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Preface

The complexity and randomness aspects of sets of natural numbers are closely
related. Traditionally, computability theory is concerned with the complexity
aspect. However, computability theoretic tools can also be used to introduce
mathematical counterparts for the intuitive notion of randomness of a set. Recent
research shows that, conversely, concepts and methods originating from random-
ness enrich computability theory.
This book is about these two aspects of sets of natural numbers and about

their interplay. Sets of natural numbers are identified with infinite sequences of
zeros and ones, and simply called sets.
Chapters 1 and 6 are mostly about the complexity aspect. We introduce lowness

and highness properties of sets.
Chapters 2, 3, and 7 are mostly about the randomness aspect. Firstly we study

randomness of finite objects. Then we proceed to sets. We establish a hierar-
chy of mathematical randomness notions. Each notion matches our intuition of
randomness to some extent.
In Chapters 4, 5, and 8 we mainly study the interplay of the computability

and randomness aspects. Section 6.3 also touches upon this interplay. Chapter 9
looks at analogs of results from the preceding chapters in higher computability
theory.
In the area or research connecting complexity and randomness, several times,

properties of sets were studied independently for a while, only to be shown
to coincide later. Some important results in this book show such coincidences.
Other results separate properties that are conceptually close. Even if properties
introduced in different ways coincide, we still think of them as conceptually
distinct.
This book can be used in various ways: (1) as a reference by researchers; (2)

for self-study by students; and (3) in courses at the graduate level.
Such a course can lean towards computability (Chapter 1, some of Chapters

4 and 6), randomness (Chapters 2, 3, 7, and 1 to the extent needed), or the
interplay between the two (Chapters 4, 5, 8, and as much as needed from other
chapters).
Figure 1 displays major and minor dependencies between chapters. The latter

are given by dashed lines; the labels indicate the section which depends on the
preceding chapter.
The book contains many exercises and a number of problems. Often the exer-

cises extend the material given in the main text in interesting ways. They should
be attempted seriously by the student before looking at the solutions at the back
of the book. The problems are currently open, possibly only because no one has
tried.
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Fig. 1. Major and minor dependencies between chapters.

Notation is listed from page 416 on for reference. The absolute value of a
number r ∈ R is denoted by abs(r). The cardinality of a set X is denoted by
#X. We use the bracket notation in sums as explained in Knuth (1992). For
instance,

∑
n n

−2 [[n is odd]] denotes 1 + 1/9 + 1/25 + . . . = π2/8.
The following conventions on variables apply.

n,m, k, l natural numbers
x, y, z, v, w binary strings (often identified with numbers)
σ, ρ, τ binary strings when seen as descriptions or oracle strings
A, . . . E, V, . . . , Z subsets of N

f, g, h functions N→ N

A,B, . . . classes.
This book would not exist without the help of my colleagues and friends. Spe-

cial thanks to Santiago Figueira, Noam Greenberg, Bjørn Kjos-Hanssen, Antońin
Kučera, Antonio Montalbán, Joseph Miller, Selwyn Ng, Alex Raichev, and Jan
Reimann. Substantial help was also provided by George Barmpalias, David
Belanger, Laurent Bienvenue, Helen Broome, Peter Cholak, Barbara Csima,
David Diamondstone, Nick Hay, Greg Hjorth, Bart Kastermans, Steffen Lempp,
Ken Harris, Chris Porter, Richard Shore, Stephen Simpson, Sebastiaan Terwijn,
Paul Vitanyi, and Liang Yu. I am grateful to the University of Auckland, and
especially to the department of computer science. I gratefully acknowledge sup-
port by the Marsden fund of the Royal Society of New Zealand. I thank Oxford
University Press, and in particular Dewi Jackson, for their support and patience.

Auckland, July 2008.
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1

The complexity of sets

We study the complexity of sets of natural numbers. There are two interrelated
types of complexity.

Computational. Informally, we ask how much (or little) the set knows.
Descriptive. We ask how well the set can be described.

In both cases, to understand the complexity of sets, we introduce classes of
similar complexity , namely classes of sets sharing a certain complexity property.
For both types of complexity, the smallest class we will consider is the class of
computable sets.
Classes of computational complexity. To give a mathematical definition for the
intuitive notion of a computable function f : N → N, a formal model of com-
putation is used, for instance Turing machines. The model can be extended to
allow queries to an “oracle set” Z during the computations, thereby defining
what it means for a function to be computable with oracle Z. In most cases, a
class of computational complexity is given by a condition indicating the strength
of Z as an oracle. For instance, Z is low if deciding whether a computation us-
ing Z converges is no harder than deciding whether a computation without an
oracle converges. Z is computably dominated if each function computed by Z is
bounded by a computable function, and Z is high if some function computed by
Z grows faster than each computable function. These classes will be studied in
Section 1.5.
Classes of descriptive complexity. One introduces description systems. The de-
scriptions are finite objects, such as first-order formulas or Turing programs,
which can be encoded by natural numbers in an effective way. Formally, a de-
scription system is simply a function F : I → P(N) where I ⊆ N. If F (e) = Z,
then e is a description of Z in that system, and the class of descriptive complexity
given by F is the range of F . Examples include the computably enumerable sets,
where F (e) =We is the set of inputs on which the e-th Turing program halts, the
arithmetical sets, and the Π1

1 sets, a high-level analog of the c.e. sets where the
enumeration takes place at stages that are computable ordinals. (C.e. sets are
introduced in Definition 1.1.8, arithmetical sets in 1.4.10, and Π1

1 sets in 9.1.1.)
Since descriptions can be encoded by natural numbers, all classes of descriptive
complexity are countable. (In other areas of logic it can also be the case that
descriptions are infinite, though they should be simpler than the objects they de-
scribe. In descriptive set theory, say, certain functions from N to N, called Borel
codes, describe Borel sets of real numbers. In model theory, for some complete
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first-order theories T , sequences of ordinals can describe countable models of T
up to isomorphism.)
The classes of descriptive complexity we consider usually form an almost linear

hierarchy given by the inclusion of classes. (The class of Π0
2 singletons, Defini-

tion 1.8.61, is one of the few exceptions to this rule.) This contrasts with the
case of computational complexity. For instance, the only sets that are low and
computably dominated are the computable sets. Another difference is that being
in a class of descriptive complexity means the set is well-behaved in a particular
sense. In contrast, classes of computational complexity will be of two types: the
ones consisting of sets that know little, and the ones consisting of sets that know
a lot. Classes of the first type are given by lowness properties, such as being low,
or computably dominated, while classes of the second type are given by highness
properties, such as being high.
The counterpart of knowing a lot in descriptive complexity might be being

hard to describe. We will see that this is one aspect of the intuitive notion
of randomness for sets. The other, related, aspect is not satisfying any excep-
tional properties (in the sense of the uniform measure on Cantor space 2N). In
Chapters 3, 7 and 9 we will introduce various classes capturing the degree of
randomness of a set. A central one is the class of Martin-Löf random sets.
So far we have only discussed the absolute complexity of a set Z, by looking

at its membership in certain classes. The relative computational complexity is
measured by comparing Z to other sets. To do so, one introduces preorderings ≤r

on sets, called reducibilities: X ≤r Y means that X is no more complex than Y in
the sense of ≤r. Traditionally, a reducibility specifies a way to determine whether
n ∈ X with the help of queries of the form “k ∈ Y ?” Such a method to computeX
from Y is called a reduction procedure. We also study weak reducibilities, which
can be used to compare the computational complexity of sets even if there is no
reduction procedure; see Section 5.6 and page 339.
There are a few examples of preorderings ≤r used to compare the relative

descriptive complexity of sets, such as enumeration reducibility (Odifreddi, 1999,
Ch. XIV) and the reducibility ≤K (5.6.1). Furthermore, some preorderings ≤r

have been introduced where A ≤r B expresses in some way that B is at least as
random as A, for instance ≤K again, ≤S on the left-c.e. sets (3.2.28), and ≤vL

on the Martin-Löf random sets (5.6.2). No general theory has emerged so far.
One of the aims of this chapter is to give a brief, but self-contained introduction

to computability theory, focussing on the material that is needed later on. Topics
left out here can often be found in Soare (1987) or Odifreddi (1989, 1999).
We will rely on important meta-concepts: uniformity, relativization, and univer-

sality. Uniformity is discussed in Remark 1.1.4, and relativization before Propo-
sition 1.2.8 on page 10.
We will return to the complexity of sets in Sections 1.2, 1.4, and 1.5 of this

chapter, as well as in Chapters 5, 8, and 9.
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1.1 The basic concepts
We review fundamental concepts of computability theory: partial computable
functions, computably enumerable sets, and computable sets. We provide an
important tool, the Recursion Theorem.

Partial computable functions

One main achievement of mathematical logic is a formal definition for the intu-
itive concept of a computable function. We mostly consider functions f : N

k �→ N

(where k ≥ 1). This is an inessential restriction since other finite objects that
could be considered as inputs, say finite graphs, can be encoded by natural num-
bers in some efficient way. One obtains a mathematical definition of computable
functions by introducing Turing machines (Turing, 1936). Such a machine has k
tapes holding the inputs (say in binary), one output tape, and several internal
work tapes. A Turing machine reads and writes symbols from a finite alpha-
bet (which includes the symbols 0 and 1) on these tapes. The input tapes are
read-only, while the output tape is write-only. The behavior of the machine is
described by a finite sequence of instructions, called a Turing program, which is
carried out in a step-wise fashion one instruction at a time. See Odifreddi (1989)
for details. The function f is computable if there is a Turing program P for the
machine model with k input tapes which, for all inputs x0, . . . , xk−1, halts with
f(x0, . . . , xk−1) on the output tape.
Of course, for certain inputs, a Turing program may run forever. There is no

algorithm to decide whether a program halts even on a single input, let alone on
all. Thus it is natural to include partial functions in our mathematical definition
of computability.

1.1.1 Definition. Let ψ be a function with domain a subset of N
k and range a

subset of N. We say that ψ is partial computable if there is a Turing program P
with k input tapes such that ψ(x0, . . . , xk−1) = y iff P on inputs x0, . . . , xk−1
outputs y. We write ψ(x0, . . . , xk−1)↓ if P halts on inputs x0, . . . , xk−1. We say
that ψ is computable if ψ is partial computable and the domain of ψ is N

k.

Many other formal definitions for the intuitive notion of a computable func-
tion were proposed. All turned out to be equivalent. This lends evidence to the
Church–Turing thesis which states that any intuitively computable function is
computable in the sense of Definition 1.1.1. More generally, each informally given
algorithmic procedure can be implemented by a Turing program. We freely use
this thesis in our proofs: we give a procedure informally and then take it for
granted that a Turing program implementing it exists.
Fix k and an effective listing of the Turing programs for k inputs. Let P k

e be
the program for k inputs given by the e-th program. Let Φk

e denote the partial
computable function with k arguments given by P k

e . If Φ = Φk
e then e is called

an index for Φ. Often there is only one argument, and instead of Φ1
e we write

Φe. (1.1)
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The following notation is frequently used when dealing with partial functions.
Given expressions α, β,

α 	 β
means that either both expressions are undefined, or they are defined with the
same value. For instance,

√
(r + 1)(r − 1) 	 √r2 − 1 for r ∈ R.

A universal Turing program. The function Ξ(e, x) 	 Φe(x) is partial com-
putable in the intuitive sense. The informal procedure is: on inputs e, x, fetch
the e-th Turing program P 1

e and run it on input x. If its computation halts with
output y then give y as an output. By the Church–Turing thesis, Ξ is partial com-
putable. A Turing program computing Ξ is called a universal Turing program.
The following theorem states that Ξ can emulate partial computable functions
in two arguments whenever the Turing programs are listed in an appropriate
effective way. For details see Odifreddi (1989).

1.1.2 Theorem. (Parameter Theorem) For each partial computable function Θ
in two variables there is a computable strictly increasing function q such that

∀e∀xΦq(e)(x) 	 Θ(e, x).

An index for q can be obtained effectively from an index for Θ.

Proof idea. Given a Turing program P for Θ, we obtain the program P 1
q(e) by

making the first input e part of the program code. �

For a formal proof, one would need to be more specific about the effective
listing of Turing programs. The same applies to the next result.

1.1.3 Lemma. (Padding Lemma) For each e and each m, one may effectively
obtain e′ > m such that the Turing program Pe′ behaves exactly like Pe.

Proof idea. We obtain the program Pe′ from Pe by adding sufficiently much
code which is never executed. �

1.1.4 Remark. (Uniformity) In subsequent results we will often make state-
ments like the one in the last line of Theorem 1.1.2: we do not merely assert the
existence of an object, but actually that its description (within some specified
description system) can be computed from descriptions of the given objects. The
formal version of the last line in Theorem 1.1.2 is: there is a computable func-
tion h such that if Θ = Φ2

e, then ∀i∀xΦq(i)(x) 	 Θ(i, x) holds for q = Φ1
h(e).

One says that the construction is uniform, namely, there is a single procedure to
obtain the desired object from the ingredients which works for each collection of
given objects. Proofs of basic results are usually uniform. More complex proofs
can be nonuniform. We will at times be able to show this is necessarily so, for
instance in Proposition 5.5.5.

The Recursion Theorem is an important technical tool. It was proved by Kleene
(1938) in a paper on ordinal notations. Informally, it asserts that one cannot
change in an effective way the input/output behavior of all Turing programs.



1.1 The basic concepts 5

1.1.5 Recursion Theorem. Let g : N �→ N be computable. Then there is an e
such that Φg(e) = Φe. We say that e is a fixed point for g.

Proof. By the Parameter Theorem 1.1.2 there is a computable function q such
that Φq(e)(x) 	 Φg(Φe(e))(x) for all e, x. Choose an i such that q = Φi, then

Φq(i) = ΦΦi(i) = Φg(Φi(i)). (1.2)

So e = Φi(i) = q(i) is a fixed point. �

We obtained the index i for q effectively from an index for g, by the uniformity
of the Parameter Theorem. Thus, if g is a computable function of two arguments,
we can compute a fixed point e = f(n) for each function gn given by gn(e) =
g(e, n). Taking the uniformity one step further, note that an index for f can be
obtained effectively from an index for g. This yields an extended version:

1.1.6 Recursion Theorem with Parameters. Let g : N
2 �→ N be comput-

able. Then there is a computable function f , which can be obtained effectively
from g, such that Φg(f(n),n) = Φf(n) for each n. �

The incompleteness theorem of Gödel (1931) states that for each effectively axiom-
atizable sufficiently strong consistent theory T in the language of arithmetic one can
find a sentence ε which holds in N but is not provable in T . Peano arithmetic is an
example of such a theory. The incompleteness theorem relies on a fixed point lemma
proved in a way analogous to the proof of the Recursion Theorem. One represents a
formula σ in the language of arithmetic by a natural number σ. This is the analog of
representing a partial computable function Ψ by an index e, in the sense that Ψ = Φe.
Notice the “mixing of levels” that is taking place in both cases: a partial computable
function of one argument is applied to a number, which can be viewed as an index for
a function. A formula in one free variable is evaluated on a number, which may be a
code for a further formula. The fixed point lemma says that, for each formula Γ(x) in
one free variable, one can determine a sentence ε such that

T � ε↔ Γ(ε).

Informally, ε asserts that it satisfies Γ itself. Roughly speaking, if Γ(x) expresses that
the sentence x is not provable from T , then ε asserts of itself that it is not provable,
hence ε holds in N but T �� ε.

In the analogy between Gödel’s and Kleene’s fixed point theorems, Γ plays the role
of the function g. Equivalence of sentences under T corresponds to equality of partial
computable functions. One obtains the fixed point ε as follows: the map F (σ) = σ(σ),
where σ is a formula in one free variable, is computable, and hence can be represented
in T by a formula ψ in two free variables (here one uses that T is sufficiently strong;
we skip technical details). Hence there is a formula α expressing “Γ(F (σ))”, or more
precisely ∃y[ψ(σ, y) & Γ(y)]. Thus, for each formula σ

T � α(σ)↔ Γ(σ(σ)).

Forming the sentence σ(σ) is the analog of evaluating Φe(e), and α is the analog of
the function q. Now let ε be α(α). Since α is the analog of the index i for q, ε (that is,
the result of evaluating α on its own code number) is the analog of Φi(i) (the result
of applying q to its own index). As in the last line (1.2) of the proof of the Recursion
Theorem, one obtains that T � ε↔ α(α)↔ Γ(α(α)).
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1.1.7 Exercise. Extend the Recursion Theorem by showing that each computable
function g has infinitely many fixed points. Conclude that the function f in Theo-
rem 1.1.6 can be chosen one-one.

Computably enumerable sets

1.1.8 Definition. We say that a set A ⊆ N is computably enumerable (c.e., for
short) if A is the domain of some partial computable function.

The reason for choosing this term will become apparent in 1.1.15. Let

We = dom(Φe). (1.3)

Then (We)e∈N is an effective listing of all c.e. sets. A sequence of sets (Se)e∈N

such that {〈e, x〉 : x ∈ Se} is c.e. is called uniformly computably enumerable. An
example of such a sequence is (We)e∈N.
The characteristic function f of a set A is given by f(x) = 1 if x ∈ A and

f(x) = 0 otherwise; A and f are usually identified. A is called computable if its
characteristic function is computable; otherwise A is called incomputable.

1.1.9 Proposition. A is computable ⇔ A and N−A are c.e.

Proof. ⇒: If A is computable, there is a program Q0 that halts on input x iff
x ∈ A, and a program Q1 that halts on input x iff x �∈ A.
⇐: By the Church–Turing thesis it suffices to give an informal procedure for
computing A. Fix programs Q0, Q1 such that Q0 halts on input x iff x ∈ A, and
Q1 halts on input x iff x �∈ A. To decide whether x ∈ A, run the computations
of Q0 on x and of Q1 on x in parallel until one of them halts. If Q0 halts first,
output 1, otherwise output 0. �

We may obtain a c.e. incomputable set denoted ∅′ by a direct diagonalization.
We define ∅′ in such a way that N− ∅′ differs from We at e: let

∅′ = {e : e ∈We}.
The reason for choosing this notation becomes apparent in 1.2.9. The set ∅′ is
called the halting problem, since e ∈ ∅′ iff program P 1

e halts on input e. (It is often
denoted by K, but we reserve this letter for prefix-free Kolmogorov complexity.)

1.1.10 Proposition. The set ∅′ is c.e. but not computable.

Proof. ∅′ is c.e. since ∅′ = dom(J), where J is the partial computable function
given by J(e) 	 Φe(e). If ∅′ is computable then there is e such that N−∅′ =We.
Then e ∈ ∅′ ↔ e ∈ We ↔ e �∈ ∅′, contradiction. (This is similar to Russell’s
paradox in set theory.) �

The sequence (We)e∈N is universal for uniformly c.e. sequences.

1.1.11 Corollary. For each uniformly c.e. sequence (Ae)e∈N there is a com-
putable function q such that Ae =Wq(e) for each e.
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Proof. Define the partial computable function Θ by Θ(e, x) 	 0 iff x ∈ Ae, and
Θ(e, x) is undefined otherwise. Then the function q obtained by the Parameter
Theorem is as required. �

1.1.12 Exercise. Suppose (Ŵe)e∈N is a further universal uniformly c.e. sequence. As-
sume that (Ŵe)e∈N also has the padding property, namely, for each e and each m, one
may effectively obtain e′ > m such that Ŵe′ = Ŵe. Show that there is a computable
permutation π of N such that Ŵe = Wπ(e) for each e.

Indices and approximations

A construction of an object, say a c.e. set, is usually carried out by giving an
informal procedure that runs at stages s. We need effective approximations at
stages of the objects that are given (if there are such objects). These approxi-
mations can often be derived from the descriptions of the objects via a Turing
program. If the e-th Turing program describes an object in some specified way,
then we say e is an index for that object. This terminology has already been
used, for instance, after (1.1) on page 3.

1.1.13 Definition. We write
Φe,s(x) = y

if e, x, y < s and the computation of program Pe on input x yields y in at most s
computation steps. We write Φe,s(x)↓ if there is some y such that Φe,s(x) = y,
and Φe,s(x)↑ otherwise. Further, we let We,s = dom(Φe,s).

At stage s we have complete information about Φe,s andWe,s (which is precisely
what we need in a construction). To state this more formally, we need to specify
an effective listing D0, D1, . . . of the finite subsets of N.

1.1.14 Definition. Let D0 = ∅. If n > 0 has the form 2x1 + 2x2 + . . . + 2xr ,
where x1 < . . . < xr, then let Dn = {x1, . . . , xr}. We say that n is a strong index
for Dn. For instance, D5 = {0, 2} since 5 = 20 + 22.

There is a computable function f such that f(e, s) is a strong index for We,s.
We think of a computable enumeration of a set A as an effective listing a0, a1, . . .
of the elements of A in some order. To include the case that A is finite, we rather
formalize this via an effective union of finite sets (As). We view As as the set of
elements enumerated by the end of stage s. At certain stages we may decide not
to enumerate any element.

1.1.15 Definition. A computable enumeration of a setA is an effective sequence
(As)s∈N of (strong indices for) finite sets such that As ⊆ As+1 for each s, and
A =

⋃
sAs.

Each c.e. set We has the computable enumeration (We,s)s∈N. Conversely, if A
has a computable enumeration then A is c.e., for A = dom(Φ) where Φ is the
partial computable function given by the following informal procedure: at stage s
we let Φ(x) = 0 if x ∈ As. An index for a c.e. set A is a number e such that
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A = We. When a c.e. set A is described in such a way, then we automatically
have a computable enumeration (As)s∈N of A given by As =We,s.
Here is an easy application of computable enumerations.

1.1.16 Proposition. For each partial computable function Φ, ran(Φ) is c.e.

Proof. The given object is Φ = Φe, and we enumerate A = ran(Φ). Since we
have complete information about Φs at stage s, we can compute from s a strong
index for As = ran(Φs). Then (As)s∈N is the required computable enumeration
of A. �

Exercises. Use computable enumerations and the Church–Turing thesis.
1.1.17. Given a c.e. set A, one can uniformly obtain a partial computable function ψ
with domain an initial segment of N such that the range of ψ is A.
1.1.18. A function Φ is partial computable iff its graph {〈x, y〉 : Φ(x) = y} is c.e.
1.1.19. Each infinite c.e. set has an infinite computable subset.
1.1.20. (Reduction Principle) For each pair of c.e. sets A, B one can effectively deter-
mine disjoint c.e. sets Ã ⊆ A and B̃ ⊆ B such that A ∪B = Ã ∪ B̃.

1.2 Relative computational complexity of sets
Recall from the beginning of this chapter that the relative computational com-
plexity of a set A is measured by comparing A to other sets via preorderings
called reducibilities. To introduce a reducibility ≤r one specifies a particular
type of procedure. It determines whether n ∈ X with the help of queries of the
form “is k in Y ?” Each procedure of this type is called an r-reduction proce-
dure. There is a hierarchy of reducibilities. The most restricted one we consider
is usually many-one reducibility ≤m. An important more general one is Turing
reducibility ≤T .
Given a reducibility ≤r on sets we will write X ≡r Y for the corresponding

equivalence relation X ≤r Y ≤r X. The equivalence classes are called r-degrees.
The r-degree of X consists of the sets having the same complexity as X with
respect to ≤r. The r-degrees form a partial order denoted Dr. Some properties
of such structures Dr are sketched on page 16.

Many-one reducibility

One of the simplest examples of a reducibility is the following.

1.2.1 Definition. X is many-one reducible to Y , denoted X ≤m Y , if there is
a computable function f such that n ∈ X ↔ f(n) ∈ Y for all n.

Thus, the many-one reduction procedures are given by computable functions.
Such reductions occur in various areas of mathematics. For instance, interpre-
tations of theories are many-one reductions. For a further example, if G is a
finitely generated subgroup of the finitely generated group H then the word
problem of G is many-one reducible to the word problem of H. (In both exam-
ples we have assumed an effective encoding of the objects in question by natural
numbers.)
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If X is computable, Y �= ∅, and Y �= N, then X ≤m Y : choose y0 ∈ Y and
y1 �∈ Y . Let f(n) = y0 if n ∈ X, and f(n) = y1 otherwise. Then X ≤m Y via f .
Thus, disregarding ∅ and N, the computable sets form the least many-one degree.
For each set Y the class {X : X ≤m Y } is countable. In particular, there is no

greatest many-one degree. However, ∅′ is the most complex among the c.e. sets
in the sense of ≤m:

1.2.2 Proposition. A is c.e. ⇔ A ≤m ∅′.
An index for the many-one reduction as a computable function can be obtained
effectively from a c.e. index for A, and conversely.

Proof. ⇐: If A ≤m ∅′ via h, then A = dom(Ψ) where Ψ(x) 	 J(h(x)) (recall
that J(e) 	 Φe(e)). So A is computably enumerable.
⇒: We claim that there is a computable function g such that

Wg(e,n) =

{
{e} if n ∈ A,
∅ else.

For let Θ(e, n, x) converge if x = e and n ∈ A. By a three-variable version
of the Parameter Theorem 1.1.2, there is a computable function g such that
∀e, n, x [Θ(e, n, x) 	 Φg(e,n)(x)]. By Theorem 1.1.6, there is a computable func-
tion h such that Wg(h(n),n) =Wh(n) for each n. Then

n ∈ A ⇒ Wh(n) = {h(n)} ⇒ h(n) ∈ ∅′, and
n �∈ A ⇒ Wh(n) = ∅ ⇒ h(n) �∈ ∅′.

The uniformity statements follow from the uniformity of Theorem 1.1.6. �

1.2.3 Definition. A c.e. set C is called r-complete if A ≤r C for each c.e. set A.

Usually ≤m implies the reducibility ≤r under consideration. Then, since ∅′ is m-
complete, a c.e. set C is r-complete iff ∅′ ≤r C. An exception is 1-reducibility,
which is more restricted than ≤m: we say that X ≤1 Y if X ≤m Y via a one-one
function f .
Exercises.
1.2.4. The set ∅′ is 1-complete. (This will be strengthened in Theorem 1.7.18.)

1.2.5. (Myhill) X ≡1 Y ⇔ there is a computable permutation p of N such that
Y = p(X). (For a solution see Soare 1987, Thm. I.5.4.)

Turing reducibility

Many-one reducibility is too restricted to serve as an appropriate measure for
the relative computational complexity of sets. Our intuitive understanding of “Y
is at least as complex as X” is: X can be computed with the help of Y (or, “X
can be computed relative to Y ”). If X ≤m Y via h, then this holds via a very
particular type of relative computation procedure: on input x, compute k = h(x)
and output 1 (“yes”) if k ∈ Y , and 0 otherwise. To formalize more general ways
of relative computation, we extend the machine model by a one-way infinite
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“oracle” tape which holds all the answers to oracle questions of the form “is k
in Y ?”. The tape has a 1 in position k if k ∈ Y , otherwise it has a 0. To make the
query, the machine moves the head on the oracle tape to position k and checks
whether the entry at that position is 1.
Extending the definitions at (1.1) to oracle Turing machines, from now on we

will view the effective listing (Φe)e∈N as a listing of partial functions depending on
two arguments, the oracle set and the input. We write ΦY

e (n)↓ if the program Pe

halts when the oracle is Y and the input is n; we write Φe(Y ;n), or ΦY
e (n) for this

output. We also use the notation ΦY
e (n) ↑ for the negation of ΦY

e (n) ↓. The Φe

are called Turing functionals. Extending (1.3), we let

WY
e = dom(ΦY

e ). (1.4)

In this context we call We a c.e. operator. Turing functionals will be studied in
more detail in Section 6.1, and c.e. operators in Section 6.3.

1.2.6 Definition. A total function f : N �→ N is called Turing reducible to Y , or
computable relative to Y , or computable in Y , if there is an e such that f = ΦY

e .
We denote this by f ≤T Y . We also say that Y computes f . For a set A, we
write A ≤T Y if the characteristic function of A is Turing reducible to Y .

Sometimes we also consider Turing reductions to total functions g. Then f ≤T g
means that f is Turing reducible to the graph of g, that is, to {〈n, g(n)〉 : n ∈ N}.
1.2.7 Exercise. Verify that ≤m and ≤T are preorderings of the subsets of N.

Relativization and the jump operator

The process of extending definitions, facts, and even proofs from the case involv-
ing plain computations to the case of computations relative to an oracle is called
relativization. For instance, in Definition 1.2.6, we relativized the notion of a
computable function to obtain the notion of a function computable in Y . Recall
that WY

e = dom(ΦY
e ). A set A is c.e. relative to Y (or c.e. in Y ) if A =WY

e for
some e. Any notation introduced for the unrelativized case will from now on be
viewed as a shorthand for the oracle version where the oracle is ∅. For instance,
we view Φe as a shorthand for Φ∅

e.
The relativization of Proposition 1.1.9 is as follows.

1.2.8 Proposition. A is computable in Y ⇔ A and N−A are c.e. in Y .

It is proved by viewing the proof of Proposition 1.1.9 relative to an oracle. (Note
that we now assume a version of the Church–Turing thesis with oracles.)
Relativizing the halting problem to Y yields its Turing jump Y ′. This important

operation was introduced by Kleene and Post (1954).

1.2.9 Definition. We write JY (e) 	 ΦY
e (e). The set Y ′ = dom(JY ) is the

Turing jump of Y . The map Y → Y ′ is called the jump operator .

By the oracle version of the Church–Turing thesis, J is a Turing functional.
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When relativizing, special care should be applied that every computation in-
volved becomes a computation with oracle Y . However, in some lucky cases a
proof designed for the computable case and yielding some computable object
actually works for all oracles, and the resulting object is always computable. For
instance, in the relativized proof of the Parameter Theorem 1.1.2, the function q
is computable, and independent of the oracle. Thus, for each functional Θ there
is a computable function q such that, for each oracle Y and each pair of argu-
ments e, x, we have ΦY

q(e)(x) 	 ΘY (e, x). As a consequence one obtains a version
of the Recursion Theorem 1.1.6 for Turing functionals.

1.2.10 Theorem. For each computable binary function g there is a computable
function f such that ΦY

g(f(n),n) = ΦY
f(n) for each set Y and each number n.

�

The proof of Proposition 1.2.2 (that the halting problem is m-complete) uses the
Recursion Theorem. So we obtain a version relative to an oracle, but still with
unrelativized m-reducibility:

1.2.11 Proposition. A is c.e. in Y iff A ≤m Y ′. �

Relativizing Proposition 1.1.10 (the halting problem is c.e. but incomputable),
we obtain that the jump produces a set that is c.e. relative to the given set and
not Turing below it.

1.2.12 Proposition. For each Y , the set Y ′ is c.e. relative to Y . Also, Y ≤m Y ′

and Y ′ �≤T Y , and therefore Y <T Y
′.

Proof. Y ′ is c.e. in Y since Y ′ = dom(JY ). As Y is c.e. relative to itself, by
Proposition 1.2.11 Y ≤m Y ′. If Y ′ ≤T Y then there is e such that N−Y ′ =WY

e .
Then e ∈ Y ′ ↔ e ∈WY

e ↔ e �∈ Y ′, contradiction. �

1.2.13 Definition. We define Y (n) inductively by Y (0) = Y and Y (n+1) =
(Y (n))′. Thus Y <T Y

(1) <T Y
(2) <T . . . by Proposition 1.2.12.

The following relates the reducibilities ≤m and ≤T via the jump operator.

1.2.14 Proposition. For each Y,Z, we have Y ≤T Z ⇔ Y ′ ≤m Z ′.

Proof. ⇒: The set Y ′ is c.e. in Y and hence c.e. in Z. Therefore Y ′ ≤m Z ′ by
Proposition 1.2.11.
⇐: By Proposition 1.2.8, Y and N−Y are c.e. in Y . So Y,N−Y ≤m Y ′ ≤m Z ′,
whence both Y and N−Y are c.e. in Z by Proposition 1.2.8 again. Hence Y ≤T Z.

�

We will frequently use the fact that the jump is a universal Turing functional:

1.2.15 Fact. From a Turing functional Φ = Φe one can effectively obtain a
computable strictly increasing function p, called a reduction function for Φ, such
that ∀Y ∀xΦY (x) 	 JY (p(x)).
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Proof. Let ΘY (x, y) 	 ΦY (x) (an index for Θ is obtained effectively). By the
oracle version of the Parameter Theorem, there is a computable strictly increas-
ing function p such ∀Y ∀yΦY

p(x)(y) 	 ΘY (x, y) 	 ΦY (x). Letting y = p(x) we
obtain JY (p(x)) = ΦY

p(x)(p(x)) = ΦY (x). �

We often apply this fact without an oracle. Thus, from a partial computable
function α = Φ∅

e one can effectively obtain a reduction function p such that
∀xα(x) 	 J(p(x)).
Fact 1.2.15 yields a machine independent characterization of the jump: if Ĵ is

a further universal Turing functional, there is a computable permutation π of
N such that ĴY (x) 	 JY (π(x)) for each Y, x. This is proved in the same way
as Myhill’s Theorem (Exercise 1.2.5). An example of such an alternative jump
operator is ĴX(y) 	 ΦX

e (n) where y = 〈e, n〉.
We provide a further useful variant of the Recursion Theorem due to Smullyan.

Given computable functions g and h one may obtain a pair of fixed points.

1.2.16 Double Recursion Theorem. Given computable binary functions g, h,
one can effectively obtain numbers a, b such that ΦY

g(a,b) = ΦY
a & ΦY

h(a,b) = ΦY
b

for each Y .

Proof. By the Recursion Theorem with Parameters 1.2.10, there is a com-
putable function f such that for each Y and each n we have ΦY

g(f(n),n) = ΦY
f(n).

Now apply the Recursion Theorem to the function λn.h(f(n), n) in order to
obtain a fixed point b, and let a = f(b). Then a, b is a pair as required. �

Strings over {0, 1}
To proceed we need some more terminology and notation. An element of {0, 1}
is called a bit . Finite sequences of bits are called strings.

String notation
The set of all strings is denoted by {0, 1}∗. The letters σ, ρ, τ, x, y, z will usually
denote strings. The following notation is fairly standard.

στ concatenation of σ and τ
σa σ followed by the symbol a
σ � τ σ is a prefix of τ , that is, ∃ρ [σρ = τ ]
σ | τ σ, τ are incompatible i.e. neither of σ, τ is a prefix of the other
σ <L τ σ is to the left of τ , that is, ∃ρ [ρ0 � σ & ρ1 � τ ]
|σ| the length of σ
∅ the empty string, that is, the string of length 0.

We picture {0, 1}∗ as a tree growing upwards, with σ0 to the left of σ1. The
relation <L is a linear order called the lexicographical order. For a set Z,

Z �n denotes the string Z(0)Z(1) . . . Z(n− 1).

The notations σ � Z , σ <L Z, etc., are used in the obvious senses. For sets Y,Z
we write Y <L Z if ∃ρ [ρ0 ≺ Y & ρ1 ≺ Z].
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Identifying strings with natural numbers
Frequently strings, not merely natural numbers, are the bottom objects. In this
case we want to apply notation developed for natural numbers in the setting of
strings, so it will be useful to identify strings with natural numbers. We could
identify σ with a strong index for the nonempty finite set {|σ|} ∪ {i : σ(i) = 1},
in other words, with the number that has binary representation 1σ. The only
problem with this is that 0 does not correspond to a string. To avoid this,
we identify σ ∈ {0, 1}∗ with n ∈ N s.t. the binary representation of n+1 is 1σ.

For instance, the string 000 is identified with the number 7, since the binary
representation of 8 is 1000. Also, the string 10 is identified with the number 5.
The empty string ∅ is identified with 0. If we want to make the identification
explicit, we write

n = number(σ) and σ = string(n). (1.5)

Note that number(0i) = 2i − 1 and number(1i) = 2i+1 − 2. Thus, the interval
[2i−1, 2i+1−1) is identified with the strings of length i. The length-lexicographical
order where the more significant bits are on the left is the linear ordering on
binary strings given by {〈x, y〉 : number(x) < number(y)}.
Logarithm
For n ∈ N

+, we let log n = max{k ∈ N : 2k ≤ n}. Then n ≥ 2log n > n/2.
If σ = string(n), then |σ| = log(n + 1). For instance, if n = 2i − 1, then σ =
string(n) = 0i, and |σ| = log 2i = i; if n = 2i+1 − 2, then σ = string(n) = 1i, and
|σ| = log(2i+1 − 1) = i. (The usual real-valued logarithm is denoted by log2 x.)

Approximating the functionals Φe, and the use principle

A general convention when we are dealing with an approximation at a stage s is
that all numbers that matter to a computation at stage s should be less than s.
For instance, when approximating a functional Φe, at stage s we only allow oracle
questions less than s. We extend Definition 1.1.13 to oracle computations.

1.2.17 Definition. We write ΦY
e,s(x) = y if e, x, y < s and the computation of

program Pe on input x yields y in at most s computation steps, with all oracle
queries less than s. We write ΦY

e,s(x) ↓ if there is y such that Φe,s(x) = y, and
ΦY

e,s(x)↑ otherwise. Further, we let WY
e,s = dom(ΦY

e,s).

The use principle is the fact that a terminating oracle computation only asks
finitely many oracle questions. Hence (ΦY

e,s)s∈N approximates ΦY
e , namely,

ΦY
e (x) = y ↔ ∃sΦY

e,s(x) = y.

1.2.18 Definition. The use of ΦY
e (x), denoted use ΦY

e (x), is defined if ΦY
e (x)↓,

in which case its value is 1+the largest oracle query asked during this computa-
tion (and 1 if no question is asked at all). Similarly, use ΦY

e,s(x) is 1+the largest
oracle question asked up to stage s.
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We write
Φσ

e (x) = y

if ΦF
e (x) yields the output y, where F = {i < |σ| : σ(i) = 1}, and the use is at

most |σ|. We write Φσ
e (x)↑ if there is no such y. Then, for each set Y ,

ΦY
e (x) = y ↔ ΦY�u

e (x) = y,
where u = use ΦY

e (x). We write Φσ
e,s(x) = y if Φσ

e (x) = y in at most s steps, and
Φσ

e,s(x)↑ if there is no such y.

Weak truth-table reducibility and truth-table reducibility

If a Turing functional Φe is given then λY, x. use ΦY
e (x) is also a Turing functional

(namely, there is i such that ΦY
i (x) 	 use ΦY

e (x) for each Y and x). Thus, if Y
is an oracle such that f = ΦY

e is total, the function use ΦY
e is computable in Y .

This function may grow very quickly. A reducibility stronger than ≤T is obtained
when we require that f = ΦY

e for some e such that use ΦY
e is bounded by a

computable function.

1.2.19 Definition. A function f : N → N is weak truth-table reducible to Y ,
denoted f ≤wtt Y , if there is a Turing functional Φe and a computable bound r
such that f = ΦY

e and ∀n use ΦY
e (n) ≤ r(n). For a set A, we write A ≤wtt Y if

the characteristic function of A is weak truth-table reducible to Y .

It may happen that f ≤wtt Y via Φe and r such that ΦZ
e is not a total function

for some oracle Z �= Y . We obtain an even stronger reducibility when requiring
that ΦZ

e is total for each Z; this implies a computable bound on the use.

1.2.20 Definition. A function f : N→ N is truth-table reducible to Y , denoted
f ≤tt Y , if there is a Turing functional Φe such that f = ΦY

e and ΦZ
e is total for

each oracle Z (we call such a Φe a truth-table reduction). For a set A, we write
A ≤tt Y if the characteristic function of A is truth-table reducible to Y .

The reducibility between sets is called truth-table reducibility because ΦZ
e (n)

can be obtained by first computing a Boolean expression from n, and then eval-
uating it on the answers to oracle questions. Recall strong indices for finite sets
from Definition 1.1.14, and note that the expression on the right in (i) below
corresponds to a Boolean formula in disjunctive normal form.

1.2.21 Proposition.

(i) X ≤tt Y ⇔ there is a computable function g such that, for each n,
n ∈ X ↔ ∨

σ∈Dg(n)
[σ � Y ].

(ii) X ≤tt Y implies X ≤wtt Y .

Proof. (i) ⇒: Suppose X ≤tt Y via a truth-table reduction Φ = Φe. The tree
Tn = {σ : Φσ

|σ|(n)↑} is finite for each n, for otherwise it has an infinite path Z by
König’s Lemma (1.8.2 below), and ΦZ(n)↑. Given n one can compute a strong
index g̃(n) for the finite set of minimal strings σ (under the prefix relation) such
that Φσ

|σ|(n)↓ . Hence one can also compute a strong index g(n) for the set of all
minimal strings σ such that Φσ

|σ|(n)↓= 1. Then Dg(n) is as required.
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⇐: Consider the following procedure relative to an oracle Z: on input n, first
compute Dg(n). If σ � Z for some σ ∈ Dg(n), output 1, otherwise output 0. By
the oracle version of the Church–Turing thesis, a Turing program P 1

e formalizing
the procedure exists, and Φe is the corresponding functional. Clearly ΦZ

e is total
for each oracle Z.
(ii) Let Φe be the Turing functional of the previous paragraph. Then for each Z
the function use ΦZ

e (n) is bounded by max{|σ| : σ ∈ Dg(n)}. �

By (i), the truth-table reduction procedures correspond to computable func-
tions g. Thus, our effective listing of the partial computable functions yields an
effective listing of reduction procedures which includes all the tt-reductions.

1.2.22 Proposition. f ≤tt A ⇔ there is a Turing functional Φ and a com-
putable function t such that f = ΦA and the number of steps needed to compute
ΦA(n) is bounded by t(n).

Proof. ⇒: Suppose f = ΦA and ΦZ is total for each oracle Z. Let g be as in
the proof of implication “⇒” of Proposition 1.2.21(i). Then t(n) = max{|σ| : σ ∈
Dg(n)} bounds the running time of the computation ΦZ(n) for each oracle Z.

⇐: Let Φ̃ be the Turing functional such that Φ̃Z(n) = ΦZ
t(n)(n) if the latter is

defined, and Φ̃Z(n) = 0 otherwise. Then Φ̃Z is total for each Z and Φ̃A = ΦA.
Hence f ≤tt A. �

Note that, by the proof of “⇒”, every function f ≤tt A is bounded from above
by a computable function: for each n, f(n) ≤ max{Φσ

|σ|(n) : σ ∈ Dg̃(n)}.
Clearly X ≤m Y implies X ≤tt Y (as an exercise, specify a computable func-

tion g as in Proposition 1.2.21). To summarize, the implications between our
reducibilities are

≤m ⇒ ≤tt ⇒ ≤wtt ⇒ ≤T .
None of the converse implications hold. In fact, the classes of complete sets differ.
(Recall from Definition 1.2.3 that a c.e. set C is r-complete if A ≤r C for each c.e. set A.)
A hypersimple set (1.7.5 below) can be Turing-complete, but is never wtt-complete
by 4.1.15. A simple set (1.6.2 below) can be tt-complete, but is never m-complete
by Odifreddi (1989). A natural example of a set which is wtt- but not tt-complete
comes from algorithmic randomness: the set of (binary) rationals in [0, 1] that are less
than Chaitin’s halting probability Ω. See Section 3.2 for definitions, Proposition 3.2.30
for wtt-completeness of this set and Theorem 4.3.9 for its tt-incompleteness. A direct
construction of such a set is also possible, but cumbersome (Odifreddi, 1989, III.9).

Exercises. The effective disjoint union of sets A and B is

A⊕B = {2n : n ∈ A} ∪ {2n + 1: n ∈ B}.
1.2.23. (i) Show that A, B ≤m A⊕B.
(ii) Let ≤r be one of the reducibilities above. Then, for any set X,

A, B ≤r X ↔ A⊕B ≤r X.

1.2.24. Let C = A0∪A1 where A0, A1 are c.e. and A0∩A1 = ∅. Then C ≡wtt A0⊕A1.

1.2.25. Show that ∃Z f ≤tt Z ⇔ there is a computable h such that ∀n f(n) ≤ h(n).
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Degree structures

One can abstract from the particularities of a set and only consider its rela-
tive computational complexity, measured by a reducibility ≤r. The equivalence
classes of the equivalence relation given by

X ≡r Y ↔ X ≤r Y ≤r X

are called r-degrees. The r-degree of a set X is denoted by degr(X). The r-
degrees form a partial order denoted by Dr. We state some basic facts about Dr

for a reducibility ≤r between ≤m and ≤T . In the case of many-one reducibility
we disregard the sets ∅ and N. For proofs see for instance Odifreddi (1989).
A structure (U,≤,∨) is an uppersemilattice if (U,≤) is a partial order and, for

each x, y ∈ U , x ∨ y is the least upper bound of x and y.

1.2.26 Fact.

(i) The least element of Dr is 0 = degr({0}), the degree consisting of the
computable sets.

(ii) Dr is an uppersemilattice, where the least upper bound of the degrees of
sets A and B is given by the degree of A⊕B.

(iii) For each a ∈ Dr the set {b : b ≤ a} is countable.
(iv) Dr has cardinality 2ℵ0 . �

By 1.2.12, Dr has no maximal elements: for each A, we have A′ >r A. By 1.2.14,
the jump operator induces a map ′ : DT �→ DT , given by degT (X) �→ degT (X ′),
called the Turing jump. This map is monotonic: for each pair x,y ∈ DT we have
x ≤ y → x′ ≤ y′. Note that 0 < 0′ < 0′′ < . . . is an infinite ascending sequence
of Turing degrees. In Corollary 1.6.6 we will see that the jump is not one-one. In
fact, for each x ∈ DT there is y > x such that x′ = y′.

1.2.27 Definition. Let (U,≤,∨) be an uppersemilattice, and let I ⊆ U be
nonempty. We say I is an ideal of U if I is closed downward, and x, y ∈ I implies
x ∨ y ∈ I. For instance I = {x : ∃nx ≤ 0(n)} is an ideal in DT , called the ideal
of arithmetical degrees. The ideal I is called principal if I = {b : b ≤ a} for some
a ∈ U .

1.3 Sets of natural numbers
Sets of natural numbers are important objects of study in computability theory.
They can be identified with infinite sequences of bits, and also with the real
numbers r such that in 0 ≤ r < 1 via the representation in base 2 (here one
disregards the cofinite sets). For instance, the set of even numbers is identified
with 101010 . . ., and also with the real number 0.101010 . . . = 2/3. The term set
will refer to sets of natural numbers unless otherwise stated.
There are two extremes as to how to view a set Z: the local view , where the set

is understood by looking at its initial segments Z �n, and the global view , where
the set is appreciated all at once. In the local view, the set is revealed bit by
bit, similar to the outcomes of an experiment that proceeds in time (see page 73
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for more on this). Strings are important for us because they represent the finite
initial segments of sets. The global view is to think of the set as a single entity.
In the ideal case we would like to give a description of the set.
Let us step back and consider some alternatives to sets of natural numbers.

How essential is the use of the natural numbers for the indexing of bits? One
can also use other effectively given domains D, such as the tree {0, 1}∗ of finite
strings over {0, 1}, or the rationals. Instead of subsets of N, one now studies
subsets of {0, 1}∗, or subsets of Q.
1. The local view changes, since we have a different perception of what the
finite “parts” of a subset of D are. For instance, if D = {0, 1}∗, a finite part
might consist of the labeled finite tree of the bits up to level n. If D = Q it is
unclear how one would define a notion of finite part taking the order structure
of D into account. The following definition provides a reasonable notion of finite
part for a subset of an arbitrary domain D. A finite assignment for D is a
sequence α = (〈d0, r0〉, . . . , 〈dk−1, rk−1〉) where all di ∈ D are distinct, k ∈ N,
and ri ∈ {0, 1}. If Z : D → {0, 1}, we think of α as a part of Z if Z(di) = ri for
each i < k. For more on finite assignments see page 297.
2. In contrast, for the global view the choice of the domainD matters little as long
as the elements of D can be effectively encoded by natural numbers. The reason
is that, with very few exceptions, classes C of sets introduced in computability
(and randomness) theory are closed under computable permutations π, namely,
Z ∈ C ↔ Z ◦ π ∈ C for each set Z. Thus, it does not matter that the choice
of D, and its encoding by natural numbers, is arbitrary.
The indexing of bits by natural numbers is a convenience rather than a neces-

sity. It is convenient for us because we may use our intuition based on discrete
physical processes that proceed in time, and we have a clear idea of what the
finite parts of the set are, namely strings that are initial segments of the set.
Also, using N for indexing, we have the rich structure of arithmetic (N,+,×) at
our disposal: most descriptions of sets will use some extension of the language of
arithmetic (see Section 1.4). At the same time, the indexing of bits by natural
numbers is not essential for the global view, since we may use a domain other
than the natural numbers and still study the same properties of sets.
Sets of natural numbers are identified with functions N → {0, 1}, so why not

study directly functions f : N → N? After all, they are equally fundamental.
In fact, most of the theory of descriptive and computational complexity can be
developed in the same way for functions. Both sets and functions can be put into
topological context, using product topologies. Sets are the elements of Cantor
space 2N (Section 1.8), while functions are the elements of Baire space N

N. Cantor
space has the nicer properties, since on the one hand it is compact, on the other
hand it allows us to define the uniform measure λ, which assigns the quantity
2−|σ| to each basic open cylinder [σ] = {Z : σ ≺ Z} (see 1.9.7 on page 70). The
failure of these properties in the case of Baire space is the reason why we give
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preference to sets. In particular, the theory of algorithmic randomness relies on
the uniform measure and therefore only works for sets.
We could be slightly more general and work with functions N→ {0, . . . , b− 1}

for some fixed b ∈ N− {0, 1}. They form a compact space on which the uniform
measure can be defined, and can be identified with the real numbers r such that
in 0 ≤ r < 1 via the representation in base b (here one disregards the functions
that eventually have the value b− 1). Also see Remark 3.2.34.

1.4 Descriptive complexity of sets
In this section we develop some more theory on the descriptive complexity of sets.
In the next section we do the same for the absolute computational complexity.
In the beginning of this chapter we discussed the method of introducing classes
of sets sharing a certain complexity property. The class of computable sets is
contained in each such class, for both types of complexity, because a Turing
program P 1

e that computes a set Z is also a very simple way of describing Z. In
the terminology introduced earlier, we use the description system Fcomp given by
Fcomp(e) = Z if P 1

e computes Z. A larger class of descriptive complexity, the class
of c.e. sets, is given by the description system Fc.e.(e) =We = {x : P 1

e (x) halts}.
Note that every number is a description with respect to Fc.e., while the domain
of Fcomp is incomputable by Exercise 1.4.20(iii).

∆0
2 sets and the Shoenfield Limit Lemma

In a computable enumeration (Zs)s∈N of a set Z, for each x, Zs(x) can change
at most once, namely from 0 to 1. Which sets Z are described if we allow an
arbitrary finite number of changes? These sets are called ∆0

2 sets and form an im-
portant class of descriptive complexity. The reason for choosing this terminology
will become apparent in Definition 1.4.15.

1.4.1 Definition. We say that a set Z is ∆0
2 if there is a computable sequence

of strong indices (Zs)s∈N such that Zs ⊆ [0, s) and Z(x) = limsZs(x). We say
that (Zs)s∈N is a computable approximation of Z.

A computable enumeration is a special case of a computable approximation.
The following notation is very useful. Given an expression E that is approxi-

mated during stages s,
E[s]

denotes its value at the end of stage s. For instance, given a ∆0
2 set Z with a

computable approximation, instead of ΦZs
e,s(x) we simply write ΦZ

e (x)[s]. E[s]
can usually be evaluated in an effective way. We say that the expression E is
stable at s if E[t] = E[s] for all t ≥ s.
Shoenfield (1959) proved that the ∆0

2 sets coincide with the sets that are Turing
reducible to the halting problem. For this reason, the ∆0

2 sets can also be viewed
as a class of computational complexity, namely the class of oracles that are at
most as powerful as the halting problem. In the proof of Shoenfield’s result we
introduce the notion of a change set which will be important later on.
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1.4.2 Lemma. (Shoenfield Limit Lemma)
Z is ∆0

2 ⇔ Z ≤T ∅′. The equivalence is uniform.

Proof. ⇐: Fix a Turing functional Φe such that Z = Φ∅′
e . Then the required

computable approximation is given by Zs = {x < s : Φ∅′
e (x)[s] = 1}. This ap-

proximation was obtained from Φe in an effective way.
⇒: We define a c.e. set C such that Z ≤T C. This is sufficient because C ≤m ∅′
by Proposition 1.2.2. The set C is called the change set because it records the
changes of the computable approximation. If Zs(x) �= Zs+1(x) we put 〈x, i〉 into
Cs+1, where i is least such that 〈x, i〉 �∈ Cs. To show that Z ≤T C, on input x,
using the oracle C compute the least i such that 〈x, i〉 �∈ C. If i is even then
Z(y) = Z0(y), otherwise Z(y) = 1− Z0(y).
We have obtained C and the Turing reduction of Z to C effectively from the

computable approximation of Z. Proposition 1.2.2 is also effective. �

If Z = Φ∅′
e we say that e is a ∆0

2 index for Z. A number e is a ∆0
2 index only

if Φ∅′
e is total (and also 0, 1-valued). In contrast, each number i describes a c.e.

set Wi. The set of ∆0
2 indices is far from computable; see Exercise 1.4.21.

Sets and functions that are n-c.e. or ω-c.e.
One obtains classes of descriptive complexity between the classes of c.e. sets and
∆0

2 sets by restricting the number changes in a computable approximation.

1.4.3 Definition. (i) We say that a set Z is ω-c.e. if there is a computable
approximation (Zs)s∈N of Z and a computable function b such that

b(x) ≥ #{s > x : Zs(x) �= Zs−1(x)} for each x.
(ii) If Zs(s − 1) = 0 for each s > 0 and b(x) can be chosen constant of value n,
then we say Z is n-c.e.

Thus, Z is 1-c.e. iff Z is c.e., and Z is 2-c.e. iff Z = A−B for c.e. sets A,B.

1.4.4 Proposition. Z is ω-c.e. ⇔ Z ≤wtt ∅′ ⇔ Z ≤tt ∅′.
The equivalences are effective.

Proof. First suppose that Z ≤wtt ∅′ via a functional Φe with computable use
bound f . To show that Z is ω-c.e., as before let Zs = {x < s : Φ∅′

e (x)[s] = 1}.
Since Φ∅′

e (x)[s] only becomes undefined when a number less than f(x) enters ∅′,
the number of changes of Zs(x) is bounded by 2f(x).
Now suppose that Z is ω-c.e. via the computable approximation (Zs)s∈N and

the function b bounding the number of changes. We show that Z ≤tt ∅′. Let C
be the change set introduced in the proof of the implication “⇒” of the Shoen-
field Limit Lemma. Since b(x) ≥ min{i : 〈x, i〉 �∈ C}, the reduction of Z to C
given there can be carried out by computing a truth-table from the input x and
evaluating it on the answers to oracle questions to C. Hence Z ≤tt C ≤m ∅′.

�

By Proposition 1.2.21, truth-table reduction procedures may be viewed as partial
computable functions mapping inputs to truth tables. Let (Θe)e∈N be an effective
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listing of all such (possibly partial) truth-table reduction procedures defined on
initial segments of N. Then Proposition 1.4.4 yields an indexing of the ω-c.e. sets
that includes computable approximations:

1.4.5 Definition. The ω-c.e. set with index e is Ve = {x : Θ∅′
e (x) = 1}. A com-

putable approximation of Ve is given by Ve,s = {x : Θ∅′
e (x)[s] = 1}.

Thus, if Θe(x) is undefined then Ve,s(x) = 0 for each s. By 1.2.2, for each e we
uniformly have a many-one reduction of We to ∅′. Hence there is a computable
function g such that We = Vg(e) for each e.
The hierarchy of descriptive complexity classes introduced so far is

computable ⊂ c.e. ⊂ 2-c.e. ⊂ 3-c.e. ⊂ . . . ⊂ ω-c.e. ⊂ ∆0
2. (1.6)

It is proper even when one considers the Turing degrees of sets at the various
levels (see Odifreddi 1989). For instance, there is a 2-c.e. set Z such that no set
Y ≡T Z is c.e., and there is a ∆0

2 set Z such that no set Y ≡T Z is ω-c.e.
The definitions of ∆0

2 sets and ω-c.e. sets can be extended to functions g : N→ N.

1.4.6 Definition. A function g is ∆0
2 if there is a binary computable function

λx, s.gs(x) such that ∀x g(x) = limsgs(x). Moreover, g is ω-c.e. if if there is, in
addition, a computable bound b such that b(x) ≥ #{s > x : gs(x) �= gs−1(x)}
for each x.

One can extend the Limit Lemma and the first equivalence of Proposition 1.4.4 to
functions. The second equivalence in 1.4.4 fails for functions by Exercise 1.2.25 and
since an ω-c.e. function need not be bounded by a computable function.

1.4.7 Exercise. Let g : N→ N be a function.
(i) g is ∆0

2 ⇔ g ≤T ∅′.
(ii) g is ω-c.e. ⇔ g ≤wtt ∅′.
1.4.8 Exercise. (Mohrherr, 1984) Let E ≥tt ∅′. Then Z ≤wtt E implies Z ≤tt E.

The following will be needed later.

1.4.9 Fact. There is a binary function q ≤T ∅′ with the following property: for each
ω-c.e. function g there is an e such that ∀n g(n) = q(e, n).

Proof. On inputs e, n, use ∅′ to determine whether ∃s∀σ [|σ| = s → Φσ
e (n) ↓]. If so,

let q(e, n) = Φ∅′
e (n)[s], otherwise q(e, n) = 0. If g ≤tt ∅′ via Φe as in Definition 1.2.20,

then ∀n g(n) = q(e, n). �

Degree structures on particular classes �
Recall from the beginning of this chapter that the three approaches to measure the
complexity of sets are via the descriptive complexity, the absolute computational, and
the relative computational complexity. These approaches are related in several ways.
One connection is that classes of computational complexity can actually comprise the
least degree of a reducibility; see Section 5.6. Here we consider another type of con-
nection. For a reducibility ≤r, one can study the r-degrees of the sets in a particular
class of similar complexity C. In this way, one arrives at interesting degree structures,
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for instance RT , the Turing degrees of c.e. sets, and DT (≤ 0′), the Turing degrees
of the ∆0

2 sets. This is a bit more natural when C is closed downward under ≤r, say,
when C is the class of ∆0

2 sets and ≤r is Turing reducibility. Given n, the class of n-c.e.
sets is merely closed downward under ≤m. Recall from Fact 1.2.26 that 0 is the degree
consisting of the computable sets. By the results in Section 1.2 and the Limit Lemma,
all the degree structures discussed here have a greatest degree, the degree of the halting
problem, denoted by 1. All degree structures are uppersemilattices because the relevant
classes are closed under ⊕.

In the following we list some properties of the Turing degree structures on classes in
the hierarchy (1.6). Like most theorems on degree structures, they can be expressed in
the first-order language of partial orders. For details on these often difficult results see
Odifreddi (1989, 1999) or Soare (1987).

In DT (≤ 0′), and even in the Turing degrees of ω-c.e. sets, there is a minimal element,
that is, there is a degree a > 0 such that x < a implies x = 0 (Sacks, 1963b). The n-c.e.
degrees do not have minimal elements (Lachlan; see Odifreddi, 1999, XI.5.9b).
RT is dense, i.e., for each a < b there is c such that a < c < b (Sacks, 1964).
The structures of n-c.e. and of ω-c.e. degrees have a maximal incomplete element,

i.e., there is a < 1 such that a < x implies x = 1 (Cooper, Harrington, Lachlan, Lempp
and Soare, 1991). In contrast, DT (≤ 0′) has no maximal incomplete element.

The arithmetical hierarchy

Up to now we have defined classes of descriptive complexity via computable
approximations, possibly with extra conditions. This led to the hierarchy (1.6)
on page 20. To obtain more powerful description systems, we will replace this
dynamic way of describing a set by descriptions using the first-order language of
arithmetic (with signature containing the symbols +,×). Computable relations
are first-order definable in the language of arithmetic (Kaye, 1991, Thm. 3.3), so
we may as well suppose that, for k ≥ 1 and each computable relation on N

k, the
signature contains a k-place relation symbol. For each description system, we use
as descriptions the first-order formulas in this extended language satisfying cer-
tain syntactic conditions. In this way we will also obtain alternative, equivalent
description systems for the computable, the c.e., and the ∆0

2 sets.

1.4.10 Definition. Let A ⊆ N and n ≥ 1.
(i) A is Σ0

n if x ∈ A ↔ ∃y1∀y2 . . . QynR(x, y1, . . . , yn), where R is a symbol for
a computable relation, Q is “∃” if n is odd and Q is “∀” if n is even.
(ii) A is Π0

n if N − A is Σ0
n, that is x ∈ A ↔ ∀y1∃y2 . . . Qyn S(x, y1, . . . , yn),

where S is a symbol for a computable relation, Q is “∀” if n is odd and Q is “∃”
if n is even.
(iii) A is arithmetical if A is Σ0

n for some n.

One can show that these classes are closed under finite unions and intersec-
tions. A bounded quantifier is one of the form “∃x < n” or “∀x < n”. We
still obtain the same classes if we intersperse bounded quantifiers of any type
in the quantifier part of expressions above, or replace single quantifiers Q by
whole blocks of quantifiers of the same type as Q. For instance, the expression
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∃y∀z < y∃u∀v R(x, y, z, u, v) yields a Σ0
2 set. See Odifreddi (1989, Prop. IV.1.4)

for details.
Definition 1.4.10 can be viewed relative to an oracle C.

1.4.11 Definition. For C ⊆ N and n ∈ N, we define Σ0
n(C) classes and Π0

n(C)
classes as in Definition 1.4.10, but with relations R,S ≤T C.

Note that we now interpret the formulas in the structure (N,+,×) extended by
a unary predicate for C, in which R and S are first-order definable (see 1.4.24).

1.4.12 Fact. A is Σ0
1 ⇔ A is c.e. The equivalence is uniform.

Proof. ⇒: Suppose x ∈ A ↔ ∃y R(x, y) for computable R. Let Φ be the
partial computable function given by the Turing program that on input x looks
for a witness y such that R(x, y), and halts when such a witness is found. Then
A = dom(Φ), so A is c.e. according to Definition 1.1.8.
⇐: Suppose A = dom(Φ) for a partial computable function Φ. Let R be the
computable relation given by R(x, s) ↔ Φ(x)[s] ↓. Then x ∈ A ↔ ∃sR(x, s),
so A is Σ0

1. �

The next result is due to Post. Statement (i) generalizes Fact 1.4.12. Recall
from 1.2.2 that ∅′ is many-one complete for the c.e. sets. In (ii) we generalize
this to the Σ0

n sets. A Σ0
n set C is called Σ0

n-complete if A ≤m C for each Σ0
n

set A. In a similar way one defines Π0
n-completeness. ∅(n) is defined in 1.2.13.

1.4.13 Theorem. Let n ≥ 1.

(i) A is Σ0
n ⇔ A is c.e. relative to ∅(n−1).

(ii) ∅(n) is Σ0
n-complete.

Proof. We use induction on n. For n = 1, (i) is Fact 1.4.12 and (ii) is Proposi-
tion 1.2.2. Now let n > 1.
(i) First suppose A is Σ0

n, namely x ∈ A ⇔ ∃y1∀y2 . . . QynR(x, y1, . . . , yn) for
some computable relation R. Then the set

B = {〈x, y1〉 : ∀y2 . . . QynR(x, y1, . . . , yn)}
is Π0

n−1, and A is c.e. relative to B. By (ii) for n− 1 we have B ≤m N− ∅(n−1).
So A is c.e. relative to ∅(n−1).
Now suppose A is c.e. relative to ∅(n−1). Then there is a Turing functional Φ

such that A = dom(Φ∅(n−1)
). By the use principle,

x ∈ A ⇔ ∃η, s
[

Φη
s(x)↓ & ∀i < |η| (η(i) = 1→ i ∈ ∅(n−1) &

η(i) = 0→ i �∈ ∅(n−1))

]

.

The innermost part can be put into Σ0
n-form, so A is Σ0

n because the quantifier
∀i is bounded; (ii) now follows by Proposition 1.2.11 where Y = ∅(n−1). �

Recall that in 1.4.1 we introduced ∆0
2 sets via computable approximations.

They can also be characterized using the language of arithmetic.



1.4 Descriptive complexity of sets 23

∆0
1 ∆0

2 ∆0
3

· · ·
⊂

⊂ ⊂
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⊂ ⊂

⊂ ⊂

⊂ ⊂

⊂

Σ0
1 Σ0

2 Σ0
3

Π0
1 Π0

2 Π0
3

Fig. 1.1. The arithmetical hierarchy.

1.4.14 Proposition. A is ∆0
2 ⇔ A is both Σ0

2 and Π0
2.

Proof.
A ∈ ∆0

2 ⇔ A ≤T ∅′ by the Limit Lemma 1.4.2
⇔ A and N−A are c.e. in ∅′ by Proposition 1.2.8
⇔ A ∈ Σ0

2 ∩Π0
2 by Theorem 1.4.13. �

The following is therefore consistent with Definition 1.4.1.

1.4.15 Definition. We say that A is ∆0
n if A is both Σ0

n and Π0
n.

The computable sets coincide with the ∆0
1 sets by Fact 1.4.12. The hierarchy

of classes introduced in Definitions 1.4.10 and 1.4.15 is called the arithmetical
hierarchy (Figure 1.1).

1.4.16 Proposition. Let n ≥ 1. Then A is ∆0
n ⇔ A ≤T ∅(n−1).

Proof. By Theorem 1.4.13, A is ∆0
n ⇔ A and N − A are c.e. in ∅(n−1). By

Proposition 1.2.8, this condition is equivalent to A ≤T ∅(n−1). �

The Σ0
2-sets Z can still be reasonably described by a suitable computable se-

quence of finite sets (Zs)s∈N.

1.4.17 Proposition. Z is Σ0
2 ⇔ there is a computable sequence of strong

indices (Zs)s∈N such that Zs ⊆ [0, s) and x ∈ Z ↔ ∃s∀t ≥ sZt(x) = 1.
The equivalence is uniform.

Proof. ⇒: By Theorem 1.4.13(i) there is a Turing functional Φ such that
Z = dom(Φ∅′

). Now let Zs = {x < s : Φ∅′
(x)[s]↓}.

⇐: The expression “∃s∀t ≥ s [Zt(x) = 1]” is in Σ0
2 form. �

In the exercises we give further examples of complete sets at the lower levels of
the arithmetical hierarchy. They are somewhat more natural than the sets ∅(n)

because they are not obtained by relativization. Rather, they describe properties
of c.e. sets.

1.4.18 Definition. The index set of a class S of c.e. sets is the set {i : Wi ∈ S}.
In a similar way, using the listing (Ve)e∈N from 1.4.5, we define the index set of
a class of ω-c.e. sets.
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Exercises. Show the following.
1.4.19. ∅′ is not an index set.

1.4.20. (i) The set {e : We �= ∅} is Σ0
1 complete.

(ii) The set {e : We finite} is Σ0
2-complete. In fact, for each Σ0

2 set S there is a uniformly
c.e. sequence (Xn)n∈N of initial segments of N such that ∀n [n ∈ S ↔ Xn finite], and
this sequence itself is obtained effectively from a description of S.
(iii) The set Tot = {e : dom(Φe) = N} = {e : We = N} is Π0

2-complete.
(iv) Both {e : We cofinite} and {e : We computable} are Σ0

3-complete.

1.4.21. The set {e : domΦ∅′
e = N} is Π0

3-complete.

1.4.22. Let S be a class of c.e. sets [ω-c.e. sets] containing all the finite sets. Suppose
the index set of S is Σ0

3. Then S is uniformly c.e. [uniformly ω-c.e.]

1.4.23.� Let S be a class of c.e. sets closed under finite variants that contains the
computable sets but not all the c.e. sets. If the index set of S is Σ0

3 then it is Σ0
3-

complete.

1.4.24. Let X ⊆ N. (i) Each relation R ≤T X is first-order definable in the structure
(N, +, ·, X). (ii) The index set {e : We ≤T X} is Σ0

3(X).

1.4.25. A is ∆0
n ⇔ ∀x A(x) = limk1 limk2 . . . limkn−1 g(x, k1, . . . , kn−1) for some com-

putable {0, 1}-valued function g.

1.5 Absolute computational complexity of sets
At the beginning of this chapter we discussed classes of similar complexity. A low-
ness property of a set specifies a sense in which the set is computationally weak.
Usually this means that it is not very useful as an oracle. Naturally, we require
that such a property be closed downward under Turing reducibility; in particu-
lar it only depends on the Turing degree of the set. If a set is computable then
it satisfies any lowness property. A set that satisfies a lowness property can be
thought of as almost computable in a specific sense.
Highness properties say that the set is computationally strong. They are closed

upward under Turing reducibility. If a set satisfies a highness property it is almost
Turing above ∅′ in a specific sense.
Classes of computational complexity are frequently defined in terms of how

fast the functions computed by the set grow. To compare the growth rate of
functions one can use the domination preordering on functions.

1.5.1 Definition. Let f, g : N→ R. We say that f dominates g if f(n) ≥ g(n)
for almost every n.

In this section we introduce two lowness properties and one highness property
of a set A. We also consider some of their variants.

(a) A is low if A′ ≤T ∅′.
(b) A is computably dominated if each function g ≤T A is dominated by a

computable function.
(c) A is high if ∅′′ ≤T A

′.
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The classes given by (a) and (c) can be characterized by domination properties.
For (c), by Theorem 1.5.19, A is high iff there is a function g ≤T A dominat-
ing each computable function, which shows that highness is opposite to being
computably dominated. For (a) see Exercise 1.5.6.
A general framework for lowness properties and highness properties will be

given in Section 5.6. We consider weak reducibilities ≤W . Such a reducibility
determines a lowness property C ≤W ∅ and a dual highness property C ≥W ∅′.
For instance, we could define A ≤W B iff A′ ≤T B

′. Then the associated lowness
and highness properties are (a) and (c) above. Table 8.3 on page 363 contains
further examples of such dual properties given by a weak reducibility.
It can be difficult to determine whether a lowness property is satisfied by more

than the computable sets, and whether a highness property applies to sets other
than the sets Turing above ∅′. We will need to introduce new methods to do
so for the properties (a)–(c): the priority method (page 32) or basis theorems
(page 56) for (a) and (b), and, for instance, pseudojump inversion (page 249)
for (c). So far, we actually have not seen any example of a set that is neither
computable nor Turing above ∅′.
A pair of lowness properties can be “orthogonal” in the sense that the only

sets that satisfy them both are the computable sets. For instance, the properties
in (a) and (b) are orthogonal. In contrast, classes of descriptive complexity form
an almost linear hierarchy, disregarding cases like the Σ0

1 versus the Π0
1 sets

where one class is simply obtained by taking the complements of the sets in
the other class. For a further difference between computational and descriptive
complexity, the downward closed class given by (b), say, is uncountable, while
classes of descriptive complexity are countable.
Given a lowness property L, we will be interested in the question whether it is

null or conull (Definition 1.9.8), and whether there are sets A,B ∈ L such that
∅′ ≤T A⊕B. Similarly, we will be interested in whether a highness property H
is null or conull, and whether there are sets A,B ∈ H that form a minimal pair
(only the computable sets are Turing below both A and B). Being conull means
that the property is not very restrictive. Most of the properties we study will be
null, including the ones in (a)–(c). If sets A,B as above exist then the property
is not that close to being computable (for lowness properties), or being Turing
above ∅′ (for highness properties). We will return to the topic of minimal pairs
satisfying a highness property on page 258.
In this section we concentrate on the properties (a)–(c) and their variants.

We introduce further properties in subsequent chapters, often using concepts
related to randomness. In Chapter 4 we study the conull highness property of
having diagonally noncomputable degree, and the stronger highness property of
having the same degree as a completion of Peano arithmetic (which is null by
Exercise 5.1.15). In Chapter 5 we consider lowness for Martin-Löf randomness.
Lowness for other randomness notions is studied in Chapter 8. Figure 8.1 on
page 361 gives an overview of all the downward closed properties.
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Sets that are lown

Recall from 1.2.13 that C(n) is the result of n applications of the jump operator,
beginning with the set C. A hierarchy of absolute computational complexity is
obtained by considering C(n) within the Turing degrees, for n ≥ 0. Note that
C(n) ≥T ∅(n) by Proposition 1.2.14.

1.5.2 Definition. Let n ≥ 0. We say that C is lown if C(n) ≡T ∅(n).

The most important among these classes is low1, the class of sets C such that
C ′ ≡T ∅′. If C ∈ low1 we simply say that C is low . Each low set is ∆0

2. Thus,
such a set is computationally weak in the sense that ∅′ can determine whether
ΦC

e (x) converges for each e, x, and in case it does find the output. We will see in
Theorem 1.6.4 that an incomputable low c.e. set exists. In particular, the jump
is not a one-one map on the Turing degrees.
Each class lown is closed downward under Turing reducibility, and contained

in ∆0
n+1. The hierarchy

computable ⊂ low1 ⊂ low2 ⊂ . . . ⊂ {Z : Z �≥T ∅′} (1.7)

is proper by Theorem 6.3.6 below.
The following property due to Mohrherr (1986) will be important later on.

1.5.3 Definition. C is superlow if C ′ ≡tt ∅′.
It suffices to require that C ′ ≤tt ∅′, because ∅′ ≤m C ′ for any C by 1.2.14.
By 1.4.4, it is also equivalent to ask that C ′ be ω-c.e., namely, C ′ can be com-
putably approximated with a computable bound on the number of changes.
The class of superlow sets is closed downwards under Turing reducibility. It

lies strictly between the classes of computable and of low sets. In Theorem 1.6.5
we build a c.e. incomputable superlow set, and Exercise 1.6.7 asks for a low but
not superlow c.e. set. Also see Remark 6.1.5.
The following states that A′ is as simple as possible compared to A.

1.5.4 Definition. A is generalized low1, or in GL1 for short, if A′ ≡T A⊕ ∅′.
Equivalently, ∅′ is Turing complete relative to A. Clearly the class GL1 coincides
with low1 on the ∆0

2 sets, and no set A ≥T ∅′ is in GL1. However, a set in GL1 is
not necessarily computationally weak. In fact, if B �≥T ∅′ then there is A ≥T B
such that A is in GL1 by a result of Jockusch (1977); also see Odifreddi (1999,
Ex. XI.3.11).
We extend Definition 1.5.1. For functions f, ψ : N → N, where possibly ψ is

partial, we say that f dominates ψ if ∀∞n [ψ(n)↓ → f(n) ≥ ψ(n)].
Exercises. Show the following.
1.5.5. If C is superlow, there is a computable function h such that Y ≤T C implies
Y ≤tt ∅′ with use function bounded by h for each Y . (Here we view truth table reduc-
tions as functions mapping inputs to truth tables; see before 1.4.5.)
1.5.6. A is in GL1 ⇔ some function f ≤T A ⊕ ∅′ dominates each function that is
partial computable in A.
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1.5.7. If B is low2 then the index set {e : We ≤T B} is Σ0
3.

1.5.8. B is Low2 ⇔ TotB = {e : ΦB
e total} is Σ0

3.

Computably dominated sets

We study a lowness property of a set A stating that the functions computed
by A do not grow too quickly.

1.5.9 Definition. A is called computably dominated if each function g ≤T A is
dominated by a computable function.

Exercise 1.5.17 shows that we cannot effectively determine the dominating func-
tion from the Turing reduction of g to A, unless A is computable.
We say that E ⊆ N is hyperimmune if E is infinite and pE is not dominated by

a computable function, where pE is the listing of E in order of magnitude (also
see Definition 1.7.1 below). The intuition is that E is a very sparse set.

1.5.10 Proposition. A is not computably dominated ⇔ there is a hyperim-
mune set E ≡T A.

Proof. ⇐: Immediate since pE ≤T E.
⇒: Suppose g ≤T A is not dominated by a computable function. Let E =
ran(h), where the function h is defined as follows: h(0) = 0, and for each n ∈ N,
h(2n + 1) = h(2n) + g(n) + 1 and h(2n + 2) = h(2n + 1) + pA(n) + 1. Clearly
E ≡T h ≡T A. Moreover g(n) ≤ h(2n+ 1), so that h = pE is not dominated by
a computable function. �

For this reason, a set that is not computably dominated is also called a set of
hyperimmune degree. In the literature, a computably dominated set is usually
called a set of hyperimmune-free degree. The study of hyperimmune-free degrees
was initiated by Martin and Miller (1968).

1.5.11 Proposition. A is computably dominated ⇔ for each function f ,
f ≤T A→ f ≤tt A.

Proof. ⇒: Suppose f = ΦA. Let g(x) = µsΦA
s (x) ↓. Then g ≤T A, so there

is a computable function t such that t(x) ≥ g(x) for each x. Thus t bounds the
running time of ΦA, whence f ≤tt A by Proposition 1.2.22.
⇐: By the remark after Proposition 1.2.22, each function f ≤tt A is dominated
by a computable function. �

Each computable set A is computably dominated. Are there others? We will
answer this question in the affirmative in Theorem 1.8.42. Here we observe that
there are none among the incomputable ∆0

2 sets.

1.5.12 Proposition. If A is ∆0
2 and incomputable, then A is not computably

dominated.

Proof. Let (As)s∈N be a computable approximation of A. Then the following
function g is total:



28 1 The complexity of sets

g(s) 	 µt ≥ s.At �s= A�s.
Note that g ≤T A. Assume that there is a computable function f such that

g(s) ≤ f(s) for each s. Then A is computable: for each n and each s > n we have
At(n) = A(n) for some t ∈ [s, f(s)), namely t = g(s). On the other hand, if s
is sufficiently large then Au(n) = As(n) for all u ≥ s. Thus, to compute A, on
input n determine the least s > n such that Au(n) = As(n) for all u ∈ [s, f(s)).
Then As(n) = A(n), so the output As(n) is correct. �

Exercises.
1.5.13. (a) Strengthen Proposition 1.5.12 as follows: if C <T A ≤T C′ for some set C,
then A is of hyperimmune degree. (b) Conclude that, if A is computably dominated
and C <T A, then C′ <T A′.

1.5.14. Strengthen Proposition 1.5.12 in yet another way: if A is Σ0
2 and incomputable

then A is of hyperimmune degree.

1.5.15. Show that if A is computably dominated then A′′ ≤T A′ ⊕ ∅′′. In particular,
each computably dominated set is in GL2 (Definition 1.5.20 below).

1.5.16.� (Jockusch, 1969) Show that if X ≤T A → X ≤tt A for each set X, then A
is already computably dominated.

1.5.17.� Let us call a set A uniformly computably dominated if there is a computable
function r such that for each e, if ΦA

e is total then Φr(e) is total and dominates ΦA
e .

Show that the only uniformly computably dominated sets are the computable ones.

Sets that are highn

Recall from Definition 1.5.2 that a set C is lown if C(n) ≡T ∅(n), namely C(n) is
as low as possible. How about having a complex n-th jump?

1.5.18 Definition. Let n ≥ 0. A set C is highn if ∅(n+1) ≤T C
(n).

Of course, C(n) could be even more complex. However, if C is ∆0
2 then C(n) ≤T

∅(n+1). So in that case, to be highn means that the n-th jump is as complex as
possible.
All the classes highn are closed upward under Turing reducibility, so the com-

plementary classes non-highn = 2N−highn are closed downward. We have refined
the hierarchy (1.7):

comp. ⊂ low1 ⊂ low2 ⊂ . . . ⊂ non-high2 ⊂ non-high1 ⊂ {Z : Z �≥T ∅′}. (1.8)

This hierarchy of downward closed classes is a proper one as we will see in 6.3.6.
Also, there is a c.e. set that is not in lown or highn for any n by 6.3.8.
Of particular interest is the class high1 = {C : ∅′′ ≤T C ′} (simply called the

high sets), because such sets occur naturally in various contexts. For instance, a
theorem of Martin (1966b) states that a c.e. set C is high iff C ≡T A for some
maximal set A; also see Soare 1987, Thm. XI.2.3. Here a co-infinite c.e. set A
is called maximal if for each c.e. set W ⊇ A, either W is cofinite or W − A is
finite. For another example, C is high iff there is a computably random but not
Martin-Löf random set Z ≡T C by Theorem 7.5.9 below.



1.6 Post’s problem 29

We are not yet in the position to show the existence of a high set C �≥T ∅′.
Our first example will be Chaitin’s halting probability Ω relative to ∅′ (3.4.17).
In Corollary 6.3.4 we prove that there is a high c.e. set C <T ∅′.
It is easy to define a function f ≤T ∅′ that dominates all computable func-

tions: the set {〈e, x〉 : Φe(x)↓} is c.e., and hence many-one reducible to ∅′ via a
computable function h. Let f(x) = max{Φe(x) : e ≤ x & h(〈e, x〉) ∈ ∅′}. If Φe is
total then f(x) ≥ Φe(x) for all x ≥ e. This property of ∅′ in fact characterizes
the high sets. Thus, being high is opposite to being computably dominated.

1.5.19 Theorem. (Martin, 1966b) C is high ⇔ some function f ≤T C domi-
nates all computable functions.

Proof. ⇒: We define a function f ≤T C that dominates each total Φe, ex-
tending the argument for the case C = ∅′ just given. Note that {e : Φe total}
is Π0

2, and hence {e : Φe total} ≤m N − ∅′′ ≤T C ′. By the Limit Lemma
1.4.2 there is a binary function p ≤T C such that for each e, limsp(e, s) ex-
ists, and limsp(e, s) = 1 iff Φe is total. To compute f(x) with oracle C, let
s ≥ x be least such that for each e ≤ x, either Φe,s(x) ↓ or p(e, s) = 0, and let
f(x) = max{Φe,s(x) : e ≤ x & Φe,s(x)↓}.
If Φe is total then there is s0 ≥ e such that p(e, s) = 1 for all s ≥ s0, so that

f(x) ≥ Φe(x) for all x ≥ s0.
⇐: Suppose that f ≤T C dominates all computable functions. We show that
N− ∅′′ = {e : Φ∅′

e (e)↑} is Turing reducible to C ′. Note that Φ∅′
e (e)↑ iff the com-

putation is undefined at infinitely many stages, that is, no computation Φ∅′
e (e)[s]

is stable. Thus Φ∅′
e (e)↑ iff the partial computable function

g(s) 	 µt > s [Φ∅′
e (e)[t]↑]

is total. In that case g is dominated by f , and therefore

e �∈ ∅′′ ⇔ ∃n0∀n ≥ n0∃t [n ≤ t ≤ f(n) & Φ∅′
e (e)[t]↑].

Since t is bounded by f(n) and f ≤T C, this shows that N− ∅′′ is Σ0
2(C). Also

∅′′ ∈ Σ0
2 ⊆ Σ0

2(C). Therefore ∅′′ ≤T C
′ by Prop. 1.4.14 relative to C. �

The following class contains the class GL1 of Definition 1.5.4.

1.5.20 Definition. A is generalized low2, or GL2 for short, if A′′ ≡T (A⊕ ∅′)′.
Equivalently, ∅′ is high relative to A.

1.5.21 Exercise. Show that A is GL2 ⇔ some function f ≤T ∅′ ⊕A dominates each
(total) function g ≤T A. (Compare this with Exercise 1.5.6 characterizing GL1.)

1.6 Post’s problem
Post (1944) asked whether a c.e. set can be incomputable and Turing incomplete,
that is, whether there is a c.e. set A such that ∅ <T A <T ∅′. It took 12 years to
answer his question. Kleene and Post (1954) made a first step by building a pair
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of Turing incomparable ∆0
2 sets. To do so they introduced the method of finite

extensions. Post’s question was finally answered in the affirmative by Friedberg
(1957b) and Muchnik (1956) independently. They built a pair of Turing incompa-
rable sets that are also computably enumerable, strengthening the Kleene–Post
result. Their proof technique is nowadays called the priority method with finite
injury. For more background on Post’s problem see Chapter III of Odifreddi
(1989) and our discussion on page 34.

Turing incomparable ∆0
2-sets

For sets Y,Z we write Y |T Z if Y �≤T Z & Z �≤T Y .

1.6.1 Theorem. There are sets Y,Z ≤T ∅′ such that Y |T Z.

Proof idea. Note that Y |T Z is equivalent to the conjunction of the state-
ments Ri for all i, where

R2e : ∃n¬Y (n) = ΦZ
e (n)

R2e+1 : ∃n¬Z(n) = ΦY
e (n).

Thus we may divide the overall task that Y |T Z into subtasks, called require-
ments. To meet a requirement means to make its statement true.
The construction of Y and Z is relative to ∅′. We meet the requirements one

by one in the given order. We define sequences σ0 ≺ σ1 ≺ . . . and τ0 ≺ τ1 ≺ . . .,
and let Y =

⋃
i σi and Z =

⋃
i τi. At stage i + 1 we meet Ri by defining σi+1

and τi+1 appropriately. Since we have ∅′ at our disposal as an oracle, we may ask
whether ΦZ

e (n) can be made defined for a particular number n. Then we may
define Y (n) in such a way that it differs from ΦZ

e (n). This method of providing
a counterexample to an equality of sets is called diagonalization, and a number
such as n above is called a diagonalization witness.
Construction. Let σ0 = τ0 = ∅.
Stage i + 1, i = 2e. Let n = |σi|. Using ∅′ as an oracle, check whether there
is τ � τi such that y = Φτ

e (n) ↓. (Note that this is a Σ0
1 question, so it can be

answered by ∅′.) If so, let τi+1 = τ and σi+1 = σix, where x = max(1 − y, 0).
Otherwise, let σi+1 = σi0 and τi+1 = τi0 (merely to ensure the strings are
extended at every stage).
Stage i+1, i = 2e+1. Similar, with the sides interchanged: let n = |τi|. Using ∅′
as an oracle, see if there is σ � σi such that y = Φσ

e (n)↓. If so, let σi+1 = σ and
τi+1 = τix, where x = max(1− y, 0). Otherwise, let σi+1 = σi0 and τi+1 = τi0.
Verification. Clearly Y,Z ≤T ∅′. Each requirement R2e is met due to the actions
at stage i + 1 where i = 2e: if we cannot find an extension τ � τi such that
Φτ

e (n)↓ then by the use principle (see after 1.2.17) ΦZ
e (n)↑, because Z extends τi.

Otherwise we ensure that Y (n) �= ΦZ
e (n). Either way R2e is met. The case of a

requirement R2e+1 is similar. �
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Simple sets

We now turn our attention to the c.e. sets and their Turing degrees. The halting
problem is a rather special example of an incomputable c.e. set. Here we inves-
tigate a whole class of incomputable sets, the co-infinite c.e. sets that meet each
infinite c.e. set nontrivally.

1.6.2 Definition. A c.e. set A is simple if N−A is infinite and A ∩W �= ∅ for
each infinite c.e. set W .

In particular, N−A is not c.e., so A is not computable. The intuition is that A
is so large that it meets each infinite c.e. set. To call such a set “simple” is
misleading, but it has been done so for decades and no one intends to change the
term. At least the halting problem ∅′ is not simple: by the Padding Lemma 1.1.3
one can obtain an infinite c.e. setW of indices for the empty set. Then ∅′∩W = ∅.
1.6.3 Theorem. There is a simple set.

Proof, version 1. This argument is due to Post (1944). Let A = ran(ψ) where
ψ(i) 	 the first element ≥ 2i enumerated into Wi.

Since ψ is partial computable, A is c.e. If x < 2i is in A then x = ψ(k) for some
k < i. Hence #A∩ [0, 2i) ≤ i, so A is co-infinite. By definition A is simple. �

Proof, version 2. We present the foregoing proof in a different language in
order to introduce some terminology which will be used frequently in later con-
structions of c.e. sets. More terminology will be developed in the proof of Theo-
rem 1.6.4 which strengthens the present result.
We build A by a computable enumeration (Definition 1.1.15). As in the proof

of Theorem 1.6.1, we divide the overall task to make A simple into requirements

Si : #Wi =∞ ⇒ Wi ∩A �= ∅, (1.9)

while keeping A co-infinite. (The Si will be called simplicity requirements.) The
construction of A is in stages. We let A0 = ∅. At each stage s > 0 we have a finite
set As−1 of elements that have been enumerated so far. As−1 is given by a strong
index. During stage s we determine a finite set F ⊆ N and let As = As−1 ∪ F .
We say that the elements of F are enumerated into A. Note that we think of As

as the value by the end of stage s. We let A be the c.e. set
⋃

sAs.

Construction of A. Let A0 = ∅.
Stage s > 0. For each i < s, if the requirement Si is not satisfied at stage s,
namely As−1 ∩ Wi,s−1 = ∅, and there is an x ∈ Wi,s such that x ≥ 2i, then
enumerate the least such x into As. We say that Si acts.
Unlike the proof of Theorem 1.6.1, the stage number is no longer directly tied

to a requirement to be met. Rather, a requirement Si may act at any stage s > i.
In the present construction, each Si acts at most once.
After giving the formal construction one has to verify that it actually builds

objects as desired:
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Verification. If Wi has an element ≥ 2i then by construction Wi ∩ A �= ∅. Thus
Si is met. A number < 2e can only be enumerated by a requirement Si, i < e,
and each requirement enumerates at most one number. Thus #A ∩ [0, 2e) ≤ e
for each e, whence A is co-infinite. �

A c.e. set that is neither computable nor Turing complete

We solve Post’s problem by building a low simple set A. To do so we introduce
the priority method with finite injury.
Let us begin by noting that the proof of Theorem 1.6.3 above necessarily makes

the set A Turing complete: we say a co-infinite c.e. set A is effectively simple if
there is a computable function g such that #We ≥ g(e) → We ∩ A �= ∅. The
proof of 1.6.3 actually yields an effectively simple set where g(e) = 2e. In Propo-
sition 4.1.13 we will show that each effectively simple set is Turing complete. To
ensure that A is low we will add a further type of requirements to the proof of
Theorem 1.6.3 (in its second version). While the simplicity requirements want
to enumerate elements into A, the new requirements restrict A.

1.6.4 Theorem. There is a low simple set A.

Proof idea. Unlike the Kleene–Post Theorem, we cannot use a construction
relative to ∅′ because we want to build a computable enumeration. In the con-
struction we meet the requirements Si in (1.9) and lowness requirements

Le : ∃∞s JA(e)[s− 1]↓ ⇒ JA(e)↓ (1.10)

that restrict A. If Le is met then A′(e) = limsf(e, s), where

f(e, s) =

{
1 if JA(e)[s]↓,
0 otherwise.

So A′ ≤T ∅′ by the Limit Lemma 1.4.2. That is, A is low.
The strategy for Le is as follows. When JA(e)[s− 1] newly converges then Le

restrains A up to s; in other words, Le attempts to prevent numbers < s from
entering A.
The conflict between the A-positive requirements Si and the A-restricting re-

quirements Le is resolved by imposing an effective priority ordering , for instance

S0 > L0 > S1 > L1 > . . .

Requirements further to the left are said to have stronger (or higher) priority.
A requirement can only restrain requirements of weaker (or lower) priority dur-
ing the construction. In the verification one shows by induction on descending
priority that the action of each requirement is finitary, and hence each single
requirement is not restrained from some stage on. The strategies for the require-
ments have to be designed in such a way that they can live with finitely many
disturbances. For instance, Si has to cope with the restraints of finitely many
stronger priority lowness requirements. So it needs an element of Wi that is
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larger than the eventual values of these restraints. There is no computable upper
bound for the maximum of these eventual values, so the construction does not
any longer make A effectively simple.
An undesirable situation for Le is the following: it thought it had already

secured a computation JA(e) ↓, but then it is injured because a number x <
use JA(e) is enumerated into A, destroying that computation. To get around
this, Le needs sufficiently many chances, provided by new convergences of JA(e).
Le imposes its restraint by initializing weaker priority simplicity requirements:

when Le sees a new convergence of JA(e)[s−1], it tells these requirements to start
from the beginning. If a requirement is initialized at stage s, it can afterwards
only put numbers≥ s into A. Since oracle questions occurring in the computation
JA(e)[s− 1] are less than s, an enumeration of such numbers cannot injure Le.
Unlike previous constructions, it may now take many attempts to make a re-

quirement permanently satisfied.
Construction. Let A0 = ∅.
Stage s > 0.

(1) For each e < s, if JA(e)[s − 1] ↓ but JA(e)[s − 2] ↑ in case s > 1, then
initialize the requirements Si for i > e. We say that Le acts.

(2) For each e < s, if As−1 ∩ We,s−1 = ∅ and there is x ∈ We,s such that
x ≥ 2e and x is no less than the last stage when Se was initialized, then
enumerate the least such x into A. We say that Se acts.

Claim. Each requirement acts only finitely often, and is met.
We suppose inductively that the claim holds for all requirements of stronger
priority. So we can choose t such that no requirement of stronger priority acts
from stage t on. If the requirement in question is Se, in fact it acts at most once,
in which case it is met; if it does not act after stage t, thenWe ⊆ [0, t) because Se

is not initialized after t, so it is met as well.
If the requirement is Le then by the choice of t it is not injured from stage t on.

If JA(e)[s− 1]↓ for no s ≥ t then it never acts after t, and, since its hypothesis
fails it is met. If s ≥ t is least such that JA(e)[s− 1]↓ then it acts at stage s. By
the initialization it carries out at stage s, it never acts again as the computation
JA(e)[s− 1] is preserved forever; again Le is met. �

The construction actually makes A is superlow (see Definition 1.5.3):

1.6.5 Theorem. (Extends 1.6.4) There is a superlow simple set A.

Proof. The number of injuries to Le is computably bounded, for Le is only
injured when some requirement Si acts such that i ≤ e. Since each Si acts at
most once, this can happen at most e+ 1 times. If f is as above then

#{s > e : f(e, s) �= f(e, s− 1)} ≤ 2e+ 2.

Hence A′ is ω-c.e., whence A′ ≤tt ∅′. �
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Relativizing the proof of Theorem 1.6.4 yields for each oracle C a set A �≤T C
such that A is c.e. relative to C and (A ⊕ C)′ = C ′. Thus the jump fails to be
one-one on the structure DT of all Turing degrees in the following strong sense.

1.6.6 Corollary. For each c ∈ DT there is a ∈ DT such that a > c and a′ = c′.

1.6.7.� Exercise. Prove a further variant of Theorem 1.6.4: there is a low c.e. set A
that is not superlow. (A detailed solution requires some of the terminology on building
Turing functionals introduced in Section 6.1 below.)

Is there a natural solution to Post’s problem?
Post may have hoped for a different kind of solution to the problem he posed, one that
is more natural. The meaning of the word “natural” in real life might be: something
that exists independent of us humans. In mathematics, to be natural an object must
be more than a mere artifact of arbitrary human-made definitions (for instance, the
particular way we defined a universal Turing program). Natural properties should be
conceptually easy. Being a simple set is such a property, satisfying the requirements
in the proof of Theorem 1.6.4 is not. In computability theory a natural class of sets
should be closed under computable permutations. With very few exceptions, classes
we study satisfy this criterion; see also Section 1.3. On the other hand, the class of
sets satisfying the lowness requirements in the proof of Theorem 1.6.4 may fail this
criterion (depending on the particular choice of a universal Turing program). Also,
what we put into the c.e. set A constructed depends on the particular way the sets We

are defined, even in which order they are enumerated. So the set A is an artifact of
the way we specified the universal Turing program (defined before 1.1.2). Neither the
property (satisfying the requirements) is natural, nor the set A for which the property
holds.

Let us say a Post property is a property of c.e. sets which is satisfied by some in-
computable set and implies Turing incompleteness. Post was not able to define such a
property; the closest he came was to show that each hypersimple set (Definition 1.7.5)
is truth-table incomplete (also see 4.1.15). The first result in the direction of a natural
Post property was by Marchenkov (1976), who introduced a “structural” Post property
(to be maximal relative to some c.e. equivalence relation, and also a left cut in a com-
putable linear order). Harrington and Soare (1991) found a Post property that is even
first-order definable in E , the lattice of c.e. sets under inclusion. While Marchenkov’s
property relies on other effective notions, the Harrington–Soare property is based purely
on the interaction of c.e. sets given by the inclusion relation. However, in both cases,
the construction showing that an incomputable set with the Post property exists is
more complex than the one in the proof of Theorem 1.6.4.

In Section 5.2 we will encounter a further Post property, being K-trivial. The con-
struction of a c.e. incomputable K-trivial set only takes a few lines and has no injury to
requirements. However, it is harder to show that each K-trivial set is Turing-incomplete.

Kučera (1986) gave an injury-free solution to Post’s problem where the construction
to show existence is somewhat more difficult than in the case of a K-trivial set, but the
verification that the set is Turing incomplete is easier. The Post property of Kučera is
to be below a Turing incomplete Martin-Löf random set. No injury is needed to show
that there is a Turing incomplete (or even low) Martin-Löf random set, and Kučera’s
construction produces a c.e. incomputable set Turing below it (see Section 4.2).
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All these examples of c.e. incomputable sets with a Post property are still far from
natural, because they depend, for instance, on our particular version of the universal
Turing program. Perhaps the injury-free solutions are more natural, but the choice of
a universal program still matters since we have to diagonalize to make the set incom-
putable. Any reasonable solution W to Post’s problem should be relativizable to an
oracle set X, so one would expect that X <T W X <T X ′ for each X. If the solution
does not depend on the choice of the universal program, it should also be degree invari-
ant: if X ≡T Y , then W X ≡T W Y . The existence of such a degree invariant solution
to Post’s problem is a long-standing open question posed by Sacks (1963a).

Turing incomparable c.e. sets

The priority method was introduced by Friedberg (1957b) and Muchnik (1956)
when they extended the Kleene–Post Theorem 1.6.1 to the c.e. case: there are
Turing incomparable c.e. sets A and B. There is only one type of requirement
now, but in two symmetric forms, one for A �≤T B, and the other for B �≤T A.
The strategy combines elements from the strategies for simplicity and lowness
requirements in the proof of Theorem 1.6.4. For instance, a requirement to ensure
A �= ΦB

e enumerates into A and restricts the enumeration of B.

1.6.8 Theorem. (Extends 1.6.1) There are c.e. sets A and B such that A |T B.

Proof idea. We meet the same requirements as in Theorem 1.6.1, namely
R2e : ∃n¬A(n) = ΦB

e (n)
R2e+1 : ∃n¬B(n) = ΦA

e (n).

Here ¬A(n) = ΦB
e (n) means that either ΦB

e (n) ↑ or ΦB
e (n) ↓�= A(n). Again, we

cannot use a construction relative to ∅′, because we want to build computable
enumerations of A and B. The strategy for R2e is somewhat similar to the one in
Theorem 1.6.1: it looks for an unused candidate n such that currently ΦB

e (n) = 0,
and puts n into A; it also attempts to protect this computation by initializing the
requirements of weaker priority. If later the B-enumeration of some requirement
(necessarily of stronger priority) destroys the computation, then R2e is initialized
(in particular, declared unsatisfied), and has to start anew. In the verification, one
shows that R2e acts only finitely often. Once it stops acting it is met: otherwise, if
actually A = ΦB

e , there would be yet another candidate available, so it would act
another time. To ensure the candidate is not put into A by some other strategy,
a requirement Ri chooses its candidates from N

[i] = {〈x, i〉 : x ∈ N}.
Construction of A and B. Let A0 = B0 = ∅. All requirements are initialized.
Stage s > 0. Let i be least such that Ri is currently unsatisfied and, where r < s
is the greatest stage such that Ri was initialized at r,
if i = 2e then ΦB

e (n) = 0 [s− 1] for the least n ∈ N
[i] −As−1 such that n > r,

if i = 2e+1 then ΦA
e (n) = 0 [s− 1] for the least n ∈ N

[i]−Bs−1 such that n > r.
In the first case put n into A, in the second case n into B. Declare Ri satisfied
and initialize all requirements of weaker priority. We say that Ri acts. Note that
n < s.
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Claim. Each requirement Ri is initialized only finitely often, acts only finitely
often, and is met.
By induction, we may choose a stage t such that no requirement Rk, k < i, acts
at a stage ≥ t. Then Ri is not initialized from t on. Say i = 2e for some e.
Case 1. Ri acts at a stage s ≥ t by putting a number n into A. Then Ri is
declared satisfied at s and remains so. Moreover, ΦB(n) = 0 from stage s on,
because, by choice of t and its initialization of weaker priority requirements,

ΦB(n)[s− 1] = ΦB�u(n)[s− 1] = ΦB�u(n) = ΦB(n),
where u = use ΦB(n)[s− 1]. So 1 = A(n) �= ΦB(n) = 0, and Ri is met.
Case 2. Otherwise, i.e., Ri never acts at a stage ≥ t. Then A(n) = 0 for any
n ≥ t in N

[i], because before stage t only numbers less than t can be put into A.
If ΦB(n) = 0 then ΦB(n)[s − 1] = 0 for some s ≥ t, so Ri acts after all,
contradiction. Therefore ¬A(n) = ΦB

e (n) and again Ri is met. �

1.6.9 Remark. It is useful to view the foregoing construction as a game between
us and an opponent (whom I like to call Otto). We build the c.e. sets A and B,
trying to meet the requirements Ri. Otto controls the functionals Φe. He defines
them in a way to make our life as hard as possible. For instance, suppose R2e

has not been satisfied and consider n ∈ N
[i] as in the construction. Otto may

wait as long as he wants before he lets ΦB
e (n) = 0. In this case R2e wakes up

and enumerates n into A, thereby injuring the weaker priority requirements that
want to preserve A. If he never lets ΦB

e (n) = 0 after the last stage when R2e

is initialized then we win R2e because ΦB
e is not total. Our strategy must be

designed in such a way that we win no matter what Otto does.

The following result is known as the Sacks Splitting Theorem.

1.6.10 Exercise. Given a c.e. set C, one may uniformly determine low c.e. sets A0

and A1 such that C = A0 ∪A1 and A0 ∩A1 = ∅.
This leads to an alternative proof of Theorem 1.6.8: by 1.2.24 we have C ≡T A0 ⊕A1.
If we let C = ∅′ then A0 |T A1, otherwise ∅′ would be low.

Hint. For each e ∈ N and each i ∈ {0, 1}, meet the lowness requirements for Ai

G2e+i : ∃∞s JAi(e)[s− 1]↓ ⇒ JAi(e)↓ .

When x enters C at stage s, you have to decide which side to put it in (of course, no
one wants it). Choose the strongest priority requirement G2e+i that would be injured
by the enumeration of x into Ai (namely, x < use JAi(e)[s − 1]) and put x into the
other side A1−i. After spelling out the formal construction, verify by induction on n
that each Gn is met. �

Consider, for instance, the requirement G2, which tries to preserve a computation
JA0(1). The number of injuries to G2 depends on the use u = use JA1(0). Each time
an x < u enters C, we might injure G2 because G1 has stronger priority. Thus, unlike
Theorem 1.6.5, the number of injuries to a requirement is not computably bounded,
and we cannot guarantee that the Ai are superlow. Indeed, Bickford and Mills (1982)
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showed that there are no superlow c.e. sets A0, A1 such that A0 ⊕ A1 is weak truth-
table complete. On the other hand, one can achieve that A0 ⊕ A1 is Turing complete
by Theorem 6.1.4.

1.7 Properties of c.e. sets
We introduce three properties of a co-infinite c.e. set A and discuss how they
relate to its relative computational complexity. Recall from 1.6.2 that such a set A
is simple if A ∩We �= ∅ for each e such that We is infinite. We show that each
incomputable c.e. weak truth-table degree contains a simple set. Thus, simplicity
has no implication on the complexity beyond being incomputable, unless our
measure of relative complexity is finer than weak truth-table reducibility (see
Remark 1.7.4). The first two of the properties we introduce strengthen simplicity.
(1) A is hypersimple if N−A is hyperimmune, namely, the function mapping n
to the n-th element of N − A is not dominated by a computable function (see
after 1.5.9). Such sets exist in each incomputable c.e. Turing degree, but no
longer in each c.e. weak truth-table degree.
(2) A is promptly simple if for some computable enumeration, for each infiniteWe

some element of We enters A with only a computable delay from the stage on
when it entered We. The Turing degrees of promptly simple sets form a proper
subclass of the c.e. incomputable Turing degrees. In fact they coincide with
the c.e. degrees d that are non-cappable, namely ∀y �= 0 ∃b [0 < b ≤ d,y]
holds in the partial order of c.e. Turing degrees. (Non-cappable Turing degrees
are complex in the sense that they share incomputable knowledge with each c.e.
degree y > 0.) This coincidence, due to Ambos-Spies, Jockusch, Shore and Soare
(1984), implies that the promptly simple degrees are first-order definable in RT .
We will only prove the easier implication, that each promptly simple degree is
non-cappable.
(3) A is creative if it is incomputable in a uniform way, namely, there is a com-
putable function p such that for each e, the number p(e) shows that We is not
the complement of A. The intuition is that such sets are far from computable; in
fact we show that A is creative iff A is m-complete. By a result of Harrington,
the class of creative sets can be characterized using only the Boolean operations
on c.e. sets. Thus, being creative is first-order definable in the lattice E of c.e.
sets under inclusion.
Both the first-order definability of the promptly simple degrees in the c.e. Tur-

ing degrees and the first-order definability of the creative sets in E are rather
unexpected because these properties were defined in terms of concepts that
appear to be external to the structure. The definability results show that the
properties are in fact intrinsic. Another example of this is the first-order defin-
ability in RT of the lown degrees for n ≥ 2, and of the highn degrees for n ≥ 1.
These results are due to Nies, Shore and Slaman (1998).
The properties (1) and (3) will only play a marginal role for us, but (2) will be

important later on, because several strong lowness properties, such a being low
for Martin-Löf randomness (Definition 5.1.7), hold for some promptly simple set.
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We need the following notation throughout this section.

1.7.1 Definition. (i) For a set B ⊆ N let B denote its complement N−B.
(ii) For a set S ⊆ N, the function pS lists S in the order of magnitude. That is,
pS(0) < pS(1) < . . ., and S = ran(pS). We say that pS(i) is the i-th element
of S. The domain of pS is {i : i < #S}.
If S = B for some c.e. set B we build, we write pB,s(i) for pBs

(i).

Each incomputable c.e. wtt-degree contains a simple set

To obtain a simple set Turing below a given incomputable c.e. set C, we use the
permitting method .

1.7.2 Theorem. (Extends 1.6.4) For each c.e. incomputable set C, there is a
simple set A such that A ≤wtt C.

Proof. Once again we meet the simplicity requirements Si in (1.9). To ensure
that A ≤wtt C, we only to put x into A at stage s if C permits it, in the sense that
Cs−1 �x �= Cs �x. Then C �x+1= Cs �x+1 implies A(x) = As(x), so to determine
A(x), we compute the least s such that C �x+1= Cs �x+1, using C as an oracle,
and output As(x). Thus A ≤wtt C.
Why does C permit any number for Si? If Wi is infinite, then there will be

infinitely many x that Si wishes to put into A. If C never permitted any x then C
would be computable, contrary to our hypothesis.
Construction of A. Let A0 = ∅.
Stage s > 0. For each i < s, if As−1 ∩Wi,s−1 = ∅ and there is an x ∈ Wi,s such
that x ≥ 2i and Cs−1 �x �= Cs �x, then enumerate the least such x into As.
Verification. As before, A is co-infinite. To show that each requirement Si is met,
suppose that Wi is infinite but Wi ∩ A = ∅. Then C is computable: on input y,
find the least t such that x ∈ Wi,t for some x > y. Then C(y) = Ct(y), else we
would put x into A at the least stage s ≥ t such that Cs−1(y) �= Cs(y). This
contradiction shows that Si is met. �

To obtain the full result, we refine this proof by also coding C into A.

1.7.3 Theorem. (Extends 1.6.4) For each incomputable c.e. set C, there is a
simple set A such that A ≡wtt C.

Proof. For C ≤wtt A, we put pA,s(3y) into A when y enters C. We need to make
sure that A is still co-infinite.
Construction of A. Let A0 = ∅.
Stage s > 0. For each i < s, if As−1 ∩Wi,s−1 = ∅, and there is an x ∈Wi,s such
that x ≥ 3i and Cs−1 �x �= Cs �x, then enumerate the least such x into As.
If y ∈ Cs − Cs−1, put pA,s−1(3y) into A.
Verification. Note that #A ∩ [0, 3e) ≥ 2e for each e, since at most e elements
less than 3e enter A due to the requirements Si and at most e elements for the
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coding of C into A. Hence pA(y) ≤ 3y for each y. Then As�3y+1= A�3y+1 implies
Cs(y) = C(y), so C ≤wtt A. The rest is as before. �

1.7.4 Remark. The result cannot be strengthened to truth-table degrees: Jockusch
(1980) proved that there is a nonzero c.e. truth-table degree which contains no simple
set. In fact, there is a c.e. incomputable set C such that no simple set A satisfies A ≤tt C
and C ≤wtt A.

Hypersimple sets

Informally, A is simple if the complement of A is thin in the sense that it does not
contain any infinite c.e. set. Stronger properties have been studied (see Odifreddi
1999, pg. 393). They all state in some way that the complement of A is thin (while
still being infinite). The strongest is being maximal: for each c.e. set W ⊇ A,
either W is cofinite or W −A is finite. A moderate strengthening of being simple
is hypersimplicity, namely, the complement of A is hyperimmune (1.5.10).

1.7.5 Definition. A is hypersimple if A is co-infinite and ∃∞n f(n) < p A(n)
for each computable function f .

It would be sufficient to require ∃n f(n) < p A(n), for if f(n) ≥ p A(n) for
almost all n then a finite modification f̃ of f satisfies ∀n f̃(n) ≥ p A(n). Each
hypersimple set A is simple, for if A is not simple then by 1.1.19 A has an infinite
computable subset S. Then pS is computable and p A(n) ≤ pS(n) for each n.
To show that each incomputable c.e. Turing degree contains a hypersimple set

one could modify Theorem 1.7.3 and its proof. We give an alternative method
to turn an incomputable c.e. set C into a hypersimple set A ≡T C.

1.7.6 Proposition. For each incomputable c.e. set C there is a hypersimple set
A such that A ≤tt C ≤T A.

Proof. By Proposition 1.1.17, we can effectively obtain a partial computable
function ψ defined on an initial segment of N such that C = ran(ψ): at stage s
we enumerate ψ(s). Let A be the set of stages s such that some element less than
ψ(s) enters C later than stage s, namely, A = {s : ∃t > s [ψ(t) < ψ(s)]}. These
are called the deficiency stages of ψ. The description of A is in Σ0

1 form since
“ψ(t) < ψ(s)” is Σ0

1. So A is c.e. by Proposition 1.4.12. Since C is incomputable,
dom(ψ) = N. Let Cs = {ψ(0), . . . , ψ(s− 1)}. Then

s ∈ A ↔ ∨{y ∈ C : y < ψ(s) & y �∈ Cs}.
By Proposition 1.2.21 this effective assignment of a Boolean expression to s shows
that A ≤tt C. For C ≤T A, note that for each m, where xm = ψ(p A(m)), at
a stage greater than pA(m) only a number greater than xm can be enumerated
into C. In particular, x0 < x1 < . . . < xm and hence m ∈ C ↔ m ∈ Cf(m) for
every function f such that ∀mf(m) ≥ p A(m). Letting f = p A this shows that
C ≤T A. Also, no such function f is computable, so A is hypersimple. �

We say that Y is introreducible if Y is infinite and Y ≤T X for each infinite X ⊆ Y .
The proof of 1.7.6 shows that C ≤T f for every function f such that ∀m f(m) ≥ p A(m).
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If X ⊆ A is infinite, then f(m) = pX(m) ≥ p A(m) for each m. Therefore A ≤T X.
Thus A is introreducible.

1.7.7 Exercise. Show that each truth table-degree contains an introreducible set.

1.7.8 Remark. We have seen two ways of obtaining a c.e. set. At first sight they seem
to be very different.

(a) The set can be given by a definition, “in one piece”. Examples are the first proof
of Theorem 1.6.3 to obtain a simple set, and the proof of Proposition 1.7.6 (where the
definition of a simple set is based on a computable enumeration of the given set C). An
example of a simple weak truth-table complete set obtained by a definition is in 2.1.28.

(b) We can build the set using a stage-by-stage construction. Examples are the second
proof of Theorem 1.6.3, and the proof of Theorem 1.7.3.

Distinguishing these two ways is helpful for our understanding, even though formally,
a construction of a c.e. set A is just a definition of a computable enumeration of A
via an effective recursion on stages. (In more complex constructions, like the ones
encountered in Chapter 6, one also builds auxiliary objects such as Turing functionals.)
For a construction, at stage s we need to know what happened at the previous stages,
which is not the case for direct definitions (such as the first proof of 1.6.3).

Constructions have the advantage of being flexible. For instance, we extended the
construction in the second proof of Theorem 1.6.3 in order to obtain a low simple set.
However, constructions also introduce more artifacts and thereby tend to make the set
less natural. Definitions of c.e. sets seem to be more natural, but often they are not
available.

Let us briefly skip ahead to Kučera’s injury-free solution to Post’s problem (Sec-
tion 4.2) and the construction of a c.e. K-trivial set (Section 5.2), both already men-
tioned on page 34. These are constructions in that the action at stage s depends on the
past: we have to keep track of whether a requirement has already been satisfied. On
the other hand, they are very close to direct definitions because the requirements do
not interact. Both sets are obtained by applying a simple operation to a given object,
similar to the proof of Proposition 1.7.6. This given object is a low Martin-Löf random
set for Kučera’s construction, and the standard cost function for the construction of
a K-trivial set.

Promptly simple sets

The definition of simplicity is static: we are not interested in the stage when an
element of an infinite setWe appears in A, only in that it appears at all. However,
since the sets We are equipped with a computable enumeration (We,s)s∈N, one
can also consider a stronger, dynamic version of the concept, where an element
appearing in an infinite set We at stage s is enumerated into A at the same
stage or earlier. Given a computable enumeration (Bs)s∈N, for s > 0 we let
Bat s = Bs −Bs−1.

1.7.9 Definition. A c.e. set A is promptly simple (Maass, 1982) if A is co-
infinite and, for some computable enumeration (As)s∈N of A, for each e,

#We =∞ → ∃s > 0 ∃x [x ∈We,at s ∩As]. (1.11)
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We would rather wish to say that x enters We and A at the same stage, but this is
impossible: for each effective enumeration (As)s∈N of a c.e. set A, there is an e such
that We = A but x ∈ Aat s → x �∈We,s, that is, every element enters We later than A.
This is immediate if we assume a reasonable implementation of the universal Turing
program. It has to simulate the enumeration of A, and each simulated step takes at
least as long as a step of the given enumeration of A.

The following seemingly more general variant of Definition 1.7.9 can be found in the
literature: there is a computable enumeration (As)s∈N of A and a computable function p

such that #We = ∞ → ∃s∃x [x ∈ We,at s ∩ Ap(s)]. However, this formulation is
equivalent via the computable enumeration (Ap(s) ∩ [0, s))s∈N of A.

With a minor modification, the construction of a low simple set A in Theo-
rem 1.6.4 produces a promptly simple set. This is so because, when a simplicity
requirement wants to enumerate a number into A that is greater than the re-
straint is has to obey, this wish can be granted without delay.

1.7.10 Theorem. (Extends 1.6.4) There is a low promptly simple set.

Proof. We modify the proof of Theorem 1.6.4. Instead of the simplicity require-
ments (Se) in (1.9) we now meet the prompt simplicity requirements

PSe: #We =∞ ⇒ ∃s∃x [x ∈We,at s & x ∈ As].

In the construction on page 33 we replace (2) by the following:
For each e < s, if PSe has not been met yet and there is x ≥ 2e such that
x ∈ We,at s and x is no less than the last stage when PSe was initialized, then
enumerate the least such x into A and declare PSe met. �

Exercises. Prompt simplicity of a set is formulated in terms of the existence of a par-
ticular computable enumeration. Maass (1982) gave a condition equivalent to prompt
simplicity which does not involve any enumeration:

1.7.11. Let A be a c.e. co-infinite set. Show that A is promptly simple ⇔ there is a
computable function q such that for each e (1) Wq(e) ⊆ We and We − A = Wq(e) − A
and (2) #We =∞ → We −Wq(e) �= ∅.
1.7.12. In 1.7.11 replace (2) by the seemingly stronger condition #We = ∞ →
#(We −Wq(e)) =∞. Show that this also characterizes prompt simplicity.

Minimal pairs and promptly simple sets

1.7.13 Definition. We say that incomputable sets A and B form a minimal
pair if every set Z ≤T A,B is computable.

Lachlan (1966) and Yates (1966) independently proved that minimal pairs of
c.e. sets exist (see Soare 1987, Thm. IX.1.2). Lachlan also showed that for c.e.
sets A and B, it suffices to require in 1.7.13 that each c.e. set Z ≤T A,B be
computable (see Odifreddi 1999, X.6.12).
We show that a promptly simple set E cannot be part of a minimal pair of c.e.

sets, namely, its Turing degree is non-cappable. We already mentioned at the
beginning of this section that this property characterizes the Turing degrees of
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promptly simple sets, a result of Ambos-Spies, Jockusch, Shore and Soare (1984).
A further characterization of this class of c.e. Turing degrees from the same paper
will be provided in Theorem 6.2.2 below: A has promptly simple degree iff A is
low cuppable, namely, there is a low c.e. set Z such that ∅′ ≤T A⊕ Z.
1.7.14 Theorem. Let the set E be promptly simple. From an incomputable c.e.
set C one can effectively obtain a simple set A such that A ≤wtt C,E.

Proof. Choose a computable enumeration (Es)s∈N via which E is promptly
simple. We ensure that A ≤wtt C by direct permitting (see the proof of Theo-
rem 1.7.2). For A ≤wtt E we use a more general type of permitting called delayed
permitting : if x enters A at stage s then Es−1 �x �= E �x, that is, E changes below x
at some stage t ≥ s. Since E is c.e. this implies A ≤wtt E.
We make A simple by meeting the requirements Si in (1.9). We uniformly enu-

merate auxiliary sets Gi to achieve the E-changes. By the Recursion Theorem we
have in advance a computable function g such that Gi =Wg(i) for each i. In more
detail, given a parameter r ∈ N, we let g be a computable function effectively
obtained from r such that Wg(i) = W

[i]
r for each i. Based on g, we enumerate

a uniformly c.e. sequence (Gi)i∈N. Hence there is a computable function f such
that Wf(r) =

⋃
iGi×{i}. Let r∗ be such that Wf(r∗) =Wr∗ , then the function g

obtained for parameter r∗ is as required, because Gi = W
[i]
f(r∗) = W

[i]
r∗ = Wg(i)

for each i.
Suppose at stage s we are in the situation that we want to put some x into A

in order to meet Si, namely, x ∈ Wi,s and x is permitted by C. We first put a
number y < x not yet in E∪Gi into Gi,s, which therefore later appears inWg(i).
If we try this sufficiently often, then eventually some such y must enter E after
a computable delay, for otherwise the infinite set Wg(i) would show that E is not
promptly simple. We can test whether y enters E within the allowed delay. If so,
we put x into A at stage s, thereby meeting Si.
Construction of the c.e. sets A and Gi, i ∈ N. Let A0 = ∅ and Gi,0 = ∅ for
each i. All the requirements are declared unsatisfied.
Stage s > 0. If there is i < s such that Si is not satisfied, Wg(i),s−1 = Gi,s−1
and there are numbers y < x such that x ≥ 2i, x ∈ Wi,s, Cs �x �= Cs−1 �x, and
y �∈ Es−1 ∪ Gi,s−1, then let i be least, let 〈x, y〉 be least for i, and put y into
Gi,s. We say that Si acts. Search for the least t ≥ s such that y ∈Wg(i),t (in the
fixed point case t exists). If y ∈ Et then put x into As and declare Si satisfied.
Verification. By the Recursion Theorem with Parameters 1.1.6, the fixed point r∗

discussed above, and hence the function g, can be obtained effectively from C.
Hence A is obtained effectively from C. Clearly A ≤wtt C by direct permitting.
Further, A ≤wtt E by delayed permitting. The following shows that A is simple.
Claim. Each requirement Si acts only finitely often, and is met.
We suppose inductively that the claim holds for all requirements Sj , j < i. So we
can choose s0 such that no requirement of stronger priority than Si acts at a stage
s ≥ s0. The claim holds if Wi is finite, so suppose that Wi is infinite. Assume for



1.7 Properties of c.e. sets 43

a contradiction that Si is not declared satisfied. Since C is incomputable and E
is co-infinite, there are arbitrarily large stages s ≥ s0 at which we attempt to
meet Si via numbers y < x. Thus Gi = Wg(i) is infinite. Note that for each
such attempt, y enters Wg(i) at a stage t ≥ s because Wg(i),s−1 = Gi,s−1. Then,
since E is promptly simple via the given enumeration, there is some attempt
where y ∈ Et. Thus Si is declared satisfied, contradiction. �

Creative sets �

We study c.e. sets that are incomputable in a uniform way:

1.7.15 Definition. A c.e. set C is creative if there is a computable one-one
function p such that ∀e [We ∩ C = ∅ → p(e) �∈We ∪ C].
In 1.1.10 we used a diagonalization argument to prove that the c.e. set ∅′ =
{e : e ∈We} is incomputable. This argument actually does more:

1.7.16 Fact. ∅′ is creative via the function p(e) = e.

Proof. For each e we have e ∈ ∅′ ↔ e ∈We. If We and ∅′ are disjoint then this
implies e �∈We ∪ ∅′. �

1.7.17 Lemma. If B is c.e. and C ≤m B for some creative set C then B is
creative.

Proof. Suppose that C is creative via the function p, and C ≤m B via h. Let f
be a computable function such that Wf(e) = h−1(We) for each e. If We ∩B = ∅
then Wf(e) ∩ C = ∅, so p(f(e)) �∈ Wf(e) ∪ C and hence h(p(f(e))) �∈ We ∪ B.
Thus B is creative via the function h ◦ p ◦ f . �

1-reducibility was introduced after Definition 1.2.3.

1.7.18 Theorem. The following are equivalent for a c.e. set C.

(i) C is creative.
(ii) C is m-complete.
(iii) C is 1-complete.

Proof. (iii)⇒(ii) is trivial, and (ii)⇒(i) follows from the foregoing facts since
∅′ ≤m C.
(i)⇒(iii): Suppose C is creative via p. Given a c.e. set A, we show that A ≤m C.
Let g be a computable binary function such that

Wg(x,y) =

{
{p(x)} if y ∈ B
∅ otherwise.

By the Recursion Theorem with Parameters 1.1.6 and Exercise 1.1.7, there is a
one-one function f such that Wg(f(y),y) = Wf(y) for each y. Let h = p ◦ f . If
y ∈ B then Wf(y) = {p(f(y))}, so h(y) ∈ C, otherwise this would contradict the
hypothesis that C is creative via p. If y �∈ B then Wf(y) = ∅, so h(y) �∈ C. Thus
B ≤m C via h. �
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From Myhill’s Theorem 1.2.5 we conclude the following.

1.7.19 Corollary. For every pair of creative sets C1, C2 there is a computable
permutation p of N such that p(C1) = C2. �

Harrington proved that creativity is first-order definable in the lattice of c.e.
sets under inclusion, a result that was first published in Soare (1987). The first-
order property defining creativity of C states that there is an auxiliary set F
such that, for each Z, there is a piece R which is incomputable as shown by F ,
and on which C coincides with Z.
For c.e. sets X and R such that X ⊆ R we write X � R if R − X is c.e.

Note that if R is computable, then so is X. If X ⊆ R but X �� R then there
are infinitely many elements that first appear in R and later enter X (that is,
#{x : ∃s [x ∈ Rs−1∩Xat s]} =∞), for otherwise R−X is c.e. as R−X is almost
equal to the set {x : ∃t [x ∈ Rt −Xt]}.
1.7.20 Theorem. Let C be c.e. Then C is creative ⇔

∃F ∀Z ∃R [R ∩ F �� R & R ∩ C = R ∩ Z], (1.12)

where the quantifiers range over c.e. sets.

Proof idea. For the implication “⇒”, as all creative sets are computably iso-
morphic by 1.7.19, it suffices to provide a particular creative set satisfying (1.12).
We can take

Ĉ = {〈x, e〉 : 〈x, e〉 ∈We},
as we will verify below. It is harder to show the implication “⇐”. If C satisfies
(1.12) then we want to define a computable function p via which C is creative.
The condition (1.12) is designed to make the construction of such a p work. We
are given the c.e. set F and enumerate a c.e. set Z. Assume first that we actually
know a witness R for Z in (1.12). Note that R is infinite because R ∩ F �� R.
We have an infinite list of elements x for which we can dictate membership in C
because we control Z(x). We let p(e) = x be the e-th element in this list. At first
x �∈ Z and hence x �∈ C; if x enters We we put x into Z, so that x ∈ We ∩ C.
Thus C is creative via p.
Actually we do not know such a witness R. So we play the strategy above

simultaneously for all c.e. sets Wi as possible witnesses. We will write Ri instead
of Wi to improve the readability. We define a partial computable function pi

based on the assumption that Ri is the witness for Z in (1.12). At each stage we
extend pi for the least i such that the condition Ri∩C = Ri∩Z looks correct so
far. When at stage s we define pi(e) for the next e, we need a value x ∈ Ri such
that x �∈ Zs−1, so we have to be sure that x is not already taken at a previous
stage as a value pi′(e′) for some i′, e′. This is where the condition Ri ∩ F �� Ri

comes in: as explained above, there are infinitely many numbers that enter F at
a stage s when they are already in Ri,s−1. We can only use elements x of this
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kind as values pi(e) = x. There is no conflict with the previous values because
they are in Fs−1, nor with later values as they are not in Fs.

Proof details. ⇒: To see that the set Ĉ defined above is 1-complete, let e∗ be
a c.e. index such thatWe∗ = ∅′×N. Then x ∈ ∅′ ↔ 〈x, e∗〉 ∈ Ĉ for each x. Next,
(1.12) is satisfied via F = ∅′×N: given a c.e. set Z =Wk, let R be the computable
set N× {k}. Then R ∩ F = ∅′ × {k} �� R, otherwise ∅′ is computable. For each
element y = 〈x, k〉 of R, we have y ∈ Ĉ ↔ y ∈Wk, so that R ∩ Ĉ = R ∩ Z.
⇐: Suppose C satisfies (1.12) via F .
Construction of Z and partial computable functions pi (i ∈ N).
Let Z0 = ∅, and declare pi,0(e) undefined for each i, e.
Stage s > 0. Let i be least such that
(a) if t < s is greatest such that t = 0 or we defined a new value of pi at stage t,
then (Ri ∩ C)�t [s] = (Ri ∩ Z)�t [s],
(b) there is an x ∈ Ri,s−1 ∩ Fat s.
If i exists, we say that we choose i at stage s. Define pi,s(e) = x where e is
least such that pi,s−1(e) is undefined. If x ∈We,u for some (possibly later) stage
u ≥ s, then put x into Z at that stage.
Claim 1. There is i such that pi is total.
Let i be least such that Ri witnesses (1.12) for Z. If pi′ is total for some i′ < i
we are done. Otherwise there is s0 such that we do not choose any i′ < i at a
stage s ≥ s0. Since Ri ∩ F �� Ri, there is an infinite stream of numbers from Ri

into F , thus for infinitely many s we choose i at stage s. Hence pi is total.
Claim 2. C is creative via pi.
Since pi is total and we always check (a) before we define a further value of pi,
we have Ri ∩ C = Ri ∩ Z. Given e, we define pi(e) = x at some stage s, and
x is not a value pi′(e′) at stage s − 1 since x ∈ Fat s while those values are in
Fs−1. Also x is not taken as a value pi′(e′) at any later stage as these are in
N − Fs. Since x ∈ Ri, this implies that x ∈ We ↔ x ∈ Z ↔ x ∈ C. Clearly pi

is one-one. This establishes Claim 2 and the Theorem. �

1.8 Cantor space
So far, the natural numbers have been the atomic objects. We studied sets of
natural numbers and functions mapping numbers to numbers. From now on we
will often view sets of natural numbers as the atomic objects. We study sets of
sets and functions mapping sets to sets. Sets of natural numbers are identified
with infinite sequences over {0, 1}. These sequences are the elements of Cantor
space {0, 1}N (usually denoted by 2N). It is equipped with the product topology
where the topology on {0, 1} is discrete. Subsets of 2N will be called classes
to distinguish them from sets of numbers. (The open and the closed sets are
exceptions to this rule; here we use the terms “set” and “class” interchangeably.)
A Stone space is a compact topological space such that the sets that are si-

multaneously closed and open (called clopen sets) form a basis. The space 2N is
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an example of a Stone space. In this section we develop a bit of Stone duality,
a correspondence between topological concepts in Stone spaces and concepts re-
lated to Boolean algebras. The dual algebra of a Stone space S is its Boolean
algebra B of clopen sets. The dual space of a Boolean algebra B is the space
where the points are the ultrafilters U , and the basic open sets are the sets of
the form {U : x ∈ U} for x ∈ B (which are also closed). Open sets correspond
to ideals, and closed sets to filters. The dual algebra of 2N is a countable dense
Boolean algebra. Such a Boolean algebra is unique up to isomorphism.
We only develop Stone duality for 2N, to the extent relevant to us, namely, for

representing open or closed sets. Instead of working with the countable dense
Boolean algebra, we will restrict ourselves to {0, 1}∗. Filters then become binary
trees without dead branches. Thus each closed set is represented by such a tree.
The advantage of this representation of closed sets is that we have “descended
down one level”: we are looking at sets of strings rather than at classes. As a
result, we may apply the usual algorithmic notions developed for numbers (or
strings) as the atomic objects. For instance, we will study closed sets where the
representing tree is a Π0

1 set, called Π0
1 classes. We prove some important exis-

tence theorems, such as the Low Basis Theorem 1.8.37 that each nonempty Π0
1

class P contains a low set. The Π0
1 classes are at the first level of the arithmetical

hierarchy for classes defined in 1.8.55.
Given a set Z and a number n, we may regard Z �n as a partial description of Z

since it specifies the first n bits. Classes will be used as a tool to study sets, because
they constitute a more general type of partial descriptions: we may think of a class C
as a partial description of any set Z ∈ C. This enables us to switch to the global view
of a set, where the set is appreciated all at once (Section 1.3). We will be interested
in partial descriptions given by classes that have special topological properties, or are
easy to describe themselves, or both (like Π0

1 classes).
If the class C is small in a particular sense, it provides a close description of Z in

that sense. Usually we will take smallness in the sense of the uniform measure on
Cantor space (also called the product measure, and defined in 1.9.7). For instance, the
class corresponding to the partial description z = Z �n of Z is the basic open cylinder
{Y : z ≺ Y }. It has uniform measure 2−n and therefore gets smaller as n increases.

In Section 1.4 we defined computable approximations (Zr)r∈N of a ∆0
2 set Z, where Zr

is contained in [0, r) (equivalently, one can let Zr be a string of length r). We think of Zr

as a different type of partial description of Z. It also improves as r increases. The idea
to approximate a set in stages can be generalized: we may weaken the effectiveness
condition on the approximation, or we can replace each Zr by a class as a partial
description. In the proof of the Low Basis Theorem 1.8.37 we even do both: we define a
∅′-computable sequence (P r)r∈N of Π0

1 classes, where P 0 is the given class P . The low
set Z ∈ P is determined by {Z} =

⋂
r P r.

In the introduction to Chapter 3 we will consider the idea that a random set is a
set which does not even admit a close description. For instance, a Martin-Löf test (see
3.2.1) is a further way to approximate a set in stages r by classes Gr. Now the r-th
partial description Gr is an open set which has a uniform measure of at most 2−r and
is uniformly c.e. in r. A set is Martin-Löf random if it is not in

⋂
r Gr for any such test.

Note that
⋂

r Gr has uniform measure 0 but is usually not a singleton.
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Open sets

For a string y, the class of infinite binary sequences extending y is denoted by
[y] = {Z : y � Z}.

These classes are called basic open cylinders, or cylinders for short. Clearly
[x] ⊇ [y] ↔ x � y. The cylinders form a basis of a topology: R ⊆ 2N is open
if R is the union of the cylinders contained in R, or, in other words, if for each
Z ∈ 2N we have Z ∈ R ↔ ∃n [Z �n] ⊆ R.
A Turing functional Φ can be viewed as a partial map Φ : 2N → 2N where Φ(Y )

is defined iff ΦY is total. Unless the domain of this map is empty, it can be con-
sidered as a subspace of 2N. One reason why we use the product topology on 2N

is that we want this partial map to be continuous. This is the case because of the
use principle (see after 1.2.17) which states that a converging oracle computation
only depends on a finite initial segment of the oracle (Exercise 1.8.8).

Binary trees and closed sets

A subset P of a topological space is called closed if its complement is open. We
represent closed sets in Cantor space by subtrees of {0, 1}∗.
1.8.1 Definition. (i) A binary tree is a subset B of {0, 1}∗ closed under taking
prefixes. That is, x ∈ B and y � x implies y ∈ B. (ii) Z is a path of B if Z �n∈ B
for each n. The set of paths of B is denoted by Paths(B).

For instance, T = {0i : i ∈ N} ∪ {0i1: i ∈ N} is a binary tree such that
Paths(T ) = {0∞}. Since binary trees are subtrees of {0, 1}∗, we may apply the
visual terminology of “above/left/right” introduced on page 12. The following is
known as König’s Lemma.

1.8.2 Lemma. If B is an infinite binary tree then Paths(B) �= ∅.
Proof. For each n let xn be the leftmost string x of length n such that B ∩
{y : y ! x} is infinite. Then xn ≺ xn+1 for each n, and

⋃
n xn is a path of B.

�

We say that x ∈ B is a dead branch of a binary tree B if B ∩ {y : y ! x} is
finite. By König’s Lemma, this is equivalent to the condition that no path of B
extend x.
Paths(B) is a closed set: if Z �∈ Paths(B) then there is n such that Z �n �∈ B,

so [Z �n] ∩ Paths(B) = ∅. However, there are “more” binary trees than closed
sets. For instance, if we take the tree T above and cut off the dead branches, we
obtain T ′ = {0i : i ∈ N}. The trees T and T ′ have the same paths. Closed sets
correspond to trees B without dead branches, that is, x ∈ B implies x0 ∈ B or
x1 ∈ B for each x ∈ {0, 1}∗.
1.8.3 Fact. (Stone duality for closed sets)

(i) If P is closed then
TP = {x : [x] ∩ P �= ∅}

is a tree without dead branches such that Paths(TP ) = P .
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(ii) If B is a tree without dead branches then B = TPaths(B).

Proof. (i) Clearly TP is closed under prefixes. Moreover, TP has no dead branches
because [x] = [x0] ∪ [x1]. Since 2N − P is open,
Z ∈ P ↔ ∀n [Z �n] ∩ P �= ∅ ↔ Z ∈ Paths(TP ).
(ii) Clearly TPaths(B) ⊆ B. For the converse inclusion, suppose that x ∈ B.
Since B has no dead branches, {y ! x : y ∈ B} is infinite, so by König’s
Lemma 1.8.2 there is a set Z ∈ Paths(B) extending x. �

We will sometimes identify P and TP . For instance, when we say that x is on P
we mean that x ∈ TP , or equivalently that [x] ∩ P �= ∅.
Representing open sets

If R is open we let P = 2N −R and represent R by AR = {0, 1}∗ − TP . Thus,
AR = {x : [x] ⊆ R}.

This set is closed under extensions of strings, namely x ∈ AR and x ≺ y implies
y ∈ AR. Further, for each x ∈ {0, 1}∗, x0 ∈ AR and x1 ∈ AR implies x ∈ AR.
A subset of {0, 1}∗ with these two properties is sometimes called an ideal (of
strings). Ideals are the complements in {0, 1}∗ of trees without dead branches.
We occasionally identify R and AR and write x ∈ R for [x] ⊆ R.
The open set generated by a set S ⊆ {0, 1}∗ is

[S]≺ = {X ∈ 2N : ∃y ∈ S y � X}.
There is a correspondence between ideals and open sets analogous to Fact 1.8.3.
It is immediate from 1.8.3 by complementing:

1.8.4 Fact. (Stone duality for open sets)

(i) If R is open, then AR = {x : [x] ⊆ R} is an ideal and R = [AR]≺.
(ii) If C is an ideal of strings then C = A[C]≺ . �

The strings x in AR that are minimal under the prefix ordering form an an-
tichain D = (xi)i<N , N ∈ N ∪ {∞}, such that [D]≺ = R. For instance, consider
R = 2N − {0∞}. The corresponding ideal is AR = {x : ∀i ∈ N [x �= 0i]}, and the
antichain is D = {0i1: i ∈ N}.
Compactness and clopen sets

A topological space X is called compact if, whenever X is the union of a collection
of open sets, then X is already the union of a finite subcollection. Equivalently,
whenever the intersection of a collection of closed sets is empty, then already the
intersection of a finite subcollection is empty. If the space has a countable basis
then we may assume that the given collection is countable. We will prove that
Cantor space 2N is compact. It has a countable basis consisting of the cylinders
[x], so it suffices to show that each countable descending sequence (P i)i∈N of
nonempty closed sets has a nonempty intersection. This is how we usually apply
the compactness of 2N: (P i)i∈N describes a list of desirable conditions on sets,
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and compactness tells us that there is a set satisfying all the conditions. (We will
use this method for the first time in the proof of Theorem 1.8.37.)

1.8.5 Proposition. If (P i)i∈N is a descending sequence of nonempty closed sets,
then

⋂
i P

i �= ∅.
Proof. Let vn be the leftmost string of length n on Pn. For each e, as n grows
vn �e only moves to the right on {0, 1}∗, so ze = limn≥e(vn �e) exists.
Let Z =

⋃
e ze. Fix n. For all e we have [ze] ∩ Pn �= ∅. Since Pn is closed, this

implies that Z ∈ Pn. �

A subset of a topological space is called clopen if it is both open and closed.
The clopen sets form a Boolean algebra with the usual union and intersection
operations. The clopen sets in Cantor space play a role similar to the finite
subsets of N. For instance, we will provide computable approximations of c.e.
open sets as effective unions of clopen sets. By the following, the strong indices
for finite sets F ⊆ {0, 1}∗ given by Definition 1.1.14 can also be used as indices
for the clopen sets. They will be called strong indices for clopen sets.

1.8.6 Proposition. C ⊆ 2N is clopen ⇔ C = [F ]≺ for some
finite set F ⊆ {0, 1}∗.
Proof. ⇒: Since the cylinders form a basis of 2N, there are sets D,E ⊆ {0, 1}∗
such that C = [D]≺ =

⋃
σ∈D[σ] and 2N − C = [E]≺ =

⋃
ρ∈E [ρ]. By the compact-

ness of 2N there are finite sets F,G such that F ⊆ D,G ⊆ E and [F ]≺∪[G]≺ = 2N.
Then C = [F ]≺, so F is as required.
⇐: Each cylinder [σ] is clopen since its complement is

⋃{[ρ] : ρ �= σ & |ρ| = |σ|}.
Thus each set of the form [F ]≺ is clopen. �

Exercises.
1.8.7. Let X, Y ∈ 2N. If X �= Y let d(X, Y ) = 2−n where n is least such that X(n) �=
Y (n). Let d(X, X) = 0. Show that (2N, d) is a metric space which induces the usual
product topology on 2N.

A function F between topological spaces is continuous if the preimage under F of
each open set is open. Consider a map F : D → 2N where D is a subspace of 2N. Since
the basic open cylinders form a basis, F is continuous iff for each ρ ∈ {0, 1}∗ such that
[ρ] ∩ ran(F ) �= ∅ there is σ ∈ {0, 1}∗ such that F ([σ] ∩D) ⊆ [ρ].

1.8.8 Exercise. We view a Turing functional Φ such that dom(Φ) �= ∅ as a map from
the subspace D = dom(Φ) to 2N. Show that Φ is continuous.

Recall that A⊕B = {2n : n ∈ A} ∪ {2n + 1: n ∈ B}.
1.8.9 Exercise. Show that L : 2N → 2N is continuous ⇔ there is a Turing functional
Φ and a set A such that L(Z) = Φ(Z ⊕A) for each Z ⊆ 2N.

The correspondence between subsets of N and real numbers

Co-infinite subsets of N and real numbers in [0, 1)R are often identified. When
we make this identification we usually indicate it. We give the details.
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1.8.10 Definition. The map

F : {Z ∈ 2N : Z is co-infinite} → [0, 1)R (1.13)

is defined by F (Z) = 0.Z =
∑

i∈Z 2−i−1.

We will determine the inverse G of F , thereby showing that F is a bijection.
Each real number r ∈ [0, 1)R can be written in the form r =

∑
i≥0 ri2

−i−1

where ri ∈ {0, 1}. We say 0.r0r1 . . . is a binary expansion of r. The set of dyadic
rationals is

Q2 = {z2−n : z ∈ Z, n ∈ N}.
A binary expansion of r is unique unless r ∈ Q2, in which case we give preference
to the finite binary expansion. Thus we view 1/4 as 0.01 rather than as 0.00111 . . .
Via this binary expansion a real number r ∈ [0, 1)R can be identified with a
sequence Z = G(r) = r0r1 . . . that has infinitely many zeros, that is, with a
co-infinite set Z. Clearly F and G are inverses.

For a finite string y, we sometimes use the notation 0.y as a shorthand for 0.y000 . . ..
Usually we identify a dyadic rational in (0, 1) with a finite string ending in 1.

1.8.11 Remark. The bijection F maps the basic open cylinder [σ] (restricted to {Z ∈
2N : Z is co-infinite}) to the interval I(σ) = [0.σ, 0.σ + 2−|σ|). For a linear order L with
least but no greatest element let Intalg L denote the Boolean algebra generated by
the intervals [a, b) where a, b ∈ L. Thus, Intalg L consists of the sets of the form⋃

0≤i<n[ai, bi) where a0 < b0 < a1 < . . . < bn−1, and possibly bn−1 = 1, where 1
is a greatest element adjoined to L. The Boolean algebra of clopen sets in Cantor
space corresponds to the subalgebra of Intalg [0, 1)R generated by the intervals of the
form I(σ). For instance, if p, q ∈ Q2, p < q, then the corresponding clopen set is
{Z : p ≤ 0.Z < q}.
Exercises.
1.8.12. To be able to work with the usual topology on R, we also have to remove the
finite sets from Cantor space, and the dyadic rationals from [0, 1)R. Let X = {Z ∈
2N : Z is co-infinite and infinite}. By restricting the bijection F we obtain a bijection

F̃ : X → [0, 1)R −Q2.

Show that F̃ is a homoeomorphism of the subspace topologies inherited from Cantor
space on the left, and the usual topology of R on the right.
1.8.13. Show that {Z ∈ 2N : Z is co-infinite} with the subspace topology is homeo-
morphic to Baire space NN with the product topology.

Effectivity notions for real numbers

We fix some effective encoding of Q2 by natural numbers. Then a notion C defined
for sets can be applied to a real number r via the left cut {q ∈ Q2 : q < r} (we
say that r is left- C), or the right cut {q ∈ Q2 : q > r} (we say that r is right- C).
1.8.14 Definition. Let r be a real number.
(i) r is computable if {q ∈ Q2 : q < r} is computable, and r is ∆0

2 if this set
is ∆0

2.
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(ii) r is left-c.e. if {q ∈ Q2 : q < r} is c.e., and r is right-c.e. if {q ∈ Q2 : q > r}
is c.e.

(iii) Z ⊆ N is left-c.e. if the real number 0.Z is left-c.e., or, equivalently, if
{σ : σ <L Z} is c.e. Similarly we define right-c.e. sets.

(iv) r is difference left-c.e. if there are left-c.e. reals α, β ∈ R such that r = α−β.
These classes of reals can be characterized via effective approximations by ratio-

nals. One may in fact require that the rationals be dyadic. The characterization
(v) below is due to Ambos-Spies, Weihrauch and Zheng (2000).

1.8.15 Fact. Let r ∈ R. The following equivalences hold uniformly.

(i) r is ∆0
2 ⇔ r = limnqn for a computable sequence (qn)n∈N of rationals.

(ii) r is left-c.e. ⇔ r = limnqn for a non-descending computable sequence
(qn)n∈N of rationals.

(iii) r is right-c.e. ⇔ r = limnqn for a non-ascending computable sequence
(qn)n∈N of rationals.

(iv) r is computable ⇔ r = limnqn for a computable sequence (qn)n∈N of
rationals such that abs(r − qn) ≤ 2−n for each n

⇔ given n one can compute q ∈ Q such
that abs(r − q) ≤ 2−n.

(v) r is difference left-c.e. ⇔ r = limnqn for a computable sequence (qn)n∈N of
rationals such that

∑
n abs(qn+1 − qn) <∞.

Proof. We leave (i), (iii) and (iv) as exercises.
(ii) ⇒: If We = {q ∈ Q2 : q < r} (via our identification), then let qn =
max(We,n).
⇐: The left cut of r is c.e. because for q ∈ Q2 we have q < r ↔ ∃n q < qn.
(v) ⇐: We have limn(an − bn) = limnan − limnbn for every pair of converging
sequences (an)n∈N and (bn)n∈N of reals. Therefore

r = q0 +
∑

n

(qn+1 − qn)

= q0 +
∑

n

(qn+1 − qn) [[qn+1 ≥ qn]]−
∑

n

(qn − qn+1) [[qn+1 ≤ qn]].

⇒: Let r = α− β for left-c.e. real numbers α and β. Let (αn)n∈N and (βn)n∈N

be nondescending approximations of α, β by dyadic rationals as in (ii). Let qn =
αn − βn, then limnqn = r and, since qn+1 − qn = (αn+1 −αn)− (βn+1 − βn), we
have

∑
n abs(qn+1 − qn) ≤ α+ β <∞. �

We will usually show that a real number is computable by proving the last
condition in (iv): on input n, we compute an approximation q ∈ Q of r such that
abs(r − q) ≤ 2−n. Note that r is computable iff r is both left-c.e. and right-c.e.
by Proposition 1.1.9.
A further way to apply a set notion to a real number r is the following: r can

be uniquely written in the form r = z + 0.B for z ∈ Z and co-infinite B ⊆ N;
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now one requires the relevant property for B. This leads to the same class if the
property is being computable, or being ∆0

2. In contrast, if A is a c.e. set, then
0.A is left-c.e., but not conversely. A counterexample is, for instance, Chaitin’s
number Ω; see page 108. Each left-c.e. set Z is truth-table equivalent to the c.e.
set {σ : σ <L Z}.

The computable real numbers form a field. More generally, for any ideal L in the
Turing degrees, the real numbers with Turing degree in L form a field, because a real
number t obtained from real numbers r, s by a field operation is computable in r⊕s. The
left-c.e. real numbers are closed under addition but not under the operation x → −x.
In contrast, Ambos-Spies, Weihrauch and Zheng (2000) proved the following surprising
fact.

1.8.16 Proposition. The set D of difference left-c.e. real numbers is a subfield of R.

Proof. Throughout, we use Fact 1.8.15(v). Clearly D is closed under the operation
x → −x and under addition. For the closure under product, suppose r, s ∈ D. There
are M ∈ N and effective sequences (xn)n∈N and (yn)n∈N of rationals converging to r, s,
respectively, such that ∀n abs(xn) ≤M , ∀n abs(yn) ≤M ,

∑
n abs(xn+1 − xn) ≤M , and

∑
n abs(yn+1 − yn) ≤M .

Then limn xnyn = rs and
∑

n abs(xn+1yn+1− xnyn) ≤∑
n abs(xn+1yn+1− xnyn+1) +∑

n abs(xnyn+1 − xnyn) ≤ 2M2, so rs ∈ D.
It remains to show that 1/r ∈ D in case that r �= 0. We may assume M > abs(1/r),

so there is n0 ∈ N such that xn �= 0 and abs(1/xn) ≤M for all n ≥ n0. Then

∑
n≥n0

abs(
1

xn+1
− 1

xn
) =

∑
n≥n0

abs(xn − xn+1)
abs(xnxn+1)

≤M3.

Note that the closure under the field operations is effective. �

Exercises.
1.8.17. If r is left-c.e. then er is left-c.e. as well.

1.8.18. Suppose ri is a computable real number uniformly in i ∈ N and
0 ≤ ri ≤ 2−i for each i. Show that r =

∑
i ri is computable.

Effectivity notions for classes of sets

This subsection introduces two essential concepts: co-c.e. closed sets (also called
Π0

1 classes) and c.e. open sets (also called Σ0
1 classes). We show how to index

such classes, and how to obtain effective approximations for them.
By Stone duality (Facts 1.8.3 and 1.8.4), any complexity notion for sets of

strings can be applied to closed sets and to open sets. To be in a closed set P is
a property related to universal quantification: Z is in P if each initial segment
of Z lies on the representing tree. Similarly, to be in an open set is an existential
property. This is why the most fruitful effectiveness notion for closed sets is to
be Π0

1, and the most fruitful one for open sets is to be Σ0
1. We may call these

objects either sets (when viewing them as sets of strings) or classes (when viewing
them as sets of subsets of N).
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1.8.19 Definition.

(i) A closed set P is co-c.e. if the corresponding binary tree
TP = {x : [x] ∩ P �= ∅} has a c.e. complement in {0, 1}∗. A co-c.e. closed
set is usually called a Π0

1 class.
(ii) An open set R is c.e. if the corresponding set of strings

AR = {x : [x] ⊆ R} is c.e.; such an open set is also called a Σ0
1 class.

Representing Π0
1 classes

Usually we show that a class P is Π0
1 by defining some Π0

1 tree B such that
P = Paths(B), and using the following fact.

1.8.20 Fact. Let B ⊆ {0, 1}∗ be a Π0
1 tree. Then P = Paths(B) is a Π0

1 class.

Proof. The subtree of B given by

B∗ = {σ : ∀n ≥ |σ| ∃ρ ∈ B [|ρ| = n & ρ ! σ]} (1.14)

is a Π0
1 tree since the quantifier ∃ρ is bounded. Moreover, B∗ has no dead

branches and P = Paths(B∗). Hence B∗ = TP by the correspondence in Fact
1.8.3, and P is a Π0

1 class. �

On the other hand, if we are willing to admit dead branches we can find a
representing tree that is computable.

1.8.21 Fact. Each Π0
1 class is of the form Paths(B) for some computable tree B.

Proof. TP is a Π0
1 tree, so A = {0, 1}∗ − TP is c.e., and therefore has a com-

putable enumeration (As)s∈N. The tree B = {σ : ∀ρ � σ [ρ �∈ A|σ|]} is com-
putable. Clearly TP ⊆ B and hence P ⊆ Paths(B). For the inclusion Paths(B) ⊆
P , if Z �∈ P , then we can choose n such that Z �n∈ As for some s. Then Z �n is
a dead branch of B because none of its extensions of length s are in B. Hence
Z �∈ Paths(B). �

A Π0
1 class P can be viewed as a problem. Each Z ∈ P is a solution of this problem.

A Π0
1 tree B such that P = Paths(B) is a description of the problem. By Fact 1.8.21,

each problem given by a Π0
1 class has a computable description. Fact 1.8.31 below

shows that sometimes there exists a solution but not a computable one. However, there
is always a low solution by the Low Basis Theorem 1.8.37. Later on we will encounter
more examples of nonempty Π0

1 classes without computable members, for instance the
sets that are Martin-Löf-random for a constant b (see 3.2.9).

If TP is computable then its leftmost path is computable. Thus, if P has no com-
putable member, the tree B in the proof of 1.8.21 necessarily contains dead branches.

Representing c.e. open sets

1.8.22 Fact. R ⊆ 2N is c.e. open ⇔ R = [We]≺ for some e.

Proof. ⇒: By definition AR is c.e. Then R = [AR]≺ by Fact 1.8.4(i).
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⇐: Let
Ŵe = {σ : ∃ρ ∈We [ρ � σ]}. (1.15)

Then R = [Ŵe]≺. Since Ŵe is closed under extensions, B = {0, 1}∗ − Ŵe is a
Π0

1 tree. So P = Paths(B) is a Π0
1 class by Fact 1.8.20, and R = 2N − P . Thus

AR = {0, 1}∗ − TP . Since TP is Π0
1, AR is c.e. So R is a c.e. open set. �

1.8.23 Remark. We say the number e is an index for a c.e. open set R if R =
[We]≺. An index for an object usually provides us with an effective approximation
of the object (see page 7). In the case of c.e. open sets, the approximation for
index e is denoted by (Ŵe,s)s∈N. It is chosen in such a way that Ŵe,s is closed
under extensions within the strings of length up to s: let

Ŵe,s = {x : |x| ≤ s & ∃y ∈We,s [y � x]}. (1.16)

We suppress the index e for R and simply write Rs for Ŵe,s. Thus R =
⋃

s[Rs]≺.

1.8.24 Example. Let Φ be a partial computable functional. For each string x,
the class

Sx = {Z : ∀i < |x| [ΦZ(i) = x(i)]}
is c.e. open uniformly in x, because Sx = [W ]≺ for the c.e. setW = {σ : Φσ = x}.
1.8.25 Definition. A set C ⊆ {0, 1}∗ such that x | y for every pair of distinct
strings x, y ∈ C is called an antichain of {0, 1}∗, or a prefix-free set .

Every c.e. open set is generated by a computable antichain:

1.8.26 Fact. One may uniformly in an index e for a c.e. open set R obtain a
computable antichain B such that [B]≺ = R. Moreover, B is effectively given in
the form B = {xi}i<N , N ∈ N∪{∞}, where xi �= xj for i �= j and |xi| ≤ |xi+1|.
Proof. Let (Ŵe,s)s∈N be as in (1.16). Begin with an empty antichain. At stage s
add to the antichain all strings of length s which are in Ŵe,s and do not extend
a string in Ŵe,s−1. �

1.8.27 Remark. Note that Ŵe =
⋃

Ŵe,s is usually not an ideal of strings. As a
remedy we could modify the definition to Ŵe,s = {σ : |σ| ≤ s & [σ] ⊆ [We,s]≺}. Then
Ŵe,s would be closed under extensions within the strings of length up to s, and satisfy
the condition that σ0, σ1 ∈ Ŵe,s → σ ∈ Ŵe,s. Thus, in fact Ŵe would be an ideal and
[Ŵe]≺ = R, so Ŵe = AR by Fact 1.8.4. However, this is not worth the additional effort.

An effective listing of the Π0
1 classes

Suppose that e is an index for a c.e. open set R, and Ŵe is as in (1.15). Let
P = 2N − R, then Be = {0, 1}∗ − Ŵe is a Π0

1 tree such that Paths(Be) = P . In
this way an index e for R can also be used as an index for the Π0

1 class P = 2N−R.
The approximation of P derived from this index is an effective sequence
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(Ps)s∈N (1.17)

of (strong indices for) clopen sets, where Ps ⊇ Ps+1 and P =
⋂

s Ps. To obtain
this sequence let Ps = [{σ : |σ| = s & σ �∈ Ve,s}]≺. Thus Ps is generated by the
strings of length s that are still on the tree Be at stage s. (This differs from the
case of an approximation (Rs)s∈N

of a c.e. open set, where Rs is a set of strings
of length at most s.)

1.8.28 Fact. Let Ge be the Π0
1 class given by index e. Then the set {e : Ge = ∅}

is Σ0
1 .

Proof. Clearly Ge = ∅ ↔ ∃sGe
s = ∅, and the latter condition is Σ0

1. �

1.8.29 Exercise. Show that the operations ∪ and ∩ are effective on indices for c.e.
open sets, as well as on indices for Π0

1 classes.

Examples of Π0
1 classes

We are now in the position to give some interesting examples of Π0
1 classes.

The first one will be important later on, for instance in Section 4.3. Recall that
J(e) denotes Φe(e). A {0, 1}-valued function f is called two-valued diagonally
noncomputable, or two-valued d.n.c. for short, if it avoids being equal to J(e)
whenever J(e) is defined, namely, ¬f(e) = J(e) for each e.

1.8.30 Remark. A simple example of a two-valued d.n.c. function f is obtained
as follows. Since {e : J(e) = 1} is c.e., there is a computable function q such that
J(e) = 1 ⇔ q(e) ∈ ∅′. Now let f(e) = 1 − ∅′(q(e)). If J(e) = 1 then f(e) = 0,
otherwise f(e) = 1. Notice that f ≤tt ∅′.
1.8.31 Fact. The two-valued d.n.c. functions form a nonempty Π0

1 class P
without computable members. In particular, the tree TP is not computable.

Proof. The set of strings B = {σ : ∀s∀e < s¬σ(e) = Js(e)} is a Π0
1 tree and

P = Paths(B). Hence P is a Π0
1 class by Fact 1.8.20. We have already seen in

Remark 1.8.30 that P �= ∅. Suppose f = Φe is a two-valued function. Then
f(e) = J(e), so f �∈ P . �

The following examples of Π0
1 classes will be reconsidered later on.

1.8.32 Examples.

(i) Let Φ be a partial computable functional. Then for each n,
{Z : ΦZ(n)↑} is a Π0

1 class.
(ii) Let ψ be a partial computable function with values in {0, 1}. Then the total
{0, 1}-valued functions extending ψ form a Π0

1 class.
(iii) Let T be an effectively axiomatized theory. Then the completions of T form

a Π0
1 class. (Here we fix some effective encoding of the sentences in the

language of T by numbers.)

Proof. (i) Recall the definition of Φσ
s (n) from page 14. Let B = {σ : ∀sΦσ

s (n)↑},
then B is a Π0

1 tree and Paths(B) is the class under consideration. We leave (ii)
and (iii) as exercises. �
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Consider the class in (iii) when T is Peano arithmetic. Then T has no com-
putable completion, so once again there is no computable solution for the problem
described by the Π0

1 class of completions of T .

Isolated points and perfect sets
A point Z in a topological space X is called isolated if the singleton {Z} is open.
For instance, if X satisfies the separation axiom T1 (each singleton is closed)
and X is finite then each point is isolated. Consider the case that X is the
subspace Paths(B) of Cantor space for a binary tree B. Then a path Z of B is
isolated iff there is a number n0 such that Z is the only path extending Z �n0 .
For example, consider the tree

B = {0i : i ∈ N} ∪ {0i10k : i, k ∈ N}.
Then Paths(B) is infinite, and every path except for 0∞ is isolated in X .
A nonempty closed set P in a topological space is called perfect if it has no

isolated points. If P ⊆ 2N this amounts to saying that the binary tree TP has no
isolated path. Thus each perfect class in Cantor space has size 2ℵ0 .
The following fact is usually applied to computable trees, and often in rela-

tivized form, but it actually holds for Π0
1 trees.

1.8.33 Fact. Let B ⊆ {0, 1}∗ be a Π0
1 tree. Then each isolated path Z of B is

computable.

Proof. Let B∗ be the Π0
1 subtree of extendable nodes of B defined in (1.14).

Then Z is an isolated path of B∗ as well. So choose a number n0 such that Z is
the unique path of B∗ extending Z �n0 . To compute Z(n) for n ≥ n0, enumerate
{0, 1}∗ − B∗ until there remains a unique σ ! Z �n0 such that |σ| = n + 1 and
σ is on B∗. This must happen, for otherwise some path of B∗ other than Z also
extends Z �n0 . Thus σ ≺ Z, so output σ(n). �

In particular, every nonempty Π0
1 class without computable members is perfect.

1.8.34 Corollary. Let B be a binary tree.
(i) If Z is an isolated path of B then Z ≤T B.
(ii) If Paths(B) is finite, then Z ≤T B for each path Z.

Proof. (i). Relativize Fact 1.8.33 (the case where the binary tree is computable).
(ii). It suffices to observe that each path of B is isolated. �

1.8.35 Exercise. Suppose the partial computable function ψ in 1.8.32(ii) has a co-
infinite domain. Then the class of total {0, 1}-valued extensions of ψ is perfect.

The Low Basis Theorem
A basis theorem (for Π0

1 classes) states that each nonempty Π0
1 class has a

member with a particular property. We begin with an example of such a theorem,
the Kreisel Basis Theorem, that the left-c.e. sets form a basis for the Π0

1 classes.

1.8.36 Fact. Every nonempty Π0
1 class P has a left-c.e. member, namely its

leftmost path.
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Proof. By Fact 1.8.3 we may identify a closed P ⊆ 2N with the tree TP =
{x : [x] ∩ P �= ∅}, the set of strings that are on P . We show that the leftmost
path Y of P is left-c.e. Note that

τ <L Y ↔ ∀σ ≤L τ
[|σ| = |τ | → σ is not on P

]
.

This is in Σ0
1 form because the universal quantifier is bounded. Thus the set

{τ : τ <L Y } is c.e. �

The proof of a basis theorem is usually uniform: from an index for the given Π0
1

class one can compute a description of a member with the desired property. Thus, a
basis theorem provides an effective choice function, picking a member with a particular
property from the class in case the class is nonempty.

To verify that the proof of Fact 1.8.36 is uniform we provide a little more detail: from
an index for P (that is, an index for a Π0

1 tree B such that Paths(B) = P ) we can
effectively obtain an index for the Π0

1 tree B∗ without dead branches in (1.14). Since
B∗ = {σ : σ is on P}, we have τ <L Y ↔ ∀σ ≤L τ

[|σ| = |τ | → σ �∈ B∗]
, which gives

the required c.e. index for {τ : τ <L Y }.
The desired property of member Y of the given Π0

1 class is usually a lowness property.
On the other hand, Y ∈ P often means that Y is complex in some sense (computational
or descriptive). For instance, P could be the class of two-valued d.n.c. functions in
Fact 1.8.31. Then a basis theorem implies that a set can be computationally weak in
a given sense, but complex in the sense of being in P . In particular, the Π0

1 classes we
are interested in here have no computable paths, otherwise the basis theorem is trivial.

The following is due to Jockusch and Soare (1972b).

1.8.37 Theorem. (Low Basis Theorem)
Every nonempty Π0

1 class has a low member.

Proof. Let P be the given Π0
1 class. We define a descending sequence of nonempty

Π0
1 classes (P e)e∈N, where P 0 = P . Then, by the compactness of 2N (in the form

of Proposition 1.8.5), there is a set Y in
⋂

e P
e.

The class P e+1 determines whether e ∈ Y ′: either this holds for no Y ∈ P e+1,
or for all such Y . The halting problem ∅′ can decide which case applies, so
Y ′ ≤T ∅′. (Note that Y is the only element of

⋂
e P

e, since Y ≤m Y ′ via some
fixed many-one reduction.)
Construction relative to ∅′ of Π0

1 classes (P e)e∈N. At stage e we define P e. Let
P 0 = P .
Stage e + 1. Suppose that P e has been defined. If P e ∩ {Z : JZ(e) ↑} �= ∅ then
let P e+1 be this class, otherwise let P e+1 = P e.
Notice that by Example 1.8.32(i) one may effectively determine an index for the
Π0

1 class P e ∩ {Z : JZ(e) ↑}. Thus by Fact 1.8.28, it is a Π0
1 property of e that

this class is nonempty. Therefore this can be decided by ∅′. Clearly, e �∈ Y ′ iff
this first alternative applies at stage e+ 1. Hence Y ′ ≤T ∅′. �
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In the foregoing proof we approximated a set Y not by specifying initial seg-
ments but rather via the classes P e. In fact P e determines Y ′ �e. We discussed
approximations by classes on page 46 at the beginning of this section.
The proof of Theorem 1.8.37 actually produces a set Y ∈ P such that Y ′ is

left-c.e. Note that this property of a set Y depends on the particular way the
jump operator is defined. However, the property implies that Y ′ ≡tt ∅′ (namely,
Y is superlow, Definition 1.5.3). To verify that Y ′ is left-c.e., we rewrite the
proof, avoiding a construction relative to ∅′. This also stresses its uniformity.

1.8.38 Theorem. (Extends 1.8.37) Every nonempty Π0
1 class P has a mem-

ber Y such that Y ′ is left-c.e.; a c.e. index for {σ : σ <L Y ′} (and hence a
reduction procedure for Y ′ ≤tt ∅′) can be obtained effectively from an index for P .

Proof idea. First consider Y ′(0). We maintain the guess that JY (0)↑ as long
as possible, namely, till it becomes apparent that JY (0)↓ for all Y in P (note that
this is a Σ0

1 event). For Y ′(1) we do the same, but at first within the restricted Π0
1

class P̃ = P ∩ {Y : JY (0) ↑}. Once our guess at Y ′(0) changes to 1, we remove
this restriction on P̃ . We may already have discovered that JY (1) ↓ for all Y
in P̃ . This led us to make a guess that Y ′(1) = 1. This guess may now be revised
to Y ′(1) = 0, in case there remains some Y in P such that JY (1)↑. It should be
clear how to continue this procedure in order to guess at Y ′(e) for each e.
Proof details. We apply the Kreisel Basis Theorem 1.8.36 to the Π0

1 class of
strings τ such that for some Y ∈ P , whenever e < |τ | and τ(e) = 0 then JY (e)↑
(without a prediction in the case that τ(e) = 1). For a string τ , let

Qτ = {Y ∈ P : ∀e < |τ | [τ(e) = 0 → JY (e) ↑ ] }.
By Fact 1.8.28, “Qτ = ∅” is a Σ0

1 property of τ . Trivially, Q∅ = P �= ∅
and Qτ �= ∅ → Qτ1 �= ∅. Thus B = {τ : Qτ �= ∅} is a Π0

1 tree without
dead branches such that 1∞ ∈ Paths(B). The leftmost path V of B is left-c.e.
by 1.8.36. By the compactness of 2N (1.8.5) there is a set Y in

⋂
eQV�e

. To
show that Y ′ = V , inductively assume that τ = Y ′ �e= V �e. Then JY (e) ↑ ↔
Qτ ∩ {Y : JY (e) ↑} �= ∅ ↔ V (e) = 0. Thus Y ′(e) = V (e).
For the uniformity statement, note that from an index for the Π0

1 class P we
effectively obtained a c.e. index for {0, 1}∗−B, which is an index for the Π0

1 class
Paths(B). From this we obtain a c.e. index for {σ : σ <L Y

′} by the uniformity
of Fact 1.8.36. �

The following extension of Theorem 1.8.37 provides more information on the
Turing degrees of members of a Π0

1 class P : there is a set Y ∈ P not Turing above
a given incomputable set B. If B is ∆0

2 then, in addition, we may choose Y low.
The result is again due to Jockusch and Soare (1972b).

1.8.39 Theorem. (Extends 1.8.37) Given a Π0
1 class P �= ∅ and an incom-

putable set B, there is a set Y ∈ P such that B �≤T Y . Moreover Y ′ ≤T B ⊕ ∅′.
Proof. Recall that (Φe)e∈N is a listing of the Turing functionals. As in the proof
of Theorem 1.8.37, we define a descending sequence of nonempty Π0

1 classes
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(P e)∈N, and let Y be an element of
⋂

e P
e. However, now the class P 2e+1 is used

to determine whether e ∈ Y ′, while P 2e+2 prevents that B = ΦY
e .

Construction relative to ∅′ ⊕B of Π0
1 classes (P e)e∈N. Let P 0 = P .

Stage 2e + 1. This is similar to stage e + 1 in the proof of Theorem 1.8.37. If
P 2e∩{X : JX(e)↑} �= ∅, then let P 2e+1 be this class. Otherwise, let P 2e+1 = P 2e.
Stage 2e+ 2. Using ∅′ ⊕B as an oracle, search in parallel for the following:

(a) a string σ and a number k such that σ is on P 2e+1 (i.e., [σ] ∩ P 2e+1 �= ∅)
and B(k) �= Φσ

e (k). If such a pair is found let P 2e+2 = P 2e+1 ∩ [σ];
(b) a number n such that P 2e+1 ∩ {X : ΦX

e (n) ↑} �= ∅. If such a number is
found let P 2e+2 be this class.

The parallel search carried out at an even stage terminates: otherwise, ΦX
e

is total for each X ∈ P 2e+1 since (b) does not terminate. In that case, B is
computable, contrary to our assumption: given k, we may compute s such that
for all σ ∈ P 2e+1

s , if |σ| = s then Φσ
e (k) is defined, and in addition, since (a)

does not terminate, all such computations Φσ
e (k) give the same output. Then

this common output is B(k). (Here we have used the approximation given by
(1.17), which is automatically obtained from an index for the Π0

1 class.)
To see that Y ′ ≤T B ⊕ ∅′, as before it suffices to let B ⊕ ∅′ decide which case

applies at each stage as this determines Y ′. The halting problem ∅′ suffices for
the odd stages, and B ⊕∅′ can decide whether the parallel search carried out at
each single even stage terminates first in (a), or first in (b). �

Even if B is c.e., one cannot in general achieve that Y ≤wtt ∅′. A counterexample can
be derived from Exercise 8.5.23.

Exercises.
1.8.40. Extend 1.8.39 as follows: given incomputable sets B1, . . . , Bk, there is a set
Y ∈ P such that B1, . . . , Bk �≤T Y and Y ′ ≤T B1 ⊕ . . .⊕Bk ⊕ ∅′.
1.8.41. Suppose that P �= ∅ is a Π0

1 class and B ⊆ N. Show that there is a set Y ∈ P
such that (Y ⊕B)′ ≤tt B′. (This is more than a mere relatization of 1.8.37.)

The basis theorem for computably dominated sets

Martin and Miller (1968) proved that the computably dominated sets (Defini-
tion 1.5.9) form a basis for the Π0

1 classes. Since there is a Π0
1 class without

a computable member (Fact 1.8.31), this shows that a computably dominated
set can be incomputable. An extension of the result states that there are 2ℵ0

computably dominated sets.

1.8.42 Theorem. Every nonempty Π0
1 class P has a computably dominated

member Y .

Proof. Once again we define a descending sequence of nonempty Π0
1 classes

(P e)e∈N and use Proposition 1.8.5 to conclude that there is Y ∈ ⋂
e P

e. We
begin with P 0 = P . The class P e+1 either shows that ΦY

e is partial, or that
there is a computable function f dominating ΠY

e .
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Construction relative to ∅′′ of Π0
1 classes (P e)e∈N. Let P 0 = P .

Stage e+ 1. Suppose P e has been determined.

(a) Qx = P e ∩ {Z : ΦZ
e (x) ↑} is a Π0

1 class, uniformly in x. If there is x such
that Qx �= ∅, let x be least such and let P e+1 be this class. This ensures
that ΦZ

e is partial for each set Z ∈ P e+1.
(b) Otherwise let P e+1 = P e. (We will show that there is a computable func-

tion f dominating ΦZ
e for each Z ∈ P e+1.)

Let Y ∈ ⋂
e P

e. If g = ΦY
e is a total function then at stage e + 1, we are in

case (b) since Y ∈ P e+1. To compute a function f that dominates g, we use
the approximation (P e

s )s∈N obtained in (1.17) on page 55. Given an input x,
compute s = s(x) such that

∀σ ∈ P e
s [ |σ| = s → Φσ

e,s(x)↓].
Such an s exists, otherwise the class Qx considered at stage e + 1 is nonempty.
Now let f(x) be the maximum of all the values Φσ

e (x) where |σ| = s(x) and
σ ∈ P e

s(x). Then f dominates ΦZ
e for each Z ∈ P e. �

While an incomputable computably dominated set is not ∆0
2 by 1.5.12, the set Y

above automatically satisfies Y ′′ ≤tt ∅′′. This fact requires some additional effort to
verify. Recall from Exercise 1.4.20(iii) that Tot = {e : dom(Φe) = N} is Π0

2-complete.
The solution of 1.4.20 actually shows that TotY = {e : dom(ΦY

e ) = N} ≡m N − Y ′′

for each Y , and hence PartialY := N − TotY ≡m Y ′′. The following is analogous to
Theorem 1.8.38.

1.8.43 Theorem. (Extends 1.8.42) Every nonempty Π0
1 class P has a computably

dominated member Y such that Y ′′ ≤tt ∅′′, and indeed {τ : τ <L PartialY } is Σ0
2.

A truth-table reduction of Y ′′ to ∅′′ can be obtained effectively from an index for P .

Proof. Let Y ∈ ⋂
e P e as above. We effectively obtain from P a Σ0

2 index for the set
{τ : τ <L PartialY }. This suffices because Y ′′ ≡m PartialY ≡tt {τ : τ <L PartialY } via
fixed reduction procedures.

The following construction enumerates {τ : τ <L PartialY } relative to ∅′. At each
stage s > 0, for each e < s we have a guess P̃ e at the class P e from the foregoing proof
which is (an index for) a Π0

1 class, and a guess τs of length s at PartialY which only
moves to the right on the tree {0, 1}∗. At stage s, for each e < s in ascending order,
a procedure Se carries out one instruction, thereby defining the current guesses P̃ e[s]
and τs(e). At stage 1 we let P̃ 0 = P , τ1 = ∅, and start procedure S0.

Procedure Se

(a) Define P̃ e+1 = P̃ e and τs(e) = 0.
(b) If e+1 < s start procedure Se+1. From now on, using ∅′ as an oracle, for x = 0, 1, . . .

ask whether Qx = P̃ e ∩{Z : ΦZ
e (x)↑} �= ∅. If so, initialize the procedures Si, e < i < s;

from now on let P̃ e+1 = Qx, and τs(e) = 1. Otherwise let τs(e) = 0.

Claim. We have limsP̃
e[s] = P e and limsτs(e) = PartialY (e).

This implies τ <L PartialY ↔ ∃s [τ <L τs].
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To prove the claim we use induction on e. Clearly limsP̃
0[s] = P 0, and limsτs(0) = 1 iff

some x is found by S0 such that P 0 ∩ {Z : ΦZ
0 (x)↑} �= ∅ iff ΦY

0 is partial. Now suppose
that the claim holds for all i ≤ e, and let s0 be a stage by which all the limits for i ≤ e
have been reached. Then Se is not initialized at any stage s ≥ s0, so if Se finds x at
a stage s ≥ s0, it defines P̃ e+1[s] and τs(e) correctly. Otherwise, P̃ e+1[s] and τs(e) are
already correct at stage s = s0. �

Recall from page 56 that a nonempty closed set in a topological space is called
perfect if it has no isolated points.

1.8.44 Theorem. (Extends 1.8.42) Every nonempty Π0
1 class P without com-

putable members has a perfect subclass S of computably dominated sets.

Proof. Wemodify the proof of Theorem 1.8.42. Instead of a descending sequence
(P e)e∈N, we build a tree (Pσ)σ∈{0,1}∗ of Π0

1 classes.
Stage 0. Let P∅ = P .
Stage e + 1. Suppose that P σ �= ∅ has been determined for each σ such that
|σ| = e. Firstly, for every such σ let P̂σ0 and P̂ σ1 be nonempty disjoint subclasses
of Pσ. They exist since there are incompatible strings τ0, τ1 on Pσ, so we may
let P̂σi = Pσ ∩ [τi] (i ∈ {0, 1}). Now proceed as before, but with both classes
P̂ σi separately: if there is x such that P̂ σi∩{Z : ΦZ

e (x)↑} �= ∅ then let x be least
such and let P σi be this class. Otherwise let P σi = P̂σi.
Verification. For each set C, there is a set YC ∈

⋂
e P

C�e , and, by the same
argument as before, each such YC is computably dominated. If C �= D then
YC �= YD. So the class S = {YC : C ⊆ N} is as required. �

1.8.45 Corollary. There are 2ℵ0 many computably dominated sets.

Proof. Apply Theorem 1.8.44 to any Π0
1 class without computable members,

for instance the class of two-valued d.n.c. functions from Fact 1.8.31. �

A further basis theorem is 4.3.2 below: if D computes a two-valued d.n.c. function,
then each nonempty Π0

1 class contains a set Y ≤T D.
1.8.46.� Exercise. (Kučera and Nies) Let P be a nonempty Π0

1 class. Suppose that
B >T ∅′ is Σ0

2. Then there is a computably dominated set Y ∈ P such that Y ′ ≤T B.
Hint. Combine the techniques of the Low Basis Theorem and Theorem 1.8.42 with
permitting below B relative to ∅′. Fix an enumeration (Bs)s∈N of B relative to ∅′, and
use the function cB ≤T B given by cB(i) = µt > i. Bt �i= B �i for the permitting.

Weakly 1-generic sets

1-genericity for sets is an effective version of the notion of Cohen genericity from
set theory. We first introduce the simpler concept of weak 1-genericity. Each
weakly 1-generic set is hyperimmune. Each hyperimmune set is Turing equivalent
to a weakly 1-generic set.
A subsetD of a topological space is called dense ifD∩R �= ∅ for each nonempty

open set R. A set D ⊆ 2N is dense iff D ∩ [x] �= ∅ for each cylinder [x] (namely,
each string is extended by a set in D). For instance, for each n, the open set
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En = {Z : ∃i ≥ n [Z(i) = 1]} is dense in 2N. Note that En is c.e. open, being an
effective union of clopen sets.
In Proposition 1.8.5 we interpreted a descending sequence (P i)i∈N of nonempty

closed classes as desirable conditions. Compactness showed that there is a set
Z ∈ ⋂

i P
i. A desirable condition can also be given by a dense open set. Such a

condition cannot be ruled out by any finite initial segment of a set G ⊆ N. Baire’s
category theorem for 2N states that the intersection of a countable collection
(Dn)n∈N of dense open sets contains a set G. One builds G by the method of
finite extensions. Let [σ0] ⊆ D0, and if σn has been defined choose σn+1 � σn

such that [σn+1] ⊆ Dn+1. Then G =
⋃

n σn is as required. (This result holds in
in any uncountable Polish space, such as Baire space N

N.)
The weakly 1-generic sets are the ones that meet each condition of this kind

where the dense set is also computably enumerable.

1.8.47 Definition. G ⊆ N is weakly 1-generic if G is in each dense c.e. open
set D ⊆ 2N.

1.8.48 Proposition. Each weakly 1-generic set G is hyperimmune. In particu-
lar, G is not computably enumerable.

Proof. G is infinite since G is in the dense set En = {Z : ∃i ≥ n [Z(i) = 1]} for
each n. Next, given a computable function f , we will show that there is n such
that pG(n) ≥ f(n). The c.e. open set

Df = [{σ0f(|σ|) : σ �= ∅}]≺
is dense. Thus G ∈ Df , and we may choose σ such that σ0f(|σ|) ≺ G. Let n = |σ|.
In the worst case, σ consists only of ones, so that pG(n− 1) = n− 1 and G has
the string

1 . . . 1︸ ︷︷ ︸
n

f(n)
︷ ︸︸ ︷
0 . . . 0

as an initial segment. Even then we have pG(n) ≥ f(n). �

To build a weakly 1-generic set, we use the construction in the proof of Baire’s
category theorem.

1.8.49 Theorem. There is a weakly 1-generic left-c.e. set G.

Proof. (1) It is somewhat simpler to show that there is a weakly 1-generic
∆0

2 set. We build an effective sequence (σs)s∈N of strings such that |σs| = s.
This sequence is a computable approximation of the set G, namely G(n) =
lims>nσs(n) for each n.
We use the effective listing of c.e. open sets ([Ŵe]≺)e∈N, where, as in (1.15),

Ŵe = {σ : ∃ρ ∈ We [ρ � σ]}. Note that [Ŵe]≺ = [We]≺. We meet the require-
ments

Re : [Ŵe]≺ is dense ⇒ G ∈ [Ŵe]≺.
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Construction. Let σ0 = ∅. Initialize all the requirements.
Stage s > 0. For each e, let te,s be the maximum of e and the last stage when Re

was initialized. Re is called satisfied at stage s if σs−1 ∈ Ŵe,s. If there is e < s

such that Re is not satisfied and there is σ ∈ Ŵe,s such that |σ| = s and

σs−1 �te,s� σ, (1.18)

then choose e least. Let σs = σ0 and initialize the requirements Rj for j > e.
We say that Re acts. Otherwise let σs = σs−10.
Verification. First we show by induction that each requirement Re acts finitely
often: when all Ri, i < e, have stopped acting, Re acts at most once at a stage s,
since from then on G �s is preserved by the initialization, so that Re is per-
manently satisfied. Since Re can only change G(n) for n ≥ e, this implies that
G(n) = lims>nσs(n) exists for each n. Moreover, te = limste,s exists for each e.
If [Ŵe]≺ is dense then Ŵe contains some σ ! G �te

, so Re is met. Thus G is
weakly 1-generic.
(2) To make G left-c.e., in (1.18) we only allow extensions σ such that σs−1 <L σ.
To see that Re is met, note that G is co-infinite by construction, so G�te

1r0 ≺ G
for some r. Now Re can be satisfied permanently via some string in Ŵe extending
G�te 1

r+1. �

Kurtz (1981, 1983) proved a converse of Proposition 1.8.48 for Turing degrees.

1.8.50 Theorem. A is hyperimmune ⇒ A ≡T G for some weakly 1-generic G. �

Thus, one can characterize the hyperimmune degrees using “effective topology”. For a
recent proof of Kurtz’s theorem see Downey and Hirschfeldt (20xx).

1-generic sets

Let X be a topological space, S ⊆ X and A ∈ X. We say that A is in the closure
of S if S ∩ V �= ∅ for every open set V containing A. If X is Cantor space and S
is open, this means that for each σ ≺ A there is ρ ! σ such that [ρ] ⊆ S. In this
case we say that S is dense along A.

1.8.51 Definition. A is 1-generic if A ∈ S for every c.e. open set S that is
dense along A.

1-generic sets were introduced by Jockusch (1977). If S is a dense open set
then S is dense along any A. Therefore each 1-generic set is weakly 1-generic
(Definition 1.8.47). Note that A is 1-generic iff for each c.e. open set S, either
A ∈ S or there is σ ≺ A such that [σ] ∩ S = ∅. Intuitively, if A �∈ S then
an initial segment of A already precludes A from being in S. For instance, let
S = {Z : ΦZ(n) ↓} for a Turing functional Φ. If ΦA(n) ↑ then there is σ ≺ A
such that ΦY (n)↑ for each Y � σ.
Part (1) of the proof of Theorem 1.8.49 actually builds a 1-generic set. It suffices

to observe that our strategy meets the requirements
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Re : [Ŵe]≺ is dense along G⇒ G ∈ [Ŵe]≺.

1.8.52 Theorem. There is a 1-generic set G ∈ ∆0
2. �

A 1-generic set is not left-c.e., and in fact it does not even Turing bound an in-
computable c.e. set. For this result of Jockusch (1977) see Odifreddi (1999, p. 662).
However, the construction of a 1-generic set can be combined with permitting:

Exercises.

1.8.53. For each incomputable c.e. set C there is a 1-generic set A ≤T C.

1.8.54. Each 1-generic set G is in GL1, namely, G′ ≤T G⊕ ∅′.

The arithmetical hierarchy of classes

Sets of natural numbers are our primary objects of study. In particular, we
are interested in their computational complexity, their descriptive complexity,
and their randomness properties. Recall from the beginning of this chapter that
to understand these aspects of a set we study classes of sets sharing certain
complexity or randomness properties. It will be useful to measure the descriptive
complexity of classes as well. With the exception of Chapter 9, all classes of setsX
studied in this book can be described by a formula in the language of arithmetic
involving initial segments of X. Similar to the case of the arithmetical hierarchy
of sets defined in 1.4.10, the descriptive complexity of a class is measured by
the complexity of its description, in terms of how many alternations of (number)
quantifiers it has. The variable yn of the innermost quantifier is now used to
determine the initial segment X�yn

of X.
It is useful to extend the definitions to relations of k numbers and one set. The

case k = 0 refers to classes.

1.8.55 Definition. Let A ⊆ N
k × 2N and n ≥ 1.

(i) A is Σ0
n if

〈e1, . . . , ek, X〉 ∈ A ↔ ∃y1∀y2 . . . QynR(e1, . . . , ek, y1, . . . , yn−1, X�yn),

where R is a computable relation, and Q is “∃” if n is odd and Q is “∀”
if n is even.

(ii) A is Π0
n if the complement of A is Σ0

n, that is,

〈e1, . . . , ek, X〉 ∈ A ↔ ∀y1∃y2 . . . Qyn S(e1, . . . , ek, y1, . . . , yn−1, X�yn
),

where S is a computable relation, and Q is “ ∀” if n is odd and Q is “ ∃”
if n is even.

A relation is arithmetical if it is Σ0
n for some n.

For instance, a Π0
2 class is of the form {X : ∀y1∃y2 S(y1, X�y2)}, and a Σ0

3 class
is of the form {X : ∃y1∀y2∃y3R(y1, y2, X�y3)}, where S and R are computable
relations. We have already introduced Π0

1 and Σ0
1 classes in 1.8.19. Let us verify

that these two ways of introducing Π0
1 and Σ0

1 classes are equivalent.
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1.8.56 Fact.

(i) P ⊆ 2N is Π0
1 in the sense of 1.8.55 ⇔ P is a co-c.e. closed set, that is, P

is Π0
1 in the sense of 1.8.19.

(ii) U ⊆ 2N is Σ0
1 in the sense of 1.8.55 ⇔ U is a c.e. open set, that is, U is

Σ0
1 in the sense of 1.8.19.

Proof. (i) ⇒: Suppose that P = {X : ∀y S(X �y)} for a computable set S
and let B = {z ∈ {0, 1}∗ : ∀z′ � z S(z′)}. Then B is a computable tree and
P = Paths(B), so by Fact 1.8.20 P is Π0

1 in the sense of 1.8.19.
⇐: By 1.8.21, P = Paths(B) for a computable tree B. Therefore
X ∈ P ↔ ∀nX �n∈ B, hence P is Π0

1 in the sense of 1.8.55.
The statement (ii) is now immediate by taking complements. �

Most of the classes of sets we consider will be arithmetical (the only exceptions
are the classes of Chapter 9). Often arithmetical classes are introduced by an
appropriate property of sets or functions computed by a set X. This makes them
arithmetical by the use principle. Sometimes they are defined by an arithmetical
growth condition on the initial segment complexity of their members.
We verify that some classes or relations we have introduced are arithmetical:

1.8.57 Proposition.

(i) The relation {〈e,X〉 : ΦX
e is total} is Π0

2.
(ii) The class {A : A is computably dominated} is Π0

4.

Proof. (i) For each e,X we have ΦX
e is total ↔ ∀x∃sΦX�s

e,s(x) ↓ . The relation
{〈x, e, σ〉 : Φσ

e,|σ|(x)↓} is computable.
(ii) This class is given by the description in Π0

4 form
∀e∃i∀y, s, w∃t[(∀y′ ≤ yΦA�s

e,s (y
′)↓ & ΦA�s

e,s (y) = w)→ w ≤ Φi,t(y)].

For, if ΦA
e is total then there is i such that ΦA

e (y) ≤ Φi(y) for each y. On the
other hand, if z is least such that ΦA

e (z)↑, there are i, t such ΦA
e (y) ≤ Φi,t(y) for

each y < z. �

1.8.58 Remark. Let n > 1 and consider a Σ0
n class

A = {X : ∃y1∀y2 . . . QynR(y1, . . . , yn−1, X �yn)}.
Then A =

⋃
y1
By1 where By1 = {X : ∀y2 . . . QynR(y1, . . . , yn−1, X �yn)} is a

Π0
n−1 class uniformly in y1. Thus the Σ0

n classes are the unions of effective se-
quences of Π0

n−1 classes. Similarly, the Π0
n classes are the intersections of effective

sequences of Σ0
n−1 classes.

The notions of Π0
n and of Σ0

n relations can be relativized.

1.8.59 Definition. For C ⊆ N and n ∈ N, we define Σ0
n(C) relations and Π0

n(C)
relations A ⊆ N

k × 2N as in Definition 1.8.55, but for R,S ≤T C.

In the exercises we show that each Π0
n(∅′) class is Π0

n+1 but not conversely.
Remark 1.8.58 allows us to simplify the presentation of Π0

2 classes.
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1.8.60 Proposition. Let A ⊆ 2N. Then A is Π0
2 ⇔ there is a computable S ⊆ {0, 1}∗

such that A = {X : ∀y1 ∃y2 > y1 S(X �y2)} = {X : ∃∞n S(X �n)}.
Proof. We only have to prove the implication “⇒”. Let A =

⋂
n Gn where (Gn)n∈N

is an effective sequence of Σ0
1 classes. By Remark 1.8.23, given t we can compute an

approximation Gn,t of Gn consisting of strings of length up to t. Let

m(x) = max{n : x ∈ Gn,|x|},
and let S = {ya : y ∈ {0, 1}∗ & a ∈ {0, 1} & m(ya) > m(y)}. Then S is computable,
and for each X we have ∃∞n X �n∈ S ↔ ∃∞n X ∈ Gn ↔ Z ∈ A. �

The Borel classes are the subclasses of 2N that can be obtained from the basic
open cylinders [x] via applications of the operations of complementation and countable
unions. Each arithmetical class is Borel by Remark 1.8.58. The arithmetical hierarchy
of classes is an effective version of the finite levels of a hierarchy of Borel classes.

The description of classes in arithmetic also provides new ways of describing sets.

1.8.61 Definition. Let n > 1. A set Z is a Π0
n-singleton if {Z} is a Π0

n class.

The Π0
1-singletons coincide with the computable sets by Fact 1.8.33. The Π0

2 singletons
already takes us beyond the arithmetical sets. Let ∅(ω) =

⋃
n(∅(n)×{n}) be the effective

union of all the jumps ∅(n).

1.8.62 Proposition. ∅(ω) is a Π0
2 singleton that is not an arithmetical set.

Proof. There is a computable g such that (X [n])′ = W X
g(n) for each X, n, so

X = ∅(ω) ⇔ X [n] = ∅ & ∀n X [n+1] = (X [n])′

⇔ ∀n∀k, s ∃t ≥ s[〈k, n + 1〉 ∈ X ↔ k ∈W X�t
g(n),t].

Thus the class {∅(ω)} is Π0
2. �

Recall the discussion of the local versus the global view of sets in Section 1.3. If
Y ∈ Σ0

n, the description showing this embodies the local view. This is even more
apparent at the lower levels Σ0

1 and Σ0
2 of the arithmetical hierarchy, where we still

have a reasonable effective approximation of Y . On the contrary, a description of a
set Z as a Π0

n singleton, such as the description of ∅(ω) above, embodies the global
view. The description only works because it involves the set as a whole.

In Proposition 3.6.2 we will see that each ∆0
2 set is a Π0

2 singleton. However, there is
a ∆0

3 (even left-Σ0
2) set that is not a Π0

2 singleton, for instance the 2-random set Ω∅′

(page 136). Thus, there are two incomparable classes of descriptive complexity, the
arithmetical sets and the Π0

2 singletons. This is an exception to the rule that the classes
of descriptive complexity we consider form a nearly linear hierarchy.

Exercises. Show the following.
1.8.63. The class of c.e. sets is Σ0

3. The class of computable sets is Σ0
3. (Also see 3.2.3.)

1.8.64. The class of c.e. [computable] sets is not Π0
2.

1.8.65. Let A be a Π0
2 class and let Ψ be a Turing functional. Then the class

C = {Z : ΨZ is total & ΨZ ∈ A} is Π0
2.

1.8.66. For each Σ0
3 class B the Turing upward closure G = {Z : ∃A ∈ B [A ≤T Z]}

is Σ0
3 as well.

1.8.67. (i) Each Π0
1(∅′) class is Π0

2. (ii) Some Π0
2 singleton class is not Π0

1(∅′).
1.8.68. Extend 1.8.67(i): each Π0

n(∅′) class is a Π0
n+1 class.
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Comparing Cantor space with Baire space

Let N
∗ be the set of finite sequences of numbers. König’s Lemma 1.8.2 relies on

the fact that the given tree is finitely branching. It fails in N
∗: for instance, the

infinite tree {n0n : n ∈ N} has no infinite path.
For σ ∈ N

∗ let [σ] = {f ∈ N
N : σ ≺ f}. The sets [σ] form a base of a topology

on N
N, and N

N equipped with this topology is called the Baire space. This space is
not compact because N

N =
⋃

n [n]. Nonetheless, many notions we have discussed
for Cantor space can also be studied in the setting of Baire space. This includes
not only the notions from topology, such as open, closed, and compact sets
and their representations (page 47), but also arithmetical definability of classes
(1.8.55). As an example we consider closed sets. The class C ⊆ N

N is closed iff C =
Paths(B) for a subtree B of N

∗, and C ⊆ N
N is a Π0

1 class of functions iff there is
a computable set R ⊆ N

∗ such that C = {f : ∀n [f �n∈ R]} iff C = Paths(B) for a
computable subtree of N

∗. The problem whether Paths(B) = ∅ for a computable
tree B ⊆ N

∗ is very complex, namely Π1
1-complete (see Chapter 9, page 368). For

a computable binary tree the corresponding problem is merely Σ0
1. In particular,

the Low Basis Theorem 1.8.37 fails in Baire space.
A function f ∈ NN can be encoded by a set X ∈ 2N, its graph Γf = {〈n, f(n)〉 : n ∈ N}.

For functions totality is automatic. For sets X, we have to require that X codes a func-
tion (Π0

1) that is total (Π0
2). In the following we will see that descriptions of functions as

Π0
1 singletons have the same expressive power as descriptions of sets as Π0

2 singletons.
We first introduce some notation. Let D : N∗ → N be the computable injection given
by D(n0, . . . , nk−1) =

∏k−1
i=0 pni+1

i , where pi is the i-th prime number. Let Seq denote
the range of D, the computable set of sequence numbers. If α =

∏k−1
i=0 pni+1

i as above
then we write α(i) = ni.

1.8.69 Proposition. Suppose that f ∈ NN and {f} is Π0
1. Then {Γf} is Π0

2.

Proof. Let T (X) be the Π0
2 condition expressing that X is the graph of a function.

Suppose f is the unique function satisfying the condition ∀n R(f �n) where R is com-
putable. Then Γf is the only set X satisfying the Π0

2 condition

T (X) & ∀n ∃α ∈ Seq [|D−1(α)| = n & R(α) &
∀y < α ∀i < n (α(i) = y ↔ 〈i, y〉 ∈ X)]. �

The converse holds up to Turing degree, because the witnesses for the existential
statement in a Π0

2 condition on a set A can be incorporated into the function:

1.8.70 Proposition. For each Π0
2 singleton A, there is a Π0

1 function singleton f such
that f ≡T A.

Proof. Suppose A is the unique set satisfying the Π0
2 condition ∀n∃m S(n, A�m). Let

f : N → Seq be the function given by f(n) = α if α = D(A �m) for the minimal m
such that S(n, A �m). Clearly f ≤T A. Also f is unbounded, for if |D−1(f(n))| ≤ d
for each n, then each set Z � A �d also satisfies the Π0

2 condition describing A. Thus
A ≤T f . Finally {f} is Π0

1, because f is the unique function satisfying the condition
∀n [f(n) ∈ ran(D) & D−1(f(n)) ∈ {0, 1}∗ &

S(n, D−1(f(n))) & ∀x ≺ D−1(f(n))[¬S(n, x)]]. �

Thus, by 1.8.62 and 1.8.70, there is a function f ≡T ∅(ω) such that {f} is Π0
1.
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Exercises.
1.8.71. A tree T ⊆ N∗ is finitely branching if T ⊆ {σ ∈ N∗ : ∀i < |σ| [σ(i) < g(i)

]}
for some function g. Show that a closed set P ⊆ NN is compact ⇔ the associated tree
TP = {σ ∈ N∗ : [σ] ∩ P �= ∅} is finitely branching.

1.8.72. Suppose P ⊆ NN is a nonempty Π0
1 class such that TP = {σ : [σ] ∩ P �= ∅} is

finitely branching via some computable function g (we say that P is bounded). Show
that P has a low member.

1.9 Measure and probability
We will introduce a notion of size for certain classes C ⊆ 2N by assigning to C
a nonnegative real number µC. All the Borel classes will be assigned a size.
As an auxiliary notion we discuss outer measures µ, where µC is defined for all
classes C. Outer measures satisfy three conditions: µ(∅) = 0, monotonicity, and
countable subadditivity. The restriction of an outer measure to the Borel classes
yields a measure, a function with the stronger property of countable additivity.
In fact, µ is countably additive on a larger domain, the µ-measurable sets.
We mostly use the uniform measure λ where each cylinder [σ] is assigned the

size 2−|σ|. The theory can be developed in a similar way for the unit interval
[0, 1]R. Taking into account the identifications in Definition 1.8.10, the uniform
measure on Cantor space corresponds to the Lebesgue measure on [0, 1]R.

Outer measures

Let R
+
0 denote the set of nonnegative real numbers.

1.9.1 Definition. A function µ : P(2N) → R
+
0 is called an outer measure if it

satisfies the following.

(i) µ(∅) = 0;
(ii) C ⊆ D ⊆ 2N → µ(C) ≤ µ(D) (monotonicity);
(iii) µ(

⋃
i Ci) ≤

∑
i µ(Ci) for each family (Ci)i∈N of classes

(countable subadditivity).

To introduce an outer measure, one begins with an appropriate assigment of
values to basic open cylinders and then extends it to all classes.

1.9.2 Definition. A measure representation is a function r : {0, 1}∗ → R
+
0 that

satisfies for every σ ∈ {0, 1}∗ the equality

r(σ0) + r(σ1) = r(σ). (1.19)

The extension process is in two steps.

1. If A ⊆ 2N is open, choose a prefix-free set E ⊆ {0, 1}∗ such that [E]≺ = A (for
instance let E be the set of minimal strings σ such that [σ] ⊆ A as on page 48).
Let

µr(A) =
∑

σ∈E r(σ).
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The property (1.19) ensures that this sum does not exceed r(∅), and that any
choice of a prefix-free set E yields the same value µr(A).
2. For a class C ⊆ 2N we let

µr(C) = inf{µr(A) : C ⊆ A & A is open}. (1.20)

It is not hard to verify that µr is indeed an outer measure (Exercise 1.9.5).
In the following we provide a useful fact about outer measures. It is a special

case of the Lebesgue Density Theorem. First a definition.

1.9.3 Definition. Suppose µ is an outer measure. If C ⊆ 2N and σ ∈ {0, 1}∗ is
such that µ[σ] �= 0, then the local outer measure of C in [σ] is

µ(C | σ) = µ(C ∩ [σ])/µ[σ].

The theorem states that if µC > 0 for an outer measure µ, then the local outer
measure µ(C | σ) can be arbitrarily close to 1.

1.9.4 Theorem. Let µ be an outer measure, and let C ⊆ 2ω be such that µC > 0.
Then for any δ, 0 < δ < 1, there exists σ ∈ {0, 1}∗ such that µ(C | σ) ≥ δ.
Proof. Let ε = (1

δ−1)µC. By the definition of an outer measure, there is an open
set A ⊇ C such that µA−µC ≤ ε. Then µA ≤ µC+ε = 1

δµC, that is, δ ·µA ≤ µC.
There is a prefix-free set D ⊆ {0, 1}∗ such that A = [D]≺ =

⋃
σ∈D[σ]. We claim

that some σ ∈ D satisfies the conclusion of the theorem. Otherwise, for each
σ ∈ D, µ[σ] �= 0 implies µ(C | σ) < δ. Since µC > 0, we have µ[σ] > 0 for some
σ ∈ D. Then

µC = µ(
⋃

σ∈D C ∩ [σ]) since C ⊆ A
≤ ∑

σ∈D µ(C ∩ [σ]) by countable sub-additivity
< δ ·∑σ∈D µ[σ] since µ(C | σ) < δ for each σ ∈ D

such that µ[σ] > 0, and there is such a σ
= δ · µA ≤ µC,

contradiction. �

1.9.5 Exercise. Show that µr is an outer measure for each measure representation r.

Measures

For details on the following see for instance Doob (1994).

1.9.6 Definition.

(i) A set B ⊆ P(2N) is called a σ-algebra if B is nonempty, closed under
complements, and the operations of countable union and intersection.

(ii) A function µ : B → R
+
0 is called a measure if µ(∅) = 0 and µ is countably

additive, namely, µ(
⋃

iDi) =
∑

i µ(Di) for each countable family (Di)i∈N

of pairwise disjoint sets. If µ(2N) = 1 then µ is called a probability measure.
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Clearly countable additivity implies monotonicity. It also implies countable
subadditivity, since for each familiy (Ci)i∈N,

⋃
i Ci is the disjoint union of the

sets Di = Ci −
⋃

k<i Ck, and µDi ≤ µCi for each i.
For an outer measure µ, a set G ⊆ 2N is called µ-measurable if for each C ⊆ 2N

we have µ(C) = µ(C ∩ G) + µ(C − G). It is not hard to see that each clopen set
is µ-measurable. A central result of measure theory due to Carathéodory (1968)
states that the measurable classes form a σ-algebra, and the restriction of µ to
this σ-algebra is a measure. In particular, a Borel class is µ-measurable for any
outer measure µ, since the Borel classes form the smallest σ-algebra containing
the clopen sets. Most of the subclasses of 2N we will encounter are arithmetical
and hence Borel.

Uniform measure and null classes
In the following let r be the measure representation given by r(x) = 2−|x|.

1.9.7 Definition. The uniform (outer) measure, denoted by λ, is the outer
measure obtained from r via the extension process described after 1.9.1.

1.9.8 Definition. A class A ⊆ 2N is called null if λA = 0.
If 2N −A is null we say that A is conull .

By step 2 of the extension process we have

1.9.9 Fact. A ⊆ 2N is null ⇔ there is a sequence (Gm)m∈N of open sets such
that limmλGm = 0 and A ⊆ ⋂

mGm.

Note that the class B =
⋂

mGm is Borel and λB = 0. Later on, we will intro-
duce randomness notions by imposing effectiveness or definability restrictions on
the condition in Fact 1.9.9 characterizing null sets. For instance, we do this to
introduce Martin-Löf randomness in Definition 3.2.1.
For each pair of sets X,Y (not necessarily subsets of N) we let

X"Y = (X − Y ) ∪ (Y −X).

It can be shown that C ⊆ 2N is λ-measurable iff there is a Borel class B such
that C"B is null, and in this case λC = λB. Also, the restriction of λ to the
λ-measurable sets is the unique measure µ given by the measure representation
r(x) = 2−|x|. We will henceforth call λ-measurable classes simply measurable.
For each class C and each set F ⊆ N, the operation C → CF = {Z"F : Z ∈ C}
switches the values of the bits of all sets in C at the positions given by F . The
uniform outer measure λ is invariant under this operation:

1.9.10 Fact. For each measurable class C ⊆ 2N and each set F ⊆ N, the class
CF is measurable, and λCF = λC.
Proof. Clearly λ([σ]F ) = λ[σ] for each string σ. Since λ is countably additive
this implies λAF = λA for each open set A. Thus λCF = λC by (1.20). �

Using the axiom of choice one can define a non-measurable class. For X,Y ⊆ N

we write X =∗ Y if X"Y is finite. We say that Y is a finite variant of X. Clearly
=∗ is an equivalence relation.
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1.9.11 Proposition. Suppose a class V ⊆ 2N contains exactly one member of
each equivalence class of =∗. Then V is not measurable.

Proof. Assume V is measurable. Then 2N is the disjoint union of the measurable classes
VF where F is finite. By countable additivity, 1 = λ(2N) =

∑
F λVF [[F ⊆ N is finite]].

This is impossible since λVF = λV for each F . �

As a consequence, there is no Borel well-order of Cantor space, for otherwise one
could take as V the Borel class of minimal elements in each equivalence class. Note
that V is a version for Cantor space of the Vitali set, where instead of 2N and =∗ one
has [0, 1]R with the equivalence relation {〈r, s〉 : r − s ∈ Q}.

For a class C and a string σ, let C | σ = {X : σX ∈ C}. The conditional outer measure
λ(C | σ) of Definition 1.9.3 equals the uniform outer measure of the class C | σ.

With few exceptions, classes C relevant to computability theory are Borel and
closed under finite variants, that is, X ∈ C and X =∗ Y implies Y ∈ C. By
the following, the uniform measure can only distinguish between small and large
classes of this kind.

1.9.12 Proposition. (Zero-one law) If a measurable class C is closed under
finite variants then λC = 0 or λC = 1.

Proof. Suppose that λC > 0. We show that λC > δ for every δ, 0 ≤ δ < 1. If σ
and ρ are strings of the same length, then by the invariance property of λ above,
for each X we have σX ∈ C ↔ ρX ∈ C. Therefore,

λ(C ∩ [σ]) = λ({σX : σX ∈ C}) = λ({ρX : ρX ∈ C}) = λ(C ∩ [ρ]).
By Theorem 1.9.4 choose σ such that λ(C | σ) > δ and let n = |σ|. Then
λ(C ∩ [σ]) > δ2−n, hence λC = ∑

|ρ|=n λ(C ∩ [ρ]) > 2nδ2−n = δ. �

Exercises.
1.9.13. If S is a prefix-free set then limn#(S ∩ {0, 1}n)/2n = 0.
1.9.14. An ultrafilter U ⊆ P(N) is called free if {n} �∈ U for each n. Show that a free
ultrafilter is not measurable when viewed as a subset of 2N.
1.9.15.� Suppose that N ∈ N, ε > 0, and for 1 ≤ i ≤ N , the class Ci is measurable
and λCi ≥ ε. If Nε > k then there is a set F ⊆ {1, . . . , N} such that #F = k + 1 and
λ

⋂
i∈F Ci > 0. For instance, if N = 5 sets of measure at least ε = 1/2 are given, then

three of them have an intersection that is not a null class. (This is applied in 8.5.18.)
Hint. Think of integrating a suitable function g : 2N → {0, . . . , N}.

Uniform measure of arithmetical classes
By 1.8.58 each arithmetical class is Borel and hence measurable. The uniform
measure of a Σ0

n class is left-Σ0
n. The uniform measure of a Π0

n class is left-Π0
n.

We prove this for n = 1 and leave the general case as Exercise 1.9.22.

1.9.16 Fact. If R ⊆ 2N is c.e. open then λR is left-c.e. in a uniform way.
If P ⊆ 2N is a Π0

1 class then λP is right-c.e. in a uniform way.

Proof. According to 1.8.23, from an index for R we obtain the effective approx-
imation (Rs)s∈N such that R =

⋃
s[Rs]≺. Then λR = supsλRs, so λR is left-c.e.

The second statement follows by taking complements. �



72 1 The complexity of sets

We discuss c.e. open sets R such that λR is computable. Recall from 1.8.19 that
AR = {σ : [σ] ⊆ R}. First we note that none of the properties “λR computable”
and “AR computable” implies the other.

1.9.17 Example. There is a c.e. open set R such that λR = 1 and AR is not
computable.

Proof. Let R = 2N−P where P be the class of two-valued d.n.c. functions from
Fact 1.8.31. Then AR = {0, 1}∗−TP is not computable. Since there are infinitely
many x such that J(x) = 0, we have λP = 0. �

On the other hand, the uniform measure of a c.e. open set R with computable
AR can be an arbitrary left-c.e. real by Exercise 1.9.20.
We provide two results needed later on when we study Schnorr randomness.

1.9.18 Fact. Let R be a c.e. open set such that λR is computable. Then λ(R∩C)
is computable uniformly in R, λR, and an index for the clopen set C.
The same holds for Π0

1 classes of computable measure.

Proof. We use Fact 1.8.15(iv). Given n ∈ N, we can compute t ∈ N such that
λR − λ[Rt]≺ ≤ 2−n. Then λ(R ∩ C) − λ([Rt]≺ ∩ C) ≤ 2−n. Thus the rational
qn = λ([Rt]≺ ∩ C) is within 2−n of λ(R ∩ C).
For Π0

1 classes, one relies on the first statement and takes complements. �

1.9.19 Lemma. Let S be a c.e. open set such that λS is computable. From a
rational q such that 1 ≥ q ≥ λS we may in an effective way obtain a c.e. open
set S̃ such that S ⊆ S̃ and λS̃ = q.

Proof. We identify sets and real numbers according to Definition 1.8.10. Let
S̃ = S ∪⋃{[0, x) : x ∈ Q2 & λ(S ∪ [0, x)) < q}.

To check that S̃ is as required, note that the function f : [0, 1)R → [0, 1)R given
by f(r) = λ(S ∪ [0, r)) is non-decreasing and satisfies f(s) − f(r) ≤ s − r for
s > r. Thus f is continuous. Further, f(0) ≤ q and f(r) ≥ r for each r, so there
is a least t such that f(t) = q. Then S̃ = S ∪ [0, t), and hence λS̃ = q.
To see that S̃ is c.e., note that f(x) = x + λ(S ∩ [x, 1)) for each x ∈ Q2, so

by 1.9.18 f(x) is a computable real uniformly in x. Since x < t iff f(x) < q, this
shows that t is a left-c.e. real, whence the open set S̃ = S ∪ [0, t) is c.e.
Note that f is obtained effectively from S and λS. Thus we uniformly obtain

a c.e. index for {p : p < t}, and hence an index for S̃. �

Exercises. Show the following.
1.9.20. For each left-c.e. real number r ∈ [0, 1) there is a c.e. open set R such that AR

is computable and λR = r.

1.9.21. Each Π0
1 class P of computable positive measure has a computable member.

1.9.22. The measure of a Σ0
n class is left-Σ0

n in a uniform way.
The measure of a Π0

n class is left-Π0
n in a uniform way.
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Probability theory

We briefly discuss binary strings and sets of natural numbers from the viewpoint
of probability theory. Unexplained terms in italics represent standard terminol-
ogy found in text books such as Shiryayev (1984).
A sample space is given by a set X together with a σ-algebra and a probability

measure on it. For instance, a string of length n is an element of the sample
space {0, 1}n, and a set is an element of the sample space 2N. The probability
measure P is given by P ({x}) = 2−|x| in the case of strings and by the uniform
measure λ in the case of sets.
For each appropriate i we have a random variable ξi : X → {0, 1} given by

ξi(x) = x(i). We think of ξi(x) as the i-th outcome in the sequence of experiments
described by x. If X is Cantor space, this is a dynamic version of the local view
of sets (see Section 1.3): the set is revealed bit by bit. Note that

P (ξi = 0) = P (ξi = 1) = 1/2.
Moreover, the ξi are independent. Such a sequence of random variables is called
a Bernoulli scheme for the probability 1/2.
For n ∈ N let Sn =

∑
i<n ξi. If the sample space is {0, 1}n then Sn(x) is the

number of occurrences of ones in the string x. The expectation of Sn/n is 1/2.
In probability theory one is interested in bounding the probability of the event

abs(Sn/n− 1/2) ≥ ε (1.21)

for ε > 0, namely that the number of ones differs by at least εn from the ex-
pected value n/2. The Chebycheff inequality shows that this probability is at
most 1/(4nε2). (For a numerical example, if n = 1000 and ε = 1/10, then 1/40
bounds the probability that the number of ones is at least 600 or at most 400.)
In Section 2.5 we will use the improved estimate 2e−2nε2 for the probability of
the event (1.21) in order to bound the number of strings of length n where the
number of zeros and of ones is unbalanced.
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The descriptive complexity of strings

In contrast to the remainder of the book, this chapter is on finite objects. We may
restrict ourselves to (binary) strings, because other types of finite objects, such
as strings over alphabets other than {0, 1}, natural numbers, or finite graphs,
can be encoded by binary strings in an effective way. We are interested in giving
a description σ of a string x, and if possible one that is shorter than x itself. Such
descriptions are binary strings as well. To specify how σ describes a string x, we
will introduce an optimal machine, which outputs the string x when the input
is the description σ. The descriptive complexity C(x) is the length of a shortest
description of x. We first study the function x → C(x). Some of its drawbacks
can be addressed by introducing a variant K, where the set of descriptions is
prefix-free. The function K also has its drawbacks as a measure of descriptive
string complexity, but is the more fruitful one where the interaction of com-
putability and randomness is concerned. The Machine Existence Theorem 2.2.17
is an important tool for showing that the elements of a collection of strings have
short descriptions in the sense of K. It will be used frequently in later chapters.
A string x is b-incompressible (in the sense of C, or K) if it has no description σ

(in that sense) such that |σ| ≤ |x| − b. In Section 2.5 we will see that incom-
pressibility can serve as a mathematical counterpart for the informal concept of
randomness for strings. Using some basic tools from probability theory, we show
that an incompressible string x has properties one would intuitively expect from
a random string. For instance, x has only short runs of zeros.
Optimal machines act as description systems for strings (analogous to the de-

scription systems for sets mentioned at the beginning of Chapter 1). However,
the theory of describing strings differs from the theory of describing sets. Only
a few reasonable description systems have been introduced. Every string can be
described in each system. For a set, the question is whether it can be described
at all, while for strings we are interested in the length of a shortest description.
For strings, we can formalize randomness by being hard to describe (that is,
being incompressible). It takes more effort to formalize randomness for sets (see
the introduction to Chapter 3).
The prefix-free descriptive complexity K can be used to determine the degree

of randomness of a set Z ⊆ N, because to a certain extent it is measured by
the growth rate of the function n → K(Z �n). For instance, a central notion,
Martin-Löf randomness, is equivalent to the condition that for some b, each
initial segment Z �n is b-incompressible in the sense of K (Theorem 3.2.9).
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Much of the material in this chapter goes back to work of Solomonoff (1964),
Kolmogorov (1965), Levin and Zvonkin (1970), Levin (1973, 1976), and Chaitin
(1975). A standard textbook is Li and Vitányi (1997).

Comparing the growth rate of functions

We frequently want to measure the growth of a function g : N→ R. One way is
to compare g to the particularly well-behaved functions of the following type.

2.0.1 Definition. An order function is a computable nondecreasing unbounded
function f : N→ N. Examples of order functions are λn. logn, λn.n2, and λn.2n.

In the following let f, g : N → R. We will review three ways of saying that f
grows at least as fast as g: by domination, up to an additive constant, and up to
a multiplicative constant (if f and g only have nonnegative values).
(1) Recall the domination preordering on functions from Definition 1.5.1: f dom-
inates g if ∀∞n [f(n) ≥ g(n)]. An example of a growth condition on a function g
saying that g grows very slowly is to require that g is dominated by each order
function. We will study an unbounded function g of this type in 2.1.22.
(2) To compare f and g up to additive constants, let

g ≤+ f : ↔ ∃c ∈ N ∀n [g(n) ≤ f(n) + c].
This preordering is a bit weaker than the domination preordering. We usually
avoid explicitly mentioning the functions f, g. Instead, we write expressions defin-
ing them, as for instance in the statement logn+ 16 ≤+ n. The preordering ≤+

gives rise to the equivalence relation g =+ f : ↔ g ≤+ f ≤+ g.
We often try to characterize the growth rate of a function f by determining its
equivalence class with respect to =+. For instance, the class of bounded functions
coincides with the equivalence class of the function that is constant 0.
(3) Recall that abs(r) denotes the absolute value of a number r ∈ R. Let

g = O(f) : ↔ ∃c ≥ 0 ∀∞n [abs(g(n)) ≤ c abs(f(n))].
Moreover, g = h+O(f) means that g− h = O(f). We think of O(f) as an error
term, namely, an unspecified function f̃ such that abs(f̃(n)) ≤ c abs(f(n)) for
almost all n. In particular, O(1) is an unspecified function with absolute value
bounded by a constant. Thus g ≤+ f ↔ g ≤ f +O(1).
For f, g : N → R

+ we let f ∼ g : ↔ limnf(n)/g(n) = 1. If f ∼ g, one can
replace f by g in error terms of the form O(f).

2.1 The plain descriptive complexity C

Machines and descriptions

Recall that elements of {0, 1}∗ are called strings. A partial computable func-
tion mapping strings to strings is called a machine. (As we identify a string σ
with the natural number n such that the binary representation of n + 1 is 1σ,
formally speaking a machine is the same a partial computable function. It is
useful, though, to have this term for the particular context of strings.) If M is
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a machine and M(σ) = x then we say σ is an M -description of x. If M is the
identity function then x is an M -description of itself. (We will call this machine
the copying machine.) In general, an M -description of x may be shorter than x,
in which case one can view σ as a compressed form of x. The machine M carries
out the decompression necessary to re-obtain x from σ.
Our main interest is in measuring how well a string x can be compressed.

That is, we are more interested in the length of a shortest description than
in the description itself. We introduce a special notation for this length of a
shortest M -description:

CM (x) = min{|σ| : M(σ) = x}. (2.1)

Here min ∅ =∞. For an example of a drastic compression, let M be the machine that
takes an input σ, views it as a natural number and outputs

x = 222σ

.

Then CM (x) = |σ| =+ log(4) x. For instance, the string σ = 10 corresponds to the
number 5, so M(σ) = 2232

= 24294967296 = x. The string σ is an M -description of x,
and CM (x) = 2, while x has length 232.

2.1.1 Definition. The machine R is called optimal if for each machineM , there
is a constant eM such that

∀σ, x [M(σ) = x→ ∃τ (R(τ) = x & |τ | ≤ |σ|+ eM )], (2.2)

or, equivalently, ∀x [CR(x) ≤ CM (x) + eM ].

Thus, for each M , the length of a shortest R-description of a string exceeds the
length of a shortestM -description only by a constant eM . Optimal machines are
often called universal machines.
The constant eM is called the coding constant for M (with respect to R). It

bounds the amount the length of a description increases when passing from M
to R. Although we are usually only interested in the length of an R-description,
we can in fact obtain an appropriate R-description τ from theM -description σ in
an effective way, by trying out in parallel all possible R-descriptions τ of length
at most |σ|+ eM till one is found such that R(τ) =M(σ).
An optimal machine exists since there is an effective listing of all the machines.

The particular choice of an optimal machine is usually irrelevant; most of the in-
equalities in the theory of string complexity only hold up to an additive constant,
and if R and S are optimal machines then ∀xCR(x) =+ CS(x). Nonetheless, we
will specify a particularly well-behaved optimal machine. Recall the effective list-
ing (Φe)e∈N of partial computable functions from (1.1) on page 3. We will from
now on assume that Φ1 is the identity.

2.1.2 Definition. The standard optimal plain machine V is given by letting
V(0e−11ρ) 	 Φe(ρ)

for each e > 0 and ρ ∈ {0, 1}∗.
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This definition makes sense because each string σ can be written uniquely in
the form 0e−11ρ. The machine V is optimal because for each machine M there
is an e > 0 such that M = Φe, so M(σ) = x implies V(0e−11σ) = x. The coding
constant with respect to V is simply an index e > 0 for M . Regarding (2.2),
note that a V-description τ of x is obtained in a particularly direct way from an
index e > 0 for M and an M -description σ of x: by putting 0e−11 in front of σ.
From now on, we simply write C(x) for CV(x). For each optimal machine R we
have CR(x) ≤+ |x| since R emulates the copying machine. In particular, since
this machine is Φ1, for each x

C(x) ≤ |x|+ 1. (2.3)

This upper bound cannot be improved in general by 2.1.19(ii).
In Exercises 2.1.6 and 2.1.24 we study necessary conditions for a set to be the domain

of an optimal machine. These conditions only depend on the number of strings in the
set at each length.
Exercises. Show the following.
2.1.3. A shortest V-description cannot be compressed by more than a constant: there
is b ∈ N such that, if σ is a shortest V-description of a string x, then C(σ) ≥ |σ| − b.

2.1.4. There is an optimal machine R such that for each x, m, the string x has at most
one R-description of length m.

2.1.5. Let d ≥ 1. There is an optimal machine R such that d divides |ρ| for each
ρ ∈ dom R.

2.1.6. Let D = dom R for an optimal machine R. Then there is b ∈ N such that for
each n we have 2n ≤ sn,b < 2n+b, where sn,b = #{σ ∈ D : n ≤ |σ| < n + b}.
2.1.7. If x is a string such that x(i) = 0 for each even i < |x| then C(x) ≤+ |x|/2.

The counting condition, and incompressible strings

In Theorem 2.1.16 we will provide a machine-independent characterization of the
function C. In the first step we characterize the class of functions of the form
CM up to the equivalence relation =+ (see page 75). In the second step we single
out C as the least function in this class (again up to =+).
The functions of the form CM are characterized by two conditions:
(1) being computably approximable from above (an effectivity property), and
(2) the counting condition in 2.1.9 below (which is related to incompressibility).

2.1.8 Definition. A function D : {0, 1}∗ → N ∪ {∞} is computably approx-
imable from above if D(x) = limsDs(x) for a binary computable function x, s→
Ds(x) with values in N ∪ {∞} such that ∀x∀s [Ds+1(x) ≤ Ds(x)].

Each machine M equals some partial computable function Φe, so by Defini-
tion 1.1.13 we have an approximation Ms(σ) = Φe,s(σ). Therefore each function
CM is computably approximable from above via the approximation

CM,s(x) := min{|σ| : Ms(σ) = x}.
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The counting condition for a function D says that not too many strings x yield
small values D(x).

2.1.9 Definition. A function D : {0, 1}∗ → N∪{∞} satisfies the counting con-
dition if #{x : D(x) < k} < 2k for each k.

This implies that for each k, there is a string x of length k such that D(x) ≥ k.
2.1.10 Fact. For each machine M the function CM satisfies the counting con-
dition. That is, for each k, fewer than 2k strings have an M -description that is
shorter than k.

Proof. At most
∑

0≤i<k 2
i = 2k − 1 M -descriptions are shorter than k. �

Short descriptions can yield very long strings and can take a very long time to be
decompressed. Thus, even though there are fewer than 2k strings x such that C(x) < k,
we cannot predict when they have all appeared. This is confirmed by Proposition 2.1.22.

Incompressible strings
An important property of strings is incompressibility, the formal counterpart of
the intuitive concept of randomness for strings. See page 99 for more details.

2.1.11 Fact. For each machine M , and for each n ∈ N, there is a string x of
length n such that CM (x) ≥ |x|.
Proof. Immediate by Fact 2.1.10. �

By 2.1.19, for almost all n there is a string x of length n such that C(x) ≥ |x|+1.

2.1.12 Definition. Let d ∈ N. A string x is d-compressibleC if C(x) ≤ |x| − d.
Otherwise, x is called d-incompressibleC .
Let Cprd denote the set of d-compressibleC strings.

By Fact 2.1.11 the set Cpr1 = {x : C(x) < |x|} is co-infinite. Proposition 2.1.28
below shows that Cpr1 is a simple set. In Exercise 2.1.3 we have seen that shortest
V-descriptions are d-incompressibleC for some fixed d.
The proportion of d-compressibleC strings of a fixed length is less than 2−d+1:

2.1.13 Fact. Let d ∈ N. For each n ∈ N, the number of d-compressibleC strings
of length n is less than 2n−d+1.

Proof. The function C satisfies the counting condition. For k = n− d + 1 this
yields #{x : C(x) ≤ n− d} < 2n−d+1. �

A method to build machines
The following method to build a machine M will be used to characterize C.
A request is a pair 〈n, x〉 from N × {0, 1}∗. Informally, issuing a request 〈n, x〉
means to ask for an M -description of x with length n.

2.1.14 Proposition. Suppose W is a c.e. set of requests such that for each n,
there are at most 2n requests with first component n. Then there is a machine M
such that 〈n, x〉 ∈W ↔ ∃σ (|σ| = n & M(σ) = x) for each n, x.



2.1 The plain descriptive complexity C 79

Proof. We may assume that at most one request is enumerated into W at each
stage. We define the machine M by giving a computable enumeration (Ms)s∈N

of its graph (see Exercise 1.1.18).
Let M0 = ∅. For s > 0, if a request 〈n, x〉 is in Ws −Ws−1 then put 〈σ, x〉

into Ms, i.e., let Ms(σ) = x, for the leftmost string σ of length n that is not
in dom(Ms−1). By our hypothesis such a string can be found. Clearly M is a
machine as required. �

A characterization of C

2.1.15 Proposition. Suppose that D : {0, 1}∗ → N ∪ {∞} is computably ap-
proximable from above and satisfies the counting condition. Then there is a ma-
chine M such that ∀xCM (x) = D(x) + 1 (where ∞+ 1 =∞).

Proof. Suppose the function λx, s.Ds(x) is a computable approximation of D
from above. The c.e. set of requests W is given as follows: whenever s > 0 and
n = Ds(x) < Ds−1(x), then enumerate 〈n+1, x〉 into W at stage s. There is no
request with first component 0, and for each n,

#{x : 〈n+ 1, x〉 ∈W} ≤ #{x : D(x) ≤ n} < 2n+1.

Applying proposition 2.1.14 to W now yields a machine M as required. �

Recall that a machine R is called optimal iff CR ≤+ CM for each machine M .
Proposition 2.1.15 yields a machine-independent characterization of C up to =+

(and thus of any function CR for an optimal machine R).

2.1.16 Theorem. C can be characterized as follows up to =+: it is the least
with respect to ≤+ among the functions D that are computably approximable
from above and satisfy the counting condition ∀k#{x : D(x) < k} < 2k. �

Exercises.

2.1.17. Fix d ∈ N, and let rn be the number of d-incompressibleC strings of length n.
Show that C(rn) ≥+ n. That is, the binary representation of rn is incompressibleC .

2.1.18. We cannot improve the conclusion in Proposition 2.1.15 to ∀∞x CM (x) =
D(x): there is a function D as in Proposition 2.1.15 such that for each machine M ,
D(x) = CM (x) fails for infinitely many x.

2.1.19. This exercise shows that the upper bound C(x) ≤ |x| + 1 in (2.3) cannot be
improved for almost all lengths.
(i) Suppose the function E : {0, 1}∗ → N satisfies the counting condition. If n is such
that ∀x [ |x| ≤ n→ E(x) ≤ |x|], then ∀x [|x| ≤ n→ E(x) = |x|].
(ii) If M is a machine such that CM (x) < |x| for some x of length n0 (for instance,
M = V), then for all n ≥ n0 there is an x of length n such that CM (x) > |x|.

Invariance, continuity, and growth of C

We list some properties of the function C. They all hold in fact for CR, where R
is any optimal machine. Usually we view the described finite objects as numbers,
not as strings. This subsection mostly follows Li and Vitányi (1997).
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Invariance
A machine N on input x cannot increase C(x) by more than a constant:

2.1.20 Fact. For each machine N and each x such that N(x)↓ we have
C(N(x)) ≤+ C(x). If N is a one-one function then C(N(x)) =+ C(x).

Proof. Let M be a machine such that M(σ) 	 N(V(σ)) for each σ. Then
CM (N(x)) ≤ C(x), so that C(N(x)) ≤ C(x) + eM where eM is the coding
constant for M . If N is one-one then the same argument applies to its inverse
N−1, so C(x) ≤+ C(N(x)) as well. �

In particular, if π is a computable permutation of N, then C(x) =+ C(π(x)) for
each x. Also, C(|x|) ≤+ C(x).

Continuity properties of C
Recall that abs(z) denotes the absolute value of z ∈ Z.

2.1.21 Proposition.

(i) abs(C(x)− C(y)) ≤+ 2 log abs(x− y) for each pair of strings x, y.
(ii) If the string y is obtained from the string x by changing the bit in one

position, then abs(C(x)− C(y)) ≤+ 2 log |x|.
Proof. (i) follows from the stronger Proposition 2.4.4 below, so we postpone the
proof till then. We leave (ii) as an exercise. �

The growth of C
The function C is unbounded but slowly growing in the sense that large argu-
ments can have small values. To make this more precise, we consider the fastest
growing non-decreasing function that bounds C from below: let

C(x) = min{C(y) : y ≥ x}.
Fact 2.1.10 states that C satisfies the counting condition, that is, for each k
there are fewer than 2k strings x such that C(x) < k. Thus C is unbounded. The
function C is computably approximable from above, but it fails the counting
condition. The following says that C grows indeed very slowly.

2.1.22 Proposition. Each order function h dominates C.

Proof. We will compare the numbers rn and yn (n ∈ N), where

rn = min{z : h(z) ≥ n}
yn = min{z : C(z) ≥ n}.

The function λn.rn is computable, so by Fact 2.1.20 and (2.3) on page 77 we have
C(rn) ≤+ C(n) ≤+ logn. Now yn ≤ rn implies n ≤ C(yn) ≤ C(rn) ≤+ logn.
For each c, n ≤ logn + c can only hold for finitely many n. Thus yn > rn for
almost all n. Since h is non-decreasing, this implies that h dominates C. �
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Exercises.
2.1.23. (Stephan) Let zm be the largest number such that C(zm) < m. Show that
there is a constant d such that ∀n C(zn+d) ≥ n.
2.1.24.� (Stephan) Let b be the maximum of d in the previous exercise and the constant
from Exercise 2.1.6. Let D = dom R for an optimal machine R and

sn,b = #{σ ∈ D : n ≤ |σ| < n + b}
as in 2.1.6. Show that ∀n C(sn,b) ≥+ n. (Since sn,b < 2n+b, this means that the binary
representation of sn,b is incompressibleC . Calude, Nies, Staiger and Stephan (20xx)
have proved that, conversely, if D is a c.e. set such that ∀n C(sn,b) ≥+ n for some b,
then D is the domain of an optimal machine.)
2.1.25. The deficiency set for a machine R is DR = {x : ∃y > x [CR(y) ≤ CR(x)]}.
This set is co-infinite. Build an optimal machine R with a c.e. deficiency set.
2.1.26. Let R be an optimal machine. Show that pDR

, the listing of N−DR in order of
magnitude, dominates each computable function. (A c.e. set D such that pD dominates
each computable function is called dense simple.)

Algorithmic properties of C

We show that the set B = {x : C(x) < |x|} of 1-compressibleC strings is simple
and wtt-complete. Therefore C is incomputable, and in fact ∅′ ≤T C. This
restricts the usefulness of C as a practical measure for the descriptive complexity
of a string.
The function C is incomputable because we allowed an arbitrary number of

steps for the decompression. One can also consider time-bounded versions of C.
Recall from Definition 2.1.2 that V is the standard optimal machine. For any
computable g such that ∀n g(n) ≥ n, the function Cg is computable, where

Cg(x) = min{ |σ| : V(σ) = x in g(|x|) steps}.
We bound the number of computation steps in terms of the length of the described
string rather than the length of its description because the description may be much
shorter than the described string. Time-bounded versions of C are used mostly in the
theory of feasible computability. We will work with a time-bounded version of C on
page 136.

2.1.27 Proposition. CM ≤wtt ∅′ for each machine M .

Proof. By 1.4.7 it suffices to show that the function CM is ω-c.e. Fix c such
that ∀x [CM (x) ≤ |x| + c]. Then the function gs(x) = min(|x| + c, CM,s(x)) is
a computable approximation of CM . The number of changes for x is at most
|x|+ c. Thus CM is ω-c.e. �

2.1.28 Proposition. The set B = {x : C(x) < |x|} is simple and wtt-complete.

Proof. B is c.e. via the computable enumeration Bs = {x : Cs(x) < |x|}. By
Fact 2.1.11, for each length m there is an x �∈ B such that |x| = m, so B is
co-infinite. If B is not simple then there is an infinite computable set {r0, r1, . . .}
contained in the complement of B such that ∀i |ri| < |ri+1|. Then ∀i C(ri) ≤+

C(i) ≤+ log i. For sufficiently large i this contradicts C(ri) ≥ |ri| ≥ i.
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To show that B is weak truth-table complete we define a c.e. set of requestsW .
If n ∈ ∅′s − ∅′s−1 then we put the request 〈n, x〉 into W , where x is the leftmost
string of length 2n such that Cs(x) ≥ 2n. Note that x exists by Fact 2.1.13.
Let M be the machine obtained from W via Proposition 2.1.14, and let d be
the coding constant for M . We provide a weak truth-table reduction of a finite
variant of ∅′ to B:

on input n > d, using B as an oracle, compute a stage s such that
Bs(x) = B(x) for all strings x of length 2n and output ∅′s(n).

If n ∈ ∅′t − ∅′t−1 for some t > s, then for some string x of length 2n such that
Cs(x) ≥ 2n this causes CM (x) ≤ n and hence C(x) ≤ n + d < 2n. Therefore
x ∈ B − Bs contrary to the choice of s. Thus n ∈ ∅′ ↔ n ∈ ∅′s for each n > d.
The use of this reduction procedure is computably bounded. �

2.1.29 Corollary. The function C is not computable. �

Kummer (1996) proved that the set {x : C(x) < |x|} is in fact truth-table complete.
Exercises.

2.1.30. Show that the set A = {〈x, n〉 : C(x) ≤ n} is c.e. and wtt-complete.

2.1.31. Prove that ∃∞x [C(x) < Cg(x)] for each computable function g such that
∀n g(n) ≥ n. Show that this cannot be improved to ∀∞x [C(x) < Cg(x)].

2.2 The prefix-free complexity K

Using C(x) as a measure for the descriptive complexity of a string x is concep-
tually simple, because we do not restrict the machines carrying out the decom-
pression of the descriptions. However, this simplicity leads to certain drawbacks
of C. In this section we will first discuss these drawbacks in more detail, and
then introduce a variant of C which addresses these particular problems (but
also has its drawbacks). A machine M is called prefix-free if the domain of M is
a prefix-free set. We will develop a theory of string complexity that parallels the
one for C but is based on prefix-free machines. The resulting descriptive com-
plexity of a string x is called its prefix-free complexity and is denoted by K(x).
We will see in subsequent chapters that K, rather than C, is the appropriate
measure of descriptive complexity for strings when one is concerned with the
interplay of computational complexity and randomness. Occasionally there are,
however, important applications of C, such as the initial segment characteriza-
tion of 2-random sets in Theorem 3.6.10. We also use C to understand jump
traceability in Theorem 8.4.10.
In the previous subsection we have discussed the fact that C is incomputable

and how one could get around this by using a time-bounded version Cg. However,
since we will be using descriptive complexity of strings for theoretical purposes,
we do not consider this incomputability as a drawback – the prefix-free versionK
is not computable either.
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Drawbacks of C
Complexity dips
Recall from 2.1.12 that a string w is d-incompressibleC if C(w) > |w| − d. We
proved in Fact 2.1.13 that the number of d-incompressibleC strings of length n
is at least 2n−2n−d+1. One may ask whether there is a string w of length n such
that each prefix of w is d-incompressibleC when n is large compared to d. The
answer is negative, because a machine N can “cheat” in the decompression, by
encoding some extra information into the length of a description.

2.2.1 Proposition. There is a constant c with the following property. For each
d ∈ N and each string w of length at least 2d+1 + d there is an x � w such that
C(x) ≤ |x| − d+ c.

Proof. We use the notation introduced in (1.5) on page 13. The machine N
is given by N(σ) = string(|σ|)σ. It is sufficient to obtain a prefix x of w with
an N -description of length |x| − d. Let k = number (w �d) (so that k < 2d+1),
and let x = w �d+k be the prefix of w with length given by d+m where m is the
number represented by the first d bits of w. Let σ be the string of length k such
that x = x�d σ, then N(σ) = x. Thus CN (x) ≤ |x| − d. �

For example let d = 3 and w = 010101110001011011. Then k = number(010) = 9, so
x = w �3+9= 010 101110001 . Thus N(σ) = x where σ = 101110001.

Failure of subadditivity
A further desirable property of a complexity measure for strings would be the fol-
lowing: descriptions of strings x and y can be put together to obtain a description
of 〈x, y〉. This would imply C(〈x, y〉) ≤+ C(x)+C(y). Concatenating the descrip-
tions of x and y does not work since we cannot tell where the description of x
ends and the description of y begins. We prove that (1) C(〈x, y〉) ≤+ C(x)+C(y)
fails. Note that C(xy) ≤+ C(〈x, y〉), so the failure of (2) C(xy) ≤+ C(x) +C(y)
is even stronger (but see 2.2.3 for a direct proof that (1) fails). The following
says that for each d there is a string w of length O(2d) such that for some
decomposition w = xy (2) fails for the constant d.

2.2.2 Corollary. Let d ∈ N. Suppose w is a string of length 2d+1 + d such that
C(w) ≥ |w|. If x � w is as in 2.2.1 and w = xy then C(w) ≥+ C(x)+C(y)+ d.

Proof. This follows from C(x) ≤+ |x| − d and C(y) ≤ |y|+ 1. �

2.2.3 Exercise. Show that subadditivity in the form (1) above fails badly: for each n
there are strings x, y such that |xy| = n and C(〈x, y〉) ≥+ C(x) + C(y) + log n.

Prefix-free machines
2.2.4 Definition. A machine M is prefix-free if its domain is a prefix-free set,
that is, ∀σ, ρ ∈ domM [σ � ρ → σ = ρ]. In order to indicate that a machine M
is prefix-free, we write KM (x) instead of CM (x).

Consider the following experiment due to Chaitin: start the machine M , and
whenever it requests a new input bit, toss a coin and feed the resulting bit to
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the machine. Since M is prefix-free the following sum converges and expresses
the probability that M halts in this experiment:

ΩM =
∑

σ

2−|σ| [[M(σ)↓]]. (2.4)

Thus ΩM = λ[domM ]≺ is the measure of the open set generated by the domain
of M . Since this open set is c.e., ΩM is a left-c.e. real number (see 1.9.16). Let
ΩM,s = λ[dom(Ms)]≺, then (ΩM,s)s∈N is a nondecreasing computable approxi-
mation of ΩM .

2.2.5 Example. Suppose M is a machine which halts on input σ iff σ is of the
form 0i1 for even i. Then ΩM = 0.101010 . . . = 2/3.

Optimal prefix-free machines
2.2.6 Definition. We say that a machine R is an optimal prefix-free machine
if R is prefix-free, and for each prefix-free machine M there is a constant dM

such that ∀xKR(x) ≤ KM (x) + dM . As before, the constant dM is called the
coding constant of M (with respect to R).

2.2.7 Proposition. An optimal prefix-free machine R exists.

Proof. We first provide an effective listing (Md)d∈N of all the prefix-free ma-
chines. Md is a modification of the partial computable function Φd in (1.1) on
page 3. When the computation Φd(σ) = x converges at stage s, then declare
Md,s(σ) = x unless Md,t(τ) has already been defined at a stage t < s for some τ
such that τ ≺ σ or σ ≺ τ . Clearly Md is prefix-free and Md = Φd if Φd is
prefix-free. Now define R by R(0d−11σ) 	 Md(σ) for d > 0. By the Padding
Lemma 1.1.3 we can leave out M0, so R is optimal. �

For the moment we will fix an arbitrary optimal prefix-free machine R and
write K(x) for CR(x) = min{|σ| : R(σ) = x}. Like any other machine, R is
emulated by V. Thus C(x) ≤+ K(x).
The string complexity K amends the drawbacks of C discussed on page 83.

Firstly, K(〈x, y〉) ≤+ K(x) +K(y), because given an R-description σ of x and
an R-description τ of y, a new prefix-free machine can decompress the description
ρ = στ . It recovers σ and τ , then it runs R on both to compute x and y, and
finally it outputs 〈x, y〉. (In Theorem 2.3.6 we give an explicit expression for
K(〈x, y〉) using a conditional version of K.)
Secondly, by Proposition 2.5.4 there are arbitrarily long strings x such that

each prefix of x is d-incompressible in the sense of K, for some fixed d.

Upper bounds for K
By (2.3) we have C(x) ≤ |x|+1. A drawback of K is the absence of a computable
upper bound, in terms of the length, that is tight for almost all lengths. For C,
the upper bound was based on the copying machine Φ1, which is not prefix-
free. In fact this upper bound fails for K (see Remark 2.5.3 below). To obtain
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a crude computable upper bound (to be improved subsequently) consider the
machineM given byM(0|x|1x) = x for each string x. This machine is prefix-free
since 0|x|1x � 0|y|1y first implies |x| = |y|, and then x = y. Thus

K(x) ≤+ 2|x|. (2.5)

The idea in the foregoing argument was to precede x by an encoding of its length
n = |x| in such a way that the strings encoding lengths form a prefix-free set.
Instead of 0n1, we can take any other such encoding. So, why not take a shortest
possible prefix-free encoding of n, using R itself for the decompression? Then
we get as close to the copying machine as we possibly can within the prefix-free
setting. This yields the following improved upper bounds.

2.2.8 Proposition. K(x) ≤+ K(|x|) + |x| ≤+ 2 log |x|+ |x| for each string x.

Proof. The second inequality follows by applying (2.5) to |x|. For the first
inequality, define a prefix-free machine N as follows:

on input τ search for a decomposition τ = σ x such that
n = R(σ)↓ and |x| = n. If one is found output x.

Clearly N is prefix-free. Given x, let σ be a shortest R-description of |x|. Then
N(σx) = x. This shows that K(x) ≤+ K(|x|) + |x|. �

Incorporating N into the machine R obtained in the proof of Proposition 2.2.7,
one may achieve that the constant in the inequalityK(x) ≤+ K(|x|)+|x| is 1. The
idea is to emulateN with a loss in compression of only 1. SinceN is already based
on the optimal machine to be defined, we have to use the Recursion Theorem.

2.2.9 Theorem. (Extends 2.2.7) There is an optimal prefix-free machine U

such that K(x) ≤ K(|x|) + |x|+ 1 for each x, where K(x) = KU(x).

Proof. Let (Md)d∈N be the effective listing of all the prefix-free machines from
the proof of 2.2.7. Given e, we define a prefix-free machine Ne by Ne(σx) = x iff
Me(σ) = |x|. By the Parameter Theorem 1.1.2 there is a computable function q
such that

Φq(e)(0d−11ρ) 	
{
Ne(ρ) if d = 1
Md(ρ) if d > 1.

By the Recursion Theorem 1.1.5 (and 1.1.7) there is an i > 1 such that Φq(i) =
Φi. Since Φq(e) is prefix-free for each e, Φi is prefix-free and hence Φi =Mi. By
the Padding Lemma 1.1.3 it does not matter to leave out M0 and M1 in the
emulation, so U := Φi is an optimal prefix-free machine.
Given x, let σ be a shortest U-description of |x|, then U(1σx) = Φq(i)(1σx) =

Ni(σx) = x. Therefore K(x) ≤ K(|x|) + |x|+ 1. �

From now on, we will simply write K(x) for KU(x) = min{|σ| : U(σ) = x}. We
also let
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Ks(x) = min{|σ| : Us(σ) = x} (2.6)

(where min ∅ =∞). Note that C(x) ≤+ K(x) since U is emulated by V.
Exercises.
2.2.10. Redo the Exercises 2.1.3–2.1.5, 2.1.17 and 2.1.23 for prefix-free machines and K.
2.2.11. Show that K(x) ≤+ 2 log log |x|+ log |x|+ |x|.
2.2.12. (Calude, Nies, Staiger and Stephan, 20xx) Let U be an optimal prefix-free
machine, and let C = {S ⊆ {0, 1}∗ : S is prefix-free &dom U ⊆ S}.
Show that (i) C is a Π0

1 class, and therefore contains a low set; (ii) no Π0
1 set S is in C.

The Machine Existence Theorem and a characterization of K
We proceed as in the characterization of C on page 79: firstly, we characterize,
up to =+, the class of functions of the form KM for a prefix-free machine M , by
(1) being computably approximable from above, and
(2) satisfying the weight condition defined in 2.2.13.

Secondly, K is the least function in this class with respect to ≤+.

2.2.13 Definition. A function D : N→ N ∪ {∞} satisfies the weight condition
if

∑
x 2

−D(x) ≤ 1. (Here 2−∞ := 0.)

The weight condition implies #{x : D(x) = i} ≤ 2i for each i, which in turn im-
plies the counting condition in 2.1.9. The weight condition holds for any function
of the type KM because

∑
x 2

−KM (x) ≤∑
σ 2−|σ| [[M(σ)↓]] = ΩM ≤ 1.

To proceed with the characterization of the functions KM we need an analog
of Proposition 2.1.14, which we will call the Machine Existence Theorem (it is
also refered to in the literature as the Kraft-Chaitin Theorem). Unlike 2.1.14,
it is nontrivial. It will be an important tool in future constructions. First we
discuss Kraft’s Theorem. Then we introduce our tool which is an effectivization of
Kraft’s Theorem. It appeared in Chaitin (1975). A similar result had already been
obtained by Levin (1973); see Exercise 2.2.23. We prefer the Machine Existence
Theorem to the setting of Levin because its notation is more convenient in our
applications.
Let N ∈ N ∪ {∞} and suppose we want to encode strings xi, i < N , by

strings σi in such a way that the set of strings σi is prefix-free. In this case we
call the (finite or infinite) list 〈σ0, x0〉, 〈σ1, x1〉, . . . a prefix-free code. For instance,
if we let σi = 0|xi|1xi we obtain a prefix-free code. (For practical applications,
such a code is useful when each xi represents a letter in an alphabet. Then a
text is a concatenation of the xi’s, and the text is encoded by the corresponding
concatenation τ of the strings σi. Now τ can be decoded in a unique way by
scanning from left to right, splitting off one string σi at a time.)
Recall from 2.1.14 that a request is a pair 〈r, x〉 from N×{0, 1}∗, meaning that

we want a description of x with length r. The following is due to Kraft (1949).

2.2.14 Proposition. Suppose (〈ri, xi〉)i<N is a list of requests, where N ∈ N ∪
{∞}. A prefix-free code 〈σ0, x0〉, 〈σ1, x1〉, . . . such that |σi| = ri for each i < N
exists if and only if the function λi.ri satisfies the weight condition.
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Proof. The necessity of the weight condition is clear since the basic cylinders [σi]
are pairwise disjoint, and therefore

∑
i<N 2−ri = λ

⋃
i[σi] ≤ 1. For its sufficiency,

note that we may reorder the list of requests and achieve that r0 ≤ r1 ≤ . . .;
now let σi be the string of length ri such that 0.σi =

∑
j<i 2

−rj . �

To illustrate this proof, suppose that N = 4 and the sequence (ri)i<N is 1, 3, 3, 3.
Then σ0 = 0, σ1 = 100, σ2 = 101, and σ3 = 110. The following figure shows how
each strings σi is associated with a subinterval of [0, 1) of length 2−ri .

0.σ0 0.σ1 0.σ2 0.σ3

2−r0 2−r1 2−r2 2−r3

Example. Suppose we want to encode strings in such a way that, if 0 is twice as likely
as 1, then the encoding string can be expected to be shorter than the given string. We
will find a prefix code for the four possible blocks of two bits in such a way that the
codeword for the most likely block 00 has length 1. The list of requests 〈ri, xi〉 (0 ≤ i <

4) is 〈1, 00〉, 〈2, 01〉, 〈3, 10〉, 〈3, 11〉. Note that
∑

i<4 2−ri = 1/2+1/4+1/8+1/8 = 1, so
the method in the proof of 2.2.14 yields the prefix-free code 〈0, 00〉, 〈10, 01〉, 〈110, 10〉,
〈111, 11〉. For instance, the codeword for the string 000010 is 00110. If 0 is twice as
likely as 1, then the expected length of a codeword for a string of length n is 17n/18.

Suppose that the function i �→ 〈ri, xi〉 is computable. Then we would like to
have a prefix-free code that is an effective list. In other words, we want the
function σi �→ xi to be given by a prefix-free machine. The Machine Existence
Theorem provides such a machine. Its proof is harder than the proof of Propo-
sition 2.2.14 because in the effective setting we are no longer allowed to reorder
the list to make the sequence (ri) non-descending.
In our applications we usually deal with a c.e. set W of requests, rather than

an effective list (which may have repetitions). For a request ρ = 〈r, x〉 we let (ρ)0
denote the first component r, and (ρ)1 the second component x.

2.2.15 Definition. A c.e. set W ⊆ N× 2<ω is a bounded request set if

∑

ρ

2−(ρ)0 [[ρ ∈W ]] ≤ 1. (2.7)

If S ⊆ {0, 1}∗, the weight of S given by W is

wgtW (S) =
∑

ρ,x

2−(ρ)0 [[ρ ∈W & x ∈ S & (ρ)1 = x]]. (2.8)

We say that wgtW ({0, 1}∗) is the total weight of W .

2.2.16 Example. For computable B the set W = {〈n + 1, B �n〉 : n ∈ N} is a
bounded request set.
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2.2.17 Theorem. (Machine Existence Theorem) For each bounded request
set W , one can effectively obtain a prefix-free machine M = Md, d > 1, such
that

∀r, y [〈r, y〉 ∈W ↔ ∃w (|w| = r & M(w) = y)].
Moreover, ΩM equals the total weight of W .

We say that Md is a prefix-free machine for W . Recall that d is the coding
constant for Md (with respect to the standard optimal prefix-free machine). In
order to avoid explicit mention ofMd, we will also refer to d as the coding constant
for W .

Bounded request sets are useful because they are easier to handle than prefix-free
machines. The machine existence theorem provides the coding constant d for the
corresponding machine. So we know that, if we enumerate the request 〈r, y〉, then
K(y) ≤ r + d (usually this is all we care about).

Proof of Theorem 2.2.17. Let 〈rn, yn〉n<N be an effective enumeration ofW ,
where N ∈ N or N =∞. As in the remark after Proposition 2.2.14 we associate
with each string σ the half-open interval I(σ) = [0.σ, 0.σ+2−|σ|) of real numbers
such that the binary representation (containing infinitely many zeros) extends σ.
For instance I(011) = [3/8, 1/2). In the construction of M , at stage n ≥ 0 we
will find a string wn of length rn and set M(wn) = yn. The idea is to let wn be
the leftmost string such that the associated interval is disjoint from the previous
intervals. For instance, if r0 = r1 = 3 and r2 = 1 we assign the intervals as
follows:

2−r22−r0 2−r1

If we instead began with
2−r0 2−r1

then we would be stuck in the third step because no interval of length 1/2 is
available any longer. (However, see Exercise 2.2.24.)
We let R−1 = {∅}. At the beginning of each stage n ≥ 0 we have a finite

prefix-free set Rn−1 of strings where all extensions are unused.
Construction of strings wn and finite sets of strings Rn.
Stage n.

(1) Let zn be the longest string in Rn−1 of length ≤ rn (below we will verify
that zn exists).

(2) Choose wn so that I(wn) is the leftmost subinterval of I(zn) of length 2−rn ,
i.e., let wn = zn0rn−|zn|.
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(3) To obtain Rn, first remove zn from Rn−1. If wn �= zn then also add the
strings zn0i1, 0 ≤ i < rn − |zn|, to Rn.

We verify inductively that for each n ≥ 0 the following hold:

(a) The string zn exists.
(b) All the strings in Rn have different lengths. (In fact, for x, y ∈ Rn we have
|x| < |y| ↔ x <L y, that is, the intervals I(x) get longer as one moves to
the right.)

(c) {I(z) : z ∈ Rn} ∪ {I(wi) : i ≤ n} is a partition of [0, 1).
We prove (a) for n ≥ 0, assuming (b) and (c) for n−1 (for n = 0 they are trivial
statements). If zn fails to exist, then rn is less than the length of each string in
Rn−1, so that 2−rn >

∑
z 2

−|z| [[z ∈ Rn−1]] by (b) for n− 1. Then
∑n

i=0 2
−ri > 1

since
∑

z 2
−|z| [[z ∈ Rn−1]]+

∑n−1
i=0 2−ri = 1 by (c) for n−1. This contradicts the

assumption that W is a bounded request set.
Clearly (b) for n holds if wn = zn. If wn �= zn then |zn| < |wn| but also |wn| is

less than the length of the shortest string in Rn−1 that is longer that zn, so (b)
holds by the definition of Rn. Finally, (c) is satisfied by the definition of Rn.
The machine M given by M(wn) = yn is prefix-free by (c). As M was deter-

mined effectively from W we may obtain an index d > 1 for M . For each request
ρ = 〈r, y〉 ∈ W we put a new description w of length r into dom(M), so ΩM

equals the total weight of W . �

To give an example how to apply Theorem 2.2.17, we reprove the inequal-
ity K(x) ≤+ |x| + 2 log |x| in 2.2.8. If c is chosen sufficiently large then the
set W = {〈|x| + 2 log |x| + c, x〉 : x ∈ {0, 1}∗} is a bounded request set, since∑

ρ 2
−(ρ)0 [[ρ ∈W ]] ≤ 2−c(

∑
n>0 2

n2−n−2 log n) ≤ 1. Let M be the prefix-free
machine forW . Then KM (x) ≤ |x|+2 log |x|+c and thus K(x) ≤+ |x|+2 log |x|.
Theorem 2.2.17 can be used to characterize the functions of the type KM for

a prefix-free machine M . This is analogous to Proposition 2.1.15.

2.2.18 Proposition. Suppose that D : N → N ∪ {∞} is computably approx-
imable from above and satisfies the weight condition

∑
x 2

−D(x) ≤ 1. Then there
is a prefix-free machine M such that ∀xKM (x) = D(x) + 1.

Proof. Suppose that λx, s.Ds(x) is a computable approximation of D from
above. The c.e. set W is defined exactly as in the proof of 2.1.15: whenever
r = Ds(x) < Ds−1(x) then enumerate the request 〈r + 1, x〉 into W at stage s.
For each x, at the least stage s such that Ds(x) = D(x) < ∞, the last request
of the form 〈u, x〉 is enumerated into W , where u = D(x) + 1. This enumeration
contributes 2−D(x)−1 to the sum in (2.7). The contribution of all the requests
〈m,x〉 enumerated at previous stages is less than

∑
m>u 2−m = 2−u since m > u

for such a request. All the requests with second component x together contribute
less than 2−D(x). Since D satisfies the weight condition, W is a bounded request
set. Applying the Machine Existence Theorem 2.2.17 to W yields a machine M
as required. �
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We now obtain a machine-independent characterization of K (and in fact of
any function KR where R is an optimal prefix-free machine as defined in 2.2.6).

2.2.19 Theorem. K can be characterized as follows up to =+: it is the least
with respect to ≤+ among the functions D that are computably approximable
from above and satisfy the weight condition

∑
x 2

−D(x) ≤ 1. �

The following application of 2.2.19 will be needed for Theorem 8.1.9. It can be
seen as an effective version of Exercise 1.9.13.

2.2.20 Proposition. Let B be a c.e. prefix-free set and let bm = #(B∩{0, 1}m)
for m ∈ N. Then ∀m [K(m) ≤+ m− log bm].

Proof. Clearly the function D given by D(m) = m − log bm is computably
approximable from above. For each m we have λ[B ∩ {0, 1}m]≺ = 2−mbm. Since
2log bm ≤ bm, we have

∑
m 2−m+log bm ≤ λ[B]≺ ≤ 1. Therefore D satisfies the

weight condition. �

2.2.21 Remark. (Coding constants given in advance.) In building a bounded
request set L, by the Recursion Theorem we often assume that a coding con-
stant d for a machine Md is given, and we think ofMd as a prefix machine for L.
This is useful because d represents the “loss” that occurs when putting a request
〈r, x〉 into L; its enumeration merely ensures that K(x) ≤ r + d. As usual in
applications of the Recursion Theorem, somewhat paradoxically, we can assume
that d is given even if we are building L. Here is why.
(1) From an index for a c.e. set G ⊆ N× 2<ω we may effectively obtain an index
for a bounded request set G̃ such that G̃ = G in case G already is a bounded
request set.
(2) Let Md (d > 1) be the machine effectively obtained from G̃ via the Machine
Existence Theorem.
(3) Our construction yields a bounded request set L uniformly in d.
We have to show that L is a bounded request set for each d. If G = L, which will
happen for some effectively given G by the Recursion Theorem, then we may
conclude that G is a bounded request set and Md is a machine for L. (We need
to show that L is always a bounded request set, for otherwise we might end up
with a fixed point where G = L but G̃ �= G, which would be of no interest to
us.) See Proposition 5.2.13 for our first application of this method.

Exercises.

2.2.22. Show that
∑

x f(K(x))2−K(x) =∞ for each order function f .

2.2.23. (Levin) A discrete c.e. semimeasure on {0, 1}∗ is a function m : {0, 1}∗ → R+
0

such that m(x) is a left-c.e. real number uniformly in x and
∑

x m(x) ≤ 1. Note
that S → m(S) =

∑
x∈S m(x) defines a measure on all subsets S of {0, 1}∗. For

instance, the function m(x) = 2−x−1 is a discrete c.e. semimeasure; a further example
is m(x) = 2−K(x). Verify that a function D : N→ N∪{∞} is computably approximable
from above and satisfies the weight condition iff m(x) = 2−D(x) is a discrete c.e.
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semimeasure. Next, show that there is a close correspondence between discrete c.e.
semimeasures and bounded request sets:

(a) For each bounded request set W , the function m(x) = wgtW ({x}) is a discrete c.e.
semimeasure on {0, 1}∗ such that m(S) = wgtW (S).
(b) If m is a discrete c.e. semimeasure, there is a bounded request set W such that
m(x) = wgtW ({x}) for each x. Also, L = {〈k + 1, x〉 : 2−k ≤ m(x)} is a bounded
request set such that 4 · wgtL({x}) ≥ m(x) ≥ wgtL({x}) for each x.

For details see Li and Vitányi (1997).
2.2.24. (Gács) (i) Let p, δ ∈ [0, 1)R, δ > 0, p + δ ≤ 1. Show that there is a string w
such that δ < 2−|w|+2 and I(w) ⊆ [p, p + δ).
(ii) Use (i) to prove the slightly weaker version of 2.2.17 where the conclusion is
∀r, y [〈r, y〉 ∈ W ↔ ∃w (|w| ≤ r + 2 & M(w) = y)] (that is, the M -description
corresponding to the request 〈r, y〉 may be chosen by 2 longer than r).

The Coding Theorem

The probability that a prefix-free machine M outputs a string x is
PM (x) =

∑
σ 2−|σ| [[M(σ) = x]] = λ[{σ : M(σ) = x}]≺.

Thus ΩM =
∑

x PM (x).

2.2.25 Theorem. (Coding Theorem) From a prefix-free machine M we may
effectively obtain a constant c such that ∀x 2c2−K(x) > PM (x).

Proof. We show that the function D(x) = $− log2 PM (x)% is computably ap-
proximable from above and satisfies the weight condition

∑
x 2

−D(x) ≤ 1. Then we
apply Theorem 2.2.19.
Let PM,s(x) = λ[{σ : Ms(σ) = x}]≺, then Ds(x) = $− log2 PM,s(x)% is a

computable approximation of D from above.
By definition D(x) ≥ − log2 PM (x) > D(x)− 1, so

2−D(x) ≤ PM (x) < 2−D(x)+1.
This implies the weight condition for D, since

∑
x 2

−D(x) ≤∑
x PM (x) ≤ 1.

By 2.2.19 we have K ≤+ D, so there is a constant c such that ∀xK(x) − c ≤
D(x)− 1. Then for each x we have 2c2−K(x) ≥ 2−D(x)+1 > PM (x). �

Note that 2−KM (x) ≤ PM (x) because a shortest M -description of x contributes
2−KM (x) to PM (x). If M = U then by the Coding Theorem we also have 2c2−K(x) >

PU(x) for each x, so 2−K(x) and PU(x) are proportional. By another application of the
Coding Theorem, for each prefix-free machine M we have PM (x) = O(PU(x)).

In Fact 2.1.13 we proved that if d ∈ N then for each n ∈ N the number of d-
compressibleC strings of length n is less than 2n−d+1. We apply the Coding
Theorem to obtain an analog of this for K. By Theorem 2.2.9, K(x) ≤ |x| +
K(|x|)+1. We will calculate an upper bound for the number of strings of length n
such that K(x) ≤ |x|+K(|x|)− d.
2.2.26 Theorem. There is a constant c ∈ N such that the following hold.

(i) ∀d ∈ N ∀n #{x : |x| = n & K(x) ≤ n+K(n)− d} < 2c2n−d

(ii) ∀b ∈ N ∀n #{x : |x| = n & K(x) ≤ K(n) + b} < 2c2b.
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Proof. (i). Let M be the prefix-free free machine given by M(σ) = |U(σ)|. By
the Coding Theorem, let c be the constant such that 2c2−K(n) > PM (n) for
each n. If |x| = n and K(x) ≤ n+K(n)− d, then a shortest U-description of x,
being an M -description of n, contributes at least 2−n−K(n)+d to PM (n). If there
are at least 2n+c−d such x, then PM (n) ≥ 2n+c−d2−n−K(n)+d = 2c2−K(n), a
contradiction.
(ii) follows from (i) letting d = n − b. (Note that (i) is vacuously true for nega-
tive d.) �

The estimate in (ii) will be applied in Section 5.2 to show that each K-trivial set
is ∆0

2. Another application of the Coding Theorem is Theorem 2.3.6 where we give an
expression for the descriptive complexity of an ordered pair K(〈x, y〉).
2.2.27 Exercise. Use Exercise 2.2.23 and the Coding Theorem to show that m(x) =
2−K(x) is an optimal discrete c.e. semimeasure on {0, 1}∗, namely, for each discrete c.e.
semimeasure v we have ∀x [e ·m(x) ≥ v(x)] for an appropriate constant e > 0.

2.3 Conditional descriptive complexity
We study the conditional descriptive complexity of a string x. An auxiliary
string y is available to help with the decompression. We consider conditional
versions of both C and K.

Basics

The conditional descriptive complexity C(x | y) is the length of a shortest de-
scription of x using the string y as auxiliary information. For a simple example,
if y is the first half of a string x of even length, we expect C(x | y) to be quite
a bit smaller than C(x). Also C(f(x) | x) should be bounded by a constant for
each computable function f .
To develop the formal theory of conditional C-complexity, one simply allows

all the machines involved to have two inputs, the second being the auxiliary
information y. Such a machine is called binary machine. The standard optimal
binary machine is given by

V
2(0e−11σ, y) 	 Φ2

e(σ, y)

where e > 0 and σ ∈ {0, 1}∗. Now define
C(x | y) = min{|σ| : V

2(σ, y) = x}.
Next we introduce a conditional version of the prefix-free string complexity K.
A binary machine M is called prefix-free when fixing the second component if for
each string y the set {σ : M(σ, y) ↓} is prefix-free. There is an effective listing
(M2

d )d∈N of all such machines. Now we may adapt the proof of Theorem 2.2.9,
using the Recursion Theorem with Parameters 1.1.6, in order to obtain an op-
timal binary machine U

2 that is prefix-free when fixing the second component
and such that U

2(0d−11σ, y) =M2
d (σ, y) for d > 1. We let

K(x | y) = min{|σ| : U
2(σ, y) = x}.
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Then K(x | y) ≤ K(n | y) + n+ 1 where n = |x|.
The empty string is of no use as an auxiliary information. Hence C(x | ∅) =+

C(x) and K(x | ∅) =+ K(x). (We could modify the definitions of V and of U in
order to achieve an equality here.)

2.3.1 Fact. Let N be a machine.
(i) For each z and each y such that N(y)↓ we have C(N(y) | z) ≤+ C(y | z).
(ii) For each y and each z such that N(z)↓ we have C(y | z) ≤+ C(y | N(z)).
The same holds with K in place of C, and still for an arbitrary machine N .

Proof. (i) is a version of Fact 2.1.20 for conditional complexity and proved in
the same way; (ii) is left as an exercise. The case of K is similar. �

In the following we will need a notation for a particular shortest U-description
of a string x such that the decompression takes the least amount of time.

2.3.2 Definition. For a string x, if t = µs.Ks(x) = K(x), let x∗ be the leftmost
string σ such that |σ| = K(x) and Ut(σ) = x.

The reason for this particular choice of a shortest description becomes apparent
in the proof of the following fact.

2.3.3 Fact. K(y | x∗) =+ K(y | 〈x,K(x)〉).
Proof. Given x∗, a machine N can compute the pair 〈x,K(x)〉 = 〈U(x∗), |x∗|〉.
Conversely, from the pair 〈x,K(x)〉 a machine N ′ can first compute t =

µs.Ks(x) = K(x) and then x∗. Now we apply Fact 2.3.1(ii) for K. �

Exercises. Show the following.

2.3.4. C(x) =+ C(x, C(x)) and K(x) =+ K(x, K(x)).

2.3.5. For all x, y, z we have K(x | z) ≤+ K(x | y) + K(y | z).

An expression for K(x, y) �

Using conditionalK-complexity we will find an expression for the prefix-free com-
plexity of an ordered pair 〈x, y〉. We write K(x, y) as a shorthand for K(〈x, y〉).
(1) Clearly K(x, y) ≤+ K(x)+K(y) via the prefix-free machine which on input ρ
tries to find a decomposition ρ = στ such that U(σ)↓= x and U(τ)↓= y, and in
that case outputs 〈x, y〉.
(2) This can be improved to K(x, y) ≤+ K(x) +K(y | x) because the machine
already has x when it decompresses τ to obtain y.
(3) A further improvement is the inequality K(x, y) ≤+ K(x) +K(y | x∗): the
machine looks for a decomposition ρ = στ such that U(σ)↓= x and U

2(τ, σ)↓= y.
Once it finds this, it outputs 〈x, y〉. This machine is prefix-free because U

2 is
prefix-free when fixing the second component. The last upper bound for K(x, y)
is our final one by the following result of Levin in Gács (1974).

2.3.6 Theorem. K(x, y) =+ K(x) +K(y | 〈x,K(x)〉) =+ K(x) +K(y | x∗).
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Proof. By the preceding discussion and Fact 2.3.1, it remains to show that
K(x) +K(y | x∗) ≤+ K(x, y). We will apply the Coding Theorem 2.2.25 to the
machine G(σ) 	 (U(σ))0 which outputs the first component of U(σ) viewed as an
ordered pair in case U(σ)↓. Let c be a constant such that ∀x 2c2−K(x) > PG(x).

Construction of a uniformly c.e. sequence of bounded request sets (Lσ).
Fix σ. Suppose U(σ) ↓= x at stage s. If U(ρ) = 〈x, y〉 at a stage t > s, put the
request 〈|ρ|−|σ|+c, y〉 into Lσ, but only as long as the total weight of Lσ defined
after (2.8) does not exceed 1. (Putting the request into Lσ causes an increase of
this weight by 2−|ρ|+|σ|−c.)
Let Mf(σ) be the prefix-free machine effectively obtained from σ via the Ma-

chine Existence Theorem 2.2.17. The binary machine N on inputs ρ, σ first waits
for U(σ) ↓. If so, it simulates Mf(σ)(ρ). If σ = x∗ then 2c2−|σ| > PG(x) =
∑

ρ 2
−|ρ| [[∃z U(ρ) = 〈x, z〉]]. Therefore the total weight put into Lσ is at most

PG(x)2|σ|−c ≤ 1, hence we never threaten to exceed the weight 1 in the con-
struction of Lσ. Thus N(ρ, σ) = y for some ρ such that |ρ| = K(x, y) − |σ| + c,
which implies that K(y | x∗) ≤+ |ρ| =+ K(x, y)−K(x), as required. �

2.4 Relating C and K

Basic interactions

Proposition 2.2.8 states that K(x) ≤+ K(|x|)+|x|. In the proof we constructed a
prefix-free machine N that tries to split the input τ in the form τ = σρ, where σ
is a prefix-free description. The point is that such a decomposition is unique if
it exists. We will obtain some facts relating C and K by varying this idea. For
instance, a modification of N , where we attempt to compute V(ρ) instead of
copying ρ, yields the following.

2.4.1 Proposition. K(x) ≤+ K(C(x)) + C(x).

Proof. On input τ , the machine Ñ first searches for a decomposition τ = σρ
such that n = U(σ)↓ and |ρ| = n. Once it is found Ñ simulates V(ρ). (That is,
Ñ behaves exactly like V on input ρ, including its output.)
Clearly Ñ is prefix-free. Given x, let ρ be a shortest V-description of x and

let σ be a shortest U-description of |ρ|, then Ñ(σρ) = x. So K(x) ≤+ |σ|+ |ρ| =
K(C(x)) + C(x). �

In the following we use this fact to show that K(x) exceeds C(x) by at most
2 log(C(x)) ≤+ 2 log(|x|), up to a small additive constant. Hence C ∼ K, so in
several results C can be replaced by K. An example is Proposition 2.1.22.

2.4.2 Corollary. C(x) ≤+ K(x) ≤+ C(x) + 2 log(C(x)) ≤+ C(x) + 2 log(|x|).
Proof. We have already observed that C(x) ≤+ K(x). For the second inequality,
letm = C(x). ThenK(m) ≤+ 2 logm by (2.5) and since |m| = log(m+1) whenm
is viewed as a string (see page 13). Now apply 2.4.1. �
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The term 2 log(C(x)) in the middle could even be decreased to log(C(x))+2 log log(C(x))
by 2.2.8. If x has length 10000, say, then K(x)− C(x) is bounded by about 20.

One more time, we apply the idea to split off a prefix-free description.

2.4.3 Proposition. For all strings x and y we have C(xy) ≤+ K(x) + C(y).

Proof. On input τ , the machine M first searches for a decomposition τ = σρ
such that U(σ) ↓= x. Once found, M simulates the computation of V on input
ρ. If V(ρ) = y then M outputs xy. Clearly, CM (xy) ≤ K(x) + C(y). �

Next, we prove a continuity property of C that strengthens Proposition 2.1.21.
2.4.4 Proposition. abs(C(x)− C(y)) ≤+ K(abs(x− y)) ≤+ 2 log abs(x− y).

Proof. First suppose that C(x) ≥ C(y). Note that x = y ± abs(x − y). We may
describe x based on (1) a U-description σ of z = abs(x − y), (2) a V-description ρ
of y, and (3) a further bit b telling us whether to add or to subtract z. If we put this
information into the form τ = σbρ, then a machine S on input τ can first find σ ≺ τ
such that U(σ) = z, then read b, and then apply V to the rest ρ to obtain y. Now it has
all the information needed in order to calculate x. Thus C(x) ≤+ K(abs(x−y))+C(y).

Note that y = x± abs(x− y), so if C(x) < C(y) then the same machine S shows that
C(y) ≤+ K(abs(x− y)) + C(x). �

The following result of Levin (see Li and Vitányi 1997) relates plain descriptive
complexity C with the conditional prefix-free complexity K. Like 2.4.2, is states that
K(x)− C(x) is small.

2.4.5 Proposition. C(x) =+ K(x | C(x)).

Proof. “≥+:” Let M be the binary machine such that M(σ, |σ|) � V(σ) and M(σ, m)↑
for m �= |σ|. Clearly M is prefix-free when fixing the second component. If σ is a V-
description of x then M(σ, |σ|) = x. Hence, if |σ| = C(x), then |σ|+ d ≥ K(x | C(x)),
where d > 1 is an index for M in the effective listing of binary machines that are
prefix-free when fixing the second component.

“≤+:” Let N be the machine that, on input τ , searches for a decomposition τ = σρ
such that n = U(σ)↓ and then simulates U2(ρ, n + |ρ|). If C(x) < K(x | C(x)) we are
done, so we may assume that n = C(x)−K(x | C(x)) ≥ 0.

Let ρ be a shortest string such that U2(ρ, C(x)) = x, so that |ρ| = K(x | C(x)) and
|ρ| + n = C(x). Since N(n∗ρ) = x, we have CN (x) ≤ K(n) + |ρ| and hence C(x) ≤+

K(n) + |ρ|. Thus, since K(w) ≤+ 2|w| by (2.5), n = C(x) − |ρ| ≤+ K(n) ≤+ 2 log n.
Therefore, n = C(x)−K(x | C(x)) is bounded from above by a constant. �

Solovay’s equations �

By Corollary 2.4.2 K(x)− C(x) ≤+ 2 log |x|. Solovay’s equations tell us how to
express C in terms of K and conversely up to an error of only O(log log |x|):
within such an error we have C(x) = K(x) − K(K(x)) and K(x) = C(x) +
C(C(x)). The present proof is due to Miller (2008) and builds on Theorem 2.3.6,
Proposition 2.4.5, and ideas from the original proof of Solovay (1975).

2.4.6 Theorem. For each x ∈ {0, 1}∗ we have

(i) C(x) = K(x) − K(2)(x) + O(K(3)(x)), and
(ii) K(x) = C(x) + C(2)(x) + O(C(3)(x)).
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Proof. For notation involving error terms see page 75. Also recall from Definition 2.3.2
that x∗ is a shortest U-description of x. To save on brackets we write KC(x) instead
of K(C(x)), etc.

We begin with a brief outline of the proof. We first prove Equation (i) and then
obtain Equation (ii) from (i). To prove (i), by Proposition 2.4.5 C(x) =+ K(x | C(x)).
Note that K(x | C(x)∗) ≤+ K(x | C(x)) by Fact 2.3.1(ii). In Claim 2.4.7 we show that
it is by at most K(2)C(x) smaller. This makes it possible to work with K(x | C(x)∗)
instead of K(x | C(x)). Then, applying Levin’s Theorem 2.3.6 twice, we obtain that
within the small error of K(2)C(x), C(x) can be replaced by

K(x | C(x)∗) =+ K(x, C(x))−KC(x) =+ K(x) + K(C(x) | x∗)−KC(x).

Based on this we will be able to reach Equation (i).

2.4.7 Claim. C(x) ≤+ K(x | C(x)∗) + K(2)C(x).
Let σ = C(x)∗. By Exercise 2.3.5,

K(x | C(x)) ≤+ K(x | σ) + K(σ | C(x)).

We will estimate the second term on the right hand side. For any y we have
K(y∗ | y) =+ K(K(y) | y), since, given y, we can effectively produce a prefix-free
description of y∗ from one of K(y) (wait till the first U-description of y that has length
K(y) comes up), and conversely (take the length). We apply this to y = C(x) and
obtain

K(σ | C(x)) = K(σ | y) =+ K(K(y) | y) ≤+ K(2)(y) = K(2)C(x).

This establishes Claim 2.4.7. Next we provide the main technical result.

2.4.8 Claim. C(x) = K(x)−KC(x) + O(K(2)C(x)).
Let Q(x) = C(x) + KC(x)−K(x). To establish the claim, we will show that

∀∞x [abs(Q(x)) ≤ 2K(2)C(x)]. (2.9)

By 2.4.1 Q(x) is bounded from below by a constant. So it suffices to show that
∀∞x [Q(x) ≤ 2K(2)C(x)]. We apply Levin’s Theorem 2.3.6 twice:

K(x | C(x)∗) =+ K(x, C(x))−KC(x) =+ K(x) + K(C(x) | x∗)−KC(x).

Substituting this into Claim 2.4.7 we obtain an estimate for C(x):

C(x) ≤+ K(x) + K(C(x) | x∗)−KC(x) + K(2)C(x). (2.10)

Our next task is to find a suitable upper bound for the term K(C(x) | x∗):

K(C(x) | x∗) ≤+ K(C(x) | K(x))

≤+ K(abs(C(x)−K(x)))

≤+ K(abs(C(x) + KC(x)−K(x))) + K(2)C(x).

To obtain the last line, we attached a U-description of KC(x) (and a further bit b)
at the beginning of a U-description of abs(C(x)−K(x)) as in the proof of 2.4.4. This
causes the extra term K(2)C(x). After rearranging, the estimate (2.10) now turns into
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Q(x) ≤+ K(abs(Q(x))) + K(2)C(x).

Recall that we already have a constant lower bound for Q(x), so to obtain the upper
bound we may assume Q(x) ≥ 0. Then, since K(m) ≤+ 2 log m for each m ∈ N, we have
Q(x) ≤+ 2 log Q(x) + K(2)C(x), which implies Q(x) ≤+ 2K(2)C(x). This establishes
(2.9) and hence Claim 2.4.8.

To proceed we need two facts.

2.4.9 Fact. K(n + m) = K(n) + O(K(m)).
For K(n + m) ≤+ K(n) + K(m) and also K(n) ≤+ K(n + m) + K(m). It follows that
abs(K(n + m)−K(n)) ≤+ K(m).

2.4.10 Fact. Let f, g : N→ N. If g(x) = f(x)+O(K(f(x))), then K(g(x)) ∼ K(f(x)).
To see this, we apply K to both sides of the hypothesis. By Fact 2.4.9 we obtain that
K(g(x)) = K(f(x)) + O(log K(f(x))), so K(g(x)) ∼ K(f(x)).

To establish Equation (i) of Theorem 2.4.6 we want to replace the C’s by K’s on the
right hand side of Claim 2.4.8. We apply Claim 2.4.8 itself for this! In view of Fact 2.4.9,
after applying K to both sides of the claim we obtain

KC(x) = K(2)(x) + O(K(2)C(x)) (2.11)

(an error term O(K(3)C(x)) has been absorbed into the larger O(K(2)C(x))). This is
equivalent to K(2)(x) = KC(x)+O(K(2)C(x)), so by Fact 2.4.10, where f(x) = KC(x),
we obtain

K(3)(x) ∼ K(2)C(x)). (2.12)

Substituting the last two equations into Claim 2.4.8 yields Equation (i).
Next we prove Equation (ii). By Equation (i) with C(x) instead of x,

C(2)(x) = KC(x) + O(K(2)C(x)), (2.13)

where the error term O(K(3)C(x)) has been absorbed into O(K(2)C(x)). Using (2.11)
and then (2.12), this turns into

C(2)(x) = K(2)(x) + O(K(3)(x)).

Applying the last equation to C(x) instead of x and using Fact 2.4.10 yields

C(3)(x) ∼ K(2)C(x). (2.14)

Rearranging Claim 2.4.8 yields K(x) = C(x) + KC(x) + O(K(2)C(x)). Now we sub-
stitute first (2.13) and then (2.14) in order to obtain Equation (ii). This completes the
proof of Theorem 2.4.6. �

2.5 Incompressibility and randomness for strings
An object is random if it is disorganized, has no patterns, no regularities. Patterns
occuring in a string x yield a description of the string that is shorter than its
trivial description (the string itself). For instance, no one would regard x as
random if all the bits of x in the even positions are 0. One can use this pattern
to show that C(x) ≤+ |x|/2 (see Exercise 2.1.7). On page 99 we will gather
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further evidence for the thesis that, for strings, the intuitive notion of randomness
can be formalized by being hard to describe, that is, incompressibility as defined
in 2.1.12. We provide two variants of the concept of incompressibility with respect
to C, the first weaker and the second stronger. They yield alternative formal
randomness notions for strings.

2.5.1 Definition. The string x is d-incompressible in the sense of K, or d-
incompressibleK for short, if K(x) > |x| − d. Else x is called d-compressibleK .

An incompressibility notion for strings can also be used to study the randomness
aspect of an infinite sequence of zeros and ones (i.e., a subset of N) via its finite
initial segments. Incompressibility in the sense of K turns out to be the most
useful tool; see Section 3.2.

2.5.2 Definition. We say that a string x is strongly d-incompressibleK ifK(x) >
|x| + K(|x|) − d, namely, K(x) differs by at most d from its upper bound
|x|+K(|x|) + 1 given by Theorem 2.2.9.

While the intuitive concept of randomness for strings does not involve any
number parameter, each of the incompressibility notions for a string is defined
in terms of a constant d. It is somewhat arbitrary how large a constant we
want to accept when formalizing randomness by incompressibility. Generally, the
constant should be small compared to the length of the string. For each fixed d,
randomness is an asymptotic concept when interpreted as incompressibility with
parameter d. The arbitrariness in the choice of the constant only disappears
completely when we consider subsets of N.

It is harder to obtain a formal notion of computational complexity for strings, because
the computational complexity of a set Z is given by what an algorithm can do with Z

as an oracle, and such an algorithm only makes sense when considered over the whole
range of inputs. (A possible measure for the computational complexity of a string y is
C(x)− C(x | y), taken over a variety of strings x.)

Comparing incompressibility notions

The implications between the incompressibility notions are

strongly incompressibleK
(1)⇒ incompressibleC

(2)⇒ incompressibleK .

More precisely, for each p ∈ N there is a q ∈ N such that each strongly p-
incompressibleK string is q-incompressibleC , and similarly for the second impli-
cation.

2.5.3 Remark. For each length, most strings are incompressible in the strongest
sense. For it is immediate from Theorem 2.2.26(i) that the number of strongly d-
incompressibleK strings of length n is at least 2n−2c+n−d where c is the constant
of the theorem. We can make the proportion of strings that are not strongly
incompressibleK as small as we wish (independently of n) by choosing d suffi-
ciently large.
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The implication (2) holds for a minor change of constants since C(x) ≤+ K(x).
Actually, if x is incompressibleC then all the prefixes of x are incompressibleK :

2.5.4 Proposition. Fix b ∈ N such that C(yz) ≤ K(y) + |z| + b for each y, z
(by 2.4.3). Then for each d ≥ b, each prefix of a (d-b)-incompressibleC string x
is d-incompressibleK . That is, C(x) > |x| − (d− b)→ ∀y � x [K(y) > |y| − d].
Proof. Suppose that y � x. Let x = yz. If K(y) ≤ |y| − d then by the choice
of b we have C(x) ≤ K(y) + |x| − |y|+ b ≤ |x|+ b− d. �

In particular, there are arbitrarily long strings x such that each prefix of x
is d-incompressibleK . There is no analog of this for C in place of K because for
each c, if x has length about 2c then the C-complexity of some prefix w of x
dips below |w| − c (Proposition 2.2.1). This implies that for each c there is a d-
incompressibleK string w such that C(w) ≤ |w| − c. Thus the converse of the
implication (2) fails. Next, we address the implication (1).

2.5.5 Proposition. There is c ∈ N such that the following holds. For each d,
K(x) > |x|+K(|x|)− (d− c) → C(x) > |x| − 2d.

Proof. We define a bounded request set W to ensure that

C(x) ≤ |x| − 2d → K(x) ≤ |x|+K(|x|)− (d− c), (2.15)

where c− 2 is the coding constant of W given by Theorem 2.2.17.

Construction of W . At stage s, for each d, each n and each x of length n, if
Ks(n) < Ks−1(n) or Cs(x) ≤ n − 2d < Cs−1(x), then enumerate the request
〈Ks(n) + n− d+ 2, x〉 into W .
Suppose that U(σ) = n and let d ∈ N. By Fact 2.1.13 there are no more than
2n−2d+1 strings x of length n such that C(x) ≤ n − 2d. So the contribution of
σ, d to the total weight of W is at most 2−|σ|−n+d−22n−2d+1 = 2−|σ|−d−1. The
contribution over all σ, d is therefore at most

∑
σ 2−|σ| [[U(σ)↓]] = Ω ≤ 1.

Clearly (2.15) is satisfied. �

The converse of implication (1) fails as well: by Miller (2008), for sufficiently
large c, for each Π0

1 set Q such that ∀nQ∩ {0, 1}n �= ∅ there are infinitely many
strings w ∈ Q such that K(w) ≤ |w| + K(|w|) − c. For each d ∈ N, the set
of d-incompressibleC strings is a set Q of this kind.

Randomness properties of strings

Incompressibility appears to be the appropriate mathematical definition of ran-
domness for strings because incompressible strings have properties that one com-
monly associates with randomness. We will provide twofold evidence for this
thesis. The statements hold even for the weakest notion, incompressibility in the
sense of K.

(a) incompressible strings have only short runs of zeros (i.e. blocks only con-
sisting of zeros), and
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(b) zeros and ones occur balancedly in incompressible strings.

A property G of strings pointing towards organization should be rare in that
there are not too many strings of each length with that property. Also, G should
be not too hard to recognize: we will mostly consider rare properties G that
are also decidable. Having long runs of zeros is such a property, having a large
imbalance between zeros and ones is another.
Given a set of strings G, for each n let Gn = G∩{0, 1}n. The following lemma

shows that for any c.e. set of strings G that is rare in the sense that #Gn/2n

is bounded by O(n−3), the strings in Gn can be compressed to n− logn in the
sense of K. (Recall from page 13 that we use the notation logn = max{k ∈
N : 2k ≤ n}.) This lemma will be applied to prove (a) and (b).

2.5.6 Lemma. Let G be a c.e. set of strings such that #Gn = O(2n−3 log n) for
each n. Then ∀x ∈ Gn [K(x) ≤+ n− logn].

Proof. The idea is that for each string x ∈ G the length n and its position in
the computable enumeration of Gn together provide a short description of x.
Instead of giving that description explicitly, we rely on the Machine Existence
Theorem 2.2.17.
Since n − 3 logn > 0 for n ≥ 10, there is k ∈ N such that for all n ≥ 10 we

have #Gn ≤ 2k2n−3 log n. Define a bounded request set W as follows: when x is
enumerated into G and |x| = n ≥ 10, put the request

〈n− logn+ k + 1, x〉
into W . By the hypothesis, the weight contributed by Gn for n ≥ 10 is at
most 2−k−12−n+log n2k2n−3 log n ≤ (n − 1)−2/2 (since (n − 1)−1 ≥ 2− log n). As∑

j>0 1/j
2 = π2/6 < 2 this implies that W is a bounded request set. By 2.2.17,

x ∈ G and |x| = n imply K(x) ≤+ n− logn. �

Our first application of the foregoing lemma is a proof of (a) above: a run of
zeros in an incompressibleK string of length n is bounded by 4 logn+O(1). We
need to show that the relevant property is rare.

2.5.7 Proposition. Let n ∈ N and let x be a string of length n. If there is a
run of 4 logn zeros in x then K(x) ≤+ n− logn.

Proof. Define the computable set G by letting

Gn = {x : |x| = n & x has a run of 4 logn zeros}.
Such a string x is determined by the least position i < n where such a run of
zeros starts and the n− 4 logn bits in the positions outside this run. Thus,
#Gn ≤ n2n−4 log n = O(2n−3 log n). By Lemma 2.5.6 we may conclude that
K(x) ≤+ n− logn. �

Next we settle (b): strings with a large imbalance between zeros and ones can
be compressed in the sense of K. We refer to the brief discussion of probability
theory on page 73 and use some of the notation mentioned there. In particular
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if the sample space is {0, 1}n, the random variable Sn(x) denotes the number of
occurrences of ones in a string x of length n. For d ∈ N− {0}, let

An,d = {x ∈ {0, 1}n : abs(Sn(x)/n− 1/2) ≥ 1/d}. (2.16)

Thus, An,d is the event that the number of ones differs by at least n/d from the
expectation n/2. The Chernoff bounds (Shiryayev, 1984, Eqn. (42) on pg. 69)
yield

P (An,d) ≤ 2e−2n/d2
. (2.17)

This considerably improves the estimate P (An,d) ≤ d2/(4n) after (1.21), page 73,
obtained through the Chebycheff inequality. For instance, for P (A1000,10) the
upper bound is 4.2 · 10−9 rather than 1/40.

2.5.8 Theorem. There is a constant c and a computable function λd.nd such
that ∀d ∈ N− {0} ∀n ≥ nd ∀x ∈ An,d [K(x) ≤ n− logn+ c].

Proof. For each d ∈ N− {0} let nd be the least number such that

∀n ≥ nd [e2n/d2
/2 ≥ n3].

Define the computable set G by letting Gn = ∅ for n < 10, and for n ≥ 10,

Gn = {x : x ∈ An,d where d is maximal such that nd ≤ n}.
Then #Gn ≤ 2n+1e−2n/d2 ≤ 2n−3 log n. By Lemma 2.5.6 there is c such that
∀n∀x ∈ Gn [K(x) ≤ n− logn+ c]. Given d, if n ≥ nd and x ∈ An,d then x ∈ Gn,
so K(x) ≤ n− logn+ c as required. �

We may conclude that the occurrences of zeros and ones are asymptotically
balanced for b-incompressibleK strings:

2.5.9 Corollary. Fix b. For each d, for almost every n, each b-incompressibleK

string x of length n satisfies abs(Sn(x)/n− 1/2) < 1/d.

Proof. In the previous notation, if n > 2b+c and n ≥ nd then the required
inequality holds, else x ∈ An,d and thus K(x) ≤ n− logn+ c ≤ n− b. �

If incompressibility is taken in a stronger sense one also obtains stronger conclusions.
For instance, the following exercise shows that for almost all n, if a string x of length n

is incompressible in the sense of C then abs(Sn(x) − n/2) is bounded by
√

n ln n.
Incompressibility in the sense of K merely yields a bound in o(n).

2.5.10 Exercise. For almost all n, if |x| = n and abs(Sn(x) − n/2) ≥ √n ln n then
C(x) ≤+ n− log n.
Hint. Modify the proof of 2.5.8, using Proposition 2.1.14 rather than the Machine
Existence Theorem.
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Martin-Löf randomness and its variants

Sets computable by a Turing machine are the mathematical equivalent of sets
decidable by an algorithm. In this chapter we introduce a mathematical notion
corresponding to our intuitive concept of randomness for a set. The intuition is
vaguer here than in the case of computability. The central randomness notion
will be the one of Martin-Löf (1966). In order to address criticisms to the claim
that this notion is the appropriate one, we will consider weaker and stronger
randomness notions for sets as alternatives. In this way a (mostly linear) hierar-
chy of randomness notions emerges. Martin-Löf randomness stands out because
we arrive at it from two different directions (Theorem 3.2.9), and also because
it interacts best with computability theoretic concepts.
Section 3.1 contains background on randomness and tests. Section 3.2 provides

the basics on Martin-Löf randomness, and some interesting further results. In
Sections 3.3 and 3.4 we study its interaction with computability theoretic notions
via reducibilities and relativization, respectively. In Section 3.5 we introduce
weaker variants of Martin-Löf randomness, and in 3.6 stronger variants.

3.1 A mathematical definition of randomness for sets
Our intuitive concept of randomness for a set Z has two related aspects:

(a) Z satisfies no exceptional properties, and
(b) Z is hard to describe.

Towards a mathematical definition of randomness for a set, at first we will con-
sider each of the two aspects separately.
(a) Z satisfies no exceptional properties. Think of the set Z as the overall outcome
of an idealized physical process that proceeds in time. It produces infinitely
many bits. The bits are independent. Zero and one have the same probability.
An example is the repeated tossing of a coin. The probability that a string x is
an initial segment of Z is 2−|x|. Exceptional properties are represented by null
classes (with respect to the uniform measure λ on Cantor space, Definition 1.9.8).
We give examples of exceptional properties P and Q. The first states that all
the bits in even positions are zero:

P(Y ) ↔ ∀i Y (2i) = 0. (3.1)

The second states there are at least twice as many zeros as ones in the limit:

Q(Y ) ↔ lim inf #{i < n : Y (i) = 0}/n ≥ 2/3. (3.2)
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The corresponding classes are null. Hence, according to our intuition, they should
not contain a random set. In order to obtain a mathematical definition of ran-
domness, we impose extra conditions on the null classes a set must be avoid.
Otherwise no set Z would be random at all because the singleton {Z} itself is a
null class! Some effectivity, or definability, conditions are required for the class
(or sometimes a superclass). For instance, one can require that the null class is
Π0

2 (see Definition 1.8.55). The classes given by the properties above are of this
type; {Y : P(Y )} is actually Π0

1.
(b) Z is hard to describe. A random object has no patterns, is disorganized. On
page 99 we provided evidence that in the setting of finite objects, the intuitive
concept of randomness corresponds to being hard to describe. We relied on the
fact that there are description systems, called optimal machines, that emulate
every other description system of the same type, and in particular describe every
possible string. Being hard to describe can be formalized by incompressibility
with respect to an optimal machine. Incompressible strings have the properties
that one intuitively expects from a random string.
For sets, as for strings our intuition is that some degree of organization makes

the object easier to describe. However, we cannot formalize being hard to describe
in such a simple way as we did for strings, because each description system only
describes countably many sets. To make more precise what we mean by being
hard to describe for sets, we recall close descriptions from page 46. The null Π0

1
classes represent a type of close description; so do the null Π0

2 classes. A set is
hard to describe in a particular sense (say, Π0

2 classes) if it does not admit a close
description in this sense (for instance, it is not in any Π0

2 null class).
If we want to introduce a mathematical notion of randomness, to incorporate

aspect (a) we need a formal condition restricting null classes, and for aspect (b)
a formal notion of close description. Both are given by specifying a test concept.
This determines a mathematical randomness notion: Z is random in that specific
sense if it passes all the tests of the given type. Tests are themselves objects that
can be described in a particular way; thus only countably many null classes are
given by such tests. If (An)n∈N is a list of all null classes of that kind, then the
corresponding class of random sets is 2N−⋃

nAn, which is conull. Remark 2.5.3
is the analog of this for strings. It states that most strings of each length are
incompressible.
In the following we give an overview of some test notions. They determine

important randomness concepts. A test can be a conceptually simple object
such as a Π0

2 null class. It can also be a more elaborate object such as a sequence
of c.e. open sets or a computable betting strategy. The power of tests is directly
related to their position in the hierarchy of descriptive complexity for sets and
classes (pages 21 and 64). The formal details are provided in later sections of
this chapter, and in Chapter 7.
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Martin-Löf tests and their variants

Recall from Fact 1.9.9 that a class A ⊆ 2N is null iff there is a sequence (Gm)m∈N

of open sets such that limmλGm = 0 and A ⊆ ⋂
mGm. Motivated by test

concepts from statistics, Martin-Löf (1966) introduced an effective version of this
characterization of null classes. He required that the sequence (Gm)m∈N of open
sets be uniformly c.e., and the convergence be effective, namely, for each positive
rational δ one can compute m such that λGm ≤ δ. Taking a suitable effective
subsequence, one might as well require that λGm ≤ 2−m for each m. A sequence
of open sets with these properties will be called a Martin-Löf test, and a set Z
is Martin-Löf random if Z �∈ ⋂

mGm for all Martin-Löf tests (Gm)m∈N. For
instance, to see that a Martin-Löf random set does not satisfy the property P
in (3.1), let Gm = {Z : ∀i < mZ(2i) = 0}. (A Martin-Löf random set does
not satisfy Q either, but this is postponed to Proposition 3.2.13.) We think
of a Martin-Löf test as an effective sequence of c.e. open sets that represent
attempts to pin down the unknown set Z by specifying possibilities for Z. These
approximations get better and better. Z is Martin-Löf random if it eventually
escapes these attempts.
Weaker than Martin-Löf randomness. Schnorr (1971) argued that Martin-Löf’s
test notion is too strong to be considered algorithmic because one does not know
enough about the tests; in particular, while λGm is a uniformly left-c.e. real num-
ber, it may not be computable. He proposed computable test concepts, which will
be discussed in Chapter 7. One can go a step further and impose time and space
bounds on the computations. Then one obtains randomness notions relevant to
the theory of feasible computability, such as being polynomially random.
Stronger than Martin-Löf randomness. From a different point of view, one can
maintain that Martin-Löf randomness is too weak as a mathematical notion of
randomness. A left-c.e. set can be ML-random. Each set Y ≥T ∅′ is Turing equiv-
alent to a ML-random set. According to this viewpoint, these facts are inconsis-
tent with the intuitive idea of a random set. Left-c.e. sets can be approximated
fairly well. A random set should not encode arbitrarily complex information.
To get around this, one can proceed to more powerful types of tests. The

next stronger notion is weak 2-randomness. Instead of ∀mλGm ≤ 2−m one
merely asks that limmλGm = 0. These tests are equivalent to null Π0

2 classes.
No weakly 2-random set is ∆0

2 because each ∆0
2 set is a Π0

2 singleton. (In
fact, a weakly 2-random set forms a minimal pair with ∅′.) Even stronger is
2-randomness, Martin-Löf randomness relativized to ∅′. While these notions are
interesting, it turns out that Martin-Löf randomness is the most fruitful one
where the interaction of computability and randomness is concerned – precisely
because Martin-Löf randomness is not such a strong randomness notion.
For a more radical change away from Martin-Löf randomness, once can move

on to higher computability theory. One considers Π1
1 sets of numbers, an analog

of the c.e. sets much higher in the hierarchy of descriptive complexity (Defini-
tion 9.1.1). Elements are enumerated at stages that are computable ordinals.
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The analog of a Martin-Löf test is a uniformly Π1
1 sequence (Gm)m∈N of open

sets such that λGm ≤ 2−m. For an even stronger notion based on higher com-
putability, one can take as tests the null Π1

1 classes C ⊆ 2N (9.1.1). Sets Z enter
the class at stages that are ordinals computable relative to Z.
The choice of the “superlevel” in the hierarchy of descriptions, namely whether

one takes feasible computability, computability, or higher computability, depends
on the applications one has in mind. Interestingly, similar patterns emerge at the
three superlevels.

Schnorr’s Theorem and universal Martin-Löf tests

If the same notion arises from investigations of different areas, it deserves special
attention. Among randomness notions, this is the case for Martin-Löf random-
ness. One obtains the same class when requiring that all the finite initial segments
be incompressible in the sense of the prefix-free algorithmic complexity K de-
fined in Section 2.2: a theorem of Schnorr (1973) states that Z is Martin-Löf
random if and only if there is b ∈ N such that ∀nK(Z �n) > n − b. Thus Z is
Martin-Löf random if and only if all its initial segments are random as strings!
To some extent, the “randomness = incompressibility” paradigm used for finite
strings carries over to sets.
Schnorr’s Theorem only holds when we formalize randomness of a string x by

being b-incompressible in the sense of K (for some b that is small compared to
the length of x). We cannot use the plain descriptive complexity C because of
its dips at initial segments of a sufficiently long string; see Proposition 2.2.1.
However, a similar theorem using a monotonic version Km of string complexity
was announced by Levin (1973).
A Martin-Löf test (Ub)b∈N is called universal if

⋂
b Ub contains

⋂
mGm for every

Martin-Löf test (Gm)m∈N. Schnorr’s Theorem shows that (Rb)b∈N is universal,
where Rb is the open set generated by {x ∈ {0, 1}∗ : K(x) ≤ |x| − b}, the b-
compressibleK strings. The existence of a universal test is a further criterion for
being natural for a randomness notion. For instance, the argument of Schnorr
can be adapted to the Π1

1 version of Martin-Löf randomness, so a universal test
exists as well. Also, there is a largest Π1

1 null class Q ⊆ 2N. To be random in this
strong sense means to be not in Q (Theorem 9.3.6).

The initial segment approach

Schnorr’s Theorem is our first application of the following:

Characterize C ⊆ 2N via the initial segment complexity of its members.

This is very useful because one can determine whether Z ∈ C by looking at its
initial segments, rather than at Z as a whole. We will later provide several other
examples of such characterizations. As mentioned above, in Schnorr’s Theorem
we use K to measure the descriptive complexity of the initial segment Z �n. For
other classes one may use different measures, such as the plain complexity C or
its conditional variant λz.C(z | n) where n = |z|.
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Often membership in C is determined by a growth condition on the initial
segment complexity; 2-randomness (Theorem 3.6.10 below) is somewhat different
as one requires that the plain complexity is infinitely often maximal (up to a
constant).

3.2 Martin-Löf randomness
We provide the formal details for the discussion in the previous section.

The test concept

In 1.8.22 we introduced the effective listing ([We]≺)e∈N of all the c.e. open sets
(here We is regarded as a subset of {0, 1}∗). A uniformly c.e. sequence (Gm)m∈N

of open sets is given by a computable function f such that Gm = [Wf(m)]≺

for each m. Martin-Löf (1966) effectivized the description of null classes from
Fact 1.9.9.

3.2.1 Definition.

(i) A Martin-Löf test, or ML-test for short, is a uniformly c.e. sequence
(Gm)m∈N of open sets such that ∀m ∈ N λGm ≤ 2−m.

(ii) A set Z ⊆ N fails the test if Z ∈ ⋂
mGm, otherwise Z passes the test.

(iii) Z is ML-random if Z passes each ML-test. Let MLR denote the class of
ML-random sets. Let non-MLR denote its complement in 2N.

Note that Z ∈ ⋂
mGm ↔ ∀m ∃k, s [Z �k] ⊆ Gm,s, so

⋂
mGm is a particular

kind of Π0
2 null class. Admitting all the Π0

2 null classes as tests is equivalent to
replacing the condition ∀m ∈ N λGm ≤ 2−m by the weaker one that

⋂
mGm be

a null class. In this case, we have more tests and therefore a stronger randomness
notion. This notion is called weak 2-randomness, introduced on page 134.

3.2.2 Example. A simple example of a ML-test (Gm)m∈N is the test showing
that a computable set Z is not ML-random: let Gm = [Z �m]. Note that if Z is
computable then {Z} is a null Π0

1 class. More generally, for any null Π0
1 class P

there is a ML-test (Gm)m∈N such that P =
⋂

mGm: let (Ps)s∈N be the effective
approximation of P by clopen sets from (1.17) on page 55, then P =

⋂
s Ps.

Let f be an increasing computable function such that λPf(m) ≤ 2−m for each m,
and let Gm = Pf(m).

We do not require in 3.2.1 that a ML test (Gm)m∈N satisfy Gm ⊇ Gm+1 for
each m. It would make little difference if we did, since we can replace each Gm

by
⋂

i≤mGi without changing the described null class
⋂

m∈N
Gm. The tests in

the examples above have this monotonicity property anyway.

3.2.3 Remark. While each computable set is given by a ML-test, there is no single
ML-test that corresponds to the property of being computable, because the class of
computable sets is not Π0

2 by Exercise 1.8.64.
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A universal Martin-Löf test

We say that a Martin-Löf test (Ub)b∈N is universal if
⋂

b Ub contains
⋂

mGm for
any Martin-Löf test (Gm)m∈N. In other words,

⋂
b Ub = 2N −MLR. Martin-Löf

(1966) proved that a universal ML-test exists. Fix a listing (Ge
k)k∈N (e ∈ N) of

all the ML-tests in such a way that Ge
k is c.e. uniformly in e, k.

3.2.4 Fact. Let Ub =
⋃

e∈N
Ge

b+e+1. Then (Ub)b∈N is a universal ML-test.

Proof. The sequence (Ub)b∈N is a ML-test since it is uniformly c.e. and
λUb ≤

∑
e 2

−(b+e+1) = 2−b. For the universality, suppose that Z is not ML-
random. Then there is e such that Z ∈ ⋂

k G
e
k, so Z ∈ Ub for each b. �

In 1.8.55 we introduced the arithmetical hierarchy for classes of sets. Since⋂
mGm is Π0

2 for any ML-test (Gm)m∈N, the existence of a universal ML-test
implies the following.

3.2.5 Proposition. MLR is a Σ0
2 class. �

This shows that Martin-Löf randomness is among the simplest randomness no-
tions as far as the descriptive complexity is concerned; other notions are typi-
cally Σ0

3 or even more complex.

Characterization of MLR via the initial segment complexity

Recall from 2.2.4 that KM (x) = min{|σ| : M(σ) = x} for a prefix-free ma-
chine M . The open sets generated by the strings that are b-compressible in the
sense of KM form a monotonic test (RM

b )b∈N. If M is an optimal prefix-free
machine this test turns out to be universal.

3.2.6 Definition. For b ∈ N let RM
b = [{x ∈ {0, 1}∗ : KM (x) ≤ |x| − b}]≺.

3.2.7 Proposition. (RM
b )b∈N is a ML-test.

Proof. The condition KM (x) ≤ |x| − b is equivalent to
∃σ ∃s [Ms(σ) = x & |σ| ≤ |x| − b],

which is a Σ0
1-property of x and b. Hence the sequence of open sets (RM

b )b∈N is
uniformly c.e.
To show λRM

b ≤ 2−b, let VM
b be the set of strings in {x : KM (x) ≤ |x|−b} that

are minimal under the prefix ordering. Then
∑

x 2
−|x| [[x ∈ VM

b ]] = λRM
b . Note

that 2−|x∗
M | ≥ 2b2−|x| for each x ∈ VM

b , where x∗
M is a shortest M -description

of x similar to 2.3.2. Then 1 ≥ ∑
x 2

−|x∗
M | [[x ∈ VM

b ]] ≥ 2b
∑

x 2
−|x| [[x ∈ VM

b ]],
and therefore λRM

b ≤ 2−b. �

Recall U is the optimal prefix-free machine defined in 2.2.9, andK(x) = KU(x).

3.2.8 Definition. For b ∈ N, let Rb = RU

b = [{x ∈ {0, 1}∗ : K(x) ≤ |x| − b}]≺.
Thus, Rb is the open set generated by the b-compressibleK strings as defined
in 2.5.1. The theorem of Schnorr (1973) states that Z is ML-random iff there
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is b such that each initial segment of Z is b-incompressible in the sense of K.
A similar theorem using monotonic string complexity is in Levin (1973).

3.2.9 Theorem. The following are equivalent for a set Z.
(i) Z is Martin-Löf random.
(ii) ∃b ∀n [K(Z �n) > n− b], that is, ∃b Z �∈ Rb.

Theorem 3.2.9 simply states that (Rb)b∈N is universal. It actually holds for
(RM

b )b∈N, where M is an optimal prefix-free machine, by the same proof.

Proof. The implication (i)⇒(ii) holds because (Rb)b∈N is a ML-test by 3.2.7.
For (ii)⇒(i), suppose that Z is not ML-random, that is, Z ∈ ⋂

mGm for some
ML-test (Gm)m∈N. Since we can replace Gm by G2m we may assume that λGm ≤
2−2m for each m.
We define a bounded request set L (see 2.2.15). By the representation of

c.e. open sets in 1.8.26 we may uniformly in m obtain an effective antichain
(xm

i )i<Nm
, Nm ∈ N ∪ {∞}, such that Gm = [{xm

i : i < Nm}]≺. Let L =
{〈|xm

i | − m + 1, xm
i 〉 : m ∈ N, i < Nm}. The contribution of Gm to the total

weight of L is at most 2−m−1, so L is a bounded request set.
Let Md be the prefix-free machine for L given by the Machine Existence Theo-

rem 2.2.17. Fix b ∈ N and let m = b+ d+1. Since Z ∈ Gm, we have xm
i ≺ Z for

some i. Hence K(x) ≤ |x|−m+1+d = |x|−b because of the request enumerated
for compressing x = xm

i . �

Examples of Martin-Löf random sets

Recall from the introduction to this chapter that for any randomness notion the
class of sets that are random in that sense is conull (page 104). However, this
gives us no concrete examples of random sets. Because of the “being hard to
describe” aspect of randomness, such examples are the more difficult to obtain
the stronger the randomness notion becomes. It is still fairly easy to give concrete
examples of ML-random sets.
If (Um)m∈N is a universal ML-test then for each m, Pm = 2N − Um is a Π0

1
class, λPm ≥ 1−2−m and Pm contains only ML-random sets. Our first examples
are obtained by applying the basis theorems for Π0

1 classes to P1, say.

3.2.10 Examples. (i) There is a left-c.e. ML-random set.
(ii) Some ML-random set Z is superlow.

Informally, ML-randomness is not yet a very strong randomness notion. Both
(i) and (ii) fail already for our next stronger randomness notion, weak 2-random-
ness, since a weakly 2-random set forms a minimal pair with ∅′ (see page 135).
In the following we obtain more explicit examples of left-c.e. Martin-Löf random

sets. Recall from (2.4) on page 84 that the halting probability of a prefix-free
machine M is the left-c.e. real number ΩM = λ[domM ]≺ =

∑
σ 2−|σ| [[M(σ)↓]],

and that (ΩM,s)s∈N is a nondecreasing computable approximation of ΩM , where
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ΩM,s := λ[domMs]≺. We identify co-infinite subsets of N with real numbers in
[0, 1) according to Definition 1.8.10. In particular, for a real number r, we let
r �n denote the first n bits of the binary expansion of r.

3.2.11 Theorem. (Chaitin) The halting probability ΩR is ML-random for each
optimal prefix-free machine R.

Proof. We will write Ω for ΩR, and we let Ωs = ΩR,s. Let N be the (plain)
machine that works as follows on an input x of length n.

(1) Wait for t such that 0.x ≤ Ωt < 0.x+ 2−n.
(2) Output the least string y not in the range of Rt.

If x = Ω�n then such a t exists. By stage t all R-descriptions of length ≤ n have
appeared, for otherwise Ω ≥ Ωt + 2−n. Thus K(y) > n where y = N(x). This
implies ∀n [K(Ω�n)+c ≥ K(N(Ω�n)) > n] for an appropriate constant c. �

From now on we will write Ω for ΩU. We let Ωs := λ[domUs]≺.

Facts about ML-random sets

Facts derived from Schnorr’s Theorem. In the following we think of a set Z as a
sequence of experiments with outcomes zero or one, like tossing a coin. The law
of large numbers for a set Z says that the number of occurrences of zeros and
ones is asymptotically balanced:

3.2.12 Definition. A set Z satisfies the law of large numbers if

limn (#{i < n : Z(i) = 1}/n) = 1/2. (3.3)

This is one of the simplest criteria for randomness, which is satisfied by any
Martin-Löf random set Z. Instead of giving a test directly, we will prove the law
of large numbers for Z using Schnorr’s Theorem, together with the fact that for
large n and any incompressibleK string x of length n, Sn(x)/n gets arbitrarily
close to 1/2 (Corollary 2.5.9).

3.2.13 Proposition. Each ML-random set Z satisfies the law of large numbers.

Proof. Fix b such that Z �∈ Rb, i.e., each initial segment of Z is b-incom-
pressibleK . Apply 2.5.9, noting that Sn(Z �n) = #{i < n : Z(i) = 1}. �

A condition apparently weaker than ∃bZ �∈ Rb implies that Z is ML-random:

3.2.14 Proposition. Suppose there is an infinite computable set R and b ∈ N

such that ∀m ∈ R [K(Z �m) > m− b]. Then Z is Martin-Löf random.

Proof. We apply the idea, first used in the proof of 2.4.1, to split off a prefix-free
description from a string. The prefix free machine M on input τ first looks for
σ � τ such that U(σ) ↓= x. Next, if σz = τ , it checks whether |x| + |z| is the
least number m ∈ R such that m ≥ |x|. In this case M outputs xz.
Clearly M is a prefix-free machine. If K(x) ≤ |x| − c then KM (w) ≤ |w| − c

for each extension w of x of length the least number m ≥ |x| in R. If Z is not



110 3 Martin-Löf randomness and its variants

Martin-Löf random, then for each c there is an x ≺ Z such that K(x) ≤ |x| − c,
so K(Z �m) ≤+ m− c for m ∈ R as above, contrary to the hypothesis. �

A tail Y of a set Z is what one obtains after taking off an initial segment x.
Thus, if |x| = n, the tail is the set Y given by Y (i) = Z(i+ n). In other words,
Y = f−1(Z) where f is the one-one function λi. i+ n.

3.2.15 Proposition. Suppose Y and Z are sets such that Y =∗ Z, or Y is a
tail of Z. Then Z is ML-random ⇔ Y is ML-random.

Proof. Under either hypothesis we have ∀nK(Y �n) =+ K(Z �n). Now we apply
Schnorr’s Theorem 3.2.9. �

The fact that tails of a ML-random set are also ML-random can be strengthened: the
pre-image of a ML-random set under a one-one computable function is ML-random.
Also, recall from Section 1.3 that, with very few exceptions, classes introduced in com-
putability theory are closed under computable permutations. By the next result this is
the case for ML-randomness.

3.2.16 Proposition. Suppose the one-one function f : N → N is computable. If Z is
ML-random then so is Y = f−1(Z).

Proof. For a class C ⊆ 2N let C∗ = {Z : f−1(Z) ∈ C}. Since f is one-one, we have
λ[x]∗ = 2−|x| for each string x. If G ⊆ 2N is open, let (xi)i<N be the minimal strings x
such that [x] ⊆ G. Then G∗ is the disjoint union of the [xi]∗. Thus λG∗ = λG for any
open set G. Suppose now that Y ∈ ⋂

m Gm for some ML-test (Gm)m∈N. Then (G∗
m)m∈N

is a ML-test such that Z ∈ ⋂
m G∗

m. �

A criterion due to W. Merkle will be useful later on.

3.2.17 Proposition. The following are equivalent for a set Z.
(i) Z is not ML-random.
(ii) Z = z0z1z2 . . . for a sequence of strings (zi)i∈N such that ∀i K(zi) ≤ |zi| − 1.
(iii) There is a prefix-free machine M such that Z = z0z1z2 . . ., for a sequence of strings
(zi)i∈N such that ∀i KM (zi) ≤ |zi| − 1.

Proof. (i)⇒(ii): We define the sequence (zi)i∈N inductively. Since Z is not ML-random,
by Theorem 3.2.9 there is a string z0 ≺ Z such that K(z0) ≤ |z0| − 1. Suppose i > 0
and z0, . . . , zi−1 have been defined. The tail Y of Z obtained by taking off z0 . . . zi−1 is
not ML-random by Proposition 3.2.15. Thus there is zi ≺ Y such that K(zi) ≤ |zi|−1.
(ii)⇒(iii) is trivial. For (iii)⇒(i), fix n and consider the prefix-free machine N which
on input σ first searches for an initial segment ρ � σ such that U(ρ) = n and then
looks for ν0, . . . , νn−1 ∈ dom(M) such that ρν0 . . . νn−1 = σ. If the search is successful
it prints M(ν0) . . . M(νn−1).

Given a string z0 . . . zn−1, let σ be a concatenation of a shortest U-description of n
followed by shortest M -descriptions of z0, . . . , zn−1. Then N(σ) = z0 . . . zn−1 and hence
K(z0 . . . zn−1) ≤+ K(n) +

∑
i<n KM (zi) ≤ K(n) + |z0 . . . zn−1| − n. Since K(n) ≤+

2 log n, we obtain K(z0 . . . zn−1) ≤+ |z0 . . . zn−1| − (n − 2 log n). Then, by Schnorr’s
Theorem 3.2.9, Z is not ML-random. �

Facts obtained through Solovay tests. Recall that a ML-test is a sequence (Gm)m∈N

of uniformly c.e. open sets such that ∀m ∈ N λGm ≤ 2−m, and Z fails the test
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if Z ∈ ⋂
mGm. To define Solovay tests we will broaden the test definition and

relax the failure condition. Although Solovay tests are more general than Martin-
Löf tests and therefore easier to build, they still determine the same notion of
randomness.

3.2.18 Definition. A Solovay test is a sequence (Si)i∈N of uniformly c.e. open
sets such that

∑
i λSi < ∞. Z fails the test if Z ∈ Si for infinitely many i,

otherwise Z passes the test.

3.2.19 Proposition. Z is ML-random ⇔ Z passes each Solovay test.

Proof. ⇐: Suppose Z fails the ML-test (Gm)m∈N. Each Martin-Löf test is a
Solovay test, and since Z fails (Gm)m∈N as a ML-test (namely, ∀mZ ∈ Gm),
Z fails it as a Solovay test (namely, ∃∞mZ ∈ Gm).
⇒: Suppose Z fails the Solovay test (Si)i∈N, that is, Z ∈ Si for infinitely many i.
We may omit finitely many of the Si, and hence assume that

∑
i λSi ≤ 1. Let

Gm = [{σ : [σ] ⊆ Si for at least 2m many i}]≺,
then (Gm)m∈N is a u.c.e. sequence of open sets. Given m, let (σk)k∈N be a listing
of the minimal strings σ under the prefix ordering such that [σ] ⊆ Gm. Then

1 ≥∑
i λSi ≥

∑
i

∑
k λ(Si ∩ [σk]) ≥ 2m

∑
k 2

−|σk| = 2mλGm.
Thus λGm ≤ 2−m, and (Gm)m∈N is a Martin-Löf test. Since Z ∈ ⋂

mGm, Z is
not Martin-Löf random. �

We give two applications of Solovay tests. The first is to show that ML-random
sets only have short runs of zeros. By Proposition 2.5.7 the length of a run of zeros
in an incompressibleK string of length m is bounded by 4 logm+O(1). If the run
starts at the n-th bit position of a Martin-Löf random set, then its length is at
mostK(n) (for almost all n). This is rather short sinceK(n) ≤+ logn+2 log logn
by Proposition 2.2.8.

3.2.20 Proposition. Let Z be ML-random. Then for each r, for almost all n,
a run of zeros starting at position n has length at most K(n)− r.
Proof. Recall from (2.6) that Kt(n) is a nonincreasing computable approxima-
tion of K(n) at stages t. For n > 0, let

Sn,t = [{σ0max(Kt(n)−r,0) : |σ| = n}]≺,
and let Sn =

⋃
t Sn,t. Then (Sn)n∈N is a uniformly c.e. sequence of open sets.

Moreover, λSn = 2−K(n)+r, so that
∑

n λSn ≤ Ω2r. The ML-random set Z
passes this test, that is, for almost all n we have Z �∈ Sn. This implies that the
runs of zeros in Z satisfy the required bound on the length. �

3.2.21 Proposition. Z is ML-random ⇔ limnK(Z �n)− n =∞.

Informally, for every set Z the function λn.K(Z �n) avoids being close to n:
either for each d there is n such that it dips below n − d (when Z is not ML-
random), or for each b eventually it exceeds n + b (when Z is ML-random).
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Proposition 3.2.21 will be improved in Theorem 7.2.8: Z is ML-random ⇔∑
n 2−K(Z�n)+n <∞.

Proof. ⇐: This is immediate by Theorem 3.2.9.
⇒: Suppose that there is b such that ∃∞nK(Z �n)−n = b. Let Sn = [{x : |x| =
n & K(x) ≤ n + b}]≺, then Z is in infinitely many sets Sn, so we can conclude
that Z is not ML-random once we have shown that (Sn)n∈N is a Solovay test.
Clearly (Sn)n∈N is uniformly c.e. Applying Theorem 2.2.26(i) where d = K(n)−b,
the number of strings x of length n such that K(x) ≤ n+ b is at most 2c2n−d =
2c2n−K(n)+b. Hence λSn ≤ 2c2−K(n)+b, and

∑
n λSn < 2c+bΩ <∞. �

3.2.22 Remark. Let (Si)i∈N be a Solovay test. By Fact 1.8.26, each open set Si

is generated by a uniformly computable prefix-free set of strings. We might as
well put the basic open cylinders corresponding to the strings in all those prefix-
free sets together, because failing the test is equivalent to being in infinitely many
intervals. In this way we obtain an equivalent Solovay test where each open set
is just a basic open cylinder [x]. Thus, we may alternatively represent a Solovay
test G by an effective listing of strings x0, x1, . . . (possibly with repetitions) such
that

∑
i 2

−|xi| < ∞. Usually we will not distinguish between the two types of
representation; if we want to stress this difference we will call G an interval
Solovay test. For instance, in the foregoing proof, the interval Solovay test is an
effective listing of the set {x : K(x) ≤ |x|+ b}.
3.2.23 Example. Let B be a c.e. prefix-free set such that λ[B]≺ < 1. For
each n let Sn be the open set generated by the n-th power Bn of B, namely
Sn = [{x1 . . . xn : ∀i xi ∈ B}]≺. Clearly, λSn = (λS1)n. Since λS1 < 1, we may
conclude that (Sn)n∈N is a Solovay test. If λS1 ≤ 1/2 then (Sn)n∈N is in fact a
ML-test.

Tails of sets were defined after Prop. 3.2.13. The following is due to Kučera.

3.2.24 Proposition. Suppose P is a Π0
1 class such that λP > 0. Then each

ML-random set Z has a tail in P .

Proof. Let B ⊆ {0, 1}∗ be a c.e. prefix-free set such that [B]≺ = 2N−P . Define
the Solovay test (Sn)n∈N as in 3.2.23. Since Z is ML-random, there is a least
n ∈ N such that Z �∈ Sn. If n > 0, let x ≺ Z be shortest such that x ∈ Bn−1,
otherwise let x = ∅. Then the tail Y of Z obtained by taking x off is not in
[B]≺, and hence Y ∈ P . �

In particular, if P ⊆ MLR (say, P = 2N −Rb for some b), then Z is ML-random
iff some tail of Z is in P . For, if some tail of Z is in P , then Z is ML-random by
Proposition 3.2.15.
Exercises.

3.2.25. Give an alternative proof of Proposition 3.2.20 using 3.2.21.

3.2.26. Use Solovay tests to show that each ML-random set satisfies the law of large
numbers.
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Left-c.e. ML-random reals and Solovay reducibility

We use the term “real” for real number. Via the identifications in Definition 1.8.10
we can apply definitions about sets of natural numbers to reals.
Solovay reducibility ≤S is used to compare the randomness content of left-c.e.

reals. We obtain two characterizations of the left-c.e. ML-random reals:
(a) They are the reals of the form ΩR for a optimal prefix-free machine R. Thus,
Theorem 3.2.11 accounts for all the left-c.e. ML-random reals in [0, 1).
(b) They are the Solovay complete left-c.e. reals. Thus, they play a role similar
to the creative sets for many-one reducibility on the c.e. sets.
We identify the Boolean algebra of clopen sets in Cantor space with the Boolean

algebra Intalg [0, 1)R as in 1.8.11. We let α, β, γ denote left-c.e. reals. If γ is left-
c.e. then there is a computable sequence of binary rationals (γs)s∈N such that
γs ≤ γs+1 for each s and γ = supsγs (Fact 1.8.15). We say that (γs)s∈N is a
non-decreasing computable approximation of γ.
First we show that adding a left-c.e. real to a left-c.e. ML-random real keeps

it ML-random.

3.2.27 Proposition. Suppose α, β are left-c.e. reals such that γ = α + β < 1.
If α or β is ML-random, then γ is ML-random.

Proof. Suppose that (Gn)n∈N is a ML-test such that γ ∈ ⋂
nGn. We show

that α is not ML-random. We may assume that λGn ≤ 2−n−1, and that β is
not a binary rational. Let (αs)s∈N and (βs)s∈N be nondecreasing computable
approximations of α, β, and let γs = αs + βs. We enumerate a ML-test (Hn)n∈N

such that α ∈ ⋂
nHn.

At stage s, if γs ∈ I where I = [x, y) is a maximal subinterval of
Gn,s, then put the interval J = [x− βs − (y − x), y − βs) into Hn.

If in fact γ ∈ I, then since βs < β < βs + (y − x) and x ≤ γ we have y − βs >
γ − βs > α = γ − β; also x− βs − (y − x) ≤ x− β ≤ α. Thus α ∈ J . The length
of an interval J is twice the length of an interval I, so that λHn ≤ 2−n. �

The converse of Proposition 3.2.27 was proved by Downey, Hirschfeldt and Nies
(2002): if γ is a ML-random left-c.e. real and γ = α+β for left-c.e. reals α, β, then
α or β is ML-random. They also introduced the following algebraic definition of
≤S . It is equivalent to the original definition of Solovay (1975) by Exercise 3.2.33.

3.2.28 Definition. Let α, β ∈ [0, 1) be left-c.e. reals. We write β ≤S α if
∃d ∈ N ∃γ left-c.e. [2−dβ + γ = α

]
.

Thus, Solovay completeness in (b) above yields an algebraic characterization of
being ML-random within the left-c.e. reals. By Exercise 3.2.33 ≤S is transitive
and implies ≤T .
We proceed to the main result. The implications (iii)⇒(ii)⇒(i) are due to

Calude, Hertling, Khoussainov and Wang (2001), and (i)⇒(iii) to Kučera and
Slaman (2001).
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3.2.29 Theorem. The following are equivalent for a real α ∈ [0, 1).

(i) α is left-c.e. and ML-random.
(ii) There is an optimal prefix-free machine R such that ΩR = α.
(iii) α is Solovay complete, that is, β ≤S α for each left-c.e. real β.

Proof. (iii)⇒(ii). Choose d ∈ N and a left-c.e. real γ such that 2−dΩ + γ = α.
We define a bounded request set L of total weight α such that the associated
prefix-free machine R is optimal. Note that ΩR = α.
Choose a nondecreasing computable approximation (γs)s∈N of γ. We may as-

sume that γs+1 − γs is either 0 or of the form 2−n for some n.

Construction of L. Let L0 = ∅.
Stage s > 0. If Us−1(σ) ↑ and Us(σ) = y, put the request 〈|σ| + d, y〉 into Ls

unless it is already in Ls−1; in this case, to record the increase of Ω in L, put
〈|σ|+ d, i〉 into Ls for a number i > s not mentioned so far. If γs+1 − γs = 2−n

then put 〈n, j〉 into Ls for a number j > s not mentioned so far.
It is clear that L is a bounded request set as required.

(ii)⇒(i). ΩM is left-c.e. for each prefix-free machineM . For an optimal prefix-free
machine R, the real ΩR is ML-random by Theorem 3.2.11.
(i)⇒(iii). Suppose the left-c.e. real β ∈ [0, 1) is given. Let (βs)s∈N and (αs)s∈N

be nondecreasing computable approximations of β and α, respectively, where
αs, βs ∈ Q2. For each parameter d ∈ N we build a left-c.e. real γd uniformly in d,
attempting to ensure that 2−dβ + γd = α. In the end we will define a ML-test
(Gd)d∈N. If d is a number such that α �∈ Gd then we succeed with γd.
The construction with parameter d runs only at active stages; 0 is active. If s

is active, and t is the greatest active stage less than s, then let εs = 2−d(βs−βt).
We wish that α increase by an amount of at least εs in order to record the
increase of β. So we put the interval [αs, αs + εs) into Gd. If α �∈ Gd, then α will
increase eventually, and in that case we have reached the next active stage. If α
has increased too much the excess is added to γ. For the formal construction, it
is easier to first update γ, and then define the next interval.

Construction for the parameter d.
Stage 0 is declared active. Let q0 = 0 and γd,0 = 0.
Stage s > 0. Let t < s be the greatest active stage. If αs ≥ qt then declare s
active, and do the following.

(1) Define γd,s = γd,t + (αs − qt).
(2) Let qs = αs + 2−d(βs − βt). If qs > 1 then stop.

qt qsαs

γd,s − γd,t 2−d(βs − βt)
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Verification. Let Gd =
⋃{[αs, qs) : s active}. Then Gd is (identified with) a c.e.

open set in Cantor space uniformly in d, and λGd ≤ 2−dβ. Thus (Gd)d∈N is
a ML-test. Choose d such that α �∈ Gd, then the construction for parameter d
has infinitely many active stages. Inductively, between (1) and (2) of each active
stage s > 0 we have 2−dβt + γd,s = αs, where t is the preceding active stage.
Hence 2−dβ + γd = α, where γd = sups is activeγd,s. �

The following fact of Calude and Nies (1997) can alternatively be proved using
Theorem 4.1.11 below.

3.2.30 Proposition. ∅′ ≡wtt ΩR for each optimal prefix-free machine R.

Proof. Clearly ΩR ≤wtt ∅′. To show that ∅′ ≤wtt ΩR, define a prefix-free ma-
chine M by M(0n1) = s if n ∈ ∅′at s. Let d be the coding constant for M with
respect to R. The reduction procedure is as follows: on input n, using the ora-
cle ΩR, compute t such that ΩR �n+d+1= ΩR,t �n+d+1. Output ∅′t(n).
If n enters ∅′ at a stage s > t then ΩR increases by at least 2−(n+d+1), contrary

to the choice of t. �

3.2.31 Corollary. Every ML-random left-c.e. set is wtt-complete. �

We cannot hope to characterize the ML-random ω-c.e. sets as easily: such a set
can be superlow by 3.2.10(ii), but it can also be weak truth-table complete.

As an immediate consequence of Theorem 3.2.29, Z is right-c.e. and ML-random iff
there is an optimal prefix-free machine R such that 1 − ΩR = 0.Z. How about ML-
random reals that are difference left-c.e.? (See (iv) of Definition 1.8.14.) Rettinger
(unpublished) has shown that one does not obtain anything new.

3.2.32 Proposition. Let r ∈ [0, 1)R be difference left-c.e. and ML-random. Then r is
either left-c.e. or right-c.e.

Proof. Assume r is neither. By Fact 1.8.15, r = limiqi for an effective sequence
(qi)i∈N of dyadic rationals such that

∑
i abs(qi+1 − qi) < ∞. For each m ∈ N we

have supi≥mqi > r, otherwise r = limi≥mmax{qk : m ≤ k ≤ i}, so r is left-c.e. Simi-
larly, infi≥m qi < r for each m. Thus there are infinitely many i such that qi < r < qi+1.
Let Gi = [qi, qi+1) if qi < qi+1 and Gi = ∅ else. Then (Gi)i∈N is a Solovay test that
succeeds on r. �

3.2.33 Exercise. Check that ≤S is transitive. Show that β ≤S α iff there is a partial
computable ϕ : Q2∩[0, α)→ Q2∩[0, β) and c ∈ N such that ∀q < α

[
β−ϕ(q) < c(α−q)

]
.

Informally, β is easier to approximate than α. Conclude that ≤S implies ≤T .

Randomness on reals, and randomness for bases other than 2

Let X = [0, 1)R − Q be the space equipped with the subspace topology and Lebesgue
measure. One can develop the theory of ML-randomness directly on X , without ref-
erence to the representation of reals in base 2. For instance, an open set U ⊆ X is
called computably enumerable if U is an effective union of intervals (p, q)R − Q where
p, q ∈ Q, 0 ≤ p < q ≤ 1. Based on this one introduces ML-tests on X by adapting
Definition 3.2.1.
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3.2.34 Remark. Fix a base b ∈ N such that b ≥ 2, and write bN for the set of functions
N→ {0, . . . , b−1}. Product topology and uniform measure can be defined on the set bN.
One can think of the elements of bN as the overall result of a sequence of experiments
with b outcomes, each one occurring with probability 1/b. For instance if b = 6 the
experiment could be rolling a dice. Similar to (1.13), define a map

Fb : {Z ∈ bN : Z is not eventually periodic} → [0, 1)R −Q

by Fb(Z) =
∑

i Z(i)b−i−1. This map preserves topology and measure in both directions.
One can also adapt the definition of ML-randomness in 3.2.1 to base b. It is easy to
check that Fb preserves ML-randomness in both directions. Thus, if Z ∈ bN is not
eventually periodic, then Z is ML-random ↔ Fb(Z) is ML-random (in the sense of
reals) ↔ the set F −1

2 (Fb(Z)) is ML-random in the sense of Definition 3.2.1. Thus,
ML-randomness is a base-independent concept.

Giving preference to base 2 is not necessary but convenient, because in computability
theory one studies subsets of N rather than functions in bN for b > 2.

A nonempty Π0
1 subclass of MLR has ML-random measure �

We consider the uniform measure of nonempty Π0
1 subclasses of MLR, such as 2N−R1.

This yields examples of right-c.e. ML-random reals other than 1− Ω.

3.2.35 Theorem. If P ⊆ MLR is a nonempty Π0
1 class then λP is ML-random.

Proof. Note that λP > 0, since otherwise P ∩MLR = ∅ by 3.2.2. Suppose that λP
is not ML-random, and let Z be the co-infinite set identified with the real number λP
(namely, λP = 0.Z).

Firstly we show that for each b ∈ N, there is y on P such that K(y) ≤ |y| − b. We
use the fact that an appropriate initial segment x of Z is sufficiently compressible in
the sense of K to obtain a b-compressibleK string y that is guaranteed to be on P : if y
falls off P then the measure decreases so much that the approximation 0.x is wrong.

Let (Pt)t∈N be the effective approximation of P by clopen sets from (1.17) on page 55.
The prefix-free machine M works as follows on an input σ.

(1) Wait for s such that Us(σ)↓= x. Let n = |x|. Let c = �(n− |σ|)/2�.
(2) Wait for t ≥ s such that 0.x ≤ λPt < 0.x + 2−n.
(3) If there is a string y of length n − c such that λ(Pt ∩ [y]) ≥ 2−n then output the
leftmost such y.

If x ≺ Z and M outputs y, then y is on P , for otherwise [y] ∩ P = ∅ and hence
λ(Pt − P ) ≥ 2−n where n = |x|. Let d be a coding constant for M . Given b ∈ N,
since we are assuming that λP is not ML-random, there is x ≺ Z that is sufficiently
compressible in the sense of K, namely, b + d ≤ (n−K(x))/2, where n = |x|; we may
also require that 2−c ≤ λP , where c = �(n−K(x))/2�. Thus there is some y of length
n− c such that λ(P ∩ [y]) ≥ 2−(n−c)2−c = 2−n.

If σ is a shortest U-description of x, then M on input σ outputs a string y on P such
that |y| = n− c. Thus KM (y) ≤ |y| − c ≤ |y| − (b + d) and hence K(y) ≤ |y| − b.

We now iterate the foregoing argument and obtain a sequence of strings y0 ≺ y1 ≺ . . .
such that each yi is on P and K(yi) ≤ |y|− i. Then the set Y =

⋃
yi is not ML-random

and Y ∈ P .
For S ⊆ 2N let Sc = 2N − S. Let y0 = ∅. Suppose i > 0 and yi−1 has been defined.

Then λ(P ∩ [yi−1]) is not ML-random by Proposition 3.2.27: the left-c.e. real number
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λP c is not ML-random, and for each length m, we have λP c =
∑

|y|=m λ(P c ∩ [y]), so
that λ(P c ∩ [y]) is not ML-random for any y. So we may apply the argument above to
the Π0

1 class P ∩ [yi−1] in order to obtain yi � yi−1 on P such that K(yi) ≤ |yi| − i.
�

3.3 Martin-Löf randomness and reduction procedures
We are mostly interested in the interactions between the degree of randomness
and the absolute computational complexity of sets; a summary of such interac-
tions will be given in Section 8.6. However, here we address the interaction of
randomness with the relative computational complexity of sets. Firstly, we con-
sider reducibilities, and then, in the next section, we look at ML-randomness
relative to an oracle.

Each set is weak truth-table reducible to a ML-random set

An arbitrarily complex set A can be encoded into an appropriate Martin-Löf
random set: there is a ML-random set Z such that A ≤wtt Z. This result was
obtained independently by Kučera (1985) and by Gács (1986). For instance, there
is a ML-random set Z weak truth-table above ∅′′. Thus, ML-random sets can have
properties that fail to match our intuition on randomness, a view also supported
by the existence of left-c.e. ML-random sets. These particular properties are
already incompatible with the somewhat stronger notion of weak 2-randomness
introduced in 3.6.1 below. Ultimately, the reason why the coding is possible for
ML-random sets, but not for sets satisfying a stronger randomness property, is
that MLR contains a Π0

1 class of positive measure, for instance 2N −R1. We will
provide a mechanism for encoding a set A into members of such a Π0

1 class. It
relies on a simple measure theoretic lemma. Recall from 1.9.3 that for measurable
S ⊆ 2N, λ(S|z) is the local measure 2|z|λ(S ∩ [z]). For each n, λS is the average,
over all strings z of length n, of the local measures λ(S|z).
3.3.1 Lemma. Suppose that S ⊆ 2N is measurable and λ(S|x) ≥ 2−(r+1) where
r ∈ N. Then there are distinct strings y0, y1 ! x, |yi| = |x| + r + 2, such that
λ(S|yi) > 2−(r+2) for i = 0, 1.

Proof. We may assume that x = ∅. Let y0 be a string of length r+2 such that
λ(S|y0) is greatest among those strings. Assume that λ(S|y) ≤ 2−(r+2) for each
y �= y0 of length r + 2. Then

λS =
∑

|y|=r+2

λ(S ∩ [y]) = λ(S ∩ [y0]) +
∑

y 
=y0&|y|=r+2

λ(S ∩ [y])

≤ 2−(r+2) + (2r+2 − 1)2−(r+2)2−(r+2) < 2−(r+1). �

3.3.2 Theorem. Let Q be a nonempty Π0
1 class of ML-random sets. Then for

each set A there is Z ∈ Q such that A ≤wtt Z ≤wtt A ⊕ ∅′. The wtt-reductions
are independent A.
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Proof. Since λQ > 0, by Theorem 1.9.4 there is a string σ such that λ(Q | σ) ≥
1/2, so we may as well assume that λQ ≥ 1/2. Let f be the function given by
f(0) = 0 and f(r + 1) = f(r) + r + 2 (namely, f(r) = r(r + 3)/2). Let Q̂ be the
Π0

1 class of paths through the Π0
1 tree

T = {y : ∀r [f(r) ≤ |y| → λ(Q|(y �f(r))) ≥ 2−(r+1)]}. (3.4)

Note that Q̂ ⊆ Q. Since λQ ≥ 1/2, by Lemma 3.3.1 Q̂ is nonempty.
The set Z will be a member of Q̂. Suppose that so far we have coded A �r

into the initial segment x of Z of length f(r). The idea is to code A(r) into
the initial segment of length k = f(r + 1), as follows: if A(r) = 0, Z takes the
leftmost length k extension of x which is on Q̂, otherwise it takes the rightmost
one. By the lemma above, these two extensions are distinct. Knowing Z �k, we
may enumerate the complement of Q̂ till we see which case applies. In this way
we determine A(r).
The details are as follows. We define strings (xτ )τ∈{0,1}∗ on Q̂ such that |xτ | =

f(|τ |). Let x∅ = ∅. If xτ has been defined, let xτ0 be the leftmost y on Q̂
such that xτ ≺ y and |y| = f(|τ | + 1), and let xτ1 be the rightmost such y. By
Lemma 3.3.1, xτ0 and xτ1 exist and are distinct.
For each A, the ML-random set Z coding A simply is the path

⋃
τ≺A xτ of T

determined by A.
Firstly, we describe a reduction procedure for A ≤wtt Z, where f(r+1) bounds

the use for input r. To determine A(r) let x = Z �f(r) and y = Z �f(r+1). Find s
such that

Q̂s ∩ [{v ! x : |v| = |y| & v <L y}]≺ = ∅, or
Q̂s ∩ [{v ! x : |v| = |y| & v >L y}]≺ = ∅.

In the first case, output 0. In the second case, output 1.
Next we check that Z ≤wtt A ⊕ ∅′. Suppose that x = Z �f(r) has been deter-

mined. If A(r) = 0, with ∅′ as an oracle find the leftmost extension y of x on
Q̂ such that |y| = f(r + 1). Otherwise, with ∅′ as an oracle find the rightmost
such extension y of x. Then y = Z �f(r+1). Clearly the use on ∅′ is bounded by
a computable function. Also, the wtt-reductions employed do not depend on the
particular set A. �

For oracles other than Z, the search in the reduction procedure for A ≤wtt Z may not
terminate. Recall from 1.2.20 that a Turing reduction is called a truth-table reduction
if it is total for all oracles. In Theorem 4.3.9 below we show that ∅′ �≤tt Z for each
ML-random Z. So the wtt-reduction obtained above must be partial for some oracles.

In the exercises we indicate a proof of Theorem 3.3.2 for Q = 2N − R1 closer to
Kučera’s original proof, avoiding the class Q̂. Kučera actually did not use K for his
coding. He used an idea taken from the proof of Gödel’s incompleteness theorem. A
similar coding works for the Π0

1 class of two-valued d.n.c. functions from Fact 1.8.31.
The proof of Gács (1986) used martingales. We will apply his method in Lemma 7.5.6.

Exercises.

3.3.3.� Show that given an effective listing (P e)e∈N of Π0
1 classes, one may effectively

obtain a constant c ∈ N such that λ(P e ∩Q) ≤ 2−K(e)−c → P e ∩Q = ∅.
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Hint. Use Theorem 2.2.17 and Remark 2.2.21.

3.3.4. Show that there is c ∈ N such that if x is on Q then λ(Q ∩ [x]) ≥ 2−K(x)−c.

Now let h(n) = 2 log(n) + n + cK , where by Proposition 2.2.8 the constant cK is
chosen so that ∀x [K(x) < h(|x|)]. Then λ([x] ∩Q) > 2−h(|x|) for every x on Q. Hence
there are distinct strings y0, y1 � x on Q such that |y0| = |y1| = h(|x|). Use this to
define (xτ )τ∈{0,1}∗ on Q as before, where |xτ | = h(|τ |)(0).

Autoreducibility and indifferent sets �

A is called autoreducible (Trahtenbrot, 1970) if there is a Turing functional Φ
such that

∀x [A(x) = Φ(A− {x};x)]. (3.5)

Thus one can determine A(x) via queries to A itself, but distinct from x. Intu-
itively, A is redundant. For example, each set Y ⊕ Y is autoreducible via the
functional Φ defined by Φ(A; 2n+ a) = A(2n+ 1− a) (n ∈ N, a ∈ {0, 1}). Thus
each many-one degree contains an autoreducible set.

Autoreducibility is a bit like the following hat game. Players sit around a table. Each
one has to determine the color of his hat. A player cannot see his own hat, only the
hats of the other people. He has to derive his hat color from this information and some
known assumptions about the distribution of hat colors.

3.3.5 Proposition. Some low c.e. set A is not autoreducible.

Proof sketch. To ensure thatA is not autoreducible, we meet the requirements

Pe : ∃x¬A(x) = Φe(A− {x};x).
The Pe-strategy is as follows.
(1) Choose a large number x.
(2) When Φe(A − {x};x) = 0 enumerate x into A and initialize the strategies
for weaker priority requirements Pi, i > e. The initialization is an attempt to
preserve the computation Φe(A− {x};x) = 0.
To make A low we satisfy the usual lowness requirements (1.10) on page 32.

This merely needs some extra initialization of the Pe strategies. �

In the following, for a string σ, i < |σ|, and h ∈ {0, 1}, we let σ[i← h] denote
the string where the bit at position i has been changed to h. Below, this notation
will be extended in the obvious way to sets Z instead of strings, and to changes
of several bits.
Our intuition is that being random is opposite to having redundancy. Martin-

Löf random sets live up to our expectations here.

3.3.6 Proposition. No ML-random set is autoreducible.

Proof. Given a Turing functional Φ, we define a ML-test (Vm)m∈N in such a way that
any set that is autoreducible via Φ fails the test. (In fact a set Z fails the test already
if Z(x) = Φ(Z − {x}; x) for infinitely many x.)

Let Vm = [Sm]≺ where S0 = {∅} and, for m ≥ 1, Sm is the set of minimal strings in
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{σ : ∃x0 < . . . < xm

[
x0 = 0 & xm = |σ| &
∀i < m [Φ|σ|(σ[xi ← 0]�xi+1 ; xi) = σ(xi)]

]}.
Thus, for each i < m, Φ computes σ(xi) using σ �xi+1 as an oracle, but substituting
the answer 0 if the query is σ(xi). Note that (Sm)m∈N is uniformly c.e., and for each
m ≥ 0 and σ ∈ Sm we have λ(Sm+1 | σ) ≤ 1/2. Thus

λSm+1 =
∑

σ∈Sm
2−|σ|λ(Sm+1 | σ) ≤ (λSm)/2,

whence λSm ≤ 2−m for each m. �

Figueira, Miller and Nies (20xx) proved that for each ML-random set Z there
is an infinite set I ⊆ N such that Z remains ML-random when some bits with
position in I are changed. For a class C, a set Z ∈ C and a further set I, we say
that I is indifferent for Z with respect to C if each set Y that agrees with Z on
N− I is in C. We want to show that for every ML-random Z there is an infinite
set I that is indifferent for Z with respect to being ML-random. To do so, we
choose b such that Z ∈ P = 2N −Rb and apply the following result.

3.3.7 Theorem. Let P be a Π0
1 class and suppose Z ∈ P is not autoreducible.

Then there is an infinite set I ≤T Z
′ that is indifferent for Z with respect to P .

Proof. Recall from page 48 that for a closed set Q and a string x, we say that x is
on Q if [x] ∩Q �= ∅. First let us show that there is a number n such that the singleton
set {n} is indifferent for Z with respect to P . Assume not, then, for each x, one of Z
and Z[x← 1−Z(x)] (the set where the bit in position x has been changed) is not in P .
This allows us to compute Z(x) from Z − {x} as follows: search for s > x such that
Z[x← 1]�s �∈ Ps or Z[x← 0]�s �∈ Ps. In the first case output 0, in the second case 1.

An infinite set I = {n0 < n1 < . . .} that is indifferent for Z with respect to P can
now be determined recursively. Suppose k ≥ 0 and we already have an indifferent set
{n0 < . . . < nk}. Then Z is a member of the Π0

1 class

Qk = {Y : Y �nk+1= Z �nk+1 & ∀a0, . . . , ak ∈ {0, 1}Y [n0 ← a0, . . . , nk ← ak] ∈ P}.
By the argument above let nk+1 be an indifferent number for Z with respect to Qk.
Then nk+1 > nk since all the sets Y ∈ Qk extend Z �nk+1.

To see that the whole set I is indifferent for Z with respect to P we use that P is
closed: suppose Y is obtained from Z by replacing the bit Z(ni) by ai. For each k, the
set Yk = Z[n0 ← a0, . . . , nk ← ak] is in P , and the distance d(Yk, Y ) (see Exercise 1.8.7)
is at most 2−nk+1 . Thus Y ∈ P .

Finally, we verify that I ≤T Z′: let Q−1 = P . To compute n0, n1, . . . recursively
from Z′, note that if k ≥ −1, then nk+1 is the least n such that

∀s (Z[n← 0]�s∈ Qk,s & Z[n← 1]�s∈ Qk,s).

Hence nk+1 can be computed from an index for the Π0
1 class Qk using Z′ as an oracle.

Next, from nk+1 we may find an index for Qk+1 using Z as an oracle. �

3.4 Martin-Löf randomness relative to an oracle
Most of the concepts introduced in Chapter 2, and so far in this chapter, are
ultimately defined in terms of computations, and hence can be viewed relative
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to an oracle. In this section we study these concepts in relativized forms. For
instance, we interpret the definition of ML-randomness in 3.2.1 relative to an
oracle A:
(i) A ML-test relative to A is a sequence (GA

m)m∈N of uniformly c.e. relative to A
open sets such that ∀m ∈ N λGA

m ≤ 2−m.
(ii) Z ⊆ N fails the test if Z ∈ ⋂

mGA
m.

(iii) Z is ML-random relative to A, or ML-random in A, if Z passes each ML-test
relative to A. MLRA denotes the class of sets that are ML-random relative to A.
Note that MLRA is conull and MLRA ⊆ MLR for each A. More generally, for

each A,B we have B ≤T A → MLRB ⊇ MLRA: the stronger the oracle is
computationally, the stronger are the tests, and therefore the harder for a set to
escape them.
In this section we study relative randomness as a binary relation between sets Z

and A. An important fact is the symmetry of relative randomness, Theorem 3.4.6.
Moreover, in Theorem 5.1.22 of Section 5.1 we consider the situation that some
set Z is ML-random in A and also Z ≥T A. We show that this is a strong lowness
property of a set A.
In Section 3.6 we fix A; mostly A will be ∅(n−1) for some n > 0:

3.4.1 Definition. Let n > 0. A set Z is called n-random if Z is ML-random
relative to ∅(n−1).

Thus, 1-randomness is the same as ML-randomness. Recall that 1-random sets
may fail to match our intuition of randomness because of facts like the Kučera-
Gács Theorem 3.3.2, or the existence of a left-c.e. ML-random set. In Section 3.6
we will see that both concerns are no longer valid for 2-randomness.
We can also fix a ML-random set Z and consider the class of oracles A such

that Z is ML-random in A. For Z = Ω this yields the lowness property of being
low for Ω, defined in 3.6.17 and studied in Section 8.1.

Relativizing C and K

A Turing functional viewed as a partial map M : 2N×{0, 1}∗ → {0, 1}∗ is called
an oracle machine. Thus, M is an oracle machine if there is e ∈ N such that
M(A, σ) 	 ΦA

e (σ) for each oracle A and string σ. We extend Definition 2.1.2,
namely, we let V

A(0e−11ρ) 	 ΦA
e (ρ), for each set A, each e > 0, and ρ ∈ {0, 1}∗.

We write CA(x) for the length of a shortest string σ such that V
A(σ) = x.

3.4.2 Definition. (i) A prefix-free oracle machine is an oracle machine M such
that, for each set A, the domain of MA is prefix-free. We let ΩA

M = λ(domMA).
KMA(x) denotes the length of a shortest string σ such that MA(σ) = x.
(ii) A prefix-free oracle machine R is optimal if for each prefix-free oracle ma-
chine M there is a constant eM such that ∀A∀x [KRA(x) ≤ KMA(x) + eM ].
Thus, the coding constant is independent of the oracle.

To show that an optimal prefix-free oracle machine exists, we view the proof
of Proposition 2.2.7 relative to an oracle A. We may in fact relativize Theo-
rem 2.2.9, using the Recursion Theorem in its version 1.2.10. Thus, there is an
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optimal prefix-free oracle machine U such that, where KA(x) = KUA(x), we have
∀x[KA(x) ≤ KA(|x|) + |x|+ 1]. We let

ΩA = λ[domU
A]≺. (3.6)

The notation ΩA is short for ΩA
U
. By the definition of U as an oracle machine,

for each prefix-free oracle machine M there is d > 1 such that

∀X ∀ρ [MX(ρ) 	 U
X(0d−11ρ)]. (3.7)

We say that d is a coding constant for M (with respect to U).
Exercises. For a string α, Cα(x) denotes the length of a shortest string σ such that
Vα(σ) = x, and Kα(x) denotes the length of a shortest string σ such that Uα(σ) = x.

3.4.3. (i) Show that C(x | α) ≤+ Cα(x). (ii) Show that for each n there is α of length n
such that Cα(n) ≥+ C(n) (while C(n | α) = O(1)).

3.4.4. Show that for each A, B such that A ≤T B we have ∃d∀y KB(y) ≤ KA(y) + d.

Basics of relative ML-randomness

The relativized form of Theorem 3.2.9 is:

Z is ML-random relative to A ⇔ ∃b ∀n KA(Z �n) > n− b.
In other words, (RA

b )b∈N is a universal ML-test relative to A, where RA
b = [{x ∈

{0, 1}∗ : KA(x) ≤ |x| − b}]≺. We obtain examples of sets that are ML-random
relative to A by relativizing the results on page 108. In particular, ΩA defined
in (3.6) is ML-random in A.
Fact 3.2.2 that no computable set is ML-random can be relativized:

3.4.5 Fact. If Z ≤T A then Z is not ML-random relative to A.

Proof. Suppose Z = ΦA for a Turing reduction Φ. Let GA
m = [ΦA �m], then

(GA
m)m∈N is a ML-test relative to A and Z ∈ ⋂

mGA
m. �

Symmetry of relative Martin-Löf randomness

Perhaps the most important fact on relative ML-randomness as a relation on
sets is the theorem of van Lambalgen (1987) that A⊕B is ML-random ⇔ B is
ML-random and A is ML-random relative to B. By Proposition 3.2.16 A ⊕ B
is ML-random ⇔ B ⊕ A is ML-random. So, we also have that A ⊕ B is ML-
random ⇔ A is ML-random and B is ML-random relative to A. Thus, relative
ML-randomness is a symmetric relationship between sets A and B that are both
ML-random: A is ML-random in B ⇔ B is ML-random in A. This is surprising
because on the left side we consider the randomness aspect of A and on the right
side its computational power.

3.4.6 Theorem. Let A,B ⊆ N. Then A⊕B is ML-random⇔ B is ML-random
and A is ML-random relative to B.
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Proof. ⇒: For a string β we let Rβ
b = [{x ∈ {0, 1}∗ : Kβ(x) ≤ |x|− b}]≺. As in

the proof of Proposition 3.2.7 we have λRβ
b ≤ 2−b for each string β. (We could

also use some other universal oracle ML-test here.)
If A⊕B is ML-random then B is ML-random by Proposition 3.2.16, where the

computable one-one function f is given by f(n) = 2n+ 1.
Suppose that A is not ML-random in B. Then A ∈ ⋂

bRB
b . We show that

A⊕B ∈ ⋂
bGb for some ML-test (Gb)b∈N. For each b, n ∈ N let

Gb(n) = [{u⊕ β : |u| = |β| = n & ∃x � uKβ(x) ≤ |x| − b}]≺.
Then Gb(n) is a c.e. open set uniformly in b and n, and

λGb(n) ≤
∑

β 2−nλRβ
b [[|β| = n]] ≤ 2−b.

Clearly Gb(n) ⊆ Gb(n + 1) for each n. Let Gb =
⋃

nGb(n), then (Gb)b∈N is a
ML-test. If A ∈ ⋂

bRB
b then for each b there is x ≺ A such that KB(x) ≤ |x|− b,

and thus KB�n(x) ≤ |x| − b for some n ≥ |x|. Then A⊕B ∈ Gb(n).
⇐: Suppose A⊕B is not ML-random, then A⊕B ∈ ⋂

d Vd for a ML-test (Vd)d∈N

such that λVd ≤ 2−2d for each d. Firstly, we build a Solovay test (Sd)d∈N in an
attempt to show that B is not ML-random. For a string x let [∅ ⊕ x] denote the
clopen set {Y0 ⊕ Y1 : x ≺ Y1}. Let

Sd =
⋃{[x] : λ(Vd ∩ [∅ ⊕ x]) ≥ 2−d−|x|}.

By Fact 1.9.16, Sd is a c.e. open set uniformly in d. We claim that λSd ≤ 2−d.
Let (xi) be a listing of the minimal strings x (under the prefix relation) such
that λ(Vd ∩ [∅ ⊕ x]) ≥ 2−d−|x|. Then Sd =

⋃
i[xi]. Since the sets Vd ∩ [∅ ⊕ xi]

are pairwise disjoint and λVd ≤ 2−2d, we see that
∑

i 2
−d−|xi| ≤ 2−2d and hence

λSd =
∑

i 2
−|xi| ≤ 2−d.

If B ∈ Sd for infinitely many d then B fails the Solovay test, and hence is not
ML-random. Now suppose there is d0 such that B �∈ Sd for all d ≥ d0. Let

Hd(n) = [{w : |w| = n & [w ⊕B �n] ⊆ Vd}]≺.
Then λHd(n) ≤ 2−d for each d ≥ d0 since B �∈ Sd. Moreover Hd(n) ⊆ Hd(n+1)
for each n. Let Hd =

⋃
nHd(n), then λHd ≤ 2−d, and Hd is a c.e. open set

relative to B uniformly in d. Since A ∈ Hd for each d ≥ d0, A is not ML-random
relative to B. �

Since MLRA is conull for each A, the symmetry of relative ML-randomness
shows that a ML-random set is ML-random relative to almost every set:

3.4.7 Corollary. For ML-random A, λ{B : A is ML-random in B} = 1. �

The following is an immediate consequence of the implication “⇒” in Theo-
rem 3.4.6 and Fact 3.4.5. It yields an alternative proof of the Kleene–Post The-
orem 1.6.1, and shows that no ML-random set is of minimal Turing degree.

3.4.8 Corollary. If A⊕B is ML-random then A |T B. �

The van Lambalgen Theorem holds for k-randomness (k ≥ 1), as well as for the
notions of Π1

1-ML-randomness and Π1
1-randomness introduced in Chapter 9. However,
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it also fails for some important randomness notions, such as Schnorr randomness (3.5.8).
See Remark 3.5.22.

3.4.9.� Exercise. Let k ≥ 1. Then A ⊕ B is k-random ⇔ B is k-random and A is
ML-random relative to B(k−1) (that is, A is k-random relative to B).

Computational complexity, and relative randomness

We prove two results of independent interest that will also be applied later. They
are due to Nies, Stephan and Terwijn (2005).
In 3.2.10 we built a (super)low ML-random set by applying the Low Basis

Theorem in the version 1.8.38 to the Π0
1 class 2N − R1. The proof of 1.8.38 is

an explicit construction of the low set. We may also obtain a low ML-random
set A by a direct definition: take as A the bits in the odd positions of any
ML-random ∆0

2 set, say Ω. Such a set is low by the following more general
fact which also applies to sets A not in ∆0

2. Recall from Definition 1.5.4 that
GL1 = {A : A′ ≡T A⊕ ∅′}.
3.4.10 Proposition. If some ∆0

2 set Z is ML-random in A then A is in GL1.

Proof. Fix a computable approximation (Zt)t∈N of Z (see Definition 1.4.1). Let
f : N → N be the function given by f(r) = µs∀t ≥ s [Zt � r = Zs � r]. Recall
that JA(e) 	 ΦA

e (e). Let Ĝe be the open set, uniformly c.e. in A, given by

Ĝe =

{
[Zse �e+1] if se is the stage at which JA(e) converges
∅ if JA(e)↑ .

Let Gn =
⋃

e≥n Ĝe, then (Gn)n∈N is a ML-test relative to A. Since Z /∈ ⋂
nGn,

only finitely many of the Ĝe contain Z. Thus f(e) ≥ se for almost all e such that
JA(e)↓. Hence, for almost all e, we have JA(e)↓↔ JA

f(e)(e)↓. Since f ≤T ∅′, this
implies that A′ ≤T A⊕ ∅′. (Also see Exercise 4.1.14.) �

3.4.11 Corollary. Suppose the ∆0
2 set A = A0 ⊕A1 is ML-random.

Then A0 and A1 are low.

Proof. The ∆0
2 set A1 is ML-random in A0 by Theorem 3.4.6. Thus A0 is in GL1,

and hence A0 is low. The same argument applies to A1. �

In 3.4.17 we proved that Ω∅′
is high. So a high set can be in GL1:

3.4.12 Corollary. Ω∅′
is in GL1.

Proof. Ω∅′
is ML-random relative to ∅′ ≡T Ω, so by Theorem 3.4.6 Ω is ML-

random relative to Ω∅′
. Thus Ω∅′

is in GL1 by Proposition 3.4.10. �

Our second result will be applied, for instance, in the proof of Theorem 5.1.19.

3.4.13 Proposition. Let B be c.e., Z be ML-random, and suppose that
∅′ �≤T B ⊕ Z. Then Z is ML-random relative to B.
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Proof idea. Suppose Z is not ML-random relative to B. Thus Z ∈ ⋂
d∈N
RB

d .
Since B ⊕ Z �≥T ∅′, infinitely many numbers x enter ∅′ after a stage where Z
enters RB

x with B correct on the use. This allows us to convert (RB
d )d∈N into an

unrelativized ML-test (Sd)d∈N such that Z fails this test.

Proof details. Let RB
d [s] = [{x : KBs

s (x) ≤ |x| − d}]≺ be the approximation of
RB

d at stage s. Notice that λRB
d [s] ≤ 2−d for each s. An enumeration of Z into

RY
d at a stage s is due to a computation U

Y (σ) = z where z ≺ Z converging
at s, and hence has an associated use on the oracle Y . The following function is
computable in B ⊕ Z:

f(x) = µs. Z ∈ RB
x [s] with use u & Bs �u= B �u].

Because Bs �u= B �u we have Z ∈ RB [t] for all t ≥ s (here we need that B
is c.e., not merely ∆0

2). Let m(x) 	 µs. x ∈ ∅′s. Then ∃∞x ∈ ∅′ [m(x) ≥ f(x)],
otherwise one could compute ∅′ from B ⊕Z because, for almost all x, x ∈ ∅′ ↔
x ∈ ∅′f(x). Let Sd =

⋃
x>dRB

x [m(x)]. The sequence (Sd)d∈N is uniformly c.e., and
µSd ≤ 2−d. Also, Z ∈ ⋂

d Sd because m(x) ≥ f(x) for infinitely many x. This
contradicts the assumption that Z is ML-random. �

3.4.14 Exercise. In 3.4.10, if in addition Z is ω-c.e. and A is c.e., then A is superlow.
3.4.15.� Problem. Determine whether Ω0 can be superlow for some optimal machine.

The halting probability Ω relative to an oracle �

Recall from (3.6) that ΩA = λ[domU
A]≺. We study the operator 2N → R given

by A �→ ΩA. The results are from Downey, Hirschfeldt, Miller and Nies (2005).
We begin with some observations on the computational complexity of ΩA.

3.4.16 Fact. A′ ≡T A⊕ ΩA for each set A.

Proof. By Proposition 3.2.30 ∅′ ≡T Ω, so A′ ≤T A ⊕ ΩA by relativization. On
the other hand A′ ≥T A⊕ ΩA since ΩA is left-c.e. relative to A. �

3.4.17 Proposition. If a ∆0
2 set A is high then ΩA is high.

Proof. By the foregoing fact, ∅′′ ≤T A
′ ≡T A⊕ ΩA ≤T (ΩA)′. �

Recall from 3.4.2 that ΩA
M = λ(domMA) for a prefix-free oracle machine M .

For a string σ we let Ωσ
M = λ(domMσ). Some facts below hold for all the

operators ΩM , while at other times it is crucial that the prefix-free machine be
optimal.

3.4.18 Proposition. For each prefix-free oracle machine M , the real numbers
r0 = inf{ΩX

M : X ∈ 2N} and r1 = sup{ΩX
M : X ∈ 2N} are left-c.e.

Proof. For any rational q ∈ [0, 1] we have q < r0 ↔ the Π0
1 class {X : ΩX

M ≤ q}
is empty, which is a Σ0

1 property of q by Fact 1.8.28. Next, q < r1 ↔ ∃ρ [q < Ωρ
M ],

which is a Σ0
1 property of q as well. �

In Theorem 8.1.2 we will show that the infimum r0 is assumed; in fact, there is
a left-Σ0

2 set A such that ΩA
M = r0. Downey, Hirschfeldt, Miller and Nies (2005)
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proved in their Corollary 9.5 that for M = U the supremum is assumed by a
left-Σ0

2 set as well. In general, operators ΩM do not assume their supremum; see
Exercise 3.4.21.
An operator F : 2N → R is called lower semicontinuous at A if for all ε > 0

there is n ∈ N such that ∀X � A�n [F (X) > F (A)−ε]. Dually, F is called upper
semicontinuous at A if for all ε > 0 there is n ∈ N such that ∀X � A�n [F (X) <
F (A) + ε]. Clearly, F is continuous at A iff F is both lower semicontinuous and
upper semicontinuous at A.

3.4.19 Fact. Let M be a prefix-free oracle machine. Then the operator ΩM is
lower semicontinuous at every set A ∈ 2N.

Proof. By the use principle, for each set A,

∀ε > 0∃k ∈ N [ΩA
M − ΩA�k

M < ε]. (3.8)

Hence ΩA
M − ε < ΩX

M for every X � A�k. �

In the following we characterize the class of sets A such that the operator
X �→ ΩX is continuous at A as the 1-generic sets introduced in 1.8.51.

3.4.20 Theorem. A is 1-generic ⇔ the operator X �→ ΩX is continuous at A.

Proof. ⇒: This implication actually holds for ΩM where M is any prefix-free
oracle machine. Since ΩM is lower semicontinuous at every set, it suffices to show
that ΩM is upper semicontinuous at A. Suppose this fails for the rational ε. Let
r ≤ ΩA

M be a rational such that ΩA
M − r < ε. For each n there is X � A�n such

that ΩX
M ≥ ΩA

M + ε ≥ r + ε. Thus the following c.e. open set is dense along A:

S = {X : ∃t [ΩX
M,t ≥ r + ε]},

where ΩX
M,t = λ[domMX

t ]≺. Hence A ∈ S. This implies ΩA
M ≥ r + ε > ΩA

M ,
contradiction.
⇐: We assume that A is not 1-generic and show that there is ε > 0 such that
∀n∃X � A�n [ΩX ≥ ΩA + ε]. Let the c.e. open S be dense along A but A �∈ S.
Let NX be the prefix-free oracle machine such that NX(∅)↓ at the first stage t
such that [X �t] ⊆ St. Let d > 1 be the coding constant for N with respect to U

according to (3.7), and let ε = 2−d−1. Choose k as in (3.8) for ε and M = U.
Since NA is nowhere defined, U

A�k(0d−11ρ) ↑ for each string ρ. On the other
hand, since S is dense along A, for each n ≥ k there is a set X � A�n such that
X ∈ S. Then NX(∅)↓, so ΩX ≥ ΩA�k + 2ε ≥ ΩA + ε. �

Since the implication from left to right holds for every prefix-free oracle machine M ,
we have also proved that A is 1-generic ⇔ for any prefix-free oracle machine M , ΩX

M is
continuous at A. We call a prefix-free oracle machine R uniformly optimal if for each
prefix-free oracle machine N there is a fixed α such that ∀X ∀ρ [NX(ρ) � RX(αρ)].
The implication from right to left in 3.4.20 used that U is uniformly optimal.

Theorems 5.5.14 and 8.1.2 provide further results about the operators ΩM .
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Exercises.
3.4.21. Give an example of a prefix-free oracle machine M such that
r1 = sup{ΩX

M : X ∈ 2N} is not assumed.
3.4.22. Show that for a prefix-free oracle machine M , if ΩA

M = sup{ΩX
M : X ∈ 2N},

then the operator ΩM is continuous at A.
3.4.23. Show that the ML-random real 1− Ω is not of the form ΩA for any set A.

3.5 Notions weaker than ML-randomness
On page 104 we discussed two criticisms of the notion of ML-randomness.

1. Schnorr (1971) maintained that Martin-Löf tests are too powerful to be
considered algorithmic. He suggested to study randomness notions weaker
than ML-randomness.

2. ML-random sets can be left-c.e., and each set Y ≥T ∅′ is Turing equivalent
to a ML-random set. This is not consistent with our intuition on random-
ness. Thus, from an opposite point of view it also makes sense to consider
randomness notions stronger than ML-randomness.

In this and the next section we vary the notion of a ML-test in order to in-
troduce randomness notions that address these criticisms. Table 3.1 summarizes
the three main variants of the concept of a ML-test, and names the correspond-
ing randomness notions. Each time, the tests are u.c.e. sequences of open sets
(Gm)m∈N such that

⋂
mGm is a null class, possibly with some extra conditions

on the effectivity of a presentation, and how fast λGm converges to 0.

Table 3.1. Variants of the concept of ML-test. Throughout (Gm)m∈N is a uni-
formly c.e. sequence of open sets.

Test notion Definition Randomness notion

Kurtz test (Gm)m∈N is an effective sequence of (weakly random)
clopen sets such that λGm ≤ 2−m

Schnorr test λGm ≤ 2−m is a computable real Schnorr random
uniformly in m

Martin-Löf ∀mλGm ≤ 2−m Martin-Löf random
test
Generalized

⋂
mGm is a null class weakly 2-random

ML-test

As before, we say that a set Z fails the test if Z ∈ ⋂
mGm. Otherwise Z

passes the test. Schnorr tests are the Martin-Löf tests where λGm is computable
uniformly in m. The corresponding randomness notion is called Schnorr ran-
domness. We begin with the most restricted test concept, Kurtz tests, where the
sets Gm are clopen sets given by a strong index for a finite set. The corresponding
property will be called weak randomness.
The implications between the notions are
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ML-random ⇒ Schnorr random ⇒ weakly random.
The converse implications fail.

Weak randomness

Clopen sets are given by strong indices for finite sets, as explained before 1.8.6.

3.5.1 Definition. A Kurtz test is an effective sequence (Gm)m∈N of clopen sets
such that ∀mλGm ≤ 2−m. Z is weakly random if it passes each Kurtz test.

Kurtz tests are equivalent to null Π0
1 classes in a uniform way. Thus, a set is

weakly random if and only if it avoids all null Π0
1 classes.

3.5.2 Fact.

(i) If (Gm)m∈N is a Kurtz test then P =
⋂

mGm is a null Π0
1 class.

(ii) If P is a null Π0
1 class then P =

⋂
mGm for some Kurtz test (Gm)m∈N.

Proof. (i) The tree {x : ∀m [x] ∩ Gm �= ∅} has a c.e. complement in {0, 1}∗.
Thus P is a Π0

1 class (see Definition 1.8.19).
(ii) The test obtained in 3.2.2 is a Kurtz test as required. �

A weakly random set Z is incomputable, otherwise Z would be a member of the
null Π0

1 class given in 3.2.2.

3.5.3 Remark. Weak randomness behaves differently depending on whether
the set is of hyperimmune degree or computably dominated.

(i) Each hyperimmune degree contains a weakly 1-generic set by 1.8.50. The
law of large numbers (see 3.2.12) may fail for such a set. Weak 1-genericity
implies weak randomness. Thus, each hyperimmune degree contains a weak-
ly random set that is far from being random in the intuitive sense.

(ii) If a weakly random set is computably dominated then this set is ML-
random, and in fact weakly 2-random.

We discuss (i) here, and postpone (ii) to Proposition 3.6.4.

3.5.4 Fact. Each weakly 1-generic set is weakly random.

Proof. Each conull open set D is dense, for otherwise D ∩ [x] = ∅ for some
string x, whence λD ≤ 1 − 2−|x| < 1. By the definition, a set G is weakly 1-
generic iff G is in every dense c.e. open set. So no weakly 1-generic set is in a
null Π0

1 class. �

3.5.5 Proposition. The law of large numbers fails for every weakly 1-generic
set Z. In fact, lim infn (#{i < n : Z(i) = 1}/n) = 0.

Proof. Given k > 0, consider the function f(m) = (k − 1)m. As in the proof
of Proposition 1.8.48 let Df be the dense c.e. open set [{σ0f(|σ|) : σ �= ∅}]≺.
There is a string σ of length m such that σ0(k−1)m ≺ Z, so for n = km we have
#{i < n : Z(i) = 1}/n ≤ 1/k. �
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A similar argument shows that lim supn (#{i < n : Z(i) = 1}/n) = 1. Thus the
number of occurrences of zeros and ones is highly unbalanced. We conclude that
weak randomness is indeed too weak to be considered a genuine mathematical
randomness notion.
Exercises.
3.5.6. Recall from Theorem 1.8.49 that a weakly 1-generic set can be left-c.e. However,
it is far from being c.e.: show that no c.e. set B is weakly random.
3.5.7. We say that Z is ranked if Z is a member of a countable Π0

1 class. (Such a set
is far from even being weakly random.) Use Theorem 3.3.7 to show that each ranked
set is autoreducible.

Schnorr randomness
Even if Schnorr randomness is a weaker notion, its theory parallels the theory
of Martin-Löf randomness. Firstly we study Schnorr tests. Secondly we consider
computable measure machines. They are the prefix-free machines with a com-
putable halting probability. We show that each Schnorr test can be emulated
by a computable measure machine, which leads to a characterization of Schnorr
randomness in terms of the growth of initial segment complexity similar to The-
orem 3.2.9. We use this to extend statistical properties of ML-random sets, such
as the law of large numbers, to the case of Schnorr random sets.
A main difference between Martin-Löf randomness and Schnorr randomness is

that, for the latter, there is no universal test.
Schnorr tests. If (Gm)m∈N is a universal ML-test, then for each m the Π0

1 class
P = 2N−Gm is contained in MLR, whence λP is ML-random by Theorem 3.2.35.
Thus λGm is left-c.e. but not computable. Schnorr (1971) introduced a more
restricted test concept:

3.5.8 Definition. A Schnorr test is a ML-test (Gm)m∈N such that λGm is com-
putable uniformly in m. A set Z ⊆ N fails the test if Z ∈ ⋂

mGm, otherwise Z
passes the test. Z is Schnorr random if Z passes each Schnorr test.

Each Kurtz test is a Schnorr test, so each Schnorr random set is weakly random.
A computable set is not weakly random, and hence not Schnorr random. On
the other hand, each Schnorr test (Gm)m∈N is passed by a computable set: for
instance, the Π0

1 class 2N−G1 contains a computable set by Exercise 1.9.21. We
conclude:

3.5.9 Fact. There is no universal Schnorr test. �

If λGm is computable uniformly in m then we have better information about
the test than for a ML-test in general, but it does not mean that we “know” the
components Gm. There is a c.e. open set R such that λR is computable while
AR = {σ : [σ] ⊆ R} is not computable; see Example 1.9.17. The only tests where
we know everything are the Kurtz tests, but they do not determine a randomness
notion.
By the following we may relax the failure condition in Definition 3.5.8 to the

failure condition for a Solovay test that Z ∈ Gi for infinitely many i.
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3.5.10 Fact. If ∃∞i [Z ∈ Gi] for some Schnorr test (Gi)i∈N then Z is not
Schnorr random.

Proof. Let Ĝm =
⋃

i>mGi. We show that (Ĝm)m∈N is a Schnorr test. Clearly
λĜm ≤ 2−m. To see that λĜm is uniformly computable, we apply Fact 1.8.15(iii):
given m, r ∈ N, we compute a rational that is within 2−r+1 of λĜm. Let Ĝm,s =⋃

i>mGi,s. For each i we may compute si such that λGi − λGi,si
≤ 2−i−r. Let

t = max{si : i ≤ m+ r}, then

λĜm − λĜm,t ≤ λ
⋃

i>m

(Gi −Gi,t)

≤
m+r∑

i=m+1

2−i−r +
∞∑

i=m+r+1

2−i ≤ 2−r+1.

Then Z is not Schnorr random since Z ∈ ⋂
m Ĝm. �

On the other hand, by the uniformity of Lemma 1.9.19 we may turn a Schnorr
test into one where the measure of the m-th open set is not only uniformly
computable, but in fact it equals 2−m.

3.5.11 Fact. For each Schnorr test (Gm)m∈N, one may effectively find a Schnorr
test (G̃m)m∈N such that ∀mGm ⊆ G̃m and ∀mλG̃m = 2−m. �

The analog of Proposition 3.2.16 holds by the same proof.

3.5.12 Proposition. Suppose f is a computable one-one function. If Z is
Schnorr random then so is f−1(Z). �

High degrees and Schnorr randomness. We postpone the proof that there is a
Schnorr random, but not ML-random set to Section 7.3, where we actually sepa-
rate computable randomness from ML-randomness. Computable randomness is a
notion defined in terms of computable betting strategies (martingales) which lies
properly in between Schnorr and ML-randomness. We will prove in Section 7.3
that each high Turing degree contains a computably random set, and that each
c.e. high degree contains a left-c.e. computably random set. If this c.e. degree is
Turing incomplete then the set cannot be ML-random by Theorem 4.1.11 below.
On the other hand, if the Turing degree of a set is not high, then Schnorr

randomness is equivalent to ML-randomness. This is an instance of the heuristic
principle that, as we lower the computational complexity of sets, randomness
notions tend to coincide. Such an interaction from the computational complexity
of sets towards randomness already occurred in Remark 3.5.3(ii), that weak
randomness coincides with weak 2-randomness for computably dominated sets.

3.5.13 Proposition. If Z is Schnorr random and not high, then Z is already
Martin-Löf random.
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Proof. Suppose that (Gm)m∈N is a ML-test such that Z ∈ ⋂
mGm. Then the

function f given by f(m) 	 µs. Z ∈ Gm,s is total. Since f ≤T Z and Z is not
high, by Theorem 1.5.19 there is a computable function h not dominated by f ,
namely, ∃∞mh(m) > f(m). Let Sm = Gm,h(m), then (Sm)m∈N is a Schnorr
(even Kurtz) test such that Z ∈ Sm for infinitely manym. Then Z is not Schnorr
random by Fact 3.5.10. �

Computable measure machines

Recall from (2.4) on page 84 that ΩM = λ[domM ]≺ =
∑

σ 2−|σ| [[M(σ)↓]] is
the halting probability of a prefix-free machine M . Downey and Griffiths (2004)
introduced a restricted type of prefix-free machines.

3.5.14 Definition. A prefix-free machine M is called a computable measure
machine if ΩM is computable.

(They used the term “computable machines”, but we prefer the present term
because a machine is the same as a partial computable function.) Similar to
Theorem 3.2.9, they characterized Schnorr randomness by a growth condition
on the initial segment complexity. In the case of Schnorr randomness one needs
an infinite collection of descriptive complexity measures for strings, namely all
the functions KM for a computable measure machine M .
Recall that we approximate KM (x) by KM,s(x) := min{|σ| : Ms(σ) = x}. For

a computable g such that ∀n g(n) ≥ n we have the time bounded version of KM

given by Kg
M (x) = KM,g(|x|)(x) (similar to the definition of Cg on page 81).

3.5.15 Proposition. Suppose that M is a computable measure machine with
range {0, 1}∗. Then the function KM is computable. In fact, there is a computable
function g such that KM = Kg

M .

Proof. Since ΩM is computable, one can determine KM (x) as follows: compute
the least stage s = sx such that ΩM − ΩM,s ≤ 2−n, where n = KM,s(x) < ∞.
If a description of length less than n appears after stage s, then this causes an
increase of ΩM by at least 2−n+1. Thus KM,s(x) = KM (x).
If we let g(m) = max({m} ∪ {sx : |x| = m}) then KM = Kg

M . �

Our principal tool for building prefix-free machines is the Machine Existence
Theorem 2.2.17: from a given bounded request set W one obtains a prefix-free
machine M for W such that ΩM equals wgtW ({0, 1}∗), the total weight of W . If
the total weight of W is computable then M is a computable measure machine.
Exercises.

3.5.16. From a computable measure machine M and ΩM , one may effectively obtain
a computable measure machine N such that ΩN = 1 and ∀x KN (x) ≤ KM (x).

3.5.17. Let M be a computable measure machine. Show that from r ∈ N one can
compute a strong index for the finite set {y : KM (y) ≤ r}.
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Schnorr tests can be emulated by computable measure machines
Downey and Griffiths (2004) proved the analog of Schnorr’s Theorem 3.2.9: a
set Z is Schnorr random ⇔ for each computable measure machine M there is b
such that each initial segment of Z is b-incompressible in the sense of KM . First
we need a lemma saying that the tests (RM

b )b∈N from Definition 3.2.6, where
M is a computable measure machine, are Schnorr tests that can emulate any
other Schnorr test.

3.5.18 Lemma.

(i) Let M be a computable measure machine. Then (RM
b )b∈N is a Schnorr test.

(ii) Let (Gm)m∈N be a Schnorr test. Then we may effectively obtain a com-
putable measure machine M such that

⋂
mGm ⊆

⋂
bR

M
b .

Proof. (i) We extend the proof of Proposition 3.2.7 that (RM
b )b∈N is a ML-test.

It suffices to show that λRM
b is computable uniformly in b. As before, let VM

b be
the set of strings in RM

b which are minimal under the prefix ordering. Let VM
b,s be

the set of minimal strings in RM
b,s. Then ΩM −ΩM,s ≥ 2b(λ[VM

b ]≺−λ[VM
b,s ]

≺) for
each s. Since ΩM is computable, by Fact 1.8.15(iv) this shows that λ[VM

b ]≺ =
λRM

b is computable uniformly in b.
(ii) We extend the proof of (ii)⇒(i) in Theorem 3.2.9. Let (Gm)m∈N be a Schnorr
test. We may assume that λGm ≤ 2−2m for eachm. Let L be the bounded request
set defined as in the proof of Theorem 3.2.9, and let M be the machine obtained
from L via the Machine Existence Theorem 2.2.17. By the construction of L, for
each Z ∈ Gm there is x ≺ Z such that KM (x) ≤ |x|−m+1. Therefore it suffices
to show that the total weight α of L is computable and henceM is a computable
measure machine. Recall that the contribution of Gm to the total weight of L is
at most 2−m−1. In the notation of the proof of 3.2.9, let

Lt = {〈|xm
i | −m+ 1, xm

i 〉 : m ∈ N & i < min(Nm, t)},
and let αt be the total weight of Lt. Given r, similar to the proof of Fact 3.5.10,
we compute t such that α−αt ≤ 2−r+1: let Gm(u) be the clopen set [{xm

k : k <
min(Nm, u)}]≺. For each i, we may compute si such that λGi−λGi(si) ≤ 2−2i−r.
Let t = max{si : i ≤ r}, then α− αt ≤

∑
i≤r 2

−i−r−1 +
∑

i≥r+1 2
−i−1 ≤ 2−r+1.

�

The analog of Theorem 3.2.9 for Schnorr randomness is now immediate.

3.5.19 Theorem. The following are equivalent.
(i) Z is Schnorr random.
(ii) For each computable measure machine M , ∃b∀n KM (Z �n) > n− b,

that is, ∃b Z �∈ RM
b .

Schnorr random sets satisfy the law of large numbers
To obtain statistical properties of incompressible strings we proved Proposi-
tion 2.5.7 and Corollary 2.5.9. These results have versions for computable mea-
sure machines. They relied on Lemma 2.5.6, so suppose the given set of strings G
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in the lemma is computable. In that case, the proof produces a bounded request
set W with a computable total weight α. For, we showed that the weight con-
tributed by each Gn, n ≥ 10, is at most (n− 1)−2/2. Now

∫ ∞
r
x−2dx = 1/r and

hence
∑

n>r+1(n − 1)−2 ≤ 1/r. For r ≥ 10 let the rational αr be the weight
contributed by all the Gn, 10 ≤ n ≤ r + 1. Since G is computable, αr can be
computed from r, and α− αr ≤ 1/(2r).
The sets G in the proofs of Proposition 2.5.7 and of Corollary 2.5.9 are com-

putable. So we may sharpen these results in the sense that the descriptive com-
plexity can be taken relative to computable measure machines:

3.5.20 Proposition. There are computable measure machines M and N with
the following properties.

(i) If x is a string of length n with a run of 4 logn zeros then
KM (x) ≤+ n− logn.

(ii) Fix b. For each d, for almost every n, each string x of length n such that
KN (x) > n− b satisfies abs(Sn(x)/n− 1/2) < 1/d. �

This leads to the desired statistical properties of Schnorr random sets.

3.5.21 Theorem. Let Z be Schnorr random.
(i) For each n, any run of zeros in Z �n has length ≤+ 4 logn.
(ii) Z satisfies the law of large numbers in 3.2.12.

Proof. LetM,N be the computable measure machines from the previous propo-
sition. By Theorem 3.5.19, there is b ∈ N such that Z �∈ RM

b and Z �∈ RN
b . Now

(i) and (ii) follow. �

3.5.22 Remark. Stronger results along these lines have been derived. For instance,
the law of iterated logarithm holds for Schnorr random sets. This suggests that the
randomness notion of Schnorr can be seen as a sufficient formalization of the intuitive
concept of randomness as far as statistical properties are concerned. In contrast, Schnorr
random sets can have computability theoretic properties that are not consistent with
our intuitive notion of randomness. For instance, as Kjos-Hanssen has pointed out,
there is a Schnorr random set A = A0 ⊕ A1 such that A0 ≡T A1. To see this, let a be
a high minimal Turing degree, which exists by the Cooper Jump Inversion Theorem
(see Lerman 1983, pg. 207). By Theorem 7.5.9 let A ∈ a be Schnorr random. Let
A = A0 ⊕ A1, then A0, A1 are Schnorr random by 3.5.12, and hence incomputable.
Thus A0 ≡T A1. (Since A0 is not Schnorr random relative to A1, this example also
shows that van Lambalgen’s Theorem 3.4.6 fails for Schnorr randomness.)

3.6 Notions stronger than ML-randomness
In this section we mainly study weak 2-randomness and 2-randomness. The impli-
cations are

2-random ⇒ weakly 2-random ⇒ ML-random.
The converse implications fail. The new notions address the second concern out-
lined at the beginning of Section 3.5, that for instance left-c.e. sets should not
be considered random.
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When one is interested in applying concepts related to randomness in com-
putability theory, these notions are less relevant (see the beginning of Chapter 4).
Examples like Ω are important for the interaction in this direction. It is at its
strongest when one considers the ∆0

2 sets, and a weakly 2-random set already
forms a minimal pair with ∅′.
In the converse direction, computational complexity is essential for our under-

standing of weak 2-randomness and 2-randomness. Within the ML-random sets,
both notions are characterized by lowness properties: forming a minimal pair
with ∅′ in the former case, and being low for Ω in the latter.
An interesting alternative to deal with the second concern at the beginning

of Section 3.5 is Demuth randomness, a further notion between 2-randomness
and ML-randomness. It turns out to be incomparable with weak 2-randomness.
In Theorem 3.6.25 we show that there is a Demuth random ∆0

2 set, and in
Theorem 3.6.26 that all Demuth random sets are in GL1.

Weak 2-randomness

The concept of a Martin-Löf test was obtained by effectivizing Fact 1.9.9, that
the null classes are the classes contained in

⋂
mGm for some sequence of open

sets (Gm)m∈N such that limm λGm = 0. To be a Martin-Löf-test, the sequence
(Gm)m∈N has to be uniformly c.e. and λGm has to converge to 0 effectively. If
one drops the effectivity in the second condition, a strictly stronger randomness
notion is obtained.

3.6.1 Definition. A generalized ML-test is a sequence (Gm)m∈N of uniformly
c.e. open sets such that

⋂
mGm is a null class. Z fails the test if Z ∈ ⋂

mGm,
otherwise Z passes the test. Z is weakly 2-random if Z passes each generalized
ML-test. Let W2R denote the class of weakly 2-random sets.

By Remark 1.8.58, the null Π0
2 classes coincide with the intersections of general-

ized ML-tests. To be weakly 2-random means to be in no null Π0
2 class. This is one

of the conceptually simplest randomness notions we will encounter. Note that, by
Proposition 1.8.60, these tests are determined by computable sets S ⊆ {0, 1}∗,
since each Π0

2 class is of the form {X : ∃∞nS(X �n)} for such an S.
By the following, the ML-random set Ω is not weakly 2-random.

3.6.2 Proposition. If Z is ∆0
2 then {Z} is a null Π0

2 class. In particular, Z is
not weakly 2-random.

Proof. We will turn a computable approximation (Zs)s∈N of Z into a generalized
ML-test (Vm)m∈N such that {Z} = ⋂

m Vm. We may assume that Z is infinite
and Z0(m) = 0 for each m. To enumerate Vm, for each s > m, if x is least such
that Zs(x) �= Zs−1(x), put [Zs � x] into Vm,s. To see that {Z} ⊇ ⋂

m Vm, note
that, if Z �k is stable from stage t on, then for m > t, all the strings enumerated
into Vm extend Z �k. Next we show that Z ∈ ⋂

m Vm. Given m, there is a least x
such that Zs(x) �= Zs−1(x) for some s > m. Let s be the greatest such stage for
this x. Then Z �x = Zs �x is put into Vm at stage s. �



3.6 Notions stronger than ML-randomness 135

3.6.3 Corollary. There is no universal generalized ML-test.

Proof. Let (Gm)m∈N be a generalized ML-test, and choose m such that the
Π0

1 class P = 2N − Gm is nonempty. By the Kreisel Basis Theorem 1.8.36, the
leftmost path Z of P is left-c.e. Since Z is not weakly 2-random but passes the
test, the test is not universal. �

How does one obtain a weakly 2-random set? One way is to take a weakly
random computably dominated set, which exists by Theorem 1.8.42. (See Re-
mark 3.5.3 for more details.) Each 2-random set has hyperimmune degree by
Corollary 3.6.15 below, so the example we obtain is not 2-random. The result is
similar to Proposition 3.5.13.

3.6.4 Proposition. If a set Z is computably dominated and weakly random
then Z already is weakly 2-random.

Proof. If Z is not weakly 2-random then Z ∈ ⋂
mGm for a generalized ML-

test (Gm)m∈N. As in the proof of Proposition 3.5.13, the function f given by
f(m) = µs. Z ∈ Gm,s is total, and f ≤T Z. There is a computable function
g dominating f . Let Hm = Gm,g(m), then (Hm)m∈N is a Kurtz test such that
Z ∈ ⋂

mHm. Thus Z is not weakly random. �

Characterizing weak 2-randomness within the ML-random sets. We will later
strengthen Proposition 3.6.2. By Exercise 1.8.65, for each ∆0

2 set A and each
Turing functional Φ the class {Z : ΦZ = A} is Π0

2. In Lemma 5.1.13 below we
show that this class is null for incomputable A. Thus, if Z is weakly 2-random
and A ≤T Z, ∅′ then A is computable. In Theorem 5.3.16 we will prove that this
property characterizes the weakly 2-random sets within the ML-random sets:

Z is weakly 2-random ⇔ Z is ML-random and Z, ∅′ form a minimal pair.

As a consequence, within the ML-random sets, the weakly 2-random sets are
downward closed under Turing reducibility. The proof is postponed because it
relies on the cost function method of Section 5.3.
One cannot replace the condition that Z and ∅′ form a minimal pair by Z |T ∅′:

3.6.5 Fact. (J. Miller) Some ML-random set Z |T ∅′ is not weakly 2-random.

Proof. Let Ω0 be the bits of Ω in the even positions, then Ω0 is low by the
comment after Corollary 3.4.11. Let V be a 2-random set such that Ω0⊕V �≥T ∅′,
which exists since {X : Ω0 ⊕X �≥T ∅′} is conull. Let Z = Ω0 ⊕ V , then Z |T ∅′,
Z is ML-random by 3.4.6, and Z does not form a minimal pair with ∅′. �

On the other hand, we also cannot expect a stronger condition to characterize
weak 2-randomness within MLR. For instance, each Σ0

2 set B >T ∅′ bounds a
ML-random computably dominated set (and hence a weakly 2-random set) by
Exercise 1.8.46.
Exercises. Firstly, compare weak 2-randomness with weak randomness relative to ∅′.
Recall Definition 1.8.59. Each Π0

1(∅′) class is a Π0
2 class by 1.8.67. Thus, each weakly

2-random set is weakly random relative to ∅′, which yields an alternative proof of
Proposition 3.6.2. The converse fails.
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3.6.6. A set that is weakly random relative to ∅′ can fail the law of large numbers.
Secondly, show that no Σ0

2 set is weakly random relative to ∅′.
3.6.7. If B ⊆ N is an infinite Σ0

2 set, then {Z : B ⊆ Z} is a Π0
1(∅′) null class.

3.6.8.� (Barmpalias, Miller and Nies, 20xx) Show that some ML-random set is weakly
random in ∅′ but not weakly 2-random.

3.6.9.� Problem. To what extent does Theorem 3.4.6 hold for weak 2-randomness?

2-randomness and initial segment complexity

In Section 2.5 we formalized randomness for strings by incompressibility. The-
orem 3.2.9 shows that Z is ML-random iff for some b, each x ≺ Z is b-incom-
pressible in the sense of K. In this subsection we study 2-randomness, that is,
ML-randomness relative to ∅′ (Definition 3.4.1). The main goal is a characteri-
zation based on the incompressibility of initial segments. Relativizing Schnorr’s
Theorem to ∅′, a set Z is 2-random iff for some b, each x ≺ Z is b-incompressible
in the sense of K∅′

. This is not very satisfying, though: we would rather like a
characterization based on the incompressibility of initial segments x with respect
to an unrelativized complexity measure such as C. One cannot require that for
some b, all x ≺ Z are b-incompressible in the sense of C. Such sets do not exist
because of the complexity dips of C in Proposition 2.2.1. Surprisingly, the weaker
condition that
(�) for some b, infinitely many x ≺ Z are b-incompressibleC

precisely characterizes the 2-random sets. This property was studied by Li and
Vitányi (1997). Each set satisfying (�) is ML-random, because each prefix of
an incompressibleC string is incompressibleK (see 2.5.4 for the detailed form of
this statement). On the other hand, Ding, Downey and Yu (2004) proved that
each 3-random set satisfies (�). The equivalence of 2-randomness and (�) is now
obtained by extending the arguments in both proofs in such a way that they
work with 2-randomness.
Two variants of (�) will be considered using different notions of incompress-

ibility. The first appears weaker, the second stronger.
1. Recall from page 81 that for a computable function g we defined

Cg(x) = min{ |σ| : V(σ) = x in g(|x|) steps}. (3.9)

The first variant of (�) is to require that for some b, infinitely many x ≺ Z
are b-incompressible with respect to Cg, for an appropriate fixed g (which un-
der an additional assumption on V can be chosen in O(n3)). This is actually
equivalent to 2-randomness of Z. Using this fact and that Cg is computable, we
give a short proof of the result by Kurtz (1981) that no 2-random set is com-
putably dominated. This shows that 2-randomness is indeed stronger than weak
2-randomness, because a weakly 2-random set can be computably dominated by
Proposition 3.6.4. (By Exercise 3.6.22, there is also a weakly 2-random set of
hyperimmune Turing degree that is not 2-random.)
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2. For the second variant, recall from 2.5.2 that x is strongly d-incompressibleK

if K(x) is within d of its maximum possible value |x| + K(|x|) + 1, and that
being strongly incompressibleK implies being incompressibleC . The second vari-
ant of (�) is to require that for some b, infinitely many x ≺ Z are strongly b-
incompressibleK . J. Miller proved that, once again, this seemingly stronger con-
dition is actually equivalent to 2-randomness of Z. See Theorem 8.1.14.
We now prove that Z is 2-random ⇔ Z it satisfies (�) above. This is due to

Nies, Stephan and Terwijn (2005); the implication “⇐” was also independently
and slightly earlier obtained by Miller (2004).

3.6.10 Theorem. Z is 2-random ⇔ ∃b ∃∞n
[
C(Z �n) > n− b].

Proof. ⇒: Firstly, we will sketch a proof of the easier result of Ding, Downey
and Yu (2004) that any 3-random set Z satisfies (�). If (�) fails then Z ∈ ⋂

b Vb,
where Vb =

⋃
t Pb,t, and Pb,t =

{
X : ∀n ≥ t

[
C(X �n) ≤ n − b]}. Note that

λPb,t ≤ 2−b+1 for each t. Hence λVb ≤ 2−b+1, as Pb,t ⊆ Pb,t+1 for each t. The
class Vb is Σ0

2. It is not open, but can be enlarged in an effective way to an open
class Ṽb that is Σ0

1 relative to C ′ (the function C is identified with its graph) and
has at most twice the measure of Vb. Then Z fails (Ṽb+2)b∈N which is a ML-test
relative to C ′ ≡T ∅′′.
In order to obtain a ML-test relative to ∅′ we introduce a concept of indepen-

dent interest. A function F : {0, 1}∗ → {0, 1}∗ is called compression function
if F is one-one and ∀x [F̂ (x) ≤ C(x)], where F̂ (x) = |F (x)|. For instance, if, for
each x, F (x) is a shortest V-description of x, then F is a compression function
such that F̂ (x) = C(x). The idea is to replace in the argument sketched above C
by F̂ for a compression function F such that F ′ ≡T ∅′. In this way we obtain a
ML-test relative to ∅′ (and not ∅′′). For the duration of this proof we say that a
set Z is complex for F̂ if there is b ∈ N such that F̂ (Z �n) > n− b for infinitely
many n. If Z is complex for F̂ then (�) holds. We now extend the argument
above to an arbitrary compression function.

3.6.11 Lemma. Let F be a compression function. Suppose that Z is not complex
for F , namely,

∀b∃t∀n ≥ t [F̂ (Z �n) > n− b]. (3.10)

Then Z is not ML-random relative to F ′.

Subproof. We identify F with its graph {〈n,m〉 : F (n) = m}. Let
Pb,t = {X : ∀n ≥ t [F̂ (X �n) ≤ n− b ]},

then Pb,t is a Π0
1 class relative to F uniformly in b, t. By (3.10), Z ∈ ⋂

b Vb where
Vb =

⋃
t Pb,t. Note that λPb,t ≤ 2−b+1 for each t, because as F is one-one, there

are fewer than 2t−b+1 strings x of length t such that F̂ (x) ≤ t−b. As Pb,t ⊆ Pb,t+1
for each t this implies λVb ≤ 2−b+1. For each b, t, k, using F as an oracle, we can
compute the clopen set

Rb,t,k = {X : ∀n [ t ≤ n ≤ k → F̂ (X �n) ≤ n− b ]}.
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Since Pb,t =
⋂

k Rb,t,k, using F ′ as an oracle, uniformly in b, on input t we can
compute k(t) such that

λ(Rb,t,k(t) − Pb,t) ≤ 2−(b+t).
Let Tb =

⋃
tRb,t,k(t). Then the Tb are open sets and the corresponding set of

strings {x : [x] ⊆ Tb} is Σ0
2(F ) uniformly in b. Moreover, Vb =

⋃
t Pb,t ⊆ Tb and

λ(Tb − Vb) ≤
∑

t 2
−(b+t) = 2−b+1, so λTb ≤ 4 · 2−b. Hence Z fails (Tb+2)b∈N,

which is a ML-test relative to F ′. �

3.6.12 Lemma. There is a compression function F such that F ′ ≤T ∅′.
Subproof. (This version is due to L. Bienvenue) A Π0

1 class P ⊆ N
N is called

bounded if there is a computable function g such that
P ⊆ Paths({σ ∈ N

∗ : ∀i < |σ| [σ(i) ≤ g(i)]}).
In Exercise 1.8.72, the Low Basis Theorem 1.8.37 was extended to nonempty
bounded Π0

1 classes in Baire space. Therefore it suffices to show that the nonempty
class C of compression functions is of this kind: C is Π0

1 because F is a compression
function iff ∀n [F �n∈ R], where R is the computable set

{
α ∈ N

∗ : ∀i, j < |α| [i �= j → α(i) �= α(j)
]
& ∀i < |α| [|α(i)| ≤ C|α|(i)

]}
.

Here we identify N with {0, 1}∗ as usual. A compression function F satisfies
|F (x)| ≤ C(x) ≤ |x|+ 1 for each x, so C is bounded. �

To complete the proof of the implication “⇒”, choose F as in Lemma 3.6.12.
If Z is 2-random then Z is ML-random relative to F ′. By Lemma 3.6.11 Z is
complex for F̂ , which implies (�).
⇐: We assume that Z is not 2-random and show that (�) fails. We define a
machine that attempts to split off a prefix-free description from the input (this
idea was first used in the proof of 2.4.1). For instance, there is d ∈ N such that

C(xy) ≤ K(x) + |y|+ d (3.11)

for all strings x and y: define a machine M which on input τ looks for a decom-
position τ = σy such that U(σ) ↓= x. If M finds one it outputs xy. (Proposi-
tion 2.4.3 gives a sharper bound, but is proved in the same way.) At first, we will
work under the stronger hypothesis that Z is not even ML-random: given b, let
x ≺ Z be such thatK(x) ≤ |x|−b−d. Then, for all y, we have C(xy) ≤ |x|+|y|−b;
in particular, C(Z �n) ≤ n− b for all n ≥ |x|.
Under the actual hypothesis that Z is not 2-random, we know that, given b,

some x ≺ Z has a sufficiently short U
∅′
-description σ. Now we have to look at

strings y that are so long that the computation U
∅′
(σ) is stable by stage |y|. The

adequate variant of the inequality (3.11) is the following.

3.6.13 Lemma. There is d ∈ N such that ∀x∀∞y [C(xy) ≤ K∅′
(x) + |y|+ d].

Subproof. Define a (plain) machine M as follows.
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On input τ , let t = |τ | and search for a decomposition τ = σy such that
U

∅′
(σ)[t]↓= x. If such a decomposition is found, then output xy.

Let d be the coding constant for M with respect to the optimal machine V.
Suppose that σ is a shortest U

∅′
-description of x, and let t0 > |σ| be least such

that the computation U
∅′
(σ)[t0] is stable. If |y| ≥ t0 and τ = σy, then σy is the

only decomposition of τ thatM can find, because the domain of U
∅′

t is prefix-free
for each t. Thus M(σy) = xy, whence C(xy) ≤ K∅′

(x) + |y|+ d. �

We may now argue as before. Given b, let x ≺ Z be such that K∅′
(x) ≤ |x|−b−d.

By the foregoing Lemma, for almost all y we have C(xy) ≤ |x| + |y| − b. In
particular, C(Z �n) ≤ n− b for almost all n. Thus (�) fails. �

We will improve Theorem 3.6.10. As already mentioned, using the time bounded
version Cg in (3.9) for an appropriate computable g, actually Z is 2-random iff
(�)g ∃b ∃∞n [Cg(Z �n) > n− b].
Clearly (�)g is implied by (�) because Cg(z) ≥ C(z) for each z. Under a reason-
able implementation of U by a Turing program we may ensure that g(n) = O(n3).

3.6.14 Lemma. (Extends Lemma 3.6.13) There is a computable function
g such that, for some d ∈ N,

∀x∀∞y
[
Cg(xy) ≤ K∅′

(x) + |y|+ d
]
. (3.12)

Subproof. We determine a bound on the running time of the machine M in
the proof of Lemma 3.6.13. On input τ , if n = |τ |, in the worst case, for each
σ � τ ,M has to evaluate U

∅′
(σ)[n] (which may be undefined). This takes O(n2)

steps. After that, M needs O(n) steps for printing xy. We assume that if no σ
is found, M halts with the empty string as an output. So M runs O(n2) steps
on any input of length n.
The copying machine maps each string z to itself. Let g(n) be the maximum

of the number of steps it takes V to simulate both M and the copying machine,
for any input of length n. (Namely, g(n) bounds the maximum number of steps
it takes V(0e−11σ) to halt, where e is an index of either machine and |σ| = n.)
If K∅′

(x) ≥ |x| then (3.12) is satisfied via the copying machine. Otherwise, let σ
be a shortest U

∅′
-description of x. If y is sufficiently long, we have M(σy) = xy;

since |σx| ≤ |xy| we obtain (3.12) via M . �

The proof that each Z satisfying (�)g is 2-random can be completed as before,
using Cg in place of C. �

The following result was originally obtained in a different way by Kurtz (1981).

3.6.15 Corollary. No 2-random set Z is computably dominated.

Proof. Choose b so that (�)g holds for the computable function g obtained
above. Since Cg is computable, the function f defined by

G(m) = µr.∃G ⊆ {0, . . . , r} [
#G = m & ∀n ∈ G[Cg(Z �n) > n− b]]
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is total and computable in Z. Assume for a contradiction that a computable
function h dominates f . Then Z is a path of the computable tree
{x : ∀m|x|≥h(m)∃G ⊆ {0, . . . , |x|}

[
#G = m & ∀n ∈ G[Cg(x�n) > n− b]]}.

Each path of this tree satisfies (�)g, and is therefore 2-random. Since its leftmost
path is left-c.e. this is a contradiction. �

In fact, Kurtz (1981) proved that each 2-random set Z is c.e. relative to some set
A <T Z. Thus A <T Z ≤T A′, whence Z is of hyperimmune degree by Exercise 1.5.13.
For a recent proof of this stronger result see Downey and Hirschfeldt (20xx).

3.6.16 Exercise. Show that there is a low compression function for K, namely a
one-one function F : N→ N such that ∀x [|F (x)| ≤ K(x)] and

∑
x 2−|F (x)| ≤ 1.

2-randomness and being low for Ω

The following lowness property will be studied in more detail in Section 8.1. Here
it allows us to characterize the 2-random sets within the ML-random sets.

3.6.17 Definition. A is low for Ω if Ω is ML-random relative to A. The class
of sets that are low for Ω is denoted by Low(Ω).

In Proposition 8.1.1 we will see that the class Low(Ω) does not depend on the
particular choice of the optimal prefix-free machine. We make two basic obser-
vations. The second observation follows from Proposition 3.4.10.

3.6.18 Fact. (i) Low(Ω) is closed downward under Turing reducibility.
(ii) Low(Ω) ⊆ GL1. �

The proof of Corollary 3.4.12 actually shows that the 2-random set Ω∅′
is low

for Ω. The following characterization of 2-randomness is more general.

3.6.19 Proposition. Z is 2-random ⇔ Z is ML-random and low for Ω.

Thus, within the ML-random sets, to be 2-random is equivalent to a lowness
property. The same holds for weak 2-randomness, where the lowness property is
forming a minimal pair with ∅′ (see page 135).

Proof. Since Ω ≡T ∅′ (3.2.30), Z is 2-random ↔ Z is ML-random relative to ∅′
↔ Z is ML-random relative to Ω. Since Ω is ML-random, by van Lambalgen’s
Theorem 3.4.6 the latter is equivalent to: Z is ML-random and Ω is ML-random
relative to Z. �

By Fact 3.6.18, we have the following.

3.6.20 Corollary. (i) The 2-random sets are closed downward under Turing
reducibility within the ML-random sets. (ii) Each 2-random set is in GL1. �

In Theorem 8.1.18 states that each set in Low(Ω) is of hyperimmune degree.
This yields yet another proof of Corollary 3.6.15.
We discuss to which extent the preceding results hold for weak 2-randomness.

By Proposition 3.6.4, a weakly 2-random set can be computably dominated,
so 3.6.15 fails. Corollary 3.6.20(i) holds for weakly 2-random sets, but (ii) fails:
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Theorem 8.1.19 below shows that no weakly 2-random computably dominated
set is in GL1. On the other hand, by Exercise 3.6.22 there is a weakly 2-random
set of hyperimmune degree that is not 2-random.
Exercises. Show the following.
3.6.21. Let A be in ∆0

2. If Z is 2-random then Z!A is 2-random as well.

3.6.22.� There is a weakly 2-random set R of hyperimmune degree such that no set of
the same Turing degree is 2-random.

3.6.23.� Problem. Is there a characterization of weak 2-randomness via the growth
of the initial segment complexity?

Demuth randomness �

The notion was introduced by Demuth (1988) in the language of analysis. His
work was made known to a wider audience by Kučera. Like weak 2-randomness,
Demuth randomness lies in between 2-randomness and ML-randomness. We show
that a Demuth random set can be ∆0

2, and that all Demuth random sets are in
GL1. This implies that Demuth randomness and weak 2-randomness are incom-
parable, even up to Turing degree: a ∆0

2 set is not weakly 2-random; on the other
hand, no ML-random set in GL1 is computably dominated by Theorem 8.1.19,
so a weakly 2-random computably dominated set is not Turing equivalent to
a Demuth random set. This is an exception to the rule that the randomness
notions form a linear hierarchy.
Demuth tests combine features of ML-tests and Solovay tests. We retain the

condition of ML-tests that Sm be c.e. open and λSm ≤ 2−m, but we relax the
uniformity condition: the c.e. index for Sm is now given by an ω-c.e. function
(Definition 1.4.6), rather than by a computable function. Informally, we can
change the whole open set Sm for a computably bounded number of times. We
adopt the failure condition of Solovay tests. In contrast to the previous test
notions, one cannot require for all tests that Sm ⊇ Sm+1 for each m. This will
become apparent in the proof of Theorem 3.6.26 below.

3.6.24 Definition. A Demuth test is a sequence of c.e. open sets (Sm)m∈N such
that ∀mλSm ≤ 2−m, and there is an ω-c.e. function f such that Sm = [Wf(m)]≺.
A set Z passes the test if ∀∞mZ �∈ Sm. We say that Z is Demuth random if Z
passes each Demuth test.

Each Demuth test is a Solovay test relative to ∅′, so, by Proposition 3.2.19 relative
to ∅′, each 2-random set is Demuth random. On the other hand, each ω-c.e. set Z
fails to be Demuth random via the test given by Sn = [Z �n]. In particular, this
applies to Ω.

3.6.25 Theorem. There is a Demuth random ∆0
2 set Z.

Proof. We write He for [We]≺. We use an auxiliary type of tests: a special test
is a sequence of c.e. open sets (Vm)m∈N such that λVm ≤ 2−2m−1 for each m
and there is a function g ≤T ∅′ such that Vm = Hg(m). Z passes the test if
∀∞mZ �∈ Vm. Special tests are similar to Demuth tests, but the function g is
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merely ∆0
2, while the bound on the measure of the m-th component is tighter

than 2−m. It suffices to establish two claims: (1) there is a single special test
such that each set passing it is Demuth random, and (2) for each special test
there is a ∆0

2 set that passes it.

Claim 1. There is a special test (Vm)m∈N such that each set Z passing the test
is Demuth random.
Z is Demuth random iff for each Demuth test (Um)m∈N, Z passes the Demuth
tests (U2m)m∈N and (U2m+1)m∈N. Thus it suffices that (Vm)m∈N emulate all
Demuth tests (Sm)m∈N such that λSm ≤ 2−2m for each m. By Fact 1.4.9, there
is a binary function q̃ ≤T ∅′ that emulates all ω-c.e. functions. We can stop
the enumeration of Hq̃(e,m) when it attempts to exceed the measure 2−2m; thus
there is q ≤T ∅′ such that λHq(e,m) ≤ 2−2m for each m, and Hq(e,m) = Hq̃(e,m)
if already λHq̃(e,m) ≤ 2−2m. Now let

Vm =
⋃

e<mHq(e,e+m+1),

then λVm ≤
∑

e<m 2−2(e+m+1) ≤ 2−2m−1. Clearly, if Z passes this special test
(Vm)m∈N then it passes each Demuth test.
Claim 2. For each special test (Vm)m∈N there is a ∆0

2 set Z such that Z �∈ Vm

for each m.
Let V̂m =

⋃
i≤m Vi. We determine Z �m by recursion on m using ∅′ as an oracle.

Recall that λ(C | z) = λ(C∩ [z])2|z| for each measurable class C and each string z.
For each m we will meet the condition

λ(V̂m | Z �m) ≤ 1− 2−m−1. (3.13)

Clearly, the condition holds for m = 0 as λV̂0 ≤ 1/2. Suppose Z �m has been
determined and the condition holds for m. Then using ∅′ we can determine the
least Z(m) ∈ {0, 1} such that for z = Z �m+1, λ(V̂m | z) ≤ 1 − 2−m−1. Since
λVm+1 ≤ 2−2(m+1)−1, we have λ(Vm+1 | z) ≤ 2−m−2, and hence λ(V̂m+1 | z) ≤
1− 2−m−1 + 2−m−2 = 1− 2−m−2, as required.
The two claims establish the theorem. �

3.6.26 Theorem. Each Demuth random set is in GL1.

Proof. We define a Turing functional Θ by ΘZ(m) 	 µs.JZ
s (m) ↓. We will

introduce an ω-c.e. function g and a Demuth test (Sm)m∈N such that
∀∞m[ΘZ(m)↓ → ΘZ(m) ≤ g(m)]

for each Z that passes (Sm)m∈N. That is, g dominates the partial function ΘZ .
Then JZ(m) ↓ ↔ JZ

g(m)(m) ↓ for almost all m, whence Z ′ ≤T Z ⊕ ∅′ (in fact
with a computably bounded use on ∅′).
For each m, let Lm be the open set {Z : JZ(m)↓}, and let Lm,s be the clopen

set {Z : JZ
s (m) ↓}. We define an auxiliary clopen set Cm. At stage s we define

approximations gs(m) to g(m) and Cm,s to Cm, in such a way that the clopen set
Cm,s contains the oracles Z such that gs(m) dominates ΘZ(m). Whenever at a
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stage s the measure of the clopen set Lm,s−Cm,s−1 exceeds 2−m, we put this set
into Cm,s and increase g(m) to the stage number, so that it also dominates the
values ΘZ(m) for these newly added oracles Z. These increases of the current
approximations to Cm, and hence of g(m), can take place at most 2m times.
Thus g is ω-c.e. and Cm stabilizes, whence Sm = Lm−Cm determines a Demuth
test as desired.
Construction of clopen sets Cm =

⋃
s Cm,s and an ω-c.e. function g.

Let C0,0 = ∅ and g0(0) = 0.
Stage s > 0. Let Cs,s = ∅ and gs(s) = 0. For each m < s,
if λ(Lm,s − Cm,s−1) > 2−m let Cm,s = Lm,s and gs(m) = s;
otherwise, let Cm,s = Cm,s−1 and gs(m) = gs−1(m).

By this construction, if ΘZ(m)↓ for Z �∈ Sm then ΘZ(m) ≤ g(m). If Z is Demuth
random then Z �∈ Sm for almost all m, so g dominates ΘZ . �

In Theorem 8.1.19 we will prove that a computably dominated set in GL1 is
not of d.n.c. degree. Hence no Demuth random set is computably dominated,
which strengthens Corollary 3.6.15.
Exercises.
3.6.27. Show that some low ML-random set is not Demuth random.

3.6.28. Suppose Z is Schnorr random relative to ∅′. Show that Z is (i) weakly 2-
random and (ii) Demuth random. (iii) Conclude that some weakly 2-random set Y in
GL1 is not 2-random.
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Diagonally noncomputable functions

We discuss the interactions between computability and randomness. Tradition-
ally the direction is from computability to randomness. In this direction, two
types can be distinguished.
Interaction 1a: computability theoretic notions are used to obtain mathematical
definitions for the intuitive concept of a random set.
For instance, in Chapter 3 we introduced ML-randomness and its variants using
test notions which are based on computable enumerability and other concepts.
Interaction 1b: computational complexity is used to analyze randomness prop-
erties of a set.
An example is the result on page 135 that Z is weakly 2-random iff Z is ML-
random and Z, ∅′ form a minimal pair.

The interaction also goes the opposite way.
Interaction 2: concepts related to randomness enrich computability theory.
We have already seen examples of this in Chapter 3: the real number Ω and the
operator X �→ ΩX . In Section 5.2 we will study K-triviality, a property of sets
that means being far from random. This property turns out to be equivalent
to the lowness property of being low for ML-randomness. The class of K-trivial
sets has interesting properties from the computability-theoretic point of view. For
instance, each K-trivial set is superlow. Many equivalent definitions are known,
and all touch in some way upon randomness-related concepts.
In the spirit of Interaction 2, in this chapter we study diagonally noncom-

putable functions. They arise naturally when one studies ML-random sets. We
have briefly considered d.n.c. functions in Remark 1.8.30.

4.0.1 Definition.

(i) A function f : N �→ N is diagonally noncomputable, or d.n.c. for short, if
f(e) �= J(e) for any e such that J(e)↓.

(ii) A set D has d.n.c. degree if there is a d.n.c. function f ≤T D.

A d.n.c. function f is incomputable, for otherwise f = Φe for some e, and hence
f(e) = Φe(e) = J(e). We think of f as far from computable since it effectively
provides the value f(e) as a counterexample to the hypothesis that f = Φe.
If Z is ML-random, a finite variant of the function λn.Z �n is diagonally non-

computable, because Z �e= J(e) implies K(Z �e) ≤+ 2 log e. In Section 4.1 we
study the sets of d.n.c. degree, or, equivalently, the sets that compute a fixed
point free function g (namely Wg(x) �=Wx for each x).
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To be of d.n.c. degree is a conull highness property (intuitively speaking, it
is weak). Sets of d.n.c. degree are characterized by a property stating that the
initial segment complexity grows somewhat fast. Thus the highness property to
be of d.n.c. degree can also be interpreted as to be “somewhat random”. This
characterization is an analog of Schnorr’s Theorem 3.2.9. As a consequence, the
sets of d.n.c. degree are closed upwards with respect to the preordering ≤K which
compares the degree of randomness of sets (Definition 5.6.1 below.)
In Section 4.2 we discuss Kučera’s injury-free solution to Post’s problem, a

further instance of Interaction 2. It is based on a d.n.c. function f <T ∅′, but
takes a particularly simple form when f is a finite variant of the function λn.Z �n

for a ML-random ∆0
2 set Z. We use that f is d.n.c. to build a promptly simple

set A ≤T f . To make f permit changes of A we threaten that f(k) = J(k)
for appropriate numbers k. These methods can be extended to an injury-free
construction of a pair of Turing incomparable c.e. sets.
In Section 4.3 we strengthen the concept of a d.n.c. function in various ways. We

use the stronger concepts to gain a better understanding of the computational
complexity of n-random sets (this is Interaction 1b). Firstly, we show that if a
set Z is ML-random and computes a {0, 1}-valued d.n.c. function, then Z already
computes the halting problem. Secondly, we introduce a hierarchy of properties
of functions strengthening fixed point freeness, and show that an n-random set
computes a function at level n of that hierarchy.

4.1 D.n.c. functions and sets of d.n.c. degree
We characterize the sets of diagonally noncomputable degree via a growth con-
dition on the initial segment complexity. Thereafter, we show that the only c.e.
sets of diagonally noncomputable degree are the Turing complete ones.

Basics on d.n.c. functions and fixed point freeness

4.1.1 Proposition. (i) No d.n.c. function f is computable.
(ii) ∅′ has d.n.c. degree via some function f ≤tt ∅′.
Proof. (i) If f = Φe is total, then f(e) = J(e), so f is not d.n.c.
(ii) A {0, 1}-valued d.n.c. function f ≤tt ∅′ was given in Remark 1.8.30. �

The following provides further examples of d.n.c. functions.

4.1.2 Proposition.

(i) There is c ∈ N such that

∀∞nK(Z �n) > K(n) + c → Z has d.n.c. degree

via a function f that agrees with λn.Z �n on almost all n (hence f ≤tt Z).
(ii) Each ML-random set Z has d.n.c. degree via a function f ≤tt Z.

Proof. (i) Recall from page 12 that we identify strings in {0, 1}∗ with numbers.
Let c be a constant such that, for each σ, if y = J(U(σ))↓ then K(y) ≤ |σ|+ c.
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If Z �n= J(n) and σ is a shortest U-description of n, then J(U(σ)) = Z �n and
hence K(Z �n) ≤ |σ|+ c = K(n) + c. Thus Z �n= J(n) fails for almost all n.
(ii) If Z is ML-random then there is b such that ∀nK(Z �n) ≥ n − b. Since
K(n) ≤+ 2 logn, this implies K(Z �n) > K(n) + c for almost all n. �

Actually, by 8.3.6, every infinite subset of a ML-random set has d.n.c. degree.
By the Recursion Theorem 1.1.5, for each computable function g there is x such

that Wx = Wg(x). The functions of the following type are far from computable
in the sense that this fixed point property fails.

4.1.3 Definition. A function g is fixed point free (f.p.f.) if ∀xWg(x) �=Wx.

The two notions of being far from computable coincide up to Turing degree.

4.1.4 Proposition. Let D ⊆ N. Then D has d.n.c. degree ⇔ D computes a
fixed point free function. The equivalence is uniform.

Proof. It suffices to show that each d.n.c. function computes a fixed point free
function and vice versa.
⇒: Suppose that the function f is diagonally noncomputable. We construct a
fixed point free function g ≤T f . Let

α(x) 	 the first element enumerated into Wx.

Let p be a reduction function for α (see Fact 1.2.15). Thus α(x) 	 J(p(x)) for
each x. Let g ≤T f be a function such that g(x) is a c.e. index for {f(p(x))}. Then
Wx �= Wg(x) unless #Wx = 1. If #Wx = 1, then Wx = {α(x)} = {J(p(x))}.
Because f is d.n.c., J(p(x)) �= f(p(x)), so Wx �=Wg(x).
⇐: Suppose that the function g is fixed point free. Let h be a computable
function such that

Wh(x) =

{
WJ(x) if J(x)↓,
∅ otherwise.

If J(x)↓ then Wg(h(x)) �=WJ(x) and hence g(h(x)) �= J(x). So f = g ◦ h is d.n.c.
and f ≤T g. �

In Definition 4.3.14 we will introduce the hierarchy of n-fixed point free functions
(n ≥ 1). The lowest level n = 1 consists of the functions of Definition 4.1.3. The
extendability of this definition to higher levels is one of the reasons why we do not
define fixed point freeness of a function g by the weaker condition that Φg(x) �= Φx.

By Exercise 8.3.6, A has d.n.c. degree iff A computes an infinite subset of a ML-
random set.

Exercises. Show the following.

4.1.5. Let f be a d.n.c. function. For each partial computable function ψ, there is a
function f̃ ≤T f such that f̃(e) �= ψ(e) for any e such that ψ(e)↓.
4.1.6. No 1-generic set G (see Definition 1.8.51) is of d.n.c. degree. In particular, no
1-generic set computes a ML-random set.
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By the following, the properties of functions introduced above are independent of the
particular choice of a jump operator, or a universal uniformly c.e. sequence, as far as
the Turing degree of the function is concerned.

4.1.7. Suppose that Ĵ is a universal partial computable function (Fact 1.2.15). Then
each d.n.c. function f is Turing equivalent to a d.n.c. function f̂ with respect to Ĵ , and
vice versa.

4.1.8. Suppose that (Ŵe)e∈N is a universal uniformly c.e. sequence with the padding
property, as in Exercise 1.1.12. Then each f.p.f. function g is Turing equivalent to an
f.p.f. function ĝ with respect to (Ŵe)e∈N, and vice versa.

The initial segment complexity of sets of d.n.c. degree

Schnorr’s Theorem 3.2.9 states that the ML-random sets are the ones with a
nearly maximal growth of the initial segment complexity in the sense of K.
The following result of Kjos-Hanssen, Merkle and Stephan (2006) characterizes
the sets of d.n.c. degree by a growth condition stating that the initial segment
complexity grows somewhat quickly. This yields a further proof besides the one
in Exercise 4.1.7 that the property to be of d.n.c. degree does not depend of the
somewhat arbitrary definition of the universal partial computable function J .

4.1.9 Theorem. The following are equivalent for a set Z.

(i) Z has d.n.c. degree.
(ii) There is a nondecreasing unbounded function g ≤T Z such that
∀n [g(n) ≤ K(Z �n)].

It is useful to think of the function g in (ii) as slowly growing. By 2.4.2 K ∼ C,
so we could equivalently take the initial segment complexity of Z via C.

Proof. (ii) ⇒ (i): The idea is the same as in the proof of Proposition 4.1.2.
Suppose (ii) holds via g ≤T Z, and let h(r) = min{m : g(m) ≥ r}. (Think of h as
a function that grows quickly.) Note that Z computes the function f(r) = Z �h(r).
If Z �h(r)= J(r) and σ is a shortest description of r then J(U(σ)) = Z �h(r) and
hence K(Z �h(r)) ≤+ K(r) = |σ| ≤+ 2 log r. However, by the definition of h we
have K(Z �h(r)) ≥ r. Thus Z �h(r)= J(r) fails for almost all r.
(i) ⇒ (ii): Suppose that (ii) fails. Let Γ = Φi be a Turing functional such that
ΓZ is total. We show that ΓZ is not a d.n.c. function, namely, ΓZ(e) = J(e) for
some e. For each σ, one can effectively determine an e(σ) such that Φe(σ)(y) 	
ΓU(σ)(y): the number e(σ) encodes a Turing program implementing a procedure
that on input y first runs U on the input σ; in case of convergence it takes the
output ρ as an oracle string and attempts to compute Γρ(y). Let

h(r) = max({r} ∪ {use ΓZ(e(σ)) : |σ| ≤ r}).
The function g given by g(m) = max{r : h(r) ≤ m} is computable in Z, non-
decreasing and unbounded. If (ii) fails, there is an m such that r = g(m) >
K(Z �m). So U(σ) = Z �m for some σ such that |σ| < r. Let e = e(σ). Since
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h(r) ≤ m we have use ΓZ(e) ≤ m. Thus J(e) = Φe(e) = ΓU(σ)(e) = ΓZ(e).
�

With a minor modification, the foregoing proof yields a characterization of
the sets Z such that there is a d.n.c. function f ≤wtt Z. The characterizing
condition is that K(Z �n) be bounded from below by an order function, i.e., a
nondecreasing unbounded computable function.

4.1.10 Theorem. The following are equivalent for a set Z.

(i) There is a d.n.c. function f ≤wtt Z.
(ii) There is an order function g such that ∀n [g(n) ≤ K(Z �n)].
(iii) There is a d.n.c. function f ≤tt Z.

Proof. (ii)⇒(iii) is proved in the same way as the implication (ii)⇒(i) in The-
orem 4.1.9. Notice that if g is computable then f ≤tt Z.
For (i)⇒(ii), note that in the proof of (i)⇒(ii) above, if there is a computable

bound on the use of Γ, we can choose h and hence g computable. �

A completeness criterion for c.e. sets

The only c.e. sets of d.n.c. degree are the Turing complete ones. This result of
Arslanov (1981) builds on work of Martin (1966a) and Lachlan (1968).

4.1.11 Theorem. (Completeness Criterion) Suppose the set Y is c.e.
(i) There is a d.n.c. function f ≤T Y ⇔ Y is Turing complete.
(ii) There is a d.n.c. function f ≤wtt Y ⇔ Y is wtt-complete.

The result can be viewed as a generalization of the Recursion Theorem 1.1.5
when stated in terms of fixed point free functions: for every function g <T ∅′ of
c.e. degree there is an x such that Wg(x) = Wx. For instance, if A <T ∅′ is c.e.,
then the function pA has such a fixed point.
Proof idea. If Y is a Turing complete set then Y has d.n.c. degree by Proposi-
tion 4.1.1. If Y is wtt-complete then there is a d.n.c. function f ≤wtt Y by the
same proposition.
Now suppose there is a Turing functional Φ such that f = ΦY is a d.n.c.

function. For an appropriate reduction function p (see 1.2.15), when e enters ∅′
at a stage s such that ΦYs

s (p(e)) ↓, we threaten that this value equal J(p(e)).
Then Ys is forced to change below the use of ΦYs

s (p(e)). So, once ΦYs
s (p(e)) is

stable at stage s(e), e cannot enter ∅′ any more. Since Y is c.e., s(e) is the first
stage where ΦYs

s (p(e)) converges and Ys(x) = Y (x) for each x less than the use.
So Y can compute such a stage, and ∅′ ≤T Y . If the use of Φ is bounded by a
computable h, then the use of the reduction procedure is bounded by h(p(e)) on
input e, hence ∅′ ≤wtt Y .
Proof details. We define an auxiliary partial computable function α. By the
Recursion Theorem we may assume that we are given a computable reduction
function p such that α(e) 	 J(p(e)) for each e (see Remark 4.1.12 below).
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Construction of α.
Stage s. If e ∈ ∅′s+1 − ∅′s and y = ΦYs

s (p(e)) ↓, let α(e) = y.
We show that ∅′ ≤T Y . Given an input e, using Y as an oracle, we compute the

first stage s = s(e) such that ΦYs
s (p(e)) ↓ and Y is stable below the use of this

computation. If e enters ∅′ at a stage ≥ s(e), we define α(e) = J(p(e)) = f(p(e)),
so f is not a d.n.c. function. Thus e ∈ ∅′ ↔ e ∈ ∅′s(e). �

4.1.12 Remark. We justify the seemingly paradoxical argument where we as-
sume the reduction function p for α is given, even though we are actually con-
structing α. By Fact 1.2.15, from an index e for a partial computable function Φe

one obtains a reduction function p. Based on p, in our construction we build a
partial computable function Φg(e). By the Recursion Theorem 1.1.5, there is a
fixed point i, namely a partial computable α = Φi such that Φg(i) = α. So in the
interesting case that the given e is such a fixed point, p is a reduction function
for Φg(e) = Φe.

We provide two applications of the Completeness Criterion.
Application 1. By Theorem 3.2.11 the halting probability ΩR is ML-random
for each optimal prefix-free machine R, and by Proposition 3.2.30, ΩR is wtt-
complete (we identify ΩR with its binary representation). We give an alternative
proof of the second fact: Since ΩR is ML-random, a finite variant f of the function
λn.ΩR �n is d.n.c., and f ≤wtt ΩR. Also, ΩR is left-c.e., namely, the set {q ∈
Q2 : 0 ≤ q < ΩR} is c.e. Thus ∅′ ≤wtt {q ∈ Q2 : 0 ≤ q < ΩR} ≡tt ΩR.

Theorem 4.3.9 below shows that ∅′ �≤tt ΩR. Thus {q ∈ Q2 : 0 ≤ q < ΩR} is a c.e.
set that is weak truth-table complete but not truth-table complete. By Theorem 4.1.10
there is a d.n.c. function f ≤tt ΩR. Thus the Completeness Criterion 4.1.11 has no
analog for truth-table reducibility.

The truth-table degree of ΩR depends on the particular choice of the optimal prefix-
free machine: Figueira, Stephan and Wu (2006) have shown that there is a sequence
(Ri)i∈N of such machines such that ΩRi |tt ΩRj for each pair i �= j.

Application 2. Recall from page 32 that a co-infinite c.e. set A is called effectively
simple if there is a computable function g such that #We ≥ g(e)→We ∩A �= ∅.
4.1.13 Proposition. An effectively simple set A is Turing complete.

Proof. By Proposition 4.1.4 it suffices to show that A computes a fixed point
free function f . Since A is co-infinite, on input e, with A as an oracle one can
compute a c.e. index f(e) for the set consisting of the first g(e) elements of N−A.
If Wf(e) = We then We ∩ A = ∅ while #We ≥ g(e). Hence f is fixed point free.

�

Exercises.

4.1.14. Derive Prop. 3.4.10 from the Completeness Criterion 4.1.11 relativized to A.

4.1.15. (Friedberg and Rogers, 1959) Each hypersimple set is wtt-incomplete.

4.1.16. If A is effectively simple and not hypersimple then A is wtt-complete.
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4.2 Injury-free constructions of c.e. sets
One can solve Post’s problem and even prove the Friedberg–Muchnik Theo-
rem 1.6.8 avoiding the priority method with injury. These results of Kučera
(1986) are interesting because injury makes sets artificial due to the fact that
one first fulfills tasks and then gets them undone. This does not happen in
Kučera’s constructions, even if they are a bit more involved.
The most direct injury-free solution to Post’s problem relies on ML-randomness.

Step 1. Begin with Ω0, the set given by the bits of Ω in the even positions, which
is Turing incomplete by Corollary 3.4.8 (and even low by 3.4.11).
Step 2. Build a promptly simple set A (Definition 1.7.9) Turing below Ω0.
The construction of Kučera (1986) in step 2 works for any ∆0

2 ML-random set
in place of Ω0; see Remark 4.2.4 below.
There is no injury because in step 1 there are no requirements, and in step 2 we

merely meet the prompt simplicity requirements, which cannot be injured. The
injury-free solution to Post’s problem as it is commonly thought of nowadays is
somewhat different. Step 1 uses the Low Basis Theorem. Step 2 is a more general
result of independent interest. Its proof needs the Recursion Theorem.
Step 1. Use the Low Basis Theorem 1.8.37 to produce a low set of d.n.c. degree.
For instance, take the Π0

1 class 2ω−R1, which by Theorem 3.2.9 consists entirely
of ML-random, and hence d.n.c. sets. Or take the Π0

1 class of {0, 1}-valued d.n.c.
functions in Fact 1.8.31. The construction in the proof of Theorem 1.8 is relative
to ∅′. One satisfies the requirements one by one in order. Hence they are not
injured.
Step 2. Show that Turing below each ∆0

2 set Y of d.n.c. degree one can build a
promptly simple set.
The original proof in Kučera (1986) uses the Low Basis Theorem in Step 1, but
avoids the Recursion Theorem in Step 2, as above. It has been criticized that in
the proof of Theorem 1.8.37, injury is merely hidden using ∅′. Indeed, the effective
version of the proof in Theorem 1.8.38 has injury to lowness requirements. This
criticism does not apply when we avoid the Low Basis Theorem altogether and
rather use Ω0 as the low set of d.n.c. degree.

Initially Kučera’s motivation was to disprove the conjecture in Jockusch and Soare
(1972a) that each nonempty Π0

1 class without computable members contains a set
Y <T ∅′ such that each c.e. set A ≤T Y is computable. Jockusch then pointed out that
Kučera’s proof leads to an injury-free solution to Post’s problem.

For the injury-free proof of the Friedberg-Muchnik Theorem 1.6.8, Kučera developed
his ideas further. Instead of carrying out two independent steps, he let the construction
relative to ∅′ and the effective construction interact via the Double Recursion Theo-
rem 1.2.16. This bears some similarity to the worker’s method of Harrington. A so-called
level n argument involves interacting priority constructions relative to ∅, ∅′, . . . , ∅(n)

(that is, workers at level i for each i ≤ n), and uses an (n+1)-fold Recursion Theorem.
See Calhoun (1993).
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Each ∆0
2 set of d.n.c. degree bounds a promptly simple set

We construct a promptly simple set Turing below any given ∆0
2 set of d.n.c.

degree. In the next subsection we describe the orginal argument in Kučera (1986),
where the Recursion Theorem is avoided when the given ∆0

2-set is in fact ML-
random. However, the more powerful method of the present construction is used
for instance in the injury-free proof of the Friedberg–Muchnik Theorem. The
hypothesis that Y be ∆0

2 is necessary because, say, a weakly 2-random set has
d.n.c. degree but forms a minimal pair with ∅′ (page 135).

4.2.1 Theorem. (Kučera) Let Y be a ∆0
2 set of d.n.c. degree. Then there is a

promptly simple set A such that A ≤T Y .

Proof idea. The Completeness Criterion 4.1.11 fails for ∆0
2 sets because there

is a low set of d.n.c. degree. The construction of A can be seen as an attempt
to salvage a bit of its proof in the case that Y is ∆0

2. Where does the proof go
wrong? As before, suppose that f = ΦY is a d.n.c. function. A ∆0

2 set Y cannot
compute a stage s(e) such that ΦYs

s (p(e)) is stable from s(e) on, only a stage
where it has the final value for the first time. The problem is that it may change
temporarily after such a stage.
On the other hand, we do not have to code the halting problem into Y . It

suffices to code the promptly simple set A we are building. For each e we meet
the prompt simplicity requirement from the proof of Theorem 1.7.10

PSe: #We =∞⇒ ∃s∃x [x ∈We,s −We,s−1 & x ∈ As].

At stage s we let x enter A for the sake of a requirement PSe only if ΦY (p(e))
has been stable from stage x to s. If we now threaten that J(p(e)) = ΦY (p(e))
then Y has to change to a value not assumed between stage x and s. This allows
us to compute A from Y . It also places a strong restriction on PSe: whenever
ΦY (p(e)) changes another time at t, then PSe cannot put any numbers less than
t into A at a later stage.
We work with the effective approximation fs(x) = ΦY (x)[s]. (Thus, in contrast

to 4.1.11, we actually consider changes of the value fs(x) rather than changes
of the oracle Y .) For an appropriate computable function p, when we want to
put a candidate x ∈ We into A for the sake of PSe, we threaten that f(p(e))
equal J(p(e)). We only put x into A at stage s if ft(p(e)) has been constant since
stage x. (Since ft(p(e)) settles, this holds for large enough x. Thus, PSe is still
able to choose a candidate.) To show A ≤T f , if f(p(e)) = ft(p(e)), then after
stage t a number x cannot go into A for the sake of PSe. See Fig. 4.1.
Proof details. As in the proof of Theorem 4.1.11, we define an auxiliary partial
computable function α. By the Recursion Theorem we are given a reduction
function p for α, namely, ∀e α(e) 	 J(p(e)).
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x

x enters W and Aef(p(e)) is stable

s

Fig. 4.1. Proof of Kučera’s Theorem.

Construction of A and α. Let A0 = ∅.
Stage s. For each e < s, if PSe is not satisfied yet, see whether there is an x,
2e ≤ x < s, such that

x ∈We,s −We,s−1 & ∀tx<t<s ft(p(e)) = fs(p(e)). (4.1)

If so, put x into As. Define α(e) = fs(p(e)). Declare PSe satisfied.
Verification. Clearly A is co-infinite. Choose s0 such that ∀s ≥ s0 fs(p(e)) =
f(p(e)). If x ≥ s0, x ≥ 2e appears in We at stage s then x can be used to satisfy
PSe. Next, we show that A ≤T f . Given an input x, using f compute t > x such
that for all e, if 2e ≤ x then ft(p(e)) = f(p(e)). Then x ∈ A ↔ x ∈ At, for if
we put x into A at a stage s > t, then, as we required that ∀tx<t<sft(p(e)) =
fs(p(e)), the value α(e) = J(p(e)) = fs(p(e)) we define at stage s equals f(p(e)).
Thus f is not a d.n.c. function, contradiction. �

Variants of Kučera’s Theorem

We modify the proof of Kučera’s Theorem 4.2.1 in four ways. Firstly, we prove a
version for wtt-reducibility. Secondly, we work under two stronger hypotheses on
the given ∆0

2 set Y , namely that Y is a {0, 1}-valued d.n.c. function, or that Y
is ML-random. In both cases we obtain a uniform version of Kučera’s Theorem.
Thirdly, we combine the construction with permitting, and finally, in an exercise,
we consider the case of two given ∆0

2 sets Y0 and Y1.

4.2.2 Corollary. Suppose Y ∈ ∆0
2 and there is a d.n.c. function f ≤wtt Y (for

instance, if Y is ML-random). Then there is a promptly simple set A ≤wtt Y .

Proof. Suppose that h is a computable use bound for the procedure computing f
with oracle Y . Then, at the end of the proof of Theorem 4.2.1, to compute A(x)
we only need to query Y on numbers less than h(p(x)). �

Uniformity considerations for Kučera’s Theorem will be important for the
injury-free proof of the Friedberg–Muchnik Theorem: given an index k such
that Y = Φ∅′

k , can we obtain a c.e. index for A in an effective way? Actually, to
build A, we also need to know how to compute the d.n.c. function from Y . This
is certainly the case when Y itself is a {0, 1}-valued d.n.c. function:

4.2.3 Corollary. There is a computable function r such that, for each k, if
Y = Φ∅′

k is total and Y is a {0, 1}-valued d.n.c. function, then A =Wr(k) ≤wtt Y
and A is promptly simple. An index for the reduction for A ≤wtt Y can be
obtained effectively as well. �



4.2 Injury-free constructions of c.e. sets 153

4.2.4 Remark. If Y is ∆0
2 and ML-random, then a somewhat simpler argument

suffices to obtain a promptly simple set A ≤wtt Y (and in fact the use equals the
input in the reduction procedure). We do not need the Recursion Theorem or a
reduction function. To ensure that A ≤wtt Y we can directly force Y �e to change
by including the string Y �e in an interval Solovay test G (that is, a certain
effective listing of strings defined in 3.2.22). In other words, if Y is ML-random
we may let Y �e play the role of f(p(e)) before, so the reduction function p is not
needed any longer. Since the procedure to compute the d.n.c. function λn. Y �n

is fixed we obtain A effectively. The reduction procedure to compute A from Y
is effectively given by the above, but now it is only correct for almost all inputs
because σ �� Y merely holds for almost all σ in G.
Construction of A and G. Let A0 = ∅.
Stage s > 0. For each e < s, if PSe is not satisfied yet, check whether there is
an x, 2e ≤ x < s, such that

x ∈We,s −We,s−1 & ∀tx<t<s Yt �e= Ys �e . (4.2)

If so put x into A. Put the string Ys �e into G. Declare PSe satisfied.
Verification. Given e, choose t0 such that ∀s ≥ t0 Ys �e= Y �e. If x ≥ t0 is
enumerated into We at a stage s then x can be used to satisfy PSe, so PSe is
met. G is a Solovay test because the requirement PSe contributes at most one
interval, and this interval has length 2−e.
To see that A ≤wtt Y , choose s0 such that σ �� Y for any σ enumerated into G

after stage s0. Given an input x ≥ s0, using Y as an oracle, compute t > x such
that Yt �x= Y �x. Then x ∈ A ↔ x ∈ At, for if we put x into A at a stage s > t
for the sake of PSe then x > e, so we list σ in G where σ = Ys �e= Y �e. This
contradicts the fact that σ �� Y . �

We have obtained a further uniform version of Theorem 4.2.1 without using
the Recursion Theorem.

4.2.5 Corollary. There is a computable r such that for each e, if Y = Φ∅′
e is

total and ML-random, then A =Wr(e) ≤wtt Y and A is promptly simple. �

As mentioned at the beginning of this section, combining Corollary 3.4.11 (the bits
of Ω in an odd position form a Turing incomplete ML-random set Y ) with the con-
struction in Remark 4.2.4 (to build a promptly simple set A ≤wtt Y ), we obtain an
injury-free solution to Post’s problem that is the simplest known when one also counts
the proof that the constructed set is Turing incomplete (or, in fact, low). In compari-
son, the direct construction of a promptly simple K-trivial set (5.3.11 below) is easier,
but it is much harder to verify that the constructed K-trivial set is even Turing incom-
plete (see from page 201 on). We already compared these construction briefly when we
discussed natural solutions to Post’s problem on page 34.

We provide two further variants of Kučera’s Theorem 4.2.1.

4.2.6 Corollary. If Y ∈ ∆0
2 has d.n.c. degree and C is an incomputable c.e. set, there

is a simple set A ≤T Y such that A ≤wtt C.
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Proof. Instead of the prompt simplicity requirements PSe we now merely meet the
requirements Re : #We =∞⇒ A∩We �= ∅. To ensure A ≤wtt C, we ask that C permit
the enumeration of x. Thus, at stage s of the construction, for each e < s, if Re is not
satisfied yet, see if there is an x, 2e ≤ x < s, such that

x ∈We,s & Cs �x �= Cs+1 �x & ∀tx<t<s ft(p(e)) = fs(p(e)).

If so then put x into A and define α(e) = fs(p(e)).
If We is infinite, then, because C is incomputable, infinitely many numbers x are

permitted by C after they enter We. So each requirement Re is met. �

4.2.7 Exercise. No two ∆0
2 d.n.c. sets form a minimal pair by Kučera (1988). In fact,

the proof of 4.2.1 can be adapted to show that there is a promptly simple set below
both of them: show that, if Y0 and Y1 are ∆0

2 sets of d.n.c. degree, then there is a
promptly simple set A ≤T Y0, Y1.

On the other hand, a set that is Turing below all the ∆0
2 ML-random sets is com-

putable by Theorem 1.8.39.

An injury-free proof of the Friedberg–Muchnik Theorem �

By Theorem 1.6.8 there are Turing incomparable c.e. sets A,B. An injury-free
proof of this result was announced in Kučera (1986) and circulated, but not
published.

Proof idea. Let P a nonempty Π0
1 class, and r be a computable function,

such that, if Y = Φ∅′
e is total and Y ∈ P , then A = Wr(e) ≤wtt Y and A is not

computable. Such a function exists either by Corollary 4.2.3 or 4.2.5. To use 4.2.3
recall that the {0, 1}-valued d.n.c. functions form a Π0

1 class by Fact 1.8.31; to
use 4.2.5 let P = 2ω −R1.
The following attempt looks promising. The Low Basis Theorem, in the version

with upper cone avoidance 1.8.39, implies that from any c.e. incomputable set B
one may effectively obtain Y ≤T B⊕∅′ ≡T ∅′ such that Y ∈ P and B �≤T Y . We
start with a pair of ∆0

2 sets Ỹ , Z̃ ∈ P , given by indices a, b of reductions from ∅′,
and, applying the function r to these indices we obtain c.e. sets A ≤wtt Ỹ and
B ≤wtt Z̃. Now by 1.8.39 we effectively obtain ∆0

2 sets Y,Z ∈ P such that
Y �≥T B and Z �≥T A. By the Double Recursion Theorem 1.2.16 with oracle ∅′
we may assume that Y = Ỹ and Z = Z̃, so that in fact A ≤T Y and B ≤T Z.
In particular A �≥T B (since not even Y ≥T B), and similarly B �≥T A.
In this proof, the letters Y,Z denote either finite strings or infinite sequences of

zeros and ones. In the latter case we say that Y (or Z) is total. The problem with
the attempt outlined above is that in the proof of Theorem 1.8.39 we needed to
know in advance that B is incomputable in order to argue that the parallel search
at a stage 2e+2 (to suitably extend Y or to find a number n such that P 2e+1 ∩
{X : ΦX

e (n)↑} �= ∅) terminates. The concern is that B might be computable, in
which case the search may fail to terminate. Then Y remains a finite string, and
P 2e+2 remains undefined. The solution here is to keep extending Z while the
search proceeds. If it proceeds forever then Z is an infinite sequence over {0, 1}
(that is, a set) which is in P , so B is in fact incomputable. Then the search
terminates after all, contradiction.
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Proof details. Numbers a, b are given (think of them as ∆0
2-indices for Y and Z).

Let A =Wr(a) and B =Wr(b). In a construction relative to ∅′, we build ∆0
2 sets

Y,Z and descending sequences of nonempty Π0
1 classes (P e)e∈N and (Qe)e∈N

(they correspond to the Π0
1 classes in the proof of Theorem 1.8.39 defined at

even stages). We need to be more specific as to how the parallel search is to be
carried out. To do so, we divide stages i = 0, 1, . . . into substages t.

Construction relative to ∅′ of Π0
1 classes P i, Qi and strings σi on P i, τi on Qi.

Let σ0 = τ0 = ∅ and P 0 = Q0 = P .
Stage i+1, i = 2e. Let Qi+1 = Qi, t = |τi|, and τi+1,t = τi. Go to substage t+1.
Substage t+ 1. Check whether
(a) there are σ, k such that |σ|, k < t, σi ≺ σ, σ on P i and B(k) �= Φσ

e (k), or
(b) there is n < t such that P i ∩ {X : ΦX

e (n)↑} �= ∅.
If neither case applies, or this is the first substage of the current stage, then
let τi+1,t+1 be the leftmost extension of τi+1,t of length t + 1 which is on Qi.
Increment t and proceed to the next substage.
Otherwise, let τi+1 = τi,t. If (a) applies let σi+1 = σ and P i+1 = P i ∩ [σ]. If (b)
applies let σi+1 = σi and P i+1 = P i ∩ {X : ΦX

e (n)↑}. Increment i and proceed
to the next stage.
Stage i + 1, i = 2e + 1. Proceed in a similar way with the roles of σi, τi as well
as of P i, Qi interchanged.

Verification. The construction only needs queries to ∅′, so it (implicitly) defines
computable functions g, h such that

Y = Φ∅′
g(a,b) =

⋃
i,t σi,t, and Z = Φ∅′

h(a,b) =
⋃

i,t τi,t.

No matter what a, b are, at least one of Y,Z is total and in P . For Z is extended
at the odd stages, and Y at the even stages, both during the first substage. If we
get to stage i+ 1 for each i, then both Y and Z are total. Otherwise, say stage
i+ 1 is not terminated where i = 2e. This makes Z total, hence Z ∈ Qi+1 ⊆ P .
By the Double Recursion Theorem 1.2.16 there is a pair of fixed points a, b,

and therefore
Φ∅′

g(a,b) = Φ∅′
a and Φ∅′

h(a,b) = Φ∅′
b .

We claim that in this case, actually both Y and Z are total. Consider again the
case where stage i+ 1, i = 2e, is not terminated, whence only Z = Φ∅′

b is total.
Then, since B = Wr(b), B is incomputable. By the same argument as in the
proof of Theorem 1.8.39, we finish stage i+ 1, contradiction.
Since all stages are terminated, A �≤T Z and B �≤T Y . Hence A |T B. �

4.3 Strengthening the notion of a d.n.c. function
The computational complexity of a set is related in various ways to its degree
of randomness (a summary will be given in Section 8.6). Here we only consider
one aspect of the computational complexity: the set computes a function with a
fixed point freeness condition.
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Sets of PA degree

A highness property of a set D stronger than having d.n.c. degree is obtained
when one requires that there be a d.n.c. function f ≤T D that only takes values
in {0, 1}. In a typical argument involving a d.n.c. function f (such as the proof of
Theorem 4.1.11) we build a partial computable α and have a reduction function p
for α; when we define α(e) = 0, say, we know that f(p(e)) �= J(p(e)) = α(e). If f
is {0, 1}-valued, we may in fact conclude that f(p(e)) = 1. Thus we may prescribe
the value f(p(e)), while before we could only avoid a value. Since f = ΦD for a
given Turing reduction Φ, we can indirectly restrict D.
Up to Turing degree, the {0, 1}-valued d.n.c. functions coincide with the com-

pletions of Peano arithmetic PA; see Exercise 4.3.7. This justifies the following
terminology.

4.3.1 Definition. We say that a set D has PA degree if D computes a
{0, 1}-valued d.n.c. function.

The set ∅′ has PA degree by Remark 1.8.30. Exercise 5.1.15 shows that the class
of sets of PA degree is null, so this highness property is indeed much stronger
than having d.n.c. degree. Recall from Example 1.8.32 that the {0, 1}-valued
d.n.c. functions form a Π0

1 class. Thus, by the basis theorems of Section 1.8,
there is a set of PA degree that is low, and also a set of PA degree that is
computably dominated. These examples show that a set can be computationally
strong in one sense, but weak in another.
We give two properties that are equivalent to being of PA degree. Both assert

that the set is computationally strong in some sense.

4.3.2 Theorem. The following are equivalent for a set D.

(i) D has PA degree.
(ii) For each partial computable {0, 1}-valued function ψ, there is a total func-

tion g ≤T D that extends ψ, namely, g(x) = ψ(x) whenever ψ(x)↓. More-
over, one may choose g to be {0, 1}-valued.

(iii) For each nonempty Π0
1 class P , there is a set Z ∈ P such that Z ≤T D.

In other words, the sets Turing below D form a basis for the Π0
1 classes.

Proof. (i)⇒(ii): Suppose f ≤T D is a {0, 1}-valued d.n.c. function. Let p be
a reduction function for ψ, that is, ∀xψ(x) 	 J(p(x)). Then ∀x ¬f(p(x)) =
J(p(x)). So, if ψ(x) converges, then f(p(x)) = 1 − ψ(x). Let g ≤T D be the
{0, 1}-valued function given by g(x) = 1− f(p(x)), then g extends ψ.
(ii)⇒(iii): Let P =

⋂
s Ps be an approximation of P by a descending effective

sequence of clopen sets; see (1.17) on page 52. For a number x (viewed as a
binary string), if s is least such that [xi] ∩ Ps = ∅ for a unique i ∈ {0, 1}, then
define ψ(x) = 1− i. (If we see that the extension xi is hopeless, then ψ dictates
to go the other way.) On many strings x, the function ψ makes no decision. So
let g be a total extension as in (ii), and define Z recursively by Z(n) = g(Z �n).
Then Z ≤T D and Z is in P .
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(iii)⇒(i): This holds because the {0, 1}-valued d.n.c. functions form a Π0
1 class.

�

Exercises.
4.3.3. The equivalence (i)⇔ (ii) above fails for d.n.c. sets without the restriction that
the function computed by D is {0, 1}-valued: show that the following are equivalent
for a set D. (i) ∅′ ≤T D. (ii) Each partial computable function ψ can be extended to a
(total) function g ≤T D.
4.3.4. (Kučera) Show that for each low set Z there is a promptly simple set A such
that Z ⊕A is low.

4.3.5.� (Jockusch, 1989) In Definition 4.3.1, the condition that D computes a d.n.c.
function with range bounded by a constant would be sufficient: suppose that f is a
d.n.c. function with bounded range. Show that there is a {0, 1}-valued d.n.c. function
g ≤T f .

The next two exercises assume familiarity with Peano arithmetic (see Kaye 1991).
The sentences in the language of arithmetic L(+,×, 0, 1) are effectively encoded by
natural numbers, using all the natural numbers. Let αn be the sentence encoded by n.
Let ṅ be the effectively given term in the language of arithmetic that describes n.
4.3.6. (Scott) Show that a set D has PA degree ⇔ there is a complete extension B of
Peano arithmetic such that B ≤T D.
4.3.7.� (Scott) Improve the result of previous exercise: D has PA degree ⇔ Peano
arithmetic has a complete extension B ≡T D.

Martin-Löf random sets of PA degree

The following theorem of Stephan (2006) shows that there are two types of ML-
random sets: the ones that are not of PA degree and the ones that compute the
halting problem. However, such a dichotomy only applies for the particular high-
ness property of having PA degree. A ML-random set can satisfy other highness
properties, such as being high, without computing ∅′ (see 6.3.14).

4.3.8 Theorem. If a ML-random set Z has PA degree then ∅′ ≤T Z.

Proof. If the proof seems hard to follow, read the easier proof of Theorem 4.3.9
first, where a similar technique is used.
Let Φ be a Turing functional such that ΦX(n) is undefined or in {0, 1} for each

X,n, and ΦZ is a d.n.c. function. If ∅′ �≤T Z we build a uniformly c.e. sequence
(Cd)d∈N of open sets such that λCd ≤ 2−d and Z ∈ Cd for infinitely many d,
so Z fails this Solovay test.
We define an auxiliary {0, 1}-valued partial computable function α. By the

Recursion Theorem (see Remark 4.1.12) we may assume we are given a reduction
function p for α, namely, a computable strictly increasing function p such that
α(e) 	 J(p(e)) for each e. Since ΦZ is {0, 1}-valued, for r ∈ {0, 1}, if we define
α(x) = 1− r, we enforce that ΦZ(p(x)) = r.
Let (nd)d>0 be defined recursively by n1 = 0 and nd+1 = nd + d. The values

of α on the interval Id = [nd, nd+1) are used to ensure that λCd ≤ 2−d. When d
enters ∅′ at stage s, consider the set B of strings σ such that Φσ

s �p(nd+1) converges.
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Informally we let Cd be the set of oracles Y ∈ [B]≺ for which ΦY seems to be
a {0, 1}-valued d.n.c. function on p(Id), namely, for all x ∈ Id, ΦY (p(x)) �=
J(p(x)) = α(x). Now define α in such a way that λCd is minimal. Then λCd ≤
2−d because there are 2d ways to define α on Id. If ∅′ �≤T Z then for infinitely
many d, ΦZ �p(nd+1) converges before d enters ∅′, so Z ∈ Cd.

Construction of a uniformly c.e. sequence of open sets (Cd)d>0 and a partial
computable function α.
Stage s. Do nothing unless a number d > 0 (unique by convention) enters ∅′ at s.
In that case let B = {σ : Φσ

s �p(nd+1)↓}. Let τd be a string of length d such that
λCd becomes minimal, where

Cd = [{σ ∈ B : ∀i < d Φσ
s (p(nd + i)) = τd(i)}]≺.

(Thus λCd ≤ 2−d. Note also that Cd is in fact clopen, but we only obtain a
c.e. index for it, as we never know whether d will enter ∅′.) For i < d define
α(nd + i) = 1− τd(i).
Verification. We show ∃∞d Z ∈ Cd. Let g(d) = µs.ΦZ

s �p(nd+1)↓. Since ∅′ �≤T Z
and g ≤T Z, there are infinitely many d ∈ ∅′ such that d �∈ ∅′g(d). If d is such
a number then for each i < d, ΦZ(p(nd + i)) �= J(p(nd + i)) = α(nd + i) since
ΦZ is d.n.c., so since ΦZ is {0, 1}-valued, ΦZ(p(nd + i)) = 1− α(nd + i) = τd(i).
Thus Z ∈ Cd. �

By Proposition 3.2.30 we have ∅′ ≤wtt ΩR for each optimal prefix-free ma-
chine R. The following result of Calude and Nies (1997) shows that this cannot
be improved to a truth-table reduction.

4.3.9 Theorem. Let Φ be a truth-table reduction procedure such that ΦZ is a
{0, 1}-valued d.n.c. function. Then Z is not ML-random. In particular, no ML-
random set Z satisfies ∅′ ≤tt Z.

Proof. The setting is the same as in the proof of Theorem 4.3.8: we define a
partial computable function α, and are given a reduction function p such that
α(e) 	 J(p(e)). The reduction Φ is total for each oracle Y , and we may also
assume ΦY is {0, 1}-valued. Therefore we may for each d > 0 compute a string
τd of length d such that λCd is minimal, where

Cd = [{σ : ∀i < d Φσ(p(nd + i)) = τd(i)}]≺.
For i < d, we define α(nd + i) = 1− τd(i). Clearly λCd ≤ 2−d. Moreover, Z ∈ Cd

for each d because ΦZ is {0, 1}-valued d.n.c. �

Note that (Cd)d∈N is a Kurtz test (see Definition 3.5.1). Thus, in fact no weakly
random set is truth-table above ∅′.
Demuth (1988) proved that if Z is ML-random and ∅ <T Y ≤tt Z, then some

Ỹ ≡T Y is ML-random. This also shows that there is no ML-random set Z ≥tt ∅′.
4.3.10 Exercise. There is a set A such that A and ∅′ form a minimal pair, but no
weakly 2-random set Z computes A.
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Turing degrees of Martin-Löf random sets �

We consider ML-randomness in the context of Turing degree structures. Let D
denote the partial order of all Turing degrees, and let ML ⊆ D denote the degrees
of ML-random sets. We know from Theorem 3.3.2 that the degree of A ⊕ ∅′
contains a ML-random set for each A. However, ML is not closed upwards in D:
4.3.11 Proposition. For each degree c, {x : x ≥ c} ⊆ ML ⇔ c ≥ 0′.

Proof. ⇐: This follows from 3.3.2 because each degree d ≥ 0′ is in ML.
⇒: Suppose that C �≥T ∅′. Let P be the Π0

1(C) class of {0, 1}-valued d.n.c.
functions f relative to C (i.e., ∀e¬f(e) = JC(e)). We relativize Theorem 1.8.39
to C. Avoiding the cone above ∅′, we obtain a set Y ∈ P such that Y ⊕C �≥T ∅′.
Since Y ⊕C has PA degree, it is not in the same Turing degree as a ML-random
set, for otherwise Y ⊕ C ≥T ∅′ by Theorem 4.3.8. �

This yields a natural first-order definition of 0′ in the structure consisting
of the partial order D with an additional unary predicate for ML. Shore and
Slaman (1999) proved that the jump operator is first-order definable in the partial
order D. Their definition uses metamathematical notions and codings of copies
of N with first-order formulas. Even though later on, Shore (2007) found a proof
that does not rely on metamathematics, we still do not know a natural first-order
definition of the jump operator (or even of 0′) in D.
Next, we study ML within DT (≤ 0′), the Turing degrees of ∆0

2 sets. By Exer-
cise 4.2.7, there is an incomputable c.e. set Turing below any pair of ML-random
∆0

2 sets. So no pair of degrees in ML ∩ DT (≤ 0′) has infimum 0.

4.3.12 Proposition. ML ∩ DT (≤ 0′) is not closed upwards in DT (≤ 0′). Also,
ML ∩ L is not closed upwards in L, the set of low degrees.

Proof. The {0, 1}-valued d.n.c. functions form a Π0
1 class, which has a low mem-

ber D by Theorem 1.8.37. Then the degree of D is not in ML by 4.3.8. On the
other hand, by Theorem 4.3.2(iii) there is a ML-random set Z ≤T D. �

4.3.13 Remark. Kučera (1988) proved that there is a minimal pair of sets of
PA degree. In fact,

0′ = inf{a ∨ b : a,b are PA degrees & a ∧ b = 0}.
Thus there also is a natural first-order definition of 0′ in the structure consisting
of the partial order D with an additional unary predicate for being a PA degree.
To show that A ⊕ B ≥T ∅′ for each minimal pair A,B of sets of PA degree,
one builds a nonempty Π0

1 class P without computable members such that
X ⊕ Y ≥T ∅′ whenever X,Y ∈ P and X �=∗ Y . Since there are X,Y ∈ P such
that X ≤T A and Y ≤T B, this implies A ⊕ B ≥T ∅′. To obtain P , take a c.e.
set S ≡T ∅′ such that N−S is introreducible. Say, S is the set of deficiency stages
for a computable enumeration of ∅′ (see the comment after Proposition 1.7.6).
Let S = U ∪V be a splitting of S into computably inseparable sets (Soare 1987,
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Thm. X.2.1) and let P = {Z : U ⊆ Z & V ∩ Z = ∅}. If X,Y are as above, then
X∆Y is an infinite subset of N− S, so that ∅′ ≤T X ⊕ Y .
Next, one shows that each Σ0

2 set C >T ∅′ bounds a minimal pair A,B of PA
sets by a technique similar to the one in the solution to Exercise 1.8.46. Now let
C0, C1 >T ∅′ be a minimal pair of Σ0

2 sets relative to ∅′, and let Ai, Bi ≤T Ci be
minimal pairs of sets of PA degree for i ∈ {0, 1}. Then 0′ = (a0∨b0)∧ (a1∨b1).

Relating n-randomness and higher fixed point freeness

Definition 4.0.1 can be relativized: a function f is d.n.c. relative to C if f(e) �=
JC(e) for any e such that J(e)↓. For n ≥ 1, we say that f is n-d.n.c. if f is d.n.c.
relative to ∅(n−1). For example, if n > 0 then ∅(n) computes a {0, 1}-valued n-
d.n.c. function, by relativizing Remark 1.8.30 to ∅(n−1).
By Proposition 4.1.2 relativized to ∅(n−1), each n-random set computes an n-

d.n.c. function. Thus, for this particular aspect of the computational complexity,
a higher degree of randomness implies being more complex. The result is not
very satisfying yet because we would prefer highness properties that are not
obtained by mere relativization of a highness property to ∅(n−1). For this reason
we introduce the hierarchy of n-fixed point free functions. It turns out to coincide
up to Turing degree with the hierarchy of n-d.n.c. functions. For sets A,B,
let A ∼1 B if A = B and A ∼2 B if A =∗ B. For n ≥ 3, let A ∼n B if
A(n−3) ≡T B

(n−3).

4.3.14 Definition. Let n ≥ 1. We say that a function g is n-fixed point free
(n-f.p.f. for short) if Wg(x) �∼n Wx for each x.

For instance, let g ≤T ∅′′ be a function such that Wg(x) = ∅ if Wx is infinite
and Wg(x) = N otherwise, then g is 2-f.p.f. (By Exercise 4.1.7 in relativized form
and a slight modification of Exercise 4.1.8, these properties are independent of
the particular choice of jump operator or universal uniformly c.e. sequence, as
far as the Turing degree of the function is concerned. In Kučera’s notation the
hierarchies begin at level 0, but here we prefer notational consistency with the
hierarchy of n-randomness for n ≥ 1.)
We will need the Jump Theorem of Sacks (1963c). It states that from a Σ0

2
set S one may effectively obtain a Σ0

1 set A such that A′ ≡T S ⊕∅′. (In fact one
can also achieve that C �≤T A for a given incomputable ∆0

2 set C.) For a proof
see Soare (1987, VIII.3.1). In fact we need a version of the theorem for the m-th
jump.

4.3.15 Theorem. Let m ≥ 0. From a Σ0
m+1 set S one may effectively obtain a

Σ0
1 set A such that A(m) ≡T S ⊕ ∅(m).

Proof. The case m = 0 is trivial, and the case m = 1 is the Jump Theorem
itself. For the inductive step, suppose that m ≥ 1 and S is Σ0

m+1. Then S
is a Σ0

m(∅′) set. By the result for m relative to ∅′, using ∅′ we may obtain a
Σ0

1(∅′) set B such that (B ⊕ ∅′)(m) ≡T S ⊕ ∅(m+1). Then by the Limit Lemma
we may in fact effectively obtain a Σ0

2 index for B. By the Jump Theorem, we
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may effectively obtain a c.e. set A such that A′ ≡T B⊕∅′, and hence A(m+1) ≡T

S ⊕ ∅(m+1). �

The main result of this subsection is due to Kučera.

4.3.16 Theorem. Let n ≥ 1. Each n-d.n.c. function computes an n-f.p.f. func-
tion, and vice versa.

Proof. The case n = 1 is covered by the proof of Proposition 4.1.4, so we may
assume that n ≥ 2. For each set E ⊆ N and each i ∈ N, let

(E)i = {n : 〈n, i〉 ∈ E}.
1. If an n-d.n.c. function f is given, we define an n-f.p.f. function g ≤T f .
Case n = 2. Since the index set {e : We is finite} is c.e. relative to ∅′, there is
a Turing functional Φ such that, for each input x, Φ∅′

(x) is the first i in an
enumeration relative to ∅′ such that (Wx)i is finite if there is such an i, and
Φ∅′

(x) is undefined otherwise. Let p be a reduction function (Fact 1.2.15) such
that Φ∅′

(x) 	 J∅′
(p(x)) for each x, and let g ≤T f be a function such that

Wg(x) = {〈y, j〉 : j �= f(p(x))}. If Φ∅′
(x) is undefined then (Wx)i is infinite for

each i while (Wg(x))f(p(x)) = ∅, so Wg(x) �=∗ Wx. If Φ∅′
(x) = i then (Wg(x))i = N

since f(p(x)) �= i, so again Wg(x) �=∗ Wx.
Case n = 3. We modify the foregoing proof. For each set B and each i ∈ N, let
[B] 
=i = {〈n, j〉 ∈ B : j �= i}. By the finite injury methods of Theorems 1.6.4
and 1.6.8, there is a low c.e. set B such that (B)i �≤T [B] 
=i for each i. Since B
is low, the relation {〈x, i〉 : Wx ≤T [B] 
=i} is Σ0

3 (see Exercise 1.5.7, which is
uniform), so there is a Turing functional Φ as follows: on input x, Φ∅′′

(x) is
the first i in an enumeration relative to ∅′′ such that Wx ≤T [B] 
=i if there is
such an i, and Φ∅′′

(x) is undefined otherwise. Let p be a reduction function such
that Φ∅′′

(x) 	 J∅′′
(p(x)) for each x, and let g ≤T f be a function such that

Wg(x) = [B]
=f(p(x)). If Φ∅′′
(x) is undefined then Wx �≤T [B] 
=i for each i and

hence Wx �≤T Wg(x). If Φ∅′′
(x) = i then Wx ≤T [B] 
=i. Since f(p(x)) �= i we have

(B)i ≤T Wg(x), and hence Wg(x) �≤T Wx because (B)i �≤T [B] 
=i.

Case n ≥ 4. Let m = n − 3 and R = ∅(m). We run a finite injury construction
of the kind mentioned in the foregoing proof relative to R, and code R into
each (B)i. In this way we obtain a set B that is c.e. in R such that B′ ≡T R′,
R ≤T (B)i and (B)i �≤T [B] 
=i for each i.
There is a computable function h such that W (m)

x = WR
h(x), so the relation

{〈x, i〉 : W (m)
x ≤T [B] 
=i} is Σ0

3(R). Since B
′ ≡T R

′, there is a Turing functional Φ
as follows: on input x, ΦR′′

(x) is the first i in an enumeration relative to R′′ such
that W (m)

x ≤T [B] 
=i if there is such an i, and ΦR′′
(x) is undefined otherwise.

Let p be a reduction function such that ΦR′′
(x) 	 JR′′

(p(x)) for each x, and
let g̃ ≤T f be like g before, namely WR

g̃(x) = [B]
=f(p(x)). As before one shows

that WR
g̃(x) �≡T W

(m)
x for each x. Now, by the uniformity of Theorem 4.3.15,
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there is a function g ≤T g̃ such that (Wg(x))(m) ≡T WR
g̃(x) ⊕R for each x. Since

R ≤T WR
g̃(x), this implies that W (m)

g(x) �≡T W
(m)
x for each x. (This proof actually

works for n = 3 as well, in which case we re-obtain the previous one.)

2. If an n-f.p.f. function g is given, we define an n-d.n.c. function f ≤T g. We use
a result of Jockusch, Lerman, Soare and Solovay (1989) which can also be found
in Soare (1987, pg. 273): if ψ is partial computable relative to ∅(n−1) then there
is a (total) computable function r such that Wψ(x) ∼n Wr(x) whenever ψ(x) is
defined. (Say, if n = 2, fix a Turing functional Φ such that ψ = Φ∅′

, and let
ψs(x) 	 Φ∅′

(x)[s]. As long as e = ψs(x), Wr(x) follows the enumeration of We.)
Now let ψ = J∅(n−1)

. If ψ(x)↓ then
Wψ(x) ∼n Wr(x) �∼n Wg(r(x)), so ψ(x) �= g(r(x)).

Hence f = g ◦ r is n-d.n.c. and f ≤T g. �

As a consequence we obtain the following result of Kučera (1990).

4.3.17 Corollary. If Z is n-random then there is an n-f.p.f. function g ≤T Z.

Proof. By Proposition 4.1.2 relative to ∅(n−1), a finite variant f of the function
λn.Z �n is n-d.n.c. There is an n-f.p.f. function g ≤T f . �

The converse fails because the n-random degrees are not closed upwards. For n = 1
this follows from Proposition 4.3.11, and for n ≥ 2 it follows because each 2-random set
forms a minimal pair with ∅′. Also note that for each n > 1 there is an (n− 1)-random
set Z ≤T ∅(n−1). Then Z does not compute an n-f.p.f. function.

Our proof of Corollary 4.3.17 is somewhat indirect as it relies on Schnorr’s Theo-
rem 3.2.9 relative to ∅(n−1). The proofs in Kučera (1990) are more self-contained (but
also longer). The ideas needed in the proof of Theorem 4.3.16 were introduced there.
For instance, Kučera’s proof of (1.) in the case n = 2 is as follows. Given x ∈ N, using
the infinite set Z as an oracle, we may compute nx = µn. #Z ∩ [0, n) = x. Let g ≤T Z
be a function such that, for each x, Wg(x) = {〈y, i〉 : i < nx → i �∈ Z}. We will show
that Wx �=∗ Wg(x) for almost all x, which is sufficient to establish the theorem.

Since the index set {e : We is finite} is Σ0
2, there is a computable function h such that

W ∅′
h(x) = {i : (Wx)i is finite}. We define a ML-test (Gx)x∈N relative to ∅′, as follows.

On input x, initially let Gx = ∅. For x > 0, once distinct elements a0, . . . , ax−1 have
been enumerated into W ∅′

h(x), let Gx = {Y : ∀i < x [Y (ai) = 1]}. Clearly Gx is Σ0
1(∅′)

uniformly in x, and λGx ≤ 2−x. Then, since Z is 2-random and (Gx)x∈N is a Solovay
test relative to ∅′, there is x0 such that Z �∈ Gx for all x ≥ x0. Because #Z∩[0, nx) = x,

∀x ≥ x0 W ∅′
h(x) �= Z ∩ [0, nx).

Assume for a contradiction that x ≥ x0 and Wg(x) =∗ Wx. Then (Wg(x))i =∗ (Wx)i for
all i. If i ≥ nx this implies that i �∈W ∅′

h(x). If i < nx then

i ∈ Z ↔ (Wg(x))i = ∅ ↔ (Wx)i is finite ↔ i ∈W ∅′
h(x).

Thus Wh(x) = [0, nx) ∩ Z, a contradiction.

4.3.18 Exercise. Show that there is a weakly 2-random set that does not compute a
2-f.p.f. function. Hint. Use Exercise 1.8.46.
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Lowness properties and K-triviality

In this chapter and in Chapter 8 we will study lowness properties of a set A.
In particular, we are interested in the question of how they interact with concepts
related to randomness. The main new notion is the following: A is K-trivial if

∀n K(A�n) ≤ K(n) + b

for some constant b, namely, up to a constant the descriptive complexity of A�n

is no more than the descriptive complexity of its length. This expresses that A
is far from being ML-random, since ML-random sets have a quickly growing ini-
tial segment complexity by Schnorr’s Theorem 3.2.9. We show that K-triviality
coincides with the lowness property of being low for ML-randomness.
Lowness properties via operators. Recall from Section 1.5 that a lowness property
of a set A specifies a sense in which A is computationally weak. We always require
that a lowness property be closed downward under Turing reducibility. Mostly,
computational weakness of A means that A is not very useful as an oracle.
Lowness properties of a set A are very diverse, as each one represents only a
particular aspect of how information can be extracted from A. They can even
exclude each other for incomputable sets.
We have introduced several lowness properties by imposing a restriction on

the functions A computes. For instance, A is computably dominated if each
function f ≤T A is dominated by a computable function (Definition 1.5.9). In
this chapter we define lowness properties by the condition that the relativization
of a class C to A is the same as C. For example let C = ∆0

2. For each A, by the
Limit Lemma 1.4.2 relative to A, we have CA = ∆0

2(A) = {X : X ≤T A′}. For
an operator C mapping sets to classes, we say that A is low for C if CA = C. We
write Low(C) for this class.
The condition A ∈ Low(C) means that A is computationally weak in the sense

that its extra power as an oracle does not expand C, contrary to what one would
usually expect. When C = ∆0

2, A is low for C iff A′ ≡T ∅′, that is, A is low in
the usual sense of 1.5.2.
In some cases, a lowness property implies that the set is in ∆0

2. Clearly this is
so for the usual lowness. In contrast, being computably dominated is a lowness
property such that the only ∆0

2 sets with that property are the computable ones.
One may view the computably dominated sets as a class of the type Low(C) by
letting CX be the class of functions dominated by a function f ≤T X.
An operator C is called monotonic if A ≤T B → CA ⊆ CB . An operator D

is called antimonotonic if A ≤T B → DA ⊇ DB . The operator X → ∆0
2(X)

is monotonic, while MLR, the operator given by Martin-Löf randomness relative
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to an oracle, is antimonotonic. For both types of operators, the corresponding
lowness notion is indeed closed downward under Turing reducibility. For instance,
A ≤T B and CB = C implies C ⊆ CA ⊆ CB = C.
Let D be a randomness notion. Informally, A is in Low(D) if the computational

power of A does not help us to find new regularities in a set that is random in
the sense of D. Although DA is ultimately defined in terms of computations
with oracle A, the operator D looks at this information extracted from A in a
sophisticated way via D-tests relative to A. For this reason, studying the behavior
of DA often yields interesting results on the computational complexity of A. In
this chapter we focus on lowness for ML-randomness. In Chapter 8 we study
lowness for randomness notions weaker than ML-randomness.
Existence results and characterization. A computable set satisfies every lowness
property. Sometimes one is led to define a lowness property and then discovers
that only the computable sets satisfy it. Consider the operator C(X) = Σ0

1(X):
here A ∈ Low(C) implies that A is computable, because both A and N − A are
in Σ0

1(A) = Σ0
1.

It can be difficult to determine whether a lowness property only applies to
the computable sets. If it does so, this is an interesting fact, especially in the
case of a class Low(C); an example is lowness for computable randomness by
Corollary 8.3.11. However, it is also the final result.
On the other hand, if an incomputable set with the property exists, then one

seeks to understand the lowness property via some characterization. This is es-
pecially useful when the property is given in the indirect form Low(C). In that
case, one seeks to characterize the class by conditions of the following types.
(1) The initial segments of A have a slowly growing complexity.
(2) The functions computed by A are restricted.
A main result of this chapter is a characterization of the first type: A is low for
ML-randomness iff A is K-trivial. This is surprising, because having a slowly
growing initial segment complexity expresses that A is far from random, rather
than computationally weak. This result provides further insight into the class
Low(MLR). For instance, we use it to show that Low(MLR) induces an ideal in
the Turing degrees. This fails for most of the other lowness properties we study.
Theorem 8.3.9 below is a characterization of the second type: a set is low

for Schnorr randomness iff it is computably traceable (a strengthening of being
computably dominated).
Overview of this chapter. In Section 5.1 we introduce several lowness properties
and show their coincidence with Low(MLR). In Section 5.2 we study K-triviality
for its own sake, proving for instance that each K-trivial set is in ∆0

2. In Sec-
tion 5.3 we introduce the cost function method. It can be used to build K-trivial
sets, or sets satisfying certain lowness properties. Different solutions to Post’s
problem can be viewed as applications of this method for different cost functions.
There is a criterion on the cost function, being nonadaptive, to tell whether this
solution is injury-free. Section 5.4 contains the proof that each K-trivial set is
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low for ML-randomness, introducing the decanter and golden run methods. Sec-
tion 5.5 applies these methods to derive further properties of the K-trivial sets.
In Section 5.6 we introduce the informal concept of weak reducibilities, which
are implied by ≤T . We study the weak reducibility ≤LR associated with the
class Low(MLR). We also prove the coincidence of two highness properties: we
characterize the class {C : ∅′ ≤LR C} by a strong domination property.
Some key results of this chapter are non-uniform. For instance, even though

every K-trivial set is low, we cannot effectively obtain a lowness index from a
c.e. K-trivial set and its constant (Proposition 5.5.5). Corollary 5.1.23 is also
non-uniform, as discussed in Remark 5.1.25.

5.1 Equivalent lowness properties
We study three lowness properties that will later turn out to be equivalent: being
low for K, low for ML-randomness, and a base for ML-randomness.
The first two properties indicate computational weakness as an oracle. A is low

for K if A as an oracle does not help to compress strings any further. A is low
for ML-randomness if each ML-random set is already ML-random relative to A.
The third property, being a base for ML-randomness, is somewhat different: A is
considered computationally weak because the class of oracles computing A looks
large to A itself, in the sense that some set Z ≥T A is ML-random relative to A.
The first two implications are easy to verify: A is low for K ⇒ A is low for

ML-randomness ⇒ A is a base for ML-randomness. The remaining implication
is the main result of this section: A is a base for ML-randomness ⇒ A is low
for K (Theorem 5.1.22).
A fourth equivalent property is lowness for weak 2-randomness. The implication

A is low for weak 2-randomness ⇒ A is low for K is obtained at the end of this
section, the converse implication only in Theorem 5.5.17 of Section 5.5.

Being low for K

5.1.1 Definition. We say that A is low for K if there is b ∈ N such that

∀y [KA(y) ≥ K(y)− b].
LetM denote the class of sets that are low for K.

Each computable set is low for K. Also, M is closed downward under Turing
reducibility, because B ≤T A implies ∀y [KB(y) ≥+ KA(y)] by Exercise 3.4.4.
The notion was introduced by Andrej A. Muchnik in unpublished work dating

from around 1999. He built an incomputable c.e. set that is low for K. Later in
this section we will reprove his result, but at first in a different, somewhat indirect
way: we apply Kučera’s construction in 4.2.1 to obtain a c.e. incomputable set A
Turing below a low ML-random set. Then, in Corollary 5.1.23 we prove that each
set A of this kind is low for K. However, in the proof of Theorem 5.3.35 we also
give a direct construction of a set that is low for K, similar to Muchnik’s.
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5.1.2 Proposition. Each set A ∈M is generalized low in a uniform way. More
precisely, from a constant b one can effectively determine a Turing functional Ψb

such that, if A satisfies ∀y [K(y) ≤ KA(y) + b], then A′ = Ψb(∅′ ⊕A).
Proof idea. Recall that JA(e) denotes ΦA

e (e), and J
A
s (e) denotes ΦA

e,s(e). For
a stage s, using A as an oracle we can check whether JA

s (e)↓. So all we need is
a bound on the last stage when this can happen: if such a stage s exists then
KA(s) and hence K(s) is at most e+O(1). Thus ∅′ can compute such a bound.
Proof details. Let Mc, c > 1, be an oracle prefix-free machine such that
MZ

c (0e1) 	 µs. JZ
s (e)[s] ↓ for each Z and each e. Thus MZ

c (0e1) converges
iff JZ(e) converges. Since MZ

c (0e1) 	 U
Z(0c−110e1), we have KZ(MZ

c (0e1)) ≤
e+c+1 for each Z. Thus, if A is low for K via b then K(MA

c (0e1)) ≤ e+c+1+b
for each e. To compute A′ from ∅′ ⊕ A, given input e use ∅′ to determine
t = max{U(σ) : |σ| ≤ e + c + 1 + b}. Then JA(e) ↓ ↔ JA

t (e) ↓, so output 1
if JA

t (e) ↓, and 0 otherwise. The reduction procedure was obtained effectively
from b. �

For a c.e. set A, modifying the argument improves the result.

5.1.3 Proposition. Each c.e. set A ∈M is superlow. The reduction procedure
for A′ ≤tt ∅′ can be obtained in a uniform way.

Proof. By Proposition 1.4.4 (which is uniform) it suffices to show A′ ≤wtt ∅′.
Let Mc, c > 1, be an oracle prefix-free machine such that for each e,

MA
c (0e1) 	 µs. JA

s (e)[s]↓ & As � use JA
s (e) = A � use JA

s (e).
As before JA(e) ↓ ↔ MA

c (0e1) ↓, in which case JA(e) has stabilized by stage
MA

c (0e1). Also KZ(MZ
c (0e1)) ≤ e + c + 1 for each Z. To compute A′ from ∅′,

given input e, use ∅′ to determine t = max{U(σ) : |σ| ≤ e + c + 1 + b}; then
JA(e) ↓ ↔ JA(e) ↓ [t]. The use of this reduction procedure is bounded by the
computable function λe. p(2e+c+1+b), where p is a reduction function for the
partial computable function U. �

Using a more powerful method, in Corollary 5.5.4 we will remove the restriction
that A be c.e., by showing that each set A ∈M is Turing below some c.e. set D ∈M.
This will supersede Proposition 5.1.2 (except for the uniformity statement).

We also postpone the result thatM is a proper subclass of the superlow sets. By the
results in Section 5.4, M induces a proper ideal in the ∆0

2 Turing degrees, while there
are superlow c.e. sets A0, A1 such that ∅′ ≡T A0 ⊕ A1, Theorem 6.1.4. Alternatively,
there is a superlow c.e. set that is not low for K by Proposition 5.1.20 below; the proof
relies on a direct construction.

Exercises. The first two are due to Merkle and Stephan (2007).
5.1.4. Let A be low for K. Suppose Z ⊆ N and let Y = Z!A be the symmetric
difference. Show that ∀n K(Y �n) =+ K(Z �n). In particular, if Z is ML-random then Y
is ML-random as well by Schnorr’s Theorem. (Compare this with 3.6.21.)

5.1.5. Continuing 5.1.4, suppose that A is incomputable and Z is 2-random.
Let Y = Z!A. Show that Y |T Z. (Use that A is ∆0

2 by 5.2.4(ii) below.)
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5.1.6. (Kučera) Show that there is a function F ≤wtt ∅′ dominating each function
partial computable in some set that is low for K.

Lowness for ML-randomness

See the introduction to this chapter for background on lowness for operators.

5.1.7 Definition. A is low for ML-randomness if MLRA = MLR.
Low(MLR) denotes the class of sets that are low for ML-randomness.

Thus, A is low for ML-randomness if MLRA is as large as possible. This property
was introduced by Zambella (1990). He left the question open whether some
incomputable set is low for ML-randomness.
The question was answered in the affirmative in work, dating from 1996,

of Kučera and Terwijn (1999). They actually built a c.e. incomputable set in
Low(MLR). Exercise 5.3.38 below asks for a direct construction of such a set.
By the next fact, the existence of such a set also follows from Muchnik’s result

that some incomputable c.e. set is low for K.
Our first proof that a c.e. incomputable set exists in Low(MLR) is actually via

Kučera’s Theorem 4.2.1; see page 170.

5.1.8 Fact. Each set that is low for K is low for ML-randomness.

Proof. Recall that Theorem 3.2.9 can be relativized: Z is ML-random relative
to A ⇔ ∀nKA(Z �n) ≥+ n. Thus the class of ML-random sets MLR can be
characterized in terms of K, and MLRA in terms of KA. If A is low for K then
the function abs(K −KA) is bounded by a constant, so MLR = MLRA. �

In Corollary 5.1.10 we will characterize Low(MLR) using only effective topology
and the uniform measure: A ∈ Low(MLR)⇔ if G is open, c.e. in A, and λG < 1,
then G is contained in a c.e. open set S (without oracle A) such that λS < 1. (In
Section 5.6 we will consider several variants of such covering procedures.) The
result, due to Kjos-Hanssen (2007), is obtained through the following:

5.1.9 Theorem. The following are equivalent for a set A.
(i) A is low for ML-randomness.
(ii) There is a c.e. open set S such that

λS < 1 & ∀z [KA(z) ≤ |z| − 1 → [z] ⊆ S]. (5.1)

(iii) For each oracle prefix-free machine M , there is a c.e. open set S such that

λS < 1 & ∀z [KMA(z) ≤ |z| − 1 → [z] ⊆ S]. (5.2)

Statement (ii) expresses that A is weak as an oracle in that there are few strings z with
a description using A of length ≤ |z| − 1. Note that the condition (5.1) is equivalent to
λS < 1 & RA

1 ⊆ S. The characterization of Low(MLR) in (i) ⇔ (ii) is due to Nies and
Stephan (unpublished), who used it to show that the index set {e : We ∈ Low(MLR)}
is Σ0

3; see Exercise 5.1.11. This fact also follows from the coincidence of Low(MLR)
with M obtained later on. It is not obvious from the definition of Low(MLR) itself.
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Proof. (iii)⇒(ii): trivial.
(ii)⇒(i): If (5.1) holds then non-MLRA ⊆ S. By Fact 1.8.26, there is a com-
putable antichain B such that [B]≺ = S. By Proposition 3.2.15, non-MLRA is
closed under taking off finite initial segments. Thus non-MLRA ⊆ ⋂

n[B
n]≺. By

Example 3.2.23, ([Bn]≺)n∈N is a Solovay test. Hence non-MLRA ⊆ non-MLR, that
is, A is low for ML-randomness.
(i)⇒(iii): Suppose that M is an oracle prefix-free machine for which (5.2) fails.
We build a set Z ∈ MLR−MLRA, whence A is not low for ML-randomness. We
let Z = z0z1z2 . . . for an inductively defined sequence of strings z0, z1 . . . with
the properties (a) and (b) below.

(a) We ensure that KMA(zi) ≤ |zi|−1. Thus Z �∈ MLRA by Proposition 3.2.17
relativized to A.

(b) Let H be a c.e. open set such that λH < 1 and 2N − H ⊆ MLR. Say, let
H = R1 = [{z : K(z) ≤ |z| − 1}]≺. We will have [z0 . . . zn−1] �⊆ H for
each n, whence Z ∈ MLR as 2N −H is closed.

Inductively, suppose we have defined z0, . . . , zn−1 such that [w] �⊆ H where
w = z0 . . . zn−1 (in case n = 0, we read this as w = ∅, so we have [∅] = 2N �⊆ H,
as required). Let S = H | w = {Z : wZ ∈ H}, then S is c.e. open and S �= 2N

as H is c.e. open and [w] �⊆ H. The nonempty Π0
1 class 2N − S is contained in

MLR, and is therefore not null. Hence λS < 1. Since (5.2) fails, there is z = zn

such that KMA(zn) ≤ |zn| − 1 and [zn] �⊆ S. Thus [z0 . . . zn] �⊆ H. �

Note that by Fact 1.8.56(ii) relative to an oracle X, a class G ⊆ 2N is open and
c.e. in X iff G is a Σ0

1(X) class.

5.1.10 Corollary. A is low for ML-randomness ⇔ each Σ0
1(A) class G such

that λG < 1 is contained in a Σ0
1 class S such that λS < 1.

Proof. ⇐: For the set G = RA
1 there is an open c.e. set S, λS < 1, such that

G ⊆ S. Thus (ii) in Theorem 5.1.9 holds.
⇒: Applying the Lebesgue Density Theorem 1.9.4 to C = 2N − G, we obtain
a string σ such that λ(G | σ) ≤ 1/2. Let H = G | σ = {Z : σZ ∈ G}. By
Fact 1.8.26 relativized to A, let B ≤T A be an antichain in {0, 1}∗ such that
[B]≺ = H. Then {〈|x| − 1, x〉 : x ∈ B} is a bounded request set relative to A, so
by Theorem 2.2.17 relative to A, there is an oracle prefix-free machine M such
that B = {x : KMA(x) ≤ |x| − 1}. By (i)⇒(iii) of Theorem 5.1.9, there a Σ0

1

class Ŝ such that λŜ < 1 and H ⊆ Ŝ. Now S = σŜ ∪ (2N − [σ]) is a Σ0
1 class as

required. �

5.1.11 Exercise. Show that the set {e : We ∈ Low(MLR)} is Σ0
3.

When many oracles compute a set

In most cases, computational weakness of a set A means that, in some sense or
other, A is not very useful as an oracle. However, another possible interpretation
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is that A is easy to compute in that the class of oracles computing A is large.
Given a set A, let SA = {Z : A ≤T Z}. The set A is considered not complex
if SA is large, and complex if SA is small. If smallness merely means being a
null class then we can only distinguish between the computable sets A, where
SA = 2N, and the incomputable sets A, where SA is null. In the present form
this result appeared in Sacks (1963a), but it is in fact an easy consequence of a
result in de Leeuw, Moore, Shannon and Shapiro (1956).

5.1.12 Theorem. A is incomputable ⇔ the class SA = {Z : A ≤T Z} is null.

Proof. ⇐: If A is computable then SA = 2N, so λSA = 1.
⇒: For each Turing functional Φ let

SA
Φ = {Z : A = ΦZ}.

Thus SA =
⋃

Φ S
A
Φ . It suffices to show that each SA

Φ is null. Suppose for a
contradiction that λSA

Φ ≥ 1/r for some r ∈ N. Then A is a path on the c.e.
binary tree

T = {w : λ[{σ : Φσ ! w}]≺ ≥ 1/r}.
Each antichain on T has at most r elements, for if w0, . . . , wr is an antichain with
r + 1 elements, we have r + 1 disjoint sets [{σ : Φσ = wi}]≺, each of measure at
least 1/r, which is impossible. Then there is n0 such that for each n ≥ n0, A�n is
the only string w on T of length n extending A�n0 . For otherwise we could pick
r + 1 strings on T branching off A at different levels, and these strings would
form an antichain with r + 1 elements.
Now, to compute A(m) for m ≥ n0, wait till some w ! A �n0 of length m + 1

is enumerated into T , and output w(m). �

5.1.13 Remark. For n > 0 let
SA

Φ,n = [{σ : A�n� Φσ}]≺.
Then SA

Φ,n is Σ0
1(A) uniformly in n. If A is incomputable then SA

Φ =
⋂

n S
A
Φ,n is

null, so limnλS
A
Φ,n = 0. That is, (SA

Φ,n)n∈N is a generalized ML-test relative to A
(Definition 3.6.1).

If A itself is ML-random, then leaving out the first few components even turns
(SA

Φ,n)n∈N into a ML-test relative to A (Miller and Yu, 2008).

5.1.14 Proposition. Suppose A is ML-random. Then for each Turing func-
tional Φ there is a constant c such that (SΦ

A,n+c)n∈N is a ML-test relative to A.

The easiest proof is obtained by observing that the c.e. supermartingale (see
Definition 7.1.5 below) given by L(x) = 2|x|λ[{σ : Φσ ! x}]≺ is bounded by 2c

for some c along A. The details are provided on page 266.
Exercises.
5.1.15. Show that the sets of PA degree (Definition 4.3.1) form a null class.
5.1.16. Suppose that A and Y are ML-random and A ≤T Y . Show that if Y is (i) De-
muth random, (ii) weakly 2-random, (iii) ML-random relative to a set C, then A has
the same property.
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Bases for ML-randomness

We continue to work on the question to what extent high computational com-
plexity of a set A is reflected by smallness of the class SA of sets computing A.
We have seen that interpreting smallness by being null is too coarse since this
makes all the incomputable sets complex. Rather, we will consider the case that
SA is null in an effective sense relative to A. From Remark 5.1.13 we obtain the
following.

5.1.17 Corollary. Let A be incomputable. If Z is weakly 2-random relative to A
then A �≤T Z. �

Thus SA looks small to an incomputable A even in a somewhat effective sense:
SA does not have a member that is weakly 2-random relative to A. On the other
hand, by the Kučera-Gács Theorem 3.3.2 SA always contains a ML-random set.
If A is ML-random then by Proposition 5.1.14 SA does not contain a ML-random
set relative to A.
Is there any incomputable set A such that SA contains a ML-random set rela-

tive to A? This property was first studied by Kučera (1993).

5.1.18 Definition. A is a base for ML-randomness if A ≤T Z for some set Z
that is ML-random relative to A.

Kučera used the term “basis for 1-RRA”. There is no connection to basis theo-
rems. Each set A that is low for ML-randomness is a base for ML-randomness.
For, by the Kučera-Gács Theorem 3.3.2 there is a ML-random set Z such that
A ≤T Z. Then Z is ML-random relative to A.
We will prove two theorems. They are due to Kučera (1993) and Hirschfeldt,

Nies and Stephan (2007), respectively.

Theorem 5.1.19: There is a promptly simple base for ML-randomness.
Theorem 5.1.22: Each base for ML-randomness is low for K.

This completes the cycle: the classes of sets that are low for K, low for ML-
randomness, and bases for ML-randomness are all the same! Moreover, this
common class reaches beyond the computable sets:

5.1.19 Theorem. There is a promptly simple base for ML-randomness.

Proof. Let Z be a low ML-random set, say Z = Ω0, the bits of Ω in the even
positions (see Corollary 3.4.11). By Theorem 4.2.1 there is a promptly simple
set A ≤T Z. Then, by 3.4.13, Z is in fact ML-random relative to A. �

For the proof of Theorem 5.1.22 below it might be instructive to begin with a direct
construction of a superlow c.e. set A which is not a base for ML-randomness. (Be-
fore 5.1.4 we already discussed how to obtain a superlow c.e. set that is not low for K,
so this also follows from 5.1.22).

5.1.20 Proposition. There is a superlow c.e. set A such that for each set Z, if A ≤T Z
then Z is not ML-random relative to A.
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Proof sketch. For each e we build a ML-test (CA
e,d)d∈N relative to A in such a way

that for each j = 〈e, d〉, the following requirement is met:

Rj : ∀Z [A = ΦZ
e ⇒ Z ∈ CA

e,d].

We make A low by meeting the lowness requirements Le from the proof of Theo-
rem 1.6.4. When JA(e) newly converges we inititalize the requirements Rj for j > e.

The strategy for Rj is as follows. At each stage let k be the number of times Rj has
been initialized.

1. Choose a large number mj .
2. At stage s let Sj,s be the clopen set {Z : A�mj = ΦZ

e �mj [s]}. While λSj,s < 2−d−k−1,
put Sj,s into CA

e,d with use mj on the oracle A. Otherwise put mj − 1 into A, initialize
the requirements Le for e ≥ j (we say that Rj acts) and goto 1.

Thus, the strategy for Rj keeps putting Sj,s into CA
e,d until this makes the contribution

(for this value of k) too large; if it becomes too large, the strategy removes the current
contribution by changing A. In the construction, at stage s let the requirement of
strongest priority that requires attention carry out one step of its strategy.

Verification. Each requirement Rj acts only finitely often: λSj,s can reach 2−d−k−1 at
most 2d+k+1 times, since the different versions of Sj,s are disjoint. Thus A is low and
each mj reaches a limit. Next, for each e, d we have λCA

e,d ≤
∑

k 2−d−k−1 ≤ 2−d, so
(CA

e,d)d∈N is a ML-test relative to A. If A = ΦZ
e , for each d let j = 〈e, d〉 and consider the

final value of mj . Since A�mj = ΦZ
e �mj , Z is in CA

e,d. Thus Z is not ML-random relative
to A. Finally, there is a computable function f such that f(e) bounds the number of
injuries to Le, so A is superlow. �

5.1.21 Remark. (The accounting method) We describe an important method
to show that a c.e. set L of requests is a bounded request set. We associate a
request 〈r, x〉 with an open set C such that λC ≥ 2−r. The open sets belonging
to different requests are disjoint. Then the total weight

∑
r 2

−r [[〈r, y〉 ∈ L]] is at
most the sum of the measures of those sets, and hence at most 1. Informally
speaking, we “account” the enumeration of 〈r, x〉 against the measure of the
associated open set. We usually enumerate these open sets actively. When they
reach the required measure we are allowed to put the request into L.

We are now ready for the main theorem of this section.

5.1.22 Theorem. Each base for ML-randomness is low for K.

Proof. Suppose that A ≤T Z for some set Z that is ML-random relative to A.
Given a Turing functional Φ, we define an oracle ML-test (CX

d )d∈N. If A = ΦZ ,
we intend to use this test for X = A. The goal is as follows: if d is a number
such that Z �∈ CA

d , then A is low for K via the constant d + O(1). To realize
this goal, we build a uniformly c.e. sequence (Ld)d∈N of bounded request sets.
The constructions for different d are independent, but uniform in d, so that for
each X, the sequence of open sets (CX

d )d∈N is uniformly c.e. in X. (This idea
was already used in the proof of Theorem 3.2.29: make an attempt for each d.
Let the construction with parameter d succeed when a ML-random set Z is not
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in the d-th component of a ML-test. Here, the ML-tests are relative to A, and Z
is ML-random in A.) We denote by C ⊆ {0, 1}∗ also the open set [C]≺.
For each computation

U
η(σ) = y where η � A

(that is, whenever y has a U
A-description σ), we want to ensure that there is

a prefix-free description of y not relying on an oracle that is only by a constant
longer. Thus we want to put a request 〈|σ|+ d+ 1, y〉 into Ld.
The problem is that we do not know A, so we do not know which η’s to accept;

if we accept too many then Ld might fail to be a bounded request set. To avoid
this, the description U

η(σ) = y first has to prove itself worthy. Once U
η(σ)

converges, we enumerate open sets Cη
d,σ (if U

η(σ) diverges then Cη
d,σ remains

empty). We let

CX
d =

⋃

η≺X,σ∈{0,1}∗
Cη

d,σ. (5.3)

As long as λCη
d,σ < 2−|σ|−d we think of Cη

d,σ as “hungry”, and “feed” it with
fresh oracle strings α such that η � Φα

|α|. Since λC
η
d,σ never exceeds 2−|σ|−d, we

have λCX
d ≤ 2−dΩX ≤ 2−d, so (CX

d )d∈N is an oracle ML test.
All the open sets Cη

d,σ are disjoint. If λCη
d,σ exceeds 2−|σ|−d−1 at some stage,

then we put the request 〈|σ|+ d+ 1, y〉 into Ld. As described in Remark 5.1.21,
we may account the weight of those requests against the measure of the sets Cη

d,σ

because the measure of Cη
d,σ is at least the weight of the request. This shows that

each Ld is a bounded request set.
Because Z is ML-random relative to A, there is d such that Z �∈ CA

d . This
implies that, whenever U

η(σ) = y in the relevant case that η ≺ A, then λCη
d,σ =

2−|σ|−d, and hence the request 〈|σ| + d + 1, y〉 is enumerated into Ld. For, if
λCη

d,σ < 2−|σ|−d, then once a sufficiently long initial segment α of Z computes η,
we would feed α to Cη

d,σ, which would put Z into CA
d . (Intuitively speaking,

lots of sets compute A, so we are able to feed all the sets Cη
d,σ for η ≺ A and

σ ∈ dom(Uη).)
The open sets CA

d correspond to the open sets CA
e,d in the proof of Proposition 5.1.20.

However, in the present proof, a Turing reduction Φ such that A = ΦZ is given in
advance, so one does not need the parameter e. In Proposition 5.1.20, we changed A

actively to keep CA
e,d small, and if A = ΦZ

e then Z was “caught” in
⋂

d CA
e,d. Here,

(CA
d )d∈N is an ML-test relative to A by definition. The set Z is caught in

⋂
d CA

d if A

is not low for K as witnessed by a computation Uη(σ) = y for η ≺ A.

Construction of c.e. sets Cη
d,σ ⊆ {0, 1}∗, σ, η ∈ {0, 1}∗, for the parameter d ∈ N.

Initially, let Cη
d,σ = ∅.

Stage s. In substages t, 0 ≤ t < 2s, go through the strings α of length s in
lexicographical order. Cη

d,σ[s, t] denotes the approximation at the beginning of
substage t of stage s.
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If α has been declared used for d, as defined below, then go to the next α.
Otherwise, see whether there are σ, η such that

• U
η
s(σ) ↓ and η is minimal such, namely, U

η′
s (σ) ↑ for each η′ ≺ η,

• η � Φα
|α|, and

• λCη
d,σ[s, t] + 2−s ≤ 2−|σ|−d.

Choose σ least and put α into Cη
d,σ. Declare all the strings ρ ! α used for d.

Verification. For fixed d, the sets [Cη
d,σ]

≺ (σ, η ∈ {0, 1}∗) are disjoint, because
during each stage s we only enumerate unused strings of length s into these sets.
Once λCη

d,σ reaches 2−|σ|−d−1, we enumerate 〈|σ|+ d+1, y〉 into Ld. Then Ld is
a bounded request set by the accounting method of Remark 5.1.21.
Define CX

d by (5.3). Since (CA
d )d∈N is a ML-test relative to A, there is d such

that Z �∈ CA
d . We verify that Ld works. Suppose that U

A(σ) = y, and let η � A
be shortest such that U

η(σ) = y. We claim that λCη
d,σ = 2−|σ|−d, so that we are

allowed to put the required request 〈|σ|+ d+ 1, y〉 into Ld when the measure of
Cη

d,σ has reached 2−|σ|−d−1.
Assume for a contradiction that λCη

d,σ < 2−|σ|−d, and let s be so large that
U

η
s(σ) = y, η � ΦZ

s and λCη
d,σ + 2−s ≤ 2−|σ|−d. Then α = Z �s+1 enters Cη

d,σ at

stage s, unless it enters some Cη′
d,σ′ instead or is used for d, namely, some β ≺ α

has entered a set Cη′′
d,σ′ at a previous stage. Because A = ΦZ , in any case, η ≺ A,

or η′ ≺ A, or η′′ ≺ A. Thus Z ∈ CA
d contrary to our hypothesis on d. �

The following shows that a certain class defined in terms of plain ML-randomness,
rather than relativized ML-randomness, is contained in the c.e. sets that are low
for K. In Section 8.5 we will consider subclasses ofM in more detail.

5.1.23 Corollary. Suppose A is c.e. and there is a ML-random set Z ≥T A
such that ∅′ �≤T Z. Then A is low for K.

Proof. If A is not low for K, by Theorem 5.1.22, Z is not ML-random relative
to A. Then, by Proposition 3.4.13, ∅′ ≤T A⊕ Z ≡T Z. �

We do not know at present whether this containment is strict: the following
question is open.

5.1.24 Open question. If A is c.e. and low for K, is there a ML-random set
Z ≥T A such that ∅′ �≤T Z?

5.1.25 Remark. It is not hard to see that the proof of Theorem 5.1.22 is uniform, in
the sense that if Z is ML-random in A and ΦZ = A, then a constant b such that A is
low for K via b can be obtained effectively from an index for Φ and a constant c such
that Z /∈ RA

c . On the other hand, Hirschfeldt, Nies and Stephan (2007) proved that
Corollary 5.1.23 is necessarily nonuniform: One cannot effectively obtain a constant b
such that A is low for K via b even if one is given c such that Z �∈ Rc, Φ, and a lowness
index for Z, that is, an index p such that Z′ = Φp(∅′). (They actually show it for K-
triviality instead of being low for K. However, by the proof of Proposition 5.2.3 below,
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the implication “low for K ⇒ K-trivial” is uniform in the constants, so the result also
applies for the constant via which A is low for K.)

5.1.26 Remark. We describe an unexpected application of Theorem 5.1.22. We say
that S ⊆ 2N is a Scott class (or Scott set) if S is closed downwards under Turing
reducibility, closed under joins, and each infinite binary tree T ∈ S has an infinite path
in S. Scott classes occur naturally in various contexts, such as the study of models of
Peano arithmetic and reverse mathematics. The arithmetical sets form a Scott class.
On the other hand, Theorem 1.8.37 in relativized form shows that there is a Scott class
consisting only of low sets.

Kučera and Slaman (2007) showed that Scott classes S are rich: for each incomputable
X ∈ S there is Y ∈ S such that Y |T X (this answered questions of H. Friedman and
McAllister).

They choose Y ∈ MLRX . Then Y |T X unless X is a base for ML-randomness, and
hence K-trivial. In that case, they build an infinite computable tree T such that a set
Z ∈ Paths(T ) is not K-trivial and satisfies Z �≥T X. For the latter they use the Sacks
preservation strategy (see Soare 1987, pg. 122).

Exercises. Show the following.
5.1.27. If A ∈ Low(Ω) (Definition 3.6.17) and A ∈ ∆0

2 then A ∈ Low(MLR).

5.1.28. There is an ω-c.e. set A for which Corollary 5.1.23 fails.

5.1.29. Each low set A is a “base for being of PA degree” via a low witness: there is
a low set D ≥T A which is of PA degree relative to A, namely, there is {0, 1}-valued
function f ≤T D such that ∀e¬f(e) = JA(e).

5.1.30. If Y and Z are sets such that Y ⊕ Z ∈ MLR, then each set A ≤T Y, Z is low
for K. (For instance, let Y be the bits in an even positions and let Z be the bits in an
odd position in the binary representation of Ω. Compare this to Exercise 4.2.7.)

5.1.31.� Prove Corollary 5.1.23 directly by combining the proofs of 5.1.22 and 3.4.13.

Lowness for weak 2-randomness

A recurrent goal of this book is to characterize the class Low(C) for a randomness
notion C. Here and in Section 8.3 we will consider, more generally, lowness for
pairs of randomness notions such that C ⊆ D (relative to each oracle). Relativiz-
ing D to A increases the power of the associated tests, so one would expect that
in general C �⊆ DA. We consider the class of sets A for which, to the contrary,
the containment persists when we relativize D.
5.1.32 Definition. (Kjos-Hanssen, Nies and Stephan, 2005) A is in Low(C,D)
if C ⊆ DA. Thus Low(C) = Low(C, C).
We study classes of the form Low(C,D) for various reasons.
(a) The proof techniques suggest so.
(b) We can deal with more than one randomness notion at the same time.
(c) These classes may coincide with interesting computability theoretic classes.

For instance, if C is ML-randomness and D is Schnorr randomness then
Low(C,D) coincides with the c.e. traceable sets by Theorem 8.3.3 below.
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We frequently use the fact that, if C ⊆ C̃ ⊆ D̃ ⊆ D are randomness notions,
then Low(C̃, D̃) ⊆ Low(C,D). That is, the class Low(C,D) is enlarged by ei-
ther decreasing C or increasing D. In particular, both Low(C) and Low(D) are
contained in Low(C,D).
Weak 2-randomness was introduced in Definition 3.6.1, and W2R ⊆ MLR are

the classes of weakly 2-random and ML-random sets, respectively. The following
result is due to Downey, Nies, Weber and Yu (2006).

5.1.33 Theorem. Low(W2R,MLR) = Low(MLR).

Thus Low(W2R) ⊆ Low(MLR). Theorem 5.5.17 below shows the converse con-
tainment, so that actually Low(W2R) = Low(MLR).

Proof. Suppose that A �∈ Low(MLR). By the characterization of Low(MLR)
in 5.1.9, there is no c.e. open set R such that λR < 1 and ∀z [KA(z) ≤ |z|−1 →
[z] ⊆ R]). Claim 5.1.34 below, which is a consequence of this failure of (5.1),
is used to show that W2R �⊆ MLRA. The argument extends the one for the
implication (i)⇒(iii) in the proof of Theorem 5.1.9. Recall from Definition 1.9.3
that, for a measurable class V ⊆ 2N and a string w, the local measure λ(V | w)
is 2|w|λ(V ∩ [w]).

5.1.34 Claim. Suppose (5.1) on page 167 fails for A. Let β, γ be rationals such
that β < γ < 1. For each c.e. open set V and each string w, if λ(V | w) ≤ β,
there is z such that KA(z) ≤ |z| − 1 and λ(V | wz) ≤ γ.
Subproof. Assume that no such z exists, and consider the c.e. set of strings

G = {z : λ(V | wz) > γ}.
Whenever KA(z) ≤ |z| − 1 then z ∈ G. Let S = [G]≺. Let (yi)i<N , N ≤ ∞ be a
listing of the minimal strings in G under �, so that S =

⋃
i<N [yi]. Now

β ≥ λ(V | w) ≥∑
i<N 2−|yi|λ(V | wyi) ≥ λS · γ.

Thus 1 > β/γ ≥ λS, whence (5.1) holds via S, contradiction. �

We build a set Z ∈ W2R that is not ML-random relative to A. Let (Ge
n)n∈N

be a listing of all generalized ML-tests (Definition 3.6.1) with no assumption
on the uniformity in e. We define Z by finite extensions (somewhat similar to
Theorem 1.6.1), defeating the tests (Ge

n)n∈N one by one. Claim 5.1.34 ensures
that we can choose the extensions in such a way that Z �∈ MLRA.
As in Theorem 5.1.9, we define a sequence of strings z0, z1, . . . such that

KA(zi) ≤ |zi| − 1. Then Z = z0z1z2 . . . is not ML-random relative to A by
Proposition 3.2.17 relativized to A. In step e we define ze, and, to ensure that
Z ∈ W2R, we also define a number ne such that Z �∈ Ge

ne
. At the beginning of

step e, we have defined z0, . . . , ze−1 and n0, . . . , ne−1. We let He =
⋃

i<eG
i
ni

and
we = z0 . . . ze−1. We ensure inductively that for each e

λ(He | we) ≤ γe := 1− 2−e. (5.4)

Note that w0 is the empty string and H0 = ∅, so that (5.4) holds for e = 0. In
step e ≥ 0, we choose ne so large that



176 5 Lowness properties and K-triviality

λ(Ge
ne
) ≤ 2−|we|−e−2.

Then λ(Ge
ne
|we) ≤ 2−(e+2). Since He+1 = He ∪Ge

ne
,

λ(He+1 | we) ≤ γe + 2−(e+2) < γe+1.

By Claim 5.1.34 for V = He+1, w = we, β = γe +2−(e+2), and γ = γe+1 > β, we
can choose z = ze such that KA(z) ≤ |z| − 1 and λ(He+1 | wez) ≤ γe+1. Thus
(5.4) holds for e+ 1 where we+1 = wez.
If Z ∈ Ge

ne
, there is m > ne such that [wm] ⊆ Ge

ne
⊆ Hm as Ge

ne
is open.

However, since λ(Hm|wm) < 1 by (5.4), we have [wm] �⊆ Hm for each m. Thus
Z �∈ Ge

ne
. �

5.2 K-trivial sets
We say that a set A is K-trivial if up to an additive constant the function
λn.K(A�n) grows no faster than the function λn.K(n). Thus, A�n has no more
information than its length has. It is easily verified that each set that is low for K
is K-trivial, so by Section 5.1, page 170, there is a promptly simple K-trivial
set. In Proposition 5.3.11 we will give a direct construction of such a set, after
introducing the cost function method.
We already stated in the introduction to this chapter that the sets that are low

for ML-randomness (or low for K) actually coincide with the K-trivial sets. This
we will prove in Section 5.4. Here we study K-triviality for its own sake, mostly
by combinatorial means. Given the equivalence with the lowness properties of
Section 5.1, this leads to results involving those properties which would be hard
to obtain if their definitions were used directly. For instance, it is not too difficult
to show that each K-trivial set is ∆0

2. A direct proof of this result is possible,
but more difficult, for the sets that are low for ML-randomness (Nies, 2005a).
A further example of this is the closure of theK-trivial sets under the operation⊕
on sets, where no direct proof is known using the definition of Low(MLR).
Some results of this section will be improved in the Sections 5.4 and 5.5 using

“dynamic” methods, such as the golden run. For instance, once we know that
being K-trivial is the same as being low for K, we may conclude from Proposi-
tion 5.1.2 that the K-trivial sets are not only ∆0

2, but in fact low. Alternatively,
in Corollary 5.5.4 we use the golden run method to show directly that each K-
trivial set is superlow, and hence ω-c.e.

Basics on K-trivial sets

Each prefix-free description of a string y also serves as a description for |y|.
Thus K(|y|) ≤+ K(y) for each y. Clearly ∀nK(n) =+ K(0n), so the following
property of a set A expresses that the K-complexity of the initial segments of A
grows as slowly as the one of a computable set.

5.2.1 Definition. A is K-trivial via b ∈ N if ∀n K(A�n) ≤ K(n) + b.
Let K denote the class of K-trivial sets.
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Although we have defined the class of K-trivial sets in terms of the stan-
dard prefix-free universal machine, it actually does not depend on this partic-
ular choice: a change of the universal machine would merely lead to a different
constant b.
The intuitive meaning of K-triviality is to be far from ML-random. By The-

orem 3.2.9 A is ML-random iff ∀n K(A �n) ≥ n − c for some c. Thus, A is
ML-random if for each n, the number K(A�n) is within K(n) + c+1 ≤+ 2 logn
of its upper bound n+K(n)+1 given by Theorem 2.2.9. In contrast, A isK-trivial
if K(A�n) is within a constant of its lower bound K(n).
We say that A is C-trivial if ∀nC(A �n) ≤ C(n) + b for some b ∈ N (Chaitin,

1976). Computable sets are both K-trivial and C-trivial. Chaitin proved that
there are no further C-trivial sets (Theorem 5.2.20 below). He still managed to
show that all K-trivial sets are in ∆0

2. Solovay (1975) constructed an incom-
putable K-trivial set. These results will be covered in the present and in the
next subsection.
Intuitively, an incomputableK-trivial set exists because both sides of the defin-

ing inequality ∀nK(A �n) ≤ K(n) + b are noncomputable, and also because we
do not ask for uniformity in the inequality. In particular, we do not require
that a short description of A �n can be obtained from a short description of n.
Chaitin’s argument gets around this for C-trivial sets because the computable
upper bound C(n) ≤ 1+log(n+1) is attained in each interval [2i−1, 2i+1−1). So,
roughly speaking, one can replace the right hand side C(n) + b in the definition
of C-triviality by such a computable bound.

5.2.2 Fact. Each computable set A is K-trivial.

Proof. On input σ, the prefix-free machine M attempts to compute n = U(σ),
and outputs A�n. Then ∀nKM (A�n) ≤ K(n)+ b where b is the coding constant
for M . Alternatively, by Example 2.2.16, W = {〈n + 1, A �n〉 : n ∈ N} is a
bounded request set, so ∀nK(A�n) ≤+ K(n). �

By Theorem 5.1.19, there is a promptly simple base for ML-randomness, and
by Theorem 5.1.22 each base for ML-randomness is low forK. Then the following
implies that there is a promptly simple K-trivial set.

5.2.3 Proposition. (Extends 5.2.2) Each set that is low for K is K-trivial.

Proof. We actually show that there is a fixed d such that, if A is low for K via
a constant c, then A is K-trivial via the constant c + d. Let M be the oracle
prefix-free machine such that MX(σ) 	 X �U(σ) for each X,σ, and let d be the
coding constant for M . Then KX(X �n) ≤ K(n) + d for each X and n. Hence
K(A�n) ≤ KA(A�n) + c ≤ K(n) + c+ d for each n. �

K-trivial sets are ∆0
2

The following theorem of Chaitin (1976) shows that the K-trivial sets are rare:
for each constant b there are at most O(2b) many. As a consequence, each K-
trivial set is ∆0

2. In Corollary 5.5.4 we improve this: eachK-trivial set is superlow.
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However, the work in this section is not wasted, since the dynamic methods used
there rely on a computable approximation of the set.

5.2.4 Theorem.

(i) There is a constant c ∈ N such that for each b, at most 2c+b sets are K-
trivial with constant b.

(ii) Each K-trivial set is ∆0
2.

Proof. (i). The paths of the ∆0
2 tree

Tb = {z : ∀u ≤ |z| [K(z �u) ≤ K(u) + b]}
coincide with the sets that are K-trivial via the constant b. If c is the constant
of Theorem 2.2.26(ii), then for each n the size of the level {z ∈ Tb : |z| = n} is
at most 2c+b.
(ii). By (i) each path of Tb is isolated, and hence ∆0

2 by Fact 1.8.34 relativized
to ∅′. �

We give an affirmative answer to a question of Kučera and Terwijn (1999).
After building a c.e. incomputable set in Low(MLR), they asked whether each
set in Low(MLR) is in ∆0

2. The result was first obtained in a direct manner; see
Nies (2005a). Here we use the foregoing result and Theorem 5.1.22.

5.2.5 Corollary. Low(MLR) ⊆ ∆0
2.

Proof. If A ∈ Low(MLR) then A is a base for ML-randomness, and hence low
for K by Theorem 5.1.22. Each set that is low for K is K-trivial. Then, by the
foregoing theorem, A is in ∆0

2. �

By Theorem 5.2.4 the class K of K-trivial sets can be represented as an ascending
union of finite classes (Paths(Tb))b∈N. Note that we do not obtain a uniform listing of
∆0

2-indices (i.e., of total Turing reductions to ∅′) for K. An obvious attempt would be
to represent a path A of Tb by a string σ ∈ Tb such that A is the only path extending σ.
However, the property of a string σ to be on Tb and have a unique path above it is not
known to be ∆0

2. Nevertheless, using other methods and the fact that each K-trivial set
is ω-c.e., we will see in Theorem 5.3.28 that there is such a listing, which even includes
the constants for K-triviality.

As in 1.4.5 let Ve be the e-th ω-c.e. set.

5.2.6 Fact. {e : Ve ∈ K} is Σ0
3.

Proof. Ve ∈ K is equivalent to ∃b ∀n∀s∃t > s [Kt(Ve,t �n) ≤ Kt(n) + b]. �

As a consequence, the index set {e : We is K-trivial} is Σ0
3 as well. Since each finite

set is K-trivial, there is a uniformly c.e. listing of all the c.e. K-trivial sets, using
Exercise 1.4.22. Then the index set is Σ0

3-complete by Exercise 1.4.23. Note that K is
also Σ0

3 as a class, by a proof similar to the proof of Fact 5.2.6.

Exercises.
5.2.7. Show that A is low for K ⇔ ∀n K(A�n) ≤+ KA(n).

5.2.8. Let A be a c.e. set that is wtt-incomplete. Show that ∃∞n K(A �n) ≤+ K(n)
and ∃∞n C(A�n) ≤+ C(n).
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5.2.9. Give a “far-from-random” analog of Proposition 3.2.14. Let R = {r0 < r1 < . . .}
be an infinite computable set, and let A ⊆ N be any set.
(i) For all n, K(rn) =+ K(n) and K(A�n) ≤+ K(A�rn)
(ii) If b ∈ N and ∀n K(A�rn) ≤ K(rn) + b, then A is K-trivial via b + O(1).

5.2.10.� Using Theorem 5.2.4(i) devise a strategy to build a c.e. set that is not K-
trivial. Use it to show that some superlow c.e. set A is not K-trivial.

The number of sets that are K-trivial for a constant b �

Let G(b) be the number of sets that are K-trivial via b. By Theorem 5.2.4 G(b) =
O(2b). The actual values G(b) depend on the choice of an optimal prefix-free
machine. However, in Proposition 5.2.11 below we derive machine-independent
lower bounds for G which are rather close to the upper bound O(2b), for instance
(ε2b/b2) for some ε > 0. The finite sets alone are sufficient to obtain these
lower bounds. The next result, Theorem 5.2.12 due to J. Miller, states that∑

bG(b)/2
b < ∞. This shows that the lower bound (ε2b/b2) is rather tight; for

instance, it cannot be improved to (ε2b/b) for any ε > 0. On the other hand, the
upper bound O(2b) is not tight since limbG(b)/2b = 0.
Recall that Tb = {x : ∀y � x K(y) ≤ K(|y|) + b}. Thus G(b) = #Paths(Tb).

5.2.11 Proposition. Let D : N → N be a nondecreasing function which is
computably approximable from above and satisfies

∑
b 2

−D(b) < ∞. Then there
is ε > 0 such that ∀b G(b) ≥ (ε2b−D(b)).
For instance, if D(b) = 2 log b, we obtain the lower bound (ε2b/b2) for G(b).
Proof. Note that ∀bK(b) ≤+ D(b) by Proposition 2.2.18, and hence ∀xK(x) ≤+

|x|+D(|x|). We may increase D by a constant without changing the validity of
the conclusion, so let us assume that in fact ∀xK(x) ≤ |x|+D(|x|).
There is a constant r ∈ N such that, for each string x and each m ∈ N,

K(x0m) ≤ K(x)+K(|x|+m)+r, and for each x′ ≺ x,K(x′) ≤ K(x)+K(|x′|)+r,
(since x′ can be computed from x and |x′|). Thus, if b ≥ r, then for each x such
that K(x) ≤ b − r, the set x0∞ is K-trivial via b. If |x| ≤ (b − r) − D(b − r)
then K(x) ≤ b − r. So the number of such x is at least (2b−r−D(b−r)). Thus
G(b) ≥ (2−r2b−D(b)) for b ≥ r. Since this inequality holds vacuously for b < r,
the proof is complete. �

5.2.12 Theorem.
∑

bG(b)/2
b <∞.

Proof. Let F (b, n) = #{x : |x| = n & K(x) ≤ K(n) + b}.
Claim 1.

∑
bG(b)/2

b ≤ lim infn
∑

b F (b, n)/2
b.

Since G(b) is finite for each b, we may choose nb so large that each A ∈ Paths(Tb)
is the only path of Tb extending A �nb

. Given k, let mk = maxb≤k nb. Then for
all n ≥ mk we have that

∑k
b=0G(b)/2

b ≤∑k
b=0 F (b, n)/2

b. Thus
∑

bG(b)/2
b ≤

lim infn
∑

b F (b, n)/2
b.

Claim 2. There is c ∈ N such that
∑

b F (b, n)/2
b ≤ c for each n.
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Let Sd = {x : K(x) = K(|x|) + d}, and let F̃ (d, n) = #{x : |x| = n & x ∈ Sd}.
Since {0, 1}∗ is partitioned into the sets Sd, for each n we have

∑
d F̃ (d, n)2

−K(n)−d =
∑

|x|=n 2−K(x).

If K(x) ≤ K(|x|) + b then x ∈ Sd for a unique d ≤ b. Thus for each n
∑

b

F (b, n)2−K(n)−b =
∑

b

∑

K(x)≤K(n)+b

2−K(n)−b

=
∑

d

∑

K(x)=K(n)+d

∑

b≥d

2−K(n)−b

= 2
∑

d

F̃ (d, n)2−K(n)−d

= 2
∑

|x|=n

2−K(x).

It now suffices to show that
∑

|x|=n 2−K(x) = O(2−K(n)), for then Claim 2 follows
after multiplying by 2K(n). Recall from the Coding Theorem 2.2.25 that for
a prefix-free machine M we defined PM (y) = λ[{σ : M(σ) = y}]≺, and that
PU(y) ∼ 2−K(y). Let M be the machine from the proof of Theorem 2.2.26 given
by M(σ) = |U(σ)|. Then PM (n) =

∑
|x|=n PU(x) ∼

∑
|x|=n 2−K(x). By 2.2.25,

PM (n) = O(2−K(n)). Thus
∑

|x|=n 2−K(x) = O(2−K(n)) as required. �

The sequence (G(b)/2b)b∈N converges to 0 rather slowly:

5.2.13 Proposition. There is no computable function h : N→ Q2 such that
limb h(b) = 0 and ∀b [G(b)/2b ≤ h(b)]. In particular, the function G is not computable.

Proof. Assume that such a function h exists. We enumerate a bounded request set L.
We assume that an index d for a machine Md is given, thinking of Md as a prefix
machine for L (see Remark 2.2.21).
Construction of L. Compute the least b ≥ d such that h(b) < 2−d. Now enumerate L in
such a way that there are 2b−d K-trivial sets for the constant b; this is a contradiction
since in that case G(b)/2b ≥ 2−d. For each string x of length b − d let Ax = x0∞.
Whenever s > 0 is a stage such that Ks(n) < Ks−1(n) (possibly Ks−1(n) =∞), then
for each such x put the requests 〈Ks(n) + b− d, Ax �n〉 into L.
Verification. The weight we put into L for each Ax is at most Ω2b−d, so the total weight
of L is at most Ω, no matter what d is. If Md, d > 1, is in fact a machine for L, then
KMd(Ax �n) ≤ K(n) + b− d for each x, n, whence Ax is K-trivial via b. �

Since each Ax is finite, the Proposition remains valid when one replaces G by the
function Gfin, where Gfin(b) is the number of finite sets that are K-trivial via b.

Exercises.
5.2.14. There is r0 ∈ N such that, if A is K-trivial via the constant c, then xA is K-
trivial via 2K(x) + c + r0, for each string x.
5.2.15.� Improve 5.2.13: a function h with the properties there is not even ∆0

2. In
particular G �≤T ∅′. The same is true for Gfin.
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5.2.16.� Problem. It is not hard to verify that G ≤T ∅(3). Determine whether
G ≤T ∅(2). (This may depend on the choice of an optimal machine.)

Closure properties of K
We show that K induces an ideal in the ∆0

2 weak truth-table degrees. The closure
under ⊕ was proved by Downey, Hirschfeldt, Nies and Stephan (2003).

5.2.17 Theorem. If A,B ∈ K then A ⊕ B ∈ K. More specifically, if both A
and B are K-trivial via b, then A⊕B is K-trivial via 3b+O(1).

Proof idea. By Exercise 5.2.9, it is sufficient to show

∀nK(A⊕B �2n) ≤ K(n) + 3b+O(1).

The set Sn,r = {x : |x| = n & K(x) ≤ r} is c.e. uniformly in n and r. If r =
K(n) + b, then by Theorem 2.2.26(ii) we have #Sn,r ≤ 2c+b for the constant c.
So we may define a prefix-free machine describing a pair of strings in Sn,r with
K(n)+O(1) bits. It has to describe n only once, using a shortest U-description σ.
Thereafter, it specifies via two numbers i, j < 2c+b in which position the strings
A�n and B �n appear in the enumeration of Sn,r where r = |σ|+ b.
Proof details. Let M be the prefix-free machine which works as follows. On
input 0b1ρ search for σ � ρ such that U(σ)↓= n. If ρ = σαβ where α, β are strings
of length c+ b, then let i, j < 2c+b be the numbers with binary representations
1α and 1β. Search for strings x and y, the i-th and the j-th element in the
computable enumeration of Sn,r, respectively. If x and y are found output x⊕ y.
For an appropriate string ρ = σαβ of lengthK(n)+2(c+b) we haveM(0b1ρ) =

A⊕B �2n. Hence K(A⊕B �2n) ≤ K(n) + 3b+O(1). �

Is the class of K-trivial sets closed downward under Turing reducibility? In
Section 5.4, with considerable effort, we will answer this question in the affirma-
tive by showing that K =M. In contrast, an easier fact follows straight from the
definitions, downward closure under weak truth-table reducibility. This already
implies that K is closed under computable permutations.

5.2.18 Proposition.

(i) Let A be K-trivial via b. If B ≤wtt A then B is K-trivial via a constant d
determined effectively from b and the wtt reduction.

(ii) If A is K-trivial then ∅′ �≤wtt A.

Proof. (i) Suppose B = ΓA, where Γ is a wtt reduction procedure with a
computable bound f on the use. Then, for each n,

K(B �n) ≤+ K(A�f(n)) ≤+ K(f(n)) ≤+ K(n).

(ii) follows from (i) because Ω is not K-trivial, and Ω ≤wtt ∅′ by 1.4.4. �

5.2.19 Exercise. If A and B are K-trivial and 0.C = 0.A + 0.B, then C is K-trivial.
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C-trivial sets

In the next two subsections we aim at understanding K-triviality by varying it.
We say that A is C-trivial if ∃b∀nC(A�n) ≤ C(n) + b (see page 177). A modifi-
cation of the proof of Fact 5.2.2 shows that each computable set is C-trivial. By
the following result of Chaitin (1976) there are no others.

5.2.20 Theorem.

(i) For each b at most O(b22b) sets are C-trivial with constant b.
(ii) Each C-trivial set is computable.

Proof. We first establish the fact that there are no more than O(b22b) M -
descriptions of x that are at most C(x) + b long. Thus, surprisingly, the number
of such descriptions depends only on b, not on x.

5.2.21 Lemma. Given a machine M , we can effectively find d ∈ N such that,
for all b, x,

#{σ : M(σ) = x & |σ| ≤ C(x) + b} < 2b+2 log b+d+5 = O(b22b). (5.5)

Subproof. The argument is typical for the theory of descriptive string complex-
ity: if there are too many M -descriptions of x, we can find a V-description of x
that is shorter than C(x), contradiction.
Recall from page 13 that string(b) is the string identified with b, which has

length log(b+ 1). Let b̂ = 0|string(b)|1string(b) so that |̂b| ≤ 2 log b+ 3. We define a
machine R. By the Recursion Theorem (with a parameter forM) we may assume
that we are effectively given a coding constant d > 0 for R, that is, Φd = R.

R: For each b, each m ≥ 2 log b+ d+ 4 and each x, if there are 2b+2 log b+d+5

strings σ of length at most m + b such that M(σ) = x, let R(̂bρ) = x, for
the leftmost ρ of length m − 2 log b − d − 4 such that b̂ρ is not yet in the
domain of R. Note that |̂bρ| < m− d.

This definition of R is consistent: for each b,m, there are 2m+b+1 − 1 strings of
length at most m+b, so at most 2m+b+1/2b+2 log b+d+5 = 2m−2 log b−d−4 strings x
can have a sufficient number of M -descriptions to get an R-description b̂ρ.
Suppose (5.5) fails for b, x, and let m = C(x). Then 2m+b+1 ≥ 2b+2 log b+d+5, so

m ≥ 2 log b+d+4, hence we ensure that CR(x) < m−d and therefore C(x) < m,
contradiction. �

(i) We apply the lemma to count the strings z of length n such that C(z) ≤
C(n)+b. Similar to the proof of Theorem 2.2.26(i), consider the machineM given
by M(σ) 	 |V(σ)|. Each shortest V-description of such a z is an M -description
of n that has length at most C(n)+b, so by the lemma there are at most r many,
where r = O(b22b) is independent of n.
Similar to the proof of Theorem 5.2.4(i), consider the tree

TC
b = {z : ∀u ≤ |z|C(z �u) ≤ C(u) + b},
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which contains at most r strings of each length n. Each set that is C-trivial for b
is a path of TC

b , so there are at most r such sets.
(ii) Let A be C-trivial via b. The tree TC

b is merely ∆0
2, so the fact that A

is an isolated path is not sufficient to show that A is computable. Instead, let
S̃b ⊇ TC

b be the c.e. tree {z : ∀u ≤ |z| [C(z �u) ≤ 1 + log(u+ 1)+ b]}. For almost
every i, there is a string y of length i such that C(y) = |y|+ 1 (Exercise 2.1.19)
and therefore (with the usual identifications from page 13) there is a number u,
2i − 1 ≤ u < 2i+1 − 1 such that C(u) = 1 + log(u+ 1). Let

Sb = {z : ∃w ! z [|w| = 2|z| & w ∈ S̃b]},
then there are at most r strings on Sb at almost every level k = 2i−1 of Sb. The
set A is a path of Sb, so there is a string z ≺ A such that for each k > |z| of the
form 2i − 1, A �k is the only string in Sb extending z. Since the tree Sb is c.e.,
we can enumerate it till this string appears. Hence A is computable. �

Exercises.
5.2.22. We say that A is low for C if ∃b∀y [CA(y) ≥ C(y) − b]. Show that each set
that is low for C is computable.

5.2.23. Explain why the proof of Theorem 5.2.20(ii) cannot be adapted to show that
each K-trivial set is computable.

5.2.24. (Loveland, 1969) Show that the following are equivalent for a set A.
(i) A is computable.
(ii) There is d ∈ N such that ∀n K(A�n| n) ≤ d.
(iii) There is b ∈ N such that ∀n C(A�n| n) ≤ b.

Replacing the constant by a slowly growing function �

We replace the right hand side K(n) + O(1) in the definition of K-triviality by
K(n) + p(K(n)) + O(1), where p is a function we think of as a slowly growing.
For each function p, let Kp denote the class of sets A such that

∀n K(A�n) ≤+ K(n) + p(K(n)).
We prove a result of Stephan which shows that, if p : N → N is unbounded
and computably approximable from above (see Definition 2.1.15), the class Kp

is much larger than K. An example of such a function was given in Proposi-
tion 2.1.22: p(n) = C(n) = min{C(m) : m ≥ n}. The approximability con-
dition is needed, since Csima and Montalbán (2005) defined a nondecreasing
unbounded function f such that A is K-trivial ↔ ∀n K(A�n) ≤+ K(n)+f(n),
which implies that A is K-trivial ↔ ∀n K(A�n) ≤+ K(n) + f(K(n)).

5.2.25 Theorem. Suppose p is a function such that limn p(n) = ∞ and p is
computably approximable from above. Then there is a Turing complete c.e. set E
such that each superset of E is in Kp.

Proof. For a set X ⊆ N and n ∈ N, we write X for N −X and X ∩ n for X ∩ [0, n).
The function g(n) = �p(K(n))/2� is computably approximable from above via gs(n) =
�ps(Ks(n))/2�. The idea is to make the complement of the c.e. set E very thin, so that
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for every A ⊇ E and each n, a description of n and very little extra information yields
a description of A�n. We enumerate E as follows. At stage s,

(1) for each r < s in increasing order, if |Es−1 ∩ r| > gs(r), put the greatest element of
Es−1 ∩ r into Es.
(2) If i ∈ ∅′s − ∅′s−1 then put the i-th element of Es−1 into E.

Firstly, we verify that E is Turing complete. By the coding in (2), it is sufficient to
show that E is co-infinite. We prove by induction on q ∈ N that #(E ∩ n) = q for
some n. This is trivial for q = 0. If q > 0, by the inductive hypothesis there is m such
that #(E ∩m) = q − 1; let t be the least stage such that Et ∩m = E ∩m. Choose
k ≥ m, t such that gs(r) > q for each k ≥ r and each s. If q ∈ ∅′s−∅′s−1 for some s, let v
be the number enumerated in (2) at stage s, else let v = 0. Let n ≥ max{v+1, k+1} be
least such that n− 1 �∈ Ek+1. If #(E ∩ n− 1) > q− 1 we are done. Suppose otherwise,
that is, (m, n− 1) ⊆ E. Then n− 1 �∈ E, since n− 1 is not enumerated via (2), nor can
any number r ≥ n in (1) demand that #(E ∩ r) < q. Thus #(E ∩ n) = q.
Secondly, we show that each set A ⊇ E is in Kp. We introduce a prefix-free machine M
such that KM (A �n) ≤ K(n) + p(K(n)) + 1 for each n. On input 0|τ |1τσ, M first
attempts to compute n = U(σ). In case of convergence, it waits for the least stage s
such that #(Es ∩ n) ≤ |τ |. Interpreting τ as the bits of A in the positions where
membership has not yet been determined, it outputs a string y of length n such that
y(i) = 1 if i ∈ Es, and y(i) = τ(j) if i is the j-th number not in Es and j < |τ |.
Suppose σ is a shortest string such that U(σ) = n. If we choose an appropriate τ of
length g(n) then M(0|τ |1τσ) = A �n, and the length of this M -description is at most
2g(n) + 1 + |σ| ≤ p(|σ|) + 1 + |σ|. �

5.3 The cost function method
We introduce an important method to build a set A satisfying a lowness property.
It was first used by Kučera and Terwijn (1999) to build an incomputable c.e.
set that is low for ML-randomness, and later, in more explicit form, by Downey,
Hirschfeldt, Nies and Stephan (2003) to build an incomputable c.e. K-trivial set.
We define a cost function, a computable function c that maps a pair x, s of

natural numbers where x < s to a nonnegative binary rational. At stage s,
we interpret c(x, s) as the cost of a potential enumeration of x into A. The
set A has to obey this cost function in the sense that the sum of the costs of
all enumerations is finite (if several numbers are enumerated at the same stage
we only count the least one). This restrains the enumeration into A, so via a
cost function construction one can build a c.e. set A satisfying a specific lowness
property. Under some extra condition on the cost function one can make A
incomputable, and even promptly simple (see 1.7.9).
Using the cost function method, we will

(I) directly build a promptly simple K-trivial set A;

(II) rephrase the construction of a promptly simple set A that is weak truth-
table reducible to a given ML-random ∆0

2 set Y ; this is Kučera’s Theorem
in the restricted version of Remark 4.2.4.
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In both cases, since the total cost of the enumerations is finite, we can define
an auxiliary c.e. object that in some sense has a finite weight. In (I) this object
is a bounded request set showing that A is K-trivial, while in (II) it is a Solovay
test needed to show that A ≤T Y . Table 5.1 on page 200 gives an overview of
cost functions.
Recall that {Y } is a Π0

2 class for each ∆0
2 set Y . A cost function construction

allows us to extend (II): for each Σ0
3 null class C, there is a promptly simple

set A such that A ≤T Y for every ML-random set Y ∈ C. This is applied in
Theorem 8.5.15 to obtain interesting classes contained in the c.e. K-trivial sets.
Most cost functions c(x, s) will be non-increasing in x and nondecreasing in s.

That is, at any stage larger numbers are no cheaper, and a number may become
more expensive at later stages.
Note that we have already proved the existence of a promptly simple set that

is low for K and hence K-trivial (see the comment before Proposition 5.2.3).
However, the cost function construction in (I) gives a deeper insight into K-
triviality. Indeed, we will prove that each K-trivial set can be viewed as being
built via such a construction. For this, it will be necessary to extend the cost
function method to ∆0

2 sets: one now considers the sum of the costs c(x, s) of
changes As(x) �= As−1(x). This characterization via a cost function shows that
each K-trivial set A is Turing below a c.e. K-trivial set C, where C is the change
set of A defined in the proof of the Limit Lemma 1.4.2. The only known proof
of this result is the one relying on cost functions.
To build a promptly simple set A, we meet the prompt simplicity requirements

PSe in the proof of Theorem 1.7.10. Such a requirement acts at most once, and
is typically allowed to incur a cost of up to 2−e. In that case, the sum of the
costs is finite, that is, A obeys the cost function. Instead of 2−e we could use any
other nonnegative quantity f(e) ∈ Q2, as long as the function f is computable
and

∑
e f(e) <∞. We are able to meet each requirement PSe, provided that the

cost function satisfies the limit condition, namely, for each e ∈ N, almost all x
cost at most 2−e at all stages s > x.
We sketch the construction for (I) above. The standard cost function

cK(x, s) =
∑

x<w≤s 2
−Ks(w)

satisfies the limit condition. Whenever a computable enumeration of a set A
obeys this cost function, we can build a bounded request set L showing that A
is K-trivial. The set L yields descriptions of the initial segments of A and keeps
up with the changes of A. Let p ∈ N be a constant such that the total cost S of
all enumerations is at most 2p. If x is the least number entering A at stage s, then
all the initial segments As �w, x < w ≤ s, need new descriptions via the prefix-
free machine obtained from L. Thus, for each w, x < w ≤ s, we put a request
〈Ks(w) + p + 1, As�w〉 into L. The weight contributed to L is 2−p−1c(x, s). In
total, the contributed weight is at most 2−p−1S ≤ 1/2. (The other half is needed
for new descriptions of As�w when Ks(w) < Ks−1(w). Details are supplied when
we prove Theorem 5.3.10 below.)
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In the applications (I) and (II) of the method, the cost function is given in
advance. We will also consider the case that c(x, s) depends on As−1. Such a
cost function, called adaptive, is necessary for a direct construction of a promptly
simple set that is low for K (5.3.34). Also adaptive is the cost function used by
Kučera and Terwijn (1999) to build an incomputable c.e. set that is low for ML-
randomness (5.3.38). The latter two cost function constructions merely prove
the existence of a promptly simple set in the class K, given that being K-trivial
is equivalent to being low for K. However, it is still instructive to study these
direct constructions because they expose different aspects of K.
Adaptive cost functions can be used to hide injury to requirements. For in-

stance, in Remark 5.3.37 we reformulate the construction of a low simple set
(which has injury to the lowness requirements) in the language of an adaptive
cost function. However, we also argue that a cost function given in advance
cannot be used in that way, so the constructions based on non-adaptive cost
functions, such as (I) and (II) above, can be considered injury-free.

The basics of cost functions

5.3.1 Definition. A cost function is a computable function
c : N× N→ {x ∈ Q2 : x ≥ 0}.

We say that c satisfies the limit condition if limxsups>x c(x, s) = 0, that is,
∀e∀∞x∀s > x [c(x, s) ≤ 2−e].
We say that c is monotonic if c(x + 1, s) ≤ c(x, s) ≤ c(x, s + 1) for each x < s,
namely, c(x, s) does not decrease when we enlarge the interval [x, s).

In the following we will usually only define the values of a cost function c(x, s)
for x < s, and let c(x, s) = 0 for x ≥ s.
We already discussed an important example of a cost function, the one for

building a K-trivial set. By convention 2−∞ = 0.

5.3.2 Definition. The standard cost function cK is given by
cK(x, s) =

∑
x<w≤s 2

−Ks(w).

5.3.3 Lemma. (i) cK is monotonic. (ii) cK satisfies the limit condition.

Proof. (i) Immediate.
(ii) Given e ∈ N, since

∑
w 2−K(w) ≤ 1, there is an x0 such that∑

w≥x0
2−K(w) ≤ 2−e. Hence cK(x, s) ≤ 2−e for all x ≥ x0 and all s > x. �

Recall from Definition 1.4.1 that a computable approximation (As)s∈N of a
∆0

2 set A is a computable sequence of (strong indices for) finite sets such that
A(x) = limsAs(x).

5.3.4 Definition. We say that a computable approximation (As)s∈N obeys a
cost function c if

S =
∑

x,s

c(x, s) [[x < s & x is least s.t. As−1(x) �= As(x)]] <∞. (5.6)
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If the computable approximation of a ∆0
2 set A is clear from the context, we will

also say that the set A obeys the cost function.
We think of a cost function as a description of a class of ∆0

2 sets: those sets
with an approximation obeying the cost function. For instance, the standard cost
function describes the K-trivial sets. This is somewhat similar to a sentence in
some formal language describing a class of structures.
We proceed to the general existence theorem. A cost function with the limit

condition has a promptly simple “model”.

5.3.5 Theorem. Let c be a cost function with the limit condition. Then there
is a promptly simple set A with a computable enumeration (As)s∈N obeying c.
Moreover, S ≤ 1/2 in (5.6), and we obtain A uniformly in c.

Proof. We meet the prompt simplicity requirements from the proof of 1.7.10

PSe: #We =∞ ⇒ ∃s∃x [x ∈We,at s & x ∈ As]

(where We,at s = We,s −We,s−1). We define a computable enumeration (As)s∈N

as follows.

Let A0 = ∅. At stage s > 0, for each e < s, if PSe has not been met
so far and there is x ≥ 2e such that x ∈ We,at s and c(x, s) ≤ 2−e,
put x into As. Declare PSe met.

The computable enumeration (As)s∈N obeys the cost function, since at most one
number is put into A for the sake of each requirement. Thus, the sum S in (5.6)
is bounded by

∑
e 2

−e = 2.
If We is infinite, there is an x ≥ 2e in We such that c(x, s) ≤ 2−e for all s > x,

because c satisfies the limit condition. We enumerate such an x into A at the
stage s > x where x appears in We, if PSe has not been met yet by stage s.
Thus A is promptly simple.
If we modify the construction so that each requirement PSe is only allowed to

spend 2−e−2, we have ensured that S ≤ 1/2. Clearly the construction of A is
uniform in an index for the computable function c. �

The c.e. change set C ≥T A for a computable approximation (As)s∈N of a
∆0

2 set A was introduced in the proof of the Limit Lemma 1.4.2: if s > 0 and
As−1(x) �= As(x) we put 〈x, i〉 into Cs, where i is least such that 〈x, i〉 �∈ Cs−1.
If A is ω-c.e. via this approximation then C ≥tt A. The following will be used in
Corollary 5.5.3, that each K-trivial set is Turing below a c.e. K-trivial set.

5.3.6 Proposition. Suppose c is a cost function such that c(x, s) ≥ c(x+ 1, s)
for each x, s. If a computable approximation (As)s∈N of a set A obeys c, then the
c.e. change set C ≥T A obeys c as well.

Proof. Since x < 〈x, i〉 for each x, i, we have Cs−1(x) �= Cs(x)→ As−1 �x �= As �x

for each x, s. Then, since c(x, s) is nonincreasing in x, the sum in (5.6) for C
does not exceed the sum for A. �
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Exercises.
5.3.7. There is a computable enumeration (As)s∈N of N in the order 0, 1, 2, . . . (i.e.,
each As is an initial segment of N) such that (As)s∈N does not obey cK.
5.3.8. Show the converse of Theorem 5.3.5 for a monotonic cost function c :
if a computable approximation (As)s∈N of an incomputable set A obeys c, then c
satisfies the limit condition.
5.3.9. We view each Φi as a (possibly partial) computable approximation (As) by
letting As � DΦi(s). Ve is the e-th ω-c.e. set (1.4.5). Let c be a cost function ∀x c(x, s) ≥
2(−x). Show that {e : some total computable approximation of Ve obeys c} is Σ0

3.

A cost function criterion for K-triviality

We give a general framework for the cost function construction of a promptly
simple K-trivial set. This construction was already explained on page 185 in the
introduction to this section.

5.3.10 Theorem. Suppose a computable approximation (As)s∈N of a set A obeys
the standard cost function cK(x, s) =

∑
x<w≤s 2

−Ks(w). Then A is K-trivial.

Proof. By the hypothesis the total cost S of all changes defined in (5.6) is finite.
First suppose that S ≤ 1. We enumerate a bounded request set W at stages s:
put the request 〈Ks(w) + 1, As�w〉 into W whenever w ≤ s and
(a) Ks(w) < Ks−1(w), or
(b) Ks(w) <∞ & As−1 �w �= As �w.

Requests enumerated because of (a) contribute at most Ω/2 to W , since for
each w and each value Ks(w) there is at most one such request. Suppose now
that a request 〈Ks(w) + 1, As�w〉 is enumerated at stage s because of (b). Then
w > x where x is least such that As−1(x) �= As(x). Thus the term 2−Ks(w)

occurs in the sum cK(x, s), and hence in the sum S. If we assume S ≤ 1, the
contribution of such requests is at most 1/2. Thus W is a bounded request set.
Let Md be the prefix machine for W obtained by the Machine Existence The-

orem 2.2.17. We claim that K(A�w) ≤ K(w) + d+ 1 for each w. Given w, let s
be greatest such that s = 0 or As−1�w �= As�w. If s > 0 then the requests in (b)
at stage w cause Ku(A �w) ≤ Ks(w) + d + 1 for some u > s. If Ks(w) = K(w),
we are done. Otherwise, the inequality is caused by a request in (a) at the great-
est stage t > s such that Kt(w) < Kt−1(w) (this includes the case s = 0 as
K0(w) =∞).
More generally, suppose S ≤ 2p where p ∈ N. We now put requests of the form
〈Ks(w) + p+ 1, As�w〉 into W , and argue as before. �

Since cK satisfies the limit condition by Lemma 5.3.3, the proof of Theo-
rem 5.3.5 provides a direct construction for the following.

5.3.11 Proposition. There is a promptly simple K-trivial set A. �

As one would expect, obeying the standard cost function restricts the number of
changes in a computable approximation. Let r be a constant such that K(y) ≤ 2 log y+r
for each y, and let h(y) = min{s : Ks(y) ≤ 2 log y + r}.
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5.3.12 Proposition. If a computable approximation (As)s∈N of a set A obeys the cost
function cK, then for each y, As(y) for s ≥ h(y) changes at most O(y2) times. In
particular, A is ω-c.e.

Proof. Given y < s, when As−1(y) �= As(y), the sum S in (5.6) increases by at least
2−Ks(y). Since Ks(y) ≤ 2 log(y) + r, we have 2−Ks(y) ≥ εy−2 for some fixed ε > 0. As
S <∞, the required bound on the number of changes follows. �

Cost functions and injury-free solutions to Post’s problem

We now have two injury-free solutions of Post’s problem: Kučera’s solution in
Section 4.2, and the construction of a promptly simple K-trivial set in Propo-
sition 5.3.11 (we will show in 5.5.4 that each K-trivial set is low). The two
solutions are closely related. Firstly, Kučera’s Theorem in the restricted version
of Remark 4.2.4 yields a base for ML-randomness and hence a K-trivial set.
Secondly, the proof in Remark 4.2.4 can be rephrased as a cost function con-
struction, as already discussed in (II) at the beginning of this section. Given a
ML-random ∆0

2 set Y , we want to build a promptly simple set A ≤wtt Y using the
construction in Theorem 5.3.5. The cost function cY depends on a computable
approximation of Y . Let cY (x, s) = 2−x for each x ≥ s. If x < s, and e < x is
least such that Ys−1(e) �= Ys(e), let

cY (x, s) = max(cY (x, s− 1), 2−e). (5.7)

This makes all the numbers x < s inaccessible to PSj for j > e. Clearly cY sat-
isfies the limit condition, because if e < x < s, then cY (x, s) ≤ 2−e is equivalent
to ∀tx≤t<s Yt �e= Ys�e. Therefore the construction in the proof of Theorem 5.3.5
for c = cY reproduces the construction of the promptly simple set A in 4.2.4.

5.3.13 Fact. (Greenberg and Nies, 20xx) Suppose Y is a ML-random ∆0
2 set

and (As)s∈N is a computable approximation of a set A obeying cY . Then A ≤wtt Y
with use function bounded by the identity.

Proof. We modify the argument in Remark 4.2.4. We build an interval Solovay
test G (see 3.2.22) as follows: when As−1(x) �= As(x) and cY (x, s) = 2−e, we
list the string Ys �e in G. Then G is indeed an interval Solovay test since the
computable approximation of A obeys cY .
Choose s0 such that σ �� Y for each σ listed in G after stage s0. To show

A ≤wtt Y , given an input x ≥ s0, using Y as an oracle, compute t > x such
that Yt �x= Y �x. We claim that A(x) = At(x). Otherwise As(x) �= As−1(x) for
some s > t. Let e ≤ x be the largest number such that Yr �e= Yt �e for all r,
t < r ≤ s. If e = x then cY (x, s) ≥ cY (x, 0) = 2−x. If e < x then Y (e) changes
in the interval (t, s] of stages, so cY (x, s) ≥ 2−e. Hence, by the choice of t, we
list an initial segment of Yt �e= Y �e in G at stage s ≥ s0, contradiction. �

5.3.14 Remark. It is instructive to compare the standard cost function cK with the
cost function cY . Let us see how each of them restricts a prompt simplicity requirement
PSe when we build in 5.3.5 a promptly simple set A obeying the cost function. (We
meet (I) or (II) as outlined at the beginning of this section.) Let c be one of the two cost
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functions. A number x can enter A for the sake of PSe only if c(x, s) ≤ 2−e. Firstly,
consider cK(x, s) =

∑
x<y≤s 2−Ks(y). Note that cK(x, s) = 0 for x ≥ s, and if at a stage

t > s we have c(x, t) > 2−e we may as well assume that the entire interval [x, t) has
become unusable for PSe (the numbers with short descriptions at stage t might be
close to t). So PSe will have to look for future candidates x among the numbers ≥ t.

For the cost function cY , whenever Y �e changes at stage t, all the numbers < t
become unusable for PSe. For cK this process of intervals becoming unusable can be
repeated at most 2e times, as each time Ω increases by more than 2−e. In contrast,
for cY the process of intervals becoming unusable can be repeated as often as Y �e

changes.
In Definition 8.5.3 we will introduce benign cost functions to capture this behavior

of cK. Most results involving cK hold more generally for benign cost functions. If Y is
ω-c.e. then cY is benign.

Construction of a promptly simple Turing lower bound

We will prove a useful variant of Fact 5.3.13. By Proposition 3.6.2, {Y } is a Π0
2

class for any ∆0
2 set Y . Hirschfeldt and Miller showed in 2006 that instead of the

class {Y } one can take any null Σ0
3 class H and still obtain a promptly simple

Turing lower bound for all its ML-random members. In Theorem 8.5.15 we will
see interesting examples of such classes H, for instance the class of ω-c.e. sets.
Frequently H is a highness property, such as being uniformly a.e. dominating
(5.6.26).

5.3.15 Theorem. From a null Σ0
3 class H one can effectively obtain a promptly

simple set A such that A ≤T Y for each ML-random set Y ∈ H.

Proof. Firstly, given a description of H as a Σ0
3 class, we define a cost function c

with the limit condition such that every ∆0
2 set A obeying c is a Turing lower

bound for the ML-random sets in H. Secondly, we use that, by Theorem 5.3.5 we
can effectively obtain a computable enumeration (As)s∈N of a promptly simple
set A obeying c.
Let us first work under the stronger assumption that H is a Π0

2 class. By
Remark 1.8.58 we have H =

⋂
x Vx for an effective sequence (Vx)x∈N of Σ0

1 classes
such that Vx+1 ⊆ Vx for each x. By (1.16) on page 54 let (Vx,s)x,s∈N be an effective
double sequence of clopen sets such that Vx,s = ∅ for x ≥ s, Vx,s ⊆ Vx,s+1 for
each x, s and Vx =

⋃
s Vx,s. Then the cost function c(x, s) = λVx,s satisfies the

limit condition in Definition 5.3.1 because limx λVx = 0.
Suppose (As)s∈N is a computable approximation of a set A obeying c. To show

A ≤T Y for each ML-random set Y ∈ H, as in the proof of Fact 5.3.13 we
enumerate an interval Solovay test G. When As(x) �= As−1(x) for s > x, list
in G all the strings σ of length s such that [σ] ⊆ Vx,s. As before, G is an interval
Solovay test by the hypothesis that the approximation of A obeys c.
Showing A ≤T Y is similar to the proof of 5.3.13. Choose s0 such that σ �� Y

for any σ enumerated into G after stage s0. Given an input x ≥ s0, using Y as
an oracle compute t > x such that [Y �t] ⊆ Vx,t. We claim that A(x) = At(x).
Otherwise As(x) �= As−1(x) for some s > t, which would cause the strings σ of
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length s such that [σ] ⊆ Vx,s to be listed in G, contrary to Y ∈ Vx,t. (In general
there is no computable bound for the use t on Y ; see Exercise 5.3.19.)
Intuitively, we enumerate a Turing functional Γ such that A = ΓY (see Sec-

tion 6.1). At stage t we define ΓY (x) = At(x) for all Y in Vx,t. When As(x) �=
As−1(x) for s > t we have to remove all those oracles by declaring them non-
random.
If H is a Σ0

3 class we slightly extend the argument: by Remark 1.8.58 we have
H =

⋃
i

⋂
x V

i
x for an effective double sequence (V i

x)i,x∈N of Σ0
1 classes such

that V i
x ⊇ V i

x+1 for each i, x and V i
x = 2N for i > x. Then the cost function

c(x, s) =
∑

i 2
−iλV i

x,s is Q2-valued and satisfies the limit condition: given k,
there is x0 such that

∀i ≤ k + 1 ∀x ≥ x0 λV
i
x ≤ 2−k−1.

Then c(x, s) ≤ 2−k for all x ≥ x0 and all s, since the total contribution of terms
2−iλV i

x,s for i ≥ k + 2 to c(x, s) is bounded by 2−k−1.
Suppose we are given a computable approximation of a set A obeying c. For

each i, when As(x) �= As−1(x) we list the strings σ of length s such that [σ] ⊆ V i
x,s

in a set Gi. Then Gi is an interval Solovay test by the definition of c. If Y ∈ H
we may choose i such that Y ∈ ⋂

x V
i
x . If Y is also ML-random then we use Gi

as before to argue that A ≤T Y . �

As an application we characterize weak 2-randomness within ML-randomness.
This was promised on page 135.

5.3.16 Theorem. Let Z be ML-random. Then the following are equivalent:
(i) Z is weakly 2-random.
(ii) Z and ∅′ form a minimal pair.
(iii) There is no promptly simple set A ≤T Z.

Proof. (i) ⇒ (ii): Suppose the ∆0
2 set A is incomputable and A = ΦZ for

some Turing functional Φ. Since {A} is Π0
2, the class {Y : ΦY = A} is Π0

2 by
Exercise 1.8.65. Also, this class is null by Lemma 5.1.13. Thus Z is not weakly
2-random.
(ii) ⇒ (iii): Trivial.
(iii) ⇒ (i): Suppose Z is not weakly 2-random, then Z is in a null Π0

2 class H.
By Theorem 5.3.15 there is a promptly simple set A ≤T Z. �

Exercises.
5.3.17. Show that Theorem 5.3.15 fails for null Π0

3 classes.

5.3.18. Suppose H = {Y } for a ∆0
2 set Y . Recall the representation of the Π0

2 class H
given by Proposition 3.6.2, namely H =

⋂
x Vx for a sequence of uniformly Σ0

1 classes
(Vx)x∈N where, whenever s > x and r is least such that Ys(r) �= Ys−1(r), we put Ys �r+1

into Vx,s. We may suppose that ∀x Yx(x) �= Yx+1(x). Let c be the cost function from
the proof of Theorem 5.3.15. Show that cY = c.

5.3.19. Explain why we merely obtain a Turing reduction in Theorem 5.3.15, and not
a weak truth-table reduction as in Remark 4.2.4.
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5.3.20. (i) Show that if Y and Z are sets such that Y ⊕ Z is ML-random and Y is
weakly 2-random (for instance, if Y ⊕Z is weakly 2-random), then Y, Z form a minimal
pair. (ii) Use this to show there is a minimal pair of computably dominated low2 sets.

K-trivial sets and Σ1-induction �

In this subsection we assume familiarity with the theory of fragments of Peano
arithmetic; see Kaye (1991). We ask how strong induction axioms are needed to
prove that there is a promptly simple K-trivial set. All theories under discussion
will contain a finite set of axioms PA− comprising sufficiently much of arithmetic
to formulate number-theoretic concepts, carry out the identifications of binary
strings with numbers on page 13, and formulate and verify some basics on c.e.
sets, machines and K. IΣ1 is the axiom scheme for induction over Σ1 formulas.
Simpson showed that the proof of the Friedberg-Muchnik Theorem 1.6.8 can be
carried out in IΣ1. See Mytilinaios (1989).
The scheme I∆0 is induction over ∆0 formulas. BΣ1 is I∆0 together with

collection for Σ1 formulas. BΣ1 states for instance that f([0, x]) is bounded for
each Σ1 function f and each x. All formulas may contain parameters. Note that
IΣ1 * BΣ1 but not conversely (see Kaye 1991).
Hirschfeldt and Nies proved the following.

5.3.21 Theorem. IΣ1 � “there is a promptly simple K-trivial set”.

Proof sketch. It is not hard, if tedious, to verify that the proofs of Theo-
rems 5.3.5 and 5.3.10 can be carried out within IΣ1. Thus it suffices to prove
from IΣ1 that cK satisfies the limit condition in Definition 5.3.1. LetM |= IΣ1.
Consider the Σ1 formula ϕ(m, e) given by

∃u [|u| = m+ 1 & ∀i (0 ≤ i < m→ cK(ui, ui+1) > 2−e)
]
.

Suppose the limit condition fails for cK via e ∈ M. Then, using IΣ1, we have
M |= ∀mϕ(m, e). Now let m be 2e + 1 (in M), and let u ∈ M be a witness
for M |= ϕ(m, e). For each i < m, we have in M a clopen set Ci such that
λCi = cK(ui, ui+1) and Ci ∩ Cj = ∅ for i �= j. Thus, inM, we have

1 ≥∑
0≤i≤2e cK(ui, ui+1) ≥ (2e + 1)2−e > 1,

contradiction. �

Note that we have actually shown that IΣ1 suffices for the “benignity” property
of cK described in Remark 5.3.14.
The weaker axiom scheme BΣ1 is not sufficient to prove that there is a promptly

simple K-trivial set. If M |= I∆0, we say that A ⊆ M is regular if for each
n ∈ M, A �n is a string of M (i.e., A �n corresponds to an element of M via
the usual identifications defined for N on page 12). Each K-trivial set A ⊆ M
is regular because for each n there is inM a prefix-free description of A�n. But
there is a modelM |= BΣ1 in which each regular c.e. set A is computable; see
Chong and Yang (2000).

Hájek and Kučera (1989) formulated and proved in IΣ1 a version of the solution to
Post’s problem from Kučera (1986) which uses the Low Basis Theorem (see page 150).
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In this context it would be interesting to know to what extent the proof of 5.3.13 can
be carried out in IΣ1 provided that Y (e) changes sufficiently little, say O(2e) times,
and whether the alternative solution, avoiding the Low Basis Theorem and using the
even bits of Ω, can be carried out in IΣ1. It is not known whether IΣ1 proves that
each K-trivial set A is Turing incomplete (see page 202).

Avoiding to be Turing reducible to a given low c.e. set

For many classes of c.e. sets studied in computability theory, given a Turing
incomplete c.e. set B, there is a set A in the class such that A �≤T B. This is
the case, for instance for the class of low c.e. sets (and even of superlow c.e.
sets), because there are (super)low c.e. sets A0, A1 such that A0⊕A1 ≡T ∅′. For
lowness, this follows from the Sacks Splitting Theorem (1.6.10). To extend it to
superlowness, see Theorem 6.1.4.
The class of c.e. K-trivial sets is different: some low2 c.e. set B is Turing

above all the K-trivial sets by a result of Nies (see Downey and Hirschfeldt
20xx). However, one can still build a K-trivial set that is not Turing reducible
to a given low c.e. set B. More generally, this holds for any class of c.e. sets
obeying a fixed cost function with the limit condition. To show this, we extend
the construction in the proof of Theorem 5.3.5, by combining it with a method
to certify computations that rely on a given low c.e. set B as an oracle. This
is known as the guessing method of Robinson (1971). He introduced it to show
that for each pair of c.e. Turing degrees b < a such that b is low, there exist
incomparable low c.e. Turing degrees a0,a1 such that a0∨a1 = a and b < a0,a1.

5.3.22 Theorem. Let c be a cost function satisfying the limit condition. Then
for each low c.e. set B, there is a c.e. set A obeying c such that A �≤T B.

Proof. Recall that N
[e] denotes the set of numbers of the form 〈y, e〉. We meet

the requirements
Pe : A �= ΦB

e ,
by enumerating a number x ∈ N

[e] into A when ΦB
e (x) = 0. The problem is

that B may change below the use after we do this, allowing the output of ΦB
e (x)

to switch to 1. To solve this problem, we use the lowness of B to guess at
whether a computation ΦB

e (x)[s] = 0 is correct. Finitely many errors can be
tolerated. We ask questions about the enumeration of A (involving B), in such a
way that the answer “yes” is Σ0

1(B). Since Σ0
1(B) ⊆ ∆0

2, we have a computable
approximation to the answers. Which computable enumeration of A should we
use? We may assume that one is given, by the Recursion Theorem! Formally,
we view a computable enumeration (Definition 1.1.15) as an index for a partial
computable functionA defined on an initial segment of N such that, whereA(t) is
interpreted as a strong index (Definition 1.1.14) for the part of A enumerated by
stage t, we have A(s) ⊆ A(s+1) for each s. Thus we allow partial enumerations.
We write At for A(t). Given any (possibly partial) computable enumeration Ã,
we effectively produce an enumeration A, asking Σ0

1(B)-questions about the
given enumeration Ã. We must show that A is total in the interesting case
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that A = Ã (by the Recursion Theorem), where these questions are actually
about A.
The Σ0

1(B)-question for requirement Pe is as follows:

Is there a stage s and x ∈ N
[e] such that Ã is defined up to s− 1, and

(i) ΦB
e (x) = 0[s] & Bs � use ΦB

e (x)[s] = B � use ΦB
e (x)[s] (B is stable up to

the use of the computation), and
(ii) c(x, s) ≤ 2−(e+n)?

Here n = #(N[e] ∩ Ã(s− 1)) is the number of enumerations for the sake of Pe

prior to s.
As B is low, there is a total computable function g(e, s) such that lim g(e, s) = 1

if the answers is “yes”, and lim g(e, s) = 0 otherwise. (The function g(e, s)
actually depends on a further argument which we supress, an index for Ã.)
Construction. Let A0 = ∅. At stage s > 0, we attempt to define As, assuming
that As−1 has been defined already. Let D = As−1. For each e < s, if there is
an x < s, x ∈ N

[e] satisfying

ΦB
e (x) = 0[s] & c(x, s) ≤ 2−(e+n), (5.8)

where n = #(N[e] ∩ As−1), then the answer to the Σ0
1(B) question above seems

to be “yes”, so choose x least and search for the least t ≥ s such that g(e, t) = 1,
or Bt �u �= Bs �u, where u = use ΦB

e (x)[s]. In the first case, put x into D (at
the current stage s). If the search does not end for some e < s, then leave As

undefined, otherwise let As = D.
This search is essential for the Robinson guessing method. If there is an appar-

ent contradiction between what we see at stage s (a computation with oracle B
of a certain kind) and the prediction (that there is no such computation), we
look ahead till the apparent contradiction is reconciled, either by a change of B
destroying the computation, or by a change of the prediction to “yes”. We will
argue that this only works for c.e. sets B.
Verification. We may assume that A = Ã by the Recursion Theorem.

5.3.23 Claim. The function A is total.

Inductively assume that As−1 is defined if s > 0. Since A = Ã and by the
correctness of limt g(e, t), the search at stage s ends for each e. So we define As.

5.3.24 Claim. (As)s∈N obeys the cost function c.

At stage s, suppose x is least s.t. As−1(x) �= As(x). We enumerate x for the
sake of some requirement Pe, which so far has enumerated n numbers. Then
c(x, s) ≤ 2−(e+n), hence S ≤∑

e,n∈N
2−(e+n) = 4 where S is defined in (5.6).

Let A =
⋃

sAs.

5.3.25 Claim. Each requirement Pe is met.
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Assume for a contradiction that A = ΦB
e . First suppose that limsg(e, s) = 1.

Choose witnesses x, s for the affirmative answer to the Σ0
1(B) question for Pe

and let u = use ΦB
e (x)[s]. Since B �u does not change after s, we search for t till

we see g(e, t) = 1. Then Pe enumerates x at stage s.
Now consider the case g(e, s) = 0 for all s ≥ s0. Then Pe does not enumerate

any numbers into A after stage s0. Suppose it has put n numbers into A up to
stage s0. Since A = ΦB

e , there is x ∈ N
[e] and s ≥ s0 such that ΦB

e (x) = 0[s]
and c(x, s) ≤ 2−(e+n). So the answer to the Σ0

1(B) question for Pe is “yes”,
contradiction. �

If B is merely a ∆0
2 set, the argument in the proof of Lemma 5.3.25 breaks down in

the case lims g(e, s) = 1. Otto can now present the correct computation ΦB
e (x) = 0 at

a stage s where the g(e, s) has not yet stabilized. To fool us when we try to reconcile
the apparent contradiction, he temporarily changes B below the use at stage t > s
while keeping g(e, t) = 0, and we do not put x into A at s. At a later stage the correct
computation ΦB

e (x) = 0 will return, but now he has increased the cost of x above
2−(e+n), so we have lost our opportunity.

Indeed, Kučera and Slaman (20xx) have shown that some low set B is Turing above
all the c.e. sets that are low for K (and hence above all the c.e. K-trivial sets by
Section 5.4). In fact they prove this for any class inducing a Σ0

3 ideal in the c.e. degrees
such that there is a function F ≤T ∅′ that dominates each function partial computable
in a member of the class. The class of sets that are low for K is of this kind by
Exercise 5.1.6.
5.3.26 Exercise. In addition to the hypotheses of Theorem 5.3.22, let E be a c.e. set
such that E �≤T B. Then there is a c.e. set A obeying c such that A �≤T B and A ≤T E.

Necessity of the cost function method for c.e. K-trivial sets
In the following two subsections we study aspects of the cost function method pe-
culiar to K-triviality. Theorem 5.3.10, the cost function criterion for K-triviality,
is actually a characterization: a ∆0

2 set A is K-trivial iff some computable ap-
proximation of A obeys the standard cost function (as defined in 5.3.4). Thus
each K-trivial set can be thought of as being constructed via the cost function
method with cK. However, we cannot expect that every computable approxima-
tion of a K-trivial set obeys the standard cost function, for instance because for
an appropriate computable enumeration 0, 1, 2, . . . of N, the total cost of changes
is infinite (see Exercise 5.3.7). The total cost is only finite when one views a given
approximation in “chunks”. One introduces an appropriate computable set E of
stages. In the new approximation changes are only reviewed at stages in E. In
the calculation of the total cost in (5.6), only the change at the least number
counts at such a stage.
In this subsection we only consider the c.e. K-trivial sets. It is harder to show

the necessity of the cost function method for all the K-trivial sets: this requires
the golden run method of Section 5.4, and is postponed to Theorem 5.5.2.

5.3.27 Theorem. The following are equivalent for a c.e. set A.
(i) A is K-trivial.
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(ii) Some computable enumeration (Âi)i∈N of A obeys the standard cost func-
tion cK.

Proof. (ii) ⇒ (i): This follows from Theorem 5.3.10.
(i)⇒ (ii): Suppose that the c.e. set A is K-trivial via b. Then there is an increas-
ing computable function f such that K(A �n) ≤ K(n) + b [f(s)] for each s
and each n < s, i.e., the inequality holds at stage f(s). The set of stages
E = {s0 < s1 < . . .} is obtained by iterating f : let

s(0) = 0 and s(i+ 1) = f(s(i)). (5.9)

Let ĉK(x, s(i)) =
∑

y 2
−Ks(i+1)(y) [[x < y ≤ s(i)]], i.e., K(y) is computed only at

stage s(i+1). Let xi be the least number x < s(i) such that As(i)(x) �= As(i+1)(x).
In the following, we only consider numbers i, j such that xi (or xj) is defined.
Using a variant of the accounting method of Remark 5.1.21, we will show that

Ŝ =
∑

i

ĉK(xi, s(i)) [[xi is defined]] ≤ 2b. (5.10)

For each y such that xi < y ≤ s(i), at stage s = s(i+1) there is a U-description
of As�y of length ≤ Ks(y) + b. Let Ei be the set of descriptions for such y. The
key fact is that, since (As)s∈N is a computable enumeration, the strings As �y

described at different stages s(i), s(j) are distinct, so that Ei ∩ Ej = ∅. We will
account the cost of an A-change between stages s(i) and s(i+ 1) against λ[Ei]≺.
For each y, xi < y ≤ s(i), if s = s(i + 1), since Ks(As �y) ≤ Ks(y) + b we
have 2−Ks(y) ≤ 2b2−Ks(As�y), and hence, by taking the sum over all y such that
xi < y ≤ s(i), we have ĉK(xi, s(i)) ≤ 2bλ[Ei]≺. Since

∑
i λ[Ei]≺ ≤ 1, this implies

∑
i ĉK(xi, s(i)) ≤ 2b, that is, (5.10). Now let Âi = As(i+1)∩ [0, i). For each x < i,

cK(x, i) =
∑

x<y≤i 2
−Ki(y) ≤ ĉ(x, s(i)),

so that
∑

x,i cK(x, i) [[i > 0 & x least s.t. Âi−1(x) �= Âi(x)]] ≤ Ŝ ≤ 2b. �

Listing the (ω-c.e.) K-trivial sets with constants

We provide a presentation of the class of ω-c.e. K-trivial sets. In the remark
after Theorem 5.5.2, we will learn that each K-trivial set is ω-c.e., so we actually
have a presentation of the entire class K. As for every class of ω-c.e. sets that
contains the finite sets and has a Σ0

3 index set, there is a uniformly ω-c.e. listing
(Ae)e∈N of the ω-c.e. sets in K (Exercise 1.4.22). Here we show that there is a
listing which includes the witnesses for the Σ0

3 statement, namely, for each e,
a constant via which Ae is K-trivial. The result is due to Downey, Hirschfeldt,
Nies and Stephan (2003). We give a simpler proof using ideas developed in the
proofs of Theorems 5.3.10 and 5.3.27. Recall from 1.4.5 that Ve is the e-th ω-c.e.
set.

5.3.28 Theorem. There is an effective sequence (Be, de)e∈N of ω-c.e. sets and
of constants such that each Be is K-trivial via de, and each K-trivial set occurs
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in the sequence. Furthermore, there is an effective sequence of the c.e. K-trivial
sets with constants.

Proof. We effectively transform a pair A, b of an ω-c.e. set and a constant into
an ω-c.e. set Ã and a constant d such that Ã is K-trivial via d and A = Ã in
case that A is in fact K-trivial via b. (But even then, d may be larger than b.)
To obtain the required listing (Be, de)e∈N, for each e = 〈i, b〉, let A = Vi, apply
this transformation to the pair A, b, and let Be = Ã and de = d.
We define a sequence of stages s(i) the same way we did before Theorem 5.3.27,

except that now the sequence breaks off if A is not K-trivial via b. The com-
putable approximation of Ã follows the approximation of A, but is updated only
at such stages. In more detail, for each s, let

f(s) 	 µt > s.∀n < s Kt(At �n) ≤ Kt(n) + b, and

s(0) = 0 and s(i+ 1) 	 f(s(i)). (5.11)

Let E be the (possibly finite) set of stages of the form s(i). Because “t = f(s)”
is computable uniformly in A, b, we can compute E uniformly. Therefore the
following is a computable approximation:

Ãu(x) = Amax(E∩{0,...,u}).

(Thus, if E is finite the final value is Amax(E).) We define a prefix-free machineM
such that

∀s∀w < sKM (Ãs�w) ≤ Ks(w) + b+ 2. (5.12)

Let r be the coding constant forM according to the Machine Existence Theorem,
and let d = b+ 2 + r. Then Ã is K-trivial via d, as required.
To meet (5.12), we have to provide a new M -description of As�w in two cases,

which are the same as in the proof of Theorem 5.3.10:

(a) Ks(w) < Ks−1(w), or

(b) Ks(w) <∞ & Ãs−1 �w �= Ãs �w.

Here (a) includes the case that Ks−1(w) = ∞. To ensure (5.12) in case (a),
we use strings beginning in 00 as M -descriptions. Thus, if Us(σ) = w where
|σ| = Ks(w) < Ks−1(w), we declare

M(00σ) = As�w.

In case (b), since s(0) = 0 and Ã only changes at stages in E, we have s =
s(i+ 1) for some i. There are two subcases.

(b1) s(i) ≤ w < s(i + 1) = s. For each w there is at most one such i (this is a
key point). So in that case, to meet (5.12) we declare

Ms(10σ) = Ãs�w,

for any string σ of length Ks(w) such that Us(σ) = w.
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(b2) Otherwise, i.e., w < s(i). By the definitions, Ãs �w= As �w and there is
a U-description σ of As�w at stage s such that |σ| ≤ Ks(w)+ b. So to meet
(5.12) it suffices to copy U, that is, to let

Mt(11σ) 	 Ut(σ) for all t and all σ.

To obtain a listing of the c.e. K-trivial sets with constants, we carry out the
same proof based on the indexing (Wi)i∈N of the c.e. sets. �

Let C be an index set for a class of c.e. sets, namely e ∈ C & We = Wi → i ∈ C

(Definition 1.4.18). We say that C is uniformly Σ0
3 if there is a Π0

2 relation P such that
e ∈ C ↔ ∃b P (e, b) and there is an effective sequence (en, bn)n∈N such that P (en, bn)
and ∀e ∈ C ∃n We = Wen . In other words, C is the closure, under having the same
index, of a projection of a c.e. relation contained in P . For instance, let P (e, b) be
∀n∀s∃t > s [Kt(We,t �n) ≤ Ks(n) + b]. Then Theorem 5.3.28 shows:

5.3.29 Corollary. The class of c.e. K-trivial sets has a uniformly Σ0
3 index set. �

Exercises.
5.3.30. Let (Be)e∈N be as in Theorem 5.3.28. Show that there is a computable binary
function f such that Bf(i,j) = Bi ⊕Bj for each i, j ∈ N.

5.3.31. Let Q(e, b) be the Π0
2 relation We ∪Wb = N & We ∩Wb = ∅, so that We is

computable iff ∃b Q(e, b). Show that Q does not serve as a Π0
2 relation via which the

index set of the class of computable sets is uniformly Σ0
3.

5.3.32. Anyway, the class of computable sets has a uniformly Σ0
3 index set.

5.3.33.� Problem. Is every Σ0
3 index set of a class of c.e. sets uniformly Σ0

3?

Adaptive cost functions

A modification of the proof of Theorem 5.3.11 yields a direct argument that
some promptly simple set is low for K. Understanding this transition from K-
triviality to being low for K may be helpful for the proof in Section 5.4 that the
two classes are equal (in particular, for Lemma 5.4.10).
Given a prefix-free oracle machine M and a ∆0

2 set A with a computable ap-
proximation (As)s∈N, consider the cost function

cM,A(x, s) =
∑

σ

2−|σ| [[MA(σ)[s− 1] ↓ & x < use MA(σ)[s− 1]]]. (5.13)

Note that cM,A(x, s) is the measure of theMA-descriptions at stage s−1 that are
threatened by a potential change As(x) �= As−1(x). In other words, cM,A(x, s)
is the maximum decrease of ΩA

M that can be caused by As(x) �= As−1(x).
In contrast to the previous examples, this cost function is adaptive, namely,
cM,A(x, s) depends on As−1. (It would thus be more accurate to use the nota-
tion cM (x, s;As−1), but this is too cumbersome.) The computable approximation
of A determines whether such a function is non-decreasing in s, and whether the
limit condition holds.
If M = U, a set that obeys the cost function it determines is low for K.
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5.3.34 Proposition. Suppose that A(x) = lims As(x) for a computable approx-
imation (As)s∈N that obeys cU,A, namely, there is u ∈ N such that

S =
∑

x,s

cU,A(x, s) [[s > 0 & x is least s.t. As−1(x) �= As(x)]] ≤ 2u. (5.14)

Then A is low for K.

Proof. The proof is somewhat similar to the proof of Theorem 5.3.10. As before
we enumerate a bounded request set W :

at stage s > 0, put the request 〈|σ|+u+1, y〉 intoW if U
A(σ)[s] = y

newly converges, that is, U
A(σ)[s] = y but U

A(σ)[s− 1]↑.
To show that A is low for K, it suffices to verify that W is indeed a bounded
request set. Suppose a request 〈|σ| + u + 1, y〉 is put into W at a stage s via a
newly convergent computation U

A(σ)[s] = y. Let w = use U
A(σ)[s].

Stable case. ∀t > s As �w= At �w. The contribution to W of such requests is
at most ΩA/2u+1, since at most one request is enumerated for each description
U

A(σ) = y once A�w is stable.
Change case. ∃t > s As�w �= At �w. Choose t least, and x < w least such that
At−1(x) �= At(x). Then 2−|σ| is part of the sum cU,A(x, t), which is part of S.
Since A obeys its cost function cU,A and by the choice of u, the total contribution
to W in this case is at most 1/2. �

We apply the criterion to give a direct proof of Muchnik’s result, presumably
close to his original proof.

5.3.35 Theorem. There is a promptly simple set A that is low for K.

Proof. The construction is the one from the proof of Theorem 5.3.5 where a
requirement PSj can spend at most 2−j . The only difference is that we now
use the cost function cU,A. (This is allowed since for s > 0, cU,A(x, s) is defined
in terms of As−1.) The set A is low for K by Proposition 5.3.34. By the same
argument as in the previous proof, we know that A is promptly simple, once we
have shown the following.

5.3.36 Claim. cU,A satisfies the limit condition.

Given e ∈ N, we will find m such that sups>mcU,A(m, s) ≤ 2−e. Note that
if σ ∈ domU

A and t is a stage such that U
A(σ)[t] ↓ and each requirement

PSj for j ≤ |σ| has ceased to act, then the computation U
A(σ)[t] is stable.

Let σ0, . . . , σk−1 ∈ domU
A be strings such that, where α =

∑
i 2

−|σi|, we have
ΩA−α ≤ 2−e−1. We may choose a stagem ≥ e+1 such that all the computations
U

A(σi)[m] are stable and no PSj , j ≤ e+1 acts from stage m on. At each stage
s > m we have ΩA[s]−ΩA ≤ 2−e−1, since the most ΩA[t] can decrease (because
computations U

A(σ) are destroyed by enumerations into A) is
∑

j>e+1 2
−j =

2−e−1. Thus, ΩA[s]−α ≤ 2−e for each s > m. Now, for s > m, the sum in (5.13)
defining cU,A(m, s) refers to computations other than U

A(σi)[m] as their use is
at most m. So cU,A(m, s) ≤ ΩA[s]− α ≤ 2−e. This shows the claim. �
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Table 5.1. Overview of cost functions to build a c.e. incomputable set.

Cost function Definition Purpose Ref.

cK(x, s)
∑

x<w≤s 2
−Ks(w) build a K-trivial 5.3.2

cY cY (x, s) = max(cY (x, s− 1), 2−e) build a set below a (5.7),
where Ys−1(e) �= Ys(e) ∆0

2 set Y ∈ MLR pg. 189
c(x, s) λVx,s, where Vx is uniformly Σ0

1 build a set below 5.3.15
and H =

⋂
x Vx is null H ∩MLR

cU,A(x, s)
∑

σ 2−|σ| [[UA(σ)[s− 1] ↓ & build a set that is (5.13),
x < use U

A(σ)[s− 1]]] low for K pg. 198

5.3.37 Remark. A cost function is called adaptive if the cost at stage s depends
on As−1. If the underlying cost function is adaptive then a cost function construc-
tion must be regarded as having injury. For instance, during the construction of
a low simple set in Theorem 1.6.4, the lowness requirements

Le : ∃∞s JA(e)[s− 1]↓ ⇒ JA(e)↓
are injured. The following adaptive cost function encodes the restraint imposed
by Le: if JA(e) newly converges at stage s− 1, define

c(x, s) = max{c(x, s− 1), 2−e}
for each x < use JA(e)[s − 1]. If A is enumerated in such a way that the total
cost of changes is finite, then Le is injured only finitely often. Thus A is low.
In contrast, a cost function c given in advance cannot be used to hide injury,

because to encode a restraint that is in force at the beginning of stage s we have
to know As−1. The cost functions in the first three rows of Table 5.1 are non-
adaptive. In particular, so is the cost function used to build a promptly simple
Turing lower bound in Theorem 5.3.15. Thus, the corresponding constructions
are injury-free.

5.3.38 Exercise. (Kučera and Terwijn, 1999). Give a direct construction of a promptly
simple set A that is low for ML-randomness.

5.4 Each K-trivial set is low for K

In Section 5.1 we studied three equivalent lowness properties: being low for K,
being low for ML-randomness, and being a base for ML-randomness. It is easily
shown that a set that is low for K is K-trivial (5.2.3). We provide the remaining
implication. Thus, these three equivalent lowness properties also coincide withK-
triviality, a property expressing that the set is far from being Martin-Löf random.

5.4.1 Theorem. Each K-trivial set is low for K.

First we prove the easier result of Downey, Hirschfeldt, Nies and Stephan (2003)
that each K-trivial set is Turing incomplete, thereby introducing the decanter
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method. Combining this with a further new technique, the golden run method,
yields the full result. By Proposition 5.1.2 and Theorem 5.2.4(ii) each set that
is low for K is low, so the full result indeed implies lowness and hence Turing
incompleteness for a K-trivial set. In Section 5.5, the core of the combined de-
canter and golden run methods will be isolated in a powerful (if technical) result,
the Main Lemma 5.5.1. It can be used, for instance, to show that Theorem 5.3.10
in fact provides a characterization of the K-trivial sets: A is K-trivial iff some
computable approximation of A obeys the standard cost function cK.

Introduction to the proof

We outline the proof of the implication “K-trivial ⇒ low for K”. We also intro-
duce some terminology and auxiliary objects that will be used in the detailed
proof. We go through stronger and stronger intermediate results, showing that
a K-trivial set is wtt-incomplete, then Turing incomplete, and then low. Each
step introduces new techniques. Important comments are made in Remarks 5.4.3
and 5.4.4.
Throughout, we fix a constant b such that the given set A isK-trivial via b, that

is, ∀nK(A �n) ≤ K(n) + b. By Theorem 5.2.4(ii) we may also fix a computable
approximation (As)s∈N of A.

1. No K-trivial set A is weak truth-table complete.
This was already proved in Proposition 5.2.18(ii). Here we assume ∅′ ≤wtt A and
obtain a contradiction. The very basic idea how to use theK-triviality of A is the
following: we choose a number n and give it a short description. The opponent
Otto claims that A isK-trivial, so he has to respond by giving a short description
of A �n. If he later needs to change A �n, he has to provide a description of the
new A �n. Via the short description of n we have made such changes expensive
for him. In this way we limit the changes of A to an extent contradicting its
weak truth-table completeness.
As an extreme case, let us assume that for each n, his description of A �n is

no longer than our description of n. We choose n large enough so that we can
force Otto to change A �n, using that A is wtt-complete (see below for details).
We issue a description of n that has length 0, and wait for the stage where he
provides a description of A �n that also has length 0. He has now wasted all
his capital: if we force him to change A �n, then he has to give up on providing
descriptions.
The bounded request set L, and the constant d. Actually, Otto can choose his
descriptions by a constant longer. To counter this, we force him to change A
more often. His constant is known to us in advance. We issue descriptions of
numbers n by enumerating requests of the form 〈r, n〉 into a bounded request
set L. By the Recursion Theorem (see Remark 2.2.21), we may assume an index d
is given such that Md is a machine for L. To respond to our enumeration of a
request 〈r, n〉 into L, he has to provide a description of A �n that has length at
most r + b + d. For at least 2b+d times, we want A �n to change after he has
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given such a description. In fact we want A�n not to change back, but rather to
a configuration not seen before. In that case, if our description of n is of length
r = 0 (say), his total capital spent is at least (2b+d+1)2−(b+d) > 1, contradiction.
The hypothesis ∅′ ≤wtt A can be used to force Otto into making sufficiently

many changes. We build a c.e. set B. By the Recursion Theorem, we are given a
c.e. index for B, and hence a many-one reduction showing that B ≤m ∅′ (1.2.2).
Combining this with the fixed wtt-reduction of ∅′ to A, we are given a Turing
reduction Γ and a computable function g such that B = ΓA and ∀x use ΓA(x) ≤
g(x). (In fact we have used the Double Recursion Theorem 1.2.16, because we
also needed the constant d in advance. This slight technical complication will
disappear when we proceed to showing that all K-trivial sets are low.)
Construction of L and the c.e. set B. Let c = 2b+d, and n = g(c). We put the
single request 〈0, n〉 into L. From now on, at each stage t such that B �c= ΓA �c [t]
and Kt(At �n) ≤ b+d, we force A�n to change to a configuration not seen before
by putting into B the largest number less than c which is not yet in B.
In the fixed point case we have B = ΓA, so we can force c such changes. Since
all the A �n-configurations are different, the measure of their descriptions is at
least (c+ 1)2−(b+d) > 1, which is impossible.

2. No K-trivial set A is Turing complete.
We assume for a contradiction that A is Turing complete. As before, we build
the c.e. set B and, by the Recursion Theorem, we are given a Turing functional Γ
such that B = ΓA. Let γA(m) = use ΓA(m) for each m. We have no computable
bound on γA(m) any longer. If we try to run the previous strategy with n greater
than the current use γA(m) for a number m we can put into B, Otto can beat
us as follows: first he changes A �n; when a new computation ΓA(m) appears,
then γA(m) > n. Only then he gives a description of the new version of A �n.
Such a premature A-change deprives us of the ability to later cause changes of
A�n by putting m into B.
To solve the problem we start a new attempt whenever ΓA(m) changes. But

we have to be careful to avoid spending everything on a failed attempt, so we
will put into L requests of the type 〈r, n〉 for large r and lots of numbers n.
Each time we put such a request we wait for the A�n description before putting
in the next one. If ΓA(m) changes first then r is increased. Since ΓA is total,
ΓA(m) must settle eventually, so r settles as well. On premature A �n-change
we have only wasted 2−r, but then we increase r. (This is our first example of
a controlled risk strategy. Our risk is only 2−r for each attempt. We choose the
successive values of r so large that their combined risks are tolerable.) On the
other hand, if ΓA(m) remains stable for long enough, we can build up in small
portions as much as we would have put in one big chunk. So eventually we can
make an A-change sufficiently expensive for Otto.
It is instructive to consider the hypothetical case b = d = 0 once again. Recall

from Definition 2.2.15 that the weight of E ⊆ N with regard to L is defined
by wgtL(E) =

∑
ρ,x 2

−(ρ)0 [[ρ ∈ L & x ∈ E & (ρ)1 = x]]. The following procedure
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enumerates a set F2 of weight p = 3/4 such that for each n ∈ F2, there are U-
descriptions of two versions A�n. It maintains auxiliary sets F0 and F1.

Procedure P2(p).

(1) Choose a large number m.
(2) Wait for ΓA(m) to converge.
(3) Let r ∈ N be such that the procedure has gone through (2) for r− 2 times.

Pick a large number n. Put 〈rn, n〉 into L where rn = r, and put n into F0.
Wait for a stage t such that K(A�n)[t] ≤ r+b+d = r, and transfer n from
F0 to F1. (If Md is a machine for L, then t exists.) If wgtL(F2 ∪ F1) ≤ p
goto (3).
If the expression ΓA(m) changes during this loop then all the numbers
currently in F1 have obtained their A-change, so put F1 into F2 and declare
F1 = ∅. (We call this an early promotion of the numbers in F1. This
important topic is pursued further in Remark 5.4.3.) Also, the number n
in F0 is garbage as we cannot any longer hope to get descriptions for two
A�n configurations, so declare F0 = ∅. Goto (2).

(4) Put m into B. This provides the A-change for the elements now in F1, so
put F1 into F2 and declare F1 = ∅. (We call this a regular promotion.)

To see that L is a bounded request set, consider what happens to a number n
after a request 〈rn, n〉 has entered L.
• For each r there is at most one n such that rn = r and n is not promoted

to F1. The total weight of such numbers n is thus at most
∑

r≥3 2
−r = 1/4.

• The weight of the numbers n that get into F1 is at most p = 3/4, since
at each stage we have wgtL(F2 ∪ F1) ≤ p, and we empty a set F1 into F2
before we start a new one (and F2 never gets emptied).

Since ΓA is total, the procedure reaches (4), which causes wgt(F2) = 3/4. This
is a contradiction, since for each n ∈ F2, two configurations A�n have descriptions
of length rn. �

We now remove the hypothesis that b = d = 0. We allow a weight of 1/4
of numbers n that are garbage. This extra “space” in L is obtained by forcing
2b+d+1 − 1 many A �n-changes when the request is not garbage (that is, almost
twice as many as in the wtt case). Throughout, we will let

k = 2b+d+1.
To force these changes we use k − 1 levels of procedures Pi (2 ≤ i ≤ k ). A pro-
cedure at level i > 2 calls one at level i − 1. The bottom procedure P2 acts as
above. An argument similar to the one just used shows that the total weight of
numbers that are not garbage does not exceed 1/2. Before giving more details
in Fact 5.4.2, we introduce two technical concepts.
Stages when A looks K-trivial. The construction is restricted to stages, defined
exactly as before Theorem 5.3.27 (except that the given set A was c.e. then).
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Thus, for each s, let f(s) = µt > s∀n < s K(A�n) ≤ K(n) + b [t]. Let s(0) = 0
and s(l + 1) = f(s(l)). We write stage (in italics) when we mean a stage of this
type.
Definition of i-sets. The following device keeps track of the number of times the
opponent has had to give new descriptions of strings A �n: the number n is in
an i-set if this has happened i times. Thus, for 1 ≤ i ≤ k , we say that a finite set
E ⊆ N is an i-set at stage t if, for all n ∈ E, at some stage u < t we enumerated
a request 〈rn, n〉 into L, and now there are i distinct strings z of the form Av �n

for some stage v, u ≤ v ≤ t, such that Kv(z) ≤ rn + b + d. A c.e. set with an
enumeration E =

⋃
Et is an i-set if Et is an i-set at each stage t.

Note that wgtL(E) =
∑{2−rn : n ∈ E} for each E ⊆ N. Since Otto has to

match our description of n by descriptions that are by at most b + d longer of
strings of length n, we have the following.

5.4.2 Fact. If the c.e. set E is a k –set, where k = 2b+d+1, then wgtL(E) ≤ 1/2.

Proof. For all n ∈ E, there is a request 〈rn, n〉 in L and there are k distinct
strings z of length n such that K(z) ≤ rn + b+ d. Hence

1 ≥ Ω = λ[domU]≺ ≥ k
∑

n∈E 2−(rn+b+d) = k 2−(b+d)wgtL(E).

Because k = 2b+d+1, this implies wgtL(E) ≤ 1/2. �

A procedure Pi (2 ≤ i ≤ k ) enumerates an i-set Fi, beginning with Fi = ∅.
If Pi is initialized then Fi is emptied. The construction begins by calling Pk ,
which calls Pk −1 lots of times, and so on down to P2, which also enumerates L
and F0, F1, as above. Each procedure Pi is called with parameters p, α, where
α = 2−m for some m, p ∈ Q2 and p ≥ α.
• The goal p is the weight Pi needs its set to reach to be able to return.
• The garbage quota α is how much garbage Pi is allowed to produce.

The garbage quota of a procedure is closely related to the goals of the sub-
procedures it calls, because the quantity of garbage produced when they are
cancelled does not exceed their goal.
In the following construction, the garbage of a run Pi(p, α) is the weight of the

numbers that are eventually at level i− 2 (and never promoted to level i− 1).
Procedure Pi(p, α) (2 ≤ i ≤ k , p ∈ Q2, α ≤ p of the form 2−l).

(1) Choose a large number m.
(2) Wait for ΓA(m) ↓.
(3) Let v be the number of times Pi has gone through (2).

Case i = 2. Pick a large number n. Put 〈rn, n〉 into L and n into F0, where
2−rn = 2−vα. Wait for a stage t such that n < t′ < t for some stage t′

and Kt(n) ≤ rn + d, and put n into F1. (If Md is a machine for L, then t
exists.)
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Case i > 2. Call Pi−1(2−vα, α′), where α′ = min(α, 2−i−22−wi−1), and
wi−1 is the number of Pi−1 procedures started so far in the construction.

If wgtL(Fi ∪ Fi−1) < p goto 3.

If the expression ΓA(m) changes during this loop, cancel the run of all
sub-procedures, and goto (2). (Comment: despite the cancellation, what
is in Fi−1 now is an i-set because of this very change.) Put Fi−1 into Fi,
and declare Fi−1 = ∅. Also declare Fi−2, . . . , F0 = ∅ (without putting their
content into any set, as it is garbage).

(4) Putm into B. (Comment: this forces A to change below γ(m) < min(Fi−1),
and hence makes Fi−1 an i-set, as we assume inductively that Fi−1 is an
i− 1-set.) As above, put Fi−1 into Fi and then declare Fi−1 = ∅.

5.4.3 Remark. The comment on cancellation in step (3) contains a key idea
for subsequent constructions. When we have to cancel the sub-procedures of a
run Pi(q, β), what they are working on becomes garbage, but not Fi−1. For Fi−1
already is an i-1-set, so all we need is another A-change, which is provided here
by the cancellation itself (early promotion), as opposed to being caused actively
in step (4) once the run reaches its goal (regular promotion). The only difference
between the two types of promotion is that in the first case Fi−1 has not reached
the target weight 2−vβ. (There is no garbage at level k -1 because the run of Pk
is never cancelled.)

Construction of L and B. Call Pk (3/4, 1/4).
Verification. Let Ci be the c.e. set consisting of the numbers which are in Fi at
some stage. Thus Ck = Fk , and for i < k , Ci−1 − Ci is the set of numbers that
get stuck at level i − 1. To show that L is a bounded request set, note that by
the choice of the garbage quotas, at each stage, Ci−1 − Ci has weight at most
2−i−2 for 1 ≤ i < k, and the weight of Ck ∪ Ck −1 = Fk ∪ Fk −1 is at most 3/4.
(We have to be careful here: we need to show that L is a bounded request set
for each d, so we have to accommodate the case that the construction breaks
off, which can happen if d is not a fixed point. This is why we insist that the
argument work at each stage.)
Since ΓA is total, each procedure reaches (4) unless it is cancelled. In particular,

Pk (3/4, 1/4) returns a k -set of weight 3/4, contrary to Fact 5.4.2. This contra-
diction shows that ∅′ �≤T A. �

The decanter model. We visualize this construction by an arrangement of k + 1
levels of decanters Fk , Fk −1, . . . , F0, where Fk is at the bottom. See Figure 5.1
for the (hypothetical) case k = 3. The decanters hold amounts of a precious
liquid – how about 1955 Biondi-Santi Brunello wine?
We put Fi−1 above Fi so that Fi−1 can be emptied into Fi. At any stage

Fi is an i-set. Procedure Pi(p, α) wants Fi to reach weight p, by filling Fi−1
to the quantity of at most p needed, and then emptying it into Fi. Emptying
corresponds to adding one more A�n-change for each n in Fi−1.
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Emptying
device F3

F0

F1

F2

Fig. 5.1. Decanter model. Right side: premature A-change. F2 is emptied
into F3, while F0 and F1 are spilled on the floor.

The use of ΓA(m) acts as the emptying device, which, besides being activated
on purpose, may go off finitely often by itself. This is how we visualize an A-
change. It is premature if the device goes off by itself. When Fi−1 is emptied
into Fi then Fi−2, . . . , F0 are spilled on the floor.
We suppose that a bottle of wine corresponds to a weight of 1. We first pour

wine into the highest decanter F0. We want to ensure that a weight of at most
1/4 of wine we put into F0 does not reach Fk . Recall that the parameter α is
the amount of garbage Pi(p, α) allows. If v is the number of times the emptying
device has gone off by itself, then for i > 2, Pi lets Pi−1 fill Fi−1 in portions of
2−vα. For then, when Fi−1 is emptied into Fi, a quantity of at most 2−vα can
be lost because it is in higher decanters Fi−2, . . . , F0.
The procedure P2 is a special case, but limits its garbage in the same way: it

puts requests 〈rn, n〉 into L where 2−rn = 2−vα. Once it sees the corresponding
description of A�n, it empties F0 into F1. However, if the hook γA(m) belonging
to P2 moves before this, F0 is spilled on the floor while F1 is emptied into F2.

5.4.4 Remark. If A is merely ∆0
2 then A �n can return to a previous value.

However, in the definition of k -sets we need k distinct values. Why can we still
conclude that Pk (3/4, 1/4) returns a k -set of weight 3/4?
A run of P2 is the result of recursive calls of runs Pk , Pk −1, . . . , P3; there are

numbers mk < mk −1 < . . . < m2 where mi belongs to the run of Pi. Consider
a number n such that the run of P2 puts a request 〈rn, n〉 into L at a stage s.
Then n ≥ γA(mi) for each i. The weight of numbers n that do not reach Fk
is at most 1/4. Suppose now that n reaches Fk . Then for each i ≥ 2, A �γ(mi)
is stable from s to the stage t when n reaches Fi−1, otherwise n would become
garbage. So when n is promoted from Fi−1 to Fi, the current value A�n has not
been seen from s to t.



5.4 Each K-trivial set is low for K 207

3: Each K-trivial set is superlow.
The construction showing that each K-trivial set A is Turing incomplete is se-
quential at each level: at most one procedure runs at any particular level. To
show that A is superlow, and even low for K, we use a construction where at
each level procedures can run in parallel.
Recall that A′ = domJA. A procedure Pi(p, α) at level i ≥ 2 (with goal p and

garbage quota α, of the form 2−l, enumerating a set Fi) attempts to provide
a computable approximation for A′, making a guess at each stage. Initially,
the guess is “divergent”. When JA(e) newly converges, Pi calls a subprocedure
Qi−1,e(q, β), where q = 2−e−1α, in order to test the stability of this computation.
When the run of Qi−1,e(q, β) returns an (i − 1)-set Gi−1,e of weight q, then Pi

makes a guess that JA(e) converges.
Stable case. If A does not change later below the use of JA(e), the guess is correct.
However, Gi−1,e is now garbage, since its elements will not reach the i-set Fi.
This is a one-time event for each e, so the total garbage produced in this way is
at most

∑
e 2

−e−1α = α, as required. (Note that this garbage due to the failure
of A to change is of a new type. It was not present in the previous constructions
where we could force A to change.)
Change case. If A changes later below the use of JA(e), then all the numbers
in Gi−1,e are put into Fi, so wgtL(Fi) increases by the fixed quantity 2−e−1α.
In this case Pi changes its guess back to “divergent”. If this happens r times,
where r = p2e+1/α, then the run of Pi reaches its goal p.
We consider the hypothetical case that b = d = 0 in some more detail.

Procedure P2(p, α) (p ∈ Q2, α ≤ p of the form 2−l).
It enumerates a set F2, beginning with F2 = ∅.
At stage s, declare e = s available (availability is a local notion for each run of

a procedure). For each e ≤ s, do the following.

P1e If e is available and JA(e)↓ [s], call the procedureQ1,e(2−e−1α, β), where
β = min(2−e−1α, 2−v−1) and v is the number of runs of Q1 type procedures
started so far in the construction. Declare e unavailable.

P2e If e is unavailable due to a run Q1,e(q, β) (which may have returned al-
ready) and As�w �= As−1 �w where w is the use of the associated computa-
tion JA(e), declare e available.

(a) Put G1,e into F2.
(b) If wgtL(F2) < p and the run Q1,e has not returned yet, cancel this

run;
else return the set F2, cancel all the runs of its subprocedures
and end this run of P2. (Actually we only put as much of G1,e into
F2 as needed to ensure that wgtL(F2) = p.)

Note that we have combined steps (3) and (4) of the corresponding procedure
P2(p) on page 203, because we cannot any longer force A to change.
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Procedure Q1,e(q, β) (β ≤ q, both of the form 2−l for some l).
It enumerates a set G1,e, beginning with G1,e = ∅. It behaves similarly to step
(3) in the procedure P2(p) on page 203.

Q1 Pick a number n larger than any number used so far. Put 〈rn, n〉 into L,
where 2−rn = β. Wait for a stage t > n such that Kt(n) ≤ rn + d. (If Md

is a machine for L then t exists.)
Q2 Put n into G1,e. If wgtL(G1,e) < q goto (Q1). Else return the set G1,e.

A tree of runs. Next, we remove the extra hypothesis that b = d = 0. We have
2k − 2 levels of runs of procedures Q1, P2, Q2, . . . , Pk −1, Qk −1, Pk . The runs are
now arranged as a tree, where the successor relation is given by recursive calls.
The root of the tree is the single run of procedure Pk , which calls procedures
Qk −1,e for e ∈ N. Each one of them calls a procedure Pk −1, and so on, till
we reach the leaves, consisting of runs of procedures Q1,e which behave as out-
lined above. The procedures Qj,e, j > 1 behave similar to Q1,e, but in (Q1)
the enumeration of a request 〈rn, n〉 into L is replaced by a recursive call of a
procedure Pj . See Fig. 5.2.
Recall that a run of Pi enumerates an i-set Fi, and a run of Qi−1,e enumerates

an (i − 1)-set Gi−1,e. To continue the decanter model, if 2 ≤ i < k and a run
Qi,e′ calls Pi, then Fi can be emptied into Gi,e′ . For 2 ≤ i ≤ k , when a run Pi

calls Qi−1,e, then Gi−1,e can be emptied into Fi. If Gi−1,e reaches the weight
required by Qi−1,e and the A-change does not occur, then this decanter is stuck –
its content is garbage and will never be used again.
To verify that L is a bounded request set, for 2 ≤ i ≤ k , as before we let Ci be

the c.e. set of numbers which are in a set Fi at some stage, and we let Di−1 be
the c.e. set of numbers which are in a set Gi−1,e at some stage. We let C1 be the
right domain of L. Numbers start out in C1, and may successively be promoted
to D1, C2, . . . , Dk −1, Ck . For 1 ≤ j < k , Cj −Dj contains the garbage produced
when a run Qj,e is cancelled, and for 2 ≤ i ≤ k , Di−1 − Ci is the new type of
garbage which is produced when A fails to change after a run Qi−1,e returns.
The golden run. As the result of a premature A-change, a run may be cancelled by
runs of procedures which precede this run on the tree. The initial procedure Pk is
not cancelled and never returns, since we start it with goal 3/4 while a k -set has
weight at most 1/2 by Fact 5.4.2. So there must be a golden run of a procedure
Pi(p, α): it is not cancelled, does not reach its goal, but all the subprocedures
Qi−1,e it calls either reach their goals or are cancelled. This run Pi builds a
computable approximation for A′: as explained above, given e, the change case
occurs fewer than r = p2e+1/α times, because otherwise Pi would reach its
goal. Thus Pi’s guess at whether JA(e) converges can change at most 2r times.
Hence A is superlow.
The computable approximation of A′ was not obtained effectively, since we

needed to know which run is golden. This nonuniformity cannot be avoided by
Corollary 5.5.5 below.
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Fig. 5.2. Tree of runs. At the bottom we indicate the promotion of numbers.

4. Each K-trivial set is low for K.
Now a run Pi(p, α) that does not reach its goal tries to build a bounded request
setW showing thatA is low forK. It emulates the argument of Proposition 5.3.34
that each ∆0

2 set A obeying cU,A is low forK. If the run is golden then it succeeds.
The hypothesis in 5.3.34 that A obeys cU,A is replaced by the hypothesis that
the run Pi(p, α) does not reach its goal.
When a computation U

A(σ) = y newly converges, Pi(p, α) calls a procedure
Qi−1,σ(q, β) with the goal q = 2−|σ|α. As in the foregoing construction, it is
necessary to call in parallel procedures based on different inputs σ. The procedure
Qi−1,σ works in the same way as Qi−1,e before: unless it is cancelled, it returns
an (i − 1)-set Gi−1,σ of weight q. The numbers in Gi−1,σ are no less than the
use of the computation U

A(σ). Let u ∈ N be least such that 2u ≥ p/α. When
the run Qi−1,σ(q, β) returns, Pi(p, α) hopes that the computation U

A(σ) = y is
stable, so it puts a request 〈σ + u+ 1, y〉 into W .
Stable case: A does not change later below the use of U

A(σ). The enumeration
into W causes K(y) ≤+ |σ|, so if σ is a shortest U

A-description of y, we obtain
K(y) ≤+ KA(y). The set Gi−1,σ is now garbage. The total garbage produced in
this way is at most ΩAα ≤ α, as required. The contribution toW is at most 1/2.
Change case: A changes later below the use of U

A(σ). Then all numbers in Gi−1,σ

are put into Fi, so wgtL(Fi) increases by q = 2−|σ|α. Since 2u ≥ p/α, the total
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weight contributed toW in this way stays below 1/2, or else the run of Pi reaches
its goal p.
If the run Pi(p, α) is golden, it succeeds in showing that A is low for K: it is

not cancelled, and does not reach its goal (so W is a bounded request set). Each
run Qi−1,σ returns unless cancelled, necessarily by an A-change below the use
of the computation U

A(σ) it is based on. Thus Pi(p, α) puts the corresponding
request into W at a stage when U

A(σ) is stable.
It is instructive to compare (a) the proof of Theorem 5.1.22 (on bases for ML-

randomness) with (b) the proof of Theorem 5.4.1. In both cases, we show that a
given set A is low for K (though in (b) we also need a computable approximation
of A). The construction for a fixed parameter d in Theorem 5.1.22 is somewhat
similar to a golden run Pi(p, α). In (a) one feeds hungry sets Cη

d,σ once U
η(σ) = y

is defined. In (b) subprocedures Qi−1,σ are called once U
A(σ)[s] = y is defined.

The measure 2−|σ|−d−1 that Cη
d,σ has to reach so that one can put the request

〈|σ|+d+1, y〉 into Ld corresponds to the goal q = 2−|σ|α the sub-procedure has to
reach, so that it can return and the request 〈|σ|+u+1, y〉 can go intoW . However,
the verifications that Ld andW are bounded request sets are completely different.
Exercises.
5.4.5. Get hold of a bottle of 1955 Biondi-Santi Brunello wine. Why is a single bottle
sufficient for any of the decanter constructions?

5.4.6. Sketch a tree of runs as in Figure 5.2 for the case that k = 4. The types of
procedures are Q1, P2, Q2, P3, Q3, and P4.

The formal proof of Theorem 5.4.1

We retain the definitions of the previous subsection, in particular of stages s(l)
and i-sets (page 203). We modify the computable approximation of A so that
Av(x) = As(l)(x) for all x, v, l such that s(l) ≤ v < s(l + 1).
Firstly, we outline the procedures in more detail. We indicate why no run

exceeds its garbage quota. Recall that a run Pi(p, α) enumerates a set Fi, and
a run Qj,σ(q, β) enumerates a set Gj,σ. We will write Qj,σyw(q, β) instead of
Qj,σ(q, β), where the associated computation is U

A(σ) = y and its use is w. For
2 ≤ i ≤ k we let Ci be the c.e. set of numbers which are in a set Fi at some
stage, and we let Di−1 be the c.e. set of numbers which are in a set Gi−1,σ at
some stage. Note that sets of type Fi and Gj,σ are local in that they belong
to individual runs of the corresponding procedures. Just as for runs, there may
be several such sets at any stage. The indices are merely used to indicate the
procedures they belong to. In contrast, the c.e. sets Ci and Dj (used only in the
verification) are global.
For j = 1, a run Qj,σyw(q, β) chooses a large number n, puts a request 〈r, n〉
into L, where 2−r = β, and waits for Kt(n) ≤ r + d at a later stage t, so that it
can put n into G1,σ. This is repeated until it has reached its goal.
For j > 1, while it has not reached its goal q, the run Qj,σyw(q, β) keeps calling a
single procedure Pj(β, α) (for decreasing garbage quotas α) and waits until this
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procedure returns a set Fj , at which time it puts Fj into Gj,σ. Thus the amount
of garbage left in Cj − Dj is produced during a single run of a procedure Pj

which does not reach its goal β, and hence is bounded by β.
A run Pi(p, α) calls procedures Qj,σyw(2−|σ|α, β) for appropriate values of β.

The weight left in Di−1 −Ci by all the returned runs of Qi−1-procedures which
never receive an A-change adds up to at most ΩAα since this is a one-time event
for each σ. The runs of procedures Qi−1 which are cancelled and have so far
enumerated a set G do not contribute to the garbage of Pi(p, α), since G goes
into Fi upon cancellation.
To assign the garbage quotas we need some global parameters. At any substage

of stage s, let

α∗
i = 2−(2i+5+nP,i), (5.15)

where nP,i is the number of runs of Pi-procedures started in the construction
prior to this substage of stage s. Furthermore, let

β∗
j = 2−(2j+4+nQ,j), (5.16)

where nQ,j is the number of runs of Qj-procedures started so far. Then the sum
of all the values of α∗

i and β∗
j is at most 1/4. When Pi is called at a substage

of stage s, its parameter α is at most α∗
i . Similarly, the parameter β of Qj is

at most β∗
j . This ensures wgtL(C1 − Ck ) ≤ 1/4. We start the construction by

calling Pk (3/4, 1/4), so wgtL(Ck ) ≤ 3/4. In this way we will show that L is a
bounded request set.
We now give the formal description of the procedures and the construction.

Procedure Pi(p, α) (1 < i ≤ k , p ∈ Q2, p ≥ α = 2−l for some l).
It enumerates a set Fi, beginning with Fi = ∅.
At stage s, declare each σ of length s available (recall that availability is a local
notion for each run of a procedure). For each σ, |σ| ≤ s, do the following.

P1σ If σ is available, and U
A(σ)[s] = y for some y < s, let w be the use of this

computation, and call the procedure Qi−1,σyw(2−|σ|α, β), where
β = min(2−|σ|α, β∗

i−1), and β
∗
i−1 is defined in (5.16). Declare σ unavailable.

P2σ If σ is unavailable due to a (possibly returned) run Qi−1,σyw(q, β) and
As�w �= As−1 �w, declare σ available.

(a) Say the run is released.
If wgtL(F ∪Gi−1,σ) < p, put Gi−1,σ into F and goto (b).
Else choose a subset G̃ of Gi−1,σ such that wgtL(F ∪G̃) = p, and put
G̃ into G. Return the set F , cancel all the runs of subprocedures
and end this run of Pi. (G̃ exists since p = v/2−l for some v, l ∈ N,
v < 2l, and rn > l for each n ∈ G; now arrange the numbers rn in a
nondecreasing way.) Assuming that Gi−1,σ already was an (i− 1)-set
at the last stage, F is an i-set, as we will verify below.
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(b) If the run Qi−1,σyw has not returned yet, cancel this run and all
the runs of subprocedures it has called.

The procedure Qj,σyw(q, β) (0 < j < k , β = 2−r, q = 2−l for some r ≥ l).
It enumerates a set G = Gj,σ. Initially G = ∅.
Q1 Case j = 1. Pick a number n larger than any number used so far. Put
〈rn, n〉 into L, where 2−rn = β, and goto (Q2).
Case j > 1. Call Pj(β, α), α = min(β, α∗

j ), where α
∗
j is defined in (5.15)

and goto (Q2).
Q2 Case j = 1. Wait for a stage t > n such that n < t′ < t for some stage t′

and Kt(n) ≤ rn +d. (If Md is a machine for L then t exists.) Put n into G.
(By the definition of stages, K(A�n) ≤ K(n) + b [t], so G remains a 1-set.)
Case j > 1. Wait till Pj(β, α) returns a set F ′. Put F ′ into G (G remains
a j-set, assuming inductively that the sets F ′ are j–sets).
In any case, if wgtL(G) < q then goto (Q1). Else return the set G.
(Note that in this case necessarily wgtL(G) = q.)

Construction. Begin by calling Pk (3/4, α∗
k ) at stage 0. At each stage, descend

through the levels of procedures of type Pk , Qk −1 . . . P2, Q1. At each level start
or continue finitely many runs of procedures. Do so in some effective order, say
from left to right on that level of the tree of runs of procedures, so that the values
α∗

i and β∗
j are defined at each substage. Since one descends through the levels, a

possible termination of a procedure in (P2σ.b) occurs before the procedure can
act.
Verification. Before Lemma 5.4.9, we do not assume that Md is a machine for L.
C1, the right domain of L, is enumerated in (Q1). For 1 ≤ j < k , let Dj,t be the
union of sets Gj,σ enumerated by runs Qj,σyw up to the end of stage t. Let Ci,t

be the union of sets Fi enumerated by runs Pi (1 < i ≤ k ) by the end of stage t.

5.4.7 Lemma. The c.e. sets Ci, 2 ≤ i ≤ k , and Di, 1 ≤ i < k , are i–sets.

Subproof. By the comments in (P2σ) and (Q2) above, D1 is a 1-set. Suppose
2 ≤ i ≤ k, and assume inductively that Di−1 is an i − 1-set. To see that Ci

(and hence Di in case i < k) is an i-set, assume that during stage s a number n
enters Ci. Thus As−1 �w �= As�w. Among other things we have to verify that this
change is not a change back to a previous configuration (see Remark 5.4.4).
For some run of Pi, at P2σ(a) for some σ, the number n is in a set Gi−1,σ[s]

and enters the set Fi of that run. Let s′ be the last stage before s. No Qi−1-type
procedure has been active yet at s, so the run of Qi−1,σyw enumerating Gi−1,σ[s]
was already present at s′, and hence n ∈ G = Gi−1,σ[s′]. Also minG > w, and
inductively G was an (i − 1)-set already at s′. Thus at a stage t ≤ s′, 〈r, n〉
was enumerated into L by a subprocedure of type Q1 of this run Qi−1,σyw, and
there are i − 1 distinct strings z of the form Av �n for some stage v, t ≤ v < s
such that Kv(z) ≤ r + c. Moreover, n < s′ and hence Ks(As �n) ≤ r + c by
the definition of stages, the wait in (Q2) and because n ∈ D1. Also, A �w did
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As−1 �w �= As �w

t
〈r, n〉 enters L

s′
Gi−1,σ is an (i− 1)-set

s

A�w is stable from t to s− 1

Fig. 5.3. Illustration of Lemma 5.4.7.

not change from t to s − 1, else the run of Qi−1,σyw would have been canceled
before s. Since As−1 �w �= As�w, we have a new string z = As�n as required to
show that Ci is an i-set. See Fig. 5.3. �

Next we verify that L is a bounded request set. First we show that no run of
a procedure exceeds its garbage quota. Since the runs are arranged as a tree,
each number n enumerated into the right domain of L at a leaf during a stage t
corresponds to a unique run of a procedure at each level at the same stage. We
say n belongs to this run.

5.4.8 Lemma. (a) Let 1 ≤ j < k . At each stage, the weight of the numbers in
Cj −Dj which belong to a run Qj,σyw(q, β) is at most β.
(b) Let 1 < i ≤ k . At each stage, the weight of the numbers in Di−1 − Ci which
belong to a run Pi(p, α) is at most α.

Subproof. (a) For j = 1 the upper bound β on the weight holds since the run
has at most one number n in C1 − D1 at any given stage. So, if the run gets
stuck waiting at (Q2), it has left a weight of β in C1 −D1.
If j > 1, all the numbers as in (a) of the lemma belong to a single run of a

procedure Pj(β, α) called by Qj,σyw(q, β), because, once such a run returns a
set F ′, this set is put into Gj,σ and hence into Dj . As long as the run of Pj has
not returned, it has not reached its goal β. Thus the weight of such numbers is
at most β at any stage of the run of Qj,σyw.
(b) Suppose that n belongs to a run Pi(p, α) and n ∈ Di−1,t for a stage t. Then n
is in the set Gi−1,σ[t] of a run Qi−1,σyw(2−|σ|α, β) called by Pi. We claim that,
if n does not reach Ci then no further procedure Qi−1,σy′w′(q′, β′) is called during
the run of Pi after t.
Firstly assume that As�w �= As−1 �w for some stage s > t. The only possible

reason that n does not reach Ci is that the run of Pi did not need n to reach its
goal in (P2σ) (i.e., n �∈ G̃), in which case the run of Pi ends at s.
Secondly, assume there is no such s. Then the run of Pi, as far as it is concerned

with σ, keeps waiting at (P2σ), and σ does not become available again. This
proves the claim.
As a consequence, for each σ there is at most one run Qi−1,σyw(2−|σ|α, β)

called by Pi(p, α) which leaves numbers in Di−1−Ci. If the run of Pi returns at
a stage s then the sum of the weights of such numbers is bounded by the value
of ΩAα at the last stage before s, otherwise it is bounded by ΩAα. �
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By the foregoing lemma and the definitions of the values α∗
i , β

∗
j at substages,

at each stage we have
wgtL(C1 − Ck ) ≤

∑k −1
j=1 wgtL(Cj −Dj) +

∑k
i=2 wgtL(Di−1 − Ci) ≤ 1/4.

Also wgtL(Ck ) ≤ 3/4 since we call Pk with a goal of 3/4. Thus wgtL(C1) ≤ 1.
Since C1 is the right domain of L, we may conclude that L is a bounded request
set.
From now on we may assume that Md is a machine for L, using the Recursion

Theorem as explained in Remark 2.2.21.

5.4.9 Lemma. There is a run of a procedure Pi, called a golden run, such that

(i) the run is not cancelled,
(ii) each run of a procedure Qi−1,σyw called by Pi returns unless cancelled, and
(iii) the run of Pi does not return.

Subproof. Assume that no such run exists. We claim that each run of a proce-
dure returns unless cancelled. This yields a contradiction, since we call Pk with
a goal of 3/4, this run is never cancelled, but if it returns, it has enumerated a
weight of 3/4 into Ck , contrary to Fact 5.4.2.
To prove the claim, we carry out an induction on levels of procedures of type

Q1, P2, Q2, . . . , Qk −1, Pk . Suppose the run of a procedure is not cancelled.
Qj,σyw(q, β): If j = 1, the wait at (Q2) always succeeds becauseMd is a machine
for L. If j > 1, inductively each run of a procedure Pj called by Qj,σyw returns,
as it is not cancelled. In either case, each time the run is at (Q2), the weight
of D increases by β. Therefore Qj,σyw reaches its goal and returns.
Pi(p, α): The run satisfies (i) by hypothesis, and (ii) by inductive hypothesis.
Thus, (iii) fails, that is, the run returns. �

5.4.10 Lemma. A is low for K.

Subproof. Choose a golden run of a procedure Pi(p, α) as in Lemma 5.4.9. We
enumerate a bounded request set W showing that A is low for K. Let u ∈ N be
least such that p/α ≤ 2u. At stage s, when a run Qi−1,σyw(2−|σ|α, β) returns,
put 〈|σ|+ u+ 1, y〉 into W . We prove that W is a bounded request set, namely,
SW =

∑
r 2

−r [[〈r, z〉 ∈W ]] ≤ 1. Suppose 〈r, z〉 enters W at stage s due to a run
Qi−1,σyw(2−|σ|α, β) which returns.
Stable case. The contribution to SW of those requests 〈r, z〉 where A�w is stable
from s on is bounded by 2−(u+1)ΩA, since for each σ such that U

A(σ) is defined,
this can only happen once.
Change case. Now suppose that A �w changes after stage s. Then the set G
returned by Qi−1,σyw, with a weight of 2−|σ|α, went into the set Fi of the run
Pi(p, α). Since this run does not reach its goal p = 2uα,

∑

s

∑

σ,y,w

2−|σ| [[Qi−1,σyw returns at s & ∃t > sAt �w �= At−1 �w]] < 2u. (5.17)
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Thus the contribution of the corresponding requests to SW is less than 1/2.
Let Me be the machine for W according to the Machine Existence Theorem.

We claim that K(y) ≤ KA(y) + u+ e+1 for each y. Suppose that s is the least
stage such that a stable computation U

A
s (σ) = y appears, where σ is a shortest

U
A-description of y. Let w be the use of this computation. Then σ is available

at s: otherwise some run Qi−1,σy′w′ is waiting to be released at (P2σ). In that
case, A �w′ has not changed since that run was started at a stage < s. Then
w = w′ and y = y′, contrary to the minimality of s. So we call Qi−1,σyw. Since
A �w is stable and the run of Pi is not cancelled, this run is not cancelled, so it
returns by (ii) of Lemma 5.4.9. At this stage we put the request 〈|σ|+ u+ 1, y〉
into W , which causes K(y) ≤ KA(y) + u+ e+ 1 as required. �

This concludes the proof of Theorem 5.4.1. �

As mentioned already, the proof of Lemma 5.4.10 extends the proof of Proposi-
tion 5.3.34, where we showed that any ∆0

2 set A obeying a cost function cU,A is low
for K. Instead of the hypothesis that A obey cU,A, we now have (5.17). The new com-
plications arise because we can only issue a request when the run of the corresponding
procedure of type Q has returned.

5.5 Properties of the class of K-trivial sets
Theorem 5.3.10 states that, if some computable approximation of a set A obeys
the standard cost function cK, then A is K-trivial. We will prove the converse:
each K-trivial set A has a computable approximation that obeys cK. This was
not too hard to show for c.e. sets A in Theorem 5.3.27. Without the restriction to
being c.e., it seems to require the full power of the golden run method. Luckily, it
suffices to extend the proof of Theorem 5.4.1 slightly. In the Main Lemma 5.5.1
we rephrase a central aspect of the proof in a more general language.
While the cost function method is a general method to build K-trivial (and

other) sets, the Main Lemma is our principal method to prove restricting results
on K-trivial sets. We will show that each K-trivial set A is Turing below a
c.e. K-trivial set, and that each K-trivial set is superlow. No proof of these
results is known using the equivalent property to be low for ML-randomness.
(The closure under ⊕ in Theorem 5.2.17 is another example where the definition
via K-triviality appears to be essential.) We obtain the first result as a corollary
to the characterization of K-triviality by the standard cost function; the second
follows from the first because each c.e. set that is low for K is superlow.
As further applications of the Main Lemma, we prove that if a ∆0

2 set A is K-
trivial then ΩA is left-c.e. (the converse follows from Theorem 5.1.22), and that
each K-trivial set is low for weak 2-randomness. We also show in Corollary 5.5.6
that any proof of Theorem 5.4.1 is necessarily nonuniform.

A Main Lemma derived from the golden run method

The golden run method works for any prefix-free oracle machine M : we have
only used that the machine is optimal near the end of the proof in Lemma 5.4.10
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when we verified that A is low for K. In (5.13) on page 198 we introduced
the adaptive cost function cM,A(x, r), the measure of the MA-descriptions at
stage r − 1 that are threatened by a potential change Ar−1(x) �= Ar(x). The
Main Lemma extracts a computable sequence of stages 0 = q(0) < q(1) < . . .
from a golden run, and uses a variant ĉM,A of this cost function: the measure
of the MA-descriptions existing at stage q(r + 1) but with use ≤ q(r) that are
threatened by a potential change of A(x). The quantity Ŝ is the sum of measures
of descriptions where the computations are actually destroyed by stage q(r+2).
The Main Lemma states that Ŝ is finite. In typical applications we will define an
appropriate M and use the finiteness of Ŝ to prove the desired restriction on A.

5.5.1 Main Lemma. Let A be K-trivial. Fix a computable approximation
(As)s∈N of A. Let M be a prefix-free oracle machine. Then there is a constant
u ∈ N and a computable sequence of stages q(0) < q(1) < . . . such that

Ŝ =
∑

x,r

ĉM,A(x, r) [[x is least s.t.Aq(r+1)(x) �= Aq(r+2)(x)]] < 2u, (5.18)

where ĉM,A(x, r) =
∑

σ

2−|σ|
[[
MA(σ)[q(r + 1)] ↓ &
x < use MA(σ)[q(r + 1)] ≤ q(r)

]]

. (5.19)

The intuition is that a golden run Pi(p, α) calls runs Qi−1,σyw at stages v <
q(r + 1), where the use w of the underlying computation MA(σ)[t] is at most
q(r). By stage q(r+1) they have returned (unless cancelled), and they are waiting
up to stage q(r + 2) for an A�w change in order to be released (see Figure 5.4).
The overall weight that the run Pi(p, α) receives in this way is αŜ. Since the run
is golden αŜ < p, so if p/α = 2u then Ŝ < 2u.

Proof. We extend the proof of Theorem 5.4.1 with the machineM in place of U.
Choose a golden run Pi(p, α) by Lemma 5.4.9.
Claim. For each stage s, there is a stage t > s such that, for all σ < s, if
MA(σ)[t] ↓ with use w ≤ s then a run Qi−1,σyw has returned by the end of
stage t and is not released yet, that is, the run waits at (P2σ).
Let r ≥ s be the least stage by which Ar �s has settled. A run Qi−1,σyw such
that w ≤ s is never canceled after stage r. Therefore it returns by property (ii)
of a golden run. This proves the claim.

w ≤ q(r)
��

q(r + 1) q(r + 2)

Q released by
A�w change

Q returns
and waits

Q called,

�

Fig. 5.4. Illustration of the Main Lemma.
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Let q(0) = 0. If s = q(r) has been defined, let q(r + 1) be the least stage t > s
such that the condition of the claim holds (this can be determined effectively).
Let u ∈ N be the number such that p/α = 2u. We show that Ŝ < 2u. Suppose x

is least such that Aq(r+1)(x) �= Aq(r+2)(x). Then Av−1(x) �= Av(x) for some
stage v such that q(r + 1) < v ≤ q(r + 2). At stage q(r + 1), the measure of
the descriptions σ such that a run of a procedure Qi−1,σyw, x < w ≤ q(r) is
waiting at (P2σ) to be released is ĉM,A(x, r). Such a run is released at a stage v′,
q(r + 1) < v′ ≤ v, and a weight equal to its goal α · 2−|σ| is added to the set F
enumerated by Pi(p, α). So an overall weight of at least α · ĉM,A(x, r) is added
to F . Thus α · Ŝ < p, that is, Ŝ < 2u, otherwise the run Pi(p, α) would reach its
goal and return. �

The standard cost function characterizes the K-trivial sets

We remove the hypothesis that A be c.e. from Theorem 5.3.27.

5.5.2 Theorem. (Extends 5.3.27) The following are equivalent for a set A.
(i) A is K-trivial.
(ii) There is a computable approximation (Âr)r∈N of A that obeys the standard

cost function cK defined in (5.6).

Note that by (ii) and Fact 5.3.12, every K-trivial set A is ω–c.e. We will later improve
this in two ways. Firstly, in Corollary 5.5.4 we show that A is superlow. Secondly,
in 5.5.11 we find a computable approximation of A that changes as little as desired.

Proof. (ii) ⇒ (i): this is Theorem 5.3.10.
(i) ⇒ (ii): Fix some computable approximation (As)s∈N of A. We apply the
Main Lemma to the prefix-free oracle machine M such that MX(σ) attempts
to compute U(σ) (without using the oracle). In case the computation converges,
at this same stage it reads y = U(σ) bits of the oracle set, thereby making the
use y. Then it stops with output y.
Let 0 = q(0) < q(1) < . . . be the computable sequence of stages obtained from

the Main Lemma. Since use MA(σ)[s] 	 U(σ)[s] for each σ, s, we have

ĉM,A(z, r) =
∑

σ

2−|σ| [[MA(σ)[q(r + 1)] ↓ &

z < use MA(σ)[q(r + 1)] ≤ q(r)]]
=

∑

σ

2−|σ| [[z < U(σ)[q(r + 1)] ≤ q(r)]]

≥
∑

y

2−Kq(r+1)(y) [[z < y ≤ q(r)]].

The remainder of the proof is similar to the proof of Theorem 5.3.27. As before,
we write ĉK(z, q(r)) for the sum expression in the last line displayed above. Let
Âr = Aq(r+2) ∩ [0, r). For each x < r we have
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cK(x, r) =
∑

x<y≤r 2
−Kr(y) ≤ ĉK(x, q(r)).

Since ĉK(z, q(r)) ≤ ĉM,A(z, r), and using (5.18),
∑

r,x cK(x, r) [[r > 0 & x is least s.t. Âr−1(x) �= Âr(x)]]

≤∑
r,x ĉK(x, q(r)) [[r > 0 & x is least s.t. Aq(r+1)(x) �= Aq(r+2)(x)]] ≤ Ŝ < 2u.

Thus the computable approximation (Âr)r∈N of A obeys cK. �

The characterization of K-triviality by the standard cost function has interest-
ing consequences. Firstly, being K-trivial is intrinsically related to being c.e.:

5.5.3 Corollary. For each K-trivial set A, there is a c.e. K-trivial set C ≥tt A.

Proof. Some computable approximation (As)s∈N of A obeys cK. By Proposi-
tion 5.3.12, there is a computable function h such that for each y, As(y) for
s ≥ h(y) changes at most O(y2) times. In particular, A is ω-c.e. By Proposi-
tion 5.3.6 the c.e. change set C ≥tt A obeys cK. Then C is K-trivial. �

5.5.4 Corollary. Each K-trivial set A is superlow, that is, A′ ≤tt ∅′.
Proof. Since superlowness is downward closed under ≤T , it suffices to show that
the K-trivial c.e. set C ≥tt A obtained in Corollary 5.5.3 is superlow. But C is
low for K by Theorem 5.4.1, and hence superlow by Proposition 5.1.3.
One can also directly spell out the golden run construction sketched on page 207,

or use the Main Lemma to obtain a stronger result, Proposition 5.5.12. �

On the other hand, Exercise 5.2.10 shows that some c.e. superlow set is not K-
trivial. Alternatively, in Theorem 6.1.4 we will prove that there are superlow c.e.
sets A0,A1 such that A0 ⊕ A1 is Turing complete. Then at least one among the
sets A0, A1 is not K–trivial.
A lowness index for a set X is a number i such that X ′ = Φi(∅′). Results

obtained via the golden run method tend to be nonuniform since one would have
to know which run is golden in order to determine the required object (such as a
lowness index for A, or a bounded request set that demonstrates A is low for K).
The following results show that this non-uniformity is necessary. Corollary 5.5.4
is nonuniform even when the conclusion is merely lowness.

5.5.5 Proposition. One cannot effectively obtain a lowness index for A from a
pair (A, b), where A is a c.e. set that is K-trivial via b.

Proof. Otherwise, by Theorem 5.3.28 there would be an effective sequence
(Br, ir)r∈N of all the c.e. K-trivial sets and lowness indices for them. But such
a sequence does not exist, since a straightforward extension of Theorem 5.3.22
yields a set C ∈ K = M not Turing below any set Br. To prove this, one
meets requirements P〈e,r〉 : A �= ΦBr

e , and asks Σ0
1(Br) questions for requirement

P〈e,r〉. Since the lowness index for Br is given effectively, there is a total com-
putable function g(e, r, s) such that lim g(e, r, s) = 1 if the answers is “yes”, and
lim g(e, r, s) = 0 otherwise. �
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As a consequence, Theorem 5.4.1 is nonuniform as well.

5.5.6 Corollary. One cannot effectively obtain a constant d such that A is low
for K via d from a pair (A, b), where A is a c.e. set that is K-trivial via b.

Proof. If a c.e. set A is low for K, then, by the uniformity of Proposition 5.1.3,
a lowness index for A can be computed from a c.e. index for A and a constant
via which A is low for K. �

The nonuniformity in the particular proof of Theorem 5.4.1 given above is
easily detected: the constant via which A is low for K given by that proof is
u + e + 1, and both e and u depend on what the golden run is. This actually
proves that we cannot determine a golden run effectively from the given objects
in the construction.
In the following we summarize the properties of the class ofK-trivial sets within

the Turing degrees. Ideals in uppersemilattices were defined in 1.2.27, and the
effective listing (Ve)e∈N of the ω-c.e. sets in 1.4.5.

5.5.7 Theorem.

(i) The K-trivial sets induce an ideal K in the Turing degrees.
(ii) K is the downward closure of its c.e. members.
(iii) Each K-trivial set is superlow. K is a Σ0

3 ideal in the ω-c.e. T-degrees.
(iv) K is nonprincipal.

Proof. Theorems 5.4.1, 5.2.17 and Corollary 5.5.3 imply (i) and (ii). Fact 5.2.6
and Corollary 5.5.4 imply (iii). For (iv), assume that there is a degree b such
that K = [0,b]. Then b is c.e. by Corollary 5.5.3, and b is low by Theorem 5.5.4.
By Theorem 5.3.22 there is a ∈ K such that a �≤ b, contradiction. �

Nies proved that each proper Σ0
3 ideal in the c.e. Turing degrees has a low2 upper

bound (see Downey and Hirschfeldt 20xx). Then, by Theorem 5.5.3, there is a low2 c.e.
set E such that A ≤T E for each K-trivial set A.

Kučera and Slaman (20xx) built a low set B Turing above all the (c.e.) K-trivial sets.
By Theorem 5.3.22, such a set is not computably enumerable. Also see before 5.3.26.

5.5.8.� Problem. Are there c.e. Turing degrees a,b such that K = [0,a] ∩ [0,b]?
Such a pair of degrees is called an exact pair for the ideal. Each Σ0

3-ideal with a bound
below 0′ has an exact pair in the ∆0

2 Turing degrees by Shore (1981).

5.5.9 Exercise. There is no cost function that is non-increasing in the first argument
and characterizes the superlow sets in the sense of Theorem 5.5.2.

5.5.10 Exercise. (i) There is a 1-generic K-trivial set.
(ii) No Schnorr random set is K-trivial.

The number of changes �

Each K-trivial set A is superlow, that is, A′ is ω-c.e. We ask to what extent
the number of changes in a computable approximation for A can be minimized.
Thereafter we do the same for A′.
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5.5.11 Proposition. Let A ∈ K. For each order function h there is a com-
putable approximation (Ãr)r∈N of A such that Ãr(y) changes at most h(y) times.

Proof. Proposition 5.3.12 and Theorem 5.5.2 imply this result for some order
function h in O(y2). For the full result we modify the proof of (i)⇒(ii) in The-
orem 5.5.2. Let h̃(x) = (h(x)1/4). Let g be an increasing computable function
such that x ≤ g(h̃(x)) for each x, and there is c such that Kg(y)(y) ≤ 2 log y + c

for each y. (For instance, if h(x) = log x then g(y) ≥ 2y4
.)

We apply the Main Lemma to the prefix-free oracle machine M such that
MX(σ) attempts to compute y = U(σ); in the case of convergence, it reads g(y)
bits of the oracle, thereby making the use g(y), and then halts with output y. Let
Ãr(x) = Aq(r+2)(x) if g(h̃(x)) ≤ q(r), and Ãr(x) = 0 otherwise. Clearly (Ãr)r∈N

is a computable approximation of A. Suppose that r > 0 and Ãr−1(x) �= Ãr(x).
Then Aq(r+1)(x) �= Aq(r+2)(x) and, by the definition of g, x ≤ g(h̃(x)) ≤ q(r)
andKq(r)(h̃(x)) ≤ 2 log h̃(x)+c. ThusMA(σ)[q(r+1)]↓ with use at most q(r) for
some σ such that |σ| ≤+ 2 log h(x). So this change contributes at least εh̃(x)−2

to Ŝ for some ε > 0 independent of x. Then, since Ŝ <∞, the number of changes
of Ãr(x) is O(h̃2(x)). Since h̃2(x) ≤√

h(x), this means that for almost all x the
number of changes is at most h(x). We are done after mending the approximation
(Ãr)r∈N for finitely many x. �

As a consequence, we can choose a polynomial time truth-table reduction in Corol-
lary 5.5.3, namely, the truth table for input x can be computed on a Turing machine in
time polynomial in log x. Moreover, for a given order function h such that h(x) ≤ log x

and h(x) itself can be computed in time polynomial in log x, we can ensure there are at
most h(x) queries. To see this, choose a computable approximation (Ãr)r∈N of A for h

as above, let C be its change set. Note that the reduction procedure of A to C in more
detail is as follows: on input x, let i∗ be the greatest i < h(x) such that 〈x, i〉 ∈ C. If i∗

is even, then A(x) = 1−A0(x). If i∗ is odd or there is no such i∗, then A(x) = A0(x).
Since h(x) ≤ log x, all the queries 〈x, i〉 for i < h(x) and hence the whole truth table
can be determined in time polynomial in log x.
As a further application of the Main Lemma, we strengthen Corollary 5.5.4:

for each K-trivial set A, the number of changes in an appropriate computable
approximation to A′(m) is O(m log2m). We could base the definition of the
Turing jump on some other universal Turing program, because the result holds
in fact for each set Z that is c.e. relative to A.

5.5.12 Proposition. (Extends 5.5.4) Let A be K-trivial. Then, for each e, the
set Z = WA

e is ω-c.e., and in fact there is a computable approximation (Zr)r∈N

of Z such that for each m, Zr(m) changes at most O(m log2m) times.

Proof. Recall that WA
e = domΦA

e . We apply the Main Lemma 5.5.1 to the ora-
cle prefix-free machine given byMX(σ) 	 ΦX

e (U(σ)). By Proposition 2.2.8, there
is a computable function p and a constant c such that for eachm, Up(m)(σm) = m
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for some U-description σm such that |σm| ≤ logm + 2 log logm + c. To define
the computable approximation (Zr)r∈N, if r ≥ p(m) and

ΦA
e (m)[q(r + 1)]↓ with use ≤ q(r)

(and hence MA(σm)[q(r + 1)] ↓ with use ≤ q(r)), then declare Zr(m) = 1,
otherwise Zr(m) = 0.
If Zr(m) = 1 and A changes below the use of ΦA

e (m)[q(r + 1)] between the
stages q(r + 1) and q(r + 2), then 2−|σm| ∼ 1/(m log2m) is added to Ŝ. Thus
limrZr(m) = Z(m) and the number of changes of Zr(m) is in O(m log2m).

�

For each order function h, the class of c.e. sets such that A′ can be approximated
with at most h(x) changes contains a promptly simple set by Theorem 8.4.29 and
Corollary 8.4.35. However, if h grows sufficiently slowly, this class is a proper subclass
of the c.e. K-trivial sets by Theorems 8.5.1, 8.4.34, and Corollary 8.5.5. Thus, for a c.e.
K-trivial set A in general, the number of changes in an approximation to A′ cannot be
decreased arbitrarily.

5.5.13 Exercise. (Barmpalias, Downey and Greenberg) Let h be an order function
such that

∑
m 1/h(m) < ∞. Extend 5.5.12 to the case of the function h instead of

λm.m log2 m.

ΩA for K-trivial A

In our next application of the Main Lemma, we characterize the K-trivial sets
in terms of the operator Ω: if A is ∆0

2, then A is K-trivial ⇔ ΩA is left-c.e. (the
implication “⇐” follows from Theorem 5.1.22). The results in this subsection
are due to Downey, Hirschfeldt, Miller and Nies (2005).
By Definition 3.4.2, ΩA

M = λ[domMA)]≺ for a prefix-free oracle machine M .
We view U as a universal prefix-free oracle machine (as explained after Defini-
tion 3.4.2) and write ΩA for ΩA

U
.

5.5.14 Theorem. Let A be a set in ∆0
2. Then the following are equivalent.

(i) A is K-trivial.
(ii) A ≤T ΩA.
(iii) ΩA is left-c.e.
(iv) ΩA

U is left-c.e. for every optimal prefix-free oracle machine U .
(v) ΩA

M is difference left-c.e. for every prefix-free oracle machine M .

Proof. (i)⇒(v): We will define left-c.e. real numbers α, β such that ΩA
M = α−β.

Applying the Main Lemma 5.5.1 to the machine M we obtain a computable
sequence of stages 0 = q(0) < q(1) < . . .; for the duration of this proof, we will
write MA(σ)↓ [q(r + 1)] if MA(σ) converges at stage q(r + 1) with use ≤ q(r),
and MA(σ) ↑ [q(r + 1)] otherwise. The idea is roughly that α is the sum of the
ΩA

M -increases, while β is the sum of the ΩA
M -decreases, measured only at stages

of the form q(r). More precisely, for each σ, r, let
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ασ,r =

{
2−|σ| ifMA(σ)↑ [q(r)] & MA(σ)↓ [q(r + 1)]
0 otherwise

βσ,r =

{
2−|σ| ifMA(σ)↓ [q(r + 1)] & MA(σ)↑ [q(r + 2)]
0 otherwise.

Since the sum Ŝ defined in (5.18) is finite, ∀∞r [ασ,r = βσ,r = 0] for each σ. Let

α =
∑

σ

∑
r ασ,r and β =

∑
σ

∑
r βσ,r,

then β ≤ Ŝ < ∞. Thus α − β =
∑

σ

∑
r(ασ,r − βσ,r). (We use the fact that

the difference operation: R× R→ R is continuous. So far we have not excluded
the possibility that α =∞.) Only the last convergent computation with input σ
counts in ΩA

M , hence

ΩA
M =

∑

σ

2−|σ| [[∃r (ασ,r �= 0 & ∀t ≥ r βσ,t = 0)]]

=
∑

σ

∑

r

(ασ,r − βσ,r)

= α− β.
In particular α <∞. Clearly α and β are left-c.e.
(v)⇒(iv): If U is optimal then ΩA

U is ML-random (even relative to A) and dif-
ference left-c.e., so by Proposition 3.2.32, ΩA

U is left-c.e. or right-c.e. Now ΩA
U is

certainly left-c.e. relative to A. So if ΩA
U is right-c.e., we have ΩA

U ≤T A, contrary
to Fact 3.4.5. Thus ΩA

U is left-c.e.
(iv)⇒(iii): immediate.
(iii)⇒(ii): If ΩA is left-c.e. then ΩA ≡T ∅′ by Corollary 3.2.31. Thus A ≤T ΩA

since we are assuming that A is ∆0
2.

(ii)⇒ (i): If A ≤T ΩA then A is a base for ML-randomness, and hence K-trivial
by Theorem 5.1.22. �

The hypothesis that A ∈ ∆0
2 is needed because there is a ML-random set Z such that

ΩZ is left-c.e. by Theorem 8.1.2.
The difference left-c.e. real numbers form a subfield D of R by 1.8.16. Since K induces

an ideal in the Turing degrees, the K-trivial real numbers form a subfield of R as well
(see before 1.8.16). By the following, this field is in fact a subfield of D.

5.5.15 Corollary. For each K-trivial set A, the real number 0.A is difference left-c.e.

Proof. Let M be the prefix-free oracle machine such that
MY (σ) ↓↔ ∃n [σ = 0n1 & Y (n) = 1]. Then ΩY

M = 0.Y for each Y . Thus 0.A is
difference left-c.e. by Theorem 5.5.14. �

By a result of Raichev (2005), all these fields are real closed, that is, each polynomial
of odd degree with coefficients in the field assumes the value 0.
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5.5.16 Exercise. Let U be a universal prefix-free machine and let A be a set (not
necessarily ∆0

2). Then A is K-trivial ⇔ A ≤T ΩA
U .

Each K-trivial set is low for weak 2-randomness

In Theorem 5.1.33 we proved that Low(W2R,MLR) = Low(MLR), which im-
plies that Low(W2R) ⊆ Low(MLR). Here we show that actually Low(W2R) =
Low(MLR). This is surprising because the two randomness notions are quite
different. Two proofs of the containment Low(MLR) ⊆ Low(W2R) were found
independently. The first, due to Nies, uses the Main Lemma 5.5.1. The second,
due to Kjos-Hanssen, Miller and Solomon (20xx), relies on Theorem 5.6.9 below
and will be discussed after having proved that theorem.
In Remark 5.6.19 we briefly address lowness for 2-randomness.

5.5.17 Theorem. The following are equivalent for a set A:
(i) A is low for generalized ML-tests in a uniform way. That is, given a

null Π0
2(A) class U , one can effectively obtain a null Π0

2 class V ⊇ U .
(ii) A is low for weak 2-randomness.
(iii) A is K-trivial.

Note that the condition (i) appears to be stronger than (ii). It states that each
test for weak 2-randomness relative to A can be covered by a test for unrel-
ativized weak 2-randomness. The difference between being lowness for a test
notion and lowness for the corresponding randomness notion will be discussed
after Definition 8.3.1.

Proof. (i) ⇒ (ii): Immediate.
(ii) ⇒ (iii): This follows from Theorem 5.1.33 and the fact that each set that is
low for ML-randomness is K-trivial.
(iii) ⇒ (i): In fact, if A is K-trivial, we obtain a conclusion that appears even
stronger than (i) as it applies to Π0

2(A) classes in general:

(i ′) Given a Π0
2(A) class U , one can effectively obtain a Π0

2 class V ⊇ U such
that λV = λU .

In (i ′) it actually suffices to cover Σ0
1(A) classes.

5.5.18 Lemma. (J. Miller) Suppose that for each Σ0
1(A) class G there is a Π0

2
class S such that S ⊇ G and λS = λG. Then (i ′) holds for A.

Subproof. Let NX
e = [WX

e ]≺. Then (NX
e )e∈N is an effective listing of the Σ0

1(X)
classes. Let

NX =
⋃

e 0
e1NX

e

(where for C ⊆ 2N and x ∈ {0, 1}∗ we denote by xC the class {xZ : Z ∈ C}). The
class NX is an effective disjoint union of all the NX

e .
By the hypothesis for G = NA there is a Π0

2 class S ⊇ NA of the same
measure as NA. For each i ∈ N let Si = {Z : 0i1Z ∈ S}, then Si is a Π0

2 class
uniformly in i. Given a Π0

2(A) class U , one can effectively obtain a computable



224 5 Lowness properties and K-triviality

function p such that U =
⋂

eN
A
p(e) by Remark 1.8.58. Further, Sp(e) ⊇ NA

p(e)

and 2−p(e)−1λ(Sp(e) − NA
p(e)) ≤ λ(S − NA) = 0, hence λSp(e) = λNA

p(e). Let
V =

⋂
e Sp(e), then V ⊇ U and the Π0

2 class V was obtained effectively from U .
Also λV = λU since V − U ⊆ ⋃

e(Sp(e) −NA
p(e)). �

To conclude the proof of (iii)⇒ (i ′), we show that for each K-trivial set A the
hypothesis of Lemma 5.5.18 holds. By Fact 1.8.26 relative to A there is a c.e.
index d such that G = [WA

d ]≺, and WX
d is a prefix-free set for each X. Consider

a prefix-free oracle machine MX such that, for each σ,

MX(σ)↓ ↔ σ ∈WX
d (5.20)

with the same use on both sides. By Main Lemma 5.5.1 there is a constant u ∈ N

and a computable sequence of stages q(0) < q(1) < . . . such that (5.18) holds.
We define a sequence (Un)n∈N such that Un is a Σ0

1 class uniformly in n, and
S =

⋂
n Un is the required Π0

2 class. The idea is to put into Un all [σ] such that
the computation MA(σ) converges with a use of at most q(r) at a stage q(r+1)
where r+ 1 ≥ n. If the computation is stable then σ ∈WA

d . The measure of the
computations that are not stable tends to 0 with n because of (5.18).
Here are the details on how to enumerate the Σ0

1 classes Un: for each r,
(�) if MA(σ)[q(r + 1)] ↓ and use MA(σ)[q(r + 1)] ≤ q(r),
put [σ] into Un,r+1 for each n ≤ r + 1.

Clearly G ⊆ Un for each n, since σ ∈ WA
d implies that for some r there is a

stable computation MA(σ)[q(r)]. Thus G ⊆ S. To show that λ(S−G) = 0, note
that for each ε > 0 there is n such that Ŝn ≤ ε, where

Ŝn =
∑

x,k ĉM (x, k) [[n+ 1 ≤ k & x is least s.t. Aq(k+1)(x) �= Aq(k+2)(x)]],
and ĉM,A(x, k) is defined in (5.19) on page 216. Suppose there is a number r
such that the computation MA(σ)[q(r + 1)] with use at most q(r) has put [σ]
into Un,r+1. If [σ] �⊆ G then there is k ≥ n + 1, r such that this computation
is destroyed by an A-change at a stage t ∈ [q(k + 1), q(k + 2)). Then 2−|σ| is
included in the sum Ŝn. Since

Un −G ⊆
⋃
{[σ] : σ is as in (�) & [σ] �⊆ G}

this implies that λ(Un −G) ≤ ε. Hence λS = λG. �

5.5.19.� Problem. Characterize lowness for Demuth randomness.

5.6 The weak reducibility associated with Low(MLR)
A reducibility is a preordering on 2N that specifies a way to compare sets with
regard to their computational complexity (Section 1.2). Informally, we will say
that a reducibility ≤W is weak if A ≤T B implies A ≤W B (as opposed to strong
reducibilities like ≤tt that imply ≤T ). We also ask that ≤W is Σ0

n for some n as a
relation on sets (often n = 3), and X ′ �≤W X for each set X. Thus, we want ≤W

to be somewhat close to ≤T ; for instance, arithmetical reducibility, defined by
X ≤ar Y ↔ ∃nX ≤T Y

(n), does not qualify. In general, there are no reduction
procedures for a weak reducibility.
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Two of the classes introduced in Section 5.1, being low for K and being low
for ML-randomness, form the least degrees of weak reducibilities denoted ≤LK

and ≤LR, respectively. For further examples of weak reducibilities, see ≤cdom
in Exercise 5.6.8 (each A-computable function is dominated by a B-computable
function) and ≤JT in Definition 8.4.13. An overview of weak reducibilities is
given in Table 8.3 on page 363. The intuition behind a weak reducibility relation
A ≤W B is that B can only understand a small aspect of the abilities of A.
For instance, A ≤cdom B means that B can emulate the growth of functions
computed by A, and A ≤JT B that B can approximate the values of JA. In
contrast, if A ≤T B then B can emulate everything A does.
The K-trivial sets form the least degree of a preordering ≤K .

5.6.1 Definition. For sets A,B, let
(i) A ≤LK B ↔ ∃d ∀y [KB(y) ≤ KA(y) + d]
(ii) A ≤LR B ↔ MLRB ⊆ MLRA

(iii) A ≤K B ↔ ∃b ∀nK(A�n) ≤ K(B �n) + b.

Informally, A ≤LK B means that up to a constant, one can compress a string
with B as an oracle at least as well as with A, and A ≤LR B means that,
whenever A can find “regularities” in a set Z, then so can B. By these definitions,
A is low for K iff A ≤LK ∅, and A is low for ML-randomness iff A ≤LR ∅.
For each X we have X ′ �≤LR X because ΩX is not ML-random relative to X ′

but ΩX is ML-random relative to X. If A is low for ML-randomness relative
to X, namely, MLR(A ⊕ X) = MLR(X), then A ≤LR X. The converse fails in
general; see Remark 5.6.24(iii) for a counterexample. In particular, ⊕ does not
determine a join in the LR-degrees.
By Exercise 3.4.4, ≤T implies ≤LK . The converse fails since some incomputable

set is low for K. By Schnorr’s Theorem 3.2.9 in relativized form, ≤LK implies
≤LR. Note that, while the definition of ≤LK is in Σ0

3 form, the definition of
≤LR is not even in arithmetical form as it involves universal quantification over
sets. Nonetheless, in Theorem 5.6.5 we will show that ≤LR is in fact equivalent
to ≤LK . This yields an alternative proof of the result in Section 5.1 that the sets
that are low for K coincide with the sets that are low for ML-randomness.
Further results in this section show that ≤LR is rather different from ≤T . For

instance, the set {Z : Z ≤LR ∅′} is uncountable. (This is possible only because
there are no reduction procedures.) The equivalence relation ≡LR is somewhat
close to ≡T : for example, A ≡LR B implies that A is K-trivial in B and B is K-
trivial in A (5.6.20), and therefore A′ ≡tt B

′. Thus each LR-degree is countable,
while the initial interval below the LR-degree of ∅′ is uncountable.
Each weak reducibility ≤W determines a lowness property {A : A ≤W ∅} and,

dually, a highness property {C : ∅′ ≤W C}. We will characterize the highness
property associated with ≤LR by a domination property, being uniformly a.e.
dominating.

5.6.2 Remark. Note that A is K-trivial iff A ≤K ∅. The preordering ≤K com-
pares the degree of randomness of sets: if A ≤K B then B is “at least as random”
as A. As an alternative, Miller and Yu (2008) compared the degree of randomness
of sets by introducing van Lambalgen reducibility:
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A ≤vL B ↔ ∀Y ∈ MLR [A ∈ MLRY → B ∈ MLRY ].

Intuitively, B is ML-random in at least as many sets Y ∈ MLR as A is (it is
not known whether the condition that Y ∈ MLR actually makes a difference).
Interestingly, they showed that ≤K implies ≤vL on MLR (see Exercise 8.1.17).
The least ≤vL degree consists of the sets that are not ML-random, because any

ML-random set A is ML-random in ΩA by Theorem 3.4.6. If A and B are ML-
random then A ≤vL B ↔ A ≥LR B by 3.4.6., so ≤vL is actually just another
way to look at ≥LR on the ML-random sets.

Preorderings coinciding with LR-reducibility

We characterized the class Low(MLR) by effective topology in Corollary 5.1.10.
This is a special case of characterizing the underlying weak reducibility: A ≤LR B
means that we can cover each Σ0

1(A) class of (uniform) measure < 1 by a Σ0
1(B)

class of measure < 1. We will encounter several variants of such covering proce-
dures. For instance, in Lemma 5.6.4 we cover “small” A-c.e. sets by “small” B-c.e.
sets, and in Theorem 5.6.9 we cover each Π0

2(A) class by a Π0
2(B) class of the

same measure. Theorem 5.5.17 already involved the special case of this covering
procedure where B = ∅. A summary of the covering procedures in this chapter
is given in Table 5.2 on page 229. Lowness for C-null classes (8.3.1) is another
example. See 1.8.59 for the definition of Σ0

n(C) classes and Π0
n(C) classes.

5.6.3 Lemma. A ≤LR B ⇔ each Σ0
1(A) class G such that λG < 1 is contained

in a Σ0
1(B) class S such that λS < 1.

Proof. While a mere relativization of Theorem 5.1.9 and Corollary 5.1.10 is not
enough, it suffices to extend the notation in their statements and proofs. The
statement “A is low for ML-randomness” becomes “A ≤LR B”, and “S is open
and c.e.” becomes “S is a Σ0

1(B) class”. �

Kjos-Hanssen, Miller and Solomon (20xx) proved that ≤LR is equivalent to
≤LK . We mostly follow the exposition of this result due to Simpson (2007).
For a function f : N → N, a set I ⊆ N is called f-small if

∑
n∈I 2

−f(n) <
∞. (Equivalently, µf (I) is finite where µf is the measure on P(N) given by
µf ({n}) = 2−f(n).) The main work is in the following lemma, where the idea is
once again that A ≤LR B means we can cover A-c.e. objects by B-c.e. objects
of the same type. We only need one implication; for the converse see 5.6.7.

5.6.4 Lemma. A ≤LR B ⇒ for each computable function f , each f-small A-
c.e. set I is contained in an f-small B-c.e. set R.

Proof. We use a fact from analysis: for a sequence of real numbers (an)n∈N such
that 0 ≤ an < 1, we have

∞∑

n=0

an <∞ ↔
∞∏

n=0

(1− an) > 0. (5.21)
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To see this let g(x) = − ln(1 − x) for x ∈ [0, 1)R. Since ey ≥ 1 + y for each y ∈ R,
we have x ≤ g(x) for each x. On the other hand g′(x) = 1/(1 − x), so g′(0) = 1 =
limx→0(g(x)− g(0))/x. Hence there is ε > 0 such that g(x) ≤ 2x for each x ∈ [0, ε).

If the sequence (an)n∈N does not converge to 0 then both sides in (5.21) are false.
Otherwise, we may as well assume that an < ε for each n. Then

∏∞
n=0(1− an) > 0 ↔ ∃c ∈ R∀k ln

∏k
n=0(1− an) > c

↔ ∃d ∈ R∀k ∑k
n=0− ln(1− an) < d

↔ ∃d ∈ R∀k ∑k
n=0 an < d

↔ ∑∞
n=0 an <∞.

We use (5.21) to infer Lemma 5.6.4 from the implication “⇒” of Lemma 5.6.3.
We may assume f(n) > 0 for each n, for we can replace f by λn.f(n) + 1
without changing the notion of f -smallness. For each n, let g(n) =

∑
i<n f(i),

and let En be the clopen set {Z : ∃i ∈ [g(n), g(n + 1)) [Z(i) �= 0]}. Note that
λEn = 1−2−f(n). Also λ(

⋂
n∈X En) =

∏
n∈X λEn for each X ⊆ N. (This is easy

to check for finiteX; in the general case, λ(
⋂

n∈X En) = limmλ(
⋂

n∈X,n≤mEn) =
limm

∏
n∈X,n≤m λEn =

∏
n∈X λEn. We use that the events En are independent

in the language of probability theory.)
Since I is A-c.e., the class P =

⋂
n∈I En is Π0

1(A). For we may assume that
I �= ∅, so there is a function h ≤T A with range I; then P = {Z : ∀k Z ∈ Eh(k)}.
Since I is f -small, by (5.21) we have λP =

∏
n∈I(1−2−f(n)) > 0. By Lemma 5.6.3

choose a Π0
1(B) class Q ⊆ P such that λQ > 0. Let R = {n : Q ⊆ En}. Then R

is B-c.e., I ⊆ R, and R is f -small, by (5.21) and because
∏

n∈R(1− 2−f(n)) =
∏

n∈R λ(En) = λ
⋂

n∈REn ≥ λQ > 0,

by the independence of the events En. �

5.6.5 Theorem. For each pair of sets A,B we have A ≤LK B ⇔ A ≤LR B.

Proof. ⇒: This follows from the relativized form of Schnorr’s Theorem 3.2.9:
Z ∈ MLRB ↔ ∀nKB(Z �n) ≥+ n → ∀nKA(Z �n) ≥+ n ↔ Z ∈ MLRA.
⇐: Let f be the computable function given by f(〈r, y〉) = 2−r. The set I =
{〈|σ|, y〉 : U

A(σ) = y} is a bounded request set relative to A and hence f -small.
So by Lemma 5.6.4, I is contained in an f -small B-c.e. set R̃. Let R ⊆ R̃ be
a bounded request set relative to B such that R̃ − R is finite. Then, applying
to R the Machine Existence Theorem 2.2.17 relative to B, we may conclude that
∀y KB(y) ≤+ KA(y). �

Exercises.

5.6.6. Show that A ≤LK B ⇔ ∀n KB(A�n) ≤+ KA(n).

5.6.7. Prove the converse of Lemma 5.6.4.

5.6.8. Consider the weak reducibility defined by A ≤cdom B if each A-computable
function is dominated by a B-computable function. Show that ∅′ ≤cdom C ⇔ ∅′ ≤T C.
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A stronger result under the extra hypothesis that A ≤T B
′

If one can approximate A computably in B, then A ≤LR B implies that each
Σ0

1(A) class G can be approximated from above by a sequence of uniformly Σ0
1(B)

classes (Un)n∈N, in the sense that G ⊆ Un and λ(Un − G) tends to 0. In other
words, G ⊆ S for a Π0

2(B) class S of the same measure as G. This result of
Kjos-Hanssen, Miller and Solomon (20xx) will be applied in Theorem 5.6.30 to
prove the coincidence of two highness properties.
Note that A ≤LR B does not in general imply A ≤T B

′. (For instance, let B =
∅′, and note that #{A : A ≤LR ∅′} = 2ℵ0 by Theorem 5.6.13 proved shortly.)
However, A ≤LR B does imply A ≤T B

′ if B is low for Ω (Corollary 8.1.10), and
thus for almost all sets B in the sense of the uniform measure.

5.6.9 Theorem. The following are equivalent for sets A and B.
(i) A ≤LR B and A ≤T B

′.
(ii) For each Σ0

1(A) class G there is a Π0
2(B) class S ⊇ G such that λS = λG.

(iii) Given a Π0
2(A) class U one can effectively obtain a Π0

2(B) class V ⊇ U
such that λV = λU .

By Exercise 5.6.10 A ≤LR B and A ≤T B
′ implies A′ ≤T B

′. Thus the theorem
characterizes the intersection of the weak reducibility relations A ≤LR B and
A′ ≤T B

′ for sets A and B.
The implication (iii)⇒(i) in Theorem 5.5.17 states that each K-trivial set is

low for generalized ML-tests. Since each set in Low(MLR) is ∆0
2, the implication

(i)⇒(iii) in the foregoing theorem for B = ∅ shows that each set in Low(MLR) is
low for generalized ML-tests. Thus we have obtained an alternative proof of this
implication (iii)⇒(i) in Theorem 5.5.17: instead of using the Main Lemma 5.5.1
it relies on Lemma 5.6.4.

Proof. (ii)⇒(iii): this is similar to the proof of Lemma 5.5.18, replacing Π0
2 classes

by Π0
2(B) classes.

(iii)⇒(i): A ≤LR B by Lemma 5.6.3. To show A ≤T B′, recall from page 12
that ≤L is the lexicographical order on sets, and note that U = {Z : Z ≤L A}
is a Π0

1(A) class such that λU = 0.A. Choose a Π0
2(B) class V ⊇ U such that

λV = λU . By Exercise 1.9.22 λV is left-Π0
2(B), and hence 0.A = λV is right-c.e.

relative to B′. Applying the same argument to N − A instead of A shows that
1− 0.A is right-c.e. relative to B′. Therefore A ≤T B

′.
(i)⇒(ii): Although the two proofs were found independently, the present proof
follows the same outline as the proof of (iii)⇒(i) in Theorem 5.5.17. (In fact, that
proof shows (ii) of the present theorem under the hypothesis that A is K-trivial
in B, which is stronger than (i) of the present theorem by 6.3.16.)
Recall that WX

e = domΦX
e . Let d be a c.e. index such that G = [WA

d ]≺ and
WX

d is an antichain for each oracle X. The plan is as follows:

(a) translate the setting of Σ0
1(A) classes into the setting of A-c.e. sets,

(b) apply Lemma 5.6.4 to obtain a B-c.e. set,
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(c) translate the setting of B-c.e. sets back into the setting of Σ0
1(B) classes to

define a sequence (Un)n∈N of uniformly Σ0
1(B) sets such that for the Π0

2(B)
class S =

⋂
n Un we have S ⊇ G and λS = λG.

We carry out the steps in detail.
(a) The set I = {〈A�u, x〉 : ΦA

d (x)↓ with use u} is A-c.e.
(b) Note that

∑
σ,x 2

−|x| [[〈σ, x〉 ∈ I]] = λG ≤ 1, so by Lemma 5.6.4 for the
function f(〈σ, x〉) = 2−|x|, there is a B-c.e. set R ⊇ I such that

∑
σ,x 2

−|x| [[〈σ, x〉 ∈ R]] <∞.

Since A ≤T B
′ there is a B-computable approximation (Ar)r∈N of A. For each n

let

Fn = {〈σ, x〉 ∈ R : ∃r ≥ n [σ ≺ Ar & Φσ
d,r(x)↓ with use |σ|]}.

Then the sequence (Fn)n∈N is uniformly c.e. in B and I ⊆ Fn ⊆ R for each n.
To see that I =

⋂
n Fn, given 〈σ, x〉, let n be a stage such that Ar �|σ|= An �|σ|

for each r ≥ n. If 〈σ, x〉 ∈ Fn then σ ≺ A and hence 〈σ, x〉 ∈ I.
(c) Let Un = [{x : ∃σ 〈σ, x〉 ∈ Fn}]≺ be the open set generated by the projection
of Fn on the second component (these open sets correspond to the sets Un in
the proof of (iii)⇒(i) of Theorem 5.5.17). Since I ⊆ Fn for each n, we have
G ⊆ S :=

⋂
n Un. Note that S is Π0

2(B). To show λS = λG, fix ε > 0. Let k be
so large that

∑
σ,x 2

−|x|[[〈σ, x〉 ∈ R & 〈σ, x〉 ≥ k]] < ε,

and let n be so large that, for all 〈σ, x〉 < k, if 〈σ, x〉 �∈ I then 〈σ, x〉 �∈ Fn. If
Y ∈ Un − G then there is 〈σ, x〉 ∈ Fn − I such that x ≺ Y , so λ(Un − G) ≤∑

σ,x 2
−|x|[[〈σ, x〉 ∈ Fn − I]] ≤

∑
σ,x 2

−|x|[[〈σ, x〉 ∈ R & 〈σ, x〉 ≥ k]] < ε. �

5.6.10 Exercise. Show that (i) in Theorem 5.6.9, namely A ≤LR B and A ≤T B′,
implies A′ ≤T B′.

Table 5.2. Overview of the covering procedures. Sets A and B are given.

Condition described Given Covered by Reference

A ≤LR ∅ Π0
2(A) class Π0

2 class of 5.5.17
the same measure

A ≤LR B non-conull non-conull 5.6.3
Σ0

1(A) class Σ0
1(B) class

A ≤LR B (f -small A-c.e. set) (f -small B-c.e. set) 5.6.4
A ≤LR B & A ≤T B

′ Π0
2(A) class Π0

2(B) class 5.6.9
the same measure

∅′ ≤LR B Σ0
2 class Π0

2(B) class of 5.6.30
the same measure
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The size of lower and upper cones for ≤LR �

If “size” is interpreted by “measure” then ≤LR behaves like ≤T in that each
lower cone and each nontrivial upper cone is null (the second result is an analog
of Theorem 5.1.12). In contrast, if size means cardinality, some ≤LR lower cone
has the maximum possible size 2ℵ0 , while of course each Turing lower cone is
countable.

5.6.11 Fact. The class {X : X ≤LR A} is null for each A.

Proof. If X ∈ MLRA then X �≤LR A since X is not ML-random relative to
itself. This suffices since MLRA is conull. �

5.6.12 Fact. If A �∈ Low(MLR) then {Z : A ≤LR Z} is null.

Proof. (Stephan) Let X ∈ MLR − MLRA. If Z ∈ MLRX then X ∈ MLRZ by
Theorem 3.4.6, so A �≤LR Z. Again this suffices since MLRX is conull. �

Note that Z ≤LR ∅′ iff each 2-random set is in MLRZ . This class is much larger
than the class of ∆0

2 sets by a result of Barmpalias, Lewis and Soskova (2008).

5.6.13 Theorem. #{Z : Z ≤LR ∅′} = 2ℵ0 .

Proof. We prove the result for the equivalent reducibility ≤LK . We may assume
that ΩX ≤ 3/4 for each X by arranging that the oracle prefix-free machine M2
never halts (see Theorem 2.2.9). For the duration of this proof, contrary to the
definition on page 14, we will write U

α(σ) = y if U
α
|α|(σ) = y, namely the

computation halts within |α| steps. Let Ωα =
∑

σ 2−|σ|[[Uα(σ)↓ & |σ| ≤ |α|]].
5.6.14 Fact. Let k ∈ N and γ ∈ {0, 1}∗. Then ∃α ! γ ∀β ! α [Ωβ −Ωα ≤ 2−k].

Subproof. If the fact fails for k, γ, we can build a sequence γ � α0 ≺ α1 ≺ . . .
such that Ωαi+1 − Ωαi > 2−k for each k, which contradicts Ω

⋃

i αi ≤ 1. �

We define a ∆0
2 tree B ⊆ 2N such that #Paths(B) = 2ℵ0 and Z ≤LK ∅′

for each Z ∈ Paths(B). We represent B by a monotonic one-one ∆0
2 function

F : {0, 1}∗ → {0, 1}∗ in the sense that B = {α : ∃η α � F (η)}. Thus, the class
Paths(B) is perfect, and the range of F is the set of branching nodes of B.
We build a single bounded request set L relative to ∅′ that can simulate the
U

Z-descriptions for any path Z of B. For this we have to choose the branching
nodes sufficiently far apart. Define F inductively:
Let F (∅) be the least string α such that ∀β ! α [Ωβ − Ωα < 2−4]. If n > 0 and
F (η) has been defined for all strings η of length n − 1, then, for a ∈ {0, 1}, let
F (ηa) be the least string α ! F (η)a such that ∀β ! α [Ωβ − Ωα < 2−2n−4].
Note that F ≤T ∅′ since the function α→ Ωα is computable. Now let L =

⋃
n Ln,

where Ln is the set of pairs 〈|σ|, y〉 such that U
F (η)(σ) = y, for some η of

length n such that U
F (η′)(σ)↑ for each η′ ≺ η. Clearly L is c.e. in ∅′. For any set

S ⊆ N×{0, 1}∗, let µ(S) = ∑
r 2

−r [[〈r, y〉 ∈ S]]. We have to show that µ(L) ≤ 1.
Now µ(L0) ≤ 3/4, and for n > 0, µ(Ln) ≤ 2n2−2n−2 = 2−n−2, since for each
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string η of length n − 1, if γ = F (η), then for each extension δa = F (ηa),
a ∈ {0, 1}, we have Ωδa − Ωγ ≤ 2−2n−2. Thus µ(L) ≤ 3/4 +

∑
n>0 2

−n−2 ≤ 1.
If Z ∈ Paths(B) and U

Z(σ) = y then 〈|σ|, y〉 ∈ L. Thus ∀y [KZ(y) ≤ K∅′
(y)+d]

where d is the coding constant for L, and hence Z ≤LK ∅′. �

Stronger results have been obtained: #{Z : Z ≤LR B} = 2ℵ0 whenever B �∈ GL2

(Barmpalias, Lewis and Soskova, 2008) and whenever B ∈ ∆0
2 − Low(MLR) (Barm-

palias, 20xx). On the other hand, if B ∈ Low(Ω) then Z ≤LR B implies Z ≤T B′ by
Corollary 8.1.10, so #{Z : Z ≤LR B} ≤ ℵ0 .

The following lowness property may be interesting: A is an LR-base for ML-random-
ness if A ≤LR Z for some Z ∈ MLRA. If A is ML-random then A is not such a base
because Z ∈ MLRA implies A ∈ MLRZ , so A �≤LR Z. Barmpalias, Lewis and Stephan
(2008) have built a perfect Π0

1 class P such that Y ≤LR ∅′ for each Y ∈ P , and also
P ∩ Low(MLR) = ∅. Barmpalias has pointed out that P contains a set A that is low
for Ω by 8.1.3, so A is an LR-base for ML-randomness while A �∈ Low(MLR). This
contrasts with Theorem 5.1.22.

5.6.15.� Exercise. (Barmpalias, Lewis and Stephan 2008, Thm. 16) Show that for
each incomputable W there is A ≡LR W such that A |T W .
5.6.16.� Exercise. Show that some weakly 2-random set Z satisfies Z ≤LR ∅′.

Operators obtained by relativizing classes
We have introduced preorderings associated with the classes Low(MLR),
M (being low for K) and K (the K-trivial sets). Now we will view these classes
relative to an oracleX, thereby turning them into operators C : P(N)→ P(P(N)).
The classesM, Low(MLR), and K, respectively, yield the operators

M(X) = {A : ∃d ∀y KX(y) ≤ KA⊕X(y) + d} = {A : A⊕X ≡LK X},
Low(MLRX) = {A : MLRA⊕X = MLRX} = {A : A⊕X ≡LR X}, and
K(X) = {A : ∃b∀n [KX(A�n) ≤ KX(n) + b]}.

(Note that KX(A ⊕ X �2n) =+ KX(A �n) and KX(2n) =+ KX(n), so in the
definition of K(X) we could as well replace A by A⊕X for a proper relativiza-
tion.) The classes M(X) and Low(MLRX) are closed downward under ≤T for
each X. All the three operators C are degree invariant, namely, X ≡T Y implies
C(X) = C(Y ). This is clear forM and Low(MLR), since ≤T implies ≤LR.
In fact, the three operators coincide, because the results that the corresponding

classes coincide can be relativized. This yields further information on ≤LR. For
instance, each LR-degree is countable. The only known proof of this result is
via relativized K-triviality. Note that X ≡LR Y implies that K(X) = K(Y ).
Therefore C(X) only depends on the LR-degree of X.
We summarize some of the previous results in their relativized forms.

5.6.17 Theorem.

(i) K(X) is closed under ⊕ for each X.
(ii) There is a c.e. index e such that, for each X, WX

e ∈ K(X) and WX
e �≤T X,

and therefore X <T X ⊕WX
e ∈ K(X).
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(iii) We have M(X) = Low(MLRX) = K(X); in particular, K(X) is closed
downward under ≤T .

Proof. It is sufficient to note that the proofs of 5.2.17, 5.3.11, 5.1.22 and 5.4.1
can be carried out relative to the oracle X. �

In contrast, the following is more than a relativization of the statements of 5.5.3
and 5.5.4. Such a relativization would merely yield relativized truth-table reduc-
tions, where the oracle X is used first to compute the truth table and then to
answer queries in the truth-table. To prove versions of these corollaries for K(X)
with plain truth-table reductions, we have to look at their proofs.

5.6.18 Theorem.

(i) A ∈ K(X) ⇒ A ≤tt C for some C ∈ K(X) which is c.e. in X.
(ii) A ∈ K(X) ⇒ A′ ≤tt X

′.

Proof. (i) By Proposition 5.3.12 relative to X, there is an X-computable ap-
proximation (As)s∈N such that As(y) changes at most O(y2) times. Then the
change set C in the proof of Corollary 5.5.3 is in K(X), and C ≥tt A.
(ii) The proof of Corollary 5.5.4 relative to X shows that the change set C for
A satisfies (C ⊕ X)′ ≤tt X

′, because in the proof of Proposition 5.1.3 relative
to X, the use of the weak truth-table reduction for A′ ≤wtt ∅′ is bounded by a
computable function independent of X. Since A ≤tt C we have A′ ≤m C ′ ≤tt X

′.
Alternatively, one can view the proof of Proposition 5.5.12 relative to X. �

5.6.19 Remark. Note that Z is 2-random relative to A iff Z is ML-random inA′

(see 3.4.9). Thus, A is low for 2-randomness⇔ A′ ≡LR ∅′. By Theorem 5.6.17 this
class also coincides with {A : A′ ∈ K(∅′)}. Each low set is low for 2-randomness.
See Exercise 5.6.23 for more.

Studying ≤LR by applying the operator K
Let SLR be the operator given by

SLR(X) = {A : A ≤LR X}.
If A ⊕ X ≤LR X then A ≤LR X, so K(X) ⊆ SLR(X) for each X because
K(X) = Low(MLRX). Note that K(X) can be proper subclass of SLR(X): for
instance SLR(∅′) is uncountable by Theorem 5.6.13 while K(X) is countable for
each X (also see 5.6.24(iii) below). In contrast, we have:

5.6.20 Lemma. A ≡LR B ⇔ A ∈ K(B) & B ∈ K(A).
Proof. ⇐: This is immediate since K(X) ⊆ SLR(X) for each X.
⇒: Note that KA(A�n) ≤+ KA(n) for each n. By Theorem 5.6.5 A ≡LK B, so
we may replace the oracle A by B in this inequality, which shows that A ∈ K(B).
Similarly B ∈ K(A). �

Together with Theorem 5.6.18(ii) we obtain:
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5.6.21 Corollary. For each pair of sets A,B, if A ≡LR B then A′ ≡tt B
′. In

particular, each LR-degree is countable. �

This contrasts with Theorem 5.6.13 that the LR-lower cone below ∅′ is of cardi-
nality 2ℵ0 . Since the union of fewer than 2ℵ0 countable sets has cardinality less
than 2ℵ0 , the cone below the degree of ∅′ in the LR-degrees is of cardinality 2ℵ0 .
In the Turing degrees each lower cone {b : b ≤ a} is countable (Fact 1.2.26).
Exercises. Show the following
5.6.22. (Barmpalias and Nies) The LR-degrees of the ML-random and the c.e. sets
have a singleton as an intersection, namely, the LR-degree of Ω: if Z is ML-random, A
is c.e., and Z ≡LR A, then ∅′ ∈ K(Z). In particular, Z ≡LR ∅′.
5.6.23. (i) Some nonlow c.e. set A is low for 2-randomness (See 5.6.19.).
(ii) If A is low for 2-randomness then A′′ ≡tt ∅′′ (A is superlow2)

Comparing the operators SLR and K �

Recall from the chapter introduction that an operator S : P(N) → P(P(N)) is
monotonic if X ≤T Y → S(X) ⊆ S(Y ) for each X,Y . This property is stronger
than degree invariance. We say that an operator S is closed under ⊕ if S(X) is
closed under ⊕ for each X, and S is Σ0

n if the relation “Z ∈ S(X)” is Σ0
n.

5.6.24 Remark. (i) The operator K is Σ0
3 and closed under ⊕. Shore provided

an example of non-monotonicity for K. By Theorem 5.3.11, let A be a promptly
simple set in K(∅) = K. Then A is low cuppable, i.e. there is a low c.e. set G such
that ∅′ ≡T A⊕G, by Theorem 6.2.2 below. Hence A ∈ K(∅)−K(G), for otherwise
A⊕G ∈ K(G) and therefore ∅′′ ≡T (A⊕G)′ ≤T G

′ ≡T ∅′ by Theorem 5.6.18(ii),
which is a contradiction.
(ii) By Theorem 5.6.5, the lower cone operator SLR is Σ0

3 as well, but unlike K,
SLR is monotone. The same example can be used to show that SLR is not closed
under ⊕: since A ∈ K = Low(MLR) we have A ≤LR G. Trivially G ≤LR G.
A⊕G ≤LR G would imply ∅′ ≡LR G (since A⊕G ≡T ∅′ ≥T G), which contradicts
Corollary 5.6.21 because G is low. Alternatively, pick B ∈ SLR(∅′)−K(∅′), then
B⊕∅′ �≤LR ∅′. By these examples, ≤LR behaves differently from ≤T in a further
aspect: the operation ⊕ does not determine a supremum in the ≤LR-degrees.
(iii) We have also obtained a low c.e. set G such K(G) is a proper subclass of
SLR(G), because A ∈ SLR(G)−K(G).
Slaman (2005) studied monotonic operators S that are Borel (in the sense that the
relation “Z ∈ S(X)” is Borel) and for each X, S(X) �= P(N) contains X, is closed
downward under ≤T , and closed under ⊕. He proved that every such operator is given
by (possibly transfinite) iterates of the jump on an upper cone in the Turing degrees.
Some possibilities for such an operator S(X) are {Y : Y ≤T X}, {Y : Y ≤T X ′}, or
{Y : ∃n ∈ N Y ≤T X(n)}. Slaman’s result can also be used to derive the properties in
Remark 5.6.24. The operator K is Σ0

3 and hence Borel. By Theorem 5.6.18, K is not
given by iterates of the jump, so K fails to be monotonic. SLR is not given by iterates
of the jump because X ′ �∈ SLR(X) for each X; see the beginning of this section. Since
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SLR(X) is downward closed under ≤T for each X, this yields a further, indirect, proof
that SLR(X) is not for all X closed under ⊕.

5.6.25 Exercise. Show that if A ∈ K and X is ML-random, then A ∈ K(X).

Uniformly almost everywhere dominating sets

A highness property of a set C expresses that C is close to being Turing above ∅′.
Our first example of such a property was that C is high1, namely, ∅′′ ≤T C ′;
equivalently, some function f ≤T C dominates all the computable functions
(Theorem 1.5.19). Dobrinen and Simpson (2004) introduced a stronger highness
property when they investigated the strength of axiom systems in the language
of second-order arithmetic. In the following, we say that a property Q of a set
holds for almost every Z if the class {Z : Q(Z)} is conull.
5.6.26 Definition. We say that a set C is uniformly almost everywhere domi-
nating, or u.a.e.d. for short, if there is a function f ≤T C such that for all e,

for almost every Z
[
ΦZ

e total → ΦZ
e is dominated by f

]
.

Clearly each u.a.e.d. set is high. The word “uniform” reminds us of the fact that
the same f works for almost all Z (and all e). However, in Proposition 5.6.31 we
will show that the seemingly weaker notion of being almost everywhere domi-
nating, where f can depend on Z and e, is in fact equivalent.
It is not necessary to require domination of the total ΦZ

e for all Turing func-
tionals Φe as a particular one is sufficient: for each Z, e, n, let

Θ0e1Z(n) 	 ΦZ
e (n).

5.6.27 Lemma. Suppose a function f ≤T C dominates ΘY for almost every Y .
Then C is uniformly almost everywhere dominating.

Proof. Fix e. Then λ{Z : ΦZ
e total & ΦZ

e not dominated by f}
≤ 2e+1λ{Y : ΘY total &ΘY not dominated by f} = 0. �

We will keep Θ fixed for the rest of this section.
Our main goal is to show that C ≥LR ∅′ if and only if C is uniformly almost

everywhere dominating. This is an analog for highness properties of the coinci-
dences of lowness properties obtained in Section 5.1: C ≥LR ∅′ is the dual of
C ≤LR ∅, namely, C ∈ Low(MLR). Unlike the case of Low(MLR), the property
characterizing C ≥LR ∅′ is not directly related to randomness. Rather, it is a
domination property defined in terms of the uniform measure. It is instructive
to begin with the special case C = ∅′, due to Kurtz (1981), which will be used
in the next subsection to prove the full result.

5.6.28 Proposition. ∅′ is uniformly almost everywhere dominating.

Proof. The class {Y : ΘY �n+1↓} is Σ0
1 uniformly in n. Hence ∅′ can determine

the greatest qn of the form i2−n, 0 ≤ i < n, such that qn < λ{Y : ΘY �n+1↓}.
Also, ∅′ can determine tn ∈ N such that qn ≤ λ[{σ : |σ| = tn & Θσ

tn
�n+1↓}]≺.
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Define a function f ≤T ∅′ as follows. On input n, using ∅′, determine tn and
output the maximum of values Θσ

tn
(n) over all such strings σ of length tn.

For each n let Cn = {Y : ΘY �n+1↓ & ΘY (n) > f(n)}. Note that λCn < 2−n by
the definition of qn. Hence 2−k ≥ λ⋃

n>k Cn for each k. The intersection of the
classes

⋃
n>k Cn over all k is {Y : ΘY is total and not dominated by f}, which

is a null class. �

Dobrinen and Simpson (2004) pointed out that ∅′ ≤T C ⇒ C is u.a.e.d. ⇒
C is high1, and asked whether the class of u.a.e.d. sets coincides with one of these
two extremes. The answer is negative. The first examples of u.a.e.d. sets C �≥T ∅′
appeared in Cholak, Greenberg and Miller (2006). One of their constructions uses
a method inspired by the forcing method from set theory, and builds a u.a.e.d.
set C such that C �≥T E for a given incomputable set E. The other construction
yields a c.e. set C. Here we first prove that C is u.a.e.d. iff C ≥LR ∅′. Then, in
Section 6.3, we give examples of sets C ≥LR ∅′ such that C <T ∅′. Such a set C
can be chosen to be either c.e., or ML-random.
Binns, Kjos-Hanssen, Lerman and Solomon (2006) showed that some high set

is not almost everywhere dominating. In Theorem 8.4.15 we will prove a stronger
result: ∅′ ≤LR C implies that C is superhigh, namely, ∅′′ ≤tt C

′. This property
only depends on the Turing degree of C. The superhigh degrees form a proper
subclass of the high degrees.

∅′ ≤LR C if and only if C is uniformly a.e. dominating

The first step towards proving this equivalence was made by Dobrinen and Simp-
son (2004). They expressed the property of being u.a.e.d. in terms of a covering
procedure (see before Lemma 5.6.3, or Table 5.2 on page 229): each Σ0

2 class,
and in fact, each Π0

3 class (by Exercise 5.6.32) can be covered by a Π0
2(C) class of

the same measure. This states indeed that C is computationally strong since the
Π0

2(C) class emulates the given Π0
3 class. In comparison, (ii) of Theorem 5.5.17

says that A is weak, because each Π0
2(A) class can be emulated by a Π0

2 class.
Since the domain of a Turing functional is a Π0

2 class, the notation becomes
simpler when one rephrases the covering procedure using complements.

5.6.29 Lemma. C is uniformly a.e. dominating ⇔
for each Π0

2 class H there is a Σ0
2(C) class L ⊆ H such that λL = λH.

Proof. ⇒: Suppose C is u.a.e.d. via the strictly increasing function f ≤T C.
Let H =

⋂
n Sn where the Sn are Σ0

1 classes uniformly in n. Let Ψ be the Turing
functional such that ΨZ(n) 	 µt. Z ∈ Sn,t for each Z, n. The required Σ0

2(C)
class is

L =
{
Z : ∃m [∀n < mΨZ(n)↓ & ∀n ≥ mΨZ(n)[f(n)]↓ ]}

.

Note that Z ∈ H ↔ ΨZ is total, so L ⊆ H. Whenever ΨZ is total and f
dominates ΨZ then Z ∈ L, so λL = λH. Note that (after fixing f) the class L
was obtained uniformly from H.
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⇐: Let Θ be the Turing functional of Lemma 5.6.27 and let H be the Π0
2

class {Z : ΘZ total}. Choose a Σ0
2(C) class L ⊆ H such that λL = λH. Thus

L =
⋃

n Pn where Pn is Π0
1(C) uniformly in n and Pn ⊆ Pn+1 for each n.

Uniformly in n we have a C-computable sequence (Pn,t)t∈N of clopen sets such
that Pn =

⋂
t Pn,t, by (1.17) on page 55.

We define a function f ≤T C that dominates the total function ΘZ for almost
every Z. On input n, using C as an oracle find t ∈ N such that

∀σ [
(|σ| = t & [σ] ⊆ Pn,t) → Θσ

t (n)↓
]
.

Note that t exists since Pn ⊆ H. Let f(n) be the maximum of all the values
Θσ

t (n) where |σ| = t and [σ] ⊆ Pn,t. Almost every set Z ∈ H is in Pk for some k.
In that case ΘZ(n) ≤ f(n) for all n ≥ k. �

The coincidence result is due to Kjos-Hanssen, Miller and Solomon (20xx).

5.6.30 Theorem. ∅′ ≤LR C ⇔ C is uniformly a.e. dominating.

Proof. ⇒: Firstly, ∅′ is u.a.e.d. by 5.6.28, so by Lemma 5.6.29 every Π0
2 class

contains a Σ0
2(∅′) class of the same measure (also see Exercise 5.6.33).

Secondly, we apply the implication (i)⇒(iii) in Theorem 5.6.9 for A = ∅′ and
B = C. Note that (i) holds by our hypothesis ∅′ ≤LR C, so taking complements
in (iii) we obtain that each Σ0

2(∅′) class contains a Σ0
2(C) class of the same

measure.
We may conclude that each Π0

2 class contains a Σ0
2(C) class of the same

measure. Hence C is uniformly a.e. dominating by a further application of
Lemma 5.6.29.
⇐: Each Π0

1(∅′) class is a Π0
2 class by Exercise 1.8.67, so by Lemma 5.6.29 each

Π0
1(∅′) class contains a Σ0

2(C) class of the same measure. The implication (ii)⇒(i)
of Theorem 5.6.9 now shows that ∅′ ≤LR C. �

In the following we consider a further property of a set C introduced by Dobri-
nen and Simpson (2004) that appears to be weaker than being uniformly a.e.
dominating. We say that C is almost everywhere dominating if for almost every
set Z, every function g ≤T Z is dominated by a function f ≤T C. The difference
is that now the dominating function f ≤T C can depend on the oracle Z and
on g. However, by the following result of Kjos-Hanssen (2007), together with the
foregoing Theorem, this property is equivalent to being u.a.e.d.

5.6.31 Proposition. ∅′ ≤LR C ⇔ C is almost everywhere dominating.

Proof. ⇒: Immediate by Theorem 5.6.30.
⇐: By Lemma 5.6.3 it suffices to show that each Π0

1(∅′) class H of positive
measure contains a Σ0

2(C) class L of positive measure (and hence a Π0
1(C) class of

positive measure). We proceed similar to the implication “⇒” of Lemma 5.6.29.
Let H =

⋂
n Sn, where Sn is uniformly Σ0

1, and let the functional Ψ be defined as
before. Since C is a.e. dominating, there is e such that 0 < λ{Z : ΦC

e dominates
ΨZ}. Define a Σ0

2(C) class L as before, but based on f = ΦC
e . Then L ⊆ H and

λL > 0. �
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Exercises.
5.6.32. Show that if C is u.a.e.d., then in fact each Π0

3 class G can be covered by a
Π0

2(C) class of the same measure.

5.6.33. Give a direct proof (not via Proposition 5.6.28) for the fact used in the proof
of Theorem 5.6.30 that each Π0

2 class H contains a Σ0
2(∅′) class L of the same measure.

Thus Z is weakly 3-random iff Z is weakly 2-random relative to ∅′.
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Some advanced computability theory

We outline the plan for the next three chapters. In the present chapter we mainly
develop computability theory, having its interaction with randomness in mind.
Chapter 7 is mostly about randomness. We discuss betting strategies, and in-
troduce the powerful notion of martingales as their mathematical counterpart.
Like Chapter 5, Chapter 8 is on the interactions of computability and random-
ness. It combines the technical tools of the foregoing two chapters in order to
study lowness properties and highness properties of sets. For instance, in Theo-
rem 8.3.9, lowness for Schnorr randomness is characterized by a computability
theoretic property called computable traceability. The proof relies on computable
martingales.
A main technical advance of this chapter is a method for building Turing

functionals: they can be viewed as ternary c.e. relations of a particular kind.
An appropriate language is introduced. As a first application of this method, we
build superlow c.e. sets A0 and A1 such that A0 ⊕A1 is Turing complete.
Prompt simplicity is a highness property within the c.e. sets we introduced

in 1.7.9. (However, this property is compatible with being low for ML-randomness
by Theorem 5.1.19.) In Theorem 6.2.2 we use the language for building Turing
functionals to characterize the degrees of promptly simple sets as the low cup-
pable degrees. The promptly simple degrees also coincide with the non-cappable
degrees, as mentioned at the beginning of Section 1.7. Historically, these results
of Ambos-Spies, Jockusch, Shore and Soare (1984) constituted the first example
of a coincidence result for degree classes that had been studied separately before.
In Chapter 5 we obtained such coincidence results for the K-trivial degrees and
for the degrees of uniformly a.e. dominating sets.
C.e. operators are functions of the form Y → WY

e , first mentioned in (1.4) on
page 10. Here we use the new language in order to build such operators. We
also present inversion results for c.e. operators V that are increasing in the sense
of ≤T . For instance, there is a c.e. set C, as well as a ML-random ∆0

2 set C,
such that V C ≡T ∅′. If V is the c.e. operator corresponding to the construction
of a c.e. K-trivial set, then C ≡LR ∅′, whence C is uniformly a.e. dominating by
Theorem 5.6.30. Inversion results can be used to separate highness properties.
For instance, we will build a superhigh set that is not uniformly a.e. dominating.
The language for building Turing functionals introduced here will also be used

in the proof of Theorem 8.1.19 that a computably dominated set in GL1 does
not have d.n.c. degree, and when we show near the end of Section 8.4 that the
strongly jump traceable c.e. sets form a proper subclass of the c.e. K-trivial sets.
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6.1 Enumerating Turing functionals
By Remark 1.6.9, constructions using the priority method can be viewed as a
game between us and an evil opponent called Otto. It is important that Otto and
we have the same types of objects. For instance, he enumerates the c.e. sets We,
and we also build c.e. sets. How about the Turing functionals Φe? In the proofs of
results such as the Friedberg–Muchnik Theorem 1.6.8, the functionals belonged
to him while we had to diagonalize against them. In subsequent constructions
we often build a set Turing below another, so we have to provide a Turing func-
tional. Usually we give an informal procedure that relies on an oracle Y . Then,
by the oracle version of the Church–Turing thesis a Turing program Pe formaliz-
ing the procedure exists; this determines the required Turing functional Φe. We
have already introduced functionals in such a way, for instance in the proof of
the implication from right to left of Proposition 1.2.21, and in the proof of The-
orem 1.7.2. In more complex constructions it is convenient to view a functional
belonging to us as a particular kind of a c.e. relation, since its enumeration can
be made part of the construction.

Basics and a first example
A computation ΦY (x) = w relies on the finite initial segment η of the oracle
such that |η| = use ΦY (x) (recall from 1.2.18 that the use is 1 + q where q is
the maximum oracle question asked during the computation). We will view the
convergence of such a computation as the enumeration of a triple 〈η, x, w〉 into
a c.e. set, where η is the initial segment of the oracle, x is the input and w the
output. We choose η shortest possible, namely, no substring of η yields a halting
computation on input x.

6.1.1 Fact. The Turing functionals Φe correspond in a canonical way to the c.e.
sets Γ ⊆ {0, 1}∗ × N× N such that

(F1) 〈η, x, v〉, 〈η, x, w〉 ∈ Γ → v = w (output uniqueness), and
(F2) 〈η, x, v〉, 〈ρ, x, w〉 ∈ Γ → (η = ρ ∨ η | ρ) (oracle incomparability).

Proof. Given Φe, enumerate Γ as follows. Run the computation of the Turing
program Pe with η on the oracle tape on input x. If an oracle question q is
asked such that q ≥ |η| then stop. Otherwise, if the computation halts with the
maximum oracle question having been |η| − 1, or no questions are asked and
η = ∅, then put 〈η, x, w〉 into Γ. Clearly Γ has the properties (F1) and (F2).
Conversely, given Γ we use the oracle version of the Church–Turing thesis to

obtain a Turing program Pe and hence Φe. In the informal procedure, suppose
the oracle is Y , and the input is x. Whenever 〈η, x, w〉 is enumerated into Γ, test
whether η ≺ Y . If so, output w and stop. �

Terminology used previously only for the functionals Φe can now be applied
to any Turing functional Γ as in Fact 6.1.1. For instance, ΓY (x) = w means
that ΦY

e (x) = w for the corresponding Φe, which is equivalent to 〈η, x, w〉 ∈ Γ
for some η ≺ Y . In this case, we let use ΓY (x) 	 use ΦY

e (x) = |η|. We write γY (x)
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= use ΓY (x). More generally, if an upper case Greek letter denotes a functional,
the corresponding lower case Greek letter denotes its use function.
If a ∆0

2 setA is given by a computable approximation (As)s∈N, we let ΓA(x)[s] =
w if 〈η, x, w〉 ∈ Γs for some η ≺ As.
Theorem 1.7.2 states that for each c.e. incomputable set C, there is a simple

set A ≤wtt C. In the proof we implicitly built a Turing functional Γ to show that
A ≤wtt C. Let us reformulate the construction in this new language to define Γ
explicitly.

Construction of A and Γ. Let A0 = ∅ and Γ0 = ∅.
Stage s > 0.
1. For each i < s, if As−1∩Wi,s−1 = ∅, and there is x ∈Wi,s such that x ≥ 2i and
ΓC(x) is currently undefined (i.e., there is no 〈η, x, w〉 ∈ Γ such that η ≺ Cs),
then enumerate the least such x into As.
2. For each x < s, if ΓC(x) is currently undefined, define it with use γC(x) = x
and output As(x) (i.e., enumerate 〈Cs �x, x, As(x)〉 into Γ).
Verification. Clearly A is co-infinite and (F1) holds. For (F2), if η �= ρ and we
define Γη(x) and Γρ(x), then η | ρ. (Here we have used that C is c.e.: if C �m

changes, it can never turn back to the previous configuration.) Also ΓC = A
because at each stage, we define ΓC(x) with use x if it is undefined, and once
C �x has settled such a definition is permanent. To show that each requirement Si

is met, suppose that Wi is infinite. Then there are x and s such that x ∈ Wi,s

and ΓC(x) is undefined in phase 1 of stage s because Cs �x �= Cs−1 �x by the same
argument as before. Thus we put x into A, thereby meeting Si. �

6.1.2 Exercise. Recall from Proposition 3.2.30 that Ω is wtt-complete. Given a c.e.
set A, specify a Turing functional Γ such that A = Γ(Ω).

C.e. oracles, markers, and a further example
Sometimes we build a Turing functional when we are only interested in c.e.
oracles C (equipped with a computable enumeration (Cs)s∈N). Then it suffices
to specify the use γs(x) and a value v at each stage s > x, because the oracle
string is Cs �γs(x). It is understood that, if we specify γs(x) and v, we put
〈Cs �γs(x), x, v〉 into Γ. For output uniqueness (F1), the value v has to be kept
the same unless C �γs(x) changes. The use γs(x) is pictured as a movable marker
(Soare, 1987). Its value is always nondecreasing in both s and x. In order to
achieve oracle incomparability (F2) we ensure that

γs(x) > γs−1(x)→ Cs �γs−1(x) �= Cs−1 �γs−1(x), (6.1)

because then η = Cs �γs(x) satisfies η | ρ for any ρ such that 〈ρ, x, w〉 ∈ Γs−1
(a c.e. set never turns back). To make ΓC total, we also require that

∀x limsγs(x) <∞, (6.2)

so that for each x there is v such that 〈η, x, v〉 ∈ Γ, where γ(x) = limsγs(x) and
η = C �γ(x). Thus ΓC(x)↓.
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It would be safest to keep γs(x) from changing all-together, as in the rephrased
proof of Theorem 1.7.2 above. We usually “correct” the output of ΓC(x) after
putting γ(x)− 1 into C. In more complex constructions, this conflicts with con-
straints on C, so we have to choose γ(x) larger than these constraints. Certain
strategies declare γ(x) to be undefined. It is redefined at some later stage to be
a large number y, that is, y − 1 is larger than any number mentioned so far. (In
particular, y is not yet in C.) Informally, this process is called lifting the use. To
achieve (6.2) we must ensure that γ(x) is lifted only finitely often.

6.1.3 Remark. In the next two applications of the method we build reductions
to a set C of the form E0⊕E1. A proper formal treatment would require to view
functionals as c.e. sets of quadruples 〈η0, η1, x, v〉, where ηi denotes an oracle
string that is an initial segment of Ei. Similarly, in the treatment via markers
we would have to keep the left use γ0(x) and the right use γ1(x) separate. We
can usually avoid this by requiring that the use be the same on both sides (an
exception is the proof of Theorem 6.3.1 below). This common use will also be
denoted by γ(x). A change of either of the two sets below γ(x) allows us to
redefine the computation ΓE0⊕E1(x).

The Sacks Splitting Theorem 1.6.10 implies that there are low c.e. sets A0
and A1 such that ∅′ ≤T A0 ⊕A1. Bickford and Mills (1982) strengthened this:

6.1.4 Theorem. There are superlow c.e. sets A0, A1 such that ∅′ ≤T A0 ⊕A1.

Proof. We enumerate the sets A0 and A1, and a Turing functional Γ such that
∅′ = Γ(A0 ⊕ A1). The use of Γ(A0 ⊕ A1; p) is denoted by γ(A0 ⊕ A1; p) and
pictured as a movable marker. For the duration of this proof, k and l denote
numbers in {0, 1}, p and q denote numbers in N, and [p, k] stands for 2p + k.
Also, j(X,n) stands for use JX(n). To avoid that JAk(p) change too often, we
ensure that at each stage s, for each p and k such that [p, k] ≤ s, we have

JAk(p)[s]↓ → γ(A0 ⊕A1)([p, k]) > j(Ak, p)[s] (6.3)

To do so, when JAk(p)[s] newly converges for the least [p, k], we change A1−k.
(This idea to change the other side stems from the proof of the Sacks Splitting
Theorem 1.6.10.)
Construction of A0, A1 and Γ. Let A0 = A1 = ∅. Define Γ(A0 ⊕A1; 0) = 0 with
use 2.
Stage s > 0. Define Γ(A0 ⊕A1; s) = 0 with large use. Do the following.

(a) If there is [p, k] such that JAk(p)[s− 1]↑ and JAk(p)↓ at the beginning of
stage s, then choose [p, k] least. Put γ(A0 ⊕ A1; [p, k]) − 1 into A1−k and
redefine Γ(A0 ⊕A1; q), s ≥ q ≥ [p, k], with value ∅′s(q) and large use.

(b) If n ∈ ∅′s − ∅′s−1 then put γ(A0 ⊕A1;n)− 1 into A0.

A typical set-up is shown in Figure 6.1, where JA1(p) converged after JA0(p).

Claim 1. The condition (6.3) holds for each s.
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..........................................

use JA1(p)

γ(2p+ 1)γ(2p)
use JA0(p)

Fig. 6.1. Typical set-up in the proof of 6.1.4.

We use induction on s. The condition holds for s = 0. If s > 0, we may suppose
there is a least [p, k] such that JAk(p)[s − 1] ↑ and JAk(p)[s] ↓ (else there is
nothing to prove), in which case we put y = γ(A0 ⊕A1; [p, k])− 1 into A1−k.

• If [q, l] < [p, k] then y ≥ γ(A0 ⊕ A1; [q, l]) > j(Al, q)[s] by the inductive
hypothesis, so (6.3) remains true for JAl(q)[s].

• Since we enumerate y into A1−k, the computation JAk(p)[s] remains con-
vergent, so we ensure that γ(A0 ⊕A1; [p, k]) > j(Ak, p)[s].

• For [q, l] > [p, k], the use of computations JAl(q)[s] is below the new value
of γ([q, l]). �

Claim 2. A0 and A1 are superlow.
Similar to the construction of a superlow simple set in 1.6.5, if JAk(p)[s] ↓ let
fk(p, s) = 1, and otherwise let fk(e, s) = 0. We define a computable function h
such that h([p, k]) bounds the number of times JAk(p) becomes defined. Then
bk(p) = 2h([p, k]) + 1 bounds the number of times fk(p, s) changes.
By (6.3), JA0(p) becomes undefined at most 2p times due to a change of ∅′ �2p.

Otherwise, JAk(p) becomes undefined only when some computation JA1−k(q)
becomes defined where [q, 1− k] < [p, k]. Thus the function h given by h(0) = 1
and h([p, k]) = 1 + 2p+

∑
q h([q, 1− k]) [[[q, 1− k] < [p, k]]] is as desired. �

By the proof of Claim 2 each marker γ(A0 ⊕ A1;m) reaches a limit. Therefore
∅′ = Γ(A0 ⊕A1). �

6.1.5 Remark. In contrast to the case of the Sacks Splitting theorem, we cannot
achieve that the use function of Γ is computably bounded for the oracle A0⊕A1:
Bickford and Mills (1982) showed that each superlow c.e. set A is non-cuppable
in the c.e. wtt-degrees, namely, if ∅′ ≤wtt A ⊕W for a c.e. set W then already
∅′ ≤wtt W . Thus some low c.e. set is not superlow. One can also obtain such a
set by a direct construction (see Exercise 1.6.7).

6.2 Promptly simple degrees and low cuppability
We say that a c.e. set A is cuppable if ∅′ ≤T A ⊕ Z for some c.e. set Z �≥T ∅′.
Informally speaking, A is helpful for Z to compute ∅′. This class contains incom-
putable sets, and even high sets, by a result in Miller (1981) with Harrington.
Variants of this concept are obtained by asking that the set Z �≥T ∅′ be in some

other class instead of the c.e. sets. For instance, A is low cuppable if ∅′ ≤T A⊕Z



6.2 Promptly simple degrees and low cuppability 243

for some low c.e. set Z. Being non-cuppable in a particular sense is a lowness
property within the c.e. sets. In Remark 8.5.16 we show that any c.e. set that is
not cuppable by a ML-random set Z �≥T ∅′ is K-trivial.
The main result of this section, due to Ambos-Spies et al. (1984), is that A has

promptly simple Turing degree iff A is low cuppable. Thus the corresponding
lowness property, to be not low cuppable, is equivalent to being cappable (see
page 37). On the other hand, it is known that the non-cuppable c.e. sets form a
proper subclass of the cappable sets.

C.e. sets of promptly simple degree

By Definition 1.7.9, a co-infinite c.e. set E is promptly simple if it has a com-
putable enumeration (Es)s∈N such that for each e the requirement

PSe: #We =∞⇒ ∃s > 0 ∃x [x ∈We,at s ∩ Es]
is met. We say that A has promptly simple degree if A ≡T E for some promptly
simple set E, and A has promptly simple wtt-degree if A ≡wtt E for some promptly
simple set E. We prove an auxiliary result of Ambos-Spies et al. (1984) char-
acterizing the c.e. sets of promptly simple degree in terms of so-called delay
functions.

6.2.1 Theorem. Let A be c.e. Then the following are equivalent.

(i) A has promptly simple degree.
(ii) A has promptly simple wtt-degree.
(iii) There is a computable delay function d with ∀s d(s) ≥ s such that for

each e

PSDe : #We =∞ ⇒ ∃s∃x [
x ∈We,at s & Ad(s) �x �= As �x

]
. (6.4)

If Ad(s) �x �= As �x we say that A promptly permits below x.

Proof. (i)⇒(iii): we prove (iii) under the weaker hypothesis that there is a
promptly simple set E ≤T A. Suppose E is promptly simple via a computable
enumeration (Es)s∈N, and E = ΦA for some Turing functional Φ. As in the
proof of Theorem 1.7.14, we enumerate auxiliary sets Ge uniformly in e. By the
Recursion Theorem we are given a computable function g such that Ge =Wg(e)
for each e (this is similar to the proof of 1.7.14). We show that PSDe is met for
each e, where the delay function is

d(s) = µt > s.∀e < s
[
Wg(e),t �s= Ge,t �s & ∀y < sEt(y) = ΦA(y)[t]

]
.

The set Ge is used to achieve the prompt A-permitting necessary to meet PSDe.
Construction of sets Ge, e ∈ N. Let Ge,0 = ∅ for each e.
Stage s > 0. If there is e < s such that PSDe is not met, Wg(e),s−1 = Ge,s−1,
and there is x ∈ We,at s and y �∈ Es ∪Ge,s−1, y < s such that use ΦA(y)[s] ≤ x,
then let e be least, let 〈x, y〉 be least for e, and put y into Ge,s. (We attempt to
meet PSDe.)
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Verification. Consider PSDe. IfWe is infinite then Ge =Wg(e) is infinite as well.
Since E is promptly simple via the given enumeration, there is a stage s where
we attempt to meet PSDe via x, y, and y ∈ Wg(e),t for some t ≥ s such that
y ∈ Et. Since Es(y) = 0 = ΦA(y)[s] and use ΦA(y)[s] ≤ x, by the definition of
the function d this means that Ad(s) �x �= As �x.

(iii)⇒(ii): We use the methods of Theorem 1.7.3 to build a promptly simple set
E ≡wtt A. We meet the requirements PSe above.

Construction of E. Let E0 = ∅.
Stage s > 0.
• For each e < s, if PSe is not yet met and there is x ≥ 3e such that
x ∈We,at s, then check whether Ad(s) �x �= As �x. If so, put x into Es.
• If y ∈ Aat s, put pEs−1

(3y) into E.

Clearly E is promptly simple and E ≤wtt A. Note that #E ∩ [0, 3i) ≤ 2i for
each i, since at most i elements less than 3i enter due to the requirements PSe

and at most i for the coding of A into E. Hence pE(y) ≤ 3y for each y. Then
Es �3y+1= E �3y+1 implies As(y) = A(y), so that A ≤wtt E. �

A c.e. degree is promptly simple iff it is low cuppable

We now prove the main result of this section. It was applied already in Re-
mark 5.6.24.

6.2.2 Theorem. Let A be c.e. Then the following are equivalent.

(i) A has promptly simple degree.
(ii) A is low cuppable, namely, there is a low c.e. set Z such that ∅′ ≤T A⊕Z.

Proof. (i) ⇒ (ii):
Idea. We enumerate Z and build a Turing functional Γ such that ∅′ = ΓA⊕Z .
To ensure Z is low, we meet the usual requirements from the proof of 1.6.4

Le : ∃∞s JZ(e)[s]↓ ⇒ JZ(e)↓.
To aid in meeting Le we enumerate a c.e. set Ge. As in Theorem 1.6.4, when
JZ(e) converges we would like to preserve Z up to the use of this computation.
However, now we also have to maintain the correctness of Γ. When a number
enters ∅′ this may force us to change Z. We would like to achieve the situation
where γA⊕Z(e) > use JZ(e) after ∅′ �e has settled, for in that case we do not
have to change Z below the use of JZ(e). For this we use the hypothesis that A
has promptly simple degree via a delay function d as in Theorem 6.2.1. When
we see a new computation JZ(e) at stage s, it will generally be the case that
x = γ(e) ≤ use JZ(e)[s]. In this case we put x into Ge hoping that A will
promptly permit below x.
If A does so, we may compute the stage r by when it has permitted, and we

only resume the construction then. The A-change allows us to lift the use γr(e).
Nothing happened from stage r to s−1. In particular, Z was not enumerated, so
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JZ(e)[s−1] remains unchanged at stage r. Any computation ΓA⊕Z(e)[t] defined
at a stage t ≥ r has use γt(e) > r ≥ use JZ(e)[r]. We say that we have cleared
the computation JZ(e) of the use γ(e).
If A does not permit promptly then instead we put x into Z at stage s, and lift

γ(e) via this Z-change. Then the next computation ΓA⊕Z(e) will have a larger
use. However, this case only applies finitely often: otherwise, Ge is infinite, so
eventually we would get the prompt permission, contradiction. (Putting x into Z
is often called the “capricious destruction of the computation JZ(e)[s]”. The
actual purpose is that we threaten to make Ge infinite each time we give up on
this computation.)
Details. As in the proof of Theorem 1.7.14, we are given a computable function g
and think of Wg(e) as Ge by the Recursion Theorem.
Construction of Z, Γ, and an auxiliary u.c.e. sequence (Ge)e∈N.
Let Z0 = ∅ and Ge,0 = ∅ for each e. Let Γ = ∅.
Stage s > 0.
(1) Coding ∅′. If v < s is the last stage carried out and i ∈ ∅′s−∅′v, put γs−1(i)−1
into Zs, and declare γ(k) undefined for k ≥ i.
(2) Defining Γ. Let i < s be least such that γ(i) is now undefined. Define the γ(j)
for i ≤ j < s in a monotonic fashion, with large values (say, define γ(j) = N+1+j
where N is the largest number mentioned so far in the construction), and define
ΓA⊕Z(j) with use γ(j) and the correct output ∅′s(j).
(3) Attempt at clearing JZ(e). Let e < s be least such that

Ge,s =Wg(e),s,
JZ(e)[s]↓,
ΓA⊕Z(e)[s− 1]↓, and
x = γs−1(e) ≤ use JZ(e)[s].

Enumerate x into Ge,s, and search for the least t ≥ s such that x ∈ Wg(e),t.
(Such a t exists if actually Ge = Wg(e). Otherwise the construction might get
stuck here.) Let r = d(t) (where d is the delay function via which A has promptly
simple degree).
Case 1. Ar �x �= At �x. End stage s, declare γ(e) undefined and jump to stage r.
Case 2. Otherwise. Put x− 1 into Zs, declare γ(e) undefined and go to the next
stage, s+ 1.

Claim. Let e ∈ N. Then (a) Le is met, and (b) lims γs(e)↓.
Assume inductively that the claim holds for all i < e. To show (a) for e, choose
a stage s0 such that ∅′ �e is stable at s0, and γs(i) has reached its limit at s0
for all i < e. If the hypothesis of Le holds, then Ge is infinite, so at some stage
s ≥ s0 of the construction we choose e in (3) and are in Case 1. Let r be as
in the construction. Then JZ(e)[s] is preserved till r since the construction only
resumes at stage r. Also, the new value γr(e) is above the use of JZ(e)[r− 1], so
since ∅′ �e is stable, JZ(e)[r − 1] is stable. Thus Le is met.



246 6 Some advanced computability theory

For (b), choose s1 ≥ s0 such that either JZ(e) is stable from s1 on, or JZ(e)[s]↑
for all s ≥ s1, and also ∅′(e) is stable at s1. Then γ(e) reaches its limit by stage s1.

�

By the remarks above, (b) implies that ΓA⊕Z is total. Also ∅′ = ΓA⊕Z since
we keep each ΓA⊕Z(i) correct at each stage s > i.
(ii) ⇒ (i):
Idea.We use the lowness of Z via the Robinson guessing method already applied
in the proof of Theorem 5.3.22. Fix a Turing reduction for ∅′ ≤T A ⊕ Z. We
enumerate a c.e. set C and a Turing functional ∆. By the Double Recursion
Theorem 1.2.16, we may assume that we are given in advance a Turing functional
Γ such that C = Γ(A⊕Z), and a reduction function p for ∆ in the sense of Fact
1.2.15. Keep in mind that Γ now belongs to Otto, while ∆ is ours.

In more detail, given indices for a c.e. set C̃ and a Turing functional ∆̃, we effectively
obtain a many-one reduction showing C̃ ≤m ∅′ and a reduction function p for ∆̃ because
Proposition 1.2.2 and Fact 1.2.15 are uniform. The reduction for ∅′ ≤T A⊕Z is fixed in
advance, so combining it with the many-one reduction we obtain a Turing functional Γ
such that C̃ = Γ(A⊕Z). Based on Γ and p we run the construction to build C and ∆.
By the Double Recursion Theorem we may assume that C = C̃ and ∆ = ∆̃. Then
C = Γ(A⊕ Z) and p is a reduction function for ∆.

The so-called length-of-agreement function associated with Γ is

�Γ(t) = max{y : C �y= ΓA⊕Z �y [t]}.
We enumerate a number w ∈ N

[e] into C to enforce the prompt change of A
needed in order to meet the requirement PSDe. Suppose w is not in C yet and
ΓA⊕Z(w) = 0. If we put w into C, then one of A or Z must change below
the use γA⊕Z(w) in order to correct the Γ computation at input w. When x ≥
γA⊕Z(w)[s] entersWe at stage s, a reasonable strategy would be to enumerate w
into C at the same stage, hoping that the correction of ΓA⊕Z(w) will be via A.
In this case we would have a prompt permitting by A via the delay function

d(s) = min{t > s : �Γ(t) ≥ s}.
Namely, d(s) is the first stage greater than s where the length of agreement is
at least s again.
If the correction is always via a change of Z, we waste all the numbers w

in N
[e] without ever getting the desired prompt permission. To avoid this, before

enumerating w we ask whether Z is stable up to the use u = γA⊕Z(w)[s]. This is
possible since Z is low. We define a new value of the auxiliary functional ∆Z(e)
with the same use u, which allows us to control the jump JZ at the input p(e).
Only if the answer is “yes” do we put w into C at s. If Z �u changes after all
then the ∆Z(e) computation goes away. We have to try again when the next
(sufficiently large) number enters We, using the next w ∈ N

[e]. We can afford
finitely many incorrect answers. Eventually the answer will be correct, so we get
the desired prompt permission by A.
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Details. Since Z is low, by the Limit Lemma 1.4.2 there is a computable binary
function g such that Z ′(m) = lims g(m, s) for each m.

Construction of C and ∆, given Γ and the reduction function p. Let C0 = ∅.
Stage s > 0. For each e, if the requirement PSDe has not yet been met, let
w = min(N[e] − Cs). If �Γ(s) > w and ∆Z(e) [s] is undefined, then see if there is
an x ∈ We,s −We,s−1 such that x ≥ u = γA⊕Z(w)[s]. If so, define ∆Z(e) = 0
with use u. Search for the least t ≥ s such that

Zt �u �= Zs �u or g(p(e), t) = 1.
(In the fixed point case, one of the two alternatives applies, since p is a reduction
function for ∆.)
If g(p(e), t) = 1 do the following: enumerate w into C (at this stage s). If

Ad(s) �u �= As �u, then we got the prompt permission, so PSDe is met. Otherwise
Zd(s) �u �= Zs �u, so we may declare ∆Z(e) [d(s)] undefined. (Later we may try
again with the next w in N

[e] and a new x.)

Verification. Assume for a contradiction thatWe is infinite but PSDe is not met.
Case 1: ∆Z(e) is defined permanently from some stage s on. This is so because
at s we put the number w into C when Zs �u was stable already, where u =
γA⊕Z(w)[s]. Then Ad(s) �x �= As �x, so PSDe is met, contradiction.

Case 2: ∆Z(e) is undefined at infinitely many stages. Since ∆Z(e) 	 JZ(p(e)),
this implies p(e) �∈ Z ′, so lims g(p(e), s) = 0. Thus N

[e] ∩C is finite; let s0 = d(t)
where t is the greatest stage such that t = 0 or an element of N

[e] enters C. Let
w = min(N[e] −C) and suppose that ΓA⊕Z(w) has settled by stage s1 ≥ s0. Let
s ≥ s1 be least such that some x ≥ u = γA⊕Z(w)[s1] enters We at stage s. Then
∆Z(e)[s] is undefined (else PSDe would have been met by stage d(t)). So we
define ∆Z(e)[s] = 0 with use u. Since Z �u is stable from s1 on, this contradicts
the case hypothesis. �

In the proof of (i)⇒(ii) the number of injuries to Le depends on the element of Ge

that is promptly permitted by A. Thus the set Z we build is not superlow for any
obvious reason. We say that A is superlow cuppable if there is a superlow c.e. set Z

such that ∅′ ≤T A⊕ Z. Indeed, Diamondstone (20xx) has proved that some promptly
simple set fails to be superlow cuppable. Also see Exercise 8.5.24.

6.3 C.e. operators and highness properties
For each c.e. operatorW we will build a c.e. set C, and also a ML-random set C,
such that WC ⊕ C ≡T ∅′. If W is the c.e. operator given by the construction of
a low simple set, then C <T ∅′ and C is high. For a stronger result, we take the
operator given by the cost function construction of a c.e. K-trivial set, (5.3.11)
and obtain a set C <T ∅′ such that C ≡LR ∅′.
The basics of c.e. operators
Definitions of c.e. sets can usually be viewed relative to an oracle C. For instance,
we have done this for the halting problem ∅′: in Definition 1.2.9 we defined
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C ′ = dom(JC) = {e : e ∈WC
e }. Given a particular definition of a c.e. set A and

an oracle C, we will write AC for the set defined in the same way relative to C.
In this way, the definition of A yields a c.e. operator. For a further example,
let A = {q ∈ Q2 : q < Ω}. Then the corresponding c.e. operator is given by
AC = {q ∈ Q2 : q < ΩC}.
Consider the case that the definition of A is a construction by stages. Such a

definition can be viewed relative to an oracle C, but some extra care is needed,
because the enumeration into AC at a stage s now requires us to specify a use.
By convention, at stage s, queries to the oracle C are less than s. So this use will
always be defined to be s.
We provide some more detail on the construction in the proof of Theorem 1.6.4

relative to an oracle C. It now describes an enumeration of a co-infinite set AC

relative to C that is both simple relative to C and low relative to C, namely
(AC⊕C)′ ≡T C

′. To ensure AC is simple relative to C, we meet the requirements
SC

i : #WC
i = ∞ ⇒ WC

i ∩ AC �= ∅. To make AC low relative to C, we meet
Le : ∃∞s J(AC ⊕ C; e)[s − 1] ↓ ⇒ J(AC ⊕ C; e) ↓. If x enters WC

e at stage s
then the use of the newly convergent computation ΦC

e (x) is at most s. We may
now put x into AC with use s in order to meet SC

e . Thus, only for the relevant
oracles C do we put x into AC .
How do we build a c.e. operator W? Recall from (1.4) on page 10 that a c.e.

operator is given by a Turing functional Φe, mapping each oracle C to the set
WC =WC

e = dom(ΦC
e ). We describe such a Turing functional using the language

introduced after Fact 6.1.1. Thus, when building a c.e. operator A, we implicitly
enumerate a Turing functional Γ as in 6.1.1 and let AC = dom(ΓC). Since the
output is not relevant, we may always enumerate triples of the form 〈η, x, 0〉
into Γ. At stage s we have |η| = s. We think of η as a possible value of C �s.
For instance, the functional Γ describing the jump operator is given by enu-

merating at stage s into Γ all triples 〈η, e, 0〉 such that |η| = s and Jη(e)[s] ↓
while Jη(e)[s− 1]↑. The construction of a low simple set A relative to C can be
seen as the implicit enumeration of a Turing functional as well. At stage s > 0
we consider all the strings η such that |η| = s and carry out the construction
above with C �s= η. To put x into Aη means to put 〈η, x, 0〉 into Γ.
By Fact 6.1.1, to each c.e. set Γ with the properties (F1) and (F2) corresponds

a Turing functional Φe. Hence WC
e = dom(ΦC

e ) equals A
C , so any c.e. operator

we build is included in the list (We)e∈N.
Given a c.e. operator W , usually we avoid naming the underlying functional

Φ = Φe explicitly, but if i ∈WC we may need the use of the computation ΦC(i).
We let

use (i ∈WC) 	 use ΦC(i).

When we say that i enters WC at stage s we mean that ΦC(i) newly converges
at s. For a ∆0

2 set C given by a computable approximation, we write

use (i ∈WC [s]) 	 use ΦC(i)[s].
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The intuition is as follows: a number i enters WC at stage s with a certain use.
From then on it stays in WC as long as the approximation to C does not change
below that use. The setWC is Σ0

2 via the approximation (WC [s])s∈N in the sense
of Proposition 1.4.17, since WC(i) = lim infsWC(i)[s].

Pseudojump inversion

The jump operator is increasing in the sense that C ′ ≥T C for each C. This fails
for a c.e. operator W in general. For instance, let WC = {q ∈ Q2 : q < ΩC},
then WC �≥T C unless C is a K-trivial (see Corollary 5.5.16). However, the
operator V C = WC ⊕ C is increasing. We call V a pseudojump operator. A
pseudojump operator can differ a lot from the usual jump operator, even if it is
strictly increasing. For instance, the construction of a low simple set determines
a pseudojump operator V such that V C >T C and (V C)′ ≡T C

′ for each C.
Recall that the jump operator is degree invariant and even monotonic (see 1.2.14 and
the discussion on page 34). Degree invariance fails for a pseudojump operator in general.
For a trivial counterexample, we view the construction in the proof of Theorem 1.6.8
relative to an oracle. We now build c.e. operators A and B such that AC⊕C |T BC⊕C
for each C. Let

W C =

{
AC−{0} if 0 ∈ C,

BC−{0} else.

The operator given by V C = W C ⊕ C is not degree invariant since V {0} |T V {1}.
By Downey, Hirschfeldt, Miller and Nies (2005) the operator C → ΩC is not degree
invariant.

The pseudojump inversion theorem, due to Jockusch and Shore (1984), states
that no matter what W is, there exists a c.e. set C such that WC ⊕ C ≡T ∅′.
This result can be used, for instance, to build a high c.e. set C <T ∅′. For, a c.e.
set C is high iff ∅′ is low relative to C. Let W be the c.e. operator given by the
construction of a low simple set, then C <T ∅′ and ∅′ is low relative to C.

6.3.1 Theorem. For each c.e. operator W there is a c.e. set C such that
WC ⊕ C ≡T ∅′.
Proof idea. We enumerate a Turing functional Γ such that ∅′ = Γ(WC ⊕ C).
We also ensure that WC is ∆0

2 (and not merely Σ0
2, which is automatic), so that

WC ⊕ C ≤T ∅′ by the Limit Lemma 1.4.2. The requirements for WC ∈ ∆0
2 are

Qe : ∃∞s > 0
[
e ∈WC(e)[s− 1]

] ⇒ e ∈WC .

If we meet all the Qe then WC is in ∆0
2 via the computable approximation

λe, s.WC(e)[s]. Note that the Qe are similar to the lowness requirements Le

from the proof of Theorem 1.6.4, but with the c.e. operator W instead of the
jump operator.
The construction parallels the one in the proof of (i)⇒(ii) of Theorem 6.2.2

that each c.e. set A of promptly simple degree can be cupped to ∅′ by a low c.e.
set Z. In both cases we build a reduction Γ computing ∅′ with the appropriate
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oracle. Here we want to achieve WC ⊕ C ≡T ∅′, there we ensured A⊕ Z ≡T ∅′.
The set C here corresponds to Z there. Both C and Z are built by us. The set
WC plays the role of the given set A there.
Recall the discussion in Remark 6.1.3. Here we let γs(e) > e denote the use on

the right side and view it as a movable marker. It matters that the actual use on
the left side is e + 1. However, to simplify notation we artificially increase this
use to γ(e).
To maintain ∅′ = Γ(WC ⊕ C), when i enters ∅′ we put γ(i) − 1 into C. The

strategy for Qe is not to restrainWC (which is impossible), but rather to stabilize
WC(e), by ensuring for all stages s and for each e < s that

e ∈WC [s]→ γs(e) > use (e ∈WC [s]). (6.5)

For then, if i ≥ e enters ∅′, the Γ-correction via a C-change does not remove e
from WC . Thus e can leave WC at most e times, till ∅′�e is stable. Hence Qe

is met. The potential problem is that oracle incomparability (F2) in Fact 6.1.1
might fail for Γ because WC(e) can change back and forth. But e can only
leave WC at a stage s when C �r changes, where r = use (e ∈ WC [s]). So
by (6.5), without violating (F2) we can put a new computation into Γ when e
reappears in WC .

It may help our understanding to introduce further requirements

Ti : ∅′(i) = Γ(W C ⊕ C; i).

When i enters ∅′ then Ti puts γ(i) − 1 into C, but otherwise it wants to keep γ(i)
from changing. Qe is allowed to move γ(e), which injures Ti for i ≥ e. If Ti enumerates
into C and this removes e from W C , then Qe is injured for e > i. This is reflected by
the priority ordering Q0 < T0 < Q1 < T1 < . . .

Construction of C and Γ. Let C0 = ∅ and Γ0 = ∅.
Stage s > 0.
(1) Coding ∅′. If i ∈ ∅′s−∅′s−1, put γs−1(i)−1 into Cs and declare γ(k) undefined
for k ≥ i.
(2) Undefining Γ. In the remaining instructions of stage s, we do not change C,
so we already know WC ⊕ C[s]. If e ∈ WC [s] −WC [s − 1], then declare γ(k)
undefined for k ≥ e.
(3) Defining Γ. Let i < s be least such that γ(i) is now undefined. Define γ(j),
i ≤ j < s in a monotonic fashion and with large values (in particular, greater
than j), and define Γ(WC ⊕ C; j) with use 2γ(j), and output ∅′s(j). (That is,
put 〈WC ⊕ C �2γ(j), j, ∅′s(j)〉 into Γ.)
Verification. The condition (6.5) holds by construction. Next, we prove thatWC

is a ∆0
2 set, and each γ(e) reaches its limit.

6.3.2 Claim. For each e, (a) Qe is met, and (b) lims γs(e)↓.
Assume inductively that the claim holds for each i < e. Choose a stage s0 such
that e ∈ ∅′ implies e ∈ ∅′s0

, and for all i < e, γs(i) has reached its limit at s0.
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(a) If e enters WC at a stage s1 ≥ s0 then γs(e) > use (e ∈ WC [s]) for s ≥ s1,
so a later enumeration into C will not remove e from WC .
(b) By (a) let t ≥ s0 be a stage by which WC(e) has reached its limit. Then
γs(e) = γt(e) for all t ≥ s. �

Next we show that Γ is a Turing functional. The output uniqueness (F1) in
Fact 6.1.1 follows from the coding in (1): suppose 〈η, i, v〉 ∈ Γt, so that |η| =
2γt(i). We only change the output when i enters ∅′ at stage s. In that case
γs−1(i)− 1 entered C, so we do not put a further triple 〈η, i, w〉 into Γ.
Fix e. For each stage u, let ηu =WC ⊕C �2γ(e) [u]. In order to establish oracle

incomparability (F2) it suffices to show the following.

6.3.3 Claim. Let s < t be stages. Then ηs = ηt or ηs | ηt.

We may assume that |ηs| �= |ηt|. Then γs(e) < γt(e). If Cs �γs(e) �= Ct �γs(e) we
are done, so assume otherwise. The following figure illustrates the argument.

i ∈WC

s u t

i �∈WC

We declare γ(e) undefined at some stage u, s < u ≤ t. Thus some i ≤ e enters
WC at stage u. We may assume i is chosen minimal. If i ∈ WC [s] then γs(i) >
use (i ∈ WC [s]), so i cannot leave WC before stage u by the hypothesis that
Cs �γs(e)= Ct �γs(e). So i �∈ WC [s]. Next, i ∈ WC [t] because γ(j), j < i, remains
unchanged from s to t by the minimality of i, and γu(i) > use (i ∈ WC [u]), so
an enumeration of γ(k), k ≥ i, at a stage ≥ u does not remove i from WC . Thus
i �∈WC [s] and i ∈WC [t], whence ηs | ηt since γ(i) > i at each stage. �

At each stage u, we ensure that 〈ηu, e, ∅′u(e)〉 ∈ Γ where ηu =WC⊕C �2γ(e) [u].
By Claim 6.3.2, γ(e) and WC �γ(e) settle. Thus ∅′ = Γ(WC ⊕ C). �

Applications of pseudojump inversion

A set C is called high if ∅′′ ≤T C ′ (1.5.18). For instance, Ω∅′
is high by 3.4.17.

So far we have not given an example of a Turing incomplete high ∆0
2 set.

6.3.4 Corollary. There is a high c.e. set C <T ∅′.
Proof. We obtain a c.e. set C by applying Theorem 6.3.1 to the c.e. operatorW
given by the construction of a low simple set in the proof of Theorem 1.6.4.
Then ∅′ is low relative to C, that is, (∅′⊕C)′ ≡T C

′. Since C is c.e., this implies
∅′′ ≡T C ′. Also, WC is simple relative to C. Hence N −WC is not c.e. relative
to C, and therefore WC �≤T C by Proposition 1.2.8. Since WC ∈ ∆0

2, this shows
that C <T ∅′. �

A direct proof of 6.3.4 uses the priority method with infinite injury (see Soare 1987).
A requirement for ∅′ �≤T C may be injured infinitely often by a stronger priority
requirement for making C high. While the construction becomes more complex, this
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method is also more flexible than the one in the foregoing proof: for instance we can
achieve C �≥T B for a given incomputable c.e. set B. A particular implementation of
the method is by using trees of strategies. This even yields a minimal pair of high c.e.
sets (see Exercise 7.5.12).

By Definitions 1.5.2 and 1.5.18, a set Z is called lown if Z(n) ≡T ∅(n), and Z is
highn if Z(n) ≥T ∅(n+1). The downward closed classes lown and non-highn form
a hierarchy displayed in (1.8) on page 28. We will see that Theorem 6.3.1 can be
used to separate all the classes of c.e. degrees given by this hierarchy: for each
n ≥ 0 there is a c.e. set in lown+1 − lown, and a c.e. set in highn+1 − highn.
For each e we let V X

e =WX
e ⊕X. Notice that Theorem 6.3.1 is uniform, namely,

there is a computable function f̃ such that, given a c.e. operator W = We, the
c.e. set C = Wf̃(e) satisfies WC ⊕ C ≡T ∅′. The construction can be viewed
relative to an oracle Z, so we may regard C as a c.e. operator. Here we adapt
the notation slightly in the statement and proof by joining the oracle Z to the
set CZ we construct. In this way we obtain a computable function f such that,
for each oracle Z,

Ve(Vf(e)(Z)) ≡T Z
′. (6.6)

The classes lown and highn can be relativized to an oracle Z:

lowZ
n = {A : (A⊕ Z)(n) ≡T Z

(n)}, and
highZ

n = {A : (A⊕ Z)(n) ≥T Z
(n+1)}.

The proof of Corollary 6.3.4 shows that, if V Z
e ∈ lowZ

1 − lowZ
0 for each Z, then

the set C obtained via Theorem 6.3.1 is high but not Turing complete. This is
(i) of the following Lemma for n = 0.

6.3.5 Lemma. Let n ≥ 0.
(i) ∀X [Ve(X) ∈ lowX

n+1 − lowX
n ] ⇒ ∀Y [Vf(e)(Y ) ∈ highY

n+1 − highY
n ].

(ii) ∀Y [Ve(Y ) ∈ highY
n+1 − highY

n ] ⇒ ∀X [Vf(e)(X) ∈ lowX
n+2 − lowX

n+1].

Proof. (i) Given Y , let X = Vf(e)(Y ). By hypothesis Ve(X)(n+1) ≡T X(n+1)

while Ve(X)(n) >T X(n). Also Ve(X) = Ve(Vf(e)(Y )) ≡T Y ′ by the definition
of f . Thus Y (n+2) ≡T Vf(e)(Y )(n+1) while Y (n+1) >T Vf(e)(Y )(n), as required.
(ii) is similar: given X, let Y = Vf(e)(X). By hypothesis Ve(Y )(n+1) ≡T Y (n+2)

while Ve(Y )(n) <T Y (n+1). Also Ve(Y ) ≡T X ′. Thus X(n+2) ≡T Ve(Y )(n+1) ≡T

Vf(e)(X)(n+2) while X(n+1) ≡T Ve(Y )(n) <T Vf(e)(X)(n+1), as required. �

6.3.6 Theorem. All the classes of c.e. sets in the hierarchy (1.8)

computable ⊆ low1 ⊆ low2 ⊆ . . . ⊆ non-high2 ⊆ non-high1 ⊆ {Z : Z �≥T ∅′}
are distinct. In fact, there is a uniformly c.e. sequence (Ak)k∈N+ such that for
each i ∈ N we have A2i+1 ∈ lowi+1 − lowi and A2i+2 ∈ highi+1 − highi.

Proof. Let e be such that We is the c.e. operator given by the construction of
a low simple set (see page 248). For k ≥ 1 let Ak = Vf(k−1)(e)(∅). (For instance,
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A1 = Vf(0)(e)(∅) =We ⊕ ∅ is low but not computable, and A2 = Vf(e)(∅) is high
but not Turing complete.) By Lemma 6.3.5 the sequence (Ak)k∈N+ is as required.

�

The operators W of interest in Theorem 6.3.1 satisfy W X <T X ′ for each X, so C
is automatically incomputable. However, one can also meet additional requirements
in the construction to ensure this actively. One can even build C of promptly simple
degree. This extension will be needed for the next theorem.

6.3.7 Exercise. Show that one can choose the set C in Theorem 6.3.1 incomputable,
and even of promptly simple degree.

6.3.8 Theorem. There is a c.e. set that is not lown or highn for any n.

Proof. Let f be as in (6.6) for the c.e. operator We given by the extended
construction of Exercise 6.3.7. By the Recursion Theorem 1.1.5 relative to an
oracle, there is e such that Ve(X) = Vf(e)(X) for each X. Let V = Ve. Then

V (V (X)) ≡T X
′

for each X. Moreover X <T V (X) <T V (V (X)) since we used the extended
construction. (Such a c.e. operator V is called a half-jump.)
If n ≥ 1 then ∅(n) ≡T V

(2n)(∅) <T V
(2n+1)(∅) <T V

(2n+2)(∅) ≡T ∅(n+1). Since
V (2n+1)(∅) ≡T (V (∅))(n), this shows that ∅(n) <T (V (∅))(n) <T ∅(n+1), so V (∅)
is a c.e. set as desired. �

No half-jump V is degree invariant (see page 34). The foregoing proof shows in fact
that X(n) <T (V (X))(n) <T X(n+1) for each X. On the other hand, Downey and Shore
(1997) have proved that if an increasing c.e. operator V is degree-invariant then V is
relatively low2 or relatively high2 on an upper cone. That is, there is a set D such that
either V (X)′′ ≡T X ′′ for all X ≥T D, or V (X)′′ ≡T X ′′′ for all X ≥T D.

Inversion of a c.e. operator via a ML-random set

The following result is an analog of Theorem 6.3.1.

6.3.9 Theorem. For each c.e. operator W and each Π0
1 class P of positive

measure there is a set C ∈ P such that WC ⊕ C ≡wtt ∅′.
6.3.10 Corollary. For each c.e. operator W there is a ML-random set C such
that WC ⊕ C ≡wtt ∅′.
Proof. We apply the theorem to the Π0

1 class P = {Z : ∀nK(Z �n) ≥ n}. Note
that λP ≥ 1/2 by 3.2.7, and each member of P is ML-random by 3.2.9. �

This inversion result has similar applications as Theorem 6.3.1: there is a high ML-
random set C <T ∅′ as in Corolllary 6.3.4, and in fact the hierarchy in Theorem 6.3.6
can be separated by ML-random ∆0

2 sets. This was shown by Kučera (1989) in a direct
way. Downey and Miller (2006) proved a stronger result already announced by Kučera:
for each Σ0

2 set S ≥ ∅′ there is a ML-random ∆0
2 set C such that C′ ≡T S. This is

analogous to the Jump Theorem of Sacks (1963c) discussed on page 160.
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Proof of Theorem 6.3.9. By Theorem 1.9.4 we may suppose that λP ≥ 1/2.
We build a set C ∈ P in such a way thatWC⊕C ≡wtt ∅′. ForWC ≤wtt ∅′, we will
provide an effective approximation toWC . In the construction we have a strategy
Qe (without an explicit requirement) making a guess at whether e ∈ WC . It
defines a Π0

1 class P e such that either e ∈ WY for no Y ∈ P e, or for all. This
resembles the strategy to guess the value of JY (e) in the proof of the Low Basis
Theorem 1.8.37. As in that proof, Qe may change from the guess that e �∈ WC

to the guess that e ∈ WC . Thereafter it only returns to the guess that e �∈ WC

when it is initialized, which may happen finitely often. At stage s, Qe determines
a clopen set P e,s. The actual Π0

1 class on which Qe succeeds is P e =
⋂

s≥s1
P e,s,

where s1 is the first stage from which on Qe is no more initialized and does not
change its guess. At each stage s, τe,s is an approximation of WC �e+1 given by
the guesses of the strategies Qi for i ≤ e.
As in the proof of Theorem 6.3.1, we build a functional Γ, and a strategy Te

is responsible for ∅′(e) = Γ(WC ⊕ C; e). At stage s this strategy determines an
approximation σ = σe,s to C �e+1, and defines Γ(τe,s ⊕ σe,s; e) = ∅′s(e). In the
end we verify that σe = limsσe,s exists and show that C =

⋃
e σe is as required.

The framework for the construction is as follows: for each stage s, strategies
Qe, Te for e ≤ s act at substages e = 0, . . . , s. The strategy Qe defines P e,s and
τe,s. The strategy Te defines σe,s. Both τe,s and σe,s have length e+ 1.
The strategies choose their objects in such a way that P 0,s ⊇ . . . ⊇ P s,s and

σ0,s ≺ . . . ≺ σs,s. More precisely, Qe chooses P e,s inside P e−1,s∩ [σe−1,s], and Te

defines σe,s as the leftmost string σ of length e + 1 such that [σ] ∩ P e,s �= ∅.
The priority ordering is Q0 < T0 < Q1 < T1 < . . ., since for e > 0, Qe works
in the environment [σe−1,s] given by Te−1, and for each e, Te has to work in the
environment P e,s prescribed by Qe.
We also build a c.e. open set U containing the garbage. If e enters ∅′, then Te

puts [σe,s−1] into U because there is an incorrect Γ-definition involving this
string. Before we begin stage s, the garbage produced at previous stages has
been removed, that is, we only consider strings σ such that [σ]∩ Ps −Us−1 �= ∅.
Then λU ≤ 1/4 since |σe,s| = e + 1, and Te contributes no string for e ∈ {0, 1}
and at most one string for e ≥ 2. Thus Ps − Us−1 �= ∅ for each s because we
assume that λP ≥ 1/2.
An important idea in the construction is automatic Γ-recovery. While Qe is

in a phase guessing that e �∈ WC , as more and more strings σ of length e + 1
leave P e, the approximation σe,s moves to the right. Suppose σ = σe,s leaves P e

at stage s′ > s. When e enters ∅′ after stage s′, such a used string σ will not
be removed via enumeration into U . But the now incorrect Γ(τ ⊕σ; e) definition
is not a problem anyway: the strategy Te can only return to σ at a stage t > s
if some Qi, i ≤ e, has changed its guess. In that case τe,s �= τe,t, so that the
definition of Γ(e) made at stage s does not apply any longer. This is similar to
the argument in Claim 6.3.3 above.
Construction of clopen sets P e,s, strings τe,s and σe,s, a Turing functional Γ and
a c.e. open set U . Let U−1 = ∅.
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Stage s ≥ 0. At substage −1, let P−1,s = Ps − Us−1 and let σ−1,s = τ−1,s = ∅.
Carry out substage e for e = 0, 1, . . . , s.
Substage e.
Qe: If G �= ∅, where

G = P e−1,s ∩ [σe−1,s] ∩ [{ρ : |ρ| = s & e �∈W ρ
s }]≺,

then let P e,s = G and τe,s = τe−1,s0. Otherwise, let P e,s = P e−1,s∩[σe−1,s]
and τe,s = τe−1,s1.

Te: If e ≥ 2 and e ∈ ∅′s − ∅′s−1 then put [σe,s−1] into U .
Let σe,s be the leftmost string σ ∈ {σe−1,s0, σe−1,s1} such that
P e,s ∩ [σ] �= ∅. Enumerate 〈τe,s ⊕ σe,s, e, ∅′s(e)〉 into Γ.

Verification. We have λU ≤ 1/4 as explained above, and thus ∀s Ps −Us−1 �= ∅.
6.3.11 Claim. Let e ≥ −1. (i) τe = limsτe,s exists. (ii) σe = limsσe,s exists.

The claim holds trivially for e = −1. Now suppose that e ≥ 0. Inductively, let s0
be the stage by which τe−1,s and σe−1,s have reached their limits. Let P e−1 be
the Π0

1 class
⋂

s≥s0
P e−1,s. Then P e−1 ∩ [σe−1] �= ∅ by the definition of σe−1 at

stage t.
(i) If P e−1 ∩ [σe−1] ∩ {Y : e �∈ WY } �= ∅, then from s1 := s0 on we define
τe,s = τe−10. Otherwise, from some s1 ≥ s0 on we define τe,s = τe−11.
(ii) Let P e =

⋂
s≥s1

P e,s where s1 is as in (i) above. Then P e ∩ [σe−1] �= ∅. Thus
there is a least a ∈ {0, 1} such that P e ∩ [σe−1a] �= ∅, and we eventually define
σe,s to be σe−1a. �

Let C =
⋃

e σe, then C ∈ P e for each e. Thus WC =
⋃

e τe.

6.3.12 Claim. Γ is a Turing functional such that ∅′ − {0, 1} = Γ(WC ⊕ C).
We verify the conditions (F1) and (F2) in Fact 6.1.1.We only enumerate triples
〈η, e, v〉 into Γ such that |η| = 2e+2. Thus oracle incomparability (F2) is trivially
satisfied. For output uniqueness (F1), we give a formal argument for the auto-
matic Γ-recovery mentioned above. Assume for a contradiction that at stages
s < t we enumerate 〈η, e, v〉 and 〈η, e, w〉 into Γ, respectively, where v �= w. Let
η = τ ⊕ σ, so τe,s = τe,t = τ and σe,s = σe,t = σ. We have e ∈ ∅′r − ∅′r−1 for
some r such that s < r ≤ t, causing the output w to be 1 at stage t, while at
stage s the output is v = 0. This implies σe,r−1 �= σ, otherwise Te would have
enumerated [σ] into U at stage r, contrary to σe,t = σ. So there is a least j ≤ e
such that for some u, s < u ≤ t, we have

(a) τj,u−1 �= τj,u, or
(b) τj,u−1 = τj,u and σj,u−1 �= σj,u.

If (a) holds then by the minimality of j we have τj,s(j) = 0 and τj,t(j) = 1.
If (b) holds then P j,p is stable for s < p ≤ t, so by the choice of σj,p as the
leftmost extension of σj−1,p on P j,p we have σj,s(j) = 0 and σj,t(j) = 1. Both



256 6 Some advanced computability theory

possibilities contradict τe,s = τe,t = and σe,s = σe,t. So Γ is a Turing functional.
Now ∅′ − {0, 1} = Γ(WC ⊕ C) is immediate by the enumeration into Γ of the
strategies Te. �

The use of Γ(WC ⊕ C; e) is bounded by 2e + 2. Thus ∅′ ≤wtt W
C ⊕ C. The

proof of Claim 6.3.11 allows us to compute recursively a bound on the number
of times τe,s and σe,s can change. Thus WC ⊕ C ≤wtt ∅′. �

An alternative proof of Theorem 6.3.9 due to Kučera is sketched in Simpson (2007).
It uses ideas from the proof of Theorem 3.3.2 in a construction relative to ∅′. The
construction in the present proof is not relative to ∅′, and thereby provides directly a
computable approximation to W C ⊕C. Further, it yields weak truth-table equivalence
W C ⊕ C ≡wtt ∅′. We do not know whether the conclusion in Theorem 6.3.1 can be
improved to weak truth-table equivalence. The proof of 6.3.1 suggests a negative answer.

Separation of highness properties

The inversion theorems can be used to separate highness properties implied
by high1, both via c.e. sets and via ML-random ∆0

2 sets. We will consider two
properties between high1 and {C : ∅′ ≤T C}. The property of being uniformly
a.e. dominating was already introduced in Definition 5.6.26. In Theorem 5.6.30
we showed that C is uniformly a.e. dominating iff C ≥LR ∅′. Mohrherr (1986)
introduced a further property and separated it from highness within the c.e. sets.

6.3.13 Definition. We say that C is superhigh if ∅′′ ≤tt C
′.

It is equivalent to require ∅′′ ≤wtt C
′. For by Exercise 1.4.8 due to Mohrherr

(1984), if E is a set such that ∅′ ≤tt E, then X ≤wtt E implies X ≤tt E.
A further equivalent formulation is ∀x [∅′′(x) = limsf(x, s)] for some func-

tion f ≤T C such that the number of changes of f(x, s) is bounded by a com-
putable function g(x).
In the framework of weak reducibilities, superhighness is the highness property

dual to superlowness (see Table 8.3 on page 363). The basic idea is to apply
pseudojump inversion to the c.e. operator W given by the construction of a c.e.
incomputable set with a lowness property to obtain a set C <T ∅′ that satisfies
the dual highness property. In Theorem 6.3.14 we extend this method in order
to separate highness properties.
The implications between these highness properties are the following: for each

set C,
∅′ ≤T C ⇒ ∅′ ≤LR C ⇒ C is superhigh ⇒ C is high. (6.7)

Only the second implication is nontrivial; it will be proved in Theorem 8.4.17.
In Proposition 8.5.11 below we show that high1 is a null class.

6.3.14 Theorem. The converse implications in (6.7) fail. Moreover, a coun-
terexample C can be chosen to be either c.e., or ML-random and ∆0

2.

Proof. We apply the inversion results Theorem 6.3.1 and Corollary 6.3.10.
Throughout, C denotes either a c.e. set, or a ML-random ∆0

2 set.
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1. To obtain a set C ≥LR ∅′ such that C <T ∅′, let W be the c.e. operator given
by the construction of an incomputable K-trivial set in Proposition 5.3.11. By
the inversion results, there is a set C such that WC ⊕ C ≡T ∅′ and WC �≤T C.
Hence C <T ∅′. Moreover, ∅′ ∈ K(C), whence ∅′ ≤LR C.
2. To build a superhigh set C such that ∅′ �≤LR C, we apply one of the inversion
results to the c.e. operator given by the construction in Proposition 5.1.20 of a
c.e. superlow set that is not a base for ML-randomness. (The solution to Exer-
cise 5.2.10 could be used as well.) If we carry out this construction relative to C
we obtain a binary function q ≤T C such that e ∈ (WC ⊕C)′ ↔ limsq(e, s) = 1
for each e.
By the remark at the end of the proof of 5.1.20, the number of changes in

this approximation is bounded by a computable function (and not merely by a
function computable in C). Therefore (WC ⊕ C)′ ≤tt R ≤m C ′ where R is the
change set for q as in the proof of Proposition 1.4.4. If C is obtained via one of
the inversion results then ∅′ ≡T W

C ⊕ C, so that ∅′′ ≤tt C
′.

The set ∅′ is not low for ML-randomness relative to C (see page 231). Since C
is ∆0

2 this implies ∅′ �≤LR C.
3. To obtain a set C that is high but not superhigh, let W be the c.e. operator
given by the construction of a low but not superlow set in the solution on page 385
to Exercise 1.6.7. If C is obtained via one of the inversion results, then on the
one hand ∅′ is low relative to C, namely (∅′ ⊕C)′ ≡T C

′. On the other hand, ∅′
is not superlow relative to C, namely, (∅′ ⊕ C)′ �≤tt(C) C

′; here ≤tt(C) denotes
the reducibility where C can be used as an oracle to compute the truth table.
Since C is ∆0

2 we have ∅′′ ≡m (∅′ ⊕ C)′, so this implies ∅′′ �≤tt C
′. �

In Remark 5.6.24 we compared the operators K(X) and SLR(X) = {A : A ≤LR

X}. Let us now compare the classes {C : ∅′ ∈ K(C)} and {C : ∅′ ≤LR C}. The
former is not closed upward under ≤T . The two classes coincide on the ∆0

2 sets
but can be separated by a Σ0

2 set. From (iii) below we obtain a further proof
that the operator K is not monotonic.

6.3.15 Proposition.

(i) If ∅′ ∈ K(C) then ∅′ ≤LR C.
(ii) If C is ∆0

2, then, conversely, ∅′ ≤LR C implies ∅′ ∈ K(C).
(iii) There is a c.e. set D and a Σ0

2 set S, S′ ≡T ∅′′, D ≤T S, such that
∅′ ∈ K(D) but ∅′ �∈ K(S).

(iv) If S is as in (iii) then ∅′ ≤LR S while ∅′ �∈ K(S).
Proof. (i) ∅′ ∈ K(C) ↔ ∅′ ⊕ C ∈ K(C) ↔ ∅′ ⊕ C ≡LR C → ∅′ ≤LR C.
(ii) If C is ∆0

2 then ∅′ ≤LR C implies that ∅′ ⊕ C ≡LR C.
(iii) We combine the argument in Remark 5.6.24 with pseudojump inversion.
Let W be the c.e. operator given by the construction of a promptly simple K-
trivial set in Proposition 5.3.11. Let D be a c.e. set such that WD ⊕D ≡T ∅′,
then ∅′ ∈ K(D). Because ∅′ is of promptly simple degree relative to D, by
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Theorem 6.2.2 relativized to D there is a set S ≥T D such that ∅′ ⊕ S ≡T

D′ ≡T S′. Since D ≥LR ∅′ we have S ≥LR ∅′. But also ∅′ �∈ K(S), for otherwise
∅′⊕S ∈ K(S) and hence (∅′⊕S)′ ≤T S

′, contrary to the fact that ∅′⊕S ≡T S
′.

Since S is c.e. in D, we have that S is Σ0
2 and S′ ≡T ∅′′.

(iv) See the proof of (iii). �

6.3.16 Exercise. Find sets A, B such that A ≤LR B, A ≤T B′, and A �∈ K(B).

6.3.17.� Problem. Decide whether ∅′ ≤LR C ⇔ ∃B ≤T C [∅′ ∈ K(B)].

Minimal pairs and highness properties �

Recall minimal pairs for Turing reducibility from Definition 1.7.13. Given a high-
ness property H, it is interesting to determine whether there is a minimal pair of
sets A,B satisfying H: as we remarked already at the beginning of Section 1.5,
this would show that H is not too close to being Turing above ∅′. In fact, for all
the highness properties we study there is such a minimal pair.
Next, one can ask whether there is in H a minimal pair of sets of a particular

kind, for instance of c.e. sets, or of ML-random sets. Lachlan (1966) proved that
there is a minimal pair of c.e. high sets (see the comment after 6.3.4). Shore
(unpublished) and Ng (2008b) independently improved this by showing that
there is a minimal pair of c.e. superhigh sets.

6.3.18.� Problem. Is there a minimal pair of c.e. sets that are u.a.e.d.?

A minimal pair of high ML-random sets A,B can be obtained as follows: the
2-random set A = ΩΩ is high by Proposition 3.4.17. Let B = Ω, then A ⊕ B is
ML-random by Theorem 3.4.6, and A,B form a minimal pair by Exercise 5.3.20.
On the other hand, the superhigh sets are contained in a null Σ0

3 class by 8.5.12
below. So by Theorem 5.3.15 there is a promptly simple set Turing below all the
ML-random superhigh sets (see page 357 for details).
By Remark 4.3.13 there is a minimal pair of sets of PA degree. However, we

cannot find such a pair among the PA sets of c.e. or of ML-random degree,
because they compute ∅′ by Theorems 4.1.11 and 4.3.8 respectively.
A condition on a highness property H stronger than containing a minimal

pair is that for each set F there is B ∈ H such that F and B form a minimal
pair. Simpson observed that the class of u.a.e.d. sets satisfies this condition. For
Cholak, Greenberg and Miller (2006) proved that for each incomputable set E,
there is a u.a.e.d. set B �≥T E. Their forcing construction can be extended slightly
so that B �≥T Ei for each i, where (Ei)i∈N is any sequence of incomputable sets.
We may assume that F is incomputable. Let (Ei)i∈N be a list of the incomputable
sets computed by F . Then B and F form a minimal pair.
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Randomness and betting strategies

Schnorr (1971) criticized that Martin-Löf randomness is too strong a notion
to be considered algorithmic. He suggested a weaker notion, nowadays called
Schnorr randomness (Section 3.5). In this chapter we study randomness notions
in between ML-randomness and Schnorr randomness.
The main notion is computable randomness. Recall that we identify subsets Z

of N with infinite sequences of bits. For n ≥ 0, we refer to Z(n) as the bit of Z in
position n. Our test concept is (the mathematical counterpart of) a computable
betting strategy B that tries to gain capital along Z by predicting Z(n) after
having seen Z(0), . . . , Z(n − 1). The set Z is computably random if each such
betting strategy B fails in the sense that the capital B(Z �n) is bounded from
above. Our test concept can be viewed as a special case of the martingale notion
from probability theory (see Shiryayev 1984).
If it is allowed to leave B(x) undefined for strings x that are not prefixes of Z,

we obtain a notion called partial computable randomness.
If B may also bet on the bits in an order it chooses, we obtain the even stronger

notion of Kolmogorov–Loveland (KL) randomness. Each ML-random set is KL-
random. It is unknown at present whether the two notions coincide. In this case,
ML-randomness could in fact be characterized by a computable test concept.
(Most researchers think at present that KL-randomness is weaker than ML-
randomness.)
The approach to randomness via unpredictability is useful because we have an

intuitive understanding of betting strategies. On the other hand, this approach
is still within the framework given in the introduction to Chapter 3. A betting
strategy is a particular type of test, and the null class it describes is the class of
sets on which it succeeds.
Schnorr did not even view computable randomness as the right answer to his

critic, because a computable betting strategy B may succeed on a set very slowly,
so slowly that B(Z �n) cannot be bounded from below by an order function
for infinitely many n. If our tests are computable betting strategies together
with such an order function and we require this lower bound on the capital for
infinitely many n, we re-obtain Schnorr randomness defined in 3.5.8, as we will
see in Section 7.3. This gives further evidence that Schnorr randomness is the
right answer.
A questions we ask frequently in this book is how the strength of a randomness

notion is reflected by the growth rate of the initial segment complexity. For
instance, for a computably random set it can be as low as O(logn), but not for
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a partial computably random set. KL-random sets behave more like ML-random
sets. Their growth rate is closer to the growth rate for ML-random sets, where
a lower bound of λn.n− b for some b is given by Schnorr’s Theorem.
We also show that the computational complexity is more varied for weaker

randomness notions. For instance, there is a computably random set in each
high degree.
We have seen in the previous chapters that Martin-Löf-randomness interacts

well with computability. Not only is Martin-Löf randomness defined as an algo-
rithmic notion, it also leads to objects such as Ω, classes such as Low(MLR), and
methods such as the elegant solution to Post’s problem outlined in Remark 4.2.4.
There are fewer interactions of this kind for Schnorr randomness and the other
randomness notions studied in this chapter. However, in Section 8.3 we will char-
acterize the corresponding lowness notions and see that they determine classes
of considerable interest in computability theory. For instance, a set is low for
Schnorr randomness if and only if it is computably traceable, a property stronger
than being computably dominated.

7.1 Martingales
We introduce martingales as a mathematical counterpart of the intuitive concept
of a betting strategy. At first we do not make any assumptions on the effectiv-
ity. It takes some effort to develop the basics, but we will be rewarded with
simple proofs of facts that have been used already, such as Proposition 5.1.14.
The advantage of martingales over Martin-Löf tests and their variants is that
martingales have useful built-in algebraic properties. For instance, we can define
a new martingale as the sum of given ones.

Formalizing the concept of a betting strategy
Imagine a gambler in a casino is presented with bits of a set Z in ascending
order. So far she has seen x ≺ Z, and her current capital is B(x) ≥ 0. She bets
an amount α, 0 ≤ α ≤ B(x), on her prediction that the next bit will be 0, say.
Then the bit is revealed. If she was right, she wins α, else she loses α. Thus,

B(x0) = B(x) + α and B(x1) = B(x)− α,
and hence B(x0) +B(x1) = B(x) + α+B(x)− α = 2B(x). The same consider-
ations apply if she bets that the next value will be 1: the betting is fair in that
the expected capital after the next bet is equal to the current capital.

7.1.1 Definition. A martingale is a function B : {0, 1}∗ → R
+ ∪ {0} that sat-

isfies for every x ∈ {0, 1}∗ the equality

B(x0) +B(x1) = 2B(x). (7.1)

For a martingale B and a set Z, let
B(Z) = supnB(Z �n).

We say that the martingale B succeeds on Z if the capital it reaches along Z is
unbounded, that is, B(Z) =∞. Let Succ(B) = {Z : B succeeds on Z}.
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Martingales are equivalent to measures on 2N via the measure representations
of Definition 1.9.2. We prefer martingales here because they formalize betting
strategies, for which we have an intuitive understanding.

7.1.2 Fact. Let B : {0, 1}∗ → R
+ ∪ {0} and let r = λx.2−|x|B(x). Then

B is a martingale ⇔ r is a measure representation.

Proof. Given x ∈ {0, 1}∗, let n = |x|. Then
(7.1) ⇔ 2−(n+1)B(x0) + 2−(n+1)B(x1) = 2−nB(x)

⇔ r(x0) + r(x1) = r(x).
�

7.1.3 Example. Recall that r(x) = 2−|x| is the representation of the uniform
measure λ on 2N. It corresponds to the martingale B with constant value 1. Note
that B formalizes the strategy where the player bets the amount α = 0 on any
prediction.
More generally, for a measurable class C ⊆ 2N, one defines the measure λC by

λC(A) = λ(C ∩A) for measurable A. Its representation is r(x) = λ(C ∩ [x]). Then

BC(x) = 2|x|r(x) = λ(C | x) (7.2)

is a martingale by Fact 7.1.2. BC(x) is a conditional probability, namely the
chance to get into C when starting from x. In particular, its initial capital is λC.
If [x] ⊆ C then BC(x) = 1. If C is closed the converse implication holds as well,
because the only conull closed class is 2N.

7.1.4 Example. Given a string x, the elementary martingale Ex starts with
capital 1. It bets its whole capital on the next bit of x till x is exhausted. Thus,
Ex is the martingale given by

Ex(y) =

⎧
⎪⎨

⎪⎩

2|y| if y � x
2|x| if x ≺ y
0 if x | y.

Ex coincides with 2|x|BC for C = [x].

Note that BC is bounded by 1 and hence does not succeed on any set. It is used
to build up more complex martingales via infinite sums, which may then succeed on
some set Z. If λC > 0 then BC(x) gets arbitrarily close to 1 for appropriate x by
Theorem 1.9.4.

Supermartingales

We often work with a notion somewhat broader than martingales.

7.1.5 Definition. A supermartingale is a function S : {0, 1}∗ → R
+ ∪ {0} that

satisfies for every x ∈ {0, 1}∗ the inequality

S(x0) + S(x1) ≤ 2S(x). (7.3)
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Thus, the average of S(x0) and S(x1) is at most S(x). This implies that

S(x0) ≤ S(x) or S(x1) ≤ S(x). (7.4)

Extending Definition 7.1.1, for a set Z we let S(Z) = supnS(Z �n). We say S
succeeds on Z if S(Z) =∞, and Succ(S) denotes the class of sets Z on which S
succeeds.
A supermartingale can still be viewed as the mathematical counterpart of a

betting strategy. If the supermartingale inequality (7.3) is proper, i.e.,

d(x) = S(x)− 1/2(S(x0) + S(x1)) > 0, (7.5)

the gambler first donates the amount d(x) to charity. Thereafter she bets with
the rest S(x)−d(x). Of course, she could as well keep d(x) and never bet with it.
Thus, each supermartingale is below a martingale with the same start capital:

7.1.6 Proposition. For each supermartingale S there is a martingale B such
that B(∅) = S(∅) and B(x) ≥ S(x) for each x.

Proof. Let B(x) = S(x) +
∑

z≺x d(z), where the function d is defined by (7.5).
Clearly ∀x B(x) ≥ S(x) and B(∅) = S(∅). We verify the martingale equality
for B by induction on |x|:

1/2(B(x0) +B(x1)) = 1/2(S(x0) + S(x1)) +
∑

z�x

d(z)

= 1/2(S(x0) + S(x1)) + d(x) +
∑

z≺x

d(z)

= S(x) +
∑

z≺x

d(z)

= B(x).

Some basics on supermartingales

In the following fact, parts (i) and (ii) are used to assemble complex (super)mar-
tingales from simple ones, and (iii) is a localization principle which allows us to
transfer results on supermartingales we have proved in {0, 1}∗ to a set of strings
of the form {x : x ! v}.
7.1.7 Fact.

(i) If α ∈ R
+ and B and C are (super)martingales then so are αB and B+C.

(ii) If Ni is a (super)martingale for each i ∈ N and
∑

iNi(∅) < ∞ then
N =

∑
iNi is a (super)martingale.

(iii) If B is a (super)martingale and v ∈ {0, 1}∗ then λx.B(vx) is a (su-
per)martingale.

Proof. (i) and (iii) are easily verified. For (ii), it suffices to show that N(x) <∞
for each x. We use induction on |x|. For x = ∅ this is a hypothesis. Now Ni(xa) ≤
2Ni(x) for each i and each a ∈ {0, 1}. So N(x) <∞ implies N(xa) <∞. �
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Measure representations can be used via Fact 7.1.2 to generalize the super-
martingale inequality (7.3).

7.1.8 Lemma. (i) Let S be a supermartingale and let x0, x1 . . . be a finite or
infinite antichain of strings. Then

∑
i 2

−|xi|S(xi) ≤ S(∅).
(ii) If S is a martingale and

⋃
i[xi] = 2N then equality holds.

Proof. (i) By 7.1.6 we may assume that S is a martingale. Let r be the corre-
sponding measure representation: r(x) = 2−|x|S(x). Then

∑
i r(xi) ≤ r(∅) since

the clopen sets [xi] are pairwise disjoint. This implies the required inequality.
(ii) is clear by the definition of measure representations. �

The lemma can be generalized using the localization principle 7.1.7(iii): for each
string v, if x0, x1 . . . is a finite or infinite antichain of strings extending v then∑

i 2
−|xi|−|v|S(xi) ≤ S(v).

A frequently used fact is that, if b > S(∅), then S(∅)/b bounds the measure
of the class of sets along which S reaches at least b. For instance, if S(∅) = 1
then S reaches the capital 4 along at most 1/4 of the sets.

7.1.9 Proposition. Let S be a supermartingale, b ∈ R, and S(∅) < b. Then

λ
{
Z : ∃nS(Z �n) ≥ b

} ≤ S(∅)/b.

Proof. Let (xi)i<N be the antichain of all minimal strings x under the prefix
ordering such that S(x) ≥ b (hereN ∈ N∪{∞}). By 7.1.8(i),

∑
i<N 2−|xi|S(xi) ≤

S(∅). Then
λ{Z : ∃nS(Z �n) ≥ b} =

∑
i<N 2−|xi| ≤∑

i<N 2−|xi|S(xi)/b ≤ S(∅)/b. �

Exercises.
7.1.10. Show the following. (i) Generalized martingales, where the range can be all
of R, form a vector space over R. (ii) If x �= y then Ex and Ey are linearly independent.
(iii) Let B be a martingale, B(∅) = 1, and let n ∈ N. Suppose B(z) = B(z �n) for each
z such that |z| ≥ n. Show that B is a convex linear combination of the Ex for |x| = n.
7.1.11. Define a martingale S such that 7.1.9 is an equality for infinitely many b ∈ N.

Sets on which a supermartingale fails
Our examples of computably random sets will often be sets on which a single
sufficiently powerful supermartingale S fails. One way to obtain a set on which S
fails is provided by the following immediate consequence of (7.4).

7.1.12 Fact. For each supermartingale S there is a set Z, called the leftmost
non-ascending path of S, such that ∀n S(Z �n) ≥ S(Z �n+1). �

7.1.13 Remark. We discuss a further way to obtain a set on which S fails. Propo-
sition 7.1.9 yields a closed class of positive measure where S does not succeed: let
b > S(∅) and

T S
b = {x : ∀y � x [S(y) ≤ b]}.

Then λPaths(T S
b ) > 1 − S(∅)/b > 0 by 7.1.9. For instance, S does not succeed on

the leftmost path of T S
b . Note that Paths(T S

b ) is nonempty even for b = S(∅), since it
contains the leftmost non-ascending path of S.
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Recall that Q2 is the set of rationals of the form z2−n where z ∈ Z and n ∈ N.
The undergraph of a supermartingale S is the set of pairs

{〈x, q〉 : q ∈ Q2 & q < S(x)}.
When we apply computability theoretic notions to a supermartingale we actually
mean its undergraph. For instance, we write S ≤T X to express that X computes
the undergraph of S.

7.1.14 Exercise. (Savings Lemma) Show that for each supermartingale S there is a
supermartingale R ≤T S such that limn R(Z �n) = ∞ for each Z ∈ Succ(S); in fact
R(y) ≥ R(x)− 2 for every pair of strings y $ x. If S is a martingale then so is R.

Characterizing null classes by martingales

By Proposition 1.9.9 a class A ⊆ 2N is null if and only if there is a sequence of
open sets (Gi)i∈N such that λGi ≤ 2−i and A ⊆ ⋂

iGi. Martingales provide a
characterization of null classes as well, by a result known as Ville’s Theorem. In
fact, sequences of open sets can be converted into martingales, and conversely.
Later, we will consider the case that (Gi)i∈N is a ML-test, or even a Schnorr
test, and study the effectiveness condition that ensues for the corresponding
martingale.
Recall from Example 7.1.3 that any measurable class C ⊆ 2N determines a

martingale BC where BC(x) = λ(C | x).

7.1.15 Proposition. Let A ⊆ 2N. Then
A is null ⇔ A ⊆ Succ(B) for some martingale B

⇔ A ⊆ Succ(S) for some supermartingale S.

In fact,

(i) If A ⊆ ⋂
iGi, where (Gi)i∈N is a sequence of open sets such that λGi ≤ 2−i,

then A ⊆ Succ(B) for B =
∑

iBGi .

(ii) If S is a supermartingale, S(∅) ≤ 1, and A ⊆ Succ(S) then A ⊆ ⋂
iGi,

where Gi = {Z : ∃x ≺ Z [S(x) > 2i]}. Further, Gi is open and λGi ≤ 2−i

for each i.

Proof. (i) Note that
∑

iBGi(∅) ≤ 2, so B is a martingale by Fact 7.1.7. We have
BGi

(σ) = 1 whenever [σ] ⊆ Gi. Thus if Z ∈
⋂

iGi then B(Z �n) is unbounded.
(ii) Clearly Gi is open; λGi ≤ 2−i follows from Proposition 7.1.9. �

7.2 C.e. supermartingales and ML-randomness
In the following we impose effectivity conditions on supermartingales. In this
section we consider computably enumerable supermartingales. They yield a fur-
ther characterization of ML-randomness besides Theorem 3.2.9, which helps us
to understand the growth rate of the function λn.K(Z �n)− n for a ML-random
set Z. In the next section we will proceed to computable supermartingales.
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Computably enumerable supermartingales

7.2.1 Definition. A supermartingale L is called computably enumerable if L(x)
is a left-c.e. real number uniformly in x. Equivalently, the undergraph U =
{〈x, q〉 : q ∈ Q2 & q < L(x)} is computably enumerable. A c.e. index for U
serves as an index for L. We write Ls(x) > q if 〈x, q〉 ∈ Us.

We provide a version of Fact 7.1.7 for c.e. supermartingales.

7.2.2 Fact. (i) If α > 0 is left-c.e. and B and C are c.e. (super)martingales,
then so are αB and B + C.

(ii) If (Ni)i∈N is a uniformly c.e. sequence of (super)martingales and∑
iNi(∅) <∞, then N =

∑
iNi is a c.e. (super)martingale.

Proof. (i) is easily verified. For (ii), N is a (super)martingale by 7.1.7. To see
that N is c.e., note that for each q ∈ Q2 we have N(x) > q ↔
∃n∃s∃q0 . . . qn−1 ∈ Q2

[∑
i<n qi > q & ∀i < n Ni,s(x) > qi

]
. �

7.2.3 Definition. A supermartingale approximation is a uniformly computable
sequence (Ls)s∈N of Q2-valued supermartingales such that Ls+1(x) ≥ Ls(x) for
each x, s. We say that (Ls)s∈N is an approximation of L if L(x) = supsLs(x) for
each x. In this case, L is a c.e. supermartingale.

For instance, if R is c.e. open and R =
⋃

s[Rs]≺ as in (1.16) then the martingale
L = BR from Example 7.1.3 has a supermartingale approximation given by
Ls = B[Rs]≺ . Thus BR is computably enumerable.

7.2.4 Fact. Each c.e. supermartingale L has a supermartingale approximation
(Ls)s∈N. Moreover, it can be obtained uniformly.

Proof. Let U ⊆ {0, 1}∗×Q2 be the undergraph of L. At stage s let the variables
q, q′ range over numbers of the form i2−s. Let L̃s(y) be the largest q such that
〈y, q〉 ∈ Us. Define Ls(x) by induction on |x|. If Ls(x) has been defined for all x
such that |x| < n, let Ls(x0) be the largest q ≤ L̃s(x0) such that q ≤ 2Ls(x).
Then, let Ls(x1) be the largest q′ ≤ L̃s(x1) such that q + q′ ≤ 2Ls(x). �

7.2.5 Exercise. Show that there is a uniformly c.e. listing (Se)e∈N of all the c.e.
supermartingales S such that S(∅) ≤ 1.

Characterizing ML-randomness via c.e. supermartingales

We provide an effective version of Proposition 7.1.15.

7.2.6 Proposition. The following are equivalent for a set Z.
(i) Z is ML-random.
(ii) No c.e. martingale succeeds on Z.
(iii) No c.e. supermartingale succeeds on Z.

Proof. (ii) ⇒ (i): We show that if (Gi)i∈N is a ML-test then the martingale
B =

∑
iBGi from the proof of Proposition 7.1.15(i) is computably enumerable.
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Note that (BGi)i∈N is a uniformly c.e. sequence of martingales. For each i we
have BGi(∅) = λGi ≤ 2−i. Hence B is c.e. by Fact 7.2.2. If Z ∈ ⋂

iGi then B
succeeds on Z.
(i) ⇒ (iii): Given is a c.e. supermartingale S, we may assume that S(∅) ≤ 1.
Then (Gi)i∈N is a ML-test where Gi = {Z : ∃x ≺ Z [S(x) > 2i]} as in 7.1.15(ii).
If S succeeds on Z then Z fails this test. �

We are now in the position to prove Proposition 5.1.14 that if A is ML-random,
then for each Turing functional Φ there is c ∈ N such that (SΦ

A,n+c)n∈N is a
Martin-Löf test relative to A. Let

L(x) = 2|x|λ[{σ : Φσ ! x}]≺.
Then L(x0) + L(x1) ≤ 2L(x) for each x. Further, {〈q, x〉 : q ∈ Q2 & q < L(x)}
is c.e., that is, L is a c.e. supermartingale. Since A is ML-random, by Proposi-
tion 7.2.6 there is c such that L(x) ≤ 2c for each x ≺ A. Letting x = A �n+c we
obtain λSΦ

A,n+c ≤ 2c−|x| = 2−n. �

Universal c.e. supermartingales
In analogy to the concept of a universal ML-test, we say that a c.e. supermartin-
gale S is universal if non-MLR = Succ(S), that is, for each Z,

Z is ML-random ⇔ S(Z) <∞.
The implication “⇒” holds for any c.e. supermartingale S by Proposition 7.2.6.
We provide some examples of universal supermartingales.
1. Let (Um)m∈N be a universal ML-test. Then B =

∑
mBUm

is a universal c.e.
martingale: B is c.e. as in Proposition 7.2.6, and non-MLR =

⋂
m Um ⊆ Succ(S)

as in (i) of Proposition 7.1.15.
2. Consider the martingale

FS =
∑

y

2−K(y)Ey. (7.6)

Note that 2−K(y)Ey has the supermartingale approximation 2−Ks(y)Ey uni-
formly in y. Then, by Fact 7.2.2(ii), FS is a c.e. martingale. We will verify its
universality in Theorem 7.2.8.

7.2.7 Exercise. A c.e. supermartingale S is called multiplicatively optimal if for each
c.e. supermartingale B there is c ∈ N such that ∀x B(x) ≤ cS(x). Show:
(i)

∑
e 2−eSe is a multiplicatively optimal supermartingale, where (Se)e∈N is the uni-

formly c.e. listing of all c.e. supermartingales S with S(∅) ≤ 1 from Exercise 7.2.5.
(ii) Each multiplicatively optimal supermartingale is universal.
(iii) The martingale FS is not multiplicatively optimal. (In fact, by Levin 1973 no c.e.
martingale is multiplicatively optimal. Also see Downey and Hirschfeldt 20xx.)

The degree of nonrandomness in ML-random sets �
A ML-random set Z can retain nonrandom features (see page 117). If S is a
universal c.e. supermartingale, the real number S(Z) indicates how much non-
randomness is still present in Z. We will discuss more general ways to assign a
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value r(Z) ∈ [0,∞] to a set Z in such a way that r(Z) indicates the degree of
nonrandomness of Z. In each case Z ML-random if and only if r(Z) < ∞, and
the larger r(Z), the less random is Z. Any universal c.e. supermartingale is a
function of that kind. Actually, we have studied such functions earlier. Schnorr’s
Theorem 3.2.9 states that Z is ML-random iff Z �∈ Rb for some b, and our
intuition is that the larger b must be chosen, the less random is Z. To obtain a
function r as above, let CPS(Z) = supn 2n−K(Z�n). Then

CPS(Z) < 2b ↔ ∀n K(Z �n) > n− b ↔ Z �∈ Rb.
In particular, Z is ML-random ↔ CPS(Z) <∞.
The function CPS is somewhat crude for gauging nonrandomness. The following

function due to Miller and Yu (2008) is finer. One takes the sum of all the
2n−K(Z�n) rather than their supremum. Thus, let

JM(Z) =
∑

n 2n−K(Z�n).
Let us compare JM with the universal c.e. martingale FS defined in (7.6). Fix Z
and let n ∈ N. If y = Z �n then 2n−K(Z�n) = 2−K(y)Ey(y). Since Ey(z) = 2|y|

for any z ! y, it follows that for each k,
∑

n≤k 2
n−K(Z�n) =

∑
y�Z�k

2−K(y)Ey(Z �k) ≤ FS(Z �k).
Hence JM(Z) ≤ FS(Z) for each Z.
We summarize the preceding discussion. The implication (iv)⇒(i) shows that

the c.e. martingale FS is universal.

7.2.8 Theorem. The following are equivalent for a set Z.
(i) Z is ML-random.
(ii) CPS(Z) <∞.
(iii) JM(Z) <∞.
(iv) FS(Z) <∞.

Proof. The implications (iv)⇒ (iii)⇒ (ii) hold since CPS(Z) ≤ JM(Z) ≤ FS(Z).
The proof of (ii)⇒(i) coincides with the proof of (ii)⇒(i) in Theorem 3.2.9. The
implication (i)⇒(iv) follows from 7.2.6 since FS is a c.e. martingale. �

Of particular interest is the implication (i)⇒(iii), due to Miller and Yu (2008),
that JM(Z) < ∞ for each ML-random set Z. They call this result the “Ample
Excess Lemma” because it says that K(Z �n) exceeds n considerably for large n.
In the following let f, g : N → Z. To provide more detail, a function f such

that
∑

n 2−f(n) < ∞ cannot grow too slowly. (For monotonic functions, the
borderline is somewhere between λn. logn and λn.2 log n, as the sum diverges
for the former, and converges for the latter.) For ML-random Z, the function
fZ(n) = K(Z �n)−n has a positive value for almost all n, and does not grow too
slowly. Theorem 3.2.9 merely states that there is b such that fZ(n) ≥ −b for all n.
Proposition 3.2.21, that limnfZ(n) = ∞, is already a stronger condition on the
growth rate of fZ . The condition JM(Z) <∞ is even stronger and clearly implies
Proposition 3.2.21. (If there is d such that fZ(n) = d for infinitely many n, then
JM(Z) =∞ since each such d contributes 2−d to the sum JM(Z).)
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In this context, Miller and Yu (20xx) have proved that if
∑

n 2−g(n) < ∞
then there is a ML-random set Z such that ∀n fZ(n) ≤+ g(n). Thus, for a ML-
random set Z in general, we cannot prove a stronger growth condition on fZ

than JM(Z) <∞.

7.2.9 Exercise. (Miller and Yu, 20xx) (i) Show that if
∑

n 2−f(n) <∞ then there is
a function g ∈ ∆0

2(f) such that limn(f(n)− g(n)) =∞ and
∑

n 2−g(n) <∞.
(ii) Use the result of Miller and Yu (20xx) mentioned above and (i) to show that for
each ML-random set Y there is a ML-random set Z <K Y (see 5.6.1 for ≤K).

7.3 Computable supermartingales
We will study a randomness notion where the tests are the computable bet-
ting strategies. This notion lies properly in between Martin-Löf randomness and
Schnorr randomness defined in 3.5.8.

7.3.1 Definition. (i) A supermartingale L is called computable if L(x) is
a computable real number uniformly in x. Equivalently, the undergraph
{〈x, q〉 : q ∈ Q2 & q < L(x)} is computable.

(ii) We say that Z is computably random if no computable martingale succeeds
on Z. The class of computably random sets is denoted by CR.

For each computable supermartingale S there is a computable martingaleM such
that ∀xM(x) ≥ S(x) by the proof of Proposition 7.1.6. Thus Z is computably
random iff no computable supermartingale succeeds on Z.
Each computable supermartingale is a c.e. supermartingale, so by 7.2.6 each

ML-random set is computably random. In the next sections we will give various
examples that the converse implication fails. This was first proved by Schnorr
(1971, Satz 7.2). In the present section we characterize Schnorr randomness in
terms of martingales and develop some basics on computable supermartingales.

Schnorr randomness and martingales

It is instructive to see a simple proof that any Schnorr test can be emulated
by a computable martingale. Thereafter, we proceed to a stronger result: Z is
not Schnorr random iff some computable martingale succeeds quickly on Z. This
will be used in Theorem 7.5.10 to show that some Schnorr random set is not
computably random.

7.3.2 Proposition. Every computably random set is Schnorr random.

Proof. It suffices to show that if (Gi)i∈N is a Schnorr test, then the martingale
B =

∑
iBGi

from the proof of Proposition 7.1.15 is computable, for B succeeds
on any set in

⋂
iGi. By Fact 1.9.18 (which is uniform), BGi(x) = 2|x|λ(Gi ∩ [x])

is a computable real number uniformly in x and i. Moreover, BGi(x) ≤ 2−i+|x|,
so 2−k ≥ ∑

i>|x|+k BGi
(x) for each k. Given a string x and k ∈ N, for each

i ≤ |x| + k we may compute qi,x ∈ Q2 such that 0 ≤ BGi
(x) − qi,x < 2−k−i−1.

Then 0 ≤ B(x)−∑
i≤|x|+k qi,x < 2−k+1. �
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Below we will apply the fact that, if αi is a computable real number uniformly
in i ∈ N and 0 ≤ αi ≤ 2−i for each i, then

∑
i αi is computable (Exercise 1.8.18).

7.3.3 Theorem. The following are equivalent for a set Z.
(i) Z ∈ ⋂

iGi for a Schnorr test (Gi)i∈N.
(ii) There is a computable martingale B and an order function h such that
∃∞nB(Z �n) ≥ h(n).

(iii) There is a computable martingale D and a strictly increasing computable
function g such that ∃∞kD(Z �g(k)) ≥ k.

Proof. (iii)⇒(ii): If D and g are as in (iii), let h(n) = max{l : g(l) ≤ n}. Then
h(g(k)) = k for each k, so (ii) holds via D and h.
(ii)⇒(i): We may assume that B(∅) ≤ 1. For each i ∈ N let Si be the computable
set of minimal strings x (under the prefix relation) such that B(x) ≥ h(|x|) ≥ 2i,
and let Gi = [Si]≺. Then Z ∈

⋂
iGi, and λGi ≤ 2−i by Proposition 7.1.9. It

remains to show that λGi is computable uniformly in i. Given r, we will compute
a rational qr ≤ λGi such that λGi − qr ≤ 2−r. Compute the least p such that
h(p) ≥ r. Then B(x) ≥ r for each x ∈ Si of length at least p, so λ[{x ∈ Si : |x| ≥
p}]≺ ≤ 2−r by Proposition 7.1.9. Thus qr = λ[{x ∈ Si : |x| < p}]≺ is a rational
as required.
(i)⇒(iii): By Fact 1.8.26, uniformly in i there is a computable antichain Si ⊆
{0, 1}∗ such that Gi = [Si]≺. We will apply the following lemma to R =

⋃
i Si.

It introduces a version of interval Solovay tests (3.2.22) for Schnorr randomness.

7.3.4 Lemma. Let R be a computable set of strings such that
∑

x∈R 2−|x| is
finite and a computable real. If ∃∞mZ �m∈ R then (iii) holds.

Subproof. There is an order function f such that, for each n,
∑

x 2
−|x| [[x ∈ R & |x| ≥ n]] ≤ 2−2f(n).

Let Uk = {x ∈ R : f(|x|) ≥ k}. We think of f as a function that grows slowly,
so Uk is small. Then we can uniformly in k construct a computable martingale
Dk that has a start capital of at most 2−k+1 and reaches at least 2f(|x|) on every
string x ∈ Uk. Now D =

∑
k Dk is a computable martingale as required.

We provide the details. For r ∈ N let αr =
∑

x 2
f(|x|)−|x| [[x ∈ R & f(|x|) = r]].

Then αr ∈ Q2 and αr = 2r
∑

x 2
−|x| [[x ∈ R & f(|x|) = r]] ≤ 2r2−2r = 2−r.

For each string x, let
px = 2f(|x|)−|x|.

Note that
∑

x px [[x ∈ Uk]] =
∑

r≥k αr is a computable real uniformly in k. More
generally, the following is a computable real, uniformly in k and a string w:

Fk(w) = 2|w| ∑
x px [[w � x & x ∈ Uk]].

Let Ek(w) =
∑

v 2
f(|v|) [[v ≺ w & v ∈ Uk]], and let

Dk(w) = Ek(w) + Fk(w).
Then Dk(w) is a computable real uniformly in k. Informally, Ek(w) is the
amount Dk has achieved already, while Fk(w) prepares for future achievements.
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We check that the martingale property holds for Dk. First suppose that w ∈ Uk.
Since Ek(wa) = Ek(w) + 2|w|pw (a ∈ {0, 1}) and Fk(w0) + Fk(w1) = 2(Fk(w)−
2|w|pw), we have

(Ek(w0) + Ek(w1))/2 = Ek(w) + 2|w|pw,

(Fk(w0) + Fk(w1))/2 = Fk(w)− 2|w|pw,

so the martingale property holds. The case that w �∈ Uk is simpler since we do
not need the term 2|w|pw in either equation.
Since

∑
r≥k αr ≤ 2−k+1, we have Fk(w) ≤ 2−k+12|w|. Also Ek(w) = 0 for

k ≥ |w|, so D =
∑

k Dk is a computable martingale.
To show (iii), let g(k) = min{n : f(n) > k}. Given k0 ∈ N, let m be least such

that k = f(m) ≥ k0 and Z �m∈ R. Then Z �m∈ Uk. If x ∈ Uk then Dk(z) ≥ 2k

for each z ! x. As g(k) > m, we have in fact Dk(Z �g(k)) ≥ Dk(Z �m) ≥ 2k.
�

Note that the set R =
⋃

i Si is computable since x ∈ Si implies |x| ≥ i.
Further, the real number

∑
x∈R 2−|x| is computable because λGi ≤ 2−i and λGi

is computable uniformly in i. If Z ∈ ⋂
iGi then for each i there is m such that

Z �m ∈ Si, and m ≥ i since λGi ≤ 2−i. Thus ∃∞mZ �m∈ R. �

Exercises.
7.3.5. For a prefix-free machine M let FSM be the martingale

∑
y 2−KM (y)Ey (see

page 266). Show that if M is a computable measure machine then FSM is computable.
Use this to give yet another proof of Proposition 7.3.2.

7.3.6. Use Lemma 7.3.4 to give another proof of Theorem 3.5.21 that each Schnorr
random set satisfies the law of large numbers.

7.3.7.� Show that Z is Schnorr random ⇔ lim infn KM (Z �n)− n =∞ for each com-
putable measure machine M . Hint. Adapt the proof of Proposition 3.2.21.

Preliminaries on computable martingales

If V is a computable martingale then by Fact 1.8.15(iv) one can approximate each
value V (x) ∈ R by a rational up to an arbitrary precision. Nonetheless, it would
be desirable to have complete information about these values. For this reason we
will mostly work with computable (super)martingales B taking values in Q2. By
the following fact of Schnorr (1971), this restriction does not affect the notion of
computable randomness: if V is a computable martingale and V (Z) = ∞ then
B(Z) =∞ for a computable Q2-valued martingale B.

7.3.8 Proposition. For each computable martingale V there is a Q2-valued
computable martingale B such that V (x) ≤ B(x) ≤ V (x) + 2 for each x.

The constant 2 is chosen for notational simplicity, and could be replaced by any
rational ε > 0.

Proof. Suppose that at a string y the martingale V bets r(y) = V (y0) − V (y)
on the prediction 0. We allow a negative value r(y) here, which means that V
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actually bets −r(y) on 1. Since V (x) is a computable real number uniformly in x,
there is a computable function f : {0, 1}∗ → Q2 such that abs(r(y) − f(y)) ≤
2−|y|−2 for each y.
We assign B a start capital of B(∅) ∈ [V (∅) + 1/2, V (∅) + 1]. This implies

0 ≤ V (∅) + 1 − B(∅) ≤ 1/2. In order to define B on strings other than ∅, we
replace r by f . Recursively we define

B(ya) = B(y) + (−1)af(y)
for each string y and each a ∈ {0, 1}. Then the martingale equality holds. To
show that V (x) ≤ B(x) ≤ V (x) + 2 for each x, note that, where y ranges over
{0, 1}∗, and a over {0, 1}, we have V (x) = V (∅) +

∑
y,a(−1)ar(y) [[ya � x]] and

similarly B(x) = B(∅) +
∑

y,a(−1)af(y) [[ya � x]], so that

abs(V (x) + 1−B(x)) = abs(V (∅) + 1−B(∅)

+
∑

y,a

(−1)a(r(y)− f(y)) [[ya � x]])

≤ 1/2 +
∑

j<|x|
2−j−2 ≤ 1.

Thus V (x) ≤ B(x) ≤ V (x) + 2 for each x. �

7.3.9 Proposition. Let S be a Q2-valued supermartingale. Then for each string z
and each u > |z|, one may compute relative to S the leftmost w of length u such
that S does not increase along w, namely,

∀n [|z| ≤ n < u→ S(w �n) ≥ S(w �n+1)
]
.

We say that w is the leftmost non-ascending string of length u above z given
by S.

Proof. The following procedure computes w relative to S.
1. Let w := z.
2. For n = |z| to u− 1 do: if S(w0) ≤ S(w) let w := w0 else w := w1.
3. Output w. �

7.3.10 Corollary. For a Q2-valued supermartingale S the leftmost non-ascen-
ding path in the sense of 7.1.12 is computable in S. �

7.3.11 Exercise. A computable supermartingale S does not succeed on some com-
putable set. In particular, there is no universal computable supermartingale.

7.4 How to build a computably random set
We will follow two approaches for building a computably random set Z that is
not ML-random. Both actually yield a stronger result by combining Schnorr’s
original proof with new ideas. Thus, beyond separating the two notions, we show
that the computably random sets are more diverse than the ML-random sets.
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(I) We build a computably random Z that has a slowly growing initial segment
complexity, say K(Z �n) ≤+ 3 logn for each n.

(II) Turing below each high set C we build a computably random set Z.

The set Z in approach (I) is not ML-random because each ML-random set Z
satisfies ∀nK(Z �n) ≥+ n by Theorem 3.2.9. In approach (II), if the high set
C is c.e. and C <T ∅′, then Z is not ML-random because it is not even of
d.n.c. degree: otherwise C is of d.n.c. degree and hence Turing complete by the
completeness criterion 4.1.11.
By Theorem 3.5.13, a computably random set that is not high is already ML-

random. Theorem 7.5.9 is a result stronger than (II) that complements 3.5.13:
each high degree contains a computably random set that is not ML-random.
Besides computable randomness we will consider partial computable random-

ness, which lies strictly in between ML-randomness and computable randomness.
The tests are now Q2-valued partial computable martingales B. The fact that
B(x) may be undefined for some strings x gives the betting strategy B a consid-
erable advantage. It can wait as long as it wishes before it decides on its bet at a
position. As before, B succeeds on Z if supnB(Z �n) =∞; in particular, B must
be defined for all the initial segments of Z. In Section 7.5, as a preparation to
Theorem 7.5.9, we give a direct construction of a computably random but not
partial computably random set.
One can also separate all three randomness notions mentioned above by con-

sidering the initial segment complexity. This extends approach (I). It turns out
that a partial computably random set Z cannot satisfy ∀n K(Z �n) ≤+ c logn
for a constant c (Theorem 7.6.7), while a computably random set can do so. A
slightly larger bound, such as λn. log2 n, is consistent with being partial com-
putably random, but still not with being ML-random.
We summarize the implications between the randomness notions:

ML-random ⇒ partial computably random
⇒ computably random
⇒ Schnorr random.

The converse implications fail. A set that is Schnorr random but not computably
random is obtained in Theorem 7.5.10, a variant of Theorem 7.5.9.

Three preliminary theorems: outline

The results in this and the next section will be achieved in small steps. In each of
three preliminary theorems, we prove that there is a computably random set Z
with certain additional properties. Each theorem introduces a new main idea.
Eventually all the ideas are combined to prove Theorem 7.5.9 that each high
degree contains a computably random set that is not ML-random.
The proofs share a template. In the simplest case, a supermartingale L is

introduced such that for each total Bk, for an appropriate c > 0 we have ∀x [c ·
L(x) ≥ Bk(x)]. Then a set Z is built on which L does not succeed. Thus Z is
computably random.
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We describe the three preliminary theorems.

• In Theorem 7.4.8 we carry out approach (I) on page 271. We introduce the
template and the idea of copying partial computable martingales.
• In Theorem 7.5.2 we carry out approach (II). The idea is to use the highness
of C to build a supermartingale L ≤T C that dominates each Bk up to a
multiplicative constant.
• In Theorem 7.5.7 we build a computably random set that is not partial
computably random. We introduce the idea of encoding the definition of L
into Z.

The template will be used to separate all the randomness notions that can be
characterized via martingales, that is, all the notions between Schnorr random-
ness and ML-randomness.

Partial computable martingales

First we provide the formal definition of a concept already mentioned above.

7.4.1 Definition. A partial computable martingale is a partial computable func-
tion B : {0, 1}∗ → {x ∈ Q2 : x ≥ 0} such that dom(B) is closed under prefixes,
and for each x ∈ dom(B), B(x0) is defined iff B(x1) is defined, in which case
the martingale equality B(x0) +B(x1) = 2B(x) holds.

By this definition, partial computable martingales are always Q2-valued, while
we allow computable supermartingales with values in R. This fine point rarely
matters because of Proposition 7.3.8.
For a function f , we write f(x) ↓ to denote that f(x) is defined, and f(x) ↑

otherwise. Definition 7.1.1 can be adapted to partial computable martingales.
Thus, we let B(Z) = sup{B(Z �n) : B(Z �n)↓}, and B succeeds on Z if B(Z) =
∞. This is only possible if B is defined along Z, that is, B(Z �n)↓ for each n.
7.4.2 Definition. Z is partial computably random if no partial computable mar-
tingale succeeds on Z. The class of partial computably random sets is denoted
by PCR.

Each partial computable martingale B yields a c.e. supermartingale B̂ in the
sense of Definition 7.2.1: let B̂(x) = B(x) if the latter is defined, and otherwise
B(x) = 0. Note that B and B̂ succeed on the same sets. Hence each ML-random
set Z is partial computably random by Proposition 7.2.6.
For the template and its applications we will need some more notation. Via

the effective identifications of {0, 1}∗ and {q ∈ Q2 : q ≥ 0} with N we may view
each Φk as a partial function {0, 1}∗ → {q ∈ Q2 : q ≥ 0}. Let Bk be the partial
computable function that copies Φk as long as it looks like a martingale:

Bk(∅) 	 Φk(∅), and
Bk(x) = Φk(x) if x = ya for a ∈ {0, 1}, Bk(y) has been defined already,
and Φk(y0) + Φk(y1) = 2Φk(y) (all defined).
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Then (Bk)k∈N is an effective listing of all the partial computable martingales.
Let

TMG = {k : Bk is total}.
We frequently need a partial computable martingaleBk,n, n ∈ N, which copiesBk,
but only for strings x such that |x| ≥ n, and with some scaling. For shorter strings
it returns the value 1.

7.4.3 Fact. There is an effective listing (Bk,n)k,n∈N of partial computable mar-
tingales such that

(i) Bk,n(x) = 1 for |x| < n.

(ii) For each k, n there is a constant c > 0 such that, for each x, if Bk(x) ↓
then Bk,n(x)↓ and Bk(x) ≤ c ·Bk,n(x).

Proof. For |x| ≥ n, if Bk(x �n) = 0 let Bk,n(x) = 0. Otherwise let Bk,n(x) 	
Bk(x)/Bk(x�n). Then (ii) holds via c = max{Bk(y) : |y| = n}. �

7.4.4 Definition. For each n let Gn be the supermartingale such that
Gn(x) = 1 for |x| < n and Gn(x) = 0 else.

Exercises. Show the following.

7.4.5. PCR is closed under finite variants.

7.4.6. For each partial computable martingale B there is a computable set E such
that either ∃n B(E �n)↑ or ∀n B(E �n+1) ≤ B(E �n).

A template for building a computably random set

We apply the template already mentioned above in all the subsequent construc-
tions of a set Z that is computably random, or satisfies some variant of this
property. First a definition.

7.4.7 Definition. Let L and B be supermartingales. We say that L multiplica-
tively dominates B if there is c ∈ N such that B(x) ≤ c · L(x) for each x.
In the template, for each k one introduces a supermartingale Vk that copies Bk

with certain restrictions. Then one lets L =
∑

k 2
−kVk, and Z is some set on

which L does not succeed. For instance, Z could be the leftmost non-ascending
path of L. Enough copying of Bk to Vk is carried out so that L multiplicatively
dominates each total Bk. Hence Z is computably random.
To ensure that L is Q2-valued and for other purposes, one defines a sequence

0 = n0 < n1 < . . . and lets Vk copy not Bk but rather B∗
k : = Bk,nk+1 defined in

Fact 7.4.3 (Bk is only copied for strings of length ≥ nk+1). Then, if |x| ∈ Ik =
[nk, nk+1), all the Vj for j ≥ k together contribute 2−k+1 to L(x). Thus L(x) is
in Q2, and only depends on the values Vj(x) for j < k.
To summarize, the template consists of the following three steps.
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1. Define the sequence 0 = n0 < n1 < . . ., which determines the super-
martingales B∗

k = Bk,nk+1 .
2. Introduce the supermartingales Vk that copy the B∗

k with certain con-
straints. In this way obtain the supermartingale L =

∑
k 2

−kVk.
3. Define Z in such a way that L(Z) <∞.

Computably random sets and initial segment complexity

We carry out approach (I) on page 272, building a computably random set Z of
slowly growing initial segment complexity. The construction works best for the
conditional initial segment complexity K(Z �n| n). Note that by Section 2.3

K(Z �n) ≤+ K(Z �n| n) +K(n) ≤+ K(Z �n| n) + 2 logn,

so K(Z �n) also grows quite slowly. However, we need to distinguish the two
types of initial segment complexity since we will also consider sublogarithmic
upper bounds for K(Z �n| n).
Our first application of the template is to build a computably random Z such

that K(Z �n| n) ≤+ h(n) for each order function h. We begin with the simpler
case where h is fixed. Vk copies B∗

k in the case that Bk is total. If not, Vk(x) = 1
for |x| < nk+1, and Vk(x) = 0 otherwise. The initial segment complexity grows
slowly if we choose the nk sufficiently far apart. If |x| < nk+1 then L(x) only
depends on Bi(x) for i < k; the set Z is the leftmost non-ascending path of L, so
to determine Z �nk+1 we only need the information which ones among these Bi

are total. This amount of information is small compared to |x|.
7.4.8 Theorem. For each order function h there is a computably random set Z
such that ∀∞n K(Z �n| n) ≤ h(n).
Proof. Step 1. Define the computable sequence 0 = n0 < n1 < . . . by

nk+1 = µn > nk [h(n) > 4(k + 1)]. (7.7)

(The slower h grows, the sparser is the sequence. For instance, if h(n) = log n,
then nk = 2× 16k for k > 0.) Let

Ik = [nk, nk+1).

Sometimes we write Int(z) for the number k such that |z| ∈ Ik. Let

B∗
k = Bk,nk+1 . (7.8)

Step 2. Let Vk = B∗
k if B∗

k is total, and Vk = Gnk+1 otherwise (see 7.4.4 for Gn).
Then each Vk is a supermartingale. Define a supermartingale L by

L =
∑

k

2−kVk. (7.9)

Note that L(∅) = 2. Once again, we draw attention to the following.
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7.4.9 Fact. If |x| ∈ Ik we have Vj(x) = 1 for all j ≥ k, so the total contribution
of all such Vj to L(x) is 2−k+1. In particular, L is Q2-valued. �

Step 3. Let Z be the leftmost non-ascending path of L, i.e., Z is leftmost such
that ∀n L(Z �n+1) ≤ L(Z �n). Then L(x) ≤ 2 for all x ≺ Z, that is, L(Z) ≤ 2. By
Fact 7.4.3(ii), L multiplicatively dominates each total Bk. So Z is computably
random.
It remains to show that K(Z �n| n) ≤ h(n) for almost all n. To do so, when

n ∈ Ik we compute Z �n from n and TMG�k (recall that TMG = {e : Be total}).
7.4.10 Compression Lemma. There is a partial computable function F such
that ∀k∀n ∈ Ik

[
Z �n= F (n,TMG�k)

]
.

Subproof. We describe a procedure for F on inputs n and τ which in the rele-
vant case that τ = TMG�k simply provides more formal details in the definition
of Z. For other strings τ it may attempt to compute undefined values of partial
martingales, and thus may fail to terminate.

(1) Compute k such that n ∈ Ik.
(2) Let z = ∅. For p = 0 to n− 1 do:

(a) Let r be such that p ∈ Ir. Write

Sr(x) 	 2−r+1 +
∑

i 2
−iB∗

i (x)[[i < r & τ(i) = 1]].

(b) Let z := z0 if Sr(z0) ≤ Sr(z) and z := z1 else.
(If Sr(z0) is undefined then the procedure does not return.)

(3) Output z.

If n ∈ Ik and τ = TMG �k then Sr is defined for all z such that |z| < nk+1, so
the procedure returns Z �n. �

The length of a prefix-free description of TMG �k is bounded by 2k + O(1).
Via F such a description can be turned into a description of Z �n given n. Since
h(n) ≥ 4k for n ∈ Ik, this shows that K(Z �n| n) ≤ h(n) for almost all n. �

We will refine the argument to obtain a result of Merkle (2003), anticipated in
earlier works, which states that there is a computably random set Z of an even
more slowly growing initial segment complexity. The quantifiers in Theorem 7.4.8
can be interchanged, resulting in a set Z with initial segment complexity dom-
inated by all order functions. Such sets, called facile sets, will be studied in
Section 8.2, page 319. The sequence (nk) is no longer computable because to
determine nk+1 one has to take into account all order functions Φi for i < k. To
describe Z �n for n ∈ Ik one has to know which among the Φi for i < k are order
functions.

7.4.11 Theorem. (Extends 7.4.8) There is a computably random facile set Z,
namely, ∀∞n K(Z �n| n) ≤ h(n) for each order function h.
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Proof. Let Ord = {i : Φi is an order function}. We modify the sequence
n0 < n1 < . . . as follows. We let n0 = 0 and

nk+1 = µn > nk

[
min{Φi(n) : i < k & i ∈ Ord} > 4(k + 1)

]
. (7.10)

Now we define L by (7.9), but based on this new sequence. As before, the leftmost
non-ascending path Z of L is computably random. It remains to verify that the
initial segment complexity of Z grows slowly. We modify Lemma 7.4.10.

7.4.12 Compression Lemma. There is a partial computable ternary function F
such that ∀k∀n ∈ Ik

[
Z �n= F (n,TMG�k,Ord�k)

]
.

Subproof. The procedure for F has the inputs n, τ and ρ. We modify step (1)
in the proof of 7.4.10. It may now fail to terminate if ρ �≺ Ord.
(1′) Attempt to compute numbers 0 = n0 < n1 < . . . by

nk+1 	 µn > nk

[
min{Φi(n) : i < k & ρ(i) = 1} > 4(k + 1)

]

till k is found such that n ∈ Ik = [nk, nk+1).
The remaining steps are as before. �

There is a prefix-free description of the pair 〈TMG�k,Ord�k〉 of length at most
3k+O(1). If n ∈ Ik then F can turn such a description into a description of Z �n

given n. If h = Φi is an order function then h(n) ≥ 4k for all k > i and n ∈ Ik.
Thus K(Z �n| n) ≤ h(n) for almost all n. �

7.4.13 Remark. Since TMG and Ord are Π0
2 sets we have Z ≤T ∅′′ by 7.4.12. We

modify the construction in the proof of Theorem 7.4.8 to obtain a set Z ≤T ∅′. We
define the computable sequence n0 < n1 < . . . to be a bit sparser: n0 = 0 and

nk+1 = µn > nk

[
h(n) > 4(k + 1)2

]
.

Recall that Int(z) denotes the number k such that |z| ∈ Ik. Let

Vk(x) =

{
B∗

k(x) if Int(x) < k or ∀y [Int(y) = Int(x)→ B∗
k(y)↓]

0 otherwise,

and define L and Z as before but using these new versions of the Vk. Then Z ≤T ∅′
since the function λk, x.Vk(x) is computable in ∅′. To describe Z �n for n ∈ Ik, we need
to know for each i < k which (if any) of the intervals Ir, r ≤ k, is the last such that
B∗

i (x)↓ whenever Int(x) = r. This requires at most 4k log k bits.

7.4.14 Exercise. There is a computably random facile set Z ≤T ∅′.
Hint. Apply an argument similar to the one in 7.4.13 as well to the order functions.

The case of a partial computably random set

A modification of the foregoing proof yields a set Z that is partial computably
random (see 7.4.2), at the cost of an initial segment complexity that grows faster
by a factor of logn. By Theorem 7.6.7 below this cannot be improved, because a
growth rate of O(logn) implies that the set is not partial computably random.
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7.4.15 Theorem. There is a partial computably random set Z such that
∀∞n K(Z �n| n) ≤ h(n) logn for each order function h.

Note that K(x | n) ≤+ K(x) ≤+ K(x | n) + K(n) ≤+ K(x | n) + 2 log n
by Section 2.3, so we could as well state that ∀∞n K(Z �n) ≤ h(n) logn for
each order function h. We merely keep conditional complexity to be notationally
consistent with Theorem 7.4.11.

Proof. We define the sequence (nk)k∈N by (7.10). Let

Vk(x) =

{
B∗

k(x) if B∗
k(x)↓

0 otherwise.

As before, let L =
∑

k 2
−kVk, and let Z be the leftmost non-ascending path

of L. Then Z is partial computably random: suppose B∗
k(Z �n)↓ for each n, then

Vk(Z �n) = B∗
k(Z �n) is bounded along Z.

In the proof of the foregoing theorem, to determine Z(n) from z = Z �n for
n ∈ Ik, we merely required a yes/no information for each i < k: whether Bi

is total, and whether Φi is an order function. Now we need to know Vi(z0),
which depends on whether B∗

i (z0) (or equivalently, B∗
i (z1)) is defined. This is

a considerably larger amount of information: we need the value of pi, where pi

is the least p ≤ n such that B∗
i (Z �p)↑ if there is such a p, and pi = n + 1 else.

The length of a prefix-free description of pi is bounded by 2 logn+ O(1). Since
h(n) ≥ 4k for each order function h, almost all k and all n ∈ Ik, we need at most
h(n) logn bits.

7.4.16 Compression Lemma. There is a partial computable ternary function F
such that

∀k∀n ∈ Ik [Z �n= F (n,m,Ord�k)],
where m = 〈p0, . . . , pk−1〉, and the pi ≤ n+ 1 are defined as above.

Proof. The modified procedure to compute F is as follows.

(1) Attempt to compute numbers 0 = n0 < n1 < . . . by
nk+1 	 µn > nk

[
4(k + 1) < min{Φi(n) : i < k & ρ(i) = 1}]

till k is found such that n ∈ Ik = [nk, nk+1).
(2) Let z = ∅. For l = 0 to n− 1 do:

(a) Let r be such that l ∈ Ir. For each i ≤ r and a ∈ {0, 1}, attempt to
compute Vi(za): if pi ≤ |z|+ 1 let Vi(za) = 0, otherwise let
Vi(za) 	 B∗

i (za). Now calculate Sr(za) 	
∑

i<r 2
−iVi(za).

(b) Let z := z0 if Sr(z0) ≤ Sr(z), and let z := z1 otherwise.
(If S(z0) is undefined then the procedure does not return.)

(3) Output z.

As explained above, if n ∈ Ik, m is as above, and ρ = Ord �k, the procedure
returns Z �n. Since K(ρ) ≤+ 2k, with the remarks above this shows that
K(Z �n| n) ≤ h(n) logn for almost all n. �
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7.4.17 Remark. A slight modification of the proof yields a left-c.e. set Z in Theo-
rem 7.4.15. The Vk are uniformly c.e. supermartingales, hence L is computably enu-
merable. Recall from Remark 7.1.13 that T L

2 = {x : ∀y � x [L(y) ≤ 2]}. Since L is c.e.
and L(∅) ≤ 2, Paths(T L

2 ) is a nonempty Π0
1 class. The leftmost path Z of T L

2 is left-c.e.
by Fact 1.8.36, and Z is partial computably random. To show the bound on the initial
segment complexity, in the procedure for F we replace step (2.b) by

(2.b′) Let z := z0 if Sr(z0) ≤ 2, and z := z1 otherwise.

7.5 Each high degree contains a computably random set
Having studied the initial segment complexity of computably random sets, we
now turn to their computational complexity. We carry out the approach (II) on
page 271. Given a high set C, our first goal is to build a computably random set
Z ≤T C. Later on, we will achieve that Z ≡T C, and we will also ensure that Z
is not partial computably random. Each Schnorr random set of non-high degree
is ML-random by 3.5.13, so this characterizes the Turing degrees of sets that are
computably random but not partial computably random (or ML-random).

Martingales that dominate

Theorem 1.5.19 states that C is high iff there is a function f ≤T C dominating
every computable function. From such an f we will obtain a Q2-valued super-
martingale L ≤T C, L(∅) ≤ 2, that multiplicatively dominates each computable
martingale. If Z is the leftmost path on TL

2 = {x : ∀y � x [L(y) ≤ 2]} then Z is
computably random and Z ≤T C.

7.5.1 Domination Lemma. If C is high then there is a Q2-valued supermartin-
gale L ≤T C that multiplicatively dominates each computable martingale.

Proof. Only steps 2 and 3 of the template on page 274 are needed here (think
of ne as being e). The partial computable martingales Bk,n were defined in 7.4.3.
Suppose f ≤T C dominates each computable function. For each e, let

ge(n) 	 µt [∀x (|x| ≤ n→ Be,e+1(x)[t]↓)], and let

Ve(x) =

{
Be,e+1(x) if |x| ≤ e or ∀m [

e ≤ m ≤ |x|)→ ge(m) ≤ f(m) + e
]

0 else.

As usual let L(x) =
∑

e 2
−eVe(x). Clearly L is a supermartingale. Further, L is

Q2-valued by the standard argument: for e > |x| we have Ve(x) = 1, so the tail
of the sum due to the e > |x| equals 2−|x|. Note that L ≤T C since Ve ≤T C
uniformly in e.
If Be is total then there is m such that ge(n) ≤ f(n) for all n ≥ m. By the

Padding Lemma 1.1.3 we may choose e′ such that the Turing program Pe′ does
exactly the same as Pe and e′ > max{ge(n) : n < m}. Thus ge(n) = ge′(n) ≤
f(n) + e′ for all n. (This saves on notation here: else in the definition of L one
would have to consider pairs consisting of a martingale and a constant.) It follows
that Be(x) ≤ 2e′

L(x) for each x. �
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The following preliminary result is now immediate.

7.5.2 Theorem. For each high set C there is a computably random set Z ≤T C.

Proof. Let L be as in Lemma 7.5.1. Note that L(∅) ≤ 2. As in Remark 7.1.13,
let Z be the leftmost path on the tree TL

2 = {x : ∀y � x [L(y) ≤ 2]}. Then
Z ≤T L ≤T C and Z is computably random. �

Each high c.e. degree contains a computably random left-c.e. set

Eventually we want to improve the conclusion in Theorem 7.5.2 to Z ≡T C. This
is easier when C is c.e., and in this case we even obtain a left-c.e. set Z. The
proof deviates from the template.

7.5.3 Theorem. For each high c.e. set C, there is a computably random left-c.e.
set Z ≡T C.

Proof. We need a version of the Domination Lemma 7.5.1 for the c.e. setting.

7.5.4 Lemma. Suppose the set C is high and also c.e. Then there is a super-
martingale L as in 7.5.1 such that, in addition, L is computably enumerable.

Subproof. We refine the proof Lemma 7.5.1 in order to obtain a supermartin-
gale approximation (Ls)s∈N for L (see Definition 7.2.3). Suppose ∆ is a Turing
functional such that f̃ = ∆C dominates every computable function. We will re-
place f̃ by an even larger function computable in C which can be approximated
in a non-decreasing way: let

fs(x) = maxt≤s∆C(x)[t], and f(x) = limsfs(x).

Note that f(x) < ∞ since ∆C is total. To compute f(x) relative to C, let s be
least such that ∆C(x)[s]↓ with Cs correct up to u the use of this computation and
output fs(x). Then ft(x) = f(x) for each stage t > s (here we have used that C
is computably enumerable). Now let L ≤T C be as in the proof of Lemma 7.5.1.
To obtain the supermartingale approximation (Ls)s∈N, let

Ve,s(x) =

{
Be(x) if |x| < e or ∀m [e ≤ m ≤ |x| → ge(m) ≤ fs(m+ e)]
0 else.

Let Ls(x) =
∑

e 2
−eVe,s(x). �

As in Remark 7.4.17, Paths(TL
2 ) is a nonempty Π0

1 class. So the leftmost path of
TL

2 is left-c.e. and computable in C. To prove Theorem 7.5.3, we have to ensure
that, conversely, C can be computed from the leftmost path on a variant of TL

2 .
This is achieved by adding a c.e. supermartingale N to L. The following isolates
the argument.

7.5.5 Lemma. Let L be a Q2-valued c.e. supermartingale with an approxima-
tion (Ls)s∈N, and suppose that L(λ) ≤ 2. Then for each c.e. set C there is a
Q2-valued c.e. supermartingale N ≤T C such that N(λ) ≤ 2, and C ≤wtt Z for
the leftmost path Z of T = TL+N

4 = {x : ∀y � x (L+N)(y) ≤ 4}.
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Note that Z exists by (7.4). In our case, since L is Q2-valued and L ≤T C, we
have L+N ≤T C. Thus Z ≤T C as well, which establishes Theorem 7.5.3.

To prove the Lemma, we build N via a supermartingale approximation (Ns)s∈N. We
may assume that #(Cs+1 − Cs) = 1 for each stage s. At stage s + 1, let Zs be the
leftmost path of length s + 3 of Ts = {x : ∀y � x (Ls + Ns)(y) ≤ 4[s]}. Since Ls(y)
and Ns(y) are nondecreasing in s, the approximation (Zs)s∈N only moves to the right,
so Z is left-c.e.

We devote 2−n of the initial capital of N to code into Z whether n ∈ C. Recall that Gn

is the supermartingale given by Gn(x) = 1 for |x| < n and Gn(x) = 0 otherwise. Let
N0 =

∑
n 2−nGn, so that N0(x) = 2−|x|. When n enters C at stage s, then Ns+1

withdraws at the string z = Zs �n the capital 2−n. Thereafter it doubles its capital
n + 3 times along Zs, reaching the value 8 at Zs �2n+3. More formally, let

Fn,s(x) =

{
2|x|−n if x � Zs �2n+3 & n ≤ |x|
0 else,

Ns+1 = Ns + 2−nFn.

Then Gn + Fn is a supermartingale for each n. Hence, by Fact 7.1.7(ii), (Ns)s∈N is a
supermartingale approximation, and N(x) = supsNs(x) defines a c.e. supermartingale.
To see that N is Q2-valued and N ≤T C, given x, compute relative to C a stage s such
that C �|x|+1 is stable. Then N(x) = Ns(x) by the definition of the Fn,s.

To show that C ≤wtt Z, given n, compute t such that Zt �2n+3= Z �2n+3. Then
C(n) = Ct(n), for if n is enters C at a stage s > t, this causes (L + N)(Zs �2n+3) ≥ 4,
so Zt �2n+3 is not on the leftmost path of T . �

A computably random set that is not partial computably random

Coding a set C into the leftmost path of a Π0
1 class works when the set is c.e., but

for coding an arbitrary set a different idea is needed. Suppose that as before L is
a supermartingale dominating all the partial computable supermartingales. We
introduce a new method for coding information into a set Z such that L(Z) <∞.
Given a string x which already encodes k bits of information, one finds distinct
strings y0, y1 � x such that along each ya, L increases by at most a factor of
1 + 2−k. If Z extends x, one may code one further bit a into Z by letting Z
extend ya. Such strings y0, y1 � x exist by the following Lemma. It is an analog
of Lemma 3.3.1 used for the proof of the Kučera–Gács Theorem 3.3.2.

7.5.6 Lemma. Let L be a supermartingale. Then for each string x and each
number k, there are distinct strings y0, y1 � x of length |x| + k + 1 such that L
does not grow beyond (1 + 2−k)L(x) along each ya, a = 0, 1. That is,

∀z [x � z � ya → L(z) ≤ (1 + 2−k)L(x)]. (7.11)

Proof. Because of the localization principle 7.1.7(iii) we may suppose x = ∅.
Let y0 be a string of length k+1 along which L does not increase. Let z0, . . . , zn−1
be the strings z of length k + 1 that are minimal under the prefix relation with
L(z) > (1 + 2−k)L(∅). Assume for a contradiction that for each y �= y0 of



282 7 Randomness and betting strategies

length k+1 there is i < n such that zi � y. Then
∑

i<n 2−|zi| = 1− 2−(k+1). By
Lemma 7.1.8(i)

L(∅) ≥∑
i<n 2−|zi|L(zi) > (1 + 2−k)L(∅)(1− 2−(k+1)) > L(∅),

contradiction. �

We let
yL

x,k+1,0 and yL
x,k+1,1 (7.12)

be the leftmost and the rightmost extension of x with length |x| + k + 1 such
that (7.11) holds; these strings are distinct by Lemma 7.5.6. If L is a Q2-valued
supermartingale then yL

x,k,0 and yL
x,k,1 can be computed from x, k and the values

L(z) for |z| ≤ |x|+ k + 1.

7.5.7 Theorem. There is a computably random set Z that is not partial com-
putably random.

Proof. Let n0 = 0 and nk+1 = nk + k + 2. As usual, let Ik = [nk, nk+1). Let
uk = nk + k + 1,

and u−1 = 0. We define supermartingales Vk (k ∈ N) almost as in 7.4.8:
Vk = B∗

k if Bk is total, and Vk = Gnk+1 otherwise,
where B∗

k = Bk,nk+1 . As always let L =
∑

k 2
−kVk. Then L multiplicatively

dominates each total martingale Bk.
The set Z is defined by recursion. The bit positions in [nk, uk) are used to code

TMG(k) into Z. One lets Z(uk) = 0 unless this makes the value of L increase,
in which case one chooses the value Z(uk) = 1. This decision can be predicted
by a suitable partial computable martingale D, which therefore may double its
capital. The detailed definition of Z follows:

• If x = Z �nk
has been defined let Z �uk

= yL
x,k+1,TMG(k).

• If z = Z �uk
has been defined let Z(uk) = 0 if L(z0) ≤ L(z), and Z(uk) = 1

otherwise.

A typical portion of Z looks like this:
. . . 010 1 10111000 1 0100 . . .

u6 n7 u7 n8

(the bit in position u7 is 1, for instance, because L(z0) > L(z) for z = Z �u7).
To show that Z is computably random, it suffices to verify that L does not

succeed on Z. We need the following fact from analysis.

7.5.8 Fact. If (ak)k∈N is a sequence of nonnegative real numbers and
s =

∑
k ak <∞, then

∏
k(1 + ak) <∞.

Proof. es = supk

∏k
i=0 e

ai , and 1+ai ≤ eai . Thus
∏

k(1+ak) ≤ es <∞. �

We apply this fact to ak = 2−k. As L(∅) ≤ 2 we have L(Z �n) ≤ 2
∏

k<n(1+2−k)
for each n. So L(Z) = supnL(Z �n) <∞.
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We define a partial computable martingale D that succeeds on Z. It can predict
each value Z(uk), and hence bets all of its current capital on that value. The
prediction is based on TMG �k, since TMG �k determines the values L(x) for
|x| ∈ Ik. D merely “reads” Z at the bit positions j < uk−1 not of the form ul

without betting. TMG�k can be recovered from Z �uk−1 by the coding.
For the formal definition of D, we begin with a Turing functional ∆ with

computably bounded use. We will verify by induction on k that

∆Z�uk = TMG�k+1 . (7.13)

(For instance, the string Z �u0 suffices to determine whether B0 is total.) Below,
the definition of ∆ is in italics while the rest is explanatory. Note that ∆∅ = ∅

for any Turing functional ∆.
1. If |z| = uk and τ = ∆z�uk−1 has been defined, where |τ | = k, then write

Sk = 2−k+1 +
∑

i<k

2−iB∗
i [[τ(i) = 1]]. (7.14)

Note that S0(w) = 2 for each w. Also (7.13) holds for k = 0, since ∆Z�1 =
TMG �1 by the definition of Z. Suppose k > 0 and (7.13) holds for k − 1. Thus
∆z�uk−1 = τ = TMG �k for z = Z �uk

. Hence all the computations in the sum
Sk(w) are defined for |w| ∈ Ik, and Sk(w) = L(w).
2. Let x = Z �nk

and attempt to compute ya = ySk

x,k+1,a for a = 0, 1. If ya

is defined and equal to z, define ∆z(k) = a. Then (7.13) holds for k by the
definition of Z. This completes the definition of ∆. Clearly the properties in
Fact 6.1.1 are satisfied. For oracle incomparability (F2) note that we only make
a definition ∆z(k) = a if |z| = uk.
Now we define a partial computable supermartingale D in such a way that

D(Z �uk+1) = 2k for each k. Let D(∅) = 1. If D(z) ↓ for a string z such that
|z| = uk, wait for ∆z = τ , define Sk by (7.14), and attempt to compute Sk(z0).
If this computation converges and Sk(z0) ≤ Sk(z), let D(z0) = 2D(z) and
D(z1) = 0, otherwise let D(z1) = 2D(z) and D(z0) = 0. Extend D to all the
strings w ! za, |w| ≤ uk+1, by defining D(w) = D(za). �

An alternative proof of the result will be obtained through Theorem 7.6.7 below.

A strictly computably random set in each high degree

We combine the ideas from the proofs of the previous three preliminary theo-
rems to obtain the result of Nies, Stephan and Terwijn (2005) that there is a
computably random, but not partial computably random set in each high degree.
While the Domination Lemma 7.5.1 cannot be applied as it is, we still rely on a
function f ≤T C dominating each computable function. The set TMG we coded
into Z in the proof of Theorem 7.5.7 will be replaced by an auxiliary set Q ≡T C
that tells us whether a function like ge (the running time of Be) in the proof
of the Domination Lemma is dominated by f at certain values. In this way the
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question whether Be is total is divided into infinitely many subquestions whether
Be(x) is defined for all x such that |x| ∈ Ir. This is similar to the transition from
Theorem 7.4.8 to Remark 7.4.13.

7.5.9 Theorem. For each high set C there is a computably random, but not
partial computably random set Z ≡T C. Moreover, given an order function h,
one can achieve that ∀∞n K(Z �n| n) ≤ h(n).

Proof. Let n0 = 0. For k ≥ 0, let

nk+1 = µn > nk + k + 1. h(n) > 4(k + 1).

Let Ik = [nk, nk+1), uk = nk + k + 1, and u−1 = 0. As in the proof of the
Domination Lemma 7.5.1, choose a function f ≤T C which dominates each
computable function, and for each e let ge(n) 	 µt.∀x [|x| ≤ n→ Be,t(x)↓]. Let
Q = {〈0, r〉 : r ∈ C}∪

{〈e, r〉 : e > 0 & ∀p ≤ r [ge(n〈e+p+1,e+p+1〉) ≤ f(e+ p)]}.
Clearly Q ≡T C. We say Be is active in Ik if k ≤ e + 1, or 〈e, r〉 ∈ Q for the
maximal r such that r = 0 or 〈e, r〉 < k. In the second case 〈e, r + 1〉 ≥ k, so
that n〈e+r+1,e+r+1〉 > nk. Hence Be(w)↓ for each w such that |w| < nk+1.
Let V0 = 1. For e > 0, as always let B∗

e = Be,ne+1 . Let

Ve(x) =

{
B∗

e (x) if |x| ∈ Ik & Be is active in Ik
0 else.

As usual L(x) =
∑

e 2
−eVe(x) is a Q2-valued supermartingale. Given x, k, the

strings yL
x,k+1,0 and yL

x,k+1,1 are defined in (7.12). The set Z is given by the
following recursion.

• If x = Z �nk
has been defined let Z �uk

= yL
x,k+1,Q(k).

• If z = Z �uk
has been defined let Z �nk+1 be the leftmost non-ascending

string above z given by L (see 7.3.9).

We show that Z is computably random. Firstly, we verify that L(Z) < ∞.
Note that L(Z �n) ≤ 2

∏
k≤n(1 + 2−k) by the choice of the strings in (7.12) and

since L is non-ascending along Z on bit positions in the intervals [uk, nk+1). By
Fact 7.5.8

∏
k(1 + 2−k) <∞. So L(Z) = supnL(Z �n) <∞.

Secondly, we show that L multiplicatively dominates each total Be. The func-
tion v given by v(i) = ge(n〈i+1,i+1〉) is computable, so that ∀i ≥ i0 [v(i) ≤ f(i)]
for some i0. By the Padding Lemma 1.1.3 we may choose e′ such that the
Turing program Pe′ behaves like Pe and e′ > i0. Hence, for all p, we have
v(e′ + p) = ge′(n〈e′+p+1,e′+p+1〉) ≤ f(e′ + p), so 〈e′, r〉 ∈ Q for e′ and all r.
Then Be′ is active in all intervals Ir, whence Ve′ = B∗

e′ . Since Be = Be′ , this
shows that L multiplicatively dominates Be. (The Padding Lemma is more than
a notational convenience here: it saves us from keeping track of the point from
which on f exceeds ge.)
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Since C ≡T Q, to show C ≡T Z it suffices to verify that Q ≡T Z. For Q ≤T Z
we introduce a Turing functional ∆ and verify inductively that

∆Z�uk = Q�k+1 (7.15)

for each k. As always ∆∅ = ∅.

1. If |z| = uk and τ = ∆z�uk−1 has been defined where |τ | = k, let

E(τ) = {e : 0 < e < k & ∀p [〈e, p〉 < k → τ(〈e, p〉) = 1]}
and

Sk = 2−k+1 +
∑

e

2−eB∗
e [[e ∈ E(τ)]]. (7.16)

Note that (7.15) holds for k = 0 by the definition of Z (in which case Sk(x) = 2
for each x). If k > 0 and (7.15) holds for k − 1, then for z = Z �uk

all the
computations in the sum Sk(w), |w| ∈ Ik, are defined, and Sk(w) = L(w). This
holds because inductively τ = Q�k, so e ∈ E(τ) implies that Be is active in Ik.

2. Let x = Z �nk
and calculate ya = ySk

x,k+1,a for a = 0, 1. If ya is defined and
equal to z then define ∆z(k) = a. Then (7.15) holds for k by the definition of Z.
This completes the definition of ∆ and shows that ∆Z = Q.

For Z ≤T Q it suffices to recall that, if τ = Q�k and Sk is determined as above,
then Sk(w) = L(w) whenever |w| ∈ Ik, so that the recursive definition of Z can
be computed with Q as an oracle.
To show that Z is not partial computably random, we use a partial computable

martingale D as in the proof of Theorem 7.5.7, but based on the new background
definitions. The proof that ∀∞n K(Z �n| n) ≤ h(n) is as in Theorem 7.4.8, except
that we now compute Z �n (n ∈ Ik) from n and τ = Q �k. So we modify the
procedure for F in Lemma 7.4.10: in step (2a) we define Sr by (7.16), namely,
we let Sr = 2−r+1 +

∑
e 2

−eB∗
e [[e ∈ E(τ �r)]]. �

A strictly Schnorr random set in each high degree

Some Schnorr random set is not computably random. In fact, a set separating
the two randomness notions exists in each high Turing degree. The result is again
due to Nies, Stephan and Terwijn (2005). We modify the proof of Theorem 7.5.9.
The main change is in the definition of Z.

7.5.10 Theorem. For each high set C there is a Schnorr random set Z ≡T C
such that Z is not computably random.

Proof. We are not attempting to achieve a slowly growing initial segment com-
plexity, so we may drop the order function and let n0 = 0, uk = nk + k+ 1, and
nk+1 = uk +1. We define the computable supermartingale L as before. While we
mostly determine Z(uk) in such a way that L(Z �nk+1) ≤ L(Z �uk

), for a sparse
set of numbers k we guarantee that Z(uk) = 0. This set is so sparse that no com-
putable martingale D succeeds on Z in the strong sense of Theorem 7.3.3(iii).
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On the other hand we are able to build a computable martingale that uses these
guaranteed zeros to succeed on Z.
Let θe(m) 	 µs.Φe(m)[s]↓, and let

ψ(e,m) 	 u〈〈e,θe(m)〉,m〉+1.

Note that ψ is one-one, ψ(e,m) ≥ um+1 > m for all pairs e,m in its domain,
and its range is computable. We define a computable function p by the recursion

p(r) =

{
p(i) + 1 if i < r & ∃e < log p(i)− 1 [ψ(e, i) = r ],
r + 4 otherwise.

Informally, if ψ(e, i) = r for small e, then instead of taking the value r + 4 the
function goes back to p(i) + 1 (usually i is small compared to r). The second
condition ensures that log p(r) > 1 for each r.
By induction on n, we show that p attains every value ≤ n only finitely often:

if r ≥ n and p(r) = n then p(r) �= r + 4, so p(r) = p(i) + 1 for some i. Hence
p(i) < n and the inductive hypothesis applies.
As before, we fix a function f ≤T C that dominates each computable function.

We may assume without loss of generality that Φ0 is total and f(m) ≥ ψ(0,m)
for all m. We define a quickly growing function h ≤T C by

h(m) = max{ψ(e,m) : ψ(e,m)↓ ≤ f(m) & e < log(p(m))− 1}.
The definition of Z in the proof of Theorem 7.5.9 is modified as follows.

• If v = Z �nk
is defined, let Z �uk

= yL
v,k+1,Q(k).

• If z = Z �uk
is defined, let Z(uk) = 0 if uk ∈ ran(h) or L(z0) ≤ L(z), and

let Z(uk) = 1 otherwise.

We define the set Q as before. To show that Z ≡T Q, one modifies the corre-
sponding proof above, taking into account that h ≤T C. To see that Z is not
computably random, we define a computable martingale N that succeeds on Z.
Given i, a finite set that is uniformly computable in i is determined by

Gi = {ψ(e, i) : ψ(e, i)↓ ∧ e < log p(i)− 1}.
Since ψ is one-one, we have Gi ∩ Gj = ∅ for i �= j. Further, ψ(0, i) ∈ Gi, and
ψ(0, i) is a number uk such that Z(uk) = 0.
The computable betting strategy S starts with capital 1. It has a parameter i;

initially i = u0. Let r be the bit position it currently bets on. S only risks capital
if r ∈ Gi. If S has lost m times while betting on positions in Gi, it bets an
amount of 2m/p(i) on its prediction that Z(y) = 0. If it loses this bet, it stays
with i. If it wins the bet, it has gained on the points of Gi in total the amount
1/p(i); it updates i to the current value of r.
The following formal description of S determines a computable martingale.

The betting strategy S. The strategy is presented with a sequence of bits. We
denote its capital by N ; initially N = 1. The strategy S declares its bets, and in
response the casino updates N . Let i = u0 = 1 and r = −1.
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(1) Let c = 1/(2p(i)).
(2) Let r := r + 1. If r �∈ Gi goto 2.
(3) Let c := 2c. Bet the amount min(N, c) that the next bit is 0.
(4) Request the next bit b. If b = 0 (and hence N is updated to N + c), let

i := r and goto 1.
(5) (Now N has been updated to N − c.) If N > 0 goto 3, else end.

Suppose now that the strategy is fed the bits of Z. Given i, letm be the number
of times S bets at (3) for this value of i. Since Z(r) = 0 for some r ∈ Gi, we have
m ≤ #Gi ≤ log p(i) − 1. The maximum value of c is 2m/p(i) ≤ 1/2, so there is
always some capital left for S to bet with. S loses 1/p(i), 2/p(i), 4/p(i) but then
wins 2m/p(i). So it wins 1/p(i) on Z with parameter i.
If S updates its parameter i to r in (4) then r = ψ(e, i) for some e < log p(i)−1,

so p(r) = p(i) + 1. After going back to (1) for t times, S has a capital of at least
∑t−1

j=0 1/(u0 + j + 4), which is unbounded in t. Thus S succeeds on Z.
Assume for a contradiction that Z is not Schnorr random. Then, by Theo-

rem 7.3.3, there is a total martingale Bj and a computable strictly increasing
function g such that Bj(Z �g(m)) > m for infinitely many m. Since p takes each
value only finitely often, for almost all m we have h(log log m) > g(m).
We claim that L(Z �g(m)) = O(logm) for each m > 1: in an interval of the

form [nk, uk), L can increase its capital by a factor of at most 1 + 2−k. Since∏
k(1 + 2−k) < ∞, overall the capital increases only by a constant factor. At a

position uk it can only increase its capital if uk ∈ ran(h). For almost all m, there
are at most log log(m) such uk below g(m). So even if L doubles the capital each
time, it will only achieve an increase by a factor of O(logm). This proves the
claim.
In the proof of Theorem 7.5.9 we showed that L multiplicatively dominates

each total Bi. Thus Bi(Z �g(m)) = O(logm) for each m > 1, contradiction.
�

Nies, Stephan and Terwijn (2005) proved Theorem 7.5.3 by extending the methods
of Theorem 7.5.9. In a similar vein, they proved that in 7.5.10, if the high set C is c.e.,
the Schnorr random set Z can be chosen left-c.e.
Exercises.

7.5.11. Show that if C is hyperimmune, there is a set Z ≡T C such that Z is weakly
random but not Schnorr random. (This complements 3.6.4.)

7.5.12.� Remark 7.4.17 contains an example of a left-c.e. partial computably random
set with a slowly growing initial segment complexity. As a further way to separate this
randomness notion from ML-randomness, show that there is a Turing minimal pair
Z0, Z1 of left-c.e. partial computably random sets.
Hint. Modify the usual construction of a minimal pair of high c.e. sets via a tree of
strategies already mentioned after 6.3.4; see for instance Soare (1987, XIV.3.1).

7.5.13.� Problem. Decide whether for each high (c.e.) set C there is a (left-c.e.) set
Z ≡T C such that Z is partial computably random.
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7.6 Varying the concept of a betting strategy
We consider two variants of betting strategies: selection rules and nonmonotonic
betting strategies. The former are weaker, the latter stronger than betting strate-
gies with the same type of effectivity condition.
Instead of betting, a selection rule selects from a set Z (viewed as a sequence

of bits) a subsection of bits that “count”. It succeeds on the set if the law of
large numbers fails for this selected subsequence. This notion can be traced back
to von Mises (1919).
A nonmonotonic betting strategy bets on the bits in an order it determines.

Basics of selection rules

A selection rule ρ processes a set Z bit by bit. For each bit position n it makes a
decision whether to select the bit in position n based on what it has seen so far.
Thus, ρ maps a string x of length n (thought of as a possible initial segment Z �n)
to a bit.
Recall from 1.7.1 that pE(n) denotes the n-th element of a set E ⊆ N.

7.6.1 Definition.

(i) A selection rule is a partial function ρ : {0, 1}∗ → {0, 1} with a domain
closed under prefixes.

(ii) Given a set Z, let E = {n : ρ(Z �n) = 1} (the set of positions selected from
Z by ρ). The set selected from Z by ρ is S = {k : Z(pE(k)) = 1}.

For instance, suppose ρ selects a bit position if the last pair of bits it has read
is 01. If Z = 110110110 . . . then E = {3m+ 1: m > 0} and S = N.

Stochasticity

Recall from page 109 that a set Z satisfies the law of large numbers if

limn#{i < n : Z(i) = 1}/n = 1/2. (7.17)

This is one of the simplest criteria a set Z must fulfill according to our intuitive
notion of randomness. The criterion is not sufficient by far, for instance because
the computable set {2i : i ∈ N} satisfies the law of large numbers. In the following
we discuss a stronger test concept that nonetheless retains the idea to check
whether the occurrences of zeros and ones are balanced. We say that a selection
rule ρ succeeds on Z if ρ(Z �n) is defined for each n, and the set S selected from Z
fails the law of large numbers (7.17). To obtain a notion of stochasticity, we will
specify a set of allowed selection rules, and require that none of them succeeds
on Z. For instance, if we require the rules to be computable, we obtain a notion
introduced by Church (1940).

7.6.2 Definition. Z is computably stochastic (or Church stochastic) if no com-
putable selection rule ρ suceeds on Z.

7.6.3 Fact. If Z is computable then Z is not computably stochastic.
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Proof. Let b = 1 if Z is infinite and b = 0 else. Define a computable selection
rule ρ by ρ(x) = 1 if Z(|x|) = b. Then the set selected from Z by ρ is N. �

If a computable selection rule ρ succeeds on a set Z then ρ(Z �n) is defined for
each n. By the main result of this section, Theorem 7.6.7 below, extra power is
gained if we allow ρ to be undefined on strings that are not initial segments of Z.

7.6.4 Definition. Z is partial computably stochastic (or Church–Mises–Wald
stochastic) if no partial computable selection rule ρ succeeds on Z.

The two notions just introduced correspond to computable randomness and partial
computable randomness. Martingales as tests are strictly more powerful than the se-
lection rules with the same effectivity condition. For instance, the computably random
sets form a proper subclass of the computably stochastic sets. In fact, Merkle et al.
(2006, Thm. 30) proved that some partial computably stochastic set is not even weakly
random.

Anbos-Spies et al. (1996) called a (possibly partial) martingale B simple if for some
q ∈ (0, 1)Q, the set of betting factors {B(x0)/B(x) : x ∈ {0, 1}∗} is contained in
{1, q, 1 − q}. They showed that Z is computably stochastic iff no simple computable
martingale succeeds on Z, and Z is partial computably stochastic iff no simple partial
computable martingale succeeds on Z.

Stochasticity and initial segment complexity
We think of aK-trivial set A as far from random becauseK(A�n) grows as slowly
as possible. If we relax the growth condition somewhat, we can still expect the set
to have strong nonrandom features. Such a condition is being O(log) bounded.
Recall that log n denotes the largest k ∈ N such that 2k ≤ n.
7.6.5 Definition. A string x is O(log) bounded via b ∈ N if C(x) < b log(|x|).
A set Z is O(log) bounded via b ∈ N if almost every initial segment of Z is O(log)
bounded via b, that is, ∀∞nC(Z �n) < b logn.

By Corollary 2.4.2 C(x) ≤+ K(x) ≤+ C(x) + 2 log |x|, so the class of O(log)
bounded sets would remain the same if we defined it using K instead of C. For
an example of an O(log) bounded set, let R be ML-random and consider the
set Z = {2i : R(i) = 1}. Then Z is O(log) bounded via b = 2. (Note that by
Schnorr’s Theorem 3.2.9 we also have log n ≤+ K(Z �n) for each n, so Z is not
K-trivial.)

7.6.6 Fact. Let b ∈ N. For each n, fewer than nb strings of length n are O(log)
bounded via b.

Proof. It suffices to note that #{σ : |σ| < b logn} < 2b log n ≤ nb. �

Merkle (2003) proved the following.

7.6.7 Theorem. An O(log) bounded set Z is not partial computably stochastic.

On the other hand, Z may be computably random by Theorem 7.4.11 and Exer-
cise 8.2.31 that each facile set is O(log) bounded. Thus we have another proof
of Theorem 7.5.7.
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We need some preparations to prove 7.6.7. The following notation will be used
throughout. For an interval I = [n,m) let Z � I = Z(n) . . . Z(m− 1). Moreover,

(a) m0 < m1 < . . . is a certain computable sequence of numbers,
(b) up : =

∑
i<pmi, and

(c) Ip : = [up, up+1).

Thus #Ip = mp. The following lemma has to be refined to be of use in the proof
of Theorem 7.6.7. However, in its present simpler form it serves us better as an
introduction to the techniques.

7.6.8 Lemma. Under the following hypotheses a set Z is not partial computably
stochastic:

– mp, up and Ip are as above, and, in addition, 10up ≤ mp for each p (for
instance, this is satisfied when mp = 11p);

– there is a uniformly c.e. sequence (T p)k∈N of strings of length mp such that
the following two properties hold:
(i) ∀∞p [Z � Ip ∈ T p], and
(ii) ∃∞p [#T p < 0.2mp].

The lemma is motivated by the case that there is a rational δ < 1 such that
∃∞p C(Z � Ip) < δ logmp. (Roughly, this condition strengthens being O(log)
bounded.) The hypotheses of the lemma are met for T p = {z : |z| = mp & C(z) <
δ logmp}. In fact, for almost all p we have #T p ≤ 2δ log mp ≤ (mp)δ < 0.2mp.
Proof idea. We build selection rules ρa for a ∈ {0, 1}, where ρa selects a bit
position when it is guessing that the value of the given set at that position is a.
Each bit position is selected by either ρ0 or ρ1. The bit positions in Ip will be
selected in such a way that for infinitely many p, for one of the selection rules ρa

the quotient of the number of selected bits up to up+1 with value a by all selected
bits is at least 4/7. Then this selection rule succeeds on Z, so Z is not partial
computably stochastic.
The strings in T p act as “advisors” for ρa. By (i) there is a number p0 such

that Z � Ip ∈ T p for each p ≥ p0. Given such a p, to make guesses on bit
positions in Ip, the selection rule ρa hires the first advisor that appears in the
given computable enumeration of T p. It starts at position up, and believes the
predictions of its current advisor as long as they turn out to be correct when the
bit is revealed. When the prediction is a, it also selects that position.
The first time an advisor is wrong, he is fired, and ρa hires the next one in the

computable enumeration of T p. When a new advisor has been hired, ρa continues
at the position following the one where the old advisor was fired, as long as Ip is
not exhausted. The number of incorrect predictions ρa makes in this way is no
more than the number of possible advisors. Thus, if by (ii) p ≥ p0 is one of the
infinitely many numbers such that #T p < 0.2mp, then one of the ρa will succeed
in selecting a high fraction of bits with value a in Ip. We have to ensure that the
sizes of the intervals Ip grow sufficiently fast so that the imbalance obtained on
Ip outweighs the selections at all the previous intervals.
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Proof details. Suppose (i) holds for all p ≥ p0. Fix a ∈ {0, 1}. On input a
string y, the following procedure attempts to compute ρa(y) ∈ {0, 1}, where
ρa(y) = 1 means that the next bit is selected.

(1) Let p be so that |y| ∈ Ip. If p < p0, output 0 and end.
(2) Let i = up and wait for the first element v to be enumerated into T p.
(3) (a) If i = |y| then: if v(i) = a, output 1, else output 0; end.

(b) Else: If v(i) �= y(i), let v be the next element enumerated into T p

(if necessary wait here for v to appear).
(4) Increment i and goto (3).

If y ≺ Z then we never get stuck when waiting for a new advisor v at (3b),
because Z � Ip ∈ T p for p ≥ p0. So the procedure ends. Moreover, each position
of Z is selected by either ρ0 or ρ1. Let us say the position i is selected correctly
if for some a ∈ {0, 1}, i is selected by ρa (i.e., ρa(Z �i) = 1) and indeed Z(i) = a.
By (ii) there are infinitely many p ≥ p0 such that #T p ≤ 0.2mp. Fix such a p.
Firstly, we will bound from above the number of positions i < up+1 selected
incorrectly.

(a) For i ∈ Ip, each time a position is selected incorrectly, the advisor v is
changed. Hence fewer than 0.2mp such positions are selected incorrectly.

(b) For i < up, at most 0.1mp positions are selected at all since 10up ≤ mp.

Alltogether, at most 0.3mp positions are selected incorrectly.
Secondly, by (a) again, at least 0.8mp positions i ∈ Ip are selected correctly as

#Ip = mp, so for some a ∈ {0, 1} at least 0.4mp positions i ∈ Ip are selected
by ρa when Z(i) = a, and the remaining among those selected correctly are not
selected by ρa. We now have an imbalance for this a: among the bits up to up+1
selected by ρa, the fraction of the ones with value a is at least 4/7. Moreover,
for one of ρ0, ρ1, this holds for infinitely many p such that #T p ≤ 0.2mp. So Z
is not partial computably stochastic. �

In Lemma 7.6.8 we had in mind as the sets T p the strings y of length mp

such that C(y) < δ logmp where δ < 1 is fixed. Let us see how close we can
get to the hypothesis of Lemma 7.6.8 under our actual assumption that Z is
O(log) bounded via b, assuming also that the sequence m0 < m1 < . . . grows
fast enough. Let Ap = {w : |w| = mp & C(w) < (b+ 1) logmp}. By Fact 7.6.6,

#Ap < (mp)b+1. (7.18)

7.6.9 Lemma. Suppose up =
∑

i<pmi ≤ mp for each p (for instance, this is
the case if mp = 2p). If Z is O(log) bounded via b then ∀∞p Z � Ip ∈ Ap.

Proof. Since the sequence (up)p∈N is computable, there is a machine M such
that M(σ) is the string obtained by removing the first up bits from V(σ) in the
case that V(σ) ↓= y and |y| = up+1. If V(σ) = Z � up+1 then M(σ) = Z � Ip.
For each p we have up+1 ≤ 2mp. Thus, for almost all p,
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CM (Z � Ip) < C(Z � up+1) ≤ b log up+1 ≤ b(1 + logmp).
This implies C(Z � Ip) < (b+1) logmp for almost all p. (Using b+1 instead of b
we have beaten the coding constant for M in the first inequality.) �

Proof of Theorem 7.6.7. It is tempting to use selection rules as in the proof
of Lemma 7.6.8, taking the strings in Ap as advisors. The problem is that #Ap

is merely bounded by (mp)b+1, not by 0.2mp as in Lemma 7.6.8. Let
k = b+ 2.

To get around this problem we use k levels of selection rules ρa,s for each a. The
selection rule ρa,1 is pictured at the bottom. The variables s and t range over
{1, . . . , k}. We define the sequence (mp)p∈N by m0 = 1 and, for p > 0,

mp := 10kup,
where as always up =

∑
i<pmi. We also use the notation lp := mp/k = 10up.

We split Ip = [up, up+1) into consecutive subintervals Jp
s of length lp, for s ∈

{1, . . . , k}, namely, Jp
s = [up + (s− 1)lp, up + slp). See Fig. 7.1.

J 1 . . .p

I
p

J 2
p

J k
p

Z
up u

p +1

Fig. 7.1. Splitting Ip.

For each s ∈ {1, . . . , k}, we let ŝ = k + 1 − s, and similarly for t ∈ {1, . . . , k}.
The selection rule ρa,s, a ∈ {0, 1}, s ∈ {1, . . . , k}, selects positions in intervals of
the form Jp

ŝ . Thus ρa,1 selects from the last subinterval, and ρa,k selects from
the first. Which set of advisors should ρa,s use? For s ∈ {1, . . . , k}, consider a
string z of length (ŝ− 1)lp. We let (see Figure 7.2)

T p
s (z) = {v : |v| = lp and there are at least (0.2lp)s−1

strings y such that zvy ∈ Ap}.
The string z is thought of as the bits of Z in the positions from up to up+(ŝ−1)lp.
The selection rule has read z (without selecting any bits), and uses the strings
in T p

s (z) as its advisors. Note that T
p
s (z) is c.e. uniformly in p, s and z. Consider

the extreme cases: if s = 1 then |z| = (ŝ − 1)lp = (k − 1)lp, so y = ∅, and thus
T p

1 (z) = {v : |v| = lp & zv ∈ Ap}. On the other hand, if s = k we have z = ∅,
and therefore

T p
k (z) = {v : |v| = lp and there are at least (0.2lp)k−1 (7.19)

strings y such that vy ∈ Ap}.
For each p ∈ N, s ∈ {1, . . . , k}, let

zp,s = Z � [up, up + (ŝ− 1)lp).
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(In particular, zp,1 = Z � [up, up + (k − 1)lp) and zp,k = ∅.) Let us show that
for some t ∈ {1, . . . , k}, for infinitely many p the set of advisors when ρa,t is
processing Z has a size of less than 0.2lp. Thereafter, we can argue as in the
proof of Lemma 7.6.8. The idea is that otherwise, because there are k levels, for
almost every p the size of Ap exceeds the bound (mp)k−1 in (7.18).

J 1 . . .
p

J 2
p

J k
p

Z

. .
 .

zp,k

Tk
p

zp,k–1  

Tk –1
p

zp,1

T1
p

zp,k –2  

Tk
p

–2

Fig. 7.2. The sets T p
s (zp,s).

7.6.10 Lemma. There is t ∈ {1, . . . , k} such that
(i)t ∀∞p Z � Jp

t̂
∈ T p

t (zp,t).
(ii)t ∃∞p #T p

t (zp,t) < 0.2lp.

Proof. (i)1 states that Z � Ip ∈ Ap for almost all p, that is, C(Z � Ip) <
(b+ 1) logmp (since k = b+ 2), which holds by Lemma 7.6.9. If (ii)1 is satisfied
as well, we are done. Otherwise, for almost all p we have #T p

1 (zp,1) ≥ 0.2lp,
which means that (i)2 holds. More generally, if (i)t holds for some t < k, then
either (ii)t is satisfied as well and we are done, or (i)t+1 holds. Suppose that,
iterating the argument, we proceed all the way to (i)k. If (ii)k fails then, where
ε = (0.2/k)k, for almost all p by (7.19) we have

#Ap ≥ (0.2lp)k−1#T p
k (∅) ≥ (0.2lp)k = (0.2mp/k)k = ε(mp)k ≥ (mp)k−1,

contrary to (7.18). So (ii)k holds. �

Fix a ∈ {0, 1}. It remains to describe the selection rules ρa,s in detail. We
adapt the procedure in the proof of Lemma 7.6.8. Now ρa,s does within the
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intervals Jp
s what ρa did in the intervals Ip, and ρa,s uses the strings in T p

s (z)
as sets of advisors for an appropriate z derived from the input.
On input y the procedure attempts to compute ρa,s(y) as follows.

(1) Let p, t be so that |y| ∈ Jp
t . If p < p0 or s �= t, output 0 and end. Else

let u = up + (ŝ− 1)lp and z = y � [up, u).
(2) Let i = u and wait for the first element v to be enumerated into T p

s (z).
(3) (a) If i = |y| then: if v(i) = a, output 1, else output 0; end.

(b) Else: If v(i) �= y(i), let v be the next element enumerated in T p
s (z)

(if necessary, wait here for v to appear).
(4) Increment i and goto (3).

Let t be as in Lemma 7.6.10. As in the proof of 7.6.8, we may argue that
for some a ∈ {0, 1} the selection rule ρa,t succeeds on Z. We use that now
mp = 10kup, so we obtain the imbalance even though ρa,t only selects bits in
subintervals of the form Jp

t̂
. �

The method used is related to the decanter/golden run methods in Section 5.4.
In both cases there is a constant number of levels. Lemma 7.6.10 is analogous to
Lemma 5.4.9 that the golden run exists.

7.6.11.� Problem. Decide whether the weaker hypothesis suffices in Theorem 7.6.7
that ∀r ∈ S [C(Z �r) ≤ b log r] for some infinite computable set S and b ∈ N.

Nonmonotonic betting strategies

So far, our strategies have processed the bits of a set in the usual ascending order.
A strategy becomes more powerful if we allow it to bet in an order it chooses.
This leads to the notion of Kolmogorov–Loveland randomness (7.6.19) which is
not known to differ from ML-randomness. First we study the simplest case of a
nonmonotonic betting strategy. A permutation betting strategy bets on the bits
in the order π(0), π(1), π(2) . . . where π is a computable permutation of N. Thus,
all the bits are considered in an order which does not depend on the particular
given set. For most types of betting strategies this yields no advantage over the
monotonic case, because, as mentioned in Section 1.3, classes we study are usually
closed under computably permutations. We proved this closure property for ML-
randomness (3.2.16) and for Schnorr randomness (3.5.12) by directly inspecting
the definitions via (variants of) ML-tests. No such definition has been given for
computable randomness, so we will have to work harder to establish its closure
under computable permutations (Theorem 7.6.24). In contrast, the class PCR of
partial computably random sets is one of the few interesting classes where this
closure property fails (Corollary 7.6.15). Thus, the following randomness notion
introduced by Miller and Nies (2006) is strictly stronger than partial computable
randomness.

7.6.12 Definition. Z is permutation random if Z ◦ π is partial computably
random for each computable permutation π. A permutation betting strategy is a
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pair P = (π,B) consisting of a computable permutation and a partial computable
martingale. We say that P succeeds on Z if Z ◦ π ∈ Succ(B).

The permutation random sets form the largest subclass of PCR that is closed
under computable permutations. Kastermans and Lempp (20xx) constructed a
permutation random set that is not ML-random. It is not known whether such
a set can be left-c.e.; it is also open whether a permutation random set must be
of d.n.c. degree.

Muchnik’s splitting technique

We give two applications of a technique due to Andrej Muchnik (see Thm. 9.1.
of Muchnik, Semenov and Uspensky 1998) to show that a set Z satisfies a prop-
erty indicating non-randomness. Let S be an infinite co-infinite computable set.
Split Z into sets Z0 and Z1, the bits with positions in S and in N − S, respec-
tively. In either application, the hypothesis states that for each r ∈ {0, 1}, for
each m ∈ N, the set Zr satisfies a “local” non-randomness condition Pm,r. These
conditions are uniformly Σ1(Zr); let tm,r be the stage by which we discover that
Pm,r holds for Zr. Choose p such that tm,p ≥ tm,1−p for infinitely many m. We
can for instance use Zp as an oracle to build a test for Z1−p. This is all we need
the first application of the technique given here, due to Merkle et al. (2006). In
our second application, for which the technique was introduced by Muchnik, the
required bits of the oracle Zp are read by a permutation betting strategy in order
to succeed on Z.

7.6.13 Theorem. Suppose Z = Z0⊕Z1 and neither Z0 nor Z1 is ML-random.
Then Z1−p is not Schnorr random relative to Zp for some p ∈ {0, 1}.
Proof. Suppose that for each r ∈ {0, 1}, (Gr

m)m∈N is a ML-test such that Zr ∈⋂
mGr

m. (The local conditon Pm.r states that Zr ∈ Gr
m.)

1. Let Gr
m,s be the approximation of Gr

m at stage s by strings of length at
most s as in (1.16) on page 54.

2. Let tm,r = µt. Zr ∈ [Gr
m,t]

≺. Note that λm. tm,r ≤T Zr.
3. Let p ∈ {0, 1} be least such that ∃∞m [tm,p ≥ tm,1−p].

4. Let Cp
m be the clopen set [G1−p

m,tm,p
]≺.

5. Let Vn =
⋃

m>n C
p
m. Then Z1−p ∈

⋂
n Vn by the choice of p.

We show that (Vn)n∈N is a Schnorr test relative to Zp. Clearly, Vn is uniformly
c.e. relative to Zp and λVn ≤ 2−n. Also, λVn is uniformly computable relative
to Zp, because for k > n the rational αk = λ

⋃
n<m≤k C

p
m is computable in Zp,

and λVn − αk ≤ λ
⋃

m>k C
p
m ≤ 2−k; now apply 1.8.15(iv) relative to Zp. �

The second application shows that for a permutation random set the initial
segment complexity (in the sense of C, and hence also in the sense of K) has
to be large at infinitely many positions in a given infinite computable set. From
this we will conclude that PCR is not closed under computable permutations.
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7.6.14 Theorem. (Andrej Muchnik) Suppose Z is a set such that, for some
strictly increasing computable function g with g(1) > 1, we have
∀k [C(Z �g(k)) ≤+ g(k)− k]. Then Z is not permutation random.

Proof. First we show that there is a strictly increasing computable h such that,
where (In)n∈N are the consecutive intervals of N of length h(n), we have

∀nC(Z � In) ≤+ h(n)− n.
Let h(0) = 1 and h(n) = g(n + ĥ(n)) − ĥ(n) where ĥ(n) =

∑
i<n h(i). Similar

to the proof of Lemma 7.6.9, let M be a machine such that M(σ) is the string
obtained by removing the first ĥ(n) bits from y in the case that V(σ) = y and
|y| = g(n+ ĥ(n)) = ĥ(n+ 1). Then

CM (Z � In) ≤ C(Z �ĥ(n+1)) ≤+ ĥ(n+ 1)− ĥ(n)− n,
and hence C(Z � In) ≤+ h(n)− n.
Let d be such that ∀nC(Z � In) ≤ h(n) − n + d. Let bm,r = 2m + r − d for

m ∈ N and r ∈ {0, 1}, then C(Z � I2m+r) ≤ h(2m + r) − bm,r. (This is the
local conditon Pm.r, where the splitting is given by S =

⋃
m I2m.) We describe

permutation betting strategies Qr (r ∈ {0, 1}) one of which succeeds on Z.
While Q0 is monotonic, Q1 processes the intervals in the order I1, I0, I3, I2, . . ..
Within each interval, Q1 bets monotonically.
We describe the strategies Qr informally. The start capital of either one is 2d+2.

Suppose m ∈ N and on a set Y , Qr has already processed all the intervals Ik for
k < 2m.

(1) Read x = Y � I2m+r. Wait for t such that Ct(x) ≤ |x| − bm,r.
(2) Let E = Em,r,t be the clopen set

[{y : |y| = h(2m+ 1− r) & Ct(y) ≤ |y| − bm,1−r}]≺.
Note that λE ≤ 2−bm,1−r+1. Now bet on the bits in I2m+1−r in monotonic
order as follows: for |z| < h(2m+1−r) and a ∈ {0, 1} bet λ(za | E) on za.
That is, bet locally like BE in (7.2).

Since
∑

m,r 2
−bm,1−r+1 ≤ 2d+2, sufficient capital is available along Y .

We consider the behavior of the strategies on the given set Z. Let

tm,r = µt. Ct(Z � In) ≤ h(n)− n+ d where n = 2m+ r.

Let p ∈ {0, 1} be such that tm,p ≥ tm,1−p for infinitely manym. ThenQp succeeds
on Z because for each such m we have Z � I2m+1−p ∈ Em,p,t for t = tm,p. So Qp

increases its capital by 1 for this m. �

7.6.15 Corollary. Some partial computably random set Z is not permutation
random.

Proof. By Theorem 7.4.15 there is a partial computably random set Z such that
∀mC(Z �m) ≤+ m/2. Then the hypothesis of the foregoing theorem is satisfied
via g(k) = 2k, so Z is not permutation random. �
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Kolmogorov–Loveland randomness

Most of the material in this subsection is due to Muchnik, Semenov and Uspensky
(1998) or Merkle, Miller, Nies, Reimann and Stephan (2006).
A nonmonotonic computable betting strategy determines the next position of

a set Y where a bet is placed from the previous positions and the values of Y at
these positions. For instance, initially the strategy bets at position 3; if Y (3) = 0
it next bets at position 1, otherwise at 2, and so on.
The history up to the n-th bet of betting positions and values is given by

a finite assignment α = (〈d0, r0〉, . . . , 〈dn−1, rn−1〉) as defined in Section 1.3.
Thus all di ∈ N are distinct and ri ∈ {0, 1}. We let dom(α) denote the set
{d0, . . . , dn−1}, called the set of positions of α. We write α � Y if Y (di) = ri for
each i < n. Let FinA denote the set of finite assigments, and let the variable α
range over FinA. We fix some effective encoding of finite assignments by natural
numbers.

7.6.16 Definition. A partial computable scan rule is a partial computable func-
tion S : FinA→ N such that S(α) �∈ dom(α) whenever S(α) is defined.

In the example above we have S(∅) = 3, S(〈3, 0〉) = 1, and S(〈3, 1〉) = 2. Each
one-one computable function f determines a partial computable scan rule Sf

that picks the positions f(0), f(1), . . .; formally, Sf (α) = f(n) if dom(α) =
{f(0), . . . , f(n− 1)}.
For the remainder of this section, the variables Y,Z denote either a string or

an infinite sequence of zeros and ones. To indicate that the latter case applies,
we say that Y is a set. The finite assigment after n bets is given by a Turing
functional ΘS . Let ΘY

S (0) = ∅. If ΘY
S (n) = α has been defined, let ΘY

S (n+1) 	
α〈S(α), Y (S(α))〉.
Let S(Y ) be the sequence Z of bits such that Z(n) is the second component of

the last entry of ΘY
S (n+1) if defined. A partial computable scan rule S is called

total if S(Y ) is an infinite sequence (that is, a set) for each set Y .

7.6.17 Remark. If S is total we may assume that S(α) is defined for each
α ∈ FinA: test for i = 0, 1, . . . whether S(α �i) ↓. Either (1) we reach i = |α|
or (2) we find i < |α| such that S(α �i) ↓�= (αi)0; otherwise, S(Y ) fails to be a
set for each set Y � α �i+1. In case (2) we may vacuously extend S by defining
S(α) = min(N− dom(α)) without changing S(Y ) for any set Y .

7.6.18 Remark. For each n, by definition S(Y ) �n is given by ΘY
S (n). Con-

versely, ΘY
S (n) is determined by S(Y )�n. This is clear for n = 0. If we have al-

ready found α = ΘY
S (n) and d = S(α) is defined, then ΘY

S (n+1) = α〈d, S(Y )n〉.
The main notion of this subsection was introduced independently by Kol-

mogorov (1963) and Loveland (1966).

7.6.19 Definition. A Kolmogorov–Loveland (KL) betting strategy is a pair
ρ = (S,B) where S is a partial computable scan rule, and B is a partial com-
putable martingale; ρ succeeds on a set Z if S(Z) is a set on which B succeeds.
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We say that Z is Kolmogorov-Loveland (KL-)random if no KL-betting strategy
succeeds on it.

Thus, Z is KL-random if S(Z) is partial computably random whenever it is a
set. By Exercise 7.6.25 we may assume that S and B are total.

7.6.20 Proposition. Each Martin-Löf random set Z is KL-random.

Proof. We use ideas from the proof of Proposition 3.2.16. Given a partial com-
putable scan rule S, for each string x let Cx = {Y ∈ 2N : x � S(Y )}. Note that
Cx is a c.e. open set uniformly in x. Moreover, either Cx0 = Cx1 = ∅ (this can
only happen if S is partial) or these two sets split Cx into parts of the same
measure. Then by induction on |x| we have λCx ≤ 2−|x| for each x. If G is c.e.
open then so is G∗ =

⋃
[x]⊆G Cx, and λG∗ ≤ λG.

Now suppose the KL-betting strategy (S,B) succeeds on Z. We may assume
that B(∅) ≤ 1. By Proposition 7.1.9 the c.e. open set Gd = {X : ∃r B(X �r) >
2−d} satisfies λGd ≤ 2−d. Thus Z fails the Martin-Löf test (G∗

d)d∈N. �

Each KL-betting strategy has an “Achilles heel”: it does not succeed on some
c.e. set by Exercise 7.6.26. However, by Merkle et al. (2006) there are two KL-
betting strategies such that on each c.e. set one of them succeeds. In fact, it is
an open question whether there are two KL-betting strategies such that on each
set that is not ML-random one of them succeeds.
Although we do not know whether each KL-random set is already Martin-Löf

random, various results of Merkle et al. (2006) show that KL-randomness is at
least closer to ML-randomness than the previously encountered notions (except
for, possibly, permutation randomness).

7.6.21 Theorem. If Z = Z0⊕Z1 is KL random, then Zp is Martin-Löf random
for some p ∈ {0, 1}.

Sketch of proof. Suppose otherwise, then by Theorem 7.6.13 Z1−p is not
Schnorr random relative to Zp for some p ∈ {0, 1}, say p = 0. By Proposi-
tion 7.3.2 relative to Z0 we may choose a Turing functional Ψ such that ΨZ0 is
a Q2-valued martingale that succeeds on Z1. We use Ψ to build a KL-betting
strategy that succeeds on Z. We may assume Ψσ

|σ|(y)↓ implies Ψσ
|σ|(x)↓ for each

x ≺ y. The strategy reads more and more bits on the Z0-side in ascending order
without betting until a new computation q = Ψσ

|σ|(x0) appears, where σ ≺ Z0
has been scanned on the Z0-side, and x ≺ Z1 on the Z1-side. Then it bets
q − Ψσ

|σ|(x) on the prediction that the n-th bit on the Z1-side is 0. Each bit on
the Z1-side is scanned eventually, so the strategy succeeds on Z.

In more detail, the sequence of scanned bits has the form σ0b0σ1 . . . bn−1σn, where
the σi are strings of consecutive oracle bits on the Z0-side and the bj are consecutive
bits on the Z1-side. To formalize the above by a KL-betting strategy (S, B), for instance
let n = 1. The finite assigment corresponding to σ0b0σ1, where ki = |σi|, is

α = (〈0, σ0,0〉, . . . , 〈2(k0 − 1), σ0,k0−1〉, 〈1, b0〉, 〈2k0, σ1,0〉, . . . , 〈2(k0 + k1 − 1), σ1,k1−1),

and we define S(α) = 3 since q = Ψσ0σ1
k0+k1

(b00) newly converges. Also B(w) = 1 for
w � σ0, B(w) = Ψσ0(b0) for σ0b0 � w � σ0b0σ1, and B(σ0b0σ10) = q. �
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The following is an effective version of the Hausdorff dimension of the class {Z}.
See for instance Downey et al. (2006).

7.6.22 Definition. Let dim(Z) = lim infnK(Z �n)/n.

Note that by 2.4.2 we could as well take C instead of K. By Schnorr’s Theo-
rem 3.2.9 and Proposition 4.1.2 we have:

7.6.23 Corollary. If Z is KL-random then dim(Z) ≥ 1/2, and Z has d.n.c.
degree via a finite variant of the function λn.Z �n. �

In particular, each left-c.e. KL-random set is wtt-complete by the completeness crite-
rion 4.1.11. It is not known whether such a set is already ML-random. An extension
of the argument in Theorem 7.6.21 shows that dim(Z) = 1 for each KL-random set Z.
Further, if Z is ∆0

2 then both Z0 and Z1 are ML-random. See Merkle et al. (2006).
We say that a set Z is KL-stochastic if, for each partial computable scan rule S, if

S(Z) is a set then S(Z) is partial computably stochastic. Merkle et al. (2006) showed
that actually dim(Z) = 1 for each KL-stochastic set. On the other hand, there is a
nonempty Π0

1 class of KL-stochastic sets that are not even weakly random.

The following implies that CR is closed under computable permutations.

7.6.24 Theorem. Suppose that S is a partial computable scan rule that scans
all positions for each set Y , namely, S(Y ) is a set and

⋃
n domΘY

S (n) = N.
Then, if Z is computably random, so is S(Z).

Sketch of proof. S is total, so by 7.6.17 we may assume that S(α) is defined
for each α ∈ FinA. Suppose the computable martingale B succeeds on S(Z). We
may assume that B(x) > 0 for each x and, by the Savings Lemma 7.1.14, that
limnB(S(Z)�n) =∞. We define a computable sequence 0 = n0 < n1 < . . . by

ni+1 = µn > ni.∀y [|y| = n → ∃r [0, ni) ⊆ domΘy
S(r)]. (7.20)

That is, ni+1 is the least n > ni such that for each y of length n all the positions
in [0, ni) have been scanned. For some p ∈ {0, 1} we may assume that the KL-
betting strategy ρ = (S,B) only bets on positions in [n2k+p, n2k+p+1), because
the product over all l of the betting factors B(S(Z)�l+1)/B(S(Z)�l) is infinite.
Say p = 0.
We inductively define a computable martingale D that succeeds on Z. Let

D(∅) = B(∅). Suppose |x| = n2k and D(x) has been defined. Let m = n2k+2 −
n2k. We will define D(xv) for each string v of length at most m.
For each string u of lengthm, let ru be least such that [0, n2k+1) ⊆ domΘxu

S (ru).
Note that n2k+2 ≥ ru ≥ n2k+1. Let

wu = S(xu) � ru. (7.21)

To proceed with the definition of D we need to verify the following.
Claim. D(x) =

∑
|u|=m 2−mB(wu).

Then, recalling the martingales Eu from 7.1.4, define for |v| ≤ m

D(xv) =
∑

|u|=m

2−mB(wu)Eu(v). (7.22)
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For v = ∅ the right hand side is D(x) by the claim. For |v| = m we have the
value B(wv). Since limnB(S(Z)�n) =∞ this shows D(Z) =∞.
To prove the claim, let G be the prefix-free set {wu : |u| = m}. Since S(α) is

defined for each α ∈ FinA, from a string w we can determine the finite assignment
α = αw, |α| = |w| that induces w in the sense that w(i) = S(α �i) for i < |w|
(as in Remark 7.6.18). Let qw be the number of positions of αw in [n2k, n2k+2).
Then

D(x) =
∑

w∈G 2−qwB(w).

To see this, apply Lemma 7.1.8(ii) to the “local” martingale that starts with the
capital D(x) and bets like B along each αw, except that for k > 0 it ignores the
positions less than n2k. On these positions B does not bet anyway, since all the
positions less than n2k−1 have been visited already after processing x, namely,
[0, n2k−1) ⊆ domΘx

S . This leaves qw positions.
For each w ∈ G there are 2m−qw strings u of length m such that αw � xu,

or equivalently wu = w. Hence D(x) =
∑

w∈G 2−qwB(w) =
∑

|u|=m 2−mB(wu).
This proves the claim. �

By the solution to Exercise 7.6.25, each KL-betting strategy can be replaced
by a KL-betting strategy (S,B) with total S and B that on every set scans at
least as many positions as the given one. Thus, by the foregoing theorem, to be
more powerful than a monotonic betting strategy, a KL-betting strategy needs
to avoid scanning positions on some sets (actually, on a class of sets of non-zero
measure by Exercise 7.6.28).
Exercises.
7.6.25. (Merkle) Show that, if Z is not KL-random, some KL-betting strategy (S, B)
with total scan rule S and total B suceeds on Z.

7.6.26. (i) Show that for each computable set E and each partial computable scan
rule S, there is a c.e. set A such that either S(A) is not a set or S(A) = E.
(ii) Use 7.4.6 to infer that each KL-betting strategy (S, B) does not succeed on some
c.e. set A.

7.6.27. Extend Schnorr’s Theorem to finite assignments:
Z is ML-random ⇔ ∃b ∀α � Z[K(α) ≥ |α| − b].

7.6.28. Strengthen 7.6.24: if a KL-betting strategy (S, B) succeeds on a computably
random set Z, then the probability that S scans all places of a set Y is less than 1.
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Classes of computational complexity

A lowness property of a set specifies a sense in which the set is computationally
weak. In this chapter we complete our work on lowness properties and how they
relate to randomness relative to an oracle. Recall that Low(MLR) denotes the
sets that are low for ML-randomness. In Chapter 5 we showed that this property
coincides with a number of other lowness properties, such as being low for K.
It also coincides with K-triviality, a property that expresses being far from ML-
random. We will carry out similar investigations for two classes that are variants
of Low(MLR). We give examples of incomputable sets in each class and prove
the coincidence with classes that arise from a different context.

(1) By Definition 3.6.17, Low(Ω) is the class of sets A such that Ω is ML-random
relative to A. Clearly, Low(MLR) is contained in Low(Ω). Note that the class
Low(Ω) is conull because each 2-random set is low for Ω. We think of being low
for Ω as a weak lowness property. However, it is very restrictive within the ∆0

2
sets: each ∆0

2 set that is low for Ω is a base for ML-randomness, and hence is in
Low(MLR) by 5.1.22.
We prove that each nonempty Π0

1 class contains a set that is low for Ω. There-
after we show that Low(Ω) coincides with the class of sets A that are weakly low
for K, namely, ∃b ∃∞y [KA(y) ≥ K(y)−b]. This yields a further characterization
of 2-randomness via the initial segment complexity.
(2) The second variant of Low(MLR) is the class Low(SR), the sets that are low for
Schnorr randomness. In Theorem 3.5.19 we characterized Schnorr randomness in
terms of the initial segment complexity given by computable measure machines.
In this chapter we show that Low(SR) coincides with the class of sets that are
low for computable measure machines. This corresponds to the coincidence of
Low(MLR) and being low for K.
More importantly, the sets in Low(SR) can be characterized by being com-

putably traceable, a restriction on the functions they compute. This character-
ization is a further example of the interactions between randomness and com-
putability in both directions. A computability theoretic property characterizes
lowness for Schnorr randomness, but also, Schnorr randomness helps us to un-
derstand what this property means.
The general idea of traceability of a set A is that the possible values of each

function computed by A are in finite sets which, together with a bound on
their size, can be determined in some effective way from the argument. The
set A is computably traceable (Terwijn and Zambella, 2001) if for each function
f ≤T A, each value f(n) is in a finite set Dg(n), where g is a computable function
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depending on f ; furthermore, there is a computable bound on the size #Dg(n)
independent of f (see Definition 8.2.15 below for the details). If we merely require
that the trace be uniformly c.e., we obtain the weaker notion of c.e. traceability.
A set is computably traceable iff it is c.e. traceable and computably dominated.
Broadly speaking, lowness for Schnorr randomness and computable traceabil-

ity coincide because they are linked by the idea of a covering procedure (see
page 226). A is low for Schnorr randomness iff A is low for Schnorr null classes,
that is, for each Schnorr test (Gm)m∈N relative to A there is a Schnorr test
(Hk)k∈N such that

⋂
mGm is covered by

⋂
k Hk. A is computably traceable if

for each f ≤T A we can trace, or “cover”, the possible values f(n) by a finite
set obtained without the help of A. The proof of this coincidence shows how a
covering procedure of one type can be transformed into a covering procedure of
the other type.
How about being low for computable randomness? Surprisingly, the only sets

of this kind are the computable ones. Recall from Definition 5.1.32 that for ran-
domness notions C ⊆ D, we denote by Low(C,D) the class of sets A such that
C ⊆ DA. We determine the lowness notions for SR and CR by first character-
izing Low(C,D) for each pair C ⊂ D among the three randomness notions un-
der discussion. We show that Low(MLR,SR) coincides with being c.e. traceable,
Low(CR,SR) with being computably traceable, and Low(MLR,CR) with being
low for K. If A is low for computable randomness then A is computably domi-
nated and ∆0

2, so A is computable. For the same reason, although MLR ⊆ SR,
the corresponding lowness properties exclude each other for incomputable sets.
For the classes Low(MLR) or Low(Ω), no characterization in purely computabil-

ity theoretic terms is known. However, both classes are contained in interesting
computability theoretic classes: each set in Low(MLR) is superlow by Corol-
lary 5.5.4, and each incomputable set that is low for Ω is of hyperimmune degree
by Theorem 8.1.18 below. In particular, the classes Low(SR) and Low(Ω) exclude
each other for incomputable sets, strengthening the afore-mentioned similar fact
about Low(SR) and Low(MLR).
A further example of a traceability property of a set A is jump traceability with

an order function g as a bound (Nies, 2002). As for c.e. traceability, the trace
for JA is a uniformly c.e. sequence (Tn)n∈N such that #Tn ≤ g(n) for each n.
We ask that JA(n) ∈ Tn whenever JA(n) is defined. If g grows suffciently fast
then there is a perfect class of jump traceable sets with bound g. On the c.e.
sets this property coincides with superlowness. Unlike the case of computable
traceability, or c.e. traceability, it now matters which order function we choose
as a bound. We will show that if the order function h grows much slower than g,
the class for the bound h is properly included in the class for the bound g.
We say that A is strongly jump traceable if for each order function g there

is a c.e. trace for JA with bound g. Figueira, Nies and Stephan (2008) built
a promptly simple strongly jump traceable set. Their hope was that, at least
for the c.e. sets, this property might be a computability theoretic characteriza-
tion of Low(MLR). However, Cholak, Downey and Greenberg (2008) proved that
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Table 8.1. Properties in the same row coincide (except for the facile sets).

Low(MLR) Low for K K-trivial
Low for Ω Weakly low for K
Low(SR) Low for computable (facile) Computably

measure machines traceable
Lowly for C strongly jump tr.

the strongly jump traceable c.e. sets form a proper subclass of the c.e. sets in
Low(MLR).
Table 8.1 summarizes the classes studied in this chapter. The first row illus-

trates some of the coincidences of Chapter 5, the second row relates to (1) above,
the third to (2) above, and the fourth to strong jump traceability. Classes in the
same row coincide, disregarding the class of facile sets. Properties in the same
column are analogous.
The analog of the coincidence of lowness for ML-randomness and being a base

for ML-randomness fails in the domain of Schnorr randomness: Hirschfeldt, Nies
and Stephan (2007) proved that the class of bases for Schnorr randomness is
larger than Low(SR). Similarly, the analog of the coincidence of lowness for
Schnorr randomness and computable traceability fails in the domain of ML-
randomness, because the strongly jump traceable c.e. sets form a proper subclass
of the c.e. sets in Low(MLR).

8.1 The class Low(Ω)
In 3.6.17 we introduced the weak lowness property Low(Ω). In Fact 3.6.18 we
observed that Low(Ω) ⊆ GL1, and that Low(Ω) is closed downward under Turing
reducibility (actually, it is easily seen to be closed downward under ≤LR). We
now study the class Low(Ω) in more detail. We will frequently use the fact that
in the definition of Low(Ω) one can replace Ω by any left-c.e. ML-random set.

8.1.1 Proposition. The following are equivalent for a set A.
(i) Some left-c.e. set is ML-random relative to A.
(ii) A is low for Ω.
(iii) Every left-c.e. ML-random set is ML-random relative to A.

Proof. The implications (iii)⇒(ii) and (ii)⇒(i) are trivial. For the implication
(i)⇒(iii), suppose that Z is left-c.e. and ML-random relative to A. If Y is left-
c.e. and ML-random then by Theorem 3.2.29 we have 0.Z ≤S 0.Y , which implies
that 0.Z ≤SA 0.Y , where ≤SA denotes Solovay reducibility relativized to A.
Thus β ≤SA 0.Z ≤SA 0.Y for any real number β that is left-c.e. in A. Hence Y
is ML-random relative to A by Theorem 3.2.29 relativized to A. �

The Low(Ω) basis theorem
We give some examples of sets in Low(Ω). By 5.1.27 the only ∆0

2 sets in Low(Ω)
are the ones in Low(MLR). By 3.6.19 each 2-random set is low for Ω.
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The Low(Ω) basis theorem states that each nonempty Π0
1 class P contains a set

in Low(Ω). For instance, there is a set A ∈ Low(Ω) in the Π0
1 class of two-valued

d.n.c. functions (see Fact 1.8.31). This yields a further type of sets in Low(Ω): the
Turing degree of A does not contain a ML-random set, for otherwise A ≥T ∅′

by Theorem 4.3.8, contrary to the fact that Low(Ω) ⊆ GL1. Also, there is a
ML-random set Z ≤T A by Theorem 4.3.2, so A is not in Low(MLR).
The Low(Ω) basis theorem can be derived easily from the following result of

Downey, Hirschfeldt, Miller and Nies (2005). Recall from Definition 3.4.2 that
ΩA

M = λ(domMA) for a prefix-free oracle machine M .

8.1.2 Theorem. For each prefix-free oracle machine M and each nonempty Π0
1

class P there is a left-Σ0
2 set Z ∈ P such that ΩZ

M = inf{ΩX
M : X ∈ P}, which is

a left-c.e. real number.

Proof. Recall from 1.8.3 that TP = {x ∈ {0, 1}∗ : P ∩ [x] 
= ∅} is the tree
corresponding to P . We label each x ∈ TP with the real number

rx = inf{ΩX
M : X ∈ P ∩ [x]}.

If x 
∈ TP we let rx = ∞. Clearly, rx = min(rx0, rx1). For q ∈ Q2, the class

Sx,q = P ∩ {X � x : ΩX
M ≤ q}

is Π0
1 uniformly in x, q. Then L(rx) = {q ∈ Q2 : q < rx} consists of those q such

that Sx,q = ∅. Now rx is the infimum of all ΩX
M such that X ∈ P ∩ [x], so it is

the supremum of those q such that Sx,q = ∅. In particular, each rx is left-c.e. by
Fact 1.8.28.
Note that rx0 > rx1 ↔ L(rx0) ⊃ L(rx1) ↔ ∃q ∈ Q2[Sx0,q = ∅ & Sx1,q 
= ∅],

even in the case that P ∩ [x0] = ∅ (namely rx0 = ∞). This is a Σ0
2 property

of x, and hence Σ0
1 in ∅′. Therefore the class P ∩ {X : ∀n [rX� (n+1) ≤ rX �n]} is

Π0
1(∅′). Let Z be its leftmost path, then Z is left-c.e. in ∅′ by the Kreisel Basis

Theorem 1.8.36, that is, Z is left-Σ0
2.

We verify that ΩZ
M = r∅. By definition of Z we have r∅ = rx for each x ≺ Z.

Let Ωx
M denote λ(domMx), then Ωx

M ≤ rx = r∅ for each x ≺ Z. But clearly
limnΩ

Z�n

M = ΩZ
M , as ΩZ

M −ΩZ�n

M is the measure of the MZ-descriptions with use
greater than n. Thus ΩZ

M = r∅ as required. �

If M is the optimal oracle prefix-free machine U, we obtain a set Z that is low
for Ω, because the left-c.e. real number ΩZ is ML-random relative to Z. Thus:

8.1.3 Corollary. Each nonempty Π0
1 class contains a left-Σ0

2 set Z ∈ Low(Ω).

We mention a further consequence of Theorem 8.1.2: there is a left-c.e. real
number r with a preimage under the operator Ω of positive measure. (Thus the
operator Ω is rather different from the jump operator in that for many sets X,
ΩX has no information at all about X.) First we observe that such an r is
necessarily left-c.e. For r ∈ [0, 1]R let Gr = {X : ΩX = r}.
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8.1.4 Proposition. If λGr > 0 then r is left-c.e.

Proof. By Theorem 1.9.4 there is σ ∈ 2<ω such that the operator Ω maps more
than half of the sets that extend σ to r, namely, λ{X ∈ [σ] : ΩX = r} > 2−|σ|−1.
For each s ∈ N, since ΩX

s ∈ Q2 for each X, we can compute the largest qs ∈ Q2
such that λ{X ∈ [σ] : ΩX

s ≥ qs} > 2−|σ|−1. Then r = limsqs. Since the sequence
(qs)s∈N is non-descending, this shows that r is left-c.e. �

8.1.5 Lemma. Let r ∈ [0, 1]R be left-c.e. Then

λGr > 0 ⇔ Gr contains a ML-random set.

Proof. The implication “⇒” is trivial because the class MLR is conull.
For the implication “⇐”, suppose that X is ML-random and ΩX = r. Let R be

the set such that r = 0.R. Now R is ML-random in X, so by the van Lambalgen
Theorem 3.4.6,X is ML-random in R. But R ≡T ∅′ because R is ML-random and
left-c.e., soX is 2-random. By Exercise 8.1.8 below,Gr is a Π0

2 class containingX,
so we may conclude that λGr > 0. �

8.1.6 Corollary. There is a real number r such that λGr > 0: if P is a Π0
1 class

such that ∅ 
= P ⊆ MLR, then r = min{ΩX : X ∈ P} is such a number.

Proof. Immediate from Theorem 8.1.2 and Lemma 8.1.5. �

Exercises.

8.1.7. Show that not every nonempty Π0
1 class P contains a Σ0

2 set in Low(Ω).

8.1.8. (Bienvenue) Show that for each ∆0
2 real number r ∈ [0, 1),

the class Gr = {X : ΩX = r} is Π0
2.

Being weakly low for K

By Theorem 5.1.22, A is low for K ⇔ A ∈ Low(MLR). Here we prove an analo-
gous result of Miller (20xx). Both sides of the equivalence are weakened.
We say that A is weakly low for K if ∃b ∃∞y [KA(y) ≥ K(y)− b].

8.1.9 Theorem. A is weakly low for K ⇔ A is low for Ω.

Proof. ⇒: Suppose that A is not low for Ω, that is, for each b there is m such
that KA(Ω�m) ≤ m− b. We want to show that for each b, for almost all y, there
is a U

A-description that is by b+O(1) shorter than a U-description σ of y.
If for some sufficiently large m, A “knew” a stage t such that Ω − Ωt ≤ 2−m,

it could ensure this by starting a bounded request set L at t, and enumerating
a request 〈|σ| −m, y〉 whenever a computation U(σ) = y converges after t.
The set A actually does not know such a stage t, but for each b there is an m

such that Ω�m has a U
A-description τ of length at most m− b. This information

about Ω is sufficient: at stage s, if there is a new U
A-description τ of Ωs �m,

we start a bounded request set Lτ , which is enumerated similar to the set L
described above, but only at stages t ≥ s, and only as long as Ωt �m= Ωs �m.
The c.e. index for Lτ can be computed from A, hence we obtain prefix-free
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descriptions relative to A by concatenating τ and the descriptions for the prefix-
free machine for Lτ . If U

A(τ) = Ω �m and |τ | ≤ m− b, then the new prefix-free
description of y has a length of at most (m− b) + (|σ| −m) = |σ| − b.
Construction relative to A of bounded request sets Lτ .
Initially, let Lτ = ∅ for all τ ∈ {0, 1}∗.
If U

A
s (τ) newly converges at stage s with output Ωs �m, start P (τ, s).

Procedure P (τ, s): at stage t ≥ s, if Ωt �m= Ωs �m and a computation Ut(σ) = y
newly converges (necessarily |σ| ≥ m), then put the request 〈|σ| −m, y〉 into Lτ .
The set Lτ is a bounded request set because we only enumerate into it as long
as Ω has not increased by more than 2−m since stage s. By the uniformity of
the Machine Existence Theorem 2.2.17, we have a prefix-free machine Mτ for
each Lτ , and an index forMτ as a partial computable function can be computed
by A. Thus, letting M(τσ) � Mτ (σ) we define a prefix-free machine M relative
to A.
To show that A is not weakly low for K, given b choose m, and s least for m,

such that Ωs �m= Ω �m and U
A
s (τ) = Ω �m for some τ of length at most m − b.

Then the procedure P (τ, s) is started (at stage s). If a computation U(σ) = y
converges after s, the enumeration of Lτ ensures that M(τρ) = y for some ρ
such that |ρ| ≤ |σ| −m. Thus KA(y) ≤+ (m− b) + (|σ| −m) = |σ| − b.
⇐: Suppose that A is not weakly low for K. Let R 
= 2N be a c.e. open set such
that 2N − R ⊆ MLR (for instance, let R be the component R1 of the universal
ML-test in Definition 3.2.8). Let Z be the leftmost member of the Π0

1 class 2
N−R.

Then Z is left-c.e. and ML-random. We show that Z is not ML-random relative
to A, whence A is not low for Ω by 8.1.1.
The set Z will fail a ML-test (Ĝe)e∈N relative to A. We first build a ML-test

(Ge)e∈N relative to A such that Ge ⊆ R and λGe ≤ 2−e−1 for each e. While Z
passes this test, for each e we copy sufficiently much of R into Ge to ensure that

(◦) [p, 0.Z) ⊆ Ge for some p ∈ Q2 such that p < 0.Z

(we identify 2N − {Z : Z co-infinite} and [0, 1)R according to 1.8.10 and 1.8.11).
It now suffices to enlarge Ge to at most twice its size: let

Ĝe =
⋃{[p, p+ 2ε) : p, ε ∈ Q2 & p, ε > 0 & p+ 2ε ≤ 1 & [p, p+ ε) ⊆ Ge}.

Then λĜe ≤ 2λGe and Ĝe is c.e. relative to A uniformly in e. Thus (Ĝe)e∈N is
a ML-test relative to A and Z ∈ ⋂

e Ge by (◦).
By Fact 1.8.26 there is a computable prefix-free set B such that [B]≺ = R. We

will define sets Be ⊆ B that are uniformly c.e. relative to A. Thereafter we let
Ge = [Be]≺. For each m, any string of length m in B is enumerated into Be as
long as the number of such strings does not exceed 2m−KA(m)−e−1. If KA(m)
decreases we are allowed to enumerate more strings into Be. More formally, we
define an A-computable enumeration (Be,s)s∈N of Be. The finite set Be,s is given
by requiring that, for each m,

Be,s ∩ {0, 1}m = Bt ∩ {0, 1}m,
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where t ≤ s is the greatest number such that #(Bt ∩{0, 1}m) ≤ 2m−KA
s (m)−e−1.

Note that λGe =
∑

m 2−m#(Be ∩ {0, 1}m) ≤ 2−e−1 ∑
m 2−KA(m) ≤ 2−e−1.

Claim. For each e, for sufficiently large m we have B ∩{0, 1}m = Be ∩{0, 1}m.
To see this let bm = #(B ∩ {0, 1}m). By Fact 2.2.20 there is c ∈ N such that

K(m)− c ≤ m− log bm
for each m. Since A is not weakly low for K, there is m0 ∈ N such that for each
m > m0,

KA(m) ≤ K(m)− c− e− 2.

Thus m−KA(m)− e− 2 ≥ log bm for all m > m0, which implies that
2m−KA

s (m)−e−1 ≥ bm (since 2log bm ≥ bm/2 by our definition of the logarithm),
and hence B ∩ {0, 1}m = Be ∩ {0, 1}m.
We use the claim to verify the property (◦) for p = 0.Z �m0 . The basic open

cylinder [Z �m0 ] is identified with the interval [p, p + 2−m0), which contains
[p, 0.Z). Since Z 
∈ R we have [Z �m0 ] ∩ [x] = ∅ for each x ∈ B such that
|x| ≤ m0. Now [p, 0.Z) ⊆ R by the definition of Z. Since strings in B of length
no more than m0 do not help to cover [p, 0.Z) and all longer strings in B are
enumerated into Be, this implies that [p, 0.Z) ⊆ Ge. �

The foregoing theorem has interesting consequences. The first is presented here,
the second in Theorem 8.1.14. For background on the first, see the discussion
after Theorem 5.6.13.

8.1.10 Corollary. (J. Miller) If A ≤LR B and B is low for Ω then A ≤T B′.
In particular, if B is low for Ω then {X : X ≤LR B} is countable.

Proof. Note that A ≤LK B by Theorem 5.6.5. Hence, for each n we have

KB(A�n) ≤+ KA(A�n) =+ KA(n) ≤+ K(n).

The set B is weakly low for K by Theorem 8.1.9, so S = {n : K(n) ≤ KB(n)+d}
is infinite for some d ∈ N. Then, for some b ∈ N, the set A is a path of the tree

V = {z : ∀n ≤ |z| [n ∈ S → KB(z �n) ≤ KB(n) + b]}.
Note that S ≤T B′, and therefore V ≤T B′. By Theorem 2.2.26(ii) relativized
to B, for each n ∈ S there are only O(2b) strings of length n on V . Hence A is
an isolated path of V , which implies that A ≤T V ≤T B

′. �

Note that the set A in 8.1.10 is low for Ω, and hence in GL1 by Fact 3.6.18(ii).
Therefore, from A ≤T B′ we can conclude that A′ ≤T A⊕ ∅′ ≤T B′. Thus, for sets A
and B in the conull class Low(Ω), the weak reducibility ≤LR is well-behaved in that
A ≤T B → A ≤LR B → A′ ≤T B′.

In Theorem 5.6.9, we obtained statements equivalent to the condition that A ≤LR B

and A ≤T B′. Hence all these hold under the hypotheses of Corollary 8.1.10. Thus, we
can also, more generally, invoke 5.6.9 via Exercise 5.6.10 to show that A ≤LR B and
A ≤T B′ implies A′ ≤T B′ for each A and B.
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Exercises.
8.1.11. If A ∈ ∆0

2 is weakly low for K then A is already low for K.
8.1.12. (Miller, Yu) If X ⊕ Y is 2-random then X and Y form a minimal pair with
respect to ≤LR. Namely, C ≤LR X, Y implies C ∈ Low(MLR) for each set C.
8.1.13.� Problem. If {X : X ≤LR B} is countable, is B low for Ω?

2-randomness and strong incompressibilityK

In Theorem 3.6.10 we proved that Z is 2-random iff for some b, infinitely many
x ≺ Z are b-incompressibleC . In our second application of Theorem 8.1.9, we
show that one can equivalently require that infinitely many initial segments are
strongly incompressible in the sense of K (Definition 2.5.2). This also yields a
new proof of the implication “⇒” in Theorem 3.6.10. The result is due to Miller
(20xx).

8.1.14 Theorem. Z is 2-random ⇔ ∃b ∃∞n
[
K(Z �n) ≥ n+K(n)− b

]
.

Proof. ⇐: Each strongly incompressibleK string is incompressibleC in a sense
made precise in Proposition 2.5.5. So the right hand side implies that for some b′,
infinitely many strings x ≺ Z are b′-incompressibleC . Therefore Z is 2-random
by Theorem 3.6.10.
⇒: Unlike the proof of 3.6.10, this proof is based on lowness properties. A 2-
random set is low for Ω and hence weakly low for K. We will show that, if Z is
ML-random and weakly low for K, then Z satisfies the right hand side.

8.1.15 Remark. A c.e. operator L is called a request operator if LX is a bounded
request set relative to X for each set X. The proof of the Machine Existence
Theorem 2.2.17 can be viewed relative to an oracle: from a request operator L
one can effectively obtain a prefix-free oracle machine M = Md (d > 1) such
that ∀X ∀r, y [〈r, y〉 ∈ LX ↔ ∃w [|w| = r & MX(w) = y]

]
. In particular,

if 〈r, y〉 ∈ LX then KX(y) ≤ r + d. As before, we call d a coding constant
for L. Remark 2.2.21 remains valid for request operators: suppose we build a
c.e. operator L based on a given parameter d ∈ N in such a way that for each
choice of d, L is a request operator. Then, by the oracle version of the Recursion
Theorem we may assume that the coding constant d for L is given in advance.

The following lemma says that, for ML-random sets, the slower the initial
segment complexity grows, the stronger is the set computationally.

8.1.16 Lemma. If B is ML-random then KB(n) ≤+ K(B �n)− n for each n.

Subproof. By Theorem 7.2.8 there is c ∈ N such that
∑

n 2n−K(B�n) ≤ c.
Define a request operator L as follows: for each X,n, at each stage s > 0 such
that Ks(X �n) < Ks−1(X �n) put the request 〈Ks(X �n)−n+c+1, n〉 into LX

s , as
long as this does not make the total weight of LX exceed 1. By the choice of c, in
enumerating LB the total weight never threatens to exceed 1, which implies the
required inequality. (Note here that 2−K(x)+1 ≥ ∑{2−Ks(x) : s ∈ N}.) �

To conclude the proof of 8.1.14, Z is low for Ω by Proposition 3.6.19, and hence
weakly low for K by Theorem 8.1.9. Then, by the lemma, for infinitely many n
we have K(n) ≤+ KZ(n) ≤+ K(Z �n)− n. �
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8.1.17.� Exercise. (Miller and Yu, 2008) (i) Show that

KB(m) =+ min{K(B �〈m,i〉)− 〈m, i〉 : i ∈ N}
for each ML-random set B. (ii) Deduce that ≤K implies ≥LK on MLR. (iii) Further,
for each n > 1, within MLR the class of n-random sets is closed downwards under ≤LR,
and closed upwards under ≤K .
Hint. (i) For the inequality “≤+” generalize 8.1.16. The converse inequality “≥+” holds
for every set X: define an appropriate prefix-free machine that simulates a computation
UX(ρ) = m by processing both input bits and oracle bits. By modifying U so that it
reads further oracle bits if necessary, you may assume that the use of such a computation
is of the form 〈m, i〉 for some i.

Each computably dominated set in Low(Ω) is computable

By Proposition 1.5.12, each low (and in fact each ∆0
2) computably dominated

set is computable. We say that the two lowness properties are orthogonal. We
will prove that Low(Ω) and being computably dominated are orthogonal. By
Exercise 5.1.27 the only ∆0

2 sets in Low(Ω) are the ones in Low(MLR), so this
result is rather different from Proposition 1.5.12. Since each 2-random set is in
Low(Ω), we obtain an alternative proof of Corollary 3.6.15 that no 2-random set
is computably dominated.

8.1.18 Theorem. (Miller and Nies) Suppose that A is low for Ω and computably
dominated. Then A is computable.

Proof. We will construct a computable binary tree T such that for some fixed k,
for each n the level Tn = {σ ∈ T : |σ| = n} has at most k elements. The set A
will be a path of T . Any path of T is isolated, and hence computable.
Fix b ∈ N such that Ω 
∈ RA

b . Then the function g defined by

g(r) = µt ≥ r. ∀m < r [KA
t (Ωt �m) > m− b]

is total and g ≤T A. Since A is computably dominated, there is a computable
function f such that f(r) ≥ g(r) for each r. We define T level by level. Let
n > 0, and suppose Tn−1 has been defined. In the beginning we let Tn be the
set of extensions of length n of strings in Tn−1. We obtain the final Tn by a
thinning-out procedure consisting of at most 2n rounds. Given σ of length n,
we use f in an attempt to rule out that σ ≺ A. If we succeed, we remove σ
from Tn. We challenge σ at stage r by causing Kσ(Ωr �m) ≤ m − b for some m
which exceeds n by a constant to be determined later. Then, by the definition
of f , we have σ 
≺ A unless Ω �m changes before stage f(r). In that case we
plan to account our investment to ensure that Kσ(Ωr �m) is small against Otto’s
investment to increase Ω. We build a request operator L (see 8.1.15) to make
Kσ(Ωr �m) small. As usual, our investment into a single Lσ is c times his, for a
constant c ∈ N known to us in advance. In each round, if c strings of length n
are challenged (in a sequential fashion) and survive, then Otto has to increase Ω
each time, so his investment is as large as ours.
We actually ask that k = 2c strings survive on Tn for the procedure to continue,

for we want at our disposal an extra weight of 1/2 in each set LX . We need this
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extra weight, for if σ is challenged and Ω�m does not change then σ is removed
from Tn, but the request due to σ already is in LX . Given an oracle X, this
can happen at most once for each length n, for σ = X �n: either it happens
when σ is removed from Tn, or when we are done with level n. The rounds
are necessary because we are only allowed to contribute 2−n−1 to LX in that
way. (This an example of a controlled risk strategy. Such strategies were already
used in Section 5.4.) The thinning-out procedure can have at most 2n rounds for
level n because each time Ω increases by 2−n.
Construction of the levels Tn and the request operator L, given d ∈ N.
Let k = 2b+d+1. Let T0 = {∅}.
Suppose n > 0 and we have completed the definition of Tn−1 by stage s. Let
m = n+ b+ d+ 1. Begin with Tn,s =

{
ρa : ρ ∈ Tn−1,s & a ∈ {0, 1}}. Carry out

the thinning-out procedure, starting at stage s.

(1) If #Tn,s ≤ k, let Tn = Tn,s and return.
Else start a new round by declaring all strings σ ∈ Tn,s available.

(2) If no string σ ∈ Tn,s is available goto (1).
(3) Let σ be the leftmost available string. Put the request 〈n+1,Ωs �m〉 into Lσ

and declare σ unavailable.
(4) Wait for the first stage r > s such that Kσ(Ωs �m) ≤ n+ d+ 1 = m− b.

(If d is indeed a coding constant for L then r exists.)
If Ωf(r) �m= Ωs �m, remove σ at stage r. That is, let Tn,r = Tn,s − {σ}.
(We will show that this cannot happen if σ ≺ A.)

(5) Let s := r and goto (2).

Verification. At first we do not assume that d ∈ N is a coding constant for L.
Claim 1. Suppose s < t are stages such that the procedure for n is at (1) at
stage s and first reaches (1) again at stage t. If #Tn,t > k then Ωt − Ωs ≥ 2−n.
If σ is declared unavailable at (3) during stage u ∈ [s, t], and σ is not removed
when the procedure reaches (4) at stage v > u, then Ωv �m 
= Ωu �m. At least
k + 1 strings are declared unavailable at some stage v, s ≤ v ≤ t. Therefore
Ωt −Ωs ≥ k2−m = 2−n. (We need here that Ω�m change more than k times, for
when the procedure for n begins at stage r, Ωr could already be very close to
2−m+0.Ωr �m. In the binary representation of Ωr there could be a long sequence
of ones from the position m on.)
Claim 2. L is a request operator.
Fix X ⊆ N. A request 〈n + 1,Ωs �m〉 is put into LX at (3) during a stage s
because of some σ = X �n for n > 0. If σ is next declared available at stage t > s
then Ω has increased by 2−n, twice the weight of our request. The contribution
of such requests to the total weight of LX is therefore bounded by 1/2. If σ is
not declared available again (possibly because we have finished level n), we have
a one-time contribution of 2−n−1 for this length n. Thus the total weight of LX

is at most 1/2 +
∑

n>0 2
−n−1 ≤ 1, and Claim 2 is proved.
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From now one we may assume d is a coding constant for L. Then a stage r as
in (4) always exists. As a consequence, by Claim 1, the thinning-out procedure
for Tn returns (after passing (1) for at most 2n times).
Claim 3. A is computable.
It suffices to show that A is a path of T since each path of T is isolated and
hence computable. We must verify that for each n > 0 the string σ = A�n is not
removed from Tn. Assume σ is chosen at stage s and removed at r > s. Then
Ωf(r) �m= Ωs �m. By the definition of g and since g(r) ≤ f(r), there is a stage t,
r ≤ t ≤ f(r), such that KA

t (Ωs �m) > m − b. This contradicts the fact that
already Kσ

r (Ωs �m) ≤ n+ d+ 1 = m− b. �

A related result on computably dominated sets in GL1

Each 2-random set is generalized low (i.e., in GL1) by Corollary 3.6.20. Lewis,
Montalban and Nies (2007) were interested in the question whether this is still
true for weakly 2-random sets. As a counterexample, they found a ML-random
computably dominated set that is not in GL1. Later it turned out that actually no
ML-random computably dominated set is in GL1! (This was already mentioned
after Proposition 3.6.4.)
To see this, let us replace in Theorem 8.1.18 being in Low(Ω) by the weaker

property of being in GL1. Not all computably dominated sets in GL1 are com-
putable. For, by Exercise 8.2.20 below, there is a perfect Π0

1 class of incomputable
sets that are in GL1, and such a class has a perfect subclass of computably dom-
inated sets by Theorem 1.8.44.

8.1.19 Theorem. (Miller and Nies) Suppose A is in GL1 and computably dom-
inated. Then A is not of d.n.c. degree.

Proof idea. Let h ≤T A. We want to show that h(x) = J(x) for some x. Let Ψ
be a Turing functional such that A′ = Ψ(A⊕ ∅′). The function g defined by

g(r) = µt ≥ r. ∀k < r
[
A′

t(k) = Ψ(A⊕ ∅′; k)[t]
]

is total and computable in A. Since A is computably dominated there is a com-
putable function f such that f(r) ≥ g(r) for each r.
We build a Turing functional Γ, and by the Recursion Theorem we are given

in advance a reduction function p such that ΓX(e) � JX(p(e)) for each X, e. We
look for a string α and a stage t such that Ψ(α⊕∅′, p(0))↓ [t] = 0. In case α ≺ A
the opponent Otto has already declared his use on the A-side to be |α|, while
we may still define Γσ(0) for many pairwise incomparable strings σ � α in an
attempt to rule out σ ≺ A. The only possible reason we cannot do this is that ∅′

changes below the use of Ψ(α⊕ ∅′, p(0)) by a stage computed using f . Then we
may take a one-time action based on 〈α, t〉 to ensure h(x) = J(x) for some x.
Proof details. Fix h ≤T A, and let Θ be a Turing functional such that h = ΘA.
To show that there is x such that J(x) = h(x), besides Γ we build a Turing
functional ∆ which is only relevant without an oracle (i.e., ∆ is treated as a
partial computable function). Then, by Fact 1.2.15 and the Double Recursion
Theorem, we are given in advance computable functions p and q such that
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∀σ ∀e [Γσ(e) � Jσ(p(e))] and ∀j [∆(j) � J(q(j))].

For Γ we only need the input 0: we define Γσ(0) for lots of strings σ. We write 0
for p(0). Since A′(0) = Ψ(A⊕ ∅′; 0) we can wait for a computation Ψ(α ⊕ ∅′; 0)
at a stage t > 0. Let j = 〈α, t〉. We attempt to rule out any string σ � α such
that y = Θσ(q(j)) converges by defining Γσ(0) at a stage s > t. We wait for the
response Jσ(0) ↓ at stage r > s, and then look ahead till stage f(r): if ∅′ has
changed below the use of Ψ(α⊕ ∅′; 0), then because this is a one-time event for
j = 〈α, t〉, we are allowed to use up j as an input for ∆. We define ∆(j) = y.
Then x = q(j) is as required. If ∅′ has not changed then σ 
≺ A.

Construction of a Turing functional Γ and a partial computable function ∆, given
computable functions p and q.
At stage t > 0 = p(0), if there is a new convergence Ψ(α⊕ ∅′, 0)[t] = 0, where α
is shortest for this computation, let m be its use on the ∅′-side, let j = 〈α, t〉,
and start the procedure P (α, t) which runs at stages s > t. Several procedures
may run in parallel.
Procedure P (α, t):

(1) If at stage s > t there is a string σ � α such that Γσ(0)↑ and
y = Θσ

s (q(j)) ↓, let σ be the least such and define Γσ(0) = 1
(the output is irrelevant).

(2) Wait for the first stage r > s such that Jσ(0)↓. If ∅′
f(r) �m 
= ∅′

t �m, define
∆(j) = y and end the procedure P (α, t), else goto (1).

Verification. We claim that there is x such that J(x) = h(x). First we show
that ΓA(0)↓. Otherwise, let t be the least stage > 0 such that the computation
Ψ(A⊕∅′, 0)[t] = 0 is stable. Let α be the initial segment of the oracle A used by
this computation, and let m be its use on the ∅′ side. We start procedure P (α, t)
at stage t. Let j = 〈α, t〉, and let σ ≺ A be least such that Θσ(q(j))↓. Whenever
we enter (2) for some σ′, we get back to (1) because ∅′

t �m is already stable. So,
eventually it is the turn of σ, and we define Γσ(0) = 1, contradiction.
We may conclude that we define Γσ(0) = 1 for some least σ ≺ A in (1) of some

procedure P (α, t). We use the notation of the construction for this procedure: let
j = 〈α, t〉, x = q(j) and suppose r > s is least such that Jσ

r (0)↓. By the definition
of g and since 0 < r and g(r) ≤ f(r), there is a stage v, r ≤ v ≤ f(r), such that
A′(0) = Ψ(A⊕∅′; 0)[v]. But we only start a procedure P (α, t) if Ψt(α⊕∅′, 0) = 0.
Thus ∅′

f(r) �m 
= ∅′
t �m and we cause J(x) = ∆(j) = y = h(x). �

8.1.20 Exercise. (Greenberg) Let C be the class of computably dominated sets, and
let D be the sets of d.n.c. degree. Show that the intersection of any two of the classes
GL1, C, and D contains a perfect class (although the intersection of all three is empty
by 8.1.19). Hint. For C ∩GL1 one needs function trees; see Exercise 8.2.20.

8.2 Traceability
A domination property of a set A, such as being computably dominated, restricts
the growth of the functions f computed by A. In contrast, a traceability property
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states that each value f(n) is in a finite set Tn that can be determined from n
in an effective way (see the chapter introduction for more background). We will
study four traceability properties. The first two are covered in this section: c.e.
traceability and computable traceability, where only total functions computed
by A are traced. Each c.e. traceable set is array computable, a weak lowness
property introduced in 8.2.7 below. Each computably traceable set is computably
dominated.
In Section 8.4 we study jump traceability and strong jump traceability, where

also functions that are partial computable in A are traced.
In this section and Section 8.4 we consider traceability for its own sake. In

Sections 8.3 and 8.5 we will see that traceability is closely related to lowness for
randomness notions.
Recall that an order function is a nondecreasing unbounded computable func-

tion. From now on we will assume that order functions only have positive values.

8.2.1 Definition. Let h be an order function. A trace with bound h is a sequence
(Tn)n∈N of nonempty sets such that #Tn ≤ h(n) for each n. We say that (Tn)n∈N

is a trace for the function f : N → N if f(n) ∈ Tn for each n. We call (Tn)n∈N a
c.e. trace if (Tn)n∈N is uniformly computably enumerable.

The following notion was first studied by Ishmukametov (1999).

8.2.2 Definition. We say that a set A is c.e. traceable if there is an order
function h such that each function f ≤T A has a c.e. trace with bound h.

The point is that all the functions f ≤T A can be traced via the same bound.
It suffices to require that there is n0 such that f(n) ∈ Tn for all n ≥ n0, for
we can modify the trace by letting Tn = {f(n)} for n < n0. This fact will be
used without mentioning, not only for c.e. traceability, but also for its variants
encountered later on.
We give an overview of this section. After the basics on c.e. traceability, we

introduce the stronger notion of computable traceability, where one requires that
the trace be given by a computable sequence of strong indices for finite sets. We
build a perfect class of computably traceable sets; in particular, there are 2ℵ0 of
them. Then we show that being computably traceable is equivalent to lowness for
computable measure machines, a property analogous to being low for K. Under
the assumption that the set already is computably dominated, the property is
also equivalent to being facile, a weakening of being K-trivial. (See Table 8.1 on
page 303.)
Our interest in these traceability notions stems in part from the fact that they

can be used to characterize lowness for randomness notions. In Section 8.3 we will
show for instance that Low(SR) coincides with the class of computably traceable
sets. The only known proof that there is an incomputable set in Low(SR) is by
actually building a computably traceable set and then using this coincidence.

C.e. traceable sets and array computable sets

For c.e. traceability, an arbitrary order function q can be taken as a bound for the



314 8 Classes of computational complexity

c.e. traces, no matter how slowly it grows. This result of Terwijn and Zambella
(2001) relies on the fact that one traces only total functions.

8.2.3 Theorem. A c.e. traceable set is c.e. traceable via every order function.

Proof. Recall that on page 67 we defined a computable injection D : N
∗ → N by

D(m0, . . . ,mk−1) =
∏k−1

i=0 p
mi+1
i = α where pi is the i-th prime number. We will

write α(i) for mi. If f ∈ N
N and k ∈ N, we will write f �k for D(m0, . . . ,mk−1),

where mj = f(j) for j < k.
Suppose that the set A is c.e. traceable via some order function h. Suppose an

order function q is given. Let r be the computable function given by
r(n) = 1 +max{i : q(i) < h(n+ 1)}.

(For instance, if h(n) = n+ 1 and q(i) = 1 + log i, then r(n) = 2n.)
Now suppose f ≤T A. We will define a c.e. trace (Ti)i∈N with bound q for f .

Since f is total we may define a function f̃ ≤T A by f̃(n) = f �r(n). There is a
c.e. trace (T̃n)n∈N for f̃ with bound h. We may assume that, for each α ∈ T̃n,

α ∈ ran(D) & |D−1(α)| = r(n).

For each i, let Ti = {α(i) : α ∈ T̃ni
}, where ni is the least n such that q(i) <

h(n + 1). Since r(ni) > i, we have |D−1(α)| > i, so that f(i) ∈ Ti. Moreover,
#Ti ≤ #T̃ni ≤ h(ni) ≤ q(i) for each i. �

The preceding argument can be adapted to a range of contexts where only
total functions are traced. One can vary the type of total functions being traced
(8.2.29), the effectivity condition on the traces (8.2.15), or on the bounds.

8.2.4 Corollary. For each order function h there is a c.e. trace (Vn)n∈N with
bound h that is universal in the sense that, if A is c.e. traceable and f ≤T A,
then f(n) ∈ Vn for almost all n.

Proof. Let g be the order function such that g(n) = max{i : i2 ≤ h(n)}. There
is a uniformly c.e. listing (Si

n)i,n∈N of all the c.e. traces with bound g. Let Vn =⋃
i≤g(n) S

i
n, then #Vn ≤ h(n) for each n. By 8.2.3 (Vn)n∈N is universal. �

It is instructive to observe that a constant bound for the c.e. traces is not
sufficient unless the set is computable.

8.2.5 Proposition. Suppose there is c ∈ N and a c.e. trace (Tn)n∈N for the
function λn.A�n such that ∀n#Tn ≤ c. Then A is computable.

Proof. The string A �n can be determined from n and the information that it
is the i-th element of Tn (in the order of the given computable enumeration).
Preceding a shortest V-description of n by 0i1 shows that ∀nC(A�n) ≤+ C(n).
Thus A is C-trivial, and hence computable by Theorem 5.2.20. �

Being c.e. traceable is incompatible with the conull highness property of having
d.n.c. degree.
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8.2.6 Proposition. If A has d.n.c. degree then A is not c.e. traceable.

Proof. Assume for a contradiction that A is c.e. traceable. By Theorem 4.1.9
there is a nondecreasing unbounded function g ≤T A such that ∀n [g(n) ≤
K(A �n)]. Let f ≤T A be the function given by f(r) = A �h(r) where h(r) =
min{n : g(n) ≥ r}. If n = h(r) then f(r) = A �n, so K(f(r)) ≥ g(n) ≥ r for
each r. By Theorem 8.2.3 there is a trace (Tr)r∈N for f such that #Tr ≤ r + 1
for each r. But f(r) ∈ Tr implies K(f(r)) ≤+ 4 log r, contradiction. �

Kjos-Hanssen, Merkle and Stephan (20xx) proved a stronger result: A is c.e. traceable⇔
there is an order function q showing that each f ≤T A strongly fails to be a d.n.c.
function, in the sense that for each k we have k ≤ #{e < q(k) : f(e) = J(e)}. They
also proved that A is not of d.n.c. degree ⇔ there is an order function h such that for
each f ≤T A, for infinitely many x we can trace f(x) by a c.e. trace with bound h.

We will compare c.e. traceability with the following weak lowness property
introduced by Downey, Jockusch and Stob (1990).

8.2.7 Definition. A is called array computable if there is a single function
g ≤wtt ∅′ dominating every function computable in A.

Every array computable set is in GL2 by Exercise 1.5.21. Most of the lowness
properties we study imply being array computable. For instance, each set in
Low(Ω) is array computable by Exercise 8.3.5. Thus the class of array computable
sets is conull.

8.2.8 Corollary. Each c.e. traceable set A is array computable.

Proof. Recall from Exercise 1.4.7 that a function g is ω-c.e. iff g ≤wtt ∅′. By
Corollary 8.2.4 let (Vn)n∈N be a universal c.e. trace, and let g(n) = maxVn. Then
g ≤wtt ∅′ and g dominates any A–computable function. (We can choose (Vn)n∈N

with bound an arbitrary order function h. Then the number of changes in an
effective approximation to g is bounded by h.) �

The converse of 8.2.8 fails because the class of c.e. traceable sets is null. However,
Ishmukhametov (1999) proved that each c.e. array computable set is c.e. traceable (see
Exercise 8.4.26). The proof is similar to (and easier than) the implication “⇐” in proof
of Theorem 8.4.23 below, which states that each c.e. superlow set is jump traceable
(Definition 8.4.1), and hence c.e. traceable. To summarize, the implications between
these lowness properties on the c.e. sets are (also see Figure 8.2 on page 362)

superlow ⇒ c.e. traceable ⇔ array computable ⇒ Low2.

Some low c.e. set is not array computable by Downey, Jockusch and Stob (1990). See
Exercise 8.2.12.

Exercises. Show the following.
8.2.9. Each computably dominated set A is array computable.

8.2.10.� (Ng, Nies) Each superlow set C is array computable.
Hint. Apply Exercise 1.5.5, and use a construction similar to the one in 1.5.16.

8.2.11. Each K-trivial set A is c.e. traceable.
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8.2.12. Some low c.e. set A is not c.e. traceable. Explain why your construction does
not make A superlow.
8.2.13. (Nies, 2002) By 1.5.8, a set A is in Low2 iff TotA = {e : ΦA

e total} is Σ0
3.

Show that a c.e. traceable ∆0
2 set A is uniformly in Low2 in that, from a computable

approximation (As)s∈N of A, one can effectively obtain a Σ0
3-index for TotA.

8.2.14.� Problem. Decide whether each weakly 2-random set is array computable.

Computably traceable sets

Terwijn and Zambella (2001) introduced a further notion of traceability. One has
complete information about the components of the traces. Recall from 1.1.14 that
(Dn)n∈N is an effective listing of the finite subsets of N.

8.2.15 Definition. A trace (Tn)n∈N is called computable if there is a com-
putable function g such that Tn = Dg(n) for each n. We say that A is computably
traceable if there is an order function h such that each function f ≤T A has a
computable trace with bound h.

The following fact of Kjos-Hanssen, Nies and Stephan (2005) characterizes the
computably traceable sets within the class of c.e. traceable sets.

8.2.16 Proposition. A is computably traceable ⇔ A is c.e. traceable and com-
putably dominated.

Proof. ⇒: Each computable trace (Dg(n))n∈N is a c.e. trace. If it is a trace for
a function f then f is dominated by the computable function λn.maxDg(n).
⇐: Suppose A is c.e. traceable via the bound h. Let f ≤T A, and let (Tn)n∈N

be a c.e. trace for f with bound h. Let p(n) = µs.f(n) ∈ Tn,s, then p ≤T A.
Since A is computably dominated, we may choose a computable function r such
that r(n) ≥ p(n) for each n. Then (Tn,r(n))n∈N is a computable trace for f with
bound h. �

Recall from page 56 that a nonempty closed class C ⊆ 2N is called perfect if
the corresponding tree TC = {x : [x] ∩ C 
= ∅} has no isolated paths. We will
build a perfect class C of computably traceable sets. Since a perfect class has
cardinality 2ℵ0 , this implies that there is a computably traceable set that is not
computable. In fact we will obtain such a set in ∆0

3.

8.2.17 Theorem. There is a perfect class C of computably traceable sets. More-
over, the corresponding tree {x : [x] ∩ C 
= ∅} is ∆0

3.

The proof is similar to the proof of Theorem 1.8.44, yet we cannot expect to
make C a subclass of an arbitrary given Π0

1 class without computable members.
For instance, the class 2N − R1 of ML-random sets does not even contain a c.e.
traceable set by Proposition 8.2.6. However, we can ensure that C is a subclass
of a given perfect class P such that TP is computable.

Proof. We need an alternative notation for the tree representation of perfect
classes given by 1.8.3. A function tree is a map F : {0, 1}∗ → {0, 1}∗ such that
for each σ, both F (σ0) and F (σ1) properly extend F (σ), and F (σ0) <L F (σ1).
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Function trees correspond to binary trees without dead branches or isolated
paths; if F is a function tree, the corresponding binary tree is BF = {x : ∃σ [x �
F (σ)]}. Note that BF ≡T F . Let Paths(F ) = {Z : ∀n∃σ [Z �n� F (σ)]}. The
perfect classes are precisely the ones of the form Paths(F ) for a function tree F .
We define a ∅′′-computable sequence of computable function trees (F e)e∈N

such that Paths(F e+1) ⊆ Paths(F e) for each e. For F 0 we may choose an ar-
bitrary computable function tree, for instance the identity function on {0, 1}∗.
The class C will be a perfect subclass of

⋂
e Paths(F

e).
For each e, we let F e+1 copy F e on strings of length up to e. For each σ of

length e+1, all paths Y of F e+1 extending F e+1(σ) behave in the same way with
regard to Φe: either ΦY

e is partial for each such Y , or there is a single computable
trace for each ΦY

e with bound h(n) = 2n.
Inductive definition of the computable function trees F e for e ∈ N.
Step e+ 1. Suppose that F e has been determined. For each ν such that |ν| ≤ e,
let F e+1(ν) = F e(ν).
Let Se be the set of strings σ of length e+ 1 such that

∀η � σ ∀n∃ρ � η [ ΦF e(ρ)
e,|ρ| (n)↓ ]. (8.1)

For each σ of length e+ 1 we define F e+1 on all strings extending σ:
If σ 
∈ Se, let η � σ and n ∈ N be a pair of witnesses for the failure of (8.1),

and define F e+1(σα) = F e(ηα) for each string α. This ensures that ΦY (n)↑ for
each path Y of F e+1 extending F e+1(σ).
If σ ∈ Se, define F e+1(σα) by induction on n = |α|: let F e+1(σ) = F e(σ). If

F e+1(σα) = F e(η) has been defined, then for each r ∈ {0, 1}, let F e+1(σαr) =
F e(ρ), where ρ � ηr is least such that ΦF e(ρ)

e,|ρ| (n) ↓. Note that ρ exists since
σ ∈ Se. This completes the inductive definition.
For each e, F e+1 is computable. Moreover, using ∅′′ as an oracle, we can com-

pute Se, and hence find a Turing program computing F e+1. We define a function
G ≤T ∅′′ by G(σ) = F |σ|(σ). Then G is a function tree since F e+1(ν) = F e(ν)
for |ν| = e, and F e+1(ν0) <L F

e+1(ν1). Thus C = Paths(G) is perfect.
We show that each Y ∈ C is computably traceable with bound λn.2n. Given e,

let σ be the string of length e+ 1 such that F e+1(σ) ≺ Y . If σ /∈ Se then ΦY
e is

partial. Otherwise let g be the computable function such that

Dg(n) = {ΦF e+1(σα)
e,|F e+1(σα)|(n) : |α| = n}.

Then #Dg(n) ≤ 2n for each n, and (Dg(n))n∈N is a computable trace for ΦY
e .

Note that G ≡T ranG ≡T {x : [x] ∩ C 
= ∅} by Exercise 8.2.19, so the set
{x : [x] ∩ C 
= ∅} is ∆0

3. �

8.2.18 Corollary. There is a computably traceable set A in ∆0
3 that is not com-

putable.

Proof. Let the function tree G be as above. We define inductively a ∆0
3 sequence

of strings σ0 ≺ σ1 ≺ . . . such that |σe| = e, and let A =
⋃

eG(σe). If σe has been
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determined, using ∅′′ as an oracle, check whether G(σe0)(k) = 1 ↔ Φe(k) = 1
for each k < |G(σe0)|. If so, let σe+1 = σe1. Otherwise, let σe+1 = σe0. Then
A 
= {k : Φe(k) = 1} for each e, so A is incomputable. �

Stephan and Yu (2006) built a {0, 1}-valued partial computable function ψ with co-
infinite domain such that the perfect Π0

1 class P of total {0, 1}-valued extensions of ψ
consists of sets that are neither c.e. traceable nor of d.n.c. degree. By Theorem 1.8.44,
P has a perfect subclass of computably dominated sets. In particular, there is a perfect
class of computably dominated sets that are neither of d.n.c. degree nor computably
traceable.

They also showed that being computably dominated and not of d.n.c. degree is equiv-
alent to being low for weak 1-genericity (see 1.8.47). Note that by Theorem 8.1.19 this
class contains the sets in GL1 (Definition 1.5.4) that are computably dominated.

Some but not all computably traceable sets are in GL1. See the discussion after
Corollary 8.4.7.

Exercises.
8.2.19. Show that F ≡T ran F for each function tree F .
8.2.20. Show that there is a perfect Π0

1 class P ⊆ GL1. Conclude that a computably
dominated set in GL1 can be incomputable.

Refine this further by also ensuring that P has no computable member; hence GL1

has a perfect subclass of computably dominated sets.
8.2.21. Let h be an order function. Let (In)n∈N be the sequence of consecutive intervals
such that #In = h(n). Show that A is c.e. traceable [computably traceable] ⇔
for each f ≤T A there is a partial computable [a computable] function ψ such that
∀n∃x ∈ In ψ(x) = f(x).

Lowness for computable measure machines

Recall from 3.5.14 that a prefix-free machine M is called a computable measure
machine (c.m.m.) if its halting probability ΩM is computable. We will say that
an oracle prefix-free machine is a computable measure machine relative to A
if ΩA

M is computable in A. Downey, Greenberg, Mihailovich and Nies (2008)
have shown that for each such M there is an oracle prefix-free machine M̂ such
that M̂A =MA and ΩX

M̂
is computable in X for each X.

We introduce an analog of being low for K in the setting of such machines.
Since there is no universal computable measure machine we need an extra quan-
tification.

8.2.22 Definition. A is low for computable measure machines if for each com-
putable measure machineM relative toA, there is a computable measure machine
N and a number b ∈ N such that ∀y [KA

M (y) ≥ KN (y)− b ].

The following result is due to Downey et al. (2008).

8.2.23 Theorem. A is computably traceable ⇔ A is low for c.m.m.

Proof. ⇒: For the duration of this proof, a machine will be called finite if its
domain is finite. Such a machine is given by a finite set of pairs of numbers, so
it can be effectively encoded by a number.
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Suppose M is an oracle prefix-free machine such that ΩA
M is A-computable.

We actually build a c.m.m. N such that ∀y [
KA

M (y) ≥ KN (y) − 1
]
. For t < u,

let MA
[t,u) denote the finite machine obtained by restrictingMA to computations

that converge at a step s ∈ [t, u). We partition MA into finite machines of this
type: let

tn = µt.ΩA
M − ΩA

M,t ≤ 2−2n,

and let f : N → N be the function such that f(n) is the code for MA
[tn,tn+1).

Since ΩA
M is A-computable, λn.tn ≤T A and hence f ≤T A. Let (Dg(n))n∈N be

a computable trace for f with bound λn.2n. We may assume that Dg(n) only
contains (codes for) finite machines S such that ΩS ≤ 2−2n. We combine all
the finite machines in this computable trace to build a bounded request set: let
L =

⋃
n Ln where Ln =

{〈|σ|+1, y〉 : ∃S ∈ ⋃
i≤nDg(i) [S(σ) = y]

}
. Let wn ∈ Q2

be the total weight of Ln, and let w be the total weight of L. Then (wn)n∈N is
a nondecreasing computable sequence and

w − wn ≤ (1/2)
∑

m>n 2m2−2m = 2−n−1.
Thus w is a computable real number by Fact 1.8.15. Also, w0 ≤ 1/2 since
#Dg(0) = 1, so w ≤ 1. If N is the prefix-free machine obtained from L through
the Machine Existence Theorem 2.2.17, then ΩN = w, so N is a computable
measure machine. Clearly N is as required.
⇐: Suppose that f ≤T A. Let M be the prefix-free machine defined by

M(0|x|1x) = f(x).
Then KM (f(x)) ≤+ 2 log x for each x. Since the strings of length n contribute
2n2(−2n+1) = 2−n−1 to the measure of domM , this measure is computable.
In particular, M is a c.m.m. relative to A. Hence there is a c.m.m. N such
that ∀y KN (y) ≤+ KM (y). By Exercise 3.5.17 a strong index for the finite set
{y : KN (y) ≤ r} can be computed from r. Let g be the computable function
such that Dg(x) = {y : KN (y) ≤ 3 log x}. Note that #Dg(x) ≤ 2x3+1. Moreover,
f(x) ∈ Dg(x) for almost all x. Thus, a finite variant of (Dg(x))x∈N is a computable
trace for f with bound λx.2x3 + 1. �

Exercises.
8.2.24. Show that a variation of the preceding result yields a characterization of the
c.e. traceable sets in terms of oracle prefix-free machines: A is c.e. traceable ⇔ for
each c.m.m. M relative to A, there is b such that ∀y [KA

M (y) ≥ K(y)− b].

8.2.25. We say that A is Schnorr trivial (Downey, Griffiths and LaForte, 2004) if for
each c.m.m. M there is a c.m.m. N such that ∀n KN (A�n) ≤+ KM (n). Show that if A
is low for c.m.m. then A is Schnorr trivial.

Facile sets as an analog of the K-trivial sets �

We will characterize the computably traceable sets within the class of com-
putably dominated sets by a property defined in terms of a growth condition on
the initial segment complexity.
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8.2.26 Definition. Z is facile if for each order function h,
∀n [K(Z �n| n) ≤+ h(n) ].

By Theorem 7.4.11 a facile set can be computably random. By the next two
facts, similar to the K-trivial sets, the facile sets determine an ideal in the weak
truth-table degrees (see Definition 1.2.27 for ideals).

8.2.27 Proposition. If A is facile and B ≤wtt A then B is facile as well.

Proof. Suppose that B = ΦA and ∀n [ use ΦA(n) ≤ f(n)] for a computable f .
We may assume that f is strictly increasing. A prefix-free description of B �n

given n may be obtained from a prefix-free description σ of A �f(n) given n via
the binary machine M defined by M(σ, n) � ΦU

2(σ,n) �n. Thus,

K(B �n| n) ≤+ K(A�f(n)| n) ≤+ K(A�f(n)| f(n))
(for the second inequality, we have used that f is computable and strictly increas-
ing). If h is an order function, then ĥ(r) = h(min{n : f(n) ≥ r}) is an order func-
tion as well (without the extra condition that ĥ(0) > 0). Also, ĥ(f(n)) = h(n) for
each n. Since K(A�r| r) ≤+ ĥ(r) for each r, we obtain that K(B �n| n) ≤+ h(n)
for each n. �

8.2.28 Proposition. If A and B are facile, then A⊕B is facile.

Proof. It suffices to observe that, for each n, we have
K(A⊕B �2n| 2n) =+ K(A⊕B �2n| n) ≤+ K(A�n| n) +K(B �n| n). �

We will show that each c.e. traceable set A is facile. In fact, a weaker property
suffices. We say that set A is weakly c.e. traceable if Definition 8.2.2 holds re-
stricted to the functions f ≤T A that are bounded from above by a computable
function. As before, the choice of the bound for the trace does not matter as long
as it is an order function, because in the proof of Theorem 8.2.3, if f bounded
by a computable function then so is f̃ .

8.2.29 Theorem. A is weakly c.e. traceable ⇔ each set Z ≤T A is facile.

Proof. ⇒: Suppose Z ≤T A, and an order function h is given. The function λn.Z �n

is computable in A, and dominated by the function λn.2n. Therefore it has a c.e.
trace (Tn)n∈N with bound h. Given n, we may describe z = Z �n by the number
i ≤ h(n) such that z is the i-th string enumerated into Tn. Since K(i) ≤+ 2 log i we
have K(z | n) ≤+ h(n).

⇐: Suppose that f ≤T A and ∀n f(n) ≤ b(n) where b is an order function. For r ∈ N,
let nr =

∑
i<r b(i). Define a set Z ≤T A in such a way that the number of ones in the

interval [nr, nr+1) equals f(r): for j < b(r), let

Z(nr + j) =

{
1 if j < f(r)
0 else.

Let h be the order function given by h(m) = 1 + �r/2� for m ∈ [nr, nr+1). Since Z
is facile, K(Z �nr | nr) ≤+ h(nr) = 1 + �r/2�, and because λr.nr is computable, we
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obtain ∀∞r K(Z �nr | r) ≤ r, and hence ∀∞r [ K(Z �nr ) ≤ r + 2 log r ]. This leads to
the desired trace (Tr)r∈N for f : given r, for each σ such that |σ| ≤ r + 1 + 2 log(r + 1),
if U(σ) = z where |z| = nr+1, then enumerate #{i ∈ [nr, nr+1) : z(i) = 1} into Tr.
Clearly f(r) ∈ Tr for almost all r. While (Tr)r∈N depends on the sequence (nr) and
hence on the computable bound b for f , the size #Tr is bounded by 2cr for a fixed c,
independent of such a computable bound for f . �

We are now able to characterize computable traceability within the class of
computably dominated sets.

8.2.30 Corollary. Let A be computably dominated. Then
A is computably traceable ⇔ A is facile.

Proof. By 1.5.11, Z ≤T A ⇔ Z ≤wtt A for each Z. By 8.2.27, being facile is
closed downward under ≤wtt, so by Theorem 8.2.29 A is weakly c.e. traceable
iff A is facile. Finally, by 8.2.16, for computably dominated sets A we have:
A is computably traceable ⇔ A c.e. traceable ⇔ A weakly c.e. traceable. �

Franklin and Stephan (20xx) have given an alternative characterization of this
kind: let A be computably dominated. Then A is computably traceable ⇔ A
is Schnorr trivial (as defined in Exercise 8.2.25). Note that “⇒” holds for each
set by 8.2.23 and 8.2.25. On the other hand, a Schnorr trivial set can be Turing
complete by Downey, Griffiths and LaForte (2004).

Each K-trivial set is c.e. traceable by Exercise 8.2.11, and hence facile. The converse
fails. For instance, no K-trivial set is Schnorr random, otherwise, being nonhigh, it
would already be ML-random (5.5.10). So the facile computably random set of Theorem
7.4.11 is not K-trivial. Alternatively, there are 2ℵ0 many computably traceable and
hence facile sets, while each K-trivial set is ∆0

2.

Exercises. Show the following.
8.2.31. Each facile set Z is O(log) bounded (as defined in 7.6.5, page 289).
8.2.32. If Z is facile then ∃∞n K(Z �n) < h(n) for each order function h. (By 4.1.10,
there is a d.n.c. function f ≤wtt Z ⇔ there is an order function h such that K(Z �n) ≥
h(n) for each n. Thus there is no such f for a facile set.)

To summarize, the hierarchy of growth conditions on the initial segment complexity
is K-trivial ⇒ facile ⇒ O(log) bounded ⇒ not ML-random. The converse implications
fail. A growth condition strictly in between the last two was introduced in 7.6.22:
dim(Z) = lim infn K(Z �n)/n < 1. For more details, see for instance Section 15 of
Downey, Hirschfeldt, Nies and Terwijn (2006).

8.3 Lowness for randomness notions
The main results of this section are the following.

• Lowness for Schnorr randomness coincides with computable traceability.
• Only the computable sets are low for computable randomness.

First we study lowness for pairs of randomness notions (Definition 5.1.32).
Recall that if C ⊆ D then A is in Low(C,D) if C ⊆ DA. If C ⊆ C̃ ⊆ D̃ ⊆ D then
Low(C̃, D̃) ⊆ Low(C,D). It will require some effort to prove the following:
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(1) Low(MLR,SR) ⇔ c.e. traceable (Thm. 8.3.3)
(2) Low(CR,SR) ⇔ comp. traceable (Thm. 8.3.7)
(3) Low(MLR,CR) ⇔ low for K (Thm. 8.3.10).

The implications “⇐” are the easier ones. For (3), we have already seen in
Fact 5.1.8 that each set that is low for K is low for ML-randomness. For (1) and
(2), we use that the relevant traceability notion can be expressed in terms of com-
putable measure machines (Exercise 8.2.24 and Theorem 8.2.23, respectively).
Then we apply Theorem 3.5.19 that Schnorr randomness can be described by
such machines. In the case of (2), this argument actually establishes that each
computably traceable set is in Low(SR); see Proposition 8.3.2.
The implications “⇒” are harder. We derive (2) from (1) and Lemma 8.3.8 that

each set in Low(CR,SR) is computably dominated. To prove (1) and (3), we
build a test in the sense of DA, and use the fact that no set Z on which the
test succeeds is in C. We first derive from this fact a condition on finite objects
(we call such a condition combinatorial). This enables us to obtain the desired
lowness property; see Lemmas 8.3.4 and 8.3.13, respectively. For instance, in (3),
to show that each set in A ∈ Low(MLR,CR) is low for K, we build a Q2-valued
martingale LA ≤T A. By the hypothesis, Succ(LA) ⊆ non-MLR. From this we
derive in Lemma 8.3.13 a combinatorial condition stating, roughly, that [x] ⊆ R1
for any string x such that N(x) exceeds a certain value 2d.
The technique to derive a combinatorial condition from the hypothesis that A is

low for some randomness notion(s) was first used in (i)⇒(iii) of Theorem 5.1.9.
The proof is always by contraposition: if the condition fails, one can build a
set Z that shows A does not satisfy the lowness property. The condition is
combinatorial because at some point the attempted definition of Z by finite
extensions must stop.
The characterizations of Low(SR) and Low(CR) are now easily obtained. By (2),

A ∈ Low(SR) implies thatA is computably traceable, and the converse also holds.
By (2) and (3), A ∈ Low(CR) iff A is computable, because computably traceable
sets are computably dominated while sets that are low for K are ∆0

2.

Lowness for C-null classes

A randomness notion C is usually introduced by specifying a notion of a C-test.
We say that S ⊆ 2N is a C-null class if there is a C-test such that all the sets in
S fail the test. For instance, S is a Schnorr null class if there is a Schnorr test
(Gm)m∈N such that S ⊆ ⋂

mGm.
A C-test is called universal if the sets that fail the test form the largest C-null

class. If there is a universal C-test, then S is a C-null class iff S ∩ C = ∅.
The following is a lowness property defined in terms of a covering procedure

(see page 226).

8.3.1 Definition. We say that A is low for C-null classes if each CA-null class
already is a C-null class.
Since a set Z 
∈ CA is in some CA-null class, this implies C ⊆ CA, namely, A
is low for C. Being low for C-null classes appears to be stronger than being low
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for C: it could be that C ⊆ CA because each Z 
∈ CA fails some C-test that
depends on Z. If there is a universal C-test then the two are clearly equivalent.
For deeper reasons, lowness for C-null classes and lowness for C also coincide
when C is SR,CR or W2R. For W2R this was shown already in Theorem 5.5.17.
In this section we provide the proof for SR, and of course for CR it follows from
the result that each set in Low(CR) is computable. No randomness notion C is
known for which being low for C-null classes is stronger than being low for C.
The following uses computable measure machines (c.m.m.) via Theorem 8.2.23.

8.3.2 Proposition. Each computably traceable set A is low for Schnorr null
classes.

Proof. As in Definition 3.2.6, for an oracle prefix-free machine M and an ora-
cle X, we let RM,X

b = [{x ∈ {0, 1}∗ : KX
M (x) ≤ |x| − b}]≺. Let (Gm)m∈N be a

Schnorr test relative to A. By Lemma 3.5.18 relativized to A, there is a c.m.m.
M relative to A such that

⋂
mGm ⊆ ⋂

dR
M,A
d . By Theorem 8.2.23, there is a

c.m.m. N and b ∈ N such that ∀y [KA
M (y) ≥ KN (y) − b]. Then (RN

k )k∈N is a
Schnorr test such that

⋂
mGm ⊆ ⋂

k R
N
k . �

The class Low(MLR,SR)

The main result of Terwijn and Zambella (2001) states that lowness for Schnorr
null classes is equivalent to computable traceability. (The easier implication “⇐”
has already been proved in Proposition 8.3.2.) This result represented an impor-
tant advance, characterizing for the first time lowness for tests by a computability
theoretic property.
Kjos-Hanssen, Nies and Stephan (2005) extended this, answering a question

of Ambos-Spies and Kučera (2000): actually, lowness for Schnorr randomness is
equivalent to computable traceability. To get around the problem that there is
no universal Schnorr test, they proceeded indirectly.
Firstly, they proved that A ∈ Low(MLR,SR) ⇔ A is c.e. traceable, by adapting

the measure-theoretic combinatorics of Terwijn and Zambella for their implica-
tion “⇒”.
Secondly, they used a lemma of Bedregal and Nies (2003) that each set A in

Low(CR,SR) is computably dominated. Each c.e. traceable computably domi-
nated set is already computably traceable by Proposition 8.2.16. Therefore each
set in Low(SR) is computably traceable.

8.3.3 Theorem. A ∈ Low(MLR,SR) ⇔ A is c.e. traceable.

Proof. Recall from page 71 that for a string v and a measurable class C, we let
C | v = {X : vX ∈ C}. Furthermore, λ(C | v) = 2|v|λ(C ∩ [v]) as in Defini-
tion 1.9.3. We will also use the notation λv(C) as a short form of λ(C | v).
⇐: If Z is not Schnorr random in A, then by Theorem 3.5.19 there is a com-
putable measure machine M relative to A such that ∀b∃n KA

M (Z �n) ≤ n − b.
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Since A is c.e. traceable, by Exercise 8.2.24 K(y) ≤+ KA
M (y) for each y. Hence Z

is not ML-random.
⇒: Given g ≤T A, we will define a c.e. trace (Tn)n∈N for g with bound λn.2n.
We may assume that g(n) > 0 and n | g(n) (that is, n divides g(n)) for each n.
Otherwise, we replace g by the function g = λn.ng(n) + n, and a c.e. trace for g
can be turned into a c.e. trace for g with the same bound.
The basic idea is to use a Schnorr test (Ug

d )d∈N relative to A which contains a
sufficient amount of information about g. For each d, the open set Ug

d consists
of the sets Z such that for some n > d, there is a run of n zeros starting at
position g(n). By the hypothesis on A, we have

⋂
d U

g
d ⊆ Non-MLR, and in

particular
⋂

d U
g
d ⊆ R where R = R2 = [{x ∈ {0, 1}∗ : K(x) ≤ |x| − 2}]≺.

Recall that λR ≤ 1/4. We first need a lemma saying that, when we restrict
ourselves to an appropriate basic open cylinder [v], then λv(R) is small but
λv(U

g
d −R) = 0 for some d. The trace for g will be obtained from Ug

d and v. The
lemma holds in more generality.

8.3.4 Lemma. Let ε = 1/4, and let (Ud)d∈N be a sequence of open sets such
that

⋂
d Ud ⊆ R. Then there is a string v and d ∈ N such that λv(R) ≤ ε and

λv(Ud −R) = 0.

Subproof. Assume the Lemma fails. We define inductively a sequence of strings
(vd)d∈N such that v0 ≺ v1 ≺ . . . and ∀d λ(R | vd) ≤ ε. Let v0 be the empty string.
Suppose vd has been defined and λ(R | vd) ≤ ε. Then λ((Ud −R) | vd) > 0 since
the Lemma fails, so we can choose y such that [y] ⊆ Ud and λ([y]−R | vd) > 0;
in particular, y � vd. By Theorem 1.9.4 we may choose vd+1 � y such that
λ(R | vd+1) ≤ ε. Now let Z =

⋃
d vd, then Z ∈ ⋂

d Ud and Z 
∈ R. �

Next we provide the details on how to code information about g into a Schnorr
test relative to A. For each n, k ∈ N, let

Bn,k = [{x0n : |x| = k}]≺.
Thus, Bn,k is the clopen class consisting of the sets that have a run of n consec-
utive zeros from position k on. Let

Ug
d =

⋃
n>dBn,g(n).

Claim 1. (Ug
d )d∈N is a Schnorr test relative to A.

Since g ≤T A and λBn,k = 2−n, (Ug
d )d∈N is a ML-test relative to A. To show it

is a Schnorr test relative to A, we have to verify that λUg
d is computable in A

uniformly in d. Let qd,t = λ
⋃

t≥n>dBn,g(n), then qd,t ∈ Q2, the function λt. qd,t

is uniformly computable in A, and λUg
d − qd,t ≤ λ

⋃
n>tBn,g(n) ≤ 2−t. �

We think of Tn as the set of k such that Bn,k − R has small measure, in a
sense to be specified (which depends on n). Since Bn,k − R generally tends to
have large measure, there can only be very few k for which Bn,k − R has small
measure. This leads to the bound on #Tn.
What does this have to do with the function g? By the hypothesis,

⋂
d U

g
d ⊆ R,

so choose v, d for this test as in Lemma 8.3.4. We will actually carry out the idea
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sketched above within [v]. By Lemma 8.3.4, for n > d, Bn,g(n) −R is null in [v],
so g(n) is traced.
For the formal details, let p = |v|. Since Ug

d ⊇ Ug
d+1 for each d, we may assume

that d ≥ p, which implies that g(n) ≥ n ≥ p for each n ≥ d.
Let R̃ = R | v. For n ≤ d, let g̃(n) = 0 and T̃n = {0}; for n > d, let

g̃(n) = g(n)− p and

T̃n = {k : n|k + p & λ(Bn,k − R̃) < 2−(k+4)}.
In the remaining claims we show that (T̃n)n∈N is a c.e. trace for g̃ with bound

λn.2n. Then (Tn)n∈N is a c.e. trace for g with the same bound, where Tn = {g(n)}
for n ≤ d, and Tn = {k + p : k ∈ T̃n} for n > d.

Claim 2. ∀n g̃(n) ∈ T̃n.
Firstly, by hypothesis n | g(n) = g̃(n) + p. Secondly, since Bn,k | v = Bn,k−p for
each k ≥ p,

Ug
d | v =

⋃
n>dBn,g(n) | v =

⋃
n>dBn,g̃(n) = U g̃

d .

By the choice of v, this implies that λ(U g̃
d − R̃) = λv(U

g
d − R) = 0, whence

g̃(n) ∈ T̃n for each n > d. �

Claim 3. (T̃n)n∈N is a c.e. trace with bound λn.2n.
For a Π0

1 class P and m ∈ N, λP < 2−m is equivalent to ∃s λPs < 2−m, so the
relation {〈n, k〉 : λ(Bn,k − R̃) < 2−(k+4)} is Σ0

1. Let an = #T̃n. We will show
that an < 2n. Note that

λ(
⋃

k∈T̃n
Bn,k − R̃) ≤ ∑

k∈T̃n
λ(Bn,k − R̃) ≤ 1/8.

Since λR̃ ≤ 1/4, this implies that λ
⋃

k∈T̃n
Bn,k ≤ 3/8.

Suppose N ∈ N∪{∞}, and let Sk ⊆ 2N be measurable for k < N . In probability
theory, the events Sk are called independent if for each finite set Y ⊆ {k : k < N},
we have λ

⋂
k∈Y Sk =

∏
k∈Y λSk. In this case, the events 2N−Sk are independent

as well (see for instance Shiryayev 1984, Problem I.7.3). If E ⊆ N is a set such
that n | k + p for each k ∈ E, then the sets Bn,k (k ∈ E) are independent, and
therefore

λ
⋂

k∈E(2
N −Bn,k) = (1− 2−n)#E

(if E is infinite then the expression of the right is defined to be 0). For E = T̃n

we obtain
1/2 < λ(2N − ⋃

k∈T̃n
Bn,k) = λ

⋂
k∈T̃n

(2N −Bn,k) = (1− 2−n)an = ( r
r+1 )

an ,

where r = 2n − 1, and therefore 2 >
(

r+1
r

)an . But
(

r+1
r

)r ≥ 2 as (r + 1)r ≥
rr + rr−1

(
r
1

)
= 2rr. Therefore an < 2n. �

Exercises.
8.3.5. (Kjos-Hanssen, Nies and Stephan, 2005) If Ω ∈ SRA then A is array computable
(Definition 8.2.7). In particular, the class of array computable sets is conull.
8.3.6.� Recall Definition 3.5.1, and let WR be the class of weakly random sets. Show
that A ∈ Low(MLR, WR) iff A does not have d.n.c. degree:



326 8 Classes of computational complexity

(i) (Kjos-Hanssen) (a) If A does not have d.n.c. degree then A ∈ Low(MLR, WR).
(b) Conclude that if Z is ML-random and D ⊆ Z is infinite then D has d.n.c. degree.
(ii) (Greenberg and Miller) If A has d.n.c. degree then A computes an infinite subset D
of some ML-random set. In particular, A �∈ Low(MLR, WR).

Classes that coincide with Low(SR)

We give a number of characterizations for the class of sets that are low for Schnorr
randomness. However, the main technical result of this subsection is on lowness
for two randomness notions:

8.3.7 Theorem. A ∈ Low(CR,SR) ⇔ A is computably traceable.

Proof. ⇐: A is low for Schnorr null classes by 8.3.2, so A ∈ Low(CR,SR).
⇒: A is in Low(MLR,SR), and hence c.e. traceable by Theorem 8.3.3. By Propo-
sition 8.2.16, each c.e. traceable computably dominated set is computably trace-
able. So the following lemma of Bedregal and Nies (2003) suffices.

8.3.8 Lemma. If A ∈ Low(CR,SR) then A is computably dominated.

To prove the lemma, suppose that A is not computably dominated. We will build
a set Z that is computably random and not Schnorr random relative to A. For
the former, we ensure that supnM(Z �n) < ∞ whenever M is a computable
Q2-valued martingale. For the latter, we define a bounded request set relative
to A with total weight (a real number) computable in A, in such a way that,
if N is the associated c.m.m. relative to A, then ∀b∃x ≺ Z

[
KA

N (z) ≤ z − b
]
.

The uniform listing (Me)e∈N of the Q2-valued partial computable martingales
was introduced on page 273. Recall that TMG = {e : Me total}.
The basic strategy to make Z computably random but not Schnorr random

relative to A is not unlike the one used in the proof of Theorem 7.4.8. We ensure
that Me(Z) < ∞ whenever Me is total. In the following α, β, γ denote finite
subsets of N. Given α, in order to beat all the martingalesMe for e ∈ α together,
we consider a linear combination Mα with positive rational coefficients of those
martingales. For all α ⊂ TMG (and inevitably some others) we will define strings
xα in such a way that xα ≺ xα∪{e} when e > max(α) and xα∪{e} is defined. We
ensure that, for each total Me, each γ containing e and each x ≺ xγ , Me(x) is
bounded by a constant only depending on e. Then the set

Z =
⋃{xTMG∩{0,...,e} : e ∈ N}

is computably random.
Fix a function g ≤T A not dominated by any computable function. If α ⊂ TMG,

there are infinitely many m such that, for all x of length at most m, Mα(x) has
converged by stage g(m). If α = β ∪ {e} where e > max(β), we define xα to be
the leftmost non-ascending path of Mα of length m above xβ . The set A can
recognize whether a string of length m is xα. There are few xα of each length,
so a computable measure machine relative to A can assign short descriptions to
each of them.
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Let M̃e = Me,0 where Me,0 was defined in Fact 7.4.3; thus M̃e is Me scaled
in such a way that the start capital is 1 (unless Me(∅) = 0). For each α let
nα =

∑
e∈α 2e.

Inductive definition of partial computable martingales Mα and strings xα.
We maintain the condition that if xα is defined, then

Mα(xα) converges in g(|xα|) steps and Mα(xα) < 2. (8.2)

Let x∅ = ∅, and let M∅ be the constant zero function. We may assume that
M∅(∅) converges in g(0) steps by increasing g(0) if necessary, so (8.2) holds for
α = ∅. Now suppose α = β ∪ {e} where e > max(β) if β 
= ∅, and inductively
suppose that (8.2) holds for β. Let Mα =Mβ + pαM̃e where the binary rational
pα > 0 is chosen in such a way that Mα(xβ) < 2: since M̃e(x) ≤ 2|x| for each x,
it is sufficient to let pα = 2−|xβ |−1(2−Mβ(xβ)).
To define xα, let m > |xβ |, m ≥ 2nα + 20 be least such that Mj(z) converges

in g(m) steps for each j ∈ α and |z| ≤ m. Choose xα � xβ of length m in such
a way that Mα(yr) ≤ Mα(y) for any string y � xβ and r ∈ {0, 1} such that
yr � xα. If m fails to exist then leave xα undefined. This completes the inductive
definition.
Claim 1. If α ⊂ TMG then xα is defined.
This is clear for α = ∅. Suppose now the claim holds for β, and that α = β∪{e} ⊂
TMG where e > max(β) if β 
= ∅. Since the function f defined by

f(m) = µs.∀e ∈ α∀x [ |x| ≤ m→Me(x)↓ [s]
]

is computable, there is a least m > |xβ |, m ≥ 2nα + 20 such that g(m) ≥ f(m).
Since Mα is a martingale, we have Mα(y0) ≤ Mα(y) or Mα(y1) ≤ Mα(y) for
any y. So we can choose xα as required. �

Claim 2. Z is computably random.
Suppose Me is total, and let α = TMG ∩ {0, . . . , e}. We need to show that
sup{Me(x) : x ≺ Z} < ∞. Given x, let k ∈ TMG be largest such that xγ � x
where γ = TMG ∩ {0, . . . , k}. Let i > k be least such that i ∈ TMG. Thus
x ≺ xγ∪{i} ≺ Z. We may assume that xα � xγ . Then

pαM̃e(x) ≤Mγ(x) ≤Mγ(xγ) < 2
by (8.2) for γ and the definition of xγ∪{i}. So Me(x) is bounded by a constant.

�

Claim 3. Z is not Schnorr random relative to A.
We have xα ≺ Z for infinitely many α, so by 3.5.19 it is sufficient to show that

{〈|xα| − nα, xα〉 : xα is defined}
is a bounded request set relative to A with total weight w computable in A.
Let rm =

∑
α 2nα−m[[|xα| = m]], then w =

∑
m≥20 rm. Since g ≤T A we have

{〈y, α〉 : y = xα} ≤T A. Thus the function λm. rm is computable in A. Since



328 8 Classes of computational complexity

|xα| ≥ 2nα for each α, the sum defining rm contains at most m terms (far fewer,
in fact). Then, since m ≥ 20, and since logm ≥ nα for each index α in the sum,
rm ≤ m2log m−m ≤ m22−m ≤ 2−m/2, so that

∑
m≥i+1 rm ≤ 2−i/2 for each i.

This shows that the real number w is computable in A. �

We summarize the characterizations of lowness for Schnorr randomness.

8.3.9 Theorem. The following are equivalent for a set A.
(i) A is computably traceable (Definition 8.2.15).
(ii) A is low for computable measure machines (8.2.22).
(iii) A is low for Schnorr null classes (8.3.1).
(iv) A is low for Schnorr randomness.
(v) A ∈ Low(CR,SR). �

Note that (i)⇔(ii) is Theorem 8.2.23, (i)⇒(iii) is Proposition 8.3.2, the implica-
tions (iii)⇒(iv)⇒(v) are trivial, and (v)⇒(i) holds by Theorem 8.3.7.
By way of analogy, property (i) corresponds to K-triviality, (ii) to being low

for K, (iv) to Low(MLR) and (v) to Low(W2R,MLR).

Low(MLR,CR) coincides with being low for K

The following theorem of Nies (2005b) concludes a series of preliminary results.
The technique to wait till some clopen set is contained in a fixed c.e. open set R
such that λR < 1 was already present in the original proof that Low(MLR) ⊆ ∆0

2,
which can be found in Nies (2005a), and could serve as a gentle introduction to
the proof that follows here. Later, in Nies (2005b) the full result was obtained by
combining this technique with the use of martingales. This was also the first proof
of the fact that each set in Low(MLR) is low for K. Hirschfeldt, Nies and Stephan
(2007) later obtained a simpler proof by considering bases for ML-randomness
(see Theorem 5.1.22).

8.3.10 Theorem. A ∈ Low(MLR,CR) ⇔ A is low for K.

8.3.11 Corollary. If A is low for computable randomness then A is computable.

Proof. A is in Low(CR,SR) and hence computably dominated by Lemma 8.3.8.
On the other hand, A is in Low(MLR,CR), and hence low for K. The only ∆0

2
computably dominated sets are the computable ones by 1.5.12. �

Nies (2005a) also gave a direct proof of Corollary 8.3.11, and extended his proof
to show that the only sets in Low(PCR,CR) are the computable ones.
Recall from 7.6.19 that KLR denotes the class of KL-random sets. We proved

that MLR ⊆ KLR. It is open whether an incomputable set in Low(KLR) exists.

8.3.12 Corollary. Each set in Low(KLR) is low for K. The same holds for
permutation randomness in place of KLR. �

Proof of Theorem 8.3.10.

⇐: By Fact 5.1.8, each set that is low for K is in Low(MLR).
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⇒: First we recall some notation and facts. For the remainder of this proof, an
open set S ⊆ 2N is identified with the set of strings y such that [y] ⊆ S. Thus we
write y ∈ S instead of [y] ⊆ S. For R ⊆ {0, 1}∗ we write λR instead of λ[R]≺.
We let R = R1 = [{x ∈ {0, 1}∗ : K(x) ≤ |x| − 1}]≺. There is a computable
enumeration (Rs)s∈N of R such that Rs contains only strings of a length up to s,
and Rs is closed under extensions within those strings (see (1.16) on page 54).
We may also assume that x0, x1 ∈ Rs → x ∈ Rs for each string x. For a string v
and a measurable class C, we use the notation λv(C) instead of λ(C | v). By
Exercise 3.3.4 there is a computable function g such that for each string v,

v 
∈ R → λv(R) < 1− 2−g(v). (8.3)

8.3.13 Lemma. Let N be a martingale such that Succ(N) ⊆ Non-MLR. Then
there is v ∈ {0, 1}∗ and d ∈ N such that v 
∈ R and

∀x � v
[
N(x) ≥ 2d → x ∈ R]

. (8.4)

This is an analog of Lemma 8.3.4. Once again, a condition on subsets of N (the
containment Succ(N) ⊆ Non-MLR) implies a condition on finite objects, which
is easier to work with.

Subproof. Suppose the Lemma fails. We build a set Z 
∈ R on which N suc-
ceeds. Define a sequence of strings (vd)d∈N as follows: let v0 = ∅, and let vd+1 be
some proper extension y of vd such that N(y) ≥ 2d but y 
∈ R. Then N succeeds
on Z =

⋃
d vd. On the other hand Z 
∈ R, so Z ∈ MLR. �

We build a Turing functional L such that LX is a (total) Q2-valued martin-
gale for each oracle X. (We say that L is a martingale functional.) If A is in
Low(MLR,CR) then Succ(LA) ⊆ Non-MLR, so we can apply the Lemma with
N = LA. At first we pretend to know a witness 〈v, d〉 as in the Lemma.
We will define an effective sequence (Ts)s∈N of finite subtrees of 2<ω. For each

string γ, T (γ) = limsTs(γ) exists. Further, A is a path of the tree T . Each path
of T is low for K, for we enumerate a bounded request setW such that, for some
constant c determined below, if γ ∈ T and Kγ(y) = r then 〈r+ c, y〉 ∈W , which
causes K(y) ≤+ Kγ(y). The tree Ts is used to check whether the condition (8.4)
looks correct at stage s for N = Lγ : if for some z we have defined Lγ(z) ≥ 2d at
a stage prior to s, then γ is only allowed to be on Ts if z ∈ Rs.
We define the martingale functional L in such a way that we avoid putting too

much garbage into W . This ensures that W is a bounded request set. Garbage
consists of requests 〈r + c, y〉 for strings γ such that Kγ(y) = r but γ 
∈ T .
A procedure is a triple α = 〈σ, y, γ〉, where σ, y, γ ∈ 2<ω, |y| < |γ| and |σ| ≤

|y|+2 log |y|+cK (here cK is a constant such that ∀y [K(y) ≤ |y|+2 log |y|+cK ]).
We start α at a stage s that is least such that γ ∈ Ts and U

γ
s (σ) = y, and γ is

the shortest among such strings. Now α wants to put 〈r + c, y〉 into W , where
r = |σ|. It first causes a clopen set C̃ ⊆ [v] such that λv(C̃) = 2−(r+c) to
go into R. The weight of the requests α puts into W is accounted against the
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measure of new enumeration into R (see 5.1.21). If the clopen sets belonging to
different procedures are disjoint, then W is a bounded request set.
Roughly, the procedure α chooses a clopen set C̃ = C̃(α) such that λv(C̃) =

2−(r+c), and C̃ is disjoint from Rs and the sets chosen by other procedures.
Then α causes (in a way also to be specified) LX(z) ≥ 2d for each X � γ and
each string z ∈ C̃ of minimal length. If at a stage t > s once again we have
γ ∈ Tt, then C̃ ⊆ Rt, and α now has the permission to put 〈r + c, y〉 into W .
This approach has to be refined in order to guarantee the disjointness of clopen

sets belonging to different procedures. Suppose β 
= α is a procedure that wants
to choose its set C̃(β) at a stage s′ > s. If γ = (α)2 is in some Tq with s < q < s′,
then C̃(α) ⊆ Rs′ , so there is no problem since β chooses its set disjoint from
Rs′ . However, if γ has not reappeared (it possibly never will), then α keeps away
its set from assignment to other procedures, which may cause a conflict because
C̃(α) is relatively large. The solution to this problem is a “controlled risk strat-
egy” similar to the ones used for the decanter constructions of Section 5.4. The
procedure α builds up C̃(α) in small portions D̃ such that λvD̃ is a fixed frac-
tion of 2−(r+c), and only assigns a new set D̃ once the previous one is in R. If α
always reappears on Ts at a stage s after assigning such a set, then eventually
C̃(α) reaches the required measure 2−(r+c), in which case α is allowed to enu-
merate the request 〈r+ c, y〉 into W . Otherwise, α reserves only one single set D̃
not contained in R, which is so small that the union (over all procedures) of
sets reserved has a measure of at most 2−(g(v)+2). In the formal construction, Ẽt

denotes the union of sets of strings appointed by some procedure at the end of
stage t. Then λ(Ẽt −Rt) ≤ 2−(u+2) for any t.
The witness for Lemma 8.3.13 is not actually known, so we follow the plan

outlined above for each potential witness. Fix an effective listing (δm)m≥1 of all
pairs δm = 〈v, d〉 where v is a string, and d ∈ N. Uniformly inm ≥ 1, we will build
Turing functionals Lm almost as above; however, if |x| ≤ m then Lm(x) = 2−m.
Then L =

∑
m≥1 Lm is a martingale functional. Note that L is Q2-valued since

the contributions of the Lm for m > |w| add up to 2−|w|.
If δm = 〈v, d〉 is fixed, we let

u = g(v) and c = m+ d+ u+ 3,
where g is the computable function in (8.3). Some δm represents a witness 〈v, d〉
in Lemma 8.3.13, and in that case we will be able to define a bounded request
set W showing that A is low for K.
The procedure α = 〈σ, y, γ〉 appoints certain strings z and ensures that LX

m(z) ≥
2d for each X � γ. Once activated, namely when U

γ
s (σ) = y, the procedure α can

claim the amount ε = 2−(r+m) of the initial capital 2−m of LX
m, for any oracle

X � γ (recall that r = |σ|). Therefore, given X, the total capital claimed by all
activated procedures for the witness δm is 2−mΩX < 2−m. The procedure only
appoints strings of the form z = x01+r+m+d. It “withdraws” its capital at x,
increasing LX

m(x0) by ε for oracles X � γ. To maintain the martingale property,
it also decreases LX

m(x1) by ε. Now it doubles its capital along z, always betting
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all the capital on 0, and reaches an increase of 2d at z. Every string extending x
is called used by α.
The procedure α has to obey the following restrictions at a stage s.

1. Choose the extension z not in [Ẽs−1]≺ where Ẽs−1 is the set of strings
previously appointed by other procedures β. (The open sets generated by
the strings appointed by different procedures need to be disjoint.)

2. Let Ct(α) denote the set of strings x used by α up to stage t. Ensure that
x 
∈ [Cs−1(α)]≺ so that the capital of α is still available at x. Such a choice
is possible for sufficiently many x, because for all t we have
λv[C̃t(α)]≺ ≤ 2−(r+c), so that λv[Ct(α)]≺ ≤ 2−(r+c)21+r+d+m = 2−(u+2).

There is no conflict between α = 〈σ, y, γ〉 and any other procedure β = 〈σ′, y′, γ′〉
as far as the capital is concerned: if γ′ is incomparable with γ then γ and γ′ can
only be extended by different oracles X. Otherwise, α and β own different parts
of the initial capital of LX

m for every set X extending their third components.
We now proceed to the formal definition of the martingale functionals Lm. The

relevant objects are summarized in Table 8.2. For a procedure α = 〈σ, y, γ〉, let
nα > max(|σ| +m + d + 1, |γ|, |v|) be a natural number assigned to α in some
effective one-one way. Each procedure α defines an auxiliary function Fα : 2<ω →
Q2 (which is a generalized martingale, where negative values are allowed as in
7.1.10, with initial capital 0). The set C̃(α) of appointed strings coincides with
the set of minimal strings in {w : Fα(w) ≥ 2d}. For each oracle set X let

LX
m(w) = 2−m +

∑

α

Fα(w) [[(α)2 � X]]. (8.5)

Given α = 〈σ, y, γ〉, let r = |σ|. We ensure that
(B1) Fα(w) = 0 if |w| ≤ |γ|,
(B2) Fα(w) ≥ −2−(r+m), and Fα(w) = 0 unless U

γ
s (σ) = y, and

(B3) ∀w [
Fα(w0) + Fα(w1) = 2Fα(w)

]
.

Based on these properties, we verify that Lm is a martingale functional for
each m. Firstly, LX

m(w) ∈ Q2 for each set X and string w, since by (B1), only
the finitely many procedures α such that |(α)2| < |w| contribute to the sum in
(8.5). Next, for p = |w|,

LX
m(w0) + LX

m(w1) = 2−m+1 +
∑

α

Fα(w0) + Fα(w1) [[(α)2 � X �p+1]]

= 2(2−m +
∑

α

Fα(w) [[(α)2 � X �p+1]])

= 2LX
m(w).

For the last equality we have used (B1). Finally, LX
m(w) ≥ 0 since Fα(w) ≥

−2−(r+m), and α contributes to the sum (8.5) only if the computation U
γ(σ) = y

converges, where r = |σ| and γ � X. So LX
m(w) ≥ 2−m(1−ΩX) ≥ 0 for each w.
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Table 8.2. Summary of the objects occuring in the proof.

R R1 = [{x ∈ {0, 1}∗ : K(x) ≤ |x| − 1}]≺
g computable function as in (8.3)

δm witness for Lemma 8.3.13, of the form 〈v, d〉
u g(v)
c m+ d+ u+ 3
Lm martingale functional for witness δm

α procedure of form 〈σ, y, γ〉 where U
γ(σ) = y; let r = |σ|

nα code number of α, chosen > max(|σ|+m+ d+ 1, |γ|, |v|)
Fα auxiliary function defined by α
Ct(α) set of strings x used by α up to (the end of) stage t
C̃t(α) set of strings appointed by α up to stage t, of form x0r+m+d+1

Ts tree for m at the end of stage s
W bounded request set for m
Ẽt set of strings appointed by procedures up to stage t

Construction for parameter m. Let δm = 〈v, d〉 and u = g(v). The construction
proceeds at stages which are powers of 2; the variables s and t denote such
stages. At stage s, we define Ts and extend the functions Fα(w) to all w such
that s ≤ |w| < 2s. For each w such that s ≤ |w| < 2s and each string η (which
may be shorter than w), by the end of stage s we can calculate

Lm(η, w) = 2−m +
∑

α

Fα(w) [[(α)2 � η]]. (8.6)

Stage 1. Let T1 = {∅}, and Fα(w) = 0 for each α and each w, |w| ≤ 1.
Let Ẽ1 = ∅.
Stage s > 1. Suppose Tt has been determined for t < s, and the functions Fα(w)
have been defined for all w such that |w| < s. Let

Ts =
{
γ : ∀w � v

[
(|w| < s & Lm(γ,w) ≥ 2d) → w ∈ Rs

]}
.

(1) If λvRs ≥ 1− 2−u goto (4). Note that if δm is a witness as in Lemma 8.3.13
then this case does not occur.
(2) For each α = 〈σ, y, γ〉, nα < s, if U

γ
s (σ) = y and U

γ
s/2(σ)↑ and, for σ, y, the

string γ is the shortest such string, then start the procedure α.
(3) Carry out the following for each procedure α = 〈σ, y, γ〉 in the order of
nα < s. Let r = |σ|.
(3a) If α has been started and γ ∈ Ts, first check whether the goal has been

reached, namely λvC̃s/2(α) = 2−(r+c). In that case put 〈r+c, y〉 intoW . We
say that α ends. Otherwise we say that α acts. Choose a set D = Dα ⊆ [v]
of strings of length s such that λvD = 2−(nα+u+2) and

[D]≺ ∩ [Rs ∪ Ẽs/2 ∪G ∪ Cs/2(α)]≺ = ∅,
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where G =
⋃{Dβ : β has so far acted at stage s}. (In Claim 2 we will

verify that D exists.) Let D̃ = {x0m+d+r+1 : x ∈ D}, put D into Cs(α),
and put D̃ into C̃s(α) and Ẽs. (Note that |w| < 2s for all strings w ∈ D̃,
since m+ d+ r + 1 < nα < s.)

(3b) For each x ∈ D, let Fα(x) = 0, Fα(x1) = −ε and Fα(x0) = ε, where
ε = 2−(r+m). Now double the capital along x0r+d+m+1: for each string z
such that |z| ≤ r + m, let Fα(x0z) = ε2l if z = 0l, and Fα(x0z) = 0
otherwise. (This causes Lm(γ,w) ≥ 2d for each w ∈ D̃.)

Process the next α.
(4) For each string w, s ≤ |w| < 2s, if Fα(w) is still undefined let Fα(w) =
Fα(w′), where w′ � w is longest such that Fα(w′) is defined.
End of stage s.

Verification. We establish a series of claims. Let α = 〈σ, y, γ〉 be a procedure.
Claim 1. (B1)-(B3) are satisfied. Thus L is a martingale functional.
Property (B1) holds because when we assign a nonzero value to Fα(w) at stage s,
then |w| ≥ s > nα > |γ|. (B2) and (B3) are satisfied since each x chosen in (3b)
goes into C(α). So by the choice of D in (3a), no future definition of Fα on
extensions of x is made except for by (4). �

Claim 2. Each procedure α is able to choose a set Dα in (3a).

– By the definition of Ts, for each β = 〈σ′, y′, γ′〉 and each t ≥ 2, if γ′ ∈
Tt then C̃t/2(β) ⊆ Rt. Thus for each procedure β, λv(C̃t(β) − Rt) ≤
2−(nβ+u+2) because C̃t(β) − Rt consists of a single set D̃β . Then, letting
t = s/2, we have λv(Ẽs/2 −Rs) ≤ 2−(u+2).

– Each set Dβ chosen during stage s satisfies λv(Dβ) ≤ 2−(nβ+u+2), hence
λvG never exceeds 2−(u+2).

– For each s, λvC̃s(α) ≤ 2−(r+c), and hence λvCs(α) ≤ 2r+d+m+12−(r+c) =
2−(u+2).

Since the query in (1) was answered negatively, λvRs < 1−2−u, so relative to [v]
a measure of 2−(u+2) is available outside [Rs ∪ Ẽs/2 ∪G∪Cs/2] for choosing Dα.
All strings in Rs ∪ Ẽs/2 ∪ G ∪ Cs/2 are shorter than s (for strings in Ẽs/2 this
holds by the comment at the end of (3a)), so the strings in Dα can be chosen of
length s. �

Claim 3. Each procedure α acts only finitely often.
Each time α acts at s and s′ > s is least such that γ ∈ Ts′ we have increased
λvC̃(α) by the fixed amount of 2−(nα+c+r). So either γ 
∈ Ts for almost all s, or
α ends. �

In (8.6) we defined Lm(η, w).
Claim 4. For each string η, there is a stage sη such that no procedure α with
(α)2 � η acts at any stage ≥ sη. Further, for each w � v, if |w| ≥ sη then
Lm(η, w) = Lm(η, w′) for some w′ such that v � w′ � w and |w′| < sη.
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This holds because there are only finitely many procedures α with (α)2 � η. By
Claim 3 there is a stage sη by which these procedures have stopped acting, and
further definitions Fα(w) are only made in (4). �

Claim 5. T (η) = limsTs(η) exists.
Suppose s ≥ sη is least such that η ∈ Ts. We show η ∈ Tt for each t ≥ s. Suppose
v � w, |w| ≤ t and Lm(η, t) ≥ 2d. By Claim 4, Lm(η, w) = Lm(η, w′) for some
w′ � w of length < sη. Since η ∈ Ts, we have w′ ∈ Rs and hence w ∈ Rt. �

We now assume that δm is a witness for Lemma 8.3.13 where N = LA.
Claim 6. A is a path of T .
Given l, let η = A�l. Suppose |w′| < sη and Lm(w′, η) ≥ 2d. Then LA(w′) ≥ 2d,
since LA(w′) ≥ LA

m(w′) ≥ Lm(w, η). By (8.4) w′ ∈ R. Let s be a stage so that
all such w′ are in Rs. Then by Claim 4 we have η ∈ Tt for all t ≥ s. �

Claim 7. W is a bounded request set.
When α = 〈σ, y, γ〉 ends at stage s and puts 〈|σ|+c, y〉 intoW , then λvC̃s/2(α) =
2−(|σ|+c). The sets [C̃(α)]≺ are contained in [v], and pairwise disjoint by the
choice of D = Dα in (3a). Thus the total weight of W is at most 1. �

Claim 8. Each path of T is low for K.
Let Me be a prefix machine for W according to Theorem 2.2.17. We claim that
K(y) ≤ KX(y) + c + e for each path X of T and each string y. For choose a
shortest U

X -description σ of y, and choose γ ⊆ X shortest such that |γ| > y and
U

γ(σ) = y. At some stage t, we start the procedure 〈σ, y, γ〉 since γ ∈ T . This
procedure ends by Claim 3 and its proof, so we put 〈|σ|+ c, y〉 into W , causing
K(y) ≤ KX(y) + c+ e. �

There are similarities between Theorem 8.3.10 and results in earlier chapters. The
theorem is closely related to Theorem 5.1.22 that each base for ML-randomness is low
for K. In both cases we have procedures that rely on a computation Uγ(σ) = y. The
hungry sets Cγ

d,σ correspond to the sets C̃(α), α = 〈σ, y, γ〉. In either case, the set has
to reach a certain measure before the request can be enumerated. One of the reasons
why Theorem 5.1.22 requires less effort to prove is that it is much easier to ensure that
the hungry sets are disjoint.

Next, we will compare the proof of Theorem 8.3.10 with the proof of Theorem 5.4.1
that each K-trivial set is low for K. In 8.3.10 there are no levels of procedures. The
procedure α = 〈σ, y, γ〉 corresponds to a procedure Qj,σyw at a fixed level j. Again, in
each case a procedure is based on a computation, Uγ(σ) = y for 8.3.10, and UA

s (σ) = y
for 5.4.1. It becomes inactive (is cancelled, respectively) when its guess about A turns
out to be wrong. It carries out its actions in small bits to avert too much damage in
case this happens (a controlled risk strategy). Reserving only a small set Dα at a time
corresponds to calling a procedure Pj−1 with a small goal β.

Finally, there is some similarity between the foregoing proof and the proof of The-
orem 1.7.20 on creative sets! The c.e. set F there corresponds to the c.e. open set R.
There, we assign a number x that has just entered F as a value pi,s(e) to ensure that x

does not coincide with a number used earlier. Here, we choose clopen sets disjoint
from R (expecting they will enter R later) to make them disjoint from previously used
sets that have already entered R.
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Recall that W2R denotes the class of weakly 2-random sets. A modification of
the proof of 8.3.10 yields a stronger result, which also entails Theorem 5.1.33
that Low(W2R,MLR) = Low(MLR).

8.3.14 Theorem. (Extends 8.3.10)
A ∈ Low(W2R,CR) ⇔ A is low for K.

Proof. We only need to prove the implication “⇒”. The construction of Lm

is now based on potential witnesses of the form δm = 〈v, d, V, q, ε〉, where v ∈
{0, 1}∗, d ∈ N, V is a c.e. open set and q, ε ∈ Q2, 0 < ε, q, and q + ε ≤ 1. Given
such a potential witness δm, we let R = [{x � v : λx(V ) ≥ q + ε}]≺. Let u ∈ N

be least such that q/(q+ε) < 1−2−u. In the construction of Lm, each procedure
α is specified as before but with the new definitions of R and u. In particular, a
procedure based on δm is active at stages s only as long as λv(Rs) < 1−2−u. The
function x → λx(V ) is a martingale, so if λv(V ) ≤ q, then by Proposition 7.1.9
we have λv(R) < 1− 2−u.
Lemma 8.3.13 is modified: for an appropriate witness such that λv(V ) ≤ q, if

a procedure α causes LA(x) ≥ 2d for some x � v, then λx(V ) ≥ q + ε.

8.3.15 Lemma. Let N be a martingale such that Succ(N) ⊆ non-W2R.
Then there is a δm = 〈v, d, V, q, ε〉 as above such that λv(V ) ≤ q and

∀x � v
[
N(x) ≥ 2d → λx(V ) ≥ q + ε

]
. (8.7)

Subproof. The argument is similar to the one in the proof of Theorem 5.1.33.
(The negation of the lemma now plays the role of Claim 5.1.34.) As before, let
{Ge

n}e,n∈ω be a listing of all the generalized ML-tests (Definition 3.6.1) with no
assumption on the uniformity in e. If the lemma fails we may inductively define
a sequence w0 ≺ w1 ≺ . . . and numbers nd (d ∈ N) such that

N(wd) ≥ 2d & λ(Vd | wd) ≤ γd, (8.8)

where γd = 1− 2−d and Vd =
⋃

i<dG
i
ni
. We may assume that N(∅) ≥ 1. We let

w0 = ∅. Then (8.8) holds for d = 0. In step d ≥ 0 we choose nd so large that
λ(Gd

nd
) ≤ 2−|wd|−d−2. Then λ(Gd

nd
|wd) ≤ 2−(d+2). Since Vd+1 = Vd ∪ Gd

nd
, we

have λ(Vd+1 | wd) ≤ γd + 2−(d+2) < γd+1. Since the lemma fails for 〈v, e, V, q, ε〉
where v = wd, e = d + 1, V = Vd+1, q = γd + 2−(d+2) and ε = 2−(d+2), we
may choose wd+1 � wd such that N(wd+1) ≥ 2d+1 and λ(Vd+1 | wd+1) ≤ γd+1.
Then N succeeds on the weakly 2-random set Z =

⋃
d wd. �

Claims 1–8 are now verified as before. Hence A is low for K. �

We have characterized nine of the ten classes Low(C,D) where C,D ∈ {W2R, MLR,

CR, SR} and C ⊆ D. Five classes coincide with Low(MLR).

8.3.16.� Problem. Characterize the class Low(W2R, SR). In particular, determine
whether it coincides with being c.e. traceable.
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8.4 Jump traceability
Our basic notion is c.e. traceability of a set, introduced in 8.2.2. In Defini-
tion 8.2.15 we strengthened this to computable traceability, where the traces
are effective sequence of strong indices for finite sets. We can also stay with c.e.
traces, but strengthen the basic notion by tracing functions partial computable
in A. We show in Fact 8.4.2 that it suffices to require a c.e. trace for JA.

8.4.1 Definition. Let g be an order function. The set A is jump traceable with
bound g (Nies, 2002) if there is a c.e. trace (Te)e∈N with bound g such that

∀e [
JA(e)↓→ JA(e) ∈ Te

]
.

We say that (Te)e∈N is a jump trace for A. The set A is called jump traceable
if A is jump traceable with some bound.

For c.e. traceability and computable traceability, by the argument in Theo-
rem 8.2.3, the growth rate of the bounds of the traces is irrelevant as long as
they are order functions. The argument relies on the fact that only total func-
tions are traced, so it is not surprising that the case of jump traceability is
different: there is a proper hierarchy depending on the growth of the bounds by
Theorem 8.5.2.
Later on in this section we will study sets that are jump traceable for every

bound. We will see in Section 8.5 that this lowness property, called strong jump
traceability, is much more restrictive than jump traceability. For instance, for c.e.
sets, strong jump traceability strictly impliesK-triviality, while jump traceability
is equivalent to superlowness.
Just like the class Low(Ω), the class of jump traceable sets is closed downward

under ≤T , and contained in GL1. In fact, building a jump traceable set is a good
way to obtain a set in GL1. Friedberg (1957a) showed that for each set C ≥T ∅′

there is a set A such that C ≡T A⊕ ∅′ ≡T A′. We prove this in Corollary 8.4.5
via a jump traceable set A.
Unlike sets that are low for Ω, by Corollary 8.4.7 there is an incomputable jump

traceable set that is computably dominated. No characterization via relative
randomness is known for jump traceability. However, we will give one using C-
complexity relative to an oracle.

Basics of jump traceability, and existence theorems
First we show that it suffices to require that the jump is traced.

8.4.2 Fact. If A is jump traceable, there is a c.e. trace (Sm)m∈N such that for
each Turing functional Φ we have ∀∞m

[
ΦA(m)↓→ ΦA(m) ∈ Sm

]
.

In particular, A is c.e. traceable.

Proof. There is an effective listing (pi)i∈N of all the reduction functions in the
sense of Fact 1.2.15. (This relies on the proof of the Parameter Theorem 1.1.2
which is applied to obtain Fact 1.2.15.) Suppose that A is jump traceable via
the c.e. trace (Te)e∈N with bound g. Let Sm =

⋃
i≤m Tpi(m). Then Sm is c.e.

uniformly in m, and λm.
∑

i≤m g(pi(m)) is a bound for (Sm)m∈N.
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Given a Turing functional Φ, choose a reduction function pi for Φ. Then, for
each m ≥ i, ΦA(m)↓ implies ΦA(m) ∈ Sm. �

If B ≤T A then JB is partial computable in A. Therefore the class of jump
traceable sets is closed downward under Turing reducibility.

8.4.3 Proposition. Each jump traceable set A is in GL1. Moreover, a reduction
procedure for A′ ≤T A ⊕ ∅′ can be obtained effectively from an index of a jump
trace for A.

Proof. Consider the Turing functional Ψ defined by ΨX(n) � µs. JX(n) ↓ [s].
Choose a reduction function p for Ψ by 1.2.15. To determine whether e ∈ A′,
first compute t = max Tp(e) using ∅′ as an oracle. Next, using A check whether
JA(p(e))↓ in at most t steps. If so, answer “yes”, otherwise answer “no”. �

Function trees were introduced in the proof of Theorem 8.2.17 to build a perfect
class of computably traceable sets. They can also be used to obtain a perfect
class of jump traceable sets. Before, the purpose of the e-th function tree was to
provide a trace for the Turing functional Φe. Now we only trace the jump. The
s-th function tree is used to trace computations that converge by stage s.

8.4.4 Theorem. There is a perfect Π0
1 class P such that each set in P is jump

traceable via a fixed c.e. trace (Te)e∈N with bound λe.2 · 4e.

Proof. We build a uniformly computable sequence of function trees (Fs)s∈N. We
think of the Fs(σ) as movable markers on binary strings. The active movement of
a marker is to an extensions of its present value. Thus, for each s, σ, if Fs+1(σ) 
=
Fs(σ) then we have Fs+1(σ) � Fs(σ) unless the change is caused by Fs+1(ρ) 
=
Fs(ρ) for some ρ ≺ σ. We ensure that F (σ) = limsFs(σ) exists for each σ, that
is, the markers stabilize eventually. Then F is a function tree. Note that the class

P = Paths(F ) =
{
Z : ∀n∀s∃η [|η| ≤ n & Z �n� Fs(η)

]}

is a perfect Π0
1 class.

The idea is to move Fs(σ), |σ| = e, in order to make a computation JF (σ)
s (e)

converge whenever possible. Once achieved, we maintain this unless the move-
ment of a marker Fs(ρ) for ρ ≺ σ interferes. Note the similarity to meeting the
lowness requirements in the proof of Theorem 1.6.4. The interference of a marker
Fs(ρ) for ρ ≺ σ corresponds to the injury of a lowness requirement Le.
Construction of the function trees Fs. Let F0(σ) = σ for each σ.
Stage s + 1. Look for the least e < s such that for some σ of length e, chosen
least, we have JFs(σ)

s (e)↑ and

∃ρ � σ
[|ρ| ≤ s & J

Fs(ρ)
s (e)↓ ]

.
Let Fs+1(σα) = Fs(ρα) for each string α (including α = ∅). For all strings
η 
� σ, let Fs+1(η) = Fs(η). (If e fails to exist, let Fs+1(η) = Fs(η) for all η.)
Let us first verify merely that Y ′ ≤T Y ⊕ ∅′ for each Y ∈ P , as this was asked
in Exercise 8.2.20. Given an input e, using the oracle ∅′, find the least stage t
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such that Ft(σ) has stabilized for all σ, |σ| ≤ e+1. Let σ be the string such that
Ft(σ) ≺ Y , then JY (e) � J

Ft(σ)
t (e).

For the full result, define a c.e. trace by Te = {JFs(σ)
s (e) : s ∈ N, |σ| = e}.

For |σ| = e, a value Fs(σ) can change at most 2e+1 − 1 times because the
marker Fs(σ) moves at most once after Fs(ρ) is stable for all ρ ≺ σ. Therefore
#Te ≤ 2e(2e+1 − 1) < 2 · 4e. �

8.4.5 Corollary. For each set C ≥T ∅′ there is a jump traceable set A such that
C ≡T A⊕ ∅′ ≡T A

′. In particular, there is a high jump traceable set.

Proof. Let A =
⋃

σ≺C F (σ) where F is the function tree introduced above.
Since F ≤T ∅′, we have C ≤T A⊕F ≤T A⊕∅′. Also A ≤T C ⊕F ≡T C. �

The construction in the proof of Theorem 8.4.4 can be modified in order to obtain a
bound for the trace closer to λe. 2e. However, if the bound g grows slowly enough, then
a set that is jump traceable for g is ∆0

2 by Downey and Greenberg (20xx).

8.4.6 Exercise. Extend Theorem 8.4.4 by also ensuring that P contains no com-
putable sets (at the cost of a somewhat larger bound for the jump trace).

8.4.7 Corollary. There is a perfect class of sets that are both computably traceable
and jump traceable.

Proof. Let P �= ∅ be the Π0
1 class of Exercise 8.4.6. By Theorem 1.8.44, there is a

perfect subclass S of P such that each element of S is computably dominated. Each
member of S is c.e. traceable and hence computably traceable. �

The foregoing result implies that a computably traceable set can be in GL1. Not
all computably traceable sets are in GL1: Lerman (1983, Thm. V.3.12) constructed a
set A of minimal Turing degree such that A′′ ≡T ∅′′ and A �∈ GL1. Examining his
construction reveals that A is computably traceable.

8.4.8 Exercise. Show in a direct way that if A is low for K, then A is jump traceable
with a bound in O(n log2 n). (See 5.5.12 for a proof via K-triviality.)

8.4.9.� Problem. Characterize the sets that are low for Ω and jump traceable (each K-
trivial set is). Characterize the sets that are computably traceable and jump traceable.

Jump traceability and descriptive string complexity

Figueira, Nies and Stephan (2008) proved that A is jump traceable iff CA(x) is
not much smaller than C(x) for each x. We need some notation to make this
precise. For any function f , let

f̂(y) = y + f(y).
Let α be a reduction function for the plain optimal machine V, namely,
∀X ∀σV

X(σ) � JX(α(σ)). Let c be a constant such that JA(|x|) ↓ implies
CA(x, JA(|x|)) ≤ |x| + c for each x. Such a c exists because given x we can
compute JA(|x|) relative to A.

8.4.10 Theorem. A is jump traceable ⇔ ∀x [
C(x) ≤+ CA(x) + h(CA(x))

]
for

some order function h. In more detail:
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(i) Let A be jump traceable with bound g. Then ∀x [
C(x) ≤+ ĥ(CA(x))

]
, where

h(n) = max{2g(α(σ)) + 1: |σ| = n}.
(ii) Suppose h is an order function such that ∀x [C(x) ≤+ ĥ(CA(x))]. Then A

is jump traceable with bound λe. 3h(e+c).

Proof. (i) Let (Te)e∈N be a jump trace for A with bound g. We define a ma-
chine M by letting M(0|r|1rσ) be the r-th element in the enumeration of Tα(σ)
if such an element exists, and leaving it undefined otherwise.
Suppose σ is a shortest V

A-description of a string x. Then x ∈ Tα(σ). Since
2#Tα(σ) + 1 ≤ h(|σ|), we have M(0|r|1rσ) = x for some r such that 2r + 1 ≤
h(|σ|). Thus C(x) ≤+ ĥ(|σ|) as required.
(ii) We need an auxiliary fact stating that, independently of x, we can bound
the number of y such that C(x, y) exceeds C(x) by no more than b ∈ N.

8.4.11 Lemma. #{y : C(x, y) ≤ C(x) + b} = O(2b+2 log b).

Subproof. Let M be the machine given by M(σ) � (V(σ))1, namely, M(σ)
is the first component of V(σ) viewed as an ordered pair. By Lemma 5.2.21,
#{σ : M(σ) = x & |σ| ≤ C(x) + b} = O(2b+2 log b). If C(x, y) ≤ C(x) + b then
V(σ) = 〈x, y〉 for some σ such that |σ| ≤ C(x) + b. Then M(σ) = x, so the
required bound on #{y : C(x, y) ≤ C(x) + b} follows. �

By the hypothesis of (ii) and the definition of c, for all e, if JA(e) ↓ and |x| = e
then

C(x, JA(|x|)) ≤+ ĥ(CA(x, JA(|x|))) ≤ ĥ(|x|+ c).

Now let Te =
{
y : ∀x [|x| = e → C(x, y) ≤ ĥ(e + c) + d

]}
, where d is the

implicit constant in the inequality above. Thus, if JA(e) ↓ then JA(e) ∈ Te.
Clearly (Te)e∈N is uniformly c.e. For the bound on #Te, given e we choose x
such that |x| = e and C(x) ≥ e. If y ∈ Te then C(x, y) ≤ ĥ(e + c) + d ≤
C(x) + c + h(e + c) + d. Thus, for almost all e we have #Te ≤ 3h(e+c) by
Lemma 8.4.11 where b = c + h(e + c) + d. Then a modification of (Te)e∈N at
finitely many components is a jump trace for A with the required bound. �

8.4.12 Exercise. Recall from 1.4.5 that Ve is the e-th ω-c.e. set.
Show that {e : Ve is jump traceable} is Σ0

3-complete.
Similarly, show that {e : We is jump traceable} is Σ0

3-complete.

The weak reducibility associated with jump traceability

In Section 5.6 we studied the weak reducibility ≤LR associated with the low-
ness property Low(MLR). Simpson (2007) defined, in a different language, a
weak reducibility ≤JT associated with jump traceability. Also see Table 8.3 on
page 363.
Note that a sequence of sets (Te)e∈N is a c.e. trace relative to B iff there is

function f ≤T B such that Te = WB
f(e) for each e, and a bound h ≤T B such

that #Te ≤ h(e) for each e. We may equivalently require that f is computable, for
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let f = ΓB , and let Θ be a Turing functional such that ΘB(e, x)↓ iff x ∈WB
ΓB(e).

By the Parameter Theorem for oracles (mentioned before 1.2.10), there is a
computable function r such that ΦB

r(e)(x) � ΘB(e, x) for each B, e, so WB
f(e) =

WB
r(e) for each e. However, to require a computable bound h is a restriction.

8.4.13 Definition. A is jump traceable by B, written A ≤JT B, if there is a c.e.
trace (Te)e∈N relative to B for JA, and an order function h such that #Te ≤ h(e)
for each e.

Being jump traceable by B is somewhat different from being jump traceable rela-
tive to B because we only require the existence of a c.e. trace for the function JA,
not for JA⊕B ; on the other hand, the bound for this trace must be computable,
not merely computable in B.

8.4.14 Fact. The relation ≤JT is transitive.

Proof. Suppose A is jump traceable by B via a trace (Sn)n∈N with bound an
order function g, and B is jump traceable by C via a trace (Ti)i∈N with bound
an order function h. There is a computable function β such that

JB(β(〈n, k〉)) � the k-th element enumerated into Sn.
Let Vn =

⋃
k<g(n) Tβ(〈n,k〉), then #Vn ≤ g(n) · h(β(〈n, g(n)〉)) and A is jump

traceable by C via the c.e. trace (Vn)n∈N. �

It is not hard to show that ≤JT is a Σ0
3 relation on sets, that A ≤T B implies

A ≤JT B, and that A′ 
≤JT A. Thus, ≤JT is indeed a weak reducibility in the
sense of Section 5.6.
By Exercise 8.4.8 each set in Low(MLR) is jump traceable. This can be extended

to the associated weak reducibilities by a result of Simpson (2007) relying on
Kjos-Hanssen, Miller and Solomon (20xx).

8.4.15 Theorem. If A ≤LR B then A ≤JT B with trace bound λr. 2r+c for
some c ∈ N.

Proof. We apply Lemma 5.6.4 to the computable function f such that f(〈r, y〉) =
r for each r, y, and the f -small set I = {〈r, y〉 : JA(r) = y}. By the lemma there is
a setH ⊇ I such thatH is c.e. inB, and f -small. Thus

∑
r,y 2

−r [[〈r, y〉 ∈ H]] ≤ 2c

for some c. Let Tr = {y : 〈r, y〉 ∈ H}, then (Tr)r∈N is uniformly c.e. in B and
#Tr ≤ 2r+c for each r. Also, if JA(r) = y then y ∈ Tr. �

Nies (2002) proved that each c.e. jump traceable set is superlow (8.4.23 below).
The following fact of Simpson (2007) strengthens this. It can be seen as a variant
of Exercise 5.6.10 that A ≤T B

′ and A ≤LR B implies A′ ≤T B
′ (we strengthen

the first, but weaken the second hypothesis).

8.4.16 Theorem. If A is c.e. in B and A ≤JT B then A′ ≤tt B
′.

Proof. Intuitively, because in the hypothesis the trace bound is computable, in
the conclusion we obtain a plain truth-table reduction, not merely one relative
to B. Let Ψ be the Turing functional given by
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ΨX(e) � min{σ ≺ X : Jσ
|σ|(e)↓}.

Choose a reduction function p for Ψ. Thus, ΨX(e) � JX(p(e)) for each X and e.
We write ê for p(e).
Let (As)s∈N be a B-computable enumeration of A. Suppose that A ≤JT B via

a B-c.e. trace (Te)e∈N with computable bound h. We may assume that Jσ
|σ|(ê)↓

for each σ ∈ Tê by only admitting such strings into Tê. Let σe,k,s be the k-th
string enumerated into Tê,s, if such a string exists, and undefined otherwise. Note
that B can compute the value of σe,k,s, and if σe,k,s is defined then k < h(ê).
Now JA(e)↓ ↔ ∃σ ∈ Tê [σ ≺ A] ↔ ∨

k<h(ê)

∃s (σe,k,s ≺ As) & ¬∃s∃t (s < t & σe,k,s ≺ As & σe,k,s 
≺ At). (8.9)

The first statement in (8.9) is in Σ0
1(B) form, the second in Π0

1(B) form. These
statements are obtained effectively from e and k, so A′ ≤tt B

′. �

Recall from 6.3.13 that a set C is called superhigh if ∅′′ ≤tt C
′. In The-

orem 6.3.14 and the discussion preceding it we studied implications between
highness properties. Simpson (2007) showed the nontrivial implication in (6.7)
on page 256. This is now an immediate consequence of Theorem 8.4.15, together
with Theorem 8.4.16 where A = ∅′ and B = C:

8.4.17 Corollary. If ∅′ ≤LR C then C is superhigh. �

The weak reducibility ≤JT is conceptually close to ≤LK (see 5.6.1).

8.4.18 Corollary. A ≤JT B ⇔ ∀x [
CB(x) ≤+ CA(x) + h(CA(x))

]
for some

order function h.

Proof. We adapt the proof of Theorem 8.4.10. We write CB(x) instead of C(x),
and CB(x, y) instead of C(x, y). In (i), we are now given a B-c.e. trace (Te)e∈N,
while g still is a computable bound. The machine M uses B as an oracle. �

Exercises.
8.4.19. Prove the statements after Fact 8.4.14.
8.4.20. Show that the class JTH = {C : C ≥JT ∅′} is Σ0

3.
8.4.21. Define a weak reducibility ≤CT corresponding to computable traceability.
Verify that ≤CT is transitive.
8.4.22.� Problem. Decide whether A ≤CT B ⇔ SRB ⊆ SRA for each A, B.

Jump traceability and superlowness are equivalent for c.e. sets

Recall that a set A is superlow if A′ ≤tt ∅′ (Definition 1.5.3). Jump traceability
and superlowness are in general quite different. While jump traceability expresses
that the function JA has a small possible range, superlowness restricts the com-
putational complexity of its domain A′ = {e : JA(e) ↓}. There is a ML-random
superlow set, but certainly not a jump traceable one (see below). There is a
perfect class of jump traceable sets (8.4.4) while the class of superlow sets is
countable. Nonetheless, for a c.e. set, the two properties are equivalent by a
result of Nies (2002).
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8.4.23 Theorem. Let A be c.e. Then A is jump traceable ⇔ A is superlow.

Proof. ⇒: (Range to domain) In Theorem 8.4.16 let B = ∅.
⇐: (Domain to range) We will write j(X, e) � use JX(e) and j(X, e, s) �
use JX

s (e). By Proposition 1.4.4, A is superlow iff there is a binary {0, 1}-valued
computable function q and an order function g such that, for each e,

A′(e) = lims q(e, s) & g(e) ≥ #{s > 0: q(e, s) 
= q(e, s− 1)}. (8.10)
To obtain a jump trace (Te)e∈N for A, we will define an auxiliary Turing func-
tional Ψ which copies computations of J with some delay. We assume a Turing
functional Ψ̃ is given. Let β be the reduction function effectively obtained from Ψ̃
according to Fact 1.2.15. We build Ψ effectively from β. Then, by the Recursion
Theorem we may assume that Ψ̃ = Ψ, so β is a reduction function for Ψ as well.
For each e let ê = β(e). At stage 0, Ψ is undefined for all inputs. At stage s > 0

we distinguish two cases.

(a) q(ê, s) = 0. If ΨA(e)[s− 1]↑ and JA(e)[s]↓= v, let ΨA(e)[s] = v
with use j(As, e, s).

(b) q(ê, s) = 1. If ΨA(e)[s]↓ then enumerate y = JA(e)[s] into Te.

Note that Ψ merely copies computations of J at a later stage, so when a new
computation JA(e)[s] appears, no computation ΨA(e)[t] which was defined at
t < s persists to stage s.
Suppose JA(e) = z, and let s be the least stage where this (final) computation

appears. We show that z ∈ Te. At a stage t ≥ s, we may only define a new
computation ΨA(e)[t] in case q(ê, t) = 0. Since ΨA(e)[t] remains undefined till
this happens, by the definition of β, in fact there must be such a stage t ≥ s.
Then ΨA(e) ↓ since the use for ΨA(e)[t] is j(As, e, s) and As �j(As,e,s) is stable.
Hence q(ê, r) = 1 for some r > t, and at stage r we enumerate z into Te.
Next, we show that (Te)e∈N is a c.e. trace with bound h(e) =  1

2g(β(e))!.
Suppose that v < r are stages at which distinct elements y, z are enumerated
into Te. Then y = JA(e)[v], z = JA(e)[r], and q(ê, v) = q(ê, r) = 1. Since
Av�j(Av,e,v) 
= Ar�j(Av,e,v), no definition ΨA(e)[v′] issued at a stage v′ ≤ v can be
valid at stage r. (Here we have used the hypothesis that A is c.e.) So we must
have made a new definition ΨA(e)[t] at a stage t, v < t < r, whence q(ê, t) = 0.
Since q(ê, s) can change from 1 to 0 and back to 1 for at most h(e) times, this
proves that #Te ≤ h(e). �

The following consequence of Theorem 8.4.23 is not obvious from the definition of
superlowness. To prove it we use the corresponding Fact 8.4.12 for jump
traceability.

8.4.24 Corollary. {e : We is superlow} is Σ0
3-complete. �

None of jump traceability and superlowness implies the other within the ω-c.e. sets.
For let Z be superlow and ML-random by Theorem 1.8.38, then Z is of d.n.c degree and
hence not even c.e. traceable. Furthermore, Nies (2002) built an ω-c.e. jump traceable
set that is not superlow. In contrast, Ng has announced that the two properties coincide
for the sets that are n-c.e. for some n > 1.
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By Theorem 5.5.7, each K-trivial set A is Turing below a c.e. K-trivial set, which is
superlow, hence jump traceable, and hence c.e. traceable. Thus A is c.e. traceable. By
Proposition 8.2.29 this implies the following.

8.4.25 Corollary. Each K trivial set is facile. �

See the solution to Exercise 8.2.11 for an alternative proof that each K-trivial set is
c.e. traceable.

8.4.26 Exercise. (Ishmukhametov, 1999) Recall Corollary 8.2.8. Show that each array
computable c.e. set A is c.e. traceable.

More on weak reducibilities

The following extension of the implication from right to left in the foregoing
Theorem 8.4.23 was proved by Simpson and Cole (20xx). It is a converse to
Theorem 8.4.16 under the extra hypothesis that B ≤T A.

8.4.27 Corollary. Suppose A is c.e. in B and B ≤T A. Then A′ ≤tt B
′ implies

A ≤JT B. In particular, if C is ∆0
2 and superhigh then ∅′ ≤JT C.

Proof. At first we merely relativize “⇐” of Theorem 8.4.23 to B: if A is c.e.
in B and (A⊕ B)′ ≤tt(B) B

′ then there is a trace (Te)e∈N for JA⊕B that is c.e.
relative to B. Here ≤tt(B) denotes the reducibility where B can be used as an
oracle to compute the truth table.
Since B ≤T A and A′ ≤tt B

′, we actually have the stronger hypothesis that
(A ⊕ B)′ ≤tt B

′. Thus, in (8.10) we can choose the binary function q ≤T B,
which now approximates (A⊕B)′, in such a way that the number of its changes
is bounded by a computable function g (not merely one computable in B).
When we view the proof of 8.4.23 relative to B, the reduction function β for the

given functional Ψ̃ is still computable. Note that #Te ≤  1
2g(β(e))! as before.

This shows that A ≤JT B. �

On the other hand, a superhigh set C can be jump traceable by Exercise 8.6.2.
Thus C ≤JT ∅ and hence ∅′ 
≤JT C. Together with Theorem 6.3.14, this shows
that all the highness properties in the first five rows of Table 8.3 on page 363
can be separated.

Strong jump traceability

Figueira, Nies and Stephan (2008) introduced the following lowness property.

8.4.28 Definition. A is strongly jump traceable if A is jump traceable with
bound g (as defined in 8.4.1) for each order function g.

For such a set A, if Ψ is a Turing functional and h an order function, there is
a c.e. trace for ΨA with bound h. To see this choose an increasing reduction
function p, so that ΨA(x) � JA(p(x)) for each x. If B ≤T A then JB = ΨA for
some Turing functional Ψ, so B is strongly jump traceable as well.
We will see in Section 8.5 that for the c.e. sets being strongly jump traceable

implies most other lowness properties. For instance, by Corollary 8.5.5, a strongly
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jump traceable c.e. set is Turing below each ω-c.e. ML-random set, and hence
low for K.
Figueira, Nies and Stephan (2008) built a promptly simple strongly jump trace-

able set. Their construction can be viewed as an adaptive cost function construc-
tion. Hence it does not qualify as being injury-free. In fact, in the proof we will
modify the construction with injury of Theorem 1.7.10, which in itself extends
Theorem 1.6.4 that there is a low simple set.

8.4.29 Theorem. There is a promptly simple strongly jump traceable set A.

Proof. As in Theorem 1.7.10 we meet the prompt simplicity requirements

PSe: #We = ∞ ⇒ ∃s∃x [x ∈We,at s & x ∈ As]

(whereWe,at s =We,s−We,s−1), and the lowness requirements Lk which attempt
to stabilize a computation JA(k). However, now the priority ordering is dynamic.
Recall from 2.1.22 that the function C given by C(x) = min{C(y) : y ≥ x} is
dominated by each order function g. Note that Cs(x) = min{Cs(y) : y ≥ x}
defines a nonincreasing computable approximation of C. We stipulate that PSe

can only injure a requirement Lk at stage s if e < Cs(k). For almost all k we
can compute a stage s such that Cs(k) ≤ g(k). To obtain a jump trace (Tk)k∈N

for A with bound h, we enumerate all the values JA(k) into Tk which appear
from that stage on. Each requirement PSe acts at most once, so at most g(k)
values are enumerated.

Construction of A. Let A0 = ∅.
Stage s > 0. For each e < s, if PSe is not satisfied and there is x ≥ 2e such that
x ∈We,at s and

∀k [
(e ≥ Cs(k) & JA(k)[s− 1]↓) → x > use JA(k)[s− 1]

]
, (8.11)

then put x into As and declare PSe satisfied.
Verification. The first claim is immediate from the construction.
Claim 1. Given a number k and a stage t such that JA(k)[t − 1] ↓, we have
JA(k)[t] = JA(k)[t− 1] unless some PSe such that e < Ct(k) acts at stage t.
Claim 2. Let g be an order function. Then A is jump traceable with bound g.
By Proposition 2.1.22 there is n such that C(k) ≤ g(k) for each k ≥ n. Let f be
the computable function such that f(k) = 0 for k < n, and f(k) = µt.Ct(k) ≤
g(k) for k ≥ n. Let Tk = {JA(k)[t] : t ≥ f(k)}. Since each requirement PSe acts
at most once, Claim 1 implies that #Tk ≤ g(k) for each k ≥ n. If JA(k) ↓ for
k ≥ n then JA(k) ∈ Tk. �

Claim 3. Each requirement PSe is met. Thus A is promptly simple.
Since each prompt simplicity requirement acts at most once, by Claim 1 there
is a stage s0 such that the computation JA(k)[s] is either undefined, or stable
for each s ≥ s0, whenever e ≥ C(k) (i.e., whenever Lk could restrain PSe).
If We is infinite then there are x ≥ 2e and s ≥ s0 such that x ∈ We,at s and
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x > use JA(k)[s0] whenever e ≥ C(k) and JA(k)[s0] is defined. We enumerate x
into A at stage s if PSe has not been met yet. �

To turn the proof into a cost function construction similar to the one in the proof of
Theorem 5.3.35, one uses the adaptive cost function c(x, s) = max{2−e : (8.11) holds}.
In the following variant of the theorem we apply the Robinson guessing method already
used in Theorem 5.3.22.

8.4.30 Theorem. For each low c.e. set B, there is a strongly jump traceable c.e. set A
such that A �≤T B.
Proof. We make the necessary changes to the proof of Theorem 5.3.22. In the con-
struction, instead of (5.8) we now ask that ΦB

e (x) = 0[s] and

∀k [
(〈e, n〉 ≥ Cs(k) & Js−1(As−1; k)↓) → x > use Js−1(As−1; k)

]
.

Informally, if Pe has acted n times before stage s, it has to obey the restraint of all Lk

such that 〈e, n〉 ≥ Cs(k). The same condition, but with the given partial enumeration
(Ãs)s∈N instead of (As)s∈N, replaces condition (ii) in the Σ0

1(B) question for require-
ment Pe. One shows that A is total as in Claim 5.3.23 in the proof of Theorem 5.3.22.
Claim 1 and Claim 2 in the proof of Theorem 8.4.29 are verified as before. Claim 3 is
replaced by Claim 5.3.25, with the obvious changes. �

8.4.31 Remark. For each order function g there is a (much slower growing)
order function h and a c.e. set A that is jump traceable with bound g but not with
bound h. We give a new proof of this result of Ng (2008a) in Theorem 8.5.2. Ng
(2008a) used similar methods to show that the class of strongly jump traceable
c.e. sets has a Π0

4-complete index set.

In Section 8.5 we will show that each strongly jump traceable c.e. set is low
for K. Being strongly jump traceable is also related to relative C-complexity.
A set that is low for C is computable by Exercise 5.2.22, but a weaker condition
than being low for C yields a characterization of strongly jump traceability. This
is an easy consequence of Theorem 8.4.10:

8.4.32 Corollary. The following are equivalent.
(i) A is strongly jump traceable.
(ii) A is lowly for C, namely, for each order function h,

∀x [
C(x) ≤+ CA(x) + h(CA(x))

]
. (8.12)

Proof. The function α and the constant c were introduced before Theorem 8.4.10.
(i) ⇒ (ii): Let h be an order function. There is an order function g such that
h̃(n) = max{2g(α(σ)) + 1: |σ| = n} ≤ h(n) for almost all n. Since A is jump
traceable with bound g, (i) of Theorem 8.4.10 implies (8.12).
(ii) ⇒ (i): Let g be an order function. There is an order function h such that
3h(e+c) ≤ g(e) for almost all e. Since (8.12) holds for h, (ii) of Theorem 8.4.10
implies that A is jump traceable with bound g. �

Downey and Greenberg (20xx) have announced that each strongly jump traceable set
is ω-c.e. (even with the number of changes dominated by any order function). Being in
GL1, this implies that each strongly jump traceable set is low.
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Strong superlowness �

This subsection mostly follows Figueira, Nies and Stephan (2008). We strengthen
the property of superlowness by universally quantifying over all order functions,
the same way we passed from jump traceability to strong jump traceability.

8.4.33 Definition. Let g be an order function. We say that A is superlow with
bound g if there is a {0, 1}-valued computable binary function q such that, for
each x,

A′(x) = lims q(x, s) & #{s > 0: q(x, s) 
= q(x, s− 1)} ≤ g(x). (8.13)

A is strongly superlow if A is superlow with bound g for each order function g.

The construction in the proof of Theorem 8.4.29 yields a strongly superlow c.e.
set (see Exercise 8.4.36). Actually, for c.e. sets, strong superlowness and strong
jump traceability are equivalent by the techniques in the proof of Theorem 8.4.23.
The implication from left to right holds for all sets. No direct proof of the latter
result is known. Rather, we use Corollary 8.4.32.

8.4.34 Theorem. Each strongly superlow set A is strongly jump traceable.
In fact, for each order function g there is an order function b such that

A is superlow with bound b ⇒ A is jump traceable with bound g.

Proof idea. By Theorem 8.4.10(ii) it is sufficient to show that for each order function h,
there is an order function b such that

A is superlow with bound b → ∀x [C(x) ≤+ ĥ(CA(x))]

(where ĥ(y) = y + h(y) as before). For each pair of strings σ, x we have

C(x) ≤+ |σ|+ K(x | σ) ≤+ |σ|+ 2C(x | σ).

Now suppose that σx is a shortest VA-description of x. Since A is computationally
weak, very little extra information is needed to obtain x from σx without the help of A,
namely, 2C(x | σx) ≤+ h(|σx|). To show this, for each n we code into A′ the bits of
the first τ of length n we find such that x = V2(τ, σx). If n = nx := C(x | σx), an
appropriate approximation to A′ changes a sufficiently small number of times on these
bits (compared to h). Then a description of the corresponding τ from nx, σx and this
number of changes is used to show that 2C(x | σx) ≤+ h(|σx|).
Proof details. Let ΨX be the Turing functional given by the following procedure (if
it gets stuck on input y we leave ΨX(y) undefined). On input y = 〈i, n, σ〉:
(1) Attempt to compute x = VX(σ).
(2) Let s be least such that V2

s(τ, σ) = x for some τ of length n.
(3) If i < n and τ(i) = 1 then declare ΨX(〈i, n, σ〉) ↓.

Let α be a reduction function for Ψ according to Fact 1.2.15. Thus, JX(α(i, n, σ)) �
ΨX(〈i, n, σ〉) for each X, i, n, σ, where we write α(i, n, σ) instead of α(〈i, n, σ〉). Note
that α is increasing in each argument. Let b be an order function such that b(α(n, n, σ)) ≤
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nh(|σ|) for all n > 0 and all σ. To obtain b, for each k let

mk = max{α(n, n, σ) : n > 0 & nh(|σ|) ≤ k}.
Note that mk exists since h is an order function. Let b(j) = 1 for j ≤ m1, and if k > 1
and mk−1 < j ≤ mk let b(j) = k.

Let σx be a shortest VA-description of x, and let nx = C(x|σx). Note that the pro-
cedure determining ΨX(i, nx, σx) for i < nx finds in (2) the first τx of length nx such
that V2(τx, σx) = x, and declares ΨA(i, nx, σx) ↓ iff τx(i) = 1.

Let q be a binary computable function for the bound b as in (8.13). We may assume
that for each s > 0 there is at most one x such that q(x, s) �= q(x, s − 1). We can
approximate τx at stage s by

τx,s = q(α(0, nx, σx), s) . . . q(α(nx − 1, nx, σx), s),

and dx = #{s > 0: τx,s �= τx,s−1} ≤ nxb(α(nx, nx, σx)) ≤ n2
xh(|σx|).

There is a machine describing τx in terms of nx, σx, and dx for each x. Since
V2(τx, σx) = x, a further machine describes x in terms of nx, σx, and dx. Note that for
u, v ∈ N we have |bin(u · v)| =+ |bin(u)|+ |bin(v)|, where bin(u) ∈ {0, 1}∗ is the binary
representation of u. We temporarily write |n| for the length of bin(n). Note that

nx = C(x | σx) ≤+ 2|nx|+ |n2
x · h(|σx|)| ≤+ 4|nx|+ |h(|σx|)|. (8.14)

Claim. We have nx ≤+ 2|h(|σx|)| for all x.
There is a constant N such that 8|n| ≤ n for all n ≥ N . Since h is an order function,
|h(|σx|)| ≥ N for almost all x, hence for almost every x either nx ≤ |h(|σx|)| or
4|nx| ≤ nx/2. In the latter case nx − 4|nx| ≥ nx/2 and by (8.14), nx/2 ≤+ |h(|σx|)|.
This proves the claim. To conclude the proof, note that

C(x) ≤+ |σx|+ 2C(x | σx) ≤+ |σx|+ 4|h(|σx|)| ≤+ |σx|+ h(|σx|).
The rightmost expression equals CA(x) + h(CA(x)) = ĥ(CA(x)). �

8.4.35 Corollary. Let A be computably enumerable. Then
A is strongly jump traceable ⇔ A is strongly superlow.

Proof. ⇐: This implication holds for every set A.
⇒: We show that A is superlow with bound g for any order function g by looking
at the proof of Theorem 8.4.16 for B = ∅. For each k there are two queries to ∅′

in (8.9). Let h be an order function such that 2h(ê) ≤ g(e) for almost all e.
Then the approximation to A′ obtained by evaluating the truth-table reduction
in (8.9) on ∅′

s at stage s changes at most g(e) times for almost all e. �

Exercises.

8.4.36. Show directly from the construction that the set A we build in the proof of
Theorem 8.4.29 is strongly superlow.

8.4.37. Define weak reducibilities ≤SSL and ≤SJT corresponding to strong superlow-
ness and strong jump traceability. Show that if B ≤T A, then A ≤SSL B implies
A ≤SJT B. (For work related to ≤SJT see Ng 20xx.)

8.4.38.� Problem. Is each strongly jump traceable set strongly superlow?
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8.5 Subclasses of the K-trivial sets
Note that the term “subclass” does not imply being proper.
By Theorem 8.3.9, lowness for Schnorr randomness can be characterized by

the computability theoretic property of computable traceability. In Chapter 5 we
showed that several properties coincide with lowness for Martin-Löf randomness,
but none of them is purely computability theoretic. A characterization of this
kind would be desirable for lowness for Martin-Löf randomness, for instance
because it might lead to shorter proofs of some of those coincidences.
When the properties of strong jump traceability and strong superlowness were

introduced in Figueira, Nies and Stephan (2008), the hope was that one of them
is equivalent to Low(MLR), leading to such a characterization. Cholak, Downey
and Greenberg (2008) showed that the strongly jump traceable c.e. sets form
a subclass of the c.e. sets in Low(MLR), introducing the so-called box promo-
tion method. However, they also proved that this subclass is proper, thereby
destroying the hope that either property characterizes Low(MLR).
Following work of Greenberg and Nies, we give proofs using cost functions of

these results in Cholak, Downey and Greenberg (2008). In 8.5.3 we will introduce
benign cost functions, monotonic cost functions c with the property that the
number of pairwise disjoint intervals [x, s) such that c(x, s) ≥ 2−n is bounded
computably in n. The standard cost function is benign (Remark 5.3.14). If c
is benign then by the box promotion method each strongly jump traceable c.e.
set A has a computable enumeration obeying c. On the other hand, there is a
c.e. set obeying c which is not strongly jump traceable.
We study further subclasses of the c.e. K-trivial sets that contain the strongly

jump traceable c.e. sets, such as the class of c.e. sets that are Turing below each
ML-random set C ≥LR ∅′. None of these subclasses is known to be proper.
The results in this section are rather incomplete and leave plenty of opportunity

for future research. For some updates see the end of this chapter.

Some K-trivial c.e. set is not strongly jump traceable

In Theorem 5.3.5 we built a promptly simple set obeying a given cost function
with the limit condition. For the standard cost function cK, this construction
is more flexible than one might expect: there is a K-trivial c.e. set A that is
not strongly jump traceable. There are strategies Re (e ∈ N) to make A not
strongly jump traceable. Each Re is eventually able to enumerate e+1 numbers
into A at stages of its choice. The construction has to cope with a computably
bounded number of failed attempts of Re. Failure means that the sequence of
enumerations is terminated before the e+ 1-th number is reached.
In Exercise 8.5.8 the result is extended to an arbitrary benign cost function.

An alternative proof of the result can be obtained from Corollary 8.5.5 and
Exercise 8.5.25: each strongly jump traceable c.e. set, but not each K-trivial c.e.
set, is below each ω-c.e. ML-random set.

8.5.1 Theorem. There exists a c.e. K-trivial set A that is not strongly jump
traceable. Indeed, for some Turing functional Ψ, there is no c.e. trace for ΨA

with bound λz.max(1,  1/2 log log z!).
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Proof. We build a computable enumeration (As)s∈N of a set A that obeys the
standard cost function cK (see 5.3.2 and 5.3.4 for the definitions). Then A is K-
trivial.
Let I1, I2, . . . be the consecutive intervals in N such that #Ie = 2e2e

. Let h be
the order function such that h(z) = e for z ∈ Ie. Note that 1/2 log log z ≤ h(z)
for each z because

∑
1≤i<e 2

i2i

= min Ie ≤ 222e

for each e > 0. Let (Se
z)z∈N be

the e-th c.e. trace with bound h in some uniformly c.e. listing of all such traces.
We build a Turing functional Ψ in such a way that for each e > 0 we have

ΨA(z) 
∈ Se
z for some z ∈ Ie. Since #Se

z ≤ e it is sufficient to have e+1 numbers
available for enumeration into A at stages of our choice before defining ΨA(z)
for the first time with large use (say the stage number). From now on, whenever
y = ΨA(z) is defined and y has appeared in Se

z , we enumerate the next among
those numbers into A and redefine ΨA(z) with a larger value than before and
the stage number as the use.
The challenge is to implement this strategy while obeying the cost function cK.

As a preparation, we will rephrase the construction of an incomputable K-trivial
set in terms of procedures. We meet for all e the requirement that A 
= Φe. The
procedure P e(b) for this requirement is allowed to incur a cost of 1/b. It wants to
enumerate a number w into A at a stage s when Φe,s(w) = 0 in order to ensure
that Φe(w) = A(w) fails. It tries to find a number w such that cK(w, s) ≤ 1/b at
a stage s when it wants to enumerate w.

Procedure P e(b) (e > 0, b ∈ N)

(1) Let w be the current stage number.
(2) Wait for a stage s such that Φe,s(w) = 0. If s is found put w into As.
If cK(w, t) > 1/b at a stage t during this waiting goto (1). We say that P e is
reset.

Since
∑

n 2−K(n) ≤ 1 the procedure P e(b) is reset at most b times, so eventually w
stabilizes. (This particular feature of cK was already discussed in Remark 5.3.14.)
At stage e of the construction we start P e(2e). Since each procedure enumerates
into A at most once, the total cost of all A-changes is finite.
Now suppose that for each e we have to meet the requirement that (Se

z)z∈N

is not a trace for ΨA. The strategy for this requirement needs e + 1 numbers
available for enumeration into A, so it now involves e + 1 levels of procedures
P e

j , e ≥ j ≥ 0. The strategy begins with P e
e , which calls P e

e−1, and so on down
to P e

0 which picks z ∈ Ie and defines ΨA(z) for the first time. Each time the
current value ΨA(z) appears in the trace set Se

z , a procedure returns control to
the procedure that called it, which now changes A in order to redefine ΨA(z) to
a larger value. The allowance of each run of P e

j is the same amount 1/be,j , where
the numbers be,j ∈ N can be computed in advance.
It may now happen that for j > 0, a procedure P e

j calls P e
j−1 but is reset (in the

same way as above) before P e
j−1 returns. In this case P e

j−1 is cancelled. Typically
it has incurred some cost already. To bound this type of garbage, P e

j with the
allowance of 1/b calls P e

j−1 with the smaller allowance of 1/b2. The run P e
j (b) is
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reset at most b times, and each time the cost at level j − 1 is at most b−2. The
total cost at this level is therefore at most 1/b. We will verify that we can afford
this cost.
If a run of P e

j−1 is cancelled this also wastes inputs for ΨA, because the run
may define computations ΨA(z) when A is already stable up to the use. However,
the size of Ie is at least the largest possible number of runs of P e

0 , so that each
such run can choose a new number z ∈ Ie.
In the following let e > 0. In the construction of A we call P e

e (2
e) at stage e.

Procedure P e
0 (b) (at level 0, the parameter b merely simplifies the notation later):

(1) At the current stage s, let z be the least unused number in Ie.
Define y = ΨA(z)[s] = s with use s.
(2) Wait for a stage r > s such that y ∈ Se

z,r. Meanwhile, if A �y changes,
redefine ΨA(z) = y with the same use y. If r is found return z.
Procedure P e

j (b) (b, j ∈ N, e > 0, j > 0).
(1) Let w be the current stage number. Call P e

j−1(b
2).

(2) Wait for a stage s at which this run of the procedure P e
j−1 returns a number z.

If s is found put w into As. Since w < use ΨA(z)[s − 1] this makes ΨA(z)
undefined. Let y = s and redefine ΨA(z)[s] = y with use y.
If cK(w, t) > 1/b at a stage t during this waiting, then at the beginning of t

cancel the run of P e
j−1 and all its subruns, and goto (1). We say that the run

of P e
j is reset (note that it is not cancelled, and has not incurred any cost yet).

(3) Wait for a stage r > s such that y ∈ Se
z,r. Meanwhile, if At−1 �y 
= At �y for

the current stage t, then redefine ΨA(z)[t] = y with the same use y as before.
If r is found return z.

Claim 1. A run P e
j (b) is reset fewer than b times.

Suppose the run is started at w0, and reset at stages w1 < . . . < wk. Then
k/b <

∑
0≤i<k cK(wi, wi+1) ≤ Ω ≤ 1, hence k < b. �

The numbers be,j (j ≤ e) are given by be,e = 2e and be,j−1 = b2e,j if j > 0; in
other words, be,j = 2e2e−j

. Note that we only call a run P e
j (b) for b = be,j .

Claim 2. For each j ≤ e the procedure P e
j is called at most be,j2−e times. In

particular, since #Ie = be,0, a run of P e
0 can always choose a new z in (1).

We use reverse induction on j ≤ e. Procedure P e
e is called once. Suppose the

claim holds for j > 0. Since each run of P e
j is called with parameter be,j , each run

is reset fewer than be,j times. Therefore P e
j−1 is called at most b2e,j2

−e = be,j−12−e

times. �

Claim 3. There is z ∈ Ie such that ΨA(z)↓
∈ Se
z .

Let z ∈ Ie be the last number chosen by a run of P e
0 . No run of a procedure P e

j ,
j > 0, is reset after the stage s when z is chosen, else a further number would
be chosen later by a run of P e

0 . Suppose that r ≤ e + 1 is largest such that for
j < r, the run of P e

j at stage s returns at a stage sj . Let yj = ΨA(z)[sj ]. Then
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y0 < . . . < yr−1 and yj ∈ Se
z , whence r ≤ e since #Se

z ≤ e. By the actions at (3),
or at (2) if r = 0, y = ΨA(z)↓. Further, y 
∈ Se

z because the run of P e
r does not

return. �

Claim 4. A is K-trivial.
It suffices to show that (As)s∈N obeys cK. If w ∈ As − As−1 this is caused by
(2) of a run P e

j (be,j), j > 0. Then cK(w, s) ≤ 1/be,j , otherwise the run would be
reset before w enters A. By Claim 2 P e

j is called at most be,j2−e times. At most
one number enters A per call, so the sum S in (5.6) on page 186 satisfies

S ≤ ∑
0<e

∑e
j=1 be,j2−e/be,j ≤ ∑

0<e e2
−e <∞. �

We modify the construction to give a proof of the first statement in Remark 8.4.31,
that the hierarchy of c.e. sets jump traceable for order functions g is downward proper.

8.5.2 Theorem. (Ng, 2008a) For each order function g there is an order function h
and a c.e. set A that is jump traceable with bound g but not with bound h.

Proof. To ensure that A is jump traceable via g we meet the lowness requirements Lk

as in Theorem 8.4.29. A requirement Lk can only be injured g(k) times. As in the
foregoing theorem, for e > 0 we have e + 1 levels of runs of P e-type procedures that
diagonalize against the e-th trace with a bound h defined shortly. To bound the number
of times a run can be reset by a computable function, we will explicitly define finite
subtrees Ve of {α ∈ N∗ : |α| ≤ e}. They consist of strings denoting runs, similar to the
original proof of Theorem 8.5.1 in Cholak, Downey and Greenberg (2008). A run P e

α,
α ∈ Ve, corresponds to a run P e

e−|α| before.
To each pair 〈e, α〉, e > 0, α ∈ N∗, we effectively assign a code number ne,α ∈ N in

such a way that α ≺ β implies ne,α < ne,β . A run P e
α is only allowed to injure Lk if

ne,α < g(k). Each run enumerates into A at most once, so A is jump traceable via g.
In the construction, the runs P e

α for |α| = e act like P e
0 before. P e

α for |α| < e acts
like P e

e−|α| before, except that it now calls in (1) the run P e
αi for the least i such that

no such run has been called yet. Each time a computation JA(k) converges, all the
runs P e

α such that g(k) ≤ ne,α are reset by cancelling their subruns and going to (1).
Let ĝ(n) = max{k : g(k) ≤ n}. To define the tree Ve we have to calculate an upper

bound on how often P e
α can be reset. Let n = ne,α. Each time some run with priority

m < n enumerates a number into A, all Lk, ĝ(m) < k ≤ ĝ(n), may be injured, and
hence may reset P e

α when their computation JA(k) converges again. So P e
α can be reset

at most re,α = (n+1)(ĝ(n)+1) times. Thus, each α ∈ Ve of length < e has a successor
αi on Ve for each i ≤ re,α. Now let (Ie)e∈N+ be the consecutive intervals with length
the number of leaves of Ve, and let h(z) = e for z ∈ Ie.

Claim 1 now states that P e
α is reset at most re,α times, which is clear. Claim 2 is not

needed, Claim 3 is as before, and Claim 4 (that A is jump traceable via g) is clear.
�

Strongly jump traceable c.e. sets and benign cost functions

Cost functions were defined in 5.3.1.

8.5.3 Definition. We say that a cost function c is benign if
c(x + 1, s) ≤ c(x, s) ≤ c(x, s + 1) for each x < s (monotonicity), and there is a
computable function g such that
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x0 < x1 < . . . < xk & ∀i < k [c(xi, xi+1) ≥ 2−n] implies k ≤ g(n).

The standard cost function cK is benign via g(n) = 2n (see 5.3.14). For a further
example, suppose Y is an ω-c.e. set, and choose a computable approximation
(Ys)s∈N of Y and a computable function g such that Ys(n) changes at most g(n)
times. Then the cost function cY defined in (5.7) on page 189 is benign via g. As
in 5.3.21 one shows that each benign cost function satisfies the limit condition.
The following result of Greenberg and Nies is obtained by generalizing a proof

of Cholak, Downey and Greenberg (2008), using the language of cost functions.

8.5.4 Theorem. Let A be a strongly jump traceable c.e. set. If c is a benign
cost function then A has a computable enumeration (Âr)r∈N that obeys c.

Item (i) of the following was proved by Cholak, Downey and Greenberg (2008).

8.5.5 Corollary. Suppose A is a strongly jump traceable c.e. set.
(i) A is K-trivial. (ii) If Y is a ML-random ω-c.e. set then A ≤wtt Y with a use
function bounded by the identity.

Proof. For (i), some computable enumeration ofA obeys cK; now we apply 5.3.10.
For (ii), we use that the cost function cY intorduced in (5.7) on page 189 is be-
nign. Then by Fact 5.3.13 A ≤wtt Y with used bounded by the identity.
Note that (i) also follows from (ii), by choosing a ML-random set Y such that

Y <T ∅′ (say, a superlow ML-random set by 1.8.38). Then Y ∈ MLRA by 3.4.13,
hence A is a base for ML-randomness and thus K-trivial. �

Proof of Theorem 8.5.4. We begin with a lemma on order functions, which
implies that a jump trace for A with a bound h that grows sufficiently slowly
yields a c.e. trace with a desired bound hd for ΦA

d . Let αd be the (strictly increas-
ing) reduction function for Φd given by Fact 1.2.15; thus JX(αd(x)) � ΦX

d (x)
for each oracle X and each input x.

8.5.6 Lemma. Let (hd)d∈N+ be an effective listing of order functions such that
hd(0) ≥ d for each d. Then there is an order function h such that h(αd(z)) ≤
hd(z) for each d > 0 and z ∈ N.

Subproof. We define a computable sequence 0 = n1 ≤ n2 ≤ . . . and let h(y) = i
for y ∈ [ni, ni+1). For i > 1 let ni = 1 + max{αd(z) : 0 < d < i & hd(z) ≤ i}.
Suppose y = αd(z) ∈ [ni, ni+1). If d ≥ i then hd(x) ≥ i for each x, so h(y) = i ≤
hd(z). If 0 < d < i then hd(z) > i by the definition of ni, so again h(y) ≤ hd(z).

�

We will define in (8.15) a sequence of order functions (hd)d∈N as in Lemma 8.5.6,
so let h be the order function obtained via 8.5.6. We show that some computable
enumeration of A obeys c, assuming only that A is jump traceable with bound h.
Let (Tn)n∈N be a jump trace with bound h for A. In the construction we are
given a parameter d > 0. We effectively obtain a Turing functional Φ = Φf(d).
Then, by the Recursion Theorem, there is d > 0 such that Φf(d) = Φd, so we
can think of Φ as Φd. Let
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T d
z = Tαd(z).

By the definition of αd, (T d
z )z∈N is a c.e. trace for ΦA with bound hd.

We are given A with a computable enumeration, and define the new enumera-
tion (Âr)r∈N. Roughly, to ensure that (Âr)r∈N obeys c, the larger c(y, r), the less
frequent is the event that y ∈ Âr − Âr−1. To this end we also define ΦA(z) with
use greater than y for an appropriate z such that T d

z is small. If ΦA(z) enters T d
z

then Otto has spent one trace element. If y enters A after that, we can redefine
ΦA(z) with a larger value. We now say that z is promoted. This process takes
place at most #T d

z times.
A procedure Rn wants to ensure that there are at most n + d stages r at

which a number y enters Âr such that c(y, r) ≥ 2−n. This suffices to make the
total cost of changes bounded, for Rn actually only has to consider the y such
that also 2−n+1 > c(y, r), else some Rm for m < n does the job of Rn, and∑

n(n + d)2−n+1 < ∞. The actions of Rn depend on the sequence 0 = x0 <
x1 < . . . where xi+1 is the least s such that c(xi, s) ≥ 2−n. This sequence grows
as Rn proceeds, but since c is benign via g its length is bounded by g(n). By the
monotonicity of c, if c(y, r) ≥ 2−n then we have y < xm, where xm is the last in
the sequence at stage r.
Once xi is defined, Rn picks for xi a number z such that #T d

z ≤ n + d, and
defines ΦA(z) with value the stage number and with use xi. It keeps ΦA(z)
defined with the same value and use (even if A changes) till this value appears
in T d

z . Now A�xi
is called certified.

The new enumeration (Âr)r∈N slows down (As)s∈N in such a way that a
number y with c(y, r) ≥ 2−n can enter Âr only after A�xi is certified, where i is
least such that xi > y. If y does enter Âr, Otto has to spend one of his
numbers in T d

z .
To keep its overall cost down, the strategy Rn wants to ensure that such a

change of A after certification can happen at most n + d times. The typical
situation is that j < i, A �xj and A �xi are certified, first A changes in [xj , xi),
and later A changes below xj . Now Rn has to be sure that the two changes can
be used for promoting the same number z. To do so it promotes whole boxes of
numbers.
Rn begins with an interval In, called its box, of inputs z for ΦA. This box is

split into g(n) subboxes Bi of equal size. The same division process is applied
to the subboxes and so on, for n + d + 1 times. Since g is computable, we can
determine in advance how large In has to be to allow for n+ d+1 subdivisions.
The trace bound is defined by hd(z) = n+ d for z ∈ In.
When xi appears, Rn defines ΦA(z) as above for all z ∈ Bi. If i is least such

that A �xi
is certified and now A changes below xi, then all the computations

ΦA(z) for z ∈ Bi become undefined. So all z ∈ Bi get promoted in the sense
above. To ensure we can use this box of promoted numbers z in case later A�xj

changes for j < i, Rn now uses Bi as its new box. It copies sufficiently many of
the remaining computations ΦA(y) for y ∈ Bj onto inputs in the new box of Rn.
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Proof details. In the following we fix d > 0. Let (In)n∈N+ be the consecutive
intervals of N such that #In = g(n)(n+d+1). Given n, the variables k, l range
over {1, . . . , g(n)}. If B is an interval of N such that g(n) | #B, then let Bk be
the k-th subinterval of B of size #B/g(n).
The procedure Rn controls ΦA(z) for each z ∈ In. We define the order func-

tion hd by
hd(z) = n+ d if z ∈ In. (8.15)

To deal with the waiting for tracing, the construction (for parameter d) proceeds
in stages s(i), similar to the proof of Theorem 5.3.27. We will only consider stages
of this sort, and use italics to indicate this. Let s(0) = 0. If s(i) has been defined
and the construction has been carried out up to stage s(i), let

s(i+ 1) � µs > s(i)
[
2 | s&∀z < s(i) (ΦA

s (z)↑ ∨ ΦA
s (z) ∈ T d

z,s)
]
.

If Φ = Φd then s(i+1) exists. Note that all the stages are even. We may assume
that As+1 = As for each even s. If t > 0 is a stage, then t denotes the largest
stage less than t. We say that At �x is certified if

At �x= At �x.
Construction of the Turing functional Φ, given the parameter d ∈ N. The pro-
cedures Rn act independently. We describe their actions at each stage. To ensure
tracing of the relevant computations by the next stage, Rn is only active from
stage s∗

n = s(i+ 1) on, where i is least such that s(i) > max In.

Action of Rn. At stage s∗
n let B = In, m = 0 and x0 = 0.

Stage s > s∗
n.

(1) Check whether there is k ≤ m such that
(◦) x = xk is defined by the end of s, As �x is certified and As �x 
= As �x.
If so, let k be the least such number. Note that ΦA(z)[s] ↑ for all z ∈ Bk[s],
because such a computation is only defined in (3) and has use xk.
For each y ∈ B[s] such that g(n) | (y −minB[s]), let

y′ = minBk[s] + (y −minB[s])/g(n).

Then y′ ∈ Bk[s]. If ΦA(y)[s] ↓, make a copy of this computation with input y′:
define ΦA(y′)[s+ 1] = ΦA(y)[s] with the same use.
Let B[s+ 1] := Bk[s]. We say that Rn shrinks its box at s.
(2) If c(xm, s) ≥ 2−n, then increment m and let xm = s.
(3) For each l ≤ m and z ∈ Bl[s + 1], if ΦA(z)[s]↑, define ΦA(z)[s + 1] = s + 1
with use xl.
Verification. For the first two claims fix n.
Claim 1. For each stage s > s∗

n, if x = xk is defined at s and As �x is certified,
then ΦA(z)[s]↓∈ T d

z,s for each z ∈ Bk[s+ 1].
By the action in (3) at some stage ≤ s and the faithful copying, w = ΦA(z)[s+1]
is defined with use x. Since As �x= As �x, we have w ∈ T d

x,s by the definition of
stages and since s > s∗

n. �

Claim 2. The procedure Rn shrinks its box no more than n+ d times.
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Assume for a contradiction that t0 < . . . < tn+d are the first n + d + 1 stages
s > s∗

n such that (◦) is satisfied, and let ri = ti. Note that B[tn+d +1] 
= ∅ as the
set In was chosen large enough to accommodate n + d + 1 shrinking processes.
Fix z ∈ B[tn+d+1]. Let ki be the witness k for (◦) at stage ti. For each i ≤ n+d
we have z ∈ Bki

[ri + 1] = B[ti + 1]. Since Ari
�xk

is certified, by Claim 1 we
have ΦA(z)[ri] ↓∈ T d

z,ri
. Since Rn shrinks its box at ti, ΦA(z)[ti] ↑. Therefore

ΦA(z)[ri] < ti ≤ ΦA(z)[ri+1] for all i < n+ d, whence #T d
z > n+ d. But z ∈ In,

so hd(z) = n+ d, contradiction. �

Now let q(0) = 0 and let q(r+ 1) be the least stage s > q(r) such that As �q(r)

is certified. Similar to Theorem 5.5.2, let Âr = Aq(r+2) ∩ [0, r).
Claim 3. (Âr)r∈N obeys the cost function c.
Suppose that y < r, c(y, r) > 0 and Âr(y) 
= Âr−1(y). Let n be such that
2−n+1 > c(y, r) ≥ 2−n and consider the procedure Rn at stage t = q(r), when
x0, . . . , xm have been defined. By the monotonicity of c in the second argument
we have c(y, t) ≥ 2−n. Also c(xm, t) < 2−n, so y < xm by the monotonicity in
the first argument. There is a least stage s, q(r+1) < s ≤ q(r+2), such that for
some i ≤ m (chosen least), where x = xi we have As �x 
= As �x. Since x < q(r),
Aq(r+1) �q(r) is certified, and s was chosen least, As �x is certified. Thus (◦) holds
at s and Rn shrinks its box. By Claim 2 we may conclude that
∑

y,r c(y, r)[[r > 0 & y least s.t. Âr−1(y) 
= Âr(y)]] ≤ ∑
n(n + d)2−n+1 < ∞.

�

Let c be the standard cost function cK. We study how slowly an order function h must
grow so that each set jump traceable with bound h obeys c. The growth rate is given
by the reduction functions αd and therefore depends on our definition of the universal
Turing functional J . If we use the universal functional given by ΘY (〈d, x〉) � ΦY

d (x)
then Φd has the reduction function αd(x) = 〈d, x〉, and we can bound the growth rate
of h from below.

8.5.7 Corollary. There is an order function h such that ∀∞z
[
h(z) ≥ √

(log z)/3
]
,

and, for any c.e. set A, if ΘA has a c.e. trace with bound h, then A is K-trivial.

Proof. The cost function cK is benign via g(n) = 2n. Given d, let (Id
n)n∈N+ be the

consecutive intervals of N such that #Id
n = 2n(n+d+1). Note that max Id

n < 2n(n+d+1)+1.
As in (8.15) we define the order function hd by hd(z) = n + d if z ∈ Id

n. To prove the
lower bound on h, we want to find an upper bound for the numbers ni from the proof
of Lemma 8.5.6.

If ∃d < i [hd(z) ≤ i] then z ∈ Id
n for some n such that n + d ≤ i. Therefore z <

2n(n+d+1)+1 ≤ 2(n+d+1)2 ≤ 2(i+1)2 . So, for almost all i,

ni = 1 + max{〈d, z〉 : 0 < d < i & hd(z) ≤ i} ≤ 〈i− 1, 2(i+1)2〉 ≤ 23i2 .

Hence h(z) ≥ √
(log z)/3 for almost all z.

To show that some enumeration of A obeys cK, in the proof of Theorem 8.5.4 we
let (Tn)n∈N be a c.e. trace for ΘA with bound h, and use the reduction functions
αd(z) = 〈d, z〉. �

The following table shows similarities between the box promotion method and the
decanter method, which was first used to show that each K-trivial set is Turing incom-
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plete (page 202). However, the number of levels is fixed for the decanter method while
in the case of box promotion, the requirement Rn needs n + d + 1 levels.

Decanter method Box promotion method
a number put into F0 an input x for ΦA

j-set a box of numbers that have been promoted j times
Fact 5.4.2 about k -sets Claim 2
a garbage number a number that is not promoted because it is in

the wrong box when Rn shrinks its box

The golden run method (which builds on the decanter method) is less relevant, be-
cause in the proof of Theorem 8.5.4 we did not need a tree of runs, while parallel runs
are necessary in the proof of Theorem 5.4.1. However, the present construction bears
some resemblance to the calling of Q-type procedures in that proof. When x = xm is
defined in (2) of the construction, one can think of calling such a procedure. It returns
when ΦA(z)[s + 1] is traced. After that, a change of A �xm releases the procedure and
causes Rn to shrink its box.

The proof of Theorem 8.5.1 can be viewed as a failed decanter type construction for
each interval Ie. This is plausible since we want to ensure that A is not strongly jump
traceable, so we are now on the side that Otto occupies in the proof of 8.5.4. If (Se

z)z∈N

is a c.e. trace for ΨA with the indicated bound, then we can promote some number
z ∈ Ie for e + 1 times. This means that the analog of Fact 5.4.2 fails.

Cholak, Downey and Greenberg (2008) proved that for any strongly jump traceable
c.e. sets A0, A1, the set A0 ⊕ A1 is strongly jump traceable. Thus, the degrees of the
c.e. strongly jump traceable sets form a proper subideal of the ideal of c.e. K-trivial
degrees. The proof uses the box promotion method as well.

Exercises.
8.5.8. Extend 8.5.1: if c is a benign cost function with bound g, then there exists a
c.e. set A with an enumeration obeying c that is not strongly jump traceable.

8.5.9. Show that for each incomputable ∆0
2 set A there is a monotonic cost function c

with the limit condition such that no computable approximation of A obeys c.

8.5.10.� Prove the converse of Theorem 8.5.4: if A is a c.e. set which for each benign
cost function c has a computable enumeration obeying c, then A is strongly jump
traceable.

The diamond operator

For a class H ⊆ 2N let H� = {A : A is c.e. & ∀Y ∈ H ∩ MLR [A ≤T Y ]}.
Note thatH� determines an ideal in the c.e. Turing degrees. By Theorem 5.1.12,

the class {Y : A ≤T Y } is null for each incomputable set A. Thus, if H� contains
an incomputable set then H is null. On the other hand, for each null Σ0

3 class H
there is a promptly simple set in H� obtained via an injury-free construction by
Theorem 5.3.15.
We will study several subclasses of the c.e. K-trivial sets that are of the

form H�. Often H is a highness property applying to some ML-random set
Z 
≥T ∅′. The weak reducibilities ≤LR and ≤JT were defined in 5.6.1 and 8.4.13,
respectively. The main highness properties relevant here are being LR-hard,
being JT -hard, and being superhigh:



8.5 Subclasses of the K-trivial sets 357

LRH = {C : ∅′ ≤LR C},
JTH = {C : ∅′ ≤JT C},

Shigh = {C : ∅′′ ≤tt C
′}

In Theorem 5.6.30 we proved that LRH coincides with the class of uniformly a.e.
dominating sets. By 8.4.16 and 8.6.2, JTH is properly contained in the class of
superhigh sets introduced in 6.3.13. The two latter classes coincide on the ∆0

2
sets by 8.4.27. Hence, by Theorem 6.3.14, LRH is a proper subclass of JTH.
We provide a basic fact. For a stronger result see Exercise 8.5.21.

8.5.11 Proposition. The sets that are high1 form a null class.

Proof. Otherwise high1 is conull by the zero-one law 1.9.12, so high1 ∩ GL1 =
{C : ∅′′ ≤T C ⊕ ∅′} is conull. By 5.1.12 relativized to ∅′, {C : A ≤T C ⊕ ∅′} is
null for each set A 
≤T ∅′. Letting A = ∅′′ this yields a contradiction. �

8.5.12 Proposition. (i) The classes LRH and JTH are null Σ0
3 classes.

(ii) (Simpson) Shigh is contained in a null Σ0
3 class.

Proof. (i) Since LRH ⊆ JTH ⊆ Shigh the classes are null. By 8.4.20 JTH is Σ0
3.

To prove that LRH is Σ0
3, recall from Theorem 5.6.5 that ≤LR is equivalent to

≤LK , and note that ∅′ ≤LK C is equivalent to ∃b∀y, σ, s ∃t ≥ s

U
∅′
(σ) = y[s] → (U∅′

(σ)[t]↑ ∨ KC�t
t (y) ≤ |σ|+ b).

(ii) Note that a function f is d.n.c. relative to ∅′ if ∀x¬f(x) = J∅′
(x). Let P

be the Π0
1(∅′) class of {0, 1}-valued functions that are d.n.c. relative to ∅′. By

Exercise 5.1.15 relative to ∅′, the class {Z : ∃f ≤T Z ⊕∅′ [f ∈ P ]} is null. Then,
since GL1 is conull, the class H = {Z : ∃f ≤tt Z

′ [f ∈ P ]} is also null. This class
contains Shigh by 1.8.30 relative to ∅′ (note that q there remains computable).
To show that H is Σ0

3, fix a Π0
2 relation R ⊆ N

3 such that a string σ is extended
by a member of P iff ∀u ∃v R(σ, u, v). Let (Ψe)e∈N be an effective listing of truth-
table reduction procedures. It suffices to show that {Z : Ψe(Z ′) ∈ P} is a Π0

2
class. To this end, note that, as use ΨX

e (j) is independent of the oracle X,
Ψe(Z ′) ∈ P ↔ ∀x∀t∀u ∃s > t∃v R(ΨZ′

e �x [s], u, v). �

From Theorem 5.3.15 we conclude:

8.5.13 Corollary. There is a promptly simple set in Shigh � ⊆ JTH � ⊆ LRH �.
�

In Proposition 3.4.17 we showed that the 2-random set Ω∅′
is high. This contrasts with

the following fact, which is immediate from 8.5.12(ii).

8.5.14 Corollary. No weakly 2-random set is superhigh. �

A further results suggests that high1 ∩ MLR is much larger than Shigh ∩ MLR. By
unpublished work announced in Kučera (1990, Remark 8), for each incomputable ∆0

2

set A there is a high ∆0
2 ML-random set Z �≥T A (while Shigh � contains a promptly

simple set A). In particular, if A ∈ high�
1 then A is computable. For the latter fact one

can also argue that Ω∅′
is high and 2-random (3.4.17), and therefore forms a minimal

pair with the high ML-random set Ω.
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We prove some inclusion relations among subclasses of the c.e. K-trivial sets.

8.5.15 Theorem. Consider the following properties of a c.e. set A.
(i) A ∈ Shigh �; (ii) A ∈ JTH �; (iii) A ∈ LRH �;
(iv) A is ML-coverable, namely, there is a ML-random set Z ≥T A such that

∅′ 
≤T Z (see 5.1.23);
(v) for each ML-random set Z, if ∅′ ≤T A⊕ Z then ∅′ ≤T Z;
(vi) A is K-trivial.
The following implications hold: (i)⇒(ii)⇒(iii); (iii)⇒(iv)⇒(vi); (iii)⇒(v)⇒(vi).

All these classes are closed downward under ≤T within the c.e. sets. The classes
given by (i), (ii), (iii) and (vi) are even known to be ideals.

Proof. (i)⇒(ii)⇒(iii): Immediate since Shigh ⊇ JTH ⊇ LRH.
(iii)⇒(iv): By Theorem 6.3.14 there is a ML-random set C <T ∅′ such that
∅′ ≤LR C. If A ∈ LRH � then A is ML-coverable via C.
(iv)⇒(vi): See Corollary 5.1.23.
(iii)⇒(v): By the previous implications, A is K-trivial and hence low for ML-
randomness. We show that for each set A that is low for ML-randomness, if Z is
ML-random and ∅′ ≤T A⊕Z then ∅′ ≤LR Z. (Intuitively, since A is computably
weak, Z must be computationally strong.) The proof, due to Hirschfeldt, involves
relativizing the van Lambalgen Theorem 3.4.6 to a set D: for any sets Z and R
such that Z ∈ MLRD, we have R ⊕ Z ∈ MLRD iff R ∈ MLRZ⊕D. Then, for
each set R, we have R ∈ MLRZ → R ⊕ Z ∈ MLR → R ⊕ Z ∈ MLRA → R ∈
MLRZ⊕A → R ∈ MLR∅′

. Thus ∅′ ≤LR Z.
(v)⇒(vi): If A is not K-trivial then A is not a base for ML-randomness by
Theorem 5.1.22. Hence A 
≤T ΩA. Thus ∅′ 
≤T ΩA while ∅′ ≤T A ⊕ ΩA by
Fact 3.4.16. �

8.5.16 Remark. A is called ML-cuppable if A ⊕ Z ≡T ∅′ for some ML-random set
Z <T ∅′ (such a Z is called a cupping partner for A). The class of c.e. non-ML-cuppable
sets clearly contains the class given by (v); we show that it is still contained in (vi).
Suppose that A is not K-trivial. First assume that A is low, then ΩA <T ∅′ is a cupping
partner. If A is not low, by 1.6.10 let A ≡wtt A0⊕A1 for low c.e. sets A0, A1. One of the
sets A0, A1 is not K-trivial, say A0. Then ΩA0 is a cupping partner for A0 and hence
for A.

Nies (2007) proved by a direct construction that there is a promptly simple ML-
noncuppable set. An easier proof is obtained by noting that the class LRH is Σ0

3, and
hence LRH � contains a promptly simple set by Theorem 5.3.15.

It is unknown whether LRH � coincides with the c.e. K-trivial sets, that is, whether
each c.e. K-trivial set is Turing below each LR-hard ML-random set. If so, then all
the classes (iii)–(vi) in 8.5.15 would coincide. The same applies to JTH �. Kjos-Hanssen
and Nies (20xx) have shown that Shigh � is a proper subclass of the c.e. K-trivial sets.

The following strengthens 8.5.13.

8.5.17 Theorem. Each strongly jump traceable c.e. set A is in JTH �.
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Proof. Our plan is to define a class H ⊇ JTH and a benign cost function c
such that H� contains every ∆0

2 set with a computable approximation obeying c
(this is similar to Fact 5.3.13). Then we apply Theorem 8.5.4: some computable
enumeration of A obeys c, so A ∈ H� ⊆ JTH �. This is like the proof of 8.5.5(ii).
For the present proof we develop some theory of interest by itself. We actually

define first a class G ⊇ JTH, and then in a second step the class H ⊇ G. For an
order function h, we consider uniform sequences of c.e. operators (Tn)n∈N such
that (TY

n )n∈N is a Y -c.e. trace with bound h, for each oracle Y . Let
G = {Y : ∃ order function h ∀f ≤wtt ∅′

∃ uniform sequence of c.e. operators (Tn)n∈N

(TY
n )n∈N is a Y -c.e. trace with bound h for f}.

To see that JTH ⊆ G, note that, by definition, Y ∈ JTH iff ∅′ is jump traceable
by Y , which implies that ∅′ is c.e. traceable by Y (defined similar to 8.4.13), and
hence Y ∈ G.
By the usual argument in Theorem 8.2.3 we may fix an order function h (say

the identity) in the definition of G. Then we may as well let the sequence of
trace operators be the universal sequence V = (V Y

e )e∈N for this order function,
obtained as in the proof of Corollary 8.2.4 but for c.e. operators. This yields the
simpler expression G = {Y : ∀f ≤wtt ∅′ ∀∞n f(n) ∈ V Y

n }.
For the sake of simplicity we formulate the next two lemmas for this universal

sequence V = (V Y
e )e∈N with this fixed bound h, even if they would actually work

for any uniform sequence of c.e. operators (Tn)n∈N with bound h as above. The
first lemma is based on an argument due to Hirschfeldt.

8.5.18 Lemma. There is a function f ≤wtt ∅′ such that
2−n ≥ λ{Y : f(n) ∈ V Y

n } for each n.

Subproof. We define a computable approximation for f in the sense of Defini-
tion 1.4.6. Let f0(n) = 1 for each n. Let s > 0. If 2−n < λ{Y : fs−1(n) ∈ V Y

n,s}
then we let fs(n) = fs−1(n) + 1, otherwise fs(n) = fs−1(n).
Claim. For each n, s we have fs(n) ≤ 2nh(n).
We apply Exercise 1.9.15 for ε = 2−n. Suppose fs(n) is incremented N > 2nh(n)
times. Let Ci = {Y : i ∈ V Y

e }. For each i ≤ N , since i is not the final value of
fs(n), we have λCi ≥ ε. Also Nε > h(n), so by 1.9.15 there is F ⊆ {1, . . . , N}
such that #F = h(n) + 1 and

⋂
i∈F Ci 
= ∅. If Y ∈ ⋂

i∈F Ci then F ⊆ V Y
n ,

contradiction. �

For a function f let H(f) = {Y : ∀∞n f(n) ∈ V Y
n }. The class H ⊇ G will be of

the form H(f) for f as in the foregoing lemma.

8.5.19 Lemma. Suppose f is a function as in Lemma 8.5.18. Then there is a
benign cost function cf such that, if (Bs)s∈N is a computable approximation of a
set B obeying cf , then B ≤T Y for each ML-random set Y ∈ H(f).

Subproof. We modify the argument in Fact 5.3.13. Let λn, s. fs(n) be a com-
putable approximation of f . We may suppose that 2−n ≥ λ{Y : fs(n) ∈ V Y

n,s} for
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each n, s. The cost function cf is defined as in (5.7) on page 189: let cf (x, s) = 2−x

for each x ≥ s. If x < s and n < x is least such that fs−1(n) 
= fs(n), let
cf (x, s) = max(cf (x, s− 1), 2−n). We now follow the proof of 5.3.13. As before,
we build an interval Solovay test G: when Bs−1(x) 
= Bs(x) and cf (x, s) = 2−n

we list in G all the minimal strings σ such that fs(n) ∈ V σ
n,s. Then G is an

interval Solovay test since the computable approximation of B obeys cf .
Choose n0 > 0 such that f(n) ∈ V Y

n for each n ≥ n0, and choose s0 > n0
such that f(m) is stable at s0 for m ≤ n0 and σ 
� Y for each σ enumerated
into G after stage s0. To show B ≤T Y , given an input x ≥ s0, using Y as an
oracle compute t > x such that ∀i [n0 ≤ i < x → ft(i) ∈ TY

i,t]. We claim that
B(x) = Bt(x). Otherwise Bs(x) 
= Bs−1(x) for some s > t. Let n ≤ x be the
largest number such that fr(i) = ft(i) for all i, n0 ≤ i < n and all r, t < r ≤ s.
Then n > n0 by choice of s0. If n = x then cf (x, s) ≥ 2−x. If n < x then f(n)
changes in that interval of stages, so cf (x, s) ≥ 2−n. Hence, by the choice of t,
we list an initial segment σ of Y in G at stage s ≥ s0, contradiction.
So far we only have used the weaker hypothesis that f ≤T ∅′. If f ≤wtt ∅′,

choose a computable approximation of f with a computably bounded number of
changes as in 1.4.6. Then cf is benign. �

Choose f ≤wtt ∅′ as in Lemma 8.5.18 and note that H(f) ⊇ G. By Theo-
rem 8.5.4 the strongly jump traceable c.e. set A has a computable enumeration
that obeys cf . Hence A ∈ H(f)� ⊆ G� ⊆ JTH �. �

By Exercise 8.5.8 there exists a c.e. set A with an enumeration obeying the
benign cost function cf that is not strongly jump traceable. We conclude:

8.5.20 Proposition. Some c.e. set in JTH � is not strongly jump traceable.

Exercises.

8.5.21. We say that Z is weakly 3-random if Z is in no null Π0
3 class. Show that no

weakly 3-random set is high.

8.5.22. Show that the ∆0
2 sets form a Σ0

4 class that is not Σ0
3.

Let H be the class of ω-c.e. sets. The following exercises show that H� is a proper
subclass of the c.e. K-trivial sets which contains a promptly simple set. The same
reasoning works for the class H̃ ⊂ H of superlow sets.

8.5.23. Show that H and H̃ are Σ0
3.

Thus, merely from Theorem 5.3.15 we may conclude that there is a promptly simple
set A in H� and hence in H̃�. (As a consequence, one cannot achieve Y ≤wtt ∅′ in
Theorem 1.8.39 when P = 2N − R1 and B = A, so there is a low but not ω-c.e. ML-
random set.) Actually each strongly jump traceable c.e. set is in H� by Corollary 8.5.5.

8.5.24. Suppose A ∈ H̃�. Show that if B is superlow then A⊕B is superlow as well.
In particular, if A is c.e. it is not superlow cuppable, so by Theorem 5.3.15 we have a
new proof of the result of Diamondstone (20xx) that some promptly simple set fails to
be superlow cuppable (see page 247).
Hint. Use Exercise 1.8.41.
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8.5.25.� Prove that for each nonempty Π0
1 class P there is a superlow set Y ∈ P and

a c.e. K-trivial set B such that B �≤T Y . Conclude that there is a c.e. K trivial set
B �∈ H�, and in fact B �∈ H̃�. (Actually, for each benign cost function c there is such
a Y and a B obeying c.)

8.5.26.� Problem. Is the class Shigh of superhigh sets Σ0
3?

8.6 Summary and discussion
We summarize the results on the absolute computational complexity of sets. We
also discuss the interplay between computational complexity and the degree of
randomness and interpret some results from this point of view.

A diagram of downward closed properties

Figure 8.1 displays most of our properties closed downward under ≤T . It con-
tains the lowness properties and the complements of highness properties. The
properties occurring frequently are framed in boldface.
The lines indicate implications from properties lower down in the diagram to

properties higher up in the diagram. Up to a few exceptions, we know that no

computably
dominated

array computable

computable

not high

not superhigh

c.e. traceable
low

superlow

strongly jump
traceable

Low(MLR)

Low(Ω(( )ΩΩ

strongly superlow

jump traceable computably
traceable

bounds only GL1

not of d.n.c.
degree

not of PAPP
degree

not ≥ T 0'

not ≥ LR 0'

bounds only GL2

Fig. 8.1. Downward closed properties.
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other implications hold. Open questions include whether strong jump traceability
is equivalent to strong superlowness, or at least whether it implies superlowness.
For further questions regarding possible implications see Problem 8.6.4.
There are interesting intersection relations:
Low(Ω) ∩ computably dominated ⇔ computable (8.1.18), and
c.e. traceable ∩ computably dominated ⇔ computably traceable (8.2.16).
The original, much larger diagram is due to Kjos-Hanssen (2004). It includes for

instance the properties of computing no ML-random set, or of being computed
by a 2-random set; see Exercise 8.6.1 below.
For the c.e. sets, several classes coincide, as Fig. 8.2 shows. No further impli-

cations hold. The coincidences, starting from the bottom, are proved in 8.4.35,
5.1.27, 8.4.23, and 8.4.26.

not high

array computable
⇔ c.e. traceable

superlow ⇔ jump traceable

computable

not superhigh

low

Low(Ω) ⇔ Low(MLR)

 <LR 0'

  <T 0'

strongly jump traceable
⇔ strongly superlow

low2

Fig. 8.2. Downward closed properties for c.e. sets.

Weak reducibilities, defined in Section 5.6, provide a general framework for
lowness properties and highness properties. A weak reducibility ≤W determines
the lowness property C ≤W ∅ and the dual highness property C ≥W ∅′. Table 8.3
gives an overview. For related results see Simpson and Cole (2007).

Exercises.
8.6.1. Insert the classes (i) BN1R = {A : ∀Z ≤T A [Z �∈ MLR]} and
(ii) BB2R = {A : ∃Z ≥T A [Z is 2-random]} into Fig. 8.1.
(iii) Identify the conull classes in Fig. 8.1.
8.6.2.� (Kjos-Hanssen and Nies, 20xx) Note that a jump traceable set is not JT -hard
and hence not LR-hard. However, show that there is a jump traceable superhigh set.
Hint. Use the proof of the jump inversion theorem for truth-table reducibility due to
Mohrherr (1984): for every set A ≥tt ∅′ there is a set B such that B′ ≡tt A.
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Table 8.3. Some weak reducibilities.

Weak reducibility Lowness property Highness prop. Defined in
≤T computable ≥T ∅′ 1.2.6
≤LR Low(MLR) u.a.e.d 5.6.1
≤JT jump traceable ≥JT ∅′ 8.4.13
A′ ≤tt B

′ superlow superhigh 1.2.20
A′ ≤T B

′ low high pg. 25
≤CT comp. traceable ≥T ∅′ 8.4.21
≤cdom comp. dominated ≥T ∅′ 5.6.8

8.6.3.� For as many classes C in Fig. 8.1 as possible, show that C is only contained in
the indicated classes. (Most counterexamples are somewhere in this book.)

8.6.4.� Problem. We ask whether no further implications hold in Fig. 8.1.
(i) Can a c.e. traceable set be LR-hard? (ii) Can a set that bounds only GL1 sets be
LR-hard? (iii) Can a set that is low for Ω be superhigh?

8.6.5.� Problem. Decide whether the sets that are computably dominated and in GL1

are closed downward under ≤T .

Computational complexity versus randomness

Many results relate the computational complexity of a set with its degree of
randomness. As much as we would like a paradigm such as “to be more random
means to be less complex”, in fact the relationship has no overall direction. A
particular computational complexity class only exposes one aspect of the infor-
mation that can be extracted from the set, and the direction of the relationship
depends on this aspect. It also depends on further properties of the sets under
discussion, such as being in a class of descriptive complexity. For instance, within
the left-c.e. sets, more random means more complex: Schnorr randomness implies
being high, and ML-randomness even implies being weak truth-table complete
(3.2.31). If we widen the scope to the ω-c.e. sets, the direction of the relationship
between complexity and randomness is already less clear because there are su-
perlow ML-random sets. There still is a promptly simple set Turing below all the
ω-c.e. ML random sets (8.5.23). On the other hand, a set that is Turing below
all the ∆0

2 ML-random sets is computable (1.8.39).
We now look at ML-random sets in general, without imposing extra restrictions

on their descriptive complexity. Numerous results suggest now that more ran-
dom means computationally less complex. A ML-random set either computes ∅′,
or is not even of PA-degree (4.3.8). Randomness notions stronger than ML-
randomness are incompatible with computing ∅′. In fact, if Z is ML-random, then
Z is weakly 2-random if and only if Z and ∅′ form a minimal pair (page 135). In
particular, a weakly 2-random set is not of PA degree. We review further results
in this direction.

1. For Z ∈ MLR we have Z is 2-random ⇔ Z is low for Ω (3.6.19).
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2. For any set C, MLRC is closed downward under ≤T within MLR (5.1.16).
3. If A and B are ML-random then A ≤vL B ⇔ A ≥LR B (5.6.2).
For some particular aspects of the information extracted from the set, the

opposite can happen.
1. Each 2-random set is of hyperimmune degree (3.6.15), while

a ML-random set can be computably dominated.
2. For n > 1, each n-random set computes an n-fixed point free function

(4.3.17), while an (n− 1)-random set may fail to do so.

Some updates

In recent work two classes have been shown to coincide with the strongly jump
traceable c.e. sets: (1) the class (ω-c.e.)� of Exercise 8.5.23 and (2) the class
Shigh� of Theorem 8.5.15. Each of these results implies that one can obtain a
promptly simple strongly jump traceable set A via an injury-free construction.
Namely, one builds a promptly simple set A that obeys the non-adaptive cost
function for being in H� for the appropriate Σ0

3 class H (Theorem 5.3.15). The
results also yield new proofs of the theorem of Cholak, Downey and Greenberg
(2008) that the strongly jump traceable c.e. sets are closed under ⊕.
(1) For the first result, after Corollary 8.5.5 due to Greenberg and Nies (20xx)

it remains to show the implication that each c.e. set in (ω-c.e.)� is strongly jump
traceable. This has been proved by Greenberg, Hirschfeldt and Nies (20xx). Given
an order function h, they build a ML-random ω-c.e. set Z such that if A is a
superlow c.e. set, then A ≤T Z implies that A is jump traceable with bound h.
Roughly, they make Z a “bad set” in that it tries to not compute A by exploiting
the changes of A. This forces A to change little.
(2) The second result is due to Nies (20xx). Using appropriate benign cost

functions he shows that each strongly jump traceable c.e. set A is Turing below
each superhigh ML-random set. For the converse implication, he combines the
techniques used for (1) with a version of Kucera coding introduced in Kjos-
Hanssen and Nies (20xx) to make the bad set Z superhigh.
The bound in Theorem 8.5.1 can be improved to λz.max(1,  √log z!). One

modifies the construction by letting P e
j (b) call P

e
j−1(b2

e) in (1). In Claim 1 one
now proves that P e

j (b) for j < e is reset at most 2e times before the run P e
j+1 that

called it also reset. This uses that cK(x, y) + cK(y, z) ≤ cK(x, z) for x < y < z.
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Higher computability and randomness

Recall that a randomness notion is introduced by specifying a test concept. Such
a test concept describes a particular kind of null class, and a set is random in
that sense if it avoids each null class of that kind. (For instance, in 3.6.1 we
introduced weak 2-randomness by defining generalized ML-tests, which describe
null Π0

2 classes. So a set is weakly 2-random iff it is in no null Π0
2 class.)

Up to now, all the null classes given by tests were arithmetical. In this chapter
we introduce tests beyond the arithmetical level. We give mathematical defini-
tions of randomness notions using tools from higher computability theory. The
main tools are the following. A relation B ⊆ N

k×(2N)r is Π1
1 if it is obtained from

an arithmetical relation by a universal quantification over sets. The relation B
is ∆1

1 if both B and its complement are Π1
1. There is an equivalent representation

of Π1
1 relations where the members are enumerated at stages that are countable

ordinals. For Π1
1 sets (of natural numbers) these stages are in fact computable

ordinals, i.e., the order types of computable well-orders.
Effective descriptive set theory (see Ch. 25 of Jech 2003) studies effective ver-

sions of notion from descriptive set theory. For instance, the ∆1
1 classes are ef-

fective versions of Borel classes. Higher computability theory (see Sacks 1990)
studies analogs of concepts from computability theory at a higher level. For in-
stance, the Π1

1 sets form a higher analog of the c.e. sets, and, to some extent,
the ∆1

1 sets can be seen as an analog of the computable sets.
A main difference between effective descriptive set theory and higher com-

putability is that the latter also studies sets of countable ordinals. However,
we still focus on sets of natural numbers: only the stages of enumerations are
ordinals. Thus, for us there is no need to distinguish between the two.
While analogs of many notions from the computability setting exist in the

setting of higher computability, the results about them often turn out different.
The reason is that there are two new closure properties.
(C1) The Π1

1 and ∆1
1 relations are closed under number quantification.

(C2) If a function f maps each number n in a certain effective way to a com-
putable ordinal, then the range of f is bounded by a computable ordinal. This
is the Bounding Principle 9.1.22.
The theory of Martin-Löf randomness andK-complexity of strings is ultimately

based on c.e. sets, so it can be viewed within the new setting. In Section 9.2,
we transfer several results to the setting of Π1

1 sets, for instance the Machine
Existence Theorem 2.2.17. However, using the closure properties above we also
prove that the analog of Low(MLR) coincides with the ∆1

1 sets, while the analog
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of the K-trivial sets does not. These results are due to Hjorth and Nies (2007).
In Section 9.3 we study ∆1

1-randomness and Π1
1-randomness. The tests are

simply the null ∆1
1 classes and the null Π1

1 classes, respectively. The implications
are

Π1
1-randomness ⇒ Π1

1-ML-randomness ⇒ ∆1
1-randomness.

The converse implications fail.
Martin-Löf (1970) was the first to study randomness in the setting of higher

computability theory. He suggested ∆1
1-randomness as the appropriate mathe-

matical concept of randomness. His main result was that the union of all ∆1
1 null

classes is a Π1
1 class that is not ∆1

1 (see 9.3.11). Later it turned out that ∆1
1-

randomness is the higher analog of both Schnorr and computable randomness.
The strongest notion we consider is Π1

1-randomness, which has no analog in
the setting of computability theory. This notion was first mentioned in Exercise
2.5.IV of Sacks (1990), but called Σ1

1-randomness there. Interestingly, there is a
universal test, namely, a largest Π1

1 null class (9.3.6).
In Section 9.4 we study lowness properties in the setting of higher computabil-

ity. For instance, we consider sets that are ∆1
1 dominated, the higher analog of

being computably dominated. Using the closure properties (C1) and (C2), we
show that each Π1

1-random set is ∆1
1 dominated. We also prove that lowness

for ∆1
1-randomness is equivalent to a higher analog of computable traceability.

Lowness for Π1
1-randomness implies lowness for ∆1

1-randomness. It is unknown
whether some such set is not ∆1

1.
A citation such as “Sacks 5.2.I” refers to Sacks (1990), our standard reference

for background on higher computability. References to the original results can
be found there. Some of the results we only quote rely on elaborate technical
devices such as ranked formulas.

9.1 Preliminaries on higher computability theory
Π1

1 and other relations
For sets X1, . . . , Xm, we let X1 ⊕ . . . ⊕ Xm = {mz + i : i < m & z ∈ Xi}.
Extending 1.8.55, we say that a relation A ⊆ N

k × (2N)m is Σ0
n if the relation

{〈e1, . . . , ek, X1 ⊕ . . .⊕Xm〉 : 〈e1, . . . , ek, X1, . . . , Xm〉 ∈ A} is Σ0
n, and similarly

for Π0
n relations. As before, a relation is arithmetical if it is Σ0

n for some n.

9.1.1 Definition. Let k, r ≥ 0 and B ⊆ N
k ×(2N)r. We say that B is Π1

1 if there
is an arithmetical relation A ⊆ N

k × (2N)r+1 such that
〈e1, . . . , ek, X1, . . . , Xr〉 ∈ B ↔ ∀Y 〈e1, . . . , ek, X1, . . . , Xr, Y 〉 ∈ A.

For k = 1 and r = 0, B is called a Π1
1 set (of numbers). For k = 0 and r = 1, B

is called a Π1
1 class (of sets). B is called Σ1

1 if its complement is Π1
1, and B is ∆1

1
if it is both Π1

1 and Σ1
1. A ∆1

1 set is also called hyperarithmetical .

In defining Π1
1 relations, one can equivalently require that A be Σ0

2 (Sacks 1.5.I).
The Π1

1 relations are closed under the application of number quantifiers. So
are the Σ1

1 and ∆1
1 relations. For instance, consider a Σ1

1 relation ∃Y R(e, n, Y ).
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For a set Z let pn(Z) = {x : 〈x, n〉 ∈ Z}. Let R̂ = {〈e, n, Z〉 : R(e, n, pn(Z))}.
Then ∀n∃Y R(e, n, Y ) ⇔ ∃Z ∀n R̂(e, n, Z): to show the implication from left
to right, suppose that for each n there is Yn such that R(e, n, Yn). Using the
countable axiom of choice one can combine these witnesses into a single witness
Z =

⋃
n Yn × {n}, and pn(Z) = Yn for each n. Then R̂(e, n, Z).

9.1.2 Exercise. If R ⊆ 2N is open then in a uniform way we have the following
equivalence: R is a Π1

1 class ⇔ AR = {x : [x] ⊆ R} is a Π1
1 set.

Well-orders and computable ordinals

In the following we will consider binary relations W ⊆ N × N with domain an
initial segment of N. They can be encoded by sets R ⊆ N via the usual pairing
function. We identify the relation with its code. Linear orders will be irreflexive.
Note that a c.e. linear order is computable. A linear order R is a well-order if
each nonempty subset of its domain has a least element. The class of well-orders
is Π1

1. Furthermore, the index set {e : We is a well-order} is Π1
1.

Given a well-order R and an ordinal α, we let |R| denote the order type of R,
namely, the ordinal α such that (α,∈) is isomorphic to R. We say that α is
computable if α = |R| for a computable well-order R. Each initial segment
of a computable well-order is also a computable well-order, so the computable
ordinals are closed downwards. We let ωY

1 denote the least ordinal that is not
computable in Y . The least incomputable ordinal is ωck

1 (which equals ω∅
1).

An important example of a Π1
1 class is

C = {Y : ωY
1 > ωck

1 }. (9.1)

To see that this class is Π1
1, note that

Y ∈ C ↔ ∃e [
ΦY

e is well-order & ∀i [Wi is computable relation → ΦY
e 
∼=Wi]

]
.

This can be put into Π1
1 form because the Π1

1 relations are closed under number
quantification. If ωY

1 = ωck
1 we say that Y is low for ωck

1 .

Representing Π1
1 relations by well-orders

A c.e. set can be either described by a Σ1 formula in arithmetic or by a com-
putable enumeration. A Σ0

1 class, of the form {X : ∃y R(X �y)} for computable R,
can be thought of as being enumerated at stages y ∈ N.
In Definition 9.1.1 we introduced Π1

1 classes by formulas in second order arith-
metic. Equivalently, they can be described by a generalized type of enumeration
where the stages are countable ordinals. It becomes possible to look at a whole
set X in the course of a generalized computation (this is the global view of Sec-
tion 1.3). While one could introduce a formal model of infinite computations, we
will be content with viewing the order type of a well-order computed from X via
a Turing functional as the stage when X enters the class.

9.1.3 Theorem. Let k, r ≥ 0. Given a Π1
1 relation B ⊆ N

k × (2N)r, one can
effectively obtain a computable function p : N

k → N such that
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〈e1, . . . , ek, X1 ⊕ . . .⊕Xr〉 ∈ B ↔ ΦX1⊕...⊕Xr

p(e1,...,ek) is a well-order. (9.2)

Moreover, the expression on the right hand side is always a linear order. If r = 0
the oracle is the empty set by convention. If k = 0 then p is a constant.

The order type of ΦX1⊕...⊕Xr

p(e1,...,ek) is the stage at which the element enters B, so for
a countable ordinal α, we let

Bα = {〈e1, . . . , ek, X1 ⊕ . . .⊕Xr〉 : |ΦX1⊕...⊕Xr

p(e1,...,ek) | < α}. (9.3)

Thus, Bα contains the elements that enter B before stage α.
The right hand side in (9.2) can be expressed by a universal set quantification

of an arithmetical relation. So, conversely, each relation given by (9.2) is Π1
1.

The idea to prove Theorem 9.1.3 is as follows, say in the case of a Π1
1 class B.

(1) One expresses B by universal quantification over functions, rather than sets:
X ∈ B ↔ ∀f ∃n R(f(n), X), where f(n) denotes the tuple (f(0), . . . , f(n − 1)) as in
Sacks 5.2.I. The advantage of taking functions is that one can choose R computable,
rather than merely Σ0

2.
(2) This yields a Turing functional ΨB such that, for each X, ΨB(X) is a set of codes
for tuples in N∗ (the sequence numbers as defined before 1.8.69), and X ∈ B iff ΨB(X)
is well-founded under the reverse prefix relation � on sequence numbers (Sacks 5.4.II).
(3) Using the length-lexicographical (also called Kleene–Brouwer) ordering, one can
effectively “linearize” ΨB(X) (Sacks 3.5.III), and thus obtain a Turing functional Φp

such that X ∈ B ↔ ΦX
p is a well-order. Also see Jech (2003, Thm. 25.3, 25.12).

Indices
An index for p as a computable function (or the constant p itself in the case
of Π1

1 classes) serves as an index for B in (9.2). Via (9.3) such an index yields
an approximation of B at stages which are countable ordinals. We are mostly
interested in the cases of Π1

1 sets (k = 1 and r = 0) and Π1
1 classes (k = 0 and

r = 1). In the former case, by the convention that the oracle is ∅, we have
e ∈ B ↔ Re is a well-order,

where Re = Φ∅
p(e). We may replace Re by a linear order of type ωRe + e+ 1, so

we will assume that at each stage at most one element is enumerated, and none
are enumerated at a limit stage. By the above,

O = {e : We is a well-order}
is a Π1

1-complete set. That is, O is Π1
1 and S ≤m O for each Π1

1 set S. The
set of ordinal notations is Π1

1-complete as well (Sacks 2.1.I). In most cases it is
inessential which Π1

1-complete set one chooses; we will stay with the one given
above.
For p ∈ N, we let Qp denote the Π1

1 class with index p. Thus,

Qp = {X : ΦX
p is a well-order}. (9.4)

Note that Qp,α = {X : |ΦX
p | < α}, so that X ∈ Qp implies X ∈ Qp,|ΦX

p |+1.
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An index for a ∆1
1 set S ⊆ N is a pair of Π1

1 indices for S and N−S. An index
for a ∆1

1 class S ⊆ 2N is a pair of Π1
1 indices for the classes S and 2N − S.

Relativization
The notions introduced above can be relativized to a set A. It suffices to include A
as a further set variable in (9.2). For instance, S ⊆ N is a Π1

1(A) set if S =
{e : 〈e,A〉 ∈ B} for a Π1

1 relation B ⊆ N × 2N, and C ⊆ 2N is a Π1
1(A) class if

C = {X : 〈X,A〉 ∈ B} for a Π1
1 relation B ⊆ 2N × 2N.

The following set is Π1
1(A)-complete:

OA = {e : WA
e is a well-order}.

We frequently apply that a Π1
1 object can be approximated by ∆1

1 objects.

9.1.4 Approximation Lemma. (i) For each Π1
1 set S and each α < ωck

1 , the
set Sα is ∆1

1. (ii) For each Π1
1 class B and each countable ordinal α, the class Bα

is ∆1
1(R), for every well-order R such that |R| = α.

Proof. We prove (ii) and leave (i) as an exercise. Let p ∈ N be an index for B.
Then X ∈ Bα ↔ ∃g [g is an isomorphism of ΦX

p and a proper initial segment
of R], which is Σ1

1(R). Moreover, X 
∈ Bα ↔ ΦX
p is not a well-order ∨∃g [g is an

isomorphism of R and an initial segment of ΦX
p ], which is also Σ1

1(R). �

9.1.5 Remark. Borel classes were introduced on page 66. One can show that C ⊆ 2N

is Borel ⇔ C is ∆1
1(A) for some A. For the implication from left to right one lets A be

a Borel code for C, namely, a set that codes how C is built up from open sets using the
operations of complementation and countable intersection. The implication from right
to left follows from the Lusin separation theorem (Kechris, 1995, 14.7).

Exercises.
9.1.6. (Reduction Principle for Π1

1 classes) Given Π1
1 classes P and Q, one can effec-

tively determine disjoint Π1
1 classes P̃ ⊆ P and Q̃ ⊆ Q such that P ∪Q = P̃ ∪ Q̃.

9.1.7. Improve the indexing of the ∆1
1 classes introduced after (9.4): there are com-

putable functions g and h such that (Qg(n))n∈N ranges over all the ∆1
1 classes and, for

each n, we have Qg(n) ∩Qh(n) = ∅, and Qg(n) ∪Qh(n) = 2N unless Qg(n) = ∅.
9.1.8. Show that ωck

1 < ωO
1 .

Π1
1 classes and the uniform measure

9.1.9 Theorem. (Lusin; see Sacks 6.2.II) Each Π1
1 class is measurable.

Proof. ℵ1 denotes the least uncountable ordinal. Recall from (9.4) that Qp is
the Π1

1 class with index p. For each α < ℵ1, Qp,α is Borel by 9.1.4 and hence
measurable. Since R has a countable dense subset, for each j there is a countable
ordinal βj such that λQj,α = λQj,βj

for each α ≥ βj . Let β = supjβj . It suffices
to show that Qp−Qp,β is null for each p. If Y ∈ Qp−Qp,β then the well-order ΦY

p

has an initial segment of order type β, which can be computed by Y . Therefore
|ΦY

j | = β for some j. This shows that Qp − Qp,β ⊆ ⋃
j∈N

{Y : |ΦY
j | = β}, which

is null by the choice of β. �
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For the following frequently used result see Sacks 1.11.IV. It states that the
measure of a class has the same descriptive complexity as the class itself. Note
that (ii) follows from (i).

9.1.10 Measure Lemma. (i) For each Π1
1 class B, λB is left-Π1

1. A Π1
1 index

for {q ∈ Q2 : q < λB} can be computed from an index for B as a Π1
1 class.

(ii) If S is a ∆1
1 class then λS is left-∆1

1. A ∆1
1 index for {q ∈ Q2 : q < λS} can

be computed from an index for S as a ∆1
1 class. �

For the following basis theorem of Sacks and Tanaka see Sacks 2.2.IV.

9.1.11 Theorem. A Π1
1 class that is not null has a hyperarithmetical member.

Reducibilities

Turing reducibility has two analogs in the new setting. Intuitively, as the stages
are now countable ordinals, it is possible to look at the whole oracle set during
a “computation”. If full access to the oracle set is granted we obtain hyperarith-
metical reducibility: X ≤h A iff X ∈ ∆1

1(A). If only a finite initial segment of the
oracle can be used we have the restricted version ≤fin-h. Instead of introducing
a formal oracle machine model for infinite computations, we rely on Π1

1 rela-
tions. This is similar to considering Turing functionals as particular types of c.e.
relations in Fact 6.1.1. The graph of a function ψ is the set {〈n, y〉 : ψ(n) = y}.
9.1.12 Definition. For a function f : N → N and a set A, we write f ≤h A
if the graph of f is Π1

1(A). A reduction procedure for f ≤h A is a Π1
1 relation

S ⊆ N × N × 2N such that {〈n, y〉 : 〈n, y,A〉 ∈ S} is the graph of f .

It is equivalent to require that the graph of f is ∆1
1(A). (We say that f is a

∆1
1(A) function.) We may assume that {〈n, y〉 : 〈n, y,X〉 ∈ S} is the graph of a

partial function for each X by Exercise 9.1.18. The following are used frequently.

9.1.13 Theorem. (Sacks, 1969) A 
∈ ∆1
1 ⇔ {X : X ≥h A} is null.

This is an analog of 5.1.12. For a proof see Sacks 2.4.IV.
Next, we reconsider the class (9.1) of sets that are not low for ωck

1 .

9.1.14 Theorem. (Spector, 1955) O ≤h X ⇔ ωck
1 < ωX

1 .

Proof. ⇒: By Exercise 9.1.8 we have ωck
1 < ωO

1 . By Exercise 9.1.24 below
ωX

1 = {|R| : R ≤h X & R is a well-order}, hence ωO
1 ≤ ωX

1 .
⇐: If ωck

1 < ωX
1 then by the Approximation Lemma 9.1.4(i) relative to X,

O = {e : We is a well-order} is a ∆1
1(X) set. �

9.1.15 Corollary. The Π1
1 class {Y : ωY

1 > ωck
1 } in (9.1) is null. �

The following result, known as the Gandy Basis Theorem, is an analog of the
Low Basis Theorem 1.8.37. The proof differs from the proof of 1.8.37 because Σ1

1
classes are not closed in general.

9.1.16 Theorem. Let S ⊆ 2N be a nonempty Σ1
1 class. Then there is A ∈ S

such that A ≤T O and OA ≤h O (whence A <h O).
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To prove it, firstly, by Sacks 1.4.III and its proof there is a set A ≤T O,
A <h O such that A ∈ S. Then ωA

1 = ωck
1 . Secondly, by Sacks 7.6.II, ωA

1 < ωB
1

and A ≤h B imply OA ≤h B. This is applied for B = O to obtain OA ≤h O.
Spector (1955) proved that if A is a Π1

1 set then either A ∈ ∆1
1 or O ≤h A

(Sacks 7.2.II). Recall that we view the Π1
1 sets as analogs of the c.e. sets. The

reducibility ≤h on the Π1
1 sets certainly behaves differently from ≤T on the c.e.

sets. Finite hyperarithmetical reducibility ≤fin-h is more like ≤T .

9.1.17 Definition. A fin-h reduction procedure is a partial function Φ: {0, 1}∗ →
{0, 1}∗ with Π1

1 graph such that dom(Φ) is closed under prefixes and, if Φ(x) ↓
and y � x, then Φ(y) � Φ(x). We write A = ΦZ if ∀n∃m Φ(Z �m) � A �n, and
A ≤fin-h Z if A = ΦZ for some fin-h reduction procedure Φ.

If A is hyperarithmetical then Φ = {〈x,A�|x|〉 : x ∈ {0, 1}∗} is Π1
1, so A ≤fin-h Z

via Φ for any Z.
Many constructions of c.e. sets can be adapted to the setting of Π1

1 sets and ≤fin-h.
For instance, one can transfer the proof of Theorem 1.6.8 to the new setting to show
that there are Π1

1 sets A and B such that A |fin-h B. Note that, even though the use of
a fin-h reduction procedure is finite, the stages are now computable ordinals.

Exercises.
9.1.18. Prove the statements after Definition 9.1.12.
9.1.19. Define a binary function g ≤T (O)′ such that for each ∆1

1 function h there is e
such that h(x) = g(e, x) for each x. Conclude that O is not ∆1

1.

A set theoretical view
Reasoning about Π1

1 sets and Π1
1 classes can often be simplified by emphasizing

a set theoretical view. From now on we will use the symbols N and ω inter-
changeably. We assume familiarity with the constructible hierarchy, defined by
recursion on ordinals: for a set S we let L(0, S) be the transitive closure of {S}∪S.
L(α + 1, S) contains the sets that are first-order definable with parameters in
(L(α, S),∈), and L(η, S) =

⋃
α<η L(α, S) for a limit ordinal η. We write L(α)

for L(α, ∅). For details see Sacks 1.4.VII or Kunen (1980, pg. 180).
A ∆0 formula is a first-order formula in the language of set theory which

involves only bounded quantification, namely, quantification of the form ∃z ∈ y
and ∀z ∈ y. A Σ1 formula has the form ∃x1∃x2...∃xn ϕ0 where ϕ0 is ∆0.

9.1.20 Remark. The structures LA := L(ωA
1 , A) for A ⊆ N are of particular

interest because one can show they satisfy the axiom schemes of ∆0 separation
and Σ1 bounding. These schemes are versions of the separation and replace-
ment schemes from set theory. The relevant formulas are restricted to ∆0 and
Σ1 formulas, respectively (Sacks 1.2.VII). Note that the formulas may contain
parameters.
LA can be introduced without referring to first-order definability in set theory:

one codes hereditarily countable sets by certain subsets of N, and LA consists of
the sets with a code in ∆1

1(A) (Sacks 1.11.VII). In particular, the subsets of N

that are in LA are precisely the ∆1
1(A) sets.
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The principle of transfinite recursion in LA (Sacks 1.6.VII) states that for each
Σ1 over LA function I : LA → ωA

1 there is a Σ1 over LA function f : ωA
1 → ωA

1
such that f(α) = I(f �α) for each α < ωA

1 . (Here f �α denotes the restriction
of f to α = {β : β < α}.)
By Theorem 9.1.3 we can view Π1

1 sets as being enumerated at stages that are
computable ordinals. The following important theorem provides a further view
of this existential aspect of Π1

1 sets.

9.1.21 Theorem. S ⊆ N is Π1
1 iff there is a Σ1-formula ϕ(y) such that

S = {y ∈ ω : (L(ωck
1 ),∈) |= ϕ(y)}.

To see that each Π1
1 set S is of this form, suppose y ∈ S ↔ Ry is well-ordered

where Ry is a computable relation effectively determined from y. The formula
ϕ(y) expresses that Ry is isomorphic to an ordinal: ∃α ∃g [g : Ry

∼= (α,∈)]. Such
an isomorphism g is in L(ωck

1 ) by transfinite induction. For the converse see for
instance Sacks 1.3.VII. Note that the proof of the converse works even when ϕ
contains parameters from L(ωck

1 ).
We say that D ⊆ (LA)k is Σ1 over LA if there is a Σ1 formula ϕ such that

D = {〈x1, . . . , xk〉 ∈ (LA)k : (LA,∈) |= ϕ(x1, . . . , xk)}. Thus, by 9.1.21, S ⊆ N

is Π1
1 iff S is Σ1 over L(ωck

1 ).
We often consider partial functions from LA to LA with a graph defined by a

Σ1 formula with parameters. We say the function is Σ1 over LA. Such functions
are an analog of functions partial computable in A. We provide a useful tool.

9.1.22 Bounding Principle. Suppose f : ω → ωA
1 is Σ1 over LA. Then there

is an ordinal α < ωA
1 such that f(n) < α for each n.

Proof. Since LA satisfies Σ1 replacement by 9.1.20, there is a set y ∈ LA such
that ran(f) ⊆ y. Since LA satisfies ∆0 separation, the set s of ordinals in y is
in LA. Hence β =

⋃
ran(f) ⊆ ⋃

s is in LA. Now let α = β + 1. �

9.1.23 Remark. One can use Theorem 9.1.21 to build Π1
1 sets S. An enumeration

of S over L(ωck
1 ) is a Σ1 function f : ωck

1 → ω ∪ {nil} such that S = ranf ∩ ω (here nil
is a further element, say ω). A construction C of S is given by a Σ1 function telling
us what to enumerate at stage α given the enumeration up to α. Formally, C is a Σ1

over L(ωck
1 ) function mapping f �α to the number to be enumerated at α, or to nil if

no number is enumerated. By transfinite recursion in L(ωck
1 ), for each construction C

a unique enumeration f exists.

9.1.24 Exercise. Use the Bounding Principle to show that each ∆1
1 well-order R is

isomorphic to a computable well-order.

9.2 Analogs of Martin-Löf randomness and K-triviality
We develop an analog of the theory of ML-randomness and K-triviality based
on Π1

1 sets. To do so we view some important questions of Chapters 2, 3, and 5
in the higher setting. The new results are due to Hjorth and Nies (2007).
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Π1
1 Machines and prefix-free complexity

9.2.1 Definition. A Π1
1-machine is a possibly partial function M : {0, 1}∗ →

{0, 1}∗ with a Π1
1 graph. For α ≤ ωck

1 we let Mα(σ) = y if 〈σ, y〉 ∈ Mα. We say
that M is prefix-free if dom(M) is prefix-free.

9.2.2 Proposition. There is an effective listing (Md)d∈N of all the prefix-free
Π1

1-machines.

Proof. Let (Sd)d∈N be an effective listing of the Π1
1 subsets of {0, 1}∗ × {0, 1}∗.

Thus 〈σ, y〉 ∈ Sd ↔ Rd
σ,y is a well-order, where (Rd

σ,y) is a uniformly c.e. sequence
of linear orders as after Theorem 9.1.3. Now let 〈σ, y〉 ∈Md ↔
Rd

σ,y is a well-order &
∀〈ρ, z〉 ∀g [(ρ ≺ σ ∨ (ρ = σ & z 
= y)) →
g is not an isomorphism of Rd

ρ,z with an initial segment of Rd
σ,y].

(Informally, the machine has not halted on a proper prefix of σ, and has not
produced an output other than y on input σ, before the stage given by the
order type of Re

σ,y.) Clearly this is a Π1
1 condition uniformly in d. If Sd is a

prefix-free Π1
1-machine then Md = Sd. �

As a consequence, there is an optimal prefix-free Π1
1-machine.

9.2.3 Definition. The prefix-free Π1
1-machine U is given by U(0d1σ) �Md(σ).

LetK(y) = min{|σ| : U(σ) = y}. For α ≤ ωck
1 letKα(y) = min{|σ| : Uα(σ) = y}.

Since U has Π1
1 graph, the relation “K(y) ≤ u” is Π1

1 and, by 9.1.4, for α < ωck
1

the relation “Kα(y) ≤ u” is ∆1
1. Moreover K ≤T O. (Here (ρ)0 is the first

component r of the pair ρ = 〈r, y〉.)
Similar to 2.2.15, a Π1

1 setW ⊆ N×{0, 1}∗ is called a Π1
1 bounded request set if∑

ρ 2
−(ρ)0 [[ρ ∈W ]] ≤ 1. (Here (ρ)0 is the first component r of the pair ρ = 〈r, y〉.)

9.2.4 Theorem. From a Π1
1 bounded request set W one can effectively obtain a

prefix-free Π1
1-machine M such that ∀〈r, y〉 ∈W ∃w [|w| = r & M(w) = y].

Proof. By Theorem 9.1.3 let g be a computable function such that x ∈ W ↔ Sx is
a well-order, where Sx = Φ∅

g(x) is a computable linear order. Recall that for x ∈ W ,
we view the order type α = |Sx| as the stage when x is enumerated into W . As noted
after 9.1.3 we may assume that at each stage at most one element is enumerated, and
none at a limit stage. We turn this enumeration into a construction (in the sense of
Remark 9.1.23) of a prefix-free Π1

1-machine M . We let R0 = {∅}. At each stage γ ≥ 0
we define an antichain Rγ ∈ L(ωck

1 ) of strings. The set of extensions of strings in Rγ is
our reservoir of future w-values. Strings in this set are called unused. We are given Rα

for α < γ. As in Theorem 2.2.17, with each string x we associate the half-open interval
I(x) ⊆ [0, 1) of real numbers with binary representation extending x.

Construction of M and of finite sets Rγ ⊆ {0, 1}∗ (γ < ωck
1 ).

At a successor stage α = β + 1, if a request 〈r, y〉 is enumerated into W , we will find a
string w of length r and put 〈w, y〉 into M . Let z be the longest string in Rβ of length
≤ r. Choose w = wα so that I(w) is the leftmost subinterval of I(z) of length 2−r,
i.e., let w = z0r−|z|. To obtain Rα, first remove z from Rβ . If w �= z then also add the
strings z0i1, 0 ≤ i < r − |z| to Rα.
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For a limit ordinal η, we let Rη = {x : ∃γ < η ∀α [γ < α < η → x ∈ Rα]}.
Verification. We will see that a string x can appear in Rα at most once, so that actually
Rη(x) = limγ→ηRγ(x) for a limit ordinal η. In the claim below we verify a number of
properties in order to show that for each request 〈r, y〉, z as above exists, and therefore
we can assign a string w of length r to the request. Let

Eα =
⋃{I(x) : x ∈ Rα}

be the set of real numbers corresponding to Rα. At a limit stage η, let

Gη =
⋂

β<η Eβ .

The measure of the unused strings at stage η is λ(Gη). To be able to get beyond this
limit stage we want to replace Gη by Eη. The main statement, (i) below, says that this
replacement is allowed because Eη ⊆ Gη and Gη − Eη is null.

We first illustrate the construction with an example showing that this null class may
be nonempty. Suppose at stage i < ω the request 〈2i + 1, yi〉 is enumerated. Then
Gω − Eω = {1/3}. For R0 = {∅}, z0 = ∅, w0 = 00; R1 = {01, 1}, z1 = 01, w1 = 0100;
R2 = {0101, 011, 1}, z2 = 0101, w2 = 010100 etc. Then Rω = {(01)i1: i ∈ ω}. 1/3 has
the binary representation 0.010101 . . ., so that 1/3 ∈ Ei for each i, but 1/3 �∈ Eω.

Claim. (i) Eα+1 ⊆ Eα for each stage α. If α = η is a limit ordinal then Eη ⊆ Gη and
Gη − Eη is null.
(ii) If a request is enumerated at stage α = β +1, one can choose z and hence w = wα.
(iii) The strings in Rα have different lengths and form an antichain. (In fact, for
x, y ∈ Rα we have |x| < |y| ↔ x <L y.)
(iv) The intervals {I(z) : z ∈ Rα} ∪ {I(wβ) : β ≤ α & wβ defined} form a partition of
a conull subset Pα of [0, 1).

Inductively assume (i)–(iv) for all ordinals γ < α.

(i) Clearly Eα+1 ⊆ Eα. If α = η is a limit ordinal, to show Eη ⊆ Gη, let β < η. If
r ∈ Eη, then r ∈ I(x) for some x ∈ Rη, so there is γ, β < γ < η, such that x ∈ Rγ .
Inductively Eγ ⊆ Eβ . Thus r ∈ Eβ .

We verify λEη ≥ λGη by showing that λEη ≥ λGη − 2−k+1 for each k ∈ ω. Write
λGη in binary form: λ(Gη) =

∑
d∈A 2−d where A ⊆ ω is co-infinite. Since (λEγ)γ<η is

non-increasing and converges to λGη, there is γ < η such that

2−k+1 +
∑

d∈A∩k 2−d ≥ λEγ .

Let A ∩ k = {d1, d2, ..., dN} where the di are pairwise distinct. For each α, γ < α < η,
let zα

i (1 ≤ i ≤ N) be the elements of Rα such that |zα
i | = di (such strings exist by

the inductive hypothesis (iii) for α). If z ∈ Rβ − Rβ+1 for some β < η then z � wβ ,
so z �∈ Rδ for each δ, β < δ < η by inductive hypothesis (iv) for δ (in brief, z cannot
reappear after disappearing). Since there are only 2di possibilities for zα

i , we eventually
settle on some strings zi of length di, hence zi ∈ Rη. Thus,

λ(Eη) ≥ ∑
1≤i≤N 2−|zi| ≥ λ(Eγ)− 2−k+1 ≥ λ(Gη)− 2−k+1, as required.

(ii) Suppose the request 〈r, y〉 is enumerated at stage α = β+1. If zα fails to exist, then
r is less than the length of each string in Rβ . By (iii) for β, λEβ =

∑
z 2−|z| [[z ∈ Rβ ]],

so by (iv) for β, 1 < 2−r +
∑

m 2−m [[a request 〈m, z〉 is enumerated at a stage ≤ β]],
contrary to the assumption that W is a bounded request set.

(iii) This is clear for successor stages α, because the intervals I(wγ), γ ≤ α and wγ

defined, are disjoint. The property persists to limit stages by the definition of Rη.
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(iv) Again, this is clear for successor stages α = β + 1, in which case we may define
Pα = Pβ . If α = η is a limit stage, let Pη be the intersection of the sets Pγ and the
complements of the null classes Gγ − Eγ from (i) for γ ≤ η. Then for each β < η, the
set Pη is partitioned by Eβ and I(wγ), γ ≤ β, wγ defined. So Pη is partitioned into
Gη and the sets I(wγ) for γ < η. Since Gη is partitioned on Pη into the intervals I(z),
z ∈ Rη, we have shown (iv) for η.

By (iv) the Π1
1-machine M is prefix-free. �

One can use the foregoing Theorem 9.2.4 to characterize K by its minimality,
similar to Theorem 2.2.19. We skip this, but we do adapt the Coding Theo-
rem 2.2.25 by applying 9.2.4. The probability that a prefix-free Π1

1-machine D
outputs a string x is PD(x) = λ[{σ : D(σ) = x}]≺. For α ≤ ωck

1 , let PD,α(x) =
λ[{σ : Dα(σ) = x}]≺. Clearly 2−K(x) ≤ PU(x). We show ∀x 2c2−K(x) > PD(x)
for some constant c. This also holds at certain ordinal stages. For g : ωck

1 → ωck
1 ,

we say that a limit ordinal η ≤ ωck
1 is g-closed if ∀α < η [g(α) < η].

9.2.5 Theorem. For each prefix-free Π1
1-machine D there is a Σ1 over L(ωck

1 )
function gD : ωck

1 → ωck
1 and a constant c such that for each gD-closed η ≤ ωck

1
we have ∀x 2c2−Kη(x) > PD,η(x).

Proof. We build a Π1
1 bounded request set W , accounting the enumeration of requests

〈r, x〉 against the open sets generated by the D-descriptions of x. At stage α, if x is a
string, r ∈ N is least such that PD,α(x) ≥ 2−r+1, and the request 〈r, x〉 is not in W
yet, then we put 〈r, x〉 into W .

For a string x, let αx be the greatest stage at which a request 〈r, x〉 is put into W .
Then PD,αx(x) ≥ 2−r+1. Hence all such requests together contribute at most 1/2. The
total weight of all requests 〈r′, x〉 enumerated at previous stages is at most 2−r, since
r′ > r for such a request, and there is at most one for each length r′. Thus W is a
bounded request set.

Let cW be the coding constant for W given by Theorem 9.2.4. The function gD is
the delay it takes the optimal Π1

1-machine to react to an enumeration of a request
into W . Thus gD(α) = µβ. ∀〈r, x〉 ∈ Wα [Kβ(x) ≤ r + cW ] for α < ωck

1 , which is Σ1

over L(ωck
1 ). If r is least such that PD,η(x) > 2−r+1, then at the least stage α < η where

PD,α(x) ≥ 2−r+1, we enumerate 〈r, x〉 and cause Kη(x) ≤ KgD(α)(x) ≤ r + cW , by
the hypothesis that η is gD-closed. Since r was chosen least, we have 2−r+2 ≥ PD,η(x),
hence 2cW +32−Kη(x) > 2−r+2 ≥ PD,η(x). Thus c = cW + 3 is as required. �

As in Theorem 2.2.26, one can apply Theorem 9.2.5 to bound the number of
strings of a given length with a low K-complexity.

9.2.6 Theorem. There is a constant c ∈ N and a Σ1 over L(ωck
1 ) function

g : ωck
1 → ωck

1 such that, for each g-closed η ≤ ωck
1 ,

∀b∀n#{x : |x| = n & Kη(x) ≤ Kη(n) + b} ≤ 2c2b.

Proof. Let D be the prefix-free machine given by D(σ) = |U(σ)|. Let g be the
function gD obtained in the foregoing theorem for D, and let c be the constant
such that 2c2−Kη(n) > PD,η(n) for each n and each g-closed η. Now we conclude
the argument as in the proof of Theorem 2.2.26. �

9.2.7.� Carry out the Π1
1 version of 2.2.24(ii) for a simple proof of a variant of 9.2.4.
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A version of Martin-Löf randomness based on Π1
1 sets

A Π1
1-ML-test is a sequence (Gm)m∈N of open sets such that ∀m ∈ N λGm ≤ 2−m

and the relation {〈m,σ〉 : [σ] ⊆ Gm} is Π1
1 (by Exercise 9.1.2 it is equivalent to

require that the classes Gm be uniformly Π1
1). A set Z is Π1

1-ML-random if
Z 
∈ ⋂

mGm for each Π1
1-ML-test (Gm)m∈N. Let MLR denote the class of Π1

1-
ML-random sets. For b ∈ N let Rb = [{x ∈ {0, 1}∗ : K(x) ≤ |x| − b}]≺.
9.2.8 Proposition. (Rb)b∈N is a Π1

1-ML-test.

Proof. By the remark after 9.2.3 the relation {〈b, σ〉 : [σ] ⊆ Rb} is Π1
1. One

shows λRb ≤ 2−b as in the proof of Proposition 3.2.7. �

Hjorth and Nies (2007) proved the higher analog of Schnorr’s Theorem 3.2.9.
Thus Z is Π1

1-ML-random iff Z ∈ 2N − Rb for some b. (The proof is harder in
the new setting because of the limit stages.) Since

⋂
b Rb is Π1

1, this implies that
the class of Π1

1-ML-random sets is Σ1
1.

We provide two examples of Π1
1-ML-random sets.

1. By the Gandy Basis Theorem 9.1.16 there is a Π1
1-ML-random set Z ≤T O

such that OZ ≤h O.
2. Let Ω = λ[domU]≺ =

∑
σ 2−|σ| [[U(σ)↓]]. Note that Ω is left-Π1

1. The proof of
Theorem 3.2.11 shows that Ω is Π1

1-ML-random (the stage variable t now denotes
a computable ordinal).
The reducibility ≤fin-h was introduced in 9.1.17. We say that A ≤wtt-h Z if

A = ΦZ for some fin-h reduction such that the use function is computably
bounded. The following is analogous to Theorem 3.3.2.

9.2.9 Theorem. Let Q be a closed Σ1
1 class of Π1

1-ML-random sets such that
λQ ≥ 1/2 (say Q = 2N−R1). For each set A there is Z ∈ Q such that A ≤wtt-h Z.

Proof. Let f be the function from the proof of Theorem 3.3.2. Let Q̂ = Paths(T )
where T is the tree defined by (3.4). Then Q̂ is a closed Σ1

1 class. Using the purely
measure-theoretic Lemma 3.3.1, we may define Z exactly as in that proof, and
Z ∈ Q̂ because Q̂ is closed. For a Σ1

1 class S given by an index, emptiness is a
Π1

1 property. Hence it becomes apparent at an ordinal stage α < ωck
1 .

We describe a reduction for A ≤wtt-h Z, where f(n+1) is the computable bound
on the use for input n. To determine A(r), let x = Z �f(r), and let y = Z �f(r+1).
Find a stage α < ωck

1 such that Q̂α ∩ [{v : x � v & |v| = |y| & v <L y}]≺ = ∅ or
Q̂α ∩ [{v : x � v & |v| = |y| & v >L y}]≺ = ∅. In the first case output 0, in the
second case output 1. �

9.2.10 Exercise. Show Ω ≡wtt O. Hint. Modify the proof of Proposition 3.2.30.

An analog of K-triviality

Recall from 9.2.3 that K(x) denotes the prefix-free complexity of x in the setting
of Π1

1 sets. We study sets that areK-trivial. For technical reasons we also consider
K-triviality at certain limit stages.
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9.2.11 Definition. A is K-trivial if ∃b∀nK(A �n) ≤ K(n) + b. Given a limit
ordinal η ≤ ωck

1 , we say that A is K-trivial at η if ∃b∀nKη(A �n) ≤ Kη(n) + b.
(Thus, being K-trivial is the same as being K-trivial at ωck

1 .)

One can modify the proof of Proposition 5.3.11 in order to show:

9.2.12 Proposition. There is a K-trivial Π1
1 set A that is not ∆1

1. �

The proof is by a construction in the sense of Remark 9.1.23. It uses the Machine
Existence Theorem in the version 9.2.4.
Fix b and η ≤ ωck

1 . The sets that are K-trivial via b at η are the paths through
the tree Tη,b = {z : ∀u ≤ |z|Kη(z �u) ≤ Kη(u) + b}. If η < ωck

1 then Tη,b

is ∆1
1 because Uη is a ∆1

1 set by 9.1.4(i) and ∆1
1 sets are closed under number

quantification. Let gD be the function obtained in 9.2.5 where D(x) � |U(x)|.
9.2.13 Proposition. Let η ≤ ωck

1 be gD-closed.
(i) There is c ∈ N such that the following holds: for each b, at most 2c+b sets

are K-trivial at η with constant b.
(ii) If η < ωck

1 and A is K-trivial at η then A is hyperarithmetical.
(iii) Each K-trivial set is computable in O.

Proof. Let c be as in Theorem 9.2.6. The size of each level of Tη,b is at most
2c+b, which shows (i).
Note that each path A of Tη,b is isolated, and hence computable in Tη,b. For

(ii), if η < ωck
1 this shows that A is hyperarithmetical. For (iii), note that since

K ≤T O, the tree Tωck
1 ,b is computable in O. Now we argue as in (ii). �

9.2.14 Lemma. If A is K-trivial and ωA
1 = ωck

1 then A is hyperarithmetical.

Proof. Suppose A is K-trivial via b. We show that A is K-trivial at η via b for
some gD-closed η < ωck

1 , where gD is the function from the proof of 9.2.13. We
define by transfinite recursion (see before 9.1.23) a function h : ω → ωck

1 which
is Σ1 over LA: let h(0) = 0 and

h(n+ 1) = µβ > gD(h(n)).∀m ≤ nKβ(A�m) ≤ Kβ(m) + b.
Since A is K-trivial, h(n) is defined for each n ∈ ω. Let η = sup (ranh), then
η < ωA

1 = ωck
1 by the Bounding Principle 9.1.22, so η is as required. �

Adapting the relevant proofs from Section 5.2, one can show that the class K of K-
trivial sets is closed under ⊕ and closed downward under ≤wtt-h. In particular, O is
not K-trivial, as Ω ≡wtt O by 9.2.10. The golden run method of Section 5.4 can be
adapted to show that K is even closed downward under ≤fin-h. However, K is not closed
downward under ≤h, since O ≤h A for the Π1

1 set A ∈ K from Proposition 9.2.12.

Lowness for Π1
1-ML-randomness

MLRA denotes the class of sets which are Π1
1-ML-random relative to A, and A

is low for Π1
1-ML-randomness if MLRA = MLR. A is called a base for Π1

1-ML-
randomness if A ≤fin-h Z for some Z ∈ MLRA (see Definition 9.1.17 for ≤fin-h).
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By Theorem 9.2.9, a set that is low for Π1
1-ML-randomness is a base for Π1

1-ML-
randomness. The following contrasts with Theorem 5.1.19:

9.2.15 Theorem. A is a base for Π1
1-ML-randomness ⇔ A is ∆1

1.

Proof. ⇐: A ≤fin-h Z for each Z, so A is a base for Π1
1-ML-randomness.

⇒: Suppose A = ΦZ for some fin-h reduction procedure Φ (see 9.1.17) and
Z ∈ MLRA. Assume for a contradiction that A is not ∆1

1.
1. We show that ωA

1 = ωck
1 . Note that the class {Y : A = ΦY } is null by The-

orem 9.1.13 (or by directly adapting Theorem 5.1.12 to the setting of ≤fin-h).
Similar to Remark 5.1.13, for each n let

Vn = SΦ
A,n = [{ρ : A�n� Φρ}]≺ = [{ρ : ∃α < ωck

1 A�n� Φρ
α}]≺.

If ωck
1 < ωA

1 then by the Approximation Lemma 9.1.4(i) relative to A, the set
{〈n, ρ〉 : ∃α < ωck

1 A �n� Φρ
α} is ∆1

1(A). So by the Measure Lemma 9.1.10(ii)
the function h(n) = µn. λVn ≤ 2−n is ∆1

1(A). Then (Vh(n))n∈N is a Π1
1-ML-test

relative to A which succeeds on Z, contrary to the hypothesis that Z ∈ MLRA.
2. We show that A is K-trivial, which together with ωA

1 = ωck
1 implies that A

is ∆1
1 by Lemma 9.2.14. We want to adapt the proof of Theorem 5.1.22, which (in

the setting of computability theory) states that each base for ML-randomness A
is low for K. First we observe that (still in that setting) the proof can be mod-
ified to show directly that A is K-trivial: we replace U by the oracle prefix-free
machine M given by MX(σ) � X �U(σ). The modified proof now shows that
∀y K(y) ≤+ KA

M (y). For y = A�n, we obtain K(A�n) ≤+ KA
M (A�n) ≤+ K(n).

Now we adapt this (already modified) proof to the present setting, where Φ
is a fin-h reduction procedure. Fix a parameter d ∈ N. If U

τ (σ) converges at
a stage α < ωck

1 , we start feeding open sets Cτ
d,σ, and continue to do so as

long as λCτ
d,σ < 2−|σ|−d. We restrict the enumeration into Cτ

d,σ to successor
stages. For limit stages η we define Cτ

d,σ[η] =
⋃

α<η C
τ
d,σ[α]. The verification

that A is K-trivial is as before, now using the Machine Existence Theorem in
the version 9.2.4. �

From Theorems 9.2.9 and 9.2.15 we obtain:

9.2.16 Corollary. A is low for Π1
1-ML-randomness ⇔ A is ∆1

1. �

9.2.17.� Problem. A generalized Π1
1-ML-test is a sequence (Gm)m∈N of uniformly Π1

1

open sets such that
⋂

m Gm is a null class. Z is Π1
1-weakly 2-random if Z passes each

generalized Π1
1-ML-test. Is this stronger than Π1

1-ML-randomness?

9.3 ∆1
1-randomness and Π1

1-randomness
We study two randomness concepts, the first weaker and the second stronger
than Π1

1-ML-randomness. Background was given at the beginning of this chapter.

9.3.1 Definition. Z is ∆1
1-random if Z avoids each null ∆1

1 class.

We will show that ∆1
1-randomness coincides with the higher analogs of both

Schnorr randomness and computable randomness. In fact the higher versions of
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Schnorr tests and hyperarithmetical martingales are all equivalent in strength to
null ∆1

1 classes (9.3.3). Moreover, Chong, Nies and Yu (2008) proved that each
null Σ1

1 class is contained in a null ∆1
1 class, so Σ1

1-randomness also coincides
with ∆1

1-randomness. However, adapting the methods of Section 7.4, there is
a ∆1

1-random set of slowly growing initial segment complexity, which therefore
is not Π1

1-ML-random (Theorem 9.3.4).

9.3.2 Definition. Z is Π1
1-random if Z avoids each null Π1

1 class.

Each Π1
1-random set Z satisfies ωZ

1 = ωck
1 because the Π1

1 class {A : ωA
1 > ωck

1 }
is null by 9.1.15. Thus, the Π1

1-ML-random set Ω is not Π1
1-random, as Ω ≡wtt O

by 9.2.10. In fact we show that Z is Π1
1-random iff Z is ∆1

1-random and ωZ
1 = ωck

1 .
Therefore, within the ∆1

1-random sets, the Π1
1-random sets are characterized by

a lowness property (for the new setting, one that is closed downward under ≤h).
This is similar to the characterizations of the weakly 2-random and the 2-random
sets within the ML-random sets in Section 3.6.

Notions that coincide with ∆1
1-randomness

A Π1
1-Schnorr test is a Π1

1-ML-test (Gm)m∈N such that λGm is left-∆1
1 uniformly

inm. A supermartingaleM : {0, 1}∗ → R
+∪{0} is hyperarithmetical if its under-

graph {〈x, q〉 : q ∈ Q2 &M(x) > q} is ∆1
1. Recall that the success class Succ(M),

defined in 7.1.1, is null by 7.1.15. By the following, ∆1
1-randomness coincides with

the higher analogs of both Schnorr and computable randomness. This difference
to the computability theoretic case stems from the closure properties (C1) and
(C2) in the chapter introduction.

9.3.3 Theorem. (i) Let A be a null ∆1
1 class. Then A ⊆ ⋂

Gm for some Π1
1-

Schnorr test {Gm}m∈N such that λGm = 2−m for each m. In fact, the
relation {〈m,σ〉 : [σ] ⊆ Gm} is ∆1

1.
(ii) If (Gm)m∈N is a Π1

1-Schnorr test then
⋂

mGm ⊆ Succ(M) for a hyperarith-
metical martingale M .

(iii) Succ(M) is a null ∆1
1 class for each hyperarithmetical supermartingale M .

Proof. (i) By Sacks 1.8.IV, for each m we may effectively obtain a ∆1
1 open

set Gm such that A ⊆ Gm and λ(Gm − A) ≤ 2−m. It now suffices to show
that from a ∆1

1 open set S and a rational q ≥ λS we may in an effective way
obtain a ∆1

1 open set S̃ such that S ⊆ S̃ and λS̃ = q. One can easily adapt
the proof of Lemma 1.9.19 to the new setting. As before, we define a function
f : [0, 1)R → [0, 1)R by f(r) = λ(S ∪ [0, r)). For x ∈ Q2, f(x) is a uniformly
left-∆1

1 real by 9.1.10. So, by the closure under number quantification, the least t
such that f(t) = q is ∆1

1 effectively in q. Now let S̃ = S ∪ [0, t).
(ii) Let f(m, k) be the least α such that λGm − λGm,α ≤ 2−k. By 9.1.15
f(m, k) < ωck

1 for each m, k. By 9.1.10 and 9.1.21, f is Σ1 over L(ωck
1 ), so

by the Bounding Principle 9.1.22 there is β < ωck
1 such that ∀m, k f(m, k) < β.

By 7.1.15,
⋂

mGm ⊆ Succ(M) for the martingaleM =
∑

mMGm . Since λGm =
λGm,β we have M =

∑
mMGm,β

, so M is hyperarithmetical by 9.1.10 and 9.1.4.
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(iii) We have Z ∈ Succ(M) ↔ ∀d ∃nM(Z �n) ≥ d, so Succ(M) is ∆1
1 by the

closure of ∆1
1 relations under number quantification. �

The foregoing characterization of ∆1
1-randomness via hyperarithmetical mar-

tingales can be used to separate it from Π1
1-ML-randomness.

9.3.4 Theorem. For every unbounded nondecreasing hyperarithmetical func-
tion h there is a ∆1

1-random set Z such that ∀∞n K(Z �n| n) ≤ h(n).

Proof. We adapt the proof of 7.4.8. Most of the basics developed for com-
putable martingales carry over to the case of hyperarithmetical martingales, for
instance Proposition 7.3.8 that one can assume the values are in Q2. The partial
computable martingales of Definition 7.4.1 now become partial martingales with
a Π1

1 graph. As before, they can be listed effectively. The partial computable
function F in Lemma 7.4.10 is now a function with a Π1

1 graph. �

The higher analog of Schnorr’s Theorem 3.2.9 in Hjorth and Nies (2007) implies:

9.3.5 Corollary. There is a ∆1
1-random set that is not Π1

1-ML-random. �

By Theorem 9.1.11 the class of ∆1
1-random sets is not Π1

1. In particular, there is
no largest null ∆1

1 class. However, the class of ∆1
1-random sets is Σ1

1 by 9.3.11.

More on Π1
1-randomness

There are only countably many Π1
1 classes, so the union of all null Π1

1 classes is
null. We show that it is also a Π1

1 class. In particular, there is a universal test
for Π1

1-randomness. Theorem 1A-2 in Kechris (1975) is more general: it not only
implies this result, but also shows that there is a largest countable Π1

1 class, and
a largest thin Π1

1 class (a class is thin if it has no perfect subclass). Also see
Moschovakis (1980, Thm 4F.4).

9.3.6 Theorem. There is a null Π1
1 class Q such that S ⊆ Q for each null

Π1
1 class S.

Proof. We claim that one may effectively determine from a Π1
1 class S a null

Π1
1 class Ŝ ⊆ S such that Ŝ = S in case S is already null. Assuming this, let Qp

be the Π1
1 class with index p as defined in (9.4). Then Q =

⋃
p Q̂p is Π1

1, so Q is
as required.
To prove the claim, if S = Qp let Ŝ = {X ∈ S : S|ΦX

p |+1 is null}. By the
Approximation Lemma 9.1.4(ii) (and its proof) we can compute from p (inde-
pendently of X) a number that is an index for S|ΦX

p |+1 as a ∆1
1(X) class if

R = ΦX
p is well-ordered.

The proof of (ii) of the Measure Lemma 9.1.10 can be extended to show that
there is a computable function taking us (still independently of X) from an index
for a ∆1

1(X) class to an index for its measure as a left-∆1
1(X) real number. To

express that this real number equals 0 merely involves quantification over the
rationals. Therefore Ŝ is a Π1

1 class, and its index can be computed from an index
for S. Since {X : ωX

1 > ωck
1 } is null by 9.1.15, Ŝ is contained in the union of a
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null class and all the Sα, α < ωck
1 that are null, hence Ŝ is null. When S is null

every Sα for α < ω1 is null, and therefore Ŝ = S. �

Applying the Gandy Basis Theorem 9.1.16 to the Σ1
1 class S = 2N − Q yields:

9.3.7 Corollary. There is a Π1
1-random set Z ≤T O such that OZ ≤h O. �

This contrasts with the fact that in the computability setting already a weakly
2-random set forms a minimal pair with ∅′ (page 135) that {Y : ωY

1 > ωck
1 } is a

null Π1
1 class:

For each Π1
1 class S we have S ⊆ {Y : ωY

1 > ωck
1 } ∪⋃

α<ωck
1

Sα, because Y ∈ S
implies Y ∈ Sα for some α < ωY

1 . For the largest null Π1
1 class Q, equality holds

by 9.1.15 that {Y : ωY
1 > ωck

1 } is a null Π1
1 class:

9.3.8 Fact. Q = {Y : ωY
1 > ωck

1 } ∪ ⋃
α<ωck

1
Qα. �

For α < ωck
1 the null class Qα is ∆1

1 by the Approximation Lemma 9.1.4(ii). So
the foregoing fact yields a characterization of the Π1

1-random sets within the ∆1
1-

random sets by a lowness property in the higher setting, analogous to 3.5.13.

9.3.9 Theorem. Z is Π1
1-random ⇔ ωZ

1 = ωck
1 & Z is ∆1

1-random. �

Exercises.
9.3.10. Let Q be as in 9.3.6. Show that Q∩ S �= ∅ for each nonempty Π1

1 class S.

9.3.11. (Martin-Löf, 1970) Let G be the union of all the null ∆1
1 classes. Show that G

is Π1
1. (Thus, all the three higher randomness notions we study are Σ1

1.)

9.3.12. (Hjorth and Nies, 2007) Let RY = 2N − QY be the class of Π1
1-random sets

relative to Y . Show an analog of the van Lambalgen Theorem 3.4.6: for every pair of
sets X and Y we have X ⊕ Y ∈ R ⇔ X ∈ RY & Y ∈ R.

9.3.13. Suppose X ≤K Y (see 5.6.1). Show the following. (i) If X is ∆1
1-random then

Y is ∆1
1-random. (ii) If X is Π1

1-random then Y is Π1
1-random.

Hint. In (i) use that Z is ∆1
1-random ⇔ Z is ML-random in each hyperarithmetical

set S. (This follows from results in Sacks (1990) about the sets Hn for ordinal nota-
tions n, together with 9.3.3(iii).)

9.4 Lowness properties in higher computability theory
The results in this section are due to Chong, Nies and Yu (2008). We study
some properties that are closed downward under ≤h, and relate them to higher
randomness notions.

Hyp-dominated sets

We consider an analog of being computably dominated. We will see that both
Π1

1-random sets and sets that are low for Π1
1-randomness satisfy this property.

9.4.1 Definition. We say that A is hyp-dominated if each function f ≤h A is
dominated by a hyperarithmetical function.

9.4.2 Fact. A is hyp-dominated ⇒ ωA
1 = ωck

1 .
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Proof. Let g ≤T (O)′ be as in Exercise 9.1.19. If ωA
1 > ωck

1 then O ≤h A by
Spector’s Theorem 9.1.14, and hence g ≤h A. Let f = λn. g(n, n) + 1, then
f ≤h A, and ∃n f(n) > h(n) for each hyperarithmetical function h. Therefore A
is not hyp-dominated. �

Chong, Nies and Yu (2008) proved that the converse implication fails: if G ⊆ N

is a member of each dense ∆1
1 open set (this property is a higher analog of weak

1-genericity) then, adapting 1.8.48, pG is not dominated by any hyperarithmetical
function. A stronger genericity condition (corresponding to 1-genericity) implies that
ωG

1 = ωck
1 .

9.4.3 Theorem. Each Π1
1-random set A is hyp-dominated.

Proof. Suppose the Π1
1 relation S is a reduction procedure for f ≤h A as

in 9.1.12 such that {〈n, y〉 : 〈n, y,X〉 ∈ S} is the graph of a partial function
for each X. The function n &→ αn = min{α : ∃y〈n, y,A〉 ∈ Sα} is Σ1 over LA,
so by the Bounding Principle 9.1.22 relative to A and since ωA

1 = ωck
1 , there is

β < ωck
1 such that αn < β for each n.

Let r(n) be the least k such that 2−n ≥ λ{X : ∃i ≥ k 〈n, i,X〉 ∈ Sβ}. Note
that r(n) exists by our functionality assumption on SX , and that the function r
is hyperarithmetical because Sβ is ∆1

1 and by the Measure Lemma 9.1.10(ii).
Then {X : ∃∞n ∃i ≥ r(n)[〈n, i,X〉 ∈ Sβ ]} is a null ∆1

1 class. Since A avoids this
class, f is dominated by r. �

As a consequence, by Corollary 9.3.7 there is a hyp-dominated set Z 
∈ ∆1
1 such

that Z ≤T O and OZ ≤h O.
Exercises.
9.4.4. An analog of highness is being hyp-high, namely, some f ≤h A dominates each
hyperarithmetical function. Show that if A is not hyp-high, then ωA

1 = ωck
1 . (This

strengthens 9.4.2).
9.4.5. Show that there is a hyp-high set A such that A ≤T O and OA ≤h O (and
hence ωA

1 = ωck
1 ).

9.4.6. (Kjos-Hanssen, Nies, Stephan and Yu 20xx) We say that Z is weakly ∆1
1-random

if Z is in no closed null ∆1
1 class. Show that Z is Π1

1-random ⇔ Z is hyp-dominated
and weakly ∆1

1-random.

Traceability
Traceability in the computability setting was studied in Section 8.2. In contrast
to the computability setting, the analogs of c.e. and of computable traceability
coincide, again because of the Bounding Principle. Moreover, this class charac-
terizes lowness for ∆1

1-randomness.

9.4.7 Definition. (i) Let h be a nondecreasing ∆1
1 function. A Π1

1 trace
(∆1

1 trace) with bound h is a uniformly Π1
1 (uniformly ∆1

1) sequence of sets
(Tn)n∈ω such that ∀n#Tn ≤ h(n). (Tn)n∈ω is a trace for the function f if
f(n) ∈ Tn for each n.
(ii) A is Π1

1 traceable (∆1
1 traceable) if there is an unbounded nondecreasing

hyperarithmetical function h such that each function f ≤h A has a Π1
1 trace

(∆1
1 trace) with bound h.
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The argument in Theorem 8.2.3 shows that the particular choice of the bound h
does not matter in (ii). In the higher setting the two notions coincide:

9.4.8 Proposition. If A is Π1
1 traceable then A is ∆1

1 traceable.

Proof. First we show that ωA
1 = ωck

1 . Otherwise A ≥h O, so it is sufficient to
show that O is not Π1

1-traceable. Since each Π1
1 set is many-one reducible to O,

there is a uniformly O-computable list (T e
n)e,n∈N of all the Π1

1 traces for the
bound h(e) = e+1. Define a function g ≤T O by g(e) = µn. n 
∈ T e

e , then g does
not have a Π1

1 trace with bound h.
Now let f ≤h A and choose a reduction procedure S for f as in 9.1.12. Choose

a Π1
1-trace (Tn)n∈ω for f with bound h. Let

αn = min{α < ωA
1 : ∃m ∈ Tn,α [〈n,m,A〉 ∈ Sα]}

Then by the Bounding Principle 9.1.22 relative to A there is β < ωA
1 = ωck

1 such
that αn < β for each n. For a fixed β < ωck

1 , the Approximation Lemma 9.1.4(i)
provides an index for the ∆1

1 set Rβ uniformly in an index for a Π1
1 set R.

Therefore (Tn,β)n∈N is a ∆1
1 trace as required. �

Chong, Nies and Yu (2008) showed that there are 2ℵ0 ∆1
1 traceable sets (an

analog of 8.2.17). In fact each generic set for forcing with perfect ∆1
1 trees (Sacks

4.5.IV) is ∆1
1 traceable. There is a perfect class of generic sets in that sense. Also

by Sacks 4.10.IV there a generic Z ≤h O. Then Z is ∆1
1 traceable and Z 
∈ ∆1

1.
∆1

1 traceability characterizes lowness for ∆1
1-randomness. The result is analo-

gous to Theorem 8.3.3, and also to some of the equivalences in Theorem 8.3.9.

9.4.9 Theorem. The following are equivalent for a set A.

(i) A is ∆1
1-traceable (or equivalently, Π1

1 traceable).
(ii) Each null ∆1

1(A) class is contained in a null ∆1
1 class.

(iii) A is low for ∆1
1-randomness.

(iv) Each Π1
1-ML-random set is ∆1

1(A)-random.

Proof. (i) ⇒ (ii): This implication corresponds to Proposition 8.3.2. While the
proof there relied on computable measure machines, here we give a direct proof.
Let S be a null ∆1

1(A) class. By Theorem 9.3.3(i) relativized to A, S ⊆ ⋂
Gm

for a Π1
1-Schnorr test {Gm}m∈N relative to A such that {〈m,σ〉 : [σ] ⊆ Gm}

is ∆1
1(A) and λGm = 2−m for each m. We view the k-th finite set Dk as a subset

of {0, 1}∗. Define a function f ≤h A as follows: let f(〈m, s〉) be the least k
such that [Dk]≺ ⊆ Gm, Df(〈m,s−1〉) ⊆ Dk if s > 0, [σ] ⊆ Gm for |σ| ≤ s
implies σ ∈ Dk, and λ[Dk]≺ > 2−m(1 − 2−s). Let Gm,s = [Df(〈m,s〉)]≺, then
Gm,s ⊆ Gm,s+1 and Gm =

⋃
s∈N

Gm,s.
Let T = (Te)e∈N be a ∆1

1 trace for f such that #Te ≤ e+1 for each e. We define
a ∆1

1 trace (T̂e)e∈N. By recursion on s, define T̂〈m,s〉 to be the set of k ∈ T〈m,s〉
such that 2−m(1 − 2−s) ≤ λ[Dk]≺ ≤ 2−m and Dk ⊇ Dl for some l ∈ T̂〈m,s−1〉
(where T̂〈m,−1〉 = N). Let

Vm =
⋃ {

[Dk]≺ : k ∈ T̂〈m,s〉, s ∈ N
}
.
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Then λVm ≤ 2−m#T̂〈m,0〉 +
∑

s∈N
2−s−m#T̂〈m,s〉. Since #T̂〈m,s〉 ≤ #T〈m,s〉 ≤

〈m, s〉+1 ≤ (m+ s+1)2 +1, it is clear that limn

∑
s∈N

2−s−m#T̂〈m,s〉 = 0, and
hence limmλVm = 0. Since ∀m∀s f(〈m, s〉) ∈ T̂〈m,s〉, we have ∀mGm ⊆ Vm. So⋂

mGm is contained in the null ∆1
1 class

⋂
m Vm.

(ii) ⇒ (iii) and (iii) ⇒ (iv) are immediate.
(iv) ⇒ (i) is a straightforward adaptation of the implication “⇒” in Theo-
rem 8.3.3. We are now given a function g ≤h A, and want to define a Π1

1 trace
(Tn)n∈N for g with bound λn.2n. Now let R = R2 as defined before 9.2.8. The
measure-theoretic Lemma 8.3.4 can be used as before. We define a Π1

1-Schnorr
test (Ug

d )d∈N relative to A. The definitions of (T̃n)n∈N and (Tn)n∈N are as before.
The relation {〈n, k〉 : λ(Bn,k − R̃) < 2−(k+4)} is now Π1

1. �

For each set A there is a largest null Π1
1(A) class Q(A) by relativizing 9.3.6.

Clearly Q ⊆ Q(A); we say that A is low for Π1
1-randomness if they are equal.

9.4.10 Lemma. If A is low for Π1
1-randomness then ωA

1 = ωck
1 .

Proof. Otherwise, A ≥h O by Theorem 9.1.14. By Corollary 9.3.7 there is a Π1
1-

random set Z ≤h O, and Z is not even ∆1
1(A) random. �

9.4.11 Open question. Is each set that is low for Π1
1-randomness in ∆1

1?

By the following result each such set is low for ∆1
1-randomness. We say that A

is Π1
1-random cuppable if A⊕ Y ≥h O for some Π1

1-random set Y .

9.4.12 Theorem. A is low for Π1
1-randomness ⇔

(a) A is not Π1
1-random cuppable & (b) A is low for ∆1

1-randomness.

Proof. ⇒: (a) By 9.4.10 A 
≥h O. Therefore the Π1
1(A) class {Y : Y ⊕A ≥h O}

is null, by relativizing Corollary 9.1.15 to A. Thus A is not Π1
1-random cuppable.

(b) Suppose for a contradiction that Y is ∆1
1-random but Y ∈ C for a null ∆1

1(A)
class C. The union D of all null ∆1

1 classes is Π1
1 by 9.3.11. Thus Y is in the

Σ1
1(A) class C − D. By the Gandy Basis Theorem 9.1.16 relative to A there is

Z ∈ C − D such that ωZ⊕A
1 = ωA

1 = ωck
1 . Then Z is ∆1

1-random but not ∆1
1(A)-

random, so by Theorem 9.3.9 and its relativization to A, Z is Π1
1-random but

not Π1
1(A)-random, a contradiction.

⇐: By Fact 9.3.8 relative to A we have
Q(A) = {Y : ωY ⊕A

1 > ωA
1 } ∪ ⋃

α<ωA
1
Q(A)α.

By hypothesis (a) O 
≤h A and hence ωA
1 = ωck

1 , so ωY ⊕A
1 > ωA

1 is equivalent to
O ≤h Y ⊕ A. If Y is Π1

1-random then firstly O 
≤h Y ⊕ A by (a), and secondly
Y 
∈ Q(A)α for any α < ωA

1 by hypothesis (b). Therefore Y 
∈ Q(A) and Y is
Π1

1(A)-random. �



Solutions to the exercises

Solutions to Chapter 1
Answers to many of the exercises in this chapter can be found in Soare (1987) or
Odifreddi (1989). Most of the solutions we provide are for exercises that are exceptions
to this.
Section 1.1
1.1.12 Use an effective forth-and-back argument.
Section 1.2
1.2.25 ⇒: By 1.2.22.
⇐: Let Z be the graph of f . The Turing functional Φ on input n with oracle set Y
looks for the least w ≤ h(n) such that 〈n, w〉 ∈ Y . If found it outputs w, otherwise 0.
Section 1.4
1.4.7 (i) is like the proof of the Limit Lemma, substituting g for Z and gs(x) for Zs(x).
(ii) ⇐: Similar to the proof of the corresponding implication in 1.4.4.
⇒: If g is ω-c.e. we obtain a weak truth-table reduction of g to the change set by
adapting the proof of the Limit Lemma. However, we cannot define a Boolean expression
as in 1.4.4, because the outputs are now natural numbers.
1.4.8 Suppose Z = ΦE for a Turing functional Φ with use function bounded by g.
Given i ∈ N and a string σ of length g(i), “Φσ(i) = 1” is a Σ0

1 property uniformly,
so there is a computable binary function h such that Φσ(i) = 1 ↔ E satisfies the
Boolean expression h(i, σ). Then i ∈ Z ↔ E satisfies the Boolean expression which is
a disjunction over all σ of length g(i) of expressions stating that σ is an initial segment
of the oracle and the oracle satisfies h(i, σ).
1.4.19 By the Recursion Theorem there is an e such that We = {e}. By the Padding
Lemma 1.1.3 there is i �= e such that Wi = We; then i �∈ ∅′.
1.4.20 For (i), (iii), and (iv) see Soare (1987). (ii) Choose a computable sequence
(Zs)s∈N as in Proposition 1.4.17. If n �∈ Zs then put [0, s) into Xn.
1.4.22 By 1.4.20(ii) there is a uniformly c.e. double sequence (Xe,n)e,n∈N such that each
Xe,n is an initial segment of N and e ∈ S ↔ ∃n Xe,n = N. Now let A〈e,n〉 = We ∩Xe,n

[let A〈e,n〉 = Ve ∩Xe,n], then (Ak)k∈N is the required uniform listing of S.
1.4.23 Let U, V be disjoint Σ0

3 sets that are effectively inseparable relative to ∅′′ (see
Soare 1987, pg. 44). Note that if Ũ is Σ0

3 and U ⊆ Ũ , Ũ ∩V = ∅ then Ũ is Σ0
3 complete.

Fix a c.e. set G �∈ S. Uniformly in e we will enumerate a c.e. set Ae ⊆ G such that
e ∈ U → Ae is computable, and e ∈ V → Ae =∗ G. There is a computable triple
sequence (xe,i,s)e,i,s∈N, nondecreasing in s, such that e ∈ U ↔ ∃n limsxe,2n,s = ∞, and
e ∈ V ↔ ∃n limsxe,2n+1,s = ∞. At stage s > 0, if i is least such that xe.i,s > xe,i,s−1

do the following. If i is even restrain Ae up to s with priority i. If i is odd put into Ae

all x ∈ Gs not restrained with priority < i.
Let Ũ = {e : Ae ∈ S}, then Ũ is Σ0

3 complete and m-reducible to the index set of S.
Section 1.5
1.5.5 Let C′ = Θ(∅′) for a truth-table reduction Θ with use bound a computable
function q. The set B = {〈e, x〉 : ΦC

e (x) = 1} is c.e. in C, hence B ≤m C′ via some
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computable function r. If Y = ΦC
e then Y ≤tt ∅′ because x ∈ Y ↔ Θ(∅′; r(〈e, x〉)) = 1.

A use bound is h(x) = maxk≤xq(r(〈k, x〉)) for all x ≥ e, which suffices.
1.5.6 ⇒: Let f(x) = max{ΦA

e (x) : e ≤ x & ΦA
e (x) ↓}. Since f ≤T A′ ≡T A ⊕ ∅′, the

function f is as required. ⇐: Since ψ(x) � µs JA
s (x)↓ is partial computable in A, we

have JA(x) ↓↔ JA
f(x)(x) ↓ for almost all x. Thus A′ ≤T A⊕ ∅′.

1.5.13 (a) By the Limit Lemma 1.4.2 relative to C, there is a C-computable approx-
imation (As)s∈N of A. If g is as in 1.5.12 then g ≤T A since C ≤T A. Now argue as
before in order to show that A ≤T C.
(b) If A′ ≡T C′ then C <T A <T C′, so A is not computably dominated.
1.5.14 By 1.4.17 there is a computable sequence of strong indices (As)s∈N such that
x ∈ A ↔ ∀∞x [x ∈ As]. Define g ≤T A by

g(〈x, t〉) =

{
µs > t. x �∈ As if x �∈ A,

t if x ∈ A.
.

There is a computable function f such that f(〈x, t〉) ≥ g(〈x, t〉) for all x, t. Then
x ∈ A ↔ ∃t∀u ∈ [t, f(〈x, t〉) [

x ∈ Au

]
so A is c.e. and hence computable.

1.5.15 By 1.4.20 relative to A, the set TotA = {e : dom(ΦA
e ) = N} is Π0

2(A)-complete.
Hence A′′ ≡T TotA and TotA is Π0

1(A′). Further,

e ∈ TotA ↔ ∃i
[
Φi total & ∀x ΦA

e,Φi(x)(x)↓ ]
.

Therefore TotA is Σ0
1(A′ ⊕ ∅′′). This implies A′′ ≡T TotA ≤T A′ ⊕ ∅′′.

1.5.16 Suppose the function g ≤T A is not dominated by any computable function.
We build a set Y ≤T A such that Y �≤tt A. Suppose Y �m has been defined. To define
Y (m), look for the least e ≤ m such that ΦA

e,g(m) �m= Y �m and r = ΦA
e,g(m)(m)↓, and

define Y (m) to be not equal to r. If there is no such e define Y (m) = 0.
Clearly each e is considered at most once. If Y ≤tt A, then by Proposition 1.2.22
Y = ΦA

e for some e such that the number of steps to compute ΦA
e (m) is bounded by

t(m), for a strictly increasing computable function t. Since there are infinitely many m
such that g(m) ≥ t(m) we cause Y �= ΦA

e , contradiction.
1.5.17 (J. Miller) Clearly a computable set is of that kind. Now assume A is uniformly
computably dominated via r. By 1.5.12 it suffices to show that A ≤T ∅′. In fact, A ≤T ∅′

follows already from the weaker hypothesis that 1 + Φr(e) is not dominated by ΦA
e for

each e. Let p be a computable binary function such that for each e, n we have

ΦA
p(e,n)(x) �

{
1 + Φr(e)(x) if n ∈ A

0 else.

Let q be the function obtained when we require “n �∈ A” in the first line instead. By
the Recursion Theorem with Parameters there are computable functions h, l such that
ΦA

p(h(n),n) = ΦA
h(n) and ΦA

q(l(n),n) = ΦA
l(n) for each n. If n ∈ A then αn = Φr(h(n)) is

partial, otherwise ΦA
h(n) would be total and dominate 1+αn. If n �∈ A then αn is total.

Similarly, βn = Φr(l(n)) is partial iff n �∈ A. Using ∅′ as an oracle we can decide which
of αn, βn is partial.
1.5.21 Relativize Theorem 1.5.19 to A.
Section 1.6
1.6.7 The strategy for the lowness requirements Le is as before. To ensure that A′ is
not ω-c.e. we have to rule out each potential approximation Φ2

i (x, t), with the com-
putable bound Φ1

j (x) on the number of changes, of A′. Let U〈i,j〉 be the corresponding
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requirement. We build a Turing functional ΓY (x) (see Section 6.1), and by Fact 1.2.15
and the Recursion Theorem for functionals we are given a reduction function p for Γ,
namely ∀Y ∀x ΓY (x) � JY (p(x)).
The strategy for U〈i,j〉 is as follows. Choose x greater than the last stage when U〈i,j〉
was initialized. Let z = p(x). Wait for n = Φ1

j (z)↓. Let t∗ = 0. For at most n+1 times,
do the following:
(a) whenever t is greater than t∗ and Φ2

i (z, t − 1) = 1, Φ2
i (z, t) = 0 then declare

ΓA(x)↓ with large use u (in particular u > 〈n + 1, 〈i, j〉〉). Wait for a stage v such that
JA(p(x))↓ [v] and let t∗ = v;
(b) whenever t is greater than t∗ and Φ2

i (z, t − 1) = 0, Φ2
i (z, t) = 1 then make ΓA(x)

undefined by enumerating the greatest number m ∈ N[〈i,j〉] such that m < u into A.
Wait for a stage v such that JA(z)↑ [v] and let t∗ = v.
If the strategy for U〈i,j〉 is no more initialized, it ensures that Φ2

i does not approximate
A′ with bound Φ1

j . It only acts finitely often, so eventually it stops injuring the lowness
requirements of weaker priority. Thus A is low.
1.6.10 See the main text.
Section 1.7
1.7.7 Given a set Z, let Ẑ = {Z �n : n ∈ N}, then Z ≡tt Ẑ and Ẑ is introreducible.
1.7.11 (Also see Soare 1987, pg. 283.)
⇒: Define a uniformly c.e. sequence (Ge)e∈N as follows. When x ∈ We,at s then put x
into Ge,s unless x ∈ As. By Corollary 1.1.11 there is a computable function q such that
Ge = Wq(e) for each e. Then q is as desired: the first two condition are immediate, and
(2) follows from (1.11).
⇐: Fix some computable enumeration (Ãs)s∈N. We will speed up this enumeration in
order to show that A is promptly simple. Let A0 = ∅. Given s > 0, if there is x and e
such that x ∈ We,at s, let t be the least stage such that x ∈ Ãt or x ∈ Wq(e),t. This stage
exists since We − A = Wq(e) − A. If the first alternative applies let As = As−1 ∪ Ãt,
otherwise let As = As−1 ∪ Ãs. If We is infinite then for some x, s we have x ∈ We,at s

and x �∈ Wq(e). Then x ∈ As.
1.7.12 See Soare (1987, pg. 283).
Section 1.8
1.8.9 “⇐ ” is the use principle. For “⇒” let A = {〈σ, x〉 : ∀Z � σ L(Z) � x}.
1.8.12 For each pair of sets X, Y we have abs(F (X) − F (Y )) ≤ d(X, Y ) (see 1.8.7
for the definition of the distance function d), so F̃ is continuous. To show that F̃ −1 is
continuous, note that for any cylinder [σ] we have

F̃ ([σ] ∩ X ) = (0.σ, 0.σ + 2−|σ|)−Q2,

which is open in [0, 1)R −Q2.
1.8.13 The homeomorphism is given by 1n001n101n20 . . . → (n0, n1, n2, . . .).
1.8.18 Given k ∈ N, for each i ≤ k we may compute qi ∈ Q2 such that 0 ≤ ri − qi <
2−k−i−1. Then 0 ≤ r −∑

i≤k qi < 2−k+1.
1.8.40 At stages 2e + 2, e = nk + i, 0 ≤ i < k, in (a) work towards Bi �≤T Y . .
1.8.41 For a string τ , let

Qτ = {Y ∈ P : ∀e < |τ | [τ(e) = 0 → JY ⊕B(e) ↑ ] }.
Note that Qτ is a Π0

1(B) class uniformly in τ . Emptyness of such a class is a Σ0
1(B)

condition, so there is a computable function g such that Qτ = ∅ ↔ g(τ) ∈ B′. Thus,
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there is a Turing functional Ψ such that ΨX is total for each oracle X and Ψ(B′; e) = τe,
where τe is the leftmost string τ of length e + 1 such that Qτ �= ∅. Let Y ∈ ⋂

e Qτe .
Then e ∈ (Y ⊕B)′ ↔ τe(e) = 1, so (Y ⊕B)′ ≤tt B′.
1.8.46 Construction relative to ∅′ of Π0

1 classes (P i)i∈N. Let P 0 = P .
Stage 2i + 1. If P 2i ∩ {X : JX(i) ↑} �= ∅, then let P 2i+1 be this class. Otherwise, let
P 2i+1 = P 2i.
Stage 2i + 2. See whether there is e ≤ i which has not been active so far such that for
some m ≤ cB(i) we have Qi

e,m := P 2i+1∩{X : ΦX
e (m)↑} �= ∅. If so let e be least, let m

be least for e, and let P 2i+2 = Qi
e,m. Say that e is active. Otherwise, let P 2i+2 = P 2i+1.

Verification. Let Y ∈ ⋂
r P r. Since B can determine an index for each P r, we have

Y ′ ≤ B by the usual argument of the Low Basis Theorem. Each e is active at most
once, and if so then ΦY

e is partial. Suppose now that ΦY
e is total. We claim that there

is r such that ΦZ
e is total for each Y ∈ P r, and therefore ΦZ

e is computably dominated
by the argument in the proof of 1.8.42. If the claim fails then B ≤T ∅′, as follows. Let s0

be a stage such that no j < e is active from s0 on. Given i ≥ s0, using the oracle ∅′

find the least m such that Qi
e,m �= ∅. Then cB(i) ≤ m (otherwise we would now ensure

ΦY
e (m) is undefined), so that Bm �i= B �i.

1.8.54 Given a string σ and n ∈ N, ∅′ can decide whether JY (n)↑ for each Y � σ (by
1.8.28). To decide whether n ∈ G′ using G⊕ ∅′ as an oracle, search for the least string
σ ≺ G such that either Jσ

|σ|(n) ↓ or JY (n) ↑ for each Y � σ. In the first case output
“yes”, in the second case “no”.
1.8.63 Y is c.e. iff ∃e∀n, s ∃t > s We,t(n) = Y (n). For the computable sets apply this
and 1.1.9.
1.8.64 Suppose the class of c.e. sets is contained in a Π0

2 class S =
⋂

n Rn where the
Rn are uniformly Σ0

1. Then each Rn is dense, so S contains every weakly 1-generic set.
The same argument works for the computable sets. Alternatively, if the class of com-
putable sets is Π0

2, then the index set {e : We is computable} is in Σ0
3∩Π0

2(∅′), and hence
in ∆0

3. This contradicts the fact that this index set is Σ0
3 complete, Exercise 1.4.20(iv).

1.8.65 Let A =
⋂

y By where the class By is Σ0
1 uniformly in y. Then B∗

y = {Z : ∃m

[ΨZ�m ] ⊆ By} is Σ0
1 uniformly in y, so C = {Z : ΨZ is total} ∩⋂

y B∗
y is Π0

2.

1.8.66 Let B =
⋃

nAn for an effective sequence of Π0
2 classes. For each n, e let Cn,e

be the class uniformly obtained via 1.8.65 from An and Ψ = Φe. Then G =
⋃

n,e Cn,e

is Σ0
3.

1.8.67 (i) Suppose C = {Z : ∀n Z �n∈ R} where R ≤T ∅′. By the Limit Lemma choose
a computable approximation (Rt)t∈N for R. Then C = {Z : ∀n∀s ∃t > s Z �n∈ Rt}, so
C is Π0

2. (ii) Every Π0
1(∅′) singleton is ∆0

2 by Fact 1.8.33.
1.8.71 ⇒: If there is σ such that σu is on TP for infinitely many u, then
{f : σ �≺ f} ∪⋃

u[σu] is an open covering of P without a finite subcovering.
⇐: If TP ⊆ {σ ∈ N∗ : ∀i < |σ| [σ(i) < g(i)]} for a function g, then P is a closed subset
of the space

∏
i{0, . . . , g(i)}. This space is compact by Tychonoff’s Theorem.

1.8.72 Adapt the proof of 1.8.37. By the hypothesis on TP the set ∅′ can decide whether
a Π0

1 subclass Q of P is empty. Thus we can define a ∅′-computable sequence (P e)e∈N

as before. Its intersection is nonempty since P 0 = P is compact.
Section 1.9
1.9.5 µr(∅) = 0 since ∅ is open. Monotonicity is straightforward. Countable subad-
ditivity is first verified for families of open sets. In the general case, given a family
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(Ci)i∈N and ε > 0, chose open sets Ai ⊇ Ci such that µr(Ai) ≤ µr(Ci) + ε2−i. Then
µr(

⋃
i Ci) ≤ µr

⋃
i(Ai) ≤ ∑

i µr(Ai) ≤ 2ε +
∑

i µr(Ci).
1.9.13 If ε > 0 and 2−n#(S ∩ {0, 1}n) ≥ ε then the strings of length n contribute at
least ε to λ[S]≺. So there are at most 1/ε such n.
1.9.14 Assume for a contradiction that U is measurable. Since X ∈ U ↔ N−X �∈ U
and the complementation operation on subsets of N preserves λ, we have λU = 1/2.
But U is closed under finite variants whence λU ∈ {0, 1} by the zero-one law.
1.9.15 (J. Miller) For a class C let IC denote the function given by IC(Z) = 1 if
Z ∈ C and IC(Z) = 0 otherwise. Consider the function g : 2N → {0, . . . , N} defined by
g(Z) = #{i : Z ∈ Ci} =

∑N
i=1 ICi(Z). Since

∫
2N g(Z)λ(dZ) ≥ ∑N

i=1 ε > k, the class
{Z : g(Z) > k} is not a null class.
1.9.20 Let (qn)n∈N be a nondescending computable sequence of rationals such that
limnqn = r, Fact 1.8.15. Introducing some repetitions if necessary, we may assume that
each qn is of the form k2−n for some k ∈ N. We define an effective sequence (Cn)n∈N

of clopen sets such that λCn = qn and Cn ⊆ Cn+1 for each n, and R =
⋃

n Cn is the
required c.e. open set. Each set Cn is generated by strings of length kn, where kn < kn+1

and the sequence (kn)n∈N is computable. If |σ| = kn then [σ] ⊆ Cn ↔ [σ] ⊆ R, so that
AR is computable. Let k0 = 0 and C0 = ∅.
Step n > 0. Let b ∈ N+ be least such that qn − qn−1 ≤ (1 − 2−b)(1 − qn−1), and let
kn = kn−1 + b. Pick a clopen set D such that λD = qn − qn−1, D ∩ Cn−1 = ∅ and D
is given by strings of length kn none of which are of the form σ1b for |σ| = kn−1. Let
Cn = D ∪ Cn−1.
1.9.21 Define a computable Z ∈ P , Z =

⋃
n σn, as follows. Let σ0 = ∅. If σn is defined

such that λ(P | σn) > 0, then let σn+1 be the leftmost extension σ of σn of length n+1
such that λ(P | σ) > 0. Use 1.9.18 to show that we can compute the sequence (σn)n∈N.
1.9.22 For n = 1, this is Fact 1.9.16. Now let n > 1, and inductively assume the result
holds for Π0

n−1 classes. A Σ0
n class C is an effective union of Π0

n−1 classes Di where
Di ⊆ Di+1 for each i. Each λDi is left-Π0

n−1 and hence left-Σ0
n, uniformly in i. Thus

λC = limiλDi is left-Σ0
n. The case of Π0

n classes is similar.

Solutions to Chapter 2
Section 2.1
2.1.3 Consider the machine M given by M(τ) � V(V(τ)). Each V-description of σ is
an M -description of x, hence CM (x) ≤ C(σ). If M = Φb, b > 0, then C(x) ≤ CM (x)+b,
so that |σ| = C(x) ≤ C(σ) + b.
2.1.4 When the computation V(σ) = x converges at a stage, declare R(σ) = x unless x
already has an R-description of the same length at a previous stage, or there is a V-
description ρ <L σ, |ρ| = |σ|, such that V(ρ) = x converges at the same stage.
2.1.5 If V(σ)↓ and |σ| ≡ i mod d for 0 ≤ i < d then let R(0d−i−11σ) = V(σ). Clearly
CR(x) ≤ C(x) + d for each x.
2.1.6 Let b = 2 + d where d is the coding constant for the copying machine Φ1 relative
to R. For each y of length n+1, since Φ1(y) = y, there is an R-description σy of y such
that |σy| < n + b. Fewer than 2n of the σy’s have length less than n. The remaining
ones show that 2n ≤ sn,b. The inequality sn,b < 2n+b is trivial.
2.1.7 Use the machine M that on input aσ, a ∈ {0, 1}, first simulates V(σ). If y = V(σ)
where |y| = n, it outputs 0y00y1 . . . 0yn−1 in case a = 0, and 0y00y1 . . . 0yn−10 in case
a = 1.
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2.1.17 Since 2n ≥ rn ≥ 2n−d+1, we have n ≥ log rn ≥ n − d + 1, so we can obtain n
from rn and a constant number of bits. Let zn be the leftmost d-incompressibleC string
of length n. Since the set of d-compressibleC strings is c.e., if we know rn (and hence n)
we can produce all the d-compressibleC strings of length n, and therefore determine zn.
Thus n− d < C(zn) ≤+ C(rn).
2.1.18 Let D(x) = 2m for each x of length 2m, and also D(02m+1) = 2m. Then D
satisfies the counting condition. Given a machine M , for each m there is x of length
2m or 2m + 1 such that D(x) = 2m but CM (x) = 2m fails. (CM satisfies the stronger
variant of the counting condition ∀i #{x : CM (x) = i} ≤ 2i.)
2.1.19 (i) If E(y) < |y| for some y of length k ≤ n then #{x : E(x) < k} ≥ 2k.
(ii) Apply the contraposition of (i) for E = CM . For each n ≥ n0, ∀x

[ |x| ≤ n →
E(x) ≤ |x|] fails, so there is an x of length n such that CM (x) > |x|.
2.1.23 Let d be a constant such that ∀z C(z + 1) ≤ C(z) + d. If C(zn+d) < n we have
C(zn+d + 1) < n + d, contrary to the fact that zn+d is the largest such number.
2.1.24 Since 2n ≤ sn,b < 2n+b, we have n ≤ log sn,b ≤ n + b. So we can describe n
by sn,b and a constant number of bits. Since R is partial computable, if we know sn,b

(and hence n), we can evaluate all converging computations R(σ) for n ≤ |σ| < n + b.
Since C(zn+b) ≥ n by the previous exercise, zn+b is the largest value obtained this way.
Hence n ≤ C(zn+b) ≤+ C(sn,b).
2.1.25 (Stephan) Let L be the machine that outputs the number of steps V needs
to stop. That is, L(σ) � µs Vs(σ) ↓. By convention, s is greater than the output of
V on input σ. The machine R is the “join” of V and L, namely, R(0σ) � V(σ) and
R(1σ) � L(σ). Note that CL(x) can only decrease at stage x, and only from ∞ to a
finite value. Use this to show that

x ∈ DR ⇔ ∃y > x ∃s ≥ y CR,s(y) ≤ CR,s(x),

whence DR is c.e. The implication from left to right is clear. For the converse implica-
tion, if CR,s(x) is not the final value, let t > s be greatest such that CR(x) decreases
at stage t. This is because CV(x) decreases. Hence CR(t) ≤ CL(t) ≤ CR(x), and t is
the required witness showing that x ∈ DR.
2.1.26 Let yn be as in the proof of Proposition 2.1.22 for CR, and note that pDR

(n) ≥
yn. If n → rn is an increasing computable function, then the argument in that proof
shows that yn > rn for almost all n. So pDR

dominates the function n → rn.
2.1.30 A is c.e. via the computable enumeration given by As = {〈x, n〉 : Cs(x) ≤ n},
and B ≤m A for the weak truth-table complete set B from 2.1.28.
2.1.31 Otherwise C(x) = Cg(|x|)(x) for almost all x, so C is computable. There are
infinitely many x such that C(x) = Cg(x) = |x| + 1, so this cannot be improved to
∀∞x C(x) < Cg(x).
Section 2.2
2.2.3 There are 2n(n + 1) pairs 〈x, y〉 such that |xy| = n, so one of them must satisfy
C(〈x, y〉) ≥+ n + log n. Clearly n + log n ≥+ C(x) + C(y) + log n.
2.2.10 It suffices to carry out the obvious modifications of the solutions for C.
2.2.11 Let n = |x|. Then K(n) ≤+ |n|+ 2 log |n|. So

K(x) ≤ K(n) + |x|+ 1 ≤+ 2 log log n + log n + |x|.
2.2.12 (i) C is the set of paths of the Π0

1 tree

B = {x : ∀σ ∀ρ �= σ [x(σ) = x(ρ) = 1→ σ | ρ ] & ∀σ [U(σ)↓→ x(σ) = 1]}.
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Now use the Low Basis Theorem.
(ii) For n < m ≤ ∞, let Sn,m = {x ∈ S : n ≤ |x| < m}. Note that limnλ[Sn,∞]≺ =
0. We build a prefix-free machine M . A number d is given which, by the Recursion
Theorem (and since the standard universal prefix-free machine is simulated by U), we
think of as a coding constant for M relative to U (see Remark 2.2.21). Compute n
such that λ[Sn,n+d+1]≺ ≤ 2−d−2 (this uses that S is Π0

1). Declare M(y) = y for all y
of length n. If d actually is a coding constant for M then, for each y of length n,
there is a string σy of length at most n + d such that U(σy) = y. Clearly, at most
half of the σy’s have length < n. The remaining ones contribute a measure of at least
2n−12−d−n = 2−d−1 to λ[Sn,n+d+1]≺, contrary to the choice of n.

2.2.22 We may assume ∀n f(n) ≤ n. If the sum is finite, for large enough c the function
D(x) = K(x) − log f(K(x)) + c satisfies the weight condition. Now 2.2.19 yields a
contradiction.
2.2.24
(i) Let k be least such that 2−k+1 ≤ δ. Let i be least such that i2−k ≥ p. Then
(i + 1)2−k < p + δ. Thus, if w is the string of length k such that 0.w = i2−k then
I(w) ⊆ [i2−k, (i + 1)2−k) ⊆ [p, p + δ). Also δ < 2−k+2 by choice of k.
(ii) As before let the sequence 〈rn, yn〉n<N list the bounded request set W . To define the
prefix-free machine M , at stage n let p =

∑
i<n 2−ri , δ = 2−rn and compute w = wn

as in (i). Let M(wn) = yn.
2.3.4 “≤+” is trivial. For “≥+”, consider the machine given by M(σ) � 〈V(σ), |σ|〉.
2.3.5 The binary machine M on inputs τ, z searches for a decomposition τ = σρ such
that x = U2(σ, U2(ρ, z)) converges. If one is found it outputs x. Verify that M is
prefix-free when fixing the second component.
2.5.10 For each n and ε let Bn,ε = {x ∈ {0, 1}n : abs(Sn(x)/n − 1/2) ≥ ε}. Then
Bn,ε is the event that the number of ones differs by at least nε from the expected
value n/2. By the Chernoff bounds (2.17) already used in the proof of Theorem 2.5.8,
we have P (Bn,ε) ≤ 2e−2nε2 . We are interested in the case that nε =

√
n ln n, so

let εn =
√

ln n/n. Then 2e−2nε2n ≤ 2n−2. Define the computable set G by letting
Gn = Bn,εn . Then #Gn ≤ 2n+1/n2. Let W = {〈n − log n, x〉 : n ≥ c & x ∈ Gn}.
For each k, there are at most two n such that n − log n = k. Thus, if c is chosen
appropriately, for each k there are at most 2k requests in W with first component k.
Now, by Proposition 2.1.14, C(x) ≤+ n− log n for each x ∈ Gn. Also see Li and Vitányi
(1997, Lemma 2.2 on pg. 128).

Solutions to Chapter 3
Section 3.2
3.2.25 Once again, split off a prefix-free descriptions (see the beginning of Section 2.4).
On input τ , the machine N first searches for a decomposition τ = σz such that n =
U(σ) ↓ and |z| = n. Once it finds such a decomposition, N prints z0|σ|−r. If n is the
starting position of a block of zeros of length K(n) − r, then for m = n + K(n) − r,
σ = n∗, and z = Z �n we have N(σz) = Z �m, so KN (Z �m) ≤+ m.
3.2.26 Otherwise, there is d such that Z ∈ [Am,d]≺ for infinitely many m, where Am,d

is the set of strings of length m defined in (2.16) on page 101. But ([Am,d]≺)m∈N is a
Solovay test by (2.17) and since the geometric series

∑
m e−2m/d2

converges.
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3.2.33 See Downey, Hirschfeldt and Nies (2002).

Section 3.3
3.3.3 Given a number d > 1, we build a bounded request set L (we think of d as a coding
constant for L provided by the Machine Existence Theorem 2.2.17). Let c = d + 1. By
(1.17) on page 55, each Π0

1 class P (given by an index for Π0
1 classes) has an effective

approximation (Ps)s∈N by clopen sets Ps, which are given by a strong index for a set
of strings of length s. The hypothesis “λ(P e ∩ Q) ≤ 2−K(e)−c” is a Σ0

1-property of e,
because λ(P e

t ∩Qt) is nonincreasing in t and converges to λ(P e ∩Q), while 2−Kt(e)−c

is nondecreasing and converges to 2−K(e)−c.
Construction of L. If t is least such that λ(P e

t ∩Qt) ≤ 2−Kt(e)−c, then for
each y ∈ P e

t ∩Qt enumerate a request 〈|y| − c, y〉 into L at stage t.
The enumeration for P e adds a weight of at most 2−K(e) to L. Then, for any given d,
L is a bounded request set since

∑
e 2−K(e) ≤ 1. Now suppose that, by Remark 2.2.21,

d > 1 is a coding constant for L (note that this fixed point, and hence c, can be found
effectively). If λ(P e∩Q) ≤ 2−K(e)−c then at some stage t the enumeration into L causes
K(Z �t) ≤ t− 1 for each Z ∈ P e ∩Q. This contradicts Q = 2N−R1, hence P e ∩Q = ∅.
3.3.4 Apply 3.3.3 to the particular effective listing of Π0

1 classes given by P x = [x].

Section 3.4
3.4.3 (i) Use the binary machine M(σ, α) � Vα(σ).
(ii) Let α = 0n, then Cα(n) =+ C(n).
3.4.4 Suppose that A = Φ(B) for a Turing functional Φ. Define a prefix-free oracle
machine M by MX(σ) � UΦ(X)(σ). Namely, on input σ, M looks for α ≺ Φ(X) such
that Uα(σ) = y and, if it is found, outputs y. Then ∀y KB(y) ≤+ KMB (y) =+ KA(y).
3.4.9 For “⇐” it suffices to adapt the proof of this implication in 3.4.6. (Vd)d∈N is now
a ML-test relative to ∅(k−1), and (Sd)d∈N is a Solovay test relative to ∅(k−1). The open
sets Hd are uniformly c.e. in B ⊕ ∅(k−1). If A ∈ Hd for each d ≥ d0, then A is not
ML-random relative to B(k−1).
The proof of “⇒” needs some additional idea; see van Lambalgen (1987).
3.4.14 If Z is ω-c.e., then f is ω-c.e. in the sense of Exercise 1.4.7, and hence f ≤wtt ∅′.
Let

Ĝe =

{
[Zs �e+1] if s is the stage such that JAs

s (e) converges A-correctly
∅ if JA(e)↑ .

Then for almost all e, JA(e)↓↔ JA(e)[f(e)]↓, which shows that A′ ≤wtt ∅′.
3.4.21. If 0n1 ≺ X, let MX(σ) ↓ for all strings σ of length n such that σ �= 1n. Thus
ΩX

M = 1− 2−n. We have r1 = 1, and this supremum is not assumed by ΩM .
3.4.22 By Fact 3.4.19, for every δ > 0, {X : abs(ΩA

M−ΩX
M ) < δ} = {X : ΩX

M > ΩA
M−δ}

is open.
3.4.23 If the real r is right-c.e. and r is left-c.e. relative to A, then r ≤T A, so r is not
ML-random relative to A. Therefore, if r = 1−Ω = ΩA then r is not ML-random in A,
contradiction.
Section 3.5
3.5.6 Clear when B is finite. Otherwise, consider the Π0

1 class P = {Z : B ⊆ Z}. For
each finite set F , we have λ{Z : F ⊆ Z} ≤ 2−#F . Thus P is a null class containing B.
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3.5.7 By Theorem 3.3.7, if Z ∈ P is not autoreducible then the Π0
1 class P is uncount-

able.
3.5.16 Let L0 be the bounded request set {〈|σ|, x〉 : M(σ) = x}, and let L1 be a
bounded request set with total weight 1 − ΩM . Then the total weight of L = L0 ∪ L1

is 1, so the prefix-free machine for L is as required.
3.5.17 Compute a stage s such that ΩM − ΩM,s < 2−r. Then {y : KM (y) ≤ r} =
{y : KM,s(y) ≤ r} as in the proof of Proposition 3.5.15.

Section 3.6
3.6.6 Relativize Proposition 3.5.5 to ∅′.
3.6.7 Proceed similar to the solution for 3.5.6, but relative to ∅′.
3.6.16 The class of compression functions for K forms a bounded Π0

1 class described
by the condition ∀n [F �n∈ S], where S is the computable set

{
α ∈ N∗ :

∀i, j < |α| [i �= j → α(i) �= α(j)
]

&
∑

i<|α| 2
−|α(i)| ≤ 1 & ∀i < |α| [|α(i)| ≤ K|α|(i)

]}
.

This class is nonempty because it contains the function F (x) = x∗.

3.6.21 Since A ≤T ∅′ we have ∀n K∅′
(Z �n) =+ K∅′

((Z"A) �n). Now use Schnorr’s
Theorem 3.2.9 relativized to ∅′.
3.6.22 Let A be weakly 2-random but not 2-random (for instance, let A be a com-
putably dominated ML-random set). A forms a minimal pair with ∅′, so the class
C = {X : A⊕X forms a minimal pair with ∅′} is conull. Then there is a set X in C that
is 2-random relative to A, and hence of hyperimmune degree. By the van Lambalgen
Theorem 3.4.6, R = A⊕X is ML-random. Since R ∈ C, R is weakly 2-random. If a set
D ≡T R is 2-random, then the ML-random set A ≤T D is 2-random as well.
3.6.27 Choose a ML-random set Z that is superlow, then Z is ω-c.e. and hence not
Demuth random.
3.6.28 (i) Let (Gm)m∈N be a generalized ML-test. Since ∅′ can compute λGm, there
is h ≤T ∅′ such that λGh(m) ≤ 2−m for each m. Then (Gh(m))m∈N is a Schnorr test
relative to ∅′.
(ii) Let (Sm)m∈N be a Demuth test. Then ∅′ can compute a c.e. index for Sm, so
Gn =

⋃
m>n Sm is a Σ0

1(∅′) class uniformly in n. Also ∅′ can compute λGn uniformly
in n. (Given k, ∅′ finds a stage t such that λSi − λSi,t ≤ 2−k−i−1 for all i, n < i ≤ k.
Then λGn − λ

⋃
n<i≤k Si,t ≤ 2−k+1.) Thus (Gn)n∈N is a Schnorr test relative to ∅′.

If Z fails the Demuth test (Sm)m∈N then Z fails (Gn)n∈N.
(iii) Choose Y Schnorr random relative to ∅′ but not 2-random.

Solutions to Chapter 4
Section 4.1
4.1.5. Let p be a reduction function (Fact 1.2.15) such that ψ(e) � J(p(e)) for each e,
and let f̃ = f ◦ p. Then ψ(e)↓ implies that ψ(e) = J(p(e)) �= f(p(e)) = f̃(e).
4.1.6 Suppose ΦG is total. We prove that the function ΦG is not d.n.c. It suffices to
show that S = {ρ : ∃e Φρ(e) = J(e)} is dense along G. We define an auxiliary partial
computable function ψ. We are given its reduction function p in 1.2.15 by the Recursion
Theorem. On input σ, search for ρ � σ such that y = Φρ(p(σ)) ↓, and give the first
such y found (if any) as an output. If σ ≺ G then ψ(σ) is defined via some ρ � σ
because ΦG is total. Then J(p(σ)) = ψ(σ) = Φρ(p(σ)). Hence ρ ∈ S.



394 Solutions to the exercises

4.1.7 By the remark after Fact 1.2.15, let π be a computable permutation of N such
that Ĵ(x) � J(π(x)) for each x. Let f̂ = f ◦ π. Then f̂ ≡T f , and for each x,
Ĵ(x) = f̂(x) ↔ J(π(x)) = f(π(x)).

4.1.8 By Ex. 1.1.12, let π be a computable permutation of N such that ∀x Ŵx = Wπ(x).
Let ĝ = π−1 ◦ g ◦ π. Then ĝ ≡T g, and for each x, Ŵĝ(x) = Ŵx ↔ Wg(π(x)) = Wπ(x).
4.1.14 ∅′ is of d.n.c. degree relative to A. Hence ∅′ is Turing complete relative to A,
that is, A is in GL1.
4.1.15 See Odifreddi (1989, III.8.16).
4.1.16 Let h be a computable function such that ∀n pA(n) ≤ h(n). To compute f(e)
in the proof of Proposition 4.1.13, we merely need to query the oracle A on numbers
k less than h(g(e)) + 1. Thus f ≤wtt A, and A is wtt-complete by Theorem 4.1.11 and
the proof of 4.1.4.
Section 4.2
4.2.7 In the following let i ∈ {0, 1}. Suppose that Yi is of d.n.c. degree via f i ≤T Yi.
We define partial computable functions αi. By the Double Recursion Theorem we are
given reduction functions pi such that ∀e [αi(e) � J(αi(e))]. We replace (4.1) by

x ∈ We,s −We,s−1 & ∀i ∈ {0, 1}∀tx<t<s f i
t (pi(e)) = f i

s(pi(e)).

When we put x into A for the sake of PSe, we define αi(e) = f i
s(p(e)).

One verifies that A ≤ f i as before.
Section 4.3
4.3.3
(i) ⇒ (ii): Let g(x) = ψ(x) if ψ(x)↓, and g(x) = 0 otherwise. Then g ≤T D.
(ii) ⇒ (i): Let g ≤T D extend the function ψ(x) � µs. x ∈ ∅′

s. Then
∀x [x ∈ ∅′ ↔ x ∈ ∅′

g(x)], whence ∅′ ≤T D.
4.3.4 By the Low Basis Theorem relative to Z, there is a set S of PA degree relative
to Z such that Y ′ ≡T Z′ ≡T ∅′ where Y = S ⊕ Z. Then Y is of PA-degree, so by
Theorem 4.2.1 there is a promptly simple set A ≤T Y , and Z ⊕A ≤T Y is low.
4.3.5. It is sufficient to show that for each n, if a d.n.c. function f does not exceed
2n+1 − 1, then there is a d.n.c. function g ≤T f that does not exceed 2n − 1. By
Fact 1.2.15 we can fix a binary computable function α such that J(α(x, y)) � J(x) +
J(y) + 1 for each x, y. Let f0, f1 ≤T f be functions that do not exceed 2n − 1 such
that f = f0 + f1 + 1. If there is x such that f1(α(x, y)) �= J(y) for each y then let
g = λy.f1(α(x, y)). Otherwise, given x, using f1 as an oracle we can compute the
first s such that f1(α(x, yx)) = Js(yx) for some yx < s (chosen least for stage s). Then
f0(α(x, yx)) �= J(y) for each x. So let g = λx.f0(α(x, yx)).
4.3.6 ⇒: The set of completions of PA can be seen as a Π0

1 class P by 1.8.32. The
theory represented by a set Z ∈ P is {αn : Z(n) = 1} ∪ {¬αn : Z(n) = 0}. Now use
Theorem 4.3.2(iii).
⇐: Given a partial computable {0, 1}-valued function ψ, define a function g ≤T B
as follows: given a number n, if there is k ∈ {0, 1} such that B $ ∃t ψt(ṅ) = k,
then g(n) = k, otherwise g(n) = 0. If ψ(n) = k then ψs(n) = k for some s ∈ N, so
B $ ψṡ(ṅ) = k̇ since PA decides all the ∆0

1 sentences. Thus g extends ψ.
4.3.7 After 4.3.6, it remains to prove the implication “⇒”. For r ∈ N, k ∈ {0, 1}, the
pair 〈r, k〉 is identified with the sentence αr if k = 1, and with the sentence ¬αr if
k = 0. We define a permutation r0, r1, . . . of N. At step i we determine ri and B(ri).
Inductively we are given Fi = (〈r0, B(r0)〉, . . . , 〈ri−1, B(ri−1)〉). We let the variable F
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range over sequences of pairs of this kind, and write dom(F ) for the set {r0, . . . , ri−1}.
(Note that F is a finite assignment in the sense of Section 1.3.)
Step i for even i. We code D(n) into B. By the Gödel incompleteness theorem, from
any F we may effectively determine a sentence that cannot be decided on the base
of PA ∪ F : we find a number c(F ) ∈ N, c(F ) > maxdom(F ) such that, if PA ∪ F is
consistent, then so are PA ∪ F ∪ {αc(F )} and PA ∪ F ∪ {¬αc(F )}. Let ri = c(F ) and
B(ri) = D(n).
Step i for odd i. We ensure that the next sentence left open is decided by B. This
is done in a way similar to (ii)⇒(iii) in the proof of Theorem 4.3.2. Consider the
partial computable binary function ψ given by ψ(F, k) = 1 if we first find a proof of
a contradiction from PA ∪ F ∪ {¬αk}, and ψ(F, k) = 0 if we first find a proof of a
contradiction from PA∪ F ∪ {αk}. Let g ≤T D be a total {0, 1}-valued extension of ψ.
Let ri be the least number not in dom(Fi), and let B(ri) = g(Fi, ri).
Clearly this construction determines a set B ≤T D that is a completion of PA. Also
D ≤T B since each number ri is determined effectively from Fi, and D(n) = B(r2n).
4.3.10 (Kučera) One can extend 1.8.40 to infinite sequences (Bi)i∈N of incomputable
sets. Letting (Bi)i∈N list the incomputable ∆0

2 sets, for each nonempty Π0
1 class P we

obtain a set A ∈ P such that A, ∅′ form a minimal pair. Now let P be the class of
{0, 1}-valued d.n.c. functions. If Z ≥T A is ML-random then Z ≥T ∅′ by 4.3.8, so Z is
not weakly 2-random.
4.3.18 Let B >T ∅′ be a Σ0

2 set such that B′ ≡T ∅′′. By 1.8.46 there is a computably
dominated ML-random set Y such that Y ≤T B. Thus Y is weakly 2-random. If g ≤T Y
is 2-f.p.f then there is 2-d.n.c. function f ≤T Y , whence ∅′′ ≤T B⊕∅′ by Theorem 4.1.11
relative to ∅′, contradiction.

Solutions to Chapter 5
Section 5.1
5.1.4 K(Z �n) =+ KA(Z �n) =+ KA((Z"A)�n) =+ K((Z"A)�n).
5.1.5 Y is 2-random by Exercise 3.6.21, so A forms a minimal pair with both Y and
Z (page 135). Since A ≤T Y ⊕ Z, this implies Y |T Z.
5.1.6 Suppose A is low for K, and consider ΦA

e . For each n, if m = ΦA
e (n), then

K(m) =+ KA(ΦA
e (n)) ≤+ KA(n) ≤+ 2 log n.

Let F (n) = 2max{m : K(m) ≤ 3 log n}. Then F dominates ΦA
e for each A, e as above.

Also, F is ω-c.e., and hence F ≤wtt ∅′ by Exercise 1.4.7(ii).
5.1.11 We ∈ Low(MLR) ↔ ∃R c.e. open

∃k ∀s λ[Rs]≺ ≤ 1− 2−k & ∀z ∀s ∃t ≥ s (KWe(z)[t] ≥ |z| ∨ [z] ⊆ [Rt]≺).
5.1.15 Otherwise, the class is conull by the 0-1 law, and therefore its intersection with
the class of ML-random sets is conull. However, by Theorem 4.3.8, each ML-random
set of PA degree is Turing above ∅′, so by Theorem 5.1.12 this intersection is a null
class.
It is possible to only apply a technique used in the proof of Theorem 4.3.8 for a
simple direct solution. If the class is conull then by the Lebesgue Density Theo-
rem 1.9.4 there is a Turing functional Φ such that ΦX(w) ∈ {0, 1} if defined, and
{Z : ΦZ is total and d.n.c. } has measure at least 3/4. We define a partial computable α
and are given a reduction function p for α:
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If s is least such that 1/4 < λ{Z : ΦZ
s (p(0)) = b}, define α(0) = b. Then ΦZ(p(0)) =

J(p(0)) for more than 1/4 of all sets, contradiction.
5.1.16 Suppose that A = ΦY for a Turing functional Φ, and let c be the constant of
Proposition 5.1.14.
(i) and (ii): Given a c.e. open set R, we will effectively obtain a c.e. open set R̂ such that
λR̂ ≤ 2cλR. If A fails a test (Gn)n∈N for the randomness notion in question, then Y

fails the test (Ĝn+c)n∈N.
For x ∈ {0, 1}∗, let Sx be the effectively given c.e. set which follows the canonical
computable enumeration of {σ : x � Φσ} as long as the measure of the open set
generated does not exceed 2c−|x|. From a c.e. open set R we can effectively obtain a
(finite or infinite) c.e. antichain {x0, x1, . . .} such that R =

⋃
i[xi]. Let R̂ =

⋃
i[Sxi ]

≺.
Since [Sxi ]

≺ ∩ [Sxj ]
≺ = ∅ for i �= j, we have λR̂ =

∑
i λSxi ≤ 2cλR. Moreover, A ∈ R

implies xi ≺ A for some i and hence Y ∈ R̂ by the hypothesis on c. Clearly (Ĝn+c)n∈N

is a test for the same randomness notion that succeeds on Y .
(iii): argue in a similar way but with R and R̂ being Σ0

1(C) classes.
5.1.27 Since Ω ≡T ∅′, such an A is a base for ML-randomness and hence low for K.
5.1.28 Let A be a superlow ML-random set and let Z = A.
5.1.29 Relativizing the Low Basis Theorem to A, one obtains a {0, 1}-valued function f
such that ∀e¬f(e) = JA(e) and (f ⊕A)′ ≡T A′. Let D = f ⊕A.
5.1.30 Z is ML-random relative to Y by Theorem 3.4.6, and hence ML-random relative
to A. Thus A is a base for ML-randomness.
5.1.31 Suppose that A is c.e. and not low for K, ΦZ = A, and ∅′ �≤T Z. We will show
that Z is not ML-random by building a Solovay test (Ed)d∈N for Z.
Define Cη

d,σ as in the proof of Theorem 5.1.22. For each d, the bounded request set Ld

fails to show that A is low for K, so we must have λCη
d,σ < 2−|σ|−d for some η ≺ A

and σ such that Uη(σ) converges. Cη
d,σ keeps asking for new strings, thus, for each d,

there are n and σ such that Z �n∈ Cη
d,σ for some η ≺ A. Now let g(d) be the least

stage s such that Z �n is in Cη
d,σ,s for some n, σ < s and η ≺ As. Then g ≤T Z, so if we

let m(d) � µs. d ∈ ∅′
s, as in the proof of Lemma 3.4.13, then since ∅′ �≤T Z, there are

infinitely many d such that m(d) > g(d). Now define Ed = ∅ if d �∈ ∅′, and otherwise

Ed =
⋃{Cη

d,σ,m(d) : η ≺ Am(d) & σ ∈ {0, 1}∗}.

Then the sets Ed are uniformly c.e. and λEd ≤ 2−d, so ([Ed]≺)d∈N is a Solovay test.
Furthermore, if m(d) > g(d), there are n, σ such that Z �n is in Cη

d,σ for some η ≺ Am(d),
so Z �n is in Ed. Thus Z is not ML-random.
Section 5.2
5.2.7
⇒: If A is low for K then for each n we have K(A�n) =+ KA(A�n) =+ KA(n).
⇐: For each n we have K(n) ≤+ K(A�n) ≤+ KA(n), so A is low for K.
5.2.8 (Stephan) We deal with the case of K; for the case of C one uses the plain optimal
machine V instead of U.
The prefix-free machine M operates as follows on input σ.
(1) Wait for U(σ)↓= n. (2) If t is least such that n ∈ ∅′

t, output At �n.
Since A is wtt-incomplete, there are infinitely many n ∈ ∅′ such that At �n= A �n,
where n enters ∅′ at stage t. Thus KM (A �n) ≤ |σ| for each U-description σ of such
an n, and hence K(A�n) ≤+ K(n).
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5.2.9 (i) For each partial computable one-one f , ∀n K(f(n)) =+ K(n); see Fact 2.3.1.
Also, from A�rn one can compute A�n.
(ii) We have K(A �n) ≤+ K(A �rn) ≤+ K(rn) ≤+ K(n). The increase of the constant
that is hidden in the inequality K(A �n) ≤+ K(n) does not depend on b because it is
due to the first and third inequalities.
5.2.10 To make A not K-trivial, meet the requirements

Rb : ∃n K(A�n) > K(n) + b.

The strategy is as follows. Start by picking a sufficiently large candidate n, and ensure
that K(n) is small by enumerating a request into a bounded request set W . From now
on, change A �n whenever K(A �n) ≤ K(n) + b, but only for up to 2c+b times for
each approximation to K(n). If the approximation to K(n) is final, then this number
of A-changes will suffice by (i) of Theorem 5.2.4. One needs to know in advance how
many A-changes are needed necessary so that n can be chosen large enough.
To ensure that A is low, meet the usual lowness requirements Le from Theorem 1.6.4:
initialize the requirements Rb, b > e, whenever JA(e) newly converges.
Here are the details for the Rb-strategy. Let d be the coding constant for the bounded
request set W given in advance via the Recursion Theorem.
Phase 1. If Rb has been initialized for k times so far, let r = k + b + d + 2. Choose
n = n0 + 2c+br, where n0 is the largest number mentioned so far in the construction.
Put the request 〈k + b+1, n〉 into W and wait for K(n) < r for s such that KS(n) < r.
Phase 2. Up to 2c+b times, whenever K(A�n) ≤ K(n) + b for the current stage s, put
the greatest number in [0, n) − As into A and initialize the requirements Le, e ≥ b. If
K(n) decreases, start counting from 0 again.
Since KS(n) < r, there are enough numbers in [n0, n) available for enumeration in
Phase 2. It is easy to check that W is a bounded request set. Also, there is a computable
bound on the number of injuries to requirement Le, so A is superlow.
5.2.14 (a) For each y ≺ A we have K(xy) ≤ K(x) + K(y) ≤ K(x) + K(|y|) + c ≤+

2K(x) + K(|xy|) + c. The last inequality holds because |y| can be computed from |xy|
and x. (b) For x′ � x we have K(x′) ≤+ K(x) + K(|x′|).
The maximum r0 of the two constants implicit in (a) and (b) is as required.
5.2.15 Assume h is such a function, then h(b) = limshs(b) for an effective approxi-
mation (hs)s∈N. As before d is given. Let r ≥ d be a constant such that ∅ is K-trivial
via r. At each stage s, let bs ≥ r be least such that hs(bs) < 2−d. Whenever s > 0 is
such that bs �= bs−1, then start a new attempt at building 2bs−d K-trivial sets, namely
the sets Ax = 0s1x0∞ where |x| = bs − d. As long as bt = bs at stages t > s, we put
requests 〈Kt(n) + bs − d, Ax �n〉 into L, but we only do this for s < n ≤ t, as the case
n ≤ s is covered by the choice of r. It is now easy to verify that L is a bounded request
set. Eventually bs settles, and we obtain a contradiction as before.
5.2.19 We may assume A and B are co-infinite. Given n, let a ∈ N be the number
with binary representation 1A �n. Likewise define b, c from B �n, C �n. Then c = a + b
or c = a + b + 1. Now argue as in 5.2.17.
5.2.22 Prove that A is C-trivial as in 5.2.3, but with V and C instead of U and K.
5.2.23 An essential feature near the end of the proof is the existence of a computable
upper bound for C(n) that is achieved frequently: for each k some u ∈ [k, f(k)] has
highest C complexity where f is a computable function. This condition fails for K.
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5.2.24 For the implication (i)⇒(ii), let the binary machine M be given by M(∅, n) =
A�n. If d is the coding constant for M then K(A�n| n) ≤ d for each n. The implication
(ii)⇒(iii) is trivial. For the implication (iii)⇒(i), note that C(A �n| n) ≤ b implies
C(A�n) ≤ C(n) + 2b + O(1), and apply Theorem 5.2.20(ii).
Section 5.3
5.3.7 Since K(2j) ≤+ 2 log j, there is an increasing computable function f and a
number j0 such that ∀j ≥ j0 Kf(j)(2j) ≤ j − 1. Enumerate the set A = N in order,
but so slowly that for each j ≥ j0 the elements of (2j−1, 2j ] are enumerated only after
stage f(j), one by one. Each such enumeration costs at least 2−(j−1), so the cost for
each interval (2j−1, 2j ] is 1.
5.3.8 Suppose the limit condition fails for e. Choose s0 such that

∑
s≥s0

∑
x<s c(x, s) [[x is least s.t. As−1(x) �= As(x)]] ≤ 2−e.

To compute A, on input n find s > s0, n such that c(n, s) > 2−e. Then As(n) = A(n).
5.3.9 The condition that Φi is total is Π0

2. Given that Φi is total, the condition that
the sum S in (5.6) is finite is Σ0

2. In that case limsDΦi(s)(x) ↓, so the condition that
Φi is an approximation of Ve is Π0

2.
5.3.17 {Ω∅′} is a Π0

2(∅′) class, and hence Π0
3. Being 2-random, Ω∅′

forms a minimal
pair with ∅′. So each c.e. set A ≤T Ω∅′

is computable.
5.3.18 Let x < s. Let e be least such that Yt(e) �= Yt−1(e) for some t, x < t ≤ s. Then
e ≤ x, so cY (x, s) = 2−e. Also Vx,s = [Yt �e], so c(x, s) = λVx,s = 2−e.
5.3.19 In general, Vx contains strings of a length that exceeds x by far. (For instance,
C could be not contained in any closed null class, in which case we cannot expect that
all the Vx are clopen.) When computing A from a ML-random set Y ∈ C, given an
input x ≥ s0, using Y as an oracle, we need to search for t > x such that [Y �t] ⊆ Vx,t.
We cannot compute a bound on t from x.
5.3.20 (i) Y and ∅′ form a minimal pair by Theorem 5.3.16, so Y and Z form a minimal
pair by Exercise 5.1.30 and the fact that each set that is low for K is ∆0

2.
(ii) By 1.8.43 let Y ⊕ Z be a low2 computably dominated set in 2N −R1. Then Y and
Z are weakly 2-random.
5.3.26 In (i) of the Σ0

1(B) question and in (5.8), add the condition that E permit the
enumeration of x into A, namely Es �x �= Es−1 �x. Claim 5.3.25 requires more work now.
5.3.30 Given i, j, compute k such that Vk = Bi⊕Bj . Let c = 3max(di, dj)+O(1), where
the implicit constant is as in Theorem 5.2.17. Let f(i, j) = 〈k, c〉. Since Vk is K-trivial
via c, we have Bf(i,j) = Vk.
5.3.31 Suppose the effective sequence (en, bn)n∈N shows that the index set of the com-
putable sets is uniformly Σ0

3. Let S = {en : en ∈ Wbn}, then S is computable but
S �= Wen for each n.
5.3.32 By Theorem 5.2.20, A is computable ⇔ A is C-trivial, so it suffices to give a
listing of the C-trivial c.e. sets that includes constants for the C-triviality. To do so
one adapts the proof of Theorem 5.3.28, replacing U by the plain universal machine V.
5.3.38 By Theorem 5.1.9 it suffices to show that there is a c.e. open S such that λS < 1
and RA

1 ⊆ S. Let BA be an antichain that is c.e. in A such that [BA]≺ = RA
1 . Use the
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adaptive cost function cA(x, s) = λ[{y : y ∈ BA[s− 1] with use > x}]≺ and proceed in
a way similar to the proof of 5.3.35.
Section 5.4
5.4.5 A web search (2007) revealed that they are still available. (One bottle will set
you back around US$1500.) Recall that your bottle of wine corresponds to a weight
of 1. In each of the constructions we show that L is a bounded request set. This means
that we never need to pour more than one bottle into the topmost decanter(s).
Section 5.5
5.5.9 Otherwise, for each superlow set A there is a c.e. superlow set C ≥T A by
Proposition 5.3.6. This is clearly not the case: for instance A could be ML-random, and
hence of d.n.c. degree, so C ≡T ∅′.
5.5.10 For (i) use Exercise 1.8.53. For (ii), if a Schnorr random set is low then it is
already ML-random by 3.5.13.
5.5.13 For some c, the set L = {〈log h(m) + c, m〉 : m ∈ N} is a bounded request set.
It shows that each m has a U-description σm such that |σm| ≤+ log h(m). Now argue
as before.
5.5.16 If A is K-trivial then ΩA

U is left-c.e.; since ΩA
U is ML-random, this implies that

A ≤T ΩA
U . If A ≤T ΩA

U then A is a base for ML-randomness and hence K-trivial.
Section 5.6
5.6.6 ⇒: KB(A�n) ≤+ KA(A�n) =+ KA(n).
⇐: For each n, KB(n) ≤+ KB(A�n) ≤+ KA(n). Thus A ≤LK B.
5.6.7 Argue as in the proof of the implication “⇐” of Theorem 5.6.5.
5.6.8 Suppose ∅′ ≤cdom C. Then there is g ≤T C such that g(n) ≥ µs. ∅′(n) = ∅′

s(n)
for each n. Thus ∅′ ≤T C.
5.6.10 Modify the proof of the implication (iii)⇒(i) of Theorem 5.6.9.
The class U1 = {Z : Z ≤L A′} is Π0

1(A′), and hence a Π0
2(A) class of measure 0.A′.

The class U2 = {Z : Z ≤L N−A′} is a Π0
2(A) class of measure 1− 0.A′. Now argue as

before that both 0.A′ and 1− 0.A′ are right-c.e. relative to B′, whence A′ ≤T B′.
5.6.22 Note that ∅′ ≤T A⊕ Z, for otherwise Z ∈ MLRA by Proposition 3.4.13, which
implies Z �≤LR A. By Lemma 5.6.20, A ∈ K(Z), and hence ∅′ ≤T A⊕Z ∈ K(Z). Thus
∅′ ∈ K(Z) by Theorem 5.6.17(iii).
5.6.23 (i) Let S >T ∅′ be a Σ0

2 set in K(∅′). By the Sacks jump theorem (page 160)
there is a c.e. set A such that A′ ≡T S. Then A′ ≡LR ∅′. (ii) This follows from 5.6.21.
5.6.25 We show that A ∈ Low(MLRX). If R ∈ MLRX then R⊕X is ML-random, and
hence ML-random relative to A. By van Lambalgen’s Theorem 3.4.6 relative to A, this
implies that R is ML-random relative to A⊕X.
5.6.32 Let G =

⋂
Un where the Un are uniformly Σ0

2. By the uniformity of the impli-
cation “⇒” in Lemma 5.6.29, each Un is covered by a class Vn of the same measure,
where the Vn are uniformly Π0

2(C). Then
⋂

n Vn is a Π0
2(C) class as required.

5.6.33 Let H =
⋂

n Sn as in Lemma 5.6.29. Similar to 5.6.28, given e, n, the oracle ∅′

can determine clopen classes Cn,e ⊆ Sn such that λ(Sn − Cn,e) ≤ 2−n−e. Let Le =⋂
n Cn,e. Then Le is uniformly Π0

1(∅′), Le ⊆ H, and λ(H − Le) ≤ λ
⋃

n(Sn − Ce,n) ≤
2−e+1. Now L =

⋃
e Le is as required.

Solutions to Chapter 6
6.1.2 Consider a prefix-free machine M such that M(0n1) converges when n enters A.
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6.3.7 Let us first show how to make C incomputable. Run the construction almost as
before, with the only difference that now the marker γ(2i) is used for coding ∅′(i), while
γ(2i + 1) is used to satisfy the requirement C �= Φi (i.e., C is not computed by Φi). At
stage s, in step (1) find the least i such that i ∈ ∅′

s − ∅′
s−1 or Φi(γs−1(2i + 1)) = 0. In

the first case put γs−1(2i)− 1 into C, in the second put γs−1(2i + 1) into C.
To ensure C is of promptly simple degree, meet the requirement PSDi from (6.4) via
γ(2i + 1). When a number x > γs−1(2i + 1) enters Wi at stage s then attempt to put
γs−1(2i + 1) into C.
6.3.16 Use 6.3.15(iv) with A = ∅′ and B = S.

Solutions to Chapter 7
7.1.10 (i) is clear. (ii) Suppose C = αEx + βEy = 0 for α, β ∈ R. Say |x| ≤ |y|, and
choose r ∈ {0, 1} such that xr �� y. Then C(xr) = α2|x| = 0, so α = 0 and hence β = 0.
(iii) B equals the convex combination

∑
|x|=n B(x)2−nEx.

7.1.11 Let S(0k) = 2k and S(x) = 0 for x �∈ {0}∗. For each b of the form 2k we have
λ
{
Z : ∃n S(Z �n) ≥ b

}
= 2−k = 1/b.

7.1.14 We may assume that S(x) > 0 for each x ∈ {0, 1}∗, and S(∅) < 1. We let
R = G+E, where G(x) ∈ N is the current savings and E is a supermartingale bounded
by 2. Whenever a ∈ {0, 1} and E(xa) > 1 then define G(xa) = G(x) + 1, otherwise
G(xa) = G(x). In the former case, for strings y � xa, E begins with capital E(xa)− 1,
using the same betting factors S(yb)/S(y) as S for b ∈ {0, 1}. If y � x then R(y) −
R(x) ≥ E(y)−E(x) ≥ −2. If Z ∈ Succ(S) then limnG(Z �n) =∞, whence limnR(Z �n)
= ∞. We have R ≤T S because the S-computable real numbers form a field.
7.2.5 View We as a subset of {0, 1}∗×Q2 and let Ue = {〈x, q〉 ∈ We : x = ∅ → q ≤ 1}.
The construction in Fact 7.2.4 applied to U = Ue yields a supermartingale approxima-
tion of a c.e. supermartingale Se. If Ue is the undergraph of a c.e. supermartingale S
such that S(∅) ≤ 1 then Se = S.
7.2.7 (i) is immediate by 7.1.7(ii), and (ii) is (almost) trivial. For (iii), let S be the
martingale such that S(0k) = 2k for each k (see the solution to 7.1.11). We show that
limkFS(0k)2−k = 0, whence FS does not multiplicatively dominate S. Note that

FS(0k)2−k =
∑

i<k 2−K(0i)+i−k +
∑

y 2−K(y) [[0k � y]].

Given r ∈ N choose n ∈ N so large that
∑

y 2−K(y) [[0n � y]] ≤ 2−r. Then for each

k > n we have
∑

n≤i<k 2−K(0i)+i−k ≤ 2−r. So FS(0k)2−k ≤ 2−r+2 for large k.

7.2.9 (i) Let nk be the least n be least such that
∑

n≥k 2−f(n) ≤ 2−2k. We may assume
that n0 = 0. If n ∈ [nk, nk+1) let g(n) = f(n)− k.
(ii) Let g be as in (i) for f = fZ . There is a ML-random set Z such that ∀n fZ(n) ≤+

g(n). Then limn(fY (n)− fZ(n)) =∞ whence Z <K Y .
7.3.5 For a string z, the real number rz =

∑
v 2−KM (v) [[z � v]] is computable uniformly

in z. Now use that FSM (x) =
∑

z 2|z|rz [[z � x]].
If Z is not Schnorr random then Z ∈ ⋂

b RM
b for some computable measure machine M

by Theorem 3.5.19. Hence Z ∈ Succ(FSM ).
7.3.6 In (2.16) on page 101 we defined the sets Am,d. If Z fails the law of large numbers
then after possibly replacing Z by N − Z we have ∃∞m Z �m∈ Am,d for some d. Let
R =

⋃
m Am,d, then

∑
x∈R 2−|x| =

∑
m 2−m#Am,d is finite and computable:
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let q = e−2/d2
< 1, then 2−m#Am,d ≤ 2qm by (2.17), hence the tail sum taken from r

on is bounded by 2
∑

m≥r qm = 2qr/(1−q) which effectively tends to 0 with r. Hence Z
is not Schnorr random by 7.3.4.
7.3.11 We may assume that S is Q2 valued. By 7.3.10 the leftmost non-ascending path
for S is computable.
7.4.5 Suppose Y =∗ Z and Bk succeeds on Y . Choose n such that Y (m) = Z(m) for
all m ≥ n, then Bk,n succeeds on Z.
7.4.6 If x = E �n has been defined already wait for B(x0) to converge. If B(x0) ≤ B(x1)
let E(n) = 0, else E(n) = 1. If B(x0) diverges for some x define E = x0∞.
7.5.11 Some set Z ≡T C is weakly 1-generic by 1.8.50, and hence weakly random. Such
a set is not Schnorr random because it fails the law of large numbers.
7.5.12 We meet the usual minimal pair requirements Ne, and requirements

T(k,r) : ∃n Bk(Zr �n)↑ ∨ Bk(Zr) < ∞ (k ∈ N, r ∈ {0, 1}),
where (k, r) denotes 2k + r. We associate strategies α of length |2e| with Ne, and
strategies β of length 2i + 1 with Ti. For such a β, if i = (k, r), the outcome 0 means
that Bk(Zr �n) is defined for arbitrarily large n. The T(k,r) strategy β is as follows:
at stage s let sβ < s be the greatest stage t when β was initialized (namely t = 0
or δt <L β). If n ≥ sβ is least such that Bk(Zr �n 0) > Bk(Zr �n 1) and Zr(n) = 0
(β requires attention) then leave Zr �n unchanged, let Zr(n) = 1 and Zr(m) = 0 for
n < m < s. At stage s let the shortest β ⊆ δs that requires attention act.
For |α| = 2e, a computation ΦZr

e (x)[s] is α-correct at stage s if for each i < e, i = (k, r),
if α(2i+1) = 0 then we have Bk(Zr �n+1) ≤ Bk(Zr �n) for sβ ≤ n < u, where β = α�2i+1

and u is the use of ΦZr
e (x)[s]. Define α-expansionary stages in terms of the maximal

length of agreement ΦZ0
e (x) = ΦZ1

e (x) between α-correct computations.
7.6.25 Suppose ρ = (S, B) succeeds on Z = Z0 ⊕ Z1. We may suppose B(x) > 0 for
each x. Define KL betting strategies ρr = (Sr, Br), r ∈ {0, 1} with total scan rules
and total Br, one of which succeeds on Z. The strategy ρr simulates ρ on the positions
of Zr. It merely reads positions in Z1−r without betting while waiting for converging
computations giving the next position in Zr, and what to bet on them.
Suppose so far it has simulated ρ on α ∈ FinA, α = (〈d0, r0〉, . . . , 〈dn−1, rn−1〉). Let
x = r0 . . . rn−1.
(1) Wait for computations k = S(α) and q = B(x0) to converge. Meanwhile, read new
positions of Z1−r in ascending order without betting.
(2) If k is a position of Zr, bet with factor q/B(x) that the next value is 0, otherwise
do not bet. Now request the value v at position k, let α := α〈k, v〉 and goto (1).
7.6.26 (i) Define A and an auxiliary (possibly finite) sequence of finite assignments
α0 ≺ α1 ≺ . . . such that αi � A for each i. Let A0 = ∅ and α0 = ∅. If αn has been
defined and S(αn)↑ then S(A) is not a set. Otherwise let αn+1 = αn〈S(αn), E(n)〉. If
E(n) = 1 then put S(αn) into A.
(ii) By 7.4.6 there is a computable set E such that ∃n B(E �n)↑ or B(E) < ∞ for some
n. Hence (S, B) does not succeed on A.
7.6.27 ⇐: This is clear since each binary string x can be seen as a finite assigment αx

of the same length, and K(x) =+ K(αx).
⇒: It suffices to show that for each finite assignment α and string z,

K(α) ≤ |α| − b & α � z & |z| = max(dom(α)) + 1 → K(z) ≤+ |z| − b.
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(In z the positions left open by α have been filled in, up to the largest position in
dom(α).) The prefix-free machine M on input τ waits for U(σ) = α where τ = σy.
Then it checks whether |α|+ |y| = max(dom(α)) + 1; if so it prints the string z where
the bits of y in ascending order are used to fill in those positions. For instance, if
α = (〈4, 0〉, 〈0, 1〉) and y = 110 then z = 11100.
7.6.28 Suppose this probability is 1. In the proof of 7.6.24, replace (7.20) by

ni+1 = µn > ni. 2−n#{y : |y| = n & ∃r [0, ni) ⊆ domΘy
S(r)} ≥ 1− 2−i.

Let Ci be the clopen set generated by the y that are left out, then λCi ≤ 2−i. If S does
not scan all places of the set Y then Y ∈ Ci for almost every i. Since (

⋃
i>m Ci)m∈N is

a Schnorr test, Y is not Schnorr random.
If Y passes this Schnorr test then a suitable variant of D succeeds on Y . Suppose
Y �∈ Ci for i ≥ n2r. D only bets from strings of length n2r on. For k ≥ r, one only
considers strings u of length m such that [xu]∩C2k+1 = ∅ in (7.21) and the subsequent
discussion, because ru and wu are only defined for such strings.

Solutions to Chapter 8
Section 8.1
8.1.7 If P ⊆ MLR, each set Z in P ∩ Low(Ω) is 2-random, and hence not Σ0

2.
8.1.8 Let r = limk rk where (rk)k∈N is an effective sequence of rationals. Since
limk ΩX�k

k = ΩX , we have X ∈ Gr ↔ ∀n ∃k ≥ n [abs(ΩX�k
k − rk) ≤ 1/n].

8.1.11 A is low for Ω, hence a base for ML-randomness, and therefore low for K.
8.1.12 Suppose C ≤LR X, Y . We show that C is a base for ML-randomness.
Note that X and Y are 2-random relative to each other by 3.4.9. They are low for Ω,
and hence in GL1. Since Y is 2-random in X, Y is ML-random in X⊕Ω, so by the van
Lambalgen Theorem relative to X, Y ⊕Ω is ML-random in X, and hence ML-random
in C. Finally C ≤T Y ′ ≡T Y ⊕ Ω by Corollary 8.1.10, since Y is low for Ω.
8.1.17 (i) “≤+”: Modify the request operator L in 8.1.16 as follows. For each m, i,
if Ks(X �〈m,i〉) < Ks−1(X �〈m,i〉), put the request 〈Ks(X �〈m,i〉)−〈m, i〉+ c+1, m〉 into
LX

s , as long as the total weight of LX does not exceed 1.
“≥+”: Given m, for some i we want an M -description σ of length ≤+ KX(m) + 〈m, i〉
for X �〈m,i〉. The machine M simulates computations UX(ρ): when a new bit of either ρ
or of the oracle is required, it takes the next bit of its input. If the bit is an oracle bit
it is also printed. If UX(ρ) = m and 〈m, i〉 = use UX(ρ) then for an appropriate σ of
length |ρ|+〈m, i〉 we have M(σ) = X �〈m,i〉. One can verify that M is prefix-free. (With
the modified optimal oracle machine U associate a partial computable scan rule that
works monotonically on both the input and on the oracle side, but switches between
them. Now apply Remark 7.6.18.)
Clearly (i) implies (ii). For (iii), if X ≥LR Y where Y ∈ MLR and X is n-random,
then let S ≡T ∅(n−1) be ML-random. By the van Lambalgen Theorem 3.4.6 we have
S ∈ MLRX , so S ∈ MLRY and hence Y ∈ MLRS . Thus Y is n-random as well.
If X ≤K Y and X is n-random then Y ∈ MLR by Schnorr’s Theorem, hence X ≥LR Y
and Y is n-random.
8.1.20 GL1 ∩ C contains a perfect class by 8.2.20 below, and GL1 ∩ D contains the
perfect class 2N −R∅′

1 of 2-random sets. For C ∩D, by 1.8.44 choose a perfect subclass
of 2N −R1 consisting of computably dominated sets.
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Section 8.2
8.2.9 It suffices to show that some function g ≤wtt ∅′ dominates each computable
function. To this end, let g(n) = max{Φe(n) : Φe(n)↓ & e ≤ n}.
8.2.10 As in Exercise 1.5.5, let h be a computable function such that Y ≤T C implies
Y ≤tt ∅′ with use bound h for each Y . We claim that the ω-c.e. function g(m) =
µs. ∅′

s �h(m)= ∅′ �h(m) dominates each function computed by C.
Assume for a contradiction that the function f ≤T C is not dominated by g. We build a
set Y ≤T C such that Y is not truth-table reducible to ∅′ with use bound h. Let (Ψe)e∈N

be an effective listing of all (possibly partial) truth-table reduction procedures with use
bound h defined on initial segments of N, similar to the listing introduced before 1.4.5.
We define Y (m) inductively. Look for the least e ≤ m such that Ψe,f(m)(∅′

f(m)) �m=
Y �m and r = Ψe,f(m)(∅′

f(m); m)↓, and define Y (m) to be not equal to r. If there is no
such e define Y (m) = 0.
Each e eventually has strongest priority at a stage m such that f(m) ≥ g(m). Since
∅′

f(m) �h(m) is stable, we cause Y �= Ψe(∅′).

8.2.11 A is low for K. If f ≤T A then K(f(x)) ≤+ KA(f(x)) ≤+ KA(x) ≤+ 2|x|. To
obtain a c.e. trace that works for all f on almost all inputs, let Tx = {y : K(y) ≤ 3|x|}
if this set is nonempty and {0} otherwise. Note that #Tx = O(x3 + 1).
8.2.12 We meet the lowness requirements Le from the proof of Theorem 1.6.4. We build
a functional Γ such that f = ΓA is total, and the requirements Rk : ∃n > k f(n) �∈ Vn

are met, where (Vn)n∈N is a universal c.e. trace as in Corollary 8.2.4. The priority
ordering is R0 > L0 > R1 > . . .; if Le (e < k) acts then Rk is initialized. The strategy
for Rk, after being last initialized at stage t, chooses n = 〈t, k〉 as a candidate and keeps
redefining ΓA(n) by changing A, until ΓA(n) �∈ Vn.
The set A is not superlow because the final candidate of Rk depends on when one of
the Le for e < k acts for the last time. This determines #Vn, and hence the number of
injuries to Lk.
8.2.13 Let g(n, s) = max Vn,s where (Vn)n∈N is a universal c.e. trace as in Corol-
lary 8.2.4. Then e ∈ TotA ⇔ ∃x∃s∀t ≥ s

∀n < x use ΦA
e (n)[t] ≤ s & ∀n ≥ x ∃v ≥ t

[
use ΦA

e (n)[v] ≤ g(n, v)
]
.

The implication “⇒” holds since λe. use ΦA(e) is an A–computable function. The con-
verse implication holds because the right hand side implies that for each n there are
only finitely many possibilities for ΦA

e (n)[v].
The Σ0

3 index for TotA is obtained effectively from the computable approximation of A.
8.2.19 Clearly ran F ≤T F because |F (σ)| ≥ |σ| for each σ. To show F ≤T ran F ,
suppose that y = F (σ) has already been determined. Using ran F as an oracle, find the
immediate successors y0 <L y1 of F (σ) in ran F . Then ya = F (σa) for a ∈ {0, 1}.
8.2.20 For the first statement, see the proof of a stronger result, Theorem 8.4.4.
For the second statement, apply the basis theorem for computably dominated sets 1.8.42.
8.2.21 For an interval I = [k, l) we write f � I for the tuple (f(k), . . . , f(l − 1)). Let
n(x) = n if x ∈ In.
⇒: Given f ≤T A let (Tn)n∈N be a c.e. [computable] trace with bound h for the
function λn.f � In. We may assume Tn only contains tuples of length h(n). [We may
also assume that #Tn = h(n).] Suppose x ∈ In, x = min In + i. Let ψ(x) � the i-th
entry of the i+1st elemented enumerated in Tn. If f � In is the i+1st tuple in Tn then
ψ(x) = f(x).
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⇐: Let f̃(x) = f � In(x). Pick a [total] function ψ for f̃ . We may assume that ψ(y) is a
tuple of length h(n(y)) for each y. Let Sx be the union of the sets of entries occurring
in ψ(y) for some y ∈ In(x). Then (Sx)x∈N is a c.e. [computable] trace for f . Note that
#Sx ≤ h(n(x))2.
8.2.24 Modify the proof of Theorem 8.2.23.
⇒: There is a c.e. trace (Wg(n))n∈N with bound λn.2n for f . Define L as before but
using Wg(n) instead of Dg(n). Then L is a bounded request set, and the corresponding
prefix-free machine N satisfies KA

M (y) ≥ KN (y)− 1 for every y.
⇐: Given f ≤T A, define M as before. Then ∀y K(y) ≤ KA

M (y)+b for some b. Let g be
a computable function such that Wg(x) = {y : K(y) ≤ 3 log x}, then #Wg(x) ≤ 2x3 + 1
for each x, and f(x) ∈ Wg(x) for almost all x.

8.2.25 Adapt the proof of 5.2.3. Let M̃ be the computable measure machine relative
to A such that M̃(σ) � A�M(σ) for each σ. Choose a c.m.m. N for M̃ as in 8.2.22, then
for each n we have KN (A�n) ≤+ KM̃ (A�n) ≤+ KM (n).
8.2.31 ∀n K(Z �n| n) ≤+ log n, so K(Z �n) ≤+ K(Z �n| n) + K(n) = O(log n).
8.2.32 Let h̃(n) = �h(n)/3�. There are infinitely many n such that K(n) < h̃(n) and
K(Z �n| n) ≤ h̃(n). For every such n, we have

K(Z �n) ≤+ K(Z �n| n) + K(n) ≤+ h̃(n) + K(n) ≤+ 2h̃(n).
Section 8.3
8.3.5 We show that the function g(n) = µs. Ωs �2n= Ω �2n dominates each function
f ≤T A. Since g ≤wtt Ω ≤wtt ∅′, this implies that A is array computable.
The set L = {〈n + 1, Ωf(n) �2n〉 : n ∈ N} is a bounded request set relative to A of
total weight 1. Let M be the corresponding computable measure machine relative A.
If g(n) ≤ f(n) then KA

M (Ω �2n) ≤ n + 1. If there are infinitely many such n, then Ω is
not Schnorr random relative to A.
8.3.6 (i.a) Let Cn be the n-th clopen set in some effective listing of the clopen sets.
Suppose (Gm)m∈N is a Kurtz test relative to A (Definition 3.5.1). Then there is f ≤T A
such that ∀m Cf(m) = Gm. Let Sm = CJ(m) if J(m) ↓ and λCJ(m) ≤ 2−m; otherwise
let Sm = ∅. Since A does not have d.n.c. degree there are infinitely many m such that
Gm = Sm. So, whenever Z fails (Gm)m∈N then Z fails the Solovay test (Sm)m∈N.
(i.b) Clearly Z �∈ WRD. Thus D �∈ Low(MLR, WR), hence D has d.n.c. degree by (i).
(ii) Let f ≤T A be a d.n.c. function. Let Q = 2N − R1 be a nonempty Π0

1 class of
ML-random sets. Using f compute a sequence d0 < d1 < . . . such that for each n
the Π0

1 class {Z ∈ Q : d0, . . . , dn−1 ∈ Z} is nonempty. Let D = {d0, d1, d2, . . .}. By
compactness {Z ∈ Q : D ⊆ Z} is nonempty.
Suppose we have determined d0 < . . . < dn−1 such that P = {Z ∈ Q : d0, . . . , dn−1 ∈
Z} is nonempty. The set G = {m : ∀Z ∈ P [Z(m) = 0]} is c.e. uniformly in an index
for P . We will determine dn �∈ G.
Since P ⊆ MLR we can by 3.3.3 compute k such that 2−k < λP and hence #G ≤ k.
Identify N∗ with N via some computable bijection. Let (Sy)y∈N∗ be a uniformly com-
putable sequence of sets such that S∅ = N and for each y, (Sy î)i∈N is a partition of
Sy. Let Ψ(y) = i if i is the first number such that some element of Sy î is enumerated
in G. Let α be the effectively obtained reduction function for Ψ. Thus J(α(y)) � Ψ(y)
and hence ¬f(α(y)) = Ψ(y) for each y.
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Now let y0 = ∅ and yi+1 = yî f(α(yi)) for i < k. Clearly G ∩ Syk = ∅ since for each
i < k some element of G is in some Syîr for r �= f(α(yi)) (unless already G∩Syi = ∅).
Choose dn > dn−1 in Syk .
Section 8.4
8.4.6 The markers Fs(σ) for |σ| = 2e are now used to make J

Fs(σ)
s (e) convergent

whenever possible, by the same strategy as before. The markers Fs(σ), |σ| = 2e + 1,
ensure that no path of the function tree F is computable. For each such σ, we satisfy
the requirement

Re : ∃k < |F (σ)| [¬Φe(k) = F (σ)(k)
]
.

At stage s+1, if Re is not satisfied along σ and Φe,s(k) = 0 where k = |Fs(σ)|, then let
Fs+1(σα) = Fs(σ1α) for each string α, so that Fs+1(σ)(k) = 1. As before, for each i,
a value Fs(σ), |σ| = i, can change at most 2i+1 − 1 times. Let Te = {JFs(σ)

s (e) : s ∈
N, |σ| = 2e}, then (Te)e∈N is a c.e. trace with bound λe.22e(22e+1 − 1).
8.4.8 For each σ, X we have KX(JX(U(σ))) ≤+ |σ| if JX(U(σ)) is defined. Hence
K(JA(n)) ≤+ K(n) ≤+ log n + 2 log log n for each n. Thus for sufficiently large b the
c.e. trace given by Tn = {y : K(y) ≤ b + log n + 2 log log n} is as required.
8.4.12 Ve is jump-traceable ⇔ there is a u.c.e. sequence (Tn)n∈N and a computable h
such that ∀n #Tn ≤ h(n) & ∀n∀s∃t ≥ s

[
JVe(n)[t]↑ ∨ JVe(n) ∈ Tn,t

]
). (The implica-

tion “⇒” is clear. For the converse implication, note that if JVe(n)↓ then the condition
implies JVe(n) ∈ Tn.)
For each e ∈ N we can effectively obtain ê such that We = Vê. This proves that the
second index set is Σ0

3. For Σ0
3-hardness it suffices to consider the c.e. case. Apply

Exercise 1.4.23.
8.4.19 The first two are routine. To show A′ �≤JT A, suppose that (Tn)n∈N is a uniform
sequence of c.e. operators. Let Ψ be a Turing functional such that for each X and n we
have Ψ(X ′; n) � min(N−T X

p(n)), where p is a reduction function for Ψ by the Recursion
Theorem. If T A

p(n) is finite then J(A′; p(n)) = Ψ(A′; n) �∈ T A
p(n)). Hence (T A

n )n∈N is not
a jump trace for A′ relative to A.
8.4.20 C is JT -hard ↔ ∃ computable functions g, r

∀i∀s #W C
r(i),s ≤ g(i) & ∀i∀s ∃t > s [J∅′

(i)[t]↑ ∨ J∅′
(i)[t] ∈ W C

r(i),t)].
8.4.21 We say that A ≤CT B if there is an order function h as follows: for each f ≤T A
there is p ≤T B such that ∀n f(n) ∈ Dp(n) and ∀n #Dp(n) ≤ h(n). We may assume
that #Dp(n) = h(n).
Suppose A ≤CT B. If f ≤T A, pick p and h as in the definition for A ≤CT B. There is
a binary function q ≤T B such that q(〈n, k〉) is the k-th element in Dp(n) in order of
magnitude for k < h(n), and q(〈n, k〉) = 0 otherwise.
Suppose further B ≤CT C via bound h, and pick for q a C-computable trace (Ti)i∈N

with bound h. Let Vn =
⋃

k<h(n) T〈n,k〉. Then f is traced by (Vn)n∈N. The common
bound on the traces for all such f is λn. h(n) · h(〈n, h(n)〉).
8.4.26 This is somewhat similar to the implication “⇐” in 8.4.23 but simpler. Suppose
the strictly increasing function h ≤wtt ∅′ dominates each function computable in A. Let
h(e) = limsh(e, s) where h(e, s − 1) ≤ h(e, s) for each s > 0, and h(e, s) changes at
most g(e) times for some computable function g. Suppose now that ΦA is total, and
let ΨA(e) = µs. [ΦA(e) ↓ [s] with A stable below the use]. We define a c.e. trace with
bound g for ΦA. At stage s, if y = ΦA(e)[s]↓ and ΨA(e)[s] ≤ h(e, s) then enumerate y
into Te. If for a stage t > s we have ΦA(e)[t]↑, then the next value ΨA(e) is greater than t
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(here we used that A is c.e., and thus cannot turn back to a previous configuration).
Therefore #Te ≤ g(e). A finite variant of (Te)e∈N is a trace for ΦA.
8.4.36 Given an order function g, let n and f be as in the proof of Claim 2. Let
q(k, t) = A′(k) for k < n. For k ≥ n, if t < f(k) let q(k, t) = 0. If t ≥ f(k), let
q(k, t) = 1 in the case that JA(k)[t]↓, and q(k, t) = 0 otherwise.
8.4.37 A ≤SSL B if for each order function b we have A′ ≤tt B′ with the number of
queries bounded by b. A ≤SJT B if A ≤JT B with bound h for each order function h.
For the implication ≤SSL ⇒ ≤SJT under the given hypotheses, we extend the proof of
the second statement in Theorem 8.4.34 in the same manner as we did in the proof of
Corollary 8.4.18. We write CB(x) instead of C(x), and CB(x | y) instead of C(x | y).
Instead of V2 we use the oracle machine VB,2. We fix a Turing functional Γ such that
B = Γ(A). To define Ψ, in (2) we ask that VΓ(X),2(τ, σ)[s] = x. This yields a machine
with oracle B describing x in terms of nx, σx, and dx. The rest is as before.
Section 8.5
8.5.8 Modify the proof of 8.5.1. Let r(b) = g(1 + log b). Then x0 < x1 < . . . < xk and
∀i < k [c(xi, xi+1) ≥ 1/b] implies k ≤ r(b). For j > 0, P e

j with an allowance of 1/b now
calls P e

j−1 with an allowance of 1/(br(b)). Each run P e
j (b) is reset fewer than r(b) times.

Let be,e = 2e and be,j−1 = be,jr(be,j) if j > 0. Let #Ie = be,0. P e
j is called at most

be,j2−e times, and the argument in Claim 4 shows that the enumeration of A obeys c.
8.5.9 By 1.8.39 let Y be a ML-random ∆0

2 set such that Y �≥T A. Let c be $ the cost
function cY defined in (5.7) on page 189.
8.5.10 The set A obeys cK. Hence A is K-trivial, and therefore jump traceable via a
c.e. trace (Sn)n∈N with bound a computable function b. Let Ψ be the Turing functional
such that ΨX(n) � µs. JX

s (n) ↓ and pick a reduction function q for Ψ. Recall that
ΨA(x)[s] denotes ΨAs

s (x), and similarly for J . We write JA(n)↓↓ [s] if JA(n)↓ [s] and
ΨA(n)[s] ∈ Sq(n),s. We think of JA(n)[s] as certified; note that for at most b(q(n)) times
JA(n) can diverge after being certified. We say that JA(n) ↓↓ [s] newly if JA(n) ↓↓ [s]
but not JA(n)↓↓ [s− 1].
Given an order function h, we will define a jump trace (Tn)n∈N with bound O(h) for A,
which suffices as we can replace h a given h by �√h�. Define a cost function c similar
to (5.7) on page 189: let c(x, s) = 0 for each x ≥ s. If x < s and n < x is least such that
JA(n)↓↓ [s] newly, then let c(x, s) = max(c(x, s− 1), 1/h(n)). It is easy to see that c is
benign, so choose a computable enumeration (Âr)r∈N of A obeying c.
Let s(0) = 0, and s(i + 1) = µt > s(i). At �s(i)= Ât �s(i). We call the s(i) stages. For a
stage s > 0 we denote by s the preceding stage. We define the jump trace (Tn)n∈N as
follows: if y = JA(n)↓↓ [s] with use u and As �u= As �u then put y into Tn at stage s.
Clearly JA(n) ∈ Tn if it is defined.
We claim that #Tn = O(h(n)). Suppose distinct numbers enter Tn at stages t1 < t2 <
. . ., then for each j > 0 we have JA(n) ↓↓ newly at some r (with use ≤ r) such that
tj−1 < r ≤ tj (here t0 = 0). Hence c(x, s) ≥ 1/h(n) for all x, s such that x < r ≤ s.
Since r ≤ tj , by the definition of stages we have Âtj+1 �r �= Âtj �r, which incurs a cost
of at least 1/h(n). Hence the length of the sequence (tj) is bounded by O(h(n)).
8.5.21 Let (Bt)t∈N be an enumeration of ∅′′ relative to ∅′. For each Turing functional Φ
let CΦ = {Z : ∅′′ = Φ(Z ⊕ ∅′)}. Then CΦ is Π0

2(∅′), because

Z ∈ CΦ ↔ ∀n, s ∃t ≥ s Bt �n= Φt(Z ⊕ ∅′)�n.
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Hence CΦ is Π0
3. Also, CΦ is null by Sacks’ Theorem 5.1.12 relativized to ∅′. Each weakly

3-random set Z is 2-random, and hence in GL1. If Z is also high then Z is in some
class CΦ, contradiction.
8.5.22 The ∆0

2 sets form a Σ0
4 class since “Y ≤T ∅′” amounts to the Σ0

4 condition
∃e∀n ∃s∀t ≥ s [Y (n) = Φ∅′

e (n)[t]]. If this class would be Σ0
3 then by Theorem 5.3.15

there would be a low incomputable c.e. set B Turing below each ML-random ∆0
2 set,

contrary to Theorem 1.8.39.
8.5.23 By 1.4.4 Y ∈ H iff there is a truth-table reduction procedure Φ such that
∀n, s ∃t ≥ s [Φ(∅′; n)[t] = Y (n)].
For H̃, use instead the expression ∀n, s ∃t ≥ s [Φ(∅′; n)[t] = Y ′

t (n)].
8.5.24 By 1.8.41 with P = 2N−R1, there is a ML-random set Y such that (Y ⊕B)′ ≤tt

B′ ≤tt ∅′. Then Y ∈ H̃, so A ≤T Y . Therefore (A⊕B)′ ≤m (Y ⊕B)′ ≤tt ∅′.
8.5.25 The second assertion follows from the first by letting P = 2N−R1. For the first
assertion, we combine the framework given by the proof of Theorem 1.8.39 with a cost
function construction of a c.e. K-trivial set B. Instead of working relative to ∅′, we
provide at each stage s approximations of the objects to be constructed. For each i < s
we have an index P i,s for a Π0

1 class. This index eventually stabilizes. We let Y ∈ ⋂
i P i,

where P i is the (class given by the) final index. To ensure that Y is superlow we meet
the requirements

Le : Y ′(e) = limsf(e, s),

where f is a computable binary “guessing” function defined during the construction
such that limsf(e, s) exists and the number of changes is computably bounded. The
strategy for Le controls P 2e+1. Further, we meet the requirements

Se : B �= ΦY
e

by a strategy that controls P 2e+2 and also maintains a candidate xe targeted for B.
If me is the number of times Se has been initialized so far, then the enumeration
of xe is allowed to incur a cost of at most 2−e−me . Whenever the potential cost of
enumerating xe exceeds this quantity, the strategy picks a new large candidate. Such a
change of candidates can occur up to 2me+e times. The priority ordering is S0 > L0 >
S1 > L1 > . . ., and when a strategy changes its Π0

1 class it initializes the strategies of
weaker priority, because the environment they work in has changed.
Construction of B and Y . For a Π0

1 class G we let G[s] be the usual approximation at
stage s by a clopen class given by (1.17). Let P 0,s = P and f(e, s) = 0 for each e such
that 2e + 1 ≥ s.
Carry out substages i for 1 ≤ i < s.
Substage i = 2e+1. If G[s] �= ∅ where G = P 2e,s∩{Y : ΦY

e (e)[s]↑}, then let P 2e+1,s = G
and define f(e, s) = 0; otherwise let P 2e+1,s = P 2e,s and f(e, s) = 1. In this case, if
f(e, s− 1) = 0, initialize the strategies of weaker priority (we say that Le acts).
Substage i = 2e+2. (a) If Se is not satisfied, and xe is undefined or cK(xe, s) > 2−e−me ,
then let xe = 〈s, e〉 and initialize the strategies of weaker priority. We say that Se acts.
(b) If G[s] �= ∅ where G = P 2e+1,s ∩ {Y : ¬ΦY

e (xe)[s] = 0}, let P 2e+2,s = G; otherwise
let P 2e+2,s = P 2e+1,s, put xe into B and declare Se satisfied. We say that Se acts.
Verification. Let Ri be the i-th requirement in the priority list. We show that there
is a computable function g such that Ri acts no more than g(i) times. Suppose we
have defined g(j) for 1 ≤ j < i. Let k =

∑
j<i g(j). If Ri = Le then it acts no more
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than g(i) := k + 1 times. Now suppose that Ri = Se. After each initialization, by
the benignity feature of the standard cost function cK, the candidate xe changes at
most 2e+k times. Thus Re acts no more than g(i) := k(2e+k + 1) times.
If f(e, s) �= f(e, s− 1) then some Ri acts at stage s where i ≤ 2e + 1, so the number of
changes of f(e) is computably bounded. Clearly limsf(e, s) = Y ′(e), so Y is superlow.
Let x be the final candidate of Se. If ¬ΦY

e (x) = 0 then x �∈ B. If ΦY
e (x) = 0 then

eventually the alternative (b) in Se applies at substage 2e + 2, so x ∈ B. In either
case Se is met. Finally, B is K-trivial because its enumeration obeys cK.
Section 8.6
8.6.1 (i) The implications are: “not of d.n.c. degree”⇒ BN1R⇒ “not of PA degree”. To
argue in terms of highness properties, each set of PA degree bounds a ML-random set,
but a low ML-random set is not of PA degree. Each ML-random set is of d.n.c. degree,
but there is a set of d.n.c. degree that does not compute a ML-random set by Ambos-
Spies, Kjos-Hanssen, Lempp and Slaman (2004). (ii) The implications are: computable
⇒ BB2R ⇒ Low(Ω). The second implication is strict because an incomputable set in
Low(MLR) is not computed by a 2-random set. (iii) The minimal conull classes in the
diagram are Low(Ω), “not of PA degree” and “not high”.
8.6.3 We discuss two classes. (1) The sets that are not of d.n.c. degree: by 6.3.14 let
C be a Turing incomplete LR-hard c.e. set. Then C is not of d.n.c. degree. Also C is
high and hence not in GL2. (2) The sets that are computably dominated: such a set
can be of PA degree by 1.8.42. It can fail to be in GL1 by the discussion after 8.4.7.

Solutions to Chapter 9
9.1.2 ⇒: AR = {x : ∀Y � x [Y ∈ R]}.
⇐: The relation B = {〈n, Y 〉 : Y �n∈ AR} is Π1

1, and R = {Y : ∃n 〈n, Y 〉 ∈ B}.
9.1.6 We are given indices e, i for the Π1

1 classes P and Q. Replacing ΦX
e by a linear

order of type |ΦX
e |+ω+1, and ΦX

i by a linear order of type |ΦX
i |+ω+2, we may assume

that sets enter P and Q at different stages. Let P̃ = {X ∈ P : ΦX
i is not isomorphic

to an initial segment of ΦX
e } (X enters P at a stage when it has not entered Q).

Symmetrically, let Q̃ = {X ∈ Q : ΦX
e is not isomorphic to an initial segment of ΦX

i }.
9.1.7 For each pair i, j let n = 〈i, j〉, and let Qg(n) be the Π1

1 class
{X ∈ Qi : ∀Z [Z ∈ Qi ∨ Z ∈ Qj ]}. Now apply 9.1.6 to the classes Qg(n) and Qj in
order to obtain Qg(n) and Qh(n).

9.1.8 Let W̃e be the relation (with domain N) isomorphic to ω + We. Let R be the
well-order isomorphic to the ω-sum of all the W̃e that are well-orders. Then |R| = ωck

1

as each proper initial segment of R is a computable well-order. Since R ≤T O we have
|R| < ωO

1 .
9.1.18 The first statement is clear because 〈n, y〉 is not in the graph of f iff 〈n, z〉
is in the graph for some z �= y. For the second, let g be a computable function such
that 〈n, y, X〉 ∈ S ↔ ΦX

g(n,y)well-ordered. Replace S by the reduction procedure S̃ =
{〈n, y, X〉 ∈ S : ∀z �= y

[
ΦX

g(n,z) is not a proper initial segment of ΦX
g(n,y) & [ΦX

g(n,z)
∼=

ΦX
g(n,y) → y < z]

]}. Then f ≤h A via S̃, and S̃ is as required.

9.1.19 Let ψe = Φ∅
e be the e-th partial computable function. Each Π1

1 set is of the
form ψ−1

e (O) for some total ψe. A total function f is ∆1
1 iff its graph is Π1

1. Let
g(e, x) = min{y : ψe(〈x, y〉) ∈ O} if there is such a y, and g(e, x) = 0 otherwise. Then g
is as required. If O is ∆1

1 then λe. g(e, e) + 1 is ∆1
1, contradiction.
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9.1.24 We may assume the domain of R is N. Note that R ∈ L(ωck
1 ) by 9.1.21. Let

γ = |R|. By transfinite recursion the isomorphism g : γ → R is Σ1 over L(ωck
1 ) (since

g(α) � the least element with respect to R in ω − ran(g �α).) Let f(n) be the ordinal
isomorphic to the initial segment of R given by n. Then f is Σ1 over L(ωck

1 ). Hence by
the Bounding Principle the range of f is bounded, whence γ is a computable ordinal.
9.2.7 By transfinite induction over over L(ωck

1 ), for each Π1
1 set S the function α → Sα

is Σ1 over L(ωck
1 ).

We extend the solution to 2.2.24. We may assume that at most one request enters W
at each stage α. Define the prefix-free Π1

1-machine M as follows. If 〈r, y〉 enters W at
stage α, let k = r + 1. Let iα be the least i such that for X = Wα

∀F ⊆ X finite
[
i2−k ≥ ∑

l,z 2−l [[〈l, z〉 ∈ F ]]
]
.

Note that the foregoing expression in variables X, i, k is ∆0 over L(ωck
1 ). Now as before

let wα be the string w of length k such that 0.w = i2−k. The function taking α to wα

(and to {nil} if no element is enumerated at α) is Σ1 over L(ωck
1 ). Define M(wα) = y.

9.3.10 If S is null then S ⊆ Q. Otherwise, by the Sacks–Tanaka Theorem 9.1.11, S
has a hyperarithmetic member X, so {X} is a Π1

1 null class, whence X ∈ Q.
9.3.11 We claim that G =

⋃
n Q̂g(n), where g is as in Exercise 9.1.7 and Ŝ for a Π1

1

class S is defined in the proof of 9.3.6. Then G is Π1
1 because we uniformly in n have

an index for Q̂g(n) as a Π1
1 class.

If X ∈ G then X ∈ S for some null ∆1
1 class S. Then S = Qg(n) for some n and Ŝ = S.

Now suppose that X ∈ Q̂g(n). If Qg(n) is null we are done. Otherwise let γ be the least
ordinal such that Qg(n),γ is not null. Then γ < ωck

1 by 9.1.15, so X ∈ Q̂g(n),α+1 where
α + 1 < γ. Therefore X is in a null ∆1

1 class by the Approximation Lemma 9.1.4(ii).
9.3.12 ⇒: The class L = {X ⊕ Y : X ∈ RY & Y ∈ R} is Σ1

1. Since RY is co-null for
each Y , by Fubini’s Theorem L is conull. Hence R ⊆ L.
⇐: Let R[Y ] = {X : X ⊕ Y ∈ R}. Then the class {Y : R[Y ] is conull} is Σ1

1 by the
Measure Lemma 9.1.10, and conull by Fubini’s Theorem: otherwise there are rationals
ε > 0 and q < 1 such that λ{Y : λR[Y ] ≤ q} ≥ ε, so that λR =

∫
Y

(λR[Y ])dλ ≤
εq + (1 − ε) < 1. Thus, if Y ∈ R then R[Y ] is conull. Since R[Y ] is Σ1

1(Y ), X ∈ RY

implies X ∈ R[Y ], that is, X ⊕ Y ∈ R.
9.3.13 (i) Since X is ML-random, by Remark 5.6.2 we have X ≤vL Y . Each set S ≥T ∅′

is Turing equivalent to a ML-random set. Thus, by the hint, Y is ∆1
1-random.

(ii) Suppose X is 2-random. Then X is low for Ω. If X ≤K Y then Y ≤LR X by 8.1.17.
Thus, by 8.1.10, we have Y ≤T X ′ and hence Y ≤h X. Now we use Theorem 9.3.9: if X
is Π1

1-random then ωX
1 = ωck

1 , so ωY
1 = ωck

1 . As Y is ∆1
1-random by (i), Y is Π1

1-random.
9.4.4 Modify the proof of Fact 9.4.2. Let f = λn. maxe≤ng(e, n)+1, then f dominates
each hyperarithmetical function. If ωck

1 < ωA
1 then f ≤h O ≤h A.

9.4.5 (L. Yu) Using the Spector–Gandy Theorem 9.1.21, the graphs of functions dom-
inating each hyperarithmetical function form a nonempty Σ1

1 class. Now apply 9.1.16.
9.4.6 By 9.4.3 it remains to prove the implication “⇐”. Since ωZ

1 = ωck
1 it suffices to

show that Z is Π1
1-ML-random. Otherwise Z ∈ ⋂

m Gm for a Π1
1-ML-test (Gm)m∈N. By

the bounding principle 9.1.22 there is α < ωZ
1 such that Z ∈ ⋂

m Gm,α. Let f(m) =
min{r : [Z �r] ⊆ Gm,α}, then f ≤h Z. So choose a hyperarithmetical function g such
that g(m) ≥ f(m) for each m. Let P =

⋂
m[{x : [x] ⊆ Gm,α & |x| ≤ g(m)}]≺, then P

is a closed null ∆1
1 class such that Z ∈ P .
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Hájek, P. and Kučera, A. (1989). On recursion theory in IΣ1. J. Symbolic Logic, 54(2),
576–589.

Harrington, L. and Soare, R. (1991). Post’s program and incomplete recursively enu-
merable sets. Proc. Nat. Acad. Sci. U.S.A., 88, 10242–10246.

Hirschfeldt, D., Nies, A., and Stephan, F. (2007). Using random sets as oracles.
J. Lond. Math. Soc. (2), 75(3), 610–622.

Hjorth, G. and Nies, A. (2007). Randomness via effective descriptive set theory.
J. London Math. Soc., 75(2), 495–508.

Ishmukhametov, S. (1999). Weak recursive degrees and a problem of Spector. In
Recursion theory and complexity (Kazan, 1997), Volume 2 of de Gruyter Ser. Log.
Appl., pp. 81–87. de Gruyter, Berlin.



References 413

Jech, T. (2003). Set theory. Springer Monographs in Mathematics. Springer-Verlag,
Berlin. The third millennium edition, revised and expanded.

Jockusch, Jr., C. (1969). Relationships between reducibilities. Trans. Amer. Math.
Soc., 142, 229–237.

Jockusch, Jr., C. (1977). Simple proofs of some theorems on high degrees of unsolv-
ability. Canad. J. Math., 29(5), 1072–1080.

Jockusch, Jr., C. (1980). Degrees of generic sets. In Recursion Theory: Its General-
izations and Applications, Proceedings of Logic Colloquium ’79, Leeds, August 1979
(ed. F. R. Drake and S. S. Wainer), Cambridge, U. K., pp. 110–139. Cambridge
University Press.

Jockusch, Jr., C. (1989). Degrees of functions with no fixed points. In Logic, method-
ology and philosophy of science, VIII (Moscow, 1987), Volume 126 of Stud. Logic
Found. Math., pp. 191–201. North-Holland, Amsterdam.

Jockusch, Jr., C., Lerman, M., Soare, R., and Solovay, R. (1989). Recursively enumer-
able sets modulo iterated jumps and extensions of Arslanov’s completeness criterion.
J. Symbolic Logic, 54(4), 1288–1323.

Jockusch, Jr., C. and Shore, R. (1984). Pseudo-jump operators II: Transfinite itera-
tions, hierarchies, and minimal covers. J. Symbolic Logic, 49, 1205–1236.

Jockusch, Jr., C. and Soare, R. (1972a). Degrees of members of Π0
1 classes. Pacific J.

Math., 40, 605–616.
Jockusch, Jr., C. and Soare, R. (1972b). Π0

1 classes and degrees of theories. Trans.
Amer. Math. Soc., 173, 33–56.

Kastermans, B. and Lempp, S. (20xx). Comparing notions of randomness. To appear.
Kaye, R. (1991). Models of Peano Arithmetic, Volume 15 of Oxford Logic Guides.
Oxford University Press, New York.

Kechris, A. (1975). The theory of countable analytical sets. Trans. Amer. Math.
Soc., 202, 259–297.

Kechris, A. (1995). Classical Descriptive Set Theory, Volume 156 of Graduate Texts
in Mathematics. Springer–Verlag, Heidelberg.

Kjos-Hanssen, B. (2004). Classes of computational complexity: a diagram. Available
at http://www.geocities.com/bjoernkjoshanssen/bn1g.pdf.

Kjos-Hanssen, B. (2007). Low for random reals and positive-measure domination.
Proc. Amer. Math. Soc., 135(11), 3703–3709.

Kjos-Hanssen, B., Merkle, W., and Stephan, F. (2006). Kolmogorov complexity and
the Recursion Theorem. In STACS 2006, Volume 3884 of Lecture Notes in Comput.
Sci., pp. 149–161. Springer, Berlin.

Kjos-Hanssen, B., Merkle, W., and Stephan, F. (20xx). Kolmogorov complexity and
the Recursion Theorem, journal version. In preparation.

Kjos-Hanssen, B., Miller, J., and Solomon, R. (20xx). Lowness notions, measure, and
domination. In preparation.

Kjos-Hanssen, B. and Nies, A. (20xx). Superhighness. To appear.
Kjos-Hanssen, B., Nies, A. and Stephan, F. (2005). Lowness for the class of Schnorr
random sets. SIAM J. Computing , 35(3), 647–657.

Kjos-Hanssen, B., Nies, A., Stephan, F., and Yu, L. (20xx). Higher Kurtz randomness.
To appear.

Kleene, S. and Post, E. (1954). The upper semi-lattice of degrees of recursive unsolv-
ability. Ann. of Math. (2), 59, 379–407.

Kleene, S. (1938). On notations for ordinal numbers. J. Symbolic Logic, 3, 150–155.
Knuth, D. (1992). Two notes on notation. Amer. Math. Monthly , 99(5), 403–422.

http://www.geocities.com/bjoernkjoshanssen/bn1g.pdf


414 References

Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā Ser. A, 25,
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Notation index

General
The absolute value of a number r ∈ R is denoted by abs(r).
The cardinality of a set X is denoted by #X.
See the preface, page viii, for conventions on variables.

∀∞ for almost every x
∃∞ for infinitely many x
α � β both expressions α, β are undefined, or both are defined with the

same value 4
∅ the empty string
∅ the empty set
#X cardinality of the set X
X"Y (X−Y )∪(Y−X), the elements on which sets X and Y disagree 70
X =∗ Y (X − Y ) ∪ (Y −X) is finite 70
dom ψ or dom(ψ) domain of a function ψ
ran ψ or ran(ψ) range of ψ
N set of natural numbers 0, 1, 2 . . .
R set of real numbers
R+

0 set of non-negative real numbers 68
abs(r) absolute value of r ∈ R

Q2 {z2−n : z ∈ Z, n ∈ N}, set of dyadic rationals 50
〈m, n〉 m + (m + n)(m + n + 1)/2, number coding the ordered pair of m

and n
(〈m, n〉)0 m, the first component of such a pair
(〈m, n〉)1 n, the second component of such a pair
〈n0, . . . , nk〉 〈. . . 〈n0, n1〉, n2〉, . . . , nk〉
X × Y {〈m, n〉 : m ∈ X & n ∈ Y }, cartesian product of X, Y ⊆ N

N[i] N× {i} = {〈m, i〉 : m ∈ N}
A[i] A ∩ N[i]∑

n τ(n) [[θ(n)]] sum of terms τ(n) over all n such that condition θ(n) holds, as
for instance in
∞ =

∑
n 1/n [[n is prime]]. Note that the value of τ(n) can be

repeated,
which is the advantage of this notation over

∑{τ(n) : θ(n)}.

Chapter 1

P k
e e-th Turing program with k inputs 3

Φk
e partial computable function or functional given by P k

e 3, 10
Φe short for Φ1

e 3
We dom(Φe), the e-th c.e. set 6
∅′ {e : e ∈ We}, the halting problem 6
Φe,s(x) = y Pe on input x yields y in at most s steps 7
We,s dom(Φe,s) 7
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Dn the finite set with strong index n 7
≤m many-one reducibility 8
≤1 X ≤1 Y if X ≤m Y via a one-one function f 9
W Y

e dom(ΦY
e ) 10

f ≤T Y f is Turing reducible to Y 10
A ≤T Y the characteristic function of A is Turing reducible to Y 10
JY (e) ΦY

e (e) 10
Y ′ dom(JY ), the Turing jump of Y 10
Y (n) n-th jump of Y , defined by Y (0) = Y and Y (n+1) = (Y (n))′ 11
{0, 1}∗ set of strings of zeros and ones 12
στ concatenation of σ and τ 12
σa σ followed by the symbol a 12
σ � τ σ is a prefix of τ 12
σ | τ neither of σ, τ is a prefix of the other 12
σ <L τ σ is to the left of τ , that is, ∃ρ [ρ0 � σ & ρ1 � τ ] 12
|σ| the length of σ 12
∅ the empty string, that is, the string of length 0. 12
Z �n Z(0)Z(1) . . . Z(n− 1) 12
log n max{k ∈ N : 2k ≤ n} 13
log2 n usual real-valued logarithm of n in base two 13
ΦY

e,s(x) = y (see page 13)
ΦY

e,s(x)↓ ΦY
e,s(x) is defined 13

use ΦY
e (x) 1+largest oracle question asked during the computation

ΦY
e (x) 13

Φσ
e (x) = y ΦF

e (x) = y for F = {i < |σ| : σ(i) = 1}, with use ≤ |σ| 14
f ≤wtt Y f is weak truth-table reducible to Y 14
f ≤tt Y f is truth-table reducible to Y 14
A⊕B {2n : n ∈ A} ∪ {2n + 1: n ∈ B}, effective disjoint union 15
degr(X) r-degree of the set X for a reducibility ≤r 16
E[s] value of the expression E at the end of stage s 18
Ve ω-c.e. set with index e 20
Σ0

n set, Π0
n set (see 1.4.10) 21

Σ0
n(X) set, etc. (see 1.4.11) 22

∆0
n Σ0

n ∩Π0
n 23

lown the class of sets C such that C(n) ≡T ∅(n) 26
GL1 the class of sets A such that A′ ≡T A⊕ ∅′ 26
highn the class of sets C such that C(n) ≥T ∅(n+1) 28
GL2 the class of sets A such that A′′ ≡T (A⊕ ∅′)′ 29
Y |T Z Y �≤T Z & Z �≤T Y 30
B the complement N−B of a set B ⊆ N 38
pS function that lists S in the order of magnitude 38
Bat s Bs −Bs−1, for a computable enumeration (Bt)t∈N and

s > 0 40
2N Cantor space, the space of functions Z : N → {0, 1} with the

product topology 45
[y] {Z : y � Z}, cylinder given by the string y 47
Paths(B) paths of a binary tree B 47
TP {x : [x] ∩ P �= ∅}, tree corresponding to a closed set P 47
x is on P x ∈ TP 48
AR {x : [x] ⊆ R}, set of strings corresponding to the open set R 48
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[S]≺ {X ∈ 2N : ∃y ∈ S y ≺ X}, the open set generated by S 48
0.Z

∑
i∈Z 2−(i+1), the real number corresponding to a co-infinite

set Z 50
Q2 {z2−n : z ∈ Z, n ∈ N}, the set of dyadic rationals 50
Σ0

n, Π0
n relation (see 1.8.55) 64

NN Baire space, the space of functions f : N → N with the product
topology 67

Γf {〈n, f(n)〉 : n ∈ N}, the graph of a function f 67
D : N∗ → N function D(n0, . . . , nk−1) =

∏k−1
i=0 pni+1

i , where pi is the i-th
prime number 67

Seq the range of D, the sequence numbers 67
µ(C | σ) µ(C ∩ [σ])/µ[σ], local outer measure 69
λ uniform (outer) measure 70
C | σ {X : σX ∈ C} for a class C and a string σ 71

Chapter 2

g ≤+ f ∃c ∈ N∀n [g(n) ≤ f(n) + c] for functions f, g 75
g =+ f g ≤+ f ≤+ g 75
g = O(f) ∃c ≥ 0∀∞n [abs(g(n)) ≤ c abs(f(n))] 75
f ∼ g limnf(n)/g(n) = 1 75
CM (x) min{|σ| : M(σ) = x} for machine M 76
CM,s(x) min{|σ| : Ms(σ) = x} 77
V plain optimal machine given by V(0e−11ρ) � Φe(ρ) 76
C(x) CV(x) plain descriptive complexity of string x 77
x is d-compressibleC C(x) ≤ |x| − d for x ∈ {0, 1}∗ and d ∈ N 78
Cprd set of d-compressibleC strings 78
Cg(x) min{ |σ| : V(σ) = x in g(|x|) steps}, time-bounded version

of C 81
KM (x) CM (x) for prefix-free machine M 83
ΩM

∑
σ 2−|σ| [[M(σ)↓]] halting probability of the prefix-free

machine M 84
U optimal prefix-free machine of Theorem 2.2.9 85
K(x) KU(x) 85
Ks(x) min{|σ| : Us(σ) = x} 86
wgtW (S)

∑
ρ,x 2−(ρ)0 [[ρ ∈ W & x ∈ S & (ρ)1 = x]], weight of S

under W 87
PM (x)

∑
σ 2−|σ| [[M(σ) = x]] = λ[{σ : M(σ) = x}]≺, probability that M

outputs x 91
V2 optimal binary machine given by V2(0e−11σ, y) � Φ2

e(σ, y) 92
C(x | y) min{|σ| : V2(σ, y) = x} conditional C-complexity 92
U2 optimal prefix-free machine when fixing the second

component 92
K(x | y) min{|σ| : U2(σ, y) = x} conditional K-complexity 92
x∗ a shortest U-description of x (see 2.3.2) 93
x is d-incom- K(x) > |x| − d for x ∈ {0, 1}∗ and d ∈ N 98
pressibleK

x is strongly K(x) > |x|+ K(|x|)− d 98
d-incompressibleK
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Chapter 3

MLR class of Martin-Löf random sets 106
non-MLR 2ω −MLR 106
RM

b [{x ∈ {0, 1}∗ : KM (x) ≤ |x| − b}]≺ for machine M
and b ∈ N 107

Rb RU

b 107
Ω ΩU = λ[dom U]≺ 109
Ωs λ[dom Us]≺ 109
β ≤S α ∃d ∈ N ∃γ left-c.e.

[
2−dβ + γ = α

]
, Solovay reducibility 113

KMA(x) |σ| for shortest string σ such that MA(σ) = x 121
KA(x) KUA(x) 121
ΩA

M λ(dom MA) 121
ΩA ΩA

U = λ(dom UA) 122
RA

b [{x ∈ {0, 1}∗ : KA(x) ≤ |x| − b}]≺ 122
W2R class of weakly 2-random sets 134
Low(Ω) {A : Ω ∈ MLRA}, the sets that are low for Ω 140

Chapter 4

PA Peano arithmetic 156
A ∼1 B A = B 160
A ∼2 B A =∗ B 160
A ∼n B A(n−3) ≡T B(n−3) for n ≥ 3 160

Chapter 5

Low(C) class of sets A such that CA = C, for operator
C : P(N)→ P(P(N)) 163

Low(MLR) class of sets A such that MLRA = MLR 163
M class of sets that are low for K 165
SΦ

A {Z : A = ΦZ} for Turing functional Φ 169
SΦ

A,n [{σ : A�n� Φσ}]≺ 169
Low(C,D) {A : C ⊆ DA} for randomness notions C ⊆ D 174
K class of K-trivial sets 176
Tb {z : ∀u ≤ |z| [K(z �u) ≤ K(u) + b]}, tree for K-trivials with

constant b 178
G(b) #Paths(Tb), the number of sets that are K-trivial via b 179
cK(x, s)

∑
x<w≤s 2−Ks(w), the standard cost function 186

cM,A(x, r)
∑

σ 2−|σ| [[MA(σ)[r − 1] ↓ & x < use MA(σ)[r − 1]]], an adaptive
cost function 198

A ≤LK B ∃d∀y [KB(y) ≤ KA(y) + d], a weak reducibility 225
A ≤LR B MLRB ⊆ MLRA, a weak reducibility 225
A ≤K B ∃b ∀n K(A�n) ≤ K(B �n) + b 225
M(X) {A : ∃d∀y KX(y) ≤ KA⊕X(y) + d} = {A : A⊕X ≡LK X} 231
Low(MLRX) {A : MLRA⊕X = MLRX} = {A : A⊕X ≡LR X} 231
K(X) {A : ∃b ∀n [KX(A�n) ≤ KX(n) + b]} 231
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Chapter 6

γY (x) use ΓY (x), for a Turing functional Γ 240
use (e ∈ W C) use ΦC(e), where the functional Φ defines the c.e.

operator W 248

Chapter 7

S(Z) supnS(Z �n), for a supermartingale S 260, 262
Succ(S) {Z : S(Z) =∞}, the success class of S. 260, 262
BC(x) λ(C | x), the martingale associated with a measurable

class C 261
FS

∑
y 2−K(y)Ey, a universal c.e. martingale 266

CR class of computably random sets 268
PCR class of partial computably random sets 273
Bk a martingale copying Φk as long as possible 273
TMG {k : Bk total} 274
Bk,n a supermartingale copying a scaled version of Bk from length n

on 274
Gn the martingale such that Gn(x) = 1 for |x| < n and Gn(x) = 0

else 274
Ik [nk, nk+1) in the context of the sequence n0 < n1 < . . . 275
Int(z) the number k such that |z| ∈ Ik 275
B∗

k Bk,nk+1 275
yL

x,k+1,0, y
L
x,k+1,1 extensions of string x of length |x|+ k + 1 defined in (7.12) 282

Z � I the string Z(n) . . . Z(m− 1), where I = [n, m) 290
FinA set of finite assigments α = (〈d0, r0〉, . . . , 〈dn−1, rn−1〉) 297
α � Y Y (di) = ri for each i < n 297
λvC short form of λ(C | v) defined in Chapter 1 323
H� {A : A c.e. & ∀Y ∈ H ∩MLR [A ≤T Y ]} for a class H 356

Chapter 9

X1 ⊕ . . .⊕Xm {mz + i : i < m & z ∈ Xi} 366
|R | ordinal α such that (α, <) is isomorphic to R 367
ωY

1 least ordinal not computable in a set Y 367
ωck

1 least noncomputable ordinal, ω∅
1 367

Bα the elements of a Π1
1 relation B that enter before stage α 368

O {e : We encodes a well-order} 369
Qp the Π1

1 class with index p 368
f ≤h A f ∈ ∆1

1(A), f is hyperarithmetical in A 370
≤fin-h finite hyperarithmetical reducibility 370
L(α) level α in the constructible hierarchy 371
LA L(ωA

1 , A) 371
U optimal prefix-free Π1

1-machine 373
K(y) min{|σ| : U(σ) = y} 373
Kα(y) min{|σ| : Uα(σ) = y} 373
MLR class of Π1

1-ML-random sets 376
Ω

∑
σ 2−|σ| [[U(σ)↓]], the halting probability of U 376

≤wtt-h ≤fin-h with the use function computably bounded 376



Index

∆1
1
class, 365

measure of, 370
dominated, 366
relation, 365, 366
set, 365, 366

∆1
1(A) function, 370

∆0
2 set, 18

∆0 separation, 371
Π0

1 class, 46, 53, 65
examples of, 55
in Baire space, 68, 138
index for, 55
measure of, 72, 116
perfect, 311

Π1
1-random cuppable, 384

Π0
2
class, 65

presentation of, 66
singleton, 2, 66, 104

non-arithmetical, 66
Π0

n

class, 64
complete, 22
relation, 64

relativized, 66
set, 21
singleton, 66

Π1
1 class, 366
largest countable, 380
largest null, 105, 380
largest thin, 380
measure of, 370

Π1
1 relation, 365, 366

Π1
1 set, 1, 365, 366
analog of c.e. set, 365, 371
complete, 67, 368, 369

Σ1 over LA, 372
Σ0

1 class, 53, 65
Σ0

n

class, 64
complete, 22
relation, 64

relativized, 66
relation on sets, 366
set, 21

Σ1
1 relation, 366

Σ1 bounding, 371

µ-measurable set, 68
σ-algebra, 69
1-generic set, 63, 126, 146, 382

existence, 64
for higher computability, 382
is generalized low, 64
weakly, 62, 128, 382

is hyperimmune, 62
is weakly random, 128
left-c.e., 62
lowness for, 318

2-random, see random, 2-

accounting method, 171
almost everywhere dominating, 236
Ample Excess Lemma, 267
arithmetical hierarchy, 23
arithmetical set, 1, 21
array computable, 313, 315, 343

implied by Ω ∈ SRA, 326
implied by Low(Ω), 326
implies GL2, 315

Arslanov, 148
autoreducible set, 119

and hat game, 119
each ranked set is, 129

axiom of choice, 367

Baire category theorem, 62
Baire space, 17, 50, 62, 67
Barmpalias, 230, 233
base for ML-randomness, 165, 170, 210,

328
Π1

1-version, 377
basis theorem

and PA sets, 61
and sets of PA degree, 156
for Π0

1 classes, 57
for computably dominated sets, 19, 60,

403
Gandy, 370
Kreisel, 57, 58, 135
low, 57

avoiding upper cone, 59
low for Ω, 304
Sacks–Tanaka, 370
superlow, 58
uniformity of, 57

Bedregal, 323, 326
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Bernoulli scheme, 73
betting strategy, 259, 262, 268, 286

KL, 297
Achilles heel of, 298

permutation, 294, 296
Bickford, 241
Bienvenue, 138, 305
binary expansion, 50
Binns, 235
Biondi–Santi Brunello wine, 205, 210
bit, 12, 17
Boolean algebra, 46

countable dense, 46
of clopen sets, 49

Borel class, 66, 68, 365, 369
is measurable, 70

Borel code, 1, 369
Borel operator, 233
bounded request set, 87, 90, 91, 114, 171,

185, 199, 214, 308
Π1

1, 373
total weight of, 87

Bounding Principle, 365, 372
box promotion method, 348, 353, 356

shrinking boxes, 355
vs. decanter method, 356

C (plain complexity), 74, 106
characterization, 77
conditional, 92, 106, 122
continuity, 80, 95
dips, 83, 105
growth, 80
incomputability, 82
interaction with K, 94
time-bounded version, 81, 82, 131, 139

C-trivial set, 177, 182
is computable, 182

c.e., see computably enumerable
c.e. open set

index for, 54
measure of, 72
with computable measure, 72

c.e. operator, 10, 248
inversion of, 249
language for building, 248

c.m.m., see machine, computable measure
Calhoun, 150
Calude, 81, 113, 115, 158
Cantor space, 17, 45
cappable, 37, 41, 243
capricious destruction, 245
Chaitin, 75, 109, 177

halting experiment, 83
change set, 19, 187

charity, 262
Chebycheff inequality, 73, 101
Chernoff bounds, 101
Cholak, 235, 258, 348, 352
Chong, 379, 381
Church, 288
Church–Mises–Wald stochastic, 289
Church–Turing thesis, 3

with oracle, 10, 239
class, 45
class of similar complexity, 1
clearing computations, 245
clopen set, 45, 49

strong index for, 49
closed set, 45, 47

in Baire space, 67
coding constant, 76, 77, 84, 88, 99

for prefix-free machine, 84, 308
for request operator, 308
given in advance, 90

Coding Theorem, 91, 94, 375
Π1

1-version, 375
Cohen genericity, 62
Cole, 343
collection scheme

Σ1, 192
combinatorial, 322
compact space, 48
complete

Turing, 32, 37, 145, 148, 183, 238
effectively simple is, 149
Schnorr trivial can be, 321

complete set
r, 9
many-one, 9, 22
truth-table, 82
weak truth-table, 40, 81, 82

Completeness Criterion, 148, 149, 151
complexity

computational, 1, 18, 20, 64
absolute, 2, 117
relative, 2, 8, 117
vs. degree of randomness, 364

descriptive, 1, 18, 20, 64, 66
of classes, 64
relative, 2

compressibleC , 78, 98
compressibleK , 98
compression function, 137
computable

relative to a set, 10
computable approximation, 18

chunked, 195
computable enumeration, 7, 193
computable function, 3
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computable ordinal, 365
computable measure machine, see

machine, computable measure
computable permutation, 34
computable randomness, 130
computable set, 6
computably approximable from above, 77,

86
computably dominated, 1, 24, 27, 60, 135,

141, 163, 164, 192, 260, 309,
312, 316, 318, 321–323, 366

and generalized low, 311, 318, 338, 364
and low, 2
and low for Ω, 309
arithmetical complexity, 65
as Low(C), 163
basis theorem, 59, 60
generalized low, 143
is GL2, 28
is array computable, 315
ML-random, 364
not of d.n.c. degree, 318
of PA degree, 156
perfect class of, 61, 311, 318
same as tt-top, 28
uniformly, 28
weakly random is weakly 2-random,

128, 135, 136
computably enumerable, 6

construction of a set, 40
definition of a set, 40
relative to a set, 10
uniformly, 6

computably inseparable sets, 159
computably random, see random,

computably
computably traceable, see traceable,

computably
constructible hierarchy, 371
continuous, 126

function, 49
lower semi-, 126

for ΩM , 126
upper semi-, 126

controlled risk strategy, 202, 310, 330, 335
conull class, 25, 70
Cooper Jump Inversion Theorem, 133
cost function, 186

cY for ∆0
2 set Y , 189

adaptive, 164, 186, 198, 200, 344
and injury-freeness, 200
benign, 190, 348, 352, 359

and s.j.t., 352, 357
has limit condition, 352

construction, 184

criterion for K-triviality, 188
method, 135, 176, 184, 348

for ∆1
1 sets, 185

for K-trivials, 195
necessity of, 201, 215

monotonic, 186
obeying a, 186
standard, 40, 186, 215
with limit condition, 185–193, 198, 199

countable additivity of measure, 70
countable subadditivity of measure, 68
counting condition, 77, 78, 86
covering procedure, 167, 223, 226, 235,

302, 323
table, 229

creative set, 37, 43, 113
first-order definition, 44, 335

Csima, 183
cuppable, 242
cupping partner, 359
cylinder, 47

and Baire space, 67
and uniform measure, 68
basic open, 47–50, 62, 66

d.n.c., see diagonally noncomputable
d.n.c. degree, set of, 144, 311

characterization, 145, 147
infinite subset of ML-random is, 146,

326
decanter method, 200, 294, 356
decanter model, 205

picture of, 206
deficiency set

of machine, 81
deficiency stage, 39
degree

r-, 8, 16
non-cappable, 37
promptly simple, 37

degree invariance, 35, 231, 233, 249, 253
degree structure, 20
delay function, 243, 246
Demuth, 141, 158
Demuth random, see random, Demuth
dense along a set, 63
dense set, 62
dense simple, 81
description

M -, 76
close, 46
of string, 74
prefix-free

splitting off, 94, 95, 109, 138
description system, 1, 18, 21

for sets, 103
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for strings, 74
using language of arithmetic, 21
via computable approximation, 21

diagonalization, 30, 43
witness for, 30

diagonally noncomputable, 144
n-, 160, 161
two-valued, 55, 156, 304

discrete c.e. semimeasure, 90
Dobrinen, 235
domination, 24, 26, 75, 225, 312, 313
domination lemma for martingales, 279
Downey, 131, 221, 253, 318, 319, 348, 352
dyadic rational, 50

effectively simple set, 32, 149
is Turing complete, 32, 149

exact pair, 219

f -small, 226
f.p.f., see fixed point free
facile, 276, 313, 320
feasible computability, 81
Figueira, 120, 149, 339, 344
filter in Boolean algebra, 46
finite assignment, 11, 17, 297, 395

positions of, 297
finite extension method, 30, 62
finite variant of a set, 71
first-order definable

in E, 37, 44
in RT , 37

fixed point, 5
fixed point free, 146

n-, 146, 160–162, 364
formula

∆0, 371
Σ1, 371

Franklin, 321
Friedberg, 30, 35, 149

jump inversion theorem, 336
Friedberg–Muchnik theorem, 30, 35, 150

and IΣ1, 192
injury-free proof, 150, 152, 154

Fubini’s Theorem, 25, 409
function

∆1
1, 20

ω-c.e., 20
computable, 3
growth rate of, 75
partial computable, 3

function tree, 317, 318, 337

Gödel, 5, 118
Gács, 91
gambler, 260

Gandy, 370
garbage, 203, 207, 254, 329, 356

quota, 204, 210, 211
generalized low1, GL1, 26, 140, 142, 143,

166, 304, 311, 318
and relative ML-randomness, 124
can be high, 124
computably dominated, 311

generalized low2, GL2, 29
generic set for perfect trees, 383
global view of sets, 16, 46, 66, 367
goal of a procedure, 204
golden run, 214
golden run method, 176, 195, 200, 208,

209, 214, 215, 294, 356, 377
Main Lemma on, 201, 215, 216, 220,

221, 223, 224, 228
graph of a function, 10
Greenberg, 189, 235, 258, 312, 318, 326,

348, 352
Griffiths, 131, 319

Hájek, 192
half-jump, 253
halting probability, 84, 108, 109, 131, 318

Π1
1-version, 376

halting problem, 6, 10, 11, 18, 21, 31, 57,
59

Harrington, 34, 44, 150, 242
hat game, 119
high set, 1, 24, 28, 130, 251, 256, 272, 361

c.e. incomplete, 249
c.e. minimal pair of, 252, 258, 287
for higher computability, 382
non-cuppable, 242
that is not superhigh, 257

highn set, 28
relative to an oracle, 252

higher computability theory, 104,
105, 365

highness property, 24, 190, 238
for weak reducibility, 25, 225, 256, 363
separating, 256

Hirschfeldt, 170, 190, 192, 221, 328, 360
Hjorth, 366, 376
hungry set, 172, 210, 334
hyp-dominated, 381
hyp-high set, 382
hyperarithmetical reducibility, 370

finite, 370, 371
hyperarithmetical set, see ∆1

1 set
hyperimmune set, 27, 37, 139
hyperimmune-free degree, set of, 27
hypersimple set, 37, 39
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i-set, 204
ideal in Boolean algebra, 46
ideal in uppersemilattice, 16, 219, 222

principal, 16
ideal of strings, 48, 54
incompleteness theorem, 5, 118
incompressible string, 74, 77, 78

most are, 98, 103
incompressibleC , 78, 136
incompressibleK , 98, 100, 105

strongly, 98, 137, 308
incomputable, 6
independent events, 227, 325
index

∆0
2, 19

ω-c.e., 20, 196
for Π0

1 class, 55
for Π1

1 relation, 368
for Π1

1 set, 368
for c.e. open set, 54
for c.e. set, 7
for object, 7
for Turing functional, 3
for ∆1

1 class, 369
for ∆1

1 set, 369
index set, 23

uniformly Σ0
3, 198

indifferent set, 120
induction scheme, 192

∆0, 192
Σ1, 192

initial segment complexity, 105, 129, 137,
145, 147, 163, 259, 272, 275,
289, 295, 308, 320, 321

slowly growing, 275
injury to a requirement, 33
interval Solovay test, 112
introreducible set, 40, 159
inversion

of c.e. operator, 238
Ishmukametov, 343
isolated point, 56

Jech, 365, 368
Jockusch, 26, 39, 57, 63, 157, 249
JT -hard

forms Σ0
3 class, 342

JT -reducibility, 340
jump inversion, 336
jump operator, 10, 26, 58, 147, 304

definable in Turing degrees, 159
not one-one on degrees, 26

Jump Theorem of Sacks, 15, 160, 253, 399
jump traceable, 302, 315, 336, 342

by an oracle, 340
characterization via C, 82, 339, 341

closed downward, 337
implies generalized low, 337
strongly, 238, 336, 344

can be promptly simple, 344
closure under ⊕, 357
obeys benign c.f., 352, 357

versus superlow, 342
with bound, 336

K (prefix-free complexity), 74, 82, 85, 105
conditional, 92
incomputability, 82
interaction with C, 94
with oracle, 121

K-trivial set, 34, 40, 92, 144, 163, 164,
176, 238, 301, 343

Π1
1-version, 377
can be not ∆1

1, 377
can be not s.j.t., 349
can be promptly simple, 188
closure properties, 181, 215
constant for, 196
cost function construction, 153
is ∆0

2, 177
is below c.e. K-trivial, 215, 218
is low for K, 200, 208, 335
is superlow, 178, 207, 215
listing with constants, 197

≤K (preordering), 225
implies ≤vL, 226, 309

K-trivial set, 377
at η, 377

König’s Lemma, 47, 67
Kechris, 380
Khoussainov, 113
Kjos-Hanssen, 133, 167, 223, 235, 323,

326, 340, 363
Kleene, 4, 10, 29
Kleene–Brouwer ordering, 368
Kleene–Post Theorem, 30, 35
Kolmogorov, 75, 297
Kolmogorov–Loveland (KL) betting

strategy, 297
Achilles heel of, 298

Kraft–Chaitin Theorem, 86
Kurtz, 63, 140, 234
Kurtz test, 128, 129

definition, 128
Kučera, 34, 40, 61, 113, 167, 170, 219,

253, 256
Kučera’s Theorem, 151, 165

for ML-random, 153
for pairs of sets, 154
for two valued d.n.c., 152
for weak truth-table, 152
uniform versions, 152, 153
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with permitting, 153
Kučera–Gács Theorem, 117

Lachlan, 148
LaForte, 319, 321
law of iterated logarithm, 133
law of large numbers, 17, 109, 129, 270,

401
fails for weakly 1-generic, 128

Lebesgue Density Theorem, 69, 168
left-c.e. set, 51
length-of-agreement function, 246
Lerman, 235
Levin, 75, 90, 93, 95, 105
Lewis, 230, 231
lexicographical order, 12

length, 13
limit condition, 185, 186
Limit Lemma, 19–21, 23, 29, 32, 160, 163
LK-reducibility, 225

equivalence with ≤LR, 227
local view of sets, 16, 66, 73
Loveland, 183, 297
Low Basis Theorem, 46
low cuppable, 42, 233, 238, 242–244
low for ωck

1 , 370
low for Ω, 364

same as weakly low for K, 305
low for Ω, 140, 301, 304

basis theorem, 301, 304
within ∆0

2, 301
low for ωck

1 , 367
low for C, 183, 345
low for K, 165, 322

each K-trivial is, 207
is generalized low, 166
is superlow, 166
Muchnik construction, 165, 199
weakly, 305

low set, 1, 24, 26, 193
can be not superlow, 242
relative to an oracle, 248, 249

lown set, 26
relative to an oracle, 252

lowly for C, 346
lowness

for 2-randomness, 232, 233
for ML-randomness, 165, 167, 215
for operator C, 163
for pairs of randomness notions, 174,

322
for Schnorr randomness, 238
for weak 1-genericity, 318
for weak 2-randomness, 165, 215
for ∆1

1-randomness, 366, 383

for Π1
1-ML-randomness, 377

for Π1
1-randomness, 366, 384

lowness index, 173, 218
lowness property, 24, 140, 163, 184, 234,

238, 301
for weak reducibility, 25, 225, 363
in a Π0

1 class, 57
in higher computability, 366
on c.e. sets, 315
orthogonal, 25, 309

LR-base for ML-randomness, 231
LR-reducibility, 225

characterization, 226
degrees countable, 233
equivalence with ≤LK , 225, 227
lower cones are null, 230
size of lower cones, 233

Lusin separation theorem, 369

Maass, 41
machine, 75

Π1
1, 373
optimal prefix-free, 373

binary, 92
optimal, 92

coding constant for, 76
computable measure, 131, 132, 301,

318, 323, 383
lowness for, 313, 318
relative to an oracle, 318

copying, 76, 84, 139
optimal, 76, 103
optimal prefix-free

deficiency set of, 81
oracle, 121
prefix-free, 82, 83, 87

for a bounded request set, 88
prefix-free in second component, 92
uniformly optimal prefix-free, 127
universal, 76

Machine Existence Theorem, 74, 86–88,
94, 108, 131, 308

Π1
1-version, 373

relative to oracle, 308
many-one reducible, 8
Marchenkov, 34
Martin, 28, 59, 148
Martin-Löf, 102, 366

coverable, 173, 358
cuppable, 359
random, 2, 34, 40, 47, 174

Π1
1, 376

base for, 170
base for Π1

1, 377
closure under comp. permutations,

294
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far from, 163, 177
has d.n.c. degree, 145
infinite subset of, 146, 326
low, 124
lowness for Π1

1, 377
nonrandom features of, 117, 266
not autoreducible, 119
of PA degree, 157
relative to an oracle, 121
superlow, 108, 115, 124
symmetry of relative, 121, 123
Turing degree of, 159
universal test for, 105, 107, 108, 266
universal test for Π1

1, 105
random difference c.e. real, 115
random left-c.e. real, 108, 113

is wtt-complete, 115
random right-c.e. real, 115, 116
test, 46, 104, 111, 134, 141

Π1
1, 105, 376

definition of, 106
generalized, 104, 134, 169, 365

martingale
Q2-valued, 270
computable, 238, 268
definition, 260
elementary, 261
equality, 260
functional, 329
partial computable, 272, 273
simple, 289
success of, 260
vs. measure representation, 261

maximal set, 28, 39
measurable class, 70

µ, 70
measure, 68, 70

countable additivity, 68
Lebesgue, 68
representation of, 68, 261, 263
uniform (λ), 68, 261

Merkle, 110, 166, 289
metric space, 49
Mihailovich, 318
Miller, D., 242
Miller, J., 2, 95, 135, 137, 190, 223, 226,

253, 267, 268, 294, 305, 308,
309, 311, 340, 386

Miller, W., 59
minimal pair, 25, 41, 154, 191, 287

of high ML-random sets, 258
of PA sets, 159, 258
relative to ∅′, 160
satisfying highness property, 25, 258

Mohrherr, 26, 256, 363

Montalbán, 183
movable marker, 240, 241, 250, 337
Muchnik, Albert, 30
Muchnik, Andrej A., 165, 199

splitting technique, 295
multiplicative domination, 266, 274

n-c.e. set, 19
n-random, see random, n-
natural, 34
natural property, 34
Ng, 258, 316, 345, 348
Nies, 61, 115, 170, 219, 223, 233, 294, 311,

316, 323, 328, 336, 339, 341,
344, 348, 352, 366, 376, 379,
381

non-cappable, 37, 41, 238
non-cuppable

Π1
1-random, 384

wtt, 242
ML, 359

nonuniformity, 165, 215
null class, 25, 70, 104, 134, 169, 365

for randomness notion C, 322
low for, 323

O(log) bounded
set, 289, 321
string, 289

Ω, 15, 52, 109, 149, 158
Π1

1-version, 376
is wtt-complete, 115
is Solovay complete, 114

ΩA, 122, 125
ΩM , 84, 318

and output probability, 91
as an operator, 121, 125, 144, 221, 248,

304
ω-c.e.

function, 20, 315, 359, 360
set, 19, 196

O(f) error term, 75
open set, 45, 47

generated by set of strings, 48, 54
in Baire space, 67

operator
Σ0

n, 233
antimonotonic, 163
c.e., 308
closed under ⊕, 233
monotonic, 163, 233

optimal prefix-free machine, 84
oracle incomparability, 239
oracle machine, 121

optimal, 121
optimal prefix-free, 122
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prefix-free, 121
uniformly optimal, 127

oracle set, 1
order function, 75, 80, 148

convention on positive values, 313
order type, 367
ordinal

g-closed, 375
computable, 367
notation, 4, 368

Otto, the opponent, 36, 195, 201, 204,
239, 309, 311, 353, 356

outer measure, 68, 69
countable subadditivity, 68
definition, 68
local, 69

output probability, 91
Π1

1-version, 375
output uniqueness, 239

PA degree, 156
computably dominated, 156
low, 156
minimal pair of, 159

Parameter Theorem, 4
partial computable, 3

scan rule, 297
total, 297

universal function, 11, 147
path of binary tree, 47
Peano arithmetic, 5, 56, 157, 174

completion of, 156
fragments of, 192

perfect class, 56, 61, 311–313, 316–318,
337, 338

Π0
1, 56

and function trees, 317
permitting, 38
permitting method

delayed, 42
prompt, 243
relative to ∅′, 61

Post, 10, 29, 31
Post property, 34

definable in E, 34
structural, 34

Post’s problem, 29, 34, 40
degree-invariant solution, 35
finite-injury solution, 32, 344
injury-free solution, 34, 40, 145, 150,

153, 189
prefix-free code, 86, 87
prefix-free set, 54
priority

stronger (higher), 32
weaker (lower), 32

priority method, 35, 239
with finite injury, 30, 32
with infinite injury, 251
with injury, 344

priority ordering, 32
dynamic, 344

probability measure, 70
promotion

early, 203, 205
regular, 203, 205

prompt permitting, 243
prompt simplicity requirement, 41
promptly simple degree, 243

delay function for sets of, 243, 244, 246
same as low cuppable, 244

promptly simple set, 37, 40, 150, 151, 184,
187, 191, 243

as highness property, 238
promptly simple wtt-degree, 243
pseudojump

inversion, 249
comparison with cupping, 250
via c.e. set, 249
via ML-random set, 253

operator, 249

r-complete, 9
Raichev, 222
random

∆1
1, 366, 378

Π1
1, 366, 379
universal test for, 366

Π1
1-weakly 2-, 378

n-, 121, 160, 162
2-, 82, 104, 106, 136, 304, 308, 311, 364

and initial segment complexity, 137,
308

are of hyperimmune degree, 364
lowness for, 232, 233
not computably dominated, 137, 139,

309
3-, 136, 137
computably, 28, 130, 259, 268, 289

can be facile, 276
closure under comp. permutations,

294, 299
higher analog, 366
in high degree, 272, 283
initial segment complexity, 272
separation from ML-random, 271,

283
Demuth, 134, 141, 142

are of hyperimmune degree, 143
lowness for, 224

Kolmogorov–Loveland (KL), 259, 294,
298
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lowness for, 329
partial computably, 259, 289

closure under comp. permutations,
295

definition, 273
initial segment complexity, 272, 277
lowness for, 328

permutation, 295
initial segment complexity, 296
separation from PCR, 296

polynomially, 104
Schnorr, see Schnorr random, 259
weakly, 128, 129, 135

not ≥tt ∅′, 158
relative to ∅′, 136

weakly 2-, 104, 106, 108, 117, 134–136,
191, 311, 316, 365

and lowness properties, 135
can be not 2-f.p.f., 162
lowness for, 175, 223
not superhigh, 358

weakly 3-, 237, 361
weakly ∆1

1, 382
random variable, 73, 101

independence, 73
randomness

and being hard to describe, 103
and exceptional properties, 102
intuitive idea of, 102, 127
mathematical notion of, 102, 103

ranked formula, 366
ranked set, 129
real closed field, 222
real number

∆0
2, 51

computable, 51
difference left-c.e., 51, 52, 222
left-c.e., 51
right-c.e., 51

Recursion Theorem, 4, 90, 148–150, 153,
157, 193

Double, 12, 155, 246, 311
for functionals, 11
with parameters, 5

reducibility, 2, 8, 224
arithmetical, 224
many-one, 8
one-one, 9
Solovay, 113, 114

relativized, 303
strong, 14, 224
truth-table, 14
Turing, 10
van Lambalgen, 226, 364
weak, 2, 224, 225, 227, 256, 340

≤JT , 340
≤LK , 225
≤LR, 225, 303

weak truth-table, 14
reduction function, 11, 148, 149, 151, 153
reduction principle

for c.e. sets, 8
for Π1

1 classes, 369
reduction procedure, 8

≤fin-h, 371
≤h, 370

regular subset of model of I∆0, 192
relation

arithmetical, 64, 366
relativization, 2, 10
request, 78, 86
request operator, 308, 309
requirement, 30

initialization of, 33
lowness, 32
meeting a, 30
simplicity, 31

restraint of a strategy, 32
Rettinger, 115
reverse mathematics, 174
right-c.e. set, 51
Robinson guessing method, 193, 194, 246,

345
run of zeros, 99
Russell’s paradox, 6

Sacks, 35, 365, 370
Sacks preservation strategy, 174
Sacks Splitting Theorem, 36, 193, 241
Schnorr, 105, 259, 270

criticism by, 104, 127, 259
null class, 322
random, 127, 129, 174, 268

and highness, 130
characterization by c.m.m., 132
higher analog, 366
no universal test, 129
not K-trivial, 219
not computably random, 285
relative to ∅′, 143

test, 104, 127, 129, 130, 132
Π1

1, 379
and martingales, 268
definition, 129

Theorem, 74, 105, 163, 267
Π1

1-version, 376
for Schnorr randomness, 132
relativized, 167

trivial, 319, 321
Scott, 157, 174
Scott class, or set, 174
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second-order arithmetic, 234
selection rule, 288

advisor for, 290, 292
firing, 290
hiring, 290

positions selected by, 288
set selected by, 288
success of, 288

sequence number, 67, 368
Shoenfield, 18

Limit Lemma, 18
Shore, 249, 253, 258
simple set, 31, 37, 78, 81

relative to an oracle, 248
simplicity requirement, 32, 38, 41
Simpson, 192, 226, 235, 256, 258, 340, 357
Slaman, 113, 219
Smullyan, 12
Soare, 34, 44, 57
Solomon, 223, 226, 235, 340
Solomonoff, 75
Solovay, 95, 177

complete, 113
equations, 95
reducibility, 113
test, 111, 130, 141, 185

failing a, 111
interval, 112, 153, 189, 190
passing a, 111

Soskova, 230
Spector, 370, 371
standard cost function, 186
standard optimal plain machine, 76
statistical properties of strings

balance of zeros and ones, 100
run of zeros, 99

Stephan, 81, 149, 157, 166, 167, 170, 231,
318, 321, 323, 328, 339

stochastic
computably (or Church), 288
KL, 299
partial computably, 289

and simple martingales, 289
not O(log) bounded, 289
not weakly random, 289

Stone duality, 46
Stone space, 45
string, 12
string complexity

monotonic, 105, 108
plain (C), see C (plain descriptive

complexity)
prefix-free (K), see K (prefix-free

complexity)

strong index, 7
for clopen set, 49

strongly d-incompressible, 98
superhigh set, 235, 238, 256, 341

c.e. minimal pair of, 258
can be not LR-hard, 257

superlow cuppable, 247, 361
superlow set, 26, 58, 166, 176, 193, 207,

218, 241, 336, 342, 343
not base for ML-randomness, 170
not low for K, 166
strongly, 346
with bound, 346

supermartingale, 261
approximation for, 265
computable, 268
computably enumerable, 169, 265

multiplicatively optimal, 266
universal, 266, 267

hyperarithmetical, 379
inequality, 261, 262

generalized, 263
leftmost non-ascending path of, 263,

275, 276, 278
leftmost non-ascending string of, 271
Savings Lemma, 264, 299
success of, 262
undergraph of, 264

tail of a set, 110
Tanaka, 370
Terwijn, 167, 316, 323
test, 102, 103, 322

Π1
1-ML, 376

Demuth, 141
failing a, 127
for randomness, 365
generalized ML-, 134
generalized Π1

1-ML-, 378
Kurtz, 128
passing a, 127
polynomial time, 104
universal, 105, 129, 135, 322

trace, 313
bound for, 313
c.e., 313

bound for, 313
computable, 316

bound for, 316
jump, 336

traceable, 301, 312
∆1

1, 382
Π1

1, 382
c.e., 174, 302, 313, 322, 336

and computably dominated, 316
and double lowness notions, 323
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characterization by machines, 319
implies array computable, 315
not of d.n.c. degree, 315
order function irrelevant, 314
weakly, 320

computably, 164, 238, 301, 313, 316,
322, 366

can be generalized low, 338
can fail to be generalized low, 338
characterization by machines, 319
perfect class of, 316
same as facile on c.d. sets, 321
same as Schnorr trivial on c.d. sets,

321
jump, see jump traceable

transfinite recursion in LA, 372
tree

Π0
1, 53–56

{0, 1}∗ as, 12, 17
binary, 47, 56
computable, 53, 65
dead branch of, 47
extendable nodes on, 53, 56
finitely branching, 68
for Baire space, 67
for closed class, 48, 57
function, 317
path of, 47
without dead branches, 58
without isolated paths, 56

truth-table reduction, 14
Turing, 3

degree, 20, 159
∆0

2, 21, 159
c.e., 21, 193
minimal, 21, 338

functional, 10, 11, 14, 47
axiomatic approach, 239
language for building, 238, 239
oracle incomparability, 239
output uniqueness, 239
universal, 11, 12

jump, 10, 16
machine, 1, 3

program, 3, 239
universal, 4, 220

reducibility, 10, 21

u.a.e.d., see uniformly a.e. dominating
ultrafilter, 71
uniform measure, 17, 46

of Π0
n class, 71

of Σ0
n class, 71

uniformity, 2, 4, 173, 198, 218
uniformly a.e. dominating, 225, 234, 238,

256
uniformly c.e., 6
universality, 2
uppersemilattice, 16, 21
use, 13

clearing a computation of, 245
lifting, 241, 244

use principle, 3, 13, 22, 30, 47, 65, 126,
387

van Lambalgen Theorem, 9, 18, 122, 123,
226, 305, 359, 393, 402

fails for Schnorr randomness, 133
for Π1

1-randomness, 124, 381
for n-randomness, 124

Ville’s Theorem, 264

weakly 1-generic, see 1-generic set, weakly
weakly 2-random, see random, weakly 2-
weakly random, see random, weakly
weight condition, 86, 89
weight of a set, 87
well-order, 365, 367

computable, 365
form Π1

1 class, 367
no Borel on 2N, 71

worker’s method, 150

Yu, 226, 268, 318, 379, 381, 382

Zambella, 167, 316, 323
zero-one law, 71, 357




