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Preface

The complexity and randomness aspects of sets of natural numbers are closely
related. Traditionally, computability theory is concerned with the complexity
aspect. However, computability theoretic tools can also be used to introduce
mathematical counterparts for the intuitive notion of randomness of a set. Recent
research shows that, conversely, concepts and methods originating from random-
ness enrich computability theory.

This book is about these two aspects of sets of natural numbers and about
their interplay. Sets of natural numbers are identified with infinite sequences of
zeros and ones, and simply called sets.

Chapters 1 and 6 are mostly about the complexity aspect. We introduce lowness
and highness properties of sets.

Chapters 2, 3, and 7 are mostly about the randomness aspect. Firstly we study
randomness of finite objects. Then we proceed to sets. We establish a hierar-
chy of mathematical randomness notions. Each notion matches our intuition of
randomness to some extent.

In Chapters 4, 5, and 8 we mainly study the interplay of the computability
and randomness aspects. Section 6.3 also touches upon this interplay. Chapter 9
looks at analogs of results from the preceding chapters in higher computability
theory.

In the area or research connecting complexity and randomness, several times,
properties of sets were studied independently for a while, only to be shown
to coincide later. Some important results in this book show such coincidences.
Other results separate properties that are conceptually close. Even if properties
introduced in different ways coincide, we still think of them as conceptually
distinct.

This book can be used in various ways: (1) as a reference by researchers; (2)
for self-study by students; and (3) in courses at the graduate level.

Such a course can lean towards computability (Chapter 1, some of Chapters
4 and 6), randomness (Chapters 2, 3, 7, and 1 to the extent needed), or the
interplay between the two (Chapters 4, 5, 8, and as much as needed from other
chapters).

Figure 1 displays major and minor dependencies between chapters. The latter
are given by dashed lines; the labels indicate the section which depends on the
preceding chapter.

The book contains many exercises and a number of problems. Often the exer-
cises extend the material given in the main text in interesting ways. They should
be attempted seriously by the student before looking at the solutions at the back
of the book. The problems are currently open, possibly only because no one has
tried.
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Fi1c. 1. Major and minor dependencies between chapters.

Notation is listed from page 416 on for reference. The absolute value of a
number r € R is denoted by abs(r). The cardinality of a set X is denoted by
#X. We use the bracket notation in sums as explained in Knuth (1992). For
instance, Y. n~?[n is odd] denotes 1 +1/9+41/25+ ... = 7%/8.

The following conventions on variables apply.

n,m,k,l natural numbers

Ty Y, 2, U, W binary strings (often identified with numbers)

o,p,T binary strings when seen as descriptions or oracle strings
A,...E, V, ..., Z|subsets of N

f,9,h functions N — N

A B, ... classes.

This book would not exist without the help of my colleagues and friends. Spe-
cial thanks to Santiago Figueira, Noam Greenberg, Bjorn Kjos-Hanssen, Antonin
Kucera, Antonio Montalban, Joseph Miller, Selwyn Ng, Alex Raichev, and Jan
Reimann. Substantial help was also provided by George Barmpalias, David
Belanger, Laurent Bienvenue, Helen Broome, Peter Cholak, Barbara Csima,
David Diamondstone, Nick Hay, Greg Hjorth, Bart Kastermans, Steffen Lempp,
Ken Harris, Chris Porter, Richard Shore, Stephen Simpson, Sebastiaan Terwijn,
Paul Vitanyi, and Liang Yu. I am grateful to the University of Auckland, and
especially to the department of computer science. I gratefully acknowledge sup-
port by the Marsden fund of the Royal Society of New Zealand. I thank Oxford
University Press, and in particular Dewi Jackson, for their support and patience.

Auckland, July 2008.



Contents

The complexity of sets

1.1

1.2

1.3
14

1.5

1.6

1.7

1.8

The basic concepts

Partial computable functions

Computably enumerable sets

Indices and approximations

Relative computational complexity of sets

Many-one reducibility

Turing reducibility

Relativization and the jump operator

Strings over {0,1}

Approximating the functionals ®., and the use principle
Weak truth-table reducibility and truth-table reducibility
Degree structures

Sets of natural numbers

Descriptive complexity of sets

AY sets and the Shoenfield Limit Lemma

Sets and functions that are n-c.e. or w-c.e.

Degree structures on particular classes %

The arithmetical hierarchy

Absolute computational complexity of sets

Sets that are low,

Computably dominated sets

Sets that are high,,

Post’s problem

Turing incomparable AY-sets

Simple sets

A c.e. set that is neither computable nor Turing complete
Is there a natural solution to Post’s problem?

Turing incomparable c.e. sets

Properties of c.e. sets

Each incomputable c.e. wtt-degree contains a simple set
Hypersimple sets

Promptly simple sets

Minimal pairs and promptly simple sets

Creative sets *

Cantor space

Open sets

Binary trees and closed sets

Representing open sets

O 00O W W

12
13
14
16
16
18
18
19
20
21
24
26
27
28
29
30
31
32
34
35
37
38
39
40
41
43
45
47
47
48



1.9

The

2.1

2.2

2.3

2.4

2.5

Contents

Compactness and clopen sets

The correspondence between subsets of N and real numbers
Effectivity notions for real numbers

Effectivity notions for classes of sets

Examples of TIY classes

Isolated points and perfect sets

The Low Basis Theorem

The basis theorem for computably dominated sets
Weakly 1-generic sets

1-generic sets

The arithmetical hierarchy of classes

Comparing Cantor space with Baire space
Measure and probability

Outer measures

Measures

Uniform measure and null classes

Uniform measure of arithmetical classes
Probability theory

descriptive complexity of strings
Comparing the growth rate of functions

The plain descriptive complexity C
Machines and descriptions

The counting condition, and incompressible strings
Invariance, continuity, and growth of C'
Algorithmic properties of C'

The prefix-free complexity K

Drawbacks of C

Prefix-free machines

The Machine Existence Theorem and a characterization of K
The Coding Theorem

Conditional descriptive complexity

Basics

An expression for K(z,y) *

Relating C' and K

Basic interactions

Solovay’s equations *

Incompressibility and randomness for strings
Comparing incompressibility notions
Randomness properties of strings

Martin-Lof randomness and its variants

3.1

A mathematical definition of randomness for sets
Martin-Lof tests and their variants
Schnorr’s Theorem and universal Martin-Lof tests

48
49
50
52
%)
56
56
59
61
63
64
67
68
68
69
70
71
73

74
(0]
(0]
()
[
79
81
82
83
83
86
91
92
92
93
94
94
95
97
98
99

102
102
104
105



3.2

3.3

3.4

3.5

3.6

Contents

The initial segment approach

Martin-Lof randomness

The test concept

A universal Martin-Lof test

Characterization of MLR via the initial segment complexity
Examples of Martin-L6f random sets

Facts about ML-random sets

Left-c.e. ML-random reals and Solovay reducibility

Randomness on reals, and randomness for bases other than 2

A nonempty IIJ subclass of MLR has ML-random measure %
Martin-Lof randomness and reduction procedures

Each set is weak truth-table reducible to a ML-random set
Autoreducibility and indifferent sets x

Martin-Lof randomness relative to an oracle

Relativizing C' and K

Basics of relative ML-randomness

Symmetry of relative Martin-Lof randomness
Computational complexity, and relative randomness

The halting probability 2 relative to an oracle x

Notions weaker than ML-randomness

Weak randomness

Schnorr randomness

Computable measure machines

Notions stronger than ML-randomness

Weak 2-randomness

2-randomness and initial segment complexity
2-randomness and being low for ()

Demuth randomness

Diagonally noncomputable functions

4.1

4.2

4.3

D.n.c. functions and sets of d.n.c. degree

Basics on d.n.c. functions and fixed point freeness

The initial segment complexity of sets of d.n.c. degree

A completeness criterion for c.e. sets

Injury-free constructions of c.e. sets

Each AY set of d.n.c. degree bounds a promptly simple set
Variants of Kucera’s Theorem

An injury-free proof of the Friedberg—Muchnik Theorem *
Strengthening the notion of a d.n.c. function

Sets of PA degree

Martin-Lo6f random sets of PA degree

Turing degrees of Martin-L6f random sets *

Relating n-randomness and higher fixed point freeness

xi

105
106
106
107
107
108
109
113
115
116
117
117
119
120
121
122
122
124
125
127
128
129
131
133
134
136
140
141

144
145
145
147
148
150
151
152
154
155
156
157
159
160



xii

Contents

5 Lowness properties and K-triviality

5.1

5.2

5.3

5.4

5.5

5.6

Equivalent lowness properties

Being low for K

Lowness for ML-randomness

When many oracles compute a set

Bases for ML-randomness

Lowness for weak 2-randomness

K-trivial sets

Basics on K-trivial sets

K-trivial sets are AJ

The number of sets that are K-trivial for a constant b x
Closure properties of IC

C-trivial sets

Replacing the constant by a slowly growing function x
The cost function method

The basics of cost functions

A cost function criterion for K-triviality

Cost functions and injury-free solutions to Post’s problem
Construction of a promptly simple Turing lower bound
K-trivial sets and X;-induction %

Avoiding to be Turing reducible to a given low c.e. set
Necessity of the cost function method for c.e. K-trivial sets
Listing the (w-c.e.) K-trivial sets with constants
Adaptive cost functions

Each K-trivial set is low for K

Introduction to the proof

The formal proof of Theorem 5.4.1

Properties of the class of K-trivial sets

A Main Lemma derived from the golden run method
The standard cost function characterizes the K-trivial sets
The number of changes

04 for K-trivial A

Each K-trivial set is low for weak 2-randomness

The weak reducibility associated with Low(MLR)
Preorderings coinciding with L R-reducibility

A stronger result under the extra hypothesis that A < B’
The size of lower and upper cones for <pr *

Operators obtained by relativizing classes

Studying <pr by applying the operator K

Comparing the operators Spr and K

Uniformly almost everywhere dominating sets

(" <pg C if and only if C is uniformly a.e. dominating

163
165
165
167
168
170
174
176
176
177
179
181
182
183
184
186
188
189
190
192
193
195
196
198
200
201
210
215
215
217
219
221
223
224
226
228
230
231
232
233
234
235



Contents

6 Some advanced computability theory

6.1

6.2

6.3

Enumerating Turing functionals

Basics and a first example

C.e. oracles, markers, and a further example
Promptly simple degrees and low cuppability
C.e. sets of promptly simple degree

A c.e. degree is promptly simple iff it is low cuppable
C.e. operators and highness properties

The basics of c.e. operators

Pseudojump inversion

Applications of pseudojump inversion

Inversion of a c.e. operator via a ML-random set
Separation of highness properties

Minimal pairs and highness properties x

7 Randomness and betting strategies

7.1

7.2

7.3

7.4

7.5

Martingales

Formalizing the concept of a betting strategy
Supermartingales

Some basics on supermartingales

Sets on which a supermartingale fails

Characterizing null classes by martingales

C.e. supermartingales and ML-randomness

Computably enumerable supermartingales
Characterizing ML-randomness via c.e. supermartingales
Universal c.e. supermartingales

The degree of nonrandomness in ML-random sets
Computable supermartingales

Schnorr randomness and martingales

Preliminaries on computable martingales

How to build a computably random set

Three preliminary Theorems: outline

Partial computable martingales

A template for building a computably random set
Computably random sets and initial segment complexity
The case of a partial computably random set

Each high degree contains a computably random set
Martingales that dominate

Each high c.e. degree contains a computably random
left-c.e. set

A computably random set that is not partial computably
random

A strictly computably random set in each high degree

A strictly Schnorr random set in each high degree

xiii

238
239
239
240
242
243
244
247
247
249
251
253
256
258

259
260
260
261
262
263
264
264
265
265
266
266
268
268
270
271
272
273
274
275
277
279
279

280
281

283
285



xiv

7.6

Contents

Varying the concept of a betting strategy
Basics of selection rules

Stochasticity

Stochasticity and initial segment complexity
Nonmonotonic betting strategies

Muchnik’s splitting technique
Kolmogorov—Loveland randomness

Classes of computational complexity

8.1

8.2

8.3

8.4

8.5

8.6

The class Low(€2)

The Low(2) basis theorem

Being weakly low for K

2-randomness and strong incompressibility i

Each computably dominated set in Low(2) is computable
A related result on computably dominated sets in GL;
Traceability

C.e. traceable sets and array computable sets
Computably traceable sets

Lowness for computable measure machines

Facile sets as an analog of the K-trivial sets

Lowness for randomness notions

Lowness for C-null classes

The class Low(MLR, SR)

Classes that coincide with Low(SR)

Low(MLR, CR) coincides with being low for K

Jump traceability

Basics of jump traceability, and existence theorems
Jump traceability and descriptive string complexity
The weak reducibility associated with jump traceability

Jump traceability and superlowness are equivalent for c.e. sets

More on weak reducibilities

Strong jump traceability

Strong superlowness %

Subclasses of the K-trivial sets

Some K-trivial c.e. set is not strongly jump traceable
Strongly jump traceable c.e. sets and benign cost functions
The diamond operator

Summary and discussion

A diagram of downward closed properties
Computational complexity versus randomness

Some updates

Higher computability and randomness

9.1

Preliminaries on higher computability theory
1} and other relations

288
288
288
289
294
295
297

301
303
303
305
308
309
311
312
313
316
318
319
321
322
323
326
328
336
336
338
339
341
343
343
346
348
348
351
356
361
361
363
364

365
366
366



Contents

Well-orders and computable ordinals
Representing II} relations by well-orders
I} classes and the uniform measure
Reducibilities
A set theoretical view
9.2 Analogs of Martin-Lof randomness and K-triviality
1} Machines and prefix-free complexity
A version of Martin-Lof randomness based on I} sets
An analog of K-triviality
Lowness for ITj-ML-randomness
9.3 Aj-randomness and IIj-randomness
Notions that coincide with Al-randomness
More on II}-randomness
9.4 Lowness properties in higher computability theory
Hyp-dominated sets
Traceability

Solutions to the exercises
Solutions to Chapter 1
Solutions to Chapter 2
Solutions to Chapter 3
Solutions to Chapter 4
Solutions to Chapter 5
Solutions to Chapter 6
Solutions to Chapter 7
Solutions to Chapter 8
Solutions to Chapter 9

References
Notation Index

Index

XV

367
367
369
370
371
372
373
376
376
377
378
379
380
381
381
382

385
385
389
391
393
395
399
400
402
408

410
418
423



This page intentionally left blank



1
The complexity of sets

We study the complexity of sets of natural numbers. There are two interrelated
types of complexity.

Computational. Informally, we ask how much (or little) the set knows.
Descriptive. We ask how well the set can be described.

In both cases, to understand the complexity of sets, we introduce classes of
similar complexity, namely classes of sets sharing a certain complexity property.
For both types of complexity, the smallest class we will consider is the class of
computable sets.

Classes of computational complexity. To give a mathematical definition for the
intuitive notion of a computable function f: N — N, a formal model of com-
putation is used, for instance Turing machines. The model can be extended to
allow queries to an “oracle set” Z during the computations, thereby defining
what it means for a function to be computable with oracle Z. In most cases, a
class of computational complexity is given by a condition indicating the strength
of Z as an oracle. For instance, Z is low if deciding whether a computation us-
ing Z converges is no harder than deciding whether a computation without an
oracle converges. Z is computably dominated if each function computed by Z is
bounded by a computable function, and Z is high if some function computed by
Z grows faster than each computable function. These classes will be studied in
Section 1.5.

Classes of descriptive complexity. One introduces description systems. The de-
scriptions are finite objects, such as first-order formulas or Turing programs,
which can be encoded by natural numbers in an effective way. Formally, a de-
scription system is simply a function F': I — P(N) where I C N. If F(e) = Z,
then e is a description of Z in that system, and the class of descriptive complexity
given by F' is the range of F'. Examples include the computably enumerable sets,
where F'(e) = W, is the set of inputs on which the e-th Turing program halts, the
arithmetical sets, and the II} sets, a high-level analog of the c.e. sets where the
enumeration takes place at stages that are computable ordinals. (C.e. sets are
introduced in Definition 1.1.8, arithmetical sets in 1.4.10, and II} sets in 9.1.1.)
Since descriptions can be encoded by natural numbers, all classes of descriptive
complexity are countable. (In other areas of logic it can also be the case that
descriptions are infinite, though they should be simpler than the objects they de-
scribe. In descriptive set theory, say, certain functions from N to N, called Borel
codes, describe Borel sets of real numbers. In model theory, for some complete
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first-order theories T', sequences of ordinals can describe countable models of T’
up to isomorphism.)

The classes of descriptive complexity we consider usually form an almost linear
hierarchy given by the inclusion of classes. (The class of I1Y singletons, Defini-
tion 1.8.61, is one of the few exceptions to this rule.) This contrasts with the
case of computational complexity. For instance, the only sets that are low and
computably dominated are the computable sets. Another difference is that being
in a class of descriptive complexity means the set is well-behaved in a particular
sense. In contrast, classes of computational complexity will be of two types: the
ones consisting of sets that know little, and the ones consisting of sets that know
a lot. Classes of the first type are given by lowness properties, such as being low,
or computably dominated, while classes of the second type are given by highness
properties, such as being high.

The counterpart of knowing a lot in descriptive complexity might be being
hard to describe. We will see that this is one aspect of the intuitive notion
of randomness for sets. The other, related, aspect is not satisfying any excep-
tional properties (in the sense of the uniform measure on Cantor space 2V). In
Chapters 3, 7 and 9 we will introduce various classes capturing the degree of
randomness of a set. A central one is the class of Martin-Lo6f random sets.

So far we have only discussed the absolute complexity of a set Z, by looking
at its membership in certain classes. The relative computational complexity is
measured by comparing Z to other sets. To do so, one introduces preorderings <,
on sets, called reducibilities: X <, Y means that X is no more complex than Y in
the sense of <,.. Traditionally, a reducibility specifies a way to determine whether
n € X with the help of queries of the form “k € Y77 Such a method to compute X
from Y is called a reduction procedure. We also study weak reducibilities, which
can be used to compare the computational complexity of sets even if there is no
reduction procedure; see Section 5.6 and page 339.

There are a few examples of preorderings <, used to compare the relative
descriptive complexity of sets, such as enumeration reducibility (Odifreddi, 1999,
Ch. XIV) and the reducibility <x (5.6.1). Furthermore, some preorderings <,
have been introduced where A <, B expresses in some way that B is at least as
random as A, for instance <y again, <g on the left-c.e. sets (3.2.28), and <,
on the Martin-Lo6f random sets (5.6.2). No general theory has emerged so far.

One of the aims of this chapter is to give a brief, but self-contained introduction
to computability theory, focussing on the material that is needed later on. Topics
left out here can often be found in Soare (1987) or Odifreddi (1989, 1999).

We will rely on important meta-concepts: uniformity, relativization, and univer-
sality. Uniformity is discussed in Remark 1.1.4, and relativization before Propo-
sition 1.2.8 on page 10.

We will return to the complexity of sets in Sections 1.2, 1.4, and 1.5 of this
chapter, as well as in Chapters 5, 8, and 9.
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1.1 The basic concepts

We review fundamental concepts of computability theory: partial computable
functions, computably enumerable sets, and computable sets. We provide an
important tool, the Recursion Theorem.

Partial computable functions

One main achievement of mathematical logic is a formal definition for the intu-
itive concept of a computable function. We mostly consider functions f: N¥ - N
(where k > 1). This is an inessential restriction since other finite objects that
could be considered as inputs, say finite graphs, can be encoded by natural num-
bers in some efficient way. One obtains a mathematical definition of computable
functions by introducing Turing machines (Turing, 1936). Such a machine has k
tapes holding the inputs (say in binary), one output tape, and several internal
work tapes. A Turing machine reads and writes symbols from a finite alpha-
bet (which includes the symbols 0 and 1) on these tapes. The input tapes are
read-only, while the output tape is write-only. The behavior of the machine is
described by a finite sequence of instructions, called a Turing program, which is
carried out in a step-wise fashion one instruction at a time. See Odifreddi (1989)
for details. The function f is computable if there is a Turing program P for the
machine model with & input tapes which, for all inputs xq, ..., zr_1, halts with
f(zo,...,xp_1) on the output tape.

Of course, for certain inputs, a Turing program may run forever. There is no
algorithm to decide whether a program halts even on a single input, let alone on
all. Thus it is natural to include partial functions in our mathematical definition
of computability.

1.1.1 Definition. Let ¢ be a function with domain a subset of N* and range a
subset of N. We say that v is partial computable if there is a Turing program P
with k& input tapes such that ¢(zg,...,zx_1) = y iff P on inputs xg,...,Tr_1
outputs y. We write 9 (xg,...,x5—1)] if P halts on inputs zg, ..., zx_1. We say
that ¢ is computable if v is partial computable and the domain of ¢ is N*,

Many other formal definitions for the intuitive notion of a computable func-
tion were proposed. All turned out to be equivalent. This lends evidence to the
Church—Turing thesis which states that any intuitively computable function is
computable in the sense of Definition 1.1.1. More generally, each informally given
algorithmic procedure can be implemented by a Turing program. We freely use
this thesis in our proofs: we give a procedure informally and then take it for
granted that a Turing program implementing it exists.

Fix k and an effective listing of the Turing programs for k inputs. Let P* be
the program for k inputs given by the e-th program. Let ®* denote the partial
computable function with k& arguments given by PF. If ® = ®* then e is called
an index for ®. Often there is only one argument, and instead of ®! we write

P,. (1.1)
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The following notation is frequently used when dealing with partial functions.

Given expressions a, 3,
a~pf

means that either both expressions are undefined, or they are defined with the
same value. For instance, 1/(r +1)(r — 1) ~ /2 — 1 for r € R.
A universal Turing program. The function Z(e, x) ~ ®.(z) is partial com-
putable in the intuitive sense. The informal procedure is: on inputs e, x, fetch
the e-th Turing program P! and run it on input x. If its computation halts with
output y then give y as an output. By the Church—Turing thesis, = is partial com-
putable. A Turing program computing Z is called a universal Turing program.
The following theorem states that = can emulate partial computable functions

in two arguments whenever the Turing programs are listed in an appropriate
effective way. For details see Odifreddi (1989).

1.1.2 Theorem. (Parameter Theorem) For each partial computable function ©
in two variables there is a computable strictly increasing function q such that

VeVa @) (z) ~ O(e, ).

An index for q can be obtained effectively from an index for ©.

Proof idea. Given a Turing program P for ©, we obtain the program qu(e) by
making the first input e part of the program code. O

For a formal proof, one would need to be more specific about the effective
listing of Turing programs. The same applies to the next result.

1.1.3 Lemma. (Padding Lemma) For each e and each m, one may effectively
obtain ¢’ > m such that the Turing program P, behaves exactly like P,.

Proof idea. We obtain the program P, from P, by adding sufficiently much
code which is never executed. O

1.1.4 Remark. (Uniformity) In subsequent results we will often make state-
ments like the one in the last line of Theorem 1.1.2: we do not merely assert the
existence of an object, but actually that its description (within some specified
description system) can be computed from descriptions of the given objects. The
formal version of the last line in Theorem 1.1.2 is: there is a computable func-
tion h such that if © = ®Z, then ViVz ®y(;(x) ~ O(i, ) holds for ¢ = @} .
One says that the construction is uniform, namely, there is a single procedure to
obtain the desired object from the ingredients which works for each collection of
given objects. Proofs of basic results are usually uniform. More complex proofs
can be nonuniform. We will at times be able to show this is necessarily so, for
instance in Proposition 5.5.5.

The Recursion Theorem is an important technical tool. It was proved by Kleene
(1938) in a paper on ordinal notations. Informally, it asserts that one cannot
change in an effective way the input/output behavior of all Turing programs.
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1.1.5 Recursion Theorem. Let g: N — N be computable. Then there is an e
such that ® gy = ®.. We say that e is a fixed point for g.

Proof. By the Parameter Theorem 1.1.2 there is a computable function ¢ such
that @, (z) ~ @y, (e))(x) for all e, 2. Choose an i such that ¢ = ®;, then

Py(i) = P, (i) = Py(@, (i) (1.2)
So e = ®,;(i) = ¢(4) is a fixed point. O

We obtained the index i for ¢ effectively from an index for g, by the uniformity
of the Parameter Theorem. Thus, if g is a computable function of two arguments,
we can compute a fixed point e = f(n) for each function g, given by g,(e) =
g(e,n). Taking the uniformity one step further, note that an index for f can be
obtained effectively from an index for g. This yields an extended version:

1.1.6 Recursion Theorem with Parameters. Let g: N2 — N be comput-
able. Then there is a computable function f, which can be obtained effectively
from g, such that ®4(r(n).n) = Pyny for each n. O

The incompleteness theorem of Godel (1931) states that for each effectively axiom-
atizable sufficiently strong consistent theory 7' in the language of arithmetic one can
find a sentence ¢ which holds in N but is not provable in 7. Peano arithmetic is an
example of such a theory. The incompleteness theorem relies on a fixed point lemma
proved in a way analogous to the proof of the Recursion Theorem. One represents a
formula o in the language of arithmetic by a natural number g. This is the analog of
representing a partial computable function ¥ by an index e, in the sense that ¥ = ..
Notice the “mixing of levels” that is taking place in both cases: a partial computable
function of one argument is applied to a number, which can be viewed as an index for
a function. A formula in one free variable is evaluated on a number, which may be a
code for a further formula. The fixed point lemma says that, for each formula I'(x) in
one free variable, one can determine a sentence € such that

ThEe—T(e).

Informally, € asserts that it satisfies I itself. Roughly speaking, if I'(x) expresses that
the sentence x is not provable from 7', then € asserts of itself that it is not provable,
hence € holds in N but T' I/ €.

In the analogy between Goédel’s and Kleene’s fixed point theorems, I' plays the role
of the function g. Equivalence of sentences under T' corresponds to equality of partial
computable functions. One obtains the fixed point € as follows: the map F(o) = o(g),
where o is a formula in one free variable, is computable, and hence can be represented
in T by a formula ¥ in two free variables (here one uses that T is sufficiently strong;
we skip technical details). Hence there is a formula a expressing “I'(F(c))”, or more
precisely Jy[¢(o,y) & I'(y)]. Thus, for each formula o

T+ a(g) « I'(o(a)).

Forming the sentence o(o) is the analog of evaluating ®.(e), and « is the analog of
the function g. Now let € be a(a). Since « is the analog of the index ¢ for ¢, € (that is,
the result of evaluating « on its own code number) is the analog of ®;(i) (the result
of applying ¢ to its own index). As in the last line (1.2) of the proof of the Recursion
Theorem, one obtains that T F € < a(a) < I'(a(a)).
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1.1.7 Exercise. Extend the Recursion Theorem by showing that each computable
function g has infinitely many fixed points. Conclude that the function f in Theo-
rem 1.1.6 can be chosen one-one.

Computably enumerable sets

1.1.8 Definition. We say that a set A C N is computably enumerable (c.e., for
short) if A is the domain of some partial computable function.

The reason for choosing this term will become apparent in 1.1.15. Let
W, = dom(®.). (1.3)

Then (W,)cen is an effective listing of all c.e. sets. A sequence of sets (Se¢)een
such that {{e,z): z € S.} is c.e. is called uniformly computably enumerable. An
example of such a sequence is (Wp)een.

The characteristic function f of a set A is given by f(z) = 1 if z € A and
f(z) = 0 otherwise; A and f are usually identified. A is called computable if its
characteristic function is computable; otherwise A is called incomputable.

1.1.9 Proposition. A is computable < A and N — A are c.e.

Proof. =: If A is computable, there is a program @y that halts on input x iff
x € A, and a program @i that halts on input z iff x & A.

<: By the Church—Turing thesis it suffices to give an informal procedure for
computing A. Fix programs @Qq, @1 such that @y halts on input z iff z € A, and
@1 halts on input z iff z ¢ A. To decide whether € A, run the computations
of Qp on x and of @1 on x in parallel until one of them halts. If ()¢ halts first,
output 1, otherwise output 0. O

We may obtain a c.e. incomputable set denoted ' by a direct diagonalization.
We define (" in such a way that N — (' differs from W, at e: let

0 ={e: ec W.}.
The reason for choosing this notation becomes apparent in 1.2.9. The set (' is

called the halting problem, since e € (I iff program P! halts on input e. (It is often
denoted by K, but we reserve this letter for prefix-free Kolmogorov complexity.)

1.1.10 Proposition. The set )/ is c.e. but not computable.

Proof. (' is c.e. since ' = dom(J), where J is the partial computable function
given by J(e) =~ ®.(e). If (' is computable then there is e such that N—{' = W,.
Then e € ' < e € W, < e & (', contradiction. (This is similar to Russell’s
paradox in set theory.) O

The sequence (W, )¢y is universal for uniformly c.e. sequences.

1.1.11 Corollary. For each uniformly c.e. sequence (A.)een there is a com-
putable function q such that Ae = W) for each e.
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Proof. Define the partial computable function © by ©(e,z) ~ 0 iff x € A,, and
O(e, x) is undefined otherwise. Then the function ¢ obtained by the Parameter
Theorem is as required. O

1.1.12 Exercise. Suppose (/We)eeN is a further universal uniformly c.e. sequence. As-
sume that (/We)eeN also has the padding property, namely, for each e and each m, one
may effectively obtain ¢’ > m such that ﬁ/\e/ = W.. Show that there is a computable
permutation 7 of N such that W, = Wy (. for each e.

Indices and approxrimations

A construction of an object, say a c.e. set, is usually carried out by giving an
informal procedure that runs at stages s. We need effective approximations at
stages of the objects that are given (if there are such objects). These approxi-
mations can often be derived from the descriptions of the objects via a Turing
program. If the e-th Turing program describes an object in some specified way,
then we say e is an index for that object. This terminology has already been
used, for instance, after (1.1) on page 3.

1.1.13 Definition. We write
P s(z) =y
if e,z,y < s and the computation of program P, on input z yields y in at most s

computation steps. We write ®. s(z) | if there is some y such that @, ;(x) =y,
and @, 4(x) 7T otherwise. Further, we let W, s = dom(®. ).

At stage s we have complete information about ®. , and W, s (which is precisely
what we need in a construction). To state this more formally, we need to specify
an effective listing Dy, D1, ... of the finite subsets of N.

1.1.14 Definition. Let Dy = (. If n > 0 has the form 2%t + 2%2 4 ... 4 2%,
where 21 < ... < ., then let D,, = {x1,...,z,}. We say that n is a strong index
for D,,. For instance, D5 = {0,2} since 5 = 20 + 22,

There is a computable function f such that f(e,s) is a strong index for W .
We think of a computable enumeration of a set A as an effective listing ag, a1, . . .
of the elements of A in some order. To include the case that A is finite, we rather
formalize this via an effective union of finite sets (Ag). We view A, as the set of
elements enumerated by the end of stage s. At certain stages we may decide not
to enumerate any element.

1.1.15 Definition. A computable enumeration of a set A is an effective sequence
(Ag)sen of (strong indices for) finite sets such that Ay C A1 for each s, and
A=, As.

Each c.e. set W, has the computable enumeration (W, s)sen. Conversely, if A
has a computable enumeration then A is c.e., for A = dom(®) where ® is the
partial computable function given by the following informal procedure: at stage s
we let ®(z) = 0 if z € As. An index for a c.e. set A is a number e such that
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A = W,. When a c.e. set A is described in such a way, then we automatically
have a computable enumeration (As)sen of A given by A, = W 5.
Here is an easy application of computable enumerations.

1.1.16 Proposition. For each partial computable function ®, ran(®) is c.e.

Proof. The given object is & = ., and we enumerate A = ran(®P). Since we
have complete information about ®, at stage s, we can compute from s a strong
index for A; = ran(®;). Then (As)sen is the required computable enumeration
of A. O

Exercises. Use computable enumerations and the Church—Turing thesis.

1.1.17. Given a c.e. set A, one can uniformly obtain a partial computable function
with domain an initial segment of N such that the range of v is A.

1.1.18. A function @ is partial computable iff its graph {(z,y): ®(z) =y} is c.e.
1.1.19. Each infinite c.e. set has an infinite computable subset.

1.1.20. (Reduction Principle) For each pair of c.e. sets A, B one can effectively deter-
mine disjoint c.e. sets A C A and B C B such that AU B = AUB.

1.2 Relative computational complexity of sets

Recall from the beginning of this chapter that the relative computational com-
plexity of a set A is measured by comparing A to other sets via preorderings
called reducibilities. To introduce a reducibility <, one specifies a particular
type of procedure. It determines whether n € X with the help of queries of the
form “is k in Y'?” Each procedure of this type is called an r-reduction proce-
dure. There is a hierarchy of reducibilities. The most restricted one we consider
is usually many-one reducibility <,,. An important more general one is Turing
reducibility <r.

Given a reducibility <, on sets we will write X =, Y for the corresponding
equivalence relation X <, Y <, X. The equivalence classes are called r-degrees.
The r-degree of X consists of the sets having the same complexity as X with
respect to <,. The r-degrees form a partial order denoted D,.. Some properties
of such structures D, are sketched on page 16.

Many-one reducibility

One of the simplest examples of a reducibility is the following.

1.2.1 Definition. X is many-one reducible to Y, denoted X <,,, Y, if there is
a computable function f such that n € X < f(n) € Y for all n.

Thus, the many-one reduction procedures are given by computable functions.
Such reductions occur in various areas of mathematics. For instance, interpre-
tations of theories are many-one reductions. For a further example, if G is a
finitely generated subgroup of the finitely generated group H then the word
problem of G is many-one reducible to the word problem of H. (In both exam-
ples we have assumed an effective encoding of the objects in question by natural
numbers.)
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If X is computable, Y # (), and Y # N, then X <,, Y: choose yo € Y and
y1 €Y. Let f(n) =y if n € X, and f(n) = y; otherwise. Then X <,, Y via f.
Thus, disregarding () and N, the computable sets form the least many-one degree.

For each set Y the class {X: X <,,, Y} is countable. In particular, there is no
greatest many-one degree. However, () is the most complex among the c.e. sets
in the sense of <,,:

1.2.2 Proposition. A isce. & A<, 0.
An index for the many-one reduction as a computable function can be obtained
effectively from a c.e. index for A, and conversely.

Proof. <: If A <,, # via h, then A = dom(¥) where ¥(z) ~ J(h(z)) (recall
that J(e) ~ ®.(e)). So A is computably enumerable.

=: We claim that there is a computable function g such that

{e} ifneA,
14 emn) —
9(en) {@ else.

For let O(e,n,x) converge if x = e and n € A. By a three-variable version
of the Parameter Theorem 1.1.2, there is a computable function g such that
Ve,n,x[0(e,n,x) ~ Py n)(z)]. By Theorem 1.1.6, there is a computable func-
tion h such that W, (n),n) = Whn) for each n. Then

n € A= Wyp) = {h(n)} = h(n) €, and
ng A= Wy =0 = h(n) € 0.

The uniformity statements follow from the uniformity of Theorem 1.1.6. O
1.2.3 Definition. A c.e. set C is called r-complete if A <,. C for each c.e. set A.

Usually <,,, implies the reducibility <, under consideration. Then, since ()’ is m-
complete, a c.e. set C' is r-complete iff " <, C. An exception is 1-reducibility,
which is more restricted than <,,: we say that X <; Y if X <,,, Y via a one-one
function f.

Exercises.
1.2.4. The set @' is 1-complete. (This will be strengthened in Theorem 1.7.18.)

1.2.5. (Myhill) X =; Y < there is a computable permutation p of N such that
Y = p(X). (For a solution see Soare 1987, Thm. 1.5.4.)

Turing reducibility

Many-one reducibility is too restricted to serve as an appropriate measure for
the relative computational complexity of sets. Our intuitive understanding of “Y
is at least as complex as X” is: X can be computed with the help of Y (or, “X
can be computed relative to Y”). If X <,,, Y via h, then this holds via a very
particular type of relative computation procedure: on input x, compute k = h(x)
and output 1 (“yes”) if k € Y, and 0 otherwise. To formalize more general ways
of relative computation, we extend the machine model by a one-way infinite
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“oracle” tape which holds all the answers to oracle questions of the form “is k
in Y77, The tape has a 1 in position k if £ € Y, otherwise it has a 0. To make the
query, the machine moves the head on the oracle tape to position k£ and checks
whether the entry at that position is 1.

Extending the definitions at (1.1) to oracle Turing machines, from now on we
will view the effective listing (P )cen as a listing of partial functions depending on
two arguments, the oracle set and the input. We write ®} (n) | if the program P,
halts when the oracle is Y and the input is n; we write ®.(Y;n), or ®Y (n) for this
output. We also use the notation ®Y (n) T for the negation of ® (n)|. The @,
are called Turing functionals. Extending (1.3), we let

WY = dom(®Y). (1.4)

In this context we call W, a c.e. operator. Turing functionals will be studied in
more detail in Section 6.1, and c.e. operators in Section 6.3.

1.2.6 Definition. A total function f: N+ Nis called Turing reducible to Y, or
computable relative to Y, or computable in Y, if there is an e such that f = @Y.
We denote this by f <r Y. We also say that Y computes f. For a set A, we
write A <7 Y if the characteristic function of A is Turing reducible to Y.

Sometimes we also consider Turing reductions to total functions g. Then f <p g
means that f is Turing reducible to the graph of g, that is, to {(n,g(n)): n € N}.

1.2.7 Exercise. Verify that <,, and <r are preorderings of the subsets of N.

Relativization and the jump operator

The process of extending definitions, facts, and even proofs from the case involv-
ing plain computations to the case of computations relative to an oracle is called
relativization. For instance, in Definition 1.2.6, we relativized the notion of a
computable function to obtain the notion of a function computable in Y. Recall
that WY = dom(®Y). A set A is c.e. relative to Y (or c.e. in Y) if A = WY for
some e. Any notation introduced for the unrelativized case will from now on be
viewed as a shorthand for the oracle version where the oracle is (). For instance,
we view @, as a shorthand for ®?.
The relativization of Proposition 1.1.9 is as follows.

1.2.8 Proposition. A is computable in Y < A and N — A are c.e. inY.

It is proved by viewing the proof of Proposition 1.1.9 relative to an oracle. (Note
that we now assume a version of the Church-Turing thesis with oracles.)

Relativizing the halting problem to Y yields its Turing jump Y. This important
operation was introduced by Kleene and Post (1954).

1.2.9 Definition. We write JY (¢) ~ ®Y(e). The set Y’ = dom(JY) is the
Turing jump of Y. The map Y — Y’ is called the jump operator.

By the oracle version of the Church—Turing thesis, J is a Turing functional.
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When relativizing, special care should be applied that every computation in-
volved becomes a computation with oracle Y. However, in some lucky cases a
proof designed for the computable case and yielding some computable object
actually works for all oracles, and the resulting object is always computable. For
instance, in the relativized proof of the Parameter Theorem 1.1.2, the function ¢
is computable, and independent of the oracle. Thus, for each functional © there
is a computable function ¢ such that, for each oracle Y and each pair of argu-
ments e, z, we have (I)}zf(e) (r) =~ ©Y (e, z). As a consequence one obtains a version
of the Recursion Theorem 1.1.6 for Turing functionals.

1.2.10 Theorem. For each computable binary function g there is a computable
function f such that @;/(f(n)_’n) = @}f(n) for each set' Y and each number 7”|Lj

The proof of Proposition 1.2.2 (that the halting problem is m-complete) uses the
Recursion Theorem. So we obtain a version relative to an oracle, but still with
unrelativized m-reducibility:

1.2.11 Proposition. A isc.e. inY iff A<, Y. O

Relativizing Proposition 1.1.10 (the halting problem is c.e. but incomputable),
we obtain that the jump produces a set that is c.e. relative to the given set and
not Turing below it.

1.2.12 Proposition. For each Y, the setY' is c.e. relative to Y . Also, Y <,, Y’
and Y’ L£1Y, and therefore Y < Y’.

Proof. Y’ is c.e. in Y since Y/ = dom(JY). As Y is c.e. relative to itself, by
Proposition 1.2.11 Y <,,, Y. If Y/ <7 Y then there is e such that N— Y’ = WY
Then e €Y' < e€ WY « e &Y', contradiction. O

1.2.13 Definition. We define Y™ inductively by Y(© = Y and Y+ =
(Y)Y Thus Y <7 Y1 <7 Y <1 ... by Proposition 1.2.12.

The following relates the reducibilities <,,, and <p via the jump operator.
1.2.14 Proposition. For ecach Y, Z, we haveY <r Z & Y' <,, Z'.

Proof. =: The set Y’ is c.e. in Y and hence c.e. in Z. Therefore Y’ <,,, Z’ by

Proposition 1.2.11.

<: By Proposition 1.2.8, Y and N—Y arec.e.inY. SoY,N-Y <, Y’ <, 7/,

whence both Y and N-Y are c.e. in Z by Proposition 1.2.8 again. Hence Y <r Z.
O

We will frequently use the fact that the jump is a universal Turing functional:

1.2.15 Fact. From a Turing functional ® = &, one can effectively obtain a

computable strictly increasing function p, called a reduction function for ®, such
that VY Va ®Y (x) ~ JY (p(x)).
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Proof. Let ©Y (z,y) ~ ®Y(z) (an index for © is obtained effectively). By the
oracle version of the Parameter Theorem, there is a computable strictly increas-
ing function p such VY'Vy @;x)(y) ~ OY(z,y) ~ ®Y(z). Letting y = p(z) we
obtain JY (p(z)) = <I>Z(w) (p(z)) = Y (2). O

We often apply this fact without an oracle. Thus, from a partial computable
function a = ®? one can effectively obtain a reduction function p such that
Vr a(z) ~ J(p(z)). R

Fact 1.2.15 yields a machine independent characterization of the jump: if J is
a further universal Turing functional, there is a computable permutation 7 of
N such that jy(x) ~ JY(m(z)) for each Y,z. This is proved in the same way
as Myhill’s Theorem (Exercise 1.2.5). An example of such an alternative jump
operator is JX (y) ~ ®X(n) where y = (e, n).

We provide a further useful variant of the Recursion Theorem due to Smullyan.
Given computable functions g and h one may obtain a pair of fixed points.

1.2.16 Double Recursion Theorem. Given computable binary functions g, h,
one can effectively obtain numbers a,b such that (I>;/(a b = oY & @z(a by = <I>bY
for each Y.

Proof. By the Recursion Theorem with Parameters 1.2.10, there is a com-
putable function f such that for each Y and each n we have <I>§( Fnym) = @}/(n).

Now apply the Recursion Theorem to the function An.h(f(n),n) in order to
obtain a fixed point b, and let a = f(b). Then a, b is a pair as required. |

Strings over {0,1}
To proceed we need some more terminology and notation. An element of {0,1}
is called a bit. Finite sequences of bits are called strings.

String notation
The set of all strings is denoted by {0, 1}*. The letters o, p, 7, z, y, z will usually
denote strings. The following notation is fairly standard.

oT concatenation of ¢ and T

oa o followed by the symbol a

o <1 o isaprefix of 7, that is, Ip [op = 7]

ol|T o, T are incompatible i.e. neither of o, 7 is a prefix of the other
o <p 7 o isto the left of 7, that is, Ip[p0 < o & pl <X 7]

ted the length of o

%] the empty string, that is, the string of length 0.

We picture {0,1}* as a tree growing upwards, with ¢0 to the left of o1. The
relation <z, is a linear order called the lexicographical order. For a set Z,

’ Z |, denotes the string Z(0)Z(1)...Z(n — 1). ‘

The notations 0 =< Z , 0 <, Z, etc., are used in the obvious senses. For sets Y, Z
we write Y < Z if 3p[p0 <Y & pl < Z].
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Identifying strings with natural numbers

Frequently strings, not merely natural numbers, are the bottom objects. In this
case we want to apply notation developed for natural numbers in the setting of
strings, so it will be useful to identify strings with natural numbers. We could
identify o with a strong index for the nonempty finite set {|o|} U {i: o(i) = 1},
in other words, with the number that has binary representation 1o. The only
problem with this is that 0 does not correspond to a string. To avoid this,

we identify o € {0,1}* with n € N s.t. the binary representation of n+1 is lo.

For instance, the string 000 is identified with the number 7, since the binary
representation of 8 is 1000. Also, the string 10 is identified with the number 5.
The empty string & is identified with 0. If we want to make the identification
explicit, we write

n = number(o) and o = string(n). (1.5)

Note that number(0?) = 2° — 1 and number(1?) = 21 — 2. Thus, the interval
[2¢ 1,271 —1) is identified with the strings of length 4. The length-lezicographical
order where the more significant bits are on the left is the linear ordering on
binary strings given by {(x,y): number(z) < number(y)}.

Logarithm

For n € Nt we let logn = max{k € N: 2 < n}. Then n > 2°&n > n/2.
If o = string(n), then |o| = log(n + 1). For instance, if n = 2¢ — 1, then 0 =
string(n) = 0%, and |o| = log 2¢ = i; if n = 2% — 2, then o = string(n) = 1%, and
|o| = log(2°*t! — 1) = i. (The usual real-valued logarithm is denoted by log, .)

Approximating the functionals ®., and the use principle

A general convention when we are dealing with an approximation at a stage s is
that all numbers that matter to a computation at stage s should be less than s.
For instance, when approximating a functional ®., at stage s we only allow oracle
questions less than s. We extend Definition 1.1.13 to oracle computations.

1.2.17 Definition. We write ®} () = y if e,2,y < s and the computation of
program P, on input z yields y in at most s computation steps, with all oracle
queries less than s. We write ®Y (x) | if there is y such that ®  (z) = y, and
®Y ()1 otherwise. Further, we let W), = dom(®Y,).

The use principle is the fact that a terminating oracle computation only asks
finitely many oracle questions. Hence ((I)ZS)SEN approximates ®} | namely,

DY (x)=y < Fs®Y () =y.

1.2.18 Definition. The use of ®Y (z), denoted use ®Y (z), is defined if ®Y (x) |,
in which case its value is 1+the largest oracle query asked during this computa-
tion (and 1 if no question is asked at all). Similarly, use ®}  (z) is 1+the largest
oracle question asked up to stage s.
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We write
o7 (z) =y
if ®F(x) yields the output y, where F' = {i < |o|: o(i) = 1}, and the use is at
most |o|. We write ®7(x) 1 if there is no such y. Then, for each set Y,
() =y — () =y,
where u = use ®} (). We write ®7  (z) = y if ®(x) = y in at most s steps, and
@7 ;(x) 1 if there is no such y.

Weak truth-table reducibility and truth-table reducibility

If a Turing functional @, is given then \Y, z. use ®} (z) is also a Turing functional
(namely, there is i such that ®Y (z) ~ use ®Y (z) for each Y and x). Thus, if Y’
is an oracle such that f = ®Y is total, the function use ®} is computable in Y.
This function may grow very quickly. A reducibility stronger than < is obtained
when we require that f = ®) for some e such that use ®¥ is bounded by a
computable function.

1.2.19 Definition. A function f: N — N is weak truth-table reducible to Y,
denoted f <, Y, if there is a Turing functional ®. and a computable bound r
such that f = ® and Vnuse ®¥ (n) < r(n). For a set A, we write A <,y Y if
the characteristic function of A is weak truth-table reducible to Y.

It may happen that f <, Y via @, and r such that @f is not a total function
for some oracle Z # Y. We obtain an even stronger reducibility when requiring
that ®Z is total for each Z; this implies a computable bound on the use.

1.2.20 Definition. A function f: N — N is truth-table reducible to Y, denoted
f <u Y, if there is a Turing functional ®, such that f = ®) and ®Z is total for
each oracle Z (we call such a @, a truth-table reduction). For a set A, we write
A <4 Y if the characteristic function of A is truth-table reducible to Y.

The reducibility between sets is called truth-table reducibility because ®Z(n)
can be obtained by first computing a Boolean expression from n, and then eval-
uating it on the answers to oracle questions. Recall strong indices for finite sets
from Definition 1.1.14, and note that the expression on the right in (i) below
corresponds to a Boolean formula in disjunctive normal form.
1.2.21 Proposition.

(i) X <4 Y & there is a computable function g such that, for each n,

neX oV [c =Y.
(1) X <Y implies X <, Y.

Proof. (i) =: Suppose X <4 Y via a truth-table reduction & = ®.. The tree
T, ={o: ®f, (n) T} is finite for each n, for otherwise it has an infinite path Z by

O’GDQ(n)

Kénig’s Lemma (1.8.2 below), and ®Z(n) 1. Given n one can compute a strong
index g(n) for the finite set of minimal strings o (under the prefix relation) such

that @7 (n)| . Hence one can also compute a strong index g(n) for the set of all

o

minimal strings o such that QD‘U‘

(n)l= 1. Then D, is as required.



1.2 Relative computational complexity of sets 15

«<: Consider the following procedure relative to an oracle Z: on input n, first
compute Dgy,). If 0 X Z for some o € D), output 1, otherwise output 0. By
the oracle version of the Church-Turing thesis, a Turing program P! formalizing
the procedure exists, and @, is the corresponding functional. Clearly ®Z is total
for each oracle Z.

(ii) Let @, be the Turing functional of the previous paragraph. Then for each Z
the function use ®Z(n) is bounded by max{|o|: o € Dy(n)}- O

By (i), the truth-table reduction procedures correspond to computable func-
tions g. Thus, our effective listing of the partial computable functions yields an
effective listing of reduction procedures which includes all the tt-reductions.

1.2.22 Proposition. f <; A < there is a Turing functional ® and a com-
putable function t such that f = ®4 and the number of steps needed to compute
®4(n) is bounded by t(n).

Proof. =: Suppose f = &4 and ®7 is total for each oracle Z. Let g be as in
the proof of implication “=" of Proposition 1.2.21(i). Then t(n) = max{|o|: o €
Dgy(ny} bounds the running time of the computation ®Z(n) for each oracle Z.

«<: Let ® be the Turing functional such that ®Z(n) = <I>tZ(n) (n) if the latter is

defined, and ®Z(n) = 0 otherwise. Then ®Z is total for each Z and ®4 = &4,
Hence f <y A. O

Note that, by the proof of “=” every function f <;; A is bounded from above

by a computable function: for each n, f(n) < max{®f (n): o0 € Dg(n)}-
Clearly X <,, Y implies X <4 Y (as an exercise, specify a computable func-

tion g as in Proposition 1.2.21). To summarize, the implications between our

reducibilities are

<m = <u = <wtt > <r.
None of the converse implications hold. In fact, the classes of complete sets differ.
(Recall from Definition 1.2.3 that a c.e. set C' is r-complete if A <, C for each c.e. set A.)
A hypersimple set (1.7.5 below) can be Turing-complete, but is never wté-complete
by 4.1.15. A simple set (1.6.2 below) can be tt-complete, but is never m-complete
by Odifreddi (1989). A natural example of a set which is wti- but not té-complete
comes from algorithmic randomness: the set of (binary) rationals in [0, 1] that are less
than Chaitin’s halting probability 2. See Section 3.2 for definitions, Proposition 3.2.30
for wtt-completeness of this set and Theorem 4.3.9 for its tt-incompleteness. A direct
construction of such a set is also possible, but cumbersome (Odifreddi, 1989, IIL.9).
Exercises. The effective disjoint union of sets A and B is

A®B={2n: ne A}U{2n+1: n € B}.

1.2.23. (i) Show that A, B <,, A® B.
(ii) Let <, be one of the reducibilities above. Then, for any set X,

AB<. X <« A®B<, X.
1.2.24. Let C = AgUA; where Ap, A; are c.e. and AgNA; = (. Then C =y Ao D A1
1.2.25. Show that 37 f <, Z < there is a computable h such that Vn f(n) < h(n).
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Degree structures

One can abstract from the particularities of a set and only consider its rela-
tive computational complexity, measured by a reducibility <,.. The equivalence
classes of the equivalence relation given by

X=Y « X<, V< X

are called r-degrees. The r-degree of a set X is denoted by deg,.(X). The r-
degrees form a partial order denoted by D,.. We state some basic facts about D,
for a reducibility <, between <,, and <7. In the case of many-one reducibility
we disregard the sets () and N. For proofs see for instance Odifreddi (1989).

A structure (U, <, V) is an uppersemilattice if (U, <) is a partial order and, for
each z,y € U, x V y is the least upper bound of = and y.

1.2.26 Fact.

(i) The least element of D, is 0 = deg,.({0}), the degree consisting of the
computable sets.
(i) D, is an uppersemilattice, where the least upper bound of the degrees of
sets A and B is given by the degree of A ® B.
(iii) For each a € D, the set {b: b < a} is countable.
(iv) D, has cardinality 2%°. O

By 1.2.12, D, has no maximal elements: for each A, we have A’ >, A. By 1.2.14,
the jump operator induces a map ' : Dy — Dr, given by deg;(X) — deg(X'),
called the Turing jump. This map is monotonic: for each pair x,y € Dy we have
x <y — x' <y’. Note that 0 < 0’ < 0” < ... is an infinite ascending sequence
of Turing degrees. In Corollary 1.6.6 we will see that the jump is not one-one. In
fact, for each x € Dr there is y > x such that x’ =y’.

1.2.27 Definition. Let (U, <,V) be an uppersemilattice, and let I C U be
nonempty. We say I is an ideal of U if I is closed downward, and =,y € I implies
xVy € I. For instance I = {x: Inx < 0} is an ideal in Dy, called the ideal
of arithmetical degrees. The ideal I is called principal if I = {b: b < a} for some
acU.

1.3 Sets of natural numbers

Sets of natural numbers are important objects of study in computability theory.
They can be identified with infinite sequences of bits, and also with the real
numbers r such that in 0 < r < 1 via the representation in base 2 (here one
disregards the cofinite sets). For instance, the set of even numbers is identified
with 101010. .., and also with the real number 0.101010... = 2/3. The term set
will refer to sets of natural numbers unless otherwise stated.

There are two extremes as to how to view a set Z: the local view, where the set
is understood by looking at its initial segments Z [,,, and the global view, where
the set is appreciated all at once. In the local view, the set is revealed bit by
bit, similar to the outcomes of an experiment that proceeds in time (see page 73
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for more on this). Strings are important for us because they represent the finite
initial segments of sets. The global view is to think of the set as a single entity.
In the ideal case we would like to give a description of the set.

Let us step back and consider some alternatives to sets of natural numbers.
How essential is the use of the natural numbers for the indexing of bits? One
can also use other effectively given domains D, such as the tree {0,1}* of finite
strings over {0,1}, or the rationals. Instead of subsets of N, one now studies
subsets of {0,1}*, or subsets of Q.

1. The local view changes, since we have a different perception of what the
finite “parts” of a subset of D are. For instance, if D = {0,1}*, a finite part
might consist of the labeled finite tree of the bits up to level n. If D = Q it is
unclear how one would define a notion of finite part taking the order structure
of D into account. The following definition provides a reasonable notion of finite
part for a subset of an arbitrary domain D. A finite assignment for D is a
sequence a = ({dg,r0),...,{dk—1,7k—1)) where all d; € D are distinct, k € N,
and r; € {0,1}. If Z: D — {0,1}, we think of « as a part of Z if Z(d;) = r; for
each i < k. For more on finite assignments see page 297.

2. In contrast, for the global view the choice of the domain D matters little as long
as the elements of D can be effectively encoded by natural numbers. The reason
is that, with very few exceptions, classes C of sets introduced in computability
(and randomness) theory are closed under computable permutations 7, namely,
Z €C < Zomw € C for each set Z. Thus, it does not matter that the choice
of D, and its encoding by natural numbers, is arbitrary.

The indexing of bits by natural numbers is a convenience rather than a neces-
sity. It is convenient for us because we may use our intuition based on discrete
physical processes that proceed in time, and we have a clear idea of what the
finite parts of the set are, namely strings that are initial segments of the set.
Also, using N for indexing, we have the rich structure of arithmetic (N, +, x) at
our disposal: most descriptions of sets will use some extension of the language of
arithmetic (see Section 1.4). At the same time, the indexing of bits by natural
numbers is not essential for the global view, since we may use a domain other
than the natural numbers and still study the same properties of sets.

Sets of natural numbers are identified with functions N — {0, 1}, so why not
study directly functions f: N — N7 After all, they are equally fundamental.
In fact, most of the theory of descriptive and computational complexity can be
developed in the same way for functions. Both sets and functions can be put into
topological context, using product topologies. Sets are the elements of Cantor
space 2" (Section 1.8), while functions are the elements of Baire space N. Cantor
space has the nicer properties, since on the one hand it is compact, on the other
hand it allows us to define the uniform measure A, which assigns the quantity
27171 to each basic open cylinder [0] = {Z: o < Z} (see 1.9.7 on page 70). The
failure of these properties in the case of Baire space is the reason why we give
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preference to sets. In particular, the theory of algorithmic randomness relies on
the uniform measure and therefore only works for sets.

We could be slightly more general and work with functions N — {0,...,b—1}
for some fixed b € N —{0,1}. They form a compact space on which the uniform
measure can be defined, and can be identified with the real numbers r such that
in 0 < r < 1 via the representation in base b (here one disregards the functions
that eventually have the value b — 1). Also see Remark 3.2.34.

1.4 Descriptive complexity of sets

In this section we develop some more theory on the descriptive complexity of sets.
In the next section we do the same for the absolute computational complexity.
In the beginning of this chapter we discussed the method of introducing classes
of sets sharing a certain complexity property. The class of computable sets is
contained in each such class, for both types of complexity, because a Turing
program P! that computes a set Z is also a very simple way of describing Z. In
the terminology introduced earlier, we use the description system Fiopm,p given by
Feomp(e) = Z if P! computes Z. A larger class of descriptive complexity, the class
of c.e. sets, is given by the description system F. . (e) = W, = {z: P}(x) halts}.
Note that every number is a description with respect to F .., while the domain
of Feomp is incomputable by Exercise 1.4.20(iii).

AY sets and the Shoenfield Limit Lemma

In a computable enumeration (Zs)sen of a set Z, for each x, Zs(x) can change
at most once, namely from 0 to 1. Which sets Z are described if we allow an
arbitrary finite number of changes? These sets are called A9 sets and form an im-
portant class of descriptive complexity. The reason for choosing this terminology
will become apparent in Definition 1.4.15.

1.4.1 Definition. We say that a set Z is A if there is a computable sequence
of strong indices (Z;)sen such that Zs C [0,s) and Z(z) = limsZs(z). We say
that (Zs)sen is a computable approzimation of Z.

A computable enumeration is a special case of a computable approximation.

The following notation is very useful. Given an expression F that is approxi-
mated during stages s,

Els]
denotes its value at the end of stage s. For instance, given a AY set Z with a
computable approximation, instead of ®Z;(x) we simply write ®Z(z)[s]. El[s]
can usually be evaluated in an effective way. We say that the expression E is
stable at s if E[t] = E[s] for all t > s.

Shoenfield (1959) proved that the A§ sets coincide with the sets that are Turing
reducible to the halting problem. For this reason, the A9 sets can also be viewed
as a class of computational complexity, namely the class of oracles that are at
most as powerful as the halting problem. In the proof of Shoenfield’s result we
introduce the notion of a change set which will be important later on.
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1.4.2 Lemma. (Shoenfield Limit Lemma)
Z is Ag & Z <7p 0. The equivalence is uniform.

Proof. «<: Fix a Turing functional ®, such that Z = @g/. Then the required
computable approximation is given by Zy = {x < s: ® ()[s] = 1}. This ap-
proximation was obtained from ®. in an effective way.
=: We define a c.e. set C such that Z < C. This is sufficient because C <,,, 0/
by Proposition 1.2.2. The set C is called the change set because it records the
changes of the computable approximation. If Z(z) # Zsy1(x) we put (z,4) into
Cs41, where i is least such that (z,i) € Cs. To show that Z <; C, on input z,
using the oracle C' compute the least i such that (x,i) & C. If i is even then
Z(y) = Zo(y), otherwise Z(y) =1 — Zy(y).

We have obtained C' and the Turing reduction of Z to C' effectively from the
computable approximation of Z. Proposition 1.2.2 is also effective. O

If Z =®" we say that e is a AY index for Z. A number e is a AY index only
if ®" is total (and also 0, 1-valued). In contrast, each number i describes a c.e.
set W;. The set of AJ indices is far from computable; see Exercise 1.4.21.

Sets and functions that are n-c.e. or w-c.e.

One obtains classes of descriptive complexity between the classes of c.e. sets and
AY sets by restricting the number changes in a computable approximation.

1.4.3 Definition. (i) We say that a set Z is w-c.e. if there is a computable
approximation (Zs)seny of Z and a computable function b such that

b(x) > #{s >x: Zs(x) # Zs_1(x)} for each x.

(ii) If Zs(s — 1) = 0 for each s > 0 and b(x) can be chosen constant of value n,
then we say Z is n-c.e.

Thus, Z is 1-c.e. iff Z is c.e., and Z is 2-c.e. iff Z = A — B for c.e. sets A, B.

1.4.4 Proposition. Z isw-c.e. & Z <, u 0 < Z <y 0.
The equivalences are effective.

Proof. First suppose that Z <, (' via a functional ®, with computable use
bound f. To show that Z is w-c.e., as before let Z, = {x < s: ® (z)[s] = 1}.
Since ®? (x)[s] only becomes undefined when a number less than f(z) enters (),
the number of changes of Z;(z) is bounded by 2f(x).

Now suppose that Z is w-c.e. via the computable approximation (Z)sen and
the function b bounding the number of changes. We show that Z <; (. Let C
be the change set introduced in the proof of the implication “=" of the Shoen-
field Limit Lemma. Since b(x) > min{i: (z,7) ¢ C}, the reduction of Z to C
given there can be carried out by computing a truth-table from the input z and
evaluating it on the answers to oracle questions to C. Hence Z <; C <,, (.

O

By Proposition 1.2.21, truth-table reduction procedures may be viewed as partial
computable functions mapping inputs to truth tables. Let (©,).cn be an effective
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listing of all such (possibly partial) truth-table reduction procedures defined on
initial segments of N. Then Proposition 1.4.4 yields an indexing of the w-c.e. sets
that includes computable approximations:

1.4.5 Definition. The w-c.e. set with index e is V. = {z : 0% (z) = 1}. A com-
putable approximation of V, is given by V, , = {z : ¥ (2)[s] = 1}.

Thus, if ©.(z) is undefined then V, ;(x) = 0 for each s. By 1.2.2, for each e we
uniformly have a many-one reduction of W, to (/'. Hence there is a computable
function g such that W, = V. for each e.

The hierarchy of descriptive complexity classes introduced so far is

computable C c.e. C 2-ce. C 3-c.e. C...C w-c.e. C AY. (1.6)

It is proper even when one considers the Turing degrees of sets at the various
levels (see Odifreddi 1989). For instance, there is a 2-c.e. set Z such that no set
Y =1 Z is c.e., and there is a Ag set Z such that no set Y =1 7 is w-c.e.

The definitions of AY sets and w-c.e. sets can be extended to functions g: N — N.

1.4.6 Definition. A function g is AJ if there is a binary computable function
Az, s.gs(x) such that Va g(x) = limggs(x). Moreover, g is w-c.e. if if there is, in
addition, a computable bound b such that b(z) > #{s > z: gs(x) # gs—1(x)}
for each z.

One can extend the Limit Lemma and the first equivalence of Proposition 1.4.4 to
functions. The second equivalence in 1.4.4 fails for functions by Exercise 1.2.25 and
since an w-c.e. function need not be bounded by a computable function.

1.4.7 Exercise. Let g: N — N be a function.

(i) gis AY < g <r 0.

(ii) g is w-ce. & g <y 0.

1.4.8 Exercise. (Mohrherr, 1984) Let E >4 (. Then Z <,y E implies Z <y E.

The following will be needed later.

1.4.9 Fact. There is a binary function q < (' with the following property: for each
w-c.e. function g there is an e such that Vn g(n) = q(e, n).

Proof. On inputs e, n, use () to determine whether 3sVo [|o| = s — ®Z(n) |]. If so,
let g(e,n) = <192’(11)[8], otherwise g(e,n) = 0. If g <4 @ via P, as in Definition 1.2.20,
then Vn g(n) = q(e, n). O

Degree structures on particular classes x

Recall from the beginning of this chapter that the three approaches to measure the
complexity of sets are via the descriptive complexity, the absolute computational, and
the relative computational complexity. These approaches are related in several ways.
One connection is that classes of computational complexity can actually comprise the
least degree of a reducibility; see Section 5.6. Here we consider another type of con-
nection. For a reducibility <,, one can study the r-degrees of the sets in a particular
class of similar complexity C. In this way, one arrives at interesting degree structures,
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for instance Rr, the Turing degrees of c.e. sets, and Dr(< 0'), the Turing degrees
of the AY sets. This is a bit more natural when C is closed downward under <,, say,
when C is the class of AJ sets and <,. is Turing reducibility. Given n, the class of n-c.e.
sets is merely closed downward under <,,. Recall from Fact 1.2.26 that 0 is the degree
consisting of the computable sets. By the results in Section 1.2 and the Limit Lemma,
all the degree structures discussed here have a greatest degree, the degree of the halting
problem, denoted by 1. All degree structures are uppersemilattices because the relevant
classes are closed under @.

In the following we list some properties of the Turing degree structures on classes in
the hierarchy (1.6). Like most theorems on degree structures, they can be expressed in
the first-order language of partial orders. For details on these often difficult results see
Odifreddi (1989, 1999) or Soare (1987).

In Dr(< 0'), and even in the Turing degrees of w-c.e. sets, there is a minimal element,
that is, there is a degree a > 0 such that x < a implies x = 0 (Sacks, 1963b). The n-c.e.
degrees do not have minimal elements (Lachlan; see Odifreddi, 1999, XI1.5.9b).

Rr is dense, i.e., for each a < b there is ¢ such that a < ¢ < b (Sacks, 1964).

The structures of n-c.e. and of w-c.e. degrees have a maximal incomplete element,
i.e., there is a < 1 such that a < x implies x = 1 (Cooper, Harrington, Lachlan, Lempp
and Soare, 1991). In contrast, D7 (< 0) has no maximal incomplete element.

The arithmetical hierarchy

Up to now we have defined classes of descriptive complexity via computable
approximations, possibly with extra conditions. This led to the hierarchy (1.6)
on page 20. To obtain more powerful description systems, we will replace this
dynamic way of describing a set by descriptions using the first-order language of
arithmetic (with signature containing the symbols +, x). Computable relations
are first-order definable in the language of arithmetic (Kaye, 1991, Thm. 3.3), so
we may as well suppose that, for & > 1 and each computable relation on N*, the
signature contains a k-place relation symbol. For each description system, we use
as descriptions the first-order formulas in this extended language satisfying cer-
tain syntactic conditions. In this way we will also obtain alternative, equivalent
description systems for the computable, the c.e., and the AJ sets.

1.4.10 Definition. Let A C N and n > 1.

(i) Ais X0 ifz € A < FyVya...Qun R(2, Y1, - ,Yn), where R is a symbol for
a computable relation, @ is “3” if n is odd and @Q is “V” if n is even.

(i) Ais Y if N— Ais X0 that is x € A < Vy1Iya ... Qun S(T, Y1, -+, Yn),

where S is a symbol for a computable relation, @ is “V” if n is odd and @ is “3”
if n is even.

(iii) A is arithmetical if A is X0 for some n.

One can show that these classes are closed under finite unions and intersec-
tions. A bounded quantifier is one of the form “Jdx < n” or “Vx < n”. We
still obtain the same classes if we intersperse bounded quantifiers of any type
in the quantifier part of expressions above, or replace single quantifiers @ by
whole blocks of quantifiers of the same type as ). For instance, the expression
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JyVz < yFuVv R(z,y, 2,u,v) yields a £9 set. See Odifreddi (1989, Prop. IV.1.4)
for details.
Definition 1.4.10 can be viewed relative to an oracle C.

1.4.11 Definition. For C C N and n € N, we define X9 (C) classes and 119 (C)
classes as in Definition 1.4.10, but with relations R, S <7 C.

Note that we now interpret the formulas in the structure (N, 4, x) extended by
a unary predicate for C, in which R and S are first-order definable (see 1.4.24).

1.4.12 Fact. A is X0 < A is c.e. The equivalence is uniform.

Proof. =: Suppose z € A «— JyR(z,y) for computable R. Let ® be the
partial computable function given by the Turing program that on input x looks
for a witness y such that R(x,y), and halts when such a witness is found. Then
A = dom(®), so A is c.e. according to Definition 1.1.8.

<: Suppose A = dom(®) for a partial computable function ®. Let R be the
computable relation given by R(z,s) < ®(x)[s] |. Then z € A < 3IsR(x,s),
so Ais XY. O

The next result is due to Post. Statement (i) generalizes Fact 1.4.12. Recall
from 1.2.2 that (' is many-one complete for the c.e. sets. In (ii) we generalize
this to the X0 sets. A X0 set C is called X0 -complete if A <,,, C for each X
set A. In a similar way one defines IT%-completeness. (™) is defined in 1.2.13.

1.4.13 Theorem. Letn > 1.
(i) Ais X0 < Ais c.e. relative to ("1,
(i) 0™ is 0 -complete.

Proof. We use induction on n. For n =1, (i) is Fact 1.4.12 and (ii) is Proposi-
tion 1.2.2. Now let n > 1.
(i) First suppose A is X0, namely z € A < Jy1Vya ... Qyn R(z,y1,- .., yn) for

some computable relation R. Then the set

B={{z,y1): Yya...Qun R(z,y1,...,yn)}
is 19, and A is c.e. relative to B. By (ii) for n — 1 we have B <,, N — (*~1),
So A is c.e. relative to §(*—1).
Now suppose A is c.e. relative to §(*~). Then there is a Turing functional ®

such that A = dom(@m(nfl)). By the use principle,

(i) =1—ied N &

n : n
r€A & dns |PN(x)] & Vi< n(i) = 0 — i ¢ Pn=D)

The innermost part can be put into X9-form, so 4 is X because the quantifier
Vi is bounded; (ii) now follows by Proposition 1.2.11 where Y = ((*~=1), O

Recall that in 1.4.1 we introduced A9 sets via computable approximations.
They can also be characterized using the language of arithmetic.
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Fi1G. 1.1. The arithmetical hierarchy.

1.4.14 Proposition. A is A < A is both £9 and I13.

Proof.
AeA) & A0 by the Limit Lemma 1.4.2
< Aand N— A are ce. in by Proposition 1.2.8
& AexinIy by Theorem 1.4.13. O

The following is therefore consistent with Definition 1.4.1.
1.4.15 Definition. We say that A is AY if A is both X2 and TI9.

The computable sets coincide with the A{ sets by Fact 1.4.12. The hierarchy
of classes introduced in Definitions 1.4.10 and 1.4.15 is called the arithmetical
hierarchy (Figure 1.1).

1.4.16 Proposition. Let n > 1. Then A is A < A <p §(»~1),

Proof. By Theorem 1.4.13, A is A2 & A and N — A are ce. in §*~Y. By
Proposition 1.2.8, this condition is equivalent to A < ¢(»—1). O

The X9-sets Z can still be reasonably described by a suitable computable se-
quence of finite sets (Zs)sen-

1.4.17 Proposition. Z is X < there is a computable sequence of strong
indices (Zs)sen such that Z; C [0,s) and x € Z « 3sVt > s Zy(x) = 1.
The equivalence is uniform.

Proof. =: By Theorem 1.4.13(i) there is a Turing functional ® such that
Z = dom(®""). Now let Z, = {z < s5: ®* (x)[s]|}.
<: The expression “JsVt > s[Z;(z) = 1]” is in XY form. O

In the exercises we give further examples of complete sets at the lower levels of
the arithmetical hierarchy. They are somewhat more natural than the sets (")
because they are not obtained by relativization. Rather, they describe properties
of c.e. sets.

1.4.18 Definition. The indez set of a class S of c.e. sets is the set {i: W; € S}.
In a similar way, using the listing (V;)een from 1.4.5, we define the index set of
a class of w-c.e. sets.
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Exercises. Show the following.

1.4.19. (' is not an index set.

1.4.20. (i) The set {e: We. # 0} is 29 complete.

(i) The set {e: W. finite} is ©3-complete. In fact, for each X9 set S there is a uniformly
c.e. sequence (X, )nen of initial segments of N such that Vn[n € S < X, finite], and
this sequence itself is obtained effectively from a description of S.

(iii) The set Tot = {e: dom(®.) = N} = {e: W, = N} is [I3-complete.

(iv) Both {e: W, cofinite} and {e: W, computable} are ¥3-complete.

1.4.21. The set {e: dom®? = N} is I13-complete.

1.4.22. Let S be a class of c.e. sets [w-c.e. sets] containing all the finite sets. Suppose
the index set of S is £3. Then S is uniformly c.e. [uniformly w-c.e.]

1.4.23°2 Let S be a class of c.e. sets closed under finite variants that contains the
computable sets but not all the c.e. sets. If the index set of S is X then it is 23-
complete.

1.4.24. Let X C N. (i) Each relation R <7 X is first-order definable in the structure
(N, 4, -, X). (ii) The index set {e: W. <7 X} is £3(X).

1.4.25. Ais AY & Vo A(x) = limg, limg, ...limg,_, g(z, k1, ..., kn—1) for some com-
putable {0, 1}-valued function g.

1.5 Absolute computational complexity of sets

At the beginning of this chapter we discussed classes of similar complexity. A low-
ness property of a set specifies a sense in which the set is computationally weak.
Usually this means that it is not very useful as an oracle. Naturally, we require
that such a property be closed downward under Turing reducibility; in particu-
lar it only depends on the Turing degree of the set. If a set is computable then
it satisfies any lowness property. A set that satisfies a lowness property can be
thought of as almost computable in a specific sense.

Highness properties say that the set is computationally strong. They are closed
upward under Turing reducibility. If a set satisfies a highness property it is almost
Turing above ()’ in a specific sense.

Classes of computational complexity are frequently defined in terms of how
fast the functions computed by the set grow. To compare the growth rate of
functions one can use the domination preordering on functions.

1.5.1 Definition. Let f,g: N — R. We say that f dominates g if f(n) > g(n)
for almost every n.

In this section we introduce two lowness properties and one highness property
of a set A. We also consider some of their variants.

(a) Aislow if A’ <p (.
(b) A is computably dominated if each function g <r A is dominated by a

computable function.
(c) Ais high if 0" <p A’
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The classes given by (a) and (c) can be characterized by domination properties.
For (c), by Theorem 1.5.19, A is high iff there is a function ¢ <7 A dominat-
ing each computable function, which shows that highness is opposite to being
computably dominated. For (a) see Exercise 1.5.6.

A general framework for lowness properties and highness properties will be
given in Section 5.6. We consider weak reducibilities <y . Such a reducibility
determines a lowness property C <y ) and a dual highness property C >y (.
For instance, we could define A <y B iff A’ <7 B’. Then the associated lowness
and highness properties are (a) and (c) above. Table 8.3 on page 363 contains
further examples of such dual properties given by a weak reducibility.

It can be difficult to determine whether a lowness property is satisfied by more
than the computable sets, and whether a highness property applies to sets other
than the sets Turing above (/. We will need to introduce new methods to do
so for the properties (a)—(c): the priority method (page 32) or basis theorems
(page 56) for (a) and (b), and, for instance, pseudojump inversion (page 249)
for (c). So far, we actually have not seen any example of a set that is neither
computable nor Turing above (/'

A pair of lowness properties can be “orthogonal” in the sense that the only
sets that satisfy them both are the computable sets. For instance, the properties
in (a) and (b) are orthogonal. In contrast, classes of descriptive complexity form
an almost linear hierarchy, disregarding cases like the XY versus the I sets
where one class is simply obtained by taking the complements of the sets in
the other class. For a further difference between computational and descriptive
complexity, the downward closed class given by (b), say, is uncountable, while
classes of descriptive complexity are countable.

Given a lowness property £, we will be interested in the question whether it is
null or conull (Definition 1.9.8), and whether there are sets A, B € £ such that
(" <r A @ B. Similarly, we will be interested in whether a highness property H
is null or conull, and whether there are sets A, B € H that form a minimal pair
(only the computable sets are Turing below both A and B). Being conull means
that the property is not very restrictive. Most of the properties we study will be
null, including the ones in (a)—(c). If sets A, B as above exist then the property
is not that close to being computable (for lowness properties), or being Turing
above ) (for highness properties). We will return to the topic of minimal pairs
satisfying a highness property on page 258.

In this section we concentrate on the properties (a)—(c) and their variants.
We introduce further properties in subsequent chapters, often using concepts
related to randomness. In Chapter 4 we study the conull highness property of
having diagonally noncomputable degree, and the stronger highness property of
having the same degree as a completion of Peano arithmetic (which is null by
Exercise 5.1.15). In Chapter 5 we consider lowness for Martin-L6f randomness.
Lowness for other randomness notions is studied in Chapter 8. Figure 8.1 on
page 361 gives an overview of all the downward closed properties.
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Sets that are low,

Recall from 1.2.13 that C") is the result of n applications of the jump operator,
beginning with the set C. A hierarchy of absolute computational complexity is
obtained by considering C™) within the Turing degrees, for n > 0. Note that
C™ >5 (™ by Proposition 1.2.14.

1.5.2 Definition. Let n > 0. We say that C' is low, if C™ =5 (™),

The most important among these classes is low;, the class of sets C' such that
C' =7 0. If C € low; we simply say that C' is low. Each low set is A9. Thus,
such a set is computationally weak in the sense that (' can determine whether
®Y(x) converges for each e, z, and in case it does find the output. We will see in
Theorem 1.6.4 that an incomputable low c.e. set exists. In particular, the jump
is not a one-one map on the Turing degrees.

Each class low, is closed downward under Turing reducibility, and contained
in A9 ;. The hierarchy

computable C low; C lows C ... C{Z: Z #70'} (1.7)

is proper by Theorem 6.3.6 below.
The following property due to Mohrherr (1986) will be important later on.

1.5.3 Definition. C is superlow if C' =4 (V.

It suffices to require that C’ <y (', because ' <,, C' for any C by 1.2.14.
By 1.4.4, it is also equivalent to ask that C’ be w-c.e., namely, C’ can be com-
putably approximated with a computable bound on the number of changes.

The class of superlow sets is closed downwards under Turing reducibility. It
lies strictly between the classes of computable and of low sets. In Theorem 1.6.5
we build a c.e. incomputable superlow set, and Exercise 1.6.7 asks for a low but
not superlow c.e. set. Also see Remark 6.1.5.

The following states that A’ is as simple as possible compared to A.

1.5.4 Definition. A is generalized low;, or in GL; for short, if A’ = A @'.

Equivalently, ()" is Turing complete relative to A. Clearly the class GL; coincides
with low; on the A§ sets, and no set A > /' is in GL;. However, a set in GL; is
not necessarily computationally weak. In fact, if B 21 @’ then there is A > B
such that A is in GL; by a result of Jockusch (1977); also see Odifreddi (1999,
Ex. X1.3.11).

We extend Definition 1.5.1. For functions f,1: N — N, where possibly v is
partial, we say that f dominates ¢ if V°n [p(n) | — f(n) > ¥(n)].
Exercises. Show the following.
1.5.5. If C is superlow, there is a computable function A such that Y <7 C implies
Y < (' with use function bounded by h for each Y. (Here we view truth table reduc-
tions as functions mapping inputs to truth tables; see before 1.4.5.)
1.5.6. A is in GL; < some function f <7 A ® @’ dominates each function that is
partial computable in A.
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1.5.7. If B is lows then the index set {e: W. <7 B} is X§.
1.5.8. B is Lows < Tot? = {e: ®7 total} is X3.

Computably dominated sets

We study a lowness property of a set A stating that the functions computed
by A do not grow too quickly.

1.5.9 Definition. A is called computably dominated if each function g <r A is
dominated by a computable function.

Exercise 1.5.17 shows that we cannot effectively determine the dominating func-
tion from the Turing reduction of g to A, unless A is computable.

We say that E C N is hyperimmaune if E is infinite and pg is not dominated by
a computable function, where pg is the listing of E in order of magnitude (also
see Definition 1.7.1 below). The intuition is that E is a very sparse set.

1.5.10 Proposition. A is not computably dominated < there is a hyperim-
mune set E =7 A.

Proof. «<: Immediate since pg <1 FE.

=: Suppose g <r A is not dominated by a computable function. Let £ =
ran(h), where the function h is defined as follows: A(0) = 0, and for each n € N,
h(2n +1) = h(2n) + g(n) + 1 and h(2n + 2) = h(2n + 1) + pa(n) + 1. Clearly
E =p h=p A. Moreover g(n) < h(2n+ 1), so that h = pg is not dominated by
a computable function. O

For this reason, a set that is not computably dominated is also called a set of
hyperimmune degree. In the literature, a computably dominated set is usually
called a set of hyperimmune-free degree. The study of hyperimmune-free degrees
was initiated by Martin and Miller (1968).

1.5.11 Proposition. A is computably dominated < for each function f,
f<rA—f<uA
Proof. =: Suppose f = ®4. Let g(x) = us ®?(x) |. Then g <7 A, so there

is a computable function ¢ such that t(z) > g(z) for each x. Thus ¢ bounds the
running time of ®4, whence f <4 A by Proposition 1.2.22.

<: By the remark after Proposition 1.2.22, each function f <; A is dominated
by a computable function. O

Each computable set A is computably dominated. Are there others? We will
answer this question in the affirmative in Theorem 1.8.42. Here we observe that
there are none among the incomputable A§ sets.

1.5.12 Proposition. If A is AY and incomputable, then A is not computably
dominated.

Proof. Let (As)sen be a computable approximation of A. Then the following
function g is total:
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g(s) ~put > 5. Ay [s= Als.

Note that g <7 A. Assume that there is a computable function f such that
g(s) < f(s) for each s. Then A is computable: for each n and each s > n we have
Ai(n) = A(n) for some t € [s, f(s)), namely ¢ = g(s). On the other hand, if s
is sufficiently large then A, (n) = As(n) for all u > s. Thus, to compute A, on
input n determine the least s > n such that A, (n) = As(n) for all u € [s, f(s)).
Then As(n) = A(n), so the output A(n) is correct. O

Exercises.

1.5.13. (a) Strengthen Proposition 1.5.12 as follows: if C' <7 A <t C’ for some set C,
then A is of hyperimmune degree. (b) Conclude that, if A is computably dominated
and C <r A, then C' < A'.

1.5.14. Strengthen Proposition 1.5.12 in yet another way: if A is 29 and incomputable
then A is of hyperimmune degree.

1.5.15. Show that if A is computably dominated then A” <7 A’ @& (). In particular,
each computably dominated set is in GL2 (Definition 1.5.20 below).

1.5.16° (Jockusch, 1969) Show that if X <r A — X < A for each set X, then A
is already computably dominated.

1.5.17° Let us call a set A uniformly computably dominated if there is a computable
function r such that for each e, if ®2 is total then ®,(¢ is total and dominates o4
Show that the only uniformly computably dominated sets are the computable ones.

Sets that are high,

Recall from Definition 1.5.2 that a set C'is low, if C™ =7 ("), namely C™ is
as low as possible. How about having a complex n-th jump?

1.5.18 Definition. Let n > 0. A set C is high,, if 0D <, (),

Of course, C™ could be even more complex. However, if C' is AY then cm <p
9"+ So in that case, to be high,, means that the n-th jump is as complex as
possible.

All the classes high,, are closed upward under Turing reducibility, so the com-
plementary classes non-high,, = 2 — high,, are closed downward. We have refined
the hierarchy (1.7):

comp. C low; C lowy C ... C non-highy C non-highy C {Z: Z #r 0'}. (1.8)

This hierarchy of downward closed classes is a proper one as we will see in 6.3.6.
Also, there is a c.e. set that is not in low, or high,, for any n by 6.3.8.

Of particular interest is the class highy = {C: 0" <p C'} (simply called the
high sets), because such sets occur naturally in various contexts. For instance, a
theorem of Martin (1966b) states that a c.e. set C' is high iff C =1 A for some
maximal set A; also see Soare 1987, Thm. X1.2.3. Here a co-infinite c.e. set A
is called maximal if for each c.e. set W O A, either W is cofinite or W — A is
finite. For another example, C' is high iff there is a computably random but not
Martin-Lof random set Z =1 C' by Theorem 7.5.9 below.
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We are not yet in the position to show the existence of a high set C' %1 (.
Our first example will be Chaitin’s halting probability © relative to 0 (3.4.17).
In Corollary 6.3.4 we prove that there is a high c.e. set C < .

It is easy to define a function f <7 @’ that dominates all computable func-
tions: the set {(e,x): ®.(x)]} is c.e., and hence many-one reducible to (' via a
computable function h. Let f(z) = max{®.(z): e <z & h({e,z)) € 0'}. If D, is
total then f(x) > ®.(z) for all x > e. This property of (' in fact characterizes
the high sets. Thus, being high is opposite to being computably dominated.

1.5.19 Theorem. (Martin, 1966b) C is high < some function f <y C' domi-
nates all computable functions.

Proof. =: We define a function f <p C' that dominates each total ®., ex-
tending the argument for the case C' = )/ just given. Note that {e: ®. total}
is I19, and hence {e: ®. total} <,, N— 0" <p C’. By the Limit Lemma
1.4.2 there is a binary function p <7 C such that for each e, limsp(e,s) ex-
ists, and limgp(e,s) = 1 iff &, is total. To compute f(z) with oracle C, let
s > x be least such that for each e < z, either @, ((z) | or p(e,s) = 0, and let
f(z) = max{®. s(z): e <z & D, 4(x)]}.

If @, is total then there is sg > e such that p(e,s) = 1 for all s > sg, so that
f(z) > @ () for all z > so.
<: Suppose that f <p C' dominates all computable functions. We show that
N— 0" = {e: ® (e)1} is Turing reducible to C’. Note that ®?'(e)1 iff the com-
putation is undefined at infinitely many stages, that is, no computation ®? (e)][s]
is stable. Thus ®?' (e) 1 iff the partial computable function

g(s) = pt > 5 [@% (e)[t]1]

is total. In that case g is dominated by f, and therefore

e @0 & Ing¥n > ne3t[n <t < f(n) & ¥ (e)[1]1].

Since t is bounded by f(n) and f <7 C, this shows that N — ()" is $3(C). Also
0" € £9 € 2Y(C). Therefore (" <7 C’ by Prop. 1.4.14 relative to C. O

The following class contains the class GL; of Definition 1.5.4.

1.5.20 Definition. A is generalized lows, or GLg for short, if A” =7 (A 0')'.
Equivalently, (" is high relative to A.

1.5.21 Exercise. Show that A is GL2 < some function f <7 ()’ ® A dominates each
(total) function g <7 A. (Compare this with Exercise 1.5.6 characterizing GL;.)

1.6 Post’s problem

Post (1944) asked whether a c.e. set can be incomputable and Turing incomplete,
that is, whether there is a c.e. set A such that § <7 A <7 (. It took 12 years to
answer his question. Kleene and Post (1954) made a first step by building a pair
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of Turing incomparable AY sets. To do so they introduced the method of finite
extensions. Post’s question was finally answered in the affirmative by Friedberg
(1957b) and Muchnik (1956) independently. They built a pair of Turing incompa-
rable sets that are also computably enumerable, strengthening the Kleene—Post
result. Their proof technique is nowadays called the priority method with finite
injury. For more background on Post’s problem see Chapter III of Odifreddi
(1989) and our discussion on page 34.

Turing incomparable AY-sets
Forsets Y, Z we write Y |[r Zi{Y £ Z & Z £7Y.

1.6.1 Theorem. There are sets Y, Z <7 O such that Y |1 Z.

Proof idea. Note that Y | Z is equivalent to the conjunction of the state-
ments R; for all i, where

Ry : In-Y(n) = ®Z(n)
Roer1 : In—Z(n) = @Y (n).

Thus we may divide the overall task that Y |7 Z into subtasks, called require-
ments. To meet a requirement means to make its statement true.

The construction of Y and Z is relative to (/. We meet the requirements one
by one in the given order. We define sequences oy < 01 < ... and 19 <71 < ...,
and let Y = |J, 0; and Z = |J, 7;. At stage i + 1 we meet R; by defining o,
and 7,11 appropriately. Since we have (' at our disposal as an oracle, we may ask
whether ®Z(n) can be made defined for a particular number n. Then we may
define Y'(n) in such a way that it differs from ®Z(n). This method of providing
a counterexample to an equality of sets is called diagonalization, and a number
such as n above is called a diagonalization witness.

Construction. Let o¢g = 19 = 0.

Stage i + 1, i = 2e. Let n = |o;|. Using () as an oracle, check whether there
is 7 = 7; such that y = ®7(n) |. (Note that this is a XY question, so it can be
answered by (.) If so, let 7,41 = 7 and 0y11 = 0y, where x = max(1 — y,0).
Otherwise, let 0,41 = 0,0 and 7,41 = 7,0 (merely to ensure the strings are
extended at every stage).

Stage i+ 1, i = 2e+ 1. Similar, with the sides interchanged: let n = |r;|. Using ('
as an oracle, see if there is o > o0; such that y = ®7(n) |. If so, let 0,41 = 0 and
Tit+1 = Tix, where x = max(1 — y,0). Otherwise, let 0;41 = 0,0 and 7,11 = 0.
Verification. Clearly Y, Z <t {'. Each requirement Ry, is met due to the actions
at stage ¢ + 1 where i = 2e: if we cannot find an extension 7 > 7; such that
®7(n) | then by the use principle (see after 1.2.17) ®Z(n) 1, because Z extends ;.
Otherwise we ensure that Y (n) # ®Z(n). Either way Ra. is met. The case of a
requirement Ro.4; is similar. O
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Simple sets

We now turn our attention to the c.e. sets and their Turing degrees. The halting
problem is a rather special example of an incomputable c.e. set. Here we inves-
tigate a whole class of incomputable sets, the co-infinite c.e. sets that meet each
infinite c.e. set nontrivally.

1.6.2 Definition. A c.e. set A is simple if N — A is infinite and ANW # ) for
each infinite c.e. set W.

In particular, N — A is not c.e., so A4 is not computable. The intuition is that A
is so large that it meets each infinite c.e. set. To call such a set “simple” is
misleading, but it has been done so for decades and no one intends to change the
term. At least the halting problem ()’ is not simple: by the Padding Lemma 1.1.3
one can obtain an infinite c.e. set W of indices for the empty set. Then 'MW = (.

1.6.3 Theorem. There is a simple set.

Proof, version 1. This argument is due to Post (1944). Let A = ran(¢) where
(i) ~ the first element > 2¢ enumerated into W;.

Since ) is partial computable, A is c.e. If z < 2i is in A then = = ¢ (k) for some
k < i. Hence #ANJ0,2i) < 4, so A is co-infinite. By definition A is simple. O

Proof, version 2. We present the foregoing proof in a different language in
order to introduce some terminology which will be used frequently in later con-
structions of c.e. sets. More terminology will be developed in the proof of Theo-
rem 1.6.4 which strengthens the present result.

We build A by a computable enumeration (Definition 1.1.15). As in the proof
of Theorem 1.6.1, we divide the overall task to make A simple into requirements

while keeping A co-infinite. (The S; will be called simplicity requirements.) The
construction of A is in stages. We let Ag = (). At each stage s > 0 we have a finite
set As_1 of elements that have been enumerated so far. A;_; is given by a strong
index. During stage s we determine a finite set F* C N and let A, = A, U F.
We say that the elements of F' are enumerated into A. Note that we think of A,
as the value by the end of stage s. We let A be the c.e. set |, As.

Construction of A. Let Ag = ().
Stage s > 0. For each 7 < s, if the requirement S; is not satisfied at stage s,
namely As_1 N W; s_1 = 0, and there is an = € W, such that x > 2i, then
enumerate the least such x into A;. We say that S; acts.

Unlike the proof of Theorem 1.6.1, the stage number is no longer directly tied

to a requirement to be met. Rather, a requirement S; may act at any stage s > 1.
In the present construction, each S; acts at most once.

After giving the formal construction one has to verify that it actually builds
objects as desired:
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Verification. If W; has an element > 2 then by construction W; N A # (. Thus
S; is met. A number < 2e can only be enumerated by a requirement S;, i < e,
and each requirement enumerates at most one number. Thus #A4A N [0,2¢) < e
for each e, whence A is co-infinite. O

A c.e. set that is neither computable nor Turing complete

We solve Post’s problem by building a low simple set A. To do so we introduce
the priority method with finite injury.

Let us begin by noting that the proof of Theorem 1.6.3 above necessarily makes
the set A Turing complete: we say a co-infinite c.e. set A is effectively simple if
there is a computable function g such that #W, > g(e) — W. N A # 0. The
proof of 1.6.3 actually yields an effectively simple set where g(e) = 2e. In Propo-
sition 4.1.13 we will show that each effectively simple set is Turing complete. To
ensure that A is low we will add a further type of requirements to the proof of
Theorem 1.6.3 (in its second version). While the simplicity requirements want
to enumerate elements into A, the new requirements restrict A.

1.6.4 Theorem. There is a low simple set A.

Proof idea. Unlike the Kleene—Post Theorem, we cannot use a construction
relative to () because we want to build a computable enumeration. In the con-
struction we meet the requirements S; in (1.9) and lowness requirements

Le:3%sJ%e)[s —1]] = Je)| (1.10)

that restrict A. If L. is met then A’(e) = lim, f(e, s), where

if J4(e)[s
f(e,s>{1 £IA@)s] 1,

0 otherwise.

So A’ <7 0" by the Limit Lemma 1.4.2. That is, A is low.

The strategy for L. is as follows. When J*(e)[s — 1] newly converges then L,
restrains A up to s; in other words, L. attempts to prevent numbers < s from
entering A.

The conflict between the A-positive requirements S; and the A-restricting re-
quirements L. is resolved by imposing an effective priority ordering, for instance

So>Lo>S1>L; > ...

Requirements further to the left are said to have stronger (or higher) priority.
A requirement can only restrain requirements of weaker (or lower) priority dur-
ing the construction. In the verification one shows by induction on descending
priority that the action of each requirement is finitary, and hence each single
requirement is not restrained from some stage on. The strategies for the require-
ments have to be designed in such a way that they can live with finitely many
disturbances. For instance, S; has to cope with the restraints of finitely many
stronger priority lowness requirements. So it needs an element of W, that is
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larger than the eventual values of these restraints. There is no computable upper
bound for the maximum of these eventual values, so the construction does not
any longer make A effectively simple.

An undesirable situation for L. is the following: it thought it had already
secured a computation J4(e) |, but then it is injured because a number z <
use J4(e) is enumerated into A, destroying that computation. To get around
this, L. needs sufficiently many chances, provided by new convergences of J4(e).

L. imposes its restraint by initializing weaker priority simplicity requirements:
when L, sees a new convergence of J4 (e)[s—1], it tells these requirements to start
from the beginning. If a requirement is initialized at stage s, it can afterwards
only put numbers > s into A. Since oracle questions occurring in the computation
JA(e)[s — 1] are less than s, an enumeration of such numbers cannot injure L..

Unlike previous constructions, it may now take many attempts to make a re-
quirement permanently satisfied.

Construction. Let Ag = 0.
Stage s > 0.

(1) For each e < s, if JA(e)[s — 1] | but JA(e)[s — 2] T in case s > 1, then
initialize the requirements S; for i > e. We say that L. acts.

(2) For each e < s, if A;_1 N W, s_1 = 0 and there is x € W, s such that
x > 2e and z is no less than the last stage when S, was initialized, then
enumerate the least such = into A. We say that S acts.

Claim. Fach requirement acts only finitely often, and is met.

We suppose inductively that the claim holds for all requirements of stronger
priority. So we can choose t such that no requirement of stronger priority acts
from stage t on. If the requirement in question is Se, in fact it acts at most once,
in which case it is met; if it does not act after stage ¢, then W, C [0, t) because S,
is not initialized after ¢, so it is met as well.

If the requirement is L. then by the choice of ¢ it is not injured from stage ¢ on.
If JA4(e)[s — 1] | for no s >t then it never acts after ¢, and, since its hypothesis
fails it is met. If s > ¢ is least such that J#(e)[s — 1] | then it acts at stage s. By
the initialization it carries out at stage s, it never acts again as the computation
JA(e)[s — 1] is preserved forever; again L. is met. O

The construction actually makes A is superlow (see Definition 1.5.3):
1.6.5 Theorem. (Extends 1.6.4) There is a superlow simple set A.

Proof. The number of injuries to L. is computably bounded, for L. is only
injured when some requirement S; acts such that ¢ < e. Since each S; acts at
most once, this can happen at most e + 1 times. If f is as above then

#{s>e: f(e,s) # fle,s—1)} < 2e+2.

Hence A’ is w-c.e., whence A" <, /. O
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Relativizing the proof of Theorem 1.6.4 yields for each oracle C a set A L1 C
such that A is c.e. relative to C' and (A ® C)’ = C’. Thus the jump fails to be
one-one on the structure D7 of all Turing degrees in the following strong sense.

1.6.6 Corollary. For each ¢ € Dr there is a € Dy such thata > c anda’ = c'.

1.6.7° Exercise. Prove a further variant of Theorem 1.6.4: there is a low c.e. set A
that is not superlow. (A detailed solution requires some of the terminology on building
Turing functionals introduced in Section 6.1 below.)

Is there a natural solution to Post’s problem?

Post may have hoped for a different kind of solution to the problem he posed, one that
is more natural. The meaning of the word “natural” in real life might be: something
that exists independent of us humans. In mathematics, to be natural an object must
be more than a mere artifact of arbitrary human-made definitions (for instance, the
particular way we defined a universal Turing program). Natural properties should be
conceptually easy. Being a simple set is such a property, satisfying the requirements
in the proof of Theorem 1.6.4 is not. In computability theory a natural class of sets
should be closed under computable permutations. With very few exceptions, classes
we study satisfy this criterion; see also Section 1.3. On the other hand, the class of
sets satisfying the lowness requirements in the proof of Theorem 1.6.4 may fail this
criterion (depending on the particular choice of a universal Turing program). Also,
what we put into the c.e. set A constructed depends on the particular way the sets W,
are defined, even in which order they are enumerated. So the set A is an artifact of
the way we specified the universal Turing program (defined before 1.1.2). Neither the
property (satisfying the requirements) is natural, nor the set A for which the property
holds.

Let us say a Post property is a property of c.e. sets which is satisfied by some in-
computable set and implies Turing incompleteness. Post was not able to define such a
property; the closest he came was to show that each hypersimple set (Definition 1.7.5)
is truth-table incomplete (also see 4.1.15). The first result in the direction of a natural
Post property was by Marchenkov (1976), who introduced a “structural” Post property
(to be maximal relative to some c.e. equivalence relation, and also a left cut in a com-
putable linear order). Harrington and Soare (1991) found a Post property that is even
first-order definable in &, the lattice of c.e. sets under inclusion. While Marchenkov’s
property relies on other effective notions, the Harrington—Soare property is based purely
on the interaction of c.e. sets given by the inclusion relation. However, in both cases,
the construction showing that an incomputable set with the Post property exists is
more complex than the one in the proof of Theorem 1.6.4.

In Section 5.2 we will encounter a further Post property, being K-trivial. The con-
struction of a c.e. incomputable K-trivial set only takes a few lines and has no injury to
requirements. However, it is harder to show that each K-trivial set is Turing-incomplete.

Kucera (1986) gave an injury-free solution to Post’s problem where the construction
to show existence is somewhat more difficult than in the case of a K-trivial set, but the
verification that the set is Turing incomplete is easier. The Post property of Kucera is
to be below a Turing incomplete Martin-L6f random set. No injury is needed to show
that there is a Turing incomplete (or even low) Martin-Lof random set, and Kucera’s
construction produces a c.e. incomputable set Turing below it (see Section 4.2).
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All these examples of c.e. incomputable sets with a Post property are still far from
natural, because they depend, for instance, on our particular version of the universal
Turing program. Perhaps the injury-free solutions are more natural, but the choice of
a universal program still matters since we have to diagonalize to make the set incom-
putable. Any reasonable solution W to Post’s problem should be relativizable to an
oracle set X, so one would expect that X <r WX <7 X' for each X. If the solution
does not depend on the choice of the universal program, it should also be degree invari-
ant: if X =7 Y, then WX =7 WY. The existence of such a degree invariant solution
to Post’s problem is a long-standing open question posed by Sacks (1963a).

Turing incomparable c.e. sets

The priority method was introduced by Friedberg (1957b) and Muchnik (1956)
when they extended the Kleene—Post Theorem 1.6.1 to the c.e. case: there are
Turing incomparable c.e. sets A and B. There is only one type of requirement
now, but in two symmetric forms, one for A L1 B, and the other for B £ A.
The strategy combines elements from the strategies for simplicity and lowness
requirements in the proof of Theorem 1.6.4. For instance, a requirement to ensure
A # ®B enumerates into A and restricts the enumeration of B.

1.6.8 Theorem. (Extends 1.6.1) There are c.e. sets A and B such that A | B.

Proof idea. We meet the same requirements as in Theorem 1.6.1, namely
Ry : 3In-A(n) = ®B(n)
Ryer1 : In—-B(n) = d4(n).

Here —A(n) = ®2(n) means that either ®Z(n) 1 or ®2(n) |# A(n). Again, we
cannot use a construction relative to (', because we want to build computable
enumerations of A and B. The strategy for Ry, is somewhat similar to the one in
Theorem 1.6.1: it looks for an unused candidate n such that currently ®Z(n) = 0,
and puts n into A; it also attempts to protect this computation by initializing the
requirements of weaker priority. If later the B-enumeration of some requirement
(necessarily of stronger priority) destroys the computation, then Ra, is initialized
(in particular, declared unsatisfied), and has to start anew. In the verification, one
shows that Rs. acts only finitely often. Once it stops acting it is met: otherwise, if
actually A = ®5 there would be yet another candidate available, so it would act
another time. To ensure the candidate is not put into A by some other strategy,
a requirement R; chooses its candidates from NI = {(z,4): = € N}.

Construction of A and B. Let Ay = By = (. All requirements are initialized.

Stage s > 0. Let ¢ be least such that R; is currently unsatisfied and, where r < s
is the greatest stage such that R; was initialized at r,

if i = 2e then ®Z(n) = 0[s — 1] for the least n € NI/ — A, | such that n > r,
if i = 2e+ 1 then ®4(n) = 0[s — 1] for the least n € NIl — B, such that n > r.
In the first case put n into A, in the second case n into B. Declare R; satisfied

and initialize all requirements of weaker priority. We say that R; acts. Note that
n <s.
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Claim. Each requirement R; is initialized only finitely often, acts only finitely
often, and is met.

By induction, we may choose a stage ¢ such that no requirement Ry, k < ¢, acts
at a stage > t. Then R; is not initialized from ¢ on. Say i = 2e for some e.

Case 1. R; acts at a stage s > ¢ by putting a number n into A. Then R; is
declared satisfied at s and remains so. Moreover, ®5(n) = 0 from stage s on,
because, by choice of ¢ and its initialization of weaker priority requirements,

P (n)[s — 1] = @« (n)[s — 1] = @Pl(n) = ¥ (n),
where u = use ®Z(n)[s — 1]. So 1 = A(n) # ®Z(n) = 0, and R; is met.
Case 2. Otherwise, i.e., R; never acts at a stage > ¢. Then A(n) = 0 for any
n >t in NI, because before stage ¢ only numbers less than ¢ can be put into A.

If ®B(n) = 0 then ®Z(n)[s — 1] = 0 for some s > t, so R; acts after all,
contradiction. Therefore =A(n) = ®Z(n) and again R; is met. O

1.6.9 Remark. It is useful to view the foregoing construction as a game between
us and an opponent (whom I like to call Otto). We build the c.e. sets A and B,
trying to meet the requirements R;. Otto controls the functionals ®.. He defines
them in a way to make our life as hard as possible. For instance, suppose Ra
has not been satisfied and consider n € NI/ as in the construction. Otto may
wait as long as he wants before he lets ®Z(n) = 0. In this case Ry, wakes up
and enumerates n into A, thereby injuring the weaker priority requirements that
want to preserve A. If he never lets ®Z(n) = 0 after the last stage when Ry,
is initialized then we win R, because ®Z is not total. Our strategy must be
designed in such a way that we win no matter what Otto does.

The following result is known as the Sacks Splitting Theorem.

1.6.10 Exercise. Given a c.e. set C, one may uniformly determine low c.e. sets Ao
and A; such that C = Ag U A; and Ag N A = 0.

This leads to an alternative proof of Theorem 1.6.8: by 1.2.24 we have C =1 Ao ® A;.
If we let C = (' then Ao |1 A1, otherwise (/' would be low.

Hint. For each e € N and each ¢ € {0, 1}, meet the lowness requirements for A;

Goeri: A°sJY ()]s —1]] = JY(e)] .

When z enters C' at stage s, you have to decide which side to put it in (of course, no
one wants it). Choose the strongest priority requirement Gaey; that would be injured
by the enumeration of = into A; (namely, < use J%i(e)[s — 1]) and put z into the
other side A;_;. After spelling out the formal construction, verify by induction on n
that each G, is met. O

Consider, for instance, the requirement G2, which tries to preserve a computation
J#°(1). The number of injuries to G2 depends on the use u = use J*1(0). Each time
an x < u enters C, we might injure G2 because (G1 has stronger priority. Thus, unlike
Theorem 1.6.5, the number of injuries to a requirement is not computably bounded,
and we cannot guarantee that the A; are superlow. Indeed, Bickford and Mills (1982)
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showed that there are no superlow c.e. sets Ag, A1 such that Ao & A; is weak truth-
table complete. On the other hand, one can achieve that Ay @ A; is Turing complete
by Theorem 6.1.4.

1.7 Properties of c.e. sets

We introduce three properties of a co-infinite c.e. set A and discuss how they
relate to its relative computational complexity. Recall from 1.6.2 that such a set A
is simple if AN W, # 0 for each e such that W, is infinite. We show that each
incomputable c.e. weak truth-table degree contains a simple set. Thus, simplicity
has no implication on the complexity beyond being incomputable, unless our
measure of relative complexity is finer than weak truth-table reducibility (see
Remark 1.7.4). The first two of the properties we introduce strengthen simplicity.

(1) A is hypersimple if N — A is hyperimmune, namely, the function mapping n
to the n-th element of N — A is not dominated by a computable function (see
after 1.5.9). Such sets exist in each incomputable c.e. Turing degree, but no
longer in each c.e. weak truth-table degree.

(2) A is promptly simple if for some computable enumeration, for each infinite W,
some element of W, enters A with only a computable delay from the stage on
when it entered W,. The Turing degrees of promptly simple sets form a proper
subclass of the c.e. incomputable Turing degrees. In fact they coincide with
the c.e. degrees d that are non-cappable, namely Vy # 03b[0 < b < d,y]
holds in the partial order of c.e. Turing degrees. (Non-cappable Turing degrees
are complex in the sense that they share incomputable knowledge with each c.e.
degree y > 0.) This coincidence, due to Ambos-Spies, Jockusch, Shore and Soare
(1984), implies that the promptly simple degrees are first-order definable in R .
We will only prove the easier implication, that each promptly simple degree is
non-cappable.

(3) A is creative if it is incomputable in a uniform way, namely, there is a com-
putable function p such that for each e, the number p(e) shows that W, is not
the complement of A. The intuition is that such sets are far from computable; in
fact we show that A is creative iff A is m-complete. By a result of Harrington,
the class of creative sets can be characterized using only the Boolean operations
on c.e. sets. Thus, being creative is first-order definable in the lattice £ of c.e.
sets under inclusion.

Both the first-order definability of the promptly simple degrees in the c.e. Tur-
ing degrees and the first-order definability of the creative sets in £ are rather
unexpected because these properties were defined in terms of concepts that
appear to be external to the structure. The definability results show that the
properties are in fact intrinsic. Another example of this is the first-order defin-
ability in Rz of the low,, degrees for n > 2, and of the high,, degrees for n > 1.
These results are due to Nies, Shore and Slaman (1998).

The properties (1) and (3) will only play a marginal role for us, but (2) will be
important later on, because several strong lowness properties, such a being low
for Martin-Lof randomness (Definition 5.1.7), hold for some promptly simple set.
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We need the following notation throughout this section.

1.7.1 Definition. (i) For a set B C N let B denote its complement N — B.

(ii) For a set S C N, the function pg lists S in the order of magnitude. That is,
ps(0) < ps(1) < ..., and S = ran(pg). We say that pg(i) is the i-th element
of S. The domain of pg is {i: i < #S5}.

If S = B for some c.e. set B we build, we write p5,(i) for pp (7).

Each incomputable c.e. wtt-degree contains a simple set

To obtain a simple set Turing below a given incomputable c.e. set C, we use the
permitting method.

1.7.2 Theorem. (Extends 1.6.4) For each c.e. incomputable set C, there is a
simple set A such that A <, C.

Proof. Once again we meet the simplicity requirements S; in (1.9). To ensure
that A <, C, we only to put z into A at stage s if C' permits it, in the sense that
Cs—1 |27 Cs |z. Then C z11= Cs 441 implies A(z) = As(z), so to determine
A(z), we compute the least s such that C [,41= Cs [4+1, using C as an oracle,
and output Ag(x). Thus A <, C.

Why does C' permit any number for S;? If W; is infinite, then there will be
infinitely many « that S; wishes to put into A. If C never permitted any = then C
would be computable, contrary to our hypothesis.

Construction of A. Let Ag = ().

Stage s > 0. For each i < s, if A;_1 NW; s_1 = () and there is an € W, 5 such
that x > 2i and Cs_1 [»7# Cs |z, then enumerate the least such x into Aj.
Verification. As before, A is co-infinite. To show that each requirement S; is met,
suppose that W; is infinite but W; N A = ). Then C is computable: on input y,
find the least ¢ such that x € W, for some = > y. Then C(y) = Ci(y), else we
would put x into A at the least stage s > t such that Cs_1(y) # Cs(y). This
contradiction shows that S; is met. O

To obtain the full result, we refine this proof by also coding C' into A.

1.7.3 Theorem. (Extends 1.6.4) For each incomputable c.e. set C, there is a
simple set A such that A =, C.

Proof. For C' <, A, we put p3 .(3y) into A when y enters C. We need to make
sure that A is still co-infinite.

Construction of A. Let Ay = ().

Stage s > 0. For each i < s, if A;_1 NW; s_1 =0, and there is an z € W,  such
that x > 3i and Cy_1 [, # Cs [, then enumerate the least such z into A,.

Ify € Cs — Cs—1, put pz, ;(3y) into A.

Verification. Note that #A N [0,3e) > 2e for each e, since at most e elements
less than 3e enter A due to the requirements S; and at most e elements for the
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coding of C' into A. Hence p4(y) < 3y for each y. Then A,[3y11= Alsy+1 implies
Cs(y) = C(y), so C <, A. The rest is as before. O

1.7.4 Remark. The result cannot be strengthened to truth-table degrees: Jockusch
(1980) proved that there is a nonzero c.e. truth-table degree which contains no simple
set. In fact, there is a c.e. incomputable set C' such that no simple set A satisfies A <4 C
and C Swn A.

Hypersimple sets

Informally, A is simple if the complement of A is thin in the sense that it does not
contain any infinite c.e. set. Stronger properties have been studied (see Odifreddi
1999, pg. 393). They all state in some way that the complement of A is thin (while
still being infinite). The strongest is being maximal: for each c.e. set W D A,
either W is cofinite or W — A is finite. A moderate strengthening of being simple
is hypersimplicity, namely, the complement of A is hyperimmune (1.5.10).

1.7.5 Definition. A is hypersimple if A is co-infinite and 3*°n f(n) < p4(n)
for each computable function f.

It would be sufficient to require In f(n) < p4(n), for if f(n) > p4(n) for
almost all n then a finite modification f of f satisfies Vn f(n) > p%(n). Each
hypersimple set A is simple, for if A is not simple then by 1.1.19 A has an infinite
computable subset S. Then pg is computable and p 4(n) < ps(n) for each n.

To show that each incomputable c.e. Turing degree contains a hypersimple set
one could modify Theorem 1.7.3 and its proof. We give an alternative method
to turn an incomputable c.e. set C' into a hypersimple set A = C.

1.7.6 Proposition. For each incomputable c.e. set C' there is a hypersimple set
A such that A <;; C <7 A.

Proof. By Proposition 1.1.17, we can effectively obtain a partial computable
function ¢ defined on an initial segment of N such that C' = ran(v): at stage s
we enumerate 1(s). Let A be the set of stages s such that some element less than
¥(s) enters C' later than stage s, namely, A = {s: 3t > s[p(t) < ¢¥(s)]}. These
are called the deficiency stages of 1. The description of A is in X{ form since
“h(t) < ap(s)” is BY. So A is c.e. by Proposition 1.4.12. Since C' is incomputable,
dom(v) = N. Let Cy = {¢(0),...,%(s —1)}. Then

seA - V{yeC: y<i(s) &y & Cs}.
By Proposition 1.2.21 this effective assignment of a Boolean expression to s shows
that A <y C. For C <r A, note that for each m, where x,, = ¥(p4(m)), at
a stage greater than p4(m) only a number greater than x,, can be enumerated
into C. In particular, zg < z1 < ... < o, and hence m € C < m € Cy(,, for
every function f such that Vm f(m) > p4(m). Letting f = p  this shows that
C <7 A. Also, no such function f is computable, so A is hypersimple. O

We say that Y is introreducible if Y is infinite and Y <7 X for each infinite X C Y.
The proof of 1.7.6 shows that C' <7 f for every function f such that Vm f(m) > p z(m).
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If X C A is infinite, then f(m) = px(m) > p4(m) for each m. Therefore A <r X.
Thus A is introreducible.

1.7.7 Exercise. Show that each truth table-degree contains an introreducible set.

1.7.8 Remark. We have seen two ways of obtaining a c.e. set. At first sight they seem
to be very different.

(a) The set can be given by a definition, “in one piece”. Examples are the first proof
of Theorem 1.6.3 to obtain a simple set, and the proof of Proposition 1.7.6 (where the
definition of a simple set is based on a computable enumeration of the given set C'). An
example of a simple weak truth-table complete set obtained by a definition is in 2.1.28.

(b) We can build the set using a stage-by-stage construction. Examples are the second
proof of Theorem 1.6.3, and the proof of Theorem 1.7.3.

Distinguishing these two ways is helpful for our understanding, even though formally,
a construction of a c.e. set A is just a definition of a computable enumeration of A
via an effective recursion on stages. (In more complex constructions, like the ones
encountered in Chapter 6, one also builds auxiliary objects such as Turing functionals.)
For a construction, at stage s we need to know what happened at the previous stages,
which is not the case for direct definitions (such as the first proof of 1.6.3).

Constructions have the advantage of being flexible. For instance, we extended the
construction in the second proof of Theorem 1.6.3 in order to obtain a low simple set.
However, constructions also introduce more artifacts and thereby tend to make the set
less natural. Definitions of c.e. sets seem to be more natural, but often they are not
available.

Let us briefly skip ahead to Kucera’s injury-free solution to Post’s problem (Sec-
tion 4.2) and the construction of a c.e. K-trivial set (Section 5.2), both already men-
tioned on page 34. These are constructions in that the action at stage s depends on the
past: we have to keep track of whether a requirement has already been satisfied. On
the other hand, they are very close to direct definitions because the requirements do
not interact. Both sets are obtained by applying a simple operation to a given object,
similar to the proof of Proposition 1.7.6. This given object is a low Martin-Lof random
set for Kucera’s construction, and the standard cost function for the construction of
a K-trivial set.

Promptly simple sets

The definition of simplicity is static: we are not interested in the stage when an
element of an infinite set W, appears in A, only in that it appears at all. However,
since the sets W, are equipped with a computable enumeration (We s)sen, one
can also consider a stronger, dynamic version of the concept, where an element
appearing in an infinite set W, at stage s is enumerated into A at the same
stage or earlier. Given a computable enumeration (Bs)sen, for s > 0 we let
Bats = Bs — Bs 1.

1.7.9 Definition. A c.e. set A is promptly simple (Maass, 1982) if A is co-
infinite and, for some computable enumeration (Ay)sen of A, for each e,

#W, =00 — s> 03Tz[r € Wear s NA. (1.11)
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We would rather wish to say that x enters W, and A at the same stage, but this is
impossible: for each effective enumeration (As)sen of a c.e. set A, there is an e such
that We = A but © € Ay s — « € We s, that is, every element enters W, later than A.
This is immediate if we assume a reasonable implementation of the universal Turing
program. It has to simulate the enumeration of A, and each simulated step takes at
least as long as a step of the given enumeration of A.

The following seemingly more general variant of Definition 1.7.9 can be found in the
literature: there is a computable enumeration (A;)sen of A and a computable function p
such that #W. = co — 3Js3z [ € Wears N Aps)]. However, this formulation is
equivalent via the computable enumeration (A N[0, s))sen of A.

With a minor modification, the construction of a low simple set A in Theo-
rem 1.6.4 produces a promptly simple set. This is so because, when a simplicity
requirement wants to enumerate a number into A that is greater than the re-
straint is has to obey, this wish can be granted without delay.

1.7.10 Theorem. (Extends 1.6.4) There is a low promptly simple set.

Proof. We modify the proof of Theorem 1.6.4. Instead of the simplicity require-
ments (S¢) in (1.9) we now meet the prompt simplicity requirements

PS.: #W, =00 = IsTz[r € Weans & v € A

In the construction on page 33 we replace (2) by the following:

For each e < s, if PS. has not been met yet and there is x > 2e such that
z € Weat s and z is no less than the last stage when PS. was initialized, then
enumerate the least such x into A and declare PS, met. O

Exercises. Prompt simplicity of a set is formulated in terms of the existence of a par-
ticular computable enumeration. Maass (1982) gave a condition equivalent to prompt
simplicity which does not involve any enumeration:

1.7.11. Let A be a c.e. co-infinite set. Show that A is promptly simple < there is a
computable function ¢ such that for each e (1) Wyey € We and We — A = W) — A
and (2) #We =00 — We — Wy # 0.

1.7.12. In 1.7.11 replace (2) by the seemingly stronger condition #W. = co —
#(We — Wy(ey) = 0o. Show that this also characterizes prompt simplicity.

Minimal pairs and promptly simple sets

1.7.13 Definition. We say that incomputable sets A and B form a minimal
pair if every set Z <p A, B is computable.

Lachlan (1966) and Yates (1966) independently proved that minimal pairs of
c.e. sets exist (see Soare 1987, Thm. IX.1.2). Lachlan also showed that for c.e.
sets A and B, it suffices to require in 1.7.13 that each c.e. set Z <t A, B be
computable (see Odifreddi 1999, X.6.12).

We show that a promptly simple set E cannot be part of a minimal pair of c.e.
sets, namely, its Turing degree is non-cappable. We already mentioned at the
beginning of this section that this property characterizes the Turing degrees of
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promptly simple sets, a result of Ambos-Spies, Jockusch, Shore and Soare (1984).
A further characterization of this class of c.e. Turing degrees from the same paper
will be provided in Theorem 6.2.2 below: A has promptly simple degree iff A is
low cuppable, namely, there is a low c.e. set Z such that ' < A® Z.

1.7.14 Theorem. Let the set E be promptly simple. From an incomputable c.e.
set C one can effectively obtain a simple set A such that A <, C, E.

Proof. Choose a computable enumeration (F;)sen via which E is promptly
simple. We ensure that A <, C by direct permitting (see the proof of Theo-
rem 1.7.2). For A <, E we use a more general type of permitting called delayed
permitting: if x enters A at stage s then F;_1 [,# FE [, that is, E changes below x
at some stage t > s. Since F is c.e. this implies A <, E.

We make A simple by meeting the requirements .S; in (1.9). We uniformly enu-
merate auxiliary sets G; to achieve the E-changes. By the Recursion Theorem we
have in advance a computable function g such that G; = W ;) for each 4. In more
detail, given a parameter r € N, we let g be a computable function effectively
obtained from r such that W) = il] for each i. Based on g, we enumerate
a uniformly c.e. sequence (G;);en. Hence there is a computable function f such
that Wy(.y = U, Gi x {i}. Let r* be such that Wy (,..) = W, then the function g

obtained for parameter r* is as required, because G; = Wj[f(]r* )= Wr[i] = Wy0)
for each 1.

Suppose at stage s we are in the situation that we want to put some x into A
in order to meet S;, namely, x € W, s and « is permitted by C. We first put a
number y < x not yet in EUG; into G; s, which therefore later appears in Wy;).
If we try this sufficiently often, then eventually some such y must enter E after
a computable delay, for otherwise the infinite set Wy ;) would show that E' is not
promptly simple. We can test whether y enters E within the allowed delay. If so,
we put z into A at stage s, thereby meeting .S;.

Construction of the c.e. sets A and G;, i € N. Let Ag = 0 and G, = 0 for
each i. All the requirements are declared unsatisfied.

Stage s > 0. If there is 7 < s such that 5; is not satisfied, Wy -1 = Gis—1
and there are numbers y < x such that ¢ > 2i, z € W, 5, Cs [,# Cs_1 [5, and
y & Fs_1 UG, s_1, then let ¢ be least, let (z,y) be least for ¢, and put y into
Gis- We say that S; acts. Search for the least t > s such that y € W), (in the
fixed point case ¢ exists). If y € E; then put x into A, and declare S; satisfied.

Verification. By the Recursion Theorem with Parameters 1.1.6, the fixed point 7*
discussed above, and hence the function g, can be obtained effectively from C.
Hence A is obtained effectively from C. Clearly A <,,;; C by direct permitting.
Further, A <, E by delayed permitting. The following shows that A is simple.

Claim. Fach requirement S; acts only finitely often, and is met.

We suppose inductively that the claim holds for all requirements Sj, j < ¢. So we
can choose sg such that no requirement of stronger priority than S; acts at a stage
s > sg. The claim holds if W; is finite, so suppose that W; is infinite. Assume for
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a contradiction that S; is not declared satisfied. Since C' is incomputable and F
is co-infinite, there are arbitrarily large stages s > sy at which we attempt to
meet S; via numbers y < x. Thus G; = Wy is infinite. Note that for each
such attempt, y enters W ;) at a stage t > s because W) s—1 = G s—1. Then,
since E is promptly simple via the given enumeration, there is some attempt
where y € E;. Thus S; is declared satisfied, contradiction. O

Creative sets x

We study c.e. sets that are incomputable in a uniform way:

1.7.15 Definition. A c.e. set C is creative if there is a computable one-one
function p such that Ve [W. NC =0 — p(e) € W UC].

In 1.1.10 we used a diagonalization argument to prove that the c.e. set (' =
{e: e € W,.} is incomputable. This argument actually does more:

1.7.16 Fact. (' is creative via the function p(e) = e.

Proof. For each e we have e € i/ «— e € W,. If W, and (/' are disjoint then this
implies e € W, U ()'. O

1.7.17 Lemma. If B is c.e. and C <,, B for some creative set C then B is
creative.

Proof. Suppose that C is creative via the function p, and C <,,, B via h. Let f
be a computable function such that Wy = h=' (W) for each e. If W, N B =
then Wyey NC = 0, so p(f(e)) € Wy UC and hence h(p(f(e))) ¢ We U B.
Thus B is creative via the function hopo f. a

1-reducibility was introduced after Definition 1.2.3.
1.7.18 Theorem. The following are equivalent for a c.e. set C.

(i) C is creative.
(i) C is m-complete.
(i1i) C is 1-complete.

Proof. (ili)=(ii) is trivial, and (ii)=(i) follows from the foregoing facts since
0 <, C.
(i)=-(iii): Suppose C is creative via p. Given a c.e. set A, we show that A <,,, C.
Let g be a computable binary function such that

W {{p(m)} ifyeB

9(@v) 0] otherwise.

By the Recursion Theorem with Parameters 1.1.6 and Exercise 1.1.7, there is a
one-one function f such that W,y = Wy, for each y. Let h = po f. If
y € B then W,y = {p(f(y))}, so h(y) € C, otherwise this would contradict the
hypothesis that C' is creative via p. If y ¢ B then Wy, = 0, so h(y) ¢ C. Thus
B <,, C via h. O
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From Myhill’s Theorem 1.2.5 we conclude the following.

1.7.19 Corollary. For every pair of creative sets C1,Co there is a computable
permutation p of N such that p(Cy) = Cs. O

Harrington proved that creativity is first-order definable in the lattice of c.e.
sets under inclusion, a result that was first published in Soare (1987). The first-
order property defining creativity of C states that there is an auxiliary set F'
such that, for each Z, there is a piece R which is incomputable as shown by F,
and on which C' coincides with Z.

For c.e. sets X and R such that X C R we write X C R if R — X is c.e.
Note that if R is computable, then so is X. If X C R but X [Z R then there
are infinitely many elements that first appear in R and later enter X (that is,
#{x: Is[x € Rs_1NXat 5|} = 00), for otherwise R— X is c.e. as R— X is almost
equal to the set {z: [z € Ry — X|}.

1.7.20 Theorem. Let C be c.e. Then C is creative <

JFYZ3IR[RNFZ R& RNC =RnNZ, (1.12)

where the quantifiers range over c.e. sets.

Proof idea. For the implication “=", as all creative sets are computably iso-
morphic by 1.7.19, it suffices to provide a particular creative set satisfying (1.12).
We can take

C={{z,e): (x,e) € W,.},

as we will verify below. It is harder to show the implication “<”. If C satisfies
(1.12) then we want to define a computable function p via which C' is creative.
The condition (1.12) is designed to make the construction of such a p work. We
are given the c.e. set F' and enumerate a c.e. set Z. Assume first that we actually
know a witness R for Z in (1.12). Note that R is infinite because RN F 7 R.
We have an infinite list of elements = for which we can dictate membership in C'
because we control Z(x). We let p(e) = z be the e-th element in this list. At first
x & Z and hence x ¢ C; if x enters W, we put x into Z, so that x € W, N C.
Thus C' is creative via p.

Actually we do not know such a witness R. So we play the strategy above
simultaneously for all c.e. sets W; as possible witnesses. We will write R; instead
of W; to improve the readability. We define a partial computable function p;
based on the assumption that R; is the witness for Z in (1.12). At each stage we
extend p; for the least 7 such that the condition R; NC' = R; N Z looks correct so
far. When at stage s we define p;(e) for the next e, we need a value z € R; such
that z &€ Z_1, so we have to be sure that x is not already taken at a previous
stage as a value py (e') for some ¢’,¢€’. This is where the condition R, N F [ R;
comes in: as explained above, there are infinitely many numbers that enter F' at
a stage s when they are already in R; ;_1. We can only use elements z of this
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kind as values p;(e) = x. There is no conflict with the previous values because
they are in Fs_1, nor with later values as they are not in F.

Proof details. =: To see that the set C defined above is 1-complete, let e* be
a c.e. index such that W« = (/ xN. Then z € (/. <> (z,e*) € C for each z. Next,
(1.12) is satisfied via F' = (/' xN: given a c.e. set Z = W}, let R be the computable
set N x {k}. Then RNF = 0" x {k} Z R, otherwise () is computable. For each
element y = (x, k) of R, we have y € C « ye W, sothat RNC =RNZ.

<: Suppose C satisfies (1.12) via F.
Construction of Z and partial computable functions p; (i € N).
Let Zy = 0, and declare p; o(e) undefined for each i, e.

Stage s > 0. Let i be least such that

(a) if t < s is greatest such that ¢ = 0 or we defined a new value of p; at stage ¢,
then (R, NC) [ [s] = (R:NZ) [+ [s],
(b) there is an x € R; 51 N Fyt 5.

If 7 exists, we say that we choose i at stage s. Define p; ;(e) = x where e is
least such that p; s_1(e) is undefined. If = € W, ,, for some (possibly later) stage
u > s, then put z into Z at that stage.

Claim 1. There is i such that p; is total.

Let 4 be least such that R; witnesses (1.12) for Z. If p;/ is total for some i’ < ¢
we are done. Otherwise there is sg such that we do not choose any ¢/ < i at a
stage s > sg. Since R; N F' [ R;, there is an infinite stream of numbers from R;
into F', thus for infinitely many s we choose i at stage s. Hence p; is total.
Claim 2. C is creative via p;.

Since p; is total and we always check (a) before we define a further value of p;,
we have R; N C = R; N Z. Given e, we define p;(e) = = at some stage s, and
x is not a value p;/(e') at stage s — 1 since x € Fy s while those values are in
Fs_1. Also z is not taken as a value py(e') at any later stage as these are in
N — F. Since z € R;, this implies that x € W, « x € Z <« z € C. Clearly p;
is one-one. This establishes Claim 2 and the Theorem. O

1.8 Cantor space

So far, the natural numbers have been the atomic objects. We studied sets of
natural numbers and functions mapping numbers to numbers. From now on we
will often view sets of natural numbers as the atomic objects. We study sets of
sets and functions mapping sets to sets. Sets of natural numbers are identified
with infinite sequences over {0, 1}. These sequences are the elements of Cantor
space {0, 1}V (usually denoted by 2N). It is equipped with the product topology
where the topology on {0,1} is discrete. Subsets of 2 will be called classes
to distinguish them from sets of numbers. (The open and the closed sets are
exceptions to this rule; here we use the terms “set” and “class” interchangeably.)

A Stone space is a compact topological space such that the sets that are si-
multaneously closed and open (called clopen sets) form a basis. The space 2N ig
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an example of a Stone space. In this section we develop a bit of Stone duality,
a correspondence between topological concepts in Stone spaces and concepts re-
lated to Boolean algebras. The dual algebra of a Stone space S is its Boolean
algebra B of clopen sets. The dual space of a Boolean algebra B is the space
where the points are the ultrafilters U, and the basic open sets are the sets of
the form {U: x € U} for € B (which are also closed). Open sets correspond
to ideals, and closed sets to filters. The dual algebra of 2V is a countable dense
Boolean algebra. Such a Boolean algebra is unique up to isomorphism.

We only develop Stone duality for 2V, to the extent relevant to us, namely, for
representing open or closed sets. Instead of working with the countable dense
Boolean algebra, we will restrict ourselves to {0, 1}*. Filters then become binary
trees without dead branches. Thus each closed set is represented by such a tree.
The advantage of this representation of closed sets is that we have “descended
down one level”: we are looking at sets of strings rather than at classes. As a
result, we may apply the usual algorithmic notions developed for numbers (or
strings) as the atomic objects. For instance, we will study closed sets where the
representing tree is a I19 set, called TIJ classes. We prove some important exis-
tence theorems, such as the Low Basis Theorem 1.8.37 that each nonempty 19
class P contains a low set. The 1Y classes are at the first level of the arithmetical
hierarchy for classes defined in 1.8.55.

Given a set Z and a number n, we may regard Z [, as a partial description of Z
since it specifies the first n bits. Classes will be used as a tool to study sets, because
they constitute a more general type of partial descriptions: we may think of a class C
as a partial description of any set Z € C. This enables us to switch to the global view
of a set, where the set is appreciated all at once (Section 1.3). We will be interested
in partial descriptions given by classes that have special topological properties, or are
easy to describe themselves, or both (like 9 classes).

If the class C is small in a particular sense, it provides a close description of Z in
that sense. Usually we will take smallness in the sense of the uniform measure on
Cantor space (also called the product measure, and defined in 1.9.7). For instance, the
class corresponding to the partial description z = Z [,, of Z is the basic open cylinder
{Y: z <Y} It has uniform measure 27" and therefore gets smaller as n increases.

In Section 1.4 we defined computable approximations (Z,),en of a A set Z, where Z,
is contained in [0, 7) (equivalently, one can let Z, be a string of length r). We think of Z,
as a different type of partial description of Z. It also improves as r increases. The idea
to approximate a set in stages can be generalized: we may weaken the effectiveness
condition on the approximation, or we can replace each Z, by a class as a partial
description. In the proof of the Low Basis Theorem 1.8.37 we even do both: we define a
(’-computable sequence (P"),¢cn of IIY classes, where P is the given class P. The low
set Z € P is determined by {Z} =, P".

In the introduction to Chapter 3 we will consider the idea that a random set is a
set which does not even admit a close description. For instance, a Martin-Lof test (see
3.2.1) is a further way to approximate a set in stages r by classes G,. Now the r-th
partial description G, is an open set which has a uniform measure of at most 27" and
is uniformly c.e. in 7. A set is Martin-L6f random if it is not in (), G, for any such test.
Note that (1, G has uniform measure 0 but is usually not a singleton.
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Open sets

For a string y, the class of infinite binary sequences extending y is denoted by
W ={Z:y=2}.

These classes are called basic open cylinders, or cylinders for short. Clearly

[r] D [y] «» 2 =< y. The cylinders form a basis of a topology: R C 2N is open

if R is the union of the cylinders contained in R, or, in other words, if for each

Ze2Nwehave Z € R < In[Z], CR.

A Turing functional ® can be viewed as a partial map ® : 2N — 2N where ®(Y))
is defined iff ®Y is total. Unless the domain of this map is empty, it can be con-
sidered as a subspace of 2. One reason why we use the product topology on 2N
is that we want this partial map to be continuous. This is the case because of the
use principle (see after 1.2.17) which states that a converging oracle computation
only depends on a finite initial segment of the oracle (Exercise 1.8.8).

Binary trees and closed sets

A subset P of a topological space is called closed if its complement is open. We
represent closed sets in Cantor space by subtrees of {0,1}*.

1.8.1 Definition. (i) A binary tree is a subset B of {0, 1}* closed under taking
prefixes. That is, x € B and y < = implies y € B. (ii) Z is a path of B if Z [, € B
for each n. The set of paths of B is denoted by Paths(B).

For instance, T = {0%: i € N} U {0°1: ¢ € N} is a binary tree such that
Paths(T) = {0°°}. Since binary trees are subtrees of {0,1}*, we may apply the
visual terminology of “above/left/right” introduced on page 12. The following is
known as Ko6nig’s Lemma.

1.8.2 Lemma. If B is an infinite binary tree then Paths(B) # (.

Proof. For each n let z,, be the leftmost string x of length n such that B N
{y: y = «} is infinite. Then z,, < x,41 for each n, and J,, z, is a path of B.
O

We say that © € B is a dead branch of a binary tree B if BN {y: y = x} is
finite. By Ko6nig’s Lemma, this is equivalent to the condition that no path of B
extend x.

Paths(B) is a closed set: if Z ¢ Paths(B) then there is n such that Z [,¢ B,
s0 [Z In] N Paths(B) = 0. However, there are “more” binary trees than closed
sets. For instance, if we take the tree T" above and cut off the dead branches, we
obtain 77 = {0%: i € N}. The trees T and 7" have the same paths. Closed sets
correspond to trees B without dead branches, that is, x € B implies 20 € B or
zl € B for each z € {0,1}*.

1.8.3 Fact. (Stone duality for closed sets)
(i) If P is closed then
Tp ={x: [z]NP #0}
is a tree without dead branches such that Paths(Tp) = P.
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(ii) If B is a tree without dead branches then B = Tpyns(p)-

Proof. (i) Clearly Tp is closed under prefixes. Moreover, Tp has no dead branches
because [z] = [z0] U [z1]. Since 2V — P is open,

ZeP < Vn[Z,)NP#0 « Z e Paths(Tp).

(ii) Clearly Tpaunspy € B. For the converse inclusion, suppose that x € B.
Since B has no dead branches, {y = z: y € B} is infinite, so by Konig’s
Lemma 1.8.2 there is a set Z € Paths(B) extending . O

We will sometimes identify P and 7Tp. For instance, when we say that = is on P
we mean that z € Tp, or equivalently that [z] N P # 0.

Representing open sets

If R is open we let P = 2N — R and represent R by Ar = {0,1}* — Tp. Thus,
Ap ={x: [z] C R}.

This set is closed under extensions of strings, namely x € Ar and x < y implies

y € Apg. Further, for each « € {0,1}*, 20 € Ar and x1 € A implies © € Ap.

A subset of {0,1}* with these two properties is sometimes called an ideal (of

strings). Ideals are the complements in {0,1}* of trees without dead branches.

We occasionally identify R and Ag and write 2 € R for [z] C R.
The open set generated by a set S C {0,1}* is

S ={Xe2V: Jye Sy=< X}
There is a correspondence between ideals and open sets analogous to Fact 1.8.3.
It is immediate from 1.8.3 by complementing:

1.8.4 Fact. (Stone duality for open sets)
(i) If R is open, then Ap = {x: [z] C R} is an ideal and R = [Ag]™.
(it) If C is an ideal of strings then C = Ajc)<. O

The strings z in Ag that are minimal under the prefix ordering form an an-
tichain D = (z;);<n, N € NU {oo}, such that [D]* = R. For instance, consider
R =2 — {0>}. The corresponding ideal is Ag = {z: Vi € N[z # 0]}, and the
antichain is D = {0'1: i € N}.

Compactness and clopen sets

A topological space X is called compact if, whenever X is the union of a collection
of open sets, then X is already the union of a finite subcollection. Equivalently,
whenever the intersection of a collection of closed sets is empty, then already the
intersection of a finite subcollection is empty. If the space has a countable basis
then we may assume that the given collection is countable. We will prove that
Cantor space 2" is compact. It has a countable basis consisting of the cylinders
[7], so it suffices to show that each countable descending sequence (P%);ey of
nonempty closed sets has a nonempty intersection. This is how we usually apply
the compactness of 2N: (P?);cy describes a list of desirable conditions on sets,
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and compactness tells us that there is a set satisfying all the conditions. (We will
use this method for the first time in the proof of Theorem 1.8.37.)

1.8.5 Proposition. If (P%);cy is a descending sequence of nonempty closed sets,

then (), P* # 0.

Proof. Let v, be the leftmost string of length n on P". For each e, as n grows
Up, [ only moves to the right on {0,1}*, so z. = lim,>. (v, [¢) exists.

Let Z =, ze. Fix n. For all e we have [z.] N P™ # (). Since P" is closed, this
implies that Z € P". O

A subset of a topological space is called clopen if it is both open and closed.
The clopen sets form a Boolean algebra with the usual union and intersection
operations. The clopen sets in Cantor space play a role similar to the finite
subsets of N. For instance, we will provide computable approximations of c.e.
open sets as effective unions of clopen sets. By the following, the strong indices
for finite sets F C {0,1}* given by Definition 1.1.14 can also be used as indices
for the clopen sets. They will be called strong indices for clopen sets.

1.8.6 Proposition. C C 2" is clopen < C = [F]= for some
finite set F C {0,1}*.

Proof. =: Since the cylinders form a basis of 2", there are sets D, E C {0, 1}*
such that C = [D]= =, plo] and 2V — C = [E]~ = U,erlp]- By the compact-
ness of 2 there are finite sets F, G such that F C D, G C E and [F]7U[G]~ = 2.
Then C = [F]7, so F is as required.

«: Each cylinder [o] is clopen since its complement is | J{[p]: p # o & |p| = |o]}-
Thus each set of the form [F]~ is clopen. O

Exercises.

1.8.7. Let X,V € 2V If X #Y let d(X,Y) = 27" where n is least such that X (n) #
Y(n). Let d(X,X) = 0. Show that (2V,d) is a metric space which induces the usual
product topology on 2V,

A function F' between topological spaces is continuous if the preimage under F' of
each open set is open. Consider a map F': D — 2Y where D is a subspace of 2~. Since
the basic open cylinders form a basis, F' is continuous iff for each p € {0,1}* such that
[p] NTan(F) # 0 there is o € {0,1}" such that F([c] N D) C [p].

1.8.8 Exercise. We view a Turing functional ® such that dom(®) # @ as a map from
the subspace D = dom(®) to 2". Show that & is continuous.

Recall that A@ B={2n: n€ A}U{2n+1: n € B}.

1.8.9 Exercise. Show that L: 2% — 2% is continuous < there is a Turing functional
® and a set A such that L(Z) = ®(Z @ A) for each Z C 2V.
The correspondence between subsets of N and real numbers

Co-infinite subsets of N and real numbers in [0, 1)g are often identified. When
we make this identification we usually indicate it. We give the details.
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1.8.10 Definition. The map
F: {Z e 2V: Zis co-infinite} — [0, 1)r (1.13)
is defined by F(Z) =0.Z=3%,.,27 """

We will determine the inverse G of F', thereby showing that F' is a bijection.
Each real number r € [0,1)r can be written in the form r = > .., r;27"!
where 7; € {0,1}. We say 0.r¢r7 ... is a binary expansion of r. The set of dyadic
rationals is

Qe ={22"": 2€Z,neN}.
A binary expansion of r is unique unless r € Q2, in which case we give preference
to the finite binary expansion. Thus we view 1/4 as 0.01 rather than as 0.00111. ..
Via this binary expansion a real number r € [0,1)g can be identified with a
sequence Z = G(r) = rgry ... that has infinitely many zeros, that is, with a
co-infinite set Z. Clearly F' and G are inverses.

For a finite string y, we sometimes use the notation 0.y as a shorthand for 0.y000. . ..
Usually we identify a dyadic rational in (0,1) with a finite string ending in 1.

1.8.11 Remark. The bijection F' maps the basic open cylinder [o] (restricted to {Z €
2. Zis co-infinite}) to the interval I(¢) = [0.0,0.0 +271°!). For a linear order L with
least but no greatest element let Intalg L denote the Boolean algebra generated by
the intervals [a,b) where a,b € L. Thus, Intalg L consists of the sets of the form
U0<i<n[ai,b¢) where ap < by < a1 < ... < bp_1, and possibly b,—1 = 1, where 1
is a greatest element adjoined to L. The Boolean algebra of clopen sets in Cantor
space corresponds to the subalgebra of Intalg [0, 1)r generated by the intervals of the
form I(o). For instance, if p,q € Q2, p < ¢, then the corresponding clopen set is
{Z: p<0.Z < ¢}

Exercises.

1.8.12. To be able to work with the usual topology on R, we also have to remove the
finite sets from Cantor space, and the dyadic rationals from [0,1)r. Let X = {Z €
2. Zis co-infinite and infinite}. By restricting the bijection F' we obtain a bijection

F: X — [0,1)r — Q2.
Show that F is a homoeomorphism of the subspace topologies inherited from Cantor
space on the left, and the usual topology of R on the right.
1.8.13. Show that {Z € 2N Zis co-infinite} with the subspace topology is homeo-

morphic to Baire space N with the product topology.
Effectivity notions for real numbers

We fix some effective encoding of Q5 by natural numbers. Then a notion C defined
for sets can be applied to a real number r via the left cut {g € Qa: ¢ < r} (we
say that r is left-C), or the right cut {¢ € Q2: ¢ > r} (we say that r is right-C).

1.8.14 Definition. Let r be a real number.

(i) r is computable if {q € Q2: ¢ < r} is computable, and r is AJ if this set
is AY.
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(ii) 7 is left-c.e. if {g € Q2: ¢ < r}is c.e., and r is right-c.e. if {g € Qa: ¢ > r}
is c.e.

(iii) Z C N is left-c.e. if the real number 0.7 is left-c.e., or, equivalently, if
{o: 0 <1 Z} is c.e. Similarly we define right-c.e. sets.

(iv) ris difference left-c.e. if there are left-c.e. reals a, 8 € R such that r = a—p.

These classes of reals can be characterized via effective approximations by ratio-
nals. One may in fact require that the rationals be dyadic. The characterization
(v) below is due to Ambos-Spies, Weihrauch and Zheng (2000).

1.8.15 Fact. Let r € R. The following equivalences hold uniformly.

i) ris AY < r = lim, ¢, for a computable sequence (g )ney Of rationals.
2 q p q qn)ne
(ii) r is left-c.e. & r = lim,q, for a non-descending computable sequence
(gn)nen of rationals.
(iii) r is right-c.e. & r = lim,g, for a non-ascending computable sequence
(gn)nen of rationals.
(iv) r is computable < r = lim, g, for a computable sequence (¢, )nen of
rationals such that abs(r — ¢,,) < 27" for each n
& given n one can compute ¢ € Q such
that abs(r — ¢q) < 27",
(v) r is difference left-c.e. < r = lim, ¢, for a computable sequence (¢, )nen of
rationals such that ), abs(gn1 — gn) < 0.

Proof. We leave (i), (iii) and (iv) as exercises.

(ii) =: If W, = {¢ € Qq2: ¢ < r} (via our identification), then let ¢, =
max(We ).

<: The left cut of r is c.e. because for ¢ € Q2 we have ¢ <r < Ing < qy,.
(v) <: We have lim, (a,, — b,) = lim,a,, — lim,b,, for every pair of converging
sequences (@ )nen and (by,)nen of reals. Therefore

r=qo+ Z(Qn+l - Qn)

=qo+ Z(Qn+l - Qn) [[qn+l > Qn]] - Z(Qn - Qn—i-l) [[Qn-i-l < Qn]]

n

=: Let r = a — (8 for left-c.e. real numbers a and 5. Let (@ )nen and (8 )nen
be nondescending approximations of «, 3 by dyadic rationals as in (ii). Let ¢,, =
Qy, — B, then lim,q, = r and, since ¢u+1 — ¢n = (nt1 — @) — (Bnt1 — Bn), wWe
have >, abs(¢nt1 —¢n) < a4+ 3 < o00. O

We will usually show that a real number is computable by proving the last
condition in (iv): on input n, we compute an approximation ¢ € Q of  such that
abs(r — ¢) < 27™. Note that r is computable iff r is both left-c.e. and right-c.e.
by Proposition 1.1.9.

A further way to apply a set notion to a real number r is the following: r can
be uniquely written in the form r = z + 0.B for z € Z and co-infinite B C N;
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now one requires the relevant property for B. This leads to the same class if the
property is being computable, or being AY. In contrast, if A is a c.e. set, then
0.A is left-c.e., but not conversely. A counterexample is, for instance, Chaitin’s
number €2; see page 108. Each left-c.e. set Z is truth-table equivalent to the c.e.
set {o: 0 < Z}.

The computable real numbers form a field. More generally, for any ideal L in the
Turing degrees, the real numbers with Turing degree in L form a field, because a real
number ¢ obtained from real numbers r, s by a field operation is computable in r@®s. The
left-c.e. real numbers are closed under addition but not under the operation x — —uz.
In contrast, Ambos-Spies, Weihrauch and Zheng (2000) proved the following surprising
fact.

1.8.16 Proposition. The set D of difference left-c.e. real numbers is a subfield of R.

Proof. Throughout, we use Fact 1.8.15(v). Clearly D is closed under the operation
xr — —z and under addition. For the closure under product, suppose r,s € D. There
are M € N and effective sequences (n)nen and (yn)nen of rationals converging to r, s,
respectively, such that Vnabs(z,) < M, Vnabs(yn) < M,

D> abs(@ny1r —xn) < M, and Y abs(yny1 — yn) < M.

Then limy, Tnyn =rs and Y abs(Znt1Ynt1 — Tnyn) < D, abS(Tni1Ynt1 — TnYnt1) +
> abs(Tnyni1 — Tnyn) < 2M?, sors € D.

It remains to show that 1/r € D in case that r # 0. We may assume M > abs(1/r),
so there is no € N such that z, # 0 and abs(1/z,) < M for all n > ng. Then

Z abs( 1 _i): Z abs(zn — Tny1) < MP,

Tntl  Tn abs(TnTn41)

n>ng n>ng

Note that the closure under the field operations is effective. O

Exercises.
1.8.17. If r is left-c.e. then e” is left-c.e. as well.

1.8.18. Suppose r; is a computable real number uniformly in ¢ € N and
0 <r; <27° for each 4. Show that r = >, r; is computable.

Effectivity notions for classes of sets

This subsection introduces two essential concepts: co-c.e. closed sets (also called
19 classes) and c.e. open sets (also called ¥Y classes). We show how to index
such classes, and how to obtain effective approximations for them.

By Stone duality (Facts 1.8.3 and 1.8.4), any complexity notion for sets of
strings can be applied to closed sets and to open sets. To be in a closed set P is
a property related to universal quantification: Z is in P if each initial segment
of Z lies on the representing tree. Similarly, to be in an open set is an existential
property. This is why the most fruitful effectiveness notion for closed sets is to
be M9, and the most fruitful one for open sets is to be ¥?. We may call these
objects either sets (when viewing them as sets of strings) or classes (when viewing
them as sets of subsets of N).
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1.8.19 Definition.

(i) A closed set P is co-c.e. if the corresponding binary tree
Tp ={z: [z])N P # (0} has a c.e. complement in {0,1}*. A co-c.e. closed
set is usually called a I19 class.

(ii) An open set R is c.e. if the corresponding set of strings
Ag = {x: [z] € R} is c.e.; such an open set is also called a X9 class.

Representing 119 classes
Usually we show that a class P is IIY by defining some 119 tree B such that
P = Paths(B), and using the following fact.

1.8.20 Fact. Let B C {0,1}* be a I1Y tree. Then P = Paths(B) is a 11 class.

Proof. The subtree of B given by
B*={o: Vn>|o|3pe Bllp|=n& p o]} (1.14)

is a II{ tree since the quantifier Jp is bounded. Moreover, B* has no dead
branches and P = Paths(B*). Hence B* = Tp by the correspondence in Fact
1.8.3, and P is a IIY class. O

On the other hand, if we are willing to admit dead branches we can find a
representing tree that is computable.

1.8.21 Fact. FEachI1\ class is of the form Paths(B) for some computable tree B.

Proof. Tp is a 119 tree, so A = {0,1}* — Tp is c.e., and therefore has a com-
putable enumeration (As)sen. The tree B = {o: Vp <X o[p € Aj,(]} is com-
putable. Clearly Tp C B and hence P C Paths(B). For the inclusion Paths(B) C
P, if Z ¢ P, then we can choose n such that Z [, € A for some s. Then Z [, is
a dead branch of B because none of its extensions of length s are in B. Hence
Z ¢ Paths(B). O

A TIY class P can be viewed as a problem. Each Z € P is a solution of this problem.
A TI? tree B such that P = Paths(B) is a description of the problem. By Fact 1.8.21,
each problem given by a IIY class has a computable description. Fact 1.8.31 below
shows that sometimes there exists a solution but not a computable one. However, there
is always a low solution by the Low Basis Theorem 1.8.37. Later on we will encounter
more examples of nonempty II9 classes without computable members, for instance the
sets that are Martin-Lof-random for a constant b (see 3.2.9).

If Tp is computable then its leftmost path is computable. Thus, if P has no com-
putable member, the tree B in the proof of 1.8.21 necessarily contains dead branches.

Representing c.e. open sets
1.8.22 Fact. R C 2" is c.e. open & R = [W.]~ for some e.

Proof. =: By definition Ag is c.e. Then R = [Ag]™ by Fact 1.8.4(i).
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«: Let
We={o:3pecW.[p0]} (1.15)

Then R = [/V[?e]<. Since W, is closed under extensions, B = {0,1}* — W, is a
19 tree. So P = Paths(B) is a IIY class by Fact 1.8.20, and R = 2% — P. Thus
Ag = {0,1}* — Tp. Since Tp is I1{, Ag is c.e. So R is a c.e. open set. O

1.8.23 Remark. We say the number e is an index for a c.e. open set R if R =
[We]~. An index for an object usually provides us with an effective approximation
of the object (see page 7). In the case of c.e. open sets, the approximation for

L

index e is denoted by (W, s)sen. It is chosen in such a way that /V[Z)s is closed
under extensions within the strings of length up to s: let

We,s ={z: |z|<s& TyeW.sly<z]} (1.16)

We suppress the index e for R and simply write R, for ﬁ/\w. Thus R = [J,[Rs]~.

1.8.24 Example. Let ® be a partial computable functional. For each string x,
the class
S, ={Z: Vi < |z| [®%(i) = z(i)]}

is c.e. open uniformly in z, because S, = [W]~ for the c.e. set W = {o: &7 = z}.

1.8.25 Definition. A set C' C {0,1}* such that z | y for every pair of distinct
strings x,y € C' is called an antichain of {0,1}*, or a prefiz-free set.

Every c.e. open set is generated by a computable antichain:

1.8.26 Fact. One may uniformly in an index e for a c.e. open set R obtain a
computable antichain B such that [B]™ = R. Moreover, B is effectively given in
the form B = {z;}icn, N € NU{oo}, where z; # x; fori# j and |z;| < |zi41].

o~

Proof. Let (W, s)sen be as in (1.16). Begin with an empty antichain. At stage s
add to the antichain all strings of length s which are in W, s and do not extend
a string in We 1. O

1.8.27 Remark. Note that 17[/\5 = Uﬁ/\e,S is usually not an ideal of strings. As a
remedy we could modify the definition to We s = {0: || < s & [0] C [We,s]<}. Then
ﬁ/\e, s would be closed under extensions within the strings of length up to s, and satisfy
the condition that 00,01 € We,s — o€ W\e,s. Thus, in fact /We would be an ideal and
[ﬁ/\e}< =R,s0 W. = Ag by Fact 1.8.4. However, this is not worth the additional effort.

An effective listing of the T1{ classes

Suppose that e is an index for a c.e. open set R, and We is as in (1.15). Let
P =2Y — R then B, = {0,1}* — W, is a 119 tree such that Paths(B.) = P. In
this way an index e for R can also be used as an index for the II{ class P = 2V —R.
The approximation of P derived from this index is an effective sequence
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(Ps)sen (1.17)
of (strong indices for) clopen sets, where Py O P,y and P = [, Ps. To obtain
this sequence let Py = [{o: |o| = s & 0 € V. s}]~. Thus Ps is generated by the
strings of length s that are still on the tree B, at stage s. (This differs from the
case of an approximation (Ry), ., of a c.e. open set, where R; is a set of strings
of length at most s.)

1.8.28 Fact. Let G be the I1Y class given by index e. Then the set {e: G¢ =0}
is B9 .

Proof. Clearly G¢ = () «+» 3sG¢ = (), and the latter condition is 9. O

seN

1.8.29 Exercise. Show that the operations U and N are effective on indices for c.e.
open sets, as well as on indices for I19 classes.

Ezamples of 1Y classes

We are now in the position to give some interesting examples of IIJ classes.
The first one will be important later on, for instance in Section 4.3. Recall that
J(e) denotes ®.(e). A {0,1}-valued function f is called two-valued diagonally
noncomputable, or two-valued d.n.c. for short, if it avoids being equal to J(e)
whenever J(e) is defined, namely, —f(e) = J(e) for each e.

1.8.30 Remark. A simple example of a two-valued d.n.c. function f is obtained
as follows. Since {e: J(e) = 1} is c.e., there is a computable function ¢ such that
J(e) =1 & qle) € 0. Now let f(e) =1—0"(q(e)). If J(e) =1 then f(e) =0,
otherwise f(e) = 1. Notice that f <; (.

1.8.31 Fact. The two-valued d.n.c. functions form a nonempty 11 class P
without computable members. In particular, the tree Tp is not computable.

Proof. The set of strings B = {0: VsVe < s—o(e) = Js(e)} is a I tree and
P = Paths(B). Hence P is a IIY class by Fact 1.8.20. We have already seen in
Remark 1.8.30 that P # (. Suppose f = ®. is a two-valued function. Then
7(e) = J(e), 50 f ¢ P. 0

The following examples of I19 classes will be reconsidered later on.

1.8.32 Examples.
(i) Let ® be a partial computable functional. Then for each n,
{Z: ®Z(n)1} is a 1Y class.
(ii) Let ¢ be a partial computable function with values in {0,1}. Then the total
{0, 1}-valued functions extending ¢ form a 119 class.
(iti) Let T be an effectively aziomatized theory. Then the completions of T form
a T class. (Here we fix some effective encoding of the sentences in the
language of T' by numbers.)

Proof. (i) Recall the definition of ®7(n) from page 14. Let B = {o: Vs ®J(n)1},
then B is a II{ tree and Paths(B) is the class under consideration. We leave (ii)
and (iii) as exercises. O
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Consider the class in (iii) when T is Peano arithmetic. Then T has no com-
putable completion, so once again there is no computable solution for the problem
described by the I1{ class of completions of T

Isolated points and perfect sets

A point Z in a topological space X is called isolated if the singleton {Z} is open.
For instance, if X satisfies the separation axiom T (each singleton is closed)
and X is finite then each point is isolated. Consider the case that X is the
subspace Paths(B) of Cantor space for a binary tree B. Then a path Z of B is
isolated iff there is a number ng such that Z is the only path extending Z [,,.
For example, consider the tree
B ={0: i € N}U{0"10*: i,k € N}.

Then Paths(B) is infinite, and every path except for 0° is isolated in X.

A nonempty closed set P in a topological space is called perfect if it has no
isolated points. If P C 2" this amounts to saying that the binary tree Tp has no
isolated path. Thus each perfect class in Cantor space has size 2%0.

The following fact is usually applied to computable trees, and often in rela-
tivized form, but it actually holds for I1 trees.

1.8.33 Fact. Let B C {0,1}* be a I1Y tree. Then each isolated path Z of B is
computable.

Proof. Let B* be the IIY subtree of extendable nodes of B defined in (1.14).
Then Z is an isolated path of B* as well. So choose a number ng such that Z is
the unique path of B* extending Z [,,,. To compute Z(n) for n > ng, enumerate
{0,1}* — B* until there remains a unique o > Z [,,, such that |o| =n + 1 and
o is on B*. This must happen, for otherwise some path of B* other than Z also
extends Z [,,. Thus o < Z, so output o(n). O

In particular, every nonempty I19 class without computable members is perfect.
1.8.34 Corollary. Let B be a binary tree.

(i) If Z is an isolated path of B then Z <r B.

(i) If Paths(B) is finite, then Z <t B for each path Z.
Proof. (i). Relativize Fact 1.8.33 (the case where the binary tree is computable).
(ii). It suffices to observe that each path of B is isolated. O
1.8.35 Exercise. Suppose the partial computable function % in 1.8.32(ii) has a co-
infinite domain. Then the class of total {0, 1}-valued extensions of ¢ is perfect.
The Low Basis Theorem

A basis theorem (for IIY classes) states that each nonempty II{ class has a
member with a particular property. We begin with an example of such a theorem,
the Kreisel Basis Theorem, that the left-c.e. sets form a basis for the I1{ classes.

1.8.36 Fact. Every nonempty 119 class P has a left-c.e. member, namely its
leftmost path.



1.8 Cantor space 57

Proof. By Fact 1.8.3 we may identify a closed P C 2V with the tree Tp =
{z: [z] N P # 0}, the set of strings that are on P. We show that the leftmost
path Y of P is left-c.e. Note that

T<,Y < VOSLT[|0|:|T|—>aisnotonP].

This is in ¢ form because the universal quantifier is bounded. Thus the set
{r: 7<rY}isce. O

The proof of a basis theorem is usually uniform: from an index for the given II?
class one can compute a description of a member with the desired property. Thus, a
basis theorem provides an effective choice function, picking a member with a particular
property from the class in case the class is nonempty.

To verify that the proof of Fact 1.8.36 is uniform we provide a little more detail: from
an index for P (that is, an index for a TI{ tree B such that Paths(B) = P) we can
effectively obtain an index for the TIY tree B* without dead branches in (1.14). Since
B*={o: oison P}, we have 7 <., Y < Vo <. 7 [|o| = |7| = ¢ & B*], which gives
the required c.e. index for {r: 7 <y Y}.

The desired property of member Y of the given II{ class is usually a lowness property.
On the other hand, Y € P often means that Y is complex in some sense (computational
or descriptive). For instance, P could be the class of two-valued d.n.c. functions in
Fact 1.8.31. Then a basis theorem implies that a set can be computationally weak in
a given sense, but complex in the sense of being in P. In particular, the II$ classes we
are interested in here have no computable paths, otherwise the basis theorem is trivial.

The following is due to Jockusch and Soare (1972b).

1.8.37 Theorem. (Low Basis Theorem)
Every nonempty 119 class has a low member.

Proof. Let P be the given I1Y class. We define a descending sequence of nonempty
119 classes (P¢)qcn, where P® = P. Then, by the compactness of 2V (in the form
of Proposition 1.8.5), there is a set Y in [, P°.

The class P°t! determines whether e € Y': either this holds for no ¥ € P!,
or for all such Y. The halting problem (/' can decide which case applies, so
Y’ <p 0'. (Note that Y is the only element of [, P¢, since Y <,, Y’ via some
fixed many-one reduction.)

Construction relative to ' of TI{ classes (P¢).cn. At stage e we define P¢. Let
PO =p.

Stage e + 1. Suppose that P¢ has been defined. If P° N {Z: J%(e) 1} # 0 then
let Pt! be this class, otherwise let Pet! = Pe.

Notice that by Example 1.8.32(i) one may effectively determine an index for the
19 class PN {Z: J%(e)1}. Thus by Fact 1.8.28, it is a II9 property of e that
this class is nonempty. Therefore this can be decided by (. Clearly, e & Y iff
this first alternative applies at stage e + 1. Hence Y/ <1 ('. O
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In the foregoing proof we approximated a set Y not by specifying initial seg-
ments but rather via the classes P°. In fact P¢ determines Y’ .. We discussed
approximations by classes on page 46 at the beginning of this section.

The proof of Theorem 1.8.37 actually produces a set Y € P such that Y is
left-c.e. Note that this property of a set Y depends on the particular way the
jump operator is defined. However, the property implies that Y’ =4 (' (namely,
Y is superlow, Definition 1.5.3). To verify that Y is left-c.e., we rewrite the
proof, avoiding a construction relative to (). This also stresses its uniformity.

1.8.38 Theorem. (Extends 1.8.37) Every nonempty 119 class P has a mem-
ber Y such that Y' is left-c.e.; a c.e. index for {o: o <p, Y'} (and hence a
reduction procedure for Y’ <y (') can be obtained effectively from an index for P.

Proof idea. First consider Y’(0). We maintain the guess that JY (0) 1 as long
as possible, namely, till it becomes apparent that J¥ (0) | for all Y in P (note that
this is a X{ event). For Y'(1) we do the same, but at first within the restricted I19
class P = PN {Y: JY(0)1}. Once our guess at Y”(0) changes to 1, we remove
this restriction on P. We may already have discovered that JY (1) | for all Y
in P. This led us to make a guess that Y/(1) = 1. This guess may now be revised
to Y’/(1) = 0, in case there remains some Y in P such that J¥ (1) . It should be
clear how to continue this procedure in order to guess at Y”'(e) for each e.

Proof details. We apply the Kreisel Basis Theorem 1.8.36 to the I1{ class of
strings 7 such that for some Y € P, whenever e < |7| and 7(e) = 0 then JY (e) 1
(without a prediction in the case that 7(e) = 1). For a string 7, let
Q-={Y eP:Ve<|r|[r(e)=0 — JY(e)T]}.

By Fact 1.8.28, “Q, = (" is a X{ property of 7. Trivially, Qz = P # 0
and Q, # 0 — Q. # 0. Thus B = {7: Q, # 0} is a II{ tree without
dead branches such that 1°° € Paths(B). The leftmost path V of B is left-c.e.
by 1.8.36. By the compactness of 28 (1.8.5) there is a set Y in (), Qvy,. To
show that Y’ = V, inductively assume that 7 = Y’ [.= V [.. Then JY (e) | <
Q-N{Y: JY(e) 1} #0 < V(e)=0. Thus Y'(e) = V(e).

For the uniformity statement, note that from an index for the IIY class P we
effectively obtained a c.e. index for {0, 1}* — B, which is an index for the II class
Paths(B). From this we obtain a c.e. index for {o: o <y Y’} by the uniformity
of Fact 1.8.36. O

The following extension of Theorem 1.8.37 provides more information on the
Turing degrees of members of a I1{ class P: there is a set Y € P not Turing above
a given incomputable set B. If B is A then, in addition, we may choose Y low.
The result is again due to Jockusch and Soare (1972b).

1.8.39 Theorem. (Extends 1.8.37) Given a II{ class P # 0 and an incom-
putable set B, there is a set Y € P such that B £17 Y. Moreover Y' <7 Bl

Proof. Recall that (®,).cn is a listing of the Turing functionals. As in the proof
of Theorem 1.8.37, we define a descending sequence of nonempty II{ classes
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(P®)en, and let Y be an element of (), P¢. However, now the class P?“* is used
to determine whether e € Y, while P?¢*2 prevents that B = ®Y .

Construction relative to O/ © B of I1Y classes (P¢)qen. Let P° = P.
Stage 2e + 1. This is similar to stage e + 1 in the proof of Theorem 1.8.37. If
P2n{X: JX(e)1} # 0, then let P21 be this class. Otherwise, let P?¢*1 = p2e,

Stage 2¢ + 2. Using (/' ® B as an oracle, search in parallel for the following:

(a) a string o and a number k such that o is on P2*! (i.e., [0] N P2t #£ ()
and B(k) # ®7(k). If such a pair is found let P?¢*2 = p2¢+1n|qg];

(b) a number n such that P2¢*1 N {X: ®X(n) T} # 0. If such a number is
found let P2¢*2 be this class.

The parallel search carried out at an even stage terminates: otherwise, ®X
is total for each X € P?**! since (b) does not terminate. In that case, B is
computable, contrary to our assumption: given k, we may compute s such that
for all 0 € P?T! if |g| = s then ®J(k) is defined, and in addition, since (a)
does not terminate, all such computations ®7(k) give the same output. Then
this common output is B(k). (Here we have used the approximation given by
(1.17), which is automatically obtained from an index for the I class.)

To see that Y/ <7 B ® ', as before it suffices to let B @ () decide which case
applies at each stage as this determines Y’. The halting problem (/' suffices for
the odd stages, and B & (' can decide whether the parallel search carried out at
each single even stage terminates first in (a), or first in (b). O

Even if B is c.e., one cannot in general achieve that Y <,;; ('. A counterexample can
be derived from Exercise 8.5.23.

Exercises.
1.8.40. Extend 1.8.39 as follows: given incomputable sets B, ..., By, there is a set
Y € P such that Bi,..., Bk ﬁTYandY' <r B1@...@Bk€9®/.

1.8.41. Suppose that P # @ is a II{ class and B C N. Show that there is a set Y € P
such that (Y @ B)" <y B’. (This is more than a mere relatization of 1.8.37.)

The basis theorem for computably dominated sets

Martin and Miller (1968) proved that the computably dominated sets (Defini-
tion 1.5.9) form a basis for the IIJ classes. Since there is a II{ class without
a computable member (Fact 1.8.31), this shows that a computably dominated
set can be incomputable. An extension of the result states that there are 2o
computably dominated sets.

1.8.42 Theorem. FEvery nonempty 1Y class P has a computably dominated
member Y.

Proof. Once again we define a descending sequence of nonempty II{ classes
(P¢)een and use Proposition 1.8.5 to conclude that there is Y € [, P°. We
begin with PY = P. The class P**! either shows that ®) is partial, or that
there is a computable function f dominating ITY .
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Construction relative to 0" of 119 classes (P¢)cen. Let PO = P.
Stage e + 1. Suppose P¢ has been determined.

(a) Q, = PeN{Z: ®Z(x) 1} is a 1Y class, uniformly in z. If there is = such
that Q, # 0, let = be least such and let P°*! be this class. This ensures
that ®Z is partial for each set Z € P¢*1.

(b) Otherwise let P¢*t! = P¢. (We will show that there is a computable func-
tion f dominating ®Z for each Z € P¢+1.))

Let Y e N P If g = ®Y is a total function then at stage e + 1, we are in
case (b) since Y € P¢t!. To compute a function f that dominates g, we use
the approximation (P¢)sen obtained in (1.17) on page 55. Given an input z,
compute s = s(x) such that

Vo€ P{[lo]=s — ®7 (z)]].

Such an s exists, otherwise the class @, considered at stage e + 1 is nonempty.
Now let f(x) be the maximum of all the values ®7(z) where |o| = s(z) and
o € Pg,. Then f dominates &7 for each Z € P*. m

While an incomputable computably dominated set is not AJ by 1.5.12, the set ¥
above automatically satisfies Y <; @". This fact requires some additional effort to
verify. Recall from Exercise 1.4.20(iii) that Tot = {e: dom(®.) = N} is II3-complete.
The solution of 1.4.20 actually shows that Tot¥ = {e: dom(®}) = N} =,, N-Y”
for each Y, and hence Partial¥ := N — Tot¥ =,, Y. The following is analogous to
Theorem 1.8.38.

1.8.43 Theorem. (Extends 1.8.42) Every nonempty 9 class P has a computably
dominated member Y such that Y <y 0", and indeed {r: 7 <¢ PartiaIY} 18 23.
A truth-table reduction of Y to ()" can be obtained effectively from an index for P.

Proof. Let Y € [, P° as above. We effectively obtain from P a %9 index for the set
{r: 7 < Partial” }. This suffices because Y =, Partial” = {r: 7 < Partial” } via
fixed reduction procedures.

The following construction enumerates {7: 7 <r Partial* } relative to (/. At each
stage s > 0, for each e < s we have a guess P° at the class P® from the foregoing proof
which is (an index for) a I19 class, and a guess 75 of length s at Partial®* which only
moves to the right on the tree {0,1}*. At stage s, for each e < s in ascending order,
a procedure S, carries out one instruction, thereby defining the current guesses pe [s]
and 7s(e). At stage 1 we let PO = P, 1 = @, and start procedure Sp.

Procedure Se

(a) Define P°*! = P¢ and 7,(e) = 0.

(b) If e+1 < s start procedure Set1. From now on, using ()’ as an oracle, forz = 0,1, ...
ask whether Q. = PN {Z: ®Z(x)1} # 0. If so, initialize the procedures S;, e < i < s;
from now on let P°t! = Q,, and 7,(e) = 1. Otherwise let 7,(e) = 0.

Claim. We have limsP°[s] = P° and lim.7s(e) = Partial” ().

This implies 7 <, Partial” « 3s[r <, 75].
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To prove the claim we use induction on e. Clearly lim; P°[s] = P°, and lim,7,(0) = 1 iff
some z is found by So such that P°N{Z: ®F (x)1} # 0 iff ¢ is partial. Now suppose
that the claim holds for all i < e, and let sp be a stage by which all the limits for i < e
have been reached. Then Se is not initialized at any stage s > s, so if Se finds z at
a stage s > so, it defines PT'[s] and 75(e) correctly. Otherwise, P***[s] and 7s(e) are
already correct at stage s = so. O

Recall from page 56 that a nonempty closed set in a topological space is called
perfect if it has no isolated points.

1.8.44 Theorem. (Extends 1.8.42) Every nonempty 119 class P without com-
putable members has a perfect subclass S of computably dominated sets.

Proof. We modify the proof of Theorem 1.8.42. Instead of a descending sequence
(P¢)cen, we build a tree (P7),eq0,13+ of 119 classes.

Stage 0. Let P2 = P.

Stage e + 1. Suppose that P? # @Ahas been determined for each o such that
|o| = e. Firstly, for every such o let P°° and P°! be nonempty disjoint subclasses
of P?. They exist since there are incompatible strings 79,71 on P?, so we may
let P°" = P° N [r;] (i € {0,1}). Now proceed as before, but with both classes
P separately: if there is z such that PPN {Z: ®Z(x)1} # 0 then let = be least
such and let P7¢ be this class. Otherwise let P7 = P7i.

Verification. For each set C, there is a set Yo € ), PCle and, by the same
argument as before, each such Yo is computably dominated. If C' # D then
Yo # Yp. So the class § = {Yo: C C N} is as required. O

1.8.45 Corollary. There are 2% many computably dominated sets.

Proof. Apply Theorem 1.8.44 to any IIY class without computable members,
for instance the class of two-valued d.n.c. functions from Fact 1.8.31. O

A further basis theorem is 4.3.2 below: if D computes a two-valued d.n.c. function,
then each nonempty II9 class contains a set Y <r D.
1.8.46° Exercise. (Kucera and Nies) Let P be a nonempty 19 class. Suppose that
B > 0 is 9. Then there is a computably dominated set Y € P such that Y’ <7 B.
Hint. Combine the techniques of the Low Basis Theorem and Theorem 1.8.42 with
permitting below B relative to (). Fix an enumeration (Bs;)sen of B relative to (', and
use the function ¢g <7 B given by cg (i) = ut > i. B ;= B[; for the permitting.

Weakly 1-generic sets

1-genericity for sets is an effective version of the notion of Cohen genericity from
set theory. We first introduce the simpler concept of weak 1-genericity. Each
weakly 1-generic set is hyperimmune. Each hyperimmune set is Turing equivalent
to a weakly 1-generic set.

A subset D of a topological space is called dense if DNR # () for each nonempty
open set R. A set D C 2" is dense iff D N [z] # 0 for each cylinder [z] (namely,
each string is extended by a set in D). For instance, for each n, the open set
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w=1{Z: 3i >n[Z(i) = 1]} is dense in 2". Note that F,, is c.e. open, being an
effective union of clopen sets.

In Proposition 1.8.5 we interpreted a descending sequence (P*);cy of nonempty
closed classes as desirable conditions. Compactness showed that there is a set
Z e, P?. A desirable condition can also be given by a dense open set. Such a
condition cannot be ruled out by any finite initial segment of a set G C N. Baire’s
category theorem for 2N states that the intersection of a countable collection
(Dy)nen of dense open sets contains a set G. One builds G by the method of
finite extensions. Let [0g] C Dy, and if o,, has been defined choose o1 > oy
such that [0y,41] € Dyp41. Then G = |J,, 0n is as required. (This result holds in
in any uncountable Polish space, such as Baire space NY.)

The weakly 1-generic sets are the ones that meet each condition of this kind
where the dense set is also computably enumerable.

1.8.47 Definition. G C N is weakly 1-generic if G is in each dense c.e. open
set D C 2N,

1.8.48 Proposition. Fach weakly 1-generic set G is hyperimmune. In particu-
lar, G is not computably enumerable.

Proof. G is infinite since G is in the dense set E, = {Z : 3i > n[Z(i) = 1]} for
each n. Next, given a computable function f, we will show that there is n such
that pg(n) > f(n). The c.e. open set

Dy = {0717 o £ )]~
is dense. Thus G € Dy, and we may choose o such that o077 < G. Let n = |o|.
In the worst case, o consists only of ones, so that pg(n —1) =n — 1 and G has
the string

f(n)
— e
1...10 ... O
N——"

n

as an initial segment. Even then we have pg(n) > f(n). O

To build a weakly 1-generic set, we use the construction in the proof of Baire’s
category theorem.

1.8.49 Theorem. There is a weakly 1-generic left-c.e. set G.

Proof. (1) It is somewhat simpler to show that there is a weakly 1-generic
AY set. We build an effective sequence (og)sen of strings such that |os| = s.
This sequence is a computable approximation of the set G, namely G(n) =
limgs,,04(n) for each n.

We use the effective listing of c.e. open sets ([ o] )een, where, as in (1.15),
W, We ={o: 3p € W.[p =< d]}. Notethat[ T =

ments

[We]~. We meet the require-

—

R.: [W.]% is dense = G € [W.]~.
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Construction. Let oy = @. Initialize all the requirements.

Stage s > 0. For each e, let ¢, s be the maximum of e and the last stage when R,
was initialized. R, is called satisfied at stage s if 0,1 € We,s- If there is e < s
such that R, is not satisfied and there is o € /V[Z,S such that |o| = s and

Os—11t, .20, (1.18)

then choose e least. Let 0, = 00 and initialize the requirements R; for j > e.
We say that R, acts. Otherwise let o, = 05_10.

Verification. First we show by induction that each requirement R. acts finitely
often: when all R;, i < e, have stopped acting, R. acts at most once at a stage s,
since from then on G [ is preserved by the initialization, so that R, is per-
manently satisfied. Since R. can only change G(n) for n > e, this implies that
G(n) = limgs,05(n) exists for each n. Moreover, t. = lim,t. s exists for each e.
If [W\eﬁ is dense then /We contains some o > G [;_, so R, is met. Thus G is
weakly 1-generic.

(2) To make G left-c.e., in (1.18) we only allow extensions o such that o,_1 <z, 0.
To see that R, is met, note that G is co-infinite by construction, so G [;, 1"0 < G
for some r. Now R, can be satisfied permanently via some string in /I/IZ extending
Gl 1771 O

Kurtz (1981, 1983) proved a converse of Proposition 1.8.48 for Turing degrees.
1.8.50 Theorem. A is hyperimmune = A =r G for some weakly 1-generic G. O

Thus, one can characterize the hyperimmune degrees using “effective topology”. For a
recent proof of Kurtz’s theorem see Downey and Hirschfeldt (20xx).

1-generic sets

Let X be a topological space, S C X and A € X. We say that A is in the closure
of S'if SNV # ( for every open set V containing A. If X is Cantor space and S
is open, this means that for each o < A there is p > o such that [p] C S. In this
case we say that S is dense along A.

1.8.51 Definition. A is I-generic if A € S for every c.e. open set S that is
dense along A.

1-generic sets were introduced by Jockusch (1977). If S is a dense open set
then S is dense along any A. Therefore each 1-generic set is weakly 1-generic
(Definition 1.8.47). Note that A is 1-generic iff for each c.e. open set S, either
A € S or there is 0 < A such that [0] NS = 0. Intuitively, if A € S then
an initial segment of A already precludes A from being in S. For instance, let
S = {Z: ®%(n) |} for a Turing functional ®. If ®4(n) 1 then there is 0 < A
such that ®¥ (n)7 for each Y = o.

Part (1) of the proof of Theorem 1.8.49 actually builds a 1-generic set. It suffices
to observe that our strategy meets the requirements
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R : [W.]< is dense along G = G € [W.]~.
1.8.52 Theorem. There is a I-generic set G € AY. O

A 1-generic set is not left-c.e., and in fact it does not even Turing bound an in-
computable c.e. set. For this result of Jockusch (1977) see Odifreddi (1999, p. 662).
However, the construction of a 1-generic set can be combined with permitting:

Exercises.

1.8.53. For each incomputable c.e. set C' there is a 1-generic set A < C.

1.8.54. Each 1-generic set G is in GL1, namely, G’ <r G & (.

The arithmetical hierarchy of classes

Sets of natural numbers are our primary objects of study. In particular, we
are interested in their computational complexity, their descriptive complexity,
and their randomness properties. Recall from the beginning of this chapter that
to understand these aspects of a set we study classes of sets sharing certain
complexity or randomness properties. It will be useful to measure the descriptive
complexity of classes as well. With the exception of Chapter 9, all classes of sets X
studied in this book can be described by a formula in the language of arithmetic
involving initial segments of X. Similar to the case of the arithmetical hierarchy
of sets defined in 1.4.10, the descriptive complexity of a class is measured by
the complexity of its description, in terms of how many alternations of (number)
quantifiers it has. The variable y, of the innermost quantifier is now used to
determine the initial segment X, of X.

It is useful to extend the definitions to relations of £ numbers and one set. The
case k = 0 refers to classes.

1.8.55 Definition. Let A C N* x 2N and n > 1.
(i) Ais X0 if
<617"'76k7X> € A he 3ylvy2-''Qyn}z(elw''7ekvylv"'7yn—17)(“Jn)7

where R is a computable relation, and Q is “J” if n is odd and Q is “V”
if n is even.

(ii) A is 19 if the complement of A is X0, that is,

<€17...,€k,X> S A A vylayQ'"QynS(elw~'7ekay17"‘7yn717X{yn)7

where S is a computable relation, and @Q is “V” if n is odd and Q is “ 3"
if n is even.

A relation is arithmetical if it is X9 for some n.

For instance, a II9 class is of the form {X: Vy13y2 S(y1, X[y,)}, and a X9 class
is of the form {X: Jy1Vyo3ys R(y1,y2, X [y,)}, where S and R are computable
relations. We have already introduced IT{ and 9 classes in 1.8.19. Let us verify
that these two ways of introducing I1Y and X classes are equivalent.
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1.8.56 Fact.
(i) P C 2V is Y in the sense of 1.8.55 < P is a co-c.e. closed set, that is, P
is T1Y in the sense of 1.8.19.
(i) U C 2V is X9 in the sense of 1.8.55 « U is a c.e. open set, that is, U is
39 in the sense of 1.8.19.

Proof. (i) =: Suppose that P = {X: VyS(X I,)} for a computable set S
and let B = {z € {0,1}*: V2’ < 25(2')}. Then B is a computable tree and
P = Paths(B), so by Fact 1.8.20 P is II{ in the sense of 1.8.19.
<: By 1.8.21, P = Paths(B) for a computable tree B. Therefore
X € P« VnX[,€ B, hence P is II{ in the sense of 1.8.55.

The statement (ii) is now immediate by taking complements. O

Most of the classes of sets we consider will be arithmetical (the only exceptions
are the classes of Chapter 9). Often arithmetical classes are introduced by an
appropriate property of sets or functions computed by a set X . This makes them
arithmetical by the use principle. Sometimes they are defined by an arithmetical
growth condition on the initial segment complexity of their members.

We verify that some classes or relations we have introduced are arithmetical:

1.8.57 Proposition.
(i) The relation {{e, X): ®X is total} is I19.
i) The class {A: A is computably dominated} s I19.
4

Proof. (i) For each e, X we have ®X is total < Vz3s ‘bfls(m)i . The relation
{{z,e,0): ®7

e o]

(z) |} is computable.
(ii) This class is given by the description in I form
VediVy, s, w3t[(Vy' < yq)éLS W)l & @é[; (y) =w) = w < &;4(y)].
For, if ®4 is total then there is i such that ®2(y) < ®;(y) for each y. On the
other hand, if 2 is least such that ®2(z) 1, there are i,t such ®2(y) < ®; ,(y) for
each y < z. O
1.8.58 Remark. Let n > 1 and consider a X2 class
A= {X 3y1Vy2 o Qyn R(yla s Yn—1, X fyn)}

Then A = U, By, where By, = {X: Vy2...Qun R(y1,...,Yn—1, X [y,)} is a
Y _, class uniformly in y;. Thus the £0 classes are the unions of effective se-

quences of I1Y _; classes. Similarly, the IT? classes are the intersections of effective
sequences of X9 | classes.

The notions of 119 and of X0 relations can be relativized.

1.8.59 Definition. For C C Nand n € N, we define ¥2 (C) relations and I19 (C')
relations A C N¥ x 2N as in Definition 1.8.55, but for R, S < C.

In the exercises we show that each I19(()') class is II9 | but not conversely.

Remark 1.8.58 allows us to simplify the presentation of IT3 classes.
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1.8.60 Proposition. Let A C 2V. Then A is 113 < there is a computable S C {0,1}*
such that A ={X: VYy1 Jy2 > y1 S(X [y,)} ={X: I*nS(X )}

Proof. We only have to prove the implication “=”. Let A = (1), G» where (Gn)nen
is an effective sequence of XY classes. By Remark 1.8.23, given ¢ we can compute an
approximation G, + of G, consisting of strings of length up to ¢. Let

m(l‘) = maX{’I’LZ [AS Gn,|w\}a

and let S = {ya: y € {0,1}" & a € {0,1} & m(ya) > m(y)}. Then S is computable,
and for each X we have 3*°n X [,€ § <« I*¥nX € G, < Z € A. O

The Borel classes are the subclasses of 2% that can be obtained from the basic
open cylinders [z] via applications of the operations of complementation and countable
unions. Each arithmetical class is Borel by Remark 1.8.58. The arithmetical hierarchy
of classes is an effective version of the finite levels of a hierarchy of Borel classes.

The description of classes in arithmetic also provides new ways of describing sets.

1.8.61 Definition. Let n > 1. A set Z is a II9-singleton if {Z} is a II, class.

The II9-singletons coincide with the computable sets by Fact 1.8.33. The II3 singletons
already takes us beyond the arithmetical sets. Let ) = U, (0™ x{n}) be the effective
union of all the jumps ™).

1.8.62 Proposition. () is a II3 singleton that is not an arithmetical set.

Proof. There is a computable g such that (X["])' = Wg)fn) for each X, n, so

X =0 & xM"M =0 & vnx = (xMy
& VnVk,s3t>s[(k,n+1)€X o ke Wit ]

g(n),t

Thus the class {0} is II3. O

Recall the discussion of the local versus the global view of sets in Section 1.3. If
Y € 22, the description showing this embodies the local view. This is even more
apparent at the lower levels 39 and £9 of the arithmetical hierarchy, where we still
have a reasonable effective approximation of Y. On the contrary, a description of a
set Z as a II9 singleton, such as the description of 0“) above, embodies the global
view. The description only works because it involves the set as a whole.

In Proposition 3.6.2 we will see that each AY set is a IIS singleton. However, there is
a AJ (even left-X3) set that is not a II3 singleton, for instance the 2-random set Qv
(page 136). Thus, there are two incomparable classes of descriptive complexity, the
arithmetical sets and the II9 singletons. This is an exception to the rule that the classes
of descriptive complexity we consider form a nearly linear hierarchy.

Exercises. Show the following.

1.8.63. The class of c.e. sets is ©3. The class of computable sets is £3. (Also see 3.2.3.)
1.8.64. The class of c.e. [computable] sets is not IT5.

1.8.65. Let A be a I3 class and let ¥ be a Turing functional. Then the class
C={Z: V% is total & ¥Z e A} is II3.

1.8.66. For each X3 class B the Turing upward closure G = {Z : 34 € B[A <r Z]}
is X9 as well.

1.8.67. (i) Each TIY(0") class is I13. (ii) Some TI3 singleton class is not TI9(().
1.8.68. Extend 1.8.67(i): each II% (()) class is a IT5 1 class.



1.8 Cantor space 67

Comparing Cantor space with Baire space

Let N* be the set of finite sequences of numbers. Konig’s Lemma 1.8.2 relies on
the fact that the given tree is finitely branching. It fails in N*: for instance, the
infinite tree {n0™: n € N} has no infinite path.

For o € N* let [0] = {f € N¥: o < f}. The sets [0] form a base of a topology
on NN, and NN equipped with this topology is called the Baire space. This space is
not compact because N = [ [n]. Nonetheless, many notions we have discussed
for Cantor space can also be studied in the setting of Baire space. This includes
not only the notions from topology, such as open, closed, and compact sets
and their representations (page 47), but also arithmetical definability of classes
(1.8.55). As an example we consider closed sets. The class C C N is closed iff C =
Paths(B) for a subtree B of N*, and C C NV is a II? class of functions iff there is
a computable set R C N* such that C = {f: Vn[f[,€ R]} iff C = Paths(B) for a
computable subtree of N*. The problem whether Paths(B) = ) for a computable
tree B C N* is very complex, namely I1}-complete (see Chapter 9, page 368). For
a computable binary tree the corresponding problem is merely 9. In particular,
the Low Basis Theorem 1.8.37 fails in Baire space.

A function f € NN can be encoded by aset X € 2V its graph T'y = {(n, f(n)): n € N}.
For functions totality is automatic. For sets X, we have to require that X codes a func-
tion (I19) that is total (I13). In the following we will see that descriptions of functions as
I1? singletons have the same expressive power as descriptions of sets as II3 singletons.
We first introduce some notation. Let D: N* — N be the computable injection given
by D(no,...,nk—1) = Hi:ol p;”“, where p; is the i-th prime number. Let Seq denote
the range of D, the computable set of sequence numbers. If a = Hfz_ol p;”H as above
then we write (i) = n;.

1.8.69 Proposition. Suppose that f € NV and {f} is I}. Then {T';} is I13.

Proof. Let T(X) be the II3 condition expressing that X is the graph of a function.
Suppose f is the unique function satisfying the condition Vn R(f ) where R is com-
putable. Then I'y is the only set X satisfying the II3 condition
T(X) & ¥n3a € Seq[|[D™ (a)| =n & R(a) &
Yy <aVi<n(a(i)=y < (i,y) € X)]. O

The converse holds up to Turing degree, because the witnesses for the existential
statement in a II3 condition on a set A can be incorporated into the function:

1.8.70 Proposition. For each I13 singleton A, there is a I function singleton f such
that f =r A.

Proof. Suppose A is the unique set satisfying the II3 condition Vrn3m S(n, A ). Let
f: N — Seq be the function given by f(n) = a if @« = D(A |,») for the minimal m
such that S(n, A |). Clearly f <7 A. Also f is unbounded, for if |[D™*(f(n))| < d
for each n, then each set Z = A |4 also satisfies the II3 condition describing A. Thus
A <7 f. Finally {f} is TI}, because f is the unique function satisfying the condition
Vn [f(n) € ran(D) & D™ '(f(n)) € {0,1}* &
S, D™ (f(n))) & Yo < D(f(n))[=S(n, )] 0

Thus, by 1.8.62 and 1.8.70, there is a function f =r 0 such that {f}is TI9.
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Exercises.

1.8.71. A tree T C N* is finitely branching if T C {0 € N*: Vi < |o|[o(i) < g(i)]}
for some function g. Show that a closed set P C NV is compact < the associated tree
Tp ={o € N*: [o] N P # (0} is finitely branching.

1.8.72. Suppose P C NV is a nonempty I19 class such that Tp = {o: [0] N P # 0} is

finitely branching via some computable function g (we say that P is bounded). Show
that P has a low member.

1.9 Measure and probability

We will introduce a notion of size for certain classes C C 2V by assigning to C
a nonnegative real number pC. All the Borel classes will be assigned a size.
As an auxiliary notion we discuss outer measures p, where uC is defined for all
classes C. Outer measures satisfy three conditions: p(f)) = 0, monotonicity, and
countable subadditivity. The restriction of an outer measure to the Borel classes
yields a measure, a function with the stronger property of countable additivity.
In fact, p is countably additive on a larger domain, the py-measurable sets.

We mostly use the uniform measure A where each cylinder [o] is assigned the
size 27191, The theory can be developed in a similar way for the unit interval
[0, 1]g. Taking into account the identifications in Definition 1.8.10, the uniform
measure on Cantor space corresponds to the Lebesgue measure on [0, 1]g.

Outer measures

Let R} denote the set of nonnegative real numbers.

1.9.1 Definition. A function p: P(2Y) — Ry is called an outer measure if it
satisfies the following.

(i) p(®) =0;
(i) cCDC2Y — u(C) < u(D) (monotonicity);
(i) p(U;Ci) <>, 1(C;) for each family (C;);en of classes
(countable subadditivity).

To introduce an outer measure, one begins with an appropriate assigment of
values to basic open cylinders and then extends it to all classes.

1.9.2 Definition. A measure representation is a function r: {0,1}* — RJ that
satisfies for every o € {0,1}* the equality

r(00) +r(cl) = r(0). (1.19)

The extension process is in two steps.

1. If A C 2" is open, choose a prefix-free set E C {0, 1}* such that [E]~ = A (for
instance let E be the set of minimal strings o such that [0] C A as on page 48).
Let

pr(A) =2 e 7(0).
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The property (1.19) ensures that this sum does not exceed r(@), and that any
choice of a prefix-free set F yields the same value p,.(A).

2. For a class C C 2N we let
wr(C) = inf{u,(A): C C A& Ais open}. (1.20)

It is not hard to verify that u, is indeed an outer measure (Exercise 1.9.5).
In the following we provide a useful fact about outer measures. It is a special
case of the Lebesgue Density Theorem. First a definition.

1.9.3 Definition. Suppose i is an outer measure. If C C 2% and o € {0, 1}* is
such that u[o] # 0, then the local outer measure of C in [0] is

w(C o) =uCnlo])/pulo]-

The theorem states that if uC > 0 for an outer measure p, then the local outer
measure u(C | o) can be arbitrarily close to 1.

1.9.4 Theorem. Let i be an outer measure, and let C C 2% be such that uC > 0.
Then for any §, 0 < § < 1, there exists o € {0,1}* such that p(C | o) > 4.

Proof. Let e = (+—1)uC. By the definition of an outer measure, there is an open
set A D C such that pA—puC < e. Then pA < uC+e = %,uC, that is, § - pA < uC.
There is a prefix-free set D C {0,1}* such that A = [D]~ = {J,plo]. We claim
that some o € D satisfies the conclusion of the theorem. Otherwise, for each
o € D, plo] # 0 implies u(C | o) < d. Since uC > 0, we have ufo] > 0 for some
o € D. Then

pC = pU,epCnio]) sinceC C A
< Y sepi(CNo]) by countable sub-additivity
< 0> ep mlo] since u(C | o) < 6 for each o € D
such that u[o] > 0, and there is such a o
= §-pA<uC,
contradiction. O

1.9.5 Exercise. Show that p, is an outer measure for each measure representation r.

Measures

For details on the following see for instance Doob (1994).

1.9.6 Definition.
(i) A set B C P(2V) is called a o-algebra if B is nonempty, closed under
complements, and the operations of countable union and intersection.

(i) A function p: B — R{ is called a measure if u(0) = 0 and p is countably
additive, namely, u(lJ, D;) = >, 1(D;) for each countable family (D;);en
of pairwise disjoint sets. If 4(2V) = 1 then p is called a probability measure.
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Clearly countable additivity implies monotonicity. It also implies countable
subadditivity, since for each familiy (C;)ien, U, C; is the disjoint union of the
sets D; = C; — U<, C, and puD; < puC; for each i.

For an outer measure y, a set G C 2N is called p-measurable if for each C C 2N
we have u(C) = u(C N G) + pu(C — G). Tt is not hard to see that each clopen set
is p-measurable. A central result of measure theory due to Carathéodory (1968)
states that the measurable classes form a o-algebra, and the restriction of p to
this o-algebra is a measure. In particular, a Borel class is p-measurable for any
outer measure u, since the Borel classes form the smallest o-algebra containing
the clopen sets. Most of the subclasses of 2V we will encounter are arithmetical
and hence Borel.

Uniform measure and null classes

In the following let r be the measure representation given by r(x) = 2~ =l

1.9.7 Definition. The uniform (outer) measure, denoted by A, is the outer
measure obtained from r via the extension process described after 1.9.1.

1.9.8 Definition. A class A C 2N is called null if A = 0.
If 2V — A is null we say that A is conull.

By step 2 of the extension process we have

1.9.9 Fact. A C 2" is null < there is a sequence (G,)men of open sets such
that limmAGr, =0 and A C (), G-

Note that the class B = (), G is Borel and AB = 0. Later on, we will intro-
duce randomness notions by imposing effectiveness or definability restrictions on
the condition in Fact 1.9.9 characterizing null sets. For instance, we do this to
introduce Martin-Lof randomness in Definition 3.2.1.

For each pair of sets X, Y (not necessarily subsets of N) we let

XAY =(X-Y)U(Y — X).

It can be shown that C C 2V is A-measurable iff there is a Borel class B such
that CAB is null, and in this case AC = AB. Also, the restriction of A to the
A-measurable sets is the unique measure p given by the measure representation
r(z) = 2717l We will henceforth call A-measurable classes simply measurable.
For each class C and each set F' C N, the operation C — Cp = {ZAF: Z € C}
switches the values of the bits of all sets in C at the positions given by F. The
uniform outer measure A is invariant under this operation:

1.9.10 Fact. For each measurable class C C 2N and each set F C N, the class
Cr is measurable, and \Cr = MC.

Proof. Clearly A([o]r) = A[o] for each string o. Since A is countably additive
this implies A r = AA for each open set A. Thus ACrp = AC by (1.20). O

Using the axiom of choice one can define a non-measurable class. For X, Y C N
we write X =* Y if XAY is finite. We say that Y is a finite variant of X. Clearly
=* is an equivalence relation.
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1.9.11 Proposition. Suppose a class V C 2V contains exactly one member of
each equivalence class of =*. Then V is not measurable.

Proof. Assume V is measurable. Then 2% is the disjoint union of the measurable classes
Vr where F is finite. By countable additivity, 1 = A(2") = 3", A\Vr [F C Nis finite].
This is impossible since AVr = AV for each F. O

As a consequence, there is no Borel well-order of Cantor space, for otherwise one
could take as V the Borel class of minimal elements in each equivalence class. Note
that V is a version for Cantor space of the Vitali set, where instead of 2 and =* one
has [0, 1]z with the equivalence relation {(r,s): r —s € Q}.

For a class C and a string o, let C' | 0 = {X: ¢X € C}. The conditional outer measure
A(C | o) of Definition 1.9.3 equals the uniform outer measure of the class C | o.

With few exceptions, classes C relevant to computability theory are Borel and
closed under finite variants, that is, X € C and X =* Y implies Y € C. By
the following, the uniform measure can only distinguish between small and large
classes of this kind.

1.9.12 Proposition. (Zero-one law) If a measurable class C is closed under
finite variants then A\C =0 or \C = 1.

Proof. Suppose that A\C > 0. We show that \C > § for every §, 0 < d < 1. If o
and p are strings of the same length, then by the invariance property of A\ above,
for each X we have 0 X € C < pX € C. Therefore,

AMCN[o]) =A{oX: 0 X €C}) = A{pX: pX €C}) = A(CN|[p]).
By Theorem 1.9.4 choose ¢ such that A(C | ¢) >  and let n = |o|. Then
ACN(o]) > 027", hence AC =3, _, A(CN [p]) >2"627" = 4. O
Exercises.
1.9.13. If S is a prefix-free set then lim, #(S N {0,1}")/2" = 0.

1.9.14. An ultrafilter & C P(N) is called free if {n} & U for each n. Show that a free
ultrafilter is not measurable when viewed as a subset of 2%,

1.9.152 Suppose that N € N, ¢ > 0, and for 1 < i < N, the class C; is measurable
and AC; > €. If Ne > k then there is a set F' C {1,..., N} such that #F =k + 1 and
AN;er Ci > 0. For instance, if N = 5 sets of measure at least ¢ = 1/2 are given, then
three of them have an intersection that is not a null class. (This is applied in 8.5.18.)
Hint. Think of integrating a suitable function g: 2% — {0,..., N}.

Uniform measure of arithmetical classes

By 1.8.58 each arithmetical class is Borel and hence measurable. The uniform
measure of a X0 class is left-X. The uniform measure of a I19 class is left-I19.
We prove this for n = 1 and leave the general case as Exercise 1.9.22.

1.9.16 Fact. If R C 2V is c.e. open then AR is left-c.e. in a uniform way.
If P C 2V is a TIY class then AP is right-c.e. in a uniform way.

Proof. According to 1.8.23, from an index for R we obtain the effective approx-
imation (Rs)sen such that R = [J,[Rs]~. Then AR = sup,AR;, so AR is left-c.e.
The second statement follows by taking complements. O
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We discuss c.e. open sets R such that AR is computable. Recall from 1.8.19 that
Agr = {o: [0] C R}. First we note that none of the properties “AR computable”
and “Ar computable” implies the other.

1.9.17 Example. There is a c.e. open set R such that AR = 1 and Apg is not
computable.

Proof. Let R = 2Y — P where P be the class of two-valued d.n.c. functions from
Fact 1.8.31. Then Ag = {0,1}* — Tp is not computable. Since there are infinitely
many z such that J(z) = 0, we have AP = 0. O

On the other hand, the uniform measure of a c.e. open set R with computable
Apg can be an arbitrary left-c.e. real by Exercise 1.9.20.
We provide two results needed later on when we study Schnorr randomness.

1.9.18 Fact. Let R be a c.e. open set such that AR is computable. Then A(RNC)
18 computable uniformly in R, AR, and an index for the clopen set C'.
The same holds for 1Y classes of computable measure.

Proof. We use Fact 1.8.15(iv). Given n € N, we can compute ¢ € N such that
AR — A[Ry]™ <27 Then A(RNC) — A[R]* N C) < 27" Thus the rational
gn = M[R:]Z N C) is within 27" of A(RN C).

For 1Y classes, one relies on the first statement and takes complements. O

1.9.19 Lemma. Let S be a c.e. open set such that \S is computable. From a
rational q such that 1 > q > AS we may in an effective way obtain a c.e. open
set S such that S C S and \S = q.

Proof. We identify sets and real numbers according to Definition 1.8.10. Let
S=SU{[0,2): z€Qy & A(SU0,z)) < ¢}

To check that S is as required, note that the function f: [0,1)g — [0, 1) given

by f(r) = A(SU[0,r)) is non-decreasing and satisfies f(s) — f(r) < s —r for

s > r. Thus f is continuous. Further, f(0) < ¢ and f(r) > r for each r, so there

is a least ¢ such that f(t) = ¢. Then S = SU[0,t), and hence AS = ¢.

To see that S is c.e., note that f(z) = x + A(S N [z,1)) for each z € Qa, so
by 1.9.18 f(x) is a computable real uniformly in z. Since x < t iff f(z) < ¢, this
shows that ¢ is a left-c.e. real, whence the open set S = SUJ0,¢) is c.e.

Note that f is obtained effectively from S and AS. Thus we uniformly obtain
a c.e. index for {p: p < t}, and hence an index for S. O

Exercises. Show the following.

1.9.20. For each left-c.e. real number r € [0,1) there is a c.e. open set R such that Ag
is computable and AR = r.

1.9.21. Each II9 class P of computable positive measure has a computable member.

1.9.22. The measure of a X9 class is left-22 in a uniform way.
The measure of a 12 class is left-II% in a uniform way.
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Probability theory

We briefly discuss binary strings and sets of natural numbers from the viewpoint
of probability theory. Unexplained terms in italics represent standard terminol-
ogy found in text books such as Shiryayev (1984).

A sample space is given by a set X together with a o-algebra and a probability
measure on it. For instance, a string of length n is an element of the sample
space {0,1}", and a set is an element of the sample space 2N, The probability
measure P is given by P({z}) = 271* in the case of strings and by the uniform
measure A in the case of sets.

For each appropriate ¢ we have a random variable §;: X — {0,1} given by
&i(z) = x(i). We think of &;(x) as the i-th outcome in the sequence of experiments
described by x. If X is Cantor space, this is a dynamic version of the local view
of sets (see Section 1.3): the set is revealed bit by bit. Note that

P =0)=P&=1)=1/2.
Moreover, the &; are independent. Such a sequence of random variables is called
a Bernoulli scheme for the probability 1/2.

For n € Nlet S, = >, _, & If the sample space is {0,1}" then S, (x) is the
number of occurrences of ones in the string x. The expectation of S, /n is 1/2.
In probability theory one is interested in bounding the probability of the event

abs(S,/n—1/2) > ¢ (1.21)

for € > 0, namely that the number of ones differs by at least en from the ex-
pected value n/2. The Chebycheff inequality shows that this probability is at
most 1/(4ne?). (For a numerical example, if n = 1000 and € = 1/10, then 1/40
bounds the probability that the number of ones is at least 600 or at most 400.)
In Section 2.5 we will use the improved estimate 2¢=2"¢ for the probability of
the event (1.21) in order to bound the number of strings of length n where the
number of zeros and of ones is unbalanced.
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The descriptive complexity of strings

In contrast to the remainder of the book, this chapter is on finite objects. We may
restrict ourselves to (binary) strings, because other types of finite objects, such
as strings over alphabets other than {0,1}, natural numbers, or finite graphs,
can be encoded by binary strings in an effective way. We are interested in giving
a description o of a string z, and if possible one that is shorter than z itself. Such
descriptions are binary strings as well. To specify how o describes a string x, we
will introduce an optimal machine, which outputs the string x when the input
is the description o. The descriptive complexity C(z) is the length of a shortest
description of z. We first study the function z — C(x). Some of its drawbacks
can be addressed by introducing a variant K, where the set of descriptions is
prefix-free. The function K also has its drawbacks as a measure of descriptive
string complexity, but is the more fruitful one where the interaction of com-
putability and randomness is concerned. The Machine Existence Theorem 2.2.17
is an important tool for showing that the elements of a collection of strings have
short descriptions in the sense of K. It will be used frequently in later chapters.

A string x is b-incompressible (in the sense of C, or K) if it has no description o
(in that sense) such that |o| < |z| —b. In Section 2.5 we will see that incom-
pressibility can serve as a mathematical counterpart for the informal concept of
randomness for strings. Using some basic tools from probability theory, we show
that an incompressible string x has properties one would intuitively expect from
a random string. For instance, x has only short runs of zeros.

Optimal machines act as description systems for strings (analogous to the de-
scription systems for sets mentioned at the beginning of Chapter 1). However,
the theory of describing strings differs from the theory of describing sets. Only
a few reasonable description systems have been introduced. Every string can be
described in each system. For a set, the question is whether it can be described
at all, while for strings we are interested in the length of a shortest description.
For strings, we can formalize randomness by being hard to describe (that is,
being incompressible). It takes more effort to formalize randomness for sets (see
the introduction to Chapter 3).

The prefix-free descriptive complexity K can be used to determine the degree
of randomness of a set Z C N, because to a certain extent it is measured by
the growth rate of the function n — K(Z [,,). For instance, a central notion,
Martin-Lof randomness, is equivalent to the condition that for some b, each
initial segment Z [,, is b-incompressible in the sense of K (Theorem 3.2.9).
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Much of the material in this chapter goes back to work of Solomonoff (1964),
Kolmogorov (1965), Levin and Zvonkin (1970), Levin (1973, 1976), and Chaitin
(1975). A standard textbook is Li and Vitdnyi (1997).

Comparing the growth rate of functions

We frequently want to measure the growth of a function g: N — R. One way is
to compare g to the particularly well-behaved functions of the following type.

2.0.1 Definition. An order function is a computable nondecreasing unbounded
function f: N — N. Examples of order functions are An.logn, An.n?, and An.2".

In the following let f,g: N — R. We will review three ways of saying that f
grows at least as fast as g: by domination, up to an additive constant, and up to
a multiplicative constant (if f and g only have nonnegative values).

(1) Recall the domination preordering on functions from Definition 1.5.1: f dom-
inates g if V>°n [f(n) > g(n)]. An example of a growth condition on a function g
saying that g grows very slowly is to require that g is dominated by each order
function. We will study an unbounded function g of this type in 2.1.22.

(2) To compare f and g up to additive constants, let
g <t f:e JeeNVnlg(n) < f(n) + .
This preordering is a bit weaker than the domination preordering. We usually
avoid explicitly mentioning the functions f, g. Instead, we write expressions defin-
ing them, as for instance in the statement logn + 16 <* n. The preordering <*
gives rise to the equivalence relation g =" f : «» g <t f <T g.
We often try to characterize the growth rate of a function f by determining its
equivalence class with respect to =T. For instance, the class of bounded functions
coincides with the equivalence class of the function that is constant 0.
(3) Recall that abs(r) denotes the absolute value of a number r € R. Let
g=0(f): < Jec>0V>°nlabs(g(n)) < cabs(f(n))].
Moreover, g = h 4+ O(f) means that g — h = O(f). We think of O(f) as an error
term, namely, an unspecified function f such that abs(f(n)) < cabs(f(n)) for
almost all n. In particular, O(1) is an unspecified function with absolute value
bounded by a constant. Thus g <t f < g < f+ O(1).
For f,g: N — RT we let f ~ g : < lim,f(n)/g(n) = 1. If f ~ g, one can
replace f by g in error terms of the form O(f).

2.1 The plain descriptive complexity C'
Machines and descriptions

Recall that elements of {0,1}* are called strings. A partial computable func-
tion mapping strings to strings is called a machine. (As we identify a string o
with the natural number n such that the binary representation of n + 1 is 1o,
formally speaking a machine is the same a partial computable function. It is
useful, though, to have this term for the particular context of strings.) If M is
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a machine and M (o) = x then we say o is an M-description of . If M is the
identity function then x is an M-description of itself. (We will call this machine
the copying machine.) In general, an M-description of x may be shorter than x,
in which case one can view ¢ as a compressed form of x. The machine M carries
out the decompression necessary to re-obtain x from o.

Our main interest is in measuring how well a string = can be compressed.
That is, we are more interested in the length of a shortest description than
in the description itself. We introduce a special notation for this length of a
shortest M-description:

Cpr(z) = min{|o]: M(o) = x}. (2.1)

Here min ) = co. For an example of a drastic compression, let M be the machine that
takes an input o, views it as a natural number and outputs

T = 222” .
Then Cam(z) = |o| =" log® z. For instance, the string ¢ = 10 corresponds to the

number 5, so M(o) = 2% = 94204967296 _ ;T string o is an M-description of z,
and Ci(x) = 2, while 2 has length 232,

2.1.1 Definition. The machine R is called optimal if for each machine M, there
is a constant e,s such that

Vo,x[M(c) =2 — I (R(1) =z & |7| < |o| + em)], (2.2)

or, equivalently, Vz [Cr(z) < Cur(x) + enr].

Thus, for each M, the length of a shortest R-description of a string exceeds the
length of a shortest M-description only by a constant ep;. Optimal machines are
often called universal machines.

The constant ey is called the coding constant for M (with respect to R). It
bounds the amount the length of a description increases when passing from M
to R. Although we are usually only interested in the length of an R-description,
we can in fact obtain an appropriate R-description 7 from the M-description o in
an effective way, by trying out in parallel all possible R-descriptions 7 of length
at most |o| 4 eps till one is found such that R(7) = M (o).

An optimal machine exists since there is an effective listing of all the machines.
The particular choice of an optimal machine is usually irrelevant; most of the in-
equalities in the theory of string complexity only hold up to an additive constant,
and if R and S are optimal machines then Vo Cr(x) =" Cg(z). Nonetheless, we
will specify a particularly well-behaved optimal machine. Recall the effective list-
ing (®.)cen of partial computable functions from (1.1) on page 3. We will from
now on assume that ®; is the identity.

2.1.2 Definition. The standard optimal plain machine V is given by letting
V(0°1p) = Dc(p)
for each e > 0 and p € {0,1}*.
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This definition makes sense because each string ¢ can be written uniquely in
the form 0°11p. The machine V is optimal because for each machine M there
is an e > 0 such that M = ®,, so M (o) = x implies V(0°"!15) = z. The coding
constant with respect to V is simply an index e > 0 for M. Regarding (2.2),
note that a V-description 7 of « is obtained in a particularly direct way from an
index e > 0 for M and an M-description o of z: by putting 0°~!1 in front of o.
From now on, we simply write C(x) for Cy(z). For each optimal machine R we
have Cr(z) <% |z| since R emulates the copying machine. In particular, since
this machine is @1, for each x

O(x) < || + 1. (2.3)

This upper bound cannot be improved in general by 2.1.19(ii).

In Exercises 2.1.6 and 2.1.24 we study necessary conditions for a set to be the domain
of an optimal machine. These conditions only depend on the number of strings in the
set at each length.

Exercises. Show the following.
2.1.3. A shortest V-description cannot be compressed by more than a constant: there
is b € N such that, if o is a shortest V-description of a string x, then C(o) > |o| —b.

2.1.4. There is an optimal machine R such that for each z, m, the string x has at most
one R-description of length m.

2.1.5. Let d > 1. There is an optimal machine R such that d divides |p| for each
p € dom R.

2.1.6. Let D = dom R for an optimal machine R. Then there is b € N such that for
each n we have 2" < s, < 2", where s, = #{0c € D: n < |o| < n+b}.

2.1.7. If z is a string such that z(i) = 0 for each even i < |z| then C(z) <T |z|/2.

The counting condition, and incompressible strings

In Theorem 2.1.16 we will provide a machine-independent characterization of the
function C. In the first step we characterize the class of functions of the form
C)r up to the equivalence relation =T (see page 75). In the second step we single
out C' as the least function in this class (again up to =1).

The functions of the form Cj; are characterized by two conditions:

(1) being computably approximable from above (an effectivity property), and
(2) the counting condition in 2.1.9 below (which is related to incompressibility).

2.1.8 Definition. A function D: {0,1}* — N U {oo} is computably approx-
imable from above if D(z) = lim;Ds(z) for a binary computable function z, s —
D (x) with values in NU {oco} such that Yz Vs [Ds1(z) < Dg(2)].

Each machine M equals some partial computable function ®., so by Defini-
tion 1.1.13 we have an approximation M,(o) = ®. (o). Therefore each function
C)s is computably approximable from above via the approximation

Cum.s(z) == min{|o|: Ms(o) = z}.
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The counting condition for a function D says that not too many strings x yield
small values D(z).

2.1.9 Definition. A function D: {0,1}* — NU{oo} satisfies the counting con-
dition if #{x: D(x) < k} < 2 for each k.

This implies that for each k, there is a string x of length &k such that D(z) > k.

2.1.10 Fact. For each machine M the function Cy; satisfies the counting con-
dition. That is, for each k, fewer than 2% strings have an M -description that is
shorter than k.

Proof. At most ) ,_,;, 2 = 2" — 1 M-descriptions are shorter than k. O

Short descriptions can yield very long strings and can take a very long time to be
decompressed. Thus, even though there are fewer than 2F strings  such that Cl(x) < k,
we cannot predict when they have all appeared. This is confirmed by Proposition 2.1.22.

Incompressible strings
An important property of strings is incompressibility, the formal counterpart of
the intuitive concept of randomness for strings. See page 99 for more details.

2.1.11 Fact. For each machine M, and for each n € N, there is a string x of
length n such that Ca(x) > |z|.

Proof. Immediate by Fact 2.1.10. a
By 2.1.19, for almost all n there is a string z of length n such that C(x) > |z|+1.

2.1.12 Definition. Let d € N. A string x is d-compressiblec if C(z) < |z| — d.
Otherwise, x is called d-incompressiblec.
Let Cpr, denote the set of d-compressiblec strings.

By Fact 2.1.11 the set Cpr; = {z: C(z) < |z|} is co-infinite. Proposition 2.1.28
below shows that Cpr; is a simple set. In Exercise 2.1.3 we have seen that shortest
V-descriptions are d-incompressiblec for some fixed d.

The proportion of d-compressiblec strings of a fixed length is less than 27 9+1:

2.1.13 Fact. Let d € N. For each n € N, the number of d-compressiblec strings
of length n is less than 27~9+1.

Proof. The function C satisfies the counting condition. For k = n — d + 1 this
yields #{z: C(z) <n —d} < 2n—d+L O

A method to build machines

The following method to build a machine M will be used to characterize C.
A request is a pair (n,z) from N x {0,1}*. Informally, issuing a request (n,x)
means to ask for an M-description of x with length n.

2.1.14 Proposition. Suppose W is a c.e. set of requests such that for each n,
there are at most 2™ requests with first component n. Then there is a machine M
such that (n,x) € W — Jo (lo| =n & M(o) = z) for each n,x.
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Proof. We may assume that at most one request is enumerated into W' at each
stage. We define the machine M by giving a computable enumeration (M;)sen
of its graph (see Exercise 1.1.18).

Let My = (. For s > 0, if a request (n,z) is in Wy — Ws_; then put (o, z)
into M, i.e., let M(o) = x, for the leftmost string o of length n that is not
in dom(M;s_1). By our hypothesis such a string can be found. Clearly M is a
machine as required. O

A characterization of C

2.1.15 Proposition. Suppose that D: {0,1}* — N U {oo} is computably ap-
prozimable from above and satisfies the counting condition. Then there is a ma-
chine M such that Vo Cp(z) = D(x) + 1 (where oo + 1 = 00).

Proof. Suppose the function Az, s.Ds(z) is a computable approximation of D
from above. The c.e. set of requests W is given as follows: whenever s > 0 and
n = Ds(z) < Ds_1(x), then enumerate (n+ 1,x) into W at stage s. There is no
request with first component 0, and for each n,

#{x: (n+1,2) e W} <#{x: D(z) <n} <2t
Applying proposition 2.1.14 to W now yields a machine M as required. O

Recall that a machine R is called optimal iff Cr < O} for each machine M.
Proposition 2.1.15 yields a machine-independent characterization of C up to ="
(and thus of any function Cg for an optimal machine R).

2.1.16 Theorem. C can be characterized as follows up to =7 : it is the least
with respect to <t among the functions D that are computably approximable
from above and satisfy the counting condition Vk#{z: D(z) < k} < 2F. O

Exercises.

2.1.17. Fix d € N, and let r,, be the number of d-incompressiblec strings of length n.
Show that C(r,) >T n. That is, the binary representation of ,, is incompressiblec.

2.1.18. We cannot improve the conclusion in Proposition 2.1.15 to Yz Cy(z) =
D(z): there is a function D as in Proposition 2.1.15 such that for each machine M,
D(z) = Cy(x) fails for infinitely many x.

2.1.19. This exercise shows that the upper bound C(z) < |z| 4+ 1 in (2.3) cannot be
improved for almost all lengths.

(i) Suppose the function E: {0,1}* — N satisfies the counting condition. If n is such
that Vz [ |z| <n — E(z) < |z[], then Vz [|z| <n — E(z) = |z|].

(ii) If M is a machine such that Ca(x) < |z| for some z of length no (for instance,
M =YV), then for all n > ng there is an = of length n such that Ca(x) > |z|.

Invariance, continuity, and growth of C

We list some properties of the function C'. They all hold in fact for Cr, where R
is any optimal machine. Usually we view the described finite objects as numbers,
not as strings. This subsection mostly follows Li and Vitanyi (1997).
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Invariance
A machine N on input = cannot increase C'(z) by more than a constant:

2.1.20 Fact. For each machine N and each x such that N(x)| we have
C(N(x)) <t C(x). If N is a one-one function then C(N(z)) =T C(x).

Proof. Let M be a machine such that M(c) ~ N(V(o)) for each o. Then
Cp(N(z)) < C(z), so that C(N(x)) < C(z) + ey where ey is the coding

constant for M. If N is one-one then the same argument applies to its inverse
N1 s0o C(x) <t C(N(x)) as well. m

In particular, if 7 is a computable permutation of N, then C'(z) =% C(rn(z)) for
each z. Also, C(|z]) <T C(z).

Continuity properties of C
Recall that abs(z) denotes the absolute value of z € Z.

2.1.21 Proposition.
(1) abs(C(z) — C(y)) <T 2logabs(z — y) for each pair of strings x,y.
(i) If the string y is obtained from the string x by changing the bit in one
position, then abs(C(x) — C(y)) <T 2log|z|.

Proof. (i) follows from the stronger Proposition 2.4.4 below, so we postpone the
proof till then. We leave (ii) as an exercise. O

The growth of C
The function C is unbounded but slowly growing in the sense that large argu-
ments can have small values. To make this more precise, we consider the fastest
growing non-decreasing function that bounds C' from below: let

C(x) = min{C(y): y > z}.
Fact 2.1.10 states that C satisfies the counting condition, that is, for each k
there are fewer than 2% strings = such that C(z) < k. Thus C is unbounded. The
function C' is computably approximable from above, but it fails the counting
condition. The following says that C' grows indeed very slowly.

2.1.22 Proposition. Each order function h dominates C.
Proof. We will compare the numbers r,, and y,, (n € N), where

rn, = min{z: h(z) > n}
yn = min{z: C(2) > n}.

The function An.r,, is computable, so by Fact 2.1.20 and (2.3) on page 77 we have
C(rn) <t C(n) <t logn. Now y, < r, implies n < C(y,) < C(r,) <* logn.
For each ¢, n < logn + ¢ can only hold for finitely many n. Thus y, > r, for
almost all n. Since h is non-decreasing, this implies that h dominates C. O
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Exercises.
2.1.23. (Stephan) Let z;, be the largest number such that C(z,,) < m. Show that
there is a constant d such that Vn C(zn4+4) > n.
2.1.24° (Stephan) Let b be the maximum of d in the previous exercise and the constant
from Exercise 2.1.6. Let D = dom R for an optimal machine R and

Snp=F#{oc€D: n<|o| <n+b}
as in 2.1.6. Show that Vn C(snp) > n. (Since s, < 2" ", this means that the binary
representation of s, is incompressiblec. Calude, Nies, Staiger and Stephan (20xx)
have proved that, conversely, if D is a c.e. set such that ¥n C(s,;) > n for some b,
then D is the domain of an optimal machine.)
2.1.25. The deficiency set for a machine R is Dr = {z: Jy > z[Cr(y) < Cr(z)]}.
This set is co-infinite. Build an optimal machine R with a c.e. deficiency set.
2.1.26. Let R be an optimal machine. Show that Ppy;» the listing of N— Dpg in order of

magnitude, dominates each computable function. (A c.e. set D such that p5 dominates
each computable function is called dense simple.)

Algorithmic properties of C

We show that the set B = {x: C(z) < |z|} of 1-compressiblec strings is simple
and wtt-complete. Therefore C' is incomputable, and in fact (' <r C. This
restricts the usefulness of C' as a practical measure for the descriptive complexity
of a string.

The function C' is incomputable because we allowed an arbitrary number of
steps for the decompression. One can also consider time-bounded versions of C.
Recall from Definition 2.1.2 that V is the standard optimal machine. For any
computable g such that Vn g(n) > n, the function CY is computable, where

C9(z) = min{ |o|: V(o) =z in g(|z|) steps}.
We bound the number of computation steps in terms of the length of the described
string rather than the length of its description because the description may be much
shorter than the described string. Time-bounded versions of C' are used mostly in the
theory of feasible computability. We will work with a time-bounded version of C' on
page 136.

2.1.27 Proposition. Cy; <,u ' for each machine M.

Proof. By 1.4.7 it suffices to show that the function Cj; is w-c.e. Fix ¢ such
that Va [Car(z) < |z| + ¢]. Then the function gs(x) = min(|z| + ¢, Cars(2)) is
a computable approximation of Cj;. The number of changes for x is at most
|z| + ¢. Thus Cyy is w-c.e. O

2.1.28 Proposition. The set B = {x: C(x) < |z|} is simple and wtt-complete.

Proof. B is c.e. via the computable enumeration B, = {z: Cs(z) < |z|}. By
Fact 2.1.11, for each length m there is an « ¢ B such that |z| = m, so B is
co-infinite. If B is not simple then there is an infinite computable set {rg,r1,...}
contained in the complement of B such that Vi |r;| < |riy1]. Then ViC(r;) <t
C(i) <* logi. For sufficiently large 4 this contradicts C(r;) > |r;| > i.
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To show that B is weak truth-table complete we define a c.e. set of requests W.
If n € 0, — 0, _; then we put the request (n,z) into W, where z is the leftmost
string of length 2n such that Cs(z) > 2n. Note that z exists by Fact 2.1.13.
Let M be the machine obtained from W via Proposition 2.1.14, and let d be
the coding constant for M. We provide a weak truth-table reduction of a finite
variant of (' to B:

on input n > d, using B as an oracle, compute a stage s such that
Bs(z) = B(x) for all strings = of length 2n and output 0. (n).

If n € 0} —0;,_, for some ¢t > s, then for some string = of length 2n such that
Cs(x) > 2n this causes Cpr(r) < n and hence C(z) < n+d < 2n. Therefore
x € B — By contrary to the choice of s. Thus n € '’ < n € (), for each n > d.
The use of this reduction procedure is computably bounded. O

2.1.29 Corollary. The function C is not computable. O

Kummer (1996) proved that the set {z: C(x) < |z|} is in fact truth-table complete.
Exercises.

2.1.30. Show that the set A = {(z,n): C(z) < n} is c.e. and wti-complete.

2.1.31. Prove that 3%z [C(z) < C9(z)] for each computable function g such that
Vn g(n) > n. Show that this cannot be improved to V<z [C(z) < C9(x)].

2.2 The prefix-free complexity K

Using C(z) as a measure for the descriptive complexity of a string z is concep-
tually simple, because we do not restrict the machines carrying out the decom-
pression of the descriptions. However, this simplicity leads to certain drawbacks
of C. In this section we will first discuss these drawbacks in more detail, and
then introduce a variant of C' which addresses these particular problems (but
also has its drawbacks). A machine M is called prefix-free if the domain of M is
a prefix-free set. We will develop a theory of string complexity that parallels the
one for C but is based on prefix-free machines. The resulting descriptive com-
plexity of a string « is called its prefix-free complexity and is denoted by K(z).
We will see in subsequent chapters that K, rather than C, is the appropriate
measure of descriptive complexity for strings when one is concerned with the
interplay of computational complexity and randomness. Occasionally there are,
however, important applications of C, such as the initial segment characteriza-
tion of 2-random sets in Theorem 3.6.10. We also use C' to understand jump
traceability in Theorem 8.4.10.

In the previous subsection we have discussed the fact that C is incomputable
and how one could get around this by using a time-bounded version C'Y. However,
since we will be using descriptive complexity of strings for theoretical purposes,
we do not consider this incomputability as a drawback — the prefix-free version K
is not computable either.
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Drawbacks of C

Complezity dips

Recall from 2.1.12 that a string w is d-incompressible¢ if C(w) > |w| — d. We
proved in Fact 2.1.13 that the number of d-incompressiblec strings of length n
is at least 2" —2"~9*1. One may ask whether there is a string w of length n such
that each prefix of w is d-incompressiblec when n is large compared to d. The
answer is negative, because a machine N can “cheat” in the decompression, by
encoding some extra information into the length of a description.

2.2.1 Proposition. There is a constant ¢ with the following property. For each
d € N and each string w of length at least 2971 + d there is an x < w such that
C(z) <|z| —d+ec.

Proof. We use the notation introduced in (1.5) on page 13. The machine N
is given by N(o) = string(|o|)o. It is sufficient to obtain a prefix x of w with
an N-description of length |z| — d. Let k& = number (w [4) (so that k& < 2¢+1),
and let = w 44, be the prefix of w with length given by d +m where m is the
number represented by the first d bits of w. Let ¢ be the string of length & such
that © = z [4 0, then N(o) = z. Thus Cn(z) < |2| — d. O

For example let d = 3 and w = 010101110001011011. Then k& = number(010) = 9, so
& = w[319=[010[101110001] Thus N (o) = z where ¢ = 101110001.

Failure of subadditivity

A further desirable property of a complexity measure for strings would be the fol-
lowing: descriptions of strings x and y can be put together to obtain a description
of (x,y). This would imply C'({(z,y)) < C(x)+C(y). Concatenating the descrip-
tions of x and y does not work since we cannot tell where the description of z
ends and the description of y begins. We prove that (1) C((z,y)) <T C(x)+C(y)
fails. Note that C(zy) <t C((z,y)), so the failure of (2) C(xy) <t C(z) + C(y)
is even stronger (but see 2.2.3 for a direct proof that (1) fails). The following
says that for each d there is a string w of length O(2%) such that for some
decomposition w = xy (2) fails for the constant d.

2.2.2 Corollary. Let d € N. Suppose w is a string of length 2411 4 d such that
C(w) > |w|. If x 2w is as in 2.2.1 and w = xy then C(w) > C(z) + C(y) +d.
Proof. This follows from C(z) <* |z| —d and C(y) < |y| + 1. O
2.2.3 Exercise. Show that subadditivity in the form (1) above fails badly: for each n
there are strings z,y such that |zy| = n and C({(z,y)) >T C(z) + C(y) + logn.
Prefiz-free machines

2.2.4 Definition. A machine M is prefiz-free if its domain is a prefix-free set,
that is, Vo, p € dom M[oc < p — o = p|. In order to indicate that a machine M
is prefix-free, we write Kjps(x) instead of Cp(z).

Consider the following experiment due to Chaitin: start the machine M, and
whenever it requests a new input bit, toss a coin and feed the resulting bit to



84 2 The descriptive complexity of strings

the machine. Since M is prefix-free the following sum converges and expresses
the probability that M halts in this experiment:

Qur = 3271 [M (o) 1]. (2.4)

o

Thus Qp; = A[dom M|~ is the measure of the open set generated by the domain
of M. Since this open set is c.e., Q7 is a left-c.e. real number (see 1.9.16). Let
Qs = A[dom(M;)]=, then (p.5)sen is a nondecreasing computable approxi-
mation of ;.

2.2.5 Example. Suppose M is a machine which halts on input o iff ¢ is of the
form 01 for even i. Then Q) = 0.101010... = 2/3.

Optimal prefiz-free machines

2.2.6 Definition. We say that a machine R is an optimal prefiz-free machine
if R is prefix-free, and for each prefix-free machine M there is a constant dps
such that Vo Kr(xz) < Ky (x) + das. As before, the constant dys is called the
coding constant of M (with respect to R).

2.2.7 Proposition. An optimal prefix-free machine R exists.

Proof. We first provide an effective listing (My)gen of all the prefix-free ma-
chines. M, is a modification of the partial computable function ®4 in (1.1) on
page 3. When the computation ®,(c) = z converges at stage s, then declare
M, (o) = z unless My, (7) has already been defined at a stage ¢ < s for some 7
such that 7 < o or ¢ < 7. Clearly My is prefix-free and My = @4 if Oy is
prefix-free. Now define R by R(09"'10) ~ My(o) for d > 0. By the Padding
Lemma 1.1.3 we can leave out My, so R is optimal. |

For the moment we will fix an arbitrary optimal prefix-free machine R and
write K(z) for Cgr(x) = min{|o|: R(c) = z}. Like any other machine, R is
emulated by V. Thus C(z) <* K(z).

The string complexity K amends the drawbacks of C' discussed on page 83.
Firstly, K ((z,y)) < K(z) + K(y), because given an R-description o of z and
an R-description 7 of y, a new prefix-free machine can decompress the description
p = or. It recovers ¢ and 7, then it runs R on both to compute z and y, and
finally it outputs (x,y). (In Theorem 2.3.6 we give an explicit expression for
K ({x,y)) using a conditional version of K.)

Secondly, by Proposition 2.5.4 there are arbitrarily long strings = such that
each prefix of x is d-incompressible in the sense of K, for some fixed d.

Upper bounds for K

By (2.3) we have C(x) < |z|+1. A drawback of K is the absence of a computable
upper bound, in terms of the length, that is tight for almost all lengths. For C,
the upper bound was based on the copying machine ®;, which is not prefix-
free. In fact this upper bound fails for K (see Remark 2.5.3 below). To obtain
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a crude computable upper bound (to be improved subsequently) consider the
machine M given by M(O"T‘ 1z) = x for each string . This machine is prefix-free
since 01%112 < 0¥y first implies |x| = |y|, and then x = y. Thus

K(z) <* 2. (2.5)

The idea in the foregoing argument was to precede = by an encoding of its length
n = |z| in such a way that the strings encoding lengths form a prefix-free set.
Instead of 01, we can take any other such encoding. So, why not take a shortest
possible prefix-free encoding of n, using R itself for the decompression? Then
we get as close to the copying machine as we possibly can within the prefix-free
setting. This yields the following improved upper bounds.

2.2.8 Proposition. K(z) <t K(|z|) + |z| <t 2log|z| + |z| for each string x.

Proof. The second inequality follows by applying (2.5) to |z|. For the first
inequality, define a prefix-free machine N as follows:

on input T search for a decomposition T = such that
n = R(o)| and |z| = n. If one is found output z.

Clearly N is prefix-free. Given z, let o be a shortest R-description of |z|. Then
N(ox) = x. This shows that K(x) <t K(|z|) + |z|. O

Incorporating N into the machine R obtained in the proof of Proposition 2.2.7,
one may achieve that the constant in the inequality K (z) <* K(|x|)+|x|is 1. The
idea is to emulate N with a loss in compression of only 1. Since N is already based
on the optimal machine to be defined, we have to use the Recursion Theorem.

2.2.9 Theorem. (Extends 2.2.7) There is an optimal prefiz-free machine U
such that K(x) < K(|z|) + || + 1 for each x, where K(x) = Ky(z).

Proof. Let (Mg)4en be the effective listing of all the prefix-free machines from
the proof of 2.2.7. Given e, we define a prefix-free machine N, by N,(oz) = x iff
M. (c) = |z|. By the Parameter Theorem 1.1.2 there is a computable function ¢
such that

_ Ne(p) ifd=1

By the Recursion Theorem 1.1.5 (and 1.1.7) there is an 7 > 1 such that ®,;) =
®;. Since @, is prefix-free for each e, ®; is prefix-free and hence ®; = M;. By
the Padding Lemma 1.1.3 it does not matter to leave out My and M; in the
emulation, so U := &, is an optimal prefix-free machine.

Given z, let o be a shortest U-description of |z|, then U(loz) = ®4¢;(lox) =
N;(ox) = x. Therefore K(x) < K(|z|) + |=| + 1. O

From now on, we will simply write K (z) for Ky(z) = min{|o|: U(c) = x}. We
also let



86 2 The descriptive complexity of strings

K;(z) = min{|o|: Us(o) =z} (2.6)
(where min ) = 00). Note that C(x) <* K(z) since U is emulated by V.

Exercises.

2.2.10. Redo the Exercises 2.1.3-2.1.5, 2.1.17 and 2.1.23 for prefix-free machines and K.
2.2.11. Show that K(z) <t 2loglog|z| + log|z| + |z

2.2.12. (Calude, Nies, Staiger and Stephan, 20xx) Let U be an optimal prefix-free
machine, and let C = {S C {0,1}": S is prefix-free & domU C S}.

Show that (i) C is a I1{ class, and therefore contains a low set; (ii) no I19 set S is in C.

The Machine Existence Theorem and a characterization of K

We proceed as in the characterization of C' on page 79: firstly, we characterize,
up to =7, the class of functions of the form K, for a prefix-free machine M, by

(1) being computably approximable from above, and
(2) satisfying the weight condition defined in 2.2.13.

Secondly, K is the least function in this class with respect to <.

2.2.13 Definition. A function D: N — NU {co} satisfies the weight condition
if °,27P@ < 1. (Here 27 := 0.)

The weight condition implies #{z: D(x) =i} < 27 for each 4, which in turn im-
plies the counting condition in 2.1.9. The weight condition holds for any function
of the type Ky because Y., 27 Km@ < S~ 2=lol[M(0)|] = Qun < 1.

To proceed with the characterization of the functions K,; we need an analog
of Proposition 2.1.14, which we will call the Machine Existence Theorem (it is
also refered to in the literature as the Kraft-Chaitin Theorem). Unlike 2.1.14,
it is nontrivial. It will be an important tool in future constructions. First we
discuss Kraft’s Theorem. Then we introduce our tool which is an effectivization of
Kraft’s Theorem. It appeared in Chaitin (1975). A similar result had already been
obtained by Levin (1973); see Exercise 2.2.23. We prefer the Machine Existence
Theorem to the setting of Levin because its notation is more convenient in our
applications.

Let N € NU {oco} and suppose we want to encode strings z;, i < N, by
strings o; in such a way that the set of strings o; is prefix-free. In this case we
call the (finite or infinite) list (oo, o), (o1, x1), . .. a prefiz-free code. For instance,
if we let o; = 0/%il1z; we obtain a prefix-free code. (For practical applications,
such a code is useful when each x; represents a letter in an alphabet. Then a
text is a concatenation of the x;’s, and the text is encoded by the corresponding
concatenation 7 of the strings o;. Now 7 can be decoded in a unique way by
scanning from left to right, splitting off one string o; at a time.)

Recall from 2.1.14 that a request is a pair (r, z) from N x {0,1}*, meaning that
we want a description of z with length 7. The following is due to Kraft (1949).

2.2.14 Proposition. Suppose ((r;,x;))i<n is a list of requests, where N € NU
{o0}. A prefiz-free code (o9, xq),{(01,%1),... such that |o;| = r; for each i < N
exists if and only if the function \i.r; satisfies the weight condition.
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Proof. The necessity of the weight condition is clear since the basic cylinders [o;]
are pairwise disjoint, and therefore ), _\ 27" = AJ,[03] < 1. For its sufficiency,
note that we may reorder the list of requests and achieve that ro < r; < ..
now let o; be the string of length r; such that 0.0; = qu 27T, O

To illustrate this proof, suppose that N = 4 and the sequence (r;);<n is 1,3, 3, 3.
Then o¢g = 0, 01 = 100, 02 = 101, and o3 = 110. The following figure shows how
each strings o; is associated with a subinterval of [0,1) of length 277

2770 27 272 9778

0.0’0 0.0’1 0.0’2 0.0’3

Example. Suppose we want to encode strings in such a way that, if 0 is twice as likely
as 1, then the encoding string can be expected to be shorter than the given string. We
will find a prefix code for the four possible blocks of two bits in such a way that the
codeword for the most likely block 00 has length 1. The list of requests (r;,z;) (0 <i <
4) is (1,00), (2,01), (3,10), (3,11). Note that 3, , 27" = 1/2+1/4+1/8+1/8 = 1, 50
the method in the proof of 2.2.14 yields the prefix-free code (0, 00), (10,01}, (110, 10),
(111,11). For instance, the codeword for the string 000010 is 00110. If 0 is twice as
likely as 1, then the expected length of a codeword for a string of length n is 17n/18.

Suppose that the function i — (r;,z;) is computable. Then we would like to
have a prefix-free code that is an effective list. In other words, we want the
function o; — x; to be given by a prefix-free machine. The Machine Existence
Theorem provides such a machine. Its proof is harder than the proof of Propo-
sition 2.2.14 because in the effective setting we are no longer allowed to reorder
the list to make the sequence (r;) non-descending.

In our applications we usually deal with a c.e. set W of requests, rather than
an effective list (which may have repetitions). For a request p = (r, z) we let (p)o
denote the first component r, and (p); the second component z.

2.2.15 Definition. A c.e. set W C N x 2<% is a bounded request set if

d o epew] <1 (2.7)

If S C {0,1}*, the weight of S given by W is
wgty (S) 222_(”)0 [peW &zeS&(pr==x]. (2.8)
P,
We say that wgty, ({0,1}%) is the total weight of W.

2.2.16 Example. For computable B the set W = {{(n +1,B[,): n € N} is a
bounded request set.
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2.2.17 Theorem. (Machine Existence Theorem) For each bounded request
set W, one can effectively obtain a prefiz-free machine M = My, d > 1, such
that

Vryl(ry) €W < Juw (Jw| =r & M(w) = y)].
Moreover, Qs equals the total weight of W.

We say that My is a prefiz-free machine for W. Recall that d is the coding
constant for My (with respect to the standard optimal prefix-free machine). In

order to avoid explicit mention of My, we will also refer to d as the coding constant
for W.

Bounded request sets are useful because they are easier to handle than prefix-free
machines. The machine existence theorem provides the coding constant d for the
corresponding machine. So we know that, if we enumerate the request (r,y), then
K(y) <r+d (usually this is all we care about).

Proof of Theorem 2.2.17. Let (r,, yn)n<n be an effective enumeration of W,
where N € N or N = co. As in the remark after Proposition 2.2.14 we associate
with each string o the half-open interval I(c) = [0.0,0.0 +271°1) of real numbers
such that the binary representation (containing infinitely many zeros) extends o.
For instance I(011) = [3/8,1/2). In the construction of M, at stage n > 0 we
will find a string w,, of length r,, and set M (w,) = y,. The idea is to let w,, be
the leftmost string such that the associated interval is disjoint from the previous
intervals. For instance, if 1 = 1 = 3 and ro = 1 we assign the intervals as
follows:

2T 27T 972

If we instead began with
2-To 27"

then we would be stuck in the third step because no interval of length 1/2 is
available any longer. (However, see Exercise 2.2.24.)

We let R_; = {@}. At the beginning of each stage n > 0 we have a finite
prefix-free set R, _1 of strings where all extensions are unused.

Construction of strings w, and finite sets of strings R,,.
Stage n.

(1) Let z, be the longest string in R,,_; of length < r,, (below we will verify
that z, exists).

(2) Choose wy, so that I(w,) is the leftmost subinterval of I(z,) of length 27"
ie., let w, = 2,0 %l
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(3) To obtain R, first remove z, from R,_;. If w, # z, then also add the
strings 2,011, 0 < i < 7, — |2, to Ry.

We verify inductively that for each n > 0 the following hold:

(a) The string z, exists.

(b) All the strings in R,, have different lengths. (In fact, for z,y € R,, we have
|z] < |y| < z <r vy, that is, the intervals I(x) get longer as one moves to
the right.)

(¢) {I(2): z€ R} U{I(w;): i <n} is a partition of [0,1).

We prove (a) for n > 0, assuming (b) and (c) for n—1 (for n = 0 they are trivial
statements). If z, fails to exist, then r, is less than the length of each string in
R,_1,s0 that 27 > 3> 27 B[z € R,_1] by (b) for n— 1. Then " ;27" > 1
since 3, 27¥1 [z € R, 4] +Z;:01 27" =1 by (c) for n— 1. This contradicts the
assumption that W is a bounded request set.

Clearly (b) for n holds if w, = 2. If wy, # 2, then |z,| < |wy,| but also |wy,| is
less than the length of the shortest string in R,,_1 that is longer that z,, so (b)
holds by the definition of R,,. Finally, (c) is satisfied by the definition of R,,.

The machine M given by M(w,) = y, is prefix-free by (¢). As M was deter-
mined effectively from W we may obtain an index d > 1 for M. For each request
p = (r,y) € W we put a new description w of length r into dom(M), so Qs
equals the total weight of W. i

To give an example how to apply Theorem 2.2.17, we reprove the inequal-
ity K(xz) <t |z| + 2log|z| in 2.2.8. If ¢ is chosen sufficiently large then the
set W = {{(|z| + 2log|z| + ¢,z): « € {0,1}*} is a bounded request set, since
3,27 [pe W] < 2793, 27277218 ") < 1. Let M be the prefix-free
machine for W. Then Ky (x) < |z|+2log |z|+c and thus K(z) <* |z|+21log |z|.

Theorem 2.2.17 can be used to characterize the functions of the type Kj; for
a prefix-free machine M. This is analogous to Proposition 2.1.15.

2.2.18 Proposition. Suppose that D: N — N U {oo} is computably approz-
imable from above and satisfies the weight condition 2-DP() < 1. Then there
is a prefiz-free machine M such that Va Ky(x) = D(x) + 1.

Proof. Suppose that Az,s.Ds(x) is a computable approximation of D from
above. The c.e. set W is defined exactly as in the proof of 2.1.15: whenever
r = Dg(x) < Ds—1(z) then enumerate the request (r + 1, z) into W at stage s.
For each x, at the least stage s such that Ds(x) = D(z) < oo, the last request
of the form (u, z) is enumerated into W, where v = D(x) + 1. This enumeration
contributes 2P ~1 to the sum in (2.7). The contribution of all the requests
(m, x) enumerated at previous stages is less than ) 27" = 27" since m > u
for such a request. All the requests with second component x together contribute
less than 2~ () Since D satisfies the weight condition, W is a bounded request
set. Applying the Machine Existence Theorem 2.2.17 to W yields a machine M
as required. O
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We now obtain a machine-independent characterization of K (and in fact of
any function Kg where R is an optimal prefix-free machine as defined in 2.2.6).

2.2.19 Theorem. K can be characterized as follows up to =": it is the least
with respect to <t among the functions D that are computably approximable
from above and satisfy the weight condition ), 2-D() < 1. O

The following application of 2.2.19 will be needed for Theorem 8.1.9. It can be
seen as an effective version of Exercise 1.9.13.

2.2.20 Proposition. Let B be a c.e. prefiz-free set and let b, = #(BN{0,1}™)
for m € N. Then Ym [K(m) <t m — log by,].

Proof. Clearly the function D given by D(m) = m — logb,, is computably
approximable from above. For each m we have A\[BN{0,1}™]* = 27™b,),. Since
2logbm < b we have Dom 2-mtlogbn < A\[B]¥ < 1. Therefore D satisfies the
weight condition. O

2.2.21 Remark. (Coding constants given in advance.) In building a bounded
request set L, by the Recursion Theorem we often assume that a coding con-
stant d for a machine My is given, and we think of M, as a prefix machine for L.
This is useful because d represents the “loss” that occurs when putting a request
(r,x) into L; its enumeration merely ensures that K(z) < r + d. As usual in
applications of the Recursion Theorem, somewhat paradoxically, we can assume
that d is given even if we are building L. Here is why.

(1) From an index for a c.e. set G C N x 2<% we may effectively obtain an index
for a bounded request set G such that G = G in case G already is a bounded
request set. ~

(2) Let My (d > 1) be the machine effectively obtained from G via the Machine
Existence Theorem.

(3) Our construction yields a bounded request set L uniformly in d.

We have to show that L is a bounded request set for each d. If G = L, which will
happen for some effectively given G by the Recursion Theorem, then we may
conclude that G is a bounded request set and My is a machine for L. (We need
to show that L is always a bounded request set, for otherwise we might end up
with a fixed point where G = L but G # G, which would be of no interest to
us.) See Proposition 5.2.13 for our first application of this method.

Exercises.
2.2.22. Show that 3, f(K(2))27*) = oo for each order function f.

2.2.23. (Levin) A discrete c.e. semimeasure on {0,1}* is a function m: {0,1}* — RY
such that m(z) is a left-c.e. real number uniformly in = and » > m(z) < 1. Note
that S — m(S) = >, .gm(x) defines a measure on all subsets S of {0,1}". For
instance, the function m(z) = 27%~! is a discrete c.e. semimeasure; a further example
ism(z) = 2~ K@) Verify that a function D: N — NU{oo} is computably approximable
from above and satisfies the weight condition iff m(z) = 27P® is a discrete c.e.
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semimeasure. Next, show that there is a close correspondence between discrete c.e.
semimeasures and bounded request sets:
(a) For each bounded request set W, the function m(z) = wgty, ({z}) is a discrete c.e.
semimeasure on {0,1}" such that m(S) = wgty, (5).
(b) If m is a discrete c.e. semimeasure, there is a bounded request set W such that
m(z) = wgty, ({x}) for each 2. Also, L = {{k+ 1,z): 27% < m(z)} is a bounded
request set such that 4 - wgt; ({z}) > m(z) > wgt, ({z}) for each z.

For details see Li and Vitdnyi (1997).
2.2.24. (Gécs) (i) Let p,6 € [0,1)r, 6 > 0, p+ 6 < 1. Show that there is a string w
such that § < 271*I*2 and I(w) C [p,p + 9).
(ii) Use (i) to prove the slightly weaker version of 2.2.17 where the conclusion is
Vry[(ry) € W« 3w (jlw] < r+2 & M(w) = y)] (that is, the M-description
corresponding to the request (r,y) may be chosen by 2 longer than 7).

The Coding Theorem

The probability that a prefix-free machine M outputs a string x is
Py(a) =Y, 271 [M(0) = ] = Alfo: M(0) = z}]<.

Thus Qy =), Pu(x).

2.2.25 Theorem. (Coding Theorem) From a prefiz-free machine M we may
effectively obtain a constant ¢ such that Va 2°27K@) > Py ().

Proof. We show that the function D(x) = [—log, Py ()] is computably ap-
proximable from above and satisfies the weight condition ) 2= D) < 1. Then we
apply Theorem 2.2.19.

Let Purs(x) = A{o : Ms(o) = z}]7, then Dy(x) = [—logy Prs(z)] is a
computable approximation of D from above.

By definition D(x) > —log, Py () > D(z) — 1, so

27P@) < Py(x) < 27 P

This implies the weight condition for D, since > 27P®) <3~ Py(x) < 1.

By 2.2.19 we have K <* D, so there is a constant ¢ such that Vz K(z) — ¢ <
D(zx) — 1. Then for each & we have 2co—K(@) > 9=D(@)+1 Py (). O

Note that 275M@) < Py (z) because a shortest M-description of @ contributes
27 KM (@) to Pp(x). If M = U then by the Coding Theorem we also have 2¢27 %) >
Py(z) for each z, so 27 K@) and Py(z) are proportional. By another application of the
Coding Theorem, for each prefix-free machine M we have Pu(x) = O(Py(z)).

In Fact 2.1.13 we proved that if d € N then for each n € N the number of d-
compressiblec strings of length n is less than 2"~ 9!, We apply the Coding
Theorem to obtain an analog of this for K. By Theorem 2.2.9, K(x) < |z| +
K(|z])+1. We will calculate an upper bound for the number of strings of length n
such that K(z) < |z|+ K(|z|) — d.

2.2.26 Theorem. There is a constant ¢ € N such that the following hold.
(i) VdeN Vn #{x: |z|=n & K(z) <n+ K(n) —d} < 2274
(ii) Voe N Vn #{z: |z|=n & K(z) < K(n) + b} < 2¢2b
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Proof. (i). Let M be the prefix-free free machine given by M(o) = |U(o)|. By
the Coding Theorem, let ¢ be the constant such that 2°2=5() > Py (n) for
each n. If |z| = n and K(z) < n+ K(n) — d, then a shortest U-description of z,
being an M-description of n, contributes at least 2=~ K(+d to Py, (n). If there
are at least 2"T°~? such x, then Py/(n) > 2nte-do—n-K()+d — geg=K(n) 5
contradiction.

(ii) follows from (i) letting d = n — b. (Note that (i) is vacuously true for nega-
tive d.) O

The estimate in (ii) will be applied in Section 5.2 to show that each K-trivial set
is AJ. Another application of the Coding Theorem is Theorem 2.3.6 where we give an
expression for the descriptive complexity of an ordered pair K ({x,y)).

2.2.27 Exercise. Use Exercise 2.2.23 and the Coding Theorem to show that m(z) =
2~ K@) g an optimal discrete c.e. semimeasure on {0, 1}*, namely, for each discrete c.e.
semimeasure v we have Vz [e - m(z) > v(z)] for an appropriate constant e > 0.

2.3 Conditional descriptive complexity

We study the conditional descriptive complexity of a string x. An auxiliary
string y is available to help with the decompression. We consider conditional
versions of both C' and K.

Basics

The conditional descriptive complexity C(x | y) is the length of a shortest de-
scription of x using the string y as auxiliary information. For a simple example,
if y is the first half of a string « of even length, we expect C(z | y) to be quite
a bit smaller than C(z). Also C(f(z) | ) should be bounded by a constant for
each computable function f.

To develop the formal theory of conditional C-complexity, one simply allows
all the machines involved to have two inputs, the second being the auxiliary
information y. Such a machine is called binary machine. The standard optimal
binary machine is given by

V2(0°~ o, y) = ®%(0,y)
where e > 0 and o € {0,1}*. Now define
C(z | y) = min{lo|: VZ(0,y) = =}
Next we introduce a conditional version of the prefix-free string complexity K.
A binary machine M is called prefiz-free when fizing the second component if for
each string y the set {o: M(o,y) |} is prefix-free. There is an effective listing
(M?)4en of all such machines. Now we may adapt the proof of Theorem 2.2.9,
using the Recursion Theorem with Parameters 1.1.6, in order to obtain an op-

timal binary machine U? that is prefix-free when fixing the second component
and such that U2(0%~!10,y) = M2(0,y) for d > 1. We let

K(z |y) = min{|o|: U*(0,y) = z}.
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Then K(x | y) < K(n|y) +n+ 1 where n = |z|.

The empty string is of no use as an auxiliary information. Hence C(z | @) =T
C(z) and K(x | @) =" K(z). (We could modify the definitions of V and of U in
order to achieve an equality here.)

2.3.1 Fact. Let N be a machine.

(i) For each z and each y such that N(y)| we have C(N(y) | z) <t C(y | 2).
(ii) For each y and each z such that N(z)| we have C(y | z) <T C(y | N(z)).
The same holds with K in place of C, and still for an arbitrary machine N.

Proof. (i) is a version of Fact 2.1.20 for conditional complexity and proved in
the same way; (ii) is left as an exercise. The case of K is similar. O

In the following we will need a notation for a particular shortest U-description
of a string x such that the decompression takes the least amount of time.

2.3.2 Definition. For a string , if t = us. Ky(z) = K(z), let * be the leftmost
string o such that |o| = K(z) and U(o) = z.

The reason for this particular choice of a shortest description becomes apparent
in the proof of the following fact.

2.3.3 Fact. K(y |z*) =" K(y | (z, K(z))).

Proof. Given z*, a machine N can compute the pair (z, K (z)) = (U(z*), |z*|).
Conversely, from the pair (z, K(z)) a machine N’ can first compute ¢ =
ps. Ks(x) = K(z) and then z*. Now we apply Fact 2.3.1(ii) for K. O

Exercises. Show the following.
2.3.4. C(z) =" C(z,C(z)) and K(z) =" K(z, K(z)).
2.3.5. For all z,y,2 we have K(z | z) <T K(z | y) + K(y | 2).

An expression for K(z,y) *

Using conditional K-complexity we will find an expression for the prefix-free com-
plexity of an ordered pair (x,y). We write K(z,y) as a shorthand for K ((z,y)).

(1) Clearly K (x,y) <t K(x)+ K(y) via the prefix-free machine which on input p
tries to find a decomposition p = o7 such that U(o) |= = and U(7) |=y, and in
that case outputs (z,y).

(2) This can be improved to K(z,y) <t K(z) + K(y | ) because the machine
already has = when it decompresses 7 to obtain .

(3) A further improvement is the inequality K(x,y) <T K(z) + K(y | z*): the
machine looks for a decomposition p = o7 such that U(c) |= z and U?(7,0) |= .
Once it finds this, it outputs (z,y). This machine is prefix-free because U? is
prefix-free when fixing the second component. The last upper bound for K (z,y)
is our final one by the following result of Levin in Gacs (1974).

2.3.6 Theorem. K(z,y) =" K(z) + K(y | (z, K(x))) =" K(z) + K(y | *).
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Proof. By the preceding discussion and Fact 2.3.1, it remains to show that
K(z)+ K(y | %) <t K(z,y). We will apply the Coding Theorem 2.2.25 to the
machine G(o) ~ (U(c))g which outputs the first component of U(c) viewed as an
ordered pair in case U(o) |. Let ¢ be a constant such that Vz 2c9—K(@) Pa(z).

Construction of a uniformly c.e. sequence of bounded request sets (Ly).

Fix 0. Suppose U(o) |= z at stage s. If U(p) = (z,y) at a stage t > s, put the
request (|p| —|o|+¢,y) into Ly, but only as long as the total weight of L, defined
after (2.8) does not exceed 1. (Putting the request into L, causes an increase of
this weight by 2~ Pl+lol=c))

Let My, be the prefix-free machine effectively obtained from o via the Ma-
chine Existence Theorem 2.2.17. The binary machine N on inputs p, o first waits
for U(o) |. If so, it simulates My, (p). If o = x* then 202710l > Po(x) =
>0 27171 [32 U(p) = (x, 2)]. Therefore the total weight put into L, is at most

Pg(x)2171=¢ < 1, hence we never threaten to exceed the weight 1 in the con-
struction of L,. Thus N(p,o) =y for some p such that |p| = K(z,y) — |o| + ¢,
which implies that K(y | z*) <* |p| =" K(z,y) — K(z), as required. O

2.4 Relating C' and K

Basic interactions

Proposition 2.2.8 states that K(x) <* K(|z|)+|z|. In the proof we constructed a
prefix-free machine N that tries to split the input 7 in the form 7 = op, where o
is a prefix-free description. The point is that such a decomposition is unique if
it exists. We will obtain some facts relating C' and K by varying this idea. For
instance, a modification of N, where we attempt to compute V(p) instead of
copying p, yields the following.

2.4.1 Proposition. K(z) <t K(C(z)) + C(x).

Proof. On input 7, the machine N first searches for a decomposition 7 = op
such that n = U(¢) | and |p| = n. Once it is found N simulates V(p). (That is,
N behaves exactly like V on input p, including its output.)

Clearly N is prefix-free. Given z, let p be a shortest V-description of = and
let o be a shortest U-description of |p|, then N(cp) = z. So K(z) <* |o| +|p| =
K(C(z)) + C(x). O

In the following we use this fact to show that K(z) exceeds C(x) by at most
2log(C(z)) <* 2log(]z|), up to a small additive constant. Hence C' ~ K, so in
several results C can be replaced by K. An example is Proposition 2.1.22.

2.4.2 Corollary. C(z) <t K(z) <t C(z) + 2log(C(z)) <t C(z) + 2log(|z|).

Proof. We have already observed that C'(z) <* K (). For the second inequality,
let m = C(x). Then K (m) <* 2logm by (2.5) and since |m| = log(m+1) when m
is viewed as a string (see page 13). Now apply 2.4.1. O
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The term 2log(C(z)) in the middle could even be decreased to log(C(x))+2loglog(C(x))
by 2.2.8. If x has length 10000, say, then K(z) — C(x) is bounded by about 20.

One more time, we apply the idea to split off a prefix-free description.
2.4.3 Proposition. For all strings © and y we have C(zy) <t K(z) + C(y).

Proof. On input 7, the machine M first searches for a decomposition 7 = op
such that U(c) |= x. Once found, M simulates the computation of V on input
p. I V(p) = y then M outputs zy. Clearly, Cps(zy) < K(x) 4+ C(y). O

Next, we prove a continuity property of C' that strengthens Proposition 2.1.21.
2.4.4 Proposition. abs(C(z) — C(y)) <t K(abs(z —y)) <' 2logabs(z — y).
Proof. First suppose that C(z) > C(y). Note that = y + abs(z — y). We may
describe z based on (1) a U-description o of z = abs(z — y), (2) a V-description p
of y, and (3) a further bit b telling us whether to add or to subtract z. If we put this
information into the form 7 = obp, then a machine S on input 7 can first find ¢ < 7
such that U(o) = z, then read b, and then apply V to the rest p to obtain y. Now it has
all the information needed in order to calculate x. Thus C(z) <t K(abs(z—1v))+C(y).

Note that y = x £ abs(x —y), so if C(x) < C(y) then the same machine S shows that
C(y) <t K(abs(z —y)) + C(z). o

The following result of Levin (see Li and Vitdnyi 1997) relates plain descriptive
complexity C' with the conditional prefix-free complexity K. Like 2.4.2, is states that
K(z) — C(z) is small.

2.4.5 Proposition. C(z) =" K(z | C(x)).

Proof. “>":" Let M be the binary machine such that M (o, |o|) ~ V(o) and M (o, m)
for m # |o|. Clearly M is prefix-free when fixing the second component. If o is a V-
description of  then M (o, |o|) = z. Hence, if |o| = C(z), then |o| +d > K(z | C(x)),
where d > 1 is an index for M in the effective listing of binary machines that are
prefix-free when fixing the second component.

“<*:” Let N be the machine that, on input 7, searches for a decomposition 7 = op
such that n = U(o) | and then simulates U?(p,n + |p|). If C(z) < K(x | C(z)) we are
done, so we may assume that n = C(z) — K(z | C(z)) > 0.

Let p be a shortest string such that U?(p, C(z)) = =, so that |p| = K(z | C(z)) and
lp| +n = C(z). Since N(n*p) = z, we have Cn(x) < K(n) + |p| and hence C(z) <t
K(n) + |p|. Thus, since K(w) <* 2jw| by (2.5), n = C(z) — |p| <T K(n) <t 2logn.
Therefore, n = C(z) — K(z | C(x)) is bounded from above by a constant. ]

Solovay’s equations *

By Corollary 2.4.2 K(x) — C(z) <T 2log |z|. Solovay’s equations tell us how to
express C' in terms of K and conversely up to an error of only O(loglog|z|):
within such an error we have C(z) = K(z) — K(K(z)) and K(z) = C(x) +
C(C(x)). The present proof is due to Miller (2008) and builds on Theorem 2.3.6,
Proposition 2.4.5, and ideas from the original proof of Solovay (1975).

2.4.6 Theorem. For each z € {0,1}* we have
(i) Cx) = K(z) — K®(xz) + O(K®(x)), and
(ii) K(z) = C(z) + CP(x) + 0(CH®(x)).
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Proof. For notation involving error terms see page 75. Also recall from Definition 2.3.2
that «* is a shortest U-description of z. To save on brackets we write KC(z) instead
of K(C(z)), etc.

We begin with a brief outline of the proof. We first prove Equation (i) and then
obtain Equation (ii) from (i). To prove (i), by Proposition 2.4.5 C(z) =" K(x | C(x)).
Note that K(z | C(z)*) <T K(z | C(z)) by Fact 2.3.1(ii). In Claim 2.4.7 we show that
it is by at most K®C(x) smaller. This makes it possible to work with K (x | C(x)*)
instead of K(z | C(x)). Then, applying Levin’s Theorem 2.3.6 twice, we obtain that
within the small error of K®C(z), C(z) can be replaced by

K(z | C(x)") =" K(z,C(x)) - KC(z) =" K(z) + K(C(2) | 2") — KC(x).
Based on this we will be able to reach Equation (i).
2.4.7 Claim. C(z) <7 K(z | C(z)*) + K@ C(x).
Let 0 = C(x)*. By Exercise 2.3.5,
K(z|C(z)) <" K(z| o) + K(o | C(2)).

We will estimate the second term on the right hand side. For any y we have

K(y* | y) =" K(K(y) | y), since, given y, we can effectively produce a prefix-free
description of y* from one of K (y) (wait till the first U-description of y that has length
K(y) comes up), and conversely (take the length). We apply this to y = C(x) and
obtain

K(o|C(2) = K(o|y) =" K(K(y) | y) <T K@ (y) = KPO(x).
This establishes Claim 2.4.7. Next we provide the main technical result.
2.4.8 Claim. C(z) = K(z) — KC(z) + O(K®C(z)).
Let Q(z) = C(z) + KC(x) — K(x). To establish the claim, we will show that
vz [abs(Q(z)) < 2K C(x)]. (2.9)
By 2.4.1 Q(z) is bounded from below by a constant. So it suffices to show that
vz [Q(x) < 2K C(z)]. We apply Levin’s Theorem 2.3.6 twice:
K(z | C(x)") =" K(z,C(x)) - KC(z) =F K(z) + K(C(2) | 2") — KC(x).
Substituting this into Claim 2.4.7 we obtain an estimate for C(z):

Cz) <t K(z) + K(C(z) | %) — KC(z) + K®C(x). (2.10)

Our next task is to find a suitable upper bound for the term K(C(z) | z*):

K(C(z) |2") <" K(C(x) | K(x))
<* K(abs(C(a) — K(2)))
<t K(abs(C(z) + KC(z) — K(z))) + K?C ().
To obtain the last line, we attached a U-description of KC(z) (and a further bit b)

at the beginning of a U-description of abs(C(z) — K(x)) as in the proof of 2.4.4. This
causes the extra term K C(z). After rearranging, the estimate (2.10) now turns into
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Q(z) <t K(abs(Q(x))) + K C(z).

Recall that we already have a constant lower bound for Q(z), so to obtain the upper
bound we may assume Q(z) > 0. Then, since K (m) <* 2logm for each m € N, we have
Q(z) <* 2log Q(z) + K®C(x), which implies Q(z) <T 2K® (C(z). This establishes
(2.9) and hence Claim 2.4.8.

To proceed we need two facts.

2.4.9 Fact. K(n+m) = K(n)+ O(K(m)).
For K(n+m) <t K(n) + K(m) and also K(n) <* K(n+m) + K(m). It follows that
abs(K(n+m) — K(n)) <t K(m).
2.4.10 Fact. Let f,g: N— N. Ifg(z) = f(z)+O(K(f(2))), then K(g(z)) ~ K(f(x)).
To see this, we apply K to both sides of the hypothesis. By Fact 2.4.9 we obtain that
K(g(z)) = K(f(2)) + O(log K(f(x))), so K(g(z)) ~ K(f()).

To establish Equation (i) of Theorem 2.4.6 we want to replace the C’s by K’s on the

right hand side of Claim 2.4.8. We apply Claim 2.4.8 itself for this! In view of Fact 2.4.9,
after applying K to both sides of the claim we obtain

KC(z) = K@ (z) + O(K®C(z)) (2.11)

(an error term O(K®) C(z)) has been absorbed into the larger O(K®C(z))). This is
equivalent to K® (z) = KC(x)+O(K?C(z)), so by Fact 2.4.10, where f(z) = KC(x),
we obtain

K®(z) ~ KPC(2)). (2.12)

Substituting the last two equations into Claim 2.4.8 yields Equation (i).
Next we prove Equation (ii). By Equation (i) with C(z) instead of z,

C(z) = KC(z) + O(KPC(x)), (2.13)

where the error term O(K ) C(z)) has been absorbed into O(K®C/(z)). Using (2.11)
and then (2.12), this turns into

C®(2) = K¥(2) + O(K® ().
Applying the last equation to C'(z) instead of x and using Fact 2.4.10 yields

C¥(z) ~ KPC(x). (2.14)

Rearranging Claim 2.4.8 yields K (z) = C(z) + KC(z) + O(K®C(z)). Now we sub-
stitute first (2.13) and then (2.14) in order to obtain Equation (ii). This completes the
proof of Theorem 2.4.6. [}

2.5 Incompressibility and randomness for strings

An object is random if it is disorganized, has no patterns, no regularities. Patterns
occuring in a string x yield a description of the string that is shorter than its
trivial description (the string itself). For instance, no one would regard x as
random if all the bits of x in the even positions are 0. One can use this pattern
to show that C(x) < |z|/2 (see Exercise 2.1.7). On page 99 we will gather
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further evidence for the thesis that, for strings, the intuitive notion of randomness
can be formalized by being hard to describe, that is, incompressibility as defined
in 2.1.12. We provide two variants of the concept of incompressibility with respect
to C, the first weaker and the second stronger. They yield alternative formal
randomness notions for strings.

2.5.1 Definition. The string x is d-incompressible in the sense of K, or d-
incompressibler for short, if K(x) > |z| — d. Else x is called d-compressiblek.

An incompressibility notion for strings can also be used to study the randomness
aspect of an infinite sequence of zeros and ones (i.e., a subset of N) via its finite
initial segments. Incompressibility in the sense of K turns out to be the most
useful tool; see Section 3.2.

2.5.2 Definition. We say that a string z is strongly d-incompressiblek if K(x) >
|z| + K(|z|) — d, namely, K(z) differs by at most d from its upper bound
|z| + K (]z|) + 1 given by Theorem 2.2.9.

While the intuitive concept of randomness for strings does not involve any
number parameter, each of the incompressibility notions for a string is defined
in terms of a constant d. It is somewhat arbitrary how large a constant we
want to accept when formalizing randomness by incompressibility. Generally, the
constant should be small compared to the length of the string. For each fixed d,
randomness is an asymptotic concept when interpreted as incompressibility with
parameter d. The arbitrariness in the choice of the constant only disappears
completely when we consider subsets of N.

It is harder to obtain a formal notion of computational complexity for strings, because
the computational complexity of a set Z is given by what an algorithm can do with Z
as an oracle, and such an algorithm only makes sense when considered over the whole
range of inputs. (A possible measure for the computational complexity of a string y is
C(z) — C(x | y), taken over a variety of strings x.)

Comparing incompressibility notions

The implications between the incompressibility notions are

1 2
strongly incompressible i g incompressiblec g incompressible .

More precisely, for each p € N there is a ¢ € N such that each strongly p-
incompressibleg string is ¢-incompressiblec, and similarly for the second impli-
cation.

2.5.3 Remark. For each length, most strings are incompressible in the strongest
sense. For it is immediate from Theorem 2.2.26(i) that the number of strongly d-
incompressible strings of length n is at least 2™ —2°7"~? where ¢ is the constant
of the theorem. We can make the proportion of strings that are not strongly
incompressiblex as small as we wish (independently of n) by choosing d suffi-
ciently large.
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The implication (2) holds for a minor change of constants since C(z) <t K(z).
Actually, if x is incompressiblec then all the prefixes of = are incompressibleg:

2.5.4 Proposition. Fiz b € N such that C(yz) < K(y) + |2| + b for each y, =
(by 2.4.3). Then for each d > b, each prefiz of a (d-b)-incompressiblec string x
is d-incompressiblex. That is, C(x) > |z| — (d = b) = Vy 2 2 [K(y) > |y| — d].

Proof. Suppose that y < z. Let @ = yz. If K(y) < |y| — d then by the choice
of b we have C(z) < K(y) + |z| — |y| + b < |z| + b —d. O

In particular, there are arbitrarily long strings x such that each prefix of x
is d-incompressibleg. There is no analog of this for C' in place of K because for
each ¢, if  has length about 2¢ then the C-complexity of some prefix w of z
dips below |w| — ¢ (Proposition 2.2.1). This implies that for each ¢ there is a d-
incompressiblex string w such that C(w) < |w| — ¢. Thus the converse of the
implication (2) fails. Next, we address the implication (1).

2.5.5 Proposition. There is ¢ € N such that the following holds. For each d,
K(x) > |z|+ K(|z|) = (d—¢) — C(x) > |z| — 2d.

Proof. We define a bounded request set W to ensure that

Clz) <zl -2d — K(x) < |2] + K(|z]) = (d = ¢), (2.15)
where ¢ — 2 is the coding constant of W given by Theorem 2.2.17.

Construction of W. At stage s, for each d, each n and each x of length n, if
Ks(n) < Ks_1(n) or Cs(z) < n —2d < Cs_1(x), then enumerate the request
(Ks(n) +n—d+2,z) into W.
Suppose that U(o) = n and let d € N. By Fact 2.1.13 there are no more than
27=2d+1 strings z of length n such that C(x) < n — 2d. So the contribution of
o,d to the total weight of W is at most 2~ 171-n+d=29n=2d+1 — 9—o|=d—1 T}pe
contribution over all o, d is therefore at most >~ 2719/ [U(o) |] = @ < 1.
Clearly (2.15) is satisfied. O

The converse of implication (1) fails as well: by Miller (2008), for sufficiently
large c, for each TI{ set ) such that ¥n QN {0,1}™ # () there are infinitely many
strings w € @ such that K(w) < |w| + K(Jw|) — ¢. For each d € N, the set
of d-incompressiblec strings is a set @ of this kind.

Randomness properties of strings

Incompressibility appears to be the appropriate mathematical definition of ran-
domness for strings because incompressible strings have properties that one com-
monly associates with randomness. We will provide twofold evidence for this
thesis. The statements hold even for the weakest notion, incompressibility in the
sense of K.

(a) incompressible strings have only short runs of zeros (i.e. blocks only con-
sisting of zeros), and
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(b) zeros and ones occur balancedly in incompressible strings.

A property G of strings pointing towards organization should be rare in that
there are not too many strings of each length with that property. Also, G should
be not too hard to recognize: we will mostly consider rare properties G that
are also decidable. Having long runs of zeros is such a property, having a large
imbalance between zeros and ones is another.

Given a set of strings G, for each n let G,, = GN{0,1}"™. The following lemma
shows that for any c.e. set of strings G that is rare in the sense that #G,, /2"
is bounded by O(n~3), the strings in G,, can be compressed to n — logn in the
sense of K. (Recall from page 13 that we use the notation logn = max{k €
N: 2¥ < n}.) This lemma will be applied to prove (a) and (b).

2.5.6 Lemma. Let G be a c.e. set of strings such that #G,, = O(2"31°8n) for
each n. Then Vx € G,, [K(z) <t n —logn].

Proof. The idea is that for each string x € G the length n and its position in
the computable enumeration of G,, together provide a short description of x.
Instead of giving that description explicitly, we rely on the Machine Existence
Theorem 2.2.17.

Since n — 3logn > 0 for n > 10, there is k € N such that for all n > 10 we
have #G,, < 2F27—3198" Define a bounded request set W as follows: when z is
enumerated into G and |z| = n > 10, put the request

(n—logn+k+1,x)
into W. By the hypothesis, the weight contributed by G, for n > 10 is at
most 2~ F—12-ntlogngkgon=3logn < (5 — 1)=2/2 (since (n — 1)1 > 2718n) Ag
Ej>0 1/4% = 7%/6 < 2 this implies that W is a bounded request set. By 2.2.17,
z € G and |z| = n imply K(z) <t n —logn. O

Our first application of the foregoing lemma is a proof of (a) above: a run of
zeros in an incompressible string of length n is bounded by 4logn + O(1). We
need to show that the relevant property is rare.

2.5.7 Proposition. Let n € N and let x be a string of length n. If there is a
run of 4logn zeros in x then K(z) <t n —logn.

Proof. Define the computable set G by letting
Gy ={z: |z| =n & z has a run of 41logn zeros}.

Such a string x is determined by the least position ¢ < n where such a run of
zeros starts and the n — 4logn bits in the positions outside this run. Thus,

#G,, < n2n—tlen — ((2n—3len) By Lemma 2.5.6 we may conclude that
K(z) <t n—logn. O

Next we settle (b): strings with a large imbalance between zeros and ones can
be compressed in the sense of K. We refer to the brief discussion of probability
theory on page 73 and use some of the notation mentioned there. In particular
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if the sample space is {0,1}", the random variable S, (z) denotes the number of
occurrences of ones in a string z of length n. For d € N — {0}, let

Apa={ze€{0,1}": abs(Sy(z)/n—1/2) > 1/d}. (2.16)

Thus, A, 4 is the event that the number of ones differs by at least n/d from the
expectation n/2. The Chernoff bounds (Shiryayev, 1984, Eqn. (42) on pg. 69)
yield

P(Ap.q) < 2e720/4 (2.17)

This considerably improves the estimate P(A,, 4) < d?/(4n) after (1.21), page 73,
obtained through the Chebycheff inequality. For instance, for P(A1000,10) the
upper bound is 4.2 - 1079 rather than 1/40.

2.5.8 Theorem. There is a constant ¢ and a computable function Ad.ng such
that Vd € N —{0}Vn > ngVz € A, 4 [K(z) <n—logn+ .

Proof. For each d € N — {0} let ng be the least number such that
Yn > ng [62”/d2/2 > nd.
Define the computable set G by letting G,, = @ for n < 10, and for n > 10,

Gy, ={z: © € A, 4 where d is maximal such that ng < n}.

Then #G,, < ontle=2n/d® < gn-3logn By Lemma 2.5.6 there is ¢ such that
VnVx € G, [K(z) <n—logn+c|. Given d, if n > ng and z € A, 4 then x € G,,
so K(z) <n —logn + ¢ as required. O

We may conclude that the occurrences of zeros and ones are asymptotically
balanced for b-incompressibleg strings:

2.5.9 Corollary. Fizb. For each d, for almost every n, each b-incompressibley
string x of length n satisfies abs(Sy(z)/n —1/2) < 1/d.

Proof. In the previous notation, if n > 2°%¢ and n > ng then the required
inequality holds, else x € A,, 4 and thus K(z) <n —logn+c¢<n —b. O

If incompressibility is taken in a stronger sense one also obtains stronger conclusions.
For instance, the following exercise shows that for almost all n, if a string = of length n
is incompressible in the sense of C' then abs(S,(z) — n/2) is bounded by vnlnn.
Incompressibility in the sense of K merely yields a bound in o(n).

2.5.10 Exercise. For almost all n, if || = n and abs(S,(z) — n/2) > Vnlnn then
C(z) <t n —logn.
Hint. Modify the proof of 2.5.8, using Proposition 2.1.14 rather than the Machine
Existence Theorem.
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Martin-Lof randomness and its variants

Sets computable by a Turing machine are the mathematical equivalent of sets
decidable by an algorithm. In this chapter we introduce a mathematical notion
corresponding to our intuitive concept of randomness for a set. The intuition is
vaguer here than in the case of computability. The central randomness notion
will be the one of Martin-Lof (1966). In order to address criticisms to the claim
that this notion is the appropriate one, we will consider weaker and stronger
randomness notions for sets as alternatives. In this way a (mostly linear) hierar-
chy of randomness notions emerges. Martin-Lof randomness stands out because
we arrive at it from two different directions (Theorem 3.2.9), and also because
it interacts best with computability theoretic concepts.

Section 3.1 contains background on randomness and tests. Section 3.2 provides
the basics on Martin-Lof randomness, and some interesting further results. In
Sections 3.3 and 3.4 we study its interaction with computability theoretic notions
via reducibilities and relativization, respectively. In Section 3.5 we introduce
weaker variants of Martin-Lof randomness, and in 3.6 stronger variants.

3.1 A mathematical definition of randomness for sets

Our intuitive concept of randomness for a set Z has two related aspects:

(a) Z satisfies no exceptional properties, and
(b) Z is hard to describe.

Towards a mathematical definition of randomness for a set, at first we will con-
sider each of the two aspects separately.

(a) Z satisfies no exceptional properties. Think of the set Z as the overall outcome
of an idealized physical process that proceeds in time. It produces infinitely
many bits. The bits are independent. Zero and one have the same probability.
An example is the repeated tossing of a coin. The probability that a string x is
an initial segment of Z is 271l Exceptional properties are represented by null
classes (with respect to the uniform measure A on Cantor space, Definition 1.9.8).
We give examples of exceptional properties P and Q. The first states that all
the bits in even positions are zero:

PY) < ViY(2i) =0. (3.1)
The second states there are at least twice as many zeros as ones in the limit:

QYY) & liminf#{i <n: Y (i) =0}/n > 2/3. (3.2)
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The corresponding classes are null. Hence, according to our intuition, they should
not contain a random set. In order to obtain a mathematical definition of ran-
domness, we impose extra conditions on the null classes a set must be avoid.
Otherwise no set Z would be random at all because the singleton {Z} itself is a
null class! Some effectivity, or definability, conditions are required for the class
(or sometimes a superclass). For instance, one can require that the null class is
I19 (see Definition 1.8.55). The classes given by the properties above are of this
type; {Y: P(Y)} is actually II9.

(b) Z is hard to describe. A random object has no patterns, is disorganized. On
page 99 we provided evidence that in the setting of finite objects, the intuitive
concept of randomness corresponds to being hard to describe. We relied on the
fact that there are description systems, called optimal machines, that emulate
every other description system of the same type, and in particular describe every
possible string. Being hard to describe can be formalized by incompressibility
with respect to an optimal machine. Incompressible strings have the properties
that one intuitively expects from a random string.

For sets, as for strings our intuition is that some degree of organization makes
the object easier to describe. However, we cannot formalize being hard to describe
in such a simple way as we did for strings, because each description system only
describes countably many sets. To make more precise what we mean by being
hard to describe for sets, we recall close descriptions from page 46. The null I1¢
classes represent a type of close description; so do the null IIJ classes. A set is
hard to describe in a particular sense (say, I13 classes) if it does not admit a close
description in this sense (for instance, it is not in any I3 null class).

If we want to introduce a mathematical notion of randomness, to incorporate
aspect (a) we need a formal condition restricting null classes, and for aspect (b)
a formal notion of close description. Both are given by specifying a test concept.
This determines a mathematical randomness notion: Z is random in that specific
sense if it passes all the tests of the given type. Tests are themselves objects that
can be described in a particular way; thus only countably many null classes are
given by such tests. If (A, )nen is a list of all null classes of that kind, then the
corresponding class of random sets is 2 — \U,, An, which is conull. Remark 2.5.3
is the analog of this for strings. It states that most strings of each length are
incompressible.

In the following we give an overview of some test notions. They determine
important randomness concepts. A test can be a conceptually simple object
such as a T3 null class. It can also be a more elaborate object such as a sequence
of c.e. open sets or a computable betting strategy. The power of tests is directly
related to their position in the hierarchy of descriptive complexity for sets and
classes (pages 21 and 64). The formal details are provided in later sections of
this chapter, and in Chapter 7.
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Martin-Lof tests and their variants

Recall from Fact 1.9.9 that a class A C 2V is null iff there is a sequence (G, )men
of open sets such that lim,,AG,, = 0 and A C ), G,. Motivated by test
concepts from statistics, Martin-Lof (1966) introduced an effective version of this
characterization of null classes. He required that the sequence (G, )men of open
sets be uniformly c.e., and the convergence be effective, namely, for each positive
rational 6 one can compute m such that \G,, < J. Taking a suitable effective
subsequence, one might as well require that AG,,, < 2~™ for each m. A sequence
of open sets with these properties will be called a Martin-Lof test, and a set Z
is Martin-Lof random if Z ¢ (), Gi, for all Martin-Lof tests (Gpm)men. For
instance, to see that a Martin-Lof random set does not satisfy the property P
in (3.1), let Gy, = {Z: Vi < mZ(2i) = 0}. (A Martin-L6f random set does
not satisfy Q either, but this is postponed to Proposition 3.2.13.) We think
of a Martin-Lof test as an effective sequence of c.e. open sets that represent
attempts to pin down the unknown set Z by specifying possibilities for Z. These
approximations get better and better. Z is Martin-Lof random if it eventually
escapes these attempts.

Weaker than Martin-Lof randomness. Schnorr (1971) argued that Martin-Lof’s
test notion is too strong to be considered algorithmic because one does not know
enough about the tests; in particular, while AG,, is a uniformly left-c.e. real num-
ber, it may not be computable. He proposed computable test concepts, which will
be discussed in Chapter 7. One can go a step further and impose time and space
bounds on the computations. Then one obtains randomness notions relevant to
the theory of feasible computability, such as being polynomially random.

Stronger than Martin-Lof randomness. From a different point of view, one can
maintain that Martin-Lof randomness is too weak as a mathematical notion of
randomness. A left-c.e. set can be ML-random. Each set Y >7 (' is Turing equiv-
alent to a ML-random set. According to this viewpoint, these facts are inconsis-
tent with the intuitive idea of a random set. Left-c.e. sets can be approximated
fairly well. A random set should not encode arbitrarily complex information.

To get around this, one can proceed to more powerful types of tests. The
next stronger notion is weak 2-randomness. Instead of Vm AG,, < 27" one
merely asks that lim,,A\G,, = 0. These tests are equivalent to null IIJ classes.
No weakly 2-random set is A9 because each A9 set is a II9 singleton. (In
fact, a weakly 2-random set forms a minimal pair with (/.) Even stronger is
2-randomness, Martin-Lof randomness relativized to (. While these notions are
interesting, it turns out that Martin-Lof randomness is the most fruitful one
where the interaction of computability and randomness is concerned — precisely
because Martin-Lof randomness is not such a strong randomness notion.

For a more radical change away from Martin-Léf randomness, once can move
on to higher computability theory. One considers I1} sets of numbers, an analog
of the c.e. sets much higher in the hierarchy of descriptive complexity (Defini-
tion 9.1.1). Elements are enumerated at stages that are computable ordinals.
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The analog of a Martin-Lof test is a uniformly IT sequence (G,,)men of open
sets such that AG,, < 27™. For an even stronger notion based on higher com-
putability, one can take as tests the null I1} classes C C 2N (9.1.1). Sets Z enter
the class at stages that are ordinals computable relative to Z.

The choice of the “superlevel” in the hierarchy of descriptions, namely whether
one takes feasible computability, computability, or higher computability, depends
on the applications one has in mind. Interestingly, similar patterns emerge at the
three superlevels.

Schnorr’s Theorem and universal Martin-Lof tests

If the same notion arises from investigations of different areas, it deserves special
attention. Among randomness notions, this is the case for Martin-L6f random-
ness. One obtains the same class when requiring that all the finite initial segments
be incompressible in the sense of the prefix-free algorithmic complexity K de-
fined in Section 2.2: a theorem of Schnorr (1973) states that Z is Martin-Lof
random if and only if there is b € N such that Vn K(Z [,) > n —b. Thus Z is
Martin-Lof random if and only if all its initial segments are random as strings!
To some extent, the “randomness = incompressibility” paradigm used for finite
strings carries over to sets.

Schnorr’s Theorem only holds when we formalize randomness of a string = by
being b-incompressible in the sense of K (for some b that is small compared to
the length of x). We cannot use the plain descriptive complexity C' because of
its dips at initial segments of a sufficiently long string; see Proposition 2.2.1.
However, a similar theorem using a monotonic version K'm of string complexity
was announced by Levin (1973).

A Martin-Lof test (Up)pen is called universal if (), Uy contains (,,, G, for every
Martin-Lof test (G, )men. Schnorr’s Theorem shows that (Ry)pen is universal,
where R, is the open set generated by {x € {0,1}*: K(z) < |z| — b}, the b-
compressibley strings. The existence of a universal test is a further criterion for
being natural for a randomness notion. For instance, the argument of Schnorr
can be adapted to the II} version of Martin-Lof randomness, so a universal test
exists as well. Also, there is a largest H% null class @ C 2N. To be random in this
strong sense means to be not in @ (Theorem 9.3.6).

The initial segment approach

Schnorr’s Theorem is our first application of the following:

Characterize C C 2" via the initial segment complezity of its members.

This is very useful because one can determine whether Z € C by looking at its
initial segments, rather than at Z as a whole. We will later provide several other
examples of such characterizations. As mentioned above, in Schnorr’s Theorem
we use K to measure the descriptive complexity of the initial segment Z [,,. For
other classes one may use different measures, such as the plain complexity C' or
its conditional variant Az.C'(z | n) where n = |z|.
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Often membership in C is determined by a growth condition on the initial
segment complexity; 2-randomness (Theorem 3.6.10 below) is somewhat different
as one requires that the plain complexity is infinitely often maximal (up to a
constant).

3.2 Martin-Lof randomness

We provide the formal details for the discussion in the previous section.

The test concept

In 1.8.22 we introduced the effective listing ([We]=)cen of all the c.e. open sets
(here W, is regarded as a subset of {0,1}*). A uniformly c.e. sequence (G )men
of open sets is given by a computable function f such that G, = [Wy(n]™
for each m. Martin-Lof (1966) effectivized the description of null classes from
Fact 1.9.9.

3.2.1 Definition.

(i) A Martin-Lof test, or ML-test for short, is a uniformly c.e. sequence
(Gm)men of open sets such that Vm € N A\G,,, < 27™.

(ii) A set Z C N fails the test if Z € (), G, otherwise Z passes the test.

(iil) Z is ML-random if Z passes each ML-test. Let MLR denote the class of
ML-random sets. Let non-MLR denote its complement in 2N,

Note that Z € N,,, G < Vm3k,s[Z k] € Gpm,s, 50 [),,, Gm is a particular
kind of 1Y null class. Admitting all the IIS null classes as tests is equivalent to
replacing the condition Vm € N AG,,, < 27™ by the weaker one that [, G, be
a null class. In this case, we have more tests and therefore a stronger randomness
notion. This notion is called weak 2-randomness, introduced on page 134.

3.2.2 Example. A simple example of a ML-test (G, )men is the test showing
that a computable set Z is not ML-random: let G,,, = [Z |,5,]. Note that if Z is
computable then {Z} is a null TIY class. More generally, for any null II{ class P
there is a ML-test (G, )men such that P =", Gp,: let (Ps)sen be the effective
approximation of P by clopen sets from (1.17) on page 55, then P = [, Ps.
Let f be an increasing computable function such that APy, < 27™ for each m,
and let Gy, = Ppm)-

We do not require in 3.2.1 that a ML test (G,,)men satisfy G, 2 Gppyq for
each m. It would make little difference if we did, since we can replace each G,,
by (,<,, Gi without changing the described null class (,,cny G- The tests in
the examples above have this monotonicity property anyway.

3.2.3 Remark. While each computable set is given by a ML-test, there is no single
ML-test that corresponds to the property of being computable, because the class of
computable sets is not I13 by Exercise 1.8.64.
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A universal Martin-Lof test

We say that a Martin-Lof test (Up)pen is universal if (), Uy contains (1), Gy, for
any Martin-Lof test (Gy,)men. In other words, (), Uy = 2V — MLR. Martin-Lof
(1966) proved that a universal ML-test exists. Fix a listing (G%)ren (e € N) of
all the ML-tests in such a way that Gf, is c.e. uniformly in e, k.

3.2.4 Fact. Let Uy = U, ey Giyep1- Then (Up)ven is a universal ML-test.

Proof. The sequence (Up)pen is & ML-test since it is uniformly c.e. and
AU, < 30,27 (0Fe+l) = 2-b For the universality, suppose that Z is not ML-
random. Then there is e such that Z € ", Gf, so Z € U for each b. O

In 1.8.55 we introduced the arithmetical hierarchy for classes of sets. Since
N,, Gm is 113 for any ML-test (Gy,)men, the existence of a universal ML-test
implies the following.

3.2.5 Proposition. MLR is a X9 class. O

This shows that Martin-Lof randomness is among the simplest randomness no-
tions as far as the descriptive complexity is concerned; other notions are typi-
cally 9 or even more complex.

Characterization of MLR via the initial segment complexity

Recall from 2.2.4 that Kj/(x) = min{|o|: M(c) = z} for a prefix-free ma-
chine M. The open sets generated by the strings that are b-compressible in the
sense of Kj; form a monotonic test (RM)pen. If M is an optimal prefix-free
machine this test turns out to be universal.

3.2.6 Definition. For b € Nlet R) = [{z € {0,1}*: Kp(z) < |z| —b}]7.
3.2.7 Proposition. (RM)yen is a ML-test.

Proof. The condition K/(z) < |z| — b is equivalent to

do3s[Ms(o) =z & |o| < |z| —b],
which is a X¢-property of 2 and b. Hence the sequence of open sets (Ré” Jben 1s
uniformly c.e.

To show ARM < 27 let VM be the set of strings in {z: Kjs(x) < |z|—b} that
are minimal under the prefix ordering. Then ) 2~ 1ol [z € VM] = ARM. Note
that 2717| > 202=17] for each x € VM, where x%, is a shortest M-description
of z similar to 2.3.2. Then 1 > Y 271l [z € VM] > 203 271l [z € VM],
and therefore )\Ré‘/[ <927t O

Recall U is the optimal prefix-free machine defined in 2.2.9, and K (x) = Ky(z).
3.2.8 Definition. For b € N, let R, = R = [{z € {0,1}*: K(z) < |z| —b}]~.

Thus, Ry is the open set generated by the b-compressibleg strings as defined
in 2.5.1. The theorem of Schnorr (1973) states that Z is ML-random iff there
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is b such that each initial segment of Z is b-incompressible in the sense of K.
A similar theorem using monotonic string complexity is in Levin (1973).

3.2.9 Theorem. The following are equivalent for a set Z.

(i) Z is Martin-Lof random.
(1z) 3b ¥n [K(Z[,) >n— 0], that is, 3b Z & Ry.

Theorem 3.2.9 simply states that (Rp)pen is universal. It actually holds for
(RM)yen, where M is an optimal prefix-free machine, by the same proof.

Proof. The implication (i)=-(ii) holds because (Rp)pen is a ML-test by 3.2.7.
For (ii)=(i), suppose that Z is not ML-random, that is, Z € (,, Gy, for some
ML-test (G,)men- Since we can replace G, by Ga,,, we may assume that AG,, <
272m for each m.

We define a bounded request set L (see 2.2.15). By the representation of
c.e. open sets in 1.8.26 we may uniformly in m obtain an effective antichain
(@)i<n,,, Nm € NU {oo}, such that G,,, = [{z[": i < Np}|=. Let L =
{{J"] = m + 1,2"): m € N,i < Np,}. The contribution of G,, to the total
weight of L is at most 2771, so L is a bounded request set.

Let My be the prefix-free machine for L given by the Machine Existence Theo-
rem 2.2.17. Fix b € N and let m = b+ d + 1. Since Z € G,,, we have =" < Z for
some i. Hence K (z) < |z| —m+14d = || —b because of the request enumerated

for compressing z = z". O

Examples of Martin-Léf random sets

Recall from the introduction to this chapter that for any randomness notion the
class of sets that are random in that sense is conull (page 104). However, this
gives us no concrete examples of random sets. Because of the “being hard to
describe” aspect of randomness, such examples are the more difficult to obtain
the stronger the randomness notion becomes. It is still fairly easy to give concrete
examples of ML-random sets.

If (Up)men is a universal ML-test then for each m, P,, = 2N — U, is a II{
class, AP,, > 1—27" and P,, contains only ML-random sets. Our first examples
are obtained by applying the basis theorems for I1{ classes to P, say.

3.2.10 Examples. (i) There is a left-c.e. ML-random set.
(i) Some ML-random set Z is superlow.

Informally, ML-randomness is not yet a very strong randomness notion. Both
(i) and (ii) fail already for our next stronger randomness notion, weak 2-random-
ness, since a weakly 2-random set forms a minimal pair with @/ (see page 135).

In the following we obtain more explicit examples of left-c.e. Martin-L6f random
sets. Recall from (2.4) on page 84 that the halting probability of a prefix-free
machine M is the left-c.e. real number Qp; = A[dom M|~ = 3" _27l°I[M (o) |],
and that (Qar,s)sen is a nondecreasing computable approximation of 57, where
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Qs := A[dom M;]~. We identify co-infinite subsets of N with real numbers in
[0,1) according to Definition 1.8.10. In particular, for a real number r, we let
r [ denote the first n bits of the binary expansion of r.

3.2.11 Theorem. (Chaitin) The halting probability Qg is ML-random for each
optimal prefix-free machine R.

Proof. We will write €2 for Qg, and we let 5 = Qg s. Let N be the (plain)
machine that works as follows on an input « of length n.

(1) Wait for ¢ such that 0.z < Q; < 0.z +27".
(2) Output the least string y not in the range of R;.

If z = Q[,, then such a t exists. By stage t all R-descriptions of length < n have
appeared, for otherwise Q > Q; + 27", Thus K(y) > n where y = N(z). This
implies Vn [K(Q],)+c¢ > K(N(Q],)) > n] for an appropriate constant c. O

From now on we will write Q for Quy. We let Q5 := A[dom U,]~.

Facts about ML-random sets

Facts derived from Schnorr’s Theorem. In the following we think of a set Z as a
sequence of experiments with outcomes zero or one, like tossing a coin. The law
of large numbers for a set Z says that the number of occurrences of zeros and
ones is asymptotically balanced:

3.2.12 Definition. A set Z satisfies the law of large numbers if
lim, (#{i <n: Z(i)=1}/n) =1/2. (3.3)

This is one of the simplest criteria for randomness, which is satisfied by any
Martin-Lof random set Z. Instead of giving a test directly, we will prove the law
of large numbers for Z using Schnorr’s Theorem, together with the fact that for
large n and any incompressiblex string x of length n, S, (z)/n gets arbitrarily
close to 1/2 (Corollary 2.5.9).

3.2.13 Proposition. Fach ML-random set Z satisfies the law of large numbers.

Proof. Fix b such that Z ¢ Ry, i.e., each initial segment of Z is b-incom-
pressiblex. Apply 2.5.9, noting that S, (Z [,) = #{i <n: Z(i) = 1}. O

A condition apparently weaker than 3bZ ¢ R implies that Z is ML-random:

3.2.14 Proposition. Suppose there is an infinite computable set R and b € N
such that Ym € R[K(Z |,,) > m —b]. Then Z is Martin-Lof random.

Proof. We apply the idea, first used in the proof of 2.4.1, to split off a prefix-free
description from a string. The prefix free machine M on input 7 first looks for
o =< 7 such that U(o) |= z. Next, if 0z = 7, it checks whether |z| + |z| is the
least number m € R such that m > |z|. In this case M outputs zz.

Clearly M is a prefix-free machine. If K(z) < |z| — ¢ then Kp(w) < |w| — ¢
for each extension w of = of length the least number m > |z| in R. If Z is not
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Martin-Lof random, then for each ¢ there is an x < Z such that K(z) < |z| — ¢,
50 K(Z|m) <t m —c for m € R as above, contrary to the hypothesis. O

A tail Y of a set Z is what one obtains after taking off an initial segment x.
Thus, if |2| = n, the tail is the set Y given by Y (i) = Z(i + n). In other words,
Y = f~1(Z) where f is the one-one function \i.i + n.

3.2.15 Proposition. Suppose Y and Z are sets such thatY =* Z, or'Y is a
tail of Z. Then Z is ML-random < Y is ML-random.

Proof. Under either hypothesis we have Vn K (Y [,,) =" K(Z |,,). Now we apply
Schnorr’s Theorem 3.2.9. O

The fact that tails of a ML-random set are also ML-random can be strengthened: the
pre-image of a ML-random set under a one-one computable function is ML-random.
Also, recall from Section 1.3 that, with very few exceptions, classes introduced in com-
putability theory are closed under computable permutations. By the next result this is
the case for ML-randomness.

3.2.16 Proposition. Suppose the one-one function f: N — N is computable. If Z is
ML-random then so is Y = f~(Z).

Proof. For a class C C 2V let C* = {Z: f~*(Z) € C}. Since f is one-one, we have
Az]* = 27121 for each string z. If G C 2" is open, let (z:)i< N be the minimal strings =
such that [z] C G. Then G* is the disjoint union of the [z;]*. Thus A\G* = AG for any
open set G. Suppose now that Y € (), G for some ML-test (G )men. Then (G5, )men
is a ML-test such that Z € ", G- O

A criterion due to W. Merkle will be useful later on.

3.2.17 Proposition. The following are equivalent for a set Z.

(i) Z is not ML-random.

() Z = zoz122 ... for a sequence of strings (zi)ien such that Vi K(z;) < |z;i| — 1.

(#ii) There is a prefiz-free machine M such that Z = zoz122 . . ., for a sequence of strings
(2i)ien such that Vi Ky (zi) < |zi| — 1.

Proof. (i)=-(ii): We define the sequence (z;);en inductively. Since Z is not ML-random,
by Theorem 3.2.9 there is a string zo < Z such that K(zo) < |z0| — 1. Suppose i > 0
and zo,...,2;—1 have been defined. The tail Y of Z obtained by taking off z¢...z;—1 is
not ML-random by Proposition 3.2.15. Thus there is z; < Y such that K(z) < |z| —1.
(ii)=-(iii) is trivial. For (iii)=-(i), fix n and consider the prefix-free machine N which
on input o first searches for an initial segment p < o such that U(p) = n and then
looks for vo,...,vn—1 € dom(M) such that prg...v,—1 = 0. If the search is successful
it prints M (vo) ... M (vn-1).

Given a string zo...2zn—1, let o be a concatenation of a shortest U-description of n
followed by shortest M-descriptions of zo, ..., zn—1. Then N(o) = 2o ... 2zn—1 and hence
K(z0...2n-1) <P K(n) + 3, Km(zi) < K(n) + |20...2n—1| — n. Since K(n) <*
2logn, we obtain K(zo...2n-1) <t |20 ...2n-1] — (n — 2logn). Then, by Schnorr’s
Theorem 3.2.9, Z is not ML-random. O

Facts obtained through Solovay tests. Recall that a ML-test is a sequence (G, ) men
of uniformly c.e. open sets such that Vm € N A\G,,, < 27™, and Z fails the test
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if Z €, Gm- To define Solovay tests we will broaden the test definition and
relax the failure condition. Although Solovay tests are more general than Martin-
Lof tests and therefore easier to build, they still determine the same notion of
randomness.

3.2.18 Definition. A Solovay test is a sequence (.5;);en of uniformly c.e. open
sets such that >, AS; < oco. Z fails the test if Z € S; for infinitely many i,
otherwise Z passes the test.

3.2.19 Proposition. Z is ML-random < Z passes each Solovay test.

Proof. <: Suppose Z fails the ML-test (G, )men. Each Martin-Lof test is a

Solovay test, and since Z fails (G,)men as a ML-test (namely, Vm Z € G,,),

Z fails it as a Solovay test (namely, 3%°m Z € Gy,).

=: Suppose Z fails the Solovay test (S;);en, that is, Z € S; for infinitely many .

We may omit finitely many of the S;, and hence assume that ). AS; < 1. Let

G = [{o: [0] C S, for at least 2™ many i}]~,

then (G)men is a u.c.e. sequence of open sets. Given m, let (ox)ren be a listing

of the minimal strings o under the prefix ordering such that [o] C G,,. Then
1> A8 > 50,5 ASinfox]) > 2m Y, 27 Ikl = 2mAG,,.

Thus AG,, < 27, and (Gm)men is a Martin-Lof test. Since Z € (), Gm, Z is

not Martin-Lof random. O

We give two applications of Solovay tests. The first is to show that ML-random
sets only have short runs of zeros. By Proposition 2.5.7 the length of a run of zeros
in an incompressibleg string of length m is bounded by 4logm+O(1). If the run
starts at the n-th bit position of a Martin-Lof random set, then its length is at
most K (n) (for almost all n). This is rather short since K (n) <* logn+2loglogn
by Proposition 2.2.8.

3.2.20 Proposition. Let Z be ML-random. Then for each r, for almost all n,
a run of zeros starting at position n has length at most K(n) — r.

Proof. Recall from (2.6) that K;(n) is a nonincreasing computable approxima-
tion of K (n) at stages t. For n > 0, let

Sn,t — [{O_Omax(Kt(n)—r,O): |0’| _ nH—<7

and let S, = |J; Sn,t. Then (S, )nen is a uniformly c.e. sequence of open sets.
Moreover, S, = 2-KM+" 5o that YonASn < Q2. The ML-random set Z
passes this test, that is, for almost all n we have Z ¢ S,,. This implies that the
runs of zeros in Z satisfy the required bound on the length. O

3.2.21 Proposition. Z is ML-random < lim, K(Z],) —n = oco.

Informally, for every set Z the function An.K(Z [,) avoids being close to n:
either for each d there is n such that it dips below n — d (when Z is not ML-
random), or for each b eventually it exceeds n + b (when Z is ML-random).
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Proposition 3.2.21 will be improved in Theorem 7.2.8: Z is ML-random <
T 2-K(Zh4n < o,

Proof. «<: This is immediate by Theorem 3.2.9.

= Suppose that there is b such that 3*°n K(Z [,) —n =b. Let S,, = [{z: |z| =
n & K(x) <n+b}]~, then Z is in infinitely many sets S, so we can conclude
that Z is not ML-random once we have shown that (S,)nen is a Solovay test.
Clearly (Sp)nen is uniformly c.e. Applying Theorem 2.2.26(i) where d = K(n)—b,
the number of strings = of length n such that K(x) < n +b is at most 2°2"~¢ =
2con—K(n)+b Hence NS, < 2¢2- K+ and Yo ASh < 2¢t00) < 0. O

3.2.22 Remark. Let (S;);en be a Solovay test. By Fact 1.8.26, each open set S;
is generated by a uniformly computable prefix-free set of strings. We might as
well put the basic open cylinders corresponding to the strings in all those prefix-
free sets together, because failing the test is equivalent to being in infinitely many
intervals. In this way we obtain an equivalent Solovay test where each open set
is just a basic open cylinder [z]. Thus, we may alternatively represent a Solovay
test G by an effective listing of strings xg,x1, ... (possibly with repetitions) such
that ), 27171l < 0. Usually we will not distinguish between the two types of
representation; if we want to stress this difference we will call G an interval
Solovay test. For instance, in the foregoing proof, the interval Solovay test is an
effective listing of the set {z: K(z) < |z| + b}.

3.2.23 Example. Let B be a c.e. prefix-free set such that A\[B]® < 1. For
each n let S,, be the open set generated by the n-th power B™ of B, namely
Sp =[{x1...2y: Vi z; € B}, Clearly, AS,, = (A\S1)™. Since A\S; < 1, we may
conclude that (S, )nen is a Solovay test. If AS; < 1/2 then (S, )nen is in fact a
ML-test.

Tails of sets were defined after Prop. 3.2.13. The following is due to Kucera.

3.2.24 Proposition. Suppose P is a 11§ class such that AP > 0. Then each
ML-random set Z has a tail in P.

Proof. Let B C {0,1}* be a c.e. prefix-free set such that [B]~ = 2% — P. Define
the Solovay test (Sp)nen as in 3.2.23. Since Z is ML-random, there is a least
n € N such that Z € S,,. If n > 0, let © < Z be shortest such that z € B*~!,
otherwise let © = @. Then the tail Y of Z obtained by taking z off is not in
[B], and hence Y € P. O

In particular, if P C MLR (say, P = 2 — R, for some b), then Z is ML-random
iff some tail of Z is in P. For, if some tail of Z is in P, then Z is ML-random by
Proposition 3.2.15.

Exercises.

3.2.25. Give an alternative proof of Proposition 3.2.20 using 3.2.21.

3.2.26. Use Solovay tests to show that each ML-random set satisfies the law of large
numbers.
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Left-c.e. ML-random reals and Solovay reducibility

We use the term “real” for real number. Via the identifications in Definition 1.8.10
we can apply definitions about sets of natural numbers to reals.

Solovay reducibility <g is used to compare the randomness content of left-c.e.
reals. We obtain two characterizations of the left-c.e. ML-random reals:

(a) They are the reals of the form Qp for a optimal prefix-free machine R. Thus,
Theorem 3.2.11 accounts for all the left-c.e. ML-random reals in [0, 1).

(b) They are the Solovay complete left-c.e. reals. Thus, they play a role similar
to the creative sets for many-one reducibility on the c.e. sets.

We identify the Boolean algebra of clopen sets in Cantor space with the Boolean
algebra Intalg [0, 1)g as in 1.8.11. We let a, 3,y denote left-c.e. reals. If v is left-
c.e. then there is a computable sequence of binary rationals (7s)sen such that
vs < 7s41 for each s and v = sup,ys (Fact 1.8.15). We say that (ys)sen is a
non-decreasing computable approximation of .

First we show that adding a left-c.e. real to a left-c.e. ML-random real keeps
it ML-random.

3.2.27 Proposition. Suppose a, 3 are left-c.e. reals such that v = a + 3 < 1.
If a or B is ML-random, then v is ML-random.

Proof. Suppose that (Gp)nen is a ML-test such that v € (), G,. We show
that o is not ML-random. We may assume that AG,, < 27", and that f3 is
not a binary rational. Let (as)sen and (8s)sen be nondecreasing computable
approximations of a, 3, and let vs = a, + Bs. We enumerate a ML-test (H, )nen
such that o € (), Hy,.

At stage s, if v5 € T where I = [z,y) is a maximal subinterval of
G5, then put the interval J = [z — 8s — (y — x),y — Os) into H,.

If in fact v € I, then since s < 8 < Bs + (y — x) and = < v we have y — G5 >
y—P0Fs>a=v—F;alsox—f; — (y—x) <z —F <« Thus a € J. The length
of an interval J is twice the length of an interval I, so that \H,, <27, O

The converse of Proposition 3.2.27 was proved by Downey, Hirschfeldt and Nies
(2002): if -y is a ML-random left-c.e. real and v = a+( for left-c.e. reals «, 3, then
a or § is ML-random. They also introduced the following algebraic definition of
<g. It is equivalent to the original definition of Solovay (1975) by Exercise 3.2.33.

3.2.28 Definition. Let a, 5 € [0,1) be left-c.e. reals. We write § <g « if
Jd € N3y left-c.e. [Q_dﬁ +v= a].

Thus, Solovay completeness in (b) above yields an algebraic characterization of
being ML-random within the left-c.e. reals. By Exercise 3.2.33 <g is transitive
and implies <.

We proceed to the main result. The implications (iii)=-(ii)=(i) are due to
Calude, Hertling, Khoussainov and Wang (2001), and (i)=-(iii) to Kucera and
Slaman (2001).
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3.2.29 Theorem. The following are equivalent for a real o € [0,1).

(i) « is left-c.e. and ML-random.
(i) There is an optimal prefiz-free machine R such that Qr = «.
(iti) « is Solovay complete, that is, 8 <g « for each left-c.e. real (3.

Proof. (iii)=(ii). Choose d € N and a left-c.e. real v such that 279Q + v = a.
We define a bounded request set L of total weight o such that the associated
prefix-free machine R is optimal. Note that Qp = «.

Choose a nondecreasing computable approximation (7s)sen of v. We may as-
sume that 511 — s is either 0 or of the form 27" for some n.

Construction of L. Let Lo = ().

Stage s > 0. If Us_1(0) T and Us(o) = y, put the request (Jo| + d,y) into Ly
unless it is already in Ls_1; in this case, to record the increase of {2 in L, put
(lo| +d,4) into L for a number ¢ > s not mentioned so far. If vs41 — v, =277
then put (n,j) into L, for a number j > s not mentioned so far.

It is clear that L is a bounded request set as required.

(if)=(1). Qs is left-c.e. for each prefix-free machine M. For an optimal prefix-free
machine R, the real Qg is ML-random by Theorem 3.2.11.

(1)=>(iil). Suppose the left-c.e. real 5 € [0,1) is given. Let (8s)sen and (os)sen
be nondecreasing computable approximations of § and «, respectively, where
as, Bs € Qq. For each parameter d € N we build a left-c.e. real 4 uniformly in d,
attempting to ensure that 2793 + 74 = a. In the end we will define a ML-test
(Gq)aen- If d is a number such that a € G4 then we succeed with 4.

The construction with parameter d runs only at active stages; 0 is active. If s
is active, and ¢ is the greatest active stage less than s, then let e, = 27(3, — ;).
We wish that « increase by an amount of at least €, in order to record the
increase of 3. So we put the interval [as, as + €5) into G4. If & € G, then o will
increase eventually, and in that case we have reached the next active stage. If a
has increased too much the excess is added to ~y. For the formal construction, it
is easier to first update -, and then define the next interval.

Construction for the parameter d.
Stage 0 is declared active. Let go =0 and vq40 = 0.

Stage s > 0. Let t < s be the greatest active stage. If as > q; then declare s
active, and do the following.

(1) Define ya,s = vat + (as — qe).
(2) Let g5 = as +2-4Bs — B¢). If gs > 1 then stop.

Va5 — Va,t 2743y — By)

qt (e qs
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Verification. Let Gy = |J{[as,qs): s active}. Then G is (identified with) a c.e.
open set in Cantor space uniformly in d, and AGy < 2793. Thus (Gg)aen is
a ML-test. Choose d such that a € G4, then the construction for parameter d
has infinitely many active stages. Inductively, between (1) and (2) of each active
stage s > 0 we have 2793, + 74, = as, where t is the preceding active stage.
Hence 2796 + 74 = a, where 7q = SUD; is activeVd.s- O

The following fact of Calude and Nies (1997) can alternatively be proved using
Theorem 4.1.11 below.

3.2.30 Proposition. (' =, Qr for each optimal prefiz-free machine R.

Proof. Clearly Qg <y ¢'. To show that (/' <., Qg, define a prefix-free ma-
chine M by M(0"1) = s if n € 0, ,. Let d be the coding constant for M with
respect to R. The reduction procedure is as follows: on input n, using the ora-
cle Qp, compute ¢ such that Qg [n+a+1= Qr.t [ntdar1. Output 0i(n).

If n enters (' at a stage s > t then Qg increases by at least 2~ (*+4+1) contrary

to the choice of ¢. a
3.2.31 Corollary. Every ML-random left-c.e. set is wtt-complete. a

We cannot hope to characterize the ML-random w-c.e. sets as easily: such a set
can be superlow by 3.2.10(ii), but it can also be weak truth-table complete.

As an immediate consequence of Theorem 3.2.29, Z is right-c.e. and ML-random iff
there is an optimal prefix-free machine R such that 1 — Qr = 0.Z. How about ML-
random reals that are difference left-c.e.? (See (iv) of Definition 1.8.14.) Rettinger
(unpublished) has shown that one does not obtain anything new.

3.2.32 Proposition. Let r € [0,1)r be difference left-c.e. and ML-random. Then r is
either left-c.e. or right-c.e.

Proof. Assume r is neither. By Fact 1.8.15, » = lim;g; for an effective sequence
(gi)ien of dyadic rationals such that ), abs(gi+1 — ¢i) < oo. For each m € N we
have sup;s,,q > r, otherwise r = lim;>,,max{qx: m < k < i}, so r is left-c.e. Simi-
larly, infiz_m qi < r for each m. Thus there are infinitely many ¢ such that ¢; < r < git1.
Let Gi = [qi,qi+1) if ¢ < qi+1 and G; = 0 else. Then (G;)ien is a Solovay test that
succeeds on 7. O

3.2.33 Exercise. Check that <g is transitive. Show that 8 <g « iff there is a partial
computable ¢: Q2N[0, a) — Q2N[0, B) and ¢ € N such that Vg < a[B—¢(q) < c(a—q)].
Informally, 3 is easier to approximate than a. Conclude that <g implies <r.

Randomness on reals, and randomness for bases other than 2

Let X = [0,1)r — Q be the space equipped with the subspace topology and Lebesgue
measure. One can develop the theory of ML-randomness directly on X, without ref-
erence to the representation of reals in base 2. For instance, an open set U C X is
called computably enumerable if U is an effective union of intervals (p, ¢)r — Q where
p,qg € Q, 0 < p < g < 1. Based on this one introduces ML-tests on X by adapting
Definition 3.2.1.
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3.2.34 Remark. Fix a base b € N such that b > 2, and write b" for the set of functions
N — {0,...,b—1}. Product topology and uniform measure can be defined on the set Y.
One can think of the elements of bV as the overall result of a sequence of experiments
with b outcomes, each one occurring with probability 1/b. For instance if b = 6 the
experiment could be rolling a dice. Similar to (1.13), define a map

Fy: {Z € b: Zis not eventually periodic} — [0,1)r — Q

by F,(Z) =Y., Z(i)b~*~". This map preserves topology and measure in both directions.
One can also adapt the definition of ML-randomness in 3.2.1 to base b. It is easy to
check that F, preserves ML-randomness in both directions. Thus, if Z € b" is not
eventually periodic, then Z is ML-random « Fy(Z) is ML-random (in the sense of
reals) « the set Fy '(F,(Z)) is ML-random in the sense of Definition 3.2.1. Thus,
ML-randomness is a base-independent concept.

Giving preference to base 2 is not necessary but convenient, because in computability
theory one studies subsets of N rather than functions in b" for b > 2.

A nonempty 119 subclass of MLR has ML-random measure *

We consider the uniform measure of nonempty II9 subclasses of MLR, such as 2¥ — R,.
This yields examples of right-c.e. ML-random reals other than 1 — €.

3.2.35 Theorem. If P C MLR is a nonempty 119 class then AP is ML-random.

Proof. Note that AP > 0, since otherwise P N MLR = () by 3.2.2. Suppose that AP
is not ML-random, and let Z be the co-infinite set identified with the real number AP
(namely, AP = 0.2).

Firstly we show that for each b € N, there is y on P such that K(y) < |y| — b. We
use the fact that an appropriate initial segment x of Z is sufficiently compressible in
the sense of K to obtain a b-compressiblex string y that is guaranteed to be on P: if y
falls off P then the measure decreases so much that the approximation 0.x is wrong.

Let (P:)ten be the effective approximation of P by clopen sets from (1.17) on page 55.
The prefix-free machine M works as follows on an input o.

(1) Wait for s such that Us(o) |= z. Let n = |z|. Let ¢ = |[(n — |0])/2].

(2) Wait for t > s such that 0.x < AP, < 0.z +27".

(3) If there is a string y of length n — ¢ such that A(P; N [y]) > 27" then output the
leftmost such y.

If x < Z and M outputs y, then y is on P, for otherwise [y] N P = () and hence
APy — P) > 27" where n = |z|. Let d be a coding constant for M. Given b € N,
since we are assuming that AP is not ML-random, there is * < Z that is sufficiently
compressible in the sense of K, namely, b+ d < (n — K(x))/2, where n = |z|; we may
also require that 27¢ < AP, where ¢ = | (n — K(z))/2]. Thus there is some y of length
n — ¢ such that A(P N [y]) > 2~ ("~927¢ =27,

If o is a shortest U-description of x, then M on input o outputs a string y on P such
that |y| =n —c. Thus Knm(y) < |y| — ¢ < |y| — (b + d) and hence K(y) < |y| — b.

We now iterate the foregoing argument and obtain a sequence of strings yo < y1 < ...
such that each y; is on P and K(y;) < |y| —¢. Then the set Y = [Jy; is not ML-random
and Y € P.

For S C 2V let §¢ = 2N — S. Let yo = @. Suppose ¢ > 0 and y;_; has been defined.
Then A(P N [yi—1]) is not ML-random by Proposition 3.2.27: the left-c.e. real number
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AP is not ML-random, and for each length m, we have AP® =37, A(P°N[y]), so
that A(P°N[y]) is not ML-random for any y. So we may apply the argument above to
the TI9 class P N [y;—1] in order to obtain y; > y;—1 on P such that K(y;) < |yi| — i.

0O

3.3 Martin-Lof randomness and reduction procedures

We are mostly interested in the interactions between the degree of randomness
and the absolute computational complexity of sets; a summary of such interac-
tions will be given in Section 8.6. However, here we address the interaction of
randomness with the relative computational complexity of sets. Firstly, we con-
sider reducibilities, and then, in the next section, we look at ML-randomness
relative to an oracle.

FEach set is weak truth-table reducible to a ML-random set

An arbitrarily complex set A can be encoded into an appropriate Martin-Lof
random set: there is a ML-random set Z such that A <, Z. This result was
obtained independently by Kucera (1985) and by Gécs (1986). For instance, there
is a ML-random set Z weak truth-table above ()"’. Thus, ML-random sets can have
properties that fail to match our intuition on randomness, a view also supported
by the existence of left-c.e. ML-random sets. These particular properties are
already incompatible with the somewhat stronger notion of weak 2-randomness
introduced in 3.6.1 below. Ultimately, the reason why the coding is possible for
ML-random sets, but not for sets satisfying a stronger randomness property, is
that MLR contains a I1{ class of positive measure, for instance 2% — R;. We will
provide a mechanism for encoding a set A into members of such a II{ class. It
relies on a simple measure theoretic lemma. Recall from 1.9.3 that for measurable
S C 2N \(S]z) is the local measure 2/?/\(S N [z]). For each n, AS is the average,
over all strings z of length n, of the local measures A(S]z).

3.3.1 Lemma. Suppose that S C 2" is measurable and A(S|z) > 2=+ where
r € N. Then there are distinct strings yo,y1 = «, |y;| = |z| + r + 2, such that
ASlys) > 270+ fori=0,1.

Proof. We may assume that ©+ = @. Let yo be a string of length r + 2 such that
A(S|yo) is greatest among those strings. Assume that A\(S|y) < 27("*2) for each
y # yo of length r + 2. Then

AS= DT MSNE) =AMSO)+ Y. AMSN)

lyl=r+2 y#yo&|y|=r+2
S 2—(T+2) + (2T+2 _ 1)2—(T+2)2—(7+2) < 2—(7"-‘,—1). &

3.3.2 Theorem. Let Q be a nonempty 11§ class of ML-random sets. Then for
each set A there is Z € Q such that A <y Z <y A® V. The wtt-reductions
are independent A.
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Proof. Since AQ > 0, by Theorem 1.9.4 there is a string o such that A(Q | o) >
1/2, so we may as well assume that AQ > 1/2. Let f be the function given by
F(0)=0and f(r+1)= f(r)+r+2 (namely, f(r) =r(r +3)/2). Let Q be the
I19 class of paths through the II) tree

T ={y: Vrf(r) <lyl — AQIyIsw)) =27V} (3.4)

Note that @ C @. Since AQ > 1/2, by Lemma 3.3.1 @ is nonempty.

The set Z will be a member of @ Suppose that so far we have coded A [,
into the initial segment = of Z of length f(r). The idea is to code A(r) into
the initial segment of length k = f(r + 1), as follows: if A(r) = 0, Z takes the
leftmost length k extension of x which is on @, otherwise it takes the rightmost
one. By the lemma above, these two extensions are distinct. Knowing Z [, we
may enumerate the complement of () till we see which case applies. In this way
we determine A(r).

The details are as follows. We define strings (z+),c0,1}+ on Q such that |z, | =

f(7D). Let 2y = @. If x; has been defined, let 2,9 be the leftmost y on @
such that . < y and |y| = f(|7] + 1), and let 21 be the rightmost such y. By
Lemma 3.3.1, x,¢ and 1 exist and are distinct.

For each A, the ML-random set Z coding A simply is the path (J._ 4 7 of T
determined by A.

Firstly, we describe a reduction procedure for A <, Z, where f(r+1) bounds
the use for input 7. To determine A(r) let 2 = Z [ 4,y and y = Z [(,41). Find s
such that

QsN[{vza: b=yl &v<py}]*=0,or
QsNfvza: =yl &v>py}]~ =0
In the first case, output 0. In the second case, output 1.

Next we check that Z <., A ® (. Suppose that 2 = Z [ () has been deter-
mined. If A(r) = 0, with (' as an oracle find the leftmost extension y of z on
Q such that |y| = f(r + 1). Otherwise, with  as an oracle find the rightmost
such extension y of z. Then y = Z [f(,11. Clearly the use on (" is bounded by
a computable function. Also, the wtt-reductions employed do not depend on the
particular set A. O

For oracles other than Z, the search in the reduction procedure for A <, Z may not
terminate. Recall from 1.2.20 that a Turing reduction is called a truth-table reduction
if it is total for all oracles. In Theorem 4.3.9 below we show that  £; Z for each
ML-random Z. So the wtt-reduction obtained above must be partial for some oracles.

In the exercises we indicate a proof of Theorem 3.3.2 for @ = 2N — R, closer to
Kucera’s original proof, avoiding the class Q. Kucera actually did not use K for his
coding. He used an idea taken from the proof of Gédel’s incompleteness theorem. A
similar coding works for the II9 class of two-valued d.n.c. functions from Fact 1.8.31.
The proof of Gacs (1986) used martingales. We will apply his method in Lemma 7.5.6.

Exercises.

3.3.3° Show that given an effective listing (P¢)cen of IIY classes, one may effectively
obtain a constant ¢ € N such that A(P° N Q) < 27K~ . penQ =9.
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Hint. Use Theorem 2.2.17 and Remark 2.2.21.

3.3.4. Show that there is ¢ € N such that if z is on Q then A(Q N [z]) > 27 K@) e,

Now let h(n) = 2log(n) + n + ckx, where by Proposition 2.2.8 the constant cx is
chosen so that Vz [K (z) < h(|z|)]. Then A([z] N Q) > 27 "I=D for every = on Q. Hence
there are distinct strings yo,y1 > x on @ such that |yo| = |y1| = h(|z]). Use this to
define (z),e{0,13+ on Q as before, where |z-| = {17 (0).

Autoreducibility and indifferent sets x

A is called autoreducible (Trahtenbrot, 1970) if there is a Turing functional ®
such that

Vo [A(x) = P(A — {z};2)]. (3.5)

Thus one can determine A(z) via queries to A itself, but distinct from . Intu-
itively, A is redundant. For example, each set Y & Y is autoreducible via the
functional ® defined by ®(A4;2n+a) = A2n+1—a) (n € N,a € {0,1}). Thus
each many-one degree contains an autoreducible set.

Autoreducibility is a bit like the following hat game. Players sit around a table. Each
one has to determine the color of his hat. A player cannot see his own hat, only the
hats of the other people. He has to derive his hat color from this information and some
known assumptions about the distribution of hat colors.

3.3.5 Proposition. Some low c.e. set A is not autoreducible.

Proof sketch. To ensure that A is not autoreducible, we meet the requirements
P.: Jx-A(x) = O (A — {a}; x).
The P.-strategy is as follows.

(1) Choose a large number x.

(2) When ®.(A — {z};2) = 0 enumerate z into A and initialize the strategies
for weaker priority requirements P;, ¢ > e. The initialization is an attempt to
preserve the computation ®.(A — {z};x) = 0.

To make A low we satisfy the usual lowness requirements (1.10) on page 32.
This merely needs some extra initialization of the P, strategies. O

In the following, for a string o, i < |o|, and h € {0,1}, we let o[¢i < h] denote
the string where the bit at position ¢ has been changed to h. Below, this notation
will be extended in the obvious way to sets Z instead of strings, and to changes
of several bits.

Our intuition is that being random is opposite to having redundancy. Martin-
Lof random sets live up to our expectations here.

3.3.6 Proposition. No ML-random set is autoreducible.

Proof. Given a Turing functional ®, we define a ML-test (Vi )men in such a way that
any set that is autoreducible via ® fails the test. (In fact a set Z fails the test already
if Z(z) = ®(Z — {z}; z) for infinitely many z.)

Let Vin = [Sm]™ where Sy = {@} and, for m > 1, S, is the set of minimal strings in
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{o: o < ... <a:m[x0=()&xm:|a| &
Vi <m[®,)(ofz; — 0] oy 2:) = o(z)]] }.

Thus, for each i < m, ® computes o(x;) using o [.,,, as an oracle, but substituting
the answer 0 if the query is o(z;). Note that (Sm)men is uniformly c.e., and for each
m >0 and o € Sy, we have A(Sm41 | 0) < 1/2. Thus

ASmi1 =Y es,, 27 IA(Smr1 [ 0) < (ASm)/2,

whence AS,, <27 for each m. O

Figueira, Miller and Nies (20xx) proved that for each ML-random set Z there
is an infinite set I C N such that Z remains ML-random when some bits with
position in I are changed. For a class C, a set Z € C and a further set I, we say
that [ is indifferent for Z with respect to C if each set Y that agrees with Z on
N — 7 is in C. We want to show that for every ML-random Z there is an infinite
set I that is indifferent for Z with respect to being ML-random. To do so, we
choose b such that Z € P = 2N — R, and apply the following result.

3.3.7 Theorem. Let P be a 119 class and suppose Z € P is not autoreducible.
Then there is an infinite set I <7 Z' that is indifferent for Z with respect to P.

Proof. Recall from page 48 that for a closed set Q and a string x, we say that x is
on Q if [x] N Q # 0. First let us show that there is a number n such that the singleton
set {n} is indifferent for Z with respect to P. Assume not, then, for each x, one of Z
and Z[z < 1—Z(x)] (the set where the bit in position x has been changed) is not in P.
This allows us to compute Z(z) from Z — {z} as follows: search for s > x such that
Zlx — 1]1s& Ps or Z[x < 0] [s¢ Ps. In the first case output 0, in the second case 1.

An infinite set I = {ng < n1 < ...} that is indifferent for Z with respect to P can
now be determined recursively. Suppose k > 0 and we already have an indifferent set
{no < ... <ni}. Then Z is a member of the 19 class

Qr = {Y: Y np41=Z [ny+1 & Vao,...,ar € {0,1}Y[’I’Lo — A0, ... N — ak-] S P}
By the argument above let ni41 be an indifferent number for Z with respect to Q.
Then ngy1 > ny since all the sets Y € Qr extend Z [, 41.

To see that the whole set I is indifferent for Z with respect to P we use that P is
closed: suppose Y is obtained from Z by replacing the bit Z(n;) by a;. For each k, the
set Yy = Z[no < ao,...,n, < ax] isin P, and the distance d(Y%,Y") (see Exercise 1.8.7)
is at most 27"*+1. Thus Y € P.

Finally, we verify that I <r Z’: let Q—_1 = P. To compute ng,n1,... recursively
from Z’, note that if £ > —1, then ng is the least n such that

Vs (Z[n «— 0]1s€ Qr,s & Z[n — 1] [s€ Qk,s)-

Hence ny41 can be computed from an index for the II{ class Qi using Z’ as an oracle.
Next, from njy+1 we may find an index for Q41 using Z as an oracle. O

3.4 Martin-Lof randomness relative to an oracle

Most of the concepts introduced in Chapter 2, and so far in this chapter, are
ultimately defined in terms of computations, and hence can be viewed relative
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to an oracle. In this section we study these concepts in relativized forms. For
instance, we interpret the definition of ML-randomness in 3.2.1 relative to an
oracle A:

(1) A ML-test relative to A is a sequence (G2 ),,en of uniformly c.e. relative to A
open sets such that Vm € N )\G;;‘l <27™,

(ii) Z C N fails the test if Z € N, G4.

(iii) Z is ML-random relative to A, or ML-random in A, if Z passes each ML-test
relative to A. MLR? denotes the class of sets that are ML-random relative to A.

Note that MLR? is conull and MLR® C MLR for each A. More generally, for
each A,B we have B <pr A — MLRZ O MLR%: the stronger the oracle is
computationally, the stronger are the tests, and therefore the harder for a set to
escape them.

In this section we study relative randomness as a binary relation between sets Z
and A. An important fact is the symmetry of relative randomness, Theorem 3.4.6.
Moreover, in Theorem 5.1.22 of Section 5.1 we consider the situation that some
set Z is ML-random in A and also Z >7 A. We show that this is a strong lowness
property of a set A.

In Section 3.6 we fix A; mostly A will be §*~V for some n > 0:

3.4.1 Definition. Let n > 0. A set Z is called n-random if Z is ML-random
relative to (=1,

Thus, 1-randomness is the same as ML-randomness. Recall that 1-random sets
may fail to match our intuition of randomness because of facts like the Kucera-
Gécs Theorem 3.3.2, or the existence of a left-c.e. ML-random set. In Section 3.6
we will see that both concerns are no longer valid for 2-randomness.

We can also fix a ML-random set Z and consider the class of oracles A such
that Z is ML-random in A. For Z = ) this yields the lowness property of being
low for €2, defined in 3.6.17 and studied in Section 8.1.

Relativizing C and K

A Turing functional viewed as a partial map M : 28 x {0, 1}* — {0, 1}* is called
an oracle machine. Thus, M is an oracle machine if there is ¢ € N such that
M(A, o) ~ ®4(0) for each oracle A and string 0. We extend Definition 2.1.2,
namely, we let VA(0°~11p) ~ ®4(p), for each set A, each e > 0, and p € {0,1}*.
We write C4(z) for the length of a shortest string o such that VA(o) = .

3.4.2 Definition. (i) A prefiz-free oracle machine is an oracle machine M such
that, for each set A, the domain of M4 is prefix-free. We let Q4 = A\(dom M*4).
K4 (z) denotes the length of a shortest string o such that M4 (o) = .

(ii) A prefix-free oracle machine R is optimal if for each prefix-free oracle ma-
chine M there is a constant ep; such that VAVz [Kpa(x) < Kpra(z) + enm].
Thus, the coding constant is independent of the oracle.

To show that an optimal prefix-free oracle machine exists, we view the proof
of Proposition 2.2.7 relative to an oracle A. We may in fact relativize Theo-
rem 2.2.9, using the Recursion Theorem in its version 1.2.10. Thus, there is an
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optimal prefix-free oracle machine U such that, where K“(z) = Kya(z), we have
Vo[KA(x) < KA(|2|) + |z| + 1]. We let

Q4 = A[dom UA]~. (3.6)

The notation Q4 is short for Q{}. By the definition of U as an oracle machine,
for each prefix-free oracle machine M there is d > 1 such that

VX Vp [MX(p) ~ TUX (0 11p)]. (3.7)

We say that d is a coding constant for M (with respect to U).

Exercises. For a string a, C*(z) denotes the length of a shortest string o such that
V(o) = z, and K*(x) denotes the length of a shortest string o such that U% (o) = =.

3.4.3. (i) Show that C(x | ) <T C®(z). (ii) Show that for each n there is v of length n
such that C*(n) >* C(n) (while C(n | o) = O(1)).

3.4.4. Show that for each A, B such that A <7 B we have 3dVy K?(y) < K*(y) +d.

Basics of relative ML-randomness

The relativized form of Theorem 3.2.9 is:
Z is ML-random relative to A < 3bVn KA(Z,) >n —b.

In other words, (Ri')pen is a universal ML-test relative to A, where R = [{z €
{0,1}* : K4(x) < |z| — b}]~. We obtain examples of sets that are ML-random
relative to A by relativizing the results on page 108. In particular, Q4 defined
in (3.6) is ML-random in A.

Fact 3.2.2 that no computable set is ML-random can be relativized:

3.4.5 Fact. If Z <t A then Z is not ML-random relative to A.

Proof. Suppose Z = ®4 for a Turing reduction ®. Let G2 = [®4 [,,], then
(G2 )men is a ML-test relative to A and Z € ), G4. O

Symmetry of relative Martin-Léf randomness

Perhaps the most important fact on relative ML-randomness as a relation on
sets is the theorem of van Lambalgen (1987) that A @ B is ML-random < B is
ML-random and A is ML-random relative to B. By Proposition 3.2.16 A ® B
is ML-random < B @ A is ML-random. So, we also have that A @ B is ML-
random < A is ML-random and B is ML-random relative to A. Thus, relative
ML-randomness is a symmetric relationship between sets A and B that are both
ML-random: A is ML-random in B < B is ML-random in A. This is surprising
because on the left side we consider the randomness aspect of A and on the right
side its computational power.

3.4.6 Theorem. Let A,B C N. Then A®B is ML-random < B is ML-random
and A is ML-random relative to B.
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Proof. =: For a string 8 we let RY = [{z € {0,1}*: K?(z) < |z| —b}]%. Asin
the proof of Proposition 3.2.7 we have /\’Rf < 27 for each string 3. (We could
also use some other universal oracle ML-test here.)

If A® B is ML-random then B is ML-random by Proposition 3.2.16, where the
computable one-one function f is given by f(n) = 2n + 1.

Suppose that A is not ML-random in B. Then A € ), Rf . We show that
A® B € (), Gy for some ML-test (Gy)pen. For each b,n € N let

Gy(n) =[{u®dB: |u| =8| =n & 3z KuK?(z) < |z| - b}]~.
Then Gp(n) is a c.e. open set uniformly in b and n, and
AGy(n) < 32527 "ARY [18] = n] < 27°.
Clearly Gy(n) € Gyp(n + 1) for each n. Let G, = |J,, Go(n), then (Gp)pen is a
ML-test. If A € (), RE then for each b there is z < A such that KZ(z) < |z|—b,
and thus KB (x) < |z| — b for some n > |z|. Then A ® B € Gy(n).
<«: Suppose A® B is not ML-random, then A@ B € [, Vi for a ML-test (Vi) aen
such that AV < 2724 for each d. Firstly, we build a Solovay test (Sq)gen in an
attempt to show that B is not ML-random. For a string x let [} & z] denote the
clopen set {Yo®Y1: 2 <Y1}, Let
Sa=U{la] : AVan D@ a]) > 274711}

By Fact 1.9.16, S, is a c.e. open set uniformly in d. We claim that A\Sy < 2.
Let (x;) be a listing of the minimal strings x (under the prefix relation) such
that A(Vy N [0 @ 2]) > 2747171, Then S; = |J,[2;]. Since the sets V; N [0 & ;]
are pairwise disjoint and AV < 2724 we see that > 2-d=l=:l < 2-24 and hence
ASg =3, 27 Il <274,

If B € Sy for infinitely many d then B fails the Solovay test, and hence is not
ML-random. Now suppose there is dg such that B ¢ Sy for all d > dy. Let

Hin)=[{w:|lw=n& [we B, C Vi~

Then AHy(n) < 27% for each d > d since B € Sy. Moreover Hy(n) C Hg(n+ 1)
for each n. Let Hy = |, Ha(n), then AHy < 277 and Hy is a c.e. open set
relative to B uniformly in d. Since A € Hy for each d > dy, A is not ML-random
relative to B. O

Since MLR? is conull for each A, the symmetry of relative ML-randomness
shows that a ML-random set is ML-random relative to almost every set:

3.4.7 Corollary. For ML-random A, X{B: A is ML-random in B} = 1. m

The following is an immediate consequence of the implication “=” in Theo-
rem 3.4.6 and Fact 3.4.5. It yields an alternative proof of the Kleene—Post The-
orem 1.6.1, and shows that no ML-random set is of minimal Turing degree.

3.4.8 Corollary. If A® B is ML-random then A |r B. O

The van Lambalgen Theorem holds for k-randomness (kK > 1), as well as for the
notions of II}-ML-randomness and ITi-randomness introduced in Chapter 9. However,
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it also fails for some important randomness notions, such as Schnorr randomness (3.5.8).
See Remark 3.5.22.

3.4.92 Exercise. Let k > 1. Then A @ B is k-random < B is k-random and A is
ML-random relative to B%*~Y (that is, A is k-random relative to B).

Computational complexity, and relative randomness

We prove two results of independent interest that will also be applied later. They
are due to Nies, Stephan and Terwijn (2005).

In 3.2.10 we built a (super)low ML-random set by applying the Low Basis
Theorem in the version 1.8.38 to the 19 class 2% — R;. The proof of 1.8.38 is
an explicit construction of the low set. We may also obtain a low ML-random
set A by a direct definition: take as A the bits in the odd positions of any
ML-random A set, say Q. Such a set is low by the following more general
fact which also applies to sets A not in A9. Recall from Definition 1.5.4 that
GL1 = {A A’ =7 A D wl}

3.4.10 Proposition. If some AY set Z is ML-random in A then A is in GL;.
Proof. Fix a computable approximation (Z;);cn of Z (see Definition 1.4.1). Let

f: N — N be the function given by f(r) = usVt > s [Z; | r = Zs | r]. Recall
that J4(e) ~ ®4(e). Let G be the open set, uniformly c.e. in A, given by

& _ [Zs. les1] if s is the stage at which J4(e) converges
c)e if JA(e)T .

Let G, = U CA;'@, then (Gp)nen is a ML-test relative to A. Since Z ¢ (), G,

only finitely many of the G, contain Z. Thus f(e) > s, for almost all e such that
JA(e) |. Hence, for almost all e, we have J4(e) |« J]’f‘(e)(e) 1. Since f <7 0/, this
implies that A" <r A& (/. (Also see Exercise 4.1.14.) O

e>n

3.4.11 Corollary. Suppose the A set A = Ag @© Ay is ML-random.
Then Ay and Aq are low.

Proof. The A§ set A; is ML-random in Ay by Theorem 3.4.6. Thus Ay is in GLy,
and hence Ag is low. The same argument applies to A;. O

In 3.4.17 we proved that Q% is high. So a high set can be in GL;:
3.4.12 Corollary. O s in GL;.

Proof. Q% is ML-random relative to ¢/ =7 €, so by Theorem 3.4.6 Q is ML-
random relative to Q¥ . Thus Q% is in GL, by Proposition 3.4.10. O

Our second result will be applied, for instance, in the proof of Theorem 5.1.19.

3.4.13 Proposition. Let B be c.e., Z be ML-random, and suppose that
0 L7 B@® Z. Then Z is ML-random relative to B.
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Proof idea. Suppose Z is not ML-random relative to B. Thus Z € [,y RdB.
Since B @ Z %7 (', infinitely many numbers = enter () after a stage where Z
enters RZ with B correct on the use. This allows us to convert (R%)4en into an
unrelativized ML-test (Sg)4en such that Z fails this test.

Proof details. Let RZ[s] = [{z: KP:(x) <|z| — d}]= be the approximation of
RE at stage s. Notice that ARZ[s] < 274 for each s. An enumeration of Z into
Rdy at a stage s is due to a computation UY (¢) = z where z < Z converging
at s, and hence has an associated use on the oracle Y. The following function is
computable in B ® Z:
f(z) = ps. Z € RB[s] with use u & Bs [u= B [4].

Because By [,= B [, we have Z € RP[t] for all t > s (here we need that B
is c.e., not merely AY). Let m(z) ~ ps.z € (). Then 3%z € ( [m(z) > f(z)],
otherwise one could compute @' from B & Z because, for almost all z, z € ' «
@ € 0y, Let Sy = U, ~4 RZ [m()]. The sequence (Sq)aen is uniformly c.e., and
pSq < 274 Also, Z € (), Sa because m(z) > f(x) for infinitely many z. This
contradicts the assumption that Z is ML-random. |
3.4.14 Exercise. In 3.4.10, if in addition Z is w-c.e. and A is c.e., then A is superlow.

3.4.15° Problem. Determine whether Qy can be superlow for some optimal machine.

The halting probability Q2 relative to an oracle

Recall from (3.6) that Q4 = A\[dom U4]=. We study the operator 2V — R given
by A+ Q4. The results are from Downey, Hirschfeldt, Miller and Nies (2005).
We begin with some observations on the computational complexity of Q4.

3.4.16 Fact. A’ =1 A® QA for each set A.
Proof. By Proposition 3.2.30 ' =1 Q, so A’ <p A® Q4 by relativization. On

the other hand A’ >7 A & Q4 since Q4 is left-c.e. relative to A. O
3.4.17 Proposition. If a AY set A is high then Q4 is high.
Proof. By the foregoing fact, (" < A’ =7 A® Q4 < (Q4). O

Recall from 3.4.2 that 24, = A\(dom M#) for a prefix-free oracle machine M.
For a string o we let Qf, = A(dom M7). Some facts below hold for all the
operators €5;, while at other times it is crucial that the prefix-free machine be
optimal.

3.4.18 Proposition. For each prefiz-free oracle machine M, the real numbers
ro = inf{Q,: X € 2} and r1 = sup{Q3: X € 2V} are left-c.e.

Proof. For any rational g € [0,1] we have ¢ < rg < the IIY class {X: Q% < ¢}
is empty, which is a X9 property of ¢ by Fact 1.8.28. Next, ¢ < 71 < Jp[q < Q]
which is a X{ property of ¢ as well. O

In Theorem 8.1.2 we will show that the infimum r( is assumed; in fact, there is
a left-39 set A such that Qﬁ = rg. Downey, Hirschfeldt, Miller and Nies (2005)
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proved in their Corollary 9.5 that for M = U the supremum is assumed by a
left-Y9 set as well. In general, operators 23 do not assume their supremum; see
Exercise 3.4.21.

An operator F: 2 — R is called lower semicontinuous at A if for all € > 0
there is n € N such that VX = AT, [F(X) > F(A)—¢]. Dually, F is called upper
semicontinuous at A if for all € > 0 there is n € N such that VX > A, [F(X) <
F(A) + €. Clearly, F is continuous at A iff F' is both lower semicontinuous and
upper semicontinuous at A.

3.4.19 Fact. Let M be a prefiz-free oracle machine. Then the operator Qpr is
lower semicontinuous at every set A € 2N,

Proof. By the use principle, for each set A,
Ve > 03k e N [Q1, — Qb < €. (3.8)

Hence Q4 — e < Q3 for every X = A[}. O

In the following we characterize the class of sets A such that the operator
X — QX is continuous at A as the 1-generic sets introduced in 1.8.51.

3.4.20 Theorem. A is I-generic < the operator X — QX is continuous at A.

Proof. =: This implication actually holds for Q; where M is any prefix-free
oracle machine. Since 2, is lower semicontinuous at every set, it suffices to show
that Qp; is upper semicontinuous at A. Suppose this fails for the rational €. Let
r < Q4 be a rational such that Q4;, — r < e. For each n there is X = A[, such
that Q7 > Q4 + € > r + €. Thus the following c.e. open set is dense along A:

S={X:3t[Qy, >r+€},

where Q3 , = A[dom M;¥]=. Hence A € S. This implies Qf > r+e> Q4
contradiction.

<: We assume that A is not 1-generic and show that there is € > 0 such that
Yn3X = Al, [ > Q4 + ¢]. Let the c.e. open S be dense along A but A ¢ S.
Let NX be the prefix-free oracle machine such that N (o) | at the first stage
such that [X ;] C S;. Let d > 1 be the coding constant for N with respect to U
according to (3.7), and let ¢ = 27471, Choose k as in (3.8) for ¢ and M = U.
Since N4 is nowhere defined, UAI*(09=11p) 1 for each string p. On the other
hand, since S is dense along A, for each n > k there is a set X > A [, such that
X € S. Then NX (@), so QX > QAF £ 2¢ > Q4 4. O

Since the implication from left to right holds for every prefix-free oracle machine M,
we have also proved that A is 1-generic < for any prefix-free oracle machine M, Q3 is
continuous at A. We call a prefix-free oracle machine R uniformly optimal if for each
prefix-free oracle machine N there is a fixed a such that VX Vp[N*(p) ~ R*(ap)].
The implication from right to left in 3.4.20 used that U is uniformly optimal.

Theorems 5.5.14 and 8.1.2 provide further results about the operators Qas.
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Exercises.

3.4.21. Give an example of a prefix-free oracle machine M such that

r1 = sup{Q3;: X € 2"} is not assumed.

3.4.22. Show that for a prefix-free oracle machine M, if Q% = sup{Qy: X e 2V},
then the operator 2/ is continuous at A.

3.4.23. Show that the ML-random real 1 — € is not of the form Q* for any set A.

3.5 Notions weaker than ML-randomness

On page 104 we discussed two criticisms of the notion of ML-randomness.

1. Schnorr (1971) maintained that Martin-Lof tests are too powerful to be
considered algorithmic. He suggested to study randomness notions weaker
than ML-randomness.

2. ML-random sets can be left-c.e., and each set Y >7 (' is Turing equivalent
to a ML-random set. This is not consistent with our intuition on random-
ness. Thus, from an opposite point of view it also makes sense to consider
randomness notions stronger than ML-randomness.

In this and the next section we vary the notion of a ML-test in order to in-
troduce randomness notions that address these criticisms. Table 3.1 summarizes
the three main variants of the concept of a ML-test, and names the correspond-
ing randomness notions. Each time, the tests are u.c.e. sequences of open sets
(Gm)men such that ﬂm G, is a null class, possibly with some extra conditions
on the effectivity of a presentation, and how fast A\G,, converges to 0.

TABLE 3.1. Variants of the concept of ML-test. Throughout (G,,)men is a uni-
formly c.e. sequence of open sets.

Test notion Definition Randomness notion

Kurtz test (Gm)men is an effective sequence of (weakly random)
clopen sets such that A\G,,, < 2™™

Schnorr test MG, < 27™ is a computable real Schnorr random
uniformly in m

Martin-Lof YmAG,, <2°™ Martin-Lof random

test

Generalized N,,, Gm is a null class weakly 2-random

ML-test

As before, we say that a set Z fails the test if Z € (), Gp. Otherwise Z
passes the test. Schnorr tests are the Martin-Lof tests where AG,,, is computable
uniformly in m. The corresponding randomness notion is called Schnorr ran-
domness. We begin with the most restricted test concept, Kurtz tests, where the
sets G, are clopen sets given by a strong index for a finite set. The corresponding
property will be called weak randomness.

The implications between the notions are
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ML-random = Schnorr random = weakly random.

The converse implications fail.

Weak randomness

Clopen sets are given by strong indices for finite sets, as explained before 1.8.6.

3.5.1 Definition. A Kurtz test is an effective sequence (G, )men of clopen sets
such that Vm AG,, < 27™. Z is weakly random if it passes each Kurtz test.

Kurtz tests are equivalent to null I1{ classes in a uniform way. Thus, a set is
weakly random if and only if it avoids all null IT{ classes.

3.5.2 Fact.

(i) If (Gim)men is a Kurtz test then P =, Gy, is a null I1Y class.
(i) If P is a null 119 class then P =, Gy for some Kurtz test (G )men-

Proof. (i) The tree {z: Vm [z] N G,, # 0} has a c.e. complement in {0,1}*.
Thus P is a I1Y class (see Definition 1.8.19).
(ii) The test obtained in 3.2.2 is a Kurtz test as required. O

A weakly random set Z is incomputable, otherwise Z would be a member of the
null 19 class given in 3.2.2.

3.5.3 Remark. Weak randomness behaves differently depending on whether
the set is of hyperimmune degree or computably dominated.

(i) Each hyperimmune degree contains a weakly 1-generic set by 1.8.50. The
law of large numbers (see 3.2.12) may fail for such a set. Weak 1-genericity
implies weak randomness. Thus, each hyperimmune degree contains a weak-
ly random set that is far from being random in the intuitive sense.

(ii) If a weakly random set is computably dominated then this set is ML-
random, and in fact weakly 2-random.

We discuss (i) here, and postpone (ii) to Proposition 3.6.4.
3.5.4 Fact. Fach weakly 1-generic set is weakly random.

Proof. Each conull open set D is dense, for otherwise D N [z] = ) for some
string z, whence AD < 1 — 271?l < 1. By the definition, a set G is weakly 1-
generic iff G is in every dense c.e. open set. So no weakly 1-generic set is in a
null T1Y class. O

3.5.5 Proposition. The law of large numbers fails for every weakly 1-generic
set Z. In fact, liminf, (#{i <n: Z(i) =1}/n) = 0.

Proof. Given k > 0, consider the function f(m) = (k — 1)m. As in the proof
of Proposition 1.8.48 let D; be the dense c.e. open set [{c07(7): ¢ £ &}]=.
There is a string o of length m such that ¢0*~D™ < Z, so for n = km we have
#li<n: Z(i)=1}/n<1/k. O
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A similar argument shows that limsup,, (#{i <n: Z(i) = 1}/n) = 1. Thus the
number of occurrences of zeros and ones is highly unbalanced. We conclude that
weak randomness is indeed too weak to be considered a genuine mathematical
randomness notion.

Exercises.

3.5.6. Recall from Theorem 1.8.49 that a weakly 1-generic set can be left-c.e. However,
it is far from being c.e.: show that no c.e. set B is weakly random.

3.5.7. We say that Z is ranked if Z is a member of a countable II{ class. (Such a set
is far from even being weakly random.) Use Theorem 3.3.7 to show that each ranked
set is autoreducible.

Schnorr randomness

Even if Schnorr randomness is a weaker notion, its theory parallels the theory
of Martin-Lof randomness. Firstly we study Schnorr tests. Secondly we consider
computable measure machines. They are the prefix-free machines with a com-
putable halting probability. We show that each Schnorr test can be emulated
by a computable measure machine, which leads to a characterization of Schnorr
randomness in terms of the growth of initial segment complexity similar to The-
orem 3.2.9. We use this to extend statistical properties of ML-random sets, such
as the law of large numbers, to the case of Schnorr random sets.

A main difference between Martin-Lof randomness and Schnorr randomness is
that, for the latter, there is no universal test.

Schnorr tests. If (Gyn)men is a universal ML-test, then for each m the IIJ class
P =2Y_@,, is contained in MLR, whence AP is ML-random by Theorem 3.2.35.
Thus AG,, is left-c.e. but not computable. Schnorr (1971) introduced a more
restricted test concept:

3.5.8 Definition. A Schnorr test is a ML-test (G, )men such that AG,, is com-
putable uniformly in m. A set Z C N fails the test if Z € ), G1,, otherwise Z
passes the test. Z is Schnorr random if Z passes each Schnorr test.

Each Kurtz test is a Schnorr test, so each Schnorr random set is weakly random.
A computable set is not weakly random, and hence not Schnorr random. On
the other hand, each Schnorr test (G,,)men is passed by a computable set: for
instance, the I19 class 2 — G contains a computable set by Exercise 1.9.21. We
conclude:

3.5.9 Fact. There is no universal Schnorr test. O

If A\G,, is computable uniformly in m then we have better information about
the test than for a ML-test in general, but it does not mean that we “know” the
components G,,. There is a c.e. open set R such that AR is computable while
Apr = {0o: [0] C R} is not computable; see Example 1.9.17. The only tests where
we know everything are the Kurtz tests, but they do not determine a randomness
notion.

By the following we may relax the failure condition in Definition 3.5.8 to the
failure condition for a Solovay test that Z € G; for infinitely many 4.
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3.5.10 Fact. If 3°i[Z € G;] for some Schnorr test (Gi)ien then Z is not
Schnorr random.

Proof. Let G, = U;sm Gi- We show that (@m)meN is a Schnorr test. Clearly

AGm < 27™. To see that AG,y, is uniformly computable, we apply Fact 1.8. 15(111)

given m,r € N, we compute a rational that is within 2771 of )\G . Let Gm s =
Uz>m GZ,S For each i we may compute s; such that A\G; — AG; 5, < 27 =T Let
t = max{s;: i <m+r}, then

MG = MGy <A | (Gi = Giy)

i>m
m—+r
Z 2—1 r + Z —i < 2—7'+1.
1=m-+1 1=m-+r+1
Then Z is not Schnorr random since Z € (), G- O

On the other hand, by the uniformity of Lemma 1.9.19 we may turn a Schnorr
test into one where the measure of the m-th open set is not only uniformly
computable, but in fact it equals 27™.

3.5.11 Fact. For each Schnorr test (Gm)meN, one may effectively find a Schnorr
test (Gm)meN such that Ym Gy, C G, and YmAGy, = 2-™. O

The analog of Proposition 3.2.16 holds by the same proof.

3.5.12 Proposition. Suppose f is a computable one-one function. If Z is
Schnorr random then so is f~*(Z). O

High degrees and Schnorr randomness. We postpone the proof that there is a
Schnorr random, but not ML-random set to Section 7.3, where we actually sepa-
rate computable randomness from ML-randomness. Computable randomness is a
notion defined in terms of computable betting strategies (martingales) which lies
properly in between Schnorr and ML-randomness. We will prove in Section 7.3
that each high Turing degree contains a computably random set, and that each
c.e. high degree contains a left-c.e. computably random set. If this c.e. degree is
Turing incomplete then the set cannot be ML-random by Theorem 4.1.11 below.

On the other hand, if the Turing degree of a set is not high, then Schnorr
randomness is equivalent to ML-randomness. This is an instance of the heuristic
principle that, as we lower the computational complexity of sets, randomness
notions tend to coincide. Such an interaction from the computational complexity
of sets towards randomness already occurred in Remark 3.5.3(ii), that weak
randomness coincides with weak 2-randomness for computably dominated sets.

3.5.13 Proposition. If Z is Schnorr random and not high, then Z is already
Martin-Lof random.
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Proof. Suppose that (Gy,)men is a ML-test such that Z € (), Gr,. Then the
function f given by f(m) ~ ps.Z € G, s is total. Since f <p Z and Z is not
high, by Theorem 1.5.19 there is a computable function h not dominated by f,
namely, 3%¥mh(m) > f(m). Let S,, = Gy p(m), then (Sp)men is a Schnorr
(even Kurtz) test such that Z € Sy, for infinitely many m. Then Z is not Schnorr
random by Fact 3.5.10. O

Computable measure machines

Recall from (2.4) on page 84 that Qy = Adom M]= = Y _27l9I[M(0)]] is
the halting probability of a prefix-free machine M. Downey and Griffiths (2004)
introduced a restricted type of prefix-free machines.

3.5.14 Definition. A prefix-free machine M is called a computable measure
machine if Qs is computable.

(They used the term “computable machines”, but we prefer the present term
because a machine is the same as a partial computable function.) Similar to
Theorem 3.2.9, they characterized Schnorr randomness by a growth condition
on the initial segment complexity. In the case of Schnorr randomness one needs
an infinite collection of descriptive complexity measures for strings, namely all
the functions K, for a computable measure machine M.

Recall that we approximate Ky (x) by K s(x) := min{|o|: M,(o) = z}. For
a computable g such that ¥n g(n) > n we have the time bounded version of Ky
given by K, () = Kp,g(z|) () (similar to the definition of CY on page 81).

3.5.15 Proposition. Suppose that M is a computable measure machine with
range {0,1}*. Then the function Ky is computable. In fact, there is a computable
function g such that Ky = K9,.

Proof. Since Qs is computable, one can determine K/ (z) as follows: compute
the least stage s = s, such that Qpr — Qprs < 27", where n = Ky s(z) < oc.
If a description of length less than n appears after stage s, then this causes an
increase of Qys by at least 27" 1. Thus Ky s(z) = K ().

If we let g(m) = max({m} U {sy: |z| =m}) then Ky = KY,. O

Our principal tool for building prefix-free machines is the Machine Existence
Theorem 2.2.17: from a given bounded request set W one obtains a prefix-free
machine M for W such that s equals wgty, ({0, 1}*), the total weight of W. If
the total weight of W is computable then M is a computable measure machine.

Exercises.
3.5.16. From a computable measure machine M and s, one may effectively obtain

a computable measure machine N such that Qn =1 and Vo Ky (z) < Ku(z).

3.5.17. Let M be a computable measure machine. Show that from r € N one can
compute a strong index for the finite set {y: Ky (y) < r}.
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Schnorr tests can be emulated by computable measure machines

Downey and Griffiths (2004) proved the analog of Schnorr’s Theorem 3.2.9: a
set Z is Schnorr random < for each computable measure machine M there is b
such that each initial segment of Z is b-incompressible in the sense of K. First
we need a lemma saying that the tests (RéV[)beN from Definition 3.2.6, where
M is a computable measure machine, are Schnorr tests that can emulate any
other Schnorr test.

3.5.18 Lemma.

(i) Let M be a computable measure machine. Then (R )pen is a Schnorr test.
(i) Let (Gm)men be a Schnorr test. Then we may effectively obtain a com-
putable measure machine M such that (,, Gm C (), R

Proof. (i) We extend the proof of Proposition 3.2.7 that (RM),en is a ML-test.
It suffices to show that AR} is computable uniformly in b. As before, let V; be
the set of strings in R{J‘/[ which are minimal under the prefix ordering. Let V})]Vf be

the set of minimal strings in Ré‘f[s. Then Qpr — Qprs > 2°(A[VM]S - /\[Vy’\ﬂ*) for

each s. Since )/ is computable, by Fact 1.8.15(iv) this shows that A[V;M]= =
)\Ré‘/[ is computable uniformly in b.

(ii) We extend the proof of (ii)=-(i) in Theorem 3.2.9. Let (G, )men be a Schnorr
test. We may assume that AG,, < 272™ for each m. Let L be the bounded request
set defined as in the proof of Theorem 3.2.9, and let M be the machine obtained
from L via the Machine Existence Theorem 2.2.17. By the construction of L, for
each Z € Gy, thereis x < Z such that Kps(z) < |z| —m+ 1. Therefore it suffices
to show that the total weight « of L is computable and hence M is a computable
measure machine. Recall that the contribution of G,, to the total weight of L is
at most 2~™~!, In the notation of the proof of 3.2.9, let
Ly ={{|2"| = m+ 1,2!") : m € N & i < min(N,,,t)},
and let a; be the total weight of L;. Given r, similar to the proof of Fact 3.5.10,
we compute ¢ such that o — iy < 2771 let G, (u) be the clopen set [{z: k <
min(N,,, u)}]=. For each i, we may compute s; such that A\G; —\G;(s;) < 272",
Let t = max{s;: ¢ <r},thena —a, <y, 277" 143" 2771 <27rfl,
O
The analog of Theorem 3.2.9 for Schnorr randomness is now immediate.

3.5.19 Theorem. The following are equivalent.

(i) Z is Schnorr random.
(i) For each computable measure machine M, 3b¥n Ky (Z [,) > n — b,
that is, 3b Z & RM.

Schnorr random sets satisfy the law of large numbers

To obtain statistical properties of incompressible strings we proved Proposi-
tion 2.5.7 and Corollary 2.5.9. These results have versions for computable mea-
sure machines. They relied on Lemma 2.5.6, so suppose the given set of strings G
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in the lemma is computable. In that case, the proof produces a bounded request
set W with a computable total weight . For, we showed that the weight con-
tributed by each G, n > 10, is at most (n —1)72/2. Now [ 27?dz = 1/r and
hence >, (n—1)72 < 1/r. For r > 10 let the rational a, be the weight
contributed by all the G,,, 10 < n < r 4+ 1. Since G is computable, «, can be
computed from r, and o — o, < 1/(2r).

The sets G in the proofs of Proposition 2.5.7 and of Corollary 2.5.9 are com-
putable. So we may sharpen these results in the sense that the descriptive com-
plexity can be taken relative to computable measure machines:

3.5.20 Proposition. There are computable measure machines M and N with
the following properties.

(i) If x is a string of length n with a run of 4logn zeros then
Ky (z) <t n—logn.

(i) Fiz b. For each d, for almost every n, each string x of length n such that
Ky (z) > n — b satisfies abs(Sy,(z)/n —1/2) < 1/d. O

This leads to the desired statistical properties of Schnorr random sets.
3.5.21 Theorem. Let Z be Schnorr random.

(i) For each n, any run of zeros in Z |, has length < 4logn.
(i) Z satisfies the law of large numbers in 3.2.12.

Proof. Let M, N be the computable measure machines from the previous propo-
sition. By Theorem 3.5.19, there is b € N such that Z ¢ R} and Z € R)Y. Now
(i) and (ii) follow. O
3.5.22 Remark. Stronger results along these lines have been derived. For instance,
the law of iterated logarithm holds for Schnorr random sets. This suggests that the
randomness notion of Schnorr can be seen as a sufficient formalization of the intuitive
concept of randomness as far as statistical properties are concerned. In contrast, Schnorr
random sets can have computability theoretic properties that are not consistent with
our intuitive notion of randomness. For instance, as Kjos-Hanssen has pointed out,
there is a Schnorr random set A = Ay & A1 such that Ag =7 Ai. To see this, let a be
a high minimal Turing degree, which exists by the Cooper Jump Inversion Theorem
(see Lerman 1983, pg. 207). By Theorem 7.5.9 let A € a be Schnorr random. Let
A = Ap @ Ay, then Ag, A; are Schnorr random by 3.5.12; and hence incomputable.
Thus Ag =r Ai. (Since Ap is not Schnorr random relative to Ai, this example also
shows that van Lambalgen’s Theorem 3.4.6 fails for Schnorr randomness.)

3.6 Notions stronger than ML-randomness
In this section we mainly study weak 2-randomness and 2-randomness. The impli-
cations are

2-random =- weakly 2-random = ML-random.

The converse implications fail. The new notions address the second concern out-
lined at the beginning of Section 3.5, that for instance left-c.e. sets should not
be considered random.
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When one is interested in applying concepts related to randomness in com-
putability theory, these notions are less relevant (see the beginning of Chapter 4).
Examples like €2 are important for the interaction in this direction. It is at its
strongest when one considers the AJ sets, and a weakly 2-random set already
forms a minimal pair with (.

In the converse direction, computational complexity is essential for our under-
standing of weak 2-randomness and 2-randomness. Within the ML-random sets,
both notions are characterized by lowness properties: forming a minimal pair
with @’ in the former case, and being low for  in the latter.

An interesting alternative to deal with the second concern at the beginning
of Section 3.5 is Demuth randomness, a further notion between 2-randomness
and ML-randomness. It turns out to be incomparable with weak 2-randomness.
In Theorem 3.6.25 we show that there is a Demuth random AY set, and in
Theorem 3.6.26 that all Demuth random sets are in GL;.

Weak 2-randomness

The concept of a Martin-Lof test was obtained by effectivizing Fact 1.9.9, that
the null classes are the classes contained in (), Gy, for some sequence of open
sets (G )men such that lim,, A\G,, = 0. To be a Martin-Lof-test, the sequence
(Gm)men has to be uniformly c.e. and AG,,, has to converge to 0 effectively. If
one drops the effectivity in the second condition, a strictly stronger randomness
notion is obtained.

3.6.1 Definition. A generalized ML-test is a sequence (G, )men of uniformly
c.e. open sets such that (1), G, is a null class. Z fails the test if Z € ,, G,
otherwise Z passes the test. Z is weakly 2-random if Z passes each generalized
ML-test. Let W2R denote the class of weakly 2-random sets.

By Remark 1.8.58, the null TI9 classes coincide with the intersections of general-
ized ML-tests. To be weakly 2-random means to be in no null ITJ class. This is one
of the conceptually simplest randomness notions we will encounter. Note that, by
Proposition 1.8.60, these tests are determined by computable sets S C {0,1}*,
since each IIJ class is of the form {X: 3°n S(X [,,)} for such an S.

By the following, the ML-random set (2 is not weakly 2-random.

3.6.2 Proposition. If Z is AY then {Z} is a null I3 class. In particular, Z is
not weakly 2-random.

Proof. We will turn a computable approximation (Zs)sen of Z into a generalized
ML-test (Vi )men such that {Z} = (), Vin. We may assume that Z is infinite
and Zp(m) = 0 for each m. To enumerate V,,, for each s > m, if = is least such
that Zs(z) # Zs—1(x), put [Z, [ z] into V;,, 5. To see that {Z} D ), Vin, note
that, if Z [ is stable from stage ¢ on, then for m > ¢, all the strings enumerated
into Vi, extend Z [;. Next we show that Z € ﬂm V. Given m, there is a least x
such that Zs(x) # Zs_1(x) for some s > m. Let s be the greatest such stage for
this . Then Z [x = Z, | x is put into V,,, at stage s. m|
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3.6.3 Corollary. There is no universal generalized ML-test.

Proof. Let (G,,)men be a generalized ML-test, and choose m such that the
19 class P = 2V — G,,, is nonempty. By the Kreisel Basis Theorem 1.8.36, the
leftmost path Z of P is left-c.e. Since Z is not weakly 2-random but passes the
test, the test is not universal. O

How does one obtain a weakly 2-random set? One way is to take a weakly
random computably dominated set, which exists by Theorem 1.8.42. (See Re-
mark 3.5.3 for more details.) Each 2-random set has hyperimmune degree by
Corollary 3.6.15 below, so the example we obtain is not 2-random. The result is
similar to Proposition 3.5.13.

3.6.4 Proposition. If a set Z is computably dominated and weakly random
then Z already is weakly 2-random.

Proof. If Z is not weakly 2-random then Z € (), G, for a generalized ML-
test (Gm)men- As in the proof of Proposition 3.5.13, the function f given by
f(m) = us.Z € Gy, s is total, and f <p Z. There is a computable function
g dominating f. Let Hp, = Gy g(m), then (Hp,)men is a Kurtz test such that
Z €\, Hn- Thus Z is not weakly random. O

Characterizing weak 2-randomness within the ML-random sets. We will later
strengthen Proposition 3.6.2. By Exercise 1.8.65, for each AJ set A and each
Turing functional ® the class {Z: ®Z = A} is II9. In Lemma 5.1.13 below we
show that this class is null for incomputable A. Thus, if Z is weakly 2-random
and A <7 Z,{/ then A is computable. In Theorem 5.3.16 we will prove that this
property characterizes the weakly 2-random sets within the ML-random sets:

Z is weakly 2-random < Z is ML-random and Z, ()’ form a minimal pair.

As a consequence, within the ML-random sets, the weakly 2-random sets are
downward closed under Turing reducibility. The proof is postponed because it
relies on the cost function method of Section 5.3.

One cannot replace the condition that Z and ()’ form a minimal pair by Z |7 §":

3.6.5 Fact. (J. Miller) Some ML-random set Z |p O is not weakly 2-random.

Proof. Let Q4 be the bits of €2 in the even positions, then €y is low by the
comment after Corollary 3.4.11. Let V be a 2-random set such that Qq@V 21 ¢/,
which exists since {X: Qo @ X Z7 0'} is conull. Let Z = Qo @V, then Z |7 @V,
Z is ML-random by 3.4.6, and Z does not form a minimal pair with §’. O

On the other hand, we also cannot expect a stronger condition to characterize

weak 2-randomness within MLR. For instance, each 23 set B >7 (" bounds a
ML-random computably dominated set (and hence a weakly 2-random set) by
Exercise 1.8.46.
Exercises. Firstly, compare weak 2-randomness with weak randomness relative to .
Recall Definition 1.8.59. Each TI(()') class is a I3 class by 1.8.67. Thus, each weakly
2-random set is weakly random relative to (', which yields an alternative proof of
Proposition 3.6.2. The converse fails.
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3.6.6. A set that is weakly random relative to (' can fail the law of large numbers.

Secondly, show that no X9 set is weakly random relative to @'.
3.6.7. If B C N is an infinite 9 set, then {Z: B C Z} is a II9(() null class.

3.6.8% (Barmpalias, Miller and Nies, 20xx) Show that some ML-random set is weakly
random in @’ but not weakly 2-random.

3.6.9° Problem. To what extent does Theorem 3.4.6 hold for weak 2-randomness?

2-randomness and initial segment complexity

In Section 2.5 we formalized randomness for strings by incompressibility. The-
orem 3.2.9 shows that Z is ML-random iff for some b, each x < Z is b-incom-
pressible in the sense of K. In this subsection we study 2-randomness, that is,
ML-randomness relative to (' (Definition 3.4.1). The main goal is a characteri-
zation based on the incompressibility of initial segments. Relativizing Schnorr’s
Theorem to (', a set Z is 2-random iff for some b, each & < Z is b-incompressible
in the sense of K% . This is not very satisfying, though: we would rather like a
characterization based on the incompressibility of initial segments x with respect
to an unrelativized complexity measure such as C. One cannot require that for
some b, all x < Z are b-incompressible in the sense of C'. Such sets do not exist
because of the complexity dips of C' in Proposition 2.2.1. Surprisingly, the weaker
condition that
(%) for some b, infinitely many x < Z are b-incompressiblex
precisely characterizes the 2-random sets. This property was studied by Li and
Vitdnyi (1997). Each set satisfying (%) is ML-random, because each prefix of
an incompressiblec string is incompressiblex (see 2.5.4 for the detailed form of
this statement). On the other hand, Ding, Downey and Yu (2004) proved that
each 3-random set satisfies (). The equivalence of 2-randomness and (x) is now
obtained by extending the arguments in both proofs in such a way that they
work with 2-randomness.

Two variants of (x) will be considered using different notions of incompress-
ibility. The first appears weaker, the second stronger.

1. Recall from page 81 that for a computable function g we defined
CY(xz) = min{ |o|: V(o) =z in g(|z|) steps}. (3.9)

The first variant of (x) is to require that for some b, infinitely many z < Z
are b-incompressible with respect to C9, for an appropriate fixed g (which un-
der an additional assumption on V can be chosen in O(n?)). This is actually
equivalent to 2-randomness of Z. Using this fact and that C'Y is computable, we
give a short proof of the result by Kurtz (1981) that no 2-random set is com-
putably dominated. This shows that 2-randomness is indeed stronger than weak
2-randomness, because a weakly 2-random set can be computably dominated by
Proposition 3.6.4. (By Exercise 3.6.22, there is also a weakly 2-random set of
hyperimmune Turing degree that is not 2-random.)
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2. For the second variant, recall from 2.5.2 that x is strongly d-incompressibley
if K(x) is within d of its maximum possible value |z| + K(|z|) + 1, and that
being strongly incompressiblex implies being incompressiblec. The second vari-
ant of (x) is to require that for some b, infinitely many = < Z are strongly b-
incompressibleg . J. Miller proved that, once again, this seemingly stronger con-
dition is actually equivalent to 2-randomness of Z. See Theorem 8.1.14.

We now prove that Z is 2-random < Z it satisfies (x) above. This is due to
Nies, Stephan and Terwijn (2005); the implication “<” was also independently
and slightly earlier obtained by Miller (2004).

3.6.10 Theorem. Z is 2-random < 3b 3°n [C(Z],) > n —b].

Proof. =: Firstly, we will sketch a proof of the easier result of Ding, Downey
and Yu (2004) that any 3-random set Z satisfies (x). If (x) fails then Z € ", V4,
where V, = U, Pot, and Py = {X: Vn >t [C(X n) < n— b]} Note that
APy, < 271 for each t. Hence A\V;, < 27+ as B, C P, ;41 for each t. The
class Vj is ¥9. Tt is not open, but can be enlarged in an effective way to an open
class Vj, that is £ relative to €’ (the function C' is identified with its graph) and
has at most twice the measure of V. Then Z fails (Vb+2)beN which is a ML-test
relative to C' =¢ (.

In order to obtain a ML-test relative to (’ we introduce a concept of indepen-
dent interest. A function F: {0,1}* — {0,1}* is called compression function
if F is one-one and Vz [F(z) < C(x)], where F(z) = |F(z)|. For instance, if, for
each z, F(x) is a shortest V-description of z, then F' is a compression function
such that F (z) = C(z). The idea is to replace in the argument sketched above C
by F for a compression function F' such that F’ =7 (/. In this way we obtain a
ML-test relative to () (and not ("). For the duration of this proof we say that a
set Z is complex for F if there is b € N such that F(Z In) > n — b for infinitely
many n. If Z is complex for F' then (%) holds. We now extend the argument
above to an arbitrary compression function.

3.6.11 Lemma. Let F be a compression function. Suppose that Z is not complex
for F', namely, R
VbItVn >t [F(Z [n) >mn— b]. (3.10)

Then Z is not ML-random relative to F'.
Subproof. We identify F' with its graph {(n,m): F(n) = m}. Let
Py ={X: Vn>t[F(X,) <n-b]},

then P, ¢ is a I1{ class relative to F uniformly in b, ¢. By (3.10), Z € (), V;, where
Vi, = Ut Py . Note that AP, ; < 2-b+1 for cach ¢, because as F is one-one, there

are fewer than 2¢=*1 strings z of length ¢ such that ﬁ( ) <t—b.As Pyt C Py141
for each t this implies A\V; < 27+, For each b, t, k, using F' as an oracle, we can
compute the clopen set

Rysp={X:Vn[t<n<k — F(X[,) <n—b]}.
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Since Pyt = (), Rb,t,k, using F’ as an oracle, uniformly in b, on input ¢ we can
compute k(t) such that

ARy 4 k() — Pog) < 270D,
Let T, = |, Ry ¢ k(). Then the Ty are open sets and the corresponding set of
strings {z : [z] C Tp} is X9(F) uniformly in b. Moreover, V, = |J, P»+ C T, and
MTy = Vp) < 32,2704 = 27041 50 AT}, < 4-27° Hence Z fails (Th42)pen,
which is a ML-test relative to F’. O

3.6.12 Lemma. There is a compression function F such that F' <p .

Subproof. (This version is due to L. Bienvenue) A II{ class P C NN is called
bounded if there is a computable function g such that

P C Paths({c € N*: Vi < |o| [o(i) < g(i)]}).
In Exercise 1.8.72, the Low Basis Theorem 1.8.37 was extended to nonempty
bounded I1Y classes in Baire space. Therefore it suffices to show that the nonempty

class C of compression functions is of this kind: C is I1{ because F is a compression
function iff Vn [F' [,€ R], where R is the computable set

{a e N*: Vi,j < |a|[i #j— ali) # a(j)] & Vi< |a| [la@@)] < Clq ()]}

Here we identify N with {0,1}* as usual. A compression function F satisfies
|F(z)| < C(z) < |z| + 1 for each z, so C is bounded. &

To complete the proof of the implication “=", choose F as in Lemma 3.6.12.
If Z is 2-random then Z is ML-random relative to F’. By Lemma 3.6.11 Z is
complex for F', which implies (x).

<: We assume that Z is not 2-random and show that (%) fails. We define a
machine that attempts to split off a prefix-free description from the input (this
idea was first used in the proof of 2.4.1). For instance, there is d € N such that

Cry) < K(z) + |y| +d (3.11)

for all strings « and y: define a machine M which on input 7 looks for a decom-
position 7 = oy such that U(o) |= «. If M finds one it outputs zy. (Proposi-
tion 2.4.3 gives a sharper bound, but is proved in the same way.) At first, we will
work under the stronger hypothesis that Z is not even ML-random: given b, let
x < Z be such that K (z) < |z|—b—d. Then, for all y, we have C(zy) < |z|+|y|—b;
in particular, C(Z[,) < n —b for all n > |x|.

Under the actual hypothesis that Z is not 2-random, we know that, given b,
some x < Z has a sufficiently short U"description o. Now we have to look at
strings y that are so long that the computation U?(c) is stable by stage |y|. The
adequate variant of the inequality (3.11) is the following.

3.6.13 Lemma. There is d € N such that Yo ¥y [C(zy) < K () + |y| + d].

Subproof. Define a (plain) machine M as follows.
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On input 7, let ¢ = |r| and search for a decomposition 7 = oy such that
U”(0)[t] |= «. If such a decomposition is found, then output zy.

Let d be the coding constant for M with respect to the optimal machine V.
Suppose that o is a shortest Uml—description of z, and let ty > |o| be least such
that the computation U?(c)[to] is stable. If |y| > to and T = oy, then oy is the
only decomposition of 7 that M can find, because the domain of U% is prefix-free
for each t. Thus M(oy) = 2y, whence C(zy) < K% (z) + |y| + d. &

We may now argue as before. Given b, let z < Z be such that K% (z) < |z|—b—d.
By the foregoing Lemma, for almost all y we have C(zy) < |z| + |y| — b. In
particular, C(Z[,) < n — b for almost all n. Thus (x) fails. O

We will improve Theorem 3.6.10. As already mentioned, using the time bounded
version CY in (3.9) for an appropriate computable g, actually Z is 2-random iff

(*)g b 3%°n [CI(Z1,) >n—b].
Clearly ()4 is implied by (%) because C9(z) > C(z) for each z. Under a reason-
able implementation of U by a Turing program we may ensure that g(n) = O(n?).

3.6.14 Lemma. (Extends Lemma 3.6.13) There is a computable function
g such that, for some d € N,

Vo vy [C9(zy) < KY(2) + |y| + d]. (3.12)

Subproof. We determine a bound on the running time of the machine M in
the proof of Lemma 3.6.13. On input 7, if n = |7|, in the worst case, for each
o =7, M has to evaluate U?(c')[n] (which may be undefined). This takes O(n?)
steps. After that, M needs O(n) steps for printing zy. We assume that if no o
is found, M halts with the empty string as an output. So M runs O(n?) steps
on any input of length n.

The copying machine maps each string z to itself. Let g(n) be the maximum
of the number of steps it takes V to simulate both M and the copying machine,
for any input of length n. (Namely, g(n) bounds the maximum number of steps
it takes V(0°"110) to halt, where e is an index of either machine and |o| = n.)
If K% (z) > |z| then (3.12) is satisfied via the copying machine. Otherwise, let o
be a shortest U?-description of . If y is sufficiently long, we have M(oy) = zy;
since |ox| < |zy| we obtain (3.12) via M. <&
The proof that each Z satisfying (%), is 2-random can be completed as before,
using CY in place of C. O
The following result was originally obtained in a different way by Kurtz (1981).

3.6.15 Corollary. No 2-random set Z is computably dominated.

Proof. Choose b so that (%), holds for the computable function g obtained
above. Since CY is computable, the function f defined by

G(m) = pr.3G CH0,..., 1} [#G =m & Yn € G[CI(Z|,) > n — b]]
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is total and computable in Z. Assume for a contradiction that a computable
function hA dominates f. Then Z is a path of the computable tree

{z: Ymyp>nm 3G CH{0,...,|z|} [#G =m & Vn € G[CY(z [,) > n —b]]}.

Each path of this tree satisfies (x),, and is therefore 2-random. Since its leftmost
path is left-c.e. this is a contradiction. O

In fact, Kurtz (1981) proved that each 2-random set Z is c.e. relative to some set
A<t Z. Thus A <1 Z <7 A’, whence Z is of hyperimmune degree by Exercise 1.5.13.
For a recent proof of this stronger result see Downey and Hirschfeldt (20xx).

3.6.16 Exercise. Show that there is a low compression function for K, namely a
one-one function F: N — N such that Vz [|[F(z)| < K(z)] and 3, 27 1F® <1,

2-randomness and being low for

The following lowness property will be studied in more detail in Section 8.1. Here
it allows us to characterize the 2-random sets within the ML-random sets.

3.6.17 Definition. A is low for © if © is ML-random relative to A. The class
of sets that are low for € is denoted by Low((2).

In Proposition 8.1.1 we will see that the class Low(€2) does not depend on the
particular choice of the optimal prefix-free machine. We make two basic obser-
vations. The second observation follows from Proposition 3.4.10.

3.6.18 Fact. (i) Low(Q2) is closed downward under Turing reducibility.
(i1) Low(2) C GL;. O

The proof of Corollary 3.4.12 actually shows that the 2-random set QY is low
for €. The following characterization of 2-randomness is more general.

3.6.19 Proposition. Z is 2-random < Z is ML-random and low for Q.

Thus, within the ML-random sets, to be 2-random is equivalent to a lowness
property. The same holds for weak 2-randomness, where the lowness property is
forming a minimal pair with (' (see page 135).

Proof. Since Q =r (' (3.2.30), Z is 2-random « Z is ML-random relative to (/
«— Z is ML-random relative to 2. Since 2 is ML-random, by van Lambalgen’s
Theorem 3.4.6 the latter is equivalent to: Z is ML-random and 2 is ML-random
relative to Z. a

By Fact 3.6.18, we have the following.

3.6.20 Corollary. (i) The 2-random sets are closed downward under Turing
reducibility within the ML-random sets. (ii) Each 2-random set is in GL. O

In Theorem 8.1.18 states that each set in Low(2) is of hyperimmune degree.
This yields yet another proof of Corollary 3.6.15.

We discuss to which extent the preceding results hold for weak 2-randomness.
By Proposition 3.6.4, a weakly 2-random set can be computably dominated,
$0 3.6.15 fails. Corollary 3.6.20(i) holds for weakly 2-random sets, but (ii) fails:
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Theorem 8.1.19 below shows that no weakly 2-random computably dominated
set is in GL;. On the other hand, by Exercise 3.6.22 there is a weakly 2-random
set of hyperimmune degree that is not 2-random.

Exercises. Show the following.

3.6.21. Let A be in AY. If Z is 2-random then ZAA is 2-random as well.

3.6.22° There is a weakly 2-random set R of hyperimmune degree such that no set of
the same Turing degree is 2-random.

3.6.23° Problem. Is there a characterization of weak 2-randomness via the growth
of the initial segment complexity?

Demuth randomness *

The notion was introduced by Demuth (1988) in the language of analysis. His
work was made known to a wider audience by Kucera. Like weak 2-randomness,
Demuth randomness lies in between 2-randomness and ML-randomness. We show
that a Demuth random set can be AY, and that all Demuth random sets are in
GL;. This implies that Demuth randomness and weak 2-randomness are incom-
parable, even up to Turing degree: a AJ set is not weakly 2-random; on the other
hand, no ML-random set in GL; is computably dominated by Theorem 8.1.19,
so a weakly 2-random computably dominated set is not Turing equivalent to
a Demuth random set. This is an exception to the rule that the randomness
notions form a linear hierarchy.

Demuth tests combine features of ML-tests and Solovay tests. We retain the
condition of ML-tests that S,, be c.e. open and \S,, < 27, but we relax the
uniformity condition: the c.e. index for S, is now given by an w-c.e. function
(Definition 1.4.6), rather than by a computable function. Informally, we can
change the whole open set S, for a computably bounded number of times. We
adopt the failure condition of Solovay tests. In contrast to the previous test
notions, one cannot require for all tests that S, 2 S,,+1 for each m. This will
become apparent in the proof of Theorem 3.6.26 below.

3.6.24 Definition. A Demuth test is a sequence of c.e. open sets (S, )men such
that Ym AS,,, <27, and there is an w-c.e. function f such that Sy, = [Wg(n]~.
A set Z passes the test if V°m Z & S,,,. We say that Z is Demuth random if Z
passes each Demuth test.

Each Demuth test is a Solovay test relative to ()/, so, by Proposition 3.2.19 relative
to (', each 2-random set is Demuth random. On the other hand, each w-c.e. set Z
fails to be Demuth random via the test given by S, = [Z |,]. In particular, this
applies to 2.

3.6.25 Theorem. There is a Demuth random AY set Z.

Proof. We write H, for [IW,]*. We use an auxiliary type of tests: a special test
is a sequence of c.e. open sets (V;,)men such that AV, < 2-2m=1 for each m
and there is a function g <7 (" such that V,, = Hgy,). Z passes the test if
V°m Z & V,,. Special tests are similar to Demuth tests, but the function g is
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merely AY, while the bound on the measure of the m-th component is tighter
than 27™. It suffices to establish two claims: (1) there is a single special test
such that each set passing it is Demuth random, and (2) for each special test
there is a AY set that passes it.

Claim 1. There is a special test (Vy,)men such that each set Z passing the test
is Demuth random.

Z is Demuth random iff for each Demuth test (U, )men, Z passes the Demuth
tests (Uam)men and (Uzm+1)men. Thus it suffices that (V,,;,)men emulate all
Demuth tests (S, )men such that A\S,, < 272™ for each m. By Fact 1.4.9, there
is a binary function ¢ <7 @’ that emulates all w-c.e. functions. We can stop
the enumeration of Hg( ) when it attempts to exceed the measure 2727 thus
there is ¢ <7 @’ such that AHgeom) < 272™ for each m, and Hye,m) = Hgem)
if already AHg(e,m) < 272" Now let

Vm = Ue<m Hq(e,e+m+1)u

then AV, < Y°,_, 272(etm+l) < 2=2m—1 (Clearly, if Z passes this special test
(Vin)men then it passes each Demuth test.
Claim 2. For each special test (Vy,)men there is a A set Z such that Z € V,,
for each m.

Let V,,, = UZ <m Vi- We determine Z [,,, by recursion on m using ()" as an oracle.
Recall that A(C | z) = A(CN[2])2!?! for each measurable class C and each string z.
For each m we will meet the condition

MV | Z1p) <1 =271, (3.13)

Clearly, the condition holds for m = 0 as )\170 < 1/2. Suppose Z [, has been
determined and the condition holds for m. Then using (' we can determine the
least Z(m) € {0,1} such that for z = Z |1, A(Vi | 2) < 1 —27™71 Since
MVpy1 < 272m+D=1we have A(Viy1 | 2) < 2772, and hence )\(‘A/mH | 2) <
1—2"m=1l 9 m=2—1_92"m=2 a5 required.

The two claims establish the theorem. a

3.6.26 Theorem. Each Demuth random set is in GL;.

Proof. We define a Turing functional © by ©%(m) ~ us.JZ(m) |. We will

introduce an w-c.e. function g and a Demuth test (S, )men such that
vem[0%(m) | — ©7(m) < g(m)]

for each Z that passes (S,,)men. That is, g dominates the partial function ©7.

Then JZ(m) | < JgZ(m)(m) | for almost all m, whence Z’ <t Z & () (in fact

with a computably bounded use on ).

For each m, let L,, be the open set {Z: JZ(m) |}, and let L, s be the clopen
set {Z: JZ(m) |}. We define an auxiliary clopen set C,,. At stage s we define
approximations gs(m) to g(m) and C, s to Cy,, in such a way that the clopen set
Cyn.s contains the oracles Z such that gs(m) dominates ©%(m). Whenever at a
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stage s the measure of the clopen set L,, ¢ —Cy, s—1 exceeds 27", we put this set
into C, s and increase g(m) to the stage number, so that it also dominates the
values ©Z(m) for these newly added oracles Z. These increases of the current
approximations to C,,, and hence of g(m), can take place at most 2™ times.
Thus g is w-c.e. and C,, stabilizes, whence S,,, = L., — C,,, determines a Demuth
test as desired.

Construction of clopen sets Cr, = J, Cm,s and an w-c.e. function g.
Let Coo =00 and go(0) = 0.
Stage s > 0. Let C s = (0 and g4(s) = 0. For each m < s,

if A(Lim,s — Cms—1) > 27" let Cpy s = Lim,s and gs(m) = s;

otherwise, let Cy, s = Cp, -1 and gs(m) = gs_1(m).
By this construction, if ©Z(m) | for Z ¢ S, then ©Z(m) < g(m). If Z is Demuth
random then Z ¢ S,,, for almost all m, so g dominates ©%. O

In Theorem 8.1.19 we will prove that a computably dominated set in GL; is
not of d.n.c. degree. Hence no Demuth random set is computably dominated,
which strengthens Corollary 3.6.15.

Exercises.
3.6.27. Show that some low ML-random set is not Demuth random.
3.6.28. Suppose Z is Schnorr random relative to (. Show that Z is (i) weakly 2-

random and (ii) Demuth random. (iii) Conclude that some weakly 2-random set Y in
GL; is not 2-random.



4

Diagonally noncomputable functions

We discuss the interactions between computability and randomness. Tradition-
ally the direction is from computability to randomness. In this direction, two
types can be distinguished.

Interaction 1a: computability theoretic notions are used to obtain mathematical
definitions for the intuitive concept of a random set.

For instance, in Chapter 3 we introduced ML-randomness and its variants using
test notions which are based on computable enumerability and other concepts.

Interaction 1b: computational complexity is used to analyze randomness prop-
erties of a set.

An example is the result on page 135 that Z is weakly 2-random iff Z is ML-
random and Z, ()’ form a minimal pair.

The interaction also goes the opposite way.
Interaction 2: concepts related to randomness enrich computability theory.

We have already seen examples of this in Chapter 3: the real number 2 and the
operator X +— QX . In Section 5.2 we will study K-triviality, a property of sets
that means being far from random. This property turns out to be equivalent
to the lowness property of being low for ML-randomness. The class of K-trivial
sets has interesting properties from the computability-theoretic point of view. For
instance, each K-trivial set is superlow. Many equivalent definitions are known,
and all touch in some way upon randomness-related concepts.

In the spirit of Interaction 2, in this chapter we study diagonally noncom-
putable functions. They arise naturally when one studies ML-random sets. We
have briefly considered d.n.c. functions in Remark 1.8.30.

4.0.1 Definition.

(i) A function f: N — N is diagonally noncomputable, or d.n.c. for short, if
f(e) # J(e) for any e such that J(e)|.

(ii) A set D has d.n.c. degree if there is a d.n.c. function f <p D.

A d.n.c. function f is incomputable, for otherwise f = ®. for some e, and hence
f(e) = ®.(e) = J(e). We think of f as far from computable since it effectively
provides the value f(e) as a counterexample to the hypothesis that f = ®..

If Z is ML-random, a finite variant of the function An.Z [,, is diagonally non-
computable, because Z [.= J(e) implies K(Z [.) <T 2loge. In Section 4.1 we
study the sets of d.n.c. degree, or, equivalently, the sets that compute a fixed
point free function g (namely Wy ,) # W, for each z).
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To be of d.n.c. degree is a conull highness property (intuitively speaking, it
is weak). Sets of d.n.c. degree are characterized by a property stating that the
initial segment complexity grows somewhat fast. Thus the highness property to
be of d.n.c. degree can also be interpreted as to be “somewhat random”. This
characterization is an analog of Schnorr’s Theorem 3.2.9. As a consequence, the
sets of d.n.c. degree are closed upwards with respect to the preordering <y which
compares the degree of randomness of sets (Definition 5.6.1 below.)

In Section 4.2 we discuss Kucera’s injury-free solution to Post’s problem, a
further instance of Interaction 2. It is based on a d.n.c. function f <7 (', but
takes a particularly simple form when f is a finite variant of the function An. Z [,
for a ML-random AY set Z. We use that f is d.n.c. to build a promptly simple
set A <p f. To make f permit changes of A we threaten that f(k) = J(k)
for appropriate numbers k. These methods can be extended to an injury-free
construction of a pair of Turing incomparable c.e. sets.

In Section 4.3 we strengthen the concept of a d.n.c. function in various ways. We
use the stronger concepts to gain a better understanding of the computational
complexity of n-random sets (this is Interaction 1b). Firstly, we show that if a
set Z is ML-random and computes a {0, 1}-valued d.n.c. function, then Z already
computes the halting problem. Secondly, we introduce a hierarchy of properties
of functions strengthening fixed point freeness, and show that an n-random set
computes a function at level n of that hierarchy.

4.1 D.n.c. functions and sets of d.n.c. degree

We characterize the sets of diagonally noncomputable degree via a growth con-
dition on the initial segment complexity. Thereafter, we show that the only c.e.
sets of diagonally noncomputable degree are the Turing complete ones.

Basics on d.n.c. functions and fized point freeness

4.1.1 Proposition. (i) No d.n.c. function f is computable.
(ii) ' has d.n.c. degree via some function f <; 0.

Proof. (i) If f = ®. is total, then f(e) = J(e), so f is not d.n.c.
(ii) A {0,1}-valued d.n.c. function f <4 @)’ was given in Remark 1.8.30. O

The following provides further examples of d.n.c. functions.
4.1.2 Proposition.
(i) There is ¢ € N such that

VonK(Z1,) > K(n)+c — Z has d.n.c. degree

via a function f that agrees with An. Z [,, on almost all n (hence f <y Z).
(ii) Each ML-random set Z has d.n.c. degree via a function f <y Z.

Proof. (i) Recall from page 12 that we identify strings in {0, 1}* with numbers.
Let ¢ be a constant such that, for each o, if y = J(U(0)) | then K(y) < |o| + c.
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If Z |,= J(n) and o is a shortest U-description of n, then J(U(c)) = Z [,, and
hence K(Z [,) < |o|+c¢= K(n) + ¢. Thus Z [,= J(n) fails for almost all n.

(ii) If Z is ML-random then there is b such that Yn K(Z [,) > n — b. Since
K(n) <* 2logn, this implies K(Z |,,) > K(n) + ¢ for almost all n. O

Actually, by 8.3.6, every infinite subset of a ML-random set has d.n.c. degree.

By the Recursion Theorem 1.1.5, for each computable function g there is « such
that W, = Wy(4). The functions of the following type are far from computable
in the sense that this fixed point property fails.

4.1.3 Definition. A function g is fived point free (f.p.f.) if Yo W,y # Wa.
The two notions of being far from computable coincide up to Turing degree.

4.1.4 Proposition. Let D C N. Then D has d.n.c. degree < D computes a
fixed point free function. The equivalence is uniform.

Proof. It suffices to show that each d.n.c. function computes a fixed point free
function and vice versa.
=: Suppose that the function f is diagonally noncomputable. We construct a
fixed point free function g <p f. Let

a(z) ~ the first element enumerated into W.,,.
Let p be a reduction function for o (see Fact 1.2.15). Thus a(x) ~ J(p(x)) for
each x. Let g <p f be a function such that g(z) is a c.e. index for { f(p(z))}. Then
W # Wy unless #W, = 1. If #W, = 1, then W, = {a(x)} = {J(p(z))}.
Because f is d.n.c., J(p(x)) # f(p(x)), so Wa # Wy().
<: Suppose that the function g is fixed point free. Let h be a computable

function such that
Wi ifJ(z)l,
W, =
(=) {@ otherwise.

If J(z)| then Wy(n(a)) # Wi () and hence g(h(z)) # J(x). So f = goh is d.n.c.
and f <rg. O

In Definition 4.3.14 we will introduce the hierarchy of n-fixed point free functions
(n > 1). The lowest level n = 1 consists of the functions of Definition 4.1.3. The
extendability of this definition to higher levels is one of the reasons why we do not
define fixed point freeness of a function g by the weaker condition that ®g) # ®z.

By Exercise 8.3.6, A has d.n.c. degree iff A computes an infinite subset of a ML-
random set.

Exercises. Show the following.
4.1.5. Let f be a d.n.c. function. For each partial computable function ¥, there is a
function f <r f such that f( ) # v(e) for any e such that ¥(e) |.

4.1.6. No 1-generic set G (see Definition 1.8.51) is of d.n.c. degree. In particular, no
1-generic set computes a ML-random set.
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By the following, the properties of functions introduced above are independent of the
particular choice of a jump operator, or a universal uniformly c.e. sequence, as far as
the Turing degree of the function is concerned.

4.1.7. Suppose that J is a universal partial computable function (Fact 1.2.15). Then
each d.n.c. function f is Turing equivalent to a d.n.c. function f with respect to J, and
vice versa.

—

4.1.8. Suppose that (We)een is a universal uniformly c.e. sequence with the padding
property, as in Exercise 1.1.12. Then each f.p.f. function g is Turing equivalent to an
f.p.f. function g with respect to (We)een, and vice versa.

The initial segment complexity of sets of d.n.c. degree

Schnorr’s Theorem 3.2.9 states that the ML-random sets are the ones with a
nearly maximal growth of the initial segment complexity in the sense of K.
The following result of Kjos-Hanssen, Merkle and Stephan (2006) characterizes
the sets of d.n.c. degree by a growth condition stating that the initial segment
complexity grows somewhat quickly. This yields a further proof besides the one
in Exercise 4.1.7 that the property to be of d.n.c. degree does not depend of the
somewhat arbitrary definition of the universal partial computable function J.

4.1.9 Theorem. The following are equivalent for a set Z.

(i) Z has d.n.c. degree.

(i) There is a nondecreasing unbounded function g <7 Z such that
Vn[g(n) < K(Z1n)].

It is useful to think of the function ¢ in (ii) as slowly growing. By 2.4.2 K ~ C,
so we could equivalently take the initial segment complexity of Z via C.

Proof. (ii) = (i): The idea is the same as in the proof of Proposition 4.1.2.
Suppose (ii) holds via g <t Z, and let h(r) = min{m : g(m) > r}. (Think of h as
a function that grows quickly.) Note that Z computes the function f(r) = Z [
If Z [py= J(r) and o is a shortest description of r then J(U(c)) = Z [(,) and
hence K(Z [1(r)) <7 K(r) = |o| < 2logr. However, by the definition of h we
have K (Z [4(y)) > 7. Thus Z [4,y= J(r) fails for almost all r.

(i) = (ii): Suppose that (ii) fails. Let I' = ®; be a Turing functional such that
I'? is total. We show that I'? is not a d.n.c. function, namely, I'?(e) = J(e) for
some e. For each o, one can effectively determine an e(co) such that ®.(,(y) ~
I'V(?) (y): the number e(c) encodes a Turing program implementing a procedure
that on input y first runs U on the input o; in case of convergence it takes the
output p as an oracle string and attempts to compute I'”(y). Let

h(r) = max({r} U {use T (e(a)): |o| < 1}).

The function g given by g(m) = max{r: h(r) < m} is computable in Z, non-
decreasing and unbounded. If (ii) fails, there is an m such that 7 = g(m) >
K(Z |m). So U(e) = Z Iy, for some o such that |o| < 7. Let e = e(0). Since
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h(F) < m we have use I'“(e) < m. Thus J(e) = ®.(e) = TV (e) = T'%(e).
O

With a minor modification, the foregoing proof yields a characterization of
the sets Z such that there is a d.n.c. function f <,; Z. The characterizing
condition is that K(Z [,) be bounded from below by an order function, i.e., a
nondecreasing unbounded computable function.

4.1.10 Theorem. The following are equivalent for a set Z.

(i) There is a d.n.c. function f <y Z.
(i) There is an order function g such that ¥n[g(n) < K(Z|,)].
(1ii) There is a d.n.c. function f <y Z.

Proof. (ii)=-(iii) is proved in the same way as the implication (ii)=-(i) in The-
orem 4.1.9. Notice that if g is computable then f < Z.

For (i)=-(ii), note that in the proof of (i)=-(ii) above, if there is a computable
bound on the use of I', we can choose h and hence g computable. O

A completeness criterion for c.e. sets

The only c.e. sets of d.n.c. degree are the Turing complete ones. This result of
Arslanov (1981) builds on work of Martin (1966a) and Lachlan (1968).

4.1.11 Theorem. (Completeness Criterion) Suppose the set Y is c.e.

(i) There is a d.n.c. function f <prY & Y is Turing complete.
(ii) There is a d.n.c. function f <,u Y < Y is wtt-complete.

The result can be viewed as a generalization of the Recursion Theorem 1.1.5
when stated in terms of fixed point free functions: for every function g <7 @’ of
c.e. degree there is an x such that W) = W,. For instance, if A <p 0" is c.e.,
then the function pz has such a fixed point.

Proof idea. If Y is a Turing complete set then Y has d.n.c. degree by Proposi-
tion 4.1.1. If Y is wtt-complete then there is a d.n.c. function f <, Y by the
same proposition.

Now suppose there is a Turing functional ® such that f = ®Y is a d.n.c.
function. For an appropriate reduction function p (see 1.2.15), when e enters )/
at a stage s such that ®Y(p(e)) |, we threaten that this value equal J(p(e)).
Then Y is forced to change below the use of ®Y:(p(e)). So, once ®Y=(p(e)) is
stable at stage s(e), e cannot enter (/' any more. Since Y is c.e., s(e) is the first
stage where ®Y+(p(e)) converges and Y, (z) = Y (z) for each z less than the use.
So Y can compute such a stage, and (' <7 Y. If the use of ® is bounded by a
computable A, then the use of the reduction procedure is bounded by h(p(e)) on
input e, hence )/ <, Y.

Proof details. We define an auxiliary partial computable function a. By the
Recursion Theorem we may assume that we are given a computable reduction
function p such that a(e) ~ J(p(e)) for each e (see Remark 4.1.12 below).
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Construction of a.
Stage s. If e € 0,y — 0, and y = Y= (p(e)) |, let ale) = y.

We show that (i <7 Y. Given an input e, using Y as an oracle, we compute the
first stage s = s(e) such that ®¥(p(e)) | and Y is stable below the use of this
computation. If e enters () at a stage > s(e), we define a(e) = J(p(e)) = f(p(e)),
so f is not a d.n.c. function. Thus e € )/ « e € (Z)’S(e). O

4.1.12 Remark. We justify the seemingly paradoxical argument where we as-
sume the reduction function p for « is given, even though we are actually con-
structing a. By Fact 1.2.15, from an index e for a partial computable function ®,
one obtains a reduction function p. Based on p, in our construction we build a
partial computable function ®,). By the Recursion Theorem 1.1.5, there is a
fixed point 7, namely a partial computable a = ®; such that ®,;) = . So in the
interesting case that the given e is such a fixed point, p is a reduction function
for (I)g(e) = (I)e.

We provide two applications of the Completeness Criterion.

Application 1. By Theorem 3.2.11 the halting probability Qg is ML-random
for each optimal prefix-free machine R, and by Proposition 3.2.30, Qg is wtt-
complete (we identify QQr with its binary representation). We give an alternative
proof of the second fact: Since g is ML-random, a finite variant f of the function
M. Qpr Tnis dnee., and f <, Qgr. Also, Qg is left-c.e., namely, the set {q €
Q2: 0<¢<Qgr}isce Thus O <, {g€Q2: 0<q < Qr} =4 Qr.

Theorem 4.3.9 below shows that " £y Qgr. Thus {g € Q2: 0 < g < Qr} is a ce.
set that is weak truth-table complete but not truth-table complete. By Theorem 4.1.10
there is a d.n.c. function f <y Qgr. Thus the Completeness Criterion 4.1.11 has no
analog for truth-table reducibility.

The truth-table degree of 2r depends on the particular choice of the optimal prefix-
free machine: Figueira, Stephan and Wu (2006) have shown that there is a sequence
(Ri)ien of such machines such that Qg |« Qg, for each pair i # 7.

Application 2. Recall from page 32 that a co-infinite c.e. set A is called effectively
simple if there is a computable function g such that #W, > g(e) - W.NA # 0.
4.1.13 Proposition. An effectively simple set A is Turing complete.

Proof. By Proposition 4.1.4 it suffices to show that A computes a fixed point
free function f. Since A is co-infinite, on input e, with A as an oracle one can
compute a c.e. index f(e) for the set consisting of the first g(e) elements of N— A.
If Wiy = We then W, N A = () while #W, > g(e). Hence f is fixed point free.

O

Exercises.

4.1.14. Derive Prop. 3.4.10 from the Completeness Criterion 4.1.11 relativized to A.
4.1.15. (Friedberg and Rogers, 1959) Each hypersimple set is wtt-incomplete.
4.1.16. If A is effectively simple and not hypersimple then A is wtt-complete.
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4.2 Injury-free constructions of c.e. sets

One can solve Post’s problem and even prove the Friedberg—Muchnik Theo-
rem 1.6.8 avoiding the priority method with injury. These results of Kucera
(1986) are interesting because injury makes sets artificial due to the fact that
one first fulfills tasks and then gets them undone. This does not happen in
Kucera’s constructions, even if they are a bit more involved.

The most direct injury-free solution to Post’s problem relies on ML-randomness.

Step 1. Begin with €, the set given by the bits of €2 in the even positions, which
is Turing incomplete by Corollary 3.4.8 (and even low by 3.4.11).

Step 2. Build a promptly simple set A (Definition 1.7.9) Turing below Q.

The construction of Kucera (1986) in step 2 works for any A ML-random set
in place of Qy; see Remark 4.2.4 below.

There is no injury because in step 1 there are no requirements, and in step 2 we
merely meet the prompt simplicity requirements, which cannot be injured. The
injury-free solution to Post’s problem as it is commonly thought of nowadays is
somewhat different. Step 1 uses the Low Basis Theorem. Step 2 is a more general
result of independent interest. Its proof needs the Recursion Theorem.

Step 1. Use the Low Basis Theorem 1.8.37 to produce a low set of d.n.c. degree.
For instance, take the II{ class 2% — R, which by Theorem 3.2.9 consists entirely
of ML-random, and hence d.n.c. sets. Or take the ITY class of {0, 1}-valued d.n.c.
functions in Fact 1.8.31. The construction in the proof of Theorem 1.8 is relative
to (. One satisfies the requirements one by one in order. Hence they are not
injured.

Step 2. Show that Turing below each A9 set Y of d.n.c. degree one can build a
promptly simple set.

The original proof in Kucera (1986) uses the Low Basis Theorem in Step 1, but
avoids the Recursion Theorem in Step 2, as above. It has been criticized that in
the proof of Theorem 1.8.37, injury is merely hidden using ()’. Indeed, the effective
version of the proof in Theorem 1.8.38 has injury to lowness requirements. This
criticism does not apply when we avoid the Low Basis Theorem altogether and
rather use €y as the low set of d.n.c. degree.

Initially Kuéera’s motivation was to disprove the conjecture in Jockusch and Soare
(1972a) that each nonempty TI{ class without computable members contains a set
Y <7 @ such that each c.e. set A <7 Y is computable. Jockusch then pointed out that
Kucera’s proof leads to an injury-free solution to Post’s problem.

For the injury-free proof of the Friedberg-Muchnik Theorem 1.6.8, Kucera developed
his ideas further. Instead of carrying out two independent steps, he let the construction
relative to ()" and the effective construction interact via the Double Recursion Theo-
rem 1.2.16. This bears some similarity to the worker’s method of Harrington. A so-called
level n argument involves interacting priority constructions relative to 0,0, .. L, p
(that is, workers at level 4 for each ¢ < n), and uses an (n + 1)-fold Recursion Theorem.
See Calhoun (1993).
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Each A set of d.n.c. degree bounds a promptly simple set

We construct a promptly simple set Turing below any given A9 set of d.n.c.
degree. In the next subsection we describe the orginal argument in Kucera (1986),
where the Recursion Theorem is avoided when the given A9-set is in fact ML-
random. However, the more powerful method of the present construction is used
for instance in the injury-free proof of the Friedberg—Muchnik Theorem. The
hypothesis that Y be AY is necessary because, say, a weakly 2-random set has
d.n.c. degree but forms a minimal pair with (' (page 135).

4.2.1 Theorem. (Kucera) Let Y be a AY set of d.n.c. degree. Then there is a
promptly simple set A such that A <p Y.

Proof idea. The Completeness Criterion 4.1.11 fails for AY sets because there
is a low set of d.n.c. degree. The construction of A can be seen as an attempt
to salvage a bit of its proof in the case that Y is AY. Where does the proof go
wrong? As before, suppose that f = ®Y is a d.n.c. function. A A set Y cannot
compute a stage s(e) such that ®Ys(p(e)) is stable from s(e) on, only a stage
where it has the final value for the first time. The problem is that it may change
temporarily after such a stage.

On the other hand, we do not have to code the halting problem into Y. It
suffices to code the promptly simple set A we are building. For each e we meet
the prompt simplicity requirement from the proof of Theorem 1.7.10

PSe: #W,=00=3s3x [x € We s — We 1 & z € Ayl

At stage s we let x enter A for the sake of a requirement PS, only if ®Y (p(e))
has been stable from stage = to s. If we now threaten that J(p(e)) = ®Y (p(e))
then Y has to change to a value not assumed between stage x and s. This allows
us to compute A from Y. It also places a strong restriction on PS,.: whenever
®Y (p(e)) changes another time at ¢, then PS, cannot put any numbers less than
t into A at a later stage.

We work with the effective approximation fs(z) = ®Y (x)[s]. (Thus, in contrast
to 4.1.11, we actually consider changes of the value fq(x) rather than changes
of the oracle Y.) For an appropriate computable function p, when we want to
put a candidate x € W, into A for the sake of PS,, we threaten that f(p(e))
equal J(p(e)). We only put x into A at stage s if f;(p(e)) has been constant since
stage x. (Since f;(p(e)) settles, this holds for large enough x. Thus, PS. is still
able to choose a candidate.) To show A <p f, if f(p(e)) = fi(p(e)), then after
stage t a number x cannot go into A for the sake of PS.. See Fig. 4.1.

Proof details. As in the proof of Theorem 4.1.11, we define an auxiliary partial
computable function a. By the Recursion Theorem we are given a reduction
function p for a, namely, Ve a(e) ~ J(p(e)).
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f(p(e)) is stable x enters ¥, and 4

F1G. 4.1. Proof of Kuc¢era’s Theorem.

Construction of A and «. Let Ay = 0.

Stage s. For each e < s, if PS, is not satisfied yet, see whether there is an z,
2e < x < s, such that

T e We,s - We,s—l & Vtw<t<s ft(p(e)) = fs(p(e)) (41)

If so, put z into A,. Define a(e) = fs(p(e)). Declare PS, satisfied.

Verification. Clearly A is co-infinite. Choose so such that Vs > sg fs(p(e)) =
f(p(e)). If © > sg,x > 2e appears in W, at stage s then z can be used to satisfy
PS.. Next, we show that A <p f. Given an input «, using f compute ¢ > x such
that for all e, if 2e < x then fi(p(e)) = f(p(e)). Then z € A « =z € Ay, for if
we put x into A at a stage s > t, then, as we required that Vi, <i<sfi(p(e)) =

fs(p(e)), the value a(e) = J(p(e)) = fs(p(e)) we define at stage s equals f(p(e)).
Thus f is not a d.n.c. function, contradiction. O

Variants of Kucera’s Theorem

We modify the proof of Kucera’s Theorem 4.2.1 in four ways. Firstly, we prove a
version for wtt-reducibility. Secondly, we work under two stronger hypotheses on
the given A set Y, namely that Y is a {0, 1}-valued d.n.c. function, or that Y’
is ML-random. In both cases we obtain a uniform version of Kucera’s Theorem.
Thirdly, we combine the construction with permitting, and finally, in an exercise,
we consider the case of two given AJ sets Yy and Y;.

4.2.2 Corollary. Suppose Y € AY and there is a d.n.c. function f <,u Y (for
instance, if Y is ML-random). Then there is a promptly simple set A <, Y.

Proof. Suppose that h is a computable use bound for the procedure computing f
with oracle Y. Then, at the end of the proof of Theorem 4.2.1, to compute A(x)
we only need to query Y on numbers less than h(p(z)). O

Uniformity considerations for Kucera’s Theorem will be important for the
injury-free proof of the Friedberg—-Muchnik Theorem: given an index k& such
that Y = @2/, can we obtain a c.e. index for A in an effective way? Actually, to
build A, we also need to know how to compute the d.n.c. function from Y. This
is certainly the case when Y itself is a {0, 1}-valued d.n.c. function:

4.2.3 Corollary. There is a computable function r such that, for each k, if
Y = @2' is total and Y is a {0, 1}-valued d.n.c. function, then A =W,y <wu Y
and A is promptly simple. An index for the reduction for A <, Y can be
obtained effectively as well. O
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4.2.4 Remark. If Y is AY and ML-random, then a somewhat simpler argument
suffices to obtain a promptly simple set A <,;; Y (and in fact the use equals the
input in the reduction procedure). We do not need the Recursion Theorem or a
reduction function. To ensure that A <, Y we can directly force Y [, to change
by including the string Y [, in an interval Solovay test G (that is, a certain
effective listing of strings defined in 3.2.22). In other words, if Y is ML-random
we may let Y [, play the role of f(p(e)) before, so the reduction function p is not
needed any longer. Since the procedure to compute the d.n.c. function An.Y [,
is fixed we obtain A effectively. The reduction procedure to compute A from Y
is effectively given by the above, but now it is only correct for almost all inputs
because 0 A Y merely holds for almost all o in G.

Construction of A and G. Let Ay = (.

Stage s > 0. For each e < s, if PS, is not satisfied yet, check whether there is
an z, 2e < x < s, such that

HANS We,s - We,sfl & Vt:L’<t<s Y, {e: Y, re . (42)

If so put x into A. Put the string Y; [, into G. Declare PS, satisfied.

Verification. Given e, choose tg such that Vs > tgYsfe= Y Je. If ¢ > tg is
enumerated into W, at a stage s then x can be used to satisfy PSe, so PS, is
met. G is a Solovay test because the requirement PS. contributes at most one
interval, and this interval has length 27°.

To see that A <, Y, choose sy such that 0 A Y for any ¢ enumerated into G
after stage sg. Given an input x > sg, using Y as an oracle, compute ¢t > x such
that Yy [,=Y [,. Then x € A « x € Ay, for if we put z into A at a stage s > ¢
for the sake of PS. then x > e, so we list ¢ in G where 0 = Y, [o= Y [.. This
contradicts the fact that o A Y. O

We have obtained a further uniform version of Theorem 4.2.1 without using
the Recursion Theorem.

4.2.5 Corollary. There is a computable r such that for each e, if Y = CIJQ, 18
total and ML-random, then A = W,y <y Y and A is promptly simple. O

As mentioned at the beginning of this section, combining Corollary 3.4.11 (the bits
of Q in an odd position form a Turing incomplete ML-random set Y') with the con-
struction in Remark 4.2.4 (to build a promptly simple set A <., Y'), we obtain an
injury-free solution to Post’s problem that is the simplest known when one also counts
the proof that the constructed set is Turing incomplete (or, in fact, low). In compari-
son, the direct construction of a promptly simple K-trivial set (5.3.11 below) is easier,
but it is much harder to verify that the constructed K-trivial set is even Turing incom-
plete (see from page 201 on). We already compared these construction briefly when we
discussed natural solutions to Post’s problem on page 34.

We provide two further variants of Kucera’s Theorem 4.2.1.

4.2.6 Corollary. IfY € AS has d.n.c. degree and C is an incomputable c.e. set, there
is a simple set A <rY such that A <, C'.
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Proof. Instead of the prompt simplicity requirements PS. we now merely meet the
requirements Re: #W. = co = ANW, # 0. To ensure A <.,y C, we ask that C permit
the enumeration of x. Thus, at stage s of the construction, for each e < s, if R, is not
satisfied yet, see if there is an z, 2e < x < s, such that

€ Wes & Cs1o# Cot1lz & Vizcics fr(p(e)) = fs(p(e)).

If so then put z into A and define a(e) = fs(p(e)).
If W, is infinite, then, because C is incomputable, infinitely many numbers = are
permitted by C' after they enter We. So each requirement R. is met. O

4.2.7 Exercise. No two A d.n.c. sets form a minimal pair by Kucera (1988). In fact,
the proof of 4.2.1 can be adapted to show that there is a promptly simple set below
both of them: show that, if Yo and Y7 are A sets of d.n.c. degree, then there is a
promptly simple set A <r Yo, Yi.

On the other hand, a set that is Turing below all the A ML-random sets is com-
putable by Theorem 1.8.39.

An injury-free proof of the Friedberg—Muchnik Theorem *

By Theorem 1.6.8 there are Turing incomparable c.e. sets A, B. An injury-free
proof of this result was announced in Kucera (1986) and circulated, but not
published.

Proof idea. Let P a nonempty I1{ class, and r be a computable function,
such that, if Y = @2/ is total and Y € P, then A = W, (o) <ui ¥ and A is not
computable. Such a function exists either by Corollary 4.2.3 or 4.2.5. To use 4.2.3
recall that the {0, 1}-valued d.n.c. functions form a II{ class by Fact 1.8.31; to
use 4.2.5 let P = 2% — R;.

The following attempt looks promising. The Low Basis Theorem, in the version
with upper cone avoidance 1.8.39, implies that from any c.e. incomputable set B
one may effectively obtain Y <; B®{’ = (/ such that Y € P and B £7 Y. We
start with a pair of A sets Y, Z € P, given by indices a, b of reductions from (',
and, applying the function 7 to these indices we obtain c.e. sets A <,y Y and
B <., Z. Now by 1.8.39 we effectively obtain A sets Y,Z € P such that
Y Zr B and Z %1 A. By the Double Recursion Theorem 1.2.16 with oracle §
we may assume that ¥ = Y and Z = Z so that in fact A <7 Y and B < Z.
In particular A 27 B (since not even Y > B), and similarly B 21 A

In this proof, the letters Y, Z denote either finite strings or infinite sequences of
zeros and ones. In the latter case we say that Y (or Z) is total. The problem with
the attempt outlined above is that in the proof of Theorem 1.8.39 we needed to
know in advance that B is incomputable in order to argue that the parallel search
at a stage 2e + 2 (to suitably extend Y or to find a number n such that P2t n
{X: ®X(n)1} # 0) terminates. The concern is that B might be computable, in
which case the search may fail to terminate. Then Y remains a finite string, and
P2e+2 yemains undefined. The solution here is to keep extending Z while the
search proceeds. If it proceeds forever then Z is an infinite sequence over {0, 1}
(that is, a set) which is in P, so B is in fact incomputable. Then the search
terminates after all, contradiction.
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Proof details. Numbers a, b are given (think of them as AS-indices for Y and 7).
Let A = W, (q) and B = W,;). In a construction relative to (', we build AY sets
Y,Z and descending sequences of nonempty II{ classes (P¢)ceny and (Q€)cen
(they correspond to the II9 classes in the proof of Theorem 1.8.39 defined at
even stages). We need to be more specific as to how the parallel search is to be
carried out. To do so, we divide stages ¢ = 0,1,... into substages ¢.

Construction relative to (' of II{ classes P*, Q" and strings o; on Pt, 7; on Q.
Let 0g =79 =0 and P’ = Q" = P.

Stage i+1, i = 2e. Let Q'™ = Q', t = ||, and Ti1 1 = 7;. Go to substage ¢+ 1.
Substage t + 1. Check whether

(a) there are o,k such that |o|,k <t, 0; < o, 0 on P and B(k) # ®J(k), or
(b) there is n < t such that P'N{X: ®X(n)1} #£ 0.

If neither case applies, or this is the first substage of the current stage, then
let 711,41 be the leftmost extension of 7;41+ of length ¢ 4+ 1 which is on Q.
Increment ¢ and proceed to the next substage.

Otherwise, let 7,41 = 7;+. If (a) applies let 0,41 = o and P! = P' N [o]. If (b)
applies let 0,1 = 0; and P"*t = PPN {X: ®X(n)1}. Increment i and proceed
to the next stage.

Stage i + 1, i = 2e + 1. Proceed in a similar way with the roles of o;,7; as well
as of P?, Q" interchanged.

Verification. The construction only needs queries to (', so it (implicitly) defines
computable functions g, A such that

Y = @Sm,b) = U, 0is, and Z = @g(a,b) = U, i
No matter what a, b are, at least one of Y, Z is total and in P. For Z is extended
at the odd stages, and Y at the even stages, both during the first substage. If we
get to stage i + 1 for each ¢, then both Y and Z are total. Otherwise, say stage
1+ 1 is not terminated where ¢ = 2e. This makes Z total, hence Z € @Q;+1 C P.
By the Double Recursion Theorem 1.2.16 there is a pair of fixed points a, b,
and therefore

o),y =00 and ®) =7

We claim that in this case, actually both Y and Z are total. Consider again the
case where stage i + 1, i = 2e, is not terminated, whence only Z = @g/ is total.
Then, since B = W, ), B is incomputable. By the same argument as in the
proof of Theorem 1.8.39, we finish stage ¢ + 1, contradiction.

Since all stages are terminated, A L7 Z and B £ Y. Hence A |r B. O

4.3 Strengthening the notion of a d.n.c. function

The computational complexity of a set is related in various ways to its degree
of randomness (a summary will be given in Section 8.6). Here we only consider
one aspect of the computational complexity: the set computes a function with a
fixed point freeness condition.
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Sets of PA degree

A highness property of a set D stronger than having d.n.c. degree is obtained
when one requires that there be a d.n.c. function f <7 D that only takes values
in {0, 1}. In a typical argument involving a d.n.c. function f (such as the proof of
Theorem 4.1.11) we build a partial computable o and have a reduction function p
for a; when we define a(e) = 0, say, we know that f(p(e)) # J(p(e)) = ale). If f
is {0, 1}-valued, we may in fact conclude that f(p(e)) = 1. Thus we may prescribe
the value f(p(e)), while before we could only avoid a value. Since f = ® for a
given Turing reduction ®, we can indirectly restrict D.

Up to Turing degree, the {0, 1}-valued d.n.c. functions coincide with the com-
pletions of Peano arithmetic PA; see Exercise 4.3.7. This justifies the following
terminology.

4.3.1 Definition. We say that a set D has PA degree if D computes a
{0, 1}-valued d.n.c. function.

The set (" has PA degree by Remark 1.8.30. Exercise 5.1.15 shows that the class
of sets of PA degree is null, so this highness property is indeed much stronger
than having d.n.c. degree. Recall from Example 1.8.32 that the {0, 1}-valued
d.n.c. functions form a IIY class. Thus, by the basis theorems of Section 1.8,
there is a set of PA degree that is low, and also a set of PA degree that is
computably dominated. These examples show that a set can be computationally
strong in one sense, but weak in another.

We give two properties that are equivalent to being of PA degree. Both assert
that the set is computationally strong in some sense.

4.3.2 Theorem. The following are equivalent for a set D.

(i) D has PA degree.

(i) For each partial computable {0, 1}-valued function 1, there is a total func-
tion g <t D that extends 1, namely, g(x) = ¢ (x) whenever ¥(x)|. More-
over, one may choose g to be {0, 1}-valued.

(iii) For each monempty 11§ class P, there is a set Z € P such that Z <t D.
In other words, the sets Turing below D form a basis for the TI{ classes.

Proof. (i)=-(ii): Suppose f <7 D is a {0,1}-valued d.n.c. function. Let p be
a reduction function for 1, that is, Vz¢(z) ~ J(p(z)). Then Va —f(p(z)) =
J(p(x)). So, if ¢(x) converges, then f(p(z)) = 1 — ¢(z). Let ¢ <r D be the
{0, 1}-valued function given by g(x) =1 — f(p(z)), then g extends 1.

(ii)=(iii): Let P = (), Ps be an approximation of P by a descending effective
sequence of clopen sets; see (1.17) on page 52. For a number x (viewed as a
binary string), if s is least such that [zi] N P, = () for a unique ¢ € {0,1}, then
define 9 (z) = 1 — 4. (If we see that the extension zi is hopeless, then ¢ dictates
to go the other way.) On many strings x, the function ¥ makes no decision. So
let g be a total extension as in (ii), and define Z recursively by Z(n) = g(Z |,).
Then Z <7y D and Z is in P.
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(iii)=>(i): This holds because the {0, 1}-valued d.n.c. functions form a I} class.
O

Exercises.

4.3.3. The equivalence (i)« (ii) above fails for d.n.c. sets without the restriction that
the function computed by D is {0, 1}-valued: show that the following are equivalent
for a set D. (i) " <t D. (ii) Each partial computable function 1 can be extended to a
(total) function g <7 D.

4.3.4. (Kucera) Show that for each low set Z there is a promptly simple set A such
that Z @ A is low.

4.3.52 (Jockusch, 1989) In Definition 4.3.1, the condition that D computes a d.n.c.
function with range bounded by a constant would be sufficient: suppose that f is a
d.n.c. function with bounded range. Show that there is a {0, 1}-valued d.n.c. function
g<rf.

The next two exercises assume familiarity with Peano arithmetic (see Kaye 1991).
The sentences in the language of arithmetic L(+, x,0,1) are effectively encoded by
natural numbers, using all the natural numbers. Let a,, be the sentence encoded by n.
Let 1 be the effectively given term in the language of arithmetic that describes n.
4.3.6. (Scott) Show that a set D has PA degree < there is a complete extension B of
Peano arithmetic such that B <p D.
4.3.7° (Scott) Improve the result of previous exercise: D has PA degree < Peano
arithmetic has a complete extension B =1 D.

Martin-Léf random sets of PA degree

The following theorem of Stephan (2006) shows that there are two types of ML-
random sets: the ones that are not of PA degree and the ones that compute the
halting problem. However, such a dichotomy only applies for the particular high-
ness property of having PA degree. A ML-random set can satisfy other highness
properties, such as being high, without computing @' (see 6.3.14).

4.3.8 Theorem. If a ML-random set Z has PA degree then (/ < Z.

Proof. If the proof seems hard to follow, read the easier proof of Theorem 4.3.9
first, where a similar technique is used.

Let ® be a Turing functional such that ®%X (n) is undefined or in {0, 1} for each
X,n, and ®Z is a d.n.c. function. If ' £ Z we build a uniformly c.e. sequence
(Cq)aen of open sets such that A\Cy < 27% and Z € Oy for infinitely many d,
so Z fails this Solovay test.

We define an auxiliary {0, 1}-valued partial computable function «. By the
Recursion Theorem (see Remark 4.1.12) we may assume we are given a reduction
function p for «, namely, a computable strictly increasing function p such that
a(e) ~ J(p(e)) for each e. Since ®Z is {0, 1}-valued, for r € {0,1}, if we define
a(z) =1 —r, we enforce that ®Z(p(z)) = r.

Let (nq)dso be defined recursively by n; = 0 and ngy1 = ng + d. The values
of a on the interval I; = [ng,nq41) are used to ensure that A\Cy < 2~ When d
enters ()’ at stage s, consider the set B of strings ¢ such that ®7 Ip(nay.) CONVErges.
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Informally we let Cy be the set of oracles Y € [B]~ for which ®¥ seems to be
a {0,1}-valued d.n.c. function on p(I;), namely, for all x € Iy, ®Y(p(x)) #
J(p(z)) = a(z). Now define « in such a way that A\Cy is minimal. Then A\Cy <
274 because there are 2¢ ways to define a on I;. If (' £ Z then for infinitely

many d, ®Z [,,,,,) converges before d enters (', so Z € Cy.

Construction of a uniformly c.e. sequence of open sets (Cq)aso and a partial
computable function a.
Stage s. Do nothing unless a number d > 0 (unique by convention) enters ()’ at s.
In that case let B = {0: ®F [)(n,,,)l}- Let 74 be a string of length d such that
ACy becomes minimal, where

Cy=[{oce€eB: Vi<d®?(p(ng+1i))=rq(i)}~.
(Thus ACy < 2~¢, Note also that Cy is in fact clopen, but we only obtain a
c.e. index for it, as we never know whether d will enter ('.) For i < d define
alng+1i) =1—74(3).
Verification. We show 3°d Z € Cy. Let g(d) = ps. ®Z I (n,,,) L. Since V £ Z
and g <7 Z, there are infinitely many d € (' such that d ¢ V)’ u(ay- 1f d is such
a number then for each i < d, ®Z(p(ng + z)) J(p(ng + 1)) = a(ng + 1) since
®7Z is d.n.c., so since ®Z is {0, 1}-valued, ®Z(p(ng +1i)) = 1 — a(ng +1i) = 74(i).
Thus Z € Cd O

By Proposition 3.2.30 we have (/' <, Qg for each optimal prefix-free ma-
chine R. The following result of Calude and Nies (1997) shows that this cannot
be improved to a truth-table reduction.

4.3.9 Theorem. Let & be a truth-table reduction procedure such that ®Z is a
{0,1}-valued d.n.c. function. Then Z is not ML-random. In particular, no ML-
random set Z satisfies (V <y Z.

Proof. The setting is the same as in the proof of Theorem 4.3.8: we define a
partial computable function «, and are given a reduction function p such that
afe) =~ J(p(e)). The reduction ® is total for each oracle Y, and we may also
assume ®Y is {0, 1}-valued. Therefore we may for each d > 0 compute a string
74 of length d such that ACy is minimal, where

Cqy=[{o: Vi<d® (p(ng+1)) =74(i)}]~.

For i < d, we define a(ng+1) = 1 —74(i). Clearly A\Cy < 2~¢. Moreover, Z € Cy
for each d because ®Z is {0, 1}-valued d.n.c. O

Note that (Cg)gen is a Kurtz test (see Definition 3.5.1). Thus, in fact no weakly
random set is truth-table above (.

Demuth (1988) proved that if Z is ML-random and § <7 Y <y Z, then some
Y =7 Y is ML-random. This also shows that there is no ML-random set Z >u 0.

4.3.10 Exercise. There is a set A such that A and @' form a minimal pair, but no
weakly 2-random set Z computes A.
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Turing degrees of Martin-Lof random sets

We consider ML-randomness in the context of Turing degree structures. Let D
denote the partial order of all Turing degrees, and let ML C D denote the degrees
of ML-random sets. We know from Theorem 3.3.2 that the degree of A & ('
contains a ML-random set for each A. However, ML is not closed upwards in D:

4.3.11 Proposition. For each degree ¢, {x: x>c} CML & ¢>0.

Proof. «<: This follows from 3.3.2 because each degree d > 0’ is in ML.

=: Suppose that C #7 0'. Let P be the II{(C) class of {0,1}-valued d.n.c.
functions f relative to C (i.e., Ve ~f(e) = J(e)). We relativize Theorem 1.8.39
to C. Avoiding the cone above (', we obtain a set Y € P such that Y & C %21 (/.
Since Y @ C has PA degree, it is not in the same Turing degree as a ML-random
set, for otherwise Y @ C >r ()" by Theorem 4.3.8. O

This yields a natural first-order definition of 0’ in the structure consisting
of the partial order D with an additional unary predicate for ML. Shore and
Slaman (1999) proved that the jump operator is first-order definable in the partial
order D. Their definition uses metamathematical notions and codings of copies
of N with first-order formulas. Even though later on, Shore (2007) found a proof
that does not rely on metamathematics, we still do not know a natural first-order
definition of the jump operator (or even of 0’) in D.

Next, we study ML within D7 (< 0’), the Turing degrees of AJ sets. By Exer-
cise 4.2.7, there is an incomputable c.e. set Turing below any pair of ML-random
AY sets. So no pair of degrees in ML N Dy (< 0’) has infimum 0.

4.3.12 Proposition. ML N D7 (< 0') is not closed upwards in Dr(< 0"). Also,
ML NL is not closed upwards in L, the set of low degrees.

Proof. The {0, 1}-valued d.n.c. functions form a I1{ class, which has a low mem-
ber D by Theorem 1.8.37. Then the degree of D is not in ML by 4.3.8. On the
other hand, by Theorem 4.3.2(iii) there is a ML-random set Z <p D. O

4.3.13 Remark. Kucera (1988) proved that there is a minimal pair of sets of
PA degree. In fact,

0’ =inf{aVb: a, b are PA degrees & aAb = 0}.

Thus there also is a natural first-order definition of 0’ in the structure consisting
of the partial order D with an additional unary predicate for being a PA degree.

To show that A ® B >7 (' for each minimal pair A, B of sets of PA degree,
one builds a nonempty I19 class P without computable members such that
X®Y >7 0 whenever X,Y € P and X #* Y. Since there are X,Y € P such
that X <7 A and Y <7 B, this implies A ® B > ('. To obtain P, take a c.e.
set S =7 (" such that N— S is introreducible. Say, S is the set of deficiency stages
for a computable enumeration of (' (see the comment after Proposition 1.7.6).
Let S = U UV be a splitting of S into computably inseparable sets (Soare 1987,
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Thm. X.2.1) andlet P={Z: UC Z & VNZ =0} If X,Y are as above, then
XAY is an infinite subset of N — S, so that / <r X @Y.

Next, one shows that each £ set C' > (/' bounds a minimal pair A, B of PA
sets by a technique similar to the one in the solution to Exercise 1.8.46. Now let
Co,C1 >7 " be a minimal pair of X9 sets relative to (', and let A;, B; <7 C; be
minimal pairs of sets of PA degree for i € {0,1}. Then 0’ = (agVbg) A(a; Vby).

Relating n-randomness and higher fized point freeness

Definition 4.0.1 can be relativized: a function f is d.n.c. relative to C if f(e) #
JC(e) for any e such that J(e) |. For n > 1, we say that f is n-d.n.c. if f is d.n.c.
relative to /(" ~1). For example, if n > 0 then (®) computes a {0, 1}-valued n-
d.n.c. function, by relativizing Remark 1.8.30 to ((*—1).

By Proposition 4.1.2 relativized to 01 each n-random set computes an n-
d.n.c. function. Thus, for this particular aspect of the computational complexity,
a higher degree of randomness implies being more complex. The result is not
very satisfying yet because we would prefer highness properties that are not
obtained by mere relativization of a highness property to #(*~1). For this reason
we introduce the hierarchy of n-fixed point free functions. It turns out to coincide
up to Turing degree with the hierarchy of n-d.n.c. functions. For sets A, B,
let A~y Bif A= B and A ~y Bif A =* B. Forn > 3,let A ~, B if
An=3) =5 B(n=3)

4.3.14 Definition. Let n > 1. We say that a function g is n-fized point free
(n-f.p.f. for short) if Wy, #n W, for each .

For instance, let g <7 (" be a function such that Wy = 0 if W, is infinite
and W,y = N otherwise, then g is 2-f.p.f. (By Exercise 4.1.7 in relativized form
and a slight modification of Exercise 4.1.8, these properties are independent of
the particular choice of jump operator or universal uniformly c.e. sequence, as
far as the Turing degree of the function is concerned. In Kucera’s notation the
hierarchies begin at level 0, but here we prefer notational consistency with the
hierarchy of n-randomness for n > 1.)

We will need the Jump Theorem of Sacks (1963¢). It states that from a X9
set S one may effectively obtain a X{ set A such that A’ =7 S @ (. (In fact one
can also achieve that C' £7 A for a given incomputable A9 set C.) For a proof
see Soare (1987, VIIL.3.1). In fact we need a version of the theorem for the m-th
jump.

4.3.15 Theorem. Let m > 0. From a E?n_H set S one may effectively obtain a
Y0 set A such that AT =4 S @ (™),

Proof. The case m = 0 is trivial, and the case m = 1 is the Jump Theorem
itself. For the inductive step, suppose that m > 1 and S is Z?nﬂ. Then S
is a XU (") set. By the result for m relative to (', using (' we may obtain a
(") set B such that (B @ ()™ =1 S @ ((™+D, Then by the Limit Lemma
we may in fact effectively obtain a ¥9 index for B. By the Jump Theorem, we
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may effectively obtain a c.e. set A such that A’ =p B& ', and hence A1) =,
S @ pim+D), O

The main result of this subsection is due to Kucera.

4.3.16 Theorem. Letn > 1. Fach n-d.n.c. function computes an n-f.p.f. func-
tion, and vice versa.

Proof. The case n = 1 is covered by the proof of Proposition 4.1.4, so we may
assume that n > 2. For each set £ C N and each i € N, let

(E); = {n: (n,i) € E}.
1. If an n-d.n.c. function f is given, we define an n-f.p.f. function g < f.

Case n = 2. Since the index set {e: W, is finite} is c.e. relative to (), there is
a Turing functional ® such that, for each input =z, CID(D'(x) is the first ¢ in an
enumeration relative to (' such that (W,); is finite if there is such an 4, and
@0/(90) is undefined otherwise. Let p be a reduction function (Fact 1.2.15) such
that ®%(z) ~ J%(p(z)) for each z, and let ¢ <; f be a function such that
W) = 1w, 4): 7 # f(p(x))}. If ®"(x) is undefined then (W,); is infinite for
each i while (W (2)) f(p(e)) = 0, 850 Wyay #* W If () = i then (W(,)): = N
since f(p(z)) # 14, so again Wy, #* W,.

Case n = 3. We modify the foregoing proof. For each set B and each ¢ € N, let
[B]£i = {(n,j) € B: j # i}. By the finite injury methods of Theorems 1.6.4
and 1.6.8, there is a low c.e. set B such that (B); €7 [B]y; for each i. Since B
is low, the relation {(z,i): W, <rp [B]x} is X} (see Exercise 1.5.7, which is
uniform), so there is a Turing functional ® as follows: on input z, ®"(z) is
the first ¢ in an enumeration relative to () such that W, <p [B]x; if there is
such an ¢, and 0" x) is undefined otherwise. Let p be a reduction function such
that ®°'(x) ~ J"(p(z)) for each z, and let g <7 f be a function such that
Wy = [Blzsip))- If 3% (z) is undefined then W, %7 [B]y for each i and
hence W, £ Wy(y. If " (2) = i then W, <r [B]y:. Since f(p(x)) # i we have
(B)i <1 Wy(a), and hence W,y £1 W, because (B); L1 [B]4i.

Casen > 4. Let m =n — 3 and R = (™). We run a finite injury construction
of the kind mentioned in the foregoing proof relative to R, and code R into
each (B);. In this way we obtain a set B that is c.e. in R such that B’ =r R/,
R <p (B); and (B); £r [B]x; for each .

There is a computable function h such that Wém) = W,?(z), so the relation
{(x,1): m < [Blzi}is BY(R). Since B’ =r R/, there is a Turing functional ®
as follows: on input z, <I>R”(x) is the first ¢ in an enumeration relative to R” such
that W™ < [B]i if there is such an i, and ®#"(z) is undefined otherwise.
Let p be a reduction function such that ®8"(z) ~ JE (p(z)) for each z, and
let § <7 f be like g before, namely Wé%x) = [Bl]4f(p(z))- As before one shows

that WER("I) Z7 ngm) for each z. Now, by the uniformity of Theorem 4.3.15,
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there is a function g <7 g such that (W, (m))(m) =7 W’% ) @ R for each x. Since

R <p W~(I), this implies that Wg(zng Z7 W ) for each x. (This proof actually

works for n = 3 as well, in which case we re-obtain the previous one.)

2. If an n-f.p.f. function g is given, we define an n-d.n.c. function f <p g. We use
a result of Jockusch, Lerman, Soare and Solovay (1989) which can also be found
in Soare (1987, pg. 273): if ¢ is partial computable relative to ("~ then there
is a (total) computable function r such that Wy) ~n Wy, whenever () is
defined. (Say, if n = 2, fix a Turing functional ® such that ¢» = ®” and let
Vs(z) ~ ® (2)[s]. As long as e = 1,(z), W(s follows the enumeration of W,.)

Now let ¢ = J9" ™" If 1(x) | then

W) ~n W) #n Wy, 50 () # g(r(z)).
Hence f =gorisn-dn.c. and f <p g. O
As a consequence we obtain the following result of Kucera (1990).
4.3.17 Corollary. If Z is n-random then there is an n-f.p.f. function g <p Z.

Proof. By Proposition 4.1.2 relative to §(*~1), a finite variant f of the function
An.Z |, is n-d.n.c. There is an n-f.p.f. function g <7 f. O

The converse fails because the n-random degrees are not closed upwards. For n = 1
this follows from Proposition 4.3.11, and for n > 2 it follows because each 2-random set
forms a minimal pair with ('. Also note that for each n > 1 there is an (n — 1)-random
set Z < 0V, Then Z does not compute an n-f.p.f. function.

Our proof of Corollary 4.3.17 is somewhat indirect as it relies on Schnorr’s Theo-
rem 3.2.9 relative to 0"~V The proofs in Kucera (1990) are more self-contained (but
also longer). The ideas needed in the proof of Theorem 4.3.16 were introduced there.
For instance, Kucera’s proof of (1.) in the case n = 2 is as follows. Given z € N, using
the infinite set Z as an oracle, we may compute ny, = pn. #ZN[0,n) = x. Let g <p Z
be a function such that, for each x, W,y = {(y,4): i < ny — i € Z}. We will show
that W #* Wy (s for almost all =, which is sufficient to establish the theorem.

Since the index set {e: W, is finite} is ©.9, there is a computable function h such that
Wg(z) = {i: (Wy);is finite}. We define a ML-test (G )zen relative to @', as follows.
On input z, initially let G, = (). For z > 0, once distinct elements ao,...,a;—1 have
been enumerated into W,?('z), let G» = {Y: Vi < z[Y(a;) = 1]}. Clearly G is X9(0')
uniformly in z, and AG,; < 277. Then, since Z is 2-random and (Gg)zen is a Solovay
test relative to (', there is zo such that Z ¢ G, for all z > zo. Because #ZN[0,n,) = =,

Vo > xo W}?(,z) #7ZN[0,ng).
Assume for a contradiction that x > xo and W,y =" Wa. Then (Wy(yy)i =" (W); for
all 4. If ¢ > n, this implies that i & W}?('x) If ¢ < ng then
i€Z & (Wyw))i =0 < (W) is finite < i€ W}?(/w)
Thus Wh,() = [0,n.) N Z, a contradiction.

4.3.18 Exercise. Show that there is a weakly 2-random set that does not compute a
2-f.p.f. function. Hint. Use Exercise 1.8.46.
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Lowness properties and K-triviality

In this chapter and in Chapter 8 we will study lowness properties of a set A.
In particular, we are interested in the question of how they interact with concepts
related to randomness. The main new notion is the following: A is K-trivial if

Vi K(Al,) < K(n) +b

for some constant b, namely, up to a constant the descriptive complexity of A [,
is no more than the descriptive complexity of its length. This expresses that A
is far from being ML-random, since ML-random sets have a quickly growing ini-
tial segment complexity by Schnorr’s Theorem 3.2.9. We show that K-triviality
coincides with the lowness property of being low for ML-randomness.

Lowness properties via operators. Recall from Section 1.5 that a lowness property
of a set A specifies a sense in which A is computationally weak. We always require
that a lowness property be closed downward under Turing reducibility. Mostly,
computational weakness of A means that A is not very useful as an oracle.
Lowness properties of a set A are very diverse, as each one represents only a
particular aspect of how information can be extracted from A. They can even
exclude each other for incomputable sets.

We have introduced several lowness properties by imposing a restriction on
the functions A computes. For instance, A is computably dominated if each
function f <7 A is dominated by a computable function (Definition 1.5.9). In
this chapter we define lowness properties by the condition that the relativization
of a class C to A is the same as C. For example let C = AY. For each A, by the
Limit Lemma 1.4.2 relative to A, we have C4 = AJ(A) = {X: X <r A’}. For
an operator C mapping sets to classes, we say that A is low for C if C* = C. We
write Low(C) for this class.

The condition A € Low(C) means that A is computationally weak in the sense
that its extra power as an oracle does not expand C, contrary to what one would
usually expect. When C = AY, A is low for C iff A’ = (', that is, A is low in
the usual sense of 1.5.2.

In some cases, a lowness property implies that the set is in AY. Clearly this is
so for the usual lowness. In contrast, being computably dominated is a lowness
property such that the only AY sets with that property are the computable ones.
One may view the computably dominated sets as a class of the type Low(C) by
letting CX be the class of functions dominated by a function f <p X.

An operator C is called monotonic if A <y B — C* C CB. An operator D
is called antimonotonic if A <r B — D? D DB. The operator X — AJ(X)
is monotonic, while MLR, the operator given by Martin-Lo6f randomness relative
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to an oracle, is antimonotonic. For both types of operators, the corresponding
lowness notion is indeed closed downward under Turing reducibility. For instance,
A<y Band CB =C impliesCCCACCB =C.

Let D be a randomness notion. Informally, A is in Low(D) if the computational
power of A does not help us to find new regularities in a set that is random in
the sense of D. Although D4 is ultimately defined in terms of computations
with oracle A, the operator D looks at this information extracted from A in a
sophisticated way via D-tests relative to A. For this reason, studying the behavior
of D4 often yields interesting results on the computational complexity of A. In
this chapter we focus on lowness for ML-randomness. In Chapter 8 we study
lowness for randomness notions weaker than ML-randomness.

Ezistence results and characterization. A computable set satisfies every lowness
property. Sometimes one is led to define a lowness property and then discovers
that only the computable sets satisfy it. Consider the operator C(X) = X9(X):
here A € Low(C) implies that A is computable, because both A and N — A are
in 29(4) = x9.

It can be difficult to determine whether a lowness property only applies to
the computable sets. If it does so, this is an interesting fact, especially in the
case of a class Low(C); an example is lowness for computable randomness by
Corollary 8.3.11. However, it is also the final result.

On the other hand, if an incomputable set with the property exists, then one
seeks to understand the lowness property via some characterization. This is es-
pecially useful when the property is given in the indirect form Low(C). In that
case, one seeks to characterize the class by conditions of the following types.

(1) The initial segments of A have a slowly growing complexity.
(2) The functions computed by A are restricted.

A main result of this chapter is a characterization of the first type: A is low for
ML-randomness iff A is K-trivial. This is surprising, because having a slowly
growing initial segment complexity expresses that A is far from random, rather
than computationally weak. This result provides further insight into the class
Low(MLR). For instance, we use it to show that Low(MLR) induces an ideal in
the Turing degrees. This fails for most of the other lowness properties we study.

Theorem 8.3.9 below is a characterization of the second type: a set is low
for Schnorr randomness iff it is computably traceable (a strengthening of being
computably dominated).

Overview of this chapter. In Section 5.1 we introduce several lowness properties
and show their coincidence with Low(MLR). In Section 5.2 we study K-triviality
for its own sake, proving for instance that each K-trivial set is in AJ. In Sec-
tion 5.3 we introduce the cost function method. It can be used to build K-trivial
sets, or sets satisfying certain lowness properties. Different solutions to Post’s
problem can be viewed as applications of this method for different cost functions.
There is a criterion on the cost function, being nonadaptive, to tell whether this
solution is injury-free. Section 5.4 contains the proof that each K-trivial set is
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low for ML-randomness, introducing the decanter and golden run methods. Sec-
tion 5.5 applies these methods to derive further properties of the K-trivial sets.
In Section 5.6 we introduce the informal concept of weak reducibilities, which
are implied by <p. We study the weak reducibility <;pr associated with the
class Low(MLR). We also prove the coincidence of two highness properties: we
characterize the class {C: ' <pr C} by a strong domination property.

Some key results of this chapter are non-uniform. For instance, even though
every K-trivial set is low, we cannot effectively obtain a lowness index from a
c.e. K-trivial set and its constant (Proposition 5.5.5). Corollary 5.1.23 is also
non-uniform, as discussed in Remark 5.1.25.

5.1 Equivalent lowness properties

We study three lowness properties that will later turn out to be equivalent: being
low for K, low for ML-randomness, and a base for ML-randomness.

The first two properties indicate computational weakness as an oracle. A is low
for K if A as an oracle does not help to compress strings any further. A is low
for ML-randomness if each ML-random set is already ML-random relative to A.
The third property, being a base for ML-randomness, is somewhat different: A is
considered computationally weak because the class of oracles computing A looks
large to A itself, in the sense that some set Z > A is ML-random relative to A.

The first two implications are easy to verify: A is low for K = A is low for
ML-randomness = A is a base for ML-randomness. The remaining implication
is the main result of this section: A is a base for ML-randomness = A is low
for K (Theorem 5.1.22).

A fourth equivalent property is lowness for weak 2-randomness. The implication
A is low for weak 2-randomness = A is low for K is obtained at the end of this
section, the converse implication only in Theorem 5.5.17 of Section 5.5.

Being low for K

5.1.1 Definition. We say that A is low for K if there is b € N such that
Yy [K*(y) > K(y) — 0.

Let M denote the class of sets that are low for K.

Each computable set is low for K. Also, M is closed downward under Turing
reducibility, because B <7 A implies Vy [KZ(y) >T K4 (y)] by Exercise 3.4.4.

The notion was introduced by Andrej A. Muchnik in unpublished work dating
from around 1999. He built an incomputable c.e. set that is low for K. Later in
this section we will reprove his result, but at first in a different, somewhat indirect
way: we apply Kucera’s construction in 4.2.1 to obtain a c.e. incomputable set A
Turing below a low ML-random set. Then, in Corollary 5.1.23 we prove that each
set A of this kind is low for K. However, in the proof of Theorem 5.3.35 we also
give a direct construction of a set that is low for K, similar to Muchnik’s.
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5.1.2 Proposition. Fach set A € M is generalized low in a uniform way. More
precisely, from a constant b one can effectively determine a Turing functional Uy,
such that, if A satisfies Yy [K(y) < KA(y) +b], then A’ = U, ()) & A).

Proof idea. Recall that J4(e) denotes ®2(e), and J2(e) denotes @és(e). For
a stage s, using A as an oracle we can check whether J2(e) |. So all we need is
a bound on the last stage when this can happen: if such a stage s exists then
K“4(s) and hence K (s) is at most e + O(1). Thus (' can compute such a bound.

Proof details. Let M., ¢ > 1, be an oracle prefix-free machine such that
MZ(0°1) ~ ps.JZ(e)[s] | for each Z and each e. Thus MZ(0°1) converges
iff JZ(e) converges. Since MZ(0°1) ~ UZ#(0°~110°1), we have KZ(MZ(0°1)) <
e+c+1 for each Z. Thus, if A is low for K via b then K(MA(0°1)) < edc+1+b
for each e. To compute A’ from (' ® A, given input e use () to determine
t = max{U(o) : |o| < e+ c+ 1+ b}. Then J4(e) | < JA(e) |, so output 1
if JA(e) |, and 0 otherwise. The reduction procedure was obtained effectively
from b. O

For a c.e. set A, modifying the argument improves the result.

5.1.3 Proposition. Fach c.e. set A € M is superlow. The reduction procedure
for A’ <4 0 can be obtained in a uniform way.

Proof. By Proposition 1.4.4 (which is uniform) it suffices to show A’ <, (.
Let M., ¢ > 1, be an oracle prefix-free machine such that for each e,
MA0°1) ~ ps. JA(e)[s] | & As [use JA(e) = A | use JA(e).

As before JA(e) | «» MA(0°1) |, in which case J”(e) has stabilized by stage
MA(0°1). Also KZ(MZ(0°1)) < e+ c+ 1 for each Z. To compute A’ from
given input e, use (' to determine ¢ = max{U(o) : |o| < e+ ¢+ 1 + b}; then
JA(e) | « JA(e) | [t]. The use of this reduction procedure is bounded by the
computable function Ae.p(267¢+1+b) where p is a reduction function for the
partial computable function U. O

Using a more powerful method, in Corollary 5.5.4 we will remove the restriction
that A be c.e., by showing that each set A € M is Turing below some c.e. set D € M.
This will supersede Proposition 5.1.2 (except for the uniformity statement).

We also postpone the result that M is a proper subclass of the superlow sets. By the
results in Section 5.4, M induces a proper ideal in the A Turing degrees, while there
are superlow c.e. sets A, A1 such that ( =7 Ag @ Ay, Theorem 6.1.4. Alternatively,
there is a superlow c.e. set that is not low for K by Proposition 5.1.20 below; the proof
relies on a direct construction.

Exercises. The first two are due to Merkle and Stephan (2007).

5.1.4. Let A be low for K. Suppose Z C N and let Y = ZAA be the symmetric
difference. Show that Vn K (Y [,,) = K(Z ). In particular, if Z is ML-random then Y
is ML-random as well by Schnorr’s Theorem. (Compare this with 3.6.21.)

5.1.5. Continuing 5.1.4, suppose that A is incomputable and Z is 2-random.
Let Y = ZAA. Show that Y |r Z. (Use that A is Ag by 5.2.4(ii) below.)
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5.1.6. (Kucera) Show that there is a function F' <., (' dominating each function
partial computable in some set that is low for K.

Lowness for ML-randomness

See the introduction to this chapter for background on lowness for operators.

5.1.7 Definition. A is low for ML-randomness if MLR? = MLR.
Low(MLR) denotes the class of sets that are low for ML-randomness.

Thus, A is low for ML-randomness if MLR? is as large as possible. This property
was introduced by Zambella (1990). He left the question open whether some
incomputable set is low for ML-randomness.

The question was answered in the affirmative in work, dating from 1996,
of Kucera and Terwijn (1999). They actually built a c.e. incomputable set in
Low(MLR). Exercise 5.3.38 below asks for a direct construction of such a set.

By the next fact, the existence of such a set also follows from Muchnik’s result
that some incomputable c.e. set is low for K.

Our first proof that a c.e. incomputable set exists in Low(MLR) is actually via
Kucera’s Theorem 4.2.1; see page 170.

5.1.8 Fact. Each set that is low for K is low for ML-randomness.

Proof. Recall that Theorem 3.2.9 can be relativized: Z is ML-random relative
to A & VnKA(Z |,) >% n. Thus the class of ML-random sets MLR can be
characterized in terms of K, and MLR? in terms of K4. If A is low for K then
the function abs(K — K4) is bounded by a constant, so MLR = MLR™. O

In Corollary 5.1.10 we will characterize Low(MLR) using only effective topology
and the uniform measure: A € Low(MLR) < if G is open, c.e. in 4, and A\G < 1,
then G is contained in a c.e. open set S (without oracle A) such that AS < 1. (In
Section 5.6 we will consider several variants of such covering procedures.) The
result, due to Kjos-Hanssen (2007), is obtained through the following:

5.1.9 Theorem. The following are equivalent for a set A.

(i) A is low for ML-randomness.
(ii) There is a c.e. open set S such that

AS <1 &Vz[KA(2)<|2|—1 — [2] C 9] (5.1)
(1ii) For each oracle prefiz-free machine M, there is a c.e. open set S such that
AS <1 &Vz[Kpa(z) <|z|—1 — [2] CS]. (5.2)

Statement (ii) expresses that A is weak as an oracle in that there are few strings z with
a description using A of length < |z| — 1. Note that the condition (5.1) is equivalent to
AS < 1 & Ri C S. The characterization of Low(MLR) in (i) < (ii) is due to Nies and
Stephan (unpublished), who used it to show that the index set {e: W, € Low(MLR)}
is ©3; see Exercise 5.1.11. This fact also follows from the coincidence of Low(MLR)
with M obtained later on. It is not obvious from the definition of Low(MLR) itself.
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Proof. (iii)=(ii): trivial.

(ii)=(i): If (5.1) holds then non-MLR®* C S. By Fact 1.8.26, there is a com-
putable antichain B such that [B]® = S. By Proposition 3.2.15, non-MLR? is
closed under taking off finite initial segments. Thus non-MLR* C () [B"]~. By
Example 3.2.23, ([B"]<),en is a Solovay test. Hence non-MLR? C non-MLR, that
is, A is low for ML-randomness.

(i)=-(iii): Suppose that M is an oracle prefix-free machine for which (5.2) fails.
We build a set Z € MLR — MLRA, whence A is not low for ML-randomness. We
let Z = zgz129 ... for an inductively defined sequence of strings zg, z1 ... with
the properties (a) and (b) below.

(a) We ensure that Kpsa(z;) < |z| —1. Thus Z ¢ MLR® by Proposition 3.2.17
relativized to A.

(b) Let H be a c.e. open set such that A\H < 1 and 2V — H C MLR. Say, let
H=TR; = [{z: K(2) < |z|] = 1}]7. We will have [z...2,-1] € H for
each n, whence Z € MLR as 2¥ — H is closed.

Inductively, suppose we have defined z,...,2,_1 such that [w] € H where
W= zy...2,—1 (in case n = 0, we read this as w = @, so we have [@] = 2N ¢ H,
as required). Let S = H | w = {Z: wZ € H}, then S is c.e. open and S # 2V
as H is c.e. open and [w] € H. The nonempty I class 2 — S is contained in
MLR, and is therefore not null. Hence AS < 1. Since (5.2) fails, there is z = z,
such that Kya(z,) < |z,| —1 and [z,] € S. Thus [2...2,] € H. O

Note that by Fact 1.8.56(ii) relative to an oracle X, a class G C 2" is open and
ce. in X iff G is a X§(X) class.

5.1.10 Corollary. A is low for ML-randomness < each ¥9(A) class G such
that A\G < 1 is contained in a X9 class S such that \S < 1.

Proof. «<: For the set G = R{* there is an open c.e. set S, AS < 1, such that
G C S. Thus (ii) in Theorem 5.1.9 holds.

=: Applying the Lebesgue Density Theorem 1.9.4 to C = 2V — G, we obtain
a string o such that A(G | o) < 1/2. Let H = G | 0 = {Z: ¢Z € G}. By
Fact 1.8.26 relativized to A, let B <7 A be an antichain in {0,1}* such that
[B]® = H. Then {{|z| — 1,z): = € B} is a bounded request set relative to A, so
by Theorem 2.2.17 relative to A, there is an oracle prefix-free machine M such
that B = {z: Kya(z) < |z| — 1}. By (i)=(iii) of Theorem 5.1.9, there a %9
class S such that AS < 1 and H C 5. Now § = o5 U (2N — [o]) is a X9 class as
required. O

5.1.11 Exercise. Show that the set {e: W. € Low(MLR)} is X§.

When many oracles compute a set

In most cases, computational weakness of a set A means that, in some sense or
other, A is not very useful as an oracle. However, another possible interpretation
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is that A is easy to compute in that the class of oracles computing A is large.
Given a set A, let SA = {Z: A <p Z}. The set A is considered not complex
if S4 is large, and complex if S# is small. If smallness merely means being a
null class then we can only distinguish between the computable sets A, where
S4 = 2N and the incomputable sets A, where S# is null. In the present form
this result appeared in Sacks (1963a), but it is in fact an easy consequence of a
result in de Leeuw, Moore, Shannon and Shapiro (1956).

5.1.12 Theorem. A is incomputable < the class S4 = {Z: A <r Z} is null.

Proof. «<: If A is computable then S = 2N, so A\S4 = 1.
=: For each Turing functional ® let

S =1{Z: A=o%}.
Thus 84 = Us Sg. It suffices to show that each S£ is null. Suppose for a

contradiction that AS§ > 1/r for some r € N. Then A is a path on the c.e.
binary tree
T={w: M{o: &7 =w}~ >1/r}.

Fach antichain on T has at most 7 elements, for if wy, . .., w, is an antichain with
7+ 1 elements, we have r + 1 disjoint sets [{o: ®7 = w;}]~, each of measure at
least 1/r, which is impossible. Then there is ng such that for each n > ng, A [, is
the only string w on T of length n extending A [,,. For otherwise we could pick
r 4+ 1 strings on T branching off A at different levels, and these strings would
form an antichain with r 4+ 1 elements.

Now, to compute A(m) for m > ng, wait till some w > A [,, of length m + 1
is enumerated into 7', and output w(m). O

5.1.13 Remark. For n > 0 let

Son=Ho: Al,x @7}~
Then S(‘g,n is ¥9(A) uniformly in n. If A is incomputable then S5 =, S(‘g,n is
null, so lim, ASg , = 0. That is, (S5, )nen is a generalized ML-test relative to A
(Definition 3.6.1).

If A itself is ML-random, then leaving out the first few components even turns
(S4 ,)nen into a ML-test relative to A (Miller and Yu, 2008).

5.1.14 Proposition. Suppose A is ML-random. Then for each Turing func-
tional ® there is a constant c such that (SjnJrc)neN is a ML-test relative to A.

The easiest proof is obtained by observing that the c.e. supermartingale (see
Definition 7.1.5 below) given by L(z) = 2/*I\[{o: ®” > 2}]= is bounded by 2¢
for some ¢ along A. The details are provided on page 266.

Exercises.

5.1.15. Show that the sets of PA degree (Definition 4.3.1) form a null class.

5.1.16. Suppose that A and Y are ML-random and A <7 Y. Show that if Y is (i) De-
muth random, (ii) weakly 2-random, (iii) ML-random relative to a set C, then A has
the same property.
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Bases for ML-randomness

We continue to work on the question to what extent high computational com-
plexity of a set A is reflected by smallness of the class S4 of sets computing A.
We have seen that interpreting smallness by being null is too coarse since this
makes all the incomputable sets complex. Rather, we will consider the case that
S# is null in an effective sense relative to A. From Remark 5.1.13 we obtain the
following.

5.1.17 Corollary. Let A be incomputable. If Z is weakly 2-random relative to A
then A L1 Z. a

Thus S# looks small to an incomputable A even in a somewhat effective sense:
S4 does not have a member that is weakly 2-random relative to A. On the other
hand, by the Kuéera-Gécs Theorem 3.3.2 S# always contains a ML-random set.
If A is ML-random then by Proposition 5.1.14 S does not contain a ML-random
set relative to A.

Is there any incomputable set A such that S4 contains a ML-random set rela-
tive to A? This property was first studied by Kucera (1993).

5.1.18 Definition. A is a base for ML-randomness if A <p Z for some set Z
that is ML-random relative to A.

Kucera used the term “basis for 1-RRA”. There is no connection to basis theo-
rems. Each set A that is low for ML-randomness is a base for ML-randomness.
For, by the Kucera-Gacs Theorem 3.3.2 there is a ML-random set Z such that
A <t Z. Then Z is ML-random relative to A.

We will prove two theorems. They are due to Kucera (1993) and Hirschfeldt,
Nies and Stephan (2007), respectively.

Theorem 5.1.19: There is a promptly simple base for ML-randomness.
Theorem 5.1.22: Each base for ML-randomness is low for K.

This completes the cycle: the classes of sets that are low for K, low for ML-
randomness, and bases for ML-randomness are all the same! Moreover, this
common class reaches beyond the computable sets:

5.1.19 Theorem. There is a promptly simple base for ML-randomness.

Proof. Let Z be a low ML-random set, say Z = (g, the bits of Q in the even
positions (see Corollary 3.4.11). By Theorem 4.2.1 there is a promptly simple
set A <r Z. Then, by 3.4.13, Z is in fact ML-random relative to A. O

For the proof of Theorem 5.1.22 below it might be instructive to begin with a direct
construction of a superlow c.e. set A which is not a base for ML-randomness. (Be-
fore 5.1.4 we already discussed how to obtain a superlow c.e. set that is not low for K,
so this also follows from 5.1.22).

5.1.20 Proposition. There is a superlow c.e. set A such that for each set Z, if A <r Z
then Z is not ML-random relative to A.
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Proof sketch. For each e we build a ML-test (C/;)aen relative to A in such a way
that for each j = (e, d), the following requirement is met:

R;:VZ[A=97 = ZeC2,.

We make A low by meeting the lowness requirements L. from the proof of Theo-
rem 1.6.4. When J“(e) newly converges we inititalize the requirements R, for j > e.

The strategy for R; is as follows. At each stage let k be the number of times R; has
been initialized.

1. Choose a large number m;.

2. At stage s let Sj s be the clopen set {Z: Al = oz Im; [s]}. While AS; s < g—d=k=1
put Sj,s into ng with use m; on the oracle A. Otherwise put m; — 1 into A, initialize
the requirements L. for e > j (we say that R; acts) and goto 1.

Thus, the strategy for R; keeps putting S; s into Cﬁd until this makes the contribution
(for this value of k) too large; if it becomes too large, the strategy removes the current
contribution by changing A. In the construction, at stage s let the requirement of
strongest priority that requires attention carry out one step of its strategy.

Verification. Each requirement R; acts only finitely often: AS; s can reach 2797%~! at
most 297* ¥ times, since the different versions of S;; are disjoint. Thus A is low and
each m; reaches a limit. Next, for each e,d we have )\C’g}d <> 2 d=k=1 < 9=d oo
(C2 ) den is a ML-test relative to A. If A = ®Z, for each d let j = (e, d) and consider the
final value of m;. Since A [,,; = oz [m,, Z s in Céd. Thus Z is not ML-random relative
to A. Finally, there is a computable function f such that f(e) bounds the number of
injuries to L., so A is superlow. O

5.1.21 Remark. (The accounting method) We describe an important method
to show that a c.e. set L of requests is a bounded request set. We associate a
request (r,x) with an open set C such that AC' > 27". The open sets belonging
to different requests are disjoint. Then the total weight >~ 27" [(r,y) € L] is at
most the sum of the measures of those sets, and hence at most 1. Informally
speaking, we “account” the enumeration of (r,z) against the measure of the
associated open set. We usually enumerate these open sets actively. When they
reach the required measure we are allowed to put the request into L.

We are now ready for the main theorem of this section.

5.1.22 Theorem. FEach base for ML-randomness is low for K.

Proof. Suppose that A <7 Z for some set Z that is ML-random relative to A.
Given a Turing functional ®, we define an oracle ML-test (C5)gen. If A = &%,
we intend to use this test for X = A. The goal is as follows: if d is a number
such that Z ¢ C#, then A is low for K via the constant d + O(1). To realize
this goal, we build a uniformly c.e. sequence (Lg)gqen of bounded request sets.
The constructions for different d are independent, but uniform in d, so that for
each X, the sequence of open sets (Cif)gen is uniformly c.e. in X. (This idea
was already used in the proof of Theorem 3.2.29: make an attempt for each d.
Let the construction with parameter d succeed when a ML-random set Z is not
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in the d-th component of a ML-test. Here, the ML-tests are relative to A, and Z
is ML-random in A.) We denote by C' C {0,1}* also the open set [C]~
For each computation

U"(o) =y where n < A

(that is, whenever y has a U4-description o), we want to ensure that there is
a prefix-free description of y not relying on an oracle that is only by a constant
longer. Thus we want to put a request {|o| +d + 1,y) into Lg.

The problem is that we do not know A, so we do not know which 7’s to accept;
if we accept too many then L; might fail to be a bounded request set. To avoid
this, the description U"(0) = y first has to prove itself worthy. Once U"(o)
converges, we enumerate open sets C)  (if U"(o) diverges then C]  remains
empty). We let 7 7

CX = U <. (5.3)

n<X,c€{0,1}*

As long as )\C"’ < 27191=4 we think of Cg as “hungry”, and “feed” it with
fresh oracle strlngs a such that n < <I> . Since \C 1.0 never exceeds 27 lol=d e

have A\C¥ < 2790X <274 g0 (OF )deN is an oracle ML test.

All the open sets C  are disjoint. If A\C'] , exceeds 27 lol=d=1 at some stage,
then we put the request {|o| +d+ 1,y) mto Ld As described in Remark 5.1.21,
we may account the weight of those requests against the measure of the sets C’77
because the measure of C" is at least the weight of the request. This shows that
each L4 is a bounded request set.

Because Z is ML-random relative to A, there is d such that Z ¢ CZ'. This
implies that, whenever U"(o) = y in the relevant case that n < A, then )\CZG =
2-191=4 " and hence the request (|o| + d + 1,y) is enumerated into Lg. For, if
)\C’ZZVU < 27l71=4 then once a sufficiently long initial segment o of Z computes 1,
we would feed a to Cg,a, which would put Z into CC‘Z“ (Intuitively speaking,
lots of sets compute A, so we are able to feed all the sets C]]  for n < A and
o € dom(U").) 7

The open sets C’f correspond to the open sets Cﬁd in the proof of Proposition 5.1.20.
However, in the present proof, a Turing reduction ® such that A = ®Z is given in
advance, so one does not need the parameter e. In Proposition 5.1.20, we changed A
actively to keep C’;fd small, and if A = ®Z then Z was “caught” in Na Cﬁd. Here,
(C)aen is an ML-test relative to A by definition. The set Z is caught in ), CZ' if A
is not low for K as witnessed by a computation U" (o) =y for n < A.

Construction of c.e. sets CZU C {0,1}*, o,n € {0,1}*, for the parameter d € N.
Initially, let C , = 0.
Stage s. In subbtages t, 0 < t < 2° go through the strings a of length s in

lexicographical order. C77 [ t] denotes the approximation at the beginning of
substage t of stage s.
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If a has been declared used for d, as defined below, then go to the next «.
Otherwise, see whether there are o, n such that

e U?(0) | and 7 is minimal such, namely, U7 (¢) 1 for each n/ < 1,
e n <X® and

le]?

o \CT [s,t] +275 < 27 lol=d,

d,o
Choose o least and put « into C] . Declare all the strings p = o used for d.

Verification. For fixed d, the sets [Cf ] (o,1 € {0,1}*) are disjoint, because
during each stage s we only enumerate unused strings of length s into these sets.
Once AC _ reaches 27171=4=1 we enumerate (|| +d+1,y) into Ly. Then Lg is
a bounded request set by the accounting method of Remark 5.1.21.

Define CX by (5.3). Since (C4)4en is a ML-test relative to A, there is d such
that Z ¢ C4'. We verify that L, works. Suppose that U4 (o) =y, and let < A
be shortest such that U”(c) = y. We claim that AC] = 2717174 50 that we are
allowed to put the required request (|o| +d + 1,y) into Ly when the measure of
Cy , has reached 27171=4=1,

Assume for a contradiction that )\C’g’a < 271914 and let s be so large that
U(0) =y, n = ®Z and O, +27° < 2-171=d Then a = Z |, enters Cf, at
stage s, unless it enters some Cg:n, instead or is used for d, namely, some 5 < «

has entered a set Cg/;, at a previous stage. Because A = ®Z in any case, n < A,
orn’ < A, orn < A. Thus Z € C4 contrary to our hypothesis on d. O

The following shows that a certain class defined in terms of plain ML-randomness,
rather than relativized ML-randomness, is contained in the c.e. sets that are low
for K. In Section 8.5 we will consider subclasses of M in more detail.

5.1.23 Corollary. Suppose A is c.e. and there is a ML-random set Z >1 A
such that ' L1 Z. Then A is low for K.

Proof. If A is not low for K, by Theorem 5.1.22, Z is not ML-random relative
to A. Then, by Proposition 3.4.13, ) <0 A® Z =1 Z. O

We do not know at present whether this containment is strict: the following
question is open.

5.1.24 Open question. If A is c.e. and low for K, is there a ML-random set
Z >1 A such that O/ £ Z?

5.1.25 Remark. It is not hard to see that the proof of Theorem 5.1.22 is uniform, in
the sense that if Z is ML-random in A and ®Z = A, then a constant b such that A is
low for K via b can be obtained effectively from an index for ® and a constant ¢ such
that Z ¢ RZ. On the other hand, Hirschfeldt, Nies and Stephan (2007) proved that
Corollary 5.1.23 is necessarily nonuniform: One cannot effectively obtain a constant b
such that A is low for K via b even if one is given ¢ such that Z ¢ R., ®, and a lowness
index for Z, that is, an index p such that Z' = ®,(()’). (They actually show it for K-
triviality instead of being low for K. However, by the proof of Proposition 5.2.3 below,
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the implication “low for K = K-trivial” is uniform in the constants, so the result also
applies for the constant via which A is low for K.)

5.1.26 Remark. We describe an unexpected application of Theorem 5.1.22. We say
that S C 2" is a Scott class (or Scott set) if S is closed downwards under Turing
reducibility, closed under joins, and each infinite binary tree T' € S has an infinite path
in S. Scott classes occur naturally in various contexts, such as the study of models of
Peano arithmetic and reverse mathematics. The arithmetical sets form a Scott class.
On the other hand, Theorem 1.8.37 in relativized form shows that there is a Scott class
consisting only of low sets.

Kucera and Slaman (2007) showed that Scott classes S are rich: for each incomputable
X € S thereis Y € S such that Y |7 X (this answered questions of H. Friedman and
McAllister).

They choose Y € MLR¥. Then Y |7 X unless X is a base for ML-randomness, and
hence K-trivial. In that case, they build an infinite computable tree T' such that a set
Z € Paths(T) is not K-trivial and satisfies Z 27 X. For the latter they use the Sacks
preservation strategy (see Soare 1987, pg. 122).

Exercises. Show the following.
5.1.27. If A € Low(Q) (Definition 3.6.17) and A € A then A € Low(MLR).

5.1.28. There is an w-c.e. set A for which Corollary 5.1.23 fails.

5.1.29. Each low set A is a “base for being of PA degree” via a low witness: there is
a low set D >7 A which is of PA degree relative to A, namely, there is {0, 1}-valued
function f <7 D such that Ye—f(e) = J%(e).

5.1.30. If Y and Z are sets such that Y & Z € MLR, then each set A <p Y, Z is low
for K. (For instance, let Y be the bits in an even positions and let Z be the bits in an
odd position in the binary representation of 2. Compare this to Exercise 4.2.7.)

5.1.31° Prove Corollary 5.1.23 directly by combining the proofs of 5.1.22 and 3.4.13.

Lowness for weak 2-randomness

A recurrent goal of this book is to characterize the class Low(C) for a randomness
notion C. Here and in Section 8.3 we will consider, more generally, lowness for
pairs of randomness notions such that C C D (relative to each oracle). Relativiz-
ing D to A increases the power of the associated tests, so one would expect that
in general C € DA. We consider the class of sets A for which, to the contrary,
the containment persists when we relativize D.

5.1.32 Definition. (Kjos-Hanssen, Nies and Stephan, 2005) A is in Low(C, D)
if C C DA. Thus Low(C) = Low(C,C).

We study classes of the form Low(C, D) for various reasons.

(a) The proof techniques suggest so.

(b) We can deal with more than one randomness notion at the same time.

(¢) These classes may coincide with interesting computability theoretic classes.
For instance, if C is ML-randomness and D is Schnorr randomness then
Low(C, D) coincides with the c.e. traceable sets by Theorem 8.3.3 below.
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We frequently use the fact that, if C C C C D C D are randomness notions,
then Low(C,D) C Low(C,D). That is, the class Low(C,D) is enlarged by ei-
ther decreasing C or increasing D. In particular, both Low(C) and Low(D) are
contained in Low(C, D).

Weak 2-randomness was introduced in Definition 3.6.1, and W2R C MLR are
the classes of weakly 2-random and ML-random sets, respectively. The following
result is due to Downey, Nies, Weber and Yu (2006).

5.1.33 Theorem. Low(W2R, MLR) = Low(MLR).

Thus Low(W2R) C Low(MLR). Theorem 5.5.17 below shows the converse con-
tainment, so that actually Low(W2R) = Low(MLR).

Proof. Suppose that A ¢ Low(MLR). By the characterization of Low(MLR)
in 5.1.9, there is no c.e. open set R such that AR < 1 and Vz [K4(2) < |2| -1 —
[2] € R]). Claim 5.1.34 below, which is a consequence of this failure of (5.1),
is used to show that W2R ¢ MLR?. The argument extends the one for the
implication (i)=-(iii) in the proof of Theorem 5.1.9. Recall from Definition 1.9.3
that, for a measurable class V C 2" and a string w, the local measure A(V | w)
is 2WIA(V N [w]).

5.1.34 Claim. Suppose (5.1) on page 167 fails for A. Let 3,~ be rationals such

that 3 < v < 1. For each c.e. open set V and each string w, if A\(V | w) < 3,
there is z such that K4(2) < |z| =1 and \(V | wz) < 7.

Subproof. Assume that no such z exists, and consider the c.e. set of strings
G={z: AV |wz) >~}

Whenever K4(z) < |z| — 1 then z € G. Let S = [G]~. Let (y;)i<n, N < 00 be a

listing of the minimal strings in G under =, so that S = |J, . y[vi]. Now

B2 MV [w) =3y 27 WAV [ wy:) > AS - .
Thus 1 > /v > AS, whence (5.1) holds via S, contradiction. &

We build a set Z € W2R that is not ML-random relative to A. Let (G¢)nen
be a listing of all generalized ML-tests (Definition 3.6.1) with no assumption
on the uniformity in e. We define Z by finite extensions (somewhat similar to
Theorem 1.6.1), defeating the tests (G¢)nen one by one. Claim 5.1.34 ensures
that we can choose the extensions in such a way that Z ¢ MLRA.

As in Theorem 5.1.9, we define a sequence of strings zg,z1,... such that
KA(z) < |z| — 1. Then Z = 2pz123... is not ML-random relative to A by
Proposition 3.2.17 relativized to A. In step e we define z., and, to ensure that
Z € W2R, we also define a number n. such that Z ¢ Gy, . At the beginning of

step e, we have defined zo, . .., ze_1 and ng, ..., ne_1. We let H, = Ui<e GﬁL and
We = 2o - .. %Ze—1. We ensure inductively that for each e
AMHe | we) <7e:=1-27° (5.4)

Note that wy is the empty string and Hy = 0, so that (5.4) holds for e = 0. In
step e > 0, we choose n. so large that
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AGE,) < 27 lwel=e=2,
Then A(G¢_|w.) < 27+ Since Heyy = H. UGS,
MHeg1 | we) < ye +276FD <y,

By Claim 5.1.34 for V = Hoy1, w = we, f = Ye + 2712 and v = v.41 > 3, we
can choose z = 2, such that K4(z) < |z| — 1 and AN(Hey1 | wez) < Yey1. Thus
(5.4) holds for e + 1 where we41 = wez.

If Z € GY, , there is m > n, such that [w,] C G, C Hp, as G}, is open.
However, since A(Hy,|wy,) < 1 by (5.4), we have [wy,] € H,, for each m. Thus
Z¢ G, D

5.2 K-trivial sets

We say that a set A is K-trivial if up to an additive constant the function
An. K(Al,) grows no faster than the function An.K(n). Thus, AT, has no more
information than its length has. It is easily verified that each set that is low for K
is K-trivial, so by Section 5.1, page 170, there is a promptly simple K-trivial
set. In Proposition 5.3.11 we will give a direct construction of such a set, after
introducing the cost function method.

We already stated in the introduction to this chapter that the sets that are low
for ML-randomness (or low for K) actually coincide with the K-trivial sets. This
we will prove in Section 5.4. Here we study K-triviality for its own sake, mostly
by combinatorial means. Given the equivalence with the lowness properties of
Section 5.1, this leads to results involving those properties which would be hard
to obtain if their definitions were used directly. For instance, it is not too difficult
to show that each K-trivial set is AY. A direct proof of this result is possible,
but more difficult, for the sets that are low for ML-randomness (Nies, 2005a).
A further example of this is the closure of the K-trivial sets under the operation &
on sets, where no direct proof is known using the definition of Low(MLR).

Some results of this section will be improved in the Sections 5.4 and 5.5 using
“dynamic” methods, such as the golden run. For instance, once we know that
being K-trivial is the same as being low for K, we may conclude from Proposi-
tion 5.1.2 that the K-trivial sets are not only A9, but in fact low. Alternatively,
in Corollary 5.5.4 we use the golden run method to show directly that each K-
trivial set is superlow, and hence w-c.e.

Basics on K-trivial sets

Each prefix-free description of a string y also serves as a description for |y|.
Thus K(|y]) <T K(y) for each y. Clearly Vn K(n) =+ K(0™), so the following
property of a set A expresses that the K-complexity of the initial segments of A
grows as slowly as the one of a computable set.

5.2.1 Definition. A is K-trivial via b e N if Vn K(Al,) < K(n)+b.
Let K denote the class of K-trivial sets.
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Although we have defined the class of K-trivial sets in terms of the stan-
dard prefix-free universal machine, it actually does not depend on this partic-
ular choice: a change of the universal machine would merely lead to a different
constant b.

The intuitive meaning of K-triviality is to be far from ML-random. By The-
orem 3.2.9 A is ML-random iff Vn K(A [,) > n — ¢ for some c. Thus, A is
ML-random if for each n, the number K (A ,) is within K(n) +c+1 <* 2logn
of its upper bound n+ K (n)+1 given by Theorem 2.2.9. In contrast, A is K-trivial
if K(AT,) is within a constant of its lower bound K (n).

We say that A is C-trivial if Vn C(A[,) < C(n) + b for some b € N (Chaitin,
1976). Computable sets are both K-trivial and C-trivial. Chaitin proved that
there are no further C-trivial sets (Theorem 5.2.20 below). He still managed to
show that all K-trivial sets are in AY. Solovay (1975) constructed an incom-
putable K-trivial set. These results will be covered in the present and in the
next subsection.

Intuitively, an incomputable K-trivial set exists because both sides of the defin-
ing inequality Vn K(A[,) < K(n) + b are noncomputable, and also because we
do not ask for uniformity in the inequality. In particular, we do not require
that a short description of A [,, can be obtained from a short description of n.
Chaitin’s argument gets around this for C-trivial sets because the computable
upper bound C(n) < 1+log(n+1) is attained in each interval [2¢—1,2¢+1—1). So,
roughly speaking, one can replace the right hand side C'(n) 4+ b in the definition
of C-triviality by such a computable bound.

5.2.2 Fact. Each computable set A is K-trivial.

Proof. On input o, the prefix-free machine M attempts to compute n = U(o),
and outputs A [,. Then Vn K (Al,) < K(n)+ b where b is the coding constant
for M. Alternatively, by Example 2.2.16, W = {{(n + 1,A |,,): n € N} is a
bounded request set, so Vn K(A,) <t K(n). O

By Theorem 5.1.19, there is a promptly simple base for ML-randomness, and
by Theorem 5.1.22 each base for ML-randomness is low for K. Then the following
implies that there is a promptly simple K-trivial set.

5.2.3 Proposition. (Extends 5.2.2) Fach set that is low for K is K-trivial.

Proof. We actually show that there is a fixed d such that, if A is low for K via
a constant ¢, then A is K-trivial via the constant ¢ + d. Let M be the oracle
prefix-free machine such that M*X (o) ~ X lu(o) for each X, o, and let d be the
coding constant for M. Then KX (X [,) < K(n) +d for each X and n. Hence
K(ATl,) < KA(Al,) +c¢ < K(n) +c+d for each n. O

K -trivial sets are A

The following theorem of Chaitin (1976) shows that the K-trivial sets are rare:
for each constant b there are at most O(2”) many. As a consequence, each K-
trivial set is AJ. In Corollary 5.5.4 we improve this: each K-trivial set is superlow.
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However, the work in this section is not wasted, since the dynamic methods used
there rely on a computable approximation of the set.

5.2.4 Theorem.

(i) There is a constant ¢ € N such that for each b, at most 2°%° sets are K-
trivial with constant b.

(ii) Each K-trivial set is AY.

Proof. (i). The paths of the AJ tree
Ty = {z:Vu < 2| [K(z]u) < K(u) + b}

coincide with the sets that are K-trivial via the constant b. If ¢ is the constant
of Theorem 2.2.26(ii), then for each n the size of the level {z € T,: |z| = n} is
at most 2°7.

(ii). By (i) each path of T} is isolated, and hence A by Fact 1.8.34 relativized
to 0. O

We give an affirmative answer to a question of Kucera and Terwijn (1999).
After building a c.e. incomputable set in Low(MLR), they asked whether each
set in Low(MLR) is in AY. The result was first obtained in a direct manner; see
Nies (2005a). Here we use the foregoing result and Theorem 5.1.22.

5.2.5 Corollary. Low(MLR) C A9.

Proof. If A € Low(MLR) then A is a base for ML-randomness, and hence low
for K by Theorem 5.1.22. Each set that is low for K is K-trivial. Then, by the
foregoing theorem, A is in A. O

By Theorem 5.2.4 the class K of K-trivial sets can be represented as an ascending
union of finite classes (Paths(Ty))sen. Note that we do not obtain a uniform listing of
AY-indices (i.e., of total Turing reductions to §)') for K. An obvious attempt would be
to represent a path A of T, by a string o € Ty such that A is the only path extending o.
However, the property of a string o to be on T}, and have a unique path above it is not
known to be AJ. Nevertheless, using other methods and the fact that each K-trivial set
is w-c.e., we will see in Theorem 5.3.28 that there is such a listing, which even includes
the constants for K-triviality.

As in 1.4.5 let V. be the e-th w-c.e. set.

5.2.6 Fact. {e¢: V. € K} is X3.
Proof. V. € K is equivalent to 3bVnVs3t > s [K¢(Ve,t [n) < Ki(n) + b]. o

As a consequence, the index set {e: W, is K-trivial} is £ as well. Since each finite
set is K-trivial, there is a uniformly c.e. listing of all the c.e. K-trivial sets, using
Exercise 1.4.22. Then the index set is Y3-complete by Exercise 1.4.23. Note that K is
also 29 as a class, by a proof similar to the proof of Fact 5.2.6.

Exercises.
5.2.7. Show that A is low for K < VnK(Al,) <t K%(n).

5.2.8. Let A be a c.e. set that is wtt-incomplete. Show that 3®°n K (A [,) <* K(n)
and 3*°nC(Al,) <t C(n).
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5.2.9. Give a “far-from-random” analog of Proposition 3.2.14. Let R = {ro <r1 < ...}
be an infinite computable set, and let A C N be any set.

(i) For all n, K(r,) =" K(n) and K(A],) <T K(Al,)

(ii) If b e N and Vn K(A|,,) < K(ry) + b, then A is K-trivial via b+ O(1).

5.2.10° Using Theorem 5.2.4(i) devise a strategy to build a c.e. set that is not K-
trivial. Use it to show that some superlow c.e. set A is not K-trivial.

The number of sets that are K-trivial for a constant b x

Let G(b) be the number of sets that are K-trivial via b. By Theorem 5.2.4 G(b) =
O(2%). The actual values G(b) depend on the choice of an optimal prefix-free
machine. However, in Proposition 5.2.11 below we derive machine-independent
lower bounds for G' which are rather close to the upper bound O(2°), for instance
|€2°/b%] for some ¢ > 0. The finite sets alone are sufficient to obtain these
lower bounds. The next result, Theorem 5.2.12 due to J. Miller, states that
>, G(b)/2° < co. This shows that the lower bound [€2°/b?] is rather tight; for
instance, it cannot be improved to [€2°/b] for any € > 0. On the other hand, the
upper bound O(2%) is not tight since lim;, G(b) /2" = 0.
Recall that T, = {z : Yy <z K(y) < K(|y|) + b}. Thus G(b) = # Paths(Ty).

5.2.11 Proposition. Let D : N — N be a nondecreasing function which is
computably approzimable from above and satisfies ), 2-P®) < o0, Then there
is € > 0 such that ¥b G(b) > [e20-P®) ],

For instance, if D(b) = 2logb, we obtain the lower bound |€2°/b?| for G(b).

Proof. Note that Vb K (b) <* D(b) by Proposition 2.2.18, and hence Vo K (z) <*
|z| + D(|z]). We may increase D by a constant without changing the validity of
the conclusion, so let us assume that in fact Vz K (z) < |z| + D(|z|).

There is a constant r € N such that, for each string = and each m € N,
K(20™) < K(z)+K(Jx|+m)+r, and for each 2’ < z, K(2') < K(z)+K(|2'])+r,
(since 2’ can be computed from x and |2’|). Thus, if b > r, then for each z such
that K(z) < b —r, the set 0% is K-trivial via b. If || < (b—1r) — D(b— 1)
then K(z) < b— 7. So the number of such x is at least [20~"~P®=") | Thus
G(b) > [27720-P®) | for b > r. Since this inequality holds vacuously for b < r,
the proof is complete. a

5.2.12 Theorem. ), G(b)/2" < cc.
Proof. Let F(b,n) = #{z: |z| =n & K(z) < K(n) + b}.
Claim 1. Y, G(b)/2° < liminf, Y, F(b,n)/2°.

Since G(b) is finite for each b, we may choose ny, so large that each A € Paths(Ty)
is the only path of T} extending A [,,. Given k, let mj, = maxp<s np. Then for

all n > my, we have that Y.r_ G(b)/20 < Yp_, F(b,n)/2. Thus 3", G(b) /2" <
liminf, Y, F(b,n)/2°b.

Claim 2. There is ¢ € N such that >, F(b,n)/2" < ¢ for each n.
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Let Sg = {z: K(z) = K(|z|) + d}, and let F(d,n) = #{z: |z| =n & z € S4}.
Since {0,1}* is partitioned into the sets Sy, for each n we have

Zd ﬁ(d, n)Q_K(")_d Z\ 2—K(r)
If K(x) < K(|z|) + b then « € S4 for a unique d < b. Thus for each n

ZanQ Km=b =3~ 5~ g Km-b

b K(z)<K(n)+b

Y Y Y

d K(z)=K(n)+d b>d
=2 F(d,n)2~ K~
d

=2 Z 9~ K(2),

|z|=n

It now suffices to show that >, _, 2= K@) = 0(2=K™M) for then Claim 2 follows

after multiplying by 25("). Recall from the Coding Theorem 2.2.25 that for
a prefix-free machine M we defined Py(y) = A[{o: M(c) = y}]~, and that
Py(y) ~2~5®_ Let M be the machine from the proof of Theorem 2.2.26 given
by M(0) = [U(0)[. Then Par(n) = Y2 4=, Po(z) ~ 3,2, 275 By 2.2.25,
Py(n) = O(2~K™). Thus 2 jal=n 27 K@) = 0(27K(™M) as required. O

The sequence (G(b)/2°)pen converges to 0 rather slowly:

5.2.13 Proposition. There is no computable function h: N — Q2 such that
limy h(b) = 0 and Vb [G(b)/2° < h(b)]. In particular, the function G is not computable.

Proof. Assume that such a function h exists. We enumerate a bounded request set L.
We assume that an index d for a machine My is given, thinking of M, as a prefix
machine for L (see Remark 2.2.21).

Construction of L. Compute the least b > d such that h(b) < 27¢. Now enumerate L in
such a way that there are 2°~¢ K-trivial sets for the constant b; this is a contradiction
since in that case G(b)/2° > 2% For each string = of length b — d let A, = z0°°.
Whenever s > 0 is a stage such that K (n) < Ks_1(n) (possibly K,_1(n) = co0), then
for each such z put the requests (K (n) +b—d, Az ) into L.

Verification. The weight we put into L for each A is at most 22°~¢, so the total weight
of L is at most €2, no matter what d is. If Mg, d > 1, is in fact a machine for L, then
K, (Az 1n) < K(n) + b — d for each z,n, whence A, is K-trivial via b. O

Since each A, is finite, the Proposition remains valid when one replaces G by the
function Gfin, where Giin(b) is the number of finite sets that are K-trivial via b.
Exercises.

5.2.14. There is 79 € N such that, if A is K-trivial via the constant ¢, then zA is K-
trivial via 2K (x) 4+ ¢ + ro, for each string z.

5.2.15° Improve 5.2.13: a function h with the properties there is not even AJ. In
particular G €1 ()'. The same is true for Gyp.
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5.2.16° Problem. It is not hard to verify that G <r @(3). Determine whether
G <r 09, (This may depend on the choice of an optimal machine.)

Closure properties of K

We show that K induces an ideal in the A weak truth-table degrees. The closure
under @ was proved by Downey, Hirschfeldt, Nies and Stephan (2003).

5.2.17 Theorem. If A, B € K then A ® B € K. More specifically, if both A
and B are K-trivial via b, then A @® B is K-trivial via 3b+ O(1).

Proof idea. By Exercise 5.2.9, it is sufficient to show
Vn K(A® Bla,) < K(n)+3b+ O(1).

The set S, = {z: |z| = n & K(z) < r} is c.e. uniformly in n and r. If r =
K(n) + b, then by Theorem 2.2.26(ii) we have #S,, . < 2¢*° for the constant c.
So we may define a prefix-free machine describing a pair of strings in S, , with
K(n)+0O(1) bits. It has to describe n only once, using a shortest U-description o.
Thereafter, it specifies via two numbers i, j < 2¢*? in which position the strings
Al, and B, appear in the enumeration of S, , where r = |o| + b.

Proof details. Let M be the prefix-free machine which works as follows. On
input 0°1p search for o < p such that U(c) |= n. If p = 0o where «, 3 are strings
of length ¢ + b, then let 4, j < 2°*? be the numbers with binary representations
la and 18. Search for strings x and y, the i-th and the j-th element in the
computable enumeration of .S, ,, respectively. If z and y are found output z @ y.

For an appropriate string p = oa/3 of length K (n)+2(c+b) we have M (0°1p) =
A® Blay,. Hence K(A® Bla,) < K(n)+3b+ O(1). O

Is the class of K-trivial sets closed downward under Turing reducibility? In
Section 5.4, with considerable effort, we will answer this question in the affirma-
tive by showing that IO = M. In contrast, an easier fact follows straight from the
definitions, downward closure under weak truth-table reducibility. This already
implies that K is closed under computable permutations.

5.2.18 Proposition.

(i) Let A be K -trivial via b. If B <, A then B is K-trivial via a constant d
determined effectively from b and the wtt reduction.

(ii) If A is K-trivial then O/ L. A.

Proof. (i) Suppose B = T4, where T' is a wtt reduction procedure with a
computable bound f on the use. Then, for each n,

K(Bln) <% K(Alpm) < K(f(n)) < K(n).
(ii) follows from (i) because € is not K-trivial, and Q <, (' by 1.4.4. O

5.2.19 Exercise. If A and B are K-trivial and 0.C = 0.A 4+ 0.B, then C' is K-trivial.
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C-trivial sets

In the next two subsections we aim at understanding K-triviality by varying it.
We say that A is C-trivial if IV C(Al,) < C(n)+b (see page 177). A modifi-
cation of the proof of Fact 5.2.2 shows that each computable set is C-trivial. By
the following result of Chaitin (1976) there are no others.

5.2.20 Theorem.

(i) For each b at most O(b?2%) sets are C-trivial with constant b.
(i) Each C-trivial set is computable.

Proof. We first establish the fact that there are no more than O(b?2%) M-
descriptions of z that are at most C(z) + b long. Thus, surprisingly, the number
of such descriptions depends only on b, not on .

5.2.21 Lemma. Given a machine M, we can effectively find d € N such that,
for all b, x,

#{o: M(o) =z & |o| < C(z) + b} < 20F2leebtd+d — (p220), (5.5)

Subproof. The argument is typical for the theory of descriptive string complex-
ity: if there are too many M-descriptions of z, we can find a V-description of z
that is shorter than C(z), contradiction.

Recall from page 13 that string(b) is the string identified with b, which has
length log(b + 1). Let b = 0l=ne®|1string(b) so that [b] < 2logb+ 3. We define a
machine R. By the Recursion Theorem (with a parameter for M) we may assume
that we are effectively given a coding constant d > 0 for R, that is, ®; = R.

R: For each b, each m > 2logb+ d 4 4 and each z, if there are 202108 0+d+5

strings o of length at most m + b such that M(o) = z, let R(bp) = =z, for

the leftmost p of length m — 2logb — d — 4 such that bp is not yet in the
domain of R. Note that |bp| < m — d.

This definition of R is consistent: for each b, m, there are 201 — 1 strings of
length at most m +b, so at most 2m0+1 /2b+2logb+d+s — gm—2logb—d—4 gt ingg
can have a sufficient number of M-descriptions to get an R-description /b\p.
Suppose (5.5) fails for b, z, and let m = C(x). Then 2m+0+1 > gb+2logbtd+5 g4
m > 2log b+d+4, hence we ensure that Cr(z) < m—d and therefore C(x) < m,
contradiction. <&

(i) We apply the lemma to count the strings z of length n such that C(z) <
C(n)+b. Similar to the proof of Theorem 2.2.26(i), consider the machine M given
by M (o) ~ |V(o)|. Each shortest V-description of such a z is an M-description
of n that has length at most C(n)+b, so by the lemma there are at most r many,
where 7 = O(b?2°) is independent of n.

Similar to the proof of Theorem 5.2.4(i), consider the tree

TE = {z: Yu <|z|C(2 ) < C(u) + b},
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which contains at most 7 strings of each length n. Each set that is C-trivial for b
is a path of TbC, so there are at most r such sets.

(ii) Let A be C-trivial via b. The tree TC is merely A3, so the fact that A
is an isolated path is not sufficient to show that A is computable. Instead, let
Sy D TE be the c.e. tree {z: Vu < |z|[C(2],) < 1+log(u+ 1)+ b]}. For almost
every 14, there is a string y of length ¢ such that C(y) = |y| + 1 (Exercise 2.1.19)
and therefore (with the usual identifications from page 13) there is a number w,
2t —1 < wu < 2771 — 1 such that C(u) = 1+ log(u + 1). Let

Sy ={z: Jw = z[jw| = 2|2| & w e Sy},

then there are at most r strings on Sy, at almost every level k = 2° —1 of Sj. The
set A is a path of Sy, so there is a string z < A such that for each k > |z| of the
form 2! — 1, A [ is the only string in S;, extending z. Since the tree S, is c.e.,
we can enumerate it till this string appears. Hence A is computable. a

Exercises.

5.2.22. We say that A is low for C if 3bVy [C*(y) > C(y) — b]. Show that each set
that is low for C is computable.

5.2.23. Explain why the proof of Theorem 5.2.20(ii) cannot be adapted to show that
each K-trivial set is computable.
5.2.24. (Loveland, 1969) Show that the following are equivalent for a set A.
(i) A is computable.
(ii) There is d € N such that Vn K(A[,| n) <d.
(iii) There is b € N such that VYnC(A[,| n) <b.

Replacing the constant by a slowly growing function x

We replace the right hand side K(n) 4+ O(1) in the definition of K-triviality by
K(n) 4+ p(K(n)) + O(1), where p is a function we think of as a slowly growing.
For each function p, let K, denote the class of sets A such that
Vn K(Al,) <t K(n) + p(K(n)).

We prove a result of Stephan which shows that, if p: N — N is unbounded
and computably approximable from above (see Definition 2.1.15), the class IC,
is much larger than K. An example of such a function was given in Proposi-
tion 2.1.22: p(n) = C(n) = min{C(m): m > n}. The approximability con-
dition is needed, since Csima and Montalbdn (2005) defined a nondecreasing
unbounded function f such that A is K-trivial < Vn K(A[,) <t K(n)+ f(n),
which implies that A is K-trivial < Vn K(A1,) <T K(n) + f(K(n)).

5.2.25 Theorem. Suppose p is a function such that lim, p(n) = co and p is
computably approximable from above. Then there is a Turing complete c.e. set E
such that each superset of E is in KC,.

Proof. For aset X C N and n € N, we write X for N— X and X Nn for X N[0,n).
The function g(n) = |[p(K(n))/2] is computably approximable from above via gs(n) =
|ps(Ks(n))/2]. The idea is to make the complement of the c.e. set E very thin, so that
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for every A O E and each n, a description of n and very little extra information yields
a description of A [,. We enumerate E as follows. At stage s,

(1) for each r < s in increasing order, if [Es_1 N7| > gs(7), put the greatest element of
E._1Nrinto Es.

(2) If i € 0, — @, then put the i-th element of E;_; into E.

Firstly, we verify that E is Turing complete. By the coding in (2), it is sufficient to
show that E is co-infinite. We prove by induction on ¢ € N that #(E Nn) = q for
some n. This is trivial for ¢ = 0. If ¢ > 0, by the inductive hypothesis there is m such
that #(E Nm) = ¢ — 1; let t be the least stage such that £, Nm = E N m. Choose
k > m, t such that gs(r) > g for each k > r and each s. If g € (), —(),_; for some s, let v
be the number enumerated in (2) at stage s, else let v = 0. Let n > max{v+1,k+1} be
least such that n — 1 & Exy1. If #(ENn —1) > g — 1 we are done. Suppose otherwise,
that is, (m,n—1) C E. Then n—1 ¢ FE, since n — 1 is not enumerated via (2), nor can
any number 7 > n in (1) demand that #(E Nr) < g. Thus #(ENn) = q.

Secondly, we show that each set A O E is in Kp. We introduce a prefix-free machine M
such that Ka(A 1) < K(n) 4+ p(K(n)) 4+ 1 for each n. On input 07170, M first
attempts to compute n = U(o). In case of convergence, it waits for the least stage s
such that #(Es Nn) < |7|. Interpreting 7 as the bits of A in the positions where
membership has not yet been determined, it outputs a string y of length n such that
y(i) = 1if i € E,, and y(i) = 7(j) if ¢ is the j-th number not in F, and j < |7]|.
Suppose o is a shortest string such that U(c) = n. If we choose an appropriate 7 of
length g(n) then M(O‘T‘ITU) = A I, and the length of this M-description is at most
29(n) + 1+ o] < p(lo]) + 1+ Jo]. 0

5.3 The cost function method

We introduce an important method to build a set A satisfying a lowness property.
It was first used by Kucera and Terwijn (1999) to build an incomputable c.e.
set that is low for ML-randomness, and later, in more explicit form, by Downey,
Hirschfeldt, Nies and Stephan (2003) to build an incomputable c.e. K-trivial set.

We define a cost function, a computable function ¢ that maps a pair x,s of
natural numbers where x < s to a nonnegative binary rational. At stage s,
we interpret c(z,s) as the cost of a potential enumeration of x into A. The
set A has to obey this cost function in the sense that the sum of the costs of
all enumerations is finite (if several numbers are enumerated at the same stage
we only count the least one). This restrains the enumeration into A, so via a
cost function construction one can build a c.e. set A satisfying a specific lowness
property. Under some extra condition on the cost function one can make A
incomputable, and even promptly simple (see 1.7.9).

Using the cost function method, we will

(I) directly build a promptly simple K-trivial set A;

(IT) rephrase the construction of a promptly simple set A that is weak truth-
table reducible to a given ML-random A set Y; this is Kuéera’s Theorem
in the restricted version of Remark 4.2.4.
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In both cases, since the total cost of the enumerations is finite, we can define
an auxiliary c.e. object that in some sense has a finite weight. In (I) this object
is a bounded request set showing that A is K-trivial, while in (II) it is a Solovay
test needed to show that A < Y. Table 5.1 on page 200 gives an overview of
cost functions.

Recall that {Y} is a II9 class for each AY set Y. A cost function construction
allows us to extend (II): for each £ null class C, there is a promptly simple
set A such that A <p Y for every ML-random set Y € C. This is applied in
Theorem 8.5.15 to obtain interesting classes contained in the c.e. K-trivial sets.

Most cost functions ¢(z, s) will be non-increasing in z and nondecreasing in s.
That is, at any stage larger numbers are no cheaper, and a number may become
more expensive at later stages.

Note that we have already proved the existence of a promptly simple set that
is low for K and hence K-trivial (see the comment before Proposition 5.2.3).
However, the cost function construction in (I) gives a deeper insight into K-
triviality. Indeed, we will prove that each K-trivial set can be viewed as being
built via such a construction. For this, it will be necessary to extend the cost
function method to AY sets: one now considers the sum of the costs ¢(z, s) of
changes As(z) # As—1(x). This characterization via a cost function shows that
each K-trivial set A is Turing below a c.e. K-trivial set C, where C' is the change
set of A defined in the proof of the Limit Lemma 1.4.2. The only known proof
of this result is the one relying on cost functions.

To build a promptly simple set A, we meet the prompt simplicity requirements
PS, in the proof of Theorem 1.7.10. Such a requirement acts at most once, and
is typically allowed to incur a cost of up to 27¢. In that case, the sum of the
costs is finite, that is, A obeys the cost function. Instead of 27¢ we could use any
other nonnegative quantity f(e) € Qo, as long as the function f is computable
and ), f(e) < co. We are able to meet each requirement PS., provided that the
cost function satisfies the limit condition, namely, for each e € N, almost all
cost at most 27¢ at all stages s > z.

We sketch the construction for (I) above. The standard cost function

C}C(l', S) = Zx<w§s 2_K8(w)

satisfies the limit condition. Whenever a computable enumeration of a set A
obeys this cost function, we can build a bounded request set L showing that A
is K-trivial. The set L yields descriptions of the initial segments of A and keeps
up with the changes of A. Let p € N be a constant such that the total cost S of
all enumerations is at most 2P. If x is the least number entering A at stage s, then
all the initial segments Ag [, * < w < s, need new descriptions via the prefix-
free machine obtained from L. Thus, for each w, x < w < s, we put a request
(Ks(w) + p+ 1, Agl) into L. The weight contributed to L is 277~ 1¢(z, s). In
total, the contributed weight is at most 277~18 < 1/2. (The other half is needed
for new descriptions of Al,, when K, (w) < K;_1(w). Details are supplied when
we prove Theorem 5.3.10 below.)
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In the applications (I) and (II) of the method, the cost function is given in
advance. We will also consider the case that ¢(z,s) depends on A;_;. Such a
cost function, called adaptive, is necessary for a direct construction of a promptly
simple set that is low for K (5.3.34). Also adaptive is the cost function used by
Kucera and Terwijn (1999) to build an incomputable c.e. set that is low for ML-
randomness (5.3.38). The latter two cost function constructions merely prove
the existence of a promptly simple set in the class I, given that being K-trivial
is equivalent to being low for K. However, it is still instructive to study these
direct constructions because they expose different aspects of K.

Adaptive cost functions can be used to hide injury to requirements. For in-
stance, in Remark 5.3.37 we reformulate the construction of a low simple set
(which has injury to the lowness requirements) in the language of an adaptive
cost function. However, we also argue that a cost function given in advance
cannot be used in that way, so the constructions based on non-adaptive cost
functions, such as (I) and (II) above, can be considered injury-free.

The basics of cost functions

5.3.1 Definition. A cost function is a computable function
¢c:NxN—={zeQy: x>0}

We say that c satisfies the limit condition if limgsup,., c(x,s) = 0, that is,

VeV®x Vs > x[c(x,s) < 27°.

We say that c is monotonic if ¢(x + 1,s) < ¢(z,s) < ¢(z,s + 1) for each = < s,

namely, ¢(z, s) does not decrease when we enlarge the interval [z, s).

In the following we will usually only define the values of a cost function c(z, s)
for x < s, and let ¢(z,s) =0 for x > s.

We already discussed an important example of a cost function, the one for
building a K-trivial set. By convention 27°° = 0.

5.3.2 Definition. The standard cost function ci is given by
CIC('ra 8) = Za:<w§s 2_K5(w)'
5.3.3 Lemma. (i) ¢k is monotonic. (i) cx satisfies the limit condition.

Proof. (i) Immediate.

11 ven e € since - < 1, there is an xg such that

(ii) Gi N, since 3, 275®) < 1/ there i h th

Zw>x0 2-K(w) < 27¢ Hence cx(x,s) <27¢ for all z > o and all s > . O

Recall from Definition 1.4.1 that a computable approximation (A;)sen of a
AY set A is a computable sequence of (strong indices for) finite sets such that
A(z) = limzAq ().

5.3.4 Definition. We say that a computable approximation (A;)sen obeys a
cost function c if

S = Zc(x, s)[x < s & x is least s.t. A;_1(z) # As(x)] < 00. (5.6)

z,s
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If the computable approximation of a AY set A is clear from the context, we will
also say that the set A obeys the cost function.

We think of a cost function as a description of a class of AJ sets: those sets
with an approximation obeying the cost function. For instance, the standard cost
function describes the K-trivial sets. This is somewhat similar to a sentence in
some formal language describing a class of structures.

We proceed to the general existence theorem. A cost function with the limit
condition has a promptly simple “model”.

5.3.5 Theorem. Let ¢ be a cost function with the limit condition. Then there
is a promptly simple set A with a computable enumeration (As)sen obeying c.
Moreover, S < 1/2 in (5.6), and we obtain A uniformly in c.

Proof. We meet the prompt simplicity requirements from the proof of 1.7.10
PS.: #We=00 = Fsdzx[x € We s & v € A

(where We ot s = We s — We s—1). We define a computable enumeration (As)sen
as follows.

Let Ag = 0. At stage s > 0, for each e < s, if PS, has not been met
so far and there is > 2e such that z € W, 5 s and c(z,s) < 27°,
put z into A,. Declare PS, met.

The computable enumeration (A;)sen obeys the cost function, since at most one
number is put into A for the sake of each requirement. Thus, the sum S in (5.6)
is bounded by >~ 27°¢ = 2.

If W, is infinite, there is an x > 2e in W, such that ¢(z,s) < 27¢ for all s > z,
because ¢ satisfies the limit condition. We enumerate such an z into A at the
stage s > x where x appears in W, if PS, has not been met yet by stage s.
Thus A is promptly simple.

If we modify the construction so that each requirement PS, is only allowed to
spend 27¢72 we have ensured that S < 1/2. Clearly the construction of A is
uniform in an index for the computable function c. O

The c.e. change set C >1 A for a computable approximation (As)sen of a
AY set A was introduced in the proof of the Limit Lemma 1.4.2: if s > 0 and
As_1(z) # As(x) we put (x,1) into Cs, where i is least such that (z,i) & Cs_1.
If A is w-c.e. via this approximation then C' >; A. The following will be used in
Corollary 5.5.3, that each K-trivial set is Turing below a c.e. K-trivial set.

5.3.6 Proposition. Suppose ¢ is a cost function such that c(x,s) > c(x + 1, )
for each x,s. If a computable approzimation (As)sen of a set A obeys c, then the
c.e. change set C >1 A obeys ¢ as well.

Proof. Since z < (z,14) for each z, 7, we have Cs_1(x) # Cs(x) — As_1 |27 As |2
for each z,s. Then, since ¢(z,s) is nonincreasing in x, the sum in (5.6) for C
does not exceed the sum for A. O
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Exercises.

5.3.7. There is a computable enumeration (As)seny of N in the order 0,1,2,... (i.e.,
each A, is an initial segment of N) such that (As)sen does not obey ck.

5.3.8. Show the converse of Theorem 5.3.5 for a monotonic cost function c:

if a computable approximation (As)sen of an incomputable set A obeys c, then c
satisfies the limit condition.

5.3.9. We view each ®; as a (possibly partial) computable approximation (As) by
letting As ~ Dg,(s). Ve is the e-th w-c.e. set (1.4.5). Let ¢ be a cost function Vz c(z, s) >
2(—x). Show that {e: some total computable approximation of V. obeys c} is £3.

A cost function criterion for K-triviality

We give a general framework for the cost function construction of a promptly
simple K-trivial set. This construction was already explained on page 185 in the
introduction to this section.

5.3.10 Theorem. Suppose a computable approxzimation (As)sen of a set A obeys
the standard cost function cx(x,s) =3, <, 2~ K:(W) | Then A is K-trivial.

Proof. By the hypothesis the total cost S of all changes defined in (5.6) is finite.
First suppose that S < 1. We enumerate a bounded request set W at stages s:

put the request (Ks(w) + 1, Aslyw) into W whenever w < s and
(a) Ks(w) < Ks—1(w), or
(b) Ky(w) < 00 & As—1 [wF As |w-

Requests enumerated because of (a) contribute at most /2 to W, since for
each w and each value K,(w) there is at most one such request. Suppose now
that a request (Ks(w) + 1, Al,) is enumerated at stage s because of (b). Then
w > x where z is least such that A, ;() # As(x). Thus the term 2~ s()
occurs in the sum cx(z, s), and hence in the sum S. If we assume S < 1, the
contribution of such requests is at most 1/2. Thus W is a bounded request set.

Let M, be the prefix machine for W obtained by the Machine Existence The-
orem 2.2.17. We claim that K(AT,) < K(w) +d+ 1 for each w. Given w, let s
be greatest such that s = 0 or As_1[w# Aslw. If s > 0 then the requests in (b)
at stage w cause K, (Al,) < Kq(w) +d+ 1 for some v > s. If K (w) = K(w),
we are done. Otherwise, the inequality is caused by a request in (a) at the great-
est stage t > s such that K;(w) < K;_1(w) (this includes the case s = 0 as

Ky(w) = o).
More generally, suppose S < 2P where p € N. We now put requests of the form
(Ks(w) +p+ 1, Agly) into W, and argue as before. O

Since ¢ satisfies the limit condition by Lemma 5.3.3, the proof of Theo-
rem 5.3.5 provides a direct construction for the following.

5.3.11 Proposition. There is a promptly simple K -trivial set A. O

As one would expect, obeying the standard cost function restricts the number of
changes in a computable approximation. Let r be a constant such that K(y) < 2logy+r
for each y, and let h(y) = min{s: Ks(y) < 2logy +r}.
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5.3.12 Proposition. If a computable approzimation (As)sen of a set A obeys the cost
function cx, then for each y, As(y) for s > h(y) changes at most O(y*) times. In
particular, A is w-c.e.

Proof. Given y < s, when A,_1(y) # As(y), the sum S in (5.6) increases by at least
27K Since K,(y) < 2log(y) + 7, we have 275+ > ¢y=2 for some fixed € > 0. As
S < o0, the required bound on the number of changes follows. O

Cost functions and injury-free solutions to Post’s problem

We now have two injury-free solutions of Post’s problem: Kucera’s solution in
Section 4.2, and the construction of a promptly simple K-trivial set in Propo-
sition 5.3.11 (we will show in 5.5.4 that each K-trivial set is low). The two
solutions are closely related. Firstly, Kucera’s Theorem in the restricted version
of Remark 4.2.4 yields a base for ML-randomness and hence a K-trivial set.
Secondly, the proof in Remark 4.2.4 can be rephrased as a cost function con-
struction, as already discussed in (II) at the beginning of this section. Given a
ML-random AY set Y, we want to build a promptly simple set A <,,;; Y using the
construction in Theorem 5.3.5. The cost function cy depends on a computable
approximation of Y. Let ¢y (x,s) =2 % for each z > s. lf x < s, and e < x is
least such that Y;_1(e) # Ys(e), let

ey (x,8) = max(cy (z,s — 1),27°). (5.7)

This makes all the numbers = < s inaccessible to PS; for j > e. Clearly cy sat-
isfies the limit condition, because if e < x < s, then ¢y (x,s) < 27¢ is equivalent
t0 Vig<i<s Yi[e= Ysle. Therefore the construction in the proof of Theorem 5.3.5
for ¢ = ¢y reproduces the construction of the promptly simple set A in 4.2.4.

5.3.13 Fact. (Greenberg and Nies, 20xx) Suppose Y is a ML-random AY set
and (As)sen is a computable approximation of a set A obeying cy. Then A <1 Y
with use function bounded by the identity.

Proof. We modify the argument in Remark 4.2.4. We build an interval Solovay
test G (see 3.2.22) as follows: when Ag_;1(x) # As(x) and cy(x,s) = 27°, we
list the string Y [ in G. Then G is indeed an interval Solovay test since the
computable approximation of A obeys cy.

Choose sg such that ¢ A Y for each o listed in G after stage sg. To show
A <,u Y, given an input & > sg, using Y as an oracle, compute ¢t > x such
that Y; [,= Y [,. We claim that A(z) = A¢(x). Otherwise Aq(x) # As—1(x) for
some s > t. Let e < x be the largest number such that Y,. [.= Y; [, for all r,
t <r<s. If e=uxthen cy(z,8) > cy(2,0) = 27 If e < z then Y (e) changes
in the interval (¢, s] of stages, so cy(x,s) > 27¢. Hence, by the choice of ¢, we
list an initial segment of Y; [.=Y [, in G at stage s > s¢, contradiction. O

5.3.14 Remark. It is instructive to compare the standard cost function cx with the
cost function cy . Let us see how each of them restricts a prompt simplicity requirement
PS. when we build in 5.3.5 a promptly simple set A obeying the cost function. (We
meet (I) or (II) as outlined at the beginning of this section.) Let ¢ be one of the two cost
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functions. A number z can enter A for the sake of PSe only if ¢(z,s) < 27°. Firstly,
consider ¢ (z,8) =30, <, 27K+ Note that cxc(x,s) = 0 for > s, and if at a stage
t > s we have c¢(z,t) > 27° we may as well assume that the entire interval [z,¢) has
become unusable for PS. (the numbers with short descriptions at stage ¢ might be
close to t). So PS. will have to look for future candidates  among the numbers > t.

For the cost function cy, whenever Y [. changes at stage ¢, all the numbers < ¢
become unusable for PS.. For cx this process of intervals becoming unusable can be
repeated at most 2¢ times, as each time 2 increases by more than 27°. In contrast,
for cy the process of intervals becoming unusable can be repeated as often as Y [.
changes.

In Definition 8.5.3 we will introduce benign cost functions to capture this behavior
of cx. Most results involving cx hold more generally for benign cost functions. If Y is
w-c.e. then cy is benign.

Construction of a promptly simple Turing lower bound

We will prove a useful variant of Fact 5.3.13. By Proposition 3.6.2, {Y'} is a 19
class for any A9 set Y. Hirschfeldt and Miller showed in 2006 that instead of the
class {Y} one can take any null X9 class H and still obtain a promptly simple
Turing lower bound for all its ML-random members. In Theorem 8.5.15 we will
see interesting examples of such classes H, for instance the class of w-c.e. sets.
Frequently H is a highness property, such as being uniformly a.e. dominating
(5.6.26).

5.3.15 Theorem. From a null X3 class H one can effectively obtain a promptly
simple set A such that A <t 'Y for each ML-random setY € H.

Proof. Firstly, given a description of H as a X class, we define a cost function ¢
with the limit condition such that every AJ set A obeying c is a Turing lower
bound for the ML-random sets in H. Secondly, we use that, by Theorem 5.3.5 we
can effectively obtain a computable enumeration (A;)sen of a promptly simple
set A obeying c.

Let us first work under the stronger assumption that H is a II9 class. By
Remark 1.8.58 we have H = (1), V;, for an effective sequence (V,)zen of XY classes
such that V41 C V,, for each x. By (1.16) on page 54 let (V; s )4 sen be an effective
double sequence of clopen sets such that V, ; = 0 for x > s, Vs C V, 441 for
each z,s and V, = |J, Vi s. Then the cost function c(z,s) = AV, , satisfies the
limit condition in Definition 5.3.1 because lim, AV, = 0.

Suppose (As)sen is a computable approximation of a set A obeying ¢. To show
A <7 Y for each ML-random set Y € H, as in the proof of Fact 5.3.13 we
enumerate an interval Solovay test G. When A,(x) # As—1(x) for s > z, list
in G all the strings o of length s such that [o] C V,, ;. As before, G is an interval
Solovay test by the hypothesis that the approximation of A obeys c.

Showing A <rp Y is similar to the proof of 5.3.13. Choose sg such that ¢ A Y
for any o enumerated into G after stage sg. Given an input x > sg, using Y as
an oracle compute ¢ > z such that [Y [;] C V, ;. We claim that A(x) = A¢(x).
Otherwise As(z) # As_1(x) for some s > ¢, which would cause the strings o of
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length s such that [o] C Vs to be listed in G, contrary to Y € V, ;. (In general
there is no computable bound for the use t on Y’; see Exercise 5.3.19.)

Intuitively, we enumerate a Turing functional T' such that A = T'Y (see Sec-
tion 6.1). At stage t we define I'Y (z) = A;(z) for all Y in V, ;. When Ay(z) #
As_1(z) for s > t we have to remove all those oracles by declaring them non-
random.

If H is a £9 class we slightly extend the argument: by Remark 1.8.58 we have
H = U;N, Vi for an effective double sequence (V}); zen of X9 classes such
that V) D V¢, for each i,z and V! = 2~ for i > 2. Then the cost function
c(x,s) = 3, 27°AV}  is Qy-valued and satisfies the limit condition: given Fk,
there is zg such that

Vi <k+1Vr >z AV <27FL
Then c(z,s) < 27F for all z > xg and all s, since the total contribution of terms
27NV, for i >k + 2 to ¢(z, s) is bounded by 2771,

Suppose we are given a computable approximation of a set A obeying c. For
each i, when A,(x) # A,_1(z) we list the strings o of length s such that [o] C V|
in a set G;. Then G; is an interval Solovay test by the definition of c. If Y € ‘H
we may choose i such that Y € (), V.. If Y is also ML-random then we use G;
as before to argue that A <p Y. O

As an application we characterize weak 2-randomness within ML-randomness.
This was promised on page 135.

5.3.16 Theorem. Let Z be ML-random. Then the following are equivalent:

(i) Z is weakly 2-random.
(i) Z and O form a minimal pair.
(iii) There is no promptly simple set A <p Z.

Proof. (i) = (ii): Suppose the AJ set A is incomputable and A = ®Z for
some Turing functional ®. Since {A} is 13, the class {Y: ®Y = A} is IIY by
Exercise 1.8.65. Also, this class is null by Lemma 5.1.13. Thus Z is not weakly
2-random.

(i) = (iii): Trivial.

(iii) = (i): Suppose Z is not weakly 2-random, then Z is in a null IT3 class H.
By Theorem 5.3.15 there is a promptly simple set A <p Z. O

Exercises.
5.3.17. Show that Theorem 5.3.15 fails for null II$ classes.

5.3.18. Suppose H = {V'} for a AJ set Y. Recall the representation of the I3 class H
given by Proposition 3.6.2, namely H = (1, V. for a sequence of uniformly 9 classes
(Vz)zen where, whenever s > x and r is least such that Ys(r) # Ys—1(r), we put Ys [r41
into V;,s. We may suppose that Vz Yz (x) # Ya+1(x). Let ¢ be the cost function from
the proof of Theorem 5.3.15. Show that ¢y = c.

5.3.19. Explain why we merely obtain a Turing reduction in Theorem 5.3.15, and not
a weak truth-table reduction as in Remark 4.2.4.
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5.3.20. (i) Show that if Y and Z are sets such that Y @ Z is ML-random and Y is
weakly 2-random (for instance, if Y @ Z is weakly 2-random), then Y, Z form a minimal
pair. (ii) Use this to show there is a minimal pair of computably dominated lows sets.

K -trivial sets and ¥ -induction %

In this subsection we assume familiarity with the theory of fragments of Peano
arithmetic; see Kaye (1991). We ask how strong induction axioms are needed to
prove that there is a promptly simple K-trivial set. All theories under discussion
will contain a finite set of axioms PA~ comprising sufficiently much of arithmetic
to formulate number-theoretic concepts, carry out the identifications of binary
strings with numbers on page 13, and formulate and verify some basics on c.e.
sets, machines and K. I¥; is the axiom scheme for induction over ¥; formulas.
Simpson showed that the proof of the Friedberg-Muchnik Theorem 1.6.8 can be
carried out in IX;. See Mytilinaios (1989).

The scheme IAg is induction over Ay formulas. BY; is IAg together with
collection for ¥; formulas. BY; states for instance that f([0,z]) is bounded for
each ¥y function f and each x. All formulas may contain parameters. Note that
I3, = BX; but not conversely (see Kaye 1991).

Hirschfeldt and Nies proved the following.

5.3.21 Theorem. I3, “there is a promptly simple K-trivial set”.

Proof sketch. It is not hard, if tedious, to verify that the proofs of Theo-
rems 5.3.5 and 5.3.10 can be carried out within I¥;. Thus it suffices to prove
from I3, that ¢k satisfies the limit condition in Definition 5.3.1. Let M |= I%;.
Consider the ¥; formula ¢(m,e) given by

Fu(lul=m+1&Vi(0<i<m— cx(ug,uipr) > 279).
Suppose the limit condition fails for ¢ via e € M. Then, using I3, we have
M = Vmp(m,e). Now let m be 2° + 1 (in M), and let u € M be a witness

for M = ¢(m,e). For each i < m, we have in M a clopen set C; such that
AC; = exc(ug, uirr) and C; N Cj = O for i # j. Thus, in M, we have

1> Zogig% cre(ug,uirr) > (264 1)27¢ > 1,
contradiction. -

Note that we have actually shown that %, suffices for the “benignity” property
of ¢x described in Remark 5.3.14.

The weaker axiom scheme BY; is not sufficient to prove that there is a promptly
simple K-trivial set. If M | IAg, we say that A C M is regular if for each
n € M, A, is a string of M (i.e., A [,, corresponds to an element of M via
the usual identifications defined for N on page 12). Each K-trivial set A C M
is regular because for each n there is in M a prefix-free description of A [,. But
there is a model M |= BY; in which each regular c.e. set A is computable; see
Chong and Yang (2000).

Héjek and Kucera (1989) formulated and proved in I¥; a version of the solution to
Post’s problem from Kuéera (1986) which uses the Low Basis Theorem (see page 150).
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In this context it would be interesting to know to what extent the proof of 5.3.13 can
be carried out in I¥; provided that Y(e) changes sufficiently little, say O(2°) times,
and whether the alternative solution, avoiding the Low Basis Theorem and using the
even bits of {2, can be carried out in I3;. It is not known whether I¥; proves that
each K-trivial set A is Turing incomplete (see page 202).

Avoiding to be Turing reducible to a given low c.e. set

For many classes of c.e. sets studied in computability theory, given a Turing
incomplete c.e. set B, there is a set A in the class such that A €7 B. This is
the case, for instance for the class of low c.e. sets (and even of superlow c.e.
sets), because there are (super)low c.e. sets Ag, A1 such that Ay @& Ay = (. For
lowness, this follows from the Sacks Splitting Theorem (1.6.10). To extend it to
superlowness, see Theorem 6.1.4.

The class of c.e. K-trivial sets is different: some lows c.e. set B is Turing
above all the K-trivial sets by a result of Nies (see Downey and Hirschfeldt
20xx). However, one can still build a K-trivial set that is not Turing reducible
to a given low c.e. set B. More generally, this holds for any class of c.e. sets
obeying a fixed cost function with the limit condition. To show this, we extend
the construction in the proof of Theorem 5.3.5, by combining it with a method
to certify computations that rely on a given low c.e. set B as an oracle. This
is known as the guessing method of Robinson (1971). He introduced it to show
that for each pair of c.e. Turing degrees b < a such that b is low, there exist
incomparable low c.e. Turing degrees ag, a; such that agVa; =aand b < ag,a;.

5.3.22 Theorem. Let ¢ be a cost function satisfying the limit condition. Then
for each low c.e. set B, there is a c.e. set A obeying ¢ such that A L1 B.

Proof. Recall that NI°/ denotes the set of numbers of the form (y,e). We meet
the requirements
P.: A+ ®8,

by enumerating a number € NI¢ into A when ®Z(z) = 0. The problem is
that B may change below the use after we do this, allowing the output of ®Z(z)
to switch to 1. To solve this problem, we use the lowness of B to guess at
whether a computation ®Z(x)[s] = 0 is correct. Finitely many errors can be
tolerated. We ask questions about the enumeration of A (involving B), in such a
way that the answer “yes” is ¥{(B). Since X(B) C AY, we have a computable
approximation to the answers. Which computable enumeration of A should we
use? We may assume that one is given, by the Recursion Theorem! Formally,
we view a computable enumeration (Definition 1.1.15) as an index for a partial
computable function A defined on an initial segment of N such that, where A(t) is
interpreted as a strong index (Definition 1.1.14) for the part of A enumerated by
stage t, we have A(s) C A(s+1) for each s. Thus we allow partial enumerations.
We write A; for A(t). Given any (possibly partial) computable enumeration A,
we effectively produce an enumeration A, asking %9(B)-questions about the
given enumeration A. We must show that A is total in the interesting case
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that A = A (by the Recursion Theorem), where these questions are actually
about A.
The X9(B)-question for requirement P, is as follows:

Is there a stage s and x € NI such that A is defined up to s — 1, and

(i) ®5(x) = 0[s] & Bs | use ®B(z)[s] = B | use ®Z(x)[s] (B is stable up to

the use of the computation), and

(ii) c(x,s) <2-(etn) 2
Here n = #(NI¥l N A(s — 1)) is the number of enumerations for the sake of P,
prior to s.

As B is low, there is a total computable function g(e, s) such that lim g(e, s) = 1
if the answers is “yes”, and lim g(e,s) = 0 otherwise. (The function g(e, s)
actually depends on a further argument which we supress, an index for A.)

Construction. Let Ag = (). At stage s > 0, we attempt to define Ay, assuming
that As_1 has been defined already. Let D = A,_q. For each e < s, if there is
an ¢ < s, x € Nl satisfying

B (x) = 0[s] & c(z,s) < 27+, (5.8)

where n = #(NIl N A,_), then the answer to the X9(B) question above seems
to be “yes”, so choose x least and search for the least ¢ > s such that g(e, t) = 1,
or By [4# Bslu, where u = use ®5(z)[s]. In the first case, put = into D (at
the current stage s). If the search does not end for some e < s, then leave A,
undefined, otherwise let A, = D.

This search is essential for the Robinson guessing method. If there is an appar-
ent contradiction between what we see at stage s (a computation with oracle B
of a certain kind) and the prediction (that there is no such computation), we
look ahead till the apparent contradiction is reconciled, either by a change of B
destroying the computation, or by a change of the prediction to “yes”. We will
argue that this only works for c.e. sets B.

Verification. We may assume that A = A by the Recursion Theorem.
5.3.23 Claim. The function A is total.

Inductively assume that Ag_; is defined if s > 0. Since A = A and by the
correctness of lim; g(e, t), the search at stage s ends for each e. So we define A;.

5.3.24 Claim. (A;)sen obeys the cost function c.

At stage s, suppose z is least s.t. As_1(x) # As(z). We enumerate z for the

sake of some requirement P., which so far has enumerated n numbers. Then

c(x,8) <27+ hence S < > emeN 27(¢+1) = 4 where S is defined in (5.6).
Let A =], As.

5.3.25 Claim. FEach requirement P, is met.
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Assume for a contradiction that A = ®2. First suppose that lim.g(e,s) = 1.
Choose witnesses z, s for the affirmative answer to the ¥9(B) question for P,
and let u = use ®Z(z)[s]. Since B [, does not change after s, we search for ¢ till
we see g(e,t) = 1. Then P, enumerates = at stage s.

Now consider the case g(e,s) = 0 for all s > sg. Then P, does not enumerate
any numbers into A after stage sg. Suppose it has put n numbers into A up to
stage sg. Since A = ®F, there is € Nl¥l and s > 54 such that ®5(x) = 0[s]
and c(z,s) < 27(¢*"). So the answer to the X{(B) question for P, is “yes”,
contradiction. )

If B is merely a AJ set, the argument in the proof of Lemma 5.3.25 breaks down in
the case lims g(e,s) = 1. Otto can now present the correct computation ®Z(z) = 0 at
a stage s where the g(e, s) has not yet stabilized. To fool us when we try to reconcile
the apparent contradiction, he temporarily changes B below the use at stage t > s
while keeping g(e,t) = 0, and we do not put z into A at s. At a later stage the correct
computation &5 (z) = 0 will return, but now he has increased the cost of = above
27(+7) 56 we have lost our opportunity.

Indeed, Kuc¢era and Slaman (20xx) have shown that some low set B is Turing above
all the c.e. sets that are low for K (and hence above all the c.e. K-trivial sets by
Section 5.4). In fact they prove this for any class inducing a Y9 ideal in the c.e. degrees
such that there is a function F' <r ()’ that dominates each function partial computable
in a member of the class. The class of sets that are low for K is of this kind by
Exercise 5.1.6.

5.3.26 Exercise. In addition to the hypotheses of Theorem 5.3.22, let E be a c.e. set
such that E £ B. Then there is a c.e. set A obeying ¢ such that A L+ B and A <r F.

Necessity of the cost function method for c.e. K-trivial sets

In the following two subsections we study aspects of the cost function method pe-
culiar to K-triviality. Theorem 5.3.10, the cost function criterion for K-triviality,
is actually a characterization: a A set A is K-trivial iff some computable ap-
proximation of A obeys the standard cost function (as defined in 5.3.4). Thus
each K-trivial set can be thought of as being constructed via the cost function
method with cx. However, we cannot expect that every computable approxima-
tion of a K-trivial set obeys the standard cost function, for instance because for
an appropriate computable enumeration 0, 1,2, ... of N, the total cost of changes
is infinite (see Exercise 5.3.7). The total cost is only finite when one views a given
approximation in “chunks”. One introduces an appropriate computable set F of
stages. In the new approximation changes are only reviewed at stages in F. In
the calculation of the total cost in (5.6), only the change at the least number
counts at such a stage.

In this subsection we only consider the c.e. K-trivial sets. It is harder to show
the necessity of the cost function method for all the K-trivial sets: this requires
the golden run method of Section 5.4, and is postponed to Theorem 5.5.2.

5.3.27 Theorem. The following are equivalent for a c.e. set A.
(i) A is K-trivial.
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(ii) Some computable enumeration (A;)icn of A obeys the standard cost func-
tion cic.

Proof. (ii) = (i): This follows from Theorem 5.3.10.

(i) = (ii): Suppose that the c.e. set A is K-trivial via b. Then there is an increas-
ing computable function f such that K(A [,) < K(n) + b [f(s)] for each s
and each n < s, i.e., the inequality holds at stage f(s). The set of stages
E = {sp < s1 < ...} is obtained by iterating f: let

s(0) =0 and s(i + 1) = f(s(4)). (5.9)

Let ¢ic(v,s(i)) = 32,27 s W) [z < y < 5(4)], i.e., K(y) is computed only at
stage s(i+1). Let x; be the least number < s(i) such that A (z) # Aggit1)(z).
In the following, we only consider numbers i, j such that x; (or z;) is defined.
Using a variant of the accounting method of Remark 5.1.21, we will show that

ZC}C 24, 8(1)) [z; is defined] < 20, (5.10)

For each y such that x; < y < s(7), at stage s = s(i + 1) there is a U-description
of Agl, of length < K(y) + b. Let E; be the set of descriptions for such y. The
key fact is that, since (As)sen is a computable enumeration, the strings A, [,
described at different stages s(i), s(j) are distinct, so that E; N E; = (). We will
account the cost of an A-change between stages s(i) and s(i + 1) against A\[F;]~
For each y, z; < y < s( ), if s = s(i + 1), since Ks(Asly) < Kq(y) + b we
have 2~ Ks(¥) < 9b9=K:(Asly) " and hence, by taking the sum over all y such that
z; <y < s(i), we have c;c(:vz, (1)) < Qb)\[ i]=. Since 37, A[Ei]™ < 1, this implies
S e (@i, s(3)) < 28, that is, (5.10). Now let A; = A,(;41)N[0,4). For each z < i,

C](:(x, 7’) = Za:<y§7, 2_K (y) S C(JZ, 8(7’))7

so that > ;cxc(,9) [i > 0 & z least s.t. Ay (z) # Ay(x)] < § < 20 O

Listing the (w-c.e.) K-trivial sets with constants

We provide a presentation of the class of w-c.e. K-trivial sets. In the remark
after Theorem 5.5.2, we will learn that each K-trivial set is w-c.e., so we actually
have a presentation of the entire class K. As for every class of w-c.e. sets that
contains the finite sets and has a 39 index set, there is a uniformly w-c.e. listing
(Ae)een of the w-c.e. sets in K (Exercise 1.4.22). Here we show that there is a
listing which includes the witnesses for the 39 statement, namely, for each e,
a constant via which A, is K-trivial. The result is due to Downey, Hirschfeldt,
Nies and Stephan (2003). We give a simpler proof using ideas developed in the
proofs of Theorems 5.3.10 and 5.3.27. Recall from 1.4.5 that V, is the e-th w-c.e.
set.

5.3.28 Theorem. There is an effective sequence (Be,d)een of w-c.e. sets and
of constants such that each B, is K-trivial via d., and each K-trivial set occurs
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in the sequence. Furthermore, there is an effective sequence of the c.e. K-trivial
sets with constants.

Proof. We effectively transform a pair A,b of an w-c.e. set and a constant into
an w-c.e. set A and a constant d such that A is K-trivial via d and A = A in
case that A is in fact K-trivial via b. (But even then, d may be larger than b.)
To obtain the required listing (Be,d,)een, for each e = (i,b), let A = V;, apply
this transformation to the pair A,b, and let B, = A and d. = d.

We define a sequence of stages s(i) the same way we did before Theorem 5.3.27,
except that now the sequence breaks off if A is not K-trivial via b. The com-
putable approximation of A follows the approximation of A, but is updated only
at such stages. In more detail, for each s, let

f(s) = pt > s.¥n < s Ki(At|n) < K¢(n) + b, and

s(0) =0 and s(i + 1) ~ f(s(7)). (5.11)

Let E be the (possibly finite) set of stages of the form s(i). Because “t = f(s)”
is computable uniformly in A,b, we can compute F uniformly. Therefore the
following is a computable approximation:

;{u(l') = Amax(Eﬂ{O, Sul)

(Thus, if £ is finite the final value is A,,.x(g).) We define a prefix-free machine M
such that

VsVw < s Kar(Aglw) < Kg(w) 4 b+ 2. (5.12)

Let r be the coding constant for M according to the Machine Existence Theorem,
and let d = b+ 2+ r. Then A is K-trivial via d, as required.

To meet (5.12), we have to provide a new M-description of Agl,, in two cases,
which are the same as in the proof of Theorem 5.3.10:

(a) Ks(w) < Ks_1(w), or
(b) Ka(w) < o0 & Aoy Tu# Al
Here (a) includes the case that K;_1(w) = oco. To ensure (5.12) in case (a),

we use strings beginning in 00 as M-descriptions. Thus, if Us(c) = w where
lo| = Ks(w) < Ks—1(w), we declare
M(000) = Aglep.
In case (b), since s(0) = 0 and A only changes at stages in E, we have s =

s(i + 1) for some i. There are two subcases.

(b1) s(i) < w < s(i+ 1) = s. For each w there is at most one such ¢ (this is a
key point). So in that case, to meet (5.12) we declare

Ms(].()O') = /lefw,
for any string o of length K (w) such that Ug(o) = w.
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(b2) Otherwise, i.e., w < s(i). By the definitions, Ay lw= As lw and there is
a U-description o of Al at stage s such that |o] < Kg(w) +b. So to meet
(5.12) it suffices to copy U, that is, to let

M;(11o) ~ U,(o) for all t and all o.

To obtain a listing of the c.e. K-trivial sets with constants, we carry out the
same proof based on the indexing (W;);cn of the c.e. sets. O

Let C be an index set for a class of c.e. sets, namely e € C & W, =W, — i € C
(Definition 1.4.18). We say that C' is uniformly X3 if there is a II3 relation P such that
e € C < JbP(e,b) and there is an effective sequence (en,bn)nen such that P(en,by)
and Ve € CanW, = W,
index, of a projection of a c.e. relation contained in P. For instance, let P(e,b) be
VnVs3t > s [Ky(We,t [n) < Ko(n) + b]. Then Theorem 5.3.28 shows:

In other words, C is the closure, under having the same

n*

5.3.29 Corollary. The class of c.e. K -trivial sets has a uniformly X3 index set. O

Exercises.

5.3.30. Let (Be)een be as in Theorem 5.3.28. Show that there is a computable binary
function f such that By ;) = B; ® B; for each i,5 € N.

5.3.31. Let Q(e,b) be the 13 relation W, UW; = N & We N Wy = 0, so that W, is
computable iff 3bQ(e,b). Show that Q does not serve as a II3 relation via which the
index set of the class of computable sets is uniformly 3.

5.3.32. Anyway, the class of computable sets has a uniformly £9 index set.

5.3.33° Problem. Is every X% index set of a class of c.e. sets uniformly £97?

Adaptive cost functions

A modification of the proof of Theorem 5.3.11 yields a direct argument that
some promptly simple set is low for K. Understanding this transition from K-
triviality to being low for K may be helpful for the proof in Section 5.4 that the
two classes are equal (in particular, for Lemma 5.4.10).

Given a prefix-free oracle machine M and a A9 set A with a computable ap-
proximation (Ag)sen, consider the cost function

eara(w,s) =Y 27 [MA(0)[s — 1] | &z <use M*(o)[s—1]].  (5.13)

o

Note that cpr,4(z, s) is the measure of the MA-descriptions at stage s—1 that are
threatened by a potential change A;(z) # As_1(x). In other words, car,a(z, s)
is the maximum decrease of Q% that can be caused by A,(z) # A i(z).
In contrast to the previous examples, this cost function is adaptive, namely,
e, a(z, s) depends on A,_;. (It would thus be more accurate to use the nota-
tion epz(x, s; As—1), but this is too cumbersome.) The computable approximation
of A determines whether such a function is non-decreasing in s, and whether the
limit condition holds.
If M =T, a set that obeys the cost function it determines is low for K.
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5.3.34 Proposition. Suppose that A(x) = lims As(x) for a computable approz-
imation (As)sen that obeys cy a, namely, there is u € N such that

S = ZC]ILA(J?,S) [s >0 & x is least s.t. As_1(x) # As(z)] < 2% (5.14)

Then A is low for K.

Proof. The proof is somewhat similar to the proof of Theorem 5.3.10. As before
we enumerate a bounded request set W:

at stage s > 0, put the request (|o|+u+1,y) into W if U4(0)[s] = y
newly converges, that is, U4 (o)[s] = y but U4 (o)[s — 1] 1.

To show that A is low for K, it suffices to verify that W is indeed a bounded
request set. Suppose a request (|o| +u + 1,y) is put into W at a stage s via a
newly convergent computation U4 (o)[s] = y. Let w = use UA(c)[s].

Stable case. YVt > s Aglw= Ai [w. The contribution to W of such requests is
at most Q4/2%T1 since at most one request is enumerated for each description
UA(0) = y once A, is stable.

Change case. It > s Aglw# At [w. Choose t least, and z < w least such that
A;_1(x) # Ai(z). Then 271! is part of the sum cy 4(w,t), which is part of S.
Since A obeys its cost function cy, 4 and by the choice of u, the total contribution
to W in this case is at most 1/2. O

We apply the criterion to give a direct proof of Muchnik’s result, presumably
close to his original proof.

5.3.35 Theorem. There is a promptly simple set A that is low for K.

Proof. The construction is the one from the proof of Theorem 5.3.5 where a
requirement PS; can spend at most 277. The only difference is that we now
use the cost function cy 4. (This is allowed since for s > 0, cy a(x, s) is defined
in terms of A;_1.) The set A is low for K by Proposition 5.3.34. By the same
argument as in the previous proof, we know that A is promptly simple, once we
have shown the following.

5.3.36 Claim. cy 4 satisfies the limit condition.

Given e € N, we will find m such that sup,.,,cu,a(m,s) < 27° Note that
if o0 € domU4 and t is a stage such that U4(o)[t] | and each requirement
PS; for j < |o| has ceased to act, then the computation U4(o)[t] is stable.
Let 0g,...,06_1 € domU* be strings such that, where o = > 2-17il we have
QA—a <27l We may choose a stage m > e+1 such that all the computations
UA(0;)[m] are stable and no PS;, j < e+ 1 acts from stage m on. At each stage
s > m we have Q4[s] — Q4 < 27¢~1 since the most Q4[t] can decrease (because
computations U#(c) are destroyed by enumerations into A) is > iset1 277 =
271, Thus, Q4[s] — a < 27¢ for each s > m. Now, for s > m, the sum in (5.13)
defining cy_4(m, s) refers to computations other than U4 (o;)[m] as their use is
at most m. So cy_a(m, s) < Q4[s] — a < 27¢. This shows the claim. O
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TABLE 5.1. Overview of cost functions to build a c.e. incomputable set.

Cost function Definition Purpose Ref.

cx(z, ) D pcwes 27K build a K-trivial ~ 5.3.2

cy cy (z, s_) = max(cy (z,s —1),27¢) build a set below a (5.7),
where Y;_1(e) # Ys(e) AYset Y € MLR  pg. 189

c(z, s) AV, s, where V, is uniformly 39  build a set below  5.3.15
and H =, V; is null HNMLR

cu,a(z, s) S 27l UA (o) s —1] | & build a set that is  (5.13),

x < use U4 (0)[s — 1]] low for K pg. 198

5.3.37 Remark. A cost function is called adaptive if the cost at stage s depends
on Ag_1. If the underlying cost function is adaptive then a cost function construc-
tion must be regarded as having injury. For instance, during the construction of
a low simple set in Theorem 1.6.4, the lowness requirements
L.: 3%°sJA(e)[s — 1] = J4(e)|
are injured. The following adaptive cost function encodes the restraint imposed
by L.: if J4(e) newly converges at stage s — 1, define
c(x,s) = max{c(z,s — 1),27°}

for each © < use JA(e)[s — 1]. If A is enumerated in such a way that the total
cost of changes is finite, then L, is injured only finitely often. Thus A is low.

In contrast, a cost function ¢ given in advance cannot be used to hide injury,
because to encode a restraint that is in force at the beginning of stage s we have
to know A,_1. The cost functions in the first three rows of Table 5.1 are non-
adaptive. In particular, so is the cost function used to build a promptly simple
Turing lower bound in Theorem 5.3.15. Thus, the corresponding constructions
are injury-free.

5.3.38 Exercise. (Kuceraand Terwijn, 1999). Give a direct construction of a promptly
simple set A that is low for ML-randomness.

5.4 FEach K-trivial set is low for K

In Section 5.1 we studied three equivalent lowness properties: being low for K,
being low for ML-randomness, and being a base for ML-randomness. It is easily
shown that a set that is low for K is K-trivial (5.2.3). We provide the remaining
implication. Thus, these three equivalent lowness properties also coincide with K-
triviality, a property expressing that the set is far from being Martin-Lo6f random.

5.4.1 Theorem. Fach K-trivial set is low for K.

First we prove the easier result of Downey, Hirschfeldt, Nies and Stephan (2003)
that each K-trivial set is Turing incomplete, thereby introducing the decanter
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method. Combining this with a further new technique, the golden run method,
yields the full result. By Proposition 5.1.2 and Theorem 5.2.4(ii) each set that
is low for K is low, so the full result indeed implies lowness and hence Turing
incompleteness for a K-trivial set. In Section 5.5, the core of the combined de-
canter and golden run methods will be isolated in a powerful (if technical) result,
the Main Lemma 5.5.1. It can be used, for instance, to show that Theorem 5.3.10
in fact provides a characterization of the K-trivial sets: A is K-trivial iff some
computable approximation of A obeys the standard cost function c.

Introduction to the proof

We outline the proof of the implication “K-trivial = low for K”. We also intro-
duce some terminology and auxiliary objects that will be used in the detailed
proof. We go through stronger and stronger intermediate results, showing that
a K-trivial set is wtt-incomplete, then Turing incomplete, and then low. Each
step introduces new techniques. Important comments are made in Remarks 5.4.3
and 5.4.4.

Throughout, we fix a constant b such that the given set A is K-trivial via b, that
is, Vn K(A],) < K(n) + b. By Theorem 5.2.4(ii) we may also fix a computable
approximation (Ag)sen of A.

1. No K -trivial set A is weak truth-table complete.

This was already proved in Proposition 5.2.18(ii). Here we assume @’ <,;; A and
obtain a contradiction. The very basic idea how to use the K-triviality of A is the
following: we choose a number n and give it a short description. The opponent
Otto claims that A is K-trivial, so he has to respond by giving a short description
of AJ,. If he later needs to change A [,,, he has to provide a description of the
new A [,. Via the short description of n we have made such changes expensive
for him. In this way we limit the changes of A to an extent contradicting its
weak truth-table completeness.

As an extreme case, let us assume that for each n, his description of A [, is
no longer than our description of n. We choose n large enough so that we can
force Otto to change A [,, using that A is wtt-complete (see below for details).
We issue a description of n that has length 0, and wait for the stage where he
provides a description of A [, that also has length 0. He has now wasted all
his capital: if we force him to change A [,, then he has to give up on providing
descriptions.

The bounded request set L, and the constant d. Actually, Otto can choose his
descriptions by a constant longer. To counter this, we force him to change A
more often. His constant is known to us in advance. We issue descriptions of
numbers n by enumerating requests of the form (r,n) into a bounded request
set L. By the Recursion Theorem (see Remark 2.2.21), we may assume an index d
is given such that My is a machine for L. To respond to our enumeration of a
request (r,n) into L, he has to provide a description of A [, that has length at
most 7 4+ b + d. For at least 2°7? times, we want A [,, to change after he has
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given such a description. In fact we want A [,, not to change back, but rather to
a configuration not seen before. In that case, if our description of n is of length
r = 0 (say), his total capital spent is at least (207?41)2~*+d > 1, contradiction.
The hypothesis " <, A can be used to force Otto into making sufficiently
many changes. We build a c.e. set B. By the Recursion Theorem, we are given a
c.e. index for B, and hence a many-one reduction showing that B <,, #’ (1.2.2).
Combining this with the fixed wtt-reduction of (' to A, we are given a Turing
reduction I' and a computable function g such that B = I'* and Vz use T'4(z) <
g(x). (In fact we have used the Double Recursion Theorem 1.2.16, because we
also needed the constant d in advance. This slight technical complication will
disappear when we proceed to showing that all K-trivial sets are low.)

Construction of L and the c.e. set B. Let ¢ = 2°7 and n = g(c). We put the
single request (0, n) into L. From now on, at each stage ¢ such that B .= I'* [, [{]
and K (A ) < b+d, we force A [, to change to a configuration not seen before
by putting into B the largest number less than ¢ which is not yet in B.

In the fixed point case we have B = I', so we can force ¢ such changes. Since
all the A [,-configurations are different, the measure of their descriptions is at
least (c 4+ 1)2-(+4) > 1 which is impossible.

2. No K-trivial set A is Turing complete.

We assume for a contradiction that A is Turing complete. As before, we build
the c.e. set B and, by the Recursion Theorem, we are given a Turing functional I'
such that B = T'4. Let v (m) = use T'4(m) for each 