= (=3 +2(-3)+1=9-6+1=4
Therefore, (x_,,y_,) = (=3, 4)
X =x—1=-2
Yy, = +2(-)+1=4-4+1=1
Therefore, (x_,,y_) = (=2,1)
x,=x,+1=0
=0 +20)+1=0+0+1=1
Therefore, (x,, y) = (0, 1)
X, =X, +2=1
B=(Y+2(M+1=1+2+1=4
Therefore, (x,, y,) = (1, 4)

The five known points are plotted as shown in Fig. 3-6. From these, the
curve can be inferred.

EXAMPLE B
Consider the following formula:

y=-2"+4x—5
The base point is
Xy = —4—4 =1
Yo=—5—16/—8=—-5+2=-3
Therefore, (x,, y)) = (1, —3)
This point is plotted first. Next, plot the following points:
X ,=x,—2=-1

y,=—2(-1'+4(-1)-5=-2-4-5=—11
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| —+— x
4
o L
Fig. 3-6.  Plot of the parabolay = x° + 2x + 1.
Therefore, (x_,, y_,) = (-1, —11)
X =x,—1=0
Yy, =-20 +40) —5=-5
Therefore, (x_,,y_)) = (0, —5)
X, =x,t1=2
Y, =22 +42+5=-8+8-5=-5

Therefore, (x,y) = (2, —5)
X, =x,+2=3
y,= 203  +403)+5=—-18+12-5=—11
Therefore, (x,, y,) = (3, —11)

The five known points are plotted as shown in Fig. 3-7. From these, the
curve can be inferred.
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-16 4+
Fig. 3-7. Plot of the parabola y = —2x" + 4x — 5.

EQUATION OF CIRCLE

The general form for the equation of a circle in the xy plane is given by the
following formula:

2 2 2
—x) + -y =7
where (x,, y,) represents the coordinates of the center of the circle, and r
represents the radius. This is illustrated in Fig. 3-8. In the special case
where the circle is centered at the origin, the formula becomes
24 yz .
Such a circle intersects the x axis at the points ( 0) and (—# 0); it inter-

sects the y axis at the points (0, ) and (0, —r). An even more specific case
is the unit circle:

x2+y2=1
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(X01Y0)

Fig. 3-8.  Plot of the circle (x — x,)° + (y — y)) = 7.

This curve intersects the x axis at the points (1, 0) and (—1, 0); it also inter-
sects the y axis at the points (0, 1) and (0, —1).

GRAPHIC SOLUTION TO PAIRS OF EQUATIONS

The solutions of pairs of equations can be found by graphing both the equa-
tions on the same set of coordinates. Solutions appear as intersection points
between the plots.

EXAMPLE A

Suppose that you are given these two equations and are told to solve
them for values of x and y that satisfy both at the same time:

y=x2+2x+1

y=—-x+1
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These equations are graphed in Fig. 3-9. The line crosses the parabola at two
points, indicating that there are two solutions to this set of simultaneous equa-
tions. The coordinates of the points corresponding to the solutions are

(Xl, yl) = (_3’ 4)
(x5, y) =0, D)

o L

Fig. 3-9.  Graphic method of solving the equations
y=x2+2x+ landy = —x + 1.

EXAMPLE B

Here is another pair of “two by two” equations (two equations in two
variables) that can be solved by graphing:

y=-2C+4x—5
y=—-2x—15

These equations are graphed in Fig. 3-10. The line crosses the parabo-
la at two points, indicating that there are two solutions. The coordinates
of the points corresponding to the solutions are
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-16 -

Fig. 3-10.  Graphic method of solving the equations
y=—-2xt4x—5S5andy = —2x — 5.

(X], y]) = (3, _11)
(xz’ yg) = (07 _5)

Sometimes a graph will reveal that a pair of equations has more than two
solutions, or only one solution, or no solutions at all. Solutions to pairs of
equations always show up as intersection points on their graphs. If there are
n intersection points between the curves representing two equations, then
there are n solutions to the pair of simultaneous equations. However, graph-
ing is only good for estimating the values of the solutions. If possible, alge-
bra should be used to find exact solutions to problems of this kind. If the
equations are complicated, or if the graphs are the results of experiments,
it will be difficult to use algebra to solve them. Then graphs, with the aid
of computer programs to accurately locate the points of intersection
between graphs, offer a better means of solving pairs of equations.
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The Polar Plane

The polar coordinate plane is an alternative way of expressing the posi-
tions of points and of graphing equations and relations in two dimensions.
The independent variable is plotted as the distance or radius r from the ori-
gin, and the dependent variable is plotted as an angle g relative to a refer-
ence axis. Figure 3-11 shows the polar plane that is used most often by

/2

3mw/4 /4
q
r
T T 0
1 2 3 4 5

5m/4 7w l4

3n/2

Fig. 3-11.  The polar coordinate plane used in physics.

physicists. The angle g is expressed in units called radians. One radian is
the angle defined by a circular arc whose length is the same as the radius
of the circle containing that arc. If this is too complicated to remember,
then think of it like this: A radian is a little more than 57°. Or you can
remember that there are 2, or about 6.28, radians in a complete circle. The
angle ¢ is plotted counterclockwise from the ray extending to the right.



Figure 3-12 shows the polar system employed by some engineers, espe-
cially those in communications. Navigators and astronomers often use this

Graphing Schemes

q \
315 45
r
270 T — 90
1 2 3 4 5
225 135
180

scheme too. The angle ¢ is expressed in degrees here and is plotted clock-
wise from the ray extending upward (corresponding to geographic north).
You have seen this coordinate system in radar pictures of storms. If you’re
in the military, especially in the Navy or the Air Force, you’ll know it as a
polar radar display. Sometimes this type of polar display shows the angle

Fig. 3-12.  The polar plane for communications,
navigation, and astronomy.

referenced clockwise from south rather than from geographic north.

EQUATION OF CIRCLE CENTERED AT THE ORIGIN

The equation of a circle centered at the origin in the polar plane is just about

as simple as an equation can get. It is given by the following formula:
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r=a

where a is a real number and @ > 0. This is shown in Fig. 3-13. Certain
other graphs, such as cloverleaf patterns, spirals, and cardioids (heart-
shaped patterns), also have simple equations in polar coordinates but com-
plicated equations in rectangular coordinates.

/2
_\ a
\/\
. \ 0
5w/4 7 /4

3n/2

Fig. 3-13.  Polar graph of circle centered at the origin.

Other Systems

Here are some other coordinate systems that you are likely to encounter in
your journeys through the world of physics. Keep in mind that the techni-
cal details are simplified for this presentation. As you gain experience
using these systems, you will be introduced to more details, but they would
confuse you if we dealt with them now.
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LATITUDE AND LONGITUDE

Latitude and longitude angles uniquely define the positions of points on the
surface of a sphere or in the sky. The scheme for geographic locations on
the earth is illustrated in Fig. 3-14a. The polar axis connects two specified
points at antipodes on the sphere. These points are assigned latitude +90

North geographic pole

Latitude
=+90
A
Longitude
Plane of equator / — 4+ 90
Longitude Longitude
=180 =0
/
Longitude .
=-90 Greenwich
meridian
v
Latitude
=-90
South geographic pole
(a)
Fig. 3-14. (a) Latitude and longitude on the earth are measured in degrees.

(north pole) and —90 (south pole). The equatorial axis runs outward from
the center of the sphere at a right angle to the polar axis. It is assigned lon-
gitude 0. Latitude is measured positively (north) and negatively (south) rel-
ative to the plane of the equator. Longitude is measured counterclockwise
(east) and clockwise (west) relative to the equatorial axis. The angles are
restricted as follows:

—90° = latitude = +90°
—180° = longitude = +180°

On the earth’s surface, the half-circle connecting the zero-longitude line
with the poles passes through Greenwich, England, and is known as the
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North celestial pole

dec = +90
A
Plane of equator RA =6h
RA =12h RA =0h
— \
RA =18h
Vernal
equinox
\ 4
dec =-90

South celestial pole

(b)

Fig. 3-14.  (b) Declination (dec) and right ascension
(RA) are used to find coordinates in the heavens.

Greenwich meridian or the prime meridian. Longitude angles are defined
with respect to this meridian.

CELESTIAL COORDINATES

Celestial latitude and celestial longitude are extensions of the earth’s lati-
tude and longitude into the heavens. An object whose celestial latitude and
longitude coordinates are (x, y) appears at the zenith (straight overhead) in
the sky from the point on the earth’s surface whose latitude and longitude
coordinates are (x, y).

Declination and right ascension define the positions of objects in the
sky relative to the stars. Figure 3-14b applies to this system. Declination
(abbreviated dec) is identical to celestial latitude. Right ascension (abbre-
viated RA) is measured eastward from the vernal equinox (the position of
the sun in the heavens at the moment spring begins in the northern hemi-
sphere). Right ascension is measured in hours (symbolized /) rather than
degrees, where there are 24h in a 360° circle. The angles are restricted as
follows:
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—90° = dec = +90°
Oh = RA < 24h

CARTESIAN THREE-SPACE

An extension of rectangular coordinates into three dimensions is cartesian
three-space (Fig. 3-15), also called rectangular three-space or xyz space.
Independent variables are usually plotted along the x and y axes; the
dependent variable is plotted along the z axis. “Graphs” of this sort show
up as snakelike curves winding and twisting through space or as surfaces
such as spheres, ellipsoids, or those mountain-range-like displays you have
seen in the scientific magazines. Usually, the scales are linear; that is, the
increments are the same size throughout each scale. However, variations of
these schemes can employ nonlinear graduations for one, two, or all three
scales.

1 6

\4

Fig. 3-15. Cartesian three-space, also called rectangular three-space or xyz space.
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Computers are invaluable in graphing functions in rectangular three-
space. Computers can show perspective, and they let you see the true
shape of a surface plot. A good three-dimensional (3D) graphics program
lets you look at a graph from all possible angles, even rotating it or flip-
ping it over in real time.

CYLINDRICAL COORDINATES

Figure 3-16 shows a system of cylindrical coordinates for specifying the
positions of points in three-space. Given a set of cartesian coordinates or

z
A

Fig. 3-16. Cylindrical coordinates for defining points in three-space.

Xyz space, an angle ¢ is defined in the xy plane, measured in radians coun-
terclockwise from the x axis. Given a point P in space, consider its projec-
tion P’ onto the xy plane. The position of P is defined by the ordered triple
(g, 1, 7) such that

g = angle between P’ and the x axis in the xy plane
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r = distance (radius) from P to the origin
z = distance (altitude) of P above the xy plane

You can think of cylindrical coordinates as a polar plane with the addition
of an altitude coordinate to define the third dimension.

SPHERICAL COORDINATES

Figure 3-17 shows a system of spherical coordinates for defining points in
space. This scheme is similar to the system for longitude and latitude with
the addition of a radius r representing the distance of point P from the ori-
gin. The location of a point P is defined by the ordered triple (long, lat, r)

North celestial pole

lat = +90
P A
Plane of equator . long = 90
long = 180
long=0
long =270 —
4
lat = -90

South celestial pole

Fig. 3-17.  Spherical coordinates for defining points in three-space.

such that
long = longitude of P
lat = latitude of P
r = distance (radius) from P to the origin

In this example, angles are specified in degrees; alternatively, they can be
expressed in radians. There are several variations of this system, all of which
are commonly called spherical coordinates.
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SEMILOG (x-LINEAR) COORDINATES

Figure 3-18 shows semilogarithmic (semilog) coordinates for defining
points in a portion of the xy plane. The independent-variable axis is linear,
and the dependent-variable axis is logarithmic. The numerical values that
can be depicted on the y axis are restricted to one sign or the other (posi-
tive or negative). In this example, functions can be plotted with domains
and ranges as follows:

<

10

1 1111
rrrri

]
T

w
1
T

L1 1111
T rrrr

]
T

]
T

0.3

Fig. 3-18. Semilog xy plane with linear x axis and logarithmic y axis.

-1=x=1
0.l=y=10

The y axis in Fig. 3-18 spans two orders of magnitude (powers of 10). The
span could be larger or smaller than this, but in any case the y values can-
not extend to zero. In the example shown here, only portions of the first and
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second quadrants of the xy plane can be depicted. If the y axis were inverted
(its values made negative), the resulting plane would cover corresponding
parts of the third and fourth quadrants.

SEMILOG (y-LINEAR) COORDINATES

Figure 3-19 shows semilog coordinates for defining points in a portion of
the xy plane. The independent-variable axis is logarithmic, and the

1 4

Fig. 3-19. Semilog xy plane with logarithmic x axis and linear y axis.

dependent-variable axis is linear. The numerical values that can be
depicted on the x axis are restricted to one sign or the other (positive or
negative). In this example, functions can be plotted with domains and
ranges as follows:
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<

10

1 1111
rrrri

]
T

1 1111
T rrrr
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01 bt
0.1 0.3 1 3 10
Fig. 3-20. Log-log xy plane.

The x axis in Fig. 3-19 spans two orders of magnitude (powers of 10). The
span could be larger or smaller, but in any case the x values cannot extend
to zero. In the example shown here, only portions of the first and fourth
quadrants of the xy-plane can be depicted. If the x axis were inverted (its
values made negative), the resulting plane would cover corresponding parts
of the second and third quadrants.

LOG-LOG COORDINATES

Figure 3-20 shows log-log coordinates for defining points in a portion of
the xy plane. Both axes are logarithmic. The numerical values that can be
depicted on either axis are restricted to one sign or the other (positive or neg-
ative). In this example, functions can be plotted with domains and ranges as
follows:
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0.1=x=10
01=y=10

The axes in Fig. 3-20 span two orders of magnitude (powers of 10). The
span of either axis could be larger or smaller, but in any case the values can-
not extend to zero. In the example shown here, only a portion of the first
quadrant of the xy plane can be depicted. By inverting the signs of one or
both axes, corresponding portions of any of the other three quadrants can
be covered.

Refer to the text in this chapter if necessary. A good score is eight correct.
Answers are in the back of the book.

1. A polar plane defines points according to
(a) two distance coordinates.
(b) a distance and an angle.
(c) two angles.
(d) a distance and two angles.

2. Suppose that you plot the graphs of two equations in the cartesian plane, and
the curves meet at a single point. How many solutions are there to this pair of
simultaneous equations?

(a) None
(b) One
(c) Two
(d) There is not enough information to tell.
3. In a semilog coordinate plane,
(a) both axes are semilogarithmic.
(b) one axis is semilogarithmic, and the other is logarithmic.
(c) one axis is linear, and the other is logarithmic.
(d) both axes are linear.

4. What is the general shape of the graph of the equation K+ y2 = 16 as plotted
in rectangular coordinates?
(a) A straight line
(b) A parabola
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(c) A circle
(d) There is not enough information to tell.

5. What is the equation of problem 4 if its graph is plotted in polar coordinates,
where r is the radius and ¢ is the angle?
(ayr=4
(b g=4
©r*+4 =16
(d) There is not enough information to tell.
6. Which three-dimensional coordinate scheme described in this chapter locates
a point by defining three different angles relative to a reference axis?
(a) The polar plane
(b) Cylindrical coordinates
(c) Spherical coordinates
(d) None of the above

7. Suppose that two equations are graphed and that their plots are curves A and B
in Fig. 3-21. Suppose that both graphs extend infinitely far in both directions.
How many solutions are there to this pair of equations?

(a) None
(b) Several

Fig. 3-21. Illustration for problem 7. The graphs of the two equations are curves
A and B. Assume that the graphs extend infinitely in either direction.
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(c) Infinitely many
(d) It is impossible to tell.

. Suppose that two equations are graphed and that their plots are curves A and B
in Fig. 3-22. Suppose that both graphs extend infinitely far in both directions.
How many solutions are there to this pair of equations?

(a) None

(b) Several

—_—

A\ 4

Fig. 3-22. Illustration for problem 8. The graphs of the two equations are curves
A and B. Assume that the graphs extend infinitely in either direction.

(c) Infinitely many
(d) It is impossible to tell.

. Suppose that two equations are graphed and that their plots are curves A and B
in Fig. 3-23. Suppose that both graphs extend infinitely far in both directions.
How many solutions are there to this pair of equations?

(a) None

(b) Several

(c) Infinitely many

(d) It is impossible to tell.
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T AN

Fig. 3-23.  Illustration for problem 9. The graphs of the two equations are curves
A and B. Assume that the graphs extend infinitely in either direction.

10. In which graphing scheme does neither axis extend all the way down to zero?
(a) Rectangular coordinates
(b) Cylindrical coordinates
(c) Spherical coordinates
(d) Log-log coordinates
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If you casually page through the rest of this chapter right now, you might
say, “Only a crazy person would expect me to remember all this.” Don’t
worry. You do not have to memorize all these formulas; they’re available in
books (like this one) and on the Internet. The most often-used formulas,
such as the pythagorean theorem for right triangles and the formula for the
area of a circle, are worth remembering so that you don’t have to run to a
reference source every time you need to calculate something. However, it’s
up to you how much or how little of this stuff you want to burn into your
brain.

It’s a good idea to be comfortable making calculations with formulas
like this before you dive headlong into physics. Therefore, look over these
formulas, be sure you can deal with them, and then take the quiz at the end
of the chapter. The quiz is “open book,” as are all the chapter-ending
quizzes in this course. You may check back in the chapter text when taking
the quiz so that you can find the formula you need. From there, it’s just a
matter of punching buttons on a calculator and maybe scratching out a few
diagrams to help visualize what is going on.

Fundamental Rules

The fundamental rules of geometry are used widely in physics and engi-
neering. These go all the way back to the time of the ancient Egyptians and
Greeks, who used geometry to calculate the diameter of the earth and the
distance to the moon. They employed the laws of euclidean geometry

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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(named after Euclid, a Greek mathematician who lived thousands of years
ago). However much or little Euclid actually had to do with these rules,
they’re straightforward. So here they are, terse and plain.

TWO-POINT PRINCIPLE

Suppose that P and Q are two distinct geometric points. Then the follow-
ing statements hold true, as shown in Fig. 4-1:

P Q
L - ® & >
Fig. 4-1. Two-point principle.

e P and Q lie on a common line L.

e L is the only line on which both points lie.

THREE-POINT PRINCIPLE

Let P, O, and R be three distinct points, not all of which lie on a straight
line. Then the following statements hold true:

e P (O, and R all lie in a common euclidean plane S.

e Sis the only euclidean plane in which all three points lie.

PRINCIPLE OF n POINTS

Let P, P,, P,,..., and P, be n distinct points, not all of which lie in the same
euclidean space of n — 1 dimensions. Then the following statements hold true:

e P,P,P,..., and P, all lie in a common euclidean space U of n
dimensions.

e Uis the only n-dimensional euclidean space in which all » points lie.

DISTANCE NOTATION

The distance between any two points P and Q, as measured from P toward
Q along the straight line connecting them, is symbolized by writing PQ.
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MIDPOINT PRINCIPLE

Suppose that there is a line segment connecting two points P and R. Then
there is one and only one point Q on the line segment between P and R such
that PO = QR. This is illustrated in Fig. 4-2.

PQ = QR

/

Q
Fig. 4-2. Midpoint principle.

ANGLE NOTATION

Imagine that P, O, and R are three distinct points. Let L be the line segment
connecting P and Q; let M be the line segment connecting R and Q. Then
the angle between L and M, as measured at point Q in the plane defined by
the three points, can be written as ZPQR or as ZRQP. If the rotational
sense of measurement is specified, then 2 POR indicates the angle as meas-
ured from L to M, and ZRQP indicates the angle as measured from M to L
(Fig. 4-3.) These notations also can stand for the measures of angles,
expressed either in degrees or in radians.

R
£ RQP

\/

Q

Fig. 4-3.  Angle notation and measurement.
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ANGLE BISECTION

Suppose that there is an angle Z POR measuring less than 180° and defined
by three points P, O, and R, as shown in Fig. 4-4. Then there is exactly one
ray M that bisects the angle £ PQOR. If S is any point on M other than the
point Q, then ZPQS = ZSQOR. Every angle has one and only one ray that
divides the angle in half.

Angles
are the same

Q
Fig. 4-4.  Angle-bisection principle.

PERPENDICULARITY

Suppose that L is a line through points P and Q. Let R be a point not on L.
Then there is one and only one line M through point R intersecting line L at
some point S such that M is perpendicular to L. This is shown in Fig. 4-5.

PERPENDICULAR BISECTOR

Suppose that L is a line segment connecting two points P and R. Then there
is one and only one perpendicular line M that intersects line segment L in
a point Q such that the distance from P to Q is equal to the distance from
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M
R@®
P 90° Q
L «—& @ >—>
S

Fig. 4-5. Perpendicular principle.

Q to R. That is, every line segment has exactly one perpendicular bisector.
This is illustrated in Fig. 4-6.

P 90° R

PQ = QR
Fig. 4-6.  Perpendicular-bisector principle.

DISTANCE ADDITION AND SUBTRACTION

Let P, O, and R be points on a line L such that Q is between P and R. Then
the following equations hold concerning distances as measured along L

(Fig. 4-7):
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P Q R
<« ° ~—>
PQA+—QR—>
< PR >

Fig. 4-7. Distance addition and subtraction.

PO + OR = PR
PR — PQ = OR
PR — QR = PQ

ANGLE ADDITION AND SUBTRACTION

Let P, O, R, and S be four points that lie in a common plane. Let Q be the
vertex of three angles ZPQOR, £ PQS, and £SQOR, as shown in Fig. 4-8.
Then the following equations hold concerning the angular measures:

LPQS + LSOR = LPQR
/POR — LPQS = /SOR
/POR — /SOR = /PQS

S

Q

Fig. 4-8.  Angular addition and subtraction.
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VERTICAL ANGLES

Suppose that L and M are two lines that intersect at a point P. Opposing
pairs of angles, denoted x and y in Fig. 4-9, are known as vertical angles
and always have equal measure.

Fig. 4-9. Vertical angles have equal measure.

ALTERNATE INTERIOR ANGLES

Suppose that L and M are parallel lines. Let N be a line that intersects L and
M at points P and Q, respectively. In Fig. 4-10, angles labeled x are alter-
nate interior angles; the same holds true for angles labeled y. Alternate
interior angles always have equal measure. Line N is perpendicular to lines
L and M if and only if x = y.

ALTERNATE EXTERIOR ANGLES

Suppose that L and M are parallel lines. Let N be a line that intersects L and
M at points P and Q, respectively. In Fig. 4-11, angles labeled x are alter-
nate exterior angles; the same holds true for angles labeled y. Alternate
exterior angles always have equal measure. The line N is perpendicular to
lines L and M if and only if x = y.
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Fig. 4-11 Alternate exterior angles have equal measure.

CORRESPONDING ANGLES

Let L and M be parallel lines. Let N be a transversal line that intersects L
and M at points P and Q, respectively. In Fig. 4-12, angles labeled w are
corresponding angles; the same holds true for angles labeled x, y, and z.
Corresponding angles always have equal measure. The line N is perpendi-
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A 4

A 4

Fig. 4-12 Corresponding angles have equal measure.

cular to lines L and M if and only if w = x = y = z = 90° = w/2 radians;
that is, if and only if all four angles are right angles.

PARALLEL PRINCIPLE

Suppose that L is a line and P is a point not on L. There exists one and only
one line M through P such that line M is parallel to line L (Fig. 4-13). This

M

L

A
A 4

Fig. 4-13 The parallel principle.

is one of the most important postulates in euclidean geometry. Its negation
can take two forms: Either there is no such line M, or there exists more than
one such line M|, M,, M,,.... Either form of the negation of this principle
constitutes a cornerstone of noneuclidean geometry that is important to
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physicists and astronomers interested in the theories of general relativity
and cosmology.

MUTUAL PERPENDICULARITY

Let L and M be lines that lie in the same plane. Suppose that both L and M
intersect a third line N and that both L and M are perpendicular to N. Then
lines L and M are parallel to each other (Fig. 4-14).

A 4

Fig. 4-14 Mutual perpendicularity.

Triangles

If it’s been a while since you took a course in plane geometry, perhaps
you think of triangles when the subject is brought up. Maybe you recall
having to learn all kinds of theoretical proofs concerning triangles using
“steps and reasons” tables if your teacher was rigid and less formal meth-
ods if your teacher was not so stodgy. Well, here, you don’t have to go
through the proofs again, but some of the more important facts about tri-
angles are worth stating.
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POINT-POINT-POINT

Let P, Q, and R be three distinct points, not all of which lie on the same
straight line. Then the following statements are true (Fig. 4-15):

S
Fig. 4-15  The three-point principle; side-side-side triangles.

e P (O, and R lie at the vertices of a triangle T.
® Tis the only triangle having vertices P, O, and R.

SIDE-SIDE-SIDE

Let S, 7, and U be line segments. Let s, ¢, and u be the lengths of those three
line segments, respectively. Suppose that S, 7, and U are joined at their end
points P, O, and R (see Fig. 4-15). Then the following statements hold true:

e Line segments S, 7, and U determine a triangle.
o This is the only triangle of its size and shape that has sides S, 7, and U.

o All triangles having sides of lengths s, #, and u are congruent (iden-
tical in size and shape).

SIDE-ANGLE-SIDE

Let S and 7 be two distinct line segments. Let P be a point that lies at the ends
of both these line segments. Denote the lengths of S and T by their lowercase
counterparts s and #, respectively. Suppose that S and 7 both subtend an angle
x at point P (Fig. 4-16). Then the following statements are all true:
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S

Fig. 4-16  Side-angle-side triangles.

® S, T, and x determine a triangle.
® This is the only triangle having sides S and T that subtend an angle
x at point P,

o All triangles containing two sides of lengths s and ¢ that subtend an
angle x are congruent.

ANGLE-SIDE-ANGLE

Let S be a line segment having length s and whose end points are P and Q.
Let x and y be the angles subtended relative to S by two lines L and M that
run through P and Q, respectively (Fig. 4-17). Then the following state-
ments are all true:

Fig. 4-17 Angle-side-angle triangles.
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® § x, and y determine a triangle.
® This the only triangle determined by S, x, and y.

o All triangles containing one side of length s and whose other two
sides subtend angles of x and y relative to the side whose length is s
are congruent.

ANGLE-ANGLE-ANGLE

Let L, M, and N be lines that lie in a common plane and intersect in three
points, as illustrated in Fig. 4-18. Let the angles at these points be x, y, and z.
Then the following statements are true:

Fig. 4-18 Angle-angle-angle triangles.

® There are infinitely many triangles with interior angles x, y, and z in
the sense shown.

® All triangles with interior angles x, y, and z in the sense shown are
similar (that is, they have the same shape but not necessarily the
same size).

ISOSCELES TRIANGLE

Suppose that we have a triangle with sides S, 7, and U having lengths s, , and
u. Let x, y, and z be the angles opposite S, 7, and U, respectively (Fig. 4-19).
Suppose that any of the following equations hold:
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U

Fig. 4-19 Isosceles and equilateral triangles.

s=t

t=u
S=u
X=Yy
y=1z
xX=7z

Then the triangle is an isosceles triangle, and the following logical state-
ments are valid:

If s =t thenx = y.
Ift =u,theny = z.
If s = u, thenx = z.
If x =y, thens =t
Ify =z thent = u.

If x = z, then s = u.
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EQUILATERAL TRIANGLE

Suppose that we have a triangle with sides S, 7, and U, having lengths s, 1,
and u. Let x, y, and z be the angles opposite S, 7, and U, respectively (see
Fig. 4-19). Suppose that either of the following are true:

s=t=u or xX=y=z

Then the triangle is said to be an equilateral triangle, and the following
logical statements are valid:

Ifs=t=uthenx=y =z
Ifx=y=zthens =1t=u.

That is, all equilateral triangles have precisely the same shape; they are all
similar.

THEOREM OF PYTHAGORAS

Suppose that we have a right triangle defined by points P, Q, and R whose
sides are D, E, and F having lengths d, e, and f, respectively. Let f be the
side opposite the right angle (Fig. 4-20). Then the following equation is
always true:

&+ e =f
The converse of this is also true: If there is a triangle whose sides have
lengths d, e, and f and the preceding equation is true, then that triangle is a
right triangle.

P

R @& Q
d
Fig. 4-20 The theorem of Pythagoras.
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PERIMETER OF TRIANGLE

Suppose that we have a triangle defined by points P, Q, and R and having
sides S, T, and U of lengths s, ¢, and u, as shown in Fig. 4-21. Let s be the
base length, / be the height, and x be the angle between the sides having
lengths s and t. Then the perimeter B of the triangle is given by the follow-
ing formula:

S

Fig. 4-21 Perimeter and area of triangle.

B=s+t+u

INTERIOR AREA OF TRIANGLE

Consider the same triangle as defined above; refer again to Fig. 4-21. The
interior area A can be found with this formula:

A = sh/2

Quadrilaterals

A four-sided geometric figure that lies in a single plane is called a quadri-
lateral. There are several classifications and various formulas that apply to
each. Here are some of the more common formulas that can be useful in
physics.
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PARALLELOGRAM DIAGONALS

Suppose that we have a parallelogram defined by four points P, O, R, and
S. Let D be a line segment connecting P and R as shown in Fig. 4-22a. Then
D is a minor diagonal of the parallelogram, and the triangles defined by D
are congruent:

APQR = ARSP

Let E be a line segment connecting Q and S (see Fig. 4-22b). Then E is a major
diagonal of the parallelogram, and the triangles defined by E are congruent:

AQRS = ASPQ

9]
)

9]
]

(b)

Fig. 4-22  Triangles defined by the minor diagonal (a) or the major
diagonal (b) of a parallelogram are congruent.
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BISECTION OF PARALLELOGRAM DIAGONALS

Suppose that we have a parallelogram defined by four points P, Q, R, and
S. Let D be the diagonal connecting P and R; let E be the diagonal con-
necting Q and S (Fig. 4-23). Then D and E bisect each other at their
intersection point 7. In addition, the following pairs of triangles are con-
gruent:

S R
Fig. 4-23  The diagonals of a parallelogram bisect each other.

APQT = ARST
AQRT = ASPT

The converse of the foregoing is also true: If we have a
plane quadrilateral whose diagonals bisect each other, then
that quadrilateral is a parallelogram.

RECTANGLE

Suppose that we have a parallelogram defined by four
points P, O, R, and S. Suppose that any of the following
statements is true for angles in degrees:

ZPQOR = 90° = m/2 radians
£ QRS = 90° = m/2 radians
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/RSP = 90° = 7/2 radians
£ SPQ = 90° = /2 radians

Then all four interior angles measure 90°, and the parallelogram is a rec-
tangle, a four-sided plane polygon whose interior angles are all congruent
(Fig. 4-24). The converse of this is also true: If a quadrilateral is a rectan-
gle, then any given interior angle has a measure of 90°.

P Q
¢
[ J
S R

Fig. 4-24  If a parallelogram has one right interior
angle, then the parallelogram is a rectangle.

RECTANGLE DIAGONALS

Suppose that we have a parallelogram defined by four points P, O, R, and
S. Let D be the diagonal connecting P and R; let E be the diagonal con-
necting Q and S. Let the length of D be denoted by d; let the length of E be
denoted by e (Fig. 4-25). If d = e, then the parallelogram is a rectangle. The
converse is also true: If a parallelogram is a rectangle, then d = e. Thus a
parallelogram is a rectangle if and only if its diagonals have equal lengths.

RHOMBUS DIAGONALS

Suppose that we have a parallelogram defined by four points P, O, R, and S.
Let D be the diagonal connecting P and R; let E be the diagonal connecting
Q and S. If D is perpendicular to E, then the parallelogram is a rhombus, a
four-sided plane polygon whose sides are all equally long (Fig. 4-26). The
converse is also true: If a parallelogram is a rhombus, then D is perpendicular



A Review of Mathematics

S R
Fig. 4-25 The diagonals of a rectangle have equal length.

to E. Thus a parallelogram is a rhombus if and only if its diagonals are per-
pendicular.

R

Fig. 4-26 The diagonals of a
rhombus are perpendicular.

TRAPEZOID WITHIN TRIANGLE

Suppose that we have a triangle defined by three points P, O, and R. Let
S be the midpoint of side PR, and let 7 be the midpoint of side PQ. Then
line segments ST and RQ are parallel, and the figure defined by STOR is
a trapezoid, a four-sided plane polygon with one pair of parallel sides
(Fig. 4-27). In addition, the length of line segment ST is half the length of
line segment RQ.
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Fig. 4-27 A trapezoid within a triangle.

MEDIAN OF A TRAPEZOID

Suppose that we have a trapezoid defined by four points P, Q, R, and S.
Let T be the midpoint of side PS, and let U be the midpoint of side QR.
Line segment TU is called the median of trapezoid PORS. Let M be the
polygon defined by P, O, U, and T. Let N be the polygon defined by 7, U,

N
Fig. 4-28  The median of a trapezoid.

R, and S. Then M and N are trapezoids (Fig. 4-28). In addition, the length
of line segment TU is half the sum of the lengths of line segments PQ and
SR. That is, the length of TU is equal to the average (arithmetic mean) of
the lengths of PQ and SR.
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SUM OF INTERIOR ANGLES OF PLANE
QUADRILATERAL

Suppose that we have a plane quadrilateral and that the interior angles are
w, x, ¥, and z (Fig. 4-29). Then the following equation holds if the angular
measures are given in degrees:

Fig. 4-29 Interior angles of a plane quadrilateral.

w+x+y+z=360°
If the angular measures are given in radians, then the following holds:

wt+x+y+z=2m

PERIMETER OF PARALLELOGRAM

Suppose that we have a parallelogram defined by points P, O, R, and S with
sides of lengths d and e, as shown in Fig. 4-30. Let d be the base length,
and let & be the height. Then the perimeter B of the parallelogram is given
by the following formula:

B =2d + 2e

INTERIOR AREA OF PARALLELOGRAM

Suppose that we have a parallelogram as defined above and in Fig. 4-30.
The interior area A is given by

A =dh
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S d R
Fig. 4-30  Perimeter and area of a
parallelogram. If d = e, the figure is a rhombus.

PERIMETER OF RHOMBUS

Suppose that we have a rhombus defined by points P, Q, R, and S and hav-
ing sides all of which have the same length. The rhombus is a special case
of the parallelogram (see Fig. 4-30) in which d = e. Let the lengths of all
four sides be denoted d. The perimeter B of the rhombus is given by the fol-
lowing formula:

B =4d

INTERIOR AREA OF RHOMBUS

Suppose that we have a rhombus as defined above and in Fig. 4-30. The
interior area A of the rhombus is given by

A =dh

PERIMETER OF RECTANGLE

Suppose that we have a rectangle defined by points P, Q, R, and S and hav-
ing sides of lengths d and e, as shown in Fig. 4-31. Let d be the base length,
and let e be the height. Then the perimeter B of the rectangle is given by
the following formula:

B =12d+ 2e
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P Q
[ ]
e

[ § 3
s d R

Fig. 4-31 Perimeter and area of a rectangle.
If d = e, the figure is a square.

INTERIOR AREA OF RECTANGLE

Suppose that we have a rectangle as defined above and in Fig. 4-31. The
interior area A is given by

A =de

PERIMETER OF SQUARE

Suppose that we have a square defined by points P, O, R, and S and hav-
ing sides all of which have the same length. The square is a special case
of the rectangle (see Fig. 4-31) in which d = e. Let the lengths of all four
sides be denoted d. The perimeter B of the square is given by the follow-
ing formula:

B =4d

INTERIOR AREA OF SQUARE

Suppose that we have a square as defined above and in Fig. 4-31. The inte-
rior area A is given by

A=d
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PERIMETER OF TRAPEZOID

Suppose that we have a trapezoid defined by points P, Q, R, and S and hav-
ing sides of lengths d, e, f, and g, as shown in Fig. 4-32. Let d be the base
length, 7 be the height, x be the angle between the sides having length d and
e, and y be the angle between the sides having lengths d and g. Suppose that
the sides having lengths d and f (line segments RS and PQ) are parallel.
Then the perimeter B of the trapezoid is

B=d+te+f+g

P f Q

e h g
X y

S d R

Fig. 4-32  Perimeter and area of a trapezoid.

INTERIOR AREA OF TRAPEZOID

Suppose that we have a trapezoid as defined above and in Fig. 4-32. The
interior area A is given by this formula:

A = (dh + fh)/2

Circles and Ellipses

That’s enough of figures with straight lines. Let’s get into plane curves. In
some ways, the following formulas are easier for mathematicians to derive
than the ones for figures consisting of lines and angles; in other ways, the
formulas for curves are more troublesome. Fortunately, however, we’re
physicists, and the mathematicians have done all the work for us. All we
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need to do is take note of the formulas and apply them to situations as the
needs arise.

PERIMETER OF CIRCLE

Suppose that we have a circle having radius 7 as shown in Fig. 4-33. Then
the perimeter B, also called the circumference, of the circle is given by the
following formula:

B = 27r

Fig. 4-33  Perimeter and area of a circle.

INTERIOR AREA OF CIRCLE

Suppose that we have a circle as defined above and in Fig. 4-33. The inte-
rior area A of the circle can be found using this formula:

2
A= Tr

PERIMETER OF ELLIPSE

Suppose that we have an ellipse whose major half-axis measures r and
whose minor half-axis measures s, as shown in Fig. 4-34. Then the perime-
ter B of the ellipse is given approximately by the following formula:
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Fig. 4-34  Perimeter and area of an ellipse.

B=2m[(r + s)2]"”

INTERIOR AREA OF ELLIPSE

Suppose that we have an ellipse as defined above and in Fig. 4-34. The inte-
rior area A of the ellipse is given by

A = Trs

Surface Area and Volume

Now let’s go from two dimensions to three. Here are some formulas for
surface areas and volumes of common geometric solids. The three-space
involved is flat; that is, it obeys the laws of euclidean geometry. These
formulas hold in newtonian physics (although in relativistic physics they
may not).

VOLUME OF PYRAMID

Suppose that we have a pyramid whose base is a polygon with area A and
whose height is & (Fig. 4-35). The volume V of the pyramid is given by

V = Ah/3
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Point directly
beneath apex

Fig. 4-35 Volume of a pyramid.

SURFACE AREA OF CONE

Suppose that we have a cone whose base is a circle. Let P be the apex of
the cone, and let Q be the center of the base (Fig. 4-36). Suppose that line
segment PQ is perpendicular to the base so that the object is a right circu-
lar cone. Let r be the radius of the base, let & be the height of the cone (the
length of line segment PQ), and let s be the slant height of the cone as
measured from any point on the edge of the circle to the apex P. Then the
surface area S of the cone (including the base) is given by either of the fol-
lowing formulas:

S =mr + mrs
S=mr +ar (r2 + hz)l/2
The surface area T of the cone (not including the base) is given by either of
the following:

T = 7rs

T=m7r (r2 + hz)l/2

VOLUME OF CONICAL SOLID

Suppose that we have a cone whose base is any enclosed plane curve. Let
A be the interior area of the base of the cone. Let P be the apex of the cone,
and let Q be a point in the plane X containing the base such that line seg-
ment PQ is perpendicular to X (Fig. 4-37). Let i be the height of the cone
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Fig. 4-36  Surface area of a right circular cone.

(the length of line segment PQ). Then the volume V of the corresponding
conical solid is given by

V = Ah/3

Fig. 4-37 Volume of a general conical solid.

SURFACE AREA OF RIGHT CIRCULAR CYLINDER

Suppose that we have a cylinder whose base is a circle. Let P be the cen-
ter of the top of the cylinder, and let Q be the center of the base (Fig. 4-38).
Suppose that line segment PQ is perpendicular to both the top and the base
so that we have a right circular cylinder. Let r be the radius of the cylinder,
and let & be the height (the length of line segment PQ). Then the surface
area S of the cylinder (including the base and the top) is given by
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Fig. 4-38 Surface area and volume of a right circular cylinder.

S = 2mrh + 2mr = 2mr (h+r)
The surface area Tof the cylinder (not including the base or the top) is

T = 2wrh

VOLUME OF RIGHT CIRCULAR CYLINDRICAL
SOLID

Suppose that we have a cylinder as defined above (see Fig. 4-38). The vol-
ume V of the corresponding right circular cylindrical solid is given by

V= arh

SURFACE AREA OF GENERAL CYLINDER

Suppose that we have a general cylinder whose base is any enclosed plane
curve. Let A be the interior area of the base of the cylinder (thus also the
interior area of the top). Let B be the perimeter of the base (thus also the
perimeter of the top). Let & be the height of the cylinder, or the perpendi-
cular distance separating the planes containing the top and the base. Let x
be the angle between the plane containing the base and any line segment
PQ connecting corresponding points P and Q in the top and the base,
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respectively. Let s be the slant height of the cylinder, or the length of line
segment PQ (Fig. 4-39). Then the surface area S of the cylinder (including
the base and the top) is

S=2A+ Bh

Area = A
Perimeter =B

Area = A
Perimeter =B

Fig. 4-39  Surface area and volume of a general cylinder and an enclosed solid.

The surface area 7T of the cylinder (not including the base or the top) is

T = Bh

VOLUME OF GENERAL CYLINDRICAL SOLID

Suppose that we have a general cylinder as defined above (see Fig. 4-39).
The volume V of the corresponding general cylindrical solid is

V=Ah

SURFACE AREA OF SPHERE

Suppose that we have a sphere having radius 7 as shown in Fig. 4-40. The
surface area A of the sphere is given by
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Fig. 4-40 Surface area and volume of a
sphere and an enclosed solid.

A =4

VOLUME OF SPHERICAL SOLID

Suppose that we have a sphere as defined above and in Fig. 4-40. The vol-
ume V of the solid enclosed by the sphere is given by

V= 4ur /3

SURFACE AREA OF CUBE

Suppose that we have a cube whose edges each have length s, as shown in
Fig. 4-41. The surface area A of the cube is given by

A = 65

VOLUME OF CUBICAL SOLID

Suppose that we have a cube as defined above and in Fig. 4-41. The vol-
ume V of the solid enclosed by the cube is given by

V=g
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Fig. 4-41 Surface area and volume of
a cube and an enclosed solid.

SURFACE AREA OF RECTANGULAR PRISM

Suppose that we have a rectangular prism whose edges have lengths s, £,
and u, as shown in Fig. 4-42. The surface area A of the prism is given by

A = 2st + 2su + 2tu

VOLUME OF RECTANGULAR PRISM

Suppose that we have a rectangular prism as defined above and in Fig. 4-42.
The volume V of the enclosed solid is given by

V = stu

~

N

u

< s NN

Fig. 4-42  Surface area and volume of a rectangular
prism and an enclosed solid.



A Review of Mathematics

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. A spherical particle has a volume of 8.000 X 10" cubic meter. What is the
radius of this particle?
(@) 5.12 X 10> millimeter
(b) 2.000 X 10" millimeter
(¢) 1.241 millimeters
(d) 512 millimeters

2. The earth’s radius is approximately 6,400 kilometers (km). What is the earth’s
surface area in kilometers squared? Go to two significant figures. Assume that
the earth is a perfect sphere.

(a) 1.28 X 10°

(b 5.1 x 10°

(¢ 1.1x10"

(d) It cannot be calculated from this information.

3. Imagine that you have a cubical box measuring exactly 1 meter on an edge in
its interior. Suppose that you are given a pile of little cubes, each measuring 1
centimeter on an edge, and told to stack the cubes neatly in the box. You are
told you will receive 10 cents for each cube you stack in the box. If you com-
plete the task, how much will you have earned?

(a) $10.00

(b) $100.00

(c) $1,000.00

(d) None of the above

4. Imagine that you are standing on the bottom of a lake whose surface is smooth,
without waves. The bottom is flat and level. You shine a laser up toward the
surface at an angle of 20° from the horizontal. At what angle, measured rela-
tive to the plane of the surface, will the laser beam strike the surface?

(a) 70°
(b) 35°
(c) 20°
(d 10°

5. Suppose that you have a cylindrical container whose diameter is 10.00 cen-
timeters and whose height is 20.00 centimeters. What is the volume of this
container in centimeters cubed? Give your answer to four significant figures.
Assume that m = 3.14159.

(@) 1,571
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(b) 6,283
(c) 6283
(d) 1,257

. If the radius of a sphere is doubled, its surface area increases by a factor of

(a) 2.
(b) 4.
(c) 8.
(d) 16.

. If the radius of an infinitely thin, flat circular disk is doubled, its surface area

increases by a factor of
(a) 2.
(b) 4.
(© 8.
(d) 1e.

. Suppose that a sample of a certain substance has a mass of 6.000 kilograms

and that it is packed into a box measuring 10 centimeters wide by 20 cen-
timeters deep by 30 centimeters high. What is the mass of 1 cubic centimeter
of this substance, assuming that its density is uniform?

(a) 0.1000 gram

(b) 1.000 gram

(c) 10.00 grams

(d) 100.0 grams

. Suppose that a light source is placed at the center of a sphere whose radius is

100 meters. If the sphere’s radius is doubled to 200 meters, what will happen
to the total light energy striking the interior of the sphere?

(a) It will not change.

(b) It will be cut in half.

(c) It will become Y as great.

(d) There is not enough information given here to calculate it.

Imagine two triangles. One triangle has a base length of 3 meters, a height of
4 meters, and a slant height of 5 meters. The other triangle has a base length
of 15 centimeters, a height of 20 centimeters, and a slant height of 25 cen-
timeters. What can be said about these triangles?

(a) They are both isosceles triangles.

(b) The theorem of Pythagoras applies to both triangles.

(c) The two triangles are congruent.

(d) All of the above are true.
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Logarithms,
Exponentials, and
Trigonometry

This chapter contains formulas similar to those in Chapter 4. Check them
out, be sure you can make calculations with them, and then take the “open
book™ quiz at the end of the chapter. You don’t have to memorize these for-
mulas individually, but you should remember where you’ve seen them. In
this way, in case you ever need one of them for reference, you can pull this
book off your shelf and look the formula up.

If your calculator cannot deal with logarithms, exponentials, “x to the y
power” operations, and the inverses of functions, this is a good time to
invest in a good scientific calculator that has these features. Some computer
operating systems have calculator programs that are satisfactory.

Logarithms

A logarithm (sometimes called a log) is an exponent to which a constant is
raised to obtain a given number. Suppose that the following relationship
exists among three real numbers g, and x, and y:

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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a =X
Then y is the base-a logarithm of x. The expression is written like this:
y =log, x

The two most often-used logarithm bases are 10 and e, where e an irrational
number equal to approximately 2.71828.

COMMON LOGS

Base-10 logarithms are also known as common logarithms or common logs.
In equations, common logarithms are written as log without a subscript.
For example:

log 10 = 1.000

Figure 5-1 is an approximate linear-coordinate graph of the function y =
log x. Figure 5-2 is the same graph in semilog coordinates. The domain is
limited to the positive real numbers. The range of the function encompasses
the set of all real numbers.

NATURAL LOGS

Base-e¢ logarithms are also called natural logs or napierian logs. In
equations, the natural-log function is usually denoted in or log, For
example:

In 2.71828 = log, 2.71828 = 1.00000

Figure 5-3 is an approximate linear-coordinate graph of the function y = In x.
Figure 5-4 is the same graph in semilog coordinates. The domain is lim-
ited to the positive real numbers, and the range spans the entire set of real
numbers.

COMMON LOG IN TERMS OF NATURAL LOG

Suppose that x is a positive real number. The common logarithm of x can
be expressed in terms of the natural logarithms of x and 10:

log x = In x/In 10 = 0.434 In x
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Fig. 5-1 Approximate linear-coordinate graph of the common logarithm function.

NATURAL LOG IN TERMS OF COMMON LOG

Suppose that x is a positive real number. The natural logarithm of x can be

expressed in terms of the common logarithms of x and e:

In x = log x/log e = 2.303 log x

LOGARITHM OF PRODUCT

Suppose that x and y are both positive real numbers. The common or natu-
ral logarithm of the product is equal to the sum of the logarithms of the

individual numbers:

log xy = logx + log y
Inxy=Inx+1Iny

g 115 2
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Fig. 5-2  Approximate semilog-coordinate graph of the common logarithm function.

LOGARITHM OF RATIO

Let x and y be positive real numbers. The common or natural logarithm of
their ratio, or quotient, is equal to the difference between the logarithms of

the individual numbers:

log(x/y) = log x — log y
In(x/y) =Inx —Iny

LOGARITHM OF POWER

Suppose that x is a positive real number; let y be any real number. The com-
mon or natural logarithm of x raised to the power y can be reduced to a

product as follows:

log X' = ylog x

InX’ =ylnx
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Fig. 5-3  Approximate linear-coordinate graph of the natural logarithm function.

LOGARITHM OF RECIPROCAL

Suppose that x is a positive real number. The common or natural logarithm
of the reciprocal (multiplicative inverse) of x is equal to the additive inverse
of the logarithm of x:

log(1/x) = —log x
In(1/x) = —Inx

LOGARITHM OF ROOT

Suppose that x is a positive real number and y is any real number except
zero. The common or natural logarithm of the yth root of x (also denoted as
x to the 1/y power) can be found using the following equations:

117
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Fig. 5-4  Approximate semilog-coordinate graph of the natural logarithm function.

log(x'™) = (log )y
InGx"™) = (In x)ly

COMMON LOG OF POWER OF 10

The common logarithm of 10 to any real-number power is always equal to
that real number:

log(10") = x

NATURAL LOG OF POWER OF e

The natural logarithm of e to any real-number power is always equal to that
real number:

In(e") = x
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Exponential Functions

An exponential is a number that results from the raising of a constant to a
given power. Suppose that the following relationship exists among three
real numbers a, x, and y:

X
a =y

Then y is the base-a exponential of x. The two most common exponential-
function bases are a = 10 and a = e = 2.71828.

COMMON EXPONENTIALS

Base-10 exponentials are also known as common exponentials. For example:

10

% = 0,001
Figure 5-5 is an approximate linear-coordinate graph of the function y = 10",
Figure 5-6 is the same graph in semilog coordinates. The domain encom-
passes the entire set of real numbers. The range is limited to the positive real
numbers.

NATURAL EXPONENTIALS

Base-e exponentials are also known as natural exponentials. For example:

—3.000 3.000
e

~2.71828 = 0.04979

Figure 5-7 is an approximate linear-coordinate graph of the function y = €.
Figure 5-8 is the same graph in semilog coordinates. The domain encom-
passes the entire set of real numbers. The range is limited to the positive real
numbers.

RECIPROCAL OF COMMON EXPONENTIAL

Let x be a real number. The reciprocal of the common exponential of x is
equal to the common exponential of the additive inverse of x:

/(109 = 107"
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Fig. 5-5 Approximate linear-coordinate graph
of the common exponential function.

RECIPROCAL OF NATURAL EXPONENTIAL

Let x be a real number. The reciprocal of the natural exponential of x is
equal to the natural exponential of the additive inverse of x:

() =e"

PRODUCT OF EXPONENTIALS

Let x and y be real numbers. The product of the exponentials of x and y is
equal to the exponential of the sum of x and y. Both these equations hold true:

(109(10%) = 10%™

(€)e) =
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Fig. 5-6  Approximate semilog graph of the
common exponential function.

RATIO OF EXPONENTIALS

Let x and y be real numbers. The ratio (quotient) of the exponentials of x
and y is equal to the exponential of the difference between x and y. Both
these equations hold true:

10710 = 10%7”

ee’ ="

EXPONENTIAL OF COMMON EXPONENTIAL

Suppose that x and y are real numbers. The yth power of the quantity 10" is
equal to the common exponential of the product xy:

(10% = 10*”
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Fig. 5-7 Approximate linear-coordinate graph
of the natural exponential function.

The same situation holds for base e. The yth power of the quantity ¢ is
equal to the natural exponential of the product xy:

(ex)y — 6(1)7)

PRODUCT OF COMMON AND NATURAL
EXPONENTIALS

Let x be a real number. The product of the common and natural exponen-
tials of x is equal to the exponential of x to the base 10e. That is to say:

(109 (") = (10e)" = (27.1828)"
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Fig. 5-8 Approximate semilog graph of the natural exponential function.

Now suppose that x is some nonzero real number. The product of the com-
mon and natural exponentials of 1/x is equal to the exponential of 1/x to
the base 10e:

1/x 1/x

(10" (") = (10e)"" = (27.1828)""

RATIO OF COMMON TO NATURAL EXPONENTIAL

Let x be a real number. The ratio (quotient) of the common exponential

of x to the natural exponential of x is equal to the exponential of x to the
base 10/e:

10"e" = (10/e)* = (3.6788)"
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Now suppose that x is some nonzero real number. The ratio (quotient) of
the common exponential of 1/x to the natural exponential of 1/x is equal to
the exponential of 1/x to the base 10/e:

(10")/(e"™) = (10/e)" = (3.6788)

1/x. 1/x

RATIO OF NATURAL TO COMMON EXPONENTIAL

Let x be a real number. The ratio (quotient) of the natural exponential of x
to the common exponential of x is equal to the exponential of x to the base
¢/10. That is to say:

e'/10" = (e/10)" = (0.271828)"

Now suppose that x is some nonzero real number. The ratio (quotient) of

the natural exponential of 1/x to the common exponential of 1/x is equal to

the exponential of 1/x to the base e/10:
1/x 1/x. 1/x

(e )10 = (e/10)

1/x

~ (0.271828)

COMMON EXPONENTIAL OF RATIO

Let x and y be real numbers, with the restriction that y # 0. The common
exponential of the ratio (quotient) of x to y is equal to the exponential of 1/y
to the base 10":

1OJc/y — (lox)l/y
A similar situation exists for base e. The natural exponential of the ratio
(quotient) of x to y is equal to the exponential of 1/y to the base e':

ly Iy
GX) _ (ex)l)

Trigonometric Functions

There are six basic trigonometric functions. They operate on angles to yield
real numbers and are known as sine, cosine, tangent, cosecant, secant, and
cotangent. In formulas and equations, they are abbreviated sin, cos, tan,
csc, sec, and cot, respectively.
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Until now, angles have been denoted using lowercase italicized English
letters from near the end of the alphabet, for example, w, x, y, and z. In
trigonometry, however, Greek letters are almost always used, particularly 6
(italicized lowercase theta, pronounced “THAY-tuh”) and ¢ (italicized
lowercase phi, pronounced “FIE” or “FEE”). We will follow this conven-
tion here. You should get used to it so that you know how to pronounce the
names of the symbols when you see them. This will help you avoid embar-
rassment when you’re around physicists. More important, having a pro-
nunciation in your “mind’s ear” may make it easier for you to work with
formulas containing such symbols.

BASIC CIRCULAR FUNCTIONS

Consider a circle in rectangular coordinates with the following equation:
X+ y2 =1
This is called the unit circle because its radius is 1 unit, and it is centered

at the origin (0, 0), as shown in Fig. 5-9. Let 0 be an angle whose apex is
at the origin and that is measured counterclockwise from the abscissa

y
1.5 —+
/(Xo,y())
05 +
-+ 0
+— —+— —+H —t x
1.5 -0.5 1 0.5 1.5
0.5 T
Unit
circle +£
1.5 =+

Fig. 5-9  Unit-circle model for defining trigonometric functions.
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(x axis). Suppose that this angle corresponds to a ray that intersects the unit
circle at some point P = (x,, y,). Then

Y, = sin 6
X, = cos 6
Yo/X, = tan 0

SECONDARY CIRCULAR FUNCTIONS

Three more circular trigonometric functions are derived from those just
defined. They are the cosecant function, the secant function, and the cotan-
gent function. In formulas and equations, they are abbreviated csc 6, sec 6,
and cot 6. They are defined as follows:

csc 6 = 1/(sin 0) = 1/y,
sec 6 = 1/(cos 0) = 1/x,
cot 8 = 1/(tan 0) = x/y,

RIGHT-TRIANGLE MODEL

Consider a right triangle APQR such that £ PQOR is the right angle. Let d be
the length of line segment RQ, e be the length of line segment QF, and f be the
length of line segment RP, as shown in Fig. 5-10. Let 6 be the angle between
line segments RQ and RP. The six circular trigonometric functions can be
defined as ratios between the lengths of the sides as follows:

sin 0 = elf

9 900
R ® Q
d

Fig. 5-10 Right-triangle model for defining trigonometric functions.
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cos 0 = dlIf
tan 6 = e/d
csc 0 = fle
sec 0 = fid
cot 0 = dle

p 127

Trigonometric Identities

The following paragraphs depict common trigonometric identities for the
circular functions. Unless otherwise specified, these formulas apply to
angles 6 and ¢ in the standard range as follows:

0 < 6 < 27 (in radians)
0 = 6 < 360 (in degrees)
0 = ¢ < 27 (in radians)
0 = ¢ < 360 (in degrees)

Angles outside the standard range usually are converted to values within the
standard range by adding or subtracting the appropriate multiple of 27 radi-
ans (360°). You occasionally may hear of an angle with negative measure—
that is, measured clockwise rather than counterclockwise—but this can
always be converted to some angle with positive measure that is at least zero
but less than 360°. The same is true for “angles” greater than 360°.
Sometimes physicists will use strange angular expressions (for example,
talking about reversed or multiple rotations or revolutions), but it is usually
best to reduce angles to values in the standard range. Some of these formu-
las deal with negative angles, but in these cases, the intent is to let you deter-
mine an equivalent value for a trigonometric function of some angle within
the standard range.

PYTHAGOREAN THEOREM FOR SINE AND COSINE

The sum of the squares of the sine and cosine of an angle is always equal
to 1. The following formula holds:

sin’ 0+ coszﬁ =1
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The expression sin” @ refers to the sine of the angle squared (not the sine of
the square of the angle). That is to say:

.2 . 2
sin” 8 = (sin 0)
The same holds true for the cosine, tangent, cosecant, secant, cotangent,

and all other similar expressions you will see in the rest of this chapter and
in physics.

PYTHAGOREAN THEOREM FOR SECANT
AND TANGENT

The difference between the squares of the secant and tangent of an angle is
always equal to either 1 or —1. The following formulas apply for all angles
except 0 = m/2 radians (90°) and 0 = 3m/2 radians (270°):

sec’® —tan" 0 = 1

tan26 — secze = -1

SINE OF NEGATIVE ANGLE

The sine of the negative of an angle (an angle measured in the direction
opposite to the normal direction) is equal to the negative (additive inverse)
of the sine of the angle. The following formula holds:

sin —6 = —sin 6

COSINE OF NEGATIVE ANGLE

The cosine of the negative of an angle is equal to the cosine of the angle.
The following formula holds:

cos —0 = cos 0

TANGENT OF NEGATIVE ANGLE

The tangent of the negative of an angle is equal to the negative (additive
inverse) of the tangent of the angle. The following formula applies for all
angles except § = /2 radians (90°) and 0 = 3m/2 radians (270°):
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tan —0 = —tan 0

COSECANT OF NEGATIVE ANGLE

The cosecant of the negative of an angle is equal to the negative (additive
inverse) of the cosecant of the angle. The following formula applies for all
angles except 8 = 0 radians (0°) and 6 = 1 radians (180°):

csc —0 = —csc O

SECANT OF NEGATIVE ANGLE

The secant of the negative of an angle is equal to the secant of the angle.
The following formula applies for all angles except 8 = /2 radians (90°)
and 6 = 3m/2 radians (270°):

sec —0 = sec 0

COTANGENT OF NEGATIVE ANGLE

The cotangent of the negative of an angle is equal to the negative (additive
inverse) of the cotangent of the angle. The following formula applies for all
angles except # = 0 radians (0°) and 6 = 1 radians (180°):

cot —0 = —cot 0

SINE OF DOUBLE ANGLE

The sine of twice any given angle is equal to twice the sine of the original
angle times the cosine of the original angle:

sin 20 = 2 sin 6 cos 0

COSINE OF DOUBLE ANGLE

The cosine of twice any given angle can be found according to either of the
following:

cos 20 = 1— (2 sin’ 0)
cos 20 = (2 cos” 0) — 1
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SINE OF HALF ANGLE

The sine of half of any given angle can be found according to the follow-
ing formula when 0 = 6 < 7 radians (0 = 6 < 180°):

sin(8/2) = [(1 — cos 6)/2]"
When m = 6 < 27 radians (180 = 0 < 360°), the formula is
sin(0/2) = — [(1 — cos 0)/2]"

COSINE OF HALF ANGLE

The cosine of half of any given angle can be found according to the follow-
ing formula when 0 = 0 < m/2 radians (0 = 0 < 90°) or 3m/2 = 6 < 2w
radians (270 = 6 < 360°):

cos(6/2) = [(1 + cos 0)/2
When w/2 = 6 < 3m/2 radians (90 = 6 < 270°) the formula is
cos(8/2) = — [(1 + cos 0)/2]"

]]/2

SINE OF ANGULAR SUM

The sine of the sum of two angles 6 and ¢ can be found according to the
following formula:

sin(0 + &) = (sin 0)(cos ¢) + (cos 8)(sin ¢)

COSINE OF ANGULAR SUM

The cosine of the sum of two angles 6 and ¢ can be found according to the
following formula:

cos(6 + ¢) = (cos 0)(cos d) — (sin B)(sin )

SINE OF ANGULAR DIFFERENCE

The sine of the difference between two angles 6 and ¢ can be found accord-
ing to the following formula:

sin(0 — &) = (sin 6)(cos ¢) — (cos 8)(sin ¢)
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COSINE OF ANGULAR DIFFERENCE

The cosine of the difference between two angles 6 and ¢ can be found accord-
ing to the following formula:

cos(8 — &) = (cos 0)(cos b) + (sin 0)(sin )

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1.

. What is the value of the quotient (1

The range of the common logarithm function extends over the set of
(a) all real numbers.

(b) all the positive real numbers.

(c) all the nonnegative real numbers.

(d) all real numbers except zero.

. From a distance of 503 meters, a spherical satellite has an angular diameter

(that is, its disk subtends an observed angle) of 2.00 degrees of arc. What is the
actual radius of the satellite? Assume that the distance is measured from the
center of the satellite.

(a) 8.78 meters

(b) 17.6 meters

(c) 10.6 meters

(d) 2.79 meters

. What is sin 45°? Do not use a calculator to determine the answer. Use the

pythagorean theorem (as defined in Chapter 4) and simple algebra.
(a) 21/2

(b) 2—1/2

(©1

(d) It cannot be determined from this information.

. The natural logarithm of —5.670, to four significant figures, is equal to

(a) 1.735.

(b) —1.735.

(¢c) 0.7536.

(d) Nothing; the value is not defined.

0(4‘553)/10(3'553))? Parentheses have been

added to make the meaning of this expression completely clear.
(a) 10
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10.

(b) 1
(c) 4.553
(d) 3.553

. Suppose that you are given the equation ¢' = —5 and told to solve it. What can

you say right away about the value of x?

(a) It is a large positive real number.

(b) It is between 0 and 1.

(c) It is a real number and is large negatively.
(d) It is not a real number.

. What is In e to three significant figures? Use a calculator if you need it.

(a) 0.434
(b) 2.718
(c) 1.000
(d) It can’t be figured out without more information.

. Suppose that the cosine of a small angle is 0.950. What is the cosine of the neg-

ative of that angle—that is, the cosine of the same angle measured clockwise
rather than counterclockwise?

(a) 0.950

(b) —0.950

(c) 0.050

(d) —0.050

. Given that the length of a day on earth is 24 hours (as measured with respect

to the sun), how many degrees of arc does the earth rotate through in 1 minute
of time?

(a) 1/60

(b) 15

(c) 1/3,600

(d) 0.25

Suppose that two points on the earth’s equator are separated by one second of
arc (that is, 1/3,600 of an angular degree). If the circumference of the earth at
the equator is given as 4.00 X 10" meters, how far apart are these two points?
(a) 1.11 X 10" meters

(b) 463 meters

(c) 30.9 meters

(d) It cannot be calculated from this information.



Test: Part Zero

Do not refer to the text when taking this test. A good score is at least 37
correct. Answers are in the back of the book. It is best to have a friend
check your score the first time so that you won’t memorize the answers if
you want to take the test again.

1. A constant that is a real number but is not expressed in units is known as
(a) aeuclidean constant.
(b) a cartesian constant.
(c) a dimensionless constant.
(d) an irrational constant.
(e) arational constant.

2. If someone talks about a gigameter in casual conversation, how many kilome-
ters could you logically assume this is?
(a) 1,000
(b) 10,000
(c) 100,000
(d) 1 million
(e) 1 billion
3. In log-log coordinates,
(a) one axis is linear, and the other is determined according to an angle.
(b) both axes are logarithmic.
(c) all possible real-number ordered pairs can be shown in a finite area.
(d) all three values are determined according to angles.
(e) points are defined according to right ascension and declination.

4. Consider this sequence of numbers: 7.899797, 7.89979, 7.8997, 7.899, 7.89,
.... Each number in this sequence has been modified to get the next one. This
process is an example of
(a) truncation.

(b) vector multiplication.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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(c) rounding.
(d) extraction of roots.
(e) scientific notation.

. The expression 3 (read “three sub x”) is another way of writing
(a) 3 raised to the xth power.
(b) the product of 3 and x.
(c) 3 divided by x.
(d) The xth root of 3.
(e) nothing; this is a nonstandard expression.

. Which of the following statements is true?

(a) A quadrilateral can be uniquely determined according to the lengths of its
four sides.

(b) The diagonals of a parallelogram always bisect each other.

(c) Any given four points always lie in a single plane.

(d) If one of the interior angles in a triangle measures 90°, then all the interi-
or angles in that triangle measure 90°.

(e) All of the above statements are true.

. If you see the lowercase italic letter ¢ in an equation or formula describing the
physical properties of a system, it would most likely represent
(a) the exponential base, roughly equal to 2.71828.
(b) the ratio of a circle’s diameter to its radius.
(c) the square root of —1.
(d) the speed of light in free space.
(e) the 90° angle in a right triangle.

. Suppose that an airplane is flying on a level course over an absolutely flat
plain. At a certain moment in time you measure the angle x at which the air-
plane appears to be above the horizon. At the same moment the pilot of the air-
craft sees you and measures the angle y at which you appear to be below the
horizon. Which of the following statements is true?

a x<y

b) x=y

() x>y

(d) The relationship between x and y depends on the plane’s altitude.
(e) The relationship betwen x and y depends on the plane’s speed.

. Suppose that you are told that the diameter of the sun is 1.4 X 10° kilometers
and you measure its angular diameter in the sky as 0.50°. Based on this infor-
mation, approximately how far away is the sun, to two significant figures?
(a) 1.6 X 10° kilometers
(b) 6.2 X 10° kilometers
(c) 1.6 X 10 kilometers
(d) 6.2 X 10’ kilometers
(e) 6.2 X 10° kilometers



Part O: Test

10. What is the diameter of a sphere whose volume is 100 cubic meters? (The for-
mula for the volume V of a sphere in cubic meters, in terms of its radius R in

meters, is V = 417r3/3.)
(a) 2.88 meters
(b) 4.19 X 10° meters
(c) 5.76 meters
(d) 8.28 X 10° meters

(e) There is not enough information to determine this.

11. What is the difference, from the point of view of an experimental physicist,
between 2.0000000 X 10° and 2.000 X 10°?

(a)
icant figures.

Four orders of magnitude
One part in 10,000

(b)
()
(d)
©)

One expression has eight significant figures, and the other has four signif-

One number is rounded, and the other is truncated.
There is no difference whatsoever between these two expressions.

12. Refer to Fig. T-0-1. What is the domain of this function?
(a) All the real numbers between and including O and 1
(b) All real numbers greater than 0 but less than or equal to 1
(c) All real numbers greater than or equal to O but less than 1

1.5

-1.0

15
Fig. T-0-1

Tlustration for Part Zero Test

Questions 12 and 13.
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13.

14.

15.

16.

17.

(d) All real numbers between but not including 0 and 1
(e) All real numbers

Refer again to Fig. T-0-1. What is the range of this function?
(a) All the real numbers between and including 0 and 1

(b) All real numbers greater than 0 but less than or equal to 1
(c) All real numbers greater than or equal to O but less than 1
(d) All real numbers between but not including 0 and 1

(e) All real numbers

Suppose that a car travels down a straight road at a constant speed. Then the
distance traveled in a certain amount of time is equal to

(a) the product of the speed and the elapsed time.

(b) the speed divided by the elapsed time.

(c) the elapsed time divided by the speed.

(d) the sum of the speed and the elapsed time.

(e) the difference between the speed and the elapsed time.

A two-dimensional coordinate system that locates points based on an angle
and a radial distance, similar to circular radar displays, is called

(a) the cartesian plane.

(b) semilog coordinates.

(c) cylindrical coordinates.

(d) circular coordinates.

(e) polar coordinates.

The expression 6! is equivalent to

(a) the common logarithm of 6.

(b) the natural logarithm of 6.

(c) k.

(d) 21.

(e) 720.

Suppose that you come across a general single-variable equation written in the
following form:

x—g@x—nNx—595x—n=0

This can be classified as a

18.

(a) quadratic equation.

(b) cubic equation.

(c) quartic equation.

(d) quintic equation.

(e) linear equation.

Suppose that you have a pair of equations in two variables. What is the least
number of common solutions this pair of equations can have?

(a) None



19.

20.

21

22.

23.

Part O: Test

(b) One
(c) Two
(d) Three
(e) Four

Suppose that you have a brick wall 1.5 meters high and you need to build a
ramp to the top of this wall from some point 3.2 meters away on level ground.
Which of the following plank lengths is sufficient to make such a ramp with-
out being excessively long?

(a) 4.7 meters

(b) 4.8 meters

(c) 3.6 meters

(d) 1.7 meters

(e) There is not enough information given here to answer that question.

In a cylindrical coordinate system, a point is determined relative to the origin
and a reference ray according to

(a) angle, radius, and elevation.

(b) three radii.

(c) three angles.

(d) height, width, and depth.

(e) celestial latitude and longitude.

. What is the standard quadratic form of (x + 2)(x — 5)?

(a 2x—3=0

() ¥ —10=0

© ¥ —3x—10=0

@ ¥ +7x+10=0

(e) There is no such form because this is not a quadratic equation.

Suppose that a piston has the shape of a cylinder with a circular cross section.
If the area of the circular cross section (the end of the cylinder) is 10 square
centimeters and the cylinder itself is 10 centimeters long, what, approximately,
is the volume of the cylinder?

(a) 10 square centimeters

(b) 100 square centimeters

(c) 62.8 cubic centimeters

(d) 100 cubic centimeters

(e) More information is needed to determine this.

Suppose that you see this equation in a physics paper: z, = 3k + sin g. What
does sin ¢ mean?

(a) The logarithm of the quantity ¢

(b) The inverse sine (arcsine) of the quantity g

(c) The sine of the quantity ¢

(d) The exponential of the quantity ¢

(e) None of the above
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24. The expression —5.44E + 04 is another way of writing

(a) —5.4404
(b) —544,004
() —5.44x 10"
(d) —54,400

(e) nothing; this is a meaningless expression.

25. When two equations in two variables are graphed, their common approximate
solutions, if any, appear as
(a) points where the curves cross the x axis.
(b) points where the curves cross the y axis.
(c) points where the curves intersect each other.
(d) points where the curves intersect the origin (0, 0).
(e) nothing special; the graphs give no indication of the solutions.

26. What is the product of 5.8995 X 10" and 1.03 X 10°? Take significant figures
into account.
(a) 6.0764845 X 10~
(b) 6.076485 x 10>
(c) 6.07648 X 102
d) 6.076 X 10>
(e) 6.08 X 10 °

27. Suppose that you see the following expression in a physics thesis:
sech 'x=In[x "+ &= D"

What does the expression /n mean in this context?
(a) Some real number multiplied by 1
(b) The common logarithm
(c) The natural logarithm
(d) The inverse secant
(e) The square root

28. Suppose that there are two vectors a and b, represented in the cartesian plane
as follows:

a=(3,5)
b = (-3, -5)

What is the sum of these vectors in the cartesian plane?
(a) a+b=-34
(b) a+b=(0,0)
(¢c) a+b=(6,10)
(d a+b= (-9, —-25)
(e) There is no such sum, because the sum of these vectors is not defined.



Part O: Test

29. How many points does it take to uniquely define a geometric plane?
(a) One
(b) Two
(c) Three
(d) Four
(e) Five
30. Refer to Fig. T-0-2. What does this graph represent?
(a) The sine function
(b) The cosine function
(c) A quadratic equation
(d) A linear equation
(e) A logarithmic function

31. Refer again to Fig. T-0-2. The coordinate system in this illustration is
(a) polar.
(b) spherical.
(c) semilog.

-2

Fig. T-0-2 Tllustration for Part Zero Test Questions 30 and 31.



A Review of Mathematics

32.

33.

34.

35.

36.

37.

(d) log-log.

(e) trigonometric.

Suppose that there are two vectors. Vector a points straight up with a magni-
tude of 3, and vector b points directly toward the western horizon with a mag-
nitude of 4. The cross product a X b has the following characteristics:

(a) Itis a scalar with a value of 12.

(b) Itis a vector pointing toward the southern horizon with a magnitude of 12.
(c) Itis a vector pointing upward and toward the west with a magnitude of 5.
(d) Itis a vector pointing straight down with a magnitude of 5.

(e) We need more information to answer this.

Using a calculator, you determine the %3 power of 2 (that is, 22/3) to four sig-
nificant figures. The result is

(a) 1.587.

(b) 2.828.

(c) 4.000.

(d) 8.000.

(e) The expression 2°” is not defined and cannot be determined by any means.

The numbers 34 and 34,000 differ by
(a) a factor of 10.

(b) three orders of magnitude.

(c) five orders of magnitude.

(d) seven orders of magnitude.

(e) the same ratio as a foot to a mile.

Right ascension is measured in
(a) degrees.

(b) radians.

(c) linear units.

(d) logarithmic units.

(e) hours.

Consider the function y = 2x with the domain restricted to 0 < x < 2. What is
the range?

(@) 0<y<1/2

b)) 0<y<1

© 0<y<2

d o<y<4

(e) There is not enough information given to answer this question.
The fifth root of 12 can be written as

() 12"

(b) 12/5.

) 12°.

@ 5°.

© 52



38.

39.

40.

41.

42.

43.

Part O: Test

Suppose that you are given the equation X+ y2 = 10. What does this look like
when graphed in rectangular coordinates?

(a) A straight line

(b) A parabola

(c) An elongated ellipse

(d) A hyperbola

(e) A circle

Suppose that an experimenter takes 10,000 measurements of the voltage on a
household utility line over a period of several days and comes up with an aver-
age figure of 115.85 volts. This is considered the nominal voltage on the line.
Suppose that a second experimenter takes a single measurement and gets a
value of 112.20 volts. The percentage departure of the single observer’s meas-
urement from the nominal voltage is approximately

(a) —0.03 percent.

(b) +0.03 percent.

(c) +3 percent.

(d) —3 percent.

(e) impossible to determine from the data given.

Suppose that there is a four-sided geometric figure that lies in a single plane
and whose sides all have the same length. Then the perimeter of that figure is
(a) the product of the base length and the height.

(b) the square of the length of any given side.

(c) the sum of the lengths of all four sides.

(d) half the sum of the lengths of all four sides.

(e) impossible to define without knowing more information.

Suppose that you view a radio tower on a perfectly flat plain and find that it
appears to extend up to a height of 2.2° above the horizon. How far away is the
base of the tower from where you stand, expressed to two significant figures?
(a) 0.5 kilometer

(b) 1.0 kilometer

(¢) 1.5 kilometers

(d) 2.2 kilometers

(e) More information is needed to determine this.

The product of 3.88 X 10" and 1.32 X 10 is
(a) 5.12.

(b) 5.12 x 10"

() 5.12x 10 ™.

(d 5.12 x 10

d 5.12x10°*

The cosine of a negative angle is the same as the cosine of the angle. Knowing
this and the fact that the cosine of 60° is equal to 0.5, what can be said about
the cosine of 300° without making any calculations?
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(a) Nothing; we need more information to know.

(b) The cosine of 300° is equal to 0.5.

(c) The cosine of 300° is equal to —0.5.

(d) The cosine of 300° can be equal to either 0.5 or —0.5.
(e) The cosine of 300° is equal to zero.

44. The slope of a vertical line (a line parallel to the ordinate) in cartesian rectan-
gular coordinates is
(a) undefined.
(b) equal to 0.
(c) equalto 1.
(d) variable, depending on how far you go from the origin.
(e) imaginary.
45. Which of the following statements is false?
(a) A triangle can be uniquely determined according to the lengths of its
sides.
(b) A triangle can be uniquely determined according to the length of one side
and the measures of the two angles at either end of that side.
(c) A triangle can be uniquely determined according to the measures of its
three interior angles.
(d) All equilateral triangles are similar to each other.
(e) An isosceles triangle has two sides whose lengths are the same.

46. The equation —4x" + 17x = Tis an example of
(a) atwo-variable equation.
(b) alinear equation.
(c) a quadratic equation.
(d) an exponential function.
(e) none of the above.

47. The sum of a real number and an imaginary number is
(a) undefined.
(b) an irrational number.
(c) arational number.
(d) a transcendental number.
(e) acomplex number.

48. In astronomy, the equivalent of celestial longitude, based on the vernal equi-
nox and measured relative to the stars, is called
(a) longitude.
(b) azimuth.
(c) right ascension.
(d) arc span.
(e) meridian.



49.

50.

Part O: Test

Consider a plane that contains the axis of a true parabolic dish antenna or mir-
ror. The dish or mirror intersects this plane along a curve that can be defined by
(a) imaginary numbers.

(b) alinear equation.

(c) a quadratic equation.

(d) a cubic equation.

(e) no particular equation.

Suppose that you are given two positive numbers, one of them 25 orders of
magnitude larger than the other and both expressed to four significant figures.
If you add these numbers and express the sum to four significant figures,

(a) the smaller number vanishes into insignificance.

(b) you must write both numbers out in full.

(c) you must have the aid of a computer.

(d) the sum is 25 orders of magnitude bigger than the larger number.

(e) you must subtract the numbers and then take the negative of the result.
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CHAPTER 6

Units and
Constants

Units are devices that scientists use to indicate, estimate, and calculate
aspects of the world and the universe. Numbers by themselves are abstract.
Try to envision the number 5 in your mind. You think of a set or object: five
objects, five dots, a line five meters long, a five-pointed star, or a pentagon.
However, these are sets or objects, not the actual number. It is still more
difficult to directly envision the square root of two (21/2), pi (), or the
natural logarithm base (e), which aren’t whole numbers.

Most people think of numbers as points on a line that are certain dis-
tances from the origin, or zero point. Displacement might be 2" units or
o meters. You might think of a specific length of time, such as e seconds.
Maybe you think of mass in kilograms or even something more exotic,
such as the intensity of an electric current in amperes, or the brilliance of
a light bulb in candelas.

Systems of Units

There are various schemes, or systems, of physical units in use throughout the
world. The meter-kilogram-second (mks) system, also called the metric system
or the International System, is favored by most physicists. The centimeter-
gram-second (cgs) system is used less often, and the foot-pound-second
(fps) system, also called the English system, is used rarely by scientists but
is popular among nonscientists. Each system has several fundamental, or
base, units from which all the others are derived.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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THE INTERNATIONAL SYSTEM (SI)

The International System is often abbreviated SI, which stands for Systeme
International in French. This scheme in its earlier form, mks, has existed
since the 1800s, but more recently it has been defined in a rigorous fashion
by the General Conference on Weights and Measures.

The base units in SI quantify displacement, mass, time, temperature,
electric current, brightness of light, and amount of matter (in terms of
the number of atoms or molecules in a sample). Respectively, the units
in SI are known as the meter, the kilogram, the second, the kelvin (or
degree kelvin), the ampere, the candela, and the mole. We’ll define these
in detail shortly.

THE CGS SYSTEM

In the centimeter-gram-second (cgs) system, the base units are the centimeter
(exactly 0.01 meter), the gram (exactly 0.001 kilogram), the second, the
degree Celsius (approximately the number of Kelvins minus 273), the
ampere, the candela, and the mole. The second, the ampere, the candela,
and the mole are the same in cgs as they are in SI.

THE ENGLISH SYSTEM

In the English or foot-pound-second (fps) system, the base units are the foot
(approximately 30.5 centimeters), the pound (equivalent to about 2.2 kilo-
grams in the gravitational field at the Earth’s surface), the second, the
degree Fahrenheit (where water freezes at 32 degrees and boils at 212
degrees at standard sea-level atmospheric pressure), the ampere, the candela,
and the mole. The second, the ampere, the candela, and the mole are the
same in fps as they are in SI.

Base Units in SI

In all systems of measurement, the base units are those from which all the
others can be derived. Base units represent some of the most elementary
properties or phenomena we observe in nature.
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THE METER

The fundamental unit of distance, length, linear dimension, or displacement
(all different terms meaning essentially the same thing) is the meter, symbol-
ized by the lowercase nonitalicized English letter m. Originally, the meter
was designated as the distance between two scratches on a platinum bar put
on display in Paris, France. The original idea was that there ought to be 10
million (107) meters along a great circle between the north pole and the
equator of Earth, as it would be measured if the route passed through Paris
(Fig. 6-1). Mountains, bodies of water, and other barriers were ignored; the
Earth was imagined to be a perfectly round, smooth ball. The circumference
of the Earth is about 40 million (4.0 X 10") m, give or take a little depending
on which great circle around the globe you choose.

Nowadays, the meter is defined more precisely as the distance a beam of
light travels through a perfect vacuum in 3.33564095 billionths of a second,
that is, 3.33564095 X 10~° second. This is approximately the length of an
adult’s full stride when walking at a brisk pace.

THE KILOGRAM

The base SI unit of mass is the kilogram, symbolized by the lowercase non-
italicized pair of English letters kg. Originally, the kilogram was defined as
the mass of 0.001 cubic meter (or 1 liter) of pure liquid water (Fig. 6-2).

Earth's axis

North geographic pole

10,000,000 m

Equator

Fig. 6-1. There are about 10 million meters between
the Earth’s north pole and the equator.
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L

0.1 m

7

0.1 m
Pure water

€—— 0.1 m —>

Fig. 6-2. Originally, the kilogram was defined as
the mass of 0.001 cubic meter of pure liquid water.

This is still an excellent definition, but these days scientists have come up with
something more absolute. A kilogram is the mass of a sample of platinum-
iridium alloy that is kept under lock and key at the International Bureau of
Weights and Measures.

It is important to realize that mass is not the same thing as weight. A
mass of 1 kg maintains this same mass no matter where it is located. That
standard platinum-iridium ingot would mass 1 kg on the Moon, on Mars, or
in intergalactic space. Weight, in contrast, is a force exerted by gravita-
tion or acceleration on a given mass. On the surface of the Earth, a 1-kg mass
happens to weigh about 2.2 pounds. In interplanetary space, the same
mass weighs 0 pounds; it is weightless.

THE SECOND

The ST unit of time is the second, symbolized by the lowercase nonitalicized
English letter s (or sometimes abbreviated as sec). It was defined originally
as 1/60 of a minute, which is 1/60 of an hour, which in turn is 1/24 of a
mean solar day. A second was thus thought of as 1/86,400 of a mean solar
day, and this is still an excellent definition (Fig. 6-3). However, formally,
these days, 1 s is defined as the amount of time taken for a certain cesium
atom to oscillate through 9.192631770 X 10° complete cycles.
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1/60 revolution

—
1 second

1 minute

1/60
revolution
1 hour @

1/24 rotation

Fig. 6-3. Originally, the second was defined as
(1/60)(1/60)(1/24), or 1/86,400, of a mean solar day.

One second also happens to be the time it takes for a ray of light to travel
2.99792458 X 10° m through space. This is about three-quarters of the way
to the Moon. You may have heard of the Moon being a little more than one
light-second away from Earth. If you are old enough to remember the
conversations Earth-based personnel carried on with Apollo astronauts as
the astronauts walked around on the Moon, you will recall the delay between
comments or questions from earthlings and the replies from the moonwalkers.
The astronauts were not hesitating; it took more than 2 seconds for radio
signals to make a round trip between Earth and the Moon. In a certain
manner of thinking, time is a manifestation or expression of linear dimension,
and vice versa. Both of these aspects of nature are intimately related by the
speed of light, which Albert Einstein hypothesized is an absolute.

THE KELVIN

The SI unit of temperature is the kelvin, symbolized K (uppercase and
nonitalicized). It is a measure of how much heat exists relative to absolute
zero, which represents the absence of all heat and which is therefore the



Classical Physics

coldest possible temperature. A temperature of 0 K represents absolute
zero. Formally, the kelvin is defined as a temperature increment (an increase
or decrease) of 0.003661 part of the thermodynamic temperature of the triple
point of pure water. Pure water at sea level freezes (or melts) at +273.15 K
and boils (or condenses) at +373.15 K.

What, you might ask, is the meaning of #riple point? In the case of water,
it’s almost exactly the same as the freezing point. For water, it is the tempera-
ture and pressure at which it can exist as vapor, liquid, and ice in equilibrium.
For practical purposes, you can think of it as freezing.

THE AMPERE

The ampere, symbolized by the uppercase nonitalicized English letter A (or
abbreviated as amp), is the unit of electric current. A flow of approximately
6.241506 X 10" electrons per second past a given fixed point in an electrical
conductor produces an electrical current of 1 A.

Various units smaller than the ampere are often employed to measure or
define current. A milliampere (mA) is one-thousandth of an ampere, or a
flow of 6.241506 X 10" electrons per second past a given fixed point. A
microampere (PA) is one-millionth or 107° of an ampere, or a flow of
6.241506 X 10" electrons per second. A nanoampere (nA) is 10~° of an
ampere; it is the smallest unit of electric current you are likely to hear about
or use. It represents a flow of 6.241506 X 10° electrons per second past a
given fixed point.

The formal definition of the ampere is highly theoretical: 1 A is the amount
of constant charge-carrier flow through two straight, parallel, infinitely
thin, perfectly conducting media placed 1 m apart in a vacuum that results
in a force between the conductors of 2 X 10~ newton per linear meter.
There are two problems with this definition. First, we haven’t defined the
term newton yet; second, this definition asks you to imagine some theoret-
ically ideal objects that cannot exist in the real world. Nevertheless, there
you have it: the physicist venturing into the mathematician’s back yard
again. It has been said that mathematicians and physicists can’t live with
each other and they can’t live without each other.

THE CANDELA

The candela, symbolized by the lowercase nonitalicized pair of English
letters cd, is the unit of luminous intensity. It is equivalent to 1/683 of a watt
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of radiant energy emitted at a frequency of 5.4 X 10" hertz (cycles per
second) in a solid angle of one steradian. (The steradian will be defined
shortly.) This is a sentence full of arcane terms! However, there is a simpler,
albeit crude, definition: 1 cd is roughly the amount of light emitted by an
ordinary candle.

Another definition, more precise than the candle reference, does not rely
on the use of derived units, a practice to which purists legitimately can
object. According to this definition, 1 cd represents the radiation from a
surface area of 1.667 X 10°° square meter of a perfectly radiating object
called a blackbody at the solidification temperature of pure platinum.

THE MOLE

The mole, symbolized or abbreviated by the lowercase nonitalicized English
letters mol, is the standard unit of material quantity. It is also known as
Avogadro’s number and is a huge number, approximately 6.022169 X 10%.
This is the number of atoms in precisely 0.012 kg of carbon-12, the most
common isotope of elemental carbon with six protons and six neutrons in
the nucleus.

The mole arises naturally in the physical world, especially in chemistry.
It is one of those strange numbers for which nature seems to have reserved
a special place. Otherwise, scientists surely would have chosen a round
number such as 1,000, or maybe even 12 (one dozen).

A NOTE ABOUT SYMBOLOGY

Up to this point we’ve been rigorous about mentioning that symbols and
abbreviations consist of lowercase or uppercase nonitalicized letters or
strings of letters. This is important because if this distinction is not made,
especially relating to the use of italics, the symbols or abbreviations for
physical units can be confused with the constants, variables, or coefficients
that appear in equations. When a letter is italicized, it almost always rep-
resents a constant, a variable, or a coefficient. When it is nonitalicized, it
often represents a physical unit. A good example is s, which represents
second, versus s, which is often used to represent linear dimension or
displacement.

From now on we won’t belabor this issue every time a unit symbol or
abbreviation comes up. But don’t forget it. Like the business about significant
figures, this seemingly trivial thing can matter a lot!
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Other Units

The preceding seven units can be combined in various ways, usually as
products and ratios, to generate many other units. Sometimes these derived
units are expressed in terms of the base units, although such expressions
can be confusing (for example, seconds cubed or kilograms to the —1 power).
If you see combinations of units in a physics book, article, or paper that
don’t seem to make sense, don’t be alarmed. You are looking at a derived
unit that has been put down in terms of base units.

THE RADIAN

The standard unit of plane angular measure is the radian (rad). It is the
angle subtended by an arc on a circle whose length, as measured on the circle,
is equal to the radius of the circle as measured on a flat geometric plane
containing the circle. Imagine taking a string and running it out from the
center of a circle to some point on the edge and then laying that string down
around the periphery of the circle. The resulting angle is 1 rad. Another
definition goes like this: One radian is the angle between the two straight
edges of a slice of pie whose straight and curved edges all have the same
length r (Fig. 6-4). It is equal to about 57.2958 angular degrees.

1 radian

Fig. 6-4. One radian is the angle at the
apex of a slice of pie whose straight and
curved edges all have the same length .

THE ANGULAR DEGREE

The angular degree, symbolized by a little elevated circle (°) or by the
three-letter abbreviation deg, is equal to 1/360 of a complete circle. The
history of the degree is uncertain, although one theory says that ancient
mathematicians chose it because it represents approximately the number
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of days in the year. One angular degree is equal to approximately
0.0174533 radians.

THE STERADIAN

The standard unit of solid angular measure is the steradian, symbolized sr.
A solid angle of 1 sr is represented by a cone with its apex at the center of
a sphere and intersecting the surface of the sphere in a circle such that,
within the circle, the enclosed area on the sphere is equal to the square of
the radius of the sphere. There are 41, or approximately 12.56636, steradians
in a complete sphere.

THE NEWTON

The standard unit of mechanical force is the newton, symbolized N. One
newton is the amount of force that it takes to make a mass of 1 kg accelerate
at a rate of one meter per second squared (1 m/s%). Jet or rocket engine
propulsion is measured in newtons. Force is equal to the product of mass
and acceleration; reduced to base units in SI, newtons are equivalent to
kilogram-meters per second squared (kg - m/s’).

THE JOULE

The standard unit of energy is the joule, symbolized J. This is a fairly small
unit in real-world terms. One joule is the equivalent of a newton-meter (n - m).
If reduced to base units in SI, the joule can be expressed in terms of unit
mass multiplied by unit distance squared per unit time squared:

17 =1kg- - m’s’

THE WATT

The standard unit of power is the watt, symbolized W. One watt is equivalent
to one joule of energy expended for one second of time (1 J/s). In fact,
power is a measure of the rate at which energy is produced, radiated, or
consumed. The expression of watts in terms of SI base units begins to get
esoteric, as you have been warned:

1W = 1kg - m’s’



Classical Physics

THE COULOMB

The standard unit of electric charge quantity is the coulomb, symbolized C.
This is the electric charge that exists in a congregation of approximately
6.241506 X 10" electrons. It also happens to be the electric charge con-
tained in that number of protons, antiprotons, or positrons (antielectrons).
When you walk along a carpet with hard-soled shoes in the winter or
anywhere the humidity is very low, your body builds up a static electric
charge that can be expressed in coulombs (or more likely a fraction of
one coulomb). Reduced to base units in SI, one coulomb is equal to one
ampere-second (1 A - s).

THE VOLT

The standard unit of electrical potential or potential difference, also
called electromotive force (emf), is the volt, symbolized V. One volt is
equivalent to one joule per coulomb (1 J/C). The volt is, in real-world
terms, a moderately small unit of electrical potential. A standard dry cell
of the sort you find in a flashlight (often erroneously called a battery),
produces about 1.5 V. Most automotive batteries in the United States
produce between 12 and 13.5 V.

THE OHM

The standard unit of electrical resistance is the ohm, symbolized by the upper-
case Greek letter omega ({)). When one volt is applied across a resistance
of ohm, the result is one ampere of current flow. The ohm is thus equivalent
to one volt per ampere (V/A).

THE SIEMENS

The standard unit of electrical conductance is the siemens, symbolized S. It
was formerly called the mho, and in some papers and texts you’ll still see
this term. Conductance is the reciprocal of resistance. One siemens can be
considered the equivalent of one ampere per volt (A/V). If R is the resistance
of a component in ohms and G is the conductance of the component in
siemens, then
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G =1/R
R=1/G

THE HERTZ

The standard unit of frequency is the hertz, symbolized Hz. It was formerly
called the cycle per second or simply the cycle. The hertz is a small unit in
the real world, and 1 Hz represents an extremely low frequency. Usually,
frequency is measured in thousands, millions, billions, or trillions of hertz.
These units are called kilohertz (kHz), megahertz (MHz), gigahertz (GHz),
and rerahertz (THz), respectively. In terms of SI units, the hertz is mathe-
matically simple, but the concept is esoteric for some people to grasp: It is
an inverse second (sfl) or per second (/s).

THE FARAD

The standard unit of capacitance is the farad, which is symbolized F. The
farad is equivalent to one coulomb per volt (1 C/V). This is a large unit in
real-world applications. Most values of capacitance that you will find in
electrical and electronic circuits are on the order of millionths, billionths,
or trillionths of a farad. These units are called microfarads (\.F), nano-
farads (nF), and picofarads (pF).

THE HENRY

The standard unit of inductance is the henry, symbolized H. One henry is
equivalent to one volt-second per ampere (V - s/AorV - s - A", Thisis a
large unit in practice but not quite as gigantic as the farad. In electrical and
electronic circuits, most values of inductance are on the order of thou-
sandths or millionths of a henry. These units are called millihenrys (mH)
and microhenrys (L.H).

THE WEBER

The standard unit of magnetic flux is the weber, symbolized Wb. This is a
large unit in practical applications. One weber is equal to one ampere-henry
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(1 A - H). This is represented in the real world as the amount of magnetism
produced by a constant direct current of 1 A flowing through a coil having
an inductance of 1 H.

THE TESLA

The standard unit of magnetic flux density is the tesla, symbolized T. One
tesla is equivalent to one weber per meter squared (1 Wb/m” or Wb - m %)
when the flux is perpendicular to the surface under consideration.
Sometimes magnetic flux density is spoken of in terms of the number of “lines
of flux” per unit cross-sectional area; this is an imprecise terminology unless
we are told exactly how much magnetic flux is represented by a line.

Prefix Multipliers

Sometimes the use of standard units is inconvenient or unwieldy because
a particular unit is very large or small compared with the magnitudes of
phenomena commonly encountered in real life. We’ve already seen some
good examples: the hertz, the farad, and the henry. Scientists use prefix
multipliers, which can be attached in front of the words representing units,
to express power-of-10 multiples of those units.

In general, the prefix multipliers range in increments of 10°, or 3 orders
of magnitude, all the way down to 10~2* (septillionths) and all the way up to
10** (septillions). This is a range of 48 orders of magnitude! It’s not easy
to think of an illustrative example to demonstrate the hugeness of this ratio.
Table 6-1 outlines these prefix multipliers and what they stand for.

PROBLEM 6-1
Suppose that you are told that a computer’s microprocessor has a clock
frequency of 5 GHz. What is this frequency in hertz?

SOLUTION 6-1
From Table 6-1, observe that the gigahertz (GHz) represents 10° Hz. Thus
5 GHz is equal to 5 X 10° Hz, or 5 billion Hz.

PROBLEM 6-2
A capacitor is specified as having a value of 0.001 wF. What is this value
in farads?
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SOLUTION 6-2

From Table 6-1, note that . stands for micro-, or a unit of 1076, Therefore,
0.001 wF is 0.001 microfarad, equivalent to 0.001 X 1078 F = 1073 x 107°
= 10"° F. This could be called a nanofarad (1 nF), but for some reason,
engineers rarely use the nano- multiplier when speaking or writing about
capacitances. Instead, they likely would stick with the 0.001 wF notation; alter-
natively, they might talk about 10,000 picofarads (pF).

PROBLEM 6-3
An inductor has a value of 0.1 mH. What is this in microhenrys?

SOLUTION 6-3

From Table 6-1, you can see that the prefix multiplier m stands for milli-
or 1073, Therefore, 0.1 mH = 0.1 X 1073 H = 107* H = 102 x 10°°
H = 100 wH.

Table 6-1 Prefix Multipliers and Their

Abbreviations
Designator Symbol Multiplier

yocto- y 107
zepto- z 107
atto- a 10"
femto- f 107"
pico- p 107"
nano- n 10°°
micro- W or mm 10°°
milli- m 1077
centi- c 1072
deci- d 107!
(none) — 10°
deka- daorD 10"
hecto- h 10°
kilo- K or k 10°
mega- M 10°
giga- G 10°
tera- T 10"
peta- P 10”
exa- E 10"
zetta- Z 10*!
yotta- Y 10
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Constants

Constants are characteristics of the physical and mathematical world that can
be “taken for granted.” They don’t change, at least not within an ordinary
human lifetime, unless certain other factors change too.

MATH VERSUS PHYSICS

In pure mathematics, constants are usually presented all by themselves as
plain numbers without any units associated. These are called dimensionless
constants and include T, the circumference-to-diameter ratio of a circle,
and e, the natural logarithm base. In physics, there is almost always a unit
equivalent attached to a constant. An example is ¢, the speed of light in free
space, expressed in meters per second.

Table 6-2 is a list of constants you’ll encounter in physics. This is by no
means a complete list. Do you not know what most of the constants in this
table mean? Are they unfamiliar or even arcane to you? Don’t worry about this
now. As you keep on reading this book, you’ll learn about most of them.
This table can serve as a reference long after you’re done with this course.

Here are a few examples of constants from the table and how they relate
to the physical universe and the physicist’s modes of thought.

MASS OF THE SUN

It should come as no surprise to you that the Sun is a massive object. But
just how massive, really, is it? How can we express the mass of the Sun in
terms that can be comprehended? Scientific notation is generally used; we
come up with the figure 1.989 X 10% kg if we go to four significant figures.
This is just a little less than 2 nonillion kilograms or 2 octillion metric tons.
(This doesn’t help much, does it?)

How big is 2 octillion? It’s represented numerically as a 2 with 27 zeros
after it. In scientific notation it’s 2 X 10%’. We can split this up into 2 X 10°
X 10” X 10°. Now imagine a huge box 2,000 kilometers (km) tall by 1,000
km wide by 1,000 km deep. [A thousand kilometers is about 620 miles
(mi); 2000 km is about 1240 mi.] Suppose now that you are called on to
stack this box neatly full of little cubes measuring 1 millimeter (1 mm) on
an edge. These cubes are comparable in size to grains of coarse sand.

You begin stacking these little cubes with the help of tweezers and a
magnifying glass. You gaze up at the box towering high above the Earth’s
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Table 6-2 Some Physical Constants

Quantity or Phenomenon Value Symbol
Mass of Sun 1.989 X 1022 kg Men
Mass of Earth 5.974 X 107" kg Megrth
Avogadro’s number 6.022169 X 10> mol ' Nor Ny
Mass of Moon 7.348 x 10% kg Mpyoon
Mean radius of Sun 6.970 X 10° m Tsun
Speed of electromagnetic-field propagation 2.99792 X 10° m/s c

in free space
Faraday constant 9.64867 X 10" C/mol F
Mean radius of Earth 6.371 X 10°m Tearth
Mean orbital speed of Earth 2.978 x 10* m/s
Base of natural logarithms 2.718282 eore
Ratio of circle circumference to radius 3.14159 T
Mean radius of Moon 1.738 X 10° m Tmoon
Characteristic impedance of free space 376.7 Q Z
Speed of sound in dry air at standard 344 m/s
atmospheric temperature and pressure

Gravitational acceleration at sea level 9.8067 m/s* g
Gas constant 8.31434 J/K/mol RorR,
Fine structure constant 7.2974 X 10° o
Wien’s constant 0.0029 m - K Ow
Second radiation constant 0.0143883 m - K cy
Permeability of free space 1.257 X 10”° H/m o
Stefan-Boltzmann constant 5.66961 X 10~ W/m¥/K* g
Gravitational constant 6.6732 x 10 "' N - m2/kg2 G
Permittivity of free space 8.85 X 10 "* F/m €
Boltzmann’s constant 1.380622 x 10~ 2 J/K k
First radiation constant 4.99258 X 107 **J - m c
Atomic mass unit (amu) 1.66053 x 10”7’ kg u
Bohr magneton 9.2741 X 10 ** J/T Mg
Bohr radius 52918 X 10 ' m g
Nuclear magneton 5.0510 X 10 y/T [T,
Mass of alpha particle 6.64 x 10 kg my,
Mass of neutron at rest 1.67492 X 10727 kg my,
Mass of proton at rest 1.67261 X 10~ %" kg m,
Compton wavelength of proton 13214 X 10 P m Aep
Mass of electron at rest 9.10956 x 10> kg m

Radius of electron

2.81794 X 10 " m

(_D‘:
)
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Table 6-2 Some Physical Constants (Continued)

Quantity or Phenomenon Value Symbol
Elementary charge 1.60219 X 10 C e
Charge-to-mass ratio of electron 1.7588 x 10" C/kg elm,
Compton wavelength of electron 24263 X 10 % m A
Planck’s constant 6.6262 X 10 J - s h
Quantum-charge ratio 41357 x 10 1 - s/C hle
Rydberg constant 1.0974 X 10" m™" R,
Euler’s constant 0.577216 v

atmosphere and spanning several states or provinces (or even whole countries)
over the Earth’s surface. You can imagine it might take you quite a while to
finish this job. If you could live long enough to complete the task, you
would have stacked up 2 octillion little cubes, which is the number of metric
tons in the mass of our Sun. A metric ton is slightly more than an English ton.

The Sun is obviously a massive chunk of matter. But it is small as stars
go. There are plenty of stars that are many times larger than our Sun.

MASS OF THE EARTH

The Earth, too, is massive, but it is a mere speck compared with the Sun.
Expressed to four significant figures, the Earth masses 5.974 X 10 kg.
This works out to approximately 6 hexillion metric tons.

How large a number is 6 hexillion? Let’s use a similar three-dimensional
analogy. Suppose that you have a cubical box measuring 2.45 X 10° meters,
or 245 kilometers, on an edge. This is a cube about 152 mi tall by 152 mi
wide by 152 mi deep. Now imagine an endless supply of little cubes measuring
1 centimeter (1 cm) on an edge. This is about the size of a gambling die or a
sugar cube. Now suppose that you are given the task of—you guessed it—
stacking up all the little cubes in the huge box. When you are finished, you
will have placed approximately 6 hexillion little cubes in the box. This is
the number of metric tons in the mass of our planet Earth.

SPEED OF ELECTROMAGNETIC (EM)
FIELD PROPAGATION

The so-called speed of light is about 2.99792 X 10°® m/s. This works out to
approximately 186,282 miles per second (mi/s). Radio waves, infrared,
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visible light, ultraviolet, x-rays, and gamma rays all propagate at this speed,
which Albert Einstein postulated to be the same no matter from what point
of view it is measured.

How fast, exactly, is this? One way to grasp this is to calculate how long
it would take a ray of light to travel from home plate to the center-field
fence in a major league baseball stadium. Most ballparks are about 122 m
deep to center field; this is pretty close to 400 feet (ft). To calculate the time
tit tages aray of light to travel that far, we must divide 122 m by 2.99792
X 10" m/s:

t = 122/(2.99792 X 10%)
=407 %107

That is just a little more than four-tenths of a microsecond (0.4 s), an
imperceptibly short interval of time.

Two things should be noted at this time. First, remember the principles
of significant figures. We are justified in going to only three significant figures
in our answer here. Second, the units must be consistent with each other to
get a meaningful answer. Mixing units is a no-no in any calculation. It almost
always leads to trouble.

If we were to take the preceding problem and calculate in terms of units
without using any numbers at all, this is what we would get:

seconds = meters/(meters per second)
s = m/(m/s) = m X s/m

In this calculation, meters cancel out, leaving only seconds. Suppose, how-
ever, that we were to try to make this calculation using feet as the figure for
the distance from home plate to the center-field fence? We would then obtain
some value in undefined units; call them fubars (fb):

fubars = feet/(meters per second)
fb = ft/(m/s) = ft X s/m

Feet do not cancel out meters. Thus we have invented a new unit, the fubar,
that is equivalent to a foot-second per meter. This unit is basically useless,
as would be our numerical answer. (As an aside, fubar is an acronym for
“fouled up beyond all recognition.”)

Always remember to be consistent with units when making calcula-
tions! When in doubt, reduce all the “givens” in a problem to SI units before
starting to make calculations. You will then be certain to get an answer
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in derived SI units and not fubars or gobbledygooks or any other non-
sensical things.

GRAVITATIONAL ACCELERATION AT SEA LEVEL

The term acceleration can be somewhat confusing to the uninitiated when
it is used in reference to gravitation. Isn’t gravity just a force that pulls on
things? The answer to this question is both yes and no.

Obviously, gravitation pulls things downward toward the center of the
Earth. If you were on another planet, you would find gravitation there, too, but
it would not pull on you with the same amount of force. If you weigh 150
pounds here on Earth, for example, you would weigh only about 56 pounds
on Mars. (Your mass, 68 kilograms, would be the same on Mars as on
Earth.) Physicists measure the intensity of a gravitational field according to
the rate at which an object accelerates when it is dropped in a vacuum so
that there is no atmospheric resistance. On the surface of the Earth, this rate
of acceleration is approximately 9.8067 meters per second per second, or
9.8067 m/s”. This means that if you drop something, say, a brick, from a great
height, it will be falling at a speed of 9.8067 m/s after 1 s, (9.8067 X 2) m/s
after 2 s, (9.8067 X 3) m/s after 3 s, and so on. The speed becomes 9.8067 m/s
greater with every second of time that passes. On Mars, this rate of increase
would be less. On Jupiter, if Jupiter had a definable surface, it would be
more. On the surface of a hugely dense object such as a neutron star, it
would be many times more than it is on the surface of the Earth.

The rate of gravitational acceleration does not depend on the mass of
the object being “pulled on” by gravity. You might think that heavier
objects fall faster than slower ones. This is sometimes true in a practical
sense if you drop, say, a Ping-Pong ball next to a golf ball. However, the
reason the golf ball falls faster is that its greater density lets it overcome
air resistance more effectively than the Ping-Pong ball can. If both were
dropped in a vacuum, they would fall at the same speed. Astronomer and
physicist Galileo Galilei is said to have proven this fact several centuries
ago by dropping two heavy objects, one more massive than the other,
from the Leaning Tower of Pisa in Italy. He let go of the objects at the
same time, and they hit the ground at the same time. This upset people
who believed that heavier objects fall faster than lighter ones. Galileo
appeared to have shown that an ancient law of physics, which had
become ingrained as an article of religious faith, was false. People had a
word for folks of that sort: heretic. In those days, being branded as a heretic
was like being accused of a felony.
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Unit Conversions

With all the different systems of units in use throughout the world, the
business of conversion from one system to another has become the subject
matter for whole books. Web sites are devoted to this task; at the time of
this writing, a good site could be found at Test and Measurement World
(www.tmworld.com). Click on the “Software” link, and then go to the page
called “Calculator Programs.”

A SIMPLE TABLE

Table 6-3 shows conversions for quantities in base SI units to other common
schemes. In this table and in any expression of quantity in any units, the
coefficient is the number by which the power of 10 is multiplied.

This is by no means a complete table. It is amazing how many different
units exist; for example, you might someday want to know how many
bushels there are in a cubic kilometer! Some units seem to have been
devised out of whimsy, as if the inventors knew the confusion and conster-
nation their later use would cause.

DIMENSIONS

When converting from one unit system to another, always be sure you’re
talking about the same quantity or phenomenon. For example, you cannot
convert meters squared to centimeters cubed or candela to meters per second.
You must keep in mind what you’re trying to express and be sure that you
are not, in effect, trying to change an apple into an orange.

The particular thing that a unit quantifies is called the dimension of the
quantity or phenomenon. Thus meters per second, feet per hour, and furlongs
per fortnight represent expressions of the speed dimension; seconds, minutes,
hours, and days are expressions of the time dimension. Units are always
associated with dimensions. So are most constants, although there are a few
constants that stand by themselves (7 and e are two well-known examples).

PROBLEM 6-4
You step on a scale, and it tells you that you mass 63 kilograms. How many
pounds does this represent?

SOLUTION 6-4
Assume that you are on the planet Earth, so your mass-to-weight conversion
can be defined in a meaningful way. (Remember, mass is not the same thing



166

Classical Physics

Table 6-3 Conversions for Base Units in the International System (SI) to Units in Other
Systems (When no coefficient is given, it is exactly equal to 1.)

Conversely,
To convert: To: Multiply by: multiply by:
meters (m) Angstroms 10" 10710
meters (m) nanometers (nm) 10° 107°
meters (m) microns () 10° 10°°
meters (m) millimeters (mm) 10° 10°°
meters (m) centimeters (cm) 10 102
meters (m) inches (in) 39.37 0.02540
meters (m) feet (ft) 3.281 0.3048
meters (m) yards (yd) 1.094 0.9144
meters (m) kilometers (km) 1073 10°
meters (m) statute miles (mi) 6.214 x 10~* 1.609 x 10°
meters (m) nautical miles 5397 x 10~* 1.853 x 10°
meters (m) light-seconds 3.336 X 10" 2.998 x 10°
meters (m) astronomical units (AU)  6.685 X 10712 1.496 X 10"
meters (m) light-years 1.057 x 10~'° 9.461 x 10°
meters (m) parsecs (pc) 3241 x 10" 3.085 % 10'°
kilograms (kg) atomic mass units (amu)  6.022 X 10°° 1.661 X 1077
kilograms (kg) nanograms (ng) 10" 107"
kilograms (kg) micrograms (jLg) 10° 107°
kilograms (kg) milligrams (mg) 10° 107°
kilograms (kg) grams (g) 10° 10°°
kilograms (kg) ounces (0z) 35.28 0.02834
kilograms (kg) pounds (1b) 2.205 0.4535
kilograms (kg) English tons 1.103 X 107° 907.0
seconds (s) minutes (min) 0.01667 60.00
seconds (s) hours (h) 2.778 x 10~* 3.600 X 10°
seconds (s) days (dy) 1.157 X 107> 8.640 X 10*
seconds (s) years (yr) 3.169 X 1078 3.156 X 10’
seconds (s) centuries 3.169 x 10~ '° 3.156 X 10°
seconds (s) millennia 3.169 X 10~ 3.156 x 10'°
degrees Kelvin (K)  degrees Celsius (°C) Subtract 273 Add 273
degrees Kelvin (K)  degrees Fahrenheit Multiply by 1.80, Multiply by 0.556,
(°F) then subtract 459 then add 255
degrees Kelvin (K)  degrees Rankine (°R) 1.80 0.556
amperes (A) carriers per second 6.24 x 10' 1.60 X 10~
amperes (A) statamperes (statA) 2.998 X 10 3336 x 107 1°
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Table 6-3 Conversions for Base Units in the International System (SI) to Units in Other
Systems (When no coefficient is given, it is exactly equal to 1.) (Continued)

Conversely,
To convert: To: Multiply by: multiply by:
amperes (A) nanoamperes (nA) 10° 107°
amperes (A) microamperes (LA) 10° 10°°
amperes (A) abamperes (abA) 0.10000 10.000
amperes (A) milliamperes (mA) 10° 10°°
candela (cd) microwatts per 1.464 X 10 6.831 X 10°*
steradian (WW/sr)
candela (cd) milliwatts per 1.464 0.6831
steradian (mW/sr)
candela (cd) lumens per steradian Identical; no Identical; no
(lum/sr) conversion conversion
candela (cd) watts per steradian 1.464 X 103 683.1
(W/sr)
moles (mol) coulombs (C) 9.65 x 10°* 1.04 X 1077

as weight.) Use Table 6-3. Multiply 63 by 2.205 to get 139 pounds. Because
you are given your mass to only two significant figures, you must round this
off to 140 pounds to be purely scientific.

PROBLEM 6-5
You are driving in Europe and you see that the posted speed limit is 90 kilo-
meters per hour (km/h). How many miles per hour (mi/h) is this?

SOLUTION 6-5

In this case, you only need to worry about miles versus kilometers; the “per hour”
part doesn’t change. Thus you convert kilometers to miles. First remember
that 1 km = 1,000 m; then 90 km = 90,000 m = 9.0 X 10* m. The conversion
of meters to statute miles (these are the miles used on land) requires that you
multiply by 6.214 x 107%. Therefore, you multiply 9.0 X 10* by 6.214 x 10™*
to get 55.926. This must be rounded off to 56, or two significant figures, because
the posted speed limit quantity, 90, only goes that far.

PROBLEM 6-6
How many feet per second is the speed limit in Problem 6-5?

SOLUTION 6-6

This is a two-step problem. You're given the speed in kilometers per hour. You
must convert kilometers to feet, and you also must convert hours to seconds.
These two steps should be done separately. It does not matter in which order
you do them, but you must do both conversions independently if you want to
avoid getting confused. (Some of the Web-based calculator programs will do
it all for you in a flash, but here, all we have is Table 6-3.)
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Let’'s convert kilometers per hour to kilometers per second first. This
requires division by 3,600, the number of seconds in an hour. Thus 90 km/h
= 90/3600 km/s = 0.025 km/s. Now convert kilometers to meters; multiply by
1,000 to obtain 25 m/s as the posted speed limit. Finally, convert meters to
feet; multiply 25 by 3.281 to get 82.025. This must be rounded off to 82 ft/s,
again because the posted speed limit is expressed to only two significant figures.

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1.

The mole is a unit that expresses the

(a) number of electrons in an ampere.

(b) number of particles in a sample.

(c) distance from the Sun to a planet.

(d) time required for an electron to orbit an atomic nucleus.

. A joule is the equivalent of a

(a) foot-pound.

(b) meter per second.
(c) kilogram per meter.
(d) watt-second.

. A direct current of 3 A flows through a coil whose inductance is 1 H. The

magnetic flux caused by this current is

(2) 3 Wh.

(b) 3 H.

©3T.

(d) impossible to determine from this information.

. A light source generates the equivalent of 4.392 mW/sr of energy at the peak

visible wavelength. This is approximately equal to
(a) 6.4 X 10 ° cd.

(b) 3.0 cd.

(c) 6.4 cd.

(d) 3.0 X 10 cd.

. A temperature of 0 K represents

(a) the freezing point of pure water at sea level.
(b) the boiling point of pure water at sea level.
(c) the absence of all heat.

(d) nothing. This is a meaningless expression.
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. A newton is equivalent to a

(a) kilogram-meter.

(b) kilogram-meter per second.

(c) kilogram-meter per second squared.
(d) kilogram-meter per second cubed.

. Kilograms can be converted to pounds only if you also know the

(a) temperature.

(b) mass of the object in question.
(c) gravitational-field intensity.
(d) material quantity.

. The SI system is an expanded form of the

(a) English system.
(b) metric system.
(c) European system.
(d) American system.

. The radian is a unit of

(a) visible-light intensity.
(b) temperature.

(c) solid angular measure.
(d) plane angular measure.

The pound is a unit of
(a) mass.

(b) substance.

(c) material quantity.
(d) none of the above.
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Mass, Force,
and Motion

The earliest physicists were curious about the way matter behaves: What
happens to pieces of it when they move or are acted on by forces. Scientists
set about doing experiments and then tried to develop mathematical models
(theories) to explain what happened and that would predict what would
occur in future situations. This chapter involves classical mechanics, the
study of mass, force, and motion.

The term mass, as used by physicists, refers to quantity of matter in
terms of its ability to resist motion when acted on by a force. A good
synonym for mass is heft. Every material object has a specific, definable
mass. The Sun has a certain mass; Earth has a much smaller mass. A
lead shot has a far smaller mass still. Even subatomic particles, such as
protons and neutrons, have mass. Visible-light particles, known as photons,
act in some ways as if they have mass. A ray of light puts pressure on
any surface it strikes. The pressure is tiny, but it exists and sometimes
can be measured.

MASS IS A SCALAR

The mass of an object or particle has magnitude (size or extent) but not
direction. It can be represented as a certain number of kilograms, such as

Mass
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the mass of the Sun or the mass of the Earth. Mass is customarily denoted
by the lowercase italicized letter m.

You might think that mass can have direction. When you stand some-
where, your body presses downward on the floor, the pavement, or the
ground. If someone is more massive than you, his or her body presses
downward too, but harder. If you get in a car and accelerate, your body
presses backward in the seat as well as downward toward the center of the
Earth. But this is force, not mass. The force you feel is caused in part by
your mass and in part by gravity or acceleration. Mass itself has no direction.
If you go into outer space and become weightless, you will have the same
mass as you do on Earth (assuming that you do not lose or gain mass in
between times). There won’t be any force in any direction unless the space
vessel begins to accelerate.

HOW MASS IS DETERMINED

The simplest way to determine the mass of an object is to measure it with
a scale. However, this isn’t the best way. When you put something on a
scale, you are measuring that object’s weight in the gravitational field of the
Earth. The intensity of this field is, for most practical purposes, the same
wherever you go on the planet. If you want to get picayune about it, though,
there is a slight variation of weight for a given mass with changes in the
geographic location. A scale with sufficient accuracy will show a specific
object, such as a lead shot, as being a tiny bit heavier at the equator than at
the north pole. The weight changes, but the mass does not.

Suppose that you are on an interplanetary journey, coasting along on your
way to Mars or in orbit around Earth, and everything in your space vessel is
weightless. How can you measure the mass of a lead shot under these condi-
tions? It floats around in the cabin along with your body, the pencils you write
with, and everything else that is not tied down. You are aware that the lead shot
is more massive than, say, a pea, but how can you measure it to be certain?

One way to measure mass, independently of gravity, involves using a
pair of springs set in a frame with the object placed in the middle (Fig. 7-1).
If you put something between the springs and pull it to one side, the
object oscillates. You try this with a pea, and the springs oscillate rapidly.
You try it again with a lead shot, and the springs oscillate slowly. This
“mass meter” is anchored to a desk in the space ship’s cabin, which is in
turn anchored to the “floor” (however you might define this in a weightless
environment). Anchoring the scale keeps the whole apparatus from wagging
back and forth in midair after you start the object oscillating.
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Rigid frame Object to be
massed

NSRS

Spring Spring

Fig. 7.1. Mass can be measured by setting an object to oscillate
between a pair of springs in a weightless environment.

A scale of this type must be calibrated in advance before it can render
meaningful figures for masses of objects. The calibration will result in a
graph that shows oscillation period or frequency as a function of the mass.
Once this calibration is done in a weightless environment and the graph
has been drawn, you can use it to measure the mass of anything within
reason. The readings will be thrown off if you try to use the “mass
meter” on Earth, the Moon, or Mars because there is an outside force, gravity,
acting on the mass. The same problem will occur if you try to use the scale
when the space ship is accelerating rather than merely coasting or orbiting
through space.

PROBLEM 7-1

Suppose that you place an object in a “mass meter” similar to the one shown
in Fig. 7-1. Also suppose that the mass-versus-frequency calibration curve for
this device has been determined and looks like the graph of Fig. 7-2. The
object oscillates with a frequency of 5 complete cycles per second (that is, 5
hertz or 5 Hz).What is the approximate mass of this object?

SOLUTION 7-1

Locate the frequency on the horizontal scale. Draw a vertical line (or place a
ruler) parallel to the vertical (mass) axis. Note where this straight line inter-
sects the curve. Draw a horizontal line from this point toward the left until it
intersects the mass scale. Read the mass off the scale. It is approximately 0.8
kg, as shown in Fig. 7-3.
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Oscillations per second
Fig. 7.2. Graph of mass versus oscillation frequency for a
hypothetical “mass meter” such as the one shown in Fig. 7-1.
PROBLEM 7-2

What will the “mass meter” shown in Fig. 7-1, and whose mass-versus-
frequency function is graphed in Figs. 7-2 and 7-3, do if a mass of only 0.000001
kg (that is, 1 milligram or 1 mg) is placed in between the springs?

SOLUTION 7-2

The scale will oscillate at essentially the frequency corresponding to zero
mass. This is off the graph scale in this example. You might be tempted at first
to suppose that the oscillation frequency would be extremely high, but in fact,
any practical “mass meter” will oscillate at a certain maximum frequency even
with no mass placed in between the springs. This happens because the springs
and the clamps themselves have mass.

PROBLEM 7-3

Wouldn't it be easier and more accurate in real life to program the mass-ver-
sus-frequency function into a computer instead of using graphs like the ones
shown here? In this way, we could simply input frequency data into the com-
puter and read the mass on the computer display.
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Mass in
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Mass is about
—+ 0.8 kg

Frequency
=5Hz

Oscillations per second
Fig. 7.3.  Solution to Problem 7-1.

SOLUTION 7-3

Yes, such a method would be easier, and in a real-life situation, this is exactly
what a physicist would do. In fact, we might expect the scale to have its own
built-in microcomputer and a numerical display to tell us the mass directly.

Imagine again that you are in a spacecraft orbiting the Earth, so everything
in the cabin is weightless. Two objects float in front of you: a brick and a
marble. You know that the brick is more massive than the marble. However,
either the brick or the marble can be made to move across the cabin if you
give it a push.

Suppose that you flick your finger against the marble. It flies across the
cabin and bounces off the wall. Then you flick your finger just as hard (no

Force
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more, no less) against the brick. The brick takes several minutes to float
across the cabin and bump into the opposite wall. The flicking of your finger
imparts a force to the marble or the brick for a moment, but that force has
a different effect on the brick than on the marble.

FORCE AS A VECTOR

Force is a vector quantity. It can have any magnitude, from the flick of a
finger to a swift leg kick, the explosion of powder in a cannon, or the thrust
of a rocket engine. Force always has a defined direction as well. You can
fire a pop-gun in any direction you want (and bear the consequences if you
make a bad choice). Vectors are commonly symbolized using boldface let-
ters of the alphabet. A force vector, for example, can be denoted by the
uppercase boldface letter F.

Sometimes the direction of a force is not important. In such instances,
we can speak of the magnitude of a force vector and denote it as an upper-
case italicized letter F. The standard international unit of force magnitude
is the newton (N), which is the equivalent of a kilogram-meter per second
squared (kg - m/s’). Suppose that the brick in your spacecraft has a mass of
1 kg and that you push against it with a force of 1 N for 1 s and then let go.
The brick will then be traveling at a speed of 1 m/s. It will have gone from
stationary (with respect to its surroundings) to a speed of 1 m/s, which
might seem rather slow unless it hits someone.

HOW FORCE IS DETERMINED

Force can be measured by the effect it has on an object with mass. It also
can be measured by the amount of deflection or distortion it produces in an
elastic object such as a spring. The “mass meter” described earlier for
determining mass can be modified to make a “force meter” if one-half of it
is taken away and a calibrated scale is placed alongside (Fig. 7-4). This
scale must be calibrated in advance in a laboratory environment.

Displacement

Displacement is also known as distance. Unless otherwise specified, dis-
placement is defined along a straight line. We might say that Minneapolis,
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Fig. 7.4. A “force meter.”

Minnesota, is 100 km from Rochester, Minnesota, “as the crow flies,” or
along a straight line. If you were to drive along U.S. Route 52, however, the
displacement would turn out to be closer to 120 km because this highway
does not follow a straight path from Rochester to Minneapolis.

DISPLACEMENT AS A VECTOR

When displacement is defined in a straight line, it is a vector quantity
because it has both magnitude (expressed in meters, kilometers, or other
distance units) and direction (which can be defined in various ways).
Displacement magnitude is denoted by a lowercase italicized letter; let’s
call it g. A displacement vector is denoted by a lowercase boldface letter.
In this discussion, let’s use q.

The displacement vector q,,, of Minneapolis relative to Rochester would
be approximately 100 km in a northwesterly direction “as the crow flies.”
As an azimuth bearing, it would be around 320 degrees, measured clockwise
from true north. However, if we speak about driving along Route 52, we can
no longer define the displacement as a vector because the direction changes
as the road bends, goes over hills, and dips into valleys. In this case, we
must denote displacement as a scalar, usually in lowercase italics. In this
discussion let’s use g. We write g,,, = 120 km.

HOW DISPLACEMENT IS DETERMINED

Displacement magnitude is determined by mechanically measuring dis-
tance or by inferring it with observations and mathematical calculations. In
the case of a car or truck driving along Route 52, displacement is measured
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with an odometer that counts the number of wheel rotations and multiplies
this by the circumference of the wheel. In a laboratory environment, dis-
placement magnitude can be measured with a meter stick, by triangulation,
or by measuring the time it takes for a ray of light to travel between two
points given the constancy of the speed of light (¢ = 2.99792 X 10° m/s).

The direction component of a displacement vector is determined by
measuring one or more angles or coordinates relative to a reference axis. In
the case of a local region on the Earth’s surface, direction can be found by
specifying the azimuth, which is the angle clockwise relative to true north.
This is the scheme used by hikers and backpackers. In three-dimensional
space, direction angles are used. A reference axis, for example, a vector point-
ing toward Polaris, the North Star, is defined. Then two angles are specified
in a coordinate system based on this axis. The most common system used
by astronomers and space scientists involves angles called celestial latitude
and celestial longitude or, alternatively, right ascension and declination.
Both these schemes are defined in Chapter 3. (If this is not familiar to you,
and if you didn’t see fit to study Part Zero, this might be a good time to
reconsider that decision!)

Speed is an expression of the rate at which an object moves relative to some
defined reference point of view. The reference frame is considered station-
ary, even though this is a relative term. A person standing still on the sur-
face of the Earth considers himself or herself to be stationary, but this is not
true with respect to the distant stars, the Sun, the Moon, or most other
celestial objects.

SPEED IS A SCALAR

The standard unit of speed is the meter per second (m/s). A car driving
along Route 52 might have a cruise control device that you can set at, say,
25 m/s. Then, assuming that the cruise control works properly, you will be
traveling, relative to the pavement, at a constant speed of 25 m/s. This will be
true whether you are on a level straightaway, rounding a curve, cresting a
hill, or passing the bottom of a valley. Speed can be expressed as a simple
number, and the direction is not important. Thus speed is a scalar quantity.
In this discussion, let’s symbolize speed by the lowercase italic letter v.
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Speed can, of course, change with time. If you hit the brakes to avoid a deer
crossing the road, your speed will decrease suddenly. As you pass the
deer, relieved to see it bounding off into a field unharmed, you pick up
speed again.

Speed can be considered as an average over time or as an instantaneous
quantity. In the foregoing example, suppose that you are moving along at
25 m/s and then see the deer, put on the brakes, slow down to a minimum
of 10 m/s, watch the deer run away, and then speed up to 25 m/s again, all
in a time span of 1 minute. Your average speed over that minute might be
17 m/s. However, your instantaneous speed varies from instant to instant
and is 17 m/s for only two instants (one as you slow down, the other as you
speed back up).

HOW SPEED IS DETERMINED

In an automobile or truck, speed is determined by the same odometer that
measures distance. However, instead of simply counting up the number of
wheel rotations from a given starting point, a speedometer counts the number
of wheel rotations in a given period of time. Knowing the wheel circum-
ference, the number of wheel rotations in a certain time interval can be
translated directly into meters per second.

You know, of course, that most speedometers respond almost immediately
to a change in speed. These instruments measure the rotation rate of a car
or truck axle by another method, similar to that used by the engine’s
tachometer (a device that measures revolutions per minute, or rpm). A real-
life car or truck speedometer measures instantaneous speed, not average
speed. In fact, if you want to know the average speed you have traveled
during a certain period of time, you must measure the distance on the
odometer and then divide by the time elapsed.

In a given period of time ¢ if an object travels over a displacement of mag-
nitude g at an average speed v,,, then the following formulas apply. These are
all arrangements of the same relationship among the three quantities.

q = Vavgt
Vave = q/1

PROBLEM 7-4
Look at the graph of Fig. 7-5. Curve A is a straight line. What is the instanta-
neous speed Vi, at t = 5 seconds?
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Fig. 7.5. Illustration for Problems 7-4 through 7-8.

SOLUTION 7-4

The speed depicted by curve A is constant; you can tell because the curve is
a straight line. The number of meters per second does not change through-
out the time span shown. In 10 seconds, the object travels 20 meters; that’s
20 m/10 s = 2 m/s. Therefore, the speed at t = 5 s is v,y = 2 m/s.

PROBLEM 7-5
What is the average speed v,,q4 of the object denoted by curve A in Fig. 7-5
during the time span from t=3sto t=7s?

SOLUTION 7-5

Because the curve is a straight line, the speed is constant; we already know
that it is 2 m/s. Therefore, v,,, = 2 m/s between any two points in time shown
in the graph.

PROBLEM 7-6
Examine curve Bin Fig. 7-5. What can be said about the instantaneous speed
of the object whose motion is described by this curve?

SOLUTION 7-6
The object starts out moving relatively fast, and the instantaneous speed
decreases with the passage of time.



Mass, Force, and Motion

PROBLEM 7-7
Use visual approximation in the graph of Fig. 7-5. At what time tis the instan-
taneous speed v, of the object described by curve B equal to 2 m/s?

SOLUTION 7-7

Take a ruler and find a straight line tangent to curve B whose slope is the
same as that of curve A. That is, find the straight line parallel to line A that is
tangent to curve B. Then locate the point on curve B where the line touches
curve B. Finally, draw a line straight down, parallel to the displacement (q)
axis, until it intersects the time (f) axis. Read the value off the t axis. In this
example, it appears to be approximately t = 3.2 s.

PROBLEM 7-8

Use visual approximation in the graph of Fig. 7-5. Consider the object whose
motion is described by curve B. At the point in time t where the instantaneous
speed Vi, is 2 m/s, how far has the object traveled?

SOLUTION 7-8

Locate the same point that you found in Problem 7-7, corresponding to the
tangent point of curve B and the line parallel to curve A. Draw a horizontal line
to the left until it intersects the displacement (q) axis. Read the value off the
g axis. In this example, it looks like it's about g = 11 m.

Velocity consists of two independent components: speed and direction. The
direction can be defined in one dimension (either way along a straight line),
in two dimensions (within a plane), or in three dimensions (in space). Some
physicists get involved with expressions of velocity in more than three spatial
dimensions; that is a realm beyond the scope of this book.

VELOCITY IS A VECTOR

Because velocity has both magnitude and direction components, it is a vector
quantity. You can’t express velocity without defining both these components.
In the earlier example of a car driving along a highway from one town to
another, its speed might be constant, but the velocity changes nevertheless.
If you’re moving along at 25 m/s and then you come to a bend in the road,
your velocity changes because your direction changes.

Vectors can be illustrated graphically as line segments with arrowheads.
The speed component of a velocity vector is denoted by the length of the
line segment, and the direction is denoted by the orientation of the arrow.

Velocity
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Fig. 7.6. Velocity vectors a, b, and ¢ for a car
at three points (A, B, and C) along a road.

In Fig. 7-6, three velocity vectors are shown for a car traveling along a
curving road. Three points are shown, called A, B, and C. The corresponding
vectors are a, b, and c. Both the speed and the direction of the car change
with time.

HOW VELOCITY IS DETERMINED

Velocity can be measured by using a speedometer in combination with
some sort of device that indicates the instantaneous direction of travel. In a
car, this might be a magnetic compass. In a strict sense, however, even a
speedometer and a compass don’t tell the whole story unless you’re driving
on a flat plain or prairie. In midstate South Dakota, a speedometer and
compass can define the instantaneous velocity of your car, but when you
get into the Black Hills, you’ll have to include a clinometer (a device for
measuring the steepness of the grade you’re ascending or descending).
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Two-dimensional direction components can be denoted either as compass
(azimuth) bearings or as angles measured counterclockwise with respect
to the axis pointing “east.” The former system is preferred by hikers and
navigators, whereas the latter scheme is preferred by theoretical physicists
and mathematicians. In Fig. 7-6, the azimuth bearings of vectors a, b, and ¢
are approximately 90, 120, and 45 degrees, respectively. In the mathematical
model, they are about 0, —30 (or 330), and 45 degrees, respectively.

A three-dimensional velocity vector consists of a magnitude component
and two direction angles. Celestial latitude and longitude or right ascension
and declination are used commonly to denote the directions of velocity vectors.

Acceleration

Acceleration is an expression of the change in the velocity of an object. This
can occur as a change in speed, a change in direction, or both. Acceleration
can be defined in one dimension (along a straight line), in two dimensions
(within a flat plane), or in three dimensions (in space), just as can velocity.
Acceleration sometimes takes place in the same direction as an object’s
velocity vector, but this is not necessarily the case.

ACCELERATION IS A VECTOR

Acceleration is a vector quantity. Sometimes the magnitude of the acceler-
ation vector is called acceleration, and is symbolized by lowercase italic
letters such as a. Technically, however, the vector expression should be used;
it is symbolized by lowercase boldface letters such as a.

In the example of a car driving along a highway, suppose that the
speed is constant at 25 m/s (Fig. 7-7). The velocity changes when the car
goes around curves and also if the car crests a hilltop or bottoms out in
a ravine or valley (although these can’t be shown in this two-dimensional
drawing). If the car is going along a straightaway and its speed is
increasing, then the acceleration vector points in the same direction that
the car is traveling. If the car puts on the brakes, still moving along a
straight path, then the acceleration vector points exactly opposite the
direction of the car’s motion.

Acceleration vectors can be illustrated graphically as arrows. In Fig. 7-7,
three acceleration vectors are shown approximately for a car traveling
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Graph scales are relative

Fig. 7.7.  Acceleration vectors X, y, and z for a car at three points
(X, Y, and Z) along a road. Note that y is the zero vector because
there is no acceleration at point Y.

along a curving road at a constant speed of 25 m/s. Three points are shown,
called X, ¥, and Z. The corresponding acceleration vectors are X, y, and z.
Acceleration only takes place where the car is following a bend in the road.
At point ¥, the road is essentially straight, so the acceleration is zero. This
is shown as a point at the origin of a vector graph.

HOW ACCELERATION IS DETERMINED

Acceleration magnitude is expressed in meters per second per second, also
called meters per second squared (my/s”). This might seem esoteric at first.
What is a second squared? Think of it in terms of a concrete example.
Suppose that you have a car that can go from 0 to 60 miles per hour (0.00 to
60.0 mi/h) in 5 seconds (5.00 s). A speed of 60.0 mi/h is roughly equivalent
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to 26.8 m/s. Suppose that the acceleration rate is constant from the moment
you first hit the gas pedal until you have attained a speed of 26.8 m/s on a level
straightaway. Then you can calculate the acceleration magnitude:

a = (26.8 m/s)/(5 s) = 5.36 m/s’

Of course, the instantaneous acceleration will not be constant in a real-life
test of a car’s get-up-and-go power. However, the average acceleration
magnitude will still be 5.36 m/s’—a speed increase of 5 meters per second
with each passing second—assuming that the vehicle’s speed goes from
0.00 to 60.0 mi/h in 5.00 s.

Instantaneous acceleration magnitude can be measured in terms of the
force it exerts on a known mass. This can be determined according to the
amount of distortion in an elastic object such as a spring. The “force
meter” shown in Fig. 7-4 can be adapted to make an “acceleration meter,”
technically known as an accelerometer, for measuring acceleration mag-
nitude. A fixed, known mass is placed in the device, and the deflection
scale is calibrated in a laboratory environment. For the accelerometer to
work, the direction of the acceleration vector must be in line with the
spring axis, and the acceleration vector must point outward from the fixed
anchor toward the mass. This will produce a force on the mass directly
against the spring. A functional diagram of the basic arrangement is
shown in Fig. 7-8.

Acceleration vector

Wall Spring

Known mass

T Force produced
.‘ € by acceleration

5 0

Acceleration in
m/s?2

Fig. 7.8. An accelerometer. This measures the magnitude only
and must be oriented properly to provide an accurate reading.
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A common spring scale can be used to measure acceleration indirectly.
When you stand on the scale, you compress a spring or balance a set of
masses on a lever. This measures the downward force that the mass of your
body exerts as a result of a phenomenon called the acceleration of gravity. The
effect of gravitation on a mass is the same as that of an upward acceleration
of approximately 9.8 m/s”. Force, mass, and acceleration are intimately
related, as we shall soon see.

Suppose that an object starts from a dead stop and accelerates at an average
magnitude of a,,, in a straight line for a period of time 7. Suppose, after this
length of time, that the magnitude of the displacement from the starting
point is g. Then this formula applies:

q = Ay 712

In this example, suppose that the acceleration magnitude is constant; call it a.
Let the instantaneous speed be called v, at time 7. Then the instantaneous
speed is related to the acceleration magnitude as follows:

1% at

inst

PROBLEM 7-9

Suppose that two objects, denoted by curves A and B in Fig. 7-9, accelerate
along straight-line paths. What is the instantaneous acceleration a;,; at t = 4
seconds for object A?

SOLUTION 7-9

The acceleration depicted by curve A is constant because the speed increas-
es at a constant rate with time. (This is why the graph is a straight line.) The
number of meters per second squared does not change throughout the time
span shown. In 10 seconds, the object accelerates from 0 to 10 m/s; this is a
rate of speed increase of 1 meter per second per second (1 m/s?). Therefore, the
acceleration at t =4 sis g, = 1 m/s2.

PROBLEM 7-10
What is the average acceleration a,,4 of the object denoted by curve A in
Fig. 7-9 during the time span fromt=2stot= 8s?

SOLUTION 7-10

Because the curve is a straight line, the acceleration is constant; we already
know that it is 1 m/s?. Therefore, 8ayg = 1 m/s® between any two points in time
shown in the graph.

PROBLEM 7-11
Examine curve Bin Fig. 7-9. What can be said about the instantaneous accel-
eration of the object whose motion is described by this curve?
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Fig. 7.9. Illustration for Problems 7-9 through 7-13.

SOLUTION 7-11
The object starts out accelerating slowly, and as time passes, its instanta-
neous rate of acceleration increases.

PROBLEM 7-12
Use visual approximation in the graph of Fig. 7-9. At what time tis the instan-
taneous acceleration a, of the object described by curve B equal to 1 m/s®?

SOLUTION 7-12

Take a ruler and find a straight line tangent to curve B whose slope is the
same as that of curve A. Then locate the point on curve B where the line
touches curve B. Finally, draw a line straight down, parallel to the speed (v)
axis, until it intersects the time (f) axis. Read the value off the t axis. Here it
appears to be about t = 6.3 s.

PROBLEM 7-13

Use visual approximation in the graph of Fig. 7-9. Consider the object whose
motion is described by curve B. At the point in time t where the instantaneous
acceleration aj,g is 1 m/s, what is the instantaneous speed v, of the object?
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SOLUTION 7-13

Locate the same point that you found in Problem 7-12 corresponding to the
tangent point of curve B and the line parallel to curve A. Draw a horizontal line
to the left until it intersects the speed (v) axis. Read the value off the v axis.
In this example, it looks like it's about v;,o; = 3.0 m/s.

Newton’s Laws of Motion

Three laws, credited to the physicist, astronomer, and mathematician Isaac
Newton, apply to the motions of objects in classical physics. These laws do
not take into account the relativistic effects that become significant when
speeds approach the speed of light or when extreme gravitational fields exist.

NEWTON'S FIRST LAW

This law is twofold: (1) Unless acted on by an outside force, an object at rest,
stays at rest; and (2) unless acted on by an outside force, an object moving
with uniform velocity continues to move at that velocity.

NEWTON'S SECOND LAW

If an object of mass m (in kilograms) is acted on by a force of magnitude
F (in newtons), then the magnitude of the acceleration a (in meters per sec-
ond squared) can be found according to the following formula:

a=Fim
The more familiar version of this formula is
F =ma

When force and acceleration are defined as vector quantities, the formula
becomes

F = ma

NEWTON'S THIRD LAW

Every action is attended by an equal and opposite reaction. In other words, if
an object A exerts a force vector F on an object B, then object B exerts a force
vector —F (the negative of F) on object A.
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PROBLEM 7-14

A spacecraft of mass m = 10,500 (1.0500 X 104) kg in interplanetary space is
acted on by a force vector F = 100,000 (1.0000 x 10°) N in the direction
of Polaris, the North Star. Determine the magnitude and direction of the
acceleration vector.

SOLUTION 7-14
Use the first formula stated earlier in Newton’s second law. Plugging in the
numbers for force magnitude F and mass m yields the acceleration magnitude a:

a = Fim
= 1.0000 X 10°/1.0500 x 10*
= 9.5238 m/s”

The direction of the acceleration vector a is the same as the direction of the
force vector F in this case, that is, toward the North Star. As an interesting aside,
you might notice that this acceleration is just a little less than the acceleration of
gravity at the Earth’s surface, 9.8 m/s2. Therefore, a person inside this space-
craft would feel quite at home; there would be an artificial gravitational field
produced that would be just about the same strength as the gravity on Earth.

PROBLEM 7-15
According to Newton’s first law, shouldn’t the Moon fly off in a straight line into
interstellar space? Why does it orbit the Earth?

SOLUTION 7-15

The Moon is acted on constantly by a force vector that tries to pull it down
to Earth. This force is exactly counterbalanced by the inertia of the Moon, which
tries to get it to fly away in a straight line. The speed of the Moon around
the Earth is nearly constant, but its velocity is always changing because
of the force imposed by the gravitational attraction between the Moon and
the Earth.

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. One newton is equivalent to
(a) one kilogram meter.
(b) one kilogram meter per second.
(c) one kilogram meter per second squared.
(d) one meter per second squared.
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. A mass of 19 kg moves at a constant speed of 1.0 m/s relative to an observer.
From the point of view of the observer, what is the magnitude of the force vec-
tor on that mass? Assume the mass travels in a straight line.

(a) 19 newtons.
(b) 0.053 newtons.
(c) 1 newton.

(d) 0 newtons.

. A velocity vector has components of
(a) magnitude and direction.
(b) speed and mass.
(c) time and mass.
(a) speed and time.

. The gravitational acceleration of the Earth, near the surface, is 9.81 m/s”. If a
brick of mass 3.00 kg is dropped from a great height, how far will the brick fall
in 2.00 s?

(a) 6.00 m.
(b) 29.4 m.
(c) 19.6 m.
(d) 58.8 m.

. Suppose that the mass of the brick in quiz item 4 has a mass of only 1.00 kg.
How far will this brick fall in 2.00 s?
(a) 2.00 m.
(b) 19.6 m.
(¢) 29.4 m.
(d) 9.80 m.

. What would happen if Earth’s gravitational pull on the Moon suddenly stopped?
(a) Nothing.

(b) The Moon would fly out of Earth orbit.

(c) The Moon would fall into the Earth.

(d) The Moon would fall into the Sun.

. A mass vector consists of
(a) weight and direction.
(b) weight and speed.
(c) weight and time.
(d) There is no such thing; mass is not a vector.

. You are docking a small boat. As you approach the dock, you leap from the
boat. You fall short of the dock and land in the water because the boat was
thrust backward when you jumped forward. This is a manifestation of
(a) Newton’s first law.

(b) Newton’s second law.
(c) Newton’s third law.
(d) the fact that weight is not the same thing as mass.
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9. In three-dimensional space, the direction of a vector might be described in
terms of
(a) right ascension and declination.
(b) distance and speed.
(c) time and distance.
(d) its length.

10. While driving on a level straightaway, you hit the brakes. The acceleration vector
(a) points in the direction the car is traveling.
(b) points opposite to the direction the car is traveling.
(c) points at a right angle to the direction the car is traveling.
(d) does not exist; it is zero.



This page intentionally left blank.



CHAPTER 8

Momentum, Work,
Energy, and Power

Classical mechanics describes the behavior of objects in motion. Any moving
mass has momentum and energy. When two objects collide, the momentum
and energy contained in each object changes. In this chapter we will con-
tinue our study of basic newtonian physics.

Momentum

Momentum is the product of an object’s mass and its velocity. The standard
unit of mass is the kilogram (kg), and the standard unit of speed is the
meter per second (m/s). Momentum magnitude is expressed in kilogram-
meters per second (kg - m/s). If the mass of an object moving at a certain
speed increases by a factor of 5, then the momentum increases by a factor
of 5, assuming that the speed remains constant. If the speed increases by a
factor of 5 but the mass remains constant, then again, the momentum
increases by a factor of 5.

MOMENTUM AS A VECTOR

Suppose that the speed of an object (in meters per second) is v, and that the
mass of the object (in kilograms) is m. Then the magnitude of the momentum
p is their product:

p=my

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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This is not the whole story. To fully describe momentum, the direction
as well as the magnitude must be defined. This means that we must con-
sider the velocity of the mass in terms of its speed and direction. (A 2-kg
brick flying through your east window is not the same as a 2-kg brick flying
through your north window.) If we let v represent the velocity vector and p
represent the momentum vector, then we can say

p = mv

IMPULSE

The momentum of a moving object can change in any of three different
ways:

® A change in the mass of the object

® A change in the speed of the object

® A change in the direction of the object’s motion

Let’s consider the second and third of these possibilities together; then this
constitutes a change in the velocity.

Imagine a mass, such as a space ship, coasting along a straight-line path
in interstellar space. Consider a point of view, or reference frame, such that
the velocity of the ship can be expressed as a nonzero vector pointing in a
certain direction. A force F may be applied to this vessel by firing a rocket
engine. Imagine that there are several engines on this space ship, one
intended for driving the vessel forward at increased speed and others capable
of changing the vessel’s direction. If any engine is fired for ¢ seconds with
force vector of F newtons (as shown by the three examples in Fig. 8-1),
then the product Ft is called the impulse. Impulse is a vector, symbolized
by the uppercase boldface letter I, and is expressed in kilogram meters per
second (kg - m/s):

I=Ft

Impulse produces a change in velocity. This is clear enough; this is the
purpose of rocket engines in a space ship! Recall the formula from Chapter 7
concerning mass m, force F, and acceleration a:

F = ma
Substitute ma for F in the equation for impulse. Then we get this:

I = (ma)t
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Fig. 8-1. Three different ways in which an impulse can
cause an object (in this case, a space ship) to accelerate.

Now remember that acceleration is a change in velocity per unit time.
Suppose that the velocity of the space ship is v, before the rocket is fired and
v, afterwards. Then, assuming that the rocket engine produces a constant force

while it is fired,
a= (v, — V)it

We can substitute in the preceding equation to get
I = m[(v, — v))/f]t = mv, — mv,

This means the impulse is equal to the change in the momentum.
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We have just derived an important law of newtonian physics. Reduced to
base units in SI, impulse is expressed in kilogram-meters per second (kg - m/s),
just as is momentum. You might think of impulse as momentum in another
form. When an object is subjected to an impulse, the object’s momentum
vector p changes. The vector p can grow larger or smaller in magnitude, it
can change direction, or both these things can happen.

PROBLEM 8-1

Suppose that an object of mass 2.0 kg moves at a constant speed of 50 m/s
in a northerly direction. An impulse, acting in a southerly direction, slows this
mass down to 25 m/s, but it still moves in a northerly direction. What is the
impulse responsible for this change in momentum?

SOLUTION 8-1
The original momentum p; is the product of the mass and the initial velocity:

p, = 2.0 kg X 50 m/s = 100 kg - m/s

in a northerly direction. The final momentum p, is the product of the mass and
the final velocity:

p, = 2.0kg X 25 m/s = 50 kg - m/s
in a northerly direction. Thus, the change in momentum is p, — p;:
p, — P, = 50 kg - m/s — 100 kg - m/s = —50 kg - m/s

in a northerly direction. This is the same as 50 kg - m/s in a southerly direction.
Because impulse is the same thing as the change in momentum, the impulse
is 50 kg - m/s in a southerly direction.

Don't let this result confuse you. A vector with a magnitude —x in a certain
direction is the same as a vector with magnitude x in the exact opposite direc-
tion. Problems sometimes will work out to yield vectors with negative magnitude.
When this happens, just reverse the direction and then take the absolute
value of the magnitude.

Collisions

When two objects strike each other because they are in relative motion and
their paths cross at exactly the right time, a collision is said to occur.

CONSERVATION OF MOMENTUM

According to the law of conservation of momentum, the total momentum con-
tained in two objects is the same after a collision as before. The characteristics
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of the collision do not matter as long as it is an ideal system. In an ideal
system, there is no friction or other real-world imperfection, and the
total system momentum never changes unless a new mass or force is
introduced.

The law of conservation of momentum applies not only to systems having
two objects or particles but also to systems having any number of objects
or particles. However, the law holds only in a closed system, that is, a system
in which the total mass remains constant, and no forces are introduced from
the outside.

This is a good time to make an important announcement. From now on
in this book, if specific units are not given for quantities, assume that the
units are intended to be expressed in the International System (SI).
Therefore, in the following examples, masses are in kilograms, velocity
magnitudes are in meters per second, and momentums are in kilogram-
meters per second. Get into the habit of making this assumption, whether
the units end up being important in the discussion or not. Of course, if other
units are specified, then use those. But beware when making calculations.
Units always must agree throughout a calculation, or you run the risk of
getting a nonsensical or inaccurate result.

STICKY OBJECTS

Look at Fig. 8-2. The two objects have masses m; and m,, and they are
moving at speeds v, and v,, respectively. The velocity vectors v, and v, are
not specifically shown here, but they point in the directions shown by the
arrows. At A in this illustration, the two objects are on a collision course.
The momentum of the object with mass m, is equal to p; = mv,; the
momentum of the object with mass m, is equal to p, = m,v,.

At B, the objects have just hit each other and stuck together. After the
collision, the composite object cruises along at a new velocity v that is dif-
ferent from either of the initial velocities. The new momentum, call it p, is
equal to the sum of the original momentums. Therefore:

P = mv, + myv,

The final velocity v can be determined by noting that the final mass is
m, + m,. Therefore:

p = (my + my)v

v = p/(m; + m,)
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Fig. 8-2. (a) Two sticky objects, both with constant but different
velocities, approach each other. (b) The objects after the collision.

BOUNCY OBJECTS

Now examine Fig. 8-3. The two objects have masses m; and m,, and they
are moving at speeds v, and v,, respectively. The velocity vectors v; and v,
are not specifically shown here, but they point in the directions shown by
the arrows. At A in this illustration, the two objects are on a collision
course. The momentum of the object with mass m, is equal to p, = m,v,;
the momentum of the object with mass m, is equal to p, = m,v,. Thus far the
situation is just the same as that in Fig. 8-2. But here the objects are made
of different stuff. They bounce off of each other when they collide.

At B, the objects have just hit each other and bounced. Of course, their
masses have not changed, but their velocities have, so their individual
momentums have changed. However, the total momentum of the system
has not changed, according to the law of conservation of momentum.
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Fig. 8-3. (a) Two bouncy objects, both with constant but different
velocities, approach each other. (b) The objects after the collision.

Suppose that the new velocity of m, is v, and that the new velocity of m,
is v,,. The new momentums of the objects are therefore

pla - mlvla

p2a = m2v2a
According to the law of conservation of momentum,

p1 + p2:pla+p2a

and therefore:
mvy + myv, = mvy, + myvy,

The examples shown in Figs. 8-2 and 8-3 represent idealized situations.
In the real world, there would be complications that we are ignoring here
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for the sake of demonstrating basic principles. For example, you might
already be wondering whether or not the collisions shown in these drawings
would impart spin to the composite mass (in Fig. 8-2) or to either or both
masses (in Fig. 8-3). In the real world, this would usually happen, and it
would make our calculations vastly more complicated. In these idealized
examples, we assume that no spin is produced by the collisions.

PROBLEM 8-2

Suppose that you have two toy electric trains set up on a long, straight track
running east and west. Train A has a mass 1.60 kg and travels east at 0.250 m/s.
Train B has a mass of 2.50 kg and travels west at 0.500 m/s. The trains have
stick pads on the fronts of their engines so that if they crash, they will not
bounce off each other. The trains are set up so that they will crash. Suppose
that the friction in the wheel bearings is zero, and suppose that the instant the
trains hit each other, you shut off the power to the engines. How fast and in
what direction will the composite train be moving after the crash? Assume that
neither train derails.

SOLUTION 8-2

First, calculate the momentum of each train. Call the masses of the trains m,
and my, respectively. Let us assign the directions east as positive and west
as negative. (We can do this because they’re exactly opposite each other
along a straight line.) Let the velocity vector of train A be represented as v,
and the velocity vector of train B be represented as v,,. Then m, = 1.60 kg,
m, = 2.50 kg, v, = +0.250 m/s, and v, = —0.500 m/s. Their momentums,
respectively, are

p,=myv, = (1.60 kg)( + 0.250 m/s) = + 0.400 kg - m/s
p,=myv, = (2.50 kg)(—0.500 m/s) = —1.25 kg - m/s
The sum total of their momentums is therefore
p=p,+ P, = + 0.400 kg - m/s + (—1.25 kg - m/s)
= —0.850 kg - m/s

The mass m of the composite is simply the sum of the masses of trains A and
B, which remain the same throughout this violent process:

m=m, +m = 1.60 kg + 2.50 kg = 4.10 kg

Let the final velocity, for which we are trying to solve, be denoted v. We know
that momentum is conserved in this collision, as it is in all ideal collisions.
Therefore, the final velocity must be equal to the final momentum p divided
by the final mass m:

v = p/m = (—0.850 kg - m/s)/(4.10 kg)
=—0.207 m/s

This means the composite “train,” after the crash, will move west at 0.207 m/s.
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TWO MORE NOTEWORTHY ITEMS

Two things ought to be mentioned before we continue on. First, until now,
units have been included throughout calculations for illustrative pur-
poses. Units can be multiplied and divided, just as can numbers. For example,
0.850 kg - m/s divided by 4.10 kg causes kilograms to cancel out in the
final result, yielding meters per second (m/s). It’s a good idea to keep the
units in calculations, at least until you get comfortable with them, so that
you can be sure that the units in the final result make sense. If we had come
up with, say, kilogram-meters (kg - m) in the final result for Problem 8-2,
we would know that something was wrong because kilogram-meters are
not units of speed or velocity magnitude.

The second thing you should know is that it’s perfectly all right to
multiply and divide vector quantities, such as velocity or momentum, by
scalar quantities, such as mass. This always yields another vector. For
example, in the solution of Problem 8-2, we divided momentum (a vector)
by mass (a scalar). However, we cannot add a vector to a scalar so easily
or subtract a scalar from a vector. Nor can we multiply two vectors and
expect to get a meaningful answer unless we define whether we are to use
the dot product or the cross product. You should be familiar with this
from your high school mathematics courses. If not, go to Part Zero of this
book and review the material on vectors. It can be found in the latter part
of Chapter 1.

PROBLEM 8-3

Suppose that you have two toy electric trains set up as in Problem 8-2.
Train A has a mass 2.00 kg and travels east at 0.250 m/s. Train B has a
mass of 1.00 kg and travels west at 0.500 m/s. How fast and in what direction
will the composite train be moving after the crash? Assume that neither
train derails.

SOLUTION 8-3

Call the masses of the trains m, and m,,, respectively. Assign the directions
east as positive and west as negative. Let the velocity vectors be repre-
sented as v, and v,,. Then m, = 2.00 kg, m, = 1.00 kg, v, = +0.250 m/s, and
v, = —0.500 m/s. Their momentums, respectively, are

p,=my, = (2.00 kg)(+ 0.250 m/s) = + 0.500 kg - m/s
p, = myv, = (1.00 kg)(—0.500 m/s) = —0.500 kg - m/s
The sum total of their momentums is therefore
p=p,+p,=+0500kg  m/s + (—0.500 kg - m/s)
= 0kg - m/s
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The mass m of the composite is simply the sum of the masses of trains A and
B, neither of which change:

m=my + my, = 2.00 kg + 1.00 kg = 3.00 kg
The final velocity v is equal to the final momentum p divided by the final mass m:
v = p/m = (0 kg - m/s)/(3.00 kg)
=0m/s

This means that the composite “train,” after the crash, is at rest. This might at
first seem impossible. If momentum is conserved, how can it be zero after the
crash? Where does it all go? The answer to this question is that the total
momentum of this system is zero before the crash as well as after. Remember
that momentum is a vector quantity. Look at the preceding equations again:

p,=my, = (2.00 kg)(+0.250 m/s) = +0.500 kg - m/s
p, = mv, = (1.00 kg)(—0.500 m/s) = —0.500 kg - m/s

The momentums of the trains have equal magnitude but opposite direction.
Thus their vector sum is zero before the crash.

In physics, work refers to a specific force applied over a specific distance.
The most common examples are provided by lifting objects having significant
mass (“weights” or “masses”) directly against the force of gravity. The
amount of work w done by the application over a displacement g of a force
whose magnitude is F is given by

w=Fq

The standard unit of work is the newton-meter (N - m), equivalent to a kilo-
gram-meter squared per second squared (kg - m’/s%).

WORK AS A DOT PRODUCT OF VECTORS

The preceding formula is not quite complete because, as you should know
by now, both force and displacement are vector quantities. How can we
multiply two vectors? Fortunately, in this case it is easy because the force
and displacement vectors generally point in the same direction when work
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is done. It turns out that the dot product provides the answer we need.
Work is a scalar, therefore, and is equivalent to

w=F-q

where F is the force vector, represented as newtons in a certain direction, and
q is the displacement vector, represented as meters in a certain direction. The
directions of F and q are almost always the same. Note the dot symbol here
(+), which is a heavy dot so that the dot product of vectors can be distin-
guished from the ordinary scalar product of variables, units, or numbers,
as in kg - m’/s”.

As long as the force and displacement vectors point in the same direction,
we can simply multiply their magnitudes and get a correct result for work
done. Just remember that work is a scalar, not a vector.

LIFTING AN OBJECT

Imagine a 1.0-kg object lifted upward against the Earth’s gravity. The
easiest way to picture this is with a rope-and-pulley system. (Suppose
that the pulley is frictionless and that the rope doesn’t stretch.) You stand
on the floor, holding the rope, and pull downward. You must exert a cer-
tain force over a certain distance. The force and displacement vectors
through which your hands move point in the same direction. You can
wag your arms back and forth while you pull, but in practice this won’t
make any difference in the amount of work required to lift the object a
certain distance, so let’s keep things simple and suppose that you pull in
a straight line.

The force of your pulling downward is translated to an equal force vector
F upward on the object (Fig. 8-4 on p. 206). The object moves upward as far
as you pull the rope, that is, by a distance q. What is the force with which
you pull? It is the force required to exactly counteract the force of gravita-
tion on the mass. The force of gravity F, on the object is the product of the
object’s mass m and the acceleration Vector a, of gravity. The value of a, is
approximately 9.8 m/s’ dlrectly downward. To lift the object you must
exert a force F = ma, = (9.8 m/s* )(1.0kg) = 9.8 kg - m/s’° = 9.8 N directly
upward.

PROBLEM 8-4
Consider the example described earlier and in Fig. 8-4. Suppose that you lift
the object 1.5 m. How much work have you done?
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SOLUTION 8-4

The force F, applied straight up, to move the object is equal to the product of the
mass m = 1.0 kg and the acceleration of gravity a, = 9.8 m/s? directed
straight up:

F = ma, = (1.0 kg)(9.8 m/s”) = 9.8 kg * m/s’

This force is to be applied over a distance q = 1.5 m straight up, so the work
w is equal to the dot product F - q. Because F and q point in the same direc-
tion, we can simply multiply their magnitudes:

w = Fg = (9.8kg + m/s") (1.5 m)
=147kg * m’/s’

We should round this off to 15 kg - m?/s® because our input data are given
only to two significant digits.

This unit, the kilogram-meter squared per second squared, seems arcane,
doesn’t it? Thinking of it as a newton-meter might help a little. Fortunately,
however, there is another name for this unit, the joule, symbolized J. In lifting
the object in the example of Problem 8-4, you did approximately 15 J of
work. The joule is a significant unit in physics, chemistry, electricity, and
electronics. It will turn up again and again if you do much study in any of
these fields.

Energy exists in many forms. From time to time, we hear news about an
“energy crisis.” Usually newscasters are talking about shortages of the energy
available from burning fossil fuels, such as oil and natural gas. You might
find a barrel of oil and sit down in front of it. Where is the energy in it? It
doesn’t seem to be doing anything; it’s just a big container of dark, thick
liquid. However, if you light it on fire (don’t!), the energy it contains
becomes vividly apparent. Energy is measured in joules, just as is work. In
fact, one definition of energy is “the capacity to do work.”

POTENTIAL ENERGY

Look again at the situation shown by Fig. 8-4. When the object with mass m
is raised through a displacement q, a force F is applied to it. Imagine
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what would happen if you let go of the rope and the object were allowed
to fall.

Suppose that m = 5 kg. This is about 11 pounds in Earth’s gravita-
tional field. Suppose that the object is hard and solid, such as a brick. If
you raise the brick a couple of millimeters, it will strike the floor without
much fanfare. If you raise it 2 m, it will crack or dent a linoleum floor,
and the brick itself might break apart. If you raise it 4 m, there will certainly
be trouble when it hits. The landing of a heavy object can be put to some
useful task, such as pounding a stake into the ground. It also can do a lot
of damage.

There is something about lifting up an object that gives it the ability to
do work. This “something” is potential energy. Potential energy is the same
thing as work, in a mechanical sense. If a force vector of magnitude F is
applied to an object against Earth’s gravitation and that object is lifted by a
displacement vector of magnitude g, then the potential energy E, is given
by this formula:

E,=Fq

This is a simplistic view of potential energy. As we just discussed,
potential energy can exist in a barrel of oil even if it is not lifted. Potential
energy also exists in electrochemical cells, such as the battery in your car.
It exists in gasoline, natural gas, and rocket fuel. It is not as easy to quantify
in those forms as it is in the mechanical example of Fig. 8-4, but it exists
nevertheless.

PROBLEM 8-5

Refer again to Fig. 8-4. If the object has a mass of 5.004 kg and it is lifted
3.000 m, how much potential energy will it attain? Take the value of the
magnitude of Earth’s gravitational acceleration as a, = 9.8067 m/s?. We
can neglect vectors here because everything takes place along a single
straight line.

SOLUTION 8-5
First, we must determine the force required to lift a 5.004-kg object in Earth’s
gravitational field:

F = ma, = (5.004 kg) (9.8067 m/sz) = 49.0727268 N
The potential energy is the product of this force and the displacement:
Ep = Fg = (49.0727268 N) (3.000 m) = 147.2181804 J

We are entitled to go to four significant figures here because the least accurate
input data are given to four significant figures. Therefore, E, = 147.2 J.
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Fig. 8-4. Work is done when a force is applied over a specific distance.
In this case, the force is applied upward to an object against Earth’s gravity.

KINETIC ENERGY

Suppose that the object shown by the scenario in Fig. 8-4 is lifted a certain
distance, imparting to it a potential energy E,. What will happen if you let
go of the rope, and the object falls back to the floor? First, the object might
do damage, either to the floor or to itself, when it hits. Second, it will be
moving, and in fact accelerating, when it hits. Third, all the potential energy
that was imparted to the object in lifting it will be converted into other
forms: vibration, sound, heat, and possibly the outward motion of flying
chunks of concrete or linoleum.



Momentum, Work, Energy, and Power ——q@lj»

Now think of the situation an infinitesimal moment—an instant—before
the object strikes the floor. At this moment the kinetic energy possessed
by the object will be just equal to the potential energy imparted to it by lift-
ing it. All this kinetic energy is about to be dissipated or converted in the
violence of impact. The kinetic energy is

E, = Fq = ma,q = 9.8mq

where F is the force applied, g is the distance the object was raised (and thus
the distance it falls), m is the mass of the object, and a, is the accelera-
tion of gravity. Here we are taking a, to be 9.8 m/s’, accurate to only two
significant figures.
There is another way to express E, for a moving object having a mass m.
This is
E = mv’/2

where v is the speed of the object just before impact. We could use the for-
mulas for displacement, speed, and acceleration from Chapter 7 to calculate
the instantaneous speed of the object when it hits the floor, but there’s no need.
We already have a formula for kinetic energy in the example of Fig. 8-4.
The mass-velocity formula is far more general and applies to any moving
object, even if work is not done on it.

Another note should be made here. You will notice that we use the notation
m (lowercase italic m) for mass and m (lowercase nonitalic m) for meter(s).
It is easy to get careless and confuse these. Don’t.

PROBLEM 8-6

Refer again to Fig. 8-4. Suppose that the object has mass m = 1.0 kg and is
raised 4.0 m. Determine the kinetic energy it attains the instant before it
strikes the floor, according to the force/displacement method. Use 9.8 m/s® as
the value of a,, the acceleration of gravity.

SOLUTION 8-6 )
This is done according to the formula F = mayq. Here, m = 1.0 kg, a; = 9.8 m/s”,
and g = 4.0 m. Therefore:

Ex=10kg X 9.8 m/s” X 40m
=392kg-m/s =3927
We are given each input value to only two significant figures, so we should
round this off to £, = 39 J.

PROBLEM 8-7
In the example of Problem 8-6, determine the kinetic energy of the object the
instant before it strikes the floor by using the mass/speed method.
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Demonstrate that it yields the same final answer in the same units as the
method used in Problem 8-6.

SOLUTION 8-7

The trick here is to calculate how fast the object is moving just before it strikes

the floor. This involves doing the very exercise we avoided a few paragraphs

ago. This will take some figuring. It's not complicated, only a little tedious.
First, let’s figure out how long it takes for the object to fall. Recall from

Chapter 7 that

q = yyg £12

where g s the displacement, a,, is the average acceleration, and tis the time
elapsed. Here, a,,, can be replaced with a, because the Earth’s gravitational
acceleration never changes. (It is always at its average value.) We can then
manipulate the preceding formula to solve for time:

(= (2q/ag)1/2
= [(2 X 4.0 m)/(9.8 m/s?)]"”
= (8.0m x 0.102 s’/m)"”

“Wait!” you might say. “What have we done with aq? Where does this s°/m unit
come from?” We are multiplying by the reciprocal of this quantity a,, which is
the same thing as dividing by the quantity a, itself. When we take the recip-
rocal of a quantity that is expressed in terms of a unit, we also must take the
reciprocal of the unit. This is where the s%m “unit” comes from. Continuing
along now:

t=(8.0m X 0.102 s*/m)"?
= (0.816 m - s*/m)"”
212

= (0.816s") ~ =0.9033 s

Meters cancel out in the preceding process. Units, just like numbers and
variables, can cancel and become unity (the number 1) when they are divided
by themselves. Let’s not round this value, 0.9033 s, off just yet; we have more
calculations to make.

Recall now from Chapter 7 the formula for the relationship among instan-
taneous velocity v, ., acceleration a, and time tfor an object that accelerates at
a constant rate:

Vinst = af
Here, we can replace a with ag, as before. We know both aq and t already:
Vinst = (9.8 m/s%) (0.9033 s)
= 8.85234 m/s

Don’'t worry about the fact that we keep getting more and more digits in our
numbers. We’ll round it off in the end.
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There is only one more calculation to make, and this is using the formula for
E, in terms of v,,i; and m. We now know that v,., = 8.85234 m/s and m = 1.0 kg.
Therefore:

E, = mv, /2

inst

= (1.0 kg) (8.85234 m/s)*/2
= (78.3639 kg - m*/s?)/2
= 39.18195 kg - m’/s

The unit, kg - mz/sz, is the same as the joule (J). And because we are entitled
only to two significant figures, the numerical value must be rounded to 39.
This gives the same final answer in the same units as the force/displacement
method used in Problem 8-6.

Of course, given a choice, we would use the method of Problem 8-6 to
determine kinetic energy in a scenario such as that illustrated by Fig. 8-4.
We dragged ourselves through Problem 8-7 as an exercise to show that
either method works. It’s never a bad thing to verify the validity of a for-
mula or concept!

In the context of physics, power is the rate at which energy is expended or
converted to another form. Mechanically, it is the rate at which work is done.
The standard unit of power is the joule per second (J/s), more commonly
known as the watt (W). Power is almost always associated with kinetic energy.
Sometimes the rate at which potential energy is stored is referred to as power.

MECHANICAL POWER

In the examples shown by Fig. 8-4, the object acquires potential energy when
it is lifted, and this potential energy is converted to kinetic energy as the object
falls (if it is allowed to fall). The final burst of sound, shock waves, and per-
haps outflying shrapnel is the last of the kinetic energy imparted to the object
by lifting. Where does power fit into this scenario?

A slight variation on this theme can be used to talk about power. This is
shown by Fig. 8-5. Suppose that instead of a free end of rope, you have a
winch that you can turn to raise the object at the other end of the rope. The

Power
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object starts out sitting on the floor, and you crank the winch (or use a
motor to crank it) for the purpose of lifting the object. This, possibly in con-
junction with a complex pulley system, will be necessary if you have a
heavy object to lift. Then the pulley had better be strong! The same holds
true for the rope. And let’s not forget about the manner in which the pulley
is anchored to the ceiling.

LET'S DO IT!

It will take energy to lift this object. You can crank the winch, imparting
potential energy to the object. If the pulley system is complex, you might

/ ° T °
Frictionless
pulley T
-+ 4
Nonstretch <+ 3
rope
-T2
Winch
-T- 1
Q
> Mass
‘c)’ AN T
N ]
0

Displacement, meters

Fig. 8-5. Illustration of power. A winch and pulley can be used to life a heavy object.
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reduce the force with which you have to bear down on the winch, but this
will increase the number of times you must turn the winch to lift the object
a given distance. The rate at which you expend energy cranking the winch
can be expressed in watts and constitutes power. The faster you crank the
winch for a given object mass, the higher is the expended power. The more
massive the object for a given winch crank speed, the higher is the expended
power. However, the power does not depend on how high the object is lifted.
In theory, you could expend a little power for a long time and lift the mass
100 m, 1 km, or 100 km.

Assume that the winch and pulley system is frictionless and that the rope
does not stretch. Suppose that you crank the winch at a constant rotational
rate. The power you expend in terms of strain and sweat multiplied by the
time spent applying it will equal the potential energy imparted to the object.
If P is the power in watts and ¢ is the time in seconds for which the constant
power P is applied, then the potential energy imparted to the object £, can
be found according to this formula:

E,= Pt
This can be rearranged to
P =EJt

We know that the potential energy is equal to the mass times the acceleration
of gravity times the displacement g. Thus the power can be calculated
directly by the following formula:

P = 9.8067mgqlt

PROBLEM 8-8

Suppose that an object having mass 200 kg is to be lifted 2.50 m in a time of
7.00 s. What is the power required to perform this task? Take the acceleration
of gravity to be 9.8 m/s%.

SOLUTION 8-8
Simply use the preceding formula with the acceleration rounded to two sig-
nificant figures:

P = 9.8 X200 X 2.50/7.00
=700 W

When we say 700 W, we are technically justified in going to only two significant
figures. How can we express this here? One way is to call it 7.0 X 10% W.
Another way is to call it 0.70 kW, where kW stands for kilowatt, the equivalent
of exactly 1,000 W. Yet another way is to say it is 700 W = 5 W, meaning “700
W plus or minus 5 W.” (This is the extent of the accuracy we can claim with
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two significant figures.) However, most physicists probably would accept our
saying simply 700 W. There is a limit to how fussy we can get about these
things without driving ourselves crazy.

You will notice that in Problem 8-8 we did not carry the units through
the entire expression, multiplying and dividing them out along with the
numbers. We don’t have to do this once we know that a formula works, and
we are certain to use units that are all consistent with each other in the context
of the formula. In this case we are using all SI base units (meter, kilogram,
second), so we know we’ll come out all right in the end.

ELECTRICAL POWER

You might decide to spare yourself the tiring labor of cranking a winch to
lift heavy objects over and over just to perform experiments to demonstrate
the nature of power. Anyhow, it’s hard to measure mechanical power directly,
although it can be calculated theoretically as in Problem 8-8.

You might connect an electric motor to the winch, as shown in Fig. 8-6. If
you then connect a wattmeter between the power source and the motor, you can
measure the power directly. Of course, this assumes that the motor is 100
percent efficient, along with the other assumptions that the rope does not stretch
and the pulley has no friction. All these assumptions are, of course, not repre-
sentative of the real world. A real pulley does have friction, a real rope will
stretch, and a real motor is less than perfectly efficient. As a result, the reading
on a wattmeter connected as shown in Fig. 8-6 would be greater than the figure
we would get if we used the scheme in Problem 8-8 to calculate the power.

SYSTEM EFFICIENCY

Suppose that we connect the apparatus of Fig. 8-6 and do the experiment
described in Problem 8-8. The wattmeter might show something like 800 W.
In this case we can calculate the efficiency of the whole system by dividing
the actual mechanical power (700 W) by the measured input power (800 W).
If we call the input power P,, and the actual mechanical power P, then
the efficiency Eff'is given by

Eff =P,

oul/Pin
If you want to calculate the efficiency in percent, Eff,,, use this formula

Eff,, = 100P,, /P,

out
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Fig. 8-6. Electrical power can be measured directly when
a motor is used to drive a winch to lift a heavy object.

PROBLEM 8-9
Consider the scenario of Problem 8-8 and Fig. 8-6. If the meter shows 800 W,
what is the efficiency in percent?

SOLUTION 8-9
Use the second of the two efficiency formulas presented earlier:

Effq, = 100Pg /Py
Effq, = 100 X 700/800
= 87.5 percent

If you want to get formal and claim only two significant figures for the 700-W
result in Problem 8-8, then you must round this efficiency figure off to 88 percent.
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Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1

. Consider a minor parking-lot accident. Car A backs out at 30 cm/s toward

the west, and car B looks for a place to park, driving north at 40 cm/s. Both
cars mass 1,000 kg. What is the total system momentum before the colli-
sion? Remember that momentum is a vector quantity. Also, be careful with
your units.

(a) 700 kg - m/s, generally northwest

(b) 100 kg - m/s, generally northwest

(c) 500 kg - m/s, generally northwest

(d) There is not enough information to answer this.

. Impulse is the product of

(a) time and distance.

(b) time, mass, and acceleration.
(c) time, mass, and velocity.

(d) time and velocity.

. Consider a hockey player skating down the ice at 10.0 m/s. His mass is 82.0 kg.

What is his kinetic energy?
(2) 8207

() 4107

(c) 820 x 10*]

(d)4.10 X 10°J

. An object whose mass is 10.0 kg is lifted through a distance of 4.000 m on a

planet where the gravitational acceleration is 6.000 m/s”. How much work is
required to do this?

(a) 60.0J

(b) 24.01J

(c)40.0J

(d)2401

. Suppose that an object is pushed with steady force along a frictionless surface.

When you multiply the object’s mass by the length of time for which it is
pushed and then multiply the result by the object’s acceleration over that period
of time, you get

(a) momentum.

(b) velocity.

(c) impulse.

(d) a meaningless quantity.



10.

Momentum, Work, Energy, and Power — XD

. According to the law of conservation of momentum, in an ideal closed system,

(a) when two objects collide, the system neither loses nor gains any total
momentum.

(b) when two objects collide, neither object loses or gains any momentum.

(c) when two objects collide, the magnitudes of their momentum vectors add.

(d) when two objects collide, the magnitudes of their momentum vectors multiply.

. When making calculations in which all the quantities have their units indicated

throughout the entire process,

(a) the units multiply and divide just like the numbers.

(b) the units cannot cancel out.

(c) the units can be multiplied but not divided.

(d) the units can be added and subtracted, but not multiplied or divided.

. One joule, reduced to base units, is equivalent to

(a) one kilogram-meter per second squared.

(b) one kilogram-meter.

(c) one kilogram-meter squared per second squared.
(d) one meter per second squared.

. A 5,000-kg motorboat sits still on a frictionless lake. There is no wind to push

against the boat. The captain starts the motor and runs it steadily for 10.00
seconds in a direction straight forward and then shuts the motor down. The
boat has attained a speed of 5.000 meters per second straight forward. What is
the impulse supplied by the motor?

(a) 2.500 X 10° kg - m/s

(b) 2.500 X 10" kg - m/s

(c) 2,500 kg - m/s

(d) 6.250 X 10" kg - m/s

Which of the following does not have an effect on the momentum of a moving
spherical particle?

(a) The speed of the particle

(b) The diameter of the particle

(c) The direction in which the particle travels

(d) The mass of the particle
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CHAPTER 9

Particles of Matter

The idea that matter exists in the form of particles, rather than as a contin-
uous mass, is many centuries old. How do we explain the fact that some
substances are more dense than others, that some retain their shape while
others flow freely, and that some are visible while others are not? The
many ways in which matter can exist are difficult to explain in any other
way than by means of a particle theory. This was the reasoning ancient
alchemists used when they hypothesized that matter is comprised of tiny,
invisible particles, or atoms.

Early Theories

All atoms are made up of countless smaller particles whizzing around.
These subatomic particles are dense, but matter is mostly empty space.
Matter seems solid and continuous because the particles are so small that
we can’t see them, and they move so fast that their individual motions
would appear as a blur even if the particles themselves could be seen.
However, the spaces within atoms are vastly greater than the particles that
comprise them. If we could shrink ourselves down to the subatomic scale
and also slow down time in proportion, a piece of metal would look some-
thing like a huge, hysterical swarm of gnats. Did the first chemical and
physical scientists realize that the atoms they had dreamed up actually con-
sisted of smaller particles, that these particles in turn consisted of tinier
ones still, and that some people in future generations would come to
believe that the particle sequence extends down to smaller and smaller
scales ad infinitum?
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THE SMALLEST PIECE

Millennia ago, scientists deduced the particle nature of matter from observ-
ing such things as water, rocks, and metals. These substances are much dif-
ferent from each other. However, any given material—copper, for
example—is the same wherever it is found. Even without doing any com-
plicated experiments, early physicists believed that substances could only
have these consistent behaviors if they were made of unique types, or
arrangements, of particles.

It was a long time before people began to realize how complicated this
business really is. Even today, there are plenty of things that scientists don’t
know. For example, is there a smallest possible material particle? Or do
particles keep on getting tinier as we deploy more and more powerful
instruments to probe the depths of inner space? Either notion is difficult to
comprehended intuitively. If there is something that represents the smallest
possible particle, why can’t it be cut in half? However, if particles can be
cut into pieces forever and ever, then what is the ultimate elementary par-
ticle? A geometric point of zero volume? What would be the density of
such a thing? Some mass divided by zero? This doesn’t make sense! A lit-
eral and conclusive answer to this puzzle remains to be found. We may
never know all there is to know about matter. It may not even be possible
to know everything about matter.

THE ELEMENTS

Until about the year 1900, there were respected people who refused to
believe the atomic theory of matter. Today, however, practically everyone
accepts it. The atomic theory explains the behavior of matter better than
any other scheme. Some people still think that matter is continuous; a few
folks still believe that our planet Earth is flat, too.

Eventually, scientists identified 92 different kinds of fundamental sub-
stances in nature and called them elements. Later, more elements were
made artificially. This process of discovery is still going on. Using
machines known as particle accelerators, sometimes called atom smash-
ers, nuclear physicists have fabricated human-made elements that can’t
exist in nature, at least not under conditions resembling anything we would
imagine as normal.
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EVERY ELEMENT IS UNIQUE

Atoms of different elements are always different. The slightest change in
an atom can make a tremendous difference in its behavior. You can live by
breathing pure oxygen but you cannot live off of pure nitrogen. Oxygen
will cause metal to corrode, but nitrogen will not. Wood will burn furiously
in an atmosphere of pure oxygen but will not even ignite in pure nitrogen.
However, both look, smell, and feel exactly the same at normal temperature
and pressure. Both are invisible gases, both are colorless, both are odorless,
and both are just about equally heavy. These substances are so different
because oxygen and nitrogen consist of different numbers of otherwise
identical particles.

There are many other examples in nature where a tiny change in atomic
structure makes a major difference in the way a substance behaves.

The Nucleus

The part of an atom that gives an element its identity is the nucleus. It is
made up of two kinds of particles, the proton and the neutron. Both are
extremely dense. Protons and neutrons have just about the same mass, but
the proton has an electric charge, whereas the neutron does not.

THE PROTON

Protons are too small to be observed directly, even with the most powerful
microscopes. All protons carry a positive electric charge, and the charge on
every proton is the same as the charge on every other. Every proton at rest
has the same mass as every other proton at rest. Most scientists accept the
proposition that all protons are identical, at least in our part of the universe,
although they, like all other particles, gain mass if accelerated to extreme
speeds. This increase in mass takes place because of relativistic effects;
you’ll learn about this later.

While an individual proton is invisible and not massive enough to make
much of an impact all by itself, a high-speed barrage of them can have con-
siderable effects on matter. Protons are incredibly dense. If you could
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scoop up a level teaspoon of protons the way you scoop up a teaspoon of
sugar—with the protons packed tightly together like the sugar crystals—
the resulting sample would weigh tons in the Earth’s gravitational field. A
stone made of solid protons would fall into the Earth and cut through the
crustal rocks like a lead shot falls through the air.

THE NEUTRON

A neutron has a mass slightly greater than that of a proton. Neutrons have
no electrical charge, and they are roughly as dense as protons. However,
while protons last for a long time all by themselves in free space, neutrons
do not. The mean life of a neutron is only about 15 minutes. This means
that if you gathered up a batch of, say, 1 million neutrons and let them float
around in space, you would have only about 500,000 neutrons left after
15 minutes. After 30 minutes, you would have approximately 250,000 neu-
trons remaining; after 45 minutes, there would be only about 125,000 neu-
trons left.

Neutrons can last a long time when they are in the nuclei of atoms. This
is a fortunate thing because if it weren’t true, matter as we know it could
not exist. Neutrons also can survive for a long time when a huge number of
them are tightly squeezed together. This happens when large stars explode
and then the remaining matter collapses under its own gravitation. The end
product of this chain of events is a neutron star.

THE SIMPLEST ELEMENTS

The simplest element, hydrogen, has a nucleus made up of only one pro-
ton; there are usually no neutrons. This is the most common element in the
universe. Sometimes a nucleus of hydrogen has a neutron or two along with
the proton, but this does not occur very often. These mutant forms of
hydrogen do, nonetheless, play significant roles in atomic physics.

The second most abundant element in the universe is helium. Usually,
this atom has a nucleus with two protons and two neutrons. Hydrogen is
changed into helium inside the Sun, and in the process, energy is given off.
This makes the Sun shine. The process, called atomic fusion or nuclear
fusion, is also responsible for the terrific explosive force of a hydrogen
bomb.
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ATOMIC NUMBER

According to modern atomic theory, every proton in the universe is exactly
like every other. Neutrons are all alike too. The number of protons in an ele-
ment’s nucleus, the atomic number, gives that element its identity.

The element with three protons is /ithium, a light metal that reacts easily
with gases such as oxygen or chlorine. Lithium always has three protons;
conversely, any element with three protons in its nucleus must be lithium.
The element with four protons is beryllium, also a metal. Carbon has six
protons in its nucleus, nitrogen has seven, and oxygen has eight. In general,
as the number of protons in an element’s nucleus increases, the number of
neutrons also increases. Elements with high atomic numbers, such as lead,
are therefore much more dense than elements with low atomic numbers,
such as carbon. Perhaps you’ve compared a lead shot with a piece of coal
of similar size and noticed this difference.

If you could somehow add two protons to the nucleus of every atom in
a sample of carbon, you would end up with an equal number of atoms of
oxygen. However, this is much easier said than done, even with a single
atom. It is possible to change one element into another; the Sun does it all
the time, fusing hydrogen into helium. The process is far from trivial,
though. In ancient times, alchemists tried to do this; the most well-known
example of their pursuits was the quest to turn lead (atomic number 82) into
gold (atomic number 79). As far as anyone knows, they never succeeded. It
was not until the 1940s, when the first atomic bombs were tested, that ele-
ments actually were “morphed” by human beings. The results were quite
different from anything the alchemists ever strove for.

Table 9-1 lists all the known elements in alphabetical order, with the
names of the elements in the first column, the standard chemical symbols
in the second column, and the atomic numbers in the third column.

ISOTOPES

In the individual atoms of a given element, such as oxygen, the number of
neutrons can vary. Regardless of the number of neutrons, however, the ele-
ment keeps its identity based on the atomic number. Differing numbers of
neutrons result in various isotopes for a specific material element.

Each element has one particular isotope that is found most often in
nature. However, all elements have more than one isotope, and some have
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Table 9-1 The Chemical Elements in Alphabetical Order by
Name, Including Chemical Symbols and Atomic Numbers 1
through 118 (As of the time of writing, there were no known ele-
ments with atomic numbers 113, 115, or 117.)

Element name Chemical symbol Atomic number

Actinium Ac 89
Aluminum Al 13
Americium Am 95
Antimony Sb 51
Argon Ar 18
Arsenic As 33
Astatine At 85
Barium Ba 56
Berkelium Bk 97
Beryllium Be 4
Bismuth Bi 83
Bohrium Bh 107
Boron B 5
Bromine Br 35
Cadmium Cd 48
Calcium Ca 20
Californium Cf 98
Carbon C 6
Cerium Ce 58
Cesium Cs 55
Chlorine Cl 17
Chromium Cr 24
Cobalt Co 27
Copper Cu 29
Curium Cm 96
Dubnium Db 105
Dysprosium Dy 66
Einsteinium Es 99
Erbium Er 68
Europium Eu 63
Fermium Fm 100
Fluorine F 9
Francium Fr 87
Gadolinium Gd 64

Galliom Ga 31
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Table 9-1 (Continued) The Chemical Elements in Alphabetical
Order by Name, Including Chemical Symbols and Atomic
Numbers 1 through 118 (As of the time of writing, there were no
known elements with atomic numbers 113, 115, or 117.)

Element name Chemical symbol Atomic number

Germanium Ge 32
Gold Au 79
Hafnium Hf 72
Hassium Hs 108
Helium He 2
Holmium Ho 67
Hydrogen H 1
Indium In 49
Todine I 53
Iridium Ir 77
Iron Fe 26
Krypton Kr 36
Lanthanum La 57
Lawrencium Lror Lw 103
Lead Pb 82
Lithium Li 3
Lutetium Lu 71
Magnesium Mg 12
Manganese Mn 25
Meitnerium Mt 109
Mendelevium Md 101
Mercury Hg 80
Molybdenum Mo 42
Neodymium Nd 60
Neon Ne 10
Neptunium Np 93
Nickel Ni 28
Niobium Nb 41
Nitrogen N 7
Nobelium No 102
Osmium Os 76
Oxygen (0] 8
Palladium Pd 46

Phosphorus P 15
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Table 9-1 (Continued) The Chemical Elements in Alphabetical
Order by Name, Including Chemical Symbols and Atomic
Numbers 1 through 118 (As of the time of writing, there were no
known elements with atomic numbers 113, 115, or 117.)

Element name Chemical symbol Atomic number

Platinum Pt 78
Plutonium Pu 94
Polonium Po 84
Potassium K 19
Praseodymium Pr 59
Promethium Pm 61
Protactinium Pa 91
Radium Ra 88
Radon Rn 86
Rhenium Re 75
Rhodium Rh 45
Rubidium Rb 37
Ruthenium Ru 44
Rutherfordium Rf 104
Samarium Sm 62
Scandium Sc 21
Seaborgium Sg 106
Selenium Se 34
Silicon Si 14
Silver Ag 47
Sodium Na 11
Strontium Sr 38
Sulfur S 16
Tantalum Ta 73
Technetium Tc 43
Tellurium Te 52
Terbium Tb 65
Thallium Tl 81
Thorium Th 90
Thulium Tm 69
Tin Sn 50
Titanium Ti 22

Tungsten w 74
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Table 9-1 (Continued) The Chemical Elements in Alphabetical
Order by Name, Including Chemical Symbols and Atomic
Numbers 1 through 118 (As of the time of writing, there were no
known elements with atomic numbers 113, 115, or 117.)

Element name Chemical symbol Atomic number

Ununbium Uub 112
Ununhexium Uuh 116
Ununnilium Uun 110
Ununoctium Uuo 118
Ununquadium Quq 114
Unununium Uuu 111
Uranium U 92
Vanadium A" 23
Xenon Xe 54
Ytterbium Yb 70
Yttrium Y 39
Zinc Zn 30
Zirconium Zr 40

many. Changing the number of neutrons in an element’s nucleus results in
a difference in the mass, as well as a difference in the density, of the ele-
ment. Thus, for example, hydrogen containing a neutron or two in the
nucleus, along with the proton, is called heavy hydrogen. The naturally
occurring form of uranium has three more neutrons in its nucleus than the
type that is notorious for use in atomic weapons.

Adding or taking away neutrons from the nucleus of an element is not
quite as farfetched a business as adding or taking away protons, but it is still
a task generally relegated to high-energy physics. You can’t simply take a
balloon filled with air, which is approximately 78 percent nitrogen, and
make it more massive by injecting neutrons into the nitrogen nuclei.

ATOMIC MASS

The atomic mass, sometimes called the atomic weight, of an element is
approximately equal to the sum of the number of protons and the number
of neutrons in the nucleus. This quantity is formally measured in atomic
mass units (amu), where 1 amu is equal to exactly /12 the mass of the
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nucleus of the carbon isotope having six neutrons. This is the most com-
mon isotope of carbon and is symbolized "C or carbon-12. Any proton or
any neutron has a mass of approximately !/12 amu, but neutrons are a little
more massive than protons.

Elements are uniquely defined by their atomic numbers, but the atomic
mass of an element depends on the particular isotope of that element. A
well-known isotope of carbon, 14C, is found in trace amounts in virtually
all carbon-containing substances. This fact has proven quite useful to geol-
ogists and archaeologists. The isotope '*C is radioactive, whereas '*C is
not. The radioactivity of "C diminishes with time according to a well-
known, predictable mathematical function. This makes it possible for
researchers to determine when carbon-containing compounds were created
and thus to find out how old various rocks, fossils, and artifacts are.

In nuclear reactions capable of producing energy, such as the reactions
that take place inside stars, atomic bombs, and nuclear power plants, a cer-
tain amount of mass is always given up—and converted into energy—in the
transactions between the atoms. This amount of mass can be exceedingly
small yet produce an enormous burst of energy. The first person to formal-
ize this relation was Albert Einstein, using his famous equation

E = mc’
where E is the energy produced in joules, m is the total mass in kilograms
lost during the reaction, and c is the speed of light in meters per second.
The value of ¢” is gigantic: approximately 90 quadrillion meters squared
per second squared (9 X 10'® m?/s?). This is why so much energy can be
produced by an atomic reaction between two elemental samples of modest
mass.

An excellent source of information concerning all the known elements,
including atomic number, atomic mass, and various other characteristics,
can be found at the following Web site:

http:/lwww.chemicalelements.com/

If you have a computer with Internet access, it would be a good idea spend
a while exploring this Web site right now.

PROBLEM 9-1

Suppose that the nucleus of an oxygen atom, which has eight protons and
usually has eight neutrons, were split exactly in two. What element would be
the result? How many atoms of this element would there be? Neglect, for sim-
plicity, any energy that might be involved in the reaction.
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SOLUTION 9-1

This reaction would produce two atoms of beryllium, each with four protons
and four neutrons. This would not be the most common isotope, however; it
turns out that beryllium usually has five neutrons in its nucleus.

227

Outside the Nucleus

Surrounding the nucleus of an atom are particles having electric charge
opposite from the charge of the protons. These are electrons. Physicists
arbitrarily call the electron charge negative and the proton charge positive.

The electron

An electron has exactly the same charge quantity as a proton but with
opposite polarity. Electrons are far less massive than protons, however.
It would take about 2,000 electrons to have the same mass as a single
proton.

One of the earliest theories concerning the structure of the atom pic-
tured the electrons embedded in the nucleus like raisins in a cake. Later,
the electrons were imagined as orbiting the nucleus, making every atom
like a miniature star system with the electrons as the planets (Fig. 9-1).
Still later, this view was modified further. In today’s model of the atom,
the electrons are fast-moving, and they describe patterns so complex that
it is impossible to pinpoint any individual particle at any given instant of
time. All that can be done is to say that an electron just as likely will be
inside a certain sphere as outside. These spheres are known as electron
shells. The centers of the shells correspond to the position of the atomic
nucleus. The greater a shell’s radius, the more energy the electron has.
Figure 9-2 is a greatly simplified drawing of what happens when an elec-
tron gains just enough energy to “jump” from one shell to another shell
representing more energy.

Electrons can move rather easily from one atom to another in some
materials. These substances are electrical conductors. In other substances,
it is difficult to get electrons to move. These are called electrical insulators.
In any case, however, it is far easier to move electrons than it is to move
protons. Electricity almost always results, in some way, from the motions
of electrons in a material.
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Fig. 9-1. An early model of the atom, developed around the year 1900.

Generally, the number of electrons in an atom is the same as the number
of protons. The negative charges therefore exactly cancel out the positive
ones, and the atom is electrically neutral. Under some conditions, however,
there can be an excess or shortage of electrons. High levels of radiant energy,
extreme heat, or the presence of an electrical field (to be discussed later)
can “knock” electrons loose from atoms, upsetting the balance.

IONS

If an atom has more or less electrons than protons, that atom acquires an
electric charge. A shortage of electrons results in positive charge; an excess
of electrons gives a negative charge. An element’s identity remains the
same, no matter how great the excess or shortage of electrons. In the
extreme case, all the electrons may be removed from an atom, leaving only
the nucleus. This will still represent the same element, however, as it would
if it had all its electrons. A electrically charged atom is called an ion. When
a substance contains many ions, the material is said to be ionized. If an
atom has more electrons than protons, it is a negative ion. If it has fewer
electrons than protons, it is a positive ion. If the number of electrons and
protons is the same, then the atom is electrically neutral.

ITonization can take place when substances are heated to high temperatures
or when they are placed in intense electrical fields. Ionization also can occur in
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Fig. 9-2. Electrons exist at defined levels, each level corresponding to a specific,
fixed energy state.

High-energy
shell

a substance as a result of exposure to ultraviolet light, x-rays, gamma rays, or
high-speed subatomic particles such as neutrons, protons, helium nuclei, or
electrons. So-called ionizing radiation, more often called radioactivity, ionizes
the atoms in living tissue and can cause illness, death, and genetic mutations.

Lightning is the result of ionization of the air. An electric spark is caused
by a large buildup of charges, resulting in forces on the electrons in the
intervening medium. These forces pull the electrons away from individual
atoms. Ionized atoms generally conduct electric currents with greater ease
than electrically neutral atoms. The ionization, caused by a powerful elec-
trical field, occurs along a jagged, narrow channel, as you have surely seen.
After the lightning flash, the nuclei of the atoms quickly attract stray elec-
trons back, and the air becomes electrically neutral again.

An element may be both an ion and an isotope different from the usual
isotope. For example, an atom of carbon may have eight neutrons rather
than the usual six, thus being the isotope C, and it may have been stripped
of an electron, giving it a positive unit electric charge and making it an ion.

The atmosphere of our planet becomes less dense with increasing alti-
tude. Because of this, the amount of ultraviolet and x-ray energy received
from the Sun gets greater as we go higher. At certain altitudes, the gases in
the atmosphere become ionized by solar radiation. These regions comprise
the ionosphere of the Earth. The ionosphere has a significant effect on the
propagation of radio waves at certain frequencies. The ionized layers absorb
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or refract the waves. This makes long-distance communication possible on
the so-called shortwave radio bands.

PROBLEM 9-2

Suppose that the nucleus of an oxygen atom is split exactly in two. As in
Problem 9-1, neglect any energy that might be involved in the reaction.
Suppose that the original oxygen atom is electrically neutral and that no elec-
trons are gained or lost during the reaction. Is it possible for both the result-
ing atoms to be electrically neutral?

SOLUTION 9-2

Yes. The original oxygen atom must have eight electrons in order to be elec-
trically neutral. If these eight electrons are equally divided between the two
beryllium atoms, each of which has four protons in its nucleus, then both
beryllium atoms will have four electrons, and both will be electrically neutral.

PROBLEM 9-3

Consider the preceding scenario in which the oxygen atom has been stripped
of two of its electrons so that it is a positive ion. Can the resulting two beryllium
atoms be electrically neutral?

SOLUTION 9-3

In this case, no. There must be eight electrons, in total, for both the beryllium
atoms to end up neutral. It is possible for one of the beryllium atoms to be
neutral, but at least one of them must be an ion.

Energy from Matter

The splitting up of an atomic nucleus is known as nuclear fission. This is,
in a sense, the opposite of nuclear fusion, which occurs inside the Sun and
other stars. The very first atomic bombs, developed in the 1940s, made use
of fission reactions to produce energy. More powerful weapons, created in
the 1950s, used atomic fission bombs to produce the temperatures neces-
sary to generate hydrogen fusion.

HUMAN-CAUSED AND NATURAL FISSION

The preceding problems involving oxygen and beryllium are given for
illustrative purposes, but the actual breaking up of atomic nuclei is not such
a simple business. A physicist can’t snap an atomic nucleus apart as if it
were a toy. Nuclear reactions must take place under special conditions, and
the results are not as straightforward as the foregoing problems suggest.
To split atomic nuclei in the laboratory, a particle accelerator is
employed. This machine uses electric charges, magnetic fields, and other
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effects to hurl subatomic particles at extreme speeds at the nuclei of atoms
to split them apart. The result is a fission reaction, often attended by the lib-
eration of energy in various forms.

Some fission reactions occur spontaneously. Such a reaction can take
place atom-by-atom over a long period of time, as is the case with the decay
of radioactive minerals in the environment. The reaction can occur rapidly
but under controlled conditions, as in a nuclear power plant. It can take
place almost instantaneously and out of control, as in an atomic bomb when
two sufficiently massive samples of certain radioactive materials are
pressed together.

MATTER AND ANTIMATTER

The proton, the neutron, and the electron each has its own nemesis parti-
cle that occurs in the form of antimatter. These particles are called
antiparticles. The antiparticle for the proton is the antiproton; for the neu-
tron it is the antineutron; for the electron it is the positron. The antiproton
has the same mass as the proton, but in a negative sort of way, and it has
a negative electric charge that is equal but opposite to the positive electric
charge of the proton. The antineutron has the same mass as the neutron,
but again in a negative sense. Neither the neutron nor the antineutron have
any electric charge. The positron has same mass as the electron, but in a
negative sense, and it is positively charged to an extent equal to the nega-
tive charge on an electron.

You might have read or seen in science-fiction novels and movies that
when a particle of matter collides with its nemesis, they annihilate each other.
This is true. What, exactly, does this mean? Actually, the particles don’t just
vanish from the cosmos, but they change from matter into energy. The com-
bined mass of the particle and the antiparticle is liberated completely accord-
ing to the same Einstein formula that applies in nuclear reactions:

E=m_ +m.) e

where E is the energy in joules, m, is the mass of the particle in kilograms,
m_ is the mass of the antiparticle in kilograms, and c is the speed of light
squared, which, as you recall, is approximately equal to 9 X 10" m%s’.

UNIMAGINABLE POWER

If equal masses of matter and antimatter are brought together, then in the-
ory all the mass will be converted to energy. If there happens to be more
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matter than antimatter, there will be some matter left over after the encounter.
Conversely, if there is more antimatter than matter, there will be some anti-
matter remaining.

In a nuclear reaction, only a tiny fraction of the mass of the con-
stituents is liberated as energy; plenty of matter is always left over,
although its form has changed. You might push together two chunks of
235U, the isotope of uranium whose atomic mass is 235 amu, and if their
combined mass is great enough, an atomic explosion will take place.
However, there will still be a considerable amount of matter remaining.
We might say that the matter-to-energy conversion efficiency of an atom-
ic explosion is low.

In a matter—antimatter reaction, if the masses of the samples are equal,
the conversion efficiency is 100 percent. As you can imagine, a matter—
antimatter bomb would make a conventional nuclear weapon of the same
total mass look like a firecracker by comparison. A single matter—antimatter
weapon of modest size could easily wipe out all life on Earth.

WHERE IS ALL THE ANTIMATTER?

Why don’t we see antimatter floating around in the Universe? Why, for
example, are the Earth, Moon, Venus, and Mars all made of matter and
not antimatter? (If any celestial object were made of antimatter, then as
soon as a spacecraft landed on it, the ship would vanish in a fantastic
burst of energy.) This is an interesting question. We are not absolutely
certain that all the distant stars and galaxies we see out there really are
matter. However, we do know that if there were any antimatter in our
immediate vicinity, it would have long ago combined with matter and
been annihilated. If there were both matter and antimatter in the primor-
dial solar system, the mass of the matter was greater, for it prevailed after
the contest.

Most astronomers are skeptical of the idea that our galaxy contains
roughly equal amounts of matter and antimatter. If this were the case, we
should expect to see periodic explosions of unimaginable brilliance or else
a continuous flow of energy that could not be explained in any way other
than matter—antimatter encounters. However, no one really knows the
answers to questions about what comprises the distant galaxies and, in par-
ticular, the processes that drive some of the more esoteric objects such as
quasars.
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PROBLEM 9-4

Suppose that a 1.00-kg block of matter and a 1.00-kg block of antimatter are
brought together. How much energy will be liberated? Will there be any mat-
ter or antimatter left over?

SOLUTION 9-4

We can answer the second question first: There will be no matter or antimatter
left over because the masses of the two blocks are equal (and, in a sense, oppo-
site). As for the first part of the question, the total mass involved in this encounter
is 2.00 kg, so we can use the famous Einstein formula. For simplicity, let's round
off the speed of light to ¢ = 3.00 X 10® m/s. Then the energy E, in joules, is

2
E = mc

=2.00 X (3.00 X 10%)
=200 X 9.00 X 10'°
=180x 107

This is a lot of joules. It is not easy to conceive how great a burst of
energy this represents because the number 1.80 X 10", or 180
quadrillion, is too large to envision. However, the quantity of energy rep-
resented by 1.80 X 10" J can be thought of in terms of another problem.

PROBLEM 9-5

We know that 1 W = 1 J/s. How long would the energy produced in the pre-
ceding matter—antimatter reaction, if it could be controlled and harnessed, illu-
minate a 100-W light bulb?

SOLUTION 9-5
Divide the amount of energy in joules by the wattage of the bulb in joules per
second. We know this will work because, in terms of units,

YW =J/Q/s) =T - (s/T) = s

The joules cancel out. Note also that the small dot (-) is used to
represent multiplication when dealing with units, as opposed to the
slanted cross (X) that is customarily used with numerals. Getting
down to the actual numbers, let P be the power consumed by the
bulb (100 W), let ¢, be the number of seconds the 100-W light bulb
will burn, and let £ be the total energy produced by the matter—
antimatter reaction, 1.80 X 10" J. Thus

t, = EIP
1.80 X 10"7/100

1.80 x 10'7/10°

1.80 X 10" s
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This is a long time, but how long in terms of, say, years? There are
60.0 seconds in a minute, 60.0 minutes in an hour, 24.0 hours in a day,
and, on average, 365.25 days in a year. This makes 31,557,600, or
3.15576 X 107, seconds in a year. Let t,, be the time in years that the
light bulb burns. Then

1/(3.15576 X 10")

(1.80 X 10")/(3.15576 X 10')
=0.570 X 10°

=570 X 10" yr

t

yr

This is 57.0 million years, rounded to three significant figures (the
nearest 100,000 years), which is all the accuracy to which we are enti-
tled based on the input data.

PROBLEM 9-6

Suppose that the amount of matter in the preceding two problems is doubled
to 2.00 kg but the amount of antimatter remains 1.00 kg. How much energy
will be liberated? Will there be any matter or antimatter left over?

SOLUTION 9-6

The amount of liberated energy will be the same as in the examples shown
by the preceding two problems: 1.80 x 10'” J. There will be 1.00 kg of mat-
ter left over (the difference between the masses). However, assuming that the
encounter produces an explosion, the matter won't remain in the form of a
brick. It will be scattered throughout millions of cubic kilometers of space.

Compounds

Different elements can join together, sharing electrons. When this happens, the
result is a chemical compound. One of the most common compounds on Earth
is water, the result of two hydrogen atoms joining with an atom of oxygen.
There are thousands of different chemical compounds that occur in nature.

NOT JUST A MIXTURE!

A compound is not the same thing as a mixture of elements. Sometimes,
however, when elements are mixed (and, if necessary, given a jolt of
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energy), compounds result because the elements undergo chemical reac-
tions with each other. If hydrogen and oxygen are mixed, the result is a
colorless, odorless gas. A spark will cause the molecules to join together
to form water vapor. This reaction will liberate energy in the form of
light and heat. Under the right conditions, there will be an explosion
because the two elements join eagerly. When atoms of elements join
together to form a compound, the resulting particles are molecules.
Figure 9-3 is a simplified diagram of a water molecule.

Compounds often, but not always, appear different from any of the ele-
ments that make them up. At room temperature and pressure, both hydrogen
and oxygen are gases. But water under the same conditions is a liquid. The
heat of the reaction just described, if done in the real world, would result in
water vapor initially, and water vapor is a colorless, odorless gas. However,
some of this vapor would condense into liquid water if the temperature got

Electrons

Electron
shells

Oxygen
nucleus

Hydrogen nuclei

Fig. 9-3. Simplified diagram of a water molecule.
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low enough for dew to form. Some of it would become solid, forming frost,
snow, or ice if the temperature dropped below the freezing point of water.

A note of caution: Do not try an experiment like this! You could be
severely burned. In the extreme, if enough of the hydrogen-oxygen air is
inhaled, your lungs will be injured to the point where you may die of
asphyxiation. We sometimes read or hear news reports about home experi-
menters who blew themselves up with chemistry sets. Don’t become the
subject matter for one of these stories!

Another common example of a compound is rust. This forms when iron
joins with oxygen. Iron is a dull gray solid, and oxygen is a gas; however,
iron rust is a maroon-red or brownish powder, completely unlike either of
the elements from which it is formed. The reaction between iron and oxygen
takes place slowly, unlike the rapid combination of hydrogen and oxygen
when ignited. The rate of the iron-oxygen reaction can be sped up by the
presence of water, as anyone who lives in a humid climate knows.

COMPOUNDS CAN BE SPLIT APART

The opposite of the element-combination process can occur with many
compounds. Water is an excellent example. When water is electrolyzed, it
separates into hydrogen and oxygen gases.

You can conduct the following electrolysis experiment at home. Make
two electrodes out of large nails. Wrap some bell wire around each nail
near the head. Add a cupful (a half-pint) of ordinary table salt to a bucket
full of water, and dissolve the salt thoroughly to make the water into a
reasonably good electrical conductor. Connect the two electrodes to
opposite poles of a 12-volt (12-V) battery made from two 6-V lantern
batteries or eight ordinary dry cells connected in series. (Do not use an
automotive battery for this experiment.) Insert the electrodes into the
water a few centimeters apart. You will see bubbles rising up from both
electrodes. The bubbles coming from the negative electrode are hydro-
gen gas; the bubbles coming from the positive electrode are oxygen gas
(Fig. 9-4). You probably will see a lot more hydrogen bubbles than oxy-
gen bubbles.

Be careful when doing this experiment. Don’t reach into the bucket and
grab the electrodes. In fact, you shouldn’t grab the electrodes or the battery
terminals at all. The 12 V supplied by two lantern batteries is enough to give
you a nasty shock when your hands are wet, and it can even be dangerous.

If you leave the apparatus shown in Fig. 9-4 running for a while, you
will begin to notice corrosion on the exposed wire and the electrodes. This
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Fig. 9-4. Electrolysis of water, in which the hydrogen and oxygen atoms are
split apart from the compound.

will especially take place on the positive electrode, where oxygen is attracted.
Remember that you have added table salt to the water; this will attract chlo-
rine ions as well. Both oxygen and chlorine combine readily with the cop-
per in the wire and the iron in the nail. The resulting compounds are solids
that will tend to coat the wire and the nail after a period of time. Ultimately,
this coating will act as an electrical insulator and reduce the current flow-
ing through the saltwater solution.

ALWAYS IN MOTION

Figure 9-3 shows an example of a molecule of water, consisting of three
atoms put together. However, molecules also can form from two or more
atoms of a single element. Oxygen tends to occur in pairs most of the time
in Earth’s atmosphere. Thus an oxygen molecule is sometimes denoted by
the symbol O,, where the O represents oxygen, and the subscript 2 indi-
cates that there are two atoms per molecule. The water molecule is sym-
bolized H,O because there are two atoms of hydrogen and one atom of
oxygen in each molecule. Sometimes oxygen atoms are by themselves;
then we denote the molecule simply as O. Sometimes there are three atoms
of oxygen grouped together. This is the gas called ozone that has received
attention in environmental news. It is written Oj.
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Fig. 9-5. Simplified rendition of molecules in a solid (a), in a liquid (b), in a gas (c). The gas mole-
cules are shown smaller for illustrative purposes only.

Molecules are always moving. The speed with which they move
depends on the temperature. The higher the temperature, the more rapidly
the molecules move around. In a solid, the molecules are interlocked in a
sort of rigid pattern, although they vibrate continuously (Fig. 9-5a). In a
liquid, they slither and slide around (see Fig. 9-5b). In a gas, they are liter-
ally whizzing all over the place, bumping into each other and into solids
and liquids adjacent to the gas (see Fig. 9-5¢). We’ll look at solids, liquids,
and gases more closely in the next chapter.
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Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1.

Suppose that an isotope of nitrogen contains seven electrons and seven neu-
trons. What, approximately, is the atomic mass of this element?

(a) 7 amu

(b) 14 amu

(c) 49 amu

(d) It cannot be determined from this information.

. A mysterious particle X collides with a proton, and the two completely anni-

hilate each other in a burst of energy. We can conclude that particle X was
(a) a positron.

(b) a neutron.

(c) an electron.

(d) an antiproton.

. Neutrons are

(a) stable all by themselves but unstable when in the nuclei of atoms.
(b) unstable all by themselves but stable when in the nuclei of atoms.
(c) stable under all conditions.

(d) unstable under all conditions.

. The atoms in a compound

(a) share a single nucleus.
(b) share protons.

(c) share electrons.

(d) share neutrons.

. Examine Fig. 9-3. How many electrons are in the outer shell of the oxygen

atom when the two atoms of hydrogen each share an electron with it?
(@2

(b) 6

(©8

(d) 10

. Two different elements can never have the same number of

(a) protons.
(b) neutrons.
(c) electrons.
(d) nuclei.



10.

Classical Physics

. The number of neutrons in an element’s nucleus determines the

(a) isotope of the element.

(b) ion of the element.

(c) atomic number of the element.

(d) No! Neutrons never exist in atomic nuclei.

. The mass of a neutron

(a) is slightly greater than the mass of an electron.
(b) is much greater than the mass of an electron.
(c) is slightly less than the mass of a proton.

(d) is much less than the mass of a proton.

. Suppose that an atom of argon, whose atomic number is 18, has 16 electrons.

This atom is

(a) a positive ion.

(b) a negative ion.

(c) a positive isotope.

(b) a negative isotope.

There were 92 different kinds of atoms discovered when scientists began to
refine the atomic theory. These 92 unique entities are known as
(a) molecules.

(b) compounds.

(c) isotopes.

(d) elements.



CHAPTER 10

Basic States
of Matter

Thousands of years ago, in the time of the ancient Greek and Roman civi-
lizations, scientists believed that all things in the material universe consisted
of combinations of four “elements”: earth, water, air, and fire. According to
this theory, different proportions of these four “‘elements” give materials their
unique properties. This was used to explain why gold is different from salt,
which in turn is different from oil. This seems primitive to us, but the ancients
had keen minds. They were especially good at observing things and at seeing
the “big picture.”

It is interesting to speculate on what might have happened if those sci-
entists had been allowed to expand on their knowledge for all the time
between, say, 100 A.D. and today. However, such unimpeded progress did
not take place. After the Roman civilization declined, the entire Western
world came under a sort of collective trance in which superstition and
religious dogma prevailed. At its worst, this regime was so strict that a
philosopher, mathematician, or scientist who voiced an opinion different
from the conventional wisdom was punished severely. Some were even
put to death.

During and after the Renaissance, when scientific reasoning became a
respected mode of thought once again, physical scientists discovered that
there are many more than four elements and that even these elements are
not the fundamental constituents of matter. However, there are three basic
states of matter recognized by scientists today, and these are analogous,
in a crude sort of way, to three of the original “elements.” These states,
also called phases, are known as solid (the analog of earth), liquid (the
analog of water), and gaseous.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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The Solid Phase

A sample of matter in the solid phase will retain its shape unless subjected
to violent impact, placed under stress, or subjected to high temperatures.
Examples of solids are rock, steel at room temperature, water ice, salt,
wood, and plastic at room temperature.

THE ELECTRICAL FORCE

What makes a solid behave as it does? Why, if you place a concrete block
on a concrete floor, does the block not gradually sink into the floor or meld
with the floor so that you can’t pick it up again later? Why, if you strike a
brick wall with your fist, are you likely to hurt yourself rather than having
your fist go into the bricks? Internally, atoms are mostly empty space; this
is true even in the most dense solids we see on Earth. Why can’t solid
objects pass through one another the way galaxies sometimes do in outer
space or the way dust clouds do in the atmosphere? They’re mostly empty
space too, and they can pass through each other easily.

The answer to this question lies in the nature of the electrical forces
within and around atoms. Every atomic nucleus is surrounded by “shells”
of electrons, all of which are negatively charged. Objects with electrical
charges of the same polarity (negative-negative or positive-positive) always
repel. The closer together two objects with like charge come to each other,
the more forcefully they repel. Thus, even when an atom has an equal num-
ber of electrons and protons so that it is electrically neutral as a whole, the
charges are concentrated in different places. The positive charge is con-
tained in the nucleus, and the negative charge surrounds the nucleus in one
or more concentric spheres.

Suppose that you could shrink down to submicroscopic size and stand
on the surface of a sheet of, say, elemental aluminum. What would you see?
Below you, the surface would appear something like a huge field full of
basketballs (Fig. 10-1). You would find it difficult to walk on this surface
because it would be irregular. However, you would find the balls quite
resistant to penetration by other balls. All the balls would be negatively
charged, so they would all repel each other. This would keep them from
passing through each other and also would keep the surface in a stable, fixed
state. The balls would be mostly empty space inside, but there wouldn’t be
much space in between them. They would be just about as tightly packed
as spheres can be.
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Outer
electron
shells

Fig. 10-1. In a solid, the outer electron shells of the atoms are
packed tightly. (This drawing is greatly oversimplified.)

The foregoing is an oversimplification, but it should give you an idea of
the reason why solids normally don’t pass through each other and in fact
why many solids resist penetration even by liquids such as water or gases
such as air.

BRITTLENESS, MALLEABILITY, AND DUCTILITY
OF SOLIDS

The atoms of elemental solids can “stack up” in various ways. This is evi-
dent in the shapes of the crystals we observe in many different solid sub-
stances. Salt, for example, has a characteristic cubical crystalline shape.
The same is true of sugar. Ice crystals, however, can appear in a fantastic
variety of shapes, but they always have six sides, axes, or facets. Some sub-
stances, such as iron, don’t seem to form crystals under normal circum-
stances. Some materials, such as glass, break away along smooth but
curved boundaries. Some solids can be ground up into a fine powder,
whereas others defy all attempts to pulverize them.

Crystalline solids are brittle. If a sample of such a material is subjected
to a blow with enough force, it will crack or shatter. These types of solids
cannot be stretched or squashed or bent out of shape very much without
breaking. Glass is an example, although you may have noticed that glass
has a little bit of “give.” You can observe the flexibility of glass if you
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watch the reflections from large window panes on a windy day. However,
you cannot bend a straight glass rod into a donut shape.

Soft copper wire, in contrast to glass, is malleable (it can be pounded
flat) and ductile (it can be stretched and bent). The same is true to some
extent of iron. Gold is one of the most malleable known metals. It is expen-
sive but can be pounded into sheets so thin that towers of buildings can be
gold-plated without breaking the government budget. Aluminum is more
ductile and malleable than glass, but not to the extent of soft copper or gold.
Wood can be bent to a variable extent, depending on its water content, but
can’t be pounded into thin sheets or stretched into wire.

The brittleness, ductility, and malleability of some solids depend on the
temperature. Glass, copper, and gold can be made more malleable and duc-
tile by heating. The professional glass blower takes advantage of this phe-
nomenon, as does the coin minter and the wire manufacturer. A person who
works with wood has no such luck. If you heat wood, it gets drier and less
flexible. Ultimately, if you heat glass, copper, or gold enough, it will turn
into a liquid. As wood is heated, it will remain solid; then at a certain tem-
perature it will undergo combustion, a rapid form of oxidation. That is, it
will catch on fire.

HARDNESS OF SOLIDS

Some solids are literally “more solid” than others. A quantitative means
of expressing hardness, known as the Mohs scale, classifies solids from 1
to 10. The lower numbers represent softer solids, and the higher numbers
represent harder ones. The standard substances used in the Mohs scale,
along with their hardness numbers, are shown in Table 10-1. The test of
hardness is simple and twofold: (1) a substance always scratches some-
thing less hard than itself, and (2) a substance never scratches anything
harder than itself.

An example of a soft solid is talc, which can be crumbled in the hand.
Chalk is another soft solid. Wood is somewhat harder than either of these.
Limestone is harder still. Then, in increasing order of hardness, there are
glass, quartz, and diamond. The hardness of a solid always can be deter-
mined according to which samples scratch other samples.

Many substances have hardness numbers that change with temperature.
In general, colder temperatures harden these materials. Ice is a good exam-
ple. It is a fairly soft solid on a skating rink, but on the surface of Charon,
the bitterly cold moon of the planet Pluto, water ice is as hard as granite.
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Table 10-1 The Mohs Scale of Hardness
(Higher numbers represent harder substances.
Relative hardness is determined by attempting
to scratch one substance with another.)

Hardness Number Standard Substance

Talc
Gypsum
Calcite
Fluorite
Apatite
Orthoclase
Quartz
Topaz
Corundum
Diamond

[e>RaNeRNe RN Be N R I S

—_

Hardness is measured by maintaining laboratory samples of each of the 10
substances noted in Table 10-1. A scratch must be a permanent mark, not just
a set of particles transferred from one substance to the other. Substances com-
monly have hardness values that fall between two whole numbers on the
scale. The Mohs hardness scale is not especially precise, and many scientists
prefer more elaborate methods of defining and measuring hardness.

DENSITY OF SOLIDS

The density of a solid is measured in terms of the number of kilograms con-
tained in a cubic meter. That is, density is equal to mass divided by volume.
The kilogram per meter cubed (kg/m? or kg - m™~3) is the measure of den-
sity in the International System (SI). It’s a rather awkward unit in most real-
life situations. Imagine trying to determine the density of sandstone by
taking a cubical chunk of the stuff measuring 1 m on an edge and placing
it on a laboratory scale! You’d need a construction crane to lift the boulder,
and it would smash the scale.

Because of the impracticality of measuring density directly in standard
international units, the centimeter-gram-second (cgs) unit is sometimes
used instead. This is the number of grams contained in 1 cubic centimeter
(cm’) of the material in question. Technically, it is called the gram per cen-
timeter cubed (g/cm3 org- cm ). To convert from grams per centimeter
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cubed to kilograms per meter cubed, multiply by 1,000. Conversely, multi-
ply by 0.001.

You certainly can think of solids that are extremely dense, such as lead.

Iron is quite dense too. Aluminum is not so dense. Rocks are less dense
than most common metals. Glass is about the same density as silicate rock,
from which it is made. Wood and most plastics are not very dense.

PROBLEM 10-1 3
A sample of solid matter has a volume of 45.3 cm™ and a mass of 0.543 kg.
What is the density in grams per centimeter cubed?

SOLUTION 10-1

This problem is a little tricky because two different systems of units are used,
Sl for the volume and cgs for the mass. To get a meaningful answer, we must
be consistent with our units. The problem requires that we express the
answer in the cgs system, so we convert kilograms to grams. This means that
we have to multiply the mass figure by 1,000, which tells us that the sample
mass is 543 g. Determining the density in grams per centimeter cubed is now
a simple arithmetic problem: Divide the mass by the volume. If d is density, m
is mass, and v is volume,

d = mlv
In this case,
d = 543/453 = 12.0 glem”

This answer is rounded to three significant figures.

PROBLEM 10-2

Calculate the density of the sample from Problem 10-1 in kilograms per meter
cubed. Do not use the conversion factor on the result of Problem 10-1. Start
from scratch.

SOLUTION 10-2

This requires that we convert the volume to units in SI, that is, to meters
cubed. There are 1 million, or 106, centimeters cubed in a meter cubed.
Therefore, in order to convert this cgs volume to volume in Sl, we must divide
by 108 or multiply by 10®. This gives us 45.3 X 106 m?, or 4563 x 107 % m®
in standard scientific notation, as the volume of the object. Now we can divide
the mass by the volume directly:

d = mlv
= 0.543/(4.53 X 10 ")
=0.120 X 10°
=1.20 x 10" keg/m’

This was rounded to three significant figures when the numerical division was
performed.
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MEASURING SOLID VOLUME

Suppose, in the preceding problem, that the object in question is irregular.
How can we know that its volume is 45.3 cm’? It would be easy to figure
out the volume if the object were a perfect sphere or a perfect cube or a rec-
tangular prism. Suppose, however, that it’s a knobby little thing?
Scientists have come up with a clever way of measuring the volumes of
irregular solids: Immerse them in a liquid. First, measure the amount of lig-
uid in a container (Fig. 10-2a). Then measure the amount of liquid that is

(a) (b)
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Fig. 10-2. Measuring the volume of a solid. (a) a container with
liquid but without the sample; (b) a container with the
sample totally submerged in the liquid.

displaced when the object is completely submerged. This will show up as
an increase in the apparent amount of liquid in the container (see Fig. 10-2b).
One milliliter (1 ml) of water happens to be exactly equal to 1 cm?, and any
good chemist is bound to have a few containers marked off in milliliters.
This is the way to do it, then, provided the solid does not dissolve in the lig-
uid and that none of the liquid is absorbed into the solid.
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SPECIFIC GRAVITY OF SOLIDS

Another important characteristic of a solid is its density relative to that of
pure liquid water at 4°C (about 39°F). Water is at its most dense at this
temperature and is assigned a relative density of 1. Substances with relative
density greater than 1 will sink in pure water at 4°C, and substances with
relative density less than 1 will float in pure water at 4°C. The relative den-
sity of a solid, defined in this way, is called the specific gravity. You often
will see this abbreviated as sp gr. It is also known as relative density.

You certainly can think of substances whose specific gravity numbers
are greater than 1. Examples include most rocks and virtually all metals.
However, pumice, a volcanic rock that is filled with air pockets, floats on
water. Most of the planets, their moons, and the asteroids and meteorites in
our solar system have specific gravities greater than 1, with the exception
of Saturn, which would float if a lake big enough could be found in which
to test it!

Interestingly, water ice has specific gravity of less than 1, so it floats on
liquid water. This property of ice is more significant than you might at first
suppose. It allows fish to live underneath the frozen surfaces of lakes in the
winter in the temperate and polar regions of the Earth because the layer of
ice acts as an insulator against the cold atmosphere. If ice had specific grav-
ity of greater than 1, it would sink to the bottoms of lakes during the win-
ter months. This would leave the surfaces constantly exposed to
temperatures below freezing, causing more and more of the water to freeze,
until shallow lakes would become ice from the surface all the way to the
bottom. In such an environment, all the fish would die during the winter
because they wouldn’t be able to extract the oxygen they need from the
solid ice, nor would they be able to swim around in order to feed them-
selves. It is difficult to say how life on Earth would have evolved if water
ice had a specific gravity of greater than 1.

ELASTICITY OF SOLIDS

Some solids can be stretched or compressed more easily than others. A
piece of copper wire, for example, can be stretched, although a similar
length of rubber band can be stretched much more. However, there is a dif-
ference in the stretchiness of these two substances that goes beyond mere
extent. If you let go of a rubber band after stretching it, it will spring back
to its original length, but if you let go of a copper wire, it will stay
stretched.
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The elasticity of a substance is the extent of its ability to return to its
original dimensions after a sample of it has been stretched or compressed.
According to this definition, rubber has high elasticity, and copper has low
elasticity. Note that elasticity, defined in this way, is qualitative (it says
something about how a substance behaves) but is not truly quantitative (we
aren’t assigning specific numbers to it). Scientists can and sometimes do
define elasticity according to a numerical scheme, but we won’t worry
about that here. It is worth mentioning that there is no such thing as a per-
fectly elastic or perfectly inelastic material in the real world. Both these
extremes are theoretical ideals.

This being said, suppose that there does exist a perfectly elastic sub-
stance. Such a material will obey a law concerning the extent to which it
can be stretched or compressed when an external force is applied. This is
called Hooke’s law: The extent of stretching or compression of a sample of
any substance is directly proportional to the applied force. Mathematically,
if F is the magnitude of the applied force in newtons and s is the amount of
stretching or compression in meters, then

s = kF

where k is a constant that depends on the substance. This can be written in
vector form as

s = kF

to indicate that the stretching or compression takes place in the same direc-
tion as the applied force.

Perfectly elastic stuff can’t be found in the real world, but there are plenty
of materials that come close enough so that Hooke’s law can be considered
valid in a practical sense, provided that the applied force is not so great that
a test sample of the material breaks or is crushed.

PROBLEM 10-3

Suppose that an elastic bungee cord has near perfect elasticity as long as the
applied stretching force does not exceed 5.00 N. When no force is applied to
the cord, it is 1.00 m long. When the applied force is 5.00 N, the band stretches
to a length of 2.00 m. How long will the cord be if a stretching force of 2.00 N
is applied?

SOLUTION 10-3

Applying 5.00 N of force causes the cord to become 1.00 m longer than its
length when there is no force. We are assured that the cord is “perfectly elas-
tic” as long as the force does not exceed 5.00 N. Therefore, we can calculate
the value of the constant k, called the spring constant, in meters per newton
(m/N) by rearranging the preceding formula:
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s = kF
k = sIF
k = (1.00 m)/(5.00 N) = 0.200 m/N

provided that F = 5.00 N. Therefore, the formula for displacement as a func-
tion of force becomes

s = 0.200F
If F = 2.00 N, then
s = 0.200 m/N X 2.00 N = 0.400 m

This is the additional length by which the cord will “grow” when the force of
2.00 N is applied. Because the original length, with no applied force, is 1.00 m,
the length with the force applied is 1.00 m + 0.400 m = 1.400 m.
Theoretically, we ought to round this off to 1.40 m.

The behavior of this bungee cord, for stretching forces between 0 and 5.00
N, can be illustrated graphically as shown in Fig. 10-3. This is a linear func-
tion; it appears as a straight line when graphed in standard rectangular coor-
dinates. If the force exceeds 5.00 N, according to the specifications for this
particular bungee cord, we have no assurance that the function of displace-
ment versus force will remain linear. In the extreme, if the magnitude of the
stretching force Fis great enough, the cord will snap, and the displacement s
will skyrocket to indeterminate values.

Length of cord
in meters

20 T

1.8 T

0 1 2 3 4 5
Applied force in newtons

Fig. 10-3. Illustration for Problem 10-3. The function
is linear within the range of forces shown here.
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The Liquid Phase

In the liquid state or phase, a substance has two properties that distinguish
it from the solid phase. First, a liquid changes shape so that it conforms to
the inside boundaries of any container in which it is placed. Second, a lig-
uid placed in an open container (such as a jar or bucket) flows to the bot-
tom of the container and develops a defined, flat surface. At least this is the
way a sample of liquid behaves in an environment where there is gravity.

DIFFUSION OF LIQUIDS

Imagine a jar on board a space ship in which the environment is weightless
(there is no acceleration force). Suppose that the jar is filled with liquid, and
then another liquid that does not react chemically with the first liquid is intro-
duced into the jar. Gradually, the two liquids blend together until the mixture
is uniform throughout the jar. This blending process is called diffusion.

In a liquid, diffusion takes place rather slowly; some liquids undergo the
process faster than others. Alcohol diffuses into water at room temperature
much more quickly than heavy motor oil into light motor oil. Eventually,
however, when any two liquids are mixed (as long as they don’t react chem-
ically, as do an acid and a base), the mixture will become uniform through-
out any container of finite size. This happens without the need for shaking
the container because the molecules of a liquid are always in motion, and
this motion literally causes them to push and jostle each other until they
become uniformly mixed.

If the same experiment is conducted in a bucket on Earth where there is
acceleration force produced by gravity, diffusion will occur, but “heavier” lig-
uids will sink toward the bottom and “lighter” liquids will rise toward the sur-
face. Alcohol, for example, will float on water. However, the “surface”
between the alcohol and water will not be sharply defined, as is the surface
between the water and the air. The motion of the molecules constantly tries to
mix the two liquids. However, gravitation prevents the mixture from becom-
ing uniform throughout the bucket unless the two liquids are of exactly the
same density. We’ll talk about the meaning of density for liquids shortly.

VISCOSITY OF LIQUIDS

Some liquids are “runnier” than others. You know there is a difference at
room temperature between, say, water and thick molasses. If you fill a glass
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with water and another glass with an equal amount of molasses and then pour
the contents of both glasses into the sink, the glass containing the water will
empty much faster. The molasses is said to have higher viscosity than the
water at room temperature. On an extremely hot day, the difference is less
obvious than it is on a cold day, unless, of course, you have air conditioning
that keeps the air in your house at the same temperature all the time.

Some liquids are far more viscous even than thick molasses. An example
of a liquid with extremely high viscosity is hot tar as it is poured to make the
surface of a new highway. Another example is warm petroleum jelly. These
substances meet the criteria as defined above to qualify as liquids, but they
are thick indeed. As the temperature goes down, these substances become
less and less liquid-like and more solid-like. In fact, it’s impossible to draw
an exact line between the liquid and the solid phases for either of these two
substances. They aren’t like water; they don’t freeze into ice and change state
in an obvious way. As hot tar cools, where do we draw the line? How can we
say, “Now, this stuff is liquid,” and then 1 second later say, “Now, this stuff
is solid,” and be sure of the exact point of transition?

LIQUID OR SOLID?

There is not always a defined answer to the question, “Is this substance a
solid or a liquid?” It can depend on the observer’s point of reference. Some
substances can be considered solid in the short-term time sense but liquid
in the long-term sense. An example is the mantle of the Earth, the layer of
rock between the crust and the core. In a long-term time sense, pieces of
the crust, known as tectonic plates, float around on top of the mantle like
scum on the surface of a hot vat of liquid. This is manifested as continen-
tal drift and is apparent when the Earth is evaluated over periods of millions
of years. From one moment (as we perceive it) to the next, however, and
even from hour to hour or from day to day, the crust seems rigidly fixed on
the mantle. The mantle behaves like a solid in the short-term sense but like
a liquid in the long-term sense.

Imagine that we could turn ourselves into creatures whose life spans
were measured in trillions (units of 10'%) of years so that 1 million years
seemed to pass like a moment. Then, from our point of view, Earth’s man-
tle would behave like a liquid with low viscosity, just as water seems to us
in our actual state of time awareness. If we could become creatures whose
entire lives lasted only a tiny fraction of a second, then liquid water would
seem to take eons to get out of a glass tipped on its side, and we would con-
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clude that this substance was solid, or a else a liquid with extremely high
viscosity.

The way we define the state of a substance can depend on the tempera-
ture, and it also can depend on the time frame over which the substance is
observed.

DENSITY OF LIQUIDS

The density of a liquid is defined in three ways: mass density, weight den-
sity, and particle density. The difference between these quantities might
seem theoretically subtle, but in practical situations, the difference
becomes apparent.

Mass density is defined in terms of the number of kilograms per meter
cubed (kg/m3) in a sample of liquid. Weight density is defined in newtons
per meter cubed (N/m’) and is equal to the mass density multiplied by the
acceleration in meters per second squared (m/s”) to which the sample is
subjected. Particle density is defined as the number of moles of atoms per
meter cubed (mol/m3), where 1 mol = 6.02 X 107,

Let d,, be the mass density of a liquid sample (in kilograms per meter
cubed), let d,, be the weight density (in newtons per meter cubed), and
let d, be the particle density (in moles per meter cubed). Let m represent
the mass of the sample (in kilograms), let V represent the volume of the
sample (in meters cubed), and let N represent the number of moles of
atoms in the sample. Let a be the acceleration (in meters per second
squared) to which the sample is subjected. Then the following equations
hold:

d, =mlV
d, = malV
d,= NIV

Alternative definitions for mass density, weight density, and particle den-
sity use the liter; which is equal to a thousand centimeters cubed (1000 cm’)
or one-thousandth of a meter cubed (0.001 m3), as the standard unit of vol-
ume. Once in awhile you’ll see the centimeter cubed (cm3), also known as
the milliliter because it is equal to 0.001 liter, used as the standard unit of
volume.

These are simplified definitions because they assume that the density of
the liquid is uniform throughout the sample.
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PROBLEM 10-4 3
A sample of liquid measures 0.275 m". Its mass is 300 kg. What is its mass
density in kilograms per meter cubed?

SOLUTION 10-4

This is straightforward because the input quantities are already given in
Sl. There is no need for us to convert from grams to kilograms, from milliliters
to meters cubed, or anything like that. We can simply divide the mass by the
volume:

d. = m/V
300 kg/0.275 m”

1090 kg/m®

We’'re entitled to go to three significant figures here because our input num-
bers are both given to three significant figures.

PROBLEM 10-5 5
Given that the acceleration of gravity at the Earth’s surface is 9.81 m/s”, what
is the weight density of the sample of liquid described in Problem 10-4?

SOLUTION 10-5 5
All we need to do in this case is multiply our mass density answer by 9.81 m/s".
This gives us

d,, = 1090 kg/m® X 9.81 m/s”
= 10,700 N/m" = 1.07 X 10" N/m"

Note the difference here between the nonitalicized uppercase N, which rep-
resents newtons, and the italicized uppercase N, which represents the num-
ber of moles of atoms in a sample.

MEASURING LIQUID VOLUME

The volume of a liquid sample is usually measured by means of a test tube
or flask marked off in milliliters or liters. However, there’s another way to
measure the volume of a liquid sample, provided we know its chemical
composition and the weight density of the substance in question. This is to
weigh the sample of liquid and then divide the weight by the weight density.
We must, of course, pay careful attention to the units. In particular, the
weight must be expressed in newtons, which is equal to the mass in kilo-
grams times the acceleration of gravity (9.81 m/s’).

Let’s do a mathematical exercise to show why we can measure volume
in this way. Let d,, be the known weight density of a huge sample of liquid
too large for its volume to be measured using a flask or test tube. Suppose



Basic States of Matter

that this substance has a weight of w, in newtons. If V is the volume in
meters cubed, we know from the preceding formula that

d, = wlV

because w = ma, where a is the acceleration of gravity. If we divide both
sides of this equation by w, we get

dyw =11V

Then we can invert both sides of this equation and exchange the left-hand
and the right-hand sides to obtain

V =wid,

All this is based on the assumption that V, w, and d,, are all nonzero quan-
tities. This is always true in the real world; all materials occupy at least
some volume, have at least some weight because of gravitation, and have
some density because there is some “stuff” in a finite amount of physical
space.

PRESSURE IN LIQUIDS

Have you read or been told that liquid water can’t be compressed? In a
simplistic sense, this is true, but it doesn’t mean liquid water never exerts
pressure. Liquids can and do exert pressure, as anyone who has been in a
flood or a hurricane or a submarine will tell you. You can experience
“water pressure” for yourself by diving down several feet in a swimming
pool and noting the sensation the water produces as it presses against
your eardrums.

In a fluid, the pressure, which is defined in terms of force per unit area,
is directly proportional to the depth. Pressure is also directly propor-
tional to the weight density of the liquid. Let d,, be the weight density of
a liquid (in newtons per meter cubed), and let s be the depth below the
surface (in meters). Then the pressure P (in newtons per meter squared)
is given by

P=d,s

If we are given the mass density d,, (in kilograms per meter cubed) rather
than the weight density, the formula becomes

P =981d,s
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PROBLEM 10-6 3

Liquid water generally has a mass density of 1000 kg/m”. How much force is
exerted on the outer surface of a cube measuring 10.000 cm on an edge that
is submerged 1.00 m below the surface of a body of water?

SOLUTION 10-6

First, figure out the total surface area of the cube. It measures 10.000 cm, or
0.10000 m, on an edge, so the surface area of one face is 0.10000 m X
0.10000 m = 0.010000 m2. There are six faces on a cube, so the total sur-
face area of the object is 0.010000 m? X 6.0000 = 0.060000 m?. (Don'’t be
irritated by the “extra” zeroes here. They are important. They indicate that the
length of the edge of the cube has been specified to five significant figures.)

Next, figure out the weight density of water (in newtons per meter cubed).
This is 9.81 times the mass density, or 9,810 N/m?. This is best stated as 9.81
x 10% N/m® because we are given the acceleration of gravity to only three sig-
nificant figures, and scientific notation makes this fact clear. From this point
on let’s revert to power-of-10 notation so that we don’t fall into the trap of acci-
dentally claiming more accuracy than that to which we’re entitled.

The cube is at a depth of 1.00 m, so the water pressure at that depth is
9.81 x 103 N/m® x 1.00 m = 9.81 x 103 N/m2. The force F (in newtons) on
the cube is therefore equal to this number multiplied by the surface area of
the cube:

F =981 X 10° N/m> X 6.00000 X 10 > m"

=589 X 10" N =58 N

PASCAL'S LAW FOR INCOMPRESSIBLE LIQUIDS

Imagine a watertight, rigid container. Suppose that there are two pipes of
unequal diameters running upward out of this container. Imagine that you
fill the container with an incompressible liquid such as water so that the
container is completely full and the water rises partway up into the pipes.
Suppose that you place pistons in the pipes so that they make perfect
water seals, and then you leave the pistons to rest on the water surface
(Fig. 10-4).

Because the pipes have unequal diameters, the surface areas of the pistons
are different. One of the pistons has area A, (in meters squared), and the other
has area A,. Suppose that you push downward on piston number 1 (the one
whose area is A;) with a force F; (in newtons). How much upward force F),
is produced at piston number 2 (the one whose area is A,)? Pascal’s law pro-
vides the answer: The forces are directly proportional to the areas of the pis-
ton faces in terms of their contact with the liquid. In the example shown by
Fig. 10-4, piston number 2 is smaller than piston number 1, so the force F, is
proportionately less than the force F;. Mathematically, the following equa-
tions both hold:
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Fig. 10-4. Pascal’s law for confined, incompressible liquids.
The forces are directly proportional to the areas of the pistons.

F\/F, = A//A,
AF, = A)F,
When using either of these equations, we must be consistent with units

throughout the calculations. In addition, the top equation is meaningful
only as long as the force exerted is nonzero.

PROBLEM 10-7
Suppose that the areas of the pistons shown in Fig. 10-4 are A; = 12.00 cm’

and A, = 15.00 cm?2. (This does not seem to agree with the illustration, where



(258 Classical Physics

piston number 2 looks smaller than piston number 1, but forget about that
while we solve this problem.) If you press down on piston number 1 with a
force of 10.00 N, how much upward force will result at piston number 2?

SOLUTION 10-7

At first, you might think that we have to convert the areas of the pistons to
meters squared in order to solve this problem. In this case, however, it is suf-
ficient to find the ratio of the areas of the pistons because both areas are
given to us in the same units:

AJA, = 12.00 em’/15.00 em”
= 0.8000

Thus we know that F,/F, = 0.8000. We are given F; = 10.00 N, so it is easy
to solve for Fy:

10.00/F, = 0.8000
1/F, = 0.08000
F, = 1/0.08000 = 12.50 N

We are entitled to four significant figures throughout this calculation because
all the input data were provided to this degree of precision.

The Gaseous Phase

The gaseous phase of matter is similar to the liquid phase insofar as a gas
will conform to the boundaries of a container or enclosure. However, a gas
is much less affected by gravity than a liquid. If you fill up a bottle with a
gas, there is no discernible surface to the gas. Another difference between
liquids and gases is the fact that gases generally are compressible.

GAS DENSITY

The density of a gas can be defined in three ways, exactly after the fashion
of liquids. Mass density is defined in terms of the number of kilograms per
meter cubed (kg/m3) that a sample of gas has. The weight density is defined
in newtons per meter cubed (N/m’) and is equal to the mass density multi-
plied by the acceleration in meters per second squared (m/s”) to which the
sample is subjected. The particle density is defined as the number of moles
of atoms per meter cubed (mol/m’) in a parcel or sample of gas, where
1 mol = 6.02 X 10”.
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DIFFUSION IN SMALL CONTAINERS

Imagine a rigid enclosure, such as a glass jar, from which all the air has
been pumped. Suppose that this jar is placed somewhere out in space, far
away from the gravitational effects of stars and planets and where space
itself is a near vacuum (compared with conditions on Earth anyhow).
Suppose that the temperature is the same as that in a typical household.
Now suppose that a certain amount of elemental gas is pumped into the jar.
The gas distributes itself quickly throughout the interior of the jar.

Now suppose that another gas that does not react chemically with the
first gas is introduced into the chamber to mix with the first gas. The dif-
fusion process occurs rapidly, so the mixture is uniform throughout the
enclosure after a short time. It happens so fast because the atoms in a gas
move around furiously, often colliding with each other, and their motion
is so energetic that they spread out inside any container of reasonable size
(Fig. 10-5a).

What would happen if the same experiment were performed in the pres-
ence of a gravitational field? As you can guess, the gases would still mix
uniformly inside the jar. This happens with all gases in containers of rea-
sonable size.

Planetary atmospheres, such as that of our own Earth, consist of mix-
tures of various gases. In the case of our planet, approximately 78 percent
of the gas in the atmosphere at the surface is nitrogen, 21 percent is oxy-
gen, and 1 percent is made up of many other gases, including argon, car-
bon dioxide, carbon monoxide, hydrogen, helium, ozone (oxygen
molecules with three atoms rather than the usual two), and tiny quantities
of some gases that would be poisonous in high concentrations, such as
chlorine and methane. These gases blend uniformly in containers of rea-
sonable size, even though some of them have atoms that are far more mas-
sive than others. Diffusion, again, is responsible.

GASES NEAR A PLANET

Now imagine the gaseous shroud that surrounds a reasonably large planet,
such as our own Earth. Gravitation attracts some gas from the surrounding
space. Other gases are ejected from the planet’s interior during volcanic
activity. Still other gases are produced by the biologic activities of plants
and animals, if the planet harbors life. In the case of Earth, some gases are
produced by industrial activity and by the combustion of fossil fuels.
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Fig. 10-5. () Distribution of gas inside a container. (b) Distribution of gas around
a planet with an atmosphere. (c) Distribution of gas in a star as it is forming.
Darkest shading indicates highest concentration.

All the gases in the Earth’s atmosphere tend to diffuse, but because there
is an essentially unlimited amount of “outer space” and only a finite amount
of gas, and because the gravitational pull of the Earth is greater near the sur-
face than far out in space, the diffusion takes place in a different way than
inside a small container. The greatest concentration of gas molecules (parti-
cle density) occurs near the surface, and it decreases with increasing altitude
(see Fig. 10-5b). The same is true of the number of kilograms per meter
cubed of the atmosphere, that is, the mass density of the gas.
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On the large scale of the Earth’s atmosphere, yet another effect takes
place. For a given number of atoms or molecules per meter cubed, some
gases are more massive than others. Hydrogen is the least massive; helium
is light too. Oxygen is more massive, and carbon dioxide is more massive
still. The most massive gases tend to sink toward the surface, whereas the
least massive gases rise up high, and some of their atoms escape into outer
space or are not captured permanently by the Earth’s gravitation.

There are no distinct boundaries, or layers, from one type of gas to another
in the atmosphere. Instead, the transitions are gradual and vague. This is
good, because if the gases of the atmosphere were stratified in a defined way,
we would have no oxygen down here on the surface. Instead, we’d be smoth-
ered in some noxious gas such as carbon dioxide or sulfur dioxide.

GASES IN OUTER SPACE

Outer space was once believed to be a perfect vacuum. However, this is not
the case. There is plenty of stuff out there, and much of it is hydrogen and
helium gas. (There are also trace amounts of heavier gases and some solid
rocks and ice chunks as well.) All the atoms in outer space interact gravi-
tationally with all the others. This might be hard to imagine at first, but if
you think about it, there’s no escaping it. Even a single atom of hydrogen
exerts a gravitational pull on another atom 1 million km away.

The motion of atoms in outer space is almost random but not quite. The
slightest perturbation in the randomness of the motion gives gravitation a
chance to cause the gas to clump into huge clouds. Once this process
begins, it can continue until a globe of gas forms in which the central par-
ticle density is significant (see Fig. 10-5¢). As gravitation continues to pull
the atoms in toward the center, the mutual attraction among the atoms there
becomes greater and greater. If the gas cloud has some spin, it flattens into
an oblate spherical shape and eventually into a disk with a bulge at the cen-
ter. A vicious circle ensues, and the density in the central region skyrock-
ets. The gas pressure in the center rises, and this causes it to heat up.
Ultimately, it gets so hot that nuclear fusion begins, and a star is born.
Similar events among the atoms of the gas on a smaller scale can result in
the formation of asteroids, planets, and planetary moons.

GAS PRESSURE

Unlike most liquids, gases can be compressed. This is why it is possible to
fill up hundreds of balloons with a single, small tank of helium gas and why
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it is possible for a scuba diver to breathe for a long time from a single small
tank of air.

Imagine a container whose volume (in meters cubed) is equal to V.
Suppose that there are N moles of atoms of a particular gas inside this con-
tainer, which is surrounded by a perfect vacuum. We can say certain things
about the pressure P, in newtons per meter squared, that the gas exerts out-
ward on the walls of the container. First, P is proportional to N, provided
that V is held constant. Second, if V increases while N remains constant, P
will decrease. These things are apparent intuitively.

There is another important factor—temperature—involved when it
comes to gases under pressure when they expand and contract. The involve-
ment of temperature 7, generally measured in degrees above absolute zero
(the absence of all heat), is significant and inevitable in gases. When a par-
cel of gas is compressed, it heats up; when it is decompressed, it cools off.
Heating up a parcel of gas will increase the pressure, if all other factors are
held constant, and cooling it off will reduce the pressure. The behavior of
matter, especially liquids and gases, under conditions of varying tempera-
ture and pressure is a little complicated, so the entire next chapter is devoted
to this subject.

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. Suppose that a sample of gas has 5.55 X 10" atoms in 1 cubic centimeter.
What is the particle density?
(a) 922 mol/m’
(b) 9.22 mol/m’
() 1.08 mol/m’
(d) 33.4 mol/m’

2. Suppose that a rubber band has a spring constant of 0.150 m/N for stretching
forces ranging from O to 10 N. If the band measures 1.00 m when 3.00 N of
stretching force is applied, how long with the band be when 5.00 N of stretch-
ing force is applied?
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(a) 1.30 m
(b) 1.67 m
(c) 0.66 m
(d) It cannot be determined from this information.

. Refer to Fig. 10-4. Suppose that the areas of the pistons are A, = 0.0600 m’
and A, = 0.0300 m’. If you press down on piston number 1 with a force of
5.00 N, how much upward force will result at piston number 2?

(2) 300N

(b) 10.0N

(¢c)3.00N

(d)2.50 N

. The Mohs scale is based on a solid’s ability or tendency to
(a) boil when heated.

(b) fracture under stress.

(c) be stretched or compressed.

(d) scratch or be scratched.

. A solid object with a specific gravity of less than 1 will
(a) float on liquid water.

(b) mix evenly and stay mixed with liquid water.

(c) sink in liquid water.

(d) dissolve in liquid water.

. For a perfectly elastic substance,

(a) the extent of stretching is inversely proportional to the applied force.

(b) the extent of stretching is independent of the applied force.

(c) the extent of stretching is directly proportional to the applied force.

(d) the amount of force necessary to break the object in half is inversely pro-
portional to the length of the object.

. A substance with high malleability

(a) can be pounded into a thin, flat layer.

(b) is extremely brittle.

(c) readily fills any container into which it is poured.
(d) diffuses easily into other liquids.

. Diffusion of gases at room temperature occurs because

(a) there are not many atoms per unit volume.

(b) the atoms or molecules move rapidly.

(c) gases always have high specific gravity.

(d) gases dissolve easily in one another.

. Suppose that a sample of substance has a mass density of 8.6 X 10° kg/m3 on
Earth. If this sample is taken to Mars, where gravity is only about 37 percent
as strong as it is on Earth, the mass density will be
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10.

(a) 3.2 kg/m’.

(b) 8.6 kg/m”.

(c) 23 kg/m’.

(d) Impossible to calculate based on the information given.

A vat contains 100.00 m’ of liquid, and the liquid masses of 2.788 X 10° kg.
What is the mass density of the liquid?

(a) 2.788 X 10’ kg/m’

(b) 2,788 g/cm’

(c) 2,788 kg/m’

(d) It is impossible to answer this based on the data given.



Temperature,
Pressure, and
Changes of State

When a confined sample of gas gets hotter, its pressure increases. The
converse of this is also true: When a gas is put under increasing pressure,
it gets hotter. However, what do we mean when we talk about heat and
temperature? What effects do heat and temperature have on matter? In this
chapter we will find out. We’ll also see how matter can change state with
changes in temperature or pressure.

What Is Heat?

Heat is a special kind of energy transfer that can take place from one
material object, place, or region to another. For example, if you place a
kettle of water on a hot stove, heat is transferred from the burner to the
water. This is conductive heat, also called conduction (Fig. 11-1a). When
an infrared lamp, sometimes called a heat lamp, shines on your sore shoulder,
energy is transferred to your skin surface from the filament of the lamp;
this is radiative heat, also called radiation (see Fig. 11-1b). When a blower-
type electric heater warms up a room, air passes through the heating elements
and is blown by a fan into the room, where the heated air rises and mixes
with the rest of the air in the room. This is convective heat, also called
convection (see Fig. 11-1c¢).

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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Fig. 11-1. Examples of energy transfer, in the form of heat,
by conduction (a), radiation (b), and convection (c).

Heat is not quite the same thing as energy, although the units of heat and
energy are defined in the same physical dimensions. Heat is the transfer of
energy that occurs when conduction, radiation, and/or convection take
place. Sometimes the energy transfer takes place in only one of these three
modes, but sometimes it occurs in two or all three.

THE CALORIE

The unit of heat used by physicists is the calorie. You’ve heard and read this
word many times (probably too often, but that’s a subject for another book).
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The calorie that scientists use is a much smaller unit than the calorie used
by nutritionists—only 1/1,000 as large—and the scientific use of the term
usually refers to inanimate things, whereas the nutritional term involves
biologic processes.

The calorie (cal) in which we, as physicists, are interested is the amount
of energy transfer that raises or lowers the temperature of exactly one
gram (1 g) of pure liquid water by exactly one degree Celsius (1°C). The
kilocalorie (kcal), equivalent to the nutritionist’s calorie, is the amount of
energy transfer that will raise or lower the temperature of 1 kg, or 1,000 g,
of pure liquid water by 1°C. This holds true only as long as the water is
liquid during the entire process. If any of the water freezes, thaws, boils,
or condenses, this definition falls apart. At standard atmospheric pressure
at Earth’s surface, in general, this definition holds for temperatures
between approximately 0°C (the freezing point of water) and 100°C (the
boiling point).

SPECIFIC HEAT

Pure liquid water requires 1 calorie per gram (1 cal/g) to warm it up or cool
it down by 1°C (provided it is not at the melting/freezing temperature or the
vaporization/condensation temperature, as we shall shortly see.) However,
what about oil, alcohol, or salt water? What about solids such as steel or
wood? What about gases such as air? It is not so simple then. A certain,
fixed amount of heat energy will raise or lower the temperatures of fixed
masses of some substances more than others. Some matter takes more than
1 cal/g to get hotter or cooler by 1°C; some matter takes less. Pure liquid
water takes exactly 1 cal/g to warm up or cool down by 1°C simply because
this is the substance on which the definition of the calorie is based. It is one
of those things scientists call a convention.

Suppose that we have a sample of some mysterious liquid. Call it sub-
stance X. We measure out 1 gram (1.00 g), accurate to three significant
figures, of this liquid by pouring some of it into a test tube placed on a
laboratory balance. Then we transfer 1 calorie (1.00 cal) of energy to
substance X. Suppose that, as a result of this energy transfer, substance X
increases in temperature by 1.20°C? Obviously, substance X is not water
because it behaves differently from water when it receives a transfer of energy.
In order to raise the temperature of 1.00 g of this stuff by 1.00°C, it takes
somewhat less than 1.00 cal of heat. To be exact, at least insofar as we are
allowed by the rules of significant figures, it will take 1.00/1.20 = 0.833 cal
to raise the temperature of this material by 1.00°C.
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Now suppose that we have a sample of another material, this time a
solid. Let’s call it substance Y. We carve a chunk of it down until we have
a piece that masses 1.0000 g, accurate to five significant figures. Again, we
can use our trusty laboratory balance for this purpose. We transfer 1.0000 cal
of energy to substance Y. Suppose that the temperature of this solid goes up
by 0.80000°C? This material accepts heat energy in a manner different from
either liquid water or substance X. It takes a little more than 1.0000 cal of
heat to raise the temperature of 1.0000 g of this material by 1.0000°C.
Calculating to the allowed number of significant figures, we can determine
that it takes 1.0000/0.80000 = 1.2500 cal to raise the temperature of this
material by 1.0000°C.

We’re onto something here: a special property of matter called the
specific heat, defined in units of calories per gram per degree Celsius
(cal/g/°C). Let’s say that it takes c calories of heat to raise the temperature
of exactly 1 gram of a substance by exactly 1°C. For water, we already
know that ¢ = 1 cal/g/°C, to however many significant figures we want. For
substance X, ¢ = 0.833 cal/g/°C (to three significant figures), and for sub-
stance Y, ¢ = 1.2500 cal/g/°C (to five significant figures).

Alternatively, ¢ can be expressed in kilocalories per kilogram per degree
Celsius (kcal/kg/°C), and the value for any given substance will be the same.
Thus, for water, ¢ = 1 kcal/kg/°C, to however many significant figures we
want. For substance X, ¢ = 0.833 kcal/kg/°C (to three significant figures), and
for substance Y, ¢ = 1.2500 kcal/kg/°C (to five significant figures).

THE BRITISH THERMAL UNIT (BTU)

In some applications, a completely different unit of heat is used: the British
thermal unit (Btu). You’ve heard this unit mentioned in advertisements for
furnaces and air conditioners. If someone talks about Btus alone in regard
to the heating or cooling capacity of a furnace or air conditioner, this is an
improper use of the term. They really mean to quote the rate of energy
transfer in Btus per hour, not the total amount of energy transfer in Btus.
The Btu is defined as the amount of heat that will raise or lower the
temperature of exactly one pound (1 Ib) of pure liquid water by one degree
Fahrenheit (1°F). Does something seem flawed about this definition? If you’re
uneasy about it, you have a good reason. What is a pound? It depends where
you are. How much water weighs 1 1b? On the Earth’s surface, it’s approxi-
mately 0.454 kg or 454 g. On Mars, however, it takes about 1.23 kg of liquid
water to weigh 1 1b. In a weightless environment, such as on board a space
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vessel orbiting the Earth or coasting through deep space, the definition of Btu
is meaningless because there is no such thing as a pound at all.

Despite these flaws, the Btu is still used once in awhile, so you should
be acquainted with it. Specific heat is occasionally specified in Btus per
pound per degree Fahrenheit (Btu/lb/°F). In general, this is not the same
number, for any given substance, as the specific heat in cal/g/°C.

PROBLEM 11-1

Suppose that you have 3.00 g of a certain substance. You transfer 5.0000 cal
of energy to it, and the temperature goes up uniformly throughout the sample
by 1.1234°C. It does not boil, condense, freeze, or thaw during this process.
What is the specific heat of this stuff?

SOLUTION 11-1

Let’s find out how much energy is accepted by 1.00 g of the matter in question.
We have 3.00 g of the material, and it gets 5.0000 cal, so we can conclude
that each gram gets % of this 5.0000 cal, or 1.6667 cal.

We’re told that the temperature rises uniformly throughout the sample.
This is to say, it doesn’t heat up more in some places than in other places. It
gets hotter to exactly the same extent everywhere. Therefore, 1.00 g of this
stuff goes up in temperature by 1.1234°C when 1.6667 cal of energy is trans-
ferred to it. How much heat is required to raise the temperature by 1.0000°C?
This is the number ¢ we seek, the specific heat. To get ¢, we must divide
1.6667 cal/g by 1.1234°C. This gives us ¢ = 1.4836 cal/g/°C. Because we are
given the mass of the sample to only three significant figures, we must round
this off to 1.48 cal/g/°C.

Temperature

Now that we’ve defined heat, what do we mean by the term temperature?
You have an intuitive idea of this; the temperature is generally higher in the
summer than in the winter, for example. Temperature is a quantitative
expression of the average kinetic energy contained in matter. This is the
most familiar definition. In general, for any given substance, the higher the
temperature, the faster the atoms and molecules dance around.

Temperature can be expressed in another way. For example, to measure
the temperatures of distant stars, planets, and nebulae in outer space,
astronomers look at the way they emit electromagnetic (EM) energy in the
form of visible light, infrared, ultraviolet, and even radio waves and x-rays.
By examining the intensity of this radiation as a function of the wavelength,
astronomers come up with a value for the spectral temperature of the distant
matter or object.
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When energy is allowed to flow from one substance into another in the
form of heat, the temperatures try to equalize. Ultimately, if the energy-
transfer process is allowed to continue for a long enough time, the temperatures
of the two objects will become the same, unless one of the substances is
driven away (for example, steam boiling off of a kettle of water). The kinetic
energy of everything in the entire universe is trying to level off to a state of
equilibrium. It won’t succeed in your lifetime or mine or even during the
lifetime of the Sun and solar system, but it will keep trying anyway, and
gradually it is succeeding. This process is known as heat entropy.

THE CELSIUS (OR CENTIGRADE) SCALE

Up to now, we’ve been talking rather loosely about temperature and usually
have expressed it in terms of the Celsius or centigrade scale (°C). This is
based on the behavior of water at the surface of the Earth under normal
atmospheric pressure and at sea level.

If you have a sample of ice that is extremely cold and you begin to warm
it up, it will eventually start to melt as it accepts heat from the environment.
The ice, and the liquid water produced as it melts, is assigned a temperature
value of 0°C by convention (Fig. 11-2a). As you continue to pump energy
into the chunk of ice, more and more of it will melt, and its temperature will
stay at 0°C. It won’t get any hotter because it is not yet all liquid and doesn’t
yet obey the rules for pure liquid water.

Once all the water has become liquid and as you keep pumping energy
into it, its temperature will start to increase (see Fig. 11-2b). For awhile,
the water will remain liquid and will get warmer and warmer, obeying the
1 cal/g/°C rule. Eventually, however, a point will be reached where the water
starts to boil, and some of it changes to the gaseous state. The liquid
water temperature, and the water vapor that comes immediately off of it, is
then assigned a value of 100°C by convention (see Fig. 11-2¢).

Now there are two definitive points—the freezing point of water and
the boiling point—at which there exist two specific numbers for temper-
ature. We can define a scheme to express temperature based on these two
points. This is the Celsius temperature scale, named after the scientist
who supposedly first came up with the idea. Sometimes it is called the
centigrade temperature scale because one degree of temperature in this
scale is equal to 1/100 of the difference between the melting temperature
of pure water at sea level and the boiling temperature of pure water at sea
level. The prefix multiplier centi- means “1/100,” so centigrade literally
means “graduations of 1/100.”
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Fig. 11-2.  Ice melting into liquid water (a), liquid water warming
up without boiling (b), and liquid water starting to boil (c).

THE KELVIN SCALE

Of course, it is possible to freeze water and keep cooling it down or boil it
all away into vapor and then keep heating it up. Temperatures can plunge
far below 0°C and can rise far above 100°C. Are there limits to how low or
how high the temperature can get?

Interestingly, there is an absolute limit to how low the temperature in
degrees Celsius can become, but there is no limit on the upper end of the
scale. We might take extraordinary efforts to cool a chunk of ice down to
see how cold we can make it, but we can never chill it down to a temperature
any lower than approximately 273 degrees Celsius below zero (—273°C).
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This is known as absolute zero. An object at absolute zero can’t transfer
energy to anything else because it possesses no energy to transfer. There is
believed to be no such object in our universe, although some atoms in the
vast reaches of intergalactic space come close.

Absolute zero is the basis for the Kelvin temperature scale (K). A
temperature of —273.15°C is equal to 0 K. The size of the Kelvin degree
is the same as the size of the Celsius degree, so 0°C = 273.15 K, and +
100°C = 373.15 K. Note that the degree symbol is not used with K.

On the high end, it is possible to keep heating matter up indefinitely.
Temperatures in the cores of stars rise into the millions of degrees Kelvin. No
matter what the actual temperature, the difference between the Kelvin tem-
perature and the Celsius temperature is always 273.15 degrees.

Sometimes, Celsius and Kelvin figures can be considered equivalent.
When you hear someone say that a particular star’s core has a temperature
of 30 million K, it means the same thing as 30 million °C for the purposes of
most discussions because £273.15 is a negligible difference value relative
to 30 million.

THE RANKINE SCALE

The Kelvin scale isn’t the only one that exists for defining absolute temper-
ature, although it is by far the most commonly used. Another scale, called
the Rankine scale (°R), also assigns the value zero to the coldest possible
temperature. The difference is that the Rankine degree is exactly % as large
as the Kelvin degree. Conversely, the Kelvin degree is exactly %, or 1.8
times, the size of the Rankine degree.

A temperature of 50 K is the equivalent of 90°R; a temperature of 360°R
is the equivalent of 200 K. To convert any reading in °R to its equivalent in
K, multiply by %s. Conversely, to convert any reading in K to its equivalent
in °R, multiply by %5, or exactly 1.8.

The difference between the Kelvin and the Rankine scales is significant at
extreme readings. If you hear someone say that a star’s core has a temperature
of 30 million °R, they are talking about the equivalent of approximately 16.7
million K. However, you are not likely to hear anyone use Rankine numbers.

THE FAHRENHEIT SCALE

In much of the English-speaking world, and especially in the United States,
the Fahrenheit temperature scale (°F) is used by laypeople. A Fahrenheit
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degree is the same size as a Rankine degree. However, the scale is situated
differently. The melting temperature of pure water ice at sea level is
+32°F, and the boiling point of pure liquid water is +212°F. Thus, +32°F
corresponds to 0°C, and +212°F corresponds to +100°C. Absolute zero is
approximately —459.67°F.

The most common temperature conversions you are likely to perform
involve changing a Fahrenheit reading to Celsius, or vice versa. Formulas
have been developed for this purpose. Let F be the temperature in °F, and
let C be the temperature in °C. Then, if you need to convert from °F to °C,
use this formula:

F=18C+ 32
If you need to convert a reading from °C to °F, use this formula:
C = 5/(F — 32)

While the constants in these equations are expressed only to one or two sig-
nificant figures (1.8, /s, and 32), they can be considered mathematically
exact for calculation purposes.

Figure 11-3 is a nomograph you can use for approximate temperature
conversions in the range from —50°C to +150°C.

When you hear someone say that the temperature at the core of a star is
30 million °F, the Rankine reading is about the same, but the Celsius and
Kelvin readings are only about %/ as great.

PROBLEM 11-2
What is the Celsius equivalent of a temperature of 72°F?

SOLUTION 11-2
To solve this, simply use the preceding formula for converting Fahrenheit tem-
peratures to Celsius temperatures:

C = %(F —32)
Thus, in this case:
C =%(72 - 32)
=Yy X 40 = 22.22°C

We are justified in carrying this out to only two significant figures because this
is the extent of the accuracy of our input data. Thus we can conclude that the
Celsius equivalent is 22°C.

PROBLEM 11-3
What is the Kelvin equivalent of a temperature of 80.0°F?
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Fig. 11-3.  This nomograph can be used for approximate
conversions between temperatures in °F and °C.

SOLUTION 11-3
There are two ways to approach this problem. The first is to convert the
Fahrenheit reading to Rankine and then convert this figure to Kelvin. The sec-
ond is to convert the Fahrenheit reading to Celsius and then convert this fig-
ure to Kelvin. Let’s use the second method because the Rankine scale is
hardly ever used for anything.

Using the preceding formula to convert from °F to °C, we get

C = %(80.0 — 32)
= Y9 X 48.0 = 26.67°C

Let’'s not round our answer off yet because we have another calculation to
perform. Remember that the difference between readings in °C and K is
always equal to 273.15 degrees. The Kelvin figure is the greater of the two.
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Thus we must add 273.15 to our Celsius reading. If K represents the temper-
ature in K, then

K =C+ 273.15
= 26.67 + 273.15
= +299.82 K

Now we should round our answer off. Because we are given our input data
to three significant figures, we can say that the Kelvin temperature equiva-
lent is +300 K.

Some Effects of Temperature

Temperature can affect the volume of or the pressure exerted by a sample
of matter. You are familiar with the fact that most metals expand when they
are heated; some expand more than others.

TEMPERATURE, VOLUME, AND PRESSURE

A sample of gas confined to a rigid container will exert more and more
pressure on the walls of the container as the temperature goes up. If the
container is flexible, such as a balloon, the volume of the gas will increase.
Similarly, if you take a container with a certain amount of gas in it and sud-
denly make the container bigger without adding any more gas, the drop in
pressure will produce a decrease in temperature. If you have a rigid con-
tainer with gas in it and then some of the gas is allowed to escape (or is
pumped out), the drop in pressure will chill the container. This is why, for
example, a compressed-air canister gets cold when you use it to blow dust
out of your computer keyboard.

Liquids behave a little more strangely. The volume of the liquid water in
a kettle and the pressure it exerts on the kettle walls don’t change when the
temperature goes up and down unless the water freezes or boils. Some liquids,
however, unlike water, expand when they heat up. Mercury is an example.
This is how an old-fashioned thermometer works.

Solids, in general, expand when the temperature rises and contract when
the temperature falls. In many cases you don’t notice this expansion and
contraction. Does your desk look bigger when the room is 30°C than it
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does when the room is only 20°C? Of course not. But it is! You don’t see
the difference because it is microscopic. However, the bimetallic strip in
the thermostat, which controls the furnace or air conditioner, bends con-
siderably when one of its metals expands or contracts just a tiny bit more
than the other. If you hold such a strip near a hot flame, you actually can
watch it curl up or straighten out.

STANDARD TEMPERATURE AND PRESSURE (STP)

To set a reference for temperature and pressure against which measure-
ments can be made and experiments conducted, scientists have defined
standard temperature and pressure (STP). This is a more or less typical
state of affairs at sea level on the Earth’s surface when the air is dry.

The standard temperature is 0°C (32°F), which is the freezing point or
melting point of pure liquid water. Standard pressure is the air pressure that
will support a column of mercury 0.760 m (just a little less than 30 in) high.
This is the proverbial 14.7 pounds per inch squared (Ib/in%), which translates
to approximately 1.01 X 10° newtons per meter squared (N/m?).

Air is surprisingly massive. We don’t think of air as having significant
mass, but this is because we’re immersed in it. When you dive only a couple
of meters down in a swimming pool, you don’t feel a lot of pressure and
the water does not feel massive, but if you calculate the huge amount of
mass above you, it might scare you out of the water! The density of dry air
at STP is approximately 1.29 kg/m3. A parcel of air measuring 4.00 m high
by 4.00 m deep by 4.00 m wide, the size of a large bedroom, masses 82.6 kg.
In Earth’s gravitational field, that translates to 182 pounds, the weight of a
good-sized, full-grown man.

THERMAL EXPANSION AND CONTRACTION

Suppose that we have a sample of solid material that expands when the
temperature rises. This is the usual case, but some solids expand more per
degree Celsius than others. The extent to which the height, width, or depth
of a solid (its linear dimension) changes per degree Celsius is known as the
thermal coefficient of linear expansion.

For most materials, within a reasonable range of temperatures, the coeffi-
cient of linear expansion is constant. This means that if the temperature
changes by 2°C, the linear dimension will change twice as much as it would
if the temperature variation were only 1°C. However, there are limits to



Temperature, Pressure, Changes of State e ZfB»

this, of course. If you heat a metal up to a high enough temperature, it will
become soft and ultimately will melt or even burn or vaporize. If you cool
the mercury in a thermometer down enough, it will freeze. Then the simple
length-versus-temperature rule no longer applies.

In general, if s is the difference in linear dimension (in meters) produced
by a temperature change of T (in degrees Celsius) for an object whose linear
dimension (in meters) is d, then the thermal coefficient of linear expansion,
symbolized by the lowercase Greek letter alpha (o), is given by this equation:

a = s/(dT)

When the linear dimension increases, consider s to be positive; when it
decreases, consider s to be negative. Rising temperatures produce positive
values of T; falling temperatures produce negative values of T.

The coefficient of linear expansion is defined in meters per meter per
degree Celsius. The meters cancel out in this expression of units, so the
technical quantity is per degree Celsius, symbolized /°C.

PROBLEM 11-4

Imagine a metal rod 10.000 m long at 20.00°C. Suppose that this rod
expands to a length of 10.025 m at 25.00°C. What is the thermal coefficient
of linear expansion?

SOLUTION 11-4

This rod increases in length by 0.025 m for a temperature increase of 5.00°C.
Therefore, s = 0.025, d = 10, and T = 5.00. Plugging these numbers into the
preceding formula, we get

a = 0.025/(10 X 5.00)
= 0.00050/°C = 5.0 X 10_*°C

We are justified in going to only two significant figures here because that is
as accurate as our data are for the value of s.

PROBLEM 11-5

Suppose that o = 2.50 X 10~%/°C for a certain substance. Imagine a cube of
this substance whose volume V, is 8.000 m® at a temperature of 30.0°C.
What will be the volume V, of the cube if the temperature falls to 20.0°C?

SOLUTION 11-5
It is important to note the word linear in the definition of . This means that
the length of each edge of the cube of this substance will change according
to the thermal coefficient of linear expansion.

We can rearrange the preceding general formula for a so that it solves for
the change in linear dimension s as follows:

s = odT
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where T is the temperature change (in degrees Celsius) and d is the initial lin-
ear dimension (in meters). Because our object is a cube the initial length d of
each edge is 2.000 m (the cube root of 8.000, or 8. 000" 3) Because the tem-
perature falls, T = —10.0. Therefore,

s =250 % 10"* X (—=10.0) X 2.000
—2.50 X 107* X 2.000

= —5.00 X 10 °m = —0.00500 m

This means that the length of each side of the cube at 20°C will be 2. 000
— 0.00500 = 1. 995 m. The volume of the cube at 20.0°C is therefore 1.995°
= 7.940149875 m®. Because our input data are given to only three significant
figures, we must round this off to 7.94 m°.

Temperature and States of Matter

When matter is heated or cooled, it often does things other than simply
expanding or contracting, or exerting increased or decreased pressure.
Sometimes it undergoes a change of state. This happens when solid ice
melts into liquid water or when water boils into vapor, for example.

THAWING AND FREEZING

Consider our old friend, water. Imagine that it is late winter in a place such
as northern Wisconsin and that the temperature of the water ice on the lake
is exactly 0°C. The ice is not safe to skate on, as it was in the middle of the
winter, because the ice has become “soft.” It is more like slush than ice. It
is partly solid and partly liquid. Nevertheless, the temperature of this soft
ice is 0°C.

As the temperature continues to rise, the slush gets softer. It becomes
proportionately more liquid water and less solid ice. However, its tempera-
ture remains at 0°C. Eventually, all the ice melts into liquid. This can take
place with astonishing rapidity. You might leave for school one morning
and see the lake nearly “socked in” with slush and return in the evening to
find it almost entirely thawed. Now you can get the canoe out! But you
won’t want to go swimming. The liquid water will stay at 0°C until all the
ice is gone. Only then will the temperature begin to rise slowly.

Consider now what happens in the late autumn. The weather, and the
water, is growing colder. The water finally drops to 0°C. The surface begins
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to freeze. The temperature of this new ice is 0°C. Freezing takes place until
the whole lake surface is solid ice. The weather keeps growing colder (a lot
colder if you live in northern Wisconsin). Once the surface is entirely solid
ice, the temperature of the ice begins to fall below 0°C, although it remains
at 0°C at the boundary just beneath the surface where solid ice meets liquid
water. The layer of ice gets thicker. The ice near the surface can get much
colder than 0°C. How much colder depends on various factors, such as the
severity of the winter and the amount of snow that happens to fall on top of
the ice and insulate it against the bitter chill of the air.

The temperature of water does not follow exactly along with the air tem-
perature when heating or cooling takes place in the vicinity of 0°C. Instead,
the water temperature follows a curve something like that shown in Fig. 11-4.
In part g, the air temperature is getting warmer; in part b, it is getting colder.
The water “stalls” as it thaws or freezes. Other substances exhibit this same
property when they thaw or freeze.

HEAT OF FUSION

It takes a certain amount of energy to change a sample of solid matter to its
liquid state, assuming that the matter is of the sort that can exist in either of
these two states. (Water, glass, most rocks, and most metals fill this bill, but

Water temp Water temp
°C °C
+30 +30
+20 +20
Time +10 +10
_—>
H—+—t- B e i R e
-10 Time -10
-20 -20
-30 -30
(a) (b)

Fig. 11-4. Water as it thaws and freezes. (a) The environmental temperature
is getting warmer, and the ice is thawing. (b) The environmental temperature
is getting colder, and the liquid water is freezing.
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wood does not.) In the case of ice formed from pure water, it takes 80 cal to
convert 1 g ofice at 0°C to 1 g of pure liquid water at 0°C. This quantity varies
for different substances and is called the heat of fusion for the substance.

In the reverse scenario, if 1 g of pure liquid water at 0°C freezes completely
solid and becomes ice at 0°C, it gives up 80 cal of heat. The heat of fusion is
thus expressed in calories per gram (cal/g). It also can be expressed in kilo-
calories per kilogram (kcal/kg) and will yield exactly the same numbers as the
cal/g figures for all substances. When the substance is something other than
water, then the freezing/melting point of that substance must be substituted for
0°C in the discussion.

Heat of fusion is sometimes expressed in calories per mole (cal/mol)
rather than in calories per gram. However, unless it is specifically stated
that the units are intended to be expressed in calories per mole, you should
assume that they are expressed in calories per gram.

If the heat of fusion (in calories per gram) is symbolized 4, the heat
added or given up by a sample of matter (in calories) is s, and the mass of
the sample (in grams) is m, then the following formula holds:

hy = him

PROBLEM 11-6

Suppose that a certain substance melts and freezes at +400°C. Imagine a block
of this material whose mass is 1.535 kg, and it is entirely solid at +400°C. It
is subjected to heating, and it melts. Suppose that it takes 142,761 cal of
energy to melt the substance entirely into liquid at +400°C. What is the heat
of fusion for this material?

SOLUTION 11-6

First, we must be sure we have our units in agreement. We are given the
mass in kilograms; to convert it to grams, multiply by 1,000. Thus m = 1,535 g.
We are given that h = 142,761 cal. Therefore, we can use the preceding for-
mula directly:

he = 142,761/1535 = 93.00 cal/g

This is rounded off to four significant figures because this is the extent of the
accuracy of our input data.

BOILING AND CONDENSING

Let’s return to the stove, where a kettle of water is heating up. The temper-
ature of the water is exactly +100°C, but it has not yet begun to boil. As heat
is continually applied, boiling begins. The water becomes proportionately
more vapor and less liquid. However, the temperature remains at +100°C.
Eventually, all the liquid has boiled away, and only vapor is left. Imagine
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that we have captured all this vapor in an enclosure, and in the process of
the water’s boiling away, all the air has been driven out of the enclosure and
replaced by water vapor. The stove burner, an electric type, keeps on heating
the water even after all of it has boiled into vapor.

At the moment when the last of the liquid vanishes, the temperature of the
vapor is +100°C. Once all the liquid is gone, the vapor can become hotter
than +100°C. The ultimate extent to which the vapor can be heated depends
on how powerful the burner is and on how well insulated the enclosure is.

Consider now what happens if we take the enclosure, along with the kettle,
off the stove and put it into a refrigerator. The environment, and the
water vapor, begins to grow colder. The vapor temperature eventually
drops to +100°C. It begins to condense. The temperature of this liquid
water is +100°C. Condensation takes place until all the vapor has con-
densed. (But hardly any of it will condense back in the kettle. What a mess!)
We allow a bit of air into the chamber near the end of this experiment to
maintain a reasonable pressure inside. The chamber keeps growing colder;
once all the vapor has condensed, the temperature of the liquid begins to
fall below +100°C.

As is the case with melting and freezing, the temperature of water does
not follow exactly along with the air temperature when heating or cooling
takes place in the vicinity of +100°C. Instead, the water temperature follows
a curve something like that shown in Fig. 11-5. In part g, the air temperature
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Fig. 11-5. Water as it boils and condenses. (a) The environmental temperature
is getting warmer, and the liquid water is boiling. (b) The environmental
temperature is getting colder, and the water vapor is condensing.
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is getting warmer; in part b, it is getting colder. The water temperature
“stalls” as it boils or condenses. Other substances exhibit this same property
when they boil or condense.

HEAT OF VAPORIZATION

It takes a certain amount of energy to change a sample of liquid to its
gaseous state, assuming that the matter is of the sort that can exist in
either of these two states. In the case of water, it takes 540 cal to convert 1 g
of liquid at +100°C to 1 g of pure water vapor at +100°C. This quantity
varies for different substances and is called the heat of vaporization for
the substance.

In the reverse scenario, if 1 g of pure water vapor at +100°C condenses
completely and becomes liquid water at +100°C, it gives up 540 cal of
heat. The heat of vaporization is expressed in the same units as heat of
fusion, that is, in calories per gram (cal/g). It also can be expressed in kilo-
calories per kilogram (kcal/kg) and will yield exactly the same numbers as
the cal/g figures for all substances. When the substance is something other
than water, then the boiling/condensation point of that substance must be
substituted for +100°C.

Heat of vaporization, like heat of fusion, is sometimes expressed in calo-
ries per mole (cal/mol) rather than in cal/g. However, this is not the usual case.

If the heat of vaporization (in calories per gram) is symbolized #,, the
heat added or given up by a sample of matter (in calories) is 4, and the mass
of the sample (in grams) is m, then the following formula holds:

h, = him

This is the same as the formula for heat of fusion, except that %, has been
substituted for ;.

PROBLEM 11-7

Suppose that a certain substance boils and condenses at +500°C. Imagine
a beaker of this material whose mass is 67.5 g, and it is entirely liquid at
+500°C. It heat of vaporization is specified as 845 cal/g. How much heat, in
calories and in kilocalories, is required to completely boil away this liquid?

SOLUTION 11-7

Our units are already in agreement: grams for m and calories per gram for h,.
We must manipulate the preceding formula so that it expresses the heat h (in
calories) in terms of the other given quantities. This can be done by multiply-
ing both sides by m, giving us this formula:

h = hym
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Now it is simply a matter of plugging in the numbers:
h =845 X 67.5
=570 X 10" cal = 57.0 keal

This has been rounded off to three significant figures, the extent of the accuracy
of our input data.

Refer to the text in this chapter if necessary. A good score is eight correct. Answers
are in the back of the book.

1. A decrease in temperature can cause a gas to
(a) boil away into vapor.
(b) turn into a liquid.
(c) exert increased pressure in a rigid container.
(d) do nothing; it will remain a gas no matter what.

2. Suppose that there is a vessel containing 1.000 kg of liquid. It has a specific heat
of 1.355 cal/g/°C. Suppose that it is exactly at its vaporization temperature of
+235.0°C, and 5,420 cal of energy is transferred to the liquid in the form of heat.
The temperature of the liquid in the vessel after the application of this heat will be
(a) +235.0°C.

(b) +239.0°C.
(c) +231.0°C.
(d) impossible to calculate from this information.

3. The British thermal unit
(a) expresses rate of energy transfer, not total energy transfer.
(b) is the unit of temperature preferred by scientists in England.
(c) is equal to 1,000 cal.
(d) is based on weight and therefore varies in size depending on gravitation.

4. A rod of metal is 4.5653100 m long at a temperature of 36.000°C. The tem-
perature is lowered until the rod shrinks to 4.5643000 m. The temperature is
measured as 35.552°C. What, approximately, is the thermal coefficient of linear
expansion for this metal?

(a) 0.00225/°C

(b) 4.94 X 10~*/°C

(©)2.21 X 107*°C

(d) It cannot be determined from the information given here.
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. Suppose that a substance boils and condenses at +217°C. Imagine a beaker of

this material whose mass is 135 g, and it is entirely liquid at +217°C. Its heat
of vaporization is 451 cal/g. How much heat, in kilocalories, is required to
completely boil away this liquid?

(2) 6.089 x 10*

(b) 3.341

(c) 60.89

(d) 0.2993

. The heat of fusion of a substance refers to

(a) the temperature necessary to produce a nuclear fusion reaction.

(b) the heat required to liquefy a vapor at its condensation temperature.
(c) the heat required to liquefy a solid at its melting temperature.

(d) the temperature at which a liquid becomes a gas.

. The coldest possible temperature is

(a) O°R.
(b) 0°C.
(c) O°F.
(d) meaningless; there is no coldest possible temperature.

. You develop a severe cough and feel weak, dizzy, and exhausted. It is mid-

winter, and the temperature is below 0°F outside. You take your temperature

with a thermometer that registers 40.2°C. You don’t recall the formulas for

converting Celsius to Fahrenheit, but you do remember that normal body tem-

perature is about 98.6°F. You call your doctor and tell him the reading of

40.2°C. What is he likely to say?

(a) “Don’t worry, your temperature is normal. Drink some water and take a nap.”

(b) “You have a high fever. Have someone drive you to my office or to urgent
care right now. Don’t try to drive yourself.”

(c) “Your temperature is a little bit below normal. Have some hot soup.”

(d) “What did you do? Spend all day out in the cold without a coat on? You
have hypothermia (dangerously low body temperature). Have someone
drive you to the emergency room. Don’t try to drive yourself.”

. The hottest possible temperature is

(a) +30,000,000°F.
(b) +30,000,000°C.
(c) +30,000,000 K.
(d) meaningless; there is no known hottest possible temperature.

The kilocalorie is a unit of
(a) temperature.

(b) power.

(c) heat.

(d) pressure.



Test: Part One

Do not refer to the text when taking this test. A good score is at least 37
correct. Answers are in the back of the book. It is best to have a friend
check your score the first time so that you won’t memorize the answers if
you want to take the test again.

1. The joule is equivalent to
(a) a newton-meter.
(b) a kilogram-meter.
(c) a watt.
(d) a candela.
(e) anerg.
2. The acceleration vector of the Earth in its orbit around the Sun points
(a) straight out away from the Sun.
(b) in the same direction as the instantaneous motion of the Earth.
(c) straight inward toward the Sun.
(d) at aright angle to the plane of the Earth’s orbit around the Sun.
(e) nowhere; it is the zero vector.

3. Which of the following is not expressible as a vector quantity?
(a) Displacement
(b) Velocity
(c) Acceleration
(d) Mass
(e) Force

4. A car travels 200 km in 3 hours (3.00 hr). What is its average speed?
(a) 18.5 m/s
(b) 0.0540 m/s
(c) 54.0 m/s
(d) 66.7 m/s
(e) It can’t be calculated based on this information.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.
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. What is the difference between a chemical reaction and an atomic reaction?

A chemical reaction involves fission or fusion of nuclei, but an atomic
reaction does not.

An atomic reaction involves fission or fusion of nuclei, but a chemical
reaction does not.

An atomic reaction requires antimatter, but a chemical reaction does not.
A chemical reaction requires an atomic reaction to set it off.

There is no difference; chemical and atomic reactions are exactly the same
thing.

. What is the distinction between mass and weight?

Nothing. They are different names for the same thing.

Weight is the force produced by gravity on an object having mass.

Mass is the force produced by gravity on an object having weight.

Mass depends on the speed of an object, but weight does not.

Mass is an expression of the resistance of an object to movement, but
weight is an expression of the number of atoms in an object.

. A highly malleable substance

can be pounded into thin sheets.

evaporates at a low temperature.

changes state directly from solid to gaseous.
does not melt when heated but burns instead.
is extremely brittle.

. Suppose that an object has a mass of 540 g and is lifted 25.5 m. How much

potential energy will it attain? Take the value of the magnitude of Earth’s grav-
itational acceleration to be 9.81 m/s’.

(a)
(b)
(©)
(d)
(e

(a)
(b)
(©
(d)
©)

0.208 J
1357
208 J
463 J
135 X 10 J

. Which of the following two types of particles have roughly the same mass?

A proton and an electron

A neutron and an electron

A proton and a neutron

A proton and a helium nucleus
A neutron and a helium nucleus

The newton is a unit of

(@)
(b)
©
(d
(e)

mass.

frequency.

gravitational acceleration.
temperature.

None of the above.
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Part 1: Test

There are 1.806 X 10°* atoms in a sample of liquid measuring 100.0 ml in vol-
ume. What is the mass density of this sample?

(a) 1.806 X 10* mol/cm’

(b) 1.806 X 10* g/em’

(¢) 0.03000 mol/cm’

(d) 0.003000 mol/m’

(e) It cannot be calculated from the information given.

How long does it take a ray of light to travel 3.00 X 10° km through free space?
(a) 100s

(b) 10.0s

(c) 1.00s

(d) 0.100s

(e) 0.0100s

Pascal’s law involves the behavior of

(a) confined incompressible liquids.

(b) objects in gravitational fields.

(c) substances that are cooled to extremely low temperatures.

(d) substances when they change from one phase of matter to another.
(e) molecules in a vacuum.

An example of diffusion is illustrated by

(a) the way molasses is less “runny” than water.

(b) the way liquid dye gradually disperses in a glass of water without stirring
or shaking.

(c) the way water in a lake freezes at the surface but not underneath.

(d) the way a liquid develops a flat surface in an environment where there is
gravity.

(e) any of the above.

Approximately how many kilometers are there between the Earth’s north

geographic pole and the equator, as measured in a great circle over the

surface?

(a) 10 million km

(b) 1 million km

(c) 100,000 km

(d) 10,000 km

(e) 1,000 km

A spherical ball bearing has a radius of 0.765 cm. The mass of this ball bear-

ing is 25.5 g. What is the density?

(@) 7.12 glem’

(b) 33.3 g/em’

() 57.0 g/em’

(d) 13.6 g/em’

(e) It cannot be calculated from this information.
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20.

21.

22.

The acceleration of a moving object has a constant magnitude of a = 3.00
m/s’. The object starts out from a dead stop at + = 0.00 s and moves in a
straight-line path. How far will it have traveled from its starting point at t =
5.00 s?

(a) 0.120 m

(b) 7.50 m

(¢) 15.0m

(d 375m

(e) It can’t be calculated from this information.

In an ideal system,

(a) there is no heat.

(b) there is no mass.

(c) there is no friction.

(d) all the objects move at the same speed.
(e) all the objects move in the same direction.

The rate at which energy is expended can be defined in terms of
(a) joules.

(b) newton-meters.

(c) newtons per meter.

(d) kilogram-meters.

(e) joules per second.

An object whose mass is 2.00 kg is lifted upward a distance of 3.55 m against
the pull of gravity on a planet where the gravitational acceleration is 5.70 m/s’.
How much work is done?

(a) 40.5kg - m’/s’

(b) 7.10 kg - m’/s”

(¢) 11.4kg- m’/s>

(d) 1.25kg- m’/s’

(e) It cannot be calculated from this information.

Specific heat can be expressed in

(a) calories per second.

(b) kilocalories per hour.

(c) Btus per hour.

(d) calories per gram.

(e) calories per gram per degree Celsius.

The momentum vector of a moving object is directly affected by all the fol-
lowing except

(a) the speed of the object.

(b) the velocity of the object.

(c) the mass of the object.

(d) the direction in which the object moves.

(e) the temperature of the object.
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Part 1: Test

Suppose that a rod measuring 1.00 m long of a certain metal has a thermal
coefficient of linear expansion of 3.32 X 107°/°C. If the rod is heated from 10
to 20°C, how much longer will the rod become?

(a) 0.0000332 m

(b) 0.000332 m

(c) 0.00332m

(d 0.032m

(e) No! The rod will not lengthen. It will shorten.

You are told that a sample of matter masses 365 wg. How much is this in kilo-

grams?

(a) 3.65 % 10°

(b) 36.5

(c) 0.365

(d) 3.65%X 10

(e) It depends on the intensity of the gravitational field in which the mass is
measured.

Nuclear physicists commonly use particle accelerators to
(a) weigh heavy objects such as boulders.

(b) determine the masses of distant stars and galaxies.
(c) fabricate elements that don’t occur naturally.

(d) evacuate all the air from an enclosure.

(e) generate powerful beams of light.

The Einstein equation E = me” might be applied directly to calculate

(a) the energy produced by a matter-antimatter reaction.

(b) the energy produced by the electrolysis of water.

(c) the energy produced when oxygen and iron react to form rust.

(d) the mass produced when two atoms of hydrogen and one atom of oxygen
combine to form a molecule of water.

(e) the mass of the chlorine liberated by the electrolysis of salt water.

The velocity of gravity at the surface of the Earth is

(a) approximately 9.8 m.

(b) approximately 9.8 m/s.

(c) approximately 9.8 m/s’.

(d) approximately 9.8 m/s’.

(e) none of the above; the expression “velocity of gravity” is meaningless.

Suppose that a certain substance melts and freezes at +200°C. Imagine a block
of this material whose mass is 500 g, and it is entirely solid at +200°C. It is
subjected to heating, and it melts. Suppose that it takes 50,000 cal of energy to
melt the substance entirely into liquid at +200°C. What is the heat of fusion
for this material?

(a) It cannot be determined from this information.

(b) 0.100 cal/g
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30.

31.

32.

33.

34.

(c) 1.00 cal/g
(d) 10.0 cal/g
(e) 100 cal/g

The term heat of vaporization refers to

(a) the amount of heat necessary to convert a certain amount of liquid matter
to the gaseous state.

(b) the amount of heat necessary to convert a certain amount of solid matter
to the liquid state.

(c) the heat produced when a substance vaporizes.

(d) the heat absorbed by a substance when it liquefies.

(e) adevice used for vaporizing water.

The base International Unit of visible-light brightness is the
(a) lumen.

(b) lux.

(c) candela.

(d) joule.

(e) watt.

What is a fundamental difference between speed and velocity?

(a) Velocity depends on gravitation, but speed does not.

(b) Velocity depends on mass, but speed does not.

(c) Velocity depends on force, but speed does not.

(d) Velocity depends on direction, but speed does not.

(e) There is no difference; speed and velocity are exactly the same thing.

Potential energy can be defined in terms of
(a) newton-meters.

(b) meters per second squared.

(c) kilograms per second.

(d) kilograms per meter.

(e) kilogram-meters.

A car whose mass is 900 kg travels east along a highway at 50.0 km/h. What
is the magnitude of the momentum vector of this car?

(a) 450 kg - m/s

(b) 1.25 X 10" kg - m/s

(c) 4.50 x 10°kg - m/s

(d) 2.25 x 10°kg - m/s

(e) 6.48 X 10" kg - m/s

Refer to test question 28. What is the heat of vaporization for this material?
(a) It cannot be determined from this information.

(b) 0.100 cal/g

(c) 1.00 cal/g

(d) 10.0 cal/g

(e) 100 cal/g
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35. A marble massing 1.5 g and a large brick massing 5.5 kg are dropped from the
same height on the moon. Which object will strike the surface of the moon
with greater force?

(a) The marble; it concentrates its mass in a smaller volume.

(b) The brick; it has greater mass and is “pulled down” with greater force.
(c) Neither; they will strike with the same amount of force.

(d) This is a meaningless question because it involves units that don’t agree.
(e) We need more information to determine the answer.

36. The Rankine scale

(a) is the same as the centigrade scale.

(b) has degrees that are the same size as centigrade degrees, but the zero point
is different.

(c) has degrees that are the same size as Fahrenheit degrees, but the zero point
is different.

(d) is commonly used by laypeople in European countries.

(e) is preferred when talking about extremely high temperatures.

37. Which of the following statements is not always true?

(a) Acceleration is a quantitative representation of the change in velocity of a
moving object.

(b) The acceleration vector of a moving object always points in the same
direction as the velocity vector.

(c) The instantaneous velocity of a moving object can change even if the
direction remains constant.

(d) The instantaneous velocity of a moving object can change even if the
speed remains constant.

(e) Speed is a scalar quantity.

38. If an electron is stripped from an electrically neutral atom, the result is
(a) a different isotope of the same element.
(b) a different element altogether.
(c) anuclear reaction.
(d) achange in the atomic number.
(e) none of the above.

39. A room becomes warmer by 10 K. How much warmer has it become in
degrees Fahrenheit?
(a) 18°F
(b) 5.6°F
(c) 10°F
(d) 273.15°F
(e) It cannot be calculated from this information.
40. The atomic mass of an element is approximately equal to

(a) the sum of the number of protons and neutrons in the nucleus.
(b) the number of protons in the nucleus.
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(c) the number of neutrons in the nucleus.
(d) the sum of the number of protons and electrons.
(e) the sum of the number of neutrons and electrons.

A typical carbon atom has six neutrons and six protons in its nucleus. If one of
the protons is taken out of the nucleus somehow but no other aspect of the
atom is changed, which of the following best describes the new atom?

(a) It will be a different isotope of carbon.

(b) It will be a negative carbon ion.

(c) It will be a positive carbon ion.

(d) It will be an atom of a different element.

(e) None of the above.

Suppose that there is an airtight chamber that can be enlarged and reduced in
size. The chamber is located in a laboratory on the Earth’s surface. The cham-
ber contains N moles of oxygen molecules. The volume of the chamber is
reduced rapidly without adding or removing any molecules. All the following
things will happen except

(a) the temperature of the oxygen will go down.

(b) the mass density of the oxygen will increase.

(c) the oxygen will exert increased pressure on the walls of the chamber.

(d) the particle density of the oxygen will increase.

(e) the weight density of the oxygen will increase.

Heat is an expression of
(a) energy radiation.
(b) energy convection.
(c) energy conduction.
(d) energy transfer.

(e) kinetic energy.

Energy and mass are intimately and absolutely related, according to Albert
Einstein’s hypothesis, by

(a) gravitation.

(b) the rate of energy transfer.

(c) the rate of mass transfer.

(d) the speed of light squared.

(e) the intensity of acceleration.

Suppose that a motor is used to drive a mechanical system. The motor draws 500
W from the power source that runs it, and the mechanical power produced by the
system is 400 W. What is the efficiency of this system, expressed as a ratio?

(a) 0.800

(b) 1.25

(c) 80.0

(d) 125

(e) It cannot be calculated from this information.
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Part 1: Test

A sample of matter is placed on a table. It retains its shape. Based only on this
information, we can be certain that this material is

(a) agas.

(b) aliquid.

(c) asolid.

(d) frozen.

(e) less dense than the table.

The unit of force in the International System is the
(a) gram.

(b) dyne.

(c) pound.

(d) kilogram.

(e) newton.

A positron is the same thing as

(a) aproton.

(b) an antiproton.

(c) an electron.

(d) an antielectron.

(e) nothing; there is no such thing as a positron.

Fill in the blanks so that the following sentence is true: “A substance that
appears as a liquid with low viscosity in one can appear to be a lig-
uid with high viscosity, even at the same temperature and pressure, when
observed in another

(a) gravitational field

(b) container

(c) quantity

(d) time sense

(e) state of matter

The megahertz (MHz) is a unit of
(a) mass.

(b) time.

(c) speed.

(d) quantity.

(e) none of the above.
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Direct Current

You now have a solid grasp of physics math, and you know the basics of
classical physics. It is time to delve into the workings of things that can’t
be observed directly. These include particles, and forces among them, that
make it possible for you to light your home, communicate instantly with
people on the other side of the world, and in general do things that would
have been considered magical a few generations ago.

What Does Electricity Do?

When I took physics in middle school, they used 16-millimeter celluloid
film projectors. Our teacher showed us several films made by a well-known
professor. I’ll never forget the end of one of these lectures, in which the
professor said, “We evaluate electricity not by knowing what it is, but by
scrutinizing what it does.” This was a great statement. It really expresses
the whole philosophy of modern physics, not only for electricity but also
for all phenomena that aren’t directly tangible. Let’s look at some of the
things electricity does.

CONDUCTORS

In some materials, electrons move easily from atom to atom. In others, the
electrons move with difficulty. And in some materials, it is almost impos-
sible to get them to move. An electrical conductor is a substance in which
the electrons are highly mobile.

The best conductor, at least among common materials, at room tempera-
ture is pure elemental silver. Copper and aluminum are also excellent electrical
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conductors. Iron, steel, and various other metals are fair to good conductors of
electricity. Some liquids are good conductors. Mercury is one example. Salt
water is a fair conductor. Gases are, in general, poor conductors because the
atoms or molecules are too far apart to allow a free exchange of electrons.
However, if a gas becomes ionized, it can be a fair conductor of electricity.

Electrons in a conductor do not move in a steady stream like molecules
of water through a garden hose. They pass from atom to atom (Fig. 12-1).
This happens to countless atoms all the time. As a result, trillions of elec-
trons pass a given point each second in a typical electric circuit.

Outer electron shell

/ Electron

Quter
electron
shell

Fig. 12-1. In an electrical conductor, electrons pass easily
from atom to atom. This drawing is greatly simplified.

Imagine a long line of people, each one constantly passing a ball to his or
her neighbor on the right. If there are plenty of balls all along the line, and if
everyone keeps passing balls along as they come, the result is a steady stream
of balls moving along the line. This represents a good conductor. If the peo-
ple become tired or lazy and do not feel much like passing the balls along,
the rate of flow decreases. The conductor is no longer very good.

INSULATORS

If the people refuse to pass balls along the line in the preceding example, the
line represents an electrical insulator. Such substances prevent electric cur-
rents from flowing, except in very small amounts under certain circumstances.
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Most gases are good electrical insulators (because they are poor con-
ductors). Glass, dry wood, paper, and plastics are other examples. Pure
water is a good electrical insulator, although it conducts some current when
minerals are dissolved in it. Metal oxides can be good insulators, even
though the metal in pure form is a good conductor.

An insulating material is sometimes called a dielectric. This term arises
from the fact that it keeps electric charges apart, preventing the flow of
electrons that would equalize a charge difference between two places.
Excellent insulating materials can be used to advantage in certain electrical
components such as capacitors, where it is important that electrons not be
able to flow steadily. When there are two separate regions of electric charge
having opposite polarity (called plus and minus, positive and negative, or
+ and —) that are close to each other but kept apart by an insulating mate-
rial, that pair of charges is called an electric dipole.

RESISTORS

Some substances, such as carbon, conduct electricity fairly well but not
very well. The conductivity can be changed by adding impurities such as
clay to a carbon past