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Preface

The importance of partial differential equations among the topics of applied
mathematics has been recognized for many years. However, the increasing
complexity of today’s technology is demanding of the mathematician, the engineer,
and the scientist an understanding of the subject previously attained only by
specialists. This book is intended to serve as a supplemental or primary text for a
course aimed at providing this understanding. It has been organized so as to
provide a helpful reference for the practicing professional, as well.

After the introductory Chapter 1, the book is divided into three parts. Part I,
consisting of Chapters 2 through 5, is devoted primarily to qualitative aspects of the
subject. Chapter 2 discusses the classification of problems, while Chapters 3 and 4
characterize the behavior of solutions to elliptic boundary value problems and
evolution equations, respectively. Chapter 5 focuses on hyperbolic systems of
equations of order one.

Part II comprises Chapters 6 through 8, which present the principal tech-
niques for constructing exact solutions to linear problems in partial differential
equations. Chapter 6 contains the essential ideas of eigenfunction expansions and
integral transforms, which are then applied to partial differential equations in
Chapter 7. Chapter 8 provides a practical treatment of the important topic of
Green's functions and fundamental solutions.

Part IlI, Chapters 9 through 14, deals with the construction of approximate
solutions. Chapters 9, 10, and 11 focus on finite-difference methods and, for
hyperbolic problems, the numerical method of characteristics. Some of these
methods are implemented in FORTRAN 77 programs. Chapters 12, 13, and 14 are
devoted to approximation methods based on variational principles, Chapter 14
constituting a very elementary introduction to the finite element method.

In every chapter, the solved and supplementary problems have the vital
function of applying, reinforcing, and sometimes expanding the theoretical con-
cepts.

It is the authors’ good fortune to have long been associated with a large, active
group of users of partial differential equations, and the development of this Outline
has been considerably influenced by this association. Our aim has been to create a
book that would provide answers to all the questions—or, at least, those most
frequently asked—of our students and colleagues. As a result, the level of the
material included varies from rather elementary and practical to fairly advanced
and theoretical. The novel feature is that it is all collected in a single source, from
which, we believe, the student and the technician alike can benefit.

We would like to express our gratitude to the McGraw-Hill staff and the
Colorado State University Department of Mathematics for their cooperation and
support during the preparation of this book. In particular, we thank David
Beckwith of McGraw-Hill for his many helpful suggestions.

PauL DUCHATEAU
Davip W. ZACHMANN
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Chapter 1

Introduction

1.1 NOTATION AND TERMINOLOGY

Let u denote a function of several independent variables; say, u = u(x, y, z, t). At (x, y, z, ¢t), the
partial derivative of u with respect to x is defined by

du i u(x+h,y, z,t)— u(x, y, z,t)
— = 1m
ox h-0 h

provided the limit exists. We will use the following subscript notation:

du ou 3’u ’u 3’u 3’u
—_—= ] —=u = = —=U

= —=u u
ax oy ’ axt oyt axdy ox>

If all partial derivatives of u up through order m are continuous in some region (), we say u is in the
class C™(Q), or uis C” in Q.

A partial differential equation (abbreviated PDE) is an equation involving one or more partial
derivatives of an unknown function of several variables. The order of a PDE is the order of the
highest-order derivative that appears in the equation.

The partial differential equation F(x, y, z, t; u, u, Uyy Uy Upy Uy Uy ) =0 is said to be linear if
the function F is algebraically linear in each of the variables 4, u,, u, ..., and if the coefficients of u
and its derivatives are functions only of the independent variables. An equation that is not linear is
said to be nonlinear; a nonlinear equation is quasilinear if it is linear in the highest-order derivatives.
Some of the qualitative theory of linear PDEs carries over to quasilinear equations.

The spatial variables in a PDE are usually restricted to some open region ) with boundary §S; the
union of {1 and S is called the closure of Q and is denoted Q. If present, the time variable is
considered to run over some interval, £, <t <t,. A function u = u(x, y, z, t) is a solution for a given
mth-order PDE if, for (x, y, z) in Q and ¢, <t <1, uis C” and satisfies the PDE.

In problems of mathematical physics, the region ( is often some subset of Euclidean n-space, R".
In this case a typical point in ) is denoted by x = (x,,x,,..., x,), and the integral of u over () is
denoted by

jj u(xl,xz,---,x,.)dxldxf"dx":j ud@
0 Q

1.2 VECTOR CALCULUS AND INTEGRAL IDENTITIES
If F=F(x,y,z)isa C' function defined on a region () of R?, the gradient of F is defined by
aF . oF OF
grad F=VF=—i+—j+—Kk (1.1)
0x ay iz
If n denotes a unit vector in R?, the directional derivative of F in the direction n is given by
oF
—=VF-n (1.2)
on
Suppose w = w(x, y, z) is a C' vector field on (), which means that
w = wl(x’ y! Z)i+ Wz(x, y, Z)j + W:;(X, y’ Z)k
for continuously differentiable scalar functions w,, w,, w,. The divergence of w is defined to be

1



2 4 INTRODUCTION [CHAP. 1

oW, awy oy

divw=V -w=—+- (1.3)
ox ay 2z
In particular, for w = grad F, we have
‘ ,.. O'F 9F &F
divgrad F=V-YVF=V'F=—+ —+ -—=F_+F, +F, (1.4)
ax* 9yt oz »

The expression V2F is called the Laplacian of F.

Theorem 1.1 (Divergence Theorem): Let () be a bounded region with piecewise smooth boundary
surface S. Suppose that any line intersects S in a finite number of points or has a whole
interval in common with S. Let n = n(x) be the unit outward normal vector to S and let
w be a vector field that is C* in Q and C° on Q. Then,

J’V-wdQ=J’w-ndS (1.5)
0 S

If u and v are scalar functions that are C” in Q and C' on Q, then the divergence theorem and the
differential identity

V. (uVo)=Vu-YVo+u Vo (£1.6)
lead to Green’s first and second integral identities:
2 ov
j uVudQ=Ju—dS—J’Vu-Vde (1.7)
o s on o
2 2 v ou
J(qu—vVu)dQ=j(u———v——)dS (1.8)
0 s\ on an

1.3 AUXILIARY CONDITIONS; WELL-POSED PROBLEMS

The PDEs that mode! physical systems usually have infinitely many solutions. To select the single
function that represents the solution to a physical problem, one must impose certain auxiliary
conditions that further characterize the system being modeled. These fall into two categories.

Boundary conditions. These are conditions that must be satisfied at points on the boundary § of the
spatial region ) in which the PDE holds. Special names have been given to three forms of boundary
conditions:

Dirichlet condition u=g

0
Neumann (or flux) condition a—u =g
n

u
Mixed (or Robin or radiation) condition au+pB—=g
an

in which g, @, and 8 are functions prescribed on S.

Initial conditions. These are conditions that must be satisfied throughout (1 at the instant when
consideration of the physical system begins. A typical initial condition prescribes some combination of u
and its time derivatives.

The prescribed initial- and boundary-condition functions, together with the coefficient functions
and any inhomogeneous term in the PDE, are said to comprise the data in the problem modeled by
the PDE. The solution is said to depend continuously on the data if small changes in the data produce
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ow, ow, 9
divw=V-w= 21, W2, W (1.3)
dx dy Oz

In particular, for w = grad F, we have
&*F 9°F 9°F
divgrad F=V-VF=VF=—+—5+-——=F_+F, +F, (1.4)
At dy*  az “
The expression V2F is called the Laplacian of F.

Theorem 1.1 (Divergence Theorem): Let () be a bounded region with piecewise smooth boundary
surface S. Suppose that any line intersects S in a finite number of points or has a whole
interval in common with S. Let n = n(x) be the unit outward normal vector to S and let
w be a vector field that is C'in Q and C° on Q. Then,

JV-wdQ=jw-ndS (15)
Q1 S

If « and v are scalar functions that are C?in Q and C' on Q, then the divergence theorem and the
differential identity

V- (uV)=Vu-Yo+uVo (1.6)
lead to Green’'s first and second integral identities:
2 o
JuVud(l=[u——dS—JVu-VudQ (1.7)
0 s on s
3 ou
f (1 VP — 0 V) dQ:j (u—v—v—) ds (1.8)
on on

1.3 AUXILIARY CONDITIONS; WELL-POSED PROBLEMS

The PDESs that model physical systems usually have infinitely many solutions. To sefect the single
function that represents the solution to a physical problem, one must impose certain auxiliary
conditions that further characterize the system being modeled. These fall into two categories.

Boundary conditions. These are conditions that must be satisfied at points on the boundary § of the
spatial region () in which the PDE holds. Special names have been given to three forms of boundary
conditions:

Dirichlet condition u=g

ou
Neumann (or flux) condition o8
n

u
Mixed (or Robin or radiation) condition au+ 3 8_ =g
n

in which g, @, and 8 are functions prescribed on S.

Initial conditions. These are conditions that must be satisfied throughout {} at the instant when
consideration of the physical system begins. A typical initial condition prescribes some combination of u
and its time derivatives.

The prescribed initial- and boundary-condition functions, together with the coefficient functions
and any inhomogeneous term in the PDE, are said to comprise the data in the problem modeled by
the PDE. The solution is said to depend continuously on the data if small changes in the data produce
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correspondingly small changes in the solution. The problem itself is said to be well-posed if (i) a
solution to the problem exists, (ii) the solution is unique, (iii) the solution depends continuously on
the data. If any of these conditions is not satisfied, then the problem is said to be ill-posed.

The auxiliary conditions that, together with a PDE, comprise a well-posed problem must not be
too many, or the problem will have no solution. They must not be too few, or the solution will not be
unique. Finally, they must be of the correct type, or the solution will not depend continuously on the
data. The well-posedness of some common boundary value problems (no initial conditions) and
initial-boundary value problems is discussed in Chapters 3 and 4.



Chapter 2

Classification and Characteristics

2.1 TYPES OF SECOND-ORDER EQUATIONS
In the linear PDE of order two In two vaniables,
au, +2bu ,+cu, +du +eu +fu=g (2.1)
if u,, is formally replaced by o, u,, by aB, u,, by % u, by a, and u, by B, then associated with (2.1)
is a polynomial of degree two in « and S:
P(a, B)=aa’+ 2baB + cB*+ da +eB+ f

The mathematical properties of the solutions of (2.1) are largely determined by the algebraic properties
of the polynomial P(e, B). P(«, B)—and along with it, the PDE (2.1)—is classified as hyperbolic,
parabolic, or elliptic according as its discriminant, b* — ac, is positive, zero, or negative. Note that the
type of (2.1) is determined solely by its principal part (the terms involving the highest-order
derivatives of u) and that the type will generally change with position in the xy-plane unless a, b, and
¢ are constants.

EXAMPLE 21 (a) The PDE 3u,, +2u,, + 5u,, + xu, = 0 is elliptic, since
b’—ac=1"-3(5)=-14<0
(b) The Tricomi equation for transonic flow, u + yu,, =0, has
b*—ac=0"-—(1)y=—y

Thus, the equation is elliptic for y > 0, parabolic for y = 0, and hyperbolic for y <0.

The general linear PDE of order two in »n variables has the form

n n
D Gttt X b, teu=d (2.2)
ij=1 i=1

If Uy = Upypr then the principal part of (2.2) can always be arranged so that a; = a;;; thus, the n X n
matrix A=[a;| can be assumed symmetric. In linear algebra it is shown that every real, symmetric
nX n matrix has n real eigenvalues. These eigenvalues are the (possibly repeated) zeros of an
nth-degree polynomial in A, det (A — AlI), where T is the n X n identity matrix. Let P denote the
number of positive eigenvalues, and Z the number of zero eigenvalues (i.e., the multiplicity of the
eigenvalue zero), of the matrix A. Then (2.2) is:

hyperbolic if Z=0and P=1or Z=0and P=n-1
parabolic if Z >0 (equivalently, if det A = 0)
elliptic if Z=0and P=n or Z=0and P=0

ultrahyperbolic if Z=0and l<P<n-1

If any of the a,; is nonconstant, the type of (2.2) can vary with position.

EXAMPLE 2.2 For the PDE 3w, s + tapuy + 48 puy + dlh g2 = 0,

300 3-4 0 0
A=|0 1 2 and det| 0 1-a2 2 |[=@-DQNAR-=5
02 4 0 2 4-a

Because A = 0 is an eigenvalue, the PDE is parabolic (throughout x,x;xs-space).

4
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Classification and Characteristics
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b*—ac=1"-3(5)=-14<0
(b) The Tricomi equation for transonic flow, u.. + yu,, =0, has
b —ac=0"— Ny =—y

Thus, the equation is elliptic for y >0, parabolic for y = 0, and hyperbolic for y <0.

The general lincar PDE of order two in n variables has the form

n n
> At D bu,tcu=d (2.2)
ij=1 i=1
If Upe, = U then the principal part of (2.2) can always be arranged so that a;, = a;;; thus, the n X n
matrix A =[a,] can be assumed symmetric. [n linear algebra it is shown that every real, symmetric
n X n matrix has n real eigenvalues. These eigenvalues are the (possibly repeated) zeros of an
nth-degree polynomial in A, det (A~ Al), where 1 is the n X n identity matrix. Let P denote the
number of positive eigenvalues, and Z the number of zero eigenvalues (i.e., the multiplicity of the

eigenvalue zero), of the matrix A. Then (2.2) is:

hyperbolic if Z=0and P=1 or Z=0and P=n-1
parabolic if Z >0 (equivalently, if det A = 0)
elliptic if Z=0and P=n or Z=0and P=0

ultrahyperbolic if Z=0and1<P<n-1

If any of the g, is nonconstant, the type of (2.2) can vary with position.

EXAMPLE 2.2 For the PDE 3uy s, + Uy + lisgey + 4l igny = 0,

300 3-2 0 0
A=|0 1 2 and det 0 1-A 2 =3B-AQRA)Ar-5)
0 2 4 0 2 4— A

Because A = 0 is an eigenvalue, the PDE is parabolic (throughout xixzx3-space).

4
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2.2 CHARACTERISTICS

The following, seemingly unrelated, questions both naturally lead to a consideration of special
curves associated with (2.1), called characteristic curves or, simply, characteristics. (1) How can a
coordinate transformation be used to simplify the principal part of (2.1)? (2) Along what curves is a

knowledge of u, u,, and u, together with (2.1), insufficient uniquely to determine u,, u,, and u?
To address the first question, suppose a locally invertible change of independent variables,
| E=d(xy) n=y(xy) (2.3)

(P, — 4, # 0), is used to transform the principal part of (2.1) from
au +2bu,, +cu, to Auy +2Bu, + Cu, + lower-order terms

which implies that the principal part of the transformed equation is

Aug, +2Bu, + Cu,,
As found in Problem 2.3,

A=ap,+2bp b+,  C=ap +2by,+cy,  B=ap, +bdy,+ b))+ chy,
Since the transformed and original discriminants are related by
—AC= (0"~ ac)(@4,~ 0.)

the type of (2.1) is invariant under an invertible change of independent variables. The principal part
of the transformed equation will take a particularly simple form if A = C =0, which will be the case
if ¢ and ¢ are both solutions of

az’+2bzz,+cz,=0 (2.4)

(2.4) is called the characteristic equation of (2.1); the level curves, z(x, y) = const., of a solution of
(2.4) are called characteristic curves of (2.1).

.Turning to question (2) suppose that u, u,, and u, are known along some curve I'. Then, as
shown in Problem 2.10, u and u , are uniquely determmed along T" unless

ady’—2bdx-dy+cdx*=0 2.5)

holds along (i.e., is the ordinary differential equation for) I'.

xy’

Theorem 2.1: z(x, y)= const. is a characteristic of (2.1) if and only if z(x, y) = const. is a solution of
(2.5).
For the proof, see Problem 2.4.
Related to the indeterminacy of the second derivatives along a characteristic is the fact that
physically significant discontinuities in the solution of (2.1) can propagate only along characteristics.
The number of real solutions of (2.4) or (2.5) is dictated by the sign of the discriminant,

b*(x, y)- a(x, y)e(x, y)

Thus, when (2.1) is hyperbolic, parabolic, or elliptic, there are, respectively, two, one, or zero
characteristics passing through (x, y). In the hyperbolic case, the two families of characteristics define
natural coordinates (£, %) in which to study (2.1). The absence of characteristics for elliptic equations
implies that there are no curves along which discontinuities in a solution can propagate; solutions of
elliptic equations are generally smooth.

EXAMPLE 2.3

(a) By Theorem 2.1, the characteristics of the (hyperbolic) one-dimensional wave equation, a*uy — u, =0, are
defined by a®d#* — dx* = 0. Thus, the characteristics are the lines

x + at = § = const. x — at =7 = const.
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(b) The characteristics of the (parabolic) one-dimensional heat equation,
Ko — 1, = 0
are defined by « d” = 0. Thus, the characteristics are the lines 1 = 5 = const.
(¢) Characteristics of the (elliptic) two-dimensional Laplace’s equation,
Uex T thyy = 0

must satisfy dy?+ dx?= 0, which has no nonzero real solution. Thus, Laplace’s equation has no real
characteristics.

For the n-dimensional PDE (2.2), the characteristic surfaces are the level surfaces,
z(x,, x5, . .., X, ) = CONSt.
of the solutions of the characteristic equation
n
Z aijzx,le- =0
nj=1

For n>2, this characteristic equation cannot generally be reduced to an ordinary differential
equation as in Theorem 2.1; so, the characteristics are often difficult to determine. As in the case
n =2, the characteristics of (2.2) are the surfaces along which discontinuities in derivatives of the
solution propagate.

EXAMPLE 2.4 The characteristics of the hyperbolic equation
Uiy ™ U = Uxy =0 (1)
(a two-dimensional wave equation with x,; taking the role of time) are the level surfaces of the solutions of
2%, -z5L,-24=0 (2)
By direct substitutionl it may be verified that
z=F(x;+ xz2stn a + x3COs «) (3)
with F an arbitrary C' function and « an arbitrary parameter, solves (2). This solution is constant when
X3+ Xx28in & + X3 COS @@ = cOnNst.
which may be rewritten as
(x—x)+ (- x)sina+ (x3— x3)cosa =0 )

where (%, X2, X3) is an arbitrary point in xix;x3-space. Equation (4) represents a one-parameter family of planes,
each plane containing the point (X, X, ¥3) and making a 45° angle with the positive x;-axis. As is geometrically
obvious, the family has as its envelope the right circular cone

(= T ) = (= %2 ~ (o~ %) =0 (%)

On the cones (5), all solutions (3) are constant; hence, these cones are the characteristic surfaces of (1).

2.3 CANONICAL FORMS

We have already seen, in Section 2.2, how a hyperbolic second-order PDE may be simplified by
choosing the characteristics as the new coordinate curves. In general, if a, b, and ¢ in (2.1) are
sufficiently smooth functions of x and y, there will always exist a locally one-one coordinate
transformation, € = ¢(x, y), n = ¥(x, y), which transforms the principal part to the canonical form

hyperbolic PDE U, OF Ug—U

parabolic PDE Upe
elliptic PDE Uy + U,

)
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The canonical forms w, — u,, 4., and u, + u, are the principal parts of the wave, heat, and Laplace
equations, which serve as prototypes of hyperbolic, parabolic, and elliptic equations, respectively.
Methods for choosing ¢ and i to reduce (2.1) to canonical form are illustrated in Problems 2.6-2.9.

If (2.1), or more generally (2.2), has constant coefficients in its principal part, reduction to a
canonical form can be accomplished using a linear change of independent variables. Specifically,
there will exist an invertible linear coordinate transformation,

£=2 b,x (r=12,...,n)
i=1
that takes (2.2) into an equation with principal part
2 Aiuf.‘f:
i=1
where A, (i=1,2,..., n) are the eigenvalues of the symmetric matrix A. (If A is an eigenvalue of

multiplicity g > 1, then g of the §-variables will correspond to A.) A rescaling of the independent
variables,

JeVIAl A #0
n & A =0
then yields one of the canonical forms
hyperbolic PDE - b U,
i=2
- parabolic PDE S xu i (m=2>0)

i=1

elliptic PDE o,

1
-

ultrahyperbolic PDE X u, - > u, ~ (1<m=P<n-—1)
i=1 i=m+1
If (2.2) has all coefficients constant and has been reduced to one of the above canonical forms, a
further simplification is always possible in the elliptic or hyperbolic case (see Problem 2.14) and is
sometimes possible in the parabolic case (see Problem 2.15).

2.4 DIMENSIONAL ANALYSIS

The reduction of a PDE to canonical form does not change the order of the equation or the
number of independent variables. However, by seeking a solution of a particular form it is often
possible to reduce the number of independent variables in a problem.

EXAMPLE 2.5 (a) If we look for oscillatory solutions to the wave equation,

ey + Uy — U =0
of the form u(x, y, 1) = v(x, y)e™ (i =V —1), then o satisfies the Helmholtz equation,

D + 0y + kP00 =0
(b) Traveling-wave solutions to .. — u, + 4 =0, in the form u(x, 1) = v(x — at) (a = const.), satisfy the ordinary
differential equation (1— a®p"”+ v = 0. (¢) Radially symmetric solutions of Laplace’s equation, 4. + u,, = 0, of
the form

u(x, y)=o(r) where r=(x*+y*”

satisfy v”"+ r"'o’ = 0.
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Suppose that a physical problem is modeled by a PDE that involves dependent variable u;

independent variables x,, x,, ..., x,; and parameters p, p,, ..., p,,- The general expression for the
solution of the PDE is

F(u, x,, Xy, .« ., Xy PsDas -+ -y P ) =0 (2.6)
which can usually be “solved™ to give u = f(X;,..., X, Pi» - - -+ Pn)- Consider a fundamental system

of physical dimensions, each with its corresponding base unit; specifically, consider the International
System (SI), as indicated in Table 2-1.

Table 2-1

Fundamental Dimension Base Unit
Length (L) meter, m
Mass (M) kilogram, kg
Time (T) second, s
Electric current (A) ampere, A
Thermodynamic temperature (6) kelvin, K
Amount of substance (X) mole, mol
Luminous intensity (I) candela, cd

d
Each quantity in (2.6) is either dimensionless (i.e., a pure number) or has as its physical dimension a
product of powers of the fundamental dimensions of Table 2-1.

EXAMPLE 2.6 Let F(u, x, 4, pc, k) = 0 be the general solution of the one-dimensional heat equation
pcu, — kg, =0 (H

The dependent variable is the temperature u, while the independent variables and physical parameters are
x3=x, x;=1 p =pc (density times specific heat capacity), and p,=k (thermal conductivity). The physical
dimensions of these quantities are:

(u}= 0 {x;}=L {xa}=T

{p}=MLT'T?07} {p2} = MLT@!
There are in all N = 5 dimensional quantities, which are specified in terms of R = 4 fundamental dimensions (the
three mechanical dimensions L, 7, M and the thermal dimension @). It happens that only integral powers of the

fundamental dimensions enter.
If we define k = k/pc (thermal diffusivity) and rewrite (1) as

U — Klyy = 0 2)

there are present in (2) one fewer physical parameter and one fewer fundamental dimension ({k}= L*T"");
hence, N — R is unchanged. This invariance reflects the mass independence of the thermal process, and should
not be expected in general.

When, as in Example 2.6, a PDE involves fewer fundamental dimensions than dimensional
quantities, it must admit a simplified, similarity solution, in accordance with

Theorem 2.2 (Buckingham Pi Theorem): If (i) the function F in (2.6) is continuously differentiable
with respect to each argument; (i) given N — 1 of the N = 1+ n + m quantities u, x;, p, the
equation (2.6) can be uniquely solved for the remaining quantity; and (i) u, x, p,
collectively involve R fundamental units (0 < R < N); then (2.6) is equivalent to

G(my, 7y ..., Ty_g)=0
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where the 7, are dimensionless and

— Yol o Yal v Ya2 |, . Yan pyYa, n+1 3 Y, n42 , | . Y. N-)
ﬂa_ u xl xZ Xp pl pZu P m

for some real numbers y,, (¢ =1,2,...,N- R, 8=0,1,..., N —1) such that (Vs ] 1s
of rank N — R.

(For the case R = 0, Theorem 2.2 holds trivially, with G = F.)

2.1

2.2

Solved Problems

Classify according to type:
(@) u +2yu +xu,—u+u=0
(b) 2xyu, + xu,+ yu =0
(€) w,+tu,+Su, +u, +2u, +u,=0
(a) In the notation of (2.1), a=1, b=y, and ¢ = x. Since b>— ac = y*>— x, the equation is hyperbolic in
the region y®>> x, parabolic on the curve y® = x, and elliptic in the region y*< x.

(b) Here, a=0, b= xy, and ¢ = 0. Since b%— ac = x*y?, which is positive except on the coordinate axes,
the tquation is hyperbolic for all x and y except x =0 or y =0. Along the coordinate axes the
equation degenerates to first-order and the second-order categories do not apply.

(¢) Rewrite the equation in symmetrical form:
Usrxy F 3Usixg + Bl + Uigay F Uiy + Usgp + gy = 0 (1)

where x; =x, x2 =y, x3= z. The matrix corresponding to the principal part of (1) is

1 30
A=|3 1 1
0 11

Since det (A—AI)=(1- A)*—10(1 — 1), the eigenvalues of A are 1 and 1+ V'10. Thus, Z =0 and
P =3—1, making the PDE hyperbolic (everywhere).

Use the transformation (2.3) to express all the x- and y-derivatives in (2.1) in terms of £ and
7.
By the chain rule,
du  du I du Iy
g=a—§g+;;; or Ue = Ughy + U
and
a_uza_uif""ilial or Uy = uepy + iy
dy 963y Iy dy

By the product rule,
Uxx = ”E‘b&x + (ué )x¢x + un(l’xx + (u,, )x‘j/x

which, after using the chain rule to find (u:), and (u,),, yields
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e = Hehow + (Ugethe + Ugq ) + Untfinx + (Unedx + Ut I
= Ueeth %+ 2Uephotlie + Unnl2 + Ueex + Unthax
Similarly,
Uyy = ey, + (g )yy + Uathyy + (1, Wby
= tthyy + (Uaeth, + Ugnly )by + Untyy + (Uneby + tanisy )iy
= Ugehy + 2ugn Py + Uonthy + ey + Uiy,
Finally,
Usy = Ughey + (e )y + Untliey + (14 )y
= Uphay + (ligethy + Ugntly e + Uty + (Unedy + Unidsy Yo
= Ugepehy + Ugn (Datly + byl ) + Unnibtly + Usy + iz,

Use the results of Problem 2.2 to find the principal part of (2.1) when that equation is written
in terms of & and 7.

Since wg, U, and u,, occur only in the transformations of ., u.,, and u,,, it suffices to transform
only the principal part of (2.1):
QUze + 20Uy + cuyy = (api+ 2bpxp, + C¢§')u6§
+ 2adab + by + D)+ ey it
+ (ayl + 2bdy + bt
+ R
= Auyg + 2Buy, + Cupy + R

where R = (e + 20y, + Cyy )iz + (@ + 2biny, + iy, ), is first-order in u. Note that R =0 if both ¢
and ¢ are linear functions of x and y.

Prove Theorem 2.1,
First assume that z(x, y) satisfies (2.4) and that z,(x, y) # 0, so that the relation
z(x, y) =y = const.
defines at least one single-vatued function y = f(x, y). Then, for y = f(x, y),

dy _ z(x, y)
dx z,(x, y)

Dividing cach term of (2.4) by z} yields
Z\? Zy
a(—) +2b—+c¢c=0
\z, z,
which on y = f(x, y) is equivalent to

dy\? d
a(—)> —2bl+c=0
dx dx

This shows that y = f(x, y) is a particular solution of (2.5), and so z(x, y)= vy is an implicir solution of
(2.5). If z,(x, y)=0 but (2.4) is not identically satisfied, then z.(x, y)# 0 and the above argument
can be repeated with the roles of x and y interchanged.

To complete the proof, tet z(x, y)=const. be a general integral of (2.5). To show that z(x, y)
satisfies (2.4) at an arbitrary point (xo, yo), let vo = z{(xo, yo) and consider the curve y = f(x, yo). Along
this curve,

dy\? dy Z\ 2 Zx
O=a<—> —2b—+c=a(—> —2b(—->+c
dx dx Zy z,

from which it follows, upon setting x = xo, that (2.4) holds at (xo, yo).
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2.6

Classify according to type and determine the characteristics of:

(@) 2u,—4u,~6u,+u =0 (¢) sy—x'yu,=0 (y>0)
_ _ 2x x+y 2 .
(b) 4u, + 2u,+%u, —2u,+u=0 (d) e u,+2e7u,+eu, =0
<
(a) In the notation of (2./)a=2, b=-2, c = —6; so b>*— ac = 16 and the equation is hyperbolic. From
Theorem 2.1, the characteristics are determined by
dy bxVb-ac

dx a

-1x2

Thus, the lines x — y = const. and 3x + y = const. are the characteristics of the equation.
(b) In thiscase, a=4, b=6, c=9; so b>— ac =0 and the equation is parabolic. From Theorem 2.1 it
follows that there is a single family of characteristics, given by
dy b 3

- or 2y — 3x = const.
dx a 2

(¢) In the region y >0, b*— ac = x’y is positive, so that the equation is of hyperbolic type. The
characteristics are determined by

d
—==xVy or 2
dx Vy

from which it follows that the characteristics are x2+4V'y = const.

Fxdx=0

(d) b*—ac=(e**”)*— e*e® =0, and the equation is parabolic. Theorem 2.1 implies that the charac-
teristics are given by

dy_e7 *dx—e™dy=0
- = or [4 X — € y=
dx er
from which e™ — e = const.
Transform the hyperbolic equations
(@) 2u, —4u,~6u,+u, =0 (b) wu,—x’yu,=0 (y>0)

to a canonical form with principal part u,,.

(a) In the notation of Section 2.2, if £= ¢(x, y)=const. and % = ys(x, y) = const. are independent
families of characteristics, then A= C=0. In Problem 2.5(a), the characteristics of the given
equation were shown to be x ~y = const. and 3x + y = const. Therefore, we take

£=d(xy)=x~-y n=dlx y)=3x+y
Transforming the equation with the aid of Problem 2.3,
2 — by — 6Uyy, + U, = 16U, + Ug + 31,

The desired canonical form is therefore
+ ! + 3 0
u — Ut —u, =
“ 6% 6™

(b) In Problem 2.5(c) the characteristics were found to be x? +4Vy = const.; therefore, we take
£=d(xy)=x+4Vy n=xy)=x"-4Vy

With ¢, =2x, ¢)’ = 2)'_”2, Yo =2%, Py = —2)'_”2, Gxx = 2= Yrs, ¢y)’ = _y_3/2 = __lpyyy and d’xy =0=
Yy, Problem 2.3 gives

Uge — X2y, = 167U, + 2+ X2y P ue + (2 — 2y Pu,

68+ 2 26+ 6
=8(&+ Mue, + d n“f_ £+ 67
£E—n E-n




12 CLASSIFICATION AND CHARACTERISTICS [CHAP. 2

where the last equality follows from x?= (¢ + 5)/2 and y'? = (£ — 5)/8. The desired canonical form
is then
3¢+ 7 £+ 3y
e —
HE-7D " HE- Y

Ugy un=0 (£>7})

2.7  Transform the parabolic equations
Q L — 2x x+y 2y —
(@) 4u,+12u +9% —2u +u=0 (b) e"u, +2"u +e”u, =0
to a canonical form with principal part u,,.

(a) 1In the notation of Section 2.2, C =0 if n = ¥(x, y) = const. is a characteristic of the equation. Since
B?> -~ AC =0, this assignment of n will also make B = 0. From Problem 2.5(b),

n=¢(x y)=3x—2y

Any ¢(x, y) satisfying ¢, — ¢y # 0 can be chosen as the second new variable; a convenient
choice is the linear function

£=¢(x,y)=y
From Problem 2.3,
du, + 120, + Quyy — 2u, + 1 = Quee — 3u, t u
whence the canonical form

-

1 1
uﬁ——gu,,+§u=0

(b) In Problem 2.5(d) the characteristics were shown to be ™™ — e = const, so C= B =0 if we set

n=yY(x,y)=e*—e”

A convenient choice for the other new variable is
§=d(xy)=x
From Problem 2.3,
U +2€ Uy, + ePUy, = €U + 2u, = eFug +2u,

whence the canonical form ug + 2 %u, = 0.

2.8 If (2.1) is elliptic, show how to select ¢ and ¢ in (2.3) so that the principal part of the
transformed equation will be u, +u .

When b%— ac <0, (2.5) has complex conjugate solutions for dy/dx, one of which is (i = V~1)
dy b+ Vb acl 0
dx a
The ordinary differential equation (1) will have a solution of the form
z(x, y) = ¢ (x, y)+ ip(x, y) = const.
for real functions ¢ and . Then, by Theorem 2.1,

0= az?+2bz,z, + cz?

= a(¢. + i‘//x)2+ 2b(che + i) (@) + ity )+ c(oy + i‘/’y)2
[(ag’+2bpey + cp’)~ (ap + 2bynthy, + i) + 2i[adpufe + b(peth, + by ) + il |
=[A - C]+2{[B]
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where the last equality follows from x?= (£ + 5)/2 and y"? = (£ — )/8. The desired canonical form
is then
38+ £+3y
MY R N Y7 I
44 =7 A7)

2.7  Transform the parabolic equations
. _ 2x x+ty 2y _
(@) 4u, +12u, +9u, —2u +u=0 () e u,+2e"u, +e”u, =0
to a canonical form with principal part u,,.

(@) In the notation of Section 2.2, C =0 if n = (x, y) = const. is a characteristic of the equation. Since
B*— AC =0, this assignment of 5 will also make B = 0. From Problem 2.5(b),

n=(x, y)=3x—2y

Any ¢(x, y) satisfying ¢, — ¢, # 0 can be chosen as the second new variable; a convenient
choice is the linear function

£=¢xy)=y
From Problem 2.3,
due + 120 + 91y, ~ 2ue + 1t = Quge ~ 3u, + u
whence the canonical form

1 1
“ff“guvﬁrauzo

x

(p) In Problem 2.5(d) the characteristics were shown to be e™* —e™” = const., so C= B =0 if we set

= dxy)=e e

A convenient choice for the other new variable is
E=¢(xy)=x
From Problem 2.3,
e U + 26 U, + 6P Uy, = e ug + 2u, = eXug + 2u,

whence the canonical form ug + 2¢ %y, = 0.

28 If (2.1) is elliptic, show how to select ¢ and ¢ in (2.3) so that the principal part of the
transformed equation will be w, + u, .

When b%— ac <0, (2.5) has complex conjugate solutions for dy/dx, one of which is (i = V1)
dy b+ iV ad]

dx a

(1)

The ordinary differential equation (/) will have a solution of the form
z(x, y) = ¢(x, )+ iy(x, y) = const.
for real functions ¢ and ¢. Then, by Theorem 2.1,
0

azi+2bzz, + cz3

a{de + i)+ 2b(s + i )y + ity )+ c(by + ithy )

[(ad?+2bp.p, + cd3) — (apz + 2bap, + )] + 2i[ aputli + bty + Pyifrc ) + eyl |
=[A-C]+2i[B]

i
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2.9

2.10

13

which holds only if A= C and B = 0. Thus, if we set £ = ¢(x, y) and n = ¥(x, y), the transformed PDE

will have principal part

Aluge + Uny)

and division by A will yield the required canonical form.

For the above analysis to be strictly valid, one must require the coefficients a, b, ¢ to be analytic

functions (see Section 3.1).

Using Problem 2.8, transform the elliptic equations

(@) wu,+2u,+17u,=0 ®) x’u,+ yzuyy =0 (x>0,y>0)

to canonical form with principal part u, +u,_ .

(a) Here,a=1,b=1, and ¢ = 17; (1) of Problem 2.8 becomes
d
D o1via
dx

which has the solution z = (x — y)+ i4x = const. Thus, setting
E=dx,y)=x-y 71 =(x, y)=4x
we obtain, as in Problem 2.3,
Uy + 2Uey + 170y, = 160 + 16u,,

whence the canonical form wg + w,, = 0 (Laplace’s equation).
(b) In this case, (1) of Problem 2.8 becomes

.y
dx X
with solution z = log x + i log y = const. Setting
&= ¢(x)=log x n=y(y)=logy

we calculate, following Problem 2.3,
X lx + Y Uy = Ugg + Uy — g — Uy =0

as the required canonical form.

Show that a characteristic curve of (2.1) is an exceptional curve in the sense that the values of
u, u,, and u, along the curve, together with the PDE, do not uniquely determine the values of

U, U, and u, along the curve.

Let T be a smooth curve in the xy-plane, given parametrically by x = x(s), y = y(s), s:<s <s,.

Suppose u, u,, and u, are specified along I' as u = F(s), u, = G(s), and 1, = H(s). Then,

du,
— = U X (8) F Uyy'(s) = G'(s)
ds

du, . ) .
Z: U X'(S)+ wyy'(s) = H'(s)

These two equations and (2.1) comprise three linear equations, which may be solved uniguely for the

three unknowns 4., us,, and u,, along I', unless the coefficient matrix
a 2b c
x'(s) y'(s) O
0 xX(s) y(s
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has determinant zero; that is, unless

dy\? dx dy dx\?
alz) 2wt e(3)
ds ds ds ds

This last equation is equivalent to (2.5), which defines the characteristics of (2.1).
If the variables &, §,,..., ¢, and x|, x,, ..., x, are r¢lated by the linear transformation
£=B"x or £=2 b, x, (r=12,...,n)

change (2.2) to the £-variables.

According to the chain rule,

du Iodu 88 &
“"“ax,“,zlag ax,—,zl %,
! n 5%u
ux,'x/' = :21 ux,)f: ] 2 ux,)f_r ,:El b)rbls (;é_ag

Thus, in terms of &, &, ..., &, (2.2) is

n n

> [E bira; n}“@fﬂL > [E bi.b; }u§,+ cu=d

ros=l bij=1 r=1 -i=1

Crs

If (2.2) has constant coefficients a;, show that it is possible to choose matrix B in Problem 2.11
such that no mixed partials with respect to the £-vaniables occur in the transformed equation.

From Problem 2.11 it is seen that the matrix C defining the principal part of (2.2) in the ¢-variables
is given by

C=B"AB

According to the following result from linear algebra, B can be chosen to make C a diagonal matrix
(¢;s = 0 for r# s), thereby removing all mixed partials from the transformed PDE.

Theorem 2.3: let A be a real, symmetric matrix. Then there exists an orthogonal matrix B such that
C = B” ABisdiagonal. Moreover, the columns of B are the normalized eigenvectors of A and
the diagonal entries of C are the corresponding eigenvalues of A.

(B is orthogonal if BT = B™'. It can be shown that to an m-fold eigenvalue of A there correspond precisely
m linearly independent eigenvectors.)

Find an orthogonal change of coordinates that eliminates the mixed partial derivatives from
2u,  + 2ux212— lSuxjxj + SuILX&— Ru,, ~ 1214,‘1_‘3 =0
Then rescale to put the equation in canonical form.

The matrix corresponding to the principal part of this equation is

2 4 -6
A=| 4 2 -6
-6 —~6 —15

From
det(A— A=A+ 1147~ 1441 — 324 = (A + 2)(A + 18)(A ~9)
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2.14

15

it follows that the eigenvalues of A are A;=—2, A\2=—18, A3 =9. According to Theorem 2.3, the rth

column-vector of the diagonalizing matrix B,
br = (bln bZr) bJr)T
satisfies (A— A.DDh, =0, or

(2 - /\r)blr + 4b2, - 6b3, =0
4blr+ (2" /\,)bzr_ 6b3,= 0
—6b,, — 6bo, + (—15— A, )b3, =0

together with the normalizing condition
b, -b, = bi, + b3, + b3, =1
For r=1, A, = =2, (I) implies by, = —by and bs; = 0; then (2) is satisfied if
1

b”=—b2,=ﬁ by =0
For r=2, A2=—18, and 4b,, = 4by; = b3;; normalizing,
blz=bz2=L 32=—i
3V2 3V2

For r=13, A3=09, and b3 = bx = —2b;3; normalizing,
b13=b23:3' bssz_g

With B determined, the change of variables £ = BTx transforms the given equation to

~2ugg— 18ugg+ QUuge =0

(1)

2)

Finally, by defining 7]1551/\/5, n2‘=‘§2/(3\/5.) and ;= &/3, and multiplying the equation by —1, we

obtain
Usyny = Umgmy ~ Ungny = 0

which is the canonical form for a hyperbolic PDE in three variables.

Find a change of dependent variable which eliminates the lower-order derivatives from

u, +u Uyt O, —14u, +8u, =

X1¥y X2%2 - X3X3

If u(xy, xz, x3) = v(x1, X2, X3)exp (3=, c:ix:), then

3

Uy = (vrn + c,-v)exp (E C,'X.')

i=l

3
2 N
ux.‘xj = (Ux;x}' —+ 2Civ!1 +C7 U)E:Xp CiX;
=1

and the PDE for v is
Vres F Vspa = gy + (64 26100, + (=144 26)0 3+ 8+ 263)0 55+ (2 + cE— D) =0
Now choose ¢, = =3, ¢2=7, and ¢; = —4, to produce

Ve T Vg~ Vg3 T 420 =10

Find a change of dependent variable that reduces the parabolic PDE
u,t4u, —2u+8u=90

to the one-dimensional heat equation.
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If we set u(x, t) = v(x, t)exp (cot + ¢1x), then the PDE for v is
Ve + @+ 2¢)v — 20+ 8+ ¢+ co)v =0

Setting ¢; = ~2 and ¢o= — i2 we have v,, —2v, = 0, a homogeneous heat equation with thermal diffusivity
k= 1/2.

2.16 Refer to Example 2.6. Apply Theorem 2.2 to the initial-boundary value problem

uw,—«ku, =0 forx>0,t>0
u(0,H)=0 fort>0
u(x,0) = u, for x>0

obtaining two dimensionless groups, and then find a differential equation relating these
groups.
The initial condition has added one parameter to (2) of Example 2.6, without increasing the number

of fundamental dimensions involved ({uo} = @). Thus, N =5 and R = 3 in the Buckingham Pi Theorem,
which guarantees a solution G(;, m;) =0, with
U= {ma} = {u} 70} {r} i} 73 {uo} ™
=0 vaoLvalrvaz(L2T—l)va3@ Yad

= [ Yal*2vad T 7a2=Ya3@) Yal+Yad

To make the exponents vanish, choose, for ¢ = 1, yi0= y1a=0 and y; = 1; then y,, = yi3= —1/2. The
dimensionless group

is known as the Boltzmann variable or similarity variable for the one-dimensional heat equation. For
a =2, choose v =1, y2sa = —1, and y2; = yn = v23 = 0, to obtain

T2 = —
Uo

Assuming that G.,(m, m2) # 0, we can rewrite our solution as m;= g(m;) or u = usg(m). It then
follows from the chain rule that

ou ,( )B‘m ,( )‘IT1
g —m = -~ mn
ot T QM8
X e g/ () = g () —
—=uog'(m)—=uog'(m

ox ax V Kt

u ( )(877,)2 1

—= Uy T . =y ”

ax? g dx 08"(m) Kt

The PDE u, — ku. = 0 now implies the following ordinary differential equation for 7, as a function of ,:

g"(m)+ %g'(m =0 (1)

2.17 Derive the similarity solution

u(x, 1) = u,erf (

e

for the initial-boundary value problem of Problem 2.16. The error function, erf z, is defined by
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2.18

2.19

2.20

2.21

f 2 f - ds
eriz=—"" e
VT Ty

Integrate (1) of Problem 2.16 once with respect to = to find

2

aw
log |g’(m)| + —4—1 = const. or g'(mm) = (const.) "™

Integrate again and fix g(0) =0 to make u(0, £)=0:
w2

™
g(m) = (const.) f e~ dr = (const.) f e~** ds = (const.) erf (7,/2)
o o
Since lim .. erf z = 1, the last constant should be set to unity, ensuring

hm w(x, t)= uo lim g(m)= u for x >0

—0* o

This gives the required similarity solution.

Introduce dimensionless dependent and independent variables that transform the heat equa-
tion u, — xu,, = 0 to the dimensionless form v, — v, = 0.

The dimensions of x, ¢, u, and « are:
{x}=L {ty=T {u}=0 {(}=L*T!

Choose dimensionless variables £ = x/xo, T = t/2%, v = u/up; the PDE becomes

vo Uo K
—U-,-_K—zl)ff:O or Ur_ﬁl)ﬁ::()
to X0 Xolo

The coefficient of vg is seen to be dimensionless. Therefore, by proper choice of xo and 4, it can be
made equal to unity, yielding the desired dimensionless equation. Note that this equation involves no
fewer variables than did the original equation: neither £ nor 7 is the dimensionless Boltzmann variable of
Problem 2.16.

Supplementary Problems

Describe the regions where the equation is hyperbolic (h.), parabolic (p.), and elliptic (e.).

(@) Uu— Uy —2u,, =0 (e) yuw—2uy+ e u,+u=3
(b) uw+2uytu,=0 (f) e uw+ (sinh x)u,, + u=0
(¢) 2 +duy +3u,,—Su=0 (8) xtte +2xyu,, — yu,, =0
(@) e + 2xuUyy, + Uy + (COS Xy Uy = U (h)  xue +2xyus, + yu,, =0

Show that for (2.2) to be of ultrahyperbolic type, there must be at least four independent variables.

Let p = p(x, y) be positive and continuously differentiable. Write out the principal part and classify the
equation:

(@ V-(pVu)y+qu=f (b)) wu-V-(pVu)+qu=f (¢c) ua~=V:-(pVu)+qu+ru=f
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2.22  Find the characteristic curves for the given equation.

(@) unx—u,+u=0 (&) uy—y*u,, =0

(b) 3Bu, +8u, +4u, = (f) YU — 2xyue, + x*u,, + yu, + xu, =0
(€©) U—up+u,+u =0 ) Yiuutu,=0

(d) o+ yu,=0 (h) yue+ u,, =0

2.23  Show that Su,, + 4u,, + 4u,, = 0 is elliptic and use a transformation of independent variables to put it in
canonical form.

2.24  Show that Btayny = 2UaayF 2Usyy = 2Ugpuy + Sty T 1200, — 8uyy =0
is elliptic and use a linear change of coordinates to transform its principal part to

Ugg t3Ugy+ dueag
2.25 By rescaling the £-variables in Problem 2.24, transform the principal part to Vu.

2.26  (a) Determine the type of the equation
Bty 2Uiapny F Uiy 2Ue 3 =0
and (b) use Theorem 2.3 to reduce it to canonical form.
2.27  Verify that the given equation is hyperbolic and then find a change of coordinates that reduces it to
canonical form.

(@) U + 20y~ 8uyy + 1, +5=0 (d) e’un +2e u,—e* u, =0
(b) e+ 2(x + Dy + 2xu,, =0 (@) A+ xYue—(1+yVu, =0
(¢) 2u,+4uy,—u,,=0

2.28 Classify the given equation and then find a change of coordinates that puts it in canonical form.

(@) uee+ A+ x%u,=0 (i) thee + xyu,, =0

(b) duu—4uy+5u,=0 (J) Yl — xthy, + us+ yu, =0

(©) U —2uy+u, =0 (k) €Uy +2e*u, + e™u,, =0

@) -, tu+u+2x+y=35 () ue+Q+yPu,=0

(e) X2ty + 2xyusy, + yiu, = 4y? (M) Xthex +2VXY they + ytiyy — u, =0 (x>0, y>0)
(f) x*ue~ yiuy,, = xy (n)  (sin? x)u., + 2(cos XUy, — Uy, =0

(8) (X’u)e—y’u, =0 (0) €U —x7up—u, =0

(h)  Y*thex = 2ythey + thyy — 14, =8y = 0 (P) (14 XV U= 21+ X*)(1+ yuny + (1 + y?Y14y, = 0

2.29  Use the results of Problem 2.3 to show that
B*~ AC= (b2 - ac)((f’xl//y - ¢y‘//x )2

2.30  Show that if (2.1) is hyperbolic and in (2.3) ¢ and ¢ are chosen to make A and C, the coefficients of ug
and u,,, zero, then 2B, the coefficient of ug,, is not zero.

231 Show that ax’ug + 2bxyu,, + cy*u,, + dxu, + eyu, + fu=g (a, ..., f constants)

is transformed into a constant-coefficient equation under ¢ = log x, = log y.

2.32  Show that the two canonical forms for the wave equation, ug, and u,, — ugg, are related by a 45° rotation
of coordinates.

2.33  Use a change of dependent variable to reduce u,, — u, + 4u, + 6u = 0 to the heat equation, v, — v, = 0.



Chapter 3

Qualitative Behavior of
Solutions to Elliptic Equations

3.1 HARMONIC FUNCTIONS

Because the canonical example of an elliptic PDE is Laplace’s equation, V2u = 0, we begin with
the following

Definition: A function u = u(x) is harmonic in an open region, (), if u is twice continuously
differentiable in Q and satisfies Laplace’s equation in £. u is harmonic in {2, the closure of
Q, if u is harmonic in £ and continuous in ).

EXAMPLE 3.1
(a) u(x, y)=x"—y*is harmonic in any region {1 of the xy-plane.

(b) u(x,y, z)=(x*+ y*+ z°)"'? is harmonic in any three-dimensional region which does not contain the origin.
If © denotes the ball of radius one centered at (1,0, 0), then u is harmonic in ) but not in (3.

Let x, be a point in §) and let Bp(x,) denote the open ball having center x, and radius R. Let
3.z (x,) denote the boundary of B (x,) and let A(R) be the area of X, (x).

EXAMPLE 3.2 Using calculus methods, one can show that in R” the volume, V,(R), and the surface area,
A, (R), of any ball of radius R are given by

n,n.’l/2

) n-1 (n even)
A, _ -ty _ n/2)!
(R)=nR7"V,(R) 2n(27r)(n—1)/2 . (1)

——FFFR" (n odd)

1 .3. 5 -
Definition: A function « has the mean-value property at a point x, in Q if

1
ux,) = ——— u(x) dx 3.1)
" AR, R

for every R >0 such that B,(x,) is contained in ).

Theorem 3.1: u is harmonic in an open region ) if and only if » has the mean-value property at
each x, in (1.

By Theorem 3.1, the state function, u(x), for a physical system modeled by Laplace’s equation is

balanced throughout {} in the sense that the value of u at any point x, is equal to the average of u

taken over the surface of any ball in ) centered at x,. In other words, Laplace’s equation—and
elliptic PDEs in general— are descriptive of physical systems in the equilibrium or steady siate.

Theorem 3.2: Let Q) be a bounded region with boundary § and let u be harmonic in . If M and m
are, respectively, the maximum and minimum values of u(x) for x on S, then (Weak
Maximum-Minimum Principle)

m=u(x)=M forallxin Q

or, more precisely (Strong Maximum-Minimum Principle),
either m<u(x)<M forallxin(}
orelse m=ux)=M forallxin

19
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EXAMPLE 3.3 If Q is not bounded, then the (weak) maximum-minimum principle need not hold. In fact,
u(x, y)=e*siny

satisfies Laplace’s equation in Q ={(x, y): —® < x <o, 0<y <}, and u is zero on the boundary of Q, so that
m =M = 0. But u(x, y) is not identically zero in €.

Definition: A function u(x) is analytic in Q if u is in C7(Q2) and, in a neighborhood of each point x
in ), u equals its Taylor series expansion about x.

Theorem 3.3: If u is harmonic in a region {1, then u is analytic in ).

Theorem 3.3 implies that solutions of Laplace’s equation cannot exhibit discontinuities in the value
of u or of any of its derivatives. This is again characteristic of a physical system in the steady state (any
initial disturbances having been smoothed out).

There is a strong connection between harmonic functions in the plane and analytic functions of a
complex variable. This connection provides a partial converse to Theorem 3.3.

Theorem 3.4: 1f f(z)= f(x +iy)= u(x, y)+ iv(x, y) is an analytic function of the complex variable z
in (), then u4 and v are harmonic in ().

Theorem 3.5: A function u(x, y) is harmonic in a simply connected region () if and only if, in , u
is the real part of some analytic function f(z).

EXAMPLE 3.4 If f(z)= 2z%= (x + iy)*= x*— y®+ i2xy, then
u(x, y)=Re f(z)= x>~ y? and v(x, y) = Re —if(z) = 2xy

each satisfy Laplace’s equation in the plane.

3.2 EXTENDED MAXIMUM-MINIMUM PRINCIPLES

Definition: A continuous function u is subharmonic in a region () if, for every x; in (), u(x,) is less
than or equal to the average of the u-values on the boundary of any ball, Bg(x,), in {L:

1
| AR,
A superharmonic function satisfies (3.2) with the inequality reversed; it is thus the negative of a
subharmonic function.
If uis C? then u is subharmonic if and only if V’u =0, and u is superharmonic if and only if
V?u <0. Clearly, a harmonic function is both subharmonic and superharmonic, and conversely. The

maximum-minimum principle, Theorem 3.2, extends to subharmonic and superharmonic functions, as
follows:

Theorem 3.6: For (), S, m, and M as in Theorem 3.2,

u(x,) < u(x) d=, 3.2)

(i) if V2u =0 in Q, then u(x)<M for all x in ) or else u(x)=M in Q;
(ii) if V’Zu=<0in Q, then u(x)>m for all x in £ or else u(x)=m in {}.

Results similar to Theorem 3.6 hold for elliptic equations more general than Laplace’s equation.

Definition: The linear operator

=3 4w

ij=1 i

+ S a0ty cpor (3.3)
i=1

[
ox,

1

is uniformly elliptic in () if there exists a positive constant A such that
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n

> a,;(x){d = A 2 I (3.4)

ij=1
for all ({;,{,, ..., ¢,)in R" and all x in {}.
Observe that, if (3.4) holds, matrix A(x) must be positive definite in ), which means that L[ ] is

elliptic in ), with Z=0 and P = n (Section 2.1). On the other hand, assuming that an elliptic
operator has all eigenvalues positive (if all are negative, multiply the operator by —1), we have

Theorem 3.7: 1f L[ ]is elliptic in Q, it is uniformly elliptic in § (afortiori, in Q).
Theorem 3.8: Let (), S, m, and M be as in Theorem 3.2. Suppose in (3.3) that ¢ =0, L[ ] is
uniformly elliptic in {2, and a; and b; are continuous in .
(i) If L[u] =0 in £, then u(x)< M for all x in Q or else u(x)=M in Q.
(i) If L[u] =<0 in Q, then u(x)> m for all x in Q or else u(x)=m in Q.
(iti) If L{u] =0 in Q, then m < u(x) <M for all x in Q or else m = u(x)=M in
Q.

Theorem 3.9: Let () be a bounded region with boundary S. Suppose that u(x) satisfies L[u] = f in
Q, where L[ ] is uniformly elliptic in  and has coefficients a,, b, ¢ which are
continuous in ). Suppose further that, in ), ¢ =0 and f is continuous.

(i) If =0 in Q and u(x) is nonconstant, then any negative minimum of w(x)
must occur on § and not in ).

(i) If f=0 in Q and u(x) is nonconstant, then any positive maximum of u(x)
must occur on S and not in ().

Theorem 3.10: In the boundary value problem L[u]l=f in Q, u=g on S, suppose that the

hypotheses of Theorem 3.9 hold and that g is continuous on S. Let |a,|, ], | all be
bounded by the constant K, and let A be as in (3.4). If u is C%in Q and C° in Q and
if u satisfies the boundary value problem, then, for all x; in Q,

|u(xo)l = max |g (x)| + M max | f(x)|

where M = M(A, K).

3.;”5 ELLIPTIC BOUNDARY VALUE PROBLEMS

Since elliptic equations in general model physical systems that are not changing with time, the
associated auxiliary conditions are typically boundary conditions (Section 1.3).

EXAMPLE 3.5 If Q is the region 0 <x < 1,0 <y <1, then the boundary value problem

Uee Tty = f(x, y) in ()
u(x,0)=u(x,1)=0 on<x<1
w0, y)=1 on0<y<1
2yu(l, y) = Su. (1, y) = y? on<y<l1
has a homogeneous Dirichlet condition on the portion of the boundary where y =0 or y=1. A Neumann
condition holds on the part of the boundary where x = 0. On the edge x = 1, u satisfies a mixed condition.

A classical solution of a (elliptic) boundary value problem satisfies the PDE L{u] = f in Q, is C*
in Q, and is C° in Q (for a Dirichlet condition on $) or C' in Q) (for 2 Neumann or mixed condition
on’S). It is possible to relax somewhat the smoothness conditions; such weak solutions are discussed
briefly in Chapter 5. When no qualifier is used, a solution is understood to be a classical solution.
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If the region ) is unbounded, then, in addition to the boundary conditions, a solution is generally
required to satisfy a condition at infinity, which is frequently dimension dependent.

EXAMPLE 3.6
(a) If 1 is the half-plane y > 0, then, in the boundary value problem

Uex + Uy = flX, y) in
u(x,0)=g(x) on S

the usual condition at infinity 1s that u be bounded,
|u(x, y)| < M = const.
for x*+ y* >, y>0.
(&) If £ is the half-space z >0, then, in the boundary value problem

“u+“yy+'4u=f(X,y,z) in Q
u(x, y,0)=g(x, y) on S

the typical condition is that u vanish at infinity,
lu(x, y, z)| >0
for x*+ y*+ 22500, 7 >0.
The three conditions for a well-posed problem were stated in Section 1.3. For many elliptic
boundary value problems, maximum-minimum principles like Theorems 3.8-3.10 or an energy-

integral argument can be used to show that conditions (ii) (uniqueness) and (iii) (continuous
dependence on data) hold. See Problem 3.14.

EXAMPLE 3.7 Let () be a bounded region. The Dirichlet boundary value problem
Viu=f in
u=g on S
" the Neumann problem (¢ <0)
Viu+cu=f in 0

ou s
— = on
on &
and the mixed problem (af > 0)
Viu=f in £

ou
au+fpB-—=g on S
on
each have at most one solution and each solution depends continuously on the data functions f and g. Nonetheless,
there are mathematically and physically significant elliptic boundary value problems that are iil-posed with
regard to conditions (ii) and (iii).

Condition (i), the existence of a solution to a boundary value problem, is generally more difficult
to establish. The most satisfactory way to show that a solution exists is to construct it; the solutions to
a number of elliptic boundary value problems are constructed in Chapters 7 and 8. A particularly
important constructive existence result, for Laplace’s equation, 1s given by

Theorem 3.11 (Poisson’s Integral Formula): In R’ if g(§) is continuous on Z.: |§ =R and
A, (1)—see (1) of Example 3.2—is the area of the unit sphere, then
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R*—|x?
Ix] g(&)" a5, <R
u(x)=1 RA (1) )5, |x— & 3.5)
g(x) x| = R
is a solution to the boundary value problem
Vu=0 in|x|<R
u=g onlx|=R

See Problems 8.7 and 8.38 for a derivation of (3.5). Observe that for x = 0, (3.5) coincides with (3.1), the
mean-value property.

Sometimes, the nonexistence of a solution to a boundary value problem may be demonstrated
immediately, :

EXAMPLE 3.8 For the Neumann problem

Viu=f inQ
u S
—= on
on &

1t follows from the divergence theorem that

a
jfdﬂ=j undﬂ=J’—ud5=J gds
o a son s

Thus, if the consistency condition [ fd() = [s g dS is not satisfied, the Neumann problem cannot have a solution.
Problem 3.20 gives a consistency condition for an elliptic mixed problem.

Solved Problems

3.1  Show that if & is harmonic in an open region () of R", then u has the mean-value property in .

Suppose that 1 includes the ball B,(xo) for 0 =p = R. By the divergence theorem,

ou
0=f VzudBp=f —d3, (1)
B, I or
in which we have introduced the radial coordinate r = | ~ xo|; £ being a general point of R". Now,
au(r, ... _au(p,...)
or l r=p op
and (sce Example 3.2) dZ, = p"~' d2,, where X, denotes the surface of the unit sphere. Therefore, (1)
implies
o0=[ g5,- 2 (f az) @)
=| — =-— ud®
5, 0p " dp X I

Integration of (2) from p =0 to p = R, where R =[x — x|, yields
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0-== u(x) le—j u(xo) d2y

PR =,
1
=—_1j u(x) dig — u(x0) A.(1)
R™ s,

1
An(R)

=A,(1) [ LR ulx)dZg — u(xo)] 3)

since, from Example 3.2, A,(R)= A,(1)R""’. The mean-value property of u follows at once.

The converse theorem, that the mean-value property implies harmonicity, can be proved by
reversing the above argument if the prior assumption is made that u is in C*(Q)). A way around such an
assumption is shown in Problems 3.2-3.4.

3.2 Suppose that u has the mean-value property in the ball B.(x,). If u=M in B, and u(x,) = M,
show that u = M everywhere in Bj.

From the mean-value property and the given conditions on u,

1
M=ukx)=——| ux)ds, =M 1
AN, @
for r = R. As equality must hold throughout (1), u(x) = M at every point of X,. Thus, u(x) = M for all x

in BR (XO).

3.3  Suppose that u has the mean-value property in a bounded region () and that u is continuous
in Q. Show that if u is nonconstant in {2, then u attains its maximum and minimum values on
the boundary of (, not in the interior of Q.

Since u is continuous in the closed, bounded region Q, u attains its maximum, M, and its minimum,
m, somewhere in . We will show that if u attains its maximum at an interior point of Q. then u is
constant in .

Assume that u(xo) = M, with xo in 0, and let x* be any other point in {). Let I be a polygonal path

in ) joining xo and x* and let d be the minimum distance separating I' and S, the boundary of {}:
d=min{x—yl:xon T, yon §}

There exists a sequence of balls Br(x;), i =0, 1, ..., n, with x; on I, satisfying R = d, X« in Bg(x,). x* in
Br(x,). See Fig. 3-1.

Bg(xic1)

Fig. 3-1
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s

3.7

Problem 3.2 shows that u is identically equal to M in each Bgr(x;), i=0,1,..., n; hence, u(x*) =M
Since x* was arbitrary, u must be equal to M throughout () and, by continuity of u, throughout £. This
shows that if u is not a constant in {}, then u can attain its maximum value only on the boundary of Q.

The above argument, applied to —u, establishes that if u is nonconstant, it can attain its minimum
value only on S.

Show that if « has the mean-value property in an open region (), then « is harmonic in €.

Let xo be any point in {1, and let Bz (x¢) be wholly contained in Q. Since Laplace’s equation is
invariant under a translation of coordinates, we shall suppose xo = 0. If v is defined in Bz (0) by Poisson’s
integral formula, (3.5), with v = u on the boundary of Bg, then, by Theorem 3.11, v i« harmonic in Bg.
By Problem 3.1, v has the mean-value property in Bgr. Because both u and v have the mean-value
property in Bg, w=u— v has the mean-value property in Bg. Since w =0 on the boundary of Bg,
Problem 3.3 shows that w =0 throughout Bg. Thus, u is identically equal to the harmonic function v in
Br, and so u is harmonic at 0, which, from the above, represents any point in (2.

The above proof has an important implication: Any harmonic function can be expressed in terms of
its boundary values on a sphere by Poisson’s formula. Equivalently: The Dirichlet problem

Vu=0 in x| < R
u=g on |x|= R

has a unique solution.

Establish the maximum-minimum principle for harmonic functions, Theorem 3.2.

Problem 3.3 establishes Theorem 3.2 for functions having the mean-value property. But, by
Problems 3.1 and 3.4, these functions are exactly the harmonic functions.

Show that if u(x, y) is subharmonic, V2« =0, in a bounded region () and u=M on S, the
boundary of £, then u = M everywhere in ().

Since {} is bounded, it can be enclosed in a circle, of radius R, centered at the origin. Let € >0 be
arbitrary and define

v(x, y)=ulx, y)+ e(x?+ y?) in (} (1)
From (1),
Vo =Vu+2e>0 in 0 (2)

v can attain a maximum in {} only on S; for, at an interior maximum, v,, <0 and v,, =0, which would
contradict (2). From u =M on S, it follows that v =< M + eR?* on § and, since v attains its maximum on
S, v=M + eR” everywhere in {). By (I), u =<v; 50

u<M+eR? in Q 3

for any € > 0. It follows that u cannot exceed M in ; if it did, then, for sufficiently small ¢, (3) would be
violated.

The above argument provides an alternate proof that a harmonic function on a bounded region Q
must attain its maximum on the boundary of £).

Show that if u(x, y) is harmonic in a bounded region Q and « is continuously differentiable in
Q, then |Vuf® attains its maximum on S, the boundary of €.

Let w=|Vu’= u2+ 2. Since u is C'in Q, w is continuous on §. Therefore, since S is closed and
bounded, there is a value M assumed by w on S such that

w=M on S (1)
Calculating V2w '= V- VYw, we find
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VAW = 2llhore + USe T Uylhey + Usy + Uilleyy + U + Uyl + uy)
Since u is harmonic in Q, Uy + u,, =0 in {2, and
Lollene + Ugllyyy = Uy (Unx + Uyy)x = 0
Upltyey T Uyllyyy = 1y (o + 103), = 0
Thus,
Vw = uZ +2u%,+ u?, =0 in ) (2)

or w is subharmonic in {1. Problem 3.6 and (/) now imply that w = |[Vu[>< M throughout Q.
This result has a number of interesting physical interpretations; e.g., for steady-state heat flow in a
homogeneous medium {2, the heat flux vector of maximum magnitude must occur on the boundary of 2.

3.8  Show that the solution to the Dirichlet problem indicated in Fig. 3-2 satisfies

0<u(x,y)<x2-x-2y)

in ().

©,0]. u=x(2-x) ,0) X

Fig. 3-2

Let v(x, y)= x(2— x — 2y) and note that V*v = =2 in (). Then, if
w(x, y) = u(x, y)— v(x, y)
in , we have
Viw=2>0 in Q
w=0 onS
From Theorem 3.6(i), w(x, y) <0 in (}; that is,
ulx, y)<uv(x, y)=x2-x—2y) in {}

Since the minimum of u on § is zero, it follows from Theorem 3.6(ii) that u(x, y)>0in Q.

39 Let u(x, y) be continuous in the closure of a bounded planar region 2 and let the linear
operator
Llu] = u, + u, + bi(x, y)u, + by(x, y)u,

be defined in ﬂ', in which b, and b, are continuous functions. Prove: (a) If u(x, y) satisfies
Llu]=fin Q, with f>0, then u attains its maximum on S, the boundary of {2, not inside Q.
(b) If u(x, y) satisfies L{u]|=0in (), and if u <M on §, then u <M in Q.
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3.10

(a) S_ince u is continuous in the closed bounded region Q, it must attain its maximum, M, somewhere in
Q. Let (xo, yo) be an interior point of {) and assume that u(xo, yo) = M. From calculus, u, =0 = u,,
U =0, and u,, =0, at (xo, ¥o); hence, by and b, being bounded at (xo, yo),

Llu] = the + 1y, =0
which contradicts L[u] = f > 0. We must, then, admit that the maximum is achieved on S.

(b) Because b, is bounded (below) in ), there exists a constant a such that
L[e**] = ae®™(a + b)>0 in Q )

For arbitrary € > 0, define v = u + ee™. Let R be chosen large enough so that the circle centered at
the origin with radius R encloses ). Since u =M on S,

v=M+ ee*® onS 2)

From L(u)=0 and (1), L[v»] > 0. It now follows from the result of (a) that

u<v=M+ ee® in Q 3)

for arbitrary € >0, and this implies that « <M in Q.

Under the hypotheses of Problem 3.9, with b, and b, assumed continuous in Q, show that a
solution of L[u] =0 cannot attain its maximum, M, at an interior point of () unless =M in
Q.

Let M denote the maximum of « on Q and suppose that u assumes the value M somewhere in . If
u# M in Q, there exists a disk B, in €} that contains on its boundary an interior point (£, ) of () where
u(¢, ) = M and such that u(x, y) <M inside B,. Let B, be a disk of radius R satisfying B, C B,, with
the boundary of B; tangent to the boundary of B, at (£, n); i.e., £ N2, = (¢, n). (See Fig. 3-3.) Since the
PDE L[u] =0 is invariant under a translation of coordinates, the origin can be taken to be the center of
B;. Let B; be a disk in Q centered at (£ 7), of radius less than R. Divide the boundary, 23, of B; into the
two arcs

o =3.N B, o2=33— 0y

Fig. 3-3
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By hypothesis u is continuous on the closed arc o1, at every point of which u <M (because o, C By). It
follows that u is bounded away from M on oy:

ulx, y)=M-¢ for some ;>0 and all (x, y) on o, (1)
Define the comparison function
—ar? _ e—aRZ

v=e

where #= x?>+ y? and a > 0. Note that v >0 in By, v =0 on 2, and » <0 outside B,. A calculation
shows that

Llv] = {4a*(x> + y) = 2a(2+ bux + bay)} ™

Hence, for sufficiently large «, L[v] > 0 throughout Bs. From (1) it follows that there exists a constant
B> 0 such that

u+pBo<M on %, (2)
Also, >0, L[u] =0, and L[v] >0 in B; imply
Llu+pv]>0  inBs (3)

Since u = M and v = 0 at (£ n), (2) shows that u + Bv must assume a maximum greater than or equal to
M at some point (¢, %) inside B;. The necessary conditions for this maximum are

U, + B, = 0= u, + Po, 4)
Use T B =0 Uyy + Boy, =0 %)
However, from (3) and (4) and the boundedness of the coefficients b, and b,, we conclude that
(e + Brac) + (1, + Byy ) >0

which contradicts (5). Thus, the original assumptions of an interior maximum and a nonconstant function
are incompatible.

Problems 3.9 and 3.10 provide a proof of Theorem 3.8(i) for R? in the case that the principal part of
L[ ]is the Laplacian. The arguments employed contain the essential ingredients of the general proof of
Theorem 3.8.

For a bounded region (), show that if u i1s a nonconstant solution of
u,tu, +bu+bu+cu=f (1)

with b,, b,, ¢ =0, and f = 0 all continuous on Q, then u can assume a positive maximum only
on S, the boundary of 2, and not in ().

Suppose that M is a positive maximum of u and let Q be the set of points in () where 4 = M. Since
a solution of (1) is continuous in Q, we know from calculus that Q is closed (its complement is open)
relative to Q.

To complete the argument, we show that if Q is nonempty, then Q is also open relative to (,
implying that Q = Q and contradicting the hypothesis that u is nonconstant. Let (%, y) be a point in Q, so
that u(x, y)= M'>0. Then, by continuity of u, there is a ball, B, in {2, centered at (%, y), in which
u(x, y)>0. Thus,

Uy T Uy + brue + bouy = —cu+ f=0 in B

Now, from Problem 3.10, we conclude that u must be identically equal to M in B. This shows that any
point in Q has a ball about it that is entirely in Q; i.e., Q is open relative to Q.

The above provides a proof of Theorem 3.9(ii) for R* when the principal part of the elliptic operator
is the Laplacian. A general proof of Theorem 3.9 follows the same lines.

Let  be a bounded region and let L[ | be as in Theorem 3.9. If u satisfies L{u] = f in Q,
u=g on S, and if v satisfies L[v]=fin , v=g on S, prove that u <o in (.
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3.13

3.14

Since L{u—v]=f—Llv]=0in () and u —v =0 on S, it follows from Theorem 3.9 that u ~ v cannot
have a positive maximum in {2, which means that u — v cannot assume a positive value in ).
Similarly, we can show that if L{w]=fin Q and w=g on §, then u=w in .

In a bounded region {1, if u satisfies

U, tu,=f in Q) (1)
u=g on S (2)
show that, in (—2,
lu| = max |g(x, y)|+ M max |f(x, y)| (3)
(x, y)ES (x, y)EQ

where M is a constant which depends on the size of ).

If Q) is not contained in the region x =0, a translation of coordinates will leave the forms of (1) and
(2) invariant and will result in x = 0 throughout Q. Thus, with no loss of generality, we can assume that
there exists a positive number a such that 0 =x =g for all (x, y) in ). Define the comparison function

v=max|g|+ (e* — ¢*) max |f]
s 4]

Because e? — ¢* =0 in Q, v = max |g| and
S
v=g on S (4)

Calculating L[v] = v.. + vy,, we find, since e* =¢°= 1 and f= —max|f|,
a

Llv]=~e* max [f|= f in Q 5)

Inequalities (4) and (5) and Problem 312 imply u=<wv in (—)_. Similarly, with w = —v, we have w=gon §
and L{w]=fin Q, so that u = —v in . Consequently, in (),

lu|l = v = max|g|+ (¢* - 1) max | f]
s 0

since ¢* =1 in (. This establishes (3), with M = ¢° — 1.
We term (3) an a priori estimate of u. When some knowledge of the solufion is incorporated, much
sharper estimates are possible.

Let Q) be a bounded region. Show that the Dirichlet problem
V’u=f inQ
u=g on S
has at most one solution and, if it exists, that the solution depends continuously on the data f
and g.
The difference v = u; — u, of two solutions would satisfy the homogeneous problem
Vo =0 in O
v=0 onS

The maximum-minimum principle, Theorem 3.2, implies » =0, or u; = us, in {1
To establish the continuous dependence of the solution, let & satisfy
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3.14

Since L{u—v]=f— L[v]=0in & and 4 — v =0 on §, it follows from Theorem 3.9 that u — v cannot
have a positive maximum in 2, which means that ©# — v cannot assume a positive value in ).
Similarly, we can show that if L{w]=fin {} and w=g on §, then u= w in Q.

In a bounded region (1, if u satisfies

u,+u,=f in (1)
u=g on S 2)
show that, in Q,
lul = max [g(x, y)|+ M max [f(x, y)| (3)
(x y)ES (x y)ER

where M is a constant which depends on the size of ().

If ) is not contained in the region x =0, a translation of coordinates will leave the forms of (1) and
(2) invariant and will result in x =0 throughout Q. Thus, with no loss of generality, we can assume that
there exists a positive number a such that 0 = x =g for all (x, y) in Q. Define the comparison function

v=max [g]|+ (e — e*) max |f]
s a

Because e® — ¢* =0 in §), v = max |g| and
s
v=g on S 4)

Calculating L[v] = ve + 3,,, we find, since e* = e®°=1 and f= —max |f|,
!

L[v] = —e* max |f|=f in Q *)

Inequalities (4) and (5) and Problem 3.12 imply u =< v in .(—Z_. Similarly, with w = —p, we have w=g on §
and L{w] = fin , so that u = —v in Q. Consequently, in 2,

|u| = v =max|g|+ (e® — 1) rax | f|
s 3

since e* =1 in Q. This establishes (3), with M = ¢ — 1.
We term (3) an a priori estimate of u. When some knowledge of the solution is incorporated, much
sharper estimates are possible. -

Let ) be a bounded region. Show that the Dirichlet problem
Viu=f in )
u=g on S

has at most one solution and, if it exists, that the solution depends continuously on the data f
and g.

The difference v = u, — u> of two solutions would satisfy the homogeneous problem
V=0 in
v=0 onS

The maximum-minimum principle, Theorem 3.2, implies v =0, or u; = u,, in Q.
To establish the continuous dependence of the solution, let i satisfy
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Vii=f i
=g on S
Theorem 3.10 implies
max |u — & < max |g — g+ M max |f ~ f| (M = const.)
[+ s f

which shows that small changes in the functions f and g produce small changes in the solution w.

Let Q) be a bounded region. Show that the Neumann problem

Viut+cu=f in Q )
u
—=g onS$ 2)
an

has at most one solution if ¢ <0 in Q. If ¢ =0 in 2, show that any two solutions differ by a
constant.

If u; and w, are both solutions of (1)—(2), v = u, — u, satisfies the homogeneous problem

Vo+co=0 in 3)
av
;=0 on S 4)

Multiply (3) by v and integrate over {2, using (1.7) and (4):
~[1veF da+ [ ewran=0 5)
Q o)

If ¢ <0 in Q, the only way (§) can hold is for v to be identically zero in €, which implies that (1)—(2)
has at most one solution. If ¢ =0 in , (§) shows that v is constant in ; i.e., the difference of two
solutions of (1)—(2) is a constant,.

Show that if aB >0, the mixed problem
Vu=f inQ

u
au+pB—=g on$
on

has at most one solution in a bounded region ().

Again consider the associated homogeneous problem for the difference of two solutions:

Vip =0 in Q 1)
o

aw+B=0 ons )
an

Multiplying (1) by v, integrating over (), and using (1.7), we obtain
5 dv
0=J- szde:—J- (Vo dQ+J- v—dS
Q fe} s an
or, by (2),
54
f va|2dQ+f —1%2dS=0
a sB

which is impossible unless v =0in Q.
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3.17

3.18

3.19

Let Q denote the region in R" exterior to the unit sphere:
Q={(x;, % ..., %) P=xi+xi+--+x:>1}
Then S, the boundary of ), is the surface of the ball of radius 1 centered at the origin. Show
that the exterior Dirichlet problem
Vu=0 inQ (1)
u=1 on S (2)
has infinitely many solutions unless some ‘‘behavior at infinity” conditions are imposed.
By use of the chain rule, one easily shows that the one-parameter family of functions
A+
voy(r) = P2
I+(A-A)logr n=2

n#2

—wo <A <o, all satisfy (1)-(2). (Note that only one member of this family, vy(r), is harmonic at the
origin; it represents the unique solution of the interior Dirichlet problem.)
For n =2, only v, satisfies the boundedness condition

luj= A in O 3)

and in Problem 3.19 it is shown that v, is the unique solution to (1)-(2)-(3) when n = 2.
For n =3, every v, is bounded, but only v, satisfies the condition

u— 0, uniformly, as r—> o 4)

In Problem 3.18 it is shown that, for n = 3, v, is the unique solution to (1)-(2)-(4).

Show that the exterior boundary value problem in R" (n = 3)

Vu=f in (2 (2 unbounded)
u=g on S
u(x)—-0 uniformly, as |x| -«

has at most one solution.

The difference, v = u; — us, of two solutions satisfies

Vip=0 in (1)
v=0 onS 2)
v(x)—>0 uniformly, as |x|— oo 3)

Let xo be an arbitrary point in . From (3) it follows that, given € >0, R can be chosen so that |xo| < R,
and |v(x)| < € for [x| = R. In the bounded region () defined by the intersection of  and the ball |x| < R,
Theorem 3.2 applies. Since the boundary of €} consists partly of S and partly of the sphere Ix| = R, and
since v =0 on S while |v| < € on [x| = R, it follows that |o(x)| < e throughout {. In particular, |[v(xo)| < .
Since both € and x, are arbitrary, v =0, or u, = us, in Q.

Show that the exterior boundary value problem

u, tu,=f in Q (Q unbounded)
u=g on S
lu(x, y)j= A in Q (A constant)

has at most one solution.
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The difference, v = u; — ua, of two solutions satisfies

Vet 0, =0  inQ (1)
v=0 onS (2)
lv(x, y)|=C in {} (C constant) 3

Let ' denote the complement of (1, so that the union of Q and ' is the entire xy-plane. Let xo = (xo, yo)
be a point in the interior of {¥/, let

r={(x~xo)* + (y = yo*]"*

and choose R, sufficiently small so that the ball Bg (xo) is in the interior of (. Choose R, sufficiently
large so that the ball Bg,(xo) intersects the region ) in a nonempty, bounded region Q. If w is defined by

log (r/R))
lOg (Rz/Rl)

then w is harmonic in  (by Problem 3.17), w is positive on S, and w = C on the sphere r = R,; hence,
—wix, y)=o(x, y)=w(x, y) on the boundary of 4)

Since » and w are both harmonic in the bounded region Q, Theorem 3.2, applied logether with (4) to
the harmonic functions w = », shows that

ol PI=wixy)  inQ %)

To complete the argument, let (%, ¥) be an arbitrary point in 2. By substituting (&, y) into (5) and
allowing R,-» with R, held fixed, we show that »(x, y)=0. Thus, v =0 in , which implies, by the
arbitrariness of the initial R, v =0 in Q.

Let © be a bounded region and consider the mixed problem

V2u+cu=f in (1)
d

aut+tBE=0  onS 2)
an

Show that for (1)—(2) to have a solution it is necessary that the consistency condition

f fodQ =0 (3)
Q
be satisfied by every solution v to the associated homogeneous problem
Vio+co=0 in Q (4)
ov
av+pB—=0 on S (5)
on

Multiply (1) by v and (4) by u, subtract, and integrate over {}:

j (v V’u—u V?) dQ=j fodQ (6)
N 4]
But, by (1.8) and the boundary conditions, the left side of (6) vanishes, yielding the consistency

condition (3). The proof includes the special cases B =0, a0 (Dirichlet problem} and a =0,
B # 0 (Neumann problem).

Show by example that the initial value problem for Laplace’s equation
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3.23

3.24

3.25

uxx+u”=0 —o < x <o, y>0
u(x,0)=F(x) —00 < x <o
u, (X 0)= G(x) —00 < x < 00

ts ill-posed in that the solution does not depend continuously on the data functions F and G.
The following example is due to Hadamard. For F= F;=0and G = G, =0, it is clear that u;=01s
a solution. For F = F,=0 and G = G, = n"'sin nx, it is easy to verify that
L. ‘
uz = —zsinh ny sin nx
n

is a solution. The data functions F, and F; are identical, and

llm 'Gl - Gz' = O
uniformly in x. Therefore, the data pairs Fi, G, and F,, G, can be made arbitrarily close by choosing n
sufficiently large. Let us compare the solutions u; and w, at x = #/2 for an arbitrarily small, fixed,
positive y and for n restricted to odd positive integral values:

T T 1 e —e ™
O R R

Because €™ increases faster than n?

(o) a3 - 030

Iim
n—o

n odd

The conclusion is that, by choosing n sufficiently large, the maximum difference between the data
functions can be made arbitrarily small, but the maximum difference between the corresponding
solutions is then made arbitrarily large. In general, initial value problems for elliptic PDEs are ill-posed
in this fashion.

Supplementary Problems

Verify that each of the following functions is everywhere harmonic:
(a) x*-3xy* (b)) 3x’y—y> (c) e“cosy (d) e'siny (e) 6x+y
If u and v are solutions of Laplace’s equation, show that uv satisfies Laplace’s equation if and only if Vu

and Vv are orthogonal.

If u(x, y) and v(x, y) are the real and imaginary parts of an analytic function f(z), show that uw satisfies
Laplace’s equation. [Hint:  f? is analytic.]
Let the xy- and én-coordinates be related by a rotation:

E=xcos @+ ysin b m=—-xsm@+ycosd

where 6 = const. Show that if « is harmonic in x and y, then u is harmonic in ¢ and ». [Hint: Don’t
differentiate; appeal to the mean-value property.]
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3.26

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36
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Show that the surface mean-value property, (3.1), is equivalent to the volume mean-value property,

u(xo) = u(x) dBx

V(R) Jsrooy
(see Example 3.2).
(a)Show thatif f(z)= f(x + iy) = u(x, y) + iv(x, y) has a continuous derivative in (2, then u and v satisfy the
Cauchy-Riemann equutions, u, = v,, u, = — 1, in . (b) Show that if u and v are C? and satisfy the
Cauchy-Riemann equations, then u and v are harmonic.
(@) In terms of the cylindrical coordinates defined by x = rcos 8, y = rsin 6, z = z, show that
Pu Pu Pu 19/ ou\ 1du u
—+—+—=——(r—)+—~—+*
x> dy* 9z ror\ or/ r*oe*  3z°

() In terms of the spherical coordinates defined by x = rsin 8 cos ¢, y = rsin 8 sin ¢, z = r cos 6, show
that

3°u  3*u du 1 3 . du 8 /  du 3 1 du
~——2+'2+*2=f[—(rzsm0—)+~—(sm0—)+—(_ —)}
ax*  9y* 9z r*sin@lor ar 36 36 A \sin @ J¢

(a) Show that if u = u(r, ) is a harmonic function expressed in polar coordinates and » is defined
by v(p, 8) = u(r, ), pr = a®, then v is a harmonic function of (p, 8). (b) Let u(r, 6, ) be a harmonic
function expressed in the spherical coordinates of Problem 3.28(5). Show that if v is defined by the
Kelvin transformation, v(p, 6, ¢)= a ‘ru(r,6,¢), pr=a* then v is a harmonic function of
(p, 6, ). (c) The transformation pr = a® is, in geometrical terms, an inversion in a circle (sphere) of
radius a. Show that if the circle (sphere) of inversion remains tangent to a fixed line (plane) as the radius
a approaches o, the transformation becomes a reflection in the fixed line (plane). Thus, harmonic
functions in R? and R> can be continued by inversion/reflection.

(a) If a harmonic function is positive on the boundary of a bounded region 2, prove that it is positive
throughout 2. (b) Show by example that if {2 is unbounded, the result of (@) may not be valid. (c) Let «, v, and
w be harmonic in a bounded region () and let u = v = w on the boundary of {). Show that u=v=w
throughout 2.

Prove Harnack’s theorem: A uniformly convergent sequence of harmonic functions converges to
a harmonic function. [Hins: For “harmonic function” read “function with the mean-value

property.”]

Show that a C? function u is subharmonic if and only if V>4 =0, and superharmonic if and only if
Vu=0.

(a) If u is subharmonic in the ball Bg (xo), u =M in Bx(Xo), and u(xo) = M, show that u = M everywhere
in Br(Xo). (b) If u is subharmonic in a bounded region 0 and u attains its maximum value at an
interior point of {2, show that u is constant in {1.

Suppose that u is harmonic in a bounded region Q and v is subharmonic in (. Show that if w = v on the
boundary of {, then u > v throughout .
If Q is the region 0 < x <1, 0 <<y <1, use Theorem 3.8 to show that the solution of

Ugy + Uy, — Uy =5 in
u=0 on S

satisfies —5/3 < u <0 in Q. [Hint: Consider also the Dirichlet problem for v = u + (5/3)x.]

Show that if u satisfies u, + €*u,, — ¢’u =0 in a bounded region  and if ¥ =0 on the boundary of 2, then
u = 0 throughout Q.
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3.37

3.38

3.39

3.40

3.41

3.42

3.43

3.44

345

3.46

———

If u(r, 8) satisfies V2u =0 in r <1, u(l, 8) = f(8), show that Poisson’s integral formula in R? takes the
form

u(r, 6) =

l—rzj'_" f(¢) dp

27 J_,1-2rcos(8— @)+ 71

(See Problem 7.13 for a derivation of this version of Poisson’s formula.)

I e+ u,, =0 in x>+ y? <1, and u = y’x on x*+ y?=1, find u(0,0). [Hint: The boundary values are
antisymmetric about the y-axis.]

I ug + 1y, =0in x>+ y*<1,and u=3+x+y on x>+ y?>=1, find u(3,3).
In the Dirichlet problem VZu(r, )= 0 in r<1, u(l, 8) = f(8) (—m <6 = =), show that a change in the
data function f(6) over an arbitrarily small interval (6, 6,) affects the solution value u(r, ) for all r <1

and all 6.

Show that the Neumann problem

Viu=1 in x2+ y2<1
ou
—=2 onx*+y’=1
on
does not have a solution.
Show that
U + Uy +2u=f inQ: 0<x<7m0<y<mw
u=0 on S

(a) has no solution if f=1; (b) has solutions of the form

U= Gnpsin mxsin ny

m,on=1

for certain constants a..., if f = cos x cos y. Determine these constants.

Show by example that if (i) ¢ =0 or {i1) ¢ >0, the boundary value problem of Problem 3.15, with
f = g =0, has a nontrivial solution.

Let ) be a bounded region whose boundary $ consists of nonempty, complementary components S; and
S,. Show that the boundary value problem

Viu=f inQ
u=g on S,
3u_ X
;—gz on .52

has at most one solution.

Suppose L[ ] and (Q satisfy the hypotheses of Theorem 3.9 and consider the boundary value problem
Llu]=finQ, u=g on S. Let u, and u, denote, respectively, solutions corresponding to the data (fi, g1)
and (f2, g2). Show that fi=f, in Q and g, = g, on S implies u, = u, in Q.
If u(x, y) satisfies
U+ uy, =0 in x*+ y?<1
Wi+ uu=0 on x*+y?=1

show that u is a constant.



Chapter 4

Qualitative Behavior of
Solutions to Evolution Equations

4.1 INITIAL VALUE AND INITIAL-BOUNDARY VALUE PROBLEMS

Unlike elliptic PDEs, which describe a steady state, parabolic or hyperbolic evolution equations
describe processes that are developing in time. For such an equation, the initial state of the system is part
of the auxiliary data for a well-posed problem. [f the equation contains time derivatives up to order k, the
initial state can be characterized by specifying the initial values of the unknown function and its time
derivatives through order k — 1.

EXAMPLE 4.1 The heat equation serves as the canonical example of a parabolic evolution equation. Problems
which are well-posed for the heat equation will be well-posed for more general parabolic equations.

(a) Well-Posed Initial Value Problem (Cauchy Problem)

u, =k V’u(x,t) inR%, >0
u(x, 0) = f(x) in R”
lu(x, 1) <M inR" >0

The boundedness condition at infinity (which is not the most general condition possible) is independent of
the spatial dimension n.

(b) Well-Posed Initial-Boundary Value Problem
u =« Vu(x, t) n, +t>0
u(x, 0)= f(x) in {}
f ¢/
{ a(x)u(x, t)+ 3()&)—8E x, )= g(x, ) onsS, t>0;aB8=0
n

Special values of @ and 3 lead to boundary conditions of Dirichlet or Neumann type (Section 1.3). If Q is
not bounded (e.g., a half-space), then g(x, f) must be specified over the accessible portion of § and
additional behavior-at-infinity conditions may be needed.

EXAMPLE 4.2 The wave equation serves as the prototype for hyperbolic evolution equations.
(a) Well-Posed Initial Value Problem (Cauchy Problem)

Uy = a*Vu(x, t) inR", t>0
u(x,0)= f(x)  inR"
u(x, 0)= g(x) in R"

No behavior-at-infinity conditions are necessary in order to obtain a unique soltution to the Cauchy problem
for the wave equation.

(b) Well-Posed Initial-Boundary Value Problem

u, = a* Viu(x, t) inQ2, r>0
u(x, 0)= f(x) and wu(x, 0) = g(x) inQ

du
a(x)u(x, 1)+ B(x)a—(x, = h(x, 1) onS, >0;,aB8=0
n
) may be unbounded, with no condition at infinity required.

36
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If the initial conditions in a well-posed initial value or initial-boundary value problem for an
evolution equation are replaced by conditions on the solution at other than the initial time, the
resulting problem may not be well-posed, even when the total number of auxiliary conditions is
unchanged.

EXAMPLE 4.3
(a) Backward Heat Equation

U = Klex(x, 1) 0<x<1 0<t<T
u(x, T)= f(x) 0<x<1
u@©,H=u(l,)=0 0<t<T
Here the initial condition of the forward problem has been replaced by a terminal condition specifying the
state at a final time ¢t = T. The problem is to find previous states u(x, t) (t < T) which will have evolved at

time T into the state f(x). For arbitrary f(x), this problem has no solution. Even when the solution exists, it
does not depend continuously on the data (see Problem 4.9).

(b) Dirichlet Problem for the Wave Equation

Uy = @ lr(x, 1) 0<x<1,0<t<T
u(x, 0)=f(x) 0<x<l1
u(x, T)y=g(x) 0<x<1
u@®, H=ul,)=0 o<t<T

Here the initial condition on u, has been replaced by a terminal condition on u. The solution to this
problem does not depend continuously on the data (see Problem 4.20).

4.2 MAXIMUM-MINIMUM PRINCIPLES (PARABOLIC PDEs)

Neither the wave equation nor hyperbolic equations in general satisfy a maximum-minimum
principle, but the heat equation and parabolic equations of more general form do so.

Let Q denote a bounded region in R® whose boundary is a smooth closed surface S. Suppose
u(x, y, z, t) to be continuous for (x, y, z) in Q and 0= ¢ = T; for short, in Qx [0, T]. Let

Mi=max{u(x,y,z 1) (x,y,z)on Sand 0=¢=T}
My=max{u(x,y, z,t): (x,y z)in Q and ¢t =0}
M = max {M, M}

and let mg, my, and m denote the corresponding minimum values for u.

Theorem 4.1 (Maximum-Minimum Principle for the Heat Equation): Given that u(x,y,zt) is
continuous in % [0, T):
(i) Ifu,—Vu=0in Qx (0, T), then u=<M in Qx [0, T).
(i) If u,—V’u=0in Q% (0, T), then u=m in Qx [0, T].
(iii) If u,—VPu=0in QX (0, T), then m<u=<M in O x[0, T].

According to Theorem 4.1(ii1), the temperatures inside a heat conductor are bounded by the extreme
temperatures attained either inside initially or on the boundary subsequently. Theorem 4.1 is useful
in establishing uniqueness and continuous dependence on the data and to obtain various comparison
results for the solutions to initial-boundary value problems for the heat equation.

The maximum-minimum principle may be extended in various ways; the next theorem states that
if an extreme value of a nonconstant solution of the heat equation occurs on the boundary S, then the
normal derivative of the solution (the heat flux) cannot vanish at that point.
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Theorem 4.2: Let u be C'in Qx [0, T] and satisfy
u—Vu=0 inQx(0,T)

Then, either u is constant in Q x [0, T] or else

(i) at any point £ on S such that u(§, r) = M (g T)>0;

(ii) at any point & on S such that u(§, r)=m, — (§ ) <0.

"
* Results analogous to Theorems 4.1 and 4.2 hold for parabolic equations more general than the heat

equation.

Definition: If the linear differential operator

1= 3 gm0l e Sam ol

Lj=1 X;0X, X;

is uniformly elliptic (Section 3.2) in € for each ¢ in [0, T}, then the operator

+ex, ) 1] (4.1)

A

is sai.d to be uniformly parabolic in {1 x [0, T].

Theorem 4.3: Let ) be a bounded region in R” with smooth boundary S, and suppose that 9/t~ L
is uniformly parabolic in Qx[0, T], with coefficients a; and b, continuous in
Q x [0, T] and coefficient ¢ =0. Suppose also that u(x, t) is contmuous in Q x [0, T].
Then the conclusions (i), (ii), (ili) of Theorem 4.1 hold, with V’[ ] replaced by L[ ].

Theorem 4.4: Theorem 4.2 remains valid when the operator 8/t — V* is replaced by the uniformly
parabolic operator 3/t — L of Theorem 4.3.

The conclusions of Theorems 4.3 and 4.4 regarding the solution to u, — L{u] = 0 continue to hold
if c(x, )=0 and M = 0—and even in another case (see Problem 4.21).

4.3 DIFFUSIONLIKE EVOLUTION (PARABOLIC PDEs)

Two properties characterize the time-behavior of systems modeled by parabolic PDEs. To
describe the second of these, we introduce the notion of an ‘“‘evolution operator” that takes the initial
state u(x, 0) of the system into the evolved state u(x, r).

Infinite speed of propagation. At any time ¢ >0 (no matter how small), the solution to a parabolic
initial value problem at an arbitrary location x depends on all of the initial data. (See Problem 4.7.)
As a consequence, the problem is well-posed only if behavior-at-infinity conditions are imposed.

Smoothing action of the evolution operator. A solution u(x, t) to the Cauchy problem for the heat
equation is, for each x and all ¢+ >0, infinitely differentiable with respect to both x and «. (See Problem
4.8.)

There is an interesting consequence of the smoothing property of the evolution operator for the
heat equation. A sectionally continuous initial state u(x,0) can always evolve forward in time in
accordance with the heat equation. However, if it is not infinitely differentiable with respect to both x
and ¢, then it cannot have originated from an earlier state u(x, ), t <0. Thus the heat equation is
irreversible in the mathematical sense that “forward” time is distinguishable from “backward” time.
Correspondingly, any physical process for which the heat equation is a mathematical model is
irreversible in the sense of the Second Law of Thermodynamics.
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In an initial-boundary value problem for a parabolic PDE, the solution will be smooth for
all >0 and all x inside the domain. In order for the solution to be smooth on the boundary and at
t =0, it is necessary to impose smoothness and compatibility conditions on the data.

E)(AHPL% 4.4 The problem

u(x, 1) = Uee(x, 1) O0<x<L, t>0
ulx 0)=f(x) 0<x<L
u(0, )= g(t) and u(L, 1) = h(r) >0

has a solution u(x, t) which is going to be infinitely differentiable with respect to both x and ¢ for 0 <x < 1. and
t>0. In addition, the solution will be continuous with respect to x and ¢ for O0=x=L and r=0,
provided (i) f(x) is continuous for 0=x =L, and g(¢) and h(¢) are continuous for ¢=0; (ii) f(0)= g(0) and
f(L)= h(0) (compatibility of initial and boundary data).

Additional conditions on the smoothness and compatibility of f, g and h will result in additional
smoothness of u(x,¢) for 0=x=1, +=0. If such conditions are lacking, the solution may satisfy the initial and
boundary conditions in a mean-square but not a pointwise sense.

4.4 WAVELIKE EVOLUTION (HYPERBOLIC PDEs)
The following two properties contrast with those of diffusionlike evolution.

Finite speed of propagation. A solution to an initial value problem for the wave equation
corresponding to initial data that vanish outside some bounded region will itself vanish outside a
region which is bounded but expands with time. The rate at which this expanding region grows can
be interpreted as the (finite) speed of propagation of the effect modeled by the wave equation.

Lack of smoothing action in the evolution operator. The solution of a hyperbolic initial value
problem cannot be smoother than the initial data; it may in fact be less smooth than the data. When
irregularities in the solution to a hyperbolic equation are present, they persist in time and are
propagated along characteristics (cf. Problem 2.10).

Finite propagation speed has various consequences. For instance, at any point in the spatial
domain at any finite time ¢ >0, the solution to a hyperbolic initial value problem depends on only a
portion of the initial data. The set of locations x such that the solution value assumed at x at time ¢ =0
affects the value of the solution at (x,, ,) constitutes the domain of dependence for (x,, t,). For each (x,, )
the domain of dependence is of finite extent; consequently, the initial value problem is well-posed
without the specification of behavior at infinity.

The lack of smoothing action in wavelike evolution is related to the fact that physical processes
modeled by the wave equation are thermodynamically reversible. An initial state wu(x,0) that is
lacking in smoothness can evolve forward in time in accordance with the wave equation and can, as
well as not, have originated from an earlier state. Thus we can solve forward in time to find
subsequent states into which u(x, 0) will evolve, or we can solve backward in time to find earlier
states from which u(x, 0) has evolved.
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Solved Problems

Prove THeorem 4.1,
Suppose that u(x, y, z, t) is continuous in £ x [0, 7] and satisfies
w—-Viu=0 in Q% (0, T)
For € >0, let v(x, y, 2, )= u(x, y, z, )+ €(x*+ y>+ z%). Then,
v,—-Vo=-6e<0 inx(0,T) (1)

Suppose now that v assumes its maximum value at (xo, Yo, Zo, fo), where (xo, yo, Zo) i$ an interior point of
Q and 0 < to =< T. Then, at (xo, Yo, Zo, lo),

v, =0 and V=0

which contradicts (I). Hence, v must assume its maximum value for (x, y, z) on S and 0= < T, or else
for t =0 and (x, y, z) in Q2.
The definition of v implies that

u=vp=maxv=M+eR?> inQx]0,T]

where R?= max (x?+ y*+ z?). Since € >0 is arbitrary, it follows that u =M in § x [0, T]. Thus Theorem
S

4.1(1) is proved.
Theorem 4.1(ii) is proved by applying Theorem 4.1(i) to the function —u; then Theorems 4.1(i) and
4.1(ii) together imply Theorem 4.1(jii).

Let (), S, T be as previously described and consider the problem
u~Vu==®(xy, 21 indx @0, 7T)
u(x, y,2,0)=F(x, y, 2) in )
ulx, v, z )=f(x, y,z, 1) in $x {0, T)
Show that if this problem has a solution u that is continuous in £ x [0, T, then this solution is
unique.

Method 1

The difference v(x, y, z, )= ui(x, y, z, ) — u2(x, y, z, ) of two continuous solutions is itself con-
tinuous and satisfies

v,— V=0 inQx(0, T) (1)
v(x, y,2,0)=0 in 0 (2)
v(x,y,2,8)=0 i Sx[0, T 3)

For the function v, (2) implies mo = Mo =0, and (3) implies ms = Ms = 0. Hence, m = M =0, and, by
Theorem 4.1(iii), v =0.

Method 2
For 0 =t =T, define the energy integral

](I)EJ 02dQ) (4)
o)
where v is the difference function of Method 1. Clearly, J(f) =0 and, by (2), J(0)= 0. In addition,
J’(t)=J 200, d{) = ZJ » V0 dQ
o) o)

a
=2J u—vdS—zf Vol d0
s on n
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4.3

4.4

where we have used (1) and (1.7). By (3), the boundary integral vanishes, leaving
J’(1)=—2j Vo> dQ2 =<0 5)
Q

Thus J(1) is nonincreasing, which fact, along with J(0) = 0 and J(r) = 0, implies that J(f) = 0. But then, the
integrand v(x, y, 2, £)*in (4) being nonnegative and continuous with respect to all arguments, it follows that v
1s 1dentically zero in Q) ¥ar 1 =0.

The energy integral method may be extended to the case of Neumann or mixed boundary conditions, to
which Theorem 4.1 is not directly applicable. See Problem 4.16.

For the initial-boundary value problem of Problem 4.2, let u, and u, denote solutions
corresponding to data {®, F,, f,} and {®,, F,, f,}, respectively. Suppose that ®, =P, in
Qx0, 7)), FF=F,inQ, f,=f,in $X[0, T]. Prove that u, < u, in O x [0, T].

Letting v = u; — u, we have
U,_V2U=d>|—¢)250 anX(O,T)
In addition, for the function v,
Mo=max {F,— F,}=0 Ms = max {fi—f2}=0
Q $x10, T}

whence M = 0. Then Theorem 4.1(i) implies that v <0, or u; < u,, in %[0, T].

For «, T positive constants, suppose that ov(x, ¢) satisfies

U, = KU, 0<x<1, 0<t<T (1)
v(x,0)=0 0<x<l1 2)
v,(0, t) = g(1) 0<t<T 3)
v(1,0H=0 0<:t<T 4)

If g(0)=0 and g'(t) >0 for ¢t > 0 (whence g(¢) >0 for t >0), show that for 0=x=<1,0=<¢(=<T,
(a) v{x,)=0 b) v(x,)=0 (¢) v,(x)=0

(a) Apply Theorem 4.3 (or, after changing the time variable, Theorem 4.1) to (1) in order to conclude
that

vix, ) s M 0=x=1,0=¢4=T

The outward normal derivative of v at x =0 is ~p.(0, 1) = —g(1) <0; hence, by Theorem 4.4 (or
Theorem 4.2), the maximum M cannot occur at x = 0. The outward normal derivative at x =1 is
v:(1, 1) = 0; so the maximum cannot occur at x = 1 either. It follows that M = M, =0, whence

v(x, )=0 O=x=1,0=t=T
(b) Let u(x, 1) = vi(x, t). Differentiate (1) with respect to x, to find
U = KUxxx 0<x<l1, 0<i<T )
If v is sufficiently smooth, vy = vy = 4, and (5) becomes
U = Klex O<x<l, 0<r<T 6)
which is the same PDE as is satisfied by v.

Theorem: If a function satisfies a linear PDE with constant coefficients, its derivatives satisfy that
same PDE.

Equations (2), (3), and (4) imply the following auxiliary conditions for (6):
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u(x,0)=0 0<x<1 (7)

u(0, 1) =g 0<:t<T (8)

u(l, )=0 0<i<T 9)

For the system (6) through (9), Theorem 4.3 gives
O=m=u(x1) 0=x=10=:t=T
which is what was to be shown.

(¢) Define w(x, t)=uv,(x, ). Then, as in (b),

W, = Kwyy 0<x<l1, 0<t<T (10)
we(0, ) = g'(1) 0<t<T (11)
we(l, 1)=0 0<t<T (12)

In addition, from (a), v(x, 1) =0 = v(x, 0). Hence,

)~ 0
or(x, 0) = “"‘MSO

1—-0*
or w(x, 0)=<0 0<x<l1 13)

Applying Theorem 4.3 to system (10) through (13), we see that the maximum of w must occur at
t=0in 0<x <1; that is,

vix, )=wx )=M=0 O0=sx=<1,0=t=T

Then, since « >0, vu(x, 1) =« '0(x, )<0,for0=sx=1land 0=¢=T.

Making use of the results of Problem 4.4, plot v(x, t) versus x for several values of ¢

“Profiles” for three time values are plotted in Fig. 4-1. The curves are below the x-axis, in
accordance with Problem 4.4(a). On x = 0 we have ,(0, t) =0 (Problem 4.4(¢)) and v.(0, t) = g(t); thus,
the starting value is a negative, decreasing function of time, while the starting slope is a positive,
increasing function of time. The curves are concave (Problem 4.4(c)), and have final slope zero
(vx(1, )= 0).

Inspection of Fig. 4-1 suggests that, for each fixed ¢ in [0, T],

20, )=v(x )=v(l,¢) O=x=1

and, indeed, this follows at once from Problem 4.4(b).

v(x, 1)

T

i ——— e

// =i

/ 0<ll<12<13<T

Fig. 4-1
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Let u(x, t) be a solution of the nonlinear problem

wlx, 1)=a(u)u,(xt) 0<x<1, 0<:i<T (1)
u(x,00=0 0<x<1 2)

u (0, 1)=g() 0<t<T 3)

u (1, 6)=0 0<t<T (4)

Assume that g(¢) is continuously differentiable, with g(0) = 0 and g’(¢) > 0 for ¢ > 0. In addition,
assume that a(u) is continuous and satisfies

N<pB,=u(u)=pg, for all u %)
Let v{x, t) (i=1,2) denote the solutions of the linear problems
v, (X 1) = B, (% 1) 0<x<l1,0<t<T
v(x,0)=0 0<x<1

va(O’ f):g(f) 0<t<T
vi,x(l) t)=0 0<t<T

Prove that
vy(x, 1) = u(x, t) = v,(x, t) O=x=1,0=t=T (6)
Define h(x, t)=va(x, ) —u(x, t) (0<x<1, 0<t<T). Then h(x, f) must satisfy
Bo(x, 1)~ a(u(x D)haelx, 1) = [B2— a(u(x, )]ae(x, ) =0 7)
where the inequality follows from (5) and Problem 4.4(c). Further, we have
h(x,0)=0 0<x<1 8)
h0,0)=h.(1,1)=0 0<t<T 9)

For the problem (7)-(8)-(9), Theorem 4.4 and (9) rule out a boundary maximum for h. Thus,
M = M, =0, and Theorem 4.3 implies that A(x, {)=0; or

v, ) = u(x, t) O=x=1,0=t=T

A similar consideration of the difference k(x, t) = u(x, t)— vi(x, t) yields the other half of (6).

As is shown in Problem 4.17, the function

1" (x—y)*
ut )= —=—= FO)exn ||y (1)
Vamt’_, .
solves the initial value problem
u(x, )= u, (x 1) —o<x <o, >0 2)
u(x, 0)= F(x) —oo < x <o 3)

Verify the infinite speed of propagation associated with diffusionlike evolution by showing that
(a) for each >0 and all x, u(x, t) depends on all the initial data F(x), — < x <co; (b) for the
particular data

Flx)— {l x| < e @)
0 |x|> €

u(x, t)>0 for all x and every positive £, no matter how small the positive number e.

(a) For each t>0,

x — 2
exp [—%] >0 for all x and y
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It follows from (1) that for each 1>0 and all x, the value u(x, ¢) incorporates every F(y),
—oo <y <o,

The change of variable

z= (t>0,—°°<x,y<oo)
V4t
transforms (1) into
1
u(x, t)=—J’ e“‘zF(x—zv4t)dz )
Vi
But, by (4),
1 —e)/Vat<z<(x+e€)Vit
F(x— z@)= { (x—¢€) z<(x+e€)
0 all other z
so that (5) becomes
1 (x+e&)Var s
u(x, t)y=——=— e " dz —co< x <eo, t>0 6)
T (x—eyVai

Since e **> 0 for all real z, it follows that u(x, t)>0 for all x and . That is, the solution u(x, ¢) is
immediately positive everywhere, even though F is zero everywhere except in the arbitrarily small
interval (—¢, €).

Note, however, that because e~

R L v e s = R

Thus, even though the influence of the initial state propagates with infinite speed, the strength of
this influence dies out very rapidly (as e™") as the distance (r = |x — €|) from the set where F # 0
increases. We are therefore able to claim that although solutions to the heat equation exhibit a
nonphysical property (infinite speed of propagation), they do behave in a manner that is an
acceptable approximation of reality. Practically speaking, effects governed by the heat equation
propagate with finite speed. For more on this matter, see Problem 7.8.

z

? is monotone decreasing, (6) implies that

Let f(x) denote a sectionally continuous function in (0, 7r). Then, using separation of variables
(Chapter 8; see also Problem 4.18), one shows that

u(x, ty= >, f, e " sin nx O<x<a, t>0 (1)
n=1
is the solution to
u(x, )= u_(x t) 0<x<m t>0 (2)
ulx,0)=f(x) O0<x<m 3)
u(, )= u(m t)=0 t>0 4)
provided
2 v
f,= —f f(x)sin nx dx (n=1,2,..)) (%)
T4

Demonstrate the smoothing action of the evolution operator in this case.

At t=0, (1) reduces to

u(x, 0)= 2 £ sin nx
n=1
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and this series converges pointwise to F,(x), the odd 2#-periodic extension of f(x), provided F, and F,
are sectionally continuous (see Problem 6.1(5)).
Foreach n=1,2,... and for each positive ¢,

I, ™" sin nx| = (constant) e "% = (constant) (¢™*)"

and the geometric series is convergent. It follows from the Weierstrass M-test that, for each fixed 1 >0,
the series in (1) converges absolutely and uniformly to a continuous function of x. The same can be said
of the series obtained from (1) by term-by-term differentiation any number of times with respect to x
and/or t. We conclude that the series in (I ) represents a function which is not just continuous but is
infinitely differentiable with respect to both x and ¢ for t>0 and 0 < x < 7.

The evolution operator &,

& lulx, 0)] = ulx, t) t>0 6)
can be characterized in terms of the Fourier sine-series coefficients of the states, as follows:
Elfl=fae™ 1>0 (7)

We have seen that whereas the f, represent a function of x that is not necessarily even C°, their images under
%, represent a function that is C*. It is characteristic of solutions to the heat equation (and parabolic
equations in general) that u(x, t) is an extremely smooth function for ¢ >0, even if u(x, 0) is not particularly
smooth.

For parabolic equations having variable coefficients, the smoothing action of the evolution operator
may be limited by a lack of smoothness in the coefficients.

Show that the backward heat problem is ill-posed, as asserted in Example 4.3(a). For
simplicity, choose x = 1.

Write uo(x) = u(x, 0), the initial state (temperature). Then (cf. Problem 4.8), the function

ulx, )=, ufe """ sin nmx 0<x<1, 0<t<T (1)

n={

where
1
uf’ = 2f uo(x) sin narx dx (n=1,2,..) )
0

will solve the problem, provided the u§" are such that

©

fx)=> ufPe ™ Tsinngx  0<x<1 (3)
ne=l
But the series in (3) converges uniformly to an infinitely differentiable function of x, whatever the u§". It
follows that no solution exists when f(x) is not infinitely differentiable.
In the case where f(x) is infinitely differentiable, the solution does not depend continuously on the
data. If, for instance,

sin Nrx )
fx)=—7—— (N = integer)
N
the unique solution to the problem is

1
u(x, t)=EeNZ"Z‘T“”sin Nmrx 0<x<1, 0<t<T

For large N, on the one hand, | f(x)| becomes uniformly smali; that is, the data function differs by as little
as we wish from the data function f=0, to which corresponds the solution & =0. On the other hand,
|u(x, 1)] grows with N; i.e., the solution does not remain close to u =0. Thus, there is no continuity of
dependence on the data.
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Show that the solution to

U6 )= (5 1) —w<x<wm, >0 (1)
u(x,0)= F(x) —m<x<o (2)
u(x,0)= G(x) —0 <L x <o (3)
may be given in the D’ Alembert form
-l l x+at
u(x, )= [F(x+ an+ F(x— an] + - f G(s) ds 4)
a x—~at
We shall obviously want to apply the theory of Chapter 2. In terms of the characteristic coordinates
E=x+at n=x—at
the problem takes the form
U (§,m)=0  —o<p <§<oo %)
u(g )=F() —o<i{<oeo (6)
1
ue(§, £) — (&, §)=;G(§) —w<f<wo (7)
Integrating (5) in two steps: ue = ¢(£) and
w(e,m)= [ $(6) dt + W(n) = D)+ ¥() (8)
Applying conditions (6) and (7) to (8):
D)+ ¥(E) = F(§) (9)
1
) -¥() = - G() (10)
Solving (9) and the integral of (10) for the unknown functions:
1 1 (¢
20 = [Fe)+= [ Gt ds] (11)
1 177
¥y =[P == [ 66y as | (12)

Substitution of (11) and (12) in (8), and transformation back to the variables x and ¢ gives (4). Note
that whereas the integral in (4) effects one order of smoothing of G (the initial data for w,), there is ne
smoothing of the initial state F; contrast this with the heat equation.

For the hyperbolic problem (1)-(2)-(3) of Problem 4.10, (a) describe the domain of
dependence of a point (x,, ¢), where t,>0; (b) if F and G both vanish for |x|> 1, show that

ul+a t)=0 forO0=<¢=<1
and interpret this result.

(@) By (4) of Problem 4.10, u(xo, t) depends on the values of F for the two arguments xo+ at, and
Xo— aty, and on the values of G over the interval (xo— aty, xo+ aty). Thus, the domain of
dependence of (xo, t) is the closed interval [xo — ato, xo+ at], which is precisely the portion of the
x-axis cut off by the two characteristics

xtat=4& x—at=mno

that pass through (xo, 1). See Fig. 4-2.
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Domain of dependence

Fig. 4-2

(b) Because F and G each vanish outside [x| <1, u(1 + a, £) must remain zero so long as the domain of
dependence of the point (1 + a, £), [1+ a — at, 1+ a + at], remains disjoint from (-1, 1); that is, so long
as

l1+a—at=1 or O0=1=1

Now, the distance from the point (1 + 4, 0) to the interval (-1, 1) is just a units. Consequently,
our result may be interpreted to mean that the influence of the initial data requires just 1 unit of
time to traverse this distance; i.e., the propagation speed is a units of distance per unit of time.

Consider the following modification of the n-dimensional wave equation:

", B
“n_ZC/”x,-x,-_O (1)
j=1
where c,, ..., ¢, denote real constants. Show that for an arbitrary function F in C? and an
arbitrary unit vector @ = (a,, ..., ,),
u(x, )= Fla x— pt) 2)
satisfies (1), provided p satisfies
2 2 2
p'=2 cia; (3)

—_

I'=

Substitute (2) in (1), to find
(,uz— z Cfaf)F"(a x—ut)=0
j=1

Evidently, if u satisfies (3), then u(x, ¢) as given by (2) is a solution of (1), with no further restrictions on
Foron a.

For each fixed ¢, o+ x = ut + const. is the equation of a plane io R™ having normal vector «. For this
reason, (2) is called a plane wave solution 1o (1). The function F is called the waveform and « represents
the direction in which the wave progresses. While both F and « are arbitrary, the wave velocity p
depends on a via (3). Evidently, (1) models wave propagation in a nonisotropic medium.
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Consider the initial-boundary value problem
u,(x, t)= azun(x, t) O0<x<L, t>0
u(x,0)= F(x) 0<x<L
u(x, 0) = G(x) 0<x<L
u (0, )=u(l,1)=0 >0

Show by the energy integral method (cf. Problem 4.2) that if this problem has a solution, then
the solution is unique.

Let u,(x, ¢) and ua(x, 1) denote two C' solutions and let v(x, 1) = ui(x, £) — wa(x, ) for 0< x <L, t>0.
Then u(x, t) satisfies the initial-boundary value problem with F(x)= G(x)= 0 for 0 <x < L. Defining
the energy integral in this case as

E@) E%L [ve(x, £)* + @®vu(x, £)°] dx

we have
L
E'()= J [0 (x, Dve(x, 1)+ a?v.(x, Dv.lx, £)] dx
]
But
2 2 2 2 a
VO + @000 = 0, (Ur — Q%0 ) + @2 (Ve + V2U) = @ 6‘ (vevr)
X
Therefore,
1 x=L
;zEl(t) = U_‘(X, t)UI(X, f)
a x=0

and the boundary conditions imply that E’(¢)=0. The initial conditions imply that E(0)=0; con-
sequently, E(f)= 0 for t=0. But then the C° functions v, and v, must be identically zero, so that v(x, )
is a constant. Because v(x, 0) = 0, this constant must be zero.

If the original boundary conditions are replaced by the conditions u(0, ¢) = u(L, t) = (), then

20, )= v (L, 1) =0

and the uniqueness proof goes through as before.

Let f(x) and g(x) be defined on [0, 7], where they are sectionally continuous with sectionally
continuous derivatives. Let [:"a and Go denote the odd 27-periodic extensions of f and g to the
entire real axis (Problem 6.1(b)). (a) Show that the solution of the initial-boundary value
problem

u,(x, 1) = a’u_(x, 1) O<x<m >0 ()
u(x, 0) = f(x) O<x<mw (2)
u(x,0)= g(x) 0<x<aw 3)
u(O, )= u(m1)=0 t>0 4)
is given by
w( )=~ [F(x + at) + F (x— at)] + — JW G.(s) ds (5)
2 20 x—at

(b) Relate the smoothness of the solution u(x, ¢) to the smoothness of the data f, g and to the
compatibility between the initial data and the boundary conditions (4).



CHAP. 4]

4.15

4.16

(@)

(®

SOLUTIONS TO EVOLUTION EQUATIONS 49

According to Problem 4.10, (5) is the solution of the following initial value problem:

Ua(x, 1) = @’ (x, 1) —w< x <o, >0
u(x, 0)=F,(x) —oo<x<o
u(x, 0)= G,(x) —o0 < x <L

Since F,(x)= f(x) and G,(x)= g(x), for 0<x <, the expression (5) satisfies the PDE (1),
together with the initial conditions (2) and (3). Moreover, for ¢ >0,

(0, 1) = %[Fu(at)+ Fo(—at)] + :-;; f Go(s)ds =0

since F, and G, are odd functions. Similarly, using the 2s-periodicity, u(m, t)=0 for +>0. Thus
u(x, t) as given by (5) satisfies (4) as well. In Problem 4.13 we proved that the problem (1) through
(4) has at most one solution; therefore, (5) is the solution.

Differentiation of (5) gives

(3m+"u zf:[ﬁf,'"“)(er al)+1:"f,’"+")(x _at)(_l)n]
axmaorm 2
an—l - -
+ 5 [GE O + an) — (1) GO x — an)

(m,n=0,1,2,...). Evidently, the continuity of u(x,¢) and its derivatives is determined by the
smoothness of £, and G, which, in turn, is dependent on the smoothness of f and g in [0, ], and
the compatibility of f and g with the boundary conditions (4).

In Problem 6.4 it will be shown that F,(x) and all its derivatives through order M are
continuous for all x if and only if:

(1) f(x) and all its derivatives through order M are continuous on [0, =];

(i) for all nonnegative integers n such that 2n = M, f@(0)= () = 0.
Now (ii) is just the condition that f and g and their even-order derivatives satisfy the boundary
conditions; this is what is meant by compatibility between the initia] data and the boundary
conditions. If, for some M >0, (i) or (ii) is not satisfied by both f and g, the solution u(x, t) will
experience some sort of discontinuity along a characteristic. For example, if g(0) # 0, then G,(x) is
discontinuous at every integer multiple of =, which means, by (6), that wu(x, ) and u.(x, ¢)
experience discontinuities for (x, £) such that x = ar= kn (k = integer).

Supplementary Problems

Determine the most general spherically symmetric solution to the three-dimensional wave equation,
u, — a>*V*u = 0. [Hint: Find the PDE satisfied by v(r, t) = ru(s, £).]

In Problem 4.2, let the boundary condition be replaced by

u
a(x, y, z,)u(x, y, z, )+ B(x, y, z, ) o oy, z0=f(xy 2t inS§Sx[0,T]
n

where the continuous functions « and 8 satisfy

aB =0 a’+ Br>0

in $x [0, T]. Prove uniqueness by the energy integral method. Hint:

5 2] dv
av'+Bv—=0>0v—=0
on on



50

4.17

4.19

4.20

4.21

4.22

4.23

4.24

SOLUTIONS TO EVOLUTION EQUATIONS {CHAP. 4

(a) Differentiate under the integral sign to verify that

oo

F(y)e " gy

u(x, )=
4wt

satisfies u, = u,,. (b) Infer from (5) of Problem 4.7 that if F is continuous, lim u(x, t) = F(x).

1-»0%
For N a positive integer, let
N
un(x, t)= ‘_L C.e " sin nax O0<x<l, t>0
nm=1

Show that uy satisfies
Uy = Uy, 0<x<1l, t>0
u@©,=u(l, =0 >0

for all choices of the constants C,.

(a) Find plane wave solutions for
Uy = QiU + a3u,, + b%u —o< x, y <o, t>0

(b) Are there any values of p for which u(x, y, ) = sin (x/a:) cos (y/az) sin pt is a (standing wave) solution
of the above equation?

Consider the problem
Ui = Uxx 0<x<l1, 0<i<T

u(x,0)=u(x, 7)=0 0<x<1
u@,n=u(,H=0 0<t<T
Show that if T is irrational, the only solution is u(x, t) = 0; whereas if T is rational, the problem has

infinitely many nontrivial solutions. Infer that the solution to the Dirichlet problem for the wave
equation does not depend continuously on the data.

Prove that the conclusions of Theorems 4.3 and 4.4 regarding the solution to u, — L[u] = 0 continue to
hold if we replace the hypotheses that M =0 and c¢(x, t) =0 with the hypotheses that M = 0 and c(x, ¢) is
bounded above (but may assume positive values). {Hint: Let ¢(x, t)= A, and let u(x, t) = e™v(x, t).]

Let F(x, t) denote a function which is defined and continuous for x in R", > 0. For r a fixed positive
parameter, let vs (X, t; 7) denote the solution of

v (x, £) = VPo(x, t) xinR" t>7r (1)

v(x, 7)=0 x in R” (2)

v (x, 7)= F(x, 1) xin R" 3)

Show that u(x, I)EJ ve (X, t; T)dT 4)
0

satisfies ug(x, t) = Vu(x, 1)+ F(x, t) xinR", t>0 (5)

u(x,0)=u(x,0)=0 xinR” 6)

This observation is known as Duhamel’s principle.

Derive a version of Duhamel’s principle for the heat equation.

Use Duhamel’s principle to solve
Un = @’y + f(x) xinR', t>0
u(x,0)= u,(x,0)=0 xin R}



Chapter 5

First-Order Equations

5.1 INTRODUCTION

First-order PDEs are used to describe a variety of physical phenomena.

EXAMPLE 5.1
(a) The first-order system
(pu)+p =0

1
uu, +u, = — —p;

Upx + pe = —yplx
governs the one-dimensional adiabatic flow of an ideal gas with velocity u, density p, and pressure p.

(b) The voltage v and current i in a transmission line satisfy the first-order system

di ov
—+C—=-Gv
ax ot
ov di )
—+L—=—-Ri
ax ot

where R, L, C, and G denote respectively resistance, inductance, capacitance, and leakage conductance, all
per unit length.

(¢) Water flow with velocity v and depth u in a slightly inclined, rectangular, open channel is described by the
first-order system

vUy + uv, +u, =0
gux + vu, + v, = g(So— 5)

where S, is the bed slope, S; measures the frictional resistance to flow, and g is the gravitational
acceleration constant. In the equations, the channel width has been taken as the unit of length.

(d) Population density u at time ¢ of age-a individuals satisfies the McKendrick—von Foerster equation,
U+ u, =—c(t a,u)

where c(t, a, u) represents the removal rate at time ¢ of age-a individuals.

5.2 CLASSIFICATION

The general quasilinear system of n first-order PDEs in n functions of two independent variables is

" ou " ou.
/ iy 5 —
Ea”ngEb"ay_c" (i=1,2,...,n) (5.1)
j=1 j=1
where a;, b;, and ¢, may depend on «x,y, u, u,,...,u,. If each a, and b, is independent of
U, Uy, ..., u, the system (5.1) is called almost linear. 1f, in addition, each ¢, depends linearly on
u,, Uy, ..., u, the system is said to be linear.

EXAMPLE 5.2 The systems of Examples 5.1(a) and (c¢) are quasilinear; that of (b) is linear; and that of (d) is
almost linear.

51
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In terms of the n X n matrices A = [a,.j] and B = [b, ], and the column vectors u = (u, 4, . - ., un)T
and ¢ =(c,, ¢y, ..., ¢,)", the system (5.1) can be expressed as
Au, +Bu =c¢ (5.2)
A system of equations of the form
0 du
—Fu)+—=90 (5.3)
ox ady

is called a conservation-law system y usually represents a time variable.

EXAMPLE 5.3 For the case So— S = 0, the system of Example 5.1(c) may be written in conservation form as

(uv), +u, =0
(gu+ %1}2)x +u,=0
A system of equations of the form

E E
an P+ G(u) =0 (5.4)

is said to be in divergence form. Clearly, any conservation-law system is in divergence form, with
G(u)=u.

EXAMPLE 5.4 The system of Example S5.1(a) is expressible in divergence form as

(pu)X + P = 0
(p+ pud)e+ (pu). =0

(P_ul Ly +(P_“2+L) o
2 y-1l/, 2 y-1/
If A or B is nonsingular, it is usually possible to classify system (5.2) according to type. Suppose

det (B) # 0 and define a polynomial of degree n in A by
P (A)=det (AT — ABT) =det (A—- AB) (5.5)

System (5.2) is classified as

elliptic if P,(A) has no real zeros.
hyperbolic if P (A) has n real, distinct zeros; or if P,(A) has n real zeros, at least one of which
is repeated, and the generalized eigenvalue problem (AT —AB )t=0 yields n
linecarly independent eigenvectors t.

parabolic if P (A) has n real zeros, at least one of which is repeated, and the above generalized
eigenvalue problem yields fewer than n linearly independent eigenvectors.

An exhaustive classification cannot be carried out when P_(A) has both real and complex zeros. Since
a, and b,-/ are allowed to depend on x, y, u,, 4,, ..., u, the above classification may be position
and/or solution dependent.

EXAMPLE 5.5
(a) All four systems of Example 5.1 are hyperbolic.
(b) 1f the Cauchy-Riemann equations, u. = v,, U, = —1,, are written in the form (5.2), then
1 0 0 -1
S I T
0 1 1 0

and P,(A)= A%+ 1, which has no real zeros. Thus, the Cauchy-Riemann equations are elliptic (as is
Laplace’s equation for either u or v).
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(¢) If u satisfies the system of equations w, = v,, u, = v, then u satisfies the heat equation, u, = w,,. With ¢
playing the role of x in (5.2), we have

1 0 0 -1
=lo o] el
0 0 1 0
and P(A)= A% All eigenvectors corresponding to the real double root A = 0 are scalar multiples of [0, 1]7.
Hence there is just one linearly independent eigenvector and the first-order system is parabolic.

The method of characteristics for linear second-order PDEs (Chapter 2) may be usefully
extended to hyperbolic, but not to elliptic or parabolic, first-order systems. For this reason, the
remainder of this chapter will deal almost exclusively with hyperbolic systems.

5.3 NORMAL FORM FOR HYPERBOLIC SYSTEMS

If in (5.2), Au, +Bu, = ¢, the coefficient matrices A and B are such that A= DB, for some
diagonal matrix D, then the system can be written in component form as

" du. du
zbii(dii—l+__i):("i (¢t=12,...,n)
=1 dx Jy

wherein the ith equation involves differentiation only in a single direction—the direction dx/dy = d,,.
We say in this case that (5.2) is in normal form. When a system is in normal form, techniques of
ordinary differential equations become applicable to it.

Suppose that (5.2) is hyperbolic, and let A, A,, ..., A, denote the n real zeros of the polynomial
(5.5). The characteristics of (5.2) are those curves in the xy-plane along which
dx
— = (i=1,2,...,n) s.6)
dy

EXAMPLE 5.6 For a linear system, the A; depend at most on x and y; so the characteristics of (5.2) can be
determined by integrating the ordinary equations (5.6). For a quasilinear system, where the A; depend on
Uy, Uz, . . ., Uy, the characteristics are solution dependent. In the case that (5.2) consists of a single quasilinear
PDE, many authors call the plane curves determined by (5.6) the characteristic base curves, and use the term
“characteristics” or ‘“‘characteristic curves” to denote the space curves in xyu-space whose projections on the
xy-plane are the characteristic base curves. In this Qutline we shall use “characteristics’” to denote both the plane
and the space curves; the context will make it clear which kind of curves is intended.

Theorem 5.1: For (5.2) hyperbolic, let D denote the n X n diagonal matrix of the A, Then there
exists a nonsingular n X n matrix T satisfying
TA =DTB (5.7)
According to Theorem 5.1, if (5.2) is not already in normal form, the transformed system
TAu, + TBu, = Te (5.8)

is in normal form, with the ith row-equation involving differentiation only in the direction of the
tangent to the ith characteristic. Stated otherwise, a hyperbolic system can always be brought into
normal form by taking suitable linear combinations of the equations.

54 THE CAUCHY PROBLEM FOR A HYPERBOLIC SYSTEM

The Cauchy problem (or initial value problem) for a hyperbolic system (5.2) calls for determining
u(x,y) (i=1,2,...,n) that satisfy (5.2) and take prescribed values (the initial data) on some
initial curve, I'. If I" is nowhere tangent to a characteristic of (5.2) and if the coefficients in (5.2) are
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continuous, the Cauchy problem is weli-posed in a neighborhood of I'. At the other extreme, if T’
coincides with a characteristic, then the Cauchy problem usually will be insoluble (see Problem 5.29).

In illustration, suppose that n =3, and let 4,, 6,, €, be the characteristics of (5.2) that pass
through the point R (see Fig. 5-1). The shaded region of the xy-plane enveloped by the charac-
teristics and the initial curve I' is called the domain of dependence of the point R; the portion of I’
between P and Q is called the interval of dependence of R. Changes in the initial data exterior to the
interval PQ will not affect the solution at R.

Fig. 5-1

Any discontinuities in the initial data are propagated away from the initial curve along the
characteristics defined by (5.6). When the system (5.2) is nonlinear, it is possible—even for smooth
initial data—for the solution to develop discontinuities some distance from the initial curve. These
discontinuities occur when two characteristics carrying contradictory information about the solution
intersect. A curve across which one or more of the w (x, y) have jump discontinuities is called a
shock. The position of the shock and the magnitudes of the jumps in the u, are determined by
conservation principles (see Problem 5.17).

Solved Problems

5.1 Show that the open-channel flow equations, Example 5.1(¢). compose a hyperbolic system and
describe the characteristics.

In matrix form the open-channel flow equations are

[; ﬂ[ﬂﬂé ?Mﬂ,:(g(soo_ -:,)}

The characteristic polynomial

Pz(/\)=det<[; :]—A[; ?Dz(v_“z_gu

has two real zeros, A, =v+ Vgu and A= v~ Vgu. Thus, the characteristics are those curves in the
xt-plane along which
dx dx

—=v+Vgu or —=v-Vgu
dt ar
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5.2

53

The speed (or celerity) of a small gravity-wave in shallow water of depth u is given by ¢ = Vgu.
Making the substitution ¢? = gu, the open-channel flow equations become

2vc, + cve+2¢,=0
2¢c, + vv+ v = g(So— Sf)
and the characteristics of this system are the curves along which
dx dx

—=v+cC or —=v-C
dt dt

Show that the characteristics of the quasilinear first-order PDE
au +bu,=c (1)
are the curves along which (1) and a knowledge of u are insufficient uniquely to determine u,
and u,.
y

First note that, since the only zero of @ — Ab is A = a/b, the characteristics of (I) are the curves
along which

dx a

dy b
Let €: x=p(r), y = q(r) be a curve along which u is given by u = f(r). From
u(p(r), q(r))= f(r)  along €
and (1), we have
pu.+q'u, =f
au, + buy=c¢

by which u, and u, are uniquely determined along %, unless the determinant of the system is zero:

7 4] =re-qa=0 2)
b
But (2) holds if and only if
d !
Z_r e along €
dy q b

which is to say, if and only if € is a characteristic of (1).

{a) Show that the first-order quasilinear equation
au,+ bu,=c (b#0) (1)
is in normal form. (b) Find the canonical or characteristic equations for (1).
(a) We know that a characteristic of (1) is defined by
dx a dx dy
—=— or —=— 2)
dy b a b
Calculating the derivative of u in the direction v = (a, b) tangential to the characteristic, we find
v:Vu=(a, b)-(u, u,) = au, + bu,

Therefore, (1) involves differentiation in a single direction (along the characteristic); so, by
definition, it is in normal form.
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() Let €: (x(r), y(r)) be a characteristic of (1), parameterized by r. Along 6,

x'(r) dx _a

=SR2 (3)
y'(r) dy b
by (2), and u = u(x(r), y(r)). By the chain rule, (3), and (1),
du dudx dudy a dy cdy
du_suds udy_(a, . \D_cd
dr  dx dr 3y dr b dr badr
Thus, the canonical or characteristic equations for (1) can be written as
dx d du cd
dr_ady  du_cdy 4a)
dr b dr dr bar
or symmetrically as
dx d du
ax_ay _au (4b)
a b c
or unlinked as
0. 17} ou
X Yoy M_ . (4¢)
or ar or

Form (4¢) may be interpreted as indicating a change of coordinates from (x, y) to (r, s): in the new
coordinates, the characteristics are the straight lines s = const., and (1) takes the canonical form w, = c.

Show that a surface & given by u = f(x, y) defines a solution to the quasilinear first-order
equation

au, + bu, = ¢ (1)
if and only if the characteristic equations (4) of Problem 5.3 hoid at each point of & In other
words, a solution surface of (1) consists entirely of (space) characteristics.

If f(x, y)— u =0, then
0=d(f(x, y)—u)= fxdx + fydy — du = (fs, fy, =1)- (dx, dy, du)
Now, if (4b) of Problem 5.3 holds, the vectors (dx, dy, du) and (a, b, ¢) are parallet, whence
O0=(ffo,— 1) (a,bc)=af.+bf,— 2)

i.e., the function f satisfies (1).
Conversely, if & is defined by a solution f(x, y)— u =0 of (1), then (2) shows that at any point P of
& the vector (a, b, ¢) is orthogonal to the surface normal (f,, f,, —1). Thus, (a, b, ¢) represents a direction
in the tangent plane at P; a curve € lying in & and passing through P in this direction will have, at P, the
tangent vector
(dx, dy, du) = (const.)(a, b, ¢)

But this relation is just (4b) of Problem 5.3.

Solve the Cauchy problem
a(x, y, wyu + b(x, y, wyu, = c(x, y, u) (1)
u = uys) on It x=F(s), y=G(s) (2)

where, for all s,

F'(s) , alF(s). GGs), uy(s))
G'(s)  b(F(s), G(s), uy(s))

(which means that T' is nowhere tangent to a characteristic of (1)).
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In the xy-plane, the solution process may be described as the threading of a characteristic through

each point of the initial curve I' (see Fig. 5-2). Thus, for each fixed s, imagine system (4¢) of Problem 5.3
ax a du

o »y_, _

a —=c 3
ar ar ar ~ )

—where the parameter r is chosen so that I' is represented by r = 0—to be solved subject to the initial
conditions

x(0, s)= F(s) y(0, ) = G(s) u(0, ) = uo(s) 4)

Characteristic

Fig. 5-2

This solution will have the form
x = x(r,s) y=y(rs) u=u(r,s)
which are the parametric equations of a surface &
By Problem 5.4, ¥ is a solution surface for (1); and the conditions (4) ensure that the curve I' X up
lies in &, as required by (2). Hence, if we can solve for r and s in terms of x and y, the function
u=u(r,s)= u(r(x, y), s(x, y))

will solve (1)-(2). Now, it is in fact possible to invert the transformation x = x(r, s), y = y(r, s) in a
neighborhood of T', because, along the curve, the Jacobian does not vanish:

a(x y)

a(r, s)

= Xy — yXs = aG'(s)— bF'(s)
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Solve the quasilinear Cauchy problem
xu, + yuu, = —xy
u=>5 on xy=1 (x>0)
Following Problem 5.5, we wish to solve
X, = X yr=yu u, = —xy
subject to -
x(0,s)=s y(0, s)= % u(0,s)=5

where s > 0. By (3),

u
(xy) =xy+xy, =xy+xyu=—u —uu, = (—u—?)

r

i.e., 1+ u is an integrating factor for the equations (3), yielding

u?
xy = —u—?+ @(s)

[CHAP. 5

(1)
(2)

3)

4)

%)

(6)

Now (4) implies ¢(s) = 37/2. Hence, solving (6) by the quadratic formula and choosing the root that

obeys the initial condition (2), we find

u=-1+V38-2xy

The scalar conservation law [F(u)], + 1, = 0 can be expressed in quasilinear form as a(u)u, +

u, = 0, where a(u)= F'(u). Show that the solution to the initial value problem
a(u)u, +u,=0
u(x, 0)= uy(x)
is defined implicitly by
u=uylx—au)y)
provided 1+ uy(x — a(u)y)a’(u)y # 0.
Again following Problem 5.5, we consider the equivalent problem
x, = afu) vy, =1 u, =0
x(0,s)=1s y(0,s)=0 u(0, 5) = uo(s)
Integrating the equations (4) in reverse order and applying the conditions {5), we find:
u = up(s) y=r x = afuo(s))r+s
From (6), there follows
1 = uo(s) = uo(x — aluo(s))r) = uo(x — a(u)y)

which is (3).
The expression (3) will actually furnish the solution to (7)—(2) provided the equation

D(x, y, u)=u— uo(x~a(u)y)=0
can be solved for u as a function of x and y. The condition for solvability is
DL (x, y, 1) = 1+ wp(x — a(u)y) a'(u)y # 0

which certainly holds for ]y| sufficiently small.

(1)
(2)

3)

4)
)

(6)
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5.8 One-dimensional, unsteady flow of a compressible fluid at constant pressure, p, is governed by

uu, +u =0 (1)
(pu), +p,=0 (2)
(eu), +e,+pu, =0 3)

where u, p, and e are, respectively, the fluid’s velocity, density, and internal energy per unit
volume. Solve (I)-(3) subject to the initial conditions

u(x,0) = uy(x) p(x, 0) = py(x) e(x, 0) = ey(x) (4)
According to Problem 5.7, the characteristics of (1) are given by
X — ut = s = const.

and the solution of (1) that obeys (4) is given implicitly by u = uy(s).
Writing (2) as a linear equation in p,

Upy + 0 = ~Uxp (%)

we see that (5) has the same characteristics, s = const., as (1), and that along a characteristic, on which
the running parameter is r = ¢,

dp
@ 6
T (6)
Now, u, = uj(s)s. = ug(s)(1— tu,), or
ub(s)
=TT (7)
1+ ug(s)t
Substitute (7) in (6) and integrate the resulting separable equation, using the initial condition p = po(s)
for t=0:
° dp ! dt
[ -
pols) P o 1+ ub(s)t
1 1 !
o —=lo ===
& po(s) B1v uo(s)t
or
pols)
= (&)
1+ uh(s)t
where s = x — ut.
Finally, (3) and (4) yield the following problem for the new unknown E =e + p:
ukb,+ E, = ~ukE E(x,0)= eo(x)+ p
This is formally identical to the problem for p; hence, by analogy with (&),
eols) + p eo(s) = puils)t
=—= or e=——"——"" 9)
1+ up(s)t 1+ ub(s)t

5.9 Establish Theorem 5.1.

In component form, (5.7) reads

n

2 (hap — Atbp) =0 (5 k=1,2,...,n)

je1

which is equivalent to

(i, tizy oo s b (A= AB)=0,0,...,0] (i=1,2,...,n) (1)
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Taking the transpose of each side of (1) yields
(AT-ABTL =0 (i=1,2,...,n) (2)

where t; represents the entries of the ith row of T arranged as a column vector. Now, because the system
(5.2) is hyperbolic, there exist n linearly independent vectors t; satisfying the n matrix equations (2).
Hence, the matrix T having these vectors as rows will be nonsingular and will satisfy (5.7).

(a) Show that the system
2u, =2, +u,—-3v,=v (1)
u, —4v, + v, =u (2)

is hyperbolic and use Theorem 5.1 to reduce it to normal form. (b) Express the system (1)-(2)
in terms of characteristic coordinates.

(a) Writing (1)—(2) in the form (5.2), we have

2 -2 1 -3
S B
1 -4 0 1
Since det (A — AB) = AZ— A — 6 has distinct real zeros, A, =3 and A.= —2, the system is hyperbolic.
According to Theorem 5.1, the rows of the normalizing matrix T satisfy

[—22jr /;'/\,» —(4: /\)I[Z;] N [g] (=12

For i=1, A;=3, we can choose ;= t,=1, for i =2, Aa=—2, we can choose t; =1, tn=—4.
Thus '

T

Il
—
—_ =
|

B
—

and the transformed system, (5.8), is

] 2500 0 )

Buc+u,)—2Cvc+v,)=v+u 3)
(—2u, + u,)—7(-2v, +v,)= v—4u “)

Equation (3) involves differentiation only in the direction

D32 5)
dy '
while (4) involves differentiation only in the direction
T o (6)
dy :
(b) From (5) and (6), the characteristics are given by
x —3y = 8= const. (7)
x+2y = a = const. &)

The family (7), along which « varies, are called the a-characteristics; similarly, the family (8) are
called the B-characteristics. Together, (7) and (8) define an invertible transformation from xy- to
af3-coordinates. We have

so that (3)-(4) transforms to
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utuo

Uy ~ 20, = (9)

du—v
Ug — 72)3 = (10)

The system (9)-(10)-(7)~(8) constitutes the canonical or characteristic form of (1)—(2).
5.11 With reference to Problem 5.10, solve the initial value problem
2u,~2v,+u,—30,=0 (1)
u, ~4v, + ,=0 2)
(5 0)= u(x)  o(x0)= v,(x) 3)
We know that the characteristics of (1)-(2) are
x—3y = =const. and x +2y =« = const.
and that (1)-(2) has the canonical form

Ue — 20, =0 4)
Ug — 71)3 =0 (5)

If P, Q, and R are as indicated in Fig. 5-3 and if P has coordinates (x, y), then the coordinates of Q and
R are (x — 3y,0) and (x + 2y, 0), respectively. By (4), u —2v is constant on the a-characteristic from Q
to P, and, by (5), u —7v is constant on the B-characteristic from R to P; thus,

u(P)=20(P) = uo(Q) - 2vo(Q) (6)
u(P)—T7v(P)= uy(R)— Tvo(R) (7)
Together, (6) and (7) yield the solution to the initial value problem (1)-(2)—(3) as

1
u(P)y=u(x, y)= 3 [Tuo(x = 3y) — 1dvo(x — 3y) — 2up(x + 2y) + 14vo(x + 2y)]

v(P)= v(x, y)= é [uo(x = 3y)~ 2vo(x — 3y) — uolx + 2y) + Tvo(x + 2y)]

For a hyperbolic system, a combination of the variables that remains constant along a characteristic
is known as a Riemann invariant of the system. By the above, u —2v and u — 7v are Riemann invariants
of (1)-(2).

B = const,

Fig. 5-3
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Bring the open-channel flow equations,
vu, +uv,+u, =0
gu, +ov .+ v, = g(5~5)

into canonical form.

[CHAP. 5

(1)
(2)

In Problem 5.1, the system (I )-(2) was shown to be hyperbolic, with characteristics given by

dx dx
—=A=v+Vgu —=A2=v—-Vgu
dt dt

By (2) of Problem 5.9, a matrix T = [;,] that will transform (1 )-(2) to normal form satisfies

PR PR MG

From (3)-(4), we may take

=1 to=Vulg =1 In=-Vulg

3)

4)

Now, writing (1)—(2) in matrix form (5.2) and multiplying by T, we find the normal equations

(/\lux + u,)+ vV u/g(/\lux + vl)= \/“_8(50_ S/)
(Aatte + )= VuJg(Aave + 0) = Vug(S;— So)

*)
(6)

To introduce characteristic coordinates, let the respective solutions to the two ordinary equations

(3) be

F(x, t)= B = const. G(x, t) = a = const.

(7)

i.e.,, the a-characteristics and the B-characteristics. To show that (7) defines a locally invertible

coordinate transformation, compute the Jacobian

8(0(,3): 3, HON\!
a(x, 1) \d(a, B)

G. G
F, F

‘ = G.F - F.G,

But, using (3),

daF
0=7=F}+FX(U+ vgu)
)

aGc
0=—=G,+ G (v—Vgu)

dr
from which it follows that
HNa,
@B kG
ax, 1)

which is finite and nonzero (recall that u represents the depth of fluid).
Thus, in terms of the new coordinates a and 8, equations (3) become

X = (v+Vgu), xg = (v="Vgu)t,

To transform (5), we find, using the first equation (&),

Jd 0 7
M—+—=AG+ G)—
ox ot o

(8)

(9)

(10)

From the second equation (7), G.x.+ Git. =1. Combining this with the first equation (9) and

substituting in (10), we obtain

a 4 19
A—+—=——
dx It 1y oa

so that (5) goes into
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wn

L

Ue + Vulgva = Vgu(So~ S)ta (11)
Similarly, we find for the transformation of (6):

ug = Vulgus =V gu(S;— So)ts (12)
Equations (11), (12), and (9) make up the canonical form of (1)—(2).

(a) Show that v +2¢ and v —2¢, where ¢ = V'gu, are Riemann invariants (Problem 5.11) of
the open-channel flow equations, provided §,— S, = 0 (the conservation-law case). (b) Prove
that if a single characteristic of the open-channel equations is a straight line, then (i) the entire
family that includes that characteristic consists of straight lines; (ii) the Riemann invariant
associated with the other family of characteristics is an absolute constant.

(a) In terms of ¢ and v, (11) and (12) of Problem 5.12 read, after cancellation of c¢/g,
20+ 0o =0 2¢c6~v3 =10

which imply that v+ 2c¢ is constant on an «a-characteristic and v —2¢ is constant on a f3-
characteristic.

(b) Suppose that the particular a-characteristic F(x, t) = Bo is a straight line. Then, by (3) of Problem
5.12,

— = v+ ¢ = const.
dt

along that characteristic. But, by (a), v +2¢ = const. along that same characteristic. Hence v and ¢
must be separately constant along the characteristic F(x, t) = Bo; i.e., in terms of Fig. 5-4,

v(R) = v(S) and c(R) = c(S) (1)
On the a-characteristic F(x, t) = 3, we have, by (a),
v(P)+2¢(P) = v(Q)+ 2¢(Q) 2)
while, on the B-characteristics, we have, by (a),
v(P)—2c(P)=v(R)—2c¢c(R) 3)
0(Q)--2¢(Q) = v(S) — 2¢(S) (4)

F(X! l)=Bl

F(X! ,)= BO

Fig. 5-4
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By (1), the right side of (3) equals the right side of (4); so
v(P)=2c(P)= v(Q)—2¢(Q) (%)
(i) Together, (2) and (5) imply v(P) = v(Q) and ¢(P)= ¢(Q); hence, on F(x, t)= B,

dx dx
— (P)=ov(P)+ c(P)=0v(Q)+ c(Q) = — (Q)
dr dt

which shows that characteristic also to be a straight tine. (ii) Together, (3) and (5) imply
() —2¢(Q) = v(R)—2¢c(R)

i.e., the Riemann invariant v —2¢ has the same value at two arbitrary points of the plane, O and R.
This result in effect removes one unknown from the problem.

5.14 A river flows at a uniform depth of 2 meters and a velocity of 1 m/s into an ocean bay. Because of
the tide, the water level in the bay, initially the same as the river level, falls at the rate of 0.15 m/h
for 8 hours. Neglecting bed slope and frictional resistance, determine (a) at what distance
upstream the river level is just beginning to fall at the end of the 8-hour period, (b) the velocity of
the water entering the bay, (¢) at what time the river level will have fallen 0.6 m at a station 5 km
upstream from the bay.

The notation and results of Problems 5.12 and 5.13 will be used. The acceleration of gravity is
g =98m/s%.

(a) The B-characteristic bordering the zone of quiet (Fig. 5-5) is the straight line

d S
sz 2(0,0)= ¢(0,0)= (1— V9.8x2) m/s = —12.3 km/h (1)
al

Thus, after 8 hours, the discontinuity in u has been propagated (8h)(12.3km/h)=98.4 km
upstream.

@
\\

-20 -15 10 -5 0 %, km

river | bay



CHAP. 5] FIRST-ORDER EQUATIONS 65

(6) In view of ({) and Problem 5.13(b), all B8-characteristics are straight lines, and
v(x, 1)+ 2c(x, £)=v(0,0)+ 2¢(0,0) = 9.9 m/s 2)
for all x and ¢ Thus, in units of m/s,
2(0, 1)=9.9-2¢(0, 1) =9.9- 2982~ 0.15¢) 3
(¢) At the outlet, x = 0, the water level will have fallen by 0.6 m (from 2 m to 1.4 m) at time

0.6 m
h=—"—=4h
0.15 m/h

We know from Problem 5.13(b) that v and ¢ (or u) are separately constant along each -
characteristic. Hence, the B-characteristic through (0, 4), which carries the value u = 1.4 m, will
have slope

dx
a =0(0,4)—¢(0,4)=[9.9-2V9.8(1.4)] - V9.8(1.4)
t
=-12m/s=—-43 km/h
where (3) was used to evaluate v(0, 4). It follows that an additional time

5 km

== 1
4.3 km/h

must pass before the value u = 1.4 m is felt 5 km upstream. The total time is thus &+ ¢ = 5.2 h.

5.15 Let £ be the region x, <x <x,, t, <t <t,, and suppose that in
u= (“I(xv t)y LLE(X, t_)’ MR u,.(xv t))
solves the divergence-form first-order equation

aF +6C = 1
P (u) Py i(u) =0 )

For any smooth function ¢ on §2 which vanishes on the boundary of (1, show that
L X2
[ [ (Fee.+ Gwa,) axdi=o )
q " xg

From [F(u)¢], = [F(u)].¢ + F(u)¢= and ¢ = 0 for x = x; and x = xz, we have
1 rx2 1 ,x2
f f (Fu)]. ¢ dx dt = —f f Fu)d.dcdt - 3)
3 x| n BT
Similarly, since ¢ =0 for r = ¢y and ¢ = ¢;,

e

Now, multiplying (1) by ¢, integrating over {2, and applying (3) and (4), we obtain (2).

Smooth (C*) functions ¢ which vanish in a neighborhood of (and not merely on) the boundary of () are
called test funcrions on ). We say that uis a weak solution of (1)in {2 if (2)is valid for all test functions ¢ on
. Since (2) does not impose any continuity requirements on u, it is possible for a weak solution of (1) to
have discontinuities.

5.16 Refer to Problem 5.15. Let the rectangular region {) be partitioned into regions ), and (1, by
the curve & x = o(2), as indicated in Fig. 5-6. Suppose that u is a weak solution in {), but a
continuously differentiable, bounded solution in @, and in {},. Show that along & within {2,

(FI—FJ=(Gl—GJ0"(I) (1)
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(x2, 12)

O

(x1, 1)

F: x=ot)

Fig. 5-6

[CHAP. 5

where the subscripts 1 and 2 denote respectively the limits as (x, £) > & through regions €2, and Q,.

Because u is a weak solution in ), we have, for any test function ¢ on Q,

0=jjn(F¢,+G¢,)dxdt=JJn (I:<i>x+Gd),)dxdt+J’J’n (Fpx + G¢,) dx dt
1 2

Since ¢ vanishes on the boundary of ,

jjm Fo, dx dt = jlz j:m[(ﬁp), — Fup) dxdt = L Fig dt —j Fed dx di

Q4

x2 R
j Gd),dxdt:j j [(G): — Gup] di dx = —j Gi dx—j Gub d dt
Q x1 o) ¥ o
Adding (3) and (4), and recalling that (1) of Problem 5.15 holds in {};, we see that
j (Fée + Gaby) dx dr =j & (Fy di — G dx)
Q &
Similar calculations on £, show that
JJ (Fo, + G¢,)dxdt=J’ ¢ (—Fdi+ G, dx)
[¢7) 4
By (2), the left sides of (5) and (6) sum to zero, whence

n
0= | $IFR-Fya+ (G- Gax]= | #1(Fi-F)+ (Go- Go'(r) de
¥ 1

Because ¢ takes arbitrary values along &, (7) implies (1).

2)

3)

)

(6)

(7)

If the curve & represents a shock in the weak solution u, then o’(¢) ts the velocity of the shock.

5.17 Use Problem 5.16 to derive jump conditions which must hold across a shock in the solution of

the conservative open-channel flow equations.
The equations can be put in the divergence form

(uv)s +u, =0

(1)
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(uv2+ gTu:> + (u), =0 (2)

x

(this is not the conservation form, Example 5.3). Hence, by (1) of Problem 5.16, we have across a bore or
surge . x = g(t)

U — vy = (U — uz) o' (1) 3)
2 2
(uxv’ﬁ%)— (uzv§+ %>= (110, — u02) ' (1) (4)

Assuming unit channel width and constant density, (3) asserts that mass is conserved, and (4) that
momentum is conserved, across & In the case o’'(t)=0, the conditions reduce to the well-known
hydraulic jump equations.

5.18 Water flows in a (one-meter-wide) rectangular channel at a depth of 1 m, with a velocity of
2 m/s. At x = 0 the depth of the water is suddenly raised to, and subsequently maintained at,
2 m. Neglecting frictional resistance and bed slope, calculate the rate at which the surge moves
down the channel and the velocity of the water behind the surge.

In the notation of Problems 5.16 and 5.17, we have the weak solution

behind the surge 0<x<o(t)): u=wu,=2m, v=r1v,
ahead of the surge (x > o (1): u=u=1m, v=yv;=2mfs

The jump conditions (3)—(4) of Problem 5.17 become two simultaneous equations in the two unknowns

v1 and o’(1). Solving (with g = 9.8 m/s?), we find:
vy =4.07 m/s o’(t)=6.14 m/s

5.19  Use the method of characteristics to solve the initial value problem

uu, +u, =0 (1)
1 x=0

u(x, 0)= 1-x 0<x<1 2)
0 x=1 -

The characteristics are the straight lines

dx 3
— = u = const.
@ (3)
Using (2), the characteristics are constructed as in Fig. 5-7(a).
It is seen that points (x, ¢) below D—that is, in the strip 1 < 1—lie on just one characteristic. Thus,
onx=¢<1, u=1;and on x =1> ¢ u=0. In between, on the triangular domain isolated in Fig. 5-7(b),
integration of (3) gives

1-x
x=ut+(1—u) or u= “)

1-1¢

where the x-intercept was found from (2). In summary,
1 X =1
1—x
for t<1 u= ] r<x<l1

—1
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5.20

5.21
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')
/ /
7
é=1—0.5 A
di o
2
/, |/

/
/
1 1+ D
D g
dr /
/
[ ]
/(0
/
v
0.5 1 X 0 l-u 1 X
(a) (b)
Fig. 5-7

In the strip =1, points (x, ¢} of the shaded region in Fig. 5-7(a) lie on two characteristics which
bear distinct values of u. The jump condition (/) of Problem 5.16 leads to the equation x = (¢ + 1)/2 for
the actual shock; i.e., the shock is the prolongation through D of the 45° characteristic. Consequently,

1 1)/2
for t=1 ={ x< e+ 1)

0 x>@+1)2

Show that for u = f(x/t) to be a nonconstant solution of u, + a(u)u, = 0, f must be the inverse
of the function a.

If = f(x/r),
wer (2w wep(2)

Hence, u, + a(u)uy, = 0 impiies that

)T ) e

or, assuming f' 0 to rule out the constant solution, that

()3

This shows the functions a and f to be inverses of each other.

Solve the initial-boundary value problem

u,+e‘u, =0 x>0, >0 )
u(x,0)=2 x>0 (2)
u(0,1)=1 t>0 3)

Since the characteristics of (1) are defined by

dx
— = e" = const.
dt
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the characteristics from the positive x-axis have the form x = e’t + const., and the characteristics through
the positive r-axis are x = et + const. Therefore (see Fig. 5-8), u=2 for x = e*t,and u=1for x<et In
the region et < x < €’t, where there are no characteristics, we avail ourselves of the solution u = log (x/t)
found in Problem 5.20. It can be shown that

1 O<x=et
u(x, ty=1 log (x/t) e<x<e’t
2 elr=x

is the unique continuous weak solution of (1)—(3).

Fig. 5-8

Supplementary Problems

5.22 The Euler equations for steady, isentropic, inviscid, two-dimensional, fluid flow are

pux + up. + pv, + vp, =0
putt, + pou, + c*p, =0
puv, + pov, + c’p, =0

Classify this system.

5.23  (a) Show that one-way vehicular traffic obeys the continuity equation of fluid dynamics,
prt (vp) =0

where p = vehicles per unit length, v =speed. (b) If v = v(p), show that p is constant for an observer
at x = x(¢) who moves so that

dx d(pv)
dt B d;)

(¢) Show that if v = v(p) and v’(p) =0, then the rate of propagation of small variations in density cannot
exceed the speed of an individual vehicle at that density. (d) If v = v(p), with what speed is a shock
propagated?
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5.24  The one-dimensional adiabatic flow equations are

1
(pu)c+p.=0 U+ U =~—ps p=Ap” (1)
p

where A and y > 1 are constants. (a) Letting ¢* = dp/dp, reduce (1) to
(pu)s+p =0 pu,+ puu, + ¢*p, =0 (2)

and show that (2) is a hyperbolic system. (b) Transform (2) to the canonical form

C C
x‘,=(u+c)!‘, xE=(u“C)tg u‘,+—p‘,=0 u,g——pB":O
p

c (2c>
Zpa =
P Yy~ Va

and conclude that u =2¢/(y — 1) are Riemann invariants for this problem.

(¢) Show that

5.25 (a) Solve xu,+ yu, =0 subject to the initial condition u(x,1)= f(x), f continuous. (b) If f' is dis-
continuous at the single point x = x, at what points will u fail to be continuously differentiable?

5.26 For the PDEs (a) yu,—xu, =0, (b) yu.— xu, = u, give equations for the characteristic through the
point (x, y, u) = (1,0, 2). [Hint for (b): Show that

261+ 6)

2

along a characteristic.]
5.27  Solve the Cauchy problems

(a) Ui+ Up=—

t>0, 0<a<lL
L—a
u(t,0)=b(s) >0
where ¢ and L are positive constants
(b) Xux + yu, =1 x>0, y>0
u=x*+y O<x=1-y<1
5.28 Solve by the method of characteristics (¢ = const.):
@) i+ cue = (x 1) (0) f)us+ 1, = cu
u(x, 0) = ¥(x) u(x, 0)= g(x)

5.29  Show that the Cauchy problem u. + u, = 1, u(x, x) = x?, does not have a solution.

530 Show that the Cauchy problem yu, + xu, = cu (c = const.), u(x, x) = f(x), can have a solution only if
f(x)=bx° (b=const.). If f has the required form, show that

u= (x;y)cg(xz— y)

is a solution for any function g such that g(0)= b.

5.31 Solve the initial value problems
(a) 4u, —6v, +u, =0 (b) 3u, + 20, +u,+v,=0
u,—3v.+v,=0 St +2v—u, tv,=0
u(x, 0)=sin x v(x, 0) = cos x u(x, 0)=sin x v(x,0)=¢e"
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5.32

5.34

Refer to Problem 5.23, assuming the speed-density law

v=V(1—%)

where V and R denote, respectively, the maximum speed and the maximum density. Suppose that cars
are traveling along a single-lane road (no passing) at uniform density R/3 and uniform speed 2 V/3. At
time ¢ = 0, a truck enters the road at x = (), inserting itself just behind car A and just ahead of car B. The
truck travels at speed V/3 until it reaches x = L, where it leaves the road (at time r = 3L/V). Make a
graphical determination of p(x,r), for +< ¢ and all x, by locating the three shocks in the flow and
applying the appropriate jump condition across them. Also find the time at which car B catches up with
car A.

In a honzontal, rectangular channel of unit width, water of depth ue is held behind a vertical wall. At
time ¢ = 0 the wall is set in motion with velocity w into the standing water. Show that the shock velocity,
W, and the depth behind the shock, U, are determined by

U-uw w gUo ( w )
Ug W-w 2
(a) Show that the initial value problem

uuy + u, =0

1 0<x<1
u(x,0) = |
0 x<0 or x>1

admits two weak solutions

0 x <2
vix,t)=14 1 2 <x <1+t
0 x>1+12

0 x <0

x/t 0<x<1t
wix, 1) = 1 t<x<1+12

0 x>1+ /2

(b) For a unique weak solution, the inequalities
u > o'(1)> uy

must hold along any shock x = o (f). Verify that w, but not v, satisfies these inequalities.



Chapter 6

Eigenfunction Expansions and
Integral Transforms: Theory

6.1 FOURIER SERIES

Let F(x) be an arbitrary function defined in (—¢, ). The infinite trigonometric series
sa,+ 2, a, cos (nwx/€) + b, sin (nmx/£) (6.1)

n=1

is called the Fourier series for F(x) if the coefficients q, and b, are given by
1¢¢ 1¢¢
4=~ J F(x) cos (nmx/ €) dx b= J F(x) sin (nmx/ €) dx (6.2)
-£ -

in which case the coefficients are known as the Fourier coefficients for F(x).

Since each of the trigonometric functions in the Fourier series for F(x) is periodic of period 2¢, it
follows that if the series actually converges to F(x) for —¢<x<¢, then it converges to the
2¢-periodic extension of F(x),

F(x)=F(x) (—¢<x<¢) and F(x)= F(x+2¢) (6.3)

for all x in the domain of I:“; see Problem 6.3.

Theorem 6.1 states sufficient conditions for the convergence of a Founer series, in terms of
properties of F(x). These, of course, derive from properties of F(x), as discussed in Problem 6.3.
Recall that a function is piecewise or sectionally continuous in (—o, o) if it has at most finitely many
finite jump discontinuities in any interval of finite length.

Theorem 6.1: Let F(x) be defined in(—¢, #) and let F(x) denote the 2¢-periodic extension of F(x).

(i) If F(x) and F’(x) are both sectionally continuous, the Fourier series for F(x)
converges pointwise to F(x) at each point where F(x) is continuous. At cach x,
where F(x) has a jump discontinuity, the series converges to the average of the
left- and right-hand limits of F(x) at x,.

(it) If F(x) is continuous and F'(x) is sectionally continuous, the Fourier series for
F(x) converges uniformly to F(x).

(i) If F(x)isin C? and if F*"Y(x) is sectionally continuous, the series obtained by
differentiating the Fourier series for F(x) termwise j times (j=0,1,...,p)
converges uniformly to F(x).

6.2 GENERALIZED FOURIER SERIES

To extend the notion of Fourier series to other than trigonometric expansions, we first recall the
usual definition of the inner product of two vectors in R":

X yor{x,y)=xy,+ X,y,+t -+ Xyyn (6.4)

A set of vectors {x,, ..., X,,} in R" is an orthogonal family if (xpx;)=0fori#j (,j=1,..., M); it
1s an orthonormal family if
0 i#j

1 -y 6.5)

X %)= 8; = [

72



CHAP. 6] EXPANSIONS AND TRANSFORMS: THEORY 73

Clearly, an orthogonal family of nonzero vectors can always be made into an orthonormal family by
dividing each vector x, by its norm, |x,|| = (x,, x;)"*.

Definition: An orthogonal family is complete in R if the only vector orthogonal to every member of the
family is the zero vector.

Theorem 6.2: Any complete orthonormal family {x, ..., x,,} is a basis of R" (i.e., M = N) in terms
of which an arbitrary vector v has the representation
N
v= > (v, X)X, (6.6)
n=1

The coeflicients ¢, = (v, x, ) in (6.6) are such that the Pythagorean relation
N
VP =22 e (6.7)
n=1

holds when R" is referred to the orthonormal basis {x, }. It is the formal resemblance of the right side
of (6.6) to the Nth partial sum of the Fourier series (6.1)—(6.2) that serves as the springboard for the
generalization that follows.

Let F(x) denote a function which is defined in (q, b) and satisfies

b
f F(x) dx <o (6.8)

The collection of all such functions will be denoted by L(a, b). Two elements, F and G, are said to

be equal in the L*(a, b)-sense if
b

f [F(x)- G(x)P dx = 0

a

This concept of equality is used to define what is meant by the convergence of an infinite series of
L*(a, b)-functions: F(x)+ F,(x)+ -+ converges to the limit F(x) in L¥a, b) if

]i_rgfb [F(x)— i E (x)]2 dx=0 (6.9)

(This kind of convergence is frequently referred to as mean-square convergence.)
With the introduction of an inner product,

b
(F, Gy= f F(x)G(x) dx (6.10)

(which is well defined by virtue of Problem 6.16), L’*(a, b) becomes an inner product space.
Orthogonality, normality, and completeness are defined exactly as in RY. In L%(a, b), a complete
orthonormal family is necessarily infinite, but an infinite orthonormal family is not necessarily
complete.

EXAMPLE 6.1 In L%(-¢, ¢), neither of the infinite orthonormal families
{ 1 mx 1 27x 1 . 3mx }

-, ——=COS—, ——Cos—
V2¢e Ve ¢

is complete; for instance, for F(x)=1,

{ 1 1 X 1 2mx }

1 nmx 1 7%  nmx
<1,—sm—>=* sin——dx =20 (n=1,23,..)
4
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However, the union of these two families is a complete orthonormal family, and it generates the Fourier series
(6.1) for a square-integrable functio:. F(x).

Analogous to Theorem 6.2 we have

Theorem 6.3: 1f {u (x)}, n=1,2,...,is a complete orthonormal family in L’(a, b), then for arbi-
trary F(x) in L*a. b),

Fo)= 3 (F, u,)u,(x) (6.11)

[mean-square convergence of the series to F(x)].

The analog to (6.7)

|IF(x)IF=> F?  [ordinary convergence] (6.12)

n=1

is called the Parseval relation.

There remains the problem of finding (nontrigonometric) complete orthonormal families for the
construction of generalized Fourier series (6.11). The next section will show that such families arise
naturally as the solutions to certain boundary value problems for ordinary differential equations.

6.3 STURM-LIOUVILLE PROBLEMS; EIGENFUNCTION EXPANSIONS
Consider the following boundary value problem for the unknown function w(x):

—(pOW (X)) +q(x)w(x) = Ar(x)w(x)  a<x<b

Cw(a)+ Cw'(a)=0 (6.13)

Cw(b)+ C,w'(b)=0
If (1) p(x), p'(x), g(x), and r(x) are continuous in (a, b); (2) p(x)>0 and r(x)>0 on |4, b]; and
(3) Ci+Ci#0, Ci+ Ci#0, then (6.13) constitutes a Sturm—Liouville problem. The function
w(x)=0 is a trivial solution to any Sturm-Liouville problem. In addition, for certain values of the
parameter A, there exist nontrivial solutions. Each value of A for which a nontrivial solution exists is
called an eigenvalue of the problem, and the corresponding nontrivial solution is called an eigen-
function.

Theorem 6.4: The eigenvalues and eigenfunctions of a Sturm—Liouville problem have the following
properties.

(1) All eigenvalues are real and compose a countably infinite collection satisfying
A <A< <A oo,

(i) To each eigenvalue A, there corresponds only one independent eigenfunction

w,(x).
(i) Relative to the inner product (6.10), the weighted eigenfunctions
Vr(x) w,(x)
u(x)=s— —"—— n=12,...) (6.14)
IV r(x) w, ()

compose a complete orthonormal family in L*(a, b).

An eigenfunction expansion—i.e., a generalized Fourier series for an L(a, b)-function F based on
the family (6.14)—not only converges in the mean-square sense (Theorem 6.3), but also:
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Theorem 6,5: (1) If F and F' are both sectionally continuous in (a, b), then the series converges
pointwise to the value [F(x+)+ F(x—)]/2 at each x in (a, b).

(i) If F and F’ are continuous in (a, b), if F" is sectionally continuous, and if F
satisfies the boundary conditions of the Sturm-Liouville problem (6.13), then
the series converges uniformly to F(x) in (a, b).

6.4 FOURIER AND LAPLACE INTEGRAL TRANSFORMS

Theorem 6.4(i) and (iii) also hold for the eigenvalues n =0, 1,2, ... and eigenfunctions {e*"™} of
the problem
w"(x) = Aw(x) —r<x<mw
w(=m)= w(m)
w (=)= w'(r)
which is of Sturm-Liouville type, except for the boundary conditions, which are periodic instead of
separated. Thus, for arbitrary f(x) in L(— , 7), we have (cf. (6.9))

lim | |f(x) = fu(x) dx=0 (6.15a)
Now 7 _ o
B N
where fo)= S F e (6.15b)
n=-N
1 (" )
and F = ;-j f)e™dx  (n=0,=1,%2,..) (6.15¢)
m -

Now suppose that f(x) is in L*—, ©). Unless f(x) is identically zero, it is not periodic and an
eigenfunction expansion like (6.15) cannot be valid. However, in this case we have

lim ) |f(x)~ fu(x)Fdx =0 (6.16a)
Noo 7o
N
where fu(x)= j F(a) e da (6.16b)
-N
1 (" B
and Fla)= E;j Fx) e dx (6.16¢)

Note the analogy between (6.15) and (6.16). The function F(a) defined in (6.16¢) is called the
Fourier (integral) transform of f(x); we shall indicate the relationship between the two functions as

Flf(0)} = Fla) or F{F(a)} = f(x)

Operational properties of the Fourier transform are listed in Table 6-1. In addition, Table 6-2 gives a
number of specific functions and their Fourier transforms. For our purposes, inversion of the Fourier
transform will be carried out by using Table 6-2 as a dictionary, together with certain of the
properties from Table 6-1. Note that line 7 of Table 6-1 is equivalent to the inversion formula

wa Fa)e™ da = f(x) (6.17)

The function f*g defined in line 8 is called the convolution of the functions f and g. Clearly, the
convolution operation is symmetric, associative, and distributive with respect to addition.
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Table 6-1. Properties of the Fourier Transform

f(x) Fla)= ﬁf_:f(x)e"‘" dx
fx) (ia)"F(a)
x" f(x) i"F"(a)
flx—c¢) e “F(a) (c =const.)
. e f(x) F(a—c)  (c=const.)

Cifi(x)+ G fa(x)

C1F)(a) + Cze(a)

flex) le|*F(a/c)  (c = const.)
F ~ f(-a)

) 27'rf “
frg=[ fx-ngdy | 2eF@)G@

Table 6-2. Fourier Transform Pairs

1 (= )
) Flay=>-[ ftxye = ax
27 o
1. e @mc) e =M% (¢ >0)
Al
2. e -—— (>0
¢ a’+ A? ( )
3 2A Al 0
3 _x2 Y e (A>0)
1 |x] < A sin Aa
4. ILi(x)= {
0 lx|> A Ta
2sin Ax
S. Li(a)
X
0 x <0 1 1
6. E,,(x)E{ B — - (Rea>0)
e x>0 2ma+tia

integral transform, called the Laplace transform, is defined by

L= e di=fe)

[CHAP. 6

The Fourier transform, as described here, applies to functions f(x) in L*(—o, ). A related

(6.18)

This transform may be applied to functions f(¢) which are defined for —o < ¢t << and satisfy f(£)=0



Table 6-3. Properties of the Laplace Transform

) fs)= L f(6)e ™ de
Ci A+ Cf2(8) Cifils) + Cafols)
. flat) a’‘f(sta) (a>0)
. ) s"f(s)— "7 f(0)— - - = f7(0)
(n=12,..)
() (1)) (n=1,2..)
e“f(n) fts—¢) (¢ = const.)
H(r—b)f(1— b), where e Bf(s) (b>0)
Hin= 0 t<0
(0)= {1 t>0
- fra0=] fe-ng@dr | f6)806)

Table 6-4. Laplace Transform Pairs

0 f6)= | fwean
o]
1
1. 1 -
s
n!
2.t e (n=1,2,...)
1
3 ekl
s—k
4. sinat 4
. sina
i s>+ a’
5 ’ u
. cosa
s s2+ a?
1 1
6. —— —
V mt Vs
1 1
7. ———e kM ——eHVs (k> 0)
Vot s
k 2 Vs
8, ——e k™ e KV (k >0)
4nr
i }
9. erfc (k/2V't), where ~e™V:  (k>0)
s
2 z —u?
erfc z E—J e " du
v w z

7
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for ¢t <0. Note that () need not belong to L¥*(—o, ®); it is sufficient that there exist positive constants
M and b such that

[f() = Me"  fort>0 (6.19)

Table 6-3 lists operational formulas for the Laplace transform, and Table 6-4 gives Laplace
transforms of specific functions.

6.1

6.2

Solved Problems

Let f(x) be a sectionally continuous function in (0, £). Determine (a) the Fourier cosine series,
(b) the Fourier sine series, for f(x).

(a) Define

f(x) O<x<?¢

F”(X)E{f(—x) —¢<x<0

an even function in (—¥¢, ¢). The Fourier coefficients of F,(x) are given by (6.2) as:
2 4
a, = }j f(x) cos (nmx/€) dx b, =0
[¢]

With these coefficients, the series (6.1) represents, for all x, the function F.(x), the even 2¢-periodic
extension of f(x).

(b) Define

f(x) O0<x<?¢

Fo)= {—f(—x) —t<x<0

an odd function in (= ¢, ¢). The Fourier coefficients of F,(x) are given by (6.2) as:
2 4
a,=0 b, = ?j f(x)sin (nmx/€) dx
¢}

With these coefficients, the series (6.1) represents, for all x, the function E,(x), the odd 2¢-periodic
extension of f(x).

Find all eigenvalues and eigenfunctions for the problem

—w’(x) = Aw(x) O<x<?
w/(0)=w'(£)=0

As this problem is of Sturm-Liouville type, Theorem 6.4(i) ensures that the eigenvalues A are
real—negative, zero, or positive. Each of the three possibilities for A leads to a different form of the
general solution to the differential equation, and we must then check to see which solution(s) can satisfy
the homogeneous boundary conditions without reducing to the trivial solution.

If A < 0, write A = —u*<0. Then w(x) = Ae** + Be™** and the boundary conditions,

w'0)=u(A-B)=0 w'(€)= pn(Ae*’— Be™*)=0

are satisfied if and only if A= B = 0; i.e., there are no negative eigenvalues.
If A = 0, then w(x)= Ax + B, and the boundary conditions,

w(0)=A=0 w(f)=A=0
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6.3

6.4

are satisfied by w(x)= B # 0. Thus, A =0 is an eigenvalue, and all corresponding eigenfunctions are
constant multiples of wo(x)= 1.
If A > 0, write A = #*>0. Then w(x)= A sin ux + B cos px, and
w(0)=unA=0
w' (€)= pAcos ul —pBsinuf =0
The determinant of this system, —u?sin ué, vanishes for w, = nw/¢ (n==1,%2,...). Hence, the
positive eigenvalues are A, = (nw/€)* (n=1,2,...), and the eigenfunctions corresponding to A, all are
constant multiples of w,(x)= cos nmx/¢.
It is seen that the eigenfunction expansion on (0, €) yielded by the above Sturm-Liouville problem is

nothing other than the Fourier cosine series of Problem 6.1(a). Changing the boundary conditions to
w(0) = w(¢) = 0 would yield the Fourier sine series.

Given a function F(x), defined on the closed interval [—¢, €], state conditions sufficient to
ensure that F(x)is C? on the whole real axis.

If F(x) were defined merely in (~¢ ¢), then (6.3) would fail to define F at the points x =
+ ¢, £3¢,+5¢,. . ., so that questions of continuity would be meaningless. Even if (i) F(x) is defined on
[-¢€ €), the function F is well defined only if (i) F(¢) = F(—¢). If (i) and (ii) hold and, in addition,
F(x) is continuous on [~ ¢, €], it is apparent that F(x) will be continuous for all x.

Repeating the above argument with respect to the derivatives of F, we prove the

Theorem: F(x)is C?if, for j=0,1,..., p, F(x) is continuous on [—¢, €] and obeys
F(’)(f) - F(/)(_g)

Given a function f(x), defined on the closed interval [0, ¢], state conditions sufficient to ensure
that F,(x) [Problem 6.1(b)] is C” on the whole real axis.

We apply the result of Problem 6.3 to the function F,(x) of Problem 6.1(#), making two preliminary
observations:

(1) For the odd function F,(x) to be continuous on [—¢, ¢] and to obey F,(¢)=F,(=¢), it is
sufficient (and necessary) that f(x) be continuous on [0, €] and obey f(0)= f(£)=0.

(2) For odd j, the jth derivative F{(x) is an even function in [—¢, €]. Hence, if it exists, this
function automatically satisfies F$(€) = F{(— #).

Theorem: F,(x)is C? if f*’(x) is continuous on [0, €] for j=0,1, ..., p, and if
f90)=f*(6)=0
for k=0,2,4,...<p.

Show that if both f(x) and f'(x) belong to L*(—, ), lim f(x) = 0.

[x[e

For all values of x, [f(x) = f/(x)]*=0, from which it follows that

[ ract [ perac=]2] forea ()

for any real a and 4. Now,

2[ S () dx = 57 fla) 2)

Moreover, if both f(x) and f'(x) are square integrable,
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lim j F(x)? dx = lim j FxPdx=0 3)

b—sco b—reo

where a and b are allowed to tend to + independently. Together, (1), (2), and (3) imply that f(x)*
approaches a constant as x approaches +co. Since f is square integrable, this constant must be zero. By
similar reasoning, f(x) tends to zero as x tends to —co.

6.6 Find
gl{lcosh a\/E} (b>a>0)
s cosh bV's
We have:
1 cosh a\/;_ 1e® ‘+e""/;_e“‘"’)‘/;+ e-@rVs 1
;cosh b\/;_;e”‘/?+ etV s 1+e™2Vs

e(a—b)\/?+e—(a+b)\/} wa

= e 2 (__1)ne—2nb\/?
N n=0

— 2 (_1)nle—[(zn+1)b—a|\/?+ 2 (_1);:18—[(2n+1)b+a]\/;
n=0 N n=0 s

Then, by line 9 of Table 6-4 and the linearity of the Laplace transform,

__(lcosh aVs o 2n+1Db-a i Cn+Db+a
- = -Derfc | ————— -1)" erfc | —————
[ avsl - Zevrene S 3 carene [F

Supplementary Problems

6.7 Show that if a series of the form (6.1) converges uniformly to F(x) in (—¢, £), the coefficients must be
given by (6.2).

6.8 Compute the Fourier coefficients for:
( ) F( {0 -7 <x<0
a =
*) 1 0<x<m
() Gx)=lx| (—7m<x<m) () Hx)=x (-m<x<m)
6.9 Characterize the convergence of the Fourier series from Problem 6.8.

6.10  Write (a) the Fourier sine series, (b) the Fourier cosine series, for the function F(x)=1,0< x < m.

6.11 Find the eigenvalues and corresponding eigenfunctions of
—w'(x)= Aw(x) 0<x<?
under the boundary conditions
(@) w0 =w(£)=0 (d) w@)+w'0)=w()=0
(b) wO)=w()=0  (e) wO)+w(0)=w(£)=0
(¢) w(OO)=w(£)=0 (f) wO)+aw' Q) =w()+Bw()=0 (a>B>0)



CHAP. 6] EXPANSIONS AND TRANSFORMS: THEORY 81

6.12

6.13

6.14

6.15

6.16

6.17

6.18

Let {u;(x), us(x), - . ., ur(x)} be an (incomplete) orthonormal family in L*(a, b). Given a function F(x) in

L*(a, b), infer from the identity
M b 2 M b
}: (f Fu, dx) ]+ z (C,,~f Fu, dx)
a n=1 a

f: |- S C,,unrdeU':F“zdx—"”

2

n=1
where C, ..., Cy are arbitrary constants, that

(1) Out of all linear fittings of F(x) by the family {u,(x)}, the generalized Fourier series yields the
smallest mean-square error.

(i) The generalized Fourier coefficients, F,, of F(x) obey Bessel’s inequality,

> F2=|FF

Prove a theorem for F,(x) analogous to that found in Problem 6.4 for F,(x).

Let f(x) be defined on [0, €] and satisfy, for some p =2, the hypotheses of the theorem of Problem 6.4
(6.13). Prove that the Fourier sine (cosine) series converges uniformly. [Hint: Integrating by parts p
times, show that
constant
bl (@) = ———
n

and apply the Weierstrass M-test.

Find the Fourier series for the following functions:
X 0<x<u/2
@) flx)=<9 m—x mT2<x <372 (¢) flx)=3x* —r<x<m
x—2m 3n2<x<2w

1 TR<|x—ml<m

= 3 _
) It = < /2 d) f(x)=x T<x<1

®) f=1{ _

For f and g in (real) L*(a, b), show that

([ roseran) =([ oo ac)([ seer ae)

Let {u,(x)} denote a complete orthonormal family of functions in L*(a, b). For f,g in L*a, b), let
o= un), go=(g u) forn=1,2,.... Prove:

(a) <f,g>=2fngn (¢) X fa<e

ne=1

(®) (zfg)s(zﬁ)(zg) (@ limf, =0

ne=1 nel n-soo

Refer to Problem 6.17. If f belongs to L*a, b), if f—the (b — a)-periodic extension of f—is continuous,
and if f' is sectionally continuous, prove that

S lful<w

n=]
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6.19  Use the operational properties of the Fourier transform (Table 6-1) to find the Fourier transtorms of

1 1<x<3

e ¥ 1<x<4 24 6< <8
f(x)—{ 0 otherwise g(x) = N * )

0 otherwise

6.20 If Fa)= F{f(x)}, use the convolution property of the Fourier transform to find
o)
a”+ 8a +20

6.21  Use the operational properties of the Laplace transform (Table 6-3) to find the Laplace transforms of

0 <1
f(t)= £sin at e(t) = e" cos at g=41 1<t<?2
0 2<t

6.22  Calculate (a) L s e ), (b) LYV sf(s)} if f(s)= LLf(D}, (c) L Hexp (—kVs+ h)}.

6.23  Find the inverse Laplace transforms of

. cosh as 1

sinh aVs 1
f(s) - = —

g(s)=—2
sinh bs s sinh bVs Vs




Chapter 7

Eigenfunction Expansions and
Integral Transforms: Applications

The techniques of Chapter 6 can yield exact solutions to certain PDEs, by reducing them to
ordinary differential equations or even to algebraic equations. For success, it is essential that the
PDE be linear and hence allow superposition of solutions,

7.1 THE PRINCIPLE OF SUPERPOSITION

Let L[ ] denote any linear partial differential operator; e.g., (3.3). Then, for arbitrary,

sufficiently smooth functions u,, ..., u, and arbitrary constants ¢, ..., ¢y,
Liciu + -+ cyuy]=c, Llu ]+ -+ cyl[uy] (7.1)
and so
Llul=0 (j=1,...,N)> Llc,u,+ -+ cyuy]=0 (7.2)

(7.2) is one statement of the principle of superposition.
For infinite linear combinations such that

i C U, and % ¢ Ly, )
k=1
both converge, we have
L[Z ckuk]= %ckL[uk] (7.3)
and the superposition principle reads:
Liu]=0 (all k)f)L[é ckuk]=0 (7.4)
k=1

For a third version, suppose u(x, A) to be a function of x in R" depending on parameter A,
a <A <b, and g(A) to be an integrable function of A on (a, b). Then, if

fb g\ ulx, A) dA and fb g\ L[u(x, A)] dr
both exist, we have a a
L Ub 2()ulx, A) d,\] - f: gV L[u(x, )] dA (7.5)
and
Ll A =0 (a<A<b)> L Ub 2(u(x, A) d/\] — 0 (7.6)

7.2 SEPARATION OF VARIABLES

If u(x, y) satisfies a linear PDE in x and y, then the method of separation of variables for this
problem begins with the assumption that u(x, y) is of the form X(x) Y (y). This has the effect of

83
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replacing the single PDE with two ordinary differential equations. The theory of eigenfunction
expansions enters into the treatment of any inhomogeneous aspects of the problem.

EXAMPLE 7.1 By examining the Solved Problems, where numerous applications of the method of eigen-
function expansion (separation of variables) are made, we see that for the method to be successful, the problem
must have the following attributes:

(1) At least one of the independent variables in the problem must be restricted to a finite interval.
Moreover, the domain of the problem must be a coordinate cell in the coordinate system in which the
PDE is expressed (e.g., in Cartesian coordinates, a rectangle; in polar coordinates, a sector). See
Problem 7.17(b).

(2) The PDE must separate; see Problem 7.17(a).

(3) In general, homogeneous boundary conditions must be arranged such that at least one of the separated
problems is a Sturm—Liouville problem. (If this is not the case, it can often be made so by reduction to
subproblems or by a change of dependent variable.) See Problems 7.18 and 7.4.

7.3 INTEGRAL TRANSFORMS

The integral transforms which are most generally applicable are the Fourier and Laplace
transforms. Others, such as the Hankel and Mellin transforms, are sometimes useful, but they will not be
considered here.

EXAMPLE 7.2 Examination of the Solved Problems reveals that integral transforms apply in the following
situations:

(1) The PDE has constant coefficients (otherwise the Fourier or Laplace transform would not produce an
ordinary differential equation in the transform space).

(2) The independent variable ranges over an unbounded interval. If the interval is (—oo, ), then the
Fourier transform is the likely transform to use. If the interval is (0, ©) and, in addition, if the initial
conditions are appropnate, then the Laplace transform is indicated.

Solved Problems

7.1 For f(x) in L*(0, ¢), find u(x, ¢) satisfying

u, = Ku, 0<x<é t>0 1)
u(x, 0)= f(x) O<x<¥¢ 2)
uO,=uf,)=0 t>0 3)
Assume that u(x, 1) = X (x) T(¢). Then
u(x, )= Xx)T'() U (x, 8) = X"(x) T(2)
and it follows from (1) that, for 0 <x < ¢ and ¢t >0,

(1) X"(x

KT((:)) N X((x)) )

Since the left side of (4) is a function of ¢ alone and the right side is a function of x alone, equality holds
for all 0 < x < ¢ and every ¢t >0 if and only if there exists a constant, —A, such that
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7.2

T _ X'
«T( X

for 0<x < ¢, t>0. This is equivalent to the two separate equations,

T(1)=—AxT(f) and -X"(x)=AX(x)

In addition, the boundary conditions (3) imply that X (0)= X (¢) = 0. Hence,
~X"(x)=AX(x)
X0)=X(¢)=0

is a Sturm—Liouville problem, with eigenvalues A, = (n#/¢) and corresponding eigenfunctions X,(x) =
sin (nmx/€) (n=1,2,...).
A solution of
T'(t)= — A T(2) (t>0, n=1,2,..)
is easily found to be T,(f)= e **'. Thus, for each n, u.(x, £)=e " sin (nmx/¢) satisfies the PDE (1)
and the homogeneous boundary conditions (3). By the principle of superposition, the function

u(x, t)= i Calin(x, 1)

n=1

has these same properties, for any set of constants ¢, for which the series converges. Finally, the initial
condition (2) will be satisfied if

f(x)= Z Catt,(x,0) = Z ¢n sin (nmx/€)
n=1 n=1
which determines the ¢, as the coefficients of the Fourier sine series for f(x) (see Problem 6.1(b)):

=2 [ ey sin (et 0
c,,—/of(x sin (nmx

Solve
u(x, 1)=ku,(x, 1)+ F(x, ) O0<x<¥¢ t>0
u(x, 0) = f(x) o<x< /¢
u©, )=u(ft)=0 t>0

Because the equation here is inhomogeneous, we must use a modified separation of variables
procedure. If F(x, t) were zero, Problem 7.1 would give the solution as

u(x, )= 2 Ca e ™ gin (nmx/ €)

n=1

Therefore, borrowing the idea of “variation of parameters,” we assume a solution of the form

o

u(x, Y=, u,(t)sin (nwx/€) (1)

n=1

for certain unknown functions u,(¢); in addition, we write

F(x, )= i F.(¢) sin (nmx/€) fx)=> f. sin (nmx/£) 2)
n=1 n=1

where the Fourier coefficients F,(f) and f, are given by the usual integral formulas. Substituting (1) and
(2) into the PDE yields

D [ulft) + x(nmr) €)ua(£) — F (1)) sin (nmx/ €)= 0 (3)

n=}

and the initial condition becomes
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E [4.(0) = fa]sin (nwx/€) =0 4)

Because {sin (nmx/f)} is a complete orthogonal family in L*0, ), (3) and (4) imply that forn=1,2, ...,
() + k(nml €)u.(t) = F.(¢) t>0 (5)

u,(0) = fa (6)

There are several standard techniques for solving (5) subject to (6); we choose to take the Laplace
transform of (5), applying line 3 of Table 6-3:

fa . Fi(s)

1, (8) = 7
() = I 07 5T m (I OF )
Then, inverting the transform with the aid of line 7 of Table 6-3,
u,,(t)=f,. e—x(n-,r//ﬂt +J e—x(nﬂ/t’)z('—‘r)F:l(,r) dr
0

and (1) becomes

u(x, =2, foe " gin (narx/ €) + D, [ f gD (1) dr] sin (nmx/€) (8)

n=1 n=1 0

The first series on the right of (8) reflects the influence of the initial state, u(x, 0); the second series
reflects the influence of the forcing term, F(x, ).

Exhibit the steady-state solution to Problem 7.2 if f(x)=0 and (a) F(x, t)= ¢(x) (i.e.,
time-independent forcing), () F(x, t) = ¢(x) sin &. For simplicity, take € = 1.

By Problem 7.2,

u(x, 1)= i U e D E (1) dr]sin nx (1)
in which _
Fu(r)= 2]01 F(x, 7)sin nmxdx  (n=1,2,...) 2)
(a) Fo(r)= ¢, = 2fol $(x)sin nrxdx  (n=1,2,..))
and since

(1 . e—x(m-r)Zl)

J‘ e—x(n-n')z(f ) dr =

0 « ()
(1) reduces to

]- it n

u(x, t)=— E 2

K p=3 (I )2

Letting £ — oo, we obtain as the steady-state solution

(1— e " Ysin nawx

sin nmx 3)
Differentiating (3) twice with respect to x,

(x)———z ¢, Sin nrrx———d>(x)

K p=1

That is, u.(x) satisfies the original inhomogeneous heat equation with all time dependence
suppressed. In this sense, u.(x) is an equilibrium solution.
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7.4

7.5

1
() Fu(r) = (sin 7) (2f & (x) sin nrx dx) —usine  (n=12,.)
0
‘ k(nm)sin t —cos t + ¢~ <
and j e "™ gin r dr = (r) YY)
0 1 + «*(nr)
e x(nm)sin ¢~ cos r+ e <™
Hence u(x, )= >, () 3 y $n sin nax
] 1+ x*(nm)
For large ¢t >0, u(x, t) approaches
= k(nmw) sint-cost )
Ua(x, t) = . SIN NTTX
(1) ,.E.;l 1+ «*(nm)t ¢

Evidently, when the forcing is time dependent, the steady-state solution is also time dependent and
cannot be obtained as the solution of a time-independent heat equation.

Solve
u(x, 1) = xu,(x, 1) 0<x<¥¢ t>0
u(x,0)=0 O<x<?¢
u(0, )= fi(t), u(¢, )= f,(1) t>0
if fo(0) = £,(0)=0.

If we attempt to separate variables directly, we shall be led to the following consequences of the
inhomogeneous boundary conditions:

X©O)T(1)= fo(t) and X(OT@O)=fi(1)

for ¢ > 0. Neither of these implies anything directly about X (0) or X (¢), and as a result we do not obtain
a Sturm-Liouville problem for X (x).
To reduce the problem to one with homogeneous boundary conditions, let us write

X X
u(x, 1) = v(x, 1)+ (1 - ?>fo(t) IO

The problem for v(x, ¢) is then

ve(x, 1) — kv (x, 1) = F(x, t) 0<x<é t>0
v(x,0)=0 O<x<¢
v(0,0)=v(f1)=0 t>0

X X
where Flon=-(1- ;,) 140~ 21100

We obtain the solution at once by setting f(x)=0 in Problem 7.2:

@ :

o(x, £)= > [ j g KOOI (1) df} sin (nwx/€) (1)
0

n=i

where the Fourier coefficients F, are given by
2r° x x )
F.(t)=—- zjo [(1 - ?) fo(e)+ ?f{(l):| sin (nmrx/ €) dx

2
= [(cos nm)fi(t) = fo(D)) 2)

Rework Problem 7.4 by the Laplace transform method.

Let 4(x, s) denote the Laplace transform of u(x, ¢) with respect to ¢. Then:
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2

si(x, s)~0=x —4(x, s) 0<x<¢ (1)
dx

4(0, )= fols), a(€ 5)=fils) 2)

With o? = s/k, sinh xo- and cosh xo are two linearly independent solutions of (/). Also, sinh xo and
sinh (€ x)o are linearly independent solutions, and these will be more convenient for our purposes, as
one of them vanishes at x = 0, and the other at x = ¢ In fact, the linear combination

f:(-?) sinh xo + fo()

sinh o sinh ¢o

a(x, )= sinh (€ — x)o 3)
satisfies (1) and (2).
Using the approach of Problem 6.6, we obtain, for b>a >0,

sinhaVs &

E —[@n+1)b—alVs __ E e-[(2n+1)b+a1\/?
sinh b\/_ n=0 n=0

so that, by line 8 of Table 6-4,

L {§inh a\/;] = 5 (2n +_1)b —a g ~2n+Db=allar _ i Cn+1Db+a

sinh 8Vs’ oo 471 aso AP

e—[(2n+ 1b+all/ar

_ i @Cn+Db+a

n=—w 47

Choosing b= &V« and a = x/V« or (€~ x)/Vk, we obtain

e—[(z..+1)b+a]2/4:

{smh xa] z (Zn+1)0+x o l@n+ e
sinh éo e Vamkt?
we—[(2n+2)(—x]2/4xt

inh (£ - w
g_l{sm'( x)a]:_ >
sinh o ne—w  Vdmxt®

From line 7 of Table 6-3, it follows that if we define

M(x t)~=—— E e—(zn( xY/dnt

7'rt n——co

then u(x, t) can be expressed in the form
ue, 0= [ Mus t=n)fatr) dr+ | Mu(e=x 1= 0)fu(e) dr
o 0

This form of the solution involves a series that converges rapidly for small values of f, whereas the form
obtained by separating variables is to be preferred for large values of .

Solve
u,(x, t)=ku,(x, ) —co< x <o, t>0 (1)
u(x, 0)=f(x) —o<x<ew 2)
u(x, t) of exponential growth in x 3)

This is a well-posed problem for the heat equation, with (3) playing the role of boundary conditions
on the variable x. Under the Fourier transform with respect to x, the problem becomes:

d
EU(Q’ )= -ka’*Ul(a, t) (>0

U(a, 0) = F(a)
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of which the solution is U(a, t) = F(a) e™*¥. Inverting by use of Table 6-2, line 1, and Table 6-1, line 8,
we obtain

w

| ey ay )

daxt’ o

u(x, t)=

It can be directly verified (see Problem 4.17) that (4) is a solution to (7)-(2)—-(3), independent of
the validity of the steps used above to construct it. In fact, it is the unique solution (c¢f. Problem 4.2).

Solve

u(x, )= xu,(x ) x>0,1>0
ux,0)=f(x) x>0
u(0, )= g(1) t>0
lu(x, 1) <M x>0, >0

Reduce the problem to subproblems for u,(x, t) and uy(x, t) such that u = u; + wu,.
Subproblem 1 Up = KU xx x>0, t>0
u(x,0)=0 x>0
w0, )= g(t) t>0
lui(x, 1) < M x>0, t>0
Taking the Laplace transform with respect to ¢, we obtain the problem

2

sdl(x,s)—0=xd-?121(x, s5) x>0 (1)
10, s)= £(s) 2)
k<2 x>0, 5>0 @)

s

The solution of (1) that obeys (2) and (3) is di(x, s)= g(s)exp (—xV s/k). Then, by line 8 of Table 64,

(r =2 [ [ etma

u(x, 1) = ——exp|—-—— | g(r) dr
Ve Jo (t— 1) de(t—17)

Subproblem 2 Uz, (X, 1) = Kz (X, 1) x>0, t>0

ux(x, 0) = f(x) x>0
u(0,)=0 t>0
lua(x, )] < M x>0, t>0
Let F,(x) denote the extension of f(x) as an odd function over the whale x-axis, and consider the

problem
vi(x, 1) = KUw(x, 1) —o<x <o t>0 (1)

v(x, 0) = F,(x) —o< x <o (2)

It is obvious physically that an initiailly antisymmetric temperature distribution must evolve antisym-
metrically; that is, the solution v(x, f) of (I)—(2) ought to be odd in x. If it is, and in addition is
continuous and bounded for all x and all positive ¢, then its restriction to x >0 provides the solution
uz(x, 1) of subproblem 2. Now, by Problem 7.6, the unique solution of (1)-(2) is

o(x 1) = | e ) gy

Vamxt’
1

Vdmkt

It is easy to see that, under mild conditions on f(y), this function possesses all the desired properties.

J [e»(x—y)Z/au _ e—(x+y)2/4x(]f(y) dy
0
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Consider the following special case of Problem 7.7: f(x)=0, g(¢)= g,= const. Show that (a)
u(x, 1) = gyerfc (x/Vdxkt); (b) the “front” u(x, £) = ag, (0 < a < 1) propagates into the region
x >0 at speed z,V k/t, where erfc z, = a.

(@) From Problem 7.7,

X J’ 1 [ x?
exp | —
Vi 7y (1— 1) dk(t—17)

The transformation A? = x*/4« (1 — 7) changes this to

u(x, 1) = wi(x, 1) = ] go dt

o

2
u(x, )= go—J e dx = goerfc (x/Vdkt)
\/;; *x/V At

() For 0<a <1, let 2, denote the unique solution of erfc z, = a. Then u(x, t) = ago for all x and ¢
that satisfy x = z,V4«kt. Therefore, at time ¢ >0, the point x.(¢) at which u = ago moves with speed

dx Vi

=z, 2L

de Vi

Solve
u,(x, )= a’u(x, ) 0<x<¥ t>0 1)
u(x, 0)= f(x), u/(x, 0)=g(x) O<x<? 2)
u@©,H=u(f,H=0 t>0 3)
We suppose u(x, t)= X(x) T(¢) and are led to
X_TO 2 xo)= x(6)=0

X(x) a°T()
This yields two separated problems:
X"(x)+ A*X(x)=0 0<x<¢
X0)=X(€)=0
and T(0)+ a®A*T()=0  t>0
The respective solutions are, with A>=A2Z=(n7/€)* (n=1,2,..)),
X.(x) = sin (nmx/€)
T.(1) = A, cos (nmat/ €)+ B, sin (nmat/ €)
Hence,
u(x, )= 2 A, sin (nmx/€) cos (nmat/ €) + 2 B, sin (nwx/€) sin (nmat/ €)
n=1 n=—1

Now the initial conditions (2) require
f(x)= Y, Ansin (nmx/€)  (0<x<¢)
n=1
g(x)= > Ba(nma/€)sin (nwx/€) (0<x<¢)
n=1

These conditions will be satisfied if A, and (nma/#)B, respectively equal f, and g., the Fourier
sine-series coefficients of the functions f(x) and g(x). Therefore,

w
L
1 I

u(x, )= 2 fn sin (nmx/€) cos (nmat/ €) + > Lg,, sin (nmx/€) sin (nwat/ €) “4)
a1 ATTA

n=1

By use of the relations
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) 17 . nm . nm
sin (nmx/¢) cos (nmat/€) = > [sm 2 (x+ at) + sin 2 (x— at)]

. . 1 nmw nr
sin (nmx/€) sin (nmat) €) = > [cos7 (x—at)— cos7 (x+ at)]

nm (Y nwz

=— sin —— dz
2€ ) e 4
we can rewrite (4) as

nmz

(=23 s e anesin " e-an ]+ L5 [ gsin T
== | sin — at) + sin — (x — — . sin -dz
CEETa e R RV

-2 [Folx + at) + Fp(x — at)] + L f Go(2) dz %)
2 2a Je—a

Evidently, as was suggested in Problem 4.14(a), the initial-boundary value problem (1)-(2)—(3) is

equivalent to the pure initial value problem in which the initial data are the periodic functions F, and G,.

Indeed, for such data, separation of variables in a half-period strip has led to the same D’Alembert

solution of the wave equation as is furnished by the method of characteristics when applied over the

entire x¢-plane. See Problem 4.10.

7.10 Solve
u,(x, t)=a’u (xt) —o<x<oo, t>0
u(x0)=f(x)  —o<x<e
u(x,0)=g(x)  —o<x<o

For special, periodic f and g, the solution has already been found in Problem 7.9. Here again we
shall retrieve the D’Alembert formula. Apply the Fourier transform in x, to get

d*U(a, t
—(;’ ) —a*a?U(a,t) t>0 (1)
dt

U(a, 0) = F(a) (2)

au
d—(a, 0) = G(a) (3)

!
Solving (1), U(a, t)= Aysin aat+ A;cos aat; then (2) and (3) imply Az = F(a), A, = G(a)/aa. Hence,

sin aat sin aat 1 . )
U(a, 1) = G(a) + F(a) cos aat = G(a) +EF(a)(e'“"’+e""“’”)

where we have chosen to write cos aat in the exponential form for convenience in inverting. Using
Tables 6-1 and 6-2, we obtain:

T 1
u(x, )= g * ;1,,,(x)+ > [fx+ at)+ f(x — at)]

= [ st yyay L an fix - an)
2a/ g 2

= ifxw g(z) dz +1[f(x +at)+ f(x — at)]
2a e 2
7.11  Solve
u(x £) = a’u,(x, t) x>0, t>0
u(x, 0) = f(x), u,(x,0)= g(x) x>0
u, )= h() t>0

The approach of Problem 7.7 is perhaps best here.
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Subproblem 1 Uy u(x, 1) = a’u; . (x, 1) x>0, t>0
ul(x7 O)Zf(x)? ul.l(xv 0): g(x) X>0
u(0,6)=0 t>0

In the usual way, we extend the problem to x <0 by making the initial data odd functions of x; this
(plus continuity) forces u,(0, t)= 0:

vu(x, )= a®ou(x, £) —o< x <o, >0
v(x, 0) = Fo(x), v(x,0)= G,(x) —o< x <o

Problem 7.10 gives

v(x, )= % [Fo(x+ at) + Fo(x — at)] + 2L J’X_H” Go(z) dz

a
and so
1 1 x+at
E[f(x+at)+f(x“at)]+2—J’ g(z)dz 0<t<x/a
a x—at
ul(x’ t) = 1 1 at+x
—[f(x+at)~f(at—x)]+—J’ g(z)dz O0<xfa<t
2 2a o«
Subproblem 2 tzu(x, 1) = @%us o (x, 1) x>0, t>0

u?(x,0)= uz,(x,0)=0 x>0
w0, )=h(1) >0
Apply the Laplace transform in ¢ to get

2
$*hy(x, s)— 0= a? i Ga(x, 5) x>0

420, 5) = (s)
Then, fa(x, s)= C, e+ C; ™%, In order that uy(x, t) remain bounded for all positive x and ¢ we
require that C; = 0. The initial condition then implies C, = h(s), and we have
fo(x, 5) = h(s) e ="

It then follows from line 6 of Table 6-3 that

il ,):{0 0<t<x/a
o h(t—xla) O<xla<t

Our solution,

1 1 xtat
—[f(x+at)+f(x.—at)]+—J‘ g(z)dz 0<t<xla
2 2a ) c-a
u=u+u;=
'l at+x
E[f(x+at)—f(at—x)]+2—J’ g@)dz + h(t—x/a) 0<xfa<t
a’ar-x
should be compared with Fig. 7-1, the characteristic diagram.
At x=x at time = ty< xo/a, the domain of dependence is the interval [xo— ato, X0+ ato].

Moreover, the backward characteristics through (xy, f) do not meet the line x = 0 in the half-plane ¢ > 0.
Therefore,

1 1 xp+al
o, 0) =5 o+ ato)+ fro= at] +5- | ge)dz

x0—afp

For ¢ = t, > xo/a, the domain of dependence of (xo, ;) is the interval {af, — xo, at; + x0], and one of the
backward characteristics through (xo, #;) cuts the line x =0 at ¢ = t; — (xo/a). Then,

u(xo, 1) = % [flat; + xo) = f(at; — x0)] + E;J‘ l g(2)dz + h(t— xo/a)

atg-xp
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Xo— Al X0 — aly aly— Xxg Xp Xo+ aly

Fig. 7-1

7.12  Solve

u,(x, )= a’u (x, )+ f(x,t) x>0, t>0
u(x, 0)=1u,(x,0)=0 x>0
u(, £)= h() t>0

In the usual way, we reduce this to two simpler subproblems with solutions such that u = u; + u,.

Subproblem 1 wnu(x, 1) = a®u1 . (x, t) x>0, t>0
ur(x, 0) = u1,(x,0)=0 x>0
w0, 0)=h(t) >0
This is just subproblem 2 of Problem 7.11; hence,
0 0<t<x/a
(0= |
h(t—x/a) 0<x/a<t
Subproblem 2 Unr(X, 1) = @%Ug e (x, )+ f(x, 1) x>0, t>0
Uz(x,0)= up,(x,0)=0 x>0
u(0, )=0 t>0
or, extending f and u as odd functions of x,
Va(X, 1) = a0 (x, D+ Fo(x, 1) —o<x <o, >0
v(x,0)=0,(x,0)=0 —o0 < x <

The solution for v may be obtained at once from Duhamel’s principle (Problem 4.22) and the

D’Alembert solution of the wave equation (Problem 7.10) for injtial data prescribed at ¢ = 7. Thus,

o(x, )= fo ' [i j T e ) dz] dr

2a x—a(t—7)

Finally, restricting v to x >0, we obtain from (1), for 0 < ¢ < x/q,

x+a(t—7)

w(x, t)= 2%1 j’ drj flz, 7)dz O <t<x/a)

—a(t~7)

(1)

For 0 < x/a <, the triangle of integration in (1) must be decomposed into two regions, as indicated in

Fig. 7-2. We find:
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0 x+a(i—1)

[ e[ fend)

x—a(i-7) 0

1 i~ (x/a}
L) = — d {
ux(x, 1) > jo T
x+a(t—r)
| e

1 t
+— j dar
20 i—(x/a) x~a(t—7)

1 1—(x/a) a(t—7)+x 1 r* x+a(t-r)
- | femde—| | e
20 o a(t=r)—x 2(1. t—(x/a) x—-alt—r)
O<x/a<i)
T

z=x—-a(t—71) z=x+a(t—17)

1—(x/a) Ty R
Z

i
xt+at

0

X —at
Fig. 7-2

7.13 Solve the following Dirichlet problem for Laplace’s equation:
i—a—(ru)Jr——u =0 r<l, —w<@<m
ror 0 % ’

u(l, 8)= f(6) —r<f<
r<l

u(r, _7T)= u(f, 7T)> ue(r’ _7T) = ue(f, 7T)
If we suppose that u(r, 8) = R(r)©(8), then, in the usual manner, we find:
RI ’ @"
r(rR’) _LY
R C]

subject to (- 7) = O(w) and O'(— ) = O'(sr). Thus the separated problems are
—-Q"= A0 —r<f<m
O(=7)=0(m), O'(-m)=0'(m)

PR+ rR'"—AR =0 r<1

and
R(0) finite
(rn=0,1,2,...), with cor-

As found in Section 6.4, the eigenvalues of the @-problem are A, = n*
(n=1,2,..)

responding eigenfunctions
0,(6)=e" and ©_,(8)= e "

and @¢(8) = 1. Now the r-problem may be solved to give
R, (r)=1r" (n=0,1,2,..)

The superposition for u(r, 8) is therefore
u(r, )= co+ 2 (car™ e + c_r" e

=1
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The boundary condition u(1, 8) = f(8) now determines the ¢, as the coefficients in the complex Fourier
series for f(8) over (—m, 7):

1 7 .
w=c=| f@eap (=021, @)
27y
[cf. (6.15¢)). Substitution of (2) in (1), and transposition of summation and integration, yields

u(r, 8) = % [ S gl e f(g) do

- Lp=-m

But, by the formula for the sum of a geometric series,

- 1-r
U Ini L in(9—d) —
";:w’ € 1-2rcos (80— @)+ r*
~ 1-72 7" f(®)
o u(r, 6)= or J_ﬂl_zrcos (0—¢)+’2d¢

which is the Poisson integral formula in the unit circle of R

7.14 Solve
U, (6 y)tu,(6y)=0 —o<x<ow y>0
u(x, 0) = f(x) —00 < x < oo

The use of the Fourer transform in x is indicated:

d2
—a*U(a, y)+ -5 Ula, y)=0  y>0
dy
U(a,0)= F(a)
The solution of the transformed problem which remains bounded for large y is
Ula, y)= F(a)e™™"
Inverting by means of Table 6-2, line 3, and Table 6-1, line 8, we find:
2 [Ty (S
—w Y

ux, y)==- z
() s 2+ (x - 2)* e Y+ 2°

dz (1)

Note that the change of variable z = y tan n takes the second integral (7) into

w2
ulx,y)=—| flx-ytanm)dn  (y>0) )

T2

Hence, for f(x) continuous,

lim u(x, y) = f(x) (—® < x <®)

y—0+
7.15 Solve
Mxx(Xy y)+ uyy(x, y):O —oo < x <™, y>0
uy(x, 0) = g(\’_‘) —co < x << 0

Let w(x, y)=u,(x, y). Then w(x, y) satisfies

wx.r(x)y)+w)')'(x)Y):0 _OO<X<O°) y>0
wix, 0)= g(x) —o< x <™

from which, by (1) of Problem 7.14,
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= G2 e (1)
we Y 2m hmy2+(x—z)2gz z

Now, u(x, y)=J* w(x, &) d{+ C(x). A y-antiderivative of w is obtained by integrating on y under

the integral sign in (1):
y B 1 ) y 20
J‘ W(-’f,f)df—z—TrJ:m [J‘ md{Jg(z)dz

= [ o0t (- 2 g(e) =

As for C(x), it must be bounded and harmonic; hernce, a constant. (If u is steady-state temperature, C is
an arbitrary reference temperature.)

Solve
u, (x,y)+tu,l,y)=0 x>0, y>0
u(x,0)=fx) x>0
u@,y)=g(y) y=>0
Neither variable is restricted to a bounded interval; so separation of variables is not indicated.
Neither variable ranges over the whole real line; so the Fourier transform does not seem to apply.
Finally, the Laplace transform does not apply, since the equation is second-order in either variable but
there is only one initial condition for either variable. However, a reduction of the problem to two
subproblems,
u(x, y) = wi(x, y) + uax, y)

permits application of the Fourier transform.

Subproblem 1 Uy T Uty =0 x>0, y>0
w(x 0)=f(x) x>0
u;(0, y)=0 y>0

As previously, we obtain u, as the restriction to the first quadrant of a function v that satisfies

Ve (X, P)+ 0y (6, y) =0  —o<x<w, y>0
v(x, 0)= F,(x) —w < x <00

where F,(x) denotes the odd extension of f(x). By (1) of Problem 7.14,

- E
v(xvy)=lj_y 2

——dz
7 2+ (x—z)

:1{_f f2) d+[‘” f(2) dzJ

T w ¥+ (x—2) Jo y*+ (x—2)
*[ e —

=L — z)dz
mle Ly?+(x—2)* y*+(x+2z) fz)
4ny‘°° z

=— z)dz
7 Jo (x4 y*+ 22)2—4x222f( )

Subproblem 2 Upxx T Uzyy = 0 x>0, y>0

u(x,0)=0 x>0
w(0,y)=gly) y>0
This is just subproblem 1 with x and y interchanged and f replaced by g; hence u, is the restriction to
the first quadrant of

) axy (7 z )
WX, = z)dz
Y o Jo (x*+ y*+ 22)2—4y222g
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7.17

7.18

Give two examples of boundary value problems for linear PDEs where separation of variables
fails.
(a) U (X, Y) + ey (X, ) + 1y (5, 9) =0 0<x <1, 0<y<l1
u(x,0)=u(x,1)=0 0<x<1
u(©,y)=F(y), u(l,y)=0 0<y<l
If we suppose that u(x, y) = X (x)Y(y), then X"(x)Y(y)+ X' (x)Y'(y)+ X(x)Y"(y) =0 and there is

no way to separate this expression so as to have a function of x alone on one side of the equation and a
function of y alone on the other side.

(b) Uer (X, V) + 1, (x, y) =0 0<x<1,0<y<x
u(x, 0)= f(x) 0<x<1
u(l,y)=0 0<y<l
u(x, x)=0 0<x<1

If we suppose that u(x, y)= X(x)Y(y), then the equation separates into two ordinary differential
equations. However, the boundary conditions do not lead to a problem of Sturm~-Liouville type either
for X (x)or Y(y). The difficulty lies in the fact that the region {0 < x < 1,0 < y < x} is not a coordinate
cell. This problem may, in fact, be solved by means of a clever transformation (see Problem 7.18). In
general, when ) is not a coordinate cell, no such transformation is possible.

Transform Problem 7.17(b) so that it becomes separable, and carry out the solution. For
convergence of the series, assume that f(0)= f(1)= 0.

Extend the problem to the square 0 <x <1,0<y <1, making the boundary data antisymmetric
with respect to the diagonal y = x (see Fig. 7-3). This forces v(x, x) = 0. Now, decompose the v-problem
into two subproblems such that v = v+ v,.

y
v=0
1 ——————
v=-f(y) v=0
0 v = f(x) 1 x
Fig. 7-3
Subproblem 1 Ve (X, Y)+ 01y (x, y) =0 O<x<l, 0<y<1

vi(x, 0)= f(x), vi(x, 1)=0 0<x<l
00, y)=un(l,y)=0 0<y<]
Upon separation of variables, the three homogeneous boundary conditions give the eigenfunctions
sin nmx sinb nw (1l —y) n=1,2,..)

The remaining boundary condition then determines the superposition coefficients ¢, through

=

f(x)= 3 (c.sinh nm)sinnmx (0<x<1)

n=1
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1
or Cnsinh nr=f, = ZJ’ f(x)sin nmx dx
D)

(the nth coefficient in the Fourier sine series for f). Therefore,

vi(x, g)= 2, —,—f"—sin nmx sinh nr(1—y) O<x<1, 0<y<l)
n=18inh n
Subproblem 2 is just subproblem | with x and y interchanged and f replaced by —f. Consequently,

N
-
a-1sinh nor

va(x, y) = sin nry sinh (1 - x) O<x<l1, 0<y<l)
We conclude that the solution to Problem 7.17(b) is

o

u(x, y)= 2,

n=1sinh nm
O<x<1,0<y<x)

[sin norx sinh nr(1 - y) — sin nary sinh nor(1 = x))

Supplementary Problems

THE HEAT EQUATION ON A FINITE INTERVAL
Solve for u(x, 1) (0<x < ¢ 1>0). Use eigenfunction expansions in Problems 7.19-7.22.

719w = K, u(x,0)=f(x), w(0,0)= golt), wu(£ )= g:(0).

720w o= KUy, u(x,0)=f(x), w0, )= go(t), u.€ )= gi(t).

1l

721 W = KUy, u(x,0)= f(x), u:(0, £}~ pu(0, t) = go(t) with p >0, u(é,t)= g.(t).
7.22  w= Kl + bug+cu, u(x,0)= f(x), u(, t)=go(t), u(f, )= gi(1).

7.23  Solve Problem 7.19 by means of the Laplace transform in ¢

THE HEAT EQUATION ON A SEMI-INFINITE INTERVAL
Solve for u(x, t) (x>0, t>0).
7.24 w, = KUy, u(x,0)=0, wu/(0,1)=g(s).
7.25  u = Kue, u(x0)=0, u(0,1)—pu(0, )= g(t) with p>0. [Hint: Let v(x, t)= u.(x, 1)— pu(x, t).]

7.26 U = Kl + buy +cu, w(x,0)=0, u(0, )= f(1).

THE WAVE EQUATION ON A FINITE INTERVAL

Solve for u(x, 1) (0<x <4¢,¢>0). Use eigenfunction expansions or the D’Alembert formula in Problems
7.27-7.31, along with Duhamel’s principle where appropriate. In Problems 7.32-7.34, apply the Laplace
transform.
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7.27  ug= QU u(50)=f(x), w(x,0)=g(x), w0, )=u(é1)=0.
728 up= QPue, u(x,0)=f(x), w(x,0)=g(x), w0, =u(£t)=0.
7.29 we= dun + flx 1), u(x,0)=u(x,0)=0, u(©,t)=u(t)=0.

730 Up= @PUne — 20U, u(x,0)=0, wu(x,0)=g(x), u«©, 1)=u£)=0.
731 Up = Qe — 20t + g(x), u(x,0)=u{x,00=0, u(0,)=u((,)=0.
732 up= @y, ul(x,0)=1u,(x,0)=0, w0 )=/[(t), ul)=g@).
733 up= @l w(x,0)=w(x,0)=0, w0, 0)=7(1), u(€1)=g().
734wy = dtun, u(x,0)=u(x,0)=0, u0,)=f(), u(f)=g).

THE WAVE EQUATION ON A SEMI-INFINITE INTERVAL
Solve for u(x, t) (x>0, t>0).
735  Up= aTlUe, u(x,0)=u(x,0)=0, u/ 0, )= f().
736 U= a Uy, u(x,0)=u(x,0)=0, u(0,1)—pu0, )= f(t)with p>0.

LAPLACE’S EQUATION ON BOUNDED DOMAINS

7.37 U (X, )+ Uy (5, y)=0 0<x<1, 0<y<1
w0, y)=f(y), u.(l,y)=gy) 0<y<1
u,(x,0)=p(x), u(x, )=gx) 0<x<1

7.38 Vu(r, 6)=0 O=r=1, - m<<mw

u (1, 8) = f(6) —r<O<

where |7, f(6) d6 = 0.

7.39 V2u(r, ) =0 a<r<bh 0<b<m
u{r,0)=u(r, m)=0 a<r<b
u(a, 0)=0, ub,f)=1 0<f<m

LAPLACE’'S EQUATION ON UNBOUNDED DOMAINS

7.40 Une(X, Y) T Uy (x, y)=0 x>0, y>0
(0, y)=f(y) y>0
u(x, 0)=g(x) x>0

7.41 e (X, Y)Y+t {x, )= 0 —w< x <o 0<y<]
u(x,0) = f(x), uy(x, 1)=g(x)  —o<x<eo
7.42 Vu(r, 8)=0 r>1, —r<f<m
u(l, )= f(6) <<
lu(r, 8)| < M r>1, —mr<<mw

[Hint: Use the results of Problems 7.13 and 3.29(a).]
7.43 Viu(r, 6)=0 r>1, —m<é6<mw
u (1, 8)= () —r<O<m
lu(r, O)| < M r>1, —r<6<q

where [T, f(6)d6 = 0. [Hint: Use the results of Problems 7.38 and 3.29(a), bearing in mind that the
inversion will reverse the sign of the boundary derivative.]



Chapter 8

Green’s Functions

8.1 INTRODUCTION
In a region  with boundary §, let
Llu] = f(x) in Q (8.1)
Blu]=0 on S (8.2)

represent, respectively, a linear, second-order PDE and linear boundary—~initial conditions, such that
for each continuous f, the problem (8.71)-(8.2) has a unique solution. Then G(x; &) is the Green’s
function for the problem if this unique solution is given by

w0 = [ G BA©) 40

(We attach a subscript to the volume element to emphasize that the integration 1s with respect to the
&-variables.)

EXAMPLE 8.1 We know (Problems 4.2, 4.7, 4,17, 7.6) that the initial value problem for the heat equation,

vi(x, 1) — v (x, 1) =0 —o< x <o, (>0
v(x, 0)= f(x) —00 < x <0

has the unique solution

-y

It then follows from Duhamel’s principle (Problem 4.23) that the problem

w(x 0) = uulx, )= flx) —o<x<®, (>0 (1)
u(x,0)=0 —co < x < oo 2)
has the unique solution
e B (o (-¢y
u(x, t)= J;) vix, t—7)dr = J;) J_wmexp { 2= “r)] f(&) dedr 3)

From (3) we infer that the Green’s function for the problem (1)—-(2) 1s

(t>7>0) 4)

Gx, 15 & 7) = —(x_é)]

———exp [
Var(t— 1) 4(t— 1)
It is seen that the Green’s function (4) exhibits singular behavior as x = (x, ¢) approaches & = (£, 7). This holds

true for Green’s functions in general, and is reflected in the fact that G(x; &) for (8.1)-(8.2) satisfies, as a
function of x, the PDE

Lio]=6(x~¥) %)

which is (8.1) with f(x) replaced by the “‘function” &(x — &) (see Problem 8.1). We call a solution of (5) a
singularity solution for L[ ]. The essence, then, of the Green's function method is to represent f(x) in (8.1) as a
“sum” of delta functions, thereby obtaining u(x) as the “sum” of the corresponding singularity solutions
(adjusted to obey (8.2)).

100
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8.2 LAPLACE’S EQUATION

It follows from Problem 3.17 that the function

1
§|x—§| forn=1
1 |
ox; €)= 3 log |x — €| forn=2 (8.3)
—1—lx~§|2'" for n=3
2-mA, L)

where x and § represent distinct points and A, (1) denotes the area of the unit sphere (see Example
3.2), is the singularity solution for the Laplacian operator V[ ]in R".

EXAMPLE 8.2 For Laplace’s equation in three-space, U + Uy, + u,, = 0, with x = (x, y, z) and & = (£, 7, {), the
singularity solution is
1

CAan[(x— P (y -t (z— LP)7

O-(x’y’z;§¥nY §)=

Theorem 8.1: If £ is a fixed point of R”, then:
(i) for n=1, a(x; £) is dependent only on the distance r=|x — §|;
(i) for n=1, Vig =0 for all x * §;
(ili) for n > 1, the integral of the normal derivative of o over any sphere centered at

x = £ is equal to one. (This extends in the obvious way to R'.)

Since o (x; &) = a(§; x), Theorem 8.1 is valid with the roles of x and & reversed.
Because Poisson’s equation, V’u = p(x), is solved in unbounded R" by

w)= [ ot £)p®) 4,0
/"
the singularity solution serves as the Green’s function for V[ ] when no boundaries are present; we
call it the free-space Green’s function. We now show how to modify this function so that it gives the
Green’s function when boundary conditions have to be satisfied.
Let ) be a region with boundary S, and take & to be a fixed point inside Q. If, as a function of x,
V?h =0 in Q, then the function

¢, &)= ox; &)+ h

where h may depend on § as well as on x, is called a fundamental solution of Laplace’s equation in Q.

EXAMPLE 8.3 Let O be the upper half of the xy-plane and let £ = (£, ) be a fixed point in Q. Both
¢1(X, ¥ §7 n)= O'(.X, Yy §7 "7)* x2_ y2
and A%, y; & m)=o(x, y; & m) T o(x yi & —m)

are fundamental solutions of Laplace’s equation in (2.

Theorem 8.2: Let Q) be a bounded region to which the divergence theorem applies. If ¢(x; &) is a
fundamental solution of Laplace’s equation in  and if V2u = f(x) in Q, then

w(®) = [ 60 B/ dn+ L (w2292 as (8.4)
0

]
where —=p-V
on *
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If f and u are sufficiently well-behaved at infinity, then Theorem 8.2 is valid in unbounded regions. In
(8.4) the roles of x and £ can be interchanged to obtain an expression for u(x) (x in Q).
Suppose that for each continuous f and g, the mixed problem

Viu = f(x) in Q

du
au+ fB—=g(x) onS
on

has a unique solution. The Green's function, G(x; £), for this problem is the fundamental solution of
Laplace’s equation in ) that satisfies
G
aG+B—=0 onsS
on

This homogeneous boundary condition ensures that, for ¢ = G, the boundary integral in (8.4)
depends only on the known functions G, «, 3, and g, and not on u. (It does not, however, ensure that
the boundary integral will vanish; that can be enforced only when the boundary condition on u is
homogeneous, as in (8.2).)

The remainder of this section assumes 8 = 0; i.e., it treats the Dirichlet problem

Viu = f(x) in Q (8.5)
u=g(x) onS (8.6)
Theorem 8.3: The Green’s function for (8.5)—(8.6) is unique and is given by
G(x; £)= o(x; §) + h(x; £)
where, for each fixed & in (), h satisfies
Vih=0 in
h=-o on S
Theorem 8.4: For each fixed £ in Q, the Green’s function for (8.5)—(8.6) satisfies
ViG(x;£)=8(x—£) inQ
G=0 on §
where 8(x — £) is the n-dimensional Dirac delta function.

Theorem 8.5: The Green’s function for (8.5)-(8.6) is symmetric, G(x;£)= G(&;x), and it is
negative for all distinct x and & in €.

Theorem 8.6: 1f () is bounded, the Green'’s function for (8.5)—(8.6) has the eigenfunction expansion

Gix; = 5 DD

=1 r

where VZu (x) = A,u (x) in Q, u,(x)=0on S, u, #0.
Theorem 8.7: The solution of (8.5)—(8.6) is

oG
ww = G OI® a0+ | g®S x 9 ds
2 N

where ﬁ(x; £)=n-V,G(x; §)
on

The techniques for constructing Green’s functions for Laplace’s equation include the method of
images (see Problem 8.5), eigenfunction expansions, and integral transforms. In two dimensions,
conformal mappings of the complex plane provide a powerful means of constructing Green’s
functions for Laplace’s equation.
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Theorem 8.8: (i) Let w = F(z) be an analytic function which maps the region { in the z-plane onto
the upper half of the w-plane, with F'(z)# 0 in Q. Then, if z=x+1iy and {=§+ iy
are any two points in {1, the Green's function for (8.5)—(8.6) in R’ is given by

F(z)- F({)
F(z)~ F(J)

where the overbar denotes the complex conjugate. (ii) Let w = f(z) be an analytic
function which maps the region (0 in the z-plane onto the unit circle in the w-plane,
with f(£)=0 and f'(z)# 0 in {1. Then the Green’s function for (8.5)-(8.6) in R’ is
given by

1
G(x,y; £ m)=—"/Iog
27

1
G(x,y, &)= o log If(2)|

w

8.3 ELLIPTIC BOUNDARY VALUE PROBLEMS

Given a second-order, linear, partial differential operator, L[ ], defined by

. u o ou
Llu|= a; + >, b,—+cu 87
] ,.,/2:1 7 ox,0x; E ' ox, (87)
the adjoint operator, L*[ |, is defined by
n 2 n

- a
L*[v]= > (a0)— > —(bv)+cv (8.8)

i j—1 0%,0x, -1 9%

It is assumed that the g are in C? and the b, are in C'. For any pair of C? functions u and v,
Lagrange’s identity,
. I ou av Zoda,
oLiu) - ul*(o]= X = | X a, (05— ur) + uv (b,- =) | 8.9}
[u] - uL*[v] Eaiza"vax, o) T H '%ax, (8.9)
holds. If M, denotes the expression in square brackets on the right side of (89) and M=
(M, M,, ..., M), then Lagrange’s identity takes the form

vL[u]—ul*[v]=V-M (8.10)
If (8.10) is integrated over a region ) with boundary S, then the divergence theorem shows that
j oL|u] dnzj wL*[v] dn+j M-n dS 8.11)
0 0 S

where, as ever, n is a unit outward normal to S.
Consider the linear boundary value problem

Liu)l=f in Q 8.12)
Blu]=0 on S (8.13)

where L[ | is an elliptic operator of the form (8.7) and
ou
Blu|=au+ 8 —
on
The adjoint boundary conditions, B*[v] = 0 on S, are a minimal set of homogeneous conditions on v

such that Blu]= B*[v]=0 on S implies M-n=0 on S. The PDE (8.12) is called self-adjoint if
L*[ ]=L[ ]; problem (8.12)—(8.13) is self-adjoint if L*[ ]=L[ ]and B*[ ]=B[ |
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Theorem 8.9: Let x=(x,,%,,...,x,) and §= (&, &,...,¢). If (812)-(8.13) has a Green’s func-
tion, G(x; &), then, as a function of the x-variables, G satisfies

L[G]=68(x—¢&) in Q (8.14)
B,[G]=0 on S (8.15)
As a function of the £-variables, G satisfies
LY[G]=6(x-¥§) in Q (8.16)
Bi[G]=0 on S (8.17)

Theorem 8.10: 1f G(x; &) is the Green’s function for (8.12)—(&.13), then G is symmetric in x and §
if and only if the problem is self-adjoint.

Theorem 8.11: For (8.12)-(8.13) to have a Green’s function, it is necessary that u =0 be the only
solution to L[u]=0in Q, Blu]=0on §.

8.4 DIFFUSION EQUATION
For the diffusion equation in n space-variables, u, — « V’u = 0, the singularity solution is
~[x— & ]

de(t—171) (8.18)

K(x—& (~7)= H(t— 7) [4me(i — )] " exp [

Theorem 8.12: (i) As a function of x and ¢, the singularity solution (&.18) satisfies
K-xVIK=0 (x,0)#(§7)
Hm K(x—§, t—7)=6(x—§&)
=7+

(i) As a function of § and 7, the singularity solution (8.18) satisfies
K, -« ViK=0 (£ 7)# (1)
lim K(x—§& t—7)=6(x—§&)
T~
Theorem 8.12(i) shows that, as a function of x and ¢, K satisfies
K -kVIK=8(x~§8(t—1) (8.19)

In the context of time-dependent heat flow, (8.19) permits the following interpretation: K is the
temperature distribution in x at time ¢ due to the release of a unit heat pulse at position § at time 7.
Theorem 8.12(ii) implies that, in § and 7, K satisfies i

-K,~kViK=258(x—£)8(t—T) (8.20)
Given a bounded region () to which the divergence theorem applies, a fundamental solution of

the diffusion equation in Q, ¢(x, ¢; &, 1), is defined in much the same way as a fundamental solution
of Laplace’s equation (Section 8.2). Specifically, we have:

o, HE T)=Kx—§t—71)+J{x, ;€ 7)
where J is any solution, in {, of the dual problems
JI—KViJ=O t>7 —JT—KVEJZO T<t
J=0 t<7 J=0 T>t

EXAMPLE 8.4 Let Q be the unit interval (0,1) of R'. Then, for 0 <x <1 and 0 <¢ <1, one fundamental
solution of the one-dimensional diffusion equation is
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bi(x 156 7)= K(x =&t =7)+ H(t=7) e ™" cos (x ~ £)
where K is given by (8.18) with n = 1.
Another possibility would be
bax, 16, 7)= K(x— & 1= 7)+ > CK(x~ &, 1 - )
=1

where the points £y, &, ... are outside (0, 1) and where the constants C; are such that the series is convergent.
Such a fundamental solution might arise when the method of images is used to satisfy boundary conditions.

Theorem 8.13: Let ) be a bounded region to which the divergence theorem applies, and let u(x, )
solve

u — kVu=f(x, 1) xin, t>0
u(x, 0) = uyx) x in 0

Then, for any fundamental solution ¢ of the (homogeneous) diffusion equation,
wto 0= [ | #0566 dQdr+ [ $x 180 u® 40
070 o

+Kj ¢§3—u—>d5dr (8.21)

If the integrands in (8.21 ) decay rapidly enough at infinity, Theorem 8.13 is valid for unbounded regions.
Assume now that the problem

u,— kVu=f(x,t) xinQ, >0
u(x, 0) = uy(x) x in 0

du
aut+B—=g(x1t) xon S, >0
on
has a unique solution for any continuous f, u,, and g. The Green’s function, G(x, ¢; &, 7), for this

problem is a fundamental solution of the diffusion equation which satisfies

oG
aG+B-—=0 xonS, t>0
on

For ¢ = G, Theorem 8.13 yields u(x, ¢) as the sum of integrals of known functions (cf. Theorem 8.2
and Laplace’s equation). Methods for constructing the Green’s function include images, eigen-
function expansions, and integral transforms. -

8.5 WAVE EQUATION

The singularity solution for the wave equation in n space-dimensions, u, — a*Vu =0, is

1
H(rt(t—T)—lx—El)g (n=1)

£ =4 H — )~ |x— = 8.22
k(x, 1; & 7) (a(t—7)~Ix g')zwa\/[a(:—f)]z—u—g;z (n=2) (8.22)

8(a(t— )~ [x— &) —

d7ra |x — E| (n=3)
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As with the diffusion equation, the singularity solution is a point-source solution in that k satisfies
k,— a*Vk = 8(x—§)8(t— 1)
In the variables x, ¢, the function k represents the causal Green’s function for the wave equation; in

g, 7, it is the free-space Green's function. Figure 8-1 suggests the difference in interpretation, for
n=1.

I T
(%0
1
&
k=0 i k=0 k=0 k=0
¢ 7
X £
(a) Causal Green's function (b) Free-space Green's function
Fig. 8-1

In contrast to the diffusion equation, however, the singularity solution for the wave equation
depends essentially on the dimension n. For n = 3, the delta function in (8.22) implies that, at time ¢,
the disturbance due to a local impulse at § = (¢, », {) at time T <t is concentrated on the surface of a
sphere of radius a(r— ) with center at (& m, ¢). However, for n =2, because of the Heaviside
function, the analogous disturbance is distributed over the interior of a circle of radius a(¢t— 1)
centered on the source. Both disturbances are traveling radially with speed a; but, while in three
dimensions there is a sharp wave front that leaves no wake, in two dimensions a wake exists that
decays like 1/a(t— 7) after the wave front passes. The foregoing observations form the basis of
Huygens® principle.

Fundamental solutions of the wave equation and Green’s functions for initial-boundary value
problems are obtained from the singularity solution as in the parabolic case, Section 8.4. In
particular, consider the problem

u,— a*Vu=f(x,t) xin{), >0 (8.23)
u(x, 0)= uy(x), wu(x,0)=u/(x) x in ) (8.24)
ou
au+Ba—=g(x,t) xonS, t>0 (8.25)
n

Theorem 8.14: 1f a (causal) Green’s function, G(x, 1; §, 1), for (8.23)-(8.25) exists, it is determined
as the solution of either of the following problems:

(i) G,—a*V’G=8(x-§8(t—-7) x,Ein
G=0 t<T
oG
aG+B—=0 xon S
on
(i) G,-a’V’G=0 x,EinQ, 1>71

imG=0, imG =8(x—-£) x,&inQ

=7+ =1+

oG
aG+pB—=0 xon S
on
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Theorem 8.15: With G as in Theorem 8.14, the solution of (8.23)-(8.25) is, for a # 0,

8.1

we, )= | | Ot BEDIE D 40+ | (G615 0)1® G,lx, 56 0 (®)] 40
Q

j [ ﬂ(g]a_(" 6, € 1)g(§, 7)d.Sdr

where the normal derivative involves the £-gradient. If a =0, the last term is
replaced by

+¢12j0 f @G(x 6 E )8, 7) dS dr

and, for the pure initial-value problem (8.23)—(8.24), the last term is dropped.

Solved Problems

Let Q) be an open region and let T denote the set of all infinitely differentiable (C*) functions
on () having the property that each 6 in T is identically zero outside some closed bounded
subset of Q. T is called the set of test functions on  (cf. Problem 5.15). A sequence {6,} of test
functions is said to converge to zero in T if all the 6, are zero outside some common bounded set
and if {6,} and all its derived sequences converge uniformly to zero as n - «. Any rule 4 which
assigns to each test function 6 a real number, (d, 8), which satisfies the linearity condition (note
that T is a vector space over the reals)

(d, a6, + B6,)= a{d, 6,)+ B(d, 6,) (a, BinR; 6,6,inT) (1)

and the continuity condition

lim{(d, 6,)=0 whenever {6 } converges tozeroinT (2)

n—co

is called a distribution or generalized function. (a) If f(x) is a continuous function in £}, show
that the rule

(S, 0= | ()60 d 3)
[4]

defines a distribution. (b} If x; is any point in £}, show that the rule
(8, )= 6(x,) 4)

defines a distributjon.

(a) Since f is continuous and 8 is C* and vanishes outside a bounded subset of {}, the integral on the
right of (3) exists (i.e., is a real number). The linearity condition (1) follows immediately from the
linearity in @ of the integral (3). To establish the continuity condition (2), let {6,} converge to zero
in T. Since the 6, all vanish outside some common set, Q, in £} and {6,} converges uniformly to
zero on Q,

lim (f, 6,) = lim f0 d&!—hmJ- f6,dQ = J- (Jim 6,)fdQ =0

n—oo n—oo n—cw Q n—o

Thus, (3) defines a distribution. Because this distribution is determined exclusively by the
continuous function f, it too has been given the symbol f.
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(b) Since xp is in ) and 6 is a test function on (), the right side of (4) is well defined. The rule § assigns
to the linear combination of test functions «6; + 36, the number

af1(xo) + B62(xa) = a (8, 61)+ B (5, 02

so (4) satisfies (I). For any sequence {6,} which converges to zero in T, it is clear that
(6, 6,) = 6,(x0)—> 0 as n—> o, therefore, (2) is also satisfied.

The distribution or generalized function (4) is known as the Dirac delta distribution or, more
commonly, as the Dirac delta function. By a formal analogy with (3), it is common practice to write

(6,09 = | 80— x0)86) 2 = 0(x0) (5)
4]
even though there is no continuous function f(x) that can be identified with &(x — xo).
A linear combination of two distributions, d, and d», is defined by
{ad\+ Bd, 0) = a{d,, 0)+ B{d,, 6) (@, B in R)

Products and quotients of distributions are not well-defined in general. However, if x = (x, y) and
&€= (£ n), the two-dimensional 8-function 8(x — §) can be represented as a direct product of two
one-dimensional §-functions:

S(x—E)=8(x—&)8(y—m)

A distribution d is said to be zero on an open set ' in Q if (d, 8) =0 for every 6 in T which is
identically zero outside €'. In this sense, §(x — xo) is zero on any region that does not contain xo.

Establish Theorem 8.2 for R~

Let £ = (£, n) be any point in the two-dimensional region ) and let r = [x — £| be the distance from §
to any other point x = (x, y) in . Let s be a circle of radius € centered at §, and let Q) be the portion of
Q) exterior to s. From Green’s second identity, (1.8),

fn,(uw¢—¢V2u)dQ’=L(u%—¢-§—:> dS+J;<u%~¢g%> ds (1)

In both boundary integrals of (1) the contour is described so that €)' is kept to the left (see Fig. 8-2).

Fig. 8-2

Since ¢ is a fundamental solution with singularity at &, which is not in (',
Vip=0=Vu—f in Y 2)

On s the outward normal derivative of ¢ relative to V' is
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83

¢ 9
on or

1 on

ree 2me O .=

wherefore (consult Fig. 8-2; ds > 0)

[l o fa= [ Gremuy vy eao

S (1 L PR

Now, the first term on the right in (3) is just the mean value of —u over s; so, it approaches —u(£) as
€ — 0. As for the second term, since

1
rme=—log e+ b,
¢lr-e=—log |
it vanishes as € log ¢, as € » 0. Consequently, if we let € >0 in (1), we obtain
f df d) = f u—— P )ds— u(€)
which rearranges to (8.4).

An alternate (but purely formal) derivation of (8.4) can be given using the Dirac delta function. The
fundamental solution ¢ satisfies

V2 =8(x—£) inQ )
Substitute (4) into Green’s identity
o ou
Vi — V2 =f 9 5
fn(u ¢ — dVu)dQ) s(u o ¢3n>d5

and use the sifting property of the §-function, (5) of Problem 8.1, to obtain (84).

Assume that a Green’s function, G(x; &), exists for the mixed boundary value problem

Vu=fx) inQ (1)
ou
autB—=0 onS 2)
on

with a # 0. Formally show that (a) G(x; &) as a function of x satisfies

V:G=8(x—§) inQ 3)
oG

aG+B—=0 onS 4)
on

(b) G(x; &) is symmetric, G(x; &)= G(;x); (¢) the solution to (1) subject to the non-
homogeneous boundary condition

ou
au+ B —=g(x) on S (5)
on
is given by
uw= [ GD® a0+ [ oe® T e ds
Q

a(§)
where d/on=n"- Vg.
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If G(x; &) is the Green’s function for (1)—(2), then by definition

) = jﬂ G(x; B)f(E) 40

From fx)=Viu= j V2G(x; £)f(E) diQ
0
it follows that V2G(x; £) has the sifting property of the Dirac delta function, and so (3) holds. From

du aG
0=au+B———-j [GG+BE}f(§)deQ (xon S)
Q

an

and the arbitrariness of f, (4) follows.

In Green’s second identity,

a9 g
(uVo - 0V2u)dQ= j (u &°_ v—u> as
0 s on on
adding and subtracting
B du dv
a n dn
on the nght gives
1 du\ dv dv\ du
j@V%—vW@dQ [@u+3ﬂ)—_<w+B—J—JdS (6)
s on/ an on’/ on
If u and v both satisfy (2), by (6),
juv%dn=fUVMdQ 7)
0 0

Now, if x; and x, are distinct points in Q, u = G(x; x;) and v = G(x; x,) both satisfy (2), by part (a);
furthermore, V?u and V’v both have the sifting property. Thus, (7) gives:

j G(x, x)8(x— x2) dQ) = j G(x; x2)8(x — x,) d(}

or G(xz; x1) = G(x1; X2).
In (6) let v = G(x; £) and let u be the solution of (1) and (5). Then, since v obeys (3)-(4), (¢) yields

«@= [ Gwpmant | o woas (®)

Interchanging the roles of x and § in (8) and using G(x; §) = G(&; x) leads to the desired formula.

84 If Q is the rectangle 0 < x <q,0<y <b, find the Green's function for the boundary value
problem,

Viu=f inQ (1)
u=g onS (2)
The required Green’s function is symmetric, G(x, y; & n) = G(£ 7; x, ¥), and is defined by
Gu+ Gy =8(x—£)8(y—1n) (x,y)in{d &)
Gx,y;6£m)=0  (x,y)on$S )
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Method 1 (Eigenfunction Expansion)
The eigenfunctions for the Laplacian V? on Q) subject to zero Dirichlet boundary conditions are the
nonzero solutions of

Vu=Au inQ u=0 onS$ (%)

Using separation of variables to solve (5) gives the eigenvalues, A,.., and corresponding normalized
eigenfunctions, u,,, as

mm\?  snm\? 2 max | nmwy
Amn = — [(—) + (—) ] Upp = sin sin —
V ab a b

The expansion
Gt y;&m)= 2 Cunl& 1) tma(x, )
m, n=1

satisfies the boundary condition (4). Since Vi, = Amalhn, it will satisfy (3) if

> Conl& M) Apnthn(x, y) = 8(x — £)8(y — 1) (6)

m,on=1

To find the C,, multiply (6) by ux(x, y) and integrate over (), using the orthonormality of the
eigenfunctions (the weight function is unity) and the shifting property of the delta function:

> Conhmn f

b (%, )i, 3) ity = | 305 €3( = m) o (5, ) dx by

m, n=1 )
Cpq/\pq = Upg (§, 77) (7)
Therefore,
O Umn(X, V) Umalé, 1)
Glxy; &n)= 2,
m,on=1 Amn
. ommax  nwy | mwé  nam

. Sin sin sin ——sin ——

-4 a b a

=— 8
ab m,%l ma\?  /nm\? (&)
(Z) (%)
a b
in agreement with Theorem 8.6, wherein r counts pairs (m, n).

Method 2 (Partial Eigenfunction Expansion)

In this method, G is expressed as an eigenfunction expansion in only one of the variables, say y. Let
m. and v, (y) be the eigenvalues and the normalized eigenfunctions of the eigenvalue problem for the
y-part of the Laplacian, subject to zero Dirichlet boundary conditions; i.e., v”" = w,v, v(0) = 0= v(b). We

have
(mr)2 ) \/5 . nmy
n=—— W (¥)= {f—sin——
o b YITNG T T

An expansion for G of the form

Glx, y; & m)= 2 An(x, & 7)oa(y) 9)

satisfies the boundary conditions on the horizontal boundaries, y = 0 and y = b. Substitution in (3) gives

2 (An+ Ao (y) = 8(x — £)8(y — ) (10)

n=1

where ' denotes differentiation on x. Multiply (10) by v« (y), integrate both sides from y =0 to y = b, and
use orthonormality to obtain
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Kt A = v(n)8(x ~ £)

To ensure that G=0 on x=0 and x = a, A, must vanish on x =0 and x = a. This means that the
function

Ak (X, g) 7’)
gx; HH=————
vk (1)
must be the Green’s function for the ordinary two-point boundary value problem
u'+ pu=f 0<x<a
u@)= u(a)=0
Now, from the theory of ordinary differential equations, we have

Theorem 8.16: Suppose that when f=0, u =0 is the only solution to the two-point boundary value
problem
a(u"(x)+ b(x)uw'(x)+ c(u(x)=fx) x1<x<xz
au(x)+ Biu'(x)=0
aau(x2) + Bou'(x2) = 0

in which a(x) # 0. Then the Green's function for the problem is given by

u(x)us(€) M<x<¢
a(&)w(¢)

glx; &)= ) i0a(x) e
ae)W(#) :

where, for i =1, 2, u; satisfies
aui+ buit+ cu=0 n<x<x;
aiu () + Biux)=0
and where W(£) = u,(£) us(£) — uz(£) ui(£€) is the Wronskian of u; and «; evaluated at £
By Theorem 8.16, with u, = sinh (k7x/b) and u, = sinh (km(x — a)/b),

r

k(¢ — a)

o kmx
sinh ——sinh
b b

1 0<x<
km  kma o (m) x<¢
TSth
Ax(x, & m) =19 11
«(x &) o kmé . kw(x—a) (1)
sinh — sinh ———=

b b

<x <
km  kma o (n) f<x<a
—sin
L b b

Although the series (9), with coefficients (11), is more complicated in appearance than (&), it is the more
rapidly convergent, because

[Ak(x, & n)l = O(e™*mx=¢v)

as k —» o,

8.5 Use the method of images to find the Green’s function for
Viu=f inQ
u=g on S

if Qis (a) {~eo<x <o, y>0}, (b) {0<x <o, y=>0}, (¢) {—o<x <o, 0 <y < b}.
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When applying the method of images to Laplace’s equation in R? it is often helpful to interpret the
free-space Green’s function, o(x, y; & n), as the steady xy-temperature distribution due to a unit line
sink at (¢, n). (“Sink,” not “source,” because of Fourier’s law and Theorem 8.1(iii).)

(@) In—o<x <o, y>0,if o(x, y; & n) represents a sink at (£, n), n >0, then a symmetrically placed
source at (£, —n), ~o(x, y; £ —n), will ensure a zero temperature on y = 0. Because A(x, y; & n)=
—o(x, y; & —n) i1s harmonic in y >0, we have from Theorem 8.3:

(x— &Y+ (y—n¥F
(x~ &P+ (y+n¥

(b) Placing sinks, +o, and sources, —o, as indicated in Fig. 8-3(a) shows the Green's function for the
first quadrant to be

1
Gy, &Emy=ox y; Em)—o(x,y; £, -n)= Elog

G, y;&Em=oxy;6n)—olx,y;—&mtolyy,—&—n)—olx y; € —n)
~ L og [<x— -+ +(y+ n)z]
4 (x+ &P+ (-0 (x-&P+(y+n)

(=&m (& n)

[ = O =P

(=& -m) (&-m)

(a)

(b)
Fig. 8-3

(¢) In this case, an infinite series of sources and sinks is required to make G =0 on both y =0 and
y = b. For 0 < n < b, Fig. 8-3(b) shows that sinks must be placed at n, n £2b, n £4b, . .. and sources
at —m, —n *2b,—m = 4b,. ... Thus,

G(xy; &m= 2 [o(x, y: §2kb+n)= o(x, y; & 2kb—n)]
k=—co
8.6 Find the steady xy-temperature distribution in the half-plane y >0 due to a line source of

strength 2 at (x, y) = (1, 3) and unit line sinks at (=5, 6) and (4, 7). The boundary, y = 0, is held
at temperature zero.
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The Green’s function, G(x, y; & n), which was constructed in Problem 8.5(a), gives the xy-
temperature distribution due to a unit sink at (£ n) and zero temperature on y = 0. Theretfore, the
solution to the present problem is

u(x, y)=-2G(x,y,1,3)+ G(x,y;-5,6)+ G(x,y;4,7)

Use the method of images to find the Green’s function for the n-dimensional Dirichlet
problem (n = 2)
Viu = f(x) |x| <R
u=gx) [x[=R

Let x and & be two points inside the hypersphere of radius R; their inverse points (Problem 3.29),
outside the hypersphere, are

R? R?
X'=—x E=—&§
Ix|* [45

Let us find the relation between the distances r =[x — §| and r’' =|x'— £/|.

= (- ) (K= )= (¢ X)F (EE) -2 -E)
R"+ R* ) R* x-£)
=—4—-2—(x-
Ix* & Ix” g

- R k- 2m 0] =
T E DT 2Dl =
’ R2
or r = r
x| ]

From this it follows that if £ (and with it, £') is held fixed while x (and with it, x) is allowed to approach
the boundary point s,

(1)

independent of the location of s on the hypersphere.
Now, by Theorems 8.1(i) and 8.3, the desired Green'’s function must be of the form

Gx; €)= a(n) + h(x; §)

where o is the free-space Green’s function, and 4 is harmonic inside the hypersphere and just canceis o
on the boundary. On account of (1), we see that both conditions for h are satisfied by the function

)

(If f(x) is harmonic, so is f(cx), for any constant ¢. It can now be recognized that the geometrical
property of the sphere expressed in (1) is crucial to the method of images.)

For the linear differential operator
Llul=u,+u, +2u —u+u in Q

find (a) the adjoint operator; (b) the adjoint boundary conditions corresponding to

i u=0 (i1) u+%=0

on

on S.
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8.9

(a) From (8.8), L*[v] = vsx + vyy — 20« + v, + v, and M, and M, in Lagrange’s identity, (8.9), are
M = vu, — uv + 2uv M = vu, — uv, — uv

Consequently,

u v
J (Myny+ Mny) dS=J [v——u—+(2n1— nz)uv] das (1)
s s on on

(6) () To make the integral (1) vanish for all u such that B{u]=u =0 on S, we must require that
B*lv]=v=0 onS.
(ii) For any u satisfying Blu] = u+(du/én) =0 on §, the integrand in (1) equals

u [(2)11— ny— 1)v—Z—Z] = u B*[v]

which defines the adjoint boundary condition, B*[v]=0 on S.

If () is the rectangle 0 <x <a, 0 <y <{b, find the Green’s function for the boundary value
problem

Uy T u, +2u, = flx,y) in ) (1)
u=g(xy) onS (2)
(Compare Problem 8.4.)

The Green’s function, G = G(x, y; £ ), is defined by

Gu+ G,y +2G, = 8(x— £)6(y — 1) in Q 3)
G=0 onS 4)
An eigenfunction expansion is most simply obtained if the left side of (3) is put in self-adjoint
form. From Problem 2.14 we see that the change of dependent variable H = ¢*G eliminates the

first-order x-derivative, giving
LIH|=H,+H,,—H=¢e8(x-§)8(~—m) in O (5
H=0 onS (6)
We now proceed to look for an expansion of H in terms of the eigenfunctions of problem (5)—(6); that

is, we set

H= Y CuWon (7)
mn=1

where L[Wmn] = AnaWm. in £ and w,,=0 on S Using separation of variables, we find for the
eigenvalues and normaiized eigenfunctions

ma\?  /nar\? 2 . max | nmy
A = —1 — (_> - (—> Wpp = ——— Sin sin
a b \V ab a b

Substituting (7) into (5) gives

> CordmaWonn = €°8(x — £)8(y — 1) (8)

mn=1

If (8) is multiplied by w,, and integrated over (2, then the orthonormality of the eigenfunctions implies
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L i R
Cpghpg = — e* sin ——sin

V ab a b

Therefore,

mmx nmy mmé nmm

4 . sin sin ——sin sin
a a
G(xy, &m)=——e"™ 5 5
RN e
a b
(a) Show that the Neumann problem
V’u=f inQ (1)
u
—=g on S 2)
on

does not have a Green’s function. () Define a modified Green’s function that will give the
solution of (1)~(2) up to an additive constant.

(a) Recall (Example 3.8) that a necessary condition for the existence of a solution of (1)-(2) is
J’ fdQ=J’ gds 3)
n S

Assume that (3) holds, so that (I )-(2) has a solution which is unique up to an additive constant. By
analogy with the case of a Dirichlet boundary condition, the Green’s function for (I1)-(2) must

satisfy
VPG =8(x—§) in Q 4)
oG
—=0 onS %)
on

But (4)—(5) has no solution, since (3) does not hold for it.

(b) Let a modified Green’s function, or Neumann function, N(x; §), for (1)-(2) be defined, up to an
additive constant, by

V2N=6(x—§)—ﬁ inQ 6)
ﬂ=0 on S (7)
on

where V() is the volume of . Now condition (3) is met. Apply Green’s second identity to
solutions of (1)—(2) and (6)—(7):

du

) ds
on

J’n (uV*N - NV*u) dQ = J’s (u%—N

J’n{u [5(x—§)_ﬁ]—Nf} dQ:J’S(O_Ng)dS

w®- - [ NcOwda -~ | NxEg00ds
[ s
or, interchanging x and §,

we)= [ NG90 de - | No£)s®) des+a ®)
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In view of (3), the right side of (8) has the same value for all solutions N of (6)-(7). Hence, (8)
determines u(x) up to the additive constant &, the mean value of u over .

8.11 Show that the singularity solution for u, — xu, =0,

Kix—§&t—7)= (¢>T1)

1 o [—(x—f)z}
Vamk(t— 1) 4k (t— 1)

satisfies = K(x — & t—1)dx =1 for all t> 1.

Let us exploit the fact that if f(x) and F(e«) are Fourier transform pairs (Section 6.4),
J f(x)dx =27 F(0)

Now, from Table 6-2, line 1, and Table 6-1, lines 7 and 3,

1 1 ,
f(x) - e—(x—6)2/4:<(1—1) and F(a) - e—x(l—‘r)uz e ik
Vamk(t—7) 2m

are Fourier transform pairs, and we see that 27 F(0) = 1.

8.12 If f is a bounded continuous function, show that
lim | K(x— ¢ t-0)f(£) dé = f(x) (1)
=0+ 7 o

Since K is symmetric in x and £ Problem 8.11 implies
| k-gnat=-1 >0
From

| Ka-eof@de= | Ka-gofraer | K- g0l - fo] de

= e+ [ KGe= & 006 - () de

we see the last integral must be shown to approach zero as t—»0+. Let s = (x — £)/V 4¢; then, using the
explicit expression for K,

o

lim j K(x - & 0[f(£) - f(x)] d¢ = lim % [ e[ fx + VA - f(x)] ds

10+ 7 —x0 =0+ 77w

o

= = e llx:i [f(x+ sV4)— f(x)] ds =0

The boundedness of f ensures that the improper integral in s is uniformly convergent, which allows the
limit to be taken under the integral. Then the continuity of f implies that

[f(x+ sV4r) - f(x)] >0

as t—0+.
A similar, but more complicated argument establishes (1) if f is continuous and

[f)l < Ae™

for constants A and B. Equation (1) shows that as ¢ approaches t from above, the singularity solution
K(x — ¢ t— 1) approaches the delta function §(x — £).



118

8.13

8.14

GREEN’S FUNCTIONS [CHAP. 8

If Q is the first quadrant (x >0, y > 0), (a) find the Green’s function for

u— kug, +u,)=flxy 1) inQ, >0 (1)
u(x, y,0)= uyx, y) in Q2 2)
u(x0,1)=u/(x, 1) x>0, t>0 3)
w0, 9, )= u(y, 1) y>0,1>0 4)

and (b) use (8.21) to express the solution of (1)—(4) in terms of G and the data f, u,, u,, u,.

(a) The Green'’s function is a fundamental solution, G = K + J, with J chosen to make G=0o0n y =0
and G, =0 on x = 0. The singular part, K(x, y, t; £ n, 7), of G represents a point source (e.g., a
burst of heat) at (£ n) in Q at time 7. To make G zero on y =0 a sink, —K(x, y, t; £ —n, 7), at the
image point (£ —7) is required. In an attempt to zero G, on x =0, place a source at (—=¢, 7).
Finally, balance these two images with a sink, —K(x, y, t; =& —n, 7):

G,y En T =Ky Lgn ) - Ky, 607+ Kxy, ;-0 1)— K, y, 1, £ -1, 7)

(®) woy 0= [ | Gloy 1 &m0 7 dedn dr
0o -0 Q
+J J G(x, y, t; & 1, 0)uo(&, ) dé dn
4] Q
+KJJ uxn, 7)G(x, v, £;0, 1, 7) dn dr
o o

+Kjf (& 7)Gy(x, y, 13 £,0, 7) df dr
Qo ~“0

where the boundary integration is in the positive sense; i.e., first in the direction of decreasing 7, then in
the direction of increasing £.

Find the Green’s function for the initial-boundary value problem

u,— ku, = f(x, 1) 0<x<¥¢ t>0
ux,0)=g(x) 0<x<¢
w©, )= h(t), ul, )= hyt) 1>0

Method 1 (Reflection)
Proceeding as in Problem 8.5(c), place sources +K along the x-axis at £+ 2né, and sinks —K at
—¢+2né, where n =0, =1, =2, .. .. This yields

£

G, £1)= 2, [K(x—£-2nét—7)— K(x+&-2né,t - 7)]

ne—oo
for t > 7, for t <7, G=0.

Method 2 (Partial Eigenfunction Expansion)
The Green’s function may also be characterized as the solution of

G~ kG =8(x— )81 —1) (1)

G=0 x=0and x=¢ (2)

G=0 <7 (3)

The space part, %/dx?, of the linear differential operator has eigenvalues A, = —(n7/ €)* and corresponding

normalized eigenfunctions
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8.15

8.16

2 nmx
v (x) = ?sm—f— n=1,23,..)

(cf. Problem 8.4). Thus, the expansion
G= i cn(t, & T) Ua(x)
nel

satisfies (2). Putting (4) into (1) gives, with a prime ' denoting time differentiation,

S (= kAncn)un(x) = 8(x — £)8(t— 7)

A=l
which, multiplied by v,.(x) and integrated from x = 0 to x = ¢, becomes

Com™ KAmCm = Um (£)8(t — 7)

On account of (3), ¢, =0 for t < 7. For ;> 7 >0, integrate (5) from ¢t =0 to ¢ = t,, obtaining

f

Cm(t) — KA () dt = v, (£)

The solution of (6) is (verify by substitution):

Cn(t) = V() e 177

Hence,

0 t<r

Gx, t;6,7)=4 2 i [ (rnr)2 i )] _ nmx  amé -

- exp|—|— - n—-—sin t

f":l o] 7 K T) 1S 7 St 7 T
Solve the initial value problem

u,—a’u, = f(x, t) —o00 < x <<oo, t>(
u(x, 0) = uy(x) —00 < x <00
(x5 0)= u(x) —w<x<w

using a Green’s function.

By (8.22) with n = 1, the free-space Green'’s function is

1
Gix, t;§7)=H(a(t—7)~|x~ §|)§;

119

(4)

To use Theorem 8.15 to write the solufion, u(x, t), we need G.(x, ;£ 0). Now, the derivative of the

Heaviside function is the &-function (see Problem 8.19(b)), so that

1
G:lx, 1;£,0) = — 5 8lat = |x — &)

and

x+ait 1

wi(§) de¢+ 3 [10(x — at) + up(x + at)]

w(x, 1) = 51; L‘ J() (& r) de dr + i J

—a(i—7) x

which is the D’Alembert solution.

Solve by a Green’s function:

u,-Vu=f(x,t) xinR, >0
ux,0)=0, u(x,00=1 xinR’
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The Green’s function is the free-space Green’s function for the three-dimensional wave equation
(with a = 1),

1
G(X,I:E,T)=m5(’—7—lx—§l)

and Theorem 8.15 gives the solution as

¢ 1 1
u(x, I):J’0 julm5(1~7—|x—§1)f(g, ’T)dEQdT‘F J’nlms(l—l)K"ngEQ

When the order of integration is reversed, the double integral is seen to have the value

1
f' e I T (1)

When the origin of ¢-space is shifted to the point x and the polar coordinate r = | — x| is introduced, the
other integral is seen to have the value

<1
j —S(- AP dr=1 )
0 47y

(as would have been found immediately if the original problem had been split into two subproblems).
The expression (1), the part of u that is independent of the initial conditions, may be interpreted as

the superposition of disturbances which arose at points § at times previous to ¢ and, traveling at speed 1,

are just reaching point x at time ¢ For this reason, the integrand in (1) is called the retarded potential.

Supplementary Problems

(a) If (1 is the set of real numbers and a > 0, show that

1 ) | |<
X a
a’

exp | —
0(x)= P (xz -
0 x|z a
is a test function on . () Show that
exp (;) X2+ yi< a?
0(x, y)= 2+ y*—a’
0 xX*+y*=a
is a test function on Q = {(x, y): x*+ y*<R* R>a>0}.
Let 8,(x) be the test function obtained by replacing x and a in the function of Problem 8.17(a) by x/n
and a/n, where n=1,2,3,.... Show that {8,(x)} converges to zero in T. (See Problem 8.1.)
If Q is the real line, define the distributional derivative, d’', of a generalized function d by
(@, 8)=—(d, 8"

for every test function 8 on Q. (a) If f is a continuously differentiable function, show that the ordinary
and distributional derivatives are equivalent in the sense that the distribution defined by the continuous
function f’ [via (3) of Problem 8.1] is the distributional derivative of the distribution defined by f.
(b) Show that the rule

(H, 8)= jm 6(x) dx
xg
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8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

where x i1s a fixed real number, defines a distribution corresponding to the (discontinuous) Heaviside
function H(x — xo); show further that H'= §, the distribution defined by (4) of Problem 8.1. (We usually
express this result by saying that the derivative of the Heaviside function is the delta function.)

With 2 the x-axis, iet d be a generalized function, 6(x) a test function on {2, and g(x) a C* function.
Define
(8(x)d, 6(x)) = (d, g(x) 6(x))

Prove: (a) g(x)8(x—y)=g(y)d(x —y) and (b) x8(x)=0.
Find the generalized derivatives of (a) [x|, (b) ¢*8(x), (¢) x8(x).

Derive the formal sine and cosine series for the delta function, §(x — &), on the interval (0, £), with
0<ux, &<€

Given a bounded region (2, let a Green’s function be defined by

VG- c*G=6(x-§) in

G=0 onS
Expand this Green's function in terms of the eigenfunctions u,, where V?u, = —AZu, in Q, u,=0on S,
u, #0.
Represent the Green’s function for
Viu-ctu=f(x,y) —o<x<®o 0<y<a
u(x,0)=u(x,a)=0 —oo< x <00

by an eigenvalue expansion.

Verify that the Green's function for the problem

Viu=f(x,y,2) z>0
u,~cu=0 z=0
where ¢ =0, is
G ' )= - 1 B 1
R 6 M e+ =P+ e = (P dml(x— £7 + (v nF + (2 + LP]"
¢ ~{ eC(s+()

+— ds
27w [(x = £+ (y = n)* + (2 — )]

Use the method of images to find G(x, y; & n) for

Viu=f 0<x <o, 0<y<b
if (@) u=0for x=0, for y=0, and for y=b; (b) u=0 for y=0 and for y =5, and u, =0 for x = 0.
[Hint: Make use of the Green’s function, Go(x, y; & 1), of Problem 8.5(¢).]

Use a Green’s function to solve Problem 7.14.

Use Theorem 8.8(ii) and the mapping
R —
w= Ezii) (R >0)
z{— R

which carries |z] < R onto |w| < 1, to derive the Green’s function for the problem

Upe + Uy = f X2+ y?< R?
u=g x*+ y*= R?

Check your answer against Problem 8.7 (n = 2), identifying x and § with the complex vectors z and {.
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8.30

8.31

8.32

8.33

8.34

8.35

8.36

8.37

8.38

GREEN'S FUNCTIONS [CHAP. 8

—imz/b

Show that w = —e (6> 0) maps the infinite strip 0 <x < b, —0 <y <o of the z-plane onto the
upper half of the w-plane. Then use Theorem 8.8(i) to show that the Green’s function for Laplace’s
equation which vanishes on x =0 and x = b is given by

| . m(z- §)~
sSiIn———
2b

1
Glx,y; & n1)=—log | —————
(5, y;:&m) 2 | T 1 D
sin ———
% |
where z = x + 1y, { = £ + in. Finally, use the infinite product representation
b 2?2
sinz=z 1- —)
nlL[] ( "12’/'7:Z

to compare this result with the one obtained by the method of images (interchange x and y in Problem
8.5(¢)).

Show that in two dimensions the biharmonic equation, V*u =0, has the singularity solution
r*(1— log r)/8.

Find the adjoint of each of the following differential operators:

(@) Llu]l= vt + Uy, + uy — u, + 3u (d) Lu}= ue + uyy + xu, + yu,
(b) Liul= te— (&) L[u]= te+ uy, + yus + xu,
(€) Llu]= the = ua () Llu] = X uu + y?u,,

If L{u]= auc + 2bu,, + cu,, + du, + eu, + fu has constant coefficients, show that L is self-adjoint if and
onlyifd=e=0.

Show that the linear PDE au,, + 2bu,, + cu,, + du, + eu, + fu = g is self-adjoint if and only if it can be
written in the form
(au, + bu,), + (bu, + cu,), + fu=g

Let L[ ] be the differential operator of Problem 8.33 and assume that the coefficient functions are in C?,
Show that L is self-adjoint if and only if ax+ b, =d and b, + ¢, = e.

If the PDE of Problem 8.33 is not self-adjoint, under what conditions will a reducing factor, R(x, y), exist
such that after multiplication of the equation by R a self-adjoint equation results?

Find a reducing factor for u. + 2u,, + 2u,, + u, + u, + 3u = 0.

Given the boundary value problem
Llul=we+ u,, +2u. +3u,=f 0<x<a O0<y<b
u=0 onx=0andx=a
u, =0 ony=0andy=5b
(a) write the adjoint operator and the adjoint boundary conditions; (b) write a boundary value problem
in x and y for the Green's function.
Solve

uxx+uyy+6uy:6(x-%)6(y) 0<x<1, —c<y<oo
u@, y)=u(l,y)=0 —o<y<o

[Hint: Let u = e *v, make a partial eigenfunction expansion of v, and use the Fourier transform to find
the coefficient functions.]
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8.39

8.40

8.41

8.42

8.43

8.44

8.45

Refer to Problem 8.7. Show that in £-space, the normal derivative of the Green’s function on |£| = R is
given by

oG R*—|xf o'(r)
on R r

From this, infer Poisson’s integral formula, (3.5).

Using the free-space Green’s function and the definition
2 g
erfza—_f e ds=1~erfcz
Vi,

(cf. Problem 2.17 and Table 6-4, line 9), solve the initial value problem u, — ku,, =0 (—0<x <o, 1> 0),
u(x,0)= x/|x| (x#0).

Using superposition arguments (and nothing else), infer from the solution of Problem 8.40 the solutions
of the following problems:

(a) u,—«u. =0 x>0, t>0 (d) w-—ky=0 —0o<x<owo, t>0
u(x,0)=U x>0 u(x,0)=U x| < €
u(0,n=0 >0 u(x,0)=0 |x|> ¢

() u - kuu=0 x>0, t>0 () w—Ku,=0 -—-o<x<o t>0
u(x,0)=0 x>0 u(x,0)=0 Ix|< ¢
u0,n=U t>0 u(x,0)=U |x|> ¢

(€) u—ktyy =0 —0<x<o (>0 (f) u—Kkun=0 0<x <o, t>0

u(x,0)= UH(x) x#0 u(x,0)=U b<x<c¢

u(x,0)=0 O<x<borx>c
u(0,1)=0 t>0
Prove the product law: If v(x, 1) satisfies v, — k.. =0 and w(y, ¢) satisfies w, — kw,, =0, then u = vw
satisfies u; — «(Uex + U,,) = 0.

Find the Green’s function and the solution for the following problems:

(@) w— Kk =f(x,1) —w<x<oo, >0 (d) w—Kkue=f(x, 1) 0<x<é€1t>0

u(x, 0)= h(x) u(x,0)= h(x), u©,1)=p(), u(€1=q(1)
(b) u— kuy = f(x, 1) 0<x<,t>0 (€) U — k= f(x, 1) 0<x<1t>0

u(x) 0) = h(x)) u(O, l) = p(,) u(x) 0) = h(x)! ux(O’ l) = P(’): u—\’(& l) = q([)

(€) =Ky = f(x, 1) 0<x<o,t>0
u(x,0)= h(x), u0,0=p)

Given £> 0, find the Green’s function satisfying
Gr— a*Gu=8(x— &)6(t—~7) x>0, x# £
G=0 x=0
G=0 O0<ti<r

Given —~¢/2 < ¢ < ¢/2, construct the Green’s function obeying
Gu—a’Gu=8(x—8)6(t—17) —€R2<x<{2, x#¢
G=0 for x = £€/2
G=0 O<t<rT
(a) by a partial eigenfunction expansion, (b) by the method of images.



Chapter 9

Difference Methods
for Parabolic Equations

9.1 DIFFERENCE EQUATIONS

The various partial derivatives of a function u(x, t) can be expressed as a difference quotient plus
a truncation error (T.E.).
Forward Difference for u,

ﬁ(_x, t+k)— u(x, t)+T

L) = E.
(5, 1) .
f . B 9.1)
T.E.:—Euu(x, t) (t<t<t+k)
Centered Difference for u,
+h t)— ~h,t
B el ) S
2h
2 (9.2)
T.E.=—Zum(i,t) (x—h<xi<x+h)
Centered Difference for u,,
(x+h,1)—2 H+ —ht
) RO D e k)
2 (9.3)
T.E.=—1—2umx(i,t) (x—h<i<x+h)
Centered Difference for u,,
(1) = u(x+h t+k)y—u(x+h t- kl;ku(x —ht+k)+u(x—h,t— k)+T.]"L.
2 2 9.4)
T.E.= _zu“’“(i’ l_)——6—uxm(x', 1 (x—h<Ex'<x+ht—k<tt<t+k)

Usually it is only the order of magnitude of the truncation error which is of interest. A function
f(h) is said to be of the order of magnitude g(h) as h — 0, where g is a nonnegative function, if

[im ftk)
w0 8(R)

In the O-notation we write f(h)= O(g(h)) (h—0). It is easy to see that if, as h, h,— 0, f,= O(g)
and f, = O(g,), then f + f,= O(g, + g,).

= constant

EXAMPLE 9.1 For (9.1), T.E.= O(k) (k—0), provided u. is bounded. For (9.2), T.E.= OQ(h®) (h—0),
provided uy. is bounded. In (9.4), T.E. = O(h” + k), provided txen and u, are bounded; we omit as understood
the (h, k= 0).

A grid or mesh in the xt-plane is a set of points (x,, #;) = (x,+ nh, f,+ jk),where n and j are integers
and (x,, ) is a reference point. The (x,, ¢;) are called grid points, mesh points, or nodes. The positive

124



CHAP. 9] DIFFERENCE METHODS FOR PARABOLIC EQUATIONS 125

numbers A and k are respectively the x and  grid spacings or grid sizes. If h and k are constants, the grid
is called wniform; if h = k = constant, the grid is said to be square. The compact subscript notation

u, = u(x,, t)

is convenient and widely used.

EXAMPLE 9.2 The difference formulas (9.1) and (9.3) may be written

Un jrl — Ty

+ O(k)

ur(xm [I') =

u,,_,.,-—Zu.,,--f- Un -1, 5fu

Uex (Xn, [} = — —— i T(.)(h2)57"’+ Oh?)

where the difference operator 32 is the analog of the differential operator §/8x> We say that (9.1) is two-level (in 1)
because it involves only two j-values, these being consecutive.

Let a region {1 in the xt-plane be covered by a grid, (x,, ). If all the derivatives in the PDE
Llul=f (x, ) in Q (9.5)
are replaced by difference quotients, the result is the finite-difference equation
DU, I=f;  (x,4)in 0 (9.6)

The continuous problem (9.5) was differenced or discretized to produce the discrete problem (9.6),
whose solution, U,, approximates u(x, t) at the grid points.

9.2 CONSISTENCY AND CONVERGENCE

If discretization is to provide a useful approximation, the solution to (9.5) should very nearly
satisfy (9.6), when h and k are taken sufficiently small. The amount by which the solution to L{u| = f
fails to satisfy the diffcrence equation is called the local truncation error; it may be expressed as

T, = D| u,,/] =1
The difference equation (9.6) is said to be consistent with the PDE (9.5) if
hm 7T,=0 (9.7)
h, k=0

With the exception of the DuFort-Frankel method (Problem 9.10), all difference methods to be
treated are consistent with their corresponding PDEs.
In addition to consistency, we want the accuracy of the approximation to improve as h, k= 0. If
U,; is the exact solution to (9.6) and i, is the solution of (9.5) evaluated at (x,, ). the discretization
error is defined as U, — u,. The difference method (9.6) is said to be convergent if
lim jU, —u,|=0 (x,, ¢) in Q (9.8)

b, k=0

It is possible for a difference method to be consistent but not convergent.

9.3 STABILITY

Let U, satisfy (9.6), with initial values U,, and possibly boundary values prescribed. Let V,, be
the solution to a perturbed difference system which differs only in the initial values, and write
Vo= U,* E, Then, assuming exact arithmetic, the initial perturbation, or “error,” E , can be
shown to propagate, with increasing j, according to the homogeneous difference equation
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DIE,}=0

subject to homogeneous boundary conditions.

When applying (9.6) to approximate u(x, T) for fixed T = f;+ jk, it is clear that letting h, k—>0
entails letting j—. Also, on a fixed grid, if we apply (9.6) to approximate u(x,, £) at successively
larger 4, then again we have the case j—>o to consider. For a PDE with a bounded solution, the
difference method (9.6) is said to be stable if the E,; are uniformly bounded in n as j—; i.e., if for
some constant M and some positive integer J

E,l<M  (j>1J) (9.9)

If A and k must be functionally related for (9.9) to hold, the difference method is conditionally stable.
When the PDE has a solution that is unbounded in ¢, the stability condition (9.9) is relaxed to allow
errors 1o grow with the solution (see Problem 9.7).

One of the concerns in applying a difference method is whether or not rounding errors in the
calculation grow to such an extent that they dominate the numerical solution. When a stable method
is used, rounding errors do not generally cause any difficulties.

It is usually easier to check a difference method for consistency and stability than for con-
vergence. Fortunately, stability and convergence are equivalent for a large class of problems.

Theorem 9.1 (Lax Equivalence Theorem):. Given awell-posed initial-boundary value problem and a
finite-difference problem consistent with it, stability is both necessary and sufficient for
convergence.

In certain cases (e.g., Problem 9.11) the boundary conditions imposed on (9.5) make themselves
felt as modifications in the form of the operator D[ | of (9.6), as it applies at grid points adjacent to
the boundary. Let us agree to call U, an extended solution of (9.6) if it satisfies the equation for the

unmodified operator; an extended solution would be an actual solution in the event that (9.5) held
over the entire xf-plane.

von Neumann stability criterion. A difierence method for an initial-boundary value problem with a
bounded solution is von Neumann stable if every extended solution to D[U,;] = 0 of the form

U, = ¢e® (B real, § = £(B) complex)

has the property |£|=1. For a problem with an unbounded solution, the criterion becomes [¢] <
14+ O(k).

For a rationale of the von Neumann criterion, see Problem 9.5. Stability in the von Neumann
sense is a necessary condition for stability in the general sense of (¥.9); moreover,

Theorem 9.2: For two-level difference methods, von Neumann stability i1s both necessary and
sufficient for stabiiity.

Consider an initial-boundary value problem with N nodes in the x-direction and define a column
vector of errors at level j, E; = (E,;, E;, Ey, . . ., E,;)". For two-level difference methods, the errors
at levels j and j+ 1 are related by

E, =CE
where Cisan N X N matrix. Let p(C), the spectral radius of C, denote the maximum of the magnitudes of
the eigenvalues of C.

Matrix stability criterion. A two-level difference method for an initial-boundary value problem with
a bounded solution is matrix stable if p(C)= 1. For a problem with an unbounded solution, the criterion
becomes p(C) =1+ O(k).

Matrix stability is a necessary condition for the stability of a two-level method. Furthermore,

Theorem 9.3: Let C be symmetric or similar to a symmetric matrix, whereby all eigenvalues of C
are real. Then matrix stability is necessary and sufficient for stability.
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Although a matrix stability analysis incorporates the boundary conditions of the problem (as
reflected in the form of C) whereas a von Neumann stability analysis neglects the boundary
conditions, the conclusions reached regarding the stability of a difference method are nearly always
the same. This indicates that the stability of a method is determined more by the character of the
difference equations than by the way in which the boundary conditions are accounted for.

9.4 PARABOLIC EQUATIONS
The one-dimensional diffusion equation,
u, = a’u, (9.10)

(to avoid confusion between « and k we write a’ for the diffusivity) is used as a guide in developing
finite-difference methods for parabolic PDEs in general. For the grid (x,, t;) = (nh, jk), we shall state
three commonly used difference equations for (9.10). All three are two-level equations whereby the
solution, known at level j, is advanced to level j + 1.

Explicit (Forward-Difference) Method
U i+1 U, _ a2 Un+l,j_ 2Unj + Un—Lj

nj nj

k h?
or U,=Q+r8)U,  (r=a’k/h?

nj+l

(9.11)

Implicit (Backward-Difference) Method
U - a2 Un+l,/'+l— 2U + Un—l,/'+1

nj+l - ny nj+l

k h’
or (1-r8HU U, (r=a’k/h®)

nj+l = Mnj

U

(9.12)

Implicit (Crank—Nicolson) Method
U, azéf_Unl.+8iU

nj+l B nj

k 2 h?

U

nj+l

(9.13)
(r=a’k/h?)

/]

r 2 _ r 2
or (1—5&) UM.H—(1+§8X) U,

Theorem 9.4: The forward-difference method (9.11) has local truncation error O(k + h%); it is
(conditionally) stable if and only if r=1/2.

Theorem 9.5: The backward-difference method (9.12) has local truncation error O(k + h%); it is
stable.
Theorem 9.6: The Crank-Nicolson method (9.13) has local truncation error O(k*+ h%); it is stable.
For the two-dimensional diffusion equation,
u = az(uu + uyy) (9.14)

let (x,,, y,, ;)= (mh, nh, jk) and U, ~u, = u(x, y, ). The above methods have as their counter-
parts:

Explicit (Forward-Difference) Method
U =[1+r(8}+ &)U, (r=a’k/h?) (9.15)

mnj+1
Implicit (Backward-Difference) Method
[1-r(83+ YU, U, (r=a’k/h*) (9.16)

mnj+l mnj
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Implicit (Crank—-Nicolson) Method
r r
(1@ )| U= 145 @ )| U, r=atiom) (9.17)

Theorem 9.7: The forward-difference method (9.15) has local truncation error O(k + h%); it is
(conditionally) stable if and only if r = 1/4.

Theorem 9.8: The backward-difference method (9.16) has local truncation error O(k + h?); it is
stable.

Theorem 9.9: The Crank-Nicolson method (9.17) has local truncation error O(k*+ h?); it is stable.

As a class, the explicit methods enjoy the property of directly marching the solution forward in
time, from one level to the next. They apply either to pure initial value problems or to initial-
boundary value problems, but suffer the drawback of conditional stability. On the other hand, the
implicit methods, which are stable, require (in effect) a matrix inversion at each step forward in time.
Thus, these methods are applicable only to initial-boundary value problems with a finite number of
spatial grid points.

For the one-dimensional implicit methods (9.12) and (9.13), the matrix to be inverted is
tridiagonal; for the two-dimensional (9.16) and (9.17), pentadiagonal. Alternating-direction implicit
(ADI) methods for parabolic problems in x,, x,, . .. preserve the tridiagonal feature by first solving a
sequence of one-dimensional difference equations in x,; then a sequence in x,; and so on. Thus, if
Dirichlet boundary conditions are specified for (9.14);if m =0,1,2, ... ,M;andifn=0,1,2,..., N;
then we have (r = a’k/h%):

Peaceman—Rachford ADI Method

mn+l

I * r 2
(1——5)(} —<1+—8>U (n=1,2,...,N—1)
2 x 2 y mny
(9.18)
I » I 2 * .
(1—§5y> U1 = <1+55X> UZ i (m=1,2,...,M—1)
Theorem 9.10: The Peaceman-Rachford ADI method (9./8) has local truncation error O(k*+ h?);
it is stable.

With only slight modifications, the above difference methods become applicable to the general
linear parabolic PDE.

Solved Problems

9.1 Derive the difference formula (9.2).

By Taylor’s theorem,

u(x+ h, 1) = ulx, 1)+ ux, A + ux(x, t)%+ s (B ’)%— W
2 3
ux = hy 1) = U 0= (% D+ e 1) o e (5, :)% ?

where x <X < x+ h and x — h < £ < x. Subtracting (2) from (1) and solving for u, yields

_u(x+h,t)—u(x—h,t)- _ R h_l
= h [um(x, l)+ uxx.x(xv {)] 12

u(x, £)



CHAP. 9] DIFFERENCE METHODS FOR PARABOLIC EQUATIONS 129

9.2

23

If e is continuous, the mean-value theorem implies that

Ueex (X, 1)+ Ueen (X, 1)
( )2 ( )=um(i,t) <z <)

and (9.2) results.

Derive a difference formula similar to (2.2) in the case of a nonuniform grid,
Xy = X T Ry

By Taylor’s theorem,

1
u(x,-+1, ’) = u(xz, ’)+ ux(xi, ’)hi+l+ E uxx(xiv ’)hlz+1 + O(h?*'l (])

u(xi-1, )= u(xi, t) — u(x;, i + % U (i, DRE— O(h?) (2)

Subtracting (2) from (1) gives

u(xinr, ) — u(xio1, 1) 1 O(hia)+ O(hY)
x(Xi, ) = +- H i —h)+ ———— 3
ux (%, 1) P 2u(x Y(hisy — hi) Y (3)

Note that in {3) the dominant term in the truncation error is O(h..1— k). To maintain control over the
truncation error, the grid spacings h; should not be allowed to vary too rapidly with i
Multiplying (1) by h; and (2) by h,., and then adding yields

hhio + hio b7

hiu(xiey, )+ by u(xiz1, ) = (h + b Du (G, ) + U (x;, 8) >

+ hio(h?+l) + hivy O(h?)

which when solved for u,, gives

hiyu(xi-1, )= (hi + hioDu(x, )+ hiu(xiag, ’)+

TE.
05 (h,'h%+1 + hi+ lh%)

U (X, 1) =

Show that the explicit method (9.11) has local truncation error O(k + h%). Then show that if

k 1
W 6d
the local truncation error can be reduced to O(k*+ h%).
With (xn, )= (nh, jk), (9.1) and (9.3) give
Unjot = U Sxlhy :

(u,— @ ) = -a Y Un(Xn, 1)+ azﬁ Usxex (Tnr 1))

k h?

where £ < 1; <,y and X,_, < %, < X,.1. The amount by which the solution of u ~ @®u. =0 fails to
satisfy the difference equation (9.11) is

k Y i )
Toy = b, )= @ ey ) = Ok + )

provided u, and u... are bounded.
Now, by Taylor’s theorem and (u, — @ty ),; = 0,

Kk YT

Upr = a*(U)xe ; Whence

2 2
Un j+1— Un 25,14,,,‘ k 2h
=|lTUs—a Uxxxx
n

> +O(k) + O(h*) (1)

v

Since u, = a’uy., Uy = a*
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Up = @0 Ugx ux = @ o
This shows that the bracketed terms in (/) can be written as
kK . h2>
—a' = a" — | Upeex (X, &
(2 12 (X )

which will be zero if we choose k = h*/6a”.

Show that if r=1/2, then the explicit method (9.11) is convergent when applied to the
problem

u—au, =0 0<x<1,¢t>0
u(x, 0) = f(x) 0<x<l1
u@,)=p(), u(l,)=q() >0

Let © be the region 0<x<1,0<¢<T; take (x., )= (nh,jk) for n=0,1,2,...,N and j=
0,1,2,...,J, with Nh =1 and Jk = T. Let U, satisfy the difference system

U, jor = Unj+ r83 U, (r=a’k/h?
Uno = f(x.) Uo; = p() Uni = q(5)

and set w,; = U,; — u,.. Then w,; satisfies

2 2.2
Wojr1 = Wi, T (1= 2r) W, + rw,uy + ) U (X, ;) —- B Ueirx (Xny 1) (1)
WHOZO w0,=0 WN,=O
where < 1; < .1 and Xy < B < Xosa.
If u, and u.x are continuous and if we write
1 a?
A = max 5 uq(x, 1) B = max I U (X, 1)

for (x, £) in Q, then, since r = 1/2, it follows from (1) that

[Wejoi] = F[Waor,| + (1= 20w | + 7| Wasr,| + Ak®+ Bkh?

=[wil+ Ak*+ Bkh* (lwll= max |w,)) 2)
0<n<N
From (2) we have
W, oil =< |lw|| + Ak* + Bkh? 3)

Because ||wo| = 0, (3) implics
[will = j(Ak*+ Bkh®) < T(Ak + Bh®)

which shows that {w,;| = 0 uniformly in Q as h, k - 0.

Use the von Neumann criterion to establish the condition r=1/2 for the stability of the
explicit method (9.11).

With (9.11) expressed in the form
Upjor = rUps1;+ (1=2n0Uy, + 1Ua-y (1)

suppose that, at level j, an error is introduced at one or more of the x-nodes, perturbing the exact
solution, U,;, by an amount E,;. If U,; + E,; is used to advance the numerical solution to level j+ 1, the
result is the exact solution, U, ;.\, plus an error, E ;... Putting U, + E,; and U ns1;+ Ensy; into (1),
we see that E,; satisfies that equation.

Using separation of variables, we identify complex solutions of (1) of the form
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9.6

9.7

a,b, = ¢l e™® 2)

where £ is some (possibly complex-valued) function of the real parameter 8. From this, by superposition,
we are led to the tollowing expression for the error £,

Es=| tayeap 3)

(Strictly, the real part of the integral should be taken.) By a comparison with (6.17), (3) may be
interpreted as a Fourier integral, representing the error at node s in terms of its frequency spectrum.
Thus, at level j, the error amplitude corresponding to a given frequency B/2 is £(8). The Fourier-von
Neumann rule, [£]/= 1, amounts to the prescription that at no frequency should the error amplitude grow
without limit as j — oo,

Substitution of (2) in (1) gives, after division by ¢/ e,

E=re®+(1-2r)+re"®=1-2r(1—cos B)= 1—4rsin2§

and so —1=¢=1 for all B—in particular, for 8 = w—if and only if 0= r=1/2.

Show that the implicit method (9.12) is (von Neumann) stable.

The method can be wnitten as
_’Un-l,,+1+(1+2’)Un.,'+l_’Un+1,,‘+1: Uu/ (1)
Substituting £/ e®" into (1) and dividing by £/ ", we have
. —1

E[-re®+ (1+2r)—re”®)=1 or £= (1+4rsin2€—>

and we see that |[£] =1 for every B whatever the value of r.

(a) Modify the explicit method (92.11) to apply to the PDE
u = a’u, + cu (1)
(b) Make a von Neumann stability analysis of the modified method.

(a) An explicit difference equation for (1) that reduces to (9.71) when ¢ =0 is

Unjor= Uy 82Uy

=a = + 1"{/,,,'
k h*
or Unjo1 =rU i, + (1 =2r+ kYU, + rU e (2)
(b) Substituting ¢e®" into (2), we find
§:1—4rqin2§+ck 3)
If ¢ <0, the solution of (1) is bounded, and the stability criterion is [£]=1 for all 8. This is
satisfied if
1 ck
r<=—+- (¢ <0)
2 4

Note that for ¢ <0 and r = 1/2, (2) is not stable, but the asymptotic stability condition as A, k = 0 is
r=1/2.

If ¢ >0, (1) can have exponentially growing solutions, which means that U,; and its error must
also be permitted to grow exponentially. Thus, the stability criterion is taken to be

£ =1+ Ok)

which is satisfied if again
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1 ¢k
r=—+-— (c>0)
2 4

Now we have (conditional) stability for r = 1/2; once more, the asymptotic stability condition as
hok-=01s r=1/2.

9.8 Show that the eigenvalues of the real, symmetric, tridiagonal, N X N matrix

(’p q 0
q p q
C= q p q
q p q

all lie in the interval [p - |2¢|, p +|24]].

For C real and symmetric, we know that all eigenvalues are real, and that the largest and smallest
eigenvalues are the absolute extrema of the normalized quadratic form

CY plit+ G+ 0+ 240+ Lo+ Ldat -+ In-1dn)
S G+ 8+ + 0k

=p+2qR({1, {2, -, IN)
Now, by Cauchy’s inequality,

16102+ Ll Blat -+ v NP+ G+ + )G+ G+ + LR)
=3+ G+ + R

Q=

which implies that |R| =1 and yields the desired interval.
From the fact that

1
R(a,a,....a)=1—ﬁ Ra,—eo, ¢, ..., xa)=—1+—
we derive the inequalities
[2q]
(P + |2‘?|) T = A =pt |267|
N
R 24|
P=12gl= Amn=(p—2q)) + —
N
These show that the estimates
Amax =p + |2£(| Amin = pP— |2q, (])

are not necessarily sharp, even as N -» %, since g can—and, in applications, usually does—vary with N.
In consequence, when (/) is used to investigate the stability of matrix C, it provides a conservative
condition. Indeed, it is possible that the exact values of Amiq and Agax, from Problem 11.11, can be used
to establish stability when (1) guarantees nothing. These same remarks apply to the Gerschgorin Circle
Theorem (Problem 9.26).

9.9 Use the matrix stability criterion to show that the explicit method (9.11) is stable when
applied to the initial-boundary value problem

u=au, 0<x<I,t>0
u(x, 0)= f(x) 0<x<l
u0, y=u(l,)=0 t>0

if and only if r=1/2.
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Let (x,, ;)= (nh, jk) (n=0,1,2,...,N;j=0,1,2,...), with Nh =1, and define a column vector
U; by
U, =[Us, Usj, Usyy . .o, Unca ™

The explicit method (9.11) can be expressed in matrix form as

U, =CU  (j=0,1,2,3,...) (1)
where Uo = [f1, f2, f5. - - ., fv-1]T and C is the (N — 1) X (N ~ 1) tridiagonal matrix
[(1-2n r 0
r (1-2r) r
C- r (1-2r) r
r 1-2r) r
o ’ a-2r)

Suppose that at time level j errors E,, are introduced at x, (n=1,2,..., N —1), perturbing the
solution of {I) to U,+ E,, where E; is a column vector with nth component E,;. Then, using (1) to
advance the solution, we have

U,‘+1 + E,+1 = CU, + CE, or E/+1 = CE[
or, after m steps,
Ej.r. = C"E, 2)

Let Ay, Az, ..., An—1 and V[, V5, ..., Vy_; be the eigenvalues and associated linearly independent
eigenvectors of the symmetric matrix C. Writing E; as a linear combination of the V,,

N1

E,’ = 2 aka
k=1
and using (2) and CV, = A, Vi, we see that
N-1
Ejom = 2, AR aiVi 3)
k=1
Equation (3) shows that the errors E,; remain bounded if and only if [A] =<1 for k=1,2,..., N—1. By

Problem 9.8, with p=(1—-2r)and g =1,
Amax = (1=2r)+2r] = 1 Amin=(1—=2r)—|2r|=1-4r

which yields the condition 1—4r=-1, or r<1/2. (This same condition is obtained when the exact
expressions for the eigenvalues, from Problem 11.11, are employed.)

A stable (see Problem 9.20) overlapping-steps method is the DuFori—Frankel method,

Un.i+l B lJn./'—I = a2 U”‘l-l'_ (U,,'/-+1 +2U"‘/_l)+ U"”J (9 ]9)
2k h
(a) Show that (9.19) is consistent with u, = a’u__ only if
.k
lim —=0
h, k=0

(b) Show that if k/h is held constant as h, k = 0, then (9.19) is consistent with an equation of
hyperbolic type.

If the more natural central term —2UJ,; were taken in (9.19), the method would be unstable for
every positive r = a’k/h?.
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(a) From (9.2) (for u) and (9.3),
Upj+1— Unj—
2k

Upo1;— 2Upj+ Upsrj

h2

= u,(x,, 4,)+ O(k?) (1)

= Uy, (X, )+ O(R?) (2)

Further, U, j+1+ Unjo1 = 2Upy + kZua(xs, )+ O(k*®); so that (2) gives

2 4

— uu(xm [}.)— % u"(xm [}-)+ O(h2)+ (0] (%) (3)

Un-1,j — Unj+1— Un -1 t Unss,

h2

Equations (1) and (3), together with u, = a’u,,, show that u fails to satisfy (9.19) by an amount

2 4

k k
T, = azﬁ Un(Xn, )+ O (k2+ h2+ ;1—2) (4)
It follows that (9.19) is consistent with the diffusion equation only if k/h tends to zero along with k and
h.
(b) If k/h = e, then it is obvious from (4) that (9.19) will be consistent with the PDE

U — @’y + a’e’u, =0

Using centered differences to approximate all x-derivatives and the implicit method (9.12),
derive difference equations for the Neumann initial-boundary value problem

u=a’u, 0<x<1,t>0
u(x, 0) = f(x) 0<x<1
u 0, 0)=p(1), u,(1,)=q() >0

Let (x., 4,)=(nh,jk) (n=-1,0,1,2,... N-1,NN+1;;=0,1,2,...), with Nh =1, The ghost
points x_y and xn., are introduced so that the boundary conditions can be approximated via the centered
differences

Uy—U_y; Unirj— Un-oyj
- = ¢ —_—= ¢ 1
h () h q(4) (1)

By (9.12), the linear equations for the unknowns U ,;+; are
= U potjir (U 200U pjr = rU i ju1 = Uy (n=01,...,N)
From these, U _;;+, and U y+1,;+1 may be eliminated by using (1) to write
U jri=Uyj1—2hpja Unatjr1 = Uncryr1+2hq 40
The resultant system is expressed in matrix form as

T @a+2n ~2r 0 Ugjs1 71 [ Uo;—2hrpjsy |
—r (1+2r) —r Uija U,
=r (1+2f) -r U2,,’+1 _ Uz,
—-r a+2r -r Un-1+1 Un-1,j
. 0 —2r (1+2r)__ L. UN_;'+1 . LUN,+2hrq,-+1 -

Observe the two anomalous entries, —2r, in the transition matrix, which arise from the Neumann
boundary conditions.



9.12 Write a computer program that uses the explicit method (9.11) to approximate the solution to
u = u, O0<x<1,t>0
u(x, 0) = 100 sin mx 0<x<1
u(0,H=u(l,)=0 t>0
At ¢ = 0.5 compare the numerical results with those from the exact solution,
u =100 ¢ ™ sin 7x

A FORTRAN-77 program, EHEAT, is listed in Fig. 9-1. Two stable runs are given in Fig. 9-2. The
excellent agreement between the numerical and exact solutions in the case r=1/6 is explained in
Problem 9.3.

PROGRAM EHEAT
TITLE: DEMO PROGRAM FOR EXPLICIT METHOD
FOR HEAT EQUATION, UT = KAPPA®UXX
INPUT: N, NUMBER OF X-SUBINTERVALS
K, TIME STEP
TMAX, MAXIMUM COMPUTATION TIME
KAPPA, DIFFUSIVITY VALUE
(X1,%2), X-INTERVAL
P(T), LEFT BOUNDARY CONDITION
Q(T), RIGHT BOUNDARY CONDITION
F(X), INITIAL CONDITION
E(X,T), EXACT SOLUTION
OUTPUT: NUMERICAL AND EXACT SDLUTION AT T=TMAX
COMMON U(D:51),V([0:51)
REAL K,KAPPA
DATA T,X1,X2,KAPPA/0,0,1,1/
P(T) =0
alT) 0
F(X] = 100*SIN[PI*X]
E(X,T) = 100*EXP[-PI*PI*T]*SIN[PI*X]
PRINT*,'ENTER TMAX,NUMBER OF X-SUBINTERVALS AND TIME STEP'
READ*, TMAX, N, K
H = (X2-X1)/N
R = KAPPA*K/H/H
PI = A%ATAN(1.)
C SET INITIAL CONDITION
po10 I = 0,N
X = X1 + I*H
V(I) = F[X)
10 CONTINLUE

aaoooaocoaoonond o

15 D020 1 =1,N1
U(I) = V[I) + R*(V[I+1) —2%V(I]) + V[I-1)]
20  CONTINUE
T=T+K
ufo) = P[T)
U(N) = @[T]
C WRITE U OVER V TO PREPARE FOR NEXT TIME STEP
DO 30 I = O,N
V[I) = U[I)
3D  CONTINUE
C IF T IS LESS THAN TMAX, TAKE A TIME STEP
IF[ABS[TMAX-T) .GT.K/2) GOTO 15
C OTHERWISE, PRINT RESULT
WRITE(6,100)

WRITE(6,110) N,K,TMAX
WRITE(B,120) T
DO 40 I = O,N
X = X1 + I*H
EXACT = E[X,T)
WRITE(6,130) X,U[I),EXACT
40  CONTINUE
100  FORMAT(///,T8,'RESULTS FROM PROGRAM EHEAT',/)
110 FORMAT('N =',14,T15,'K = ',FB8.6,T30,'TMAX =',F5.2,/)
120 FORMAT('T = ',F5.2,T18,'NUMERICAL', T35, ' EXACT',/)
130 FORMAT( 'X = ',F4.1,T13,F13.6,T30,F13.6)
END

Fig. 9-1

135
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N= 10 K = 0.001667 TMAX = 0.50
T = 0.50 NUMERICAL EXACT

X = 0. 0. 0.

X = 0.1 0.222262 0.222242
X = 0.2 0.422767 0.422730
X = 0.3 0.581889 0.581838
X = 0.4 0.684051 0.683992
X = 0.5 0.718254 0.719182
X = 0.8 0.684051 0.683992
X= 0.7 0.581888 0.581838
X = 0.B 0.422767 0.422730
X= 0.9 0.222262 0.222243
X= 1.0 0. 0.000000
N= 10 K = 0.005000 TMAX = 0.50

T = 0.50 NUMERICAL EXACT

X = 0. 0. 0.

X = 0.1 0.204463 0.222242
X = 0.2 0.388912 0.422730
X = 0.3 0.536292 0.581838
X = 0.4 0.629273 0.683991
X = 0.5 0.661657 0.719191
X = 0.8 0.629273 0.683991
X = 0.7 0.535282 0.581838
X = 0.8 0.388912 0.422730
X = 0.8 0.204463 0.222242
X= 1.0 0. 0.000000

Fig. 9-2

For the initial-boundary value problem

u = a’u, 0<x<1,t>0
ux0)=flx) 0<x<1
u@©,)=p(), ul,)=q() >0

show how to imbed the implicit method (9./2) and the Crank—Nicolson method (2.13) in a
single algorithm.

With  (x., )= (nh, jk) (n=0,1,...,N;j=0,1,2,...;Nh=1), let Usp=f(x) (n=12 ...,

N —=1), Uno=[f(0)+p(0))/2, Uno=[f(1)+ q(0))/2; further, for j=1,2,..., let Uo; = p(t;), Uni = q(1;).

In the implicit and Crank—Nicolson methods a system of linear equations must be solved to advance the

solution from {4 to £;+;: it is not possible simply to march the solution forward as in the explicit method.
The weighted-difference method,

Unjir— U= r[(1= w)2U oj+ wdiU 1] (r=a?k/h® (9.20)
reduces to (9.12) when w=1 and to (9.13) when w = 0.5. Incorporating the boundary and initial
conditions into (9.20), we find that the unknowns U1, Uzj+1, ..., Un-1,+1 satisfy the following
tridiagonal system:

_(1+2wr) —~wr 0 T Ui T D, |
—wr (1+2wr) —wr U3z Dy
—wr (1+2wr) —wr Ui, - D,
—wr (1+2wr) —wr Un_ajn Dnos
L 0 —wr (1+2wr) | LUnN-1,41 L Dnoy |
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where D, = U,;+(1—-wyrdilU,, (n=2,3,...,N—2)and

DIE U1i+(1_ W)783U1j+ H'on,,'+l

I)N—l = UN—lyi+ (1— w)rﬁzUN_l,,--i- W"UN','+1

137

The weighted-difference method program is given in Fig. 9-3. Two runs are shown in Fig. 9-4. Compare
these with the first run in Fig. 9-2.

[sNelrioleNrRoNeNeNeNoNeRe]

10

15

a0

PROGRAM IHEAT
TITLE: DEMO PROGAAM FOR IMPLICT AND CRANK-
NICOLCON METHODS FOR UT = KAPPA*UXX
INPUT: N, NUMBER OF X-SUBINTERVALS
K, TIME STEP
TMAX, MAXIMUM COMPUTATION TIME
KAPPA, DIFFUSIVITY VALUE
(X1,X2), X-INTERVAL
P{T), LEFT BOUNDARY CONDITION
Q(T), RIGHT BOUNDARY CONDITION
F{X), INITIAL CONDITION
E(X,T}, EXACT SOLUTION
W, W=1 FOR IMPLICIT-w=,.5 FOR CRANK~NICOLSON
OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX
COMMON/BLOCK1/A(51) ,B(61),C(51),D(51),L
COMMON/BLOCK2/U(D:51)
REAL K,KAPPA
DATA T,X1,X2,KAPPA/0,0,1,1/
P(T) =0
a(T) =0
F(X) = 100*SIN[PI*X)
E(X,T) = 100*EXP[-PI*PI®*T)*SIN[PI*X)
PRINT*, 'ENTER TMAX,NUMBER OF X-SUBINTERVALS AND TIME STEP'
READ*, THAX, N, K
PRINT*,'ENTER 1 FOR IMPLICIT, .5 FOR CRANK-NICOLSON METHOD'
READ*, W
H = (X2-X1)}/N
R = KAPPA*K/H/H
PI = 4*ATAN(1.)
SET INITIAL CONDITION
D0 10 I = O,N
X =X1 + I*H
U{I} = F[X)
CONTINUE
DEFINE TRIDIAGONAL LINEAR SYSTEM
L= N1
DO 20 I
A(I)
B(I)
c(1)
D(1)
CONTINUE
CALL TRIDIAGONAL LINEAR EQUATION SOLVER
CALL TRIDI
WRITE SOLUTION AT TIME T+K INTO THE U-ARRAY
T=T+K
DO 30 I
U(I)
CONTINUE
u(o) = P(T)
U{N) = a(T)
IF T IS LESS THAN TMAX, TAKE A TIME STEP
IF({ABS{TMAX-T) .GT.K/2) GOTO 15
OTHERWISE, PRINT RESULT
WRITE(6,100) W
WRITE(6,110) N,K,THMAX
WRITE(6,120) T
DO 40 I = O,N

1,L

-W*R

1 + 2*W*R

-W*R

U(I) + [1-W)*R*(U[I-1] - 2*U(I) + U(I#1))

1,1
D(I)

Fig. 9-3 (Program continues on next page)
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X =X1+ I®H
EXACT = E(X,T)
WRITE(6,130) X,U(I),EXACT
40 CONTINUE
100  FORMAT(///,T4,'RESULTS FROM PROGRAM IHEAT W=',F5.2,/]
110  FORMAT('N =',I14,T15,'K = ',F8.6,730,'TMAX =',F5.2,/]
120 FORMAT('T = ',F5.2,T18,'NUMERICAL',T35,'EXACT',/]
130 FORMAT( 'X = ',F4.1,T13,F13.6,T30,F13,6])
END
SUBROUTINE TRIDI
COMMON/BLOCK1/A(51]) ,B(51),C(51]),D(51],L
c TITLE: TRIDIAGONAL LINEAR EQUATION SOLVER FOR
c A SYSTEM WITH A NONZERO DETERMINANT
C INPUT: A, SUBDIAGONAL OF COEFFICIENT MATRIX
C B, DIAGONAL OF COEFFICIENT MATRIX
c Cy SUPERDIAGONAL OF COEFFICIENT MATRIX
C D, RIGHT HAND SIDE OF LINEAR SYSTEM
[H L, NUMBER OF LINEAR EQUATIONS
c OUTPUT: SOLUTION OF LINEAR SYSTEM STORED IN D-ARRAY
c FORWARD SUBSTITUTE TO ELIMINATE THE SUBDIAGONAL ELEMENTS
D01 1I=2,L
AT = -A[1]/B(I-1)
B(I] = B(I]) + RT*C(I-1)
D(I) = D[(I) + RT*0(I-1)
1 CONTINUE
G BACK SUBSTITUTE AND STORE THE SOLUTION IN D-ARRAY
D(L] = D(L)/B(L]
DD21I=L-1,1,-1
D(I) = [D(I) - C(I})*D(I+1])/B(I}
2 CONTINUE
RETURN
END
Fig. 9-3 (Continued)
0.5 — CRANK-NICOLSON METHOD W = 1.00 — IMPLICIT METHOD
K = 0,005000 TMAX = 0.50 N= 10 K = 0.005000 THMAX = 0,50
NUMERICAL EXACT T = 0.50 NUMERICAL EXACT
0. 0. X = 0. 0. 0.
0.231190 0.222242 X = 0.1 0.259879 0.222242
0.438749 0.422730 X = 0.2 0.494319 0.422730
0.605262 0.581B38 X = 0.3 0.680372 0.581838
0.711528 0.683931 X = 0.4 0.7998256 0.683991
0.748145 0.718191 X = 0.5 0.840986 0.719181
0.711528 0.683991 X = 0.6 0.795825 0.683991
0.605262 0.581B38 X = 0.7 0.6B0372 0.581838
0.439748 0.422730 X = 0.8 0.494318 0.422730
0.231189 0.222242 X = 0.9 0.258879 D.222242
a. 0.000000 X= 1.0 0. 0.000000
Fig. 94

Write a computer program that uses the Peaceman-Rachford ADI method (9.18) to
approximate the solution of

Compare the numerical solution with the exact solution, u = 100e”

u=u,+u, O<x,y<l,t>0
u(x, y,0) = 100 sin mx sin 7y O0<x,y<l1
u@,y,)=u(l,y,)=90 O<y<l,t>90
u(x,0,)=u(x, 1,)=0 0<x<1,:>0

2

“sin 7x sin y, at t=0.1.

For a program, see Fig. 9-5. Though the symmetry of the solution was not exploited in constructing

the program, the numerical results do display the expected symmetries. It therefore suffices to compare
the numerical and exact solutions on 0 <y =< x, 0 <x < 1/2. See Fig. 9-6.
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PROGRAM ADI
TITLE: DEMO PROGRAM FOR ADI METHOD FOR
UT = KAPPA*(UXX + ULYY)
INPUT: MMAX & NMAX, NUMBER OF X & Y-SUBINTERVALS
K, TIME STEP
TMAX, MAXIMUM COMPUTATION TIME
KAPPA, DIFFUSIVITY VALUE
(X1,X2) & (Y1,Y2), X & Y-INTERVALS
P1(Y,T) & @1(Y,T), LEFT & RIGHT BOUNDARY CONDITIONS
P2(X,T) & 02(X,T),UPPER & LOWER BOUNDARY CONDITIONS
F(X,Y), INITIAL CONDITION
E(X,Y,T), EXACT SOLUTION
DUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX
COMMON/BLOCK1/A(51) ,B(51),C(51),D(51],L
COMMON/BLOCK2/U[0:51,0:51),V(0:51,0:51)

REAL K,KAPPA

DATA T,X1,X2,Y1,Y2,KAPPA/0,0,1,0,1,1/
PI(Y,T) = 0O

Qi(Y,T) = 0

P2{X,T] =0

Q2(X,T) = 0

F[X,Y) = 100%SIN[PI*X)*SIN[PI*Y)

E(X,Y,T) = 100%EXP(—-2*PI*PI*T)*SIN(PI*X)*SIN[PI*Y)

PRINT*,'ENTER TMAX AND TIME STEP'

READ*, TMAX, K

PRINT*,'ENTER NUMBER OF X-SUBINTERVALS, NUMBER OF Y-SUBINTERVALS'
READ*, MMAX, NMAX

SET INITIAL CONDITION

PI = 4*ATAN[1.)
HX = [X2-X1)/MMAX
HY = [Y2-Y1)/NMAX
D0 10 M = 0,MMAX
DO 10 N = 0,NMAX
X = X1 + M*HX
Y = Y1 + N*HY
U[M;N] = 100*SIN(PI*X)*SIN(PI*Y)
CONTINUE

CALCULATE INTERMEDIATE VALUES SWEEPING VERTICALLY
AX = KAPPA*K/HX/HX
DO 20 N = 1,NMAX

Y = Y1 + N*HY

DO 30 M = 1,MMAX
A(M] = -.5"RX
B(M) =1 + RX
C(M) = —.5*RX
D(M) = .5*RX*[U[M1,N)+U[M+1,N])) + [1-RX]*U[M,N)

SOLVE TRIDIAGONAL SYSTEM FOR VALUES ON N-TH HORIZONTAL LINE
L = MMAX —
CALL TRIDI
WRITE INTERMEDIATE VALUES INTO THE V-ARRAY
DO 40 M = 1,MMAX-1
V(M,N] = D[M]
CONTINUE
V[D,N] = P1[Y,T)
V(HMAX,N] = Q1(Y,T]
CONTINUE
CALCULATION OF INTERMEDIATE VALUES IS COMPLETE
BEGIN HORIZONTAL SWEEP TO COMPLETE THE TIME STEP
RY = K/HY/HY
DD 50 M = 1,MMAX—
X = X1 + M*HX

DO 60 N = 1,NMAX-1

A[(N] = -,B*RY

B(N} =1 + RY

C[N) = -,5*RY

D[N] = 5*AY¥[V[M,N-1]+V[M,N+1)) + [1-RY])*V(M,N]}
CONTINUE

SOLVE TRIDIAGONAL SYSTEM FOR VALUES ON M-TH VERTICAL LINE
L = NMAX — 1
CALL TRIDI

ig. 9-5  (Program continues on next page)
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C WRITE T+K VALUES INTO THE U—ARRAY
DO 70 N = 1,NMAX—
U(M,N] = D[N])
70 CONTINUE
U(M, 0] = P2(X,T]
U[M,NMAX] = Q2(X,T]
50 CONTINUE

C  TIME STEP IS COMPLETE
T = T+K

c IF T IS LESS THAN TMAX, TAKE ANOTHER TIME STEP
IF(ABS(TMAX-T) .GT.K/2) BOTO 15

c IF T EQUALS TMAX, PRINT RESULT
WRITE(8,100)

WRITE(E,110] MMAX,NMAX,K, TMAX
WRITE(6,120) T
DO BO M = 1,MMAX/2
DO BO N =1,M
X = X1 + M*HX
Y = Y1 + N*HY
BXACT = E(X,Y,T)
WRITE(6,130) M,N,U(M,N],EXACT
80  CONTINUE
100 FORMAT(///,T9,'RESULTS FROM PROGRAM ADI',/)
110  FORMAT('MMAX=',I2,' NMAX=',I2,T18,'K = ',F5,2,T30,' TMAX =',F5,2,/]
120  FORMAT('T = ',F5.2,T18,'NUMERICAL',T35, 'EXACT',/)
130  FORMAT( 'M,N = ',I1,',',I1,T13,F13.6,T30,F13.6)
END
SUBROUTINE TRIDI
COMMON/BLOCK1/A(51),B(51),C(51),D(51),L
TITLE: TRIDIAGONAL LINEAR EQUATION SOLVER FOR
A SYSTEM WITH A NONZERO DETERMINANT
INPUT: A, SUBDIAGONAL OF COEFFICIENT MATRIX
B, DIAGONAL OF COEFFICIENT MATRIX
C, SUPERDIAGONAL OF COEFFICIENT MATRIX
D, RIGHT HAND SIDE OF LINEAR SYSTEM
L, NUMBER OF LINEAR EQUATIONS
OUTPUT: SOLUTIDN OF LINEAR SYSTEM STORED IN D-ARRAY
FORWARD SUBSTITUTE TO ELIMINATE THE SUBDIAGONAL ELEMENTS
D01 1I=2,L
RT = -A[I)/B(I-1)
8(I) = B(I) + RT*C(I-1)
D(I) = D(I) + RT*D[I-1)
CONTINUE
BACK SUBSTITUTE AND STORE THE SOLUTION IN D-ARRAY
D(L) = Dp(L)/B(L)
D02 I=L-1,1,~1
D(I) = [D(I} - C(I)*D(I+1))/B(I]
2 CONTINUE
RETURN
END

o000 00

(e X

Fig. 9-5 (Continued)

MMAX=10 NMAX=10 K = 0.1 TMAX = 0.10

T= 0.10 NUMERICAL EXACT

MyN = 1,1 1.348013 1.326484
MeN = 2,1 2.560268 2.523122
M,N = 2,2 4.868920 4.759263
M,N = 3,1 3.523907 3.472779
M,N = 3,2 6.702869 6.605618
M,N = 3,3 9.225708 9.091854
MyN = 4,1 4,142601 4.082487
M,N = 4,2 7.878685 7.765370
M,N = 4,3 10.845469 10.6881186
MyN = 4,4 12.748614 12.564634
M,N = 5;1 4,355783 4,292591
M,N = 5,2 8.285203 8.164993
M,N = 5,3 11.4088603 11.2368150
M,N = 5,4 13.405738 13.211238
M,N = 5,6 14.095628 13.881117

Fig. 9-6
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9.15

9.16

For a parabolic initial-boundary value problem, the method of lines consists in discretizing
only the spatial variables to obtain a system of ordinary differential equations in ¢ Illustrate
the method of lines by applying it to

u,=u, 0<x<1,t>0 (1)
u(x, 0)= f(x) 0<x<1 (2)
u©,)=u(l,)=0 t>0 (3)

Take h = 0.25.

Let x,=nh (n=0,1,2,3,4) and let U,(1) be an approximation to u(x,, t). In (1) approximate u,
by U/(t) and u, by 82U,(¢) to obtain the following system of ordinary differential equations.

1
Ui= ’h”z‘ (—2U, + Uy)

Ui=— (U —2Uz+ Us) (4)

If we look for solutions to the system (4) of the form U, = a,e*

problem in A:

, we are led to the following eigenvalue

-2 1 0 a, a
h_z 1 -2 1 az = A az (5)
0 1 -2 as as

By Problem 11.11, the eigenvalues A of (5) are
kr
/\k=h'2(—2+2cosT) (k=1,2,3)

or A;=-8+4V2 A= -8 A3=—-8-4V2, with corresponding eigenvectors
v.=[V2,2 V2]" V2.=1[1,0,-1]" Vi=[-V2, -1,V2]"
The solution of (4) can be expressed as
[UL(1), U(2), Us(D]T = ¢, Vie* + c2V2e*2 + eV et (6)

and all that remains is to set t = 0 and U,(0) = f(x,) in (6) to obtain three linear equations for ¢;, ¢z, ¢3.
In practice, the number of x-nodes is usually much larger than five, and the PDE may have variable

coefficients or may be nonlinear. In these circumstances it is desirable, or necessary, to obtain an

approximate solution to the system of ordinary differential equations by a numerical method.

Supplementary Problems

In the centered-difference formula (9.2), suppose that the computed values of u(x £ h,t) are 4(x +h, )
plus rounding errors of magnitude at most €. Also, suppose that M is an upper bound for u..(x, 1).
(a) Show that

a(x+ hty—t(x—h, t) _€ h?

(X, 1) — =s—+—M
e, 1) 2h 6

(b) What is the effect of rounding errors as h - 0?
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9.17

9.18

9.19

9.20

DIFFERENCE METHODS FOR PARABOLIC EQUATIONS [CHAP. 9

Lagrange’s interpolation formula for three points gives

(x = x)(x — x2) (x — xo)(x — x2) (x — xo)(x — x1)
y= U+ U, + u,
(%0 — x1)(X0 — X2) (x1 = xo)(x; — x2) (x2 = x0)(x2— x1)

as the quadratic function which assumes the values uo, u,, u, for the arguments xg, x,, x2. Choosing
w=u(x,t) (i=0,1,2), use y'(x,) and y” as finite-difference approximations of u.(x;, £) and u.(x,, t),
respectively. Verify that your formulas agree with those of Problem 9.2.
Prove that the eigenvalues p of C= 1+ B)"'(I— B) are given by

1-2

BT

where A is an eigenvalue of B.

(a) Show that errors in the Crank~Nicolson method are governed by
(I+B)E;.. = I—- B)E;

where B is a symmetric, tridiagonal matrix with diagonal entries r and sub- and superdiagonal entries
—r/2. (b) From (a), Problem 9.18, and Problem 9.8, infer the stability of the Crank—Nicolson method.

Show that the DuFori-Frankel method (9.19) is (von Neumann) stable. [Hint: Establish that

§_2rcoth 1— (2rsin B)*
- 1+2r

and consider the cases r=1/2, r>1/2 and [2r sin 8| =<1, r>1/2 and |2r sin B8] > 1.]

Show that the Peaceman—Rachford ADI method (9.18) is (von Neumann) stable. [ Hint:  For separable
solutions of the form ¢/e“#™** show that

2

1= 2rsin?2 1-2rsim?
2 2

1+2rsin2§ 1+2rsin? L
2 2
whence |£]=1.

(a) Exhibit in matrix form a backward-difference method for the problem

Ui = U~ U 0<x<1,t>0
u(x, 0)= f(x) 0<x<1
w@,)=u(l,)=0 >0

(b) Perform a matrix stability analysis, utilizing Problem 11.11 and the fact that the eigenvalues of C™'
are the reciprocals of the eigenvalues of C.

For j =1, 2, exhibit the solution U,; to (9.11) that assumes the initial values U,o=0 (n==1,*2,...),
Uw = 100. Choose grids with (a) r = 1/4, (b) r = 1 (unstable).
Show that the explicit method (9.11), when applied to the problem

U = a’uy, 0<x<1,t>0
u(x, 0) = f(x) 0<x<1
w0, )= u(l,1)=0 t>0

on the x-grnd 0 = xo < x; < -+ <xy = 1, has the matrix formulation
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9.25

9.26

9.27

9.28

Uo,,'+1 1-2r 2r 0 UOj
Ui jn r 1-2r r Uy,
Un-1.j+1 r 1-2r r Un-1,
Un,j+1 0 2r 1- 2r_ Uy,

In Problem 9.24, prove that

J: u(x, ) dx = J: f(x) dx

(conservation of diffused material between impermeable walls at x =0 and x = 1) and that, corres-
pondingly,

N N
2 U= Ui
n=0

n=0

The Gerschgorin Circle Theorem states that if A= [a;,] is an N x N matrix and C; is the circle in the
complex plane with center a; and radius

_E a]

j

~.

~.

then all the eigenvalues of A are contained in the union of Cy, C,, ..., Cn. Use this theorem to show
that (a) the difference method of Problem 9.24 is stable provided r = 1/2, (b) the difference method of
Problem 9.11 is unconditionally stable.

For the problem

U = @ty O<x<¢t>0
u(x,0)= f(x) O<x<¢
au(0, )+ Bu (0, 1) = p(1) >0
u(¢,)=q@ty +>0
where a and B # 0 are constants, use the explicit method (9.11) and a ghost point, x_,, to derive a
difference system for U,; (n=0,1,...,N-1;;=0,1,2,...).

For the problem

u+ cu — a’u,, =0 0<x<1,1>0
u(x,0)=0 0<x<1
u@, D=1, u@,nH=0 >0

use the backward-difference method (9.12), together with a centered difference for u,, to formulate a
difference system for U,; (n=1,2,...,N—-1;,j=0,1,2,...).



Chapter 10

Difference Methods
for Hyperbolic Equations

10.1 ONE-DIMENSIONAL WAVE EQUATION
Methods similar to those given in Section 9.4 may be used to approximate smooth solutions to
u,=c’u, (10.1)

Let (x,, t)=(nh,jk) (n,j=0,1,2,...) and write s=k/h; we have as representatives of the two
sorts of methods:

Explicit Method

Un,j+l - 2Un} + Un.j—l _ 2 Un+1,,' - 2Unj + Un—l,j
k? - n?
or U, =c’s"6.U, (10.2)
Implicit Method
82U .., +8U,
6? U,,j — CZSZ x nj+l 5 x T ngy-1
or ~* U, ot QR+ 25U, — s U, 0 = 4U, = 2U,  + Ps*8L U, (10.3)

The local truncation errors given in Theorems 10.1 and 10.2 assume that u is four times continuously
differentiable in x and t.

Theorem 10.1: The explicit method (10.2) has local truncation error O(k*+ h?); it is stable if and
only if ¢’s*= 1.

Theorem 10.2: The implicit method (10.3) has local truncation error O(k*+ h%); it is stable.

In Problem 10.1 it is shown how initial conditions are used to evaluate U,, and U,;, which are
needed to start the calculations in either method. The sorts of problems to which the two methods
properly apply are as in the parabolic case, assuming smooth solutions. For problems to which the
solution is not smooth, the method of characteristics usually provides a more accurate numerical
solution (see Section 10.2).

The stability condition of Theorem 10.1 is often referred to as a Courant—Friedrichs—Lewy (CFL)
condition. The CFL condition for the stability of an explicit finite-difference method is that the
numerical domain of dependence must contain the analytical domain of dependence. Thus, for (10.2)

to be stable, the backward characteristics through (x,, £,,,) must pass between (x,_,, ;) and (x,,, £,).

10.2 NUMERICAL METHOD OF CHARACTERISTICS
FOR A SECOND-ORDER PDE

The Cauchy problem for the quasilinear hyperbolic equation
aug, +2bu, +cu,=f  (b*>ac) (10.4)

wherein u, wu, and u, are prescribed along some initial curve I' that is nowhere tangent to a
characteristic, becomes a Cauchy problem for a first-order system of the same type when u, and u,
are taken as new dependent variables. Writing

144
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b+ Vb —ac b—Vb*—ac

AL =— A=

+ -

a a
we obtain from the theory of Chapter 5 (see also Section 10.4) the following basic results for (10.4):

Theorem 10.3: The level curves of the surfaces z = F(x, y) and 2z = G(x, y) are respectively the «-
and B-characteristics of (10.4) if

dy F

=X =) lo F , = 10.5
ra FoM along F(x,y)=8 (10.5)
Y__ Gy G(x, y)= 10.6
o A along (xy)=«a (10.6)

The introduction of « and B as new coordinates in the vicinity of I' leads to the
replacement of (10.4) by the system of characteristic equations

Vo = ALX, (10.7)
Vg = A_X, (10.8)
Aca(u), + c(u), = fy, (10.9)
A_a(u)g+ c(u), = fy, (10.10)

= UK, T Uy, (10.11a)
Ug = UXg T UY, (10.11b)

The numerical method of characteristics begins with the selection of grid points P, on T’ (Fig.
10-1); u(P)), u {(P,), and u (P, are therefore known. Next, all @- and B-derivatives in (10.7)-(10.11)
are replaced by difference quotients; e.g.,

_w@-w®) ()= yQ)

(), A s AB

The result, after cancellation of Aa and AB, is a system of five algebraic equations in the five
unknowns x(Q,), y(Q,), u(Q,), u(Q,), and u, (Q,). In general, the system is nonlinear and must be
solved by an iterative technique {see Problem 10.5). With the new grid points Q, located and with
new starting values at hand, the transition can be made to the R;; and so forth.

y

F(x, y)= B

G(X, y)_al B2

Ba

Bs

Fig. 10-1
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In the event that a, b, and ¢ in (10.4) are independent of «, an a priori integration of the ordinary
differential equations (10.5) and (10.6) may be possible, yielding the characteristic curves and their
points of intersection, the grid points. In that case, (10.7) and (10.8) may be dropped from the
numerical algorithm.

Only one of the equations (10.11) need figure in the numerical method of characteristics. In the
case of a pure initial value problem, it is a good idea to check the solution obtained when (10.11a) is
used against that involving (10.11b). For an initial-boundary value problem, in calculations adjacent
to a boundary, the choice of equations (10.11) is dictated by the relative orientations of the boundary
and the «- and B-characteristics. See Problem 10.20.

10.3 FIRST-ORDER EQUATIONS
We start with the simple equation
au, tu,=f (10.12)

where a is a constant and f = f(x, t), because difference methods for (10.12) carry over directly to a
hyperbolic system of m linear first-order equations in m functions of x and ¢ Letting (x,, ) = (nh, jk)
and s = k/h, we have

Explicit (Forward-in-x) Method

U, U, U~ U,
n+l, n + n,j+ nj_ )
a A K fn/
or U,n=Q+sa)U, - saU,,,  +kf, (10.13)

Explicit (Backward-in-x) Method

Un/'_ Un—l,j + Un,/’+l_ Un/' — f
h k nj
or U, . =saU,, ;+(1-sa)U, + kf, (10.14)

Explicit (Modified Centered-in-x) Method
a U+1,,‘_ U, Un./+l—%(Un+1,/'+ Un—l,i)

n n—l,j+ _ .
2h k f,‘,
1+ sa 1-sa
or U= — Uyt — U, tkf, (10.15)

Theorem 10.4: The forward-in-x method (10.13) has local truncation error O(k + h); it is stable if
and only if -1 =sa =0.

Theorem 10.5: The backward-in-x method (10.14) has local truncation error O(k + h); it is stable if
and only if 0 < sa <1.

Theorem 10.6: The modified centered-in-x method (10.15) has local truncation error O(k + h?); it
is stable if and only if |sa| < 1.

It should be noted that the unmodified centered-in-x method, with a simple forward difference in
time, is always unstable.

A three-level explicit method for (10.12) can be obtained by estimating both u (x,, t) and
u,(x,, t) by centered differences:
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Leapfrog Method
U u .. U U

ntly noly nj+l n,/'—l=f
Il/

2h 2k
n,j—1 + Zkfn/

U
Theorem 10.7: The leapfrog method (10.16) has local truncation error O(k*+ h?); it is stable if and
only if |sa| = 1.

a
(10.16)
or U

n,j+l =

—saU,_, ,—sal

n+l,/

A two-level implicit method results from approximating both partial derivatives as an average of
forward differences:

Wendroff’s Implicit Method

~UHY+ Uy~ . Uu,...—U)+ o
o) 2(h rijes” Unjer) | (Unjer ™ Uy) 2(,?"“"” Yo = g, + (1), 1+ (k12)

or (I+sa)U,,, .+ (A—sa)U, ., ~(1~sa)U,,, ,— A +sa)U, = 2kf,.um ivan (10.17)

ntl,/

(U
a

+1,j

Theorem 10.8: Wendroff’s implicit method (10.17) has local truncation error O(k*+ h?%); it is stable.

Wendroff’s implicit method cannot be applied to a pure initial-value problem. However, for an
initial-boundary value problem, (10.17) can be used in an explicit manner (see Problem 10.8). Each
of the methods (10.13)-(10.17) can be modified to apply to the general quasilinear first-order PDE
in two independent variables.

As is shown in Problem 10.4, the scalar conservation-law equation

[F(u)],+u,=0 (10.18)
admits the
Lax—Wendroff Method (Scalar)

2
N ot 3
Fn—l./’)+z[(F, +F:’1j)(F;x+I.j—Fn/)_(F:1j+Pn—l,j)(Fnj—Fn—lJ)-I (10-"9)

ml,

s
U= U, — 5 (Fpop;—
Here, F,;=F(U,), F,,=F'(U,).
Theorem 10.9: The Lax—Wendroff method (10.19) has local truncation error O(k*>+ h%).
The stability criterion for (10.19) will depend on the function F; if F(u)= au (a =const.), the
method is stable if and only if [sa| = 1.
To avoid the calculation of F’, several two-step modifications of (10.19) have been devised. For
example,
. 1 s
U,,,- = 5 (U,.HJ + Un/') - E (le,/ - Fn,)
. . (10.20)
U= U, —s(Fy, = Frip)

n

has the same local truncation error, Q(k*+ k%), as (10.19) and reduces to (10.19) in the linear case
F(u)= au.
Next, consider the hyperbolic system of M linear first-order equations

Au, +u, =f (10.21)
where A is a constant M X M matrix and
u= [0 ), uy(x, 1), . .oy Uy (%, 0] £=[f,(x 0, (56 0), ..., fulx, D]
By Section 5.2, all M eigenvalues of A are real. The scalar numerical methods (10.13)-(10.17)
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become vector numerical methods for (10.21) when a is replaced by A (and 1= sa by I+ s5A), and U,
and f,. are replaced by

U,= [Ul,ni7 Usnjp oo UM,nj]T £, = [fl,nj’ fampp -+ > fM.n/]T (10.22)

Theorems 10.4-10.8 hold for these vector methods if, in the statements, a is replaced by A, any
eigenvalue of A.
Similarly, the Lax—Wendroff method may be extended to handle the conservation-law system

0 ou,

EF,(u,,uz,...,uM)+E=O
ou

Fu,u, ... 6 u,)+—2=0
2(1 2 M) (9[

O E y+ P _ g

— u, U, ..., u —=

ax M 1 2 M 6[

i.e., the vector conservation-law equation

[Fw)], +u, =0 (10.23)
Define the vectors U, ; as in (10.22) and write
FU, . Uy ooy Uy i)
F = Fy(Uy oy Upjp -+ -5 Uniy
nj
FM(Ul.ni’ U2,n/" sty UM.n/‘)
Let J(uy, uy, ..., uy)=[0F,/ou] (p,g=1,2,...,M) be the Jacobian matrix of the functions
F,, ..., F,, and write
J, =3, U, o UM,,./)

Then, for (10.23), we have the

Lax—~Wendroff Method (Vector)
2

) )
Un,/+1 = Unj _E(Fn-f-l,j - Fn—l,/')+ -

G, # I E =)= (40, )(E, = F, )] (10.24)

The vector version of the two-step modification (10.20) avoids calculation of the Jacobian matrix.

EXAMPLE 10.1 For f = 0, the linear system (10.21) becomes the special case F(u) = Au of (10.23). In this case,
F., = AU, J.j = A = const.
and we obtain for the homogeneous (10.21) the linear Lax— Wendroff method

2

M s
Un,j+x = Unj _EA(Un+1.,‘ - Un—j_j)+EA2(Un+1.,' = 2U,./ + U,\..l_,')

S S
= EA(sA ~ DU, — (SA—D(sA+ DU, + 5 AGSA+DU, (10.25)
Problem 10.10 treats the stability of (10.25).
The difference methods presented above, like those of Section 10.1, work best if the exact solution is

smooth. If discontinuities are present, greater accuracy will be furnished by a numerical method of
characteristics.
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104 NUMERICAL METHOD OF CHARACTERISTICS FOR FIRST-ORDER SYSTEMS

The numerical method of characteristics is applicable to initial value problems for either a single
first-order equation or a hyperbolic system of first-order equations.
First, consider the quasilinear PDE

au, +bu,=c (b#0) (10.26)

and suppose that u is given on the noncharacteristic initial curve I'. Let Q be any fixed point on I" and
% be the characteristic of (10.26) passing through Q [Fig. 10-2(a)]. By (4b) of Problem 5.3,

bdx —ady=20 and bdu—cdy=0

along €. Approximating dx, dy, and du by x(P)— x(Q), y(P)— y(Q), and u(P)— u(Q), we obtain a
pair of algebraic equations,

b[x(P)— x(Q)] - a[y(P)— y(Q)] =0 (10.27)
blu(P)— u(Q)] - c[y(P)— y(Q)] =0 (10.28)

After one of the coordinates, x(P) or y(P), of P has been selected, this system determines the other
coordinate of P and the value of u at P. The system (10.27)—(10.28)is linear only if (10.26) is linear with
constant coefficients.

B-characteristic

a-characteristic

r R r

(a) ®

Fig. 10-2

Next, consider the 2 X 2 quasilinear hyperbolic system
Au, +Bu =c¢ (det (B) # 0) (10.29)

with u= [, v]” given on I'. Using the theory of Chapter 5 (see especially Problem 5.12) to transform
from the variables x, y to characteristic coordinates «, 8, we obtain the canonical equations for
(10.29):

@ = /\lya
Xg = /\zyﬁ

* * _
bllua + b12va - C)rya

w0k
buuﬁ + ban =c3y,

where A, and A, are the (by assumption, real) zeros of det (A — AB) and where the starred coefficients

are known functions of x, y, &, v. Replacing the «- and B8-derivatives by difference quotients (per Fig.
10-2(b)) yields the following numerical method:
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x(P)—x(Q)= A [y(P)— y(Q)] (10.30)
x(P)— x(R) = A[y(P)— y(R)] (10.31)
bi[u(P)— u(Q)] + bi[v(P)— v(Q)] = ci[y(P)— y(Q)] (10.32)
bo[u(P)— u(R) + by[v(P)— v(R)] = c3[y(P) - y(R)] (10.33)

In general, the algebraic system (10.30)~(/0.33) must be solved for the unknown x(P), y(P), u(P),
and »(P) by an iterative procedure.

10.1

10.2

Solved Problems

Given the initial conditions u(x, 0) = f(x) and u,(x, 0) = g(x) for the wave equation (10.1),
show how to obtain starting values U, and U,, for the difference methods (10.2) and (10.3).

The guiding principle here is that the starting values should represent the initial data with an error no
worse than the local mruncation error of the difference method, which in the present case is O(k*+ h?).
Obviously, then, we take U,o= f(x.), as this incurs error zero.

To decide on Up,,, let us suppose that f is in C? and that (10.1) holds at +=0. Then Taylor’s
theorem gives

kZ
uU(Xn, 1) = u(x,, 0)+ ku,(x,, 0) + ? U (Xn, 0) + O(k>)

2

= u(x,, 0)+ kg(xn)+k?czf”(xn)+ O(k?)

2.2

= u(x,, 0)+ kg(x,) +W[f(x,,_,)— 2f(%n) + f(Xni)] + O(k*h* + k) 1)

where, in the last step, f"(x,) has been approximated through a second difference, according to (9.3).
From (1) it is seen that the relation

Unl - UnO kcz
8(xn) = ———— = 5 [f(xa-1) = 2f (xa) + f(Xns1)] 2)
k 2h
is satisfied by the exact solution u to within Q(kh*+ k?); i.e., letting (2) determine U, results in an error
of higher order than O(k?+ h?).

Write a computer program that uses the explicit method (10.2), with starting values as in
Problem 10.1, to approximate the solution to the initial-boundary value probiem

u,—4du, =0 0<x<1, t>0
u(x,0) = sin Zmx O0<x<1
u(x,0)=0 0<x<1
u@,)=u(l,n=0 t>0
At ¢t =1 compare the numerical results with the exact solution, u = cos 4¢ sin 27x.

Figure 10-3 gives a program listing, and Fig. 10-4 shows two runs, one stable and one unstable.
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PROGRAM EWAVE
TITLE: DEMO PROGRAM FOR EXPLICIT METHOD
FOR WAVE EQUATION, UTT = C*C*XX
INPUT: N, NUMBER OF X-SUBINTERVALS
K, TIME STEP
TMAX, MAXIMUM COMPUTATION TIME
[X1,X2), X-INTERVAL
P1(T), LEFT BOUNDARY CONDITION
P2[T), RIGHT BOUNDARY CONDITION
F[X), INITIAL CONDITION ON U
G(X), INITIAL CONDITION ON UT
E[X,T), EXACT SOLUTION
OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX
COMMON U(0:51),V[0:51),W(0:51)
REAL K
DATA T,X1,X2,C/0,0,1,2/
PI = 4*ATAN([1.)
PI(T) =D
P2(T) =0
F(X) = SIN[2*PI*X]
G(X) =0
E(X,T) = COS[4*PI*T)*SIN(2%PI*X)
PRINT®*,'ENTER TMAX,NUMBER OF X-SUBINTERVALS AND TIME STEP'

READ*, TMAX,N,K
H = [X2-X1)/N
§ = K/H

Q = C*C*s*s

SET T = 0 VALUES
DO 10 I = O,N

X =X1 + I*H

W(I) = F(X)]
CONTINUE
SET T = K VALUES
T=K
DD20 I = 1,N-1

X = X1 + I*H

VII) = WII) + K¥G(X) + ,5*0*(W(I+1) -2%W(I) + W(I-1))
CONTINUE
v(o] = P1(T)
V(N]) = P2[T)
ADVANCE SOLUTION TO TIME T+K
DO30 I =1,N1

U[I) = 2*V([I) - W(I) + Q*{Vv(I+1]) —2*Vv(I}) + V[I-1]}])
CONTINUE
T=T+K
u(o] = P1([T)
U(N} = P2([T)
WRITE V OVER W AND U OVER Vv TO PREPARE FOR NEXT TIME STEP
DO 40 I = O,N

Vv[I)

u(I)

E
P=
=
—
nun

CONTINUE

IF T IS LESS THAN TMAX, TAKE A TIME STEP
IF[ABS{TMAX-T) .6T.K/2] GOTO 15
OTHERWISE, PRINT RESULT

WRITE(6,100)

WRITE(6,110) N,K,TMAX

WRITE(6,120) T

ISTEP = .1/H
DO 50 I = O,N,ISTEP
X =X1 + I*H

EXACT = E(X,T)

WRITE(6,130) X,U(I),EXACT
CONTINUE
FORMAT(///,T8,'RESULTS FROM PROGRAM EWAVE',/)
FORMAT('N =',14,T15,'K = ',F8.6,T30,'C*C*S*S =',F5.2,/)
FORMAT('T = ',F5.2,T18,'NUMERICAL', T35, 'EXACT',/)
FORMAT( 'X = ',F4.1,T13,F13.8,T30,F13.6)
END

Fig. 10-3
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N = 10 K = 0.100000 C*C*S*S = 1.00
T= 1.00 NUMERICAL EXACT
X= 0, 0. 0.
X= 0.1 -908.209473 0.587785
X = 0.2 1556 .156250 0.851056
X = 0.3 -1734,.383179 0.851056
X = 0.4 1350.802466 0.587785
X = 0.5 —-465,.308990 0.000000
K= 0.8 /54 .274R% -Q .RE178%
X = 0.7 1566.169800 -0.951056
X = 0.8 -1B818.750488 -0.951057
X = 0.8 1211.699341 -0.587785
X= 1.0 0. -0.000000
N = 20 K = 0.010000 C*C*S*S = 1.00
T= 1.00 NUMERICAL EXACT
X = 0. 0. 0.
X = 0. 0.587232 0.587785
X = 0.2 0.8650161 0.951056
X = 0.8 0.850161 0.851056
X = 0,4 0.587232 0.587785
X = 0.5 0.000000 0.000000
X = 0.8 -0.587232 -0,587785
X = 0.7 ~-0.950161 -0.851056
X = 0.8 -0.850161 -0.851057
X = 0.9 -0.587231 -0,587785
X = 1.0 0. -0.000000
Fig. 10-4

10.3 Rework Problem 10.2 using the implicit method (10.3).

See Fig. 10-5 for a program listing, and Fig. 10-6 for a (stable) run.

PROGRAM IWAVE
TITLE: DEMO PROGRAM FOR IMPLICT METHOD
FOR UTT = C1#*C1*UXX
INPUT: N, NUMBER OF X-SUBINTERVALS
K, TIME STEP
TMAX, MAXIMUM COMPUTATION TIME
C1, CELERITY VALUE
(X1,X2), X-INTERVAL
P1(T), LEFT BOUNDARY CONDITION
P2(T), RIGHT BOUNDARY CONDITION
F(X), INITIAL CONDITION FOR U
G[X), INITIAL CONDITION FOR UT
E[(X,T), EXACT SOLUTION
OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX
COMMON/BLOCK1/A[51),B(51),C(51),D(51]),L
COMMON/BLOCK2/U(0:51) ,V[D:=51) ,W(0:51)
REAL K
DATA T,X1,X2,C1/0,0,1,2/
PI = 4*ATAN([1.]
PA(T) =0
P2(T) =0
F[X) = SIN[2*PI*X]
G(X) =0
E(X,T) = COS{4*PI*T)*SIN[2*PI*X)
PRINT*,'ENTER TMAX,NUMBER OF X-SUBINTERVALS AND TIME STEP'
READ®*, TMAX,N,K
H = [(X2-X1)/N
S = K/H
P C1*C1*s8*sS
c SET T = 0 VALUES
DO 10 I = O,N
X =X1 + I*H
W(I] = F(X]
10 CONTINUE

aogooooonooooo0o0ono0

Fig. 10-5 (Program continues on next page)
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SET T = K VALUES

T =K

po20 I =1,M1
X = X1 + I*H
VII) = W{I) + K*G[X) + .5*P*(W[I+1) - 2*W[I) + W[I-1])

CONTINUE

vio] = PA[T]

V(N] = P2[T]

DEFINE TRIDIAGONAL LINEAR SYSTEM

L =N

DO 30 I
A(I)
B(I)
C(I)
D(I)

CONTINUE

CALL TRIDIAGONAL LINEAR EQUATION SOLVER

CALL TRIDI

WHITE SOLUTION AT TIME T+K INTO THE U-ARRAY

DO 40 I = 1,N1
u(I) = D(I)

CONTINUE

T=T+ K

u(o) = P1(T]

U[N] = P2(T)

WRITE V OVER W AND U OVER V TO PREPARE FOR NEXT TIME STEP

1,L

-p

a 4. 2%

-p

4%V(I) - 2%W(I] + P*(W(I-1] - 2*°W[I] + W(I+1)]

L L A (I

DO 50 I = O,N
W(I) = V[I)
V(I) = U[I)

CONTINUE

IF T IS LESS THAN TMAX, TAKE A TIME STEP
IF(ABS(TMAX-T) .6T.K/2) GOTO 15
OTHERWISE, PRINT RESULT

WRITE(6,100)

WRITE(6,110] N,K,P

WRITE(6,120) T

ISTEP = ,4/H
DO 60 I = O,N,ISTEP
X = X1 + I%

EXACT = E(X,T)
WRITE(6,130) X,U(I),EXACT
CONTINUE
FORMAT(///,T9,'RESULTS FROM PROGRAM IWAVE',/)
FORMAT['N =',14,T15,'K = ',F8.6,T30, 'C1*C1#5*3 =',F5.2,/)
FORMAT('T = ',F5.2,T18, 'NUMERICAL',T35, ' EXACT',/)
FORMAT( 'X = ',F4,1,T13,F13.6,T30,F13.6)
END
SUBROUTINE TRIDI
COMMON/BLOCK1/A[51),B[51],C(51},D[51],L
TITLE: TRIDIAGONAL LINEAR EQUATION SOLVER FOR
A SYSTEM WITH A NONZERO DETERMINANT
INPUT: A, SUBDIAGONAL OF COEFFICIENT MATRIX
B, DIAGONAL OF COEFFICIENT MATRIX
C, SUPERDIAGONAL OF COEFFICIENT MATRIX
0, RIGHT HAND SIDE OF LINEAR SYSTEM
L, NUMBER OF LINEAR EQUATIONS
OUTPUT: SOLUTION OF LINEAR SYSTEM STORED IN D-ARRAY
FORWARD SUBSTITUTE TO ELIMINATE THE SUBDIAGONAL ELEMENTS
DO11I=2,L
RT = -A[I}/B[I-1)
B(I) = B[I) + RT*C[I-1)
D(I) = D[I) + RT*D(I-1)
CONT INUE
BACK SUBSTITUTE AND STORE THE SOLUTION IN D-ARRAY
D(L) = D[L)/B[L)
DO21I=1-1,1,41
D(I}) = [D(I) - C[I)*D(I+1)]/B[I}
CONTINUE
RETURN
END

Fig. 10-5 (Conninued)
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20 K = 0.010000 C*C*S*S = 0.16 N= 20 K = 0.050000 C*C*S*S = 4.00
1.00 NUMERICAL EXACT T= 1.00 NUMERICAL EXACT

0. 0. 0. X = 0. 0. 0.

0.1 0.585313 0.587785 X = 0.1 0.365416 0.587785
0.2 0.947058 0.951056 X = 0.2 0.531255 0.951056
0.3 0.947057 0.951056 X = 0.3 0.581255 0.951056
0.4 0.585313 0.587785 X = 0.4 0.365415 0.587785
0.5 -0.000001 0.000000 X = 0.5 0.000000 0.000000
0.6 -0,585314 -0.587785 X = 0.6 -0.365415 -0.587785
0.7 -0,947057 -0.951058 X = 0.7 -0,591254 -0.951056
0.8 -0.947058 -0,951057 X = 0.8 ~0.591254 ~0.851057
0.9 -0.585314 -0,587785 X = 0.9 -0.365415 -0.587785
1.0 0. -0.000000 X= 1.0 0. -0.000000

Fig. 10-6

10.4 \ Derive the Lax—Wendroff method (10.19).

10.5

A Taylor expansion in ¢ gives
2
U(Xn, te1) = U(Xn, )+ Ktti(Xn, ) + 5 Up (Xn, i)+ -0 -

By (10.18), u, = —[F(u)]x, and so, using a centered x-difference,

_ F(uner) = Fun-1.s)
2h

ul(xm 'i) ~=

(1)

@)

Furthermore, u,, = [F'(«) [F(u)]:].. Now, the usual centered second difierence is the forward difference

of a backward difference; that is,

82n = (Pnr1— n) = (dn — Pn))
Hence we approximate the “inside” x-derivative above as
[F(u)]. ~ F(u,) —hF(un—l.i)
and represent its multiplier by a mean value:

_ F'(un) + F(ua-1)
2

F'(u)

The forward differencing corresponding to the “outside™ derivative then gives

1 [F'(un+1.i)+ F'(unj) F(tns1) = F(unj)  F'(tn) + F'(tn-1,,) Ftn;) = F(un—x,i)}

re m" =
Oy )= 2 A 2 h

Substitution of (2) and (3) in (/), and replacement of u by U, yields (10.19).

In terms of Fig. 10-2(b), the difference equations corresponding to (1{.7)—(10.11a) are
y(P)= y(Q)= A, [x(P)~ x(Q)]
y(P)= y(R)= A_[x(P) = x(R)]
Acalu,(P)— u (Q)] + clu,(P)— u,(Q)] = fly(P)— y(Q)]
A_alu, (P) = u (R)] + c[u,(P) = u,(R)] = fly(P) - y(R)]

P)
w4y o+ 4D ) (0

Give an iterative method for the solution of this nonlinear system.

u(P)~ u(Q)=

(1)
2)
3)
4)

3)
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One possibility is as follows. Calculate a first estimate, x(P'), y(P'), of x(P), y(P), by solving
(1)=(2) with A, = A.(Q) and A_ = A_(R):

_Y(R)—y(Q)+ A.(Q)x(Q)~ A-(R)x(R)

=) A(Q) - A-(R) @
by A QYR A (R)Y(Q) + A (QA-(RIHQ) = x(R) -
e X.(Q)— A_(R)

Next, calculate a first approximation, u.(PY), u,(P"), to u.(P), u,(P), by solving (3)—(4) with A, =
A:(Q), a=a(Q), ¢ =¢(Q), f=f(Q), y(P)=y(P"), in (3); and A-=A_(R), a=a(R), c=c(R), f=
f(R), y(P)=y(P"), in (4):

¢(R)B1(Q) — ¢(Q)BAR)

u(P") = (8)
A+(Q)a(Q)c(R)—A-(R)a(R)c(Q)

A+(Q)a(Q)Bx(R) ~ A-(R)a(R)B.«(Q)

PYHY= 9
)= A@)a(@) (R - A (R)a(R)e(Q) @
where Bi(Q)=+(Q)a(Q)u:(Q) + c(Q)u,(Q)+ f(Q)[y(P") — y(Q)]
By(R)=A-(R)a(R)u«(R)+ c¢(R) u(R) + f(R)[y(P") — y(R)]
Now u(P') can be calculated from (5) as
X Pl X Pl O
atP) = u(@)+ =D 1y o+ D 1y - (0 (10)
Upon the introduction of the averaged coefficients
A= [A(O)+ AL (P2 A =[A(R)+ A_(P)]2
a’ =[a(Q)+ a(PH]/2 &’ =[a(R)+ a(P)]/2
&’ =[e(Q)+ c(P))/2 & =[c(R)+ c(P]2
fr=1fQ)+ f(P")]12 F =R+ f(P))2
Bi= A.a'u:(Q) + &'u,(Q)+ f'[y(P) — y(Q)]
Bh=2_ @’u(R)+ ¢’uy(R) + f/[y(P") ~ y(R)]
successive approximations can be calculated for j = 1,2, ..., as follows:
x(Piﬂ)___Y(R)_}J(O)t./\k—{(o)_'\/—x(R) (11)
AL —AL
y(p1+1)_A¢Y(R)—Aiy(<?_)+A4 L[x(Q) - x(R)] (12)
Ab—aAl
Pty = &Bi- B 13
SR VT VY ()
piony L Aha/Bh- KL B y
SR VT V] (14)
) " P,+l " ) Pj+1
u(Pr = (@) + L ey o+ HEDE D ooy g0y as)

The iterations using (11)—(15) are continued until two successive estimates agree to within some set
tolerance.

10.6 Use the numerical method of characteristics to approximate the solution to

T uzuw =0 u(x,0)=x u,(x,0)=2

at the first characteristic grid point P between Q = (1,0) and R = (1.2, 0).
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Using the notation of Problem 10.5, we have:

x()=1 y(Q)=0 x(R)=1.2 y(R)=0
u (=1 u,(Q)=2 w(R)=1 u,(R)=2
u(@=1 u(R)=12 A+(Q) = u(Q) A-(R)=—-u(R)

a(Q)=1=a(R) c(Q)= -u(Qy’ c(R)=—u(R) flQ)=0=f(R)
Putting the above values in (6)-(10) of Problem 10.5, we obtain
x(PYHY=1.109 y(PYH=0.109 u(PH=1 w,(PY=2 u(PY=1.3273

Using these values to initiate the successive approximations defined by (11)—(15) of Problem 10.5, we
obtain the values displayed in Table 10-1. (The exact solution is u = x +2y.)

Table 10-1
j x(P’) y(P') u(P") 1, (P) u(P’)
1 | 1.10909 | 0.10909 1 2 1.32727
2 | 110412 | 0.12116 1 2 1.34644
3 | 1.10409 | 0.12212 1 2 1.34832
4 | 110408 | 0.12221 1 2 1.34851
5 | 110408 | 0.12221 1 2 1.34853
6 | 1.10408 | 0.12221 1 2 1.34853

Use the linear Lax—Wendroff method (10.25) (1 x 1 version) to approximate the solution to

u,+u =0 x>0, 1>0
u(x,0)=2+x x>0
u@©,N=2-~1 t>0

At t=0.5, for 0= x =1, compare the numerical solution with the exact solution, u =2+ x — ¢

A program listing is given in Fig. 10-7, and the results of a stable run and an unstable run are
displayed in Fig. 10-8. The exact agreement in the stable run is explained by noting that the analytical
solution is linear in x and ¢ and therefore the local truncation error is zero. Thus, the only errors in the
calculation are rounding errors. The unstable run illustrates the growth of these errors even in the
absence of any truncation errors.

PROGRAM LLAXW

c TITLE: DEMO PROGRAM FOR LAX-WENDROFF METHOD
c FOR LINEAR EQUATION UX + UT = O
C INPUT: H, X-GRID SPACING
C K, TIME STEP (K/H < 1 FOR STABILITY)
C TMAX, MAXIMUM COMPUTATION TIME
C F(X), INITIAL CONDITION ON U, U[X,0) = F[X]
C P(T), BOUNDARY CONDITION, U(0,T) = P(T)
c E(X,T), EXACT SOLUTION
C OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX
COMMON U(D:500),V(0:500)
REAL K
F(X) = 2 + X
P[T) =2 - T
E(X,T) =2 +X-T
PRINT*, 'ENTER TMAX,X-GRID SPACING AND TIME STEP'
READ*, TMAX, H, K
T=0
S = K/H

Fig. 10-7 (Program continues on next page)
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DEFINE SUFFICIENTLY LARGE NUMERICAL INITIAL INTERVAL
NMAX = 1/H + TMAX/K + 1
SET INITIAL CONDITION
DO 10 I = 0,NMAX
X = I*H
VII) = F[X)
CONTINUE
ADVANCE SOLUTION TO TIME T+K AND SET BOUNDARY VALUES
DO 30 I = 1,NMAX—
U[I)=V(I)-.5%5*[V[I+1)-V[I-1})+.5%S*5*[V[I-1]}—-2%*V[1}+V[I+1)])
CONTINUE

T=T+K
NMAX = NMAX -1
u(o] = P(T)

WRITE U OVER V TO PREPARE FOR ANOTHER TIME STEP
DO 40 I = 0,NMAX
V(1] = u(1)
CONTINUE
IF T IS LESS THAN TMAX, TAKE ANOTHER TIME STEP
IF(ABS(TMAX-T).GT.K/2) GOTO 15
IF T EQUALS TMAX, PRINT RESULT
WRITE(6,100)
WRITE(6,110) H,K,S
WRITE(6,120) TMAX
ISTEP = .1/H
IMAX = 1/H
DO 50 I = O,IMAX,ISTEP
X = I*H
EXACT =2 + X - T
WRITE(B,130) X,U[I),EXACT
CONTINUE
FORMAT(///,T9, 'RESULTS FROM PROGRAM LLAXW',/)
FORMAT('H =',F5.2,T15,'K = ',F5.2,T30,'S =',F5.2,/])
FORMAT('T =',F5.2,T18, 'NUMERICAL' , T35, ' EXACT! ,/)
FORMAT( 'X = ',F4,1,T13,F13.6,T30,F13.6)
END

Fig. 10-7 (Continued)

H = D0.10 K= 0,10 S =1.00

T = D.50 NUMERICAL EXACT

X = 0. 1.500000 1.500000
X = 0.1 1.600000 1.600000
X = 0.2 1.700000 1.700000
X= 0.3 1.800000 1.800000
X = D.4 1.900000 1.900000
X = 0.5 2.000000 2.000000
X = 0.8 2.100001 2.100000
X = 0.7 2,200001 2.200000
X = 0.8 2.300001 2,300000
X = 0.8 2,400001 2.400000
X= 1.0 2.500001 2.,500000
H = 0.02 K= 0,04 S = 2.00

T = 0.50 NUMERICAL EXACT

X = 0. 1.480000 1.480000
X= 0.1 —228.27848B8 1.580000
X = 0.2 1824 ,328346 1.680000
X = 0.3 -314.192566 1.780000
X = 0.4 1201.677368 1.880000
X = 0.5 -1047 .932617 1.880000
X = 0.6 448 ,913300 2.080000
X = 0.7 -1787 .070678 2.180000
X = 0,8 70.088160 2.280000
X = 0.9 1202.175171 2.380000
X = 1.0 -1033.822974 2.480000

Fig. 10-8
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10.8

Apply Wendroff's implicit method (10.17) to the initial-boundary value problem of Problem
10.7 with s = 2.00, the case in which the Lax—Wendroff method proved to be unstable.

See Figs. 10-9 and 10-10. As expected, this stable method produces the exact solution. Notice that
even though the difference method is implicit, the calculations in the program proceed from left to right

DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS

in x, in an explicit manner.
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PROGRAM WENDI

TITLE: DEMO PROGRAM FOR WENDROFF'S IMPLICIT
METHOD FOR EQUATION UX + UT =0

INPUT: N, NUMBER OF X-SUBINTERVALS
K, TIME STEP [K/H < 1 FOR STABILITY]
TMAX, MAXIMUM COMPUTATION TIME
(X1,X2), X-INTERVAL
F(X], INITIAL CONDITION ON U, U(X,0) = F(X]
P(T), BOUNDARY CONDITION, U(D,T) = P(T)
E(X,T)}, EXACT SOLUTION

OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX

COMMON U{0:500),v(0:500)

REAL K

DATA T,X1,X2/0,0,1/

F(X) =2 +X

P(T) =2 -T

E[X,T) =2 + X - T

SET TMAX AND X AND T STEP SIZES

PRINT*,'ENTER TMAX,NUMBER DF X-SUBINTERVALS AND TIME STEP’

o

READ*®, TMAX, N, K
H = [X2-X1)/N
S = K/H

SET INITIAL CONDITION AND BOUNDARY CONDITION
po 10 I = O,N
X = X1 + I*H
V(I) = F[X]
CONTINUE
u{o] = P(K)
ADVANCE SOLUTION TO TIME T+K AND SET BOUNDARY VALUE
T=T+K
u(o) = P(T)
DO 30 I =1,N
UlI)=V{I1]}+(1-8)1*(V[I]) - U{I-1))/(1+8)
CONTINUE
WRITE U OVER V TO PREPARE FOR ANOTHER TIME STEP

DO 40 I = O,N
viI) = u(I)
CONTINUE

IF T IS LESS THAN TMAX, TAKE ANOTHER TIME STEP
IF[ABS[TMAX-T).GT.K/2] GOTO 15
IF T EQUALS TMAX, PRINT RESULT
WRITE(6,100)
WRITE(6,110) N,K,S
WRITE(6,120] TMAX
ISTEP = ,1/H
IMAX = 1/H
DO 50 I = O,IMAX,ISTEP
X = X1 + I*
EXACT = 2 + X - T
WRITE(6,130) X,U(I],EXACT
CONTINUE
FORMAT(///,T8, 'RESULTS FROM PROGRAM WENDI',/)
FORMAT('N =',I4,T15,'K = ',F5.2,T30,'S =',F5.2,/]
FORMAT('T =',F5.2,T18, 'NUMERICAL' ,T35,'EXACT',/)
FORMAT( 'X = ',F4,1,T13,F13.6,T30,F13.6)
END

Fig. 10-9
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N =100 K= 0.02 s = 2,00

T = 0,50 NUMERICAL EXACT

X = 0. 1.500000 1,500000
X= 0. 1.800000 1.600000
X = 0.2 1.700000 1.700000
X = 0.3 1.800000 1.B00000
X = 0.4 1.900000 1.800000
X = 0.5 2,000000 2,000000
X = 0.6 2.100000 2.100000
X = 0.7 2.200000 2,200000
X = 0.8 2.300000 2.300000
X = 0.9 2.400000 2,400000
X= 1.0 2.500000 2,500000

Fig. 10-10

PROGRAM CLAXW
TITLE: DEMO PROGRAM FOR LAX-WENDORFF METHOD
FOR CONSERVATION EQUATION [U*U/2)X+UT=0
INPUT: H, X-GRID SPACING
K, TIME STEP
TMAX, MAXIMUM COMPUTATION TIME
F[X), INITIAL CONDITION ON U, U(X,0) = F(X]
P(T), BOUNDARY CONDITION, U(0,T) = P[T)
E(X,T), EXACT SOLUTION
OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX
COMMON U(0:500),V(0:500)

REAL K
F(X] =X
P(T] =0

E(X,T) = X/[1+T)
SET TMAX AND X AND T STEP SIZES
PRINT®*,"ENTER TMAX,X-GRID SPACING AND TIME STEP'

READ*, TMAX, H, K
T=0
S = K/H

DEFINE SUFFICIENTLY LARGE NUMERICAL INITIAL INTERVAL
NMAX = 1/H + TMAX/K + 1
SET INITIAL CONDITION
00 10 I = DO,NMAX
X = I*H
V(I) =X
CONTINUE
ADVANCE SOLUTION TO TIME T+K AND SET BOUNDARY VALUES
DO 30 I = 1,NMAX-1
U(I) =Vv(I) - .5*S*(V[I+1])**2-v[I-1]**2])/2

U(I) = U[I) + S*S*(V[I+1)+V(I))*[V[I+1)**2-V[I]**2])/B
U[I) = U[I) - S*S*(V[I)+V[I-1]])*(ViL]**2-V[I-1])**2)/8
CONTINUE
T=T+K
NMAX = NMAX —1
u(o] =0
WAITE U OVER V TO PREPARE FOR ANOTHER TIME STEP
DO 40 I = 0O,NMAX
V(I) = U[I)

CONTINUE
IF T IS LESS THAN TMAX, TAKE ANOTHER TIME STEP
IF(ABS(TMAX-T).6T.K/2) GOTO 15
IF T EQUALS TMAX, PRINT RESULT
WRITE(6,100)
WRITE(B,110) H,K,S
WRITE(6,120) TMAX
ISTEP = ,1/H
IMAX = 1/H
DO 50 I = 0O,IMAX,ISTEP
X = I*H
EXACT = X/[1 + T)
WRITE(6,130) X,U[I),EXACT
CONTINUE
FORMAT(///,T9,'RESULTS FROM PROGRAM CLAXW',/)
FORMAT('H =',F5.2,T45,'K = ',F5,2,T30,'S =',F5.2,/)
FORMAT('T =',F5.2,T18, 'NUMERICAL' , T35, ' EXACT',/)
FORMAT( 'X = ',F4.1,T13,F13.6,T30,F13.6)
END
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10.9 Use the Lax—Wendroff method (10.19) to approximate the solution of

(u2/2)x+u1=0 x>0, t>0 i
u(x,0)=x x>0
u@,6=0 t>0
At t=1, for 0= x =1, compare the numerical solution with the exact solution, u = x/(1+ f).

See Figs. 10-11 and 10-12. A “‘sufficiently large numerical initial interval” is one that includes the
numerical domain of dependence of the interval on which it is desired to approximate the solution.

H = 0.10 K= 0.10 § = 1.00
= 1.00 NUMERICAL EXACT

X = 0. 0. 0.

X = 0.1 0.050146 0.050000
X = 0.2 0.100292 0.100000
X = 0.3 0.150438 0.150000
X = 0.4 0.200585 0.200000
X = 0.5 0.250731 0.250000
X = 0.6 0.300877 0.300000
X = 0.7 0.351023 0.350000
X = 0.8 0.4C1169 0.400000
X = 0.9 0.451315 0.450000
X = 1.0 0.501461 0.500000

Fig. 10-12

10.10 Show that a necessary condition for the linear Lax—Wendroff method (10.25) to be stable is
that |sA| =1 for each of the eigenvalues A of the matrix A.

Making a von Neumann analysis (see Problem 9.5), we substitute
E.j=e™ [, 65 .., EM]T
in (10.25), obtaining [£1"", ..., &' T = Gl&, . . ., £m]", where

G=1I- (issin B)A - (252 sin2§> Al (1)

For stability, all eigenvalues p of the amplification matrix G must satisfy [p| = 1. But the eigenvalues
of the matrix polynomial (1) are the values of the polynomial at the eigenvalues A of A:
o 2 2B\
p=1—(issin B)A — | 2s smE A 2)

From (2), since A is real,
2

| |?= [1 - (252 sin? g) AZ] + [(s sin B)A)?

=1—@§M§ﬁﬂ—p) (p =527 3)

It is clear from (3) that |w[>*=<1 for all 8 only if 0= p =< 1; i.e., only if [sA| = 1. This condition is (it can be
shown) also sufficient for stability.

10.11 Use the linear Lax—Wendroff method (70.25) to approximate the solution te the initial value

[ SIELAL Lo

u(x,0)=sinx v(x,0)=cosx

At t=0.5, for 0= x =1, compare the numerical solution with the exact solution,
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PROGRAM SLAXW
TITLE: DEMO PROGRAM FOR LAX-WENDORFF METHOD .
FOR SYSTEM OF TWO EQUATIONS, AUX + UT = 0
INPUT: H, X-GRID SPACING
K, TIME STEP
TMAX, MAXIMUM COMPUTATION TIME
FU(X) & FV[X),INITIAL CONDITION ON U & V
EU(X,T) & EV(X,T), EXACT U & vV SOLUTIONS
A & B, COEFFICIENT MATRIX AND ITS SQUARE
OUTPUT: NUMERICAL AND EXACT SOLUTION AT T=TMAX
COMMON U([D:500],v(0:500),UN([D:500),VN(D:500),A(2,2),B(2,2)
REAL K
FU(X] = SIN(X]
FV[X] = COS[X]
EU(X,T) = (B*SIN[X-3*T]-6*C0OS(X-3*T))/5
+ (B*COS[X+2*T)-SIN(X+2*T])/5
(SIN(X-3*T)-COS(X-3*T))/5
+ [B*COS[X+2*T)-SIN[X+2*T] )/
SET COEFFICIENT MATRIX AND ITS SQUARE
DATA A(1,1),A(1,2],A[2,1),A(2,2)/4,-6,1,-3/
DATA B[1,1),B(1,2),B(2,1],8(2,2)/10,-6,1,3/
SET TMAX AND X AND T STEP SIZES
PRINT®*, "ENTER TMAX,X~GRID SPACING AND TIME STEP'

READ*, TMAX, H, K
T=0
S = K/H

DEFINE SUFFICIENTLY LARGE NUMERICAL INITIAL INTERVAL
NLOW = TMAX/K #1
NHIGH = NLOW + 1/H
NMAX = NHIGH + NLOW
SET INITIAL CONDITION
DO 10 I = 0O,NMAX
X = (-NLOW + I)*H
U[T] = FU(X)
V[(I) = FV([X)
CONTINUE
ADVANCE SOLUTION TO TIME T+K
ILOW = 1
DO 30 I = ILOW,NMAX—1
UN(I}=U[I]-.5%S*A(1,1)*(U(I+1)-U{1-1]}]

- .5*S*A(1,2) ¥ (VII+1)-Vv[I-1]])
+  5*s*B(1,1)*(U(I~1)-2%U(1)+U(I+1})/2
+  6*5*B(1,2])*(V[(I-1)-2*v[I)}+V[I+1]]/2
VN[I)=V[I)-.5*5*A(2,1)*(U(I+])-U(I-1])
- .5®S5*A[2,2)*[V[IH)-V[I-1])
+  §*s*B(2,1)%(U[I-1])-2%u(1)+U(I+1])/2
+ g*s*B(a,2]*(V[I-1)-2*V([I)+V[I+1])])/2
CONTINUE
T=T+K
ILOW = ILOW + 1
NMAX = NMAX - 1
WRITE U DVER UN AND VM OVER V TO PREPARE FOR NEXT TIME STEP
DO 40 I = ILOW,NMAX
U(I) = UN[I)
V(1) = VN[I)
CONTINUE

IF T 1S LESS THAN TMAX, TAKE ANOTHER TIME STEP
IF(ABS(TMAX-T) .GT.K/2) GOTD 15
IF T EQUALS TMAX, PRINT RESULT
WRITE(E,100]
WRITE(6,110) H,K,5
WRITE(6,120) TMAX
ISTEP = .1/H
IMAX = 1/H + ILOW
DO 50 I = ILOW,IMAX,ISTEP

X = (I - ILOW}*H

EXACTU = EU[X,T)

EXACTV = EV(X,T)

WRITE(B,130) X,U[I),EXACTU

WRITE(6,140) V(I),EXACTV
CONTINUE
FORMAT(///,T9,"'RESULTS FROM PROGRAM SLAXW',/)
FORMAT('H =',F5.2,T15,'K = ',F7.4,T30,'S =',F5.2,/)
FORMAT('T =',F5.2,T18, 'NUMERICAL' ,T35,'EXACT',/)
FORMAT( 'X = ',F4,1,T13,'U=',F10.6,T30,'U=",F10.8)
FORMAT( T33,'v=',F10.6,T30,'V=",F10.6,/]
END

Fig. 10-13
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u(x, 1) =[6sin (x ~31)— 6 cos (x —3¢) —sin (x + 2¢) — 6 cos (x + 2¢)}/5
v(x, &) = [sin (x — 3r) — cos (x —3¢) —sin (x + 28+ 6 cos (x + 20)]/5

Since the eigenvalues of

[ )

[CHAP. 10

are Ay = —2, A, =3, it follows from Problem 10.10 that the stability condition in this case is 3k/h =< 1. In
the program of Fig. 10-13, note that to obtain a numerical solution on the line £: = tpu, 0 =x =1, the
initial interval in the finite-difference calculation must be large enough to include the numerical domain

of dependence of .£. Comparison of the numerical and exact solutions is made in Fig. 10-14.

H
T
X

0.05
0.50

0.

0.1

0.5

0.8

0.7

0.8

0.9

K = 0.0125 S =0.25

NUMERICAL

= -0.801758 =
= 0.266720 =

= —1.020323 =
= 0,135308 =

U= -1.228694 =
= 0,002545 =

U= -1.424788 =
= —0,130245 =

U= -1.606646 U=
= -0.261732 =

= —1.772451 =
v= -0.390605 =

= -1.520546 =
= -0.515574 =

= —2.048451 =
= -0.635392 =

U= -2.157878 U=
= -~0.748B8862 =

U= -2.244747 =
= —-0.854849 V=

U= -2.3091886 =
= —0.952285 =

Fig. 10-14

EXACT

-0.801810
0.266422

—1.020427
0.134991

—1.228847
0.002211

—1.424989
-0.130682

-1.606893
-0.262090

=1.772742
-0.390989

-1.520878
-0.515841

—2.048821
-0.635758

-2.158283
-0.749224

-2.245180
—0.855203

-2.309645
—-0.952887

10.12 Use the numerical method of characteristics to estimate, at y = 0.01,0.1, 0.2, 0.3, the solution

to

— 3
uu, +u, = 2u

u(x,0)=x

on the characteristic through Q= (1, 0). Then compare the numerical results with the exact

solution.

In the notation of Section 10.4, we have a =u, b=1, ¢ = -2, x(Q)=1, y(Q)=0. The system

(10.27)-(10.28) becomes

which is to be solved for x(P) and u(P) corresponding to the four given values of y(P).

[x(P) = x(Q)] — u[y(P)~ y(D)] = 0
[u(P)— u(Q)]+ 24’ y(P)— y(Q)] = 0
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10.13

From the initial condition u(x, 0) = x, we have u(Q)=1; so, an initial estimate x(Po), u(Po), can be
determined by solving

[x(Po)— 1] = u(Q)y(P) =0
[(Po)— 1]+ 2u(QPy(P)=0

to obtain x(Py)= 1+ y(P), u(Po)=1—2y(P). Now successive approximations can be defined by solving

_ w(Q)+ u(P-)

[x(F)-1] > y(P)=0
2u(OY +2u(P._
[y~ 1+ 2L 2By
for j=1,2, ..., until two approximations agree to within a set tolerance. For a tolerance of 1078, fewer

than 20 iterations will be required.
By the method of Problem 5.5, the exact solution along the characteristic s = 1 is found to be

1
u(r,1)=(Q+4r)"? x(r, 1)=5[(1+4r)”2+ 1] y(r,)=r
The numerical and exact results for x and u at y = r =0.01,0.1,0.2, 0.3, are compared in Table 10-2.

Table 10-2

Numerical Exact

y(P) x(P) u(P) x(P) u(P)

0.01 1.00990286 0.980571601 1.00990195 0.98058069
0.1 1.09203010 0.840602064 1.09160798 0.84515425
0.2 1.17240756 0.724075551 1.17082039 0.74535599
0.3 1.24394498 0.626299874 1.24161985 0.67419986

By Problem 5.12, the open-channel flow equations can be expressed in characteristic «f3-
coordinates as

2¢, v, = S(x, v)t, (1)
2¢,— vy =—S(x, v) 45 (2)
x, = Ay, o)t (3)
X5 = Ay(v, €)1ty 4)

where c =V gu, A (v, c)=v+ ¢, A1, c)=v—¢, and S(x, v} =g[5,(x)— S,(vz)]. Assuming that
¢(x, 0) and v(x, 0) are prescribed, obtain a numerical solution of (1)-(4) by Hartree's method,
which uses a rectangular grid, (x,, )= (nh, jk).

It is sufficient to show how the solution is advanced from level j 10 level j + 1 (Fig. 10-15). Assume ¢
and v are known at the grid points on level j and let P have coordinates (%, fj+;). The «- and
B-characteristics through P intersect the line ¢t=1¢ at Q and R, respectively. For error control,
K=t~ 1 is chosen small enough to locate x(Q) and x(R) between x,-1 and Xq+.1.

If (1)—(4) is discretized using averages of the coefficients at 1; and .., there results

S(PY+ S
2[c(P)— c(D)] + [v(P)- v(Q)] = eyt S0) ); 22) k (5)
S(P)+ S(R
2e(P)- c(R)] - [o(P) - v(RY) = — ST SR 6)

2



164 DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS [CHAP. 10

ﬁ@_'— A’(_O)k

x(P)-x(Q)= > (7)
Py a(Ry « PV AR) ®

where S(P)= S(x(P), v(P)), etc. (5)-(8) constitutes four nonlinear equations in the four unknowns
x(Q), x(R), ¢(P), v(P); the quantities ¢(Q), v(Q), ¢(R), v(R) are evaluated by interpolation between
the grid points on ¢ = ;. The system may be solved by an iterative procedure similar to the one outlined
in Problem 10.5.

« = const. B = const.

b — 4 — — — -
| | I
] 1 1
Xn-1 Xn Xn+1 X
Fig. 10-15

Supplementary Problems

10.14 Demonstrate the von Neumann stability of (10.17).

10.15 (a) On a grid (x., Ym, ;) = (nh, mh, jk), derive an explicit difference equation for the wave equation
Uy — e + Uyy) =0

(b) Use the von Neumann method to derive a stability condition.

10.16 Consider the initial value problem

u,—4u,, =0 —oo << x <oo, >0
u(x,0)=cos x —o0 <l x <o
u(x,0)=0 —o < x < ®

(a) Find the D’Alembert solution and evaluate it at x = 0, ¢t = 0.04, (b) With h = 0.1, k = 0.02, use (10.2)
and the starting formula (2) of Problem 10.1 to calculate Up = u(0, 0.04). (¢) Repeat (b) for the (cruder)
starting formula

U, = U,o = cos nh

10.17 (a) Construct a centered-difference approximation to the damped wave equation
Uy = g, — 2bu, (b>0)

(b) Make a von Neumann stability analysis of your method. [Hint: The analysis is similar to Problem
9.20.] (¢) Show that in the limiting case c*s®=1, the method becomes the DuFort—Frankel method
(9.19). [Hint: In Problem 9.10, set h*/k*=c? and a®= c?/2b.]
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10.18 (a) Solve analytically the mixed boundary value problem

10.19

10.20

10.21

10.22

10.23

10.24

10.25

10.26

Pl — YUy, =1 x>1, y>1
u(x, 1) =log x x>1
u,(x, 1)=2 x>1
u(l,y)=2logy y>1

[Hint:  Assume u(x, y)= X(x)+ Y(y).] (b) Determine the characteristics of the PDE.

(a) Write out the characteristic equations (10.7)—(10.11) for Problem 10.18. (b) Integrate the first two
characteristic equations to obtain the first characteristic grid point, P, between Q= (2,1) and R =
(2.1, 1). (¢) Difference the remaining characteristic equations and estimate u.(P), u,(P), and u(P);
compare these values with those furnished by the analytical solution.

Show that to apply the method of characteristics to (10.4) in the region : x>0, y >0, it is necessary
that # and u, be given on y =0 (y is the timelike variable). Moreover, show that (i) if A, >0 and A_ <0
in {2, then u or u, or a linear combination of « and u, must be specified on x = 0; (i) if A, >0 and
A_>0, then u and u, must be specified on x = 0; (iii) if A, <0 and A- <0, then neither u nor u, can be
specified on x = 0 independently of the values of u(x, 0) and u,(x, 0).

(a) Verify that u = xy solves
Uee — UPu,, =0 x>0, y>2
ulx,2)=2x x>0
u,{x,2)=x x>0

(b) Determine the characteristics of the PDE and the location of the first characteristic grid point, P,
between Q = (1,2) and R = (2, 2).

Use the numerical method of characteristics to obtain the inifial approximation to the solution of
Problem 10.21 at grid point P. Compare the numerical and the exact results.

(a) With h = 0.5 and k& = 0.2, apply (10.13) to approximate the solution to u, ~ 2u, = u, u(x, 0) = cos x, at
(x, 1) = (1, k). Compare the numerical solution with the exact solution, u = e’ cos (x + 2¢). (b) Repeat
with & =0.1 and k& = 0.04.

(@) With h = 0.5 and k = 0.2, apply (/0.14) to approximate the solution to u, + 2u, = 1, u(x, 0) = sin x, at
(x, £) = (1, k). Compare the numerical solution with the exact solution, u = ¢ +sin (x — 2¢). (b) Repeat with
h=0.1and kK =0.04.

With £ =0.1 and k& = 0.1, apply Wendroff’s implicit method (10.17) to approximate the solution to the
initial-boundary value problem

u+2u, =1 x>0, (>0
u(x,0)=sinx x>0
u(0, t)=t—sin 2t t>0

at (x, t) = (0.1,0.1). Compare the numerical solution with the exact solution, u = ¢+ sin (x — 21).

With & = 0.1 and k = 0.2, apply Wendroff’s implicit method (10.17) to approximate the solution to

U — U =x—t x<1,t>0
u(x,)=20 x<1
u(l,nN=1 t>0

at (x, t)=(0.9,0.2). Compare the numerical solution with the exact solution, u = xt.
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10.27

10.28

10.29

10.30

DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS [CHAP. 10

Use the change of variable v = ¢™'u to transform u, —2u, = u, u(x,0)=cos x to v,—2pv, =0, v(x,0)=
cos x. With A =0.5 and k = 0.2, apply the Lax-Wendroff method (10.19), where F(v)= —2v, to ap-
proximate v at (x, 1) = (0.5,0.2). Recover u and compare the numerical result with the exact solution
from Problem 10.23.

With A =0.1 and k = 0.2, apply the Lax—Wendroff method (10.19) to approximate the solution to

H2

(~24> +u, =0, u(x,0=x

x

at (x, t) = (0.2, 0.2). Compare the numerical solution with the exact solution, u = x(1+1¢)"".

Use the numerical method of characteristics to obtain an initial approximation to the solution of

Yo+ xiy, = x*+y? —eo<x <o, y>0
u(x,0)=0 —o0 < x <00

at y = 0.3 on the characteristic through (1, 0). Show analytically that the equation of this characteristic is
y=(x*—1)"? and that u= xy is the exact solution to the problem. Compare numerical and exact
solutions.
Use the numerical method of characteristics to estimate the solution of

uuy — yu, = x, u{x, )=x-2

at y = 1.5 on the characteristic through (2,0). Compare the numerical results with the exact solution,
u=x-2y.



Chapter 11

Difference Methods for
Elliptic Equations

11.1 LINEAR ALGEBRAIC EQUATIONS

In a linear elliptic boundary value problem, if all derivatives are replaced by their corresponding
difference quotients, a system of linear algebraic equations results.

EXAMPLE 11.1 On the square 2: 0<x < ¢, 0 <y < ¢, consider the Dirichlet problem for Poisson’s equation,
Uex + Uy = f(x, y) in Q (11.1)
u=g(xy) on S (11.2)

Choosing a mesh spacing h = ¢/4, define on £} the grid points
(tm, ya) = (mh, nh) ~ (m,n=0,1,2,3,4)

Using central differences to approximate u.. and u,,, one obtains the difference equation

Uns1n= 2Unmn ¥ Un-in . Uninit = 2Us ¥ Upns
p L — = Foen (11.3)

where f... = f(x.., y»), and the boundary values are U ,in = g ., fOr m or n equal to 0 or 4.
A system like (11.3)is more clearly displayed as a system of linear equations if the grid points are labeled by a
single index. Thus, if the interior nodes are ordered left-to-right and bottom-to-top, as in Fig. 11-1, then we can write

Un= U, Uy =U,,.. ., and can reindex f similarly. With this indexing, multiplication of (11.3) by —h* produces
the following nine linear equations in the nine unknowns U, :
4 -1 06 -1 o o o o ol[u] [B(]
-1 4 -1 0 -1 0 0 0 0| U B,
0 -1 4 0 0 -1 0 0 01| Us Bs
-1 0 0 4 -1 0 -1 0 0| U By
0 -1 0 -1 4 -1 0 -1 0|| Us | =| Bs
0 0 -1 0 -1 4 0 0 -1]| Us B¢
0 0 0 -1 0 0 4 -1 0 Us B
0 0 0 0 -1 0 -1 4 -1\ Us By
| 0 0 0 0 0 -1 0 -1 41 Us | | Bo |

where, in the case g =0, B; = —h?f,.
By the scheme of Example 11.1 the difference equations for the general, two-dimensional, linear,
elliptic boundary value problem (see Problem 11.7) can be put in the form
AU=B (11.4)

The following remarks are pertinent to the general problem.

(1) The dimension of the vectors U and B is equal to the number of nodes at which the solution
is to be approximated.

(2) The vector B is determined by the boundary conditions and the u-independent terms in the
PDE.

(3) The matrix A is square and contains at most five nonzero entries per row. With } fixed, the
order of A, given in (1) above, is a certain decreasing function of the mesh spacing h. Thus,

167
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Fig. 11-1

even if the entries of A do not involve h, the eigenvalues of A—and those of various
iteration matrices to be derived from A—will be functions of k.

(4) Provided the boundary value problem has a unique solution and % is sufficiently small, A is
nonsingular, so that the system (11.4) has exactly one solution.

11.2 DIRECT SOLUTION OF LINEAR EQUATIONS

A method for solving (11.4) is called a direct method if it produces the exact solution to (11.4)
(up to rounding errors) by a finite number of algebraic operations. Gaussian elimination is an
example of a direct method. Direct methods are generally restricted to problems such that (11.4) can
be accommodated in the central memory of the available computer.

If (11.4) is to be solved for a given nonsingular matrix A and several vectors B, the LU-
decomposition method is more economical than Gaussian elimination. This method is based on a
factorization of A of the form A = LU, where L i1s a lower-triangular matrix and U is an upper-
triangular matrix (see Problem 11.8).

The matrix A is usually sparse (most entries are zero), banded (some set of contiguous diagonals
contains all the nonzero entries), symmetric, and/or block tridiagonal; efficient direcl methods exploit
any such special properties.

11.3 ITERATIVE SOLUTION OF LINEAR EQUATIONS

lterative methods (or indirect methods) generate a sequence of approximations to the solution of a
system of algebraic equations. In contrast to direct methods, they do not produce the exact solution
to the system in a finite number of algebraic operations. ITterative methods generally require less
computer storage and are easier to program than direct methods.

In most linear algebra and numerical analysis literature, iterative methods are stated for a system
of equations in single-index form; e.g., (171.4). In computational applications we shall find it easier to
use multiple indices to identify the unknowns; single indexing will be employed only in discussions of
the convergence of iterative methods.

The iterative methods, which below are stated for (11./)-(/1.2), extend to the general, linear,
elliptic boundary value problem.

Jacobi Point Iteration

U=k, +Us  +UL +U;

m—1,n m,n—1 m+i,n m,n+1

+ F )4 (11.5)
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Gauss-Seidel Point Iteration
U;:l = (U::——ll,n + Ufnj—:—l + U;+I,n + U::,n+l + an)/4
Successive Overrelaxation (SOR) Point Iteration

Ukﬂ — (Uk+l + Uk+l + Uk + Uk

mn m-1,n mn—1 m+l,n mn+1

+ F_ )4

Ul =wUS + (1- o)UY, (0<w0<2)

Some properties of these methods, in the present application, follow.
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(11.6)

(11.7)

(1) The boundary condition (11.2) is accounted for by setting U* =g, at all boundary nodes,
fork=0,1,2,....

(2) Inallthree methods the initial estimate, U

0
mn?

wil] converge to the solution of the difference equations.

3) F

is determined by the right-hand side of the PDE (11.1): F,, = —h’f,,.

can be chosen arbitrarily and, as k — «, the U*

mn

(4) 1If (11.1) is Laplace’s equation (f = 0), Jacobi’s method consists in successively replacing the

U-value at a node by the average of the U-values at the four neighboring nodes.
(5) Jacobi’s method is independent of the order in which the nodes are scanned.

(6) The Gauss—Seidel and SOR methods are stated here for a scanning of nodes in the
numerical order of Fig. 11-1. If the nodes are scanned in a different order, (11.6) and (11.7)
must be modified.

(7) The Gauss—Seidel method differs from the Jacobi method only in that new information
about U is used as soon as it becomes available.

(8) The SOR method takes note of the direction in which the Gauss—Seidel iterates are
proceeding and (for @ > 1) extrapolates in that direction in an effort to accelerate con-

vergence.

©) In (11.7), w is called the relaxation parameter; the method is characterized as under-
relaxation or overrelaxation according as 0 < w <1 or 1< ew <2. With w =1, the SOR
method reduces to the Gauss—Seidel method.

The methods (11.5), (11.6), (11.7) are point iterative methods because they update U one grid
point at a time. Improved convergence rates can be obtained by using block iterative methods which
update U at several grid points simultaneously. This improved convergence is gained at the expense
of having to solve a system of linear equations each time a block of nodes is updated. In most block
iterative methods the calculations are arranged so that the linear system is tridiagonal and therefore
easy to solve. For instance, choosing as the block the horizontal line of nodes n = const., we obtain
the following row iterative counterparts of (11.5), (11.6), (11.7):

Jacobi Row Iteration

k+1 _ k+1 k k+1 k
Umn - (Um—l,n + ljm,n—l + Um+l,n + Um,n+l + an)/4

Gauss—Seidel Row lterafion

k+1 __ k+1 k+1 k+1 k
Umn - (Um+—l,n + Umj—n—l + Umtl,n + Um,n+l + an)/4

SOR Row Iteration (or LSOR lteration)

U;:l = (Ufntll,n + Uﬁ:—nll + U:Tx,,. + U;,n+l + an)/4
Uhl=oUll+(1-0)U,,  0<w<2)

Some properties of (11.8), (11.9), (11.10) are listed below.

(1) In Jacobi’s method (11.8) the rows can be updated in any order.

(11.8)

(11.9)

(11.10)
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(2) In the Gauss—Seide] and LSOR methods (11.9) and (11.10) the rows must be updated in the
order n=1,2,..., or else the iteration formulas must be modified.

(3) Equations (11.8) and (I11.9) give rise to tridiagonal systems in the row of unknowns
U, U, ..., U (11.10) does the same for Ugt', UL, ..., Ul

(4) Column iteration methods similar to (11.8), (11.9), (11.10) are also available (see Problem
11.24). By alternating row and column iterations a variety of ADI methods can be devised (cf.

Section 9.4).

11.4 CONVERGENCE OF POINT ITERATIVE METHODS

To investigate the convergence of (11.5), (11.6), (11.7), suppose the difference equation (11.3)
written in singly indexed form (11.4). Next, write the coefficient matrix A asA = —L+D - U, where L, D,
and U are, respectively, strictly lower triangular (zeros on the main diagonal), diagonal, and strictly upper
triangular matrices. Assume that det (D) # 0.

EXAMPLE 11.2 For the matrix A of Example 11.1, D is the 9x 9 diagonal matrix with 4s along the main
diagonal; L is the 9 X 9 matrix with 1s along the third subdiagonal, the pattern two 1s, 0, two 1s, 0, . . . along the first
subdiagonal, and zeros elsewhere; and U=L".

Methods (11.5), (11.6), (11.7) can be expressed in matrix form as follows:

Jacobi Point Iteration

ut'=T,U*+C, (T,=D'(L+U), C,=D"'B) (11.11)
Gauss—Seidel Point Iteration
U'=T, U +C, (T,=D-L)'U, C,=(D-L)"'B) (11.12)
SOR Point Iteration
vrt=T U*+C, (T,=MD-owL)'[(l1-w)D+U], C,=({D-wL)'B) (11.13)

Theorem 11.1: In (11.11), (11.12), or (11.13), if {U*} converges to U*, then AU* = B,

As in Section 9.3, let the spectral radius of a square matrix T be denoted p(T).

Theorem 11.2: The sequence {U*} defined by U*"' = TU* + C, with U° arbitrary, converges to a
unique vector, U*, independent of U, if and only if p(T) < 1.

Theorem 11.3 (Stein—Rosenberg): i, for the matrix A of (11.4), a;=0 for i+ j and a, >0, then

exactly one of the following statements holds:
(1) 0<p(Ty)<p(T,)<1 (3) p(T,))=p(Ts)=0
@) 1<p(T,)<p(T,) @) p(T,)=p(T,)=1
Theorem 11.4: For the system AU= B if (i) a; =0 for i # j and a,, >0,

(i) a;= 2 la;| with strict inequality for some i
ja"i
and (i) a change in any component of B affects every component of U, then both

the Jacobi and the Gauss—Seidel point iterative methods converge (conclusion (1) or
(3) of Theorem 11.3).

Theorem 11.5: For the system AU = B with a,;, # 0, a necessary condition for the convergence of the
SOR point iterative method is 0 <w < 2. If p(T,) <1, the condition is also sufficient.
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11.5 CONVERGENCE RATES

Let U* represent the exact solution to AU=B and let U* represent an approximation to U*
obtained by k applications of an iterative method

U =TU"'+C (11.14)

The residual vector, R* = B— AU, is a measure of the amount by which U* fails to satisfy the system
AU=B, if U*=U*, then R*=0. The maximum residual after k applications of (11.14) is the
maximum of the magnitudes of the components of R*.

The convergence rate of (11.14) is defined to be —log,, p(T), where p(T) is the spectral radius of
the iteration matrix. For large k the reciprocal of the convergence rate is roughly the number of
further iterations of (/1.14) required to reduce the maximum residual by a factor of ten. For a square
mesh, the asympiotic convergence rate is the dominant term in the convergence rate as the mesh
spacing approaches zero (cf. remark (3) of Section 11.1).

To compare the convergence rates of the three point-iterative methods, some way of relating
p(T,), p(T,), and p(T,) is needed. This relationship is given in Theorem 11.6, which involves two
new notions.

Definition: Matrix A is 2-cyclic if there exists a permutation matrix P such that
PAP” = [D‘ ) ]
G D,
where D, and D, are square diagonal matrices.

Definition: The 2-cyclic matrix A= —L+D— U is consistently ordered if det (—BL+ aD- B7'U) is
independent of the scalar 8.

Theorem 11.6: 1f A is 2-cyclic and consistently ordered, then the eigenvalues u of T, and the
eigenvalues A of T satisfy

A+ @~ 1= Awu? (w#0, A #0) (11.15)

Since T; = T, when w = 1, (11.15) relates the eigenvalues of T, to the eigenvalues of both T, and T .

Table 11-1
Asymptotic
Method Convergence Rate Convergence Rate
Point Jacobi —log (cos h) K22
Point Gauss—Seidel —log (cos® h) h?
. . 1—sinh
Optimal Point SOR —log —— 2h
1+sin A
|
. cos h
Row Jacobi —log——— h*
2—cosh
) cosh \’
Row Gauss-Seidel ~log (—) 2h?
2—cos h
1-V2sin (h2)]”
Optimal Row SOR —log‘: (2 V2sin (h2) 2V32 h
1+ V2sin (h/2)
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The relationship (17.15) can be used to find the value of the relaxation parameter, @, which maximizes
the convergence rate (minimizes p(T)) for the SOR method.

Theorem 11.7: 1f A is 2-cyclic and consistently ordered,

2
o= 11.16
1+ V1= p(T,} (r10)

When the relaxation parameter is given by (11.16) the SOR method is called optimal SOR. Table
11-1 displays the convergence rates for the iterative methods of Section 11.3 on a square of side . For an
arbitrary side ¢, replace h in the table by wh/¢.

Solved Problems

11.1 Determine the truncation error associated with using centered differences to approximate the

Laplacian operator, u, + u,, on a rectangular grid, (x,,, y,) = (mh, nk).

By (9.3),
h* k*
T.E =- E s (%, Yn) = 1—2 Upyyy (Xm, §) = O(h*+ k%)

provided u,.. and u,,,, are bounded.

If a solution to a boundary value problem for Poisson's equation has identically zero fourth
derivatives, €.g., u = xy, then the exact solution to the difference equation gives the exact solution to the
boundary value problem. Such solutions are valuable when comparing different numerical methods.

11.2 Formulate difference equations with truncation error O(h?), together with discrete boundary
conditions, for the Neumann problem

u, +u, = f(x.y) in 2 (n
ou
—=g(xy) onS 2)
on
where ) is the rectangle 0 < x < a, 0 <y < b. Choose grid points (mh, nh) such that Mh = a,
Nh = b.
By (11.3) and Problem 11.1, (1) can be approximated with truncation error O(h”) by
—Upcin=Ump-11 48U mn = U msrn— Ui = _hzfmn 3)
in which m =0,1,...,M and n=0,1,..., N. Note the tacit assumption that f is also defined on S.

To approximate du/dn by a centered difference requires the introduction of ghost points (open dots
in Fig. 11-2). At those grid points on S that are not corner points, the boundary conditions are:

Umsrn— Unr—1.0 = 2h gamn (n=12,...,N-1 “4)
Upnit—= Upn-1=2h gmn (m=12,.... M—1}) (&)
U_1n— Ui, =2h gon (n=142,...,N-1) (6)
U= U1 =2h gmo m=12...,M-1) (7)

At a corner grid point, where n is undefined, let us take as the “normal derivative” the average of the
two derivatives along the two outer normals to the sides meeting at the corner. This leads to the final
four boundary conditions
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Fig. 11-2
11.3 In Problem 11.2, let M = N =2 and let g=0. (a) Write out in matrix form, AU= B, the

difference system (3 )}~(8). (b) Show that A is singular. (¢) By elementary row operations (which
do not alter the system) obiain a representation A'U = B’ with A’ symmetric. (d) Show that

A’U = B’ can be solved (nonuniquely) only if f satisfies a consistency condition similar to

(@) For the single-indexing indicated in Fig. 11-3. we obtain, since g =0, the representation

4
-1
0
-1
0

O O O O

or AU=B.

O O O O = O

fnfdn= LgdS (=0)

0 -2 0 0
-1 0o -2 0
4 0 0 -2

-1 0 -2 4
0 -2 0 0
0 0 -2 0
0 0 0 -2

U,
U,
Us
U,
Us
Us
U,
Us
Us

— B2

S
A
b
fs
fs
fs
f7
fs
5|
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Fig. 11-3
(b) Since the entries in each row of A sum to zero, the vector C=[1,1,..., 1] satisfies AC = 0. Thus,

the system AU = 0 has a solution besides the zero solution, and so the matrix A is singular. In
consequence, the numerical Neumann problem AU= B may have no solution, or it may have an
infinite number of solutions of the form U= U*+ «C. In the latter event, U is determined at each
grid point only up to the additive constant a.

(¢) By dividing the first, third, seventh, and ninth rows of A and B by 2, and multiplying the fifth row by

2, we produce
f2 -1 0 -1 0o o o 0 olfu [ fi2 ]
-1 4 -1 0 -2 0 0 0 0 U, f2
0o -1 2 0 0 -1 0 0 0 U, f3/2
-1 0 0 4 =2 0 -1 0 0 U, fa
0 -2 0 -2 8 -2 0 -2 0 Us | =—h?| 2fs
0 0 -1 -2 4 0 0 -1 Us fe
0 0 0 -1 0 0 2 -1 01l U, 2
0 0 0 0 -2 0 -1 4 -1 Us fs
L 0 0 0 0 0 -1 0 -1 2 | Us | | fol2 |
or AU=PB"

(d) Because A’=A’'" and A'C = 0 (since AC = 0), we have, if a solution U exists,
BTC=AU)"C=U0TAC)=U"0=0

which means that the entries in the vector B’ sum to zero. But this condition is equivalent to

j f(x,y)dxdy=0
Q

if the integral is evaluated by the trapezoidal rule using the nine grid points.

Show how to apply finite differences to

u, +u,=fxy) in {2
u=g(xy) onS

in the case that {} has a curved boundary.

At any grid point in 2 whose four neighboring grid points are also in {1 the usual difference
expressions for uy. and u,, can be used. Consider a grid point in ) with at least one neighbonng node
not in {1; e.g., P = (xm, y») in Fig. 11-4. The coordinates of the intermediary points g and r on S are
respectively (x, + ah, y.) and (Xm, y» + Bh), where 0 < a, 8 < 1. Since u is specified on S, u(q) and u(r)
are known. '
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X
Fig. 11-4
By Taylor’s theorem,
(ah)® 5
u(q) = u(P)+ ahu,(P)+ U (P)+ O(h”)
h2
u(Q)= u(P)- hux(P)+? U (P)+ O(h?)
Eliminating u,(P) from the above pair of equations, we have
(P = D=L D)+ ula)
ha(a+1)/2
Similarly,
Bu(R) - (1+ p)u(P)+ u(r)
= O(h
u)’)’(P) hQB(B + 1)/2 + ( )
Thus, an O(h) approximation to Poisson’s equation at P is
1 U U h*
ﬂgEJFLR)—(1+—) O S PG L RS (1)
at+l pB+1 ala+1) BB+1) 2

11.5 Making use of Problem 11.4, approximate the solution to

u,tu,=0 2+ y*<1,y>0
u(x, y)=100 +yi=1,y>0
u(x,y)=0  y=0-1<x<1

Choose a square grid with £ = 0.5,

Symmetry about the y-axis allows us to reduce the number of unknowns in the difference system
from three to two: we need only consider Laplace’s equation on the quarter-disk, with boundary
conditions as indicated in Fig. 11-5. From these boundary conditions,

Uoo:0 U]():O Uo«z=100 U(q):100 U(f)=100 U“_U—leo

The only grid points at which u must be estimated are P = (x;, y;) and Q = (xo, y1).
The difference equation centered at Q is

U+ Upgy — 4Up; + U_1_1+ Up=0
which, by the boundary conditions, simplifies to
2U01_U“:50 (1)
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(o] 1=)72/ o
u; =0 u=100
(o] q (o]
R
X1 X0 Xy u=0 x,=1 x

Fig. 11-5

The coordinates of g and r are (\/gh,h) and (h,\/gh); hence, in the notation of Problem 11.4,
a=8= V3 - 1. Now, by (1) of Problem 11.4, the difference equation centered at P is

U, U 2U U U
o1 0 L (9) i (r) -0

V3 V3 V3-1 3-V3 3-V3

which, in view of the boundary conditions, simplifies to

(1=V3)Us +2V3 Uy, = 200 2)
Solving (1)-(2), we find
1002+ V3) 50(7 + V3)
Un=U(Q)= ————~60.2 Uy=UP)=—— =705
1+3V3 1+3V3

11.6 (a) Show how to apply finite differences to Laplace’s equation in polar coordinates,
Pu tou 1P
o’ ror r o’
(b) Rework Problem 11.5 in polar coordinates, on a mesh with Ar =0.5 and A8 = #/4.

(a) Define the grid (5, 6,)= (m Ar, n AG), where m,n=0,1,2, ..., and let U,, be an approximation
to u(r., 6,). Using centered differences to approximate each derivative in Laplace’s equation, we
obtain, after grouping like terms,

1 1 1 1 1
(1——> Unctnt——3 Um,n~l_2|:1+72:| Umn+(1+_> Unitnt S Umnn=0
2m (m A6) (m A6) 2m (m AB)
(1)

(b) On the polar grid, the sole unknowns are U(S)=U,, and U(Q)= U,,. (See Fig. 11-5; the
symmetry condition along the vertical axis is now u, = 0, which yields the numerical condition
U= U1.) Application of (1) of part (a), centered at S and ¢, and substitution of boundary
values, gives the two equations

2[1+ (A8 U — Uy = 156(2 6)?
—Un+[1+(A6y1Uz=T75A6)
These yield (A6 = 7/4):
Uy=U(S)=46.3 Up=U(Q)=573

Now, the boundary value problem under consideration can readily be solved analytically (by
conformal mapping or by letting @ = 0 in Problem 7.39). The exact solution yields
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1.7

400 1
u(Q)=—arctan —= 59.0
T 2

which shows that the coarse meshes used above and in Problem 11.5 have produced quite accurate
results.

(a) Formulate difference equations for
au, +bu, +cu +du, +eu=f(xy) in ) (1)
u=gxy) onS$ 2)

where () is the rectangle 0 < x < Mh, 0 < y < Nh. The coeflicients are allowed to depend on x
and y, provided a, b > 0 (elliptic PDE), and e =0, in ). (b) Show that if the mesh spacing A is
chosen sufficiently small (while M and N are made correspondingly large), the system of
difference equations has a unique solution.

(@) With (xm, y.) = (mh, nh),

Um—t1.n =~ 2Umn T Upmsr,n Umarn = Um—1n

(Altee)omn = G o FOBY (et = emn =TI O
Um - -2 mn T Umns dmn+ —~Umn-
(bt Yo = b =TI O () = e LI O(h)

These approximations, substituted in (1), yield the difference equation
U mn— Um-—l,n - aZUm,n—l —as Um+1.n - a4UmJ|+l = "hzfmn (3)

where ag= (2a +2b — h€) mn,

ch ch

015(0"““) 035<a+“)
2/ an e

u(b dh) (.
e\, ar= 7)

Equation (3)isrequiredtoholdform = 1,2,... , M ~1,n=1,2,..., N~ 1. Theboundary values for
U ,.. are obtained from (2).

(b) Since e <0, we have, for all m and n,
Qo= a;+ ozt azt as )
Also, since a>0 and b >0, it follows that for h sufficiently smali,
>0 (i=0,...,4) ()

Now, system (3) has a unique solution if and only if its homogeneous version, obtained by taking
f=0and g=0in (1)-(2), has only the zero solution. If, contrary to what we wish to prove, the
homogeneous (3) has a nonzero solution, we may suppose that the largest component, U .., of this
solution is positive. Then, from (3) with f,, = 0,

aU,.=a Uy, T U, o1+ aslU, o+ aadU s
which, together with (4) and U, >0, implies
al(Uﬁw_ U#—l.v)"' aZ(U;w'_ Uu.v—l)+ aJ(quﬁ U#+l.-')+ a4(U#v_ U#-uﬂ)so (6)

In view of (5), (6) can hold only if U = U . = max at all four neighbors of (x,, y.). Repetition of this
argument leads to a boundary node at which U = U, >0, which contradicts the assumption g =0.
The proof is now complete.
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11.8 (a) Show how to express an invertible matrix A of order N as the product of a lower-
triangular matrix L and an upper-triangular matrix U. (b) Carry out the factorization of the
matrix A that would result if h were taken to be €/3 in Example 11.1.

(a) The matrix factorization LU = A may be written componentwise as

Zlikuk,':au (i,j=1,2,...,N) (1)
k=1

For L and U to be respectively lower- and upper-triangular, ; =0 for j>i and wu; =0 for j <.
Setting i = j = 1in (1), we find /411 = a,,; thus the diagonal elements of L and U are not uniquely
determined. We shall choose all [; = 1. From (1) it then follows that the rows of U and the columns
of L can be found by applying the pair of formulas

i-1
u,-,=a,»,-—zl,-kuk,- (]=l,l+1,,N) (2)
k=1

j—1
lii:(aii_z[ik“ki)/“ii (i=j+1j+2,...,N) (3)
k=1

intheorderi=1,7=1,i=2,j=2,...,j=N—1,i= N.Thesumsin (2) and (3) are understood to be
zero whenever the upper limit of summation is less than one. Because det (A) = [1u;; # 0, the right side
of (3) is always well-defined.

(b) The choice h = €3 produces the 4 X 4 matrix
4 -1 -1 0
~1 4 0 -1
-1 0 4 -1
0 -1 -1 4

A=

From (2), with i = 1;
From (3), with j = 1;
From (2), with i = 2:
From (3), with j =2:
From (2), with i = 3:
From (3), with j = 3:
From (2), with i = 4:

un=4, up=—1, ui3= -1, ua= 0.
lLy=—-1/4, Iy =~1/4, 15, = 0.

Uz = 15/4, uzpy = —1/4, urs= —1.

bp = —1/15, lx = —4/15.

Usz = 56/15, uss = —16/15.
liz=—=2/7.

Uga = 24/7

Now we have obtained the desired factorization:

11.9 Once a system AV = B has been expressed in the form LUV = B, show how it can be solved

for V by a forward substitution followed by a backward substitution.

In the system LUV = B, let W= UV. Then AV = B can be written LW =B, or

Ve

j=1

LW, = B;

(i=

1,2,...

Since I;; = 0 for i < j, we can easily solve for W as follows:

»N)

10 0 0T[4 -1 -1 0 4 -1 -1 07
1 15 1
-~ 1 0 o0ll0 = -- -1 -1 4 0 0
4 4 4
11 56 16 | =
——~ -— 1 0l0 o = -= -1 0 4 -1
4 15 1515
4 2 24
-—— - 1|lo o o = 0 -1 -1 4
s 7 L 7 1
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11.10

11.11

Wi = B/l
Wp = (Hz“ Iy Wl)/IZZ
Wa= (BJ‘ LEWi— I Wz)/le

-1
wi= (B3 W) /1
j=1
Now that W is known, the system UV =W, or

N
zuii‘/jzwi (i=12,...,N)

=1

with u; = 0 for i > j, can be solved for V as follows:

Vn = Wi/unn
Vo = (WN—1 —UN-IN WN)/M~~1.N—1
Vo= (WN—2_ Un_on Wn ~ un-2n-1 wN-x)/UN—LN—x

Vn-i= (WN—i - E UN_iN-1-j WN—l—j)/uN—i.N-i

j=1

For the solution of a single linear system, the work required in an LU-decomposition is the same as
that required in straightforward Gaussian elimination. One attractive feature of the LU-decomposition
approach is that once L and U have been found for a given A, it is possible to solve AV = B for any and
all right-hand sides B just by using the forward-backward substitution method outlined above.

Write the matrix A of Example 11.1 in block tridiagonal form and obtain a block LU-
decomposition of A,

With
4 -1 0 1 0 0 0 0 0
H= | -1 4 -1 I=|0 1 0 0={0 0 ©
0 -1 4 0 0 1 0 0 0
we have
H -1 0
A=| -1 H —I
0 -1 H
By multiplying out the left side of the desired decomposition,
1 0 0 U, Un Us H -1 0
Ly 1 0 0 Up Uxz|=|-1 H -1
Ls; Ly 1 0 0 Uss 0 -I H

we obtain, in succession, Un=H, Up=-I, Us=0, Ly=-H ', Ly=0, Up=H-H"', Upn=-1,
142 = _(H ey H_l)hl, U33 == H+ (H— H—l)—l.

Determine the eigenvalues and the corresponding eigenfunctions of the N x N tridiagonal

matrix

b« 0
a b ¢

a b ¢

S0




180 DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS

If we set Up = Un+1 =0, then the eigenvalue problem AU = AU can be expressed as

ilL]n_1+(b”‘/\)Un+CU,,+1:0 (n=l,2,...,N)

[CHAP. 11

(1)

If we look for a solution of (1) with U, proportional to r”, then () implies that r must satisfy the

quadratic equation

crP+(b—Ar+a=0

(2)

With r; and rp, the solutions to (2), set U, = ar? + Br3, where « and B are constants to be

determined. The end conditions Up= Un+y = 0 require

a+B8=0 and ar™ '+ Britt =0

from which (r,/r)"*'=1, or

f_‘:eizu—/(NH) (k=l,2,...,N)

2
where we have disallowed r, = r,. The product of the roots of (2) is

a a
nr=— (— #0 assumed)
c c

Together, (4) and (5) yield

ik (N+1) —ikm/(N+1)

n=Valce rn=Valce

which, substituted in the expression for the sum of the roots of (2),
b—A

4

ntr=-—
determine the eigenvalues A, as

a J .
/\,-=b+2c\/:cos (G=1,2,...
c N+1

Note that if a and ¢ are of like sign (the usual case), the A; are all real.

»N)

3

(4)

Using (6) and (3) to determine a and B, we find that the nth component of an eigenvector U*

corresponding to Ag is given by

al’ . nkw
Uk = \/: sin
c N+1

11.12 Let H be an M X M matrix with M distinct eigenvalues, A, A,, ...
eigenvalue problem AV = vV, where A is the N X N block tridiagonal matrix

H -1 0 |
- H -I
-1 H -1
-1 H -I
K -1 H|

Here, 0 and I are the M X M null and identity matrices. Calculate the eigenvalues of A.

, Ay, and consider the

Let U* be an eigenvector of H corresponding to the eigenvalue A.. In the eigenvalue problem

AV = yV we will look for an eigenvector V in the form
V= [a (U7, aa(UH)T, .., an (U977

for scalars «; not all zero. From AV = yV,
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a HU* — a,IUX = a,U*
—a JU* + apHU* — o3 IU% = ayU*

aN_IlUk + QNHUk = aNUk

which, after using the condition HU* = A, U* (U* # 0), leads to

/\k -1 0 aq ay
-1 Ax -1 a2 Qz
-1 A -1 as =| a3 (1)
-1 A -1 O’N—l an-1
0 -1 A an an

By Problem 11.1, the eigenvalues yu of (1) are given by

2)

A —2cos =
% = Ax — 2COs
Y = A N+1

As k ranges from 1to M and j ranges from 1 to N, (2) vields the MN eigenvalues of A.

11.13 Find the eigenvalues of the matrix A of Example 11.1.
Problem 11.10 gives

H -I 0 4 -1 0
A={-T H -I where H=| -1 4 -1
0 -1 H 0 -1 4

By Problem 11.12, the eigenvalues of A are given by
jm :
}’,‘k=/\k“‘2COS"4_ (]=1,2,3)
where Aq, the kth eigenvalue of H, is given by Problem 11.11 as
kar
/\k=4‘_2COST (k=1,2,3)
Thus, the eigenvalues of A are given by
jm kar .
y,k=4—2(cos—4—+cosT> (L, k=1,2,3)

11.14 Calculate the spectral radius, p(T,), of the Jacobi iteration matrix corresponding to the matrix
A of Example 11.1.

With A= —L+D-U and T, = D"'(L+ U),
AV=19V> ((L+D-U)V=yV3DV=(L+UV+yV> T,V=(I-yD )V

Since di; = 4, D™* = (1/4)I and the last equation becomes
T,V=(1—Z>V ()
4
Now, the eigenvalues of A were found in Problem 11.13 to be
J k .
)’,k=4—2(COS;+COST> (],k=1,2,3)

which, together with (1), implies that the eigenvalues of T, are given by
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1( j7r+ kw) (k=123
=—{cos—+cos — Lk =1,2,
ik =5 \F08 4 !/

The largest in magnitude of these eigenvalues is w,1; hence, p(T,) = V272

(2)

For the system of Example 11.1, write the Jacobi row iteration method, (11.8), in matrix form

and determine the spectral radius of the resulting iteration matrix, T.

By Problem 11.10, the system can be represented as

H -1 0"‘ vy c
-1 H -I| va|=]| ¢€s (1)
0 I HAJ vy ¢y
where v; = [U,, Uiy, Usa]” and ¢; = [B,, Bis1, Biaa]” for i=1,4,7. Let
0 0 0] H oo 01 0
L=1 0 0| p=| 0 H 0 U=/0 0 I
0 1 OJ 0 0 H 000
where D is invertible (because H is invertible). Then (1) may be written
(-L+D-UV=c or V=D L+ U)V+D'c (2)
where V=[v],vi,v]|"=Uand ¢= [ei,ei,c7]" =B,
The second equation (2) is equivalent to the fixed-point iteration
VI = DL+ UV + D ¢ (3)
and (3) is identical to (11.8). In fact, since
0 H' o
DL+U)=|H' 0 H'|=T 4)
0 H' o

(3) yields
Vit =HT'Wi+ -
Vit = HT (Vi + VA4 -

vE T =H v+ -

which is just the *‘solved form™ of (11.8) in single-index notation.

To determine the eigenvalues p of T, let w be an eigenvector of H corresponding to the eigenvalue
A« and look for eigenvectors of T of the form V= [a,w”, asw”, a;w”]". TV =V implies (L+ U)V =

wDV, or
asw = a;pHw = pAaw
aw+ aw = auHw = pAasw
asw = asu Hw = pAow

Since w # 0, we now have

010
1 O 1 Qg | = /.L/\k [2 7
O 1 0 az az

By Problem 11.11, the eigenvalues of the above tridiagonal matrix are
jm :
;L,\k=2cos—4— (7=1,2,3)

and the eigenvalues of H are
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11.16

kar
/\k:4—2COS—4— (k=1,2,3)

Thus, the eigenvalues of the matrix T are

i = —2% k=123 (5)
From (5),
p(T)=pn= \/5
4-V2

Note that this is smaller than V/2/2, the spectral radius of the point Jacobi iteration matrix for the same
problem, as found in Problem 11.14. Equation (11.15) can be established for block tridiagonal matrices
of the form (1). It follows that the spectral radius of the row Gauss—Seidel method for this problem is

2/(4 -2y

Write a computer program which uses the SOR method (11.13) to approximate the solution to
the boundary value problem

u, +u,=0 mQ: 0<xy<l1
u(x, y) = e*™ sin 2y on S
Choosing a mesh spacing h = 0.1, run the program at « = @ (optimal SOR) and at w =1
(Gauss-Seidel method).
Figure 11-6 lists a program. From Table 11-1,
w

() h
= COoS— = C J—
PR Sf OS10

for this problem. It follows from (11.16) that @ = 1.528 is the optimal relaxation parameter for SOR. The
comparisons with the exact solution (u = e®*™ sin2#7y in (1) given in Table 11-2 were obtained by

iterating until the maximum residual was less than 0.005. Note that the Gauss—Seidel method required 67
iterations, while SOR required only 24. For small choices of mesh spacing h, the superior convergence

Table 11-2
Gauss—Seidel Optimal SOR
K =67) (K=124) Exact
M,N=1,1 1.249327 1.246912 1.101777
M,N=2,1 2.386185 2.381623 2.065233
M,N=2,2 3.862067 3.852746 3.341618
M,N=31 4.431387 4.424993 3.871189
M,N=3,2 7.171626 7.159750 6.263716
M,N=3,3 7.175988 7.159992 6.263716
M,N=4,1 8.165332 8.158091 7.256373
M,N=4 2 13.213451 13.200061 11.741060
M,N=4,3 13.218328 13.200035 11.741060
M,N=4,4 8.179705 8.158471 7.256376
M, N=51 15.013905 15.006215 13.601753
M,N=5,2 24.294676 24.280386 22.008101
M,N=5,3 24.299553 24.280504 22.008101
M,N=5,4 15.028279 15.006590 13.601758
M,N=55 0.023098 0.001065 0.000003




PROGRAM SOR

TITLE: DEMO PROGRAM FOR GAUSS-SEIDEL DR
SOR METHOD FOR POISSON'S EQUATION
ON A RECTANGLE WITH A SQUARE GRID

INPUT: MMAX, NUMBER OF X-SUBINTERVALS
NMAX, NUMBER OF Y-SUBINTERVALS
OMEGA, RELAXATION PARAMETER
KMAX, MAXIMUM NUMBER OF ITERATIDNS
TOL, CONVERGENCE CRITERION FOR RESIDUALS
(X1,%2], X—INTERVAL
{¥1,Y2), Y-INTERVAL
61(X), LOWER BOUNDARY CONDITION
62(Y}, RIGHT BOUNDARY CONOITION
63(X}, UPPER BOUNDARY CONDITION
G4(Y), LEFT BOUNDARY CONDITION
F(X,Y], RIGHT SIDE OF POISSON'S EQ,
E(X,Y], EXACT SOLUTION

OUTPUT: NUMERICAL AND EXACT SOLUTION

COMMON U[0:51,0:51},Y(0:51,0:51)

OATA X1,X2,Y1,Y2/0,1,0,1/

PI = 4®ATAN(1.)

oooooooOonOO0O0O00000

G1(X] =

G2[Y) = EXP[2*PI)*SIN(2*PI*Y)
63(X] = 0

B4[Y] = SIN[2*PI*Y]

F(X,Y) =0

E[X,Y] = EXP(2*PI*X)*SIN[2*PI*Y)
PRINT®,'ENTER GRID SPACING, H, AND RELAXATION PARAMETER'
READ*,H, OMEGA
PRINT*, 'ENTER MAXIMUM ITERATION NUMBER, RESIOUAL TOLERANCE®
REAO*, KMAX, TOL
MHMAX =[X2-X1)/H
NMAX =[Y2-Y1)/H
c SET BOUNDARY VALUES AND INITIAL ESTIMATE TO SOLUTION
DD 10 M = 1,MMAX-1
DO 10 N = 1,NMAX-1
M*H
N*H
0
G1(x]
] = GalY)
) = G3(X]
G4(Y)

xxX Il It
- a

oDz <X
—Z=234

II;‘ZII o+ +

M, N
r
10  CONTINUE
D0 15 K = 1,KMAX
c CALCULATE K-TH ITERATE
D0 2D M = 1,MMAX-1
D0 20 N = 1,NMAX-1

=
—_
o
2z
—x

X = X1 + M"Y

Y = Y1 + N*H

UOLD = U(M,N)

U[M,N] = [U{M+1 ,N}+U{M,N+1)+U(M1,N}J+U[M,N-1)])/4
1 + H*H*F[X,Y)/4

U(M,N} = OMEGA*U[M,N]) + [1-OMEGA)*UOLD
20 CONTINUE
C CALCULATE THE MAXIMUM RESIDUAL
RMAX = 0
DO 3D H = 1,MMAX-1
D0 30 N = 1,NMAX-1
X =X1 + M*™H
Y = Y1 + N*H
RES=—H*H*F(X, Y)+U[¥+1 N} +U{M, N+1]+U[M-1 ,N) +U{M,N-1 ) -4*U(M,N)
IF{ABS(RES),GT.RMAX) RMAX = ABS{RES]
30 CONTINUE

c IF RMAX SUFFICIENTLY SMALL PRINT ANSWER
IF(AMAX.LT,TOL) GOTO 40
C IF RMAX EXCEEDS TOLERANCE AND K < KMAX PERFORM ANOTHER ITERATION

15 CONTINUE
PRINT®, ' CONVERGENCE CRITEREON WAS NOT MET!'
40 CONTINUE
WRITE(6,100)
WRITE(6,110) H,KMAX,TOL,OMEGA
WRITE(6,120) K,RMAX
DD 60 M = 1,MMAX/2
DO 50 N = 1,M
X = X1 + W
Y = Y1 + N*H
WRITE(6,130) M,N,U{M,N},E[X,Y]
50 CONTINUE
100 FORMAT(///,T12,'RESULTS FROM PROGRAM SOR',/) )
110 FORMAT(['H='F5.2,' KMAX=',kI4,' TOL=',EB.2,' OMEGA=',F6.3,/]
120 FORMAT['K=',I4,' RMAX=',EB.2,T25,'NUMERICAL',T42,'EXACT',/)
130 FORMAT[ 'M,N =',I11,',',I1,T20,F13.6,737,F13.6]
END

Fig. 11-6
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11.17

11.18

11.19

11.20

11.21

rate of the SOR method as against the Gauss—Seidel method becomes even more striking. It is seen that
the numerical results are not in very good agreement with the analytical solution. To improve the
numerical solution one might (i) drive the maximum residual below a smaller tolerance, or (ii) use a finer
mesh. An analysis of the truncation error (see Problem 11.1) shows it to be the villain here: to improve
the accuracy, a finer mesh is needed.

Supplementary Problems

Using a rectangular grid (x.., y.) = (mh, nk), write a difference equation for the quasilinear PDE
(au)+ (buy), tcu=f

where a(x, y, u) and b(x, y, u) are positive functions.

Let a flow field be given in Q by q = —(au., bu,), where a(x, y, u)>0, b(x, y, u)>0. Give a numerical
method for finding , if the net flux across the boundary of any subregion of { is zero.

Let ) denote the square 0 < x < 1,0 <y <1 and consider the boundary value problem

(au) + (buy)y, =0 in Q
u=xy on S

Introduce a square grid, (xm, y.) = (mh, nh), with h = 0.25, and center on each grid point a region

R h< < +h h< < h
mn. Xm T X Xm s Yu T n+'_
2 2 Y 2 y=y 2

Suppose that @ = b =1 except in Rz, where a=b=0. (a) Using the result of Problem 11.18 and
harmonic means for the coefficients—e.g.,
2am—l.namn

am—ll‘z.n =

Am-1,n + Amn

—write a difference system for U,.. (m, n = 1, 2, 3; Ux, excepted). (b) Write out the Gauss—Seidel iteration
equations (11.6) for the system of (a), assuming the nodes are scanned bottom-to-top, left-to-right. (¢) Use
the iteration equations to estimate the U,,,, and compare the values with those of the solution, u = xy, of the
boundary value problem in which a = b = 1 throughout Q.

Consider the boundary value problem defined in Fig. 11-7 (see page 186). With h = 1/3 and (xn, ya) =
(mh, nh), write the difference equations centered at (@) (x2, y2), (&) (x3, ys), (¢) (xs, y1). (d) Obtain the
remaining 15 difference equations and solve the system.

Consider the system of linear equations AU = B, where
A = [a;] U= (Uy, Us, ..., U)" B= (B, B, ..., B,)"

If a; # 0, show that (a) Jacobi’s point iterative method can be expressed by
i=1 n
U?”=(Bi—2auU7— 2 a,-,U’})a;‘ 1)
j=1 j=i+l
(b) the Gauss-Seidel point iterative method is given by

i—1 n

Uf‘”——-(B,-—Za,,-Uf”— 2 (1,','U7> aﬁl (2)
1

j=i+1
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11.22

11.24

11.25
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u=0
Sk ® ) ) o
u, =0
4 f— ) [ ] & [+3
u=1
3 [ ] L)
u=0 Vu=0
2 ® ® L] ° [ ]
n=1r [ L] ° ° )
| pu=1, 1 |
m=1 2 3 4 S
Fig. 11-7

Assume that (2) of Problem 11.21 has been used to obtain the approximate solution

k+1 k+1 k+1 k k KNT
(U, Uz, . U, U Uiy, ., UR)

11

to AU = B. The residual vector, R¥*’, associated with this approximation depends on both the iteration
counter, k, and the index, /, of the first “‘unimproved” component. Rewrite (2) in terms of R%*!, the ith

component of RE*!,

Find an expression for the SOR point iterative method like that found for the Gauss~Seidel in Problem

11.22.

Formulate the column iteration counterparts of (711.8) and (11.9).

Determine the LU-factorization of

1 01
A=| 2 3 4
1 99
with ; = 1.
Given the elliptic boundary value problem
U + Uy, + cu = f(x, y) inQ: 0<x,y<3h

u=g(xy) onS

(1)
@)

where ¢ is a constant distinct from 4, (a) write a difference equation for (1) on the grd (xm, y.) =
(mh, nh); (b) with U= (Uy, Uy, Uiz, Un)", determine the matrix T, for the Jacobi point iteration
method; (¢) find the eigenvalues of T, [Hint: solve the characteristic equation}; (d) determine the range

of c-values for which p(T;) < 1.
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11.27 Consider the parabolic problem
U = U + Uy
u(x, y,0) = f(x, y)
ulx, y, 0)=g(xy, )
Introduce a gnid (x,., ya, ;) = (mh, nh, jk) and define

w(x, y)=u(x, y, tx1)

x,yinQ, >0
x, y in Q
x,yonS >0

U(X, y) = IA(X, Y, Ii)

187

(1)
(2)
(3)

Verify that the result of approximating (7) at time ¢;,; using centered space differences and a backward
time difference is the elliptic system (cf. Problem 11.26(a))

(e - 4) HY/,",. + lfvm,"-c-l + ""’m—l,n + ‘Vm.n—l + Wm+l.n = evmn

with e =—h?%*k. Conclude that Jacobi’s method or another technique of this chapter can be used to
advance the solution of the parabolic problem from one time level to the next.



Chapter 12

Variational Formulation
of Boundary Value Problems

12.1 INTRODUCTION

In certain cases, the solution of a boundary value problem for a PDE is also a solution of an
associated calculus of variations problem. A typical problem in the calculus of variations is to find,
for functions u belonging to a prescribed set &, the extreme values of the integral expression

T[ux)] = f Fx, u(x), Vu(x)) dQ

where F denotes a given function. Hence we shall begin by describing some of the structure of the
domain &/ of J.

12.2 THE FUNCTION SPACE L*())

In Chapter 6 we considered the space L*(a, b) of functions f(x) that are defined and square
integrable on (a, b) in R'. More generally, let Q denote a bounded region in R" and consider the set
L*(Q) of all real-valued functions u(x) defined on Q which satisfy

f u(xy dQ <o

Q

Like L*(a, b), L*(Q) is a vector space over the real numbers, and the expected definition

(u, U)EJ u(x)v(x)dQ}
Q

makes it an inner product space.
A subset of L*(() is said to be a subspace of L*() if the subset is closed under the operation of
forming linear combinations.

EXAMPLE 12.1 (a) For k a nonnegative integer, the subset C*{(Q) of all u in L*€) which, together with all
derivatives of order k or less, are continuous on Q is a subspace of L* Q). (b) Let uy, . .., un denote N elements
of L*()). The subset 4 of all linear combinations of ui, ..., ux is a subspace of L*(Q)—the subspace spanned
by the wu. (¢) For m a positive integer, the subset H™(Q) of all u in L*({}) whose derivatives of order m or
less are also in L*(QY) is a subspace of L*(Q).

A subspace A of L*(Q) is dense in L*(Q) if for any € >0 and any f in L*()) there exists a v in M
such that

lo=fF=] w-ftdo<e
(¢}

i.e., if any f in L*(Q) can be approximated with arbitrary precision in the least-squares sense by a
function from .

Theorem 12.1: For each positive integer m, the following subspaces are dense in LXQ): C™(Q),
H™(Q), and the set of all u in C™(Q) such that u =0 on S, the boundary of Q.

Theorem 12.2: 1f M is a dense subspace in L*(2) and if an element u of L*(Y) satisfies (&, v) = 0 for
all v in M, then u=0.

188
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12.3 THE CALCULUS OF VARIATIONS

A real-valued function J whose domain of definition is a subset of L*(Q) will be called a
functional. The fundamental problem of the calculus of variations is, then, to find the extreme values
of a given functional J over a specified domain & in L Q).

EXAMPLE 12.2 (a) For Q a bounded set in R® having smooth boundary § and for given functions f in C(£2)
and g in C(8), let & ={u(x, y)in H'(Q): u= g on S}. Minimize

Ju]l= J—n (uZ+ uZ-2fu)dxdy

over #. (b) For () a bounded set in R” with smooth boundary S and for given functions a;;(x) and f(x) in C({2),
let A={u in H'(QY): u =0 on $}. Minimize

J['u]=f (2 a,—,ﬂj—“—zfu) dQ

a Vij=1 ax; dx;

Such problems can be treated in much the same way as extreme-value problems in elementary
calculus, if the notion of the derivative is suitably generalized.

Variation of a Functional

First, we associate with the domain & of the functional J, a set # of comparison functions such
that, for any u in & and any v in #, u+ €v belongs to & for every real number €. # is necessarily a
subspace of L*(Q).

EXAMPLE 12.3 (a) For &« as in Example 12.2(a), we may take # = {v in H'(Q): v =0 on S}. (b) For &« as in
Example 12.2(b), we may take .# to be identical to & In general, whenever & is a subspace of L*(2) and not
just a subset as in the first example, we may take # = & (for u, v in &, the linear combination u + ev is also in
A).

For J a functional on domain &, to which corresponds a set of comparison functions 4, let u
belong to &¢ and v belong to . Then

¢(e)=J[u+ ev] (12.1)
is a real-valued function of the real variable e.
Definition: If the limit

#(0) = limg 21U €01~ Ju] (12.2)
€

0

exists for every v in # (the value of the limit will generally depend on the “direction” v), we
write

¢'(0) = 8Ju; v]
and call this the variation of J at u (in the direction v).

Theorem 12.3: Let J denote a functional on domain & with associated set of comparison functions
M, and suppose that u, in & is a local extreme point for J. If J has a variation at u,,
it must vanish; i.e.,

8Juy;, v] =0 for all v in #

Gradient of a Functional

Theorem 12.3 shows that the variation of a functional J is analogous to the directional derivative
of a function on R", which is obtained by computing the scalar product of the gradient of the function
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with a unit vector in the given direction. Under certain conditions, we can define what is meant by
“the gradient of a functional.”

Consider functional J with domain & contained in L*(2). Suppose that the comparison functions
comprise a dense subspace . of L*({)). Finally, let 9 consist of all u in « such that J has a variation
at u and, moreover, such that there exists a G in L*(€2) having the property

8l u; v] = (G, v) for all v in M

If @ is nonempty, we call the function G the gradient of J at u, and write G = VJ[u]; the subset & of
A is called the domain of the gradient.

If 1y in @ furnishes a local extremum for J, Theorem 12.3 and the definition of the gradient of J
imply that (VJ[u), v>=0 for all v in 4 But A is dense in L*Q), and so, by Theorem 12.2,
VJ[u,] = 0. We can, in fact, prove
Theorem 12.4: 1f the subspace # of comparison functions is dense in L*{2) and if u, in & is a local

extreme point for J, then u, necessarily belongs to % and

VJ[u)=0
(the Euler equation for J).

The point of Theorem 12.4 is that to solve a PDE which is the Euler equation of a suitably
constructed functional J, subject to whatever boundary conditions are part of the definition of the
domain &, it is sufficient to minimize J over the class &« of admissible functions. As the smoothness
conditions incorporated into the definition of @ appear to be weaker than what is required for a
classical solution, the solution of the variational problem is considered to be a generalized solution of
the boundary value problem. In Section 12.5 we shall develop an even broader notion of the solution
of a boundary value problem.

124 VARIATIONAL PRINCIPLES FOR
EIGENVALUES AND EIGENFUNCTIONS

Consider the Sturm-Liouville problem (6.13), with C,= C,=0. Theorem 6.4 describes the
eigenvalues and eigenfunctions of this problem. Define

y={¢ in H'(a, b) : ¢p(a)= ¢(b)=0} (12.3)

and define a functional J on &, by
b
| 1p)e 0+ as ) ax
Jp]=-= 5 (12.4)

J r(x)e¢ (x) dx

a

It is easy to show that A, = J[¢] for all ¢ in &,; indeed,

A, = min J[¢] (12.5)
PEAY
In addition, for k=1,2,..., define
b
o, = {¢ in o, : f rR b nx)de=0 (=12, .., k)} (12.6)

where ;(x) denotes an eigenfunction of (6.13) corresponding to the eigenvalue A;. Then

Ay, = min J[¢] (k=1,2,..) (12.7)

SE s,
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The functional (12.4) is called the Rayleigh quotient of the Sturm-Liouville problem (6.13), whose
eigenvalues are characterized by the minimum principles (12.5) and (12.7).
More generally, consider the elliptic boundary value problem

V- (px)Vu(x)) + gx) u(x) = Ar(x)u(x) x in ) (12.8)
u)=0 xon S (12.9)

where p(x)>0, g(x), and r(x)>0 are all in C'({}). As in the case of the one-dimensional Sturm-—
Liouville problem, all eigenvalues of (12.8)-(12.9) are real and can be arranged in a countably
infinite, increasing sequence. Moreover, weighted eigenfunctions r'?u belonging to distinct eigen-
values are orthogonal; i.e.,

(r'*u,, r'?u) EJ r(x)u, (x)u,(x) dQ2 =0 (m # n)

Q
The smallest eigenvalue, A, satisfies
A, = min J[¢] (12.10)
SEA
where Ay={¢ in H(Q): ¢=0o0n S} (12.11)

and where the Rayleigh quotient is given by

[ 1p0V600- Vo) + g0 6 x) a0

J¢) (12.12)
J r(x) (Y d0
Moreover, for k=1,2,..., ?
Aper = min J{¢] (12.13)
PEAy
where A, ={¢ind,: r'¢, r'?u)=0 (1=j=k)} (12.14)

and u; denotes an eigenfunction belonging to the eigenvalue A, It is readily shown (cf. Problem
12.7(b)) that the minima in (I12.10) and (12.13) are assumed at the eigenfunctions; i.e., A, =
Ju,] k=1,2,...).

Minimum principles analogous to (12.10) and (12.13) hold when the differential operator in
(12.8) is replaced by a general linear, elliptic, differential operator.

12.5 WEAK SOLUTIONS OF BOUNDARY VALUE PROBLEMS

Let Q denote a bounded region in R? with smooth boundary S consisting of complementary arcs
S, and S,. Let p, g, f, g,, 8, denote given functions which are defined and smooth on ) and/or on S.
Finally, define a linear partial differential operator by

Lu(x, y)=—V’u+ pu_ + qu, (12.15)
and consider the mixed boundary value problem
Lu=f in Q (12.16)
u=g, on $, (12.17)
ou
—=g, on S, (12.18)
on

For arbitrary 4 and v in C*(2), Green’s first identity, (1.7), gives
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I¢]
(Lu, v)=j Vu-Vo d(—l+f (pu, + qu)v dﬂ—f v—udS (12.19)
1 0 s on

Now define
A={uin H'(Q): u=g on S}
M={vin H(Q): v=00n S} (12.20)

and note that for 4 in & and v in A,

u du
f v—dS= f v—4dS
S a
Moreover, if u in & satisfies (12.18),

0
fva—udS= vg,dS  for all v in M
n

s s
Thus, if u is a classical solution of the boundary value problem (12.16)-(12.18), u must satisfy
Klu, v] = Flu] for all v in # (12.21)
where, for u in & and v in A,
K[u, U]Ef vu-vuda+f (pu, + qu,)o dO (12.22)
o o
Flv] zf fu2d9+f g,0dS (12.23)
Q %

Definition: A weak solution of (12.16)-(12.18) is any function u(x, y) that belongs to & and
satisfies (12.21).

A notion of weak solution has already been encountered in Problem 5.15. Evidently, every
classical solution of the boundary value problem is a weak solution. However, a weak solution u
need not be a classical solution: it need only be sufficiently regular to allow definition of K|u, v] for
all v in AL

In the special (self-adjoint) case that p and ¢ in (12.15) vanish on {1 [i.e., when (/2.16) is Poisson’s
equation], then

Kluw, v]= K|v, u] for all u, v in A

Klw, u]=0 for all u in M (12.24)
Whenever (12.24) holds, it follows that for u in &, v in M,
2{K[u, v] - Flv]} = 8J]u; v] (12.25)
where
Jlu]l=K[u, u] -2 F|u] (12.26)

If u, 1s a weak solution of the boundary value problem (for Poisson’s equation), it follows from
(12.25) that u, is a stationary point for J. In fact, it can be shown that u; minimizes J over &, which
leads to

Theorem 12.5: Let K[u, v] satisfy (12.24) and let J[u] be given by (12.26). Then u, minimizes J
over ¢ if and only if K[, v] = F[v] for all v in 4.

According to Theorem 12.5, the weak formulation of a boundary value problem is, provided
(12.24) holds, the same thing as the variational formulation guaranteed by Theorem 12.4. However,
when (12.24) does not hold, only the weak formulation is possible. Thus, the notion of a weak
solution to a boundary value problem is more comprehensive than that of a variational solution,
which in turn is more comprehensive than the notion of a classical solution.



CHAP. 12] VARIATIONAL FORMULATION OF BOUNDARY VALUE PROBLEMS 193

Solved Problems

12.1  Let £ denote a bounded region in R* with smooth boundary S. For & = # = H'(), let the
following functionals be defined on sf:

J,[u] = J (s + u} — 2fu) dx dy

0

J[u] =f (s + ul—2fu) dx a‘y+f pu’ ds
o s

J3[u]=f (ui+ui—2fu) dxdy+f (pu’—2gu) ds
a s

Here p and g are in C(Q2) and f is in L*({2). Compute 6J[u; v] for each functional.

It suffices to calculate 8J5[u; v]; setting p = g = 0 or g = 0 will yield the other two variations. For u, v
in & and arbitrary real €, we have

dale) = Ja[u + ev}

= Ji[u) +2e J’ (Uavx + uyv, — fo) dx dy + 2¢ J’ (puv — gv) dsS
a s

+52J’ (vi+v§)dxdy+£2J’ pv* dS
e} S
and so

8J53[u; v] = p3(0) = ZJ’O (uxvx + uyv, — fo)ydx dy + 2 J’S (pu-—g)vdsS ()

12.2  Let € denote a bounded region in R” with smooth boundary S. On = # = H'({1) define the
functional

n

ou 3
J4[u]=J [S ai}.(x)—u—u+ c(x)u’ = 2f(x)u | dQ
a bij=t 9x; dx;

where the functions q;; = a; (see Section 2.1), ¢, and f are all in C[Q]. Find 8J,[«; v].
For u, v in & and arbitrary real ¢,

da(e) = Ji(u + €v)
ou dv  Ju v

N . dv d
[Z a;j (——+——>+20uv—2fv} dﬂ+62j [}_J (1,-,-—UAU+CUZ] dQ

ax; 8x,- 8x,- ox; i ax; ox;

= Jo(u)+ GJ’

[}

Hence, from the symmetry of the ay,

o du a
8Ja[ ue; v]E¢>A(())=2J’ [‘\_J ai; ua‘v+(cu—f)v} dl
0

Xy O0X;

12.3  Let O denote a bounded region in R? with smooth boundary S. With
A ={uin H(@Q): u=g on S} M={vin H(Q): v=0on S}

and f, g in C[{1], consider the functional
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AR =j (> + ui— 2fu) dx dy (u in )
Q

Find @, and VJ,[«]. Note that 4 is dense in L*(Q).
Problem 12.1 gives (for any & and #)
SIi[u; 1)]=2J' (u.v, + u,v, — fo) dx dy 1)
N

Green'’s first identity, (1.7), implies
ou
J' (u,v,+uyvy)dxdy=J' v—dS—J' vViudxdy 2)
0 s on 0
Since v =0 on S for v in M, (2) used in (1) leads to
8\ [u; v] = —2J' Vu+ fluodx dy ={G, v)
n

where G(x y)=-2[V’u(x y)+ f(x,y)]  (xy)inQ
If Vu is in L*(Q), then G belongs to L*}) and we conclude that
VI[ul= G=-2(Vu+f)

for u belonging to @, = {u in H*(Q}) : u= g on S}, where H*(Q}) denotes the class of functions for which
V?u belongs to L*(}). (A more precise characterization of the domain @ of the gradient of a functional
can be given in the context of functional analysis.)

For each functional of Problem 12.1, find & and VJ[u].

Again it suffices to treat J; and then to specialize the results to the other two functionals. Applying
(2) of Problem 12.3 to (1) of Problem 12.1, we obtain

ou
813[u;v]=2J' (f+pu—g>vd5—2J' (V*u+ fvdxdy (1)
s\on 0
Thus, if 4 in & satisfies the additional conditions
. .. ©du
(i) u belongs to H* Q) (i) 8_+ pu=g onS 2)
n

(1) shows that VJ3[u] = =2(V?u + f) on the domain @5 defined by (2). (VJs is in L*({}) because of (2)(i).)
The functional J; is seen to be the energy integral for Poisson’s equation with an inhomogeneous
mixed boundary condition: .
—Vu=f in

du
~—+pu=g on §
on

Setting p=g =0, we see that J,, the energy integral for Poisson's equation with a homogeneous
Neumann condition, has gradient

a
Va[ul = =2(Vu + f) for u in @1={u in HZ(Q):a—u=Oon S}
n
In Problem 12.3, a different domain & for J; produced a different domain 9, for VJ;.

Let Q denote a bounded region in R? with smooth boundary S. Let S, denote a connected
subset of S and let S, denote the complement of S, in S. Let p, f, g,, g, be functions in C(Q2). If

A={uin H(Q): u=g, on S} M={vin H'(Q):v=00n S} (0)
find @ and VJ for the functionals
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12.6

J[u]= J' (u?+ ui —2fu) dx dy
Q

A =J’ (U2 + ui—qu)d): dy+J’ pu’ ds
Q $

Jlul= J' (u’+ u: —2fu)dxdy + J' (pu® —2g,u) dS
o 5
This problem illustrates further the relation between & and 2. Note that the admissible class & of
(0) is “between” the classes & of Problems 12.3 and 12.4, in the sense that
{uin H'(Q):u=gon S}Cluin H'(Q): u=gon S, CS}C {uin H' ()}
As usual, we may restrict attention initially to Js. Since » =0 on S,, we have, analogous to (1) of
Problem 12.4,
ou >
6]3[u;v]=2J’ (—+pu—g2>vd5—2 (V'u+ flodx dy (1)
S on 0
We conclude that if u in & satisfies the additional conditions
. ... Ou
(i) u belongs to H*({}) (i) 5—+ pu=g, onS; 2)
n
then VJs[u] = —2(V’u + f) on the domain
. 2 du
Dy = {u in H(Q2) : u= g, on S‘,a—+pu=g20n Sz}
n

Now setting g, =0 and gz = p = 0, respectively, we obtain:

I}
Vhlul= -2(Vu+f) on D= {u in H*(Q)) : u =g, on Sl,a~:+ pu=0on Sz}

. du
Vi[u] = -2(V?u+ f) on @, = {u in H*(Q}): u= g, on Sl,;= 0 on SZ}
n

In the case of each functional, the definition (0) of & specifies how u is to behave over the part $;
of the boundary. Then the definition of 2 imposes a condition over the remainder of the boundary; this
condition involves the normal derivative of u. Boundary conditions incorporated in the definition of &
are called stable boundary conditions; those included in the definition of & are called natural boundary
conditions.

Let (2 denote a bounded region in R’ with smooth boundary S. Let [, g, and p be functions in
C((})). Consider Poisson’s equation

~Vu(x, y)= f(x, y) in () (1)

and the Dirichlet, Neumann, and mixed boundary conditions

u=g on S (2)
a
l=g on S 3)
on
J
1+pu=g on S (4)
on

Give variational formulations of the problems (1)-(2), (I)-(3), and (1)-(4).

All three boundary value problems are covered by the functional Js[u] of Problem 12.5, with & and
M as given in (0) of that problem.
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(i)

(ii)

(iii)

In Problem 12.5, take S; = S, g1 = g Then, by Theorem 12.4, if u, minimizes
J (u2+ u®—2fu)dxdy over {uin H'(Q): u=g on S}
[¢]

ug solves (1)—(2).
In Problem 12.5, take S, =S, p =0, gz= g Then, by Theorem 12.4, if up minimizes

J(ui+u§—2fu)dxdy—2j gudS  over H'(Q)
] s

uo solves (1)-(3).
In Problem 12.5, take S, =S, g2= g Then, by Theorem 12.4, if uy minimizes

J (u§+u§—2fu)dxdy+J (pu*—2gu)dS  over H'(Q)
[¢] s

U solves (1)—(4).

[CHAP. 12

It is seen from (i) that the Dirichlet condition (2) is a stable boundary condition for the
corresponding variational problem, whereas the Neumann condition (3) and the mixed condition (4)
figure as natural boundary conditions.

12.7 Consider the boundary value problem

~Vu+qu=2Amu  inQ

u=_0 onS

(1)
(2)

with ¢ =0 and r>0 in Q. Let A, <A,=--- denote the eigenvalues of (I)-(2) arranged in
increasing order, and let u, denote the eigenfunction corresponding to A, . With J[¢] as given

by (12.12), with p =1, and &, as given by (12.11), prove: (a) if ¢ . minimizes J over &, then

¢ satisfies (1)—(2) with A = J[¢,]; (b) forn=1,2,..., A =J[u,]; (¢) A, = min J[¢].

(@) On do=M={pin H' () : ¢ =0 on S} define

Niol=| Fo-Vorqendn  Dls1=] w70

Then, for J[¢] = N[o]/D[¢],

8N[¢; v]1D[¢] - N[#]8D[¢; v]
D[¢]?

dJ[¢; v]=

If ¢, in o, minimizes J, then 8J[¢,; v]=0, or

SN[, ; v]-J[¢,]8D[o,; v]=0 for all v in #

But, since

5N[¢;U]=2f (Vo - Vo + g¢v) dQ SD[¢;D]=2J rév dQ
a n

(5) implies

J V¢, ,-Votgp v-A rd v)dQ2=0 for all v in #
Q

where A, =J[¢_]; or, by (1.7) and the boundary condition on v,

(V2o +qb,— A rp,, v)=0 for all v in 4

Theorem 12.4 guarantees that the minimizing element ¢ is such as to render

€))

)

)

(6)

7)
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12.8

V¢, 1= -V'6, +ab, A,
an element of L*(Q}); thus ¢, must belong to the subspace
D={pin H¥(Q): =0 on S}
of #,. Indeed, VJ[¢,] must be the zero element of L*(), so that ¢, in D solves (1)-(2) with

A=A,
(b) 1f u, satisfies (I)—(2) with A = A, then multiplying (7) by . and integrating over (} leads to
J (=VPu, + qu, — Aurtdy Ju, dQ =0
0
But, by Green’s first identity and the boundary condition,
J (-Vu)u, dQ = J Vu, Vu,dQ)
n 0
Hence,

f Vu, - Vu, + qus — Aru2)dQ =0 or A= Ju)
n

(c) Since ¢, minimizes J[¢] over 4o and since each u, belongs to ¢y, we have, by (b),
A =g 0=Tw]=rA (n=12..)

But A, is itself an eigenvalue, and so A, = A,. We have just proved Rayleigh’s principle: the
smallest eigenvalue of the boundary value problem (7)-(2) is identical to the smallest value of the
functional J[#]. (Cf. Problem 9.8.)

Consider the Sturm-Liouville problem (12.8)-(12.9) and let ¢,, ..., ¢,_, denote any N —1
elements of &, as defined in (12.11). Let @,,_, denote the following subspace of #:
Dy ={uin o, (r'? » MPuy=0 (=1,...,N-1) (1)

For the Rayleigh quotient J of (12.12), write

Cléy, ..., Pyl = min J[u] 2)
WEBN_|
Prove that Clé,, ..., dy_,] = Ay, with equality if ¢, ..., ¢y_, coincide with eigenfunctions of
the Sturm-Liouville problem, corresponding to the first N — 1 eigenvalues. This result, the
Courant minimax principle, implies that A, the Nth eigenvalue of the Sturm-Liouville
problem, can be characterized as the maximum over all subsets {¢,..., ¢y_,} of &, of the
minimum of J[u] on @,_,.

To establish the desired inequality it will suffice to construct a function w in @n_; such that
J{w] = An. Write

N
w= 2, ciui(x) 3)
i=1
where u;(x), . .., un(x) denote the eigenfunctions associated with Aj, ..., An. w will belong to @n-,
provided
N
0= ('), r'?wy= 2 a(r'e, r'u)  (j=1,2,...,N-1) “)
i=1
As (4) constitutes a system of N —1 linear equations in the N unknowns c, ..., cn, there will always

exist a nontrivial solution (éy, ..., év). [w = 0 certainly belongs to @~_i, but J[0] is undefined.] Now
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[p(x)_}; &é Vu,-(x)-Vu,(x)+ g(x) (Z c”,-u,-(x)) ]dQ 3 056
Jw]= ? - = 7 - = J~N
J' [r(x)(:z, Ciug (x)) ] an z Bié?
where
0:; EJ' | PO Vi (x) - Vi (x) + g(x)ui (x)u; (x)] dQ Bi EJ' r(x)u, (x)* dQ
O O

and where we have used the weighted orthogonality of the eigenfunctions in evaluating the denominator.
From Green’s first identity and the fact that u;(x) is an eigenfunction of (12.8)-(12.9), we can show that

6, = ,\,J r(xu: () (x) dQ = {SB ;zz’
. B,

Therefore

Jw)=1 Z (5)

where «; 20, K1+ k2+ -+ -+ kv = 1. Thus, as a convex combination of the A;,
ra=Jiw]= Ay
The proof is completed by noting that, if ¢;=u;, (j=1,2,...,N~1), uy will belong to Dn_, =
An_1. We then have, using (12.13),

Cluy, ..., un—1]= min J[u]= Ay
uE sty -

12.9 Let p*, g*, r* denote an alternate set of coeflicient functions for the Sturm-Liouville problem
(12.8)-(12.9); these are supposed to obey the same continuity and positivity conditions as do
P, q, r. Let the alternate and original problems have Rayleigh quotients J*[¢] and J[¢], and
eigenvalues {A%} and {A,}. Show that if

Jol=J*[o] for all ¢ in ¥, (1)
then A, =A% (n=1,2,...).
Inequality (1) implies that
Cldr, .-, dn-1] =Ty, .., il

If, then, i, ..., Yn-1 is a set of functions in o that maximizes Clpy, ..., dn-1] and if ¥, ..., Yh-; in
oo maximizes C*[¢y, ..., ¢n-1], the Courant minimax principle implies
An=Cl, .. v = C*[Y, ..., | = CHYT, ..o, Y] = AR

12.10 For the one-dimensional Sturm-Licuville problem of Section 12.4, write p,, >0, g,,, and r, >0
for the minimum values of the coefficient functions on [a, &), and py,, q,, >0, and r,, for the
maximum values. Establish the following bounds for the eigenvalues:

2 2
"_'"+(”—”) ’ﬁsA"s‘L‘u(ﬂ) P n=12,..) (1)
Tt b—a/ r, r, b~a/ r,

The Rayleigh quotient (12.4) clearly satisfies, for all ¢ in o,
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12.11

&

o | @G dx+ gy j (x) d

a

)= =J*[¢]

&
| (e dx
Now, J*[¢] is the Rayleigh quotient for the Sturm-Liouville problem

—paw"(X)+ quw(x) = A*raw(x)  a<x<b
w(a)= w(b)=0

2
A:ZQ_M+([)”_"> P m=1,2,. )

I'm —a I'm

which has eigenvalues

Therefore, by Problem 12.9, A, = A%, which is the upper bound asserted in (I). The lower bound is
established similarly, from the inequality

DPom Lb &' (xY dx + g, J;b H(x) dx

- j S(x)? dx

Let Q denote a bounded region in R* with smooth boundary S composed of complementary
arcs S, and S,. Let p, g, 1, £, 8, 8, and h denote given functions defined and smooth on ; in
addition, suppose p>0 on . Give the weak formulation of the mixed boundary value
problem

~V-(pVu)+qu +ru =f on Q (1)
u=g, on S, (2)

a
l+hu=g2 on S, 3)

on

(Unless g and r vanish on (, this problem does not admit a variational formulation.)

For arbitrary u, v in C*()) we can use (1.7) to show that

du
(=V-(pVu),v)= J (Vu -Vv)de—J v—pdS
0 s on
Then, if u satisfies (1),

ou
J (Vu-Vv)de+J (qu, + ru,)de—J v-—pdS-— ]’ fod{t=20 )
n n s n Jn
for all v in H'(Q2).
Define
d={uin H(Q): u=g on S} M={vin H'(Q): v =0 on S}
If u in & satisfies (1 )~(3), then, for every v in #, (4) gives
Klu v] = Fo] (5)
where Ku, v] EJ (Vu-Vo)pdl +f (Gu. + ru,)o d.Q+J phuv dS
2] n S
F[v]EJ fo dQ+J pgav dS (6)
a S

The weak formulation of (I1)~(3) is, therefore, to find a u in & that satisfies (5) for every v in ..

The weak formulations of PDE (1) plus a Dirichlet or a Neumann condition on S are obtained,

respectively, by taking S, =S and taking S, = S and A =0, in the above formulation.
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Supplementary Problems

1212 Let Q={(x, y): x*+ y*< 1} and & = {u in H'(Q}): u = x% on x*+ y*=1}. For
Jul = J (Y2uZ+ x*u?) dQ) (u in s£)
n

define # and find 8J[u: v].
12.13 Find 2 and VJ[u] in Problem 12.12.
12.14 Let Q be as in Problem 12.12. If 4 in &£ = H'(Q) minimizes the functional

J[u] = J (y*u?+ x*u?— 2Fu) dQ
n

over o, where F is in L*{Q), what boundary value problem does u(x, y) solve?

12.15 Suppose that £ is a bounded region in R? with smooth boundary S. Let F belong to L*(Q2) and let

a
&flz{uin Q) u="2=00n s}
on

Ju] EJ [(VPu)®— 2Ful dQ for u in &4,
n
Define # and find 8J[u; v].
12.16 Find @ and VJ[u] in Problem 12.15.
12.17 Repeat Problem 12.16 if &4, in Problem 12.15 is replaced by s, = H*({2).
12.18 With Q, &/, and J[u] as in Problem 12.15, define on &, the functional

Jlul= J [(VPu) — 2(usettyy, — 2u,) — 2Fu] dQ2
a

Verify that VJ[u] = VJ[u], on the domain & = 9.

12.19 Let Q denote a bounded region in R* with smooth boundary S composed of complementary arcs 5, S,,
and 3. Give a variational formulation of the following boundary value problem:

~V*u=F in Q
u=g on S,
du _

on = 82 on Sz

ou
—+pu=g; on Ss
on

12.20 Let J[¢] be given by (12.4) and let (a) o= H'(a, b), (b) o= {¢ in H'(a, b): ¢(a)=0}. Show that
if u* minimizes J over s, then u* is an eigenfunction of (6.13) with (a) Ci= G3=0,(b) C=C3=0.

12.21 Consider
j (pVo Vo + g dQ+j ad?dS
Jel=" = on o= H(Q)
J r¢? dQ
N
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12.22

12.23

Here, functions p, g, and r obey the usual conditions; function « is in C'(€)) and is nonnegative on §.
Prove: (a) If u, minimizes J over &fo, then u, satisfies

-V (pVu)+ qu = Aru in Q 1)
ou
—+au=0 on$§ 2)
on

with A = Ay = J[u,]; i.e., u, = u, an eigenfunction of (/)~(2) belonging to the smallest eigenvalue.
B) ra=Ju] (n=1,2,..)).

For the one-dimensional Sturm-Liouville problem of Section 12.4, infer from Problem 12.10 that (a) if
4. <0, at most finitely many eigenvalues are negative; (b) if g, =0, all eigenvalues are positive; (c)

> An! converges.
n=1

Give weak formulations of the problems

(a) ~Uge — Uy +2u, =1 n: xy>0, x+y<2
u=20 on S
(b) —Uex = Uy 22U, = 1 in: xy>0, x+y<?2

u,(0,y)=2—-y O<y<?
uy(x, 0)= x(2- x) 0<x<?2
u(x,2—x)=0 0<x<2



Chapter 13

Variational Approximation Methods

This chapter presents some techniques for constructing approximate solutions to boundary value
problems. These techniques are based on the ideas of Chapter 12 and differ markedly from the
finite-difference methods of Chapters 9, 10, and 11.

13.1 THE RAYLEIGH-RITZ PROCEDURE

This approximation procedure is limited to boundary value problems admitting the variational
formulation “Find u* in & such that functional J[u«] is minimized over & by u™*.” It was seen in
Chapter 12 that such boundary value problems arise in connection with self-adjoint elliptic PDEs.

We suppose &/ to be some subset of L*(f2), where Q denotes a bounded set in R” with smooth
boundary S consisting of complementary portions S, and S,. Specifically, we take &=
{uin H'(Q): u=g on S} for a given g in C({Y); the associated subspace of comparison functions is
taken as # = {v in H'(Q): v=0o0n S ).

Let ¢, denote an arbitrary function from & (e.g., ¢, = g) and let ¢, ..., ¢, denote N linearly
independent functions in #. Then,

Uy () = bo(x) + 2 ¢;;(x) (13.1)

belongs to & for all choices of the constants ¢, ..., ¢y; we denote by &, the subset of & consisting
of all such functions u,,. Let u}, denote the function in &, that minimizes J over &,. It can be shown
that u}, represents the best approximation, in the least-squares sense, from &, to the exact solution
u*. This function u}, is called the Rayleigh—Ritz approximation to the solution of the boundary value
problem.

The minimization of J over &, is tantamount to the minimization over all ¢ in R" of the ordinary
function

N
H(c,,...,cy)=J [¢>0+2 cid>l.]
j=1

The minimizing constants ¢}, ¢}, ..., cy must satisfy
oH
Bc—(c,,...,cN)=0 (m=1,...,N) (13.2)

m

which is a system of N equations in N unknowns.

The Rayleigh—Ritz procedure may also be applied to eigenvalue problems of the sort treated in
Section 12.4. In any eigenvalue problem the boundary conditions are all homogeneous. Hence, we
take ¢, =0 in (13.1) and minimize the Rayleigh quotient J over the subspace &, = A,

13.2 THE GALERKIN PROCEDURE

This approximation method is employed when the boundary value problem admits only a weak
formulation; e.g., in the case of a linear elliptic PDE containing odd-order derivatives. In the event
that conditions (12.24) hold in the weak formulation, so that a variational formulation also exists, it
can be shown (see Problem 13.4(b)) that the Galerkin and Rayleigh—Ritz procedures coincide.

Consider, then, a boundary value problem with the weak formulation “Find u* in & such that
Klu*, v] = F[v] for all v in M.” Here we suppose that ), S, &/, and # are as described in Section

202
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13.1. Let ¢,,..., ¢ denote N linearly independent trial functions in M and let ¢, denote an
arbitrary function in &. As in the Rayleigh-Ritz procedure, we seek an approximation u} to the
weak solution u* of the form (13.1). In addition, let ¢,,..., ¢, denote N linearly independent

weight functions in #{; these may or may not be the same as the trial functions. The Galerkin
approximate solution is required to satisfy

Kluy, ¢,|=Fly]  (G=1,...,N) (13.3)
This is a set of N equations in the N unknowns ¢¥, ..., ¢ck.

Solved Problems

13.1 Let 2 denote a bounded region in R” having smooth boundary S consisting of complementary
pieces S, and S,. For the boundary value problem

V- (px)Vu)+gx)u=f(x) inQ (1)
u = g,(x) on S, 2)

u
— = g8,(x) on S, (3)

on

where, as usual, p(x)>0 and g(x)=0 in €, explicitly describe the construction of the
Rayleigh—Ritz approximate solution.

The methods of Chapter 12 lead to the following variational formulation of (1)~(2)~(3): Find u*
in of minimizing J over &, where

A={uin H(Q): u= g on Si}

Ju] Efn (pVu-Vu+ qu?)dQ—2F[u)

F[u]EJ fu dQ+ng2udS
a

M={vin H(Q): v=0o0n S}

Let ¢1,...,¢n~ denote N linearly independent functions from 4. The Rayleigh—-Ritz approximate
solution is of the form

N

un = 2, ¢ 4)

/=0

where ¢o denotes an arbitrary function from & and ¢, = 1. We then have

H(cy, ..., en)=J[un]
N N N
:f [P > (Ve -V )cic+q 2, ¢/ﬂ"kC/Ch]dQ—7-z ciF[e;]
n 1k=0 jok=0 J=0
in which the linearity of F| ] has been recognized. For m = 1,2,..., N,

dH N N
el L [2p k}_,o (Vébm -V )ex + 29 I‘ZO ¢>,,.¢kck] dQ ~2F )

9Cp
N

=7 [2 AnmkCr —Fm]
k=1

where, for 1=m, k =N,
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Amsz (PVbm Vi + Gbmepr) dQ FMEF[dm]—f (PVbm - Vot qbmepo) A
0 0

For unx to minimize J over &y it is necessary (and, H being a convex function, sufficient) that

N
2 Akak = F,,, (5)
k=1
The solution c¢i, ..., c& of (5) produces the Rayleigh—Ritz approximation u} via (4).

13.2  Using the trial functions ¢,(x, y) = (6 —2x — 3y)y and ¢,(x, y) = (6—2x — 3y)y’ (and ¢,=0),
construct the Rayleigh—Ritz approximate solution to the boundary value problem indicated in
Fig. 13-1.

X
Fig. 13-1
According to Problem 13.1, we are seeking a solution of the form
ua(x, y) = c1i(x, y) + c2a(x, y) (1)

The constants ¢, and ¢; must satisfy

Anat Ancz= F 2)

A21C1 + A22C2 = F2
where

A = j V.. - Vi dx dy F,= j X dx dy
o 0

Now,

A, = f (36— 24x — T2y + 4% + 24xy + 40y?) dx dy
23
A= j (72y — 48xy — 126y% + 8x%y + 42xy* + 58y*) dx dy = Ay
23
An= f (144y> — 96xy® — 216y> + 16x°y* + 72xy” + 85y*) dx dy
1)
Fy= f (6xy — 2x*y — 3xy®) dx dy Fp= f (6xy®—2x*y*—3xy’) dx dy
a o
For positive integers p and g,
3 ~2-(2x/3)
J' x”y"dxdy=f j xPy?dxdy
0O 0 -0

ptlog+l
3P712

3p1atl pl(g+ 1)
= j ZP(1-z) ' dz = pia+1)
g+l Jo g+l (p+q+2)
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Thus, A;1 =26, Aiz= Ay = 1632, An=-499.2, F, = 1.8, F, = 2.8. Substituting these values in (2) and
solving, we obtain
¢t =0.109 ¢ =—-0.001

13.3 Construct the Rayleigh—Ritz approximation to the solution of
—w'x)+tux)=1-x 0<x<1
w@)=u)=0

using the trial functions (@) ¢,(x)=1, ¢y(x)=x, ¢y(x)=x% (b) ,(x)= x*(1— x), h(x)=
(11— x), ¥y(x) = x*(1 — x)’. (c) Compare both approximate solutions with the exact solution,

cosh x —cosh (1 - x)
sinh 1

+1-x

u*(x)=

(a) In this one-dimensional version of Problem 13.1, &f = # = H'(0, 1). Let
3

3(x) = E cii(x)

i=1

Proceeding as in Problem 13.1, we find

1 1 1
1 - - Cy —
2 3 2
1 4 5 1
- 1= e l=| =
2 3 4 6
1 5 23 1
- I =] e il
3 4 15- 12
whence é; = 0.5384, é& = —0.0769, &= —2x 1078,
(b) Letting
3
ﬁ3 = E d:l//«'(x)
i=1
we find

0.0206 0.0103 0.0098 [ d, 1/60

0.0103 0.0068 0.0083 || dz | =| 1/140

0.0098 0.0083 0.0115 || 4, 1/105
whence dy = ~12.177, d, = 48.87, ds = —24.06.

(¢) The comparison, Table 13-1, brings to light one of the weaknesses of the Rayleigh—Ritz method. It
is evident that &;(x) is a very poor approximation to u*(x). The reason is to be found in the fact

that the functions ;(x) are linearly dependent:
Pi(x) — galx) = ga(x) = ga(x)| 1 - x - (1-x)] =0

The exact equations satisfied by the d; are

13 13 13 1
630 1260 1260 ! 60
13 47 49 1
1260 6930 13860 4= o
13 49 47 1
1260 13860 6930 s 105
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Table 13-1

X 3(x) as(x) u*(x)

0 0.5384 0 0.5378
0.1 0.53071 —0.23444 0.5357
0.2 0.52302 —0.5542 0.5299
0.3 0.5153 -0.6331 0.5214
0.4 0.5076 —0.4069 0.5111
0.5 0.4999 0.0142 0.5000
0.6 0.4922 0.4332 0.4888
0.7 0.4845 0.6532 0.4785
0.8 0.4768 0.5659 0.4700
0.9 0.4691 0.2381 0.4642
1.0 | 0.4600 0.0 0.4600

[CHAP. 13

This set of equations is inconsistent and has no solution. The system of (b) was obtained from this
one by rounding off. Evidently, a careless application of the Rayleigh—Ritz procedure can lead to

disastrous results.

The functions ¥, (x) and y»(x) compose an independent set and yield the approximation

ui(x) = 7.76 4y (x) + 1.02 ga(x)

Now, u3(x) turns out to be a less accurate approximate solution than d3(x), even though it satisfies
the boundary conditions of the problem, whereas di;(x) does not. This illustrates a second
undesirable feature of the Rayleigh—Ritz approximation procedure: the success of the method is
determined by the choice of trial functions. Unfortunately, there are no dependable a priori clues as
to what constitutes a “‘good” set of trial functions.

Let 2, S, p, ¢, and f be as in Problem 13.1; in addition, let b= (b, ...,
field defined on 2. Consider the boundary value probiem

=V (p(x)Vu) + b(x) - Vu + g(x)u = f(x)

u= g[(x)
%
on = g,(x)

b,) denole a vector

(1)
2)

3)

(a) Explicitly describe the construction of the Galerkin approximation to the weak solution of
(1)-(2)-(3). (b) Show that if b=0 on Q and ¢, = ; for j=1,..., N, then the Galerkin
approximation coincides with the Rayleigh—Ritz approximation as constructed in Problem

13.1.

(a) From Section 12.5, the weak formulation of (I )}(2)}(3)is to find u* in & satisfying

Klu*, v] = F[v]

where

g={uin H'Q): u=g

on S}

M={vin H({Q): v=0o0n &}

K{u, U]EJ [pVu-Vo+ (b-Vu+ qu)v) dQ)
[y

F[v]EJ fvdil+J gvdS
0 52

for all v in M
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Let ¢1,..., ¢~ denote N independent trial functions from # and let ¢, ..., Y~ denote N
independent weight functions also from . Then, for an arbitrary ¢, from «, the Galerkin
approximation to the weak solution of (1 }(2)}-(3),

N
ut=> ¢¢;  (co=1)
j=0

must satisfy
Klun, hm] = Flifm) form=1,... N

Mz

Am/C, = Fm (4)

1

~
W

where, for 1 =m,j= N,

A EJ [PV - Vibm + (b Ve + g¢;)¥m] AQ
[t}

F., EF[,;,M]—I [P Vo Vi + (b Vebo + gpa)ihm | A
i8]

Note that in general A,; # A;,. The solution ci, ..., cXk of (4) yields the Galerkin approximation.

(b) Under the stated conditions, system (4) becomes identical to system (5) of Problem 13.1.

13.5 Construct the Galerkin approximation to the weak solution of the problem

(g, +u,)+2u,—u =1 inQ={x>0,y>0,x+2y <2}
u=90 on S, ={x+2y=2}
u,0,y)=y on0<y<l
u,(x,0)=0 on0<x<?

Use the single trial function ¢(x, y)=(2— x—2y)(1+ x + y) and the single weight function
Y(x y)=2-x—2y.
We have uf(x, y)= cté(x, y), where c? is given by
ciKle, ] = Fly]

Now, by computation,

K[, &] = L (Dl + Pyl + (20, — B, )] d2 =14

1 1
Fly) = L 1¢,d.s)+f yg (0, y) dy = 3
0

so that ¢} = —1/42.

13.6 Describe explicitly the Rayleigh-Ritz procedure for approximating the eigenvalues and
eigenfunctions of (12.8)-(12.9).

Evaluating the Rayleigh quotient (712.12) at

un —

=

cid;

~.
]

where the ¢, are linearly independent functions in s, we have

N(C],..A,CN)

D(C[,...,CN) (1)

H(Cx,...,CN)E][uN]E
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where Nen..oon= 3 | | 8,960+ g8,6.) d0f e = S Anca
jik=1 jok=1
S
D(Cl,.. Ly E lj r¢>,¢k dQ} CiCyx = Z B/kC Ci
nk=1 jok=1
Note that both A=[A;] and B=[B8;,] are symmetric matrices. The conditions for minimizing (1),
oN oD
—=H—  (m=1,...,N)
ICm Cm

translate to the matnix eigenvalue problem AX = uBX, where
X={c,¢z...,en]T w=H(c,...,cn)
Thus, w., the smallest root (all of which are real) of the characteristic equation
det (A—uB)=0 (2)

is the Rayleigh~Ritz approximation to A, the smallest eigenvalue of (12.8)-(12.9). And the components
of X,, the eigenvector assoctated with u,, generate the Rayleigh—Ritz approximation to the eigenvector
associated with A,.

Note that

p1= min J{¢]=min J[¢] = A,

My C sl Ay

The larger roots of (2) provide approximations for the larger eigenvalues of (12.8)-(12.9), although the
accuracy of these approximations, after the first, decreases very rapidly.

Approximate the lowest fundamental frequency of a homogeneous circular membrane which
is clamped at its edge.

Choose units of length and time such that u(r, 6, ¢), the out-of-plane displacement at position (r, 8)
at time ¢, satisfies

g =V?u(r, 6,¢) r<1,0<6<2m >0 (1)
u(l,6,H)=0 0<0<2mt>0 2)

Periodic, cylindrically symmetric solutions are of the form u = (r) sin (A 27+ 7), which implies for ¥(r)
the Sturm—Liouville problem

~(n'Y=any  0<r<l (3)
Y(0) = finite, w(1)=0 (4)
Apply to (3)-(4) the (one-dimensional) method of Problem 13.6, using the trial functions
) r ) 37r
= il = cos ——
¢bi(r) = cos 3 &ar 0s >

Thus, for j, k =1, 2,

Aw=[ roneinar Ba=| re()eu0)dr
0 [}

which give
w2+ 4 3 w4 1
16 4 442 w
A= B=
3 9’ +4 1 92 —4
4 16 ? 3672

Solution of the characteristic equation det (A — uB) = 0 yields the Rayleigh-Ritz approximations
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pr=5.790 2 =30.578 (5)

to A; and Az, the two smallest eigenvalues of (3)~(4).
For comparison, the exact solution of (3)~(4) is ¥ = Jo(pr), where p is a zero of the Bessel function
Jo(x). This implies that, to three decimals,

A= 5.784 A2=30.470 (6)

which testifies to the remarkable accuracy of the Rayleigh-Ritz method under a happy choice of trial
functions. (Bessel functions resemble sine waves.)

Supplementary Problems

13.8  Using the trial functions ¢,(x)= x(1—x) and ¢2(x)= x*(1 — x), consiruct one-term and two-term
Rayleigh~Ritz approximate solutions to

—u"(x)~ xu(x)=x 0<x<1
u(0)=u(1)=0

13.9  Obtain a three-term Rayleigh—Ritz approximate solution to

—u"(x)+ (1 + xDux) = x* 0<x<l1
) =u'(1)=0

using trial functions (a) 1, x, and x*; (b) 1, cos mx, and cos 27x.

13.10  Construct a three-term Rayleigh—Ritz approximate solution to

Upe + Uy = X x*+y?<100, x>0,y >0
u=0 x*+ y?=100

u(0,y)=0 0<y<10

u,(x,0)=0 0<x <10

using the trial functions

é1=10-Vx*+y? b2= x, $3= yb:

13.11 Construct the Rayleigh—Ritz approximate solution to

U + Uy = 1 in: 0<x,y<1
u=0 on S

using trial functions ¢;= x(x — Dy(y — 1) and ¢. = x*(x — 1)y*(y ~ 1).

13.12 Construct a Rayleigh—Ritz approximation to the (singular) solution of the problem of Fig. 13-2, using
N =2, with ¢o(x, y)=1 and

bi(x, y)= xy b2(x, y) = xy(1+ xy)

13.13 Show that the Rayleigh—Ritz conditions (13.2) are equivalent to
8J{un; ¢m] =0 m=12,...,N)

1.e., the ‘‘directional derivative” of J at uy must vanish in each of the N “directions’” ¢,,.
’
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13.15
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y
u, =0
2
u, =1
u=1
u, = -1
tr—
—Viu=8(x—3%y-3) u, =0
|
1
0 1 u=1 2
Fig. 13-2

[CHAP. 13

Find the characteristic equation for the Rayleigh—Ritz approximate eigenvalues of the problem

—u"(x)= Axu(x) 0<x<l1
u(0)=u(l)=0

if the trial functions are ¢, = x(1— x) and ¢ = x*(1 ~ x). (The true values are A; =~ 18.9, A, ~81.2.)

Show that the eigenvalues of

—u®(x)= A u(x) 0<x<l1

u@@)=ul)=u'0)=u'(1)=0
can be obtained by minimizing the functional
1
|| oy ax
0
Jgl=———
J; b (x)* dx

over an appropriate class of functions.

Construct the Galerkin approximation to the solution of

—u"(x)—4du(x)=x 0<x<l1
u@y=u(1)=0

using trial functions

$1(x) = x(x— 1) #2(x) = x(x = 1)(x —2)

and weight functions (x) = 1, ax) = x.



Chapter 14

The Finite Element Method:
An Introduction

The success of the approximation methods presented in Chapter 13 is largely dependent on the
selection of an effective collection of trial functions ¢; and/or weight functions . If these functions
are chosen from certain families of piecewise polynomials, called finite element spaces, the following
advantages are realized:

(i) 1t is possible to deal in a systematic fashion with regions £ having curved boundaries of
rather arbitrary shape.

(i) One can systematically estimate the accuracy of the approximate solution in terms of the
adjustable parameters associated with the finite element family.

(iii) The coefficient matrix and data vector for the system of algebraic equations defining the
approximate solution can be efficiently generated by computer.

14.1 FINITE ELEMENT SPACES IN ONE DIMENSION

Suppose that the interval [0, 1] is subdivided into N subintervals each of length h = 1/N. Let
x;=jh (j=0,1,...,N) denote the nodes in the interval [0, 1]. Then the finite clement space
denoted by §"[k, r] shall consist of all functions ¢ (x) defined on [0, 1] such that (i) on each subinterval
[x;, x;.,], ¢(x) is a polynomial of degree at most k; (i) ¢(x) has r continuous derivatives on [0, 1],
which is to say, ¢ belongs to C’[0, 1].

If r=0, ¢ is continuous but not necessarily differentiable at nodes. If ¢ is to be allowed to be
discontinuous at nodes, we set r=—1. Evidently, $*[k, r] is a finite-dimensional vector space (a
subspace of L*(0, 1)) and so may be characterized by giving a basis; i.e., a lincarly independent set
of elements {¢;} that spans the space.

Maodifications for the case of nonuniform grids are easily developed.

EXAMPLE 14.1 A basis for §*[0, —1], the piecewise constants, is given by
1 X=X =< x;
@i (x)= {0 ' '

otherwise

forj=1,2,...,N (Nh=1). See Fig. 14-1. The functions in $*[0, —1] are in 1.%(U, 1) but are not continuous.

) | &;(x)
— | |
x=0 Xjo1 X; 1=xn
Fig. 14-1
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EXAMPLE 14.2 By Problem 14.1, the “hat functions” (see Fig. 14-2)

Bo(x) = {gx’_x)/(xx—x(,) Xo= X=X

otherwise
(x = x- )/ (x; = %;-1) X1 =X =X
& (x) =1 (a1 — X))/ (X401~ x;) X, < X = X G=1,...,N=-1)
0 otherwise
B (x) = {(x—-\'.'\r DI (xn — Xn-1) XN-1=X = XN
otherwise

where Nh =1, compose a basis for $"[1,0], the piecewise linear functions. Note that this space is (N +1)-
dimensional and that the basis functions have the convenient normalization &;(xx)= 8y (j, k=0,..., N). The
functions in §"[1, 0] are continuous and have square-integrable first derivatives on [0, 1].

do(x) #(x) én(x)

=0 X1 Xi-1 X Xjs+1 XN-1 1= XN
Xo § J j

Fig. 14-2

EXAMPLE 14.3 A basis for $"[3, 1], the piecewise cubic Hermite functions, is jointly provided by the two
families (j=0,...,N; Nh=1)

(|x—x,-|—h)2(2|x—x,-|+h)/h3 Xj—1 = X = X4
& (x) = -
0 otherwise
(x = x)(x = x| = h)*/h? Xj-1 =X = X
di(x)= {0 -
otherwise
See Fig. 14-3. Note the properties
i (xx) = Sjx #(x)=0
$i(x)=0 Ui(xi) = B
for j, k=0,..., N. The functions in $"[3, 1] are continuously differentiable on [0, 1] and have second derivatives

which are piecewise constants (hence the second derivatives are square integrable).

L &
/ slope =
¥
I 1 e -
Xj-1 X X1 Xj-1 X Xj+1
(@) 7w

Fig. 14-3
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14.2 FINITE ELEMENT SPACES IN THE PLANE

Let Q) denote a bounded region in the plane and suppose that () is decomposed into polygonal
subregions Q, . .., Q, called finite elements. Let h; denote the length of the longest side in £, and let
h = max h;. Fmally, let Q" denote the polygonal regxon that is the union of all the Q.. Note that if the
boundary of Qs curved, then 0" may not coincide with . We will denote by S” [k, r] the space of all
functions ¢(x, y) which are defined on Q" and satisfy (i) on each Q, ¢(x, y) is a polynomial in (x y)
of degree at most k; (ii) ¢(x, y) has r continuous derivatives with respect to both x and y in Q".

As in one dlmen51on, a finite element space S"[k, r] will be specified via a basis composed of
elements ¢,(x, y) associated with the nodes of the decomposition; i.e., with the vertices of the
polygons.

Triangular Finite Elements

Let () be decomposed into triangular subregions, &, ..., {},, where no triangle has a vertex on
the side of another triangle (a proper miangulation; see Fig. 14-4). Euler’s polyhedral formula shows
that any proper triangulation into N triangles will have M nodes (vertices), where

N+5

=M=N+2

Therefore, we expect S”(k, r) to be approximately N-dimensional.

(a) Proper triangulation (b) Improper triangulation.
Fig. 14-4
EXAMPLE 14.4 Let the nodes of a proper triangulation of ) into N triangles be labeled zi, ..., zs. Then a
basis for S"[1, 0], the piecewise linear functions on ", is provided by the family ¢i(x, y), . .., éa(x, ) that is

uniquely defined by the conditions
(1) There exist constants Ay, Bjx, Cix such that
& (x, y)= A+ Bux + Cpy on
forl=j=<M, 1=k =N, ie., each ¢; is piecewise linear on 0",
(i) d(z)=06; (I=i j=M)

The finite element space of Example 14.4 provides functions that are continuous on ) (strictly,
on ") and have first-order derivatives that are square-integrable (but are generally discontinuous).
These functions would be suitable for constructing approximations to the variational solution of a
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boundary value problem of order two. For higher-order boundary value problems, functions having a
higher degree of smoothness are required. Functions that are continuous, have continuous first
derivatives, and have square-integrable second derivatives, must at the least be piecewise cubic. Such
functions may be generated in more than one way.

EXAMPLE 14.5 Suppose that on each , the function ¢;(x, y) is of the form
¢/(X, y) = Aik + B,kx + C‘/ky + Djkxz -+ Eijy + F;'kyz + G,'kXJ+ I’Ijk(xzy + Xy2)+ l,'kyg

and, together with 3.¢; and d,¢;, is continuous at each node z:. Since there are 3 nodes on each triangle ), we have
3% 3 conditions for determining the 9 unknowns Aj,..., L. The functions ¢,..., ¢a so determined
constitute a basis for $*[3, 1].

Rectangular Finite Elements

Retaining the notation of the preceding subsection, we have for any proper decomposition of )
into rectangles (where “proper” is defined as in the case of triangles)

N+3=M=2N+2

EXAMPLE 14.6 A basis for the space of piecewise linear functions on Q", $"[1, 0], is provided by the family of
functions ¢i(x, y), . . ., da(x, y) defined by:

(i) Oneach O« 1=k =N),
&%, y) = Aj + Biux + Gy + Duxy (l=j=M)
(1) b(zi)= &, (1=ij=M)

In fact, conditions (i) and (ii) uniquely determine the ¢« (x, y) as products ¢;(x)¢;(y) of the one-dimensional
“hat functions” of Example 14.2. See Problem 14.4.

EXAMPLE 14.7 Consider the space S"[3, 1] relative to the decomposition of  into rectangular subregions. A
basis for the space is provided by the 2M functions

bi(x, y) = ¢i(x) &, (y) (X, y) = i (x) dy(y)

(1 =k = M), where (x,, y;) are the coordinates of vertex zx and where the ¢,,(x) and ¥..(x) denote the piecewise
cubic Hermite functions of one variable described in Example 14.3.

143 THE FINITE ELEMENT METHOD

When the solution of a boundary value problem is approximated by one of the techniques of
Chapter 13 and when the trial functions are chosen from one of the finite element families, the
approximation scheme is referred to as a finite element method. For problems in one dimension (i.e.,
for ordinary differential equations), finite element methods generally do not offer any advantage over
finite difference methods. However, for certain problems in two or more dimensions, finite element
methods provide distinct advantages over finite difference methods. On the other hand, the finite
element approach requires complex, sophisticated computer programs for implementation, and the
use of library software is to be recommended.
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Solved Problems
14.1  Let ¢,, ¢, . .., ¢y denote the hat functions of S"[1, 0] defined on [0, 1]. (a) Show that this is a

family of N + 1 independent functions in S*[1, 0] whose span is just $"[1,0]. (b) Describe the
relation between u(x) in C[0, 1] and U(x) in $*[1, 0], where

(a)

(®)

N
Ux)=2 ulx)p(x) ©O=x=1)
j=0
If we write F(x)= codpo(x)+ -+ cnvépn(x) and suppose that F(x) vanishes for every x, then we
must have co=ci=---=¢n =0, since F(x;)=¢ (0=j=<N). Thus the ¢, are linearly in-
dependent. To see that the ¢; span S"[1, 0], let v(x) be an arbitrary function in §"[1, 0] and form
the function

N
w(x)= 2 v(5)(x) (O=x=1)

j=0
Now w(xi)= v(x) for each k, since ¢;(xi)= 8jx. In addition, w(x) and v(x) are linear on each
subinterval [xe—1, Xx] and agree at the endpoints xx_; and xx. This implies that w(x) = v(x) on each
subinterval and hence on all of [0, 1]; i.e., the ¢, span S”[0, 1].
For arbitrary u(x) in CJ0, 1], not necessarily in §"[1, 0], the function U(x) is the piecewise linear
interpolating approximation to u(x); see Fig. 14-5.

/U(X)
-

Xo X X3 X3 X4 Xs X5

Fig. 14-5

14.2 Let a regular hexagonal region, of side 1, be properly triangulated as in Fig. 14-6. Compute a
basis for S'[1,0], the piecewise linear functions on Q'.

The basis functions ¢;(x, y) satisfy the conditions
di(zi) = 8 ik=1,...,7) (1)
¢,~(x,y)=A,k+B,»kx+C',-ky Oan (]=l,,7,k:1,,6) (2)

The coordinates (x«, yx) of the node z, are as follows:

Zx 1 2 3 4 5 6 7

Xk 1 2 32 172 0 172 372

v | V312 V32 | V3| V3| VAR 0 0
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/ 0 \
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/ Q4 M \
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A /
\ 05 Ql /I
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N 1 ¥ |
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Then, on Q,, ¢.(x, y) satisfies
$i(z)= Au+ Bu(l) +Cu(V32)=1 1 ox oy [Au 1
di(z2)= An+ Bu(2) + Cu(\/g/Z) =0 ,or 1 x2 y B, =10
¢1(Z7) = A+ 311(3/2) + Cll(o) =0 1 X7 Y7 Cll

l
and hence, ;
J

3 1
$i(x, y)=——x+——y for (x, y) in Q
1 2 V3

Continuing in this way to use the conditions (I) and (2), we can solve for each ¢u(x, y), the linear
function representing ¢;(x, y) on the triangle Qx:

d>u(x,y)=§—x+\—%y ¢>21(x,y):—§+x+%3y .....
5 1 1 1
¢12(X1)’)=£—X—7§y d)n(x,y)=-—£+x—%y
bra(x, Y)=2—%y $u(x,y)=0  (k=3,4,506)
¢14(X,Y):1+X—Ly
2 V3

1 1
dis(x,y)=——+x+—y
2 V3

2
duslx, y)=—y
V3
Note that ¢a(x, y) vanishes identically off of €, and €),. This is a result of condition (7). Because
only O, and (), contain the vertex z,, ¢, must vanish at all three vertices of Q;, Q., s, and (2. But ¢, is a
linear function of x and y on each Q. and hence ¢2 must be identically zero on €23 through Q. 1t follows
from this that on each triangle )« there are just three of the ¢, which are nonzero:

Qi b, d21, I 0Nz ¢z, b, o C Qs P16, Pos, Do

Evidently, ¢« is nonzero only if z, is a vertex of Q.. This leads to the following somewhat more efficient
algorithm for generating the nonzero ¢«.
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Input Data: N = number of triangular subregions

M = number of vertices

Table I. Coordinates of vertex z; (1=j= M)

Table Il List of vertices z that belong to triangle Qu

k k k
k Z1 Z2 Z3

Algorithm: FOR K=1 to N
FOR L=1to 3
Find J = I(L, K) such that z; = z§¥
Load Lth row of 3 x 3 coeflicient matrix [M] with (1, x;, y;)
FOR L=1to 3
Arx
Solve: [M] | Bk | = [ed]
Crx

where [er] = unit 3-vector with a I in the Lth place
Save: Arxk, Bik, Cik

217

Output: Three 3x N matrices, A =[Ay], B=[By], C =[Ck], containing the coefficients needed to form

bux, y)= Aun + Bux + Cuy (=1,2,3 k=1,2,...,N)

Note that the index [ is not necessarily the number of the vertex at which ¢ = 1; the /-value of that

special vertex may be read from Table J1.

In the present problem, N =6, M = 7. Table | has already been given; Table Il is as {ollows:

=~
N
N
Nx
N
w

DL B W N
I
N B W NN
Ny B W

Applying the algorithm then leads to

On Q: ¢1=§—x+%3y On (k: ¢‘=§“X—F3y
3 1 1
¢z=—£+x+ﬁy ¢2=—£+x——y
2 2
$r=1——y Pa=~1+—y

V3 V3
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14.3

14.4

THE FINITE ELEMENT METHOD: AN INTRODUCTION [CHAP. 14
On Q ¢1=2 2 On O ¢ 1+ !
n Qs: 1 =2—-—y n 4 1=—tx———y
V3 2 V3
1
P3=——tx+—y pa=—-1+—y
2 V3 )
o 1 5 3 1
4= X+ —y =——x-——y
2 V3 ) V3
On N ¢ 1+ + ! On Q. ¢ z
n {1s: =——+x+—y n {s: ==y
’ g V3 V3
5 11 5 3 1
s=-—xt—y c= "X ———=y
2 V3 2 V3
Ps=1 2 ¢ 1+ !
=l-——y y=——+tx-——=y
) V3 2 V3

Let {} denote the circular region indicated in Fig. 14-6; the boundary S (dashed circle) is
supposed to be partitioned into arc S,, the minor arc between nodes 2 and 3, and the
complementary arc S,. Solve by the finite element method

U, +u,=0 in Q
ou
—=90 on S,
on
u=g on S,

under the assumption that g(z,) = g(z,) = g(zz) = 100 and g(z,) = —100.

A finite element solution would consist in applying the Rayleigh—Ritz procedure (Section 13.1) to
the functional

J[u]= L (u2+u)dxdy

with trial functions drawn from S*[1,0]. In terms of the basis functions ¢y, ..., ¢+ ascertained in
Problem 14.2, we take as .# the subspace spanned by ¢, ¢2, and ¢ (these vanish, as is required, at
nodes 4, 5, 6, and 7, where u is prescribed). As the function ¢y from &, which must assume the
prescribed boundary values, choose

¢o=100¢4+ 100¢s+ 10046 — 100¢
Carrying out the minimization of
H(cy, ¢z, ¢3) =J[do + c1p1 + Cap2 + C3¢b3]
we obtain ¢t = 42.85, ¢} = 8.56, ¢} = 48.56. Our piecewise linear approximate solution is therefore

ui(x, y) = 42.85¢i(x, y) + 8.56 pa(x, y) + 48.56 b5(x, y)
+100[pa(x, y) + @s(x, y) + ds(x, y) — di(x, y)]

An L-shaped region (} is decomposed into squares, as shown in Fig. 14-7. Construct a basis for
the piecewise linear functions, $"[1,0], on 0" = Q.

Let node 2z, (k=1,2,...,19) have abscissa x; (i=0,...,4; see Fig. 14-2 with N =4) and
ordinate y; (j=0,...,4; replace x in Fig. 14-2 by y, and again take N =4). (It is obvious how the
foregoing would read if the decomposition were into rectangles, with different numbers in the x- and
y-directions.) Then the basis functions for $'9[1, 0] are given by

bi(x, y) = di(x) d,(y) (1)
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14.5

11 y=1
10
Qo
12 9
(9
8 7 [
13 5
.Qg Ql Qz Q]
14 4
1 2 3
Q,; Qe Qs Q,
15 y=0
16 17 18 19
x=0 x=1

Fig. 147

To make (1) explicit, read off from Fig. 14-7 the values of i and j answering to a given k, and then
appropriate ¢;(x) and ¢;(y) from Example 14.2, with j(1/4) substituted for x; or y;. For instance,

da(, y) = bi(x) daly) = {(é—|4x~ NA-dy—2) 0=x=1/2, 1/4=y=3/4

otherwise
Consider the boundary value problem
—u,—u, =f in O (1)
u=g ons, 2)
ou
—=h on S, 3)
an

where ) is the region of Problem 14.4, S, is the intersection of the boundary S with the
coordinate axes, S,= S~ S,, and where f, g and h are prescribed functions of (x, y). Set up a
system of linear algebraic equations for the coefficients in a finite element approximate
solution to (1)-(2)-(3).

The procedure parallels that of Problem 14.3; this time we appeal to Problem 13.1, wherein were
developed the Rayleigh—Ritz equations for a class of boundary value problems including (1)—(2)~(3).
Thus, in Problem 13.1,set n=2, p=1, g=0, g, =g, g2= h. Rewrite (4) of Problem 13.1 as

10 19

10
uio(x, ) = dolx, y+ 2, e (x, )= 2, g(ze) dulx, y) + 2, cue(x, ¥)
k=1 ke 11 k=1

where the ¢« (x, y) are the basis functions for $V%[1, 0], as given by (1) of Problem 14.4. Then the desired
linear system in ¢y, ..., Cio IS

10

zAkakZFm (m=1,...,10)

k=1

with
A = jﬂ V(% y) Veu(x, y) dx dy
=S [ Vot ) Thatn ) drdy @)
and T

Fon =j (5 ¥) bmlx, ) dxdy+j h(x, y) dm(x, y)dS—j Vo - Vo dxdy (5)
o) S o)
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14.6

14.7
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In (5), f(x, y) and h(x, y) are to be replaced by their piecewise linear approximants (see Problem 14.1)

19
F(x,y)= Zf(z,-)c%(x, y) for(x,y)inQ

H(xy)=2 h(z)¢/(x,y)  for (x,y)on S

j=4

To illustrate the application of (4) (and to indicate why such matters are normally consigned to the
computer), let us evaluate A;; (= Aa). Since (refer to Fig. 14-7)

(1—I4X—ll)(1_|4y—1|) on 01U06UQ7UQQ
0 elsewhere

b5 )= b2 61() = |

(1“|4X'—2D(1—,4y—1,) on QlLJQzUQsUQé
0 elsewhere

B2(x, y) = ba2) () = |

it follows that

Vi(x, y) Va(x, y) = $i(x)d3(x)[$1(y)]* + d1(x) a(x) [bi(y)]

has the representation 32(1 - 2x)(4x — 1) — 256y? in {2, takes mirror-image values in ;, and vanishes in
all other (,. Hence,

1/4 172 1
A12=2j dyj [32(1 - 2x)(4x — 1)~ 256y dx = — =
[o] 1/4 3
In similar fashion, the constants F,, can be evaluated by one-dimensional integrations of (at worst)
quadratic functions.
The analogous procedure in the case of a decomposition of  into triangles 2, is somewhat more
complex, since it involves the calculation of integrals of the form

[[xryraxay  ©=p g=2)
(27

On the other hand, for a given degree of accuracy, the dimension M of the triangulated problem will
generally be lower than that of the rectangular decomposition.

Supplementary Problems

For the triangulated hexagon (A = 1) shown in Fig. 14-8, use the algorithm of Problem 14.2 to generate a
basis for the piecewise linear functions, S[1,0].

Consider the three-lobed region 2 in Fig. 14-8 bounded by the dashed curve §. Let S be the circular arc
centered on node 3, and let S; be the remainder of S. Using the approximating functions developed in
Problem 14.6, solve the following problems by the finite element method:

(a) Uk T Uy, =0 in Q
u=g on S
where g(zs) = g(zo) = —g(z1;,) = —g(z12) = 50, and g = 0 at all other boundary nodes.
(o) Uge + Uy, =0 in Q
du
—=0 on S,
on
u=g on S,

where g(zs) = g(z0) = —g(z11) = —g(2:12) = 50, g(z10) = 0.
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V3R

Van

(c) U+ Uy, =0  inQ)
ou
—=0 on Z42s
n
u=g on S — z42s

where g(z¢) = g(zu) = 10, g(z7) = g(z10) = —g(z12) = 30, g(zs) = g(z9) = 50.

148 A two-dimensional region , formed by cutting a groove in a rectangle, is triangulated as in Fig. 14-9
(@ = Q). Generate by the algorithm of Problem 14.2 a basis for $¥°[1, 0].
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14.10

THE FINITE ELEMENT METHOD: AN INTRODUCTION [CHAP. 14

Let S=85,US,; denote the boundary of the region Q of Problem 14.8, where S, contains nodes zg
through zi. Using the approximating functions developed in Problem 14.8, solve by the finite element
method

Uz + Uy =0 inQ

u=g on S
ou
—=0 on S,
on

if (a) glzo) = —g(z16) =5, g(210) = g(z15) =0, g(z1) = 8(21a) = 2, g(z12) = g(213) = 4; (b) g(29) = g(z10) =
g(zi) =0, g(z12) = 5, g(z13) = 10, g(z14) = 8(z16) = 20, g(z15) = 30.

In Problem 14.7(a), show that
1 .
ui(z,)) = E [ub(22) + ul(za) + u3(zs) + ui(zs) + ui(zo) + ui(z10))

thereby verifying the numerical mean-value property of finite element approximate solutions of
Laplace’s equation.



Answers to Supplementary Problems

CHAPTER 2

2.19  (a) h. everywhere; (b) p. everywhere; (c) e. everywhere; (d) h. x| > 1, p. |x|=1, e. |x| <1,
(e)h.y<e ™ p.y=e e y>e S (f)h. x<0,p. x=0,e. x>0;
(g) h. xy(xy+1)>0, p. xy(xy+1)=0, e. xy(xy+1)<O0;
(h) h. xy(xy—1)>0, p. xy(xy—1)=0, e. xy(xy—1)<0

221 (a) p(ue + uy,), elliptic; (b) —p(ux + w,,), elliptic;
(¢) un — p(uxx + w,y,), hyperboilic

2.22  (a) y=const. (¢) logl|y|=x=const. (y#0)
(b) 2x—y=const,2x -3y =const. (f) x*+ y>=const.
(¢) x=y=const (g) Sxx2(—y)?=const. (y<0)
(d) x=2V-y=const. (y<0) (h) 3x*=2(-yy?*=const. (y<0)
2 4
2.23 §=§x—y,n=§x

2.24 =1 A= 3, A;=4 (all positive);

1
§1:\—;_g(x1+2X2+X3) §2:—1*(11—X3) §3:\7§(Xl—12+13)

V2
225 =&, me= &/V3, n= 612

226 (a) elliptic (A, =2, Az=2, A5= 4 all positive)
1 1

(b) §1=72(X1_X3) §2=X2 §3=F2(x,+x3)
ni=61V2 m=&EN2 =42
227 (a) €=4x—-y,n=2x+y (©) §=(1+\/6/2)x—y,n=(l—\/€/2)x—y

(B) £=(x+17%+xVii+i+log(x+Vai+ -2y (@ E=(1+V2e*—e’, n=(1-V2)e*—e’

1

— -l -1 — -1 -
n=(x+1P-xVa+1—log (x+Vxi+1)-2y (e) ¢é=tan"'x—~tan'y, n=tan ' x+tan 'y

2.28 (a) elliptic: €=y, n = x+ (x*/3)
(b) elliptic: £ =x+2y, n=2x
(¢) parabolic: é=x, p=y+x
(d) hyperbolic: already in canonical form
(e) parabolic: £ = x, n = y/x (x#0)
(f) hyperbolic: £ = xy, n = x/y (xy #0)
(g) same as (f)
(h) parabolic: £ = x, n = 2x + y?
(i) elliptic for xy =>0: & =3|y|"?, 5 = |x[*?
(j) elliptic for xy <0: £ = |y[*?, 9 = |x[*?

hyperbolic for xy > 0: ¢ = |x[P?— |y[*?, 5 = |x?+|yP?

(k) parabolic: £=x, n=¢*—¢”
(1) elliptic: £=logll+y|,n=x

223
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(m) parabolic: £ =x, n = Vi-Vy

n) hyperbolic: £=y+cscx—colx, y=y+cscx+cotx
¥p y

(0) hyperbolic: £ = x*—2¢”, n = x*+ 2¢” {x #0)

(p) parabolic: ¢=x, p=tan 'x+tan 'y

24
[
[F¥)

u(x, )= e ¥ p(x, 1)

CHAPTER 3

338 O

339 4

- b 16 m H 1 ( d )

342 A = — m and n even),
( 72 m?—1 n*—1 2—m?-n?

amn =0 (m or n odd and mn # 1), a,, arbitrary

CHAPTER 4
4.15  u(r,t)=r'[F(r—-a)+ G+ a)) (r>0)
419 (a) u(x, y, 1) = exp[A{ax + By — ut)], where A*[p?— (aa,)’ — (Baz)?’] = b% (b) p* = b*—2
4.23 I ve(x, t; 7) solves
v(x, 1) = VPu(x, t) xinR" (>7
vx, 7)= F(x, 1) x in R"

t

then ulx, )= J ve(x, ¢, 7) dT
[o]

satisfies w,(x, t) = Vu(x, )+ F(x, 1) xinR", >0
ux,0)=0 x in R”

4.24 L
u(x, t)=—f [Fx+a(t—7)— F(x—a(t— 1)l dr
2a 0

where F(s) is an antiderivative of f(s).

CHAPTER 5
5.22  Hyperbolic if u?+ v*> ¢? (supersonic flow), elliptic if u?+ v? < c? (subsonic flow).

DilUy — Ualp

n
]
8

(@)

Uy — U
5.25  (a) u(x, y)= f(x/y); (b) along the line y = x/%

526 (a) x>+ y*=1,u=2;(b) x>+ y*=1, u =25 172

2

L__ <
527 (a)u=b(t—a)(—La) §(b)’4=10g(x+)’)+xiy+(xiy)
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528 (a)u=y¢gx—c)+ jl pler+x—ct,rydr, (b)u=g (x - Jﬁyf(z) dz)ec”

[
531 (a) u= 3 [6sin (x — 3t) — 6 cos (x — 3t)— sin (x + 21) + 6 cos (x + 21)]
1
v=-[sin (x = 3£)— cos (x — 3¢) ~sin (x + 21) + 6 cos (x + 21)]
3

L
(b) wu=sin(x+y) o= p [8sin (x — 2y)+ 6e*™% — 8sin (x + y)]

532  See Fig. A-1.
i
21—
. //
- //
- -
) dL, v - o -~
cos ¥ d/‘ - -
- -z -~
-
~
- ad ~”
1 — a -
R\
. p=2R/3 ‘®’/ p=0 p=R/3
< oONlY
= “Cb W
p=R/3 5 Ve
A & [ i
g &
=
w3
|
L x
Fig. A-1
CHAPTER 6
6.8 (@) ao=1,a,=0and b, =(1—cosam)/nmrforn=1,2, ...
() ao=m a,=2(cosnm—1)/n*rand b,=0forn=1,2,...
(¢) ar=0,a,=0and b,=-2(cosnm)/nforn=12 ...
6.9 By Theorem 6.1, the series for F and H converge pointwise, while the serics for & converges uniformly.

6.10 (a) 47 ' D, 2n—1)y'sin@n—Dx; (b) 1
et
6.11 (@) A.=(no/6) and w,(x)=sin A;”x forn=1,2,...
(6) Aa=[(n—3)7/€]* and w,(x)=sin A x forn=1,2,...
(€) Aw=[(n-3)7/€] and w,(x)=cos APx forn=1,2,...
(d) A, =k, wherc u, is the nth positive root of u = tan ué, and
sin wn(x — &)

W, (X) = SN (X = U, COS UnX =
cos u,f

forn=1,2,....
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(e) A-i=—up2y, where poy satisfies % = (u + 1)/(u — 1) and w_(x) = exp [-p-1(2€ — x)] + exp [—p-1x].
Forn=1,2,...,A, = u3, where u, is the nth positive root of x tan uf = —1 and
Wi (X) = SIN fnX — y COS ppx = [COS pa(x — €)]/sin p,f.
(f) If €>a—p, then A, = —pu?, where p_, satisfies
e = (1+ ap)(1 - Bu)/(1 ~ an)(1+ Bu)
and w_(x) = (ap — )(ap + 1)e** —e™;, if £=a— B, then Ao=0, with wo(x)=x—a. For n=
1,2,..., Au = p7, where u, is the nth positive root of (1+ afu?) tan uf = (a — B)u and w,(x)=
SIN fnX — @phn COS fLnX.
6.13  Theorem: F.(x)is C* if f¥(x)is continuous on [0, #] for j=0,1,..., p, and if
£90) = (€)= 0
for k =1,3,5,...=p.
4 oo (_1)n+l ) 3 >
6.15 (@) — D ———5sin(@n—1)x (¢) #2+12 D (-1)"n"%cos nx
7 a1 2n—1) ey
4 2 (“1)n+1 < -3 o 2 < A =1 o
» —> cos (2n -~ 1)x (d) -12> (-1'n>sinnx +27* >, (-1)"n"'sin nx
T nul 2n— n=1 n=1
&io Flar) = ¢-i2%e20 sin 1.5(« —'2i) Gla)= o= sina o7 sin @
m(a —2i) T T
1 —id(x=y) ,~2ix—yl|
6.20 ZJ e~ e T2 If(y) dy
- 7o) 6as*-2a> 5(5) s—b 5) e’ e
6. §)= ———— é(s)=——5—— §)=——
(s+ay (s— by +a’ BT
0 (-1 k
6.22 (a) (t=3PH(1—3) (b) L)Jrj fe-n (c) e ———— ¢~k
Vot Yo Voar Vamke
623 Leta,=2n+1)b—a and B,=(2n+ 1)b + a. Then,
= 1
F()= 2 [H(t— an)+ H(1~ B,)] G(1)=——= 2. [exp (—ai/41) ~ exp(- B2 /41)]
n=0 V 1t n=0
CHAPTER 7
719 u(x, )= wi(x, 1)+ wa(x, 1) + us(x, 1)

ui(x, 1) = go(t)(x = xX*/2€) + g1 (1)(x*/2£)

S 2
wlx, )= fot 2, fa €Xp (—phkt) cOS pox

n=1

2 &
where u.=nw/€ and, if go(0)= £,(0)=0, f, E?j f(x)cos p.x dx
0

us(x, 1) = j [% Fo(r) + 2 exp (—uix(t— 1)) F.(7) cos p.,.x] dr

n=1

where  F(x, 1) -E% [2o(1) — g:(0)] — go(1)(x — x*/2€) — gi(1)(x?/2€) and

2 &
F.()= —j F(x, t) cos p,x dx
/o
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7.20  u(x, )= wi(x, 1)+ uzx, )+ wa(x, 1)
ui(x, 1) = golt) + xg.(t)

wa(x, 1) = fuexp (—uut) sin wax
n=1

2 I
where un=(n—3)m/¢ and f,.E?J- f(x)sin wnx dx
0

1

us(x, 8) = J-O [’21 exp (—p 2k (t — 1)) Fo(7) sin p.,.xJ dr

2 4
where F(x,t)=-gi(t)—xgi(t) and F,(1)= ?J- F(x, t)sin u,x dx
o]

7.21  ulx, t) = ui(x, 0) + wa(x, ) + us(x, t)
ui(x, 1) = go()P(x) + g1()¥(x)
where ®(x)=(e?*9-1)/p and VY(x)=e"*©

a0

(X, 1)= 3 fo €XP (—p3Kl) (SID phnX = Plin COS pnx) = 2,
net o1 COS unf

1
where .=tanu,f and f,=-—
i # f € cos’ unf

exp (—puakt)sin wu(x = £)

| 10 sin pa(x = )

B 1a . ., sin u,(x — &)
us(x, t) = J; [21 exp(—uak(t = 1)) F (1) T eosal P, Jdr

where  F(x, 1) = «k[go(1)"(x) + g ()¥"(x)] — go()P(x) —- g1 (¥ (x)
1
cos” unf

F,.(I):% j F(x, t)sin u,(x — ) dx

—2bx + (4xc — b))t
4k
vilx, £) = go(t)(1 = x/ £) + g ()(x/€)

7.22  u(x, t)=exp [ J [ou(x, 1)+ va(x, 1) + v3(x, 1)]

va(x, t) = Z S exp (—punkt) SIN w,X
=1
2 €
where u,=nmw/¢ and f, E?J' e® % f(x)sin w.x dx
)

va(x, t) = J;’ [2 exp(—p.k (t — 7)) F.(7) sin p.,.x} dr

where F,(1) E%J' [—86()(1 - x/&)— gi()(x/ €)] sin wnx dx

723 u(x, )= J; O(x — & k) f(¢) dE +J'0 kKO~ x, k(t— 7)) g:i(7) d7 — J; Kk O(x, k(t— 7)) go(7) dr

where K(x, 1)=@mt) e ™" and O(x, )= > K(x+2né 1)

n=e—c

7.24  u(x, t)=—« jl K, k(t—7)g(r) dr (see Problem 7.23)
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7.25

7.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.38

ANSWERS TO SUPPLEMENTARY PROBLEMS

o

u(x, 1)= —f ePOMy(y, 1) dy

x

v(x, 1) =k j h(x, x(t— 1))g(r) dr

X

4

e,.xZ/Al

where h(x, )=

a®

u(x, )=« Ju e Oh(x+ b(t— 1), k(1 — 7)) f(7) dr

u(x, 1) = % [Fu(x + an)+ E,(x — at)] + 2% Jﬂﬂ" G.(s) ds

x~at

where F, is the even, 2¢-periodic extension of f from (0, €) to (-, ®).

u(x, 1)= %[ﬁm(x +an+ E,(x —an]+ %fj Goa(s) ds

x—at

where the mixed, 4¢-periodic extension of f is defined by F,,(x + 4¢) = E..(x) (all x), together with

f(x) 0<x<¢
F.(x)=1{—-f2¢-x) ¢<x<2¢
f(=x) 2¢<x<0
u(x, 1)= 2:! P J; J; smﬂsm ?si Wf(y, 7)dydr

U 1) =2, g.e " sin pt sin wax

where wu,=nnlt, p,=Va*u:—-c* g.=

€

g(x) sin w,x dx.

nmwap, Jo

r

u(x, 1) = f [2 gne " sin p, (1 — 1) sin ,u.,.x] dr (cf. Problem 7.30)
0 Ln=1

oo

u(x, 1)= 2 {g"(1 = E.(€~ x))~ g"(1~ Ou(x))} + 5:‘, {f(1 = Ea(x)) = f*(1 = On(¢ - X))}

n=0

2né+ x Rn+1)f+x
where E,(x)= y On(x)=———, and
a a

(see Table 6-3, line 6) f*(1— b)=H(t— b)f(t— b).

Y

u(x, )= a 2 {G*(1= E,(¢= x))+ G*(1- O,(x))} - a T, {F*(t— E(x))+ F*(t - O.(¢ - x))}

n=0 n=0

where F(1)= fo f(ndr, G@)= fo g(r) dr.

Y P

u(x, )= 2, {(=1)g*(t = E.(€— x))+ g*(1 — O.(x))}— a 3 ((—1)'F*(t — Ex(x))— F(1 — O.(¢ - x))}

n=0 n=0

(cf. Problem 7.33)

u(x, 1)=—F*(1— x/a) (cf. Problem 7.33)
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7.36  u(x, t)=—aH(t—x/a)J e P f(r — x/a) dr

xla

737 u(x, y) = wlx, y) + wa(x, y)+ us(x, y) + ua(x, y)

o

o~ . cosh nm(l—x
ul(‘xv .y): - an ; ( )COS niy
el nar sinh nm

1
where f, = 2J f(y)cosnmydy (n=0,1,...), fo=0 (for compatibility)
0

uz(x, y) = —ui(1—x,y) with f replaced by g
us(x, y) = ui(y, x) with f replaced by p
us(x, y)=—u(y, 1 —x) with f replaced by g

738  u(r,0)—u(, 0)=- ;—Jﬂr log [1~2rcos(8— @)+ 7] f(¢) dop

4 r~(a¥r"
7.39 , 0) = — ——————sin né
u(r, 6) nzd o b — (a2/b)" sin n

-
740 s y)= 5= [ log [+ (4 DA (v - 2P f(2) dz
-
#5= | Mog 4 (4 2P0+ (5 - 2] g(2) dz
™70

741 u(x, y)= f(x)(y —3y3)+ g(x) y>+ v(x, y)

o =1
o(x y)= 2

n=1 HTT

where H(x, y) =3y*(f"(x) - g"(x))+ flx)— g(x)

oo 1
J e~ ikl [J H(z, s) cos nis cos nmy ds] dz
o 0

7.42  u(r,0)=

rz—lf" f(¢) b

27 Jo,1—2rcos(B~¢)+r

7.43  u(r,0)=+ 51— Jﬂr log [1—2rcos (8 — ¢)+ r*] f(¢) d + const.
T

CHAPTER 8
821 (a)2H(x)— 1, () 8(x); (c) 0 831 (a) L*[u]= thee+ Uy — ty + Uy +3u
(b) L*u]= uu+u
2 k k 1 22 k k Mygl= g —
822 — Z sinlxsin E, —+— cos—”icoslf (¢) LY[u]=the = ta
S L (d) L[] = thoe + sy = (1) = (yua)y

o &.(x)u,.(g) (e) L‘["‘] = U T+ Uy — YU — XU,

823 G(x&)=- T (f) L8] = (Cu)ec+ (5%u)yy
n=1 /\n+ C
8.35 {aR,+bRy+(ax+by—d)R=0
824 Gloyi &)= —— 3 edlsin ™ o 270 ‘ bR, + R, + (be+ c,— €)R =0
ac ,_ a a

must be solvable for R (R # 0).
826  (a) G(x, y; & m)= Go(x, ¥; & 1)~ Go(x, y; =&, 1);
() G(x,y; & m)= Golx, y; & m)+ Golx, y; —& 1) 836 R=e¢"
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837 (a) L*[v)=vu+v,—20.—3p,v=00onx=0and x=a, v,-3v=00ny=0and y=b,
(®) LIGl=3(x-&€d(y—-n) 0<x£<a,0<y7n<b
G=0 onx=0and x=a
G,=0 ony=0and y=0»

=Anly!
sin nwx, where A, = [9 + (n7)})'2.

838 u=e> > (-1)
= A

8.40 u=erf (x/V4kt)

U U ¢ — ¢+
8.41 (a)u=UerfL;(b)u=Uerfc d ;(c)u=—(l+erf );(d)uz—(erf x+erf . ;
Vit 4t 2 4kt 2 4kt it/
U é—x £+ x U x—b x+b x-c x+ec¢
(e) u=— (erfc + erfc ); fHHlu=— (erf + erf —erf —erf )
2 4kt Vi4kt 2 Vikt Vikt Vit Vit

843 (a) Gt &1)=K(x—-§&t—1) and u(x, I)=J: J:i G(x, t; & 1) f(¢ T)dde‘*‘J’j{: G(x, t; £0)h(E) d¢
(b) K(x—¢&t-7)~K(x+¢t~7) and
||| ot nennendear | owieome x| Gt oo ar
(€©) K(x—&t=1)+K(x+&1—1) and
J, [ ownennenacars [ cueomea -« | oo npe e
(d) i [K(x~£+2n6 1~ 1) K(x+ £+ 2né, 1~ 1)] and

n=—oo

|| otuensenacart | Gre0n@de e« [ 16 50, 0pr) - Gt 13 67190

e > [K(x—=&+2n61— 1)+ K(x+¢+2né,t - 1)) and

n=—oo

J;J; G(x,l;f,r)f(f,r)d§d7+J; G(x,l;f,O)h(f)d§+Kj [Gx, t; €, T)q(T)— G(x, ¢, 0, ) p(7)] d7

1
844 G gy =k(x661)—k(xt;~-§71)= 7a [H(a(t—7)— |x — &) — H(alt— 7)— |x + £])) for t > .

2 1 mma(t—r1) mmx mmé
845 (a) G(xt,E71)=— —sin cos cos for t> 1.
aA moda M 4 4 4
1
b) G(x,t, ¢ 1)= %A > [H(a{t—1)—|x —£—2nl))— H(a(t~ 1)~ |x + £~ @n —1)€])] for t> 7.
an-"w

CHAPTER 9

9.16 (b) It is possible for the roundoff errors to dominate the truncation errors.

9.22 (a) In the notation of Problem 9.13, with r = k/h* and s = (1+2r)— &,
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s —r 0l Usjus IR
— s —r Uz,,'-H Uz,‘
—r s —r U3_,'+1 U3i

—r s —r UN—z,j-H Un-z.;

L0 —r s |LUnv-1n1 | LU’V—‘U

() By Problem 11.11, all eigenvalues of the above matrix C are greater than or equal to 1. Hence the
method is stable.

9.23 (a) U_]'|=25, U()[:SO, U1|=25, other U,,1=0
U_z.z = 625, U-),z = 25, UDQ = 375, Ulz = 25, U22 = 625, other U,,z = O
(b) U——I,l = 100, UOl = —100, U“ = 100, other U,,] =0

U-2_2 = 100, U_1_2= —200. U(yz= 300, U12: _200, U22= 100, other U,,z =0

927  With h = €IN, (x., ) = (nh, jk), r = a*k/h*:

Unjor = tUnei )+ (1=20Un + rUper;  (n=0,1,. ., N—=1; j=0,1,2,..) (1)

Uno= f(x,) [starting values for (1)] )
Uy, - U, -

aly, + B — - p(4) [used to eliminate U_, ; from (1)] (3)

Un, = q(1) [used to eliminate Un, from (1)] 4)

9.28  With & = 1N, (xa, ) = (nh, jk), r=a’k/h?, s = ck/2h:
(_I‘* S)U,,_l,,'+1+ (1+2r)U,,,,-+1+ (_I'+ S)Un+l_l+l = U,,,' (n = 1,2,.
Upw=0 (n=12...,N-1)
Us =1, Uy=0 (j=0,1,2,..)

LON=1;j=0,1,2,..)

CHAPTER 10
014 | = cos (B/2)— l:sa s:m (B/2) _
cos (B/2) + isa sin (B/2)
10.15 (@) 87U, — 52¢H(82Unmi + 82U,n) =0 (s = k/h); (b) 757 =3

10.16 (a) u(x, £)=3[cos (x — 21)+ cos (x + 2¢)], u(0.0.04) = cos 0.08 = 0.99680
(b)  Us=~0.99680; (c) Up =~ 0.99840

10.17 (a) 87U, = (c*s)83U,; — kb(U,,+1— U, ;=)
(b) Stable if ’s?=1.

(s=k/h)

10.18 (a) u=logx+2logy; (b) Y B = const., xy = « = const.
X
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10.19 (a)

10.21

10.22

10.23

10.24

10.25

10.26

10.27

10.28

10.29

10.30

and U, = ux, + uy, or

ANSWERS TO SUPPLEMENTARY PROBLEMS

Ya =

() P=(V42,5V42)

()

- = Xg

Up = txg + Uy ya

xY(Ue)a ~ Y (1y)a = Ya

—xy(u)s ~ y* (i) = ya

Exact Numerical
uy(P) 0.48795004 0.48795181
u,(P) 1.95180015 1.95181085
u(P) 0.33281394 0.37422268 (J&)
0.34661688 (J£)

(b) ye **= B = const., ye*’? = a = const., P = (V5/2, 2¢¥%)

x(P) y(P) u(P) u,(P) u(P)
Exact V5/2~1.581 | 2e¥=~4234 | 2¥=4234 | V52~1581 xy = 6.694
Numerical* 5/3~1.666 | 10/3=~3.333 | 10/3~3.333 5/3~1.666 | 50/9~5.555

* The iterative method of Problem 10.5 could be used to improve these values.

(@) Uy =0.2727, u(1, 0.2) = 0.2076; (b) Uro., = 0.4925, u(1, 0.04) = 0.4906

(a) U =0.7518, u(1,0.2) = 0.7646; (b) U, = 0.8350, u(1, 0.04) = 0.8356

Uy, =0.4991x 1072, (0.1,0.1) = 0.1666 x 107>

Us; = 0.12333, u4(0.9,0.2)=0.18

U =0.7633, u(0.5,0.2) = 0.7592

Uz = 0.1680, 1(0.2,0.2) = 0.1666

Exact Numerical
x(P) 1.044 1.0
u(P) 0.3132 0.3

In both solutions, x(P) = 13/6, u(P)= —5/6.
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CHAPTER 11
11.17 AmiipnUmitn = @mrvznt Qm12.0)Unin T @m-12.0Unm—1,1
h2
bmnt12U mini1 = Bmnir2t Oomn12)Unin + Bnne12U innet
+ - Tt Nk N N N . + C,,,,,Um,, _ f,,,,,

k2

where, e.g., an-12., Tepresents a mean value (possible choices include the arithmetic, geometric, or
harmonic mean) between @ m-1., = a(Xpm-1, Yn, U m-1.n) a0d Gpn = a(Xm, Yo, Upn ).

11.18 Set ¢ = f=0 in Problem 11.17.

11.19 (a) —4U11+ U21+ U12=0 (b) k+l—(U21+U12)/4

“3Un+ U+ Ui =0 UkH_(UkH-f— UJ[)/3

“4U31+ U21+ U32:*_0.25 Uk-H—(Uk*l‘f' U§2+ 025)/4

_3U12+ Un+ U13:0 Ukﬂ‘(Uk+1 lfg)/3

*3U32+ U31+ U33="0.5 k+l—(Uk+l+ U§3+05)/3

—4Ui+ U+ Up = -025 Uk'=(US'"+ Uk +0.25)/4

—3Ux+ U+ Uszs=-0.5 Us'= U+ U%+0.5)3

—4Us+ Up+ U= -1.5 Uk = (US'+ U% '+ 1.5)/4

(c) Unn u = mn/16
3 0.1874 ’ 0.4249 0.5874 3 0.075 0.375 0.5625
2 0.0749 - 0.4249 2 0.05 0.25 0.375
1 0.0374 0.0749 0.1874 1 0.01 0.05 0.075
n n
oM 2 3 =l 1 2 3

11.20 (a) _4U22+ U32+ U73+ U12+ U21 = 0, (b) _4U35+ U34+2U25: O;
(¢) —4Us;+ Us + Us; +2=0

(d)

Um n

5 0.0822 0.1543 0.1943

4 0.1746 | 0.3406 ‘ 0.4689

3 0.2755 0.5648 —’ 1.0

2 0.3629 0.6429 0.8748 0.9552 0.9854

1 0.5330 0.7693 0.9012 0.9607 0.9865

1 2 3 4 5

1122 Uf'= Ul + R ay!
11.23 UF"'= Uk + wR% 'ay!

11.24 In (11.8) and (11.9), replace m+ u, n+v by m+y, n+ pu.
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1 0 0 1 0 1
11.25 L=;2 1 O U=10 3 2
1 3 1 0 0 2
11.26 (a) (C_4)Umn + Um,n+1+ Um—l.u + Um,u—l+ Um+l.n = an
0 -1 -1 0
1 -1 0 0 -1
b T, =
(6) Te-4l-1 0 0 -1
0 -1 -1 0
2 -2
(¢) 0,0,——,—
c—4 ¢c—-4

(d) c¢c>6orc<2

CHAPTER 12
1212 M ={vin H'(Q):v=0o0n x*+ y>=1}

8J[u; v = ZJ (Y uevx + X2uy,) dQ (uin &, v in M)
ol

1213 D ={uin H}(Q):u=x>on x>+ y*=1}, VJ[u]=-y®u..—x’u,, foruin P

12.14 =y U — XUy, = F in Q
y2xu, + x*yu, =0 on$

1215 M=, &J|u;v]= ZJ [(VZu)(V?0)— Fo] dQ (4, v in M)

é
1216 9 = {u in HY(() : u :a_u: 0 on S}, VJ[u]=2(V*u - F) for u in @
n

a(V’u)

1217 2= {u in HY(Q)) : V’u = =0 on S}, VI[ul=2(V*u-F) for u in @

12.19 Minimize
Ju) = J (Vu-Vu—2Fu) dQ—ZJ gudS +J (pu*—2gsu) dS
o s, 53
over o ={u in H'(?): u= g, on S}.
1223 (a) Find u in o = {u in H'(Q): u =0 on 8} such that
J (v + wyv, + 2u,0) dx dy = J vdxdy
ol ol
forall v in M = of. (b) Find u in & ={uin H'(Q): u(x,2— x) =0 for 0 < x <2} such that

1 1
J (Uxvx + U0y + 2u,0) dxdy=J vdxdy+J (y — Do(0, y) dy+J x(x—1o(x, 0) dx
a a 0 0

for all v in M = .
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CHAPTER 13
138 ui(x)=0.263x(1 —x), u3(x)=0.177x(1 - x) + 0.173x*(1 — x)
13.9  (a) 0.217+ 0.064 x — 0.007 x*; (b) 0.245 - 0.032 cos 7x — 0.00156 cos 27x
13.10  (7.794+0.1702x + 1.0666y)¢,
13.11 —0.0142¢,—0.0075 ¢,
13.12 u3(x, y)=14+0.029xy + 0.011 xy(1 + xy)
13.14 L
der|3 60 6 105
Lr 2
6 105 15 168
13.16 *—3¢ 5¢
A AE VRS
CHAPTER 14
-1 3 05 -1.5 05 -05 0 15 0 25 35 15 35
14.6 A=|- 25 -25 -2 2 -1 05 -05 -15 25 1 -15 2 —-05
-05 05 25 05 15 1 1.5 1 -15 -25 -1 -25 -2
"0 0 1 1 1 1 0 -1 0 -1 -1 -1 -1
B=-1 1.0 0 0 -1 1 1 -1 0 1 0 1
|_1—1—1—1—1 6 -1 0 1 1 0 1 0
Vil 2 -2 -1 1 -1 1 2 1 2 1 -1 1 -1
=577t 2.2 02 1 -1 -1 =2 -1 -2 -]
-1 1 -1 1 -1 -2 -1 =2 -1 1 2 1 2
147 (a) u3(x,y) = 143¢1(x, y) — 143 ¢y(x, y) + 50 ¢s(x, ) + 50 ¢s(x, y) = 50 p11(x, y) — 50 p1a(x, y)
(b) ui(x, y)=1632¢1(x, y) = 1632 ¢o(x, y) — 14.25 pa(x, y) — 2.85ds(x, y) + 2.85ds(x, y) + 14.25 ¢4(x, y)
+ 50 da(x, y) + 50 olx, y) — 50 pui(x, y) — 50 i, y)
(¢) u3(x, y)=3125¢:(x, y)+ 10.7¢x(x, y) + 16.77 ¢s(x, y) + 6.23 da(x, y) + 12.44 s(x, y)
14.8 -1 -1 -1 1 -1 0 0 2 0 0 4 4 0 5 6 4]
A= 0 1 3 -1 1 1 -1 -2 -2 -3 —4 -4 —4 -6 -1 -2
2 1 -1 1 1 0 2 1 1 4 1 1 5 2 -4 -1]
-1 0 0-1 1 1 06 -1 0 0 -1-1 0 -1 -1 -1
B=/ 1 1 -1 1 0 -1 1 1 1 1 1 1 1 1 0 1
0 -1 1 0-1 0 -1 0 0-1 0 0-1 0 1 0]
1 11 1 1 0 1 1 1 1 o0 1 1 0 -1 0
C= 6 -t -1 0 -1 -1 -1 0 -1 0 1 0 -1 1 1 -1
-1 0 0 -1 0 1 0 -1-1-1-1-1 0-1 0
149  (a) ub=-2.625¢+1.25¢,— 1.5¢3+0.438¢4+ 2.532 s+ 3.213 ¢ + 3.258 p7 — 1.606 ¢bs

*
8
*
8

(b)

uf =14.389¢, — 5.00 2+ 13.779 s+ 10.7 ps + 4.888 ps + 1.955 ¢ + 1.222 7 — 0.977 ¢ps
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A_(R) (surface area of n-ball), 19 Computer programs (continued)
Adjoint boundary condition, 103, 114 implicit heat equation, 137
Adjoint operator, 103, 114 implicit wave equation, 152, 153
Almost-linear system, 51 Lax—Wendroff, 156, 159, 161
Amplification matrix, 160 Peaceman—Rachford ADI, 139
Analytic, 20, 103 SOR, 184
A priori estimates, 21, 29 Wendroff's implicit, 158
Auxiliary conditions, 3, 21, 37 Conformal mapping, 102
Conservation-law system, 52, 58, 63, 148

Backward heat equation, 37, 45 Consistency condition, 23, 30, 32, 148
Banded matnx, 168 Consistent difference equation, 125, 133
Base unit, 8 Consistently ordered, 171
Bessel'’s inequality, 81 Continuous dependence on data, 2, 22
Biharmonic equation, 122 Dirichlet problem, 29
Boltzmann variable, 16 nonexistence of, 33, 37, 45, 50
Bore, 67 Convergence:
Boundary condition, 2 of iterative methods, 170-172

adjoint, 103, 114, 115 L? (mean-square), 73

Dirichlet, 2, 21 pointwise, 72

fux, 2 uniform, 72

at infinity, 22, 23, 31 Convergent difference method, 125, 130, 133

mixed, 2, 21, 30, 32 Convolution, 75

natural, 195 Coordinate transformation, S, 6

Neumann, 2, 21, 30 Boltzmann, 16

radiation, 2 into canonical form, 11-13

Robin, 2 to eliminate terms, 15

stable, 195 linear, 14, 15
Buckingham Pi Theorem, 8, 16 orthogonal, 14

Courant minimax principle, 197

C™ (mth-order continuity), 1 Courant—Friedrichs-Lewy condition, 144
Calculus of variations, 189
Canonical equations, 55, 62 D’Alembert solution, 46, 91, 119
Canonical form, 6, 11-13, 61 Data, 2
Cauchy problem, 36, 46, 53, 54, 56-58 continuous dependence on, 2, 22, 29
Cauchy-Riemann equations, 34, 52 Dense subspace, 188
Celerity, 55 Derivative:
Characteristic, 5, 11-14, 53, 56, 92 directional, 1

base curve, 53 distributional, 120

curve, 5 normal, 1

equation, 5, 6, 55, 61 partial, 1

grid, 145 Difference equation, 125, 167

surface, 6 alternating-direction, 128
Characteristics, numerical method of, 145, 149, 155, Crank-Nicolson, 127, 128, 141

162 DuFort-Frankel, 133

Classical solution, 21 explicit first-order, 146
Classification, 4-7, 9, 11, 51, 52 explicit heat equation, 127, 129-131
Closure, 1 explicit wave equation, 144
Compatibility condition, 39, 49 Hartree, 163
Complete orthogonal family, 73 implicit, 127
Computer programs: mmplicit wave equation, 144

Crank—Nicolson, 137 Lax-Wendroff, 147, 148, 154, 156, 160

explicit heat equation, 135 leapfrog, 147

explicit wave equation, 151 parabolic, 127

Gauss—Seidel, 184 Peaceman—Rachford, 128, 142
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Difference equation (continued)
polar coordinates, 176
Wendroff's implicit, 147
Difference operator, 125
Difference quotient, 124
Differential operator:
adjoint, 103, 114, 122
elliptic, 20
linear, 20
parabolic, 38
self-adjoint, 103
Diffusion equation, 104, 127 (see also Heat
equation)
Diffusionlike evolution, 38
infinite speed of propagation, 43, 90
irreversible process, 45 :
smoothing action, 44
Diffusivity, 8
Dimensional analysis, 7, 16, 17
Dimensional variable, 17
Dimensioniess quantity, 8
Dirac delta function, 100, 102, 107, 108
Direct method, 168
Dirichlet problem, 22, 26, 29, 94, 102, 110, 114, 167
continuous dependence, 29
exterior, 31
Green’s function for, 110, 113
uniqueness, 25, 29
variational form, 195
Discontinuity, 5
Discretization error, 125
Discriminant, 4
Distribution, 107
Dirac delta, 108
f, 107
Heaviside, 121
Divergence, 1
form, 52
theorem, 2, 23
Domain of dependence, 39, 54, 92
Duhamel’s principle, 50, 943, 100

Eigenfunction, 74, 78
expansion, 74
Eigenvalue, 4, 7, 14, 52, 59, 60, 74, 78, 179-182
Courant minimax principle, 197
Rayleigh quotient, 191, 207
variational principle, 190, 195
Eigenvector, 52, 59, 60, 179-182
Elliptic, 4, 6, 7, 12, 21, 103, 167
boundary value problem, 21, 22, 31
exterior, 22, 31
canonical form, 7
system, 52
type, 4, 7, 9, 52
uniformly, 20, 21

INDEX

Energy integral, 40, 48, 49
Equilibrium, 19
Error:
discretization, 125
functions, erf z and erfc z, 16, 77, 123
rounding, 126, 156
truncation, 124, 125, 156
Euler equation, 190
Evolution:
diffusionlike, 38
equation, 36
operator, 38
wavelike, 39
Exterior problem, 22, 31, 32

Finite element method, 215, 218, 219
one-dimensional, 211, 212, 215
rectangular elements, 214, 218
triangular elements, 213, 316

Flow:
adiabatic, 70
fluid, 59, 69
gas, 51, 52, 70
open-channel, 51, 54, 62-67, 71, 163
traffic, 69, 71

Fourier series, 72, 78
coefficients, 72, 78
convergence theorem, 72
cosine series, 78
sine series, 78

Fourier transform, 75, 76, 82, 89, 91, 95, 96

Functional, 189
comparison functions, 189
domain, 189
Euler equation, 190
gradient, 189, 190, 194
variation, 189, 193

Fundamental dimension, 8

Fundamental solution, 101
diffusion equation, 104, 105
Laplace’s equation, 101

Galerkin procedure, 202, 206, 207
relation to Rayleigh—Ritz, 206
trial functions, 203
weight functions, 203

Gas-flow equations, 51

Gauss—Seidel iteration (see Iterative methods)

Gaussian elimination, 168

Generalized function, 107

Generalized solution, 190

Gerschgorin Circle Theorem, 142

Ghost point, 134

Gradient, 1
of functional, 189, 190, 194



Green’s function, 100
causal, 106
diffusion equation, 105
eigenfunction expansion, 102, 111, 115
elliptic, 103, 115
free-space, 101, 105, 106, 120
Laplace’s equation, 101-103, 112, 113
modified, 116
ordinary differential equation, 112

partial eigenfunction expansion, 112, 118

Poisson's equation, 102, 109, 110
symmetry of, 109
wave equation, 106
Green's identities, 2
Grid, 124
nonuniform, 129
spacing, 124
uniform, 125

Hadamard, example by, 33
Harmonic function, 3, 19, 23-25
sub-, 20, 25, 34
super-, 20, 34
Harnack's theorem, 34
Hartree’s method. 163
Hat functions, 212
Heat equation, 6, 8, 15-17, 36, 53, 100
backward, 37, 45
max-min principle, 37, 40-43
solutions, 84-90, 98
uniqueness, 40
well-posed problems for, 36
Heaviside function, 121
Helmholtz equation, 7
Huygens’ principle, 106
Hydraulic jump, 67
Hyperbolic, 4, 6, 7, 11, 39, 52, 144
Hyperbolic system, 52, 53, 71, 147, 149
Cauchy problem, 53, 54, 56-58
characteristic base curves of, 53
characteristics of, 53—-56
domain of dependence, 54
initial data for, 33
interval of dependence, 54
normal form, 33, 55

1ll-posed problem, 3, 22, 32, 37 (see also Well-posed

problem)

Images, 102, 105, 112-114, 118, 121, 123
Infinite series, 72
Initial:

condition, 2

curve, 53, 57

data, 53
Initial-boundary value problem, 3, 36

INDEX

[nitial value problem, 36 (see also Cauchy problem)

heat equation, 36
Laplace’s equation, 32
wave equation, 36
Inner product, 72, 73
Integral identities, 1, 2
Integral transform, 75, 84
Fourier, 75, 76
Laplace, 76, 77
International System (SI), 8
Interval of dependence, 54
Inversion, 34
Jteration matrix, 171
Iterative methods, 154, 168-172
block, 169
convergence of, 170, 171
Gauss—Seidel, 169-172, 185
Jacobi, 168-172, 182
LSOR, 169
point, 169
SOR, 169-172

Jacobi iteration (see Iterative methods)
Jacobian, 57, 62, 148
Jump conditions, 65-68 (see also Shock)

Kelvin transformation, 34

L*[ ] (adjoint operator), 103
L*(Q) (function space), 188
convergence in, 73
dense subspaces, 188
equality in, 73
Lagrange’s identity, 103, 115
Lagrange’s interpolation formuila, 141
Laplace transform, 76, 77, 82, 86—89

Laplace’s equation, 6, 7, 19, 22, 23, 32, 94, 99, 101

initial value problem for, 33
Laplacian, 2

cylindrical coordinates, 34

spherical coordinates, 34
Lax Equivalence Theorem, 126

Lax-Wendroff method, 147, 148, 154, 156, 160

Linear:

combination, 188

operator, 83

partial differential equation, 1
LSOR iteration (see Iterative methods)

McKendrick—von Foerster equation, 51
Matrix:
banded, 168
block tridiagonal, 179
diagonal, 14, 53, 170
lower-triangular, 170, 178
orthogonal, 14
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Matrix (continued) Partial differential equation (continued)
sparse, 168 open-channel flow, 51, 54, 62
symmetric, 4, 7 order of, 1
tridiagonal, 179 parabolic, 52
2-cyclic, 171 Poisson’s, 101
upper-triangular, 170, 178 population density, 51

Matrix stability (see Stability criteria) quasilinear, 1

Maximum-minimum principle, 19 self-adjoint, 103
elliptic, 19-21, 25, 27, 28 solution of, 1
parabolic, 37, 38, 40-42 transmission line, S1

Mean-value property, 19, 23-25, 222 Tricomi, 4
and harmonicity, 23, 25 PDE (see Partial differential equation)
and max-min principle, 24 Periodic extension, 72, 78, 79

Mesh, 124 Periodic function, 72

Method of lines, 141 Physical dimensions, 8

Piecewise continuous function, 72

Natural boundary condition, 195 Plane wave solution, 47

Neumann condilion, 2 Poisson integral formula, 22, 23, 25, 35, 95, 123

Neumann function, 114, 116 Poisson’s equation, 101

Neumann problem, 30, 35, 95, 116, 134, 172, 195 Principal part, 4, 5, 11-14, 17
quasi-uniqueness, 30 Product law, 123

Node, 124 Proper trianguiation, 213

Nonlinear partial differential equation, 1

Norm, 73 Quasilinear, 1, 144

Normal form, 53, 55, 60-62 system, 51, 58

O(h) (crdo symbol), 124 R" (Euclidean n-space), 1

Open—channel flow, 51, 54, 62-67, 71, 163 Raylelgh quo[ien[, 191, 207

Operator, difference (see Difference operator) Rayleigh—Ritz procedure, 202-205, 209

Operator, differential (see Differential operator) for eigenvalues, 207, 208

Optimal SOR, 172 relation to Galerkin procedure, 206

Order of magnitude, 124 Rayleigh’s principle, 197

Order of partial differential equation, 1 Reducing factor, 122

Orthogonal family, 72, 73, 74, 191 Reflection, 118 (see also Images; Inversion)
orthonormal family, 72, 73 Relaxation parameter, 169

Overrelaxation, 169 Residual, 171

Retarded potential, 120

P_(A) (characteristic polynomial), 52 Riemann invariant, 61, 63, 64, 70

Parabolic, 4, 6, 7, 12
system, 52 Sectionally continuous function, 72
uniformly, 38 Self-adjoint, 103, 122,192

Parseval relation, 74 Separation of variables, 83, 84, 97

Partial derivative, 1 Shock, 54, 66, 68, 69

Partial differential equation, | Similarity solution, 7, 8§, 16
biharmonic, 122 Similarity variable, 16
compressible flow, 59 Singularity solution:
conservation-law, 52, 58, 63 biharmonic equation, 122
divergence form, 52 diffusion equation, 104, 117
elliptic, 52 Laplace’s equation, 100, 101
first-order, 51 wave equation, 105
gas flow, 51 Sink, 113
Helmhoitz, 7 Solution, 1
hyperbolic, 52 classical, 21
Laplace’s, 32 discontinuity in, 5, 6
linear, 1 generalized, 190

nonlinear, 1 plane wave, 47
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Solution (continued) Ultrahyperbolic, 4, 7, 17
similarity, 7, 16 Underrelaxation, 169
weak, 21, 191, 199 Uniformly elliptic, 20

SOR (see Successive overrelaxation) Uniformly parabolic, 38

Source, 113 Uniqueness:

Sparse matrix, 168 Dirichlet problem, 25, 29

Spectral radius, 126, 170, 181 exterior problem, 31

Stability criteria: heat equation, 40, 41
matrix, 126, 132 mixed problem, 30
von Neumann, 126, 131, 160 Neumann problem, 30

Stable boundary condition, 195, 196 wave equation, 48

Stable difference method, 126

Steady state, 86, 87

Stein-Rosenberg theorem, 170

Sturm-Liouville problem, 74, 78, 80, 84, 85, 97, V_(R) (volume of n-ball), 19

191, 197-199 Variation, 189, 193
Sturm-Liouville theorem, 74 Variational formulation, 195, 200
Subharmonic, 20, 34 Variational principles, 190, 196
Successive overrelaxation, 169-172, 185 Vector field, 1
Superharmonic, 20, 34 von Neumann stability (see Stability criteria)
Superposition, 83, 123
Surge, 67
Test function, 65, 107 Wave:
[ransform: equation, 5, 6, 36, 46-50, 90-94, 144
Fourier, 75, 76, 82, 88, 91, 95, 96 traveling, 7
Laplace, 76, 77, 82, 86-89 velocity, 47
Transmission line equations, 51 Waveform, 47
Trial function, 203 Wavelike evolution, 39
Triangulation, 213 domain of dependence, 47, 92
Tricomi equation, 4 finite speed of propagation, 47
Tridiagonal matrix, 128, 132 Weak formulation, 191, 199, 20)]
Truncation error, 124, 185 Weak solution, 65, 67, 69, 71. 191, 192
local, 125, 129, 150 Weight function, 203
2-cyclic matrix, 171 Well-posed problem, 3, 22, 36

Type, 4,9 Wronskian, 112
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