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Preface 

The importance of partial differential equations among the topics of applied 
mathematics bas been recognized for many years . However, the increasing 
complexity of today's technology is demanding of the mathematician, the engineer, 
and the scientist an understanding of the subject previously attained only by 
specialists. This book is intended to serve as a supplemental or primary text for a 
course aimed at providing this understanding. It has been organized so as to 
provide a helpful reference for the practicing professional, as well. 

After the introductory Chapter 1, the book is divided into three parts. Part I, 
consisting of Chapters 2 through 5, is devoted primarily to qualitative aspects of the 
subject. Chapter 2 discusses the classification of problems, while Chapters 3 and 4 
characterize the behavior of solutions to elliptic boundary value problems and 
evolution equations, respectively. Chapter 5 focuses on hyperbolic systems of 
equations of order one . 

Part II comprises Chapters 6 through 8, which present the principal tech­
niques for constructing exact solutions to linear problems in partial differential 
equations. Chapter 6 contains the essential ideas of eigenfunction expansions and 
integral transforms, which are then applied to partial differential equations in 
Chapter 7. Chapter 8 provides a practical treatment of the important topic of 
Green's functions and fundamental solutions . 

Part III , Chapters 9 through 14, deals with the construction of approximate 
solutions. Chapters 9, 10, and 11 focus on fin ite-difference methods and, fo r 
hyperbolic problems, the numerical method of characteristics. Some of these 
methods are implemented in FORTRAN 77 programs. Chapters 12, 13, and 14 are 
devoted to approximation methods based on variational principles, Chapter 14 
constituting a very elementary introduction to the finite element method. 

In every chapter, the solved and supplementary problems have the vital 
function of applying, reinforcing, and sometimes expanding the theoretical con­
cepts. 

It is the authors' good fortune to have long been associated with a large , a£tive 
group of users of partial differential equations, and the development of this Outline 
has been considerably influenced by this association. Our aim has been to create a 
book that would provide answers to all the questions--or, at least, those most 
frequently asked-of our students and colleagues. As a result , the level of the 
material included varies from rather elementary and practical to fairly advanced 
and theoretical. The novel feature is that it is all collected in a single source, from 
which, we believe , the student and the technician alike can benefit. 

We would like to express our gratitude to the McGraw-Hill staff and the 
Colorado State University Department of Mathematics for their cooperation and 
support during the preparation of this book. In particular, we thank David 
Beckwith of McGraw-Hili for his many helpful suggestions. 

PAUL DUCHATEAU 

D AVID W. ZACHMANN 



Contents 

Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Notat ion and Terminology ... ... ... .. .... .. . .. .... .. ... . . . ... ..... . 
1.2 Vector Calculus and Integral Identities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.3 Auxil iary Conditions ; Well-Posed Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

Chapter 2 CLASSIFICATION AND CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . 4 

2.1 Types of Second-Order Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
2.2 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.3 Canonical Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.4 Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Chapter 3 QUALIT A TlVE BEHAVIOR OF SOLUTIONS TO ELLIPTIC 
EQUATIONS .... .. .... ............... . '........ .. .......... 19 

3.1 Harmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
3.2 Extended Maximum-Minimum Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
3.3 Ell iptic Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

Chapter 4 QUALITATIVE BEHAVIOR OF SOLUTIONS TO EVOLUTION 
EQUATIONS. . . . . . . . . . . . . . . . . . . . . . .. . . . .. .. . . . .. . . . . . . ... . . 36 

4.1 Initial Value and Initial-Boundary Value Problems ...... . . . . . . . . . . . . . . . 36 
4.2 Maximum-Minimum Principles (Parabolic PDEs) . . . . . . . . . . . . . . . . . . . . . . . 37 
4.3 Diffusionlike Evolution (Parabolic PDEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
4.4 Wavelike Evolution (Hyperbolic PDEs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Chapter 5 FIRST -ORDER EQUATIONS 51 
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
5.2 Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
5.3 Normal Form for Hyperbolic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
5.4 The Cauchy Problem for a Hyperbolic System. . . . . . . . . . . . . . . . . . . . . . . . . 53 

Chapter 6 EIGENFUNCTION EXPANSIONS AND INTEGRAL TRANSFORMS: 
THEORy... .. ............... ...... ... . ... .. .... .. ..... .... 72 

6.1 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
6.2 Generalized Fourier Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
6.3 Sturm- Liouville Problems; Eigenfunction Expansions .. . . . . . . . . . . . . . . . . . 74 
6.4 Fourier and Laplace Integral Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 



CONTENTS 

Chapter 7 EIGENFUNCTION EXPANSIONS AND INTEGRAL TRANSFORMS: 
APPLICA TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

7.1 The Principle of Superposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
7.2 Separation of Varia bles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
7.3 Integral Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Chapter 8 GREEN'S FUNCTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 

Chapter 9 

8.1 Introduction .. .. .... ... .. .... ... ... ... . .................... .... . . 100 
8.2 Laplace's Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 101 
8.3 Elliptic Boundary Value Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103 
8.4 Diffusion Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 104 
8.5 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 105 

DIFFERENCE METHODS FOR PARABOLic EQUATIONS 124 

9.1 Difference Equations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 124 
9.2 Consistency and Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 125 
93 Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 
9.4 Parabolic Equations .. ..... .. .... ......... .. .......... . .......... . 127 

Chapter 10 DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS ...... .. . 144 

10.1 One-Dimensional Wave Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144 
10.2 Numerical Method of Characteristics for a Second-Order PDE . . . . . . . . . .. 144 
10.3 First-Order Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 
10.4 Numerical Method of Characteristics for First-Order Systems . . . . . . . . . . . . 149 

Chapter 11 DIFFERENCE METHODS FOR ELLIPTIC EQUKfIONS . . . . . . . . . . .. 167 

11.1 Linear A lgebraic Equations .... ... ....... .. .......... . .......... " 167 
11.2 Direct Solution of Linear Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 168 
11.3 Iterative Solution of Linear Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 168 
11.4 Convergence of Point Iterative Methods ........ . .............. ... .. , 170 
11 .5 Convergence Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 

Chapter 12 VARIATIONAL FORMULATION OF BOUNDARY VALUE PROBLEMS 188 

12.1 Introduction ... . .............................................. " 188 
12.2 The Function Space L \fl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 188 
12.3 The Calculus of Variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 
12.4 Variational Principles for Eigenvalues and Eigenfunctions . . . . . . . . . . . . . .. 190 
12.5 Weak Solutions of Boundary Value Problems. . . . . . . . . . . . . . . . . . . . . . . .. 191 



CONTENTS 

Chapter 13 VARIATIONAL APPROXIMATION METHODS . ..... .... ~ . . . . . . . . . 202 

13 .1 The Rayleigh-Ritz Procedure......... . . .... . . . .. ... .. .. .. ..... . .. 202 

13.2 The Galerkin PTOcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 202 

Chapter 14 THE FINITE ELEMENT METHOD: AN INTRODUCTION .... .... .. . 211 

14. 1 Finite Element Spaces in O ne Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 
14.2 Fini te E lement Spaces in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
14.3 The Finite E lement Metbod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 214 

ANSWERS TO SUPPLEMENTARY PROBLEMS .. . . . . . . . . . . . . . . . .. 223 

INDEX . .. .... .. ..... .... .. ................. ..... .. .... .... . 237 



Chapter 1 

Introduction 

1.1 NOTATION AND TERMINOLOGY 

Let u denote a function of several independent variables; say, u = u(x, y, z, t). At (x, y, z, t), the 
partial derivative of u with respect to x is defined by 

au = lim u(x + h, y, z, t) - u(x, y, z, t) 

ax h ... O h 

provided the limit exists. We will use the following subscript notation: 

au 
-==u 
ax x 

au 
-==u 
ay Y 

aZu 
--==u 
axay xy 

If all partial derivatives of u ~p through order m are continuous in some region 0, we say u is in the 
class em (0), or u is em in O. 

A partial di fferential equation (abbreviated PDE) is an equation involving one or more partial 
derivatives of an unknown fu nction of several variables. The order of a PDE is the order of the 
highest-order derivative that appears in the equation. 

The partial differential equation F(x, y, z, t; U, ux ' uy , uz ' u" uxx ' uxy ' ••• ) = 0 is said to be linear if 
the function F is algebraically linear in each of the variables U, ux ' uy, ... , and if the coefficients of u 
and its derivatives are functions only of the independe nt variables. An equation that is not linear is 
said to be nonlinear; a nonlinear equation is quasilinear if it is linear in the highest-order derivatives. 
Some of the qualitative theory of linear PDEs carries over to quasi linear equations. 

The spatial variables in a PDE are usually restricted to some open region 0 with boundary S; the 
union of nand S is called the closure of 0 and is denoted O. If p resen t, the time variable is 
considered to run over some interval, tl < t < tz. A function u = u(x, y, z, t) is a solution for a given 
m th-order PDE if, for (x, y, z) in 0 and tl < t < tz, u is em and satisfies the PDE . 

In problems of mathematical physics, the region 0 is often some subset of Euclidean n -space, Rn. 
In this case a typical point in 0 is denoted by x = (XI ,xz, ... , xn ) , and the integral of u over 0 is 
denoted by 

I· .. I U(Xp Xz, ... , xJ dX I dxz ... dXn = J UdO 
o 0 

.... 

1.2 VECTOR CALCULUS AND INTEGRAL IDENTITIES 

If F = F(x, y, z) is a e l function defined on a region 0 of R3
, the gradient of F is defined by 

aF aF aF 
grad F == V F = - i + - j + - k 

ax ay az 

If n denotes a unit vector in R3
, the directional derivative of F in the direction n is given by 

aF 
-= VF'n 
an 

Suppose w = w(x, y, z) is a e l vector field on 0 , which means that 

w = wl(x, y, z)i + wlx, y, z)j + w3(x, y, z) k 

for continuously differentiable scalar functions wI' wz, w3 • The divergence of w is defined to be 

1 

(1.1 ) 

(1.2) 
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In particular, for w = grad F, we have 

a2F a2F a2F 
divgrad F= V·VF =V2F= - + - + - =F +F +F ax2 ay2 az2 xx yy xx 

The expression V2 F is called the Laplacian of F 

[CHAP. 1 

(1.3) 

(1.4 ) 

TheQrem 1.1 (Divergence Theorem ): Let 0 be a bounded region with piecewise smooth boundary 
surface S. Suppose that any line intersects S in a finite number of points or has a whole 
interval in common with S. Let n = n(x) be the unit outward normal vector to S and let 
w be a vector field that is C 1 in 0 and CO on fl. Then, 

J V· w dO = J w · n dS 
!l S 

(1.5) 

If u and v are scalar functions that are C 2 in 0 and Cion fl, then the divergence th eorem and the 
differential identity 

V· (uVv) = Vu · Vv + U V2v 

lead to Green' s first and second integral identities: 

J 
u V2v dO =J u av dS -J Vu · V v dO 

!l s an !l 

I 2 2 J (av au) (u V v-v V u) dO = u--v- dS 
n s an an 

1.3 AUXILIARY CONDITIONS; WELL-POSED PROBLEMS 

(1.6 ) 

(1. 7) 

(1.8 ) 

The PDEs that model physical systems usually have infinitely many solutions. To select the single 
function that represen ts the solution to a physical problem, one must impose certain auxiliary 
conditions that further characterize tbe system being modeled. These fall into two categories. 

Boundary conditions. These are conditions that must be satisfied at points on the boundary S of the 
spatial region 0 in which the PDE holds. Special names have been given to three forms of boundary 
conditions: 

Dirichlet condition u = g 

Neumann (or fiux) condition 
au 
-=g 
an 

Mixed (or Robin or radiation) condition 

in which g, a, and {3 are functions prescribed on S. 

au 
au + {3- = g 

an 

Initial conditions. These are conditions that must be satisfied throughout 0 at the instan t when 
consideration of the physical system begins. A typical initial condition prescribes some combination of u 
and its time derivatives. 

The prescribed injtial- and boundary-condition functions, together with the coefficient functions 
and any inhomogeneous term in the PDE, are said to comprise the data in the problem modeled by 
the PD E. The solution is said to depend continuously on the data if small changes in the data produce 
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. aWl aW2 aW3 
dlV W == V· W = - + - + -

ax ay az 
(1.3) 

In particular, for w = grad F, we have 

a2~ a2~ a2~ 
div grad ~ == V . V F == V2 ~ = -2 + - 2 + -2 = ~ + F + F ax ay az xx YY zz 

(1.4) 

The expression V2 ~ is called the Laplacian of F. 

Theorem 1.1 (Divergence Theorem): Let 0 be a bounded region with piecewise smooth boundary 
surface S. Suppose that any line intersects S in a finite number of points or has a whole 
interval in common with S. Let n = n(x) be the unit outward normal vector to S and let 
w be a vector field that is C l in n and CO on n. Then, 

f V· w dO = f W ' n dS 
!l S 

(l .5 ) 

If u and v are scalar functions that are C 2 in nand Cion n, then the divergence theorem and the 
differential identity 

V· (uV v) = Vu' V v + U V2v 

lead to Green's first and second integral identities : 

f uV2vdO =f u av ds- f Vu·VvdO 
!l s an !l 

J 2 J (av au ) (uV2v-v V u) dO = u--v- dS 
[j s an an 

1.3 AUXILIARY CONDITIONS; WELL-POSED PROBLEMS 

(1.6 ) 

(1. 7) 

(1.8) 

The POEs that model physical systems usually have infinitely many solutions. To select the single 
function that represents the solution to a physicaJ problem, one· must impose certain auxiliary 
conditions that further characterize the system being modeled. These fall into two categories. 

Boundary conditions. These are conditions that must be satisfied at points on the boundary S of the 
spatial region 0 in which the POE holds. Special names have been given to three forms of boundary 
conditions: 

Dirichlet condition u= g 

Neumann (or flux) condition 
au 
-=g an 

Mixed (or Robin or radiation) condition 

in which g, a , and fJ are functions prescribed on S. 

au 
au + /3 - = g an 

Initial conditions. These are conditions that must be satisfied throughout 0 at the instant when 
consideration of the physical system begins. A typical initial condition prescribes some combination of u 
and its time derivatives. 

The prescribed initial- and boundary-condition functions, together with the coefficient functions 
and any inhomogeneous term in the POE, are said to comprise the data in the problem modeled by 
the PDE. The solution is said to depend continuously on the data if small cbanges in the data produce 
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correspondingly small changes in the solution. TIle problem itself is said to be well-posed if (i) a 
solution to the problem exists, (ii) the solution is unique, (iii) the solution depends continuously on 
the data . If any of these conditions is not satisfied, then the problem is said to be ill-posed. 

The auxiliary conditions that, together with a PDE, comprise a well-posed problem must not be 
too many, or the problem will have no solution. They must not be too few, or the solution will not be 
unique. Finally, they must be of the correct type, or the solution will not depend continuously on the 
data. The well-posedness of some common boundary value problems (no initial conditions) and 
initial- boundary value problems is discussed in Chapters 3 and 4. 



Chapter 2 

Classification and Characteristics 

2.1 TYPES OF SECOND· ORDER EQUATIONS 

In the linear POE of order two in two variables, 

auxx + 2buXY + CUyy + dux + euy + fu = g (2.1 ) 

if un is formally replaced by 0'2, uxy by af3, Uyy by f32, Ux by a, and uy by f3, then associated with (2.1) 
is a polynomial of degree two in a and f3: 

pea, (3) == aa 2 + 2baf3 + cf32 + dO' + ef3 + f 

The mathematical properties of the solutions of (2. 1 ) are largely determined by the algebraic properties 
of the polynomial p ea , (3) . pea, (3)-and along with it, the POE (2.1 )-is classified as h yperbolic, 
parabolic, or elliptic according as its discriminant, b2 

- ac, is positive, z ero, o r negative. Note that the 
type of (2.1 ) is determined solely by its principal part (the terms involving the highest-order 
derivatives of u) and that the type wi ll generally change with position in the xy-plane unless a, b, and 
C are constants. 

EXAMPLE 2.1 (a) The PDE 3uxx + 2u7y + 5uyy + xUy = 0 is elliptic, since 

b2
_ ac = 12-3(5)= -14 < 0 

(b) The Tricorni equation for transonic flow , Uxx + YUyy = 0, has 

b 2
- ac = 02

- (l)y = -y 

Thus, the equation is ell iptic for y > 0, parabolic for y = 0, and hyperbolic for y < o. 

The general linear POE of order two in n variables has the form 

L ai/·u x .x · + L biu x . + CU = d 
' I ' 

~j = l i = 1 

(2.2) 

If u xx = U x x' then the principal part of (2.2) can always be arranged so that a ij = aji ; thus, the n x n 
matri~ A =J[~ij ] can be assumed symmetric. In linear algebra it is shown that every real, symmetric 
n x n matrix has n real eigenvalues. These eigenvalues are the (possibly repeated) zeros of an 
nth-degree polynomial in A, de t (A - AI), where l is the n x n iden tity matrix. Let P denote the 
number of positive eigenvalues, and Z the number of zero e igenvalues- (i.e., the multiplicity of the 
eigenvalue zero), of the matrix A. Then (2.2 ) is: 

hyperbolic 

parabolic 

elliptic 

ultrah yperbolic 

if 
if 

if 
if 

Z = 0 and P = 1 or Z = 0 and P == n - 1 
Z > 0 (equivalently, if det A == 0) 

Z == 0 and P == n or Z = 0 and P = 0 
Z == 0 and 1 < P < n - 1 

If any of the aii is nonconstant, the type of (2.2) can vary with position. 

[
3 0 0] 

A= 0 1 2 

024 

and 
[

3- A 0 

de t 0 1- A 

o 2 

~ ] =(3 - A){A)(A - 5) 

4-A 

Because A = 0 is an eigenvalue, the PDE is para bolic (throughout X\X2x3-space). 

4 



Chapter 2 

Classification and Characteristics 

2.1 TYPES OF SECOND-ORDER EQUATIONS 

In the linear POE of order two in two variables, . 

auu + 2buxy + CUyy + dux + euy + fu = g (2.1 ) 

if Uxx is formally replaced by a 2
, uxy by af3, U yy by 132

, U x by a, and uy by 13, then associated with (2.1) 
is a polynomial of degree two in a and 13 : 

P(a, 13) "'" aa 2 + 2baf3 + cf32 + da + ef3 + f 

The mathematical properties of the solutions of (2.1) are largely determined by the algebraic properties 
of the polynomial P (a,f3). P(a,f3)-and along with it, the PDE (2. 1 )-is classified as hyperbolic, 
parabolic, or elliptic according as its discriminant, b2 

- ac, is positive, zero, or negative. Note that the 
type of (2.1) is determined solely by its principal part (the terms involving the highest-order 
derivatives of u ) and that the type will generally change with position in the xy-plane unless a, b, and 
c are constants. 

EXAMPLE 2.1 (a) The POE 3uxx + 2u7y + 5uyy + xUy = 0 is elliptic, since 

b2 _ ac = 12_ 3(5)= -14<0 

(b) The Tricomi equation for transonic flow, Uxx + yuyy = 0, has 

b2
_ ac = ~- (l)y =-y 

Thus, the equation is elliptic for y > 0, parabolic for y = 0, and hyperbolic for y < o. 

The general lin ar PDE of order two in n variables has the form 

(L.2) 

If u xx = U x .x .' then the principal part of (2.2) can always be arranged so that a ij = a ji ; thus, the n x n 
matri~ A =J[~ij] can be assumed symmetric. In linear algebra it is shown that every real, symmetric 
n x n matrix has n real eigenvalues. These eigenvalues are the (possibly repeated) zeros of an 
nth-degree polynomial in A, det (A - AI), where I is the n x n identi ty matrix. Let P denote the 
number of positive e igenvalues, and Z the number of zero eigenvalues "'(i.e. , the multiplicity of the 
eigenvalue zero), of the matrix A. Then (2.2 ) is: 

hyperbolic 

parabolic 

eUiptic 

ultrah yperbolic 

if 

if 

if 

if 

Z = 0 and P = 1 or Z = 0 and P = n - 1 
Z > 0 (equivalently, if det A = 0) 

Z = 0 and P = n or Z = 0 and P = 0 
Z = 0 and 1 < P < n - 1 

If any of the a ij is nOnconstant, the type of (2.2) can vary with position. 

EXAMPLE 2.2 For the POE 3u x,x, + U X2 X2 + 4UX2x~ + 4U X }x3 = 0, 

[
3 0 0] 

A= 0 1 2 

0 24 

and 
[

3-'\ 

det ~ 

o 
1-'\ 

2 

~ ] =(3-'\)('\)('\-5) 

4- ,\ 

Because ,\ = 0 is an eigenvalue, the POE is parabolic (throughout XtX2X3-space). 

4 
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2.2 CHARACTERISTICS 

The following, seemingly unrelated, questions both naturally lead to a consideration of special 
curves associated with (2.1), called characteristic curves or, simply, characteristics. (1) How can a 
coordinate transformation be used to simplify the principal part of (2.1)? (2) Along what curves is a 
knowledge of U, ux' and uy' together with (2.1 ), insufficient uniquely to determine uxx' uxy' and Uyy ? 

To address the first question, suppose a locally invertible change of independent variables, 

t= 4>(x,y) TJ = I/I(x,y) 

(4)xl/ly - 4>yl/lx ~ 0), is used to transform the principal part of (2.1) from 

to Auu + 2Bu", + Cu."." + lower-order terms 

which implies that the principal part of the transformed equation is 

Auu + 2Bu", + Cu."." 

As found in Problem 2.3, 

A = a4>: + 2bc/>x4>y + c4>~ 

Since the transformed and original discriminants are related by 

B 2 - AC = (b 2 
- ac)(4)xl/ly - 4>yl/lS 

(2.3) 

the type of (2.1) is invariant under an invertible change of independent variables. The principal part 
of the transformed equation will take a particularly simple form if A = C = 0, which will be the case 
if 4> and 1/1 are both solutions of . 

(2.4) 

(2.4) is called the characteristic equation of (2.1); the level curves, z(x, y) = const. , of a solution of 
(2.4) are called characteristic curves of (2.1). 

,Turning to question (2), suppose that u, Ux ' and uy are known along some curve r. Then, as 
shown in Problem 2.10, uxx' uxy' and Uyy are uniquely determined along runless 

a dy2 - 2b dx . dy + C dx 2 = ° (2.5) 

holds along (i.e., is the ordinary differential equation for) r. 

Theorem 2.1: z (x, y) = const. is a characteristic of (2.1) if and only if z (x, y) = const. is a solution of 
(2.5). 

For the proof, see Problem 2.4. 
Related to the indeterminacy of the second derivatives along a characteristic is the fact that 

ph ysically significant discontinuities in the solution of (2.1) can propaga e only along characteristics. 
The number of real solutions of (2.4 ) or (2.5) is dictated by the sign of the discriminant, 

b2(x, y ) - a(x, y)c(x, y) 

Thus, when (2.1) is hyperbolic, parabolic, or elliptic, there are, respectively, two, one, or zero 
characteristics passing through (x, y). In the hyperbolic case, the two fami lies of characteristics define 
natural coordinates (t, TJ) in which to study (2.1). The absence of characteristics for <> ~eq.u<!.tiQn.s 

implies that there are no curves along which discontinuities in a solution can propagate; solutions of 
elliptic equations are generally smooth. 

EXAMPLE 2.3 

(a) By Theorem 2.1, the characteristics of the (hyperbolic) one-dimensional wave equation, a2 uxx - Uti = 0, are 
defined by a 2 df - dx2 = O. Thus, the characteristics are the lines 

x + at == ~ = const. x - at == TJ = const. 
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(b) The characteristics of the (parabolic) one-dimensional heat equatiorl, 

KUx.x - U, = 0 

are defined by I( dt2 = O. Thus, the characteristics are the lines t == TJ = const. 

(c) Characteristics of the (elliptic) two-dimensional Laplace's equation, 

u= + U y y = 0 

must satisfy dy2 + dx2 = 0, which has no nonzero real solution. Thus, Laplace's equation has no real 
characteristics. 

For the n-dimensional PDE (2.2 ), the characteristic surfaces are the level surfaces, 

of the solutions of the characteristic equation 

For n > 2, th is characteristic equation cannot generally be reduced to an ordinary differential 
equation as in Theorem 2.1; so, the characteristics are often difficult to determine. As in the case 
n = 2, the characteristics of (2.2) are the surfaces along which discontinui ties in derivatives of the 
solution propagate. 

EXAMPLE 2.4 The characteristics of the hyperbolic equation 

U XP1 - U x2X2 - U XJX3 = 0 (1) 

(a two-dimensional wave equation with XI taking the role of time) are the level surfaces of the solutions of 

(2) 
, 

By direct substitution it may be verified that 

z = F(x, + x2sin a + X3COS a) (3) 

with F an arbitrary C' function and a an arbitrary parameter, solves (2). This so lution is constant when 

XI + X2 sin a + X3 cos a = const. 

which may be rewritten as 

(4) 

where (x" X2, X3) is an arbitrary point in XIX2X3-space. Equation (4) represents a one-parameter family of planes, 
each plane containing the point (XI, X2, X3) and making a 45° angle with the positive xraxis. As is geometrically 
obvious, the family has as its envelope the right circular cone --

(XI - XI)2 - (X2 - x2f - (X3 - X3)2 = 0 (5) 

On the cones (5), all solutions (3) are constant ; hence, these cones are the characteristic surfaces of (1). 

2.3 CANONICAL FORMS 

We have already seen, in Section 2.2, how a hyperbolic second-order PDE may be simplified by 
choosing the characteristics as the new coordinate curves. In general, if a, b, and c in (2.1) are 
sufficiently smooth functi ons of x and y, there will always exist a locally one-one coordinate 
transformation, g = cp(x, y), 'T/ = "'(x, y), which transforms the principal part to the canonical form 

hyperbolic PDE 

parabolic PDE 

elliptic PDE 

Ubi or ua - u~~ 

ua 
uff + u~~ 
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The canonical forms u{f - u'I1'11 ' u{{' and Uu + u'I1 1' are the principal parts of the wave , heat, and Laplace 
equations, which serve as prototypes of hyperbolic, parabolic, and elliptic equations, respectively . 
Methods for choosing <p and 1/1 to reduce (2.1) to canonical form are illustrated in Problems 2.6- 2.9. 

If (2.1), or more generally (2.2 ), has constant coefficients in its principal part, reduction to a 
canonical form can be accomplished using a linear change of independent variables. Specifically, 
there will exist an invertible linear coordinate transformation, 

h 

(r = 1, 2, ... , n ) 
; == 1 

that takes (2.2 ) into an equation with principal part 

L AiU;i!i 
i =l 

where Ai (i = 1,2, . .. , n) are the eigenvalues of the symmetric matrix A. (If A is an eigenvalue of 
multiplicity q > 1, then q of the ~-variables will correspond to A.) A rescaling of the independent 
variables, 

then yields one of the canonical forms 

hyperbolic PDE 

parabolic PDE 

elliptic PDE 

ultrahyperbolic PDE 

n 

U - 2: u TI P)! TJjT/i 

i=2 

2: ± U TJiTJi 
;=1 

2: U'l1i'l1i 
;=1 

m 

LU'l1i'l1i - L 
;=1 i ;::;; 111 +1 

(m = Z> O) 

U 
TJiTJi 

(1 < m = P < n - 1) 

If (2.2 ) has all coefficients constant and has been reduced to one of the above canonical forms, a 
fu rther simplifica tion is always possible in the elliptic or hyperbolic case (see Problem 2.14) and is 
sometimes possible in the parabolic case (see Problem 2.15). 

2.4 DIMENSIONAL ANALYSIS 

The reduction of a POE to canonical form does not change the order of the equation or the 
number of independent variables. However, by seeking a solution of a particular form it is often 
possible to reduce the number of independent variables in a problem. 

EXAMPLE 2.5 (a) If we look for oscillatory solutions to the wave equation, 

u.u +Uyy- u,, = o 

of the form u(x, y, t) = vex, y)e ikt (i = v=I), then v satisfies the Helmholtz equation, 

(b) Traveling-wave solutions to U,u - u" + U = 0, in the form u(x, t) = vex - at) (a = const.), satisfy the ordinary 
differential equation (1 - a 2)v" + v = O. (c) Radially symmetric solutions of Laplace's equation, Ux. + Uyy = 0, of 
the form 

u(x, y ) = v(r) where 
satisfy v" + r-1v' = O. 
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Suppose that a physical problem is modeled by a PD E that involves dependent variable u; 

independent variables xI' x2' . . . , xn; and parameters PI' P2' . .. ,Pm. The general expression for the 
solution of the PD E is 

F (u, XI' x2' ... , xn' PI> P2' . . . , Pm) = 0 (2.6) 

which can usually be " solved" to give u = f(x 1, • • • , xn' PI' .. . , Pm). Consider a fu ndamental system 
of physical dimensions, each with its corresponding base unit ; specifically, consider the International 
System (SI), as indicated in Table 2-1. 

Table 2-1 

F undamental Dimension Base Unit 

Length (L) meter, m 

Mass (M) kilogram, kg 

Time (T) second, s 

Electric current (A) ampere , A 

Thermodynamic temperature (0) kelvin, K 

Amount of substance (X) mole , mol 

Luminous intensity (I) candela, cd 

• 
Each quantity in (2.6 ) is either dimensionless (i.e., a pure number) or has as its physical dimension a 
product of powers of the fu ndamental dimensions of Table 2-1. 

EXAMPLE 2.6 Let F (u, x, I, pc, k) = 0 be the general solution of the one-dimensional heat equation 

pcu, - kuxx = 0 (1 ) 

The dependent variable is the temperature u, while the independent variables and physical parameters are 
Xl == X, X2 == I, PI == pc (density times specific heat capacity), and P2 == k (thermal conductiv ity). The physical 
dimensions of these quantities are : 

{u} = e {X,} = L 
{pd = ML- I T-20- 1 {P2} = MLr3e - 1 

There are in all N = 5 dimensional quantities, which are specified in terms of R = 4 fundamen tal dimensions (th e 
three mechanical dimensions L, T, M and the thermal dimension 0). It happens that only integral powers of the 
fundamental dimensions enter. 

If we define K == k/ pc (thermal diffusivity) and rewrite (1) as 

u, - KUxx = 0 (2) 

there are present in (2 ) one fewer physical parameter and one fewer fundamental dimension ({K} = L 2r l); 
hence, N - R is unchanged . This invariance reflects the mass independence of the thermal process, and should 
not be expected in general. 

When, as in Example 2.6, a PDE involves fewer fundamental dimensions than dimensional 
quantities, it must admit a simplified, sim ilarity solution, in accordance with 

Theorem 2.2 (Buckingham Pi Theorem) : If (i) the function Fin (2.6 ) is continuously differentiable 
with respect to each argument ; (ii) given N - 1 of the N = 1 + n + m quantities u, Xj' Pi' the 
equation (2.6 ) can be uniquely solved for the remaining quantity; and (iii) U, Xi' Pi 
collectively involve R fundamental units (0 < R < N); then (2.6) is equivalent to 

G( 71"1' 71"2' ••• , 71" N-R) = 0 
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where the 7r" are dimensionless and 

for some real numbers Y"/3 (a = 1, 2, ... , N - R , f3 = 0, 1, ... , N -1) such that [Y"/3J is 
of rank N - R. 

(For the case R = 0, Theorem 2.2 holds trivially, with G = F.) 

Solved Problems 

2.1 Classify according to type : 

(a ) uxx +2yuXY+xUyy-ux+u=0 

(b ) 2xyuXY + xUy + yux = ° 
(c) Uxx + uxy + 5uyX + Uyy + 2uyZ + uzz = 0 

(a) In the notation of (2.1), a = 1, b = y, and c = x. Since b2 
- ac = y2 - x, the equation is hyperbolic in 

the region y2 > X, parabolic on the curve y2 = x, and elliptic in the region y 2 < x. 

(b ) Here, a = 0, b = xy, and c = O. Since b2 - ac = x2y2, which is positive except on the coordinate axes, 
the le,qua tion is hyperbolic for a ll x and y except x = 0 or y = O. Along the coordinate axes the 
equation degenera tes to first-order and the second-order categories do not apply. 

(c) Rewrite the equation in symmetrical form : 

(1 ) 

where x, ~ X, X2 == y, X3 ~ z. The matrix corresponding to the principal part of (1 ) is 

A~ U : :J 
Since det (A - AI) = (1- A)3 - 10(1- A), the eigenvalues of A are 1 and 1:± VlO. Thus, Z = 0 and 
P = 3 - 1, ma king the POE hyperbol ic (everywhere). 

2.2 Use the transformation (2.3) to express aU the x- and y-derivatives 1n (2.1 ) in terms of t and 

TJ· 

By the chain rule, 

and 

By the product rule, 

au au ag au a71 
-=--+-­
ax ag ax a71 ax 

au au ag au a71 
-=--+--
ay ag ay a71 ay 

or 

or 

which, after using the chain rule to find (u. )x and (ll" )x, yields 
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Similarly, 

Finally. 

C LASSIFICATION AND CHARACTERISTICS 

U"" = UtcP"" + (uucPx + u."I/1, )cP, + u,,1/1= + (u".cP, + u""l/Ix )I/Ix 

= uucP ; + 2ue"cPxl/lx + u""I/1; + utcPxx + u"l/Ixx 

Uyy = utcPyy + (u. )yc/Jy + u"l/Iyy + (u" )yl/ly 

= utcPyy + (u.tcPy + ufol/ly)cPy + u"l/Iyy + (u,,~y + u""l/Iy)l/ly 

= UttcP ~ + 2ue"cPyl/ly + u""I/1 ~ + UtcPyy + u"l/Iyy 

Uxy = utcP,y + (UE )ycPx + u,,1/I,y + (u" )yl/l, 

= utcPXy + (UEtcPy + Ufol/ly)cP, + u"l/Ixy + (u"gcPy + u""l/Iy)l/I, 

= uctcPxcPy + ue,, (cP,l/Iy + cPyl/lx) + u""I/I,l/Iy + U~xy + u"l/Ixy 

[CHAP. 2 

2.3 Use the results of Problem 2.2 to find the principal part of (2.1 ) when that equ ation is written 
in terms of ~ and 'Y/. 

Since uu , Ue". and u"" oCCur only in the transformations of Uxx , uxy, and Uyy, it suffices to transform 
only the principal part of (2.1): 

aux., + 2b/ixy + CUyy = (acP; + 2bc/Jxc/Jy + cc/J~)U<f 
+ 2[ ac/Jxl/lx + b( c/Jxl/ly + c/Jyl/lx) + cc/Jyl/ly J u." 

+ (al/l; + 2bl/lxl/ly + cl/l~)u"" 
+ R 

:= A UtE + 2Bu." + Cu"" + R 

where R "" (acP", + 2bcPxy + cc/Jyy )u. + (a l/lxx + 2bl/lxy + cl/lyy )u" is first-order in u. Note that R = 0 if both cP 
and 1/1 ar~ linear func t ions of x and y. 

2.4 Prove Theorem 2 .1. 

First assume that z(x, y) satisfies (2.4) and that zy (x, y) -,i O. so that the relation 

z(x, y) = I' = const. 

defines at least one single-valued functi on y = f(x, 1'). Then , for y = f(x, 1'), 

Dividing each term of (2.4 ) by z~ yields 

which on y = f( x, 1') is equivalent to 

dy = _ zx(x, y) 

dx Zy(x, y) 

(
ZX)2 Zx 

a - +2b-+ c = 0 
Zy Zy 

(
dy )2 dy 

a - - 2b -+c = 0 
dx dx 

This shows that y = f(x, 1') is a particular solution of (2.5), and so z.(x, y) = I' is an implicit solu tion of 
(2.5). If Zy(x, y) = 0 but (2.4 ) is not identically satisfied, then z .. (x, y) -,i 0 and the above argument 
can be repeated with the roles of x and y interchanged. 

To complete the proof, let z (x, y) = const. be a general integral of (2.5). To show that z(x, y) 
satisfies (2.4 ) at an arbitrary point (Xc , Yo), let 1'0 = z(Xc, Yo) and consider the curve y = f(x, 1'0). Along 
this curve, 

(
dy )2 dy (Zx) 2 (Zx) o = a - - 2b - + c = a - - 2b - - + c 
dx dx Zy Zy 

from which it follows, upon setting x = Xo, that (2.4 ) holds at (xo, yo). 
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2.5 Classify according to type and determine the characteristics of: 

(a) 2uxx - 4u
XY 

- 6uyy + Ux = 0 

(b) 1uxx + 12uXY + 9uyy - 2ux + u = 0 
(' 

(c) 

(d) 

11 

(a) In the notation of (2.1 ) a = 2, b = -2, c = -6; so b2
- ac = 16 and the equation is hyperbolic. From 

Theorem 2.1, the characteristics are determined by 

dy b±Vb2
- ac 

- 1±2 
dx a 

Thus, the lines x - y = const. and 3x + y = const. are the characteristics of the equation. 

(b) In this case , a = 4, b = 6, c = 9; so b2
- ac = 0 and the equation is parabolic. From Theorem 2.1 it 

follows that there is a single family of characteristics, given by 

dy b 3 
-=-=- or 2y - 3x = const. 
dx a 2 

(c) In the region y > 0, b2 
- ac = x2 y is positive, so that the equation is of hyperbolic type. The 

characteristics are determined by 

dy 
-= ±xVy or 
dx 

dy 
-+xdx=O 
Vy 

from which it follows that the characteristics are x 2 ± 4Vy = consi. 

(d) b2 - ac = (e x
+

y? - e2xe2y = 0, and the equation is parabolic. Theorem 2.1 implies that the charac­
teristics are given by 

or e- X dx - e- Y dy = 0 

from which e- x 
- e-Y = const. 

2.6 Transform the hyperbolic equations 

(a) 2uxx - 4uXY - 6uyy + Ux = 0 

to a canonical form with principal part ufrI. 

(a) In the notation of Section 2.2, if g = ¢(x, y) = const. and 'TJ = ~/(X, y) = const. are independent 
families of characteristics, then A = C = O. In Problem 2.5(a), the characteristics of the given 
equation were shown to be x - y = const. and 3x + y = const. Therefore, we take 

g=¢(x,y)=x-y 'TJ = ~/(X, y) = 3x + Y 

Transforming the equation with the aid of Problem 2.3, 

2uxx - 4uxy - 6uyy + Ux = 16ut'o + Ut + 314" 

The desired canonical fOim is therefore 

1 3 
ut'o+- u. +-u,,=O 

16 16 

(b) In Problem 2.5(c) the characteristics were found to be x 2 ± 4Vy = const.; therefore, we take 

g = ¢(x, y) = x 2 + 4Vy 

W.·th A. - 2 A. - 2 -112 ,I, - 2x ,I, - 2 -112 A. - 2 - ,I, A. - -3/2 - ,I: and A. - 0 -\px - X, 'Py - Y ,'f'x - ,'Py - - y ,o/xx - - '¥xx , 'Pyy - - y - - 'f'YY' 'Pxy - -

~/XY' Problem 2.3 gives 

Uxx - x2yUyy = 16x2ut'o + (2 + x2y-I12)Uf + (2 - x2y-I12)u" 

6g + 2'TJ 2g + 6'TJ 
= 8(g + 'TJ )ut'o + --- Uc - --- 14" 

g-'TJ g- 'TJ 
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where the last equality follows from x 2 = (g + TJ )/2 and y 1/2 = (g - TJ )/8. The desired canonical form 
is then 

2.7 Transform the parabolic equations 

(a ) 4uxx + 12uxy + 9uyy - 2ux + u = 0 

to a canonical form with principal part Uw 

(b) 

(a) In the notat ion of Section 2.2, C:o 0 if TJ = I/I(x, y) :0 const. is a characteristic of the equation. Since 
8 2 

- AC :o 0, this assignment of TJ will also make B = O. From Problem 2.5(b) , 

TJ = I/I(x, y) = 3x - 2y 

Any ¢(x, y) satisfying ¢xl/ly - ¢yl/lx '" 0 can be chosen as the second new variable; a convenient 
choice is the linear function 

g=¢(x,y)=y 

From Problem 2.3, 

whence the canonical form 

1 1 
u,,--u,,+-u=O 

3 9 

(b) In Problem 2.S(d) the characteristics were shown to be e- x 
- e- y 

:0 const., so C = B = 0 if we set 

TJ = I/I(x, y) = e-x - e-y 

A convenient choice for the other new variable is 

g = ¢(x, y) = x 

From Problem 2.3, 

e2Xuxx + 2ex
+
yuxy + e2yUyy = e2xu/;< + 2u" = e2<iuu + 2u., 

whence the canonical form Ua + 2e-2<iu., = O. 

2.8 If (2.1) is e lliptic, show how to select 4> and 1/1 in (2.3) so Jhat the principal part of the 
transformed equation will be Uu + u~~. 

When b2 
- ac < 0, (2.5) has complex conjugate solutions for dy/dx, one of which is (i = v=J:) 

dy b + iVlb2
- ac/ 

dx a 

The ordinary differential equation (1) will have a solution of the form 

z(x, y) = ¢(x, y ) + il/l(x, y) = const. 

for real functions ¢ and 1/1. Then, by Theorem 2.1 , 

0= az; + 2bzxzy + cz; 

= a(¢x + il/lxf+ 2b(¢% + il/lx) (¢ y + il/l,) + c(¢y + il/ly? 
= [(a¢; + 2b¢x¢y + c¢ ; ) - (al/l; + 2bl/lxl/ly + cl/l;)] + 2i[a¢xl/lx + b(</>"I/Iy + ¢ yl/lx) + C¢yl/ly 1 
== [A - CJ + 2i [B] 

(1) 



12 CLASSIFICATION AND CHARACfERISTICS [CHAP. 2 

where the last equality follows from x 2 == (t + 'TJ )/2 and y1!2 == (t - T) )/8. The desired canonical form 
is then 

2.7 Transform the parabolic equations 

(a) 4uxx + 12 u
XY 

+ 9uyy - 2ux + u = 0 

to a canonical form with principal part u<t. 

(b ) 

(a) In the notation of Section 2.2, C == 0 if T) == I/J(x, y) == const. is a characteristic of the equation. Since 
B2 - A C == 0, this assignment of 'TJ will also make B == O. From Problem 2.5(b), 

T) == I/J(x, y) == 3x - 2 Y 

Any ¢>(x, y) satisfying ¢>xl/Jy - ¢>yl/Jx ;t. 0 can be chosen as the second new variable; a convenient 
choice is the linear function 

From Problem 2.3, 

whence the canonical form 

t == ¢>(x, y) == y 

4uxx + 12uxy + 9Uyy - 2ux + u == 9uu; - 3u" + u 

1 1 
uu--u,,+-u=O 

3 9 

(b) In Problem 2.5(d) the characteristics were shown to be e- X 
- e-

y 
== const. , so C = B == 0 if we set 

T) == I/J(x, y) == e- X 
- e-y 

A convenient choice for the other new variable is 

t == ¢>(x, y) == x 

From Problem 2.3, 

whence the canonical form u~(; + 2e-~u" == O. 

2.8 If (2.1) is elliptic, show how to select 4> and '" in (2.3) so th1\t the principal part of the 
transformed equation will be ut< + u

7I7I
• 

When b2 
- ac < 0, (2.5) has complex conjugate solutions for dy/dx, one of which is (i == V-l) 

dy b+iYlb2 -acl 

dx a 

The ordinary differential equation (1 ) will have a solution of the form 

z(x, y) == ¢>(x, y ) + il/J(x, y) == cons!. 

for real functions ¢> and I/J. Then, by Theorem 2.1, 

o == az~ + 2bzxzy + cz; 

== a(¢>x + il/Jxf+ 2b(¢>. + il/J. )(¢>y + ;I/Jy ) + c(¢>y + il/Jyf 

== [(a¢>; + 2b</>,,¢>y + c¢>;) - (al/J; + 2bl/J.l/Jy + cl/J;)] + 2; [a¢>. I/J. + b (¢>.I/Jy + ¢>yl/J. ) + c¢>yl/Jy] 

E [A - C] + 2ifB] 

(1) 
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which holds only if A = C and B = O. Thus, if we set g = c/>(x, y) and T/ = ",(x, y), the transformed PDE 
will have principal part 

A(u« + u",,) 

and d ivision by A will yield the required canon ical form. 
For the above analysis to be strictly valid, one must require the coefficients a, b, c to be analytic 

fun ctions (see Section 3.1). 

2.9 Using Problem 2.8, transform the elliptic equations 

to canonical form with principaJ part Uu + u"". 

(a) H ere, a = 1, b = 1, and c = 17; (1) of Problem 2.8 becomes 

dy 
- = 1+ i4 
dx 

which has the solution z = (x - y) + i4x = const. Thus, setting 

g = c/>(x, y) = x - y T/ = ",(x, y) = 4x 

we obtain, as in Problem 2.3, 

u"" + 2uxy + 17uyy = 16ua + 16u"" 

whence the canonical form Uff + u"" = 0 (Laplace 's equation). 

(b) In this case, (1) of Problem 2.8 becomes 

dy . Y 
-=1-

dx x 

with solution z = log x + i log y = const. Setting 

g = c/>(x) = logx T/=",(y)=logy 

we calculate, following Problem 2.3, 

as the required canon ical form. 

2.10 Show that a characteristic curve of (2. 1 ) is an exceptional curve in the sense that the values of 
u, U

X
' and uy aJong the curve, together with the POE, do not unique y determine the values of 

uxx ' uxy ' and Uyy along the curve. 

Let r be a smooth curve in the xy-plane, given parametrically by x = x(s), y = y(s), SI < S < S2 . 

Suppose U, ux, and uy are specified along r as U = F(s), Ux = O (s), and uy = H(s). Then, 

dux 
- = uxxx'(s) + UXyy'(s) = O'(s) 
ds 

duy 
-;;; = UXyx'(s) + Uyyy'(s) = H '(s) 

These two equations and (2.1) comprise three linear equations, which may be solved uniquely for the 
three unknowns Uxx , Uxy , an d Uyy along r, unless the coefficient matrix 

[

a 2b 

x'(s) y'(s) 

o x'(s) 
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has determinant ze ro; that is, unless 

(
dy )2 dx dy (dX )2 

a - - 2b - - + C - = 0 
ds ds ds ds 

This last equation is equivalent to (2.5), wh ich defines the characteristics of (2.1). 

2.11 If the variables ~i' ~2' . . . , ~n and xl' x2 ' ••. , xn are rela ted by the linear transformation 

or (r = 1,2, ... , n) 
;=1 

change (2.2) to the ~-vari ables . 

According to the chain rule, 

Th us, in terms of g1, gz •.. .• gn, (2.2 ) is 

n [" ] "[" ] r.~ I i.~ I biraijbj .. U <rlis + ~ -i~ birbi U lir + CU = d 

2.12 If (2.2) has constant coeffi cients aij , show that it is possible to choose mat rix B in Problem 2. 11 
such that no mixed partials with respect to the ~-variables occur in the transformed equ ation. 

From Problem 2.11 it is seen that the matrix C defining the principal part of (2.2) in the g-variables 
is given by 

According to the following result fro m li near algebra, 8 can be chosen to make C a diagon al matrix 
(crs = 0 for r ", s), thereby removing all mixed partials from the transformed POE. 

TheQrem 2.3: Let A be a real, symmetric matrix. Then there exists an orthogonal matrix 8 such that 
C = 8 T A8 is diagonal. Moreover, the columns of 8 are the normalized eigenvectors of A and 
the diagonal entries of C are the corresponding eigenvalues of A. 

(8 is orthogonal if 8 T = 8 - 1
• It can be shown that to an m-fold eigenvalue of A there correspond precisely 

m linearly independent eigenvectors.) -

2.13 Find an orthogonal change of coordinates that eliminates the mixed partial derivatives from 

2uV 1 + 2u-'2-'2 - 15u.lJ.lJ + 8UX1~ - 12u-'2.lJ - 12ux l .lJ = 0 

Then rescale to put the equation in canonical form . 

The matrix corresponding to the principal part of this equation is 

4 -6] 
2 -6 

-6 -15 

From 

del (A - AI) = .A 3 + 11 .A z - 144.A - 324 = (.A + 2)(.A + 18)(.A - 9) 
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it follows that the eigenvalues of A are Al = -2, A2 = -18, ft.3 = 9. According to Theorem 2.3, the fth 

column-vector of the diagonalizing matrix B, 

b, = (b ,,, b2" b3,)T 

satisfies (A - A,I)b, = 0, or 

(2 - Ar )b" + 4b2 , - 6b3 , = 0 

4b
" 

+ (2 - A, )b2 , - 6b3 , = 0 

- 6b 1, - 6b2 , + (-15 - A,)b3, = 0 

together with the normalizing condition 

For f = 1, Al = -2, (1) implies bll = -b21 and b31 = 0; then (2) is satisfied if 

1 
bll = - b21 =-

V2 

For f = 2, A2 = -18, and 4b l2 = 4b22 = b32 ; normalizing, 

For r = 3, ft.3 = 9, and b13 = b23 = -2b33 ; normalizing, 

2 
b13 =b23 =-

3 

1 
b33 =--

3 

With B determined, the change of variables ~ = BT x transforms the given equation to 

-2u<I<1 - 18uhh + 9UE3<J = 0 

(1) 

(2) 

Finally, by defining 1) 1== t;,/V2, 1)2 == 6/(3V2) and 1)3 == 6/3, and mUltiplying the equation by -1 , we 
obtain 

wh ich is the canonical form for a hyperbolic PDE in three variables. 

2.14 Find a change of dependent variable which eliminates the lower-order derivati ves from 

U XIXI + U
X2X2 

- U
X3X3 

+ 6u
xI 

- 14u
x2 

+ 8u
X3 

= 0 

If U(XI, X2, X3) = V(X I ' X2, X3) exp (2:7-, C; X i ) , then 

3 

U X; = (V Xi + Civ)exp (L CiXi) 
,- I 

3 

U XiXj = (V XiXj + 2CiVXi + cTv)exp (2: C;X;) 
l=1 

and the PDE for v is 

v XIXI + v x2X2 - vXJX3 + (6+ 2c,)v xl + (-14+ 2C2)Vxz+ (8+ 2C3)Vx3 + (d+ d- d)v = 0 

Now choose c, = -3, C2 = 7, and C3 = -4, to produce 

V XlXI + V X2X2 - V X3X3 + 42 v = 0 

2.15 Find a change of dependent variable that reduces the parabolic POE 

UXX + 4ux - 2u, + 8u = 0 

to the one-dimensional heat equation . 
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If we set u(x, t) = vex, t)exp (cot + CIX), then the PDE for v is 

vxx + (4+ 2cl)vx - 2v, + (8+ d+ co)v = 0 

Setting CI = - 2 and Co = -12 we have Vxx - 2v, = 0, a homogeneous hea t equation with thermal diffusivity 
K = 1/2. 

2.16 Refer to Example 2.6. Apply Theorem 2.2 to the ini tial-boundary value problem 

U, - KUxx = 0 
u(O, t) = 0 

u(x, 0) = uo 

for x >0, t> 0 

for t > 0 

for x > 0 

obtaining two dimensionless groups, and then find a differential equation relating these 
groups. 

The initial condition has added one parameter to (2) of Example 2.6, without increasing the number 
of fundamental dimensions involved ({uo} = 8). Thus, N = 5 and R = 3 in the Buckingham Pi Theorem, 
which guarantees a solution G(1Tl . 1T2) = 0, with 

1 = {1T",} = {u} )'aO{x}yal{t}Ya2{K})'a3{Uo}Ya4 

= 8)'aOLYaITYa2(L2T-I) )'a38Ya4 

= L YaJ+2 Ya 3Tl'a2- Ya3E) 1'0'0+1'0'4 

To make the exponents vanish. choose, for a = 1, 'YIO = 'Y14 = 0 and 'YII = 1; then 'Y12 = 'Y13 = -1/2. The 
dimensionless group 

X 
1Tl=--

y;j 

is known as the Boltzmann variable or similarity variable for the one-dimensional heat equation. For 
a = 2, choose 'Y20 = 1, 'Y24 = -1, and 'Y21 = 'Y22 = 'Y23 = 0, to obtain 

U 
1T2=-

Uo 

Assuming that G"'2(1TJ, 1T2) ~ 0, we can rewrite our solution as 1T2 = g(1Tl) or u = Uo g(1Tl). It then 
follows from the chain rule that 

The PDE u, - KUxx = 0 now implies the following ordinary differential equation for 1T2 as a function of 1T1: 

2.17 Derive the similarity solution 

1Tl 
g"( 1Tl) + - g'( 1Tl) = 0 

2 

u(x, t) = Uo erf (_X_) 
2v;;t 

(1) 

for the initial-boundary value problem of Problem 2.16. The e"or junction, eff Z, is defined by 
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2 z 

erf z =--I e-
s2 

ds 
v:;;. 0 

Integrate (1 ) of Problem 2.16 once with respect to 71"\ to find 

71"1 
log Ig'(7I"1)1 + - = cons!. 

4 
or 

Integrate again and fix g(O) = 0 to make u(O, t) = 0: 

J
Wl JWI I2 

g(7I"1) = (cons!.) 0 e-r2
/
4 dr = (cons!.) 0 e-s2 ds = (cons!.) erf (7I"d2) 

Since lim z~ erf z = 1, the last constant should be set to unity, ensuring 

lim u(x, t) = Uo lim g( 71"1) = Uo for x> 0 
1-+0+ 7T1_+= 

This gives the required similarity solution. 

17 

2.18 Introduce dimensionless dependent and independent variables that transform the heat equa­
tion u, - KUxx = 0 to the dimensionless form v

T 
- v« = o. 

The dimensions of x, t, U, and K are: 

{x} = L {t} = T {u} = e 
Choose dimensionless variables ~ = xlxo, T = tlto, v = ulUo; the PDE becomes 

Vo Uo 
-vT - K-ZVU =0 
to Xo 

or 

The coefficient of Vu is seen to be dimensionless. Therefore, by proper choice of Xo and to, it can be 
made equal to unity, yielding the desired dimensionless equation. Note that this equation involves no 
fewer variables than did the original equation: neither ~ nor T is the dimensionless Boltzmann variable of 
Problem 2.16. 

Supplementary Problems 

2.19 Describe the regions where the equation is hyperbolic (h .), parabolic (p.), and elliptic (e.). 

(a) u"" - U~y - 2Uyy = 0 (e) yu"" - 2u~y + eXuyy + u = 3 

(b) u"" + 2uxy + Uyy = 0 (I) eXYu"" + (sinh x)uyy + u = 0 

(c) 2u"" + 4uxy + 3Uyy - 5u = 0 (g) xu"" + 2xyuxy - yUyy = 0 

(d) u"" + 2xuxy + Uyy + (cos xy)ux = u (h) XUxx + 2xyuxy + yUyy = 0 

2.20 Show that for (2.2) to be of ultrahyperbolic type, there must be at least four independent variables. 

2.21 Let p = p(x, y) be positive and continuously differentiable. Write out the principal part and classify the 
equation: 

(a) V'(pVu)+qu=f (b) u,-V'(pVu)+qu=f (c) ul/-V'(pVu)+qu+ru=f 
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2.22 Find the characteristic curves for the given equation. 

(a) Uxx - Uy + U = 0 (e) Uxx - y2Uyy = 0 

(b) 3uxx + 8uxy + 4Uyy = 0 (f) y2uxx - 2xyUxy + x 2Uyy + YUx + XUy = 0 

(c ) Uxx - Uyy + Ux + uy = 0 (g) y3uxx + Uyy = 0 

(d) Uxx + yUyy = 0 (h) YUxx + Uyy = 0 

2.23 Show that 5uxx + 4uxy + 4Uyy = 0 is eUiptic and use a transformation of independent variables to put it in 
canonical form. 

2.24 Show that 

is elliptic and use a linear change of coordinates to transform its principal part to 

Utltl + 3utztz+ 4uE:]E:] 

2.25 By rescaling the g-variables in Problem 2.24, transform the principal part to V 2 u. 

2.26 (a) Determine the type of the equation 

and (b) use Theorem 2.3 to reduce it to canonical form. 

2.27 Verify that the given equation is hyperbolic and then find a change of coordinates that reduces it to 
canonical form. 

(a ) Uxx + 2uxy - 8Uyy + Ux + 5 = 0 

(b) Uxx + 2(x + 1)uxy + 2xUyy = 0 

(c) 2uxx + 4uxy - Uyy = 0 

(d) eYuxx + 2eX uxy - e2X-Yuyy = 0 

(e) (1 + x 2fuxx - (1 + y2fUyy = 0 

2.28 C lassify the given equation and then find a change of coordinates that puts it in canonical form . 

(a) u= + (1 + x 2fUyy = 0 (i) u= + xyUyy = 0 

(b) 4uxx - 4uxy + 5Uyy = 0 (j) YUxx - XUyy + Ux + yUy = 0 

(c) Uxx - 2uxy + Uyy = 0 (k) e2yUxx + 2ex+
yuxy + e 2.>cUyy = 0 

(d) Uxx - Uyy + Ux + Uy + 2x + Y = 5 (I) UXX + (1 + y)2Uyy = 0 

(e) x 2u= + 2xyuxy + y2Uyy = 4y2 (m) xu= + 2vXY Uxy + yUyy - Uy = 0 (x > 0, y >O) 

(f) x 2uxx - y2Uyy = xy (n) (sin2 x)uxx + 2(cos x)UXY - Uyy = 0 

(g) (x2ux)x - y2Uyy = 0 (0) e2yuxx - x 2Uyy - Ux = !). 
(h) y2uxx - 2yuxy + Uyy - Uy - 8y = 0 (p) (1 + x 2fu xx - 2(1 + x 2)(1 + y2)UXY + (1 + y2)2Uyy = 0 

2.29 Use the results of Problem 2.3 to show that 

2.30 Show that if (2.1) is hyperbolic and in (2.3) ¢ and l/I are chosen to make A and C, the coefficients of Utt 

and u,,~, zero, then 2B, the coefficient of ut», is not zero. 

2.31 Show that (a, .. . , f constants) 

is transformed into a constant-coefficient equation under g = log X, 'T/ = log y. 

2.32 Show that the two canonical forms for the wave equation, Ut» and Uaa - U(3fJ, are related by a 45° rotation 
of coordinates. 

2.33 Use a change of dependent variable to reduce Uxx - U, + 4ux + 6u = 0 to the heat equation, v= - v, = O. 



Chapter 3 

Qualitative Behavior of 
Solutions to Elliptic Equations 

3.1 HARMONIC FUNCTIONS 

Because the canonical example of an elliptic POE is Laplace's equation, ,\PU = 0, we begin with 
the fo llowing 

Definition: A function u = u(x) is harmonic in an open region, fl, if u is twice continuously 
differentiable in fl and satisfies Laplace's equation in fl. u is harmonic in .0, the closure of 
fl, if u is harmonic in fl and continuous in fl. 

EXAMPLE 3.1 

(a) u(x, y) = x 2 
- y2 is harmonic in any region n of the xy-pJane. 

(b) u(x, y, z) = (x 2+ y2+ z2r l!2 is harmonic in any three-dimensional region which does not contain the origin . 
If n denotes the ball of radius one centered at (1,0, 0), then u is harmonic in n but not in n. 

Let "0 be a point in n and le t BR ("0) denote the open ball having center Xo and radius R. Let 
l R(XO) denote the boundary of BR(xO) and let A(R) be the area of lR(XO) ' 

EXAMPLE 3.2 Using calculus methods, one can show that in R n the volume, Vn(R ), and the surface area, 
A n (R ), of any ball of radius R are given by 

1 

n7Tn/2 R n- 1 (n even) 
- I ) (nI2)! 

An(R)= nR Vn (R = 2n(27T)(n-l)!2 
---- R n

-
I (n odd) 

1·3· 5··· n 

Definition: A func tion u has the mean-value property at a point Xo in fl if 

u(xo) = A;R) {R u(x) dIR 

for every R > 0 such that BR (Xo) is contained in fl. 

(1) 

(3.1 ) 

Theorem 3.1: u is harmonic in an open region fl if and only if u has the mean-value property at 
each Xo in fl. 

By Theorem 3.1, the state function, u(x), for a physical system modeled by Laplace 's equation is 
balanced throughout fl in the sense that the value of u at any point Xo is equal to the average of u 
taken over the surface of any ball in fl centered at xO. In other words, Laplace's equation- and 
elliptic PDEs in general-are descriptive of physical systems in the equilibrium or steady state. 

Theorem 3.2: Let n be a bounded region with boundary S and le t u be harmonic in O. If M and m 
are, respectively, the maximum and minimum values of u(x) for x on S, then (Weak 
Maximum-M inimum Principle) 

m :5 u(x) :5 M for all x in n 
or, more precisely (Strong Maximum -Minim um Principle ), 

either m < u (x) < M for all x in n 
or else m = u (x) = M for all x in n 

19 
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EXAMPLE 3.3 If n is not bounded, then the (weak) maximum-minimum principle need not hold. In fact, 

u(x, y ) = eX sin y 

satisfies Laplace's equation in n == {(x, y ): -00 < x < 00, 0 < Y < 7T}, and u is zero on the boundary of n, so that 
m = M = O. But u (x, y) is not identically zero in n. 

Definition: A function u (x) is analytic in n if u is in CO(n) and, in a neighborhood of each point x 
in n, u equals its Taylor series expansion about x. 

Theorem 3.3: If u is harmonic in a region n, then u is analytic in n. 
Theorem 3.3 implies that solutions of Laplace's equation cannot exhibit discontinuities in the value 

of u or of any of its derivatives . This is again characteristic of a physical system in the steady state (any 
initial distu rbances having been smoothed out). 

There is a st rong connection between harmonic functions in the plane and analytic functions of a 
complex variable. This connection provides a partial converse to Theorem 3.3. 

Theorem 3.4: If f(z) == f(x + iy) = u(x, y) + iv(x, y) is an analytic function of the complex variable z 
in n, then u and v are harmonic in n. 

Theorem 3.5: A function u(x, y) is harmonic in a simply connected region n if and only if, in n, u 
is the real part of some analytic function f(z). 

EXAMPLE 3.4 If f(z) = Z2 = (x + iy f = x 2 
- y2 + i 2xy, then 

u(x, y) = Ref(z) = x 2_ y2 and vex, y) = Re -if(z) = 2xy 

each satisfy Laplace's equation in the plane. 

3.2 EXTENDED MAXIMUM-MINIMUM PRINCIPLES 

Definition: A continuous function u is subharmonic in a region n if, for every Xo in n, u(xo) is less 
than or equal to the average of the u-values on the boundary of any ball, BR(Xo), in n: 

u(xo):5-
1-J u (x)dIR 

A (R) lR 

(3.2) 

A superharmonic function satisfies (3.2) with the inequali ty reversed; it is thus the negative of a 
subharmonic fu nction. 

If u is C 2
, then u is subharmonic if and only if V2u ~ 0, and u is superharmonic if and only if 

V2 u :50. Clearly, a harmonic function is bo th subharmonic and superhartl'ionic, and conversely. The 
maximum-minimum principle, Theorem 3.2, extends to subharmonic and superharmonic functions, as 
follows: 

Theorem 3.6: For n, S, m, and M as in Theorem 3.2, 

(i) if V 2 u ~ ° in n, then u (x) < M for all x in n or else u(x) == M in ii; 
(ii) if V2 u :5 0 in n, then u(x) > m for all x in n or else u(x) == m in ii. 

Results similar to Theorem 3.6 hold for elliptic equations more general than Laplace's equation. 

Definition: The linear operator 

(3.3) 

is uniformly elliptic in n if there exists a positive constant A such that 
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n n 

(3.4) 
i,;=1 i=I 

for all «(1' (2' ... , (J in Rn and all x in 0. 

Observe that, if (3.4) holds, matrix A(x) must be positive defin ite in 0, which means that L[ ] is 
elliptic in 0 , with Z = 0 and P = n (Section 2.1). On the other hand, assuming that an elliptic 
operator has all eigenvalues positive (if all are negative, multiply the operator by -1), we have 

Theorem 3.7: If L[ ] is ell iptic in n, it is uniformly elliptic in n (a1ortiori, in 0). 

Theorem 3.8: Let 0, S, m, and M be as in Theorem 3.2. Suppose in (3.3) that c = 0, L[ is 
uniformly elliptic in 0 , and aij and bi are continuous in n. 

(i) If L[u] ~ 0 in 0 , then u(x) < M for all x in 0 or else u(x) == Min n. 

(ii) If L[u]:s 0 in 0, then u(x) > m for all x in 0 or else u(x) == m in n. 

(iii) If L[u] = 0 in 0, then m < u(x) < M for all x in 0 or else m == u(x) == Min 
n. 

Theorem 3.9: Let 0 be a bounded region with boundary S. Suppose that u(x) satisfies L[ u] = f in 
0, where L[ J is uniformly elliptic in 0_ and has coefficients aij , bi' c which are 
continuous in O. Suppose further that, in 0, c :s 0 and f is continuous. 

(i) If f:S 0 in nand u(x) is nonconstant, then any negative minimum of u(x) 
must occur on S and not in O. 

(ii) If f ~ 0 in nand u(x) is nonconstant, then any positive maximum of u(x) 
must occur on S and not in O. 

Theorem 3.10: In the boundary value problem L[u ] = f in 0, u = g on S, suppose that the 
hypotheses of Theorem 3.9 hold and that g is continuous on S. Let laijl, Ibil, lei ~ll be 
bounded by the constant K, and let A be as in (3.4). If u is C 2 in 0 and CO in 0 and 
if u satisfies the boundary value problem, then, for all "0 in n, 

lu(xo)l:s max Ig(x)1 + M max If(x)1 
xES , E n 

where M = M(A, K). 

3.3 ELLIPTIC BOUNDARY VALUE PROBLEMS 

Since elliptic equations in general model physical systems that are not changing with time, the 
associated auxiliary conditions are typically boundary conditions (Section 1.1). 

EXAMPLE 3.5 If n is the region 0 < x < 1, 0 < Y < 1, then the boundary value problem 

Ux.< + Uyy = f(x, y) 

u(x, 0) = u(x, 1) = 0 

ux(O, y) = 1 

2yu(1, y) - 5ux (1, y) = y2 

in n 

on O< x < 1 

onO<y<.1 

onO <y<l 

has a homogeneous Dirichlet condition on the portion of the boundary where y = 0 or y = 1. A Neumann 
condition holds on the part of the boundary where x = O. On the edge x = 1, u satisfies a mixed condition. 

A classical solution of a (elliptic) boundary value problem satisfies the PDE L [u ] = fin 0 , is C 2 

in 0, and is CO in n (for a Dirichlet condition on S) or C 1 in n (for a Neumann or mixed condition 
on ...... S). It is possible to relax somewhat the smoothness conditions; such weak solutions are discussed 
briefly in Chapter 5. When no qualifier is used, a solution is understood to be a classical solution. 



22 SOLUTIONS TO ELLIPTIC EQUATIONS [CHAP. 3 

If the region n is unbounded, then, in addi tion to the boundary conditions, a solution is generally 
required to satisfy a condition at infinity, which is frequently dimension dependent. 

EXAMPLE 3.6 

(a) If fl is the half-plane y > 0, then, in the boundary value problem 

Uxx + Uyy = f(x, y) in n 
u(x, 0) = g(x) on S 

the usual condit ion at infinity is that u be bounded, 

Iu(x, y)1 < M = const. 

(b) If n is the half-space z > 0, then, in the boundary value problem 

Un + U yy + Uzz = f(x, y, z) in n 
u(x, y, 0) = g(x, y) on S 

the typical condition is that U vanish at infinity, 

Iu(x, y, z)I~O 

The three conditions for a well-posed problem were stated in Section 1.3. For many elliptic 
boundary value problems, maximum-minimum principles like Theorems 3.8-3.10 or an energy­
integral argument can be used to show that conditions (ii) (uniqueness) and (iii) (continuous 
depende nce on data) hold. See Problem 3.14. 

EXAMPLE 3.7 Let fl be a bounded region. The Dirichlet boundary value problem 

V2
U = f in fl 
u=g on S 

, the Neumann problem (c < 0) 

~u+ cu = f inn 

AU 
-=g on S 
an 

and the mixed problem (a{3 > 0) 

~u=f inn 

AU 
au + {3-= g on S 

an 
each have at most one solution and each solution depends contin uously on the data functions f and g. Nonetheless, 
there are mathematically and physically significant elliptic boundary value problems that are iii-posed with 
regard to conditions (ii) and (iii). 

Condition (i), the existence of a solution to a boundary value problem, is generaUy more difficult 
to establish. The most satisfactory way to show that a solution exists is to construct it; the solutions to 
a number of elliptic boundary value problems are constructed in Chapters 7 and 8. A particularly 
important constructive existence result, for Laplace's equation, is given by 

Theorem 3.11 (Poisson' s Integral Form ula): In Rn
, if g(~) is continuous on l:R : I~I = Rand 

An (I)-see (1 ) of Example 3.2-is the area of the unit sphere, then 
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1 
R 2 -lxl2 f g(t ) - - dI 

u(x) = RAn (1) IR Ix - ~I" R 

g (x) 

is a solution to the boundary value problem 

V2 u = 0 in Ixl < R 
u = g on Ixl = R 

Ixl< R 

Ixl= R 

23 

(3.5) 

See Problems 8.7 and 8.38 for a derivation of (3.5). Observe that for x = 0, (3.5) coincides with (3.1 ), the 
mean-value property. 

Sometimes, the nonexistence of a solution to a boundary value problem may be demonstrated 
immediately. 

EXAMPLE 3.8 For the Neumann problem 

V2 u = f in 0 
au 
- = g on S 
an 

It follows from the divergence theorem that 

J f dO = J ~u dO = f au dS = J g dS 
n n s an s 

Thus, if the consistency condition In f dO = Is g dS is not satisfied, the Neumann problem cannot have a solution . 
Problem 3.20 gives a consistency condition for an elliptic mixed problem. 

Solved Problems 

3.1 Show that if u is harmonic in an open region n of R", then u has the m@'an-vaiue property in n. 
Suppose that 0 includes the ball Bp(xo) for 0 os; p OS; R. By the divergence theorem, 

in which we have introduced the radial coordinate r = I~ - "01; ~ being a general point of R". Now, 

au(r, . . ')1 
ar '~p 

au( p, ... ) 

ap 

(1) 

and (see Example 3.2) dIp = pn-' dI" where I I denotes the surface of the unit sphere . Therefore, (1 ) 
implies 

o = J au dI , = ~ (J U dI' ) 
:t, ap dp:tJ 

(2 ) 

Integration of (2) from p = 0 to p = R, where R = Ix - xol, yields 
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o = f u(x) d~ l - f u (xo) d I I 

1:1 1:1 

= R ~ - I f u(x) dI R - U(Xo) An (1) 
1:R 

= An (1) [- I- f u(x) dIR - U(XO)] 
A,,(R) 1: R 

[CHAP. 3 

(3) 

since, from Example 3.2, A ,, (R )= A .. (I ) R n
-

1
• The mean-value property of u follows at once. 

The converse theorem, that the mean-value property implies harmonicity, can be proved by 
reversing the above argu ment if the prior assumption is made that u is in C\fl). A way around such an 
assumption is shown in Problems 3.2-3.4. 

3.2 Suppose that u has the mean-value property in the ball BR(XO)' If u :5 M in B R and u (xo) = M, 
show that u = M everywhere in Bw 

From the mean-value property and the given conditions on u, 

M=U(Xo)=_I_f u(x)d'2.,:=s:M 
A(r) 1:, 

(1) 

for r:=S: R. As equality must hold throughout (1), u(x) = M at every point of '2.,. Thus, u(x) = M for a1\ x 
in BR (xo). 

3.3 Suppose that u has the mean-value property in a bou nded region n and that u is continuous 
in fl. Show that if u is nonconstant in n, then u attains its maximum and minimum values on 
the boundary of n, not in th e interior of n. 

Since u is continuous in the closed, bounded region 0, u attains its maximum, M, and its minimum, 
m, somewhere in O. W e will show that if u attains its maximum at an inter ior poin t of fl, then u is 
constant in O. 

Assume that u(xo) = M, with Xo in fl, and let x* be any other point in fl. Let r be a polygonal path 
in fl joining xo and x* and let d be the minimum distance separating rand S, the boundary of 0: 

d = min {Ix - yl: x on r, y on S } 

There exists a sequence of balls BR (Xi), i = 0, 1, . .. , n, with Xi on r, satisfying R :=s: d, Xi+ I in BR (X i ), x* in 
BR (x,,). See Fig. 3-1. 

Fig. 3-1 



CHAP. 3] SOLUTIONS TO E LLIPTIC EQUATIONS 2S 

Problem 3.2 shows that u is identically equal to M in each BR(Xi ), i = 0, 1, . . . , n ; hence, u(x * ) = M. 
Since x* was arbitra ry, u must be equal to M throughout n and, by continuity of u, throughout 0 . This 
shows that if u is not a constant in n, then u can attain its maximum value only on the boundary of n. 

The above argument, applied to - U, establishes that if u is nonconstant, it can attain its minimum 
value only on S. 

3.4 Show that if u has the mean-value property in an open region n, then u is harmonic in n . 

Let Xo be any point in 0 , and let B R (xo) be wholly contained in n. Since Laplace's equation is 
invarian t under a translation of coordinates, we shall suppose Xo = O. If v is defined in BR (O) by Poisson 's 
integral formula, (3.5), with v = u on the boundary of BR, then, by Theorem 3.11 , v i. harmonic in tiR . 
By Problem 3.1 , v has the mean-value property in BR • Because both u and v have the mean-value 
property in BR , W == U - v has the mean-value property in BR . Since w = 0 on the boundary of BR , 

Problem 3.3 shows that w = 0 throughout DR. Thus, u is identically equal to the harmonic function v in 
DR , and so u is harmonic at 0, which, from the above, represents any point in n. 

The above proof has an important implication : Any harmonic function can be expressed in terms of 
its boundary values on a sphere by Poisson 's formula. Equivalently : The Dirichlet problem 

has a unique solution. 

in JxJ < R 
on JxJ= R 

3.5 Establish the maximum-minimum principle for harmonic functions, Theorem 3.2. 

Problem 3.3 establishes Theorem 3.2 for functions having the mean-value property. But, by 
Problems 3.1 and 3.4, these functions are exactly the harmonic functions. 

3.6 Show that if u(x, y) is subharmonic, V2u;::: 0, in a bounded region nand u :s M on S, the 
boundary of n, then u :s M everywhere in n. 

Since 0 is bounded, it can be enclosed in a circle, of radius R, centered at the origin . Let e > 0 be 
arbitrary and define 

vex, y)== u(x, y)+ e(x2+ y2) in n (1 ) 

From (1), 

VZv = VZu +2e > 0 inn (2 ) 

v can attain a maximum in 0 only on S; for, at an interior maximum, v=:5 0 and Vyy :5 0, which would 
contTadict (2). From u:5 M on S, it follows that v:5 M + ER2 on S and, since v attain its maximum on 
S, v:5 M + eR2 everywhere in n. By (1 ), u:5 v ; so 

in O (3 ) 

for any e > O. It follows that u cannot exceed M in 0 ; if it did, then, for sufficiently small E, (3) would be 
violated. 

T he above argument provides an alternate proof that a harmonic function on a bounded region 0 
must attain its maximum on the boundary of O. 

3.7 Show that if u(x, y ) is harmonic in a bounded region nand u is continuously differentiable in 
fl, then /Vu /2 attains its maximum on S, the boundary of n. 

Let w == JVu j2 = u; + u ~ . Since u is C 1 in 0, w is continuous on S. Therefore, since S is closed and 
bounded, there is a value M assumed by w on S such that 

on S (1) 

Calculating VZ w'= V . V w, we fi nd 
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Since U is harmonic in n, u"" + Uyy = 0 in n, and 

Thus, 

U"Uxxx + U"U"yy = u"(u",, + Uyy)x = 0 

UyU""y + UyUyyy = u y(u.u + Uyy)y = 0 

inn 

or w is subharmonic in n. Problem 3.6 and (1 ) now imply that w = IVul2 
s; M throughout n. 

[CHAP. 3 

(2) 

This result has a number of interesting physical interpretations; e.g., for steady-state heat flow in a 
homogeneous medi um ,0" the heat flux vector of maximum magnitude must occur on the boundary of n. 

3.8 Show that the solution to the D irichlet problem indicated in Fig. 3-2 satisfies 

0< u(x, y) < x(2 - x - 2y) 

in fl. 

y 

(0, 1) 

u = x(2- x ) (2, 0) 

Fig. 3-2 

Let v(x, y) == x(2 - x - 2y) and note that V2 v = - 2 in n. Then, if 

w(x, y) == u(x, y) - v(x, y) 

in 0, we have 

V2 w = 2 > 0 in n 
w = 0 on S 

From Theorem 3.6(i), w(x, y) < 0 in n; that is, 

u(x,y)< v(x,y )= x(2 -x-2y) inn 

x 

Since the minimum of u on S is zero, it follows from Theorem 3.6(ii) that u(x, y) > 0 in n. 

3.9 Let u(x, y) be continuous in the closure of a bounded planar region fl and let the linear 
operator 

L[u] == un: + Uyy + bl(x, y)u" + b2(x, y)uy 

be defined in fl , in which bl and b2 are continuous functions. Prove: (a) If u(x, y) satisfies 
L[ u] = f in fl, with f > 0, then u attains its maximum on S, the boundary of fl , not inside fl. 
(b ) If u(x, y) satisfies L[ u] ~ 0 in fl, and if u 5:, M on S, then u 5:, M in n. 
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(a) Since u is continuous in the closed bounded region n, it must attain its maximum, M, somewhere in 
n. Let (xo, Yo) be an interior point of fl and assume that u(xo, Yo) = M From calculus, Ux = 0 = u" 
Uxx ::5 0, and Uyy::5 0, at (Xo, yo); hence, b l and b2 being bounded at (xo, Yo), 

L[ u] = U xx + Uyy ::5 0 

which contradicts L[ u] = f> O. We m ust, then , admit that the maximum is achieved on S. 

(b) Because bl is bounded (be low) in fl, there exists a constant a such that 

in n (1) 

For arbitrary E > 0, define v == u + Ee=. Let R be chosen large enough so that the circle centered at 
the origin with radius R encloses fl. Since u::5 M on S, 

on S (2) 

From L(u) 2!: 0 and (1), L[ v] > O. It now follows from the result of (a) that 

inn (3) 

for arbitrary E > 0, and this implies that u::5 M in n. 

3.10 Under the hypotheses of Problem 3.9, with b I and b2 assumed continuous in 0, show that a 
solution of L[u];2!:; 0 cannot attain its maximum, M, at an interior point of n unless u == Min 
O. 

Let M denote the maximum of u on n and suppose that u assumes the value M somewhere in fl. If 
u ;;;E M in n, there exists a disk Bl in n that contains on its boundary an interior point ({;, 17) of n where 
u({;, 17) = M and such that u(x, y) < M inside B I • Let B2 be a disk of radius R satisfying B2 C B 1 , with 
the boundary of B2 tangent to the boundary of BI at ({;, 1/) ; Le., ~l n ~2 = ({;, 17). (See Fig. 3-3.) Since the 
PDE L[u ] = 0 is invariant under a translation of coordinates, the origin can be taken to be the center of 
B 2. Let B 3 be a disk in n centered at (g, 17), of radius less than R. Divide the boundary, ~3, of B3 into the 
two arCs 

Fig. 3-3 
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By hypothesis u is c~:mtinuous on the closed arc 0"1, at every point of which u < M (because 0"1 C Bl)' It 
follows that u is bounded away from M on 0"1 : 

u(x, y)s, M - EO 

Define the comparison function 

for some Eo > 0 and all (x, y) on 0"1 

v === e-Q:,.2 _ e-OtR2 

(1) 

where r = x 2 + y2 and a > O. Note that v> 0 in B 2, v = 0 on 1 2 , and v < 0 outside B2. A calculation 
shows that 

L[ v] = {4a 2(x2 + y2) - 2a (2 + blx + b2y)} e-a ,2 

Hence, for sufficiently large a, L[ v] > 0 throughout B 3 • From (1) it follows that there exists a constant 
{3 > 0 such that 

u+ {3v < M 

Also, {3 > 0, L[u] 2: 0, and L[v] > 0 in B3 imply 

L[u + {3v] >0 

(2) 

(3) 

Since u = M and v = 0 at (~, 1}), (2) shows that u + {3v must assume a maximum greater than or equal to 
M at some point (t, ii) inside B 3 . The necessary conditions for this maximum are 

Ux + {3vx = 0 = U y + {3vy 

Uyy + {3vyy s, 0 

However, from (3) and (4) and the boundedness of the coefficients bl and b2 , we conclude that 

(uxx + (3vxx ) + (uyy + (3vyy ) > 0 

(4) 

(5) 

which contradicts (5). Thus, the original assumptions of an interior maximum and a nonconstant function 
are incompatible. 

Problems 3.9 and 3.10 provide a proof of Theorem 3.8(i) for R2 in the case that the principal part of 
L[ ] is the Laplacian. The arguments employed contain the essential ingredients of the general proof of 
Theorem 3.8. 

3.11 For a bounded region n, show that if U is a nonconstant solution of 

uxx + Uyy + blux + bzuy + cu = f (1 ) 

with b l , bz, C $; 0, and f:2: 0 all continuous on n, then U can assume a positive maximum only 
on S, the boundary of n, and Dot in n. 

Suppose that M is a positive maximum of u and let 0 be the set of po ints in n where u = M Since 
a solution of (1) is continuous in 0, we know from calculus that 0 is closed (its complement is open) 
relative to O. 

To complete the argument, we show that if 0 is nonempty, then 0 is a lso open relative to n, 
implying that 0 = 0 and contradicting the hypothesis that u is nonconstant. Let (X, 9) be a point in 0, so 
that u(x, y) = M'> O. Then, by continuity of u, there is a ball, B, in 0 , centered at (x, y), in which 
u(x, y) > O. Thus, 

U xx + Uyy + b1ux + b2 uy = -cu + /2: 0 in B 

Now, from Problem 3.10, we conclude that u must be identically equal to M in B. This shows that any 
point in 0 has a ball about it that is entirely in 0 ; i.e ., 0 is open relative to O. 

The above provides a proof of Theorem 3.9(ii) for R2 when the principal part of the e lliptic operator 
is the Laplacian. A general proof of Theorem 3.9 fo llows the same lines. 

3.12 Let n be it bounded region and let L[ ] be as in Theorem 3.9. If U satisfies L[u ] = fin n, 
U = g on S, and if v satisfies L[ v ] $; f in n, v:2: g on S, prove that U $; v in n. 
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Since L[ u - v] = 1- L [ v) ~ 0 in nand u - v 50 on 5, it follows from Theorem 3.9 that u - v cannot 
have a posit ive maximum in ii, which means that u - v cannot assume a positive value in ii. 

Similarly, we can show that if L [w) ~I in n and w 5 g on S, then u ~ win n. 

3.13 In a bounded region n, if u satisfies 

inn 

u =g on S 

show that, in 0, 

lul 5 max Ig(x, y)1 + M max If(x, y)1 
~y~S ~y~n 

where M is a constant which depends on the size of n. 

(1) 

(2) 

(3) 

If ii is not contained in the region x ~ 0, a translation of coordinates will leave the forms of (1) and 
(2) invariant and will result in x ~ 0 throughout ii. Thus, with no loss of generality, we can assume that 
there exists a positive number a such that 05 X 5 a for all (x, y) in ii. Define the comparison function 

V E max Igl + (e a 
- eX) max III 

Because ea 
- eX ~ 0 in ii, v ~ max Igi and 

s 

s n 

v~g on S 

Calculating L[v] = Vxx + Vyy, we find, since eX ~ eO = 1 and I~ -max III, 
n 

L[ v 1 = - eX max 1115 I 
n 

in n 

(4) 

(5) 

Inequalities (4) and (5) and Problem 3.12 imply u 5 v in ii. Similarly, with w = -v, we have w 5 g on S 
and L[ w 1 ~ I in fl, so that u ~ -v in ii. Consequently, in ii, 

lul5 V 5 max Igi + (e Q 

- 1) max III 
s n 

since eX ~ 1 in ii. This establishes (3), with M = e a 
- 1. 

We term (3) an a priori estimate of u. When some knowledge of the solu Ion is incorpora ted, much 
sharper estimates are possible. 

3.14 Let n be a bounded region. Show that the Dirichlet problem 

V 2u = f in n 
u=g on S 

has at most one solu tion and, if it exists, that the solution depends continuously on the data f 
and g. 

The difference v E UI - U2 of two solutions would satisfy the homogeneous problem 

V2 v = 0 in n 
v = 0 on S 

The maximum-minimum principle, Theorem 3.2, implies v E O, or u, E U2, in ii. 
To establish the continuous dependence of the solution , let u satisfy 
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Since L[u - v] = 1- Lr v] 2= 0 in n and u - v ~ 0 on S, it follows from Theorem 3.9 that u - v cannot 
have a positive maximum in n, which means that u - v cannot assume a positive value in n. 

Similarly, we can show that if L( w] 2= I in n and w ~ g on S, then u 2= w in n. 

3.13 In a bounded region n, if u satisfies 

inn 

u= g on S 

show that, in 0 , 

lul:s max Ig (x, y)1 + M max If(x, y)1 
(x, y)ES (x, y)Efi 

where M is a constan t which depends on the size of n. 

(1) 

(2) 

(3) 

If n is not contained in the region x 2= 0, a translation of coordinates will leave the forms of (1) and 
(2) invariant and will result in x 2= 0 throughout n. Thus, with no loss of generality, we can assume that 
there exists a positive number a such that 0 ~ x ~ a for all (x, y) in n. Define the comparison function 

v == max Igl + (eO - eX) max III 

Because eO - eX 2= 0 in n, v::= max Igi and 
s 

s n 

V2=g on S 

Calculating L[ v] = v= + VYY' we find, since eX 2= eO = 1 and 1 2= -max III, 
n 

L[v] = _ex max III ~I 
n 

inn 

(4) 

(5) 

Inequalities (4) and (5) and Problem 3.12 imply u ~ v in n. Similarly, with w = - v, we have w ~ g on S 
and L [ w] 2= I in n , so that u 2= - v in n. Consequently, in n, 

lui ~ v ~ max Igi + (e Q 

- 1) fGaX III 
s ~ 

since eX 2= 1 in n. 'Illis establishes (3), with M = eO - 1. 
We term (3) an a priori estimate of u. When some knowledge of the solution is incorporated, much 

sharper estimates are possible. 

3.14 Let n be a bounded region. Show that the Dirichlet problem 

V2u = f in n 
u = g on S 

has at most one solution and, if it exists, th at the solution depends continuously on the data f 
and g. 

The difference v == Ul - U2 of two solutions would satisfy the homogeneous problem 

V2 v = 0 in n 
v = 0 on S 

The maximum-minimum principle, Theorem 3.2, implies v == 0, or Ul == U2, in n. 
To establish the continuous dependence of the solution, let a satisfy 
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V2u = I in n 
u = g on S 

Theorem 3.10 implies 

max Iu - ul:5 max: Ig - gl + M max If - I I (M = const.) 
n s fi 

which shows that small changes in the functions f and g produce small changes in the solution u. 

3.15 Let n be a bounded region. Show that the Neumann problem 

v2 u + cu = f 

au 
- =g 
an 

inn 

on S 

(1) 

(2) 

has at most one solution if c < 0 in n. If c == 0 in n, show that any two solutions differ by a 
constant. 

If Ut and U2 are both solutions of (1 )-(2), v == U\ - U2 satisfies the homogeneous problem 

av 
-=0 
an 

inn 

on S 

MUltiply (3) by v and integrate over n, using (1.7) and (4): 

-L IVvl2 dn+ L cv2 dn = 0 

(3) 

(4 ) 

(5) 

If c < 0 in n, the only way (5) can hold is for v to be identically zero in n, which implies that (1 )-(2) 
has at most one solution. If c == 0 in n, (5) shows that v is constant in n; i.e., the diffe rence of two 
solutions of (1 )-(2) is a constant. 

3.16 Show that if af3 > 0, the mixed problem 

v2 u = f in n 
au 

au + f3 - = g on S an 
has at most one solution in a bounded region fi . 

Again consider the associated homogeneous problem fo r the difference o f two solutions: 

av 
av+ f3-= 0 

an 

in n 

on S 

Multiplying (1) by v, integrating over n, and using (1. 7), we obtain 

or, by (2), 

J Ivvl2dn +J ~ v2 dS =0 
!l sf3 

which is impossible unless v == 0 in n. 

(1) 

(2) 
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3.17 Let n denote the region in R n exterior to the unit sphere: 

n = {(xl' x2' . • • , xn ) : ,2 == xi + x; + ... + x~ > 1} 

Then S, the boundary of n, is the surface of the ball o f rad ius 1 centered at the origin. Show 
that the exterior Dirichlet problem 

inn 

u=l on S 

has infinitely many solutions un less some "behavior at infinity" conditions are imposed. 

By use of the chain rule, one easily shows that the one-parameter family of functions 

lA+ 1 -A n,c2 
veAl,) = ,"-2 

1 + (1 - A) log, n = 2 

(1) 

(2) 

-00 < A < 00, all satisfy (1 )-(2). (Note that only one member of this family, V(l)(r), is harmonic at the 
origin ; it represents the unique solution of the interior D irichlet problem.) 

For n = 2, only Ve l) satisfies the boundedness condition 

lui :s A in D. 

and in Problem 3.19 it is shown that V(1 ) is the unique solution to (1 )-(2)-(3) when n = 2. 
For n ~ 3, every veAl is bounded, but only V (O) satisfies the condition 

u ~ 0, uniformly, as r~ 00 

In Problem 3.18 it is shown that, for n ~ 3, V(O) is the unique solution to (1 )-(2)-(4). 

3.18 Show that the exterior boundary value problem in R n (n 2:: 3) 

has at most one solution . 

v2u = f 
u=g 

u(x)....,. 0 

in n (n unbounded) 

on S 

uniformly, as Ixl""" 00 

The difference, v == UI - U2, of two solutions satisfies 

in D. 

V=o on S 

uniformly, as Ixl ~ 00 

(3) 

(4) 

(1) 

(2) 

(3) 

Let xo be an arbitrary point in D.. From (3 ) it follows that, given E > 0, R can be chosen so that Ixol < R, 
and Iv(x)1 < E for Ixl ~ R. In the bounded region D. defined by the intersection of D. and the ball Ixl < R, 
Theorem 3.2 applies. Since the boundary of D. consists partly of S and partly of the sphere Ixl = R, and 
since v = ° on S while Ivi < E on Ixl = R, it follows that Iv(x)1 < E throughout D.. In particular, Iv(xo)1 < E. 

Since both € and xo are arbitrary, v == 0, or u\ == U2 , in D.. 

3.19 Show that the exterior boundary value problem 

has at most one solution. 

u;u + Uyy = f 
u=g 

lu(x, y)1 =:; A 

in n (n un bounded) 

on S 
in n (A constant) 
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The difference, v == Ul - U2, of two sol utions satisfies 

V xx + V yy = 0 inn 

V=o on 5 

Iv(x, y)l:$ C in n (C constant) 

[CHAP. 3 

(1) 

(2) 

(3) 

Let n' denote the complement of n, so that the union of n and n' is the entire xy-plane. Let Xo = (xo, yo) 
be a point in the interior of 0', le t 

r = [(x - xo?+ (y - YO)2]1/2 

and choose R l sufficiently small so that the ball BR1(XO) is in the interior of n'. Choose R2 sufficiently 
large so that the ball BRz(X{}) intersects the region n in a nonempty, bounded region O. If w is defined by 

log (r/RJ) 
w= C - =--:"--'-

log (R2/RJ) 

then w is harmonic in 0 (by Problem 3.17), w is positive on 5, and w = C on the sphere r = R2 ; hence, 

- w(x, y):$ vex, Y):$ w(x, y) on the boundary of 0 (4) 

Since v and ware both harmonic in the bounded region 0, Theorem 3.2, applied together with (4) to 
the harmonic functions w ± v, shows that 

Iv(x, y) l:$ w(x, y) inO (5) 

To complete the argument, le t (x, y ) be an arbitrary point in O. By substituting (x, y) into (5) and 
allowing R2 -+ 00 with R\ held fixed, we show that v(i, y) = O. Thus, v == 0 in 0, which implies, by the 
arbitrariness of the initial R 2 , v == 0 in n. 

3.20 Let 0 be a bounded region and consider the mixed problem 

v2
u + cu = f 

au 
au + {3 - = 0 

an 

inO 

on S 

Show th at for (1 )-(2 ) to have a solution it is necessary that the consistency condition 

I fv dO = 0 
n 

be satisfied by every solution v to the associated homogeneous problem 

av 
av + {3 -= 0 

an 

in 0 

on S 

Multiply (1) by v and (4) by u, subtract, and in tegra te over n: 

L (vV 2 u- uV2 v)dn = L 1v dn 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

B ut, by (1.8) and the boundary conditions, the left side of (6) vanishes, yielding the consistency 
condition (3). The proof includes the special cases {3 = 0, a ~ 0 (Dirichlet problem) and a = 0, 
{3 ~ 0 (Neumann problem). 

3.21 Show by example that the initial value problem for Laplace's equation 
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Uxx + Uyy = 0 
u(x, 0) = F (x ) 

Uy(x, 0) = G(X) 

- 00 < x < 00, y > 0 

-00< x < 00 
-00< x < 00 

33 

is ill-posed in that the solution does not depend continuously on the data funct ions F and G. 

The following example is due to Hadamard. For F = Fl == 0 and G = G 1 == 0, it is clear that Uj == 0 is 
a solution. For F = F2 == 0 and G = O2 = n- I sin nx, it is easy to verify that 

1 
U2 = 2 sinh ny sin nx 

n 

is a solu tion . The data functions FJ and F2 are identical, and 

uniformly in x. Therefore, the data pairs Fl, OJ and F 2 , G2 can be made arbitrarily close by choosing n 
sufficiently large. Let us compare the solutions UI and U2 at x = 7T/2 for an arbitrarily small, fixed, 
posit ive y and for n restricted to odd positive integral values: 

Because en> increases faster than n 2
, 

(y > O) 

n odd 

The conclusion is that, by choosing n sufficiently large, the maximum difference between the da ta 
fu nctions can be made arbitrarily small, but the maximum difference between the corresponding 
solutions is then made arbitrarily large. In general, initial value problems for elliptic PDEs are ill-posed 
in this fashion. 

Supplementary Problems 

3.22 Verify that each of th~ following functions is everywhere harmonic: 

(c) eX cos y (d) eX sin y (e) 6x + y 

3.23 If U and v are solutions of Laplace's equation, show that uv satisfies Laplace's equation if and only if Vu 
and Vv are orthogonal. 

3.24 If u(x, y) and v(x, y) are the real and imaginary parts of an analytic function f(z), show that uv satisfies 
Laplace's equation. [Hint: F is analytic .] 

3.25 Let the xy- and ~"I"/-coordinates be related by a rotation : 

~ = x cos () + y sin () "1"/ = - x sin () + Y cos () 

where () = const. Show that if U is harmonic in x and y, then u is harmonic in ~ and "1"/. [Hint: Don' t 
differentiate; appeal to the mean-value property.J 
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3.26 Show that the surface mean-value property, (3.1), is equivalent to the volume mean-value property, 

u(Xo) = _1_ J u(x) dER 
V (R) BR(X{) 

(see Example 3.2). 

3.27 (a) Show that if f(z) == f(x + iy ) = u(x, y) + iv(x, y) has a continuous derivative in n, then u and v satisfy the 
Cauchy-R iemann equations, Ux = vy , Uy = -vx , in n . (b) Show that if u and v are C 2 and satisfy the 
Cauchy-Riemann equations, then u and v are harmonic. 

3.28 (a ) In terms of the cylindrical coordinates defined by x = r cos 0, y = r sin 0, z = z, show that 

3.29 

3.30 

/ 3.31 

3.32 

a
2
u a

2
u a

2
u 1 a (au) 1 a2u a2u 

ax2 + ay2 + az2 = ; ar r a; +? ao2 + az 2 

(b) In terms of the spherical coordinates defined by x = r sin 0 cos cp, y = r sin 0 sin cp, z = r cos 0, show 
that 

a
2
u a

2
u a

2
u 1 [a ( au) a ( au) a ( 1 au)] -+-+-=--- - ,zsin 0- +- sin 0- +- ---

ax2 ay2 az2 ,z sin 0 ar ar ao ao acp sin 0 acp 

(a) Show that if u = u(r, 0) is a harmonic function expressed in polar coordinates and v is defined 
by v(p, 0) = u(r, 0), pr = a2, then v is a harmonic function of (p, 0). (b) Let u(r, 0, cp) be a harmonic 
function expressed in the spherical coordinates of Problem 3.28(b) . Show that if v is defined by the 
Kelvin transformation, v(p, 0, cp) = a-1ru(r, 0, cp), pr = a 2

, then v is a harmonic function of 
(p, 0, cp ). (c) The transformation pr = a2 is, in geometrical terms, an inversion in a circle (sphere) of 
radius a. Show that if the circle (sphere) of inversion remains tangent to a fixed line (plane) as the radius 
a approaches co, the transformation becomes a reflection in the fixed line (plane) . Thus, harmonic 
functions in R2 and R3 can be continued by inversion/reflection. 

(a) If a harmonic function is positive on the boundary of a bounded region n , prove that it is positive 
throughout n. (b) Show by example that if n is unbounded , the result of (a) may not be valid. (c) Let u, v, and 
w be harmonic in a bounded region n and let u:5 v :5 w on the boundary of n. Show tha t u:5 v :5 w 
throughout n. 

Prove Harnack's theorem: A uniformly convergent sequence of harmonic functions converges to 
a harmonic function . [Hint: For "harmonic function" read "function with the mean-value 
property." ] 

Show that a C 2 function u is subharmonic if and only if V 2 u ~ 0, and superharmonic if and only if 
V2 U:5 O. 

3.33 (a) If u is subharmonic in the ball ER (xo), u:5 Min ER (xo), and u(xo) = M, show that u = M everywhere 
in ER (Xo). (b) If u is subharmonic.in a bounded region nand u attains its maximum value at an 
interior point of n, show that u is constant in n. 

3.34 Suppose that u is harmonic in a bounded region n and v is subharmonic in n. Show that if u = v on the 
boundary of n, then u > v throughout n . 

3.35 If n is the region 0 < x < 1, 0 < Y < 1, use Theorem 3.8 to show that the solution of 

Uxx + Uyy - 3ux = 5 in n 
u = 0 on S 

satisfies -5/3 < U < 0 in n. [Hint: Consider also the Dirichlet problem for v == u + (5/3)x.] 

3.36 Show that if u satisfies Uxx + eXUyy - eYu = 0 in a bounded region n and if u :5 0 on the boundary of n, then 
u :5 0 throughout n. 
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3.37 If u(r, 8) satisfies 'i,72 u = 0 in r < 1, u(l, 8) = f(O), show that Poisson's integral formula in R2 takes the 
form 

u(r, 0) = 1- r J~ f(¢) d¢ 
27T _~ 1- 2r cos (0 - ¢) + r 

(See Problem 7.13 for a de rivation of this version of Poisson's formula.) 

3.38 If Uxx + Uyy = 0 in x 2 + y2 < 1, and u = y 2 x on x 2 + y2 = 1, find u(O,O). [Hint: The boundary values are 
ant isymmetric about the y-axis.) 

3.40 In the Dirichlet problem 'i,72 u(r, 8) = 0 in r < 1, u(l, 8) = f(8) (-7T < 8:s: 7T), show that a change in the 
da ta function f(O) over an arbitrarily small interval (8" (2) affects the solution value u(r, 8) for all r < 1 
and all 8. 

3.41 Show that the Neumann problem 

does not have a solution. 

3.42 Show that 

uxx + Uyy + 2u = f 
u=O 

in fl.: 0 < x < 7T, 0 < Y < 7T 

on 5 

(a) has no solution if f= 1; (b) has solutions of the form 

u = 2: amn sin mx sin ny 
m.n==l 

L for certain constants amn , if f = cos x cos y. Determine these constants. 

3.43 Show by example that if (i) c = 0 or (ii) c > 0, the boundary value problem of Problem 3.15, with 
f = g = 0, has a nontrivial solution. 

3.44 Let fl. be a bounded region whose boundary 5 consists of nonempty, complementary components 51 and 
~. Show that the boundary value problem 

'i,7
2u = f infl. ...-

u = gl on 51 

au 
-=g2 on 52 
an 

has at most one solution. 

3.45 Suppose L[ ) and fl. satisfy the hypotheses of Theorem 3.9 and consider the boundary value ·problem 
L[u) = f in fl., u = g on S. Let Ul and U2 denote, respectively, solutions corresponding to the data (ft, gl) 
and (/2. g2). Show that fl:s: h in fl. and gl :s: g2 on 5 implies ul:s: U2 in n. 

3.46 If u(x, y) satisfies 

show that u is a constant. 

Uxx + Uyy = 0 

(u; + u~)u = 0 

in x 2 + y2 < 1 

on x 2 + y2 = 1 



Chapter 4 

Qualitative Behavior of 
Solutions to Evolution Equations 

4.1 INITIAL VALUE AND INITIAL-BOUNDARY VALUE PROBLEMS 

Unlike elliptic PDEs, which describe a steady state, parabo lic or hyperbolic evolution equations 
describe processes that are developing in time. Fo r such an equation, the initial state of the system is part 
of the auxiliary data for a well-posed problem. If the equation contains time derivatives up to order k, the 
initial state can be characterized by specifying the initial values of the unknown function and its time 
der ivatives through order k - 1. 

EXAMPLE 4.1 The heat equation serves as the canonical example of a parabolic evolution equation. Problems 
which are well-posed for the heat equation will be well-posed for more general parabolic equations. 

(a) Well-Posed Initial Value Problem (Cauchy Problem) 

u, = K V2 u(x, I) 

u(x , 0) = I(x ) 

lu(x, 1)1 < M 

in Rn, I> 0 

in R n 

in Rn, I> 0 

The boundedness condition at infinity (which is not the most general condition possible) is independent of 
the spatial d imension n. 

(b) Well-Posed Initial- Boundary Value Problem 

u, = K ~u(x, I) 

u(x, 0) = f(x) 

au 
a(x)u(x, I) + (3(x) - (x, I) = g(x, I) 

an 

in n, 1 > 0 

in n 

on S, I>O ; a{3?:O 

Special values of a and {3 leac to boundary conditions of D irichlet or Neumann type (Section 1.3). If n is 
not bounded (e .g., a half-space), then g(x, I) must be specified over the accessible portion of S and 
additional behavior-at-infinity conditions may be needed. 

EXAMPLE 4.2 The wave equation serves as the prototype for hyperbolic evol ution equations. 

(a) WeD-Posed Initial Value Problem (Cauchy Problem ) 

Un = a2 ~u(x, I) 

u(x, 0) = I(x) 

u,(x, 0) = g(x) 

in R", 1 > 0 

in R" 

in R" 

No behavior-at-infinity conditions are necessary in order to obtain a unique solution to the Cauchy problem 
for the wave equation. 

(b) WeU-Posed Initial-Boundary Value Problem 

Un = a2 V2 u(x, I) 
u(x, 0) = f (x) and u,(x, 0) = g(x ) 

au 
a(x)u(x, I) + (3(x) - (x, I) = h ex, I) 

an 
n may be unbounded, with no condition at infinity required. 

36 

in n, 1>0 

inn 

on S, 1 > 0; a{3 ?: 0 
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If the initial conditions in a well-posed initial value or initial-boundary value problem for an 
evolution equation are replaced by conditions on the solution at other than the initial time, the 
resulting problem may not be well-posed, even when the total number of auxiliary conditions is 
unchanged. 

EXAMPLE 4.3 

(a) Backward Heat Equation 

u, = KuxAx, I) 

u(x, T) = f(x) 

u(O, I) = u(l , /) = 0 

0 < x < 1, 0 < 1 < T 

O<x < l 

0<1 < T 

Here the initial condition of the forward problem has been replaced by a terminal condition specifying the 
state at a final time 1 = T. The problem is to find previous states u(x, I) (I < T) which will have evolved at 
time T into the state f(x). For arbitrary f(x), this problem has no solution . Even when the solution exists, it 
does not depend continuously on the data (see Problem 4.9). 

(b ) Dirichlet Problem for the Wave Equation 

u" = a2 u=(x, I) 
u(x, 0) = f(x) 

u(x, T) = g(x) 

u(O, I) = u(l , I) = Q 

0< x < 1, 0 < 1 < T 

O<x < l 

O<x<l 

0 < 1< T 

H ere the initial condition on u, has been replaced by a terminal condition on u. The solution to this 
problem does not depend continuously on the data (see Problem 4.20). 

4.2 MAXIMUM-MINIMUM PRINCIPLES (PARABOLIC PDEs) 

Neither the wave equation nor hyperbolic equations in general satisfy a maximum-mInimum 
principle, but the heat equation and parabolic equations of more general form do so. 

Let n denote a bounded region in R3 whose boundary is a smooth closed surface S. Suppose 
u(x, y, z, t) to be continuous for (x, y, z) in nand O:s t:s T; for short, in n X [0, T]. Let 

Ms == max {u(x, y, z, t): (x, y, z) on Sand O:s t:s T} 

Mo == max {u(x, y, z, t): (x, y, z) in nand t = O} 

M == max {Ms, Mo} 

and let ms' mo' and m denote the corresponding minimum values for u. 

Theorem 4.1 (Maximum-Minimum Principle for the Heat Equation ): G iven that u(x, y, z , t) IS 

continuous in n x [0, T ]: 

(i) If u, - 'i/2u :s 0 in n X (0, T), then u :s M in n X [0, T]. 

(ii) If u, - 'i/2 u ?: 0 in n X (0, T), then u?: m in n X [0, T ]. 

(iii) If u, - 'i/2u = 0 in n X (0, T), then m :s u :s M in n x [0, T]. 

According to Theorem 4.1(iii), the temperatures inside a heat conductor are bounded by the extreme 
temperatures attained either inside initially or on the boundary subsequently. Theorem 4.1 is useful 
in establishing uniqueness and continuous dependence on the data and to obtain various comparison 
results for the solutions to initial-boundary value problems for the heat equation . 

The maximum-minimum principle may be extended in various ways; the next theorem states that 
if an extreme value of a nonconstant solution of the heat equation occurs on the boundary S, then the 
normal derivative of the solution (the heat flux) cannot vanish at that point. 
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Theorem 4.2: Let u be C 1 in fi x [0, TJ and satisfy 

u, - V
2
u = ° in n x (0, T) 

Then, e ither u is constan t in fi x [0, T] or else 

au 
(i) at any point i; on S such that u(E, r) = M, - (i;, r) > 0; 

an 

au 
(ii) at any point E on S such that u(i;, r) = m, - (i; , r) < 0. 

an 

[CHAP. 4 

J Results analogous to Theorems 4.1 and 4.2 hold for parabolic equations more general than the heat 
equation. 

Definition: If the linear differential operator 

n a2[] n a[ ] 
L[ ] == 2: aij(x, t) - -+ 2: bi(x, t)--+ c(x, t)[ 

~j=\ axi ax j ;=\ aXi 
(4.1 ) 

is uniformly elliptic (Section 3.2) in n for each t in [0, T] , then the operator 

~- L[ ] 
at 

is said to be uniformly parabolic in n x [0, T]. 

Theorem 4.3: Let n be a bounded region in Rn with smooth boundary S, and suppose that a/at - L 
is uniformly parabolic in n x [0, TJ, with coefficients aij and bi continuous in 
n x [0, T] and coefficient c == 0. Suppose also that u(x, t) is continuous in n x [0, T]. 
Then the conclusions (i), (ii), (iii) of Theorem 4.1 hold, with V2[ ] replaced by L[ ]. 

Theorem 4.4: Theorem 4.2 remains valid when the operator a/at - V2 is replaced by the uniformly 
parabolic operator a/at - L of Theorem 4.3. 

The conclusions of Theorems 4.3 and 4.4 regarding the solution to u, - L [u] = ° continue to hold 
if c(x, t):::; ° and M ~ O-and even in another case (see Problem 4.21). 

4.3 DIFFUSIONLIKE EVOLUTION (PARABOLIC PDEs) 

Two properties characterize the time-behavior of systems modeled by parabolic PDEs. To 
describe the second of these, we introduce the notion of a n "evolution operator" that takes the initial 
state u(x, 0) of the system into the evolved state u(x, t). 

Infinite speed of propagation. At any time t > ° (no matter how small), the solution to a parabolic 
initial value problem at an arbitrary location x depends on all of the initial data. (See Problem 4.7.) 
As a consequence, the problem is well-posed only if behavior-at-infinity conditions are imposed. 

Smoothing action of the evolution operator. A solution u(x, t) to the Cauchy problem for the heat 
equation is, for each x and all t > 0, infinitely differentiable with respect to bo th x and t. (See Problem 
4.8.) 

There is an interesting consequence of the smoothing property of the evolution operator for the 
heat equation. A sectionally continuous initial state u(x, 0) can always evolve forward in time in 
accordance with the heat equation . However, if it is not infinitely differentiable with respect to both x 
and t, then it cannot have originated from an earlier state u(x, t), t < O. Thus the heat equation is 
irreversible in the mathematical sense that "forward" time is distinguishable from "backward" time. 
Correspondingly, any physical process for which the heat equation is a mathematical model is 
irreversible in the sense of the Second Law of Thermodynamics. 
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In an initial-boundary value problem for a parabolic PDE, the solution will be smooth for 
all t > ° and all x inside the domain. In order for the solution to be smooth on the boundary and at 
t = 0, it is necessary to impose smoothness and compatibility conditions on the data. 

EXAMPLj 4.4 The problem 

u,(x, t) = u= (x, t) 

u(x, 0) = I(x ) 
u(O, t ) = get ) and u(L, t ) = h(t) 

O<x < L, t > O 

O<x < L 
t>O 

has a solution u(x, t) which is going to be infinitely differen tiable with respect to both x and t for 0 < x < L and 
t > O. In addition, the soJution will be continuous with respect to x and t for O:s X :s Land t ~ 0, 
provided (i) I(x) is continuous for O:s X :S L , and get) and h(t) are continuous for t ~ 0; (ii) f(O) = g(O) and 
f (L ) = h (O) (compatibility of initial and boundary data). 

Additional conditions on the smoothness and compatibility of f, g, and h will result in additional 
smoothness of u(x, t) for O:s x:s L, t ~ O. If such conditions are lacking, the solution may satisfy the initial and 
boundary conditions in a mean-square but not a pointwise sense. 

4.4 WAVELIKE EVOLUTION (HYPERBOLIC PDEs) 

The following two properties contrast with those of diffusionlike evolution. 

Finite speed of propagation. A solution to an initial value problem for the wave eq uation 
corresponding to initial data that vanish outside some bounded region will itself vanish outside a 
region which is bounded but expands with time. The rate at which this expanding region grows can 
be interpreted as the (finite) speed of propagation of the effect modeled by the wave equation. 

Lack of smoothing action in the evolution operator. The solution of a hyperbolic initial value 
problem cannot be smoother than the ini tial data; it may in fact be less smooth than the data. When 
irregularities in the solution to a hyperbolic equation are present, they persist in time and are 
propagated along characteristics (d. Problem 2.10). 

Finite propagation speed has various consequences. For instance, at any point in the spatial 
domain at any finite time t > 0, the solution to a hyperbolic initial value problem depends on only a 
portion of the initial data. The set of locations x such that the solution value assumed at x at time t = 0 
affects the value of the solution at (xo, to) constitutes the domain o/ dependence for (xo, to)· For each ("0, to) 
the domain of dependence is of finite extent; consequently, the initial value problem is well-posed 
without the specification of behavior at infinity . 

The lack of smoothing action in wavelike evolution is related to the fact that physical processes 
modeled by the wave equation are thermodynamically reversible. An initial state u(x , O) that is 
lacking in smoothness can evolve forward in time in accordance with the ave equation and can, as 
well as not, have originated from an earlier state . Thus we can solve forward in time to find 
subsequent states into which u(x,O) will evolve, or we can solve backward in time to find earlier 
states from which u(x,O) has evolved. 
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Solved Problems 

4.1 Prove Tieorem 4.1. 

Suppose that u(x, y, z, t) is continuous in n x [0, TJ and satisfies 

in O x (0, T) 

For E > 0, let vex' y, z, t) = u(x, y, z, t) + E(X2 + y2 + Z2). Then, 

in Ox (0, T) (1) 

Suppose now that v assumes its maximum value at (xo, Yo, Zo, to), where (Xo, Yo, zo) is an interior point of 
o and 0 < to s T. Then, at (xo, Yo, zo, to), 

V, ;;",0 and 

which contradicts (1 ). Hence, V must assume its maximum value for (x, y, z) on Sand 0 s t S T, or else 
for t = ° and (x, y, z) in O . 

The definition of v implies that 

in nx [0, TJ 

where R 2 = max (x 2 + y2 + Z2). Since E > 0 is arbitrary, it follows that uS M in n x [0, TJ. Thus Theorem 
s 

4.1(i) is proved. 
Theorem 4.1(ii) is proved by applying Theorem 4.1(i) to the function -u ; then T heorems 4.1(i) and 

4.1(ii) toge ther imply Theorem 4. 1(iii). 

4.2 Let n, S, T be as previously described and consider the problem 

u, - V2u = <l>(x, y, z, t) in n x (0, T) 

u(x, y, z, 0) = F(x, y, z) in n 
u(x, y, z, t) = f(x, y, z, t) in S x [0, TJ 

Show that if this problem has a solution u that is continuous in n x [0, T], then this solution is 
unique. 

Method 1 

The difference vex, y, z, t) "" UI(X, y, z, t) - U2(X, y, z, t) of two continuous solu tions is itself con-
tinuous and satisfi es 

v,- VZv = 0 

vex, y, Z, 0) = 0 

vex, y, z, t) = 0 

in 0 x (0, T ) 

inO 

in S x [0, TJ 

(1) 

(2) 

(3) 

For the function v, (2) implies rno = Mo = 0, and (3) implies rns = Ms = O. Hence, rn = M = 0, and, by 
Theorem 4.1 (iii), V == o. 
Method 2 

For 0 ~ t ~ T, define the energy integral 

(4) 

where v is the difference functi on of Method 1. Clearly, J (t ) ;;", 0 and, by (2), J(O) = O. In addi tion, 

1'(/) = J 2vv, dO=2 J v V2 vdO 
n n 



CHAP. 4] SOLUTIONS TO EVOLUT ION EQUATIONS 41 

where we have used (1) and (1.7). By (3), the boundary integral vanishes, leaving 

(5) 

Th us 1(1) is nonincreasing, which fac t, along with 1(0) = 0 and 1(1);:: 0, implies that 1(1) == O. But then , the 
integrand v(x, y, z, t?in (4) being nonnegative and continuous with respect to all arguments, it follows that v 
is identical1y zero in fi for t ;:: O. 

The energy integral method may be extended to the case of Neumann or mixed boundary conditions, to 
which Theorem 4.1 is not directly applicable . See Problem 4.16. 

4.3 For the initial-boundary value problem of Problem 4.2, let u l and u2 denote solutions 
corresponding to data {<I>I' P" II} and {<I>2' F2, 12}, respectively. Suppose that <1>1 ~ <1>2 in 
n x (0, T), FI ~ F2 in n, II ~ 12 in S x [0, T]. Prove that u l ~ u2 in n x [0, T]. 

Letting v == UI - U2, we have 

V t - VZv = <1>1 - <1>2 S 0 in.a x (0, T) 

In addition, for the function v, 

Mo = max {F1 - F2 } s 0 
n 

Ms = max {fl - Iz} s 0 
SX[O. TJ 

whence M s O. Then Theorem 4.1(i) implies that v sO, or Ul s U2, in 0 x [0, T]. 

4.4 For K , T positive constants, suppose that v(x, I) satisfies 

V, = KVxx 0< X < 1, 0 < 1< T 

v(x, 0) = 0 O<x<l 

vx(O, I) = g(/) 0<1< T 

vx(1, I) = 0 0 < 1< T 

(1) 

(2) 

(3) 

(4 ) 

If g(O) = 0 and g'(/) > 0 for I> 0 (whence g(/) > 0 for t > 0), show tha t for 0 ~ x ~ 1, 0 ~ 1 ~ T, 

(a) v(x, t)~0 (b ) vx(x, t)~0 (c) vxx(x, t):=;O 

(a) Apply Theorem 4.3 (or, after changing the time variable, T heorem 4.1) to (1 ) in order to conclude 
that 

v(x, t)sM Osx s l , Osts J; 

The outward normal derivative of v at x = 0 is - vAO, t) = - g(t) < 0; hence, by Theorem 4.4 (or 
Theorem 4.2), the maxim um M cannot occur at x = O. The outward normal deriva tive at x = 1 is 
vAl, t) = 0; so the maximum cannot occur at x = I either . It follows that M = Mo = 0, whence 

v(x, I) S 0 Osxsl,Os t s T 

(b) Let u(x, t) == vAx, t). Differentiate (1 ) with respect to x, to find 

Vb: = KVxxx o < x < 1, 0 < t < T (5) 

If v is sufficiently smooth, v", = Vxt = u" and (5) becomes 

U t = KUxx 0 < x < 1, 0 < 1 < T (6) 

which is the same POE as is satisfied by v. 

Theorem: If a function satisfies a linear POE with constant coefficients, its derivatives satisfy that 
same POE . 

Equations (2), (3), and (4) imply the following auxiliary conditions for (6): 
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u(x, 0) = 0 

u(O, t) = g(t) 

u(l , t) = 0 

O< x < l 

0< t< T 

0< t< T 

For the system (6) through (9), Theorem 4.3 gives 

0= m $ u(x, t) 

which is what was to be shown. 

(c) Define w(x, t) == v, (x, t). Then, as in (b), 

w, = kw"" 

wAO, t) = g'(t) 

wA1, t) = 0 

In addition, from (a), vex, t) $ 0 = v (x, 0). Hence, 

0$ x $ 1, 0 $ t $ T 

0< x < 1, 0 < t < T 

0< t< T 

0 < t < T 

. vex, t) - vex, 0) 
v, (x, 0) = hm <0 

1_0+ t 

or w(x, 0) $0 O<x<l 

[CHAP. 4 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

A pplying Theorem 4.3 to system (10) through (13), we see that the maximum of w must occur at 
t = 0 in 0 < x < 1; that is, 

v,(x, t)= w(x, t)$M$O O$X $1, 0$ t$ T 

Then, since K > 0, v",,(x, t) = K-1V,(X, t) $ 0, for 0 $ x $ 1 and 0 $ t $ T. 

4.5 Making use of the results of Problem 4.4, plot v(x, t) versus x for several values of t. 

"Profiles" for three time values are plotted in Fig. 4-1. The curves are below the x-axis, in 
accordance with Problem 4.4(a). On x = 0 we have v,(O, t) $ 0 (Problem 4.4(c)) and vx(O, t) = g(t); thus, 
the starting value is a negative, decreasing function of time, while the starting slope is a positive, 
increasing function of time. The curves are concave (Problem 4.4(c)), and have final slope zero 
(vAl, t) = 0). 

Inspection of Fig. 4-1 suggests that, for each fixed t in [0, T], 

v(O, t) $ vex, t) $ v(l, t) 

and, indeed, this follows at once from Problem 4.4(b). 

v(x, /) 

Fig. 4-1 

x 
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Let u (x, t) be a solu tion of the nonlinear problem 

u,(x, I) = a(u) u,,,(.x, t) 0< x < 1, 0 < t < T (1) 

u (x, 0) = 0 0<x<1 (2) 

ux(O, t ) = g(/) O<t< T (3) 

ux (l, t ) = 0 0< t< T (4) 

Assume that g(t) is continuously differentiable , with g(O) = 0 and g'(t) > 0 for t > O. In addition, 
assume that a (u ) is continuous and satisfies 

for all u 

Let Vj(x, t) ( i = 1,2) denote the solutions of the linear problems 

Prove that 

Vj, ,(x, t) = {3 jVj,xx(x, t) 

v;(x, 0) = 0 

v~X<O, t ) = g(t) 

vi,x(1 , t ) = 0 

Vix, t) s:; u(x, t) s:; v 1(x, t ) 

0< x < 1, 0 < t < T 

0 < x<1 

O< t < T 

O< t < T 

0 :5 x :5 1, 0 s:; t :5 T 

Define hex, t) == V2(X, t) - u(x, t) (0 < x < 1, 0 < t < T). Then hex, t) must satisfy 

h,(x, t) - a (u(x, t» hxX<x, t ) = [,82 - a(u(x, t»]v2.xAx, t) oS 0 

where the inequality folIows from (5) and Problem 4.4(c). Further, we have 

h(x, 0) = 0 

hAO, t ) = hAl, t) = 0 

O< x < l 

O< t < T 

(5) 

(6 ) 

(7) 

(8) 

(9 ) 

For the problem (7)-(8 )-(9), Theorem 4.4 and (9) rule out a b undary maximum for h. Thus, 
M = Mo = 0, and Theorem 4.3 implies that hex, t) oS 0; or 

V2(X, t) oS /I (x, t) OoSx oS 1, OoS toS T 

A similar consideration of the di fference k(x, t) == u (x, t) - Vl(X, t) yields the other half of (6 ). 

4.7 As is shown in Problem 4.17, the function 

u(x, t) = , ~ foo F(y ) exp [(x - yf dy 
. Y 47Tt - 00 4t 

solves the initial value problem 

u,(x, t ) = uxx (x, t ) 

u(x, 0) = F (x) 

-00 < x < 00, t > 0 

- 00 < x <00 

(1) 

(2) 

(3) 

Verify the infinite speed of propagation associated with diffusion like evolution by showing that 
(a ) for each t > 0 and all x, u (x, t) depends on all the initial data F (x ), -00 < x < 00 ; (b) for the 
particular data 

F(x ) = { ~ Ixl < ~ 

Ixl > € 

u (x, t) > 0 for all x and every positive t, no matter how small the positive number ~. 

(a) For each t>O, 

[ 
(X-y?] 

exp - - 4-t - >0 for all x and y 

(4) 
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It follows from (1) that for each t > 0 and all x, the value u(x, t) incorporates every F(y), 
-00< y <00. 

(b) The change of variable 

transforms (1 ) into 

But, by (4), 

so that (5) becomes 

x-y 
z= - -

V4t 
(t > 0, -00 < x, y < 00) 

1 00 

u(x, t) = - f e- z2 F(x - zV4t) dz 
V; _ 00 

F(x - zV4t) = { ~ (x - E)/V4t < z < (x + E)/V4t 
all other z 

-00 < x < 00, t > 0 

(5) 

(6) 

Since e- z2 > 0 for all real z, it follows that u(x, t) > 0 for all x and t. That is, the solution u(x, I) is 
immediately positive everywhere, even though F is zero everywhere except in the arbitrarily small 
interval (-E, E). 

Note, however, that because e- z2 is monotone decreasing, (6) implies that 

1 (X+E X-E) [(X-E)2] E [(X-E)2] u(x, I) < - - - - - - - exp - --- = -- exp - ---
V; V4t V4t 41 y:;;j 4t 

Thus, even though the influence of the initial state propagates with infinite speed, the strength of 
this influence dies out very rapidly (as e-,2) as the distance (r = Ix - EI) from the set whe re F o;i 0 
increases. We are therefore able to claim that although solutions to the heat equation exh ibit a 
nonphysical property (infinite speed of propagation), they do behave in a manner that is an 
acceptable approximation of reality. Practically speaking, effects governed by the heat equation 
propagate with finite speed. For more on this matter, see Problem 7.8. 

4.8 Let f(x) denote a sectionally continuous function in (0, 7T). Then, using separation of variables 
(Chapter 8; see also Problem 4.18), one shows that 

( ) '2. 1, -n2
, • U x, t = n e sm nx 0< x < 7T, t > 0 (1) 

n = l 

is the solution to 

u, (x, t) = uxx(x, t) O< X < 7T, t>O (2 ) 

u(x, 0) = f(x) O<X<7T (3) 

u(O, t) = U(7T, t) = 0 t > O (4) 

provided 
2 7T 

(n = 1,2, ... ) (5) fn = - J f(x) sin nx dx 
7T 0 

Demonstrate the smoothing action of the evolu tion operator in this case. 

At t = 0, (1) reduces to 

u(x, 0) = 2: In sin nx 
n - l 
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and this series converges pointwise to Fo(x ), the odd 21T-periodic extension of f(x), provided Fo and F~ 
are sectionally cont inuous (see Problem 6.1(b». 

For each n = 1,2, ... and for each positive t, 

Ifn e - n2, sin nx l::s; (constant) e-n2,::s; (constant) (e-'t 

and the geometric series is convergent. It follows from the Weierstrass M-test that, for each fixed t > 0, 
the series in (1) converges absol utely and unifo rmly to a continuous function of x. The same can be said 
of the series obtained from (1 ) by term-by-term differentiation any number of times with respect to x 
and/or I . We conclude that the series in (1) represents a function which is not just continuous but is 
infinitely differentiable with respect to both x and t for t > 0 and 0 < x < 1T. 

The evolution perator 'l:" 

'l:,[u(x,O)J = u(x, t) t>O (6) 

can be characterized in terms of the Fourier sine-series coefficients of the states, as follows: 

t>O (7) 

We have seen that whereas the fn represent a function of x that is not necessarily even Co, their images under 
'l:, represent a function that is Coo. It is characteristic of solutions to the heat equation (and parabolic 
equations in general) that u(x, t) is an extremely smooth function for t > 0, even if u(x, 0) is not particularly 
smooth. 

For parabolic equations having variable coefficients, the smoothing action of the evolution operator 
may be limited by a lack of smoothness in the coefficients. 

4.9 Show that the backward heat problem is ill-posed, as asserted in Example 4.3(a). For 
simplicity, choose K = 1. 

Write Uo(x) =" u(x, 0), the initial state (temperature). Then (d. Problem 4.8), the function 

u(x, t) = L u~n) e -n2.".2, sin n1TX 0 < x < 1, 0 < t < T (1) 
"=1 

where 

1 

Ubn
) = 2 fo uo(x) sin n1TX dx (n = 1,2, ... ) (2) 

will solve the problem, provided the u~n) are such that 

f(x) = L ubn)e-
n2.".2T sin n1TX O<x < l (3 ) 

n - l 

But the series in (3) converges uniformly to an infinitely differentiable function of x, whatever the ubn
). It 

follows that no solution exists when f( x ) is not infinitely differentiable. 
In the case where f(x) is infinitely differentiable, the solution does not depend continuously on the 

data. If, for instance, 

sin N1TX 
f(x)=-N-

the unique solution to the problem is 

1 
u(x, t) = N e N2 .".2(T-t) sin N1TX 

(N = integer) 

0 < x < 1, 0 < t < T 

For large N, on the one hand, If(x)1 becomes uniformly small; that is, the data function differs by as little 
as we wish from the data function f =" 0, to which corresponds the solution u == O. On the other hand, 
lu(x, t)1 grows with N; i.e ., the solution does not remain close to u == O. Thus, there is no continuity of 
dependence on the data. 
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4.10 Show that the solution to 

UII(x, t) = a 2uxx (x, t) 

u(x, 0) = F(x) 

u,(x, 0) = G(x) 

,may be given in the D' A /em bert form 

-00 < x < 00, t > 0 

-00< x <00 

-00< x <00 

1 1 x+aJ 

u (x, t ) = - [F(x + at) + F(x - at)] + - J G(s) ds 
2 2a X-aJ 

(1) 

(2) 

(3) 

(4 ) 

We shall obviously want to apply the theory of Chapter 2. In terms of the characteristic coordinates 

the problem takes the form 

(= x + at 

Ut-q((, TJ) = 0 

u((, () = F(() 

1 
u.((, ()- u.,((, g)= - GW 

a 

TJ = x - at 

-00 < TJ < ( < 00 

-00< «00 

- 00< «00 

Integrating (5) in two steps: u. = l/J(() and 

Applying conditions (6) and (7) to (8): 

<I>(g) + 'It(() = F(g) 

1 
<1>'(0 - 'It'(() = - G(() 

a 

Solving (9) and the integral of (10) for the unknown functions: 

<1>(0 = ~ [F(()+~ r G(s) dsJ 

'It(TJ) = ~ [F(TJ)-~ r G(s) dsJ 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Substitution of (11) and (12) in (8), and transformation back to the variables x and t, gives (4). Note 
that whereas the integral in (4) effects one order of smoothing of G (the initiaf data for u,), there is no 
smoothing of the initial state F; contrast this with the heat equation. 

4.11 For the hyperbolic problem (1)-(2)-(3) of Problem 4.10, (a) describe the domain of 
dependence of a point (xo, to), where to > 0; (b) if F and G both vanish for Ixl > 1, show that 

u(l + a, t) = 0 for O:s t:S 1 

and interpret this result. 

(a) By (4) of Problem 4.10, u(xo, t) depends on the values of F for the two arguments Xo+ ato and 
Xo - ato, and on the values of G over the interval (xo - ata, Xo + ato). Thus, the domain of 
dependence of (Xo, to) is the closed interval [xo - ato , Xo + ala], which is precisely the portion of the 
x-axis cut off by the two characteristics 

x+at=(o 

that pass through (xo, to). See Fig. 4-2. 

x - at = TJo 
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x 

Domain of dependence 

Fig. 4-2 

(b) Because F and G each vanish outside Ixl < 1, u(l + a, t) must remain zero so long as the domain of 
dependence of the point (1 + a, t), [1 + a - at, 1 + a + at], remains disjoint from (-1,1); that is, so long 
as 

1 + a - at 2: 1 or 

Now, the distance from the point (1 + a, 0) to the interval (-1,1) is just a units. Consequently, 
our result may be interpreted to mean that the influence of the initial data requires just 1 unit of 
time to traverse this distance; i.e., the propagation speed is a units of distance per unit of time . 

4.12 Consider the following modification of the n -dimensional wave equation : 

(1) 

where cp ..• , cn denote real constants. Show that for an arbitrary function F in C and an 
arbitrary unit vecto r (It = (a I' ... , an)' 

u(x, t) = F (a' X - f..tt ) (2) 

satisfies (1), provided f..t satisfi es 

(3) 

Substitute (2) in (1), to fi nd 

(1L 2
- ± cyay )F"(Ct . x -lLt) = 0 

}- l 

Evidently, if IL satisfies (3), then u(x, t) as given by (2 ) is a solution of (1), with no further restrictions on 
F or on Ct. 

For each fixed t, (It . x = ILt + const. is the equation of a plane in R" having normal vector Ct. For this 
reason, (2) is called a plane wave solution to (1 ). The function F is called the waveform and (It represents 
the direction in which the wave progresses. While both F and Ct are arbitrary, the wave velocity IL 
depends on Ct via (3). Evident ly, (1) models wave propaga tion in a non isotropic medium. 
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4.13 Consider the initial- boundary value problem 

ul1(x, t) = a2uxx (x, t) 

u(x, 0) = F (x) 

u,(x, 0) = G(x) 

u .. (O, t) = u .. (L, t) = 0 

O<x<L, t > O 

O< x < L 

O<x < L 

t > O 

Show by the energy integral method (cf. Problem 4.2) that if this problem has a solu tion, then 
the solution is unique. 

Let Ul(X, t) and U2( X, t ) denote two C 1 solutions and let vex, t) == Ul(X, t) - U2(X, t) for 0 < x < L, t > O. 
Then vex' t) satisfi es the initial- boundary value problem with F(x) = G(x) = 0 for 0 < x < L. Defining 
the energy integral in this case as 

we have 

But 

Therefore, 

E '(t) = fa L [VI (x, t)Vtt(x, t) + a 2 vx(x, t) vx,(x, t)] dx 

1 x~L 

a2 E'(t) = vAx, t )v,(x, t) I X ~O 
and the boundary conditions imply that E'(t) = O. The initial conditions imply that E (O) = 0; con­
sequently, E (t) = 0 for t ~ O. Bu t then the CO functions v, and Vx must be identically zero, so that v ex' t ) 

is a constant. Because v (x, 0) = 0, this constant must be zero. 
If the original boundary condi tions are replaced by the conditions u (O, t) = u(L , t) = 0, then 

v,(O, t) = v,(L, t) = 0 

and the uniqueness proof goes through as before. 

4.14 Let f(x) and g(x) be defined on [0, 7T] , where they are sectionaUy continuous with sectionally 
continuous derivatives. Let Fo and Go denote the odd 27T-periodic extensions of f and g to the 
entire real axis (Problem 6 .1(b». (a) Show that the solution of the initial- boundary value 
problem 

is given by 

U/t(X, t) = a2u.u(x, t ) 

u (x, 0) = f(x) 

u,(x, 0) = g(x ) 

u (O, t) = u( 7T, I) = 0 

O< X<7T, t > O 

O< X < 7T 

O< X < 7T 

t > O 

1 _ _ 1 x+at_ 

u (x, t) = - [Fo(x + at) + Fo(x - at)] + - J Go(s) ds 
2 2a x - at 

(1 ) 

(2 ) 

(3) 

(4) 

(5) 

(b) Relate the smoothness of the solution u(x, t ) to the moothness of the data f, g and to the 
compatibility between the initial data and the boundary conditions (4). 
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(a) According to Problem 4.10. (5) is the solution of the following initial value problem: 

u,,(x, t) = a 2 uxx (x, t) 

u(x, 0) = Fo(x) 

Ut(x,O) = Go(x) 

-00 < x < 00, t > 0 
- 00< x < 00 

-00 < x <00 

Since Fo(x) = [(x ) and G,,(x) = g(x), for 0 < x < 7T, the expression (5) satisfies the PDE (1), 
together with the ini tial conditions (2) and (3). Moreover, for t > 0, 

1 - - 1 fat -
u(O, t) = - [Fo (al) + Fo(- at)] + - Go(s) ds = 0 

2 2a -at 

since Fo and Go are odd functions. Similarly, using the 27T-periodicity, u( 7T, t) = 0 for t > O. Thus 
u(x, t) as given by (5) satisfies (4) as well. In Problem 4.13 we proved that the problem (1) through 
(4) has at most one solution; therefore, (5) is the solution. 

(b) Differentiation of (5) gives 

(m, n = 0, 1,2, . . . ). Evidently, the continuity of u(x, t) and its derivatives is determined by the 
smoothness of Fo and Go, which, in tum, is dependent on the smoothness of [and g in [0, 7TJ, and 
the compatibility of [ and g with the boundary condi tions (4). 

In Problem 6.4 it will be shown that Fo (x) and all its derivatives through order Mare 
continuous for all x if and only if: 

(i) [ (x) and all its derivatives through order M are continuous on [0, 7T] ; 
(ii) for all nonnegative integers n such that 2n :$ M, 1'2n)(0) = [ (2n)( 7T) = O. 

Now (ii) is just the condition that [ and g and their even-order derivatives satisfy the boundary 
conditions; this is what is meant by compatibility between the initial data and the boundary 
conditions. If , for some M > 0, (i) or (ii) is no t satisfied by both [ and g, the solution u(x, I ) will 
experience some sort of discontinuity along a characteristic. For example, if g(O) 0;£ 0, then Go(x) is 
discontinuous at every integer multiple of 7T, which means, by (6 ), that u,(x, t) and ux(x, t) 
experience discontinuities for (x, t) such that x ± at = k7T (k = integer). 

Supplementary Problems 

4.15 Determine the most general spherically symmetric solution to the three-dimensional wave equation , 
UtI - a 2 VZu = O. [Hint : Find the PDE satisfied by vCr, t) == ru(r, t) .] 

4.16 In Problem 4.2, let the boundary condition be replaced by 

au 
a(x, y, z, t)u(x, y, z, t) + f3(x, y, z, t) - (x, y, z, t) = [(x, y, z, t) an 

where the continuous functions a and f3 satisfy 

af3 2': 0 

in S x [0, T]. Prove uniqueness by the energy integral method. Hint: 

2 av av 
av + f3v - = 0 ::} v - = 0 an an 

in S x [0, T ] 
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4.17 (a) Differentiate under the integral sign to verify that 

1 ~ 

u(x, t) = --J F(y) e - (x -y )2/4 , dy 
V"4;t _= 

satisfies u, = UXX • (b) Infer from (5) of Problem 4.7 that if F is continuous, lim u(x, t) = F(x). 
1_0+ 

4.18 For N a positive integer, let 
N 

UN(X, t) == L en e-n2~2 , sin n7TX O< x < 1, t>O 
"-, 

Show that UN satisfies 

U t = Uxx 

u(O, t) = u(l, t) = 0 

for all choices of the constants en. 

4.19 (a) Find plane wave solutions for 

O< x < l, t > O 

t > O 

- co < x, y < co, t > 0 

(b) Are there any values of p for which u(x, y, t) = sin (x/a ,) cos (y/a2) sin pt is a (standing wave) solution 
of the above equation? 

4.20 Consider the problem 
Utr = U xx 

u(x, 0) = u(x, T) = 0 

u(O, t) = u (l , t) = 0 

0< x < 1, 0 < t < T 

O<x<1 

O< t<T 

Show that if T is irrational, the only solution is u(x, t) = 0; whereas if T is rational, the problem has 
infinitely many nontrivial solutions. Infer that the solution to the Dirichlet problem for the wave 
equation does not depend continuously on the data. 

4.21 Prove that the conclusions of Theorems 4.3 and 4.4 regarding the solution to u, - L[uJ = 0 continue to 
hold if we replace the hypotheses that M ~ 0 and c(x, t):5 0 with the hypotheses that M = 0 and c(x, t) is 
bounded above (but may assume posi tive values). [Hint : Let c(x, t):5 A, and let u(x, t) = eAtv(x, t).] 

4.22 Let F(x, t) denote a function which is defined and continuous for x in R", t > o. For T a fixed positive 
parameter, let VF(X, t; T) denote the solution of 

Show that 

satisfi es 

Vn (X, t) = Vlv(x, t) 

vex, T) = 0 

v,(x, T) = F(x, T) 

u(x, t)== f VF(X , t; T)dT 

un(x, t) = Vlu(x, t) + F(x, I) 

U(X, 0) = Ut(". 0) = 0 

x in R", 1> 0 

x in R" 

This observation is known as Duhamel's principle. 

4.23 Derive a version of D uhamel 's principle for the heat equation. 

4.24 Use Duhamel's principle to solve 

un = a2u:a + I(x) 

u(x, 0) = u,(x, 0) = 0 

x in R', 1> 0 
x in R ' 

(1) 

(2) 

(3 ) 

(4) 

(5) 

(6) 



'Chapter 5 

First-Order Equations 

5.1 INTRODUCTION 

First-order PDEs are used to describe a variety of physical phenomena. 

EXAMPLE 5.1 

(a) The first-order system 

(pU)x + P, = 0 

1 
UUx + u, = - - px 

p 

upx + P, = - 'Ypux 

governs the one-dimensional adiabatic flow of an ideal gas with velocity u, density p, and pressure p. 

(b) The voltage v and current i in a transmission line satisfy the first-order system 

ai av 
-+C-=-Gv 
ax at 
av ai 
-+L-=-Ri 
ax at 

where R, L, C, and G denote respectively resistance, inductance, capacitance, and leakage conductance, all 
per unit length. 

(c) Water flow with velocity v and depth u in a slightly inclined, rectangular, open channel is described by the 
first-order system 

vUx + uVx + U , = 0 

gux + VVx + V, = g(So- Sf) 

where So is the bed slope, Sf measures the frictional resistance to flow, and g is the gravitational 
acceleration constant. In the equations, the channel width has been taken as the unit of length . 

(d) Population density u at time t of age-a individuals satisfies the McKendrick-von Foerster equation, 

u, + Ua = -c(t, a, u) 

where C(/, a, u) represents the removal rate at time I of age-a individuals. 

5.2 CLASSIFICATION 

The general quasilinear system of n first-order PDEs in n functions of two independent variables is 

~ au ~ au 
L- ajj ~+ L... bij -' = ci 
j= l ax j=l ay 

(i = 1,2, . .. , n) (5.1) 

where ajj' bij , and ci may depend on x, y, up u2 ' . . • , un' If each aij and bij is independent of 
up u2 ' .. • , un' the system (5.1) is called almost linear. If, in addition, each ci depends linearly on 
up u2 ' • • • , un' the system is said to be linear. 

EXAMPLE 5 .2 The systems of Examples 5.1(a) and (c) are quasilinear; that of (b) is linear; and that of (d) is 
almost linear. 

51 
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In terms of the n x n matrices A = [ajjl and 8 = [bjj ], and the column vectors u = (up u2' ... , UJT 

and c = (c j , c2 ' ... , Cn)T, the system (5.1 ) can be expressed as 

(5.2) 

A system of equations of the form 

a au 
- F(u)+ - = 0 
ax ay 

(5.3) 

is called a conservation-law system ; y usually represents a time variable. 

EXAMPLE 5.3 For the case So - Sf = 0, the system of Example 5.1(c) may be written in conservation form as 

(uv)x+ u, = 0 

(gu + !v2 )x + v, = 0 

A system of equations of the form 

a a 
- F(u)+ - G(u) = 0 
ax ay 

(5.4) 

is said to be in divergence form . Clearly, any conservation-law system is in divergence form, with 
G(u) = u. 

EXAMPLE 5.4 The system of Example 5.1(a) is expressible in divergence form as 

p, = 0 

(pu), = 0 

(
PU

3 

+ YUP ) + (PU
2 

+ _ P_ ) = 0 
2 y-1x 2 y-l, 

If A or B is nonsingular, it is usually possible to classify system (5.2) according to type. Suppose 
det (8 ) ¥- 0 and de fi ne a polynomial of degree n in A by 

Pn(A)==det(AT -ABT)= det(A- AB) (5.5) 

System (5.2) is classified as 

elliptic if Pn (A ) has no real zeros. 

hyperbolic if Pn (A) has n real , distinct zeros; or if Pn (A ) has n real zeros, at least one of which 
is repeated, and the generalized eigenvalue problem (AT - A B T)t = 0 yields n 
linearly independent eigenvectors t . 

parabolic if Pn(A) has n real zeros, at least one of which is repeated, and the above generalized 
eigenvalue problem yields fewer than n linearly independent eigenvectors. 

An exhaustive classification cannot be carried out when Pn{A ) has both real and complex zeros. Since 
a jj and bjj are allowed to depend on x, y, u j , u2 ' .. . , un' the above classification may be position 
and/or solution dependent. 

EXAMPLE 5.5 

(a) All four systems of Example 5.1 are hyperbolic. 

(b) If the Cauchy-Riemann equations, Ux = Vy , Uy = - vx , are written in the form (5.2), then 

A = [~ ~] 
and P2(A) = A 2 + 1, which has no real zeros. Thus, the Cauchy-Riemann equations are elliptic (as is 
Laplace's equation for either u or v). 
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(c) If u satisfies the system of equations u, = Vy, Uy = v, then u satisfies the heat equation, u, = Uyy. With t 
playing the role of x in (5.2), we have 

A = [~ ~] 
and P2(A) = A 2 . A ll eigenvectors corresponding to tbe real do uble root A = ° are scalar mUltiples of [0, 1 r . 
Hence there is just one linearly independent e igenvector and the first-order system is parabolic. 

The method of characteristics for linear second-order PDEs (Chapter 2) may be usefully 
extended to hyperbolic, but not to elliptic or parabolic, first-order systems. For this reason, the 
remainder of this chapter will deal almost exclusively with hyperbolic systems. 

5.3 NORMAL FORM FOR HYPERBOLIC SYSTEMS 

If in (5.2), Aux + Buy = c, the coefficient matrices A and B are such that A = DB, for some 
diagonal matrix D, then the system can be written in component form as 

n ( au au) 2.: b. d ..:...:.:L+_J = c· 
j = ! lJ "ax ay I 

(i = 1, 2, ... , n) 

wherein the ith equation involves differentiation only in a single direction-the direction dx/dy = dii • 

We say in this case that (5.2) is in normal form. When a system is in normal form, techniques of 
ordinary differen tial equations become applicable to it. 

Suppose that (5.2) is hyperbolic, and let AI' A2 , ..• ,An denote the n real zeros of the polynomial 
(5.5). The characteristics of (5.2 ) are those curves in the xy-plane along which 

dx 
-=A. 
dy I 

(i=1,2, ... ,n) (5.6) 

EXAMPLE 5.6 For a linear system, the Ai depend at most on x and y ; so the characteristics of (5.2) can be 
determined by integrating the ordinary equations (5.6). For a quasiJinear system, where the Ai depend on 
Ur, U2, . .. , Un, the characteristics are solution dependent. In the case that (5.2) consists of a single quasilinear 
PDE, many authors call the plane curves determined by (5.6) the characteristic base curves, and use the term 
"characteristics" or "characteristic curves" to denote the space curves in xyu -space whose projections on the 
xy-plane are the characteristic base curves. In this Outline we shall use "characteristics" to denote both the plane 
and the space curves; the context will make it clear which kind of curves is intended. 

Theorem 5.1: For (5.2) hyperbolic, let D denote the n x n diagonal matrix of the Ai' Then there 
exists a nonsingular n x n matrix T satisfying ... 

TA= DTB 

According to Theorem 5.1, if (5.2) is no t already in normal form, the transformed system 

TAux + TBuy = Tc 

(5. 7) 

(5.8) 

IS In normal form, with the ith row-equation involving differentiation only in the direction of the 
tangent to the ith characteristic. Stated otherwise, a hyperbolic system can always be brought into 
normal form by taking suitable linear combinations of the equations. 

5.4 THE CAUCHY PROBLEM FOR A HYPERBOLIC SYSTEM 

The Cauchy problem (or initial value problem) for a hyperbolic system (5.2) calls for determining 
ui (x, y) (i = 1, 2, ... , n) that satisfy (5.2) and take prescribed values (the initial data) on some 
initial curve, r. If r is nowhere tangent to a characteristic of (5.2) and if the coefficients in (5.2) are 
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continuous, the Cauchy problem is well-posed in a neighborhood of r. At the other extreme, if r 
coincides with a characteristic, then the Cauchy problem usually will be insoluble (see Problem 5.29). 

In illustration, suppose tha t n = 3, and let C€l' C€2' C€3 be the characteristics of (5.2) that pass 
through the point R (see Fig. 5-1). The shaded region of the xy-plane enveloped by the charac­
te ristics and the in itial curve r is caHed the domain of dependence of the poin t R ; th e portion of r 
between P and Q is called the interval of dependence of R. Changes in the initial data exter ior to the 
interval PO will not affect the solution at R. 

y 

r 

x 

Fig. 5-1 

Any discontinuities in the initial data are propagated away from the initial curve along the 
characteristics defined by (5. 6). When the system (5 .2) is nonlinear, it is possible-even for smooth 
initial data-for the so lution to develop discontinuities some distance from the initial curv . T hese 
discontinuities occur when two characteristics carrying contradictory information about the solution 
intersect. A curve across which one or more of the u;(x, y) hav jump discontinuities is called a 
shock. The position of the shock and the magni tudes of the jumps in the u j are determined by 
conservation principles (see Problem 5.17). 

Solved Problems 

5.1 Show that the open-channel flow equations, Example 5.1(c), compose a hyperbolic sy tern and 
describe the characteristics. 

In matrix form the open-channel flow equations are 

The characteristic polynomial 

has two real zeros, Al = v + vgu and A2 = v - vgu. T hus, the characteristics are those curves in the 
xt-plane along which 

dx 
-=v+vgu 
dt 

or 
dx -=v- vgu 
dt 
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The speed (or celerity) of a small gravity-wave in shallow water of depth u is given by c = vgu. 
Making the substitution c2 = gu, the open-channel flow equations become 

2vc. + cv. +2c, = 0 

2cc. + vv. + v, = g(So- St) 

and the characteristics of this system are the curves along which 

dx 
-= v+c 
dt 

or 
dx 
-= v-c 
dt 

5.2 Show that the characteristics of the quasilinear first-order PDE 

(1) 

are the curves along which (1) and a knowledge of u are insufficient uniquely to determine Ux 

and uy' 

First note that, since the only zero of a - J..b is J.. = alb, the characteristics of (1) are the curves 
along which 

dx a 

dy b 

Let cg: x = per), y = q(r) be a curve along which u is given by u = fer). From 

and (1), we have 

u(p(r), q(r)) = fer) 

P'u. + q'uy = f' 
au. + bUy = c 

along cg 

by which u. and uy are uniquely determined along cg, unless the determinant of the system is zero: 

IP' q'l a b = p' b - q' a = 0 

But (2) holds if and only if 

dx p' a 
along cg 

dy q' b 

which is to say, if and only if cg is a characteristic of (1). 

5.3 (a) Show that the first-order quasilinear equation 

(b "" 0) 

is in normal form. (b) Find the canonical or characteristic equations for (1). 

(a) We know that a characteristic of (1) is defined by 

dx a 

dy b 
or 

dx dy 

a b 

(2) 

(1) 

(2) 

Calculating the derivative of u in the direction v = (a, b) tangential to the characteristic, we find 

v • V u = (a, b) • (U., uy ) = au. + bUy 

Therefore, (1) involves differentiation in a single direction (along the characteristic); so, by 
definition, it is in normal form. 
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(b) Let eg: (x(r), y(r» be a characteristic of (1 ), parameterized by r. Along eg, 

x'(r) dx a 
--= - =-
y'(r) dy b 

by (2), and u = u(x(r), y(r» . By the chain rule, (3), and (1), 

du = au dx + au dy = (~ux + uy) dy = :.. dy 
dr ax dr ay dr b dr b dr 

Thus, the canonical or characteristic equations for (1) can be written as 

dx a dy du c dy 
- =-- - =--
dr b dr dr b dr 

or symmetrically as 

dx dy du 
- --

a b c 

or unlinked as 

ax ay au 
-=a -=b -=c 
ar ar ar 

[CHAP. 5 

(3) 

(4a) 

(4b) 

(4c) 

Form (4c) may be interpreted as indicating a change of coordinates from (x, y) to (r, s): in the new 
coordinates, the characteristics are the straight lines s = const., and (1) takes the canonical form u, = c. 

5.4 Show that a surface 9' given by u = I(x, y) defines a solution to the quasilinear first-order 
equation 

(1) 

if and only if the characteristic equations (4) of Problem 5.3 hold at each point of 9'. In other 
words, a solution surface of (1 ) consists entirely of (space) characteristics. 

If f(x, y) - u = 0, then 

0= d(f(x, y) - u) = fxdx + fydy - du = (fx,fy, -1) ' (dx, dy, du ) 

Now, if (4b) of Problem 5.3 holds, the vectors (dx, dy, du ) and (a, b, c) are parallel, whence 

0= (fx,fy, -1)· (a, b, c) = afx + bfy - c (2) 

i.e., the function f satisfies (1 ). 
Conversely , if :J' is defined by a solu tion f(x, y) - u = 0 of (1), then (2 ) shows that at any point P of 

:J' the vector (a, b, c) is orthogonal to the surface normal (fx'/y, -1),JllUs, (a, b, c) represents a di rection 
in the tangent plane at P ; a curve eg lying in :J' and passing through P in this direct ion will have, a t P, the 
tangent vector 

(dx, dy, du) = (const.)(a, b, c) 

But this relation is just (4b) of Problem 5.3. 

5.5 Solve the Cauchy problem 

a (x, y, u)ux + b(x, y, u)uy = c(x, y, u ) 

u = uo(s) on f : x = F (s), y = G(s) 

where, for all s, 

pes) a (F(s) , G(s) , uo(s» -- :;e - ---'-'--.:.....:...---''-'-'...:. 
G'(s ) b(F(s ), G(s), uo(s» 

(which means that r is nowhere tangent to a characteristic of (1 ». 

(1) 

(2) 
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In the xy-plane, the solution process may be described as the threading of a characterist ic th rough 
each point of the initial cu rve r (see Fig. 5-2). Thus, for each fixed s, imagine system (4c ) of Problem 5.a 

ax 
-=a a, 

ay 
-=b a, 

au 
-=c a, (3) 

- where the parameter , is chosen so that r is represented by , = O-to be solved subject to the initial 
conditions 

x(O, s) = F (s ) 

u 

I 
I 
I 
I 
I 
I 

yeO, s) = G(s) 

I I 

u(O, s) = uo(s) 

r------I- I-----------

This sol ution will have the form 

x=x(r,s) 

, : 
I 
I 
I 
I 

Characteristic 

Fig. 5-2 

y=y(r, s) 

which are the parametric equations of a surface Y. 

u= u(r, s) 

(4 ) 

y 

By Problem 5.4, Y is a solution surface for (1 ); and the conditions (4 ) ensure that the curve r x uo 
lies in 9', as required by (2 ). Hence, if we can solve for rand s in terms of x and y, the function 

u = u (r, s) = u (r(x, y), seX, y )) 

will solve (1 )-(2). Now, it is in fact possible to invert the transformation x = x(r, s), y = y(r, s) in a 
neighborhood of r, because, along the curve, the Jacobian does not vanish : 

a(x,y) 
--= x,y. - y,x. = a G'(s)- bF'(s) 
a(r, s) 

(
a F') = bG' --- 7"0 
b G' 
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5.6 Solve the quasilinear Cauchy problem 

xUx + yuuy = -xy 

u =5 on xy = 1 (x> 0) 

Following Problem 5.5, we wish to solve 

subject to 

where s > o. By (3), 

Xr = X 

x(O,s)=s 

Yr = yu 

1 
y(O,s)=­

s 

U r = -xy 

U(0,s)=5 

(XY)r = xrY + XYr = xy + xyu = -Ur - UUr = ( -u _ U
2

) 

2 r 

i.e. , 1 + U is an integrating factor for the equations (3), yielding 

U
2 

xy = -u - -+ cf>(s) 
2 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Now (4) implies cf>(s) = 37/2. Hence, solving (6) by the quadratic formula and choosing the root that 
obeys the initial condition (2), we find 

U = -1 + V38 - 2xy 

5.7 The scalar conservation law [F(u )lx + uy = 0 can be expressed in quasilinear form as a(u)ux + 
uy = 0, where a (u ) = F'(u ). Show that the solution to the initial value problem 

is defined implicitly by 

a(u)ux + uy = 0 

u(x, 0) = uo(x ) 

u = uo(x - a(u)y) 

provided 1 + ub(x - a(u) y ) a'(u ) y =;I- O. 

Again following Problem 5.5, we consider the equivalent problem 

xr= a(u) Yr=l U r = 0 

x (O,s) =s y(O,s)=O u(O, s) = uo(s) 

Integrating the equations (4) in reverse order and applying the conditions (5), we find: 

U = uo(s) y=r x = a(Uo(s» r + s 

From (6 ), there follows 

u = uo(s) = Uo(x - a(Uo(s» r ) = uo(x - a(u)y) 

which is (3). 
The expression (3) will actually fu rnish the solution to (1 )-(2) provided the equation 

1I>(x, y, u ) == U - Uo(x - a(u )y) = 0 

can be solved for u as a function of x and y. The condition for solvability is 

<t>~(x, y, u ) = 1 + uO(x - a(u)y ) a '(u)y =;I- 0 

which certainly holds for Iyl sufficien tly small. 

(1 ) 

(2 ) 

(3 ) 

(4) 

(5) 

(6) 
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5.8 One-dimensional, unsteady flow of a compressible fluid at constant pressure, p, is governed by 

UUx + u, = 0 

(pU)x + p, = 0 

(eu)x+e,+Pux=O 

(1) 

(2) 

(3) 

where U, p, and e are, respectively, the fluid 's velocity, density, and internal energy per unit 
volume. Solve (1 )-(3 ) subject to the initial conditions 

u(x, 0) = uo(x) p(x, 0) = Po(x) e(x, 0) = eo(x) (4) 

According to Problem 5.7, the characteristics of (1) are given by 

x - ut = s = const. 

and the solution of (1) that obeys (4) is given implicitly by u = Uo(s). 
Writing (2) as a linear equation in p, 

(5) 

we see that (5) has the same characteristics, s = const., as (1), and that along a characteristic, on which 
the running parameter is r = t, 

dp 
-= -Uxp 
dt 

(6) 

Now, Ux = uO(s)sx = uO(s)(I- tux), or 

ub(s) 
Ux = 

1 + uO(s)t 
(7) 

Substitute (7) in (6) and integrate the resulting separable equation, using the initial condition p = Po(s) 
for t = 0: 

or 

where s = x - ut. 

I
p 

dp J' dt -= -ub(s) 
PO (s ) Pol + ub(s) t 

P 1 
log -- = log ---

Po( s ) 1 + ub( s ) t 

po(s) 
p= 

1 + ub(s)t 

Finally, (3) and (4) yield the following problem for the new unknown E E e + p : 

E(x, 0) = eo(x) + p 

This is formally identical to the problem for P; hence, by analogy with (8), 

eo(s) + p 
E=-'-'--~ 

1+ ub(s)t 
or 

5.9 Establish Theorem 5.1. 

In component form, (5.7) reads 

which is equivalent to 

n 

2: (tijajk - Aitijbjk) = ° 
j - l 

eo(s) -pUO(s)t 
e= 

1 + ub(s) t 

(i, k = 1,2, . .. , n) 

[til, ti2, ... , lin)(A - AiB) = [0,0, ... ,0] (i = 1,2, ... , n) 

(8) 

(9) 

(1) 
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Taking the transpose of each side of (1 ) yields 

(AT - A/ B T)ti = 0 (i = 1,2, . .. , n) 

[CHAP. 5 

(2) 

where ti represents the entries of the ith row of T arranged as a column vector. Now, because the system 
(5.2) is hyperbolic, there exist n linearly independent vectors ti satisfying the n matrix equations (2). 
H ence, the matrix T having these vectors as rows will be nonsingular and will satisfy (5. 7). 

5.10 (a) Show that the system 

(1) 

(2) 

is hyperbolic and use Theorem 5.1 to reduce it to normal form. (b) Express the system (1 )-(2) 
in terms of characteristic coord in ates. 

(a) Writing (1)-(2) in the form (5.2), we have 

A= [2 -2] 
1 - 4 

Since det (A - AB) = A 2 - A - 6 has distinct real zeros, AI = 3 and A2 = -2, the system is hyperbolic. 
According to Theorem 5.1, the rows of the normalizing matrix T satisfy 

[ 
2- A, 

-2 + 3Ai 
1 ][til] [0] 

-(4+ Ai) ti 2 = ° (i = 1, 2) 

For i = 1, A, = 3, we can choose tll = t l2 = 1; for i = 2, A2 = -2, we can choose t2! = 1, t22 = -4. 
Thus 

and the transformed system, (5.S), is 

[
3 -6][U] [1 -2][U] [V+U] 

- 214 v x +1 -7 v y = v-4u 
or 

(3ux + uy ) - 2(3vx + vy) = v + U 

(- 2ux + uy) -7(-2vx + vy) = v - 4u 

Equation (3 ) involves differentiation only in the direction 

dx 
-=3= A, 
dy 

while (4) involves differentiation only in the direction 

dx 
-=-2=A 2 
dy 

(b) From (5) and (6), the characteristics are given by 

x - 3y = f3 = const. 

x + 2y = a = const. 

(3) 

(4) 

(5) 

(6) 

(7) 

(S) 

The family (7), along which a varies, are called the a-characteristics; similarly, the family (S) are 
called the f3-ch aracteristics. Together, (7) and (S) define an invertible transformation from xy- to 
af3-coordinates. We have 

a a a 
-=-+-
ax all' af3 

so that (3 )-( 4) transforms to 

a a a 
-=2- - 3-
ay all' af3 
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u+v 
u -2v = - -

a a 5 

4u- V 
uf3-7vf3 = - -

5 

The system (9)-(10)-(7)-(8) constitutes the canonical or characteristic form of (1 )-(2). 

5.11 With reference to Problem 5.10, solve the initial val ue problem 

2ux - 2vx + Uy - 3vy = 0 

Ux - 4vx + Vy = 0 

U(x, 0) = Uo(x ) 

We know that the characteristics of (1 )-(2) are 

x - 3y = f3 = const. 

and that (1 )-(2) has the canonical form 

and 

vex, 0) = vo(x) 

x + 2 y = a = const. 

Ua -2va = 0 
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(9) 

(10) 

(1) 

(2) 

(3) 

(4) 

(5) 

If P, Q, and R are as indicated in Fig. 5-3 and if P has coordinates (x, y), then the coordinates of Q and 
R are (x - 3y, 0) and (x + 2y, 0), respect ively. By (4), u - 2v is constant on the a-characteristic from Q 
to P, and, by (5), u -7v is constant on the f3-characteristic from R to P; thus, 

u(P) - 2v(P) = uo( Q) - 2vo( Q) 

u (P )-7v(P)= Uo(R)-7vo(R) 

Together, (6) and (7) yield the solution to the initial value problem (1 )-(2)-(3) as 

1 
u(P) = u(x, y) = - [7Uo(x - 3y)-14vo(x - 3y)- 2Uo(x + 2y)+ 14vo(x + 2y)] 

5 

1 
v(P) = vex, y) = - [uo(x - 3y) - 2vo(x - 3y) - uo(x + 2y) + 7vo(x + 2y)] 

5 

(6) 

(7) 

For a hyperbolic system, a combination of the variables that remains constant along a characteristic 
is known as a Riemann invariant of the syst m. By the above, u - 2v and u - 7v are Riemann invariants 
of (1 )-(2). 

y 

x 

Fig. 5-3 
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5.12 Bring the open-channel flow equations, 

into canonical form. 

In Problem 5.1, the system (1)-(2) was shown to be hyperbolic, with characteristics given by 

dx 
-=Al = V+vgu 
dt 

dx 
-= A2= v-vgu 
dt 

By (2) of Problem 5.9, a matrix T = [tij 1 that wi ll transform (1 )-(2) to normal form satisfies 

[
V-Ai g ][til]=[O] 

U V - Ai ti2 ° (i = 1,2) 

From (3)-(4), we may take 

t11= 1 

Now, writing (1 )-(2) in matrix form (5.2) and mUltiplying by T , we find the normal equations 

(1) 

(2) 

(3) 

(4) 

(A,ux + u,) + VUii(AIVX + v,) = vug(So - Sf) (5) 

(A2Ux + u,)- VUii(A2VX + v,) = vug(Sf- So) (6) 

To introduce characteristic coordinates, let the respective solutions to the two ordinary equations 
(3) be 

F(x, t) = {3 = const. G(x, t) = a = const. (7) 

i.e., the a-characteristics and the {3-characteristics. To show that (7) defines a locally invertible 
coordinate transformation, compute the Jacobian 

But, using (3), 

from which it follows that 

GIl 
F, 

= GxF, - FxG, 

dF 
0= - = F,+Fx(v+ vgu) 

dt 

dG 
0=-= G t + Gx(v-vgu) 

dt 

which is finite and nonzero (recall that U represents the depth of fl uid). 
Thus, in terms of the new coordinates a and {3, equations (3) become 

To transform (5), we find , using the first equation (8 ), 

a a a 
Al - +-= (A 1Gx + G t )-ax at aa 

(8) 

(9) 

(10) 

From the second equation (7), Gxx", + G,t", = 1. Combining this with the first equation (9) and 
substituting in (10), we obtain 

so that (5) goes into 

a a 1 a 
Al-+-=-­

ax at t", aa 
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Ua + v'7i/iva = vgi:i(So - Sf )ta 

Similarly, we find for the transformation of (6 ): 

U/3 - v'7i/iV/3 = vgi:i(Sf - So)t/3 

Equations (1I), (12), and (9) make up the canonica l fo rm of (1)-(2). 
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(11 ) 

(12) 

5.13 (a ) Show that v + 2e and v - 2e, where e = vgu, are Riemann invariants (Problem 5.11) of 
the open-channel flow equations, provided So - Sf = 0 (the conservation-law case). (b) Prove 
that if a single characteristic of the open-channel equations is a straight line, then (i) the entire 
family that includes that characteristic consists of straight lines; (ii) the Riemann invariant 
associated with the other family of characteristics is an absolute constant. 

(a) In te rms of e and v, (11) and (12) of Problem 5.12 read, after cancellation of e/g, 

2e{3 - V/3 = 0 

which imply that v + 2e is constant on an a-characteristic and v - 2e is constant on a f3-
characteristic . 

(b) Suppose that the particular a-characteristic F(x, t) = f30 is a straight line. Then, by (3) of Problem 
5. 12, 

dx 
- = v + e = const. 
dt 

along that characteristic. But, by (a), v + 2e = const. along that same characteristic. Hence v and e 
must be sepa rately constant along the characteristic F(x, t) = f3o; i.e., in terms of Fig. 5-4, 

vCR) = v(S) and e(R) = e(S) 

On the a-characteristic F(x, t) = f31 we have, by (a), 

v(P) + 2e(P) = v( Q) + 2e( Q) 

while, on the f3-characteristics, we have, by (a) , 

v(P) - 2e(P) = vCR) - 2e(R) 

v( Q) - 2e( Q) = v(S) - 2e(S) 

G(x, /) = al 

G(x, /) = ao 

Fig. 5-4 

F(x, t) = 131 

F (x, /) = f30 

x 

(1) 

(2) 

(3) 

(4) 
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By (1), the right side of (3) equals the right side of (4); so 

v(P ) - 2c(P) = v( Q) - 2c( Q) 

(i) Together, (2) and (5) imply v(P) = v(Q) and c(P ) = c(Q); hence, on F(x, t) = f3l, 

dx dx 
- (P ) = v(P) + c(P) = v(Q) + c(Q) = - (Q) 
dl dt 

[CHAP. 5 

(5) 

which shows that characteristic also to be a straight line. (ii) Together, (3) and (5) imply 

v(Q ) -2c(Q)= v(R)-2c(R) 

i.e. , the Riemann invariant v - 2c has the same value at two arbitrary points of the plane, Q and R. 
This result in effect removes one unknown from the problem. 

5.14 A river flows at a un iform depth of 2 meters and a velocity of 1 mls into an ocean bay. Because of 
the tide, the water level in the bay, initially the same as the river level, falls at the rate of 0.15 mlh 
for 8 hours . Neglecting bed slope and frictional resistance, determine (a) at wha t d istance 
upstream the river level is j ust beginning to fall at the end of the 8-hour period , (b) the ve locity of 
the water entering the bay, (c) at what time the river level will have fa llen 0.6 m at a station 5 km 
upstream from the bay. 

The notation and resul ts of Problems 5.12 and 5.13 will be used . The acceleration of gravity is 
g = 9.8 m/s2. 

(a) The f3-characteristic bordering the zone of quiet (Fig. 5-5) is the straight line 

dx 
- = v(O, 0) - c(O, 0) = (1- \/9.8 x 2) m/s = -12.3 km/ h 
dl 

(1) 

Thus, after 8 hours, the discontinuity in u, has been propagated (8 h)(12.3 km/h) = 98.4 km 
upstream. 

l, h 

x, k.m 

river bay 

Fig. 5-5 
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(b) In view of (1 ) and Problem 5.13(b ), all .B-characteristics are straight lines, and 

vex, t) + 2c(x, t) = v(O, 0) + 2c(0, 0) = 9.9 mls 

for all x and t. Thus, in units of mis, 

v (O, t) = 9.9 - 2c(0, t) = 9.9 - 2\/9.8(2 - 0.15 t) 

(c) At the outlet, x = 0, the water level wiu have fallen by 0.6 m (from 2 m to 1.4 m) at time 

0.6 m 
to = 4 h 

0.15 ml h 
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(2) 

(3) 

We know from Problem 5.13(b) that v and c (or u) are separately constant along each ,13 -
characteristic. Hence, the .B-characteristic through (0,4), which carries the value u = 1.4 m, wiu 
have slope 

dx 
- = v(O, 4) - c(O, 4) = [9.9 - 2Y9.8(1.4)]- Y 9.8(1.4) 
dt 

= -1.2 mls = -4.3 k m /h 

where (3) was used to evaluate v(0,4). It follows that an additional time 

5km 
t, = 1.2 h 

4.3 km/h 

must pass before the value u = 1.4 m is felt 5 km upstream. The total time is thus to + t, = 5.2 h. 

5.15 Let n be the region XI < X < xz, II < I < Iz, and suppose that in n 
U = (uI(x, t), Uz(x, t), ... , un(x, t» 

solves the divergence-form first-order equation 

a a 
- F (u)+ - G(u) = D 
ax al 

For any smooth function c/> on n which vanishes on the boundary of n, show that 

f2 f2 [F(u ) c/>x + G(u) c/>,] dxdt = 0 
'1 xI 

From [F(u)</>]x = [F(u)]x</> + F (u)</>x and </> = 0 fo r x = x, and x = X2, we have 

J ~J~ J~J~ [F(u)]x tP dx dt = - F(u) </>x dx dl 
II Xl i1 xl 

Similarly, since </> = 0 for t = t, and t = t2, 

{2 {2 [G(u)]t</>dt dx = _ {2 {2 G(u) tPtdtdx = _ {2 {2 G (u)</>, dxdt 
XI tr XI If q Xl 

Now, mul tiplying (1) by </>, integrating over n, and applying (3) and (4), we obtain (2). 

(1) 

(2) 

(3) 

(4 ) 

Smooth (COO) functions </> which vanish in a neighborhood of (and not merely on) the boundary of .f! are 
caJJed test f unctions on n. We say that u is a weak solution of (1) in.f! if (2) is valid for all test functions </> o n 
n. Since (2) does not impose any continuity requirements on u, it is possible for a weak solution of (1) to 
have discontinuities. 

5.16 Refer to Problem 5.15. Let the rectangular region ° be partitioned into regions 01 and 0 z by 
the curve Y: x = a(t), as indicated in Fig. 5-6. Suppose that u is a weak solution in n, but a 
continuously differentiable, bounded solution in n, and in Oz. Show that along Y within 0 , 

(F, - FJ = (G1 - GJa'(/) (1) 
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X2 x 

Fig. 5-6 

where the subscripts 1 and 2 denote respectively the limits as (x, t) -7 g through regions 0 ) and 02' 

Because u is a weak solution in n, we have, for any test function </> on n, 

o = J J (F</>. + G</>,) dx dt = J J (F</>. + G</>,) dx dt + J J (F</>. + G</>,) dx dt (2) 
o 01 0 2 

Since </> vanishes on the boundary of n, 

J J J
'2J,,(I) 

F</>. dx dt = [(F</». - F.</>] dx dt = J Fl</> dt - J J F. </> dx dl 
fi1 fJ Xl Y fil 

(3) 

J J G</>,dxdt= r2 J~ [( G</», -G4>] drdx =- J G1</>dx - J J G,</>dxdt 
01 Xl u l ex ) 9' O J 

(4) 

Adding (3) and (4), and recalling that (1 ) of Problem 5.15 holds in .at, we see that 

J J (F</>. + G</>,) dx dt = J </> (Fl dt - G 1 dx) 
ill Y 

(5 ) 

Simila r calculations on ~ show that 

J J (F</>.+ G</>,)dxdt = J </>(-F2 dl+ G2 dx ) 
il2 Y 

(6) 

By (2), the left sides of (5) and (6 ) sum to zero, whence 

0= J </> [(F1 - F2)dl + (G2 - G 1) dx] = r </> [(FI - F2)+ (G2 - G1)u '(t )] dt 
Y ~ 

(7) 

Because </> takes arbitrary values along 9', (7) implies (1 ). 
If the curve 9' represents a shock in the weak solution u, then u '(t) is the velocity of the shock. 

5.17 Use Problem 5.16 to derive jump conditions which must hold across a shock in the solu tion of 
the conservative open-channel flow equations. 

The equations can be put in the divergence form 

(uv). +u,=o (1) 
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( 
gU2) uv2 +- + (uv), = 0 
2 x 

(2) 

(this is not the conservation form, Example 5.3). Hence, by (1) of Problem 5.16, we have across a bore or 
surge Y: x = (T(t ) 

(3) 

(4) 

Assuming unit channel width and constant density, (3) asserts that mass is conserved, and (4) that 
momentum is conserved, across Y. In the case (T'(t) = 0, the conditions reduce to the well-known 
hydraulic jump equations. 

5.18 Water flows in a (one-meter-wide) rectangular channel at a depth of 1 m, with a velocity of 
2 m/s. A t x = 0 the depth of the water is suddenly raised to, and subsequently maintained at, 
2 m. Neglecting frictional resistance and bed slope, calculate the rate at which the surge moves 
down the channel and the velocity of the water behind the surge. 

In the notation of Problems 5.16 and 5.17, we have the weak solution 

behind the surge (0 :5 X < (T(t» : u = UI = 2 m, v = VI 

ahead of the surge (x > (T(t): U = U2 = 1 m, v = V2 = 2 m/s 

The jump conditions (3)-(4) of Problem 5.17 become two simultaneous equations in the two unknowns 
VI and (T' (t) . Solving (with g = 9.8 m/s2), we find : 

VI = 4.07 m/s (T' (t) = 6.14 m/s 

5.19 Use the method of characteristics to solve the initial value problem 

uUx + u, = 0 

u(x, 0) ~ ! i -~ 
x:50 

O< x < l 

x2:1 

The characteristics are the straight lines 

dx 
-= u = const. 
dt 

Using (2), the characteristics are constructed as in Fig. 5-7(a). 

(1) 

(2) 

(3) 

It is seen that points (x, t) below D -that is, in the strip t < I-lie on just one characteristic. Thus, 
on x:5 t < 1, u = 1; and on x 2: 1> t, U = O. In between, on the triangular domain iso lated in Fig. 5-7(b), 
integration of (3) gives 

x=ut+ (l -u) or 
1- x 

u = - -
1-t 

(4) 

where the x-intercept was found from (2). In summary, 

for t < 1 u=j !-x 
1- t 

o 

x:5t 

t<x < 1 
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o 0.5 

FIRST-ORDER EQUATIONS 

(a) 

Shock , 
I 

dx =0 
dl 

Fig. 5-7 

[CHAP. 5 

D 

x o \ - u x 

(b) 

In the strip /:2: 1, points (x, /) of the shaded region in Fig. 5-7(a) lie on two characteristics which 
bear distinct values of u. The jump condition (1) of Problem 5.16 leads to the equation x = (/ + 1)/2 for 
the actual shock; i.e., the shock is the prolongation through D of the 45° characteristic. Consequently, 

for t :2: 1 u=G x < (/ + 1)/2 

x > (/ + 1)/2 

S.20 Show that for 14 = !(x/t) to be a nonconstant solution of 14, + a(14)ux = O,! must be the inverse 
of the function a. 

If u = f(x i /), 

(X) - x u,=f' - .-
/ /2 

and ux = f' (~). ~ 
Hence, u, + a(u)ux = 0 impiies that 

f'(~). -; +a(t(~))f'(~) ' ~=O 
or, assuming f' ¥; 0 to rule out the constant solution , that 

a(f(~))=~ 
This shows the functions a a nd f to be inverses of each other. 

5.21 Solve the initial-boundary value problem 

14 (x, 0) = 2 

u(O, t ) = 1 

Since the characteristics of (1 ) are defined by 

dx 

x >0, t > 0 

x>O 

1> 0 

- = e" = const. 
dt 

(1 ) 

(2) 

(3) 
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the characteristics from the posi tive x-axis have the form x = e2 t + const., and the characteristics through 
the positive t-axis are x = el + const. Therefo re (see Fig. 5-8), u = 2 for x 2: e2 t, and u = 1 for x:5 et. In 
the region et < x < e2 t, where there are no characteristics, we avail ourselves of the solution u = log (xlt) 
found in Problem 5.20. It can be shown that 

u(x, I) = { ~Og (X/I) 

0 < x:5 et 

et < x < e2 t 

e2 t:5 x 

is the unique con tinuous weak solu tion of (1 )-(3). 

dx 

dx 2 
-=e 
dt 

o 

Fig. 5-8 

Supplementary Problems 

5.2.2 The Euler equations for steady, isentropic, inviscid, two-dimensional, flu id fl ow are 

pUx + up" + PVy + Vpy = 0 

pUUx + pvUy + c2px = 0 

puvx + PVVy + C 2py = 0 

Classify this system . 

5.23 (a) Show that one-way vehicular traffic obeys the continuity equation of fluid dynamics, 

P, + (vp)x = 0 

x 

where p :; vehicles per unit length, v:; speed. (b ) If v = v(p), show that p is constant for an observer 
at x = x(t) who moves so that 

dx d(pv ) 

dt dp 

(c) Show that if v = v(p) and v'( p) :5 0, then the rate of propagation of small variations in density cannot 
exceed the speed of an individual vehicle at that density. (d) If v = v (p), with what speed is a shock 
propagated? 
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5.24 The one-dimensional adiabatic fl ow equations are 

1 
UUx + u, = - - px p= Ap'" 

p 

where A and")' > 1 are constants. (a) Letting c2 == dp/dp, reduce (1) to 

(pU )x + p, = 0 

and show that (2) is a hyperbolic system . (b) Transform (2) to the canonical form 

Xa=(U+C)la 

(c) Show that 

C 
Ua +- pa = 0 

p 

c ( 2c ) 
~Pa = ")' -1 a 

and conclude that U ± 2C/(")' - 1) are Riemann invariants for this problem. 

C 
UfJ--PfJ=O 

P 

[CHAP. 5 

(1) 

(2) 

5.25 (a) Solve XUx + YUy = 0 subject to the initial condition u(x, 1) = f(x), f continuous. (b) If f' is dis­
continuous at the single point x = X, at what points will U fail to be continuously differentiable? 

5.26 For the PDEs (a) YUx - xUy = 0, (b) YUx - XUy = U, give equations for the characteristic through the 
point (x, y, u) = (1,0,2). [Hint for (b): Show that 

along a characteristic.] 

5.27 Solve the Cauchy problems 

(a) cu 
u,+ua =- - -

L-a 
1>0,0 < a <L 

U(I, 0) = b(t) I> 0 

(b) 

where c and L are positive constants 

XUx + YUy = 1 

U = x 2 + Y 

5.28 Solve by the method of characteristics (c = const.): 

(a) u, + cUx = 4>(x, I) 

u(x, 0) = 1/1 (x ) 

x > 0, y > O 

O< x=l-y<l 

(b) f(y)ux + Uy = cu 

u(x,O) = g(x) 

5.29 Show that the Cauchy problem Ux + Uy = 1, u(x, x) = x 2
, does not have a solution. 

5.30 Show that the Cauchy problem YUx + XUy = cu (c = const.), u(x, x) = f(x), can have a solution only if 
f(x) = bx C (b = const.). If f has the required form, show that 

(
X + y)C 

U = -2- g(x2 - y2) 

is a solution for any function g such that g(O) = b. 

5.31 Solve the initial value problems 

(a) 4ux - 6vx + u, = 0 

U x - 3vx + v, = 0 

u(x, 0) = sin x v(x, 0) = cos x 

(b) 3uy + 2vx + uy + Vy = 0 

5ux + 2vx - U y + Vy = 0 
u(x, 0) = sin x v(x, 0) = eX 
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5.32 Refer to Problem 5.23, assuming the speed-density law 

where V and R denote, respectively, the maximum speed and the maximum density. Suppose that cars 
are traveling along a single-lane road (no passing) at uniform density RI3 and uniform speed 2 V13. At 
time t = 0, a truck enters the road at x = 0, inserting itself just behind car A and just ahead of car B. The 
truck travels at speed VI3 until it reaches x = L, where it leaves the road (at time t = 3L/ V). Make a 
graphical determination of p (x, t ), for t < t and all x, by locating the three shocks in the flow and 
applying the appropriate jump condition across them. Also find the time at which car B catches up with 
car A. 

5.33 In a horizontal, rectangular channel of unit width, water of depth Uo is held behind a vertical wall. At 
time t = 0 the wall is set in motion with velocity w in to the standing water. Show that the shock velocity, 
W, and the depth behind the shock, U, are determined by 

U- Uo w 

Uo W - w 

5.34 (a) Show that the initial value problem 

admits two weak solutions 

u(x, 0) = {~ 

1 

0 
xlt 

w(x, I) = ~ 

2 gUo ( W) (W - w) =2 2- W 

O< x < l 

x < 0 or x > 1 

x < 112 

112 < x < 1 + tl2 

x > 1 + tl2 

x < O 

O< x < t 

t < X < 1 + 112 

x > 1 + 112 

(b) For a unique weak solution, the inequalities 

u, > o-'(t) > U2 

must hold along any shock x = o-(t). Verify that w, but not v, satisfies these inequalit ies. 



Chapter 6 

Eigenfunction Expansions and 
Integral Transforms: Theory 

6.1 FOURIER SERIES 

Let F(x ) be an arbitrary function defined in (-e, e). The infinite trigonometric series 

~ao+ L: an cos (mTX/e) + bn sin (n7Tx/e) 
n=l 

is called the Fourier series for F(x) if the coefficients an and bn are given by 

1 tIe 
a" = e J F(x) cos (n7Tx/e) dx bn = e J F(x) sin (n7Tx/e) dx 

- f -( 

in which case the coefficients are known as the Fourier coefficients for F (x). 

(6.1) 

(6.2) 

Since each of the trigonometric fun ctions in the Fourier series for F (x) is periodic of period 2e, it 
follows that if the series actually converges to F(x) for - e < x < e, then it converges to the 
2e-periodic extension of F(x), 

F(x)= F(x ) (-e < x <e) and F(x) = F(x + 2e) (6.3) 

for all x in the domain of F; see Problem 6.3. 
Theorem 6.1 states sufficient conditions for the convergence of a Fourier series, in terms of 

properties of F(x). These, of course, derive from properties of F(x), as discussed in Problem 6.3. 
Recall that a function is piecewise or sectionally continuous in (-00, (0) if it has at most fi nitely many 
fi nite jump discontinuities in any interval of finite length. 

Theorem 6.1: Let F (x ) be defined in( - e, e) and let F(x) denote the 2e-periodic extension of F(x). 

(i) If F(x) and F'(x) are both sectionally continuous, the Fourier series for F(x ) 
converges pointwise to F(x) at each point where F (x ) is continuous. At each Xo 
where F(x) has a jump discontinuity, the series converges to the average of the 
left- and right-hand limits of F(x) at xo . 

(ii ) If F (x) is continuous and F '(x ) is sectionally continuous, the Fourier series for 
F (x) converges uniformly to F(x). 

(iii) If F(x) is in C P and if F(P+l)(X) is sectionally co tinuous, the series obtained by 
differentiating the Fourier series for F(x ) termwise j times (j = 0, 1, .. . , p) 
converges uniformly to ft (j)(x). 

6.2 GENERALIZED FOURIER SERIES 

To extend the notion of Fourier series to other than trigonometric expansions, we fi rst recall the 
usual definit ion of the inner product of two vectors in RN

: 

X · Y or (x, y) = X1Yl + X2Y2 + ... + XNYN (6.4) 

A set of vectors {Xl> ... , xM} in RN is an orthogonal f amily if (Xi' X) = 0 for i ¥ j (i, j = 1, . . . , M ); it 
is an orthonormal family if 

72 

i¥j 

i=j 
(6.5) 
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Clearly, an orthogonal family of nonzero vectors can always be made into an orthonormal family by 
dividing each vector Xi by its norm, Ilxill = (Xi' x)1I2. 
Definition: An orthogonal family is complete in RN if the only vector orthogonal to every member of the 

family is the zero vector. 

Theorem 6.2: A ny complete orthonormal family {xl' ... , xM } is a basis of RN (i.e., M = N) in terms 
of which an arbitrary vector v has the representation 

N 

V = L (v, Xn)Xn 

"= 1 

The coeffi cients cn == (v, xn) in (6.6) are such th at the Pythagorean relation 
N 

IlvW = 2: c~ 
n=I 

(6.6) 

(6.7) 

holds when RN is referred to the orthonormal basis {x
n

}. It is the formal resemblance of the right side 
of (6.6 ) to the Nth partial sum of the Fourier series (6.1)-(6.2) that serves as the springboard for the 
generalization that follows. 

Let F (x) denote a function which is defined in (a, b) and satisfies 
b 

{ F (X)2 dx < 00 (6.8) 

The collection of all such functions will be denoted by L2(a, b). Two elements, F and G, are said to 
be equaL in the L 2(a, b)-sense if 

b 

fa [F(x)- G(x)fdx=O 

This concept of equality is used to define what is meant by the convergence of an infinite series of 
L2(a, b)-functions: F j(x) + Fix) + ... converges to the limit F(x) in L\a, b) if 

lim( [F(x)- i F;(x)fdX=O (6.9) 
N--+oo a i=1 

(This kind of convergence is frequently referred to as mean-square convergence. ) 
W ith the introduction of an inner product, 

b 

(F, G ) == { F (x )G(x) dx (6.10) 

(which is well defined by virtue of Problem 6.16), L\a, b) becomes an inner product space. 
O rthogonality, normali ty, and completeness are defined exactly as in RN. In L 2(a, b), a complete 
orthonormal family is necessarily infinite, but an infi nite orthonormal family is not necessarily 
complete. 

EXAMPLE 6 .1 In L2(-e, e), neither of the infinite orthonormal fa milies 

{:e sin ~ , :e sin 2;X, ~ sin 3;X, ... } 

{
II TTX 1 27TX } 

V2i:' Wcose' Ve COSe' . .. 

is complete; for instance, for F(x) == 1, 

/ 1 n7TX) 1 Ie n7TX 
\l,-sin- = - sin -dx=O 

Ve e Ve -e e 
(n = 1, 2,3, ... ) 
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However, the union of these two families is a complete orthonormal family, and it generates the Fourier series 
(6.1) for a square-integrable function F(x). 

Analogous to Theorem 6.2 we have 

Theorem 6.3: If {un (x)} , n = 1, 2, ... , is a complete orthonormal family in L2(a, b), then for arbi­
trary F(x) in L2(a, b), 

F(x) = L (F, un) Un (x) (6.11 ) 
n= 1 

[mean-square convergence of the series to F(x»). 

The analog to (6. 7) 

IIF(x )IF = L F~ [ordinary convergence] (6.12) 
n==l 

is called the Parseval relation. 
There remains the problem of finding (nontrigonometric) complete orthonormal families for the 

constructi n of generalized Fourier series (6.11). The next section will show that such families arise 
naturally as the solutions to certain boundary value problems for ordinary differential equations. 

6.3 STURM- LIOUVILLE PROBLEMS; EIGENFUNCTION EXPANSIONS 

Consider the following bounda ry value problem for the unknown fu nction w(x): 

-( p(x)w'(x»' + q(x)w(x) = Ar(x)w(x) 

C 1w(a)+ C2w'(a) = 0 
C3 w(b)+ C4 w'(b) = 0 

a < x<b 

(6.13) 

If (1) p(x), p'(x), q(x ), and rex ) are continuous in (a, b) ; (2) p(x»O and r(x» O on [a, b] ; and 
(3) C~+ C~ -:;t 0, C~+ C~ -:;t 0, then (6.13) constitutes a Sturm -Liouville problem. The function 
w(x) == 0 is a trivial solution to any Sturm-Liouville problem. In addi tion, fo r certain values of the 
parameter A, there exist nontrivial solutions. Each value of A for which a nontrivial solution exists is 
called an eigenvalue of the problem, and the corresponding nontrivial solu tion is called an eigen -
function. 

Theorem 6.4: The eigenvalues and eigenfunctions of a Sturm-Liouville problem have the following 
properties. 

(i) All eigenvalues are real and compose a countably infinite collection satisfying 
Al < A2 < ... < As -'> roo 

(i i) 

(iii) 

To each eigenvalue An there corresponds only one independent eigenfunction 
wn (x ). 

Relative to the inner product (6.10), the weighted eigenfunctions 

un(x)
== v'r(x ) wn(x) 

IIv' r(x ) wn (x)1I 
(n = 1, 2, ... ) (6.14 ) 

compose a complete orthonormal family in L 2(a, b). 

An eigenfunction expansion- Le. , a generalized Fourier series for an L 2(a, b)-function F based on 
the family (6.14 )-not only converges in the mean-square sense (Theorem 6.3), but also : 
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Theorem 6.5: (i) If F and F' are both sectionally continuous in (a, b), then the series converges 
pointwise to the value [F(x+) + F(x- )]/2 at each x in (a, b). 

(ii) If F and F' are continuous in (a, b), if F" is sectionally continuous, and if F 
satisfies the boundary conditions of the Sturm-Liouville problem (6.13), then 
the series converges uniformly to F(x) in (a, b). 

6.4 FOURIER AND LAPLACE INTEGRAL TRANSFORMS 

Theorem 6.4(i) and (iii) also hold for the eigenvalues n = 0, 1,2, ... and eigenfunctions {e±inx} of 
the problem 

W"(x) = AW(X) 

W(-7T) = W(7T) 

W'(-7T) = W'(7T) 

-7T<X < 7T 

which is of Sturm-Liouville type, except for the boundary conditions, which are periodic instead of 
separated. Thus, for arbitrary f(x) in L 2(-7T, 7T), we have (cf. (6.9» 

lim jrr If(x) - iN(X)12 dx = 0 
,'1-+00 -71" 

(6. 15a) 

N 

where iv(x) = L Fn e iflX (6.15b) 
n= - N 

1 rr 
Fn = - j f(x)e- inx dx 

27T -rr 
and (n = 0, ±1, ±2, ... ) (6. 15c) 

Now suppose that f(x) is in L2(-00, (0). Unless f(x) is identically zero, it is not periodic and an 
eigenfunction expansion like (6.15) cannot be valid. However, in this case we have 

where 

and 

lim r If(x) - fN(X)1 2 dx = 0 
N-+oo -00 

N 

fN(X) = j F(a) eiax da 
-N 

1 00 

F(a)= - j f(x)e-iaxdx 
27T - 00 

(6.16a) 

(6. 16b) 

(6.16c) 

Note the analogy between (6.15) and (6.16). The function F(a) defined in (6.16c) is called the 
Fourier (integral) transform of f(x); we shall indicate the relationship between the two functions as 

~{f(x)} = F(a) or ,rl{F(a )} = f(x ) 

Operational properties of the Fourier transform are listed in Table 6-1. In addition, Table 6-2 gives a 
number of specific functions and their Fourier transforms. For our purposes, inversion of the Fourier 
transform will be carried out by using Table 6-2 as a dictionary, together with certain of the 
properties from Table 6-1. Note that line 7 of T able 6-1 is equivalent to the inversion formula 

( F(a)eixct da = f(x) 
) _00 

(6.17) 

The function f* g defined in line 8 is called the convolution of the functions f and g. Clearly, the 
convolution operation is symmetric, associative, and distributive with respect to addition. 
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Table 6-1. Properties of the Fourier Transform 

f (x) 1 r ' F(a) = - f(x)e-·ax dx 
27T -= 

1. f(n) (x ) (ia)"F(a) 

2. xn f(x) in F(n)(a) 

3. f(x - c) e- ica F(a) (c = const.) 

4. eicx f(x) F(a - c) (c = const.) 

S. Cdl(x) + C2h(x) C1FI(a) + C 2F2(a) 

6. f(cx) Icl- I F(a/c) (c = const.) 

1 
7. F(x) -fe-a) 

27T 

8. f*g(x)== L~f(x-y)g(y)dY 27TF(a)G(a) 

Table 6-2. Fourier Transform Pairs 

f(x) If F(a) = - f(x)e - i"'X dx 
27T -= 

1. e-cx2 (47TC r 1/2 e -",2/4<: (c > 0) 

e- A1xl 
),J7T 

(A> 0) 2. - -
a 2 + A2 

2A e-A1al J. -- (A > 0) 
x 2 + A2 

IA(X)=={~ Ixl < A sinAa 
4. --

Ixl > A 7Ta 

2sin Ax 
S. fA(a) 

x 

Ea(x) == e-ax x<O 1 1 
6. --- (Re a > 0) 

x>O 27T a + ia 

The Fourier transform, as described here, applies to functions f(x ) in L 2(-00,00). A related 
integral transform, called the Laplace transform, is defined by 

oP{f(t)} == f a> f( t) e- SI dt == j(s) 
o 

(6.18) 

This transform may be applied to functions f(t) which are defined for -00 < t < 00 and satisfy f(t) = 0 



Table 6-3. Properties of the Laplace Transform 

f(/) j(s) = r f(t)e- SI dt 

1. C,f,(t) + C2h(t ) C,j,(S) + Cz!2(S) 

2. feat) a-'j(s/a) (a >0) 

3. j<" )(t) snj(s) - sn-l f(O) - ... - j<"-l)(O) 

(n = 1,2, ... ) 

4. tnl(t) (-lyj<n)(s) (n = 1,2, ... ) 

S. eC1f (t) j(s - c) (c = const.) 

6. H(t - b)/(t - b), where e-bsj(s) (b > 0) 

H (t) == {~ t<O 

t>O 

7. I*g(t)== f/(t-T)g(T)d-T j(s)g(s) 
0 

Table 6-4. Laplace Transform Pairs 

I(t) j(s) = r I(t)e- SI dt 

1 
1. 1 -

s 

n! 
2. tn - (n = 1,2, ... ) 

$"+1 

e kl 
1 

3. --
s- k 

a 
4. sin at --

S2+ a 2 

s 
S. cos at --

S2+ a 2 

1 1 
6. - -

v;t \IS 

1 -k2/41 1 
7. --e _e-kVs (k >0) 

v;t \IS 

8. _k_
e

-k2/41 e- kVs (k >0) 
Y41TP 

erfc (k/2Vt), 
1 

9. where _e-kVs (k >0) 
s 

2 00 

erfcz==-J e- u2 du 
V; z 

77 



78 EXPANSIONS AND TRANSFORMS: THEORY [CHAP. 6 

for t < O. Note that f(t) need not belong to L2(-00, (0); it is sufficient that there exist positive constants 
M and b such that 

If(t)1 :s: Me bl for t > 0 (6.19) 

Table 6-3 lists operational formulas for the Laplace transform, and Table 6-4 gives Laplace 
transforms of specific functions. 

Solved Problems 

6.1 Let f(x) be a sectionally continuous function in (0, f). Determine (a) the Fourier cosine series, 
(b) the Fourier sine series, for f(x). 

(a) Define 

F.(x)== {f(X) 
fe-x) 

o<x< e 

-e<x < o 

an even function in (-e, e). The Fourier coefficients of F. (x) are given by (6.2) as: 

2 Je an = - f(x) cos (nrrx/f) dx 
e 0 

With these coefficients, the series (6.1) represents, for all x, the function F.(x), the even 2e-periodic 
extension of f(x). 

(b) Defi ne 

Fo(X)={ f(x) 
-fe-x) 

o<x <e 

-e<x < o 

an odd function in (- e, e). The Fourier coefficients of Fo(x ) are given by (6.2 ) as: 

bn = ?:. J e f(x) sin (nrrx/ e) dx 
e 0 

With these coefficients, the series (6.1) represents, for all x, the function Fo (x ), the odd 2t-periodic 
extension of f(x). 

6.2 Find all eigenvalues and e igenfunctions for the problem 

-w"(x) = Aw(x) 

w'(O) = w'(f) = 0 

O<x < f 

As this problem is of Stu rm-Liouville type, Theorem 6.4(i) ensu res that the igenvalues A are 
real-negative, zero, or positive. E ach of the three possibilities for A leads to a different form of the 
generaJ solution to the differential equation, and we must then check to see which solution(s) can satisfy 
the homogeneous boundary conditions without reducing to the trivial solu tion. 

If A < 0, write A = _JL2 < O. Then w(x) = AeSLX + Be- JL
\ and the boundary conditions, 

w'(O) = JL(A - B) = 0 

are satisfied if and only if A = B = 0; i.e., there are no negative eigenvalues. 
If A = 0, then w(x) = Ax + B, and the boundary condi tions, 

w'(O) = A = 0 w'(e) = A = 0 
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are satisfied by w(x) = B o¢ O. Thus, A = 0 is an eigenvalue, and all corresponding eigenfunctions are 
constant multiples of wo(x) = 1. 

If A > 0, write A = /L 2 > O. Then w(x ) = A sin /LX + B cos /LX, and 

w'(O) = /LA = 0 

w'(t) = /LA cos /Lt - /LB sin /Lt = 0 

The determinant of this system, -/L2 sin /L t, vanishes for /Ln = n7T/e (n = ±1, ±2, ... ). Hence, the 
positive e igenvalues are An = (n7T/t)2 (n = 1, 2, ... ), and the eigenfunctions corresponding to An all are 
constant multiples of wn(x ) = cos nmc/e. 

It is seen that the eigenfunction expansion on (0, t) yielded by the above Sturm-Liouville problem is 
nothing other than the Fourier cosine series of Problem 6.1(a). Changing the boundary conditions to 
w(O) = w(e) = 0 would yield the Fourier sine series. 

6.3 Given a function F(x), defined on the closed interval [-e, e], state conditions sufficient to 
ensure that F (x) is C P on the whole real axis. 

If F(x) were defined merely in (-e, e), then (6.3) would fail to define F at the points X = 

± t, ±3e, ±5t, . .. , so that questions of continuity would be meaningless. Even if (i) F(x) is defined on 
[-e, t], the function F is well defined only if (ii) F(t) = F(-t). If (i) and (ii) hold and, in addition, 
F (x) is continuous on [-t, e), it is apparent that F(x) will be continuous for all x. 

Repeating the above argument with respect to the derivatives of f:; we prove the 

Theorem: F(x) is C P if, for j = 0,1, ... , p, F(j )(x) is continuous on [-t, t] and obeys 

F(j)(t) = F(j)(-t) 

6.4 Given a function f(x ), defined on the closed interval [0, e], state conditions sufficient to ensure 
that Fo(x ) [Problem 6.1(b)] is C P on the whole real axis. 

We apply the result of Problem 6.3 to the function Fo(x) of Problem 6.1(b), making two preliminary 
observations: 

(1) For the odd function Fo(x) to be continuous on [-e, t] and to obey Fo(t) = Fo(-t) , it is 
sufficient (and necessary) that f(x) be continuous on [0, t) and obey f(O) = f(t) = O. 

(2) For odd j, the jth derivative F(P(x) is an even function in [-e, e) . Hence, if it exists, this 
function automatically satisfies F(P(t) = F(jl(-t) . 

Theorem: Fo(x) is C P if Pil(x) is continuous on [0, t] for j = 0, 1, ... , p, and if 

r )(O) = r )( t) = 0 

for k = 0, 2, 4, ... :S p. 

6.5 Show that if both f(x) and f'(x) belong to L 2(-00, 00), lim f(x) = O. 
Ix 1-+00 

For all values of x, [f(x)±f'(x)Y~O, from which it follows that 

for any real a and b. Now, 

2 r f(x)f' (x) dx=f(b)2-f(a? 

Moreover, if both f(x) and f'(x) are square integrable, 

(1) 

(2) 
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:~ r f(x? dx = :i,: r f'(x'f dx = 0 (3) 

where a and b are allowed to tend to +co independently. Together, (1), (2), and (3) imply that f(x? 
approaches a constant as x approaches +co, Since f is square integrable, this constant must be zero. By 
similar reasoning, f(x) tends to zero as x tends to - co. 

6.6 Find 

.r I P cosh a \.IS} 
s cosh bVs 

(b > a > 0) 

We have: 

1 cosh aVs 
s cosh bVs 

1 e aVs + e-
a Vs 

s e bVs + e -
bVs 

00 ] 00 I 
= 2: (-It - e-[(2n+l )b-a]Vs + 2: (-It - e-[(2n+l)b+a]Vs 

n = O S n=O S 

Then, by line 9 of Table 6-4 and the linearity of the Laplace transform, 

-I {I cosh aVs} ~ [(2n + I)b - a] ~ [(2n + l)b + a] 2? - = L.. (-It erfc + L.. (-It erfc 
s cosh bVs n - O 2Vt n~O 2Vt 

Supplementary Problems 

6.7 Show that if a series of the form (6.1) converges uniformly to F(x) in (-e, e), the coefficients must be 
given by (6.2), 

6.8 Compute the Fourier coefficients for: 

(a) F(x) = {~ 
(b) G(x)= Ixl (-7T < X < 7T) 

-7T<X < O 

O<X < 7T 

(c) H (x )=x 

6.9 Characterize the convergence of the Fourier series from Problem 6.8 . 

6.10 Write (a) the Fourier sine series, (b) the Fourier cosine series, for the function F(x) = 1, 0 < x < 7T. 

6.11 Find the eigenvalues and corresponding eigenfunctions of 

-w"(x)= AW(x) o < x < e 

under the boundary conditions 

(a) w(O) = w(e) = 0 

(b) w(O) = w'( e) = 0 

(c) w'(O) = w( e) = 0 

(d) w(O) + w'(O) = w( e) = 0 

(e) w(O) + w' (O) = w'( e) == 0 

(f) w(O) + aw'(O) = w( e) + I3w'(e) = 0 (a > 13 > 0) 
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6.12 Let {Ul(X), uix), . . . , UM(X)} be an (incomplete) orthonormal family in e(a, b). Given a function F(x) in 
e(a, b), infer from the identity 

where C1 , . . • , CM are arbitrary constants, that 

(i) O ut of all linear fittings of F (x ) by the fam ily {Un (x)}, the generalized Fourier series yields the 
smallest mean-square error. 

(ii) The generalized Fourier coefficients, Fn, of F(x) obey Bessel's inequality, 

M 

"=1 

6.13 Prove a theorem for F. (x) analogous to that found in Problem 6.4 for Fo(x). 

6.14 Let f(x) be defined on [0, e] and satisfy, for some p ~ 2, the hypotheses of the theorem of Problem 6.4 
(6.13). Prove that the Fourier sine (cosine) series converges uniformly. [Hint: Integrating by parts p 
times, show that 

and apply the Weierstrass M-test. 

6.1S Find the Fourier series for the folIowing functions: 

(a ) f(X)= { :-x 

X-27T 

(b) f(X)={ 1 
-1 

0 < x < 7T/2 

7T/2 < x < 37T/2 

37T/2 < x < 27T 

7T/2 < Ix - 7T1 < 7T 

Ix - 7T1 < 7T/2 

6.16 For f and g in (real) e(a, b), show that 

(c) f(x)=3x 2 

(d) f(x) = x 3 

(f f(x)g(x) dX) 2 ~ (f f(x? dX) (f g(x? dx) 

-7T<X < 7T 

6. 17 Let {Un(x)} denote a complete orthonormal family of functions in L 2(a, b ). For f, g in L2(a, b), let 
fn == (f, Un ), gn == (g, Un ) for n = 1,2, . ... Prove: 

(a) (f, g ) = L f~n 
"= 1 

(d) lim fn = 0 

6.18 Refer to Problem 6.17. If f belongs to L\a, b), if I-the (b - a)-periodic extension of f-is continuous, 
and if f is sectionally continuous, prove that 
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6.19 Use the operational properties of the Fourier transform (Table 6-1) to find the Fourier transforms of 

6.20 

J(x) = { ~-2X 1< x < 4 
otheIWise 

1<x<3 
6<x<8 
otheIWise 

If F(a) = ~{f(x)}, use the convolut ion p roperty of the Fourier transform to find 

6.21 Use the operational properties of the Laplace transform (Table 6-3) to find the Laplace transforms of 

J(t) = f sin at e(t) = ebl cos at 

t < 1 

1< t < 2 

2 < t 

6.22 Calculate (a) .ce-1{S-4e-3s}, (b) .ce-1{VS/(s)} if /(s) = .P{f(t)}, (c) .ce-1{exp (-kVS+h)}. 

6.23 Find the inverse Laplace transforms of 

_ cosh as 1 
J(s)=--­

sinh bs s 

sinh aVS 1 
&(s)=---

sinh bVS VS 



Chapter 7 

Eigenfunction Expansions and 
Integral Transforms: Applications 

The techniques of Chapter 6 can yield exact solutions to certain PD Es, by reducing them to 
ordinary differential equ ations or even to algebraic equations. For success, it is essential that the 
PD E be linear and hence allow superposition of solutions. 

7.1 THE PRINCIPLE OF SUPERPOSITION 

Let L [ ] denote any linear partial differential operator; e .g., (3.3). Then , for arbitrary, 
sufficiently smooth fun ctions U\ ' .. . , UN and arbitrary constants cp . .. , CN' 

and so 

L [ Uj ] = 0 (j = 1, . .. , N ) ~ L[ c\ u\ + ... + CNUN] = 0 

(7.2) is one statement of the principle of superposition. 
For infinite linear combinations such that 

and 

both converge, we have 

L [i CkUk] = i ckL[uk] 
k=\ k= \ 

and the superposition principle reads: 

L[uk ]=O (all k) ~ L[i CkUk]=O 
k=\ 

(7. 1 ) 

(7.2 ) 

(7.3 ) 

(7. 4 ) 

For a th ird version, suppose u(x,;\) to be a function of x in R n depending on parameter ;\, 
a < ;\ < b, and g(;\) to be an in tegrable function of ;\ on (a, b) . Then, if 

b b 

J g(;\ ) u(x,;\) d;\ and f g(A ) L[u(x,A)]dA 
a a 

both exist, we have 
b b 

L [J g(;\)u(x,;\) dA ] = J g(;\ )L[u(x, A)] d;\ 
a a 

(7.5) 

and 
b 

L [u (x, ;\)] = 0 (a < ;\ < b) ~ L [J g(A)U(X,;\ ) dA ] = 0 
a 

(7.6 ) 

7.2 SEPARATION OF VARIABLES 

If u(x, y) satisfies a linear PDE in x and y, then the method of separation of variables for this 
problem begins with the assumption that u(x, y) is of the form X (x) Y (y). This has the effect of 
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replacing the single PDE with two ordinary differential equations. The theory of eigenfunction 
expansions enters into the treatment of any inhomogeneous aspects of the problem. 

EXAMPLE 7.1 By examining the Solved Problems, where numerous applications of the method of eigen­
function expansion (separation of variables) are made, we see that for the method to be successful, the problem 
must have the following attributes: 

(1) At least one of the independent variables in the problem must be restricted to a finite interval. 
Moreover, the domain· of the problem must be a coordinate cell in the coordinate system in which the 
PDE is expressed (e .g., in Cartesian coordinates, a rectangle; in polar coordinates, a sector). See 
Problem 7.17(b). 

(2) The PDE must separate; see Problem 7.17(a). 

(3) In general, homogeneous boundary conditions must be arranged such that at least one of the separated 
problems is a Sturm-Liouville problem. (If this is not the case, it can often be made so by reduction to 
subproblems or by a change of dependent variable.) See Problems 7.18 and 7.4. 

7.3 INTEGRAL TRANSFORMS 

The integral transforms which are most generally applicable are the Fourier and Laplace 
transforms. Others, such as the Hankel and Mellin transforms, are sometimes useful, but they will not be 
considered here. 

EXAMPLE 7.2 Examination of the Solved Problems reveals that integral transforms apply in the following 
situations: 

(1) The PDE has constant coefficients (otherwise the Fourier or Laplace transform would not produce an 
ordinary differential equation in the transform space). 

(2) The independent variable ranges over an unbounded interval. If the interval is (-00,00), then the 
Fourier transform is the likely transform to use. If the interval is (0,00) and, in addition, if the initial 
conditions are appropriate, then the Laplace transform is indicated. 

Solved Problems 

7.1 For f(x) in L2(0, t), fin d u (x, t) satisfying 

u(x, 0) = f(x) 

u(O, t) = u(e, t) = 0 

Assume that u(x, t) = X(x) T(t). Then 

u,(x, t) = X(x) T(t) 

and it follows from (1) that, for 0 < x < e and t > 0, 

O<x<t, t>O 

O<x<t 

t>O 

Uxx(x, t ) = X"(x) T (t) 

T(t) X"(x) 

K T(t) X (x) 

(1) 

(2) 

(3) 

(4) 

Since the left side of (4) is a function of t alone and the right side is a function of x alone, equality holds 
for all 0 < x < e and every t > 0 if and only if there exists a constant, - A, such that 
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T(t) X"(x) 
--=-A=--
K T(t) X(x) 

for 0 < x < e, t > O. This is equivalent to the two separate equations, 

T(t) = - AK T(t) and -X"(x) = AX(x) 

In addition, the boundary conditions (3 ) imply that X(O) = X(e) = O. Hence, 

-X"(x) = AX(x) 

X(O) = X(e) = 0 

85 

is a Stunn-Liouville problem, with eigenvalues An = (n7T/e)2 and corresponding eigenfunctions Xn(X) = 
sin (n7Tx/e) (n = 1,2, .. . ). 

A solution of 
T(t) = - AnK T(t) (t > 0, n = 1,2, . . . ) 

is easily found to be Tn(t) = e-And
• Thus, for each n, Un (x, t) "" e-And sin (n7Tx/e) satisfies the PDE (1) 

and the homogeneous boundary conditions (3). By the principle of superposition, the function 

U(x, t) = :z: enun(x, t) 
n - I 

has these same properties, for any set of constants en for which the series converges. Finally, the initial 
condition (2) will be satisfied if 

I(x) = :z: enun(x, 0) = :z: en sin (n7Tx/e) 
" = 1 n=1 

which determines the en as the coefficients of the Fourier sine series for I(x) (see Problem 6.1(b»: 

7.2 Solve 

2It' en = - I(x) sin (n7TX/e) dx 
f 0 

u,(x, t) = KU;u(X, t) + F(x, t) 

u(x, 0) = f(x) 

u(O, t) = u(t, t) = 0 

O<x<t, t>O 

O<x<t 

t > O 

Because the equation here is inhomogeneous, we must use a modified separation of variables 
procedure. If F(x, t) were zero, Problem 7.1 would give the solution as 

Therefore, borrowing the idea of "variation of parameters," we assume a solution of the form 

U(x, t) = :z: un(t) sin (n7Tx/f) (1) 
n - I 

for certain unknown functions un(t); in addition, we write 

F(x, t) = :z: Fn(t) sin (n7Tx/e) I(x) = :z: In sin (n7Tx/f) (2) 
n=1 '1 = 1 

where the Fourier coefficients Fn(t) and In are given by the usual integral formulas. Substituting (1) and 
(2) into the PDE yields 

(3) 

and the initial condition becomes 
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(4) 
n=! 

Because {sin (mTx/ t)} is a complete orthogonal fam ily in L 2(0, t), (3) and (4) imply that for n = 1,2, ... , 

u~(t) + I( (mr/ t)2un (t) = Fn(t) 

un(O) = In 

1> 0 (5) 

(6) 

There are several standard techniques for solving (5) subject to (6); we choose to take the Laplace 
transform of (5), applying line 3 of Table 6-3: 

A ( ) In __ Fn--,(S~)_ 
U S = + 

n S + K(mr/ t )2 S + K(mT/t? 
(7) 

Then, inverting the transform with the aid of line 7 of Table 6-3, 

un(t) = In e-"(n~/e)l t + r e-K(n~/e)l(t-T) Fn(T) dT 
o 

and (1) becomes 

u(x, 1) = ~/n e-"(n~/e)l t sin (mTx/ t) + n~! [f e-K (n~/e)2(t-T) Fn( T) dTJ sin (mTx/ t ) (8) 

The first series on the right of (8) reflects the influence of the initial state, u(x,O); the second series 
reflects the influence of the forcing term, F(x, 1). 

7.3 Exhibi t the steady-state solution to Problem 7.2 if f(x) == 0 and (a) F(x, t) = cb(x) (i .e., 
time-in dependent forcing), (b) F(x, t) = 4> (x ) sin t. For simplicity, take e = l. 

By Problem 7.2, 

(1) 

in which 

(a) 

and since 

(1) reduces to 

Fn(T) = 2 f F(x, T) sin mrx dx 

Fn(T) = 4>" = 2 f 4> (x ) sin mrx dx 

(n = 1, 2, . .. ) 

(n =1, 2, . . . ) 

Letting 1 ~ 00, we obtain as the steady-state solution 

1 = 4> 
~(x)=- L ~sin m rx 

K n- ! (mT) 

Differentiating (3) twice with respect to x, 

1 = 1 
u ::(x) = - - L 4>n sin mrx = - - 4> (x) 

K n - 1 K 

(2 ) 

(3) 

That is, ~(x) satisfies the original inhomogeneous heat equation wi th all time dependence 
suppressed. In this sense, u=(x) is an equilibrium solution . 
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(b) 

and 

Hence 
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1 

Fn(T) = (sin T)(2 I 4>(x ) sin m rxdx) = 4>n sin T (n = 1,2, . .. ) 

J
' k(n7T)2 sin I - cos 1+ e-·(n".)21 
e-K(n,,)2(I-T ) sin T dT = --'----------

o 1+K2(n 7T)4 

= K(mrtsin/- cos/ +e-K(n,,)21 . 
u(x, I) = L 2 4 4>n Sin n7Tx 

n- l l+K(n7T) 

For large I > 0, u(x, t) approaches 

= K(n7Tf sin I - cos I . 
u=(x, t) = L 2 4 4>n Sin n7Tx 

" - 1 1 + K (n7T) 
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Evidently, when the forcing is time dependent, the steady-state solution is also time dependent and 
cannot be obtained as the solution of a time-independent heat equation . 

7.4 Solve 

if 10(0) = /1(0) = O. 

U,(x, I) = KUx,,(X, t) 
u(x, 0) = 0 

u(O, t) = Io(t), u(t, t) = Nt) 

O< X < t, t>O 

O<x<t 

t > O 

If we attempt to separate variables directly, we shall be led to the following consequences of the 
inhomogeneous boundary conditions: 

X (O) T(/) = fo(t) and x (e) T(/) = /I (f ) 

for t > o. Neither of these implies anything directly about X(O) or X ( e), and as a resul t we do not obtain 
a Sturm- Lio uville problem for X(x). 

To reduce the problem to one with homogeneous boundary conditions, let us write 

u(x, I) = vex, t) + (1 -~) fo(t) + ~/I(/) 

The problem for vex, I) is then 

where 

v,(x, I) - KV=(X, I) = F(x, t) 

vex' 0) = 0 

v(O, t)= vee, t)= 0 

o < x<e, t > O 

o < x < e 

t>O 

We obtain the solution at once by setting f(x) == 0 in Problem 7.2: 

vex, I) = f [J' e - K(n,,/e)2{I-T)Fn(T) dTJ sin (n7TX/e) 
n -l 0 

where the Fourier coefficients Fn are given by 

Fn(t) = -~ r [( l-~)fo(/)+ ~fl(t)] sin (nTTX/ t) dx 

2 
= - [(cos n7T)fi(/)- IMt )] 

n7T 

7.5 Rework Problem 7.4 by the Laplace transform method. 

Let u(x, s) denote the Laplace transform of u(x, t) with respect to I. Then : 

(1 ) 

(2) 
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d2 

sa(x, s) - 0 = K - 2 a(X, S) 
dx 

a(o, S) = foes), ac e, s) = /1(S) 

O<x <f 

[CHAP. 7 

(1) 

(2) 

With u 2
;:; sl K, sinh xu and cosh xu are two linearly independent solutions of (1). Also, sinh xu and 

si nh (e - x)u are linearly independent solutions, and these will be more convenient for our purposes, as 
one of them vanishes at x = 0, and the o ther at x = f. In fact, the linear combination 

• ll (s) . lo(s). 
u(x, s ) = -.-- smh xu+ -.--smh ( e - x)u 

smh fu smh fu 

satisfies (1) and (2). 
Using the approach of Problem 6.6, we obtain, for b > a > 0, 

sinh avS 00 00 

---- = L e-[(2 n+J )b-a ]VS - L e-[(2 n+J )b+a]VS 

sinh bvS n~O n~O 

so that, by line 8 of Table 6-4, 

51:1 rinh avS} = i: (2n + l)b - a e-[(2n+t)b-a]2/ 41 _ i: (2n + l)b + a e-[(2n+1 )b+ a ]2/41 

sinh bvS n - O V 47TP n ~O V 47Tt3 

= _ i: (2n + l)b + a e-[(2n+1 )b+a]2/41 

n~-oo V 47Tt3 

Choosing b = f lV; and a = xiV; or (f- x)/V;, we obtain 

2- J {Sinh XU} = _ i: (2n + l)f+ x e - [(2n+I )t'+ x ]2/4K1 

sinh fu n ~ -oo V 47TKt3 

51: 1 rinh ( f - X)U} = _ i: (2n + 2)f - x e - [(2n+2)t'-x]2/ 4K1 

sinh fu n~-oo V 47TKt3 

From line 7 of Table 6-3, it follows that if we define 

M(x, t);:; -~ i: e - (2n t'-x)2/4KI 
7Tt

n 
_ _ oo 

then u(x, t) can be expressed in the form 

(3) 

This form of the solution involves a series that converges rapidly for small values of I, whereas the form 
obtained by separating variables is to be preferred for large values of I. 

7.6 Solve 

U/(x, t) = Ku,Ax, t) 

u (x, 0) = I(x ) 

u(x, t) of exponential growth in x 

-00 < x < 00, t > 0 

- 00< x < 00 

(1) 

(2) 

(3) 

This is a well-posed problem for the heat equation, with (3) playing the role of boundary conditions 
on the variable x. Under the Fourier transform with respect to x, the problem becomes: 

d 2 
dt V (a, t) = -Ka V(a, t) t > 0 

V(a, 0) = F(a) 
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of which the solution is U(a, t) = F(a) e- KQ 2
, . Inverting by use of Table 6-2, line 1, and Table 6-1, line 8, 

we obtain 
1 ~ 

u(x, t) = - - I e-(X -y)2/4 K'f(y) dy 
v' 47TKt _~ 

(4) 

It can be directly verified (see Problem 4.17) that (4) is a solution to (1 )-(2)-(3), independent of 
the validity of the steps used above to construct it. In fact, it is the unique solution (d. Problem 4.2). 

7.7 Solve 

U, (x, t) = KU.u (X' t) 
u(x, 0) = f(x) 

u(O, t) = g(t) 

Iu(x, t)1 < M 

x > 0, t > 0 

x > O 

t > O 

x > 0, t > O 

Reduce the problem to subproblems for UI(X, t) and U2(X, t) such that U = Ul + U2. 

Subproblem 1 UI" = KUI,xx X > 0, t > 0 

X > O 

1>0 

UI(X, 0) = 0 
UI(O, t) = g(/) 

IUI(x, 1)1 < M x > 0, 1> 0 

Taking the Laplace transform with respect to I, we obtain the problem 

d 2 

SUI(X, s)- 0= K -2 UI(X, s) 
dx 

UI(O, s) = g(s) 

M 
IUI(x, s)1 <­

s 

X > O 

x > 0, s > o 

(1) 

(2 ) 

(3) 

The solution of (1 ) that obeys (2) and (3) is UI(X, s) = g(s) exp (- xvfS7;) . Then, by line 8 of Table 6-4, 

x I' 1 [X2] UI(X, I) = -- exp - geT) dT 
v' 47TK 0 (t - T)3/2 4K(1 - T) 

Subproblem 2 U2. ,(X, I) = KU2, xx (X, I) x > O, 1> 0 

U2(X, 0) = f(x) x > O 

U2(0, I) = 0 1> 0 

/U'l(X, 1)/ < M x>O, 1> 0 

Let Fo(x) denote the extension of I(x) as an odd function over the whole x-axis, and consider th e 
problem 

v,(x, I) = KVxx(X, I) 

vex' 0) = Fo(x) 

- 00 < x < 00, I > 0 

- 00 < x < 00 

(1) 

(2) 

It is obvious physically that an initially antisymmetric temperature distribution must evolve antisym­
metrically; that is, the solution vex, I) of (1 )-(2) ought to be odd in x. If it is, and in addition is 
continuous and bounded for all x and all positive t, then its restriction to x > 0 provides the solution 
U2(X, I) of subproblem 2. Now, by Problem 7.6, the unique solution of (1 )-(2) is 

1 Ioo 

vex' I) = - -- e-(X- y)2/4KI Fo(Y ) dy 
v' 47TKI - 00 

1 100 

= - -- [e-(X- y)2/4K' _ e - (X+y )2/4KI]f(y) dy 
V 47TKI 0 

It is easy to see that, under mild conditions on fey), this function possesses all the desired properties . 
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7.8 Consider the following special case of Problem 7.7: f(x) =0, g(t)= go= const. Show that (a) 
u(x, t) = go erfc (x/v'4,d); (b) the " front" u (x, t ) = ago (0 < a < 1) propagates into the region 
x > 0 at speed z" v;Jt, where erfc z" = a. 

(a) From Problem 7.7, 

u(x, t) = Ul ( X, t) = _x_ f I 1 exp [_ x
2 

] go dr 
V 47TK 0 (t - rf!2 4K(t - r) 

The transformation A 2 = x 2/4K(t - r) changes this to 

2 ~ 

u(x, t ) = go - f e->.2 dA = go erfc (x/V4,d) 
y-; x./ y'4;'"i 

(b) For 0 < a < 1, let z" denote the unique solution of erfc z" = a. Then u(x, t) = ago for all x and t 
that satisfy x = z" V4,d. Therefore, at time t > 0, the point x,, (t) at which u = ago moves with speed 

7.9 Solve 

dx V; 
-=Za -

dt Vi 

un(x, t) = a 2 uxx (x, I) 

u(x, 0) = f(x) , u,(x, 0) = g(x) 

u(O, I) = u(t, I) = 0 

O< x< t , 1> 0 

O< x < t 

1>0 

We suppose u(x, t) = X(x ) T (t) and are led to 

X"(x) T"(t) 2 
--=--=-A 
X(x) a 2 T(t) 

X(O) = x(e) = 0 

This yields two separated problems: 

and 

X"(x) + A2 X(x) = 0 

X(O) = x(e) = 0 
T"(t) + a2A2T(t) = 0 

o < x < e 

t > O 

The respective solutions are, with A 2 = A ~ = (n7T/e? (n = 1, 2, .. . ), 

Xn (X) = sin (n7Tx/t) 

T,,(t) = An cos (n7Tat/ e) + B n sin (n7Tat/ e) 

Hence, 

u(x, t) = L An sin (n7Tx/ t) COS (n7Tat/t) + L B n sin (mrx/t) sin (n1Tat/e) 
"=1 

Now the initial conditions (2) require 

I(x) = 2: An sin (n1TX/t) (0 < x < t) 
n -1 

g(x) = 2: B"(n1Ta/ t) sin (mrx / e) (0 < x < e) 
n= l 

(1) 

(2) 

(3) 

These conditions will be satisfied if An and (n1Ta/ t)Bn respectively equal In and gn, the Fourier 
sine-series coefficients of the functions I(x) and g(x ). Therefore, 

~ = e 
u(x, t) = 2: In sin (n1Tx/ e) cos (n 7Tat/ t) + L -- g" sin (n7Tx/ e ) sin (n7Tat/ e) (4) 

" - 1 n - I n 7Ta 

By use of the relations 
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1 [ n'TT n7T ] sin (n7Tx/f) cos (n7Tat/f) = - sin - (x + at) + sin - (x - at) 
2 f f 

1 [ n7T n7T ] sin (n7Tx/ f) sin (n7Tat/ f) = - cos - (x - at) - cos - (x + at) 
2 f f 

n7T JX

+
aJ 

n7TZ 
=- sin--dz 

2f x-at f 
we can rewrite (4) as 

1 00 [ n7T n7T ] 1 00 JX

+
aJ 

n7TZ 
u(x, t) = - L In sin - (x + at) + sin - (x - at) + - L gn sin - dz 

2 n- 1 e e 2a n~1 x-at e 
1 ~ _ 1 x+at_ 

= - [Fo(x + at) + Fo(x - at)] + - J Go(Z) dz (5) 
2 2a X-aJ 

Evidently, as was suggested in Problem 4.14(a), the initial-boundary value problem (1)-(2)-(3) is 
equivalent to the pure initial value problem in which the initial data are the periodic functions Fo and Go. 
Indeed, for such data, separation of variables in a half-period strip has led to the same D' Alembert 
solution of the wave equation as is furnished by the method of characteristics when applied over the 
entire xt-plane. See Problem 4.10. 

7.10 Solve 
Utt(x, t) = a2uo;(x, t) 

u(x, 0) = f(x) 

u/(x, 0) = g(x) 

-00 < x < 00, t> 0 

-00< x < 00 

-00< x <00 

For special, periodic I and g, the solution has already been found in Problem 7.9. Here again we 
shall retrieve the D' Alembert formula. Apply the Fourier transform in x, to get 

d 2 U(a, t) 2 2 
----:-2- = -a a U(a, t) 

dt 

U(a, 0) = F(a) 

dU 
Tt(a,O)= G(a) 

t>o (1) 

(2) 

(3) 

Solving (1), U(a, t)= A 1 sin aat+ A 2 cos aat; then (2) and (3) imply A 2 = F(a), A1 = G(a)/aa. Hence, 

sin aat sin aat 1 . . 
U(a, t) = G(a)--+ F(a) cos aat = G(a)--+ -F(a)(e,aat + e-,aat) 

aa aa 2 

where we have chosen to write cos aat in the exponential form for convenience in inverting. Using 
Tables 6-1 and 6-2, we obtain: 

7.11 Solve 

7T 1 
u(x, t) = g * - latex) + - [I(x + at) + I(x - at)] 

a 2 

1 fat 1 
= - g(x - y) dy + - [I(x + at)+ I(x - a t)] 

2a -at 2 

1 J x+at 1 
= - g(z) dz + - [/(x + at) + I(x - at)] 

2a X-aJ 2 

Utt(x, t) = a2u.u(x, t) 

u(x, 0) = f(x), u, (x, 0) = g(x) 

u(O, t) = h(t) 

x>O, t>O 

x>O 

t>O 

The approach of Problem 7.7 is perhaps best here. 
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UI .I1(X, t) = a2u,.xx(x, t) 

UI(X, 0) = f(x), udx, 0) = g(x) 

UI(O, t) = 0 

x >0, t > O 

x>O 

t > O 

[CHAP. 7 

In the usual way, we extend the problem to x <0 by making the initial data odd functions of x ; this 
(plus continuity) forces Ul(O, t) = 0: 

Problem 7.10 gives 

and so 

v,,(x, t ) = a2vx.x(x, t) 

vex, 0) = Fo(x), v, (x, 0) = Go(x) 

-00 < x < 00, t > 0 
-00< x < 00 

1 1 Jx
+

a
, 

vex, /) = - [Fo(x + at) + Fo(x - at)] + - Go(z) dz 
2 2a x-M 

- (f(X + at) + f(x - at)] + - g(Z) dz 

( ) 
2 2a X-M 

1

1 1 Ix
+

a
, 

0< t < x/a 

UI x, t = 
1 1 Jat+x 
- (f(x + at) - feat - x)] + - g(z) dz 
2 2a a'-x 

O<x/a < t 

Subproblem 2 U2.II (X, t) = a2U2.xAx, t) 

u2(x, 0) = U2.,(X, 0) = 0 

U2(0, t) = h(t) 

x >0, t > O 

x>O 

t > O 

Apply the Laplace transform in t, to get 

d2 

S2U2(X, s) - 0 = a2 
-2 uix, s) x > 0 
dx 

U2(0, s) = h(s) 

Then, U2(X, s) = C I e-xs1a + C2 exs1a
• In order that U2(X, t) remain bounded for all posi tive x and t, we 

require that C2 = O. The initial condition then implies C I = h(s), and we have 

U2(X, s) = h(s) e- xs1a 

It then follows from line 6 of Table 6-3 that 

{
o 

u x t -2(')- h(t-x/a) 

Our solution, 

O< t < x/a 

O<x/a < t 

- (f(x + at) + f( x - at)] + - g(z) dz 
U = Ul + U2 = 2 2a x-a' 

1
1 1 Jx

+
a

, 

1 1 u+x 
- (f(x + at) - feat - x)] + - f g(z ) dz + h(t - x/a) 
2 2a ol-X 

should be compared with Fig. 7-1 , the characteristic di agram. 

O< t < x/a 

O<x/a < t 

At x = Xa at time t = ta < xa/a, the domain of dependence is the interval [xa - ato, Xa + ata]. 
Moreover, the backward characteristics through (Xc , to) do not meet the line x = 0 in the half-plane t > O. 
Therefore, 

1 1 Jxo
+

a1a 
u(Xc, ta) = - [J(Xo + ata) + f(xa - ata)] + - g(z) dz 

2 2a XQ-UQ 

For t = t, > Xc/a, the domain of dependence of (Xc , tl) is the interval [atl - Xa, at, + Xa], and one of the 
backward characteristics through (Xc , II) cuts the line x = 0 at 1= tl - (Xc/a). Then , 

1 1 J a 'I+XO 
U(Xa, tl) = - (f(all + Xa) - feat ] - Xa)] + - g(z) dz + h(t l - Xa/a) 

2 2a a'l-XO 
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7.12 Solve 
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10 

I,-(xo/a ) 
,/ 

,/ 
,/ 

,/ 
/ 

Xo - alo 

Fig. 7-1 

UII(x, t) = a2uxx (x, t) + f(x, t) 

u(x, 0) = u,(x, 0) = ° 
u(O, t) = h(t) 

Xo + alo 

x >0, t > O 

x>O 

t>O 

x 

In the usual way, we reduce this to two simpler subproblems with solutions such that U = Uj + Uz. 

Subproblem 1 Ut .II(X, t) = aZut.xx(x, t) 

Ut(x, 0) = Ut.t(x, 0) = 0 

Ut(O, t) = h(t) 

This is just subproblem 2 of Problem 7.11; hence, 

Subproblem 2 

{
o 

U x t -
j ( , ) - h (t - x/ a) 

UZ.tr(x, t) = a Zu2.xx(X, t) + f(x, t) 

uz(x, 0) = uz.t(x, 0) = 0 

uz(O, t) = 0 

or, extending f and U as odd functions of x, 

Vtt(x, t) = aZvxx(x, t) + Fo(x, t) 

vex, 0) = vt(x, 0) = 0 

x > 0, t > 0 

x > O 

t>O 

0< t < x/a 

0 < x/a < t 

x >0, t >0 

x > O 

t > O 

-00 < x < 00, t > 0 
-00 < x <00 

The solution for v may be obtained at once from D uhamel's principle (Problem 4.22) and the 
D' Alembert solution of the wave equation (Problem 7.10) for initial data prescribed at t = 7. Thus, 

vex, t) = f L~ {~~::~~~) Fo(z, T) dz J d7 (1) 

Finally, restricting v to x > 0, we obtain from (1). for 0:0; t:o; x/a, 

1 J' J x+a( t-r) 

uz(x, t) = - d7 fez, 7) dz 
2a 0 x-a(t-r) 

(O < t<x/a) 

For 0 < x/a < t, the triangle of integration in (1 ) must be decomposed into two regions, as indicated in 
Fig. 7-2. We find: 
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1 J I- (x/a) I O x+a(l-T) 

U2(X, t) = - dT { [-f(-z, T)] dz + J fe z , T) dZ } 
2a ° x -a (I-T) 0 

1 I I J x +a(l-T) 

+- dT f(Z,T)dz 
2a I-(x /a ) x -a (/-T ) 

1 J,-(x/a ) I a (/ - T)+ X 1 I ' Jx + a u - T ) 

=- dT f( Z,T) d z + - dT f( Z, T)dz 
2a ° a (/-T)- X 2a I- (x/a) x - a(l - T) 

(O < x / a < t) 

J 
z = x - a(t- T) 

x - at x x + at z 

Fig. 7·2 

7.13 Solve the following Dirichle t problem for Laplace 's equation: 

1 0 1 
- - (ru ) + - u = 0 r or r r2 ()fJ 

u( l , 0) = f ( 0) 

u(r, -7T) = u(r, 7T), uo(r, -7T) = ue(r, 7T) 

r< l, -7T<O< 7T 

-7T<O < 7T 

r < l 

If we suppose that u(r, 0) = R(r)0(O), then, in the usual manner, we find : 

r(rR' )' 0 /1 
--=- - =A 

R 0 

subject to (3(-TT) = 0(TT) and 0'(-TT) = (3' (TT). Thus the separated problems a re 

and 

-0" = AS 
0(-TT) = 0(TT), 0'(-TT) = 0'(TT) 

,zRI/ + rR ' -AR= O r < 1 

R(O) fi n ite 

As found in Section 6.4, the eigenvalues of the O-problem are An = n 2 (n = 0, 1,2, ... ), with cor­
responding e igenfunctions 

8 n (O) = ein8 and 9 - n (O) = e- in 8 

and 0 0(0) = 1. Now the r-problem may be solved to give 

(n = 1,2, . .. ) 

(n = 0, 1, 2, .. . ) 

The superposition for u(r, 0) is th erefore 

u(r, 0) = Co + 2: (cnrn e in8 + c_nrn e- in8 ) 
n - l 

(1) 
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The boundary condition u(l , 0) = f(8) now determines the Cn as the coefficients in the complex Fourier 
series for f(8) over (-1T, 1T): 

(n = 0, ±1, . .. ) 

[ef. (6.15c )]. Substi tu tion of (2) in (1), and transposition of summa tion and integration, yields 

But, by the formula for the sum of a geometric series, 

'\.' I') 1- r L... rln e<n(6-<b = - --------:: 
n~-~ 1 - 2r cos (0 - 4» + r 

and u(ro)=l-rJ
rr 

f(4)) d¢ 
, 21T -rrl-2rcos(O-4»+r 

which is the Poisson integral formula in the unit circle of R2. 

7.14 Solve 

ux..,(x, y) + Uyy (x, y) = 0 
u(x, 0) = f(x) 

-00 < x < 00, y > 0 
-00 < x <00 

The use of the Fourier transform in x is indicated; 

d 2 

-a2U(a'Y)+ -2 U(a,y)=0 y>O 
dy 

U(a, 0) = F(a) 

The solut ion of the transformed problem which remains bounded for large y is 

U(a, y) = F(a) e-Ia'y 

Inverting by means of Table 6-2, line 3, and Table 6-1, line 8, we fi nd; 

YJ~ f(z) YJ~f(X-z) 
u(x, y) = - 2 2 dz = - 2 2 dz 

1T _~ Y + (x - z) 1T _~ Y + z 

Note that the change of variable z = y tan 71 takes the second integral (1) into 

1 Jrrf2 
u(x, y) = - f(x - y tan 71) d71 (y> O) 

Hence, for f(x) continuous, 

7.1S Solve 

7T -.,.,/2 

lim u(x, y) = f(x) 
y-o+ 

uxx (x, y)+ uy/x, y) = 0 

u/x, 0) = g(x) 

Let w(x, y) =< Uy(x, y). Then w(x, y) satisfies 

wxx(x, y) + wyy{x, y) = 0 

w (x, 0) = g(x ) 

from which, by (1) of Problem 7.14, 

(-oo < x< oo) 

-00 < x <00, y> O 

- 00< x < 00 

- oo< x < oo, y > O 

-00 < x <00 

(2) 

(1) 

(2) 
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1 ~ 2y 
W(x, y)=-f 2 2g(z)dz 

271" _~ y + (x - z) 
(1) 

Now, u (x, y) = fY w(x, () d( + C (x). A y-an tiderivative of w is obtained by integrating on y under 
the integral sign in (1 ): 

J
y 1 J~ [JY 2( ] w(x, () d(= - 2 2 d( g(z) dz 

271" _~ ( + (x - z) 

As for C (x), it must be bounded and harmonic; hence, a constant. (If u is steady-state temperature, Cis 
an arbitrary reference temperature.) 

7.16 Solve 
u.rx(X, y) + Uyy(x, y) = 0 

u (x, 0) = f(x) 

u(O, y) = g(y) 

x >0, y > o 
x > o 
y > o 

Neither variable is restricted to a bounded interval; so separation of variables is not indicated. 
Neither variable ranges over the whole real line; so the Fourier transform does not seem to apply. 
Finally, the Laplace transform does not apply, since the equation is second-order in either variable but 
there is only one initial condition for either variable. However, a reduction of the problem to two 
subproblems, 

u(x, y) = u,(x, y) + U2(X, y) 

permits application of the Fourier transform. 

Subproblem 1 U' .xx + U'.YY = 0 
u,(x, 0) = I(x) 

x>O, y > O 

x>o 
U,(O,y)=O y > O 

As previously, we obtain u, as the restriction to the first quadrant of a function v that satjsfies 

v=(x, y) + vy,(x, y) = 0 

vex, 0) = Fo(x) 

-00 < x < 00, y > 0 

- oo<x <00 

where Fo(x ) denotes the odd extension of I (x ). By (1 ) of Problem 7.14, 

y J~ Fo(z) 
v(x,y)=- dz 

71" _~y2+(X_Z? 

Subproblem 2 

y [fO I(-z) d J~ If;) d ] 
=-:;;. - _~y2+(X_Z? z+ 0 y2+(X-Z? z 

y ~ 1 1 
=-J [ ] I( z )dz 

71" 0 y2+(X_Z)2 y2+(X+Z? 

4xy J~ z 
=- I( z )dz 

71" 0 (X2+y2+Z2?-4x2Z2 

U2.x.x + U2,yy = 0 
U2(X, 0) = 0 

U2(0, y ) = g(y) 

x > 0, y > O 

x > O 

y>O 

This is just subproblem 1 with x and y interchanged and I replaced by g; hence U2 is the restriction to 
the first quadrant of 

4xy J~ z 
w(x,y)=- 2 2 2\2 22g(z) dz 

71" 0 (x + y + z ) - 4y z 
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7.17 Giv two examples of boundary value problems for linear PDEs where separation of variables 
fails. 

(a) 

(b) 

u .. Ax, y) + uxy(x, y) + u,.y(x, y) = 0 

u(x, 0) = u(x, 1) = 0 

u(O, y) = F(y), u(l, y) = 0 

0< x < 1, 0 < Y < 1 
O<x<l 

O<y<l 

If we suppose that u(x, y) = X (x) Y (y), then X "(x) Y ( y) + X'(x) Y'(y) + X(x) yl/(y) = 0 and there is 
no way to separate th is expression so as t have a fun ction of x alone on one side of the equation and a 
function of y alone on the other side. 

u .. Ax, y) + Uyy(x, y) = 0 
u(x, 0) = f(x) 

u(l,y)=O 

u(x,x)=O 

0 < x < 1, 0 < y < x 

O< x < l 

O< y < l 

O< x < l 

If we suppose that u(x, y) = X(x) Y(y), then the equation separates into two ordinary differential 
equations. However, the boundary conditions do not lead to a problem of Sturm- Liouville type either 
for X(x) or Y (y) . The difficulty lies in the fact that the region {O < x < 1, 0 < Y < x} is not a coordina te 
cell. This problem may, in fact, be solved by means of a clever transformation (see Problem 7.18). In 
general , when 11 is not a coordinate cell, no such transformation is possible. 

7.18 Transform Problem 7.17(b) so that it becomes separable, and carry out the solu tion . For 
convergence of the series, assume that /(0) = /(1) = O. 

Extend the problem to the square 0 < x < 1, 0 < Y < 1, making the boundary data antisymmetric 
wi th respect to the diagonal y = x (see Fig. 7-3). Th is forces v(x, x) = O. Now, decompose the v-problem 
into two subproblems such that v = V I + V2 . 

Subproblem 1 

y 

v=o 

v = -f(y) 

v = f (x ) 

Fig. 7-3 

VI.=(X, y) + VI.YY(X, y) = 0 

V I(X, 0) = f(x), VI(X, 1) = 0 

vJ(O, y) = vJ(l, y) = 0 

v=o 

x -

0 < x < 1, 0 < y < 1 

O< x < l 

O< y < l 

Upon separation of variables, the three homogeneous boundary conditions give the e igenfunctions 

sin n7TX sinh n7T(l- y) (n = 1,2, ... ) 

The remaining boundary condition then determines the superposition coefficients Cn through 

f(x) = 2: (cn sinh n7T) sin n7TX (0 < x < 1) 
n -J 
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1 

Cn sinh rl7T = In == 2 L I(x) sin n7TX dx or 

(the nth coefficient in the Fourier sine series for I). Therefore, 

VI(X, g) = i ~ sin n7TX sinh n7T(I- y) 
"- I smh n7T 

(0 < x < 1, 0 < Y < 1) 

[CHAP. 7 

Subproblem 2 is just subproblem 1 with x and y interchanged and I replaced by - f. Consequently, 

V2(X, y) = i: ~ sin n7T)1 sinh n7T(I- x) 
,, - I smh n7T 

We conclude that the solution to Problem 7.17(b) is 

(0 < x < 1, 0 < Y < 1) 

u(x, y) = i: ~ [sin n7TX sinh n7T(1 - y) - sin n7T)l sinh n7T(I- x)] 
" - I smh n7T 

(0 < x < 1, 0 < Y < x) 

Supplementary Problems 

THE HEAT EQUATION ON A FINITE INTERVAL 

Solve for u(x, t) (0 < x < e, t > 0). Use eigenfunction expansions in Problems 7.19-7.22. 

7.19 u, = KUx.x , u(x, 0) = I(x), uA(O, t) = go(t), uxC 1', t) = gl(t). 

7.20 u, = KUu , u(x, 0) = I(x), u(O, t) = go(t), u.(e, t) = gl(t). 

7.21 u, = KUxx , u(x, 0) = I(x), ux(o, t ) - pu(O, t) = go(t) with P > 0, u(1', t) = gt(t). 

7.22 u, = KUx.x + bu. + cu, u (x, 0) = I(x), u(O, t) = go(t), u (t , t) = gl(t). 

7.23 Solve Problem 7.19 by means of the Laplace transform in t. 

THE HEAT EQUATION ON A SEMI-INFINITE INTERVAL 

Solve for u(x, t) (x> 0, t > 0). 

7.24 u, = KUxx , u(x, 0) = 0, uAO, t) = get). 

7.25 u, = KUxx , u(x, 0) = 0, uxCO, t) - pu(O, t) = get) wi th p > O. [Hint: Let vex' t) = u.(x, t) - pu (x, t).] 

7.26 u, = KUxx + bu. + cu, u(x, 0) = 0, u(O, t) = I(t). 

THE WAVE EQUATION ON A FINITE INTERVAL 

Solve for u(x, t) (0 < x < 1', t > 0). Use eigenfunction expansions or the D' A1embert formula in Problems 
7.27-7.31, along with Duhamel's principle where appropriate. i n Problems 7.32-7.34, apply the Laplace 
transform. 
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7.27 u" = a2 uxx , u(x, 0) = f(x ), u,(x, 0) = g(x), uAO, t) = u.(e, t) = O. 

7.28 Ult = a 2 un , u(x, 0) = f(x), u,(x, 0) = g(x), U .. (0, /) = u( e, t) = O. 

7.29 Utr = a2 uxx + f(x, t), u(x 0) = u,(x, 0) = 0, u(O, t) = u( e, t) = O. 

7.30 Ult = a2 uxx - 2 cu" u (x, 0) = 0, u,(x, 0) = g(x), u(O, t) = u(e, t) = O. 

7.31 Uti = a2 uvc - 2cu, + g(x), u(x, 0) = u,(x, 0) = 0, u(O, t) = u( e, t) = O. 

7.32 Ut1 = a2 uxx , u(x, 0) = u,(x, 0) = 0, u(O, t) = t(t ), u( e, t) = g(t). 

7.33 Uti = a 2 uxx , u(x, 0) = u,(x, 0) = 0, u..{O, t) = f(t ), ux(e, t) = g(t). 

7.34 Ult = a2 uxx , u(x, 0) = u,(x, 0) = 0, Ux(O, t) = f(t), u(e, t) = g(t). 

THE WAVE EQUATION ON A SEMI-INFINITE INTERVAL 

Solve for u(x, t) (x> 0, t > 0). 

7.35 Ult = a2 uxx , u (x, 0) = u,(x, 0) = 0, uxCO, t) = f(t). 

7.36 Ult = a2 uxx , u(x, 0) = u,(x, 0) = 0, u. (O, t) - pu(O, t) = f(t) with p > O. 

LAPLACE'S EQUATION ON BOUNDED DOMAINS 

7.37 

7.38 

where f:!'~ f( e) dO = O. 

7.39 

Uxx(x, y) + Uy,(x, y) = 0 

uxCO, y) = f(y), ux(l , y) = g(y) 

uy (x, 0) = p(x), Uy (x, 1) = q(x) 

0 < x < 1, 0 < Y < 1 

O< y<1 

O< x<1 

V'U(" e) = 0 

ur (l , e) = f(O) 

Os,sl, -7r < e<7r 

-7r<e < 7r 

V' u(r, e) = 0 

u(r, 0) = u(r, 7r) = 0 

u(a, e) = 0, u(b, 9) = 1 

a < r < b, 0 < e < 7r 

a < r < b 

O< O< 7r 

LAPLACE'S EQUATION ON UNBOUNDED DOMAINS 

7.40 

7.41 

7.42 

u .... (x, y) + u",(x. y) = 0 
u .. (O , y) = fey) 

x >0, y > O 

y>O 

Uy(x, 0) = g(x ) x> 0 

Uxx(x, y) + Uyy( x, y) = 0 

uy(x, 0) = f( x), u,(x, 1) = g(x ) 

-00 < x < 00, 0 < y < 1 
-00 < x < 00 

V2 u(r, 8) = 0 

U(l , 0) = f( 8) 

Iu(r, e)1 < M 

, > 1, -7r < 0 < 7r 

-7r<O < 7r 

,>1, -7r < O<7r 

[Hint: Use the results of Problems 7.13 and 3.29(a).] 

7.43 V'u(r, 0) = 0 , > 1, -7r < 0 < 7r 

ur (l, 0) = f(O) -7r < 0 < 7r 

lu(r,8)I < M r> l , - 7r < O< 7r 
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where f:!'~ fee) dO = O. [Hint: Use the results of Problems 7.38 and 3.29(a), bearing in mind that the 
inversion will reverse the sign of the boundary derivative.] 



• Chapter 8 

Green's Functions 

8.1 INTRODUCTION 

In a region n with boundary S, let 

L[u] =f(x) 

B [u] = 0 

in n 

on S 

(8.1) 

(8.2) 

represent, respectively, a linear, second-order PDE and linear boundary-initial conditions, such that 
for each continuous f, the problem (8.1 )-(8.2) has a unique solution. Then G(x;~) is the Green's 
function for the problem if this unique solution is given by 

u(x) = J G(x; ~)f(~) dtn 
n 

(We attach a subscript to the volume element to emphasize that the integration is with respect to the 
~-variables.) 

EXAMPLE 8.1 We know (Problems 4.2, 4.7, 4.17, 7 .6) that the initial value problem for the heat equation, 

has the unique solution 

v,(x, t) - vxx (x, t) = 0 

v(x, 0) = f(x) 

- 00< x < 00, t > 0 

- oo<x < oo 

1 J~ [(x - g)2] 
v(x, t) = - - exp - -- f(g) dg 
~ _~ 4t 

It then follows from Duhamel's principle (Problem 4.23) that the problem 

has the unique solution 

u,(x, t)- uxx(x, t) = f(x) 

u(x, 0) = 0 

- 00 < x < 00, t > 0 

- 00< x <00 

J' J'J oo 1 [ (x a] u(x, t) = v(x, t - T) dT = exp - --,- f(g) dg dT 
o 0 _ 00 v' 47T(t - T) 4(t - T) 

From (3) we infer that the Green 's function for the problem (1 )-(2) IS 

1 [ (x - g)2] 
G(x, t ; g, T) = exp - - - -

v' 47T(t - T) 4(t - T) 
(t > T > O) 

(1) 

(2) 

(3 ) 

(4) 

It is seen that the Green 's function (4) exhibits singular behavior as x = (x, t) approaches ~ = (g, T). This holds 
true for Green 's functions in general, and is reflected in the fact that G(x;~) for (8.1 )- (8.2) satisfies, as a 
function of x, the PDE 

L[u] = o(x - ~) (5) 

which is (8.1) with f(x) replaced by the "function" c5(x - ~) (see Problem 8.1). We call a solution of (5) a 
singularity solution for L[ ]. The essence, then, of the Green 's function method is to represent f(x) in (8.1) as a 
"sum" of delta functions, thereby obtaining u(x) as the "sum" of the corresponding singularity solutions 
(adjusted to obey (8.2 )). 
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8.2 LAPLACE'S EQUATION 

It follows from Problem 3.17 that the function 

a-(x ;~) = 

1 
21x - gl 

1 
-Joglx - ~I 
27r 

(2 - n;A,,(l) Ix - ~12-n 
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for n = 1 

for n = 2 (8.3) 

for n 2: 3 

where x and ~ represent distinct points and A,, (l) denotes the area of the unit sphere (see Example 
3.2), is the singularity solution fo r the Laplacian operator V2[ ] in Rn. 

EXAMPLE 8.2 For Laplace's equation in three-space, Uxx + Uyy + U zz = 0, with x = (x, y, z) and t = (g, T/, () , the 
singularity solution is 

1 
o-(x, y, z; g, T/, () = - 47T[(X _ g)2 + (y _ T/ ?+ (z - ar!2 

Theorem 8.1: If ~ is a fixed point of R n, then: 

(i) for n 2: 1, O"(x ; ~) is dependent only on the distance r == Ix - ~I; 

(ii) for n 2: 1, V;O" = 0 for all x ,t. ~; 

(iii) for n > 1, the integral of the normal derivative of 0" over any sphere centered at 
x = ~ is equal to one. (This extends in the obvious way to RI. ) 

Since O'(x ; ~) = O"(~ ; x), T heorem 8.1 is valid with the roles of x and ~ reversed. 
Because Poisson's equation, V2 u = p(x), is solved in unbounded R n by 

u(x) = f O"(x; ~)p(~) dll 
Rn 

the singularity solution serves as the Green 's fu nction for V2[ ] when no boundaries are present; we 
call it the free-space Green's function. We now show how to modify this function so that it gives the 
Green 's function when boundary conditions have to be satisfied. 

Let !l be a region with boundary S, and take ~ to be a fixed point inside n. If, as a function of x, 
V2h = 0 in n, then the function 

cfJ (x, ~) = O"(x; ~) + h 

where h may depend on ~ as well as on x, is called a fundamental solution of J: place 's equation in !l. 

EXAMPLE 8.3 Let.n be the upper half of the xy-plane and let t = (g, T/) be a fixed point in fl . Both 

c/>I(X, y ; g, T/) = o-(x, y; g, T/) + X2 - y2 

and c/>2(X, y ; g, T/) = o-(x, y; g, T/) + o-(x, y; g, -T/) 

are fundame ntal solutions of Laplace's equation in fl . 

Theorem 8.2: Let n be a bounded region to which the divergence theorem applies . If cfJ(x; ~) is a 
fundamental so lution of Laplace's equation in n and if V2 u = f(x) in n, then 

where 

u(~) = J cfJ (x; ~)f(x) dn + f (u JcfJ - cfJ au) dS (8.4) 
n s an an 

a 
-==n'V 
an • 
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If f and u are sufficiently welI-behaved at infinity, then Theorem 8.2 is valid in unbounded regions. In 
(8.4) the roles of x and ~ can be interchanged to obtain an expression for u(x) (x in n). 

Suppose that for each continuous f and g, the mixed problem 

V2 u = f(x) in n 
au 

au + fJ -= g(x) on S 
an 

has a unique solution. The Green 's function, G(x; ~), for this problem is the fundamental solution of 
Laplace's equation in n that satisfi es 

aG 
aG + (3 - = 0 on S an 

This homogeneous boundary condition ensures that, for q, = G, the boundary integral in (8.4) 
depends only on the known functions G, a, {3, and g, and not on u. (It does not, however, ensure that 
the boundary integral will vanish; that can be enforced only when the boundary condition on u is 
homogeneous, as in (8.2).) 

The remainder of this section assumes (3 = 0; i.e ., it treats the Dirichlet problem 

V2 u = f(x) 

u = g(x) 

inn 

on S 

Theorem 8.3: The Green's function for (8.5)- (8.6) is unique and is given by 

G(x; t) = o-(x; t) + hex; t) 

where, for each fixed ~ in n, h satisfies 

V;h = 0 in n 
h = -0- on S 

Theorem 8.4: For each fixed t in n, the Green's function for (8.5)-(8.6) satisfies 

V;G(x; ~) = S(x - ~) in n 
G= O on S 

where 8(x - t) is the n -dimensional D irac delta (unction. 

(8.5) 

(8.6) 

Theorem 8.5: T he Green's function for (8.5)-(8.6) is symmetric, G(x;~) = G(~; x), and it is 
negative for all distinct x and t in n. 

Theorem 8.6: If n is bounded, the Green 's function for (8.5)-(8.6 ) h the eigenfunction expansion 

G(x; t) = ~ U, (X:Ur(~) 
r= 1 r 

where V2 u,(x) = A,U,(X) in n, u,(x) = 0 on S, u, ¢ O. 

Theorem 8. 7: The solution of (8.5)-(8.6 ) is 

u(x) = J G(x; ~)f(~) df.n + J g(€) aG (x; ~) dtS 
n s an 

where 

The techniques for constructing Green's functions for Laplace's equation include the method of 
images (see Problem 8.5), eigenfunction expansions, and integral transforms. In two dimensions, 
conformal mappings of the complex plane provide a powerful means of constructing Green's 
functions for Laplace's equation. 
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Theorem 8.8: (i) Let w = F(z) be an analytic function which maps the region n in the z-plane onto 
the upper half of the w-plane , with F' (z) 'J". 0 in n. Then, if z = x + iy and (= g + i7] 
are any two points in n, the Green's function for (8.5)-(8.6) in R2 is given by 

G(x, y; g, 1J) = - log 1 iF(Z)-F«()i 
27T F (z) - F«() 

where the overbar denotes the complex conjugate. (ii) Let w = f(z) be an analytic 
function which maps the region n in the z-plane onto the unit circle in the w-plane, 
with f«() = 0 and f'(z) 'J". 0 in n. Then the Green's function for (8.5)-(8.6) in R2 is 
given by 

1 
G(x, y; g, 7]) = -log If(z)1 

27T 

8.3 ELLIPTIC BOUNDARY VALUE PROBLEMS 

Given a second-order, linear, partial differential operator, L[ ], defined by 

n a2u n au 
L[ u] == 2, aij --+ 2, bi - + cu 

i,j~1 axiaxj i~1 aXi 

the adjoint operator, L *[ ], is defined by 

n a2 n a 
L * [v] == 2, -- (aijv ) - 2, - (biv ) + cv 

i,j~1 axiaxj i~1 aXi 

(8.7) 

(8.8) 

It is assumed that the aij are in C 2 and the bi are in C 1
• For any pair of C 2 functions u and v, 

Lagrange's identity, 

v L[ u ] - uL * [v] = i ~ [ ± aij (v au - u av) + uv (bi - i Ja ij ) ] (8.9) 
i~l aXi j~1 aXj aXj J~l aXj 

holds. If Ai; denotes the expression in square brackets on the right side of (8.9 ) and M == 
(MI , M 2 , ••• , Mn), then Lagrange's identity takes the form 

v L [u] - uL*[v]= V · M (8.10) 

If (8.10) is integrated over a region n with boundary S, then the divergence theorem shows that 

I vL[ u] dn = J uL*[v] dn + I M · o dS 
n n s 

where, as ever, n is a unit outward normal to S. 
Consider the linear boundary value problem 

L[u] = f 
B [u] = 0 

inn 
on S 

where L[ ] is an elliptic operator of the form (8. 7) and 

au 
B [u ]= au +f3-

an 

(8.11 ) 

(8.12 ) 

(8.13) 

The adjoint boundary conditions, B*[v] = 0 on S, are a minimal set of homogeneous conditions on v 
such that B[u]=B*[v]=O on S implies M·o = O on S. The PDE (8.12) is called self -adjoint if 
L*[ ] = L[ ]; problem (8.12)-(8.13) is self-adjoint if L*[ ] = L [ ] and B*[ ] = B[ ]. 



104 GREEN'S FUNCTIONS [CHAP. 8 

Theorem B.9: Let x = (xl> x2 ' . • • , xn ) and ~ = (tp t2 , • .• , tn ) . If (8.12)-(8.13) has a Green 's func­
tion , G (x; ~), then, as a function of the x-variables, G satisfies 

L.[G] = 8(x -~) 

B.[G] = 0 

As a function of the ~-variables, G satisfies 

LnG]=8(x-~) 

B~[G] = 0 

in n 
on S 

in n 
on S 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

Theorem B.I0: If G(x;~) is the Green 's function for (8.12)-(8.13), then G is symmetric in x and ~ 
if and only if the problem is self-adjoint. 

Theorem B.ll: For (8.12 )-(8.13 ) to have a Green's function, it is necessary that u = 0 be the only 
solution to L[u] = 0 in n, B[uJ = 0 on S. 

8.4 DIFFUSION EQUATION 

For the diffusion equation in n space-variables, u/ - K V2u = 0, the singularity solution is 

K(x -~, 1 - T) = H (I - T) [47TK(1 - TWn!2 exp [-Ix - ~12 ] 
4K(1 - T) 

Theorem B.12: (i) As a function of x and I, the singularity solution (8.18) satisfies 

(x, I) =.I- (~ , T) 

lim K(x-~, 1- T)= 8(x-~) 
1-+ 1"+ 

(ii) As a function of ~ and T, the singularity solution (8.18 ) satisfies 

-Kr - K V~K = 0 (~, T) =.I-(x, I) 

lim K (x -~, 1 - T) = 8(x -~) 
-r-+/ -

Theorem 8. 12(i) shows that, as a function of x and I, K satisfies 

K/ - K V;K = 8(x -~) 8(1 - T) 

(8.18) 

(8.19) 

In the context of time-dependent heat flow , (8.19) permits the following interpretation: K is the 
temperature distribution in x at time 1 due to the release of a unit heat pulse at position ~ at time T. 

Theorem 8.12(ii) implies that, in ~ and T, K satisfies 

(8.20) 

G iven a bounded region n to which the divergence theorem applies , a f undamental solution of 
the d iffusion equation in n, 4>(x, I;~, T), is defined in much the same way as a fundamental solution 
of Laplace's equation (Section 8.2). Specifically, we have: 

4>(x, I; ~ , T) = K(x -~, 1 - T) + l(x, t; ~, T) 

where 1 is any solution, in n, of the dual problems 

1/- K V;l = 0 
1=0 

I > T 

I < T 

T < I 

T > I 

EXAMPLE 8.4 Let n be the unit interval (0,1) of R ' . Then, for 0 < x < 1 and 0 < g < 1, one fundamental 
solution of the one-dimensional diffusion equation is 
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CPI(X, t; g, T) = K(x - g, t - T) + H(t - T) e-K(t- T) cos (x - 0 

where K is given by (8.18) with n = 1. 
Another possibility would be 

CP2(X, 1; g, T)= K(x - g, t- T)+ L C;K(x- gi, t- T) 
/-1 
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where the points gl, 6, .. . are outside (0, 1) and where the constants C; are such that the series is convergent. 
Such a fu ndamental solution might arise when the method of images is used to satisfy boundary conditions. 

Theorem 8.13: Let ° be a bounded region to which the divergence theorem applies, and let u(x, t) 
solve 

u,- KV2
U = f(x , t) 

u(x, 0) = uo(x) 

x in 0, t > 0 

x in ° 
Then, for any fundamental solution ¢ of the (homogeneous) diffusion equation, 

u(x, t) = r J ¢(x, t;~, r)f(~, r) dtO dr + J ¢(x, t;~ , 0) uo(~) dtO 
o n n 

(8.21) 

If the integrands in (8.21) decay rapidly enough at infinity, Theorem 8.13 is valid for unbounded regions. 
Assume now that the problem 

u/ - K V2u = f(x, t) 

u(x, 0) = uo(x) 

au 
au + f3 - = g(x, t) 

an 

x in 0, t > 0 

x in ° 
x on S, t > 0 

has a unique solution for any continuous f, uO' and g. The Green ' s function, G (x, t ; ~,r), for this 
problem is a fundamental solution of the diffusion equation which satisfi es 

aG 
aG+f3 - =O 

an 
x on S, t> 0 

For ¢ = G, Theorem 8.13 yields u(x, t) as the sum of integrals of known fu nctions (d . Theorem 8.2 
and Laplace's equation). Methods for constructing the Green's function include images, e igen­
function expansions, and integral transforms. 

8.5 WAVE EQUATION 

The singularity solution for the wave equation in n space-dimensions, uti - a 2 V 2u = 0, is 

k(x, t ; ~, r) = 

1 
H (a (t - r) -Ix - ~I) 2a (n= 1) 

1 
H (a( t - r) - Ix - W -----;::=======:::=:::::; 

27TaV[a (t - r)Y -Ix - ~12 
1 

8(a (t -r)-lx-W I I (n=3) 
47Ta x - ~ 

(n = 2) (8.22) 
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As with the diffusion equation, the singularity solution is a point-source solution in that k satisfies 

ku - a 2 V2 k = o(x -~) oCt - T) 

In the variables x, t, the function k represents the causal Green's function for the wave eq uation; in 
t, T, it is the free -space Green's function. Figure 8-1 suggests the difference in inte rpreta tion, for 
n = 1. 

r 

(x, r) 

k = O k=O k=O 

(§, r ) 

x 

(a) Causal Green's function (b) Free-space Green's function 

Fig. 8-1 

In contrast to the diffusion equation, however, the singularity solution for the wave equation 
depends essentially on the dimension n. For n = 3, the delta function in (8.22) implies that, at time t, 
the disturbance due to a local impulse at t = (g, 'TI, () at time T < t is concentrated on the surface of a 
sphere of radius aCt - T) with center at (g, 'TI, (). However, for n = 2, because of the Heaviside 
fu nction, the analogous disturbance is distributed over the interior of a circle of radius a (t - T) 
centered on the sou rce. Both distu rbances are traveling radi ally with speed a; but, while in three 
d imensions there is a sharp wave front that leaves no wake, in two dimensions a wake exists that 
decays like Va (t - T) after the wave front passes. The foregoing observations form the basis of 
Huygens' principle. 

Fundamental solutions of the wave equation and Green's functions for initial- boundary value 
problems are obtained from the singularity solution as in the parabolic case, Section 8.4. In 
particular, consider the problem 

uti - a2 V2u = f(x, t) xin O, t > O (8.23) 

u(x, 0) = uo(x), u, (x , 0) = u1(x) x in O (8.24) 

au 
au + (3 - = g(x, t) x on S, t>O (8.25) 

an 

Theorem 8.14: If a (causal) Green's fu nction, G(x, t ;~ , T), for (8.23)-(8.25 ) exists, it is determined 
as the solution of either of the following problems: 

(i) 

(ii) 

GIt - a2 V2G = o(x - ~)o( t - T) 

0 =:00 

aG 
a O +{3-= 0 

an 

lim G = 0, lim G, = o(x - ~) 

aG 
aG+{3-=O 

an 

x, t inO 

t < T 

x on S 

x, t in 0, t > T 

x,t in 0 

x on S 
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Theorem 8.15: With G as in Theorem 8.14, the solution of (8.23)-(8.25) is, for 0'7"'-0, 

u(x, t) = r I G (x, t ; ~ , T)f(~ , T) d~n + I [G(x, t; ~, 0) Ul(~) - Gr(x, t; ~, 0) uo(~)] d~n 
o n n 

II I 1 aG 
-a

z 
0 s ll'(~) a;(X,t ; ~ , T)g(~, T)d~Sdr 

where the normal derivative involves the g-gradient. If a = 0, the last term is 
replaced by 

I 1 
+ aZ J J - G(x, t;~, r)g(~, r) d~S dr 

o s f3(~) 

and, for the pure initial-value problem (8.23)-(8.24), the last term is dropped. 

Solved Problems 

8.1 Let n be an open region and let T denote the set of all infinitely differentiable (COO) functions 
on n having the property that each 0 in T is identically zero outside some closed bounded 
subset of n. T is called the set of test functions on n (d. Problem 5.15). A sequence {On} of test 
functions is said to converge to zero in T if all the On are zero outside some common bounded set 
and if {On} and all its derived sequences converge uniformly to zero as n -'> 00. Any rule d which 
assigns to each test function ° a real number, (d, 0), which satisfies the linearity condition (note 
that T is a vector space over the reals) 

(d, 0'01 + f30z) = a (d, ( 1) + f3(d, Oz) 

and the continuity condition 

(a, f3 in R; Op Oz in T) 

lim (d, On) = 0 whenever {On} converges to zero in T 

(1) 

(2) 

is called a distribution or generalized function. (a) If f(x) is a con tinuous function in n, show 
that the rule 

(f, 0) == J f(x) O(x) dn 
n 

defines a distribution . (b ) If ~ is any point in n, show that the rule 

(0, 0) == O(xo) 

defines a distribution. 

(3 ) 

(4) 

(a) Since f is continuous and 0 is Coo and vanishes outside a bounded subse t of 0 , the integral on the 
right of (3) exists (i.e., is a real number). The linearity condition (1) follows immediately from the 
linearity in 0 of the integral (3). To establish the continui ty condition (2), Jet {On} converge to zero 
in T. Since the On all vanish outside some common set, Q, in 0 and {On} converges uniformly to 
zero on Q, 

lim (f, On) = lim f jOn d O = lim f fOn d O = f (lim On)f dO = 0 
n-+ oo n-+ oo n n_co 0 0 n-+oo 

Thus, (3) defines a distribution. Because this distribution is determined exclusively by the 
continuous function f, it too has been given the symbol f. 
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(b) Since Xo is in 11 and 0 is a test function on 11, the right side of (4) is well defined . The rule 8 assigns 
to the linear combination of test functions aO, + (302 the number 

so (4) satisfies (1). For any sequence {On} which converges to zero In T, it is clear that 
(8, On ) = On(XO)~O as n ~oo; therefore , (2) is also satisfied. 

The distribution or generalized function (4) is known as the Dirac delta distribution or, more 
commonly, as the Dirac delta f unction. By a formal analogy with (3), it is common practice to write 

(8, 0) = L 8(x - xo) O(x) d11 = O(xo) (5) 

even though there is no continuous function f(x) that can be identified with 8(x - xo). 
A linear combination of two distributions, d, and d2 , is defined by 

(a, (3 in R) 

Products and quotients of distributions are not well-defined in general. However, if x = (x, y) and 
t = (g, TJ), the two-dimensional 8-function 8(x - t) can be represented as a direct product of two 
one-dimensional 8 -functions: 

8(x - t) = 8(x - g)8(y - TJ) 

A distribution d is said to be zero on an open set 11' in 11 if (d, 0) = 0 for every 0 in T which is 
identically zero outside 11'. In this sense, 8(x - xo) is zero on any region that does not contain Xo. 

8.2 Establish Theorem 8.2 for R2. 

Let t = (g, TJ) be any point in the two-dimensional region 11 and let r = Ix - tl be the distance from t 
to any other point x = (x, y) in 11. Let s be a circle of radius f: centered at t, and let 11' be the portion of 
11 exterior to s. From Green's second identity, (l.8), 

f f ( a</> au) f (a</> au) (uV2</>-</>V 2u)d11'= u--</>- dS+ u--</>- ds 
0 ' s an an s an an 

(1) 

In both boundary integrals of (1) the contour is described so that 11' is kept to the left (see Fig. 8-2). 

Fig. 8-2 

Since </> is a fundamental solution with singularity at t, which is not in 11' , 

in 11' (2) 

On s the outward normal derivative of </> relative to 11' is 
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a¢ a¢1 1 ahl ---- -- - --
an ar r-. 27T€ ar r=. 

wherefore (consult Fig. 8-2; ds > 0) 

f ( a¢ au) f2 >7 (-U ah au) u--¢- ds= --u-+¢- €dw 
• an an 0 27T€ ar ar 

1 f2>7 f2>7 ah au 
= - (- u) dw - € (u - - ¢ -) dw 

27T 0 0 ar ar 
(3) 

Now, the first term on the right in (3) is just the mean value of -u over s; so, it approaches -u(~) as 
€ ~ O. As for the second term, since 

it vanishes as € log €, as € ~ O. Consequently, if we let € ~ 0 in (1), we obtain 

-f ¢fdn= f (u a¢ - ¢ au) dS- u(~) 
{) s an an 

which rearranges to (8.4). 
An alternate (but purely formal) derivation of (8.4) can be given using the Dirac delta function. The 

fundamental solution ¢ satisfies 

inn 

Substitute (4) into Green's identity 

and use the sifting property of the 8-function, (5) of Problem 8.1, to obtain (8.4). 

8.3 Assume that a Green's function, G(x; ~), exists for the mixed boundary value problem 

au 
au + (3 - = 0 

an 

inn 

on S 

with a ~ O. Formally show that (a) G(x;~) as a function of x satisfies 

V;G=S(x-~) 

aG 
aG+ (3-= 0 

an 

inn 

on S 

(4) 

(1) 

(2) 

(3) 

(4) 

(b) G(x;~) is symmetric, G(x;~) = G(~; x); (c) the solution to (1) subject to the non­
homogeneous boundary condition 

is given by 

where a/an == n· Vt . 

au 
au + (3 - = g(x) 

an 
on S 

f I 1 aG 
u(x) = G(x; ~)f(~) d~n + -) g(~)- (x;~) d~S 

n sa~ ~ 

(5) 
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(a) If G(x ;~) is the Green's function for (1 )-(2), then by definition 

u(X) = L G(x; ~)/(~) dtO 

From I(x) = V;u = t V; G (x ; ~)/(~) dtO 

it follows that V;G(x ; ~) has th e sifting property of the Dirac delta function, and so (3) holds. From 

au J [ aG] 0= au + f3 - = aG + f3 - I(~) dtfl 
an n an 

and the arbitrariness of I, (4) follows. 

(b) In Green's second identity, 

adding and subtracting 

on the right gives 

f3 au av 

a an an 

(x on S) 

J 2 J 1 [( au) av ( av) au] (uV2 v-vV u)dO= - au+f3- -- av+f3- - dS 
n s a an an an an 

If u and v bo th satisfy (2), by (6), 

L uV2 vdO= L vV
2
udO 

(6) 

(7) 

Now, if Xl and X2 are distinct points in 0 , u"" G(x; Xl) and V"" G(x; X2) bo th satisfy (2 ), by part (a); 
furthermore , ~u and V2 v both have the sifting property. Thus, (7) gives: 

L G(x; Xl) 8(x - X2) dO = L G(x; x2) 8(x - xd dll 

or G(X2; Xl) = G(X1; X2). 

(c) In (6) Jet v = G(x; ~) and let u be the solution of (1) and (5). Then, since v obeys (3 )- (4), (6) yields 

u(~) = J G(x; ~)/(x) d,.f! + J _1_ g(x) aG (x ;~) d.S 
n s a(x) an 

(8) 

Interchanging the roles of X and ~ in (8) and using G(x ; ~) = G(~ ; x) leads to the desired form ula. 

8.4 If n is the rectangle 0 < x < a, 0 < Y < b, find the G reen's funct ion for the boundary value 
problem, 

inn 

on S 

The required Green's function is symmetric, G(x, y; g, ".,) = G (g, "., ; x, y ), and is defined by 

Gxx + Gyy = 8(x - g)8(y -".,) 

G(x, y; g, ".,) = 0 

(x,y)in fl 

(x, y ) on S 

(1) 

(2) 

(3) 

(4) 



CHAP. 8] GREEN'S FUNCTIONS 111 

Method 1 (Eigenfunction Expansion ) 
The eigenfunctions for the Laplacian V2 on n subject to zero Dirichlet boundary conditions are the 

nonzero solutions of 

U = 0 on S (5) 

Using separation of variables to solve (5) gives the eigenvalues, Amn, and corresponding normalized 
eigenfunctions, Urnn ' as 

The expansion 

m , " = 1 

2 . m7TX . mry 
Urnn = -- Sin -- Sin --vab a b 

satisfies the boundary condition (4). Since V2Urnn = ArnnUrnn, it will satisfy (3) if 

m."=1 

(6) 

To find the Cmn multiply (6) by upq(x, y) and integrate over n, using the orthonormality of the 
eigenfunctions (the weight function is unity) and the shifting property of the delta function: 

Therefore, 

2: CrnnArnn J Umn(X, y)upq(x, y) dxdy = J S(x - ~)S(y -1)upq (x, y) dxdy 
m,n = 1 0 n 

. m7TX . n7Ty . m7T~ . n7T1) 
Sin -- Sill --Sill -- Sin --

= -4 i a b a b 

ab rn , n=1 (m
a
7Tf + (nb7Tf 

in agreement with Theorem 8,6, wherein r counts pairs (m, n). 

Method 2 (Partial Eigenfunction Expansion) 

(7) 

(8) 

In this method, G is expressed as an eigenfunction expansion in only one of the variables, say y. Let 
/Ln and Vn (y) be the eigenvalues and the normalized eigenfunctions of the eigenvalue problem for the 
y-part of the Laplacian, subject to zero Dirichlet boundary conditions; i.e. , vn = /Lnv, v(O) = 0 = v(b). We 
have 

An expansion for G of the form 

G(X,y;~,1)= 2: An(x,~,1)Vn(Y) (9) 
n - l 

satisfies the boundary conditions on the horizontal boundaries, y = 0 and y = b. Substitution in (3) gives 

(10) 
n=l 

where' denotes differentiation on x. MUltiply (10) by Vk(Y), integrate both sides from y = 0 to y = b, and 
use orthonormality to obtain 
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To ensure that G = 0 on x = 0 and x = a, Ak must vanish on x = 0 and x = a. This means that the 
function 

Ak(X, g, 71) 
g(x;g)",, - -­

Vk (71 ) 

must be the Green's fun ctio n for the ordinary two-point boundary value problem 

u" + fl-k U = f 
u(O) = u(a) = 0 

O<x<a 

Now, from the theory of ordinary differential equations, we have 

Theorem 8.16: Suppose that when f = 0, u = 0 is the only solution to the two-point boundary value 
problem 

a(x)u"(x)+ b(x)u'(x)+ c(x)u(x) = f(x) 

alu(xl)+ {31U'(X,) = 0 

a2u(x2) + {32U'(X2) = 0 

in which a(x) y' O. Then the Green's function for the problem is given by 

where, for i = 1, 2, Ui satisfies 

au'; + bui+ cu = 0 

aiu;(xi) + {3iui(Xi) = 0 

x, < x < g 

g < x < X2 

Xl < X < X2 

and where W(g) == UI(g) u2(g) - U2(O uf(g) is the Wronskian of Ul and u~ evaluated a t g. 

By Theorem 8.16, with u, = sinh (brx/b) and U2 = sinh (br(x - a)/b), 

. brx. br(g - a) 
SInh - -sInh - ---

b b 
- ----- -- Vk(71) 

k'TT k'TTa 
-sinh - -
b b 

O<x < g 

(11) 

g < x < a 

Although the series (9), with coefficients (11), is more complicated in appearance than (8), it is the more 
rapidly convergent, because 

as k ~OO . 

8.5 Use the method of images to find the Green's fu nction for 

V2u = f in n 
u = g on S 

if fl is (a) {-oo < x < 00, y > OJ, (b) {O < x < 00, y > OJ, (c) {-oo < x < 00,0 < Y < b}. 
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When applying the method of images to Laplace's equation in R2, it is often helpful to interpret the 
free-space Green's function, (T(x, y; g, 71), as the steady xy-temperature distribution due to a unit line 
sink at (g, 71). ("Sink ," not "source," because of Fourier's law and Theorem 8.1(iii).) 

(a) In -00 < x < 00, y > 0, if (T(x, y; g, 71 ) represents a sink at (g, 71), 71 > 0, then a symmetrically placed 
source at (g, - 71), - (T(x, y; g, - 71), will ensure a zero temperature on y = O. Because hex, y; g, 71) ""'­
-(T(x, y; g, -71) is harmonic in y > 0, we have from Theorem 8.3 : 

1 (x - g)2 + (y - TJ? 
G (x,y;g, TJ)=(T(x, y;g,TJ)-(T(x,y;g, -TJ)=-4 log ( <:)2 ( )2 

7r X-~ + y+TJ 

(b) Placing sinks, +(T, and sources, -(T, as indicated in Fig. 8-3(a) shows the Green 's function for the 
first quadrant to be 

G(X, y ; g, 71) = (T(x, y; g, 71)- (T(x, y; -g, 71)+ (T(x, y; -g, -71)- (T(x, y; g, -71) 

1 [(X - g? + (y - TJ ? (x + g? + (y + 71 )2 ] 
= 47r log (x + g? + (y - 71)2 (x - 0 2 + (y + 71)2 

y 

Ef) 

e 
y 

EB a EB 

(-~, 1/) (ft'li) r i: ]I e ~ 

(f. "1) 
x x 

EB 
e EB e 

(-~, -1/) (~, - 1/) 

(a) 
EB 

e 
f-

(b) 

Fig. 8-3 

(c) In this case, an infinite series of sources and sinks is req uired to make G = 0 on both y = 0 and 
y = b. For 0 < 71 < b, Fig. 8-3(b) shows that sinks must be placed at 71, 71 ± 2b, 71 :t:4b, ... and sources 
at -71, -71 ±2b, -71 ±4b, . . .. Thus, 

G(x, y; g, 71) = 2: [(T(x, y; g, 2kb + 71) - (T(x, y; g, 2kb - 71)] 
k~-oo 

8.6 Find the steady xy-temperature distribution in the half-plane y > ° due to a line source of 
strength 2 at (x, y) = (1,3) and unit line sinks at (-5,6) and (4,7). The boundary, y -= 0, is held 
at temperature zero. 
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The Green's function, G(x, y; t, 7]), which was constructed in Problem 8.5(a), gives the xy­
temperature distribution due to a unit sink at (t, 7]) and zero temperature on y = O. Therefore, the 
solution to the present problem is 

u(x, y) = -2G(x, y; 1,3)+ G(x, y; -5, 6) + G(x, y; 4, 7) 

8.7 Use the method of images to find the Green's function for the n-dimensional Dirichlet 
problem (n ~ 2) 

v2 u = f(x) 

U = g(x) 

Ixl<R 
Ixl=R 

Let x and ~ be two points inside the hypersphere of radius R; their inverse points (Problem 3.29), 
outside the hypersphere, are 

Let us find the relation between the distances r == Ix - ~I and r' == lx' - ~'I· 

r'2 = (x' - ~') . (x' - ~') = (x' . x') + (~' . ~') - 2(x' . ~') 

R4 R4 R4 

= Ixl2 + 1~12 - 21x121~12 (x . ~) 
R4 R4 

= Ix121~12 [(~.~) + (x· x) - 2(x· ~)l = Ix121~12 r 
R2 

or r'=--r 
Ixll~1 

From this it follows that if ~ (and with it, ~') is held fixed while x (and with it, x') is allowed to approach 
the boundary point s, 

R 
r'l. = jij rl. 

independent of the location of s on the hypersphere. 
Now, by Theorems 8.1(i) and 8.3, the desired Green's function must be of the form 

G(x; ~) = o-(r) + h (x; ~) 

(1) 

where 0- is the free-space Green's function, and h is harmonic inside the hypersphere and just cancels 0-

on the boundary. On account of (1), we see that both conditions for h are satisfied by the fu nction 

(If f(x) is harmonic, so is f(cx), for any constant c. It can now be recognized that the geometrical 
property of the sphere expressed in (1) is crucial to the method of images.) 

8.8 For the linear differential operator 

L[ u] = uxx + Uyy + 2ux - uy + u in n 
find (a) the adjoint operator; (b) the adjoint boundary conditions corresponding to 

au 
u+-=O 

an 
(i) u = 0 (ii) 

on S. 
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(a) From (B.B), L* [v ] = Vxx + Vyy - 2vx + Vy + v, and M, and M2 in Lagrange's identity, (B.9), are 

M t = vUx - uVx + 2uv M2 = vUy - uVy - uv 

Consequently, 

(1) 

(b) (i) To make the integral (1 ) vanish for all u such that B[ u 1 = u = 0 on S, we must require that 
B *[v ] =v=O on S. 

(i i) For an y u satisfying B [u] = u + (au/an) = 0 on S, the integrand in (1) equals 

u [(2nt- n2-1)v- ;:J,""uB*[v] 

which defines the adjoint boundary condition , B*[v] = 0 on S. 

8.9 If n is the rectangle 0 < x < a, 0 < y < b, find the Green's function for the boundary value 
problem 

inn Un + Uyy + 2ux = I(x, y) 

u = g(x,y) on S 

(Compare Problem 8.4.) 

The Green 's fun ction, G = G(x, y; g, 1]), is defined by 

G xx + Gyy + 2Gx = 8(x - g)8(y -1]) 

G=O 

in n 

on S 

(1 ) 

(2) 

(3) 

(4) 

An eigenfunct ion expansion is most simply obtained if the left side of (3) is put in self-adjoint 
form. From Problem 2.14 we see that the change of dependent variable H = eX G eliminates the 
fi rst-order x-derivative, giving 

L [H ] '"" Hxx + Hyy - H = eXo(x - g)8(y -1]) 

H =O 

in n 

on S 

(5) 

(6) 

We now proceed to look for an expansion of H in terms of the eigenfunctions of problem (5)-(6 ); that 
is, we set 

H = 2: CmnWmn 
m.n=l 

(7) 

where L [ W mn ] = AmnWmn in nand Wmn = 0 on S. Using separation of variables, we find for the 
eigenvalues and nonnalized eigenfunctions 

2 . m7TX . n7rY 
Wmn = - - SIO -- Sill --

Yah a b 

Substituting (7) into (5) gives 

(B) 
m.n - l 

If (B) is mu ltiplied by Wpq and integrated over n, then the orthonormality of the e igenfunctions implies 
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Therefore, 
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4 
G(x, y; g, Tf) = - ab eE- x 2: 

m,n - l 

. m7TX . n7Ty . m7Tg . n7TTf 
sm -- sm --sm -- sm --

a b a b 

(
m7T)2 (n7T)2 1+----;;-+---;; 

[CHAP. 8 

8.10 (a) Show that the Neumann problem 

au 
-=g 
an 

inn 

on S 

(1) 

(2) 

does not have a Green's function. (b) Define a modified Green's function that will give the 
solution of (1 )-(2) up to an additive constant. 

(a) Recall (Example 3.8) that a necessary condition for the existence of a solution of (1 )-(2) is 

(3) 

Assume that (3) holds, so that (1 )-(2) has a solution which is unique up to an additive constant. By 
analogy with the case of a Dirichlet boundary condition, the Green's function for (1 )-(2 ) must 
satisfy 

VZG = .5 (x -~) 

aG 
-=0 
an 

inn 

on S 

But (4)-(5) has no solution, since (3) does not hold for it. 

(4) 

(5) 

(b) Let a modified Green's function, or Neumann function, N(x; ~), for (1 )-(2) be defined, up to an 
additive constant, by 

1 
VZN = .5(x - ~)---

v(n) 

aN 
- =0 
an 

inn (6) 

o S (7) 

where V(n) is the volume of n. Now condition (3) is met. Apply Green 's second identity to 
solutions of (1 )-(2) and (6)-(7): 

f (U'f,PN-NVZu)dn=I (u aN _Nau) dS 
n s an an 

L{u[.5(X-~)-v~nJ-Nf}dn= L(O-Ng)dS 

u(~) - u - f N(x; ~)f(x) dn = - I N(x; ~)g(x) dS 
n s 

or, interchanging x and ~, 

u(x) = L N(x ; ~)f(~) d~n - L N(x; ~)g(~) d~S + u (8) 
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In view of (3), the right side of (8) has the same value for all solutions N of (6)-(7). Hence, (8) 
determines u(x) up to the addi tive constant U, the mean value of u over n. 

8.11 Show that the singularity so lution for u, - KUxx = 0, 

K(X-g,t -T)= 1 exp [-(X-g/J 
V 417X(t - T) 4K(t - T) 

satisfies J~", K (x - g, t - T) dx = 1 for all t> T. 

Let us exploit the fact that if I(x) and F (a) are Fourier transform pairs (Section 6.4), 

r I(x) dx = 27TF(0) 

Now, from Table 6-2, line 1, and Table 6-1, lines 7 and 3, 

and 
1 2 ' F(a) = - e - K(f- ·T)a e-l{a 

27T 

are Fourier transform pairs, and we see that 27T F(O) = 1. 

8.12 If f is a bounded continuous function , show that 

~~~ {~ K(x - g, t - O)f(g) dg = f(x) 

Since K is symmetric in x and ~, Problem 8.11 implies 

r K(x - t, I) t4 = 1 (I> 0) 

From 

L~ K(x - t, 1)/(0 t4 = L~ K(x - t, 1)/(x) t4 + L~ K(x - t, 1)(fW - I(x)] t4 

= I(x) + r K(x - t, I)(f(t) - I(x)] dt 

(1) 

we see the last integral must be shown to approach zero as 1 ~ 0+. Let s == (x - t)/V4t; then, using the 
explicit expression for K, 

'" 1 '" 
lim J K(x - t, I)(f(t) - I(x)] t4 = lim - J e-·2(f(x + sV4t) - I(x)] ds 

1 .... 0+ - 00 t ..... O+ ~ - 00 

1 '" 
=-J e-·2 lim (f(x +sV4t) - f (x)]ds =O 
~ -'" ,_0+ 

The boundedness of 1 ensures that the improper integral in s is uniformly convergent, which allows the 
limit to be taken under the integral. Then the continuity of 1 implies that 

(f(x+ sV4t)- l(x)]~O 

as I~O+. 
A similar, but more complicated argument establishes (1 ) if 1 is continuous and 

I/(x)I < Ae Bx 2 

for constants A and B. Equation (1) shows that as 1 approaches T from above, the singularity solution 
K(x - t, 1 - T) approaches the delta function o(x - t) . 
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8.13 If n is the first quadrant (x> 0, Y > 0), (a) find the Green's function for 

U, - K(Uxx + Uyy ) = f(x, y, t) inn, t>O (1) 

u(x, y, 0) = uo(x, y) in n (2) 

u(x,O, t ) = u,(x, t ) x>O, t>O (3) 

ux (O, y, t ) = uiy, t) y > O, t>O (4) 

and (b) use (8.21) to express the solution of (1)-(4) in terms of G and the data f, uO' U,' u2• 

(a) The Green's function is a fundamental solution, G = K + J, with J chosen to make G = 0 on y = 0 
and G x = 0 on x = O. The singular part, K(x, y, t; g, 7), r), of G represents a point source (e.g., a 
burst of heat) at (g, 7)) in n at time r. To make G zero on y = 0 a sink, -K(x, y, t; g, -7), r), at the 
image point (g, -7)) is required. In an attempt to zero Gx on x = 0, place a source at (-g,7)) . 
Finally, balance these two images with a sink, -K(x, y, t; -g, -7), r): 

G(x, y, t; g, 7), r) = K(x, y, t; g, 7), r) - K(x, y, t; g, -7), r) + K (x, y, t; -g, 7), r) - K(x, y, t; -g, -7), r) 

(b) u(x, y, t) = f 1= 1= G(x, y, t; g, 7) , r)f(g, 7), r) dg d7) dr 

+ 1= 1= G(x, y, t; g, 7),0) uo(g, 7)) dg d7) 

+ K f 1= U2(7), r) G(x, y, t; 0,7), r) d7) dr 

+ K f 1= UI(g, r) G,,(x, y, t; g, 0, r) ~ dr 

where the boundary integration is in the positive sense; i.e., first in the direction of decreasing 7), then in 
the direction of increasing g. 

8.14 Find the G reen's function for the initial-boundary value problem 

Method 1 (Reflection) 

U, - KUxx = f(x, t) 
u(x, 0) = g(x) 

u(O, t) = h,(t), u(t, t) = hit) 

O<x<t, t>O 

O< x<t 

t > O 

Proceeding as in Problem 8.S(c), place sources +K along the x-axis at g+ 2nt, and sinks -K at 
-g + 2nt, where n = 0, ±1, ±2, .... This yields 

G(x, t; g, r) = 2: [K(x - g - 2nt, t - r) - K(x + g - 2nt, t - r)] 

for t > r; for t < r, G = O. 

Method 2 (Partial Eigenfunction Expansion) 
The Green's function may also be characterized as the so lution of 

G,- KG= = 8(x - g)8(t- r) 

G=O 

0 =0 

x = 0 and x = t 

t < r 

(1) 

(2) 

(3) 

The space part, a2/ax 2
, of the linear differential operator has eigenvalues A~ = - (n7T/t)2 and corresponding 

normalized eigenfunctions 
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(n = 1,2,3, ... ) 

(cf. Problem 8.4). Thus, the expansion 

G = 2: cn(t, g, T)Vn(X) 
n - l 

satisfies (2). Putting (4 ) into (1) gives, with a prime' denoting time differentiation, 

2: (c ~ - KAncn)vn(X) = 8(x - g) 8(1 - T) 
11=1 

which, mul tiplied by vm(x) and integrated from x = 0 to x = e, becomes 

c;,,- KAmcm = vm(g)8(1- T) 

On account of (3), Cm == 0 for 1< T. For I, > T > 0, integrate (5) from 1=0 to t = I" obtaining 

The solu tion of (6) is (verify by substitution): 

Cm (t,) = Vm (g) eKA",U,-r) 

H ence, 

G(x, t; g, T) = { ~ ~ 1< T[ (WTT) 2 ] n7TX n7Tg - 2: exp - - K(t-T) sin - - sin - t > T e n - 1 e e e 

8.15 Solve the initial value problem 

using a Green's function. 

un - a 2 uxx = f(x, t) 

u(x, 0) = uo(x) 

u,(x, 0) = Uj(X) 

-00 < X < 00, t > 0 
-00 < X < 00 

-00< X < 00 

By (8.22) with n = 1, the free-space Green's function is 

1 
G(x, I; g, T) = H(a(t - T) -Ix - gl) 2a 
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(4 ) 

(5) 

(6) 

To use Theorem 8.15 to write the solution, u(x, I ), we need Gr(x, .1; {,O) . Now, the derivative of the 
Heaviside fun ction is the 8-function (see Problem 8.19(b», so th at 

1 
Gr(x, t;~, 0) = - 2 8(at -lx - gl) 

and 
1 J t J x+a(t-r) 1 J x+at 1 

u(x, I) = - I (t, T) ~ dT + - u,(g) ~ + - [uo(x - at) + uo(x + at)] 
2a 0 x-a(t-r) 2a x-at 2 

which is the D' Alembert solu tion. 

8.16 Solve by a Green's function : 

Un - V2u = f (x, t) 
u(x, 0) = 0, u,(x, 0) = 1 

xinR3
, t > O 

X in R3 
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The G reen's funct ion is the free-space Green's function for the three-dimensional wave equation 
(with a = 1), 

1 
G(x, t ; t , 7) = I oCt - 7 - Ix - W 

47Tlx - t 

and Theorem 8. 15 gives the so lution as 

When the order of integration is reversed, the double integral is seen to have the value 

(1) 

When the origin of §-space is shifted to the point x and the polar coordinate r = It - xl is introduced , the 
other integral is seen to have the value 

~ 1 

J - o(t- r)47T,z dr = t 
o 47Tr 

(2) 

(as would have been found immediately if the original problem had been split into two subproblems). 
The expression (1 ), the part of u that is independent of the initial conditions, may be interpreted as 

the superposition of disturbances which arose at points t at times previous to t and, traveling at speed 1, 
are just reaching point x at time t. For this reason, the integrand in (1) is called the retarded potential. 

Supplementary Problems 

8.17 (a) If fl is the set of real numbers and a > 0, show that 

{ 
( 1 ) exp - - -

9(x)= ° x
2
-a

2 Ixl<a 

I xl~a 

is a test function on fl. (b) Show that 

9(x, y) = { :,p (x'+ ;,- a') 

is a test function on fl = {(x, y): x2 + y2 < R2, R > a > O}. 

S.18 Let 9n(x) be the test function obtained by replacing x and a in the function of Problem 8.17(a ) by x/n 
and a/n, where n = 1,2,3, .. . . Show that {9n (x)} conve rges to zero in T . (See Problem 8.1.) 

8.19 If fl is the real line, define the distributional derivative, d', of a generalized function d by 

(d' , 9) = - (d, 9') 

for every test function 9 on fl . (a) If f is a continuously differentiable function, show tha t the ordinary 
and distributional derivatives are equivalen t in the sense that the d istribution defined by the cont inuous 
function f' [via (3) of Problem 8.1] is the distributional deriva tive of the distribution defined by f. 
(b) Show th at the rule 

(H , 9) = r 9(x) dx 
XjJ 
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where Xo is a fixed real number, defines a distribution corresponding to the (discontinuous) Heaviside 
function H(x - xo) ; show further that H ' = S, the dist ribution defined by (4) of Problem 8.1. (We usually 
express this result by saying that the derivative of the Heaviside lunction is the delta lunction.) 

8.20 With n the x-axis, let d be a generalized fu nction, 8(x) a test function on n, and g(x) a C~ function. 
Define 

(g(x ) d, 8(x» = (d, g(x) 8(x» 

Prove : (a ) g(x ) S(x - y) = g( y)S(x - y) and (b) xS(x) = o. 

8.21 Find the generalized derivatives of (a) lxi, (b) eXS(x), (c) x S(x). 

8.22 Derive the formal sine and cosine series for the delta function , S(x - 0 , on the interval (0, t ), with 
O < x,~ <t. 

8.23 Given a bounded region n, let a Green's function be defined by 

rflG - c2 G = S(x - t) in n 
G = 0 on S 

Expand this Green's function in terms of the eigenfunctions Un, where V2
u n = -A~un in n, Un = 0 on S, 

Un ""0. 

8.24 Represent the Green 's function for 

by an eigenvalue expansion. 

V 2 u - c2 u = I(x, y) 

u(x, 0) = u(x, a) = 0 

8.25 Verify that the Green's function for the problem 

-00 < x < 00, 0 < Y < a 

- 00< x <00 

V 2 u = I(x, y, z) z >0 

uz - cu = 0 z = 0 
where c '2= 0, is 

8.26 Use the method of images to find G(x, y; ~, 71) for 

V2 u = I 0 < x < 00, 0 < Y < b 

if (a) u = 0 for x = 0, for y = 0, and for y = b ; (b) u = 0 for y = 0 and for y = b, and Ux = 0 for x = O. 
[Hint: Make use of the Green 's function, Go(x, y;~, 71), of Pro blem 8.5(c) .] 

8.27 Use a Green's function to solve Problem 7.14. 

8.28 Use Theorem 8.8(ii) and the mapping 

R (z - () 
w= 

z(- R 2 
(R > 0) 

which carries Izl < R onto Iwl < 1, to derive the G reen's fun ction for the problem 

Uxx + Uyy = I 
u=g 

x 2+ y2 <R2 

x 2+ y 2= R2 

Check your answer against Problem 8.7 (n = 2), identifying x and t with the complex vectors z and (. 
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8.29 Show that w = _e-i~z/b (b > 0) ma ps the infinite strip 0 < x < b, - 00 < Y < 00 of the z-plane onto the 
upper half of the w-plane. Then use Theorem 8.8(i) to show that the Green's function for Laplace's 
equation which vanishes on x = 0 and x = b is given by 

1 
G (x, y; g, 1]) = -log 

27T 

. 7T(Z - () 
SIn 

2b 

. 7T(Z + () 
SIn ---,_...c...c.. 

2b 

where z = x + iy, (= g + i17. Finally, use the infinite product representation 

~ 2 

sin z = z n (1- : 2) 
" ""' I n 7r 

to compare this result with the one obtained by the method of images (interchange x and y in Problem 
8.5(c» . 

8.30 Show that in two dimensions the biharmonic equation, V4 u = 0, has the singularity solution 
r2(1- log r)/8. 

8.31 Find the adjoint of each of the following differential operators: 

(a) L[u] = Uxx + Uyy + Ux - Uy + 3u 

(b) L[u]=uxx-u, 

(c) L[u] = Uxx - u" 

(d) L[u] = Uxx + Uyy + xUx + YUy 

(e) L[u] = llxx + Uyy + YUx + xUy 

(I) L[u] = x 2 uxx + y 2 uyy 

8.32 If L[ u] = auxx + 2buxy + CUyy + dux + euy + fu has constant coefficients, show that L is self-adjoint if and 
only if d = e = O. 

8.33 Show that the linear PDE auxx + 2buxy + CUyy + dux + euy + fu = g is self-adjoint if and only if it can be 
written in the form 

(aux + buy)x + (bux + cUy)y + fu = g 

8.34 Let L[ ] be the differential operator of Problem 8.33 and assume that the coefficient functions are in C 2
• 

Show that L is self-adjoint if and only if ax + by = d and bx + cy = e. 

8.35 If the PDE of Problem 8.33 is not self-adjoint, under what conditions will a reducing f actor, R (x, y), exist 
such that after multiplication of the equation by R a self-adjoint equation results? 

8_36 Find a reducing factor for Uxx + 2uxy + 2uyy + Ux + Uy + 3u = O. 

8.37 Given the boundary value problem 

L[ u] == Uxx + Uyy + 2ux + 3uy = f 

u=O 

uy = 0 

O<x<a,O<y<b 

on x = 0 and x = a 

on y = 0 and y = b 

(a) write the adjoint operator and the adjoint boundary conditions; (b) write a boundary value problem 
in x and y for the Green's function. 

8.38 Solve 

Uxx + U yy + 6Uy = o(x - ~)o(y) 

u(O, y) = u(l, y) = 0 
0< x < 1, -00 < Y < 00 

- oo< y<oo 

[Hint : Let u = e-3Yv, make a partial eigenfunction expansion of v, and use the Fourier transform to find 
the coefficient functions.] 
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8.39 Refer to Problem 8.7. Show that in ~-space, the normal derivative of the Green's function on [~[ = R is 
given by 

ao R 2 _[X[2 (T'(r) 

an R r 

From this, infer Poisson's integral formu la, (3.5). 

8.40 Using the free-space Green's func tion and the definition 

erf z = -- e-s 2 ds = 1- erfc z 2 JZ 
V; 0 

(cf. Problem 2.17 and Table 6-4, line 9), solve the initial value problem u, - KUxx = 0 (-00 < x < 00, t > 0), 
u(x, 0) = x/txt (x r! 0). 

8.41 Using superposition arguments (and nothing else), infer from the solution of Problem 8.40 the solutions 
of the following problems: 

(a) U,- KUxx = 0 x > O, t > O (d) u, - KUxx = 0 - 00< x <00, t > 0 

u(x, 0) = U x>O u(x, 0)= U [x[ <e 

u(O, t) = 0 t > O u(x, 0) = 0 [x[>e 

(b) u, - KUxx = 0 x > O, t>O (e) u, - KUxx = 0 -00< x <00, t>O 

u(x, 0) = 0 x > O u(x, 0) = 0 [x[ < e 

u(O, t) = U t > O u(x, 0) = U [x[ > e 

(c) u, - KUxx = 0 -00< x <00, t>O (I) U,- KUxx = 0 0< x <00, t > O 

u(x,O)= UH(x) xr!O u(x, 0) = U b<x < c 

u(x,O)=O 0 < x < b or x > c 

u(O, t) = 0 t > O 

8.42 Prove the product law: If vex, t) satisfies v, - KVxx = 0 and w(y, t) satisfies w, - KWyy = 0, then U = vw 
satisfies u, - K(Uxx + Uyy) = O. 

8.43 Find the Green's function and the solution for the following problems: 

(a) u,-Kuxx=f(x,t) -oo<x < oo,t>O 

u(x, 0) = hex) 

(b) u,-Kuxx=f(x, t) O< x< oo, t > O 

u(x, 0) = hex), u(O, t) = pet) 

(c) u, - KUxx = f(x, t) 0 < x < 00, t> 0 

u(x, 0) = hex), ux(O, t) = pet) 

8.44 Given ~ > 0, find the Green's function satisfying 

(d) u, - KUxx = f(x, t) 0 < x < e, t > 0 

u(x, 0) = hex), u(O, t) = pet), u(e, t) = q(t) 

(e) u, - KUxx = f(x, t) 0 < x < e, t > 0 

u(x, 0) = hex), ux(O, t) = pet) , ux(t, t) = q(t) 

Orr - a 2 0 xx = 8(x - ~)8(t - 7) 

0=0 

0=0 

x > 0, X r! ~ 

x=O 

0 < t<7 

8.45 Given - tl2 < ~ < e/2, construct the Green's function obeying 

Orr - a 2 0 xx = 8(x- ~)8(t- 7) -t/2< x < t/2, x r! ~ 

o = 0 for x = ± e/2 

0 =0 0<t < 7 

(a) by a partial eigenfunction expansion, (b) by the method of images . 



Chapter 9 

Difference Methods 
for Parabolic Equations 

9.1 DIFFERENCE EQUATIONS 

The various partial derivatives of a func tion u(x, t ) can be expressed as a difference quotient plus 
a truncation error (T.E.). 

Forward Difference for U, 

u(x, t + k) - u(x, t) 
u,(x, t) = k + T.E. 

k -
T.E. = -"2 ul/(x, t) (t < t<t+k) 

Ce,dered Difference for u'" 

u(x + h, t) - u(x - h, t) 
ux(x, t) = 2h + T.E. 

h 2 

T.E. = -"6 uxxJx, t) (x - h < i < x + h) 

Centered Difference for "xx 
u(x + h, t) - 2u(x, I ) + u (x - h, t) 

uxx(x, t) = h 2 + T.E. 

(x - h < i < x + h) 

Centered Difference for Un 

u(x + h, t + k) - u(x + h, t - k) - u(x - h, t + k) + u(x - h, t - k) 
UXI(x, t) = 4hk + T.E . 

(x - h < i, x' < x + h, t - k < t, £' < t + k) 

(9.1) 

(9.2) 

(9.3) 

(9.4 ) 

Usually it is only the order of magnitude of the truncation error which is of interest. A function 
f(h) is said to be of the order of m agnitude g(h ) as h.....,. 0, where g is a nonnegative function, if 

lim f(h) = constant 
h~O g(h) 

In the O-notation we write f(h) = O(g(h» (h .....,. 0). It is easy to see that if, as h p h2.....,. 0, fl = O(g 1) 
and f2 = 0(g2)' then fl + f2 = O (gl + g2)' 

EXAMPLE 9.1 For (9.1), T.E.= O(k) (k ..... O), provided Un is bounded . For (9.2), T .E. = O(h2) (h ..... O), 
provided Uxxx is bounded. In (9.4), T.E. = O (h 2 + e ), provided Uxxxt and Uxrn are bounded ; we omit as un derstood 
the (h, k ..... 0). 

A grid or mesh in the xt-plane is a set of points (xn' t) = (xo + nh, to + jk ), where n and j are integers 
and (xo, to) is a reference point. The (xn , t) are called grid points, mesh points, or nodes. The positive 

124 
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numbers h and k are respectively the x and t grid spacings or grid siz es. If hand k are constants, the grid 
is called uniform ; if h = k = constant, the grid is said to be square. The compact subscript notation 

ulli == U(XII ' t) 

is convenient and widely used . 

EXAMPLE 9.2 The difference formulas (9.1) and (9.3) may be written 

where the difference operator o~ is the analog of the differen tial operator 02/0X2. We say that (9.1) is two-level (in t) 
because it involves only two j-values , these being consecutive. 

Let a region !i in the xt-plane be covered by a grid, (XII' tJ If all the derivat ives in the POE 

L[u ] = f (x, t)in !i (9.5) 

are replaced by difference quotients, the result is the finite -difference equation 

(9.6) 

The continuous problem (9.5) was differenced or discretized to produce the discrete problem (9.6), 
whose sol ution, U lli , approximates u(x, t) at the grid points. 

9.2 CONSISTENCY AND CONVERGENCE 

If discretization is to provide a usefu l approximation, the solution to (9.5) should very nearl y 
satisfy (9.6 ), when hand k are taken ufficientiy small . The amount by which the solu tion to L[ul = f 
fails to satisfy the d iff rence equation is called the local truncation error; it may be expressed as 

Tlli == D[ulli ]- fni 

The difference equation (9.6) is sa id to be consistent with the PDE (9.5) if 

lim Tni = 0 
h. k~O 

(9.7) 

With the exception of the DuFort- Frankel method (Problem 9.10), all difference methods to be 
treated are consistent with their corresponding PDEs. 

In addition to consistency, we want the accuracy of the approximation to improve as h, k ~ O. If 
Uni is the exact solution to (9.6 ) and uni is the solution of (9.5 ) evaluated at (x" ' (i)' the discretization 
error is defined as Uni - uni" The diffe rence method (9.6) is said to be convergent if 

lim !Uni- u ni! = O (x,.,t)in!i (9. 8) 
h. k~O 

It is possible for a difference method to be consistent but not convergent. 

9.3 STABILITY 

Let U ni satisfy (9.6 ), wi th initial values UnO and possibly boundary values prescribed . Let Vni be 
the solution to a perturbed di fference system which differs only in the initial values, and write 
VnO == UnO + EnO ' Then , a suming exact arithmetic, the ini tial perturbation, or "error," E nO ' can be 
shown to propagate, with increasing j, according to the homogeneous difference equation 



126 DIFFERENCE METHODS FO R PA RABOLIC EQUATIONS 

D[Enj ] = 0 

subject to homogeneous boundary conditions. 

[CHAP. 9 

When applying (9.6 ) to approximate u(x, T) for fixed T = to + jk, it is clear that letting h, k ~ 0 
entails letting j ~ 00. Also, on a fi xed grid , if we apply (9.6 ) to approximate u(xn' t) at successively 
larger ~, then again we have the case j ~ 00 to consider. For a PDE with a bounded solution, the 
difference method (9.6) is said to be stable if the Enj are uniformly bounded in n as j ~ 00; i.e., if for 
some constant M and some positive integer ] 

(j > J ) (9.9 ) 

If h and k must be functionally related for (9.9 ) to hold, the difference method is conditionally stable. 
When the PDE has a solution that is unbounded in t, the stabi lity condition (9.9) is relaxed to allow 
errors to grow with the solution (see Problem 9.7). 

O ne of the concerns in applyi ng a difference method is whether or not rounding errors in the 
calculation grow to such an extent that they dominate the numerical solution. Wh en a stable method 
is used, rounding errors do not generally cause any difficulties. 

It is usually easier to check a difference method for consistency and stabi lity than for con­
vergence. Fortunately, stabi lity and convergence are equivalent for a large class of problems. 

Theorem 9.1 (Lax E quivalence Theorem ): G iven a well-posed initial-boundary value problem and a 
fi nite-difference problem consistent with it, stability is both necessary and sufficient for 
convergence. 

In certain cases (e .g. , Problem 9.11) the boundary condi tions imposed on (9.5) make themselves 
felt as modifications in the form of the operator D[ ] of (9.6 ), as it applies at grid poin ts adjacent to 
the boundary. Let us agree to call Unj an extended solution of (9.6) if it satisfi es the equation for the 
unmodified operator ; an extended solution would be an actual solu tion in the event that (9.5 ) held 
over the entire xt-plane . 

von Neumann stability criterion. A difference method for an ini tial- boundary value problem wi th a 
bounded solution is von Neumann stable if every extended solution to D[ Unj ] = 0 of the fonn 

Unj = t j e i
/3

n (f3 real, t = t (f3) complex) 

has the property It I ~ 1. For a problem with an unbounded solution, the criterion becomes It I ~ 
1 + O(k). 

For a rationale of the von Neumann criterion, see Problem 9.5. Stability in the von Neumann 
sense is a necessary condition for stability in the general sense of (9.9); moreover, 

Theorem 9.2: For two-level difference methods, von Neumann stability is both necessary and 
suffi cient for stability. 

Consider an init ial-boundary value problem with N nodes in the x-direction and define a column 
vector of errors at level j, E j = (Elj , E 2j, E 3j , •. • , EN)T. For two-level difference methods, the errors 
at levels j and j + 1 are related by 

Ej + l = CEj 

where C is an N x N matrix. Let p(C), the spectral radius of C, denote the maximum of the magnitudes of 
the eigenvalues of C. 

Matrix stability criterion. A two-level difference method for an initial-boundary value problem with 
a bounded solution is matrix stable if p(C) ~ 1. For a problem with an unbounded solution , the criterion 
becomes p(C) ~ 1 + O(k). 

Matrix stability is a necessary condition for the stability of a two-level method. Furthermore, 

Theorem 9.3: Let C be symmetric or similar to a symmetric matrix, whereby aU eigenvalues of C 
are real. Then matrix stability is necessary and sufficient for stability. 
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Although a matrix stability analysis incorporates the boundary conditions of the problem (as 
reflected in the form of C) whereas a von Neumann stability analysis neglects the boundary 
conditions, the conclusions reached regarding the stability of a difference method are nearly always 
the same. This indicates that the stability of a method is determined more by the character of the 
difference equations than by the way in which the boundary conditions are accounted for. 

9.4 PARABOLIC EQUATIONS 

The one-dimensional diffusion equation, 
2 

U, = a Uxx (9.10) 

(to avoid confusion between K and k we write a 2 for the diffusivity) is used as a guide in developing 
finite-difference methods for parabolic POEs in general. For the grid (xn , tj) = (nh, jk), we shall state 
three commonly used difference equations for (9.10). All three are two-level equations whereby the 
solution, known at level j, is advanced to level j + l. 

or 

or 

or 

Explicit (Forward-Difference) Method 

U n.j+1 - U nj = a 2 U n+l,j - 2Unj + U n-I,j 

k h2 

U n.j+1 = (1 + r{j~Unj (r == a 2
k/h

2
) 

Implicit (Backward-Difference) Method 

U n. j+1 - U nj = a2 U n+l,j+1 - 2U n. j+1 + U n-I,j+l 

k h2 

(1 - r{j~U n.j+1 = U nj 

Implicit (Crank-Nicolson) Method 

U n.j+l - U nj _ a
2 8~ U nj + 8: U n. j+1 

k - 2 h2 

( 1 - ~ 8~) U n. j+ 1 = ( 1 + ~ 8~) U nj 

(9,11 ) 

(9.12) 

(9.13 ) 

Theorem 9.4: The forward-difference method (9.11 ) has 10caJ truncation error O (k + h2); it is 
(conditionally) stable if and only if r:S; 1/2. 

Theorem 9.5: The backward-difference method (9.12) has local truncation error O(k + h2); it is 
stable. 

Theorem 9.6: The Crank-Nicolson method (9.13) has local truncation error O(e + h2); it is stable. 

For the two-dimensional diffusion equation, 

(9.14 ) 

let (xrn , Yn' t) = (mh, nh, jk) and Urnnj = u rnnj = u(xm' Yn, tJ The above methods have as their counter­
parts: 

Explicit (Forward-Difference) Method 

U mn.j+I = [1 + r({j~ + 8~») U rnnj (r == a 2
k/ h

2
) (9.15) 

Implicit (Backward-Difference) M ethod 

[1 - r(8~ + 8~)] U mn.j+1 = U mnj (r == a 2k/ h2
) (9.16 ) 
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Implicit (Crank-Nicolson) Method 

[1- ~ (<5:+ <5~)] U mn,j+l = [1 + ~(<5: + <5~)] Umnj (9.1 7) 

Theorem 9.7: The forward-d ifference method (9.15) has local truncation error O(k + h2); it is 
(conditionally) stable if and only if r ~ 1/4. 

Theorem 9.8: The backward-difference method (9.16) has local truncation error O(k + h2); it is 
stable. 

Theorem 9.9: The Crank- Nicolson method (9.17) has local truncation error O(e + h2); it is stable. 

As a class, the explicit methods enjoy the property of directly marching the solution forward in 
time, from one level to the next . They apply either to pure initial value problems or to initial­
boundary value problems, but suffer the drawback of conditional stability. On the other hand, the 
implicit methods, which are stable, requi re (in effect) a matrix inversion at each step forward in time. 
Thus, these methods are applicable only to initial-boundary value problems with a fin ite number of 
spatial grid points. 

For the one-dimensional implicit methods (9.12) and (9.13), the matrix to be inverted is 
tridiagonal; for the two-dimensional (9.16) and (9.17), pentadiagonal. Alternating-direction implicit 
(ADI) methods for parabolic problems in xl> x 2 ' ••• preserve the tridiagonal feature by fi rst solving a 
sequence of one-dimensional difference equations in Xl; then a sequence in x2 ; and so on. Thus, if 
Dirichlet boundary conditions are specified for (9.14); if m = 0, 1, 2, ... , M; and if n = 0,1,2, .. . , N ; 
then we have (r == a 2k/h2

) : 

Peaceman-Rachford ADI Method 

(n = 1,2, ... , N - 1) 

( r 2) (r 2) * 1- 2<5 y U mn,j+ l= 1+ 2ox U mn,j+l 

(9.18) 
(m = 1,2, ... , M - 1) 

Theorem 9.10: Th e Peaceman-Rachford ADI method (9.18) has local truncation error O(e + h2); 
it is stable. 

With only slight modifications, the above difference methods become applicable to the general 
linear parabolic PDE. 

Solved Problems 

9.1 Derive the difference formula (9.2). 

By Taylor's theorem, 

h 2 h3 

u(x + h, t) = u(x, t) + u,.(x, t)h + u=(x, t) -+ u;ux (i, t) -
2 6 

(1) 

h 2 1t 3 

u(x - h, t ) = u(x, t) - u .. (x, t)h + u= (x, t) -- ux= (i, t) -
2 6 

(2) 

where x < i < x + h and x - h < i < x. Subtracting (2) from (1) and solving for u .. yields 

u(x + h, t) - u(x - It, t) h2 

u,,(x, t) = [u;ux(i, t) + u;ux(i, t)]-
2h 12 
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If Uxxx is con tinuous, the mean-value theo rem implies that 

uxxx(x, /) + uxxx(i, t) _ 
- ----'--2-----'-= uxxx(x, t) (x < x < i) 

and (9.2) results. 

9.2 Derive a difference formula similar to (9.2) in the case of a nonuniform grid, 

By T aylor's theorem, 

1 23 U(Xi - l, t) = U(Xi, t) - UxCXi, t)hi + - Uxx(Xi, t)h i - O(h i) 
2 

Subtracting (2) from (1) gives 

U(Xi+l, t)- U(Xi- r, t) 1 O(ht+l)+ O(ht) 
UxCXi, t) = + - U(Xi, t)(hi+1 - hi) + ------

hi+1 + hi 2 hi+1 + hi 

129 

(1) 

(2) 

(3) 

Note that in (3) the dominant term in the truncation error is O(hi+l - hi). To maintain control over the 
truncation error, the grid spacings hi should not be allowed to vary too rapidly with i. 

Multiplying (1) by hi and (2) by hi+1 and then adding yields 

wh ich when solved for Uxx gives 

9.3 Show that the explicit method (9. 11 ) has local truncation error O(k + h 2
) . Then show that if 

k 1 

h 2 6a2 

the local truncation error can be reduced to O(e + h4
). 

W ith (xn' tj)= (nh,jk), (9.1) and (9.3) give 

where tj < "4 < tj+l and Xn-l < xn < Xn+l . The amount by which th solution of u, - a 2u= = 0 fails to 
satisfy the difference equation (9.11) is 

k - 2 h
2 

_ 2 
Tnj = - Un(Xn, tj) - a - Uu.u(Xn, tj ) = O(k + h ) 

2 12 

provided Un and Uxxxx are bounded. 
Now, by Taylor's theorem and (u, - a 2 uxx )nj = 0, 

Un..j+l - un) 

k 
(1) 
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This shows that the bracketed terms in (1 ) can be written as 

which will be zero if we choose k = h 2/6a 2
. 

9.4 Show that if r:5 1/2, then the explicit method (9.11 ) is convergent when applied to the 
problem 

u, - a 2 u;u = 0 
u(x, 0) = I(x) 

u(O, t) = p(t), u(l, t) = q(t) 

0< x < I, t > 0 
O<x<1 

t > O 

Let n be the region O< x < I,O < t<T; take (Xn,tj)=(nh,jk) for n=0,1 , 2, .. . ,N and j= 
0, 1,2, .. . , J, with Nh = 1 and Jk = T. Let Vnj satisfy the difference system 

(r"" a 2 kl h 2
) 

UNj = q(tj) 

and set Wnj "" V nj - Unj. Then Wn, satisfies 

k 2 _ kh2a2 

W ... j+l = rwn-l .j + (1- 2r)wnj + rwn+1.j +2 u,,(xn, tj)-12 u=(in, tj) (1) 

WnO= 0 WOj = 0 WNj = 0 

where tj < "0 < tj+l and Xn-l < in < Xn+l. 
If U rr and U xxxx are continuous and if we write 

A"" max I ~ u,,(x, t)1 
for (x, t) in n, then, since r:::: 1/2, it follows from (1) that 

IW ... j+d:::: rlwn-l .,1 + (1- 2r)lwnjl + rlwn+d + Ae+ Bkh2 

:::: Ilwjll + Ae + Bkh2 (lIw, II "" max IWnjl) (2) 
O<n< N 

From (2) we have 

(3) 

Because IIwoli = 0, (3) implies 

which shows that IWnjl...,- 0 uniformly in n as h, k ...,- O. 

9.5 Use the von Neumann criterion to establish the condition r :51/2 for the stability of the 
explicit method (9.11 ). 

With (9.11) expressed in the form 

U".j+l = rUn+l.j + (1 - 2r) Un, + rV n-l.j (1) 

suppose that, at level j, an error is in troduced at one or more of the x-nodes, perturbing the exact 
solution, Unh by an amount En" If Un) + E nj is used to advance the numerical solution to level j + 1, the 
result is the exact solution, U n. j+]' plus an error, E ... j+1 • Putting Un' + E nj and U n+l.j + En+1.j into (1), 
we see that En/ satisfies that equation . 

Using separation of variables, we identify complex solutions of (1) of the form 
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(2) 

where t is some (possibly complex-valued) function of the real parameter {3. From this, by superposition, 
we are led to the following expression fo r the error E nj: 

(3) 

(Strictly, the real part of the in tegral should be taken .) By a comparison with (6.17), (3) may be 
interpreted as a Fourier integral, representing the error a t node n in terms of its frequency spectrum. 
Thus, at level j , the error amplitude corresponding to a given frequency {3127T is t({3)j. The Fourier-von 
Neuman n ru le, It I :5 J, amounts to the prescription that at no frequency should the error amplitude grow 
without limit as j -> 00. 

Substi tu tion of (2) in (J) gives, after division by e ein~ , 

t = rei~ + (1- 2r) + re-i~ = 1- 2r(l- cos {3) = 1- 4r sin2 ~ 
2 

and so -1:5 t:5 1 for all {3-in particular, for {3 ~ 7T-if and only if 0:5 r:5 1/2. 

9.6 Show that the implicit method (9.12) is (von Neumann) stable. 

The method can be written as 

- rV n-l.j+I + (1 + 2r)V n.j+I - rV "+I.j+I = V"j 

Substituti ng e ei~" into (J) and d ividing by e ei~" , we have 

or 

and we see that It I :5 1 for every {3 whatever the value of r. 

9.7 (a) Modify the explicit method (9.11 ) to apply to the PD E 

(b) Make a von Neumann stability analysis of the modified method. 

(a) An explicit difference eq uat ion for (1 ) that reduces to (9.11 ) when c = 0 is 

V n.j+I - V nj 

k 
or V n.j+I = ' V n-I .j + (1- 2r+ ck)V"j + rV n+l ,j 

(b) Substituting e ei~n into (2 ), we fi nd 

. 2 {3 t -= 1 - 4r sm - + ck 
2 

(1) 

(1) 

(2) 

(3) 

If c < 0, the solution of (J ) is bounded, and the stability cri terion is It I :5 1 for all {3, This is 
satisfied if 

1 ck 
r:5-+-

2 4 
(c <0) 

Note tha t for c < ° and , = 1/2, (2) is not stable, but the asymptotic stability condition as h, k -> ° is 
r:$ 1/2. 

If c > 0, (1) can have exponentially growing solutions, which means that V"j and its e rror must 
also be permitted to grow exponentially . Thus, [he stability criterion is taken to be 

It I :5 1 + O(k ) 

which is satisfied if again 
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1 ck 
, :5 -+ -

2 4 
(c >0) 

[CHAP. 9 

Now we have (conditional) stability for r = 1/2; once more, the asymptotic stability condition as 
h, k --> 0 is r :5 1/2. 

9.8 Show that the eigenvalues of the real, symmetric, tridiagonal, N x N matrix 

p q 

q p 

c = q 

0 

all lie in the interval [p -12ql, p + 12qll. 

q 
p 

q 

q 

p 

q 

o 

q 

p 

For C real and symmetric, we know that all eigenvalues are real , and that the largest and smallest 
eigenvalues are the absolute extrema of the normalized q uadratic form 

t Tq ; P«(T + d + ... + (~) + 2q«(I(2 + (2(J + ( 3(4 + . . . + (N-I(N) 

Q == tTt = d+d+"·+(~ 
== P + 2qR «( I, (2, ... , (N) 

Now, by Cauchy's inequal ity, 

1(1(2 + (2(J+ (3(4 + . .. + (N _dNI2:5 W + d+··· + (~-I)«(~+ (~+ ... + (~) 

:5W+d+···+(~)2 

which implies th at IR 1:5 1 and yields the desi red interval. 
From the fac t that 

1 
R (a,a, . . . ,a )= 1- N 

1 
R(a, - a,a, . . . ,±a) =-l+ N 

we derive the inequalities 

These show that the estimates 

12q1 
(p + 12q l) - - :$ Am.x:5 P + 12ql 

N 

12q l 
P - 12ql :5 Amin :5 (p - 12q l) +­

N 

Amax = P + 12q l Am in = P -12q l (1 ) 

are not necessarily sharp, even as N --> co, since q can- and, in applications, usually does- vary with N. 
In consequence, when (1 ) is used to investigate the stability of matrix C , it provides a conservative 
condition . Indeed, it is possible that the exact values of Amin and Am .. , from Problem 11.11, can be used 
to establish stability when (1 ) guarantees nothing. These same remarks apply to the Gerschgorin Circle 
Theorem (Problem 9.26). 

9.9 Use th e matrix stability criterion to show that the explicit method (9.11 ) is stabl when 
applied to the initial- boundary value problem 

if and only if r:5 1/2. 

U/= a 2ux.x 

u(x, 0) = f( x) 

u(O, t) = u(l, I) = 0 

0 < x < 1, 1>0 

O< x < l 

1> 0 
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Let (Xn, tj) = (nh, jk) (n = 0, 1,2, . .. , N ; j = 0, 1, 2, ... ), with Nh = 1, and define a column vector 
Vi by 

The explicit method (9.11 ) can be expressed in matrix form as 

(j = 0, 1,2,3, . .. ) (1) 

where Vo = [ft, /2, /J, .. . , IN-If and C is the (N - 1) x (N - 1) tridiagonal matrix 

(1- 2r) r o 
, (1 - 2,) , 

(1- 2r) , 
C = 

, (1- 2,) , 
0 (1 - 2,) 

Suppose that at time level j errors Enj are introduced at Xn (n = 1,2, ... , N - 1), perturbing the 
solution of (l) to V i + EJ, where E j is a column vector with nth component E ni . Then , using (1) to 
advance the solution , we have 

or 

or, after m steps, 

(2) 

Let AI, A2 , ... , AN-I and VI, V2 , ..• , VN- 1 be the eigenvalues and associated linearly independent 
e igenvectors of the symmetric matrix C. W riting Ej as a linear combination of the Vk , 

N-I 
Ej = 2: a kVk 

k - I 

and using (2 ) and CVk = Ak Vk , we see tha t 

N-l 

EJ+ m = 2: A k ak V k 

k - I 

(3) 

E quation (3) shows that the errors Eni remain bounded if and o nly if IAkl:$ 1 for k = 1,2, ... , N - 1. By 
Problem 9.8, with p = (1 - 2r) and q = " 

Amax = (1 - 2,) + 12,1 = 1 Amin = (1- 2,) - 12'1 = 1 - 4, 

which yields the condit ion 1 - 4r ;::: - 1, or r :$ 1/2. (Th is same condit ion is obtained when the exact 
expressions for the eigenvalues, from Problem 11.11, are employed .) 

9.10 A stable (see Problem 9.20) overlapping-steps method is the DuFort- Frankel method, 

U fl,j +J - U fl, j -J = a 2 U n- l,j - (U fl,j+1 + U fl, j -I) + U n+1'; 

2k h 2 

(a ) Show that (9.19 ) is consistent with u, = a2uxx only if 

k 
lim - =0 

h, k - O h 

(9.19) 

(b) Show that if k/ h is held constant as h, k ~ 0, then (9.19) is consistent with an equation of 
hyperbolic type. 

If the more natural central term -2Uni were taken in (9.19 ), the method would be unstable for 
every positive, == a 2 k /h 2

. 
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(a) From (9.2) (for u,) and (9.3), 

Un.j+l - Un, j -l 

2k 

Un - l.i - 2U ni + Un+l .i 

h 2 

Further, Un.i+l + Un.i - I = 2Uni + e u"(x,,, Ii) + G(e); so that (2) gives 

[CHAP. 9 

(1) 

(2) 

(3) 

Equations (1) and (3), together with u, = a 2uxx , show that U fails to satisfy (9.19) by an amount 

e e 
Tni = a 2 h 2 u,,(xn, li)+ G (e+ h

2
+ h 2 ) (4) 

It follows that (9.19) is consistent with the diffusion equation only if k/h tends to zero along with k and 
h. 

(b) If k/h == e, then it is obvious from (4) that (9.19) will be consistent with the PDE 

9.11 Using centered differences to approximate all x-derivatives and the implicit method (9.12), 
derive difference equations for the Neumann initial-boundary value problem 

2 
U, = a Uxx 

u(x, 0) = f(x) 

ux(O, I) = p(/), ux(l , I) = q(/) 

O< x < 1,1 > 0 

O<x < 1 

1> 0 

Let (Xn, Ii ) = (nh,jk) (n=-1,0,1 , 2, ... ,N-l, N,N+l;j=0, 1, 2, ... ), with Nh= l. The ghost 
poinls X-I and XN+l are introduced so that the boundary conditions can be approximated via the centered 
differences 

V.i - V-Ii 
2h =P(ti) 

V N+'.i - V N-I.i 

2h 

By (9.12), the linear equations for the unknowns V n.i+1 are 

- rV n-l.i+ 1 + (1 + 2r)V n.i+1 - rV n+l.i+1 = V ni (n = 0, 1, ... , N) 

From these, V -1.i+1 and V N+I.j+1 may be eliminated by using (1 ) to write 

V - I.i+l = V ,.i+I -2hpi+l V N+I .i+1 = U N-I,j+' + 2hqj+1 

The resultant system is expressed in matrix form as 

(1+ 2r) -2r ° V O.i+1 

-r (1 + 2r) -r VI ,i+1 

-r (1 + 2r) -r V 2,j+, 

-r (1 + 2r) -r V N-I . i+1 

° -2r (1 + 2r) V N.j+. 

V Oi - 2hrpi+ 1 

V' i 
V 2i 

V N - 1•i 

U Nj + 2hrqj+1 

(1) 

Observe the two anomalous entries, -2r, in the transition matrix, which arise from the Neumann 
boundary conditions. 



9.12 Write a computer program th at uses the explicit method (9.11) to approximate the solution to 

ur = U.u 0 < X < 1, t > 0 
u(x, 0) = 100 sin 7TX 

u(O, I) = u(l , t) = 0 

O< x<l 
t >O 

At t = 0.5 compare the numerical results with those from the exact solution, 

u = 100 e- Tr2r sin 7TX 

A FORTRAN-77 program, EHEAT, is listed in Fig. 9-1. Two stable runs are given in Fig. 9-2. The 
excellent agreement between the numerical and exact solutions in the case r = 1/6 is explained in 
Problem 9.3. 

PROGRAM EHEAT 
C TITLE: OEMO PROGRAM FOR EXPLICIT METHOO 
C FOR HEAT EaUATION, UT = KAPPA*UXX 
C IN PUT: N, NUMBER OF X-SUBINTERVALS 
C K, TIME STEP 
C TMAX, MAXIMUM COMPUTATION TIME 
C KAPPA, DIFFUSIVI TY VALUE 
C (X1,X2), X- INTERVAL 
C PI T), LEFT BOUNDARY CONDITION 
C alT), RI GHT BOU NDARY OONDITION 
C FIX), INITIAL CONDITION 
C E(X, T), EXACT SOLUTION 
C OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX 

COMMON U(O:51),VI O:51) 
REAL K, KAPPA 
DATA T,X1,X2,KAPPA/D,O,1,11 
PIT) = 0 
alT) = 0 
F(X) = 100*SIN(PI*X) 
E(X, T) = 100*EXP(-PI*PI*TJ*SINIPI*X) 
PRINT*,'ENTER TMAX,NUHBER OF X-SlIBINTERVALS AND TIME STEP' 
READ*,TMAX,N,K 
H = (X2-X1)1N 
R = KAPPA*l(/tVH 
PI = 4*ATAN( 1 .) 

C SET I NITIAL CONOITION 
DO 10 I = O,N 

X = X1 + I*H 
VI I ) = F(X) 

10 CONTINUE 
1 5 DO 20 I = 1, ~1 

UII) = VII) + R*(V(I+1) -2*V(I) + V(I-1)) 
20 CONTINUE 

T = T + K 
UI O) = peT) 
U(N ) = afT) 

C WRITE U OVER V TO PREPARE FOR NEXT TIME STEP 
DO 30 I = O,N 

VII ) = UtI) 
3D CONTINUE 
C IF T IS LESS THAN THAX, TAKE A TIME STEP 

IF IABS(THAX-T) .GT.1(/2) GOTO 15 
C OTHERWISE , PAINT RESULT 

WRITE(S,100) 
WRITE[ 6,110) N,K, TMAX 
WRITE(B,120) T 
DO 40 I = O,N 

X = X1 + I*H 
EXACT = E(X,T) 
WRITE(S,130) X,U(I),EXACT 

40 CONTINUE 
100 FORMAT(I//,T9,'AESULTS FROM PROGRAM EHEAT',/) 
110 FORMAT('N =',14,T15,'K = ',F8.S,T30,'TMAX =', F5.2,/) 
120 FORMAT('T = ',F5.2,T1B,'NUMERICAL',T35,' EXACT' ,/) 
130 FORMAT('X = ',F4.1,T13,F13.S , T30,F13 . S1 

END 

Fig. 9·1 

135 
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N = 10 K = 0.001667 TMAX = 0.50 

T = 0.50 NUMERICAL EXACT 

X = O. O. O. 
X = 0.1 0.222262 0 . 222242 
X = 0.2 0.422767 0.422730 
X = 0.3 0.581889 0 . 581 838 
X = 0.4 0.684051 0.683992 
X = 0.5 0.719254 0.7191 92 
X = 0.6 0.684051 0.683992 
X = 0.7 0.581 889 0.581 838 
X = 0.8 0.422767 0 . 422730 
X = 0.9 0.222262 0.222243 
X = 1.0 O. 0.000000 

N = 10 K = 0.005000 TMAX = 0.50 

T = 0.50 NUMERICAL EXACT 

X = O. O. O. 
X = 0.1 0.20446 3 0.222242 
X = 0.2 0.388912 0.422730 
X = 0.3 0.535292 0.581838 
X = 0.4 0.629273 0.683991 
X = 0.5 0.661657 0.7191 91 
X = 0.6 0.629273 0.683991 
X = 0.7 0.535292 0 . 581838 
X = O.B 0 .388912 0.422730 
X = 0.9 0 .204463 0.222242 
X = 1.0 O. 0.000000 

Fig. 9-2 

For the initial-boundary value problem 
2 ut = a Uu O<X < 1, t >0 

u(x, 0) = f(x) O<x < l 
u(O, t) = p(t), u(l, t) = q(t) t > O 

show how to imbed the implicit method (9.12) and the Crank- Nicolson method (9.13 ) in a 
single algorithm. 

With (xn, Ii) = (nh, jk) (n = 0, 1, . . . , N; j = 0,1,2, . .. ; Nh = 1), let UnO = f(xn) (n = 1,2, ... , 
N - 1), Uoo = (f(0) + p(0)]/2, UNO = [1(1) + q(O)]!2; further, for j = 1,2, .. . , let U Oj = P(ti), U Nj = q(tj). 
In the implicit and Crank-Nicolson methods a system of linear equati6 ns must be solved to advance the 
solution from Ii to li+l: it is not possible simply to march the solution forward as in the explicit method. 

The weighted-d ifference m ethod, 

U n,j+l - U nj = r[(l- w)8;U ni + w8; U n,i+d (9.20 ) 

reduces to (9.12) when w = 1 and to (9.13) when w = 0.5. Incorporating the boundary and initial 
conditions into (9.20), we find that the unknowns U 1.i+I, U 2,i+ l, .. . , U N -l. j+l satisfy the following 
tridiagonal system: 

(1 + 2wr) -wr o U 1•i+1 DI 

-wr (1 + 2wr) -wr U 2•i+1 D2 
-wr (1 + 2wr) -wr U 3•j+1 D3 

-wr (1 + 2wr) -wr U N-2.i+1 D N- 2 

0 -wr (1 + 2wr) U N- 1.J+1 D N- 1 
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where Dn = U oj + (1- w)r8~U nj (n = 2, 3, ... , N - 2) and 

DI = U Ij + (1- w)r.5; U Ij + wrU O.j+1 D N - 1 = U N-I,j + (1- w)r8~U N-l,j + wrU N.j+l 

The weighted-difference method program is given in Fig. 9-3. Two runs are shown in Fig. 9-4. Compare 
these with the first run in Fig. 9-2. 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

10 
C 

15 

20 
C 

C 

3D 

C 

C 

PROGRAM IHEAT 
TITLE: DEMO PROGRAM FOR IMPLICT AND CRANK­

NICOLCON METHODS FOR UT = KAPPA*UXX 
INPUT: N, NUMBER OF X-SUBINTERVALS 

K, TIME STEP 
TMAX, MAXIMUM COMPUTATION TIME 
KAPPA, DIFFUSIVITY VALUE 
(X1,X2), X- INTERVAL 
P{T), LEFT BOUNDARY CONDITION 
Q( T), 'RIGHT BOUNDARY CONDITI ON 
F(X), INITIAL CONDITION 
E(X, T}, EXACT SOLUTION 
W, W=1 FOR IMPLICIT- W=. 5 FOR CRAN K-NICOLSON 

OUTPUT : NUMERICAL AND EXACT SOLUTION AT T=TMAX 
COMMONIB LOCK1/A( 51} , B(51},C(51),D( 51),L 
COMMONIBLOCK2/U(D:51} 
REAL K,KAPPA 
DATA T,X1 ,X2,KAPPA/O,O,1,1/ 
P(T) = D 
Q(T) = 0 
f IX) = 100*SIN(PI*X) 
E{X,T) = 100*EXP(- PI*PI*T)*SIN( PI*X) 
PRINT*,'ENTER TMAX,NUMBER OF X-SUBINTERVALS AND TIME STEP' 
READ*,TMAX , N,K 
PRINT*,' ENTER 1 f OR IMPLICIT, .5 FOR CRANK-NICOLSON METHOD' 
READ*, W 
H = (X2- X1 JlN 
R = KAPPA*K/H/H 
PI = 4*ATAN{1.) 
SET INITIAL CONDITION 
DO 10 I = O,N 

X = X1 + I*H 
UrI) = F(X) 

CONTINUE 
DEFINE TRIDIAGONAL LINEAR SYSTEM 
L d: N-1 1 DO 20 I = 1,L 

A(I) = - W*R 
8(1) = 1 + 2*W*R 
C(I) = - W*R 
0(1) = UrI) + (1-W)*R*(U(I-1) - 2*U(I) + U(I+1)) 

CONTINUE 
CALL TRIDIAGONAL LINEAR EQUATION SOLVER 
CALL TRIDI 
WRITE SOLUTION AT TIME T+K INTO THE U-ARRAY 
T = T + K 
DO 3 D I = 1,N-1 

U(I) = 0(1) 
CONTINUE 
U(O) = P(T) 
UrN) = Q(T) 
IF T IS LESS THAN TMAX, TAKE A TIME STEP 
IF (ABS(TMAX-T).GT.K/2) GOlD 15 
OTHERWISE, PRINT ReSULT 
WRITE(S,1DO) W 
WRITE(6,110) N,K,TMAX 
WRITE(S,120) T 
DO 40 I = O,N 

Fig. 9-3 (Program continues on next page) 
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X :: X1 + I*H 
EXACT :: E(X, T) 
WRITE{6,130) X,U(I),EXACT 

40 CONTINUE 
100 FORMAT(III,T4,'RESULTS FROM PROGRAM IHEAT W=',F5.2,/) 
110 FORMAT('N =',I4,T15,'K :: ',F8.6,T30,'TMAX ::',F5.2,/) 
120 FORNAT('T:: ',F5.2,T18,'NUMERICAL',T35,'EXACT',/) 
130 FORMAT( 'X = ',F4.1, T13,F1 3.6, T30,F13.6) 

END 
SUBROUTINE TRIDI 
COMMON/BLOCK1/A(51),B(51),C(51 ) ,D(51), L 

C TITLE: TRIDIAGONAL LINEAR EQUATION SOLVER FOR 
C A SYSTEM WITH A NONZERO DETERM INANT 
C INPUT: At SUB DIAGONAL OF COEFFICIENT MATRIX 
C B, DIAGONAL OF COEFFICIENT MATRIX 
C C, SUPERDIAGONAL OF COEFFICI ENT MATRIX 
C 0, RIGHT HAND SIDE OF LINEAR SYSTEM 
C L, NUMBER OF LINEAR EQUATIONS 
C OUTPUT: SOLUTION OF LINEAR SYSTEM STORED IN D-ARRAY 
C FORWARD SUBSTITUTE TO ELIMINATE TH E SUBOIAGONAL ELEMENTS 

00 1 I :: 2, L 
RT = - A(I)/B( I-1) 
B(I) = B(I) + RT*C(I-1 J 
o(IJ :: O(IJ + RT*0(I-1) 

1 CONTINUE 
C BACK SUBSTITUTE AND STORE THE SOLUTION IN D-ARRAY 

D( L) :: D( L)/B( LJ 
DO 2 I = L-1 ,1 , -1 

o(IJ :: (o(IJ - C( I )*0(I+1))/B(I] 
2 CONTINUE 

RETURN 
END 

Fig. 9-3 ( Continued) 
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W = 0.5 -- CRANK-NICOLSON METHOO W :: 1.00 -- IMPLICIT METHOD 
N = 10 K = 0.005000 TMAX = 0.50 N = 10 K = 0.005000 TMA>< :: 0.50 

T := 0.50 NUMERICAL EXACT T :: 0.50 NUMERICAL EXACT 

X = O. O. O. X :: O. O. D. 
X :: 0.1 0.231190 0.222242 X :: 0.1 0.259879 0.222242 
X :: 0.2 0.439749 0.422730 X = 0.2 0.494319 0.422730 
X :: 0.3 0.605262 0.581838 X :: 0.3 0.680372 0.581838 
X = 0.4 0.711528 0.683991 X :: 0.4 0.799825 0.683991 
X :: 0.5 0.748145 0.719191 X :: 0.5 0.840986 0.719191 
X = 0.6 0.711528 0.683991 X :: 0.6 0.799825 0.683991 
X :: 0.7 0.605262 0.581638 X :: 0.7 0.680372 0.581838 
X = 0.8 0.439749 0.422730 X :: 0.8 0.494319 0.422730 
X :: 0.9 0.231189 0.222242 X :: 0.9 0.259879 0.222242 
X = 1. 0 o. 0.000000 X :: 1.0 O. 0.000000 

Fig_ 9·4 

9.14 Write a computer program that uses the Peaceman- Rachford ADI method (9.18) to 
approximate the solution of 

U t = U;u + Uyy 

u(x, y, 0) = 100 sin 'TTX sin 'TTy 

u(O, y, t ) = u(l , y, t ) = 0 

u(x,O, t) = u(x, 1, I ) = 0 

0 < x, y < 1, t > 0 
O< x,y <1 

O<y < 1, 1> 0 
O< x< 1, 1> 0 

Compare the numerical solution with the exact solution, u = l00e-z
.".2, sin TTX sin 'TTy, at t = 0.1. 

For a program, see Fig. 9-5. Though the symmetry of the solution was not exploited in constructing 
the program, the numerical results do display the expected symmetries. It therefore suffices to compare 
the numerica1 and exact solutions on 0 < Y $: x, 0 < x $: 1/2. See Fig. 9-6. 



CHAP. 9] DIFFERENCE METHODS FOR PARABOLIC EQUATIONS 

PROGRAM ADI 
C TITLE: DEMO PROGRAM FOR ADI MElliOD FOR 
C UT ; KAPPA*(UXX + UYY) 
C INPUT: MMAX & NMAX, NUMBER OF X & V-SUB INTERVALS 
C K, TIME STEP 
C TMAX, MAXIMUM COMPUTATION TIME 
C KAPPA, DIFFUSIVITY VALUE 
C (X1,X2) & (V1,V2), X & V-INTERVALS 
C P1(V,T) & Q1(V,T), LEFT & RIGHT BOUNDARV CONDITIONS 
C P2(X,T) & Q2(X,T) ,UPPER & LOWER BOUNDARV CONDITIONS 
C F(X,V), INITIAL CONDITION 
C E(X,V,T), EXACT SOLUTION 
C OUTPUT: NUMERICAL AND EXACT SOLUTION AT T;TMAX 

COMMON/BLOCK1/ A( 51) ,B [51) ,C( 51) ,D( 51) , L 
COMMONIBLOCK2IU(D:51,D:S1),V( 0:51, D:S1) 
REAL K, KAPPA 
DATA T,X1,X2,V1,V2,KAPPA/0,0,1 ,0,1 ,1/ 
P1 (V, T) = 0 
Q1[V, T) = 0 
P2(X,T) = 0 
<l2(X, T) = 0 
F(X,V) = 100*SIN(PI*X)*SIN( PI*V) 
E(X,V,T) = 100*EXP(- 2*PI*PI*T)*SIN( PI*X)*SIN(PI*V) 
PRINT·,' ENTER TMAX AND TIME STEP ' 
REAO*,TMAX,K 
PRINT·,'ENTER NUMBER OF X- SUBINTERVALS, NUMBER OF Y-SUBINTERVALS' 
READ*,MMAX,NMAX 

C SET INITIAL CONDITION 
PI = 4*ATAN(1.) 
HX = (X2-X1 }/MMAX 
HV = (V2-V1)/NMAX 
DO 10 M = O,MMAX 
DO 10 N = O,NMAX 

X = X1 + M.HX 
Y = Y1 + N·HV 
U(M,N) = 100.SIN(PI*X)*SIN(PI·V} 

10 CONTINUE 
C CALCULATE INTERMEDIATE VALUES SWEEPING VERTICALLV 

AX = KAPPA*K/HX/HX 
1S DO 20 N = 1,NMAX-1 

V = Y1 + N.HY 
DO 30 M '" 1,MMAX-1 

A(M) = -.S*AX 
B(M) '" 1 + AX 
C(M) = -.S·RX 

30 D(M) = .S*RX*(U(M-1,N)+U(M+1,N» + (1-AX)*U(M, N) 
C SOLVE TRIDIAGONAL SYSTEM FOR VALUES ON N-TH HORIZONTAL LINE 

L = MMAX -1 
CALL TRIDI 

C WRITE INTERMEDIATE VALUES INTO THE V-ARRAV 
DO 40 M = 1,MMAX-1 

V(M,N) = D(M) 
40 CONTINUE 

V(O,N) = P1 (V, T) 
V(MMAX,N) = Q1(V,T) 

20 CONTINUE 
C CALCULATION OF INTERMEDIATE VALUES IS COMPLETE 
C BEGIN HORIZONTAL SWEEP TO COMPLETE THE TIME STEP 

RY = K/HY/HY 
DO 50 M = 1,MMAX-1 

X = X1 + M*HX 
DO 60 N = 1,NHAX-1 

A(N) = -.S*RV 
B(N) = 1 + RY 
C(N) = -.S*RY 
D(N) = .S·RY*(V(M,N-1)+V(M,N+1}) + (1-RY)*V(M,N) 

60 CONTINUE 
C SOLVE TRIDIAGONAL SYSTEM FOR VALUES ON M-TH VERTICAL LINE 

L = NHAX - 1 
CALL TRIDI 

Fig.9.5 (Program continues on next page) 

139 
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C WRITE T+K VALUES INTO lliE U-ARRAY 
DO 70 N = 1,NMAX-1 

U(M,N] = D(N) 
70 CONTINUE 

U(M,O) = P2(X,T) 
U(M,NMAX] = Q2(X,T] 

50 CONTINUE 
C TIME STEP IS COMPLETE 

T = T+K 
C IF T IS LESS lliAN TMAX, TAKE ANOlliER TIME STEP 

IF (ABS(TMAX- T) .GT .K/2) GOTO 15 
C IF T EQUALS TMAX, PRINT RESULT 

WRITE(B ,1 ooJ 
WRITE(6,110J MMAX,NMAX,K,TMAX 
WRITE(6,120) T 
DO 80 M = 1,MMAX/2 
DO 80 N = 1,M 

X = X1 + M·fiX 
Y = Y1 + N·HY 
EXACT = E(X, Y, T) 
WRITE(6,130) M, N, U[ M, N),EXACT 

80 CONTINUE 
100 FORMAT (III , T9 , 'RESULTS FROM PROGRAM ADI',/ ) 

[CHAP. 9 

11 0 FORMAT[ 'MMAX=' ,I2 , ' NMAX=',I2,T18,'K = ', F5. 2 I 1301'TMAX =',F5.2,/) 
120 FORMAT[ 'T = ' , F5.2, T1 8,' NUMERI CAL ' 1135,' EXACT' ,I) 
130 FORMAT [ 'M,N = ', 11,', ' , 11, T13, F13 .B, 130,F1 3 .6 ) 

END 
SUBROUTI NE TRIOI 
COMMON/BLOCK1IA(51 J , B( 51 ) , C[51) ,0[51) ,L 

C TITLE : TRI DIAGONAL LINEAR EQUATION SOLVER FOR 
C A SYSTEM WIlli A NONZERO DETERMINANT 
C INPUT: A, SUB DIAGONAL OF COEFFICIENT MATRIX 
C B, DIAGONAL OF COEFFICIENT MATRIX 
C C, SUPERDIAGONAL OF COEFFICIENT MATRIX 
C 0, RIGHT HAND SIDE OF lINEAR SYSTEM 
C L, NUMBER OF LINEAR EQUATIONS 
C OUTPUT: SOLUTION OF lINEAR SYSTEM STORED IN D-ARRAY 
C FORWARD SUBSTITUTE TO ELIMINATE lliE SUBDIAGONAL ELEMENTS 

DO 1 I = 2,L 
RT = -A( I)/B[I-1) 
8[1) = B(I ) + RT*C[ I- 1 ) 
O[IJ = 0(1] + RT·D(I-1 ) 

1 CONTINUE 
C BACK SUBSTIllJTE AND STORE lliE SOLUTION IN O-ARRAY 

D(l) = D( L)/S[L) 
DO 2 I = L- 1,1,-1 

O[IJ = (O( I J - C(I)·D(I+1])/B(I) 
2 CONTINUE 

RETURN 
END 

Fig. 9·5 (Continued) 

MMAX=1 0 NMAX=1 0 K = O. 01 

T = 0.10 

M,N = 1,1 
MIN = 2,1 
M, N = 2 ,2 
M,N = 3,1 
M,N = 3,2 
M,N = 3 ,3 
M,N = 4,1 
M,N = 4,2 
M,N = 4,3 
M, N = 4,4 
M,N = 5,1 
M, N = 5,2 
M,N = 5,3 
M,N = 5,4 
M, N = 5,5 

NUMERICAL 

1 . 346013 
2.560268 
4.869920 
3 .523907 
6.702869 
9. 225708 
4.142601 
7.879695 

10.845469 
12.749614 

4.355789 
8.285203 

11.403603 
13.405738 
14. 095628 

Fig. 9·6 

TMAX = 0.10 
EXACT 

1.326484 
2.523122 
4.799263 
3.472779 
6.605618 
9.091854 
4.082497 
7.765370 

10.68811 6 
12.564634 
4.292591 
8.1 64993 

11 . 238150 
13 . 211238 
13.881 117 
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9.15 For a parabolic initial-boundary value problem, the method of lines consists in discretizing 
only the spatial variables to obtain a system of ordinary differential equations in t. Illustrate 
the method of lines by applying it to 

Take h = 0.25 . 

u(x, 0) = f(x) 

u(O, t) = u(l , t) = 0 

O< x < 1, t > O 
0 < x < 1 
t>O 

(1) 

(2) 

(3) 

Let Xn = nh (n = 0, 1, 2,3,4) and let Vn(t) be an approximation to u(Xn, I). In (1) approximate u, 

by V~(I) and Uxx by 8~ Vn(l ) to obtain the following system of ordinary differential equations . 

1 
VI = h 2 (-2VI + V 2 ) 

1 
V z= h 2 (V\-2V2 + V 3) (4) 

1 
V3 = h 2 (V2 - 2V3 ) 

If we look for solutions to the system (4) of the form Vn = aneAl
, we are led to the following eigenvalue 

problem in A: 

(5) 

By Problem 11.11 , the eigenvalues A of (5) are 

Ak = h-2 (-2 + 2 cos k;) (k=1,2,3) 

or A 1= -8 + 4V2, A2 = - 8, A3 = -8 - 4V2, with corresponding eigenvectors 

VI = [V2, 2, V2V 

The solution of (4) can be expressed as 

[VI(I), Vz(t), V3(1)]T = C I V I eAJI + C2 Vze A21 + C3 V3eA31 (6) 

and all that remains is to set 1=0 and Vn(O) = I(xn) in (6) to obtain three linear equations for CI, C2, C3' 
In practice, the number of x-nodes is usually much larger than five, and the POE may have variable 

coefficients or may be nonlinear. In these circumstances it is desirable, or necessary , to obtain an 
approximate solution to the system of ordinary differential equations by a numerical method . 

Supplementary Problems 

9.16 In the centered-difference formula (9.2 ), suppose that the computed values of u(x ± h, I) are u(x ± h, t) 

plus rounding errors of magnitude at most E. Also, suppose that M is an upper bound for uxxx(x, I) . 
(a) Show that 

I 
U(X+h,I) - U(X-h, t)j E h2 

U (x I) - 5, - + - M 
x , 2h h 6 

(b) What is the effect of rounding errors as h ~ O? 
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9.17 Lagrange's interpolation formula for three points gives 

as the quadratic function which assumes the values Uo, U" U2 for the arguments Xo, X" X2. Choosing 
Ui = U(Xi, t ) (i = 0, 1, 2), use y '(Xl ) and y" as fi nite-d ifference approximations of UAX" t) and UXx{ X" t), 
respect ively. Verify that your fonnulas gree with those of Problem 9.2. 

9.18 Prove th at the eigenvalues fL of C == (J + Brl(1 - B) are given by 

where A is an eigenvalue of B. 

I-A 
lL=l+A 

9.19 (a) Show that errors in the Crank-Nicolson method are governed by 

(I + B)Ej + 1 = (I - B)Ej 

where B is a symmetric, tridiagonal matrix with diagonal entries rand sub- and superdiagonal entries 
-,/2. (b) From (a), Problem 9.18, and Problem 9.8, infer the stability of the Crank-Nicolson method. 

9.20 Show that the DuFort- F ran kel method (9.19) is (von Neumann) stable. [Hint: Establish that 

2, cos f3 ± V1- (2' sin f3? 
~=----------------

1 + 2, 

and consider the cases ,:5 1/2, , > 1/2 and /2, sin f3/ :5 1, , > 1/2 and 12, sin f3/ > 1.] 

9.21 Show that the Peaceman-Rachford ADI method (9.18) is (von Neumann) stable. [Hint: For separable 
solutions of the form ~j e i

C/3m+
y

n), show that 

whence /~/ :5 1. 

12 ' 2f3 12 ' 2'Y - , sm - -, sm -
2 2 

~=--------

1 + 2, sin2 ~ 1 + 2, sin2 2'. 
2 2 

9.22 (a) Exhibit in matrix form a backward-difference method for the problem 

U, = Uxx - U 

U(X, 0) = f(x) 

u(O, t) = u (1, t) = 0 

0< X < 1, t > 0 

O<x < l 

t> 0 

(b) Perlonn a matrix stability analysis, utilizing Problem 11.11 and the fact that the eigenvalues of C- l 

are the reciprocals of the eigenvalues of C . 

9.23 For j = 1, 2, exhibit the solu tion U nj to (9.11 ) that assumes the initial values U nO = 0 (n = ± 1, ±2, ... ), 
Uoo = 100. Choose grids with (a) , = 1/4, (b) , = 1 (unstable). 

9.24 Show that the explicit method (9.11 ), when applied to the problem 

u(x, 0) = f(x) 

uAO, t) = uA1, t) = 0 

O<x < l,t > O 

O<x< l 

t > 0 

on the x-grid 0 = Xo < X, < . .. < XN = 1, has the matrix formulation 
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9.25 In Problem 9.24, prove that 

2r 

1- 2r 

r 

r 

1- 2r 
2r 

r u(x, t) dx = r f(x) dx 
o 0 

143 

(conservation of di ffused material between impermeable walls at x = 0 and x = 1) and that, corres­
pondingly, 

N N 

L U nj = L UnO 

n - O "=0 

9.26 The Gerschgorin Circle Theorem states that if A = [aij 1 is an N x N matrix and C is the circle in the 
complex plane with center aii and radius 

N 

L laijl 
j~t 

j.,t i 

then all the eigenvalues of A are contained in the union of C t , C2 , .•. , CN . Use this theorem to show 
that (a ) the difference method of Problem 9.24 is stable provided r $ 1/2, (b) the difference method of 
Problem 9.11 is unconditionally stable. 

9.27 For the problem 

U, = a2uxx 

u(x, 0) = f(x) 

au(O, t) + f3ux(O, t) = p(t) 

u( e, t) = q(t) 

o < x<e, l>o 

o < x <e 

t>O 

t > O 

where a and f3 cI 0 are constants, use the explicit method (9.11) and a ghost point, X-l, to derive a 
difference system for U nj (n = 0, 1, . .. , N - 1; j = 0, 1,2, .. . ). 

9.28 For the problem 

u, + cux - a 2 u"" = 0 
u(x, 0) = 0 

u(O, t) = 1, u(l, t) = 0 

0 < x < I , t >0 

O< x < 1 

1>0 

use the backward-difference method (9.12), together with a centered di fference for ux , to formulate a 
difference system for U nj (n = 1, 2, ... , N - 1; j = 0, 1,2, ... ). 



Chapter 10 

Difference Methods 
for Hyperbolic Equations 

10.1 ONE-DIMENSIONAL WAVE EQUATION 

Methods similar to those given in Section 9.4 may be used to approximate smooth solutions to 

(10. 1) 

Let (xn,tj)=(nh,jk) (n.j=O,1,2, ... ) and write s-==k/h; we have as representatives of the two 
sorts of methods : 

or 

or 

Explicit Method 

Un.j+1 - 2Unj + Un.j- I c 2 Un+l,j - 2Unj + Un-I,} 

h2 e 

Implicit Method 

82 U = 2 2 8; Un,j+1 + 8; Un,j-l 
I nj C S 2 

- 2 2 U + (2 2 2 2) U - 2 2 U = 4 U _ 2 U + 2 2,;,2 U C S n-I,j+1 + C S n,j+1 C S n+l.j+l nj n,j-i C S U x nj 

(10.2) 

(10.3) 

The local truncation errors given in Theorems 10.1 and 10.2 assume that u is four times continuou ly 
differentiable in x and t. 

Theorem 10.1: The explicit method (10.2) has local truncation error a(e+ h2); it is stable if and 
only if C

2
S

2 
$ 1. 

Theorem 10.2: The implicit me thod (10.3) has local truncation error a(e + h2); it is stable. 

In Problem 10.1 it is shown how initial c nditions are used to evaluate UnO and Un\> which are 
needed to start the calculations in either method. The sorts of problems to which the two methods 
properly apply are as in the parabolic case, assuming smooth solu tions. For problems to which the 
solution is not smooth, the method of characteristics usually provides a more accurate numerical 
solution (see Section 10.2). 

The stability condition of Theorem 10.1 is often referred to as a Couranl - Friedrichs - Lewy (CFL) 
condition. The CFL condition for the stability of an explicit finite-difference method is that the 
numerical domain of dependence must contain the analytical domain of dependence. Thus, for (10.2 ) 
to be stable, the backward characteristics through (xn, tj+J must pass between (xn_p t) and (xn+P Ij ). 

10.2 NUMERICAL METHOD OF CHARACTERISTICS 
FOR A SECOND-ORDER PDE 

The Cauchy problem for the quasilinear hyperbolic equation 

auxx + 2bux y + CUyy = f (b 2 > ac) (l 0.4) 

wherein u, ux ' and uy are prescribed along some initial curve r that is nowhere tangent to a 
characteristic, becomes a Cauchy problem for a first-order system of the same type when Ux and uy 

are taken as new dependent variables. Writing 

144 
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a 

we obtain from the theory of Chapter 5 (see also Section 10.4) the following basic results for (10.4) : 

Theorem 10.3: The level curves of the surfaces z = F(x, y) and z = G(x, y) are respectively the (l'-

and ,8-characteristics of (10.4 ) if 

dy Fx ) 
- = - - = A along F(x, y =,8 
dx Fy + 

(10.5) 

dy G x 
- = - - = A_ along G(x, y) = (l' 

dx Gy 

(10.6) 

The introduction of (l' and f3 as new coordinates in the vicinity of r leads to the 
replacement of (10.4) by the system of characteristic equations 

Y = A x 
" + '" 

Y{3 = A_X{3 

A+a(uJ" + c(uY)O' = fy", 

A_a(ux){3 + c(uy){J = fY{3 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11a ) 

(10.llb) 

The num erical method of characteristics begins with the selection of grid points P j on r (Fig. 
10-1); u (P) , ux(P), and uy(P) are therefore known. Next, all (l'- and f3-derivatives in (10.7)-(10.11) 
are replaced by difference quotients; e.g., 

The result, after cancellation of l1 a and 11,8, is a system of five algebraic equations in the five 
unknowns x(O;), y(O), u (O) , ux(O), and uy(O;). In general, the system is nonlinear and must be 
solved by an iterative technique (see Problem 10.5). With the new grid points OJ located and with 
new starting values at hand, the transition can be made to the R j ; and so forth . 

y 

__ - - F(x, y) = f31 

f35 

x 

Fig. 10·1 
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In the event that a, b, and c in (10.4) are independent of u, an a priori integration of the ordinary 
differential equations (10.5) and (10.6 ) may be possible, yielding the characteristic curves and their 
points of intersection, the grid points. In that case, (10.7) and (10.8) may be dropped from the 
numerical algorithm . 

Only one of the equations (10.11) need figure in the numerical method of characteristics. In the 
case of a pure initial value problem, it is a good idea to check the solution obtained when (10.J1a) is 
used against that involving (lO.l1h). For an initial-boundary value problem, in calculations adjacent 
to a boundary, the choice of equations (10. 11) is dictated by the relative orientations of the boundary 
and the a- and f3-characteris tics. See Problem 10.20. 

10.3 FIRST-ORDER EQUATIONS 

We start with the simple equation 

aux + u, = f (10.12) 

where a is a constant and f= f(x, t), because difference methods for (10.12) carryover directly to a 
hyperbolic system of m linear first-order equations in m functions of x and t. Letting (xn' ti ) = (nh, jk) 
and s == k/ h, we have 

Explicit (Forward-in-x) Method 

or Un,i+1 = (1 + sa) Uni - sa Un+1•i + kfni (1 0.13) 

Explicit (Backward-in-x) Method 

or Un,i+1 = saUn_l •i + (1 - sa) Uni + kfni (10.14) 

Explicit (Modified Centered-in-x) Method 

a Un+1.i - Un-I.; + Un.;+1 - ~(Un+1.; + Un-I,;) 
2h k 

or 
1 + sa 1- sa 

U. I=-- U I +--U I +kJ.. n,l+ 2 n- .1 2 n+ .1 nl (10. 15) 

Theorem 10.4: The forward-in-x method (10.13) has local truncation error O(k + h ); it is stable if 
and only if -1 :::::; sa :::::; O. 

Theorem 10.5: The backward-in-x method (10.14 ) has local truncation error O(k + h ); it is stable if 
and only if 0 :::::; sa :::::; 1. 

Theorem 10.6: The modified centered-in-x method (10. 15 ) has local truncation error O(k + h2); it 
is stable if and only if Isa I:::::; 1. 

It should be noted that the unmodified centered-in-x method, with a simple forward difference in 
time, is always unstable. 

A three-level explicit method for (10.12) can be obtained by estimating both ux(xn, t) and 
u,(xn , t) by centered differences: 
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Leapfrog Method 

U +1 - U I · U . 1- U - 1 a n ,J
2h 

n- ,J + n,J+ 2k n,J- = Ini 

(10,16) 
or Un,i+1 = Un,i- I - saU,,_I,i - saUn+l ,i + 2kfni 

Theorem 10.7: The leapfrog method (10.16 ) has local truncation error O(k 2 + h2); it is stable if and 
only if Isa I :$; 1. 

A two-level implicit method results from approximating both partial derivatives as an ave rage of 
forward differences: 

WendroJrs Implicit Method 

a (Un+l,; - Un;) +2~n+I,j+l - Un,j+l) + (U,',i+1 - Un;) + ;~n+1.i+l- Un+l) = I(x
n 

+ (h/2), Ii + (k/2» 

or (1 + sa)Un+I,j+1 + (1 - sa )Un,i+1 - (1 - sa)Un+I ,j - (1 + sa)Uni = 2kl,,+(l/z),i+(1(2) (10.17) 

Theorem 10.8: Wendroff's implicit method (10.17) has local truncation error O(e + h2); it is stable . 

WendroH's implicit method cannot be applied to a pure ini tial-value problem. However, for an 
initial- boundary value problem, (10. 17 ) can be used in an explicit manner (see Problem 10.8), Each 
of the methods (10.13)-(10.17) can be modified to apply to the general quasilinear first-order POE 
in two independent variables. 

As is shown in Problem 10.4, the scalar conservation-law equation 

[F (u )L + u/ = 0 (10.18) 

admits the 

Lax- WendroJf Method (Scalar) 

(10.19) 

Here, Fnj == F ( Unj ), F~j == F'( Unj ). 

Theorem 10.9: The Lax-Wendroff method (10.19 ) has local trunca tion error O(e + h2
). 

The stability cri terion for (10. 19 ) will depend on the function F; if F(u ) = au (a = const. ), the 
method is stable if and only if Isal :$; 1. 

To avoid the calculation of F', several two-step mod ifications of (10.19 have been devised. For 
example, 

Un,i+ 1 = Uni - s(F~j - F~_l,j) 
(10.20) 

has the same local truncation error, O(e + h2), as (10.19 ) and reduces to (10.19) in the linear case 
F (u ) = au. 

Next, con ider the hyperbolic system of M linear first-order equations 

Aux + u, = f (10.21 ) 

where A is a constant M x M matrix and 

By Section 5.2, all M eigenvalues of A are real. The scalar numerical methods (10.13)- (10.17 ) 
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become vector numerical methods for (10.21 ) when a is replaced by A (and 1 ± sa by I ± sA), and Unj 

and Inj are replaced by 

(10.22) 

Theorems 10.4-10.8 hold for these vector methods if, in the statements, a is replaced by A, any 
eigenvalue of A. 

Similarly, the Lax- Wendroff method may be extended to handle the conservation-law system 

a aU l 
- F l(u., uz,···, uM)+ - = 0 
ax at 
a aU2 
-FiU ., u2'···, uM )+-= 0 
ax at 

i.e., the vector conservation-law equation 

[F(u)1x + u, = 0 (10.23) 

Define the vectors Unj as in (10.22) and write 

[

Fl(Ul.nj, U 2•nj,· ·· , UM.n) J 
F . == FiUl .nj' UZ ,nj' ... , UM,n) 

nJ ••• 

FM(Ul ,nj' U2,nj, · ··, UM,nj) 

Let J(U.,u2 , ... , uM )==[aFp/auq ] (p,q=1,2, ... ,M) be the Jacobian matrix of the fu nctions 
F., . .. , FM , and write 

Then, for (10.23), we have the 

Lax- WendroJf Method ( Vector) 

s SZ 
U n,j+l = U nj - 2 (F n+l,j - F n-l ,j ) + '4 [(J n+l,j + J nj )(F n+l,j - F nj) - (J nj + I n-l ,j )(Fnj - F n-l,j )] (10.24 ) 

The vector version of the two-step modification (10.20) avoids calculation of the Jacobian matrix. 

EXAMPLE 10.1 For f = 0, the linear system (10.21) becomes the special case F(u) = Au of (10.23 ). In this case, 

Jnj = A = const. 

and we obtain for the homogeneous (10.21) the linear Lax- Wendroff method 

s s 
= 2 A(sA - I)Un+ l .j - (sA - I)(sA + I)Unj + 2 A(sA + I ) Un - l •j (10.25) 

Problem 10.10 treats the stability of (10.25). 

The difference methods presented above, like those of Section 10.1, work best if the exact solution is 
smooth. If discontinuities are present, greater accuracy will be furnished by a numerical method of 
characteristics. 
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10.4 NUMERICAL METHOD OF CHARACTERISTICS FOR FIRST· ORDER SYSTEMS 

The numerical method of characteristics is applicable to initial value problems for either a single 
first-order equation or a hyperbolic system of fi rst-order equations. 

First, consider the quasilinear PDE 

(b rf- O) (10.26) 

and suppose that u is given on the noncharacteristic init ial curve f. Let Q be any fixed point on f and 
ri be the characteristic of (10.26) passing through Q [Fig. lO-2(a)]. By (4b) of Problem 5.3, 

b dx - a dy = 0 and b du - c dy = 0 

along ri. Approximating dx, dy, and du by x (P ) - x( Q), yep) - y( Q), and u(P) - u( Q), we obtain a 
pair of algebraic equations, 

b[x(P) - x( Q)] - a[y(P) - y( Q)] = 0 

b[ u(P) - u ( Q )] - c[y(P) - y( Q)] = 0 

(10.27) 

(10.28) 

After one of the coordinates, x(P) or yep), of P has been selected, this system determines the other 
coordinate of P and the value of u at P. The system (10.27)-(10.28) is linear only if (10.26) is linear with 
constant coefficien ts. 

y y 

.a-characteristic 

r 

x x 

(a) (b) 

Fig. 10-2 

Next, consider the 2 x 2 quasilinear hyperbolic system 

Aux + Buy = c (det (B) r! 0) (10.29) 

with u = [u, vf given on f. Using the theory of Chapter 5 (see especially Problem 5.12) to transform 
from the variables x, y to characteristic coordinates a, [3, we obtain the canonical equations for 
(10.29): 

xa = AlYa 

x{3 = A2 Y{3 

b~lua + b~2V" = cT y" 

b21 U{3 + b~v{3 = c;Y/3 

where Al and A2 are the (by assumption, real) zeros of det (A- AB) and where the starred coefficients 
are known functions of x, y, U, v. Replacing the a- and [3-derivatives by difference quotients (per Fig. 
10-2(b» yields the following numerical method: 
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x(P) - x(Q) = AJ[Y (P ) - y(Q)] 

x(P) - x(R) = A2[Y(P) - y (R)] 

b~J[u(P) - u(Q)] + b~2[V(P) - v (Q)] = c 7[y (P)- yeo)] 

b;Ju(P) - u(R )] + b;2f v(P ) - vCR)] = c;[y(P ) - y(R )] 

[CHAP. 10 

(10.30) 

(10.31 ) 

(10.32) 

(10.33 ) 

In general, the algebraic system (10.30)-(10.33) must be solved for the unknown x(P), yep), u(P), 
and v(P) by an iterative procedure. 

Solved Problems 

10.1 Given the in itial conditions u(x, 0) = I(x) and u,(x, 0) = g(x) for th e wave equation (10.1), 
show how to obtain starting values UnO and U nJ for the difference methods (10.2) and (10.3). 

The guiding principle here is that the starting values should represent the initial data with an error no 
worse than the local truncation e"Or 01 the difference method, which in the present case is O(e + h 2

). 

Obviously, then , we take U"o = I(x,,), as this incurs error zero. 
To decide on U,,!, Jet us suppose that f is in C 2 and that (10.1 ) hol.ds at t = O. Then Taylor's 

theorem gives 

where, in the last step, f'(x,,) has been approximated through a second difference, according to (9.3). 
From (1) it is seen that the relation 

U"l- U"O kc2 

g(x,,) = k - 2h 2 (f(X"-l) - 2f(x,,) + f(Xn+l)] (2) 

is satisfied by the exact solution u to within O(kh2 + e); i.e. , le tting (2) determine U" I results in an error 
of higher order than O(k 2 + h2

). ~ 

10.2 Write a computer program that uses the explicit method (10.2), with starting values as in 
Problem 10.1, to approximate the solution to the initial- boundary value problem 

u,, - 4uu = 0 

u(x, 0) = sin 21TX 

u( x, 0) = 0 

u(O, t ) = u(l , t) = 0 

O<x < 1, t > O 
O< x< l 

O< x< l 
t > O 

At t = 1 compare the numerical results with the exact solution, u = cos 41Tt sin 2 1TX. 

Figure 10-3 gives a program listing, and Fig. 10-4 shows two runs, one stable and one unstable. 



CHAP. 10] DIFFERENCE METIIODS FOR HYPERBOLIC EQUATIONS 

PROGRAM EWAVE 
C TITLE: DEMO PROGRAM FOR EXPLICIT METHOD 
C FOR WAVE EQUATION, UTT = C*C*UXX 
C INPUT: N, NUMBER OF X-SUBINTERVALS 
C K, TIME STEP 
C TMAX, MAXIMUM COMPUTATION TIME 
C (X1,X2), X-INTERVAL 
C P1(T), LEFT BOUNDARY CONDITION 
C P2(T), RIGHT BOUNDARY CONDITION 
C F(X), INITIAL CONDITION ON U 
C G(X), INITIAL CONDITION ON UT 
C E(X,T), EXACT SOLUTION 
C OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX 

COMMON U(0:51),V(0:51),W(0:51) 
REAL K 
DATA T,X1,X2,C/O,O,1,21 
PI = 4*ATAN(1.) 
P1 [T) = 0 
P2(T) = 0 
F(X) = SIN[2*PI*X) 
G(X) = 0 
E{X,T) = COS[4*PI*T)*SIN(2*PI*X) 
PRINT*, tENTER TMAX. NUIoIIER OF X-SUBINTERVALS AND TIME STEP I 
READ*,TMAX,N,K 
H = (X2-X1 )/N 
S = I</H 
Q = C*C*S*S 

C SET T = 0 VALUES 
DO 10 I = O,N 

X = X1 + I*H 
W[I) = F(X) 

10 CONTINUE 
C SET T = K VALUES 

T = K 
DO 20 I = 1. N-1 

X = X1 + I*H 
VII) = WeI) + K*G(X) + .5*Q*(W(I+1) - 2*WII) + WII-1» 

20 CONTINUE 
VIOl = P1 [T) 
VIN) = P21T) 

C ADVANCE SOLUTION TO TIME T+K 
15 0030 I = 1,M-1 

UrI) = 2*VII) - W[I) + Q*(VII+1) - 2*V[I) + VII-1») 
30 CONTINUE 

T = T + K 
U{O) = P1 [T) 
UIN) = P2[T) 

C WRITE V OVER WAND U OVER V TO PREPARE FOR NEXT TIME STEP 
00 40 I = O,N 

WII) = V(I) 
VII) = UIIJ 

40 CONTINUE 
C IF T IS LESS THAN TMAX, TAKE A TIME STEP 

I F[ABS(TMAX-T).GT.1</2) GOTO 15 
C OTHERWISE, PRINT RESULT 

WRITE16,100) 
WRITE[6,110) N,K,TMAX 
WfUTE(6,120) T 
ISTEP = .1/H 
DO 50 I = O,N,ISTEP 

X = X1 + I*H 
EXACT = E(X,TJ 
WRlTE(6,130) X,U(I),EXACT 

50 CONTINUE 
100 FORMATIIII,T9,'RESULTS FROM PROGRAM EWAVE',/) 
110 FORMAT('N =',14,T15,'K = ',FB.6,T30,'C*C*S*S =',F5.2,/) 
120 FORMATI'T = ',F5.2,T1B,'NUMERICAL',T35,'EXACT',/) 
130 FORMAT I 'X = ',F4.1,T13,F13.6,T30,F13.6) 

END 
Fig. 10-3 
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N = 10 K = 0.100000 C·C·S·S = 1.00 

T = 1.00 NUMERICAL EXACT 

X = O. O. O. 
X = 0.1 - 908.209473 0.587785 
X :: 0.2 1556.156250 0.951056 
X = 0.3 -1734.383179 0.951056 
X = 0.4 1350.902466 0. 587785 
X = 0.5 -465.308990 0.000000 
y,. -::. '\', .'0 -£.150..%1 0.115'0 -'\', .15%11~15 
X :: 0.7 1566.169800 -0.951 056 
X = 0.8 -1818.750488 -0.951057 
X = 0.9 1 211 .699341 - 0.587785 
X = 1.0 O. -0.000000 

N = 20 K :: 0.010000 C·C·S·S = 1.00 

T = 1.00 NUMERICAL EXACT 

X = O. O. O. 
X = 0.1 0.587 232 0.587785 
X = 0.2 0.950161 0.951056 
X = 0.3 0.950161 0 .951056 
X = 0.4 0.587232 0.587785 
X = 0. 5 0.000000 0.000000 
X = 0.6 - 0.587232 - 0.587785 
X :: 0.7 - 0.950161 -0 .951 056 
X = 0.8 - 0. 9501 61 - 0.951057 
X = 0.9 - 0.587 231 -0. 587785 
X = 1.0 O. -0.000000 

Fig. 10·4 

R ework Problem 10 .2 using the im plicit method (10.3). 

See Fig. 10-5 for a program listing, and Fig. 10-6 for a (stable) run. 

PROGRAM !WAVE 
C TITLE: DEMO PROGRAM FOR IMPLICT METHOD 
C FOR UTT = C1 ·C1 · UXX 
C INPUT: N. NUMBER OF X- SUB INTERVALS 
C K. TIME STEP 
C TMAX. MAXIMUM COMPUTATION TIME 
C C1. CELERITY VAWE 
C (X1.X2). X-INTERVAL 
C P1 IT). LEFT BOUNDARY CONDITION 
C P2IT). RIGHT BOUNDARY CONDITION 
C FIX). INITIAL CONDITION FOR U 
C GIX). INITIAL CONDITION FOR UT 
C E(X.T). EXACT SOLUTION 
C OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX 

COMMON/BLOCK1/A(51).B(51).C(51).D(51).L 
COMMON/BLOCK2IU(0:51).VIO:51). W(O:51} 
REAL K 
DATA T.X1.X2.C1/0.0.1.21 
PI = 4*ATAN(1.1 
P1 IT) = 0 
P2IT) = 0 
FIX) = SIN[2*PI*X) 
G(X) = 0 
EIX.T) = COS(4*PI*T)*SIN(2*PI*X) 
PRINT*.'ENTER TMAX.NUMBER OF X- SUBINTERVALS AND TIME STEP' 
READ*. TMAX.N.K 
H = (X2-X1 liN 
S = K/H 
P = C1 ·C1*S*S 

C SET T = 0 VALUES 
DO 10 I = O.N 

X = X1 + I*H 
W(I) ;:; F(X) 

10 CONTINUE 
Fig. 10-5 (Program continues on next page) 



C SET T = K VALUES 
T = K 
DO 20 I = 1, N-1 

X = X1 + I*H 
VII) = WII) + K*G(X) + .S*P*(WII+1) - 2*WII) + WII-1)) 

20 CONTINUE 
VI OJ = P1 IT) 
V(N) = P2IT) 

C OEFINE TRIDIAGONAL LINEAR SYSTEM 
L = N-1 

1S D030I = 1,L 
All) = -P 
BII) = 2 + 2*P 
CII) = - P 
OIl) = 4*V(I) - 2*W(I) + P*IWII-1) - 2*WlIj + WII+1)) 

3D CONTINUE 
C CALL TRIDIAGONAL LINEAR EQUATION SOLVER 

CALL TRIDI 
C WRITE SOLUTION AT TIME T+K INTO THE U- ARRAY 

DO 4Q I = 1,N-1 
UII) = OIl) 

4(J CONTINUE 
T = T + K 
UIO) = P1 IT) 
U(N) = P2(T) 

C WRITE V OVER W AND U OVER V TO PREPARE FOR NEXT TIME STEP 
DO SO I = O,N 

W(I) = VII) 
VII] = U(I) 

50 CONTINUE 
C IF T IS LESS THAN TMAX, TAKE A TIME STEP 

IF (ABS(TMAX- T) .GT.Kl2) GOTO 15 
C OTHERWISE, PRINT RESULT 

WRITE (6 ,1 00] 
WRITEI6,110) N,K,P 
WRITEI6,120) T 
ISTEP = .1/H 
DO 60 I = O,N,ISTEP 

X = X1 + I*H 
EXACT = EIX, T] 
WRITE16,130) X,UII),EXACT 

60 CONTINUE 
100 FORMATI///,T9,'RESULTS FROM PROGRAM IWAVE',/) 
110 FDRMATI'N =' ,I4,T1S,'K = ',FB.6,T3D,'C1*C1*S*S =',FS.2,/) 
120 FORMATI'T = ',FS.2,T1B,'NUMERICAL',T35,'EXACT',/) 
130 FORMAT ( 'X = ',F4.1,T13,F13.6,T30,F13.6) 

END 
SUBROUTINE TRIDI 
COMMONIBLOCK1/A(51),BIS1),C(51),O(51),L 

C TITLE : TRIDIAGONAL LINEAR EQUATION SOLVER FOR 
C A SYSTEM WITH A NONZERO DETERMINANT 
C INPUT: A, SUBDIAGONAL OF COEFFICI ENT MATRIX 
C B, OIAGONAL OF COEFFICIENT MATRIX 
C C, SUPEROIAGONAL OF COEFFICIENT MATRIX 
C 0, RIGHT HAND SIDE OF LINEAR SYSTEM 
C L, NUMBER OF LINEAR EQUATIONS 
C OUTPUT: SOLUTION OF LINEAR SYSTEM STORED IN O- ARRAY 
C FORWARD SUBSTITUTE TO ELIMINATE THE SUBDIAGDNAL ELEMENTS 

DO 1 I = 2,L 
RT = -A(I)/B(I-1) 
BII) = BII) + RT*CII-1) 
0(1) = OIl) + RT*O(I-1) 

1 CONTINUE 
C BACK SUBSTITUTE AND STORE THE SOLUTION IN D-ARRAY 

OIL) = DIL)/BIL) 
00 2 I = L-1,1 ,-1 

OIl) = (OIl) - C(I)*D(I+1))/BII) 
2 CONTINUE 

RETURN 
END 

Fig. 10-5 (Continued) 
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N = 
T = 

X = 
X = 
X = 
X = 
X = 
X = 
X = 
X = 
X:: 
X = 
X = 

10.4 

DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS [CHAP. 10 

20 K = 0.010000 C·C·S·S = 0.16 N = 20 K = 0.050000 C·C·S*S = 4.00 

1.00 NUMERICAL EXACT T = 1.00 NUMERICAL 

O. O. O. X = O. O. 
0 .1 0.585313 0.587785 X = 0.1 0 .365416 
0.2 0.947056 0.951056 X = 0.2 0.591 255 
0.3 0.947057 0.951056 X = 0.3 0.591 255 
0.4 0.585313 0.587785 X = 0.4 0.365415 
0.5 - 0.000001 0.000000 X = 0.5 0.000000 
0.6 - 0.585314 -0.587785 X = 0.6 -0.36541 5 
0.7 - 0.947057 -0.951056 X = 0.7 -0.591254 
0.8 -0.947058 -0.951057 X = 0.8 -0.591254 
0.9 -0.585314 - 0.587785 X = 0.9 -0.365415 
1 .0 O. - 0.000000 X = 1.0 O. 

Fig. 10·6 

Derive the Lax-Wendroff method (10.19). 

A Taylor expansion in ( gives 

e 
U(Xn, (j+l ) = U(Xn, (j)+ ku,(xn, (j)+- u,,(xn, (j ) + ... 

2 

By (10.18), u, = - [F(u)l x, and so, using a centered x-difference, 

F(un+l .j) - F(un- I .j ) 
u,(xn, (j ) = - 2h 

EXACT 

O. 
0.587785 
0.951 056 
0.951 056 
0.587785 
0.000000 

- 0.587785 
- 0 . 951 056 
-0.951057 
-0.587785 
-0.000000 

(1) 

(2) 

Furthermore, UtI = [F(u) [F(u)l xl x. Now, the usual centered second difference is the forward difference 
of a backward difference; that is, 

Hence we approximate the "inside" x-derivative above as 

and represent its multiplier by a mean value: 

F(unj) + F(un-u) 
F ' (u ) = ---'-...:..:.-2--'----':..:.. 

The forward differencing corresponding to the "outside" derivat ive then gives 

1 [F(Un +l .j) + F(unj ) F (un +l. j ) - F(unj) F(unJ ) + F(Un- I.; ) F(unj) - F (Un-l .j)] 
U (x t) = -

/I n, J h 2 h 2 h 

Substitution of (2) and (3 ) in (1 ), and replacement of U by U, yields (10.19). 

(3) 

10.5 In terms of Fig. 1O-2(b ), the difference equations corresponding to (l0.7)- (lO.l1a) are 

y(P) - y (Q) = A+[X (P ) - x(Q)] (1) 

(2) 

(3) 

(4 ) 

y(P) - y(R) = AJX(P) - x(R)] 

A+a[ ux (P) - u/ Q )] + c[ uy(P) - u/ Q)] = f[y(P) - y( Q)] 

A_a [u..,(P) - u..,(R)] + c[uy(P) - uy(R )] = f [y(P ) - y(R )] 

u(P) - u(Q) = u..,(P) + ux(Q) [x (P) _ x(Q)] + u/P) + uy (Q) [y (P) _ y (Q)] 
2 2 

Give an iterative method fo r the solution o f this nonlinear system. 

(5) 
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One possibility is as follows. Calculate a first estimate, X(pl), y(pl), of x(P), yep), by solving 
(1 )-(2) with A. = A+(Q ) and L = L (R): 

1 y (R) - y(Q) + A+(Q )x(Q ) - L(R)x(R) (6) 
x(P ) - - ------------

A+(Q)- L (R ) 

1 A+(Q) y (R ) - L (R )y(Q) + A+(Q) L(R)[x(Q) - x(R)] 
y(P) = A+(Q) - L(R) (7) 

Next, calculate a first approximation , ux(Pl), U~ (Pl), to ux(P), u~(P), by solving (3)-(4) with A+ = 
A+(Q), a = a(Q ), c = c(Q), f= f(Q), y(P) = y(P l), in (3); and L = L(R), a = a(R), c = c(R), f= 
feR ), y (P) = y(pl ), in (4): 

where 

1 c(R ) B l(Q) - c(Q)B2(R) 
ux(P ) = --------'--'-----'--------

A+(Q)a(Q )c(R)- L(R)a(R)c(Q) 

1 A+(Q)a(Q)B2(R) - L(R)a(R)Bl(Q) 
~(P ) = ----'--------'----------'----'-

A+(Q)a(Q)c(R)- L(R)a(R)c(Q) 

B 1(Q) == A+(Q) a(Q) u.(Q) + c(Q)uAQ)+ f(Q)[y(pl) - y(Q)] 

B 2(R) == L(R)a(R ) ux(R) + c(R) uAR) + f(R)[y(p l ) - y(R)] 

Now U(Pl) can be calculated from (5) as 

(8) 

(9) 

U(pl) = u(Q) + ux (p l) + ux(Q) [X(pl) _ x(Q)] + ~(pl) + ~(Q) [y(pl) - y(Q)] (10) 
2 2 

Upon the introduction of the averaged coefficients 

i';. = [A+(Q)+ A+(pi)]l2 

iii = [a(Q ) + a(pi)]l2 

ci = [c(Q)+ c(Pi)]/2 

P = (f( Q) + f(pi )]/2 

i..~ = [L(R)+ L(pi)]/2 

Oi = [a(R)+ a(pi)]!2 

ci = [c(R) + c(Pi)]!2 

Ji = (f(R) + f(pi)]/2 

B~ = A+iiiux(Q) + ciuAQ) + p[y(pi) - y(Q)] 

B~= L a iu.(R )+ ciuAR) + ji[y(Pi)_ y(R)] 

successive approximations can be calculated for j = 1,2, . .. , as follows: 

. 1 y(R)- y(Q)+ i~x(Q)- i..~x(R) 
x(P 1+)= _ , (11 ) 

A'.--E 

}+1 Hy(R)- i..~ y(Q)+ i~i..~ [x (Q) - x(R)] 
yep ) = _ , (12) 

A';.- E 

. U (pi+ 1
) + U (Q). (pi+1

) + (Q ) 
U(PI+l)=U(Q)+ x • [X(PI+l)_X(Q)]+~ ~ [y (Pi+ 1)_y(Q)] (15) 

2 2 

The iterations using (11 )-(15) are continued unt il two successive estimates agree to within some set 
tolerance. 

10.6 Use the numerical method of characteristics to approximate the solution to 

un - U
2

Uyy = 0 u(x, 0) = X uy(x, 0) = 2 

at the first characteristic grid point P between Q = (1, 0) and R = (1.2, 0). 
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Using the notation of Problem 10.5, we have : 

x (Q) = 1 

ux(Q) = 1 

u(Q ) = 1 

y(Q) = 0 

uy{Q) = 2 

u(R ) = 1.2 

x(R ) = 1.2 y(R) = 0 

ux(R ) = 1 u,(R) = 2 

..\+(Q ) = u(Q ) L(R) = -u(R) 

[CHAP. 10 

a(Q ) = 1 = a(R ) c(Q) = _U(Q)2 c(R) = - u(R f f(Q) = 0 = feR) 

Putting the above values in (6) - (10) of Problem 10.5, we obtain 

Using these values to initiate the successive approximations defined by (11 )-(15) of Problem 10.5, we 
obtain the values displayed in Table 10-1. (The exact solution is u = x + 2y.) 

Table 10·1 

j x(pi ) y(P i) ux(p i) u,,(Pl) u(p i) 

1 1.10909 0.10909 1 2 1.32727 

2 1.10412 0.12116 1 2 1.34644 

3 1.10409 0.12212 1 2 1.34832 

4 1.10408 0.12221 1 2 1.34851 

5 1.10408 0.12221 1 2 1.34853 

6 1.10408 0.12221 1 2 1.34853 

10.7 Use the linear Lax- Wendroft me thod (10.25) (1 x 1 version) to approximate the solution to 

Ux + u, = 0 
u(x, 0) = 2+ x 

u(O, t) = 2 - t 

x > 0, t >O 

x>O 

t > O 

At t = 0.5, for 0 s; x s; 1, compare the numerical solution with the exact solution, U = 2 + x - t. 

A program listing is given in Fig. 10-7, and the results of a stable run and an unstable run are 
displayed in Fig. 10-8. T he exact agreement in the stable run is explai ned by noting tha t the analytical 
solution is linear in x and t, and therefore the local truncation erro r is zero. Thus, the only errors in the 
calculation are rounding errors. The unstable run illustrates the growth of these errors even in the 
absence of any truncation errors. 

PROGRAM LLAXW 
C TITLE: DEMO PROGRAM FOR LAX-wENDROFF METHO 
C FDA LINEAR EQUATION UX + UT = 0 
C INPUT: H, X-GRID SPACING 
C K, TIME STEP (KlH < 1 FOR STABILITY) 
C TMAX, MAXIMUM COMPUTATION TIME 
C F[X], INITIAL CONDITION ON U, U(X,O) = F(XI 
C P[T), BOUNDARY CONOITION, U[O,T) = P(T) 
C E(X, T), EXACT SOLUTION 
C OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX 

COMMON U(O:500),V(O:500) 
REAL K 
F[ X) = 2 + X 
P[TI = 2 - T 
E[ X, T) = 2 + X - T 
PAINT.,' ENTER TMAX,X-GRID SPACING AND TIME STEP' 
AEAO* , TMAX,H,K 
T = 0 
S = KlH 

Fig. 10-7 (Program continues on next page ) 
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C DEFINE SUFFICIENTLY LARGE NUMERICAL INITIAL INTERVAL 
NMAX :: 1/H + TMAX/K + 1 

C SET INITIAL CONDITION 
DO 10 I = O,NMAX 

X = I*H 
VII) = F[XJ 

10 CONTINUE 
C ADVANCE SOLUTION TO TIME T+K AND SET BOUNDARY VALUES 
15 DO 30 I = 1,NMAX-1 

U(I) =VII)-.5*S*[VII+1)-V[I-1J)+.5*S*S*(V(I- 1 )-2*V[I) +V[I+1JJ 
30 CONTINUE 

T==T+K 
NMAX = NMAX -1 
U[OJ -= PITJ 

C WRITE U OVER V TO PREPARE FOR ANOTHER TIME STEP 
00 40 I = O,NMAX 

VII} = UII) 
40 CONTINUE 
C IF T IS LESS THAN TMAX, TAKE ANOTHER TIME STEP 

IF(ABS(TMAX-TJ.IIT. K!2) GOlD 15 
C IF T EQUALS TMAX, PRINT RESULT 

WRITE[B,100} 
WRITEI6,110J H,K,S 
WRITE(B.120) TMAX 
ISTEP = .1/H 
IMAX = 1/H 
DO 50 I = O.IMAX.ISTEP 

X = I*H 
EXACT = 2 + X - T 
WRITE(B,130) X,U(I),EXACT 

50 CONTINUE 
100 FORMAT(III,TB,'RESULTS FROM PROGRAM LLAXW' ,/} 
110 FORMAT('H =',F5.2,T1 5 ,'K = ',F5.2,T30,'S ='.F5.2./J 
120 FORMAT! 'T =' ,F5.2. T1 B, 'NUMERICAL' ,T35.' EXACT' ,II 
130 FORMAT ( 'X = '.F4.1.T13,F13.6,T30,F13 .6J 

END 
Fig. 10-7 (Continued) 

H = 0.10 K = 0.10 S = 1.00 

T :: 0.50 NUMERICAL EXACT 

X :: O. 1.500000 1.500000 
X :: 0.1 1.600000 1.600000 
X = 0.2 1.700000 1.700000 
X = 0.3 1.800000 1.800000 
X = 0.4 1.900000 1.900000 
X = 0.5 2.000000 2.000000 
X = 0.6 2.100001 2.100000 
X = 0.7 2.200001 2.200000 
X :: O.B 2.300001 2.300000 
X :: 0.9 2.400001 2.400000 
X = 1.0 2.500001 2.500000 

H = 0.02 K = 0.04 S = 2.00 

T :: 0.50 NUMERICAL EXACT 

X = O. 1.480000 1.480000 
X :: 0.1 - 228.278488 1.580000 
X = 0.2 1824.329346 1.680000 
X = 0.3 -314.192566 1.780000 
X = 0.4 1 201 .677368 1.880000 
X :: 0.5 -1047.932617 1.980000 
X = 0.6 449.913300 2.080000 
X = 0.7 -1787.070679 2.180000 
X = 0.8 70.098160 2.280000 
X = 0.9 1202.175171 2.380000 
X = 1.0 -1033.922974 2. 480000 

Fig. 10-8 

157 
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10.8 Apply Wendroff's implicit method (10.17) to the initial- boundary value problem of Problem 
10.7 with s = 2.00, the case in which the Lax-Wendroff method proved to be unstable. 

See Figs. 10-9 and 10-10. As expected, this stable method produces the exact solution. Notice that 
even though the differen ce method is implicit , the calculations in the program proceed from left to right 
in x, in an explicit manner. 

PROGRAM WEND I 
C TITLE: DEMO PROGRAM FOR WENOROFF'S IMPLICIT 
C METHOD FOR EQUATION UX + UT =: 0 
C INPUT: N, NUMBER OF X- SUBINTERVALS 
C K, TIME STEP (KlH < 1 FOR STABILITY) 
C TMAX, MAXIMUM COMPUTATION TIME 
C (X1,X2), X-INTERVAL 
C F(X), INITIAL CONDITION ON u, U( X, O) =: F(X) 
C P(T), BOUNDARY CONDITION, U(O,T) =: peT) 
C E(X,T), EXACT SOLUTION 
C OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=:TMAX 

COMMON U(O:500),V(O: 500) 
REAL K 
DATA T,X1,X2IO,O,1/ 
F(X) =: 2 + X 
PIT) = 2 - T 
E(X,T) = 2 + X - T 

C SET TMAX AND X AND T STEP SIZES 
PRINT*,' ENTER TMAX,NUMBER OF X-SUBINTERVALS AND TIME STEP' 
REAO*,TMAX,N,K 
H = (X2-X1)/N 
S =: KlH 

C SET INITIAL CONDITION AND BOUNDARY CONDITION 
DO 10 I =: O,N 

X =: X1 + I*H 
V(I) = F(X) 

10 CONTINUE 
U(O) = P(K) 

C ADVANCE SOLUTION TO TIME T+K AND SET BOUNDARY VALUE 
15 T = T + K 

U(O) =: PIT) 
00 30 I =: 1,N 

U(I) =V(I-1)+(1-S)*[V(I) - UiI-1))/(1+S) 
30 CONTINUE 
C WRITE U OVER V TO PREPARE FOR ANOTHER TIME STEP 

DO 40 I = O,N 
V(I) =: Uri) 

40 CONTINUE 
C IF T IS LESS THAN TMAX, TAKE ANOTHER TIME STEP 

IF(ABS(TMAX-T) .GT.Kl2} GOTO 15 
C IF T EQUALS TMAX, PRINT RESULT 

WRITE (8 ,100) 
WRITE(S,110) N,K,S 
WRITE(8,120) TMAX 
ISTEP = .1IH 
IMAX =: 1IH 
00 50 I ~ O,IMAX,ISTEP 

X = X1 + I*H 
EXACT = 2 + X - T 
WRITE(6,130) X,U(I),EXACT 

50 CONTINUE 
100 FORMAT[///,T9,'RESULTS FROM PROGRAM WENDI',/) 
110 FORMAT('N =:',I4,T15,'K = ',F5.2,T30,'S =',F5.2,/) 
120 FORMAT('T = ',F5.2,T1B,'NUMERICAL',T35,'EXACT',/) 
130 FORMAT( 'X = ',F4.1,T13,F13.6,T30,F13.6) 

END 

Fig. 10-9 



N = 100 K = 0.02 S = 2 .00 

T = 0.50 NUMERICAL EXACT 

X = O. 1.500000 1.500000 
X = 0.1 1.800000 1.800000 
X = 0.2 1.700000 1.700000 
X = 0.3 1.BOOOOO 1.BOOOOO 
X = 0.4 1.900000 1.900000 
X = 0.5 2.000000 2.000000 
X = 0.6 2.100000 2.1 00000 
X = 0.7 2.200000 2.200000 
X = O.B 2.300000 2.300000 
X = 0.9 2.400000 2.400000 
X = 1.0 2.500000 2.500000 

Fig. 10-10 

PROGRAM CLAXW 
C TITLE: DEMO PROGRAM FOR LAX- WENDORFF METHOD 
C FOR CONSERVATION EQUATION (U*Ul2)X+UT=0 
C INPUT: H, X-GRID SPACING 
C K, TIME STEP 
C TMAX, MAXlltJM COMPUTATION TIME 
C F[X), INITIAL CONDITION ON U, U(X,O) = F[X) 
C peT), BOUNDARY CONDITION, U( O,T) = PIT) 
C E(X, T), EXACT SOLUTION 
C OUTPUT; NUMERICAL AND EXACT SOLUTION AT T=THAX 

COMMON U(0:500),V(0:500) 
REAL K 
F(X) = X 
peT) = 0 
E{X, T) = XI(1+T) 

C SET TMAX AND X AND T STEP SIZES 
PRINT*, 'ENTER TMAX,X-GRID SPACING AND TIME STEP ' 
READ*,TMAX,H,K 
T = 0 
S = IVH 

C DEFINE SUFFICIENTLY LARGE NUMERICAL INITIAL INTERVAL 
NMAX = 1/H + TMAX/K + 1 

C SET INITIAL CONDITION 
00 10 I = O,NMAX 

X = I*H 
V(I) = X 

10 CONTINUE 
C ADVANCE SOLUTION TO TIME T+K AND SET BOUNDARY VALUES 
1 5 00 30 I = 1, NMAX-1 

UrI) =V[I) - .S*S*(V[I+1)**2-V(I-1)**2]/2 
UrI) = UrI] + S·S*(V(I+1)+V[I))*(V(I+1)**2- V(I)**2)/8 
U(I) = U(I) - S*S*(V(I)+V(I- 1))*(V(I)**2-V(I-1]**2)/B 

30 CONTINUE 
T = T + K 
NMAX = NMAX - 1 
U[O) = 0 

C WRITE U OVER V TO PREPARE FOR ANOTHER TIME STEP 
DO 40 I = O,NMAX 

V(I) = urI) 
4D CONTINUE 
C IF T IS LESS THAN TMAX, TAKE ANDTHER TIME STEP 

IF(ABS[TMAX-T).GT.1V2) GOTO 15 
C IF T EQUALS TMAX, PRINT RESULT 

WRITE(8,100) 
WRITE(6,110) H,K,S 
WRITE(8,120) TMAX 
ISTEP = .1/H 
IMAX = 1/H 
DO 50 I = O,IMAX,ISTEP 

X = I*H 
EXACT = XI( 1 + T) 
WRITE(6,130) X,U(I),EXACT 

50 CONTINUE 
1 DO FORMAT (/11 ,T9, 'RESULTS FROM PROGRAM Cl.A)(W' ,I) 
110 FORMAT!'H =',FS.2,T15,'K = ',FS.2,T30,'S =' , FS.2,/) 
120 FORMAT('T =',F5.2,T18,'NUMERlCAL' ,T35,'EXACT',/) 
130 FORMAT [ 'X = ',F4.1,T13,F13.8,T30,F13.S) 

END 
Fig. 10-11 
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10.9 Use the Lax- W ndroff method (10.19 ) to approximate the solution of 

(u 2/2)x + u, = 0 x > 0, t > 0 
u(x, 0) = x x > 0 

u(O, t) = 0 t > 0 

At t = 1, fo r 0 :5 X :5 1, compare the numerical solution with the exact solution, u = x /(l + t). 

See Figs. 10-11 and 10-12. A "sufficiently large numerical initial interval" is one that includes the 
numerical domain of dependence of the interval on which it is desired to approximate the solution. 

H = 0.10 K = 0.10 S = 1.00 

T = 1.00 NUMERI CAL EXACT 

X = O. O. O. 
X = 0.1 0 .050146 0.050000 
X = 0.2 0.1 00292 0.100000 
X = 0.3 0.1 50438 0. 150000 
X = 0.4 0.200585 0 . 200000 
X = 0.5 0.250731 0.250000 
X = 0.6 0.300877 0 .300000 
X = 0.7 0.351023 0.350000 
X = 0.8 0.4C1169 0.400000 
X = 0 .9 0. 45131 5 0.450000 
X = 1.0 0.501 461 0. 500000 

Fig. 10-12 

10.10 Show that a necessary condition for the linear Lax-Wendroff method (10.25) to be stable is 
that Is'\ I:5 1 for each of the eigenvalues A of the matrix A. 

Making a von Neumann analysis (see Problem 9.5), we substitute 

in (10.25), obtaining [et\ . .. , t~ l lT = G[tL . . . ,t~r, where 

G == I - (is sin f3)A - (2S2 sin2~) A2 (1) 

For stability, all e igenvalues J.L of the amplification matrix G must satisfy IJ.L 1:5 1. Bu t the eigenvalues 
of the matrix polynomial (1) are the values of the polynomial at the e igenvaJues ,\ of A: 

J.L = 1- (is sin f3)A - (2S2 sin2~) ,\ 2 (2) 

From (2), since ,\ is real, 

1J.L12 = [ 1- (2s2sin2~) ,\2r + [(s sin fi ),\ ]2 

= 1 - (4sin4 ~) p(1 - p) (p ==S2,\2) (3) 

It is clear from (3 ) that IJ.L 12:5 1 for all /3 only if 0:5 p :5 1; i.e., only if Is,\ 1:5 1. This condition is (i t can be 
shown) also sufficient for stability. 

10.11 Use the linear Lax-Wendroff method (10.25) to approximate the solution to the initial value 
problem 

[; =:][:t + [:J, = [~] 
u(x, 0) = sin x vex, 0) = cos x 

At t = 0.5, for 0:5 X :5 1, compare the numerical solution with the exact solution, 



PROGRAM SLAXW 
C TITlE: DEMO PROGRAM FOR LAX-WENDORFF METHOD 
C FOR SYSTEM OF TWO EQUATIONS, AUX + UT = 0 
C INPUT: H, X-GRID SPACING 
C K, TIME STEP 
C TMAX, MAXIMUM COMPUTATION TIME 
C FU [Xj & FV(X),INITIAL CONDITION ON U & V 
C EU(X,T) & EV(X,T), EXACT U & V SOLUTIONS 
C A & B, COEFFICIENT MATRIX AND ITS SQUAR E 
C OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX 

COMMON U[O:500),V(0:500),UN(D:500),VN (0:500), A(2,2),B(2,2) 
REAL K 
FU(X) = SIN (X) 
FV(X) = COS(X) 
EU(X,T) = (S.SIN(X- 3*T)-6·COS(X-3*T))/5 

1 + (S·COS(X+2·T)-SIN(X+2.T))/5 
EV(X,T) = (SIN(X-3*T) - COS(X-3.T))/5 

1 + (S.COS(X+2.T)- SIN(X+2.T))/ 5 
C SET COEFFICIENT MATRIX AND ITS SQUARE 

DATA A(1,1),A(1,2),A(2,1),A(2, 2) /4,-6,1, -31 
DATA 8(1,1),B(1,2),8(2,1),8(2, 2 )/10, -6 ,1.31 

C SET TMAX ANO X AND T STEP SIZES 
PR INT·, ' ENTER TMAX,X- GRI D SPACING AND TIME STEP' 
REAO·,TMAX,H,K 
T = 0 
S = KlH 

C DEFINE SUFFICIENTLY LARGE NUMERICAL INITIAL INTERVAL 
NLOW = TMAX/K +1 
NHIGH = NLOW + 1/H 
NMAX = NHIGH + NLOW 

C SET INI TIAL CONDITION 
DO 10 I = O,NMAX 

X = (-NLOW + I).H 
UrI) = FU(X) 
VII) = FV (X j 

10 CONTINUE 
C ADVANCE SOLUTION TO TIME T+K 

ILOW = 1 
15 DO 30 I = ILOW,NMAX-1 

UN(I) =U(I) - .5·S·A( 1,1 )· (U( I+1 )- U(I-1 ) ) 
1 - . 5·S·A(1,2 ).(V(I+1) - V(I- 1)) 
2 + S·S·8(1,1).(U(I- 1)-2.U(I) +U(I+1 ) )/ 2 
3 + S.S.B(1,2).(V(I- 1)-2. V( I )+V(I+1 ) )/2 

VN(I)=V (I )- .5·S·A(2,1)·(U(I+1 )- U( I-1)) 
1 - .5·S·A(2,2 )· (V(I+1 )-V( I- 1) ) 
2 + S·S·8(2,1). (U(I-1) - 2.U(I) +U(I+1))/2 
3 + S.S.8(2,2).(V(I- 1)-2.V(I)+V(I+1))/2 

30 CONTINUE 
T = T + K 
IUlW = ILOW + 1 
NMAX = NMAX - 1 

C WRITE U OVER UN AND VN OVER V TO PREPARE FOR NEXT TIME STEP 
DO 40 I = ILOW, NMAX 

UtI) = UN(I) 
VII) = VN(I) 

40 CONTINUE 
C IF T IS LESS 1liAN TMAX, TAKE ANOTHER TIME STEP 

IF (ABS(TMAX-T). GT.Kl2) GOTO 15 
C IF T EQUALS TMAX, PRINT RESULT 

WRITE(S.100) 
WRITE(6,110) H,K,S 
WAITE(6,120) TMAX 
ISTEP = .1IH 
IMAX = 1/H + I LOW 
DO 50 I = I LOW,IMAX,ISTBP 

X = (I - ILOW )· H 
EXACTU = EU [X. T) 
EXACTV = EV(X,T) 
WRITE( S,13D) X,U(I),EXACTU 
WRITE(6,140) V(I),EXACTV 

50 CONTINUE 
100 FORMAT(jII, 1'9, 'RESULTS FROM PROGRAM SLAXW' ,I) 
110 FORMAT('H =',F5.2,T15,'K = ',F7.4.T30,'S =',F5. 2,/) 
120 FORMAT('T =',F5.2,T18,'NUMERICAL',T35,'EXACT',/) 
130 FORMAT ( 'X = ',F4.1,T13,'U=',F10.S,T30,'U=' ,F10.8) 
140 FORMAT ( T1 3,' V=' ,F1 0.6 , T3 0,' V=' , F1 0.6 ,I ) 

END 

Fig. 10-13 
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U(x, t) = [6 sin (x - 3t) - 6 cos (x - 3t) - sin (x + 2t) - 6 cos (x + 2t)]/5 

v(x, t) = [sin (x - 3t) - cos (x - 3t) - sin (x + 2t) + 6 cos (x + 2t)]/5 

Since the eigenvalues of 

-6] 
- 3 

[CHAP. 10 

are Al = -2, A2 = 3, it follows from Problem 10.10 that the stability condition in this case is 3k/h :5 1. In 
the program of Fig. 10-13, note that to obtain a numerical solution on the line IE: 1= Imax , 0:5 X :5 1, the 
initial interval in the fi nite-diffe rence calculation must be large enough to include the numerical domain 
of dependence of IE. Comparison of the numerical and exact solutions is made in Fig. 10-14. 

H = 0.05 K = 0.0125 S = 0.25 

T = 0.50 NUMERICAL EXACT 

X = o. U= - 0.801758 U= - 0.801 810 
V= 0.266720 V= 0 . 266422 

X = 0.1 U= - 1.020323 U= - 1.020427 
V= 0.135308 V= 0.1349 91 

X = 0.2 U= -1.228694 U= - 1.228847 
V= 0.002545 V= 0.002211 

X = 0.3 U= - 1.424788 U= - 1.424989 
V= - 0.130245 V= -0.130592 

X = 0.4 U= - 1 .606646 U= -1.606893 
V= - 0.261732 V= - 0.262090 

X = 0.5 U= -1.772451 U= -1.772742 
V= - 0.390605 V= -0.390969 

X = 0.6 U= -1 .920546 U= -1.920878 
V= -0.515574 V=- - 0.515841 

X = 0. 7 U= - 2.049451 U= - 2.049821 
V= - 0.635392 V= -0.635758 

X = 0.8 U= - 2.157879 U= - 2.158283 
V= - 0.748862 V= - 0.749224 

X = 0.9 U= - 2.244747 U= -2.245180 
V= - 0.854849 V= -0.855203 

X = 1.0 U= -2.309186 U= - 2.309645 
V= - 0.952295 V= - 0.952887 

Fig. 10-14 

lO.U Use the numerical method of characteristics to estimate, at y = 0.01,0.1,0.2.:..-0.3, the solu tion 
to 

UUx + uy = - 2u3 

u(x, 0) = x 

on the characteristic through Q "'" (1, 0). Then compare the numerical results with the exact 
solution. 

In the notation of Section 10.4, we have a = u, b = 1, C = -2u 3
, x(Q) = 1, y(Q) = O. The system 

(10.27)-(10.28) becomes 
[x(P) - x (Q )] - u [y(P) - y(Q)] = 0 

[u(P) - u( Q)1 + 2u3[y(P ) - y( Q)] = 0 

which is to be solved for x(P) and u(P) corresponding to the four given values of yep). 
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From the initial condi tion u(x, 0) = x, we have u(Q) = 1; so, an ini tial estimate x(Po), u(Po), can be 
determined by solving 

[x(Po) -1] - u(Q)y(P) = 0 

[u(Po) - 1] + 2u( Q ? y(P) = 0 

to obtain x(Po) = 1 + yep), u(Po) = 1 - 2y(P). Now successive approximations can be defined by solving 

[x(P
j

) - IJ - u( Q) +2 U(P;_ I) yep) = 0 

2U(Q )3 + 2u(P,. )3 
[ u(~)- IJ + 2 ) - 1 y(P)=O 

for j = 1,2, ... , until two approximations agree to within a set tolerance. For a tolerance of 10-8
, fewer 

than 20 iterations will be required. 
By the method of Problem 5.5, the exact solution along the characteristic s = 1 is found to be 

u(r, 1) = (1 + 4rt lJ2 
1 

x(r, 1) = - [(1 + 4ry/2+ 1] 
2 

y(r, 1) = r 

The numerical and exact results for x and u at y = r = 0.01,0.1,0.2,0.3, are compared in Table 10-2. 

Table 10·2 

Numerical Exact 

yep) x(P) u (P) x(P) u(P) 

0.01 1.00990286 0.980571601 1.00990195 0.98058069 

0.1 1.09203010 0.840602064 1.09160798 0.84515425 

0.2 1.17240756 0.724075551 1.17082039 0.74535599 

0.3 1.24394498 0.626299874 1.24161985 0.67419986 

.... 
10.13 By Problem 5.12, the open-channel flow equations can be expressed in characteristic a{3-

coordinates as 

2ca + va = S(x, v)t" 

2cf3 - vf3 = - Sex, v)tf3 

x" = At(v , c)t" 

(1 ) 

(2) 

(3) 

Xf3 = A2( v, c) t{3 (4 ) 

where c ""'" vgu, A\(v, c) == v + c, Aiv, c) ""'" v - c, and S(x, v) ""'" g [So(x ) - Sf (v 2»). Assuming that 
c(x,O) and v(x, 0) are prescribed, obtain a numerical solution of (1 )- (4) by Hartree's method, 
which uses a rectangular grid, (xn , ti) = (nh, j k). 

It is sufficient to show how the solution is advanced from level j to level j + 1 (Fig. 10-15). Assume c 
and v are known at the grid points on level j and let P have coordinates (xn , 1;+1)' The a- and 
J3-characteristics through P intersect the line 1 = Ij at Q and R, respect ively . For error control, 
k = Ij + 1 - tj is chosen small enough to locate x (Q) and x(R) between X n - l and Xn+l. 

If (1)-(4) is discretized using averages of the coefficients at I} and Ij+l, there results 

2[c(P)- c(Q)] + [v (P) - v (Q)] 
S(P)+ SeQ) k 

2 

S(P) + S(R ) 
2[c (P) - c(R )] - [v(P)- vCR ») = - 2 k 

(5) 

(6) 
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x(P) - x(Q)= A1(P)+A1(Q) k 
2 

x (P) - x (R ) = A2 (P ) + A2(R ) k 
2 

[CHAP. 10 

(7) 

(8) 

where S(P ) == S(x(P), v(P», etc. (5)-(8 ) consti tutes four non linear equations in the four unknowns 
x (Q), x (R ), c(P), v(P); the quantities c(Q), v(Q), c (R ), vCR ) are evaluated by interpolation between 
the grid points on t = tj . The system may be solved by an iterative procedure similar to the one outlined 
in Problem 10.5. 

tj+ t - 4 - ... -
I I 

I I 

I I I 
Ij -+, - .... -+- -

I I I 

Xn - l Xn Xn+l X 

Fig. 10-15 

Supplementary Problems 

10.14 Demonstrate the von Neumann stability of (10.17). 

10.15 (a) On a grid (xn, Ym, Ij) = (nh, mh, jk), derive an explicit difference equation fo r the wave equation 

Utr - c2(uxx + Uyy) = 0 

(b) Use the von Neumann method to derive a stability condition. 

10.16 Consider the initial value problem 

.--

Utr - 4u ... = 0 

u (x, 0) = cos x 

u,(x, 0) = 0 

-co < x < co, t > 0 

- co < x < co 

-co < x < co 

(a) Find the D 'Alembert solution and evaluate it at x = 0, t = 0.04. (b ) With h = 0.1, k = 0.02, use (10.2) 
and the starting formula (2) of Problem 10.1 to calculate U02 = u (O, 0.04). (c) Repeat (b ) fo r the (cruder) 
starting formula 

Unl = UnO = cos nh 

10.17 (a) Construct a centered-difference approximation to the damped wave equation 

(b > 0) 

(b) M ake a von Neumann stability analysis of your method. [Hint: T he analysis is similar to Problem 
9.20.] (c) Show that in the limiting case C

2
S

2 = 1, the method becomes the DuFort-Frankel method 
(9.19). [Hint: In Problem 9.10, set h2/k2 == c2 and a2 == c2/2b.] 
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10.18 (a) Solve analyticaJly the mixed boundary val ue problem 

x 2 u"" - y2~y = 1 

u(x, 1) = log x 

uA x, 1) = 2 

u(1, y) = 210g y 

x> 1, y > 1 

x > 1 

x>l 

y> l 

[Hinl: Assume u(x, y) = X (x) + Y(y).] (b) Detennine the characteristics of the PDE. 
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10.19 (a) Write out the characteristic equations (10.7)-(10.11) for Problem 10.18. (b) Integrate the first two 
characteristic equations to obtain the first characteristic grid point, P, between Q = (2, 1) and R = 

(2.1,1). (c ) Difference the remaining characteristic equations and estimate uxCP), uAP), and u(P); 
compare these values with those furnished by the analytical solution. 

10.20 Show that to apply the method of characteristics to (10.4) in the region 11: x > 0, y > 0, it is necessary 
that u and ~ be given on y = 0 (y is the ti melike variable). Moreover, show that (i) if A+ > 0 and L < 0 
in 11, then u or U x or a linear combination of u and Ux must be specified on x = 0; (ii) if A+ > 0 and 
L > 0, then u and Ux must be specified on x = 0; (iii) if A+ < 0 and L < 0, then neither u nor U x can be 
specified on x = 0 independently of the values of u(x, O) and uAx, 0). 

10.21 (a) Verify that u = xy solves 

u= - U
2

Uyy = 0 

u (x,2) = 2x 

uy(x, 2) = x 

x > O, y>2 

x>O 

x>O 

(b) D etennine the characteristics of the PDE and the location of the first characteristic grid point, P, 
between Q = (1,2) and R = (2,2). 

10.22 Use the numerical method of characteristics to obtain the initial approximation to the solution of 
Problem 10.21 at grid point P. Compare the numerical and the exact results. 

10.23 (a) With h = 0.5 and k = 0.2, apply (10.13) to approximate the solution to u, - 2ux = u, u(x, 0) = cos x, at 
(x, I) = (1, k). Compare the numerical solution with the exact solution, u = e' cos (x + 21). (b) Repeat 
with h = 0.1 and k = 0.04. 

10.24 (a) With h = 0.5 and k = 0.2, apply (10.14 ) to approximate the solution to u, + 2ux = 1, u(x, 0) = sin X, at 
(x, I) = (1, k). Compare the numerical solut ion with the exact solu tion, u = 1 + sin (x - 2/). (b) Repeat wi th 
h = 0.1 and k = 0.04. 

10.25 With h = 0.1 and k = 0.1, apply Wendroff's implici t method (10.17) to approximate the solution to the 
initial-boundary value problem 

u, + 2ux = 1 

u(x, 0) = sin x 

u(O, /) = t - sin 2t 

x > 0, / > 0 

x > O 

t >O 

at (x, /) = (0.1, 0.1 ). Compare the numerical solution with the exact solution, u = t + sin (x - 2t). 

10.26 With h = 0.1 and k = 0.2, apply Wendrotf's implicit method (10.1 7) to approximate the solution to 

u,- ux =x-t 

u(x, 0) = 0 

u(l, / ) = / 

x < 1, 1>0 

x< l 

t > O 

at (x, /) = (0.9,0.2). Compare the nume rical solution with the exact solution , u = xl. 
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10.27 Use the change of variable v = e-'u to transfonn u, - 2ux = u, u(x, 0) = cos x to v, - 2vx = 0, vex, 0) = 
cosx. With h=O.5 and k =0.2, apply the Lax- Wendroff method (10.19), where F(v)=-2v, to ap­
proximate v at (x, t) = (0.5,0.2). Recover u and compare the numerical result with the exact solution 
from Problem ID.23 . 

10.28 With h = 0.1 and k = 0.2, apply the Lax- Wendroff method (10.19) to approximate the solution to 

(U
2

) + u, = 0, u(x, 0) = x 
2 x 

at (x, t) = (0.2, 0.2). Compare the numerical solution with the exact solution, u = x(l + t)- I . 

10.29 Use the numerical method of characteristics to obtain an initial approximation to the solution of 

YUx + xu" = x 2 + y 2 

u(x, 0) = 0 

- 00 < x < 00, y > 0 
- 00 < x < 00 

at y = 0.3 on the characteristic through (1,0). Show analytically that the equation of this characteristic is 
y = (x2 

- 1)112 and that u = xy is the exact solution to the problem. Compare numerical and exact 
solutions. 

10.30 Use the numerical method of characteristics to estimate the solution of 

uUx - yu" = x, u(x, 1) = x - 2 

at y = 1.5 on the characteristic through (2, 0). Compare the numerical results with the exact solution, 
u = x - 2y. 



Chapter 11 

Difference Methods for 
Elliptic Equations 

11.1 LINEAR ALGEBRAIC EQUATIONS 

In a linear elliptic boundary value problem, if all derivatives are replaced by their corresponding 
difference quotients, a system of linear algebraic equations results. 

EXAMPLE 11.1 On the square n: 0 < x < t , 0 < Y < t, consider the Dirichlet problem for Poisson 's equation, 

uxx + U yy = f(x, y) 

u= g (x,y) 

Choosing a mesh spacing h = t/4, define on n the grid points 

in n 
on S 

(xm , Yn) = (mh, nh) (m, n == 0, 1,2, 3,4) 

Using central differences to approximate U xx and Uyy, one obtains the difference equation 

where f mn == f(xm , Yn), and the boundary values are V mn = g mn for m or n equal to 0 or 4 . 

(11.1) 

(11.2) 

(11.3) 

A system like (11 .3) is more clearly displayed as a system of linear equations if the grid points are labeled by a 
single index. Thus, if the interior nodes are ordered left-to-right and bottom-to-top, as in Fig. 11-1, then we can write 
Vll == V" V2I == V 2 , . . • , and can reindex f similarly . With this indexing, multiplication of (11.3) by _h2 produces 
the following nine linear equations in the nine unknowns Vi : 

4 -1 0 -1 0 0 0 0 0 VI Bl 
-1 4 -1 0 -1 0 0 0 0 V2 B2 

0 -1 4 0 0 -1 0 0 0 V3 B3 
-1 0 0 4 -1 0 -1 0 0 V4 B4 

0 -1 0 -1 4 -1 0 -1 0 Vs Bs 
0 0 -1 0 -1 4 0 0 -1 V6 B6 
0 0 0 - 1 0 0 4 -1 0 V7 B7 
0 0 0 0 -1 0 -1 4 -1 Vs Bs 

0 0 0 0 0 -1 0 -1 4 V9 B9 

where, in the case g == 0, Bi == -h2/i . 

By the scheme of Example 11.1 the diff erence equations for the general, two-dimensional, linear, 
elliptic boundary value problem (see Problem 11.7) can be put in the form 

AU = B (11.4 ) 

The following remarks are pertinent to the gene ral problem. 

(1) The dimension of the vectors U and B is equal to the number of nodes at which the solu tion 
is to be approximated. 

(2) The vector B is determined by the boundary conditions and the u -independent terms in the 
PDE. 

(3) The matrix A is square and contains at most five nonzero entries per row. With fl fixed, the 
order of A, given in (1) above, is a certain decreasing function of the mesh spacing h. Thus, 
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Y 

Y4 (e, f.) 

0 
Y3 -7 _8 -9 

Y2 -4 _s _6 

Yl -I _2 _3 

Xo Xl X2 X3 X. X 

Fig. 11-1 

even if the entries of A do not involve h, the eigenvalues of A-and those of various 
iteration matrices to be derived from A-will be functions of h. 

(4) Provided the boundary value problem has a unique solution and h is sufficiently small, A is 
nonsingular, so that the system (11.4) has exactly one solution . 

1l.2 DIRECT SOLUTION OF LINEAR EQVA TIONS 

A method for solving (11.4) is calIed a direct method if it produces the exact solution to (11.4) 
(up to rounding errors) by a finite number of algebraic operations. Gaussian elimination is an 
example of a direct method. Direct methods are generally restricted to problems such that (11.4) can 
be accommodated in the central memory of the available computer. 

If (11.4) is to be solved for a given nonsingular matrix A and several vectors B, the LU­
decomposition method is more economical than G aussian elimination . This method is based on a 
factorization of A of the form A = LV, where L is a lower- triangular matrix and V is an upper­
triangular matrix (see Problem 11.8). 

The matrix A is usually sparse (most entries are zero), banded (some set of contiguous diagonals 
contains all the nonzero entries), symmetric, and/or block tridiagonal; efficient di rect methods exploit 
any such special properties. 

11.3 ITERATIVE SOLUTION OF LINEAR EQUATIONS 

Iterative methods (or indirect methods ) generate a sequence of approximations to the solu tion of a 
system of alg braic equations. In contrast to direct methods, they do not produce the exact solution 
to the system in a finite number of algebraic operations. Iterative methods generally requi re less 
computer storage and are easier to program than direct methods. 

In most linear algebra and numerical analysis literature, iterative methods are stated for a system 
of equations in single-index form; e .g. , (11.4). In computational applications we shall fi nd it easier to 
use multiple indices to identify the unknowns ; single indexing will be employed only in discussions of 
the convergence of iterative methods. 

The iterative methods, which below are stated for (11.1 )-(11.2), extend to the general, linear, 
elliptic boundary value problem. 

Jacobi Point Iteration 

U~:I = (U~-l,n + U~. n-l + U~+ l .n + U~. n+ l + Fmn)/4 (11.5) 
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Gauss-Seidel Point Iteration 

U~:! = (U~~!!.n + u~~L! + U~+!,n + U!,n+l + FmJ/4 (11.6) 

Successive Overrelaxotion (SOR) Point Iteration 

(11.7) 
U k+l = Ok+! + (1 - )Uk 

mn W mn W mn (0 < w < 2) 

Some properties of these methods, in the present application, follow. 

(1) The boundary condition (11.2) is accounted for by setting U~n = gmn at all boundary nodes, 
for k = 0, 1,2, .... 

(2) In all three methods the initial estimate, U~n' can be chosen arbitrarily and, as k ~ co, the U;nn 
will converge to the solution of the difference equations. 

(3) Fmn is determined by the right-hand side of the PDE (11.1): Fmn = -h 2fmn' 

(4) If (11.1) is Laplace's equation (f = 0), Jacobi's method consists in successively replacing the 
U-value at a node by the average of the U-values at the four neighboring nodes. 

(5) Jacobi's method is independent of the order in which the nodes are scanned. 

(6) The Gauss-Seidel and SOR methods are stated here for a scanning of nodes in the 
numerical order of Fig. 11-1. If the nodes are scanned in a different order, (11.6) and (11.7) 
must be modified. 

(7) The Gauss-Seidel method differs from the Jacobi method only in that new information 
about U is used as soon as it becomes available. 

(8) The SOR method takes note of the direction in which the G auss-Seidel iterates are 
proceeding and (for w > 1) extrapolates in that direction in an effort to accelerate con­
vergence. 

(9) In (11.7), w is called the relaxation parameter; the method is characterized as under­
relaxation or ove"elaxation according as 0 < w < 1 or 1 < w < 2. With w = 1, the SO R 
method reduces to the Gauss-Seidel method . 

The methods (11.5), (11.6), (11. 7) are point iterative methods because they update U one grid 
point at a time. Improved convergence rates can be obtained by using block iterative methods which 
update U at several grid points simultaneously. This improved convergence is gained at the expense 
of having to solve a system of linear equations each time a block of nodes is updated. In most block 
iterative methods the calculations are arranged so that the linear system is tridiagonal and therefo re 
easy to solve. For instance, choosing as the block the horizontal line of nodes n = const., we obtain 
the following row iterative counterparts of (11.5), (11.6), (11.7): 

Jacobi Row Iteration 

U k+! (Uk"' l U k Uk+! U k ) mn = m- I,n + m,n-I + m+ !,n + m,n+1 + Fmn /4 (11.8) 

Gauss-Seidel R ow Iteration 

U k+1 = (U k+1 + U k+1 + U k+! + Uk + F )/4 
mn m-l,n m,n-l m 1-l, n m,n+l mn (11.9) 

SOR Row Iteration (or LSOR lt~ration ) 

Ok+! = (Ok+! + Uk+! + O k+! + Uk + F )/4 
mn m- l, n m,n - l m+l ,n m,n+l mn 

U k+ l = O k+I+(l- )Uk (O < w < 2) mn W mn W mn 

(11.10) 

Some properties of (11.8), (11.9), (11.10) are listed below. 

(1) In Jacobi 's method (11.8) the rows can be updated in any order. 
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(2) In the Gauss- Seidel and LSOR methods (11.9) and (11.10) the rows must be updated in the 
order n = 1, 2, ... , or else the iteration formulas must be modified. 

(3) Equations (11.8) and (11.9) give rise to tridiagonal systems in the row of unknowns 
U k+1 U k+l U k+l (1110) d h f U-k+l U-k+l U- k+l 

On ' In ' . .. , Mn ; • oes t e same or On ' In ' ... , Mn • 

(4) Column iteration methods similar to (11.8), (11.9 ), (11.10) are also available (see Problem 
11.24). By alternating row and column iterations a variety of ADI methods can be devised (ct. 
Section 9.4). 

11.4 CONVERGENCE OF POINT ITERATIVE METHODS 

To investigate the convergence of (11.5), (11.6), (11.7), suppose the difference equation (11.3) 
written in singly indexed form (11.4 ). Next, write the coefficient matrix A as A = - L + D - V, where L , D, 
and U are, respectively, strictly lower triangular (zeros on the main diagonal), diagonal, and strictly upper 
triangular matrices. Assume that det (D) .,e O. 

EXAMPLE 11.2 For the matrix A of Example 11.1, D is the 9 x 9 diagonal matrix with 4s along the main 
diagonal; L is the 9 x 9 matrix wi th I s along the third subdiagonal, the pattern two Is, 0, two Is, 0, .. . along the first 
subdiagonal, and zeros elsewhere; and U = LT. 

Me thods (11.5), (11.6 ), (11. 7) can be expressed in matrix form as follows: 

Jacobi Point Iteration 

Gauss-Seidel Point Iteration 

(Tc == (D- L)- IU, Cc == (D- L)-IB) 

SOR Point Iteration 

Theorem 11.1: 10 (11.11 ), (11. 12 ), or (11.13), if {Uk} converges to U *, then AU* = B. 

As in Section 9.3, let the spectral radius of a square matrix T be denoted peT ). 

(11.11 ) 

(11.12 ) 

(11.13 ) 

Theorem 11.2: The sequence {Uk} defined by uk+ I = TUk + C, with UO arbitrary, converges to a 
unique vector, U*, independent of 00, if and only if peT) < l. 

Theorem 11.3 (Stein - R osenberg) : If, for the matrix A of (11.4), aij $ 0 for i.,e j and aii > 0, then 
exactly one of the following statements holds: 

(1) O< p(Tc )< p(T,)<l 

(2) 1 < p(T,) < p(T c) 
(3) peT,) = peTe ) = 0 
(4 ) p(T,)= p(Te )=l 

Theorem 11.4: For the system AU = B if (i) a j} $ 0 for i .,e j and a ij > 0, 

(ii) aii ~ L lai}1 with strict inequality for some i 
} 

} " i 

and (iii) a change in any component of B affects every component of U, then both 
the Jacobi and the G auss-Seidel point ite rative methods converge (conclusion (1) or 
(3) of Theorem 11.3). 

Theorem 11.5: For the system AU = B with au .,e 0, a necessary condition for the convergence of the 
SOR point iterative method is 0 < OJ < 2. If peT,) < 1, the condition is also sufficient. 



CHAP. 11] DIFFERENC E METHODS FOR E LLIPTIC EQUATIONS 171 

u.s CONVERGENCE RATES 

Let U* represent the exact solution to AU = B a nd let Uk represent an approximation to U* 
obtained by k applications of an iterative method 

Uk = T Uk
-

J + C (11.14) 

The residual vector, Rk == B - AUk, is a measure of the amount by which Uk fails to satisfy the system 
AU = B, if Uk = U*, then Rk = O. The maximum residual after k applications of (11.14) is the 
maximum of the magnitudes of the components of Rk. 

The convergence rate of (11.14 ) is defined to be -loglO peT), where peT) is the spectral radius of 
the iteration matrix. For large k the reciprocal of the convergence rate is roughly the number of 
fu rther iterations of (11.14 ) req uired to reduce the maximum residual by a factor of ten. For a square 
mesh, the asymptotic convergence rate is the dominant term in the convergence rate as the mesh 
spacing approaches zero (cL remark (3) of Section 11.1). 

To compare the convergence rates of the three point-iterative methods, some way of relating 
peT,), p(To ), and p (Tw) is needed. This relationship is given in Theorem 11.6, which involves two 
new notions. 

Definition: Matrix A is 2-cyclic if there exists a permutation matrix P such that 

T [OJ F] PAP = 
G D2 

where 0 , and O2 are square diagonal matrices. 

Definition: The 2-cyclic matrix A=-L+ D -U is consistently ordered if det(-.8L+aO- .8- 1U) is 
independent of the scalar .8. 

Theorem 11.6: If A is 2-cyclic and consistent ly ordered, then the eigenvalues p, of T J and the 
eigenvalues A of T w satisfy . 

(A + w - 1/ = AW 2p, 2 (W ;i 0, A ;i 0) (11.15) 

Since To = Tw when w = 1, (11.15) relates the eigenvalues of T J to the eigenvalues of both To and T w' 

Table 11-1 

Asymptotic 
Method Convergence Rate Convergence R ate 

Point Jacobi -log (cos h) h2/2 

Point Gauss-Seidel -log (cos2 h) h 2 

I 

1- sin h 
Optimal Point SOR -log 2h 

1 + sin h 

cos h 
h 2 Row Jacobi -log 

2- cosh 

( COS h f 2h2 Row Gauss-Seidel - log 
2 - cos h 

Optimal Row SOR 
[ 1 - V2 sin (h/2)] 2 2V2 h -log 

1 + V2 sin (h/2) 
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The relationship (11.15 ) can be used to fi nd the value of the relaxation parameter, lV, which maximizes 
the convergence rate (minimizes p (T J) for the SOR method. 

Theorem 11.7: If A is 2-cycIic and consisten tly ordered, 

2 
W=--r===:::::::;: 

I+Vl-p(TS 
(11.16) 

When the relaxation parameter is given by (11.16) the SOR method is called optimal SOR. Table 
11-1 displays the convergence rates for the iterative methods of Section 11.3 on a square of side 7T. For an 
arbitrary side t, replace h in the table by 7Th/t. 

Solved Problems 

11.1 Determine the truncation error associated with using centered differences to approximate the 
Laplacian operator, U xx + u

YY
' on a rectangular grid, (xm' Yn) = (mh, nk). 

By (9.3), 

provided Ux.ux and Uyyyy are bounded. 
If a solution to a boundary value problem for Poisson 's equation has identically zero fourth 

derivatives, e.g., u = xy, then the exact solution to the difference equation gives the exact solution to the 
boundary value problem. Such solutions are valuable when comparing different numerical methods. 

11.2 Formulate difference equations with truncation error O (h 2
), together with discrete boundary 

conditions, for the Neumann problem 

Uxx + Uyy = f(x, y) 

au 
an = g(x,y) 

in 0 

on S 

(1) 

(2 ) 

where 0 is the rectangle 0 < x < a, 0 < Y < b. Choose grid points (mh, nh) such that Mh = a, 
Nh= b. 

By (11.3) and Problem 11.1, (1) can be approximated with truncation error O(h 2) by 

- U m-I.n - U m.n-I + 4U mn - U m+l.n - U m,n+1 = - h 2 fmn (3) 

in which m = 0, 1, ... , M and n = 0, 1, ... , N. Note the tacit assumption that f is also defined on S. 
To approximate au/an by a centered difference requires the introduction of ghost points (open dots 

in Fig. 11-2). At those grid points on S that are not corner points, the boundary conditions are : 

U M+I .n - U M-I.n = 2h gMn 

U m,N+I - U m.N- l = 2h gmN 

U -I,n - U In = 2h gOn 

U m.- 1 - Uml=2hgmo 

(n = 1,2, ... , N - 1) 

(m = 1,2, ... , M - 1) 

(n = 1, 2, ... ,N - 1) 

(m = 1,2, . .. , M - 1) 

(4) 

(5) 

(6) 

(7) 

At a corner grid point, where n is undefined, let us take as the "normal derivative" the average of the 
two derivatives along the two outer normals to the sides meeting at the corner. This leads to the final 
four boundary conditions 
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V -1.0 + VO,-I = V 10 + Val + 4h goo 

V M.-I + V M+ I.O = V MI + V M-I ,O + 4hg MO 
(8) 

V M+I ,N + V M,N+I = V M-I.N + V M.N-I + 4h gMN 

Va,N+I + V - I,N = V O,N-I + V I,N + 4h gON 

Y 

0 0 0 0 0 

0 YN 0 

0 YN-I • • • • 0 

0 • • • • 0 

0_ @] __0 

0 • • • • 0 

(X-I. Y2) 0 Y2 • • • • o (XM+lo Y2) 

0 YI • • • • 0 

0 ~ 

X, X2 X3 XM-I XM X 

0 0 0 0 0 0 

(X2. Y-I) 

Fig. 11-2 

11.3 In Problem 11.2, let M = N = 2 and let g "'" O. (a) Write o ut in matrix form, AU = B, the 
difference system (3)-(8). (b ) Show that A is singular. (c) By elementary row operations (which 
do not alter the system) obtain a representation A'U = B' with A' symmetric. (d) Show that 
A'U = B' can be solved (nonuniquely) only if f satisfies a consistency condition similar to 

f fd o' = f gdS (=0) 
n s 

(a) For the single-indexing indicated in Fig . 11-3. we obtain , since g == O. the representation 

4 -2 0 -2 0 0 0 0 0 V, /1 
-1 4 -1 0 -2 0 0 0 0 V 2 h 

0 -2 4 0 0 -2 0 0 0 V3 h 
-1 0 0 4 -2 0 -1 0 0 V 4 /4 

0 -1 0 -1 4 -1 0 -1 0 Vs = -h 2 /5 
0 0 -1 0 -2 4 0 0 -1 V6 /6 
0 0 0 -2 0 0 4 -2 0 V 7 h 
0 0 0 0 -2 0 -1 4 -1 V8 /8 
0 0 0 0 0 -2 0 -2 4 V9 /9 

or AU = B. 
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y 

0 0 

0 7 9 0 
8 

0 4 .s ~6 0 

0 

2 3 x 

0 0 0 

Fig. 11-3 

(b) Since the entr ies in each row of A sum to zero, the vector C == [I, }, ... , }f satisfies AC = o. Thus, 
the system AU = 0 has a solution besides the zero solution, and so the matrix A is singular. In 
consequence, the numerical Neumann problem AU = 8 may have no solution, or it may have an 
infinite number of solutions of the form U = U* + aC. In the latter event, U is determined at each 
grid point only up to the additive constant a. 

(c) By dividing the first, third, seventh, and ninth rows of A and B by 2, and mUltiplying the fifth row by 
2, we produce 

2 -} 0 -} 0 0 0 0 0 VI 
-1 4 -} 0 -2 0 0 0 0 V 2 

0 -} 2 0 0 -} 0 0 0 V3 
-} 0 0 4 -2 0 -} 0 0 V. 

0 -2 0 -2 8 -2 0 -2 0 Vs = _h 2 

0 0 -} 0 -2 4 0 0 -1 V6 
0 0 0 -} 0 0 2 -} 0 U7 

0 0 0 0 -2 0 -} 4 -} Us 
0 0 0 0 0 -1 0 -1 2 U 9 

or A'U = B'. 

(d) Because A' = A'Y and A'C = 0 (since AC = 0), we have, if a solution U ex i ts, 

8 'YC = (A'U)TC = UT(A'C) = UTO = 0 

ft!2 

fz 
/3/2 
/4 

2/5 
/6 

h/2 
/s 

/9/2 

which means that the entries in the vector B' sum to zero. But this condition is equivalent to 

L /(x, y) dx dy = 0 

if the integral is evaluated by the trapezoidal rule using the nine grid points. 

11.4 Show how to apply finite differences to 

un + Uyy = f( x, y) in n 
U = g(x, y) on S 

in the case that n has a curved boundary . 

At any grid point in n whose four neighboring grid points a re also in fl the usual difference 
expressions for U.u and Uy y can be used. Consider a grid point in fl with at least one neighboring node 
not in fl; e.g., P = (Xm, Yn) in Fig. 11-4. The coordi nates of the intermediary points q and r on S are 
respectively (Xm + crh, Yn) an d (xm, Yn + (3h), where 0 < a, (3 < 1. Since u is specified on S, u(q) and u(r) 
are known. . 
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y 

By Taylor's theorem, 

o o o o 

Fig. 11-4 

(ah'f 3 
U(q) = U(P) + ahux(P) + -- Uxx(P) + O(h ) 

2 

h 2 

u( 0) = u(P) - hux(P) + - uxx(P) + O(h 3) 
2 

Eliminating uxCP) from the above pair of equations, we have 

au(O)- (1 + a)u(P)+ u(q) 
u (P) = + O(h) 

xx h2a(a + 1)/2 

Similarly, 

f3 u(R ) - (1 + f3)u(P) + u(r) 
u (P) = + O(h) 

YY h2 f3(j3 + 1)12 

Thus, an O(h) approximation to Poisson's equation at P is 

I1.S Making use of Problem 11.4, approximate the solution to 

Uxx + Uyy = 0 
u(x, y) = 100 

u(x, y) =O 

Choose a square grid with h = 0.5. 

x 2 + l< 1, Y > 0 
x 2 + y 2 = 1, y>O 

y = 0, -1 < x < 1 

175 

x 

(1) 

Symmetry about the y-axis allows us to reduce the number of unknowns in the d ifference system 
from three to two : we need only consider Laplace's equation on the quarter-d isk , with boundary 
conditions as indicated in Fig . 11-5. From these boundary conditions, 

Voo= 0 VlO= 0 V02= 100 V (q) = 100 V Cr) = 100 Vu - V -1 , 1 = 0 

The only grid points at which u must be estimated are P = (xt, Yl) and 0 = (xo , YI). 
The difference equation centered at 0 is 

Vu + V 02 - 4 VOl + V - 1. 1 + Voo = 0 

which, by the boundary conditions, simplifies to 

2VOl - Vu = 50 (1) 
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Y 

0 1 = Y2o'~ 0 0 

u, = 0 

Q P 
0 YI • ........ 

)....5 
// \ 

/ \ 
/ 

- ~ - -

X_ I Xi) XI u=Q X2 = 1 X 

Fig. 11-5 

The coordinates of q and rare (V3h, h) and (h, V3h); hence, in the notation of Problem 11.4, 
ex = f3 = V3 - 1. Now, by (1) of Problem 11.4, the difference equation centered at P is 

UOI U IO 2UII U(q) U(r) 
-+ - ----+---+---=0 
V3 V3 V3-1 3-V3 3-V3 

which, in view of the boundary conditions, simplifies to 

(1- V3)UOI + 2V3 U II = 200 (2) 

Solving (1 )-(2), we find 

100(2+ V3) 
UOI = U(Q)= = 60.2 

1+3V3 

SO(7 + V3) 
U II = U(P) = = 70.S 

1+3V3 

11.6 (a) Show how to apply finite di fferences to Laplace 's equation in polar coordinates, 

a2u 1 au 1 a2u 
-+--+--=0 
ar2 r ar r2 a(i 

(b) Rework Problem 11.5 in polar coordinates, on a mesh with dr = 0.5 and dO = 71'/4. 

(a) Define the grid (rm, 0") = (m Ar, n AO), where m, n = 0,1,2, ... , and let Um" be an approximation 
to u(rm , 0"). Using centered differences to approximate each derivative in Laplace's eq uation, we 
obtain, after grouping like terms, 

(1- _1_) U m-i,n + 1 2 U m,n - i - 2 [1 + 1 2] U m" + (1 + _1_)' U m+i,n + 1 2 U m,n+i = 0 
2m (m AO) (m AO) 2m (m AO) 

(1) 

(b) On the polar grid, the sole unknowns are U(S)= Ull and U (Q)= U 12 • (See Fig. l1-S; the 
symmetry condition along the vertical axis is now U8 = 0, which yields the numerical condition 
U i3 = Un.) A pplication of (1) of part (a), centered at S and Q, and substitution of boundary 
values, gives the two equations 

These yield (AB = 7r/4): 

2[1 + (AOf ] V II - U 12 = 1 S0(~ of 

- Ull + [1 + (Aofl U12 = 7S(A o? 

Un = U (S) = 46.3 U12 = U (Q)=S7.3 

Now, the boundary vaJue problem under consideration can readily be solved analytically (by 
conformal mapping or by lett ing a --> 0 in P roblem 7.39). The exact solution yields 
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400 1 
u (O )= - arctan - = 59.0 

'TT 2 

which shows that the coarse meshes used above and in Problem 11.5 have produced quite accurate 
results. 

11.7 (a ) Formulate difference equations for 

auxx + buyy + cUx + duy + eu = f(x, y) 

u = g(x, y) 

in n 
on S 

(1) 

(2) 

where n is the rectangle 0 < x < Mh, 0 < y < Nh . The coefficients are allowed to depend on x 
and y, provided a, b > 0 (elliptic PDE), and e :s: 0, in n. (b) Show that if the mesh spacing h is 
chosen suffi ciently small (while M and N are made correspondingly large), the system of 
difference equations has a unique solution. 

(a) With (x"" y") == (mh, nh), 

( ) == U",-I," - 2u"," + U",+I," O(h 2) 
auxx mn am" 2 + 

h 

_ Um + l ,n - U m - l ,n 2 
(eux )",,, - e"," + O(h ) 

2h 

d - U 
(duy)"," = d"," "' ," + 1 "',"-I + O (h2) 

2h 

These approximations, substituted in (J), yield the difference equation 

aoU mn - a 1 U m-l,n - Ct'2 U m ,n - l - Ct3 U m + l ,n - Ct'4 U m ,n+l = -h2
frnn (3) 

Equation (3) is required to hold for m = 1,2, . .. , M -1; n = 1, 2, ... , N -1. T he boundary values for 
U m" are obtained from (2). 

(b) Since e:5 0, we have, fo r all m and n, 

(4) 

Also, since a > 0 and b > 0, it follows that for h sufficiently small, 

(l!i > 0 (i = 0, .. . , 4) (5) 

Now, system (3 ) has a un ique solution if and only if its homogeneous version , obtained by taking 
f == 0 and g == 0 in (1 )- (2), has only the zero solution. If, contrary to what we wish to prove, the 
homogeneous (3 ) has a nonzero solution, we may suppose that the largest component, U p.v, of this 
solution is positive. Then, from (3) with f",v = 0, 

which, together with (4) and U p. v > 0, implies 

(l!1(U p.v - U p. - I , v) + (l!2(U p. v - U p., v- I) + (l!3( U p.v - U p.+I , v) + (l!4(U p.v - U p., v +l) :5 0 (6) 

In view of (5), (6) can hold only if U = UP." == max at all foul' neighbors of (Xp., yv). R epetition of this 
argument leads to a bou ndary node at which U == U p. v > 0, which contradicts the assumption g s O. 
The proof is now complete. 
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11.8 (a) Show how to express an invertible matrix A of order N as the product of a lower­
triangular matrix L and an upper-triangular matrix U. (b) Carry out the factorization of the 
matrix A that would result if h were taken to be (/3 in Example 11.1. 

(a) The matrix factorization LU = A may be written componentwise as 

(b) 

N 

2: to< Ukj = aij 

k - l 
(i, j = 1,2, .. . , N) (1) 

For Land U to be respectively lower- and upper-triangular, lij = 0 for j> i and Uij = 0 for j < i. 
Setting i = j = 1 in (1), we find {H U1l = all; thus the diagonal elements of Land U are not uniquely 
determined. We shall choose all In = 1. From (1 ) it then follows that the rows of U and the columns 
of L can be found by applying the pair of formulas 

;-1 

Uij = aij - 2: likUkj (j = i, i + 1, . . . , N) 
k=1 

j-l 

I ij = (a i} - k~1 lik Ukj ) / Ujj (i = j + 1, j + 2, ... , N) 

(2) 

(3) 

in the order i = l,j = 1, i = 2,j = 2, ... , j = N - 1, i = N. The sums in (2) and (3) are understood to be 
zero whenever the upper limit of summation is less than one. Because det (A) = nUj} ;i 0, the right side 
of (3) is always well-defined. 

The choice h = (/3 produces the 4 x 4 matrix 

[~ 
-1 -1 

-~ J 4 0 
A= 

-1 0 4 -1 

0 -1 -1 4 

From (2), with i = 1: Ull = 4, U12 = -1, Ul3 = -1, U'4 = O. 

From (3), with j = 1: 121 = -1/4, 131 = -1/4, 141 = O. 

From (2), with i = 2: U22 = 15/4, U23 = -1/4, U24 = -1. 

From (3), with j = 2: 132 = -1/15, 142 = -4/15. 

From (2), with i = 3: U 33 = 56/15, U34 = - 16/15. 

From (3), with j = 3: 143 = -2/7. 

From (2), with i = 4: U44 = 24/7. 

Now we have obtained the desired factorization: 

1 0 0 0 4 -1 - 1 0 
1 15 

1 0 0 0 -1 
4 4 4 

56 16 
0 0 0 

4 15 15 15 

4 2 24 
0 - - I 0 0 0 

15 7 7 

4 -1 -1 0 

- 1 4 0 0 

-1 0 4-1 

o -1 -1 4 

11.9 Once a system A V = B has been expressed in the form LUV = B, show how it can be solved 
for V by a forward substitution followed by a backward substitution. 

In the system LUV = B, let W = UV. Then AV = B can be written L W = B, or 

N 

2: l i} "'f = Bo 
j=l 

(i = 1, 2, . . . , N) 

Since Ii} = 0 for i < j, we can easily solve for W as follows: 
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W I = B,/l11 
W2 = (82 - 121 W ,)!/22 

W 3 = (83 - 131 W I - 132 W 2)/ 133 

Now that W is known, the system UV = W, or 

'" L: U,i \-j = Wi (i = 1, 2, . .. , N) 
j - l 

with Uij = 0 for i > j, can be solved for V as follows: 

V", = WN/UNN 

VN - I = (WN - I - UN-I.N WN)/UN - I.N-I 

VN - 2 = (WN - 2 - UN-2.N W N - UN-2.N-I WN-I)/UN- I.N-I 

For the solution of a single linear system, the work required in an LU-decomposition is the same as 
that required in straightforward Gaussian elimination . One attractive fea ture of the LU-decomposi tion 
approach is that once Land U have been found for a given A, it is possible to solve AV = B for any and 
all right-hand sides B just by using the forward-backward substitution method outlined above. 

11.10 Write tbe matrix A of Example 11.1 in block tridiagonal form and obtain a block LU­
decomposition of A. 

With 

[-; -1 

-:J [~ 
0 

~~ O~[~ 
0 

~J H= 4 1= 1 0 

-1 0 0 
we have 

A~[~ 
-I 

-~ ] H 

-I 

By multiplying out the left side of the desired decomposition , 

[~I ~ ~J [~11 ~: ~:J = [-~ ~ _~l 
L31 L32 1 0 0 U33 0 - 1 ~ J 

we obtain, in succession, Ull = H, UI2 =-I, U13= O, Lz,=-H- t, L31= O, U22 = H-H- ' , U23 =-I, 
~2 = - (H - W ltl, U33 = H + (H - U-It l . 

11.11 Determine the eigenvalues and the corresponding eigenfunctions of the N x N tridiagonal 
matrix 

b c 0 
a bc 

abc 

a bc 
o a b 
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If we set Uo = UN + 1 = 0, then the eigenvalue problem AU = A U can be expressed as 

aUn - 1 + (b - A)Un + cUn + 1 = 0 (n = 1,2, . .. , N) (1) 

If we look for a solution of (1) with Un proportional to ,n, then (1) implies that , must satisfy the 
quadratic equation 

(2) 

With '1 and '2 the solutions to (2), set Un = Oi,'j + {3,~, where Oi and {3 are constants to be 
determined. The end conditions Uo = UN + 1 = 0 require 

Oi+{3=O and 

!::= e i2hr/(N+I) 

'2 
(k = 1, 2, ... , N) 

where we have disallowed '1 = '2 . The product of the roots of (2) is 

(~'" 0 assumed) 

Together, (4) and (5) yield 

which, substituted in the expression for the sum of the roots of (2), 

determine the eigenvalues Aj as 

b-A 
'1+'2= --­

c 

~ j7r 
Aj = b + 2c - cos--

c N + 1 
(j = 1, 2, . .. , N ) 

Note that if a and c are of like sign (the usual case), the Aj are all real. 

(3) 

(4) 

(5) 

(6) 

Using (6) and (3) to determine Oi and {3, we find that the nth component of an eigenvector Uk 
corresponding to Ak is given by 

(
fa )n nk7r 

U~ = 'J -;; sin N + 1 

11.12 Let H be an M x M matrix with M distinct eigenvalues, Ai' A2 , ••• , AM' and consider the 
eigenvalue problem AV = yV, where A is the N x N block tridiagonal matrix 

H -I 0 
-I H -I 

-( H -I 

-I H -( 

0 -I H 

Here, 0 and 1 are the M x M null and identity matrices. Calculate the eigenvalues of A. 

Let Uk be an eigenvector of H corresponding to the eigenvalue Ak • In the eigenvalue problem 
AV = yV we will look for an eigenvector V in the fo rm 

V = [OiI(Ukf, 0i2(Uk)T, .. . , UN(Uk)T]Y 

for scalars Oii not all zero. From AV = yV, 
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a1HUk 
- a:2IUk 

- a1ruk + a 2HUk 
- aJru

k 

which , after using the condition HUk = Ak Uk (Uk 7'- 0), leads to 

[ ~kl ~~ -1 0 1 [ :: 1 [:: 1 - 1 Ak - 1 aJ = aJ 
. . . . . .. 

-1 Ak -1 aN- l aN - l 

o -1 Ak aN aN 

By Problem 11.1 , the eigenvalues Yjk of (1) are given by 

irr 
Yk = ,h - 2 cos - -

I N+ 1 

As k ranges from 1 to M and j ranges from 1 to N, (2) yields the MN eigenvalues of A. 

11.13 Find the eigenvalues of the matrix A of Example 11.1. 

Problem 11.10 gives 

A~[~ 3 ~l where 

By Problem 11.12, the eigenvalues of A are given by 

irr 
"'Ok = Ak - 2 cos -
" 4 

H= [-; -~ -~] 
o -1 4 

(j = 1,2,3) 

where ,h, the kth eigenvalue of H, is given by Problem 11.11 as 

br 
Ak = 4-2cos-

4 

Thus, the eigenvalues of A are given by 

(k = 1,2, 3) 

(j, k = 1, 2, 3) 

181 

(1) 

(2) 

11.14 Calculate the spectral radius, p(T J ), of the Jacobi iteration matrix corresponding to the matrix 
A of Example 11.1. 

With A = -L+ D - U and TJ = D- 1(L+ U), 

AV = "IV=> (-L+ 0- lJ)V = "IV => DV = (L+ U)V + "IV => TJ V = (1 - yO- 1)V 

Since d .. = 4, 0- 1 = (114)1 and the last equation becomes 

Now, the eigenvalues of A were found in Problem 11.13 to be 

(j, k = 1,2, 3) 

which, together with (1), implies that the eigenvalues of T J are given by 

(1) 



182 DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS [CHAP. 11 

1 (j7T k7T) 
/-Ljk = 2: cos 4 + cos 4 (j, k = 1, 2, 3) (2) 

The largest in magnitude of these eigenvalues is /-L1l; hence, p(TJ) = \/2/2. 

II.1S For the system of Example 11.1, wTite the Jacobi row iteration method, (11.8), in matrix form 
and determine the spectral radius of the resulting iteration matrix, T . 

By Problem 11. 10, the system can be represented as 

where Vi = [V i, Ui+l , Ui+ZV and Ci = [B;, Bi+I, Bi+zV for i = 1,4,7. Let 

L{ ::] D-[: : ~] U ~ [: : n 
where D is invertible (because H is invertible) . Then (1) may be written 

(-L+ D - U)V=c or 

where V = [vi, vI, vlY = U and c = [cT, cr, clY = B. 
The second equation (2) is equivalent to the fixed-point iteration 

V k + l = D- l (L + U)Vk + D - l c 

and (3 ) is identical to (11.8). In fact, since 

(3) yields 

H- l 

o 
U - l 

V~+1 = H-IV~ + ... 

V~+1 = H-l(V~ + v~)+'" 

V~+1 = H-IV~ + ... 

which is just the "solved form" of (J 1.8) in single-index notation. 

(1) 

(2) 

(3 ) 

(4 ) 

To determine the eigenvalues /-L of T, le t w be an eigenvector of H corresponding to the eigenvalue 
Ak and look for eigenvectors of T of the form V = [alw T, a 4wT, a7wT]T. TV = /-L V implies (L + U)V = 

/-LDV, or 

Since w 'i- 0, we no w have 

a4w = al/-L Hw = /-LAka lW 

a lW + a7W = a4/-L Hw = /-LAka 4W 

a4W = a7/-L Hw = /-LAka7W 

By Problem 11.11, the eigenvalues of the above tridiagonal matrix are 

and the eigenvalues of H are 

j7T 
/-LAk = 2 cos -

4 
(j= 1, 2,3) 
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hr 
Ak = 4 - 2 cos -

4 
(k = 1,2,3) 

Thus, the eigenvalues of the matrix T are 

From (5), 

cos (j7T/4) 
f..L 'k = 

J 2- cos (br/4) 
(j, k = 1,2, 3) 

V2 
peT) = f..Lll = - -

4- V2 
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(5) 

Note that this is smaller than V2/2, the spectral radius of the point Jacobi iterat ion matrix for the same 
problem, as found in Problem 11.14. Equation (11.15) can be established for block t ridiagonal matrices 
of the form (1). It follows that the spectral radius of the row Gauss-Seidel method for this problem is 
2/(4 - V2)2. 

11.16 Write a computer program which uses the SOR method (11.13 ) to approximate the solution to 
the boundary value problem 

Uxx + Uyy = 0 
u(x, y) = e2= sin 27TY 

in 0: 0 < x, Y < 1 

on S 

Choosing a mesh spacing h = 0.1, run the program at w = w (optimal SOR) and at w = 1 
(G auss-Seidel method). 

Figure 11-6 lists a program. From Table 11-1, 

7Th 7T 
p(TJ) = cos-= cos-e 10 

for this problem. It follows from (11.16) that w = 1.528 is the optimal relaxation parameter for SOR. The 
comparisons with the exact solution (u = e2= sin 21TY in 0) given in Tab le 11-2 were obtained by 
itera ting unt il the maximum residual was less than 0.005. Note that the Gauss-Seidel method required 67 
iterations, while SOR required only 24. For small choices of mesh spacing h, the superior convergence 

Table 11·2 

Gauss-Seidel Optimal SOR 
(K = 67) (K = 24) Exact 

M,N= 1 , 1 1.249327 1.246912 .101777 
M, N= 2, 1 2.386185 2.381623 2.065233 
M, N =2,2 3.862067 3.852746 3.341618 
M, N = 3, 1 4.431387 4.424993 3.871189 
M,N =3,2 7.171626 7.159750 6.263716 
M, N = 3,3 7.175988 7.159992 6.263716 
M,N=4,1 8.165332 8.158091 7.256373 
M,N=4,2 13.213451 13.200061 11.741060 
M,N= 4,3 13.218328 13.200035 11.741060 
M,N=4,4 8.179705 8.158471 7.256376 
M,N=5,1 15.013905 15.006215 13.601753 
M, N=5,2 24.294676 24.280386 22.008101 
M, N=5,3 24.299553 24.280504 22.008101 
M,N=5,4 15.028279 15J)()6590 13.601758 
M,N =5,5 0.023098 0.001065 0.000003 



PROGRAM SOR 
C TITLE: DEMO PROGRAM FOR GAUSS- SEIDEL OR 
C SOR METHOD FOR POISSON'S EQUATION 
C ON A RECTANGLE WITH A SQUARE GRID 
C INPUT: MMAX, NUMBER OF X-SUBINTERVALS 
C NMAX, NUMBER OF Y-SUB INTERVALS 
C OMEGA, RELAXATION PARAMETER 
C KMAX, MAXIMUM NUMBER OF ITERATIONS 
C TOL, CONVERGENCE CRITERION FOR RESIDUALS 
C (X1,X2 ) , X-INTERVA L 
C (Y1, Y2), Y- INTERVA L 
C G1 (X) , LOWER BOUNDARY CONDITION 
C G2(Y), RI GHT BOUNDARY CONDITION 
C G3 (X), UPPER BOUNDARY CONDITION 
C G4(Y), LEFT BOUNDARY CONDITION 
C F(X,Y), RIGHT SIDE OF POISSON'S EQ. 
C E(X, Y), EXACT SOLUTION 
C OUTPUT: NUMERICAL AND EXACT SOLUTION 

COMMON U[0 :51,O:51),V[0 : 51, O:S1) 
DATA X1,X2,Y1 ,Y2I0,1,0,1/ 
PI = 4*ATAN[1. ) 
G1 (X) = 0 
G2 [Y) = EXP (2*PI) *SIN[2*PI*Y) 
G3 [X) = 0 
G4 [Y] = SIN[ 2*PI*Y) 
F[X,Y) = 0 
E[X,Y) = EXP (2*PI*X)*SIN[2*PI*Y) 
PRI NT- ,'ENTER GRID SPACING, H, AND RELAXATION PARAMETER' 
READ*,H,OMEGA 
PRINT- ,'ENTER MAXIMUM ITERATION NUMBER, RESIDUAL TOLERANCE' 
READ*,KMAX,TOL 
MMAX =[X2-X1)/H 
NMAX =( Y2- Y1 JlH 

C SET BOUNDARY VALUES AND INITIAL ESTIMATE TO SOLUTION 
DO 10 M = 1 , MMAX-1 
DO 10 N = 1,NMAX-1 

X = X1 + M*H 
Y = Y1 + N*H 
U( M, N) = 0 
U[M,O) = G1 (X) 
U[ MMAX, N) = G2[Y) 
U( M, NMAX J = G3(XJ 
U(O,NJ = G4 (Y] 

10 CONTINUE ' 
DO 15 K = 1,KMAX 

C CALCULATE K- TH ITERATE 
00 20 M = 1,MMAX-1 
00 20 N = 1,NMAX-1 

X = X1 + M*H 
Y = V1 + N*H 
UOLD = U(M,N] 
U( M,N J = (U( M+1 ,N J+U(M,N+1J+U(M-1,NJ +U(M,N-1))/4 

1 + H*H*F (X, Y)/4 
U( M,N] = OMEGA-U (M,N J + (1-OMEGAJ*UOLO 

20 CONTINUE 
C CALCULATE THE MAXIMUM RESIDUAL 

RMAX = 0 
DO 30 M = 1,MMAX-1 
00 30 N = 1,NMAX- 1 

X = X1 +M*H 
Y = Y1 + N*H 
RES=-H*H*F[X,Y] +U(M+1,N ]+U( M,N+1J+U(M-1,N)+U( M,N-1) -4*U( M,N) 
IF (ABS(RES). GT.RMAX) RMAX = ABS(RESJ 

30 CONTINUE 
C IF RMAX SUFFICI ENTLY SHALL PRINT ANSWER 

IF( RHAX.LT.TOLJ GOTO 40 
C IF RMAX EXCE EDS TOLERANCE AND K < KMAX PERFORM ANOTHER ITERATION 
15 CONTINUE 

PRINT-, 'CONVERGENCE CRITEREON WAS NDT MET' 
40 CONTINU E 

WR ITE[ 6 ,1 OOJ 
WRITE( 6,11 0) H'KMAX,TOL,OMEGA 
WRlTE (6,1 20 ) K,RMAX 
DO 50 M = 1 , MHAX/2 
DO 50 N = 1,M 

X = X1 + M*H 
Y = Y1 + N-H 
WRITE(6,130) M,N,U(M,N J,E(X,Y) 

SO CONTINUE 
100 FDRMAT!III,T1 2,' RESULTS FROM PROGRAM SOR ',/ J 
110 FORMAT('H=' F5.2,' KMAX=',I4,' TOL=' , E8 . 2,' OMEGA=',FS ·.3,/J 
120 FORHAT['K=',I4,' RHAX=',E8.2,T25,'NUMERI CAL' ,T42,'EXACT',/ ] 
130 FORMAT! 'M,N =',I1,',',I1,T20,F13 . 6 ,T37,F13.6J 

END 

Fig. 11-6 
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ra te o f the SOR method as against the Gauss-Seidel method becomes even more striking. It is seen that 
the numerical results are not in very good agreement with the analytical solution. To improve the 
numerical solu tion one might (i) drive the maximum residual below a smaller tolerance, or (ii) use a finer 
me h. An analysis of the truncation erro r (see Problem 11.1) shows it to be the villain here : to improve 
the accuracy, a finer mesh is needed . 

Supplementary Problems 

11.17 Using a rectangular grid (xm , y,,) = (mh, nk), write a difference equation for the quasilinear PDE 

(aux)x + (buy)y + cu = f 

where a(x, y, u) and b(x, y, u) are positive functions . 

11.18 Let a fl ow fi eld be given in n by q = -(aux, buy), where a (x, y, u) > 0, b(x, y, u) > O. Give a numerical 
method for finding U, if the net flux across the boundary of any subregion of n is zero . 

11.19 Let n denote the square 0 < x < 1, 0 < Y < 1 and consider the boundary value problem 

(aux)x + (buy)y = 0 in n 
u = xy on S 

Introduce a square grid, (xm , y") = (mh , nh), with h = 0.25, and center on each grid point a region 

h h h h 
Rmn: Xm - - < x < Xm + -, y" - - < y < y" + -

2 2 2 2 

Suppose that a = b = 1 except in R :n., where a = b = O. (a) Using the result of Problem 11.18 and 
harmon ic means for the coefficients-e.g. , 

a m -lf2.n = 
am- l, n + am" 

-write a difference system for Urnn (m, n = 1,2, 3; Un. excepted). (b) Write out the Gauss- Seidel iteration 
equations (11.6) for the system of (a), assuming the nodes are scanned bottom-to-top, left- to-right. (c) Use 
the iteration equations to estimate the Urn" , and compare the values with those of the solution, u = xy, of the 
boundary value problem in which a = b = 1 throughout n. 

11.20 Consider the boundary value prohl m defined in Fig. 11-7 (see page 186). With h = 1/3 and ( Xm' y") = 
(mh, nh), write the difference equations centered at (a) (X2 , Y2), (b ) (X3, Ys), (c) (xs, YI). (d) Obtain the 
remaining 15 difference equations and solve the system. 

11.21 Consider the system of linear equations AU = B, where 

A = [aij] 

If aii 7'- 0, show that (a) Jacobi's point iterative method can be expressed by 

i - I " 

U~+I = (Bi - L aijUj - L aijUj) a;;' 
j - I /-i+l 

(1) 

(b) the Gauss-Seidel point iterative method is given by 

;-1 " 

U~+I = (Bi - L aij Uj+1 - L aijUJ) a;;1 
j - l 1'=i+l 

(2) 
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u=o 

5 - • • 0 

u. = 0 

4- • • 0 

u = 1 
3- • • 

u =o V2u=O 

2 ~ • • • • • 
u=l 

n=l ;- • • • • • 

I I U = 1 I 

m = 1 2 3 4 5 

Fig. 11-7 

11.22 Assume that (2) of Problem 11.21 has been used to obtain the approximate solution 

to AU = B. The residual vector, R~+" associated with this approximation depends on both the iteration 
counter, k, and the index, i, of the first "unimproved" component. Rewrite (2) in terms of R ~+" the ith 
component of R~+I. 

11.23 Find an expression for the SOR point iterative method like that found for the Gauss-Seidel in Problem 
11.22. 

11.24 Formulate the column iteration counterparts o f (11.8) and (11.9). 

11.25 

11.26 

Determine the LU-factorization of 

A~U 
0 ;] 3 

9 

wi th Iii = 1. 

Given the elliptic boundary value problem 

Uxx + Uyy + cu = f(x, y) in fi: 0 < x, y <3h (1) 

u = g(x, y) on S (2) 

where c is a constant distinct from 4, (a) write a difference equation for (J ) on the grid (Xm, Yn) = 
(mh, nh); (b) with U == (Vn , VZI, V IZ , V 22)T, detennine the matrix TJ for the Jacobi point iteration 
method; (c) find the eigenvalues of TJ [Hint : solve the characteristic equation]; (d) determine the range 
of c-values for which p(TJ) < 1. 
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11.27 Consider the parabolic problem 

u(x, y, 0) = f(x, y) 

u(x, y, I) = g(x, y, t) 

Introduce a grid (Xm, Yn, Ij) = (mh, nh, jk ) and define 

w(x, y)== u(x, y, Ij+t) 

x, yin n, 1> 0 

x, yin n 
x, y on S, 1>0 

vex, y) = u(x, y, Ij) 

187 

(1) 

(2) 

(3) 

Verify that the result of approximating (l) at time Ij+l using centered space differences and a backward 
time difference is the elliptic system (cf. Problem 11.26(a» 

(e - 4 )Wmn + W m.,,+ t + Wm -t,n + Wm.n- 1 + Wm+1•n = eVmn 

with e == _h2/k. Conclude that Jacobi 's method or another technique of this chapter can be used to 
advance the solution of the parabol ic problem from one time level to the next. 



Chapter 12 

Variational Formulation 
of Boundary Value Problems 

12.1 INTRODUCTION 

In certain cases, the solution of a boundary value problem for a POE is also a solution of an 
associated c31culus of variations problem. A typical problem in the calculus of variations is to find, 
for functions u belonging to a prescribed set d, the extreme values of the integral expression 

J[u (x)] = J F(x, u(x), Vu(x» dO 
n 

where F denotes a given function. Hence we shalI begin by describing some of the structure of the 
domain d of J. 

12.2 THE FUNCTION SPACE e(O) 

In Chapter 6 we considered the space L2(a, b) of functions f(x) that are defin ed and square 
integrable on (a, b) in RI . More generally, let 0 denote a bounded region in R n and consider the set 
L2(0) of all real-valued functions u(x) defined on 0 which satisfy 

J u(xfdO< oo 
n 

Like L2(a, b), L2(0) is a vector space over the real numbers, and the expected defi ni tion 

makes it an inner prod uct space. 

(u, v) == J u(x)v(x) dO 
n 

A subset of L\O) is said to be a subspace of e(O) if the subset is closed under the operation of 
forming linear combinations. 

EXAMPLE 12.1 (a) For k a nonnegative integer, the subset Ck(n) of all u in e (fl) which, together with all 
derivatives of order k or less, are continuous on n is a subspace of L2(O). (b) Let U \, •.. , UN denote N elements 
of L2(O). The subset .it of all linear combinations of U\ , ... , UN is a subspace of L2(O)-the subspace spanned 
by the Ui. (c) For m a positive integer , the subset H m(o) of all u in L2(O) whose derivatives of order m or 
less are also in L2(O) is a subspace of e(O). 

A subspace At of L2(fl) is dense in L\O) if for any € > 0 and any f in L2(0) there exists a v in At 
such that 

Ilv - fl12 == J (v - 1)2 dO < € 

n 

i.e ., if any f in e(O) can be approximated with arbitrary precision in the least-squares sense by a 
function from At. 

Theorem 12.1: For each positive integer m, the following subspaces are dense in e (O): em (n), 
H m (0), and the set of all u in e m (fi) such that u = 0 on S, the boundary of O . 

Theorem 12.2: If At is a dense subspace in L\fl) and if an element u of L2(0 ) satisfies (14, v ) = 0 for 
311 v in At, then u = o. 

188 
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12.3 THE CALCULUS OF VARIATIONS 

A real-valued function J whose domain of definition is a subset of L2(O) will be called a 
functional. The fundamental problem of the calculus of variations is, then, to find the extreme values \ 
of a given functional J over a specified domain d in L2(O). 

EXAMPLE 12.2 (a) For 0 a bounded set in R2 having smooth boundary S and for given functions fin C(O) 
and g in C(S), let sti == {u(x, y) in H l(O) : u = g on S}. Minimize 

J[u] = t (u~ + u; - 2fu) dx dy 

over sti. (b) For 0 a bounded set in R" with smooth boundary S and for given functions aij (x) and f(x) in C(O), 
let A == {u in Hl(O) : u = 0 on S}. Minimize 

f ("au au ) 
Jfu] = 2, aij --- 2fu dO 

n i.i - l aXi aXi 

Such problems can be treated in much the same way as extreme-value problems in elementary 
calculus, if the notion of the derivative is suitably generalized. 

Variation of a Functional 

First, we associate with the domain d of the functional J, a set .Ai of comparison functions such 
that, for any u in d and any v in .Ai, u + EV belongs to d for every real number E • .Ai is necessarily a 
subspace of L2(O). 

EXAMPLE 12.3 (a) For sti as in Example 12.2(a), we may take oM == {v in Hl(O) : v = 0 on S}. (b) For sti as in 
Example 12.2(b), we may take AI- to be identical to sti. In general, whenever sti is a subspace of L2(O) and not 
just a subset as in the first example, we may take oM == sti (for u, v in sti, the linear combination u + EV is also in 
sti). 

For J a functional on domain d, to which corresponds a set of comparison functions .Ai, let u 
belong to d and v belong to .Ai. Then 

(12.1 ) 

is a real-valued function of the real variable E. 

Definition: If the limit 

) 
J[ u + EV] - J[ u] 

4>'(0 = lim ----~-'- (12.2) 
E-O € 

exists for every v in.Ai (the value of the limit will generally depend on the "direction" v), we 
write 

4>'(0)= SJ[u; v] 

and call this the variation of J at u (in the direction v). 

Theorem 12.3: Let J denote a functional on domain d with associated set of comparison functions 
.Ai, and suppose that Uo in d is a local extreme point for J. If J has a variation at uo, 
it must vanish; i.e., 

for all v in .Ai 

Gradient of a Functional 

Theorem 12.3 shows that the variation of a functional J is analogous to the directional derivative 
of a function on Rn, which is obtained by computing the scalar product of the gradient of the function 
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with a unit vector in the given direction. Under certain conditions, we can define what is meant by 
"the gradient of a functional. " 

Consider functional J with domain d contained in e (fl). Su ppose that the comparison functions 
comprise a dense subspace At of L 2(fl). Finally, let (!lJ consist of al l u in d such that J has a variation 
at U and, moreover, such that there exists a G in L2(fl) having the property 

M[u; vJ = (G, v) for all v in At 

If 0J is nonempty, we call the funct ion G the gradient of J at u, and write G = V J[ u] ; the subset 0J of 
d is called the domain of the gradient. 

If Uo in 0J furnishes a local extremum for I , T heorem 12.3 and the definition of the gradient of J 
imply that (V J[ uo], v) = 0 for all v in At. But At is dense in L2(fl), and so, by T heorem 12.2, 
V J[ uo] == O. We can, in fact , prove 

Theorem 12.4: If the subspace At of comparison functions is dense in L2(fl) and if Uo in d is a local 
extreme point for 1, then Uo necessarily belongs to 0J and 

(the Euler equation for J). 

The point of Theorem 12.4 is that to solve a POE which is the E uler equation of a suitably 
constructed fun ctional I , subject to whatever boundary conditions are part of the definition of the 
domain 0J, it is sufficient to minimize I over the class d of admissible functions. As the smoothness 
conditions incorporated into the definition of (!lJ appear to be weaker than what is required for a 
classical solution, the solu tion of the variational problem is considered to be a generalized solution of 
the bo undary value problem. In Section 12.5 we shall develop an even broader notion of the solution 
of a boundary value problem. 

12.4 V ARIA TIONAL PRINCIPLES FOR 
EIGENV ALVES AND EIGENFUNCTIONS 

Consider the Sturm-Liouville problem (6.13 ), with C2 = C4 = O. Theorem 6.4 describes the 
eigenvalues and eigenfunctions of this problem. Define 

d o={4> in HI(a, b): 4>(a) = 4>(b) = O} 

an d define a fu nctional J on do by 
b 

J [p(x)4>'(X)2+ q(X)4> (X)2] dx 
1[4>] = --=Q'-----;-b------

J r(x )4>(x l dx 
Q 

It is easy to show that A l :s; 1[ 4>] for all 4> in do; indeed, 

Al = min 1[4>] 
<l>Edo 

In addition, for k == 1, 2, ... , define 
b 

d k ={4>in d o : J r(x)4>(x)uj (x)dx =O U=1,2, ... ,k)} 
Q 

where uj(x) denotes an eigenfunction of (6.13) corresponding to the eigenvalue Aj" Then 

Ak+l = min 1[4>] (k = 1,2, ... ) 
<l>Ed, 

(12.3) 

(12.4 ) 

(12.5) 

(12.6) 

(12.7) 
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The functional (12.4 ) is called the Rayleigh quotient of the Sturm- Liouville problem (6.13), whose 
eigenvalues are characterized by the minimum principles (12.5) and (12.7). 

More generally, consider the elliptic boundary value problem 

- V . (p(x) Vu(x» + q(x) u(x) = A r(x) u(x) 

u(x) = 0 

x in 11 

x on 5 

(12.8) 

(12.9) 

where p(x) > 0, q(x), and r(x) > 0 are all in Cl(fi). As in the case of the one-dimensional Sturm­
Liouville problem, all eigenvalues of (12.8)-(12.9) are real and can be arranged in a countably 
infinite, increasing sequence. Moreover, weighted eigenfunctions r1!2 u belonging to distinct eigen­
values are orthogonal; i.e., 

(rl!2 urn , r 1!2un > == J r(x) um (x) un (x) d11 = 0 
n 

The smallest eigenvalue, A]> satisfies 

Al = min 1[4>] 
4>E.9io 

where do = {4> in H\11) : 4> = 0 on 5} 

and where the Rayleigh quotient is given by 
J 

(m -,t. n) 

J [p(x)V4>(x)· V4>(x) + q(x) 4> (x)Z] d11 
1[4>] = ---'-n'---_________ _ 

Moreover, for k = 1,2, .. . , 

where 

J r(x)4>(x? d11 
n 

Ak +1 = min 1[4>] 
4>E.9i. 

(12.10) 

(12.11 ) 

(12.12) 

(12.13) 

(12.14) 

and uj denotes an eigenfunction belonging to the eigenvalue Ai" It is readily shown (cf. Problem 
12.7(b» that the minima in (12.10) and (12.13) are assumed at the eigenfunctions; i.e., Ax = 
1[uk ] (k = 1,2, ... ). 

Mini,mum principles analogous to (12. 10) and (12.13 ) hold when the differential operator in 
(12.8) is replaced by a general linear, elliptic, differential operator. 

12.5 WEAK SOLUTIONS OF BOUNDARY VALUE PROBLEMS -
Let 11 denote a bounded region in RZ with smooth boundary 5 consisting of complementary arcs 

51 and 5z· Let p, q, J, gp g2 denote given functions which are defined and smooth on 11 and/or on S. 
Finally, define a linear partial differential operator by 

L u(x , y) = - V2u + pUx + quy 

and consider the mixed boundary value problem 

Lu = f inn 

u = gl on 51 

au 
an = g2 on 52 

For arbitrary u and v in C 2(11), G reen's fi rst identity, (1.7), gives 

(12.15) 

(12.16) 

(12.17) 

(12.18) 
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Now defi ne 

(Lu, v ) = J Vu' Vv dO + J (pux + quy)v dO - J v au dS 
o n s an 

d"", {u in H '(O) : u = gl on SI } 

At "'" {v in H \ O) : v = 0 on SI} 

and note that for u in d and v in At, 

J au J au v - dS = v - dS 
s an ~ an 

Moreover, if u in d satisfies (12.18), 

J v au dS = J vg2 dS 
~ an ~ 

for all v in At 

(12.19) 

(12.20) 

Thus, if u is a classical solution of the boundary value problem (12.16)-(12.18), u must satisfy 

K[u, vJ = F[ v ] for all v in At (12.21 ) 

where, for u in d and v in At, 

K [u, v ]"", J V u·VvdO+ J (pux+quy)vdO 
n n 

(12.22) 

F[ v ] "'" J Jv
2 

do' + J g2 V dS 
n ~ 

(12.23) 

Definition: A weak solution of (12.16)-(12.18 ) is any func tion u(x, y ) that belongs to d and 
satisfies (12.21 ). 

A notion of weak solution has already been encoun tered in Problem 5.15. Evidently, every 
classical solution of the boundary val ue problem is a weak solution. However, a weak solution u 
need not be a classical solution: it need only be sufficiently regular to allow definition of K[u, v ] for 
all v in ..Ii. 

In the special (s If-adjoint) case that p and q in (12.15) vanish on 0, [i .e., when (12.16) is Poisson's 
equation], then 

Klu, vJ = Klv, uJ for all u, v in At 

K[u, u];:::O for all u in At 

Whenever (12.24) holds , it follows that for u in d , v in At, 

2{K[u, v]- F[ v ]} = 8J[u; vJ 
where 

J[u ] "'" K[u, u]- 2 F[u ] 

(12.24) 

(12.25) 

(12.26) 

If Uo is a weak solution of tbe boundary value problem (for Poisson 's equation), it follows from 
(12.25) that Uo is a stationary point for J. In fact, it can be shown that Uo minimizes J over d, which 
leads to 

Theorem 12.5: Let K[u, v ] satisfy (12.24 ) and let J[u] be given by (12.26). Then Uo minimizes J 
over d if and only if K[ uo' v] = F [ v ] for aJl v in .At. 

According to Theorem 12.5, the weak formula tion of a boundary value problem is, provided 
(12.24) holds, the same thing as the variational formulation guaranteed by Theorem 12.4. However, 
when (12.24) does not hold, only the weak formulation is possible . Thus, the notion of a weak 
solution to a boundary value problem is mOre comprehensive than that of a variational solution , 
which in turn is more comprehensive than the notion of a classical solution. 
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Solved Problems 

12.1 Let fl denote a bounded region in R2 with smooth boundary S. For d = .J,l = H I(fl), let the 
following functiona ls be defined on d: 

1Ju] = f (u : + u~ - 2/u) dx dy 
n 

12[U] = f ( u:+u~ - 2/u ) dxdy + J pu
2

dS 
n s 

13[U] = J (u:+ u~-2/u) dxdy + J (pu
2

- 2gu)dS 
n s 

Here p and g are in C(n) and J is in L 2(fl) . Compute 81[ u; v] for each functional. 

I t suffices to calculate oh[ u; v] ; setting p = g = 0 or g = 0 will yield the other two variations. For u, v 

in sfJ a nd arbitrary real f', we have 

tP3( f') == ]3[ u + IOU ] 

= ]3[Uj + 2£ L (uxvx + UyVy - fv) dx dy + 2£ Is (puv - gv) dS 

+ (5 2 L (v; + v;) dx dy + f'2 Is pv2 dS 

and so 

8h[u; v] == tP3(0) = 2J (UxVx + UyVy - fv) dxdy + 2 J ( pu - g)vdS 
n s 

(1) 

12.2 Let fl denote a bounded region in R" with smooth boundary S On d = .J,l = H I(O) define the 
functional 

12.3 

14[U ] = f [± ai/ X) au au + c(x)u2 - 2/(x)u] dO 
n i,j~ I aXi aXj 

where the functions aij = aji (see Section 2.1 ), c, and f are all in erfl] . Find 814[ u; v]. 

For u, v in sfJ and arbi trary real f', 

= ] 4(U) +f' L aij - - +-- +2cuv -2fv dO +£2 Laij --+ CV2 dO 
J [ (

au av au av) ] J [ av av ] 
n aXi aXj aXj aXi n aXi aXj 

Hence, from the symm etry of the aij, 

814 [u; v] == tP~(O) = 2 L aij --+ (cu - f)v dO 
J [

au av ] 

n ax; aXj 

Let fl denote a bounded region in R2 with smooth boundary S With 

d = {u in H l(fl) : u = g on S} 

and J, g in e [n], consider the functional 

.At = {v in H\fl) : v = 0 on S} 
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J\[u] = J ( u ~ + u~ - 2fu ) dx dy 
11 

(u in d) 

Find 9.0 1 and VJ\[u]. Note that At is dense in L2(U). 

Problem 12.1 gives (fo r any s4 and .Ai ) 

8JI[ U; vl = 2 L (uxvx + UyVy - Iv) dx dy 

Green's first iden tity, (1. 7), implies 

J (uxvx + UyVy ) dxdy = J v au dS- J v~udxdy 
o s an n 

Since v = 0 on S for v in .Ai, (2) used in (1) leads to 

811[u ; v] = -2 t (~u + f)v dx dy = (G, v ) 

where G(x, y) == - 2[~u(x, y) + I(x, y)] (x, y) in f! 

If V2u is in L2(f!), then G belongs to L2(f!) and we conclude that 

V11[u] = G = -2~u + I) 

(1) 

(2) 

for u belonging to .@I = {u in H2(f!) : u = g on S}, where H2(f!) denotes the class of functions for which 
V2u belongs to L2(f!). (A more precise characterization of the domain .@ of the gradient of a functional 
can be given in the context of functional analysis.) 

12.4 For each functional of Problem 12.1, find 9.0 and V J[ u]. 

Again it suffices to treat 13 and then to specialize the results to the other two functionals. Applying 
(2) of Problem 12.3 to (1) of Problem 12.1, we obtain 

O}J[u; v] = 2 Is (:: + pu - g) v dS - 2 L ~u + f)v dx dy 

Thus, if u in s4 satisfies the additional cond itions 

(i) u belongs to H 2(f!) 
au 

(ii) -+ pu =g on 5 
an 

(1) 

(2) 

(1) shows that VJ3[u] = -2(~u + f) on the domain .@J defined by (2). (V13 is in L 2(n) because of (2 )(i).) 
The functional 13 is seen to be the energy integral for Poisson's eq uation with an inhomogeneous 

mixed boundary condition : 
-~u=1 inn 

au 
- + pu = g on 5 
an 

Setting p = g = 0, we see that 11 , the energy integral for Poisson's equation with a homogeneous 
Neumann cond ition, has gradient 

for u in ggl = { u in H 2(0) : :: = 0 on 5 } 

In Problem 12.3, a different domain s4 for J I produced a d ifferent domain ggl for VJI . 

12.5 Let U denote a bounded region in R2 with smooth boundary S. Let S1 denote a connected 
subset of S and let 52 denote the complement of 51 in S. Let p, f, gl> g2 be functions in C(fi). If 

d = {u in H l(U) : u = gl on 51} At = {v in H I(n) : v = 0 on 51} (0) 

find 9.0 and V J for the functionaJs 
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11[uj = f (u~+u~- 2fu ) dxdy 
n 

12[u j = f (u ~ + u~ - 2fu) dx dy + J PU
2 dS 

n ~ 

l)[uj = f (u~+ u~- 2fu)dxdy + J ( pu2 -2g2 u ) dS 
n ~ 

This prob lem illustrates further the relation between .s4 and .QI. Note that the admissible class .s4 of 
(0) is "between" the classes .s4 of Problems 12.3 and 12.4, in the sense that 

{u in H l(n ) : u = g on 5} C {u in H l(n) : u = g on 51 C 5} C {u in H I(n)} 

As usual, we may restrict attention initially to 13 • Since v = 0 on 51, we have, analogous to (1) of 
Problem 12.4, 

We conclude that if u in .s4 satisfies the additional conditions 

(i) u belongs to H 2(n) 

then V13[U) = -2(VZu + f) on the domain 

au 
(ii) -+ pu = g2 on 52 an 

.QI3 = { u in H2(n) : u = gl on 51, :: + pu = g2 on 52} 

Now setting g2= 0 and g2= p = 0, respectively , we obtain: 

V12[U ] = -2(VZu + f) on .QI2 = { u in H 2 (n) : u = gl on 5\ , ~: + pu = 0 on 52} 

on .QI 1 = {u in W en) : u = gl on 51, ;: = 0 on 52} 

(1) 

(2) 

In the case of each functional, the definition (0) of .s4 specifies how u is to behave over the part 5\ 
of the boundary. Then the definition of.QI imposes a condition over the remainder of the boundary; this 
condition involves the normal derivative of u. Boundary conditions incorporated in the definition of .s4 
are called stable boundary conditions; those included in the definition of .QI are called natural boundary 
conditions. 

12.6 Let n denote a bounded region in R2 with smooth boundary S. Let 1, g, and p be functions in 
C(O). Consider Poisson's equation 

-V2u(x, y) = f(x, y) in n (1) 

and the Dirichlet, Neumann, and mixed boundary conditions 

u=g on S (2) 

au 
(3) -=g on S 

an 
au 

(4 ) -+ pu = g on S 
an 

Give variational formulations of the problems (1 )- (2), (J )- (3 ), and (J )-(4 ). 

All three boundary value problems are covered by the functional J3 [ u] of Problem 12.5, with .s4 and 
At as given in (0) of that problem. 
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(i) In Problem 12.5, take 5, = 5, g, = g. Then, by Theorem 12.4, if Uo minimizes 

J (u;+u;-2fu)dxdy over {u in H'(O) : u = g on 5} 
n 

Uo solves (1 )-(2). 

(ii) In Problem 12.5, take 52 = 5, p = 0, g2 = g. Then, by Theorem 12.4, if Uo minimizes 

L (u ; + u; - 2fu) dxdy - 2 Is gud5 over H'(O) 

Uo solves (1 )-(3). 

(iii) In Problem 12.5, take 52 = 5, g2 = g. Then, by Theorem 12.4, if Uo minimizes 

L (u; + u;- 2fu) dx dy + t (pu 2
- 2gu) d5 over H'(O) 

Uo solves (1 )-( 4). 

It is seen from (i) that the Dirichlet condition (2) is a stable boundary condition for the 
corresponding variational problem, whereas the Neumann condition (3) and the mixed condition (4) 
figure as natural boundary conditions. 

12.7 Consider the boundary value problem 

-V2u + qu = Aru 

u=O 

inn 

on S 

(1) 

(2) 

with q ~ 0 and r > 0 in n. Let A, < A2 s ... denote the eigenvalues of (1 )-(2) arranged in 
increasing order, and let un denote the eigenfunction corresponding to An' With I [ 4>] as given 
by (12.12), with p == 1, and .silo as given by (12.11), prove: (a) if 4>* minimizes I over .silo, then 
c/>* satisfies (1)-(2) with A = I[c/> .. ]; (b) for n = 1,2, ... , An = I[ unJ; (c) A, = min I[c/>]. 

do 

(a) On do == Ai == {e/> in H'(O) : e/> = 0 on 5} define 

N[e/>J= J (Ve/>·Ve/>+qe/>2)dO 
n 

Then, for J[e/>J = N[e/>J/D[e/>], 

OJ[A. . vJ _ _ oN_[,-e/>_; ---,v J_D-=.[_e/> J'---_N_['-e/>-'--Jo_D---'[_e/>_; v-=.J 
'1', - D[e/>J2 

If e/>. in do minimizes J, then OJ[ e/>. ; v J = 0, or 

oN[e/>.; vJ- J[e/>.JoD[e/>.; vJ = 0 for all v in Ai 
But, since 

oN[e/>; vJ = 2 L (Ve/> . Vv + qe/>v) dO oD[e/>; vJ = 2 L re/>v dO 

(5) implies 

f (Ve/> •• Vv + qe/>.v - A.re/>.v) dO = 0 
n 

for all v in Ai 

where A. == J[ e/>.]; or, by (1.7) and the boundary condition on v, 

(-'rpe/>. + qe/>. - A.re/>., v ) = 0 for all v in Ai 

Theorem 12.4 guarantees that the minimizing element e/>. is such as to render 

(3) 

(4 ) 

(5) 

(6) 

(7) 
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V J [rP .] = _\12rP • + qrP. - A.rrP. 

an element of U (O); thus rP. must be long to the subspace 

20 == {rP in H 2(O) : rP = 0 on S} 
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of .sIio. Indeed, VJ[4> .] must be the zero element of U(O), so that 4>. in Qi) solves (J )-(2) with 
A = A • • 

(b) If Un satisfies (J )-(2) with A = An , then multiplying (J) by Un and integrating over 0. leads to 

L (-~un + qUn - AnrUn)Un dO. = 0 

But, by G reen's first identity and the boundary condition, 

f (-\12un)Un dO = f Vun • VUn dO 
n n 

Hence, 

L (Vun • VUn + qu;, - Anru ;,) dO = 0 or An = J[u,,] 

(c) Since 4> * minimizes J[ 4>] over .sIio and since each Un belongs to .sIio, we have, by (b), 

(n = 1,2, ... ) 

But A. is itself an eigenvalue, and so A. = AI. We have just proved Rayleigh's principle: the 
smallest eigenvalue of the boundary value problem (J )-(2) is identical to the smallest value of the 
functional J[ </>] . (Cf. Problem 9.8.) 

U.S Consider the Sturm-Liouville problem (12.8)-(12.9) and let <PI' ... , <PN -
1 

denote any N - 1 
elements of silO' as defined in (12. 11). Let gyN-l denote the following subspace of silo: 

gyN-l == {u in silo: <r l!2<pj' rl!2 u ) = 0 (j = 1, ... , N - I)} 

For the R ayleigh quotient J of (12. 12), write 

C[<P!'" .. , <PN - 1] == min J[u ] 
uE!'iJN_I 

(1) 

(2) 

Prove that C[ <PI' .. . , <PN- l ] 5: AN' with equality if <pp ... , <PN- 1 coincide with eigenfunctions of 
the Sturm-Liouville problem, corresponding to the fi rs t N - 1 eigenvalues. This result, the 
Courant minimax principle, implies that AN' the Nth eigenvalue of the Sturm- Liouville 
problem, can be characterized as the maximum over all subse ts {<PI' ... , <PN - l } of silo of the 
minimum of J[u ] on gyN-I' 

To establish the desired inequality it will suffice to construct a fu nct ion w in 2ON - I such that 
J[ w ] ~ AN. Write 

N 

W = 2: CiUi(X ) (3) 
;=1 

where UI(X)"." UN(X) denote the eigenfunctions associated with AI , .. . , AN. w will belong to Qi)N- I 

provided 

N 

0= (rln</>/> rWw ) = 2: ci (rln</>h rl/2 u;) (j = 1, 2, . .. , N - 1) (4 ) 
i - I 

As (4) constitutes a system of N - 1 linear eq uations in the N unknowns Cl, ... , CN, there will always 
exist a nontrivial solution (CI, ... , CN). [w = 0 certainly belongs to 2ON -I, but J[O] is undefined.] Now 
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where 

N 

L ()liCiCj 
i,j=l 

N 

LIM! 
i=1 

!3i "" L r(X)Ui (X)2 dfl 

and where we have used the weighted orthogonality of the eigenfunctions in evaluating the denominator. 
From Green's first identity and the fact that u;(x) is an eigenfunction of (12.8 )-(12.9), we can show that 

()ij = Ai L r(X)Ui (X)Uj (x) dfl = { ~i!3i 
Therefore 

N 

L Ai!3ic! 
J[ w] = .:...i~....:~ __ _ 

L !3icf 
; = 1 

i= I 

j T' i 
j = i 

where Ki 2!: 0, Kl + K2 + ... + KN = 1. Thus, as a convex combination of the Ai, 

A1 "s; J[w]"s; AN 

(5) 

The proof is completed by noting that, if cPj = Uj (j = 1,2, ... , N - 1), UN will belong to 9ilN - 1 = 
sIIN-Jo We then have, using (12.13), 

qUI, ... , uN-d = mm J[u] = AN 
uE.s4N_1 

12.9 Let p*, q*, ,* denote an alternate set of coefficient functions for the Sturm-Liouv ille problem 
(12.8)-(12.9); these are supposed to obey the same continuity and posit ivity conditions as do 
p, q, , . Let the alternate and original problems have Rayleigh quotients J *[ 4> 1 and J[ 4>], and 
eigenvalues {A~} and {An} . Show that if 

for all 4> in do (1 ) 

then An :$ A ~ (n = 1,2, .. . ). 

Inequality (1) implies that 

If, then, !/II, . .. , !/IN-l is a set of fu nctions in silo that maximizes C[cP l, .. . , cPN- d and if !/Ii, ... , !/I'N-l in 
silo maximizes C* [cP l, ... , cPN-l], the Courant minimax principle implies 

AN = q!/lI, . . . , !/IN-d"s; C*[!/Ih ... , !/IN- d "s; C*[!/It, .. . , !/I'N- d = AN 

12.10 For the one-dimensional Sturm-Liouville problem of Section 12.4, write Pm> 0, qm' and 'm > 0 
for the minimum values of the coefficient functions on [a, b] , and PM> qM > 0, and 'M for the 
maximum values. Establish the following bounds for the eigenvalues: 

(n = 1,2, ... ) (1) 

The Rayleigh quotient (12.4) clearly satisfies, for all cP in silo, 
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PM r cf>'(X? dx + qM r cf>(xf dx 

J[cf>]~ a b a ==J*[<f>] 

fm f <f>(X)2 dx 
a 

Now, J*[ cf>] is the Rayleigh quotient for the Sturm- Liouville problem 

which has eigenvalues 

- PMW"(X ) + qMW(X) = A * fmW(X) 

w(a ) = web) = 0 

a < x<b 

(n = 1,2, . .. ) 
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Therefore, by Problem 12.9, An ~ A~, which is the upper bound asserted in (1). The lower bound is 
established similarly, from the inequality 

pm r cf>'(X)2 dx + qm r <f>(X)2 dx 

J[ <f>] ~ a b a 

fM fa cf>(X)2 dx 

12.11 Let n denote a bounded region in R2 with smooth boundary 5 composed of complementary 
arcs 51 and 52. Let p, q, r, t, gl' g2' and h denote given functions defined and smooth on 0 ; in 
addition, suppose p > 0 on n. G ive the weak formulation of the mixed boundary value 
problem 

- V · ( p Vu) + qux + ruy = t on n 
u = gl on 51 

au 
-+ hu = g2 
an 

on 52 

(Unless q and r vanish on n, this problem does not admit a variational formulation.) 

For arbitrary u, v in ca(n) we can use (1.7) to show that 

<-V.(pVu), v)=J (Vu. Vv)p dn - J v au pd5 
n s an 

Then, if u satisfies (1 ), 

J 
(Vu.Vv)p dfi + J (qux + rUy)v dn -J v au Pd5- J /vdfi =O 

n n s an n 

for all v in H 1(fi). 
Define 

If u in d satisfies (1 )-(3), then, for every v in .Jl, (4) gives 

K[u, v] = F [v ] 

where K[u, v] == J (Vu 'V v )p dfl +J (qux + rUy )v dfi + f phuv d5 
n n ~ 

F[v]== LtV dfl + (pg2Vd5 

The weak formulation of (1 )-(3) is, therefore, to find a u in d that satisfies (5) for every v in At. 

(1 ) 

(2) 

(3 ) 

(4) 

(5) 

(6) 

The weak formulations of PDE (l) plus a Dirichlet o r a Neumann condition on 5 are obtained, 
respectively, by taking 51 = S and taking 52 = 5 and h = 0, in the above formulation. 
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Su pplementary Problems 

12.12 Let 0== {(x, y): x2+ y2< I} and sIl = {u in H'(O): u = x2 on x2+ y2= I}. For 

J[ u] == L (y2u; + X2U~) dO (u in sIl) 

define .At and fi nd 8J[u; v]. 

12.13 Find f0 and VJ[ u] in Problem 12.12. 

12.14 Let fl be as in Problem 12.12. If u in sIl == H'(fl) minimizes the functional 

J[u]== J (y2u~+x2u~-2Fu)dfl 
n 

over sIl, where F is in L2(fl) , what boundary value problem does u(x, y) solve? 

12.15 Suppose that fl is a bounded region in R2 with smooth boundary S. Let F belong to L\fl) and let 

sil, = { u in H2(fl) : u = :: = 0 on S} 

J[ u] = J [(-vaU)2 - 2Fu] dfl for u in sil, 
n 

Define Ai and fin d 8J[ u; v]. 

12.16 Find f0 and VJ[u] in Problem 12.15. 

12.17 Repeat Problem 12.16 if sil, in Problem 12.15 is replaced by sIl2 = H 2(fl). 

12.18 With 0 , sil" and J[u] as in Problem 12.15, define on sil, the functional 

J[u] = J [(-vauf-2(uxxuyy -2u;y)-2Fu } dfl 
n 

V cify that v J[u] == VJ [u], on the domain 1iJ = f0. 

12.19 Let fl denote a bounded region in R2 with smooth boundary S composed of complementary arcs SI , S2 , 
and S3. Give a variational formulation of the following boundary value problem: 

-V2 u=F infl 

u = g, on S, 
au 
-= g2 on S2 
an 

au 
- + pu == g3 on S3 an 

12.20 Let J[ 4>] be given by (12.4) and let (a) silo == H '(a, b), (b) silo = {4> in H '(a, b) : 4> (a ) = O}. Show that 
if u * minimizes J over silo, then u * is an eigenfunction of (6.13) with (a) C1 == C3 = 0, (b ) C2 = C3 = O. 

12.21 Consider 

J (p V4>' V4> + q4>2) dO + J a4>2 dS 
J[4>]= n s 

J r4>2 dfl 
n 

on silo = H '(fl) 
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Here. functions p. q, and r obey the usual conditions ; function a is in CI(D.) and is nonnegative on S. 
Prove: (a) If u * minimizes J over silo. then u* satisfies 

- v· (p Vu) + qu = Aru 

au 
-+au = 0 
an 

inn (1) 

on S (2) 

with A = Al = J[u .. ); i.e ., u * = Ut . an eigenfun ction of (1 )- (2) belonging to the smallest eigenvalue. 
(b ) An= J [UnJ (n= 1,2, . .. ). 

12.22 For the one-dimensional Sturm-Liouville problem of Section 12.4, infer from Problem 12.10 that (a) if 
qm < 0, at most fi nitely many eigenvalues are negative; (b) if qm 2: 0, all eigenvalues are positive; (c) 

2: A ~ I converges. 
n = i 

12.23 Give weak formul ations of the problems 

(a) -uxx -uy y +2ux =1 inn: x, y > 0, x + y < 2 

u=O on S 

(b) - Uxx - Uyy + 2ux = 1 in n: x, y > O, x+y <2 

uAO, y) = 2- Y 0 < y < 2 

u,(x, 0) = x(2 - x) 0 < x < 2 

u(x, 2-x)=0 0 < x < 2 



Chapter 13 

Variational Approximation Methods 

This chapter presents some techniques for constructing approximate solutions to boundary value 
problems. These techniques are based on the ideas of Chapter 12 and differ markedly from the 
finite-difference methods of Chapters 9, 10, and 11. 

13.1 THE RAYLEIGH-RITZ PROCEDURE 

This approximation procedure is limited to boundary value problems admitting the variational 
formulation "Find u* in d such that functional ][u] is minimized over d by u*." It was seen in 
Chapter 12 that such boundary value problems arise in connection with self-adjoint elliptic PDEs. 

We suppose d to be some subset of L\O), where .0. denotes a bounded set in Rn with smooth 
boundary S consisting of complementary portions SI and S2. Specifically, we take d = 

{u in H1(.o.) : u = g on SI} for a given g in C(O); the associated subspace of comparison functions is 
taken as .At = {v in H 1(.o.) : v = 0 on SJ 

Let CPo denote an arbitrary function from d (e.g., ¢o = g) and let ¢ p ... , ¢N denote N linearly 
independent functions in .At. Then, 

N 

UN (X) == ¢o(X) + L Cj¢j(X) 

j = 1 

(13.1 ) 

belongs to d for all choices of the constants cp ... , cN ; we denote by d N the subset of d consisting 
of all such functions UN. Let u;. denote the function in d N that minimizes] over d N • It can be shown 
that u;. represents the best approximation, in the least-squares sense, from d N to the exact solution 
u*. This function u;. is called the Rayleigh-Ritz approximation to the solution of the boundary value 
problem. 

The minimization of ] over d N is tantamount to the minimization over all c in RN of the ordinary 
function 

N 

H(c 1, · ··, cN )==] [¢o+ L Cj¢j] 
) = 1 

The minimizing constants c7, c;, ... , C;' must satisfy 

(m = 1, . .. , N) 

which is a system of N equations in N unknowns. 

(13.2 ) 

The Rayleigh-Ritz procedure may also be applied to eigenvalue problems of the sort treated in 
Section 12.4. In any eigenvalue problem the boundary conditions are aU homogeneous. Hence, we 
take ¢o == 0 in (13.1) and minimize the Rayleigh quotient] over the subspace d N = .AtN . 

13.2 THE GALERKIN PROCEDURE 

This approximation method is employed when the boundary value problem admits only a weak 
formulation; e.g., in the case of a linear elliptic PDE containing odd-order derivatives. In the event 
that conditions (12.24) hold in the weak formulation, so that a variational formulation also exists, it 
can be shown (see Problem 13.4(b» that the Galerkin and Rayleigh-Ritz procedures coincide. 

Consider, then, a boundary value problem with the weak formulation "Find u* in d such that 
K[ u *, v] = F[ v] for all v in .At." Here we suppose that .0., S, d, and .At are as described in Section 

202 
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13.1. Let ifJp . .. , ifJN den te N linearly independent trial functions in .At and let ifJo denote an 
arbitrary function in .sIl. As in the Rayleigh- Ritz procedure, we seek an approximation u~ to the 
weak solution u* of the form (13.1). In addition, le t 1/11' . .. ' I/IN denote N linearly independent 
weight f unctions in .At; these may or may not be the same as the trial functions. The Galerkin 
approximate solution is required to satisfy 

K[ u;', I/Ii ] = F[ I/Ii 1 (j = 1, .. . , N ) (13.3) 

This is a set of N eq uations in the N unknowns c r ' ... , c~. 

Solved Problems 

13.1 Let n denote a bounded region in R n having smooth boundary 5 consisting of complementary 
pieces 51 and 52. For the boundary value problem 

- V· (p(x)V u) + q(x)u = f(x) in n (1) 
u = gl(X) on 51 (2) 

au 
an = gix) on 52 (3 ) 

where, as usual, p(x) > 0 and q(x) 2: 0 in 0" explicitly describe the construction of the 
Rayleigh-Ritz approximate solution . 

The methods of Chapter 12 lead to the following variational formulati on of (1 )--(2 )--(3): Find u · 
in stI. minimizing lover stI., where 

stI. == {u in Hl(O) : u = gl on 51} 

l[u)== J (pVu·Vu+qu 2)dO- 2F[u ) 
n 

F[ u 1 == J fu dO + J g2U d5 
n 5z 

oM == {v in Hl(O) : v = 0 on 51} 

Let ePt, . .. , ePN denote N linearly independent funct ion from oM. The Rayleigh-Ritz approximate 
solution is of the form 

N 

UN = 2: CjePi 
j - O 

where ePo denotes an arbitrary function from stI. and Co = 1. We then have 

N N N 

= L [p j.~o (V <pj • V <Pk )CjCk + q j .~o <Pi ePkCjCk ] dO - 2 i~ CjF[ <Pi) 

in which the linearity of F[ ) has been recognized. For m = 1, 2, . . . , N, 

where, for 1 :5 m, k :5 N, 

(4 ) 
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Fm =F[4>m]- f (pV4>m ·V4>o+ Q4>m4>O) dO 
n 

For UN to minimize ] over .stlN it is necessary (and, H being a convex function , sufficient) that 

(5) 

The solution ci, . .. , c;:, of (5) produces the Rayleigh-Ritz approximation U;:, via (4). 

13.2 Using the trial functions 4>1(x, y)=(6-2x-3y)y and 4>z{x,y)=(6-2x-3y)/ (and 4>0=0), 
construct the Rayleigh-Ritz approximate solution to the boundary value problem indicated in 
Fig. 13-1. 

y 

2 

Fig. 13-1 

According to Problem 13.1, we are seeking a solution of the form 

U2(X, y) = c,4>,(x, y) + C24>2(X, y) 

The constants c, and C2 must satisfy 

where 

Now, 

Allc, + Auc2 = F, 

A21Cl + A 22c2 = F2 

Fm = 10 x4>m dx dy 

All = 10 (36 - 24x - 72y + 4x2 + 24xy + 4Oy2) dx dy 

x 

Au = 10 (72y - 48xy - 126y2 + 8x2y + 42xy2 + 58y3) dx dy = A21 

A22 = 10 (144y2 - 96xy2 - 216y3 + 16x2y2 + 72xy3 + 85y4) dx dy 

For positive integers p and q, 

(1) 

(2) 
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Thus, AIl = 26, Al2 = A21 = 163.2, A22 = -499.2, Fl = 1.8, F2 = 2.8. Substituting these values in (2) and 
solving, we obtain 

ci = 0.109 d = -0.001 

13.3 Construct the Rayleigh- Ritz approximation to the solution of 

- u"(x) + u(x) = 1- X 

u'(O) = u'(l) = 0 

O<x<l 

using the trial functions (a ) ¢ t(x) = 1, ¢ix) = x, ¢3(X) = x2; (b) !/Il(X) = x2(1- xf, !/Iix) = 
x3(1- X)2, !/I3(X) = x2(1- X)3. (c) Compare both approximate solutions with the exact solution, 

) 
cosh x - cosh (1 - x) 

u*(x = + 1- x 
sinh 1 

(a) In this one-dimensional version of Problem 13.1, d =.JJ. = Hl(O, 1). Let 
3 

U3(X) = 2: c;cp,(x) 
i=l 

Proceeding as in Problem 13.1, we find 

1 
1 Cl 

2 3 

1 4 5 

2 3 4 
C2 

1 5 23 
- - - C3 
3 4 15 

whence Cl = 0.5384, C2 = -0.0769, C3 = -2 X 10-8 . 

(b) Letting 

3 

U3 = 2: d;l/J;(x) 
i=l 

we find 

1 

2 

1 
-

6 

1 

12 

[ ~:~~~: ~:~~: ~:~~::][:~] = [ ~~~~O] 
0.0098 0.0083 0.0115 d 3 1/105 

whence d1 = -12.177, d2 = 48.87, d3 = -24.06. 

(c) The comparison, Table 13-1, brings to light one of the weaknesses of the Rayleigh-Ritz method. It 
is evident that U3(X) is a very poor approximation to u*(x). The reason is to be found in the fact 
that the functions I/!;(x) are linearly dependent: 

The exact equations satisfied by the d; are 

13 13 13 1 - -- d1 -
630 1260 1260 60 
13 47 49 1 - - d2 

1260 6930 13 860 140 
13 49 47 1 -- d3 

1260 13860 6930 105 
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Table 13-1 

x U3(X) U3(X) U* (X) 

0 0.5384 0 0.5378 

0.1 0.53071 -0.23444 0.5357 

0.2 0.52302 -0.5542 0.5299 

0.3 0.5153 -0.6331 0.5214 

0.4 0.5076 -0.4069 0.5111 

0.5 0.4999 0.0142 0.5000 

0.6 0.4922 0.4332 0.4888 

0.7 0.4845 0.6532 0.4785 

0.8 0.4768 0.5659 0.4700 

0.9 0.4691 0.2381 0.4642 

1.0 0.4600 0.0 0.4600 

This set of equations is inconsistent and has no solution. The system of (b) was obtained from this 
one by rounding off. Evidently, a careless application of the Rayleigh-Ritz procedure can lead to 
disastrous results . 

The functions l/J,(x) and l/J2(X) compose an independent set and yield the approximation 

ui(x) = 7.76l/Jb) + 1.02l/J2(X) 

Now, u!(x) turns o ut to be a less accurate approximate solution than U3(X), even though it satisfies 
the boundary conditions of the problem, whereas U3(X) does not. This illustrates a second 
undesirable feature of the Rayleigh-Ritz approximation procedure : the success of the method is 
de termjned by the choice of trial functions. Unfortunately, there are no dependable a priori clues as 
to what constitutes a " good" set of trial functions. 

13.4 Let fl, 5, p, q, and f be as in Problem 13.1; in addi tion, let b = (hI> ... , bn ) de note a vector 
field defined on n. Consider the boundary value problem 

- v· (p(x )V u) + b(x) · Vu + q(x)u = f (x ) 

u = gl(X) 

au 
on = gix) 

in n 
on 5 l 

(1) 

(2) 

(3) 

(a) Explicitly describe the construction of the Galerkin approximation to the weak solution of 
(1 )-(2)-(3). (b) Show that if b = 0 on nand 4>i = !/Ii for j = 1, . . . , N, then the G alerkin 
approximation coincides with the Rayleigh-Ritz approximation as constructed in P roblem 
13.1. 

(a) From Section 12.5, the weak formulation of (J }-(2}-(3) is to fi nd u* in d satisfying 

where 

K[u*, v] = F[v] 

d == {u in H'(O) : u = gl on Sd 
At "" {v in H ' (O) : v = 0 on Sd 

K [u, v1 == L. [pVu · Vv + (b . Vu + qu )v] dO 

F[v] == J jv df! + J g2 v dS 
n 52 

for all v in At 
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Let </>\, ... , </>N denote N independent trial functions from .At and let ~l, . .. , ~N denote N 
independent weight fun ctions also from .At. Then, for an arbitrary </>0 from d, the Galerkin 
approximation to the weak solution of (1 )--(2 )--(3) , 

N 

ul.,= 2: Cj</>j (Co = 1) 
j ~ O 

must satisfy 

K[ul." ~m] = F[~ml for m = 1, ... , N 

i.e. 
N 

2.: Amjc; = Fm (4) 
j = l 

where, for 1 :5 m, j :5 N, 

Amj == t [p V</>; • V~m + (b' V</>; + q</>;)~ml dn 

Fm == F[~mJ - t [pV</>o' V~m + (b. V</>o + q</>o)~ml dn 

Note that in general Am; 01 A jm . The solution c1, . .. , cl., of (4) yields the Galerkin approximation. 

(b) Under the stated conditions, system (4) becomes identical to system (5) of Problem 13.1. 

13.5 Construct the Galerkin approximation to the weak solution of the problem 

- (uxx + Uyy ) + 2ux - uy = 1 in n = {x> 0, y > 0, x + 2y < 2} 

u = 0 on SI = {x + 2y = 2} 

ux(O, y) = y on 0 < y < 1 

uy (x, 0) = 0 on 0 < x < 2 

Use the single trial func tion ¢(x, y) = (2 - x - 2y )(1 + x + y) and the single weight function 
ljJ (x, y) = 2 - x - 2y. 

We have u!(x, y) = ci</>(x, y), where ci is given by 

Now, by computation, 

so that ct = -1/42. 

ci K [</>, ~l = F[~l 

K[</>, ~] = t [</>x~x + </>y~y + (2</>x - </>y)~] dn = 14 

F[~l=f l ~ dn +f ' y~(O,y)dy =-~ 
n 0 3 

13.6 Describe explicitly the R ayleigh-Ritz procedure for approximating the eigenvalues and 
eigenfunctions of (12.8 )-(12.9). 

Evaluating the Rayleigh quotient (12.12 ) at 

N 

UN = 2: Cj</>j 
i~l 

where the </>J are linearly independent functions in do. we have 

N(C" ... , CN) 

D (Cl, .. . , CN) 
(1 ) 
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N(c" .. . , CN)= ~ {f [p c:vq,j 'Vq,k)+qq,jq,ddn}ClCk== ± AjkCjCk 
j,k- I n j,k ~ 1 

where 

N N 

D (c!, . . . , CN) = L {J rq,jq,k dn } CjCk "" 2: BjkCjCk 
j,k - I n j,k - l 

Note that both A"" [Ajkj and B "" [ElkJ are symme tric matrices , The conditions for minimizing (1), 

aN aD 
-= H ­
aCm aCm 

(m = 1, ... , N) 

translate to the matrix e igenvalue problem AX = JLBX, where 

Thus, JLI , the smallest root (all of which are real) of the characteristic equation 

det (A - JLB) = 0 (2) 

is the Rayleigh-Ritz approximation to AI, the smallest eigenvalue of (12.8)--(12.9). And the components 
of Xl, the eigenvector associated with JLI , generate the Rayleigh-Ritz approximation to the eigenvector 
associated with AI. 

Note that 

JLI= min J[q,j2:minJ[q,j=AI 
AiNC s40 .010 

The larger roots of (2 ) provide approximations for the larger eigenvalues of (12.8)--(12.9), although the 
accuracy of these approximations, after the first, decreases very rapidly. 

13.7 Approximate the lowest fundamental frequency of a homogeneous circular membrane which 
is clamped at its edge. 

Choose units of length and time such that u(r, 0, t) , the out-of-plane displaceme nt at position (r, 0) 
at time I, satisfies 

Un = V 2u(r, 0, t) 

u(1, 0, I) = 0 

r < 1, 0 < 0 < 27T, t > 0 

0 < 0 < 27T, I> 0 

(1) 

(2 ) 

Periodic, cylindrically symmetric solutions are of the form u = I/I(r) sin (A 1/2 1 + 7J) , which implies for I/I(r) 
the Sturm-Liouville problem 

- (rIj!')' = ArIj! 

1/1(0) = finite, 1/1(1) = 0 

0 < r<1 

Apply to (3 )--(4) the (one-dimensional) method of Problem 13.6, using the t rial functions 

Thus, for j , k = 1, 2, 

which give 

7Tr 
q,1(r) = cos-

2 

Alk = f rq,;(r) q,k(r) dr 

9~:4l 
16 

Solution of the characteristic equation det (A - JLB) = 0 yields the Rayleigh-Ritz approximations 

(3 ) 

(4) 
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J.LI = 5.790 J.L2 = 30.578 (5) 

to Al and A2 , the two smallest eigenvalues of (3)-(4). 
For comparison, the exact solution of (3)-(4) is !/J = Jo(pr), where p is a zero of the Bessel function 

Jo(x). This implies that, to three decimals, 

Al = 5.784 A2 = 30.470 (6) 

which testifies to the remarkable accuracy of the Rayleigh-Ri tz method under a happy choice of trial 
functions. (Bessel functions resemble sine waves.) 

Supplementary Problems 

13.8 Using the trial functions <PI(X) = x(l- x) and <P2(X) = x2(1- x), construct one-term and two-term 
Rayleigh- Ritz approximate solutions to 

-u"(x) - xu(x)= x 

u(O) = u(l) = 0 

O< x<l 

13.9 Obtain a three-term Rayleigh-Ritz approximate solution to 

- u"(x) + (1 + x2)u(x) = x2 

u'(O) = u '(l) = 0 

O< x < l 

usi ng trial fun ctions (a) 1, x, and x 2
; (b) 1, cos 'TTX, and cos 27TX. 

13.10 Construct a three-term Rayleigh-Ritz approximate solution to 

using the trial functions 

u= + U yy = x 

u=O 

u.(O, y) = 0 

uAx, 0) = 0 

x2+ y2 < 100, x >0, Y > 0 
x2+ y2 = 100 

0 < y < 10 

O< x < lO 

13.11 Construct the Rayleigh-Ritz approximate solution to 

u= + Uyy = 1 
u=O 

in 11: 0 < x, Y < 1 
on S 

using trial functions <PI = x(x - l)y(y - 1) and <P2 = x2(x - 1)y2(y - 1). 

13.12 Construct a Rayleigh-Ritz approximation to the (singular) solution of the problem of Fig. 13-2, using 
N = 2, with <po(x, y) = 1 and 

<P2(X, y) = xy(l + xy) 

13.13 Show that the Rayleigh-Ritz conditions (13.2) are equivalent to 

(m = 1,2, .. . , N) 

i.e., the "directional derivative" of J at UN must vanish in each of the N "directions" <Pm. 
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y 

Uy = 0 
2 .... ----.. 

u=l 
U, = 1 

Uy =-1 
\ -

I 

o u=l x 

Fig. 13-2 

13.14 Find the characteristic equation for the R ayleigh-Ritz approximate eigenvalues of the problem 

-u"(x) = Axu(x) 

u(O) = u(l) = 0 

O< x<1 

if the trial functions are ¢, = x(1 - x) and ¢2 = x\1 - x). (The true values are ,\ 1 = 18.9, '\2 = 81.2.) 

13.15 Show that the eigenvalues of 

- U(4)(X) = ,\ u(x) 

u(O) = u(l) = u'(O) = u'(I) = 0 

can be obtained by minimizing the functional 

over an appropriate class of functions. 

f ¢"(X)2 dx 

J[¢j=--­

f ¢(X)2 dx 

13.16 Construct the Galerkin approximation to the solution of 

O< x<1 

-u"(x)-4u(x)=x 

u(O) = u(l) = 0 

O<x<1 

using trial functions 

¢,(X) = x(x - 1) 

and weight fu nctions !/Il(X) = 1, !/I2(X) = x. 

¢ 2(X) = x(x - 1)(x -!) 



Chapter 14 

The Finite Element Method: 
An Introduction 

The success of the approximation methods presented in Chapter 13 is largely dependent on the 
selection of an effective collection of trial functions cf>j and/or weight fun ctions !/Ij. If these functions 
are chosen from certain famil ies of piecewise polynomials, called finite element spaces, the following 
advantages are realized: 

(i) It is possible to deal in a systematic fashion with regions n having curved boundaries of 
rather arbitrary shape. 

(ii) One can systematically estimate the accuracy of the approximate solution in terms of the 
adjustable parameters associated with the finite element family . 

(iii) The coefficient matrix and data vector for the system of algebraic equations defining the 
approximate solution can be efficiently generated by computer. 

14.1 FINITE ELEMENT SPACES IN ONE DIMENSION 

Suppose tha t the intervaJ [0, 1] is subdivided in to N subintervals each of length h = liN. Let 
Xj = jh (j = 0, 1, ... , N ) denote the nodes in the interval [0, 1]. Then the fi ni te element space 
denoted by Sh [ k, r] shall consist of all functions cf>(x ) defined on [0,1] such that (i) on each subin terv aJ 
[xj> xj+ 1], cf>(x ) is a polynom ial of degree at most k; (ii) cf>(x) has r continuous derivatives on [0, 1], 
which is to say, cf> belongs to C'[O, 1] . 

If r = 0, cf> is continuous but not necessarily differentiable at nodes. If cf> is to be allowed to be 
discontinuous at nodes, we set r = -1. Evidently, Sh [k, r J is a finite-dimensional vector space (a 
subspace of L 2(0, 1» and so may be characterized by giving a basis ; i.e ., a linearly independent set 
of elements {cf» that spans the space. 

Modifications for the case of nonuniform grids are easily developed. 

EXAMPLE 14.1 A basis for Sh[O, -1], the piecewise constants, is given by 

Xj _ l:5 X :5 X j 

otherwise 

for j = 1, 2, . . . , N (Nh = 1). See Fig. 14-1. The functions in Sh [0, - 1 J are in e(O, 1) bu t are not continuous . 

.xo = 0 

Fig. 14-1 
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EXAMPLE 14.2 By Problem 14.1, the "hat functions" (see Fig. 14-2) 

Xo~ x ~ Xl 

otherwise 

Xi-l ~X ~Xi 

Xi ~ X ~ xi+! 

otherwise 

otherwise 

(j = 1, ... , N - 1) 

[CHAP. 14 

where Nh = 1, compose a basis for Sh [1,0], the piecewise linear functions. Note that this space is (N + 1)­
dimensional and that the basis functions have the convenient normalization 4>i(Xk) = 0ik (j, k = 0, ... , N). The 
functions in Sh [1,0] are continuous and have square-integrable first derivatives on [0,1]. 

o.(x) / 7 , 
Fig. 14-2 

EXAMPLE 14.3 A basis for Sh[3, 1], the piecewise cubic Hermite functions, is jointly provided by the two 
families (j = 0, ... , N; Nh = 1) 

{
(Ix - xil- h?(2Ix - xii + h)/h 3 

4>i(X)= ° 
{

(x - xi)(lx - xil- h)2/h2 
.pi(X)= 0 

See Fig. 14-3. Note the properties 

Xj-l S X S Xj+l 

otherwise 

Xj-l S X S Xj+l 

otherwise 

4>i (Xk) = 0ik 

4>;(Xk) = ° .pi (Xk) = ° 
.p;(Xk) = 0ik 

for j, k = 0, ... , N. The functions in Sh[3, 1] are continuously differentiable on [0, 1] and have second derivatives 
which are piecewise constants (hence the second derivatives are square integrable). 

/ S!Ope=l 

(a) / (b) 

Fig. 14-3 
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14.2 FINITE ELEMENT SPACES IN THE PLANE 

Let 0 denote a bounded region in the plane and suppose that 0 is decomposed into polygonal 
subregions 01' ... , ON' called finite elements. Let hj denote the length of the longest side in OJ and let 
h = max hj" Finally, let Oh denote the polygonal region that is the union of all the OJ" Note that if the 
boundary of 0 is curved, then Oh may not coincide with O. We will denote by Sh[k, r] the space of all 
functions 4>(x, y) which are defined on Oh and satisfy (i) on each OJ' 4>(x, y) is a polynomial in (x, y) 
of degree at most k; (ii) 4>(x, y) has r continuous derivatives with respect to both x and y in Oh. 

As in one dimension, a fin ite element space Sh [k, r] will be specified via a basis composed of 
elements 4>j (x, y) associated with the nodes of the decomposition; i.e., with the vertices of the 
polygons. 

Triangular Finite Elements 

Let 0 be decomposed into triangular subregions, 0 1, ... , ON' where no triangle has a vertex on 
the side of another triangle (a proper triangulation; see Fig. 14-4). Euler's polyhedral fonnula shows 
that any proper triangulation into N triangles will have M nodes (vertices), where 

N+5 
--s,Ms,N+2 

2 

Therefore, we expect Sh(k, r) to be approximately N-dimensional. 

(a) Proper triangulation (b) Improper triangulation. 

Fig. 14-4 

EXAMPLE 14.4 Let the nodes of a proper triangulation of U into N triangles be labeled Zl, . .. , ZM. Then a 
basis for Sh[1, 0], the piecewise linear functions on un, is provided by the family 4>l(X, y), . . . , 4>M(X, y) that is 
uniquely defined by the conditions 

(i) There exist constants A jk , B jk , Cjk such that 

for 1 :S j :S M, 1:s k :S N; i.e., each 4>j is piecewise linear on un. 

(ii) (1 :S i, j:S M) 

The finite element space of Example 14.4 provides functions that are continuous on 0 (strictly, 
on Oh) and have first-order derivatives that are square-integrable (but are generally discontinuous). 
These functions would be suitable for constructing approximations to the variational solution of a 
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boundary value problem of order two. For higher-order boundary value problems, functions having a 
higher degree of smoothness are required. Functions that are continuous, have continuous first 
derivatives, and have square-in tegrable second de rivatives, must at the least be piecewise cubic. Such 
functions may be generated in more than one way. 

EXAMPLE 14.5 Suppose that on each ilk the func tion ¢i (X, y) is of the form 

¢j (x, y) = A jk + Bjkx + CjkY + D jkx 2 + Ejkxy + F,.k y2 + GjkX3 + H,.dx 2y + xy2) + Ijky3 

and , together with OX¢j and Oy¢,., is continuous a t each node Zi. Since there are 3 nodes on each triangle ilk, we have 
3 x 3 conditions for de te rmining the 9 un knowns A jk , ... , Ijk. The functions ¢" . .. , ¢M so determined 
con tilute a basis for Sh [3, 1]. 

Rectangular Finite Elements 

Retaining the no tation of the preceding subsection, we have for any proper decomposition of n 
into rectangles (where "proper" is defined as in the case of triangles) 

N+3::s; M::s;2N+2 

EXAMPLE 14.6 A basis for the space of piecewise linear functions on il\ Sh[l, 0], is provided by the family of 
functions ¢,(X, y), ... , ¢M(X, y) defined by: 

(i) O n each ilk (1:s: k :s: N) , 

(1 :s: j :s: M) 

(ii) (1:s: i, j:s: M) 

In fact, conditions (i) and (ii) uniquely determine the ¢dx, y) as products ¢i(X)¢j(Y) of the one-dimensional 
" hat functions" of Example 14.2. See Problem 14.4. 

EXAMPLE 14.7 Consider the space Sh [3, 1] relative to the decomposition of il into rectangular subregions. A 
basis for the space is provided by the 2M functions 

(1 :s: k :s: M), where (Xi, yj) are the coordinates of vertex Zk and where the ¢m (x) and "'m (x) denote the piecewise 
cubic Hermite functions of one variable described in Example 14.3. 

14.3 THE FINITE ELEMENT METHOD 

When the solu tion of a boundary value problem is approximated by one of the techniques of 
Chapter 13 and when the trial functions are chosen from one of the finite element families, the 
approximation scheme is referred to as a finite element method. For problems in one dimension (i.e., 
for ordinary differential equations), fin ite element methods generally do not offer any advantage over 
finite difference methods. However, for certain problems in two or more dimensions, finite element 
methods provide distinct advantages over finit e difference methods. On the other hand, the finite 
element approach requi res complex, sophisticated computer programs for implementation, and the 
use of library software is to be recommended. 
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Solved Problems 

14.1 Let </>0' </>1' . . . , </>N denote the hat functions of Sh[1 , 0] defined on (0,1]. (a) Show that this is a 
family of N + 1 independent functions in Sh[1 , 0] whose span is just Sh(l, 0]. (b) Describe the 
relation between u(x) in qo, 1] and U (x) in Sh[1, 0], where 

N 

U (x) == 2: u(x) </>j(x) 
j~O 

(a) If we write F(x) = Co<Po(X) + ... + CN<PN(X) and suppose that F(x) vanishes for every x, then we 
must have Co = Cl = .. . = CN = 0, since F(xj) = Ci (0:$ j:$ N). Thus the <pj are linearly in­
dependent. To see that the <Pi span 5 h[I , 0], let v(x) be an arbitrary function in 5 h[l, 0) and form 
the function 

N 

w(x) = 2: v(Xj)<pj(x) 
j <=< O 

Now W(Xk) = V(Xk) for each k, since <Pj(Xk) = 8jk . In addition, w(x) and v(x) are linear on each 
subinterval [Xk-l, Xk] and agree at the endpoints Xk-l and Xk. This implies that w(x) = v(x) on each 
subinterval and hence on all of [0, 1); i.e., the <Pi span 5 h[0, 1]. 

(b) For arbitrary u(x) in qo, 1], not necessarily in 5"[1,0], the function U(x) is the piecewise linear 
interpolating approximation to u(x); see Fig. 14-5. 

Fig. 14-5 

14.2 Let a regular hexagonal region, of side 1, be properly triangulated, as in Fig. 14-6. Compute a 
basis for SI[l , 0], the piecewise linear fu nctions on 0 1

• . 

The basis functions <Pi (X, y) satisfy the conditions 

(j, k = 1, ... , 7) 

<pj(X, y) = A jk + Bjkx + Cjky on ilk 

The coordinates (Xk, Yk) of the node Zk are as follows: 

(j = 1, ... ,7; k = 1, . . . , 6) 

Zk 1 2 3 4 5 6 7 

Xk 1 2 3/2 1/2 0 1/2 3/2 

Yk V3/2 V3/2 V3 V3 V3/2 0 0 

(1) 

(2) 
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y 

4 .... -- -_ ..... 3 

V3n~~---------t~----------1t 

Then, on .0.1, 4>1(X, y) satisfies 

and hence, 

4>1(ZI) = All + BlI(l) + CII (V3/2) = 1 

4>1( Z2) = All + Bll(2) + Cll(V3/2) = 0 

4>1(Z7) = All + Bll(3/2) + Cu(O) = 0 

3 1 
- 4>I(X, y) = - - x + - y 

2 V3 
for (x, y) in .0.1 

x 

[CHAP. 14 

Continuing in this way to use the conditions (1) and (2), we can solve for each 4>jk(X, y), the linear 
function representing 4>i (x, y) on the triangle .o.k: 

3 1 
4>l1(X, y) = -- x + - y 

2 V3 
5 1 

4>dx, y)=--x--y 
2 V3 

2 
4>13(X, y) = 2 - V3 Y 

1 1 
4>14(X, y) = -+ x --y 

2 V3 
1 1 

4>IS(X, y) = - - + x + - y 
2 V3 

2 
4>16(X, y) = V3 y 

3 1 
4>21(X, y) = - - + x + - y 

2 V3 
1 1 

4>dx, y) = - - + x - , '" Y 
2 v3 

(k = 3, 4,5, 6) 

Note that </>2(x, y) vanishes identically off of .0.1 and ~. This is a result of condition (1). Because 
only .0.1 and .0.2 contain the vertex Z2, </>2 must vanish a[ all three vertices of .0.3, .0.4, .o.S, and .0.6. But 4>2 is a 
linear function of x and y on each .o.k and hence 4>2 must be identically zero on .0.3 through .0.6. It follows 
from this that on each triangle .o.k there are just three of the 4>jk which are nonzero: 

Evidently, 4>jk is nonzero only if Zj is a vertex of .o.k. This leads to the fo llowing somewhat mo re efficient 
algorithm for generating the nonzero 4>i k. 
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Input Data: N = number of triangular subregions 

M = nu mber o f vertices 

Table I. Coordin ates of vertex: Z j (1 -s. j -s. M) 

j Xi Yj 

1 Xl YI 

M XM YM 

Table II. List of vertices z~ that belong to triangle flk 

k Z~ Z~ Z ~ 

1 z: zi Z ~ 

N Z;" z 'i zj" 

Algorithm: FOR K = 1 to N 
FOR L = 1 to 3 

Find J = I(L, K) such that ZJ = z~ 
Load Lth row of 3 x 3 coefficient matrix [M] with (1, XJ, YJ) 

FOR L= 1 to 3 

Solve: 

where led = unit 3-vector with a 1 in the Lth place 
Save: A LK , BLK , CLK 
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Output: Th ree 3 x N matrices, A"" [Aid , B "'" [B,.], C "" [C'k] , containing the coefficients needed to form 

cPlk (X, y) = Alk + B ,kX + GkY (l = 1,2,3; k = 1,2, . .. , N) 

Note that the index I is not necessarily the number of the vertex at which cP = 1; the /-vaJue of that 
special vertex may be read from Table II. 

In the present problem, N = 6, M = 7. Table I has already been given; Table II is as fo llows: 

k 

1 

2 

3 

4 

5 

6 

Applying the algorithm then leads to 

3 1 
cPI= -- x + - y 

2 v3 
3 1 

z~ 

1 
1 

1 

1 

1 

1 

cP2 = - -+ X + - y 
2 v3 

2 
cP7= l --y 

v3 

z~ z ~ 

2 7 

2 3 

3 4 

4 5 

5 6 

6 7 

On flz: 
5 1 

cPI = -- x- - y 
2 v3 

1 1 
</>z= --+x--y 

2 v3 
2 

cP3=-1 +-y 
v3 
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2 
<p,=2--y 

V3 
3 1 

4>3 =--+X+-y 
2 V3 

1 1 
4>4 = --X+-y 

2 V3 

1 1 
<p,= --+x+-y 

2 V3 
1 1 

<P5=--X+-y 
2 V3 

2 
<P6= 1- - y 

V3 

1 1 
<p,=-+x--y 

2 V3 
2 

<P4= -l+-y 
V3 

3 1 
<Ps=--x--y 

2 V3 

2 
<p,=-y 

V3 
3 1 

<P6=--X--y 
2 V3 

1 1 
<P7=--+X--y 

2 V3 

[CHAP. 14 

14.3 Let n denote the circular region indicated in Fig. 14-6; the boundary S (dashed circle) is 
supposed to be partitioned into arc S2' the minor arc between nodes 2 and 3, and the 
complementary arc SI' Solve by the finite element method 

Uxx + Uyy = 0 

au 
-=0 
an 

inn 

U = g on Sj 

under the assumption that g(Z4) = g(zs) = g(Z6) = 100 and g(Z7) = -100. 

A finite element solution would consist in applying the Rayleigh-Ritz procedure (Section 13.1) to 
the functional 

with trial functions drawn from 5'[1 , OJ. In terms of the basis functions <p" ... , <P7 ascertained in 
Problem 14.2, we take as At the subspace spanned by <p" <P2, and <P3 (these vanish, as is requ ired, at 
nodes 4, 5, 6, and 7, where u is prescribed). As the function <Po from d, which must assume the 
prescribed boundary values, choose 

Carrying out the minimization of 

we obtain ci = 42.85, d = 8.56, d = 48.56. Our piecewise linear approximate solution is therefore 

u;(x, y) = 42.85 <pb, y) + 8.56 <P2(X, y) + 48.56 <Pl(X, y) 

+ lOO[ <P4(X, y) + <Ps(x, y) + <P6(X, y ) - <f>,(x, y)J 

14.4 A n L-shaped region n is decomposed into squares, as shown in Fig. 14-7. Construct a basis for 
the piecewise linear funct ions, SI!4(1, O], on n i

/
4 = n. 

Let node z. (k = 1,2, ... ,19) have abscissa Xi (i = 0, ... ,4; see Fig. 14-2 with N = 4) and 
ordinate Yi (j = 0, ... ,4; replace X in Fig. 14-2 by y, and again take N = 4). (It is obvious how the 
foregoing would read if the decomposition were into rectangles, with different numbers in the x- and 
y-directions.) Then the basis funct ions for 51/4 [1, OJ are given by 

(1) 
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u __ y~1 

10 
illO 

12 9 

!4 
8 7 6 

13 5 

ilB ill ~ il3 

14 4 
I 2 3 

il7 ~ ils il4 

15 --y~o 

I 16 17 18 jI9 
x=o x~1 

Fig. 14-7 

To make (1) explicit, read off from Fig. 14-7 the values of i and j answering to a given k, and then 
appropriate cf>i(X) and cf>j(Y) from Example 14.2, with j(1/4) substituted for Xj or yj . For instance, 

cf>s(X, y) = cf>1(X)cf>2(y) = {(01- 14X-11)(1- 14Y -21) O:5x:5 1/2, 1/4:5 Y :53/4 
otherwise 

14.5 Consider the boundary value problem 

u =g 

au 
- == h 
an 

inn (1) 

(2) 

(3) 

where p is the region of Problem 14.4, 51 is the intersection of the boundary 5 with the 
coordin'ate axes, 52 = 5 - 51' and where j, g, and h are prescribed fu nctions of (x, y). Set up a 
system of linear algebraic equations for the coefficients in a fi nite element approximate 
solu tion to (1 )-(2 )-(3). 

The procedure parallels that of Problem 14.3; this time we appeal to Problem 13.1, wherein were 
developed the Rayleigh-Ritz equations for a class of boundary value problems including (1 )-(2)-(3). 
Thus, in Problem 13.1, set n = 2, P == 1, q == 0, gl = g, g2 = h. Rewrite (4) of Problem 13.1 as 

10 19 10 

U1O(X, y) = cf>o(x, y + L Ckcf>k (x, y) == L g(Zk) cf>k (x, y) + L ck'f/h (x, y) 

where the cf>k(X, y) are the basis functi ons fo r 5 1/ 4 [1 , 0], as given by (1) of Problem 14.4. Then the desired 
linear system in c), .. . , C10 is 

10 

L AmkCk = Fm (m = 1, . .. ,10) 
k =l 

with 

Amk = fa Vcf>m(X, y ) . Vcf>dx, y ) dx dy 

= i J V cf>m(X, y ) ·Vcf>dx,y )dx dy 
1' - 1 nr 

(4) 

and 

Fm=J f(X,y)cf>m(X,y) dxdy + J h(X,y)cf>m(X,y)d5- J Vcf>m ,Vcf>odxdy 
n 52 n 

(5) 
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In (5), f(x, y) and h(x, y) are to be replaced by their piecewise linear approximants (see Problem 14.1) 

'9 

F(x, y) = L f(zj)c/Jj(x, y) for (x, y) in 0 
j=l 

10 

H(x, y) = L h(zj)c/Jj(x, y) for (x, y) on S2 
j-4 

To illustrate the application of (4) (and to indicate why such matters are normally consigned to the 
computer), let us evaluate Au (= A 2 . ) . Since (refer to Fig. 14-7) 

c/J.(x, y) = c/J.(x)c/J.(y) = {~1-14X - 11)(1-14y -11) 

( ) -A.( )A.( )_{(1-14X-2J)(1- 14Y-l l) 
c/J2 x, y - '1'2 X '1" Y - o 

it follows that 

on O. U06U07UOS 

elsewhere 

on O. U O2 U Os U 0 6 
elsewhere 

has the representation 32(1- 2x)(4x - 1) - 256y2 in 0 6 , takes mirror-image values in 0., and vanishes in 
all other 0,. Hence, 

~ m 1 
Al2 = 2 J dy J [32(1- 2x)(4x - 1) - 256y2] dx = --

o 1/4 3 

In similar fashion, the constants Fm can be evaluated by one-dimensional integrations of (at worst) 
quadratic functions. 

The analogous procedure in the case of a decomposition of 0 into triangles Ok is somewhat more 
complex, since it involves the calculation of integrals of the form 

On the other hand, for a given degree of accuracy, the dimension M of the triangulated problem will 
generally be lower than that of the rectangular decomposition. 

Supplementary Problems 

14.6 For the triangulated hexagon (h = 1) shown in Fig. 14-8, use the algorithm of Problem 14.2 to genera te a 
basis for the piecewise linear functions, S2[1,0] . 

14.7 Consider the three-lobed region 0 in Fig. 14-8 bounded by the dashed curve S. Let S. be the circular arc 
centered on node 3, and let ~ be the remainder of S. Using the approximating functions developed in 
Problem 14.6, solve the following problems by the finite element method: 

(a) 

(b) 

u= + Uyy = 0 inn 

u = g on S 

where g(zs) = g(Z9) = - g(zlI) = - g(Z.2) = 50, and g = 0 at all other boundary nodes. 

u= + Uyy = 0 
au 
-=0 
an 

inn 

on S. 

u=g onS2 

where g(za) = g(Z9) = - g(zlI) = - g(zl2) = 50, g(zlO) = O. 
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14.8 

(c) 

y 

\ 

Ai-----------I~--------~~ , , , , , 
Vln •. ~--------~~ ________ ~ ____________ ~6 

o 

Fig. 14-8 

u.u+u,.,.=o 
au 
-=0 
an 
u=g 

inO 

on 4ZS 

on S - z:;z; 

x 

A two-dimensional region 0, formed by cutting a groove in a rect~le, is triangulated as in Fig. 14-9 
(0 = 0v'S). Generate by the algorithm of Problem 14.2 a basis for S 5[1,0]. 

1 1 7 8 
y= 4 ... ____ .. 

y=2 

x=l x=2 x=3 x=4 x=5 

Fig. 14-9 
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14.9 Let S = S, U S2 denote the boundary of the region n of Problem 14.8, where SI contains nodes Z9 

through Z'6. Using the approximating functions developed in Problem 14.8, solve by the finite element 
method 

Uxx +Uyy =O inn 

U = g on S, 

au 
-= 0 on S2 
an 

if (a) g(Z9) = -g(Z'6) = 5, g(zlO) = g(Z'5) = 0, g(zlI) = g(Z,4) = 2, g(Z,2) = g(Z13) = 4; (b) g(Z9) = g(zlO) = 

g(zlI) = 0, g(Z'2) = 5, g(Z13) = 10, g(Z'4) = g(Z '6) = 20, g(ZI5) = 30. 

14.10 In Problem 14.7(a), show that 

thereby verifying the numerical mean-value property of finite element approximate solutions of 
Laplace's equation. 
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Answers to Supplementary Problems 

CHAPTER 2 

2.19 (a) h . everywhere; (b) p . everywhere ; (c ) e. everywhere; (d) h. Ixl > 1, p. Ixl = 1, e . Ixl < 1; 
(e ) h. y < e-., p. y = e - X, e . y > e- x

; (I) h. x < 0, p. x = 0, e . x> 0; 
(g) h. xy(xy + 1) > 0, p . xy(xy + 1) = 0, e. xy(xy + 1) < 0; 
(h ) h. x y (xy - 1) > 0, p. xy(xy - 1) = 0, e. xy(xy - 1) < ° 

2.21 (a) p(uxx + U yy ), ellipt ic; (b) -p(uxx + U yy ), elliptic; 
(c) UI/ - p(ux x + Uyy), hyperbolic 

2.22 (a) y = const. (e) log Iyl ± x = cons!. (y ¥ 0) 

(b) 2x - y = const., 2x - 3y = const. 

(c) x ± y = const. 

(d) x ± 2V-Y = const. (y < 0) 

(I) 
(g) 

(h) 

x 2 + y2 = cons!. 

5x ± 2(- y)512 = const. 

3x ± 2(- y)312 = const. 

(y < 0) 

(y <0) 

2.24 A I = 1, A2 = 3, A3 = 4 (all positive); 

2.25 T/I = ~I, T/2 = 6/V3, T/3 = 6/2 

2.26 (a ) elliptic (AI = 2, A2= 2, A3= 4 all positive) 

(b) 
1 

~I = - (XI - X3) 
Yz 

6= X2 

T/I = ~I/Yz 

2.27 (a) ~ = 4x - y, T/ = 2x + Y 

(b) ~ = (x + 1?+ xv?+i + log (x + v?+i)-2y 

T/ = (x+l?-x~-log(x+~)-2y 

2.28 (a) 
(b) 

(c) 

(d) 
(e) 

(I) 
(g) 

(h) 

(i) 

(j) 

elliptic: ~ = y, T/ = x + (x 3 /3) 

ell iptic: ~ = x + 2y, T/ = 2x 

parabolic: ~ = x, T/ = Y + x 

hyperbolic : already in canonical fo rm 

parabolic: ~ = x, T/ = y/x (x ¥ 0) 

hyperbolic : ~ = xy, T/ = x/y (xy ¥ 0) 

same as (I) 
parabolic: ~ = x, T/ = 2x + y2 

elliptic for xy > 0: ~ = 3Iyll12, T/ = Ix1312 

elliptic for xy < 0: ~ = lyI312, T/ = Ixl3/2 

1 
6= -(X,+X3) 

Yz 

T/3 = ~3/2 

(c) ~ = (1 + V6/2)x - y, T/ = (1- V6!2)x - y 

(d) ~ = (1 + Yz)e X 
- eY

, T/ = (1 - v2)e X 
- e~ 

(e) ~ = tan-I x - tan-I y, 1) = tan - 1 x + tan- I y 

(k) 

hyperbolic for xy > 0: ~ = IxI312 _lyI312, T/ = Ix1312 + lyl312 

parabolic: ~ = x, T/ = eX - eY 

(I) elliptic: ~ = log 11 + yl, T/ = x 

223 
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(m ) parabolic : g = x, Y} = Vx - vY 
(n) hyperbo lic : g = y + csc x - cot X, Y} = y + csc x + cot x 

(0) hyperbolic: g = x 2 
- 2eY, Y} = x 2 + 2e Y (x ;i 0) 

(p) parabolic : g = x, TJ = tan- I x + tan- I y 

2.33 u(x, t) = e - 2x
+

2'v (x, t ) 

CHAPTER 3 

3.38 0 

3.39 4 

3.42 (m and n even), 

amn = 0 (m or n odd and mn;i 1), all arbitrary 

CHAPTER 4 

4.15 u(r, t ) = r-l[F (r - at) + G(r + at)] (r > 0) 

4.23 If VF(X, t; T) solves 

V,(X, t) = V2v(x, t) 

vex, T) = F(x, T) 

x in R", t > T 

X in R" 

then 

satisfies 

4.24 

u(x, t) = L VF(X , t; T) dT 

u1(X, t ) = ~u(x, 1)+ F(x, I) 

u(x, 0) = 0 

x in R n
, t >0 

x in R n 

1 J' u(x, I) = - [F(x + a(/ - T» - F (x - a Ct - T» 1 dT 
2a a 

where F (s ) is an antiderivative of [(s). 

CHAPTER 5 

5.22 Hyperbolic if u 2 + v2 > c2 (supersonic flow), elliptic if u 2 + v2 < c2 (subsonic flow ). 

5.23 (d ) V\UI - V2U2 

UI- Uz 

5.25 (a ) u(x, y) = [(x/y) ; (b) along the line y = x/x 

(
L a)C y (X)2 5.27 (a)u= b(t- a) -- ;(b)u= log (x+y)+--+--

L x+y x+y 



S.28 

5.31 

ANSWERS TO SUPPLEMENTARY PROBLEMS 

( JY 
(a ) u = ljJ(x- et)+ i 4>(cr +x- et, r) dr; (b) u = g (x- 0 f(z)dz )eCY 

1 
(a ) u =- [6 sin (x-3t)- 6cos(x-3t)-sin(x+ 2t) +6cos(x+2t)] 

5 

1 
v = :: [sin (x - 3t) - cos (x - 3t) - sin (x + 2t) + 6 cos (x + 2t)] 

) 

1 
(b) u = sin (x + y), v = - [8 sin (x - 2y)+ 6e x

-
2y - 8sin (x + y») 

6 

5.32 See Fig. A·I. 

p = R/3 

CHAPTER 6 

o 
II 

L 

Fig. A-I 

6.8 (a) ao = I, an = 0 and bn = (1 - cos m T)/m T for n = 1,2, ... 

(b) ao = 7T, an = 2 (cos n7T - 1)/n27T and bn = 0 for n = 1,2, 

(c) ao = 0, an = 0 and bn = -2 (cos n7T)/n for n = 1,2, .. 

225 

x 

6.9 By Theorem 6.1 , the series for F and H converge pointwise, while the series for G converges uniformly . 

6.10 (a) 47T- I 2:(2n-lr l sin(2n-l)x ; (b) 1 
n - I 

6.11 (a) An = (n7T/ e )2 and wn(x) = sin A~n.x for n = 1, 2, ... 

(b) An = [en - ~)7T/e)2 and wn(x) = sin A ;[2 X for n = 1,2, .. . 

(c) An = [en - ~)7T/ef and wn(x) = cos A;,o.x for n = 1,2, .. . 

(d) An = /.I.~, where /.I.n is the n th positive root of /.I. = tan /.I.e, and 

for n = 1,2, ... . 

. sin /.I.n(X - e) 
wn(x) = SIn /.I.nX - /.I.n cos /.I.nX = ----­

cos /.I.ne 



226 ANSWERS TO SUPPLEMENTARY PROBLEMS 

(e) LI = - JL ~!' where JL-I satisfies eU
'" = (JL + l)/(JL - 1) and W-I(X) = exp [- JL-I(2t - x)] + exp [- JL- IX]. 

For n = 1,2, . . . , An = JL ~, where JLn is the nth positive root of JL tan JLt = - 1 and 

Wn (x) = sin JLnX - JLn cos JLnX = [cos JLn (x - t)]Jsin JLn t. 

(f) If t> a - 13, then LI = - JL~ I ' where JL - I satisfies 

e2".e = (1 + aJL )(1 - f3JL )/ (1 - aJL )(1 + f3JL) 

and W- I(X) = (aJL -1 )(aJL + 1)e"'x - e-"'x; if t= a - 13, then Ao = 0, with wo(x) = x-a. For n = 
1, 2, . . . , An = JL ~ , where JLn is the nth positive root of (1 + af3JL 2) tan JL t = (a - f3)JL and Wn (x) = 
sin JLnX - aJLn cos JLnX. 

6.13 Theorem: i.(x) is C k if f'j) (x) is continuous on fO, t] for j = 0, 1, ... , p, and if 

6.15 

6.19 

6.20 

6.21 

6.22 

r)(O) = f'k)(t) = 0 

for k = 1, 3, 5, .. . s: p. 

4 ~ (_ 1)"+1 
(a ) - 2: 2 sin (2n - 1)x 

7T n - I (2n - 1) 
(c) 7T

2+ 122: (-1)"n-2cos nx 

4 ~ (- 1)"+1 
(b) - 2: - - cos (2n - 1)x 

7T n _ 1 2n-l n = l 

n=l 

n -I 

- '25( _2·) sin 1.5(a - 2i) . sin a . sin a O(a)= e-·2a _ _ _ 4e->7a _ _ F(a) = e • a • ---'----....:. 

7T(a - 2i) 

(a) (t-3?H (t - 3) 

1 ~ -J e- i4(x - y) e-2Ix-Y'/(y) dy 
4 _~ 

(b) 1(0) + J' f'(t- 1') d'T 
v-:;;t 0 y-:;;;. 

7Ta 7Ta 

e-S e-2 s 

g(s)=-- -
s s 

6.23 Let a" == (2n + l)b - a and f3n == (2n + l)b + a. Then, 

CHAPTER 7 

7.19 u(x, t) = Ul(X, t) + U2(X, t) + uix, t) 

u ICx, t) = go(t)(x - x 2/2t) + gl(t)(X2/2t) 
1 ~ 

U2(X, t) = - 10 + 2: In exp (- JL~Kt) cos JL"X 
2 n - l 

1 ~ 

O(t)=-- 2: (exp(- a~/4t) - exp(-f3~/4t)] 
v-:;;t n=O 

2 Je where JLn == n7T/ t and, if go(O) = gl(O) = 0, In == - lex ) cos JLnX dx 
t 0 

K 
where F(x, t) == e (go(t) - gt(t)]- gb(t)(x - x 2/2t) - g i(t)(x2 /2t) and 

2 Je Fn (t) == - F(x, t) cos JLnX dx 
t 0 
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7.20 u(x, /) = u,(x, /) + U2(X, /) + U3(X, /) 

u,(x, /) = go(/) + xg,(/) 

U2(X,/)= 2: lnexp(-J-L~K/)sinJ-Lnx 

2 I' 

where F(x, /)==-go(t)-xgf(t) and Fn(t)==-I F(x,/)sinJ-Lnxdx 
t 0 

7.21 u(x, /) = u,(x, /) + U2(X, /) + U3(X, /) 

u,(x, /) = go(t)!J>(x) + g,(/)'l'(x) 

where !J>(x) == (eP(x-fl - l)/p and 'l'(x) == eP(X-l') 

~ ~ f, 
U2(X, /) = 2.: In exp (- J-L ~K/)(sin J-LnX - pJ-Ln cos J-LnX) = 2.: __ n_ exp (- J-L ~K/) sin J-Ln(X - t) 

n- I n~,COSJ-Lnt 

2 1 I e where pJ-Ln = tan J-Lnt and In == 3 I(x) sin J-Ln (x - t) dx 
t cos J-Lnt 0 

U3(X, /) = I' [i exp(-J-L~ K(t - T))Fn(T) sin J-Ln(X - t)] dT 
o n- I cos J-Lnt 

where F (x, /) == K[go(/)!J>"(x) + gl(/)'IJI"(x )] - g6(/)!J>(x) - gf(/)'l'(x) 

2 1 Ie Fn(t) == 3 F(x, /) sin J-Ln(x - t) dx 
t cos J-Lnt 0 

[
-2bX + (4KC - b2

)/] 
7.22 u(x, /) = exp 4K [v,(x, /) + ~(x, /) + V3(X, I)] 

v,(x, /) = go(t)(l - x/ t) + g,(t)(x/t) 

n=i 

where K(x, /) == (47Tt)-'12 e-x2
/
41 and 8(x, /) == 2.: K (x + 2nt, /) 

7.24 u(x, /) = -K f K (x, K(t - T))g(T) dT (see Problem 7.23) 

227 
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7.25 u(x, t) = - L~ e-p(y-x)v(y, t) dy 

v(x, t) = K f h(x, K(t - T))g(T) dT 

where 
X 2 h(x, t)== - -e- X /4' 

v' 47Tr 

7.26 u(x, t) = K f eC('-T)h(x + b(t - T), K(t - T))/(T) dT 

1 - - 1 fx
+

a
, -

7.27 u(x, t) = - [P.(x + at) + p.(x - at)] + - O.(s) ds 2 ~ _~ 

where F. is the even, 2t-periodic extension of 1 from (0, t) to (-00,00). 

1 _ - 1 fx
+

a
, -

7.28 u(x, t) = - [Pm (x + at) + Pm (x - at)] + - Om(S) ds 
2 2a x-a' 

where the mixed, 4t-periodic extension of 1 is defined by Fm(x + 4t) = Fm(x) (all x), together with 

! I(x) 
Fm(x) = -/(U- x) 

I(-x) 

O<x <t 

t < x<2t 

-2t < x<0 

~ t I' I~ n7TX n7Ty n7Ta(t - T) 
7.29 u(x. t) = L - sin -sin -sin I(y, T) dydT 

n ~ 1 n7Ta 0 0 t t t 

n = 1 

(ct. Problem 7.30) 

"=0 "=0 

2nt+x (2n+l)t+x 
where En(x)==---, On(x)== , and 

a a 

(see Table 6-3, line 6) f"'(t - b) == H(t - b)/(t - b). 

7.33 u(x, t) = a L {O"'(t - En(t - x)) + O"'(t - On (x))} - a L {F"'(t - En (x)) + P"'(t - O"(t - x))} 
"=0 " - 0 

= 

7.34 u(x,t)= L {(-l)"g"'(t-E"(t-x))+g"'(t-On(x))}-a L {(-l)"P"'(t-En(x))-P(t-On(t-x))} 
ncO " = 0 

(cf. Problem 7.33) 

7.35 u(x, t) = - P"'(t - x/a) (ct. Problem 7.33) 
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7.36 u(x,t)=- aH(t -x/a) r e-p(I-T)/ (r -x/a) dr 
x/ a 

7.37 u(x, y) = UI(X, y)+ U2(X, y)+ U3(X, y )+ U4(X, y) 

~ cosh mT(l- x) 
Ul(X, y ) = - L In . cos n7Ty 

n - I n7T smh n7T 

where In = 2 J 1 I(y ) COS n1T)' dy (n = 0, 1, ... ), 10 = 0 (for compatibility) 
o 

7.38 

7.39 

7.40 

U2(X, y) = -Ul(1 - x, y) with I replaced by g 

U3(X, y) = u,(y, x) with I replaced by p 

U4(X, y) = -u,(y, 1- x) with I replaced by q 

1 J~ u(r, 0) - u(O, 0) = - - log [1- 2r cos (0 - ¢) + r2l!(¢) d¢ 
27T _~ 

4 rn - (a2/r)" 
u(r, 0) = L - 2 sin nO 

n odd n7T bn - (a /b)" 

1 ~ 

u(x, y) = - J log [(x2 + (y + zf)(x2 + (y - zf)l!(z) dz 
27T 0 

7.41 u(x, y) = f(x)(y - b 2
) + g(x) y2 + v(x, y) 

~ -1 ~ 1 

v(x,y)= L - J e-"~Ix- zl [J H(z, s)cos mTS cos n7Ty ds] dz 
,,-1 n7T -00 0 

where H(x, y)=b2(1"(x)- g"(x)) + f(x)- g(x) 

7.42 u(ro)=r-lJ~ f(¢) d¢ 
, 27T _~1-2rcos(0-¢)+r 

7.43 1 J~ u(r, 0) = + - log [1- 2r cos (0 - ¢) + rl!(¢) d¢ + canst. 
27T _~ 

CHAPTER 8 

8.21 

8.22 

8.24 

(a) 2H(x)- 1; (b) 8'(x); (c) 0 

2 ~ k7TX k7T~ 1 2 ~ k7TX k7T~ - L sin-sin - -+- L cos-cos-
t k=1 t t ' t t k ~ l t t 

1 ~ . n1T)' n7TTJ 
G(x, y; ~, .,,) = - - L e-c Ix-tl SIn - sin -

ac "~1 a a 

8.31 

8.35 

(a ) L* [u ]=uxx+Uyy-ux+uy+ 3 u 

(b ) L *[u] = Uxx + u, 
(c) L ·[u] = Uxx - Un 

(d ) L *[uJ = Uxx + Uyy - (xu)x - (yu)y 

(e) L*[uj =Uxx+ uyy-Yux-xuy 

(I) U[ u] = (x2u)xx + (y 2u)yy 

{ 
aRx + bRy + (ax + by - d)R = 0 

bRx + cR y + (bx + Cy - e)R = 0 

must be solvable for R (R oj. 0). 
8.26 (a) G(x, y;~,.,,) = Go(x, y;~, .,,)- Go(x, y; -~, .,,); 

(b) G(x, y;~,.,,) = Go(x, y;~, .,,)+ Go(x, y; -~,.,,) 8.36 R = eX 
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8.37 (a) L*[v] = v= + Vyy - 2vx - 3vy , v = 0 on x = 0 and x = a, Vy - 3v = 0 on y = 0 and y = b; 

(b) L[G j= 8(x -g)8(Y-T/) O<x,g<a,O < y,T/<b 

G=O 
Gy = 0 

on x = 0 and x = a 

on y = 0 and y = b 

CD e-An1y/ 

8.38 u = e-3y L (-1)" -- sin ll7TX, where An "'" [9 + (n7Tf)'!2 . 
n= 1 .An 

8.40 u = erf (x/~) 

8.41 (a) u = U erf-
x
-; (b) u = U erfc-

x
-; (c) u = U (1 + erf _X_); (d) u = U (erf e- x + erf e+ X) ; 

~ ~2~ 2~~ 

U( e-x e+x) U( x-b x+b x-c x+c) 
(e)u=- erfc--+erfc--; (f)u = - erf--+erf-- - erf - --erf - -
2~~ 2~~~~ 

8.43 (a) G(x,t;g,T)=K(x-g,t-T) and u(x,t)= fL~ G(x,t;g,T)f(g,T)dgdT+ L~ G(x,t;g,O)h(g)dg 

(b) K(X-g,t-T)-K(x+g,t-T) and 

f J~ G(x, t; g, T)f(g, T) dgdT+ r G(x, t; g, O)h(g) dg + K f G«x, t; 0, T)p(T) dT 

(c) K(X-g,t-T)+K(x+g,t-T) and 

r r G(x, t; g, T)f(g, T) dg dT + Joo G(x, t; g, O)h(g) dg - K I' G(x, t; 0, T)p(T) dT 
o 0 0 0 

(d) n~oo [K(x - g+2ne, t- T)- K(x + g+ 2ne, t - T)] and 

f f G(x, t; g, T)f(g, T) dg dT + f G(x, t; g, 0) h(g) dg + K f [G. (x, t; 0, T)p(T) - G,(x, t ; e, T)q(T)] dT 

(e) "~00[K(x-g+2ne,t-T)+K(x+g+2ne,t-T)] and 

I, J e G(x, t; g, T)f(g, T) dg dT + J e G(x, t; g, O)h(g) dg + K J' r G (x, t; e, T)q(T) - G(x, I ; 0, T)p(T)] dT 
o 0 0 0 

8.44 

8.45 

1 
G(x, t; g, T) = k(x, t; g, T) - k(x, t; -g, T) = - [H(a(t - T) -Ix - gl) - R(a(t - T)-Ix + gl)] 

2a 

2 1 m7Ta(t - T) m7TX m7Tg 
(a) G(x, t ; g, T) = - L - sin cos - - cos-e a m oddm7T e e 

for t > T. 

1 00 

(b) G(X,t;g,T)=- L [H (a(t-T)-lx-g- 21lel)- H(a(t -T)-lx+g-(21l - 1)fl)] 
2a "~-OO 

CHAPTER 9 

9.16 (b) It is possible for the roundoff errors to dominate the truncation errors . 

9.22 (a) In the notation of Problem 9.13, with r == k/h2 and s "'" (1 + 2r) - k, 

for t> T. 

for t > T. 
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s -r ° V I •i+1 VIi l 
-r s -r V 2 •i+1 V 2i 

- r s -r V 3 •i+1 V 3i 

- r s - r V N - 2 •i + 1 

° -r s V N - I •i + 1 

(b) By Problem 1 1.11, all eigenvalues of the above matrix C are greater than or equal to 1. H ence the 
method is stable. 

9.23 (a) V- I . I = 2S, VOl = SO, V ll = 2S; other V nl = ° 
V - 2 .2 = 6.2S, V- I.2 = 2S, VQ2 = 37.S, V I2 = 2S, Vn = 6.2S; other V n2 = ° 

(b) V- I . l = 100, VOl = -100, VJI = 100; other V nl = ° 
V- 2.2 = 100, V - I .2 = -200, VQ2 = 300, V 12 = -200, Vn = 100; other V n2 = ° 

V n.i+1 = rVn- l.i + (1- 2r)Vni + rVn+l.j (n = 0,1, ... , N - 1; j = 0, 1, 2, ... ) 

[starting values for (1)] 

[used to eliminate V-l. i from (1)] 

[used to eliminate VNi from (1)] 

9.28 With h = l/N, (Xn, ti ) = (nh, jk), r ~ a2k/h 2, s;:; ck/2h: 

(-r- s)Vn- l •i+1 + (1 + 2r)Vn.i+1 + (-r+ S)Vn+l.i+1 = V ni 
VnO = ° (n = 1,2, ... , N - 1) 

V Oi = 1, V Ni = ° (j = 0, 1,2, ... ) 

CHAPTER 10 

10.14 I 
cos ({3J2) - isa sin ({3/2) I 

I~I = = 1 
cos ({3/2) + isa sin ((3/2) 

(n= 1,2, ... , N -1; j= 0, 1, 2, ... ) 

10.16 (a) u(x, t) = Hcos (x - 2t) + cos (x + 2t)J, u(O. 0.04) = cos 0.08 = 0.99680 

(b) V{)2=0.99680; (c) VQ2=0.99840 

10.17 (a) 8?Vni = (c2s2)8;Vni - kb(Vn.i+1 - Vn,i-I) 

(b) Stable if C
2

S
2 s 1. 

(s~k/h) 

Y 
10.18 (a) u = log x + 210g y; (b) - = {3 = const., xy = a = const. 

x 

(1) 

(2) 

(3 ) 

(4 ) 
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10.19 (a) 

(b) P = (\14.2, ~\14.2) 

(c) 

y 
y" =-x" 

x 

ux(P) 

uy(P) 

u(P) 

Exact Numerical 

0.48795004 0.48795181 

1.95180015 1.95181085 

0.33281394 0.37422268 UcS) 
0.34661688 U:) 

10.21 (b ) ye - x
2

/2 = f3 = const., ye x 2
J2 = a = const., P = (Vsii , 2e3

/
4

) 

10.22 x(P) yep) ux(P) u.(P) 

Exact Vsii = 1.581 2e3
/
4 = 4.234 2e3

/
4 = 4.234 Vsii= 1.581 

Numerical- 5/3 = 1.666 10/3 = 3.333 10/3 = 3.333 5/3 = 1.666 

* The iterative method of Problem 10.5 could be used to improve these values. 

10.23 (a) U21 = 0.2727, u(l, 0.2) = 0.2076; (b) U lO • 1 = 0.4925, u(l, 0.04) = 0.4906 

10.24 (a) U21 = 0.7518, u(1, 0.2) = 0.7646; (b) U lO • 1 = 0.8350, u(l, 0.04) = 0.8356 

10.25 U ll = 0.4991 X 10-3
, u(O.I, 0.1) = 0.1666 x 10-3 

10.26 U91 = 0.12333, u(0.9, 0.2) = 0.18 

10.27 U ll = 0.7633, u(0.5, 0.2) = 0.7592 

10.28 U21 = 0. 1680, u(0.2, 0.2) = 0.1666 

10.29 Exact Numerical 

x(P) 1.044 1.0 

u(P) 0.3132 0.3 

10.30 In both solutions, x(P) = 13/6, u(P) = -5/6. 

u(P ) 

xy = 6.694 

50/9 = 5.555 
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CHAPT ER 11 

11.17 

where, e.g ., a m -1/2.n represents a mean value (possible choices include the arithmetic, geometric, or 
harmonic mean) b tween a m-I.n "" a(Xm-l, Yn , U m-I.n) and amn "" a(xm, Yn, Umn ). 

11.18 Set c = f""O in Problem 11.17. 

11.19 (a) -4UII + U21 + U I2 = 0 

-3U21 + UII + U31 = 0 

- 4U31 + U21 + U32 = -0.25 

-3UI2+ UII + U 13 = 0 

-3U32 + U31 + U33 = -0.5 

-4U13 + U 12 + U23 = -0.25 

-3U23 + U I3 + U33 = -0.5 

- 4U33 + U23 + U32 = -1.5 

(c) Urnn 

3 0.1874 0.4249 

2 I 0.0749 -

1 0.0374 0.0749 

I/< 1 2 

(b) U~tl = (U~1 + U~2)/4 

mtl = (U~tl + U~,)/3 
U~tl = (U~tl + U~2 + 0.25)/4 

U~tl = (U~tl + m3)/3 

U~2+1 = (U~tl + U~3 + 0.5)/3 

U~;l = (U~2+1 + U b + 0.25)/4 

U~l= (U~;l+ U~3+0.5)/3 

U ~;l = (Ub+ 1 + U ~tl + 1.5)/4 

0.5874 3 0.075 

0.4249 2 0.05 

0.1874 1 0.01 

3 IX 1 

11.20 (a) -4U22 + U32 + U23 + U 12 + U21 = 0 ; (b) -4U3S+ U34 + 2U25 = 0 ; 
(c) -4US1 + U41 + Us2 +2=0 

(d) 

Urnn 

5 0.0822 0.1543 0.1943 

4 0.1746 0.3406 0.4689 

3 0.2755 0.5648 1.0 

2 0.3629 0.6429 0.8748 0.9552 

1 0.5330 0.7693 0.9012 0.9607 

IX 1 2 3 4 

11.22 U~+l = U7 + R ~tlaiil 

11.24 In (11.8) and (11.9), replace m + jJ., n + v by m + v, n + jJ.. 

u = mn/l6 

0.375 0.5625 

0.25 0.375 

0.05 0.D75 

2 3 

0.9854 

0.9865 

5 
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L~[~ 
0 

n u~u 
0 

~l 11.25 1 3 

3 0 

11.26 (a ) (c - 4)Umn + Um,n+1 + Um- I, n + Um, n- l + Um+1,n = Fmn 

[ 0 

-1 -1 

-~l (b) 
1 -1 0 0 T J =--

c-4 -~ 0 0 -1 

-1 -1 0 

2 -2 
(c) 0,0, - - , - -

c-4 c-4 

(d) c > 6 or c <2 

CHAPTER 12 

12.14 

(u in d, v in Ai) 

- y 2 uxx - X
2

Uyy = F 

y 2 xux + x 2 yuy = 0 

inD. 

on S 

12.15 Ai= d J, 8J[u ;v1=21 [(\12u)(~v)-FvldD. 
n 

(u, v in Ai) 

12.16 £i) = {u in H4(D.) : u = :: = 0 on s}, VJ[u] = 2(V4 u - F) for u in £i) 

for u in q; 

12.19 Minimize 

J [u] = I (Vu·Vu -2Fu)dD.-2 I g2u dS+ J (pu2 - 2g3 U )dS 
n S2 S3 

12.23 (a) Find u in d = {u in HI (D.) : u = 0 on S} such that 

L (uxvx + UyVy + 2uxv) dx dy = L v dx dy 

for all v in Ai = d, (b) Find u in d = {u in H'(D.): u(x, 2- x) = 0 for 0 < x < 2} such that 

, I' I (UxVx + UyVy + 2uxv) dx dy = I v dx dy + I (y - 1)v(0, y) dy + x(x - 1)v(x, 0) dx 
n n 0 0 

for all v in Ai = d , 



ANSWERS TO SUPPLEMENTARY PROBLEMS 235 

CHAPTER 13 

13.8 ui(x) = 0.263x(1- x), uHx) = 0.177 x(l - x) + 0.173x2(1 - x) 

13.9 (a ) 0.217 + O.064 x - 0.007 x2; (b) 0.245 - 0 .032 cos TTX - 0.00156 cos 27TX 

13.10 (7.794+ 0.1702x + 1.0666y)4>, 

13.11 -0.0142c/>, - 0.0075 c/>2 

13.U uHx, y) = 1 + 0.029xy + O.Ollxy(l + xy) 

13.14 

f
l J..L 

d 
3 60 

et 
1 J..L 

6 105 

1 J..L ~ 6 105 = 0 

2 J..L - - -
15 168 

3 5 
13.16 u~ = -c/>1--c/>2 

8 14 

CHAPTER 14 

[-1 3 0.5 -1.5 0.5 -0.5 0 1.5 0 2.5 3.5 1.5 3'] 14.6 A = . 2.5 - 2.5 -2 2 -1 0.5 -0.5 -1.5 2.5 1 -1.5 2 -0.5 
-0.5 0.5 2.5 0.5 1.5 1.5 -1.5 -2.5 -1 -2.5 -2 

a{: 0 1 1 1 0 -1 0 - 1 -1 - 1 -r] 1 0 0 0 -1 1 -1 0 1 0 
-1 -1 -1 -1 0 -1 0 1 0 1 

c~V3r -2 -1 1 -1 2 2 1 -1 1 -] 2 -2 2 1 -1 1 -1 -2 -1 -2 -1 
3 -1 1 -1 1 -1 -2 -1 -2 -1 2 1 2 

14.7 (a) u!(x, y) = 14.3 c/>I(X, y) - 14.3 ct>z(x, y) + 50 c/>8(X, y) + 50 c/>9(x, y) - 50 4> II (x, y) - 50 c/>12(X, y) 

(b) uj(x, y) = 16.324>,(x, y) - 16.32 ct>z(x, y) - 14.254>4(x, y) - 2.85 c/>s(x, y) + 2.85 4>6(X, y) + 14.25tf>y(x, y) 

+ 50 c/>8(X, y) + 504>9(X, y) - 504>1l(X, y) - 50 c/>'2(X, y) 

14.8 

14.9 

(c) u;(x, y) = 31.25 4>1(X, y) + 1O.74>2(x, y) + 16.77 4>3(X, y) + 6.23 4>4(X, y) + 12.444>s(x, y) 

[

-1 

A= ~ 

-1 -1 1-1 

3 -1 

1 -1 

~ -~ -~ -~ -~ -: -: -~ -~ -~ -~] 
o 2 1 4 1 5 2 -4 - 1 

[

-1 

B= ~ 

o 0 -1 1 o -1 

1 -1 1 0-1 

-1 1 0 -1 0-1 

1 

o 

o 0 -1 -1 0 -1 -1 

1 1 1 1 1 0 

o -1 0 0 -1 0 
-n 

1 [1 1 1 1 0 1 1 0 1 1 0-1 
C =:2 0 -1 -1 0 -1 -1 -1 0 -1 0 0 -1 1 1 

-1 0 0 -1 0 1 0 -1 -1 -1 -1 -1 0 -1 0 

(a) u~ = - 2.625 4>1 + 1.25 ct>z - 1.54>3 + 0.4384>4 + 2.532 4>s + 3.213 4>6 + 3.2584>7- 1.6064>8 

(b) UA = 14.389 c/>I - 5.004>2 + 13.7794>3 + 10.74>4 + 4.8884>5 + 1.9554>6 + 1.2224>r 0.9774>8 

-:J 



Index 

An (R) (surface area of n-ball), 19 
Adjoint boundary condition, 103, 114 
Adjoint operator, 103, 114 
Almost-linear system, 51 
Amplification matrix , 160 
Analytic, 20, 103 
A priori estimates, 21, 29 
Auxiliary conditions , 3, 21, 37 

Backward heat equation, 37, 45 
Banded matrix, 168 
Base unit, 8 
Bessel's inequality, 81 
Biharmonic equation, 122 
Boltzmann variable, 16 
Bore, 67 
Boundary condition, 2 

adjoint, 103, 114, 115 
Dirichlet, 2, 21 
flux, 2 
at infinity, 22, 23, 31 
mixed, 2, 21, 30, 32 
natural, 195 
Neumann, 2 , 21, 30 
radiation, 2 
Robin, 2 
stable, 195 

Buckingham Pi Theorem, 8, 16 

em (mth-order continuity), 1 
Calculus of variations, 189 
Canonical equations , 55, 62 
Canonical form, 6, 11-13, 61 
Cauchy problem, 36, 46, 53, 54, 56-58 
Cauchy-Riemann equations, 34, 52 
Celerity, 55 
Characteristic, 5, 11-14,53,56,92 

base curve, 53 
curve, 5 
equation, 5, 6, 55, 61 
grid, 145 
surface, 6 

Characteristics, numerical method of, 145, 149, 155, 
162 

Classical solution, 21 
Classification, 4-7, 9, 11 , 51,52 
Closure, 1 
Compatibility condition, 39, 49 
Complete orthogonal family, 73 
Computer programs: 

Crank-Nicolson, 137 
explicit heat equation, 135 
explicit wave equation, 151 
Gauss-Seidel, 184 

Computer programs (continued) 
implicit heat equation , 137 
implicit wave equation, 152, 153 
Lax-Wendroff, 156, 159, 161 
Peaceman-Rachford AD!, l39 
SOR, 184 
Wendroffs implicit, 158 

Conformal mapping, 102 
Conservation-law system, 52, 58, 63, 148 
Consistency condition, 23, 30, 32, 148 
Consistent difference equation, 125 , 133 
Consistently ordered, 171 
Continuous dependence on data, 2, 22 

Dirichlet problem, 29 
nonexistence of, 33 , 37, 45 , 50 

Convergence: 
of iterative methods , 170-172 
L 2 (mean-square) , 73 
pointwise, 72 
uniform, 72 

Convergent difference method, 125, l30, 133 
Convolution, 75 
Coordinate transformation , 5, 6 

Boltzmann, 16 
into canonical form, 11-l3 
to eliminate terms, 15 
linear, 14, 15 
orthogonal, 14 

Courant minimax principle, 197 
Courant-Friedrichs-Lewy condition, 144 

D'Alembert solution , 46, 91, 119 
Data, 2 

continuous dependence on, 2, 22, 29 
Dense subspace, 188 
Derivative: 

directional, 1 
distributional, 120 
normal,1 
partial, 1 

Difference equation, 125, 167 
alternating-direction , 128 
Crank-Nicolson, 127, 128, 141 
DuFort-Frankel, l33 

237 

explicit fi rst-order, 146 
explicit heat equation , 127, 129-l31 
explicit wave equation , 144 
Hartree, 163 
implicit, 127 
implicit wave equation, 144 
Lax-Wendroff, 147, 148, 154, 156, 160 
leapfrog, 147 
parabolic, 127 
Peaceman-Rachford, 128, 142 
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D ifference equation (continued) 
polar coordinates, 176 
Wendroff's implicit, 147 

Difference operator, 125 
Difference quotient, 124 
Differential operator: 

adjoint , 103, 114 , 122 
elliptic , 20 
linear, 20 
parabolic, 38 
self-adjoint , 103 

Diffusion equation , 104, 127 (see also Heat 
equation) 

Diffusionlike evolution , 38 
infinite speed of propagation, 43, 90 
irreversible process, 45 
smoothing action , 44 

Diffusivity, 8 
Dimensional analysis, 7 , 16 , 17 
Dimensional variable, 17 
Dimensionless quantity , 8 
Dirac delta function , 100, 102 , 107, 108 
Direct method, 168 
Dirichlet problem , 22, 26, 29, 94, 102, 110, 114, 167 

continuous dependence , 29 
exterior , 31 
Green 's function for , 110 , 113 
uniqueness, 25, 29 
variational form , 195 

Discontinuity, 5 
Discretization error , 125 
D iscriminant , 4 
Distribution, 107 

Dirac delta, 108 
f , 107 
Heaviside, 121 

Divergence , 1 
form, 52 
theorem , 2 , 23 

Domain of dependence, 39, 54, 92 
Duhamel's principle , 50, 943, 100 

Eigenfunction, 74 , 78 
expansion , 74 

Eigenvalue , 4 , 7, 14 , 52, 59, 60, 74, 78, 179-182 
Courant minimax pri nciple, 197 
Rayleigh quotient, 191, 207 
variational principle, 190, 195 

Eigenvector, 52, 59, 60 , 179-182 
Elliptic, 4, 6, 7, 12,21, 103, 167 

boundary value problem , 21 , 22, 31 
exterior, 22, 31 

canonical form , 7 
system, 52 
type, 4, 7, 9, 52 
uniformly, 20, 21 

INDEX 

Energy integral , 40, 48 , 49 
Equilibrium , 19 
Error: 

discretization, 125 
functions, erf z and erfc z, 16, 77 , 123 
rounding, 126, 156 
truncation, 124 , 125 , 156 

Euler equation , 190 
Evolution: 

diffusionlike, 38 
equation, 36 
operator, 38 
wavelike, 39 

Exterior problem, 22 , 31 , 32 

Finite element method, 215 , 218, 219 
one-dimensional, 211 , 212, 215 
rectangular elements, 214 , 218 
triangular elements, 213 , 316 

Flow: 
adiabatic, 70 
fluid, 59, 69 
gas, 51, 52, 70 
open-channel, 51 , 54, 62-67, 71, 163 
traffic, 69, 71 

Fourier series , 72, 78 
coefficients, 72 , 78 
convergence theorem, 72 
cosine series , 78 
sine series, 78 

Fourier transform , 75, 76, 82, 89, 91, 95 , 96 
Functional, 189 

comparison functions , 189 
domain, 189 
Euler equation, 190 
gradient, 189, 190 , 194 
variation, 189, 193 

Fundamental dimension, 8 
Fundamental solution, 101 

diffusion equation 104, 105 
Laplace's equation, 101 

Galerkin procedure , 202, 206, 207 
relation to Rayleigh- Ri tz, 206 
trial fu nctions, 203 
weight functions , 203 

Gas-flow equations , 51 
Gauss-Seidel iteration (see Iterative methods) 
Gaussian elimination , 168 
Generalized function , 107 
Generalized solution, 190 
Gerschgorin Circle Theorem, 142 
Ghost point , 134 
Gradient, 1 

of functional, 189, 190, 194 



Green's function , 100 
causal, 106 
diffusion equation , 105 
eigenfunction expansion, 102, 111, 115 
elliptic, 103 , 115 
free-space, 101, 105, 106, 120 
Laplace's equation , 101-103, 112, 113 
modified, 116 
ordinary differential equation , 112 
partial eigenfunction expansion, 112, 118 
Poisson's equation, 102, 109, 110 
symmetry of, 109 
wave equation, 106 

G reen's identities, 2 
Grid, 124 

nonuniform, 129 
spacing, 124 
uniform , 125 

Hadamard, example by , 33 
Harmonic function , 3, 19, 23-25 

ub-, 20, 25 , 34 
super-, 20, 34 

Harnack's theorem, 34 
Hartree's method 163 
Hat functions, 212 
Heat equation, 6, 8, 15-17,36,53, 100 

backward , 37, 45 
max-min principle, 37 , 40-43 
solutions, 84- 90, 98 
uniqueness, 40 
well-posed problems for , 36 

Heaviside function , 121 
Helmholtz equation, 7 
Huygens' principle, 106 
Hydraulic jump, 67 
Hyperbolic , 4, 6, 7, 11, 39, 52, 144 
Hyperbolic system , 52, 53 , 71, 147, 149 

Cauchy problem, 53, 54, 56-58 
characteristic base curves of, 53 
characteristics of, 53-56 
domain of dependence , 54 
initial data fo r, 53 
interval of dependence, 54 
normal form, 53, 55 

Ill-posed problem , 3, 22, 32, 37 (see also Well-posed 
problem) 

Images, 102, 105, 112-114, 118, 121 , 123 
Infinite series, 72 
Initial: 

condition, 2 
curve, 53, 57 
data, 53 

Initial-boundary value problem, 3, 36 

INDEX 

Initial value problem, 36 (see also Cauchy problem) 
heat equation, 36 
Laplace's equation , 32 
wave equation , 36 

Inner product , 72, 73 
Integral identities, 1, 2 
Integral transform , 75 , 84 

Fourier , 75, 76 
Laplace , 76, 77 

International System (SI) , 8 
Interval of dependence, 54 
Inversion, 34 
Iteration matrix, 171 
Iterative methods, 154, 168-172 

block , 169 
convergence of, 170, 171 
Gauss-Seidel, 169-172, 185 
Jacobi, 168-172, 182 
LSOR,169 
point, 169 
SOR, 169-172 

Jacobi iteration (see Iterative methods) 
Jacobian, 57, 62, 148 
Jump conditions, 65-68 (see also Shock) 

Kelvin transformation, 34 

L *[ 1 (adjoint operator), 103 
L 2(0) (function space), 188 

convergence in, 73 
dense subspaces, 188 
eq uali ty in, 73 

Lagrange's identity, 103, 115 
Lagrange's interpolation formula, 141 
Laplace transform, 76, 77, 82, 86-89 
Laplace's equation, 6, 7, 19, 22,23,32,94, 99, 101 

initial value problem for, 33 
Laplacian, 2 

cylindrical coordinates, 34 
spherical coordinates , 34 

Lax Equivalence Theorem, 126 
Lax- Wendroff method, 147, 148, 154, 156, 160 
Linear: 

combination, 188 
operator, 83 
partial differential equation, 1 

LSOR iteration (see Iterative methods) 

McKendrick- von Foerster equation, 51 
Matrix: 

banded, 168 
block tridiagonal, 179 
diagonal, 14, 53, 170 
lower-triangular, 170, 178 
orthogonal, 14 

239 
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Matrix (continued) 
sparse, 168 
symmetric, 4, 7 
tridiagonal, 179 
2 -cyclic 171 
upper-triangular , 170, 178 

Matrix stability (see Stability cri teria) 
Maximum-minimum principle, 19 

elliptic , 19-21,25,27,28 
parabolic , 37, 38 , 40-42 

Mean-val ue property, 19, 23-25 , 222 
and harmonicity, 23, 25 
and max-min principle, 24 

Mesh, 124 
Method of lines, 141 

Natural boundary condition , 195 
Neumann condition, 2 
Neumann function, 114, 116 
Neumann problem, 30, 35, 95 , 116, 134, 172, 195 

quasi-uniqueness, 30 
Node, 124 
Nonlinear partial differential equation, 1 
Norm, 73 
Normal fo rm , 53, 55, 60-62 

O(h ) (ordo symbol) , 124 
Open-channel flow , 51 , 54, 62-67,71, 163 
Operator, difference (see Difference operator) 
Operator, differentia l (see Differential operator) 
Optimal SOR, 172 
Ord r of magni tude, 124 
Order of partial differential equation , 1 
O rthogonal family , 72, 73, 74 , 191 

orthonormal family, 72, 73 
Overrelaxation, 169 

Pn (A) (characteristic polynomial ), 52 
Parabolic, 4, 6, 7, 12 

system, 52 
uniformly , 38 

Parseval relation, 74 
Partial derivative , 1 
Partial differential equation , 1 

biharmonic , 122 
compressible flow , 59 
conservation-law, 52, 58, 63 
divergence form, 52 
elliptic, 52 
first-o rder, 51 
gas flow, 51 
Helmholtz, 7 
hyperbolic, 52 
Laplace's, 32 
linear , 1 
nonlinear, 1 

Partial differential equation (continued) 
open-channel flow, 51, 54, 62 
order of, 1 
parabolic, 52 
Poisson's, 101 
population density, 51 
quasilinear, 1 
self-ad jOint, 103 
solution of, 1 
transmission line, 51 
Tricomi,4 

POE (see Partial differential equation) 
Periodic extension, 72, 78, 79 
Periodic function, 72 
Physical dimensions, 8 
Piecewise continuous function , 72 
Plane wave solution, 47 
Poisson integral formula, 22, 23, 25, 35, 95 , 123 
Poisson's equation, 101 
Principal part, 4, 5, 11-14, 17 
Product law, 123 
Proper trianguiation, 213 

Quasilinear, 1, 144 
system, 51, 58 

Rn (Euclidean n-space), 1 
Rayleigh quotient, 191, 207 
Rayleigh-Ri tz procedure, 202-205, 209 

for eigenvalues, 207 , 208 
relation to Galerkin procedure, 206 

Rayleigh's principle, 197 
Reducing factor, 122 
Reflection, 118 (see also Images; Inversion) 
Relaxation parameter, 169 
Residual, 171 
Retarded potential, 120 
Riemann invariant , 61, 63 , 64, 70 

Sectionally continuous function, 72 
Self-adjoint, 103, 122;'192 
Separation of variables, 83, 84, 97 
Shock, 54, 66, 68, 69 
Similarity solution, 7, 8, 16 
Similarity variable, 16 
SingUlarity solution: 

biharmonic equation , 122 
diffusion equation , 104, 117 
Laplace's equation, 100, 101 
wave equation, 105 

Sink, 113 
Solution , 1 

classical, 21 
discontinuity in , 5, 6 
generalized, 190 
plane wave, 47 



Solution (continued) 
simIlarity, 7, 16 
weak, 21, 191, 199 

SOR (see Successive overrelaxation) 
Source, 113 
Sparse matrix, 168 
Spectral radius, 126, 170, 181 
Stability criteria: 

matrix, 126, 132 
von Neumann, 126, 131, 160 

Stable boundary condition, 195, 196 
Stable difference method , 126 
Steady state, 86, 87 
Stein-Rosenbe rg theorem, 170 

INDEX 

Ultra hyperbolic , 4 , 7, 17 
Unde rrelaxation, 169 
Uniform ly elliptic, 20 
Uniformly parabolic , 38 
Uniqueness : 

Dirichlet proble m, 25 , 29 
exterior problem , 31 
heat equation, 40 , 41 
mixed problem, 30 
Neumann problem , 30 
wave equation, 48 

Sturm- Liouville problem, 74 , 78, 80, 84, 85, 97, Vn(R) (volume of n-ba ll), 19 
Variation, 189, 193 191 , 197-199 

Sturm-Liouville theorem, 74 
Subharmonic , 20, 34 
Successive overrelaxation , 169-172, 185 
Superharmonic, 20, 34 
Superposition , 83, 123 
Surge , 67 

Test function, 65, 107 
Transform : 

Fourier, 75, 76, 82, 88, 91, 95, 96 
Laplace , 76, 77, 82, 86-89 

Transmission line equations , 51 
Trial funct ion, 203 
Triangulation , 213 
T ricomi equation, 4 
Trid iagonal matrix , 128, 132 
Truncation error, 124, 185 

local, 125 , 129 , 150 
2-cyclic matrix, 171 
Type , 4, 9 

Variational formu lation , 195. 200 
Vari ational principles, 190, 196 
Vector fiel d, 1 
von Neumann stability (see Stability criteria) 

Wave: 
equation, 5, 6, 36, 46-50, 90- 94 , 144 
traveling , 7 
velocity , 47 

Waveform, 47 
Wavelike evolution, 39 

domain of dependence, 47, 92 
finite speed of propagation, 47 

Weak formulation , 191 , 199, 201 
Weak solution , 65 , 67, 69 , 71, 191, 192 
Weight function, 203 
Well-posed problem, 3, 22, 36 
Wronskian, 112 
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