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Foreword

This book marks a major step forward in cognitive science, an effective way of
thinking about minds and brains that isn’t just another computer metaphor.
Many of us have been looking for such a step, but where would it come from?
One promising possibility was dynamical systems theory, which indeed is
basic to Michael Spivey’s argument here. Until now, however, dynamical 
systems have had little to say about genuinely cognitive achievements such as
language, categorization, or thought. Neural nets have been another promis-
ing possibility (one that also plays a role here), but most of them are still
essentially step-by-step computer models indifferent to the properties of real
neurons that live in real time. On the empirical side there have been many
ingenious new methods and exciting new findings in recent years, but until
now no coherent theory has emerged to hold them all together. How could
any theory deal with so much complexity? 

Here’s how. First, any such theory will have to establish its own units 
of analysis. What could those units be? They can’t just be responses: The early
behaviorists took responses as far as they would go, which wasn’t very far.
It also won’t do to start with information, the vehicle that made cognitive 
psychology possible a generation ago. Of course, it’s still true that brains proc-
ess information, but saying so is no longer revolutionary or even very helpful.
Nor can the basic units be single neurons: that soon leads to “grandmother
cells,” implausible for many reasons. Spivey’s proposal here—a 
seriously expanded version of dynamical systems theory with many original
twists—is based instead on trajectories through the state space of the
human brain. His insistence that those trajectories must be continuous



has led him to new insights over a surprisingly broad range of cognitive 
phenomena.

But what is a state space? What sorts of things move through state spaces?
What does it mean to assert that those movements are continuous? Taking the
last question first, “continuity” means that movements away from a given brain
state are always to an adjacent state and always take real time, a time during which
much can happen. Speech perception provides a convenient example. Although
a spoken word is not fully defined until its last syllable ends, the process of under-
standing it starts much earlier. Candle and candy, for example, both begin with
can. Spivey’s ingenious eye movement studies show that a listener presented with
one of these words will actively consider both those possibilities at first, making
a commitment only later as more information arrives. The moral here is that
word representations—indeed, all mental representations—are probabilistic and
overlapping rather than sharply bounded. The brain is “hungry” for informa-
tion, always using whatever it has and looking for more.

These characteristics have implications for the theory’s units of analysis.
A representation capable of overlapping widely and probabilistically with
other representations must involve a large number of neurons, some of which
are active at a given moment while others are not. Such collections of neurons
are distributed representations or population codes. Their interwoven patterns of
activation are what produce the effects we observe.

Important as they are, population codes are not the ultimate units of
analysis. To provide a richer description of the brain’s activity, Spivey uses a
multidimensional state space. Each brain neuron corresponds to one dimen-
sion of that space, which thus has a billion or so dimensions. At any given
moment, the total state of brain activity corresponds to a single point in the
space. Changes in that activity over time then produce trajectories through the
space. Regions of the space to which many trajectories go (and where they sort
of stay) are called attractor basins. In many contexts a given attractor basin
corresponds to a fully developed percept—to a word understood, a face recog-
nized, a stable perceived version of the Necker cube. The attractors are thus
very important, but Spivey is even more interested in the trajectories them-
selves. The basic units of his thinking are events, not states.

The Continuity of Mind is not an easy book, but its organization is clear.
After the introduction (chapter 1), Spivey devotes three chapters to intellec-
tual tools that the rest of the argument will require. The first of these, chapter 2,
reviews the logic of state space representations. Chapter 3 surveys such diverse
but relevant paradigms as reaction time, MEG, ERP, EEG, single-cell record-
ing, repetitive rhythmic motor tasks, 3D motion capture, and especially eye
movements. Eye tracking is Spivey’s favorite paradigm, not only because he
has worked on it so effectively himself but also because it is surprisingly good
at revealing rapid mental activity that occurs outside of consciousness. Then
comes the third conceptual-tool chapter, chapter 4, which is specifically
designed “to gently walk the reader through some of the mathematics of a few
simple demonstrations of dynamical systems.” It does help.
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With these conceptual tools in hand, Spivey sets out to show how his con-
tinuity assumption addresses the major issues of contemporary cognitive 
science. The first of those issues is modularity à la Fodor, which he is at pains
to reject. (If we must have metaphors, the brain is not so much a Swiss army
knife with separate blades as a woven plaid of interlinked threads.) Then six
more issues get chapters of their own: categories, language, vision, motor
action, problem solving, and memory (mostly external memory). Each of
these chapters builds on references from the relevant literature to present an
array of stimulating new insights.

In keeping with his commitment to events rather than stable states, Spivey’s
last chapter is not a review of what has been covered but an account of what
may come next. Here, he has the mind/body problem in his sights. The pres-
ent book has focused primarily on trajectories through a neuronal state space,
but there’s a bigger space on the horizon, a “fully ecological dynamic account
of perception cognition and action.” When dualism is finally overthrown, we
will be able to see that the mind is made of “the same stuff” as the environ-
ment. Well, maybe so, maybe not. One thing is already clear: Cognitive science
is on a new trajectory, and it’s moving fast. Hold on to your hats! 

—Ulric Neisser
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1

Toward a Continuity Psychology

The older dualism between sensation and idea is repeated in the
current dualism of peripheral and central structures and functions;
the older dualism of body and soul finds a distinct echo in the
current dualism of stimulus and response.
—John Dewey (1896) 

The Continuity of Mind

In an attempt to raise awareness of the benefits of emphasizing continuous
processing, and therefore of continuous representation as well, this book ties
together selected findings from neuroscience, cognitive neuroscience, cogni-
tive psychology, ecological psychology, psycholinguistics, neural network 
theory, and dynamical systems theory. Without slavishly adhering to the
dominant tenets of any one of those areas of research, I will build a case for a 
perspective on mental life in which the human mind/brain typically construes
the world via partially overlapping fuzzy gray areas that are drawn out over
time, a thesis that I fondly refer to as “the continuity of mind.” In the service
of action and communication, these continuous and often probabilistic repre-
sentations are frequently collapsed into relatively discrete, rigid, nonover-
lapping response categories. Each hand usually grasps only one object at a
time. Each footstep is usually in only one particular direction at a time, not
multiple directions. When you talk, your mouth usually utters only one sound
at a time. The external discreteness of these actions and utterances is com-
monly misinterpreted as evidence for the internal discreteness of the mental
representations that led to them. Thus, according to the continuity of mind
thesis, the bottleneck that converts fuzzy, graded, probabilistic mental activity
into discrete easily labeled units is not the transition from perception to 
cognition—contra cognitive psychology. Rather, that conversion does not
take place until the transition from motor planning to motor execution.
Everything up to and including that point is still distributed and probabilistic.
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(And sometimes even the motor execution still has some multifarious grada-
tions in it as well.)

Although this main thesis may already seem agreeable to some contem-
porary psychologists, not all of them may realize that it is fundamentally
inconsistent with the symbolic-computation approach to cognition that 
traditional cognitive psychology still assumes, implicitly if not explicitly.
Moreover, a wide range of other cognitive scientists, from philosophy, linguis-
tics, and computer science, as well as other circles in psychology, have yet to
seriously consider (or in some cases already strongly oppose) this perspective
on the format of representation employed by the human mind. I contend that
cognitive psychology’s traditional information-processing approach (bor-
rowed from the early days of computing theory), as well as certain tendencies
within the more recent connectionist approach (often using strictly feedfor-
ward neural networks), place too much emphasis on easily labeled static rep-
resentations that are claimed to be computed at intermittently stable periods
of time. Rather than focusing on those intermittent moments when the brain’s
pattern of activity may be brushing up next to an identifiable discrete mental
state representation, the continuity of mind thesis focuses on the continuous
trajectory that the mind travels through the set of possible brain states—the
entire thread of thought, if you will, rather than just the stitches that are visible
on the surface of the hem.

The pattern of exposition throughout this book will be to describe a
range of methodologies and findings that point to some innovative ways to
observe and simulate the genuine gradedness of those mental states over
time—not merely take them for granted. The continuity framework offered
here draws much of its inspiration from related theoretical frameworks that
preceded it, especially ecological and dynamical approaches to psychology
(e.g., Gibson, 1979; Kelso, 1995; Neisser, 1976; Port, 2002; Thelen & Smith,
1996; Turvey & Carello, 1995; van Gelder, 1998; Van Orden, Holden, & Turvey,
2003). However, at the same time, this book is intended to work largely within
the terminology and constraints of the dominant methodological and theo-
retical toolbox of contemporary cognitive psychology. For example, I will 
continue to use words like representation and mental state, despite their
unpopularity in current dynamical and ecological approaches to cognition.
However, in the process of using these traditional conceptual tools for explor-
ing and describing the continuous nature of cognitive processing and repre-
sentation, it will become clear that some new conceptual tools (and eventually
a whole new toolbox) will be necessary to deal with the emerging landscape 
of data.

As you work your way through this book, you should expect to gradually
lose some of the baggage associated with the term representation along the way.
It need not refer to an internal mental entity that symbolizes some external
object or event to an attentive central executive. Because representation appears
unlikely to fade in use, I suggest that instead of fighting the use of the word, we
can merely allow it to naturally shed that albatross of symbolizing something.
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The word can simply continue to refer to a kind of mediating stand-in (see
Markman & Dietrich, 2000), in between sensory stimulation and physical
action, which is implemented largely by neuronal assemblies. However, the
crucially important alteration to this stand-in function, to be touched on time
and time again throughout this book, is that it is not composed of “mediating
states” (Dietrich & Markman, 2003) but instead of something like “mediating
processes.” As the neuronal assemblies that implement most of this stand-in
function never settle into truly stable states, we should not expect the mathe-
matical description of the mediation process to settle into stable states.
Therefore, my continued use of the term representation refers exclusively to
internal mental processing that is continuous in time, is contiguous in state
space, and whose function is to mediate between sensory stimulation and
physical action.

The overall goal of my endeavor here is to punctuate and perturb the cur-
rent instability in the metatheoretical system of cognitive science—the incon-
sistency between recent phenomena in the field and the accepted ways the
field has for talking about phenomena in general—thereby helping enable the
impending massive reorganization that the cognitive sciences so desperately
need. This book is intended to map an escape route out of traditional cogni-
tive psychology, with some hints and pointers for where to go next and build.

For those who already share this continuous, dynamical perspective on
the mind, the studies described herein will hopefully provide a greater appre-
ciation for the relationship between our multifarious, probabilistic, distri-
buted brain states and our illusory phenomenological sense of being in one
discrete unitary state of mind at a time. For those who already oppose this 
perspective on the mind, the many examples littered throughout this book
will hopefully pose constructive challenges (some more difficult than others)
for their theories to tackle. For those of you who have not already made up
your minds, good for you.

These first two chapters provide a brief, easy-to-read tour through the
motivation and explication of what mental representations might look like 
if they were indeed continuous, partially active, and partially overlapping 
patterns. The first thing the reader will notice is that they begin to look less like
what representation was originally intended to mean. The reason I continue to
use the term is largely to ease the intellectual transition from cognitive 
psychology’s traditional information-processing framework to a dynamical-
systems framework. I submit the notion of a trajectory through state space (a
temporally drawn-out pattern of multiple “representations” being simultane-
ously partially active) as a replacement for the traditional notion of a static
symbolic representation. To bring this notion to life, this chapter soon draws
an analogy to the concept of a wave function in quantum mechanics, which
attempts to describe the state of a system before it has been observed.
Although there are explicit quantum mechanical accounts of brain states and
consciousness (Goswami, 1990; Lockwood et al., 1996; Penrose, 1994; Zohar,
1995; but see Schrödinger, 1944; Scott, 1996), the continuity approach to
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cognition does not depend on them. The appeal to quantum mechanics at this
point is purely for expository purposes, with the goal of drawing an analogy
between distributed representational brain states (that are partially consistent
with multiple discrete mental states at once) and quantum mechanical super-
position. Based on reactions from my colleagues, the reader will most proba-
bly either like or hate my use of this analogy. An intermediate reaction is rare.

This notion of a wave function is then connected to the way populations
of neurons in the brain cooperate to represent individual perceptions. It does
not seem to be the case that thoughts, ideas, concepts, categories, words,
objects, or even faces are represented by solitary, individual neurons in the
brain. Individual neurons appear to represent minute pieces of words, objects,
and so forth. Large groups of neurons collectively represent entire words and
objects. These coordinated groups of neurons are variously referred to as popu-
lation codes, population vectors, cell assemblies, and cell ensembles, to name
a few. For simplicity, I stick with the term population code. The discussion 
of population codes is then connected to quantitative descriptions of proba-
bilistic representations, along with a brief treatment of the history of proba-
bility theory. After addressing the relationship between probability theory and
fuzzy logic, this chapter walks the reader through two experiential demonstra-
tions of continuous dynamical transitions through probabilistic mental states.
The chapter finishes with some discussion of the conceptual reformulation
that will be necessary to make sense of continuous processing and continuous
representations in the mind.

The next chapter is devoted to offering some concrete (although vastly
oversimplified) examples of distributed brain states and probabilistic mental
states, in an attempt to make this thesis not only visualizable but indeed intui-
tively compelling. These examples will take us slightly (only slightly) in the
direction of the conclusion favored by Churchland and Churchland (1998),
that discrete nameable mental states, of the kind typically espoused by folk
psychology, simply do not exist. Rather than thinking in terms of an inventory
of discrete mental operands on which a central executive can perform logical
operations, a continuity psychology (drawing prodigiously from ecological
psychology, dynamical systems theory, and computational neuroscience) will
need to think in terms of a continuous and often recurrent trajectory through
a state space. Although different types of mental trajectories may be segre-
gated into different classes for descriptive convenience, it must be recognized
that the full metric range of the state space is always available to the system, in
principle, and this is precisely what allows unexpected (sometimes called
“productive” or “creative”) organized behavior to emerge.

The third chapter reviews some concrete experimental methods that 
help provide a window into the continuous-time processes of the mind/brain.
The fourth chapter offers some formal treatment of dynamical systems in
general and describes not exactly a model but a “simulation arena” for imple-
menting and demonstrating the complex temporal dynamics arising from
biased competition (e.g., Desimone & Duncan, 1995) between idealized stable

6 The Continuity of Mind



states in a localist attractor network. Chapter 5 then outlines cognitive psy-
chology’s obsession with naming apparent discontinuities in representation
and process, discusses the treatment of the overall cognitive architecture of
the mind, and addresses some of the consequences that the continuous
dynamical approach has for psychology. Later chapters will then review the
literature, and focus on a series of experiments and idealized neural network
simulations, providing compelling evidence for continuous, graded, partially
overlapping representations in the mind/brain during categorization (chapter 6),
language comprehension (chapter 7), visual attention (chapter 8), action
(chapter 9), and reasoning (chapter 10). Finally, in the last few chapters, this
book concludes by addressing some of the broader implications that a dyna-
mical psychology has for the cognitive science notions of modularity and 
of representation, as well as for our own personal understandings of social
interaction, consciousness, and our intellectual lives in general.

Flowing Stimulus Array, Flowing Mind

In a nutshell, the message of this book is that the human mind is constantly in
motion. It does not receive individual stimuli and compute individual inter-
pretations of them. And yet, for several decades now, the dominant frame-
works of psychology have taken for granted that the mind’s job is to compute
individual interpretations of individual stimuli. After all, how else could we
recognize what a stimulus is, if we did not activate some internal stable repre-
sentation of it?

Before I get to what a temporally dynamic internal representation might
be, let me first note—as J. J. Gibson (1950) did—that, in the normal everyday
world, individual stimuli simply do not exist. If it is the case that individuated
stimuli do not normally exist in our sensory input, then it can hardly be said
that they have individuated representations devoted to them. For a given stim-
ulus to truly be an independent entity, activating its own independent sym-
bolic representation, it would need to be spatially and temporally separate
from all other stimuli. Look around you right now. See if there are any objects
that from your current perspective, are not intersecting or abutting the con-
tours of another (potential) object. Probably not. Now move some objects
around in a natural way. Take a sip from a cup, or move some paper from one
place to another. As the objects move, the changes in your field of view are
largely continuous through time, saccadic eye movements notwithstanding.
The changes aren’t freeze-frames of the object being in one location at one
point in time and then suddenly in another distant location at another point
in time. (Of course, it is possible to present individual objects in spatial and
temporal isolation in a dark laboratory, but if that never really happens in real
life, how generalizable will those lab results be?)

Now, listen to the ambient sound in your environment. Just like the visual
objects abutting and occluding one another, there are several different sounds
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that are overlaying one another at any one point in time. All of the sounds
have a temporal duration over which they may change in complexity, pitch,
volume, and so on. Just like the field of view in an interactive visual environ-
ment, the changes in your acoustic environment are largely continuous through
time as well. Even the sounds that seem most “object-like,” spoken words,
usually abut one another in time, rarely separated from one another by even a
millisecond of silence.

What this means is that the “flowing array of stimulus energy,” as Gibson
called it, is never presegmented into easily defined independent chunks, or
stimuli—even though we feel as though we perceive it that way. Now, if the
environmental stimulation impinging on our sensory systems is almost
always partially overlapping in space and continuous through time, why
would the mind work in a staccato fashion of entertaining one discrete stable
nonoverlapping representational state for a period of time, and then instanta-
neously flipping to entertain a different discrete stable nonoverlapping repre-
sentational state for another period of time? Why would the mind work like a
computer? This book is aimed—like some other recent books (e.g., Kelso,
1995; Port & van Gelder, 1995; see also Fodor, 2000)—at responding to that
question with the following answer: “It doesn’t.”

The New Dualism

The computer metaphor for the mind was really just the latest in a historical
series of stage-based accounts of cognition. Whether the stages are the body-
and-soul of dualism, or the stimulus-and-response of behaviorism, or the
stimulus-and-interpretation of cognitive psychology, it may just be the ideal-
ized discrete separation of different functions that is most responsible for
leading the endeavor astray. In the middle of the seventeenth century, René
Descartes proposed that the mind worked by way of immaterial forces that
were separate from the physical forces of our material world, and that the
mind communicated with the brain via the pineal gland. Aside from the occa-
sional personal belief in a soul, this kind of magical thinking is no longer
prevalent in science. However, the same breed of dichotomous treatment of
the mind as separate from the body is still quite common in the cognitive 
sciences—just with slightly less ethereal mechanisms being assumed.

In the middle of the twentieth century, cognitive psychology in particular,
and the cognitive sciences in general, came under the spell of a new form of
dualism—one fueled at least partially by our history of computing theory 
and artificial intelligence. Since the 1950s, when computing theory was just
beginning, psychologists have likened the mind to a computer. Indeed, as
other scientists have noted, humankind has made a habit of conceiving of the
mind as working much like whatever happens to be the latest technological
advancement. For hundreds of years, philosophers and psychologists have
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written about the mind working like an hourglass, or like a clock, or like the
printing press, or like a telephone switchboard, and now like a computer.
Is there any reason to think this penchant for mechanical analogies is right
this time?

The worrisome dualism encouraged by this mind-as-computer analogy 
is that it implies that the human brain is somehow functioning under very 
different rules, or patterns of organization, than the rest of the body and
indeed, the rest of the natural world. Of course, this attitude existed well
before the computer, as evidenced by Kant’s (1785/1996) claim that human
intelligence followed “laws, which being independent of nature, are not
empirical but have their ground in reason alone.” Imbuing the human brain
with the power of discrete symbolic computation places it in a category by
itself in nature, with all the continuous and probabilistic phenomena exhi-
bited by the peripheral nervous system, and everything else in the natural
world, placed in a different category. It becomes a “mind versus the rest of the
world” attitude. But no mind is an island unto itself.

Contemporary psychology risks becoming a mockery of itself by its
addiction to hypothesizing discrete discontinuities of this sort. This is pre-
cisely what Dewey (1896), from whom a quote begins this introductory 
chapter, was trying to curtail in his critique of the reflex arc concept. The reflex 
arc concept was a relatively new idea at that time, framing the questions of
psychology in terms of causal arcs between (1) a sensory stimulus stage, (2) a
central (mental) activity stage, and (3) an action/response stage. Essentially,
studying the causal arcs between 1 and 2 or between 2 and 3 were to be con-
sidered legitimate scientific enterprises in and of themselves. In contrast,
treating the progression of the three components as one continuous process
that naturally loops back on itself was what Dewey was attempting to encour-
age. Actions take place over time and they continuously alter the stimulus
environment, which in turn continuously alters mental activity, which is con-
tinuously expressing and revising its inclinations to action.

Behaviorism’s unhelpful but long-standing solution after Dewey (1896)
was to hamfistedly eliminate the second (mental) stage. After a few decades of
behaviorism, the cognitive revolution, as they liked to call it, essentially resur-
rected that second stage and all but erased the third one (action). (At this level
of description, the theoretical alteration from behaviorism to cognitivism
appears minute enough that one wonders if it truly warrants being called a
“revolution,” see Leahey, 1992.) Essentially, cognitive psychology replaced
behaviorism’s emphasis on stimulus and response with an emphasis on sti-
mulus and interpretation. These incremental adjustments to the linear treat-
ment of the three stages reminds me of when I find myself trying to solve a toy
puzzle using parametric variations of the same losing strategy, rather than try-
ing a completely different strategy. Most of cognitive science and psychology
has missed the whole point of not studying these stages as a linear sequence of
separable components, but instead studying them as one continuous insepa-
rable loop. Is it any wonder that our progress is plateauing once again?
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Curiously, Dewey’s (1896) reference to an “older dualism between sensa-
tion and idea” doesn’t actually sound that old to contemporary ears. In many
ways, the cognitive psychology that began with Newell, Shaw, and Simon
(1958), Chomsky (1957), and Neisser (1967) among others reinvigorated the
notion that sensation and perception could be part of a separate preliminary
(in every sense of the word) component of mental activity, with cognition
(i.e., the computation of ideas and reasoning) being a subsequent and more
psychologically relevant component. Perception was just perception. But 
cognition was “the mind.” In fact, since around the time of Neisser’s (1967)
Cognitive Psychology (see also Pylyshyn, 1984), Dewey’s terms stimulus and
central activity have gradually become incorporated into the central nervous
system as the discontinuous modular suites of “perception” and “cognition”. So
when Dewey says, “the older dualism between sensation and idea,” I have to
say I feel a little bit of déjà vu.

Meet Schrödinger’s Cat

Perhaps what is needed instead is a breaking down of these idealized distinc-
tions between putative stages, a reconceptualization of mental activity as con-
tinuous in time and graded in format. To illustrate my claim that mental
representations are fundamentally continuous, graded, and partially overlap-
ping (before overt behavior converts them into discrete actions), I draw an
analogy to a celebrity from popular physics: Schrödinger’s cat. First, for the
uninitiated, allow me to explain this feline’s rise to fame. When quantum
physics was gaining respectability and suggesting that the duality of light
being both a wave and a particle was mathematically acceptable, there were a
number of critics. Erwin Schrödinger (1935), a quantum physicist himself,
became one of those critics. In his discomfort with quantum physics’ claim
that a particle could be simultaneously in multiple spatial locations, Schrödinger
designed a thought experiment that he expected would prove quantum
physics wrong. In a typical version of this thought experiment, one places a cat
inside a box that also contains a chunk of mildly radioactive material, a Geiger
counter, and a vial of poison gas. According to its quantum mechanical pro-
perties, this particular chunk of radioactive material is 50% likely to emit one
radioactive particle per hour. If and when the Geiger counter detects this
emitted radioactive particle, it triggers a device that breaks the vial of poison
gas and thus kills the cat. After an hour has passed from the time you began
this experiment, you might naturally conclude that there is a 50% chance that
the cat is dead and a 50% chance that the cat is alive. Quantum physics would
disagree with you. Quantum physics, because it allows that particle to have
been emitted and not emitted at the same time, suggests that—before you
look inside the box—the cat is both dead and alive.1 Schrödinger expected the
absurdity of this claim to invalidate the popular interpretation of quantum
physics once and for all. How could a cat possibly be both dead and alive at the
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same time?! However, to his shock and dismay, this thought experiment was
not generally taken as proof that quantum physics must be wrong. Indeed,
most quantum physicists of the time saw no absurdity in the prediction at all!
As far as they were concerned, Schrödinger had beautifully demonstrated how
quantum duality at the subatomic level could, under the right circumstances,
be recapitulated at the macroscopic level. His cat became a popular icon for
how wonderful and powerful quantum physics can be.2

Population Codes in the Brain

What does a confused cat have to do with the human mind/brain? The ana-
logy I wish to draw from Schrödinger’s cat to the human mind/brain is in the
understanding that being in multiple states at once is a condition in which one
can be. In fact, one might argue that it is basically impossible for the human
brain to ever be in one single, entirely stable state—except for death, of course.
If it were, it would not be able to gravitate out of such a state without external
input. But even when the brain is cut off from all external input, during
sleep or sensory deprivation, it continues to travel from one brief nearly stable
state to the next: we dream, or we hallucinate, or we experience a “stream of
consciousness.”

When we look at how the brain encodes information, we see that it is a lot
like the wave function that characterizes the multifarious state Schrödinger’s
cat is in. The majority of neurons studied in mammalian brains send their sig-
nals in the form of relatively discrete all-or-none action potentials, brief but
intense depolarizations (1–10 milliseconds) of their electrochemical mem-
brane potentials. However, it does not appear to be the case that the firing of
individual neurons is used to signal the presence of things like objects, words,
and concepts (see Damasio & Damasio, 1994; Hebb, 1949; Pouget, Dayan, &
Zemel, 2000; Rose, 1996; see also Barlow, 1972). For some time now, neuro-
scientists have been able to record the activity of many neurons at once in vari-
ous regions of the nonhuman primate brain and have generally been finding
that populations of neurons participate together to embody a representation.
For example, in the 1970s, David Sparks and colleagues showed that the 
neural signal that tells the eye muscles to move the eyes in a particular direc-
tion is made up of many neurons, in the superior colliculus of the macaque
monkey, each of which represents a different direction of eye movement. It
is the distribution of activity across this population of neurons that determines
the direction of the eye movement, not just the activation of those neurons
that specifically code for the actual direction the eyes wind up going in (Sparks,
Holland, & Guthrie, 1976). In the 1980s, Georgopoulos and colleagues found
similar evidence for population codes of arm movements in the motor cortex
of the macaque (Georgopoulos et al., 1982). Moreover, it appears that popula-
tion codes are used not only for representing and producing motor output
(e.g., eye and arm movements) but also for representing perceptual input.
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For example, in the 1990s, Wilson and McNaughton (1993) demonstrated
that ensembles of cells in the rat hippocampus cooperate to encode the ani-
mal’s knowledge of what environment it is in. And Tanaka (1996, 1997)
showed that visual objects (faces included; see Gauthier & Lokothetis, 2000;
Perret, Oram, & Ashbridge, 1998) are represented by populations of cells
within the inferotemporal region of visual cortex in the macaque.3

One of the things that makes population codes (i.e., distributed represen-
tations) robust and powerful is that under noisy or degraded stimulus condi-
tions or following physical injury, they will often still be able to approximate
the original input signal: graceful degradation (Rumelhart & McClelland, 1986a).
For example, imagine that a particular set of 100 neurons participate in the
representation of your grandmother’s face, such that when you look at her, the
ideal, perfect recognition would happen if those 100 neurons were at their
appropriate activation levels (firing rates). If she laughs and covers her mouth,
then some of those 100 neurons will reduce in activation because the parts of
her face to which they especially respond are occluded. Nonetheless, if 80 of
those 100 neurons are still doing what they are supposed to do, that popula-
tion code for grandmother (with its 80% “confidence”) will still be by far the
most coherent code available in the brain. In contrast, if you had only one
neuron devoted to recognizing grandmother, this “grandmother cell” (Lettvin,
1995) may not be able to do its job when grandmother covers her mouth,
turns her head, or makes a funny face. You’d suddenly fail to recognize her!

What this means is that with population codes, we are always dealing with
internal representations that have what you might call percentages of confi-
dence (or probabilities, loosely) associated with them. The image on your
retina of your grandmother will almost never be the same at any two points in
time. Therefore, the input to those 100 neurons (your grandmother popula-
tion code) will never be exactly perfect to turn them all on. This population
code will be in a nearly stable state. What often happens then is that the con-
nections between the members of this population code will pass the activity
back and forth and increase the percentage of them that are active. This 
pattern completion process (e.g., Grossberg, 1980) will gradually increase the
population code’s “confidence,” and thus its probability of producing an asso-
ciated behavior—such as pushing air out of your lungs to vibrate your vocal
chords while articulating parts of your mouth to make the sound, “Grandma!”
Importantly, that discrete behavior—saying one particular word and not any
other words—is often interpreted by the people around you as indicating that
your internal representation for grandmother is 100% “confident.” The conti-
nuity of mind thesis posits that your representation is not 100% confident and
can never be 100% confident.

Although the process of pattern completion will increase the total activa-
tion (or probability) of a representation over time, its associated action will be
produced long before the representation ever reaches maximum activation
(or probability 1.0). This action (even something as benign as moving your
eyes to a chair, near Grandma, that you plan to sit in) then inevitably changes
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the sensory array, so that the original input to that population code is now
crucially altered, and a new pattern completion process must begin—gravitating
the system toward a new and different probabilistic mental representation.

Versions of Probability 

If we accept this account of population codes as probabilistic representations
of multiple unitary concepts (see Zemel, Dayan, & Pouget, 1998), for example,
0.8 Grandma, 0.02 Kathryn Hepburn, 0.01 Mother Teresa, and hundreds of
other representations with very low confidence, that together add up to 1.0,
then we begin to see how the mind is indeed like Schrödinger’s cat: in multi-
ple identifiable states at once. However, we must acknowledge that this is
using a particular connotation of probability, a term which has taken on 
many senses in the last couple of centuries. Because a form of probabilism is
infused in a great deal of the theoretical treatment throughout this book, the
following section will describe some of the different interpretations of proba-
bility, cover some of its history, and also jog your memory with just a touch 
of math.

In the eighteenth and nineteenth centuries, a great many philosophers,
mathematicians, economists, and physicists (as well life insurance statisti-
cians!) were employing the tools of probability to essentially make predictions
about future events. Much of early probability theory was actually developed
in the interest of using death statistics (i.e., mortality tables) to determine
profitable life insurance coverage and premiums. Crucially, the dominant
meaning of probability at the time was one of describing the likelihood (as a
value between 0 and 1) that a future event will end up discretely in one state
or another. Thomas Bayes formulated an extremely influential theorem that
instructs exactly how to do this (Bayes, 1763/1958).

Let’s walk though an example. Imagine that you just lost all your money
at the roulette table of a new casino. Let’s assume you usually at least break
even at roulette (95% of the time), so you’re now suspicious—for the first
time in your life—that the wheel might be rigged. Bayes’s theorem lets you pit
the likelihood of your rare event against the general likelihood of casinos
cheating, to calculate the probability that this particular casino just cheated
you. For the sake of argument, assume that based on crime reports, 1 out of
100 casinos rig their roulette tables to cheat gamblers out of their money.
Understanding equation (1) is easier than you might think.

(1.1)

Let P(C | L) be read as “the probability of this casino cheating, C, given that 
you just lost all your money, L.” For the numerator, we multiply the base rate,

P( ) P( | )
P( | ) .

P( ) P( | ) P( ) P( | )

C L C
C L

C L C notC L notC
=

+
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or prior probability, of C (i.e., 1/100) by the probability of your losing if the
casino cheated, P(L | C); let’s assume that would be 1.0. In the denominator,
that same product, P(C) P(L | C ), must be added to the probability of the
casino being fair, P(notC), multiplied by the probability of your losing at a 
fair casino, P(L | notC). This is necessary to normalize your suspicion against
the alternative possibility: that you just got unlucky. Dividing the numerator
(0.01 ∗ 1) by the denominator (0.01 ∗ 1 � 0.99 ∗ 0.05), results in P(C | L) �
0.168. Certainly a much higher likelihood than the base rate of 1 in 100,
but not quite enough confidence to warrant contacting the police. Perhaps 
if it happens to you three times in a row at that same casino, then it might 
be time for an investigation . . . or then again, maybe you’ve just lost your
touch.

Probability theory also allows us to compute the probability of combina-
tions of events. For example, the probability of a flipped coin coming up heads
twice in a row is computed by simply multiplying the probability of the first
event with the probability of the second event : 0.5 ∗ 0.5 � 0.25. (Of course, this
only really works when the probabilities are independent of one another.) The
probability of that casino not cheating, even though you’ve lost at roulette
three times in a row there, could be calculated as (1 � 0.168) ∗ (1 � 0.168) ∗
(1 � 0.168) � 0.576. Thus, it would appear that Bayesian theorists can make
some pretty sophisticated predictions, not only of individual events but also
of combined events.

However, the Bayesian interpretation of those mathematical results is not
accepted by everyone. A frequentist’s view of probability would emphasize
that although the 0.25 probability of flipping two heads in a pair of coin flips
tells us to expect about 25 heads-heads out of 100 pairs of coin flips, proba-
bility can say nothing about which face of the coin is actually up on any one
flip. We must rely on observation to tell us that. In the strict frequentist
account of probability, there is no discussion of the degrees to which an indi-
vidual event is likely to be in one state or another—and certainly no acknowl-
edgment of the degrees to which an individual event is in one state and another
at the same time!

The way I would like to encourage the reader to think of probability in the
mind is a far cry from the frequentist’s interpretation and even subtly differ-
ent from the Bayesian interpretation. The continuity of mind thesis holds that
simultaneously partially active mental representations can be treated as sum-
ming to 1.0 and thus may represent the probability of their individual associ-
ated actions being elicited. In this view, it is the fact that the body’s effectors
(limbs, hands, eyes, speech apparatus, etc.) can each typically only do one
action at a time, which causes the multifarious amalgam of mental states to
warp itself over time toward largely approximating only one mental state just
long enough to produce that mental state’s associated action. Thus, when
relating these multiple graded mental states to possible actions, the thesis
looks decidedly probabilistic, but when examining the mental states for their
own sake, the thesis might be best compared to fuzzy logic.
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Following some initial work by logicians on elements of a formal logic
that allowed for “vague” truth values, Lotfi Zadeh introduced the notion of
fuzzy logic (Zadeh, 1975; see also Massaro, 1997). In fuzzy logic, the truth
value of a proposition (such as “Donald is rich”) has a range between 0 and 1.
Moreover, the truth value of a conjunction of propositions (such as “Donald
is rich and I am poor”) is equal to the truth value of one proposition multiplied
by the truth value of the other proposition. Sound familiar? The mathematics of
fuzzy logic and the mathematics of probability are essentially the same. It is
the interpretation that differs. Fuzzy logic takes the mathematical results of
traditional probability statistics and accepts them at face value as “the (multi-
farious) state of the system,” not as “a prediction of the possible discrete states
the system might be in.” This is precisely what quantum physics does with its
mathematical description of the probability that Schrödinger’s cat is dead and
the probability that it is alive. It accepts the math as a conjunctive description of
the world, not as a disjunctive prediction about it.

“Warping” the Probabilities

You can begin to see the tension here between the notions of probability and
fuzzy logic. I will perhaps add to that tension when I note here that the “prob-
abilistic” activations of mental representations discussed throughout this
book often do not adhere to the mathematics of Bayesian probability theory
(see chapter 4 for details). From this perspective, my use of the term proba-
bility may seem somewhat glib. The conjunctive description of mental con-
tents provided by fuzzy logic is converted into a disjunctive prediction, via
probabilities, of the motor responses being recorded by the psychological
experimenter. The way in which probability truly does apply here is in the stip-
ulation that these fuzzy logical activations of mental states are treated as “the
probability that the mind will activate a motor action that is associated with a 
particular perceptual category.” However, because their activations change
continuously, these partially active mental representations should not really
be interpreted as “the mind computing the probability of a given stimulus
belonging to a particular category.” At a very deep level, this claim is actually
quite shocking, if not preposterous. It amounts to saying that A and B (below)
are true, but C is not always true.

A. There are Bayesian probabilistic relationships between external states in
the environment.

B. There are Bayesian probabilistic relationships between mental states in
the mind and motor actions in that environment.

*C. There are Bayesian probabilistic relationships between external states in
the environment and mental states in the mind.

What could be so special about that transition from stimulus to percept 
(statement C) that it dares defy the mathematics of Bayesian probability? 
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In fact, a considerable amount of research in a subfield that calls itself
Bayesian perception adheres rather strongly to statement C (e.g., Kersten, 1991;
Knill, 1998; see also Rao, Olshausen, & Lewicki, 2002). Bayesian approaches to
perception usually acknowledge the gradedness of internal mental states;
however, they still tend to treat them as static in time. The temporal dynamics
of cognition is largely ignored by the Bayesian approach to perception. Thus,
although an experiment in Bayesian perception can often demonstrate an
accurate mathematical prediction (in the form of some probabilities) about
the overt categories into which an observer will place her percepts, it usually
demonstrates nothing about the temporally extended process by which the
sensory input eventually led to a particular categorical response. In the con-
text of having considered the pattern completion process exhibited by neural
population codes and by attractor dynamics, this two-step process of stimulus
and then probability is reminiscent of the two-step “stimulus and then response”
attitude criticized by Dewey (1896).

There are properties inherent to dynamical systems that are often respon-
sible for the mind not quite adhering to probability theory. There is a kind 
of momentum that the mind develops as it travels through the state space,
causing it to warp and exaggerate its deterministic influences. The mind has a
tendency to gravitate closer to the nearest attractor (mental state) than war-
ranted. That is, dynamical systems often settle toward stable states, with one
attractor being almost, but not perfectly, satisfied (i.e., its “interpretation” of
the input being somewhere near 1.0 probability)—even when the input is
unresolvably ambiguous. As mentioned earlier, this pattern completion process
takes place over a period of time (whether it be a few hundred milliseconds or
a few seconds). One must look inside this pattern completion process to find
evidence of probabilistic mental states. Too often, researchers examine the final
result of a mental process, such as the category or accuracy of the solicited
overt motor response. Although informative for characterizing the hypothe-
sized representations that putatively get computed, this mindset largely neg-
lects the process of settling toward those representations and the fact that
many amalgams of representations are often considered along the way. The
continuity of mind thesis is not particularly aimed at discounting the exposi-
tory usefulness of those idealized discrete representations of pure mental
states. Rather, it is aimed at bringing to the reader’s attention the fact that 
“getting there is half the fun.”

Nonlinear Attraction, Stability, and 
Instability in Visual Perception

Figure 1.1 shows a cartoon example of a two-dimensional perspective on 
a vector landscape for the high-dimensional state space of a dynamical 
system. This is a way to visualize the temporal dynamics of a system’s state 
as it would traverse through its state space. Pick a location anywhere on that
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two-dimensional map (recognizing that it would actually correspond to a
location in the high-dimensional state space of the dynamical system itself),
and put your finger on the location. There are arrows nearby that (with a 
little interpolation) give an indication of what direction the system would
move in. Longer arrows imply stronger attraction and hence faster movement.
Move your finger in the direction of the attraction, and check the direction of
the arrows near your finger’s new location. Continue moving your finger so,
and you’ll simulate the continuous trajectory of a dynamical system as it
moves through its state space. Note that the two attractor basins are spiral-
shaped, such that the system would take a while to settle motionlessly into the
point attractor, tending to make smaller and smaller orbits almost indefi-
nitely. Thus the vector landscape itself is likely to change shape (due to new
sensory input and/or planned motor output) before the state of the system
actually becomes static.

Figure 1.2 shows a different kind of rendition of a similar state space
manifold. The energy landscape in figure 1.2 shows the two attractor basins as
actual bowls in the surface. The vertical axis is treated as energy, and the
dynamics will always push the state of the system toward a reduction in
energy. Imagine placing a marble on the mesh surface of figure 1.2, and envi-
sion where it would roll. Thus would be the trajectory of the system over time.

Any time there is more than one attractor in a dynamical system, it is con-
sidered a nonlinear dynamical system. With more attractors comes greater
potential for any given trajectory to meander quite nonlinearly in its high-
dimensional state space. What is crucial to defining a dynamical system is its
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balance of stability and instability (e.g., Glendinning, 1994; Spencer &
Schöner, 2003; Ward, 2002; see also Bak, 1994).4 Nonlinear attraction is how a
system achieves relative stability, as it travels from unstable point to unstable
point in state space to gradually settle into the basin of a point attractor.
However, too much stability can be a bad thing. If the system settles all the way
into the point attractor—rather than just orbiting its basin5—then the system
is stuck there until external perturbation dislodges it. In thermodynamics, this
kind of true stability is affectionately referred to as heat death.

One easy way to undo a relatively stable state in a dynamical neural sys-
tem, and reachieve instability, is through fatigue. If a neural population code
is continuously stimulated for a significant amount of time, one can naturally
expect that the refractory periods of the individual neurons will accumulate in
number and duration until it becomes quite difficult to substantially excite
that population code for some time. This has been demonstrated in neural 
firings rates in monkeys (e.g., Baylis & Rolls, 1987; Carandini, 2000; Maffei,
Fiorentini, & Bisti, 1973; Sekuler & Pantle, 1967), in human neuroimaging (e.g.,
Noguchi, Inui, & Kakigi, 2004; Thompson-Schill, D’Esposito, & Kan, 1999),
and in neural network simulations (e.g., Huber & O’Reilly, 2003; Kawamoto &
Anderson, 1985). This fatigue of the population code results in the reduction
of its attraction strength in the state space, and other nearby attractors (popu-
lation codes) will now be able to pull the system toward them. Such neural
fatigue is a common explanation for a wide range of perceptual alternations
and illusions, including the following experiential demonstration. It has long
been suggested that the perspective alternations of the Necker cube (figure 1.3)
are due to fatigue, or satiation, of neural representations (e.g., Orbach, Ehrlich, &
Heath, 1963; see also Köhler & Wallach, 1944).
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When looking at this wire frame cube, the lower square will often appear
to be the front (or closer) panel of the cube, as if your head is slightly above
the cube and you are looking down at it. However, after staring at it for several
seconds, your percept will switch to having the upper square appear to be the
front panel, as if your head is slightly below the cube and you are looking up
at it. A few seconds later, the percept will switch back for a little while. As the
perspective with the upper square appearing in front is a somewhat unusual
one (requiring the cube to be suspended in air or resting on a glass shelf), it is
perhaps not surprising that this percept usually lasts for a slightly shorter
period than the more canonical one (see Wallach & Slaughter, 1988). Over
time, this oscillation between perspectives of the Necker cube tends to
increase in rate. Thus, if you were to report when the perspective reverses over
time, the graph of those reversals would look something like figure 1.4.

The bistable pattern of Necker cube perspectives has been described as a
dynamical system in which two attractors compete against one another
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Figure 1.3. The Necker cube. At first glance,
it appears to be a wireframe box with one
particular perspective, for example, viewed
from slightly above it. However, after star-
ing at it for a few seconds, the perspective
will change to one in which the box is being
viewed from slightly underneath it. See text
for discussion of these perspective reversals.

Figure 1.4. An example time course plot of reported perspective reversals 
during viewing of the Necker cube.



(DeMaris, 2000; Kawamoto & Anderson, 1985; Kelso, 1995; see also Hock,
Kelso, & Schöner, 1993, and van Leeuwen, Steyvers, & Nooter, 1997, for simi-
lar dynamical treatment of bistable visual input). The perceptual alternations
observed with the Necker cube (as well as other ambiguous figures, such as the
classic vase/faces silhouette and the Schröder stairs) are consistent with a
dynamical systems account of a nonlinear trajectory settling into one attrac-
tor basin and then into the other, and back, and so on. However, flipping back
and forth between two relatively stable states is something that a logical sym-
bolic (computerlike) system can do as well. What a logical symbolic system
cannot do is visit intermediate gradations between the two identifiable states,
as a dynamical system naturally does. Therefore, the important observation 
to note regarding the perceptual alternations of the Necker cube is not 
simply that they bounce back and forth but that they take a nonzero amount
of time to do so. The transition from one identifiable percept to the other is
not instantaneous. Based on numerous informal phenomenological reports,
when a stable Necker cube perspective begins to transition to the alternative
perspective, it seems to take somewhere around half a second for that current
percept to finally give way and be replaced by the alternative percept. If this is
the case, then the actual perceptual state is not quite accurately described by
the instantaneous transitions plotted in figure 1.4. The discrete step-function
quality of the data may be more an artifact of the constraints of the experi-
mental task, for example, “press this button or that one, not both,” than a true
indication of the internal mental state of the observer. (For similar circum-
stances of response discreteness being misinterpreted as mental discreteness, see
the discussion of categorical perception in chapter 6.) Rather than discretely
jumping from one perspective to the next with a step function, perhaps it
would be more accurate to plot the Necker cube perspectives as transitioning
with a sigmoid function (i.e., an S-shaped curve). See figure 1.5.

In fact, some observers report being able to perceive some visual proper-
ties of the intermediate conditions during the transition. The perceptual tran-
sition is often described as the back panel moving closer in depth and the
front panel moving away in depth, until they are at the same depth plane, and
the image looks something like a wire frame mobile that is collapsed. The two
panels continue their movement, crossing each other, and eventually take each
other’s previous places. And, believe it or not, there is even one introspective
report of the percept “getting stuck” in one of those intermediate conditions
for a couple of seconds!

This account is based on introspective reports, of course, and therefore
should be taken with a grain of salt. But then, so is the original measure of
the Necker cube’s perspective reversals, as exemplified in figure 1.4. The only
difference is that the introspective report for the data in figure 1.4 is methodo-
logically constrained to a two-alternative forced choice. That is, the observer is
explicitly instructed to press one button when one perspective comes into
view, and then press another button when the other perspective comes into
view. Pressing both buttons at once is not an option. This requirement of
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discrete, categorical responses is quite common in cognitive psychology. In
contrast, if we allow observers to (at least attempt to) provide more than just
a selection of one of two categories, then we have a chance at obtaining 
a measure of the continuous probabilistic character of mental activity.
Throughout this book, there are many different examples of ways to measure
and observe, with considerable experimental rigor, that continuous proba-
bilistic character of mind. Consider the sigmoid curves in figure 1.5 our first
data visualization (of many to come) of what I call the continuity of mind.

Another compelling data visualization of the continuous manner in
which a percept gradually comes into view can be found in neurophysiology
research. Recordings from multiple neurons in the inferotemporal cortex of
the macaque monkey suggest that it takes a few hundred milliseconds for the
right population of cells to achieve their appropriate firing rates for fully iden-
tifying a fixated object or face (Rolls & Tovee, 1995; see also Perrett, Oram, &
Ashbridge, 1998). The cumulative information (in bits) provided by an infero-
temporal neuron in the service of recognizing a face or object accrues con-
tinuously (though nonlinearly) over the course of about 350� milliseconds
(see figure 1.6). About 80 milliseconds after the presentation of the visual
stimulus, these cells begin firing, and during the first 70 milliseconds of firing,
about 50% of the total information to be encoded is already accumulated.
Thus, very quickly the network is able to project itself into the right general
“neighborhood” in its state space. (This allows some coarse visual discrimina-
tions to actually be made with 100 milliseconds or less of stimulus presentation
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Figure 1.5. A hypothetical time course plot of the actual perceptual state dur-
ing viewing of the Necker cube. The flat horizontal portions of this oscillating
curve are, in dynamical systems terminology, the stable states, where the system
is nestled in one of the attractor basins in the state space. The diagonal and
curved portions characterize the periods of time when the system is unstable
and not inside either attractor basin, but is in the process of being attracted to
one of them.



time; see Potter, 1976, 1993; Van Rullen & Thorpe, 2001.) However, over the
next 200� milliseconds, the process of object or face recognition is still in
progress, during which the remaining 50% of the information to be repre-
sented by the distributed population code is gradually accumulated.

Admittedly, 350 milliseconds for a population code to be in transit on the
way toward achieving its potentially stable state might not seem like a lot of
time. The stable states depicted for the Necker cube in figure 1.5 certainly take
up a substantial amount of the total time. Are the transition periods perhaps
just interesting curiosities, and the important observation is that a stable state
is eventually reached, and it is that on which logical mental computations are
performed? I think not. Throughout the course of this book, I hope to con-
vince you that the transitions are the important observations, not the seem-
ingly stable states. It is my hypothesis that in more complex visual (as well as
auditory, olfactory, etc.) environments, the proportion of time spent in these
unstable regions of state space—that is, in the process of traveling toward an
attractor basin, but not in one yet—is actually much greater than the propor-
tion of time spent in relatively stable (or, more precisely, metastable) orbit-
prone regions of state space.

This gradual accrual of the information comprising a population code
(figure 1.6) has powerful consequences for how we conceptualize what the brain
is doing when we go about our business of naturally perceiving the world
around us. Consider how your eyes move around a complex scene like the
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Figure 1.6. Average cumulative information accrued over milli-
seconds by inferotemporal cells representing objects and faces
(adapted from Rolls & Tovee, 1995).



one in front of you right now. Your eyes rest, with the two foveas fixating 
a particular location in the visual field, for about 200–300 milliseconds on
average (e.g., Rayner, 1998). They then make a fast, ballistic jump (lasting a
few dozen milliseconds or so) away from that location to fixate another loca-
tion in the visual field. After resting there for another 200–300 milliseconds,
they jump yet again to another location. Each new fixation brings a new word,
object, or object part, into the high-resolution view of your foveas for little
more than a quarter of a second. Now, if it takes almost half a second for the
appropriate population code to get fully settled in recognizing a fixated object,
but your eyes normally move to a new object every quarter of a second, how
can the brain achieve a genuinely stable state for any object recognition event?

Perhaps a stable state is not necessary. Perhaps the relevant neural net-
works in the brain need only approach an attractor basin in their state space
closely enough so that it is unambiguously the most coherent of the many
partially active population codes, and then that attractor’s associated motor
actions and anticipated perceptions go on to carry out their own activation
processes. From this perspective, the image of a mental trajectory is now
decidedly different from one in which the state of the system lands in one
attractor in state space, to consider one thought or percept, and then it lands
in another attractor to consider another thought or percept. Rather, the image
is one in which the neural system continuously traverses intermediate regions
of its state space and occasionally briefly brushes up near an attractor basin
just long enough to bring that attractor’s associated percepts and actions into
prominence. The emphasis is on the journey, not the destinations.

Thinking of objects (or words) as living in a high-dimensional space is a
little bit like shooting pool, if you treat the cue ball as the current state of the
system, and the object ball (the one you’re aiming at) as the next upcoming
attractor. A good pool player thinks not only about how to sink the object ball
but also about where the cue ball will go after that. Where the state of the sys-
tem goes after brushing up next to the current attractor is incredibly impor-
tant. The process of recognizing the next word or object does not begin from
some neutral central location in state space. It begins from where the system
last left off. In a dynamical neural system, the mind travels a continuous 
trajectory in this state space; it cannot teleport itself to neutral locations in the
state space in between recognition events, the way a computer can instanta-
neously flip its states to some context-free unbiased baseline. Therefore, pre-
cisely where in state space the previous word/object left the system has a
powerful influence on the trajectory it takes to get to the location in state space
corresponding to recognition of the next word/object. Hence, one should
expect “priming” effects from the previous word/object on the recognition of
the current word/object. And of course, as every cognitive psychologist
knows, the literature is rife with reports of words priming one another 
(e.g., Lukatela, Lukatela, & Turvey, 1993; Neely, 1977; see also Trueswell & Kim,
1998) and reports of objects priming one another (e.g., Cooper, Beiderman, &
Hummel, 1992; Gauthier & Tarr, 1997; see also Dill & Edelman, 2001).
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Nonlinear Attraction, Stability, and 
Instability in Language Processing

If you are one those people who feel as though they can catch a glimpse of what
the Necker cube looks like—sort of—during the time course of its transition
from one perspective to the other, then you have witnessed, firsthand, the con-
tinuity of mind. However, if such a glimpse eludes you, fear not. I have a 
second experiential demonstration of the neural fatigue of a population code
that just might work for you. In much the same way that staring at a bistable
visual image and perceiving it in one of its two possible perspectives for 
several seconds essentially overexposes the population of neurons that repre-
sents that percept, one can induce the same kind of effect in language. Look at
the word in figure 1.7. This is a familiar, easy-to-recognize word. On looking
at it, you feel as though your mind achieves a stable interpretation of its mean-
ing. However, if you overexpose the system to this input, you can actually
fatigue that meaning to the point that it no longer produces a stable state but
instead a clearly introspectively unstable one. Fixate the word in figure 1.7 and
read it out loud to yourself, about once per second, for one minute. Each time
you say the word, run a kind of mental inventory check on what the word is
making you think of at that point in time.

For most people, most of the time, the meaning of the word seems to dis-
appear after many repetitions. The word will begin to look and sound like an
unfamiliar nonsense word or perhaps a word from a foreign language.
Sometimes you can notice the gradualness with which the original meaning
fades. Moreover, one can also occasionally become aware of strange associa-
tions that arise, which are indicative of more than just a loss of the original
meaning but instead a gradual transition of the system into unusual regions 
of state space. That is, as the neurons comprising the population code for 
the meaning of giraffe begin to fatigue, other slightly related populations codes
become relatively more prominent. For example, as the meaning “a very-long-
necked orange quadruped from Africa” dwindles, you might find yourself
making peculiar observations, such as the fact that the g is ambiguous with
respect to its pronunciation (e.g., as in giant and gimlet). Or similar sounding
words may come to mind, such as raffle, draft, or even rafter (if you speak fast
and the syllables exchange order). Or perhaps, you’ll think of names, like 
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Figure 1.7. To demonstrate semantic satia-
tion, look at this word and read it out loud
to yourself, about once per second, for a
minute. As the repetitions continue, the
meaning of the word will seem to fade.



Al Jaffe, a cartoonist for Mad magazine, or Daniel Jurafsky, a well-respected
computational linguist and recent MacArthur Fellow. One colleague even said
that the word began to sound like a pretentious French-derived adjective, as in
“he’s so giraffe,” meaning something like gauche or jejune. This odd stream of
consciousness, occurring as the original meaning diminishes, should not be
surprising if one conceives of word meanings as living in a high-dimensional
state space. With each dimension being represented by the activation of its
corresponding neuron in the network, reducing the coherence of the popula-
tion code for the word giraffe unavoidably means increasing the coherence of
other population codes in nearby regions of state space. As the system gravitates
away from the giraffe attractor basin, it cannot help but travel somewhat near
others. Figure 1.8 is a simplified caricature of a hypothetical two-dimensional
perspective through this high-dimensional space that would allow one to
watch the trajectory of the system exhibiting fatigue of the giraffe attractor
and therefore meandering slightly near some other attractors.

This bizarre phenomenon has actually been well studied for decades and
is commonly referred to as semantic satiation (e.g., Jakobovits, 1967; Smith &
Klein, 1990; see also Tuller, Ding, & Kelso, 1997). Although early theories
about semantic satiation treated the effect as though it was a discrete loss of
meaning that took place at a particular point in time (e.g., Mason, 1941;
Severance & Washburn, 1907), Lambert and Jakobovits (1960) demonstrated
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Figure 1.8. During semantic satiation, the meaning of a word
diminishes, and similar associations can come to mind. This
schematic two-dimensional state-space depicts a hypothetical
trajectory away from the satiated word, giraffe, and skimming
near other words/concepts in the space.



the gradual nature of this reduction in meaning over time. Using Osgood,
Suci, and Tannenbaum’s (1957) semantic differential measure, which projects
the meaning of a word into a several-dimensional space, Lambert and
Jakobovits had participants provide responses for locating the word in that
space after longer periods of word repetition. As semantic satiation accrued
over more repetitions, the resulting projections of word meanings in the
semantic differential space indicated a gradual and continuous movement
toward but not all the way into the null origin of the space.

Osgood et al.’s (1957) three to six dimensions for representing the mean-
ings of words was an important breakthrough, but it was still quite different
from the high-dimensional state space of a neural network. Their dimensions
were based on rather abstract concepts, such as good/bad, active/passive, and
potent/impotent, for which participants simply provided metacognitive rat-
ings for any one word (e.g., on a scale of �3 to �3, how good/bad, active/
passive, and potent/impotent is a giraffe?). Moreover, the physical mecha-
nisms by which these abstract dimensions might be instantiated were not
forthcoming. In fact, precisely because the actual space in which these words
live is high-dimensional, which is merely approximated by Osgood et al.’s
abstract dimensions, almost any set of concepts that are sufficiently different
from one another could probably serve as the basis vectors for a several-
dimensional projection of that high-dimensional neural space (e.g., Edelman,
1998, 1999). For example, if one had participants report how similar any word
is to a peanut, an airplane, and a horse, one could probably produce a three-
dimensional mock-up that would exhibit important clusterings of abstract
concepts such animate/ inanimate, natural/artifact, and so on. But it’s proba-
bly not the case that the principal dimensions on which our brains encode the
world are peanutness, airplaneness, and horseness.

Nonetheless, Osgood et al.’s (1957) insight that word representation should
be carried out in a metric space, where graded similarity is easily embodied as
the distance between representations, was important—yet was quickly swept
under the rug as the computer metaphor of the mind took hold in the 1960s.
In cognitive psychology, the dominant account of word representation became
symbolic entries for words (like in a dictionary), with their relationships to
one another encoded by logical rules and/or sharing of an integral number of
discrete semantic features. Essentially, if one could easily imagine coding the
representation scheme in the popular programming language of the time
(LISP), then it was considered a legitimate representation scheme. Coding a
high-dimensional metric space, with each word being a continuous vector in
that space, was not what LISP was best at doing. However, now that symbolic
programming is nowhere near as dominant as it was in the 1960s and 1970s,
and numerical computation has become quite popular, perhaps it is not 
surprising that high-dimensional geometric accounts of word representation
are becoming accepted again (e.g., Landauer & Dumais, 1997; Lund &
Burgess, 1996; Schutze, 1993).
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Deprogramming the Cognitive Psychologist

The change in styles of programming languages from symbolic to numerical
is only one of many transitions that have recently taken place to help set the
stage for what promises to be the next paradigm shift in psychology and the
cognitive sciences. For example, connectionism, though not quite becoming
the dominant paradigm in psychology, managed to make the concept of dis-
tributed representations an acceptable notion (e.g., Clark, 1993; Elman et al.,
1996; O’Reilly, Munakata, & McClelland, 2000; Rogers & McClelland, 2004;
Rumelhart & McClelland, 1986a; but see Dietrich & Markman, 2003; Fodor &
Pylyshyn, 1995; Marcus, 2001). One could argue that much of the connection-
ist literature has devoted slightly too much of its attention to trajectories
through synaptic-weight-space as an account of learning and not enough to
trajectories through activation-space as an account of real-time processing.
Nonetheless, the step to having knowledge live as partially overlapping dis-
tributed representations in the high-dimensional state space of a network has
been a crucial departure from cognitive psychology’s traditional symbolic
computation approach.

Moreover, improvements in continuous and semi-continuous measures
of cognitive processing have helped open the door to visualizing the continu-
ous dynamics of mental activity. For example, speech shadowing (repeating
continuous speech as quickly and accurately as possible) provided important
insights into language processing (e.g., Marslen-Wilson, 1973, 1975). Recordings
of electrical potentials from the scalp (e.g., Hillyard & Kutas, 1983) as well as
from the peripheral muscles (e.g., Tuller, Kelso, & Harris, 1982) have provided
continuous measures of a wide range of perceptual, cognitive, and motor
processes. Recording from multiple neurons at once (e.g., Georgopoulos et al.,
1982), recording from neurons in awake behaving animals (e.g., Motter, 1993),
and microstimulating neurons in awake behaving animals (e.g., Gold & Shadlen,
2000) has provided concrete examples of the distributed probabilistic states in
which neural systems spend much of their time. Eye tracking has provided
real-time semi-continuous measures of language and vision (e.g., Rayner,
1998; Tanenhaus et al., 1995). These relatively recent advancements in method-
ologies (as well as many others; see chapter 3) have made it possible to catch
glimpses of the graded states that the mind travels through on its way to 
produce discrete actions.

Another development in the cognitive and neural sciences that assists 
in placing us at the brink of a significant movement away from traditional
cognitive psychology is that of dynamical systems theory. As a field of its own,
dynamical systems theory has advanced a great deal in both sophistication as
well as popularity since the days of Hamilton, Boltzmann, and Poincare. For
example, recent treatments of dynamical systems theory benefit considerably
from computer simulations (Polking, 1995; Scheinerman, 1995; Strogatz, 1994).
Most relevant to the cognitive sciences, dynamical systems theory is being 
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successfully applied to a wide range of human behaviors, such as categoriza-
tion (Anderson et al., 1977), language (Tabor & Tanenhaus, 1999), visual per-
ception (Grossberg, 1980), motor movement (Kelso, 1995), as well as music 
perception (Large & Palmer, 2002), and developmental processes (Thelen &
Smith, 1994). I genuinely suspect at this point that these advances of dynami-
cal systems in various subfields of psychology spell doom for the computer
metaphor of the mind.

As should be evident by now, the purpose of this book is to deprogram
the cognitive psychologist in us all. We all have a tendency to want to draw a
circle around a set of phenomena and label that set with a name like perception
and perhaps label another set of phenomena with the name cognition. Even
within those circles, we feel the need to draw smaller circles of things like
“word recognition,” as if it was completely unrelated to “object recognition.”
We all have a tendency to want to draw boxes around presumed transforma-
tions of information (e.g., combining spoken sounds over time to map onto
words representations, or combining visual features and surfaces to map onto
object representations), and call them processors or modules. We have these
tendencies because without these overidealized categorical separations and
discrete labels, we feel at a loss for how to talk about these phenomena. But
how do I refer to a process that combines spoken sounds and visual features
over time to map onto possible motor actions? The vocabulary of traditional
cognitive psychology is simply not built for it. In contrast, the intersection of
dynamical systems theory, neural network modeling, and ecological psy-
chology, a nexus that I refer to as continuity psychology, is developing not only
the vocabulary but also the conceptual and mathematical tools for it.

As we watch traditional cognitive psychology giving way to continuity
psychology, one is tempted to ask, as Douglas Hintzman (1993) did, “Was the
cognitive revolution a mistake?” And I think the answer is clearly “no”—but
not because it got anything right about the mind. The cognitive revolution of
the 1960s was the right thing to do at the time because, in opposing the anti-
mentalism of the behaviorist tradition, it provided the necessary realization
that the mind has sufficient complexity of processing to make it required
reading, as it were. Psychology could no longer focus solely on the stimulus
and the response, ignoring the complex nested dynamical processes that take
place in between. The first-order associationism of the 1940s simply wasn’t
powerful enough to fit the data (Lashley, 1951; see also Chomsky, 1959).
Unfortunately, where cognitive psychology in particular and cognitive science
in general went wrong was in its marriage to the computer metaphor of the
mind. Box-and-arrow diagrams, borrowed from computer engineering, ran
amok in the scientific journals, and serial digital processes were used as the
square pegs to be forced into the round holes of cognition. The mind was
treated as an independent system, somehow composed of multiple internal
independent subsystems.

However, in the past few decades, evidence from ecological psychology,
neuroscience, and real-time methodologies in cognitive psychology has cast
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doubt on this serial digital computational perspective on the mind. Rather
than the mind being composed of independent systems for perception, cogni-
tion, and action, the entire process is perhaps better conceived of as a continuous
loop through perceptionlike processes, partially overlapping with cognition-
like processes, and actionlike processes, producing continuous changes in the
environment, which in turn, continuously influence the perceptionlike processes
(see Neisser, 1976). In this large feedback loop, the brain itself is more of an
interdependent subsystem contributing to mind than a system comprising mind.
It carries out more of a subprocess than a process.

Given the tumultuous history of psychology and its relatively late appli-
cation of mathematical techniques from dynamical systems theory, one could
argue that the symbolic-computation approach to cognition, spanning from
the 1960s to the 1990s, was a necessary first approximation at characterizing
mental activity—a first approximation that has run its course and served 
its purpose. For the new psychology on the horizon, perhaps we are ready to
discard the metaphor of the mind as a computer, because its drawbacks now
outweigh its advances, and replace it with a treatment of the mind as a 
natural continuous dynamical event—whose decidedly nonmetaphorical
substrate consists of the brain and body and the environment with which they
interact.
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2

Some Conceptual Tools for Tracking

Continuous Mental Trajectories

I can best illustrate this conception of nervous action by picturing
the brain as the surface of a lake. The prevailing breeze carries
small ripples in its direction, the basic polarity of the system.
Varying gusts set up crossing systems of waves, which do not
destroy the first ripples, but modify their form, a second level in the
system of space coordinates. A tossing log with its own period of
submersion sends out periodic bursts of ripples, a temporal rhythm.
The bow wave of a speeding boat momentarily sweeps over the
surface, seems to obliterate the smaller waves yet leaves them
unchanged by its passing, the transient effect of a strong stimulus.
—Karl Lashley (1951)

Timing Is Everything

Time is continuous. We are generally forced to talk about it in discrete quanta,
be it billions of years in astronomy, millions of years in geology and in evolu-
tion, centuries in history, decades in sociology, years in economics, days in our
personal lives, seconds in cognitive psychology, milliseconds in cognitive 
neuroscience, microseconds in chemistry, nano- and picoseconds in computer
engineering, and femto- and attoseconds in physics. These discrete labels that
carve up time into delineated chunks are certainly useful descriptive conven-
iences. However, it would be foolish to think that they are real. That is, it seems
highly unlikely that naturally organized systems of multiple interacting units,
such as a brain, a society, or a planet, would function in lockstep to the pace of
some systemwide counter using a particular temporal quanta, such that each
new second, or millisecond, or attosecond signaled an instantaneous and
simultaneous updating of the discrete state of each and every unit in the 
system. This is not a straw man I’m building. This is the kind of lockstep 
synchronization that would genuinely be necessary for the brain to function
like a digital computer.

If, at the spatial scale of neurons and behavior, time truly is continuous,
that is, not decomposable into discrete quanta, then changes in a system’s state
(or even its units’ states) over time must also be continuous. Thus, claiming
that a system was in a particular “state,” X, at a particular point in time, really
boils down to saying that the average of the system’s states during that period



of time was X. This kind of coarse averaging measurement is often a practical
necessity in science, but should not be mistaken as genuine evidence for the
system actually resting in a discrete stable state.

Real time does not function like a digital computer’s clock. It does not
move forward and then stop to be counted, and then move forward again only
to stop again. At the level of human behavior, real time does not have an objec-
tive functional unit. The system of temporal units that we have settled on—
based on one second equaling 9,192,631,770 periods of radiation from the
cesium-133 atom—is relatively arbitrary. Historically speaking, one rotation
of the Earth around the sun, which is almost naturally carved up into 365 day
units—leap years notwithstanding—is arguably a rather terracentric basis for
setting the clock of the universe, is it not? We could just as easily have devel-
oped a system that treated the equivalent of 1.37 femtoseconds as a unit of
time, given it its own funny name, and built the rest of the time scale system
around multiples of that unit. In any case, for pragmatic day-to-day concerns
of humans, there are still many time scale systems that could have been
devised to fit into Earth’s solar and lunar cycles, and it is simply a series of
disconnected scientific endeavors over centuries (some based on the metric
system and others not) that have meandered onto the one we now use 
planetwide. Time itself has no idea, nor does it care, what method we use for
pretending to carve it up. It just keeps flowing continuously.1

If, for the purposes of analyzing physical processes at the molar scale, time
is best described as continuous and unhesitating, then it is perhaps difficult to
imagine that the time-dependent trajectories of the mind, through the brain’s
state space, could be any different. The firing rates of all the billions of neu-
rons in the brain do not and could not all remain simultaneously constant for
any significant period of time. What this means is that there is no point in
time during which the mind is not changing. There is simply no such thing 
as a static internal representation, as required by the computer metaphor of
the mind.

Trajectories in Neural State Space

This practice of treating time as though it was comprised of discrete inde-
pendent units is at the heart of why a somewhat unexpected clash of mindsets
exists between connectionist modelers and dynamical systems theorists of
cognition (see van Gelder, 1998). One of the reasons dynamical cognition theo-
rists criticize connectionist modelers is precisely because most artificial neural
networks (including the simulations in this book) treat the updating of all the
neuronal activations as though they took place in lockstep to the beat of some
arbitrary and nondecomposable temporal quanta (but see Pearlmutter, 1989,
1995; Williams & Zipser, 1989). In contrast, a differential equation from
dynamical systems theory describes a truly continuous trajectory existing in a
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state space with time included as a continuous dimension. For example, the
basic dynamical system is described by the following simple equation:

(2.1)

where X is the vector of coordinates describing the system’s location in its state
space, and t is time. The derivative of the vector X is proportional to the
change in time as a result of the function f. Nowhere in this equation is there
reference to steps in time or in space. There is only flow.

Although such mathematical accounts are indeed elegant and probably
closer to the truth about temporal dynamics, they are at times criticized for
being descriptions of the phenomena rather than explanations. Understanding
why a brain does something equivalent to following a particular trajectory in
state space could perhaps be aided by simulations in an architecture that
resembles actual neural assemblies, rather than one that merely provides a
metaphor of their temporal dynamics. Thus we arrive at the compensatory
strengths and weaknesses of dynamical systems theory and of artificial neural
networks. Dynamical systems theory accommodates the genuine continuity
of time and state space but says little about neurophysiology. Neural network
simulations provide some approximated account of the actual neural hard-
ware that carries out these functions, but they chop their time, and therefore
their state space, into segmented periods and regions of artificial stasis.

Such computer simulations of state space trajectories over time are some-
times called iterated maps, because with each discrete iteration in time the
simulation plots a new point in space to describe the state of the system. With
neural network models that proceed in lockstep, it is as though the state of the
system doesn’t move through its state space but rather teleports from one spe-
cific location to another, resting statically in each location for the duration of
the temporal quantum. The answer that most connectionist modelers give in
response to this criticism—and the one that I give in response as well when 
I use neural networks—is that, as long as the time steps are small, the loss 
of some temporal contiguity is a minor simplification that allows several bene-
fits in explication and visualization. Essentially, this amounts to advocating
the approximation of continuous dynamical systems by discrete dynamical
systems. In employing any model, one must choose where the oversimpli-
fications will be permitted, and where the crucial mechanisms will be more
precisely implemented.

Importantly, once the decision to use artificial neural networks has been
made, there is still a choice to be made about temporal resolution. This choice
is crucial for simulating perceptual/cognitive phenomena. For example, a sig-
nificant proportion of connectionist models of cognition have focused on the
temporally static spatial resolution of “stored” exemplars and categories of
individuated stimuli in the state space of the network (e.g., the feedforward
networks of Browne, 2002; Kruschke, 1990; Rosenblatt, 1967; Rumelhart &
Todd, 1993) rather than on the temporal dynamics of the internal processing
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of input (e.g., the recurrent attractor networks of Anderson et al., 1977;
Grossberg, 1980; Hinton, Plaut, & Shallice, 1993; McClelland & Elman, 1986;
McRae, deSa, & Seidenberg, 1997). As indicated by the demonstrations offered
in chapter 1 and the many experimental results described in chapters 6–9, it will
become clear that even when an individual stimulus input is artificially isolated
for presentation to the sensory systems, a temporally dynamic perceptual/
cognitive process ensues such that the brain travels continuously through its
state space, gravitating toward multiple semi-stable attractor basins. This tem-
porally dynamic process is arguably best modeled by recurrent attractor net-
works (rather than by feedforward networks) because they combine the
benefits of semi-continuous processing (rather than one time step per one
stimulus) with approximate neural plausibility.

In chapter 1, the concepts of a neural population code and of an attractor
basin were used almost interchangeably. However, the link between the two
was not quite fully mapped out. Chapter 2 is designed to do exactly that. That
said, keep in mind that the use of a high-dimensional state space, and the
mathematical insight from dynamical systems theory, are for modeling how
the mind works. The emergence of mind takes place in the medium of
patterns of activation across neuronal cell assemblies in conjunction with the
interaction of their attached sensors (eyes, ears, etc.) and effectors (hands,
speech apparatus, etc.) with the environment in which they are embedded.
Make no mistake about it, that is the stuff of which human minds are made:
brains, bodies, and environments. Trajectories through high-dimensional
state spaces are merely convenient ways for scientists to describe, visualize,
and model what is going on in those brains, bodies, and environments.

The reason for using a metaphor to approach one’s object of study is 
the same as that for using any model. When the target domain, for example,
the mind, is too complex to understand in its full detail, we can import a
richer understanding of other similar and somewhat simpler source domains,
for example, dynamical systems theory and attractor networks, to provide
descriptions and explanations of how the mind might function. Done prop-
erly, this requires a cyclic interplay between empirical predictions made by the
metaphor/model, and results of those empirical tests being used to improve
the metaphor/model (for more details, see chapter 4).

To conceptualize thought as a trajectory through state space, first visual-
ize in front of you a very high-dimensional space. Let’s say, one for each 
neuron—at least a few billion dimensions. All right, perhaps that is more 
difficult than it sounds. It’s usually easier to cheat a little and visualize a large
three-dimensional space and just tell yourself that it has more dimensions
than that. If each neuron is treated as a dimension of the system’s state space,
then any pattern of activation that is exhibited by the neural network corres-
ponds to a location in that high-dimensional state space. That is, the firing
rates of all the neurons (averaged over some short, sliding temporal window)
can stand as the coordinates of that location in the state space. A number of
researchers have encouraged a focus on this kind of geometric framework 
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for representing brain states (e.g., Aleksander, 1973; Anderson et al., 1977;
Braitenberg, 1977; Churchland, 1986; Churchland & Sejnowski, 1992; Edelman,
1999, 2002; Pasupathy & Connor, 2002; see also Kiss, 1972; Osgood, Suci, &
Tennenbaum, 1957; Shepard, 1962).

The demonstrations included in this chapter are intended to provide sim-
plified visual examples of distributed brain states and probabilistic mental
states over time. As the cognitive and neural sciences gradually let go of the
computer metaphor of the mind, where a central executive performs logical
operations on discrete mental entities, a continuity framework (inspired by
ecological psychology, dynamical systems theory, and computational neuro-
science) can replace that abstracted metaphor with the concrete and neurally
plausible notion of a continuous trajectory through a neuronal state space.

Probabilistic Versus Pure Mental States

One can think of the set of possible brain states as a high-dimensional space
with as many dimensions as you have neurons. If you could know the activity
level of each neuron, that would provide you with the coordinates in that
high-dimensional space that correspond to that brain state’s location in the
space. Similar brain states will be in nearby locations in that space. Mental
states, by contrast, can be thought of as a subset of particular locations in that
brain state space that have been visited frequently enough and are familiar
enough to be easily labeled by the scientist/observer with linguistic identifiers
that describe that mental state (such as the mental state of being hungry, or of
recognizing Grandma, or perhaps of grasping the continuity of mind thesis).2

You can think of this as the folk psychology in the machine.
The important point to be made by the continuity of mind thesis is that

these specific locations in state space which seem to have easily labeled identi-
ties, these “pure mental states,” can only ever be approximated by the actual
neural system for which this state space is a metaphor. That is not to say those
pure mental states are irrelevant or nonexistent. They do exist, as possible
locations in the neural system’s state space. They just never happen. The neu-
ral population codes get sufficiently activated (i.e., the system approaches
close enough to a frequently visited and identifiable attractor basin) to fool
everyone—including the self—into thinking that the pure mental state has
been perfectly instantiated. However, for this dynamical system comprised of
billions of neurons to perfectly instantiate a pure discrete logical symbolic
state, such as I am hungry, in exactly the same way every time that state is com-
puted would require more precision than the system is capable of achieving.

One counterargument that a rule-and-symbol theorist might launch at
this account is that rather than the mental state being a mathematically
unachievable attractor point, as assumed in this description, perhaps it is the
entire attractor basin, which includes many locations in a nearby region of
space (e.g., a delimited contiguous manifold). For example, a neural subsystem
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could enter one of its attractor basins, travel around within that basin, and
send its output to a second neural subsystem in a sufficiently coarse format
that the receiving subsystem is unable to distinguish among the subtle changes
in the exact neural activation patterns resulting from changes in location
within that basin. The second subsystem could only discern that the first sub-
system is somewhere in that attractor basin and thus would be forced to treat
the entire set of locations within the basin as belonging completely and indis-
criminately to one discrete symbolic category (see the discussion of symbolic
dynamics in chapter 4, and the discussion of categorical perception in chapter
6). This arrangement can seem an intuitively pleasing hybrid notion of con-
tinuous distributed patterns at a lower (perceptual?) level of the system and
discrete symbolic entities at a higher (cognitive?) level of the system.

However, two related problems quickly arise with this hybrid framework:
One is perhaps technical, whereas the other is arguably a deal-breaker. The
first problem is in deciding precisely where to put the discrete threshold defin-
ing the inside and outside of the attractor basin. This arbitrary threshold
problem is one of the major bugbears of symbolic dynamics, because a tiny
misplacement of a threshold can cause massive inconsistencies in the system’s
behavior over time (Bollt et al., 2000). Essentially, a “receiving” subsystem that
computes symbols based on the (even slightly misplaced) threshold crossings
of a “sending” continuous dynamical subsystem can wind up frequently and
drastically misinterpreting the actual behavior of the subsystem.

The second, and probably more fatal problem with the hybrid dynamic-
to-symbolic cognition idea concerns the temporal continuousness of real-
world sensory stimulation. The continuous input that characterizes most
ecologically valid cognitive phenomena generally will not allow the system to
languish in an attractor basin for any significant amount of time. For exam-
ple, by the time a listener has understood a particular word in a spoken utter-
ance, and thus traveled to the appropriate attractor basin in her state space,
a new word is already being delivered in the speech stream that will impose 
its own influences on the listener’s movement through her state space (see
chapter 7). Corresponding observations hold for visual perception in a mov-
ing observer (Gibson, 1950). In most natural human behaviors, an incremen-
tal achievement of understanding is not meditated on for even a second. New
sensory stimulation, new imagined stimulation, new motor movement, and/
or new imagined movement are continuously in play. Thus, in naturalistic 
circumstances, the amount of time spent in an attractor basin is likely to be far
outweighed by the amount time spent traveling toward attractor basins.

One promising solution to these problems with symbolic dynamics is 
to forgo using strict thresholds and instead measure the system’s current 
distances to its many point attractors. Thus, rather than merely reporting a
single attractor partition containment, as in symbolic dynamics, reporting
instead the profile of proximities to all the attractors, a kind of fuzzy symbolic
dynamics. In such a framework, we go from talking about pure mental states,
which are discrete logical, perfectly repeatable symbols, to probabilistic mental
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states, which are fuzzy, graded, partially overlapping distributed patterns.
Although this format of description clearly uses labeled symbols (albeit fuzzy
ones), they are purely for expository ease in scientific communication. It is not
to be claimed that some part of the system itself actually uses them.

That said, these probabilistic mental states may nonetheless appear to 
satisfy, to some degree, at least one of the demands of classical computational
cognition: an internal mediating state between sensory input and motor out-
put (e.g., Dietrich & Markman, 2003; see also Fodor & Pylyshyn, 1981, 1995;
Marcus, 2001; Markman & Dietrich, 2000). However, if the brain is a dynam-
ical system, that is, best defined by its changes in state rather than by the states
themselves, then the mediating representational system we are talking about
is, oddly enough, one that does not generate mediating representational states,
in the usual sense. The mediating representational space instantiated by the
brain—in between sensory input and motor output—is one that generates a
continuously dynamic trajectory and never really stops long enough to be in a
logical state per se. Strictly speaking, a state requires stasis. When we talk
about states in a continuous dynamical systems framework, we’re really refer-
ring to artificial freeze-frames of time for the purpose of analysis, not because
the states actually behave like real states. Perhaps a fruitful step toward com-
promise between classical computational cognition and dynamical cogni-
tion would be to speak of internal mediating processes, rather than internal
mediating states.

Visualizing a Probabilistic Mental State

Despite my eschewing of mental states in favor of a mental trajectory, in this
next section, I start out discussing and offering visualizations of how a brain
might instantiate a probabilistic mental state. Once the concept of a prob-
abilistic mental state is clear, the discussion and the visualizations will turn to
the state space trajectory that results from stringing together a continuous
series of probabilistic mental states in real time. I will walk through an exam-
ple of how the brain’s pattern completion processes deal with ambiguous
input, traveling through many brain states and occasionally getting close to
particular mental states.

The toy demonstration begins now. Imagine you go for an after dinner
stroll through your neighborhood, and the sun goes down before you get
home. A few blocks from your home, you notice an animal approaching you
in the street from some distance. At that instant, before you have determined
exactly how to respond to the situation, your brain will be exhibiting a pattern
of activity that is partially consistent with a number of alternative states 
of mind. Figure 2.1 is a cartoon version of that brain state—if you had only 
14 neurons, instead of about 100 billion.

In the idealized brain state in figure 2.1, a few neurons are excited near
their maximum firing rate, several neurons are moderately above their resting
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level of tonic activation, and several neurons are conspicuously inhibited
below their resting level. (As these are firing rates and not action potentials,
this state is obviously averaged over a few dozen milliseconds.) Although this
pattern of neural activation can be treated as a discrete location in the space of
possible brain states, it does not correspond to a discrete, pure mental state.
That is, I have devised this demonstration such that the pattern of neural
activity in figure 2.1 corresponds to a brain state that is partially consistent
with two different identifiable mental states.

Figures 2.2 and 2.3 show what the pattern of neural activity would need
to be to perfectly instantiate the pure mental states, “I see a cat” and “I see 
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Figure 2.1. A hypothetical time slice of averaged activation for a set of
14 neurons.

Figure 2.2. A hypothetical idealized pattern of neuronal activity corre-
sponding to a discrete mental state.



a dog,” respectively. In figure 2.2, one can see that neurons 1, 3, 6, 7, and 9
comprise the population code for the mental state of “I see a cat.” Partially
overlapping with this, in figure 2.3, it becomes clear that neurons 1, 4, 6, 7, and
10 comprise the population code for the mental state of “I see a dog.” Due 
to the complexity of multiple sensory inputs, nonlinear dynamics in neural
processing, and noise in neural activity, these kinds of pure mental states are
practically unattainable, but they are regularly approximated by the brain’s
actual pattern of activity.

Figure 2.4 shows the same pattern of neural activity as in figure 2.1 but
with idealized interpretations for what each neuron represents. Thus, if we
pretend that we know what each neuron is coding for, we can folk psycholo-
gize that the brain has perceived a living object that has four legs and a tail.
The brain is telling the body to walk, not run, and to dilate the pupils of the
eyes because it is dark—and also perhaps because it is rather curious about the
four-legged creature that is approaching. Interestingly, this brain is not quite
sure if the animal is small or medium-sized, but—due to some partial hints of
recognition—it is beginning to suspect that the animal’s label begins with
either the letter c or the letter d.

Of course, there are thousands of other relevant features one could add to
this array. For the purposes of depicting it graphically, I have vastly oversim-
plified the features that might define the situation. Even more important than
that oversimplification is the oversimplification implied here about what 
neurons can encode. Just as we probably do not have grandmother cells (see
chapter 1), we also probably do not have “has four legs” cells, or “starts with
the letter d” cells. Individual neurons usually represent far tinier details than
those depicted in figure 2.4. The term microfeatures has been used to refer to
the properties of the sensory input to which individual neurons respond
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(Hinton, 1981). Often, these individual microfeatures are not easily deciphered,
either in artificial neural networks or in biological neural networks.

Now, despite my acknowledgment of the egregious oversimplifications in
these graphical demonstrations, I am going to commit one more. I am about
to convert the pattern of activity across those 14 neurons into individual
numbers indicating how closely the pattern resembles each of a handful of
pure mental states (such as those in the labels of figures 2.2 and 2.3). Each
pure mental state is a specific location in the 14-dimensional hypercube that
constitutes this brain’s state space. Figures 2.2 and 2.3 specify locations in state
space that belong to the two particular pure mental states to which this neural
pattern (in figure 2.4) is closest. In fact, the neural pattern is almost equally
close to the two of them. Figure 2.5 shows the same brain state again, but 
presented in terms of a kind of normalized proximity to eight different pure
mental states. Essentially, one can think of figure 2.5 as representing the same
information as figure 2.4, but in the language of mental states rather than the
language of neural firing rates. In a sense, the brain state we are dealing with
here currently instantiates the pure mental states of “I see a dog” and “I see 
a cat” with fuzzy truth values of 0.34 and 0.35, respectively. This brain is
approaching multiple pure mental states at once—or more precisely, it is in a
probabilistic mental state.

Within this framework, a brain state is a concrete physical thing: It is 
the pattern of neural activation across the entire brain at a given point in time
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Figure 2.4. An “interpreted” version of the neurons from figure 2.1.



(or averaged across a short period of time). A probabilistic mental state is
exactly that same thing, but represented in the form of its proximity to ideal-
ized pure (identifiable) mental states instead of activity levels of individual
neurons—and thus a probabilistic mental state refers to a concrete physical
thing as well. In contrast, a pure mental state refers to an ideal pattern of neu-
ral activation that—due to the complex and noisy dynamics of a brain with
billions of neurons and trillions of synapses—is never actually instantiated. A
pure discrete (i.e., symbolic) mental state is an abstract concept. It is a useful
construct for theory development, but an actual physical instantiation of it
never comes into being. Nonetheless, the labels attached to pure mental states
are extremely helpful in understanding probabilistic mental states. Without
the descriptive conveniences of the labels along the abscissa in figure 2.5, a
probabilistic mental state would be essentially uninterpretable.

Visualizing Trajectories Through State Space

The important thing about brain states, or probabilistic mental states, is that
they change over time. As it more and more closely approximates a pure 
mental state via pattern completion, the brain can be visualized as traveling
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through its state space (a bit like a meteor in a solar system) toward a particu-
lar region that will actualize some motor output (or simulated motor behav-
ior, such as motor imagery or an internal monologue). This notion of a
trajectory through a state space is at the heart of the continuity of mind the-
sis. It allows one to conceive of the intermediate regions in state space that are
visited on the way toward an attractor basin that approximates some inter-
pretable pure mental state. Contrary to what traditional cognitive psychology
and philosophy of mind would lead you to believe, those intermediate regions
are where we spend most of our mental life—not in the easily labeled pure
mental states.

Although this informal description of trajectories and attractor basins
may seem intuitive enough, it can be quite difficult to actually depict them
when the dimensionality of the state space is very high. A common mathemat-
ical way to visualize these trajectories and attractor basins in high-dimensional
spaces is principal component analysis (PCA). In PCA, a low-dimensional per-
spective of the high-dimensional space is depicted, using orthogonal dimensions
that cut through the space in ways that maximize the variance of the data
points in the original space. Think of the array of stars you see in the night 
sky. This is a two-dimensional perspective (with nary a depth cue) on a three-
dimensional space. Looked at from another solar system, a completely dif-
ferent set of constellations would be apparent. PCA can find the two- or
three-dimensional perspective that best reveals the separate clusters of fre-
quently visited locations (attractor basins) in the high-dimensional state
space, as well as the pathway traveled by a system (semi-) continuously gravi-
tating toward one or more of those attractor basins (e.g., Elman, 1991;
Pearlmutter, 1989; Tabor & Tanenhaus, 1999).

Much simpler than PCA, ternary diagrams (sometimes called chemo-
graphic representations) provide a relatively easy example of visualizing data in
fewer than the original number of dimensions. For example, if we were using
three factors to define the state of a brain, we might depict this brain-state-in-
a-box as a location in a three-dimensional cube (e.g., Anderson et al., 1977).
When there are three dimensions to a state space, but they need to be depicted
in two dimensions on a piece of paper, the values of the three factors can be
normalized to sum to 1.0. This projects them onto the triangular plane con-
necting coordinates [1, 0, 0], [0, 1, 0], and [0, 0, 1] of the three-dimensional
state space. In figure 2.6, these three corners of the triangular plane are labeled
as the pure mental states, where only one of the three factors has greater than
zero activation.

If you rotate this isosceles triangle so that you’re facing it head-on, you
can depict the normalized state of this three-dimensional system in just two
dimensions; see figure 2.7. In this ternary diagram, the trajectory of the sys-
tem’s state over time can be plotted with numbers indicating time steps to
reveal changes in velocity (see Tabor, 1995). The system in figure 2.7 starts out
around coordinates [0.41, 0.26, 0.33], for the pure mental states 1, 2, and 3,
respectively. It initially gravitates toward Pure Mental State 2, and away from
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Pure Mental State 3. Then the system slows down in a somewhat equi-based
region of the state space, near a location called a saddle point, and then turns
its trajectory to Pure Mental State 1, toward which it gravitates precipitously.

In fact, this same technique can be used to concretely visualize four spatial
dimensions! A quaternary diagram represents, in three dimensions, the nor-
malized coordinates of a four-dimensional state space; see figure 2.8. And in
general, with a greater number of attractors in the state space, trajectories will
tend to be more nonlinear. Of course, in more realistic complex systems, such
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Figure 2.6. Defining a ternary diagram inside the 3D cube.

Figure 2.7. A ternary diagram with pure mental states in its corners and 
a time-dependent trajectory.



as biological neural networks, there are far greater than four dimensions, and
the stable locations in the state space may not always be in the corners of the
space, as idealized in these last three figures. Moreover, the stable states, or
point attractors, may not be equidistant from one another either, as depicted
here. Some population codes are nearby one another in the high-dimensional
state space of the brain, whereas others are quite distant from each other.

Visualizing a Probabilistic Mental State 
Changing Over Time

What I hope to make clear in these visualizations is that the many references
to attractor basins and continuous trajectories in state space that crop up in so
many discussions of dynamical cognition are in fact grounded in quite con-
crete, tangible, visualizable, and mechanistic assumptions. They are not vague
abstract theoretical constructs or hand-wavy buzzwords. They correspond to
very real physical implementations.

Let us return now to the idealized probabilistic mental state illustrated for
encountering that mysterious animal during your evening stroll through the
neighborhood. Figure 2.5 is repeated here, for convenience, as figure 2.9—
with the added notation that it is but the first time step among many. Because
that pattern of neural activation is closer to the mental state of curiosity than
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Figure 2.8. A quaternary diagram with pure mental states in its corners and a
three-dimensional trajectory.



to the mental state of fright (i.e., figure 2.9 shows you being twice as curious
as you are afraid), let’s say you stick around long enough to find out what 
the animal really is. During this idealized freeze-frame, your mind is like
Schrödinger’s cat: in multiple states at once (i.e., especially “I see a cat” and “I
see a dog”). As the discrimination is being made, the probabilistic activation
of the mental states “I see a cat” and “I see a dog” will rise and compete, while
the probabilities of the other mental states will drop commensurately.

For example, in time step 2 (figure 2.10), the probabilistic activations
have changed somewhat. A very simple algorithm was used, in this example,
to carry out these changes in activations—or equivalently, the trajectory
through mental state space that this system follows. The probabilistic activa-
tions in figure 2.9 were each squared, and then they were all renormalized, that
is, each was divided by the total sum. This settling algorithm is called squared
normalization. Note that in this particular settling algorithm, it is guaranteed
that the probability value that starts out higher will be the eventual winner. It
is only a matter of time. After all, time is what it’s all about. However, there are
more complex versions of this kind of normalization-based settling algorithm
that do occasionally allow an initially lower probability representation to
eventually usurp an initially higher probability representation (see chapter 4).

Time step 3, figure 2.11, is achieved by applying squared normalization
again—but this time to the values of time step 2 (figure 2.10). Note how
quickly the two mental states of “I see a cat” and “I see a dog” have taken over
the probability space, with the system moving toward those locations in space
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the first of several time steps.
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Figure 2.10. The normalized proximity pattern gravitates toward some
pure mental states and away from others.

Figure 2.11. By time step 3, proximity to the other mental states is
already negligible.



and away from the other mental states. This probabilistic mental state,
depicted as a pattern of activations associated with several pure mental states,
is “what the mind is thinking” at that period in time.

Eventually, these two nearly equi-probable mental states will have to
diverge, and the system will gravitate toward one and away from the other.
This bifurcation begins to take place around time step 4. Figure 2.12 shows a
line graph of the mental states changing activation as a function of time. In
this rendition, we can pretend that each time step corresponds to a tenth of a
second. Thus, much like the progressive activation of a population code, as
discussed in chapter 1, recognition of an object is a gradual process that
occurs over the course of several hundred milliseconds. Importantly, there is
no punctate instant in time along this trajectory at which one can point and
say, “That is when recognition occurred; and one millisecond before then, it
had not.”

Although figure 2.12 shows the mental state of “I see a cat” achieving 1.0
probability at 900 milliseconds, this should be regarded as an artifact of the
decontextualized toy simulation. To make the simulation easy to analyze,
I presented a single stimulus input just once and then allowed the system to
settle into a stable “interpretation” state without any actual motor output
being activated. Under realistic circumstances, changing perceptual input and
continuous motor output would generally prevent the system from ever
achieving 1.0 activation for any mental state. If one mental state has achieved
around, let’s say, 0.8 probability, then that should provide the organism with
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Figure 2.12. Ten time steps of the normalized proximity pattern settling
into a “pure mental state.”



enough confidence to execute a particular unique motor action associated
with that mental state (a little bit like the collapsing of the quantum wave that
determines Schrödinger’s cat to be either dead or alive). Then the system is
able to gravitate toward other attractor basins as new input arrives and new
behavioral goals emerge.

In simplifying the simulation, a number of artificialities have been
imposed on the stimulus array, the representations, and especially on the
timeline itself. In real life, there is no objective starting point for the timeline,
as idealized in figure 2.12. In real life, we are very rarely in situations where we
have nothing at all on our minds, and then suddenly a stimulus impinges on
our minds, instigating a new trajectory through mental space. It is not even
the case that a stimulus instigates a new trajectory. There is only one trajec-
tory, and it is constantly getting diverted, sometimes smoothly and sometimes
abruptly, by incoming stimuli and by expectations based on previous stimuli.

Not only would it be wrong to think of a trajectory belonging to or being
instigated by a stimulus, but as Gibson suggested, the very concept of a stimu-
lus may be misleading. In our everyday normal lives, we do not get exposed to
stimuli one at a time, each demanding its own individual response. Instead, we
continuously interact with a flowing train of multimodal perceptual arrays
containing objects, agents, and events. Indeed, one might argue that the only
reason to carve up the environment into stimuli at all is in the attempt to
quantize the flowing stream into time steps, so that we cognitive scientists can
record the sequence of perceptual arrays that most recently preceded a given
behavior. These idealized time steps, or freeze-frames, along the extent of the
flowing stream of perceptual input might best be called environmental
instances rather than stimuli. And at all times, we must remind ourselves that
these idealized environmental instances belong to and are contextualized by a
temporally contiguous stream of environmental stimulation.

Therefore, just as unrealistic as the start of the timeline in figure 2.12 is,
so is the end of that timeline. In the simulation that produced the curves in 
figure 2.12, the system received no new input while it was settling and pro-
duced no output whatsoever. It simply gravitated to a stable corner (attractor
basin) in its state space. In real life, new input is constantly arriving, and we are
often producing continuous motor output. Thus, by the time your brain state
has approached a location in state space that is predominantly consistent with
only one pure mental state, such as “I see a cat,” changes in the environment
and your own behavior will alter the brain state such that it travels back into
unlabeled regions in state space, preparing for another near-settling event
where it gets just close enough to a pure mental state to elicit an associated
behavior and then veers off yet again. This is at the very core of the continuity
of mind thesis: It means that the vast majority of the mind’s time is spent 
in between identifiable mental states rather than in them.

Importantly, replacing the concept of stimulus-and-response, or 
perception-and-action for that matter, with the concept of a continuous 
trajectory in mental state space highlights the fatal flaw that behaviorism and
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cognitivism shared—despite their apparent opposition. Although the cogni-
tive revolution criticized behaviorism for ignoring the intermediate processes
between stimulus and response, they nonetheless embraced stimulus and
response as the start and finish of a temporally bounded linear process.
Therein lies the error, because most responses immediately become stimuli
(i.e., we are perceiving our own actions while we are executing them). The
process is not temporally bounded. It has no start and no finish. Even prepa-
ration of a response can often influence the internal processing of the incom-
ing stimulus stream (see Duhamel, Colby, & Goldberg, 1992; Hommel et al.,
2001). Thus, as the continuous dynamic closed loop of sensory input and
motor output makes infeasible a true discrimination of stimulus from
response, so does the embedded continuous dynamic closed loop of percep-
tual processing and action preparation make infeasible a true discrimination
of perception from action (see Jordan, 1999).

Contemporary Ecological and 
Dynamical Systems Psychology

The largely happy marriage of ecological psychology and dynamical systems
theory has had considerable success at producing elegant mathematical
accounts and successful predictions of experimental data in rhythmic and
coordinated motor movements and in motor learning (e.g., Beek & Van
Wieringen, 1994; Kelso, 1995; Newell, Liu, & Mayer-Kress, 2002; Pressing,
1999). However, comparatively little of this framework has been applied to 
the favorite topics of cognitive psychologists, for example, categorization,
language, attention, and so on (but see Beer, 2000; Elman et al., 1996; Port &
van Gelder, 1995; Spivey & Dale, 2004; Thelen & Smith, 1994; Tuller, Case,
Ding, & Kelso, 1994). The goal of this book is to encourage the field and rally
the troops, as it were, to move our science in this direction. By absorbing eco-
logical psychology’s emphasis on continuous and ecologically valid experi-
mental tasks, as well as dynamical systems theory’s emphasis on continuous
trajectories in state space, the kinds of studies described throughout this book
will benefit from more parsimonious theoretical accounts than cognitive 
psychology’s symbolic, stage-based, information-processing approach could
ever have offered.

Ecological psychology has a long history of arguing for the continuous
flow of visual information having a continuous determination of motor out-
put (Gibson, 1966, 1979; Turvey, 1977; see also Warren, 1998). This perspec-
tive stands in stark contrast to the information-processing framework, which
assumes that external stimuli arrive at the senses in static snapshots, which
then get processed through multiple internal stages, with each stage having 
to wait until the previous stage is complete before it can begin its processing.
Throughout this book, you will find a multitude of experimental demon-
strations of perceptual, cognitive, and motor processes that are simply not
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accommodated by the linear stage–like account encouraged by the digital
computer metaphor of the mind. The majority of such examples that I have
amassed are especially relevant to three of the most prominent topics in 
cognitive psychology: categorization (chapter 6), psycholinguistics (chapter 7),
and visual cognition (chapters 8 and 11). However, I should give credit where
credit is due. It is still the case that the area where much of the initial ground-
work has already been laid for dynamical systems approaches to the mind is in
studies of motor movement (chapter 9).

Significant advances in the development of a dynamical systems frame-
work for motor action have been made by researchers such as Kelso (1995),
Kugler and Turvey (1987), and Schöner (2002), to name just a few. Much of
the work has focused on coordinated rhythmic actions, where instead of
attractors in state space, behavior is described via coordination dynamics
equations and manifolds in phase space. (Phase space usually involves dimen-
sions that refer to patterns of change in state space, such as relative phase
between two oscillators or the juxtaposition of previous and current loca-
tions, rather than to raw locations in state space.) For example, Kelso (1984)
demonstrated that when human subjects rhythmically move their hands in
antiphase (one hand flexing one set of muscles while the other flexes an oppo-
site set, and then both reversing) and the speed (frequency of cycles, with a
fixed amplitude) is gradually increased, they tend to involuntarily transition
to in-phase cycles (with the hands flexing corresponding sets of muscles at the
same time). The phase space defining this phenomenon contains attractor
basins, toward which the system will gravitate, as well as repellors, away from
which the system will gravitate. As cycle frequency increases, and the hands are
moving back and forth faster and faster, the relative strengths of the antiphase
and in-phase attractor basins gradually change. At some point, the antiphase
attractor basin actually becomes an unstable region in the phase space, a
repellor instead of an attractor, and the system then moves toward the nearest
stable attractor basin: the in-phase attractor. A coordination dynamics treat-
ment of changes in the phase space manifold that defines these attractor
basins and repellors (Haken, Kelso, & Bunz, 1985; Kelso, 1995) provides an
account of a wide range of data from perturbed and coordinated movements
of fingers (Kelso, 1981), hands (Kelso, 1984), arms and legs (Kelso & Jeka,
1992), hands with speech (Kelso, Tuller, & Harris, 1983), hands with external
sounds (Kelso, Del-Colle, & Schöner, 1990), and even, as demonstrated by
Schmidt, Carello, and Turvey (1990), across multiple people! For more details,
see chapter 9.

Thus, according to this general framework, and despite the limited scope
of the visualizations throughout this chapter, the genuine trajectory that
instantiates mind is more than just the visited regions of neural state space as
defined by the networks of the brain. The causal relationship between a 
sensory receptor and a cortical neuron is arguably not qualitatively different
from the causal relationship between a cortical neuron and a muscle, or even
between an external object and a sensory receptor. After all, causal law is
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causal law. This is what Turvey and Shaw (1999) mean when they refer to the
“animal-environment mutuality and reciprocity.” The animal and its environ-
ment form a system. Change in one produces change in the other, and the
loop of circular causality continues over time. The animal subsystem and the
environment subsystem are sufficiently coupled that it would be impossible
for one to be following laws that the other does not also follow. Thus, one
might perhaps include all of those parameters (neural activation patterns,
muscular-skeletal kinematics, and even external objects) as dimensions in the
state space that defines mind (see chapter 11). In this view, the relevant defini-
tion of mind becomes a trajectory through the full animal–environment state
space, not just the brain’s state space. And when two animals (such as myself
and my friend Steve) are in sufficient spatial proximity to each other that an
external object (even something as mundane as a ball) is in the immediate
environment of both animals, then those two minds are sharing a few dimen-
sions of their respective state spaces. They become a system, describable by a
single unified (and recurrent) trajectory—as the ball gets tossed back and
forth for hours on end.
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3

Some Experimental Tools for Tracking

Continuous Mental Trajectories

If behavior does not consist of responses, what does it consist of?
—J. J. Gibson

The Purple Perils

In the late 1960s, James J. Gibson ran a seminar on Thursday afternoons in
which heady, pregnant questions like the one in the epigraph were regularly
discussed. The sometimes lengthy handouts for these meetings were dittoed
on a mimeograph, hence earning the nickname “the purple perils.” Some of
the purple perils found their way into an edited volume (Reed & Jones, 1982),
and others can be easily found on the Internet. In the case of this particular
excerpt, Gibson was trying to get the students and faculty involved in the sem-
inar to think hard about the fact that if natural environmental stimulation
does not arrive at the organism’s sensors in discrete packets of stimuli, then
motor output is unlikely to depart the organism’s effectors in discrete packets
of responses. But what then do we call this continuous motor output that is so
often dynamically coupled in time (at short and/or long time scales) with the
sensory input?

Despite Gibson’s eloquent warnings, and despite cognitive psychology’s
overarching opposition to behaviorism’s stimulus-response mantra, cognitive
psychologists have, for decades now, blithely gone about their business design-
ing experiments that present discrete stimuli and collect discrete responses.
Indeed, it is quite ironic that, during the cognitive revolution, while cognitive
psychology was rejecting behaviorism’s theoretical emphasis on stimulus and
response, the methodological emphasis on stimulus and response remained 
status quo. Gibson’s ecological psychology (1979; see also Brunswick, 1955)
would suggest that this methodology of stimuli and responses, not the theory,
is actually the more detrimental habit.
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Cognitive psychology has found it all too easy to survive on the tacit
assumption that these isolated “responses,” from one experimental trial to the
next unrelated experimental trial, are somehow unaltered indicators of inter-
nal mental states. The field’s allegiance to an internal symbolic computation
stage, composed of discrete internal states, arises not from experimental tech-
niques that unmistakably tap some unaltered rendition of the cognitive stage’s
internal representation, and certainly not from any neurophysiological evidence,
but predominantly from off-line measures of overt metacognitive responses in
artificially constrained tasks. In contrast, what I will argue throughout this book
is that mental activity does not consist of a series of discrete internal states.
Instead, the mind continuously traverses its state space, traveling from one
attractor basin to another, and spending a considerable amount of time in tran-
sit in between those basins. An attractor basin to which the mind gets particu-
larly close will occasionally be responsible for an observable outcome–based
response (e.g., pressing one button instead of another, reaching for one object
instead of another). However, all of the attractors to which the mind gets even
slightly near will have graded subtle influences on the manner in which the
continuous action is carried out on the way toward its outcome (e.g., pressing
that button somewhat late and with less force, reaching in a curved motion
slightly toward other objects before settling on the correct object and grasping
it). Measuring the dynamic properties of those continuous actions will reveal
far more about how the mind works than simply tabulating the final out-
comes of those actions.

Moreover, the kinds of questionnaires and other outcome-based metacog-
nitive tasks that populate much of cognitive psychology rely far too much on the
subjects’ intuitions about hypothetical situations. With so much time to develop
explicit strategies for the task and subvocalized linguistic labels for the various
response alternatives, is it any wonder that people’s response patterns make
them look as though their minds are succinctly transitioning from one discrete
state to another? Asking someone to give a verbal protocol on what they think
they would think in some hypothetical categorization or reasoning task is about
as useful as asking them what they think their reaction time would be in some
hypothetical visual search task. Quite some time ago, social psychologists docu-
mented the degree to which people’s self-reports of cognitive phenomena and
objective measures of those same cognitive phenomena can be wildly discrepant
(e.g., Nisbett & Wilson, 1977). Much of social psychology then seemed to decide
that “what people think they think” (whether accurate or not) was what that
subfield cared about anyway—so the discrepancy was not a problem. I can only
hope that cognitive psychology does not also continue down that path.

On the Continuity of Your Measure

Consider what happens when a human subject is presented a stimulus in a
typical cognitive psychology experiment and asked to provide some form of
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verbal or button-press report on how she perceived it or what she concluded
from it. She may take several hundred milliseconds, or even several seconds,
before producing an answer. What goes on in her mind during those hundreds
and hundreds of milliseconds of deliberation? That is the kind of question
that can help tease apart many competing theories in the cognitive sciences.
However, in that typical cognitive psychology experiment, with solely an off-
line outcome-based measure, you will never know the answer to that question.

In this chapter, I briefly discuss some of the limitations of traditional 
psychophysical and cognitive psychology methods, focusing particularly on
their emphasis on discrete categories of metacognitive responses to individual
decontextualized stimuli. Additionally, criticisms are levied against the stan-
dard format of experimentation in problem-solving research, concepts and
categories research, and even neuroimaging, for not addressing the temporal
dynamics of the continuous uptake of real-time stimulus input. (For example,
even visual displays that are presented all at once usually get perused piece-
meal by a series of eye fixations.) The fundamental weakness of some of the
major experimental techniques in cognitive psychology and cognitive neuro-
science is that they ignore much of the time course of processing and the grad-
ual accumulation of partial information, focusing instead on the outcome of
a cognitive process rather than the dynamic properties of that process.

At the core of this issue is the concept of time scales. Every state transition
(except perhaps some at the subatomic level) has a time scale at which the full
transition can be seen as gradual (see figure 3.1C). At larger time scales, this
transition will appear instantaneous (figures 3.1A and B), and at smaller time
scales, it won’t really look like a transition between two states (figure 3.1D).
Analyzing your chosen phenomenon at the right time scale, where the system
can be observed as spending a substantial portion of its time in those inter-
mediate values between states, is crucial for understanding the forces or mecha-
nisms that bring about the system’s change of state. Figure 3.1 uses the logistic
function—a symmetric sigmoid curve prevalent throughout nature in physics,
chemistry, and biology—as a mathematical metaphor aimed at elucidating the
importance of finding the proper scale at which one’s x-axis can reveal the
gradedness of the state transition in question. The logistic function imple-
ments qualitative-looking behavior from a purely quantitative process. The
curve from this continuous nonlinear equation can be easily misconstrued as
evidence for a genuinely discrete step-function process, if observed at too coarse
a time scale (figures 3.1A and B). Only at the proper time scale can the smooth
continuity of the state transition be brought into stark relief (figure 3.1C).
I submit that the time scale of hundreds of milliseconds is a special scale at
which the process of cognition, as revealed by perception-action cycles,
becomes most transparent. Therefore, experimental measures that function 
at this time scale may enjoy a privileged status in the goal of understanding
cognition.

Measures that ignore temporal dynamics at this time scale run the risk of
falsely depicting cognition as consisting solely of discrete symbolic states—when
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in fact those symbolic states may actually be better understood as graded fuzzy
attractor basins, which the system flirts with long enough to produce some
identifiable motor output, while it pursues a continuous trajectory through its
state space. If your measure only provides the outcome of a deliberative cog-
nitive process, such as a forced choice between predesigned alternatives, then
of course it cannot help but make cognition look as though it is made of those
succinct categories. Card-sorting tasks, in categorization or problem-solving
research, are particularly disappointing in that they allow participants to
spend several minutes exploring combinations of judgments, undoing them,
and then constructing new decisions—and none of the intermediate partial
card arrangements that were temporarily considered ever become part of the
data set! Even if your measure is a rating between 1 and 7, it will still crucially
fail to show whether there was a single confident selection of a number or a
gradual nonlinear process partly considering multiple numbers and then settling
on one number. And then there are measures that include ongoing processing as
well as final outcomes, but they average or sum the activity over a substantial
time course, thus eliminating any chance of identifying the temporal dynamics
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of the process. For example, the behemoth of cognitive neuroscience, func-
tional magnetic resonance imaging (fMRI), frequently integrates over an
entire second or more to produce one image of brain activity for one trial.1

This poses interesting methodological challenges for fMRI researchers who
wish to conduct an in-depth examination of the cognitive processing of tem-
porally dynamic input, such as a sentence (e.g., Fiebach, Vos, & Friederici,
2004) or visual motion (e.g., Heeger et al., 1999). Another popular experi-
mental measure that integrates over too large a period of time, and thus loses
any temporal resolution for discovering interesting nonlinear state transitions
in cognition on the way toward the participant’s final overt response, is whole-
sentence reading times. As a participant reads a sentence over the course of a
second or two or three, an incredible dance of lexical, semantic, syntactic, and
contextual factors is undulating from word to word to word. And whole-
sentence reading time tasks ignore all of that, thus failing to provide any indi-
cation of when during those few seconds the dance may have involved a par-
ticularly impressive pirouette or perhaps instead been briefly tripped up by its
own feet.

My comments here are not intended to discourage researchers from ever
using these methodologies. I often use many of them myself, as pilot studies
and as additional experiments to accompany more online measures. Rather
than summarily proscribing the use of all off-line measures, or measures that
integrate over entire seconds or more, I instead recommend a conscientious
combination of temporally dynamic measures of ongoing processing along
with simple nondynamic measures. The existing literature of results based on
off-line outcome-based measures is by no means to be discarded or ignored.
Quite the opposite—the challenge of a dynamical systems approach is to
account for the discrete-seeming findings from those methodologies as well as
the continuous findings that are typically revealed by temporally dynamic
methodologies.

The following sections briefly review a variety of experimental methods
that—unlike accuracy measures, off-line rating tasks, and so on—pay atten-
tion to one or another aspect of the temporal dynamics of perceptual/cognitive
processing. To varying degrees and for varying purposes, they provide a 
window into the continuous-time processes of the mind/brain (for an excel-
lent in-depth review of many of these methods, see Kutas & Federmeier,
1998). I have distributed the methods into three rough divisions, mostly just
to make the list more manageable. At one extreme, there are outcome-based
measures with time-delimited tasks (from traditional experimental psy-
chology), such as reaction times and speeded responses. At the other extreme,
there are continuous measures with continuous tasks (from dynamical sys-
tems approaches to perception, cognition, and action), such as bimanual
coordination and postural sway. In between these extremes, one can find a
number of semi-continuous measures with time-delimited tasks. This middle
ground set of methodologies serves a number of purposes that should inter-
est cognitive psychologists: (1) many of these measures can be easily applied
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to established experimental tasks, (2) these measures often involve less metacog-
nitive control over the particular output being recorded (therefore, less room
for strategic effects), and (3) many of these measures can easily be applied to
normal everyday kinds of tasks, for improved ecological validity.

Outcome-Based Measures With Delimited Tasks

Let’s start with traditional experimental psychology. Since Donders’s (1868/
1969) subtractive method and, more recently, Sternberg’s (1969) additive fac-
tor method, button-press reaction times have been widely perceived as an
effective measurement for determining the identity, sequence, and duration of
intermediate cognitive subprocesses that occur on the way toward producing
an overt motor output as a response to an individual stimulus. This goal of pick-
ing apart the intervening processes between an early sensory event and a motor
output event is generally in line with the goal of this book. Unfortunately, the
overarching assumption with these subtractive and additive methods has been
that the subprocesses to be identified are independent sequential stages, like the
mechanisms of a clock or the components of a computer. As the cognitive sci-
ences are gradually learning, the brain’s subcomponents are richly interdepen-
dent on one another and anything but sequential in their bidirectional cascades
of information flow. Likewise, the mind itself is perhaps best described as an
emergent property of a complex nonlinear brain, attached to two-dimensional
sensory surfaces and three-dimensional effectors, and embedded in a complex
dynamic environment—with bidirectional cascades of information flow
between these larger subcomponents as well. Therefore, using reaction-time
tasks to isolate individuated serial cognitive stages of processing—which
aren’t there—is unlikely to prove fruitful (see Van Orden & Holden, 2002).
Nonetheless, button-press reaction times can still be a generally useful meas-
ure of the overall time course of processing, for the purposes of exploring cer-
tain questions regarding the timing of information integration in language
processing (chapter 7), in visual search (chapter 8), in the role of motor repre-
sentations in cognition (chapter 9), and for studying long-distance correla-
tions in overall task performance (Van Orden, Holden, & Turvey, 2003), to
name just a few. In many tasks, reaction times can be conceived of as the time
taken by the system to settle enough into a particular attractor basin to exe-
cute its associated motor output. Without recording reaction times in these
tasks, one would merely have a tabulation of the proportion of trials on which
one or another button was pressed, and no evidence whatsoever for whether
one or another of the button-pressing decisions involved a slow and difficult
settling process or a quick and easy one. Reaction times provide a respectable
amount of evidence regarding the temporal dynamics of perceptual/cognitive
processing. We just need to be careful about interpreting them in ways that
involve implausible assumptions about feedforward box-and-arrow cognitive
architectures.
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An important advance in the use of reaction times is in analyzing their
distributions, not just the means across conditions. Mounting evidence indi-
cates that simply comparing mean reaction times violates the assumptions of
our tools of statistical inference and can miss important subtleties in perform-
ance. It is extremely rare for the distribution of reaction times in a perceptual/
cognitive task to actually have a normal, Gaussian distribution. Yet a normal
distribution is what t-tests and analyses of variance, cognitive psychology’s
favorite statistics, assume the data exhibit for the statistical inference to be
valid. A growing body of literature is finding that analyzing reaction-time dis-
tributions and their moments (skewness, kurtosis, etc.) can be considerably
more informative for teasing apart specific competing models of cognition
(e.g., Ratcliff, 1979, 2002; Van Zandt, 2000, 2002). However, it looks as though
the debate between continuous versus discrete processing may not be resolv-
able via distributional analyses of reaction times (e.g., Meyer et al., 1988;
Miller, 1982; Ratcliff, 1988).

Reaction times are also recently being analyzed not in terms of their indica-
tions regarding the cognitive processes involved in a single stimulus-recognition
event, but instead in terms of their indications of overall task performance over
the course of an entire experiment (Gilden, 2001; Van Orden, Holden, &
Turvey, 2003; Ward, 2002). Long-range correlated structure in a time series of
reaction times can provide hints about the fractal nature of interactions
between the subsystems that comprise cognition and can point toward changes
in the attractor landscape over the course of hours in a task. However, because
this type of analysis treats the overall experiment (not discrete individual trials)
as the focus of interest, it fits slightly better in the “continuous measures with
continuous tasks” section, where it will be discussed in more detail.

One particularly special improvement on the basic reaction-time
methodology is the speed–accuracy trade-off (SAT) method (e.g., Dosher,
1976; McElree & Griffith, 1995, 1998; Reed, 1973), because it provides evi-
dence for what is going on before a response decision has reached a fully con-
fident stable state. Whereas reaction times are merely able to demonstrate 
that the culmination of a response decision took a longer or shorter period 
of time, the SAT method can plot evidence for the internal salience or activa-
tion of that response option at 50 milliseconds after stimulus presentation, or
100 milliseconds, or 150, and so on. As a rule of thumb, whenever you transi-
tion from comparing values on a bar graph (such as reaction times) to plot-
ting points on a smooth-looking curve (such as d-prime over time), you can
bet you’re making important improvements in your ability to analyze the 
temporal dynamics of the system in question.

In the SAT method, signal detection theory (Green & Swets, 1966) is used
to compute a measure of d-prime (sensitivity to a stimulus property, inde-
pendent of the participant’s response bias for saying yes or no in the detection
task). The detection task can be anything from searching for a visual target
amid distractors, to reporting on whether a test probe item was present in a
memorized list, to determining the grammaticality of a sentence as a function
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of its final word. In some blocks of trials, the participant is given only a cou-
ple hundred milliseconds to produce the response, and their d-prime for
those trials is generally near 0 (at chance performance). Late responses are 
followed by a truly nasty buzzing sound that is intended to prevent the par-
ticipant from being late with their response on subsequent trials—and it is 
surprisingly effective. In other blocks of trials, they are given several hundred
milliseconds to produce their response, and although they often feel like they
are still guessing, their d-primes are usually in the 1–2 range, reliably above
chance. Other blocks of trials have even later response deadlines, and par-
ticipants are able to make reasonably deliberated confident responses that
asymptote around a d-prime of 3–4. Figure 3.2 depicts some representative
hypothetical data from an SAT task, where the different response deadlines are
300 milliseconds after stimulus presentation and 500, 700, 900, 1,200, 1,800,
and 3,000 milliseconds after stimulus presentation. Real results regularly look
approximately like those in figure 3.2, demonstrating a gradual accumulation
of perceptual/cognitive evidence, as it were, for the correct yes/no response.
(Note the general similarity between figure 3.2 and figure 1.6.) In terms of the
conceptual framework laid out in the previous chapter, this task is roughly
equivalent to interrupting the dynamical system’s continuous trajectory
through the state space and forcing it to elicit the response associated with the
closest attractor. Noise in this closest attractor estimate produces imperfect 
d-prime values, and plotting them at each time slice can be construed as meas-
uring the relative Euclidean proximity between the state of the interrupted
system and the correct attractor versus the incorrect attractor.

One pragmatic drawback of the SAT methodology is that it requires many
hundreds of trials from each participant. Participants often have to visit the
lab for multiple sessions for the experimenter to collect enough data. And of
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Figure 3.2. Sensitivity to a stimulus property rising over time in a
hypothetical speed–accuracy trade-off task.



course, as with most of these outcome-based measures with delimited tasks,
SAT involves a somewhat ecologically invalid interruption of real-time cogni-
tive processing to elicit a forced-choice metacognitive judgment.2 Nonetheless,
SAT provides a unique and important record of gradually rising d-prime (sen-
sitivity) functions over time that appear to be sampling a continuous dynamic
process.

Perhaps ironically, the SAT method is often used not just to document the
time course of processing within a given process but also to explore possible
discrete stage-based distinctions between two or more putatively independent
continuous processes, such as the accrual of syntactic evidence and the accrual
of semantic evidence. However, as we will see with event-related potentials
(ERPs), one has to be careful with extrapolating SAT curves to their zero-
crossing (e.g., finding that the curve in figure 3.2 would hit zero d-prime at
about 250 milliseconds poststimulus) and treating that point in time as a dis-
crete instance at which some cognitive processing module “becomes opera-
tive.” The fact that very different interpretations for syntax and semantics
result from using this way of thinking with SAT and with ERP methodologies
suggests that something is wrong with that way of thinking. For example,
results with the SAT methodology suggest that syntactic information becomes
operative a couple hundred milliseconds before semantic information (McElree
& Griffith, 1995, 1998), whereas with very similar kinds of stimuli in an ERP
methodology, results suggest that semantic information is processed a couple
hundred milliseconds before syntactic information (Hagoort, 2003; Osterhout
& Holcomb, 1992). It is not clear that there is a way to adjudicate between
these two claims. Perhaps they are, in a sense, both wrong because they assume
there are separate modules for syntax and semantics and are asking which one
“turns on” first. If there are not separate independent modules for these sub-
tly different (and arguably partially overlapping) formats of information (see
chapters 5 and 7), then asking which one turns on first is clearly an ill-formed
question.

An intriguing new method that is slightly similar to SAT, because it
involves interrupting ongoing task processing at specified points in time, is
transcranial magnetic stimulation (TMS). However, the interruption doesn’t
merely request a premature button-press, it directly interferes with the brain!
TMS emits a 100-microsecond pulse of a magnetic field (of about 1–2 Tesla)
directly over the scalp near the cortical region of interest. This single pulse of
TMS induces high-frequency synchronized neural activity in that localized
region of cortical surface for a few milliseconds, followed by a substantial
refractory period across that entire population of neurons, effectively disrupt-
ing any task-related patterns of neural activity in that area for perhaps a 
hundred milliseconds or so in total.3 This temporary disruption of organized
neural processing in localized regions of cortex has been referred to as a virtual
lesion (Walsh & Rushworth, 1999). There are two basic ways to use these tem-
porary virtual lesions for understanding cognition. One can explore the inter-
active role that a cortical area plays in performing some perceptual/cognitive
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task by disrupting activation in that area when the task is being performed, and
one can also explore the precise timing of that area’s participation in the task by
delivering the TMS at different latencies after stimulus presentation (see Walsh &
Pascual-Leone, 2003, for an excellent review). For example, Schluter and colleagues
(1998) found that a visual choice reaction time task was most disrupted when a
single TMS pulse was applied to premotor cortex around 100 milliseconds
after the stimulus or to primary motor cortex around 300 milliseconds after
the stimulus. It is almost as if TMS allows you to chase down the wave of informa-
tion as it travels from cortical region to cortical region and thus track the sequence
of perceptual/cognitive events.

Speaking of events, let us now move on to ERPs. ERPs provide a continu-
ous record of brain activity during exposure to stimuli that often do not
require any metacognitive deliberate judgment or response. In this way, they
are somewhat less outcome-based than the other methodologies discussed so
far. Unfortunately, rather than fully embracing the temporal continuity of this
measure of neural activity (sometimes sampled at greater than 1,000 Hz),
most of the literature has taken to testing for specific discrete wave peaks at
particular time slices, as though those peaks were the responses they are meas-
uring. For example, a conspicuously positive wave component around 300
milliseconds poststimulus (dubbed the P300) appears to be indicative of an
unexpected or low-probability event (Donchin et al., 1988). A conspicuously
negative wave component around 400 milliseconds poststimulus (N400)
appears to be the result of detecting a semantic anomaly (Kutas & Hillyard,
1980). And a conspicuously positive wave component around 600 milli-
seconds poststimulus (you guessed it, the P600) is correlated with syntactic
anomaly, or ungrammaticality (Hagoort, 2003; Osterhout & Holcomb, 1992).
Positive and negative components4 in the 100 and 200 range are typically attrib-
uted to early sensory processing (Mangun & Hillyard, 1988). As researchers
continue to pick apart smaller and smaller wavelike pieces of this continuous
pattern of neural activity, they have localized some of these waves to the left or
right hemispheres or the frontal, parietal, or occipital lobes (e.g., Baas,
Kenemans, & Mangun, 2002; Swick, Kutas, & Neville, 1994), they have pointed
to P300s somehow occurring earlier or later than 300 milliseconds (e.g., Kim,
Kim, & Kwon, 2001), and they have expanded the list of wave components to
include separate listings for the N20, P30, P45, N60, N140, P150, P180, P250,
N250, P350, P450, and more (e.g., DeFrance et al., 1997; Josiassen et al., 1990).
As the fractionation of this continuous wave pattern escalates, proliferating a
potentially infinite number of putatively separate components, it should
eventually become clear that these wave peaks are not discrete emissions of
perceptual and cognitive modules that become operative at their specific
points in time, as some ERP practitioners seem to advocate. Instead, a con-
spicuous wave component might be better understood as signifying a period
of time when populations of neurons in coarsely defined (but not necessarily
modular) regions of the brain are ramping up their activity in the service of
integrating and resolving conflicting signals from multiple information sources,
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for example, a mismatch between perceptual anticipations and afferent
sensory input (see Eimer, 1998; Kutas & Hillyard, 1984; Picton et al., 2000;
Rugg & Coles, 1995). In fact, when event-related electroencephalography
(EEG) wave forms are studied via time-series analysis, based on symbolic
dynamics, the results provide independent statistical motivation not only for
some of the usual ERP components but also for additional patterns that are
not detected by the traditional ERP analysis technique (see beim Graben et al.,
2000).5

Magnetoencephalography (MEG) has a great deal in common with ERPs.
In fact, the two methods can be combined to cross-validate their respective
data sets (Hopf et al., 2002). Because the magnetic field emitted by neural
activity is interfered with much less by electrolytes in the cerebrospinal fluid,
MEG provides a substantial improvement, over ERPs, in spatial resolution.
Nonetheless, MEG’s spatial resolution still doesn’t hold a candle to that of
fMRI. However, for the purposes of combining both spatial resolution (for
cortical localization of function) and temporal resolution (for attribution of
these functions to different aspects of dynamic stimulation), MEG may very
well be the sharpest tool in the shed (Hari & Antervo, 1982; Noguchi et al.,
2004; Rogers, 1994). Both MEG and ERPs share a practical methodological
drawback with the SAT method: These experiments will often require 
hundreds of trials per condition per participant, which leads to long experi-
mental sessions and only relatively simple experimental designs. It doesn’t
help that an MEG facility is about as expensive as an fMRI facility, costing mil-
lions of dollars. In contrast, an ERP lab can get up and running for a mere
$100,000 or so. Pocket change. But what this all boils down to is that by plac-
ing a premium on fine temporal resolution, one appears forced to sacrifice
spatial resolution, because the electrical or magnetic signal leaking out of
someone’s head is so noisy.

As it turns out, there is a solution to the problem of all that confounded
noise in the electrical (ERP) or magnetic (MEG) fields that manage to pass
through the dura and the skull and finally get recorded by a headful of scalp
electrodes. Just get the skull and dura out of the way! One slightly grisly
method, known as optical imaging (of intrinsic neural signals or of voltage-
sensitive dyes), does exactly that—literally (see Grinvald, 1984, 1992).6 With
nonhuman animals, one can remove a portion of skull, peel back the dura,
point a camera system at the exposed cortical surface, and thereby get a con-
tinuous record of what populations of cells are active during the presentation
of various auditory or visual stimuli to the immobilized animal (e.g., Jancke 
et al., 2004; Nelken et al., 2004; Sengpiel et al., 1998). However, it is common
for this continuous signal to get averaged over a substantial window of time to
get robust topographical images of regions of activation. Depolarizing neu-
rons will reflect more light by about 0.5% of the total illumination, compared
to inactive neurons. So your camera better be fairly sensitive.

A related methodology, similarly unimpeded by skull and dura, is single-
cell electrophysiology. Direct electrical recording from neurons has been
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around a bit longer than optical imaging and allows measurement from areas
further beneath the surface of the brain. It involves inserting an electrode into
a neuron (or at least sidling it up next to one) and recording the action poten-
tials it emits. Like optical imaging, this is not for the faint of heart. In fact, it’s
not really intended for healthy humans at all—which tends to put a damper
on using it to study language or complex cognition (but see Engel et al., 2005;
Ojemann et al., 1988, for recordings of neurons in brain surgery patients). The
vast majority of neural recording studies have been conducted in the service
of examining the early stages of visual perception in nonhuman primates (for
reviews, see Palmeri & Gauthier, 2004; Parker & Newsome, 1998), and a fair
bit of the findings have been corroborated with neuroimaging in humans
(e.g., Engel et al., 1994; Heeger et al., 1999). Even better, multicell recording
allows the researcher to compute an estimate of a neural population code
and its dynamics (e.g., Georgopoulos, 1995; Rolls & Tovee, 1995; Zemel,
Dayan, & Pouget 1998). One can even mathematically interpret the popula-
tion code’s activation pattern in terms of probability density functions of
different continuous-valued sensory properties (Barber, Clark, & Anderson,
2003), a little bit like the highly idealized probabilistic mental states depicted
in chapter 2.

The tradition in visual neuroscience for some time was to present indi-
vidual stimuli, from trial to trial, to an anesthetized monkey and record from
cells in appropriate areas (Gilbert, 1983; Lennie, 1980). Averaged firing rates
could then be plotted as a function of some stimulus dimension to determine
the selectivity of that cell for that stimulus dimension. For example, figure 3.3
shows a hypothetical example of a cell that is highly selective for a narrow range
of this stimulus dimension (circles) and another cell that is not particularly
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Figure 3.3. Hypothetical firing rates of two neurons, averaged over a
second, showing one cell to be selective for a delimited range of the
stimulus dimension and the other unselective. In this case, the stimu-
lus dimension could be anything from the orientation of a visually
presented bar to the frequency of an auditorily presented tone.



selective with this stimulus dimension (squares). Although there are dynamic
analyses that compare the initial burst phase of a neural spike pattern to the
overall average firing rate (e.g., Kim & McCormick, 1998), there is still a ten-
dency for visual neuroscientists to average over a sizable window of time,
thus rendering their measure somewhat less continuous and somewhat more
outcome-based, as in figure 3.3.

Not until the 1990s did recording from awake behaving animals become
at all common (e.g., Gallant, Connor, & Van Essen, 1998; Motter, 1993; but see
Lynch et al., 1977). (See chapter 5 for a discussion of the theoretical conse-
quences of this methodological transition.) Gallant et al.’s (1998) work even
breaks out of the trial-by-trial delimited-task mindset and actually fits more
with the continuous measure with a continuous task approach described in
the next section. In their experiment, the monkey was allowed to view natural
scenes and move his eyes around naturally. By tracking the eye movements
and recording from cells in visual cortex at the same time, they found that
free-viewing conditions caused these visual cells to behave quite differently
than during controlled viewing conditions—further bolstering the growing
distinction between the antiquated concept of classical feedforward receptive
fields and what appear to be nonclassical receptive fields that receive input
from lateral connections and/or feedback projections (e.g., Allman, Miezen, &
McGuinness, 1985; Rao & Ballard, 1997; Spillman & Werner, 1996). Given
findings like this, one cannot help but analogously wonder whether less con-
strained ongoing continuous behavior in the cognitive psychologist’s lab
might cause mental processes to behave quite differently than they do during
traditional trial-by-trial outcome-based time-delimited tasks.

Continuous Measures With Continuous Tasks

Much of the argumentation here has been to advocate continuous measures of
the perceptual/cognitive consequences of an individual stimulus presentation.
However, a major weakness of most experimental methods in the cognitive
and neural sciences—including many of those discussed throughout this
book (especially the categorization experiments in chapter 6)—is the ten-
dency to present the participant with an artificially extracted time slice of
what would normally be a temporally extended dynamic stimulus array. To
properly address the temporal continuity of perception, action, and cogni-
tion, more cognitive experimentation in the future will need to not only use
more continuous response measures but also use continuous (and ecologi-
cally valid) dynamic sensory stimulation. There are two possible solutions to
this concern: (1) use tasks that do not simply involve an isolated stimulus fol-
lowed by a discrete response, for example, rhythmic tasks or motor measures
during extended periods of task performance; or (2) dynamical analyses of the
processes occurring over the long-term course of an entire experiment, for
example, spectral analyses of long-distance correlations across many trials.
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This leads us to discovering another time scale at which—with the appropri-
ate analysis techniques—we can observe dynamic properties in overall task
performance.

As hinted at earlier when discussing reaction times, even just examining a
cognitive psychologist’s data in terms of the time series over an hour or so of
data collection—rather than trial by trial—can treat the pattern of button-
press latencies as a somewhat continuous measure and can treat the overall
cognitive performance as a somewhat continuous task (Van Orden et al.,
2003). At this larger time scale, one is no longer investigating the cognitive
architecture of a particular mental faculty, such as word recognition or object
recognition, but is instead exploring what kind of system cognition is in gen-
eral. Is it a discrete stage-based system with component-dominant dynamics,
like a Turing machine? Or is it a more continuous distributed system with
interaction-dominant dynamics, like a biological organism?

When a time series of response latencies, for any of a variety of experimen-
tal tasks, is subjected to Fourier analysis, the amount of energy in the various
frequencies (the power spectrum in log/log coordinates) scales downward 
linearly with a slope corresponding roughly to 1/freq (1/f) (e.g., Gilden, 2001;
Van Orden et al., 2003; Ward, 2002). Thus, amid the seemingly random fluc-
tuations in response time from trial to trial—once the effects of experimental
manipulations are extracted from the data—there actually remains a reliable
pattern of long-distance correlations (those robust low frequencies in the
power spectra) that are not easily accounted for by modular systems of multi-
ple independent autoregression-based estimators or component-dominant
dynamics (see Van Orden, Holden, & Turvey, 2005; Wagenmakers, Farrell, &
Ratcliff, 2005). This 1/f noise, or pink noise (because it’s subtly more corre-
lated than white noise), is also observed in an endless cornucopia of complex
dynamical natural processes in physics (Bak, 1996; Mandelbrot, 1999), chem-
istry (Sasai, Ohmine, & Ramaswamy, 1992), biology (Hausdorff & Peng, 1996;
Musha, 1985), vision (Billock, de Guzman, & Kelso, 2001), music, and lan-
guage (Voss & Clarke, 1975). 1/f noise is seen as a signature data pattern for
complex dynamic systems that self-organize in fractal time. If cognition is
such a system, then we’d better start analyzing it as such.

Another way to analyze the self-organizing dynamics of perception and
action is through rhythmic patterns of coordinated motor behavior (see
Kelso, 1995). The majority of this book will focus on attractors in state space,
as it is often the most appropriate format of description for nonrepetitive cog-
nitive processes, but the majority of the psychological literature so far on
dynamical systems actually focuses on attractors in phase space for coordina-
tion dynamics. Although the two are sometimes treated almost synony-
mously, a point in state space usually describes a system in terms of values of
instantaneous state parameters (such as neuronal firing rates or the positions
of the limbs), whereas a point in phase space often describes a system in terms
of periodic change in those state parameters (such as frequency or relative
phase of limb displacements). Both formats of description are crucial aspects
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of the application of dynamical systems theory to the mind, and the successes
of one should instill optimism for successes of the other.

Rhythmic motor behavior is precisely where continuous measures with
continuous tasks excel at revealing limit cycles (repeated loops) in state space
as systematic patterns in the mind, sometimes plotted as static locations in
phase space. As mentioned briefly in the previous chapter, one such limit cycle
is the coordinated rhythmic movement between two limbs. Give this a try: Put
your hands on a table, palms down, and then fold your fingers and thumb
under, extending only your index fingers. Now, your rhythmic coordination
mission, should you choose to accept it, is to move both index fingers leftward
in unison and then rightward in unison, and back again, repeated at about 
1 Hz (one cycle per second). Gradually ramp up the frequency of this oscilla-
tory behavior, until you’re flicking your fingers left and right about as fast as
you can. Did you manage to maintain the leftward-in-unison and rightward-
in-unison phase relationship between those two fingers? In most experiments,
as people increase the rate of finger oscillation, they involuntarily slip into an
inward-in-unison and outward-in-unison phase relationship. You probably
did that, too. Essentially, as the oscillation frequency increases, there appears
to be a powerful attractor in phase space that pulls your fingers’ movements
toward a phase pattern that flexes and extends pairs of corresponding hand
muscles at the same time. Myriad extensions of this experimental design, with
different limbs (and even across two people), have provided powerful insight
into understanding perception and action in terms of self-organizing attrac-
tor manifolds in phase space (e.g., Kelso & Jeka, 1992; Schmidt, Carello, &
Turvey, 1990). See chapter 9 for a more in-depth discussion of rhythmic coor-
dination tasks.

Repetitive tapping tasks (e.g., Fitts, 1954) provide another continuous
measure with a continuous task that can provide information regarding the
overall constraints of the motor system. However, isochronous finger-tapping
tasks (e.g., Franek et al., 1987), where the participant must tap a finger in syn-
chrony with some external sensory input, can provide information regarding
the dynamic coupling of sensory and motor processes and thus more readily
point to a dynamical analysis of cognition. As a participant is exposed to a
rhythmic stimulation pattern of auditory tones or visual flashes, he or she can
get accustomed to the frequency of the stimulation and tap nearly synchro-
nously with the sensory input. Some form of cognitive oscillatory process that
predicts each next tone or flash (see Pressing, 1999) may be involved in this
behavior because each tap often anticipates the actual external stimulus. If
each tap was actually a response to the perceived tone or flash, then it would
unavoidably follow that tone or flash by at least a few hundred milliseconds—
as that is about how long sensory transduction and motor execution would
take. However, it is commonly observed in these kinds of tasks that partici-
pants’ taps actually precede the sensory input by a few dozen milliseconds or
more (e.g., Müller et al., 1999). Further examination of the types of stimula-
tion that best entrain this kind of cyclic motor output can uncover a richer
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understanding of the relationships between perceptual subsystems and action
subsystems. For example, complex metrically structured rhythms can induce
finger tapping that is synchronized at varying metrical levels (Large, Fink, &
Kelso, 2002; Toiviainen & Snyder, 2003). Moreover, rhythmic auditory events
appear to be better than rhythmic visual events at inducing isochronous 
finger tapping (Repp, 2003a; Repp & Penel, 2004).

Although finger-tapping tasks typically just record the timing of the
cyclic taps and not the dynamics of the finger movement toward or away from
contact, there are other measures that do record the truly continuous move-
ment of the body. Postural sway, as measured by the force applied to different
regions of a metal plate on which the participant is standing, can be recorded
continuously over time and thus provides a measure of rhythmic movements
in state space and in phase space (Riley, Balasubramaniam, & Turvey, 1999).
During a variety of tasks, postural sway can be measured without interrupting
task performance, without requiring any metacognitive report regarding task
performance, and without any strategic influences on the measure being
recorded (Stoffregen et al., 2000). Intriguingly, it turns out that postural sway—
though seemingly irrelevant to linguistic and visual tasks—actually provides an
informative window to the dynamical perception-action processes of visual
perception (Warren, Kay, & Yilmaz, 1996) and of language use (Shockley,
Santana, & Fowler, 2003). For example, Shockley and colleagues showed that
when two conversants coordinate over a puzzle task, their postural sway coordi-
nates as well. When the same two persons converse with other people, their
respective postural sways do not get entrained with one another. See chapter 9
for a more in-depth discussion of postural sway tasks.

Another continuous implicit measure of perceptual/cognitive processing,
which doesn’t necessarily require any motor output, is EEG. In contrast to
ERPs, EEG does not assume any special start or stop time with regard to the
sensory input.7 Therefore, it is ideal for continuous rhythmic tasks, such as
repetitive visual tasks or repetitive linguistic tasks, or even just listening to
music (Fitzgibbon et al., 2004). Different perceptual/cognitive tasks can show
their effects at different frequency ranges in the EEG signal: alpha (10 Hz),
beta (20 Hz), and gamma (40 Hz) bands. Although continuous EEG involves
laboratory constraints similar to ERPs, which can somewhat reduce the eco-
logical validity of the perceptual circumstances, the collection of an unbroken
signal of neural activity during the ongoing performance of a cyclic task is an
extremely precious source of information for the dynamical perspective on
cognition (e.g., Babiloni et al., 2003; Wallenstein, Nash, & Kelso, 1995).

Semi-Continuous Measures With Delimited Tasks

Many of our everyday perceptual/cognitive activities are not particularly
rhythmic or repetitive. Although the cognitive and motor dynamics involved
in writing a check and putting it in an envelope, or getting in your car and
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starting the engine, can be well described by a relatively continuous trajectory
through a (cognitive and/or motor) state space, that trajectory is not especially
cyclic and thus does not easily lend itself to a description in phase space (but
see Jirsa & Kelso, 2005). Because reaction time and ERP wave components may
focus a little too much on artificially discretized outcome measures, and rhyth-
mic coordination tasks and continuous EEG waves may focus a little too much
on repetitive tasks, this final section tries to carve out a middle ground of
methodologies that involve delimited nonrepetitive tasks and nearly continu-
ous implicit measures of cognitive processing during those tasks.

For example, a continuous record of arm movement during a reaching
task, such as with an Optotrak 3D motion capture system, can be incredibly
informative about the cognitive processes involved in that task. By video-
recording reflective markers along the joints of the arm and hand, patients
with damage to the ventral portion of the visual system (who suffer from
visual form agnosia and thus cannot identify objects) can be observed to execute
reaching movements and preparatory handshapes for grasping those objects
that exhibit perfectly normal temporal dynamics (Milner & Goodale, 1995).
This suggests that the intact dorsal portion of their visual system is silently
recognizing the object and sending appropriate motor commands to the arm
and hand in real time—despite the fact that the patient cannot verbally identify
the object. As further evidence for this dissociation, when nonbrain-damaged
participants reach for a target object and it shifts location, the arm can smoothly
adjust its trajectory midflight, even when the participant cannot see her arm
and even when she claims not to have consciously perceived the target object
shifting its location (Goodale, Pélisson, & Prablanc, 1986). Results like these
point to a relatively automatic perception-action loop, in the dorsal visual
stream, that doesn’t necessarily require visuomotor feedback or even conscious
awareness. The real-time interplay between these dorsal and ventral visual
streams, as well as between reaching and grasping commands, in the service of
acting on one’s environment (or even just imagining objects and actions in
one’s environment), is a busy topic of study (e.g., Jacob & Jeannerod, 2003;
Jeannerod, 1996; Servos & Goodale, 1995).

In addition to recording overt limb movements in real time with a 3D
motion capture system, one can also record subtle muscle activity that may
not even result in limb movement at all. Electromyography (EMG) follows the
same principle as EEG, in that it simply records changes in the electric field
that reaches the surface electrodes—except that these surface electrodes are
placed on the skin of the arms, hands, or face.8 As muscles under the skin con-
tract, tiny electrical discharges are detectable even when it’s a minor contrac-
tion that is not strong enough to physically move that limb, finger, or facial
feature. Thus, EMG can provide an implicit measure of muscle groups that are
partially active, but not so much that overt movement is executed (Fridlund &
Cacioppo, 1986). This would be consistent with the trajectory in mental state
space getting close to a particular attractor basin, but not close enough to
actually elicit its corresponding motor movement. For example, EMG activity
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of particular regions of the face can provide evidence of subtle, partial activation
of emotional states that remain undetectable by visual observation of those
regions of the face or by participants’ introspective reports (Cacioppo et al.,
1988). Continuous EMG records of the hand muscles can also be informative
about partial activation of multiple action commands in a response competi-
tion task. Coles and colleagues (1985) measured EMG activity of participants’
two response hands as they gripped choice-response handles and found that
potentially confusing stimuli elicited partial muscle activity in the incorrect
response hand even on trials where the correct overt response was the one that
got executed. See chapter 9 for more in-depth discussion of these and related
experiments.

Two additional implicit measures of cognitive processing that have also
been quite popular and informative are heart rate and galvanic skin response
(GSR; changes in electrical conductivity of the skin due to sweat gland acti-
vity). Their latency to react is not immediate, but it is usually less than a second.
For example, one can actually detect heart rate briefly slowing, or delaying a
pulmonary contraction, during the inhibition of a motor response (Jennings,
1992). Moreover, as evidence for the implicit nature of these measures,
prosopagnosic patients, who are specifically unable to recognize faces, actually
show a normal increase in skin conductance when viewing familiar faces,
despite the fact that they claim not to recognize them (Tranel & Damasio,
1988). Measures of heart rate and of GSR have been combined with measures
of pupil dilation (Kahneman et al., 1969), and all three generally increase con-
comitantly with the intensity of cognitive effort involved in a task. Pupil 
diameter begins to expand in response to increases in cognitive load (or com-
plexity of a task) a few hundred milliseconds after the critical change in sensory
input, and this dilation peaks a little more than a second after the sensory change
(Beatty, 1982). Pupillary dilation has proven to be informative for studying
cognitive load in auditory processing (Bradshaw, 1968), visual processing
(Pratt, 1970; Verney, Granholm, & Dionisio, 2001), memory (Karatekin, 2004),
word recognition (Ben-Nun, 1986), and sentence processing (Just & Carpenter,
1993; Schluroff, 1982, 1986). All three of those measures, however, reveal only
general activity of the sympathetic and parasympathetic autonomic systems.
For example, heart rate, GSR, and pupillary dilation will generally increase
about equally for emotions of happiness, anger, fear, and so on. For an experi-
menter to get a handle on what the participant is thinking about, not just how
intensely she’s thinking about it, a more selective measure is needed.

Eye Tracking and Mouse Tracking

The outcome-based measures reviewed earlier in this chapter are certainly
useful and have provided a considerable database of evidence that continues
to constrain theorization in cognitive science. Although they overlook the
interim temporal dynamics, they nonetheless provide a crucial measure of
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where the dynamics ended up. And sophisticated analyses of the distributions
(and other large-scale dynamic patterns) in such data also provide valuable
evidence for adjudicating between specific theories of task performance, as
well as between general frameworks of cognitive processing. Moreover, analy-
ses of the phase space manifolds resulting from rhythmic dynamic motor pat-
terns have provided a strong mathematical foundation for the burgeoning
field of dynamical cognitive science. However, because the focus of this book
is primarily on state space dynamics rather than phase space dynamics, experi-
mental methods that provide glimpses into state space trajectories exhibited
by the mind during perceptual/cognitive tasks are of utmost importance. A
great deal of the experimental evidence marshaled throughout this book
comes from tracking people’s eye movements and their computer mouse
movements to provide some form of semi-continuous visualization of their
mental trajectory, so I grant these measures their own section here.

Eye movements have a long history of being used as an unusually inform-
ative measure of perceptual-cognitive processing in a wide range of tasks (see
Richardson & Spivey, 2004).9 The methodology of eye tracking has advanced
considerably over the years, from the days of attaching devices to the eyeball
itself (Delabarre, 1898; Huey, 1898; see also Yarbus, 1967), to reflection-based
static photographic techniques (Diefendorf & Dodge, 1908; Tinker, 1928), to
motion-picture recordings (Buswell, 1935), to electronic laser-reflection sys-
tems (Rayner, 1978), and most recently to computerized headband-mounted
infrared optical methods (e.g., Ballard, Hayhoe, & Pelz, 1995; Land & Lee,
1994; Tanenhaus et al., 1995). In contemporary cognitive psychology, eye
tracking has produced important experimental findings in reading, visual
search, and scene perception (see Rayner, 1998, for an excellent review). Eye
movement methods have also been at the cutting edge of research in visual
memory (e.g., Ballard et al., 1995; Richardson & Spivey, 2000), change blind-
ness (Hollingworth & Henderson, 2002; O’Regan et al., 2000), visual imagery
(e.g., Brandt & Stark, 1997; de’Sperati, 2003; Laeng & Teodorescu, 2002; Spivey
& Geng, 2001), spoken language production (e.g., Griffin & Bock, 2000), spo-
ken language comprehension (Tanenhaus et al., 1995), speech perception
(McMurray et al., 2003), categorization (Nederhouser & Spivey, 2004; Rehder &
Hoffman, 2005), problem solving (Hegarty, 1992; Knoblich, Öllinger, & Spivey,
2005; Rozenblit, Spivey, & Wojslawowicz, 2002), chess (Reingold & Charness,
2005), driving (Crundall, 2005), and even video games (Underwood, 2005).

Many of the disadvantages of outcome-based measures, such as reaction
time, are avoided when using eye movement data as a measure of cognitive
processing. Saccadic eye movements (sudden jumps from fixating one object
to fixating another) naturally occur three to four times per second, so eye
movement data provide a semi-continuous record of regions of the display
that are briefly considered relevant for carrying out whatever experimental
task is at hand. Critically, this record provides data during the course of cog-
nitive processing, not merely after processing is complete, as with reaction
times and off-line judgment tasks. Saccades take about 200 milliseconds to
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program once the target has been selected (Matin, Shao, & Boff, 1993;
Saslow, 1967), so they are a nearly immediate measure of cognitive process-
ing, compared to many of those discussed in the chapter.

Perhaps most important, eye movements exhibit a unique sensitivity to
partially active representations that may not be detected by other experimen-
tal methods. Only a small amount of spatial attention is required to trigger a
saccade (Kowler et al., 1995). Essentially, if one thinks of it in terms of thresh-
olds for executing motor movement, eye movements have an exceptionally
low threshold for being triggered, compared to other motor movements.
Because they are extremely fast, quickly corrected, and metabolically cheap,
there is little cost if the eyes fixate a region of a display that turns out to be
irrelevant for the eventually chosen action. A mere 300 milliseconds have been
wasted, and reorienting the eyes to a more relevant location requires very 
little energy. Therefore, briefly partially active representations—that might
never elicit reaching, speaking, or even internal monologue activity, because
they fade before reaching those thresholds—can nonetheless occasionally
trigger an eye movement that betrays this otherwise undetectable momentary
consideration of that region of the visual display as being potentially relevant
for interpretation and/or action. Consider, for example, a task with two alter-
native responses, and the stimulus in question is slightly ambiguous with
respect to the two possible responses. In the state space of the participant’s
mind, these response alternatives can function as attractor basins, and her
mental processing of that slightly ambiguous stimulus is equivalent to a tra-
jectory in that state space that temporarily flirts with both attractors, until
finally settling into one of them, to select a response. Figure 3.4 depicts an ide-
alized rendition of this state space and that mental trajectory. The rather
lenient—nay, downright promiscuous—thresholds for saccadic eye move-
ments (dashed circles) are crossed as early as halfway through the trajectory’s
traversal. Thus, the eyes would fixate both response alternatives in this case
before settling on the chosen one. In contrast, the more conservative thresh-
old for overt response selection, such as pressing a button (solid circles), is
crossed much later in time.

This early and quite sensitive semi-continuous measure of cognitive pro-
cessing can also frequently be used in ways that do not interrupt task process-
ing with requests for metacognitive reports or other overt responses that may
alter what would otherwise be normal uninterrupted processing of the task.
Thus, in addition to providing evidence for partially active representations
throughout the course of an experimental trial, and not just after it, eye track-
ing also allows for a certain degree of ecological validity in task performance,
as the responses it collects are ones that are naturally happening anyway.
Figure 3.5 shows a hypothetical—but typical—scan path (based on a study
reported by Eberhard et al., 1995) from an individual trial in which the par-
ticipant was instructed to “put the king of hearts that’s below the jack of dia-
monds above the queen of spades.” The eye position starts at the central cross
and jumps to the king of clubs soon after hearing “king.” After hearing “of
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Figure 3.4. An idealized vector field with two attractor basins divided
by a ridge, or saddle point (gray arrows show direction and velocity of
attraction). The mental trajectory (black arrow) crosses the threshold
for executing a saccade (dashed circles) well before it crosses the
threshold for an overt button-press response (solid circles).

Figure 3.5. Example scan path (starting at the central cross) while
hearing, “Put the king of hearts that’s below the jack of diamonds
above the queen of spades.”



hearts,” the eyes saccade down to the distractor king of hearts and flit around
there until “that’s below the jack of diamonds,” causes them to fixate the tar-
get king of hearts. After a quick check of that jack of diamonds, and once
“queen of spades” is heard, the eyes finally move up to the upper left corner of
the display to beginning planning the manual action.

These scan paths can be analyzed in a multitude of ways, most of which
require the visual display to be segmented into different regions of theoretical
interest—although fixation patterns on a blank screen can actually be informa-
tive under the right circumstances (Altmann & Kamide, 2004; Spivey & Geng,
2001). Importantly, without some form of linking hypothesis between fixa-
tions of certain regions and particular cognitive processes (e.g., Tanenhaus 
et al., 2000), the full accumulated scan path from any given trial will often be
difficult to interpret (see Viviani, 1990). With specific predictions for a pre-
ponderance of attention in certain areas under certain stimulus conditions,
one can produce interpretable results from examining the mean durations of
fixations in various display regions or comparing the sum total of all fixation
durations in different regions (total gaze duration). Total gaze duration can
then be converted into percentage of total time spent fixating different display
regions.10 When this proportion of time spent fixating each possible object is
calculated for each time slice and plotted as a function of time, one can see
something equivalent to an object salience map changing dynamically. Figure 3.6
shows hypothetical data from a collection of trials like those in figure 3.5. Note
how during the first 500 milliseconds on the graph—immediately following
the onset of “king”—all three kings (circles, squares, and triangles) tend to get
fixated for a while. Keep in mind that in studies like these, participants won’t
begin reaching toward one of those incorrect kings, their eyes will just investi-
gate them briefly. As the distinguishing information is gradually delivered,
only the target king of hearts (circles) continues to be fixated. Then, the jack
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of diamonds is briefly fixated in some trials (diamonds). Eventually, as the last
prepositional phrase is being heard, the queen starts getting fixated (�’s), and
the target king begins losing some of its salience at that point in time. Finally,
the empty square above the queen (x’s) begins to attract attention.

There are, of course, methodological concerns related to using eye track-
ing. It should be acknowledged that visual attention is not always coincident
with eye position. Ever since Posner, Snyder, and Davidson (1980) demon-
strated that participants’ covert visual attention can be effectively dissociated
from the point of ocular fixation (when explicitly instructed to not move their
eyes), there have been cognitive psychologists who question whether eye move-
ments are really indicative of cognitive processes at all (Anderson, Bothell, &
Douglass, 2004). That said, it would be a rather unusual claim to propose that
movement of the eyes is purely random and not causally related to cognitive
neural processes. Even under extreme cases of unpredictable visual search cir-
cumstances where variation in absolute eye position appears to exhibit noise
consistent with a random walk process, saccade amplitudes exhibit long-range
temporal correlations, 1/f noise (Aks, Zelinksy, & Sprott, 2002). In fact, a great
deal of behavioral and neuroscience research has shown a very close coupling
between movement of visual attention and movement of the eyes. Not only do
the eyes generally follow where attention leads, with a typical latency of about
50 milliseconds (see Henderson, 1993, and Hoffman, 1998, for reviews), but
many of the same regions of frontal and parietal cortex that are involved in
planning and executing eye movements are also implicated in covert visual
attention (see Corbetta, 1998, and Corbetta & Shulman, 1999, for reviews).

Another concern with eye movement data is the averaging that goes into
making graphs like that in figure 3.6. It is all too easy to produce smooth
curves from averaging many discrete but slightly asynchronous saccadic tran-
sitions. In fact that’s precisely how these eye position curves become smooth.
The logic behind it is that dynamically changing activation levels of internal
mental representations are constantly in flux, and occasionally one of them
exceeds some relatively low threshold for executing a discrete saccadic eye
movement. By measuring many eye movement patterns under the same con-
ditions, one can extract the graded patterns of activation that produced those
saccades. This linking hypothesis between the smooth averaged curves and the
gradually accruing activations of mental representations admittedly requires
something of a leap of faith. However, the alternative explanation—that the
mind is discretely jumping to one unitary interpretation and executing its cor-
responding eye movement, then discretely jumping to a different unitary
interpretation and executing its eye movement—can be somewhat difficult to
defend. In most of these eye tracking experiments, one occasionally observes
an oscillatory eye movement pattern where participants initially fixate object A
(for example, some candy when instructed to “pick up the candy”), then fix-
ate object B (such as a candle, because the first few phonemes are about the
same in candy and candle), and then fixate object A again, finally making an
overt response that corresponds with object A, such as grasping the candy or
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pressing a button that has its label. In a formal logical system that follows rules
to flip from one discrete mental state to another, it is not at all clear why such
a system would not have executed its overt response during the first instance
of fixating object A.

A methodological solution to the averaging concern would be to use a
motor output that is not saccadic, not quite so ballistic. Recall Goodale et al.’s
(1986) evidence for smooth continuous adjustment of arm movement trajec-
tories during a reaching task. Might an individual reaching movement, for
example, toward the candy, be slightly curved toward the candle? Spivey,
Grosjean, and Knoblich (2005) designed a computerized version of these dis-
plays, with candle/candy, tower/towel, and so on (where a spoken instruction,
such as “click the candle,” is temporarily ambiguous for the first couple hundred
milliseconds of the target word), and with candy/nickel, ladle/dolphin, and 
so on (where the target word is not temporarily ambiguous with respect to 
the visible alternatives). Participants mouse-clicked a start button, then the
display showed up, and then the prerecorded spoken instruction was deliv-
ered. By recording the trajectory of the computer mouse’s cursor, sampled at
60 Hz, we have a nearly continuous measure of where in space the spoken
instruction has “pushed” the participant’s motor output and the degree to
which the two images on the computer screen have “pulled” that movement
toward themselves.11

Figure 3.7 shows an actual individual mouse movement trajectory when
the participant was instructed to “click the ladle,” with a display containing a
ladle and a dolphin. In this control condition, the trajectory is relatively
straight, moving directly to the ladle with a reasonably constant velocity. It is
as though there was only ever one significant attractor basin available to pull
the state of this system. In contrast, when the two objects have similar sound-
ing names, competition between the objects/attractors is quite evident in the
trajectory. Figure 3.8 plots an actual—and quite typical—individual mouse
movement trajectory when the participant was instructed to “click the beetle,”
with a display containing a beetle and a beaker. Note how the mouse trajectory
moves upward, equidistant from the beetle and beaker, slows down briefly
(circles overlaying one another), and then finally curves over to the beetle.
Although it is not common, there is occasionally a trial in which the mouse
trajectory exhibits some overt vacillation between the competing objects, not
unlike the oscillatory eye movement pattern already mentioned. Figure 3.9
shows the mouse cursor moving somewhat toward the correct object (carrot),
then somewhat toward the competitor object (carriage), then turning again to
finally settle on the correct object. This suggests perhaps some stochasticity in
the continuous motor command and/or significant real-time fluctuation in
the shape of the attractor manifold.

The mouse trajectory in figure 3.8 (beetle versus beaker), moving toward
the midpoint between two attractor basins, slowing on the saddle point
briefly, then finally sliding down one of the basins, is quite reminiscent of the
idealized attractor manifold and mental trajectory in figure 3.4.12 One could
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Figure 3.7. Mouse movement trajectory (in pixels) for “Click the
ladle,” with a dolphin as the neutral distractor.

Figure 3.8. Mouse movement trajectory (in pixels) for “Click the
beetle,” with a beaker as the cohort competitor. (Note the similar-
ity with the mental trajectory in figure 3.4.)



interpret this similarity, between a mental trajectory in a high-dimensional
state space and a movement trajectory in a two-dimensional space, as an illus-
trative metaphor for understanding how dynamic competition between two
partially active action-goals takes place. However, if someone were compelled
by the situated cognition framework in the larger cognitive sciences (e.g.,
Greeno, 1989; Gupta, 1992; Hutchins, 1995; Kirsh, 1995; Schwarz, 1998), they
might be tempted to describe this correspondence between mental trajecto-
ries and motor trajectories not metaphorically at all but indeed quite con-
cretely. In principle, one can conceive of the experimental task constraints as
forcing the participant to emit her continuously changing high-dimensional
internal state onto a physical workspace that has only two dimensions. In such
a circumstance, the mouse movement trajectory would be posing, quite liter-
ally, as an external two-dimensional projection of the person’s internal high-
dimensional cognitive dynamics. That is, the real-time cognitive process of
spoken word recognition imposes a continuous influence on the shape of the
visuospatial salience map in the parietal cortex that determines where atten-
tion is directed (e.g., Desimone & Duncan, 1995; Itti & Koch, 2001), which in
turn imposes a continuous influence on the dynamic field of neuronal popu-
lation codes for motor preparation in primary motor cortex (e.g., Bastian,
Schöner, & Riehle, 2003; Erlhagen & Schöner, 2002; Georgopoulos, 1995),
which in turn directs motor output in a fashion that reveals the continuous
evolution of the movement command (e.g., Paninski et al., 2004).

There are two reasons why this computer mouse trajectory methodology
provides a richer signal than eye movements of the continuous process of
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Figure 3.9. Mouse-movement trajectory (in pixels) for “Click the
carrot,” with a carriage as the cohort competitor.



real-time spoken language comprehension influencing motor output. First, it
samples this process about 60 times per second (depending on the software),
instead of 3–4 times per second (as with saccades). Second, with some minor
and subtle exceptions (Doyle & Walker, 2001; Gaveau et al., 2003; Theeuwes,
Olivers, & Chizk, 2005), saccadic eye movements are ballistic and straight,
unable to adjust or curve in midflight. In contrast, skeletal motor movements
with the hands and arms are often able to curve substantially in midflight
(Goodale et al., 1986; Tipper, Howard, & Jackson, 1997), and can thereby
expose graded spatial attraction effects that might not be detected with other
methods. And it certainly doesn’t hurt that recording computer mouse trajec-
tories requires equipment that is far less expensive than eye tracking.
Nonetheless, eye movements usually precede arm movements, and thus pro-
vide a more immediate index of cognitive processes than arm movements.
Therefore, computer mouse trajectories are best seen not as a replacement for
any other method but instead as an important complementary data source for
revealing the continuous flow of mental activity to motor activity (e.g., Coles
et al., 1985; see also McClelland, 1979). (For some further discussion of the
measurement of computer mouse movements, see chapter 9.)

Though This Be Dynamic, Yet There Is Method in It

The previous chapter focused on a conceptual framework for understanding
the continuity of mind, that is, the spatiotemporal continuousness with which
a mental state traverses its neural state space. Dovetailing with this purpose,
the current chapter has focused on a variety of experimental measures for
empirically examining the continuity of mind. The next chapter will focus on
explicit mathematically implemented and temporally dynamic models of the
continuity of mind. In all of these cases, the role of real-time perceptual-
motor representations looms large in cognitive processing.

It could be argued that the reason motor output is as illuminating of cog-
nition as it is—be it a hesitant button-press, a curved mouse movement, a vac-
illatory eye movement pattern, or rhythmic fingers dancing on the edge of
chaos—is precisely because so much of cognition is carried out by perceptual-
motor simulations (e.g., Hesslow, 2002; Jeannerod, 2003; Pecher, Zeelenberg,
& Barsalou, 2003; Solomon & Barsalou, 2004). Much (if not all) of cognition
is fundamentally composed of combinations of dynamic perceptual-motor
simulations or complex preparedness for situated action (see Barsalou, 2003).
There is no internal encapsulated “mind in an ivory tower” that independently
conducts these simulations. It is the senses themselves, the motor systems
themselves, and an emergent cognition self-organizing amid the two, that
carry out these simulations. And this is why measuring the output of those
motor systems in a number of different time-dependent manners provides
rich evidence for the activity of these simulations. According to the frame-
work of dynamic embodied cognition, motor output is not merely an emitted
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signal from the process of cognition, it is part of cognition. We aren’t using the
experimentally recorded behavior to make an inference about a cognitive
process, that behavior is part of the cognitive process.

Indulge me while I recount a little anecdote that epitomizes, for me, the
intimate role that the body plays in cognition. One day, I had spent much of
the morning and afternoon mulling over in my head different versions of a
few sentences for a manuscript I was working on. I was somewhat frustrated
with trying to find the right wording. Later, while sitting in the audience for a
visiting speaker’s lecture, the phrasing for those sentences suddenly fell into
place. I quickly grabbed a pen and the back of an envelope, and scribbled them
down just legibly enough that as long as I transcribed them onto my computer
within 24 hours, I could probably decipher the chicken scratchings. Then, a
brief, inexplicable, unidentifiable motoric urge came over me. For about half
a second, I felt a dire need to carry out some unspecified motor movement
that would safely preserve these precious sentences that I had finally, after sev-
eral hours, found a way to arrange that was likable. Then the feeling was gone.
I folded the envelope, tucked it in my pocket, and then continued to ignore the
visiting speaker’s words while my mind uncontrollably wandered to try to
explore what that weird urge had been. By running some kind of mental
inventory of my body, asking what limbs had wanted to move, I gradually
localized it to my left arm. I am right-handed, so this seemed slightly odd.
Then I felt the remnants of the motoric urge continue to localize themselves
further, down my arm to my left hand. I wiggled those fingers, and two of
them seemed to want to wiggle more than the others. My thumb and middle
finger seemed somehow potentiated for action. But why? Then it hit me: My
thumb and middle finger had wanted to press the Command and S keys on
my keyboard to save those prized sentences! My left thumb and middle finger
had participated in my powerful desire to preserve those much-pondered
phrasings. That, for me, is the embodiment of cognition.

Nevertheless, as the debate rages between continuous distributed embod-
ied cognition (e.g., Barsalou, 1999; Coles et al., 1985; McClelland & Rogers,
2003; Port & van Gelder, 1995) and discrete symbolic amodal cognition (e.g.,
Anderson & Lebiere, 1998; Dietrich & Markman, 2003; Fodor & Pylyshyn,
1995; Miller, 1988), one could imagine that a pacifist with good intentions and
an annoying penchant for physics analogies might suggest that the mind is
like light. Depending on how you measure it, it can come out looking like it’s
made of particles (symbols) or of waves (distributed patterns). Thus, to claim
that the mind’s true fundamental medium of processing is solely symbolic
particles or solely continuous waves may be wrong-minded.

But we should be wary of walking on the paving of those good intentions,
out of concern for where that road leads. I have a suspicion that this analogy
doesn’t quite hold up. First, it is not entirely clear that every physicist is satis-
fied by and accepting of the conventional account of the dual nature of light.
Second, and more important, it can be argued that the experimental method-
ologies that have been producing evidence for particlelike symbolic mental 
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representations are seriously flawed. Borrowed from the psychophysics of 100
years ago, off-line measures of forced-choice responses have dominated cog-
nitive psychology since its inception in the 1960s. Participants are presented
with a static temporally bounded stimulus and instructed to select among a
set of possible discrete nonoverlapping responses to it. Experiments like these
couldn’t detect a continuous representation (in time and/or in feature space)
if it was staring them in the face! Or even if it bit them somewhere! We should
not be surprised at all that when an experimental participant is forced to
choose a single temporally discrete mutually exclusive response alternative,
they tend to produce output that looks indicative of a single temporally dis-
crete mutually exclusive mental state. (For concrete examples, see the sections
on categorical perception in chapter 6.) What cognitive psychology needs 
are experimental designs and measures that at least give the organism in ques-
tion a chance to exhibit evidence for continuous graded blends of multiple
mental states. If there is indeed a continuous uninterrupted flow of patterns of
activation (or state space trajectories) from perception to cognition to action
(Cacioppo et al., 1988; Coles et al., 1985; Eriksen & Schultz, 1979; McClelland,
1979; see also Balota & Abrams, 1995; Gold & Shadlen, 2000), then continu-
ous measures of motor output can actually provide an impressively accurate
index of real-time perceptual and cognitive processing.

As we come to the end of this tour through several continuous and semi-
continuous measures of motor output, that focus on dynamic properties of
action rather than merely the outcome of an action, we can at last revisit
Gibson’s question that began this chapter. What does behavior consist of? It
cannot consist of “responses,” because a response is but a small, late-in-the-
game aspect of the many properties of motor output that one can examine,
and its emphasis on the final result of an action misses out on a great deal of
information that can often disentangle competing theories of cognition. In
naturalistic behavior (especially rhythmic actions like walking or playing a
musical instrument), motor output does not always have identifiable start
times and stop times. Therefore, pointing to the part of that behavior that is
“the response” is impossible. What behavior actually consists of, and therefore
what experimental psychologists should probably be measuring, is continu-
ous action—not responses. As any scientist (or vinyl audiophile) will tell you,
if you want to understand what is going on in a continuous process, the highest-
fidelity signal will come from a continuous measure of that process.
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4

Some Simulation Tools for Tracking

Continuous Mental Trajectories

We know, from the pre-Socratic period of Greek philosophy, the
expression panta rhei: all states of things are incorporated in a
stream of motion and change. Nothing stays the same, and when
we want to study certain process phenomena, we are compelled
to regard them as stages of change, as parts of a dynamic process.
—Jan Eberg

Nothing is, everything is becoming.
—Heraclitus

How Can Blind Men Build a Sculpture of the Mind?

Dynamical systems accounts of mind are often perceived as foreign objects in
the body of psychology. They are poorly understood, and if their descriptions
aren’t annoyingly vague, then their math is daunting. Perhaps most problem-
atic is the simple fact that for some scientists, it simply conflicts with intro-
spection to claim that the mind does not think one discrete “thing” and then
think another discrete “thing.”

The purpose of this chapter is to gently walk the reader through some of
the mathematics of a few simple demonstrations of dynamical systems to
prove that it’s really not that daunting after all. I promise. As for any private
intuition that one’s mind “stands still during each thought,” it will be up to the
rest of the book (especially chapters 6–8) to convince such a reader to trust
experimental data over his or her subjective self-reflections.

But before getting to those data, let’s examine the theory. To properly cash
out the claim that the mind is a continuous dynamical system, rather than a
digital computer, we will need to design idealized model simulations of the
theory and its explicit implementation. Persuasive prose and trendy buzz-
words are simply not enough.

As it turns out, it is dangerously easy to string together a handful of
axiomatic claims about how some aspect of mind works and call this collection
of stipulations a theory—only to later discover that they are self-contradictory
when functionally integrated. Rather than permitting oneself to wax philo-
sophical about a laundry list of cognitive assertions that may turn out to be



inconsistent with one another if actually put into operation, a number of
researchers have argued strongly for the development of mathematical and/or
computational implementations of theories about cognition (e.g., Broadbent,
1987; Hintzman, 1991; Seidenberg, 1993; Smolensky, 1988a; see also Newell,
Shaw, & Simon, 1958). Hintzman (1991) has pointed to a perfect example of
the kinds of pitfalls that one can encounter when theorizing without simulat-
ing. His example comes from research by sociobiologists making claims about
gender differences in sexual promiscuity. Based on survey results from equal
sized populations of men and women on how frequently they have hetero-
sexual, two-person one-night stands, the researchers concluded (by statisti-
cally generalizing their sample results to the entire population) that men have
more one-night stands than do women. That is what the questionnaires
revealed. At first glance, this kind of result doesn’t really surprise us. It corre-
sponds well with our intuitions and cultural prejudices concerning men and
women. And acquiring some scientific corroboration of those intuitions is
perhaps self-edifying. There’s just one problem. In the context of men and
women having heterosexual, two-person dates, it is mathematically impossible
for the average number of one-night stands conducted by men to be any dif-
ferent from the average number of one-night stands conducted by women! It
simply cannot happen. Every time a man is having a one-night stand, as
defined by the questionnaire, so is a woman. (The distributions could be
skewed in one or the other of the groups, but the arithmetic means have to be
the same.) Thus, our intuitive theory of dating makes a prediction that is com-
pletely illogical and mathematically invalid. Had the researchers conducting
this survey bothered to construct even the simplest mathematical account of
their theory, they would have realized that the prediction they thought their
theory made was fundamentally ill-formed.

Implementing one’s theory is like building a machine that embodies the
axioms of the theory, rather than merely listing those axioms and claiming
that they work together. The machine has to work for the theory to be con-
sidered sound. Indeed, it is a common experience for a simulation program-
mer to start out thinking that the theory she is trying to implement provides
all the components that will be necessary to build a working system, only to
find, after some initial pilot simulations, that the theory leaves out one or
more parameters or processes that are absolutely essential to allowing the rest
of the components to work together. Verbal descriptions of theories tend to be
like that. They look good on paper, but they often do not stand up to the
demands of actual implementation.

A somewhat cutesy but nonetheless illustrative example that I use with
my students, comes from the Steven Spielberg film Close Encounters of the
Third Kind (1977). In this film, Richard Dreyfuss’s character (as well as several
other people throughout the country) is apparently psychically receiving from
extraterrestrials images of some mountain. He and the other receivers inde-
pendently become obsessed with depicting this mountain. They paint it and
sketch it compulsively. Then, at one point, Dreyfuss’s character is inspired
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with the idea of sculpting, rather than painting, his channeled vision of the
mountain in 3D (starting out with mashed potatoes and ending up using
garbage, potting soil, plants, etc.). What he thereby discovers is that there is a
plateau (actually a UFO landing pad) on the backside of the mountain, which
the other receivers had failed to ascertain. This discovery of a new idea, result-
ing from building a richer, more detailed model of one’s obsession, has much
in common with what happens when one builds a simulated implementation
of a theory. While attempting to implement a simulation of a theory, one often
discovers novel system properties and novel system behaviors that the theory
actually entailed all along and that can then be empirically tested for in the
laboratory.

Each of the experimental measures discussed in chapter 3 is like a micro-
scope providing a particular two-dimensional perspective, or sketch, of the
full three-dimensional structure of perception and cognition. These two-
dimensional peeks into the actual system of interest provide useful pictures of
its function, but they lack the full volumetric feeling provided by a simulation.
The two-dimensional images provided by a few experimental measures can
occasionally neglect to reveal a striking anomaly hidden in the back of the
data structure, such as a plateau or even a UFO landing pad. With an approx-
imated simulation, one can get the full volumetric feeling of observing the
entire system in action and sometimes deduce those anomalies. But of course,
we must always remind ourselves that it is still just an approximated hypothe-
tical model of the actual system of interest.

Not unlike the allegory about the blind men and the elephant (where they
each touch a different part of the elephant and generalize attributes of that
part to the whole animal), trusting only one of those experimental measures
can give one a peculiar and probably skewed impression of the mind. The full
solution, which the original elephant allegory fails to provide, is that perhaps
the blind men should collaborate in sculpting a full 3D model of the elephant.
Further empirical exploration of the actual animal could then test the gen-
eralizations they had to make in simulating the elephant, and a duly revised
sculpture would then offer new and better generalizations to test. This cyclic
process of “fit data,” “predict new data,” “empirically test predictions,” “refit
data,” and so on, is precisely what the juxtaposition of chapters 3 and 4 is all
about (and what will be seen in much of chapters 6–10): the marriage of
experimentation and simulation.

Qualitative Transitions

In taking us away from simulations of mind that are based on logical rules 
and discrete symbols (e.g., Anderson, 1983; Marcus, 2001; Pylyshyn, 1984),
and moving us toward simulations of mind that are more continuous and
dynamical, let us first explore how continuous systems can behave in ways 
that could easily be mistaken as discretely symbolic and formally logical
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(Dietrich & Markman, 2003). One of the key phenomena in dynamical sys-
tems that allows them to approximate symbol-like processes is qualitative
transitions, such as bifurcations and phase transitions. Qualitative transitions
are seen in sigmoid curves (often called s-curves) all over nature. Sigmoid
curves like the one in figure 4.1 simultaneously exhibit the apparent sudden-
ness of a qualitative transition from one stable state to another, as well as the
actual smoothness of that transition itself. The transition is not instantaneous;
it has a nontrivial time course to it. In this time course one can find clues as to
how analog, continuous processes can often appear digital and discrete.
During the range of values along the horizontal axis where the hypothetical
quantity of some generic substance is no longer in state A but also neither 
in state B, the state must be described as a form of graded titration of states A
and B.

The logistic function, figure 4.2, is an elegant symmetric model of a
generic s-curve-shaped process.1 The logistic function is used in physics for
subatomic particle identification and event classification, in chemistry for sat-
uration processes, in biology for species population dynamics; the list goes on.
In statistics, to convert a log-likelihood ratio of two alternatives into a prob-
ability, one uses the logistic equation. In neuroscience, the logistic function is
used to approximate the average firing rate of a neuron (e.g., Britten et al.,
1992) as well as the probability of a neuron carrying out a single action poten-
tial (e.g., Burnod & Korn, 1989). The logistic function is also used in connec-
tionist simulations of a neuronlike unit summing its linear inputs and then
squashing that value to a range between 0 and 1 (see Rumelhart & McClelland,
1986a). And sigmoidal curves are routinely observed in “microgenetic” studies
of children in the process of transitioning from one developmental stage to
the next (see Siegler & Crowley, 1991).

Figure 4.1. A qualitative transition from one steady state to
another.
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Sigmoidlike curves in empirical data, and logistic functions fitting those
curves, are ubiquitous throughout science. And yet traditional cognitive psy-
chology has preferred to overidealize the qualitative transitions demonstrated
by sigmoid curves like this into discrete, logical, set-theoretic step functions
that categorically delineate one cognitive representation from another. In a
step function, like that in figure 4.3, the transition between category A and
category B is instantaneous. That is, the boundary between these two cate-
gories is treated as discrete, and no gray area is acknowledged to exist between
them (as in figure 4.1).

Figure 4.2. The logistic function as a mathematical model
of a state transition.

Figure 4.3. The kind of state transition required by discrete
models of the mind.



A Playground for Dynamics: The Logistic Map

The purpose of the following demonstration is twofold. First, it is intended to
walk the reader through the logistic map in a fashion that will perhaps make
clear why this simple little (yet deceptively powerful) iterated equation still
garners so much excitement and interest in the mathematical field of dynam-
ical systems. Second, in my own experience with reading about the logistic
map, it was rare that it was presented in a manner that made the math and the
graphs easy to understand. I hope that I have achieved a more easily under-
stood presentation in the following few pages, thereby perhaps convincing
some cognitive psychologists that the mathematics and data visualizations of
dynamical systems theory are not as opaque as they may have thought.

The derivative of the logistic function in figure 4.2 is solved as y ∗ (1 � y).
Thus, the derivative is at its highest, 0.25, when x � 0 (and the curve’s slope is at
its steepest). The derivative approaches a steady 0 when x � �5 or x � 5 (where
the curve is quite flat). In the back-propagation learning algorithm for connec-
tionist networks (Rumelhart, Hinton, & Williams, 1982), which depends on the
logistic function for computing the activation of output units and hidden units,
this derivative, y ∗ (1 � y), is used to scale the degree to which a unit’s error term
(desired output minus actual output, multiplied by the presynaptic unit’s activa-
tion) is allowed to change its incoming synaptic weights. Thus, a connectionist
unit that is near 0 or near 1.0 in its activation will actually be allowed to make
only very minor changes to its incoming synaptic weights, as the y ∗ (1 � y) scal-
ing factor for weight changes will be near 0. Moreover, when the network’s learn-
ing rate (� typically around 0.1) is included in this weight-change scaling factor,
� ∗ y ∗ (1 � y), the actual weight changes implemented become minuscule.2

The interesting thing about this scaled derivative of the logistic function,
� ∗ y ∗ (1 � y), is that it is exactly equivalent to the logistic map (equa-
tion 4.1), an iterative equation first developed in the mid-nineteenth century
by Belgian mathematician Pierre Verhulst for modeling population dynamics.
This unassuming, simple equation has a long history of revealing insight into
the multifarious time-dependent behavior that can result from a system
whose output becomes its next input, that is, a recurrent system. The logistic
map is now treated as the quintessential example of a complex dynamical sys-
tem whose temporal dynamics can transition from being characterized by sta-
ble states to being characterized by metastable states and eventually to chaotic
behavior (e.g., Davies, 1999; Killeen, 1989). The logistic map is an iterated
simulation of a continuous dynamical system in which the value of y at time t
is inserted back into the equation to produce the value of y at time t � 1,
which is then inserted into the equation again to produce the next value of y,
and so on.

yt�1 � � ∗ yt ∗ (1 � yt) (4.1)

As long as the growth factor, � is between 0 and 4, y will have a minimum of
0 and a maximum of 1. The logistic map shows how a species population will
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increase at a rate proportional to its current population, but continued expan-
sion will be limited by the environment’s food resources, thus eventually 
balancing the species into a relatively stable population number. For example,
when � � 0.9, the value of y will gradually approach 0 no matter what its 
initial value is (figure 4.4). When � � 2.9, the value of y will gradually
approach about 0.65—again, no matter what its initial value is (figure 4.5).
When � � 3.4, the value of y, no matter where it starts between 0 and 1, will
eventually oscillate between 0.84215 and 0.45196 indefinitely (figure 4.6).
Thus, somewhere between � � 2.9 and � � 3.4, this dynamical system’s 
single attractor has bifurcated into two attractors. As � increases further, those
attractors bifurcate again and again. For example, when � � 3.55 (figure 4.7),
no matter what its initial conditions, the system eventually settles into a

Figure 4.4. Six runs of the logistic map: values of y over time, when � � 0.9.

Figure 4.5. Four runs of the logistic map: values of y over time, when � � 2.9.
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metastable pattern with eight distinct and perfectly repeated attractors:
0.8874, 0.3548, 0.8127, 0.5405, 0.8817, 0.3703, 0.8278, and 0.5060.

One particularly illustrative way to visualize this period doubling behav-
ior, where attractors split themselves into two, is by graphing a scatter plot of
multiple y values for every value of � (Feigenbaum, 1978). In the bifurcation
plot in figure 4.8, each value of �, at 0.01 increments, has plotted (as tiny dots)
the last 40 values of y from a 2,000-iteration run (i.e., the 1,961st through 
the 2,000th time steps of y). The upper panel is the full bifurcation plot for 
0 � � � 4, and the lower panel is a zoom-in for 2.9 � � � 3.75. Notice in the
upper panel of figure 4.8 that with values of � that are � 3, those 40 y values
all land right on top of each other. When 3 � � � 3.448, 20 of the y values
land on top of each other in one spot and the other 20 land on top of each

Figure 4.6. Four runs of the logistic map: values of y over time, when � � 3.4.

Figure 4.7. Two runs of the logistic map: values of y over time, when � � 3.55.
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other in another spot. When � � 3.449, those two points each split, or bifur-
cate, into two more—making four distinct attractors (distinguishable at the
fourth decimal place of y). With slightly higher values of �, those four attrac-
tors then bifurcate into 8, and so on, until around 32 attractors, where the dis-
tinctness becomes difficult to discern (figure 4.8, lower panel). When � � 3.57,
the clustering of 40 y values is generally much less apparent. What this
amounts to is that in both panels of figure 4.8, the punctate y values at a par-
ticular value of � (forming clear black lines amid a white background) are
highly specific point attractors, and the somewhat loosely clustered y values
(looking a bit like curving dark contours within the black mass) indicate more
graded and fuzzy attractor basins.

A particularly interesting phenomenon happens at this transition region
between order and chaos, about 3.6 � � � 3.86, as the system exhibits quasi-
periodicity (or a type of pattern called intermittency, which is equivalent to
the 1/f noise discussed in chapter 3, see Manneville, 1980), where very subtle
variations in the control parameter, �, can make the difference between
strictly periodic behavior and fully chaotic behavior. This intermittency
behavior is the hallmark of a system at the edge between stable predictable
order and genuinely unpredictable (though still deterministic) chaos. For
example, note the gaps amid the chaos (those vertical white bands amid the
black mass in both panels of figure 4.8). When 3.829 � � � 3.857 (figure 4.8,
upper panel), the system is not chaotic at all. In fact, it is quite ordered with
three attractors: around 0.15, 0.50, and 0.96. (Similar periodic regions emerge
from the chaos around � � 3.63 and � � 3.74; figure 4.8, lower panel.) As �
increases barely beyond 3.857, each of those three attractors bifurcates,
making the system period six. Then those bifurcate, and the system quickly

Figure 4.8. Scatterplot of multiple y values of the
logistic map for each value of �.



becomes chaotic again. In fact, when 3.86 � � � 4, the trajectory of y over
time becomes so chaotic and unpredictable that despite the equation being
completely deterministic, it can legitimately be used as a random number
generator (Ulam & Von Neumann, 1947).

Finally, another hallmark property of self-organizing recurrent systems,
like the logistic map, is fractal structure. Note the self-similar (i.e., fractal)
nature of how the shape of each tiny bifurcation resembles the shape of the
larger ones. At different spatial scales, across multiple orders of magnitude,
the logistic map exhibits the same general layout of curvilinear bifurcations
leading to similar curvilinear bifurcations as a function of the parameter �.
Fractal structure like this can be seen all over nature by looking at multiple
spatial scales of coastlines, mountain ranges, trees, even the human vascular
system.

A Proving Ground for Dynamics: Attractors, 
Networks, and Attractor Networks

If a simple equation like the logistic map can produce behavior as complex as
that just described, imagine what can result from dynamical equations with a
few more parameters or artificial neural network models that often involve
several parameters. Imagine the complexity of behavior that might result
from a human brain with billions of neurons and trillions of synapses.

Many of those involved in the dynamical approach to perception, action,
and cognition see the goals of the field as fundamentally continuous with the
goals of the physical sciences (see Turvey & Carello, 1995; van Gelder, 1999;
Ward, 2002): to develop compact universal descriptions of the behavior of
systems—usually in the form of dynamical equations. This approach typically
entails discovering principled single-valued functions that refer to collective
variables, and fitting those functions to a broad but cohesive set of related
behaviors (Thelen, 1995; Turvey & Carello, 1995). For example, in furthering
Gibson’s (1979) mission to define psychology’s domain of interest as the cou-
pled subsystems of organism and environment (rather than just the brain),
Turvey and colleagues (e.g., Barac-Cikoja & Turvey, 1991, 1993; Fitzpatrick,
Carello, & Turvey, 1994; Pagano & Turvey, 1993) have reported a number of
rich descriptions of haptic (specifically, dynamic touch) perception in which
the perceived size or length of unseen objects is accounted for by equations
based solely on parameters derived from the dimensions of the objects and
limbs themselves—no explicit reference to internal muscular, sensory, or 
cognitive parameters is required. The same general approach of discovering
collective variables that can serve as single-valued functions of behavior is also
evident in the work of Kelso and colleagues on interlimb rhythmic coordina-
tion (e.g., Haken, Kelso, & Bunz, 1985; Kelso, 1995; Kelso, Scholz, & Shöner,
1986). These two bodies of work are discussed in some detail in chapter 9, on
the dynamics of motor movement.
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Dynamical systems equations that define attractors in particular locations
of a state space or of a phase space are probably best treated as complementary
to dynamical neural network simulations, rather than adversarial to them (see
Bechtel & Abrahamsen, 2002; Horgan & Tienson, 1996; Smith & Samuelson,
2003). However, dynamical equations are occasionally offered as the only appro-
priate level of description for perception, action, and cognition, accompanied
by the suggestion that descriptions at the level of neurons or neural assemblies
is unlikely to prove fruitful. This kind of claim is often made on the grounds that
what’s good enough for physics should be good enough for psychology. To take
a simple example, consider Newton’s law of universal gravitation for the force of
attraction between two bodies: F � G ( m1m2/r2). Combined with an accelera-
tion function, this simple equation can describe the highly complex motions of
a congregation of multiple objects orbiting one another. Arguably, this kind of
equation-based account for complex phenomena has been good enough for
physics for hundreds of years. So, what makes psychology think it needs some-
thing better than what physics has subsisted on for so long?

The problem is that as of yet, physics has come up with no coherent
agreed-on understanding of what gravity is made up of and what causes it to
work the way it does. Physicists are stuck with the equations at that particular
descriptive level. Contrary to popular belief, they are not actually content with
that good enough state of affairs. Indeed, a genuine understanding of what
gravity really is could in principle resolve some of the glaring conflicts
between Newtonian gravity and Einstein’s special relativity. The fundamental
problem is that the rich description, and even relatively accurate prediction,
provided by the equations still does not explain how gravity exerts its attrac-
tion.3 With only a descriptive account—such that gravity is understood merely
as a constant that is required to make the equation work, with no clear linking
hypothesis between the behavior (motion) and the substrate (gravity)—the
opportunities to find connections to potentially related phenomena, resolve
theoretical and empirical conflicts, and thus build a more broadly applicable
theory, are severely limited.

To finally bring this poor belabored physics analogy to its conclusion and
put it out of your misery, in the case of the cognitive and neural sciences, we
actually do know something about the substrate that contributes to human
behavior. Physics may not have found its graviton yet, but psychology has
found its brain. Primate neurophysiology, human neuroanatomy, and cogni-
tive neuroscience provide a wealth of knowledge for constraining theoretical
accounts of “how minds happen.” Therefore, there is no justification for
avoiding the link between mind and brain. (Note that I did not say “the
explaining away of mind by brain,” as body and environment are also crucial;
see chapter 11.) Computational neuroscience in general (e.g., Dayan &
Abbott, 2005; O’Reilly & Munakata, 2000; Trappenberg, 2002), and attractor
networks in particular (e.g., Amit, 1989) offer a way to bridge the gap between
the abstract concepts of attractor spaces and the concrete physical material of
brains that are inside bodies that are inside environments.
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One very popular artificial neural network that functions as a dynamical
system is the simple recurrent network (e.g., Christiansen & Chater, 1999;
Cleeremans, Servan-Schreiber, & McClelland, 1989; Elman, 1990, 1991;
Rodriguez, Wiles, & Elman, 1999). This network architecture has much in
common with traditional three-layer feedforward back-propagation connec-
tionist networks (for reviews, see Bechtel & Abrahamson, 2002; Rogers &
McClelland, 2004; Rumelhart & McClelland, 1986a). The labeled input nodes
get their activations set by the experimenter, each unlabeled hidden node in
the middle layer calculates its activation as a weighted sum of the input nodes
(and then squashed by the logistic function), and the labeled output nodes
calculate their activations as a weighted sum of the hidden node activations
(also then squashed by the logistic function). Distributed patterns of activa-
tion in the hidden layer function a bit like the neuronal population codes dis-
cussed in chapter 1, except the nodes are not connected to each other. The
simple recurrent network, however, has two very important alterations on
that scheme. See figure 4.9. First, instead of the output layer’s target activation
being an arbitrary pattern to be associated with the input pattern, in a simple
recurrent network, the output activation pattern is usually treated as a predic-
tion of the next input pattern. This allows the network to use the “supervised”
back-propagation learning algorithm without really needing an explicit “teach-
ing signal.” That is, instead of having a hypothetical teacher provide the net-
work with an example of the desired output activation pattern with which to
compute an error term by comparing the teaching signal with its actual out-
put, the network need simply “listen” to the next input and compare that to its
prediction. By using prediction-based learning, the system can internalize the
structure of a time-dependent signal by eavesdropping on it, without requiring
any explicit negative evidence from the signal source at all (see Spivey-
Knowlton & Saffran, 1995). The second alteration that a simple recurrent net-
work (SRN) involves is the adding of a context layer of units that is connected
to the hidden layer, which copies the hidden layer activations and loops them
back into the hidden layer as reentrant feedback on the next time step. This
allows the network to base its predictions on a weighted combination of the

Figure 4.9. The basic architecture of the simple recurrent
network (Elman, 1990).



past few time steps. (In contrast to the usual tactic of dimensionality reduc-
tion in most feedforward connectionist networks, SRNs usually have more
hidden nodes than input nodes, as they must encode multiple time steps’
worth of information.)

By examining the regions visited in the hidden layer’s state space (with
hierarchical cluster analysis, Elman, 1990, or with principal component analy-
sis, Elman, 1991), one can observe how the network’s internalization of a
sequence of inputs, such as a sentence, consists of a trajectory moving from
one attractor basin to another to another, and so on. Strictly speaking, how-
ever, it is not so much a continuous trajectory as a series of “teleportations” in
state space, each triggered by an input pattern (and modulated by the context
layer’s influence on the hidden layer). The hidden layer does not spend any
time in the intermediate regions between the locations that it visits in state
space; it just blinks out from one location and reappears in another (in the
form of a newly calculated activation pattern). Each input pattern triggers one
projection into state space, and the system stays there until the next input 
pattern projects the system into a new location in its state space (but see
Pearlmutter, 1995, and Tabor, Juliano, & Tanenhaus, 1997, for iterations of
processing that take place in between input-induced projections into state
space). Thus the SRN’s temporal dynamics are somewhat coarse and staccato
when compared to the ideal of a continuous trajectory through state space
and time. Nonetheless, because an SRN is focused on temporal patterns, it 
displays a useful kind of dynamics as long as input continues to be fed into it.

The amalgam of information in the context layer, accumulated over 
several time steps, has been referred to as a kind of gestalt (St. John, 1992).
However, if you look at the math of the context nodes combining with the
hidden nodes’ feedforward input, and then being copied back onto the con-
text layer, it’s not actually more than the sum of its parts at all. In fact, it is
exactly the sum of its parts. The place where true gestalten become relevant is
when a not-so-simple recurrent network (such as a Hopfield net) is allowed to
settle toward an attractor over the course of several time steps, irrespective of
external input, as in the case of fully recurrent networks. When the state of the
system is allowed to gravitate in its dynamic field, as it were, toward an inter-
nalization of the input that does not actually match a veridical version of the
sensory input (as in the case of pattern completion, see chapter 1), then 
the system’s encoding of the sensory input can genuinely be referred to as 
constructing a gestalt (see Köhler, 1922/1938).

Although the temporal dynamics of an SRN’s input processing is com-
prised of rather large jumps in state space, its changes in weight space during
learning are certainly sufficiently small to allow for the mapping of a relatively
continuous trajectory through the energy landscape of the weight space. This
allows one to depict the gradient descent of the network’s synaptic connectivity
from a state exhibiting poor predictions to a state exhibiting good predictions.
Thus, although they may not be ideal for simulating the temporal dynamics of
pattern completion kinds of phenomena during real-time processing, SRNs
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are perfect for simulating the continuous perceptual and cognitive changes
that take place over the time scale of learning (Elman et al., 1996).

When I teach my undergraduates to program an SRN from scratch in
MATLAB, I am fond of telling them, “There’s nothing simple about a simple
recurrent network.” It is probably the most difficult assignment in the course.
But in truth, compared to fully recurrent networks, SRNs are rather simple.
Fully recurrent networks introduce a host of complex details concerning the
(synchronous or asynchronous) activation update schedule (see Amit, 1989),
how far to propagate error with the learning algorithm (see Beer, 1995;
Pearlmutter, 1989, 1995), whether to use averaged firing rates as activation
values or to use spiking neurons (see Maass, Natschläger, & Markram, 2002),
and how to interpret the psychological relevance of their activation patterns
over time (Zemel & Mozer, 2001). However, the most relevant property exhi-
bited by fully recurrent networks, for the purposes here, is that they spread
their activation throughout the network over the course of multiple time steps
even after the designated input pattern has ceased being presented. Thus they
are perfect for simulating and examining the temporal dynamics of a pattern
completion process during real-time processing.

A Hopfield network (Hopfield, 1982) is a fully and symmetrically inter-
connected set of neuronlike units with no designation of input or output 
layers (see figure 4.10). An external source of input sets the initial activation
values for all the units, and then the synaptic weights pass the activation all
around (via a random activation update schedule using a binary linear activa-
tion threshold) until the network settles into a stable state. Hinton et al. (1993)

Figure 4.10. Fully interconnected nodes of a Hopfield 
network.



have used a Hopfield network as part of their neural network simulations of
different forms of dyslexia. Similarly, McRae, de Sa, and Seidenberg (1997; see
also McRae et al., 1999) used a Hopfield network to simulate semantic prim-
ing effects in psycholinguistic experiments. An important feature that fully
recurrent networks exhibit—and one that is not shared by SRNs—is the fact
that one can measure reaction times from the system by simply recording how
many time steps it takes to reach a specified level of stability. Calculating such
reaction times from feedforward networks is possible, but less straight-
forward, typically involving additional parameters for determining cascaded
activation flow (see Cohen, Dunbar, & McClelland, 1990). How long the 
network takes to settle into its various attractor basins for a range of different
initial input vectors will often correspond well with how long a human subject
takes to respond to a range of different laboratory stimuli (e.g., Hinton et al.,
1993; Masson, 1991; McRae et al., 1997; see also Usher & McClelland, 2001).

Closely related to the Hopfield net is the Boltzmann machine. The
Boltzmann machine was named after the physicist who developed the entropy
equations that describe the diffusion of heat through a metal plate from a 
single heat transference contact point. (Interestingly, variants of these same
entropy equations have been used in information theory for several decades
now; Shannon & Weaver, 1949.) As with a Hopfield net, a Boltzmann machine
is fully interconnected; however, some nodes can be designated as input, out-
put, or hidden. Moreover, the activation threshold is stochastic rather than
linear, such that the summed input to a node is converted into the probability
that the node will be in a 0 activation state or a 1.0 activation state. Kawamoto
(1993; see also Cottrell, 1989) used a Boltzmann machine to simulate the non-
linear state space trajectories that a written word recognition network follows
in the process of settling on a unique interpretation of an ambiguous word
like rose, as a verb or a noun, or like bug, as referring to an insect or a spy
device (see chapter 7).

A number of other types of attractorlike networks have been developed to
study perceptual/cognitive phenomena like pattern completion (Grossberg,
1980), categorical perception (Anderson et al., 1977), visual masking (Turvey,
1973), memory (Little & Shaw, 1975), to name just a few. The many different
attractor network types have their individual strengths for certain applica-
tions and weaknesses for others (see Amit, 1989). Many of the attractor 
networks mentioned so far rely on distributed representations, such that the
mental representations of interest are instantiated by diffuse patterns of acti-
vation across multiple nodes in the network, for example, the feature nodes
that comprise a concept (McRae et al., 1997).

There is another type of attractorlike network that usually has more 
limited connectivity than Hopfield nets or Boltzmann machines, and it is often
referred to as a localist attractor network. A localist attractor network, as I will
broadly and inclusively treat it, can include multiple levels of representation
(e.g., lexical, phonemic, and subphonemic, or scenes, objects, and object
parts), but the different levels will typically be treated by somewhat separate
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vectors of network nodes. Within the lexical vector, for example, individual
nodes will be devoted to individual words, whereas within the subphonemic
vector, individual nodes will be devoted to individual phonetic features. Thus,
the “representations of interest” within the subphonemic layer of the network
will still correspond to individual nodes. This makes the behavior of localist
attractor networks considerably easier to interpret and track over time than
that of distributed attractor networks; moreover, they are much less likely to
exhibit spurious or inappropriate attractors (Zemel & Mozer, 2001). I will
loosely include a number of spreading-activation networks in this category of
localist attractor networks. For example, spreading-activation types of models,
such as interactive-activation (Grainger & Jacobs, 1998, 1999; McClelland &
Rumelhart, 1981; McClelland & Elman, 1986; Rumelhart & McClelland, 1982;
see also Dell, 1986, for a similar kind of network), use nodes whose content is
easily identified, thus allowing the network’s state to be easily described at any
moment in time. Notably, such networks spend a great deal of their time in
intermediate, multifariously interpretable, regions of their state space, on the
way toward some uniquely identifiable state in which only a perfectly consis-
tent set of nodes is active—much like what was argued for how the mind
works in chapters 1 and 2. One drawback of most localist attractor network
simulations of perception and cognition is that the setting of synaptic weights
and other parameters is often carried out “by hand” rather than by using a
principled arrangement of weights or a learning algorithm (but see Zemel &
Mozer, 2001). This makes them less useful for simulating dynamics over
developmental time. However, the focus of this book is on temporal dynamics
of real-time processing, at the scale of seconds and milliseconds, so this weak-
ness of localist attractor networks is somewhat less relevant to the present
purposes.

A Demonstration Arena for Probabilistic Dynamic
Competition: Normalized Recurrence

Compared to distributed attractor networks, localist attractor networks are
one step further abstracted from the real neurophysiology, because they
overidealize mental representations as instantiated by individual nodes. This
makes them a somewhat shorter bridge between psychology and neuroscience—
thus requiring longer leaps of inference between the two. But in some ways,
simpler is better when it comes to modeling the mind because as one’s model
gets too large and unwieldy, it risks becoming as opaque as the subject 
it is intended to reveal. Indeed, some network modelers have resorted to run-
ning experiments on their elaborate, convoluted networks in the same man-
ner that psychologists run experiments on humans, as their sole method of
figuring out how the model works! In any case, building the theory bridge
between mind and brain clearly requires multiple partially overlapping frame-
works (e.g., computational neuroscience, localist attractor networks, parallel
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distributed processing networks, and dynamical systems; see Spencer & Thelen,
2003) that can maintain connections to one another and stand as a contigu-
ous fabric of mutually consistent simulations that will allow future genera-
tions to safely walk between psychology and neuroscience without having to
take too many risky speculative leaps.

In the following pages, I describe a localist attractor network architecture
(normalized recurrence) that—because of its extreme simplicity—I do not call
a model per se. This competition algorithm exhibits a kind of temporal dynam-
ics, resulting from continuous and recurrent information integration, that
resembles the temporal dynamics observed in categorization experiments
(chapter 6), language comprehension experiments (chapter 7), and visual search
experiments (chapter 8), but it does not make any explicit architectural or rep-
resentational claims about the mind. It simulates process, not content. Its only
assumptions are the following: (1) that disparate information sources in percep-
tion and cognition are continuously integrated (rather than temporarily encap-
sulated from one another by stages or modules), and thus must share a common
format of representation (perhaps neural population codes—for which the
localist nodes are a kind of shorthand); and (2) that reentrant neural projections
facilitate a recurrence in information flow that allows partially integrated infor-
mation to bias the initial processing of incoming afferent sensory input.

The equations for this competition algorithm are simple enough, and
there are few enough parameters, that it serves as a useful introduction to
implemented dynamical simulations of perceptual/cognitive processes that
readers can write themselves in MATLAB, for example, in just a few lines of
code. MATLAB code for several example simulations reported throughout
this book is included in the appendix.

Normalized recurrence can be treated as a localist attractor network that
allows disparate formats of information to be combined in the form of prob-
abilities with which their various biases would support a set of enumerated
outputs (McRae, Spivey-Knowlton, & Tanenhaus, 1998; Spivey et al., 2002a;
Spivey & Tanenhaus, 1998; Tanenhaus, Spivey-Knowlton, & Hanna, 2000).
Those outputs can be a set of perceptual interpretations, cognitive decisions,
or motor actions. One can think of them as attractors that have been plucked
out of their high-dimensional state space and converted into the dimensions
of a lower dimensional “attractor space” (not unlike figure 2.5 in chapter 2).
The pattern of probabilistic activations across the output layer of the norma-
lized recurrence network can be treated as a location in that attractor space.
See figure 4.11. This unfairly treats all the attractors as equidistant from one
another (which is unlikely to be true about the brain); however, this drawback
is often outweighed by the expository benefits of normalized recurrence.
Think of it as if one has taken a distributed system’s current coordinates in
state space and computed the proximity to all relevant point attractors (or
neural population codes) in the state space. Normalize these proximity values,
so that they sum to 1.0, and you have the profile of a probabilistic mental
state—as described in chapter 2.
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Normalized recurrence is intended at a level abstraction significantly
removed from the real dynamics of actual neurons and synapses. Although it is
helpful to depict it in the connectionist style of circles for units and connecting
lines for synapses, it is not even as neurophysiologically plausible as the typical
connectionist network. It does not employ distributed representations, and it
does not have any learning algorithm at all. The system’s focus on real-time
dynamics is consistent with this book’s emphasis on perceptual/cognitive pro-
cessing time scales rather than developmental time scales (e.g., Elman et al.,
1996; Thelen & Smith, 1994). The synaptic weights, if they need to be varied,
must be set by hand, as is done in interactive activation types of networks (e.g.,
Burton, 1994; Dell, 1986; Grainger & Jacobs, 1999; McClelland & Rumelhart,
1981; Page, 2000; Rumelhart & McClelland, 1982; van Heuven et al., 2001; see
also McClelland & Elman, 1986). Perhaps what most glaringly deviates from
neurophysiological plausibility in normalized recurrence, as will be seen, is the
use of multiplicative feedback from the output layer to the individual input 
layers. Although multiplicative synapses have been reported in the electro-
physiology literature (see Bugmann, 1992), they do not appear to be the norm.

Probabilism in Normalized Recurrence

The most important aspect of this generic simulation system is its probabilism.
Probabilistic representations, such as those used in the fuzzy logical model of
perception (Massaro, 1989), allow the enhancement of activation of behav-
iorally relevant information to be complementary and commensurate with
the suppression of activation of behaviorally irrelevant information (see also

Figure 4.11. Basic architecture of the normalized
recurrence localist attractor network.



Rumelhart, 1970). In fact, even if enhancement and suppression were some-
how two independent mechanisms in perception/cognition (e.g., Gernsbacher,
1990; Posner & Cohen, 1984), an assessment of the probabilities of the possible
behavioral outputs (as well as any associated internal representations) at any
one point in time would necessarily have enhancement and suppression result
in a zero-sum game. It is exactly this assessment of probabilities that provides
the starting point for motivating the design of normalized recurrence.

One of the primary reasons to use probabilistic activation values is that
they eschew any notion of processing resources, something that has been criti-
cized as a fast and loose wild card for cognitive psychologists for decades (see
Allport, 1989; Morrison, 1984; Navon, 1984; Palmer, 1995). There are several
problems with the notion of processing resources or processing capacity. The
notion was first invoked to account for the results of dual-task paradigms,
where simultaneous performance on two easy tasks (i.e., tasks that require few
processing resources) is not compromised, but simultaneous performance on
two hard tasks (i.e., tasks that require many processing resources) is compro-
mised. Clearly, the definition of a hard task and the definition of a task whose
performance is compromised in a dual-task paradigm becomes a circular argu-
ment very quickly. (Besides, these kinds of results are accommodated by a prob-
abilistic activation scheme, e.g., see the visual search simulations in chapter 8.)

This perspective owes much to the traditional bottleneck theories of
information processing (Broadbent, 1958; Treisman, 1964), where it was
assumed that early perceptual processes superficially encoded the entire stim-
ulus input. At a later (more cognitive) stage, attention with its limited process-
ing capacity filtered the inputs to allow complex information processing to be
performed on only a (manageable) restricted set of the input. Since then, this
perspective has received increased critical scrutiny (e.g., Allport, 1989).

One of the biggest problems introduced by the notion of processing
resources is the assumption that when the system as a whole is not being
severely taxed, there are extra, unused resources waiting to be deployed. This
implies that there is a storehouse in the brain from which these processing
resources are doled out, and where the system’s capacity, or “metabolic budget,”
is constantly tabulated. To my knowledge, no such storehouse, or accounting
executive, has ever been convincingly localized in the brain.

Further support for probabilism and against unbounded or raw activa-
tion values is seen in recent neurophysiological data and modeling suggesting
that normalized activations are in fact an appropriate format for representing
the firing rates of neurons in the primary visual cortex of the macaque mon-
key (Carandini & Heeger, 1994). Basically, when a neuron is receiving a fixed
amount of afferent excitatory input, its firing rate is high if few of its neigh-
boring neurons are also active, and its firing rate is low if many of its neigh-
boring neurons are also active. Whether this is due to intracortical inhibition
(Carandini, Heeger, & Movshon, 1997) or to synaptic depression from the
thalamus (Carandini, Heeger, & Senn, 2002), it winds up being equivalent to
a linear summation procedure followed by a normalization procedure.
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Thus, theoretical and experimental observations are consistent with a
perspective in which the notion of limited processing capacity, at all levels of
analysis in the perceptual/cognitive system, is best explained (or perhaps
explained away) by normalized activations. Note, however, that just because
these activations are normalized does not mean that the mind is computing
the probability of a given stimulus belonging to a particular category. That
would require a great deal more adherence to Bayesian probability theory
than mere normalization to a sum of 1.0. The sense in which normalized
recurrence treats these activations of the output layer as probabilities is in the
claim that they represent “the probability that the mind will trigger a motor
action that is associated with a particular stimulus category.” That is directly
stipulated in how the normalized activations of the output layer are mapped
onto proportions of the available responses in human data.

Localist Representations in Normalized Recurrence

Once raw amounts of stimulus salience have been replaced by probabilistic
values of stimulus salience, there still remains the problem of how to instanti-
ate these probabilities. It seems unavoidable that the way the brain instantiates
any complex concept, word, or object is in the form of distributed patterns of
activation (e.g., Hinton, McClelland, & Rumelhart, 1986) or sparse “popula-
tion codes” (e.g., Georgopoulos, 1995; Olshausen & Field, 2004; Pouget et al.,
2000; Young & Yamane, 1992; see also chapters 1 and 2). However, this does
not mean that the only way to simulate such mental entities is in terms of
many interconnected nodes encoding microfeatures (Hinton, 1981). For
example, there is little or no difference, in principle, between 9 out of the 10
microfeatures for a concept being digitally activated and having a single local-
ist node for that concept set at 0.9 activation (see Hopfield, 1984). In fact,
some findings in the psycholinguistics of word recognition are consistent with
the idea that lexical representations may indeed be reasonably treated as “func-
tionally unitized” or localist in format (e.g., Bowers, 2002; Stone & Van Orden,
1989). These different levels of description should be seen as complementary,
not mutually exclusive (Smolensky, 1988a).

One place where localist representations have proven quite useful is in
Dell’s (1986) spreading activation model of sentence production. In this
model, phonological features, syllables, words, and syntactic categories are all
given idealized representations as individual nodes. With explicitly repre-
sented nodes for each of these levels of description, Dell’s model exhibits 
the same patterns of speech errors that are seen in human data, including
anticipation and perseveration of phonemes, phoneme clusters, syllables, and
morphemes (Dell & Reich, 1981).

One of the practical benefits of modeling with localist representations is
that the state of the system at any one point in time is typically quite transparent,
as opposed to the patterns of activation in a fully distributed representation,
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which can often be quite difficult to interpret (Hinton et al., 1986). For exam-
ple, if a system with localist representation is at a bifurcation point between
two mutually exclusive states, this will generally be quite apparent, in that the
nodes representing those two states will have high and nearly equal activa-
tions. In a system with distributed representations, it is difficult enough to
identify diffuse patterns of activations with their attractor basins, but identi-
fying the state of the system (at time t) when it is at a bifurcation point between
attractors is even more daunting.

Additionally, when the model’s architecture forces these localist pro-
babilistic perceptual representations to correspond to particular response cate-
gories, it provides a powerful task-specific constraint on processing. Response
categories that are not allowed by the task or are not availed by the organism
cannot have their associated perceptual representations instantiated by this
system. This architectural constraint enforces a rather strict (perhaps too strict)
form of embodiment and situatedness of cognition (e.g., Ballard, Hayhoe,
Pook, & Rao, 1997; Glenberg, 1997; Greeno, 1998; Harnad, 1993). That is,
the model cannot conceive of things on which it cannot potentially act.
Nonetheless, with enough perceptual inputs brought to bear on a given set of
possible response categories, some quite complex emergent properties can
become apparent in this mapping of perception to action. Thus, in this frame-
work, cognition may be viewed not as a separate set of static symbols and rules
that this model dares to ignore but as the complex dynamic processing that
emerges between perception and action, grounded in (and parasitic on) the
representational formats of both (see Barsalou, 1999; Jones & Smith, 1993).

Integration in Normalized Recurrence

At this point, having committed to probabilistic and localist representations,
perhaps it would help to offer some concrete examples of this notion of prob-
abilistic salience values of localist representations. Take, for example, the vari-
ous factors that might go into choosing a beer at a restaurant. For simplicity,
let’s examine only the beer’s flavor and affordability (we will ignore beer foam
decay rates for now, but see Dale et al., 1999; Leike, 2002). In terms of flavor,
one might have normalized salience values like that in figure 4.12a. In terms of
affordability, one might have normalized salience values like that in figure
4.12b. Note that these two feature vectors (which can act as input layers for a
normalized recurrence simulation) are somewhat at odds with one another.
The flavor vector is biased toward Franziskaner and Guinness, and against
Sam Adams and Pabst Blue Ribbon. In contrast, the affordability vector
(based on prices in the United States) is biased toward Pabst Blue Ribbon and
Sam Adams and against Guinness and Franziskaner. If money were of no con-
cern, then the flavor vector could be used as the sole determinant of the beer
selection. However, if money were the sole concern, then the affordability 
vector would be used to determine beer selection. But usually both money and
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enjoyment are of significant concern. So how does one integrate these 
competing biases?

Once an activation regime (probabilistic) and a representational medium
(localist) have been chosen, it still remains to be determined exactly how the
different sources of information are to be integrated. Because they are
designed as vectors of equal size, one obvious solution would be to combine
them in a pointwise fashion. Because they are a little bit like actual probabili-
ties, one might consider multiplying them (i.e., a dot-product) and renormal-
izing them in a fashion similar to Bayes’s theorem (see Massaro, 1989).
However, if the eventual goal is to simulate temporal dynamics, by applying
the operation iteratively with some form of recurrence, it takes only a few
exploratory pilot simulations to demonstrate that this general approach set-
tles onto a single alternative extremely quickly—usually within two or three
iterations. Such a narrow range of attractor settling times would certainly not
provide sufficient temporal resolution for approximating real-time data, such
as reaction times. Perhaps a better solution would be to simply sum the two
vectors.

Vector sum methods have been employed for a wide range of psychologi-
cal phenomena. For example, Kinchla (1974) used Gaussian (i.e., normally
distributed) noise with a vector sum to simulate accuracy data in visual
search, and N. Anderson (1964; see also Anderson, 1996) summed differen-
tially weighted vectors to simulate performance in a sequential number aver-
aging task. In Kinchla’s model, which was derived from signal detection theory
(Green & Swets, 1966), the weights that were applied to the vector always
summed to 1.0 (making it a weighted average). This allowed the model’s 
outputs, for example “target present” versus “target absent” in Kinchla’s case,
to be a probabilistic pair of values that could be fed into a Gaussian random
decision rule.

Although the inputs to this kind of one-step integration method can be
made to change over time, the integration method itself does not provide any-
thing in the way of temporal dynamics. A vector sum model, in which mutu-
ally exclusive representations compete with one another over time, can provide
exactly the kind of temporal dynamics necessary for reaction time data, but it

Figure 4.12. Values for feature vectors in a toy simulation.



needs some additional components to get those dynamics. There are many
ways for representations to compete with one another. They could each grad-
ually accumulate their evidence and independently race against one another
toward their respective criteria, as in Ratcliff ’s (1981, 1985) diffusion model, a
random walk process that integrates principles from signal detection theory,
usually with the goal of simulating reaction times. Or activation can be con-
tinuously fed forward through a series of hierarchical processing levels that
allows the system to combine and accumulate information for simulating
accuracy (and d-prime) at different points in time, as in McClelland’s (1979)
cascade model. Similarly, with an architecture like that in figure 4.11, the acti-
vations of the representations can be computed in a feedforward fashion as
localist nodes that then, within a processing level, produce autofacilitation
and exert mutual inhibition until one node reaches some criterion level of
supremacy, with the number of competition cycles mapping onto reaction
time (Spivey-Knowlton, 1994).

These kinds of algorithms, however, assume that the feature (input) vec-
tors do not change over time during competition; only the integration vector
changes. By contrast, in the interactive-activation model (McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1982), a bank of inputs (i.e.,
letters) activates a bank of higher-level representations (i.e., words), which
then feedback to further activate the input bank. This cyclic recurrence in
information transfer allows converging biases from both levels of representa-
tion to eventually settle on a coherent encoding of the input. Importantly, in
the case of the normalized recurrence arrangement, simple additive feedback
from the output layer to the input layers would not be sufficient to eventually
propel the network into a unique attractor basin (with all the nodes in each
vector near 0 activation, except for one of them near 1.0 activation). A multi-
plicative feedback rule (in which the amount of activation added to an input
node is the product of the corresponding integration node’s activation and
the amount of activation most recently passed to it by that input node) allows
the averaged biases that have resulted at the integration vector to “reward” the
corresponding input nodes commensurately with how responsible they were
for producing those averaged biases in the first place. After sending this feed-
back to all the input nodes, the next thing to do is renormalize the feature vec-
tors, so that they sum to 1.0 again, as the next competition cycle (time step)
begins. This regime of operations within a cycle—normalize input (feature)
layer, compute weighted average at output (integration) layer, send feedback
to input later—typically yields settling times in the range of dozens of itera-
tions; a temporal resolution that should be sufficient for approximating 
reaction times.

Combining the model characteristics discussed thus far yields a generic
computational architecture that exhibits probabilistic activations of localist
representations and employs a vector sum (on the feedforward step) for inte-
gration, with multiplicative recurrence (on the feedback step) for temporal
dynamics. In normalized recurrence, representations compete with one another
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over time. This provides simulations of reaction times, eye movement 
patterns, as well as accuracy data at specified temporal intervals.

The Algorithm 

Normalized recurrence (McRae et al., 1998; Spivey-Knowlton, 1996; Spivey
et al., 2002a; Spivey & Tanenhaus, 1998; Tanenhaus et al., 2000) is a computa-
tional architecture that bears similarities with McClelland and Rumelhart’s
(1981) interactive-activation architecture, except that there are multiple input
vectors, which I call constraint vectors, and the recurrence is restricted to feed-
back from the integration vector to the individual constraint vectors. That is,
the c input constraints, shown as feature vectors (Fc) do not have direct cross-
talk with one another (see figure 4.11), but the feedback from the integration
vector (I) produces an indirect cross-talk between constraints.

Rather than squeezing it all into one long, ugly equation, it is perhaps
more easily grasped as a series of small steps to be carried out within one iter-
ation. Normalized recurrence allows representations to (implicitly) compete
with one another by dividing each individual feature-vector activation by the
sum of that vector (equation 4.2). This forces the elements within that vector
to share the limited resources of the probability space.

Fc(norm) � Fc /�Fc (4.2)

The integration vector (I) is simply recomputed at each cycle as the weighted
sum of the constraint vectors (equation 4.3). The weights (wc) can be set to
each equal 1.0 (Spivey-Knowlton, 1996), they can be set to each equal 1/c
(Spivey & Tanenhaus, 1998), or they can be independently estimated by
curve-fitting off-line norming data (with �wc � 1.0), and then those same
weights can be used to simulate real-time data (McRae et al., 1998).

I � �wcFc(norm) (4.3)

This weighted sum is then normalized in the integration vector (equation 4.4,
a simpler version of the softmax activation function; see Bridle, 1990), as was
done in the constraint vectors, to result in approximated probabilities of each
possible response category. Of course, if the weights sum to 1, equation 4.4 is
actually unnecessary because multiplying constraint vectors that sum to 1 by
weights that sum to 1 would automatically result in an integration vector that
sums to 1. However, in some circumstances, you might want the weights of
the input vectors to each equal 1.0 (Spivey-Knowlton, 1996), in which case the
normalization exacted by equation 4.4 is crucial.

I(norm) � I/�I (4.4)

The feedback from the integration vector back to each constraint vector is
equal to the activation of each integration vector element multiplied by the
weighted input it received up that particular pathway, added to the current
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activation of the corresponding element in a constraint vector (equation 4.5).
Over the course of many iterations, this feedback process allows the emerging
interpretation resulting from the (weighted) average of the c feature vectors to
gradually coerce each individual feature vector (even those that are biased
quite differently from the average) to warp its activation pattern into a form
that supports the developing consensus. Thus, as the integration vector is
approaching a moderately confident singular interpretation of the input,
noise or ambiguity in one feature vector can be resolved, or pattern com-
pleted, by certainties in the other feature vectors.

Fc � Fc(norm) � IwcFc (4.5)

The cycle (of equations 4.2–4.5) then repeats. Without needing to impose a
logistic function (e.g., the equation in figure 4.2) on the output activations,
normalized recurrence naturally approximates a sigmoidal function over
time, with converging biases among the various constraints leading the inte-
gration vector to settle toward a single highest probability representation. For
example, given the beer preference vectors in figure 4.12, conducting a 
normalized recurrence simulation of the beer choice decision-making process
is trivial. If the weights assigned to flavor and affordability are equal (i.e., 0.5
for each), then the integration layer exceeds 0.95 activation for Franziskaner,
naturally, on the 24th iteration. (See code in the appendix.) However, as the
vector weights trade off, for different financial or gustatory refinement cir-
cumstances, such that affordability becomes more valued than flavor, one can
observe the model settle in favor of Guinness or Sam Adams. In fact, if afford-
ability is given a weight of 0.75 and flavor thus given a weight of 0.25, as might
be the case for a starving undergraduate, the model will actually settle in favor
of Pabst Blue Ribbon, believe it or not. Figure 4.13 shows the integration- and
feature-vector activation plots over time for this unfortunate circumstance.
Not unlike the discussion of Schrödinger’s cat in chapter 1, at any one time
slice in the integration vector’s activation pattern here, the idealized freeze-
frame of the system can be described as being in multiple partial states at
once: partly wanting Pabst, partly wanting Sam Adams and Guinness, and
wistfully wishing it could afford Franziskaner. Note how the integration vec-
tor shows both Pabst and Sam Adams rising in tandem for the first several
iterations. Note also how the flavor vector’s activation of Sam Adams takes the
lead for a period of time, peaking at the 19th iteration, only to have its hopes
dashed as the emerging consensus for Pabst coerces even the flavor vector to
coincide with the choice. That is, the network eventually convinces itself that
it prefers the taste of Pabst—because that is all it can afford. Figure 4.14, in the
form of a two-dimensional window on the integration vector, plotting the
Pabst node activation by the Sam Adams node activation time step after time
step, shows the nonlinear trajectory through representational state space that
the model traverses as it decides on Pabst. This perspective on the activations
reveals the simulation’s mental state starting out almost equidistant from the
Pabst attractor (bottom right corner) and the Sam Adams (top left corner),
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but then eventually turning and quickly gravitating into the Pabst attractor.
It is as if the poor undergraduate could almost taste the Sam Adams as his
hand reached for the Pabst Blue Ribbon.

Of course, this competition algorithm on its own will happily cycle indefi-
nitely, well after one integration node reaches asymptote at 1.0 activation and
all the others have dropped to 0 activation. Therefore, some kind of criterion
must be set for when the model is to stop competition and treat the normal-
ized activation pattern exhibited by the output layer as the distributed inter-
pretation of the input, and as the probability density function corresponding
to the response categories available for execution. This criterion can be a fixed
activation value of 0.95, or perhaps 0.75 for low-threshold motor outputs
such as eye movements (Spivey-Knowlton, 1996), or it can be a dynamic cri-
terion that starts at 1.0 and is gradually reduced by some small amount each
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time step (McRae et al., 1998; Spivey & Tanenhaus, 1998). Alternatively, the
model can be interrupted at various time intervals and tested on its accuracy
(Spivey et al., 2002a). Finally, the dynamic criterion can be made stochastic so
that there is some variation from trial to trial in how long competition is
allowed to take place, and selection of an interpretation can be a random
choice, weighted by the activation values (see the simulation of eye move-
ments during spoken word recognition in chapter 7). This criterion setting
issue can sometimes be thorny (see Proctor, 1986, and Ratcliff, 1987), but with
normalized recurrence, the basic pattern of results is rarely substantially 
different as long as the criterion is between about 0.5 and 0.95.

The key strength of normalized recurrence is its transparency. At any
point in time, the model can be stopped, and its activation patterns are as 
easily interpreted as the idealized bar graphs of probabilistic mental states in
chapter 2. Another strength of the normalized recurrence competition algo-
rithm is its generalizability. In fact, it has already provided quantitative
accounts of human data from a range of perceptual/cognitive phenomena. It
has been used to simulate semantic and discourse context effects in reading
times of syntactically ambiguous sentences (McRae et al., 1998; Spivey &
Tanenhaus, 1998), reaction times in visual search (Spivey-Knowlton, 1996),
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and d-prime sensitivity values for speeded grammaticality judgments in a
speed–accuracy trade-off task (Spivey et al., 2002a). The broad applicability of
this algorithm suggests that it may be appealing to some fundamental charac-
teristics of how the mind continuously integrates information (at a relatively
abstract level of description, of course), in terms of encoding system internal
representations as probabilities, and the interactive exchange of these proba-
bilities between subsystems via recurrent feedback.

Exploratory Simulations

In a series of simulations designed purely to explore the temporal dynamics of
normalized recurrence, four random feature vectors combined their support for
six competing response categories. Initial input activations were randomly set
between 0 and 1 for each input node, and vectors were simply summed at the
integration layer (i.e., all weights equaled 1.0). The model was allowed to cycle
all the way to the end of its pattern completion process (i.e., there was no crite-
rion set), and the activations of all six integration nodes were recorded over
time. In the vast majority of such simulations, the initially most active integra-
tion node takes up the entire probability space relatively quickly. See figure 4.15.

However, pattern completion with normalized recurrence is not always
that easy. Occasionally, two response categories will end up in a time-consuming
tug of war over the probability space. Figure 4.16 shows a run of the model in
which the initially most active integration node (starting at 0.24679) did end
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up owning the entire probability space, but the initially second most active
integration node (starting at 0.24004) postponed that result by putting up a
prolonged competition until the eventual bifurcation point much later. In
dynamical systems theory, which describes systems in terms of how they
change, this tug of war between the two mutually exclusive representations
happens when the system is in a region nearly perfectly equidistant between
two point attractors. This region is a kind of plateau in the state space, called
a saddle point, where the system has little energy and can, for a while, move
only very slowly toward one or the other attractor. However, once it reaches
the edge between the saddle point and one of the attractor basins (almost like
a cliff in the state space), the system very quickly gravitates toward that near-
est point attractor—much like pattern-completing a population code.

In addition to quantitative simulations helping one avoid mathematically
impossible theoretical predictions, as noted early on in this chapter, simula-
tions can also allow one to observe mathematically possible results that intui-
tions about the theory might tell us are impossible. For example, given the
relatively simple equations involved in the normalized recurrence competi-
tion algorithm (equations 4.2–5), an intuitive assumption might be that
whichever response category (integration node) starts out with the highest
activation will eventually be the winning response category. In fact, most of
the time, that is the case. But our intuitions are not always correct.

Once in a great while, these exploratory simulations came up with a result
in which the initially most active integration node gave way to the initially 
second most active integration node, which then took over the probability
space. Figure 4.17 shows just such a result. One of the integration nodes
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started with an activation of 0.19469, whereas another integration node
started with an activation of 0.19462. However, by the 10th iteration, those
activation curves crossed one another, and the initially second most active
integration node eventually won the competition. This is what has been called
a gang effect (e.g., Zemel & Mozer, 2001), in which the arrangement and vary-
ing strengths of the different attractors in the state space elicit a nonlinear 
trajectory that causes the system to settle not into the attractor with the short-
est Euclidean distance from the starting point, but instead to settle into a 
different attractor. It is as if the other attractors gang up against the initially
closest attractor, causing it to lose the competition.

On examination, it is clear that what allows normalized recurrence to
exhibit this nonmonotonic behavior is actually quite simple. Occasionally, an
integration node will have all but one of its supporting input nodes highly
active, with the remaining input node very close to zero probability. The ini-
tial average of these inputs may still be higher than the averaged input to any
other integration node. However, to own the entire probability space (at the
end of competition), all of an integration node’s supporters must be at 1.0
themselves. And because the feedback in normalized recurrence is multiplica-
tive, a supporting input that is very close to zero probability will almost never
be coerced into reaching 1.0.

These exploratory simulations clearly demonstrate that one’s intuitions
about a theory can often be faulty, and a computational implementation can
occasionally reveal unknown capabilities in the theory. With quantitative
implementations of our theories, particularly ones that are at least generally
consistent with the basic principles of neuroscience, the science of the mind
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can prevent intuitive interpretations of theories from leading us astray and can
point us toward some fundamental principles of perception, action, and cogni-
tion (see Seidenberg, 1993). Moreover, with the help of research in neuro-
science and cognitive neuroscience, implemented simulations provide a way to
imagine “peeking inside” and catching a glimpse of the graded, fuzzy, partially
overlapping representations that underlie our more easily observable (and
sometimes misleading) discrete motor outputs, and discrete theoretical claims.

From One Section to Another

In the previous section, the beautiful curves in figures 4.13–4.17 are evocative
in their illustration of the smooth, continuous, and nonlinear interplay that
takes place between probabilistic representations that are competing against
one another as the system settles into an attractor. However, realistic natural
cognition involves the system getting out of attractor basins as well. Not only
is environmental stimulation usually continuously streaming into our sensory
subsystems, but a neural population code itself will fatigue (or adapt), causing
its attractor status to convert into a repellor status (recall the Necker cube 
discussion in chapter 1). Thus, as soon as one attractor basin is being confi-
dently approached, changes in the sensory input (as well as changes in the sys-
tem’s internal parameters) are propelling the system to new and different
regions of state space in the direction of another attractor basin. This contin-
uous trajectory that constitutes mental activity compels cognitive scientists to
explore experimental measures that are sensitive to this continuous process
(see chapter 3), as well as theoretical frameworks that are consistent with its
consequences (see chapter 5).

To address transitions from one attractor toward another, presenting
sequences of individuated nonoverlapping stimuli to the input layer of an
attractor network over time is a step in the right direction, but it is perhaps not
enough. Even qualitative transitions over time in sensory streams are usually
fundamentally continuous despite their apparent suddenness. Sensory input
flows; it does not come in packages (e.g., Gibson, 1950). For example, when we
listen to our native language being spoken, we feel as though the words are
clearly separated by gaps of silence, when in fact they typically are not. In 
contrast, when listening to a language we barely know, we find it quite hard to
segment one word from another. Similarly, artificial mini-languages, such as
that designed by Saffran, Newport, and Aslin (1996), can be constructed to
have no pauses between words. When one first listens to this speech stream, it
sounds like a seamless flow of one syllable after another. However, the tempo-
ral statistics of the syllables reliably converge on a few triplets of syllables
behaving like words in the mini-language, and people’s guesses about these
words (after a mere 20 minutes of exposure) are significantly above chance.
Moreover, after many months of hearing these speech streams and knowing
the words extremely well, the experimenters and their colleagues developed a



compelling (albeit, illusory) phenomenological impression that there were
pauses between the artificial words. Obviously, in such circumstances, it is not
the speech stream that has changed; it is the listener. The speech stream is still
a continuous flow of evenly timed syllable after syllable after syllable. Perhaps
our attractor simulations of perception, cognition, and action should main-
tain this relative continuity of sensory input flow (e.g., as opposed to present-
ing one word/object at a time) and allow the nonlinear attractor dynamics
intrinsic to the system to impose the apparent segmentation that leads to
things like constituent structure.

Even in this case, however, the subcomponents (e.g., syllables) of the 
elements of interest (e.g., words) are still being presented to the system as
individuated nonoverlapping stimuli. The finer time scale provides a better
approximation of continuity, but it merely pushes the problem further down.
What if one’s interest was syllables and phonotactics? One interesting solution
is to blend, somewhat, the patterns corresponding to temporally adjacent
inputs. For example, McClelland and Elman’s (1986) TRACE model of speech
perception used patterns of afferent input that corresponded to the mixture of
phonemic features that happens when the transition from one phoneme to
another exhibits coarticulation. Coarticulation occurs when the shape and
positioning of the tongue and mouth during production of one phoneme
must change dramatically to produce a subsequent very different phoneme.
The result is that the articulation of the subsequent phoneme is slightly
skewed in the direction of the previous phoneme. An attractor network whose
inputs are blended in a manner similar to this—or perhaps even just inter-
leaving each time step of temporally discrete input with a time step of blended
input—might more readily exhibit the spatiotemporal continuity inherent to
sensory input, cognitive processing, and motor output.

That said, there are still those who would take issue with this assumed
ubiquity of the spatiotemporal continuity of cognitive processing (e.g.,
Anderson, 1983; Dietrich & Markman, 2003; Marcus, 2001). In principle, it is
conceivable that a part of the mind is blind to the details of the continuous
metric state space devoted to perception and action, and all it actually receives
is a series of symbolic outputs corresponding to instantaneous boundary
crossings of the trajectory leaving one section of state space and entering
another. If cognition thus treats the continuous (and often recurrent) flowing
trajectory of perception and action more as a series of discretely labeled and
nonmetric teleportations from one section to another, then cognitive psy-
chology would indeed require a completely different format of experimental
inquiry and theoretical analysis from the rest of perception and action.

Symbolic Dynamics?

It may sound like just another oxymoron—among the likes of “military intel-
ligence,”“compassionate conservatives,” and “business ethics”—but “symbolic
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dynamics” is a legitimate field of inquiry in the mathematics of dynamical sys-
tems theory. In fact, symbolic dynamics have even been employed to study
what happens as the logistic map (figure 4.8) transitions from an ordered
regime to a chaotic regime (Bonanno & Menconi, 2002). In symbolic dynam-
ics (see, Bollt et al., 2000; Crutchfield, 1994; Devaney, 2003; Robinson, 1998), a
discretely delineated and internally contiguous region of state or phase space
can be assigned a symbol that is categorically different from the symbol
assigned to a neighboring (and abutting) delineated region of state or phase
space (see also Casey, 1996; Cleeremans et al., 1989). As the continuous trajec-
tory of the system’s state moves into one region, the corresponding symbol is
emitted, and when the trajectory then leaves that region and enters a different
one, a new symbol is emitted. Figure 4.18 shows a vector landscape with two
attractors (as in figure 1.1), and it has had symbolic thresholds (dashed lines)
added to delineate each discrete region from its neighboring discrete regions.
It is as if fences have been put up throughout the state space, and fence sitting
is not allowed. As the system continuously changes state, moving through this
vector landscape and eventually settling into one of the attractors, a new sym-
bol is emitted each time the trajectory crosses a threshold. Thus, the thick
solid line representing a continuous trajectory from location m to location 
n would produce the symbol sequence, BQY. The other possible symbol
sequences allowed by this landscape (assuming one starts in A or B) are BQX,
BRY, BPX, AQY, AQX, ARY, and APX. The attractor dynamics of this continu-
ous vector field do not allow trajectories that would produce any other

Figure 4.18. A simplified vector field that has been partitioned
into discretely labeled regions.



sequences of symbols. Crucially, the system receiving the symbols emitted
from this process has no direct information at all about the continuous
dynamics of the original system’s trajectory inside any delineated regions,
much like classical claims regarding categorical perception (see chapter 6).

Interestingly, although the receiving system does not have access to the
continuous dynamics within the original system, it is nonetheless capable of
reconstructing an approximation of those continuous dynamics if it has a
continuous state space of its own to work with (Takens, 1981). For example, if
you take the famous Lorenz attractor as the original system (i.e., a sort of
semi-recurring figure-eight pattern bent at the middle in a 3D space) and
sample from it a single value corresponding to the trajectory’s projection onto
a randomly chosen vector in that space, you get a time series of numbers that
waver around one narrow range of values and then quickly transition to
wavering around another narrow range of values. A recurrent network with
one input node, three hidden nodes, and one output node, using a prediction-
based learning algorithm, can learn to mimic this one-dimensional time
series. More important, when you plot a 3D graph of the hidden node activa-
tions over time, the network’s trajectory looks just like the Lorenz attractor
(Andrews, 2003). It can even work if symbolic thresholds are imposed on that
one-dimensional time series and fed into the network as localist binary input
vectors. Score one for symbolic communication, perhaps. But in the end, all
this is not actually that surprising when one recognizes the simple fact that
symbolic states are really nothing more than a special case within the space 
of possible continuous dynamic structures. A continuous metric state space
logically subsumes the set of symbols that exist inside it.

The notion of regions of state space with symbolic meanings assigned to
them may sound a bit similar to the way the notion of attractor basin has been
treated so far. Although the discretely delineated regions of symbolic dyna-
mics can share some commonalities with attractor basins, one critical differ-
ence is that in symbolic dynamics, a genuinely categorical threshold has been
imposed (by someone or something) that determines when the system instan-
taneously enters or leaves a region. Exact placement of these thresholds, even
with statistically sophisticated methods, can become a difficult process with
dire consequences for imprecision (Bollt et al., 2000). With complex trajecto-
ries through the state space, ungrammatical or incoherent symbol strings can
sometimes be emitted, thus producing a dramatic misrepresentation of the
system’s dynamics. This frailty of symbolic dynamics can be loosely likened to
an electoral college system that carves up its voting body into subgroups, dis-
cretizing each subgroup’s majority vote and then calculating a majority pref-
erence among the subgroups. Such a process can produce a peculiar error in
democracy, where the subgroup majority preference calculation favors one
symbolic result and the truer “one element one vote” calculation favors another.

In contrast, with attractor basins—even very steep and deep ones—
the transition from “outside” to “inside” (or vice versa) is always genuinely
continuous in its actual mathematical form. Thus, to the extent that attractor
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basins are similar to symbols, they might perhaps be loosely thought of as
fuzzy symbols. In fact, because normalized recurrence uses probabilistic local-
ist representations, it could be described as exhibiting a kind of fuzzy symbolic
dynamics. Note, however, that I am not suggesting that some fuzzy logic–based
module in the mind receives these emitted fuzzy symbols and tracks their
competition to select among potential interpretations or motor actions. The
purpose of converting the true continuous dynamics of a high-dimensional
state space into a fuzzy symbolic dynamics of a low-dimensional state space is
solely for the purpose of allowing the scientist/observer to more easily
describe, understand, and communicate the behavior of the system. The 
neural system itself, which is of course being very abstractly simulated by a
localist attractor network, need not include any discrete symbolics at all in its
dynamical processes.

Chapters 6 to 9, in particular, will illustrate a number of experimental
demonstrations of perceptual/cognitive phenomena in categorization, lan-
guage, vision, and action that appear to still be using the continuous param-
eters of the system’s trajectory through its state space, rather than relying
solely on symbols extracted from those dynamics. Besides, if there were a
higher cognition part of the brain that truly performed symbolic dynamics on
its continuous input, it would only have to convert those symbols right back
into continuous state space trajectory coordinates over time for the motor sys-
tem, which we know works that way (see chapter 9). Rather than the dis-
cretization of a continuous metric state space taking place in between
perception and motor planning (the “categorical bottleneck,” as it were), I
submit instead that—to the extent that it takes place at all—it takes place after
motor planning: during action itself. Our eyes fixate only one object at a time
(and stay almost still for a few hundred milliseconds). Each hand typically
grasps only one object at a time (although grasping and lifting is often per-
formed in a remarkably fluid continuous motion). Our speech apparatus usu-
ally produces only one sound at a time (even then, sequential phonemes often
exhibit coarticulation, where features of one phoneme are partially present
during production of the other). The upshot of all this is that when you look
at the dynamical perception-action loop, there does not appear to be any
objective evidence for discrete symbolic internal representations anywhere
(and even the apparent observations of discrete motor actions are not really
perfect examples of discrete logical categories).

If there is a fundamental truth to symbolic mental representations being
emitted from the continuous dynamical state space of perceptual areas of the
brain and then being received and processed by cognitive areas of the brain
that function in a logical rule-based manner and then being converted back
into a continuous dynamic state space format for motor areas of the brain,
then I will eat my hat. But if there is a more reasonable sounding account of
how genuinely discrete logical symbols can exist inside a neural system that 
so regularly reveals itself as representing information via population codes
(see Barber, Clark, & Anderson, 2003; Georgopoulos et al., 1982; Zemel,
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Dayan, & Pouget, 1998), then it seems likely that it will come from the field of
symbolic dynamics. To avoid the risk of concluding that distributed and con-
tinuously dynamic representations cannot possibly implement human cogni-
tion (in the same way that some apocryphal scientists concluded that bumble
bees cannot possibly fly), the interdependence between algorithmic and
implementational accounts of the mind should encourage researchers who
advance symbolic accounts of mind (e.g., Dietrich & Markman, 2003; Marcus,
2001; Pinker & Ullman, 2002) to develop realistic neurophysiological accounts
of how discrete symbols emerge from neural-like processes. Until then, impos-
ing symbolic partitions onto continuous cognitive dynamics might be best
likened to telling a geologist that her research should take into account
national boundaries.

The Limitations of Existence Proofs

This chapter began with a call to arms based on the importance of developing
explicit implemented models of one’s theories. I have tried to make it clear
that with simulations like these, scientists of the mind can extrapolate their
data points to an imagined full account of the phenomena they study (like the
blind men collaborating to sculpt a model elephant, rather than simply pro-
fessing their individual impressions). Of course, there are many strategic ways
to model existing data, and the true test of a model is its ability to naturally
accommodate new data. This imagined full account then makes clear unam-
biguous predictions (which is more than can usually be said for unimple-
mented verbal descriptions of theories) that can be tested experimentally, thus
providing further constraining information for revision of the model.

However, this prediction issue for quantitative models is often seen as
walking a thin line. In certain circumstances, a verbal theory can make those
empirical predictions by itself, without ever having to be mathematically or
computationally implemented. Moreover, if the simulation comes up with a
prediction that you didn’t initially expect or predict from your theory, that
may suggest that you have a poor understanding of how your model works.
Thus, there is a catch-22: If the model offers no unexpected predictions, then
it can get accused of providing nothing more than the theory already does, but
if it offers surprising predictions, then it can get accused of being a black box
with no informativeness about the process in question. What is missed by that
attitude is the fact that theorists often have poor understandings of exactly
how their own theories work (as clearly established by the sociobiologists
early in this chapter)! A mathematical or computational implementation of
a theory will often come up with what seems like a novel prediction from the
theory, not so much because the model is poorly understood but because 
the theory was poorly understood in the first place.

Thus, it is still arguable that the first and most important result of
witnessing a theory being implemented in a simulation or in an equation is
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the simple demonstration that this version of the model is internally consis-
tent enough to at least function without breaking down or contradicting itself.
When the functioning model successfully fits some existing empirical data,
the model thus stands as an existence proof that this kind of theory can
account for this particular sample of data and therefore is a viable (though
certainly not the only possible) explanation of the given phenomena. However,
when there are parameters in the model that can be freely set to whatever 
values are necessary, fitting existing data is often all too easy (see Roberts &
Pashler, 2000)—perhaps not as easy as an aspiring taxi driver writing his own
name, as Roberts and Pashler (2000) analogized, but still very easy. If a model
cannot fit its target data, or if the taxi driver is unable to write his own name,
then neither of them should be allowed on the road.

As it turns out, several criteria have been noted as important for model
evaluation and selection. In their treatment of a collection of articles on writ-
ten word recognition models, Jacobs and Grainger (1994) list the following:
(1) descriptive adequacy (i.e., how well does the model fit the data it was
designed to fit?), (2) generality (i.e., how broad is the dataset the model was
designed to fit?), (3) simplicity (i.e., how many free parameters are involved in
the model?), (4) falsifiability (i.e., are there hypothetical patterns of data that
the model cannot fit?), (5) explanatory adequacy (i.e., does the model naturally
account for new data, or does it require additional ad hoc assumptions/
mechanisms?), and (6) neurobiological plausibility (i.e., is the model consis-
tent with what is known about how neural systems work?). (See also Cutting’s
2000 discussion of model flexibility as measured by cross-validation.)

Pitt, Myung, and Zhang (2002; see also Pitt & Myung, 2002) offer a
method based on minimum description length (Rissanen, 1978) for combin-
ing such factors into a quantitative algorithm for producing ratings of com-
peting psychological models. The upshot is that generalizability (a sort of
combination of Jacobs and Grainger’s 1994 “generality,” and “explanatory 
adequacy,” along with a “simplicity” component) is perhaps the most impor-
tant ability for a successful model to exhibit. That is, a model that fits lots of
existing data and, without significant adjustment, also fits new data, is a good
model. This should not be surprising. But what is perhaps surprising is that it
is the simpler models that tend to do better at generalizing to new data. Highly
complex models frequently run the risk of overfitting the existing data, thus
making it quite difficult for them to generalize to new data.

It has been argued that in psychology, descriptive adequacy—rather than
generalizability—too often winds up being the only criterion used to advocate
a particular model (Pitt, Myung, & Zhang, 2000; Roberts & Pashler, 2000).
And the parameter setting conducted to achieve that descriptive adequacy is
often not principled enough. Mapping the entire space of possible results
from the full range of parameter values is important to know whether the
model predicts a sufficiently narrow range of results. A model that can predict
anything, even nonsensical data, doesn’t really help anybody’s theory (see
Cutting et al., 1992). Of course, it is often the case that some combinations of
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parameter values are patently inconsistent with the theory being promoted by
the model. In fact, with a model that is sufficiently generic to allow itself to
instantiate versions of the competing theories, via the relevant parameter 
values, one can make controlled comparisons of theoretical accounts. For
example, if one theory claims that all information sources are immediately
combined to produce an interpretation of some stimulus array (all source
weights � 0), and a competing theory claims that certain information sources
initially do not contribute to the interpretation (certain source weights equal 
0 for an initial period of time), this can be implemented as two versions of the
model simply by setting those parameters appropriately and comparing their
respective results to existing and future empirical data. May the best model
win. Exactly this kind of procedure has in fact been carried out with normal-
ized recurrence (see McRae et al., 1998). For psychological modeling to do
more than precisely explicate a theory and provide existence proofs but to
actually adjudicate among competing theories, opposing theorists may need
to eventually agree on relatively generic modeling frameworks, such as sym-
bolic dynamics, and convert their theories into parameter value ranges that
correspond to their respective theories (see Dale & Spivey, 2005).
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Constructive Feedback for Modularity

The limits of modularity are also likely to be the limits of what we
are going to be able to understand about the mind, given
anything like the theoretical apparatus currently available.
—Jerry Fodor

When the independent displacement of particles in a distribution
brings about reciprocal influences, the relations within such a
distribution are no longer summative. In this case, one
displacement can and will determine other displacements—and
we now have a “physical system.” With increasing mutual
dependence among the parts, we reach systems where no
displacement or change of state is without its influence
throughout the entire system.
—Wolfgang Köhler (translated by Willis Ellis)

On Paradigm Shifts and State Transitions

As early as the 1920s, Wolfgang Köhler had noticed that the continuous
dynamical mathematics that were just starting to be explored in physics and
chemistry might actually be relevant to understanding how the brain works.
Dynamical systems theory was a nascent theoretical apparatus that was 
suddenly solving problems that had been vexing those scientists for decades.
This theoretical apparatus, however, was largely ignored in psychology during
the behaviorist years, and it continued to be suppressed throughout the cog-
nitive revolution. Perhaps it is only now, in the twenty-first century, that
dynamical systems theories designed specifically for handling nonmodular
phenomena with long-range interactions—a theoretical apparatus that Köhler
(1922/1938) tried to promulgate and Fodor (1983) lamented wasn’t available—
can finally get a fair chance to prove their value for studying the mind.

In that cognitive revolution of the 1960s, it is curious what changed and
what didn’t change in how we study the mind. As behaviorism was giving way,
the field was once again allowing itself to refer to internal mental events, but
the two-step feedforward reflex arc common to behaviorism remained, just
with a new name:“stimulus → response” was merely replaced with “stimulus →
interpretation.” In 1967, Ulric Neisser’s book, Cognitive Psychology, marshaled
contemporary experimental evidence from a wide range of psychologists 



showing that internal mental constructs could indeed be measured in the lab-
oratory and described in a theoretically rigorous fashion. This book changed
psychology by legitimating and popularizing the information-processing
approach to cognition. It was the swift metatheoretical kick to the head that
the field needed to finally relinquish its obsession with behaviorism (another
movement that made its own seminal contributions before outliving its use-
fulness) and the prohibition of the postulation of mental constructs. Many
important advances in our understanding of the mind resulted from this
information-processing movement. However, almost 40 years later, psychology
and the cognitive sciences may be in need of another metatheoretical kick to
the head.1 This time, though, it looks as though that kick may not be quite so
swift. The cognitive sciences may require more than one book to galvanize
such a paradigm shift. The book in your hands stands on the shoulders of
similar works produced by dynamically minded perceptual-cognitive theorists
such as Thelen and Smith (1994), Kelso (1995), Port and van Gelder (1995),
Elman et al. (1996), A. Clark (1997), J. Prinz (2002), and Ward (2002). In the
way that Neisser’s Cognitive Psychology helped identify the commonalities and
channel the efforts of experimental psychologists, psycholinguists, philoso-
phers of mind, linguists, and artificial intelligence researchers, The Continuity
of Mind, along with these related books, aims to identify the commonalities
and channel the efforts of dynamical systems theorists, connectionists, eco-
logical psychologists, cognitive neuroscientists, and computational neuro-
scientists. The experimental findings and line of argumentation that permeate
this book are intended to increase the probability further still that a gradual
state transition can occur in the cognitive sciences, such that old-fashioned,
no-longer-workable metaphors for describing mental activity in terms of
rules and symbols get properly backgrounded in favor of more fluid and
dynamic concepts of intermediating mental activity that is distributed both 
in time and in representational space. However, to do this, there are some
roadblocks that we need to get out of the way first. Modularity is one of those
roadblocks.

A Philosopher’s Evidence

In arguing for modularity, it has been popular among philosophers of mind to
note that one’s knowledge that a visual illusion is illusory is not sufficient to
eliminate the illusory percept (Fodor, 1983). For example, I can honestly tell
you that the two horizontal lines in the Müller-Lyer illusion (figure 5.1) are of
equal length. Yet that knowledge is not enough to make the illusion go away.
The line with outward-fanning wings still appears longer than the line with
inward-fanning wings. Regardless of the perceptual mechanism for this illu-
sion, the fact that it seems impervious to higher level knowledge is often taken
as empirical evidence for the absence of top-down influences on perceptual
modules. Note, however, that you wouldn’t really want top-down influences to
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be so strong that they completely overturn a perceptual representation 
(illusory or veridical), because then you would risk perceiving only what you
want to perceive and not what’s really out there. Instead, the top-down influ-
ences that are suggested by the ubiquitous feedback projections seen in the
neuroanatomy should, at best, be capable of subtly modifying perceptual 
representations—not summarily rewriting them.

It could very well be that the Müller-Lyer illusion is indeed quantitatively
milder after one is informed that the two lines are actually the same length. It
may just be difficult to introspectively discern (or test without response bias)
the reduction in illusion magnitude that takes place. Other visual illusions
may lend themselves more readily to quantitative measures of their magni-
tude without response bias. Figure 5.2 shows the tilt aftereffect, first dis-
covered by Gibson (1933). In this illusion, you start out by looking at one of
the tilted gratings in the upper row for a full minute. Let your eyes roam around
the middle of the grating, rather than holding your gaze fixed and motionless,
so that you avoid forming a brightness-contrast afterimage. When the minute
is up, move your eyes to one of the vertical gratings in the lower row. It will
appear not quite vertical, but instead tilted slightly counterclockwise. One can
measure the magnitude of this illusion by having the observer rotate the grat-
ing until it is perceived as perfectly vertical. Observers typically set the grating
a couple degrees clockwise, indicating that their visual illusion involved the
vertical grating appearing tilted about two degrees counterclockwise.

What’s crucial for the argument here is that this visual illusion has been
demonstrated to be subtly but reliably modulated by top-down influences.
Rather than fixating directly on a grating, if you instead keep your gaze inside
the center circle of the upper row for a full minute and then move your eyes to
the lower circle, you will get mild tilt aftereffects (of equal magnitude) for
both the left and right vertical gratings in your peripheral vision. But what if
you direct your visuospatial attention during that minute of adaptation

Figure 5.1. In the Müller-Lyer illusion the hori-
zontal bar with outward-fanning lines appears
longer than the one with inward-fanning lines.
But the top-down knowledge that it is an illu-
sion does not eliminate the perceptual effect.



toward only one of the upper gratings—say, the left-hand grating—while
keeping your eyes inside the upper circle? It may feel awkward to have your
attention on the upper left-hand grating while maintaining eye fixation on the
upper circle, and you may notice your attention wandering a bit during that
minute. If you keep pushing your attention, but not your eyes, toward that
left-hand grating, when you finally move your eyes down to the lower circle,
you may notice that the left-hand grating (on that lower row) appears slightly
more tilted counter-clockwise than the right-hand grating. The experimental
data showed that the illusion was about 25% greater on the attended side than on
the unattended side (Spivey & Spirn, 2000; see also Chaudhuri, 1990; Durgin,
2002; and Shulman, 1992, for similar attentional influences on different illusions).

Although it is not the same thing as higher level knowledge, this volun-
tary manipulation of endogenous spatial attention is clearly something that
initiates within association cortex, as it is instigated by an experimenter
instruction and mediated by a decision to comply. Therefore, the visual corti-
cal area in which the tilt aftereffect illusion takes place—most likely, primary

Figure 5.2. Visuospatial attention can modulate the strength of the tilt
aftereffect (see text for details).
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visual cortex (Bednar & Miikkulainen, 2000; Blakemore & Campbell, 1969)—
is clearly being subtly influenced by feedback signals from association cortex
(e.g., Brefczynski & DeYoe, 1999; Dragoi, Sharma, & Sur, 2000; Lamme &
Roelfsema, 2000). Although the synaptic projections that send feedback sig-
nals to the perceptual systems are not capable of completely overriding the
local pattern of information in visual cortex, they are clearly capable of subtly
modulating it. Thus, contrary to the philosopher’s introspections, even visual
illusions are not impervious to top-down influences.

Modularity Versus Distribularity

Of course, it will take more than an illusion to vanquish this wily foe that 
people refer to as modularity. There are at least two definitions of the term
module—one used by cognitive scientists and one used by neuroscientists.
The use of the same technical term for importantly different concepts is often
at the root of scientific debates and confusions, and the modularity debate in
the cognitive and neural sciences is no exception. Cognitive scientists tend to
rely on Fodor’s (1983) definition of modularity, which depends heavily on the
computer metaphor of the mind. Fodor claimed that sensory input systems
were linear feedforward encapsulated information processors whose internal
workings were already becoming well understood via standard reductive sci-
entific means. Interestingly, he suggested that high-level cognitive processes
were probably interactive, nonmodular, and as such were unlikely to ever be
understood by science as he knows it. I am actually inclined to agree with him
on that point, but with the following proviso: Given the evidence for inter-
action among perceptual systems, which I will recount in this chapter, I would
add that the perceptual systems themselves will also never be understood by
science as Fodor knows it. The new theoretical apparatus that can allow sci-
ence to get a handle on richly interactive autocatalytic processes—and which
has been successfully employed in chemistry and biology but has barely had a
chance to scratch the surface so far in psychology (see Turvey, 2004)—is com-
plex dynamical systems theory. This most definitely is not science as Fodor
knows it. Complex dynamical systems theory acknowledges the fact that many
systems of interest are open systems and therefore cannot be fully analyzed via
encapsulated reductionism, because some of the parameters that drive an 
open system’s behavior are not internal to the system. We could be talking at
the level of a phonological module embedded within the language system (e.g.,
Elman & McClelland, 1988; Magnuson et al., 2003; Pitt & McQueen, 1998), a
vision module embedded within a brain (see Churchland, Ramachandran, &
Sejnowski, 1994; Zeki, 1993), a brain embedded within a body (Barsalou, 1999;
Varela, Thompson, & Rosch, 1992), or an organism embedded within an envi-
ronment (Gibson, 1979; Shaw & Turvey, 1999). In each case, the accumulating
data suggest that the system of interest is not encapsulated from its larger
embedding system and is therefore not a Fodorian module.
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In contrast to Fodor’s definition, when real neuroscientists use the word
module, they start with portions of neural tissue that have anatomical separa-
tions from nearby portions of tissue or have morphological differences from
one another in cell shapes. If these different anatomical areas also appear to
have different selectivities to properties of environmental stimulation, then
they may apply the label module. However, it is generally the case that any pair
of neural modules that are connected by a synaptic projection share their 
signal transmissions bidirectionally (see Felleman & Van Essen, 1991). This
neuroanatomical fact is quite problematic for Fodor’s original version of
modularity. Information encapsulation goes out the window when module A
is sending feedforward signals to module B, and at the same time module B is
sending feedback signals right back to module A. For example, the vast major-
ity of neural projections connecting the lateral geniculate nucleus (LGN) and
primary visual cortex are feedback synapses (Churchland & Sejnowski, 1992;
see also Webb et al., 2002). Thus, despite most perception textbooks describ-
ing early vision as involving LGN sending visual signals to the primary visual
cortex, it appears that the bulk of what that bundle of neural fibers is doing is
allowing primary visual cortex to tell LGN what to do!

It is, of course, true that not every cortical region is directly connected to
every other cortical region. This is part of why full equipotentiality (the
extreme opposite of modularity) is also not an accurate description of the
brain. However, most cortical regions have at least indirect connections with
just about any other cortical region through one or two relays (Palm, 1982).
This makes the relationships among neural subsystems in cortex a bit like a
small-world network (Kleinberg, 2000; Watts & Strogatz, 1998), with no more
than a couple degrees of separation between any two perceptual/cognitive
processes (Sporns et al., 2004). Importantly, this kind of soft modularity—in
which separate anatomical regions are roughly specialized for one or another
perceptual/cognitive function but share some of their processes continuously—
does not need to be innately specified but can instead emerge as a result of
learning (Elman et al., 1996; Karmiloff-Smith, 1992). For example, visual
motion perception is substantially influenced by color information early in a
child’s development (Dobkins & Anderson, 2002), but over the years the two
information sources become somewhat more independent of one another
(Zeki, 1993; but see Treue & Martinez-Trujillo, 1999). Moreover, the topo-
graphical layout of the somatosensory homunculus can get significantly reor-
ganized after amputation of a hand (Farne et al., 2002; see also Merzenich et
al., 1984). And neural network simulations readily demonstrate how separate
modules with only subtle and abstract computational differences can, over the
course of learning, become specialized for nonoverlapping cognitive aspects of
the sensory input (Jacobs, Jordan, & Barto, 1991).

Somewhere in between cognitive scientists and real neuroscientists, cog-
nitive neuroscientists who use case studies of patients with brain damage, as
well as neuroimaging techniques, appear to be developing some form of third,
hybrid version of the term module that is not quite naive enough to assume
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true information encapsulation, but nonetheless places great emphasis on
functional specificity, such that a cortical module is often treated as though it
has one and only one perceptual/cognitive job. A common method for puta-
tively revealing such independent processes is double dissociation. In a double
dissociation design, brain damage in one region causes impaired performance
on task A but normal performance on task B, whereas brain damage in a dif-
ferent region causes normal performance on task A and impaired perform-
ance on task B. Such a result is routinely interpreted as evidence for the two
different brain regions being independently devoted to the two different tasks.
It is, however, problematic to interpret this kind of result as evidence for inde-
pendent processes, because neural networks and other complex dynamical
systems can readily produce double dissociations even when their physical
architecture is essentially monolithic and unsegmented (Chater & Ganis, 1991;
Plaut, 1995; Van Orden, Jansen op de Haar, & Bosman, 1997). Similarly, reports
of category-specific deficits (such as being unable to name fruits and vegeta-
bles), which are often used as evidence in favor of stage-based modular accounts
of cognition (Hillis & Caramazza, 1991), do not result only from localized
damage to some module putatively devoted to that skill. They can also arise
from widespread neural degeneration (such as that caused by Alzheimer’s 
disease), and in neural network simulations, focal lesions and broadly dis-
tributed mild damage can each elicit category-specific deficits in the network’s
performance (Devlin et al., 1998). Essentially, each cortical area’s “separate
job” is likely to be partially overlapping with some other jobs, because the 
cascaded bidirectional connections between different regions indicate that
they unavoidably share each other’s responsibilities to some extent. These
modules must know at least a little bit about how each of their neighbors carry
out their tasks.

In fact, when one module is damaged or altered somehow, other modules
that don’t normally perform much of that module’s job are often able to take
up the slack in a matter of weeks or months. For example, when a monkey’s
visual motion perception areas (MT and MST) are permanently ablated, the
monkey is unable to perform visual motion perception tasks, but much of this
deficit lasts only a few weeks or so (e.g., Newsome & Paré, 1988; Pasternak &
Merigan, 1994; Rudolph & Pasternak, 1999). With training, other visual areas
can quickly learn to perform many of the motion perception abilities previ-
ously performed by MT and MST. Moreover, in the ferret, when visual nerve
fibers from the thalamus are redirected to auditory cortex (instead of visual
cortex) during early development (Pallas & Sur, 1993), auditory cortex neu-
rons develop visual receptive fields that are quite similar to what is normally
seen in the visual cortex, exhibiting selectivity for different spatial frequencies
(von Melchner, Pallas, & Sur, 2000) and for different orientations (Sharma,
Angelucci, & Sur, 2000). In fact, a cortical map can even develop a patterned
structure that was never present in that species in the first place. For example,
a frog has a separate visual tectum for each of its eyes, but when a third eye is
surgically implanted in its forehead during early development, one of the tecti
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will learn to accommodate the incoming synapses from that supernumerary
eye. With that extra optic nerve being directed toward one of those tecti, the
frog will develop systematic ocular dominance columns (stripe-shaped
regions devoted to one or the other eye) on that tectum, as the two eyes learn
to share space on that one topographic map (Constantine-Paton & Law, 1978;
Law & Constantine-Paton, 1981). Frogs don’t have ocular dominance columns,
but the brain of the laboratory-designed three-eyed frog learns how to make
them anyway. What these three quick examples show is that cortical areas do
not necessarily need to innately know the structure of the sensory input that
they are going to have to deal with as they develop. The structure is in the 
statistics of the environmental stimulation, and over the course of learning,
that structure operates on and molds the connectivity of the cortical area
receiving it—not the other way around.

The playful term distribularity, informally coined by Barbara Finlay (see
discussion of this kind of concept in Kingsbury & Finlay, 2001), refers to a 
sort of middle ground between fully distributed processing that is equipoten-
tial throughout the brain (e.g., Lashley, 1950) and fully modular processing
that involves one encapsulated module per mental faculty (e.g., Fodor, 1983).
According to distribularity, there is anatomical modularity in the sense that
real neuroscientists use. However, the real-time processing of each of these
neural modules (as well as their development) is not independent of the 
others. Their population codes and their analog computations are shared 
substantially between one another (see Haxby et al., 2001).

This chapter will not be debunking the version of modularity defined by
real neuroscientists. That version is more or less inarguable, given concrete
anatomical and neurophysiological evidence. The version of modularity that
this chapter will be debunking is Fodor’s (1983) information-encapsulation
version that still manages to permeate and implicitly motivate theory develop-
ment in much of present-day cognitive science. By replacing Fodorian modu-
larity with a notion of distribularity, where anatomically distinct and partially
specialized neural subsystems continuously exchange a substantial portion 
of their activity patterns, we will keep our theories closer to the neurophysio-
logical and behavioral facts on the ground.

Fuzzy Borders in State Space

This partial specialization of neural subsystems endorsed by a distribularity
framework may initially seem like a difficult property to instill in a mathemat-
ical description where neuronal activations across the entire brain are envi-
sioned to form a single very high-dimensional state space. The way one can
imagine a graded (nondiscrete) independence between functionally special-
ized brain regions in this framework is to consider how one cortical area
might be described by a particular hyperplane in the global state space, and
another cortical area would have a different hyperplane. If the two brain areas

Constructive Feedback for Modularity 125



126 The Continuity of Mind

are richly interactive, then the activations in their respective hyperplanes will be
significantly correlated (or anticorrelated). If, however, the two brain areas in
question are independent of one another, then their respective activation pat-
terns will not be especially correlated with one another. Nonetheless, the global
state space (i.e., the full set of conjoined hyperplanes, correlated and uncorre-
lated) will still be a valid and informative monolithic format of description of
the system’s states over time. In terms of this global state space description, the
correlational patterns in activity would result in regions of the global state space
that the trajectory tends not to visit and fuzzy borders that it tends not to cross.

For a highly simplified example, consider two different one-dimensional
systems and their conjoint description. One subprocessor produces a sine
wave over time, and the other subprocessor produces a cosine wave over time.
They can reasonably be described in terms of two separate state spaces since
they are completely uncorrelated (figures 5.3A and B), but they can also be
described in terms of one conjoined state space (figure 5.3C). The circular spi-
ral over time, in figure 5.3C, shows how the values of x and of y spend equal
time in their ranges of relative values. Thus the conjoined state space descrip-
tion, although not required (because x and y are uncorrelated), is nonetheless
an informative depiction of the data. Now, if x and y happen to be positively
correlated (figure 5.4) or negatively correlated (figure 5.5), we observe a 
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Figure 5.3. A sine wave and an uncorrelated cosine wave (A and B) shown together in
time (C).
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Figure 5.4. A sine wave and a positively correlated cosine wave (A and B) shown
together in time (C).



decidedly elliptical rather than circular spiral over time. That is, only a restricted
range of relative values of x and y are ever visited. In such cases, not only is 
it informative to analyze the conjoined state space, indeed it is crucial—
as analyzing either subspace by itself will prevent one from detecting the 
relationship.

In fact, it is very much this kind of logic that led Haxby and colleagues
(2001; see also Hanson, Matsuka, & Haxby, 2004) to perform correlational
analyses on fMRI activity across a variety of brain regions during face recog-
nition. They found that even when they excluded data from the fusiform face
area, a region hypothesized to be the face recognition module (Epstein &
Kanwisher, 1998), the pattern of low-level activity across the remaining
regions within the ventral temporal cortex carried enough information to dis-
criminate between various faces and five different categories of man-made
objects. They concluded that face and object recognition involves partly over-
lapping representations that are distributed across multiple cortical regions in
ventral temporal cortex—not independent representations that are localized
solely to individual regions. Thus, the relevant state space for describing the
temporal dynamics of something like face recognition includes not just
dimensions derived from the fusiform face area, but also dimensions from a
variety of other brain areas. That is, the face recognition state space, within
which a trajectory would define the process of recognizing a face, is a much
more global state space than a localized one.

The “Outer Space” of the Mind

Some readers may be finding this “continuous trajectory through a global
state space” story somewhat objectionable. But in fact, it is actually mathemat-
ically uncontestable that mental content can be described in terms of a loca-
tion in a high-dimensional state space, as described in chapter 4. This is not
hypothesis; it is fact. Whether or not you like this form of description, it is
mathematically true that if you treat the averaged activation of each neuron in
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Figure 5.5. A sine wave and a negatively correlated cosine wave (A and B) shown
together in time (C).
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the brain as a dimension in state space, then any given freeze-frame of the
brain’s state will be a location in that global state space. Crucially, if the sliding
temporal window for computing that average activation is more than just a
few milliseconds wide, then a sequence of multiple such freeze-frames will
look like a remarkably smooth trajectory through that state space.

One might counter that the neurons studied by most neuroscientists
appear to send their signals in the form of one-millisecond action potentials,
rather than graded potentials. Thus, the fundamental quanta of the mind are
temporally and informationally discrete. However, the brain’s neurons are 
not all in lockstep to the ticking of a single clock.2 The transition from one
millisecond to another is not characterized by a transition from one set of
neurons being in midspike to another set of neurons being in midspike. In
fact, even an individual action potential, lasting about 1 millisecond, does not
instantaneously jump to +25 millivolts and hold steady there for the full 1,000
microseconds, and then jump back to –60 millivolts. An action potential is 
a gradual fluctuation of electrochemical differential, starting from about 
–60 millivolts at resting level, through a 100-microsecond rising phase up to
about –45 millivolts, peaking at +25 millivolts about halfway through, and
then going through a repolarization phase for several hundred microseconds,
and eventually into a hyperpolarization phase where it’s around –70 millivolts
for a whole other millisecond. Thus, if you were to take a frozen microsecond
of the brain’s neuronal activity, that microsecond would show most neurons
at resting level, some neurons in hyperpolarization phase, fewer neurons in
depolarization phase, fewer still in rising phase, and (depending on how you
define peak) the fewest neurons would be at their ever-so-briefly visited peak
of electrical potential. With this wildly staggered array of nonaligned time
frames, holding a stable bit-vector pattern of activation to function as a discrete
conceptual symbol would be impossible.

This is why, in addition to examining very short bursts of spikes for their
individual timing (Bohte, 2004; Softky, 1996) and relative latency (Maass,
1997), many neuroscientists average over larger chunks of a few dozen milli-
seconds when calculating the activation of a neuron in terms of its average 
firing rate (Shadlen & Newsome, 1994; see Fairhall et al., 2001, for some dis-
cussion of rate coding, burst coding, and individual spike coding). A sliding
window for averaging this firing rate would thus describe transitions from one
briefly semi-stable population code to another in a manner that unavoidably
involved instantiating patterns of activity that were partial blends in between
the previous population code and the upcoming population code—and prob-
ably exhibiting some similarity with other nonvisited population codes as
well. In terms of a state space that encompassed these population codes in the
form of attractor basins, the result would be a trajectory that visits one attrac-
tor basin and, on its way to another, vaguely flirts with several others in the
“outer space” of the mind.

When you listen to someone talking to you, you may feel as though you
fully understand one word and then suddenly fully understand the next word,
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and so on, like a sequence of discrete linguistic symbols. And when your eyes
scan around a complex scene, you may feel as though you fully recognize one
object and then suddenly fully recognize the next object, and so on, like a
sequence of logical entries on an inventory list. However, in both cases, the
psychological and neurophysiological evidence recounted throughout this
book clearly demonstrate that your mind is doing most of its work in between
those seemingly discrete recognition events. When someone is talking to you,
your mind is partly understanding each incoming word as a mélange of
potential words, and by the time it settles on a unique word that it thinks it has
heard, the next word is already coming in, launching the mind into another
blended dynamic comprehension process. The same is true for when your
eyes are scanning a complex scene. The key question is whether this descrip-
tion opens up new conceptualizations of human data and experimental
methodologies that are not readily available with discrete symbolic descriptive
formats. It is particularly the goal of chapters 6–9 to convince you that the
answer to that question is an emphatic yes.

The format of a high-dimensional state space is sufficiently flexible that it
can even be used to describe an idealized version of a discretely symbolic cog-
nition. For example, the mathematics of symbolic dynamics (see chapters 4
and 10) is designed to take a continuous trajectory in a metric state space, or
phase space, record when that trajectory enters specified volumetric regions,
and emit (to another system) symbol labels that belong to those regions.
Alternatively, a discrete symbolic cognition would involve the trajectory,
essentially teleporting from corner to corner in the state space—much as 
a digital computer does in its flip-flopping of CPU states.3 Either of these
symbolic frameworks would allow separate neural subsystems to share only
limited (and discretely computable) information with one another, as Fodor’s
modularity hypothesis predicted. Thus, they would exhibit component-
dominant dynamics, such that the various subsystems’ internal processing
dynamics provide the key information about how the overall system works. A
lexical system would wait until it received enough input and performed
enough internal computations to reach a stable state before it passed the result
of its computations on to a semantic system. The same would hold for
phonology and the lexicon, syntax and semantics, syntax and discourse, and
even for language and vision in general.

However, if these various subsystems involved in different aspects of per-
ception, cognition, and action were all to cascade continuous updates of their
respective patterns of activation to one another, they would be sufficiently
nonmodular to no longer exhibit component-dominant dynamics and would
instead exhibit interaction-dominant dynamics. That is, as the temporal gran-
ularity of the information transmission between subsystems gets finer (see
Miller, 1982), the behavior of such a system will unavoidably conform less and
less to the modularity hypothesis.4 Cascaded integration of multiple informa-
tion sources tends to produce multifarious patterns of activation that are unsta-
ble and do not straightforwardly map onto unique coherent motor outputs.
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What is needed, then, is a process by which the initially multifarious pattern
can settle into a unitary stable pattern at least long enough to produce motor
output. As suggested in chapter 4, competition between population codes 
may be this very process (e.g., Keysers & Perett, 2002). Crucially, as argued in
chapter 3, to report compelling evidence for this neural competition process,
one needs experimental methods that can provide a glimpse of the partial
activation of the competing alternatives before one of them wins (see Enns &
Di Lollo, 2002). Cascading interactive systems such as this, composed of
richly intermeshed subsystems, are better understood by analyzing how the
components interact and produce emergent patterns between them (e.g., Van
Orden, Moreno, & Holden, 2003), than by dividing and conquering the indi-
vidual components themselves. The next few pages will review a wide variety
of cross-modal interactions in perception and cognition, showing that the mind
exhibits interaction-dominant dynamics rather than component-dominant
dynamics, thus ruling out Fodor’s (1983) version of the modularity hypothesis.

Transcortical Interactions 

There are quite a few examples of perceptual systems interacting in ways that
Fodorian modularity assumed would be impossible. In the brief treatment in
this section, I start with some examples of visual features interacting with one
another, which caused problems for traditional views of visual perception
being composed of separate channels for independent feature extraction.
I then move on to a wide array of perceptual interactions across vision, touch,
audition, and speech. Although minuscule in comparison to the actual body
of literature, this section should provide sufficient sampling of the data to
make the case that Fodorian modularity is severely evidentially challenged.
For extensive reviews of cross-modal interactions, see Marks (1978), Welch
and Warren (1986), Stein and Meredith (1993), Calvert (2001), and Spence
and Driver (2004).

Despite early claims of encapsulated modules within visual cortex being
devoted to nonoverlapping visual features, such as luminance, color, orienta-
tion, motion, and depth (Cavanagh, 1988; Lennie, 1980; Livingstone & Hubel,
1988), interactions between visual subsystems have been cropping up in the
literature with increasing regularity. For example, a simultaneous version of
the tilt aftereffect, called the tilt illusion (figure 5.6), is stronger when the 
surrounding tilted inducing annulus is of similar color and luminance to 
that of the vertical test grating in the middle (Clifford et al., 2003; see also
McCollough, 1965, for related phenomena). Because the tilt illusion is believed
to take place in primary visual cortex, this suggests that the separate channels
for color, luminance, and orientation aren’t that separate after all. In fact,
recent evidence shows that there are cells in primary visual cortex that 
are selective for specific combinations of color, luminance, and orientation
(Johnson, Hawken, & Shapley, 2001).
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Similar findings are seen with color, surface segmentation, and motion
perception. When visually segmenting a group of dots of one color from a
background of dots of another color, the distribution of motion directions
among the dots substantially affects performance (Møller & Hurlbert, 1997),
indicating that color and motion processing are more interactive than once
thought (see also Ruppertsberg, Wuerger, & Bertamini, 2003). Moreover,
binocular disparity and surface transparency combine to produce depth
information that reliably influences whether local motion signals are pooled
into a single coherent movement direction (Trueswell & Hayhoe, 1993). Such
immediate interactions between color, depth, and motion would not take
place if these different visual features were processed by encapsulated modules
that completed their jobs on their own and then shunted the finished results
to a later cognitive stage.

Indeed, the neurophysiology suggests that intrinsic lateral connections
within primary visual cortex may be responsible for simultaneous contextual
influences of the kind just described (Stettler et al., 2002). These intrinsic lat-
eral connections within primary visual cortex are denser than the feedback
projections going into primary visual cortex and are more limited to regions
of similar orientation specificities. Hence, the lateral connections are likely to
be responsible for the cross-featural interactions, as well as for contour inte-
gration effects (Field, Hayes, & Hess, 1993), whereas the feedback projections
are likely to be responsible for attentional modulation of those lateral processes
(e.g., Gandhi, Heeger, & Boynton 1999; Ito & Gilbert, 1999; Lamme &
Roelfsema, 2000; Motter, 1993).

Although these interactions among features within vision compromise
traditional modular accounts of visual perception, perhaps what is more 
fundamental to debunking the modularity mindset in general is evidence for
interactions across entirely different perceptual modalities. For example,
although visual cortex is not active during most tactile tasks (Sadato et al.,
1996), it is active during tactile discrimination of orientation (Sathian et al.,
1997). Disrupting visual cortical processing via transcranial magnetic stimu-
lation interferes with tactile discrimination of orientation (Zangaladze et al.,
1999). Thus, visual imagery appears to be more than just associated with 

Figure 5.6. With simultaneous tilt contrast (or the
tilt illusion), the central vertical grating looks tilted a
couple degrees in the direction opposite that of the
surrounding grating.



tactile processing, it plays a functional role in how tactile input is used to dis-
criminate orientations. In fact, blind Braille readers exhibit activation of
visual cortex during a variety of tactile tasks (Buchel et al., 1998; Sadato et al.,
1996). Indeed, the many topographical maps in visual cortex are well suited
for the spatial resolution necessary for Braille reading.

As it happens, Braille reading is not the only language-related task that
involves cross-modal interactions. The visual input received during skilled
silent lip reading elicits conspicuous activation of auditory cortex (Calvert 
et al., 1997). That is, even though no significant auditory input is being
received, the lip reader’s brain nonetheless sort of “hears” what is being said.
And, of course, the McGurk effect is perhaps the most famous example of
interaction between visual and linguistic processes. When you see a televised
face repeatedly saying “ga-ga,” but the audio stream from the speakers actu-
ally delivers “ba-ba” in synchrony with the movements of the mouth, you
have a compelling percept of hearing “da-da” (McGurk & MacDonald, 1976).
Basically, the acoustic-phonetic properties of the speech stream support a
“ba-ba” percept, but the visual input, with the lips not touching during the
consonant, rule out that percept. The next best match for those acoustic-
phonetic properties is “da-da,” which would not require the visual evidence
of a bilabial stop, so “da-da” is the percept. If you close your eyes, the speech
stream begins to sound like “ba-ba,” but when you reopen your eyes, it
returns to sounding like “da-da.” Some of the extensions on that work are 
discussed in chapter 6.

Just as visual input can modulate an auditory percept, so can auditory
input modulate a visual percept. For example, when a single flash of light is
accompanied by two beeps, it is often perceived as two flashes of light (Shams,
Kamitani, & Shimojo, 2000). When a leftward-moving circle and a rightward-
moving circle are animated on a computer screen, the type of sound emitted
when they pass through each other will influence how this event is perceived
(Sekuler, Sekuler, & Lau, 1997). If the observer hears a whoosh sound just as
the circles pass through each other, they will appear to travel past one another
on slightly different depth planes. However, if the observer hears a boing, with
exactly the same visual input, the two circles will appear to bounce off of each
other and reverse their respective directions.

Visual and auditory inputs do not only affect the way each other is per-
ceived, they also can affect the location from which the other event is perceived
to originate. The basic trick of ventriloquism relies on people’s tendency to
attribute the location of visual motion as the source of a simultaneous audi-
tory signal. This is why professional ventriloquists turn their head toward the
dummy and hold themselves still while it talks. This way, the dummy’s face is
the only thing moving while the audience hears its voice. The ventriloquism
effect has been studied quite extensively in perceptual psychology (e.g.,
Bertelson & Radeau, 1981; Howard & Templeton, 1966; Vroomen, Bertelson, &
de Gelder, 2001), where it is generally found that the illusion reduces in mag-
nitude with greater temporal asynchrony and greater spatial separation—and
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also with greater mismatch between visual and acoustic features (see Fisher &
Pylyshyn, 1994).

One way to conceptualize how visual, auditory, and tactile signals are spa-
tially integrated is in terms of a two-dimensional supramodal map of atten-
tional salience. A universal map of external space, perhaps in parietal cortex,
would explain how visual, auditory, and tactile cues succeed in orienting spa-
tial attention for each other (Driver & Spence, 1998; Eimer, Van Velzen, &
Driver, 2002). For example, when a brief tactile input is applied to the hand, a
visual stimulus presented in the same general area a few hundred milliseconds
thereafter is responded to faster than the same visual stimulus in a different
(noncued) location. As long as the task allows the eyes to move around natu-
rally, this cross-modal cuing of spatial attention seems to work in all pairwise
combinations across vision, audition, and touch.5 In fact, these cross-modal
attentional influences even exhibit a kind of rebound effect, known as inhibi-
tion of return (Posner & Cohen, 1984). Several hundred milliseconds after
spatial attention has been applied to a location, the salience of (or sensitivity
to) that location goes below baseline for at least a few hundred milliseconds.
Thus, if an auditory cue is presented in one location, and 100 milliseconds
later a tactile stimulus is presented in the same location, participants will be
faster to respond to that tactile stimulus. But if the delay between the two
stimuli is 800 milliseconds instead of 100, participants will be conspicuously
slower than baseline to respond to the tactile stimulus (Spence et al., 2000).
Figure 5.7 is a schematic visual depiction of what a salience map might look
like during the dynamic transition from increased attention at a cued location
to conspicuously decreased attention (inhibition of return) soon thereafter.
This illustration also includes a mild inhibitory surround (the small troughs
on the spatial left and right of the salience peak) that circumscribes the
attended region (see Cutzu & Tsotsos, 2003; Mounts, 2000).

Importantly, the merging of these different sensory inputs is not carried
out solely by a feedforward integration process. The supramodal salience map
appears to send feedback signals returning to the unimodal maps. For exam-
ple, when an auditory cue involuntarily pulls visual attention to a particular
location in space, this modulation of visual processing is detectable as
increased activity in extrastriate visual cortex (McDonald & Ward, 2000; see
also Eimer & Schröger, 1998; Hillyard et al., 1984). With the help of figure 5.8,
one can think of it this way: Visual salience maps in visual cortical areas (e.g.,
Itti & Koch, 2001; Parkhurst, Law, & Niebur, 2002) combine with auditory
salience maps in auditory areas and the inferior colliculus (e.g., King, 1999) to
make supramodal salience maps in the posterior parietal cortex (Behrmann,
Geng, & Shomstein, 2004) and the superior colliculus (King et al., 1988;
Meredith, 2002; see also Knudsen & Knudsen, 1989), some of which then 
send polysensory feedback to the unimodal sensory systems (as shown by 
the bidirectional arrows in figure 5.8). A similar kind of arrangement can be
envisioned for integrating (and feeding back) visual and tactile inputs as 
well (Macaluso, Frith, & Driver, 2000; Spence, McDonald, & Driver, 2004).
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In figure 5.8, the salience maps are depicted as two-dimensional topographi-
cally arranged layers of neurons, where the height dimension indicates the
increased sensitivity exhibited by a local group of neurons when their input is
partially attended (or salient). The supramodal salience map continuously

Figure 5.7. Part of a salience map over time, depicting the temporal dynamics of
attentional facilitation at a cued location, flanked by some lateral inhibition, and
followed by inhibition of return. Only one spatial dimension is depicted so that
time and salience can also be graphed.

Figure 5.8. A supramodal salience map receiving input from
and sending feedback to unimodal salience maps.



updates its pattern as a combination of the salience maps that feed into it.
Thus, although this visual salience map has a conspicuously large peak on the
far right portion of its surface, the auditory salience map has no such peak in
that location, so the supramodal salience map does not exhibit a particularly
competitive salience peak in that location. Note, however, that the feedback is
likely to eventually induce some nonzero activation in that location in the
auditory salience map. This may explain how the ventriloquism effect is so
compelling. But in the freeze-frame of figure 5.8, the somewhat modest peak
in the far left portion of the surface in both unimodal maps is what becomes
the highest salience peak when combined at the supramodal map. This high-
est peak would likely be the target of the first saccade and would also strongly
influence a continuous reaching movement. Thus, feedforward integration,
coupled with recurrent feedback, allows different perceptual domains to
influence one another in a manner that resolutely violates the modularity
hypothesis.

Natural Interactive Tasks Reveal 
Natural Interactive Processing

There is a reason why the modularity hypothesis reigned supreme for as long
as it did. There is a history—in both vision research and language research,
actually—of perceptual-cognitive processing appearing quite modular when
it is measured in highly restricted laboratory tasks that allow precise, real-time
measures. Then, when improved methods allow those same real-time mea-
sures to be collected during more natural goal-oriented tasks, all of sudden
perceptual-cognitive processing begins to appear more interactive. For exam-
ple, in vision research, single-cell recordings with immobilized and anes-
thetized animals tended to produce evidence consistent with modular linear
systems accounts of hierarchical receptive field structures (e.g., Livingstone &
Hubel, 1988; Movshon, Thompson, & Tolhurst, 1978). However, when awake
behaving monkeys are trained to perform goal-oriented perceptual-motor
tasks while electrodes are busy recording from neurons in visual cortex, we see
that visual neurons are influenced by a number of factors outside the scope of
the classical receptive field (e.g., Gallant, Connor, & Van Essen, 1998; Motter,
1993). (See chapters 3 and 8 for more details.)

Similarly, in language research, when undergraduate experimental partici-
pants had to read isolated sentences on a computer screen in the dark while
their head was held motionless so that a table-mounted eye tracker could
record their eye movements, the millisecond timing of this measure tended to
produce evidence for syntax being modular and independent of semantics
and other contextual factors (e.g., Ferreira & Clifton, 1986; Rayner, Carlson, &
Frazier, 1983; see chapter 7 for more details). In contrast, experiments with
awake behaving undergraduates involved in rich contexts and goal-oriented
tasks produced evidence consistent with the idea that syntax, semantics, and
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pragmatics interact fluidly (e.g., Bransford & Johnson, 1972; Clark & Carlson,
1982). Unfortunately, most of the psycholinguistic experiments from the
1970s and 1980s that exhibited this level of ecological validity did not involve
online measures of performance with any substantial temporal resolution.
Natural contexts and real-time measures seemed to be mutually exclusive
properties for the experimental methods available to psycholinguistics at 
that time.

Interestingly, in the cases of both vision and language, head-mounted eye
tracking has figured prominently in the mission to find ways to combine nat-
uralistic task performance with real-time measures of perception and cogni-
tion (Ballard, Hayhoe, & Pelz, 1995; Gallant et al., 1998; Land & Lee, 1994;
Tanenhaus et al., 1995). For example, by recording participants’ eye move-
ments while they carried out spoken instructions to move real objects around
on a table, Tanenhaus and colleagues (1995) were able to do more than show
that language was interactive or that vision was interactive. They showed that
at a very fine time scale, vision and language interact with each other. Even
partway through hearing a single word, the visual context can modulate the
activations of potential lexical representations in real time (see chapter 7).
Perhaps not surprisingly, demonstrating that visual context could “tell lan-
guage what to do” didn’t go over very well with parts of the psycholinguistic
community. There was considerable resistance from those who had grown to
think of their area of study as separate from visual perception—indeed, sepa-
rate from the rest of cognition. However, when we presented these findings to
vision researchers instead, they found them interesting, if perhaps a bit trivial.
“Of course, vision would be important enough to boss language around!
Those psycholinguists really should pay more attention to visual processes.”

Ironically, this set of attitudes from the two fields reversed symmetrically
when we later produced evidence for linguistic context modulating real-time
visual processes. When the target identity for a visual conjunction search task
is presented verbally over headphones (e.g., “Is there a red vertical?”), such
that one hears one visual feature before hearing the next while viewing the
display, the search is conducted more efficiently than if the target identity
speech file is presented entirely before the display is presented (Reali et al., in
press; Spivey et al., 2001). When we presented these findings to the psycho-
linguistic community, they found them interesting, if perhaps a bit trivial.
“Of course, language would be important enough to boss vision around!
Those vision researchers really should pay more attention to linguistic
processes.” And this time, the vision community resists. No one likes to be
told that their favorite perceptual-cognitive faculty can be “told what to do”
by some other perceptual-cognitive faculty.

The lesson is this: As real-time measures are developed that allow natural
complex interactive behavior on the part of the experimental participant,
natural complex interactive behavior is what will be observed among the 
perceptual-cognitive subsystems involved. When this general methodology is
applied to syntax and semantics or to color and motion, the subsystems
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involved exhibit richly interactive functioning. When this general methodology
is applied to language and vision together, the subsystems involved exhibit
richly interactive functioning. Finally, when this general methodology is
applied to the brain and its environment, once again the subsystems involved
exhibit richly interactive functioning.

A New Theoretical Apparatus

The traditional theoretical apparatus of component-dominant dynamics 
cannot provide a good description of how the brain fluidly interacts with 
the world. Instead, interaction-dominant dynamics provide a more useful
account, as demonstrated well by the relative timing between eye movements
and cognitive processes. As indicated in chapter 1 (and illustrated numerous
times in chapter 6, 7, 8, and 12), the brain does not achieve a stable percept,
then make an eye movement, then achieve another stable percept, then make
another eye movement, and so on. The eyes often move during the process of
attempting to achieve a stable percept. This means that before perception can
finish settling into a stable state, oculomotor output changes the perceptual
input by placing new and different visual information on the foveas. Think of
it this way: An initial eye fixation causes certain dynamical perceptual
processes to be set in motion, which then (before they become stable) cause a
new eye movement, which then allows different environmental properties to
cause different dynamics in the perceptual process, which then cause yet
another eye movement, and so on (see Findlay & Gilchrist, 2003; Gold &
Shadlen, 2000; van der Heijden, 1996b; see also Spivey, Richardson, & Fitneva,
2004). Thus, visual perception is simultaneously the result of the environment’s
sensory input (caused by physical surfaces reflecting light onto the retinas) and
of its own oculomotor output (caused by intermediate products of perception’s
analog computations). Because eye movements operate at a slightly faster time
scale than does perceptual recognition, the perception–action cycle in this case
becomes an autocatalytic causal loop—for which distinguishing the chicken
from the egg becomes moot. Such a loop is called impredicative (Poincare,
1906; see also Russell, 1906) because it is composed of elements that can only
be defined with reference to the larger system of which they are members (see
Rosen, 2000). With impredicative systems, there can be no context-independent
definition of each element, followed by a linear, feedforward, component-wise
integration of those elements to build the larger system. Interactive self-
organizing systems—such as avalanches and earthquakes (Bak, 1996), the
Belousov-Zhabotinski reaction in chemistry (see Prigogine & Stengers, 1984),
artificial neural networks that both evolve and learn (Beer, 1996), the human
brain (Chialvo, 2004), and cognitive performance in general (Turvey, 2004;
Van Orden, Holden, & Turvey, 2003)—are impredicative systems. Such sys-
tems are impossible to describe via modular component-dominant dynamics
in particular and via simple reductionism in general.
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As the quote at the beginning of this chapter indicates, in The Modularity
of Mind (1983), Fodor warned us of the problems posed by fully interactive
systems. Compared to modular systems, they are extremely difficult to ana-
lyze. In fact, Fodor all but said that perceptual systems had better be modular
or we have no chance of ever understanding them. Perhaps, then, it is no won-
der that some scientists still dig their heels in today in their attempt to main-
tain a modular characterization of perception. But Fodor also went further.
He suggested that central systems, such as reasoning and problem solving,
were not modular because they require such complex integration of informa-
tion from varied sources. Thus, it becomes supremely ironic that as the 
modularity of perceptual input systems has gradually been dismissed over the
past 20 years, the place where modularity enthusiasts have gone is to higher
level cognition (such as lie detection modules, theory of mind modules, and
mathematics modules)—precisely the place where Fodor claimed modules
could not be found.

But when it comes down to it, the facts on the ground are the facts on 
the ground. We can lament the fact that perception and cognition are not 
modular—and therefore require far more complex measures, analyses, and
models than previously used—but we cannot ignore it. What so many feared
all along appears to be true: A new theoretical apparatus for studying the mind
is indeed required after all. And a continuous nonlinear trajectory through a
high-dimensional state space just might be that theoretical apparatus.

No Things in the Mind

Having armed yourself now with some appreciation for the methodological
tools (chapter 3) and computational techniques (chapter 4) that reveal con-
tinuous mental dynamics, and now recounting some of the ways in which
these dynamics interact between functional subsystems of the mind (this
chapter), you should be prepared to withstand the upcoming onslaught of
distributed dynamic cognitive phenomena in categorization (chapter 6),
language (chapter 7), vision (chapter 8), action (chapter 9), and even reason-
ing (chapter 10). You will find throughout this book that I tend to mix my
metaphors between dynamical systems and information processing termi-
nologies. I will use terms like mental trajectory and even dynamical representa-
tions. For some die-hard dynamicists, this will undoubtedly be highly
objectionable. Perhaps for some die-hard classical theorists, it will sound
mealy mouthed. But for the growing numbers of disillusioned cognitive 
psychologists, these mixed metaphors will provide a much-needed bridge 
for making the trek from their training in the information processing frame-
work toward a framework that is more amenable to the continuity of mind. In
this new framework, there are no independent static objects in the mind;
every mental entity is promiscuous in its content and continuous in its
dynamics.
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When we look at the vast array of perceptual-cognitive abilities that the
human brain brandishes, it is often tempting to conclude that each ability has its
own individual processor, a box for every job. However, much of the evidence
described in this chapter and throughout this book points to a very different
characterization. If our perceptual-cognitive abilities are not independent func-
tions that only share their information with one another when their process-
ing jobs are completed, but instead are interactive processes that distribute
their duties across one another continuously, then it seems unlikely that these
abilities are individually selected for in our evolutionary history (see Bechtel,
2003). If there are no such boxes in the head, then the evolution of mental 
faculties is likely to be a far more complex and interactive process than simply
mapping each environmental pressure onto its own personalized evolved
mental function. For example, Cosmides and Tooby’s (1994) Swiss army knife
metaphor for the collection of discrete cognitive abilities that evolution has
bequeathed to us does not jive well at all with the kinds of richly interactive
processing described in this chapter. Rather than a linearly combined collec-
tion of independent mechanisms, as implied by the Swiss army knife metaphor,
perhaps Kingsbury and Finlay’s (2001) woven plaid metaphor is more appro-
priate. In a woven plaid, there are identifiable patches that superficially look
segmented from one another, a bit like a quilt. However, quite unlike a quilt,
the substructure (and the construction) of a plaid’s patches reveal complex
and rich interdependencies among regions—as recounted throughout this
chapter. Thus the field of evolutionary psychology would be wise to pay a visit
to its theory pawn shop and trade in Cosmides and Tooby’s Swiss army knife
for Kingsbury and Finlay’s woven plaid.

Just as there are no truly individuated tools in the mind, there are also 
no truly individuated units of mental activity in the mind either. When the
information-processing theorist zooms in on one of those patches in the
woven plaid, to look for the computational units that it processes, he will 
be disappointed. Although introspection about our own cognitive experience
may tempt us to conclude that we think in sequences of individual symbolic
units, mountains of evidence in the next five chapters strongly suggest other-
wise. When real-time measures are applied to naturalistic tasks, not only do
we observe more interaction between domains than previously suspected
(this chapter), we also observe more gradedness in the temporal dynamics of
the representations than previously suspected (chapters 6–10).

The key metatheoretical shift being proposed in this book is simple: Mental
content does not consist of objects but of events. Individual representations 
are not temporally static things in the mind that can be found, grasped, and
inspected, like a homunculus fondling a glass figurine on his bookshelf.
Representations are processes in and of themselves, sparsely distributed patterns
of neural activation that change nonlinearly over the course of several hun-
dred milliseconds, and then blend right into the next one. Likewise, individual
cognitive faculties (language, vision, memory, reasoning, etc.) are also not
spatially and temporally separated things in the mind, but are processes that
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emerge from the time-dependent interaction of multiple neural subsystems.
Importantly, I contend that this seemingly innocent shift in descriptive for-
mat—from objects to events, from things to processes—has radical conse-
quences for just about every conventional theory in the cognitive 
sciences. If the process of spoken word recognition takes visual context into
account immediately, then is it really fair to refer to it as “spoken word recog-
nition?” The process in question is clearly doing more than just recognizing
spoken words. Or when visual search takes into account concurrent linguistic
input immediately, is it really fair to summarily label this process “visual
search?”

This is not the first time that someone has argued that it is misleading to
apply a linguistic label to a putative mental process (e.g., word recognition,
working memory, visual imagery) and draw discrete demarcations in space
and time for its separation from other mental processes. However, it was 
perhaps easy, during the cognitive revolution, to dismiss such claims on the
grounds that the discrete modular engineering approach allows for theoreti-
cally explicit and mathematically rigorous accounts of the mind. Simply 
saying that we shouldn’t oversimplify a richly interconnected dynamic biolog-
ical system like the brain by describing it in terms of computationally tractable
encapsulated subsystems leaves open the question of how we do describe 
it then! In the past decade or so, the mathematics of dynamical systems, along
with a focus on real-time experimental measures, have produced a number 
of successful inroads toward providing precisely this theoretically explicit 
and mathematically rigorous description of how the dynamic mind works.
Therefore, I think the cognitive and neural sciences actually are finally at a
point where one can responsibly claim again that inventing linguistic labels
for discrete mental processes dangerously oversimplifies what’s really going
on. This time we can work conscientiously, rigorously, and successfully toward
an account of mind that leans significantly less on such computational ideal-
izations while nonetheless maintaining scientific respectability.
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6

Temporal Dynamics in Categorization

Is it always permissible to speak of the extension of a concept, of a
class? And if not, how do we recognize the exceptional cases?
Can we always infer from the extension of one concept’s
coinciding with that of a second, that every object which falls
under the first concept also falls under the second? These are the
questions raised by Mr. Russell’s communication.
—Gottlob Frege

I think categorization is a sin.
—Dave Mustaine

Categorize Not, Lest Ye Be Categorized

Categorization, or categorization-like processing, is one of the most impor-
tant functions in all of mental activity (see Harnad, 1987). If you search a 
psychological literature database for the combined set of articles on either the
subject of categorization or the subject of categories, you will find more arti-
cles than if you search for the subjects of word recognition, object recognition,
or visual attention. The mental skill of knowing what featural differences
between things in the world can be more or less ignored and what featural 
differences warrant treating two things differently is crucial to interacting
with the world successfully and safely. But the different ways the mind might
implement this skill of categorization have been the topic of intense debate for
many decades.

This chapter starts out with a textbook example (literally) of how one of
these ways can break down rather spectacularly. Formal logical frameworks
for categorization have a history rooted in set theory, where categories have
discrete, crisply defined boundaries between one another, with no fuzzy
graded overlap between them. Although the majority of this chapter will point
to the gray areas that lie in between putative categories and that are particu-
larly visible when one examines the continuous real-time process of percep-
tion and cognition, it is nonetheless useful to begin with a famous criticism of
formal logic that essentially beats it at its own game. This classic bug in the
software of formal logic is known as Russell’s paradox.

As a foundation of logic and mathematics, set theory is a key component
of how one might begin to formalize a treatment of categorization. For example,
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the set of apples contains all apples as true unmitigated members, and it
excludes all nonapples (e.g., Asian pears, oranges, hammers, toenail clippings,
etc.) as complete nonmembers. See figure 6.1A. Crucially, there is no gray area
between true/membership and false/nonmembership (not even for Asian
pears, whose shape and texture are remarkably similar to apples; they are
treated as equally lacking in applehood as toenail clippings). The set of apples
can be represented as a subset of the set of fruits, as well as a superset of the 
set of red delicious apples. As such, set theory provides a robust format of
hierarchical knowledge representation. One of the strengths of traditional set
theory—as well as what led to its downfall—is its ability to represent internal
recursion. Sets can refer to and contain themselves. Figure 6.1B shows the set
of all sets, which contains a great many sets, including the set of apples, as well
as the set of all sets, because being a set qualifies it to be a member of itself.
Being a member of itself makes it a somewhat odd kind of set, and this is per-
haps slightly mind-bending for the uninitiated, but it’s nothing compared to
what comes next. As noted by Bertrand Russell (1903), included in this set of
all sets (which happens to be a member of itself), is an easily constructed sub-
set called the set of all sets that are not members of themselves (figure 6.1C).
This set notably does not include the set of all sets (notice the absence of the
tiny Venn diagram in the lower right region, when comparing set C to set B).
However, the set of all sets that are not members of themselves does include
the set of apples. As a “set of apples” is not the same as an “apple,” the set of
apples does not include itself as a member of itself. Thus, it qualifies for 
membership in set C. But what happens when you ask whether the set of all
sets that are not members of themselves includes itself as a member?

Basically the world comes crashing in on set theory at that point. If the set
of all sets that are not members of themselves includes itself as a member,

142 The Continuity of Mind

Figure 6.1. Russell’s paradox: Set C must and must
not contain itself.



it thereby disqualifies itself from being a member, by its very own definition.
But if it excludes itself from being a member of itself, then it thus qualifies 
as a set that is not a member of itself, and should, by its definition, be included
as a member. Thus, the framework of traditional set theory allows a self-
contradiction, making itself internally inconsistent. It’s like they say: Unable
to assign a binary membership value if you do, unable to assign a binary 
membership value if you don’t.

As it turns out, Russell’s paradox is not an across-the-board damning of
all possible set theories. It damns only a subset of all set theories. There are
ways to revive many combinations of set theoretical axioms as long as one
removes a powerful functionality from the theory: One must prohibit sets
from making reference to themselves. Russell’s type theory as well as the
Zermelo-Fränkel set theory do exactly this. Nonetheless, Russell’s famous cri-
tique of basic set theory was enough to make Gottlob Frege (1903/1964,
whose quote begins this chapter) gradually distance himself from his previous
works on logic and mathematics. This paradox is also frequently used as a
motivating example in many introductory descriptions of fuzzy set theory
and fuzzy logic.

Fuzzy set theory can maintain the functionality of self-reference and
internal recursion because it adds the functionality of allowing graded,
instead of binary, truth values (Zadeh, 1965). Fuzzy set theory assigns degrees
of membership, typically on a scale from 0 to 1. A red delicious apple might
get a 0.95 membership to the set of apples, a Granny Smith might get a 0.9, a
mostly eaten golden delicious apple core might get a 0.7, and an Asian pear
(also called a nashi) might get a 0.25 because it resembles an apple’s appear-
ance and texture. Fuzzy set theory does not catastrophically break down when
a paradox occurs, precisely because it allows these gray areas between true/
membership and false/nonmembership. When a particular set membership
appears to be equally true and false, one can simply assign it a value of 0.5 true
and 0.5 false. The set of all sets that are not members of themselves can simply
include itself with 0.5 membership. Granted, this is a rather uninformative
state to be in, but at least the system is not forcing itself to violate any of its
own axioms. Maybe being unable to assign a binary truth value doesn’t damn
a theory after all (Fine, 1975; Hyde, 1997; Williamson, 1994; but see Fodor &
Lepore, 1996). In fact, fuzzy logic (along with other multiple-valued logics)
has been enjoying a great deal of popularity in electrical engineering applica-
tions. Fuzzy control systems can be found in circuits for everything from
toasters to vacuum cleaners to elevators to trains—even in the antilock 
braking system of many cars!

That said, fuzzy, graded treatments of categories in the mind have been
slow to gain appreciation in certain areas of cognitive science (e.g., Dietrich &
Markman, 2003; Fodor, 1998; Haack, 1979; Jones, 1982; Osherson & Smith,
1981, 1982; but see Epstein, 1982; Lakoff, 1987; Love, Medin, & Gureckis,
2004; Massaro, 1989; Rogers & McClelland, 2004; Rosch, 1973). Despite
Russell’s proven crippling of (the sometimes called naive version of) set theory
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a century ago, basic set theoretic symbol-minded treatments of concepts and
categorization still run rampant in cognitive psychology (but see Sloman,
1998). It is almost as though the profound intuitiveness of traditional set 
theoretical frameworks is justification enough to ignore Russell’s proof.

But there is another logical paradox that is more regularly brought up 
in philosophical and psychological discussions of the battle between crisp
atomic concepts and fuzzy vague concepts: the Sorites paradox. This paradox
comes in many forms, but one of the more colorful versions (and one that hits
close to home for a lot of men!) is the question of when a man’s head can be
said to be bald. If a full head of hair is in the neighborhood of 100,000 hairs,
then is a man with only 99,999 hairs bald? Clearly not. But what if you keep
plucking hair after hair from this poor man’s head, and asking whether he is
bald each time? Is he bald at 70,000 hairs? No. 50,000 hairs? Perhaps not.
When you pluck the 90,000th hair, and he has only 10,000 hairs remaining, is
he finally bald? If so, does that mean he was not bald when he had 10,001
hairs? At what individual instance of single-hair plucking did he abruptly
become bald?1 The point of the Sorites paradox is to demonstrate that the line
at which a false proposition like “the man is bald” discretely becomes true is
impossible to draw. At every pair of adjacent values, for example, 10,367 and
10,368 hairs, it seems woefully arbitrary to say the distinction between “bald”
and “not bald” lies there and nowhere else. (This clearly harkens back to 
the concerns about threshold setting in symbolic dynamics discussed in 
chapter 4; see Bollt et al., 2001). Once again, a solution that has been proposed
for this paradox is to introduce degrees of truth, or fuzzy set theory (Machina,
1976).

Part of the reason that concepts like baldness must be vague and fuzzy is
probably because they are actually collective variables rather than the atomic
concepts that the linguistic labels imply. The property of being bald is perhaps
an unevenly weighted combination of hair thinness in different regions of the
scalp. A man with a short-cropped Mohawk haircut may actually have less
total hair volume than a man with midstage male pattern baldness. But it is
the latter man who will get called bald, isn’t it? Moreover, the use of the label
bald for a man might also vary depending on different contextual circum-
stances, such as how attractive his facial structure is, how much you like his
personality, and how old he is. For example, the hair thinness threshold for
being bald could very well be slightly higher for men in their 70s than for men
in their 30s. (At age 75, a man with half a head of hair is doing pretty well.) If
so, this would mean that the concept of being bald somehow includes mea-
sures of age, and perhaps attractiveness, as well as other variables. This dis-
tributed collection of variables that converge to produce the label bald is
clearly not at all the nondecomposable atomic concept of the type that so
many philosophers have argued must exist. I will argue in this chapter that
perhaps no concept can be truly atomic (i.e., nondecomposable into con-
stituent subcomponents). After all, not even atoms are atomic. Philosophers
just thought they were at one time.
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And Yet, We Cannot Help But Categorize

When we introspect and when we communicate, we tend to naturally, auto-
matically, and implicitly impose categories on the things around us, even
events that are actually quite continuous. Sometimes our categorizations are
transparently mere heuristics, used for ease in communicating, such as refer-
ring to Baby Boomers, Generation X, Generation Y, and Generation D, when
we know full well that these labels are not empirically based on nonoverlapping
distributions of birthdates and mutually exclusive affiliations with separate
periods of popular culture. But other times, the parceling of continua into
individual chunks that we carry out is genuinely opaque to self-reflection. For
example, when you look at a real rainbow, you are exposing your retinas to an
approximately evenly distributed continuum of wavelengths. Yet you perceive
it as composed of separated bands of different colors with slightly different
widths. This humanly visible range of wavelengths (from about 400 to 700
nanometers) is a tiny portion of the spectrum of radiation wavelengths in the
universe, from gamma rays (around 0.001 nanometer) to AM radio (around a
trillion nanometers) and beyond. But even this tiny range seems to be carved
up into several distinct groupings within our perceptual experience. This little
example of our carving up of rainbows, despite their actual continuity, is
emblematic of how biological (as well as cultural) evolution has instilled the
tendency to pigeonhole related experiences in such a way that differences within
a group are downplayed and differences between groups are exaggerated. It also
stands as a helpful reminder of how profoundly subjective perception is!

Decades ago, it was suspected that people who grew up with languages that
grouped the color spectrum into different linguistic categories—for example,
using one word for both green and blue, or for blue and black, or in some lan-
guages, one word for all three—also perceived colors in those different cate-
gories (Whorf, 1956). These cultures do of course communicate via a different
set of color names, but psychophysical color perception experiments tend to
show that regardless of language or culture, color is more or less perceived in
basically the same way by humans worldwide (Berlin & Kay, 1969; Heider,
1972; but see also Roberson, Davies, & Davidoff, 2000; Kay & Kempton,
1984)—excluding, of course, those people with fewer (or more) than the typi-
cal three retinal color receptors, such as dichromats (and tetrachromats). Thus,
when a native monolingual Tamahumara speaker (who uses the same color
word for blue and for green) looks at a rainbow, she sees pretty close to the
same chromatic array that a native monolingual English speaker sees. The
wavelength continuum is perceptually segregated into more or less the same set
of almost discretely separated bands of color. (It seems noteworthy, does it not,
that those boundaries between the color bands appear somewhat fuzzy and
graded?)

This color categorization is due largely to low-level opponent-process
color perception mechanisms in the retina and lateral geniculate nucleus
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(Boynton, 1960; Lennie, 1984). It is not due to some contemplative culturally
and linguistically determined thought process that converts perceptual con-
tinua into cognitive and linguistic categories. However, there are other aspects
of our perceptual experience that are perhaps somewhere in between these
extremes of purely biologically determined and purely socially determined
(see Gumperz & Levinson, 1996). For example, Japanese and English use 
different sets of grammatical groupings for referring to objects and to sub-
stances, and the way children learn to categorize and differentiate simple
objects and substances appears to differ in the two cultures (Imai & Genter,
1997). (See also Boroditsky, 2001, for effects of Mandarin and English spatial
metaphors for time.) 

Whether due to innate biological mechanisms or to cultural/linguistic
influences (or, more typically, a combination of the two), the ability to cate-
gorize perceptual experiences, instead of treating each individual stimulus
array as independent of every other stimulus array, is a fundamental cognitive
ability of the utmost importance for defining and understanding the human
mind (see Harnad, 1987). Categorization is among the most studied mental
faculties, and thus is at the core, of cognitive psychology.

What I will demonstrate to the reader in this chapter is that categorization
is not a Kantian mental faculty that performs computations on discrete sym-
bolic variables (Dietrich & Markman, 2003; Marcus, 2001) with logical rules
(e.g., Nosofsky & Palmeri, 1998). Rather, this crucial cognitive skill is a natural
result of a dynamical system that has developed graded attractor basins in state
space (e.g., Anderson et al., 1977; see also Damper & Harnad, 2000). Before a
novel stimulus array can stake claim to its own attractor, thus having its own
personal representational identity, it will first have a chance to settle into one or
more of the existing attractors, thus being treated as a member of that attrac-
tor’s category.2 In this framework, settling into or toward an existing attractor
basin is tantamount to being categorized, just probabilistically so.

Temporal Dynamics

In the following two sections, the discussion will focus on two informal
demonstrations of categorization in continuous time and in continuous fea-
ture space. As a dynamical systems account would naturally predict, cate-
gorization tasks often show quite different results from speeded responses
than from nonspeeded responses (e.g., Lamberts, 1995, 1998, 2000; Lin &
Murphy, 1997; Nosofsky & Alfonso-Reese, 1999; see also Brownell & Caramazza,
1978; Medin & Smith, 1981). Essentially, a speeded response forces an unset-
tled trajectory to select among multiple nearby attractors in an unsystematic
fashion (e.g., perhaps stochastically). The results can allow one to infer partial
activation of multiple competing interpretations of the stimulus array.
Unfortunately, as noted by Lamberts (2000), it is still somewhat new and
unusual for categorization studies to give consideration to temporal dynamics.
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The bulk of the literature over the past few decades has focused almost exclu-
sively on the outcome of categorization rather than the process. This tradition
ignores the fact that by examining the continuous time course of an online
categorization event, one can tease apart various theoretical accounts that
would never have been rigorously tested by outcome-based off-line experi-
mental measures.

For example, one theoretical account of the process of categorization,
which is generally consistent with Lamberts’s (2000) information accumula-
tion theory, can be idealistically demonstrated by a normalized recurrence
simulation. Figure 6.2 shows the diagram of a very simple normalized recur-
rence architecture used to approximate the changing patterns of activation
during the categorization of different animals into the classes of fish, mam-
mal, bird, and reptile. As the normalized recurrence competition algorithm
works (see chapter 4 for details), these five feature vectors (framed circles)
each normalize so that they sum to 1.0 and then are combined at the integra-
tion layer (framed ovals), erasing any previous activation values at that layer.
In this simulation, there are no differential weights for the five feature vectors;
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Figure 6.2. Schematic diagram of a normalized recur-
rence simulation of the temporal dynamics of categoriza-
tion. The repeated node labels in some of the feature
vectors (circles) are necessary because each integration
node (ovals) must have its own unique feature node. This
allows the feature vectors to function as probability distri-
butions in their support for the appropriate taxonomic
class. For example, after the initial feature vector normal-
ization step, a “live” birth mode vector would pass 1.0 acti-
vation to the mammal node and 0 activation to the other
taxonomic class nodes, whereas an “eggs” birth mode vec-
tor would send 0.333 activation to the fish, bird, and reptile
nodes, and 0 activation to the mammal node.



they simply sum together at the integration vector. The integration layer then
divides each node’s activation by the vector’s sum activation (always 5.0 in this
case, thus making the integration vector simply an average of the five feature
vectors). Then cumulative feedback is sent by adding to each feature node the
product of itself and its corresponding integration node. The next time step
begins with the feature nodes normalizing themselves (dividing each node by
the vector’s sum), and the integration and feedback take place again. These
four calculations are computed within each time step, and the network con-
tinues until a criterion node activation (often 0.95) is reached by an integration
node. The cyclic recurrent flow of activation between the integration vector
and the feature vectors allows strong and selective biases within certain feature
vectors to coerce weak and uncertain biases in others, until the system gradu-
ally settles into a stable state (see appendix for the relevant MATLAB code).

For this simple animal categorization simulation, feature vectors were
entered for nine example animals. For the toucan, the nodes for wings, sky,
warm, air, and eggs were set at 1.0 activation. For the goldfish, the nodes for
fins, water, cold, water, and eggs were set at 1.0 activation. For the lizard, the
nodes for legs, land, cold, air, and eggs were set at 1.0 activation. For the cat,
the nodes for legs, land, warm, air, and live were set at 1.0 activation. For the
turtle, the nodes for legs, water, cold, air, and eggs were set at 1.0 activation.
For the penguin, the nodes for wings, water&land, warm, air, and eggs were set
at 1.0 activation. For the seal, fins, water&land, warm, air, and live were set at
1.0 activation. For the whale, the nodes for fins, water, warm, air, and live were
set at 1.0 activation. For the platypus, the nodes for legs, water&land, warm,
air, and eggs were set at 1.0 activation. This localist attractor network easily
categorizes animals that are typical exemplars of their taxonomic class, such as
toucan, goldfish, and cat (see figures 6.3 and 6.4). However, with animals that
are unusual members of their class, the network undergoes a long, drawn-out
competition—not unlike the long reaction times described by Rosch,
Simpson, and Miller (1976) and Smith (1978)—due to the animal’s partial
match with multiple taxonomic classes.3

Figure 6.3 presents two-dimensional perspectives on the representational
state space of the taxonomic class vector for all nine simulations. In each case,
30 circles plot the activation of one relevant node by the activation of another
relevant node time step after time step. When these circles are far apart, it
shows that the state space trajectory was moving quickly at the time, and when
the circles are close to one another, it shows that the state space trajectory was
moving slowly. Figure 6.4 plots the activations for all four nodes in the taxo-
nomic class vector (along the y-axis) over time (along the x-axis). Note how
the simulations for seal, whale, penguin, turtle, and platypus exhibit late rises
to asymptote for the correct classification, and even then those asymptotes are
substantially below 1.0. In the end, the model concludes that a whale is 0.6 
a mammal and 0.4 a fish. And in fact, during its first few time steps of pro-
cessing, the model briefly conceives of a whale as slightly more a fish than a
mammal. A similar crossing of curves is seen with turtle.
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Keep in mind that this simulation is really just an existence proof of one
way a graded temporal dynamics could be realized in a dynamical system.
Even if these predictions were to fit human data perfectly, that still wouldn’t
prove that the way that normalized recurrence produces these curves is the
same way human brains produce their curves. But could these curves really be
anything at all like what a human mind does when it categorizes animals any-
way? During the early moments of settling on a categorization for an animal,
do people simultaneously partially consider multiple categories? Do those
partially active representations compete over time for a cognitive trajectory to
settle into eliciting a unique motor output? 

Comparing speeded instinctive responses to slow contemplative responses
(e.g., Lin & Murphy, 1997) is a good start for measuring this kind of time
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Figure 6.3. Trajectories through representational state space, seen through a variety
of two-dimensional windows on the four-dimensional taxonomic class vector (axes
vary across panels). Note how all simulations start somewhere in between the two 
relevant attractors (at top left and bottom right corners) and move in the direction of
one of them.



course question, but a (semi-)continuous many-samples measure of which
responses are accruing activation and approaching threshold (such as many of
those methods discussed in chapter 3) is substantially more revealing. For
example, because eye movements occur about three to four times per second
and are largely unaffected by deliberative strategies, they can provide a stream
of multiple honest proto-responses over the course of the couple seconds it
takes to produce a single overt verbal or manual response.

Nederhouser and Spivey (2004) recorded the eye movements of 17 par-
ticipants while they categorized small plastic toy animals (about 2 inches �
3 inches) into either of two bins. Participants were first shown a set of animals
(half from one taxonomic class, half from another), and then were presented
each animal one at a time. Nederhouser and Spivey found that animals that
are atypical members of their taxonomic classes, like turtle, penguin, seal, and
whale, took longer to categorize than more typical animals (see Glass &
Meany, 1978; Rips, Shoben, & Smith, 1973), and they also elicited quite a bit of
vacillation in eye movements between the two category bins. Crucially, when
one looks again at the records of eye position over time, one can plot fixation
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Figure 6.4. Activation of all four nodes of the taxonomic class vector over time,
for all nine simulations.



curves based on the proportion of fixations at each time slice (figure 6.5) that
resemble somewhat the activation curves from the network simulations 
(figure 6.4). The curves in figure 6.5 show, for each 33-millisecond time slice,
the proportion of trials in which the subjects were fixating the correct cate-
gory bin or the incorrect category bin, following their first saccade away from
the toy animal that was placed in front of them. (Similar kinds of findings, but
with continuous mouse movements, are reported by Dale, Kehoe, & Spivey, in
press.) Note how in the case of penguin, seal, and whale, some subjects con-
tinued to fixate the incorrect bin for the full two seconds shown; in some
cases, they even placed the whale in the bin of fish! 

The present eye movement data (figure 6.5) do not include the platypus
in figure 6.4. Do you have any idea how hard it is to find a small plastic toy
platypus?! Anyway, a wide range of additional interesting animals, such as the
eel, the ostrich, the bat (perhaps even adding more taxonomic classes), can be
the focus of future, more richly fleshed out simulations and experiments. Of
course, if some of our participants had trouble correctly classifying the whale,
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Figure 6.5. Eye fixation curves for the categorization experiment. Animals that
are atypical examples of their taxonomic class elicited considerable vacillation in
eye movements during the early moments of categorization.



one can probably expect the underappreciated and misunderstood platypus
to elicit even more noisy and confused responses from many participants.

This comparison of pilot simulation and pilot data provides a glimpse
into the beginning stages of how a research project can pursue a recurrent
interplay between model prediction and experimentation in studying the tem-
poral dynamics of real-time categorization. The demonstration is intended to
illustrate how one can begin to visualize the fuzzy graded representations that
change over time during categorization, both in a localist attractor network
and in a semi-continuous record of cognitive processing. And perhaps some
of the more static, formal approaches to concepts and categorization might
have trouble accommodating such evidence that during a categorization event,
the mind spends so much of its time in graded, rather than discrete, mental
states.

Categorical Perception: Vision

One common objection to the claim that mental representations are fuzzy and
multifarious—at any point in time—is that under certain experimental cir-
cumstances, one can demonstrate that perceivers appear to uniformly catego-
rize certain perceptual inputs and lose access to the continuous information
that originally constituted the stimulus array (especially with speech; see
Liberman et al., 1957). Clearly, addressing this categorical perception phe-
nomenon is thus of paramount importance in advancing and defending the
continuity of mind thesis.

In a categorical identification task, a stimulus feature is “stretched out”
into a continuum. For example, one could present human participants with
many color patches over and over from a green to blue portion of the color
spectrum, say, 540 to 480 nanometers in 5-nanometer increments, and ask
them to identify each patch as either green or blue. In principle, one might
perhaps expect participants to respond to this continuum in a continuous
fashion. That is, a green that is near the blue region, say 520 nanometers,
might get identified as green only 60% of the time and as blue the other 40%,
and vice versa for 500 nanometers. Figure 6.6 shows a pretend version of this
hypothetical continuous perception. However, what is actually found with
such continua, in most circumstances, is that all stimuli in one portion of
the continuum are identified with nearly 100% consistency as belonging to
one category and all stimuli in the remaining portion of the continuum are
identified with nearly 100% consistency as belonging to the other category.
Figure 6.7 shows a schematic version of the kind of data that are typically
observed in such experiments.

Following work in the speech domain (Liberman et al., 1957), Bornstein
and Korda (1984, 1985; see also Pilling et al., 2003; Roberson & Davidoff,
2000) gave participants a discrimination task instead of the identification
task. True categorical perception requires that the graded distinctions between
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a pair of within-category stimuli from the continuum are lost to the process-
ing system and unable to affect responses. Consistent with this, Bornstein and
Korda showed that a pair of hues that just barely straddled across the category
boundary between green and blue were more easily discriminated than a pair
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Figure 6.6. Hypothetical continuous perception of a continuous modulation in
wavelength.

Figure 6.7. Hypothetical categorical perception of a continuous modulation of
wavelength.



of hues (with the same distance from one another in nanometers) from within
either category. However, they also found that reaction times were longer for
same judgments of nonmatching hues within the same hue category than for
same judgments of identical hues. Thus, something about the difference
between two slightly different but same category hues is obviously still affect-
ing processing, at least enough to influence the time course of discrimination.

In this next illustration of human data and model simulation, I briefly
describe some experiments on the categorical perception of cups and bowls.
These experiments have much in common with work by Labov (1973), Oden
(1981), and Newell and Bülthoff (2002). The primary feature that distin-
guishes a cup from a bowl is aspect ratio: width divided by height. All other
features being equal, a cup is typically taller than it is wide, and a bowl is 
typically wider than it is tall. Figure 6.8 shows a two-dimensional continuum
between a typical cup (upper left) and a typical bowl (lower right). This
matrix was constructed by starting with the stimulus in the lower left corner
and increasing its height by increments of 10% (upward in the matrix) and
increasing its width by increments of 10% (rightward in the matrix). Thus,
the stimuli along each diagonal going from lower left to upper right all have
the same aspect ratio—they differ only in size.

In the first of this pair of experiments, 20 participants were shown each of
these stimuli one at a time on an otherwise blank computer screen and asked
to identify each one as either a cup or a bowl. Averaging across stimuli with the
same aspect ratio, figure 6.9 shows the percentage of people’s bowl judgments
(filled circles) along this cup/bowl continuum. Just as in other categorical per-
ception phenomena (e.g., Beale & Keil, 1995; Cutting & Rosner, 1974; Eimas &
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Figure 6.8. A two-dimensional continuum of height
(along the vertical axis) and width (along the horizontal
axis) for cups and bowls.



Corbit, 1973; Livingston, Andrews, & Harnad, 1998; Newell & Bülthoff, 2002;
Sailor & Shoben, 1996) people’s judgments reveal a striking nonlinearity in
their responses to a continuous linear manipulation of the stimulus. Near the
middle of the cup/bowl continuum (an aspect ratio of approximately 1.2),
subjects almost discretely switched from consistent cup judgments to consis-
tent bowl judgments.

Interestingly, people’s reaction times (open triangles) near this boundary
point were longer than those near the extremes of the continuum (see also
Pisoni & Tash, 1974, for similar slowed reaction times with speech stimuli).
These slowed reaction times are naturally predicted by a dynamical systems
account in which the mental representations associated with the two sanc-
tioned response categories, cup and bowl, compete against each other over the
course of several hundred milliseconds. These two competing attractors (or
neural population codes), with stimulus-triggered trajectories that start out
either equidistant from the two attractors or closer to one than the other,
might look something like the vector landscape in figure 6.10. Longer trajec-
tories to cross the verbal response threshold correspond to longer reaction
times.

To get quantitative and somewhat more explicit with this dynamical sys-
tems account, an idealized simulation with normalized recurrence was con-
ducted to show how probabilistic representations of cup and bowl can go

Temporal Dynamics in Categorization 155

Figure 6.9. The identification function (solid circles) for the 
categorical response task with the cup–bowl continuum looks
similar to the idealized categorical step function in figure 6.7.
However, note that the reaction times (open triangles) show
some sensitivity to particularly ambiguous shapes.



through a pattern completion process over time to settle on a unitary response
category. Figure 6.11A shows the architecture of this network. As described in
chapter 4, normalized recurrence is a competition algorithm implemented as
a localist attractor network that merges probabilistic representations of differ-
ent perceptual inputs into an integrated representation that corresponds to
some response category. The probabilities of the different response categories
at this integration layer then send feedback to the perceptual inputs, biasing
them slightly toward supporting the most active (or most probable) response
category. This feedforward integration and feedback biasing cycle repeats
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Figure 6.11. A: a normalized recurrence simulation of a categorical response
task; B: a normalized recurrence simulation of a rating task.

Figure 6.10. A hypothetical attractor landscape in which
different visual objects from figure 6.8 have different dis-
tances from the cup attractor and the bowl attractor. When
the mental trajectory finally crosses an attractor’s threshold,
that cup or bowl button gets pressed.



until one response category reaches a threshold (at which point it triggers its
associated behavior, such as pressing the cup button).

Because this model necessarily converts its inputs into probabilities of
individual perceptual representations (so that they can use a common cur-
rency for integration), it operates at a level of description above the actual
population codes of the brain. A single localist node with a probabilistic acti-
vation of 0.8 is analogous to 800 of the 1,000 neurons in a distributed popula-
tion code being active (see Zemel & Mozer, 2001). Thus, we can think of the
population code as “functionally unitized” (Stone & Van Orden, 1989)—such
that despite being composed of hundreds of interconnected subunits, it
behaves roughly like a coherent whole.

By entering input values corresponding to the matrix indices (and inverse
matrix indices)4 of the various stimuli in figure 6.8, the network in figure 6.11A
forces the Cup and Bowl response categories to compete against each other over
time—just as two mutually exclusive population codes would compete against
one another for the privilege of executing their associated actions. The weight
for each feature vector was 1.0. With a gradually decreasing threshold (a
dynamic criterion that starts at 1.0 and is reduced by 0.01 after each time step),
the model will eventually stop cycling, with one response category substantially
higher in probability than the other. Using the probabilistic activation value of
the response category node for Bowl as an indicator of the percentage of bowl
judgments, the figure 6.11A version of this model mimics the human data
rather well (compare figure 6.9 with figure 6.12). Additionally, the number of
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Figure 6.12. Simulation results of the categorical response task
from normalized recurrence. The localist attractor network from
figure 6.11A mimics the human data in figure 6.9.



competition cycles that the model takes to reach this nearly settled state also
mimics the human data. What this simulation demonstrates is that a percep-
tual processing system that is exposed to graded information yet is forced to
pigeonhole the input into one of two binary response categories, can do so via
a competitive pattern completion process without immediately dismissing the
graded information in the original signal.

When examining the experimental task on which this simulation is based,
the following question naturally arises: Does the fact that this task requires
a discretized response (i.e., a forced choice between either cup or bowl) dis-
courage the participant from acting on gradations in the stimulus?5 What if,
in a different version of the experiment, the same stimuli from the cup/bowl
continuum were presented, but the task was to rate how bowl-like the stimu-
lus was, on a scale from 1 to 10 (see Massaro & Cohen, 1983, for a similar task
with speech stimuli)? The perceptual input is the same, but the rules for the
behavioral output have changed.

This arrangement is easily implemented in normalized recurrence by
changing the number of integration nodes to accommodate the number of
possible responses in the rating task. With 10 integration nodes, one for each
numerical response, the network then has its feature vectors offer their evi-
dence in the form of probabilistic support for any of those 10 response
options, hence, 10 nodes in each feature vector as well. Essentially, the con-
straints on the possible responses in turn impose constraints on the possible
perceptions. This next simulation used the normalized recurrence architec-
ture in figure 6.11B, in which the possible response categories are the numbers
1 through 10, indicating how bowl-like the stimulus is. The activation input to
this version of the network was a Gaussian distribution centered on the input
node corresponding to the stimulus’s row (for width) and column (for short-
ness) in the matrix.6 When the activation of any one response category
reached the dynamic criterion, competition stopped. At that point, the activa-
tion function across all 10 response categories of the integration layer consti-
tuted a probability distribution. A bowl-like rating was then randomly
sampled from this probability distribution, such that the most active node was
usually what response category got executed, but occasionally a less active
response category would get selected for discrete output. This stochastic sim-
ulation was run 20 times for each stimulus, and the results were averaged into
the curves seen in figure 6.13. These simulation results stand as the theory’s
quantitative prediction of what would happen if the cup/bowl categorical-
response task (whose human data are shown in figure 6.9) were converted into
a cup/bowl rating task.

So logically, the next phase of this recurrent interplay between modeling
and experimentation would be to empirically test this quantitative prediction.
When 20 human participants are given a range between 1 and 10 to respond
with, would they produce responses similar to those produced in the simula-
tion? Or would they behave categorically, shying away from using inter-
mediate values, and tending instead to pigeonhole the stimuli as 1s and 2s
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(obvious cups), and 9s and 10s (obvious bowls)? Figure 6.14 shows exactly the
straight diagonal line (filled circles) that one would predict if the gradations in
the stimuli were in fact preserved and still accessible during perception. Thus,
at least in this little example of cups and bowls, it looks as though it is not the
case that gradations in the stimuli are truly inaccessible to the perceiver.
Perhaps it is more accurate to say that it is the behavioral task, rather than the
perceiver, to which gradations in the stimuli can sometimes be inaccessible.

Categorical Perception: Speech

Probably the most well-known example of categorical perception comes from
research on how people process speech (Aslin, Jusczyk, & Pisoni, 1998;
Liberman et al., 1961; see also Kluender, Diehl, & Killeen, 1987; Kuhl & Miller,
1975, for similar research with quail and chinchilla). This work is perhaps
most famous for popularizing the notion that “speech is special” (Liberman,
1982). Continua between pairs of phonemes can be constructed with speech
synthesis equipment, such that realistic-sounding intermediate increments in
between the two phonemes can be presented to human participants. For
example, there is one phonetic feature that plays a large role in distinguishing
the sound bah from the sound pah. This particular phonetic feature, called
voice onset time (VOT), is the time between the opening of the lips (releasing
air from the mouth) and the vibration of the vocal chords. If the VOT is
around 10 milliseconds, the sound will be perceived as bah. If the VOT is
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Figure 6.13. Simulation results of a rating task from normalized
recurrence. The localist attractor network from figure 6.11B pro-
duces a predicted pattern for human data.



increased to around 50 milliseconds, the sound will be perceived as pah. That
extra 40 milliseconds is enough to completely change your perception. In the
context of the discussions of probabilistic representations, attractors in state
space, and neural population codes, the obvious question now is the follow-
ing: What happens when the VOT is 20 milliseconds? Or 30? Or 40? 

Liberman et al. (1961) demonstrated that when listeners are presented a
series of sounds along a continuum of VOT (with bah at one extreme and pah
at the other), everything under about 30 milliseconds VOT is consistently
reported as sounding like bah, and everything above about 30 milliseconds VOT
is consistently reported as sounding like pah. Only around 30 milliseconds VOT
are the identifications near 50/50 bah/pah. Figure 6.15 shows a schematic rendi-
tion of this kind of data in the percentage of pah judgments (filled circles, map-
ping to the left-hand y-axis). If the graded information of VOT were being used
in this task, one might expect to see a straight diagonal line in this graph going
directly from the bottom left corner to the top right corner.

Additionally, and perhaps more important, listeners are unable to dis-
criminate between stimuli within a category, such as a bah with 10 milli-
seconds VOT and a bah with 20 milliseconds VOT. However, when the stimuli
span the category boundary, such as a sound with 25 milliseconds VOT and
one with 35 milliseconds VOT, discrimination is well above chance perform-
ance. Thus, the graded information within a category appears to be absent
from the internal perceptual representation (Liberman et al., 1961; see also
Dorman, 1974; Molfese, 1987; Simos et al., 1998; Steinschneider et al., 1995).
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Figure 6.14. The identification function (solid circles)
for the rating task with the cup–bowl continuum looks
similar to the idealized continuous perception function
in figure 6.6. Both ratings and reaction times (open trian-
gles) adhere moderately closely to the normalized recur-
rence simulation in figure 6.13.



Nonetheless, there are a couple of hints suggesting that the graded infor-
mation in the stimulus is not completely discarded. Pisoni and Tash (1974)
showed that when listeners are attempting to identify a sound that is on or
near the boundary between these categories (somewhere between 20 and 
40 milliseconds VOT), they take a longer time to make the identification, even
though they rather systematically make the same identification almost every
time. See the reaction times (open triangles, mapping to the right-hand 
y-axis) in figure 6.15. It is as though the two possible categories are partially
represented simultaneously, like two mutually exclusive population codes that
are each trying to achieve pattern completion and must compete against each
other to do so. If they are nearly equal in their activation (or confidence), they
will compete for a while before one reaches a probability high enough to 
trigger its associated response, thus delaying the identification. Converted into
the language of attractor basins, this idea is the same as that depicted by the
vector landscape in figure 6.10. Simply replace the aspect ratios with VOTs,
and the cup and bowl labels with bah and pah labels.

Another hint that graded information is actually still available in categor-
ical speech perception comes from work by Massaro (1987, 1999), on extend-
ing what is often called the McGurk effect (McGurk & MacDonald, 1976; see
also Munhall & Vatikiotis-Bateson, 1998, and chapter 5). In addition to being
exquisitely sensitive to a wide variety and timing of acoustic contexts (Holt,
2005; Mann & Repp, 1980), speech perception is also sensitive to visual con-
texts. In the McGurk effect, the visual perception of a speaker’s dynamic
mouth shape has a powerful and immediate influence on the listener’s speech

Temporal Dynamics in Categorization 161

Figure 6.15. An idealized pattern of data from a categorical
speech perception task.



perception of the phoneme being spoken. In Massaro’s experimental frame-
work, he presents to listeners a bah/dah continuum, where the place of artic-
ulation (what parts of the mouth constrict airflow during the sound) is varied
in steps by digitally altering the speech waveform. That by itself tends to pro-
duce the standard categorical perception effect, as though the gradations in
the stimuli are completely discarded by the perceiver. But Massaro couples this
auditory bah/dah continuum with a computerized face, whose lips can be
adjusted in steps along a visual bah/dah continuum (basically, by increasing
the aperture between the lips). When these graded visual and auditory infor-
mation sources are combined for perceiving the syllable, results are consistent
with an algorithm in which the probabilistic biases in each information source
are preserved, not discretized, and a weighted combination of those graded
biases determines categorization. Massaro calls his algorithm the fuzzy logical
model of perception.

Consistent with more temporally dynamic approaches to categorization
(e.g., Anderson et al., 1977; Cree, McRae, & McNorgan, 1999; Dailey et al.,
2002; Lamberts, 2000; McRae et al., 1997; Tuller et al., 1994), one might expect
even categorical speech perception to not only be underlyingly comprised of
graded patterns of activation (or fuzzy truth values) but also exhibit these 
gradations when the categorization process is measured in a fashion more
continuous-in-time than simple outcome-based measures that record which
identification the participant eventually reports at the end of the experimental
trial. McMurray and Spivey (1999) tested exactly that by recording partici-
pants’ eye movements while they performed the standard categorical iden-
tification task, with sounds from a bah/pah VOT continuum, by mouse clicking
/ba/ and /pa/ icons on a computer screen. Thus, in addition to the record of
which icon participants ultimately clicked, there was also a record of when 
the eyes moved away from the central fixation dot and toward one or another
of the response icons while making the categorization. With stimuli near the
categorical boundary, the eye movement record clearly showed participants
conspicuously vacillating their attention between the /ba/ and /pa/ icons.
Figure 6.16 shows two schematic depictions of the eye fixations over time dur-
ing the speech categorization process for a clear pah stimulus (panel A) and
for a stimulus that was near the category boundary but was nonetheless iden-
tified (by mouse clicks) as a /pa/ 95% of the time (panel B). The eye position
records depicted here came only from trials in which the /pa/ icon was indeed
clicked at the end of the trial. Despite the identification outcome being iden-
tical in this subset of trials (all categorized as /pa/), the pattern of eye move-
ments reveals substantially more time spent fixating the /ba/ icon (dashed area
in panel B) when the speech stimulus was near the VOT category boundary;
thus indicating a clear effect of perceptual gradations in the speech input.

In fact, these temporary phonemic ambiguities, as tested with VOT con-
tinua and eye movement records, exhibit their effects not just in phoneme 
identification tasks but also in spoken word recognition tasks (McMurray,
Tanenhaus, & Aslin, 2002; McMurray et al., 2003). For example, within-category
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variation of VOT does not affect the final outcome of recognizing bear versus
pear, however it does affect the eye movement records of participants looking
at and mouse clicking the corresponding images on the computer screen
(McMurray et al., 2002). More effects at the level of spoken word recognition
will be discussed in further detail in chapter 7.

A particularly compelling way to visualize these eye movement data for
the phoneme identification task is to convert them into identification func-
tions (like that in figure 6.15) for early, intermediate, and late periods of time
during the identification process. Figure 6.17 shows a schematic example,
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Figure 6.16. Schematic, smoothed, data patterns of eyes fixating on the /ba/
and /pa/ icons over the course of two seconds. Hashmarked region in panel B
indicates the amount of increased fixations of /ba/ (compared to panel A)
with a borderline speech token.

Figure 6.17. Versions of the identification function, based on time
spent fixating the /pa/ or /ba/ icon, during early, intermediate, and late,
periods of time after stimulus presentation but before the mouse click
response.



based on McMurray and Spivey’s (1999) results, of the proportion of time the
eyes spent fixating the /pa/ icon (normalized by the total amount of time
spent on either /pa/ or /ba/ icons). The later period of the identification
process (1,201–1,500 ms) reveals an eye movement identification function
that looks just like the typical discrete categorical identification function 
produced by button-press responses (e.g., figure 6.15). However, the earlier
periods of the identification process (i.e., 0–300 ms, 301–600 ms, and even
601–900 ms), produce eye movement identification functions that look sig-
nificantly more probabilistic and graded. Thus, if the identification function
is to be interpreted as a kind of signature of the internal pattern of activation
favoring the perception of bah or pah, this signature looks decidedly more
continuous than discrete during those early moments in time.

As in the previous explorations of categorization in this chapter, the nat-
ural next step is to simulate these graded temporal dynamics in categorical
speech perception with a localist attractor network to better visualize the 
continuous change taking place in the patterns of activation corresponding 
to mutually exclusive categorylike representations. Figure 6.18 illustrates the
architecture of a normalized recurrence simulation that integrates a speech
vector (that pits bah-like sounds against pah-like sounds) and a visual vector
(that compares fixation probabilities to a /ba/ icon, a /pa/ icon, and the central
fixation dot). The speech vector is given a pattern of input corresponding to a
speech sound somewhere along the VOT continuum. For example, a rather
unambiguous pah sound might get a starting activation of [0.1 0 0.9] for those
three nodes, whereas a borderline bah sound might get [0.6 0 0.4]. The visual
vector always starts at [0.33 0.33 0.33], treating each visual object as equally
worthy of attracting an eye movement. These two vectors simply sum
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Figure 6.18. A normalized recurrence network for simulating eye
movements to visual icons in a categorical speech perception task.



(unweighted) at the integration layer, which then normalizes itself and sends
feedback to the feature vectors.

In this simulation, one can sample the proportion of fixations from the
visual vector and thus watch the simulated eye movement patterns move away
from fixating the central dot and toward one or the other response icon.
Figure 6.19 shows the activation curves over time for the /pa/ visual node 
and the /ba/ visual node. Panel A plots these curves for a rather clear pah
speech input [0.2 0 0.8], and panel B plots these curves for a pah speech input
that is near the category boundary [0.4 0 0.6]. These activation curves from
the visual vector mimic the proportion of fixations at each time slice in the
results of McMurray and colleagues (1999, 2003); compare figure 6.19 with
figure 6.16.

When this simulation is run for all 11 speech tokens along the VOT con-
tinuum, it is possible to calculate the proportion of time the model spends 
fixating the /pa/ icon versus the /ba/ icon, and thus plot a categorical identifica-
tion function. Crucially, this can be done for early periods of time during the
network’s settling process, as well as for intermediate and late periods of time—
just as was done in figure 6.17. The resulting graph is shown in figure 6.20. Note
the similarity between figures 6.17 and 6.20. In both cases, the identification
function starts out rather unbiased and gradually approaches the classic step
function profile by continuously increasing one half of the curve and decreasing
the other half of the curve over time.

This gradual expansion of the identification function over time to eventually
achieve the famous step function profile suggests that over the course of several
hundred milliseconds while hearing and identifying a speech sound, the relevant
phoneme representations are actually rather continuous and analog, not partic-
ularly categorical and binary. Recall the discussion of the Necker cube, object
recognition, and the temporal dynamics of neural population codes in chapter 1.
It was argued there that if it takes several hundred milliseconds to fully activate a
population code to achieve a maximally confident object recognition event, but
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Figure 6.19. Simulation results, based on probabilistic activations of
the visual nodes, approximating the human data pattern in figure 6.16.
Hashmarked region in panel B indicates the amount of increased visual
attention on /ba/ (compared to panel A) with a borderline speech token.



eye movements to other objects occur every few hundred milliseconds, then
maximally confident or categorical recognition events must be rather rare.
Instead, recognition probably operates with nondiscrete, partially active “good-
enough representations” (see Ferreira, Bailey, & Ferraro, 2002). The same logic
applies here with respect to these findings for categorical speech perception. If it
takes upward of 800 milliseconds for a clear unambiguous pah speech sound to
be completely and confidently identified as that phoneme and no other, and
until then multiple phoneme representations are simultaneously partially
active, this raises serious questions for how people manage to recognize natural
flowing speech, where each new phoneme is uttered less than 100 milliseconds
after the previous one. At this fast rate of sensory input and that slow speed of
identification, spoken word recognition and spoken sentence comprehension
must be operating (like object recognition during eye movements) with only
partially active moderately confident patterns of neural population code 
activity—not logical categorical symbolic representations.

Action, Not Cognition, Categorizes Perception

The goal of this chapter has been to pinpoint one aspect of categorization
phenomena, their temporal dynamics, and demonstrate how this aspect 
suggests that, as implied by Russell’s paradox and the Sorites paradox, pure
logical categories simply do not exist in the mind. This is not to say that cate-
gorization doesn’t happen. On the contrary, categorization is a ubiquitous
cognitive process whereby broadly multifarious, diffuse, and continuous per-
ceptual information is whittled, funneled, shaped, and coerced over hundreds
of milliseconds into a pattern that is just close enough to discrete that it can
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Figure 6.20. Simulation results of the identification function from
normalized recurrence during early, intermediate, and late periods of
time after stimulus presentation (compare to figure 6.17).



facilitate the execution of a relatively unitary motor action, such as grasping 
a particular object or producing a particular spoken word. Crucially, during
the time course of that process, new perceptual input is already nudging the
system toward other regions of state space, so that even that moment of being
just close enough to a discrete internal representation is quite short-lived
indeed.

In a dynamical framework such as this, there is no need to postulate some
internal cognitive bottleneck that transmogrifies the distributed patterns of
neural activation that constitute representation in perceptual areas of the brain
into a handful of crisply defined formal symbols that live in some heretofore
unidentified area of the brain. After all, those crisply defined symbols would
only have to be “untransmogrified” right back into the distributed patterns of
neural activation that constitute representations in motor areas of the brain! 

Even if a computational representationalist (e.g., Dietrich & Markman,
2003) was to concede that truly static representations may not exist, and
instead recruit representations whose phasic properties are stable (such as a
limit cycle, where the system’s state repeatedly orbits a point repellor) to serve
as the symbols to be operated on by the system’s rules and algorithms, prob-
lems for interpretation of data like those presented in this chapter still remain.
Because the gradations of the system’s specific location in state space are
clearly “leaking out” in eye movement patterns and reaction times, the sym-
bolization that computationalism claims is taking place for cognition appears
to play a rather epiphenomenal role in the flow of information from sensory
input to motor output. It is as if the perfect discretization of graded represen-
tations into formal logical category memberships is being done only for some
inescapably subjective cognition/consciousness module that is actually not
needed to explain natural online behavior. Although the individual partici-
pants may find themselves unable to produce a verbal protocol that can do
justice to the gradual process of getting from an ambiguous segment of speech
input to a discrete action of clicking one icon or the other, this should be 
seen as a limitation of language and memory rather than a limitation of the
original internal representations.

The place where unitary crisply-delimited categories exist, if anywhere, is
at the level of our intersubjective agreement on what individual words to use
when we refer to these fuzzy groups of things, such as apples, mammals, and
bowls. A dozen people might grasp an apple with a dozen subtly different reach-
ing trajectories and hand shapes, but we, as observers of these varied motor out-
puts, will generally refer to each of them as “an apple-grasping event.” Likewise,
when an experimental participant is presented with two slightly different-
sounding (but within-category) speech sounds, she might produce a variety
of different intermediate motor behaviors (such as eye movements) before
finally selecting her interpretations, but those final overt reports will be gen-
erally agreed on by observers as belonging to the same categorical response
alternative. (Unfortunately, cognitive psychologists will too often blithely
record only these final outcomes of the categorical identification process and
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thus mistakenly conclude that subtle continuous differences in phonetic fea-
ture variables do not affect perception at all.) 

These unitary labels that observers wind up agreeing on are best treated
as descriptive conveniences that indeed attempt to function as discrete logical
sets, for the purpose of scientific communication, but do so only as long as the
overt actions and speech acts of the linguistic community continue to corre-
late perfectly with them. The fact is, exceptions abound. It is quite rare for any
theoretical construct, and its corresponding label, to have perfect agreement
in its use in the scientific community of the cognitive sciences. More impor-
tant, these descriptive conveniences are only observable as actions, not as
internal mental entities. The hints at fuzzy internal representations and multi-
farious activations of population codes, shown in this chapter and throughout
this book, indicate that those internal mental entities that one infers from
observing motor output (or electrophysiological measures) in the laboratory
are far from discrete logical unitary cognitive objects. On the contrary, they
are better described as graded attractor basins in a continuous metric state
space, for which linguistic labels may be loosely applied but for which precise
boundaries may not be drawn.

A dynamical and ecological approach to cognition treats categories not as
static things in the head that are accessed when queried, but instead as
dynamic flexible patterns, or complex structures in state space that can be
used not just for these somewhat artificial laboratory classification tasks but
also for on-the-fly conceptualizations and real-time applications of knowl-
edge in the service of realistic goal-oriented action (e.g., Barsalou 1991;
Markman & Ross, 2003). A very basic fundamental implication that this con-
tinuous perspective has for our intellectual lives is that nothing in the mind is
logically true or logically false. Likewise, nothing in the mind is discretely
included or discretely excluded from any potential set. When dealing with
fuzzy truth values and with probabilities, there are no pure 1s and no pure 0s.7

By the time some internal representation has reached a probabilistic threshold
for triggering one of its associated actions, other perceptual inputs (even just
witnessing the action oneself is carrying out) have changed the state space
manifold enough that the system will never settle into a perfectly stable state.
That is to say, the continuity of mind is not merely a brief curiosity that can 
be observed with sophisticated real-time measurements, it is the modus
operandi of thought. This suggests that one cannot fully trust what people
(including oneself) say they think, or in some cases even how they act. Both 
of those behaviors unfairly discretize what a person is really thinking. Action
and communication—particularly communication (this book included!)—
necessarily overidealize and exaggerate the discreteness of people’s internal
representations, typically settling on the closest response category to what 
was originally intended. The continuity of mind provides an explanation for
why it is often the case that the response category that truly accurately repre-
sents the thoughts one wishes to act on or convey—for example, a choice of
wording—simply does not exist.
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7

Temporal Dynamics in 

Language Comprehension

Language is a virus.
—William Burroughs

With Humankind Its Only Reservoir?

The casual observation that humans use linguistic communication more
complexly and more ubiquitously than any other animal species has, for many
centuries, motivated the speculation that there might be something uniquely
innate about the human brain that is specifically programmed for developing
and acquiring language. This is the large time scale arena of language evolu-
tion. The debate over this hypothesis has been especially heated in the past
half-century (e.g., Bates & Dick, 2002; Chomsky, 1957; Christiansen & Kirby,
2003; MacWhinney, 1999; Marcus, 2001; Pinker, 1994, 1999; Seidenberg, 1997;
Wexler & Culicover, 1980). Teaching language to nonhuman primates is quite
slow, effortful, and culminates in somewhat less than impressive results
(Seidenberg & Pettito, 1987; but see Savage-Rumbaugh, 1987), so it seems 
reasonably clear enough that there must be something innately different about
humans, compared to other animals, that allows them to learn language so
easily. However, for some time now, a number of researchers have suggested
that what might have evolved to be innate in humans, and gets coopted for
their language learning, is actually something rather low-level and generic
(not at all solely devoted to language in particular), such as an exceptional sta-
tistical sensitivity to hierarchical structure in any time-dependent signal (e.g.,
Christiansen & Dale, 2004; Elman et al., 1996; Seidenberg, 1997; Tallal et al.,
1993; see also Lashley, 1951). And just to prove that progress is occasionally
made in the cognitive sciences, recent theoretical proposals from some usual
proponents of pure linguistic nativism have at last begun to capitulate on this
point (Hauser, Chomsky, & Fitch, 2002; Marcus, Vouloumanos, & Sag, 2003).
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In this domain-general framework of language innateness, where the hypoth-
esized genetic predisposition is for finding structure in time (Elman, 1990),
rather than for finding specific linguistic triggers in one’s speech input
(Wexler & Culicover, 1980), the onus of how to evolve a human communica-
tion system over centuries and millennia is shifted significantly toward the
social and cultural environment, not solely on the shoulders of the genes.

Regardless of the degree to which its evolution was biological (passed
down by reproduction of genes) or cultural (passed down by societal trans-
mission of memes; see Bonner, 1980; Dawkins, 1976), language truly does
seem to act like a virus whose favorite host is humanity—as suggested by
William Burroughs in the epigraph that starts this chapter. Many thousands of
years ago, it propagated itself from generation to generation, spreading across
the globe and infecting practically every living human being. In fact, the evo-
lution of language, over a time scale of thousands of generations, has been
modeled with some of the same kinds of algorithms as those used to model
the spreading of actual viruses (Nowak, Plotkin, & Jansen, 2000). These
dynamic simulations of the evolution of language can guide our understand-
ing of what computational constraints led to the human species developing
complex syntax-rich language and other animal species not doing so (Nowak,
Komarova, & Niyogi, 2002; see also Batali, 1998; Cangelosi & Parisi, 1998,
2002; Christiansen & Dale, 2003; Christiansen & Kirby, 2003; Oliphant, 1999).

Finer and Finer Time Scales

The evolution of language in the human species is but one time scale for
examining the temporal dynamics of language. Let’s zoom in on these dynam-
ics by a couple orders of magnitude, to the time scale of decades and centuries.
Now we’re in the arena of research on language change. Here, one finds that
subtle alterations in a language that take place over dozens of years have in fact
been referred to in the scientific literature as “grammatical viruses” (Slobin,
1997). For example, it is not only sappy soft-rock songwriters trying to
squeeze out a rhyme who come up with ungrammatical sentences like “I’ll
never say goodbye to you and I.” (The correct form would be “you and me.”)
Regular everyday speakers of English make this kind of pronoun case error all
the time. Perhaps in 100 years it won’t even be considered grammatically
incorrect anymore. Similarly, people say “I could care less,” when they’re 
actually trying to imply that they already care very little. The original form 
“I couldn’t care less,” clearly stating that one cares the least amount physically
possible, seems to be falling victim to a grammatical virus that blithely omits
the negation of the modal verb could.1

Though the synchronic account of a language limits itself to describing
the grammar-and-lexicon as though it were a static entity at some particular
time slice, the diachronic account of a language tracks the changes that take
place in that grammar-and-lexicon over the course of decades and centuries.
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For example, Tabor (1995) calculated the frequencies of the construction “be
going to,” as in “Daniel is going to the West Coast,” in eight English texts rang-
ing from the years 1590 to 1970, and found a continuous nonlinear transition
from this construction being used solely to describe motion in space toward
instead being used predominantly to mark the future tense, as in “Daniel is
going to move to the West Coast.”2 The key observation from these data, and
in Tabor’s connectionist simulation of their trajectory in state space, is the 
following: As a language diachronically changes its grammar-and-lexicon over
many decades, any given synchronic account of that grammar-and-lexicon, at
any given time slice, will necessarily have a number of constructions that are
in flux and must therefore be described in a statistical or analog fashion, rather
than in terms of a set of formal all-or-none rules (Tabor, 1995; see also
Cooper, 1999; Hare & Elman, 1995).

Indeed, one of the reasons that the Chomskian position was so resistant
to the standard gradual natural selection account of language evolution (e.g.,
Pinker & Bloom, 1990) is that it essentially requires—much like continuous
diachronic language change—that there be periods of time in which the syn-
chronic account of a language will involve graded probabilistic contingencies
(not logical rules) governing the relationships between syntactic categories.
Nowhere in any of the many different Chomskian accounts of syntactic com-
petence is there a significant role for graded or probabilistic contingencies.

Let us continue this time scale telescoping. Zooming in a few more orders
of magnitude, to the time scale of dozens of days and weeks, you will again see
a similar continuity in the temporal dynamics of language. Now we’re in the
arena of research on language acquisition. Dynamic approaches to under-
standing how an individual human child learns her native language have
recently been making substantial progress (Christiansen & Chater, 2001; Elman
et al., 1996; MacWhinney, 1999; Thelen & Smith, 1994; see also Culicover &
Nowak, 2003). Although there are impressive nonlinearities in children’s devel-
opment of language (e.g., the “vocabulary spurt” [e.g., Goldfield & Reznick,
1990; Nazzi & Bertoncini, 2003]; and the overgeneralization of the “-ed” past
tense onto irregular verbs [e.g., Marcus et al., 1992; Rumelhart & McClelland,
1986b; Pinker & Prince, 1988; Plunkett & Marchman, 1996; see also Joanisse &
Seidenberg, 1999, and Ramscar, 2002]), these nonlinearities are very rarely
step functions where language abilities appear to suddenly incorporate a 
previously unused but now consistently executed rule (but see “fast mapping,”
Dollaghan, 1985; Markson & Bloom, 1997; Wilkinson, Dube, & McIlvane,
1996; see also Brown, Hulme, & Dalloz, 1996, for a neural network–inspired
account of such one-trial learning). Rather, the majority of a child’s develop-
ment of his or her overall linguistic ability appears to be largely characterized
by sigmoidal curves (like the logistic function, sometimes steep, sometimes
shallow) of continuous improvement in vocabulary and grammar (Elman 
et al., 1996). Much of this continuity in learning dynamics is captured well by
connectionist simulations of language acquisition, and given proper in-depth
treatment in other sources (e.g., Christiansen, Allen, & Seidenberg, 1998;
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Cleeremans, Servan-Schrieber, & McClelland, 1989; Elman, 1990; Hanson &
Negishi, 2002; Rohde & Plaut, 1999; see also Tabor, 2002).

Finally, zoom in one more time on these temporal dynamics, but this time
by about six orders of magnitude, to the time scale of seconds. Now we’re in the
arena of real-time language processing. This chapter will walk you through a
series of experimental demonstrations of how real-time language comprehen-
sion takes place not just “incrementally,” as the field of sentence processing is
fond of saying, but in a genuinely continuous fashion, without breaks, without
stops and starts. As phonemes, words, and sentences flow into a listener’s ears,
this stream of input is continuously processed into an evolving estimate of the
communicative message and of plans for motor action. The leitmotif running
throughout this book, of continuous cognitive dynamics at the time scale of
hundreds of milliseconds, is perhaps most clearly illustrated by these findings
in online language processing.

Some Some Back Back Ground Ground

In his prescient 1973 article in the journal Nature, William Marslen-Wilson
reported evidence supporting an equal footing for grammar (syntax) and
meaning (semantics), standing in sharp contrast to the “syntax as sovereign”
view that was popular in linguistics at the time. In his experiment, he had 
participants listen to a spoken passage and repeat everything they heard as
quickly and continuously as possible. This is called close speech-shadowing,
where he had people shadowing approximately 250 milliseconds behind the
speech input, about a single syllable of lag (see also Chistovich, 1960). This
paradigm was among the first online measures of language processing. Up
until then, the more popular measures were of memory for sentences, queried
well after presentation (e.g., Anderson & Bower, 1971, 1972; Barclay, 1973).

Interestingly, 20 years before Marslen-Wilson’s research, my mother tells
me she and her brother used to play this speech-shadowing game as children,
to see who could echo the radio the longest before screwing up. But actually,
screwing up is the interesting part. What Marslen-Wilson found was that
when people make mistakes in the speech-shadowing task, their speech errors
are still grammatical and semantically appropriate with what they’ve been
saying so far.3 These extremely fast syntactically and semantically accurate
“mistakes” suggest that syntax and semantics are being simultaneously and
continuously processed in the streaming incoming speech, and moreover that
a significant component of language comprehension may involve some degree
of prediction of what words and constructions are coming next. These predic-
tions may be incorrect about the exact words that come next, but they will
nonetheless conform to the syntactic and semantic constraints on what words
are acceptable to come next. In fact, this phenomenon has much in common
with what a simple recurrent network (SRN) does: Its output is a prediction of
the next input (Elman, 1990, 1991). In a way, speech-shadowing turns people
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into SRNs for the duration of the task. Of course, in this case, they are 
syllable-by-syllable SRNs that manage to encode not only phonotactics but
also syntax and semantics—not exactly a trivial modeling project.

This perspective on language comprehension as a continuous interactive
process (e.g., Marslen-Wilson, 1973, 1975; Rumelhart, 1977) has gone through
its share of trials and tribulations since the 1970s. A continuous interactive
account of real-time language comprehension posed some profound chal-
lenges for the existing theoretical attempts to map a sentence’s surface struc-
ture onto its putative deep structure (e.g., Miller & McKean, 1964; Valian &
Wales, 1976). If processing were this continuous in language, that is, as fine-
grained as syllable by syllable, then dozens of temporary ambiguities in syn-
tactic structure would be arising with the uptake of each new word in the
speech stream! Moreover, if processing were this interactive in language, that
is, syntax and semantics interweaving their constraints simultaneously, then
the purely structural (devoid of semantics) accounts of linguistic competence
that were popular at the time would have some serious explaining to do. The
response to the challenge posed by Marslen-Wilson’s (1973, 1975) findings
was twofold: (1) attack the apparent continuousness of processing in language
comprehension, and (2) attack the syntactic/semantic interactivity implied by
the results. Little did anyone realize it, but these two responses were actually
on a collision course with one another.

A number of experiments, especially using a slightly unnatural phoneme-
monitoring task, produced evidence suggesting that more comprehension
processes were in operation at the end of a sentential clause than elsewhere in
the clause. These kinds of findings were treated as evidence for a clausal pro-
cessing theory in which comprehension was not smoothly continuous at all,
but instead words were collected over time and stored in a kind of memory
buffer, without their meaning or structure being computed just yet. Only when
a clause was complete did genuine comprehension processes begin to work on
those stored words (e.g., Bever & Hurtig, 1975; Dunlap & Hurtig, 1981;
Townsend & Bever, 1978; but see Tyler & Marslen-Wilson, 1977; Whaley, 1979).
This attack on the continuous aspect of Marslen-Wilson’s framework led to
the clausal processing theory being perceived as a useful way to continue the
mission handed to psycholinguists by the field of linguistics to find the relation-
ship between surface structure and deep structure, to discover the algorithms
by which observable linguistic performance arises from the true underlying,
albeit invisible, linguistic competence.

Continuous but not Interactive?

Then came along the attack on the interactive aspect of Marslen-Wilson’s
framework. Following up on Kimball’s (1973) “seven principles of surface struc-
ture parsing in natural language,” Lyn Frazier and Janet Fodor (1978) proposed
a set of syntactic structuring heuristics for real-time sentence processing that
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were intended to account for how certain types of sentences are routinely 
misparsed and thus misunderstood. Frazier and colleagues argued that a syn-
tactic parsing module in the mind automatically attaches each new incoming
word to the developing syntactic tree structure in such a way that minimizes
the number of branching nodes in the structure. With sentences like that in
7.1 (taken from Bever, 1970), which contain temporary syntactic ambiguities,
the particular tree-structuring format that Frazier employed posited fewer
branching nodes if the verb raced was integrated as part of the sentence’s verb
phrase rather than as a relative clause inside the noun phrase. Thus, the pars-
ing heuristic that was postulated, “minimal attachment,” claimed that a
reader/listener will build the syntactic structure consistent with the horse
doing the racing (rather than being raced by someone), and this would essen-
tially lead the language comprehension system “down the garden path” to a
parse that will not work with the second verb in the sentence. The result—
powerfully apparent when one first encounters this sentence—is that by 
the end of the sentence, the verb fell has nowhere to attach, no way to be 
grammatically integrated into the sentence.4

(7.1) The horse raced past the barn fell.

The sentence in 7.1 is indeed perfectly grammatical, as long as you take “raced
past the barn” as a relative clause describing which horse is being referred to.
Another way to write it would be,“The horse that was raced past the barn fell.”
The “that was” part is optional in English, and no commas are required 
(I promise). These kinds of reduced relative clause structures actually show up
all over newspapers and spoken news reports as well.

Throughout the 1980s, Frazier and colleagues recorded students’ eye move-
ments while they read a variety of syntactically ambiguous sentences like that in
7.1, and concluded two things. (1) Sentence processing is not interactive because
contextual factors did not appear to be able to prevent the all-important syntac-
tic heuristics from leading the comprehension process down the garden path
and producing very long reading times (e.g., Ferreira & Clifton, 1986; Rayner,
Carlson, & Frazier, 1983). (2) Sentence processing is continuous, at least at a word-
by-word grain, because the effects of the syntactic heuristics are detectable in the
eye movement data (as increases in reading times) the moment the reader 
fixates the critical word that disambiguates the sentence, regardless of where
any clause boundaries are (Frazier, 1998; Frazier & Clifton, 1989; Frazier &
Rayner, 1987). Thus, by developing measures with fine temporal resolution, to
identify an early period of time during processing when syntax might appear
to be sovereign, the researchers who were attempting to discount the inter-
active component of Marslen-Wilson’s framework managed to soundly 
discredit the clausal processing theory. This work constituted more than a
decade of research in which the field characterized language comprehension
as an incremental word-by-word (not clause-by-clause) process in which syn-
tax alone was processed in an early stage of the system, and then semantics
and other contextual constraints were consulted in a later stage of the system,
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in the occasional event that the early syntactic parsing decisions happened to
produce problems.

The Field Led Down the Garden Path Recovered 

With the field of sentence processing pretty much in agreement about the
continuousness of the uptake of linguistic input during real-time comprehen-
sion, the battle continued to be fought over the modularity versus the inter-
activity of syntax and semantics. Does the process of language comprehension
really begin solely with syntactic heuristics, and semantics and other con-
textual constraints merely wait in the wings, off stage, in case they’re suddenly
needed for an improvised cameo?

Citing a wide range of contemporary findings in sentence processing,
MacDonald, Pearlmutter, and Seidenberg (1994) argued that what look like
syntactic heuristics actually arise out of a combination of lexical and semantic
biases. For example, sentence 7.2 (from Tanenhaus & Trueswell, 1995) has the
very same syntactic structure as sentence 7.1, and yet it does not seem to
induce a garden path effect.

(7.2) The landmine buried in the sand exploded.

If syntactic heuristics were the sole determinant of online initial parsing deci-
sions during reading, then sentence 7.2 should be just as flummoxing as sen-
tence 7.1. However, it appears that verbs (like raced and buried) have graded
preferences for particular argument structures, and these preferences appear
to guide parsing immediately (e.g., Ford, Bresnan, & Kaplan, 1982; Mitchell &
Holmes, 1985; Pollard & Sag, 1994; Trueswell, Tanenhaus, & Kello, 1993; see
also Kako & Wagner, 2001, for related findings). The verb raced is frequently
used in an intransitive form (lacking a direct object). And because horses are
semantically appropriate subjects of a racing event, the lexical and semantic
biases in 7.1 encourage the reader to pursue the main clause interpretation of
the sentence (in which the horse is doing the racing)—which turns out to be
wrong. In contrast, since the verb buried is strongly transitive (requiring a
direct object), and a landmine is a semantically appropriate direct object 
of a burying event, the reader is encouraged to pursue the relative clause 
interpretation—which turns out to be correct.

When the syntax of a sentence is temporarily ambiguous, multiple
sources of information (lexical, semantic, pragmatic) combine simulta-
neously to bias the comprehender toward one or another parse (MacDonald
et al., 1994; Tanenhaus & Trueswell, 1995; see also Bates & MacWhinney,
1989).5 However, it is only in very rare and perfectly balanced situations that
one can get one source of contextual constraint to single-handedly sway the
resolution process its way. In most situations, the remaining unexamined 
constraints will just happen to converge reasonably strongly toward one 
or another syntactic parse. Therefore, the presence or absence of the single
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contextual constraint of interest will have relatively little effect on parsing. (Of
course this does not mean that when a single contextual bias fails to overpower
the collection of other linguistic constraints, the contextual bias in question is
not being processed at that point in time—it was merely outvoted.) Thus, it is
perhaps not surprising that so many studies had difficulty finding immediate
effects of this or that kind of individual contextual bias on syntactic ambiguity
resolution (e.g., Britt et al., 1992; Ferreira & Clifton, 1986; Mitchell, Corley, &
Garnham, 1992; Rayner et al., 1983). When the various other constraints (e.g.,
lexical and semantic) are controlled and balanced in each stimulus item, then
a single contextual constraint (e.g., discourse context) will reliably exhibit an
immediate influence on the resolution of a syntactic ambiguity (e.g., Altmann &
Steedman, 1988; Altmann, Garnham, & Henstra, 1994; Farrar & Kawamoto,
1993; Spivey-Knowlton, Trueswell, & Tanenhuas, 1993; Spivey & Tanenhuas,
1998; van Berkum, Brown, & Hagoort, 1999; see also McRae, Spivey-
Knowlton, & Tanenhaus, 1998; Spivey-Knowlton & Sedivy, 1995; Trueswell &
Kim, 1998; Trueswell, Tanenhaus, & Garnsey, 1994).

The majority of psycholinguists are beginning to accept this continuous,
interactive, multiple-constraints account of sentence processing. However, the
jury is still out on exactly how these different information sources combine
and settle on one alternative of a syntactic ambiguity (e.g., Jurafsky, 1996,
2002; MacDonald et al., 1994; McRae et al., 1998; Stevenson, 1994; Tabor &
Tanenhaus, 1999; Tanenhaus, Spivey-Knowlton, & Hanna, 2000; van Gompel
et al., 2005; van Gompel, Pickering, & Traxler, 2001; see also Binder, Duffy, &
Rayner, 2001). Spivey and Tanenhaus (1998) introduced a quantitatively
explicit dynamic simulation (described in the next section) of how these 
different constraints might combine to have the syntactic alternatives com-
pete against one another in time. In this framework, nearly equal competition
between the syntactic alternatives results in long reading times, whereas highly
unequal competition results in fast reading times. Thus, if the various infor-
mational constraints in the early portion of a sentence unanimously push the
reader toward a syntactic parse that will eventually turn out to be untenable
(e.g., sentence 7.1), reading times in this early region will be fast and reading
times in the later disambiguating region can be very slow. In contrast, if those
informational constraints in the early portion of the sentence just barely favor
the correct parse (e.g., sentence 7.2), one should expect to see moderately slow
reading times due to competition in that early region, and fast reading times
in the later region (McRae et al., 1998; see also Green & Mitchell, 2006).

However, there are also circumstances in which the contextual bias
toward the correct parse can be so strong that it eliminates any detectable pro-
cessing difficulty. For example, in context 7.3a, a single actress is introduced
into the discourse context. So when the target sentence (7.4a) starts with “The
actress,” it is clear to whom the phrase is referring. As a result, parsing the syn-
tactically ambiguous verb selected as the main verb (with the actress doing the
selecting) might be slightly preferred from the standpoint of contextual prag-
matics. In such a case, the local structural, lexical, and semantic biases might
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push the reader the rest of the way toward the main clause parse (i.e., toward a
garden path). Compare this to context 7.3b, where two actresses are introduced
into the discourse context. When sentence 7.4a starts with “The actress,” it is
not at all clear which actress is being referred to. Therefore, from a contextual
pragmatics standpoint, it makes sense to use the syntactically ambiguous verb
selected as a relative clause that distinguishes the actress being referred to from
the other one. Hence, the reader should not be led down the garden path.6

(7.3) Context
a. An actress and the producer’s niece were auditioning 

for a play. The director chose the actress but not the niece.
(One-referent context)

b. Two actresses were auditioning for a play. The director
chose one of the actresses but not the other. (Two-referent
context)

(7.4) Target Sentence
a. The actress selected by the director believed that her 

performance was perfect. (Ambiguous reduced relative)
b. The actress who was selected by the director believed that

her performance was perfect. (Unambiguous full relative)

By tracking readers’ eye movements and examining an early measure of pro-
cessing (first-pass reading times), Spivey and Tanenhaus (1998) found that in
the one-referent context (7.3a), people exhibited a 25% increase in reading
time for the by-phrase, for example, “by the director,” of the syntactically
ambiguous sentence (7.4a) compared to the unambiguous control sentence
(7.4b). This is exactly the garden path effect predicted when the various avail-
able constraints initially converge toward the main clause alternative. In con-
trast, in the two-referent context, readers showed no difference in first-pass
reading times between the syntactically ambiguous and unambiguous sen-
tences. Discourse context had eliminated, indeed prevented, the garden path.
(For similar findings with visual contexts and spoken target sentences, see
Snedeker & Trueswell, 2004; Spivey et al., 2002b; Tanenhaus et al., 1995;
Trueswell, Sekerina, & Logrip, 1999).

Localist Attractor Simulations of 
Syntactic Ambiguity Resolution

The quantitatively explicit dynamic simulation that Spivey and Tanenhaus
(1998) provided for these findings employs a version of the normalized recur-
rence localist attractor network (see also chapters 4, 6, and 8). This kind of
network idealizes its representations (such as the relative clause and the main
clause) as individual nodes to make it easy to follow their relative activations
over time, not because it is thought that the representations are actually 
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that unitary. The actual representation of a relative clause in the mind of a 
language user is certainly more accurately conceptualized as a pattern of acti-
vation across many subunits that correspond to micro-featural components
of the representation. An account that failed to acknowledge this underlying
description of the actual biological material that implements such representa-
tions would be woefully neurophysiologically implausible and incapable of
dealing with the graded subtleties and partially overlapping meanings and
structures that characterize language processing in real time. In normalized
recurrence, these graded subtleties and partially overlapping meanings and
structures are transparently exhibited as simultaneous parallel activation of
mutually exclusive localist representation nodes.

Figure 7.1A shows a schematic of this localist attractor network, with four
constraints that are relevant at the point of syntactic ambiguity (e.g., the verb
selected). The lexical bias constraint is based on the frequency with which each
individual verb is used in a past participle form, favoring the reduced relative
alternative, versus a simple past tense form, favoring the main clause alter-
native (see Francis & Kucera, 1982). The main clause (or subject-verb-object)
bias is based on the frequency with which any sentence initial noun phrase,
followed by a verb � -ed, turns out to be a main clause (92% of the time) 
versus a reduced relative clause (8% of the time) (Tabossi et al., 1994; see also
Bever, 1970). The parafoveal “by” bias is based on evidence from eye tracking
reading studies revealing that the word to the right of the currently fixated
word is often processed as well at the same time (e.g., Rayner, 1998). And in a
corpus analysis, McRae et al. (1998) found that 20% of sentences with a 
sentence-initial noun phrase followed by a verb � -ed, and then followed by
the word by, turn out to be main clauses, whereas 80% of them turn out to be
relative clauses. Finally, the referential context bias was estimated as two-
thirds support for the main clause (with one-third support for the reduced
relative) when it was a one-referent context, and two-thirds support for the
reduced relative (with one-third support for the main clause) when it was a
two-referent context.

In normalized recurrence, these different biases are each normalized to
sum to 1.0 in their relative support for the two syntactic alternatives, and then
these constraints are combined in a weighted average to produce activations
for the syntactic alternatives. As long as the integration weights sum to 1.0, the
activations of the alternatives will do the same. Then the probabilistic activa-
tions of the syntactic alternatives are multiplied pointwise by the activations
of the constraint nodes, and the products are added to their respective con-
straint node activations. As the constraint nodes are renormalized to sum 
to 1.0, thus begins another time step of competition (see chapter 4 for 
normalized recurrence equations).

Competition in this model (or processing difficulty over and above 
normal reading times) continues until the maximum activation of either syn-
tactic alternative reaches a dynamic criterion. This criterion is called dynamic
because it changes over time; starting at 1.0 and decreasing by 0.01 each 
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time step. This means that if the constraints are especially balanced for a 
particular sentence, the model won’t fixate that region of the sentence indefi-
nitely. Rather, it will give up on the competition process at some point in time,
with each syntactic alternative still being moderately active, and those activa-
tion levels will be the starting point for when the reader’s eyes move to the
next sentence region and the model gets a new constraint added. For simulat-
ing the amount of processing difficulty at the by-phrase, the model adds a
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constraint that is biased seven-eighths toward the reduced relative and one-
eighth toward the main clause (see figure 7.1B). For simulating the amount of
processing difficulty at the main verb, the model adds a constraint that is biased
1.0 toward the reduced relative and 0 toward the main clause (see figure 7.1B).7

In similar work by McRae et al.’s (1998), the values of the weights were set
based on a best-fit metric for simulating off-line gated sentence completions,
and then those same weights were used for prediction of online reading times.
For simplicity, in this simulation, the weight assigned to each constraint is
simply based on Bayesian priors, that is, each constraint’s weight is 1/n, with n
being the number of constraints. So that the weights always sum to 1.0, when
a new constraint is added (due to the reader’s eyes moving to new regions of
the sentence with new content), the new constraint is given a weight of 0.5,
and the previous constraints share the remaining 0.5 weight equally.

Figure 7.2 shows a pair of simulations with a hypothetical verb that has 
a 0.75 bias toward the past participle reduced relative (RR) and a 0.25 bias
toward the simple past main clause (MC).8 In the one-referent context 
(figure 7.2A), the model spends time steps 1 through 19 settling on the MC
alternative at the ambiguous verb. Then, as the eyes would have moved on to
the by-phrase, this constraint is included, and the model spends time steps 20
through 59 settling still slightly toward (i.e., 60/40) the MC alternative before
reaching its dynamic criterion. Finally, when the eyes then move to the main
verb, and this constraint is added to the model, it spends time steps 60 through
72 settling on the RR alternative.
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Figure 7.2. Activation curves of the syntactic alternatives in the local-
ist attractor network simulation. Note how, in the one-referent con-
text, the Main Clause (MC) alternative (dotted line) slowly accrues
activation during the verb region of the ambiguous sentence, as well as
during the by-phrase region of the ambiguous sentence. The system
finally recovers from this garden path during the main verb region.
In contrast, in the two-referent context, the Reduced Relative (RR)
alternative wins the competition quickly.



Something completely different happens when the model simulates the
competition between syntactic alternatives that would take place in the same
sentence but in a two-referent context. In the two-referent context (figure 7.2B),
the model spends time steps 1 through 12 settling on the RR alternative at the
ambiguous verb, then time steps 13 through 16 settling on the RR alternative
at the by-phrase, and only time step 17 settling on the RR alternative at the
main verb. Thus, whereas in the one-referent context, the simulation exhibits
substantial competition, producing slow-downs in reading time that corre-
spond to garden path phenomena, in the two-referent context, the simulation
exhibits little or no such competition (see Spivey & Tanenhaus, 1998).

Additional evidence for graded activation of multiple syntactic alter-
natives, and for a time-consuming competition process, comes from speeded
sentence completions. Borrowing the logic from McElree and Griffith’s (1995,
1998) use of the speed–accuracy trade-off method (see chapter 3), Spivey et al.
(2002a) gave experimental participants sentence fragments (presented visu-
ally one word at a time) that they were instructed to complete as grammatical
sentences with the first thing that came to mind. The critical sentence frag-
ments in this experiment were syntactically ambiguous as to whether they
would continue as an MC (e.g., “The manager sent . . . two clerks to the other
branch office.”) or as a RR clause (e.g., “The manager sent . . . to the other
branch office decided to quit.”). Each verb was coupled with a typical
agent/subject of that event (e.g., The doctor cured . . .) and with a typical
patient of that verb (e.g., The patient cured . . .). In some conditions, these
participants had a mere 300 milliseconds (after seeing the third word in the
fragment) to begin their completion of the sentence, and in other conditions
they had 600, 900, or 1,200 milliseconds.

The first thing to know about any kind of sentence completion task with
MC/RR ambiguities is that the majority of completions will be in the form of
a main clause, simply because the MC form is about 10 times more frequent
than the RR form with this kind of sentence structure (Tabossi et al., 1994).
For example, even something as seemingly obvious as “The patient cured” will
often get completed as “The patient cured himself” or “The patient cured his
mother’s cancer” instead of as a RR, such as “The patient cured by the doctor
was elated.” (This is likely due to the fact that cured is rarely used in a past 
participle construction.) Nonetheless, at the response deadline of 300 milli-
seconds, the reduced relative alternative had not yet completely lost the 
competition and was still active enough to occasionally trigger its response
(figure 7.3D). See averaged results from four example sentences, with their
typical agents and typical patients, in figure 7.3.

To more rigorously cash out this claim that partially active and tempo-
rally dynamic representations underlie these sentence completions in the face
of syntactic ambiguity, a normalized recurrence simulation was conducted for
each of the 16 sentences from the experiment with its typical agent and with its
typical patient. This localist attractor network resembled that in figure 7.1A, in
that it included a general MC bias and a lexical bias (for the verb’s frequency
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as a simple past tense and as a past participle). However, instead of the refer-
ential context bias, there was a semantic fit bias (based on ratings of how typ-
ical it is for each noun to be an agent of the verb and a patient of the verb), and
there was no parafoveal bias of course. Treating each time step in the model as
equivalent to 10 milliseconds, the simulations produced activation curves that
nicely mimicked most of the sentence completion curves. Figure 7.4 shows the
simulations corresponding to the four example sentences in figure 7.3.

These simulations (and their fit to the human data) illustrate how, if multi-
ple constraints converge toward relatively balanced support for both the MC and
RR alternatives, then a single constraint (such as discourse context or semantic
fit) can dramatically sway the syntactic ambiguity resolution process toward its
preferred alternative. Crucially, the gradual activation curves in figures 7.2–4 sug-
gest that the slowed reading times resulting from a syntactic garden path need
not be due to an acknowledged and verbally reportable misconstrual of the
sentence that requires deliberative reasoning (or a syntactic reanalysis mod-
ule) to recover from it. Instead, partially active misinterpretations of a sen-
tence can slow down comprehension merely by causing the system to linger in
nameless intermediate regions of its state space, in between the two syntacti-
cally permissible versions of the sentence.9 This shift in the literature from a
stage-based account of syntactic garden pathing to a continuous dynamical

182 The Continuity of Mind

Figure 7.3. Speeded sentence completions with typical agents and typical
patients (Spivey et al., 2002a).



account is emblematic of the metatheoretical transition taking place in many
areas of psycholinguistics and cognitive psychology.

More Time Scale Zooming: Lexical Ambiguity Resolution

Let’s zoom in on language another order of magnitude, from the time scale of
seconds to the time scale of hundreds of milliseconds. Now instead of talking
about sentence processing, we’re talking about word recognition. As with syn-
tactic parsing, the best circumstances under which one can test the degree to
which multiple information sources combine continuously and immediately
(instead of being applied in a serial stage-like fashion) is when the input is
temporarily ambiguous.

In general, the continuous processing of an incoming linguistic signal is
fraught with temporary ambiguities that often require contextual mediation
for their resolution. For example, concurrent with the research on syntactic
ambiguity resolution discussed in the previous sections, research in psycho-
linguistics has spent many years testing whether discourse and syntactic con-
text can constrain the initial processing of an ambiguous word like bank (as a
financial institution or a river embankment). Initial findings were consistent
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Figure 7.4. Normalized recurrence simulations of speeded sentence comple-
tions (compare to figure 7.3).



with a stage-based account in which word recognition took place in an encap-
sulated module that only used immediate phonemic or orthographic input,
and context was consulted only at a later stage (Swinney, 1979; Tanenhaus,
Leiman, & Seidenberg, 1979).

Tanenhaus et al. (1979) presented participants with sentences that ended
with words that were ambiguous between being a noun or a verb (e.g., watch,
rose, fly, etc.). Shortly after the ambiguous word (0, 200, or 600 milliseconds
after), a word was visually presented for the subject to read aloud as quickly as
possible. This target word was related to either the noun sense of the ambigu-
ous word or the verb sense (or unrelated, as a control condition). When the
syntactic context of the sentence was consistent with only the verb sense, for
example, “I will watch,” and the target word showed up 200 or 600 milli-
seconds after watch, participants were faster to name a target word like eyes
than a target word like time. Essentially, the syntactic context had made the
verb sense of watch salient enough that it primed words like eyes and not
words like time. The reverse happened when the syntactic context was consis-
tent with only the noun sense, for example, “He wore a watch.”

But something very different happened when the target word was pre-
sented 0 milliseconds after the ambiguous word. When the target word was
presented immediately after the ambiguous word, Tanenhaus et al. (1979)
found priming for both senses of the word. This kind of result was interpreted
as evidence for a brief initial stage of processing in word recognition that 
performed its computations on the linguistic input in a manner that was
uninfluenced by context (see also Swinney, 1979).

However, recent findings have suggested that more strongly constraining
contexts can indeed bias lexical access immediately (Fitneva & Spivey, 2004;
Tabossi, Colombo, & Job, 1987; Vu, Kellas, & Paul, 1998). If the context
strongly biases the features associated with one of the ambiguous word’s
senses (regardless of whether it is the dominant, more frequent sense or the
subordinate, less frequent sense), then there does not appear to be much effect
from the contextually disfavored meaning. For example, when the contexts are
rated in advance for how strongly or weakly constraining they are, strong con-
texts, such as passage 7.5, result in initial priming for only the contextually
supported meaning (e.g., flower) of the ambiguous noun bulb, and weak con-
texts, such as passage 7.6, result in initial priming for both senses (e.g., coal and
explosive) of the ambiguous noun mine (Martin et al., 1999; but see Rayner,
Binder, & Duffy, 1999).

(7.5) The gardener dug a hole. She inserted the bulb carefully into
the soil.

(7.6) The scout patrolled the area. He reported the mine to the
commander.

These effects are sometimes described as though context selectively ushered
access to one of the word’s meanings and categorically prevented access to 
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the other. But this way of conceptualizing context’s influence on word recogni-
tion is probably dangerously oversimplified. It could very well be that by using
box-and-arrow types of metaphors borrowed from the information-process-
ing framework, the debate becomes unresolvable and descends into method-
ological nitpicking of one another’s experimental designs (Kambe, Rayner, &
Duffy, 2001; Vu & Kellas, 1999). The problem is this: The discrete stage-based
way of thinking can pretty much only predict one or the other set of findings,
either early context effects, or delayed context effects. When the literature is
full of both kinds of findings, the only way to accommodate them all at the
same time may be to relinquish the stage-based account and instead adopt a
framework that allows graded partial influences (in time and in state space) of
contextual variables on afferent sensory input, that is, a dynamical systems
perspective.

Kawamoto (1993) described a Boltzmann machine simulation of lexical
ambiguity resolution that concretely demonstrated how an ambiguous word
can induce an internal state in the system that is in between two attractors that
correspond to the word’s two senses. Settling into one of those attractors is a
time-dependent process that depends on the relative frequency of the two
senses and on the previous contextual bias affecting where in state space that
system was located right before receiving the ambiguous word as input. At no
point in this kind of system can one actually ask whether a particular lexical
meaning has been accessed or not. On exposure to the ambiguous word,
depending on both context and frequency, the system will be in a state that is
near one attractor or the other, or about equally near both.

If the system’s state is about equally near both attractors, and far from
unrelated attractors, then the system will exhibit long reading times for that
word (as seen in the data of Rayner et al., 1999) because the two attractors
compete with about equal efficacy for pulling the system toward themselves,
and the system will also briefly exhibit priming for both meanings of the
ambiguous word (Swinney, 1979; Tanenhaus et al., 1979). However, if a strong
context or a strong frequency imbalance (or combination thereof) starts the
system out in a location that is especially close to one of the attractors and far
from the other, then on exposure to the ambiguous word, the system will
quickly settle into the nearby attractor, exhibiting fast reading times and
priming for only the nearby meaning (Vu et al., 1998).

Figure 7.5 provides an idealized depiction to help clarify this process for
stimuli like passages 7.5 and 7.6. This cartoon formulation borrows heavily
from images of state space trajectories exhibited by simple recurrent networks
processing sentences, when their high-dimensional state spaces are viewed
from a two-dimensional perspective via principal component analysis (see
Elman, 1991; Tabor & Tanenhaus, 1999). After reading “The gardener dug a
hole. Then she inserted the—,” the system is naturally projected into a region
of state space that has a rather narrowly clustered set of attractors that share a
substantial portion of their semantic features (e.g., flower, seed, bulb, roots).
Therefore, when the ambiguous word bulb is presented, the system has only a
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Figure 7.5. A two-dimensional window into a hypothetical
state-space exhibiting strong (A) and weak (B) context effects
in lexical ambiguity resolution. The dashed line shows the 
system’s predictive trajectory immediately prior to receiving the
ambiguous word, (e.g., “bulb” or “mine”). In panel A, the pre-
dictive trajectory is close to one sense of bulb and far away from
the other. In panel B, the predictive trajectory is equidistant
from both senses of mine.



very short distance to travel to settle into that attractor (figure 7.5A).
Moreover, if a probe word were introduced to measure semantic priming, it
would show strong priming for associates of (plant)bulb, to which the system
is already extremely close in state space, and little or no priming for associates
of (light)bulb or for unrelated words that are all quite far away in state space.

In contrast, after reading “The scout patrolled the area. He reported the—,”
there is quite a variety of concepts that could be acceptable direct objects of
that verb in that context (e.g., sniper, bunker, troops, mine, storm, cave, ava-
lanche, bear). Although there may be some broad semantic connectedness
between some of those attractors (military threats and natural threats), it is
clearly the case that some are artifacts, whereas others are natural kinds; some
are sentient, others are not, and so on. The semantic category of these objects
is certainly not narrowly defined, and therefore this collection of attractors is
not expected to be tightly clustered. As shown in figure 7.5B, when the dynam-
ical system is projected into this region of state space, roughly equidistant
from each of these attractors, it is not impressively close to any single one of
them. Thus, the system is in a location in state space that will involve a bit of
time before it can settle into the right attractor when the ambiguous word is
presented. And any probe words related to the two different meanings of mine
that enter the system early on as a measure of semantic priming will not
exhibit radically different settling times into their attractors, because neither
attractor is especially closer than the other.

Spoken Word Recognition

In many lexical ambiguity studies, the ambiguous words are presented visu-
ally. Because eye movement measures of visual word recognition suggest that
the letters in most words tend to be processed more or less simultaneously (see
Rayner, 1998), there may not be very much in the way of temporal dynamics
for how the sublexical components of written words are processed. However,
in spoken word recognition, the individual parts of a word (the phonemes) are
received by the sensory apparatus more or less one at a time. Therefore, even
apparently unambiguous words, like candle, are temporarily and dynamically
ambiguous as they unfold over time (e.g., Grosjean, 1980; Marslen-Wilson,
1987; Marslen-Wilson & Welsh, 1978; McClelland & Elman, 1986). Just as
with completely ambiguous words, this temporary ambiguity leads to brief
partial activation of multiple lexical representations. Marslen-Wilson’s (1987)
cohort theory proposed that as the acoustic-phonetic input for a word begins,
it activates all the lexical representations that begin with that input, for exam-
ple, candle, candy, candid, candelabra. This set of activated lexical items is
called the cohort. As further acoustic-phonetic input is received, some of the
lexical items in the cohort are ruled out and omitted. Eventually, but often
before the end of the spoken word, the cohort is winnowed down to only one
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lexical item. Cross-modal priming studies, much like those described in the
previous section, have shown supporting evidence for the cohort theory (e.g.,
Cutler, 1995; Gaskell & Marslen-Wilson, 2002; Zwitserlood, 1989).

Rather than relying solely on faster reaction times to semantically related
probe words as evidence for partial activation of a cohort member, additional
compelling evidence for partial activation of multiple lexical items can come
from motor output aimed at real objects that correspond to the competing
lexical representations. Eye movement behavior is a motor output that is fast,
ballistic, largely resistant to strategic control, and especially sensitive to par-
tially active representations.

Spivey-Knowlton, Sedivy, Eberhard, and Tanenhaus (1994) first reported
cohort effects in eye movement patterns by using a headband-mounted eye
tracker that allowed subjects to move around naturally and follow spoken
instructions to manipulate real objects. While wearing the eye tracker, partic-
ipants sat in front of a table with a central fixation cross and various objects
on it, for example, a transparent bag of candy, a fork, a pincushion, and a pair
of scissors. With a display such as that, the participant was instructed to pick
up the candy. On about one-fourth of the trials, the participants looked at one
of the other objects (about equally likely for each of the three) for about 250
milliseconds, and then to the candy to pick it up. On the other three-fourths
of the trials, the participant looked immediately to the candy, on an average of
150 milliseconds after the end of the word candy, and then began reaching for
it. Note that it takes about 200 milliseconds for the motor programming of an
eye movement (Matin, Shao, & Boff, 1993). Thus in this kind of visual context,
listeners were frequently recognizing the word candy, and initiating the motor
programming for moving the eyes to the candy, before the word was even 
finished being said! This could happen because the visual context contained
only one object whose name sounded anything like the first couple sounds in
candy.

What if the visual context contained another object whose name had sim-
ilar initial phonemes? In another condition, we replaced the pincushion with
a candle, and delivered the exact same instruction: “Pick up the candy.” Now,
on about a third of the trials, the participants looked at something other than
the candy initially, and over two-thirds of those “mistake” eye movements
were to the candle, not the fork or the scissors. This is exactly what one would
predict if partway through hearing the word, probabilistic representations of
multiple words (for candy and for candle) were partially active, and eye move-
ments could occasionally be triggered by these only moderately high activa-
tion levels. Notably, when the participant was later debriefed and told, “When
you were instructed to pick up the candy, you briefly looked at the candle,” he
or she would often respond incredulously with “No, I didn’t.”

Figure 7.6 shows the proportion of trials at each time slice (averaged over
several different target objects, dozens of trials, and a dozen subjects) in which
the eyes were looking at the various objects as the target word unfolded over
time, in the “competitor-absent” condition, that is, when no object in the 
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display had a name with similar phonology to the spoken target word. As time
proceeded, participants were less likely to be looking at the central cross that
they started out fixating and more likely to be looking at the target object.
The distractor objects received very few fixations.

In contrast, figure 7.7 shows the same measure for the “competitor-present”
condition, in which an unrelated distractor object had been replaced by a
cohort competitor object. Just as in the competitor-absent condition, the
probability of the participant looking at the central cross steadily decreased,
and the probability of looking at the target steadily increased. However, the
probability of looking at the cohort object (e.g., the candy, when instructed to
“pick up the candle”) rose just as quickly as the probability of looking at the
target object for a period of about 200 milliseconds around the tail end of the
spoken word. And even when the two curves diverge, the proportion of fixa-
tions of the cohort object still persist for a few hundred milliseconds. This
salience of the cohort object conspicuously attracting eye movements is
indicative of the competing lexical representation being partially active during
and perhaps shortly after delivery of the spoken word. Figure 7.8 super-
imposes the two target fixation probability curves from the cohort absent con-
dition and the cohort present condition. Note how the presence of the cohort
object delays eye movements to the target object.

Headband-mounted eye tracking studies like this have demonstrated the
continuous uptake of acoustic-phonetic input and resulting lexical competi-
tion effects using computer-displayed objects (Allopenna et al., 1998), using
artificial lexicons (Magnuson et al., 2003b), with young children (Fernald,
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Figure 7.6. Cohort competitor absent: Proportion of trials in which
participants were fixating each object as the spoken target word
unfolded in time (e.g., “candle,” lasting approximately 300 ms).
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Figure 7.7. Cohort competitor present: Proportion of trials in which
participants were fixating each object as the spoken target word
unfolded in time (e.g., “candle,” lasting approximately 300 ms). Note
how participants’ eyes briefly fixated the cohort object (filled triangles)
on a substantial proportion of trials between about 300 and 700 ms
after word onset.

Figure 7.8. The rising curves for eyes fixating the target object over
time, from figures 7.6 and 7.7, overlaid on one another to show the
effects of visual context.



Swingley, & Pinto, 2001), and even across two languages in bilingual partici-
pants (Marian & Spivey, 2003a, 2003b; Spivey & Marian, 1999). In terms of a
state space containing attractors for lexical items, these findings can be
described as the state of the listener traversing regions of her mental state
space that are more proximal to the target word and the cohort word (when
the visual context supports it) as the spoken word begins. Then as the latter
portion of the spoken word is being uttered, the state of the listener gravitates
away from the cohort and only toward the actual spoken word. The filled cir-
cles curve and the filled triangles curve in figure 7.7 can be likened to proxim-
ity functions reporting how close the listener’s state is to those attractors over
time (recall figure 2.12).

Marslen-Wilson’s (1987) cohort theory naturally predicts findings like
these, and McClelland and Elman’s (1986) TRACE model can quantitatively
simulate them.10 In the TRACE connectionist model (inspired by the 
interactive-activation framework of McClelland & Rumelhart, 1981), a layer
of phonetic feature nodes is externally fed activation as a spoken word unfolds
over time. These phonetic feature nodes then spread their activation to appro-
priate phoneme nodes in the middle layer of the network, which then spread
their activation to appropriate lexical nodes at the top layer of the network.
Importantly, both the lexical layer and the phoneme layer also send feedback
to their preceding layers. Thus, as this localist attractor network receives 
phonetic feature activation corresponding to a word being heard, the system
gradually settles toward exhibiting activation for the lexical nodes that are
consistent with the speech input. In this way, TRACE can explicitly implement
the cohort effect described in the cohort theory. However, this attractor net-
work makes a divergent prediction as well. Because TRACE has only positive
connections between layers (and only inhibitory connections within layers), it
does not prevent and will in fact induce the activation of lexical items that
rhyme with the actual word being spoken. Therefore, TRACE predicts that
when instructed to “pick up the candle,” a person should conspicuously fixate
a handle in the display—whereas the standard version of the cohort theory
would not predict this. Indeed, TRACE’s prediction holds true. Listeners will
briefly fixate an object whose name rhymes with the spoken word more so
than unrelated control objects (Allopenna et al., 1998).

Discrete Functions Underlying Smooth Curves?

It is worth noting that the curves in figures 7.6 and 7.7 are averaged over many
trials and many subjects. Therefore, the actual activation of lexical representa-
tions over time in an individual instance could in principle be discrete and
symbolic—with just the timing of the inflections in the step functions varying
from trial to trial. When one averages many discrete step functions that are
slightly time-shifted relative to each other, the result can often be a surprisingly
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smooth, continuous curve. This is, of course, precisely how these eye move-
ment data and these simulations come up with smooth curves. Saccades to
objects (and simulated saccades to objects) are extremely fast, ballistic, practi-
cally discrete responses. The key issue is whether these early discrete motor
outputs constitute the first time that the graded, multifarious, distributed 
pattern of neural activation has “had its wave collapsed,” as it were. Or was the
temporary ambiguity in the perceptual signal converted into a discrete cogni-
tive symbol internally at some point, and it is that 100% confident symbol 
that generated the eye movement?

In principle, a listener could hear part of the word candle and occasionally
initially perceive it wholly and confidently (albeit incorrectly) as candy, and
that would be why the eyes initially look at the candy on some trials. If the
timing of these effects varied from trial to trial and from listener to listener,
then when the results of such discrete mental phenomena were averaged, you
could get smooth curves that would mislead you into thinking that the 
mental dynamics were smooth. That said, this account needs a story for how
the listener then quickly realizes (usually about a quarter of a second later)
that the spoken word was actually candle and that he or she is currently fixat-
ing the wrong object and should make a saccade to the candle in the display to
correctly carry out the instruction. Such a story for explaining this pattern of
corrective eye movements could be reasonably workable. However, there is
another pattern of errant eye movements that shows up regularly in these
experiments that could make an account based on the discrete toggling
between symbolic lexical activations somewhat hard to swallow. These exper-
iments always have a fair number of trials in which the listener first fixates the
correct target object, then a quarter second later fixates the cohort object, then
a quarter second later fixates the target object again and picks it up. It seems as
though a story based on a toggling between discrete binary lexical activations
would have to bend over backward to accommodate such eye movement 
patterns. Why would a discrete logical process of spoken word recognition
allow such a stochastic skittering between alternating confident representations
of a spoken word? 

In a normalized recurrence simulation with TRACE lexical activations as
input, this particular skittering eye movement pattern can simply be the result
of a very early (and mostly lucky) sample from the distribution in the visual
nodes driving the eyes to fixate the target object, followed about 10 time steps
later by a still rather early (and, this time, unlucky) sample from the visual
nodes driving the eyes to fixate the cohort object. Another 10 time steps later,
the eyes are ready to move again, and by this time, the target object is the only
one with noticeable activation in the visual nodes.

Thus, on careful examination, the standard criticism of averaged smooth
curves having discrete functions underlying them may not be as damning as it
first appears. The discrete functions in question are saccades, which cannot
help but be discrete under most circumstances. But underlying them is a 
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temporally dynamic and graded pattern of multiple partially active represen-
tations for potential saccade targets (see Gold & Shadlen, 2000).

Localist Attractor Simulations of Spoken Word Recognition

Allopenna et al. (1998) showed that the activations of the lexical nodes in
TRACE closely mimic the probability-of-fixation functions from these eye
tracking experiments (e.g., figures 7.6 and 7.7), as long as the simulation
examines only the lexical nodes corresponding to the names of the objects
present in the display, and the activations are scaled by an exponent to adjust
separation, normalized against each other by the Luce choice rule (Luce,
1959), and finally scaled by the ratio of the current maximum activation over
the greatest asymptotic activation achieved during the simulated input for a
given target referent. However, limiting examination of the TRACE lexical
nodes a priori to only the four words that correspond to objects present in a
display on any one trial runs the risk of characterizing these findings as due to
a kind of artificial word selection from a working memory buffer of prepared
lexical items, rather than as evidence pertaining to natural word recognition
in a visual context. As the same kinds of eye movement results have been
found with very brief previews of the display (Tanenhaus et al., 2000), and 
lexical frequency effects modulate these probability-of-fixation curves as well
(Dahan, Magnuson, & Tanenhaus, 2001), it seems unlikely that the results are
due to a laboratory-induced strategy of word selection from a buffer. Therefore,
a simulation that does not summarily exclude lexical items that correspond to
objects not currently present in a display and one that also simulates the selec-
tion of saccade targets might provide a richer linking hypothesis between the
observed discrete eye movements and the inferred graded lexical activations.

A larger TRACE model, with all experimentally relevant lexical items
included, can be used if the raw, unaltered, lexical activations from TRACE are
fed into a normalized recurrence localist attractor network that allows ideal-
ized visual nodes to do the gradual winnowing of all possible lexical activa-
tions down to only those that correspond to objects present in the visual
display (Spivey-Knowlton & Allopenna, 1997). Figure 7.9 shows the normal-
ized recurrence network, with all 14 TRACE lexical activations being added to
its lexical layer at every competition cycle (corresponding to 25 milliseconds).
To simulate the human data, this model was run several times with each tar-
get stimulus (candle, candy, doll, dolphin, penny, pencil, car, carton) with its
cohort object absent and with it present, and the results were averaged in the
same way as was done with the human data.

As a time step in TRACE typically corresponds to about a dozen milli-
seconds (see Allopenna et al., 1998), TRACE’s lexical activations were averaged
over two time steps before being added to the lexical layer of the normalized
recurrence network. At the beginning of a cycle of competition, the current
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TRACE activations were added to the lexical layer’s current activation, then 
lexical and visual layers were normalized, then they summed at the integration
layer, then the integration layer was normalized, and finally the multiplicative
feedback from the integration nodes was added to the lexical and visual nodes.11

In the visual layer of the normalized recurrence network, only the four
nodes corresponding to visibly present objects were active and equally so. Thus,
the indirect cross-talk between the visual layer and the lexical layer affected only
those nodes whose referents were present in the display. Having the simulated
eye movements generated by sampling from the probabilistic distribution of
activation over the visual nodes (where only the nodes corresponding to visu-
ally present objects will ever exceed zero activation) ensured that the model
only predicted eye movements to objects that were present, never to partially
active concepts that were partly supported by the speech input but not present
in the visual display. This sampling from the visual nodes was triggered by a
dynamic criterion that became more and more lax as time went by (a kind of
saccade deadline). The rate of decrement for this dynamic criterion varied
randomly from trial to trial, between 0.001 per time step and 0.07 per time
step. Once this gradually decreasing activation criterion was exceeded, a
biased random selection, based on the probabilistic activations of the nodes,
was made to determine which object was targeted for a saccade. To approxi-
mate oculomotor programming time (e.g., Matin et al., 1993), as well as 
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integration of spoken words and visual objects.



variation in oculomotor readiness (Fischer & Weber, 1993; Klein & Pontefract,
1994; Reuter-Lorenz, Hughes, & Fendrich, 1991), the simulated saccade was
launched 4 to 12 time steps later (the equivalent of 100–300 milliseconds). For
simplicity, the saccade itself was treated as instantaneous.

This biased random selection of a saccade target from the probabilistic
distribution in the visual vector is generally necessary for the model to make
any errors at all. Moreover, it is theoretically motivated by computational
work on eye movement latencies, suggesting that some form of random com-
ponent is necessary leading up to the decision process of an eye movement
(Carpenter, 1999; Leach & Carpenter, 2001; see also Ratcliff, 1980; Ratcliff,
Carpenter, & Reddi, 2001). To model corrective saccades that follow fixations
of incorrect objects, a second eye movement was resampled from the distribu-
tion in the visual nodes 10 time steps after the first eye movement (the equiv-
alent of 250 milliseconds later).

Figures 7.10 and 7.11 show results from the simulation, averaged over 10
runs of each of the eight spoken targets, when the cohort object was absent
and when it was present. Note the close match between these plots and the
human data in figures 7.6 and 7.7. Figure 7.12 superimposes the simulated 
fixation probability curve for the target-absent condition on that for the 
target-present condition. The plot shows that the presence of the cohort com-
petitor delays the simulated eye movements to the target object in a manner
similar to that observed with the human data (figure 7.8).

Now that we have a simulation that mimics the basic human data rather
well, we can examine its internal processes to get a handle on how it does its
job—and thus better articulate some guesses as to how the human mind
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and some random jitter in saccade latency from 100 to 300 ms) roughly
mimics the human data from figure 7.6.



might be integrating language and vision in real time. Because the model uses
localist representations, examining their activations over time is quite easy.
For example, figure 7.13 shows the normalized activations of the lexical nodes
over time, as a result of additive TRACE input as well as cumulative feedback
from the integration nodes, when the speech input was “candle” and the
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Figure 7.11. Normalized recurrence simulation also roughly mimics
the human data from figure 7.7.

Figure 7.12. The rising curves for simulated eye movements to the
target object over time, from figures 7.10 and 7.11, overlaid on one
another to show the effects of visual context—as also seen in figure 7.8.



cohort competitor was absent from the display (e.g., only the candle, scissors,
fork, and box visual nodes had nonzero activation). Notice how the lexical
activation curves for /candle/ and for /candy/ are both rising during the first
dozen cycles of competition, because those first few phonemes of speech input
are identical for /candle/ and for /candy/. However, as early as time step 2, they
are already rising at different rates. This early separation in activation is due
entirely to the indirect cross-talk from the visual layer positively biasing the
/candle/ lexical node (because the corresponding visual node is active) and
not the /candy/ lexical node (because that object is absent). Figure 7.14 shows
the normalized activations of the visual nodes over time in the same simula-
tion, in which indirect cross-talk from the lexical layer clearly causes the can-
dle visual node to take over the probability distribution. (Of course, the
normalized integration nodes are simply an average of these lexical and visual
activations at each point in time.)

When the cohort object is present (e.g., a candy in the display when the
spoken word is “candle”), the lexical activations over time exhibit a different
pattern (figure 7.15). Most noticeably, the “candy” lexical node reaches greater
activation and does so for a longer period of time than in the cohort-absent
condition (figure 7.13). Thus, the model demonstrates how a cohort lexical
representation’s interference with the recognition of a spoken word could 
be exacerbated by probabilistic biases spreading from the visual modality.
Similarly, the activations of the visual nodes in the competitor-present con-
dition (figure 7.16) also exhibit the salience of the cohort object, candy, as a
result of the partial phonological overlap influencing visual attention.

An important observation about how this integrated model allows visual
representations to influence lexical representations, is that it is not the case that
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Figure 7.13. Competitor absent: Lexical nodes over time
inside normalized recurrence.



a potential cohort lexical representation does not get active at all when its 
referent is absent from the visual input. The lexical representation for “candy”
still accrues some activation and still competes with the target word “candle,”
even when the candy is not present in the display. Thus, in the competitor-
absent condition, if one were to transform lexical activations directly into curves
of eye position over time, it would make the peculiar prediction that the eyes
should spend some time fixating an object that is not there. By integrating
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Figure 7.15. Competitor present: Lexical nodes over time
inside normalized recurrence.

Figure 7.14. Competitor absent: Visual nodes from normal-
ized recurrence, acting as a kind of object-based salience map
over time for guiding eye movements.



normalized recurrence with TRACE, one can see how probabilistic visual and
lexical representations can exert graded bidirectional influences on one
another, while allowing partial activation of cohort lexical items when their
corresponding objects are absent and not predicting eye movements to them.

To explicitly examine the graded effect of the visual nodes on the lexical
nodes, figure 7.17 plots the activation of the target lexical node when the
cohort object is present versus absent. This juxtaposition highlights how the
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Figure 7.16. Competitor present: Visual nodes over time
inside normalized recurrence.

Figure 7.17. Overlaid lexical activation curves for the target
word from the competitor absent condition (figure 7.13) and
the competitor present condition (figure 7.15).



contextual biasing of lexical activations is a gradual process that—although it
takes place simultaneously with the processing of afferent speech input—will
often reveal its influence in rather subtle ways (see Kawamoto, 1993). The sub-
tlety of these influences can sometimes mislead theorists into postulating an
early stage of processing that is unaffected by context. However, dynamical
simulations like this one, as well as Kawamoto’s (1993) Boltzmann machine
simulation of lexical ambiguity resolution, demonstrate that delays in the 
visibility of a contextual bias do not necessarily imply an architectural delay
built into the design of the processing system.

Language Comprehension Is a “Hungry” Process

The very idea that the subsystems in the brain that participate in language
processing would go out of their way to delay the use of certain information
sources, for even brief periods of time, strikes most people as rather non-
sensical. It is only after repeated exposure to the digital computer metaphor of
the mind, numerous box-and-arrow diagrams of cognitive processes, and 
eloquent prose on the virtues of modular cognitive architectures, that the idea
can even begin to sound plausible. Perhaps some of the idea’s popularity in
cognitive science owes to it initially feeling so surprising and counterintuitive.
However, the more we measure these online processes in real time, and the
more we understand the anatomical connections between neural subsystems,
the more we see that part of the reason strong modularity (and its architectural
delays in information transmission) initially appears so counterintuitive is
because, put simply, it’s wrong.

But describing a dynamic mind in a way that exudes the apparent preci-
sion and explication afforded by the modular reverse-engineering framework
turns out to be difficult. Drawing wavy partially overlapping clouds with lots
of bidirectional arrows connecting them is not really an improvement over the
pristine box-and-arrow diagrams. When I was an undergraduate working on
my senior thesis with Ray Gibbs, I had this vague idea of language comprehen-
sion being active not passive (see Bransford, Barclay & Franks’s 1972 “con-
structive” rather than “interpretive” approach to language comprehension).
The notion was not developed enough at the time to be describable or even
imageable, but it was compelling for me nonetheless, and it motivated my
research interests. Rather than an equation, an acronym, or a box-and-arrow
diagram, the notion was more of a sense impression in which the system doing
the language comprehension was moving forward and voraciously gobbling
up words in the environment, rather than sitting still and having the words fed
to it by a conveyor belt. Language comprehension is best conceptualized as an
eager biological process—rather than a passive mechanical one—pursuing
interpretations instead of waiting for them to be spoon fed. Language com-
prehension is not at all like a string of beads being delivered to the listener one
bead at a time. It is more like a whale swimming steadily through a school of
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krill, continuously and ravenously consuming the content of its environment.
It is a “hungry” process.

This hungry process that proactively—almost greedily—absorbs envi-
ronmental stimulation, is not just forward-looking in terms of information
acquisition; it is also forward-looking in time. The continuous mind is not
content to accept the input it has received up to time t as its lot in life. It imag-
ines, anticipates, and predicts what input it may acquire at time t � 1, t � 2,
and further—it’s that hungry! 

A great many theorists have postulated an important role for prediction
or anticipation of future perceptual inputs in general (e.g., Bruner, Goodnow, &
Austin, 1951; Craik, 1943; Dewey, 1896; Grossberg, 1980; Jordan, 1999; Neisser,
1976; Rosen, 1985; Solomonoff, 1978, just to name a few). Some form of sen-
sory anticipation is a commonly employed explanatory construct in a wide
range of psychological research, including perceptual-motor processing (e.g.,
Blakemore, Wolpert, & Frith, 1998; Jordan & Rumelhart, 1992; Wolpert &
Kawato, 1998), visual perception (e.g., Duhamel, Colby, & Goldberg, 1992;
Freyd, 1987; Wexler, Kosslyn, & Berthoz, 1998), music perception (e.g., Boltz,
1993; Narmour, 1990; Schellenberg, 1997), and even classical conditioning
(Bouton, 2004; Tolman, 1937) and Hebbian learning (Abbot & Blum, 1996).
So why should things be any different with language processing? 

In fact, online prediction of linguistic input turns out to be an extremely
powerful tool for language learning (e.g., Cleeremans, Servan-Schrieber, &
McClelland, 1989; Elman, 1990, 1991; Rohde & Plaut, 1999; Roy & Mukherjee,
2005; Schütze, 1994; Spivey-Knowlton & Saffran, 1995). It is a tool that can
actually free the field of language acquisition from a logical trap that it set for
itself decades ago. The language acquisition literature has been caught in this
trap ever since Gold (1967) proved the necessity of negative evidence for 
language identification in the limit, and analyses of child–parent interaction
transcripts kept coming up with little or no corrective feedback for a child’s
grammatical errors (e.g., the “poverty of the stimulus” argument; Brown,
1964; Gibson & Wexler, 1994; Marcus, 1993; Morgan, Bonamo, & Travis, 1995;
Niyogi & Berwick, 1996; but see Bohannon, MacWhinney, & Snow, 1990;
Bohannon & Stanowicz, 1988; Moerk, 1990). If no environmental negative
evidence means no error signal, then language cannot be learned and there-
fore must be innate. This syllogism really is regularly sold in that simplistic a
manner. But it turns out, as long as the learner is using some form of predic-
tive processing, the absence of environmental negative evidence does not
imply the absence of an error signal. And so, as occasionally noted in small
rebellion caucuses in the back alleys of the language acquisition field, the
argument based on “poverty of the stimulus” is more accurately an argument
based on “poverty of the imagination.”

Of course, self-consciously predicting a single particular next word after
each current word while listening to a spoken sentence would be an unrealis-
tic (and unfair) version of this predictive processing account of language com-
prehension and learning. All the system would really need to take advantage of
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sensory anticipation would be some form of continuously generated distrib-
uted lexical/syntactic priming (e.g., Sereno, 1991) during real-time exposure
to linguistic input. With several different bets on the table for what lexical
classes might come next in the speech stream, the learner can simply listen to
find out which bet won to calculate its error signal. If the system is employing
probabilistic representations, and it increments the probability of the pre-
dicted linguistic element that was indeed just experienced, this necessarily
means that this bit of increased probability has to come from somewhere. In
general, it comes from all the other nonzero predictions that were just made
and just proven wrong. Hence, the repeatedly failed predictions of a hypoth-
esized grammatical relationship allow the learner to greatly decrement the
probability of that relationship, and thus learn from the conspicuous absence
of particular data (Spivey-Knowlton & Saffran, 1995). Negative evidence from
the environment is not needed in such a situation, because the predictive
learner generates his or her own negative evidence. These anticipations can be
based on phonotactics (Gow, 2001), lexical statistics (Elman, 1990), verb argu-
ment structure preferences (Spivey-Knowlton & Sedivy, 1995), and even 
discourse-based expectations (Spivey-Knowlton, 1992). If the mind relies on
multifarious predictions such as this, perhaps it is only natural that it would
eat, breathe, and sleep probabilistic representations, as suggested by the 
continuity of mind.

This naked opportunism in the use of information not only applies to the
continuous uptake and anticipation of sensory input, but also to the sharing
of representations between internal subsystems. The mind’s coupled sub-
systems promiscuously share their neural patterns with one another. Results
from the studies discussed in this chapter generally point to an account of
real-time language comprehension that integrates lexical, syntactic, semantic,
discourse, visual, and even situational variables continuously. In light of these
findings, language comprehension no longer looks like the functioning of a
digital computer, with subprocessors waiting until they complete a symbolic
representation before sending it to the next subprocessor. Partial, incomplete
information (in the form of probabilistic biases) seems to be shared continu-
ously between different formats of representation. It simply cannot be the case
that partially active symbols compete until one discretely wins and only that
discrete representation is passed on to later stages for rule-based computations
(see Anderson & Lebiere, 1998; Budiu & Anderson, 2004; Stevenson, 1994).
Such hybrid accounts of perceptual-and-cognitive processing are perhaps
useful stopgaps in the interim, so that functioning models can be designed.

However, everything that we have learned from neuroscience, from neu-
ral population codes to rich anatomical connectivity, tells us that neural sub-
systems do not hold back their signals to other subsystems until they are
discrete and narrowly defined. The multifarious pattern of dynamically com-
peting partially active representations continuously flows (or cascades,
McClelland, 1979) from one subsystem to another and back. Activation of
partial patterns of spiking neurons flows between neural areas just as readily
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as activation of succinct coherent patterns. That is, if neuron A in subsystem
X projects to neuron B in subsystem Y, then neuron A’s action potentials will
travel to neuron B regardless of whether neuron A is accompanied by many of
its partners in a population code or by only a few. Hence, subsystem Y gets
continuously updated on the progress of the competition between multiple
partially coherent population codes in subsystem X. It does not merely find
out about the winner. Such a scenario foretells a rather short life span for 
theories that pretend that cognition is comprised of discrete binary symbols
being passed from one computational module to another.

Continuous Trajectories Through a 
Neurolinguistic State Space

In this last section of this chapter on language, I will illustrate a kind of car-
toon depiction of how to think about the continuous fluidity with which lan-
guage is processed. The concept is framed within a particular focus on what
the brain might be doing during language comprehension. However, I must
first acknowledge that language is much bigger than “the comprehension
processes of the brain.” Language involves speech production and statistical
learning processes that result from the individual language user being embedded
in an environment containing other language users as well as linguistic con-
ventions that take on a life of their own in any given culture. For example,
my undergraduate thesis advisor, Ray Gibbs, once lost his patience with my
wording choices, and barked at me, “Michael, language is not processed by
language processors, it’s processed by people!” Then, about 10 years later,
my graduate student Stanka Fitneva said to me, after getting exasperated with
my pooh-poohing of social psychology approaches to language processing,
“News flash, Michael, language is a social phenomenon!” I try very hard not to
forget these admonitions, because it is all too easy to slip into the mindset of
dealing only with idealized representations/attractors in the hypothetical state
space of a brain. A neural state space is a very useful starting point for under-
standing how a core subcomponent of real-time language processing works.
But, as discussed at the beginning of this chapter (and also in chapter 11),
there are multiple time scales at which communicative signals are processed
by brains, by people, by cultures, by species. And it would be naive to think
that the places where we’ve chosen to cleave these time scales apart, for ease 
of analysis, will be divisions that actually render these levels of analysis 
independent of one another.

With that caveat firmly lodged in our collective craw, let’s get on with
visualizing an idealized linguistic trajectory through a mental state space.
Humor me now and say out loud, in an appropriately chiding manner,“Spivey
waxed philosophical.” That sentence took two to three seconds to say, and
would probably take two to three seconds for a listener to understand.
However, despite it clearly being an event stretched out in time, sentences are
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often treated as though they are static, whole things with no temporal proper-
ties whatsoever. Theoretical linguistics regularly draws static upside-down
tree structures that illustrate the grammatical branching of the noun phrase
and the verb phrase of such a sentence, and then the nested branching of the
verb and adverb within that verb phrase. That kind of static illustration is typ-
ically intended to be an abstractly isomorphic proxy for a representation that
a person has in their brain once they’ve understood such a sentence. The
meaning of the sentence is often treated similarly, as symbols in the head that
are accessed and placed in some kind of attended processing arena that resem-
bles all too much a Cartesian theater, with the lone audience member being
dangerously close to a homunculus (whose mind may have its own theater
and homunculus, ad infinitum).

If we step away from the theoretical perspectives that rely so much on
static representational objects in the mind and focus on the observation that a
sentence’s production and its comprehension take place over a period of time,
we can look for an alternative and more neurally plausible account for how a
spoken sentence is understood. While a person hears a sentence, it is obviously
not the case that their brain is doing nothing until the sentence is finished and
then it constructs some static representation. As the sentence is unfolding in
time, the listener’s brain is undergoing changes in its patterns of neural activa-
tion that are significantly driven by this environmental auditory input. If we
describe these averaged firing rates of many neurons as locations in a neural
state space (see chapter 2), then the changes over time comprise a continuous
trajectory through the state space. Thus, the understanding of a sentence is
here conceived of as an event in the mind, not an object (see also Slobin, 1996).

If some of the dimensions that one could construct in this state space are
largely phonetic, others are largely semantic, and still others largely syntactic,
one can imagine regions in the state space (which correspond to a cluster of
similar patterns of neural activation) “belonging” to particular words (see
Elman, 1991). When a word is properly understood, it means that the lis-
tener’s brain has achieved a pattern of neural activation that during some brief
period of time, maps roughly onto that region in state space. Hence, the
understanding of a sentence would involve having this moving average of
neural firing rates changing over time such that it corresponds to a continu-
ous trajectory through the state space, traveling from one word’s region to
another and to another (figure 7.18A). As the locations visited in state space
are the result of a moving average of the neural firing rates, the trajectory
would necessarily traverse through intermediate regions of state space that do
not significantly belong to any word. That is, because the patterns of neural
activation cannot instantaneously shift from one pattern to another, the state
of the system in the state space cannot teleport from one word to another.12

So the internal mental representation of a sentence is not a thing but a
process. As figure 7.18A shows, the understanding of the sentence is the trajec-
tory itself, and this trajectory continuously moves through state space over the
course of the two or three seconds it took to say the sentence. Now, even if one
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Figure 7.18. Zoomings-in of a
highly idealized linguistic state
space, to emphasize the spatio-
temporal continuity of spoken
language comprehension. (Note
that there have to be hidden
dimensions not depicted in this
two-dimensional cartoon, so
that for example, the phonemes
in waxed do not live exclusively
inside that word’s attractor
basin.)

relinquishes the idea that a sentence is a static object in the mind, one might
still argue that the encircled regions depicted in figure 7.18A can be inter-
preted as static things corresponding to the individual words. Maybe sen-
tences aren’t things in the mind, but words are, right? 

Wrong. The results from spoken word recognition experiments described
in this chapter indicate a continuous accrual of acoustic-phonetic input. That
is, just like with sentences, over the course of the few hundred milliseconds
that it takes to say a word, the brain is not passively waiting until the end of the
word before it starts processing the input. It processes partial acoustic-phonetic
input, and therefore must be engaging in partial representational patterns that



are initially slightly consistent with multiple different words. Crucially, this
continuous movement through state space is still evident even during the life-
time of an individual spoken word. Figure 7.18B zooms in on the region cor-
responding to the word waxed and idealistically illustrates how even this
process is temporally dynamic and continuous in time. Recognizing a spoken
word does not involve visiting and resting at the corresponding location in
state space. It involves constant change in neural patterning, as the first few
phonemes push the system in a somewhat ambiguous direction in state space,
later phonemes redirect the system toward a more specific region, and by the
time that specific region is reached, the next spoken word is already coming! 

Once again, the idealizations necessary to make this cartoon demonstra-
tion interpretable (i.e., the encircled regions corresponding to labeled repre-
sentational objects) can lead one to mistakenly conclude, “All right, maybe
words aren’t static objects, but at least those phonemes inside the word’s
region are objects. The system visits one, then visits the next, etc., and eventu-
ally a spoken word is understood.” Wrong again. Recall from chapter 6 that
categorical speech perception, at a time scale of dozens of milliseconds for the
acoustic-phonetic input, exhibits continuous temporal dynamics (McMurray
et al., 2003). Hence, as shown in figure 7.18C, the visitation of a phoneme
region in state space is also best illustrated as a continuous trajectory even at
that tiny time scale.

Whether you’re looking at a time scale of seconds (as in panel A), tenths
of seconds (panel B), or hundredths of seconds (panel C), there is no point in
time when the mental trajectory through state space, which is propelled by a
combination of environmental sensory input and goal-oriented expectations,
stops and stands still. It is always in motion. The patterns of neural activation
in the brain are in perpetual flux. An important consequence of this temporal
continuity of mind is that there can be no mediating states (e.g., Dietrich &
Markman, 2003), because states require stasis. However, these dynamic pat-
terns, or continuous processes, can certainly be thought of as mediational and
perhaps even representational, in a somewhat nonstandard way. But they are
not states, and therefore cannot be static symbols that are discretely separable
from one another in time or in representational space. What this means is that
language is not a string of symbols whose grammatical relationships are
encoded by discrete hierarchical structures in an encapsulated linguistic 
module. Language, like the rest of perception and cognition, is a continuous
trajectory through a high-dimensional state space that combines phonetic,
semantic, and syntactic constraints for understanding with perceptual and
motor constraints for continuously converting this developing understanding
into successful bodily interaction with the environment (see Barsalou, 1999;
Chambers, Tanenhaus, & Magnuson, 2004; Glenberg & Kaschak, 2002; Matlock,
Ramscar, & Boroditsky, 2005; Richardson et al., 2003; Richardson, Spivey, &
Cheung, 2001).
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8

Temporal Dynamics in Visual Perception

It should be obvious by now that this minute inflow of stimulus
energy does not consist of discrete inputs—that stimulation does
not consist of stimuli. The flow is continuous. There are, of course,
episodes in the flow, but these are nested within one another and
cannot be cut up into elementary units. Stimulation is not
momentary.
—J. J. Gibson

The Ideal (i.e., Motionless) Observer

In the previous chapter on language, it might seem natural and obvious that
the continuous delivery of speech input is a case where continuous temporal
dynamics would be prominent in the resulting perceptual-cognitive process-
ing. In contrast, visual input is often conceptualized as arriving on its sensory
apparatus, the retina, in the form of a single static parallel exposure of the
entire visual scene. As presaged by J. J. Gibson, and gradually rediscovered in
the past 10 years or so, this is simply not true. This chapter walks through
several examples of how visual perception is just as temporally dynamic as
language processing and other cognitive skills.

The past 40 years of research in vision were dominated by theoretical
frameworks and accompanying methodologies that too frequently limited
themselves to isolated visual stimuli presented to immobilized observers—
drawing selected insights from Gibson (1958, 1979) but never quite embrac-
ing his philosophy (see Nakayama, 1994, for a review). Interestingly, this
limited purview of types of visual stimulation allowed research in visual per-
ception to become the one place where the computer engineering mentality in
cognitive science has been most rigorously and successfully applied to the
mind. Whereas traditional cognitive psychology rarely got beyond Marr’s
(1982) computational level of drawing boxes and arrows, early research in vision
developed explicit linear systems mathematical accounts of perception at Marr’s
algorithmic level. Linear systems theory has enabled rigorous first approxima-
tions of a wide range of early visual processing phenomena (Cornsweet, 1970;
Julesz, 1971; Watson, 1986, 1992; see also Adelson & Bergen, 1991), including
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space perception (Graham, 1989), lightness perception (Gilchrist, 1988), color
perception (Wandell, 1993), and motion perception (Sperling & Lu, 1998).
Many of the early results from single-cell recording in the visual cortex of
anesthetized primates and cats were consistent with these linear feedforward
accounts of visual feature analyzers (e.g., Hubel & Weisel, 1959; Lennie, 1980;
Movshon et al., 1986).

But the devil is in the details. Marr’s (1982) lowest level, the implemen-
tational one, involving neural hardware, is where all the good intentions
developed at the computational and algorithmic levels simply fall apart. This
tripartite hierarchy, which perhaps depends too much on a unidirectional
predication, is significantly compromised when the brain is considered as a
complex dynamical system (McClamrock, 1991). The existence of a rich
connectivity of lateral projections within visual cortical areas (Gilbert, 1998;
Wilson & Wilkinson, 1997), as well as the many recurrent synaptic projec-
tions between various cortical areas (e.g., Churchland & Sejnowski, 1992;
Douglas et al., 1995) and the integral role of frequent eye movements during
visual perception (Bridgeman, van der Heijden, & Velichkovsky, 1994;
Findlay & Gilchrist, 2003), together cause serious problems for feedforward
linear systems accounts of vision (and of the rest of perception and cognition,
for that matter).

As long as vision scientists limited their psychophysical measurements to
isolated responses to isolated (and highly simplified) stimuli, and their neuro-
physiological measurements to anesthetized animals, the temporal dynamics
and recurrent feedback inherent in normal everyday goal-directed visual
perception could be ignored, and linear systems analysis was able to make
impressive strides in fitting laboratory data. However, as discussed in chapter 5,
the accumulation of neurophysiological and psychophysical evidence for visual
attention influencing low-level visual processes has led the field away from those
neat and tidy linear systems theories of vision and toward a more nonlinear
recurrent dynamical framework (e.g., Churchland, Ramachandran, & Sejnowski,
1994; Damasio, 1989; Desimone & Duncan, 1995; Heeger et al., 2001;
Martinez et al., 1999; Moran & Desimone, 1984; Motter, 1993; Shulman, 1992;
Spivey & Spirn, 2000).

Moreover, as noted by Ballard (1989), computer vision researchers who
had followed psychologists down their linear systems information-processing
pathway to vision eventually found themselves at an impasse. As it turns out,
artificial intelligence is making more progress with its new emphasis on
dynamic processing of actions as the core of cognition (e.g., Bajcsy & Goldberg,
1984; Beer, 1989; Brooks, 1991, 1995) than it ever did with its traditional
emphasis on static representation of knowledge (e.g., Banerji, 1980; Hunt,
1975; Lenat, 1995). When this dynamical systems perspective on visual per-
ception is expanded to include not only processes of the human brain but also
processes of the human body and the environment, as advocated by Gibson
(1979; see also Turvey, 1977), it becomes clear that many cognitive operations
span the boundary between brain and body as well as the boundary between
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body and environment (see Ballard et al., 1997; Kirsh, 1995; O’Regan, 1992;
O’Regan & Noë, 2001). See chapter 11 for further discussion.

The Ecologically Valid Moving Observer

The only nondynamic retinal images in the world are ones concocted in the
cognitive psychologist’s laboratory, where an experimental trial often consists
of a static image presented on a computer screen while the participant is
instructed to maintain eye fixation on a central dot. Not only do ecologically
valid stimulus environments generally include dynamic visual environments,
they also tend to include a moving observer who allows herself to make eye
movements. Admittedly, saccadic eye movements provide a rather staccato
series of static images to the eyes, with perceptual processing being suppressed
during the saccade itself (Matin, 1974; although processing is not entirely
eliminated, see Bridgeman & Fisher, 1990). But the process of directing those
saccades involves some time-sensitive nonlinear neural interactions.

For example, Duhamel, Colby, and Goldberg (1992) have shown that
visual neurons in the parietal cortex will reorient their retinal receptive fields
about 50 milliseconds before an eye movement takes place. Parietal cortex and
oculomotor nuclei appear to seamlessly coordinate their interface with the
visual field with respect to the destination of an impending saccade, such that
a parietal cell dynamically repositions its receptive field1 to receive afferent
input from the region of the visual field that will be its appropriate receptive
field once this impending saccade is completed! A neural mechanism like this
may be exactly what is responsible for the behavioral effects that are described
as an anticipatory movement of spatial attention that precedes an eye move-
ment (e.g., Henderson, 1993; Hoffman, 1998). Findings like these, as well as a
wide array of others (e.g., Cavanaugh, Bair, & Movshon, 2002a, 2002b; Gallant,
Connor, & Van Essen, 1998; Vinje & Gallant, 2002; see also Rao & Ballard,
1999), have contributed to the traditional concept of a visual receptive field
that is purely feedforward and nondynamic becoming relabeled as a “classical
receptive field”—meaning “importantly wrong under certain circumstances,”
as in classical physics and classical logic. Even in early regions of visual cortex,
the area of the retina to which a neuron responds turns out to be much 
larger (often referred to as a nonclassical receptive field) when the animal is
purposefully interacting with its environment than when the animal is slowly
dying on a slab with its eyelids propped open. Go figure.

Moreover, in a naturally moving observer, saccades are accompanied by at
least as many pursuit eye movements, tracking a moving object in the envi-
ronment, or maintaining fixation on an object during self-motion.2 During
these pursuit and fixational pursuit eye movements, everywhere on the retina
but the fovea itself is exposed to a great deal of mathematically complex con-
tinuous movement of the environment (Cutting, 1996; Gibson, 1977). This
kind of naturalistic retinal input is far more continuously dynamic than the
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typical cognitive psychologist’s experiment would have you expect. Whether
you’re talking about the shift from anesthetized animals to awake behaving
animals in electrophysiology research (e.g., Motter, 1993), or the shift from
nonmoving observers to interactive participants in cognitive psychology
experiments (e.g., Ballard, Hayhoe, & Pelz, 1995; Tanenhaus et al., 1995), or
the shift from abstract meaningless features to functionally relevant features
in concepts and categorization research (e.g., Markman & Ross, 2003), there is
a definite trend in the cognitive and neural sciences toward collecting data
from subjects that are interacting with their environment in a manner that is
at least somewhat ecologically valid. And this trend needs to be encouraged.

Nonetheless, even during a single eye fixation of a static visual scene while
not moving, there are some important temporal dynamics inherent in what
the brain does with that visual input. An instantaneously presented visual
stimulus, with no eye or body movement taking place, sets off an interesting
temporally dynamic internal process in perception. In this chapter, I describe
a number of findings and demonstrations of cascaded accrual of activation
during visual processing. In the same way that recognizing a spoken word
involves a continuous trajectory through state space, in which cognitive
expectations meet face to face with perceptual input, so does recognizing a
single object and mapping a visual percept onto oculomotor output, and 
finding a target object amid a clutter of distractor objects.

Toy Simulation as Transparent Demonstration

To make the point clear about how the gradual forming of high-level visual
representations may influence lower level visual representations through feed-
back connections, let’s start with a simple demonstration. The Kanisza triangle
(figure 8.1), for example, shows how an incomplete majority of perceptual
evidence for a familiar shape—the upright triangle in the image—can
nonetheless result in a relatively complete percept of the shape’s full set of
contours. Despite the sides of the triangle having no luminance contrast
defining any actual contour on the page, it looks as if there are subtle contours
there. In fact, neurons in primary visual cortex, area V1, respond to such
illusory contours even though they are not receiving any afferent luminance con-
trast input (Grosof, Shapley, & Hawken, 1993). It is generally believed that this is
the result of complex lateral interactions within visual layers as well as recurrent
feedback between visual areas (e.g., Gilbert, 1998; Grossberg, Mingolla, & 
Ross, 1997; Pessoa & De Weerd, 2003). A somewhat playful—but not entirely
inaccurate—way to think of it is in terms of areas of extrastriate cortex 
that are responsible for object recognition initially representing the afferent
visual input as “almost a triangle,” and then sending feedback to earlier areas
of visual cortex, telling them that they think they might be perceiving a trian-
gle. Orientation-sensitive contour-detecting cells that are accustomed to 
participating in that triangle percept—but were not initially activated by the
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afferent input, because their receptive fields are on the blank regions of the
Kanizsa triangle stimulus—gradually accumulate feedback signals and lateral
signals that convince them to become active and thus “hallucinate a contour”
exactly where a genuine triangle would have had one anyway. In fact, one of
the consequences of these pattern-completing neural connections, resulting
from extensive perceptual learning, is that we occasionally see what we expect
to see even when it’s not there (see Seitz et al., 2005).

If feedback projections in the visual system are used for this kind of
process (e.g., Churchland & Sejnowksi, 1992; Di Lollo, Enns, & Rensink, 2000;
Douglas et al., 1995; Grossberg et al., 1997), what in the world would make
one think that feedback projections in other areas of the brain that figure
prominently in higher order cognition (e.g., hippocampus, parietal cortex,
prefrontal and frontal cortex) aren’t also used for this kind of dynamic pattern
completion? In general, continuous feedback from confident high-level repre-
sentations down to uncertain or noisy low-level representations is exactly the
pattern completion process, discussed in chapter 1, that causes the phonemic
restoration effect (Warren, 1970), where a nonspeech sound replacing a
phoneme in the middle of a spoken word is nonetheless perceived as the appro-
priate phoneme. It also causes the McGurk effect (McGurk & MacDonald,
1976), where visual perception of mouth movements strongly influences
speech perception. Indeed, some form of this multilevel recurrent pattern
completion may even be what determines effects seen with people’s changing
beliefs and attitudes, the resolution of cognitive dissonance, and even the
maintenance of inconsistent beliefs (see Shastri, 1999). The feedback path-
ways that allow cognitive expectations to modulate the processing of percep-
tual input not only enable such context effects, they also lead to the very 
kind of nonlinear temporally dynamic settling processes that are discussed
throughout this book.
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Figure 8.1. The Kanizsa triangle’s white upright
triangle exhibits illusory contours.



Another visual demonstration of dynamics and feedback in perceptual
information transmission, with global visual context influencing local feature-
based processing, comes from Neisser’s (1967; see also Rumelhart & McClelland,
1986) classic discussion of how the same ambiguous letter in figure 8.2 is so
readily seen as an H in the upper word and so readily seen as an A in the lower
word. Here, I will walk through a simple simulation of how letter-based infor-
mation at early layers of a network can affect gradual recognition of a word at
a later layer of the network, which can then send feedback to influence the
recognition of letters in the early layer of the network.

For normalized recurrence to model how a letter is perceived differently
in different lexical contexts, it must have a vector for letters and a vector for
words. And for the competition algorithm to recurrently cycle and sharpen
the probability distributions over different words, the probabilistic support
that each letter provides for a given word must be intermediately converted
into a word-supporter vector. Figure 8.3 shows a simple normalized recurrence
network with added input vectors for the first, second, and third letters of
three-letter words (bidirectional weights between letter nodes and appro-
priate word supporter nodes are set at 0.01).

By turning on only the C node in the first letter vector, only the T node
in the third letter vector, and both the A and H nodes in the second letter vec-
tor, with each vector then being normalized to sum to 1.0, the network
demonstrates how the word can be easily recognized despite ambiguous
orthographic input. Note how the CAT node’s activation in figure 8.4A rises
over time while the other nodes decline. More important, the cyclic feedback
in the network allows the simulation to demonstrate how the perfectly
ambiguous middle letter itself can, in that context, become perceived as 
more of an A than an H (See appendix for details and code on this simple
normalized recurrence simulation.)

As the CAT word node becomes substantially more active than the com-
peting word nodes, it sends more feedback to its three corresponding nodes in
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Figure 8.2. The ambiguously shaped middle
letter is readily resolved by the lexical context.
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Figure 8.3. A normalized recurrence localist attractor network for
simulating lexical context effects on letter resolution.

Figure 8.4. A: Activation of the lexical nodes for the word
“C?T,” with that ambiguous second letter; B: Multilayer feed-
back from the lexical layer eventually influences activation of
the letter nodes to cause that second letter to “look” more like
an A than an H.

the word-supporting vectors. And as those particularly active word-supporting
nodes send feedback to their corresponding letters, the probability distribution
in the second letter vector begins to skew toward the A node and away from 
the H node (figure 8.4B). This general process of recurrent multilevel pattern



completion may be how, when you cover up the lower word, that middle letter
in figure 8.3 does, indeed, somehow appear substantially H-like. When you
cover up the upper word, that same middle letter looks reasonably A-like.

In fact, this implemented network bears a striking resemblance to
Selfridge’s (1959) pandemonium model, in which many abstract lower level
demons call out their votes to a smaller number of higher level demons, who
then tabulate and call out those results accordingly to the next level of fewer
still demons. The key difference that this kind of localist attractor network
exhibits is that the emerging consensus among the higher level demons
actually filters down via feedback channels to gradually sway the lower level
demons’ opinions. As with most complex dynamical systems that employ
feedback, the higher level patterns are both a result of and an influence on the
lower level patterns. This temporally drawn-out circular causality shows up
when multiple subcomponents of a system gradually coalesce into a coherent
global form over time partly because the subcomponents want that form, and
partly because the coherent whole wants that form. This kind of autocatalysis
can be seen in a wide range of complex adaptive systems (Holland, 1995),
such as chemical processes (Prigogine & Stengers, 1984), insect behavior
(Bonadeau, Dorigo, & Theraulaz, 1999), traffic patterns (Resnick, 1997), stock
trading (Strogatz, 2003), clothing fashion (Braham, 1997), and even during
the visual recognition of a single object (Deco & Lee, 2002).

Recognizing a Single Object

As vision is a modality in which we share much in common with nonhuman
primates, it has been studied in depth with neurophysiologically invasive real-
time measures that richly illustrate the temporal dynamics of the resulting
perceptual-cognitive processing. Vision research abounds with examples of
temporal continuity in real-time perception. The gradual settling (or pattern
completion) of a neuronal population code, over the course of hundreds of
milliseconds, is a common way to think about how the visual system recog-
nizes objects and faces. Compelling visualizations of the continuous manner
in which sensory input gradually produces a percept can easily be found in
visual neuroscience. Recall the discussion of Rolls and Tovee (1995), from
chapter 1 (figure 1.6), in which they recorded from multiple neurons in the
inferotemporal cortex of the macaque monkey and found that it takes a few
hundred milliseconds for the right population of cells to achieve their appro-
priate firing rates for fully identifying a fixated object or face. As the cells begin
depolarizing in response to the features of a recognizable visual stimulus, the
population code reaches about 50% of its full resonant activity after just the
first 70 milliseconds. The remaining 50% of the information to be encoded by
that population code (measured in bits) accumulates over the course of a few
hundred milliseconds more. When you look at the right time scale for percep-
tion and cognition, that is, hundreds of milliseconds, there’s nothing instanta-
neous about it at all. There are no meaningful instants; there is only process.
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Perrett, Oram, and Ashbridge (1998) report additional support for grad-
ual accumulation of neuronal evidence in face recognition with images
rotated in depth. When a face or object is partly rotated away from a canoni-
cal or frontal view, recognition or matching will generally take longer as a
function of how far it is rotated (e.g., Cooper & Shepard, 1973; Jolicoeur,
1985; Shepard & Metzler, 1971). The increase in response time as a function
of stimulus rotation is sometimes quite linear, suggesting that some form of
neural analog computation may be doing something functionally isomorphic
to actually rotating a 3D representation of the object in real time until it is in
an orientation that is appropriate for the recognition or matching task
(Shepard, 2001; but see Hecht, 2001; Kubovy & Epstein, 2001).

Perrett et al. (1998) describe recordings from cells in the monkey tempo-
ral cortex while the monkey viewed frontal, three-quarter profile, profile, and
quarter profile schematic faces. When the cumulative number of action
potentials are simply plotted over time, these curves rise at different rates as a
function of how canonical the face orientation was. Figure 8.5 illustrates the
continuous nonlinear rise in accumulated neuronal spikes over the course of
several hundred milliseconds as the monkey recognizes the face. Similar to the
results of Rolls and Tovee (1995), these curves reach their half-height rela-
tively early on, yet still spend several hundred milliseconds gradually
approaching their respective asymptotes (except for the back-of-head view,
which asymptotes rather low within a few hundred milliseconds).

Thus even the mere process of recognizing a single object carries with it a
temporal continuity in its representational form that makes it ideal for
description in terms of a nonlinear trajectory through a high-dimensional
state space. Outside of the laboratory, in complex visual environments, with
saccadic eye movements occurring two to four times per second, and with
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Figure 8.5. Sigmoidal accumulation of neuronal spikes for
various face orientations (adapted from Perrett et al., 1998).



body movement taking place as well, these graded representations of visual
objects whose images get projected onto those retinas (i.e., partially active
neural population codes that would take several hundreds of milliseconds to
fully reach asymptote) must surely be the norm, rather than the exception.

Perceptual Decisions

A particularly impressive example of continuous temporal dynamics in visual
processing being coupled with continuous temporal dynamics in motor
processing comes from work by Gold and Shadlen (2000) examining decision
processes in the frontal eye field (FEF) of the macaque monkey. A common
task in visual psychophysics involves presenting a display of quasi-randomly
moving dots and instructing the subject to judge the majority direction of
motion exhibited by the dots. As the experimenter increases the proportion of
dots that move in a roughly consistent direction, the perception of a coherent
direction of flow amid the dots becomes more apparent (Britten et al., 1992).
Figure 8.6 shows two simple examples of dynamic random dot displays, with
only 10 dots for ease of depiction. In panel A, 7 of the 10 dots are moving in
the same leftward direction, making it rather easy to discern the direction of
coherent motion. In panel B, only 4 of the 10 dots are moving in the same
rightward direction, making it relatively difficult to perceive the direction of
coherent motion.

Gold and Shadlen (2000) presented displays like this to monkeys and
trained them to indicate the perceived direction of dot flow, on offset of the
stimulus, by making an eye movement to a leftward peripheral location or a
rightward one. Then they found a region of FEF in which electrical micro-
stimulation evoked an involuntary saccade that was perpendicular to the two
voluntary response saccades (upward in figure 8.7). On some of the direction-
of-flow judgment trials, this region of FEF was microstimulated immediately
after the moving dot display disappeared, that is, exactly when the monkey
was supposed to produce a voluntary eye movement (to the left or right
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Figure 8.6. Simplified examples of moving dot patterns
with 70% coherent leftward motion (A), and 40%
coherent rightward motion (B).



response box) that would indicate his decision regarding the perceived direc-
tion of flow of the dots.

Perhaps not surprisingly, the evoked involuntary upward saccade was
executed first, and a corrective saccade typically redirected the eyes to the
voluntarily chosen response box. However, the evoked saccade was not bereft
of influence from the evolving perceptual decision. In fact, when the percent-
age of coherent motion was greater and (more important, for my temporal
continuity argument) when the viewing time was longer, more perceptual
evidence apparently accrued to induce greater deviation of that initial invol-
untary saccade slightly in the direction of the voluntary response. Figure 8.7
shows the visual display that followed the dynamic random dot display. In this
idealized example, 51% of the dots in the dot display coherently moved left-
ward (a rather easy perceptual decision), and then the evoked upward saccade
was triggered after either 100, 200, or 300 milliseconds of exposure to the
moving dot display. With more time to perceive the dynamic random dot dis-
play, the evoked saccade acted more like a combination of the evoked upward
saccade and the voluntary leftward saccade.

Essentially, by incrementally increasing viewing time, the experimenters
could observe the gradual increase in strength or confidence of the perceptual
decision over time, as indicated by the degree to which that voluntary decision
leaked into the execution of FEF-microstimulated evoked saccade. Thus, the
population of cells that—once some of them were microstimulated—produced
the evoked saccade were already somewhere in the process of settling on a pat-
tern of activation that would produce the voluntary response saccade. If the
microstimulation took place very early on in this decision process, rather 
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Figure 8.7. Schematic example of greater and greater deviation in
the evoked saccade toward the direction of the voluntary saccade
after varying amounts of time for the motor system to accumulate
perceptual evidence (at high motion strength, 51%) for a “motion
leftward” response. The dashed line shows the pure evoked saccade
in the control condition (see Gold & Shadlen, 2000).



little effect of the voluntary response would be apparent in the evoked saccade,
but if the microstimulation took place later on, a significant amount of the
voluntary eye movement would be apparent in the evoked saccade. These
results suggest that decision processes themselves may be coextensive with the
gradual settling of partially active and competing neural representations in
motor areas of cortex (Gold & Shadlen, 2000, 2001; Schall, 2000; see also
Georgopoulos, 1995).

Visual Search Phenomena

The same kind of gradual accumulation of perceptual evidence can be
observed when multiple objects are competing for attention during visual
search. The field of visual search has generally been driven by two opposing
perspectives on attention. The serial-processing perspective claims that the
observer allocates attentional resources wholly and discretely to individual
objects, one at a time (e.g., Treisman & Gelade, 1980; Treisman, 1988). This
view is expressed in Wilhelm Wundt’s introspection that “one can turn the
inner point of sight successively to the various parts of the inner field of view.
At the same time, one can narrow it or broaden it, unlike the point of sight of
the external eye, whereby its brightness alternately increases and decreases.
Strictly speaking it is thus not a point, but a field of somewhat variable extent”
(Wundt, 1903, p. 334, translation by Bruce Bridgeman). The parallel-processing
perspective claims that attention is best characterized as comprised of partially
active representations of objects simultaneously competing for probabilistic
mappings onto motor output (e.g., Desimone & Duncan, 1995; Mounts &
Tomaselli, 2005; Reynolds & Desimone, 2001; see also Godijin & Theeuwes,
2002; Keysers & Perrett, 2002). This more probabilistic view is expressed in 
Sir William Hamilton’s observation that “the greater the number of objects 
to which our consciousness is simultaneously extended, the smaller is the
intensity with which it is able to consider each” (Hamilton, 1859, p. 164).

In the visual search paradigm, the subject is presented with a display of
multiple objects and must respond as to whether a prespecified target is pres-
ent or absent. When the target object differs from all the distractor objects by
a single feature (or perceptual dimension), subjects’ response times are not
affected by the number of distractors in the display (called the set size).
Subjectively, the target seems to “pop out.”3 See figure 8.8A. However, when the
target object differs from some distractors along one feature and from other dis-
tractors along another feature (figure 8.8B), subjects’ response times increase
quite linearly with set size (e.g., Treisman & Gelade, 1980; Treisman, 1988;
Wolfe, 1994, 1998). In addition to linear slopes with set size, this conjunction of
features also causes an approximately 1 : 2 slope ratio for target-present versus
target-absent trials (e.g., Treisman & Gelade, 1980). See figure 8.9. This fits
nicely with a serial search account because when the target is present, one
should expect to have to apply the attentional spotlight to about half of the
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Figure 8.8. A: A single-feature search for a
red vertical bar amid red horizontal bars; B: a
conjunction search for a red vertical bar amid
red horizontal bars and green vertical bars.

Figure 8.9. The three basic effects of visual search: (1) Single
feature pop out, idealized as 0 ms/item; (2) linear increase in
conjunction search response time as a function of set size; and
(3) the 1: 2 ratio of target-present slope to target-absent slope for
conjunction search. Target-present conjunction search is ideal-
ized here as 20 ms/item, and target-absent conjunction search is
idealized as 40 ms/item.



objects before stumbling onto the target, whereas when the target is absent,
one should have to apply the spotlight to all of the objects before confirming
that the target is absent.

These three phenomena (pop out, linear slope for conjunction search, and
1: 2 present/absent slope ratio for conjunction search) have been interpreted as
evidence for the feature integration theory of attention (Treisman, 1988;
Treisman & Gelade, 1980). In this theory, features are initially, “preattentively,”
extracted in parallel across the visual field and represented on separate feature
maps. Thus, a target that differs from the distractors by a single feature will
have a solitary point of activation in that feature map, and thus pop out.
However, in a conjunction search, a second, attentional stage of processing is 
necessary to bind the two target features by combining the separate feature maps
onto a master map. This attentional stage implements a spotlight of attention
(Eriksen & Yeh, 1985; Hurlbert & Poggio, 1985; Posner, Snyder, & Davidson,
1980; but see Driver & Baylis, 1989) that serially checks objects in the display for
their match to the prespecified target description.

However, several studies have discovered particular conjunctions of features
that do not produce steeply sloped response time functions by set size (McLeod,
Driver, & Crisp, 1988; Nakayama & Silverman, 1986; Theeuwes & Kooi, 1994).
Moreover, it has been argued that steeply sloped response time functions may
not even reflect serial processing of objects in the first place. Rather, probabilis-
tic models based on signal-to-noise ratio can accommodate many visual search
phenomena (Eckstein, 1998; Palmer, Verghese, & Pavel, 2000; see also McElree &
Carrasco, 1999). Overall, a wide range of studies have suggested that the distinc-
tion between putatively serial and parallel search functions is continuous rather
than discrete and should be considered extremes on a continuum of search
efficiency (Duncan & Humphreys, 1989; Nakayama & Joseph, 1998; Olds,
Cowan, & Joliceur, 2000a, 2000b, 2000c; van der Heijden, 1996a; Wolfe, 1998).

Rather than these different ranges of response time by set size slopes being
the result of fundamentally different search processes (i.e., a parallel processor
or a serial processor), it has been suggested that they emerge from a single
process, perhaps determined by the relative salience of the target and the dis-
tractors (e.g., Dosher, Han, & Lu, 2004; Duncan & Humphreys, 1989; Eckstein,
1998; McElree & Carrasco, 1999; Palmer, Verghese, & Pavel, 2000; Wolfe, 1998;
see also Mounts & Tomaselli, 2005). For example, Wolfe (1998) performed a
meta-analysis on almost a million conjunction search and single-feature search
trials and was unable to find any evidence for bimodality in the distribution of
response time by set size slopes (but see Haslam, Porter, & Rothschild, 2001).
As a result, the visual search literature has taken to using the rather non-
committal terms efficient and inefficient search in place of the dichotomy of
parallel and serial search. Although certainly vague and nonexplanatory, the
terms efficient search and inefficient search more readily accommodate the
notion of a continuum between these extremes,4 rather than the now dubious
categorical distinction between two putatively independent search mechanisms.
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One of the more compelling results to argue against the independent func-
tioning of a parallel preattentive stage of visual search and a later serial atten-
tional stage comes from visual search displays that are temporally dynamic. For
example, Olds et al. (2000a, 2000b, 2000c; see also Watson & Humphreys, 1997)
presented visual search displays in the form of single-feature pop-out displays
for very brief periods of time (in some conditions, less than 100 milliseconds)
before changing them to conjunction-search displays. Although participants
did not report experiencing a pop-out, and their response times were not as
fast as with pure pop-out displays, they did nonetheless show some graded
facilitation in response times due to the very brief period of time during which
the display had only single-feature distractors. Olds and colleagues described
this effect as a partial pop-out process assisting the conjunction search process
and called it “search assistance.”

A similar progressive delivery of search stimuli was explored by Spivey,
Tyler, Eberhard, and Tanenhaus (2001; see also Tyler & Spivey, 2001), except
they presented the target identity incrementally, rather than the search dis-
play. When participants were informed of the target’s features by a spoken
target query (e.g., “Is there a red vertical bar?”) while the conjunction search
display was concurrently visible, they produced response time by set size
slopes in the neighborhood of about 5 milliseconds per item, instead of 15 or
20. Although the exact process by which this incremental linguistic input
turns an inefficient search into an efficient one is still under investigation
(Gibson, Eberhard, & Bryant, 2005; Reali et al., in press), it could very well be
due to the continuous processing of spoken language transferring its gradu-
ally accumulated information to the visual search process in real time. If the
participant is viewing a conjunction display like the one in figure 8.8B, then
on hearing just “Is there a red—,” he or she may already be able to begin a
search process based on that first-heard adjective. Of course, this initial
search process would be based solely on one feature, redness, and thus may
take place in a rather parallel fashion. Then, a few hundred milliseconds later,
as the second adjective is being heard, some of the distractors have already
been somewhat excluded from the rest of the search process because they lack
the first-mentioned feature—a bit like Olds et al.’s (2000a, 2000b) notion of
search assistance. Importantly, this explanation demands considerably richer
and more continuous interaction between the language system and the visual
system than typically acknowledged (see chapter 5).

Based on results like these, it appears that rather than a collection of indi-
vidual feature maps simply outputting a pop-out signal or a “must conjoin”
signal to a master map for serial attentional search, some form of graded or
probabilistic information is continuously “cascaded” (McClelland, 1979)
from the parallel feature maps to some serial-like search process. In one theo-
retical framework, it has been argued that information from the feature maps
can guide the attention-based serial search (Huebner, 2001; Wolfe, Cave, &
Franzel, 1989; Wolfe, 1992a).
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Visual Search Modeling

Moving even farther away from the traditional distinction between a parallel
preattentive stage of processing and a serial attentional mechanism, Desimone
and Duncan (1995; Reynolds & Desimone, 2001; see also Keysers & Perrett,
2002) describe a theory of biased competition in which multiple representa-
tions of objects are simultaneously partially active and compete for the priv-
ilege of driving motor output (e.g., pressing the target-present button,
naming an object, reaching to grasp an attended object, or even turning to
shoot the computer-generated avatar of your opponent in a video game).
Experimenter instructions, goal-oriented plans, and contextual constraints
provide the top-down bias for this competition process (e.g., Awh, Matsukura,
& Serences, 2003).

The following localist attractor network simulations serve as a kind of mid-
level generic implementation of a biased competition account of visual search.
Some more complex and neurally explicit network models have been designed
to handle specific sets of visual search tasks and phenomena (e.g., Cave, 1999;
Cave & Wolfe, 1990; Godijn & Theeuwes, 2002; Grossberg, Mingolla, & Ross,
1994; Humphreys & Müller, 1993; Koch & Ullman, 1985; Phaf, van der Heijden, &
Hudson, 1990; Sandon, 1990). And more abstract mathematical accounts, based
on signal detection theory and information theory, have also fit a range of visual
search data (e.g., Eckstein, 1998; Eckstein et al., 2000; McElree & Carrasco, 1999;
Palmer, 1995; Tsotsos, 1990). The more explicit neural network implementa-
tions tend to carry with them a substantial number of architectural assumptions
and adjustable parameters, whereas the static equation accounts tend to gloss
over the temporal dynamics of the process of search. These normalized recur-
rence simulations of visual search lack the neural explicitness of the network
models and the mathematical elegance of the models inspired by signal detec-
tion theory. Instead, they combine the transparency of the equation-based
models with the temporal dynamics of the network models. They function as a
conceptual bridge between those two different kinds of models, whereby one
can envision a theoretical framework for biased competition during visual
search that can exist at multiple levels of description. For purposes of simplicity,
the simulations I report here—in which many object representations compete
against each other and one finally wins—will be limited to target-present trials.
Although there are many different ideas about what cognitive processes may be
involved in deciding that the target is absent on any given trial, it is probably safe
to say that it does not involve a process of one object representation eventually
winning a probabilistic competition.5

Simulation 1: The Basics

In this first simulation, one feature vector represents the likelihood of each
object being the target based solely on it exhibiting the target property of
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redness, and the other feature vector represents the likelihood of each object
being the target based solely on it exhibiting the target property of verticalness.
The integration vector serves as a measure of each object’s overall likelihood
of being the target. Figure 8.10 shows a schematic diagram of this normalized
recurrence network with input values corresponding to a target-present con-
junction search for a red vertical bar with a set size of seven (i.e., one red vertical,
three red nonverticals, and three nonred verticals).

As with other normalized recurrence simulations here, within each cycle of
competition, the two feature vectors are normalized, then averaged at the inte-
gration layer,6 and the integration vector then sends pointwise multiplicative
cumulative feedback to those feature vectors. As cycles of competition continue,
the integration node corresponding to the target object (exhibiting both redness
and verticalness) increases in activation while the other nodes decrease in 
activation. Competition continues until an integration node exceeds a 0.95 
activation criterion. The conjunction search simulation involves setting node 1
at 1.0 activation in both feature vectors, because it is the target, exhibiting both
redness and verticalness. Also, a nonoverlapping half of the remaining nodes,
in each vector, are set at 1.0 activation, as they each exhibit one and only one tar-
get feature. Thus, for a set size of eight, the starting activations for the feature
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Figure 8.10. Diagram of the normalized recurrence localist attractor
network as applied to visual search for a conjunction target. The num-
ber of nodes in the network need not be related to the set size, as only
those nodes whose objects exhibit the relevant target feature will ever
have nonzero activation. For example, the same network with 36 nodes
in each vector can be used for set sizes of 1–36.



vectors would be [1 1 1 1 0 0 0 0] for the redness vector, and [1 0 0 0 1 1 1 1] for
the verticalness vector. See the appendix for example MATLAB code.

Across set sizes of 4 to 36, in steps of four, this normalized recurrence
competition algorithm produces an almost perfectly linear slope of settling
time as a function of set size for standard conjunction search; r2 � 0.995.7 If
one treats each time step as equivalent to 20 milliseconds and adds 300 milli-
seconds for baseline perceptual-motor delays, one sees response times that are
highly typical of conjunction search tasks, and a response time by set size
slope of 16.4 milliseconds per item. Of course, the simulation can also
produce a nearly flat (2.8 milliseconds per item) search function for single-
feature pop-out displays as well—where the starting activations would look
like [1 0 0 0 0 0 0 0] and [1 1 1 1 1 1 1 1]. See figure 8.11. This first basic result,
out of such a simple localist attractor network, is noteworthy. One of the
field’s landmark findings that has traditionally been taken as evidence for a
serial fixed-duration template matching of each object one at a time, that is,
linearly increasing search functions, is exactly mimicked by a parallel competitive
architecture where the only capacity limitations are that its representations are
forced to share a probability density function.

Initially, it is not necessarily obvious why normalized recurrence should
produce this linear increase in search time as a function of set size. The activa-
tions of the different vectors certainly change quite nonlinearly over time.
See figure 8.12. It should be noted that this linear increase in settling time
holds true as long as the criterion for stopping competition is set anywhere
above 0.5. (Importantly, this means the model is not really ready to deal with
displays that have multiple targets; e.g., Ward & McClelland, 1989).
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Figure 8.11. Normalized recurrence results for visual search simu-
lation 1: the basics.



Part of understanding how this unassuming little localist attractor network
produces this linear increase in settling time involves comparing the starting
activations at different set sizes with the rate at which the winning node accrues
activation over time. As set size increases linearly, the initial activation of the tar-
get object’s integration node decreases nonlinearly. Additionally, as competition
takes place within a given trial, that target integration node’s activation value
increases nonlinearly over time. In fact, this nonlinear increase over time exactly
compensates for the nonlinear differences in starting activation across set size.
For example, as shown in figure 8.13, competition increases the target integra-
tion node’s activation with an asymmetric sigmoid function over time. Thus,
although the initial activation values vary nonlinearly with set size (i.e., 0.415,
0.225, 0.155, 0.118, 0.095, for set sizes 4, 8, 12, 16, and 20), their nonlinear rise
over time causes them to achieve a criterion of activation at approximately 
linear intervals in time (Spivey-Knowlton, 1996). In a sense, two nonlinearities
make a linearity.

One can think of this activation curve over time as a hill that the target
object representation has to climb to win the competition. The further away
from the top that it starts out, naturally, the longer it will take to reach the top.
Figure 8.14 depicts a generic version of this activation hill, with dots showing
where the target integration node starts, with different set sizes. The nonlinear
decrease in starting activation as set size increase is due to the normalization. But
note how, as set size increases from 4 to 8 to 12 and so on, the smaller decreases
in starting activation actually push the dot back (horizontally leftward) by a 
relatively fixed amount of added time (as indicated by the dashed lines).
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Figure 8.12. Activation of the integration vector over time in a
normalized recurrence simulation of a target-present 36-item con-
junction search.



The key observation from this simulation is the fact that the representa-
tions of the various objects are all processed simultaneously; their activations
updated in tandem. Despite this parallel processing of all object representations,
the network produces linearly increasing settling times, as a function of set size,
which for a long time were commonly interpreted as evidence for serial process-
ing. Thus the simulation stands as an existence proof that linear functions can
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Figure 8.13. Activation over time of the target object node in
the integration vector for all set sizes. Once the curves exceed
0.5 activation, they are generally evenly spaced apart from one
another in competition cycles, thus producing the linear
increase in response time across set size.

Figure 8.14. Target node starting activations and their tempo-
ral distance from reaching criterion (see text for details).



come out of a system in which multiple partially active representations are 
competing simultaneously, and an object’s targethood gradually emerges over
the course of hundreds of milliseconds during visual search.

Simulation 2: Target-Distractor Similarity

One of the fundamental predictions that a probabilistic competitive account
of visual search has to make is that graded similarity between distractor and
target will modulate the efficiency of the search (see Duncan & Humphreys,
1989). Given the same set size, distractors that are highly similar to the target
should compete strongly and therefore increase response times, whereas dis-
tractors that are less similar to the target should compete only weakly and thus
decrease response times. Therefore, this account predicts a range of search
functions from very steep to nearly flat and everywhere in between—in con-
junction search displays as well as in single-feature displays (e.g., Bauer,
Cowan, & Jolicoeur, 1996; D’Zmura, 1991; Olds et al., 2000a, 2000b, 2000c).

In the high-similarity condition, the feature vectors for a single-feature
search, where the target might be a red vertical bar and the distractors pink
(instead of green) vertical bars, would look like the following for a set size of
eight: redness � [1 0.5 0.5 0.5 0.5 0.5 0.5 0.5], verticalness � [1 1 1 1 1 1 1 1].
This simulation also included a high-similarity conjunction search in which
the target was a red vertical bar and the distractors were red diagonals and
pink verticals, for example, redness � [1 1 1 1 0.5 0.5 0.5 0.5], verticalness �
[1 0.5 0.5 0.5 1 1 1 1]. Figure 8.15 (dashed line) shows how increased similar-
ity between target and distractors dramatically increased the slope for a
single-feature search (from 2.8 milliseconds per item to 24.75 milliseconds
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Figure 8.15. Normalized recurrence simulation results for
simulation 2: target-distractor similarity.



per item). Such a steep slope is comparable to what D’Zmura (1991) and
Bauer et al. (1996) found when the target color was not linearly separable
from the distractor colors (in CIELUV color space; Robertson, 1977). The
high-similarity manipulation for the conjunction search also increased its
corresponding response time by set size slope (from 16.4 milliseconds per
item to 30.33 milliseconds per item). See the solid line in figure 8.15.
Additionally, the slopes in both cases were highly linear; r2 � 0.99.

Similarity between target and distractors can also be decreased by, for
example, replacing red distractors with pink ones in the conjunction search
display; that is, a red vertical target amid green verticals and pink horizontals.
In such a simulation, the starting values for the feature vectors, in a set 
size of eight, would look like: redness � [1 0 0 0 0.5 0.5 0.5 0.5], verticalness �
[1 1 1 1 0 0 0 0]. In this low-similarity conjunction search condition (also
shown in figure 8.15, dotted line), search slopes decreased to 10.83 milli-
seconds per item, compared to the standard conjunction search’s 16.4 milli-
seconds per item (recall figure 8.11). Again, the slope was highly linear;
r2 � 0.98.

Simulation 2 demonstrates that with the normalized recurrence competi-
tion algorithm, conjunction searches (as well as feature searches) are capable
of a wide range of response time by set size slopes. As target-distractor simi-
larity increases, search becomes less efficient (steeper response time slopes).
As target-distractor similarity decreases, search becomes more efficient (shal-
lower response time slopes). The past results and current simulations suggest
that visual search phenomena are best described via a continuum of search
efficiency (Duncan & Humphreys, 1989), rather than via a discrete distinction
between parallel (sensory) processing and serial (attentional) processing
(Treisman, 1988).

Simulation 3: Distractor-Distractor Similarity

In addition to target-distractor similarity, it has also been found that similar-
ity between distractors themselves affects search efficiency (Duncan &
Humphreys, 1989; Humphreys, Quinlan, & Riddoch, 1989), as well as eye
movement patterns during search (Shen, Reingold, & Pomplun, 2000, 2003).
Duncan and Humphreys (1989, 1992) have argued that features can produce
a spreading suppression, such that when many distractors exhibit the same fea-
ture, they suppress one another, allowing the target to be detected more quickly.
Some have explored this type of phenomena as a texture segmentation process
(e.g., Rieth & Sireteanu, 1994; Wolfe, 1992b) or a spatial/featural grouping
process (e.g., Braithwaite, Humphreys, & Hodsoll, 2003; Gilchrist et al., 1997).
Essentially, if a red vertical target is immersed in a clump of mostly red hori-
zontals and only a few green verticals, a large patch of red horizontals can
wind up being perceived as a kind of background wallpaper pattern, as it were,
and filtered out en masse. Thus, even in a conjunction search, if the distractors
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are sufficiently homogenous, the search function can be nearly flat (Egeth,
Virzi, & Garbart, 1984; Humphreys et al., 1989).

In the normalized recurrence competition algorithm, this spreading
suppression referred to by Duncan and Humphreys (1989, 1992) is a natural
consequence of initial feature normalization. If a majority of the distractors
exhibit the same feature (e.g., redness � [1 0 0 1 1 1 1 1]), each of these fea-
tural activations is then divided by a larger number. Of course, the target
item’s feature node is also divided by this large number. However, this means
that the target item has fewer competitors along the other feature (e.g., verti-
calness � [1 1 1 0 0 0 0 0]) and gets divided by a smaller number. The result
is that in the object array, the target starts out with higher activation and with
weaker competitors (integration � [0.25 0.17 0.17 0.08 0.08 0.08 0.08 0.08])
than if there were a roughly equal number of the two types of distractors
(integration � [0.225 0.125 0.125 0.125 0.1 0.1 0.1 0.1]).

The first demonstration in simulation 3 is of a conjunction search in
which the majority (about three-fourths) of the distractors were identical,
instead of being equally composed of the two types of distractors, as in the
previous simulations. For example, a red vertical target might be surrounded
mostly by red horizontals and by only a few green verticals. (In all of the
demonstrations for simulation 3, the coding of the display always included at
least one green vertical.) With this type of input, normalized recurrence pro-
duced a search function (14.25 milliseconds per item; see figure 8.16) that was
shallower than that of a conjunction search with equally distributed distractors
(recall figure 8.11). Again, the slope was quite linear; r2 � 0.99.

With even greater homogeneity of distractors, the search slope approached
the flat function characteristic of pop out. When seven-eighths of the distractors
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Figure 8.16. Normalized recurrence simulation results for simula-
tion 3: distractor-distractor similarity.



were identical, the model took the equivalent of 10.08 milliseconds per
item to find the target (figure 8.16, dashed line). With 95% homogeneity of
distractors—where only set sizes 32 and 36 have more than one green 
vertical—the model took 6.33 milliseconds per item (figure 8.16, dotted
line). Although the search slope for the seven-eighths homogenous display
was still highly linear (r2 � 0.98), the slope for the 95% homogeneity con-
dition was slightly less so (r2 � 0.94).

Simulation 3 corroborates the importance of distractor-distractor simi-
larity (e.g., Duncan & Humphreys, 1989; Humphreys et al., 1989). When the
distractors are more or less homogenous, a kind of spreading suppression
causes them to interfere less with the target’s salience, as if the homogenous
distractors were being grouped and rejected in one fell swoop (Humphreys &
Müller, 1993). Normalized recurrence implements this spreading suppression
as a natural result of the representations in any one feature vector being forced
to share a probability density function.

The Search Surface

Together, simulations 2 and 3 demonstrate the interplay between target-
distractor similarity and distractor-distractor similarity. Whereas greater 
target-distractor similarity makes visual search less efficient, greater distractor-
distractor similarity makes it more efficient. In fact, Duncan and Humphreys
(1989; see also Duncan, 1989) suggested exactly this relationship between
these two types of similarity, and they even sketched a three-dimensional sur-
face plot of how these two similarity measures might affect response time by
set size slopes. Figure 8.17A shows a re-creation of their hypothesized search
surface, whereby greater degrees of just target-distractor similarity or of just
distractor-distractor dissimilarity do not especially increase response time by
set size slopes, but greater degrees of both do produce significant increases in
slopes.

By conducting further simulations like those in the previous sections, for
a total of 20 response time by set size slopes across the different similarity 
conditions, normalized recurrence can fill out the missing points in its own
version of this predicted search surface (figure 8.17B). In panel B, distractor
homogeneity (based on simulation 3) serves as a rough equivalent to Duncan
and Humphrey’s (1989) notion of distractor-distractor similarity in panel A.
For target-distractor similarity in panel B, “very low” refers to conditions
where both types of distractors share only one feature in common with the
target, and even then it’s not a perfect match of that feature (e.g., search for a
red vertical amid pink horizontals and green diagonals). Low target-distractor
similarity refers to conditions where one type of distractor shares one feature
perfectly with the target, and the other type shares only one partially match-
ing feature (e.g., search for a red vertical amid red horizontals and green diag-
onals). Standard target-distractor similarity is, of course, the usual case where
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each distractor shares exactly one feature perfectly with the target (e.g., search
for a red vertical amid red horizontals and green verticals). High target-
distractor similarity is when one type of distractor shares one feature perfectly
and one feature partially with the target, whereas the other type of distractor
is standard (e.g., search for a red vertical amid red diagonals and green verti-
cals). Finally, what I am calling very high target-distractor similarity refers to
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Figure 8.17. A: Theoretical search surface depicting effects of simi-
larity on response time by set size slopes (Duncan & Humphreys,
1989). B: Normalized recurrence's approximation of that search 
surface (see text for details).



an experimental condition rarely explored in the visual search literature,
where both types of distractors share one feature perfectly with the target and
one feature partially (e.g., search for a red vertical amid red diagonals and pink
verticals). As can be seen in figure 8.17A, Duncan and Humphreys hypothe-
sized that distractor-distractor similarity would have almost no effect when
target-distractor similarity is low, and would have its largest effect when 
target-distractor similarity is high. The simulation results in panel B generally
concur with this, but add that with very high target-distractor similarity
homogeneity of distractors should go back to having little effect.

Overall, the encouraging thing about this collection of simulations is that
despite this localist attractor network being frightfully simple, it elegantly and
intuitively handles the basic findings of visual search phenomena, as well as these
modulations of search efficiency caused by similarity manipulations. Without
adjusting any parameters—other than merely selecting 0.5 activation for similar
features—this high-level implementation of a biased competition kind of
process (Desimone & Duncan, 1995) naturally simulates a variety of visual
search phenomena. Importantly, for my purposes in this book, these simulations
permit a concrete visualization of what is meant by multiple representations
being simultaneously partially active and competing with one another over time
(figure 8.12) to produce a nonlinear trajectory in mental state space (which, in
laboratory tasks that require one response per trial, eventually settles into one
attractor basin).

What this little localist attractor network in its current incarnations does
not handle is spatiotopic effects, such as eccentricity and spatial grouping,
because the model does not have spatial proximity encoded. All objects, in all
the vectors, are essentially treated as equally near one another in these simula-
tions. Nonetheless, the general algorithm—as is—elegantly handles effects of
similarity, as just demonstrated, as well as search asymmetries (Treisman &
Gormican, 1988), triple conjunctions (Quinlan & Humphreys, 1987), and
search assistance (Olds et al., 2000a, 2000b, 2000c). A minor modification to
the algorithm allows it to simulate Spivey et al.’s (2001) linguistic modulation
of visual search efficiency (see Reali, Spivey, Tyler, & Terranova, in press). But
rather than continue to belabor this generic simulation of visual search
response times in further excruciating detail, perhaps this would be a good
time to bring this chapter to a close and try to sum up.

Visual Perception Is a Hungry Process

This chapter’s brief tour through a handful of selected observations in visual
processing highlights findings that are highly supportive of a general view of per-
ception, cognition, and action in which partially active mental representations
compete over time until one (or in some cases an amalgam of more than one)
wins the privilege to execute its associated motor output. The temporal conti-
nuity inherent in these representations changing over time is reminiscent of a
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number of well-known findings in cognitive psychology. For example,
Shepard and Metzler’s (1971) mental rotation findings, where the time it takes
to recognize a rotated object is linearly related to how far it would need to be
rotated to be in its upright orientation, is a paragon example of a smooth 
spatiotemporally contiguous alteration of some form of internal representa-
tion. Similarly, Kosslyn, Ball, and Reiser’s (1978) mental scanning experi-
ments, where the time taken to move one’s focus of attention in a mental
image from one location to another is metrically related to the relative dis-
tances being moved, hints at a general observation that real-time changes of
mental content involve continuous trajectories in state space, rather than dis-
crete instantaneous teleportations from one symbolic location in state space
to another.

Importantly, these trajectories through a visual-processing state space do
not merely consist of a string of previous locations and a current location.
They also tend to include a kind of anticipatory impetus for where in state
space they are likely to go next. For example, Freyd (1987) has argued that
representational transitions are more important than representational states
and has shown evidence for this in terms of what she calls “representational
momentum.” When a moving stimulus on a computer screen stops and the
screen goes blank, observers routinely report the last viewed location/position
of the stimulus as slightly beyond where it was actually last seen. It is as though
the visual system’s anticipation of what it will perceive next becomes part of
what it “thinks” it genuinely sees. Indeed, some vision researchers have pro-
posed that feedback projections in cortex may be responsible for anticipatory
perception (e.g., Kosslyn, 1994; Rao & Ballard, 1999; Thomas, 1999; see also
Neisser, 1976) and that it may solve a number of computational problems in
perceptual learning (Poggio et al., 2004; Jordan & Rumelhart, 1992; see also
Elman, 1991; Sutton & Barto, 1981). The point here is that whether the visual
system is adjusting its receptive fields in anticipation of an upcoming eye
movement, recognizing a face, deciding on what oculomotor signal to send to
the eye muscles, or searching among a cluttered array for a target object, the
population code corresponding to the representation that will be the winner
of the competition—and thus get to drive behavior (or even just constitute an
internal monolog)—spends a considerable amount of time approaching that
status and rather little time enjoying it. The perceptual-cognitive system is
better described by how it gets to various places in state space, rather than by
where those places are.

The emphasis on winning the privilege to drive behavior underscores an
important distinction between two often opposing traditions in visual science:
representation-based and action-based approaches to visual perception. A great
deal of cognitive psychology and visual psychophysics has focused, perhaps too
much, on what neural computations are involved in converting an image on the
retina into an internal interpretation of the visual scene (e.g., Biederman, 2000;
Edelman & Intrator, 2003; Hummel, 2003; Marr, 1982; Treisman, 1996). This
tradition has often treated the purpose of vision as though it were solely to
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perform this conversion of a two-dimensional retinal image into a three-
dimensional mental model. The job of converting the mind’s percepts into the
mind’s selected motor outputs is treated as though it should be handled by a
separate field. Even disregarding the recursive homunculus problems that
such an approach may invite (i.e., how does the little man inside the head, in
between perception and action, make sense out of that reconstructed internal-
ized mental model of the world?), it seems clear that the millions of years of
natural selection that shaped the mammalian visual apparatus never really
cared a whit about internalized mental models. Natural selection cares about
behavioral results, not the fidelity of internalized renditions of scenes. Therefore,
although internal mental models certainly may exist in some form as a useful
means to an end, they surely are not the purpose of vision. When our proverbial
caveman ancestor detected an alligator in the reeds, it wasn’t just impressive
“shape from shading” (e.g., Atick, Griffin, & Redlich, 1996; Kingdom, 2003;
Ramachandran, 1988) that allowed him to make it home alive to make more
babies with his cavewife. Fancy internal representation would merely allow him
to think, “Oh, I recognize that animal. That’s the bastard who ate my brother.”
It was mapping those visual processes onto the right motor output, that is,
running, that allowed him to further propagate his genes that night.8

Action-based approaches to vision and visual attention (e.g., Allport,
1989; Gibson, 1979; Hommel et al., 2001; Müsseler, van der Heijden, & Kerzel,
2004; O’Regan & Noë, 2001; Tucker & Ellis, 1998; Turvey & Carello, 1986; van
der Heijden, 1996a, 1996b; see also Milner & Goodale, 1995) don’t stop with
some fancy “internal representation.” That’s only half the job. (Or, by some
accounts, not even part of the job at all.) A general overarching version of the
arguments put forward by these various perspectives is that the recognition of
an object is crucially connected to the activation of potential motor patterns
defining how the organism might interact with that object—not how it might
sit back and appreciate the object’s contours, surfaces, textures, and colors.
Gibson called these potential motor patterns “affordances.”

More recently, Ellis and Tucker (2000) have been developing the concept
of micro-affordances as physical properties of liftable objects that afford
motor interaction by the human body, especially handles. In their examina-
tion of the role of micro-affordances during object perception, they have
shown that reaction times for simple perceptual judgments about whether 
the object is right-side up or upside down are subtly affected by whether the
object’s handle is on the left or right side (from the perspective of the
observer) and whether the left or right hand is executing the button-press
response (Tucker & Ellis, 1998). Their claim is that because part of recogniz-
ing an object (even a computer-screen image of an object that one obviously
couldn’t really physically manipulate with one’s hands) involves partial activa-
tion of the motor actions one might execute to interact with it, for example,
grasping its handle with the hand on the appropriate side, even just the pressing
of a response button is slightly facilitated when that hand is the one that
would have been involved in taking advantage of that micro-affordance.
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In fact, Shepard & Metzler’s (1971) mental rotation results are recapitu-
lated in a motor version of the task, where populations of neurons that act as
distributed representations of hand movements in particular directions exhibit
the gradual continuous transition from biasing one movement direction to
eventually biasing (and executing) another movement direction, during the
time course of the mental rotation (Georgopoulos et al., 1989). Even relatively
static internally generated mental images, which are known to activate some of
the same visual cortical areas used for perception of afferent visual input
(Kosslyn & Thompson, 2003), appear to elicit eye movements (around a blank
screen) that are similar to those elicited by viewing that actual image (Brandt &
Stark, 1997; see also Demarais & Cohen, 1998; Laeng & Teodorescu, 2002;
Spivey & Geng, 2001)—as Donald Hebb (1968) predicted long ago.

A similar prominence for the role of motor processing in perception is
seen in research related to mirror neurons (e.g., Meltzoff & Prinz, 2002;
Stamenov & Gallese, 2002; see also Knoblich et al., 2005). Mirror neurons are
cells in the precentral region of motor cortex (area F5) that respond equally to
the animal executing a particular motor action and to perceiving another ani-
mal producing the same motor action. Interestingly, this “action-execution-
observation matching system” (Avikainen, Kulomaki, & Hari, 1999) appears
to be selective to biologically plausible actions. For example, Stevens and col-
leagues (2000) presented participants with apparent motion displays of arm
movement, flashed at rates that make the motion either biologically plausible
or not, and fMRI scans revealed motor and parietal cortices to be active only
during the perception of biologically plausible arm motion. Thus, one could
argue that part of visually recognizing another’s actions involves some degree
of internally simulating one’s own (successful) execution of those same actions.

There is an anticipatory quality here to the way imagined action seems to
accompany visual perception in so many circumstances. It looks as though an
important part of how we visually recognize other people’s actions is to
induce partial activation of the motor representations that we might use to
imitate those actions. Similarly, an important part of how we visually recog-
nize objects is to induce partial activation of the motor actions we might exe-
cute to interact with that object. That is, a crucial component of visually
recognizing an object involves partially activating neural patterns for how
one’s effectors (e.g., arms, legs, speech apparatus, even eyes) might manipulate
it. It’s a bit like a forward model of perceptual-motor performance (e.g.,
Jordan & Rumelhart, 1992; Kawato, 1996; see chapter 9) that’s in self-train
mode all the time (Dayan et al., 1995).

If we think of visual perception as a continuous trajectory through a
high-dimensional state space, then each freeze-frame of a visual mental state
is best characterized not only by a particular location in that state space and
perhaps some residual activation of the immediately previous locations, but
also by some kind of momentum vector describing the general direction it
wants to go next. Where in state space the trajectory actually winds up going
will be determined by a combination of forces brought on by actual afferent
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sensory inputs as well as forces brought on by expectations of sensory inputs
and of potential motor outputs. Based on findings like those discussed in this
chapter, visual perception—much like language comprehension (chapter 7)—
looks like a dynamical system that opportunistically takes the information it
needs and integrates it promiscuously, rather than being a computational
device that passively receives information and processes it in a feedforward
linear systems manner. With the help of anticipatory feedback processes,
visual perception continuously pursues its interpretations rather than waiting
to be given them. And thus, I like to call it a hungry process.
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9

Temporal Dynamics in Action

But the point which needs to be understood (as it is well
understood by Piaget) is that the importance of the body is in the
genesis of intelligence and not in its eventual practice. . . . By the
time he is an adult, a person’s intelligence depends on him
possessing a body only in the obvious sense that his body contains
the mechanisms in which intelligence is realized and provides the
means for perception, locomotion, etc. To claim otherwise is to
suggest that a person who is paralyzed has lost his intelligence!
—Zenon Pylyshyn

Where Can a Cognitive Psychologist
Get a Little Action Around Here?

To be sure, the hypothesized role of one’s physical embodiment in cognition is
not so extreme that embodiment theorists would be forced to conclude, as
Pylyshyn (1974, p. 69) taunted, that a paralyzed person would no longer have
a mind. But it is perhaps reasonable to suspect that some very basic bodily
constraints do influence how we perceive and conceptualize our worlds. For
example, a very tall person who is accustomed to having to duck through
doorways certainly must have slightly different perceptual-motor routines for
indoor navigation than people of average height. Perhaps this alters the way
they distribute their visual attention as they locomote, as well as their concep-
tualization of 3D spatial layout and their use of affordances (Warren &
Whang, 1987; see also Bhalla & Proffitt, 1999). If the way that one’s body
interacts with the world can influence the way that one’s brain conceptualizes
the world (e.g., Barsalou, 1999; Brooks, 1995; Clark, 1997; Glenberg, 1997;
Varela, Thompson, & Rosch, 1992), then we should actually expect differently
abled body types and differently trained motor cortices to be accompanied 
by slightly differently functioning cognitive processes. Indeed, over the past
several years, Pylyshyn’s somewhat bold assertion has gradually been softened
into a quite reasonable empirical question.

Far from being the encapsulated caboose at the end of a linear feedforward
train of boxes going from perception to cognition to action, motor movement
does appear to play a powerful role in much of perception and cognition. For
example, the dorsal visual stream, including parietal cortex, appears to encode
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not just where objects are in the visual field but also how our hands and arms
might interact with those objects (e.g., Jacob & Jeannerod, 2003; Milner &
Goodale, 1995). In fact, the shape of a person’s hand while they manually
respond to visual images in an object categorization task affects their response
times as a function of the graspability of that object with that hand shape.
Tucker and Ellis (2001) had participants categorize visual images of objects as
natural or manufactured, either by squeezing a response handle with a full-
hand power grasp in one condition, or by pinching a response manipulandum
with thumb-and-forefinger precision grasp in the other condition. When 
people were responding to the natural/manufactured task with a power grasp,
larger objects (that afforded a power grasp for lifting) were categorized more
quickly. When they were responding with a precision grasp, smaller objects
(that afforded a precision grasp for lifting) were categorized more quickly.
Thus, far from computing amodal symbolic representations of taxonomic
class inclusion, the way traditional artificial intelligence would do for such a
task, the process of cognitively determining the category membership of these
objects was recruiting current manual grasping parameters and their match or
mismatch to the affordances of that object to carry out the categorization task.
(See also Wohlschläger & Wohlschläger, 1998, for related findings with mental
rotation and hand movement.)

As mentioned briefly in the previous chapter, mirror neurons in cortical
area F5 become relevant to this discussion, as these cells appear to represent
both the production and the perception of particular motor actions (Decety &
Grèzes, 1999; Gallese et al., 1996). The idea of a common code for the percep-
tion and production of actions has a history in ideomotor theory (Greenwald,
1970), in the motor theory of speech (Liberman & Mattingly, 1985; Liberman &
Whalen, 2000), and the theory of event coding (Hommel et al., 2001). In this
general framework, an important component of recognizing someone else’s
actions or utterances is knowing how one would produce those actions or
utterances oneself. Likewise, an important component of knowing how to pro-
duce the motor output one intends to produce is knowing what tactile feed-
back one’s effectors/limbs should receive during the action, what one’s limbs
should look like when successfully producing that action, as well as what end-
result changes to one’s environmental layout should be perceivable after the
action has been successfully completed. In such an arrangement, where sensory
and motor processes are so closely interwoven, the cognitive middle man gets
sandwiched so tightly that he no longer functions like the meat between two
slices of bread but more like a thin cheese spread that soaks into both sides.

As an example of the role played by the body in perceptual-cognitive
judgments, when anticipating where a thrown object might land, we naturally
recruit our own body schema and motor kinematics to construct the percep-
tual simulation. Knoblich and Flach (2001; see also Repp & Knoblich, 2004,
for related findings with pianists) had participants throw darts at a dartboard
and later showed them video clips of themselves and others throwing these darts
(from a side view perspective). Without being allowed to see the trajectory of
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the dart itself, only the dynamics of the arm movement (and in some condi-
tions the body as well), participants were asked to predict whether each
thrown dart would land in the upper third, middle, or lower third of the dart-
board. Participants were reliably better at making these predictions when they
were watching video clips of themselves than when they were watching video
clips of others. Thus, even though these participants had never before watched
themselves (from a third-person perspective) throw darts, their perceptual
anticipation of action effects (such as where the dart would land) was more
accurate when the observed movement had been produced by the same 
system now performing the perceptual simulation.

The importance of one’s own sensory-motor routines for judgments
about observed motor movements becomes especially relevant for the chal-
lenge delivered by Pylyshyn that began this chapter. Consider the cases of two
individuals whose somatosensory input across the entire surface of the body
(except the head) has been eliminated due to a degenerative neural disease
when they were young. They are the only two such patients in the world. These
gentlemen can walk, very slowly and carefully, purely due to the fact that they
can watch when each foot lands and looks stable, and then can command the
next leg to step and find stable footing. They get no tactile or proprioceptive
feedback from their limbs as to whether the foot is evenly supported, whether
the weight that is being put on it is evenly balanced, or whether their fingers
have adequately grasped a drinking glass before lifting it. They must rely
entirely on visual feedback to tell them these things. Here are two persons
whose somatosensory-motor feedback loops have been inactive for many
years. Does this significant limitation in their degree of embodiment impair
their ability to make cognitive judgments (or construct perceptual simula-
tions) regarding someone else interacting physically with their environment?

Bosbach and colleagues (2005) gave these two patients the task of watch-
ing an actor lift a box and judging whether the box is heavy or light depending
on the actor’s posture and limb dynamics. For this simple task, these two 
deafferented patients did as well as nonimpaired control participants. But what
about when the actor occasionally lifted the box in a manner suggesting that he
had been deceived as to the weight of the box? We all know what it’s like to lift
a juice carton that is emptier than we thought or more full than we thought.
Are the postural and limb dynamics in such a case readily perceivable by an
observer? Well, control participants were quite good at this task. And if you side
with Pylyshyn in his quote, you might expect a low-level sensory deficit, such
as that experienced by these two deafferented patients, to have little effect on
such a high-level cognitive task as guessing whether someone has been
deceived. Bosbach et al. found that these two patients performed far worse on
this task than the control participants. Thus, it would appear that one’s own
perceptual-motor routines do indeed play a significant role in cognitively 
simulating the mental state of someone else interacting with their environment.

In fact, far subtler deviations in sensory-motor experience can influence
people’s cognitive processes while viewing other peoples’ motor movements
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(Calvo-Merino et al., 2005; see also Hamilton, Wolpert, & Frith, 2004). When
ballet dancers watch other ballet dancers, or when capoeira dancers watch
other capoeira dancers, they exhibit activation in the mirror neuron region.
Thus, while simply watching the dancers, they seem to be generating their
own motor simulations of the movements being carried out. However, when
ballet dancers watch capoeira, or when capoeira dancers watch ballet, this
mirror system is not active. And this is not due solely to amount of visual
exposure. Female ballet dancers, who are of course visually exposed to a great
deal of male ballet movements but do not include many of them in their own
movement repertoire, also do not show activation of the mirror system when
watching male ballet dancers (Calvo-Merino et al., 2005).

Even relatively high-level linguistic and conceptual representations
appear to be deeply rooted in perceptual-motor components (e.g., Barsalou,
2002; Mandler, 1992; Zwaan et al., 2004). For example, activation of motor
cortex can result from even just hearing an action verb (Hauk & Pulvermüller,
2004; Pulvermüller, 1999; Tettamanti et al., 2005) or looking at a tool (Chao &
Martin, 2000). When children are applying learned names to novel objects,
they use the (vertical or horizontal) spatial orientation of their motoric inter-
action with the original object to guide their generalization for the new object
(Smith, 2005). Thus, they appear to associate a vertical or horizontal extent 
to the object’s identity (see also Richardson et al., 2003). Notably, this only
works when the child herself moves the object in the specified orientation,
not when she merely observes the experimenter moving the object in that 
orientation.

In fact, even the comprehension of a sentence about movement can be
affected by the direction of the motoric response being used. Glenberg and
Kaschak (2002) had participants push or pull a lever to respond to sentences
that described away-from-self or toward-self events, and they found a reliable
stimulus-response compatibility effect such that participants were faster to
push (and slower to pull) the lever in response to sentences about away-
from-self events and faster to pull (and slower to push) the lever in response
to sentences about toward-self events. Perhaps not surprisingly—given the
flexibility afforded by the mirror system—the representation of self, with
respect to push and pull responses, can even be dislodged from the body and
simulated as elsewhere (by presenting the participant’s own name on the com-
puter screen) to induce a spatial stimulus-response compatibility effect that
treats the external location as though it were the self (Markman & Brendl,
2005). Evidently, the spatial effects of sensorimotor processes in cognitive
tasks may at times be mediated by higher level conceptual representations of
the sensorimotor relationships and not necessarily solely by the original raw
sensorimotor activation patterns themselves (see Boroditzky & Ramscar, 2002).
Thus, rather than eliminating higher level conceptual representations altogether,
the proper goal of embodiment theories is perhaps better described as empha-
sizing the continuous spatiotemporal and sensorimotor character of these
higher level conceptual representations.

240 The Continuity of Mind



Any one of these findings on its own could easily be accommodated by a
traditional information-processing account of cognition in which a vestigial,
largely epiphenomenal connection is hypothesized between the relevant
amodal cognitive symbol and the motor process involved in the experimental
task. This growing collection of findings together, however, would require so
many post hoc vestigial connections as to make this amodal symbolic model
of cognition positively unwieldy, if not downright scientifically irresponsible.
The vestigial connections would end up doing more work in accounting 
for the human data than the core symbolic model would. In contrast, a theory
of cognition in which embodied cognitive representations emerge from 
perceptual-motor interactions (e.g., Barsalou, 1999; Glenberg, 1997; Hommel
et al., 2001; Mandler, 1992) naturally predicts these kinds of findings already.

Given even just this brief sampling of the accumulating evidence for
actions, prepared actions, and simulated actions exhibiting significant influ-
ences on our real-time cognitive processing, it seems incumbent on all cogni-
tive scientists to begin paying some attention to how motor movement works
in general and on the constraints that the body’s physical and motoric embod-
iment place on how our minds function (see Ballard et al., 1997; Seitz, 2000).
Although a significant portion of traditional cognitive science has chosen to
turn a blind eye to the research going on in motor movement, this voluntary
ignorance is now giving way to genuine curiosity in the possible broad gener-
ality of the theoretical developments taking place in that field. There was a
time when a cognitive psychologist who recorded reaction times, verbal pro-
tocols, or card-sorting results could get away with saying things like, “I’m not
measuring motor output, I’m measuring cognition.” As if pressing a button
for a reaction time, speaking aloud about one’s intuitions, or sorting cards
into groups did not necessarily involve motor output.

The majority of the experimental methodologies in cognitive psychology
actually involve recording motor output and inferring the internal representa-
tions that may have led to that motor output. However, many cognitive psychol-
ogists have become so inured to those inferences that they take them for granted
and slip into a mindset of blindly assuming that their measures somehow
directly tap cognitive processes in a way that could not possibly be influenced 
by properties of the motor system. As more evidence accrues for embodied 
perceptual-motor routines determining much of cognition, the time of ignor-
ing motor action because one is “a cognitive psychologist” is rapidly fading.

Dynamical Systems Accounts of Motor Movement

When you open your door to embodied cognition, you have to be ready for
ecological psychology to come into your house as well. As you expand your
definition of “mental activity” beyond the brain to include the rest of the
body, you find yourself on a very slippery slope that takes you right to includ-
ing the body’s inextricable biomechanical interaction with the environment as
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part and parcel to your definition of mental activity. Motor movement
research is perhaps the strongest place where dynamical approaches to the
mind and the ecological framework in psychology have been cooperating
rather healthily for the past 20 years. This is a vast field and, in hopes to pique
rather than sate the interest of the cognitive psychologist, I only scratch the
surface here.

One of the more exciting aspects of specifically studying motor output is
that it tends to more readily avail itself to continuous measures, compared to
the typical experimental measures used in perception and cognition (see
chapter 3). Rather than simply acquiring one data point after presenting a
stimulus and eliciting a response, such as a reaction time or an accuracy eval-
uation at the end of a time-delimited perceptual-motor event, continuous
measures of motor output can reveal the ongoing properties of the continu-
ous perceptual-motor process. Postural sway, for example, is something that
we all do while standing or sitting upright. We usually don’t notice it, but it’s
always there. A number of scientists have capitalized on this natural continu-
ous motor output as a uniquely informative data emission from the dynami-
cal system that is body-and-mind. Researchers have documented how
fluctuating visual input rhythmically drives fluctuating postural sway in
adults (e.g., Warren, Kay, & Yilmaz, 1996) as well as in infants (e.g., Bertenthal,
Boker, & Xu, 2000), and how different visual tasks will modulate postural sway
in different ways (Stoffregen et al., 2000). Studies of the effects of propriocep-
tive input from oscillation of the surface on which the feet are standing reveal
distinct modes of compensatory sway that recruit their own degrees of free-
dom at different rates of oscillation (Ko, Challis, & Newell, 2001). Recurrence
analysis of postural sway over time indicates that anteroposterior sway and
mediolateral sway are independent (but mutually compensating) of one
another during a laser-pointing task (Balasubramaniam, Riley, & Turvey,
2000). An important lesson emerging from much of this work is that postural
control appears to be a blend of deterministic and stochastic processes (Riley,
Balasubramaniam, & Turvey, 1999) and that other perceptual-motor phe-
nomena may also be advantageously examined by utilizing the variability
inherent in behavior, rather than dismissing it as uninformative noise (see
Riley & Turvey, 2002; Van Orden, Holden, & Turvey, 2003).

The scientific elegance of this kind of work comes from the idea of apply-
ing concretely observable biomechanical principles to the examination of
perception-action loops (Bertenthal, 1990), without the need to infer unobserv-
able representational symbols that are putatively computed by a modular 
central executive. For example, Barac-Cikoja and Turvey (1991, 1993) gave
participants rods to rattle between two distant unseen and unheard blocks
and instructed them to estimate the size of the aperture between the blocks.
Take a minute to imagine doing this task. You can’t see the blocks, you can’t
hear the taps, and you don’t know how long the rod is or how far away the
blocks are. It’s a pretty hard task! When perceived size was plotted as a func-
tion of actual size, quite linear but nonoverlapping curves were observed for
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conditions with different distances and rod lengths. With short distances, per-
ceived aperture size was close to actual size, but with longer distances, its range
was substantially compacted. Thus, mapping actual size to perceived size is a
many-valued function not easily lending itself to a universal equation. However,
equation 9.1 proved to be a single-valued function that accounted for 98% of
the variance in the entire data set.

λ � sin(	/2) � [1 � (2a/b) � (a /p)] (9.1)

In equation 9.1, 	 is the angle through which the rod moves, a is the distance
from the fixed point of rotation (i.e., the wrist) to the rod’s center of mass, b is
the distance from the wrist to the rod’s point of contact, and p is the center of
percussion. Thus, taking into account the dynamical system of a few rod-and-
wrist dimensions, combined with the rod’s motion in space, turned out to be
sufficient to describe the range of accurate and inaccurate perceptions of
aperture size resulting from dynamic touch. And all this without needing to
calculate afferent somatosensory input or efferent muscle forces, and most
important, without needing to postulate perceptual inference mechanisms of
any kind. The simple mechanics of the arm-and-rod dynamical system can,
on their own, account for the perceptual phenomena.

The goal of discovering collective variables that can serve as single-valued
functions of behavior is also evident in the work of Kelso and colleagues on
interlimb rhythmic coordination (e.g., Haken, Kelso, & Bunz, 1985; Kelso,
1995; Kelso, Scholz, & Shöner, 1986). This work requires a shift of emphasis
from descriptions of state space, as I often use in this book, to descriptions of
phase space. Recall the logistic map, from chapter 4, where figures 4.4–7 each
depicted cyclic transitions in the state space (along the y-axis) as a function of
time (along the x-axis) for an individual run of the system. Figure 4.8, by con-
trast, depicted a value related to phase space (along the y-axis) as a function of
control space (along the x-axis) observed over many runs of the system. The
y-axis in figure 4.8 showed the regions of state space that get visited in a cyclic
fashion when the system’s control variable (�) is set such that the system’s
behavior is static, periodic, or quasi-periodic. Plotting the behavior of the sys-
tem that way, phase space as a function of a control parameter can sometimes
allow one to detect large structural patterns in the data more readily than sim-
ply looking at raw state space over time (as in figures 4.4–7).

In one of Kelso’s (1995) many interlimb rhythmic coordination experi-
ments, participants were instructed to rhythmically move their two index fin-
gers while keeping them straight and without moving the rest of the hands, in
antiphase with respect to one another (i.e., the first lumbricalis muscle on the
left hand must contract to pull the left index finger toward that hand’s palm,
and the first dorsal interosseus muscle on the right hand must pull the right
index finger away from that hand’s palm, and then they reverse simultane-
ously). This is done in time with a metronome. Thus enters the control param-
eter, center stage. When the metronome rate, 
c, is set at slow to moderate
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frequencies, participants are reasonably good at maintaining the antiphase
finger movement. However, when that coupling frequency reaches a critical
value, participants tend to slip into in-phase movement of their fingers (i.e.,
away from their respective palms at the same time, and then toward their
respective palms at the same time). Equation 9.2 describes an energy land-
scape, V, as a function of finger oscillation phase difference, �, with � � 0
being in-phase movement and � � �� being antiphase movement. Changes
in the coupling frequency, 
c, produce changes in the energy landscape result-
ing in different strengths of phase attractor basins.

V(�) � �
� – a cos(�) – b cos(2�) (9.2)

In equation 9.2, �
 is the difference in frequency between the two fingers/
oscillators, and a and b are coefficients that determine the stability of the
antiphase and in-phase attractors. As the coupling frequency, 
c, increases, the
ratio of b to a is made to decrease. Figure 9.1 shows this energy landscape with
coefficient a fixed at 1.0, and b being manipulated, because the b/a ratio is 
crucial. Also, �
 � 0, assuming that the two fingers/oscillators are matched in
frequency, thus making the energy landscape symmetric across its positive
and negative sides of �. In figure 9.1, as the value of b/a ratio is reduced, the
stability of the antiphase attractor basins are likewise reduced. The black cir-
cle indicates the state of the system, maintaining antiphase movement while 
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Figure 9.1. Phase space attractor manifolds for different param-
eter values of b in equation 9.1. The black ball stands for the
state of the oscillatory system, in antiphase until b drops to 0.25,
at which point the system gravitates to an in-phase pattern of
coordination dynamics.



b � 0.25. However, when b/a reaches 1/4, as in the bottom right panel of
figure 9.1, the antiphase energy wells vanish, and the system naturally gravi-
tates to the remaining in-phase energy well.

Think of the panels in figure 9.2 as representing time slices (t1, t2, t3)
of the system’s actual phase difference (the black circle’s position along the 
x-axis) immediately after the coupling frequency of the metronome, 
c, has
achieved a rate that no longer accommodates antiphase finger movement. The
point I want to make with figure 9.2, and why it differs slightly from other ren-
ditions of the same phenomena (Kelso, 1995), is that although the switch from
antiphase to in-phase is relatively sudden, it is not instantaneous. In traveling
from one attractor in phase space to another, the system must at least briefly
instantiate versions of itself that do not easily fall into the prespecified cate-
gories. The somewhat abrupt but nonetheless continuous trajectory in phase
space that takes the system from one stable phasic pattern to another reveals
the kind of ineffable blending of multiple identifiable states that is so ubiqui-
tous to perception, action, and cognition—and yet so fundamentally ignored
by most of cognitive science. (This is not unlike the regions of unstable
chaotic behavior exhibited by the logistic map in between the regions of sta-
ble periodic behavior; see figure 4.8 in chapter 4). It is the small but nonzero
amount of time spent in between energy wells in a phase space such as this—
not quite adhering to one limit cycle or any other—that makes discrete logical
symbolic accounts of mind and behavior so transparently and problematically
oversimplified.

Dynamical Coordination Beyond One’s Body

Kelso’s (1995) beloved limb oscillation task can even be extended to show
coordination dynamics taking place between organisms (Schmidt, Carello, &
Turvey, 1990) in much the same way that it takes place between areas of a sin-
gle brain (Bressler & Kelso, 2001). For example, following Kelso’s numerous

Temporal Dynamics in Action 245

Figure 9.2. When the system in figure 9.1 carries out its switch from
antiphase coordination to in-phase coordination, fine-grain time steps
could, in principle, reveal a continuous transition in which the system
spends some brief portion of time in phase relationships that are some-
where in between antiphase and in-phase.



demonstrations of an involuntary phase change in limb coordination tasks
(from antiphase flexion to in-phase flexion), Schmidt et al. (1990) demon-
strated that the same involuntary phase change occurs when two different
people carry out the two-limb coordination (i.e., one limb from each person)—
as long as they can see each other’s movements, of course. I regularly conduct
this demonstration in my Introduction to Cognitive Science course, with two
students recruited on the spot to come up on stage and perform the limb
oscillation task in front of the other 300� students, and it works every time.
Two students sit next to each other on a table with their legs dangling. They
tuck their inside legs under the table and swing their outside legs (e.g., left per-
son’s left leg and right person’s right leg) left and right, pivoting from the knee,
both leftward and then both rightward in antiphase motion. As my faux
metronome tapping increases in rate, they invariably slip into in-phase
motion, with both legs moving toward each other and then away from each
other in synchrony. Thus, the same control parameter appears to have the
same effects on the phase space manifold that describes the coordinated
behavior, regardless of whether that phase space is devoted to one person or
spanning the behavior of two people. It kind of makes you wonder whether
the theoretical purview of psychology should really be “the brain in the con-
text of its inputs and outputs,” or perhaps instead “behavior in the context of
other behavers and environmental constraints” (see chapter 11).

Another form of coordination of actions shows up in the Simon effect,
where the compatibility between stimulus and response can produce inter-
ference and enhancement effects—as revealed by slowed or speeded reaction
times. For example, let’s say your right hand is supposed to press a button for
a green stimulus and your left hand is supposed to press a different button for
a red stimulus, but some of the colored stimuli happen to be shaped as arrows
pointing left or right. The direction of the arrow is irrelevant to your task, but
it nonetheless affects your reaction time. If a green arrow is pointing right,
then your right hand’s correct response is faster than the control condition,
and if a green arrow is pointing left, then your right hand’s correct response is
slower than the control condition (e.g., Kornblum, Hasbroucq, & Osman,
1990; Simon, 1990). If you change this two-choice condition to a “go–no go”
condition, where you only have to care about green stimuli and pressing the
right button when green is presented and not pressing it when a different
color is presented, you no longer see the compatibility effect. But what if one
person is controlling the right button (for green stimuli) and another person,
sitting to their left, is controlling the left button (for red stimuli)? In this
group-based go–no go condition, the compatibility effect, where an irrelevant
spatial dimension influences reaction time, comes back (Sebanz, Knoblich, &
Prinz, 2003; Sebanz et al., 2006). That is, when the right-side person responds
to a green stimulus, they are slower if the stimulus points toward the left side
than if its direction is neutral—but only when there is an actual person next
to them whose job is to work that left button! Somehow, the fact that there is
another person there taking care of the alternative action produces some form

246 The Continuity of Mind



of response competition that slows reaction time in a fashion similar to what
happens within a person.

Now let’s look at a task that requires even closer time locking of coordina-
tion and anticipation of a partner’s actions. Knoblich and Jordan (2003) gave
participants a dot-tracking task in which the objective was to keep a circle
encompassing a dot that moved from left to right and back again several times
across the computer screen. The circle’s movement was controlled by one but-
ton that incremented leftward velocity and another button that incremented
rightward velocity. The crucial manipulation was whether a single individual
controlled both buttons or whether two separate individuals each controlled
one button. After half an hour or so of this task, individuals and groups both
showed improvement in overall performance as well as in the use of anticipa-
tory braking (e.g., pressing the leftward velocity button as the rightward moving
dot and circle approached the right edge of the screen). Thus, an improvement
of action coordination was taking place not just across the two hands of an
individual but also across two individuals. Interestingly, in a condition where
the groups received distinctive auditory feedback for each partner’s button
presses, overall performance and anticipatory braking were eventually as good
across two people as in the single-individual condition. That is, the actions of
the two participants were sufficiently coupled that their performance in this
task was indistinguishable from that of a single individual.

Resonant dynamics between two people can emerge even when they are
not explicitly instructed to cooperate in a joint motor task. For example, when
two people are standing on their own postural sway plates and conversing with
one another on solving a puzzle, recurrence quantification analysis reveals that
the phase space of their sway patterns over time exhibits numerous regions of
cross-recurrence or resonance (Shockley, Santana, & Fowler, 2003). When the
same two people are separately conversing with different people, this cross-
recurrence in their sway is substantially reduced. Thus, a little bit like more
readily visible forms of implicit behavioral mimicry (such as leg crossing and
arm crossing, see Chartrand & Bargh, 1999; Lakin & Chartrand, 2003; see also
Meltzoff & Prinz, 2002), the recurrent postural sway patterns of two mutual
conversants appear to get entrained to one another.

Limb swinging, button pressing, and posture swaying are not the only
dynamic motor behaviors that get coupled as two people interact. Using a 
categorical adaptation of recurrence quantification analysis, Dale and Spivey
(2006) found that children and their caregivers exhibit cross-recurrence in
their lexical and syntactic word choices when they converse. Similar to syntac-
tic priming in language processing with adults (Balcetis & Dale, 2005; Bock,
1986; Branigan, Pickering, & Cleland, 2000; Pickering & Garrod, 2004), child
and caregiver seem to entrain one another’s language use within the minute-
by-minute time scale of a conversation. Extending that categorical adaptation
of recurrence quantification analysis to eye fixations of particular objects,
Richardson and Dale (2005) found that when a listener comprehends well a
story about six people he’s looking at, his eye movement sequences to those six
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faces exhibit substantial cross-recurrence with those of the speaker (who is
also looking at the same arrangement of six faces). And when a listener’s eye
movement patterns are exhibiting little cross-recurrence with those of the
speaker, that listener tends to do poorly on comprehension tests. Thus, the
degree to which two people’s eye movement patterns are entrained with one
another during a conversation about a particular visual array, on the second-
by-second time scale of several sentences, plays an important role in how well
they understand each other.

But people do not only get dynamically entrained to other people. On the
time scale of days, a person’s circadian rhythms get dynamically entrained to
the light (and feeding) patterns in their environment (Nakao et al., 2002). On
the time scale of hundreds of milliseconds, a person’s rhythm perception gets
dynamically entrained to the music in their environment (Large & Palmer,
2002; McAuley & Jones, 2003). Whenever oscillators get physically near each
other—be they pendulum clocks, fireflies, menstrual cycles, or even occupied
rocking chairs—they tend to naturally fall into synchrony and function as one
system (Strogatz, 2003; see also Goodman et al., 2005). People are no different.

Consider the unusual case of induced alien limb phenomenon or “the
rubber hand illusion.” When unseen tactile input to one’s hand (tapping and
stroking) is tightly correlated over time with the visual input of a rubber hand
being tapped and stroked in corresponding locations, the rubber hand can
become compellingly perceived as being a part of the person’s own body (e.g.,
Botvinick & Cohen, 1998; Ramachandran & Hirstein, 1998). Essentially, a key
manner by which the brain determines that an observed hand belongs to it 
is by recognizing synchrony in the patterns of sensory input over time from
different sensory systems (as well as correlations between planned actions and
those sensory inputs; see Wegner, Sparrow, & Winerman, 2004).

What I’m describing here is a form of embodiment that goes beyond the
body. To further demonstrate the flexibility of the neural representations used
for this kind of visual, tactile, and proprioceptive encoding of the body’s posture
and limb positions, Maravita and Iriki (2004) found that visual/somatosensory
receptive fields in the premotor cortex can extend the body schema beyond
the actual body itself to include handheld tools as though they were part of the
body. This extended body schema coding is a remarkably concrete manifestation
of the brain expanding its own definition of self to include inanimate objects in
the immediate environment. Thus, when Ramachandran (Ramachandran &
Blakeslee, 1998) waxes poetic about his sports car, feeling like it is “a part of
him,” he’s not just being metaphorical. When I’m shooting well at the pool
table and it feels like I am “at one” with the pool cue and the table and the balls
(that little microcosm of determinism), I’m not just being metaphorical.
There’s some neurophysiological verity to these impressions!

The incorporation of tools into one’s body schema introduces a profound
blurring of the line between embodiment (where the body’s sensors and effectors
help perform the processes of cognition; see Barsalou, 1999; Brooks, 1995) and
embeddedness (where the objects and spaces in the surrounding environment
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also help perform the processes of cognition; see Haugeland, 1995; Kirsh, 1995).
Sometimes manufactured objects, that are strictly speaking external to the body,
can become some of our body’s sensors and effectors (Clark, 2003). This is pre-
cisely why inviting embodiment into your theory of cognition naturally and
unavoidably brings along with it ecological psychology.

The lesson from these kinds of findings is that when any two physically
separate systems become dynamically coupled and function as one system,
smooth coordination resulting from action anticipation (as well as interference
resulting from irrelevant stimulus features that have dimensional overlap with
the available responses) can arise between the two subsystems. The growing
psychological research on joint action coordination and related areas is show-
ing that this coordination and interference can be functionally equivalent
regardless of whether the subsystems that determine the movements are
located within one person or are distributed across two persons—and even
when one of them is not a person at all.

Continuous Motor Dynamics Reveal
Continuous Mental Dynamics

Coordination dynamics, which typically involve rhythmic motor movements
and focus on the phase space (e.g., figure 9.1), are not the only kind of motoric
dynamics that can reveal continuity in the mind. State space dynamics of
motor movement can also be informative for understanding how cognition
can be advantageously described as a continuous trajectory through an attrac-
tor landscape. Recall from chapter 8 Gold and Shadlen’s (2000) amalgam of
two simultaneous saccade commands producing a kind of blend of those two
saccade directions in two-dimensional visual space. That work shows how the
continuous accumulation of information for a perceptual decision is not just
something that happens in some encapsulated cognitive system, which then,
once it’s settled on a unique selected response, shunts that single command to
the motor system for execution. This continuous flow of information from
perceptual subsystems to cognitive subsystems cascades into motor subsys-
tems as well (see Coles, Gratton, & Donchin, 1988; Miller, Riehle, & Requin,
1992; Shin & Rosenbaum, 2002). With feedforward and feedback projections
between these brain areas, motor subsystems are therefore participating in the
dynamic process of decision making just as much as perceptual and cognitive
subsystems are.

Coarticulation in speech production (and even in sign language finger
spelling; Jerde, Söchting, & Flanders, 2003) is another concrete example of a
kind of motor output that blends two incompatible motor commands.
Certain transitions between phonemes actually require the speech apparatus
to move from one configuration to a very different one more quickly than is
physically possible (or at least more quickly than that particular apparatus has
been calibrated for). As a result, the system compromises and produces
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phonemes that are strictly speaking poor examples of those phonemes, by
actuating the articulators in ways that put them slightly near where they need
to be for the previous phoneme or the next phoneme (or even farther). Thus,
if one imagined each idealized phoneme representation as being a graded
fuzzy basin of attraction in the state space of speech articulation parameters,
then producing a spoken word that had coarticulation of some of the phonemes
would be equivalent to following a trajectory in that space that traveled near
each appropriate attractor in the proper sequence (recall figure 7.18B). However,
the extent to which it missed each attractor would be in the directions of the
previous and/or next phoneme regions, thereby causing the assimilation of
some of the temporally neighboring phonemic features with each current
phoneme’s production.

Thus, although the outcome of an action often needs to be rather discrete
(e.g., your eyes need to eventually settle on the object of your goal, your
speech apparatus needs to utter something that is recognizable by your lis-
tener, your hammer needs to land on the nail with each swing), the dynamic
process of getting to that outcome can take a variety of forms. Hidden in that
variation are clues regarding the dynamic perceptual/cognitive processes that
are associated with that action. The manner in which the motor output is exe-
cuted on the way toward its endpoint—not the action outcome itself—is
where variability in the motor movement can reveal multifarious dynamic
patterns of cognitive representation.

Allow me to describe a simple concrete example. Coles and colleagues
(1985) gave participants two response handles (dynamometers) that recorded
the timing and force of the squeeze performed on them. One handle was to be
used for responding to one type of target stimulus, and the other handle was
for responding to another type of target stimulus. On some trials, the target
stimulus for, say, the left handle was surrounded by irrelevant stimuli that
actually corresponded to a right-handle response. On these trials, the left-
handle response was delayed (not surprisingly). However, what might be sur-
prising is that those trials also exhibited a significant graded increase in force
applied to the right handle, when compared to noncompetition control trials.
That is, the response competition typically purported to take place in those
kinds of trials did not appear to be something that was resolved in a cognitive
stage and then a single lateralized movement command was issued to the
motor system (albeit delayed due to the competition). Rather, the two alterna-
tive responses, squeezing left handle and squeezing right handle, were both
still partially active and competing even in motor areas of the brain (as sug-
gested by their event-related potential evidence), even in the electrical activity
in the participants’ arm muscles (as shown by their electromyography evi-
dence), and even in the actual force that was physically applied to the handles.

Not long after that, Abrams and Balota (1991) reported a study in which
they gave participants a lexical decision task (i.e., “is this a word or a non-
word?”) and had them respond with a leftward movement of a slide-bar for
nonword responses, and with a rightward movement for word responses.
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Higher frequency words elicited not only faster initiation of the right-hand
movement but also greater force and acceleration of the overall sliding move-
ment. (For in-depth discussion of the theoretical consequences of these kinds
of findings, see Balota & Abrams, 1995; Mattes, Ulrich, & Miller, 2002; and
Ulrich, Mattes, & Miller, 1999.) As pointed out in chapter 3, finding a point in
time where a response is initiated (such as a button-press reaction time or a
saccade latency) may be the most popular measure in cognitive psychology,
but it is only one of a handful of potentially interesting variables.

Consider the eye movement patterns elicited in the spoken word recogni-
tion tasks described in chapter 7. When instructed to pick up the candle, a
quarter of the trials actually revealed the listener looking first at a bag of candy
(because the initial acoustic-phonetic patterns for those two words share a
great deal in common) and then fixating the candle and reaching out to grasp
it. By averaging trials together, with discrete fixations of this or that object at
different periods of time, one can approximate the central tendencies of the
group data, and produce graded curves of the proportion of trials in which 
the candy and the candle were being fixated at each time slice during and after
the spoken word (figure 7.7).

Although the smooth curves are suggestive of a gradual accumulation of
activation and continuous competition between lexical alternatives, the fact
remains that the actual motor outputs from which those curves arise are
unambiguous ballistic saccades to the candy, or to the candle, or to one of the
other objects. If saccades weren’t so remarkably ballistic (see Doyle & Walker,
2001, for mild exceptions), then maybe one could detect a sizable curvature 
of the saccade in the direction of the candy even though the eye movement
didn’t actually stop until it landed on the candle. Evidence like that would
make a powerful case for the gradual fluctuation of simultaneously active 
lexical representations competing over time as a spoken word is being heard,
and for such competition leaking into the motor system even during the 
execution of the motor output.

As it turns out, such curvatures in movement trajectory, indicating com-
petition between two potential action targets, are in fact detectable in certain
reaching movements (Goodale et al., 1986; Tipper et al., 1997). If two reach-
ing targets have not quite been completely adjudicated among but the reach-
ing movement has already begun, the trajectory of the hand will show graded
attraction in the direction of the competing target before it finally turns and
stops at the chosen target. Now imagine how cool it would be if, in one of your
experiment-running software packages, you could simply click a box in a
menu window that would make it record the x and y coordinates of the mouse
while the participant moved the cursor to click on, say, the picture of the candy
or the picture of the candle. It would be like the poor man’s eye tracker. It would
be as though the experimental task was performing some dimensionality-
reduction statistic on the immense neural state space of the participant’s brain
and projecting his or her continuous mental trajectory onto a two-dimensional
rendition in which the external objects themselves were the attractors and the
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record of the mouse movement was an actual emission of the mental trajec-
tory (not unlike the two-dimensional state-space trajectories in figures 3.4,
4.14, and 6.3).

PsyScope (Cohen et al., 1993) has exactly that box in one of its menu win-
dows.1 Spivey, Grosjean, and Knoblich (2005) clicked that box. We recorded
the streaming x, y coordinates of participants’ mouse movements while they
were instructed to click a start box at the bottom of the screen and then click
a candle or a candy at the top of the screen, or a candy versus a pickle (control
condition), or a pickle versus a picture, and so on. The continuous graded
deflection toward the cohort competitor object was strikingly evident in the
movement trajectories. Although skeletal movements tend to be initiated a
few hundred milliseconds after the relevant eye movement, the trade-off for
that loss in immediacy is that you now have 60 samples per second telling you
where the effector in question is located relative to the alternative objects—
instead of 3–4 samples per second when recording eye fixations and saccades.

Figure 9.3 shows the averaged trajectory for cohort-present trials and the
averaged trajectory for control (cohort-absent) trials. Participants did occa-
sionally click the wrong object—a bit like making an initial saccade to the
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Figure 9.3. The averaged computer mouse trajectory for cohort-
present trials (in open circles at every 10th normalized time step)
show significant deviation toward the cohort object (a pickle in this
case) when instructed to click the picture. In conditions where a con-
trol object (such as a candle) replaced the pickle, there was less curva-
ture in the mouse movement (filled circles at every 10th normalized
time step). (Reprinted from Spivey, Grosjean, & Knoblich, 2005.)



wrong object—but those trials were excluded from these data. Only trials in
which the participant clicked the correct object were included in these aver-
aged trajectories. Yet the cohort-present averaged trajectory for these right-
target trials shows a statistically significant leftward deflection along the
x-axis, compared to the control trajectory, for more than 80% of its duration.
Thus it appears that as the arm and hand were executing the movement to
have the computer mouse cursor settle on the picture, as instructed, the
acoustic-phonetic similarity between picture and pickle caused the movement
trajectory to travel partly in the direction of the pickle. (One concern might be
that because the movement instruction was delivered auditorily, participants
may have actually just been strategically moving straight upward until they
heard enough of the instruction to start turning left or right. Such an account
would conflict with our claim that two language-related attractors were
simultaneously “pulling” the motor movement in their respective directions.
However, the same kinds of effects are seen with instantaneous presentation of
the stimulus that initiates movement. Dale, Kehoe, and Spivey [in press] show
similar trajectory curvatures with taxonomic classification of typical and
atypical animals when a picture or the written name of the animal is pre-
sented). This new methodology provides a compelling visual record of the
spatial and temporal continuity with which attractor landscape effects can
seep from the domain of cognitively competing representations to a concomi-
tant motor command.

Action Is a Hungry Process

The mind is not a sequence of computational processors that each patiently
await their next input. It is not merely a series of static filters through which
the environmental stimulation passes, with some informational properties
getting caught and staying while others continue through unnoticed. These
integrated subcomponents of mind, which too often get mistaken for such
static filters, are constantly proactively preparing for a particular set of antic-
ipated next inputs—not passively waiting for whatever the world decides to
give them. Motor subsystems are no different.

Indeed, it could very well be that motor action is the most obvious and
ubiquitous arena in which anticipation and prediction drive real-time pro-
cessing. We make motor predictions all the time. We predict perceptual-motor
routines in ourselves and in others. We anticipate the perceptual results of our
actions, of others’ actions, and even of gravity’s effects on objects. We even
predict other people’s intentions.

Forward models of perceptual-motor learning (e.g., Haruno, Wolpert, &
Kawato, 2001; Jordan & Rumelhart, 1992) rely on predictions like this. With a
forward model, a system that does not receive training or explicit instruction
in how to produce a particular action can nonetheless experiment with a 
variety of motor outputs, compare their perceived results with their expected
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results, estimate the inverse dynamics of its motor system, and thereby learn
how to control its motor output in a way that reliably produces the intended
action. Consider the game of darts. If your first-ever throw of the dart results
in piercing a hole in the wall just above the dartboard, you probably have lit-
tle understanding of exactly which muscle forces need to be altered to prevent
that from happening again. But you can certainly try producing a very differ-
ent pattern of muscle forces the next time and find out where the dart lands
then. Let’s say the dart pierces a hole in the wall just to the left of the dartboard
this time. Now if the desired result is to see the dart land in the bull’s eye, then
you already have three perceptual results in mind (one of which has only been
imagined so far), and two of them have known motor activation patterns asso-
ciated with them. And somewhere in the state space of your perceptual-motor
dynamics is a detectable degree of isomorphism between the two-dimensional
range of perceptual results and the high-dimensional range of muscle forces,
joint angles, and manual release times. Therefore, the two-dimensional trian-
gulation between the two observed dart landings and the third desired dart
landing can be mapped onto an estimated multidimensional triangulation
between those two stored movement patterns in the motor dynamics mani-
fold and a third candidate next movement pattern, whose predicted perceptual
result will be a bull’s eye. When that perceptual result is not a bull’s eye—and,
believe me, your third-ever dart throw will not be a bull’s eye—the difference
between where you expected the dart to land (given those motor parameters)
and where the dart actually landed (based on the perceptual parameters) can
once again give the learner some information for how to adjust the motor
parameters next time to get closer to the bull’s eye. Of course, the isomorphism
between the manifold of perceptual results and the manifold of motor out-
puts is a rather complex and nonlinear one in a very high-dimensional state
space. So it will probably take you more than three or four throws of the dart
to learn to reliably hit the bull’s eye.

As mentioned in other chapters, this kind of predictive processing can be
found in all kinds of discussions of learning. Even classical conditioning now
relies on a notion of the conditioned stimulus producing an expectation for
the unconditioned stimulus (e.g., Bouton, 2004; Rescorla & Wagner, 1972;
Tolman, 1937). After all, why else would forward conditioning be so broadly
successful (Pavlov’s bell preceding the food) while backward conditioning is
almost never effective (the food preceding the bell)? But even after learning
has become asymptotic in a subsystem, predictive processing is still widely
prevalent in its real-time processing. Anticipation is not only good for learn-
ing, it is good for coordination of one’s behaviors with the constraints of the
environment and the behaviors of other organisms in that environment.

Let’s look first at the time scale of tens of milliseconds. Take smooth pur-
suit eye movements, for example. These eye movements exhibit predictive vec-
tors based on expectations of where/when the foveated moving visual stimulus
is likely to go (e.g., Boman & Hotson, 1992; Fukushima, 2003; Kowler &
Steinman, 1979), thus they often lead the stimulus rather than follow it.
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Rhythmic finger-tapping tasks routinely elicit anticipatory taps that precede
the auditory signal by a few dozen milliseconds (e.g., Franek et al., 1987; Repp,
2003b). Finally, as mentioned earlier, anticipatory coarticulation during speech
production causes us to move our speech articulators in ways that are partially
consistent with the upcoming speech sounds and partially inconsistent with
the speech sound currently being produced. For example, we purse our lips
for the /u/ sound in choose before we even begin the /ch/. Compare it to chain.
You’ll find you don’t purse your lips as much for the /ch/ in that word. With
respect to the ubiquity of predictive processing, it is noteworthy that this kind
of anticipatory coarticulation appears to be far more prevalent than persever-
ative coarticulation (see Guenther, 1995; Katz et al., 1990; West, 1999), where
phonetic features of previous speech sounds linger into currently produced
speech sounds.

At a time scale of hundreds of milliseconds, one can observe infants 
making anticipatory saccadic eye movements to regions of space that they
expect will soon contain an attractive object (e.g., Haith & McCarty, 1990;
Richardson & Kirkham, 2004). A bit like the case with coarticulation, antici-
patory speech errors (e.g., saying “prupid president”) tend to outnumber 
perseverative speech errors (e.g., “stupid stesident”) by a ratio of nearly 3 : 1
(see Dell, Burger, & Svec, 1997; Garnham et al., 1981). Even piano playing
tends to show subtly different finger kinematics on the note preceding a
departure between two melodies (Engel, Flanders, & Söchting, 1997).

At the time scale of seconds, perceptual-motor anticipations can have con-
sequences for quite high-level cognitive phenomena. For example, Blakemore
and Frith (2003) review a wide variety of evidence indicating that accurate
predictions of sensory consequences of movement are used to identify actions
as self-generated, leading to a sense of self, whereas inaccurate or absent pre-
dictions suggest that the action was not self-generated.2 And of course, we all
have everyday experiences where we find ourselves anticipating another’s
intentions. Imagine you’re at a restaurant, the food has just arrived, someone
is still telling a long-winded story, and you notice one of your party hasn’t
started eating but is instead looking expectantly back and forth between the
speaker and a saltshaker that is out of their reach. You reach out, lift the salt-
shaker, and make eye contact with the person, and they smile and nod.
Prediction accomplished. We predictively simulate our own actions as well,
especially when mentally exploring possible ways to do something that we’ve
never done before. Even just preparing to slice a rare, oddly shaped vegetable
for the first time, you may grasp it with one hand, rest the knife edge along one
of its awkwardly curved axes, and imagine the result of carving from there.
Suddenly your internal physics simulation reveals your finger getting cut. You
find yourself wincing from the pain, even though the knife hasn’t actually
moved yet.

This quick sampling of examples from speech production, eye move-
ments, finger movements, and so on just serves to highlight the wide-ranging
importance of dynamic patterns of activity that lean forward in time, if you will.
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Successful actions depend on the organism’s ability to couple those move-
ments with the environment, and the environment is often dynamic itself, so
anticipating those changing environmental constraints is crucial. Therefore,
the dynamic interaction between our perceptual and motor areas of the brain,
as well as the dynamic interaction between our sensory and biomechanical
interfaces with the world, from which emerges this thing we call action, must
be a hungry process indeed.

In sum, just as real-time categorization, language, and vision appear to be
characterized by continuous trajectories in a state space (often with a kind of
future-minded momentum of their own), so is motor output well described by
a temporally dynamic change of state (and steady phase, for rhythmic move-
ments) that not only helps entrain different perceptual/cognitive processes
with one another toward the goal of driving coherent motor output but also
entrains the organism with its environment. Action representations play such
a powerful role in perception and cognition—as evinced by the embodied
cognition findings discussed at the beginning of this chapter, and as suggested
by the many bidirectional neural projections between motor and perceptual
areas—that they really and truly should not be conceived of as “the stuff that
happens after cognition.” Dynamic patterns of behavior and of neural activa-
tions in motor-related brain areas should be treated as contemporaries (in
every sense of the word) of perceptual and cognitive patterns: on the same
level, on the same playing field, in the same mind.
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10

Temporal Dynamics in Reasoning

Now, man actually finds in himself a power which distinguishes
him from all other things—and even from himself so far as he is
affected by objects. This power is reason. … Because of this, a
rational being must regard himself qua intelligence (and
accordingly not on the side of his lower faculties) as belonging to
the intelligible world, not to the sensible one.
—Immanuel Kant (translated by Seidler, 1986)

I am two with nature.
—Woody Allen

The Old Dualism

If the previous chapters have instilled in the reader some sense of appreciation
for cognition being composed of rather than separate from the “lower facul-
ties” of sensory and motor processing, then I hope Kant’s quote strikes the
reader as somewhat chilling. Kant’s argument is an appeal to one’s intuition—
and a compelling one to be sure—that one’s mind is separate from one’s body.
Despite the numerous experimental results described in the previous chapter,
documenting a fundamental role of the body’s action in cognition, it is
nonetheless tempting sometimes to feel as though our minds live in a kind 
of ivory tower inside our bodies. And a great deal of research in psychology
has treated high-level cognition, such as reasoning and problem solving, as
though it were carried out by just such an ivory tower, using discrete rules and
computations that are completely unrelated to and independent of the causal
processes that perform the functions of perception, action, and the rest of the
body. In fact, Kant suggested that the sensible world of sensation, perception,
and action, or Sinnenwelt, could perhaps be described with the natural laws of
biology, chemistry and physics, but the intelligible world, or Verstandeswelt,
functions via “laws, which being independent of nature, are not empirical but
have their ground in reason alone.” It is exactly this rationalist perspective that
encourages some cognitive scientists to adhere, even today, to an extreme
functionalist view of the mind (teetering on the edge of Cartesian dualism) in
which the mind somehow supervenes on the processes of brain and body
without actually being informatively described by them—because a mind
supposedly uses nonnomic representations whose relations to their referents
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are not dictated by natural laws (Dietrich & Markman, 2003; Fodor, 1986; see
also Epstein, 1993; Wallis, 1992). In fact, it has even been suggested that we
humans are innately predisposed to think about our selves in this dualistic
fashion of separating mind from body (Bloom, 2004).

A number of theorists criticize this lingering dualism—which permeates
cognitive science implicitly and sometimes explicitly—on the grounds that 
it imposes artificial boundaries between scientific disciplines, it ignores reams
of evidence for mental processes being understood via neural processes, and 
it flouts Occam’s razor (e.g., Churchland, 1989; Dennett, 1991; Kim, 1998;
Polger, 2004; Smart, 1959; Streeck, 2003). However, even among cognitive 
scientists who accept the materialist, antidualist view of mind, there is often a
search for a smaller form of dualism, one that may be equally deserving of the
same criticisms: the dualism of continuous perception and symbolic cogni-
tion. This putative distinction between certain parts of the mind that function
via some form of distributed analog computation and other parts of the mind
that function via some form of discrete digital computation has part of its
root structure in the history of artificial intelligence. The idea that reasoning
and complex thought are conducted via symbolic representations and logical
rules was given considerable cachet by a number of early successes that imple-
mented rule-and-symbol cognitive architectures. For example, conversation pro-
grams, such as Weizenbaum’s (1966) ELIZA and Winograd’s (1972) SHRDLU,
provided impressive demonstrations of artificial systems carrying out some-
what natural conversations with humans, at least about particular narrow 
topics. Automated theorem proving in symbolic logic helped cement the phys-
ical symbol systems hypothesis (Newell & Simon, 1976). Gigantic predicate
calculus databases made impressive attempts at representing commonsense
knowledge (Lenat, 1982). Myriad chess programs, such as that running on
IBM’s Deep Blue supercomputer, still use powerful decision-tree search algo-
rithms, augmented by hand-coded heuristics, to regularly beat chess experts.1

Early achievements like those convinced many researchers in the cogni-
tive sciences to believe that when people participate in naturalistic conversa-
tions, or reason about alternative chess moves, or solve problems in any
complex task, they are using computational modules with formal logical rules
and discrete representations, just like those inside the artificial intelligence
algorithms (see Newell, 1990, for a review). As a result, throughout the 1970s
and 1980s, theories of the human mind abounded with an encapsulated rule-
based module for just about every perceptual process and cognitive computa-
tion that anyone could think of (see chapter 5). However, in the 1990s, as
neuroscience and neural network theory began to accrue more compelling
evidence for recurrent feedback and interaction between neural subsystems
and for distributed representations inside them, work in artificial intelligence
similarly began to find its new successes with interactive subsystems instead of
independent modules (e.g., Ballard, 1997), with fuzzy logical representations
instead of discrete symbols (e.g., Kosko, 1993), with statistical contingencies
instead of formal logical rules (e.g., Charniak, 1993), and with ecological
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coordination between a CPU, its effectors and sensors, and its environment
(e.g., Brooks, 1999). Now with the symbolic reputation of artificial intelli-
gence rapidly fading, the question with respect to human cognition still man-
ages to linger nonetheless: Do the continuous interactive patterns of neural
activity in perceptual and motor areas of the brain need to be supplemented
with some form of internal discrete logical computation to produce complex
human reasoning?

This chapter will discuss several research areas in high-level cognition
where discrete symbolic representations have been proposed as necessary
accompaniments to continuous graded patterns of neural activity. In some of
these areas, symbolic rule-based systems are indeed still the best game in town
for describing human reasoning, but in others, continuous temporally
dynamic accounts of thought are producing intriguing results. Comparing
dynamical accounts versus symbolic accounts of general intelligence might be
like comparing apples versus oranges. Perhaps they are not compatible enough
for comparison. Unlike the cases for categorization, language, vision, and action
in the previous four chapters, the promise of a dynamical systems framework
adequately accommodating the bulk of the phenomena in high-level cogni-
tion is so far largely unfulfilled. It is not yet clear whether this is due to there
actually being some delineated separation somewhere in the brain between
perceptual-and-motor cortices that use graded partially overlapping popula-
tion codes and cognitive cortices that use rules and symbols, or whether this is
simply due to there still being comparatively little research on dynamical
accounts of problem solving and reasoning (but see, for example, Guastello,
1998; Hoffman, 1997; Read & Montoya, 1999; Roe, Townsend, & Busemeyer,
2001; Thagard, 1989; Van Overwalle & Van Rooy, 2001). What is clear is that
contrary to the attitude that I cop throughout most of this book, reasoning
and problem solving may very well be the one area of cognition where the
rule-and-symbol framework has not yet run its course, and some further 
useful advances may still be coming from this approach for a little longer.
Therefore, this chapter is as much a brief congratulatory recounting of a few
places where rule-and-symbol systems are still enjoying some supremacy as it
is a rough speculative battle plan of the places on which the dynamical ranks
will soon march.

Veja Du-alism All Over Again

Quite a few researchers have followed Kant (and William James and others) in
suggesting that the mind somehow encodes the contingencies in its environ-
ment via two completely different coexisting formats of representation:
graded statistical patterns and formal rules. Sloman (1996) compiled an excel-
lent review of evidence in favor of not just the coexistence of an associative
system and a rule-based system but also cases where mutually exclusive beliefs
were simultaneously held by experimental participants: one the result of the
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associative system and the other the result of the rule-based system (but see
Gigerenzer & Regier, 1996). Sloman also suggested that the two systems can
interact during learning and thus are not encapsulated from one another
(Ross, 1989; see also Mathews et al., 1989). However, the mechanistic account
of this kind of hybrid system is under considerable debate. It is not exactly clear
how neural circuitry can implement graded statistical processing for one situ-
ation and then turn around and implement formal logical rules for another.

In designing computational implementations of such hybrid systems, one
popular solution has been to build the associative part with a distributed neu-
ral network that has graded activations and connection strengths and build
the rule-based part with a localist network that has binary activations and
connection strengths (Erikson & Kruschke, 1998, 2002; Hummel & Holyoak,
2003; Sun, 2002; see also Hinton, 1991). In some of these models, a third 
gating network determines which part gets to exert its output for any given
problem instance (Erikson & Kruschke, 1998, 2002). Another way to imple-
ment this kind of dualism between (a) continuous activation or graded
salience of representations and (b) discrete rule-based operations that are per-
formed on those representations is to build a hybrid model that uses a pro-
duction system to posit and connect symbols, but these symbols sometimes
have simultaneously partially active mutually exclusive alternatives that are
quantitatively compared, or compete against each other, until one is discretely
selected (e.g., Anderson & Lebiere, 1998; Jurafsky, 1996; Stevenson, 1994).

In general, when two incompatible computational frameworks appear to
have mutually compensatory strengths and weakness, it is perhaps just a little
too easy to blithely combine the two types of mechanisms in your theory and
claim that the two somehow share the mind. For example, striking differences
between regular and irregular past tense verbs have compelled some researchers
to suggest that there may be one system in the brain devoted to the regular
verbs and a separate neural module devoted to the irregular verbs (e.g., Jaeger
et al., 1996; Marcus, 1995; Pinker, 1991; Pinker & Ullman, 2002). However, a
host of experiments and model simulations has been showing that rulelike
past tenses and irregular past tenses are probably processed by a single asso-
ciative system that is capable of simultaneously encoding strong regularities
amid weak statistical patterns (e.g., Joanisse, 2004; McClelland & Patterson,
2002; Plunkett & Juola, 1999; Plunkett & Marchman, 1993; Ramscar, 2002;
Rumelhart & McClelland, 1986b). Similar claims were made in favor of a
dual-route system for reading aloud (mapping orthography to phonology)
with regard to words that have rule-following pronunciations, such as 
mint, hint, and flint, versus irregularly pronounced words, such as pint (e.g.,
Coltheart, 2000; Rastle & Coltheart, 1999; Roberts et al., 2003). Just like the
case with past tense verbs, numerous experiments and model simulations
strongly suggest that this dissociation can be accommodated within one con-
nectionist system (e.g., Harm & Seidenberg, 2004; Jared, McRae, & Seidenberg,
1990; Plaut et al., 1996; Seidenberg & McClelland, 1989; Taraban & McClelland,
1987).
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Even higher level abstractions in mental activity, such as concepts, analo-
gies, and social cognition—which were traditionally described in terms of
discrete rules—have recently been accounted for by distributed dynamical
models. For example, Rogers and McClelland (2004) recount numerous sim-
ulations and tests of a connectionist model of conceptual representation that
fits experimental data from cognitive psychology, developmental psychology,
and even handles phenomena purported to only be accommodated by a rule-
based component (e.g., Carey, 1985; Keil, 1989; see also Gärdenfors, 2003).
And models of how people understand analogies have traditionally relied on
discrete symbols and rules (Hofstadter & Mitchell, 1994), distributed repre-
sentations combined by logical rules (Hummel & Holyoak, 2003), or symbolic
representations combined by graded constraint-satisfaction algorithms
(Holyoak & Thagard, 2002). However, considerable success has been achieved
with a model that uses continuous patterns of representation and processing
all the way down. Eliasmith and Thagard’s (2001) neural network, Drama,
combines distributed representation with graded mapping via holographic
reduced representations (see Borsellino & Poggio, 1973; Plate, 1994), which
are similar to tensor products (Smolensky, 1988b, 1995) but can limit 
themselves to a fixed number of dimensions.

Loss aversion in decision making, where people will make clearly sub-
optimal choices to avoid low-probability or low-value losses (Tversky &
Kahneman, 1991), is another example from complex cognition that has conven-
tionally been described via rules and heuristics rather than continuous distrib-
uted patterns. However, neural networks and dynamical systems simulations
have begun to provide a graded neurally plausible account of loss aversion (Roe,
Busemeyer, & Townsend, 2001; Usher & McClelland 2004; see also Busemeyer 
et al., 2005). Even cognitive dissonance, where conflict between mutually exclu-
sive beliefs is resolved by modifying the representation of one of the beliefs (e.g.,
Festinger 1957; Lepper, 1973; Steele, 1988), is being modeled with connectionist
neural networks (Shultz & Lepper, 1996; Van Overwalle & Jordens, 2002).

Another potential solution for accommodating the observation that
some cognitive phenomena seem to exhibit both continuous dynamics and
rulelike behavior is to design a model that has an early stage that uses graded
activations of competing localist representations which then feeds into a later
stage that uses binary activations of the winning representations and performs
logical operations on them (Anderson & Lebiere, 1998). Anderson’s ACT-R
framework is based on a long-standing tradition of treating perception as a
continuous processing system whose dynamics are closely linked to the acti-
vity of actual neural ensembles and cognition as a separate rule-governed sys-
tem whose binary computations are best described in an ideal form that is
abstracted from the actual neuronal dynamics. At the level of neural systems—
not their connectivity, ensembles, or dynamics—candidate cortical regions for
the computational subcomponents of ACT-R are already being identified
(Anderson et al., 2004). Thus, there are those would argue that after simulat-
ing some perceptual-cognitive phenomena with a collection of computational
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modules based on ideas of computing theory, we are now on the verge of
finding the components of the brain that correspond to those very same pos-
tulated computational subsystems.

The concept of taking graded neuronal dynamics and converting them
into discrete symbols is at the core of many debates in cognitive science,
between those accustomed to using the computer as a metaphor for the mind
and those who wish to use the brain as the mind’s primary reference point. This
putative dynamic-to-discrete conversion is hand-built in a variety of ways in
various models of cognition, but there may in fact be a useful mathematical
home for this general idea, called symbolic dynamics. Take ACT-R (Anderson &
Lebiere, 1998), for example. In its front end, it uses multiple partially active
symbols continuously competing with one another until one finally wins.
This early graded competition stage shares properties in common with the
normalized recurrence localist attractor network (Spivey & Tanenhaus, 1998;
Spivey et al., 2002a). Thus in this first stage of the system, ACT-R implements
something equivalent to a continuous trajectory in the state space where the
dimensions are the relevant competing symbols. When the state of the system
finally settles toward a corner of the space, a single symbol has won, and that
symbol is discretely emitted from the continuous system into a rule-based
production system for cognitive computations. This discretizing of the con-
tinuous trajectory in state space, into symbols to be used by a formal logical
process, implements something closely related to what complex systems scien-
tists call symbolic dynamics (see Crutchfield, 1994; Devaney, 2003; see also
chapter 4). Of the many possible futures of this long-standing debate between
symbolic and dynamic cognition, the mathematics of symbolic dynamics 
may very well be the only one that holds a consensual resolution. Until then,
continuous statistical systems (e.g., dynamical and network models) versus
discrete rule-based systems will continue to be the apples and oranges of cog-
nitive science, treated almost as if they cannot be adjudicated among.

From Apples and Oranges to Symbolic Dynamics

In the physical sciences, the times when consensually agreed-on progress has
been made in adjudicating between competing theories has usually been
when those theories (a) are applied to a common set of phenomena, and 
(b) employ a common format of explication (e.g., the same basic equation,
but with certain parameters present or absent). As most symbolic representa-
tionalists have essentially conceded that perception and action are handled by
graded partially overlapping distributed patterns of neural activation, the
common set of phenomena where the most fair contest will be able to take
place between symbolic and dynamic accounts of mind is high-level cognition.
As for the common format of explication, this may be a little trickier to recog-
nize and develop. Before getting to that, allow me to illustrate what I think is
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the key distinction between a symbolic framework of high-level cognition and
a dynamical account of the same.

For cases of complex reasoning and problem solving, it seems fair to
assume that no matter what theoretical framework you happen to advocate,
some form of discretization of the cognitive process will have to be imposed at
some point in the perception-action loop—if for no other reason than the
simple fact that we will need to use language to describe the phenomena to
one another. The question is whether that discretization happens only in
between the motor movement and its action effects on the environment or
also in between the neural processes of perception and action (Dietrich &
Markman, 2003). The continuity of mind thesis places this discretization only
in between the motor action itself and its effects on the problem-solving envi-
ronment. At the level of real-time perception and action, motor output can be
quite graded and continuous, but descriptions of the changes made to the
environment as a result of that motor output are often quite discrete. For
example, the arm’s actual movement trajectory when hammering a nail is
never perfectly repeated, but its effects on the environment can be well
described (for the purposes of building something out of wood) as either hit-
ting the nail or not. Similarly, your arm trajectory while reaching for a candle,
which happens to be near a bag of candy, can exhibit graded competition at
the time scale of dozens of milliseconds, but at the time scale of seconds, only
one object is actually grasped and lit aflame. Moving a bishop to a location on
the chessboard where it can threaten your opponent’s pawn, rather than to a
nearby location where it would have checked your opponent’s king, involves
some rather continuous and perhaps wavering arm movements and may even
have involved simultaneous conflicting partially active movement commands
in motor cortex. But at the level of description relevant for game play, one and
only one thing took place—and you probably should have put the king in
check instead.

For ease of understanding, figure 10.1 depicts idealized separations in the
perception-action loop that could be conceived of as dynamic or symbolic for
the two competing theoretical frameworks. Note that unlike real-time percep-
tion and action, in the case of reasoning and problem solving, the problem
space is typically presented to the human in a rather static and nondynamic
form. The only changes to the problem space come from actions, or imagined
actions, that the person carries out. And these changes typically move the state
of the problem to a new stationary location in that problem space. The prob-
lem itself often has little or no continuous temporal dynamics of its own. In
that sense, the presentation of the problem can be thought of as discrete, and
actions carried out on the problem can be thought of as discrete. However, the
question at hand is whether the person’s mind employs discrete symbolic 
representations during its real-time cognitive negotiation of the problem. The
continuity of mind thesis would have it that the brain and body’s real-time
processes never employ genuinely discrete symbolic representations, because
distributed populations of neurons and continuous muscle movements can’t
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quite do that. The only conversion of dynamic patterns into symbolic compo-
nents (figure 10.1A) happens when motor output exacts discrete observable
changes to the environment.2

The classical symbolic account (figure 10.1B), however, proposes that
there is also a system in the brain that converts dynamic patterns into discrete
symbolic internal representations (see Marcus, 2001). It is not entirely clear
how the symbolicists would have a cognitive area of the brain implement a
bona fide formal logical symbol, because neural activation patterns are never
static in time, but it could perhaps be conducted via individual “grandmother
cells” (see Lettvin, 1995; Rose, 1996) or via extremely reliable limit cycles in state
space that correspond to highly stable locations in phase space (Atmanspacher &
beim Graben, in press; Yamaguchi & Shimizu, 1994; see also Kuhn & Cruse,
2005; O’Brien & Opie, 1999a, for discussion of stable distributed representa-
tions). The neurophysiological evidence in motor movement research 
(e.g., Georgopoulos, 1995; Gold & Shadlen, 2000) requires this account to
then reconvert those symbols back into distributed dynamic patterns in the
motor cortices, as that is what is found there. Thus, the symbolic view of the
mind is like “a kind of sandwich in which [distributed] perception and action
hold a classical centre in place” (Hurley, 1998b, p. 4). Then, of course, those
dynamic motor commands are converted yet again—this time into actions
that at the time scale of reasoning and problem solving perform discrete
changes to the environment.
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Figure 10.1. At the time scale of reasoning and problem solving, where
changes in the environment might be conceived of as discrete, the conti-
nuity of mind thesis (A) still assumes dynamical cognitive processes,
whereas the symbolic framework (B) posits an intermediate mental
stage in which discrete symbols are operated on by logical rules.



Now that I’ve outlined a hopefully agreeable description of this pair of
minimally contrasting architectures, I can describe the “common format of
explication” that future research in high-level cognition might fruitfully use to
consensually adjudicate between theories that propose an internal symboliza-
tion of the brain’s continuous dynamics and theories that propose only an
external discretization of them. The mathematical arena of symbolic dynam-
ics (e.g., Crutchfield, 1994; Devaney, 2003; Goertzel, 1998; Shalizi & Albers,
2002; see also Cleeremans et al., 1989; Tabor, 2002; and chapter 4 for related
discussions) has exactly the ingredients for building systems that implement
continuous temporal dynamics in a high-dimensional state space (of per-
ception and of action), and can convert that continuous trajectory into an
emitted string of formal logical symbols for describing external action effects
in a problem-solving environment and perhaps also for describing internal
cognitive states.3

In the limit, symbolic dynamics actually shows us that the symbolic
account and the dynamical account can be perfectly compatible with one
another. It is known that a string of symbols emitted from a dynamical system
via generating partitions “yields approximately complete and precise descrip-
tions of the system” (beim Graben, 2004, p. 47). Generating partitions are
thresholds in the dynamical system’s state or phase space that can be defined
to arbitrary precision for identifying individual points in that space, such that
each unique trajectory corresponds to a unique resultant string of symbols.
Perfect placement of these generating partitions requires already knowing the
continuous map of the dynamical system in the first place, but there are statis-
tical methods for approximating these placements (e.g., Davidchack et al.,
2000; Kennel & Buhl, 2003). Properly placed generating partitions allow the
derived symbolic dynamics to be topologically equivalent to the original 
continuous dynamics (beim Graben, 2004; Kitchens, 1998; Shalizi & Albers,
2002). However, there is no general method for finding true generating parti-
tions, and they are notoriously difficult to find in dynamical systems of greater
than two dimensions (Kennel & Buhl, 2003), and they only work for deter-
ministic dynamical systems (Crutchfield & Packard, 1983). Therefore, much
of the practical applicability of symbolic dynamics may lie in iteratively
refined approximations of generating partitions, rather than true generating
partitions. For example, nongenerating partitions in symbolic dynamics have
been used for describing the phase space of bimanual rhythmic coordination
(Engbert et al., 1998) of heart rate variability (Kurths et al., 1995), and 
language processing (Andrews, 2001).

However, with even slightly misplaced partitions, the threshold-crossing
method for emitting symbol strings from continuous systems with non-
generating partitions can very easily introduce severe compounded misrepre-
sentations of the original continuous dynamics, that is, grammatical errors in
the symbol strings (Bollt et al., 2000, 2001). This means that the symbolic
account of high-level cognition (figure 10.1B) has to be ready for serious
errors to be brought in by the analog-to-digital conversions taking place—and
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not just those performance errors from motor dynamics being discretized
into action effects but also something akin to competence errors from the per-
ceptual dynamics being discretized into cognitive symbols. Ironically, it is the
dynamical account of high-level cognition (figure 10.1A), with its analog-
to-digital conversion taking place only at motor output, that can rightfully
describe its grammatical errors as due purely to performance parameters, not
competence.

The mathematics of symbolic dynamics could quite constructively pose
as the level playing field on which both dynamical theories and symbolic the-
ories of the mind could participate in a fair scientific contest (see Dale &
Spivey, 2005), rather than being the incommensurate apples and oranges of
cognitive science. However, a symbolicist will instantly recognize that when
using symbolic dynamics as the common format of explication, his or her the-
oretical framework is already starting at a disadvantage with regard to parsi-
mony. Compared to the dynamical approach, the symbolic approach posits
more analog-to-digital (and digital-to-analog) conversions in the processing
of mental activity—but at least they are of the same general mathematical
nature in both approaches. For example, in the case of the symbolic cognition
framework (figure 10.1B), not only must continuously dynamic patterns in
the perceptual stage be converted into a string of symbols for the rule-based
cognitive stage, but those symbols must then be reconverted back into a con-
tinuous high-dimensional trajectory for the motor stage, perhaps in a manner
similar to state space reconstruction (e.g., Andrews, 2001; Sauer, Yorke, &
Casdagli, 1991; Takens, 1981). And then, in both theoretical frameworks, the
continuous dynamic patterns in the motor subsystem are converted, via sym-
bolic dynamics, into discretely labeled action-based changes in the problem-
solving environment. In this way, to provide a full description of high-level
cognition, I suspect that both dynamical and symbolic accounts will need to
employ some form of symbolic dynamics. Therein will be the common set of
phenomena (e.g., problem solving and reasoning) fit by models that use a
common format of explication (symbolic dynamics), which will finally allow
the debate between symbolic and dynamical theories of mind to proceed in a
resolvable fashion (Dale & Spivey, 2005).

Insight Problem Solving

One strikingly discrete-seeming cognitive phenomenon that poses a particu-
lar challenge to continuous descriptions of cognition is creative insight during
problem solving. To describe what insight problems are, I begin by telling you
what they are not. Most math problems, mechanical reasoning problems, and
a variety of straightforward puzzles are typically called noninsight problems,
because as the solver works on the problem, she has a sense of gradually get-
ting closer to the correct solution. In fact, when participants provide regular
reports of warmth ratings as they progress through the problem, noninsight
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problems elicit rather accurate subjective estimates of how close one is to
achieving the solution. Insight problems, by contrast, elicit warmth ratings
that have no correlation whatsoever with how much longer the person has to
go before reaching the solution. And solvers of insight problems often reach
an impasse, where they report being completely stymied and out of ideas. (In
most insight problem-solving experiments, the majority of the participants
never find the solution—not without hints, anyway.) While struggling with
this impasse, they flail about with seemingly random ideas for a while, and the
few participants that do manage to discover the solution burst out with an
“Aha! I got it!” In these “Aha!” moments, they report feeling as though the
solution came to them suddenly, out of nowhere—that is, not like a sigmoid
curve over time (figure 4.1) but like a genuine step function (figure 4.3).

One such insight problem is Karl Duncker’s (1945) candle-mounting
problem, which purportedly measures a person’s functional fixedness (the
degree to which they treat objects as having fixed unalterable functions).
Imagine you have, on a table in front of you, a candle, a box of tacks, and a book
of matches (figure 10.2), and you are given the task of mounting the candle on
the wall using only what’s on the table. Many people struggle for some time
with Byzantine wall sconce architectures of matches and tacks, and then find
themselves having to “restructure their representation of the problem” and of
the resources at hand, to find the solution (Fleck & Weisberg, 2004; see also
Knoblich et al., 1999). Some of them figure out the solution, and some do not.
Interestingly, five-year-olds, who may be less limited by functional fixedness,
perform better on this task than do six- and seven-year-olds (German &
Defeyter, 2000). If you haven’t already read about this problem before, have
you figured out the solution yet? If so, did it “suddenly pop” into your mind?
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I spend a bit of time on insight problem solving here because this topic is
an area where the much-touted instantaneity of the problem solution pop-
ping into one’s mind poses as a striking discontinuity in cognition that con-
trasts sharply with my continuity of mind thesis. However, I will argue that
this striking discontinuity is more a property of people’s attempts to describe
their subjective experience than a property of the actual cognitive processes
themselves. The “suddenly out of nowhere” impression that has been branded
on insight problem solving is due largely to experimental participants having
poor introspective access to their cognitive processes (see Nisbett & Wilson,
1977) and to psychologists relying on off-line measures of subjective report.4

As I will show, the process of insight problem solving actually has a number of
introspectively inaccessible gradual precursors to that “Aha!” moment. Some
of these precursors are rooted in perceptual-motor processes, not cognitive
ones.

For example, more than 40 years ago, and less than 20 years after Duncker’s
(1945) book, a young Sam Glucksberg (1964) carefully watched participants
as they attempted to solve Duncker’s candle problem with the actual objects in
front of them. He recorded how many times they touched the cardboard box
of tacks (which solves the problem by being emptied and tacked to the wall as
the mounting platform itself), and found that participants who solved the
problem happened to touch the box, well before their “Aha!” moment, more
times than those who did not solve the problem. This suggests that before
their subjectively instantaneous discovery of the box as the solution, some-
thing inside their nervous system was paying a little extra attention to the box.
Moreover, right before that “Aha!” moment, the object that these participants
had most recently touched was always the box—and in most cases that touch
had been adventitious and nonpurposeful. It is almost as if the participant’s
hands suspected that the box would be useful, in and of itself, before the 
participant himself knew!

A related example of perceptual-motor subsystems partially suspecting
the correct solution to an insight problem, long before the explicit language
subsystems have managed to verbalize it to themselves, comes from a study 
by Betsy Grant and myself (Grant & Spivey, 2003). We recorded participants’
eye movements while they attempted to solve a diagram-based version of
Duncker’s (1945) classic tumor-and-lasers radiation problem.“Given a human
being with an inoperable stomach tumor, and lasers which destroy organic tis-
sue at sufficient intensity, how can one cure the person with these lasers and,
at the same time, avoid harming the healthy tissue that surrounds the tumor?”
A schematic diagram was provided, composed simply of a filled oval, repre-
senting the tumor, with a circumscribing oval representing the stomach lining
(which must not be injured). Nothing else in Duncker’s problem description
was depicted in the schematic diagram. Because this problem is a very difficult
insight problem, only a third of the participants (Cornell University under-
graduates) solved it without needing hints—and that’s a relatively high propor-
tion compared to studies at other universities. Although the eye movement
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patterns were very similar for successful and unsuccessful solvers, one differ-
ence stood out. During the 30 seconds before encountering their “Aha!’
moment, successful solvers tended to look at the stomach lining, the circum-
scribing oval, more than unsuccessful solvers did (during the corresponding
30 seconds just before they gave up and requested a hint). A bit like
Glucksberg’s (1964) successful candle problem solvers idly touching the box
before discovering its usefulness, our successful solvers were making frequent
eye movements inward toward the tumor and back outward again, stopping
regularly on the stomach lining, almost sketching the solution (of multiple
incident lasers) with their scan path. We used this observation to try to influ-
ence participants’ cognitive performance by manipulating the perceptual
salience of components of the diagram.

In a second experiment, the schematic diagram was animated (with a sin-
gle pixel increase in diameter pulsating at 3 Hz) to subtly increase the percep-
tual salience of the stomach lining in one condition or the tumor in another
condition. A control condition had no animation. In the control and pulsat-
ing tumor conditions, one third of the participants solved the problem with-
out hints, as expected. However, in the pulsating stomach lining condition,
two-thirds of the participants solved the problem without hints! Grant and
Spivey (2003) hypothesized that the increased perceptual salience of the 
stomach lining helped elicit patterns of eye movements and attention that
were conducive to developing a perceptual simulation (Barsalou, 1999) of the
correct solution, involving multiple weak lasers passing through the stomach
lining at different locations and converging their energies at the tumor. In this
case, a perceptual-motor process—an eye movement pattern characterized by
saccades into and back out of the stomach region, including a conspicuous
proportion of fixations of stomach lining itself—seemed to be playing an
important role in high-level cognition and was evident in successful solvers’
behavior before they had discovered the solution.

It has been argued that long before a person has that “Aha!” moment with
an insight problem, incremental implicit cognitive processes, possibly in the
form of spreading activation, may be continuously guiding them toward the
solution (Bowers, Farvolden, & Mermigis, 1995; Bowers et al., 1990; see also
Ashby, Valentin, & Turken, 2002). To test for evidence of partial activation of
an insight, Bowers et al. (1990) presented participants with a pair of remote-
associate word triplets.5 One of them would have a coherent solution and the
other would not. (For example, “What one word makes a compound with the
words still, pages, and music?” and “What one word makes a compound with
the words playing, credit, and report?”) Participants were asked to find the
solution to the coherent triplet that actually has a solution, and barring that,
at least guess which word triplet has a solution at all. In trials where partici-
pants could not find the solution to the coherent word triplet, they could still
nonetheless identify, more often than not, which triplet had a solution. Thus,
some kind of implicit knowledge was brewing in there, a subtle suspicion that
playing/credit/report somehow was more likely to be the triplet that had a
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coherent solution—even when that coherent solution itself was not forth-
coming. In fact, using the same kind of remote associates task, Bowden and
Beeman (1998) have recorded word naming latencies to reveal significant
priming for the undiscovered correct answers to remote associate problems,
such as “What one word makes a compound with the words back, step, and
screen?”

Further evidence for implicit processing of insight comes from sleep con-
solidation research. After some initial exposure to a cognitive task that con-
tains a hidden rule, eight hours of normal sleep can facilitate discovery of the
hidden rule better than eight hours of wakefulness (Wagner et al., 2004; see
also Mazzarello, 2000). This is likely due to a process of memory consolidation
and restructuring of task representations that occurs during sleep (e.g.,
Maquet, 2001; Wilson & McNaughton, 1994; see also Hinton et al., 1995).
During sleep, or a similar “mental incubation” period, it appears that some-
thing implicit is taking place that sets the stage for a representational change
in the problem space when the task is faced once again after waking. Thus, far
from being an event of fiat lux, instantaneous illumination from out of
nowhere, insight during problem solving actually has implicit cognitive
processes that are continuously “chewing on” the conceptual rearrangement
necessary for solving the problem, long before the participant experiences 
that sudden awareness of the correct solution (for a review, see Knoblich,
Öllinger, & Spivey, 2005).

Shape and Movement in an Attractor Landscape

Rather little in the way of dynamical modeling has been applied to insight
problem solving so far (but see Ashby et al., 2002). However, given the graded
continuous processing that may be underlying insight problem solving, future
dynamical modeling of these phenomena may prove extremely elucidating.
Much of the promise in dynamical systems approaches to cognition is in their
ability to recast old theoretical problems in a new shape and examine the 
temporal continuity that is underlying the apparently symbolic. In many
cases, this recasting may melt away certain aspects of long-debated distinc-
tions that have stalemated the field. For example, the battle between exemplar-
based models of implicit conceptual representation (e.g., Brooks, 1978; Medin
& Schaffer, 1978; Nosofsky & Zaki, 2002; see also Heit & Barslaou, 1996) and
prototype-based models of the same phenomena (e.g., Minda & Smith, 2001;
Posner & Keele, 1968) continues to rage in the literature (Brooks, 2005). This
despite the distinct possibility that both exemplar and prototype simulations
are overfitting their data at this point (Olsson, Wennerholm, & Lyxzen, 2004)
and that a third, nonparametric and procedural alternative may be more
appropriate (Ashby & Waldron, 1999).

This distinction between exemplars and prototypes can begin to look decid-
edly different when placed in a neurally inspired dynamical systems framework.
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Let’s assume that recognizing an object (as being mostly a member of a partic-
ular concept that you have learned) consists of your neural population codes
approaching a semi-stable pattern of activation that is similar to the patterns
of activation achieved for similarly categorized objects. If this is true, then one
could in principle define an attractor landscape that mathematically described
how those patterns of neural activity cluster (and subcluster) near each other
in state space and how similar patterns may gravitate toward those learned
patterns. If this attractor landscape had several narrow nonoverlapping basins
for each previous experience with an object that was categorized the same, it
might look something like the idealized depiction in figure 10.3. This would be
a straw man dynamical version of the exemplar-based model. Such a state
space manifold would have some difficulty generalizing the concept label to
many novel objects that find themselves eliciting patterns of neural activation
that are on the flat portion of the manifold in between the tiny attractor
basins.

In contrast, an extreme version of a prototype-based model in attractor
terms would look something like figure 10.4. The smooth interpolation seen
across this basin of attraction elegantly includes all relevant objects, whether
they’ve been experienced or not. In fact, the nadir of the basin, the “best”
example of the concept, does not even need to correspond to any object that
has actually been experienced. It is the prototype. Mountains of empirical
data have been published in support of both exemplar and prototype theories
(e.g., Hintzman, 1986; Medin & Smith, 1984; Minda & Smith, 2002; Olsson 
et al., 2004; Stanton, Nosofsky, & Zaki, 2002), therefore some form of repre-
sentational medium that could flexibly elicit both kinds of phenomena would
be ideal.
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Although attempts to simultaneously account for exemplar and proto-
type phenomena with traditional rule-based approaches generally require the
stipulation of separate modules (e.g., Nosofsky, Palmeri, & McKinley, 1994),
an attractor landscape describing the dynamical tendencies of neural activa-
tion patterns can blend the two theories quite naturally and parsimoniously.
This idea combines the clustering and subclustering seen in the distributed
representational state space of static connectionist networks (e.g., Elman,
1990; McClelland & Rogers, 2003; Schyns, 1991) with the temporal dynamics
of the settling process seen in fully recurrent networks (e.g., Hinton &
Shallice, 1991; McRae, de Sa, & Seidenberg, 1997). The attractor landscape in
figure 10.5, with small attractors inside a large one, maintains the individual
item variation from exemplar theory and also preserves the generalizability of
prototype theory—even including a best-fit case (at the deepest portion of the
basin) that does not correspond to any experienced object. It may not be a
very pretty attractor basin, but it’s what’s on the inside that counts. This is, of
course, not a functioning model of categorization but merely a speculative
visual illustration (in a paltry three dimensions, at that) of the flexibility
inherent in attractor landscapes that can potentially accommodate seemingly
conflicting theoretical mechanisms.

Another visualizable insight from the dynamical systems framework can
be gleaned from applying the dynamic attractor landscape idea to similarity
judgments. Almost 30 years ago, Amos Tversky (1977) offered his discrete 
feature list account (the contrast model) of similarity as a replacement for geo-
metric state space accounts of similarity (e.g., Shepard, 1964, 2001). His evi-
dence in support for a feature list account was that state space proximity as a
measure of similarity fails to account for asymmetries in similarity judgments
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(but see Holman, 1978; Krumhansl, 1978; Nosofksy, 1991). For example,
acceptability ratings of statements such as “Korea is like China” were reliably
higher than acceptability ratings of statements such as “China is like Korea.”
Therefore, people somehow conceive of Korea as being more similar to China
than China is to Korea. Intuitively, the reader can probably agree with this
asymmetry in the similarity of Korea to China versus China to Korea.6 But if
the two countries are represented as locations in a semantic state space, with
Euclidean proximity being equivalent to their similarity, then there shouldn’t be
any asymmetry at all. In that semantic state space, China is exactly as close to
Korea as Korea is to China.

However, if the multidimensional similarity space is not treated merely as
a static arena in which one measures distances but instead as a dynamic
medium in which thought itself is a trajectory from one attractor basin to the
next, then asymmetric similarities begin to make a bit of sense. Some trajecto-
ries are smoother, faster, and easier than others and thus may elicit higher
acceptability ratings. Thus, if an experimental participant hears or reads “Korea”
first, then “is like China,” they are first projected to the Korea attractor basin in
semantic space and must travel to the China attractor basin (figure 10.6A).
Traversing from an attractor that is weak (due to low salience or relative impor-
tance) to an attractor that is strong will be quick and effortless. However, tra-
versing from an attractor that is strong to one that is weak (i.e., “China is like
Korea”) will require a fair bit of time for the strong basin to give way, as the
unfolding meaning of the sentence changes the shape of the manifold to allow
the state of the system to move to the other attractor. As figure 10.6B shows,
by the end of the sentence, the Korea attractor is trying to pull the state of the
system to itself, but because the China attractor was so large to begin with, it
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has not quite given way yet. By paying attention to the temporal dynamics of
stimulus delivery in this task and plotting comprehension as a continuous tra-
jectory in an attractor landscape, asymmetric similarity effects can actually be
seen as a perfectly natural result of representing concepts as locations in a
dynamic state space.

Probabilistic Mind, Not Probabilistic Reasoning

Probabilistic reasoning is another place where feature lists and rulelike heuris-
tics have been proffered as the actual mechanisms of reasoning (see Gilovich,
Griffin, & Kahneman, 2002; Kahneman, Slovic, & Tversky, 1982), rather than
probabilistic dynamic representations. It is certainly the case that many
aspects of the transition from stimulation to perception do in fact adhere to
genuine probability theory (see Kersten, 1991; Knill, 1998; Rao, Olshausen, &
Lewicki, 2002). However, as that stimulation-to-perception transition becomes
more complex, involving richer time-dependent stimulus environments and
more in-depth cognitive processing, the opportunities for contaminating
those implicit probabilities with explicit strategies and heuristics become
numerous. There are a number of experimental demonstrations of people
reasoning in ways that do not adhere to the actual probabilities of the environ-
ment. Therefore, a continuous probabilistic account of mental activity will
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Figure 10.6. Panel A shows the changing attractor landscape for
understanding “Korea is like China,” where the more frequent
and salient China attractor would pull the system quickly into
completing its left-to-right trajectory. Panel B shows the chang-
ing attractor landscape for “China is like Korea,” where the less
frequent and salient Korea attractor has some difficulty compet-
ing with the China attractor and thus the right-to-left trajectory
might be problematic or deemed somewhat infelicitous.



need to be prepared to accommodate explicit judgments and decisions that
somehow violate Bayesian probability.

For example, Tversky and Kahneman’s (1983) conjunction fallacy dis-
plays a shocking mistreatment of probability theory in people’s intuitive judg-
ments. They had participants read a vignette about a woman named Linda
who is intelligent, outspoken, and concerned with issues of discrimination
and social justice, among other things, and then asked them to rank several
statements about her in order of their probability. One of the statements,
“Linda is a bank teller and an activist in the feminist movement,” was, in set
theoretic terms, a subset of another of the statements, “Linda is a bank teller.”
As the former statement is the conjunction of the latter proposition and an
additional proposition, probability theory would multiply the probabilities of
those two propositions to calculate the probability of the conjoined statement.
Therefore, the former statement can never be of higher probability than the
latter. Yet most participants—including some with training in statistics—rate
the former (conjunction) statement with higher probability than the latter
statement (Tversky & Kahneman, 1983; Zizzo, 2003; see also Fisk & Pidgeon,
1997). Although some of this error in judgment may be due to participants
misinterpreting the latter statement as implying Linda is conspicuously not a
feminist (Bonini, Tentori, & Osherson, 2004), it is interesting to note that this
conjunction fallacy behavior goes away when the problem is posed in terms of
frequencies rather than probabilities (Cosmides & Tooby, 1996; Gigerenzer,
1994).

An even more worrisome example of people’s poor reasoning about
probabilities is base-rate neglect. Imagine that a woman is getting a test for a
form of cancer that occurs in 1 in 10,000 people. Further imagine that this
particular test has a 100% hit rate (therefore, 0% miss rate) and a 99% correct
rejection rate (therefore, a mere 1% false positive rate). If this woman’s test
result is positive, what is the probability that she actually has this cancer?
People regularly make huge overestimations of the probability that such a per-
son in this situation actually has the disease in question (e.g., Kahneman &
Tversky, 1973; Tversky & Kahneman, 1980; but see also Birnbaum, 1983;
Koehler, 1993). Because the probability of a false positive is only 0.01, people
often conclude that the probability that this woman has cancer is 0.99. In fact,
the probability that this person has cancer, according to Bayesian statistics, can
be calculated at 0.0099. This is quite a bit higher than the 1-in-10,000 base
rate, by two orders of magnitude in fact, but perhaps not reason enough to say
good-bye to loved ones already.

As Gigerenzer and Hoffrage (1995) point out, this counterintuitive prob-
abilistic calculation is much easier to understand when framed in terms of fre-
quencies. If the doctors performed this test on a randomly selected population
of 10,000 people, the one person with this cancer would get a positive test
result, and of the remaining 9,999 people who did not have this cancer, 1% of
them would also get positive test results—but they’d be false positives. That’s
99.99 people with false positives; we’ll call it 100. So out of these 101 people
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with positive test results, only one of them actually has the cancer in question.
Therefore, each of them has a 1-in-101 chance (p � 0.0099) of being that poor
soul. Sadly, even trained doctors exhibit this same kind of base-rate neglect
and grossly overestimate the probability of cancer in these word problems
(Eddy, 1982; Wallsten, 1981).7 Although some have claimed that this error in
probabilistic reasoning is due to heuristics that produce systematic rule-based
errors in these circumstances (Tversky & Kahneman, 1980), others have sug-
gested that the format of representation of the problem is the culprit and that
describing the problem in terms of frequencies is more ecologically valid,
engaging our reasoning skills in a manner more suited to their normal every-
day use (Gigerenzer & Hoffrage, 1995). Interestingly, neural network models
can, without the use of any rule or heuristic, exhibit the kind of base-rate neg-
lect that humans exhibit (e.g., Gluck & Bower, 1988; Kruschke, 1992; but see
Lewandowsky, 1995; Shanks, 1990).

Perhaps it is not surprising that people are bad at diagnosing patients
based on something complex like Bayesian statistics and probability values
with multiple decimal places. You might think that faulty probabilistic reason-
ing wouldn’t rear its ugly head with something as simple as flipping a coin. But
it does. Ask people without any training in statistics if they think that with
coin flips after four tails in a row, a heads is more likely than a tails, and most
of them will answer “yes.” This is called the gambler’s fallacy. As long as it’s a
fair coin, and the person flipping it isn’t cheating somehow, the probabilities
associated with each coin flip are independent of one another. This means that
it doesn’t matter how many tails have come up in a row in the past, the odds
for each new coin flip are 50/50 for heads or tails.

Think of it this way: If you were planning on flipping a coin five times,
and you wanted to figure out the probability, in advance, of flipping exactly
four tails and then a heads, it would simply be that 0.5 probability of correctly
predicting each coin flip, but compounded five times in a row, or 0.55 � .03125.
Now, what would be the probability, in advance, of flipping exactly five tails in
a row? Simply 0.55 as well. The only difference between those two little time
series is the last coin flip, and they have the same probability. Therefore, four
tails being followed by another tails is no less likely than four tails being 
followed by a heads.8

Yet the probabilities of something as innocent as a time series of coin flips
is a surprisingly difficult thing to teach people to reason correctly about. You
can get them to repeat back to you that “these probabilities are independent,”
but getting them to behave in ways that respect that fact is another thing 
altogether. Take for example the prolific mathematician Jean d’Alembert, who,
during the development of probability theory in the eighteenth century, claimed
that the probability of getting at least one heads on two coin flips was actually
two-thirds rather than three-fourths (see Weatherford, 1982). His reasoning
was that because you would stop flipping if you got heads on the first flip, this
meant that there were actually only three possible results: H, HT, and TT
(instead of all four HH, HT, TH, and TT). As two of those three possible
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results contain a heads, d’Alembert concluded that the probability of at least
one heads on two coin flips was two-thirds. He was, of course, completely
wrong. And I must admit, I find it profoundly shocking that an academic with
his status would make such bold claims about how a mathematical process
works without empirically trying the process out himself, don’t you? I mean,
how hard could it have been for d’Alembert to spend an afternoon recording
the results of a few hundred bouts of two flips of a coin and see if his predic-
tion of two-thirds of them having at least one heads was true?9

Related to this point, the act of seeking disconfirmatory evidence (and
not just confirmatory evidence) is another important aspect in reasoning
about uncertainty that is notoriously difficult to teach people. When reason-
ing about probabilities, people tend to seek confirmatory information and
ignore potentially disconfirming information (Gilovich, 1991; Wason &
Johnson-Laird, 1972). This “confirmation bias” appears to be at the heart of
why about 80% of people fail at the Wason card selection task (Evans, 1982;
Wason, 1966; Wason & Shapiro, 1971). Imagine having four cards lying face
down, with the first of them showing an A, the second showing a T, the third
showing a 6, and the fourth showing a 3. See figure 10.7. Now, the experi-
menter tells you that there is a rule for how these cards are made, and it is this:
“All cards with vowels on one side must have even numbers on the other side.”
And your task is to test this rule by flipping over two and only two cards.
Which two do you flip over?

Flipping the A card is obvious, and most people do that. Ignoring the 
T card is also obvious, and very few people flip it over. Most people feel at least
tempted to flip the 6 card to see whether it does indeed have a vowel on its
other side. But that would be wrong. The truth is, the rule never said anything
about the cards with consonants. Maybe half of them have even numbers on
their other side and the other half of them have odd numbers. So flipping over
the 6 card won’t actually test the rule. Finding a vowel would perhaps be mod-
erately encouraging confirmatory evidence, but finding a consonant wouldn’t
mean anything with regard to testing the rule. Flipping over the 3 card is what
will test the rule. This checks for disconfirmatory information. If there’s a
vowel on its other side, then you know the rule has been violated. The fact that
people usually flip the 6 card instead of the 3 card suggests that they are biased
more toward acquiring confirmatory evidence than disconfirmatory evidence.
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Figure 10.7. Card display for the Wason task, where the rule is
“All vowels must have even numbers on the other side of the
card.” Which two cards should you flip to properly test this rule?



Interestingly, a number of studies have examined variations on this task
and found improved performance when the task involves a more ecologically
valid and personally relevant scenario (Johnson-Laird, Legrenzi, & Legrenzi,
1972). For example, when the cards indicate alcoholic or nonalcoholic drinks
and ages that are of drinking age or not, and the rule is “If someone is drink-
ing alcohol, then they better be 21�,” undergraduate students’ performance
increases dramatically (Griggs & Cox, 1982). In general, when the Wason card
selection task is put in the context of a social contract, where a cheater is to be
detected, participants perform better on the task (Cosmides, 1989). When
participants are working on a version of the Wason card selection task that has
implications for their own life span, they perform substantially better than
students working on a version whose early death implications were not per-
sonally relevant (Dawson, Gilovich, & Regan, 2002).

The point being made with this litany of probabilistic reasoning tasks is
that reasoning about uncertainty is impaired when people are trying to use
probabilities that have little do with their own daily lives. But when they use
frequencies and other ecologically valid formats of problem representation, all
of a sudden their performance adheres to probability theory rather well. Thus,
although people’s explicit use of probability theory is clearly very flawed, their
minds can still work in ways that are at least implicitly quite consistent with
probability. There’s just something about when graded fuzzy ideas get con-
verted into verbalized axioms, which the person tries to use in an explicit 
fashion, that seems to cause those articulated heuristics to be in conflict 
with the person’s underlying natural frequentistic competence, and thus they
become quite faulty.

Think Not of p, But of 1 � p

As demonstrated by the Wason card selection task, paying attention only to
the probability of confirming the result you want, p, is at the core of many fail-
ures in human reasoning. When you instead focus on 1 – p, the probability of
anything but what you have in mind, you can actually perform calculations
that will provide some impressive predictive power. Take the game of roulette
as a concrete example. If there are 34 numbers on the roulette wheel, and you
put your money on number 23, your probability of winning is 1 in 34. Easy.
But what is the probability of winning at least once during 10 tries? It’s certainly
not 10 in 34, that would imply that on your 34th try you would be guaranteed
to win, and that on your 35th try you would somehow have a �1.0 probabil-
ity of winning. Any time your math produces a probability that is greater than
1.0 or less than 0, you should check your math. Probability summation over
time (Watson, 1979) is a convenient and surprisingly easy way to calculate 
this probability. The key is in focusing on 1 – p, not on p. Probability doesn’t
allow you to do much with p for this circumstance, but what you can do is cal-
culate the probability of not winning even once during these 10 spins of the
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roulette wheel. That’s simply a 33 in 34 chance that is multiplied by itself 10
times. Now all you have to do is subtract that value from 1, and you have the
probability, p, that you will not lose on all 10 of those spins, and hence will win
at least once: p � 1 � (33/34)10 � 0.258.

The function in figure 10.8 shows this probability rising nonlinearly, on a
logarithmic x-axis, as a person bets on 23 again and again in roulette. This
kind of sigmoid curve should look familiar at this point in this book.
Interestingly, the curve shows that on the 34th spin of the roulette wheel, the
probability of 23 coming up would just barely exceed 0.63212055882856, or 
1 � 1/e. This means that if 100 people played roulette this way at 100 different
tables, about 63 of them would win on or before their 34th spin. Figure 10.9 is
a frequency distribution showing how many of these 100 players would have
their first win within 1–10 spins, 11–20 spins, and so on. Note how this 
frequency distribution is almost a mirror image of the previous sigmoid curve
in figure 10.8.

With any base probability of 1/n, the probability of that event occurring
at least once during a bout of attempts exceeds that magic number, 1� 1/e, on
the nth attempt. For example, the probability of accurately guessing—at least
once—what you are about to roll on a six-sided die exceeds 0.632 on the sixth
roll. The probability of guessing what card is on the bottom of a shuffled deck
exceeds 0.632 on the 52nd try. Somewhat less encouragingly, the probability 
of winning a state lottery exceeds 0.632 around the 10 or 20 millionth try
(depending on how many numbers there are to choose from). Thus, with
higher probability events (such as guessing the face of a rolled die), the curve
and its intersection of the dashed lines in figure 10.8 would simply be shifted
leftward on the time scale; with lower probability events (such as winning a
state lottery), it would be shifted rightward.
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Another case where attending to 1 – p is important is in the Monty Hall
problem. Derived from Monty Hall’s Let’s Make a Deal game show from the
1970s, this problem involves three doors, behind one of which is a “brand-new
car!” Behind each of the other two doors is a goat, or something similarly
unexciting. The game host invites you to pick one of the doors—which
(unless you are psychic) will be a random guess as to which one has the car
behind it. Then, once you’ve chosen a door, he opens one of the other doors to
reveal a goat munching on some hay. (The host knows where the car is, and his
constraints are that the door he opens cannot be the door you’ve chosen, nor
can it be the door that has the car.) Now that you’ve seen one of the doors
opened and revealing a goat, the host turns to you and asks whether you want
to stay with the door you first chose or switch to the other remaining closed
door. The correct answer to that question is trickier than it might seem. The
way in which people try to deal with the Monty Hall problem has been 
studied by a number of psychologists and statisticians for some time now
(e.g., Gilovich, Medvec, & Chen, 1995; Granberg & Brown, 1995; Selvin, 1975;
for reviews, see Burns & Wieth, 2004; Krauss & Wang, 2003).

This intriguing problem of probabilistic reasoning was popularized by
Marilyn vos Savant (1990) in Parade Magazine, where she explained that the
probabilistically most advantageous solution is to switch. This solution seems
quite counterintuitive at first.10 Most people’s initial (erroneous) intuition is
that after one of the doors has been opened, the probabilities are 50/50 for the
car being behind your chosen door or behind the remaining unopened door.
In fact, vos Savant received numerous angry letters telling her that her
“switch” strategy was wrong—some of them even came from mathematics
professors!
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their first win during their first 10 spins, or between their 11th and
20th spins, or between their 21st and 30th spins, and so on.



The key to understanding this counterintuitive solution is twofold. First,
you must keep in mind that your initial door selection was probably wrong.
If the probability that you chose correctly at the beginning (p) is 0.33, then
1 �p � 0.67. This latter probability, that the door you’ve initially chosen is
likely wrong, does not (indeed, cannot) change during the course of the game.
Second, the host’s selection of which door to open is not random. He cannot
open your chosen door, nor can he open the door with the car. This means
that in the event that your chosen door is not the door with the car (and this
is a pretty likely event: 1 �p � 0.67), then there is only one door that the host
can select to open: the only unchosen door that does not have the car. In such
a circumstance (and don’t forget that this is the most likely circumstance),
once the host has opened a door with a goat behind it, that one unchosen 
and unopened door remaining definitely contains the car, and so you should
definitely switch. Stated another way, because there is only a 0.33 probability
that your first choice was correct, there is therefore only a 0.33 probability that
switching will lose you the car.

As Gigerenzer and Hoffrage (1995) have suggested for probabilistic rea-
soning in general, it may be the case that the correct solution to the Monty Hall
problem is easier to understand when framed in frequentistic terms instead 
of probabilistic terms. That is, what if you were told to imagine playing the
game 30,000 times, and given frequentistic math questions that pumped your
intuitions about how many times the car would be behind each door and how
many times staying or switching in those various circumstances would win you
the car? In three experiments with over 250 participants, Aaron and Spivey
(1998) compared this frequency-based version of the problem to the standard
probability-based version (with corresponding probabilistic math questions
about the probability of the car being behind each door and the probability
that staying or switching would win the car). We found that participants per-
formed reliably better on the mathematics questions when the problem was
framed in terms of frequencies rather than probabilities. However, with regard
to their ultimate choice of whether they would choose to stay or switch on a
single round of the game, only a marginally greater percentage of participants
in the frequency condition chose to switch (28%) compared to those in the
probability condition (19%). Thus, even with the problem described in fre-
quentistic terms, and even with leading questions regarding how many times
the car would be won or lost in various circumstances, we still had 72% of the
participants making the wrong choice when they got to that final point in the
questionnaire. Perhaps, as suggested by work with the Wason card selection
task (Griggs & Cox, 1982; Johnson-Laird et al., 1972), what it comes down to is
that conducting the experiment in an abstracted questionnaire format just
doesn’t make it real enough for participants.

Sanford and Sanford (2005) actually had individual participants play a
physically demonstrated interactive 3D version of the Monty Hall problem—
using a coin and a bunch of upside-down cups. After the participant made
their initial choice of a cup, the experimenter physically removed a different
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cup, revealing no coin. With a total of three cups, only 2 out of 20 participants
chose to switch. However, other groups of 20 participants each played a ver-
sion of the game with 4, 5, 8, 10, 20, 30, 50, or 100 cups. After making their 
initial cup selection, participants sat and watched while the experimenter
removed as many cups as needed for there to be only two cups remaining:
their chosen cup and one other. (Note that the odds of a switch decision win-
ning you the coin increase dramatically with more and more cups, from 3/4
with 4 cups to 99/100 with 100 cups.) In these additional experimental condi-
tions, the proportion of participants deciding to switch was 20%, 10%, 20%,
20%, 45%, 45%, 75%, and 75%, respectively. When you read those percent-
ages in the text like this, they may seem a rather awkward stair-step sequence.
However, when plotted on a graph, they actually conform reasonably lawfully
to an exponential function. And probability summation over time (Watson,
1979) may, once again, have exactly the exponential we’re looking for.

Imagine that each time a participant watches a cup getting removed, there
is some probability, let’s say p � 0.03, that it will explicitly occur to her that the
host’s cup-removal process may not be entirely random and that this fact has
important consequences for her decision to stay or switch. Probability sum-
mation over time allows us to compound that probability with each cup
removal, but it requires that we use 1 �p, instead of p. The probability of the
participant not experiencing that insight on a given cup removal, 0.97, can be
iteratively multiplied by itself every time she witnesses a cup getting removed
(as long as we take the simplifying assumption that each cup removal’s chance
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Figure 10.10. Proportion correct (choosing to “switch”) in Sanford
and Sanford’s (2005) cups-and-coin version of the Monty Hall
problem (x’s). The top-most dashed curve is the actual probability
that switching will win. The lower exponential curve, roughly 
fitting the data, comes from probability summation over time:
1 � (1 � p)(cups�2), where p � 0.03.



at triggering such an insight is independent of every other one). Thus, the total
number of cups (minus the two that do not get removed) can be an exponent
on the 1 �p figure. When the resulting calculation is subtracted from 1, we
now have the probability that the participant will experience that insight
sometime during the temporally drawn-out cup-removal process. Figure 10.10
plots Sanford and Sanford’s (2005) results, along with this incredibly simple
exponential function which fits the data surprisingly well; r2 � 0.95. The
smooth curve fitting the data in figure 10.10, reminiscent of many information-
accumulation curves shown throughout this book (e.g., figures 1.6, 3.2, 6.16,
8.5), is the result of a probabilistic process by which insight for a difficult
problem gradually accrues over time. The fact that it accounts for 95% of the
variance in the human data suggests that it may be a reasonably adequate
account of the phenomenon.11

Reasoning Is a Hungry Process

There is something of a tradition in the cognitive sciences of treating catego-
rization, language comprehension, visual perception, and motor movement
(chapters 6–9) as though they were bottom-up, stimulus-driven processes.
Therefore, arguing for anticipatory processes in those phenomena requires a
fair bit of ammunition from the literature. In the case of high-level cognition,
however, it hardly needs to be said that reasoning is dependent on anticipatory
processes. Anyone who has ever made a well-thought-out move in a game of
chess, prepared a holiday meal for several people, or planned a vacation knows
that reasoning involves imagining future events. Higher-order cognition is
certainly the one place where anticipatory processes are uncontroversial.
Thinking people make plans. And these plans often have an impressively dis-
crete quality to them, reminiscent of symbolic logic. When you ask a little boy
what he plans to be when he grows up, he doesn’t answer with “I expect to be
a cowboy with 0.3 probability, an astronaut with 0.2 probability, and a fireman
with 0.5 probability.” The kid just says, “I’m gonna be a fireman.” That’s what
plans often look and feel like: rules and symbols.

This intuitive characterization may make it somewhat difficult for
dynamical systems models of high-level cognition to accommodate long-
range planning of this sort. However, as these models gradually move more
into the realm of high-level cognition, the conceptual scale of the attractor
basins may be able to gradually increase to simulate the more abstracted con-
tent. Instead of the attractors in the state space being phonemes (Indrebo,
Povinelli, & Johnson, 2006), or words (Elman, 1995), or objects (Deco, Rolls, &
Horwitz, 2004), or concepts (McRae, 2004), they could perhaps become
strategies, goals, and drives (van der Maas, 1998). As always, the trajectory in
this state space would have an anticipatory momentum all its own, making 
it what I call a hungry process. For example, this anticipatory momentum 
can even be seen in the real-time measurement of emotional expectations.
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Chung and colleagues (1996) recorded ERPs of participants who were
induced into pessimistic or optimistic moods to see if these moods could alter
their immediate expectations of little vignettes ending with good or bad out-
comes. A person who is in a pessimistic mood exhibits an N400 (i.e., a wave
peak indicative of an expectation violation) for good outcomes and not for
bad outcomes. A person who is in an optimistic mood exhibits a reversed 
differentiation between these outcomes. Thus, in dynamical cognition terms,
one could say that your emotional mood can contribute to the direction of
your anticipatory momentum in conceptual state space.

On the Future of Symbolic High-Level Cognition

This chapter has provided only a very brief sampling of the huge body of liter-
ature on high-level cognition—a teaser, as it were. To some cognitive scientists,
this literature is at the core of what gets called cognitive science. Unfortunately,
it is quite rare for this core set of phenomena to be studied with real-time
methodologies that can reveal their temporal dynamics. This makes for a
paucity of the kind of evidence that could distinguish between symbolic 
and dynamic theories. Proper adjudication between symbolic and dynamic
approaches to high-level cognition will likely require future work that focuses
more on the real-time temporal dynamics of reasoning, conceptual representa-
tion, and problem solving and whether there is indeed some internal cognitive
stage in which these dynamics are discretized in time and in representational
space (and then redynamicized for graded continuous action commands in
motor cortex).

With comparatively more real-time data in the research areas of motor
movement, visual perception, language processing, and even categorization, the
dynamical systems movement in cognitive science has had enough grist for the
mill to begin making a compelling case in those areas. In high-level cognition,
however, it has barely scratched the surface and will need a great deal more
development to compete with the rule-and-symbol framework. As Dietrich and
Markman (2003) suggest, 50 years of development for the symbolic paradigm
in cognitive science is not actually that long by scientific standards, and perhaps
the dynamicist’s disillusionment with symbolic cognition may just be a sign of
juvenile impatience. Then again, it may turn out that the computer metaphor of
the mind is a fundamentally flawed guide for understanding how the mind
works (Dreyfus, 1972; van Gelder, 1998; see also Fodor, 2000), and that’s 
precisely why it hasn’t succeeded yet.

At the time of this writing, the dynamical movement in the cognitive 
sciences must acknowledge that for the case of high-level cognition, such as
reasoning, analogy making, problem solving, and playing strategic games,
rule-and-symbol systems have accumulated the most successes in their half-
century of scientific development. The distributed and dynamical approach to
the mind, in its 20 or so years of activity, has focused more on successes in
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accounting for perceptual-motor phenomena. So it has a long way to go to
catch up. It is not yet clear whether there just may be certain mental processes
that are not well described by continuous dynamical systems and that may
always be better accommodated by discrete symbolic systems. However, I will
say this: In the past, when advocates of symbolic cognition have drawn lines in
the sand that separate continuous perception from discrete cognition (or dis-
crete cognition from continuous action), they have watched in disbelief as
dynamical-minded theories and data resolutely stepped over those lines. Each
time, these symbolicists then changed their story and labeled that newly occu-
pied territory as “just part of perception, not really part of cognition,” while
drawing a new line in the sand—this time a little closer to their own feet. Time
and time again, each new line in the sand was crossed by the dynamical frame-
work. More aspects of the mind that were once thought of as symbolic (or at
least thought of as best described by symbolic abstraction) have been taken
over, on the one side by continuous perception-based accounts and on the
other side by continuous motor-based accounts. Perhaps this constant shrink-
ing of their island of symbols will eventually stop, as continuous dynamical
descriptions of cognitive phenomena finally wash up against some firm
bedrock that forms the core of highly complex mental processes like reason-
ing and problem solving. . . . And then again, perhaps not.

These things happen. One day you run everything, and the next day
you run like a dog.

—Hunter S. Thompson
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Uniting and Freeing the Mind

By their very nature, open systems require going outside a system,
going from a smaller system to a larger one to understand its
behaviors. Stated another way, openness means that even a
complete understanding of internal parts and subsystems cannot,
of itself, account for what happens when a system is open.
—Robert Rosen

A human being is a part of the whole called by us universe, a part
limited in time and space. He experiences himself, his thoughts
and feelings as something separated from the rest, a kind of
optical delusion of his consciousness. This delusion is a kind of
prison for us, restricting us to our personal desires and to affection
for a few persons nearest to us. Our task must be to free ourselves
from this prison by widening our circle of compassion to embrace
all living creatures and the whole of nature in its beauty.
—Albert Einstein

Mind Inside Brain, or Brain Inside Mind?

The cognitive and neural sciences have spent more than a few decades relying
on the mantra of “dividing and conquering the mind” to understand it.
Although this tactic was useful at one time and resulted in some important
early advances, such advances are fewer and farther between now and defi-
nitely less certain. Perhaps it is time to stop dividing and conquering the mind,
and instead start uniting and freeing it.

Cognitive science’s proclivity for carving up mental activity into individ-
uated boxes that are devoted to seemingly independent categories of thought
and behavior and assigning mutually exclusive names to those putative 
modules, has clearly led the field astray (see Farah, 1994; Haxby et al., 2001;
Inui & McClelland, 1996; Sarter, Berntson, & Cacioppo, 1996; Uttal, 2001; Van
Orden, Jansen op de haar, & Bosman, 1997). With so much evidence in support
of continuous dynamical and richly interactive processing within and
between cognitive subsystems that are loosely specialized for different domains
of mental processing (e.g., chapters 5, 6, 7, and 8; see also Churchland,
Ramachandran, & Sejnowski, 1994; Damasio, 1989; Spivey et al., 2001;
Tanenhaus et al., 1995), the borders between things like word recognition and



object recognition can start to blur. Even the borders between language and
vision, or between cognition and perception, become somewhat vague and
fuzzy. In fact, as we begin to acknowledge that each of these subsystems is an
open system, which behooves us to zoom out the microscope and examine the
larger system in which it is embedded, we eventually run into that seemingly
obvious (but nonetheless historically disputed) border between the organism
and its environment. On further scrutiny, does that border become vague and
fuzzy as well? When one attempts to define what mental activity is, does it
straddle even that fuzzy border? Hurley (1998b, p. 3) posed the question espe-
cially eloquently when she noted that “if internal relations can qualify as 
[representational] vehicles, why not external relations? Given a continuous
complex dynamic system of reciprocal causal relations between organism and
environment, what in principle stops the spread? The idea that vehicles might
go external takes the notion of distributed processing to its logical extreme.”

Humor me a bit while I go out on this limb here: It just might be that your
mind is bigger than your brain. This is not because you have an ethereal soul
that influences your brain via the pineal gland, as proposed in Descartes’s
dualism, but because your external physical environment contains informa-
tion that you can perceptually access as quickly and directly as you can cogni-
tively access information from internal memory. One might even say, what is
in your immediate physical environment is “part of what you know,” even
when you’re not looking directly at it. For example, do you know what time it
is? If looking at your watch is about as quick as (perhaps quicker than) recall-
ing from memory what time it was 30 seconds ago when you last looked at
your watch and involves functionally quite similar processes (e.g., content-
addressable memory), then perhaps both processes can constitute “accessing
your knowledge of the time.” And where that knowledge resides is not only in
your brain but also on your wrist.

In this chapter, I describe a range of experimental demonstrations of
ways in which people tend to rely on the external environment to store infor-
mation for them rather than storing it all in their brains. On the surface, the
phenomenon that I report—use of deictic pointers or spatial indices—may
appear intriguing, but not necessarily revolutionary. At a deeper level, how-
ever, this constellation of findings hints at the potential upheaval of some very
old and cherished assumptions in cognitive science: a mindset that philoso-
phers have called internalism (Segal, 2000; see also Putnam, 1975).

Internalism Versus Externalism

Internalism holds that the contents of the mind at any one point in time 
can be fully accounted for by a description of the state of the brain. A full
description of the state of the brain eludes current technology, but it is note-
worthy that an internalist account of mental content rules out any need for
reference to the organism’s environment in this description of mental content.
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Thus, although philosophy will never be able to provide a full account of men-
tal content (because it will not be the field that produces a full description of
a brain state), an internalist philosopher will at least tell us where not to look
for one. The environment contains stimuli that influence the organism, and
the environment undergoes changes due to that organism’s actions, but the
environment is not part of that organism’s mind (see Newell, 1990).
According to internalism, the mind and the environment are separate.

Perhaps it should not be surprising that so many people accept internal-
ism, at first glance, as a foregone conclusion. Lakoff (1987, 1997) provides a
number of naturally occurring linguistic examples of people taking for
granted the conceptual metaphor “the mind is a container.” For example,
people talk of “taking in” a movie or a book, being “full of ideas,” or, sadly,
being “empty-headed.” If the mind is indeed a container, then it must have 
discrete boundaries delineating what is inside and what is outside, and in the
case of the human mind, the skull seems to be the best box for the job.

However, it might surprise most cognitive psychologists that the majority
of philosophers of mind are, in fact, not internalists but externalists. That’s
right. The contemporary version of the discipline that invented theorization
about how the mind works—without which cognitive psychology would
surely not exist—generally leans toward an account of mind that many cogni-
tive psychologists have not even heard about. Although the internalist concep-
tion of mental states may initially seem intuitively obvious, such intuitions
can be severely challenged by Putnam’s (1975) Twin Earth thought experi-
ment. Imagine that there’s an alternative universe, and in this universe there’s
a terrestrial planet just like Earth, called Twin Earth. On this planet lives a man
who is exactly like Gary from our Earth. We’ll call him Twin Gary. In this
thought experiment, imagine that Twin Gary interacts with a fluid he calls
“water” in just the same way that Gary on Earth interacts with a fluid he calls
“water,” but the two fluids actually have very different chemical structures
(H2O on Earth, but XYZ on Twin Earth) and thus are fundamentally different
things. So what happens when our Gary visits Twin Earth to go swimming
with Twin Gary, and they exclaim in unison, “Gosh, I like swimming in this
water?” If you feel as though their respective mental states are not quite iden-
tical, because Gary’s mental state involves an incorrect reference to XYZ as
though it were Earth water, then you are predicating a mental state on the
truth value of a relationship that crosses the organism–environment barrier.
That is, you are using aspects of the environment to define Gary’s mental
state, and therefore—like it or not—you’re an externalist.

There are many criticisms of this thought experiment. For starters, given
that Earth humans are comprised of at least 60% H2O, and therefore Twin
Earth humans would probably be comprised of at least 60% XYZ, Gary and
Twin Gary can obviously not be perfect twins (Segal, 2000). But even dis-
regarding that, it might not be too unintuitive to imagine that Gary’s mental
state is simply incorrect or delusional because it refers to XYZ as though it
were H2O. The fact that we can see Gary’s mental state as incorrect is made



possible by our reference to the environment, not his. Perhaps Gary’s brain
state, despite being delusional, is exactly the same as Twin Gary’s brain state.
In this case, if you prefer to think of a mental state as equivalent to a brain
state, then Putnam’s (1975) thought experiment has not succeeded in chal-
lenging your internalist perspective at all.

Like this discussion, much of the debate between externalism and inter-
nalism has employed variations on such Twin Earth thought experiments to
test for a relatively static inclusion of the environment in determining the
truth value of belief states (e.g., Fodor, 1980; Segal, 2000; Wilson, 1994). In
contrast, a recent version of externalism that focuses rigorously on the imme-
diate participatory role of the environment (in addition to brain and body, of
course) in constructing mind has been called active externalism (Clark &
Chalmers, 1998). This perspective marshals demonstrations from self-organized
artificial intelligence (Beer, 1989; Brooks, 1991; Steels & Brooks, 1995),
demonstrations from connectionism and dynamical systems theory (Thelen &
Smith, 1994), observations of situated action (Greeno, 1998; Suchman, 1987),
of collective action (Hutchins, 1995), and collective intelligence (Lévy, 1997),
as well as a few thought experiments (Wilson, 1994), to argue for the impor-
tance of “cognitive properties of systems that are larger than an individual”
(Hutchins, 1995; for review, see Clark, 2001; Wilson, 2002). Haugeland (1995)
has dubbed it an “embodied and embedded” account of mind. Not only does
the central nervous system’s embodiment in a particular biological vehicle 
with particular sensors and effectors pose as a crucial expansion of the old-
fashioned concept of mind-as-just-brain, but that brain–body dyad’s embed-
ding in a particular environment makes the whole system a richly interactive
brain-body-environment triad.

Although the case for an embodied and embedded mind is compelling
for some (e.g., McClamrock, 1995; Ross, 1997; see also Shaw & Turvey, 1999;
Turvey & Shaw, 1999), with its robot implementations, computer simulations,
natural observations, and thought experiments, the one thing this literature
has been short on is controlled laboratory experimentation. Importantly, as
some of the most devoted (and sometimes unwitting) customers of the mind-
as-just-brain assumption, cognitive psychologists have found it easy to ignore
this new embodied and embedded perspective precisely because it has lacked
controlled experimental results. Therefore, a great deal of contemporary cog-
nitive psychology has gone about its merry way assuming internalism, as
though there were no alternative—completely unaware that some powerful
challenges to this perspective do indeed exist.

The intuition that a complete description of mental activity will come
solely from properties of the organism’s central nervous system is so strong
that it has successfully resisted quite a few attempts to dispel it. Not only has
the internalist perspective survived the recent critiques of contemporary
philosophers such as Putnam (1975), Haugeland (1995), Hurley (1998a), and
Clark (2001), but decades ago it survived Dewey (1896), Le Bon (1916), Ryle
(1949), Merleau-Ponty (1962), and Gibson (1966) as well, just to name a few.
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Cognitive Psychology’s Tacit Internalism

As one example manifestation of this internalist perspective in psychology, a
popular framework for theories of visual perception, the spatiotopic fusion
hypothesis critiqued by Irwin (1993), assumes that the successive retinal
images that are acquired in between saccadic eye movements are metrically
combined to construct and store an internal representation of the external
visual world inside the brain (see Marr, 1982). This kind of approach is at the
core of a representational theory of mind. An understanding of the external
visual world is proposed not to emerge from the continuous dynamic inter-
action of the organism with its environment (e.g., Gibson, 1979), but rather to
be computed by static knowledge representations stored somewhere in the
brain. This assumption of an “internal screen” (O’Regan, 1992) on which is
projected an image of the external visual world for the perusal of some central
executive has—despite its obvious homunculus problems—driven a great
deal of research in visual psychophysics, visual neuroscience, visual cognition,
as well as computer vision. Numerous theories have been constructed to
account for the problem of how such noisy, illusion-prone, ballistic optical
devices as the eyes can avail the construction of a contiguous metrically accu-
rate internally represented 3D model of the visual environment (for a review,
see O’Regan, 1992). O’Regan (1992) notes that over the years several researchers
have proposed not to solve this problem but instead to dissolve it (e.g.,
Gibson, 1950; Haber, 1983; Turvey, 1977; see also Bridgeman, van der Heijden,
& Velichkovsky, 1994; Bridgeman, 2002). If we do not have a contiguous met-
rically accurate internally represented 3D model of the visual environment in
our brains, then there is no need to figure out how our eyes and visual systems
build one (and perhaps computer vision should stop trying things that way
too; see Ballard, 1989; Churchland, Ramachandran, & Sejnowksi, 1994).
O’Regan (1992) suggests that rather than visual perception being a passive
process of accumulating retinal images from which to build an internal 3D
model, “seeing constitutes an active process of probing the external environ-
ment as though it were a continuously available external memory . . . if we so
much as faintly ask ourselves some question about the environment, an
answer is immediately provided by the sensory information on the retina,
possibly rendered available by an eye movement” (p. 484). Not unlike the
externalist philosophers, O’Regan and Noë (2001) claim that “activity in inter-
nal representations does not generate the experience of seeing. The outside
world serves as its own, external, representation” (p. 939).

If it is the case that relatively little of the external visual environment is actually
internalized, then logically, unexpected changes in the visual environment should
go unnoticed. For example, one should be able to change the color, location, and
other properties as well—even the very presence—of large objects in a complex
scene and have it frequently go unnoticed. This, however, clashes sharply with
our intuition that we are continuously aware of the complete contents of the
visual scene laid out before our eyes. This logical but counterintuitive prediction of
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O’Regan’s (1992) brand of visual externalism led directly to the recent cottage
industry of change blindness research (for a review, see Simons, 2000).

Abrupt changes in a display will typically attract attention immediately if
they take place during an uninterrupted eye fixation (e.g., Yantis & Jonides,
1990). However, it turns out that a range of minor ocular and attentional dis-
turbances are sufficient to mask this ability. If the image flickers briefly during
the scene change, participants rarely notice the change (Rensink, O’Regan, &
Clark, 1997). If the scene is briefly overlaid by a few blobs, or “mud splashes,”
flashed on the screen during the change—without occluding the region that
changes—participants rarely detect the change (O’Regan, Rensink, & Clark,
1999). If the scene change takes place during a saccade, it is likely to go 
unnoticed (Grimes, 1996; McConkie & Currie, 1996). And if the scene change
takes place during a blink, it is rarely detected (O’Regan et al., 2000). In fact,
even if the eyes were fixating within a degree of the object to be changed, right
before the blink, when the eyelids open back up, and the object has changed,
participants notice the change only 40% of the time (O’Regan et al., 2000).

This kind of phenomenon is not new, of course. In fact, decades ago
Highlights magazine for kids had a game involving two line drawings of a 
cluttered scene in which there were subtle differences, and the goal was to find
the differences between the two images. It was no simple task. Allow me to
demonstrate. Figures 11.1 and 11.2 show two photographs of the same scene,
slightly altered. (This scene was obviously not taken from an issue of Highlights.)
Count how many looks back and forth it takes to find any differences.

As you eventually noticed, figure 11.2 has a wine bottle in place of figure 11.1’s
vermouth bottle. This is no trivial difference; you’d really know what I mean if
you’ve ever run out of vermouth and tried to make a martini with wine
instead. But it probably took you a little while to find it, didn’t it? Can you find
any other differences? As is the case with most change blindness effects, once
you’ve noticed the difference, it seems so obvious that it’s hard to imagine how
you could have missed it for so long.

Change blindness also works in dynamic, real-world scenarios. For exam-
ple, inspired by a gag from the old Candid Camera television show, Simons
and Levin (1998) had a confederate accost passersby on the Cornell University
campus and ask for directions on a map. Midway through the conversation,
two young men carrying a door walked between the confederate and the
passerby. The confederate and one of the door carriers exchanged places, and
the door carrier took up the conversation as if nothing unusual had happened.
Only about half the time did the passerby notice that the person he was 
talking to had changed!

The dramatic effects observed in change blindness experiments provide
compelling support for an externalist claim that the locus of perception is as
much in the environment itself as it is in the organism interacting with that
environment (e.g., Noë, Pessoa, & Thompson, 2000). This is not to say that
nothing about the environment is stored internally. As the reports show,
semantically relevant scene changes are often detected more than 50% of the
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Figure 11.2. Note subtle differences between this photograph and photo-
graph in figure 11.1.

Figure 11.1. A photograph of the fixings for a small martini party. As in
the typical “change blindness” experiment, there are some subtle differences
between this and figure 11.2 that may take a little while to detect. See how
many you can find.



time (e.g., Hollingworth & Henderson, 2002; Hollingworth, Williams, &
Henderson, 2001). For example, when the location of an object changes the
set of navigational affordances in a scene, such as suddenly adding an
obstructing airplane on a pilot’s runway, such a change is detected about 75%
of the time (Haines, 1991). Moreover, implicit measures of perception, such as
fixation duration, often reveal greater change detection than that seen with
explicit verbal report (Hayhoe, 2000). Thus, certain attended aspects of the
scene are stored in internal memory, and when those aspects are altered in the
scene, the mismatch between internal and external representations is detected
at least somewhere in the visual system. This point will become especially
important in the later discussion of exactly how visual properties that are not
stored internally can be accurately indexed and accessed from the external
environment, via internally stored semantic tags for the index.

Thinking Outside the Brain

If the external environment is even just occasionally relied on as a source of
visual memory, one can ask whether it is possible in those circumstances to
purposefully take advantage of and optimize that external memory. In fact,
Kirsh (1995; see also Kirsh & Maglio, 1994) cites numerous real-world exam-
ples of people doing exactly that. Kirsh (1995) makes the observation that we
physically “jig” our environment with physical constraints that structure and
optimize our interaction with it. For example, when moving into a new house,
deciding what utensils, dishes, and pans to put in which kitchen drawers and
cabinets is often done with imagined plans of when and where the various
accoutrements will be needed during cooking and cleaning. When arranging
one’s office desk, the computer, the telephone, the stapler, the tape dispenser,
in and out boxes, and so on are all placed in locations that the user expects will
maximize their coordinated and sequential use. Similarly, a colleague of mine,
who worries that he paces too much while lecturing, deliberately places chairs,
overhead projectors, and so on, blocking the way of the most natural pacing
routes. In fact, many Montessori (1917/1946) math-learning techniques
exploit a child’s early knowledge of spatial properties/constraints to jig their
educational tools and implements in ways that scaffold and accelerate learn-
ing. These are all examples of physically jigging one’s environment so that
accessibility and restriction of various objects and actions is optimally timed
for successful behavior and learning. This means that information is being
built into the environment, and thus that information will not always need to
be cognitively represented. In a way, a properly jigged work environment can
be counted on to do some of the thinking for you.

Additionally, Kirsh (1995) notes that one way of informationally jigging
an environment is to “seed” it with attention-getting cues. For example, to
help you remember to bring a book to school, you might place the book next
to the front door inside your house. Also, many people have specific wall
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hooks or dishes near the front door where they keep their keys. Thus, the
knowledge that one’s keys will be needed when leaving the house need not be
an active component of the cognitive plan to go to the store because that
knowledge is built into the environment to become perceptually salient at just
the right time. In these kinds of circumstances, we’ve externalized (offloaded,
if you will) information onto our environment, thereby freeing up internal
processing capacity, and thus certain crucial bits of information that are 
necessary for complex behavior are provided not by neural-based memory
representations but by the environment itself, on a need-to-know basis (see
Scaife & Rogers, 1996). In fact, one might say, having an intelligent environ-
ment is just as important as having an intelligent brain.

Deictic Pointers in Space

In the next sections, I will outline several examples of the bidirectional inter-
action between the environment and cognition, examples of salient external
information triggering internal processes, as well as internally generated
information being linked back to external objects and locations. In fact, we
humans have quite a penchant for externalizing our internal information. Of
course, we communicate to others by linguistic means (speaking and writing)
as well as nonlinguistic means (hand gestures, facial expressions, prosody,
etc.). For example, during communication, people often gesture in ways that
help depict an object being described (Streeck, 2002), locate referents in a 
discourse space (McNeill, 2005), or even assist in the conceptualization of
complex explanations (Alibali, Kita, & Young, 2000).

But we also find ways to externalize our internal information in noncom-
municative situations. We recite phone numbers out loud to ourselves so that
the environment can deliver the information to our ears, doubling the phono-
logical loop. We make lists of things to do and of groceries to buy. Some of us
talk to ourselves. Some of us even write on our hands. We write down
appointments on calendars. We occasionally point a finger at an object when
we’re silently reminding ourselves to do something with it. And sometimes
when we imagine things, our eyes virtually paint our imagery on the world.

In a headband-mounted eye tracking experiment, Spivey and Geng (2001,
experiment 1; see also Spivey et al., 2000) recorded participants’ eye move-
ments while they listened to spoken descriptions of spatiotemporally dynamic
scenes and faced a large white projection screen that took up most of their
visual field. For example,“Imagine that you are standing across the street from
a 40-story apartment building. At the bottom there is a doorman in blue. On
the 10th floor, a woman is hanging her laundry out the window. On the 29th
floor, two kids are sitting on the fire escape smoking cigarettes. On the very top
floor, two people are screaming.” While listening to the italicized portion of this
passage, participants made reliably more upward saccades than in any other
direction. Corresponding biases in spontaneous saccade directions were also
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observed for a downward story, as well as for leftward and rightward stories.
Thus, while looking at ostensibly nothing, listeners’ eyes were doing some-
thing similar to what they would have done if the scene being described 
were actually right there before them. Instead of relying solely on an internal
“visuospatial sketchpad” (Baddeley, 1986) on which to illustrate their mental
model of the scene being described, participants also recruited the external
environment as an additional canvas on which to depict the spatial layout of
the imagined scene.

Although eye movements may not be required for vivid imagery (Hale &
Simpson, 1970; but see Ruggieri, 1999), it does appear that they often natu-
rally accompany it (e.g., Antrobus, Antrobus, & Singer, 1964; Brandt & Stark,
1997; Demarais & Cohen, 1998; Neisser, 1967; see also Hebb, 1968). But what
is it that the eyes are trying to do in these circumstances? Obviously, it is not
the case that the eyes themselves can actually externally record this internal
information. When the eyes move upward from the imagined 10th floor of the
apartment building to the imagined 29th floor, no physical mark is left behind
on the external location in the environment that was proxying for that 10th
floor.

Rather than a physical mark, perhaps what they “leave behind” is a deictic
pointer, or spatial index. According to Ballard and colleagues (1997; see also
Agre & Chapman, 1987; Pylyshyn, 1989, 2001), deictic pointers can be used in
visuomotor routines to conserve the use of working memory. Instead of stor-
ing all the detailed properties of an object internally, one can simply store an
address, or pointer, for the object’s location in the environment—perhaps via
a pattern of activation on an attentional/oculomotor salience map in parietal
cortex (e.g., Duhamel, Colby, & Goldberg, 1992), along with a spatial memory
salience map in prefrontal cortex (e.g., Chafee & Goldman-Rakic, 1998, 2000;
Goldman-Rakic, 1993). If this spatial pointer is associated with some kind of
coarse semantic information, for example, a pattern of activation in one of the
language cortices, auditory cortex, or even visual cortex, then the spatial
pointer can be triggered when sensory input activates that semantic informa-
tion. Such pointers allow the organism to perceptually access relevant proper-
ties of the external world when they are needed (rather than storing them all
in memory).

In the case of Spivey & Geng’s (2001) eye movements during imagery, a
few pointers allocated on a blank projection screen will obviously not refer-
ence any external visual properties, but they can still provide perceptual-
motor information about the relative spatial locations of the internal content
associated with the pointers. If one is initially thinking about x (e.g., the 10th
floor) and then transitions to thinking about y (e.g., the 29th floor), then 
storing in working memory the relation above (y, x) may not be necessary if
the eye movements, and their allocation of spatial indices, have embodied that
spatial relationship already (see Pylyshyn, 1989). In this way, a low-level motor
process, such as eye movements, can actually do some of the work involved in
the high-level cognitive act of visual imagery.
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Although it is the address in the pointer that allows one to rely on the exter-
nal environment to store information, the semantic tags for the pointer are also
a very important ingredient in this recipe. The internally represented semantic
tags that accompany a spatial pointer could be something as simple as a sound
that is associated with a visual object that frequents a particular location in
space. It could be the experimenter-induced task-relevant designation of target.
It could be rich information such as “the doorman in blue at the bottom of
the 40-story apartment building.” Or it could be a reminder of what to do
with the objects in the pointer’s location: “Pick up these car keys as you leave
the house because it will make starting the car much easier.”A pointer/reminder
must have some internal content attached to it indicating what it’s for, so that
one can know when and how to use it (e.g., Chun & Nakayama, 2000; Guynn,
McDaniel, & Einstein, 1998). Otherwise, you wind up like Ernie on Sesame
Street trying to explain to Bert why he has a string tied around his finger when
he can’t remember what it was that the string was supposed to remind him
about. A pointer with no internal information attached to it is useless.

Deictic Pointers to Objects

To illustrate the use of such spatial indices in visual attention, Pylyshyn intro-
duced a multiple object tracking task (e.g., Pylyshyn & Storm, 1988; Scholl &
Pylyshyn, 1999). In this task, participants view an initial display of indistin-
guishable discs or squares of which a subset flash several times to indicate that
they are the targets. Then all the objects begin to move in pseudo-random
directions across the screen, and the participant’s task is to keep track of the
handful of target discs while maintaining central fixation. Participants can
successfully track up to about four or five such targets, but if there are more
than that, they begin to make errors. As participants must maintain central
fixation throughout this task, these spatial indices are clearly being allocated
and updated extrafoveally.

In another experimental paradigm that demonstrates the use of spatial
indices in natural visuomotor processing, Ballard, Hayhoe, and Pelz (1995)
recorded participants’ eye movements during a block-pattern copying task,
with a model pattern, a resource of blocks, and a workspace in which to copy
the model. In this kind of framework, eye position serves the function of
allocating spatial pointers for working memory, in which a pointer stores an
address in spatial coordinates along with little more than a few semantic tags
for when and why to use the pointer. For example, a pointer’s address might
be something like “the block just to the right of the top-leftmost block in the
model,” and its semantic tag might be “the block I am working on now.” Thus,
if the participant has just finished placing the previous block in the incomplete
block pattern in the workspace, then this pointer can guide the eyes to this
new block in the model block pattern to access and store its color. With the
color of this block now stored internally, the eyes can then move to the resource
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space, containing many blocks of various colors, and search for a block of the
same color. Once that new block is picked up, to put it in the appropriate loca-
tion in the workspace, one needs to know its position relative to the other
blocks in the incomplete block pattern. As the pointer’s address itself may
make reference to blocks that have not yet been placed in the workspace, the
eyes must once again call up this pointer allocated to “the block just to the
right of the top-leftmost block in the model” and perceptually access its spa-
tial relationships with the adjacent blocks. With this new information stored
in working memory, the eyes can move down to the workspace for placement
of the new block. The pointer with the tag “the block I am working on now”
must then relinquish its current address and find a new one elsewhere on the
model block pattern and begin the process all over again. This sequence of
fixating the model, then the resource, then back to the model, before finally
looking at the workspace for block placement was indeed the modal pattern of
eye movements observed in Ballard et al.’s (1995) experiments.

But what happens if the external information referred to by these spatial
indices changes? According to the framework, one should expect the person
copying the block pattern not to notice when a block changes color, except
under those circumstances in which the process is at a stage where the visual
property that’s been changed is the one currently being stored in working
memory. This is, indeed, exactly what happens (Hayhoe, 2000; Hayhoe,
Bensinger, & Ballard, 1998). If a few deictic pointers have been allocated to 
particular objects or regions of space, and the current task activates a semantic
tag belonging to one of those pointers, the system will automatically seek the
address associated with that pointer—fixate the indexed object or location—
and perceptually access the external information at that address. If neither the
pointer’s tags nor working memory contain information that conflict with this
externally accessed information, then naturally any change that took place 
in that external information will go undetected. The newly accessed visual
properties will be trusted as if they had been that way all along.

Deictic Pointers to Absent Objects

Interestingly, accessing a pointer when its semantic information is activated is
so automatic that it can even happen when the object to which it was originally
allocated is no longer present at all. In Spivey and Geng’s (2001) second exper-
iment, they presented four different shapes of varying colors, tilted 15 degrees
leftward or rightward, in the four quadrants of the screen. Participants were
instructed to look at the object in each quadrant and then back to a central fix-
ation cross. One of the four shapes then disappeared and participants were
asked to recall either its color or its direction of tilt. On as many as 50% of
the trials, as they formulated their answer, participants spontaneously fixated
the empty quadrant that used to contain the shape being queried—despite the
fact that they could easily determine in peripheral vision that the object was
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no longer there. Participants rarely looked at the other remaining shapes. This
is exactly what one should expect if observers are employing pointers to rely
on the external world to store object properties in addition to what is stored in
the pointers’ semantic tags themselves and in working memory. The task calls
on the shape’s name (e.g., diamond), which activates the pointer with that tag,
and queries a property of that shape (e.g., color). If the pointer’s tag does not
include the attribute (e.g., green), then the pointer’s address to the external
environment is the next obvious resource. A relatively automatic eye move-
ment to that address verifies that the queried information is absent from the
external environment. At this point, internal working memory is the only
resort. On the trials where participants fixated the empty quadrant, as well as
on the trials where they did not fixate it, the same information resource, internal
working memory, is used to answer the question. Thus, one should actually
not expect a difference in memory accuracy between trials in which the empty
quadrant was fixated and those in which it was not. And that is, indeed, what
Spivey and Geng (2001, experiment 2) found.

Spivey and Geng (2001) concluded that because there is no improvement
of memory, the eye movement to the empty quadrant does not appear to be
an attempt to recruit visual surroundings to encourage a context-dependent
improvement of memory. Nor is it a deliberate, strategic, attempt to answer
the question by looking at the queried object because participants can easily
tell from peripheral vision, as well as from previous trials, that the object is not
there. Rather, the eye movement to the empty quadrant is an automatic
attempt by an embodied working memory system to access the contents of a
pointer’s address in the external environment. Just as in the change blindness
studies, this embodied working memory system does not know that the con-
tent in that external location has been removed until it accesses the pointer
with that address. Although it is possible to attend to and access these point-
ers without eye movements when the task instructions require it (Pylyshyn &
Storm, 1988), a wide range of research indicates that eye movements naturally
follow such allocations of attention (e.g., Ballard et al., 1997; Corbetta &
Shulman, 1999; Henderson, 1993; Hoffman, 1998; Tanenhaus et al., 1995).

Welcome to Hollywood Squares

Perhaps it is not surprising that an embodied working memory system, rely-
ing on pointers that reference visual objects, elicits eye movements to the
addresses of those pointers when the system is trying to access memory of
visual properties. But what about when the content associated with that
pointer is not visual but auditory? In a series of experiments referred to as
Hollywood Squares because the task somewhat resembles the television game
show, Richardson and Spivey (2000) presented four talking heads in sequence,
in the four quadrants of the screen, each reciting an arbitrary fact and then
disappearing (e.g., “Shakespeare’s first plays were historical dramas. His last
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play was The Tempest.”). With the display completely blank except for the lines
delineating the four empty quadrants, a voice from the computer delivered a
statement concerning one of the four recited facts, and participants were
instructed to verify the statement as true or false (e.g., “Shakespeare’s first play
was The Tempest.”).

While formulating their answer, participants were twice as likely to fixate
the quadrant that previously contained the talking head that had recited the
relevant fact than any other quadrant. Despite the fact that the queried infor-
mation was delivered auditorily, and therefore cannot possibly be visually
accessed via a fixation, something about that location drew eye movements
during recall. Richardson and Spivey (2000) suggested that spatial indices had
been allocated to the four quadrants to aid in sorting and separating the events
that took place in them. Thus, when a semantic tag of one of those pointers was
called on (e.g., Shakespeare), attempts to access the relevant information were
made both from the pointer’s address in the external environment and from
internal working memory. As before with Spivey and Geng’s (2001) findings,
because the external environment no longer contained the queried informa-
tion, internal working memory was the sole determinant of memory accuracy.
Therefore, verification accuracy was the same on trials that did have fixations
of the queried quadrant as on trials that did not.

Richardson and Spivey (2000, experiment 2) replicated these results using
four identical spinning crosses in the quadrants during delivery of the facts,
instead of the talking heads. Participants seemed perfectly happy to allocate
pointers to the four facts in those four locations, even when spatial location was
the only visual property that distinguished the pointers. Moreover, in the track-
ing condition (Richardson & Spivey, 2000, experiment 5), participants viewed
the grid through a virtual window in the center of the screen. Behind this mask,
the grid moved, bringing a quadrant to the center of the screen for fact presen-
tation. Then, during the question phase, the mask was removed. Even in this
case, when the spinning crosses had all been viewed in the center of the com-
puter screen, and the relative locations of the quadrants implied by translation,
participants continued to treat the quadrant associated with the queried fact 
as conspicuously worthy of overt attention. In fact, even if the crosses appear 
in empty squares that move around the screen following fact delivery,
participants spontaneously fixate the square associated with the fact being 
verified (Richardson & Kirkham, 2004, experiment 1). Thus, once applied, a
deictic pointer—even one that attempts to index auditorily delivered semantic
information—can dynamically follow the moving object to which it was 
allocated (e.g., Scholl & Pylyshyn, 1999; see also Tipper & Behrmann, 1996).

It actually should not be surprising that an embodied working memory
system using deictic pointers would attempt to index information from events
that are over and done with. The pointer doesn’t know that the sought-after
information at its address is long gone precisely because it has offloaded that
knowledge onto the environment—it wouldn’t be a pointer otherwise. These
findings demonstrate the robustness and automaticity with which spatial
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indices are relied on to employ the body’s environment as a sort of notice
board of virtual sticky notes that complement our internal memory.

Cross-Cutting the Internal and External

Spatial indices that connect internal neural patterns to external environmental
patterns appear to be employed not just in low- and mid-level perception, such
as perceptual-motor routines (Hayhoe, 2000) visual working memory (Ballard
et al., 1995) and visual imagery (Spivey & Geng, 2001) but also in higher level
cognition, such as reading (see Kennedy, 1992; Weger, 2005), spatial memory
for semantic information (Richardson & Spivey, 2000), and even problem solv-
ing (Grant & Spivey, 2003; see chapter 10). Based on these findings, I suggest
that the objects of thought, the very things on which mental processes directly
operate, are not always inside the brain (e.g., Hutchins, 1995; O’Regan & Noë,
2001; see also Dretske, 1997). The cognitive processing that gives rise to mental
experience may be something whose functioning cuts across the superficial
physical boundaries between brain, body, and environment.

And those boundaries are, indeed, superficial. Even trying to localize
them can quickly turn into an arbitrary decision process, fraught with subjec-
tive bias. Take, for example, a continuous environmental sound that travels
into the ear and produces the mental experience of audition. The sound waves
outside of the auditory canal seem naturally definable as external to the body
and brain, but what about the same vibrations in pressure inside the auditory
canal? Then, those vibrations in air pressure mechanically exert a determinis-
tic causal influence on the vibration of the tympanic membrane. Is that where
we cross the boundary from phenomena that belong to the external environ-
ment to phenomena that belong to the internal mental activity of the organ-
ism? The tympanic membrane, hammer, anvil, and stirrup then amplify the
vibration through the liquid media in the cochlea, displacing the hair cells
there. Have we crossed the boundary into internal mental phenomena now?
Next, the hair cells transduce their mechanical deformation into electro-
chemical signals. Is this where the physical suddenly and discretely becomes
mental? Admittedly, sensory transduction is very impressive, but it is well
understood as a systematic biophysical and biochemical process, certainly not
mysterious or magical. Suddenly adding electrically charged chemicals to a
process does not, on the face it, straightforwardly add mental experience to 
it. Besides, we are certainly not introspectively aware of the early sensory 
patterns of sound representation at the level of the hair cells, and indeed many
scientists would argue that the mental experience of audition takes place at
much later cortical stages of the auditory system. Clearly, when following a
substantially deterministic causal chain of events that appears to transition from
external to internal, localizing the discrete point at which external physical
events belonging to the environment become internal mental events belonging
to the organism or to the mind is extremely difficult, if not impossible.
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Perhaps one can say that the brain is more or less separable from the envi-
ronment if one ignores very real problems with exactly where to draw even
that separation (see Jarvilehto, 1998). However, according to externalism, one
cannot say that the mind is separable from its environment. For example,
when the environment is removed, under sensory deprivation, the coherence
of mind clearly begins to dissolve. Thought becomes disorganized, imperfect
perceptual simulations of an environment result in bizarre hallucinations, and
eventually delusions take over (Hebb, 1961; Lilly, 1956; Robertson, 1961).
Similarly, during REM sleep, the brain constructs less than perfect perceptual
simulations that take the place of genuine sensory input, and most people can
remember doing things and making decisions in nonlucid dreams that they
would never intentionally do or make in real life. The dream mind, with its
altered simulated environment, is thus an altered mind. There can be no such
thing as a core mind that exists independently of the organism’s environment,
because that fraction of mind that is contributed by the central nervous sys-
tem does not on its own resemble what we mean when we say “mind.” The
brain is like an ingredient in a baking recipe, whose contribution—though
essential to the result—involves such a complex chemical transformation 
with the other ingredients that its original individual properties are almost
unrecognizable in the end product. An individual’s personal (seemingly 
internally generated) sense of intention actually self-organizes across multiple
coupled time scales from a combination of evolutionary, biological, cultural,
parental, and social constraints (e.g., Gibbs, 1999; Juarerro, 1999; Van Orden &
Holden, 2002), not the least of which is—for evidence admissible to the court
of cognitive psychology, anyway—experimenter instructions.

In this view, mind becomes something not completely dependent on the
body, although certainly not completely independent of it either. Rather, mind
appears to be an emergent property that arises among the interactions of a
brain, its body, and the surrounding environment—which, interestingly, often
includes other brains and bodies. Multiple brains, bodies, and environmental
properties will often interact and function in a manner that most decidedly
does resemble what we mean when we say “mind,” as seen in collaborative task
performance, mimicry, and other examples of social embodiment and
embeddedness (e.g., Barsalou et al., 2004; Hutchins, 1995; Knoblich & Jordan,
2003; Schmidt, Carello, & Turvey, 1990; Sebanz, Knoblich, & Prinz, 2003;
Spurrett, 2003; Stary & Stumptner, 1992).

What Does Such a Mind Look Like?

But what does such a nonbrain-based mind look like? The mind, to an exter-
nalist, must be a rather graded entity, like a fuzzy set (Zadeh, 1965). In fuzzy
set theory, the inclusion of members in a set is graded rather than all or none.
A fuzzy set is often depicted as something like a probability distribution, with
a mode and tails that gradually approach zero (see chapter 6). Fuzzy set theory
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is useful to an externalist because determining the discrete boundary in the
external environment where things suddenly go from being part of the mind
to being not part of the mind is arguably impossible. Instead, one can hypo-
thesize graded membership of external objects and events to the set of mental
contents, gradually falling off with greater distance and with more mediated
causes (see Clark & Chalmers, 1998).

According to this version of externalism, the fuzzy set for your mental
contents would include your brain, your body, as well as objects in the envi-
ronment, and partially overlapping—at multiple spatial scales—with other
mindlike fuzzy sets. Figure 11.3 presents an idealized sketch of this fuzzy set.
The small oval in the middle of the diagram represents the classical set of your
brain contents. Things inside that Venn diagram are part of your brain. Things
outside it are not. The circumscribing oval represents the classical set of your
body contents. Things inside that Venn diagram are part of your body. Things
outside it are not. The fuzzy set of mental contents subsumes these two sets,
and extends somewhat beyond them in x- and y-space. The third dimension
of height in the diagram indicates degree of membership.

Importantly, the fuzzy set of mental contents includes to varying degrees
not just physical material in the present (such as a brain, a body, and other
objects in the immediate environment) but also causal forces in that fuzzy 
set’s history. As one traces back the causal forces of the environment’s role in
determining the set of mental contents, one must include—with some
nonzero degree of membership—social influences accrued over days, parental

Figure 11.3. Along two spatial dimensions (x and y) the classical
set of body contents (larger circle) circumscribes the classical set of
brain contents (smaller circle). However, according to externalism,
the fuzzy set of mental contents subsumes them both, as well as
some of the properties of the surrounding environment, with a 
distribution function indicating degree of set membership (z-axis).
Nonspatial dimensions that are likely to be relevant, such as 
semantic features and causal forces, are not depicted.
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influences accrued over decades, cultural influences accrued over centuries,
and evolutionary influences accrued over many millennia.

Thus, the temporal dynamics of these fuzzy minds/sets become crucial
for their accurate description—especially when one considers what happens
as one fuzzy mind/set interacts with others over time. Figure 11.4A presents a
schematic depiction of three bodies (and brains), like the one in figure 11.3,
moving in space as a function of time. Only one spatial dimension is shown
so that the second dimension, time, can be easily graphed. In figure 11.4A, two

Figure 11.4. Using only one of the spatial dimensions from 
figure 11.3, and adding a temporal dimension, panel A presents
spatial trajectories of three bodies interacting over time. In panel
B, the probabilistic distributions intended to characterize the
minds of those bodies do more than interact, they merge into one
another at times.



bodies travel near one another for a period of time, then they diverge, and one
of them begins traveling near a different body. Because time is fractal, or self-
similar, in this framework, the scale of the temporal dimension for these inter-
actions could be just about anything. The bodies could be interacting over the
course of minutes (going from one hallway conversation to another), over the
course of hours (going from one meeting to another), over the course of weeks
or years or decades (going from one friendship/relationship to another).

For a fuzzy externalist, the depiction of these trajectories looks impor-
tantly different when they are defined over how the minds interact instead of
how the bodies interact. Note in figure 11.4B how the fuzzy set distributions
merge as they approach each other. When two bodies are particularly close in
space (and presumably close in other nondepicted semantic dimensions), the
envelope of their distributions approaches having one mode instead of two.
This demonstration offers a portrayal of how multiple different brains can
cohere to such a degree that they function, at least to some extent, as though
they were one mind: a “shared manifold of intersubjectivity” (Gallese, 2003;
see also Sonnenwald & Pierce’s, 2000, interwoven situational awareness).
The findings described in this chapter suggest that many of the interfacing
links that maintain this shared manifold are the spatial indices that connect
bundles of information in one brain to bundles of information in other brains
via bundles of information in the environment.

Ramifications and Speculations

With this considerable dependence on external information for its function, the
mind is perhaps best measured by its capabilities rather than its capacities—by
its processing, not its putative representations (see Jones & Smith, 1993; see also
Pirolli & Card, 1999). To borrow a common adage, a mind should be judged by
what it does, not by what it has. Crucially, the mind’s capabilities and processing
are inextricably linked to the organism’s continuous and dynamic interaction
with the environment. According to active externalism, it is that very interaction
between organism and environment from which “mind” emerges.

A wide adoption of this externalist concept of mind would have pro-
found and far-reaching consequences for society. Much more than just
reshaping the theories and experimental methods of cognitive psychology
and cognitive science, externalism legitimates the concepts of distributed
cognition (Hinsz, Tindale, & Vollrath, 1997; Jonasse, 1995; Nowak, Vallacher,
& Burnstein, 1998), transactive memory systems (Wegner, 1995; Weldon,
2001), intersubjectivity manifolds (Gallese, 2003), and the collective mind
(Yoo & Kanawattanachai, 2001). Moreover, externalism promises new and
different applied understandings of social behavior, group decision making,
and even personal relationships (e.g., Hutchins, 1995; Larson et al., 1998;
Pedersen & Larsen, 2001). For example, when you spend time with a group
from a different demographic background, you don’t just wind up acting like
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someone else, you are someone else. For a couple to “be one” becomes more
than a pleasing metaphor, it becomes a scientifically viable statement of fact
(see Hollingshead, 1998; Wegner, Erber, & Raymond, 1991). Externalism
also has implications for treatments of culture, explaining how a tradition
or fashion or sociological pattern might literally “have a mind of its own”
(Cole & Engeström, 1997). Indeed, a serious reexamination of the concept of
individual responsibility instigated by externalism would shake the very
foundations of Western legal theory, shifting much of the focus of reform
from individual criminals to the criminogenic conditions that create them
(Haney, 2002).

Finally, and most important of all, a sincere espousing of externalism
radically alters one’s phenomenological sense of self. For example, all of the
previous chapters in this book have tended to encourage the reader to think
like a dynamical connectionist and conceive of the brain as an interactive
dynamical system that enacts mind. While you are replacing your computer
metaphor of the mind with a dynamical systems account of the mind, you
might be tempted to imagine your mind as a kind of floating ball that moves
around in the high-dimensional neural state space of the brain. What you
have to be careful about, however, is conceiving of your self as the equivalent
of a little homunculus sitting on that ball going along for the ride. You are not
a little homunculus. You are not even the ball. You are the trajectory.

As the primary message of this entire book, I think this is an important
realization that focuses emphasis on the continuous past, present, and (antic-
ipated) future of the dynamical mind. The mind is not a container of know-
ledge objects. It is not that static. The mind is a process composed of many
interactive subprocesses. The trajectory that the state of the brain travels, in its
neural state space, is continuous in both space and time. In this treatment of
mind, there are no discretely delineated periods of time or regions of state
space in which a symbolic unchanging representation could reside.

However, the radical amendment proposed by the present chapter is that
this “trajectory through neural state space” account of the mind is still incom-
plete. If you widen your scope just enough to examine that neural dynamical
system as embedded inside a larger dynamical system comprising the environ-
ment and other organisms, then the self is no longer conceived of as an ivory
tower in the skull and can be understood as an amalgam of interweaving
influences from both internal and external sources. That is, the dimensions
that define your mental trajectory are not only neural firing rates but also 
biomechanical variables that constrain how your body interfaces with the
environment, as well as information-bearing properties of that environment
itself. This larger dynamical system describes the range of trajectories exhib-
ited by that brain-cum-environment process. And the prevailing argument
throughout this chapter has been that the embedding of that neural dynami-
cal subsystem inside the larger environmental dynamical system prevents
them from being categorically separable. Given that, now ask yourself the 
following question: Even in this larger nondecomposable dynamical system
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comprising organism and environment, is it still the case that “I am the trajec-
tory?” Perhaps the answer to that question, somehow, is “yes.”

Well, maybe it’s like Casy says. A fella ain’t got a soul of his own, just a
little piece of a big soul—the one big soul that belongs to everybody. . . .
I’ll be everywhere—wherever you can look. Wherever there’s a fight so
hungry people can eat, I’ll be there. Wherever there’s a cop beatin’ up a
guy, I’ll be there. I’ll be in the way guys yell when they’re mad. I’ll be in
the way kids laugh when they’re hungry and they know supper’s ready.
And when the people are eating the stuff they raise, and living in the
houses they build—I’ll be there too.

—Henry Fonda (as Tom Joad in Grapes of Wrath)
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12

Dynamical (Self-)Consciousness?

Perhaps the immobility of the things around us is forced upon
them by our conviction that they are themselves and not anything
else, and by the immobility of our convictions.
—Marcel Proust

See this? This is this. This ain’t something else. This is this.
—Robert DeNiro

Mindful of Continuity

In the movie The Deer Hunter, Robert DeNiro’s character was trying to convey
to one of his more careless hunting partners that the world is not fuzzy, blurry,
and full of slippery gray areas that tolerate slop and error; that the world can
indeed be carved into discrete, rigid, nonoverlapping categories that do not
suffer fools. The immobility of his conviction is palpable when he delivers this
cryptic statement in reference to a bullet held between his thumb and index
finger. Intuitively, it seems that such a formal logical world would be safe, pre-
dictable, and definable. Every communication between conversants would be
flawless. Every perception would be perfectly repeatable from observation to
observation, as well as from observer to observer. And every scientific descrip-
tion could be based in discrete Boolean logic.

Unfortunately, such a world would also be dangerously inflexible, not to
mention downright boring. We know that we do not live in such a world pre-
cisely because communications always lose some information during transfer
(from a sender to a receiver), perceptions are never perfectly repeatable, and a
number of sciences have already been forced to employ complex dynamical
and/or probabilistic mathematical descriptive formats. The physical world in
which we live has an ontological graded continuity stretching across the vast
majority of epistemological categories that one wishes to impose on it.
Perhaps the most important thing to acknowledge with regard to our relation-
ship with this continuous world is that our minds are not separate from it. Just
as a key understanding in contemporary physics is that a physical phenome-
non is not independent of the observational process that records it, a crucial
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understanding in psychology must be that our own observational processes
are not independent of the physical phenomena that we observe. For example,
when we watch a bride and groom dance, it is not the case that the dancers
produce an event that plays out exactly the same way regardless of whether
they are being watched. The observers clearly influence that physical process.
And of course, the visual and auditory patterns of the dance clearly influence
the observers’ brains. Thus, a cyclic interplay ensues between the observers
and the observed that changes both parties. They become one system instead
of two. When we (seemingly passively) perceive the “outside world,”we unavoid-
ably interact with that world, whether we want to or not. As a result, our per-
ceptual process becomes part of that world, not just part of our brains 
(see O’Regan & Nöe, 2001).

Importantly, this spatial continuity between mind and environment is
accompanied by a temporal continuity between one perception and the next,
between one thought and the next. When you introspect about how your
mind works, what you think you’re thinking is just the tip of the iceberg.
Or perhaps more fitting with a continuity approach to psychology, what 
you think you’re thinking is a lot like the collinear but unconnected exposed
stitches on the outside of a hand-sewn hem: each stitch looks like a separate
individual unit, but of course they are actually just the visible portions of one
continuous thread. For example, when you are reading this sentence, it might
feel like you are experiencing one thought, or concept, and then another and
then another. Not so. According to the continuity of mind thesis, that intro-
spective impression of one discrete mental state after another is an illusion
caused largely by the discreteness of the semantic labels we use in our internal
monologue and by the discreteness of some of our goal-directed motor output.
Our actions on the world around us and our unspoken narration to ourselves
sometimes appear to be composed of separable units, particularly as we auto-
matically apply linguistic labels to certain regions of mental state space.
However, the mental activity that produces those actions and self-narration is
not composed of separable units. This mental activity is one continuous tra-
jectory through a state space containing graded attractor basins that often cor-
respond to the apparent units, but this trajectory rarely dwells near any one
attractor for long, and indeed spends most of its time in transit, in between
labeled regions. Thus, although you might feel as though you think p and then
q and then r, what you’re actually thinking during that period is mostly p and
partly q, then partly p, partly q, and perhaps a bit of m and x, then mostly q and
partly r, and so on. This temporal contiguity in thought has profound impli-
cations not just for the cognitive sciences but for everyday life as well.

The genuine continuousness of thought—in the face of apparent inter-
mittent pieces of thoughts, and in direct opposition to the symbol-processing
mind-as-computer metaphor—has been the leitmotif running throughout this
book. Together, we have explored this temporal continuity in several popular
cottage industries in cognitive psychology, including categorization, language,
vision, action, and even reasoning. Now, here we are discussing introspection.
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Yes, that is correct. Indeed, here do I stand before you, compelled, for better
or worse, to end with what has become the obligatory chapter on conscious-
ness for books like this. I suppose, after all, the continuity of mind thesis may
have some interesting consequences for the notion of consciousness, for those
who care about such things. Note, however, that nothing in the preceding
chapters hinges on the speculations that I will propound in this chapter. If you
find my musings on consciousness objectionable, feel free to pay them very
little attention. That’s what I do. The strengths of this final chapter are not in
its philosophical rigor, but in its casual approach to getting the reader to think
about what the continuity of mind has to say about your everyday mental
life—and it has some nifty illustrations, too.

I have no intention of slogging through a comprehensive literature review
of how philosophers and psychologists have debated over the notion of con-
sciousness. There are entire books where one can find scholastically responsi-
ble treatments like that, such as Blackmore (2003), Dietrich and Hardcastle
(2005), Gray (2004), Kim (1998), Koch (2004), and Polger (2004), among
many others. Perhaps more constructively, this chapter can be treated as a
guide to thinking about ways the continuity of mind has implications for our
everyday thoughts and experiences—irrespective of whatever consciousness
truly is. As an Internet blogger who covered my research recently put it, “Even
if this new study is right, what will it change for us? Will you wake up differ-
ent tomorrow morning?” Parts of this chapter just might convince you that
you will. I know I did.

Laying Siege to the Ivory Tower of Consciousness

The first potential implication—and a rather controversial one—that the 
continuity of mind might have for consciousness is that it may actually be
irrelevant, unnecessary, or even nonexistent. If the entire perception-action
loop (including linguistic reports of conscious experience) can be re-created,
in principle, with a deterministic attractor landscape exhibiting complex
dynamics, then what exactly would a notion of consciousness add to that
explanation? Let’s take a concrete experimental example. When Kolers and
Brewster (1985) had participants tap their fingers to visual and auditory
rhythms, and they subtly shifted the phase of those rhythms, participants’ tap-
ping often smoothly accommodated the phase shift without the participants
reporting that they were aware of the phase shift. Thus, a dynamical account
of a person’s entrainment with the environment gives a more accurate
account of their perceptual-motor functioning than their verbal protocol
does. It is interesting, no doubt, that their conscious report did something dif-
ferent than their actual behavior. But in understanding how humans process
perceptual input and produce motor output, that is, the key observables we
scientists have at our disposal, the inaccurate subjective report is perhaps little
more than a curiosity. As cognitive scientists, we should be more focused on
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what people are actually doing than on what they think they’re doing. Put
another way, if conscious awareness is unnecessary for the maintenance of
dynamically entrained performance of an organism coping in its environ-
ment, is it really necessary as a topic of scientific study?

Part of an answer to that question may be reached by picking apart some
definitions of consciousness. Clearly bucking the philosophical tradition of
inventing new and abstruse terminology in the treatment of consciousness,
Chalmers (1996) carved up the issue into the “easy problems” of conscious-
ness and the “hard problem” of consciousness. According to Chalmers, the
easy problems include things like language processing, visual perception,
memory, and especially introspection, or “self-consciousness.” By neophytes
and laypersons, self-consciousness is routinely mistaken for what conscious-
ness is supposed to refer to. Thinking about the thoughts you just had,
self-consciousness, belongs to Chalmers’s easy problems because it can more
or less be implemented simply by looping the language subsystem back onto
itself (or perhaps some form of nonlinguistic self-evaluative subsystem; see
Bermudez, 1998). Self-consciousness is not the hard problem that conscious-
ness is, because consciousness refers to the instantaneous (not rehashed)
awareness that we supposedly experience before we can tell ourselves what 
it felt like. This “zeroth-order consciousness,” if you will, is like a diving 
catch made in an untelevised college football game. The radio announcer, the
referees, the coaches, and even the players involved will all have their own 
personal reports about whether the ball hit the ground before or after the
receiver had control of it. Those reports are like the secondhand interpreta-
tions that self-consciousness constructs after a conscious event has taken
place. But the event itself, the catching of the ball (perhaps with, perhaps with-
out, the help of the turf), is gone forever. It cannot be reanalyzed or replicated
in its original form. We will never know what really happened.

Yet Chalmers (1996) is rather optimistic about the science of consciousness
eventually knowing what happens during pure zeroth-order consciousness,
or perhaps even discovering the fundamental physical element that imbues
people with consciousness, and adding it to the periodic table. This position
smacks wet with the flavor of early vitalists, who argued that living plants 
and animals possessed life because they contained some as yet unidentified
molecule that instilled them with the capacity for self-replication. (And we 
all know what happened to that theory.) However, more problematic than a
half-hearted speculation about the presence/absence of a fundamental physi-
cal element for consciousness, Chalmers’s definition of pure consciousness
may actually define it right out of scientific measurability. It is this definition
with which my point most directly takes issue.1

The hard problem of consciousness rests on a personal phenomenology
that cannot be intersubjectively observed. That is, by the time a team of
laboratory researchers have collected data that may speak to the conscious
experience of an experimental participant, that measurement will have been
contaminated by the participants’ self-consciousness. Even just answering the
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experimenter’s question about whether you were consciously aware of a recent
percept or an action requires a self-conscious introspection that can signifi-
cantly alter the answer to such a question.2 But wait, it gets worse. Conscious
experience, in its pure form, is not only intersubjectively unobservable, it is
subjectively unobservable. By the time an individual can mentally record for
herself what her conscious experience was like, she’s already slipped into the
process of self-consciousness. This mental recording process involves memory
and interpretive introspection, trying its best to preserve the purity of the
original data, but contamination is unavoidable every time. Once you try to
give some type of report of your immediate conscious experience, even just to
yourself, your use of discrete linguistic labels inevitably misrepresents the
original sense. Thus, the very data that the hard problem claims exist and 
must be accounted for scientifically—a set of zeroth-order, uncontaminated,
conscious impressions—by definition cannot be made available to scientific
inquiry. Perhaps instead of the hard problem of consciousness, Chalmers
should have called it the impossible problem of consciousness. Now, if the
hard problem of consciousness defines itself out of feasibility, then all that
remains are the easy problems of consciousness. And, believe me, those easy
problems are quite hard enough, thank you very much.

One of those easy problems, working memory, is a process that so
ineluctably mediates our sense of consciousness that some researchers have
essentially equated consciousness with the way working memory allows you
to “hold things in your mind” (Courtney et al., 1998). For example, the only
time that I ever feel as though I may have a sense of consciousness—and I sus-
pect this is true for other people as well—is when I stop what I’m thinking and
self-reflect on what I was thinking a second ago, and on who or what was
doing that thinking. Thus, my only evidence that I may have a consciousness
is filtered through memory. My only accessible record of consciousness seems
to be composed of a continuous monologue made up of incomplete sentences
that are filled in by some form of visual/auditory/motor imagery. If that’s all
there is to consciousness, turning the perception-action loop so tightly in on
itself that the brain structures involved talk to themselves, then all of a sudden
consciousness begins to sound a bit more like one of Chalmers’s easy prob-
lems. And thus, “What is consciousness?” can once again be considered a 
scientifically viable question, but it is no longer definable as something over
and above the normal perceptual, motor, and memory processes of the brain
interacting with its environment.

Firmly placing the immediate experience of consciousness in the backseat
of neuronal descriptions of the mind is the fact that neural correlates of action
preparation appear to precede the reportable conscious intent to act. The
point in time where people can associate the awareness of a conscious intent
to perform a spontaneous action, while watching a clock, has been shown to
lag behind the readiness potential observed in ERP measures associated with
performing that action (see Haggard, 2005; Libet, 1985). Thus, the brain is
already preparing to formulate an action before the time at which the person
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can report being self-aware of that intended action. Moreover, Dennett (1991)
spends considerable time explaining the fact that self-conscious reflection on
one’s conscious states is unavoidably revisionist, due to memory processes
employed in recounting mental experience—whether we’re talking about a
few hundred milliseconds ago or several seconds ago. But you must keep in
mind (pardon the pun) that memory is not the accessing of old things in the
mind. As I’ve stated before, there are no real “things” in the mind. It would be
hard for memory to be as exquisitely reconstructive as it is (e.g., Bartlett, 1932;
Hasher & Griffin, 1978; Neisser & Harsch, 1992), if it merely involved select-
ing old chestnuts from a box and rolling them around in your homunculus’s
hand. Memory, like categorization and language and vision, is perhaps better
described as a process of revisiting patterns of neural activation (and
sequences of such patterns) over time. This revisitation involves a pattern
completion process that can often deviate from the original or veridical pat-
tern. There is no chestnut. When engaged in memory (working or long-term,
it doesn’t matter), the mind attempts to reinstate much of what it was doing
when the remembered event was first being experienced.3 Any obvious gaps in
this reinstantiation are seamlessly filled in by automatic confabulation. When
examining working memory’s part in consciousness, this reconstruction and
confabulation plays a key role in making the original conscious experience
scientifically inaccessible. As you introspect about what you were consciously
experiencing a few seconds ago, you convert it into far more concrete and
explicit propositions and images than it was originally composed of. The orig-
inal fuzzy inarticulate blur that is our instantaneous immediate untranslated
experience—spending much of its time in between identifiable attractor
basins—is extremely difficult for a linguistically categorized “folk psychology”
to capture. What you actually have on your mental laboratory’s dissection table
at that point is not pure consciousness but self-consciousness—which I sup-
pose is reasonably interesting in its own right anyway (see Bermudez, 1998).

Self-consciousness has detectable effects on behavior. For example, the
presence of internally oriented self-consciousness can interfere with motor per-
formance (Wulf, McNevin, & Shea, 2001), as when you are trying to teach
someone how to drive a manual transmission and your own self-examination
of what your normally automatic arm and leg movements are doing causes you
to slip up and grind the gears. The absence of self-consciousness can lead you
to drive all the way home from work (while daydreaming and thus leaving no
memory of the trip itself) when you had intended to stop at the grocery store
on the way. Self-consciousness is not the result of some mysterious force out-
side the realm of our normal brain- and environment-based cognitive process-
ing, and perhaps that is why Chalmers (1996) considers it an easy problem.
This means that self-consciousness can influence cognition and behavior in a
natural physical manner, which is more than can be said for a zeroth-order
consciousness that somehow exists in this world but does not function via nor-
mal causal processes, like some kind of epiphenomenal red-headed stepchild of
cognition, locked in the basement and kept away from the rest of the mind.
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I say “epiphenomenal” because the natural physical processes that imple-
ment self-consciousness, such as self-evaluative or linguistic subsystems in the
brain, looping their output back onto themselves as input, could quite possi-
bly be responsible for producing all the evidence that we’ve ever witnessed for
people being “conscious” (see Huxley, 1902). In fact, it is quite startling, when
you think about it, that the only evidence that anyone is actually experiencing
a pure consciousness, that is, that they are “aware” of sensory experiences (or
qualia), rather than simply mapping those sensory inputs onto sets of poten-
tial motor outputs, is that they tell you they are. Well, let me be the first to
break with that tradition and offer an opposing piece of evidence. I do not
experience a zeroth-order pure consciousness. I am an anaqualiac (Churchland,
1998). Whenever I do feel like I might be experiencing pure consciousness,
I ask myself whether the definition of self-consciousness is perhaps more
applicable, and the answer is invariably “yes” (see Lycan, 1996; Wegner, 2002).
When I occasionally feel like I have a conscious self, I strongly suspect that 
I am merely falling prey to the seductive tacit language game of “me and my
mind,” that implicit Cartesian-theater mindset that allows people to say things
like “when I think about x.” However, when you are thinking about x, there is
no “you” separate from the “thinking about x.” When you are thinking about
x, the “thinking about x” is what you are. This means that when talking about
internal mental activity, there is no observer separate from the observed. The
internal observing act is all there is. Thus, there can be no experience of qualia
because there is no experiencer separate from the qualia being experienced.
The dynamic neural patterns in association cortices (which might get called
qualia), occurring in between sensory stimulation and motor execution, are
not being experienced by you, they are a core part of you. To quote Daniel
Dennett (1993) quoting Ivan Fox, “a quale thrown into that gap falls right
through.”

I recognize that without buying into the rich history of intricate terminology
that philosophers of mind have developed for discussions of consciousness and
qualia, these claims that I am making may have a difficult time fitting into
their ways of understanding. But I hope that readers who are outside of that
tradition can glean some comprehension from this argument that will help
them avoid the implicit dualism that plagues much of the cognitive and neu-
ral sciences. As for you philosophers of mind, take this: I am a “zombie.” Or
perhaps more accurately, I am one of Moody’s (1994) “zombie scientists.” As
described by a number of philosophers of mind (e.g., Block, 1978; Chalmers,
1996; Kirk, 1974), the zombie brain and body, and their interaction with the
environment, function in the normal ways that allow a person to behave like
an intentional being. However, the zombie does not have, over and above
those complex dynamical processes, any experience of qualia.4 That’s me.
I realize that this is a startling admission that may cause some readers to feel
uneasy, but surely you’ve noticed how some people just seem a little less con-
scious than others. (In fact, I know some computer programs that seem more
conscious than certain people; see Spivey, 2000.) All joking aside, I am convinced
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that the “me” that is hunched over this laptop computer right now is most
definitely not a Kantian reasoning self in an ivory tower in my brain. That
“me” is my entire body coupled with the environment in which it is situated.
Try as I might, I simply cannot construct for myself a version of the notion of
qualia that does not (at least implicitly) invoke the empirically implausible
and theoretically problematic Cartesian theater framework. And therefore,
I must reject it.

Throughout this book I have argued that mental activity is best described
as a continuous trajectory in mental state space that flirts with various attractor
basins as the manifold changes over time. Note that portions of this trajectory
may be more or less epistemically identifiable or permitting of labels. These
explicit labeling events probably form much of what feels like consciousness.
Critically, if imbuing portions of this trajectory with the gift of consciousness
and denying it to other portions does not actually change the path it travels 
by one iota, then, much like Thomas Huxley (1902), I am not sure I see the
usefulness of the distinction.5

Das Seelenleben der Zombies

Before becoming the father of psychophysics, Gustav Fechner wrote a book
titled Das Seelenleben der Pflanzen, or The Mental Life of Plants. That’s right, the
man who was chiefly responsible for helping psychology turn the corner toward
scientific, methodological, and quantitative rigor was a rabid panpsychist who
believed that everything had a consciousness and that philosophical materialism
was evil. Although I suspect that plants may actually have rather uneventful
mental lives, I can say from personal experience that zombies have perfectly
healthy and happy mental lives—and all without Chalmers’s mysterious brand
of pure consciousness. A zombie, such as myself, engages in self-consciousness
reasonably frequently and can therefore manufacture reports on his or her
mental processes in exactly the same way that putatively conscious people do.
That is why, until I told you that I was a zombie, you probably never would
have guessed it (at least I hope not).

My mental life is composed of a continuous trajectory through an attrac-
tor landscape that approaches regions in space that correspond to relatively
nameable constructs such as various concepts, visual objects, and words 
(see also Atmanspacher, 2004). If we were to look at a visual-processing sub-
space of my mind or a planned-action subspace when its trajectory gets espe-
cially close to a particular point attractor, the label for that attractor (not
necessarily a linguistic label but at least a unique identity pattern) may be
more readily transmitted to other subspaces (especially the linguistic sub-
space, in the case of humans), and the result is that this animal feels conscious
of that visual object or that intended action. This description portrays the
feeling of consciousness as something very much akin to symbolic dynamics.
But when the trajectory merely flirts with an attractor and has its traversal
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subtly perturbed by that attractor, the identity pattern for that attractor may
not be strongly transmitted to other subspaces. Thus the mental trajectory is
routinely influenced by attractors that never reach conscious reportability.
Under such circumstances, would you, as a scientist, rather have access to the
original continuous trajectory or just see the string of outputted symbols?

For epistemological and pragmatic reasons, the cognitive and neural sci-
ences may occasionally need some “thinglike” labeled entity to refer to when
discussing mental activity whether or not it is described as conscious. Without
some overidealized construct of bounded entities in the mind, discussions of
the distributed patterns that actually make up mental content could end up
requiring reference to large vectors of averaged neuronal spike rates. Would it
really be an improvement for us to prohibit people from saying, “This person
is thinking about the concept dog,” and instead force them to say,“This person
is thinking about [0.322 0.674 0.438 0.216 0.439 0.892 0.341 0.435 0.237 0.654
0.527 0.085 0.332 0.689 0.982 0.372]”?

One way to ease the tension between these two extreme ways of referring
to mental content might be to look at the spatiotemporally graded structure
of attractorlike regions in the high-dimensional manifold of the mind. We can
perhaps satisfy both of these cravings—for thinglike entities that can be easily
referred to, and for acknowledging the continuous nature of the trajectory—
by imposing soft partitions on the early portion and on the later portion of
the collection of trajectory records that visited a given attractor. Figure 12.1A
shows a simplified rendition (in a mere three dimensions) of a demarcated
region in state space that might function like a conceptual representation.
(The succinct partitioning of the inside of the concept as separate from the
outside of the concept is an arbitrary setting used purely for ease in commu-
nication. The actual cluster of different senses/uses of that concept would be
distributed in a gradually sparser perimeter surrounding the centroid of the
concept.) If the brain state were to visit that region and sit there statically—
like settling on a point attractor in an unchanging attractor landscape or
instantiating a discrete symbol and holding it in mind—then this format of
representation would be sufficient to describe mental content. However, in
our normal everyday cognitive experiences, we never sit there statically. When
we think about some concept, it is because a previous concept is bringing us
to the current one, and the current one is likewise launching us to the next.
This is true whether we’re talking about producing one phoneme followed by
another and another, or hearing one word followed by another and another,
or moving your eyes from one object in a complex scene to another and
another, or going through the complex set of actions of making your lunch on
a Saturday afternoon. As pragmatically useful as it is to have some discretely
bounded object in your inventory of mental contents that allows you to refer
to it as though it were separate from other bounded objects, it can be a profoundly
misleading oversimplification.

Figure 12.1B illustrates some example records of trajectories that traveled
through said location in state space. Although this framework is intended to
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Figure 12.1. Panel A shows a location in state space
that might be associated with a concept, and Panel B
shows some example trajectories that have passed
through that location. Panel C sketches the average
entranceways and exitways of those trajectories to
depict a spatiotemporally contextualized version of
that concept.

work for any kind of mental attractor space, describing it in terms of word
attractors in a language space may be the easiest introduction. If the location
in question is the concept for the verb eat, for example, then sometimes the
trajectory will be coming from the location associated with yourself, or the loca-
tion associated with your spouse, as when you’re thinking about where the
two of you might go for dinner tonight. Other times the trajectory may be
entering the eat region from the direction of the cat region of space, as when
you’re feeding your cat. Still other times, on its way to the eat attractor, the 
trajectory may be coming from a location belonging to a fictional character 
in a novel you are reading. And the specific location that is entered, within the
region in question, is subtly different depending on that preceding context
(Elman, 2004). That is, the different nouns that act as the agent of the eating
event cause slightly different gradations in the sense of eat that gets visited.

Importantly, the dynamics of the attractor landscape are such that when
an attractor is visited, it warps into a repellor, so that the trajectory keeps on
going through and can thus approach the next concept. On its way out of the



eat location, sometimes the trajectory might go in the direction of pasta, tuna,
or fried green tomatoes. In fact, as it exits the eat region, the trajectory may
even occasionally go in the direction of inedible things, as when someone is
being metaphorical or insulting.

All these various potential pasts and potential futures for the concept of eat
play an important role in making the concept what it is. Therefore, figure 12.1C
can be seen as a rough sketch of what the concept looks like when its incom-
ing entranceways and outgoing exitways are included in its boundaries. This
depicts the spatiotemporal distribution of most of the trajectories that pass
through this location in space. Thus, an integral part of knowing what eat
means involves knowing what kinds of words are the agents of eating events
and also what kinds of words are the direct objects of eating events (McRae,
Ferreti, & Amyote, 1997).

These idealized demarcations form wasp-waisted tubes, or spatio-
temporal hourglasses, in mental space that outline the typical range of contex-
tual pasts that immediately precede an attractor visitation as well as the typical
range of anticipated futures that follow that attractor visitation. A little bit like
the past light cone and future light cone associated with an event in astro-
physics, what is depicted in figure 12.2 (a smoother version of the rough
sketch in figure 12.1C) is a contextual past cone and an anticipated future
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accompany any given concept or word.



cone that represent the set of likely directions in state space that a trajectory
came from and is going to when it visits a particular attractor (which turns
into a repellor once visited).

I understand that the thirst for “things” in the mind is strong. Therefore,
I offer these spatiotemporal hourglasses in hopes to slake that thirst while 
still robustly acknowledging that these “things” are not separated from one
another and are in fact nothing more than averages of conspicuous clusterings
of trajectory records. In much the same way that ecological psychologists
allow themselves to refer to organism and environment as different nouns,
while still intending that the their proper description requires a conjoined
space of mutual parameters, the wasp-waisted tube in figure 12.2 is how I allow
myself to refer to different concepts with different nouns for ease of descrip-
tion, when in fact I intend that their proper treatment require a spatio-
temporal format that emphasizes their continuous temporal blending with one
another, as the trajectory of thought snakes its way through mental state space.
These spatiotemporal hourglasses are “representationlike” in that they are each
individually enumerable and uniquely nameable (if artificially so). However,
they are also not representationlike in that they do not require that a read-out
be performed by some central executive interpreter—that is, they are not really
“representing something to someone.” The continuous trajectory is what the
mind is doing, and these hourglasses are merely regions in state space that 
happen to have been visited frequently enough to have relatively explicit 
conceptual identities associated with them, which are useful for the observing
scientist.

Figure 12.2 is what a spatiotemporally contextualized concept looks like.
Thousands of these hourglasses in mental state space is what I contend a 
zombie’s mind is made of. This is what my mind is made of. And this is what 
I think your mind is made of. When your mental trajectory thoroughly visits
one of these hourglasses, its identity becomes explicitly reportable, and thus
feels like what we call a conscious experience. But the moniker of “conscious”
does not alter the path of the trajectory, and thus is essentially irrelevant to my
purposes for the continuity of mind. (Flanagan, 1991, calls this conscious
inessentialism.) You may add your own magic of consciousness on top of this
account, if you must, but do it on your own time—and at your own risk.

If Free Will Did Not Exist, It Would Be Necessary to Invent It

A particularly nasty bugbear that often stows away on the good ship
Consciousness is the notion of free will. As scientifically problematic as it is to
champion the existence of a construct like pure consciousness, whose defini-
tion makes it epiphenomenal and unmeasurable, imagine championing the
existence of a construct like free will, which happily violates everything physics
has learned about how the universe works! The common notion of free will is
basically conceived of as a psychological effect that had no preexisting cause.
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For example, when you’re playing chess and you make a move that gets your
king out of check, rather than some other kind of move, you are not exercising
free will in that circumstance. The rules require that you get your king out of
check before making any other moves. So the rules caused you to defer the
other moves that you had been considering. But when you’re trying to decide
between taking your opponent’s pawn or sacrificing a piece to set a trap, the
consternation and eventual selection among those two choices will often feel
like what people refer to when they use the term free will. You may feel as
though your choice of move was solely your own, based on a nondecompos-
able hunch, rather than on your experience and training with the strategies of
the game.

It seems that we usually experience this personal sense of free will when
we find ourselves choosing among options on which we weren’t initially sure
how we would decide. However, the readiness potential observed in ERPs
shows that the brain is preparing such choices several hundred milliseconds
before they are consciously reportable (Haggard, 2005; Libet, 1985). Therefore,
it looks as though nonfreely willed garden-variety neural processes are actually
responsible for these apparently freely willed choices. Wegner (2002) recounts 
a variety of psychological and neurological findings indicating that this dis-
connect, between the actual deterministic causes of our decisions and the 
illusory fiat lux of our decisions, is due to processes by which the mind inter-
prets itself after the fact: essentially the self-consciousness to which I’ve been
referring.

But could a truly free will have existed in the first place? When it comes
down to it, a causal force that is known as free will, that is, “free” because it is
not predetermined and “willed” because it is not random, would actually
make for a very strange bedfellow with the other causal forces known to science
(see Bridgeman, 2003; Pereboom, 2001). After all, conventional physics 
suggests that there are two general kinds of forces in the universe: (1) random
fluctuation, with no preexisting cause, typically observed at the spatial scales of
electrons, quarks, bosons, and so on, and (2) deterministic cause and effect,
typically observed at the spatial scales of molecules, apples, trees, mountains,
stars, planets, and so on. (Emergent properties, such as self-organization in
complex nonlinear systems, do not necessarily belong to a separate kind of
force because deterministic processes are perfectly capable of producing them;
see Solow, 2000.) It is not at all clear what form a third kind of force would
take if it were to exist and call itself free will. It would not be caused by prior
determinants, nor would it be random when it comes out of nowhere. Pray
tell, how exactly would it work?

For the vast majority of free will advocates, the randomness introduced at
the subatomic level by quantum mechanics just won’t cut it. It is not the kind
of effect without a cause that they have in mind. They want the willed decision
to belong entirely to the individual person, not to deterministic causes and not
to randomness. It’s as if they want you to believe that an inexplicable cosmo-
logical big bang (with no preexisting causal forces) is going off in your brain
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every time you make a freely willed decision. For example, Kant said that the
will is “a kind of causality belonging to living beings so far as they are rational.
Freedom would then be the property this causality has of being able to work
independently of determination by alien causes.”Although perhaps not impos-
sible, this scenario portrays a world in which human minds are uniquely capa-
ble of nonrandomly flouting causality on a regular basis. I can understand
humans feeling tempted to think that humans are that universally special,
but I suspect their legacy, like those of the trilobites and the dinosaurs, will
eventually prove otherwise.

The very idea that there might be a part of the mind that can make deci-
sions that are not causally traceable and also not random should actually chill
you to the bone. An unconstrained variable like free will compromises science
at its core. Everywhere that free will goes, it scorches the theoretical terrain,
leaving it bereft of any scientific testability. Perhaps it is no surprise that theo-
rists who use homuncular phrasings like “central executive” and “an internal
cognizer that thinks about things” tend to also believe in modularity. After all,
if a freely willed and scientifically impenetrable homunculus is making
untraceable decisions, then those decisions had better not be deeply influenc-
ing every cognitive and perceptual process that goes on, because then all those
processes would likewise be contaminated by an uncontrollable variable and
thus immune to scientific discovery. As long as the perceptual and cognitive
processes of interest are informationally encapsulated from this central execu-
tive, then they can be studied systematically and successfully. If they are inter-
active and thus become contaminated by the influence of an unpredictable and
unmodelable variable like free will, via feedback signals from the central
executive, then they are doomed to remain in shadow, unilluminated by sci-
ence. What it comes down to is this: If you believe in free will and you believe
in the promise of cognitive science, then you have to be a modularist. However,
as the empirical evidence against modularity accumulates (see chapter 5), this
conjunction of beliefs becomes untenable. I trust readers to perform their
own modus tollens and struggle with the alternative conclusions on their own
time. A full discussion of the forced choice between free will versus the prom-
ise of cognitive science is not within the scope of this book. As for myself, for
what it’s worth, I choose the promise of cognitive science.

But all this begs the question of why people feel like they have free will.
One way in which something could feel very much like free will and still allow
the mind to function along with the rest of the universe, is if the sense and
observation of apparent free will were indeed actually the result of random
processes in the brain. For example, random selection among a few optimal
escape movements has been seen in fish (Domenici & Blake, 1993). And prey
animals have been observed to scan for predators at random temporal intervals,
with a Poisson-like distribution (Bertram, 1980; Caraco, 1982; Scannell,
Roberts, & Lazarus, 2001). In fact, for some time now, it has been recognized
that randomized behavior can, under some circumstances, be the optimal
competitive strategy (Von Neumann & Morgenstern, 1947). Note also that
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foraging animals appear to produce flight lengths while searching for food
that are random with an inverse square power law distribution (Viswanathan
et al., 1999). Similarly, while humans are visually searching a complex display,
the lengths of their saccadic eye movements vary with a 1/f power law distri-
bution, but the locations of their fixations are distributed like a Brownian
noise function (Aks, Zelinsky, & Sprott, 2002). In fact, eye movements have
been an important source of inspiration for hypothesizing the existence of
random processes in cognition. For example, Carpenter (1999, 2004) notes
how the rate of increase in neuronal firing frequency (in the frontal eye fields)
is correlated with saccadic reaction time, and this rate of increase appears ran-
domly distributed across trials in a similar manner as saccadic reaction times
are randomly distributed across trials (see also Hanes & Schall, 1996; Schall,
1995). There is evidence for intrinsic neural noise in sensory transduction and
in neural transmission in sensory cortices (e.g., Shadlen & Newsome, 1994).
Interestingly, the infant retina exhibits nine times as much intrinsic neural noise
as the adult retina (Skoczenski & Norcia, 1998). There are, in fact, circumstances
where such intrinsic neural noise may actually be advantageous for pattern
completion (or resonance) and even for learning (e.g., Hennig et al., 2002;
Mato, 1999; Rappel & Karma 1996; for a review of stochastic resonance,
see Ward, 2002). However, Carpenter’s (1999, 2004) specific suggestion with
regard to his eye movement evidence is that over and above this sensory noise,
there may be some degree of randomness injected in the timing of response
selection in the motor and frontal cortices. It may be this particular random
component that gives humans the impression that they and others exhibit free
will in their choices and actions.

But what about the underlying mechanism of such neural noise? Some
have speculated (e.g., Jibu et al., 1994; Penrose, 1994; Stapp, 1993) that the
microtubules, receptor sites, and transmitter ions in neuronal membranes are
small enough that quantum subatomic randomness could perhaps influence
their likelihood of action potentials (for a review, see Atmanspacher, 2004).
For example, the Heisenberg uncertainty distribution surrounding the desti-
nation of a calcium ion inside an axon terminal (as it makes its long journey
toward a trigger site, which will release a neurotransmitter vesicle into the
synaptic cleft) is a few hundred picometers, near the size of the trigger site
itself (Stapp, 1999). Thus, the calcium ion is reminiscent of our friendly
Schrödinger’s cat from chapter 1 in that before the completion of its journey
has had a chance to produce observable consequences in the rest of the net-
work, the distributed destination of this ion can be mathematically described
as having both actuated the trigger site and missed it—and quantum random-
ness mediates which of those fates is realized. However, if the observable
consequences that comprise mental activity (e.g., percepts and concepts) are
themselves self-organizing neuronal population codes composed of dozens or
hundreds or perhaps even thousands of neurons (Noë & Thompson, 2004),
then it would require some elaborately orchestrated “spooky action at a 
distance” (on a far grander scale than envisioned in Bell’s theorem, perhaps
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even warranting the phrase “Byzantine action at a distance”) for enough
quantum-perturbed calcium ions in enough separate neurons to coordinate
their stochastic influences in unison such that they significantly alter which
population code comes to fruition. In other words, just as the random quan-
tum effects involved in a tennis ball bouncing generally average each other out
to produce no sum influence on the ball’s classical mechanical behavior, so
might the random quantum effects across a population of neurons average
out to produce no sum influence on their behavior. It is perhaps more plausi-
ble that the apparently random noise observed in neuronal firing rates is actu-
ally the chaotic unpredictability that emerges from a deterministic complex
recurrent system (Scott, 1996; Usher, Stemmler, & Olami, 1995), a bit like the
logistic map when its parameter is set at 4.0 (Ulam & Von Neumann, 1947;
see also chapter 4).

That said, one of the reasons that people argue for the existence of personal
free will (of the nondeterministic and nonrandom kind) has nothing at all to
do with its mechanistic explanation and everything to do with its supposed
functional consequences for society. They posit that free will had better exist,
or else people will run wild in the streets raping and pillaging with impunity
on the rationalization that they cannot be held responsible for their behavior.
I must admit, I have never understood how this argument can hold any water
at all. The argument is as bankrupt as Fodor’s (1983) claim that the mind had
better be modular, or we’ll never understand how it works. The universe
knows whether free will exists (and whether the mind is modular), and I’m
quite sure that it cares not one whit about whether we will misuse (or be able
to grasp) that truth. In other words, our supposedly dire epistemological need
for the ontological facts of the matter to be a certain way so that we may
behave fairly (or even understand them) cannot possibly play a role in deter-
mining how those facts of the matter actually turn out. For example, the mind
is probably not very modular (see chapter 5), and that probably does mean
that we’ll never understand it quite as clearly as we would have if it had been
modular. Live with it. Because free will postulates a third type of unique causal
force—apart from randomness and determinism (with its concomitant emer-
gent properties)—that has no preexisting causes of its own, thus failing to
adhere to the core tenets of how we’ve come to understand the universe, free
will probably does not exist. Live with it.

But the nonexistence of free will is in no way a license to commit crimes.
Only a child would argue such. One must recognize that all smoothly func-
tioning societies will have deterministically evolved such that punitive and
rehabilitative measures are applied to the causes of antisocial behavior,
whether it’s theft, rape, murder, or whatever—regardless of anyone’s ideas
about free will. Societies that did not develop such measures simply did not
survive the process of cultural evolution. These punitive and rehabilitative
measures are needed to prevent the destructive behavior, in general, from 
happening again. When the causes of the destructive behavior can be reliably
traced to someone other than the actual perpetrator—as in hypothetical cases
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of someone being forced at gunpoint to commit a crime—the punitive measures
would naturally be applied to that other someone. When a parent’s raising of
their child, who is still a minor, looks as if it is partly responsible for causing
the child to commit a crime, many cultures do indeed hold that parent at least
partly accountable for the crime.6 An individual is a dynamic turbulent funnel
for thousands of causal forces that at many different time scales determine that
individual’s behavior. (In fact, in the huge state space made of social, cultural,
and evolutionary dimensions, a person might look a lot like the wasp-waisted
tube in figure 12.2.) In a rough analogy to a nonlinear multiple regression
analysis (with many interaction terms), some of those identified causal forces
may account for a statistically significant proportion of the variance in that
individual’s behavior. When that happens, applying some of the punitive and
rehabilitative measures to those identifiable significant preexisting causal
forces, instead of to the perpetrator, is the smartest thing to do because it carries
with it the possibility of preventing hundreds or thousands of other individu-
als from being negatively influenced in the future by those same causal forces
(see Haney, 2002; Honderich, 1988). Thus, pretending that an individual has
free will, and is therefore solely responsible for his or her actions, can actually
be a socially inefficient way to mete out justice.

When one asks the scientific question of “what causes this person, or this
people, to conduct these crimes?”—and when the political climate encour-
aged by a nation’s government allows one to ask such a question—it quickly
becomes clear that people do not commit crimes for no reason. They may
have justified or unjustified reasons, but there are always reasons. If a person’s
culture has trained him to devalue life, and especially if his mentors have
encouraged him to hate another culture, the deterministic result of such a
learning environment is that you often produce a mind that is willing and
capable of theft, rape, and murder. That person did not ask to be raised in that
environment. That person did not ask to be born with an impressionable
intellect. So is that individual really the best place to apply all the punitive
and/or rehabilitative measures? If a person’s upbringing taught him to
attempt to solve problems with violence or deception, is it his fault that he was
born into that environment? If a person is genetically predisposed to acting in
a generally violent manner, is it his fault that he was born with those genes?

In a sense, the bastardized quote from Voltaire that heads this section of
the chapter is true. Without the ontological existence of free will, it becomes
necessary for societies to pretend that it exists to make up for the epistemo-
logical failures involved in attempting to track down all the myriad forces that
cause a person to act in socially harmful ways. It is often easier and more prag-
matic to simply treat the individual as if he or she is the sole source of the
causal chain that produced the criminal behavior. Note, however, that pre-
tending free will exists so that you have an easy place to apply punitive and
rehabilitative measures does not make it actually exist. From a scientific stand-
point, it still makes absolutely no sense to insert a causeless effect like free will
into a theory of dynamic processes that already promises to account for all of
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the data via deterministic (albeit nonlinear, complex, and overflowing with
emergent phenomena) forces and perhaps the occasional stochastic nudge.

Vehicles All the Way Down

Having far too glibly dispensed with the notions of pure consciousness and
free will, we can now move on to giving short shrift to another rhetorical chal-
lenge that philosophers of mind have posed with regard to mental life and
consciousness. In attempting to stave off eliminative reductionism, where
mental states are reducible to brain states (e.g., Bickle, 1998; Churchland,
1984; Kim, 1998), philosophers introduced the vehicle/content distinction as
a way to discriminate between the physical matter that implements mental
activity and the intrinsic informational qualities of that mental activity.7

Informal discussions of the vehicle/content distinction have occasionally
leaned on the layperson’s conception of the difference between computer
hardware and software. However, this analogy has at least two major prob-
lems. First, the standard philosophical position on the vehicle/content distinc-
tion assumes that the content is dependent on (though not fully reducible to)
the vehicle, and the vehicle is not dependent on the content. But when you
manipulate computer software, the resulting structure of the hardware is
dependent on the new structure of your software (i.e., when you rewrite a line
of code and save the program on some storage medium, that storage medium
has been forced to change its physical magnetic or optical properties). Thus,
although the vehicle/content distinction is commonly thought to involve a
one-way dependence, the hardware/software distinction appears to involve a
two-way dependence. The second problem with the hardware/software anal-
ogy involves the fact that it is terribly easy to find places where the boundary
between hardware and software becomes difficult to discern. For example,
when you savagely rip the plastic casing off of a 3.5-inch diskette and closely
examine the actual floppy disc inside, you can begin to come to terms with the
fact that the software on that disc is not merely dependent on the pattern of
magnetic fields across microscopic regions of the disc, the software is the pat-
tern of magnetic fields across microscopic regions of the disc. If you were to
swipe a magnet over a portion of the disc, the swath of destruction wreaked
across the pattern of magnetic fields would bear a lawful correspondence to
the swath of destruction wreaked on the machine language that underlies
whatever programming language was originally used to write the software.
Therefore, the idea that hardware and software are completely independent
levels of description does not really hold as firmly as people often think.

The assumed one-way dependence of the vehicle/content distinction is
due to its adherents covering their tracks to make sure that they cannot be
accused of full-on Cartesian dualism. For example, when I work on changing
my language use around my child (so that I don’t get a neighbor mother
knocking on my door and complaining about how my three-year-old son
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taught her three-year-old daughter to use profanity), there is a sense in which
I might be reprogramming my biocomputer (Lilly, 1967). But to claim that
this reprogramming was instigated by my mind, without the initial participa-
tion of my brain, would sound mystically dualistic. Therefore, functionalists
who embrace the vehicle/content distinction would argue that all the matter-
based causal processing involved in that reprogramming is instigated and
performed by my brain, but the level of description of the mind (where
abstract formal rules determine which words get produced as a result of discrete
cognitive interpretations of sensory inputs) is independent of how that brain
functions. So what they’re saying is that the mind is causally dependent on the
brain, but descriptively independent of it.

When they invoke Putnam’s (1975; see also Fodor, 1975) multiple realiz-
ability argument, it can begin to sound like they have a pretty good case. The
multiple realizability argument goes a little something like this: Assume we all
have the same psychological experience of pain, and then examine the physi-
cal substrate that implements that psychological experience. The exact pattern
of neural excitation in your brain when you experience pain is undoubtedly
subtly different from the pattern of neural excitation in my brain when I expe-
rience pain. Moreover, if we are treating pain as a psychological category of
broad usefulness, it might be safe to assume that other kinds of animals also
experience this category of psychological experience, and some such animals
have dramatically different brain structures and even completely different
types of nerves for transmitting avoidance signals in the presence of harmful
stimulation. If you impute to other humans and to these other animals the
same functional category of pain as you claim for yourself, then you have a
clear case of the same psychological entity being realized by multiple non-
overlapping physical implementations. Under such circumstances, it is
arguable that reducing a human’s pain or a mollusk’s pain down to their
respective underlying physical processes is less informative than staying at the
level of a functionalist description—a little like a computer program—of how
pain generally works.

If you were sitting on the fence about this issue before that paragraph, it’s
possible that you were nudged toward one side. I hope it didn’t hurt. But now
let’s see if I can nudge you the other way, toward the materialists. Ask yourself
the following: Do your experience of pain and my experience of pain truly
belong together in a formal nondecomposable indistinguishable equivalence
class? Is it really the case that if you looked closely at our respective reaction
times, eye movements, heart rates, and the temporal dynamics of our galvanic
skin response and electromyograph output (heck, go ahead and include our
verbal protocols, if you want), you would still be comfortable inferring that the
two different experiences of pain were functionally identical? Because if you
think there may be some subtle differences at the psychological level of descrip-
tion between your experience of pain (or happiness, or hunger, or lust) and
mine, then the multiple realizability argument loses ground on its very first
assumption: that the same type of psychological entity is being realized by different
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physical implementations. That is, when implemented by subtly different
physical manifestations, the cognitive results may not be exactly the same psy-
chological entities either—but they may cluster in roughly isomorphic ways.

Let’s say you don’t like pain, but you hear that I am a teensy bit of a
masochist. So when you experience a moderate amount of physical pain, it’s
entirely unpleasant for you, but when I experience an equivalent amount of
pain, it’s mixed with just a teaspoon of pleasure.8 In neural state space, when
one compares the spatial relationship between your neural patterns for pain
and for pleasure to the spatial relationship between my neural patterns for
pain and for pleasure, one might find that my patterns are little closer together
than yours. That would be a first step toward revealing an isomorphy between
how instances of psychological pain experience vary around a psychological
prototype and how instances of neural pain patterns cluster in a correspon-
ding fashion around a broad region of neural state space (which includes all
relevant neurophysiological dimensions for all pain-feeling animals). Thus, it
might be described as there being multiple different types of pain and multi-
ple corresponding types of physical implementations of that pain. Under such
circumstances, it would be abundantly clear that reducing your pain, or my
pain, or a mollusk’s pain, down to the neural level of description would be
wonderfully informative for understanding what pain is all about.

But perhaps the biggest problem with the vehicle/content distinction is
that it implies some form of read-out being performed on the content, and
leaves unexplained exactly who is doing the read-out. Whether it’s a concep-
tual level of content being read off of the nonconceptual level (Byrne, 2003;
Gunther, 2003), or a personal level of content being read off of a subpersonal
level (Dennett, 1991; Hurley, 1998b; Millikan, 1993), assuming a strict distinc-
tion between information and matter can risk leading one right into the
homunculus problem, where a little man in the head winds up mysteriously
doing all the work that the theory was supposed to do. In fact, a number of
researchers (e.g., Damasio, 1992; Dennett, 1991, 1993; Rosenthal, 1993; Streeck,
2003) have pointed out that an implicit Cartesian theater can easily sneak its
way into a theory of mental activity when it conceives of symbolic content
being received and processed by some central executive.9 If allowed to con-
tinue spreading implicitly, this pandemic of “homunculitis” (Monsell &
Driver, 2000) could threaten to permanently poison the entire discipline.

In the continuity of mind framework that I am proposing here, the clos-
est thing to a read-out that ever takes place is when one vehicle (a pattern of
neural activation or a biomechanical process) alters/influences another such
vehicle. But this requires no interpretation of content; it merely requires that
causal forces be implemented from the first vehicle to the second. The second
vehicle does not need to perform a read-out of the first vehicle’s meaning with
regard to it, any more than the eight ball has to perform a read-out of my cue
ball’s meaning when it gets hit by it and knocked into the corner pocket. If a
theoretical description of this network of vehicles continuously influencing
one another manages to map perception to action to the environment and
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back around to perception again (and also produce internal loops that involve
language areas, for self-consciousness), then why would you need the concept
of content residing inside those vehicles in the first place? The process will
have been explained with no need for any notion of content, nor for a
Cartesian reader of said content. This decentralized view of the mind—where
control (or intention) is not generated from some unitary internal homuncu-
lar source but instead is a dynamic emergent property of a brain, its body, and
the environment in which it is embedded—is gaining ground in cognitive
science (e.g., Churchland, 1996; Hommel, Daum, & Kluwe, 2004; Metzinger,
2003; Van Orden & Holden, 2002; Wegner, 2002).

Note, however, that this proposal is a bit different from Churchland’s
(1981) eliminative materialism because I’m not saying that mind is nothing
more than brain. In fact, I’m not really even saying that mind is nothing more
than brain, body, and environment. Saying it that way fails to put sufficient
emphasis on the temporal dynamics that are so crucial for making the mind
what it is. A static freeze-frame of brain, body, and environment is not mind-
like. The continuous trajectory that describes their coupled state changes is
what is mindlike.

In this view, you are no different from the information that you feel like
you are processing. The “you” that feels like it is answering the questions when
you introspect and self-reflect (as well as the you that feels like it is asking
those questions) is made up of the same informational medium that the rest
of the world is made up of. Dynamic patterns of spatiotemporal relationships
between elements of physical matter are what compose processes (that we
often refer to as things) in the world, and those same kinds of patterns are also
what compose your mind—because when it comes down to it, your mind is
just another process in the world, like any other. In philosophy of mind termi-
nology, what I am suggesting is that there are no vehicles that are separate
from their content, and no content that is separate from its vehicle. Your mind
is not a processor built from stuff that is independent of the dynamic infor-
mation it processes. The apparent processor and the processed are part of the
same collection of dynamic patterns, and they can even seem to trade roles at
times. What this means is that strictly speaking, there is no objectively identi-
fiable input and output in describing how the mind works (although these are
convenient terms to use for rough descriptions). Your mind is not a hierarchi-
cal set of sequential and parallel filters that sift through the sense data from
the world, performing transformations of and computations on those data to
produce an interpretation of that world. What good is an interpretation of the
world if it’s not leading to action on the world? And what good is a theory if it
punts when it comes to determining how that interpretation leads to action?
That computer-inspired metaphor for the mind has officially outlasted its
usefulness (and perhaps outused its lastfulness). Your mind is part and parcel
with the data of the world, not a separate thing that processes those data.

So by heading this section with the phrase “vehicles all the way down,”
I am of course alluding to the famous (and quite possibly apocryphal) story of
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a noted professor (in some versions it’s Bertrand Russell, in others it’s William
James, in still others it’s Carl Sagan) lecturing on the origins of the planet
Earth. After describing how the Earth is spherical and orbiting the sun in
space, an old lady in the audience tells him that he’s wrong, and that the Earth
is actually flat and resting on the back of a turtle. “Okay,” responds the profes-
sor, “but what is supporting the turtle?” “Very clever, young man,” the lady
retorts, “but I have an answer to your question. It’s turtles all the way down.”
In a similar way (though a smidgen more scientifically viable), the mind may
be vehicles all the way down, from behavior to brains to neurons to micro-
tubules to quarks, and so on. And it might just be that at no point is any one
of those levels getting its “content” interpreted off of it.

Writing About Talking About Thinking About Thinking

Introspective self-consciousness, the process that I contend produces the mis-
taken impression that we have a pure immediate consciousness (and in some
cases, the illusion of free will), need not be conceived of as the reading of some
content off of a vehicle. Rather, it can actually be conceived of as just another
motor plan like any other. A self-referential internal monologue—where you
might say to yourself something like, “Gosh, I sure feel like I’m conscious.
What is Spivey’s problem, anyway?”—is nothing more than (partially) pre-
pared speech that is simply not executed. It is not a special kind of higher
order thought that functions differently from the rest of everyday perception
and cognition (Rosenthal, 2000). These self-conscious thoughts are due to the
language subsystem receiving its biased updates of the meandering, looping,
and loop-de-looping mental trajectory and converting it (or collapsing its 
distributed wave function) into individual words and phrases. The manual
motor subsystem has its own set of biased updates of that trajectory’s where-
abouts. As does the oculomotor subsystem and the ambulation subsystem. All
of the action subsystems (e.g., for speaking, reaching, looking, walking, etc.)
have their own peculiar slant on how they deal with their incoming signals, as
well as their own internal recurrent processes. That slant exaggerates some
dimensions of the mental state space and minimizes others, so that when each
of these action subsystems tries to convert its perspective on the trajectory
into a motor plan, these different motor plans can occasionally be wildly
incommensurate with one another. What’s more, the timing of that conver-
sion, as well as any stochastic components in the conversion process, probably
vary as well. So the same mental trajectory (or evolving understanding of the
situational context and how it accommodates one’s goals) can get collapsed
into different kinds of motor actions from the different action subsystems.
This is part of how blindsight patients can be linguistically unable to report
awareness of a visual stimulus and yet their selection of that stimulus is above
chance performance (Lamme, 2001). This is how a verbal report task can fall
prey to a visual illusion while a similar pointing task can maintain accurate
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performance (Bridgeman, 1991). This is how one can erroneously look at the
peppershaker, then make a corrective saccade to the saltshaker, accidentally call
it “the sugar,” and reach perfectly for the right thing, all in less than a second.

This is also how people can say one thing, do another, and not think
they’re lying.10 Different motor outputs collapse the wave function at different
times and with different stochastic parameters, so they can often provide con-
flicting evidence on what the same mental trajectory was doing. Importantly,
for the discussion at hand, psychologists have been aware for quite some time
that explicit verbal report of one’s own mental processes is highly unreliable
(e.g., Bem, 1967; Nisbett & Wilson, 1977), whereas implicit measures tend to
be more honest indicators. Relying on verbal reports as a measure of cognitive
processing (e.g., Carruthers, 2002; Ericsson & Simon, 1993; Hurlburt, 1990)
can be spectacularly misleading because they are late, slow, and prone to con-
fabulation. Think of the language subsystem like a cultural informant, telling
the anthropologist what goes on in the village. Sometimes he’s right, some-
times he’s mistaken, and sometimes he’s even purposely deceitful (see Dean &
Whyte, 1958).

A self-conscious mental inventory is not only problematic for the experi-
menter, it can be problematic for the person doing it. Self-indulgent verbose
introspection (which might feel like responsible detail-oriented self-awareness)
can wind up interfering with accurate or successful performance of a task. The
unintentional confabulation that results from rich introspection about what
one thinks one has been thinking can drastically misrepresent and misguide
one’s decision processes. For example, Wilson and Schooler (1991) had people
rate the quality of several strawberry jams, half of whom were instructed to
provide detailed introspective reports about their gustatory perceptions along
with their ratings and half of whom were told simply to provide a rating with-
out any other details. The people in the nonintrospecting condition produced
ratings of the jams that corresponded significantly better (than the intro-
spectors) with industry expert ratings of those jams. Moreover, eyewitness
identification of a criminal in a lineup is more likely to be accurate when the
witness is unable to provide an introspective explanation of how they know
the person they’ve picked out is indeed the perpetrator (Dunning & Stern,
1994). When eyewitnesses provide in-depth details about how they are com-
paring features of the different faces in the lineup, they often end up fingering
an innocent person (Wells, 1984). Finally, providing a running verbal protocol
of one’s thought processes while trying to solve an insight problem (see 
chapter 10 for examples of such problems) actually interferes with the 
person’s ability to find the solution (Schooler, Ohlsson, & Brooks, 1993).

While I am criticizing introspection as a method, allow me to in the same
breath tell you what I think happens in my own mind when I engage in “inner
speech” with the intent of having it organize my thoughts. When I try to post-
examine my internal monologue, I find that the first few words of a sentence
often ring clear in my head like a well-trained newscaster’s voice, and the next
several are somewhat vague or poorly enunciated, and the last few words of
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the sentence are often left off entirely, because I’ve completed the thought for
myself by then and finishing the linguistic version is unnecessary.11 One can
think of this in terms of a state space trajectory that gets especially close to cer-
tain word regions and then only moderately close to others. In a somewhat
similar framework, Botvinick and Plaut (2004) have plotted the changes in
activation patterns of the hidden layer in a simple recurrent network to reveal
the global similarity, as well as the subtle differences, between sequential pro-
cedures like making coffee and making tea. When multidimensional scaling is
applied to the hidden node activations over time, the trajectories can show
subtle nuances in how context and noise affect action plans and subplans.
Interestingly, subplans inside the larger action plan often manifest as small
internal loops in the middle of the trajectory.

A mental trajectory of inner speech during performance of a task like
playing racquetball might look something like those in figure 12.3. All four
mental trajectories are geared toward getting the same action performed, hit-
ting the racquetball, but some get it done faster and smoother than others.
The longest and most circuitous trajectory, #1 (solid line), where I say to
myself the full sentence, “I must get to the ball,” would clearly not permit effi-
cient racquetball performance, as it is far too discursive an excursion. I simply
wouldn’t get to the ball in time if I told myself what to do in complete sen-
tences. Trajectory #2 (long dash line) streamlines this excursion somewhat by
producing an internal sentence similar to the ones that comic book superheroes

330 The Continuity of Mind
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space that might be traversed while playing racquetball. Smoother
and less discursive versions of this trajectory are depicted from
#1 to #4. (See text for details.)



use when they talk to themselves in stressful situations: “Must get ball.” With
more practice at the game, and streamlining of the perceptual-motor and cog-
nitive processes, one might hear only the main verb in one’s head, “get,” as in
trajectory #3 (short dash line). With still more practice, the real-time coupling
of my perceptual-motor system with the dynamic environmental patterns of
the ball (and court and opponent) produce mental trajectories that are quite
smooth, efficient, and wordless. Trajectory #4 (dotted line) shows a thought
pattern that would probably be called nonlinguistic by most people, although
it is clear that it has some almost linguistic structure to its path. In terms 
of “discrete mentalese,” not a word is spoken. But in terms of a “continuous
mentalese,” trajectory #4 speaks volumes.

Toward a Continuity Psychology?

In this final section of the final chapter, I might be tempted to indulge my more
rancorous instincts one more time. If I were to get up on my Fodor-brand
barbed-wire soapbox, you might hear me say something like the following:

The modular rule-and-symbol-based information-processing
framework has misled the cognitive and neural sciences for too long.
Dynamic, ecological, and connectionist approaches outstrip this
outdated perspective in every worthwhile arena of cognitive study.
Those who continue to dig their heels in to protect this obsolete
theoretical position are infidels who put the defense of their own
bodies of work above the communal advancement of knowledge.
We must declare a jihad against the computer metaphor of the mind!
The unemployment lines will flow with the graduate students of the
nonbelievers!

However, inflammatory rhetoric like that would be unfair, egregious, off-
putting, and even irresponsible of me. So I won’t say that. I will instead take
the high road and note that the field genuinely wouldn’t be as advanced as it is
today if the cognitive revolution of the 1960s hadn’t happened. It was a neces-
sary swing of the pendulum that brought psychology out of a rut and invited
several other disciplines over for dinner and conversation. But now the pen-
dulum is swinging back, and not just along that one dimension. Thankfully,
the force of this pendulum has reduced since that last apex, and the middle
ground that will responsibly and in measured tones integrate the right aspects
of various frameworks is only a few small oscillations away. I submit that the
cognitive and neural sciences are currently witnessing a gradual transition
from the traditional information-processing framework to more dynamical,
ecological, and neural network–oriented frameworks. During this gradual
transition, we may expect to see an increase in hybrid theories that success-
fully combine discrete representational structures with continuous and prob-
abilistic processes, and symbolic dynamics may play an important role in this
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transitional phase. But a steady diet of dynamic equations (Kelso, 1995), attrac-
tor networks (Amit, 1989), and principles of self-organization (Van Orden,
Holden, & Turvey, 2003) will strengthen the bones of the dynamical systems
approach and it will grow to become the dominating theoretical framework.
With increased cooperation between dynamicists and connectionists (e.g.,
Churchland & Sejnowski, 1992; Smolensky, 1988a; Spencer & Thelen, 2003; see
also Eliasmith, 1996), patterns of neural activity that mediate between sensory
stimulation and motor movement will continue to be sought after as the
mechanistic level of explanation, and equations that fit organism–environment
coupling phenomena will continue to accompany them as the covering law
level of explanation (see Bechtel, 1998).

As continuous formats of description begin to do more explaining than is
provided by the discrete rule-based descriptions for areas like visual percep-
tion, language comprehension, and memory, they will likely supplant the lat-
ter approach. In contrast, areas of cognition that rely heavily on discrete
action effects in the environment, such as problem solving and reasoning, will
be greatly enriched by the development of continuous theoretical accounts
that underlie the discrete symbolic description, but they may never be fully
dominated by those continuous accounts. That is, some areas in cognitive sci-
ence may be forced to allow continuous and discrete formats for describing
mental activity to coexist indefinitely. The dynamical systems framework will
add much to the study of problem solving and reasoning that the information-
processing framework is unable to provide, but it is unlikely to evict that 
venerable tenant.

Now, before I end this tirade of a book, I should offer one last disclaimer.
I have not been completely honest with you. To gradually guide cognitive
psychologists away from the computer metaphor of mind, this book has
focused a bit too much on continuous trajectories in a neuronal state space. As
cognitive psychologists tend to be implicit internalists (see Segal, 2000), I felt
it necessary to apply most of my pressure on prying loose the assumption of
stable symbolic internal representations. First, a reader must be shown the
strengths of conceiving of mental activity as continuous change in neuronal
population codes, rather than as a string of nonoverlapping symbols. Then,
and only then, will the reader be ready to open her mind to continuous trajec-
tories in an ecological state space that includes brain, body, and environment
(arguably, the more common purview of dynamical systems approaches to
cognition). The movement toward conceiving of mind as a continuous trajec-
tory in a neuronal state space is an important intermediate step that a cogni-
tive psychologist must first become comfortable with before continuing on to
a fully ecological dynamical account of perception, cognition, and action. One
of the goals of these last two chapters has been to prepare the reader with just
a little momentum for making that continuation in the future. By recognizing
that your mind is made of the same stuff that the physical environment is made
of, and that it doesn’t do things that violate physics, you can begin to under-
stand how the proper level of analysis might be ecological (including neural,
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biomechanical, and environmental processes) rather than solely brain-based.
A little bit like at the end of a horror movie, when some small piece of the
monster remains and the camera angle hints at a sequel (probably to be shot
by a different director), I hope the reader has a sneaking suspicion that their
trajectory away from modular discrete stage-based descriptions of mind and
toward something else entirely is not over.

In my final comment, I’d like to bring your attention back to figure 12.3.
In the context of thinking about how much explaining will be done by discrete
symbolic accounts of cognition and by dynamic distributed accounts of cog-
nition, the diagram in figure 12.3 has some thought-provoking properties.
Note how, when plotted in two dimensions, the spatiotemporal hourglasses
for the word regions in figure 12.3 look a bit like the symbol for a bridge on a
map. This is actually a useful way to think of such attractorlike tubes in state
space, because it treats them not as destinations or regions of interest in their
own right as much as passageways from one territory to the next. In fact, a
wide variety of cognitive models have a history of treating their static symbols
or stable states as secondary in importance to the transitions between those
symbols or states, for example, Wickelfeatures (Wickelgren, 1969), Markov
chains (Kemeny & Snell, 1976), and basically every dynamical system model
ever used. In this way, maybe cognitive psychology has had it all wrong, and
words, objects, and concepts are not really the regions of interest after all, but
are instead the modes of transport to the regions of interest. Maybe the real
regions of interest are the vast uncharted nondemarcated nuance-rich areas of
mental state space where an unspoken continuous coupling between brain,
body, and environment can take place unhindered by partitions and symbols.

In the body of the world, they say, there is a soul and you are that. But
we have ways within each other that will never be said by anyone.

—Jelaluddin Rumi
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Appendix: MATLAB Code for Several

Normalized Recurrence Simulations

The normalized recurrence competition algorithm is a simple enough and
generic enough localist attractor network that it can be implemented in just a
few lines of code. This appendix provides some example bits of code from
some of the simulations described in the book. They are intended to make it
easy for the reader to copy, alter, and experiment with the algorithm.

Chapter 4: Generic Normalized Recurrence

%normrec: a simple generic version based on three constraints
%competing over three alternative interpretations (using four
%stimulus items).
%inelegantly written by Michael Spivey

clear
clf
numalt=3; %number of alternative interpretations competing 

Aw=.333; %Weight of constraint A
Bw=.333; %Weight of constraint B
Cw=.333; %Weight of constraint C

%4 stimuli with their A-based biases for the three alternatives
Abiases=[3 5 2; 2 5 3; 1 5 2; 4 3 2];
%4 stimuli with their B-based biases for the three alternatives 
Bbiases=[1 1 1; 1 4 5; 3 2 5; 6 2 1];
%4 stimuli with their C-based biases for the three alternatives
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Cbiases=[32 21 48; 20 26 40; 19 19 19; 12 14 19];
%Since the values will get normalized within each vector,
%scales need not match across bias-types in these matrices.

for item=1:4,
Avec=Abiases(item,:); %collects biases for appropriate items
Bvec=Bbiases(item,:);
Cvec=Cbiases(item,:);
t=0; %resets counter
integvec=zeros(1,numalt); %resets integration vector to
zeros
integacts=zeros(1,numalt); %resets stored activation values

%dynamic criterion prevents indefinite stalemate 
while max(integvec)<1-(t*.01),

t=t+1;  %increment time

%normalize feature vectors
Avec=Avec/sum(Avec);
Bvec=Bvec/sum(Bvec);
Cvec=Cvec/sum(Cvec);

%recalculate integvec (non-cumulative)
integvec=Aw*Avec+Bw*Bvec+Cw*Cvec;

%store integ activations
integacts(t,:)=integvec;

%if weights did not sum to 1.0, 
%one would need to normalize integvec here
%as follows: integvec=integvec/sum(integvec);

%cumulative multiplicative feedback
Avec=Avec+integvec.*Avec;
Bvec=Bvec+integvec.*Bvec;
Cvec=Cvec+integvec.*Cvec;

end

subplot(4,1,item)
plot(integacts)
title('Integ Activations Over Time')
axis([0 20 0 1])
hold on

Interps(item,:)=integvec;
RTs(item)=t;

end
hold off
%Activation pattern once criterion was reached, for the 
%four items
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Interps

%Time to reach dynamic criterion, for the four items
RTs

Chapter 4: Simulation of Beer Selection

%beers: a normalized recurrence simulation 
%of the beer selection process.
%inelegantly written by Michael Spivey
clear
clf
%Vector elements stand for PabstBR, SamAdams, Guinness,
%Franziskaner, in that order
flavor=[.1 .2 .3 .4]; %flavor ratings
afford=[.33 .29 .23 .15]; %affordability ratings
wf=.25; %weight for flavor vector
wa=.75; %weight for affordability vector

%for simplicity, dynamic criterion not used here
for t=1:30,

%normalize feature vectors
flavor=flavor/sum(flavor);
afford=afford/sum(afford);
%store values
flav(t,:)=flavor;
aff(t,:)=afford;

%recalculate integration vector (non-cumulative)
integ=wf*flavor+wa*afford;
%if weights did not sum to 1.0, 
%one would need to normalize integvec here
%as follows: integ=integ/sum(integ);

%store values
beers(t,:)=integ;

%cumulative multiplicative feedback
flavor=flavor+integ.*flavor;
afford=afford+integ.*afford;

end
subplot (4,1,1), plot(beers), title ('integ');
subplot(4,1,2), plot(flav), title ('flavor');
subplot(4,1,3), plot(aff), title ('affordability');

P=beers(:,1); %extract PBR values for potential scatterplot
S=beers(:,2); %extract SamAdams values for potential scatterplot
G=beers(:,3); %extract Guinness values for potential scatterplot
F=beers(:,4); %extract Franzie values for potential scatterplot
subplot (4,1,4)
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scatter(P, S, 32, 'k')
axis([0 1 0 1])
axis square
xlabel('Pabst')
ylabel('Sam Adams')
title('Beer-space')

Chapter 6: Simulation of Taxonomic Class Categorization

%animals: a normalized recurrence simulation 
%of taxonomic class categorization.
%inelegantly written by Michael Spivey
clear
clf
%Feature values are currently set for PLATYPUS
limbs=[0 1 0 1];%fins legs wings legs
environ=[1 1 0 1];%water land sky land
blood=[0 1 1 0]; %cold warm warm cold
breath=[0 1 1 1]; %water air air air
birth=[1 0 1 1];%eggs live eggs eggs

categ=[0 0 0 0];%fish mammal bird reptile

%for simplicity, dynamic criterion not used here
for t=1:40,

%normalize feature values
limbs=limbs/sum(limbs);
environ=environ/sum(environ);
blood=blood/sum(blood);
breath=breath/sum(breath);
birth=birth/sum(birth);

%recalculate integration vector (non-cumulative)
%each feature's weight is simply 1.0
categ=limbs+environ+blood+breath+birth;
%normalize integration vector, since weights do not sum 
%to 1.0
categ=categ/sum(categ);
%store values
acts(t,:)=categ;

%cumulative multiplicative feedback
limbs=limbs+categ.*limbs;
environ=environ+categ.*environ;
blood=blood+categ.*blood;
breath=breath+categ.*breath;
birth=birth+categ.*birth;

end
'fish mammal bird reptile'
categ
subplot(2,1,1)
plot(acts) %activations over time
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axis ([0 30 0 1])
subplot(2,1,2)
F=acts(:,1);
M=acts(:,2);
B=acts(:,3);
R=acts(:,4);
scatter(M, R, 32, 'k') %trajectory plot
axis([0 1 0 1])
axis square
xlabel('mammal')
ylabel('reptile')
title('PLATYPUS')

Chapter 8: Simulation of Ambiguous Letter Resolution

%thecat: an unusual version of a normalized recurrence simulation
%that has differential weight matrices connecting the various
%layers instead of one-to-one connections between corresponding
%nodes.
%Simulates word-level feedback resolving ambiguous letter 
%perception.
%clumsily written by Michael Spivey
clear
clf
t=0;
settled=0;
%create all the vectors
letter1=zeros(1,26);
letter2=zeros(1,26);
letter3=zeros(1,26);
L1Integ=zeros(1,12);
L2Integ=zeros(1,12);
L3Integ=zeros(1,12);
WInteg=zeros(1,12);
s=.01;

%create weight matrices
%(read word labels vertically)
%S A O T C B M C D F H P (1st letter)
%H H H H A A A A A A A A (2nd letter)
%E A M E T T T B D D T L (3rd letter)
w1=...
[0 s 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 s 0 0 0 0 0 0;
0 0 0 0 s 0 0 s 0 0 0 0;
0 0 0 0 0 0 0 0 s 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 s 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 s 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
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0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 s 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 s 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 s;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 s 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0];

%S A O T C B M C D F H P
%H H H H A A A A A A A A
%E A M E T T T B D D T L
w2=...
[0 0 0 0 s s s s s s s s;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
s s s s 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0];

%S A O T C B M C D F H P
%H H H H A A A A A A A A
%E A M E T T T B D D T L
w3=...
[0 s 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 s 0 0 0 0;
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0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 s s 0 0;
s 0 0 s 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 s;
0 0 s 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 s s s 0 0 0 s 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0];

%input is set for "T", ambiguous A/H character, and "E".
letter1(20)=1;%index3=C,index20=T
letter2(1)=1;%index1=A
letter2(8)=1;%index8=H
letter3(5)=1;%indeax5=E,index20=T

for t=1:30,

%normalize letter vectors
letter1=letter1/sum(letter1);
letter2=letter2/sum(letter2);
letter3=letter3/sum(letter3);

%store letter vectors over time
Let1(t,:)=letter1;
Let2(t,:)=letter2;
Let3(t,:)=letter3;

%calculate word-supporters (cumulative)
L1Integ=L1Integ+letter1*(w1);
L2Integ=L2Integ+letter2*(w2);
L3Integ=L3Integ+letter3*(w3);

%normalize word-supporters
L1Integ=L1Integ/sum(L1Integ);
L2Integ=L2Integ/sum(L2Integ);
L3Integ=L3Integ/sum(L3Integ);
%calculate word layer (non-cumulative)
WInteg=L1Integ+L2Integ+L3Integ;
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%normalize word layer
WInteg=WInteg/sum(WInteg);
%when a word node reaches .9, record how long it took
if and((max(WInteg)>.9), (settled==0)),

'Word Level Settling Time'
t
settled=1;

end

%store word vector over time
Words(t,:)=WInteg;

%cumulative multiplicative feedback to word-supporters
L1Integ=L1Integ+WInteg.*L1Integ;
L2Integ=L2Integ+WInteg.*L2Integ;
L3Integ=L3Integ+WInteg.*L3Integ;

%re-normalize word-supporters before computing 
%next multiplicative feedback
L1Integ=L1Integ/sum(L1Integ);
L2Integ=L2Integ/sum(L2Integ);
L3Integ=L3Integ/sum(L3Integ);

%cumulative multiplicative feedback to letters
letter1=letter1+(L1Integ)*w1';
letter2=letter2+(L2Integ)*w2';
letter3=letter3+(L3Integ)*w3';

end
subplot(2,1,1),
plot(Words) %activations of word vector over time
subplot(2,1,2),
plot(Let2) %activations of second-letter vector over time

Chapter 8: Simulation of Visual Search

%vissearch: a normalized recurrence simulation of reaction time
%during conjunction search for a red vertical target 
%amidst red horizontals and green verticals.
%inelegantly written by Michael Spivey
clear
clf
setsizes=0;

for ss=4:4:36, %setsizes 4, 8, 12, etc.
setsizes=setsizes+1;
t=0;
integ=zeros(1,ss);
%Red vec with half of the distractors being red
red=[1 zeros(1, ss/2-1) (ones(1, ss/2))]; 
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%Vertical vec with the other half of distractors being
%vertical
vert=[1 ones(1, ss/2-1) zeros(1, ss/2)];

%static criterion of .95 activation used to terminate
%competition
while max(integ)<.95,

t=t+1;

%normalize feature vectors
red=red/sum(red);
vert=vert/sum(vert);

%recalculate integration vector (non-cumulative)
%feature weights are each 1.0
integ=red+vert;

%normalize integ vector, since weights do not sum
%to 1.0
integ=integ/sum(integ);

%cumulative multiplicative feedback
red=red+integ.*red;
vert=vert+integ.*vert;

end

%Reaction time = 300 ms + 20 ms per competition cycle
rts(setsizes)=t*20+300;

end
plot([4:4:36], rts) %Reaction time as a function of set size
axis([0 40 0 1200])
ylabel('RT')
xlabel('Set Size')
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Notes

Notes to Chapter 1

1. In fact, it is the act of looking inside the box that collapses this wave function, of
the cat being partly dead and partly alive, into a randomly determined discrete unitary
state of being either dead or alive. But this random wave-collapsing part of the story is
only relevant to discussions of consciousness in chapter 12.

2. Of course, this is not to say that the Copenhagen interpretation of quantum
mechanics is a happily accepted and parsimoniously integrated theory in physics.
Indeed, the incompatibility of quantum theory and relativity theory has vexed 
physicists for many decades. For an excellent treatment of this conflict, and of the
possible resolution offered by superstring theory, read Greene (2000), if you haven’t
already.

3. Properties of objects, such as overall shape, appear to be represented by popula-
tion codes as well, in visual area V4 (Pasupathy & Connor, 2002).

4. Of equal importance but less relevant to the upcoming demonstrations, is 
second-order stability, or metastability. A system may never actually be even close to 
a fixed stable state, yet some of its possible trajectories may become so frequently 
traveled that they become stable patterns of continuous change in state.

5. In fact, some of the theoretical arguments for the existence of genuinely dis-
crete, symbolic mental representations (e.g., Dietrich & Markman, 2003; Marcus,
2001) could be satisfied by placing partitions in the state space and assigning labels to
the partitions. When the state of a dynamic system moves around inside a labeled
partition, partition-based measurement of that system will make it appear as though
the system is in stasis, when in fact it is not (see “symbolic dynamics” in chapters 2
and 4).
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Notes to Chapter 2

1. At the subatomic spatial scale, time is thought to progress in unit increments
that correspond to the duration it would take a photon to traverse the Planck length
(roughly 1.6 � 10�35 meters) at 186,282 miles a second. That duration is about 10�43

seconds. However, I would suggest that for the purposes of describing neural process
at the spatial scale of about 10�6 meters, 29 orders of magnitude larger than the Planck
length, time is best treated as continuous.

2. By associating linguistic labels to the mental states here, I refer to the cognitive
scientist’s attempt to categorize the mental state, not to the cognitive system itself
using language per se to identify its mental states. Thus, for example, a dog could have
a mental state of being hungry (or even of recognizing Grandma) for which the observ-
ing scientist might use that linguistic label, but of course the dog is unlikely to be using
a linguistic label. Moreover, unfortunately, I doubt a dog will ever be in the mental
state of grasping the continuity of mind thesis.

Notes to Chapter 3

1. Not to mention the fact that there is a 500–1,000-millisecond hemodynamic
response time that varies from region to region as a function of the richness of
vasculature there. Then there’s the theoretical problems with treating an active area as
though it were the module devoted to the task at hand (see Sarter, Berntson, &
Cacioppo, 1996; Uttal, 2001).

2. However, one can avoid the forced interruption of ongoing processing by
grouping normal responses into those that happen to be fast, medium, or slow, to
compare early and late preferences and accuracies (e.g., Fox, 1984; Lamberts, 2000;
Miller & Dexter, 1988).

3. Repetitive pulses delivered in quick succession (e.g., a 50 Hz bout of these pulses
for a second or more) can cause seizures (Bernabeu et al., 2004).

4. At this point, you may be wondering why some waves are positive and some are
negative. Don’t ask.

5. A more continuous treatment of the EEG signal will be discussed in a later 
section of this chapter.

6. See Boas et al. (2001) for discussion of noninvasive laser-optical methods that
continuously record changes in blood oxygen level in human brains.

7. MEG can, of course, also be used in this nonevent-related fashion as well.
8. See also the electromagnetic articulometer system developed by Perkell et al.

(1992).
9. There are also claims from a clinical- and sales-oriented system, called neuro

linguistic programming, that an observer can tell whether someone is recalling visual
or auditory memories—or even whether they are lying—by watching the directions of
their eye movements. Do yourself a favor and put that nonsense out of your mind
immediately. Scientific tests of these claims have systematically produced insignificant
results (Baddeley & Predebon, 1991; Salas, de Groot, & Spanos, 1989; Thomason,
Arbuckle, & Cady, 1980).

10. There also are various types of time-series analyses of scan paths that can test
for particular eye movement sequences (e.g., Brandt & Stark, 1997; Richardson &
Dale, 2005).
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11. Brennan (2004) describes using a similar record of mouse cursor proximity (to
a target location) during interactive conversation and cooperative task performance,
revealing the real-time interplay between spoken language processing and motor
movement.

12. On potential concern for this upward, then curved movement might be that
participants could be strategically moving straight upward and then at earlier or later
points in time turning left or right. Under this account, differential curvatures in the
movement trajectories (between conditions) would not be due to differential spatial
attraction toward the competing response option, but would instead be due to a blend-
ing of one upward motor command and one (early or late) sideways motor command.
However, this alternative explanation is obviated by the recent finding that with
instantaneous stimulus presentation (using pictures or written words), even the very
first x, y transitions already show differential angles as a function of the strength of the
competing response option (Dale, Kehoe, & Spivey, in press).

Notes to Chapter 4

1. It should be noted that the logistic function is not the only way to produce a sig-
moid curve. For example, gain functions work as well: y � 0.5 ∗ (1 � tanh(G ∗ x)),
where G determines the slope (Amit, 1989).

2. Of course, each set of weight changes needs to be tiny on any given training 
iteration to avoid “unlearning” previously learned patterns.

3. The distinction between descriptive and explanatory theories has been used
before to take an illusory high ground to better reject competing theories, but that is
not the intent here. One can always transmogrify any putatively explanatory theory
into a descriptive one by simply asking how its assumptions came into being. Thus,
the descriptiveness of gravity equations is not justification for rejecting them but
merely encouragement for being persistent at eventually developing an explanation for
gravity’s effects.

Notes to Chapter 5

1. In fact, Neisser himself has suggested that “information processing models of
the classical kind, built on and tested by laboratory reaction-time experiments, may go
the way of Ptolemaic epicycles” (Neisser, 1997).

2. Even with the 40 Hz oscillations occasionally observed in groups of neurons
(Singer, 1999), the synchrony is only approximate, and it is not at all clear whether
such phase-locking serves a functional purpose or is merely a nonfunctional side effect
of recurrent processes (Shadlen and Movshon, 1999).

3. For example, if the sliding window for the moving average of neuronal activa-
tion in the global state space was one millisecond wide (and all neurons were somehow
in perfect lockstep at the microsecond time scale), then each activation in this space
would essentially be 0 or 1. In such a case, the trajectory in this system would be a series
of teleportations to various corners in the state space.

4. One way to preserve some semblance of the modularity perspective might be 
to acknowledge continuous flow of information between subsystems but still insist
that the subsystems use domain-specific representational formats which require agile
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“interface modules” for their interaction (Jackendoff, 2002), such as a language-to-
vision converter and a vision-to-language converter. However, the solution to the
modularity hypothesis going bankrupt should probably not be to add more modules.
That would be like paying off your overdrafted credit cards with new, higher interest
credit cards.

5. Curiously, despite these cross-modal interactions among visual, auditory,
and tactile inputs, statistical sequence learning may not transfer from any of these
modalities to the other (Conway & Christiansen, 2005).

Notes to Chapter 6

1. Similarly, one might ask, at what point do the plucked hairs collecting on the
floor become a “heap?”

2. See Love (2005), for a model that sets thresholds for a stimulus being granted its
own category. And see Goldstone, Lippa, and Shiffrin (2001) for evidence that exem-
plars themselves move closer to one another in state space when they are identified as
belonging to the same category, while the category label itself is explicitly used for 
separating exemplars that are identified as belonging to different categories.

3. In fact, in this rather small and oversimplified simulation, because the principal
limbs and environment feature vectors for a bat uniquely support the bird category,
and only the birth mode feature vector uniquely supports the mammal category, there
actually winds up being more overall support for incorrectly categorizing a bat as a
bird (asymptote at 0.8) than as a mammal (asymptote at 0.2). Expansion of the model
to include more features and more classes would eradicate this error.

4. For example, the cup that is in the second column and fourth row of the matrix
in figure 6.7 would be entered into the model, prior to normalization, as 2 wide (and
thus 8 narrow) and 4 short (and thus 6 tall).

5. I should note that I am not implying that categorization tasks are artificial or
unlike normal everyday life. A major point of the continuity of mind thesis is that
everyday life very frequently requires a discretized response. But the discrete response
is not proof that the internal cognitive processing is not continuous. For example, if
you wanted someone to pass you a bowl, you wouldn’t say, “Please pass me a concave
object with an aspect ratio between 2 and 4.” You would say, “Please pass me a bowl.”
Indeed, it is the very ubiquity of everyday situations that do require discretization of
how we act on our perceptions that often tricks us into concluding that we think in
categories.

6. For example, the bowl that is in the seventh column (width) and ninth row
(shortness) of the matrix in figure 6.7 would be entered into the model, prior to nor-
malization, as width � [0.17 0.29 0.45 0.64 0.82 0.95 1.0 0.95 0.82 0.64] and height �
[0.95 1.0 0.95 0.82 0.64 0.45 0.29 0.17 0.09 0.04]. If only a single node is activated in
each input vector (instead of this Gaussian distribution), the model performs approx-
imately the same, except that the diagonal identification function (figure 6.13) is
slightly more jagged throughout.

7. In information theory (Shannon & Weaver, 1949), the standard mathematical
approach is to use the logarithm (base 2) of probabilities—and taking the logarithm of
a 0 is not recommended.

348 Notes to pages 129–168



Notes to Chapter 7

1. “I could care less” is clearly not intended to be ironic or sarcastic, because the
speech intonation is quite variable from one use to another—there is not one stereo-
typed ironic or sarcastic form of the utterance. Besides, you can ask the speaker if he
means it ironically, and he’ll say, “No. I said I could care less, and I meant it!”

2. In spoken language, the future tense marking use of “be going to” is quite possi-
bly in the process of developing its own separate lexical item: “be gonna” (i.e., one
either says “I’m going to the store” or “I’m gonna drive to the store”, never “I’m gonna
the store”). In fact, nowadays, it’s not uncommon to hear someone say “I’m gonna go
to the store in a few minutes.” If someone had said something like that back in the
18th century, they probably would have been criticized for being redundant or even
“bastardizing the English language!”

3. This is easy enough to try for yourself by simply listening to a talk radio program
and trying to shadow a speaker as quickly as possible. With some practice, you can
approach the short latency exhibited by Marslen-Wilson’s subjects, and you will proba-
bly start making some very interesting errors. However, you may need to record yourself
and the radio program, as you may not even notice your errors when you make them.

4. Unless, of course, one has in their mental lexicon the noun barnfell. In such a
case, the sentence merely describes a single event in which a horse races past the com-
munal living house that the University of Rochester linguistics graduate students in
the early 1990s dubbed “the Barnfell.”

5. In fact, these and similar constraints also combine to determine how people deal
with impending linguistic ambiguity during language production, where the time
course of their integration is under considerable debate (e.g., Ferreira & Dell, 2000;
Horton & Keysar, 1996; Nadig & Sedivy, 2002; Schober, 1993).

6. These kinds of referential contexts have often been shown to reduce the magni-
tude of garden path effects in syntactic ambiguity resolution studies (Altmann &
Steedman, 1988; Altmann et al., 1992; Crain & Steedman, 1985), but there was some
criticism about whether they can actually eliminate garden path effects (Clifton &
Ferreira, 1989). As long as the contextual influence could be interpreted as an efficient
and fast repair of a syntactic-heuristic-induced garden path, then syntax could still be
viewed as an early modular stage of processing that was impervious to contextual
guidance (Frazier, 1995; Rayner, Garrod, & Perfetti, 1992).

7. Importantly, to match the actual experimental results, the simulation must be
run individually for each stimulus item, and then those competition durations must
be averaged for each critical sentence region, just like with the human data. Due to the
nonlinear temporal dynamics of normalized recurrence, if one instead averages all the
stimulus constraints into one amalgam stimulus, and runs that one stimulus through
the model, the results will be quite different and not particularly interpretable.

8. These values are typical for transitive verbs and close to the mean for the verbs
used by Spivey and Tanenhaus (1998).

9. In fact, sentence processing can even be affected by apparent partial activation
of locally coherent but syntactically impermissible versions of a construction (Tabor,
Galantucci, & Richardson, 2004).

10. A version of Elman’s (1990) simple recurrent network can simulate these find-
ings as well (Magnuson et al., 2003b; see also Gaskell & Marslen-Wilson, 2002;
Grossberg & Myers, 2000; Luce et al., 2000).
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11. Ideally, the lexical nodes in normalized recurrence would be the exact same
nodes as in TRACE, and thus visual cross-talk that gently modulates those lexical
nodes could trickle all the way back to the phoneme and phonetic feature layers of
TRACE. But that is for future work.

12. That said, it may well be that reading is a slightly more staccato, stop-and-start,
dynamical process (like that depicted in figure 7.3, and in Elman, 1991, and Tabor &
Tanenhaus, 1999) than spoken language comprehension (as depicted here), because
during reading the eyes tend to fixate near the center of a word and the letters to the
left and right of fixation appear to be processed roughly simultaneously and then the
eyes jump to the next word and process it essentially in parallel (see Rayner, 1998).

Notes to Chapter 8

1. See Olshausen, Anderson, and Van Essen (1993) for a related computational
model of dynamic receptive fields.

2. In fact, the neural signals for executing saccades and pursuit eye movements are
richly coordinated with one another (Gardner & Lisberger, 2002).

3. However, the subjective phenomena of pop out may still occur with displays
that produce a statistically reliable (albeit small) linear increase in response time with
set size (Bridgeman & Aiken, 1994).

4. There was a period during which serial-like search was being renamed “difficult
search” and parallel-like search was being renamed “easy search.” This has more
recently been converted into efficient and inefficient—with the apparent assumption
that these new terms are somehow less circular than difficult and easy.

5. One possibility is that the system has some kind of running estimate, perhaps
using probability summation over time (Watson, 1979), for the probability that the
target should have been found by now. When that probability gets sufficiently high,
for example, 1 � 1/e � 0.632, but the target still has not been found, then the system
concludes that the target is absent (Spivey-Knowlton, 1996).

6. The Bayesian approach to this feedforward integration process would be to
multiply these probabilities and then normalize them, but with binary feature vectors
that would of course eliminate any temporal dynamics, as the target integration node
would achieve 1.0 activation on the first time step.

7. Moreover, it is clearly not simply operating within a linear portion of an
otherwise nonlinear function. All the way to a set size of 300, in steps of 10, the slope
function produced by normalized recurrence is perfectly linear, r2 � 1.0.

8. I chose a hypothetical alligator here, instead of the more commonly used example
of a saber-toothed tiger, because deciding even really quickly on the right motor output,
when facing a saber-toothed tiger, probably wouldn’t make much of a difference.

Notes to Chapter 9

1. See also the application Director (Macromedia), and several smaller software
packages devoted solely to recording mouse coordinates (e.g., Tension Software’s Point
Recorder).
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2. In fact, this could explain why we can’t tickle ourselves, because there are no
surprises when we automatically anticipate the somatosensory input that should result
from our own finger movements on our own skin (Blakemore, Wolpert, & Frith, 2000).

Notes to Chapter 10

1. Although Tesauro’s (1989, 1994) distributed neural network, TD-Gammon, has
enjoyed considerable success at winning backgammon tournaments, the game of chess
is still best played by discrete logical algorithms.

2. Note that this has the interesting result of including discrete environmental
components (although certainly not “representations”) in my description of the brain-
body-environment triad—for the time scale of problem steps or game moves anyway,
not for the time scale of actual motor movements. I prefer to assume that the locations
and states of physical objects in the world (at the molar, superatomic, level of descrip-
tion) are generally consensually identifiable and discrete, and I also prefer to include
the environment (along with brain and body) in my definition of mind, so I am thus
forced to include these discrete environmental components in my conceptualization of
mind—for the time scale in question, that is. What this amounts to is that, in a high-
dimensional state space that describes how a mind conducts complex reasoning or
problem solving, some of the dimensions (the environmental ones) might only use
their extreme values, 0 and 1.

3. In fact, in defending discrete representations in cognition, Dietrich and
Markman (2003) essentially describe the basic concept of symbolic dynamics, without
referring to it by name, in their fourth argument (their discussion of figure 3).

4. In fact, verbalizing one’s thought processes while trying to solve insight 
problems can sometimes interfere with one’s ability to find the solution (Schooler,
Ohlsson, & Brooks, 1993).

5. This is sometimes called a compound remote associates problem, but that
doesn’t make for a very good acronym.

6. Of course, this example was used in the 1970s when China was perhaps more
prominent in U.S. news than Korea. A safer example for the present day might be
“Ecuador is like Mexico” versus “Mexico is like Ecuador.”

7. Of course, this ignores the fact that in a medical doctor’s experience, people
undergoing cancer tests are usually not randomly selected from the population. They
are often visiting the clinic because of some symptoms of illness. Preexisting risk
factors such as these make the actual calculation of the probabilities significantly more
complicated than has been depicted here.

8. If it still feels intuitively frustrating, make like a frequentist and try the Monte
Carlo method (closely related to the bootstrap method in statistics; Efron & Tibshirani,
1993). Write a computer program that randomly flips a two-sided coin 100,000 times
and save the time-series output of heads and tails. Then, compute a search for every
case of four tails in a row, and count how many of those cases are immediately followed
by another tails, and how many are immediately followed by a heads. The two counts
will each be pretty close to 3,125.

9. Chalk up another piece of evidence for the fact that although experimental 
data can be hard to interpret without theories, theories can be downright misleading
without experimental data.
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10. However, it is easily verified. Play the game 100 times with switching every time,
and then play the game 100 times with staying every time. I promise that you will win
the car about twice as often with the switching strategy. This could be called Monte
Carloing the Monty Hall problem.

11. Note that the exponential curve is a bit optimistic for the 100-cup condition.
One potential solution for this might be to multiply the equation by a scalar, perhaps
0.8 (and slightly increase p), to impose a � 1 asymptote on the curve.

Notes to Chapter 12

1. I do not wish to claim that no form of awareness exists, as that could indeed be
“ludicrous and insane” (see Searle, 1992). However, the minds of scientifically inclined
researchers should weigh heavy with the knowledge that each and every report of a
sensory impression or qualia is first filtered through self-awareness and/or linguistic
processes. Therefore, although many people report experiencing them, no single
qualia has itself ever been consensually observed. As a result, we might consider treat-
ing those self-awareness and linguistic processes as the phenomena of interest, and not
merely as filters through which some putative measure of pure consciousness is
extruded.

2. For example, neuroimaging studies of what the brain is doing during “conscious
experience” compared to “nonconscious experience” (e.g., Crick & Koch, 1998; Raichle,
1998; Taylor, 1999; see also Revonsuo, 2001) are actually demonstrating correlations
between particular brain activity and the later reportability of conscious experience,
which is more the purview of self-consciousness rather than pure consciousness.

3. Ryle (1949, p. 72) puts it this way: “A person picturing his nursery is, in a certain
way, like that person seeing his nursery, but the similarity does not consist in his really
looking at a real likeness of his nursery, but in his seeming to see his nursery itself,
when he is not really seeing it. He is not being a spectator of a resemblance of his
nursery, but he is resembling a spectator of his nursery.”

4. Note, however, that by admitting that I am a zombie, I am deviating somewhat
from being a proper zombie, because proper zombies are supposed to be indistin-
guishable from normal people (see Dennett, 1995)—and believe me, normal people
do not admit to being zombies.

5. Ironically, Searle (1992, p. 71) uses this same basic point, when discussing con-
scious robots and nonconscious robots producing identical behaviors, to bring atten-
tion to the other side of the coin: that “as far as the ontology of consciousness is
concerned, behavior is simply irrelevant.” However, it is unclear whether he makes an
exception for the behavior of claiming to be conscious, which, after all, is the only
empirical evidence we have that supports the existence of consciousness in the first
place.

6. Obviously, seeking preexisting causes could in principle continue going back
and back all the way to the big bang. But a middle ground of distributing the punitive
and rehabilitative measures among the perpetrator and a few statistically reliable 
preexisting causal forces should not be impossible to find.

7. The distinction has also been used as an all too convenient excuse to avoid read-
ing neuroscience research.

8. In fact, there does seem to be a pretty wide array of subtle psychological
modulations to people’s emotional/visceral responses to pain. Some people’s pain is
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accompanied by nausea. Some people’s pain is mixed with sadness or anger. In fact,
I know someone who says she doesn’t really know the difference between a sharp pain
and a dull pain! (She has a master’s degree in rhetoric and communications, so she’s
not stupid or illiterate.)

9. Sometimes it’s not so implicit. For example, O’Brien and Opie (1999b), among
others, have espoused what they call Cartesian materialism.

10. This is a little like a president implementing new laws for restricting industrial
pollution that actually impose far weaker constraints than the already existing but
largely unenforced legislation, and then calling it the Clear Skies Initiative.

11. In fact, one of the smartest people I know actually converses with people that
way sometimes. With lots of practice, you can understand her most of the time.
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