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Preface

The theory of Laplace transforms or Laplace transformation, also referred to as
operational calculus, has in recent years become an essential part of the mathematical
background required of engineers, physicists, mathematicians and other scientists. This
is because, in addition to being of great theoretical interest in itself, Laplace transform
methods provide easy and effective means for the solution of many problems arising in
various fields of science and engineering.

The subject originated in attempts to justify rigorously certain ‘“‘operational rules”
used by Heaviside in the latter part of the 19th century for solving equations in electro-
magnetic theory. These attempts finally proved successful in the early part of the 20th
century through the efforts of Bromwich, Carson, van der Pol and other mathematicians
who employed complex variable theory.

This book is designed for use ag a supplement to all current standard texts or as a
textbook for a formal course in Laplace transform theory and applications. It should also
be of considerable value to those taking courses in mathematics, physics, electrical engi-
neering, mechanics, heat flow or any of the numerous other fields in which Laplace
transform-methods are employed.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so0 vital to effective learning. Numerous proofs of theorems and derivations of formulas
are included among the solved problems. The large number of supplementary problems
with answers serve as a complete review of the material in each chapter.

Topics covered include the properties of Laplace transforms and inverse Laplace
transforms together with applications to ordinary and partial differential equations, integral
equations, difference equations and boundary-value problems. The theory using complex
variables is not treated until the last half of the book. This is done, first, so that the -
student may comprehend and appreciate more fully the theory, and the power, of the
complex inversion formula and, second, to meet the needs of those who wish only an
introduction to the subject. Chapters on complex variable theory and Fourier series and
integrals, which are important in a discussion of the complex inversion formula, have
been included for the benefit of those unfamiliar with these topics. '

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful
book of reference and to stimulate further interest in the topiecs.

I wish to take thié opportunity to thank the staff of the S‘cha,um Publishing Company
for their splendid cooperation.

M. R. SPIEGEL
Rensselaer Polytechnic Ingtitute
January, 1965
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Chapter 1

DEFINITION OF THE LAPLACE TRANSFORM
Let F(t) be a function of ¢ specified for ¢>0. Then the Laplace transform of F(t),

denoted by .£ {F(t)}, is defined by
CFWy = f9) = f eFwdt (1)

where we assume at present that the parameter s is real. Later it will be found useful
to consider s complex.

The Laplace transform of F(¢) is said to exist if the integral (1) converges for some
value of s; otherwise it does not exist. For suifficient conditions under which the Laplace

transform does exist, see Page 2.

NOTATION

If a function of ¢ is indicated in terms of a capital letter, such as F(f), G(¢), Y(?), etc.,
the Laplace transform of the function is denoted by the corresponding lower case letter,
i.e. f(s), g(s), ¥(s), etc. In other cases, a tilde (~) can be used to denote the Laplace trans-

form. Thus, for example, the Laplace transform of u(t) is % (s).

LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS

F(t) L{F(E)} = fl8)
1 1 % §>0
2. t é s§>0
. 3 m n!

The adjacent table shows . gn+1 8>0
Laplace transforms of various n=012... Note. Factorial n =nl =12+
elementary functions. For de- Also, by definition 0! = 1.
tails of evaluation using defini- : i
tion (1), see Problems.1 and 2. at 1
For a more extensive table see 4. € ' s—a ° >a
Appendix B, Pages 245 to 254.

5. sin at ;2—:72 §>0
6 8
. cos at . Py e §>0
7. sinh at popa e s 8> |df
- g
8. cosh at s2—j&§ s > |a]
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SECTIONAL OR PIECEWISE CONTINUITY

A function is called sectionally continuous or piecewise continuous in .an interval
a=t=p if the interval can be subdivided into a finite number of intervals in each of
which the function is continuous and has finite right and left hand limits.

F(t)

\

[y T [

& ———

é____ o
P
m._._.____
T

Fig. 1-1

An example of a function which is sectionally continucus is shown graphically in )
Fig. 1-1 above. This function has discontinuities at ¢, t» and #;. Note that the right and
left hand limits at ¢, for example, are represented by lin& F(ta+¢) = F(t2+0) = F(t2+)

and Iing F(ts—¢ = F(ta—0) = F(ts—) respectively, where ¢ is positive.

FUNCTIONS OF EXPONENTIAL ORDER
If real constanty M >0 and y exist such that for all ¢t >N
/ le = F(t)| < M or |F(t)] < Me
we say that F(f) is a function of exponential order y as t— « or, briefly, is of exponential
order.

Example 1. F(¢) = ¢? is of exponential order 3 (for example), since |t2| = 2 < 3t for all ¢> 0.

Example 2. F(t) = ¢*° is not of exponential order since | e—7t e’ [ = et" =7 can be made larger than
any given constant by increasing t.

Intuitively, functions of exponential order cannot “grow” in absolute value more rapidly
than Me as £ increases. In practice, however, this is no restriction since M and y can be
as large as desired.

Bounded functions, such as sin af or cos at, are of exponential order.

SUFFICIENT CONDITIONS FOR EXISTENCE OF LAPLACE TRANSFORMS

Theorem 1-1. If F(t) is sectionally continuous in every finite interval 0 =t =N and
of exponential order y for t > N, then its Laplace transform f(s) exists for all s > y.

For a proof of this see Problem 47. It must be emphasized that the stated conditions
are sufficient to guarantee the existence of the Laplace transform. If the conditions are
not satisfied, however, the Laplace transform may or may not exist [see Problem 32]
Thus the conditions are not necessary for the existence of the Laplace transform.

For other sufficient conditions, see Problem 145.
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SOME IMPORTANT PROPERTIES OF LAPLACE TRANSFORMS

In the following list of theorems we assume, unless otherwise stated, that all functions

satisfy the conditions of Theorem 1-1 so that their Laplace transforms exist.

i.

4.

Linearity property.

Theorem 1-2. If ¢; and ¢; are any constants while Fi(t) and Fa(t) are functions
with Laplace transforms fi(s) and f2(s) respectively, then

LlaFit) + Pty = al{Fi@) +al{F)} = afis) +efis) (@)

The result is easily extended to more than two functions.

Example. £{482 — Becos2t + Be~ty = 4L{t?} — 3L{cos2t} + 6L {e—}
_ 20N s 1
= (%) -3 (5%) * 5 6y)
8 3s 5 '

s8 s2+4 s+1

The symbol .¢, which transforms F(t) into f(s), is often called the Laplace trans-
formation operator. Because of the property of .£ expressed in this theorem, we say
that .C is a linear operator or that it has the linearity property.

First translation or shifting property.
Theorem 1-3. 1f L{F(t)} = f(s) then

L{e"F(t)} = f(s—a) (3
. s
Example. Since . {cos2t} = 24 Ve have
—¢ - s+1 _ s+1
LieTleos2h = AR T4 T Fhes+b

Second translation or shifting property.

Fit—a) t>a
Theorem 14. If £{F(t)} = f(s) and G(t) = 0 t<a’ then
L{G()) = e =f(s) (4)
Example. Since £ {3} = ‘:{i— = %, the Laplace transform of the function
o [it—28 t>2
G = {0 £ <2
is 6e—2s/g4,
Change of scale property.
Theorem 1-5. If . {F(t)} = f(s), then
1 s
@) = f(g) . )
Example. Since {{sin t} = s—Q—iL—l’ we have
1 3

: -1 -
£ {sin 8t} = 3ERrEl - F£+8
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Laplace transform of derivatives.
Theorem 1-6. 1f L {F(t)} = f(s), then
L{F(t)} = sf(s) — F(0) ' (6)

if F(t) is continuous for 0 =¢ =N and of exponential order for ¢ >N while F(t) is
sectionally continuous for 0 =t =N.

Example. If F(t) = cos3t, then L{F(t)} = and we have

*

_s
s249

’ — _ . . F:4 _ i —9
LAF() = £{-8sin3t} = s<wsz+9> 1 = 19

The method is useful in finding Laplace transforms without integration [see
Problem 15].

Theorem 1-7. 1If in Theorem 1-6, F(t) fails to be continuous at ¢t=0 but
lting F(t) = F(0+) exists [but is not equal to F(0), which may or may not exist], then
L)} = sf(s) — F(0+) : ()

Theorem 1-8. 1If in Theorem 1-6, F(t) fails to be continuous at t = a, then
LF(O)} = sf(s) — F(0) — e {F(a+) — F(a—)} (8)

where F(a+) — F(a—) is sometimes called the jump at the discontinuity t=a. For
more than one discontinuity, appropriate modifications can be made.

Theorem 19. If L{(F(t)}) = f(s), then |
LAF(t)) = sf(sy~ sF(O) — F/(0) 9
if F(f) and F’(t) are continucus for 0 =t =N and of exponential order for t>N
while F’/(t) is sectionally continuous for 0 =t =N,

If: F(t) and F’(t) have discontinuities, appropriate modification of (9) can be made
as in Theorems 1-7 and 1-8.
Theorem 1-10. 1If L {F(t)} = f(s), then
L{F™()}) = s*f(s) — s 1F(0) — s" 2F(0) — - -+ — sF®=2(0) — F®1(0) (10)

if F(@t), F'(t), ..., F*V(t) are continuous for 0 =t =N and of exponential order
for ¢ > N while F™(t) is sectionally continuous for 0 == N.

Laplace transform of integrals.

Theorem 1-11. If L {F(f)} = f(s), then
4{J; F(u)du} - ' (12)

Example. Since .0 {sin2t} = —, we have

_2
8% 4

(" _ 2
EC‘LJ; sin 2u du = m

as can be verified directly.
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7.

10.

11.

Multiplication by ¢~
Theorem 1-12. If L {F(t)} = f(s), then

dn
L{FH)y = (Crggfls) = (M) (12)
Example. Since £ {e2} = ?i“g , we have
o d 1 _ 1
({tezz} . .—;i—S(S“g) - (8—2)2

|

@/ 1 2
Lige = d52<s——2> T Gy

Division by t.
Theorem 1-13. If £ {F(t)} = f(s), then

{F“} f F) du (19)

provided lirr(}F(t)/t exists.
f

Example. Since .£{sint} = —S%I and ]inr(x) sinit 1, we have
1
sin tl fw du _
—r = ¥ _ = tan"1(1/s
ofnif o (T W)
Periodic functions. o

Theorem 1-14. Let F(t) have period T >0 so that F(t+T) = F(t) [see Fig. 1-2].

T
f et F(t) dt
0

Then - L{F(@)} = o= 7 (14)

F(t)
Period T | |

A NN W

I

Fig.1-2

Behavior of f(s) as s > «.
Theorem 1-15. If L {F()} = f(s), then

limf(s) = 0 (15)

Smw

Initial-value theorem.
Theorem 1-16. If the indicated limits exist, then

lim F(ty = Hn}o s f(s) (16)

t—0
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Final-value théorem.
Theorem 1-17. If the indicated limits exist, then
lim F(t) = limsf(s) : (217)
t~> e S0

Generalization of initial-value theorem.

If {1_1'13 F(t)/G(t) = 1, then we say that for values of ¢ near t=0 [small t], F(t) is
close to G(t) and we write F(t) ~ G(t) as t- 0.

Similarly if lim f(s)/g(s) = 1, then we say that for large values of s, f(s) is
close to g(s) and s’&;;awwrite f(s) ~ g(s) as s— .

With this notation we have the following generalization of Theorem 1-16.

Theorem 1-18. 1If F(t)~ G(t) as t— 0, then f(s) ~g(s) as s~ Wheré f(é)z

L{F()} and g(s) = L{G(H)).

Generalization of final-value theorem.
If lim F()/G(t) =1, we write F(t) ~ G(t) ast—> . Similarly if lim f(s)/g(s) = 1,
Lt s=0

we write f(s) ~ g(s) as s> 0. Then we have the following generalization of Theorem
1-17.

Theorem 1-19. If F(t) ~ G(t) as t—> =, then f(s) ~ g(s) as s= 0 where f(s) =
L {F(t)} and-g(s) = L {G(®)}.

\ AETHODS OF FINDING LAPLACE TRANSFORMS

Various means are available for determining Laplace transforms as indicated in the

following list.

1.

2.

Direct method. This involves direct use of definition (1).
Series method. If F(f) has a power series expansion given by
F(ty = a + ait + aat? + -+ = 3 g ‘ (18)

its Laplace transform can be obtained by taking the sum of the Laplace transforms
of each term in the series. Thus :

83 = sn+1

2'as i n!an

CFHY = 245+ (19)

A condition under which the result is valid is that the series (19) be convergent
for s>y. See Problems 34, 36, 39 and 48. :

Method of differential equations. This involves finding a differential equation satis-
fied by F'(t) and then using the above theorems. See Problems 34 and 48.

Differentiation with respect to a parameter. See Problem 20.

Miscellaneous methods involving special devices such as indicated in the above theo-
rems, for example Theorem 1-13.

Use of Tables (see Appendix).
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EVALUATION OF INTEGRALS

If f(s) = L{F(t)}, then

f TetE(ydt = fis) (20)

Taking the limit as s > 0, we have

S roa = s (21)

assuming the integral to be convergent.
The results (20) and (21) are often useful in evaluating various integrals. See Problems
45 and 46. ' :

SOME SPECIAL FUNCTIONS

I.

IIL.

The Gamma function.

If n> 0, we define the gamma function by
(n) = f e du - | (22)
0

The following are some important properties of the gamma function.
1. rn+1) = =nIin), =»n>0

Thus since TI'(1) =1, we have r(2)=1, 7(8) =2! =2, ©(4) = 3! and in general
r(n+1) = n!, if n is a positive integer. For this reason the function is some-
times called the factorial function.

2. r(§) = Vw

3. Mp)TA-p) = - 0<p<1 N

4. For large n,
T(n+1) ~ V2mmn"e™
[Here ~ means “approximately equal to for large n”. More exactly; we write
F(n) ~ G(n) if lim F(n)/G(n) = 1.] This is called Stirling’s formula.

5. For n<0 we can define T(n) by

rn) = l‘(n’;—l)

Bessel functions.
We define a Bessel function of order n by

_ t’n _ 2 t —
Tat) = m{l 2@n+2) | 3-A@n+2)@n+4) } #)

Some important properties are
1. J-o(t) = (-1)*Jx(t) if n is a positive integer

21t = Jaer (1)

3. gz{t".fn(t)} = t"Ju1(?). If n=0, we have J (t) = —J,(%).

2. Jn+1(t) =

0

4., e®ta—vw — 2 Jn(t)un

n= =0

This is called the generating function for the Bessel functions.
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5. Ja(t) satisfies Bessel's differential equation.
2Y”"t) +tY(R) + (B2—-n)Y({) = 0

It is convenient to define J.(it) = i; » In(t) where‘ln(t) is called the modified
Bessel function of order n. , :

II1. The Error funetion is ’deﬁned as

‘erf(t) = % ft e~ du (24)

IV. The Complementary Error function is defined as

t %0
erfe(t) = 1 — erf(t) = 1 — %j{: e vdu = \%f e~wdu  (25)
t

V. The Sine and Cosine integrals are defined by

. t . , .
Si(t) = fo Slzudu : (26)
Ci(t) = J: 0S¥ gy, 27)

VI. The Exponential integral is defined as

" Ei() = j: we;udu - (28)

VII. The Unit Step function, also called Heaviside’s unit function, is defined as

Ut—a) = {2 ii"’ | (29)
See Fig. 1-3. @
Ut — a) Ft)

[y T ——
T

Fig.1-3 Fig. 1-4

VIIL. The Unit Impulse function or Dirac delta function.

Consider the function
) (/e 0StSe
P = o s (50

.

where ¢ > 0, whose graph appears in Fig. 1-4.
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IX.

It is geometrically evident that as ¢-> 0 the height of the rectangular shaded
region increases indefinitely and the width decreases in such a way that the area

is always equal to 1, i.e. j. F(t)ydt = 1.
0

This idea has led some engineers and physicists to think of a limiting function,
denoted by 8(t), approached by F(f) as ¢~ 0. This limiting function they have
called the unit impulse function or Dirac delta function. Some of its properties are

1. f sty dt = 1
) 0
2. f (1) G(t) dt = G(0) for any continuous function G(?).
0
3. f 8(t—a) G(t)dt = G(a)  for any continuous function G(¢).
]

Although mathematically speaking such a function does not exist, manipulations
or operations using it can be made rigorous. ' o

Null functions. If N(t) is a function of ¢ such that for all ¢t >0

¢
f Nu)du = 0 (81)
0 : .
we call N () a null function. ~
1 t=1/2 \
Example. The function F(f) = -1 t=1 is a null function.
0 otherwise

In general, any function which is zero at all but a countable set of points [i.e. a set
of points which can be put into one-to-one correspondence with the natural numbers
1,2,3,...] is a null function. '

LAPLACE TRANSFORMS OF SPECIAL FUNCTIONS

In the following table we have listed Laplace transforms of various special functions.
For a more extensive list see Appendix B, Page 245. '

Table of Laplace transforms of special functions

F(t) f(s) = L{F(@®);}

T(n+1)
gntl
Note that if » = 0,1,2, ... this
reduces to entry 3, Page 1.

1. tn

1

. Vs + a?

3. ‘ J(at) . (Vs?+a2—s)"
a™/s? + a?

4. v sin\/f ‘2—\3/_3;/5 g~ His

5. cosVt \/E e—1/4s
\/E 8

2. Jo(at)
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Table of Laplace transforms of special functions (cont.)

F() fisy = L{F(t)}
6. erf (1) - erfe (s/2)
7. erf (Vt) =
sys+1
8. Si (4) % tan—1 %
9. Ci(t) In(s?+1)
23
10. Ei (f) In(s+1)
8
11. U(t — a) e ®
. 8
12. 8(8) 1
13. 8‘(t —a) . e—as
14, N(t) 0

Solved Problems

LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS

1 1 , 8>a.

1. Prove that: (a) £{1} = %, §>0; (b) L{t} = ok §>0; (¢) L£{e*} = P
o P
(a) L{1} = J(; e~st(1)dt = lefo e~ st dt‘
= lim 8__:: = 1m 18R o 1 ey
@ - P
b ty = “st(tydt = l te—stdt
(b) L (t) fo ev ® pm
) —st —st\ \P 1 _e7sP  Pe-spP
= (t)<e—s>—(1)<es2 > 0 pim <§* 2 es >
1 if 8>0

&2
where we have used integration by parts.
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0 P
L {eaty = f est (eat) dt = lim e~ (s—akt gt
0 P Jg
—(s—a)t P 1 — e~ (s—a)P 1
N € . € .
= lim ———— = lim —— = if s>a
Pao —(8—a)lo P oo s—a s—a

For methods not employing direct integration, see Problem 15.

. a ) .
2. Prove that (a) £{sinat} = Tra {b) L {cosat} = o if s>0.
] P
(a) L{sinat} = f e~stginatdt = Il)im e~ st sinat dt
- 1lim e—st(—s sinat — a cos at) |P
- P 82 + a2 0
= 1lim a __ e "P(ssinaP + ¢ cosaP)
T pow |82+ a? 82 + a2
a .
= m if s>0 /
20 P
(b) L{cosat} = f e~steosatdt = I}im e~ st cos at dt
0 =2 Je
= lim ¢~ st{—s cosat + a sinat)|P
T pasx s + a? 0
~  lim s e P(scosaP — asinaP)
Pow (82+a2 82 + a2 '
= = _f_ p if >0
We have used here the results
. _ t (o $in Bt — B cos Bt) L
oat tdt = e% (o §in B8
f sin B s (1)
_ ¢ t + 8 sin g8t)
et cosptdt = Fofecosp 2
f A a? + B2 ( )

Another method. Assuming that the result of Problem 1{c) holds for complex numbers (which can
be proved), we have

1 : s+ia
iat = =
L {e¥et} s—ia 82 + a? . @
But et = cosat + isinat. Hence
£{eaty = f e=st (cos at + isinaf) %)
0
= f et cosat dt + if e~stsinatdt = .L{cosat} + i. {sinat}
0 0

From (3) and (4) we have on equating real and imaginary parts,

a

_ s . —
L{cosaty = 53, L{sinat} = 52
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3. Prove that (a) € {sinhat} = éz—f—

et (b) £ {coshat} =

(@) £lsinhaty = pl¢E— el _ f e—st (€= e "N 1
_ _ 3 - J 5
e~ steat dt — — e~ steg—at gt
0 2J
1 1
= gL{eM} — FL{e7)

_ 1)1 =] _ a
= 3%5—a s+a = g for s > |a]

Another method. Using the linearity property of the Laplace transformation, we have at once

if s> |al.

S
82— a2

DO =

L{sinhat} = _({ei:z_ﬁig} = é_c{eat} — %ac{e—at}
1 1 1
= E{s—a_s%-a} = E?f_ﬁ? fors>|a[
(b). As in part (a),
£ {coshat} = -,C{&Ze—_at} = %oc{e“‘} +%£{e”‘“}
1 1 1
§{s—a+s+a} = szjaz for & > |a]
4. Find £ (F(t)) if F(t —{5 O<t<?
- Find L{F@O)}If F() = 1, t>3

By definition,

£l 3 ©
LF@R)) = f e"stF(tH)ydt = f e—st(5) dt + f e~ st{0) dt
0 0 3
3 —s — p—3s
= s emstqr = st o= Blze™®
0 —S o s

THE LINEARITY PROPERTY
5. Prove the linearity property [Theorem 1-2, Page 3}.

Let £{F,(t)} = fy(s) = f e~stF (t)dt and £ {Fy(t)} = fol8) = f e—stFy(t)dt. Then if
0 0

c; and ¢, are any constants,

L{e Fi(t) + e Fa(2)}

Il

f e~ st {chl(t) + 02F2(t)} dt
0 .

= clf e"stF (Hdt + csz e~St Fo(t) dt
0 0
= e LIF (1)} + s L{F ()}

= ¢ fi{s) + cafals)

The result is easily generalized [see Problem 61].
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6. Find .C{4e* + 612 — 3sindt + 2 cos2t}.

By the linearity property [Problem 5] we havé

£ {45t + 618 — 3sindt + 2cos2t} = 4.L{e} + 6.0 {13y — 3. {sin4t} + 2. {cos2t}
_ 1 31N 4 8
- 4<s—5> + 6<"s?> 3<32+16> * 2<s2+4>

-4 36 12 2s

= gt T Ere T #id

where s > 5.

TRANSLATION AND CHANGE OF SCALE PROPERTIES

7. Prove the first translation or shifting property: If £ {F(t)} = f(s), then £ (e F(t)} =
f(s—a).

We have CFW) = j; ctF@)dt = f(s)

Then £ {eat F(t)}

f e—st {ext F'(t)} dt
]

= f e—s—tF(ydt = f(s—a)
0

8. Find (a) . {t%e*}, (b) £ {e~% sin4t}, (c) L {e* cosh5t}, (d) £ {e~?(3cos 6t — 5sin 6%)}.

21 2 2
(@) £{t?} = 5 = 5- Then £ {t2e31} = =38

4

© (b)) £{sindt} = 2116 Then . {e~2tsindt} = 4 — 4

(s+22+16 = s2+4s+20°

8 s—4 g—4
t . 4t -_ = .
(e) . {cosh5t} = —25 Then £ {¢% cosh bt} G—AF =25 P

,C{eu(_es_ttze__—st)} = %4{39”.6—@

T 2ls—9 " s+1[ T #=8s—9

Another method.
. {e*t cosh 5t}

3.0 {cos 6t} — 5.£{sin 6t}

_gfos ) _ g[8 ) 3-20
- s2 + 36 s24+86/ 52436

3(s+2) —30 _ 33— 24
(s +22 F 36 2+ 4ds+ 40

(d) . {8 cos6t — b sin 6t}

Ii

Then L£{e2t(8 cos 6t — bsin6t)} =
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9. Prove the second translation or shifting property:

Fit—a) t>a

If .,C{F(t)} = f(s) and G(f) = {0 t<a’ then L{G(t)} = e *f(s).

L{Gt} = f e~ st G(t) dt LaeTStG(t) dt + fwe‘st_G(t) dt
0 a

a £
= f e st (0)y dt -+ f e"StF(t—a) dt
0 a

o«
f e~stF(t—a) dt
a .
— f e~sluta) F(u) du
1]

= e‘ﬂsf e~ su F(u) du
0 .

= e f(s)
where we have used the substitution ¢ = % + a.
10, Find (PN 16 R — {cos(t—27r/3) t> 2r/3
- Find LF@) iE F(@E) = 4 t<2e/3"
27/3 *
Method 1. LA{F() = f e~st(0)y dt + e~ 5t cos (t — 27/8) dt
Jy 27/3

o0
— f e—su+21/3) oogu du
0

se—2ws/3
sZ41

o
6‘2”3/3f e~ St cosu du =
0

Method 2. Since . {cost} = ;—2—%—1, it follows from Problem 9, with @ = 27/3, that

Se—27rs/3

11. Prove the change of scale property: If . {F(t)} = f(s), then L{F(at)} = alf GZ)

LA{F(at)} = J; e~ st Flat) dt

f e—sula> F(y) d(u/a)
0

&=

f e~su/e F(u) du
0

/)

Q[

using the transformation t = w/a.
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12. Given that {Smt} {(1/s), find ,({Sm “t},
By Problem 11, ‘ )
sin at 1 sin at 1 _ 1 B
{ } at { t } = gtan 1{1/(s/a)} = tan 1(a/s)

Then ﬂc{smtat} = tan—1!(a/s).

LAPLACE TRANSFORM OF DERIVATIVES
13. Prove Theorem 1-6: If £ {F(t)} = f(s), then L {F'(})} = sf(s)— F(0).
Using integration by parts, we have

®© P
LAF(t))y = f e sStE(t) dt = hm e stE'(t) di
0

P o

P P
+ .sf e~ st F(t) dt}
0 0

P
= lim {e‘SPF(P) - F(0) + sf e st F'(t) dt}
0

P

P=yow

= lim {e‘“lf’(t)

= sj; e"stF(t)ydt — F(0)

= sf(s) — F(0)
using the fact that F(f) is of exponential order y as t— », so that gim e~ sPF(P) = 0 for s>v.

For cases where F(t) is not continuous at t =0, see Problem 68.

14. Prove Theorem 1-9, Page 4: 1f £ (F(8)} = f(s) then .£ (F”(t)} = s2f(s) — s F(0) — F"(0).
By Problem 13,

L{G@®)} = s£{G@®)} — GO) = sg(s) — GO)
Let G(t) = F'(t). Then
LIF'®)}) = sLiF't) — F(0)

= s[sL{F@®)} — F0)] — F(0)
= s2L{F(H} — sF(©) — F(0)
= s§2f(s) — sF(0) — F'(0)

The generalization to higher order derivatives can be proved by using mathematical induction
[see Problem 65].

15. Use Theorem 1-6, Page 4, to derive each of the following Laplace transforms:

@em =1 oem=2L ©cwe =1

Theorem 1-6 states, under suitable conditions given on Page 4, that

LW = selF@W) — F) | - o
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(a)

(b)

(e)

16. Use Theorem 1-9 to show that . {sinat} =

THE LAPLACE TRANSFORM [CHAP. 1

Let F(t) =1. Then F'(f) =0, F(0) =1, and (I) becomes

£{0} =0 = sgf{t} —1 or L1} = 1/s (8
Let F(f) =i. Then F'(t) =1, F(0) = 0, and (1) becomes using part (a)
L{} = s = sty — 0 or £ty = 1/s2 _ E))

By using mathematical induction we can similarly show that £ {t"} = n!/s"+1 for any positive
integer n. ’

Let F(t) = eat, Then F'(t) = ae%, F(0) =1, énd (1) becomes

L {aett} = s {ext} — 1, le. alL{e} = sLi{e®} — 1 or «£{e®} = 1Y(s—a)

=2
82+ a?’
Let F(f) = sinat. Then F'(t) = acosat, F''(t) = —a2sinat, F(0) = 0, F(0) = a. Hence

from the result

LF"(t)} = s2L{F@t)} — sF(© — F'(0)
we have L{—a?sinat} = s2.¢ {sin'at} — 8{0) — a
i.e. —a2 L {sinat} = 2L {sinat} — a
or L{sinat} = 2

§2 +q?

LAPLACE TRANSFORM OF INTEGRALS

17. Prove Theorem 1-11: Tf .¢ {F(£)} = f(s), then £ {f " P dulf = f(s)/s.

it

it
Let G(i) = f F(u)du. Then G'(t) = F(#) and G(0) = 0. Taking the Laplace transform
0

of both sides, we have

LW = so{GH) — GO) = se{6E} = )
t 3
Thus LA{G)) = f_i:"_)_ or ,C{J; F(u) duf = —'f—(:—)-

18. Find £ {fo 2L du}.

We have by the Example following Theorem 1-18 on Page 5,

sint 1

sine = -1

(«C{ t} tan p
t . 1 1
4{f mdu} = Llipil
. U s s

Thus by Problem 17,
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MULTIPLICATION BY POWERS OF ¢

19. Prove Theorem 1-12, Page 5:

17

If £ {F(t)) = f(s), then £ {t"F(t)} = (—1)713‘1;—" f(s) = (~1)"f™(s) wheren=1,2,3,....

We have fls) = I(; e StF(t) dt

- Then by Leibnitz’s rule for differentiating under the integral sign,

Yoo = Lf ewroa = [ 2
= fow—te—stp(t)dt
- ——fome—”{tF(t)}dt
. cuFy
Thus : cF®y = -L = —p

which proves the theorem for » = 1.

9 st F(t) dt

)

To establish the theorem in general, we use mathematical induction. Assume the theorem true

for n =k, ie. assume
o0

[ esrena = 1)
]

Then

il

% fwe—“{tk F(8)) dt
0

or by Leibnitz’s rule,

(—1)k fle+1)(s)

_Jm e~ st {tkt1F(t)} dt = (._.1)k. FE+1)(g)
0

ie.

0

2

f e=st {tk+1F(HYdt = (—1)k+1flk+1)(g)
0

@

®

It follows that if (2) is true, i.e. if the theorem holds for » =k, then (3) is true, i.e. the theorem holds
for m = k+1. But by (I) the theorem is true for n=1. Hence it is true for » = 1+1 = 2 and

n=2+1=3, etc, and thus for all positive integer values of n.

To be completely rigorous, it is necessary to prove that Leibnitz’s rule can be applied. For this,

see Problem 166,

20. Find (a) £ {tsinat}, (b) £ {t?cosat}.

. . _ a
(a) Since .¢{sinat} = Tra v have by Problem 19

L {tsinat} = .—%<L> — 2as

52 + a2

(82 + a2)2
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Another method.

S

Since cos at = f e Stcosatdt = —T
<« ; s2+ a2

0

we have by differentiating with respect to the parameter o [using Leibnitz’s rule],

l—;l~ e Stcosatdt = f e~ st{—tsinat}dt = —.£{tsinat}
_ _d_ 8 _ _  2as
5 hich T da\s2+ae2/ (82 + a2
rom whic
. 2as
t t o= T
LAt sin at} =+

‘ d
Note that the result is equivalent to %( {cosat} = {EE cos at}.

(b) Since .£{cosat} = I e j_ prE have by Problem 19
B a s _ 293 — 6a2s
LA{t2 cosat} = a2 <s_2 ¥ a2> R P U

We can also use the second method of part (2) by writing -
42 a2
L{tecosat} = L4~ P (cos at) = - d_a2°c {cos at}

which gives the same result.

DIVISION BY ¢
21. Prove Theorem 1-13, Page 5. If £ {F‘(t_)} = f(s), then L (F(t)} f f(w) du.

F)

Let G(t) = Then F'(¢) = tG(t). Taking the Laplace transform of both sides and using

i
Problem 19, we have
d : dg
LAF@B)) = — - LIGR)] or fle) = ——
Then integrating, we have ]
g9 = —f fwa = | f du @

i.e. . {F(t} f "

Note that in (I) we have chosen the “constant of integration” so that lim g(s) = 0 [see Theorem
1-15, Page 5). g

22. (@) Prove that f Egﬁdt = f f(u) du provided that the integfals converge.
. 0 0

sint

(b) Show that f —dt = §

f; . t) dt f o) &

(a¢) From Problem 21,
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Then taking the limit as s = 0+, assuming the integrals converge, the required rgsult is obtained.

(b) Let F(t) = sint so that f(s) = 1/(s2+1) .in part (¢). Then

“gint * du =
dt = f — = tan~tu =
j; t o u2+1 o

ro(

PERIODIC FUNCTIONS
23. Prove Theorem 1-14, Page 5: If F(f) has period T > 0 then

f et F(¢) dt
L{F@®)}) = . 1= ¢ oT

We have

£ {F(t)}

®

f e st F(t) dt
(]

T ~2T
f e=tF(t) df + J e=stF(t) dt +
0 ' T

Il-

3T
f e—stF(t) dt +

o/

In the second integral let ¢t = u+ T, in the third integral let ¢t = w+ 27T, ete. Then

T T ~T ’
L {F(t)} - f e“S“F(u) du -+ f e—s(u+T) Flu+T)du + f e~ s(u+2T) Fu+2D) du + ---
0 0 0
T T T
= f e~ F(u) du + e‘“‘f e~ Flu) du + e‘ZSTf e"suF(u) du + .-
0 [ 0
. T
= (1+e 5T+ e 2T + .. -)f e 5% F(u)y du
T .
f e sv Fi(u) du
_ Yo
N 1— e 5T
where we have used the periodicity to write F(u+ T) = F{u), F(u+ 2T) = F(u), ..., and the faet that
1+»+ 72+ ¢+ .- 211, <1
_r
24. (a) Graph the function
F(t) = {smt 0<t<
0 o<t <27
extended periodically with period 2.
(b) Find £ {F(8))}.
(a) The graph appears in Fig. 1-5,
F()
0 T 27 3z 47 t

Fig.1-5
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(b) By Problem 23, since T =27, we have

1 ST '
CF®) = s | e R dt

1 m
I-:‘_?g,;gf e St gin t dt
0

1 e st(—ssint — cost)
1 — em2ms 82 +1 0

B 1 14+e-ms| 1
T 1 e | #+1 T A—em)(s2+1)

using the integral (1) of Problem 2, Page 11.

T

Il

The graph of the function F(t) is often called a half wave rectified sine curve.

INITIAL AND FINAL VALUE THEOREMS
25. Prove the initial-value theorem: lim F(t) = lim s f(s).
t—0 S0

By Problem 13,

cF@ = [ ewFOa = sfe — FO) W
o .
But if F'(t) is sectionally continuous and of exponential order, we have
lim f e stF'()dt = 0 2)
§= 20 .

0

Then taking the limit as s— « in (1), assuming F(t) continuous at ¢t =0, we find that

0 = lim sf(s) — F(0) or lim sf(s) = F(0) = }in})F(t)

§ = 0

. If F'(¢) is not continuous at ¢ =0, the required result still holds but we must use Theorem 1-7, Page 4.

26. Prove the final-value theorem: lim F(t) = lim sf(s).

1=+ 0 s=0
By Problem 13,
L{F(t)} = f e"StR'(H) dt. = sf(s) — F(0)
0
The limit of the left hand side as s > 0 is
o L] P
lim e"StF' () dt = f F'¢)dt = lim f F'(t) dt
s—=0 0 0 P 0
= ;im {F(P).— F(0)} = tlim F(ty — F(0)
The limit of the right hand side as s > 0 is
lim s f(s) — F(0)
s~+0
Thus tlim Fit)y — F(0) = lim sf(s) — F(0)
— 0 Eiadi}
or, as required, lim F(t) = lin}) s f(s)
j = %) S

If F(t) is not continuous, the result still holds but we must use Theorem 1-7, Page 4.
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27. Hlustrate Problems 25 and 26 for the function F(t) = 3e~2%.

We have Fit) = 3¢=%, f(s) = £ {F(®) = —.

By the initial-value theorem (Problem 25),

. . 3s
Ty -2 =

[ioy 3e Im T

or 3 =3, which illustrates the theorem.
By the final-value theorem (Problem 26),
' . ; . 3s
Hm 3e~2 = 1]
t-l-l:x; ¢ sl—rf%) s+ 2

oor 0 =0, which illustrates the theorem.

THE GAMMA FUNCTION

28, Prove: (@) T(n+1) = nT(n), n>0; (b) T(rn+1) = n!, n=1,2,8,.

%0 p
(¢) T(n+1) = f ute~ v du = lim ute % du
0 Poreos 0

P P ~
= Jim {(u")(%‘“)o *J; (,_3_“)(77«’1&”’_1) duJL

-
= lim {——P"e"’ + nf yn—lg—u du}
Per o o

21

= nf ur~le~v dy = nT(n) if n>0
“o
P
(b) r(1) f = lim f e~tduy = lim (1—e Py = 1.
0 Puroo, fi] Por 0
Put » =1,2,8,... in Mnr+1) = nT{n). Then
T2) = 1T{(1) =1, I8 = 2I(2) = 2+1 = 2!, T{4) = 31(3) = 32! = 3!
In general, I'(n+1) = n! if n is a positive integer.
29. Prove: f e~wdy = \/;
[ 2 Y
‘ p » ) D
Let Ip = f e~ dp = f e~ ¥ dy and let 1
0 [
;im I, = I, the required value of the integral. Then E
- o0 C
P
< e—a? dx)(f e~ y? dy) )
Jo PV2
P
f f e~ (F2+y®) dy dy
0 .
B ; l 0 A
ff e~ 22ty dy dy
Re Fig.1-6

where .‘RP is the square OACE of side P [see Fig. 1-6]."
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Since the integrand is positive, we have

ff e~ @M dpdy = I3 ff e~ UM dy dy @)

Ry 2

where ], and R, are the regions in the first quadrant bounded by the circles having radii P and PV2
respectively. )

A

Using polar coordinates (r, 6) we have from (1),

w2 P
f f e—"2 v dr de
0=0 Y r=0

— 2
%(1—81’2) = I

A

I

fin

/2 rVe 7
f f e~ r dr de 2)
=90 " 0 .

=

or

JA

T — ey @

Then taking the limit as P~ « in (3), we find lim 112, =1 =q7/4 and I = Vz/2

1
P=

30. Prove: T(3) = V=

) = f u~l2e~% du,  Letting u =02, this integral becomes on using Problem 29
o

2J;we*v2dv = 2<\/7;> = V7

31. Prove: C{i"} = % if n>-1,5>0.

o
LAty = f e~ stin dt. Letting st =u, assuming s > 0, this becomes
0

_ © fu\" % _ 1 ® o _ In+1)
L = J(; ¢ u<_§> d(?) T i), ure U du = PrEs]

32. Prove: L {t7'%} = \/=/s, s>0.

Let n = —1/2 in Problem 31. Then
rg) V7

LT = oy = o =

w |3

Note that although F(t) = t—1/2 does not satisfy the sufficient conditions of Theorem 1-1, Page 2,
the Laplace transform does exist. The function does satisfy the conditions of the theorem in Prob. 145.

33. By assunﬁng I'(n+1) = nI'(n) holds for all n, find:
(@) °(=4), (0) T(=3), (¢) T(=5), (d) T(0), (e) T(—1), (f) I (-2).
(@) Letting n=—}, I(}) = —3r(-1). Then 1‘(—%) = —2r(}) = —2v7
—3) = —§r(-§). Then ‘I‘(—%) = —§r(=§) = DEWr = 5V7 ‘by part (a).

(¢) Lettingn = —3§, I(-§) = —3r(—§). Then r(—3) = —2r(—$) = —@)(3N@)V7 = —& V7 by part (b).

(b) Letting » = —§, TY(
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(d) Letting n =0, T'(1) = 0°1(0) and it follows that I'(0) must be infinite, since I'(l) = 1.
(¢) Letting n = —1, (0) = —11(—1) and it follows that I'(—1) must be infinite.

(f) Letting n = —2, T'(—1) = —2T1'(—2) and it follows that I'(—2) must be infinite.

In general if p is any positive integer or zero, I'(—p) is infinite and [see Problem 170],
2\/2 2 2
e — = (=Hi{ 2\ 2N EN . L
- = e ()3)(E) - (55) v

BESSEL FUNCTIONS
34. (a) Find ¢ {Jo(t)} where Jo(t) is the Bessel function of order zero.
(b) Use the result of (a) to find £ {Jo(at)}.

(e) Method 1, using series. Letting n» =0 in equation (23), Page 7, we find

# th 6
Jo(t) = 1 — 22 + 9245 22 42 g2
1 1 2! 1 4! 1 86!
Then L@ = 3 - 53 2242 5~ 224262 &7

1, 1/1\ , 1-8/1\ _ 1:3:5/1
.- 5{1 §<.§5>+2-4<s4> 2'4-6<s_6>+ }

1 1\ v2) 1
B §{<1+s_2> } RS

using the binomial theorem [see Problem 172].

Method 2, using differential equations. The function Jg(f) satisfies the differential equation
tJo@®) + Jot) + tdet) = 0 (1)

[see Property 5, Page 8, with n=0]. Taking the Laplace transform of both sides of (I) and
using Theorems 1-6 and 1-9, Page 4, and Theorem 1-12, Page 5, together with Jy(0) = 1, Jo(0) =0,
¥ = L£{Jo(D)}, we have

— ey —s() —0) + ey~ 1) — X =
.from which % = - sgsj{ 1
Thus ! % = - %
and by integration Yy = \/s:?

cs

vVsZ+1

we have ¢ =1 and so £{Jy(H)} = L/Vs2+1.

Now lim sy(s) = = ¢ and %m}) Jo(t) = 1. Thus by the initial-value theorem [Page 5],
S0 —

For another method, see Problem 165.

(b) By Problem 11,
1 3 1
V(s/a)2 4+ 1 Vs2+ a2

Ll = 1
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35. Find ¢ {J«(t)}, where J:(t) is Bessel’s function of order one.

From Property 8 for Bessel functions, Page 7, we have J(; (t) = —J4(t). Hence

L {J1(0)}

The methods of infinite series
Page 41).

—£{Jo®)} = —[sL{do(t)} — 1]
1 _ 8 _ V 82+ 1 — .8
Ve +1 Va2 +1

THE SINE, COSINE AND EXPONENTIAL INTEGRALS

t .
’ sin u 1 1
36. Prove: £ {Si(f)} = <L f du;, = =-tan"!-.
0 U 8 8
L sinu sin t
Method 1. Let F(t) = f ” du. Then F(0) =0 and F'(t) = 7
0
Taking the Laplace transform,
, — piei _4a - = 1
L{tF'(t)} = «L{sint} or g 8 fle) — Flo)} = oy
. d _ -1
Le. BefEr = S9
Integrating, sf(s) = —tan~ls + ¢
By the initial value theorem, 1lim sf(s) = }in(x) F(¢) = F(0) = 0 so that ¢ = #/2.
S=+ 0 -
= .Z —— —1 — —11 — 1 _11
8 f(s) ) tan—1s tan s or f(s) s tan p
Method 2. See Problem 18.
Method 3. Using infinite series, we have
t . t
sin J‘ 1< ud  us T >
“fu—grteg—mg7t ) du
j; u b U 3! B! 71
_ 3 5 t7 :
= tTogmitssr T Tenn b
¢
sinu _ _ 8 R 4
Then 4{ L } = ’C{t 3.80 T Be51  TeTi T }
_ 113t 1Bl 1w
T 82 3.31 st 5+5! g8 77! 8
_ .1 1 1 1
T @ T sA T Es e

using the series

tan—1lax

1{(/s)  (/s)® | (/s)5 (/s |
s‘{ 1 3 B 7+

}

! tan—11
8 8

x— 23/8 + 5/5 — YT+ -+, |x] <1,

Thus

[CHAP. 1

and differential equations can also be used [see Problem 178,

or tF'(t) = sint.
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Method £. Letting u = tv,

v téinu Vsin tv
Then L f du = £ f — dv
of o
© ! sin tv
f ¢~ st f dv ; dt
0 o Y
1 1 o
f = f e stsintv dt > dv -
0o YV |vo

": fl,c{sintv} dv = fl dv :
0 v o SZT4+v2

1 )
= “tan—1—
s s

= 1 tan‘11
s s

0

where we have .assumed permissibility of change of order of integration.

37. Prove: . {Ci(t)} - aﬁ{f Co;udu} _ ln(32+1)'

28
@ t
We use the principle of Method 1 in Problem 36. Let F(t) == f co; “ du so that F't)y = — cots
t
and tF'(t) = —cost. Taking the Laplace transform, we have
d _  —s d _ s
‘"'E{sf(s) - F); = 241 or E{Sf(s)} - 2F1

Then by integration, sf(8) = L1ln(s®+1) + ¢

By the final-value theorem, lin}) sf(s) = tlim F() = 0 so that ¢e=0. Thus
S - —p 0O

) = G+ o flp) = REED

We can also use Method 4 of Problem 36 [see Problem 153].

u S

38. Prove: . {Ei(t)) = ,C{j;me_udu} = In@+D)

Let F(t) = f ¢ " du. Then tF'(t) = —e~t. Taking the Laplace transform, we find
y U

S Gfe - FO) = 5y o mlef) =

Integrating, sfis) = In(s+1) + ¢

Applying the final-value theorem as in Problem 37, we find ¢ =0 and so

In(s+1)
s

f(s)

For another method similar to that of Method 4, Problem 36, see Problem. 153.
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THE ERROR FUNCTION

39. P £ {erf /1) {2 fﬁ—?d} !
. Prove: er = — e " du = .
L= /s 1

Using infinite series, we have

Vi
_2_f 2 - _2_ gy u
({V;oeudu} —({\/_ u+2! 3!+ du
2 1372 572 #/2
= —_— 1/2 — [, e
“C{\/— t s Tsan "7 T >}
_ 2 [rem 162, raz 1
= Vo1 $2 " 3er TEealgm T Teglez T
111 ‘3 1 1-3-5 1
= gr-aEEtaive - oaewnt
_ 1 [, 11,181 .1.351
= 83/2{1 5s T34 27468 }
1 1 —1/2
= “375<1+g> = :
8 sVs+1

using the binomial theorem [see Problem 172].

- For another method, see Problem 175(a).

IMPULSE FUNCTIONS. THE DIRAC DELTA FUNCTION.

—as

40. Prove that £ {U(t—a)} = es where U(t —a) is Heaviside’s unit step function.

We have U(t—a) = 1 t>a,' Then
0 t<a

L{Ut—a)y = f e st(0)dt + f e~ st(1)dt
0 a

P

A i e—st|P
= lim e~stdt = lim
P=w J, P=ox —S8 |a
. e—as — g—sP e—as
= lim —m78M =
P 8 8

Another method.
Since £{1} = 1/s, we have by Problem 9, .£ {U(t—a)} = e~ 25/s.

41. Find £ {F(t)} where F.(t) is defined by (30), Page 8.

1 0=st=
We have F (f) = {/E ] e. Then
0 t>e '

fw\e"StFE(t) dt
0

fﬁ e—st(/e) dt + fw e=st (0) dt
0 €

= 1fee‘stdt = l—er*
€ vy €8

LAF (D)}
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42. (@) Show that lim £ (Fe()} = 1 in Problem 41.

(b) Is the result in (a) the same as .;C{hm F( t)} Explain,

€=0
(@) This follows at once since

lim L= % = |l @ —sets?/2l—-) 1im<1—;—ev+"'> - 1

€—0 8¢ €=0 Se €~+0

It also follows by use of L’Hospital’s rule.

(b) Mathematically speaking, limF (t) does not exist, so that . lim F (%) is not defined.
Nevertheless it proves useful to consider 38(f) = hm F_(t) to be such that L{8(t)} = 1. We

call S(t) the Dirac delta function or impulse functwn

43. Show that £ {8(t—a)} = e %, Where 8(t) is the Dirac delta function.
This follows from Problem 9 and the fact that £ {5(t)} = 1.

44. Indicate which of the following are null functions.

1 t=1 1 1=t=2
0 otherwise 0 otherwise’

@ Fi = | o Fo =] (©) (o) = 500,
t
(a) F(t) is a null function, since f Fuydu = 0 for all ¢t > 0.
0
i
() If t <1, we have f F(u)du = 0.
0
t t
If 1=¢t=<2, weh Fluydu = Ndu = t—1.
t weavej; () du fl()u ;
. : 9
If t> 2, we have J; Fu)du = j; 1Qydu = 1.

t
Since f F(u)du = 0 for all ¢t > 0, F(¢) is not a null function.
0

t
(¢} Since f S(uydu =1 for all ¢t > 0, §(¢) is not a null funetion.
o

EVALUATION OF INTEGRALS

* L p—t . p—3t
45. Evaluate (a) f te~%cost dt, (b) f i+ dt.
0 0
(e) By Problem 19,
LA{tcost} = ) te steost dt
S

__d - _4d/ s N _ s2-1
= .Es—.c{cost} = ds< > = e
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Then letting s = 2, we find f te 2t cost dt = 25"
0

() If F(t) = e—t—e—%, then fls) = £{F(t)} = + sig. Thus by Problem 21,

e—t — g—3t
’Q{ 7 } { u+3}d“
) © st et — g—3t — s+ 3
or fo e s<——t )dt ln<s+1

© ,—t __ o—Bt
Taking the limit as s = 0+, we find f e_t—e

dt = In3.

46. Show that (a) f “T@dt =1, (b) f Ceterf\Tdt = V/2/2.
i} 0

(a) By Problem 34, ‘ . f e~stJy,(t)dt = !
. 0 s2+1
Then letting s - 0+ we find f Jo@®dt = 1.
0
‘ w . 1
(b) By Problem 39 f e~sterfVtdt = ———r
’ o sVs+1

Then letting s > 1, we find f e~terfVtdt = V2/2.
0

MISCELLANEOUS PROBLEMS

47. Prove Theorem 1-1, Page 2.
We have for any positive number N,
© N )
f e~StF(t)ydt = f e"SLF(t)y dt + f e~ st F'(t) dt
0 0 N ’
Since F'(%) is sectionally continuous in every finite interval ¢ =t = N, the first integral on the

right exists. Also the second integral on the right exists, since F(t) is of exponential order y for
t > N. To see this we have only to observe that in such case

'w —st JF'(¢t) dt = N —st B'(t) | dt
fNe () j fN|e ® |

< f st |F(D)] dt
0

= fw e st Mertdt = M
0

Thus the Laplace transform exists for s > Y.
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48. Find . {sin V7).

Method 1, using se'ries.\

51 TR U2 — gyt g At

L) t)ys (V)Y . 3/2 5/2 17/2
sin V7 = ﬁ_(\g>+<f>_<\/“>+m _ ¢ t
Then the Laplac'e transform is

£ {sin VE} r3/2)  ré/2) r(7/2) 1(9/2)

- 3372 315572 E1g7/2  71gdia +
R 1., (/2282  (1/225)3
= gen(lTimg)t e T Ter
_ V= e—1/2% = Va_ o—1/4s

5 §372 2 5572

Method 2, using differential equations.

Let Y(t) = sinVt. Then by differentiating twice we find

ay” + 2" + Y = 0
Taking the Laplace transform, we have if y = . {Y(8)}
ARy — s Y(O) — YO + 2sy YO +y = 0
or 482y’ + (6s— 1)y = 0
. c -
Solving, v o= ape 1/4s

For small values of ¢, we have sinVt ~ Vt and £ {Vt} = Vr/28%2, For large 8, y ~ c¢fs3/2,
follows by comparison that ¢ = Vz/2. Thus

£ {sin ‘/?} — _ﬁ_e—lMs

9 g3/2

49. Find £ {“’s ‘/E}.
VvVt

Let F(f) = sinV/f. Then F'(t) = cos Vi F(0) = 0.

Hence by Problem 48,

2/t
, 1 cosﬁ pon '_
LAF'(t)} = §£{ Ut } = sf(s) — . FO) = 2;/1_/2 e—1/4s
from which ,C{%t_} = ;\:__/”_2_6—1/43:
Thé methoa of series can also be used [see Problem 175(b)]. -
50. Show that
e{nyy = T —Ins __y+ns

s 8
where y = .5772156... is Euler’s constant.

We have T(r) = f ur—le—v dy
0

29

It
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Then differentiating with respect to », we find

™My = f u~te vinu du
0

from which . ™l = f e *Inudu
0

Letting u = st, s > 0, this becomes

i = sf e st(lns + Int) dt
0 .
Hence L{nt} = f e Stintdt = Eél—)- — lnsf e st dt
0 0
raq) s __y+Ins
- s s s

Another method. We have for k > —1,

f o-stik gg = DkT1)

k+1
0 8

Then differentiating with respect to k,

fme—sttklntdt _*r'(k+1) — r(k+1)Ins
0

gk+1

Letting k = 0 we have, as required,

f e~stintdt = L{nt} = ——— =
0

Supplementary Problems

LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

[CHAP. 1

51. Find the Laplace transforms of each of the following functions. In each case specify the values of s

for which the Laplace transform exists.

(a) 2e4t Ans. (a) 2/(s—4), s> 4
(b) 3e—2t (b) 8/(s+2), s>-2-
(¢) 5t—3 » - (e¢) (B—3s)/s2, §>0
(d) 282 — et (d) 4+48—s%)/s%(s+1), 8>0
{e) 8 cosbt (e) 3s/(s2+25), $>0
(f) 10 sin 6t (f) 60/(s2+ 36), : s> 0
(g) 6sin2t — 5 cos 2t (9) (12— Bs)/(s2 + 4), §s>0
(h) (12+1)2 (h) (s*+ 482+ 24)/s%, $>0
(i) (sint — cost)? (7)) (s2—28+4)/s(s2+4), >0

() 3 coshBt — 4 sinh 5t () Bs—20)/(s2—25), s>5
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52, Evaluate (a) . {(5e2t—3)2}, (b) £ {4 cos?2t}.
25 30 9 2 28

Ans. (a)s—j—s—‘_—z'+g,s>4 (b)§+82+16’8>0

53. Find . {cosh24t}. Ans. Ts_(iss%_:%
' 0 0<t<2 2 0=t=5
54. Fi F)) i F(it) = b) F(t) =
ind L{F(8)} if (a) F() «{4 t>9° () (®) {1 £> 5
- 2 - 9 _
Ans. (a) de25/s (b) S(l—e™35) — —e~5s
s s
.

55. Prove that £{t"} = —p, m=1,23,....
56. Investigate the existence of the Laplace transform of each of the following functions.

(@) 1/(t+1), (B) et (¢) cost2 Ans. (a) exists, (b) does not exist, (¢) exists
LINEARITY, TRANSLATION AND CHANGE OF SCALE PROPERTIES
57. Find .0 {8t — 263 + 4e~3t — 2 sin 5t + 38 cos 2t}.

72 12 4 10 3s

Ams. X - H T 3 T Rres T w4
58. Evaluate each of the following.

(a) £ {t3e—3ty ' Ans. (@) 6/(s+ 3)*

(b) £ {e~* cos 2t} &) (s+1)/(s2+2s+5)

(¢) £ {263 gin 4t} (¢) 8/(s2— 63 25)

(d) L£{(t+2)%"} D) (2 =ds+2)/(s — 1)

() £{e% (8 sin4t — 4 cos 4t)} (e) (20 — 45)/(s2 — 45+ 20)

(f) £{e—% cosh 2t} ' () (s+4)/(s2+8s+12)

() L£{e"t(3 sinh 2t — 5 cosh 2t)} () (1 —D58)/(s2+ 25— 38)
59. Find (@) £{e tsin2t}, (b) .¢{(1+ te—t)3}.

2 1 3 6 6

Ans. () G+D(se+2s+5) ® 5+ (s+1)2 tTErer T T

60. Find £ (F(®)} if F(t) = {(t“l)z E>1 0 Ans 2e—/s3
0 0<t<1.

61. If F,(t), Fo(t), ..., F,(t) have Laplace transforms f,(s), fa(s), ..., an (s) respectively and

€, Cs, ..., ¢, are any constants, prove that :
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s2—s5+1
. = . Ans. 2 — 2(q —
62. If c{F@®)} TES find . {F(2t)} ns. {82 — 2s + 4)/4(s + 1)2(s — 2)
—1/s — s
6. If £{F(®) = S, find £{e~tF(3H)}.  Ans. f;_:i*.ﬂ

64. If f(s) = . {F(t)}, prove that for »>0,

1 -1
cotFay = e (tR)
LAPLACE TRANSFORMS OF DERIVATIVES
65. (a) If £{F(t)} = f(s), prove that .
~ » L{F"()} = 3f(s) — s2F(0) — sF'(0) — F"(0) V

stating appropriate conditions on F'(#).

(8) Generalize the result of (¢) and prove by use of mathematical induction.

2t 0=t=1
t t>1"

L)} = s {F(t)} — F(0) hold for this case? Explain.

66, Given F(t) = { (@) Find £ {F@)}. (b) Find £ {F'(H)}.

2 e”s e~ s 2 es
Ans. (a) 2T T (b) S=
6. @) If F() = {” 0<t=1 " ¢nd.c{F"@®).
0 t>1

[CHAP. 1

(¢} Does the result

(b) Does the result .£{F”(t)} = s2.£{F(t)} —sF(0)— F'(0) hold in this case? Explain.

Ans. (a) 21 —e9)/s
68. Prove: (a) Theorem 1-7, Page 4; (b) Theorem 1-8, Page 4.

LAPLACE TRANSFORMS OF INTEGRALS

! t
69. Verify directly that £{f (2 — u+ e¥) du} = % o{2—t+et),
0

t ty
70. If f(8) = £{F(t)}, show that ,C{J‘ dty | F(u)du} = f—(sl
0 .

52

t ot
[The double integral is sometimes briefly written as f f F(t) dtz.]
70 0

71. Generalize the result of Problem 70.

t —_— ~—u
72. Show that £ {j‘ 1-e du} = 1 In <1 + 1) .
o u 8 s

© t e s 7 ‘
73. Show that f f eIsMY gyuae = I
. Yt=0Ju=0 % 4
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MULTIPLICATION BY POWERS OF ¢ SR o .

22— q?

74. Prove that (a) £{tcosat} = (R
2as

(b) .,C {t sin a/t} = m

8 4128 — 252

75. Find .£{¢(3 sin 2t — 2 cos 2t)}. Ans. BNCEY

6s2—2

. 2gint} = 2 _ 2 .
76. Show that .£{#2sint} RS\

77. Evaluate (a) .¢{t cosh 8¢}, (b) .£{t sinh 2¢}. Ans. (a) (82+9)/(s2—9)2, (b) 4s/(s2—4)2

78, Find (a) £{t2cost}, (b) .£{(t2— 3t+2) sin 3t}.

4 _ 3 ] 2 — \
Ams. (a) (2s3—6s8)/(s2+1)3, (b) O3 188 +(8122f_39)3 1625 + 432

65t — 362+ 6

. 3 —_———
79. Find . {3 cost}. Ans. 2+ 1)

80. Show that f te~3tgintdt = %
0

DIVISION BY ¢

g—at — g—bt s+ b
. - = 1 .
81. Show that | ,C{ - } n (s T a{) 7

cosat —cosbt| _ 1., (324 b2
82. Show that» £{—-t—} = 3 ln<82+ 2/
) sinh ¢ 1 s+1
83. Find 7 . Ans. -2-ln <
s—1
84. Show that f eE-d = me
A h
{Hint. Use Problem 81.]
85. Evaluate f ﬂt;ﬂ_‘lj dt. Ans. In (3/2)
0

“ sin2t 7
86. Show that J‘; .Tdt = g

PERIODIC FUNCTIONS
87. Find £ {F(t)} where F'(t) is the periodic function shown graphically in Fig. 1-7 below.

Ans. 1 tanh £
s 2
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CF(b) F(t)
2—
A A S
n | i
: e | | | |
i ! | | | { i l
, ! !
:1 2 '3 :4 ¢ ! ! : /t
| ! | | 1 2 3 4
!
—1 4 | | [

Fig.1-7 Fig.1-8

88. Find .¢ {F(#)} where F(t) is the periodic function shown graphically in Fig. 1-8 above.

1 e~s
Ans. e =9
89. Let F(f) = 38 0<t<2 i ere F(f) has period 4. (a) Graph F(f). (b) Find .2 {F(#)).
, 6 2<t<4
Ans. (b) 3 — 825 — fse—4s

21— ¢ %)

9. If F({) =2, 6<t<2 and F(t+2) = F(t), find £ {F®)}.

2 — 2025 — 4825 — 482¢— 25

Ans. FA— o)
91, Find o {F(®) where F(&) = 4t ©<t<1  snd F(t+2) = F(t) for t > 0.
0 1<t<2 ,
1—e s(s+1)
Ans, ¢ 8T 4L)
ans s2(1 — e~ %)
92. (a) Show that the function F(f) whose graph IR

is the triangular wave shown in Fig.1-9

has the Laplace transform étanh %

(b)) How can the result in (a) be obtained 2 4 6
from Problem 87? Explain. Fig. 1-9

INITIAL AND FINAL-VALUE THEOREMS
93. Verify the initial-value theorem for the functions (a) 3 — 2 cost, (b) (2t+3)2, (¢)  + sin 3t.

§4. Verify the final-value theorem for the functions (e} 1+ e~ t(sint + cost), (b) 3¢~ 2t
95. Discuss the applicability of the final-value theorem for the function cos t.
96. If F(t) ~ etP as t— 0 where p>—1, prove that f(s) ~ ¢T(p+1)/s?T1 as s—> =,

97. If F(t) ~ ¢t as t— « where p> —1, prove that f(s) ~ eI(p +1)/s?+1 as s> «.
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THE GAMMA FUNCTION

) T(3) I'{4)
r(7)

Ans. (a) 24, (b) 1/60, (c¢) 3Vx/4, (d) 32/315

r(3/2)T4)

98. Evaluate (a) I'(5), (b T(11/2)

, {0) T(6/2), (d)

99. Find (a) £ {tV2+¢ 12}, (b) £{t-13}, (o) £{(1+ V).
Ans. (a) (s + 1)\/?/233/?, (b) T(2/8)/s2/3, (c) (82 + 2V7 s3/2 1 6s + 37 s1/2 + 2)/s8

—2¢

100. Find  (a) ﬂc{ew}, (b) £ {£772 688},

Ans. {(a) Va/(s+2), (b) 105%/16(8 — 3)%/2

BESSEL FUNCTIONS
1

101. Show that . {e—at J4(bt)} = .
Va2 — 2as + a2 + b2

102. Show that £ {t Jo(at)} = m
. _ 1 8
103. Find (a) . {e~% Jo(4t)}, (b) £ {t Jo(20)}. Ans. (a) — ®) T
104. Prove that (a) Jo(t) = —J,(t), (b) %{t" Ta®)} = tr Jpq (8).
1
105, If I,(f) = J,(it), sh h = ——,a>0.
o(t) = Jo(it), show that .£{Io(at)} W a
106. Find .¢ {t Jy(t) e~ t}. Ans. (s —1)/(s2 — 258+ 2)3/2
107. Show that (a) f Jo(®)dt = 1, (b) f e~tJy(tydt = g
0 0
108. Find the Laplace transf ¢ P (e gy (20 A & 2
. Fin e Laplace transform of —{e . n§. —————— — § —
e ™0 Vi —45+8
) ‘
109, Show that L{tJ(t)} = (32"'—1)3/2_.
—a2/4
110. Prove that . {J,(aVt)} = £ : i
111. Evaluate f t e3t J,(4¢) dt. Ans. 3/125
o ‘
‘ N _
112. Prove that £ {J,(8)} = (__s_;}-_l__s)’: and thus obtain £ {J,{(at)}.
. Vsz+1

THE SINE, COSINE AND EXPONENTIAL INTEGRALS

113. Evaluate (a) £ {e2t Si(8)}, (b) £ {t Si(#)}.

_ 1
s(s2+ 1)

Ans. (@) tan=t (s— /(s —2), (8) B8
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114.

115.

116.

THE LAFPLACE TRANSFORM [CHAP. 1

In (s241). 3241

Show that . {2 Ci(¥)} 3 T e FE

Find (a) £{e 3t Ei(t)}, &) L£{tEi()}..

Ans. (a) _'___lns(i—;@"’ (b) In (Z; D _ s(sii)
Find (a) £L{e t8i(2)}, (b) .£{te—2t Ei (3t)}.

tan—1 (s + 1)/2 L (815) 1
Ans. (a) EL_2T2VE, (b) (s+2)21“< B > G+2(E+5)

THE ERROR FUNCTION

117,

118.

119,

Evaluate (a) .£{e3 erfVt}, (b) £{terf(2Vt)}.
1 ) 351+ 8 ‘
s—3Vs—2 = ST

Ans. (@)

Show that £ {erfcVi} =

1
VsFl{/s+1+1}
t
Find <« {f erf Vu du} . Ans., 1/s2V/s+1

0

THE UNIT STEP FUNCTION, IMPULSE FUNCTIONS, AND THE DIRAC DELTA FUNCTION

et 0<t<3

120. (@) Show that in terms of Heaviside’s unit step function, the function F(¥) =

121,

122,

123.

124,

. 0 t>3
can be written as e~* {1 — U(t—3)}. (b) Use .£ {U(t—a)} = e~ %/s to find £ {F(D)}. :
Ans. (B) 1 — e~ 3s+D)
s+1
Show that F(t) = Fi(t) 0<t<a can be written as
Fylt) t>a
F(@t) = Fyit) + {Fa(t) — F()} U(t —a)
If F(t) = Fy(t) for 0 <t<a, Fy(t)for a,<t<ay ..., Fp_;(t) for a,_p<t<a,_, and F,(t)
for t > a,_y, show that
F(t) = Fy(t) + {F(t) - Fy () Ut —ay) + - + {Fp(t) = For y (YUt —a, )
Express in terms of Heaviside’s unit step functions.
2 0<t<2 1sint 0<it<nr
F(t) = b) F(t) = i

(@) F(?) {41& t> o ) F(@) sTn2t r<t< 2

sin 3¢ t> 27

Ans. (a) 2+ (4t —2) Ut —2), (b) sint -+ (sin 2t — sin ) U(E — =) ’+ (sin 8t — sin 2t) U(t — 27)

—2s
Show that . {f2U(t—2)} = 333 ~ 3%—(1 +25+25%), 8> 0.
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125, Evaluate (a) f cos 2t 8(t — #/8) dt, (b) f et U(t —2) dt. Ans. {a) —1/2, (b) e—2

126. (a) If §’(t — a) denotes the formal derivative of the delta function, show that

wa(t) St—a)dt = —~F'{a)
A .

(b) Evaluate f e~ 4t §'(t — 2) dt.
Ans. (b) de—8 '

127. Let G(t) = 1/e for 0=t <e¢ 0 for =1t <2 —1/e for 2¢ =t < 3¢, and 0 for = 3e.

(e¢) Find £ {G{H)}. (b) Find,lirr(l),C{Ge(t)}. () Is lin})({GE(t)} = ,C{lin% Ge(t)}‘! {d) Discuss

geometrically the results of (a) and (b).

128. Generalize Problem 127 by defining a function G (¢) in terms of ¢ and = so that lim G(t) = s"
where n = 2,8,4,.... ) €0

EVALUATION OF INTEGRALS

129. Evaluate f t3e—tsint dt. Ans. 0
()

130. Show that f ﬂtilﬂﬁ dt =
A ,

N

o0

131. Prove that {a) f J.tydt = 1, (b) f tJd,(t)dt = 1.
0 0

132. Prove that J‘ ue= Jo(au) du = LJe—o%/4
o

133. Show that f te tEi(tydt = In2 — 1}
0

124. Show that f ueerfudu = \{Tﬁ
0

MISCELLANEOUS PROBLEMS

i 0<t<rn ' "1+e-—1rs
135. 1 F(p) = )5t , show that £ {F(t)} = LT e ™
‘ ® {0 > > Showtha L A{F(t)} pope)
_ 0<t<r i g+ (8—1)e—7s
136. If F@) = J°08¢t ,  find £ {F(t)). Ang, ST (8- De7™
® {sint t>a L@ s2+1

6

137. Show that .€ {sin31} (CESCEER
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138. Establish entries (a) 16, (b) 17, (¢) 20, (d) 28 in the Table of Page 246

139, Find (0} . {sinh®2¢}, (B) £ {£* cos 4t).

48 6s* — 576352 + 1536
An @ w=mme—n O T wren
140. If F(t) = 5sin8 (¢t —=/4) for t> /4 and 0 for t < /4, find £ {F(t)}. Ans. e—ﬂ)‘*/(sz—i— 9)
1
141. If Lo{tF(#)} = m, find .,C{e—f.F’(Zt)}.

142. Find (a) £ {sinh2t cos2t}, (b} .£ {cosh 2t cos2t}.
Ans. (a) 2(s2—8)/(st+64), (b) s3/(s*+64)

=
143. Let F(r) = Jt+m =t <2+l 1.2 .... Show that
n—t 2n+1=t<2n+2
O s% S {Bns+1)e~2ms — 2[@n+1)s + 1] e=@n+Ds 4 [(n+ 2)s + 1] e—Qn+2)s)
n=_0
120

S5
144. (¢) Show that £ {sm» t} T ETOET )

(b) Uéing the results of part (a) and Problem 137, can you arrive at a corresponding result for
£ {sin?»~1¢} where n is any positive integer? J ustify your conjectures.

145. Suppose that F(t) is unbounded as t— 0. Prove that L A{F(t)} exists if the following conditions are
satisfied:

(a) F(t) is sectionally continuous in any interval N 1St =N where N;>0,
(b) gin'()) tnF(t) = 0 for some constant % such that 0 <n < 1,

{(¢) F(t) is of exponential order vy for £ > N.

146. Show that {a) £{Jy(t) sint} = \/—;—fvﬁ sin {1 tan—1(2/s)}
(b) £ {Jy(t) cost} = \/s—T}.;Z-i—: cos {4 tan—1(2/s5)}
_ Jta® t>1 _ - 4. : 1
147. Let F(t) {0 0<t<l’ Prove that . {F(t)} o [e=s £ {G(t+ 1)}].

148, If =.C{F’,’(t)} = tan~1(1/s), F(0) =2 and F'(0) = —1, find £ {F(¥)).

Ans. 25 — 1+ tan—11/s
52

s§—a

B

149. Prove that .0 {eatF(pt)} =1 f <

8 > where o and 8 are constants and £ {F(t)} = f(s).

150. Show that the Laplace transform of e¢* does not exist, while the Laplace transform of e—¢* does exist.
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. 2
151. () Show that .,C{smz t} = -};111(8 ;§4>-

t

(b) Evaluate f ﬂii—nﬁ dt.
0

Ans. (b) £ Inb

152. (¢) Find . {1—-#—)} ) A(b) Show that fw e_t{i;r]o(t)} di = In <\[2_2+ 1) )
0

153. Work Problems 37 and 38 by using Method 4 of Problem 36.

154. Suppose that £ {F(t)} exists for s = a where
a is real. Prove that it also exists for all F(t)
s> a.

155. Find the Laplace transform of the periodic
function F(t) shown graphically in Fig. 1-10, ! | |
Ans, LT €% —ase” ) ' l / ¢

s2(1 — e~ ) tan 6o a 2a 3a

156. Prove that

. _ < {(—1)n—1(4n—2)! Fig.1-10
2 — (=1)»~"dn —2):
< {sin £} n§1 (2n — 1)1 g2n+1

. _ 6! .
157, Show that . {sinft} = E TG 16 T 36) and generalize [see Prob. 144].

L . +2
158. Find £ {te 2tJ, (2V2)}. Ans. m
159. Find £ {tU(t—1) + st —1)}. Ans. e—s(s2+g+1)/s2
160. Find "g{costInt 8(t—m)} Ans. —e 7S Ingy

161. Let F(t) and G(¢) be sectionally continucus in every finite interval and of exponential order as ¢— «.
Prove that £ {F(t) G(t)} exists.

162. The Laguerre polynomials L (t) are defined by

et dn
L) = T’T!W{tne—t} n=201,2,...

(¢) Find Lg(t), L{(t), ..., Lyt). (b} Find . {L,(H)}.

163. (a) Let a,b,a, 8 and A be constants. Prove that
L{at—*+ bt~y = A{as™*+ bs—B}
if and only if a+8 =1 and A = =Vr cscar.

(b) A function F(t) is said to be its own Laplace transform if {F(t)} = F(s). Can the function
F(t) = at—2+bt—8 be its own Laplace transform? Explain.
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164. If F(t) and G(t) have Laplace transforms, is it true that F(¢) G(t) also has‘a Laplace transform?
Justify your conclusion.

1

vs2+1

165. Use the result Jy(t) =

|

T
f ‘cos (¢t sin 8) d¢  to show that L)} =
0

166. Prove that Leibnitz’s rule can be applied in Problem 19, stating suitable restrictions on F(%).

® 1 —cost - s2
167. (a) Prove that J(; e—st (T) dt = 7 = sln <§2—~_F—1—> + 2 tan—1ls,

(b) Prove that f I—-&Stdt = %

168. Let F(t) =0 if t is irrational and 1 if ¢ is rational. (a) Prove that .¢ {F(f)} exists and is equal to
zero. (b) Is the function a null function? Explain.

169. Show that f 2 Jy(t) dt = —1.
o ¥

.170. Prove that if p iz any positive integer,

e = () ()

171. Verify the entries (e) 55, (b) 61, (c) 64, (d) 65, (¢) 81 in the Table of Appendix B, Pages 248
and 250.

172. Using the binomial theorem show that for [»] <1,

B 1 1:8 , _ 1:8:5
/2 = - = LAY S
(14 x) 1 2x+2_4w 516 6

and thus verify the summation of the infinite series in Problems 34 and 39.

173. Use infinite series to find the Laplace transforms of (a) sint, (b) cost, (q) eat, (d) cos VE.

174. Prove that .0 {erf ()} = —erfc (s/2) and thus find ,C{erf (at)}.

175. (@) Find . {erf Vt} by using the method of differential equations.
(b) Find .£{cosVt/Vt) using infinite series.

176. Show that (a) f Jo(@Viu) cosu du = sint,
0

f Joy(2Vtu) sinudu = cost.
0
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177.

178.

179.

180.

181.

182.

183,

184.

185.

Show that f wJo(Z\/_t—d YToluy du = Jo(b).

0

Use (@) infinite series, (b) differential equations to find .2 {J4()}. See Problem 35.

If s> 0 and n > 1, prove that
tn-1 _ 1 1 1
4{1—e—r} = T {s" T T T Gror T }

Prove that if > 1,

1
) = S~ | 5% = mtwtat
[

The function {(n) is called the Riemann zeta function.
If f(s) = £ {F(t)}, show that

Y ) _ f(ns)
’C{J; I‘(u+1)du} T slns

If L,t), n=20,1,2,..., are the Laguerre polynomials [see Problem 162], prove that

@ L.t
S gevh)
n=0 M.
Let J(a,t) = f e~ cosau du. (a) Show that % = —%J where J(0,t) = Vr/2V/t. (b) By
0
solving the differential equation in (a) show that
. . i}
J@,t) = f e ¥t cosan du = ﬁe—’ﬂ"“
0 2Vt
Use Problem 183 to find £ {fgs\/__ﬁ} [see Problem 49, Page 29].
t

3 "\/Et . -
e m:xhtsmtdt - %

Prove that f
0



Chapter 2

DEFINITION OF INVERSE LAPLACE TRANSFORM

If the Laplace transform of a function F(t) is f(s), i.e. if £ {F(t)} = f(s), then F(t) is
called an tnverse Laplace transform of f(s) and we write symbolically F(t)y = £7*{f(s)}
where .£~! is called the inverse Laplace transformation operator, ’

1
Example. Since £ {e— 3t} = TT3 Wecan write
1
-1 = -8t
< {s+3} ¢

UNIQUENESS OF INVERSE LAPLACE TRANSFORMS.
LERCH’S THEOREM

Since the Laplace transform of a null function N(f) is zero [see Chapter 1, Page 9],
it is clear that if L {F(t)} = f(s) then also £ {F(t)+N(t)} = f(s). From this it follows
that we can have two different functions with the same Laplace transform.

/ 0  t=1
e~ 3t otherwise

Example. The two different functions Fy(f) = ¢~3 and Fy(t) = { have the

same Laplace transform, ie. 1/(s+ 3).

If we allow null functions, we see that the inverse Laplace transform is not unique.
It is unique, however, if we disallow null functions [which do not in general arise in cases
of physical interest]. This result is indicated in

Theorem 2-1. Lerch’s theorem. If we restrict ourselves to functions F(t)y which are
sectionally continuous in every finite interval 0=¢=N and of expounential order for
t >N, then the inverse Laplace transform of f(s), i.e. .£7!{f(s)} = F(t), is unique. We shall
always assume such uniqueness unless otherwise stated.

*

SOME INVERSE LAPLACE TRANSFORMS

The following results follow at once from corresponding entries on Page 1.

42
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Table of Inverse Laplace Transforms

f(s) L7H{f(s)} = F(t)
1. 1 1
S
1
2 °) t
1 _ m
3. @-ﬁ n = 0,1,2,... .n_!
4. 1 eat
s—a
5 1 sin at
) s? + a? a
6. ﬁﬁ cos at
7 1 sinh at
) §2 — a2 a
s
8. Py cosh at

SOME IMPORTANT PROPERTIES OF INVERSE LAPLACE TRANSFORMS

In the following list we have indicated various important properties of inverse Laplace
transforms. Note the analogy of Properties 1-8 with the corresponding properties on

Pages 3-5.

1. Linearity property. ; ‘
" Theorem 2-2. If ¢; and ¢: are any constants while fi(s) and fz(s) are the Laplace
transforms of F1(t) and F(f) respectively, then

L7 e fi(s) + e2f2(8)) = e LT {fi(8)} + e2L71{f2(s)} (2)
= caFi(t) + c2Fa(t)
The result is easily extended to more than two functions.

Example.
.
4 3s 5 1 s
-1 — — —1 - -1J %
£ {s—z 2716 T s2+4} 4L {5—2} 8L 4;\324—16}

)1
+ 5L 113%4}

= 4e2 — 3 cosdt + —g-sin2t

Because of this property we can say that £~! is a linear operator or that it has the
linearity property.

2. First translation or shifting property.

Theorem 2-3. If (7! {f(s)} = F(t), then
‘ LM {f(s—a)) = etF(D) | (2)
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44

Example. Sinece L1 {ﬁ} = %sin 2¢t, we have

1[ — _1'_—1_*_ — 1 t o .
132—_23+5} < {(3—1)2+4} peisinzt

3. Second translation or shifting property.
Theorem 2-4. If 71{f(s)} = F(t), then

1 Fit—a) t>a
1 —1 e asfs 3
£ e f(9)) {0 L (8)
Example. Sincé "’6—1{32“-11—1} = sin t,v we have
e-rdermnl o [sin(t—a/3) it t>a/3
s2+1 lo if t<n/3

4. Change of scale property.
Theorem 2-5. If £ '{f(s)} = F(t), then

o)) = 1F(F) | W

Example. Since .-t { ps; 2 16} = <cos4t, we have
2s 1 4t 1
_1 — ‘ - — pull
L {——(23)2 16} = gees5 = 5cos 2t

as is verified directly,

5. Inverse Laplace transform of derivatives.

Theorem 2-6. If .£~'{f(s)} = F(t), then

dn
ey = o

} = (=1p R (%)

. 1 . d 1 —23
Example. Since -1 {s2+1} = sint and d_s<82+1> = @iz ve have
1) 728 | - _ignt -1)_s U Llign,
£ CrEl sin or L FrDEl T atsn

6. Inverse Laplace transform of integrals.

Theorem 27. If .£-'{f(s)} = F(), then
R .wf(“)d“L =

o

Example. Since .~ 13 )} L 1

uc—l{f: du} { 1+§>} = 1o
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7. Multiplication by s
Theorem 2-8. If £~'{f(s)} = F(t) and F(0) =0, then
' LT {sfs8)} = F(t) (7)
Thus multiplication by s has the effect of differentiating F(t).

If F(0)+ 0, then ‘
LTHsf(s) — F(0)} = F(2) (8)

or e (sfs)) = F() + F(0)5() | )

where 5(f) is the Dirac delta function or unit impulse function [see Page 9].

Example. Since .(‘1{32%} = sint and sin0 = 0, then

-1 ___i_$‘: s =
L {82+1) dt(smt) cos t

Generalizations to £ ' {s"f(s)}, n = 2,8, ..., are possible.

8. Division by s.’
Theorem 2-9. 1If L '{f(s)} = F(f), then

|4
o JJOL f F(u) du (10)
Ls 0 ,,
Thus division by s (or multiplication by 1/s) has the effect of integrating F(t) from
0tot.
B . ol 1,
Example. Since .01 lm = g sin 2t, we have -
_ 1 G _ 1.
»»C 1{3_092“"‘—4)} = j:) 5 sin 2uduy = 4(1 cos 2t)
Generalizations to £~ ! {f(s)/s*}, n = 2,8, ..., are possible [see Problem 70].

9. The Convolution property.
Theorem 2-10. 1f £~ 1{f(s)} = F() and £ '{g(s)} = G(¥), then

£ {£(5) 9(s)) f Fu)G(t—wydu = F*G (11)

We call F*G the convolution or faltung of F and G, and the theorem is called the -
convolution theorem or property.

From Problem 21, we see that F*G = G*F.

. 1 1
i -1 = t -1
Example. Since £ {s 1 f et and {

1 C o g2t
—-1J__ = % p2(t—u) d — 2f . ot
L {(s—l)(s—Z)} £ e e U e e

1

s—2

} = €2, we have
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METHODS OF FINDING INVERSE LAPLACE TRANSFORMS

Various means are available for determining inverse Laplace transforms, as indicated
in the following list. Compare with Page 6.

1. Partial fractions method. Any rational function P(s)/Q(s) where P(s) and Q(s) are
polynomials, with the degree of P(s) less than that of Q(s), can be written as the sum of

. . C . . . . A As+B
rational functions [called partial fractions] having the form @ 107 (@ 1 bs oy
where r = 1,2,3,.... By finding the inverse Laplace transform of each of the
partial fractions, we can find .£™' {P(s)/Q(s)}.

. 25— 5 _ A B C D
Example 1. (o ms 1y~ 554 @ rip T @r1E T 2t1
| 3s2—ds+2 _  As+B Cs+D E
Bxample 2. T Errar T e mid T sos

The constants A, B,C, etc., can be found by clearing of fractions and equating of
like powers of s on both sides of the resulting equation or by using special methods
[see Problems 24-28]. A method related to this uses the Heaviside expansion formula
[see below].

2. Series methods. If f(s) has a series expansion in inverse powers of s given by
: Qo a A2 as . 7
then under suitable conditions we can invert term by term to obtain

ast?  ast?
Fi) = a+at+or+5r + (18)

See Problem 40. Series expansions other than those of the form (12) can sometimes
be used. See Problem 41.

3. Method of differential equations. See Problem 41.

4. Differentiation with respect to a parameter. See Problems 13 and 38.
5. Miscellaneous methods using the above theorems'

6. Use of Tables (see Appendix B).

7. The Complex Inversion formula. This formula, which supplies a powerful direct
method for finding inverse Laplace transforms, uses complex variable theory and is
congidered in Chapter 6.

THE HEAVISIDE EXPANSION FORMULA

Let P(s) and Q(s) be polynomials where P(s) has degree less than that of Q(s). Suppose
that Q(s) has » distinct zeros o, £ =1,2,3,...,n. Then

LJPE e P
L {W} = ZQ’(ak)e (14)

k=t
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This is often called Heaviside's expansion theorem or formule. See Problems 29-31.
The formula can be extended to other cases [see Problems 105 and 111}.
~ THE BETA FUNCTION
If m>0,n>0, we deﬁne the beta function as
1.
B(m,n) = f um (1 —-u)"tdu (15)
0 .
We can show the following properties [see Problems 32 and 33}:
_ I(m)T(n)
1. B(m,n) = T(m + )
oo _ 1 I(m) T(n)
2m—1 2n—1 — = - — NPT
2. j; sin 6 cos gdo = 2B(m,n) = Irm+n)
EVALUATION OF INTEGRALS
The Laplace transformation is often useful in evaluating definite integrals. See, for
example, Problems 35-37.
Solved Problems
INVERSE LAPLACE TRANSFORMS
J 1 D! tr
1. Provethat (a) £ ls = e‘” (b) £ i =g T 0;1,2,3,..., where 0!=1,

[ 1 inat ) 1 inh at
(¢) 4—1182_*_&2} = Sll(ll , (d) ﬂC_l{sziap} = cosat, (e) °Q_1{82—a2} = Slnaa s

S

i) "C_l{§2~a2} = cosh af.

(@) eC{éat} = sia' Then ,C"l{s_la} = eat,

tn 1 _ 1 n! 1 _ 1 __tn _
(b °C{;ﬁ} = m{{tn} = m(ﬁ) = guri’ Then <L l{gn‘l‘l} =T for n = 0,1,2,3,....

sin at 1, _ @ 1 1 sin at
e = -1 =
(e) ({ ” } .,C{sm at} = 2 T TR - 2ra Then £ {sz az} PR

s _ 8 _
(d) £{cosat} = Tra Then £ l{m} = cos at.
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: sinhat| 1 _,. _ 1. & _ 1 L1 }_sinhat
(e) ’C{T} = E.C{smha,t} = S EosE T moa Then 1182—“2, = PR
(f) £{coshat} = Egi—az. Then £t {37571—2_} = cosh at.
1 e
-1 — —
2. Prove that {snﬂ} = T for n> —1.
| _ 1 _ 1 r(+1) 1 B
’C{I‘(vﬂ-l)} = Tmip i T 7 1) snvi_ T

by Problem 31, Page 22.

1 in
-1 =
Then £ {snﬂ} T(n+1)’
and the result is equivalent to that of Problem 1(b).

n > —1.

3. Find each of the following inverse Laplace transforms.
1) 41 _ s
(a) L l{mf (¢) L ‘{gz} (e) L l{m}

R e S B L

0 ¢ {gts)

1 3t
(a) £~ {sz+9 = ;¥
®) <~ 1{ 42} = den
_ 1 3 ¢3
() £ 1{?} = 37 = a

(e) {‘1{82_6_816} = 6 cosh 4t
1 sinh\/?Tt
(H <t {32_3} =
V3
\
3 1 T t
@ « ‘{‘swf TTem T E® T v AN+

Note that if »+=0,1,2,3,...

b

()

[Problem 1(c}]

[Problem 1(a)]

[Problems 1(b) or 2]

[Problem 1(d)]

[Problem 1(f)]

[Problem 1(e)]

- {Problem 2]

LINEARITY, TRANSLATION AND CHANGE OF SCALE PROPERTIES

4, Prove the linearity property for the inverse Laplace transformation [Theorem 2-2,

Page 43].
By Problem 5, 'Page 12, we have
L{e; Fy(t) + co Fa(t)}

ey L{F (0} + ea £ {Fy(0)}

then T(n+1) = n!

e fi(8) + ey fals)
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Then L7 ey f1(8) + cafa(8)} = e Fi(f) + o Fqlt)
= e L7H{f1(8)} + ca LT {fa(s)}
The result is easily generalized [see Problem 52].

) _, /Bs+4 2s—18 24 — 30V/s
1
5. Find (a) { - 279 + }

_ 6 3+4s 8 —6s
1 —_
(b) L {23 -3 9s2—16 = 16s2+ 9} :

_1{5s+4 25 —18 24—/30\/5}

3 s2+9 P
5 4 28 18 24 30
— —1 _ o = — o -
= L {82+s3 219 T+ T A 37/2}
= Bt + 4(2/21) — 2cos3t + 18(} sin3t) + 24(t3/31) — 30{t5/Y/T(7/2)}
— Bt 4+ 22 — 2cos3t + 6sin3t + 488 — 1652/Vn

since T(7/2) = g-g-%f(%) = 1§a\/’;

(a) £

®) £_1{26 _ 3+4s 8 — 6s

§—3 952 — 16 1652+ 9

o8 a1 1/ s 1/ 1 \_3[ s
= 1J < _Ar_- 2 _Vy_Z2f——— ___ V+ w7735\ T onr
= L5 =Ez T3\ 16/5) T 9\#—16/8) T 2\SH9/16/  B\s¥+9/16

= 8e3t/2 — 1sinh4t/3 — 4 cosh 4t/3 + 2 sin 8t/4 — 8 cos 3t/4

Prove the first translation or shifting property: If 7' {f(s)} = F(t), then

L7 fs—a)y = e*F()
By Problem 7, Page 13, we have <« {eat F(t)} = f(s—a). Then

LTHf(s—a)y = e*F(h)
Another methed. Since f(8) = fﬁ e~ st F(t) dt, we have
0
— = N G-t dt = “ —stleat ()} dt = L{et F B}
f(s—a) J; e (t) j; ¢ e ¢ {eat F(

Then L {fs—a)y = e?F(t)

Find each of the following:

, _ 6s—4 - S 8s+7
(@) £ {m} (c) £ ‘{———Sz—zs_—s}
45 +12 . 1
-1 Femla {7 —1 .
(0) £ {s2+83+16} @ < {,ﬁ_ZH 3}
o es—a . ) es—4 1 _  _f6s—2)+8
(@) £ 1132—43—!-20[ _ < 1‘ (8—2_)2+16J = L (ss—2)2+16}

_ _ [ §—2 1 _ 4
= 6« 1{(8—2)24—16] t2L 1{(3——2)24—16}

= Becosdt + 2e2sindt = 262(3 cos4t + sin4f)

49
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_ 45+ 12 _ - ii_s+12‘- _ i j4e+4)—4]
(8) L 1{32+88+16} = < 1{(s+4)2} = L 1{ (s+4)2-”}
1 1
—_ —1 —_— -1
= 4L {s+4} 4L {(S+4)2}
= de ¥ — 4te ¥ = 4o 4(l—~1)
p
, s+ 1 [ s i f8s—1+10
(e) < 1132—23—3j = LNemne=4) T et
[ s—1 | 2
— 1= = H -1
8L 1(3—1)2—4 + 8L (s—1)2—4}
= 3Betcosh2t 4+ BHetsinh2t = _et(3 cosh 2¢ + b sinh 2¢)
— 463t - e—t

For another method, see Problem 24.

1 1 1
d -1 —_p—14_ -
(d) < {1 vy :3} N {(s T 3/2)1/2}
' = Logean T2 1y an
V2 T(1/2) Ver

Prove the second translation or shifting property:
If L£7*{f(s)} = F(t), then £ '{e">f(s)} = G(t) where

F(t-a) t>a

G = {0 t<a

Method 1. By Problem 9, Page 14, we have .C {G({)} = g-as f(s). Then
L-1{emsf(s)} = G

Method 2. Since f(s) = f e st F'(t) dt, we have
0
e—asf(s) = f e—ase—stp(t) dt = f e—s(H—a)F'(t) dt
0 0

= f e s F(y —a) du [letting ¢+ a = uj

a

It

a G
f e=st (0) dt + f e—st F(t — a) dt
0 ’ Y

- f e—st G(t) dt
0

from which the required result follows.

[CHAP. 2

It should be noted that we can write G(f) in terms of the Heaviside unit step function as

F(t— a)U(t— a).
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THE INVERSE LAPLACE TRANSFORM

9. Find each of the following:

@ <

(a¢) Since

e—Ss - 88_478_/5
G-z @<L {;1—25‘
_ 1

< 1{(3—2)4

_ e—"5s ¥
< { s —2)*]

(b) Since .01 {;2—:5—2-5} = eos bt,

oo ]

1 t3 g2t 1
= g2t p—1J 2| — —- =
} e L {y} 31 6

{%(t—- 5)3 2(t—5)
0

(s+ 1)e"’s}’

ss+s+1

t3 e2t, we have

= 3 (t—5)%eXt=9 Ut —5)

84"‘38

0 < { S

by Problem 8,

t>5
t<b

o1 '86_4“73/5} cos 5{t — 4=#/5) t > 4r/b
s24+ 25 0 t << 4x/5
cos 5t t > 4x/b -
0 t < 47/5
= cos bt U(t — 47/5)
(¢) We have
[ s+1 g+ 1
-1 J_8T1 = -1 J_ 8T
SRR < {(s+%)2+%}
- (“1{ s+i+1
s+12+3
Y LI b L] V2
GrpE+2 V3 CES VR
= e~ %! cos \/2§t -+ L e~ %t sin —\/—3-'5
V3 2
e~ Yt EY V3t
= \/§ cos —— -+ sin —)
\/'g < 2 2
Thus. _
£t (s +1)e—7s
824+s-4+1
e~ Ya(t—m)

= V3

0

{ﬁcos@(t—r) + sin\/—g(t—

2

77')} t>zr

t<7x

— Y (t—a) ‘
= g’““‘/“é—_{v/gcos?(t—ﬂ) + Sin\/Tg(t—ﬂ')} Ut — )

(d) We have 1 {(E\‘Tﬁ} = 9““{'_1{—8%}

13/2 44372 o—4t

3Vr

3

51
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—1) et — et p—1 g3
Thus < {(s ¥ 4)5/2} L {(s T 4P
— 3)3/2 g—4(t—3)

det (t — 3)3/2 g— 4t >3

= 3Vr
0 t<3
4 (¢ — 332 g—4t—D .

= 3Vr
0 t<3

— 32)3/2 p—4(t—4)
= 2@ 3PReTHETY 4y gy

3Vr

10. Prove the change of scale property. If L~ '{f(s)} = F(t), then

LT fks)y = TF(R)

Method 1. By Problem 11, Page 14, we have on replacing a by 1/k, £{F(t/k)y = kf(ks).
o . 1
LR = pF(k)
Method 2. Since f(s) = f e~ stF(t) dt, we have
0
flks) = f ekt F(t)y dt = f e—su F(u/k) d(u/k) [letting » = ki]
0 0
1 (% _ 1
= Efo e~suF(u/k)du = PR {F(t/k)}

Then .£-!{fks)} = %F(t/k).

—1/s . ‘ —als
11. If .,c—l{esm} _ s2VE o 4—1{%—} where a > 0.

\/R 1/2

By Problem 10, replacing s by ks, we have

{_lje—l/ks} — Lleos2Vt/k _ 1 cos?2Vt/k
(ks)72 T Vi Vat

_l{e—l/’w} © o eos 2Vi/k
L Vot ]

.,C“l{e—a/s} — cos 2Vat
Vrt

or

»

T?en letting k = 1/a,

INVERSE LAPLACE TRANSFORMS OF DERIVATIVES-AND INTEGRALS
12. Prove Theorem 2-6, Page 44: L1 {f™(s)} = (-1)"t"F(t), n=1,2,3,....

Since L {t"F@®)} = (—1)"%f(s) = (—=1)»f™(s) [see Problem 19, Page 17], we have

LTHI™()} = (-DrinF()

Then
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13. Find - {_3_} :

(8% + a?)?
d 1l 2 s lda/ 1
We have ds {82 T a2f - (32 x 0‘2)2 . Thus (82 + a2)2 - —é —(E <32 + a2> .

1 i
Then since L1 { pop az‘iL = Q'“;at , we have by Problem 12,
L p)

- s _ 1. _,id 1
< 1{(?2'4“»2)2} = Taf 1.{Ez§<32+a2>}

1 < sin at> t sin at
= — ¢ =
2 a 2a

Another method. Differentiating with respect to the parameter ¢, we find,

a s\ _ —2as
da \ 82+ a? (82 +a?)?

Hence :
- fd s _ _ —2as
< ‘m(m) = T roe
or
d
ol (e = - e
ie.
— 1 d 1 . t sin at
£ 1{(32:0,2)2_} = —-z—ad—a(coswt) = -—%("tsmat) = S;r;a
14. Find ,c-l{ln (1 +s—12>}
Let f(s) = In (1 +-1—> = L£{F(t)}. Then f(s) = i —2{1—L}
' 827 : s(s2+1) . s 24+1("
Thus since £~ 1{f(s)} = —2(1—cost) = —tF(t), F(t) = 20— cost)
MULTIPLICATION AND DIVISION BY POWERS OF s
1(s) '
15. Prove Theorem 2-9: (“‘{—g—} = f F(u) du.
0 .
t ,
Let G(t) = f F(u)du. Then G'(t) = F(t), G(0) = 0. Thus
0 y
LG = sL{GE)} — GO = sc{GH)}) = s
t
and so L{G(H)} = @ or {“1{-)0—(?—)} = G(t) = f F(u) du
8 )

Compare Problem 17, Page 16.

53
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16. Prove that .0~ {f(s)} = j;tjow F(u) du dv.

¢ v t
Let G(t) :J(; J(; F(u)dudv. Then G'(t) :J; F(u)du and G'(t) = F(t). Since G(0) = G'(0) =0,

L{G")}) = 2L{G@H} — sG0O) — G'0) = £LL{GEH} = fs

. t v
Thus £{GW)Y = —f(i) or ,c—l{f(_g)} = 6 = f f Fw) du dv
s 0 Yo
The result can be written £~ {f (s) } j f F(t) dt2,

P00 Y G G "
In general, L 1{—&—} = fo j; fo F(t)dt

17. Evaluate 7! {—ml—} .
s3(s2+1)

. 1 .
Since £1 {——} = sint,. we have by repeated application of Problem 15,

s2+1
¢
£_l{s(32+1)} = j;sinudu = 1 — cost
) t
{32(324-1} = fo (1—cosu)du = ¢t — sint
t 2
{33(s2+1)} = j; (w — sinu)du = ° + cost — 1
Check: 4{322-+cost—1} = 8—13+§-2%1~--§ = 32+1:3(§;;::(82+1) = ;3—(321_{_—1)

o s 1, L) 1
| 18. leen that =C I{W} = §t sin t; find =C 1{(82+1)2}.

Method 1. By Theorem 2-9 [Problem 15], we have

1 1 s | ‘ .
ac—l{m} = °C_l{_§.(—s2+—1)2f = J; —%usmudu

= (Gu)(—cosu) — (§)(—sinw) lt
0

Isint — tcost)

Method 2. By Theorem 2-8, we have

_ s o fe+1-1] _ ' 1
4‘{8'@@} = “{Wj = ‘C{Tﬂ} °C{(82+—1)2}
= —C%{%t sinty} = —21(t cost + sint)

1
Then £"l{m} = L1 {m} — J(tcost + sint) = L(sint — tcost)
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. N 1
19. Find £ ‘igln<1+ > .

s

Using Problem 14, we find

t »t
4—1{3 In <1 + %)} = f 20 —cosw) g, = 2J 1-cosu g,
8 8 0 w 0 U

THE CONVOLUTION THEOREM
20. Prove the convolution theorem: If £ 1{f(s)} = F({) and L£L7'{g(s)} = G(t), then

t .
ey = | FwGt-udu = F*G
0
Method 1. The required result follows if we can prove that

,4{ fo t F(u) G{t — u) du} = fl&)gls) (1)

where f(s) = £ {F(t)}, g(s) = £{G(t)}. To show this we note that the left side of (1) is

o t
f e““{ Fu) Gt —u) dulr dt
t=0 u=0

© t
= f f e st F(u) G{t —u) du di = lim sy
t=0%u=90 M=

M t
where Sy = f f e~ St F(u) G(t — u) du dt 2
t=0"Y u=90

The region in the tu plane over which the integration (2) is performed is shown shaded in Fig. 2-1.

Fig. 2-1 . Fig. 2-2
Letting t—u = v or ¢t = u+wv, the shaded region Rtu of the tu plane is transformed into the

shaded region &, of the uv plane shown in Fig. 2-2. Then by a theorem on transformation of multiple
integrals, we have .

oy = {f =5t Fu) Gt —u) du dt = ff e P 6 | ZE
tu )

U

du dv 3
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where the Jacobian of the transformation is

o ou
J o dwt) | 3| 1 0 -
a(u, ’l)) o ﬂ ﬁ 1 ) 1
ou dv
Thus the right side of (3) is
M M—v ’
sy = f f e~ stutv) F(y) G(v) du dv %)
=0 Jy=0 }
Let us define a new function
—s(u+v) i =
Kuv) = e F{u) G(v) if ut+v=M 5)
0 if u+v > M

This function is defined over the square of Fig. 2-3 but,
as indicated in (5), is zero over the unshaded portion of
the square. In terms of this new function we can write ) v
(4) as

M M

sy = f K(u,v) du dv

=0 v yu=0

Then

lim s, = f f K(u, v) du dv
M w0 0 Yo
= f f e~ su+v) F(y) G(v) du dv
0 Yo

= {fw et F(y) du} {fw e~ G(v) d'v} Fig. 2-3
0 0

= f(s)g(s)

which establishes the theorem.

¢
We call f F(u) Gt—u)du = F*G the convolution integral or, briefly, convolution of F
and G. 0

For a direct method of establishing the convolution theorem, see Problem 85.

21. Prove that F*G = G*F.

Letting t—u =v or u = t—v, we have

F*q

t t -
f Fu)Git—u)du = f F(t —v) G(v) dv
0 . (1]

I

f G Ft—v)dv = G*F
0 .

This shows that the convolution of F' and G obeys the commutative law of algebra. It also obeys
the associative law and distributive law [see Problems 80 and 81].
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22. Evaluate each of the following by use of the convolution theorem.

@ ,c“{(s—nf—az—)a}’ () ’C_l{sTleFl_)z}'
R o

s . ’ : 15
(24 a2)2 = 24 q2 2+ a2’ Then since £ 132 + a?

(¢) We can write = cosat and

1 in at
L1 {82 T wg} = s1r;a, ,  we have by the convolution theorem,

t .
4 s - .sma(t——u)
L {——-( o az)z} fo cos au » ——— = du

t
1 . .
= f (cos au)(sin at cos au — cos at sin au) du
0

t t
1. 1 .
= 3 sin at cosZau du — 5 cos at sin au cos au du
0 0

t L
= E sin at f M@-) du — l cos at f M du
a 0 2 a 0 2

_ 1. t  sin2at) 1 1 — cos 2af
= asmat(-z—-f— ia > acosat 4

_ 1. t . sinat cosat 1 sinZ at
= asmat <§+ 5. acosat %

t sin at
2a

Compare Problem 13, Page 53.

s2 (s +1)2

’ t
’C~.1 {82(8 i 1)2} = j{; (ue—¥)(t —u) du

t
= f (ut —u2) e % du
0

(b) We have {“‘{—1—} =t L1 {——1——} = te~t, Then by the convolution theorem,

= (@t—w)—en) — (t—2w) (W) + (—2)(—e—1)|
0
= tet 4 2t + t — 2

.Check: L{te~t+ 2 t+t—2}) = (—s_il—l—)'f + le + ;15 - %
- £+ 282(s + 1) + (s +1)2 — 2s(s + 1)2 — 1
82(s 4+ 1)2 s2(s + 1)2

t v t
23. Show that f f Fu)dudv = f (t —u) F(u) du.
Yo 0 0

By the convolution theorem,-if f(s) = .¢ {F(t)}, we have



h8 THE INVERSE LAPLACE TRANSFORM
t
dJ (t—u) F) du} = o owey = L2
0 . .

Then by Problem 16,

t t v
- — -1 )18 _
fo (t—w)Fw) du = £ 1{.87} - fo f(, F(x) du dv

The result can be written
i £ t
f f F@) de2 = f (t—u) F(u) du
0 Jo 0

In general, we can prove that [see Problems 83 and 84],

f:fot ---fotF(t)dtn = fot%p’(u)m

PARTIAL FRACTIONS

. . 3s+17
24. F L et S
ind {32—23—3J

3547 8s+17 A B
Method 1. = - = = 4 2
eHho - §2—2s—3 (s—3)s+1) §—3 s+1

Multiplying by (s —8)(s + 1), we obtain

33 +7 = A(s+1) + B(s—8) = (A+B)s+ A — 8B

Equating coefficients, A +B =3 and A—3B =17; then A =4, B = -1,

3s+17 . 4 1
(s—3)s+1) s-—3 s+1
Y S A G I S A
and < {(s——3)(s+1)} SR P G S PR
= 4¢3t — gt

Method 2. Multiply both sides of (1) by s— 38 and let s > 3. Then

. 3s+T . B(s—3)
m-7g = A+ lim—

or A=4

Similarly multiplying both sides “of (Z) by s+ 1 and letting s = —1, we have

. 3s+ 17 . A(s+1)
lim - Iim —5—
s—»—1 8§—3 s»—1 §—3

+ B or B=-1

Using these values we obtain the result in Method 1. See also Problem 7(¢), Page 50.

. . 2s>—4
. Find e )

‘We have
252 — 4 A B C
E+DEs—2)(s—3 =~ s+1 s—2 s—3

[CHAP. 2

1)

ey
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Let us use the procedure of Method 2, Problem 24.

Multiply both sides of (Z) by s+ 1 and let s > —1; then

. 282 — 4 1
A = 1 e Tt = =
s 5= 2)(s—3) 6

Multiply both sides of (1) by s~ 2 and let s > 2; then

B . 252 — 4 4

s+ DE—3 3

Multiply both sides of (1) by s—3 and let s > 3; then

, 282 — 4 7
C = = = =
T 6= 2
Thus
262 — 4 N VL By S 7
-1 = 1
< {(3—{—1)(8—2)(3—3)} Ceritiz s
1 4 7
e —_—_e—t — _pg2t — p3t
= 66 3e + 26

The procedure of Method 1, Problem 24, can also be used. However, it will be noted that the
present method is less tedious. It can be used whenever the denominator has distinet linear Ffactors.

%, Find £ {532~ 155 — 11}

(s +1)(s—2)?
5s2 — 158 — 11  __ A B C D

GriE—27  s41 T Goop T E=zE t 53 @

A procedure analogous to that of Problem 25 can be used to find 4 and B,

Multiply both sides of (1) by s+ 1 and let s — —1;" then

. bs2— 158 — 11 -1
A = 1 —— = —
o T =2 3

Multiply both sides of (I) by (s —2)3 and let s - 2; then

2 _ —
B = lim5s 158 — 11

e s+ 1 —7

The method fails to determine C and D. However, since we know A and B, we have from (1),

5s2 —15s —11 _ —1/3 —7 C - D

GFDGE—2% =~ s+1 T Go2p T Gog¢ T 503 @)
To determine C and D we ecan substitute two values for s, say =0 and s =1, from which we find
respectively,
11 1 7 C D 21 1
g - "3tgty~z . 7 = —gtT+C-D

i.e. 3C—6D =10 and 8C—38D = 11, from which C=4, D =1/3. Thus

i Bt —1s—11] _ . [-1/3 —7 4 1/3
< 1{(84-1)(8--2)3}> =« 11.s+1+(s—2)3+(3—2)2"'3_2}

= — et — 2,2t + 2t + =2t
36 2t € 4t ¢ 38
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Another method. On multiplying both sides of (2) by s and letting s~ «, we find 0 = —4+ D which

gives D = L. Then C can be found as above by letting s = 0.

This method can be used when we have some repeated linear factors.

27. Find ,c—l{L .
(s—1)(s2+1)J
11 _ A, BsiC "
(s—1)(s2+1) g—1 s24+1 {
Multiply both sides by s —1 and let s~ 1; then A = nn;zf—i—ll = 2 and
§=+
35 + 1 2 Bs+C
G-D@FD 51 #+1 @

To determine B and C, let s =0 and 2 (for example); then

7T 2B+ C
-1 =-2+C, g =2+—5

from which € =1 and B = —2. Thus we have

_- 3s +1 _ - 2 —2s 4+ 1
< 1{(8—1)(32-!-1)} = L IJLs—l + 324—1}

_ _ 1 - s B )f 1 ¥
= 2L l{s—l} - 2L 1{5'24—1} t < l\Ls2+1

J

= 2t — 2¢cost + sint

Another method. Multiplying both sides of (2) by s and letting s > «, we find at once that B = —2.

s

28. Find ,c-l{ s+25+3 }
(s? +2s +2)(s®+ 25 +5)
Method 1.
. s2+2s+ 38 — As+ B Ce+D (1)
(s2 + 25 + 2)(s2+2s + 5) s24+ 25+ 2 82+ 25+ 5

Multiplying by (s2+2s + 2)(s2+ 2s + 5),

2 4+ 925 4+ 3 = (As+B)s2+2s+5) + (Cs+D)(s2+2s+2)
= (A+0s® + (2A+B+2C+D)s2 + (5A+2B+2C+2D)s + 5B + 2D
Then A+C =0, 24+B+2C+D =1, 5A+2B+2C+2D = 2, 5B+2D = 3. Solving, 4=0,
B':%, c=0, ng. Thus

1/3 2/3
—1
L {s2+23+2 + s? 4 2s+5}

Y . N IS T
= 3« 1{(3-?-1)2—4-1} + 3L 1{(3-&1)2-#4}

— le—tsi 2 . 1=t ai
= de“tsint + 3 et sin 2¢

o1 s2+2s+3
(s2 + 2s + 2)(s2 4+ 25 + b)

= e *(sint -+ sin 2¢)
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gy, 3o B D
Method 2. Let s =0 in (1): 10 = 3 + 5
Multiply (1) by sand let s> »: 0 =
- 3 A+ B C+D
Let s=1: 20 = 3 g
1 D—-C
Lets—_—-l: E = —A+B+T

Solving, A=0, B=4, C=0, D=3% as in Method 1.

This illustrates the case of non-repeated quadratic factors.

Method 3. Since s2-+28+2 = 0 for ¢ = —1=*4, we can write
$2 4+ 2 4+ 2 = (s+1—d)(s+1+49)
Similarly 82 4+ 28 + 5 = (s+1—2)(s+1+29)
Then
52+ 25+ 8 - . s2+ 25+ 38 .
(82 + 2s + 2)(s2 + 25 + 5) (s+1—(s+1+i}(s+1—29)(s+ 1+ 29)
= 4 - + B -+ ¢ - 4 D ;
s+1—1 s+1+14 s+1—2¢ s+1+2¢

Solving for A,B,C,D, we find A = 1/6i, B = —1/6i, C = 1/6i, D = —1/6i. Thus the required
inverse Laplace transform is

(i 1+ 12 —dt2 it — it 2t _ o—2it
e L e el Y Ll 4 Lot <e e )
6 61 6 6i 3 2 8 2

= Jetsint + }e tsin2t
= }e~t(sint + sin2¢)

This shows that the case of non-repeated quadratic factors can be reduced to non-repeated linegr
factors using complex numbers.

HEAVISIDE’S EXPANSION FORMULA
29. Prove Heaviside’s expansion formula (14), Page 46.

Since @(s) is a polynomial with » distinet zeros ay, a9, ...,a,, We can write according to the
method of partial fractions,

P(s) A A, A A,
Q(S) - 8§y § ™ g + & — + 8~ ay . (1)

Multiplying both sides by s — &, and letting s - a;, we find using L’Hospital’s rule,

. P, . 8 ag
4 = I Qe e = lim P ‘”{Q(s)}
. s—a . 1 P{ay)
= amro in (gar) = re im g = gig
Thus (1) can be written
Py _ Pl 1 i S S i VI
2w ~ Qayi—a T T @wica T Y Qayi—a
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Then taking the inverse Laplace transform, we have as required

. a P P, n Pla
-1 {223} = i}l %4 -+ (ak) eakt N ( )eant — g ( k) oot

Q) ot Qe Qe .

. . 2s2—4
0. Find 4 e )

We have P(s) = 2s2—4, Q) = (8+1)(s—2)(s—3) = $3—4s2+s+6, Q'(s) = 3s2—8s+1,

a;=—1, a3 =2, a3=3. Then the required inverse is by Problem 29,
P P@) o P35 —~ =2 4 o 14 t. I P T s
Q’(—l)e + Q,(2)e + Q,(3)e3 = 13 + —5¢ + 4 et = ¢ 3¢ + 293

Compare with Problem 25.

3841
(s—1)(s*+1)

We have P(s) = 8s+1, Q(s) = (s—1)(s2+1) = 83—s2+s5—1, Q's) = 8s2—2s+1, =1,
ay =1, ag=—i since 82+1 = (g—i)(s+1). Then by the Heaviside expansion formula the required
inverse is

31. Find .,c—l{

PQ) , . PG) , . P _,

e T o T 9° (1)
4 3 X —31 X

= ge T —3;:;1'6" + —glei"_" '

= 2¢" + (—1—J}i{cost + isin?) + (—1+ Li}cos ¢ — isint)
= 2¢® — cost + {sint — cost + 1 sint
= 2e — 2cost + sint

Compare with Problem 27.
Note that some labor can be saved by observing that the last two terms in (I) are complex
conjugates of each other.

THE BETA FUNCTION

s

1
32. Prove that B(m,n) = f e t(l—x)"tde = D)) where m>0,n>0.
: 0 T(m +n)
Consider .
G — m—1(f — gyn—1d
(t) J; x ( x) x
Then by the cqnvolution theorem, we have
LGBy = «L£{tm1} £ {tn1}
_ Dm T _  rmIm
sm sn gm+mn.
_ 1 JT(m) T(n) . TMTM) spmin—
o - coftmn) -t
t
or J; gm—1 (t_x)n—jl de = II:((";);:(Z)) gmtn—1

Letting ¢t = 1, we obtain the required result.
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/2
. o Zia 1 : T(m)T(n) .
8 2m—1 2n—1 = =R TN
33. Prove that J; sin 6 cos* 14 do 5 (m,n) 5 T(m +n)
From Problem 32, we have
1
- me11 — gyn—1 ~ Imrm
B(m,n) J; x 1—x duo T+ )
Letting « = sin2¢, this becomes
) . w/2
- P —— on—1 — I'm)Tw
B(m, n) ZJZ) | sin 9 cos s de T(m T n)

from which the required result follows.

daeg
Vtang'

(a) Let 2m—1 =4, 2n—1 = 6 in Problem 33. Then m =5/2, n="7/2, and we have

/2
. _ TGBR2TW2) (G227 - (5/2)3/2)1/12W 7 . 37
j:)‘ sintg cosbo dse = —are 5¢F+4+3+9+1 - 512

/2 4 /2
34. Evaluate (a) f sin* g cos® 9 dg, (b) J‘ costd do, (c) f
0 Y 0

(b) Since cos 6 is symmetric about ¢ = /2, we have

T . w/2
f costoede = 2f cost ¢ de
0 , 0
Then letting 2m —1 =0 and 2n—1 = 4, ie. m=1/2 and n=5/2 in Problem 33, we find
T/2
2f costods = g|LW/2)LE/2) 2)]
0 [ 21(3)
= o[VE-GRWVF] _ 3
2421 8
w/2 d0 w/2
(o) f = f sin—1/2 ¢ cos1/2 ¢ ds
o Vtang 0
Letting 2m—1 = —1/2 and 22—1 = 1/2, or m=1/4 and n=38/4 in Problem 88, we find
T _de  _ r/4)r3/4) _ 1« _ m2
s Vitane "21(1) 2 sin (7/4) 2

using the result T(p)T(1—p) = 7/(sinpr), 0<p<1.

EVALUATION OF INTEGRALS
i

35. Evaluate f To(w) Jo(t — u) du.
]

¢
Let G(t) = f Jo(u) Jo{t —u) du. Then by the convolution theorem,
0

1
c@m = ot e = ( \/E;ITX m) = oy
Hence Gty = oC-l{ﬁ_‘i} = sint

¢
and so Git) = f Jow) Jog(t—u)ydu = sint
(1]

63
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36. Show that f cosx?dx = $/=/2.
[

Then taking fhe Laplace trahsform, we find

oo o] .
f e st di f cos tx2 da
0

Let G() = f cos tz? du.
0

L{GWH)} = ,
= f dw f et cos ta? dt
0 4]
—— ) = ” 8
= j;, LA{coste?y dx = j{; peprpe dx
Letting #2 = stané or x = VeVtans, this integral becomes on using Problem 34(c),

i /2 1 V2 TV 2
— —1/2 —_ —_— - - _
sto (tan oy~ 1/% do 2\/?( 2 > es

Inverting, we find )
o = [ommer = o) - (B2) - Fon

Letting ¢t =1 we have, as required,

© V2
f cosxdxy = TF =
Q

PO
I

2

MISCELLANEOUS PROBLEMS
37. Show that f e~?dx = ¥/
¢

Consider G(t) = f e—t2*dg.,  Then taking Laplace transforms,
0

“ dax : 1 Zz |® 4
G(t = f —— = —=tan"l-x= = 2
L{G(t)} e F Vsl Ve
Thus by inverting,
Gty = fwe—txzdm =zt 1\/_)3—1/’2
0 2 Vr 27"
and the required result follows on letting ¢ = 1.
Another method.
Letting «%2=1wu or « =Vu, the required integral becomes
1 j“
5 u12¢~udy = LT(1
- 2), 3 2AC)

But by Problem 32 with m =n = 4, we have

1 1 d
{I‘(%)}Z = j:) w—l.’?(l _m)"'l/2 de = J; \/x(l—m_—:a

1
= sin"1{1-—2x

i
9

- Y de
=

Thus I“(%—) =7 and so the required integral has the value 4V7. See also Problem 29, Page 22.

0
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(82 + a2)3/2

38. Find £ {__.L_} .

We have [see Problem 34, Page 23], £ {Jo(at)} = \/.% Then differentiating with respect
, 22 +q

to a, we find

d _d 1 _d_ — —a
E({Jo(at)} = Z‘a{\f—_sz—ﬁ-a;} or oé[da{Jo(t?t)}:l = Eropk

ie. L£{tdoplat)y = Gz_ilz)_afi
1 t ! t Jl (at)
-1 = —— - = _
Thus L {——-——-——(82 e /2} p Jo(at) ”

since J(',(u) = —J(u).

. 1 1 B
39. Find < {__——————(SZ Tos T 5)3’2f .

The required inverse can be written as

-1 1 — ~t p—1 1 - Jy(2¢
CMarmrrgr, - T N erom T Tz @
using Problem 38. ’

—1/s
40. Find 4-1{33 }

Using infinite series, we find

1 1 1 i 1
le-Vs = = S T U S
s ) s{l s+2!32 3!s3+ }
1 1 1 1
= s T etas st
Inverting term by term,
1 12 3
21 = — -
’C{s e S} 1 t + @1p END +
-_ —_— t2 t3 s s
= 17t 5n " paw t
- 1 - (2£1/2)2 5 (2t1/2)8 (2¢1/2)8
- 22 9242 924262
= Jo@Vt)
41. Find £~ {e"Y5).
~Vs -Vs ~Vs
Let y=e~Vs; then ¥ = —o7, 4" = S—+ Ta;p. Thus

4g 45372

dey” + 2 -~y = 0 ; (1)



66 THE INVERSE LAPLACE TRANSFORM [CHAP. 2

Now »"” = £ {t2Y} so that sy’ = .£ {%[ﬂY]} = L£{t2Y’'+2tY}. Also, ¥’ = .£ {—tY}. Thus
(Z) can be written

40{2Y+2tY}y — 2.{tY} — £{¥} = 0 or 482 + 61— 1Y = 0
which can be written |
iYZ+<§t4t;21>dt = 0 or lnY+%1nt+Zli = ¢
i.e. Yy = ?3_6/56—1/“
Now tY = ﬁ’,—ze“”‘“. Thus
ety = —Lom = —Lew 2_\/‘;
For large ¢, tY ~ ﬁ and .2 {tY} ~ %Y/—Z. For small s, (;_—vr?~§;11—/5. Hence by the final value

theorem, eVr = 1/2 or ¢ = 1/2\/7. It follows that

£ 1{e~Vs} = —2—\/% o—1/4t
Another method. Using infinite series, we have formally
£1{e~VE) = -6_1{1 — sl/2 3 Esf - %3;_2 + ZSi! - -8_55? + }
| = L1} - £{sv + .c—l{z_f‘!} —~ ,c—x{%i} PR )

Using the results of Problem 170, Page 40 [see also Problem 33, Page 22] we have for p equal to
zero or any positive integer,

t—p—3/2
r(~p—4)

_ (=neri/1N/8\ /5\ L /2041y |
- SR E) () @

while £~1{s?} = §. Then from (1) using (2) we have

e - - (O (O

_ 1 1 — < 1N @ @2 1y
2V £3/2 22t 21 3! 2/ 1372

L£-1{sp+1/2}

i

—Vs
42. Find ,c—l{e }

8

From Problems 41 and 15 we have

e Vs ¢ 1 2 °
L£-1 = f {_._ e"1/4u} du = e~ dv (letting u = 1/4+2)
0

2V 7 ud/2 vz Jiavi

= erfe < 2_1ﬁ>
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43. Find ,c—l{f.’f}.
8

In Problem 42 use the change of scale property (4), Page 44, with k& = 22. = Then

L1 e_;/':ﬁ = ;lé erfe < 1 >
x%s 2V t/ %2
e—xVs x
. . 4 - X
from which £L { P } erfc (2 ﬁ>

Note that this is entry 87 in the Table on Page 250.

. 2s% + 10s% + 8s + 40
44. Find ,c—l{s+ 0s° +8s+ }
s%s?2+9)
; 1 - 1/r 1
Since FET) = 9<82 82+9>, we have
283+ 10s2+8s+40 _ 1 283 + 1082 + 8s + 40 _ 253 + 1052 4 8s + 40
82(s2 4 9) 9 82 s2+9
_ 1 8, 40\ —103-—50¥
= §JL<2.8-I-10+8+82> <2s+10+_§2——4?§—>)
18 40 10s 50
= §{E+?+s2+9+32+9}
and so L1 26% + 10s2 + 8s + 40 = 1 8+40t+10c053t+5—osin3t
$2(s2 4 9) 9 3

= 2—17(24 + 120¢ 4+ 30 cos 3t + 50 sin 3t)

We can also use the method of partial fractions.

1
45. Prove that Jo(t) = -Tl; f ¢ (1 — w?)~12 duw.
-1

We have [see Problem 84, Page 23],'

1
Iy (%) =
-’C{ 0( )} \/82—'{“1
Now 1 1 1

s2+1 Ve+i Vs—1d

—1/2 g—at
Using the fact that £~! { 1 } =1t \[i ‘ ,  we have by the convolution theorem,
8 T

1 1 1
7 = -1 = -1 .
o < { 32+1} < {V8+i \/s—i}

ft w12 g=in  (f — y)—1/2 giti—w)
.
0

\4d \£d

U

t

— 1 f eilt—2u) 4 —1/2(¢ — y)—1/2 dy
T Jo
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Letting # = tv this becomes

1
Jo®) = j; eit$1—2v) =12 (1 — )12 dy

9

orif 1—2v = w,

1
Iy = 37 f eitw (1 — w2)~1/2 duy
—1

™

46. Prove that Jo(t) = 1 f cos (t cos §) dg.
0
Let w = cosé¢ in the result of Problem 45.. Then

Jo(&) =

]|

T 1 ki ’L T
f giteosd dg = = f cos(tcosg) do + — f sin (£ cos ¢) de
0 T Yy T Je

Equating real and imaginary parts or by showing directly that the last integral is zero, we have
as required

1 s
Jolt) = - f cos (f cos 9) de
0

Another method.

. T T2
Let G(t) = %f cos (¢t cosg) do = % f cos (t cos §) dé. Then taking Laplace transforms,
T Jo 0
2 T/2 s 92 fﬂ'/z s sec2 g
G(t = =Z f ————_dse = = d
LLGE) 7Jy 82+ cos?y ¢ rJy s?tan®¢ + 2+ 1 ¢
2 1 ¢ . <s tan ¢ ) /2 1
= - an— = —
7T Vs2+1 Vst+1/|y Vsz+1
1 .
Thus G(t) = 21 { } = Ju(t), as required.
Vs2+1

Supplementary Problems

INVERSE LAPLACE TRANSFORMS

47. Determine each of the folIdwing:

ool v el 0 o wof] ool
1 | 6 - ,
@ £_1{28—5} @ < {s2+4} ) ec—*{ii_;’} (R -c*l{g%} ) nc—l{ssjf,;}

Ans. (a) 3e—4t . (e) 3cos2V2t — 3V/2sin2V2¢ (1) —dett/3
(b) 4edt/2 (f) 2 cosh3t — 3 sinh 3t () (6723 + 3t1/3)/T(})
{c) 8 cos4dt (g) t4/24 '
(d) 3 sin2t (h) 8t52/16vr7
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. [/ vs—1¥] 1) 2841
48. Find .(a) £ 1{<__§__>j ) £ l{s(sﬂ)}.

Ans. (@) 1+t — 412\ () 1+ et

_ 3:—8 5s + 10
-y J 98T O -1 .-
#. Find (@) < {4s2+ 25}, (&) £ {932 = 16} i

Ans. (a) 3 cosbt/2 — 4 sin5t/2 (b) 3 cosh4t/3 + § sinh4t/3

50. (a) Show that the functions F(t) = {; :#z “and G(t) =t have the same Laplace transforms.
(b) Discuss the significance of the result in (a) as far as uniqueness of inverse Laplace transforms is
concerned.

. 3s—8  4s—24]| 35— 2 7
-1 jes—¢o AT —1J2s—e L
5. Find (a) £ {82+4 82—16J’ b £ { 5572 3s+2}'
Ans. (@) 3cos2t — 4sin2t —~ 4 cosh 4t + 6 sinh 4¢
(b) 6t1/2/\/7 — 83/2/8\/7z — %e-—2t/3
52. (@) If Fi(0) = <~ 1{f1(8)}, Fao(t) = £71{f2(8)}, F3(t) = £ 1{f5(s)}, and ¢, ¢y €5 are any constants,

prove that .
Lo  f1(8) + eafa(s) + c3f3(8)} = e Fi(t) + e Fa(t) + ez F'3(t)

stating any restrictions. (b) Generalize the result of part (¢) to = functions.

. L 8(s2—1)2 | 4s—18 (s +1)2—s1/?)
53. Find ,Cl{ o~ T 9—s2+—_§5/2—_ .

Ans. L — t — 32 4 Jott + 48V2/V7 + 813/%/8Vr — 4 cosh3t + 6 sinh 3t

54, Find (o) ec“l{(s%)—s}, (b) 4"{(8—+8175ﬁ}°

281/2(3 — 2t)

Ans. (a) -62;;(4&—#1), ® e

) _ 3s— 14 o 88 + 20
128 2% Vs
55. Find (a) £ {82 “4s + s} By L {32 — 128+ 32} )

Ans. (@) €248 cos 2t — 4 sin2t), (b) 2¢%%(4 cosh 2t + 7 sinh 2¢) = 11e8t — 3et#t

r N 0 .
. v 3542 Bs—2
56. F -1)__38+2 -1)_Bs—2
6. Find (a) £ {432—}—128—%9}’ ) £ {332-!—43-{-8}

: ¢—2t/3
Amns. (@) 3e3/2 — Bte—38t/2 " (b)

15

(25 cos 2V/5 /3 — 24v/5 sin2v5 £/3}

| 1 (1
. Find o D LI b —1J ——
. Find o) £ {m} o« Is2—4s+20}

Ans. (@) t~2/3e276/8/2T(}), (b) e2tJ,(4t)
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}, ® £ %fi} () ac-i{ e }
ls ¥4 Var1

e

—2s
82

58. Find (a) .C“{

0 t<2

Ans. (a) {t‘2 t>2 L —ut—2). (3) {4sin2(t—,3) t>3
) 0 t<3

3

or (t—1)~V2ZU(t—1)/\7.

© f(()t—l)—lfz/\/; t>1

t<1

—2s —3s
59. Fi -1y_%¢ T -1 €
ind  (a) < {s2+33+2}’ (b) < {82—28+5 .
—2(t—2) — p—(t—2)
Ans. {(a) 2e e t>2
t<2

()

1eft3) gin 2(t — 3) t>3
0 t<3

or $e(t=3 gin 2(¢ — 3) U(t — 3)

[CHAP, 2

or 4 sin 2(¢— 3) U(t — 3).

or  {2e~20t—2) _ g~ (=D} UY(t — 2)

60. If f e stF(tydt = f(s) and J; e"stG(t)dt = f(ps+q), where p and q are constants, find
0 .

a relationship between F(t) and G(¥). Ans. G(t) = e—at/p F'(/p)/p

1
, a>0.
sVs—l—w}

. 1 )
61. If .-t = erf ¢, find ,c—l{
i {3\/s+1}

62. If 1 {(___—vsz-i-_l-s)"}

(Ve2+a2 — s)n
Ve +1 } '

= J.(t), find =C_14——";—
" L Vs2+a?

1 v e—2s
63. Find {a) £71<——4, (b) £1 .
me e {\/E <s—1>} L {\/“324_9}

Ans. (a) et erfVE,  (b) {30(3“6) :z or  Jo(3t— 6)Ult—2)

INVERSE LAPLACE TRANSFORMS OF DERIVATIVES AND INTEGRALS
64. Use Theorem 2-6, Page 44, to find

(@) £71{1/(s— a)3} given that L~1{1/(s— a)} = eat,

(b) £71{s/(s2— a?)?} given that £~-1{1/(s2—a?} = (sinhat)/a.

65. Use the fact that L71{1/s} = 1 to find £~ 1{1/s"} where n = 2,3,4, ....

. +1 P
66. Find ,C—l{(?z-{’—zmé}. Ans. Lte~tsint

67. Find (a) {‘1{11‘1(:1%)}, ® ac“{%l“ <:i§>}

e~uU — g—2u

Ans. (a) (e‘t—‘e”zt)/t, b) j du

0 u

68. Find .£~! {tan—1(2/s2)}. Ans. 2sint sinht/t

Ans. erf Vat/Va

Ans. arJ (at)

Thus find £~ {1/(s — a)"}.
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~

. 1 s2 + a2 ¢ cos au — cos bu
—1< 2 _— ——
69. Fll’lAd L { In < T 2>} - Ans. ‘fo du

MULTIPLICATION AND DIVISION BY POWERS OF s

t v w
70. Prove that L1 {ﬂ%)} = f f f F(u) du dv dw.
8 ¢ Jo o

. t ot pt
Can the integral be written as f j‘ f F(t) dt3 7 Explain.
' 0 Yo YO

_ 1 - s+ 2 -~ 1 ‘
71. Evaluate (a) £ ‘{m}, &) L l{m}’ (0) L 1{3(3_4_1)3}'

Ans. (@) 1—t+ 42 —e~t, (B) 6+ 3—fe®, () 1— e t(1+t+43)

1 1
i -1 b) £ ————"\.
7. Find (@) < {S\/m} ® < {sm}
‘ t
Ans. (@) % erf V1), (b) f Jolaw) du
0

. —1 1 -1 8 . h . .
73. Find (o) £ {_———————-—(8_1)5 GIY[’ &) £ ——_—(s-— P HTESY and discuss the relationship between

these inverse transforms. h

et 4 4 8 8 e~ 2
Ty Y R R R 2y - L
Ans. (a) 72<t gt® + gt 9t+27> 543

4 3 2 t 1 e !
20 { —— - e ——
(b) e <36 T st 243> + o3

74. If F@) = £-1{f(s)}, show that
(@) £7Hsf B} = —tF'(®) = F() (0 £ {s2f"(8)} = RF"(t) + 4tF'(t) + 2F()
(b) £t {sf"(&)} = L2F'(t) + 2tF(t)

75. Show that £~!{s2f'(s) + F)} = —tF"(t) — 2F'(1).

THE CONVOLUTION THEOREM

. — 1 1
76. Use the convolution theorem to find (@) £ 'd——————), B) L5 ——57("
{(s +8)(s — 1)} L {(s +2)% (s — 2)}

Ans. (@) Heot— ™3, (b) fAy(e® — =2 — dte™2)

. 1 .

. it JF USRS 4 Ans. 1 t— t -t
77. Find £ {(s‘_‘_ 1)(32-{—1)} ) ns. 4(sin cost + e f)
78. Find ,c-l{ 82 }  Ams. jtcos2t + 1sin2t

(s2 1 4)%

: _ 1 _ s
79. Find (a) £ l{m} , -(b) L£71 {(?2“‘—4)3} .
Ans. (a) 71;{(3 —t2) gint — 3teost}, (b) %l;t(sin 2t — 2t cos 2t)
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80. Prove that F*{G*H} = {F*G}*H, ie. the associative law for convolutions.

8l. Prove that (@) F*{G+H} = F*G + F*H, (b) {F+G*H = F*H + G*H.

82, Show that 1*1#*1*.,,.*1 (nones) = ¢ 1/(n—1)! where n = 1,2,3,....

t t t t t— 2
83. Show that f f f Fyae = § S Py du
o vo Jo 0 2!

At t t t ( i— u)n—l

84, Show that j f v f F(t) dtir = f et F(u) du.
0vo 0 p (n—1)1

85. Prove the convolution theorem directly by showing that

f®gs) = { fo we“suF(u) du} { fe " gem G(v) du}

_ J; f e—stutv) Flw) G(v) du dv

0
@ t
= st Fu)Gt—u) d dt.
J; [ {j‘; (u) G(t —u) u}

86. Using the convolution theorem, verify that

t
f sinwcos(t—u)ydu = Lltsint
0
87. Show th L[ ezt d (e=t/2 [ {1{a — b)t}
. ow that —f ey = ela~ a— b)t}.
7 Jo Vu(t—u) ot} )

PARTIAL FRACTIONS

88. Use partial fractions to find (a) €71 {3—23%1;—1_&6}, by £71 {ig::}

Ans. (@) 5edt — 2¢~2%, (b) 1 —3e~t + Let

) o s+1 _ 11s2—2s+5
8. Find (a) < lim} (b) € ’{(s—z)(zs—n(sﬂ)}'

Ans. (a) Je~t/2 — Le—2t/3, (D) be?t - det/2 4+ 2¢-t

| , L 21-12 [ s +16s—24
90. Find (a) ,C {—_——(8 T 4)(82 ¥ 9) ’ (b) ’C gt + 2082 + 64 .

Ans. (@) 3¢~4 — Bcos3t, (b) 4 sindt + cos2t — sin2t

91. Find .0~! {(s+3)(§32_+128+2)} . Ans. le~t(dcost — 3sint) — e3¢

N . J s2—2s+3 _y [88% — 352 — 405+ 36|
. Find @« {<——1’>‘T1T>} @ a0 [

Ans. (a) 3(2t—1)et + fe—t, (b) (Bt+B)e~2 — Rie

[CHAP. 2
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. _ k s2—-3
%. Find L™ {(s IR TR 5)} ‘

Ans. bt — e — dre~tcos2t + ghe~tsin2t
94. Find -1 s ) Ans. 1 sin ¢ sinh ¢
e« {(82"28+2)(s2+2s+2) ns. § sint sinh

‘ —o2
95. Find {‘1{(8—?:3—1%;%—2—}. Ans. Lsint + dtcost — tet

96. Use partial fractions to work (a) Problem 44, (b) Problem 71, (c) Problem 73, (d) Problem 76,
(e) Problem T7.

97. Can Problems 79{a) and 79(b) be worked by partial fractions? Explain.

HEAVISIDE'S EXPANSION FORMULA

2s — 11 7 19s + 37
. < 1 . —1 Mkl —1
98. Using Heaviside’s expansion formula find (a) £ {(s 30 3)}, ) £ {(s D+ D6 3)}.

Ans. {a) 3e~2t — ¢3t, (b) be2t — B¢t — 2¢7 3¢

. _ 2s2—6s1+5 5
99, Find £t {83—682+ e 6} . Ans. Let — et + B st
: — st+5b _ .
100. Find < 1 {m} . Ans. 2¢~t + 3sint — 2 cost

101. Use Heaviside’s expansion formula to work. (¢) Problem 76(a), (b) Problem 77, (¢} Problem 88,
(d) Problem 89, (¢) Problem 90.

102. Find £t {(s+ 3):92_+123 T 2)} . Compare with Problem 91.

. ~ s2—3 .
103. Find ! {(s TG @ T 5)} .  Compare with Problem 93.

104, Find .0t {(82 —5 28) CESTE: 2)} .  Compare with Problem 94.

105. Suppose that f(s) = P(s)/Q(s) where P(s) and Q(s) are polynomials as in Problem 29 but that
Q(s) = 0 has a repeated root a of multiplicity m while the remaining roots, by, by, . . ., b, do not repeat.

{a) Show that

_ P(S) _ Al AZ . Am Bl B2 . . Bn )
fle) = Qe (s,_a)m+ (s —aym—1 + + s—a+8—51 +s—-b2+ +s—bn
: 1 dk _
(b) Show that A, = qll_{rgl =11 ds* {s—aymf®)}, k=12 ...,m

i Altm**l 'A2tm*2 5 bot
(¢) Show that L~1{f(8)} = e rr—— + E—yy 4+ +er + A, r + Byettt + - + B,ebst
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106.

107.

108.

109.

110.

111.

112,

THE INVERSE LAPLACE TRANSFORM [CHAP. 2
252 — 95419 28+ 3
-1 kil [ e L R, S
Use Problem 105 to find (a) . {(3—1)2 (8'*"3)} , (B) «£ {(s TIe (s+2)2}

Ans. {(a) (3t—2)et + 4e=8t (b) te—t— e 2t)

. 1183 —47s2 + 563-{—41 i
1 . Ans. (282 — 2t 2t
Find { =23 T2 J ns. (212 —t+ B)e + 6e
Use Problem 105 to work (a) Problem 26, (b) Problem 44, (¢) Problem 71, (d) Problem 73,

(e) Problem 76(b).

Can the method of Problem 105 be used to work Problems 79(a) and 79(b)? Explain.

L T
Find -1 (S%I)T(';Tll)?} using Problem 105. Compare with Problem 95.
Develop a Heaviside expansion formula which will work for the case of repeated quadratic factors.

Find £_1{4s4+583+ 652+ 8s + 2

G- 1 25 T3 } using the mgthod developed in Problem 111.

Ans. et + e~ t{(8—2t) cost — 3 sin t}

THE BETA FUNCTION

1 4 2
113, Evaluate each of the following: (a) f x3/2(1 — x)2dx, (b) f 234 —x)"1/2dx, {e) f Y 4—y2 dy
0 0 0

114.

115.

Ans. (a) 16/315, (b) 4096/35, (c) 2«

1
Show that f Vi—x2dx = /4.
0

. w2 w/2 ko
Evaluate each of the following: (a) f cosb o do, (b) f sin2 ¢ cost 9 do, (o) f sint ¢ cos? ¢ de.
1} 0 0

Ans. {a) 57/82, (b) /32, (¢) 3z/128

116. Prove that
(@) 1 's 45 ) 5 -7 4 p is an even positive integer,
/2 /2 4 P
f sinfe ds = f cosPo dg =
0 Jo I I
(3) 2-4-6 (p—1) if p is an odd positive integer.
1°8:5---p
® gp—1 V T
. _ . —p) = — <p<l.
117. Given that f) i wdw o show that T(p)T(1— p) stn pr where 0 <p
[Hint. Let x/(1+z) = yl]
v

118.

@2
Use Problem 117 to show that f yay - I
o 1+uy? 2v/2
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/2
2
119. Show that f Viane do = =2
0
EVALUATION OF INTEGRALS
120. Show that f sinz?de = LVa/2.
0
121. Evaluate f si;x dzx. Ans. #/2
0
122. Show that f 2z cos %3 dx — .
. 0 3v/3 1(1/3)
123. Prove thatif 0<p <1, (a) f S‘;‘f d
0

124,

125. (@) Show that f #2 e~ dx converges.
o

B I £>0, is ({f x%_mzdx}
0

(¢} Can the method of Problem 37 be used to evaluate the integral in (a)?

t
126. Evaluate f Jolu) Iyt —u) du.
o

MISCELLANEOUS PROBLEMS

(

. 1 1
-1+ Zde—t — otr2
12?. Find . JLS?’ 1} . ~Ans. 3 {e e <

b
128. Prove that j‘ (x—a)y(b—x)2dx =

[Hint. Let x—a = (b—a)y.]

129,

Evaluate (a) f \/_74 )
(x—2)4—=x

e 8(1 — e~ %)
s(s2+1) o

Find {“1{
e—zVs o —xR/4t
Vs wt

: t
Prove that f Jolu) sin (t —u) du =
0

130, Ans.

il

131, Show that .1 {

132.

Ccos 2—t -

THE INVERSE LAPLACE TRANSFORM

T

21(p) sin (px/2)

It

T

2T(p) cos (px/2)

f LA{x2e a2} do T
0

Ans. Jy(t) — cost

V3

2

(b—a)p*at1B(p+1,q9+1)

5
(b) f \/4 (6 — x)(x — 1) de.
1

1t J; (D).

\/§sinﬁt>1

75

Use the results in Problem 123 to verify the results of Problems 120, 121 and 122.

Explain.

J

where p>—1, ¢>—1 and b>a.

2{r(1/4)}2
T A v

Ans. (@) =, (b)

{I—cos(t—D}UEt—1) — {1 —cos(t—2)}U(t—2)
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133.

134.

135.

136.

137.

138,

139.

140.

141.

142,

143.

- 144,

145.

THE INVERSE LAPLACE TRANSFORM [CHAP. 2

1 — e—27s

(a) Show that the function‘ f(s) = is zero for infinitely many complex values of é. What

s
are these values? (b) Find the inverse Laplace transform of f(s).

e s 1 t> 2
Ans. (a = g, =2, *314, ... by F(t) = or F(t) = U{t— 2z
ns. (a) s (&) F(B {0 0<t<on (?) ( )

2s t

Find (‘1{]n<s + V82+1>} . Ans. 17 Jo®)

2
Show that f w(8 —ud)\13 dy = 16;/757 .
0

Let F(t) = t2 at all values of ¢ which are irrational, and F(t) = ¢t at all values of ¢ which are rational.
(a) Prove that £ {F(t)} = 2/s3, s> 0. (b) Discuss the significance of the result in (¢) from the view-
point of the uniqueness of inverse Laplace transforms.

Show how series methods can be used to evaluate (a) £—1{1/(s® + 1)}, )y c~{ln(1+ 1/s)},
(e) £ {tan—1(1/s)}. .

1

Find .£-1{e-3s—2Vs}, Ans. ~————— ¢ 1/¢t=3) U(t — 3)
V(t— 8)3
* u sin tu _ T
Show that J(; T du = et t>0

T2 o<t<t

, show that
0 t>1

If Ft)=¢t"12 t>0 and G = {

o<1

T
{w—2tan"1\/t—1 t>1

F(t) *G) =

Show that ‘(“1{

VsFi- \f} et Lt/2)
Vs+1+Vs ¢ )

Find (‘1{ \/_g}. Ans. t=12/\/7 + et erf Vi

/2 '
Show that (a) f sin (¢ sin26) d8 = 1 sin (2/2) Jo(t/2)
Jo R

/2
(b) J cos (t cos?0) do = 1 cos(#/2) Jy(t/2).
0

Let £~ 1{f(s)} = F(t) have period T > 0. Prove that
LT 1 —e sT)} = FP(t) if 0<t<T andzeroif t> 7.

1 12 5 18 $11
-1 = - - = AT
(a) Show that .£ {83 1} o1 ET g T

(b) Discuss the relationship of the result in (a) to that of Problem 127.
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146.

147.

148.

149,

150.

181,

152.

Can Heaviside’s expansion formula be applied to the function f(s) = 1/(s coshs)? Explain.

Prove that f Jo(x2) de = 1/4V;.
0 o

Show that [ ) : s ; ,
U EEE | & ¢
s s‘“s} St et e ayEt
= LUEemT) — Jy@emmiaVD))
Show that 1 1 : £ @ 16
4”{; c°s§} = -Gyt oame et
Find “c—l{1+1\/§}' Ans. t=12/\z — et erfe (Vt)
Show that
1 Q (Dt
-1 =
£ {84‘6—3} ngo n!

where [t] denotes the greatest integer less than or equal to t.

1 2 t 2 s
Show that .,C‘l{—s—.lo<—\/—§>} = 1 - ans + B T BIF 4o

7



Chapter 3

c‘;cif

_ Differential Equations

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS 7

The Laplace transform is useful in solving linear ordinary differential equations with -
constant coefficients. For example, suppose we wish to solve the second order linear
differential equation

2 Y ’
%+ a% +B8Y = F(I) or Y +a¥ +BY = F() )

where « and B are constants, subject to the initial or boundery conditions
Y(0) = A4, Y0) = B (2)

where A and B are given constants. On taking the Laplace transform of both sides of (1)
and using (2), we obtain an algebraic equation for determination of .£{Y(f)} = y(s). The
required solution is then obtained by finding the inverse Laplace transform of y(s). The
method is easily extended to higher order differential equations. See Problems 1-8.

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

The Laplace transform can also be used in solving some ordinary differential equations
in which the coefficients are variable. A particular differential equation where the method
proves useful is one in which the terms have the form

tm Y o(t) | | (3)
the Laplace transform of which is

(1 2 e ooy )

See Theorem 1-10, Page 4, and Theorem 1-12, Page 5.

For details of solution see Problems 9-11.

SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

The Laplace transform can be used to solve two or more simultaneous ordinary dif-
ferential equations. The procedure is essentially the same as that described above. See
Problems 12 and 13.

78
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APPLICATIONS TO MECHANICS

Equilibrium

Suppose a mass m, attached to a flexible position

spring fixed at O, is free to move on a friction-
less plane PQ [see Fig. 3-1]. If X(?), or briefly
X, denotes the instantaneous displacement of
m at time £ from the equilibrium or rest posi- [
tion, there will be a restoring force acting on |

m equal to —kX, where k is a constant depend- {

ing on the spring, and called the spring con- ‘:«;X "i

stant. This follows from Hooke’s law which,
on the basis of experiment, states that the re-
storing force acting on a spring is proportional
to the stretch or extension of the spring from
the equilibrium position. According to New-
ton’s law which states that the net force acting

on m is equal to the mass times the accelera- . Fig. 3-1
tion, the equation of motion is
2 ' .
m% = —kX or mX"” +kX = 0 (%)

If in addition, there is a damping force proportional to the instantaneous speed of m,
the equation of motion is

d2
mes = kX Y o mX X kX = 0 (6)

where the proportionality constant g is callgd the damping constant.

A further modification takes place when some prescribed time-varying external force
F(¢) also acts on m. In such case the equation of motion is

. ,
. m%—g = —kX — ’B(f;l_)t( + F(¥) or mX"” + X' + kx = F(b) (?)

By using Laplace transforms to solve equations (5), (6) or (7) subject to various ap-
propriate initial conditions of physical interest, the displacement X(¢) can be found. See
Problems 14, 15, 27 and 28.

APPLICATIONS TO ELECTRICAL CIRCUITS

A simple electrical circuit [Fig. 3-2] con-

sists of the following circuit elements con- I £
nected in series with a switch or key K: i \E_:/
1. a gemerator or batiery, supplying an elec-
tromotive force or e.m.f. E (volts), ' R§ -
2. a resistor having resistance R (ohms), ,
3. an inductor having inductance L (henrys), , L

4. a capacttor having capacitance C (farads).

These circuit elements are represented symboli- Fig. 3-2
cally as in Fig. 3-2.
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When the switch or key K is closed, so that the circuit is completed, a charge Q

(coulombs) will flow to the capacitor plates. The time rate of flow of charge, given by

'c(li—?: I, is called the current and is measured in amperes when time ¢ is measured in

seconds.

More complex electrical circuits, as shown for example in Fig. 8-3, can occur in
practice.

K
N () 7~ P
U/
L C,
E § II —— o2
, G D
. I 1
M > A F Q
Iy
L
H G
0 -
) Fig. 3-3

An important problem is to determine the charges on the capacitors and currents as
functions of time. To do this we define the potential drop or voltage drop across a circuit
element,

d
(a) Voltage drop across a resistor = RI = R-&%
2 .
(b) Voltage drop across an inductor = % = L%
(¢) Voltage drop across a capacitor = %
(d) Voltage drop across a generator = —Voltage rise = —F

The differential equations can then be found by using the following laws due to Kirchhoff.

Kirchhoff’s Laws

1. The algebraic sum of the currents flowing toward any junction point [for example 4
in Fig. 3-8] is equal to zero. -

2. The algebraic sum of the potential drops, or voltage drops, around any closed loop
[such as ABDFGHA or ABDFQPNMA in Fig. 3-3] is equal to zero.

For the simple circuit of Fig. 3-2 application of these laws is particularly easy [the
first law is actually not necessary in this case]. We find that the equation for determina-
tion of @ is #Q - ‘

aQ  Q
LW + R at + c = E (8)
By applying the laws to the circuit of Fig. 3-8, two simultaneous equations are obtained
[see Problem 17].
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Note the analogy of equation (8) with equation (7). It is at once apparent that mass m
corresponds to inductdnce L, displacement X corresponds to charge Q, damping factor B8
to resistance R, spring constant k to reciprocal of capacitance 1/C, and force F to electro-
motive force E. Such analogies are often useful in practice.

APPLICATIONS TO BEAMS | .

Suppose that a beam whose ends are at

=0 and x=1 is coincident with the x axis
[Fig. 3-4]. Suppose also that a vertical load, =0 ’
given by W(x) per unit length, acts trans- _\\ —x

versely on the beam. Then the axis of the
beam has a transverse deflection Y(x) at
the point x which satisfies the differential Y
equation Y
ay  W(x)
dx* — EI

Fig. 3-4

0<z<l 9)

This transverse deflection is sometimes called the deflection curve or elastic curve. The
quantity EI is called the flexural rigidity of the beam and we shall assume it to be constant.
[Actually, E is -Young’s modulus of elasticity for the beam and I is the moment of inertia
of a cross section of the beam about the axis.] The quantities EIY"’(x) and EIY'(x)
are called respectively the bending moment and vertical shear at . Note that the Y axis
is taken as positive downward so that deflections are positive downward.

The boundary conditions associated with the differential equation (9) depend on the
manner in which the beam is supported. The following are most common. '

1. Clamped, Built-In or Fixed End: Y = Y’ = 0
2. Hinged or Simply-Supported End: Y = Y” = 0

3. Free End: Y’ =Y7” = (

PARTIAL DIFFERENTIAL EQUATIONS

The Laplace transform is also useful in solving various partial differential equations
subject to boundary conditions. Such problems are often referred to as boundary-value
problems. We consider a few such simple problems in this chapter [see Problems 22-26
and 31]. A more complete discussion of boundary-value problems is given in Chapter 8
where advantage can be taken of the complex inversion formula of Chapter 6.
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Solved Problems

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS
1. Solve Y"+Y =1¢, Y(0) =1, Y'(0) = —2.

Taking the Laplace transform of both sides of the differential equation and using the given
conditions, we have ‘

’ 1
LAY" + £{Y} = it} s —8Y(0) — YO +y = 5
2y — s + 2 +y = i
. 82
1 s—2
Then vy = ¥y = s2(s2 4 1) t eI
_ 1 1 n s 2
T8 241 s2+1 2+1
1 s 3
= 2T Er T #+1
and Y = (‘1—1—+—s—-i = t + cost — 3sint
82 s24+1 s24+1
Check: Y =t-+cost—38sint, Y =1 —sint —3cost, Y’ =—cost+8sint. Then Y"+Y =14,

Y(0) =1, Y'(0) = —2 and the function obtained is the required solution,

For another method, using the convolution integral, see Problem 7 and let a = 1, F(¢) = t.

2. Solve Y”-—3Y’+2Y = 4e%, Y(0) = —3, Y'(0) = 5.

We have LAYy — 8.{Y'} + 2.{Y} = 4.,{et}
o — sYO) — YO — 3y —YO) + 29 = o
4
{s?2y + 838 —5} — 3{sy+3} + 2y = p—
(2—3s+2y + 8s — 14 = —=
4 s—2
y = 4 14 —3s
(s2—38s+2)(s—2) s2—8s+2
_ —3s®+20s— 24
- T (s —1)(s—2)?
R 4 4
= =i ts=/2t (s—2)2
Thus y o= o]l b Al g sy g
s—1 s—2 (s—2)2J

which can be verified as the solution.
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3. Solve Y”+2Y'+58Y = e *sint, Y(0) =0, Y'(0) = 1.

We have LYY + 2.7} + 5.e{Yr = L{etsint}
1 1
2y — sY(0) — Y’ 2 —Y 5 = =
{s% — s Y(0) 0} + 2{sy — Y(0)} + By GFIZT1 pop P
1
2y — 8(0) — 2{sy — = —
{s2y — 8(0) — 1} + 2{sy — 0} + 5y 242542
(s2+2s+58)y — 1 = 1
s24+28+2

1 , 1
2+ 25+5 | (s2+2s+2)(s2+28+5)

s242s+3
(s2 + 2s + 2)(s2 + 25 + 5)

Then [see Problem 28, Page 60]

— -1 82428+ 3 _ 1‘—t 3 .
v.o= & {(32+23+2)(82+2s+5) 3¢ (sint + sin 2t)

4. Solve Y —3Y"+3Y —Y =%, Y(0)=1, Y'(0)=0, Y”(0) = —2.

We have LY — 34y} + 3.2{Y} — £{¥} = L{t2ef}
{3y — s2Y(0) — sY'(0) — Y"(0)} — 3{s2y —sY(0) — Y'(0)} + 3{sy—Y(0)} —y = (stl)-é
Thus (3—8s243s—1)y — 82 + 38 — 1 = (—3—2—1)3
82—3s+1 2
VS Gops T GoDe
— §—2s+1-—3s 2
(s—1)2 (s—1)¢
—12—(s—-1—-1 , 2
(s—1)3 (s—1)8
S U DR S -
T os—1 (s —1)2 (s —1)8 (s—1)8
| e B B
and Y = e tet 2 —+ 0

5. Find the general solution of the differential equation in Problem 4.

In this case, the initial conditions are arbitrary. If we assume Y(0) = A4, Y'(0) =B, Y"(0) =C,
we find as in Problem 4,
(% — As2—Bs—C) — 3(s?y—As—B) + 3(sy—A) — y = ﬁ

As?+ (B—3A4)s + 34 —3B+C 2
(s —1)3 (s—1)8

or Y
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Since A, B and C are arbitrary, so also is the polynomial in the numerator of the first term on the
right. We can thus write .

_ €1 C2 T3 2
v S Go T o T so1 T aone
and invert to find the required general solution
ct? thet
= I o t t ve
y 26+c2te+c3e+60
et
= e4t? + egtet + eget + 60

where the ¢;’s are arbitrary constants.

It should be noted that finding the general solution is easier than finding the particular solution
since we avoid the necessity of determining the constants in the partial fraction expansion.

6. Solve Y”+9Y = cos2t if Y(0)=1, Y(«/2) = —1.

Sinece Y'(0) is not known, let Y’(0) =¢. Then

LY + 90{Y} = £ {cos2t}

200 — — v - _85
82y s Y(0) Y(O) + 9y P
8

2 — _ - _°
(s2+ 9y s ¢ = 51g
s+e¢ s

and V.7 Z2T7e T @mroeet

_ S c 8 _ S
- + + 5(s2+ 4) 5(s2 + 9)

8249 s249

_ é s 14 8
o 5<sz+9> t et 5(s2 + 4)

Thus Y = écos3t + -c~sin3t + lcos.2t
5 3 5

To determine ¢, note that Y(z/2) = —1 so that —1 = —¢/83 — 1/5 or ¢ = 12/5. Then

4 4 . 1
Yy = ‘5cos3t + 5sm3t -+ 5c052t

7. Solve Y”+a*Y = F(t), Y(0) =1, Y'(0) = —2.

We have LY} + a2{Y} = L{F@®)} = fs)

s — sY(0) — Y0 + a2 = Fs)
2y — s + 2 + a2y = f(s)
and so = 82 /(s)

¥ = eTae s2+ g2
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Then using the convolution theorem,

o sz O]
yo= < 1%8:4“&2}_'_ < 1{5_:2%&5}

X

=  cosaf — 251;1“ + F(t)*su;at

} . t
= cosat — Zsinat + lf F(u) sin a(t — ) du
a a J,

Note that in this ease the actual Laplace transform of F(t) does not enter into the final solution.

8. Find the general solution of Y —a?Y = F(f).

" Let Y(0) = ¢, Y'(0) =¢,. Then taking the Laplace transform, we find

2y — sey — ey — aty = fls)
“or y se; + ey f(s)
32 — g2 s% — g2
Cg 1 t
Thus Y = ¢ coshat + 2 sinh at + P f F(u) sinh a(t — u) du
0

t
= A coshat + B sinhat + % f F(u) sinh a(t — w) du
o

which is the required general solution.

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

Solve tY”+Y' +4tY = 0, Y(0) = 3, Y’(0) = 0.

We have LY 4 £{Y'} + LAYy = 0
or —i{szy — 8 Y(0) — Y’(O)} + {sy — Y ()} — 4@ = 0
ds ds
ie., (s2+4) % + sy = O
dy , sds
Then v T eFd " 0
, i ¢
and integrating Iny + tIn(s2+4) = ¢ or y = \/8—2;—4
Inverting, we find Y = eJo(2¢)

To determine ¢ note that Y(0) = ¢Jy{0) = ¢ = 3. Thus

Y

It

- 3J,(2t)
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10.

11.

APPLICATIONS TO DIFFERENTIAL EQUATIONS

Solve tY”+2Y' +tY =0, Y(0+) =1, Y(x) = 0.

Let Y'(0+) = ¢.

— Lty — sYOH — YO + 2y — YOH) —

or

i.e.,

Integrating,

Then taking the Laplace transform of each term

dsy
—8% — 23y + 1+ 28y — 2 —y = 0
-1
—(s2+1)y — 1 = 0 R
(s )y or ¥ o]
y = —tan~1ls + A

Since ¥ > 0 as $— %, we must have A = /2. , Thus

= 7o -1 —_— —1=
Y 2 tan—1ls tan s

Then by the Example f‘ollowing Theorem 1-18 on Page 5,

vy = ¢tJwnill - 2ot
s t

This satisfies Y(z) = 0 and is the required solution.

Solve Y”—-tY"+Y =1, Y(0) =1, Y(0) = 2.

We have

i.e.,

or

Then

or

1
{Y"} — {tY} + £{Yr = {1} = ¢
oy 4 2 1
sy — sY(0) — Y(0) + - {sy—Y(0)} + vy =
, 1
sy ~s—2+tsy+tyt+ty = 3
1
syl + (#+2y = s+ 2+ <
dy 2\, 2, 1
E+<s+;>y = 1+S+S2

24
An integrating factor is ef (s+§)ds _ o¥es® T 2Ins — g3 ,%8  Then

or integrating,

%{sze%szy} = <1+§+;_1;Z>32e1/”2
y = ;lie‘%sﬁf<1+§+é>s2e%sz_ds

-S%e_%ﬁf(ﬁ +2s+ 1) e dg

= ;12-9'%82 [se¥5 4 2e%5% + ¢]

1 2 ¢
3 + 2 + ‘s‘ge'%sz

[CHAP. 3
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To determine e, note that by series expansion,

1 2 c
Yy = g+-s-§+*s'§(1—%—82+%—s4—"')
1 e+ 2
= gt et )

Then since £~1{sk} =0, k =0,1,2,..., we obtain on inverting,

Y = 1+ (¢+2)¢
But Y'(0) = 2, so that ¢ = 0 and we have the required solution

- Y = 1+ 2t

SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

id}tg = 2X —-3Y

12. Solve subject to X(0) =8, Y(0) = 3.
dY
a T Y -2X

Taking the Laplace transform, we have, if £{X} =2, £{Y} =y,

st — 8 = 2x — 3y or 1 (—2)x + 3y =
sy —8 = y— 2« or 2 2¢+ (s—1y =
Solving (1) and (2) simultaneously,
8 3
3 §—1 8s—17 . 8s — 17
s—2 3 82 —3s—4 (s + (s —4)
2 s—1
§—2 8
y = 2 3 3s —22 3s—22  _
g—2 3 82 —3s—4 (s+i)s—4)
2 s—1
Then = L~ 1{x} = Be~t + 3Zeit
Y = £y} = Bemt — 24

13. Solve X" +Y +3X = 15¢7
Y” -4X"+8Y = 15sin2t

Y'(O’) = —b5.

Taking the Laplace transform, we have
8% — $(35) — (—48) + sy — 27 + 8¢ = —2
s+1
30

2, — (97) — (— _ _
sy s(27) (—55) 4{sx — 85} + 3y PO

s+1

s+1

87 -

subject to X(0) = 35, X’(0) = —48, Y(0) = 27,
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or (s2+83)x + sy = 36s — 21 + 18 - @)
s+1 . .
—dex + (248)y = 2Ts — 195 + 0 @)
] 8244
Solving (1) and (2) simuitaneously,
15
358 — 21 + m .S
30 ) :
- 20 a2
278 — 195 + 57— s2+3
x =
s+ 3 8
—4s §2+3
— 3553 — 48352 -+ 300s — 63 + 15(s2+3) ~ _ 308 :
@+ +9) GFDEEFD6EET9) (B D2+ 4@+ 9)
30s 45 2s
2+1 #39 TsF1 t 2
15
2 —_— -
82+3 368 — 21 + s 11
30
: —4s 278 — 195 + m
i y =
! s2+3 8
—4s s2+3
3 —. 2783 — 55s2 — 35 — 585 " 60s 4 30(s2 + 3)
. (2 + 1)(s2 + 9) G+ 1)+ )2 +9) {2+ 1)(s2+ 4)(s2 + 9)
_ 80s 60 4+ 2 '
T 8249 s2+1 s+1 s2+44
Then X = L 1{x} = 80cost — 15sin3t + 8¢t + 2 cos2t
Y = £-1{y} = B80cos8t — 60sint — 3¢~ + sin2¢

APPLICATIONS TO MECHANICS

14. A particle P of mass 2 grams moves on the X axis and is attracted toward origin O
with a force numerically equal to 8X. If it is initially at rest at X =10, find its
position at any subsequent time assuming (a) no other forces act, (b) a damping force
numerically equal to 8 times the instantaneous velocity acts. ' :

() Choose the positive direction to the right [see
Fig. 3-6]. When X >0, the net force is to the
left (i.e. is negative) and must be given by —8X.
When X <0 the net force is to the right (i.e. is 0 P
positive) and must be given by —8X. Hence in

either case the net force is —8X. Then by New- Fig. 3-5
tpn’s law,
(Mass) * (Acceleration) — Net force
azx
2 gm = —8X
2
or PX L 4x = o : )

de2
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" The initial conditions are: (2) X(0) =10, (8) X’(0) = 0.
Taking the Laplace transform of (1) and using conditions (2) and (3), we have, if 2 = £ {X]},

' 10s
2oe = _ —
82¢ — 10s + 4z 0 or x 214
Then X = o '{g} = 10 cos2t

The graph of the motion is shown in Fig. 3-6 below. The amplitude [maximum displacement
from O] is 10. The period [time for a complete cycle] is 7. The frequency [number of cycles per
second] is 1/x.

X .
Period ‘ : x

’ 1

s
[SIEES
[
~|§
M
Ly

Fig.3-6 Fig.3-7

(b) When X >0 and dX/dt >0, P is on the right of O and moving to the right. Then the damping
force is to the left (i.e. is negative) and must be given by —8dX/dt. Similarly when X <0
and dX/dt<0, P is on the left and moving to the left so the damping force is to the right
(i.e. is positive) and must also be given by —8dX/dt, The damping force is also —8dX/dt for
the cases X >0, dX/dt<0 and X <0, dX/dt>90. Then

(Mass)(Acceleration) = Net force
g ' dzx ax
or g = 8X - &g
. d2X dX _
Le., W -+ 4“({{ 4 4X = 0 (4)

with initial conditions (5) X(0) = 10, (6) X'(0) = 0.

. Taking the Laplace transform of (4) émd using conditions (5) and (6), we have

g2 — 108 + 4(sx—10) + 42 = 0
or ¢ = 10s + 40
s2+4s+ 4
. _ 2, (108 + 40 _. | 10(s +2) + 20
X = 1 = ) Y ot = 102\ T 27 27
Then . , L7 < {(s+2)2} < { PEEE }
1 1
e 1 -1 -1)___+
0L {s+2} + 204 {(s+2)2}
= 10e~2t + 20te=2t = 10e=2t(l -+ 2%

The graph of X vs. t is shown in Fig. 83-7 above. Note that the motion is non-oscillatory.
The particle approaches O but never reaches it.
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15. A particle of mass m moves along the X axis and is attracted toward origin O with a
force numerically equal to kx, k>0. A damping force given by gdX/dt, 8> 0, also
acts. Discuss the motion, treating all cases, assuming that X(0) =X, X’(0)= VL.

The equation of motion is

ex dX
mgE T TRE — g
‘ d2X ax
or —dﬁ + 20{Tt + 02X - 0 (1)

where o = B/2m, o? = k/m.
The Laplace transform of (I), using the initial conditions, yields
s22 — Xygs — Vo + 2alsz—X;) + o2 = 0
SX() + (V() + Zt!XO)
82 + 2a8 + o2

(s + a) X, Vo + aXy
(s+a)2 4+ 2 — o2 (s+a)2 4+ w2 — a2

or x

Case 1, o®2—a2 > 0,

In this case,
Vo+aXy)

X = L7 {x} = X()e—'at cosVw2Z—a2t + e—at sin\/wﬁ—oﬁt

QY T a

The motion is called damped oscillatory {see Fig. 3-8 below]. The particle oscillates about O, the
magnitude of each oscillation becoming smaller with each swing. The period of the oscillations is

given by 27/Vw?— a2, and the frequency is Vw?— 2/27. The quantity /2r (corresponding to «=0,
i.e. no damping) is called the natural frequency.

Case 2, o2 — o2 = (.

In this case,

X, Vy+ aX,
— —1 ~1J_Y 0 0
X L {x} £ {8+a+—_——(s+a)2}
= Xge ¢ + (Vy+ aXy)te at
Here the particle does not oscillate indefinitely about O. Instead, it approaches O gradually but

never reaches it. The motion is called eritically damped motion since any decrease in the damping
constant 8 would produce oscillations [see Fig. 3-9 below].

Case 3, »2—a2 < 0.

In this case,

(8 +a)X0 - Vo + (IXO
= -1 = -1 -
X L7 e < {(s+a)2 @) T Gral— (-
Vy+ aX —
= Xjcoshve?—w?t + Lo e sinh Va2 — 2t

Va2 — o2

The motion is called overdamped motion and is non-oscillatory. The graph is similar to that of
critically damped motion [see Fig. 3-10 below].
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X X X
~
~
\\\ \
[-\ N ¢ t t
- ,__\—
///
//

Damped oscillatory motion Critically damped motion Overdamped motion

Fig. 3-8 Fig. 3-9 Fig. 3-10 «

APPLICATIONS TO ELECTRICAL CIRCUITS

. ()
16. An inductor of 2 henrys, a resistor of \EJ
16 ohms and a capacitor of .02 farads '
are connected in series with an em.f. of 2h o 02 £d
E volts. At t=0 the charge on the
capacitor and current in the circuit are V’VWVVW‘
zero. Find the charge and current at 18 Ohms'
any time t>0 if (a) E = 300 (volts), ‘
(b) E = 100 sin 3t (volts). Fig. 3-11
Let Q and I be the instantaneous charge and current respectively at time ¢. By Kirchhoff’s laws,
we have
ar | Q  _
et 16l + o5 = E ()
or since I = dQ/dt,
2Q aQ - _
2gp T 16+ 50Q = E (2
with the initial conditions Q(0) =0, 1(0) = Q'(0) = 0.
(¢) If E = 300, then (2) becomes
a2Q aQ _
a2 + 8&- + 25Q = 150
Then taking the Laplace transform, we find
{%g —5QO) — QO) + 8(sg — Q) + 25¢ = X
or . = 150 _ 6 _  6s+48
s(s% + 8s + 25) s s2+ 8s -+ 25
_ 6 _ B(st+4) +24
s (s+42+9
- 6 _  _66s+4 24
3 (s+4)2+4+9 (s+4)2+9
Then Q@ = 6 — 6e Ycos3t — 8e~ 4 sin8t

M

= —4t o3
at 50¢ sin 3t
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(b) If £ = 100 sin 3¢, then (2) becomes

2
9 + SdQ + 26Q = 50 sin3¢
ae
Taking the Laplace transform, we find
150
2 =
(s2 + 8s - 25)q 219
_ 150
and 7 = @TF9)sE+8s+25) -
_ " 1 1 s 7 1 T std
T 26 8249 52 s2+9 26 (s+4)2+9 52 (s+4)2+9
25 75 25 75
= 224 - LLpre 19 -4t
Thus Q og Sin 3t 52 sin 8t + 26 ¢ sin3t + g ¢ ¥ cos 3t
= §(2 sin8%t — 8 cos3t) + §e"4t (3 cos 8¢ + 2 sin 3¢t)
52 52
_de _ T t 3 aingy — 2o
and 1 = g = E2 (2 cos 3t + 3 sin 3¢) 3¢ (17 sin 3t + 6 cos 3t)

For large t, those terms of @ or I which involve e~ %t are negligible and these are called the
transient terms or transient part of the solution. The other terms are called the steady-state
terms or steady-state part of the solution.

17. Given the electric network of Fig. 3-12,

. . . 30 ohms 110 volts

determine the currents in the various A
, e : p WWW J
branches if the initial currents are zero. :) U/ !
Kirchhoff’s second law [see Page 80] states 10 ohms Zhenrys
that the algebraic sum of the voltage or poten- N WWWWW 7000 ——&
tial drops around a closed loop is zero. Let us ) 0 v,
traverse loops KLMNK and JKNPJ in a clock- 20 ohms enrys
w}se fashion as shown. In traversing these M WWWW 500 L
loops we shall consider voltage drops as positive ’
- when we travel against the current. A voltage Fig. 3-12

rise is considered as the negative of a voltage
drop.

Let I be the current in NPJK. This current divides at the junction point K into Iy and I, so that
I = I, +1,. This is equivalent to Kirchhoff’s first law [see Page 80].

Applying Kirchhoff’s second law to loops KLMNK and JKNPJ, we then have respectively

di, dl, )
—10I; — 2— + 42+ 200, = 0
L
30 — 110 + 2— + 10, = 0
or ’
dl, dl, )
—5l, — — + 22+ 10, = 0
[
th_l + 201, + 15, = 55

subject to the conditions I,(0) = I,(0) =
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Taking the Laplace transform of the system.and using the initial conditions, we find
—bi, ~ {siy — [,(0)} + 2{siy— Io(0)} + 10iy = 0
{81, — I;{0)} + 204, +. 1bi, = b5/s
or (s+5)i; — (28+10)i, = 0
(s +20)i; + 15i, = 55/s

From the first equation, iy = 2%, so that the second equation yields

(25 + 55)iy = %5 or i = s_(2§545r—55) = %”23_4%53
Then I, = 1 — e—55u2
I, = 2I, = 2 — 2¢-5t/2
I = I, +1, = 8— 3¢-55tr2

APPLICATIONS TO BEAMS

18. A beam which is hinged at its ends z=0
and =1 [see Fig. 3-13] carries a uni-
form load W, per unit length. Find the
deflection at any point.

The differential equation and boundary con-
ditions are :

@y _ W
a4 = EBI 0<e<! (1)

Fig. 3-13

Y(0)=0, Y'(0)=0, YO =0, Y"() =0 (2)

Taking Laplace transforms of both sides of (1), we have, if y = y(s) = £ {Y(2)},

W

sty — $8Y(0) — s2Y'(0) — sY"(0) — Y"'(0) = e

Using the first two conditions in (2) and the unknown conditions Y’(0) = ¢;, Y""(0) = ¢y, we find

¢ ] W,
v = @t et g
Then inverting,
_ cou3 Wy gt Co13 Wy xt
Y@) = ew+ 3r+grqr T o + 24ET
From the last two conditions in (2), we find
LY _ Wyl
MY ) & 2 T T 3ET
Thus the required deflection is
Y() = ﬂ (B — 2123 + a:4)v = ey (I— )2+ lx — 22
24E] "24E1

93
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19. A cantilever beam [Fig. 3-14] is clamped
at the end =0 and is free at the end
z=1. It carries a load per unit length
given by ’

’ W(ﬁ?) — Wo 0<$U<l/2
0 2<xz<l

Find the deflection.

The differential equation and boundary con-
ditions are

@y _ W
dxt = EI

Y(©0) = 0, Y'(0) = 0,

Y@ = o,

o< <l

Fig. 3-14

Y = 0

In order to apply Laplace transforms, we extend the definition of W(x) as follows:

W) = {

0<ax<l/2

x> 1/2

This can be written in terms of Heaviside’s unit function as

W) = WoilU) — Uz — 1/2)}

Taking Laplace transforms of (1), we have, if y = y{s) = L{Y(2)},

sty — s3Y(0) — s2Y'(0) — sY"(0) — Y"(0) =

It €2
y—§+§2+

Inverting, we find

cyx? Coi3
Y@ = 37+ 75
This is equivalent to

ax? 1 W,

) TN + gczx:" +

Y(x) =

c,x? 1 W

57 T 502903 +

Y-
24ET”

el
24E1”

We now use the conditions Y'(I) =0, Y"/() =0 to find

Wo 2

“t < BEI’

Thus the required deflection is
W, 2 ) Wl

Wy
—_ 3 —_— e e
161" ~ 1281% T EIY T 24EI

Y) =
Wol | Wil \
1681° ~ 1EI® T uEI”®
or Y() =
W, 12 Wl
2 B+

16EI° ~ 12EI

4
S4BT "

0
4B ®

Wy
ET
From the first two of conditions (2) and the unknown conditions Y'(0) =¢;, Y'(0) = ¢;, we find

4
{1 — g—st/2}

1 — e sl/2

=)

— %ﬁm_;%@ Uz — 1/2)
0<x<l/2
_ 2TE9T(§—1/2)4 x> 12
A
= T 2EI

(x — U2 U(x — I/2)

—1/2)

0<x<l/2

nR2<x<l

[CHAP. 3

63
@

@

“)
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20.

21.

A beam. has a concentrated load P, acting at the-point x=a. Show that we can
represent this loading by W(x) = P,8(x —a) where § is the Dirac delta function or
impulse function. ‘

Considéer a .uniform loading W, per unit
length over the portion of the beam between
a and a + ¢ [see Fig. 3-15]. Then the total load-
ing on this portion is @ ate

W()[a+6_ll] - W()E

Fig. 3-15

Since this total loading is to equal Py, we must
have

W = Pofe a<z<ate
0 otherwise

But we have already agreed to represent this in the limit as ¢ > 0 by
W) = Pydx—a)

Thus the required result is demonstrated.

A beam has its ends clamped at x =0 and
2 =1 [see Fig. 3-16]. A concentrated load
Py acts vertically downward at the point
x =1/3. Find the resulting deflection.

By Problem 20, the concentrated load at
z = 1/3 can be represented by P, 8(x — 1/3) where
8 is the Dirac delta function or impulse func-
tion. Then the differential equation for the
deflection. and the associated boundary condi- Fig. 3-16
tions are given by

diy- Po .
_dx—‘i B 8(x — 1/3) 1
Y(0) =0, Y'(0) =0, Y({@) =0, Y =0 €3]

Taking Laplace transforms, we have, if y — £ {Y(2)},

P
sty — SY(0) — s2Y'(0) — sY"(0) — Y'(0) = E_"Ie—ts/a )

Using the first two conditions in (2) and calling Y"(0) = ¢y, Y"(0) = ¢y, we find

ey Co Po 6—18/3
Y s + Py + Bl & (4)
Inverting, we obtain _
cyx? €o? Py (5 —1/3)3 :
Ya) = gt gy g e e =) ()
or equivalently, ‘
%013}2 + 16—02373 << l/3
Yx) = P,
%cle + %—02503 + G—E—I-(x —_ 1/3)3 l/3 < x < l
From the last two conditions in (2), we find ,
4P0l —ZOPO '
4 = % = 7RI

27EI’
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Then the required deflection is
2P 0 lx2 10P, iy x3

= — =9 — 3 Ulpe —
Y@ = ormr sigr T gEr @ T U3 UE—US)
2P, 4%(31 — 52)
~—S1ET 0<a<l/s
or Y() =
2P, x%(3l—52) P, s
——BiEl + m(x—l/m /8 <<l

PARTIAL DIFFERENTIAL EQUATIONS
22. Given the function U(x,t) defined for a =z =b, t > 0. Find

U\ (%, eU o\ _ (..U
(a)_£{3t_} = fo et ) ,c{%} = fo e gy

assuming suitable restrictions on U = Ulx, t).
(a) Integrating by parts, we have

oU ® v P au
- o —Sst — —_ 3 —st
’C{at} foesatdt le oesatdt

P P
+ sf e~ st Ux, t) dt}
0

0

= lim {e_s’ Ulz, t)
Puow

= sf e~ st Uz, t)y dt — Ulzx, 0)
0

= su(z,s) — U0 = su — Ulx,0)
where w = u(x,8) = £ {Ulx, t)}.

We have assumed that U(x, {) satisfies the restrictions of Theorem 1-1, Page 2, when regarded
as a function of ¢.

(b) We have, using Leibnitz’s rule for differentiating under the integral sign,

W = (Tl = L "y _
4{5} = J;e War = Efoe wa = %
23. Referring to Problem 22, show that
2
(a) ,C{%—g = s*u(x,s8) — sU(x,0) — U(x,0)
' ?U _ d*u
o {5} = @
, ; oU ,
where U:(z,0) = -t and % = u(z,8) = L {U(x,1)).
t=0
Let V =46U/dt. Then as in part (@) of Problem 22, we have
2U| AR _
4{7{2‘} = «C{gt—} = sL{V} V(z, 0)

= s[sL{U} — Ule,0)] — Us(w,0)
= 8 — sU(x,0) — U(x,0)

Note the similarity of the results of this problem and part (¢) of Problem 22 with Theorems 1-6
and 1-9, Page 4. Extensions are easily made.
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24.

25.

Find the solution of

v joU - e
331—3- = 25 + U, U(%,O) = 6Be
which is bounded for z > 0, £ > 0.

Taking the Laplace transform of the given partial differential equation with respect to t{ and
using Problem 22, we find :

du
I C2{su — Ulx,0)} +
or L 2s+1u = —12e 3% S )
‘ dx - ‘

from the given boundary condition. Note that the Laplace transformation has transformed the partial
differential equation into an ordinary differential equation {(Z).

'  f-stDdz
To solve (I) multiply both sides by the integrating factor ef * = ¢~ (2s+1z Then (1)

can be written
d
& @+ = — —(2s+D)z
dgne } 12e

Integration yields

6
—2s+Dz = —(2s+d)x = —3z 25+ 1z
e (2stlz s12° S + ¢ or u sr2° +_ce

Now since U(x,?) must be bounded as x—>=, we must have u(x, s) also bounded as x—>= and it
follows that we must choose ¢=0. Then

e—313

s+2
and so, on taking the inverse, we find
U, t) = 6e2t—3z

This is easily checked as the required solution.b

U _ &U

55 = 55 U@0) = 8sin2mz, U(0,) =0, U(Lt) =0 where o<z<1,

Solve
t> 0.

Taking the Laplace transform of the partial differential equation using Problems 22 and 23, we find

2 2
su — Ux,0) = 3—9; <or Z—m%—su = — 38 sin27x : (1)

where u = u(x,s) = L{U(x,t)}. The general solution of (1) is

w = e eVt 023_‘/;1" +

p +347r2 sin 272 2

Taking the Laplace transform of those boundary eonditions which involve ¢, we have

L{U(0,8)} = u(O,s)k= 0 #ﬁd “ -C{U(l, )} = u(l,s) =0 | NG )]
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Using the first condition [u(0,s) = 0] of (3) in (2), we have
| e +e = 0 | ‘ W
Using the second condition [u(l,s) = 0] of (3) in (2), we have
c1eVs + cpe=Vs = 0 - _ 03}
From (4) and (5) we find ¢; =0, ¢, =0 and so (2) becomes
3

u = ) sin 272 (6)

from which we obtain on inversion

Ulx,t) = 8e 4 gin2rx )

This problem has an interesting physical interpretation. If we consider a solid bounded by the
infinite plane faces x =0 and x = 1, the equation

U _ U
at dx2

is the equation for heat conduction in this solid where U = Ul(z,t) is the temperature at any plane
face # at any time ¢ and k is a constant called the diffusivity, which depends on the material of the
solid. The boundary conditions U(0,t) = 0 and U(1,¢) = 0 indicate that the temperatures at « =0
and # =1 are kept at temperature zero, while U(x,0) = 3 sin 27% represents the initial temperature
everywhere in 0 <« <1. The result (7) then is the temperature everywhere in the solid at time {>0. .
Further applications are considered in Chapter 8.

U U

Find the bounded solution of R

x>0,t>0 suchthat U(0,¢) =1, U(x,0) = 0.

Taking the Laplace transform of the partial differential equation and the condition U(0,¢) =1,
we find respectively

d2u d2u
su — U(z,0) = Tz or e s = 0 1)
1
and : u(0,8) = 3 (2)
From (1), u = ulx,s) = cieVsz+ epe~Vsz, Since U(w,t) must be bounded as « > «, u(x,s) =

£{U(z,t)} must also be bounded as ¥—>». Then we must have ¢; =0, assuming Vs >0, so that
u(x,8) = cye” Vs 3)

From (2) and (3) we find ¢y = 1/s, so that

e;ﬁz
u(x,8) =
3
Thus using Problem 43, Page 67, we find
x 2 *
Uz, t) = erfe <—> = — e—v? dv
2Vt V7 Yaevis

Physically, this represents the temperature at any point of a semi-infinite solid > 0 whose face
2 =0 is kept at unit temperature and whose initial temperature is zero [see Problem 25].
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MISCELLANEOUS PROBLEMS

27. Suppose that in Problem 14, Page 88, an external force F(t) acts on the particle but
there is no damping force. (a) Find the position of the particle at any time if
F(t) = Focoset. (b) Discuss the physical significance of your results.

(a) If the external force F(¢) is taken into account, the equation of motion becomes

azx
qE - —8X + F(B) (2)
or 2X" + 8X = F(t) (2)
As before, the initial conditions are
X(0) = 10, X0 =0 %)
If F(t) = Fycoswt, (2) becomes
2X" + 8X = Fjcosot 4)

Taking Laplace transforms and using conditions (8), we find, if & = £ {X},

5 . Fys
2{s2x — 8(10) — 0} + 8x = PR
Then if 2 #4,
Fy/2)s
e = 2108 n (Fo/2) (5)
s244 (s2 + 4)(s2 + w?)
_ 10s Fy s s '
or © = @it gz g {32+4 82+w2} ®)
Fy
and so X = 712} = 10cos2t + " (cos82t — cos wi) ?)
2(w2 —4) '
If &2 =4, then (5) becomes
Fo/2
- 10s + ( o/ )8 (8)

$2+4 " (Erap

and so using Problem 18, Page 53,

F
X = o1&} = 10 cos2t +?otsin2t (9)

(d) If «2=4 or w=2, ie. if the frequency of the applied external force is equal to the natural
frequency of the system, it is seen from (9) that the oscillations about the equilibrium position
increase indefinitely. This phenomenon is called resonance and the frequency corresponding to

@ =2 is called the resonant frequency. If in such case the particle is attached to a spring, the
spring will break. ‘

28. Work Problem 27 if (a) F(t) = FoU(t—a), (b) F(t) = Fo5(2).
(¢) In this case the equation of motion is [equation (2) of Problem 27]
| 2X” + 8X = FyUt—a)
where X(0) =10, X’(0) = 0. Then taking Laplace transforms, we find

FO e—as
S

2(s2x — 108) + 8¢ =
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nd x = _10s_ ———FO 60
a T #2147 =19

_ 10s + Foe™ j1 s
T o244 8 s s2+4
_ J10cos2t + LFy{l — cos2(t—a)} if t>a
10 cos 2t if t<a

Hence

Thus the displacement of the particle is the same as in Problem 27 until the time ¢ = a, after
which it changes. '

(b) In this case the equation of motion is
2X"” + 8X = F,&(1), X(0) =10, X'(0)=0
Then taking the Laplace transform, we find
2(s2x —10s) + 82 = F,

10s F,
214 7 2(2+a)

or x =
Thus "X =  10cos2t + 1F, sin 2t ’ ¥))

Physically, applying the external force Fj8(f) is equivalent to applying a very large foree
for a very short time and applying no force at all thereafter. The effect is to produce a displace-
ment of larger amplitude than that produced in Problem 14. This is seen by writing (1) in the form

X = V100 + F3/16 cos (2t — ) @®
where cos ¢ = —————1—(—}——, sing = —L
or tang¢ = Fy/40, so that the amplitude is V100 + F3/16.
29. Let ¥ = Y, (t) be a solution of the equation
Y'(t) + PAYY'(t) + Q)Y() = ©

Find the general solution of Y”(t) + P(t) Y'(t) + Q1) Y() = R(t).
The differential equation whose general solution is sought is given by
Y” + PY + QY = R 1)
Since Y =Y, is a solution of this equation with the right hand side equal to zero, we have
Yy + PY; + Qifl = 0 . 2)
Multiplying equation (1) by Y, equation (2) by Y, and subtracting, we find

Y, Y’ — YY! + P(Y,Y' - YY) = RY,. - 3)
which can be written

L@y —YY) + POY —YY) = RY, )
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An integrating factor of this equation is ’
. fra

/ Multiplying (4) by this factor, it can be written as

%{J”‘(YIY'—YYQ)}» = ry,Jd7®
Then by integrating,
B Pd ‘
I v - vy = f RY, & "%t + o
or Y, Y — YY), = e'fp‘”f Ry, P %a + e ST

where ¢, is a constant of integration.

Dividing both sides of (7) by Y%, it can be written as

d/Y e'fpdt fras e
E(?i) = Y% f RYle dt -+ (31

-frat

Yi

Integrating both sides of (8) and multiplying by Y,, we find, if ¢, is a constant integration,

-frat

-frat
Y = ‘ctYl f e - dt + 02Y1 + Y f ¢ f RYI efpdtdt} dt
Yy Yt

This is the required general solution. For another method, see Problem 103.

30. Find the general solution of (a) t¥” + 2Y' +tY = 0, (b) t¥” +2¥" + ¢¥ = csct.

(@) According to Problem 10, a particular solution of the given differential equation is

sin ¢

Y, ) =

Since the given differential equation can be written in the form (Z) of Problem 29 with

P=2/t Q=1 R=0

we see from equation (9) of Problem 29 that the general solution is

Y - (2%

sin ¢ f e—f(2/t) dat sin ¢

————dt + e
t sin2 t/¢2 2t

int - sin t
= 0151? fcscztdt + ¢ 7

sin ¢ sin ¢ i
= (—cott) + o — Acost+ Bsint
t t t.
where we have written ¢, = —A4, ¢; = B as the arbitrary constants.

(b) In this case we use equation (9) of Problem 29 with
P =2/t, Q@ =1, R = (csct)/t
and we find

Y = Acost-l—Bsmt — cost + smtl;lsmt

101
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31. Solve the partial differential equation

&Y @Y B .
—(3?—_4W+Y = 16z + 20sinx

subject to the conditions

Y©,t) =0, Y(mt) = 16r, Y:(x,0) =0, Y(z,0) = 16z + 12sin2zx — 8 sin3xz
Taking Laplace transforms, we find
82y — sY(x,0) — Y,(x,0) — 4% + vy = f—x + &fgﬂﬁ (1)

or, on using the given conditions,

a2y 1 . —4(s2+ 1)x __ Ssinx

Py 1 ., _ . .
az2 i (82 + 1y " 3 3s sin22x -+ 2s gin \300 (2)
’ 16
v0,8) =0, y@ms) = —= @
A particular solution of (2) has the form '
¥Yp = ax + bsine + csin2x + dsindx ' “4)

Then substituting and equating coefficients of like terms, we find the particular solution

162 20 sin » + 125 sin 2»  8s sin 3x (5)
s s(s2+b) 2+ 17 82 4 37

Yp

The general solution of the equation (2) with right hand side replaced by zero [ie. the complemen-
tary solution] is '

Ye — cle—l/&\/s2+1:c + cze% s2+1zx (6)
Thus the general solution of (2) 1s
¥y = Y + ¥ 4]

Using the conditions (3) in (7), we find

ey +eg = 0, cle—%Vsz+1w+ 0261/’2V32+17r — 0;

from which ¢; = ¢, = 0. Thus

_ 16z 20 sin & 12s sin 2 _ 8ssin3x
y s ' s(s2+5) 2417 2+ 37

Then taking the inverse Laplace transform, we find the required solution

Y(x, ) = 162 + 4sinx(1~c05\/gt) + 12 sin 22 cos V17t — 8 sin3x cos V37t

Supplementary Problems

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS
Solve each of the following by using Laplace transforms and check solutions.
32, Y'(t) +4Y(®) = 9, Y(0)=0, Y'(0)="1. Ans. Y(t) = 38t + 2sin2t

33. Y'(t) — 8Y'(¢) + 2Y(t) = 4t + 12¢~t, Y(0) =6, Y'(0) = —1.
Ans. Y(t) = 3et — 2¢2 + 2t + 3 + 2e—t
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34.

35.

36.

317,

38.

39.

40.

41,

42.

43.

Yty — 4Y'(t) + BY(t) = 1258, Y(0) =Y'(0) = 0.
Ans. Y(t) = 2582 + 40t + 22 + 2e? (2 gin ¢ — 11 cos t)

Y'() + Y(#) = 8cost, Y(0)=1, Y'(0)=—L1
Ans. Y(@t) = cost — 4sint + 4fcost

Yt - Y(t) = e, Y(0)=0, Y'(0) =0, Y'(0)=0.
- . 3 3 .
Ans. Y(t) = Jtet + l—lge‘%"{g cos?t + §\2/——sinl/é_—t} — Let

Yiv(t) +2Y"() + Y(#) = sint, Y©) = Y'(0) = Y"(0) = Y"'(0) = 0.
Ans. Y(t) = F{(B—1t2) sint — 3¢t cost}

Find the general solution of the differential equations of:
{(a) Problem 2, Page 82; (b) Problem 3, Page 83; (c) Problem 6, Page 84,

103

Ans. (@) Y = cyet + cpe?t + 4tet (¢) Y = ¢;sin8t + ¢y cos3t + L cos2t

(b) Y = e t(c, sin2t + cqcos2t) + Je tsint

S(;lve Y'(t) + 9Y(t) = 18t if Y(0) =90, Y(z/2) = 0. Ans. Y(t) = 2t + = sin3¢

Solve Y™(t) — 16¥() = 30sint if Y(0) =0, Y'(0) =2, Y'(z) =0, Y'"(z) = —18.

Ans. Y = 2(sin2t —sint)

Solve Y —4Y' +3Y = F(#) if Y(0) =1, Y'(0)=0.
t

Ans. Y = 3et — L3t + %f (63 — e¥) F'(t — u) du
0

Solve the differential equation
Y'+4Y = F(@t), Y(0)=0, Y'(0)=1

where F(t) = 1 o<¢<l1 .
. 0 t>1
Ans. Y(t) = 1sin2t + %{cos(2t—2) — cos 2t} for t>1
and Y(§) = Lsin2¢t + (1 —cos2t) for t<1

Solve Problem 42 if: (a) F(t) = U(t—f), [Heaviside’s unit step function];
delta function]; (¢) F(t) = §(t—2).

Ans. (@) Y(t) = Lsin2t if £ <2, }sin2t + {1 —cos(2t—4)} if t>2
(b) Y(t) = sin2¢, t>0 .
() Y(t) = Lsin2t if t<2, }{sin2t+ sin(2t—4)}2 if ¢t >2

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS
Solve each of the following by using Laplace transforms and check solutions.

4.

45,

46.

47.

Y +tY'—Y =0, Y(0) =0, ¥(0)=1. Ans. Y=t
(V" + (1—26)Y —2Y = 0, Y(0)=1, Y(0) =2 Ans. Y = e2t
(Y +(E—DY' — Y = 0, Y(0)=5, ¥(=)=0. Ans. Y = be~t

Find the bounded solution of the equation
2Y” + tY' + (2—-1)Y = 0
which is such that Y(1) = 2. Ans. 27,(8)/J1(1)

(b) F(t) = 8(t), [Dirac
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SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

48,

49.

50.

51.

52.

53.

54.

Y+Z =t . ces _ oy -
Solve —— . subject to the conditions Y(0) =3, Y'(0) = —2, Z(0) = 0.
— = e~ :

Ans. Y = 24§84+ fet —Jsint+ fcost, Z = 1 — fet+ §sint — L cost

Y —Z' —2Y +2Z = sint
Solve
Y'"+2Z'+Y = 0

Ans. Y = fe t+4 ke — fcost— Zsint+ Jtet, Z = le—t — 262t + Lte—t

if Y(0) =Y'(0) = Z(0) = 0.

X' 427" = ot
Sol if X(0)=Y(0)=Y'(0)=0.
olve {X’_+2X—Y:~1 if X(0) ©) (0)

Ans. X =1+et—e dt—e b ¥V =1+e¢-t—pe—a —qge~b where a = J2~(2—\/§), b = —%(2—!—\/5)

Solve Problem 49 with the conditions Y(0) =0, Y'(r) =1, Z(0) = 0.

r — _ —t
Solve { AL = (D™ en that Y(0) = 1, Z(0) = —

Y—Z = ¢t

Ans. Y =Jo(t), Z=—J,(t)— et

Solve —3Y" 4+ 3Z" = te~t-—-3cost
tY” — 272" = sint

Ans. Y = 302 +8t—3—1let, Z = 22+§+ Fe t+ Lte~t + cost

given that Y(0) = —1, Y'(0) =2, Z(0) =4, Z"(0) = 0.

Find the general solution of the system of equations in Problem 49.
Ans. Y = ¢+ cysint + cycost + 42 + Je~t

Z = 1—c¢;sint — egcost — Jet

APPLICATIONS TO MECHANICS

55.

Referring to Fig. 3-1, Page 79, suppose that mass m has a force F(t), t>0 acting on it but that no
damping forees are present.

(«) Show that if the mass starts from rest at a distance X = ¢ from the equilibrium position (X =0),
then the displacement X at any time £ > 0 can be determined from the equation of motion

mX" + kX = Ft), X(0)=a, X(0)=0
' where primes denote derivatives with respect to ¢, '

(b) Find X at any time if F(f) = Fy (a constant) for t > 0.

(¢) Find X at any time if F(¢) = Fo e—at where a > 0.

56.

57.

Ans. (b)) X = a+7<1—cos1/;’;—t>

F Fovm.
¢ X a + Wzo_m (e~ — cos VEk/m t) 4 oV R sin Vk/m t

2+k

Work Problem 55 if F(t) = Fg sinwt, treating the two cases: (@) @5 VEk/m, (b) o = Vk/m. Discuss
the physical significance of each case. - :

A particle moves along a line se that its displacement X from a fixed point O at any time ¢ is given by

X"(t) + 4X(t) + 5X(t) = 80sin5t
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58.

59,

61.

62.

(@) If at ¢ =0 the particle is at rest at X =0, find its displacement at any time t> 0. :

(b) Find the amplitude, period and frequency of the motion after a long time. '

(¢) Which term in the result of (a) is the transient term and which the steady-state befm? *
(d) Is the motion overdamped, critically damped or damped oscillatory?

Ans. (a) X(t) = 2e 2(cost+ Tsint) — 2(sin bt + cos 5t)
(b) Amplitude = 2V2, period = 27/5, frequency = 5/27
(¢) Transient term, 2¢e~2t(cost + 7 sin t); steady-state term, —2(sin 5t + cos 51)
(d) Damped oscillatory

Suppose that at ¢ =0, the mass m of Fig. 3-1, Page 79, is at rest at the equilibrium positiori X=0.
Suppose further that a force is suddenly applied to it so as to give it an instantaneous velocity V, _

.in a direction toward the right and that the force is then removed. Show that the dlsplacement of

the mass from the equilibrium position at any time £> 0 is

(@) Vo \/-ani sin J—gt

if there is no damping force, and

b S e—Bti2m  wh - B2
() 2 ¢ where vy = T AmE

if there is a damping force of magnitude g X’(t) where g < 2vkm.

Work Problem 55 if: (a) F(t) = F,U(t — T), [Heaviside’s unit step function]; (b) F(ty = Fos(t—T)
[Dirac delta function]. Discuss the physical significance in each case. ‘ :

Ans. (@) X = an cos Vk/mt if t<T and _
X = aFgcosVkimt + (Fo/k){1 — cosVk/m(t—T)} if ¢t> T
() X = aFgcosVkimt if t<T and
X = aFgcosVkimt + (Fo/Nkm) sinVk/m(t—T) if t>T

Suppose that at ¢ =0 the mass m of Fig. 3-1, Page 79, is at rest at the eqhilibrium position and tﬁat
a force F,8(t) is applied. Find the displacement at any time ¢ >0 if (a) the system is undamped,
(b) the system is eritically damped. Discuss the physical significance of each case.

F
Ans. (a) sm\/k/ t, (b Tngte—ﬁtmm

A ball of mass m is thrown upward from the earth’s surface with velocity V. Show that it will rise
to a maximum height equal to V3/2g, where g is the acceleration due to gravity.

A mass m moves along the x axis under the influence of a force which is proportional to its instan-
taneous speed and in a direction opposite to the direction of motion. Assuming that at ¢=0 the
particle is located at X =¢ and movmg to the right with speed Vy, find the position Where the mass
comes to rest.

A particle moves in the 2y plane so that its pesition (X, Y) at any time is given by
X" + kiy = 0, Y'+ KX = 0

If at time £ = 0 the partiecle is released from rest at (a, b), find its position at any time ¢>0.

ko + bk ak, — bk
Ans. X = i 1 cos Vit + { —=—— ) cosh Vi, t
T2k, 2%k,
Jep + bl ey — b\
Y = (a 22k 1) cos Vkikat — <w—22’c—-—l> cosh Vkik,t
1 .
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APPLICATIONS TO ELECTRICAL CIRCUITS

64.

65.

66.

67.

68.

69.

70.

71

72,

73.

A resistor of B ohms and a capacitor of C farads are con-

nected in series with a generator supplying E volts [see @

Fig. 3-17]. At t =0 the charge on the capacitor is zero.

Find the charge and current at any time t > 0 if: (a) E = E,, =

a constant; (b) E = Ege—t &> 0. R o——
Ans. (@) Q@ = CEyl— ¢ ¥/RC), | = (E /R)e—t/RC

b)) Q = ﬂ (et — g—t/RC)
1—aRC ’
CE, /e-t/RC Fig. 3-17
i = i__FC_ <_R:C— — ae‘"“) if « 7 1/RC
—a

Work Problem 64 if E = E,sinwt and the initial charge on the capacitor is Q.

’ oE, Ey (4 coswt — (1/RC) sin wt ‘
= 4+ - | g—t/RC — -
Ans.  Q {QO R(w? + 1/R2(72)} TR { w? + 1/R2C? o 1= de/ds

An inductor of L henrys and a capacitor of C farads are in series with a generator of E volts. At
t =0 the charge on the capacitor and current in the circuit are zero. Find the charge on the capacitor
at any time t>0 if: (a) E = E\, a constant; (b) E = Ege—¢t, o >0,

Ans. (@) @ = CEg{1 — cos (t/'\/LC )}
E aEq/C/L
® @ = W‘M{e—w — cos (t/VLC)} + ﬁ sin (¢/VLC)

Work Problem 66 if E = E,sinot, discussing the cases (a) o = 1/VLC and (b) o = 1/VLC and
gxplaining the physical significance.

Work Problem 66 if E(t) is (a) E,U(t — a) where U(t — a) is Heaviside’s unit step function, (b) E, s(t)
where §(%) is the Dirac delta function. :

Ans. (@) Q=0 if t<a, and CE0{1~cds<t;Ca>} if t>a

(6) Q@ = E,VC/L sin (/YLC)

An inductor of 3 henrys is in series with a resistor of 30 ohms and an e.m.f. of 150 volts. Assuming

that at £ =0 the current is zero, find the current at any time ¢ > 0. Amns. I = B(1 —eg—10t)

Work Problem 69 if the em.f. is given by 150 sin 20¢. Ans. I = sin 20t — 2 cos 20t + 2¢— 10t
K

Find the charge on the capacitor and the current in J}:]\ prd

the circuit [Fig. 3-18)] at any time ¢ after the key K is NS

closed at t=0. Assume that L, R,C and E are con-
stants and that the charge and current are zero at
t=0. Treat all cases. ) L C o

(¢) Work Problem 71 if F = E, sinwt. (b) Show that

¢ . _ 1 R R
resonance occurs if we choose o = C  3I2 L — MW
(¢) Discuss the case B =0.
Fig. 3-18
An electric circuit consists of an inductor of L henrys in series with a capacitor of C farads. At t=20
an e.m.f. given by
B = E@/Ty, 0<t<T,
0 t>T,

is applied. Assuming that the current and charge on the capacitor are zero at ¢t =0, find the charge
at any time £ > 0.
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CE
Ans. Q = ——{t— VLCsin(t/VLC)} if 0<t<T, and
o -
. CE, t—T, , t— T, ¢ :
R = —{T cos( >+VLCsin< >—VLCsin if t>T
Ty |°° VIC VLC VIC 0
74. In the electric circuit of Fig. 3-19,
i (@)’
E = 500 sin 10t \%) >
R; = 10 ohms {2
R, = 10 ohms <
L = 1 henry ’ %Rl C-H— R,
C = .01 farad '
If the charge on the capacitor and the currents L
I, and I, are zero at t =0, find the charge on the <O
capacitor at any time £> 0.
Ans. Q@ = sin10t — 2 cos10¢ + ¢~ 10%(gin 10¢ + 2 cos 10¢) Fig. 3-19

APPLICATIONS TO BEAMS

75. A beam which is clamped at its ends z'= 0 and x =1 carries a uniform load W, per unit length. Show
Wox2(l— x)2

that the deflection at any point is Y(x) = SiB1

76. Work Problem 75 if the end # =0 is clamped while the end « =1 is hinged.

77. A cantilever beam, clamped at # =0 and free at « =, carries a uniform load W, per unit length.
2

Show that the deflection is Y(x) = 240?(952— 4lx + 612).

78. A beam whose ends are hinged at # =0 and = =1 has a load given by

e = 1O 0<a<l/3

Find the deflection.

79. A cantilever beam, clamped at x =0 and free at x =1, carries a concentrated load P, at x=1 Show
Py a2

that the deflection is given by Y(x) = m(i&l— x).

80. Work Problem 79 if the load is at = = I/2.

81. A beam has its ends hinged at x =0 and # = 1. If a concentrated load P, acts vertically downward at
2 = 1/2, show that the deflection is
Pyzx

Y@ = 151

(812 — 4x2?) 0<ae <2

The deflection for I/2 < z <l is obtained by symmetry or by replacing z by I — 2.
82. Work Problem 81 if the ends of the beam are clamped.

83. A beam has its ends hinged at x =0 and x =1 A concentrated load P, acts vertically downward at
the point x =1/3. Show that the deflection is given by
Py x(512 — 9x2) P,

Yy = T REI + BEI (x — 1/8)3 U(w — 1/3)
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84.

85,
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A beam has its ends hinged at x =0 and = =1 The beam carries a uniform load Wo per unif lengi:h
and also has a concentrated load P, acting at x =1/2. (a) Find the deflection. (b) Discuss how the

solution in (a) can be obtained from the solutions to Problems 18 and 81. Explain.

A beam whose ends are clamped at x =0 and = =1 carries a load W(x) per unit length given by

W) = 0 0<a<l/2
Wexe I/2<x<1

and also a concentrated load at x = I/3. Find the deflection.

PARTIAL DIFFERENTIAL EQUATIONS

86.

87.

88.

89.

90.

9.

92.

93.

9.

95.

au U
Solve E - 2—61‘_2’

Ans. U(x,t) = 10 e—327% gin dra

U©,t) =0, Us5,t) =0, Ux, 0) = 10 sin 4z,

Work Problem 86 if U(x,0) = 10 sin4rx — 5 sin 67z,
Ans. Ux,t) = 10e—327% gindwx — 5 e—727% gin 6z
92y 92y

Solve SE = QW’ Y(Q, )y =10, Y(@,8) =0, Y(x,00) = 20sin27x — 10 sin 5rex.

Ans. Y(z,t) = 20 sin2rx cos 6zt — 10 sin brx cos 15z¢

Give physical interpretations to (z) Problem 86, (b) Problem 87, (¢) Problem 88.

CaU 92U .
Solve 2 = 3@ , U 0,8) =0, UR/2,t) =0 if:
(@) U(x,0) = 30cosbx, (b) U(x,0) = 20cos3x — 5 cos 9z
Ans. (@) 30e~"tcosbx, (b) Ulx,t) = 20e=27 cos8x — 5e—243t cog 9z

Present a physical interpretation of Problem 90.

2 .
(¢) Find the solution of G(TItJ = %—4& Uu,) =0, Ulx,t) =0, Ulx,0) = 6 sipzt —4 §in,2§_:q.
(b) Give a possible physical interpretation to the solution.
Ans. (¢) Uz, t) = 6e5t sine — 4 e~ 8 gin 2¢

a2y 82y B _ _ _
Solve = 163;2—, Y’”_(O’ t) =0, Y(3,t) =0, Y(x,0) =0, Y,(x,0) = 12 cos 7 + 16 cos 3z — 8 cos Brx.

Ans. Y(z,t) = 12 cos 7x sin 47t + 16 cos 37z sin 127t — 8 cos brz sin 207t

Find the bounded solution Y(:v, 1), 0< o<1, t>0 of the boundary-value problem

Y
Fra %—I: 1 — et Y(2,0) = «
Ans. Y(z,t) = 2 +1 — et
Solve the equation )
3y 32y
T >0, t>0

subject to the conditions

Y(0,t) = 10sin2t, Y(z,00 = 0, Y,(®,0) = 0, lim Y(&,8 = 0

T~ 0
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MISCELLANEOUS PROBLEMS

96. ‘Show that the solution of the differential equation

Yty — K2Y(®) = F@)

subject to. Y{(0) = a, Y'(0) = b is
t
Y(£) = a@acoshkt + (b/k)sinhkt + % f F(u) sinh kk(t —u) du
0

Solve YY¥(t) + Y''(t) = 2sint, Y(0)=Y'(0)=0, Y"(0) =1, Y"(0)=—2.

97.
Ans. Y = 12— 2+ e t+ sint + cost
98. Find the general solution of the differential equation of Problem 45.
e—2t
Ans. Y(t) = cye Tdt + cpe? :
99, Find that solution of the equation _
ty” — (t+2)Y +8Y = t—1

which has a Laplace transform and is such that Y(0) = 0.

100. What is the general solution of the diﬁerential equation in Problem 997

101. (¢) Use Laplace transforms to show that the solution of
a2y
T + k2Y = A coswt, Y0)=a Y (0)=p8
is Y@ = A (cos ‘;t —k;:os k) 4 & coskt + (B/k) sin kt.
2=

(b) Give a physical interpretation of the results of part (a).

X'+Y =Y+2Z
Y+ 2 = X+2Z if X0 =2 Y0 =-3 Z(0) =1
X+7Z =X+7Y

Ans. X = 3e~t2{3cos(V31/2) — 23 sin(V31/2)}

102. Solve for X:

Work Problem 29 by letting Y = VY, where V is a new dependent variable.

103.
104. Can the method of Laplace transforms be used to find the general solution of
Y'"+Y = sect
Explain,
105. (¢) Find a bounded solution of ‘
t—-1DY" + —4)Y — 4Y = 0

such that Y(0) = 3. (b) What is the general solution of the equation in (e)?

: —4¢
Ans. (@) Y=238¢%, (b) Y = _cle,‘“f ti;—l—dt + cgett
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106.

107.

108.

169.

110.
111.

112.

113.

114,

115.

116.
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h h I _ f” e —tx2 .
(@) Show that (t) = ) mida:

satisfies the differential equation

dl _ 1 [7 3
S-1 = 2{, 100) = /2

(b) By solving the differential equation in (a), show that
It = %ef erfc V't

A particle moving on a straight line (the x axis) is acted upon by a force of repulsion which is pro-
portional to its instantaneous distance from a fixed point O on the line. If the particle is placed at
a distance a from O and is given a velocity toward O of magnitude V,, find the distance of closest
approach to 0.

If the ball of Problem 61 encounters air resistance proportional to its instantaneous velocity, show
that the maximum height reached is

m m2

7 (kVo +mg — kg) — 7

where k is a constant of proportionality.

In the cireuit of Fig. 3-18, Page 106, suppose that the em.f. E is a function of % while L, R and C

are constants. At the instant ¢ =0 that the key K is closed, assume that the charge @ on the capacitor
and current I are zero. Show that if R2 < 4L/C, then the current at any time £> 0 is given by

Ity = % fot E(t — u) e~ Ru/2L <c05au - % sin au) du
where o« = V1/LC — R2/4L2.
Work Problem 109 if (o) R2=4L/C, (b) R2 > 4L/C.
Present a mechanical analog to (a) Problem 64, (b) Problem 66, (¢) Problem 71.

Give an electrical analog to (a) Problem 55,
(b) Problem 57. : F(8)

Give a mechanical analog to Problem 74 involv-
ing masses connected by springs.

A particle of mass m moves along the z axis
under the influence of a force F(f) as indicated 0 T/2 T ¢
in Fig, 3-20. If the particle starts from rest

at t =0 determine its position and speed at any

time ¢ > 0. Fig. 3-20

A beam which is clamped at £ =0 and « =1 carries a concentrated load Py at a point « =a where
0<a <l Show that the deflection is

207 — )2 :
Poa*l—a) {8al — (2a + l)x} 0<z<a

T6EID
Y@ = 2(] 2 3
Los 0= 0F 301 — (2atpay + T8~

a<xe<l

6EI13 6E]

Work Problem 115 if the beam is clamped at x =0 but free at x =Ll
Py a2

m—(&z-—x) 0<zx<a

P0a2
m—(?»x—-a) a<zx <l
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117. A beam which is hinged at x =0 and x» =1 carries concentrated loads Py at * =1/3 and « =2l/3. Find

118.

119.

120.

the deflection.

If a beam carrying a load W() per unit length rests on an elastic foundation, the differential equation
for the deflection is
ay

EJI 7y + kY = W)
where k is called the elastic constant of the foundation. Suppose that such a beam, clamped at both
ends # =0 and x =, carries a uniform load W, per unit length. Show that the bending moment at
% =0 is given by
W <sinh al — sin al>

2a \ sinh al + sin al

where a = V4 k/4E].

Two electric circuits, called the primary and Fi ¢ 1
secondary circuits;, are coupled inductively as ;1 i e
shown in Fig. 3-21.
Primary Secondary
(¢) If M is the mutual inductance, show that
the currents I, and I, are given by L
M ‘
L dl, R Mdl2 3 ' %Rz
vt EL T Mg = R
1
dI2 dll L L
= L = 1 2
det+R212+Mdt 0 TN 7 BT
(b) If the currents I; and [, in the circuits are Fig.3-21
zero at time ¢ =0, show that at time £>0 |
they are given by
I, = ELy et — eazt> + ERy /et _ et + II‘;"_
LiLo— M2\ o« —ay ayp T ag\ ap ag 1
. = EM et — gtal
27 LiL,—M? ag — ay
where o, and «, are the roots of the equation

(LyLy— M2)e? + (LyRy+LyRy)a + BBy = 0

Discuss Problem 119 if L,L, = M2,




Chapter 4

INTEGRAL EQUATIONS

An integral equation is an equation having the form

Yt) = F(@) + f bK(u, t) Y(u) du (1

where F(t) and K(u,t) are known, a and b are either given constants or functions of ¢, and
the function Y(¢) which appears under the integral sign is to be determined.

The function K(u, t) is often called the kernel of the integral equation. If a and b are
constants, the equation is often called a Fredholm integral equation. If a is a constant
while b =¢, it is called a Volterra integral equation. '

It is possible to convert a linear differential equation into an integral equation. See
Problems 1-8 and 25. ' :

INTEGRAL EQUATIONS OF CONVOLUTION TYPE

A special integral equation of importance in applications is
Yt) = F(t) + j: K(t—u) Y(u) du | (2)
This equation is of convolution type and can be written as
Yty = F(@) + K(t)*Y(?)

Taking the Laplace transform of both sides, assuming .€ {F({)} = f(s) and £ {K(t)} = k(s)
both exist, we find ' ‘

Y(s) = f(s) + k(S ys) or y(s) = . 1(812(87

The required solution may then be found by inversion. See Problems 5 and 6.

112
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ABEL’S INTEGRAL EQUATION. THE TAUTOCHRONE PROBLEM.

An important integral equation of convolution type is Abel’s integral equation

" Y() _
fo i du = G(t) (3)

where G(?) is given and « is a constant such that 0 <« <1.

An application of Abel’s integral equation is that of finding the shape of a frictionless
wire lying in a vertical plane such that a bead placed on the wire slides to the lowest point
in the same time T regardless of where the bead is placed initially. This problem is called
the tautochrone problem and the shape of the wire can be shown to be a cycloid. [See
Problems 7-9.]

INTEGRO-DIFFEREN’I“IAL EQUATIONS

An integro-differential equation is an integi‘al équation in which various derivatives
of the unknown function Y(¢) can also be present. For example,

Y"(t) = Y(@) + sint + ft cos{t—u) Y(u) du (4)

is an integro-differential equation. The solution of such equations subject to given initial
conditions can often be obtained by Laplace transformation [see Problem 10].

'DIFFERENCE EQUATIONS

An equation which relates the function Y(t) with one or more functions Y(f — «), where
o is constant, is called a difference equation.

Example. Y(f) — 4Y(t—1) + 3Y(t—2) = t is a difference equation.

In various applications it is possible to formulate a difference equation from which we
- seek the unknown function Y(¢) subject to specified conditions. Determination of this

function, which is called solving the difference equation, can often be accomplished by the
Laplace transformation. See Problem 11, :

Difference equations involving relations of terms of the sequence a, a1, a2, ..., such as
for example a@n+2 — 50n+1+ 6@, = 0 where do=0, a1=1, can also be solved by Laplace
transforms. See Problems 18, 19 and 24. '

DIFFERENTIAL-DIFFERENCE EQUATIONS

A differential-difference equation is a difference equation in which various derivatives
of the function Y(?) can be present. Thus, for example, '

Y'(t) = Y(t-1) + 2t ' (5)

is a differential-difference equation. - See Problem 12.
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It is also possible to have an integro-differential difference equation which is a differ-
ential-difference equation in which the unknown function Y(¢) can also appear under an
integral sign.

Solved Problems
INTEGRAL EQUATIONS

1. Convert the differential equation
Y7(t) — 8Y/(t) + 2Y(t) = 4sint, Y(0) =1, Y/(0)= -2
into an integral equation. '
Method 1.
Let Y"(#) = V(¢). Then using Problem 23, Page 57, and the conditions Y'(0) = —2 and Y(0) =1,

t ¢
Y@t = f Vu)du — 2, Yy = f (t—w) V() du — 2¢ +1
0 0.

Thus the differential equation becomes

t t
V) — 3f Viu)du + 6 + 2] t—wyVu)du — 4t + 2 = 4sint
0 0
from which we obtain
t
V() = 4sint + 4t — 8 + f 8 = 2(t—w)} V(u) du
: 0
Method 2.
Integrating both sides of the given differential equation, we have
t ¢
f {Y”"(u) — 8Y"(u) + 2Y ()} du = f 4 sinu du
0 0
t
or Y@ty — Y(0) — 3Y(t) + 3Y(0) + 2f Yu)du = 4 — 4cost
0

This becomes, using Y’'(0) = —2 and Y(0) =1,

t
Y'(t) — 3Y(®) + Zf Y(u)du = —1 — 4cost
0

Integrating again from 0 to t as before, we find

Y(t) — Y(©0) — 3[0 Y(u)du + 2]0 (t—~w¥Ymdu = —t — 4dsint

t :
or Y(t) + f 2(t-w) -8 Ywdu = 1 — ¢t — 4sint
0
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2. Convert the differential equation
Y'(t) + (L-t)Y'(¢) + e tY() = ¢ — 5t, Y(0) = —3, Y’(0)

into an integral equation.

I
I

Method 1.
Letting Y”'(t) = V(t) and using Y’(0) =4, Y(0) = —3 we have as in Problem 1, Method 1,

.ot . t
Y = f V(u)du + 4, Yty = f (t—uw)Viuydu + 4¢ — 3
0 : 0
Thus the differential equation becomes
¢ t ;
V) + (l—t)f Viuydu + 41—1t) + e‘tf (t—u)V(u)du + 4te=t — Be t = 8 — 5t
0 , 0

which can be written
t
Ve = 8 — t — 4 4 3¢t — dte-t + f {t—1—et(t—w}Viu) du
0
Method 2.
Integrating both sides of the differential equation as in Problem 1, Method 2, we find

t ¢ t t
fo Y’ (u)du + j(; QA—uw)yY'(u)du + J(; e v Y(uydu = j:) (u® — 5u) du

Then integrating by parts in the second integral, we find

t t ¢ 14 5¢2
Y@ — Y0 + <{(1—uY(w +f Y(u) du} + f e"*Y(uydu = T~ 3
0 0 Y
i.e.,
' ¢ ¢ tt 52
Y'(t) — Y0 + Q—HY@E — Y0 + f Y(u) du + f e~ *Y(u)du = i 7
0 0
t ¢ B2
or Y'(t) + 1—-8Y(@®) + f Y(u)du -+ f e vYu)du = yulnl + 1
1} 0
Another integration from 0 to ¢ yields
t t £ 5 53
Y(t) — Y(0) + f A—u)Y(u)du + f (t—u)Y(u)du + f t—wyerYm)du = %_T+t
0 0 o
which can be written
¢ ' t5 5¢3
Y(t) +f {1+t—2u+ (t—u)e*} Y(u)du E(T_—6—+ t — 3
o .

3. Express as an integral equation the differential equation
YU(t) — 4Y(t) + 6Y7(t) — 4Y'(t) + Y(§) = 3 cos2t
subject to the conditions Y(0)=-1, Y’(0)=4, Y”(0)=0, Y(0)=2.

Method 1.
Let Yiv(t) = V(t). Then as in Problems 1 and 2, we find

t
Y = f t Vi du + 2, Y'(t) = fo (t—u) V(u) du + 2t
0

t g — )2 L TREPRY 3
vy = fo(tz!") Vidu + 2 + 4, Y@) = fo Q%V(u)du+%+4t—1
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Substituting these into the given. differential equation; it becomes

: t
V(ty = 25 — 16t + 488 — 113 + 3 cos2t + f 4—6(t—w + 20t —w)? — LEt— w3 V(u) du
0 }

Method 2.

Integrating successively from 0 to t as in the second methods of Problems 1 and 2, we find the
integral equation

19 85t

¢ ‘
Y(¢) —J(; {4—6(t—u)+2(t—-u)2—%(t——u)3}Y(u)du = + 8 — —— + 58 + 13—6c052t

16

These integral equations, as well as those obtained in Problems 1 and 2, are Volterra integral
equations; the limits of integration are from 0 to £. In general this type of integral equation arises
from linear differential equations where conditions are specified at one point. For an example of a
Fredholm integral equation which arises from linear differential equations in which conditions are
specified at two points, see Problem 25.

Convert the integral equation
t
Y{) = 3t — 4 — 2sint + f {(t—u)? —3(t—u) + 2} Y(u) du
[}
into a differential equatidn.

We make use of Leibnitz’s rule,

d b(t)

b(t)
K
dt K, tydu = f S + Kb, 6% — ka5 )

a(t) a(t)

Thus we have on differentiating both sides of the given integral equation,
t t
Y'#O) = 8 — 2cost + f 2(t —u) Y(uw) du — 3f Y{u)ydu + 2Y(t) (@
0 0
Another differentiation yields,
t
Y'(t) = 2sint + 2f Y(u)du — 3Y(t) + 2Y'(¥) &3}
0
and a final diffei'entiation yields the required differential equation
Yt = 2cost + 2Y(@) — 3Y'(t) + 2Y"(¢t) “4)
or Y — 2Y” + 3Y" — 2Y = 2cost

The initial conditions obtained by letting ¢t =0 in the given integral equation and also in equations
(2) and (3), are

Y(0) = —4, Y(0) = -7, Y"(0) = -2

Note that the initial conditions. are contained in the integral equation.

It is possible to convert every linear differential equation into an integral equation. Howew‘/'er,
not every integral equation can be converted into a differential equation, as, for example,

t
Y{t) =  cost + f In(u+¢) Y(u) du
0
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INTEGRAL EQUATIONS OF CONVOLUTION TYPE
t
5. Solve the integral equation Y(f) = £ + f Y(u) sin (t —u) du.
]
The integral equation can be written

Y{) = & + Y(t) *sint

Then taking the Laplace transform and using the convolution theorem, we find, if y = £{Y},

v = w7 2+1 + 1
: ' 2(s2+1) 2 2
solving, ¥ = = 3 1 =
- 2\ U N 1
and so Y = 2(?) + 2<F> = ¥+ 12t4

This can be checked by direct substitution in the integral equation.

t
6. Solve the integral equation f Y(u) Y(—u)du = 16sin4t.
0
The equation can be written as
Y@)*Y({#) = 16 sin4t
Taking the Laplace transform, we find

64 *+8
2 — - —
{y(s)} Zrig o v@® T

Then YO = £ole) = =8J,49

Thus Y(t) = 8Jy(4t) and Y(¢) = —8Jy(4t) are both solutions.

ABEL’S INTEGRAL EQUATION. THE TAUTOCHRONE PROBLEM.
7. Solve f Y(“) du = 1+t + &

The equation can be written

Y ¥¢12 = 14t + &

Then taking the Laplace transform, we find

LY} £{t-Vy = pe{l+t+e2}
yo(/2y _ 1,1 2
or Y2 = st at e

1 1 1 2
and y = Wﬂ{;ﬁ+;¥7§+@}
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. _ 1 t—1/2 t1/2 213/2
Inverting, Y = 10/% {1‘(1/2) t et P(5/2)}
1 —1/2
‘ = S(¢TV2 4 202+ 8432) = —(3+6t+8¢2)
7T 37
The integral equation is a special case of Abel’s iﬁtegrml equation.
A bead is constrained to move on a fric- oy

tionless wire which lies in a vertical plane.
If the particle starts from rest at any point
of the wire and falls under the influence of Pg(u, v)
gravity, find the time of descent to the low-
est point of the wire.

Assume that the bead has mass m and starts 9 Q )
from rest at point P with coordinates (u,v) as (x,y.
shown in Fig. 4-1. Let point @, having coordinates %) x

(x,y), be some intermediate point in the motion
and suppose that the lowest point of the wire is ]
taken to be the origin O. Let o be the arc length Fig. 4-1
0Q. From the conservation of energy, we have

Potential energy at P + Kinetic energy at P =  Potential energy at @ + Kinetic energy at Q
L +0 = 1} + LAY
zMgv = gmgy im at

where do/dt is the instantaneous speed of the particle at @. Then

(%})2 = 20—y

or using the faect that o decreases as time ¢ increases,

&~ Ve | 1)

‘The total time T taken for the bead to go from P to O is given by

9.

T 0 — v da
-J;d,t - fv\/ﬁ.‘a(%—y-) B J(,.\/29(1)-14) ®

When the shape of the curve is given, the arc length can be expressed in terms of ¥ and we find

do = Fy)dy L ®
Thus (2) becomes
S F(y) dy
r = 4
Vag Jo Vo—u @

In general T is a function of v, i.e, of the starting position.

Find the shape which the wire of Problem 8 must have if the time taken to reach the
lowest point is a constant, i.e. is independent of the starting position.

In this case we have to find F(y) such that
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where T is a constant. This integral equation of convolution type is a special case of Abel's integral
equation [see Page 113] and can be written

V2gT = Fy *y™ 12 (@
Taking Laplace transforms and noting that .¢ {F(y)} = f(s), £ {y~V2} = T(})/sV/2 = Vu/s/2, we have

TV 2g
Vo sl/2

29T -V
PRCTE S CI

The inverse Laplace transform is given by

* F(y) = —T 29 aC“l .1_ = . T'vzg y_1/2 = T__.'_zg y—~1/2
Vo 5172 Ve (/2 -
Since do _ Vde?tdy? _ 1+ (& g
dy dy dy
we have 1+ dw\? = Z___ “2-‘73/—1/2
dy T
Tv2 2
If we let Vb = — Y or b= 27{5 ()
2
(3) can be written 1 + do = ] or de = b—y
dy ] dy y

gince the slope must be positive. From this we find on intégrating,

x = fJ—é;—ydy+ [ (5)

Letting y = b sin24, this can be written

2
x = f bc?so-2bsin0cos0da+c
b sin? 9

2bj‘ cos®ods + ¢ = bf (1+cos20)dsg + ¢ = %(20+sin20) + e

Thus the parametric equations of the required curve are

(1 — cos 2¢)

Do o

> o= %(29+sin26)+c, y = bsin2¢ =

Since the curve must pass through the point x =0, y =0, we have ¢ =0. Then lTetting

the parametric equations are
x = glp +sing), ¥ = a(l —cosg)

These are the parametric equations of a cycloid [see Fig. 4-2 below]. For a given constant T, the
wire has the shape of the curve shown heavy in the figure. The cycloid is the path taken by a fixed
point on a circle as it rolls along a given line [see Problem 44].

G
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Fig. 4-2

INTEGRO-DIFFERENTIAL EQUATIONS

t
10. Solve  Y(f) + 5 f cos2(t—w) ¥ du = 10 if ¥(0)=2.
0
The equation can be written
Y'() + beos2t*Y(t) = 10
Then taking the Laplace transform, we find

bsy _ 10
W YO+ 5Ty TS

268 + 1052 + 83 + 40

or v o= s%(s2 4+ 9)

Hence by Problem 44, Page 67,

Y = %(24 + 120¢ + 30 cos 3t + 50 sin 3%)

Note that by integration from 0 to ¢ using Y(0) =2, the given integro-differential equation can be
converted into the integral equation

t
Y + 5f (t—u)cos2(t—u) Y(wydu = 10t + 2
0

DIFFERENCE AND DIFFERENTIAL-DIFFERENCE EQUATIONS'
11. Solve 3Y(t) — 4Y(t—1) + Y(t—2) = tr if Y(t) =0 for t<0.
7 Taking the Laplace transform of both sides yields

BL{Y®) — 40FG-1) + £{Y6-D} = £ = & o

Now LYE—-1)} = fw e~ st Y(E—1) dt
0

= f e=s@+D Y(u) du  [letting ¢ = u+ 1]
1

It

4] ®©
e—sf e st Y(u) du + e—sf e s Y(u) du
-1 0

=3 e_sy
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and L{YE—2)} = fm e~ stY(t—2) dt

1]

= J‘ e—5u+2) Y(y) du

-2

-2

= 6—2Sy

since Y(u) =0 if » <0, so that
0 0
f e s Yu)du = 0 - and f
1 s

Then (1) becomes

1 1

APPLICATIONS TO INTEGRAL AND DIFFERENCE. EQUATIONS

[letting ¢ = w+ 2]

0 o ’
e—zsf e—su Y(u) du + e—2sf e~ Y(u) du

0

euY(u)du = 0

By — de Sy + e"By = =

and ¥ T S -decTte)

_ 1 1 1
T 22 |1—e 5 3—es(
_ 1[4

282 |1—e* 31— e¢/3)

{(1+e § 4 @72 4 @738  ..v) —

- L 19/ 1yem
= 32 2§< >82

Hence Yy =

w l\')[
[y
GO =

o] o+

where [t] is the greatest integer less than or equal to ¢.

$2(1 — e 5)(3 — e~

%)

e—2s e—3s

o
<1+T+vf—33—

C18 (-

12. Solve Y’(t) + Y(t—1) = £ if Y(t)=0 for t=0.

Taking the Laplace transform of both sides yields

L' + {Y(t—-1}r = 2/

Now Loty = so{Y} - Y(0) =

and L{Y(t—-1)}

f et Y(t—1) dt
0

= f e—sut+1) Y(u) du
-1

sy — 0 = sy

[letting ¢t = u+ 1]

= e‘sf e su Y(u) du + e—sff e~ s Y(u) du
1 0

= e Sy

121
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0
since Y(u) =0 for u =0 so that f e s Y(u) du

sy + e sy

By use of series, we have

Thus if [#] denotes the greatest integer less than or equal to ¢, we find that

y =

= 0.
-1
- 2 2
T g3 Y s3(s + e—9)
2 _ 2
+ e7%) s%(1 + e~5/3)
e—s e—2s e—3s
1 8 2 T s T >
2e~ 8 2e—2s 2¢—3s
T T PP
e“nS
0 gn+4
(t—m)n+s
—_— t=
"+ 31 "
otherwise

_ e—ns
L ! {sn-}-:}}

Y ()

[t}

23

13. In Problem 12 find (a) Y(4), (b) Y(=).

(a) Since [4] =4, we have

(b) Since [r] =38, we have

Y(x)

n=0

23 (1=

(t_n)n+3
n=0 (n+38)!

APPLICATIONS TO INTEGRAL AND DIFFERENCE EQUATIONS

[CHAP. 4

Then (1) ean i)e written

()

4
d—mn+s 43 34 95 16 B
2 3 mTar < 2imtatate = 2862 (approx)
n+d w3 (r—1)% (r — 2)5 (m —8)8 _
T3 2 {g T T TE a1 = 1212 (approx.)

4. If Fit)=rm for n=t<n+1, n=0,1,2,3,..

L{F®)}

0

1—es

f e st F(t) dt
0

Tl
f e stpeddt +

., find .C {(F(8)}.

8

1—e s

s

1—e-s

e 8§ — g—2s
+ r
8

1

+ 92 e~ 28 — o—3s
s

A+ res+r2e=2 + ...

1—e¢s

s

1 —re—s

8(1 — re—s)

2 3
f e stpldt + f e~sty2dt 4 ...
1 2

>+
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: . 1—es
15. F oy -~ 4,
> _md < {s(l - re”S)}

By Problem 14, we have (—1{2___:7} = F({t) = for n=t<n+l.

Another method.

We have )
1—e¢ s 1—e"s 1
s(1 — re~s) s 1 — re—s

1—es
s

1 2 3
f e~sty0dt + f e~ stypldt 4 f e~sty2dt + ...
1 2

(1 + 7re=s + r2¢=2s + .. 1)

I

0

f ) e~st F'(t) dt

0

where F(f)=" for n = t<n+1, n=0,1,2,3,....

- 1@ —e%e s
16. F_1nd L l{s_(m}'

If £-1{f(s)} = F(t), then by Theorem 2-4, Page 44,

tfa—s (FE—1) t>1
L£71{es f(s)} {0 fo1

Thus by Problem 15,

(—1{(;(;—_3;22;{} = F(t—1) = m for n=t—1<mn+1 n=01,23...

or, equivalently,

’C_l{g(—;%} =1 for n=t<n+l, n=123,...

17. Let Y(f) = a. for n =t <n+1 where n =0,1,2,.... Find (@) £L{Y(¢+1)} and
(b) L{Y(t+2)} in terms of .£{Y(£)} = y(s).

(a) Letting ¢+ 1 = u, we have

C{PE+1)} = fwe—st Y(t+1)dt = esfwe_s“ Y(u) du
0 1

0 1
= esf e~ sv Y(u) du — esf e sv Y(u) du
0 0

1 s(1 —e—s
= esy(s) — esf e Sugyduy = eSy(s) — @-L—-e——)
0

using the fact that Y(f) =a;, for 0 = ¢t < 1.
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(b) Letting t-+2 = u, we have

,C{Y(‘t+2)} = fwrstY(Hz)dt
0

= ezsf e s% Y(u) du

2

0 1 2
= o2 {f e—st Y(u) du — f e s Y(u) du — f e~ 5% Y(u) du}
0 1

0
‘ 1 2
= e¥y(s) — ezsf e~ Stagdu — e‘-’-sf e St o,y du
i 0 1

ag e25(1 — e7%) @y e2%(e—5 — e~ 25)

8 8

= eyl -

es(1 — e~ %)(age’s + ay)
8

= e¥y(s) —

using the fact that Y(f) =aq for 0 =¢<1 and Y(@#)=a, for 1 =t <2,

b 18. Let {a.}, » = 0,1,2, .., dénote the sequence of constants ao, @1, a2, ... and suppose
;‘“‘ that we have the recursion formula defined by the difference equation
Gnsz — Bnsi + 620 = 0, =0, a1=1

Find a formula for a., i.e. solve this difference equation for @.

Define the function
Y(@) = a,, né_t<n+1 where n = 0,1,2, ...

Then the given recursion formula becomes

Y(t+2) — 5Y(t+1) + 6Y({t) = 0 1)

Taking the Laplace transform of (1) using the results of Problem 17 With ay=0, a; =1, we find

e2s y(s) — fi(l—;f——s) — Besy(s) + 6yls) = 0
or (=B +6)ys) = L)
_ es(1 — e~9) _ eS(1 —e9) 1 .
Then VO T qEm s e s {(es —3)(es — 2)}

el—e9 | 1t 1 _ 1—e 11
P es—3 es—2 - s 1—8e=s 1—2¢s

Hence by Problem 15 we find on inverting,

a, = 30— 27, n=0,12,...

Check: 1If a, = 3" — 2", then a;=0, a;=1. Also,
Uiz — BUpyq + 6@, = (3n+2—2nt2) — F(ntl— 2ntl) 4 6(3n — 27)
9-311-..-4.27;_15.3n+10.2n+6-3n.—6.2n = 1)
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19. Solve the difference equation
Ant2 — DUn+1 + 6 = 47, a=0 a1=1

The only difference between this problem and Problem 18 is the presence of the right hand term
47, We write the equation as

Y(+2) — 5Y(t+1) + 6Y(t) = F(t) 63}
where Y()=a, F) =4 for n=t<an+1l, »=012,....

Taking the Laplace transform of both sides of () using the results in Problems 14 and 17, we
find if y(s) = £{Y(®)},

@yls) — S(1—em9) — Bes - _l—er
e y(s) (1 —e7%) — Betyls) + 6yls) s =49
Then

eS(1 — e—9) + 1—es
s{es — 2)(es — 38) s{es — 2)(es — 3)(1 — 4e™%)

— e(1—e79) i1 + es —1

P es—3 es—2 s(es — 2)(es — 3)(es — 4)
_ 1—es 1 . 1 n es—1 1/2 _ 1 + 1/2
- s 1— 3e—s 1 — 2e-s s es—2 es—3 eS—4

. 1— s 1 _ 1 + 1—es 2 1 + 1/2
- s 1—8e7s 1—2¢s s 1—-2¢=5 1—3e~s 1 —4es

Hence on inverting, using the results of Problem 15, we find

y(s) =

Y) = a, = 8% — 20 + Le2n — 30 + Logn @)

!
(S
.

4n — % o 9n = %(41& _.2n)

20. In Problem 19, find as.
Method 1. From the solution (2) in Problem 19, we have

a; = 1(45—25) = 496

Method 2. From the given difference equation in Problem 19, we have for n =20

0@“5(1’:1"‘6&0 =1
or using ¢;=0, a; =1
ay = 1 + 5&1 —_ 60'0 = 6
If n=1, a3 —5ay,+ 6a; = 4 so that
g = 4 + 50:2 - 60:1 — 28

If n=2 ay—bag+ 6ay, = 16 or

@y = 16 + bag — 6a; = 16 4 5(28) — 6(6) = 120
Finally if n =3, as— 5a,+ 6a; = 64 so that

= 196

a5 = 64 + bay — 6ag = 64 + 5(120) — 6(28)
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MISCELLANEOUS PROBLEMS

21. Solve the integral equation
' t
Y(t) = 4sin2t + f Y(u) Y(t —u) du
0
The integral equation can be written in the form
Y(t) = 3sin2t + Y(O)*Y(¥)

Then taking the Laplace transform, using the convolution theorem, we find

V) = FrptWE? o WP -+ g = 0

Solving, we obtain

1 1 ’ 4 1 1 s
= - = — -— = — =+ —
v(e) 2 2 1 8244 2 2 21 4
2
Thus we) = %(\/s +4+s>
244
1/Vs2+4—s
and y(s) = §<
s24+4

From (2) we find the solution

Yy = _C{;<___\/+4—>} - Leo

2+4

3

The result () can be written

y(s) — _l<_____"82+4—s_2> = 1..1(_______"82-*_‘1_3)
2\ Veita 2\ Vet r4

Hence a second solution is
Y(t) = 8() — Jy(20)
where 8(t) is the Dirac delta function.

The solution (3) is continuous and bounded for ¢ = 0.

22. Find £{F(t)} if F{)=n,n=t<n+1l,n=0123,....
We have

Py = | ewFoa

0

1 2 3 -
= f e=st(0)dt + f e=st(1)dt + f e~st@)dt + -
0 1 2

il

ersd —e7d) = e7%) (1 + 2e=5 + B¢~ + 4o~ 4 -+

(1)(e—s_se—23) + (2)<e——2s;e—33> + 3 (e"Ss;—e—4s> 4.

[CHAP. 4

(1)

@

1C))

&)
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Now since for |z] <1,

1+a+a+ a8+ -0 = 1

we have by differentiation,

1
2 'K Pl
1 + 22 4+ 322 + A=2p
Then if & = ¢—5, we find
1
—s —2s ren =
1 + 2e + 3e + =y
= e
Thus L{F®Y = ="
—8
23. Find 1€ U for (@) r#1, (b) r=1.
e @ (®)
(a) By the binomial formula,
2 = C 21+ re—s + r2e—2 + -
s(1 —re—9%) 8
_ e + re—2s 4 7228 ;.
8 8 s
= UEt—1) + ru(t—2) + r2uE—3) +
Th 1 = F § k -
- ———— = t =
us < {8(1 - 're—S)} ® k=1 4 (1)
if t=1, and 0 if ¢t < 1.
If n =t <n+1l, (I) becomes if r # 1,
R i et @

(3 If r=1 we find that F(t) =n, n = t < n+1. This agrees with Problem 22.

24. Solve the difference equation
Utz — T@n+y + 10, = 16n, ap=6, a;=2

The given equation can be written

Y(t+2)

TY(t+1) + 10Y(t) = F() ()

where Y({@)=a,, F(t)=16n for n=t<n+1, n=0,1,2,....

Using Problems 17 and 22, the Laplace transform of () is

e5(1 — e—5)(6es 4 2)
8

_ 4205(1 — ¢=) 16¢—s
Tes y(s) + —_— + 10y(s) A=

e2s y(s) _—
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_ eS(1 — e %) (6es 1+ 2) 42¢5(1 — e™5) 16e—s
Then VO T G THe = s =B —2) | sd—e e =B = 2)

= e ;1 — e—s> 6es + .2
8 (e — B)(es — 2)
1— e s e’
- < 8 ) {(e’ —bB)(e*~ 2)}

6 1
t {(es —1)(es — B)(es — 2)}‘

= s 1—e¢s 32/3  14/3
8 eS—5 es—2
_ 1—es 5/3 2/3
42( 8 ){e5—5_es—2}

+%{ 4, 43 ”16/3} |

es—1 es—5 es—2

— 1—es 32/8  14/8
8 1~ be—s 1—2es
_{1—e"® T0e~s  _2Be”®
8 |1 — Be—s 1—2es

+ % { e~ (4/3)e=s (16/3)6'3}

[y

1—e"% 1 — be—s 1~ 2es

Now by Problems 14 and 22, we ﬁnd for n=1,

16
3

an = %g-sn - -1374-2" — 70+5%"1 + 2821 + 4(n—1) + %-g(sn—l) -

428 — 36" + 4n + 5

25. Express the differential equation
Y7ty + AY(@¢) = 0, Y0)=0 Y(1)=0

where A is a constant, as an integral equation.

Method 1.
Letting Y”'(t) = V(t), we find, if Y'(0) = ¢,

t t
Y'(t) = f V) du + e, Y@) -= f (t—u) V(u) du + ct
[ 0
Since Y(1) = 0, we must have

1 i 1
f A—wyVmdu +¢ = 0 or ¢ = f (u—1) V(u) du
0

[

[CHAP. 4
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Ll

Then from (1), we find

¢ 1
Y(it) = Jo\ t—u) Viuy du + j(; (tu—t) V(n) du

t t 1 ’
t—u) V du + (tu—1t) Vi du + tu—t) Vi d
_L(u(u)ufouuu)u ft(u)w)u

t 1
f (t—1)u V(u) du + f (u—1)t V(u) du
0 t

This can be written Y@ = f K(t,uw) V(u) du
0

t—Du uw<t

w—1)t oy [Note that K(t,u) = K(u,t), ie. K(t,u) is symmetric.]
u— u

where K(t,u) = {

Thus the required integral equation is
V(t) -+ AIIK(t;u) Viwyde = 0
0 1
or V) = —xj; K(t,u) V(u) du
Method 2. ‘ 7
- Integrating both sides of the given differential equation from 0 to t,‘ we find
Y'(t) — Y'(0) + Aft Y()de = 0
0
Another integration from 0 to ¢ yields
Y() — Y(0) — Y'(0)t + )\jo‘t (t—u) Yu)du = 0 1)
Since Y(0) = 0, (1) becomes
Y() = Y'(0)¢t — A f t (t—u) Y(u) du (2)
. 0
Letting ¢ =1 and using Y(1) = 0, we find from (2)
Yoy = )\fl 1—wu) Y(u) du
0
Thus (2) becomes '

Y(#) - kfl(t—tu) Y(u) du — Aft (t—w) Y(u) du
0

o

t t
= )\J; (t —tu) Y(u) du + )\J:I(t-— tu) Y(u) duv - )\j; (t—u) Y(w) du

t 1
= A w(l—1¢t) Y(u) du + A t(1—u) Y(u) du
J J

0

1

= A K(t,u) Y(u) du
J,

t—Du u<t

where K(t,u) = { .
w—1t u>t

The integral equations obtained here are examples of a Fredholm integral equation with a sym-
metrie kernel.
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Supplementary Problems

INTEGRAL EQUATIONS

Convert each of the following differential equations into integral equations.
26, Y'(t) + 2Y'(t) — 8Y(t) = 5t — 3¢, Y(0) =-2, Y'(0) =3.

t
Ans. V() + f (2—8t+8u) V() du = b5t + 21¢ — 22, V(1) =Y"(f)
0

¢
or Y(t) + f 2~8t+8u) Y(u)du = —2 — ¢t + 5£4/12 — 3
0

27. 2Y'(t) — 8Y'(t) — 2Y(f) = d4e~t + 2eost, Y(0)=4, ¥'(0) =—1.

t
Ans. 2V(t) + f Ru—2t—3) Vw)du = 4e t+ 2cost+ 5— 2t V() = Y"(t)
0

t
or 2Y(¢) + f Cu—2t—3)Yu)du = 6 — 10t + 4e~t — 2 cost
0

28, Y"'(t) + 8Y(f) = 3sint + 2cost, Y(0)=0, Y'(0)=-—1, Y"(0) =2,

" .
Ans., V() + 4f t—u2Vydu = 3sint + 2cost — 412 + 4¢, Vi) =YY@
0

t .
or Y(t)+4f (t—uYu)du = 5t3/2 +t ~ 38 4+ 8cost — 2sint
0

2. Y;’(t) +eost¥Y(f) = e7f, Y(0)=-2 Y(0)=0.

¢
Ans. V() + f (t—u) cost Viu)du = e~t + 2cost, V() = Y'(¢t)
0

.
or Y(t)+f' (t—uycosu Y(u)du = t—3+ et
0

3. YY) —tY' () +2Y(t) = 1+t Y{0)=4, Y0 =2

t
Ans. V() + f (B—t—u) V) du = 1+ 8t— 42— 28, V()=Y"@)
0

i
or - Y(t) — f (t—2u+tu2—ud) Y(u)ydu = ¢2/2 4 3/6 + 2t + 4
~ 0

3. YY) —2tY'() + (1—)Y(t) = 1+4t— 202+, Y(0) =1, Y(0)=0, ¥(0) =2, Y"(0) =0.

t N
Ans. V(t) + f At—wt(l—) —2(t—w} V)ydu = 0, V() =Y (¢
0

or Y(t) — f " Bult— ) + 2 — w2 + 3 — ) (L — ) Y(u) du
0

# 48 #8 A .

3
—_— —_ 32 __ e e
= 1-8+3+5~ 15 " 1680

Convert each of the following integral equations into differential equations and asso-
ciated conditions. '

¢
32, Y(¢) = bHecost + f (t—u) Y(u) du
0

Ans.  Y'(t) — Y(§) = —bsint, Y(0) =5, ¥Y(0) =0
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t
3. Y@ = t2—3t+4—3f (t—u)? Y(u} du
A i

Ans. Y'"@) +6Y() = 0, Y(0) =4, Y'(0)=—3, Y"(0) =2

‘ ;
3. Y(i) + f {t—uR+4t—w) —3} Y(u)du = e!
0

Ans. Y"(#) — 3Y"(t) + 4Y'(t) + 2¥() = —e~t, Y(O)=1, Y'(0) =2, Y"(0) =3

t
35. Y(t)—j(; (t—u)ysectY(u)du = ¢

Ans. Y'(t) — 2tant Y'(t) — (1 +see) ¥(t) = —t — 2tant, Y(©0) =0, Y(0)=1

i
36. Y(t)+f BR+4t—-—ut—u—2)Ywu)du = 0
0 .

Ans. Y'"'(t) + Bt—2)Y"(#) + ¢+10)Y'()) + Y(¢) = 0, Y(0)=0, ¥Y'(0)=0, Y"(0)=0

INTEGRAL EQUATIONS OF CONVOLUTION TYPE

t
" 37. Solve Y() = t+ 2f cos (t —u) Y(u) du.
0

Ans. Y(t) = t+4 2 4 2(t—1et

38. (@) Show that the integral equation
t
Yoy = t + %f (t—u)d Y(u) du
0
has solution Y(#) = 1(sint + sinh ).

(b) Is the solution in (@) unique? Explain,

t
39. Find the continuous solution of the integral equation f Yu)Yt—uwydu = 2Y(t) + ¢t — 2,
0
Ans. Y(H) =1

) t
40. Show that the only solution of the integral equation f Y(u)sin(¢t —u) du = Y(f) is the trivial
golution Y () = 0. 0

¢
41. Discuss the solutions of the integral equation f Y(u) Gt—uydu = Y(t).
0

ABEL’S INTEGRAL EQUATION AND THE TAUTOCHRONE PROBLEM

. h J‘ /o - \/_' . ( )
42 Sol ve t (] te T al equatlon du = t Am I t) =
mteg: %

¢ 3v3
43. Show that the solution of the integral equation f ‘(-t—g%-))l? du = t14+1¢) is 7\/7__ t1/3 (3t 4 2).
0
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4.

> 46.

47.

48.

APPLICATIONS TO INTEGRAL AND DIFFERENCE EQUATIONS

A circular wheel of radius o [see Fig. 4-3] rolls
on a straight line, taken to be the x axis. Show
that a fixed point O’ on its rim, originally in
contact with the line at O describes the cycloid

x = a(¢p — sin @), a(l — cos ¢)

shown dashed in Fig. 4-8.

y:

Prove that the curve in the tautochrone prob-
lem, Page 118, is a cycloid and discuss the rela-
tionship to the curve of Problem 44.

[CHAP. 4

_—————
- —~—

Fig. 4-3

Show that the time required for the bead of Problems 8 and 9 to slide from the top P of the wire to

the bottom O [lowest point on the cycloid] is =V a/g.

t
If 0 <& <1, show that the solution of f
0

Y(t)

considering

b Y

J, B—wiE

INTEGRO-DIFFERENTIAL EQUATIONS

49.

50.

51,

52.

t
" Solve f Y'u) Y/E—u)du =

. )
Solve f Y(u)cos(t—w)du = Y'(t)
0

Ams. Y(8) = 1+ 42

t
Solve f Y'(u) Yt ~—u)du = 2418
0

Ans. Y(t) = =1683/2/\7

Y(u)
(t—u)x

sin a7 f
T

Discuss the solutions of the integral equation in Problem 47 if F(0) - 0.

du = F(t), assuming F(0) =0, is

‘ F'(u) (t —~u)2—1du

Hugtrate your remarks by

= 1+ 1

if Y(0)=1.

if Y(0) =0.

(@) Show that the integral equation of Problem 49 can be expressed as the integral equation

vt
1 +f (E—u)Y(u)cos(t—u)du =
0

(b) Solve the integral equation in (a).

Y'(t) — Y(8)
0
Ans. Y(t) =0

Y{(t)

if Y(0) =Y'(0y = 0.

DIFFERENCE AND DIFFERENTIAL-DIFFERENCE EQUATIONS

53.

Solve
Ans. Y(t) = 2itl+2 — [1] — 3

Y() — 8Y(t—1) + 2Y(t—2) =

1 if Y =0, t<0.
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54. Show that the solution of Y'{f) = 2Y(t—1)+ ¢ if Y{#)=0, t <0 is
, 0]
_ on(t — pynt2
Y =
® n§0 (n+2)!

55. Solve Y"(t)—Y(t—1) = F(f) where Y() =0, ¥Y'() =0 for £t=0, and

=
Fiy = 0 t=0
2t t>0

Ans. Y(@t) = 2[§ (t —m)2nt3

n=0 (2n+ 3)!
56. Solve 38Y() — 5Y(t—1) + 2Y(t—2) = F(@) if Y% =0, t<0, and
Fl) = 0 t<o0
2 t>0

Ans. Y(t) = go {1 =@t 13E—n2

57. Solve the difference equations
(@) 3a,.+3 — Ba,iq + 2, =0 if gy=1, a;=0.
(b) @pro+ 20,41 —3a, = 0 if ag=0, a; = 1.
Ans. (a) 3@2/3"—2, (b) {1 - (-=3™

58. The Fibonacci numbers ay,ay, 0y, ... are defined by the relation @,,; = @y4y + a, where a,=0,
a;=1. (a) Find the first ten Fibonacci numbers. (b) Find a formula for a,.

1+v5\" 1—v5\"
Ans. (a) 0,1,1,2,8,5,8,13,21,34 (b) @, = %{(——%) —( 2\/_> }

59. Solve the equation a,,5 —4a,,;+ 42, = 0 where ay=1, a;=4. Ans. a, = 2*n+1)

60. Solve the equation a,; — 2¢,,y + 20, = 0 where a;=0, ¢;=1.

Ans. a, = {(1+9)r — (1 —i"}/2

6l. (a) Solve api5— 28,43 — Guiy+20, = 0 if a;=0, ¢;=1, ap=1. (b) Find ay,.
Ans. (@) a, = 3{2" — (=17}, (b) ay =341

62. (a) Show how a solution to a4y — 6a,,1+ 82, = 0 can be obtained by assuming a, =" where
r is an unknown constant. (b) Use this method to solve Problems 57-61.

MISCELLANEOUS PROBLEMS

63. Show that the non-linear differential equation
Yt + {Y())2 = tsint, Y0 =1, Y(0)=-1

can be written as the integral equation

1l

Y@ + ft (¢ —u) {Y{w)}2 du 8 -t~ 2c¢cost — tsint
0

t
64. Solve f Y(u) Y(t—u) du 2Y(t) + 33 — 2t
o :

Ans. Y(@#) =t or Y@ = 28(t)—1t
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66.

67.

68.

69.

70.

1.

72.

73.

74.

APPLICATIONS TO INTEGRAL AND DIFFERENCE EQUATIONS [CHAP. 4

Express as an integral equation: Y'(t) —Y(t) = 8cost — sint, Y =1, Y'(z)= -2

t
Ans. V() = 2r+1—2t+ 8cost —sint + f (t—u) V(u)du, where V({t) = Y''(t)
T

¢
Solve Y() = t + f Y() Ji(t—u) du.
0

Ans. Y(t) = He2+1) f ‘ Jolw) du + JtJo(t) — 182J,(8)
0

Find G(x) such that f Gu) Gz —u)du = 8(sinx — x cos x).
0

Ans. G(x) = T 4dsinx

-
Solve f Y)Yt —~u)du = t+ 2Y(¢).
. 0

t i
Ans. Y(t) = Jo(t) — f Jowdu or Y() = 2a(t)—~J1(t)+f Jo(w) du
0 0

Solve the following difference equations using Laplace transform methods.
() a4 — 5y +6a, = 2n+1, a;=0, a;=1.
(d) ayio+4a,.y—ba, = 24n—8, ay=38, & = —5.

Ans. (@) a, = 3 —5+2"+n+3§ (b) a, = 202 —4dn+ 2+ (-5

Solve (a) a2+ 2,41+ a, = n+2, a;=0, a;=0.
(b) Qp+9 — 60:n+1 + 5a,n = 2”, Qg = 0, a; = 0.
Ans. (@) a, = 1@n—1(-1)" + Ln+1) (B @, = § + f5b2— Le2n
Solve ap13— 20,40 —au41+2a, = n2+2% gy=0, a; =1, ag=1.
Ans. a, = L+ %’n —ind + fne2n — 2020 — L(—1)»

(a) Show how a particular solution to Problem 69(a) can be found by assuming @, = A + Bn where
A and B are unknown constants. (b) Using the result of part (a) and the method of Problem 62, show
how to obtain the solution of Problem 69(a). (¢) How can the method indicated in parts (a) and (b) be
revised to enable solution of Problems 69(b), 70(a), 70(b) and 71.

oA
Find all continuous funections F(t) for which J wF(u)cos(t—u)du = te—t — gint.
Ans. F(t) = ~2¢—t 0

Show that the non-linear differential equation
Y + 2Y'(t) = Y3(), Y0)=0, Y1)=0

can be written as the integral equations

t 1 ot
Yy = @2t—~2)Y(u)du + 2tY(u)du + K(t,u) Y3(u) d
J J. J v
¢ 1 1
or Y = f 2—-20e2u=Y(u)du — f 2te2(u=8 V(u) du -+ f e~ 2 K(t,u) Y3(u) du
0 ¢ 0

u(t—1) u<t

where K(t,u) = .
tu—1) u>t¢
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75.

‘Solve for Y(¢): 8Y(t) —12Y(t—1) +4Y(¢t—2) = F(t) where Y(t)=0 for t<0 and

0 t<0
F(it) = {—t
e t>0

Ans. YO = %e—t{w s (2—2—ﬂ)eﬂ}

76, If ’ Vi) = B{Y.—i(®—-Y,(3 n=123...

7.

78.

79.

80.

Yolt) = —BYo(d
where Y, (0)=0 for n =1,2,8,..., Y5(0)=1 and 8 is a constant, find Y, (£).
e Bt V

Ans. Y, = EL

Work Problem 76 if the first equation is replaced by

Yot) = BpiY,.— () — Y, 1)} 2 =123,...

where By, Bs, B3, --. are constants.
Give a direct proof of the tautochrone property of the cycloid.

The brachistochrone problem is that of finding the shape of a frictionless wire in a vertical plane, as
shown in Fig. 4-1, Page 118, such that a bead placed at P will slide to O in the shortest time. The
solution of this problem is the cycloid as in Fig. 4-2, Page 120. Demonstrate this property for the
particular cases of (@) a straight line and (b) a parabola joining points O and P.

Find the shape of a frictionless wire in a vertical plane such that a bead placed on it will descend to
the lowest point in a time proportional to the vertical component of its distance from the lowest point.

Ans. ¢ = a{l—cos30), ¥y = 5asine



Chapter 5

THE COMPLEX NUMBER SYSTEM

Since there is no real number x which satisfies the polynomial equation 22+1 = 0
or similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form a -+ bi where a and b are
real numbers called the real and imaginary parts, and i=1/—1 is called the imaginary
unit. Two complex numbers a + bi and ¢ + di are equal if and onlyif a=c and b=d. We
can consider real numbers as a subset of the set of complex numbers with b=0. The
complex number 0+ 07 corresponds to the real number 0.

The absolute value or modulus of a + bi is defined as la+bi] = a2+ b2 The complex
conjugate of a + bi is defined as a — bi. The complex conjugate of the complex number z
is often indicated by 2 or z*.

In performing operations with complex numbers we can operate as in the algebra of
real numbers, replacing > by —1 when it occurs. Inequalities for complex numbers are
not defined.

From the point of view of an axiomatic foundation of complex numbers, it is desirable
to treat a complex number as an ordered pair (a,b) of real numbers a and b subject to
certain operational rules which turn out to be equivalent to those above. For example, we
define (a,b) +(¢,d) = (a+c,b+d), (a,b)(c,d) = (ac—bd, ad+bc), m(a,b) = (ma,mb),
etc. We then find that (a,b) = a(1,0) + b(0,1) and we associate this with a + bi, where
1 is the symbol for (0, 1).

POLAR FORM OF COMPLEX NUMBERS

If real scales are chosen on two mutually perpendicular axes X’0X and Y’OY (the =
and y axes) as in Fig. 5-1 below, we can locate any point in the plane determined by these
lines by the ordered pair of numbers (z,y) called rectangulor coordinates of the point.
Examples of the location of such points are indicated by P,Q,R,S and T in Fig. 5-1.

Y Y
T "P3,4)
. +3
e=3.3) P,y)
L 2
" . 7 y
L ~ 7(25,0) f
X -y -3 -2 10 1 2 3 & X X [7) x X
‘R(~2.5,—15) 1 .
2 S, —2)
- —3 N
Y’ _ Y’
Fig. 5-1 Fig.5-2
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Since a complex number x +7y can be considered as an ordered pair (z,y), we can
represent such numbers by points in an zy plane called the complex plane or Argand
diagram. Referring to Fig. 5-2 above we see that

x = rcosd, Yy = rsind (1)

where r = V/x2+ 42 = |z +iy| and 6, called the amplitude or argument, is the angle which
line OP makes with the positive « axis OX. It follows that

z = x + 4y = r(cosd + isindg) 2)

called the polar form of the complex number, where » and ¢ are called polar coordinates.
It is sometimes convenient to write cisf instead of coséd + isiné.

OPERATIONS IN POLAR FORM. DE MOIVRE’S THEOREM

If 2, = @1+ 4y = ri(cosf+ising) and 2 = X2 + Y2 = 72(cosfz +isinbh),
we can show that ‘

212s = rira{cos(01+02) + ©sin(6:+62)} 3
z r ..
é = r_; {cos (61— 02) + isin (91— 62)} (4)
28 = {r(cosf + isinf)}* = r*(cosnd + isinnb) ' _ (%)

where 7 is any real number. Equation (5) is often called De Moivre’s theorem.

In terms of Euler’s formula

e = cosd + isind

we can write (3), (4) and (5) in the suggestive forms

1R = (’l"lewl)(’l’zeieﬂ) = 116t Ote (6) :
o Il_e_f"}_ 11 gue—0p (7).
k2 1260 7o
P — (,,.eia)n —  pnging (8)

ROOTS OF COMPLEX NUMBERS

If n is a positive integer, we have using De Moivre’s theorem,

2" = {r(cos@ + ising)}/"

= glin {cos (0 +n2k7r> + 4 sin <9 +:kn>} k=10,123,... 9)

or equivalently

Zi/n = (ref®)vr = {rei@+kmylin =  pl/n gi@+2km/in (10)

from which it follows that there are n different values for 2!/, z++0. Extensions are
eagily made to 2™/™.
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FUNCTIONS

If to each of a set of complex numbers which a variable z may assume there corresponds
one or more values of a variable w, then w is called a function of the complex variable z,
written w = f(2).

A function is single-valued if for each value of 2 there corresponds only one value
of w; otherwise it is multiple-valued or many-valued. In general we can write w = f(z) =
u(z,y) +tv(x,y), where  and v are real functions of z and y.

Example, w =22 = (x+iy)2 = 22— y2 + Zizy = u+ i so that wu(x,y) = £2— y2, v(z,y) = 2axy.
These are called the real and imaginary parts of w =22 respectively.

Unless otherwise specified we shall assume that f(?) is single-valued. A function which
is multiple-valued can be considered as a collection of single-valued functions,

LIMITS AND CONTINUITY

Definitions of limits and continuity for functions of a complex variable are analogous
to those for a real variable. Thus f(2) is said to have the limit I as z approaches z, if,
given any >0, there exists a 5> 0 such that [f(z) =1 < ¢ whenever 0 < |2~ 2o < 8.

Similarly, f(2) is said to be continuous at 2o if, given any >0, there exists a §>0
such that |f(2) - f(z0)] < ¢ whenever |z — 2l < 8. Alternatively, f(2) is continuous at z,
if lim f(z) = f(zd).

DERIVATIVES

If f(2) is single-valued in some region of the z plane the derivative of f(z), denoted by
f'(z), is defined as

lim f(z + 42) ic)) (11)

Az—+0 Az

provided the limit exists independent of the manner in which Az- 0. If the limit (11)
exists for z =z, then f(z) is called differentiable at z,. If the limit exists for all z such that
|z —2| < & for some &> 0, then f(z) is called analytic at z,. If the limit exists for all z in
a region R, then f(z) is called analytic in R.. In order to be analytic, f(2) must be single-
valued and continuous. The converse, however, is not necessarily true.

We define elementary functions of a complex variable by a natural extension of the
corresponding functions of a real variable. Where series expansions for real functions
f(x) exist, we can use as definition the series with x replaced by z.

2 3 ' 3 5 7
Exampie 1. We define e? = 1+z+%+§—!+---, sin z =_z—;-!+%——;"—!+---,

22 24 26 .
cosz = 1 — 37 + Yy + -+ . From these we can show that e* = extiv =

e*(cosy + isiny), as well as numerous other relations.

Example 2. We define ab as e®In@ even when a and b are complex numbers. Since e¢2kmi — 1, it fol-
lows that e = ¢i(6+2km and we define Inz = In (re!) = In¢ + i(g +2kz). Thus Inz
is a many-valued function. The various single-valued functions of which this many-
valued function is composed are called its branches.
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Rules for differentiating functions of a complex variable are much the same as for

those of real variables. Thus a%(z") = nz""}, %(sin z) = cosz, etc.

CAUCHY-RIEMANN EQUATIONS

A necessary condition that w = f(z) = u(z,y) +iv(x,y) be analytic in a region R
is that u and v satisfy the Cauchy-Riemann equations

ou  ov ou . ov

x TR 5% (12)

(see Problem 12). If the partial derivatives in (12) are continuous in R, the equations are
sufficient conditions that f(z) be analytic in R.

If the second derivatives of # and v with respect to « and y exist and are continuous,
we find by differentiating (12) that

u  Pu v | 6%

a—x—z‘-}‘a—yhz‘ 0, W-*-W': 0 (13)

Thus the real and imaginary parts satisfy Laplace’s equation in two dimensions. Func-
tions satisfying Laplace’s equation are called harmonic functions.

LINE INTEGRALS
Let C be a curve in the zy plane joining points (i, ¥:) and (%2, ¥2). The integral

(z4,99)

.me+Q@ or Pdx + Qdy
C .

(24,41}

where P and @ are functions of « and v, is called a line integral along curve C. This is a
generalization of the integral of elementary calculus to curves. As in elementary calculus
it can be defined as the limit of a sum.

Two important properties of line integrals are:
(xg,ug) (xy,41)
1. f Pdx + Qdy =-J' Pdz + Qd
(xy,ug) (zg,45) .

2. If (xs,¥s) is any other point on C, then

(T, 1) (x3,93) (%g,99) .
Pdz + Qdy =J~ Pm+Q@+j' Pdx + Qdy

(x4,y1) (x4, 91) (x3,%3)

If C is a simple closed curve (one which does not cross itself anywhere) as in Fig. 5-3,
the line integral around C, traversed in the positive or counterclockwise direction, is de-
noted by

§PM+Q@
C

For evaluation of line integrals, see Problem 15.
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GREEN’S THEOREM IN THE PLANE ¥

Let C be a simple closed curve bounding a re-
gion R [see Fig. 5-3]. Suppose that P,Q and their
first partial derivatives with respect to x and ¥ are
continuous in R and on C. Then we have

§0de+Qdy ff(gx———-ﬂ dy , 2

which is often called Green’s theorem in the plane. . Fig.5-3

INTEGRALS

If f(z) is defined, single-valued and continuous in a region R, we define the integral of
f(z) along some path C in R from point z; to point z:, where z; = &1 +iy;, 22 = x2+1iys, as

’ (x9,93) (25,99 (z9,9,)
f fyde = f (u + w)dz +idy) = f wdz — vdy + zf vdz + udy
c (xy,up) (xy.yy) (zq,u1)

With this definition the integral of a function of a complex variable can be made to depend
on line integrals. An alternative definition based on the limit of a sum, as for functions
of a real variable, can also be formulated and turns out to be equivalent to the one above.

The rules for complex integration are similar to those for real integrals. An im-

portant result is
[ |ty (v@a = uf as = mp (14)

where M is an upper bound of [f(z)| on C, i.e. |[f(2)| = M, and L is the length of the path C.

CAUCHY’S THEOREM

Let C be a simple closed curve. If f(2) is analytic within the region bounded by C
as well as on C, then we have Cauchy’s theorem that

§ fleyde = 0 (15)
See Problem 19. ¢
Expressed in another way, (15) is equivalent to the statement that f i f(r)dz has a

value independent of the path joining z: and z.. Such integrals can be evaluated as
F(z2) — F(z1) where F'(z) = f(z). .

Example. Since f(z) = 2z is analytic everywhere, we have for any simple closed curve C

§2zdz = 0
c

. 144 1+i
Also, f Cordr = 2| = (1402 - (202 = 2 +4
2i
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CAUCHY’S INTEGRAL FORMULAS

If f(z) ié analytic within and on a simple closed curve C and e is any point inferior
to C, then
fla) = 1 f(2) dz (16)

27t Joz—a
where C is traversed in the positive (counterclockwise) sense.

Also, the nth derivative of f(z) at z=a is given by

n . n! f(z
fw(a) = Zr_i‘_(ﬁ(?—_(&;_"ﬁdz (17)

These are called Cauchy’s integral formulas. They are quite remarkable because they
show that if the function f(2) is known on the closed curve C then it is also known within C,
and the various derivatives at points within C can be calculated. Thus if a function of a
complex variable has a first derivative, it has all higher derivatives as well. This ef course
is not necessarily true for functions of real variables.

TAYLOR’S SERIES
Let f(z) be analytic inside and on a circle having its center at z=a. Then for all
points z in the circle we have the Taylor series representation of f(z) given by

o) = f@ + r@e-a + L —ap + TBe—ap + . (18)

See Problem 29.

SINGULAR POINTS

A singular point of a function f(z) is a value of z at which f(z) fails to be analytic.
If f(2) is analytic everywhere in some region except at an interior point z=a, we call
~ z2=a an isolated singularity of f(z).

Example. If f(z) = ZZ_—13)?’ then z =3 is an isolated singularity of f(z).

POLES

If f(z) = (zﬂzo)z)"’ ¢(a) = 0, where ¢(2) is analytic everywhere in a region including
z=a, and if n is a positive integer, then f(z) has an isolated singularity at z=a which is
called a pole of order n. If n=1, the pole is often called a simple pole; if n=2 it is called
. a double pole, etc.

Example 1. f(z) = (—z———T):(le)

and a pole of order 1 or simple pole at 2z = —1.

has two singularities: a pole of order'2 or double pole at z=3,

3z—1 3z—1 : .
E le 2. = = = *=2.
xample f(z) AT d T2 =29 has two simple poles at z 21

A function can have other types of singularities besides poles. For example, f(z) =z

has a branch point at z=0 (see Problem 45). The function f(z) = su;z has a singularity

sinz

at 2z=0. However, due to the fact that lim is finite, we call such a singularity a

removable singularity. =0
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LAURENT’S SERIES

If f(z) has a pole of order n at z=¢ but is analytic at every other point inside and
on a circle C with center at @, then (2—a)"f(2) is analytic at all points inside and on C
and has a Taylor series about z =« so that

flz) = (z(:;)" + (za_*;)tf_l. + -0+ :.";; + @ + a(z—a) + asfz—a)p + - (19)

This is called a Laurent series for f(z). The part ao + a1z —a) + as(z—a)? + --- is called
the analytic part, while the remainder consisting of inverse powers of z—a is called the

o0

principal part. More generally, we refer to the series 3, ax(z —a)* as a Laurent series

where the terms with & < 0 constitute the principal part. A function which is analytic in a
region bounded by two concentric circles having center at z =g can always be expanded
into such a Laurent series (see Problem 119).

It is possible to define various types of singularities of a function f(2) from its Laurent
series. For example, when the principal part of a Laurent series has a finite number of
terms and a—»+ 0 while a—n—1, @-n—s, ... are all zero, then z=a is a pole of order n.
If the principal part has infinitely many non-zero terms, z=ga is called an essential
singularity or sometimes a pole of infinite order.

. 1 c 1 ot
Example. The function ez = 1 4+ p + 2,17 + +-+  has an essential singularity at z = 0.

RESIDUES

The coefficients in (19) can be obtained in the customary manner by writing the coeffi-
cients for the Taylor series corresponding to (z—a)"f(z). In further developments, the
coefficient a—_;, called the residue of f(z) at the pole z=a, is of considerable importance.
It can be found from the formula

1 dn~1

¢ = Im Gy g (@) ECY

where n is the order of the pole. For simple poles the calculation of the residue is of
particular gimplicity since it reduces to

) a-1 = lim (z—a)f(2) (21)

2—=+q

RESIDUE THEOREM

If f(2) is analytic in a region R except for a pole of order » at z=¢ and if C is any
simple closed curve in R containing 2=a, then f(2) has the form (19). Integrating (19),

using the fact that »
§ dz _ 0 if n=1 ' 22
clz—a)" " |2z ifmn=1 ' (22)
(see Problem 21), it follows that

if(z) dz = 2ria—, (23)

i.e. the integral of f(z) around a closed path enclosing a single pole of f(z) is 2x7 times the
residue at the pole.
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More generally, we have the following important

Theorem. If f(z) is analytic within and on the boundary C of a region R except at a
finite number of poles a,b,¢, ... within ®, having residues a-;,b_1,¢-1, ... respectively,
then .

ﬁf(z)dz = 2ui(@—1+bos et - ) (24)

i.e. the integrai of f(z) is 2=¢ times the sum of the residues of f(z) at the poles enclosed by C.
Cauchy’s theorem and integral formulas are special cases of this result which we call the
restdue theorem.

EVALUATION OF DEFINITE INTEGRALS

The evaluation of various definite integrals can often be achieved by using the residue
theorem together with a suitable function f(}z) and a suitable path or contour C, the choice
of which may require great ingenuity. The following types are most common in practice.

1. f F(x)dx, F(x) is an even function.

0
Consider § F(z)dz along a contour C consisting of the line along the x axis
[

from —R to +R and the semi-circle above the z axis having this line as diameter.
Then let B ><«. See Problems 37, 38.

2w
2. f G(sin 6, cos 9) dd, G is a rational function of sinéd and cos 6.
0

z—z! 2421

Let z=¢%. Then sinf§ = ———, cosd =
21 2

dz/iz. The given integral is equivalent to f F(z) dz where C is the unit circle
5

and dz =1ie®d§d or df =

with center at the origin. See Problems 39, 40.

3. f F() {g;’; m} da, F(z) is a rational function.

— o ®

Here we consider f F(z)ei™* dz where C is the same contour as that in Type 1.
See Problem 42. ¢

4. Miscellaneous integrals involving particular contours. See Problems 43, 46.
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Solved Problems
COMPLEX NUMBERS
1. Perform the indicated operations.
(@) (4—2)+(—6+5) = 4—2{—6+5i =4—-6+(—2+5)i = —2+ 3i
() (—7+3) —(2—4d) = —T+8i~2+4i = -0+ 7 ' .

(©) B—2)(1+8) = 3(1+3) —2i(1+8) = 3+9—~20—6i2 = 8+9i—2{+6 = 9+ 7

@ —5+58i _ —5+5i 4+83i _ (~5+5)(4+3) _ —20—15i+ 20i+ 15:2
4—-3i 4—38i 4+3i 16 — 932 = 1659
=~ T85+5i _ 5(=7+d _ =T 1.
25 - 25 5 5
() LTEFEHEAB i1+ (D6 + @+ @2 i—1— i+ 144
1+4 1+1 : = 1+4
i 1—di _ i—42 i+l 1.1,
I+7i 1—7 ~ 1—¢ ~— "2 T~ 3 T3t
() 18—4i|4+3] = VE2+(—42V@2+@B2 = (5)5) = 25
_1____1_ 1'“3i_ 1434 —6i V02 + (—86)2 =— 3
@ |75~ 10 1—02 1-9¢2 110 O+ =% = 3
2. If zy and 2; are two complex numbers, prove that |212:] = |21]|22].
Let %) = &y +iy1, Rg = $2+iy2. Then
|21zl = (g + iy N+ i) | = | B35 — Y19 + U2yYs + 2oyy) |
= V(@@ —y ) + @y +o9y)2 = \/mfx§+y§y§+x%y§+w§y§ )
= Vi +upei+y)) = Vet 2Vel+ 2 = |mptiaglleative = o] el

3. Sol'vev 2 —2z—4 = 0.

.. The possible rational roots are =1, =2, 4. By trial we find 2 =2 is a root. Then the given equa-
tion can be written (2 —2)(22+ 2z +2) = 0. The solutions to the quadratic equation az®+bz+e¢ = 0

—b * /b2 —4dac - —2*v4-—8 —2 = y/—4
are 2z = ——-—ﬂ. For a=1, 6=2, ¢=2 this gives 2z = z = =
2a 2 2
—2*2 .
—5 = 1+

The set of solutions is 2, —1+4, —1 — 4.

POLAR FORM OF COMPLEX NUMBERS
4. Express in polar form (a) 3 + 31, (b) —1 + \/§i, (¢) =1, (d) —2 — 2/34. [See Fig. 5-4.]
(@) Amplitude ¢ = 45° = r/4 radians. Modulus » = \/32+382 = 3y/2. Then
8 + 8 = rlcoss + ising) = BV2(cosw/4 + isinm/d) = 3VZeisw/d = 32 emils

(b) Amplitude § = 120° = 27/3 radians. Modulus » = \f(—1)2+ (V8)2 = V4 = 2. Then

—1 + V8i = 2(cos2s/3 + isin2r/3) = 2cis2r/3 = e2wi/3
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Yy
v 7
y v 240° \
= o
2
tv
' ".as 3 V3 g .
o 120° / 180° —2V8
45 x 1 x i © 4
3 -1 -1
(a) (b) () (@)
Fig.5-4
(¢) Amplitude 8 = 180° = r radians. Modulus r = V(—1)2+ (0)2 = 1. Then
—1 = 1fcosw + isinag) = ciszr = 7
(d) Amplitude § = 240° = 4r/3 radians. Modulus r :_\/ (—2)2 + (—2V3)2 = 4. Then
—2 — 2v/8 = 4(cosdr/3 + isinds/3) = 4cisdn/3 = 4etm/3

(@) (=1 +1/39)2, (b) (-1 + )13,

(a) By Problem 4(b) and De Moivre’s theorem,

5. Evaluate

(=14 V391 = [2(cos2x/3 + isin2r/3)]10 = 21%cos 207/3 + i sin 204/3)
= 1024[cos (2¢/8 + 67) + isin(2n/3 + 6x)] = 1024(cos27/8 + i sin27/3)
= 1024(—1 + V39 = —bI2 + 512V/34
() —1+ i = VZ(cos186° + isin135°) = V2[cos(185° + k*360°) + isin (185° + k- 360°))
Then v
(—1L+ 9178 = (f2)13 {cos <M>
3 P1
. . [185° + k-360° —
4+ ¢sin <——+3—————>] P2 165°
The results for ¥ = 0,1,2 are { il
6 285° ;
V2 (cos 45° + 4 sin 45°), \ <
o
V2 (cos 165° + 1 sin 165°),
V2 (cos 285° + i sin 285°) P

The results for ¥ = 3,4,5,6,7, ...

give repetitions of these.
These complex roots are represented geometrically in the com-

Fig.5-5

plex plane by points Py, Py, P3 on the circle of Fig. 5-5.

6. Determine the locus represented by

(@) z2—2| =38, (b) |z—2] =|2+4|, (¢) |#—3| +|z+3| = 10.

(@) Method 1. |z—2| = |z +iy—2| =|zx—2+d| = V({&—22+y2 =3 or (z—2)2+y?

with center at (2,0) and radius 3.

Method 2.
distance is always 3, the locus is a circle of radius

] — 2| is the distance between the complex numbers z

1]
9, a circle

2

x¢+4iy and 2+ 0i.
8 with center at 2 + 07 or (2,0).

If this
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(b) Method 1. |w+iy—2 = |la+iy+4] or V@—22+y2 = V(z+4)2+ p2. Squaring, we find

« = —1, a straight line.

Method 2. The locus is such that the distances from any point on it to (2, 0) and (—4,0) are equal.
Thus the locus is the perpendicular bisector of the line joining (2,0) and (—4,0), or 2 = —1.

(¢) Method 1. The locus is given by V(& —3)2+ 42 + V& +32+y2 = 10 or V{zx—32+ 42 =

10 — Viz+3)2+ y2 Squaring and simplifying, 25 + 3x = 5V(x+ 3)2 + y2. Squaring and

2 2
simplifying again yields g—5+ -21% = 1, an ellipse with semi-major and semi-minor axes of

lengths 5 and 4 respectively.

Method 2. The locus is such that the sum of the distances from any point on it to (3,0) and
(—38,0) is 10. Thus the locus is an ellipse whose foci are at (—3,0) and (3,0) and whose major
axis has length 10.

Determine the region in the z plane represented by each of the following.

(a) |z} <1.

Interior of a circle of radius 1. See Fig. 5-6(a) below.

(0) 1< |z+2i = 2.

|z + 24| is the distance from z to —2i, so that |2+ 2{ = 1 is a circle of radius 1 with center
at —2i, i.e. (0, —2); and |z +2i] = 2 is a circle of radius 2 with center at —2i.- Then 1< |2+ 2{] =2
represents the region exterior to |2+ 2i{ = 1 but interior to or on |2+ 2i] = 2. See Fig. 5-6(b)
below,

(¢) »/3 £ argz = =/2.

Note that argz = ¢, where z = 7e. The required region is the infinite region bounded
by the lines ¢ = /3 and ¢ = 7/2, including these lines. See Fig. 5-6(c) below.

Y Y,

(@) (b) )]
Fig. 5-6

Express each function in the form w(z,y) + iv(x,y), where w and v are real:
(@) 28, (b) 1/(1—2), {(c) €%, (d) Inz.

(@ w = 23 = (x+1y)® = 3+ 322(iy) + 3x(iy)? + (iy)3 = o8 + a2y — 3uwy? — @8

= % — 3uwy? + i(3x2y — y?)

Then w(®,y) = *3 — 3xy2, vix,y) = Bx?y — y5

1 1 1 A—xtidy _ 1—axtiy

1-2 " 1—(@+w) 1-2—ty 1—atiy (A—22+4°

1—= — Y
T-ap iy "V T Goar e

Then u(x,y) =
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(¢) €32 = edztin) = g3x g3y = 3% (cos3y + isin8y) and u = e cosdy, » = e3% gin 3y

d Inz = In(@e®) = Inr+i8 = InVa2+y2 + itan—1y/x and
u = 1 In(2+y?), v = tan—1! y/x
Note that Inz is a multiple-valued function (in this case it is infinitely many-valued) since

6 can be increased by any multiple of 27. The principal velue of the logarithm is defined as that
value for which 0 =6 < 27z and is called the principal dbranch of Inz.

9. Prove (a) sin(x+iy) = sinxcoshy + icoszsinhy
(b) cos(x+1iy) = cosxcoshy — isinx sinhy.
We use the relations ¢i* = cosz + isinz, e % = eosz — isinz, from which
sinz = .elz_z—:_m , cosz = &—;e__f
Then
. R . gz +iy) — g—ilz+iy) eit—y — g—ir+y
sinz - = sin(x+7% = . = =
( ¥) 21 21
_ 1, . . ' .
= g{e Y(cosx -+ isinx) — e¥(cosx — isinx)}
. e¥ + eV - evy — e ¥ . . .
= (sinx) —5 + i(cos x) — = sinzcoshy + 7cosx sinhy
Similarly,
cosz = cos(x+ iy) ez +iy) o g—i(x+iy)
2
= eyt e iwtyy = L{g"¥(cosw + isinx) + ¢ (cosx — isinx)}
Y —Y¥ — Y
= (cosx) (Q—_ﬁe_) — #sinx) (i—z-e——> = cosxcoshy — isinx sinhy

DERIVATIVES. CAUCHY-RIEMANN EQUATIONS

10. Prove that %2, where 7 is the conjugate of 2z, does not exist anywhere.

By definition, ;—z flzy = limoﬂ—z—_!_AZ—z_f—(—z—)— if this limit exists independent of the manner
Az~

in which Az = Ax + iAy approaches zero. Then

iz Y ‘2t Az—2 T x+iy+Ar+iAy — x+
dz - Azu.r.lo Az AII_I’lo Az + 1Ay
Ay=—+0
. o« — iy + Ax — 1Ay — (x —iy) . Ax — iAy
= - = lim —=
AI;TO Ar + 1Ay Axl.r_n,o Ax + 1Ay
Ay~ 0 Ay=0

If Ay =0, the required limitis lim 5% = 1
Ax=—+0 AL

If Ax =0, the required limitis lim —2¥ = —
Ay—=0 TAY

These two possible approaches show that the limit depends on the manner in which az—0, so
that the derivative does not exist; i.e. Z is non-analytic anywhere.
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11. (@) If w = f(z) = —, find dz” (b) Determine where w is non-analytic.

(a) Method 1.
1+(+4z) 1+=2
dw 1 — (z + Az) 1—2z _

2

dw  _ n _ 1
dz Azlglo . Az Azl-l-l}o (1—z—A4az)(1—2)
= (l—f—z—)_z - provided z # 1, independent of the manner in which Az - 0.

Method 2. The usual rules of differentiation apply provided z+ 1. Thus by the quotient rule for

differentiation,
d d
i(1+z> _ A-aglts —A4agd-8 g hm -+ - 2
dz\1—2 i—22 (1—=2) (1—2)?

(b) The function is analytic everywhere except at z =1, where the derivative does not exist; i.e. the
function is non-analytic at z = 1.

12. Prove that a necessary condition for w = f(z) = u(x,y) +iv(x,y) to be andlytic in

. . . . ou v du v . .
a region is that the Cauchy-Riemann equations -— = -—, —— = — - Dbe satisfied in
. or oy’ oy o
the region.
Since f(z) = flx4+iy) = u(x,y) + tv(x,y), we have
flze+az) = flx4+Aae+iy+Aay)]) = ulx+Ax,y+Ay) + iv(x+ Az, y+Ay)
Then
lim [E+42) —f&) _ g, wWetArytAy) — ey + He(e Az, y +Ay) — (@, 9)
Az—0 Az Az~ 0 Ax + 1Ay
Ay~ 0
If Ay = 0, the required limit is
lim u(x + Az, y) — u(x, y) Lo v(x + Az, y) — v(x, y) ~ 9z + z?."i
Az =0 Ax Ax . dx ox
If Ax = 0, the required limit is
1im u(x,y-i—A'y) — u(w, y) N v(x, y +Ay) — v(x, ) - louw , v
Ay—+0 1Ay Ay 1 dy ay

If the derivative is to exist, these two special limits must be equal, ie.,

du v 1 du v _ .du oV

w Tl T T tw T Tlw T
so that we must have du Gl and Ll = —%.
o oy dx Yy

Conversely, we can prove that if the first partial derivative's of u and v with respect to » and y
are continuous in a region, then the Cauchy-Riemann equations provide sufficient conditions for f(2)

to be analytic.

13. (@) If f(z) = u(x,y) +1v(x,y) is analytic in a region R, prove that the one parameter
families of curves u(x,y) = C: and v(2,y) = C: are orthogonal families. (b) Illustrate
by using f(z) = 2%
(a) Consider any two particular members of these families u(x,y) = uy, v(x,¥y) = v, which intersect
at the point (xg, ¥y)- v
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. _ B dy Uy
Since du = u,dx + u,dy = 0, we have T = o
. x Uy,

Also since dv — v, dex+v,dy = 0, —— = —

When evaluated at (x, yy), these repre-
sent respectively the slopes of the two
‘curves at this point of intersection.

By the Cauchy-Riemann equations,
Uy =Vy, Uy = —V,;, We have the product of
the slopes at the point (xy, ) equal to

VA
ty v,
so that any two members of the respective

families are orthogonal, and thus the two
families are orthogonal.

(b) If f(z) =22, then u = 2 —y2, v=2xy. The
graphs of several members of 2 —y2 = Cy,
2xy = C, are shown in Fig. 5-7. Fig. 5-7

14. In aerodynamics and fluid mechanics, the functions ¢ and ¢ in f(2) = ¢ +1iy, where
f(2) is analytic, are called the welocity potential and stream function respectively. If
¢ =a2*+4z—y*+2y, (a)find ¢y and () find f(2).

dé O &y _ _ d¢

(a) By the Cauchy-Riemann equations, 3 = 3’ aw 3y Then
W _ o _
(1) 3y 20 + 4 (2) T 2y — 2

I

Method 1. Integrating (1), ¢ 22y + 4y + F(x).

Integrating (2), ¢ = 2xy — 2¢ + G(y).

These are identical if F(x) = —2x+e¢, G(y) = 4y+c¢ where ¢ is any real constant. Thus
v = 20xy + 4y — 2z +ec.
Method 2. ‘

Integrating (i), v = 2xy+4y + F(x). Then substituting in (2), 2y +F'(x) = 2y—2 or
F'(x) = —2 and F(zx) — —2x+¢. Hence ¢ = 2xy+4y—2x +c.

(6) From (a),
flo) .= o+ dp = a2+ 4o — y?2 + 2y + iQReyt+4y—20-+c)

(2 — y2 + 2ixcy) + d(x+1iy) — 2ix+iy) + ‘e
= 22 4+ 4z — 2z + ¢

where ¢; is a pure imaginary constant.

This can also be accomplished by noting that z = x+4dy, 2 = ©x —iy so that = = ,
y = z;tz The result is then obtained by substitution; the terms involving z drop out.
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LINE INTEGRALS

(1,2) '
15. Evaluate f (@ —y)dx + (y*+2)dy along (a) a straight line from (0, 1) to (1, 2),

0,1)

(b) straight lines from (0,1) to (1,1) and then from (1,1) to (1,2), (c) the parabola
x=t y=#¥+1.

(@) An equation for the line joining (0,1) and (1,2) in the xy plane is y = #+ 1. Then dy =dx and
the line integral equals

1 1
f {2 — (@+1)}de + {(x+1)2+a}de = f (22 +2x)ds = 5/3
¢

z=0
(b) Along the straight line from (0,1) to (1,1), ¥ =1, dy =0 and the line integral equals

1 1
. f (@2—1)de + 1+2}0) = f (2—1)de = —2/3
o

x=0

Along the straight line from (1,1) to (1,2), # =1, de =0 and the line integral equals

2 2
[ a-vo + e = [ @rna = 108
y=1 1
Then the required value = —2/3 4 10/3 = 8/3.

(¢) Since t=10 at (0,1) and t =1 at (1,2), the line integral equals

1 1
f {2 —(@+10}dt + {(2+1)2+¢}2tdt = f @543 +22+2t—1)dt = 2
t=0 : (i}
GREEN’S THEOREM IN THE PLANE v
F
16. Prove Green’s theorem in the plane if C is a fi=mmm

simple closed curve which has the property that
any straight line parallel to the coordinate axes
cuts C in at most two points.

!
!
Let the equations of the curves AEB and AFB (see e - E i
adjoining Fig. 5-8) be y = Y, (x) and y = Y, (x) respec- 5 H x
tively. If R is the region bounded by C, we have 0 b
b Yo(x) .
, J‘J‘%gdxdy _ f [fz (;_de}dx Fig.5-8
x Y e=a LWy=v,x Y
b Ya(x) b
= f P(x,v) de = f [P(x,Yy) — P(x,Y,)] dx
z=aq y=Y(x) a
b

I
I
o

b

Then (1) §Pdw = ~—ff‘;—P—dxdy
c & Y

Similarly let the equations of curves EAF and EBF be « = X (y) and « = X,(y) respectively.
Then ’

a
P(z,Yy) do — f P(x, Yy dz = ——§ P dx
C
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ffsen - L0 B - oo ann

€

= ff QX ) dy + f "oy = ﬂ Qdy

Then 2) -£ Qdy = jf %dm dy

R

Adding (1) and (2), § Pde + Qdy = ff <%§ ~ Z—i) d dy.
C
R

Extensions to other simple closed curves are easily made.

17. Verify Green’s theorem in the plane for
§ @oy-ade + @+ dy
C

where C is the closed curve of the region
bounded by ¥ =22 and ¥*=z.

The plane curves y =2 and y2 ==« intersect at
(0,0) and (1,1). The positive direction in traversing
C is as shown in Fig. 5-9.

Along y = x2, the line integral equ-als Fig.5-9
fi , {@x)(x?) —~ x2} dz + {x + (x2)2} d(oc2)( = j;l (203 + 22+ 225y dx = 7)6
%=
Along y2 =2 the line integral equals
f erw-wman + wra = I an-worzmay = s

Then the required line integral = 7/6 — 17/15 = 1/30.

L
'gf (1—-2x)dedy = >£1=o Jy'f; (1—2x) dy dac
e

r=0

1l

Vi

il

1 N |
i = f @2 — 2052 2 1 2% d = 1/30
0

T
]y:xZ

Hence Green’s theorem is verified.

INTEGRALS, CAUCHY’S THEOREM, CAUCHY’S INTEGRAL FORMULAS

2+4i

18. Evaluate f 22dz

1+
(a) along the parabola z =1, y =1 where 1=1=2,

(b) along the straight line joining 1 + 17 and 2 + 44,
(¢) along straight lines from 14 to 2 +¢ and then to 2 + 4i.
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We have i “

2+4i (2,4) (2.4)
f 2dz = f (x + iy)2(dx +idy) = f (2 — y2 + 2ixy)(dx + idy)
1+i (LD 1,

I

(2,4 @ k
f (x2—y2)de — 22ydy + zf 2zy dz + (22 —y2) dy
(1,1 D

Method 1.
(a) The points (1,1) and (2, 4) correspond to t =1 and t = 2 respectively. Then the above line integrals
become C
2 2 86
f {(£2 -8 dt — 20)(t3)2tdt} + zf {22y dt + (12— )2t dt} = -3 = 6
t=1 . t=1
(b) The line joining (1,1) and (2,4) has the equation y—1 = ;:i(a:— 1) or y = 32—2. Then
we find
2
f {[#2 — (8x — 2)2] dx — 22(3x — 2)3 dx}
=1 .
(" : ~ 86 )
+ 1 {20(8xz — 2) dx + [#2 — (B2 —2)2|8dx} = -3 61
r=1

{¢) From 141 to 244 [or (1,1) to (2,1)], ¥y =1, dy =0 and we have

S
z=1 z=1

2
(@2 —1)de + zj 2rdx = % + 3

From 2+ to 2+4i Jor (2,1) to (2,4)}, * =2, de =0 and we have

4 4
f —4ydy + zf A—yHdy = —80 — 9%
y=1 y=1
Adding, <§+ 3i> + (=80 — 9i) = ~% — i,

Method 2.

The line integrals are independent of the path [see Problem 19], thus accounting for the
same values obtained in (a), (b) and (¢) above. In such case the integral can be evaluated directly,
as for real variables, as follows:

2+4i 312+ 44 73 )3
f s < APTH _ @t4ps Q4P 86 _
1+i

3 |14s 3 3 3

19. (@) Prove Cauchy’s theorem: If f(z) is analytic inside and on a simple closed curve C,

then § f(z)dz = 0.

Py
(b) Under these conditions prove that f f(z)dz is independent of the path joining
P, and P-. By

(@) if(z) dz = ‘ﬂ(u+iv)(dx+idy) = §

ude — vdy + z§ vde + udy
c c

By Green’s theorem,

— _9v_du S — du _ ov
£udx vdy = gf( e ay)d:wdy, j)vdw—i-udy = ilf(ax ay)dmdy

C

where R is the region bounded by C.
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(b)

20. If f(z) is analytic within and on the boundary of
a region bounded by two closed curves C; and 6’2
(see Fig. 5-11), prove that

connecting any point on C, and a point on C,. By
Cauchy’s theorem (Problem 19),

w0 v _ o

dx ~ Yy’ dx oy

zero. Then § f(z)dz. = 0. We are assuming in this derivation that f'(z) [and thus the partial
c

Since f(2) is analytic, (Problem 12), and so the above integrals are

derivatives] are continuous. This restriction can be removed.

Consider any two, paths joining points P; and P, (see Fig. 5-10). By Cauchy’s theorem,

fRydz = 0
P,AP,BP,
Then f@) dz + faYdz = -0
PlAj;z P2£;l
or f(2)dz = -— f()dz = f(z) dz
s B |

i.e. the integral along P; AP, (path 1) = integral along

P,BP; (path 2), and so the integral is independent of the

path joining P; and P,. Fig. 5-10

This explains the results of Problem 18, since f(z) = 22
is analytic.

§; f@dz = i f(2) dz

As in Fig. 5-11, construct line AB (called a cross-cut)

f(z) dz — 0 Fig. 5-11
" AQPABRSTBA

since f(z) is analytic within the region shaded and also on the boundary. Then

ff(z yde + ff(z) i + f f2) de + ff(z) dz = 0 @)

AQPA BRSTB
But A{ f@de = — B{ f®ds.  Hence (1) gives
Lo s L - L
ie. §C @ ds = i 0 as

21. (@) Prove that f (
[of

Note that f(z) need not be analytic within curve C,.

where C is a simple closed

dze_ 2mi itw=1
z—a)y*

0 if n=2,3,4, ..
curve bounding a region having z =a as interior point.

(b) What is the value of the integral if n = 0, —1, —2, -3,... 17
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(a) Let C; be a circle of radius ¢ having center at z = a
(see Pig. 5-12). Since (z—a)~ " is analytic within
and on the boundary of the region bounded by C
and C,, we have by Problem 20,

dz — § dz
c B—a) c, E—a)
To evaluate this last integral, note that on Cj, X
lz—al = e or z2—a = e and dz = ieei®dg. The Fig.5-12
- integral equals ‘
2T gt ; 2 . g(1—n)ig |27
f eePds ,f_lf e-mio gy = _*_° = 0 ifnxl
0 ¢t gind € 0 en—1 (1 — n)i 0 .

27
If n =1, the integral equals z’f de = 2.
0

(b) For n = 0,—1,—2,... the integrand is 1, (z—a), (¢ —a)2, ... and is analytic everywhere inside
C,, including 2z = a. Hence by Cauchy’s theorem the integral is zero.

22. Evaluate § z_cizg where C is (a) the circle [2{ =1, (b) the circle [z +i] = 4.
c

(a) Since z =38 is not interior to |z| =1, the integral equals zero (Problem 19).

(b) Since z =3 is interior to |z +1i} = 4, the integral equals 2zi (Problem 21).

23. If f(2) is analytic inside and on a simple closed curve C, and ¢ is any point within C,

prove that 1 @)
I X ?
flay = zﬁii“——z_a dz

Referring to Problem 20 and the figure of Problem 21, we have

f(2) dz = ¢ f(=) dz
cR—a c, #
27
Letting z—a = ¢, the last integral becomes ¢ f(a + ee®ydg. But since f(z) is analytic,
it is continuous. Hence 0
27 21 2
lim 1 fla + eci®)ds = zf lim f(a + ) ds = zf flaydes = 27if(a)
e—0 0 0 e=0 0

and the required result follows.

24. Evaluate (a) § COSZ gz, (b) § _ % _dz where C is the circle lz—1] = 3.
c T Je 2(z+1)

z —_—
(@) Since z = 7 lies within C, 2%_1 § ;osz dz = cos¥# = —1 by Problem 238 with f(z) = cosz,
C - T -
a =% Then § COSZ gz = —2ri.
cR—T
e? 1 1 § e? § o
_—~ _ __d = § 2z = — d = i —
®) §cz(z+1) ? L e <z z+1> # i A
= 2qie® — 2gie~! = 2r¢i(l —e71)

by Problem 23, since z =0 and z= —1 are both interior to C.
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%

25. Evaluate 522 —32+2 dz where C is any simple closed curve enclosmg z=1.

c (-1

. '
Method 1. By Cauchy’s integral formula, fFf® (a) = 2—7:_; (z—f(az))T_l
‘ c (z—

If =2 and f(z) = 522—32+42, then f'(1) = 10. Hence

' 21! 522— 32+ 2 522—32+2 ,
10 = = LT ld = = _2dz = 10
0 el My e v z or TGP Z i

Method 2. 522 — 32+ 2 = 5(z—12+ 7(z—1) + 4. Then

5z2—3~+2 _ 5z—1)24+Tz—1)+ 4
§ T k-13 dz § (z—1)3 dz

i

§ dz + 7§ 1)2 n 4§__3 = 5@ + 70) + 40)

1074

By Problem 21.

SERIES AND SINGULARITIES

26. For what values of z does each series converge?

o 2n

zn
(a,) n§1 W. The nth term = Uy = n—227a. Then
T U +1 Y | zntl  n22n 2|
N Tuy | T W DRI e | T 2

By the ratio test the series converges if |z < 2 and diverges if |z| > 2. If |2| = 2 the ratio

test fails.

H the series of absol lues 3 |- § 2|t
) owever, the series of absolute values n§1 por T 2 zgn converges if |2| = 2, since
n§1 o5 converges.

Thus the series converges (absolutely) for |z| = 2, ie. at all points inside and on the circle

lz| =2,
7 S (=)n—lgem—1 23 45 ]
(b) nngn_‘l),— = 2—3—!4-5—-"'. We have
. Un+1 _ . | (ZL)nadntl - (2n —1)! _ . —z
Mm = DT Tt M e 1)‘ 0

Then the series, which represents sin 2, converges for all values of z.

Un+1 (z—dmnt1 3»

, l2— il
gn+l (z —1)n

3

= lim

-,

(e) 2 i ;;L)n' We have lim

n=1 n=—+o

T
The series converges if |z—¢| < 3, and diverges if |z —1i] > 8.

o0
If |z—4] = 3, then z—1i = 3¢® and the series becomes ¥ ef. This series diverges since
the nth term does not approach zero as n— . n=1

Thus the series converges within the circle [z —4i = 8 but not on the boundary.
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If i an.2" is absolutely convergent for |z| =R, show that it is uniformly convergent
n=0
for these values of z.

The definitions, theorems and proofs for series of complex numbers and functions are analogous
to those for real series.

o0 0
In particular, a series 3 u,(2) is said to be absolutely convergent in a region R if > ua(2)]
n=0 =0

converges in ®. We can also show that if lu,(2)] converges in R, then so' also does 3 u,{(2),
n=0 . s ' n=0

i.e. an absolutely convergent series is convergent.
Also, a series > u,(2) convergent to a sum function S(z) in a region R is said to be uniformly
convergent in R if for any «> 0, we can find N such that
| Sa(2) — SR} < e for all » > N
where N depends only on ¢ and not on the particular z in R, and where

Suz) = ug(e) + ugle) + -+ upl(e)

An important test for uniform convergence is the following. If for all z in R we can find
constants M, such that

o0
lugle)) = M,, n=0,1,2,... and Eo M, converges
-~

then > u,(2) converges uniformly in ®R.” This is called the Weierstrass M test.
n=0 .

For this particular problem, we have

lapz®| = lay|B* = M, n=012...

n=0

Since by hypothesis > M, converges, it follows by the Weierstrass M test that S a@,z" converges
n=0

uniformly for |z| = R.

Locate ih the finite z plane all the singularities, if any, of each function and name them.

: 2
() (H—LI)E z = —1 is a pole of order 3.

228 — 2+ 1
() z—42E—iz—1+2)

poles of order 1 (simple poles).

z=4 is a pole of order 2 (double pole); z =17 and z = 1—2i are

sin mz . o - _ —Zi\/_4—8_: —2i2i_:_ iy
(c) ————z2+2z+2,m%0. Since z+2z+27 0 when 2z = 5 5 1+4, we
can write 224+ 22+2 = Zz—(—14+)Hz—(—1—-9} = +1—3(z+1+13).
The function has the two simple poles: 2 = —1+41% and z = ~1-—1,
C(d) L:—:ﬁi. 2=0 appears to be a singularity. However, since lim0 1————;& =0, it is a
) e T

removable singularity.
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Another method.

. - 1 2 6 3
Since 1———:0ﬂ = {1—(1—%+§—3—+--->} = -E———7—+---, we see that

z
z =0 is a removable singularity.
- 1 1
e) e~ V-1 — ¢ _ 1 —
(e) PR 21 (z — 1)%
This is a Laurent series where the prineipal part has an infinite number of non-zero terms.

Then z =1 is an essential singularity.

(H e

This function has no finite singularity. However, letting z=1/u4, we obtain. e!’* which has
an essential singularity at « =0. We conclude that z= = is an essential singularity of e=.

In general, to determine the nature of a possible singularity of f(z) at z=wn, we let z=1/u
and then examine the behavior of the new function at u = 0.

29. If f(z) is analytic at all points inside and on a circle of radius B with center at @, and
if @ + h is any point inside C, prove Taylor’s theorem that

3

fla+h) = fl@) + hifa) + i) + By +

By Cauchy’s integral formula (Problem 23), we have

fath = g ¢ SOk | e
By division,
1 _ 1
z—a—h (z—a)[1 — h/(z— a)]

— 1 h h2 hn hn+1
T (—a) {1+(z—a) UTET +(Z—d)"+(z—a,)"(z—a—h)} @)

Substituting (2) in (Z) and using Cauchy’s integral formulas, we have

: - 1 £ fzyde , h_ flz) dz . A f(z) dz
flath) 2, z—a T 2m‘£ e—ap 0 1 27i£m + B
= f@ + ki@ + 5@ + o+ D) + B,
where R, = Lt 1(2) dz

270 Jo —a)ti(z~a—h)

Now when z is on C,

z-—fg)?ﬁ' = M and |¢—ea| =R, so that by (14), Page 140, we have,

since 27R is the length of C,

I

R ]h|n+1M .
B, = o RATT 27R

As n—> =, |R,|~0. Then R,~ 0 and the required- result follows.

If f() is analytic in an annular region r; = |z—al] = ry, we can generalize the Taylor series
to a Laurent series (see Problem 119). In some cases, as shown in Problem 30, the Laurent series can
be obtained by use of known Taylor series.




COMPLEX VARIABLE THEORY [CHAP. 5

158

30. Find Laurent series about the indicated singularity for each of the following functions.
Name the singularity in each case and give the region of convergence of each series.

@ Goqes #=1  Let e~1=u Then z=1+u and

ez _ eltw et ¢ wro oW owt
=1 =~ w ~ Tw =T u2{1+“+2!+3!»+4!+ }
_ e e e e(z—1) e(z—1)2
= eo1F T =1 et e T Ta v

z=1 is a pole of order 2, or double pole,

The series converges for all values of z +# 1.

b) =z cos%; z=0.

' 1 _ __1 1 1 . _ 1 11
geosy T z<1 512 T AT B T > TP P R
z = 0 is an essential singularity.
The series converges for all values of z #= 0.
(¢) :lffr; z2 = ‘.Let z—x =% Then z =u+7 and
sinz _  sin{ut+a) _ sinu 1 us ud
= — = - = —_ i — =t = — -
Ea u U U 3! 51
_ u? ut _ (z— ) (z —n)*
= —1+§!~——5—!+--- = -—1.+ 37 - 51 +

z =7 is a removable singularity.

The series converges for all values of z.

() (,H-_15€(7-F—2); z=—1. Let z+1 = u. Then
z o u—1 w—1 . 2 3 4 aan
z+DE+2)  wut+l) — w (Amuhalt—uttu )

= ~%+2—2u+2u2——~2u3+

1
— —_— — 2 e e
= ——5q * 2 2+ + 2e+D

z = —1 is a pole of order 1, or simple pole.
The series converges for values of z such that 0 < [z +1} < 1.
1 = —_

(6) m, R = 0, 2.

Case 1, 2 = 0. Using the binomial theorem,

1 _ 1 _ 1 _ (=3)(=4) (2\? | (=B)=4(=B) /z\* . ...
W@ T28 Sl a2R 8z{1+( 3)<§>+ 21 <§> T (%) * }
1 3 3 5
IR T T LA

2 =0 is a pole of order 1, or simple pole.

The series converges for 0 < |z] < 2,
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Case 2, z=—2. Let z+2 = u. Then

1L _ 1 1 Yy pm fuN N e\t
W2teP T w-2nd T T2l —aldy "2u3{1+2+<2> +<2> +<2> " }

1 1 1 11
TS IP  Aet2E 8zt 16 sgtd - -

z = —2 is a pole of order 3.

The series converges for 0 < |24+2| < 2,

RESIDUES AND THE RESIDUE THEOREM

31. If f(2) is analytic everywhere inside and on a simple closed curve C except at z=a
which is a pole of order n so that

flzy = (za__;)n + (za__:t;nl_l + o+ a0 + ailz—a) + axz—a) +

where a-, = 0, prove that
(@) § f(2)dz = 2nia-y
C
(b) a-1 = lim 77y i (2 — )" f(2)).

(¢) By integration, we have on using Problem 21

§ flzydz = (ﬁ‘———a_n dz 4+ -+« + § L=t dz + § {ag+ayfz—a) +as(z—a)2 + -} dz
c Jo (z—a)n ci—a -
= 277'?:“_1

Since only the term involving a_; remains, we call a_; the residue of f(z) at the pole z =a.
(b) Multiplication by (z — a)* gives the Taylor series
F—a)"fie) = a_, + a_y4G—a) + 0+ e @)t + -0
Taking the (n — 1)st derivative of both sides and letting z - a, we find

dan—1
m—N0a_; = gﬂm{(zha)"ﬂz)}

from which the required result follows.

32. Determine the residues of each function at the indicated poles.

(a) %; z = 2,4,—i. These are simple poles. Then:

2 4
i =2 lim@z—-2{—=2-——F = =z
Residue at 2 = 2 is erré (z ){(2—2)(z2+1)} 5
. L . . 22 B 2 o 1-%
Residueat 2=t s T (=9 {(z—2)(z—i)(z+i)} = Gmoey 10
. PR , 2 _ i _1+2
Residue at z = —1i is zgrgi (z+1){(z—2)(z—i)(z+i)} = Citacm = 0
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{b) m; z=0, -2, z=0 is a simple pole, z = —2 is a pole of order 3. - Then:
Resid t z2=0 i li . -——1. = 1
esidue at z = 0 is lim 2 T@TIE — 8

Residue at z = —2 is >1 21, 7 2{(z‘*‘ 2)3 - (241_2)3}

— um 121 — um 12\ o 1
o z—l>mz2 dz2 - z_l,"izz 23 - 8
Note that these residues can also be obtained from the coefficients of 1/z and 1/(z+2) in
the respective Laurent series [see Problem 30(e)].

(¢) (zze )2, z = 3, a pole of order 2 or double pole. Then:
Residue is  lim -4 (z—82+ =25l = lim L ety =  lim (et +.stert)
P dZ (z —3)2 23 d2 2=+3
= % + Btedt
(d) cotz; z =57, a pole of order 1. Then:
. . _ .  2—br . _ . 1
Residue is 11m (z — 5 ). = lim — lim c¢osz = lim > -1)
Py sin z 257 SINZ j\ Za5x 257 COS 2
= (-(-1) = 1
where we have used 1’Hospital’s rule, which can be shown applicable for functions of a complex

variable.

33, If f(z) is analytic within and on a simple closed curve C except at a number of poles
a,b,c, ... interior to C, prove that

§ f()dz = 2at{sum of residues of f(z) at poles a, b, ¢, etc.}
o .
‘ C

Refer to Fig. 5-13.

By reasoning similar to that of Problem 20 (i.e. by
constructing cross cuts from C to C;, C,, Cj, ete.),
we have

£f<z)dz = £1f(z)dz + :ﬁzf(z)dz + o

Fig.5-13
For pole a,
a_., @y
f(z) = m+ R +(z———)+a0+a1(z—a)+ A
hence, as in Problem 31, § f(ydz = 2xia_,.
Cl
. . b

Similarly for pole b, f(z) = @=bp + e+ @ b) + by + b (z——b) + -

so that fRYdz = 2mxib_,
C,

Continuing in this manner, we see that

§ f@ydz = 2ri{e_y+b_;+ ) = 2ri(sum of residues)
c

[R——
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*dz 4 R :
34. Evaluate § €9 ___ where C is given by (a) |2| = 3/2, (b) lzf = 10.
c (z—1)(z Fa) g., y (@) [7] (®) Iz
Residue at simple pole z=1 is lim4(z—1) ——a———bt = <
simple pole 2 =1 is lim < (2 G=DETIp = 1z
Residue at double pole z = —3 is
L 4. 2 € _ . (g—1)e* — e _ —be=3
Jim 3 {(Z T T T 3)2} = Jm Ty 16
(@) Since |z| = 3/2 encloses only the pole z =1,
the required integral = 2x¢ <1%) = ’T—ég
(b) Since |z| = 10 encloses both poles z=1 and z = —8,
_3 . — —_
the required integral = 2zi <% - 5‘13 5 > = ""‘(‘3_85932

EVALUATION OF DEFINITE INTEGRALS

7
35. If [f(2)| = #k for 2= Re®, where k>1 and M
are constants, prove that éim f f)dz = 0
- % T

where T is the semi-cireular arc of radius R shown
in ‘Fig. 5-14.
By the result (74), Page 140, we have

M _ =M
S 1w s f el s e = g2
since the length of arc L = #R. Then
lim f f(z) dz = 0 and so lim f(®dz = 0
Rero T R r
36. Show that for z = Re? @ =2 k>1 it fo) = 2
- - e ~R® T 1+t
If z=Re¥, |fz) = Ié = 1 = -1 =2 it R is large enough
’ 1+ Rie%i®| = |Rdedio) — 1 Rt—1 = R4
(say R > 2, for example) so that M =2, k=4.
Note that we have made use of the inequality |2, + 25| = |2] — |2,] Wwith 2; = Rte® and 2z, = 1.

dx
zr+1°

37. Evaluate f
0

Consider § ﬁi’ where C is the closed contour of Problem 35 consisting of the line from
c L )
—E to R and the semi-circle T, traversed in the positive (counterclockwise) sense.

Since 2t+1 = 0 when z = ¢7i/4, ¢37i/4, ¢5mi/4 ¢Tni/4  these are simple poles of 1/(z¢+1). Only
the poles em/4 and ¢37/4 lie within C. Then using L'Hospital’s rule,
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. . ' 1
i /4 = 3 — eTi/4
Residue at ™ z.l.l:’;i/‘l{(z eV 1}
- ; IR S S
B z-»l;n‘:i“ 428 4 e
. . 1
; /4 = i — Bmi/4
Residue at €37 z_}gr;m{(z ST 1} ,
1 1 .
- L variy = = ¢—97i/4
z_,:gm 423 4°
dz — $(1 o—3wi/4 1p—9mi/t — Z_\/_g
Thus i '24—_{_{ = 21?1{19 wi/4 4 1€ T } = 2 . (1)
i I} F _de_ & _ 5/2 @
e I b AF1 T T2
Taking the limit of both sides of (2) as R > and using the results of Problem 36, we have
lim R de _ f * de _ V2
R=~+w ~R x4+1 - wx‘*—}-l - 2
” 2
Since f —4_1_—1 = 2f 4 + 1’ the required integral has the value %_
: ® 2dax T
- 38. Show that f z = I
o @F12 (@2 +22+2) 50

22
(22 +1)2 (22 + 22 + 2)

and 2 = —1+1¢ of order 1.

The poles of enclosed by the contour C of Problem 35 are z = 4 of order 2

. .. d . 22 9i—12

= lim =2 — )2 — =
Residue ab 2= Is et dz {(z P e e @ETaT 2)} 100

, 2 3—4i
. — : 1 1— 2z —
Res,ldueaf: z +1 is z_,l_nllh(z-t- )(z2+1)2(z+1—i)(z+1+i) 25

22 dz _ ;91— 12  3—4i _ Tz
Then AT (@ +%+2) 2’”{ 10 ' 2 } T 50
or fR x2 dx n f 22 dz _ Iz
J_p @122+ 20+ 2) r @12 (E2+2:+2) 50

Taking the limit as R~ and noting that the second integral approaches zero by Problem 35,
we obtain the required result.

27
39. Evaluate f de
0

54 3sing’
il — g—i0 — a1
Let 2 =¢® Then sing = ¢ 2: T2 2: , dz = ie®dg = izde so that
7 ds _ § dzliz _ 2 dz
b+ 38sineg — p—1 322+ 10iz— 3
0 ¢y + 3<z 212 > c

where C is the circle of unit radius with center at the origin, as shown in Fig. 5-15 below.
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2 .
T 1 § [ S— :
The poles o 52100 =3 are the simple poles
: = —10: = v/ —1060 + 36
6.
_ —10i%8i
6
= —8, —1i/3. 5.15
Fig. 5-
Only —i/3 lies inside C. b
. . . . i 2 _ . 2 _ 1 , I
rule.Resxdue at —i/38 = z-lvu—nila <z + 3>(————-——-——322+ 10iz—3> = z_l*n_‘ni/3 BTi0l - & by L’Hospital’s
Then § e = (%) = 7, the required value.
c z - .
T cos 36 =
40. Show that f " df = —.
e D —4cost 12
-1 i s -
If z=¢%, cosg = 2tz , cos86 = ¥ + o7 3% = 2tz 3, dz = iz ds.
2 2 2
27 N .
cos 34 _ (B +273)/2 dz _ 1 +1
———-_ds = § G2 = =0 ___< -
Then ‘L‘ 5—4cosé ¢ t 4 21\ iz 2iJ, 282z — 1)(z— 2)
5 — 4 —
where C is the contour of Problem 39.
The integrand has a pole of order 3 at 2 =0 and a simple pole z =1 within C.
¥
. N .0 P #+1 _ 2
Residue at 2 =0 is }zl-!?o2_! 72 {z pe T g popn 2)} = 3
28+1 65
i =1 i i —_ly e — —_—
Residue at z = { is ZHI:I/Z {(z 1) 23(22_1)(2_2)} 24
_lf' #+1 _ 1, .f21 6| _ =z .
Then 2 J, P —De—9) dz = % (2#17) 3 24 = 13 vas required.

41. If |f(=)| = % for z = Re®, where k>0 and M are constants, prove that

Iim em:f(z)yde = 0

R=oed/p

where T is the semi-circular arc of the contour in Problem 35 and m is a positive
constant.

k) .
It e=Rer, [ omefds = [ omRe?f(Ra)iRe do.
T ' : [¢]

éfof
:f"

0

T .
Then f MR (P oio) iRl do

0

¢imRei0 f(Rei%) {Rei6| do

gimR eos § — mR sin 8 f(ReiG) iRe| do

m

¢—mRsin 6 If(Rew)I R des

I
=

M (L M (T? .
_—r —mRsind dg — e—mRsin 6 dg
%1 e~ =1

R ' R o

A
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Now sing = 26/ for 0 = ¢ = /2 {(see Problem 3, Chapter 7). Then the last integral is less
than or equal to

T/2
2M e—2mRO/T Jg = =M

Re—1 ) = mRk

(1 — e~ mR)

As R - = this approaches zero, since m and k are positive, and the required result is proved.

42. Show that f COSMET G = Ze ™, m > 0.
0

43.

22 +1 2

eimz

Consider § ] dz where C is the contour of Problem 35.
C z

The integrand has simple poles at z = =i, but only z = 7 lies within C.

. .. . egimz . e—m
Residue at 2 =1 is 12131l {(z —_(z T z)} = 5
Then § O G = 24 (L) = gem
c 22 +1 2¢
e:mx elmz
o f -
o f ErT T ) mvgd e
R cos mx B sinm i
ie. de + f Y dx + f A S —-m
e fR 2t+1 0T ) R e r2F1 e
d 2 f R cos ma de + f eimz d m
- e—
ana so , @F1 P21 % g

Taking the limit as R~ and using Problem 41 to show that the integral around I' approaches
zero, we obtain the required result.

sine T
- de = 5
The method of Problem 42 leads us to con-
sider the integral of e¢®?/z around the contour of
Problem 35. However, since z = 0 lies on this
path of integration and since we cannot inte-
grate through a singularity, we modify that
contour by indenting the path at z =0, as shown
in Fig. 5-16, which we call contour C’ or
ABDEFGHJA.

Since z = 0 is outside C’, we have

f‘ifdz=0
2

c

-r . R
or f i+ fﬁdz +f e dw + f fffdz = 0
R @ z |z

HJA BDEFG

Show that j
0

Replacing x by —x in the first integral and combining with the third integral, we find,

f ew_emdx+ f——-dz—f— fﬁdz = 0
v

HJA BDEFG

R _: : ; .
. sin x e er®

or 22! de = - ~—dz — —dz
r z ' . z z
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Let » > 0 and B~ ». By Problem 41, the second integral on the right approaches zero. The
first integral on the right approaches

0

. eirel® . 0 a0 .
— lim 5 ireifdg = — lim ieire” dg = ni
r=0J,  Te r=0Jy

since the limit can be taken under thé integral sign.

. R . 0 .
. . sin x . sin
lim 2zf de = =i or J‘ dx
Rt o0 r X 0 @

70

Then we have

IR

MISCELLANEOUS PROBLEMS

44. Let w = 22 define a transformation from the z plane (zy plane) to the w plane (uv plane).
Consider a triangle in the z plane with vertices at A(2,1), B(4,1), C(4,3).. (a) Show
“that the image or mapping of this triangle is a curvilinear triangle in the uv plane.

(b) Find the angles of this curvilinear triangle and compare with those of the original
triangle.

(@) Since w =22, we have u = a2 —y2, v = 2zy as the transformation equations. Then point A(2,1)
in the xy plane maps into point A’(3,4) of the uv plane (see figures below). Similarly, points B
and C map into points B’ and C’ respectively. The line segments AC, BC,AB of triangle ABC
map respectively into parabolic segments A’C’, B’'C’', A’B' of curvilinear triangle A’'B’C’ with
equations as shown in Figures 5-17(a) and (b).

/ v C’ (1,24)
Yy

2
®
(@) _ (&)
Fig. 5-17
‘ B . ) 2| _ 1
(b) The slope of the tangent to the curve 42 = 4(1 +u) at (3,4) is m; = ——| = = = 3.
» gy  Vleo 2

The slope of the tangent to the curve w2 = 20+ 1 at (8,4) is - my = dv

—_— = u = 38
du (3,4
Then the angle ¢ between the two curves at A’ is given by
Mg — 3—4
tang = —2 o 2. =1, and 6 = n/d

Similarly we can show that the angle between A’C’ and B’C’ is #/4, while the angle between
A’B’ and B’C’ is #/2. Therefore the angles of the curvilinear triangle are equal to the correspond-
ing ones of the given triangle. In general, if w = f(z) is a transformation where f(z) is analytie,
the angle between two curves in the z plane intersecting at z = z; has the same magnitude and sense
(orientation) as the angle between the images of the two curves, so long as f'(z0) 0. This prop-
erty is called the conformal property of analytic functions and for this reason the transformation
w = f(z) is often called a conformal transformation or conformal mapping function.
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45. Let w = V/z define a transformation from the z plane to ‘the w plane. A point moves
counterclockwise along the circle |z|=1. Show that when it has returned to its start-
ing position for the first time its image point has not yet returned, but that when it
has returned for the second time its image point returns for the first time.

let 2 = ¢®, Then w = Vz = €¥9/2, Let 6 =0 correspond to the starting position. Then 2 =1 and
w =1 [corresponding to A and P in Figures 5-18(«) and (b)].

y [

(a) (&)
Fig.5-18

When one complete revolution in the z plane has been made, ¢ =2z, 2 =1 but w = ei6/2 = ¢iv = —1
so the image point has not yet returned to its starting position.

However, after two complete revolutions in the 2z plane have been made, ¢ =4r, 2=1 and
w = i8/2 = g2 =1 g0 the image point has returned for the first time.

It follows from the above that w is not a single-valued function of z but is a double-valued function
of z; i.e. given z, there are two values of w. If we wish to consider it a single-valued funection, we
must restrict 8. We can, for example, choose 0 = ¢ < 2z, although other possibilities exist. This
represents one branch of the double-valued function w = V2. In continuing beyond this interval we
are on the second branch, e.g. 27 = 6 < 47. The point z =0 about which the rotation is taking place
is called a branch point. Equivalently, we can insure that f(z) = Vz will be single-valued by agreeing
not to cross the line Ox, called a branch line.

xb“l
de =

142 sin p=’ 0<p<1‘.

46. Show that f
0

. p—1
Consider § z dz. Sinece z = 0 is a branch point,
cl+z

choose C as the contour of Fig. 5-19 where AB and GH are
actually coincident with the « axis but are shown separated
for visual purposes.

The integrand has the pole z = —1 lying within C.

Residue at z = —1 = e™ ig
I +1 i emyp—1 =  elp—1)mi
1m1 (z T {e™)
2 —
zl)—l . .
Then § 1+zdz =  9Ogielp—Dmi
(o

or, omitting the integrand,

J + f € f +f = 271 elp— Dl Fig. 5-19
AB GH

BDEFG HIA
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We thus have

fR iw:—;dx + j‘” (Rettyr~1iRe0dg T (me2miyp—1 dx + O (reib)p—1ireid dg —  9iet-vm
T [

1 + Retf r 1+ xe?m . 1+ retf

where we have to use z = xe2™ for the integral along GH, since the argument of z is increased by
2z in going around the circle BDEFG. -

Taking the limit as »— 0 and R—~« and noting that the second and fourth integrals approach
zero, we find .

© xp—1 0 emitp—1) gp—1 _ -
f T de + f emPTDXPT! gy = 2pele—bm
0 1+« . 1 + x
‘ ) ® gr-1 .
or (1 —_ e2m(p-1)) —d = 2.”3' e(p—l)m
o 1+
) 0 . . .
. p=—1 Qi eP— D7 1 T
so that 2 gy = Emier DM 2w o
0 142 1 — e2mitp—1) epTi — g—Pmi sin pw

Supplementary Problems

COMPLEX NUMBERS. POLAR FORM

47,

48.

49,

50.

51.

52.

53.

54,

Perform each of the indicated operations:

— 4412
(@) 2(5—8i) — 3(—2+14) + 5Gi—3) R © %ﬁ%\

) 1—i\¥ (1 + )2+ 34 — 29)

Ans. (@) 1—4i, (b) —9—46i, (¢) ¥ — 24, (d) -1, (o) 8 oHe-2i

z
!—lj , - () |22} = |21]> giving any restrictions.
z2| E22E

21

If #z; and 2, are complex numbers, prove ()

Prove (@) |23+ 25 = |zg] + |2al, (B) |21+ 2o+ 2g] = |2] + 2ol +lzsl, (€) |21 — 22l = |21 — [2a]-

L —1=*4

r 9 e

Find all solutions of 22¢— 323 —T722—82+6 = 0. Ans. 3

Let z; and z, be represented by points P; and P, in the Argand diagram. Construct lines OP, and OP,,
where O is the origin. Show that z; + 2, can be represented by the point P3, where OP; is the diagonal
of a parallelogram having sides OP, and OP,. This is called the parallelogram law of addition of
complex numbers. Because of this and other properties, complex numbers can be considered as vectors
in two dimensions.

Interpret geometrically the inequalities of Problem 49.

Express in polar form (a) 3V3 + 8i, (b)) —2 —2i, (¢) 1 —V34, (d) 5, (¢) —5i.
Ans. (a) 6ecisn/6, (b) 2V/2 cis 5x/4, (¢) 2 cis5n/3, (d) 5cis0, (e) b cis3+/2

. o 4 o o 12 cis 16°
Evaluate (a) [2(cos25° + i sin 25°)][6(cos 110° + i sin 110°)], (b) (3 eis 44°)(2 cis 62°) °
Ans. (a) —5V2 +5V24i, (b) —2i
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55.

56,

COMPLEX VARIABLE THEORY [CHAP. 5

Determine all the indicated‘ roots and represent them graphically:
(@ (@VZ+ V2913, (b) (D5, (o) (V8 — D)3 (d) iv4
Ans. (a) 2ecis15°, 2 cis135°, 2 cis255°
(b) ¢is 36°, cis108°, ¢is180° = —1, cis 252°, cis 324°
(6) V2 cis110°, V2 cis280°, VZ cis 850°
(d) cis22.5°, cis112.5°, cis 202.5°, cis 292.5°

If z, =7, cise, and z, = rycis6,, prove (a) Zy2g = TV Cis (6, 1+ 85), (D) 24/29 = (ry/ry) cis (6, — 8).
Interpret geometrically.

FUNCTIONS, LIMITS, CONTINUITY

57.

38,

59,

60.

61.

Describe the locus represented by (a) j2+2—31] =5, (b) |z+2 = 2lz2—1], (¢) [¢+5] — |z— 5 = 6.
Construct a figure in each case. . .

Ans. (@) Cirele (x+2)2 + (y—8)2 = 25, center (~2,3), radius 5.
(b) Circle (x—2)24+ y2 = 4, center (2,0), radius 2.
(¢) Branch of hyperbola x%2/9 — »2/16 = 1, where z = 8,

Determine the region in the z plane represented by each of the following:

(@) |2—2+4 =4, b) |2/ =8, 0= argz = %, (¢ |=— 38| +z+3] < 10.

Construct a figure in each case. ’ .

Ans. (o) Boundary and exterior of circle (@ -—2j2+4 (y+1)2 = 186.
() Region in the_ first quadrant bounded by %2+ 42 = 9, the z axis and the line y = z.
{¢) Interior of ellipse «2/25 + y2/16 = 1.

Express each function in the form u(z,y) + iv(%,y), where u and v are real.
(a) 22+ 2iz, (b) 2/(3+2), (c) ¢, (d) In(1+2).

‘ Ans. (o) u = 23 —3xy?—2y, v = Ba2y—y3+ 2

224 3a + 92 . 3y

b = "7 —_ s
R F oy E Ly ey

2 2 — .
(¢) u= e ¥ cos2xy, v = ¢ ¥ gin 2ay

_ — 1 Y _
(d) v =4In{d+x2+y%, v = tan 11+m+2k7r,» k= 0,%1,=x2, ...

Prove that - (¢) lim 22 = 2}, (b) f(z) = 2% is continuous at z = 2, directly from the definition.
z—»zo

(a) If z=w is any root of 25 =1 different from 1, prove that all roots are 1,w, w2, «3, ot

(b) Show that 1+ w4+ o2+ w3+ ot = 0.

{(¢) Generalize the results in (a) and (b) to the equation =7 = 1.

DERIVATIVES, CAUCHY-RIEMANN EQUATIONS

62, (d) If w = f(z) =z + ol find %:—)directly from the definition.

1

(b) For what finite values of z is f(z) nen-analytic?
Ans. (@) 1 —1/22, (b) z=0

Given the function w = 2% (a) Find real functions % and v such that w = u + iv. (b) Show that the
Cauchy-Riemann equations hold at all points in the finite z plane. (¢) Prove that u and v are harmonic
functions. (d) Determine dw/dz. Ans. (0) u = ot — 6222+ yt, v = 4ady — day3 (d) 428
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64.

65.

66.

67.

68.

69.

Prove that f(z) = z|¢| is not analytic anywhere.

Prove that f(z) = is analytic in any region not including 2z = 2.

1
z—2

If the imaginary part of an analytic funetion is 22(1 — y), determine (a) the real part, (b) the function.
Ans. (a) y2—22—2y +c¢, (b) 2iz—22+¢, where ¢ is real -

Construct an analytic funétion f(z) whose real part is ¢~ %(x cosy + y siny) and for which f(0) = 1.
Ans. ze=?*+1

Prove that there is no analytic function whose imaginary part is «2 — 2y.

Find f(z) such that f'(z) = 42—3 and f(1+1%) = —3i. Ans. f(z) = 222 — 3z +3— 4i

LINE INTEGRALS

70.

1.

72

4,2) )
Evaluate f (x4 y)dx + (y—x)dy along (a) the parabola y* =z, (b) a straight line, (c¢) straight
1,1)

lines from (1,1) to (1,2) and then to (4,2), (d) the curve x =22+t +1, y =2+ 1.
Amns. (a) 34/3, (b) 11, (c¢) 14, (d) 32/3

Evaluate § 2r—y+4)de + (by+32—6)dy around a triangle in the xy plane with vertices at

(0,0), (3,0), (3,2) traversed in a counterclockwise direction. Ans. 12

Evaluate the line integral in the preceding problem around a circle of radius 4 with center at (0, 0).
Ans. 64r '

GREEN’S THEOREM IN THE PLANE. INDEPENDENCE OF THE PATH

73.

74.

75.

76.

7.

78.

(a) Prove that f

Verify Green’s theorem in the plane for § @2 —aoyd) doe + (y2— 2xy)dy where C is a square with
c
vertices at (0,0), (2,0), (2,2), (0,2). Ans. common value = 8
(a) Let C be any simple closed curve bounding a region having area A. Prove that if @y, ag, a3, by, by, by
are constants, .
§ (@@ + agy +ag)dx + (byx+byy+bgddy = ~(by— az)d
c

(b) Under what conditions will the line integral around any path C be zero? Ans, (b) ay=0by.

Find the area bounded by the hypocycloid «2/3 + y2/3 = 2/3.
[Hint. Parametric equations are « = acos®t, ¥y = a sin3¢, 0 =t = 27, Ans.: 3ra2/8

If « = rcosg, y = rsing, prove that 1 § rdy —yde = %f r2de and interpret.

(a) Verify Green’s theorem in the plane for § (3 —x2y)dx + =xy2dy, where C is the boundary of
c

the region enclosed by the circles #2+y? = 4 and 22+y2 = 16. (b) Evalﬁate the line inbégrals of

" Problems 71 and 72 by Green’s theorem. Ans. (@) common value = 120

2,1)
(2zy — y*+3)dx + (22— 4xy%) dy is independent of the path joining (1,0) and
(1,03 : - ' :

(2,1). (b) Evaluate the integral in (a). Ans. (b) 5




170 COMPLEX VARIABLE THEORY [CHAP. 5

INTEGRALS, CAUCHY’S THEOREM, CAUCHY’S INTEGRAL FORMULAS

3+i
79. Evaluate f 2z + 3) dz:
1-2i
(e) along the path x = 2t+1, y = 42— t—2 where 0 St = 1.
(b)‘ along the straight line joining 1 — 2{ and 3 + 4.
(¢) along straight lines from 1 — 2{ to 1 +.¢ and then to 8 + i.

Ans. 17 4+ 197 in all cases

80. Evaluate f (22— 2+ 2)dz, where C is the upper half of the circle |zl =1 traversed in the positive
C .

sense. Ans. —14/3
81. Evaluate § %, where C is the circle (o) 2| =2, (b) {z—38| = 2. Ans. (a) 0, (b) bxi/2
c
22

82. Evaluate ; m(z_—l) dz, where Cis: (a) a square with vertices at —1—4, —1 +1, -8+, -8 —4;

(b) the circle |z+¢ = 8; (¢) the circle |z| =/2. Ans. (@) —87i/8 (b) —2r¢i (¢) 27i/3

z—1 (z—1)4
Ans. (@) —2xi (b) wie/3

83. Evaluate (a) § cos 7z dz, (b) f —mdz where C is any sindple closed curve enclosing z = 1.
c c

84. Prove Cauchy’s integral formulas.
[Hint. Use the definition of derivative and then apply mathematical induction.]

SERIES AND SINGULARITIES
85. For what values of z does each series converge?

(@) élﬁi,—z)" ®) nﬁzln—ﬁ—% () él (—1)mn! (22 + 2z + 2)2n

Ans. (a) allz (b) [z—i <1 (¢) 2=—1=%4

0

86. Prove that the series g(-nz:——l) is (a) absolutely convergent, (b) uniformly convergent for |2| = 1.
n=1

§ (z + Dn

on converges uniformly within any circle of radius E such that
n=0

87. Prove that the series
[z+1i < R < 2,

88. Locate in the finite z plane all the singularities, if any, of each function and name them:

z—2 z 22+1 1 sin (z — #/3) cos 2
@ @rnr @ goneFer © Frmaz @ sy @ o= ) Gy
Ans. (a) z= —4, pole of order 4 (d) z =0, essential singularity
(b) 2z = 1, simple pole; z = —2, double pole (¢). 2 = /3, removable singularity
(¢) Simple poles z = —1=*+1{ (f) z = =2i, double poles

89, Find Laurent series about the indicated singularity for each of the following functions, naming the
singularity in each case. Indicate the region of convergence of each series.

cos 2 22
. = 2~ 1/% - = - % =
(a) e, E5T (b) 22e~Vz; 2 =0 (¢) PESFETIE z=1
| imr o o .
Ans. (a) I + zmr - (z4! ) + (26!77) — --+, simple pole, all 2+ 7
(b) 22 ——‘z + 11 + A1 + ++-, essential singularit all 250
217 81z " 4122 Bl ' ¥
1 7 9 9z—1)
(e) Z—1p + 166 = 1) + 4" 256 + -+, doublepole, 0 < |2—1] < 4
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RESIDUES AND THE RESIDUE THEOREM

90. Determine the residues of each function at its poles:

2243 z—3 ert z
@ Z=p O zr52 © g @ wroE
Ans. (a) z2=2; 7/4, z2=-—2; 1/4 (¢) z=2; L2e2t
(b) z=10; 8/26, 2z = --5; —8/25 d z=14 0, z=-1 0
91. Find the residue of e* tanz at the simple pole z = 3#/2. Ans., —e37t/2

’ 2
92, Evaluate § { 2 dz

. m, where C is a simple closed curve enclosing all the poles. Ans. —8xi

93, If C is a simple closed curve enclosing z = *i, show that

ze?t _ .
i m dz = itsint
94, If f(z) = P(2)/Q(z), where P(z) and Q(z) are polynomials such that the degree of P(z) is at least two

less than the degree of Q(z), prove that § f(z)dz = 0, where C encloses all the poles of f(z).
c

EVALUATION OF DEFINITE INTEGRALS

Use contour integration to verify each of the following:

® x2dx T = dx T
95.f£_:—— 10.f___——:_
b xt+1 2\/2 ¢ ., @@+ 1)2(x2+4) 9
0 27 &
96.f G =2 s 101.f b6 -
_, @ Fab 3a’ o 2 —cosg V3
® . 2w
7. f _dx _ T 100 j‘ de _ 4r/8
o {(x2+4)% 32 o (2+ cose)? 9
) T s
98. f VZ gy = I 103.f S8 g = T
o Yy @8+ v 3 o b—4cose i 8
° d 7 dg 37
99.f—————-——-———a7 a>0 104.f L A— L
s (@t adp 8Y2 o (1 -+ sin29)2 2v/2
i cos né do 27an
105. = 2ma” .
0 J; S = {Ta n=0,128..,0<a<1
2
de _ (2a2+ )7
06, § s = G o> b
e~ 4 S “7(2¢ — 8)
107. f x sin 22 do = T° 1 f sin x _ w(2e
h T+ 4 4 0- ) s+ de
_7, 5
108. f cos 27 de = me 11. f sm x -7
0 xd + 4 8 I d 2
2 p—T 3 3
109. f x sin 7& _ n%e 112, f sm T gp = 37
(o1 1)2 4 ‘ 0 8

* cosx _ T , ) eiz . : )
113. j; ~osha de = 2 cosh (7/2) " [Hznt. Consider £ Sosh s dz, where C is a rectangle with vertices

at (—R,0), (B,0), (R,#), (—R,#). 'Then let R —> W.]
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MISCELLANEQOUS PROBLEMS

114, If z = re® and f(z) = u(r,6) + iv(r,6), where r and ¢ are polar coordinates, show that the Cauchy-
Riemann equations are

on

ar

v _ 1 ou

1av e
r d¢’ r r 96

115. If w = f(z), where f(z) is analytie, defines a transformation from the z plane to the w plane where’
z =a+1y and w = u+iv, prove that the Jacobian of the transformation is given by -

au,v)  _ N2
ey = el
. .. 02F  82F
116. Let F(x,y) be transformed to G(u,v) by the transformation w = f(z). Show that if 553+ E = 0,
. , G | 2G _ ]
then at all points where f'(z) 0, v + e 0.

117. Show that by the bilinear transformation w — z:_-::z, where ad—be = 0, circles in the z plane

are transformed into circles of the w plane.

118, If f(z) is analytic inside and on the cirele |z —al = R, prove Cauchy’s inequality, namely,

n'M

fm (@) = P

where |f(z)] = M on the circle. [Hint. Use Cauchy’s integral formulas.]
119. Let C; and C, be concentric circles having center o and radii r, and r, respectively, where 7, < r,.

If ¢ + & is any point in the annular region bounded by C; and C,, and f(z) is analytic in this region,
prove Laurent’s theorem that :

flat+h) = 3 ahr
where a = 1 f _f@de
" 27t Jo (2~ a)n 1 o

C being any closed curve in the angular region surrounding Cj.

L - 1 £ _i@de 1 flz) dz S S
[Hmt. ‘:erte "f(a+h) = % sz 2wy =@t h gnd expand i =a=h in

two different ways.i‘

-120. Find a Laurent series expansion for the function f(z) = m which converges for 1 < |3| <2

and diverges elsewhere,

_ . 2 _ -1 2 _ -1 1
[Hmt. Write GFLE+2) ~— z+1 + z2+2 214172 + 1+4+2/2 ]
11 1,1 1 Lz, 7228
A'ns T mta gt tl-S5t+t -t




Chapter 6 .

FOURIER SERI\ES
Let F(x) satisfy the following conditions:
1. F(x) is defined in the interval ¢ < z < ¢ +2L
2. F(z) and F’(x) are sectionally continuous in ¢ <& < ¢+2L
3. F(x+2l) = F(z), ie. F(z) is periodic with period 2.

Then at every‘point of continuity, we have

Flx) = % i <am cos—l + b.sin ﬁ?) (2)
where .
On = 1 f F(x) cosw dx
+21 (2)
b = % f F(z) sin —77—:n~ dx

At a point of discontinuity, the left side of (1) is replaced by §{F(x+0) + F(x—0)}, ie.
the mean value at the discontinuity.

_The series (1) with coeflicients (2) is called the Fourier series of F(z). For many
problems, ¢ =0 or —l. In case [=r, F(z) has period 2= and (1) and (2) are simplified.

The above conditions are often called Dirichlet conditions and are sufficient (but not
necessary) conditions for convergence of Fourier series.

ODD AND EVEN FUNCTIONS
A function F(x) is called odd if F(—z) = —F(x). Thus 2% 2%-32°+2x, sinz, tan3z
are odd functions. '

A function F(x) is called even if F(—x)= F(x). Thus z*, 22%—4x®+5, cosx, e“+e™™
are even functions,

The functions portrayed graphically in Figures 6-1 and 6-2 below are odd and even
respectively, but that of Fig. 6-3 below is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present.
In the Fourier series corresponding to an even function, only cosine terms (and possibly
a constant which we shall consider a cosine term) can be present.

173
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Fe)| Fz) F(z)
-1

Period

e . .
/ /, Vv , '
Fig. 6-1 ' Fig. 6-2 Fig. 6-3

HALF RANGE FOURIER SINE AND COSINE SERIES

A half range Fourier sine or cosine series is a series in which only sine terms or only
cosine terms are present respectively. When a half range series corresponding to a given
function is desired, the function is generally defined in the interval (0,1) [which is half of
the interval (—[,1), thus accounting for the name half range] and then the function is
specified as odd or even, so that it is clearly defined in the other half of the interval,
namely (—,0). In such case, we have

2 ' . hmx - . .
an=0, b, = 7 f F(x) sin—~ dx for half range sine series
0 .

&)

l
=0, an = %f F(x) cosn—Tlrﬁ dx for half range cosine series
0

COMPLEX FORM OF FOURIER SERIES

In complex notation, the Fourier series (1) and coefficients (2) can be written as

F(w) — i Cp ginTz/l ’ . 7 ( 4)

where, taking ¢ = —1I,

1
- él_l f F(x) e~nmaht dg 5)
See Problem 74. o

PARSEVAL’S IDENTITY FOR FOURIER SERIES

Parseval’s identity states that
1 1 aﬁ )
E f F@pde = 5 + 3 (a2+52) | (6)
-1 n=1

where a. and b, are given by (2).

An important consequence is that
i

lim F(z) sin Elfﬁ de = 0
n—wds
l )
lim { F(z)cos™ 7 dx = 0
n—wd

-

This is called Riemann’s theorem.
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3

FINITE FOURIER TRANSFORMS

The finite Fourier sine transform of F(x), 0 <z <l, is defined as

fm) = fol F() sin 5~ do 8)

where n is an integer. The function F(x) is then called the inverse finite Fourier sine
transform of f, (n) and is given by

23 . Nwx
F@) = 73 f(msin™]" ®
The finite Fourier cosine transform of F(z), 0 <z <l, is defined as

Nl

fc(n)' = fol F(x) cosde (10)

‘whére n is an integer. The function F(x) is then called the inverse finite Fourier cosine
transform of f, (n) and is given by
1 2 ™ ’
F) = 77.(0) + 7 3 f.(n)cos™ " (11)
See Problems 9-11. " '

Finite Fourier transforms can be useful in solving differential equations [see Prob. 32].

THE FOURIER INTEGRAL
- Let F(z) satisfy the following conditions:

1. F(x) satisfies the Dirichlet conditions in every finite interval —l=x =1
2. f |F(x)| dx converges, i.e. F(x) is absolutely integrable in —« <z <.

Then Fourier's integral theorem states that

F) = f {A(M) cosaxx + B(r) sin Az} dr (12)
0
where
A(N) = %f F(x) cos Ax dx
(13)
By = 1 f F(x) sin Az dz
™ —on
This can be written equivalently as
F(z) = zi f f " F(w) cos Mz —u) du dA (14)
- ™ = —o0 =—u

The result (12) holds if x is a point of continuity of F(z). If x is a point of dis'continuity,
we must replace F(x) by 4{F(x+0) + F(z—0)} as in the case of Fourier series. As for
Fourier series, the above conditions are sufficient but not necessary.
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The similarity of (12) and (18) with corresponding results (Z) and (2) for Fourier series
is apparent. The right side of (12) is sometimes called the Fourier integral expansion of
F(z), or briefly Fourier integral. ’

COMPLEX FORM OF FOURIER INTEGRALS

In complex notation, the Fourier integral (12) with coefficients (13) can be written as

Fa) = 5 e f_ | F(u) =™ du (15)

- L f f F(u) e dy da
| ‘ 2r J-.J . |
See Problem 77. - '

FOURIER TRANSFORMS
From (15) it follows that if

—

i) = f "ot () du (16)

then Fu) = 21; f " e f() da (17)

which gives F'(z) on replacing « by .

The function f(A) is called the Fourter transform of F(x) and is sometimes written
f(A) = F {F(x)}. The function F(x) is the inverse Fourier transform of f(A) and is written
F(xy = F~1{f(0)}. We also call (17) an inversion formula corresponding to (16).

Note that the constants preceding the integral signs can be any constants whose product
is 1/2=. If they are each taken as 1/1/2r we obtain the so-called symmetric form.

FOURIER SINE AND COSINE TRANSFORMS

The (tnfinite) Fourier sine transform of F(x), 0 <x <, is defined as

fs() = f ) F(u) sin Au du (18)

0

The function F(z) is then called the inverse Fourier sine transform of f () and is given by
, 2 C° .
Fa) = 2 f fo(A) sin Az dx | (19)
0

The (infinite) Fourier cosine transform of F(x), 0 <z <, is defined as

fL0) = fo " F(w) cos wu du i (20)
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The function F(z) is then called the inverse Fourier cosine transform of fe() and is given by

Fx) = %jwfc ()\) cos Az dX | (21)
See Problems 18-20. 5

Fourier transforms can be used in solving differential equations [see Problem 33].

THE CONVOLUTION THEOREM

The convolution of two functions F(x) and G(x), where —o <g <, is defined as
F*G = f Fw)Gz—w)du = H(z) (22)
An important result, known as the convolution theorem for Fourier transforms, is the

following.
Theorem. If H(z) is the convolution of F(x) and G(x), then

f_i H@)e™de = { f_ : F(x) e'i“dx}{f_z G(=) e"““dw} (23)

or FF*Gy = F{F} F{G} (24)

i.e. the Fourier transform of the convolution of F and G is the product of the Fourier
transforms of F and G.

PARSEVAL’S IDENTITY FOR FOURIER INTEGRALS
If the Fourier transform of F(x) is f(A), then v

S w@par = o 7 ppan (25)

— @

This is called Parseval’s identity for Fourier integrals. Generalizations of this are possible
(see Problem 80).

RELATIONSHIP OF FOURIER AND LAPLACE TRANSFORMS

Consider the function

F(t) =

{e"” at) t>0 (26)

0 t<0

Then from (16), Page 176, with \ replaced by v, we see that the Fourier transform of F(t) is

FFE)} = f cerwiayat = | eva(t)dt 27)
(1] [1]
where we have written s = # +14y. The right side of (27) is the Laplace transform of &(?)
and the result indicates a relationship of Fourier and Laplace transforms. It also indicates
a need for considering s as a complex variable z 4 iy.
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To indicate the relationship even further, note that if F(f) and G(f) are zero for ¢t <0,
the convolution of F and G given by (22) can be written

F*¢ = f F(w) G(t — u) du (28)
and (24) corresponds to
L{F*GY = L{(F} £{G) (29)

ES

in agreement with (71) on Page 45.

In view of the fact that there is an inversion formula (17) corresponding to (16) for
Fourier transforms, one would feel that there ought to be a corresponding inversion
formula for Laplace transforms. Such an inversion formula is obtained in Chapter 7.

Solved Problems

FOURIER SERIES

13 1
1. Prove f sinde = f cosfgj—x—dx =0 if £=1,23,....

. l . l
13
ckew g L ke L T simbry =
f—z sm-l—dx = T 08 7 L Tor cos kzr + Tor cos(—kx) = 0
I _ 1
f cos—]-w—xdx = Lsinlw—x = Lsinkn- - Lsin (—kz) = 0
. l ka L kx T
1 t . 0 m+*n
M Nl . mMml ., Brl
2. Prove (a) f CoS —— cos —— dx = f sin —— gin —— de =
_ l l - l l I m=n
i
. Mrd Nl
(b) JA sm—zr—cos%— de = 0
-1

where m and » can assume any of the values 1,2,3, ... .

(¢) From trigonometry: cos A cos B = }{cos(A —B) + cos (4 + B)}, sinA sinB = 1{cos (A —B) —
cos (A + B)}. - :

Then, if m ¥ n, by Problem 1,

4 1 _
f cos 7T oo @ de = % f {cos (m =z + cos w} de = 0
1 -

l {

Similarly if m # n,

! ' ] _
f sin@sin-m;idx = %j‘ {cos(ﬁ%)mi - cosw}dx = 9
l -1
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If m ==, we have

1 : !
f e0s 272 cos ML g 1 f 1 + cos 2n7w> de = 1
B l ] 2J_, I
! m x Nrd 1 ! 2nax
f sin ——sin "~ dx = < f 1 — cos = > da
LT I 2J_, I

Note that if m = n =0 these integrals are equal to 2! and 0 respectively.

o~

(b) We have sinAd eosB = 3{sin (A — B) + sin (A + B)}. Then by Problem 1, if m+n,

1 ! .
f sin 7% cos 7T gy = —1—f sinw—}- sinw de = 0
1 l. l 2J_, l 1
If m=n,
! t
f sin 272 o5 T gy = 1 f sin 2na de = 0 !
. I I 2J I

The results of parts (a) and (b) remain valid even when the limits of integration —I,1 are
replaced by ¢, ¢+ 21 respectively.

3. If theseries A + i <an cos 2% l 2 4 bysin lx> <onverges uniformly to f(x) in (-1, 1),
=1
show that for » = 1 2,3,.

1t C nmx n a
(@) an = Tf F(x) coledx, (b) b, = 1J' F(x) s1n—7r—xdx () A4 = —23
_l v
(a) Multiplying
Fa) = 4+ 3 (a,, cosT + b, sm’ﬂl@> @
n=1
by cos @ and integrating from —! to I, using Problem 2, we have
' Mmre ! M
f F(x) cos 7[ dr = Af cos 7lT dx 2
w 1
+ 3 wnf cos——— fmrx de + b f cos 272 5in 77T gy
n=1 -1 l l
= a,l if m=0 ‘
Thus m if mo=1,2,8, ...
(b)) Multiplying (1) by sin2"% and integrating from —! to l, using Problem 2, we have
l
t
= af @
-

w 1
+ 3 {anf sin 225 l cos—da: + b, f sin 272 gin m’ix dx}
n=1 -1

= bl

Thus b, = %f F)sin ™2dz  if m =1,2,3,...
~1
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(c¢) Integration of (Z) from —! to /, using Problem 1, gives

14 3
f Flo)ds = 241 or A = élif Fl) do
-1 -1 .
ag

. 1
Putting m = 0 in the result of part («), we find a;, = % f F(r)dx and so A = 5
-1

The above results also hold when the integration limits =11 afe replaced by ¢, ¢+ 2L

Note that in all parts above, interchange of summation and integration is valid because the
series is assumed to converge uniformly to F'(x) in (—[,[). Even when this assumption is not
warranted, the coefficients a,, and b,, as obtained above are called Fourier coefficients corresponding
to F(x), and the corresponding series with these values of a,, and b, is called the Fourier series
corresponding to F(x). An important problem in this case is to investigate conditions under which
this series actually converges to F(x). Sufficient ¢onditions for this convergence are the Dirichlet
conditions established below [see Problems 12-17].

(¢) Find the Fourier coefficients corresponding to the function

0 -5<ax<O .
Fl)y = Period = 10
3 0<z<5b

(b) Write the corresponding Fourier series.
(¢) How should F(z) be defined at * =—5, £ =0 and « =5 in order that the Fourier
series will converge to F(x) for ~—b =2 =57
The graph of F(x) is shown in Fig. 6-4 below.
F(x)

~e— Period —

- - ‘_i_ ‘-__-
)
-
5

r
—15 —10 b

Fig. 6-4

(@) Period =21 =10 and I=5. Choose the interval ¢ to ¢+2l as —5 to 5, so that ¢=—5. Then

1 c+2t 1 5 o
e, = f F(x) cos o gy = = f F(x) cos —— da
l 5J 5
1 3 (°  nnw
= = (O) cos 2 dx + (3) cos—dx = = cos —— dx
5 5J, 5
5
= g(-f’—sin”—”f> 0 if n0
nr 5 0

5 5
If n=0, a, = @ = gf COs()T;—a;dm = gf de = 8.
0

c+2l

ot

9
Pe) sin 2 de = —;- f F(a) sin 222 do

J.
{ (0) smmdx + f 3) sm—dx} = gfssin’—'%r—xdx
0

| =

5 _ 3(1 - cosng) .
o n

ot
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(b) The corresponding Fourier series is
a 2 w B
N4 Sapcos™ 4 b, sin™®) = 3 4 3 3L—coswm) g, nrw
2 n=1 l 1 —y nr 3
1 Brx 1 . 577-x+".>

6 . TE .
+ ;(sm? + 3sm? + 5 sin %

P MW

{(¢) Since F(x) satisfies the Dirichlet conditions, we can say that the series converges to F(x) at all

points of continuity and to E(x +0 ; F(z—0) at points of discontinuity. At « = —5, 0 and 5,

, whlch are points of discontinuity, the serles converges to (3+0)/2 = 3/2 as seen from the graph.
If we redefine F(z) as follows,

3/2 + x=-—5
0 —5< <0
F(x) = 3/2 x=0 Period = 10
3 0<x<bh
'3/2 x=5

- then the series will converge to F(x) for —5 =x = 5.

5. Expand F(x) =2% 0 <z <2r in a Fourier series if (a,) the period is 2, (b) the period
is not specified.

(a) The graph of F(x) with period 27 is shown in Fig. 6-5 below.

F(x)
/ / A / /
/ / / / //
/ / / /
/ e / 4r? / /
Vs Vs Ve / P 4
- - — d ,// =7 d el od
|6 I ) 1 1 1
—6r —47 —27 27 4r 6r
Fig. 6-5
Period = 2l =27 and [ =~. Choosing ¢ =0, we have
c+2al
a, = %f F(x)cosn—?gﬁdm = —f xzcosmydx
[
— —_ 2T
= 1 {( 2)<s1r1 mv) — (2x) <__co§ nm) + 2(—————512 mo)} = %, 770
T n nw 0 n
i 2w 2
If n=0, a = lf r2de = 8L
T 3
0
c+2l
b, = 1f F(x) sinandxr = —1~f 22 sin nx dx
l l T
c . 0
3 27 —
_ 1 {(x2)< cosnm> ~ ) <_ sin mc> + @ <cosmc>} - y -
tar ’VL2 0 n

.;;
l 1M

- 4r
— 2 - =
Then F(x) = x> = 3 + <n2 cos nw p” sin n:v)
This is valid for 0 < # < 27. At « =0 and « = 27 the series converges to 2z2

(b) If the period is not specified, the Fourier series cannot be determined uniquely in general.
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ODD AND EVEN FUNCTIONS. HALF RANGE FOURIER SINE AND
COSINE SERIES
i

6. If F(z) is even, show that (a) a. = %f F(x) cosﬂlr—gf de, (b) b, =0.

0

t 0 t :
(a) a, = % LLF(x) cos 2E’%—aida: = % f_lF(x) cosz-“z—xdm + % j; F(z) cos 27—;ﬁda:

Letting & = —u,

0 ! 8
3 f F@)cos ™2 dz = 1 f F(—woos (%) au = 1 J F(u) cos —== du
1J I 1), ) 1J, 1

since by definition of an even function f(—u) = f(u). Then.

! t 1
@, = %f F(u) cos ™™ du + %f (o) cos 5% dn = —%f F(@) cos ™7 da
0 0 0
1 ( nrwe 1 (° nre 1 (" nrx '
(b) b, = 7 f F(x) sin JZT—dx = 7 f F(x) sin-’l’—dx + 7 f F(z) sin %dm )
—1 ] —1 0
If we make the transformation x = —u in the first integral on the right of (1), we obtain -
1 0 nTe 1 ! nru 1 l
I f F(x) sin Jlf— de = 3 f F(—u) sin (——’ll) du = —3 f F(—w) sin 2 du  (2)
-1 0 0 l

o~

! L
= - % f F(u) sin Eﬁlﬂdu f F(x) sin Zl_zlr_i_”_ dx
0 0

where we have used the fact that for an even funetion F(—u) = F(u) and in the last step that
the dummy variable of integration u can be replaced by any other symbol, in particular x. Thus

from (1), using (2), we have

ot o
b, = —%‘J()‘F(x)sin%”ﬁdx+%‘£F(x)sin?’§—xda¢ = 0

7. Expand F(x)=12, 0 <2 <2, in ahalf range (a) sine series, (b) cosine series.

{(a) Extend the definition of the given function to that of the odd function of period 4 shown in

Fig. 6-6 below. This is sometimes called the odd extension of F(x). Then 2l=4, [=2.

F(z)
'S / /7
/7 / /7
/7 / /
pa 0 / z
T U T 7 T A 1
—6 / -4 -2 / 2 7/ 4 6 /
/ /7 /s /
/7 7/ / /
Fig. 6-6
Thus @, =0 and
l 2
b, = —?— £ F(x) sinwz—x de = g J; % sin %daz
—2 X —4 . Nzw 2 .
= {(x) (E cos T) — (1) <1-1:2—7—r5 sin -—;—)} = —cosur

0
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Then Fay = 23 :ﬁcos i sin 222
nzl’l’bﬂ“ 2
= 4 e 1 w1 Sem
= 8y TgsmTy TgsTy

(b) Extend the definition of F(x) to that of the even function of period 4 shown in Fig. 6-7 below.
This is the even extension of F(x). Then 21 =4, [ =2,

F(x)
\ /\ \ VA
// N\ /7 N\ \ /N
\N N\ N O/
N N z
| 1 1 7] [ 1 T
-6 -4 -2 2 4 6
Fig.6-7
Thus b, =0,
2 f ' Fl) d 2 fz d
a, = 7 z2) cos ——dx = 3 x cos —— dw
1J, l 2.J, 2
_ 2 nre —4 nae \ | 2
= {(m)(n— si T) — (1) <n21rzcos B >} .
4 .
= m(cosmr—l) if n#0
2
If n=0, g = f rxdx = 2
0
w Then Fxy = 1 + i i(cosm-— 1) cos 2%
n=1 n2q2 2

_ g _ B w1 8w 1 Ew
= 1 77_2<cos—§—+32cos2 T zzcos 5 + >

It should be noted that the given function F(x) = x, 0 < & < 2, is represented equally well by
the two different series in (@) and (b).

PARSEVAL’S IDENTITY FOR FOURIER SERIES

8. Assuming that the Fourier series correspondin