VBA
Developer’s Handbook ™,
Second Edition

Ken Getz
Mike Gilbert

SYBEX®

VBA Developer's Handbook

Second Edition

This page intentionally left blank

VBA
Developer's Handbook™

Second Edition

Ken Getz
Mike Gilbert

AV

L

SYBEX

San Francisco ¢ Paris ® Diisseldorf e Soest * London

Associate Publisher: Richard Mills

Contracts and Licensing Manager: Kristine O’Callaghan

Acquisitions & Developmental Editor: Christine McGeever

Editors: Susan Berge, Raquel Baker

Technical Editor: David Shank

Book Designer: Kris Warrenburg

Graphic Illustrator: Tony Jonick

Electronic Publishing Specialist: Nila Nichols

Production Editor: Leslie E. H. Light

Proofreaders: Nancy Riddiough, Patrick J. Peterson, Molly Glover, Nelson Kim, Jennifer Campbell
Indexer: Ted Laux

CD Coordinator: Christine Harris

CD Technician: Keith McNeil

Cover Designer: Design Site

Cover Illustrator: Jack D. Meyers

SYBEX and the SYBEX logo are registered trademarks of SYBEX Inc. in the USA and other countries.

Developer’s Handbook is a trademark of SYBEX Inc.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive
terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release
software whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by
software manufacturer(s). The author and the publisher make no representation or warranties of any kind with
regard to the completeness or accuracy of the contents herein and accept no liability of any kind, including but not
limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind
caused or alleged to be caused directly or indirectly from this book.

Copyright © 2000 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of
this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited
to photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the
publisher.

Copyright © 2000 SYBEX, Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. The
authors created reusable code in this publication expressly for reuse by readers. SYBEX grants readers permission to
reuse for any purpose the code found in this publication or its accompanying CD-ROM so long as the authors are
attributed in any application containing the reusable code and the code itself is never distributed, posted online by
electronic transmission, sold, or commercially exploited as a stand-alone product. Aside from this specific exception
concerning reusable code, no part of this publication may be stored in a retrieval system, transmitted, or reproduced
in any way, including but not limited to photocopy, photograph, magnetic or other record, without the prior
agreement and written permission of the publisher.

Library of Congress Card Number: 2001089612
ISBN: 0-7821-2978-1
Manufactured in the United States of America

10987654321

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book
that are available now or in the future contain programs and/or
text files (the "Software") to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject to
the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless
otherwise indicated and is protected by copyright to SYBEX or
other copyright owner(s) as indicated in the media files (the
"Owner(s)"). You are hereby granted a single-user license to use the
Software for your personal, noncommercial use only. You may not
reproduce, sell, distribute, publish, circulate, or commercially
exploit the Software, or any portion thereof, without the written
consent of SYBEX and the specific copyright owner(s) of any
component software included on this media.

In the event that the Software or components include specific
license requirements or end-user agreements, statements of
condition, disclaimers, limitations, or warranties ("End-User
License"), those End-User Licenses supersede the terms and
conditions herein as to that particular Software component. Your
purchase, acceptance, or use of the Software will constitute your
acceptance of such End-User Licenses.

By purchase, use, or acceptance of the Software you further agree to
comply with all export laws and regulations of the United States as
such laws and regulations may exist from time to time.

Reusable Code in This Book The authors created reusable code
in this publication expressly for reuse by readers. SYBEX grants
readers permission to reuse for any purpose the code found in this
publication or its accompanying CD-ROM so long as the authors
are attributed in any application containing the reusable code, and
the code itself is never sold or commercially exploited as a stand-
alone product.

Software Support Components of the supplemental Software
and any offers associated with them may be supported by the
specific Owner(s) of that material but they are not supported by
SYBEX. Information regarding any available support may be
obtained from the Owner(s) using the information provided in the
appropriate read.me files or listed elsewhere on the media.
Should the manufacturer(s) or other Owner(s) cease to offer
support or decline to honor any offer, SYBEX bears no
responsibility. This notice concerning support for the Software is
provided for your information only. SYBEX is not the agent or
principal of the Owner(s), and SYBEX is in no way responsible for
providing any support for the Software, nor is it liable or
responsible for any support provided, or not provided, by the
Owner(s).

Any Microsoft product accompanying this book was reproduced
by SYBEX under special arrangement with Microsoft Corporation.
For this reason, SYBEX will arrange for its replacement. PLEASE
DO NOT RETURN IT TO MICROSOFT CORPORATION. Any
product support will be provided, if at all, by SYBEX. PLEASE DO
NOT CONTACT MICROSOFT CORPORATION FOR PRODUCT
SUPPORT. End users of this Microsoft program shall not be

considered "registered owners" of a Microsoft product and
therefore shall not be eligible for upgrades, promotions, or other
benefits available to "registered owners" of Microsoft products.

Warranty SYBEX warrants the enclosed media to be free of
physical defects for a period of ninety (90) days after purchase. The
Software is not available from SYBEX in any other form or media
than that enclosed herein or posted to www. sybex. com. If you
discover a defect in the media during this warranty period, you
may obtain a replacement of identical format at no charge by
sending the defective media, postage prepaid, with proof of
purchase to:

SYBEX Inc.

Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501

(510) 523-8233

Fax: (510) 523-2373

E-mail: info@sybex.com

Web: http://www.sybex.com

After the 90-day period, you can obtain replacement media of
identical format by sending us the defective disk, proof of
purchase, and a check or money order for $10, payable to SYBEX.

Disclaimer SYBEX makes no warranty or representation, either
expressed or implied, with respect to the Software or its contents,
quality, performance, merchantability, or fitness for a particular
purpose. In no event will SYBEX, its distributors, or dealers be
liable to you or any other party for direct, indirect, special,
incidental, consequential, or other damages arising out of the use of
or inability to use the Software or its contents even if advised of the
possibility of such damage. In the event that the Software includes
an online update feature, SYBEX further disclaims any obligation to
provide this feature for any specific duration other than the initial
posting.

The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you. This
warranty provides you with specific legal rights; there may be
other rights that you may have that vary from state to state. The
pricing of the book with the Software by SYBEX reflects the
allocation of risk and limitations on liability contained in this
agreement of Terms and Conditions.

Shareware Distribution This Software may contain various
programs that are distributed as shareware. Copyright laws apply
to both shareware and ordinary commercial software, and the
copyright Owner(s) retains all rights. If you try a shareware
program and continue using it, you are expected to register it.
Individual programs differ on details of trial periods, registration,
and payment. Please observe the requirements stated in
appropriate files.

Copy Protection The Software in whole or in part may or may
not be copy-protected or encrypted. However, in all cases, reselling
or redistributing these files without authorization is expressly
forbidden, except as specifically provided for by the Owner(s)
therein.

To Peter: Your patience and understanding
(especially that patience thing) have made it
possible to write books like this. Your working very
long hours didn’t hurt, either.

—K.N.G.

To Revi, Lynn, David, Tree, Michelle, Cynthia,
and Karishma: true friends and good souls all.
Thanks for being there when I needed you.

—M.T.G.

ACKNOWLEDGMENTS

As with any book, this one wouldn’t have been possible without the contribu-
tions of many people besides the authors. First of all, we’d like to thank our tire-
less developmental editor, Melanie Spiller, without whom we wouldn’t be writing
the kinds of books we write. Melanie continues to be an inspiration, a confidant,
and someone whose edits continue to provide new insights into how to get techni-
cal writing done right. This is the seventh book we’ve done with Melanie, and
every one has been made better by her patience, understanding, and care.

In addition, we’ve had the benefit of not one, but two careful, caring editors from
Sybex for this edition: Raquel Baker and Susan Berge survived our ever-changing
schedule and our procrastination, complaining, and (yes, we can say it) anal-retentive-
ness, with amazing grace and good nature. It’s been a pleasure working with both
Raquel and Susan, and we’d do it again in a heartbeat. There are many others at
Sybex we’d like to thank, as well, including all the folks in layout, production, and
other departments we never get to meet.

We’d also like to pay special tribute (again) to our technical editor, David Shank.
His eye for detail is unsurpassed, and in the course of reviewing this book, he pro-
vided innumerable comments that measurably improved the content and exam-
ples. If the book is complete and accurate, blame Dave. (On the other hand, any
errors or omissions are clearly our responsibility and not Dave’s.) This is our
fourth book with David (he also worked his way through Access 97 Developer’s
Handbook, Visual Basic Language Developer’s Handbook, and Access 2000 Developer’s
Handbook: Desktop Edition), and given the choice, we’d work with him on any and
every future project. David currently works on developer documentation at
Microsoft, having cowritten what may be the definitive book on Office develop-
ment: Microsoft Office 2000/Visual Basic: Programmer’s Guide from Microsoft Press.
We don’t know how David does it, but he’s made an indelible contribution to each
of these books.

Thanks to Dan Haught of FMS, Inc., who originally prepared an outline for a book
similar to this one and then decided to go a different route; his company created
Total Access SourceBook and Total VB SourceBook, source code libraries for Microsoft
Access and Visual Basic, respectively, which include material that parallels the
topics covered in this book. Dan kindly provided us with his detailed outline,
from which we began the process of writing the book. For more information on
FMS, Inc. and their products, visit their Web site at http://www. fmsinc.com Thanks
also to Luke Chung of FMS, Inc., who provided us with documentation and exam-
ples involving numeric rounding and calculation errors, which were helpful in the
creation of Chapter 2.

We’d also like to thank Mary Chipman and Andy Baron, senior consultants with

MCW Technologies. They both dug through the VBA issues surrounding numeric
operations and provided much of the material in Chapter 2 of this book. Thanks to
Terry Kreft, who added some new material to this chapter for this edition, as well.

Dev Ashish, the keeper of the Web site where you’ll find answers to almost any
Microsoft Access question (see the Access Web at http://www.mvps.org/access/),
revised Chapter 9, “Retrieving and Setting System Information,” for this edition of
the book. Dev loves digging into the Windows API, and this chapter shows that
off. He tirelessly dug through new Windows 2000 API calls, helping to add many
new properties and methods to the existing classes in this chapter.

Michael Kaplan of Trigeminal Software, Inc. crafted Chapter 11 for us in the previ-
ous edition of this book and revised it for this edition. This chapter, covering the
issues involved in working with networks programmatically, was greatly enhanced
by Michael’s contributions, based on his research and experience with networks
and network management. We’d also like to thank those experts who provided us
with suggestions, ideas for chapter topics, and code review, including Jim Fergu-
son, Mike Gunderloy, and Brian Randell. Several readers wrote to us with sugges-
tions, complaints, and ideas, including Philip Andrew, Doug Behl, Manuel Lopez,
Mindy Martin, Sanjay S. Mundkur, Peter Mundy, Carl Parmenter, and Brian
Wells. (We've surely missed a few and apologize in advance.) We truly appreciate
the ideas, support, and encouragement. Malcolm Stewart, of Microsoft’s Access
support group, provided the NEATCODE.MDB sample database from which we
began much of our research into some of the various programming topics.

In addition, we’d like to thank Neil Charney. Neil has been working with Office
and VBA for the past four years and is currently group product manager for VBA
and Microsoft Office Developer at Microsoft. Neil has been instrumental in get-
ting us the information and contacts we needed to write this book. In addition to
Neil, we’d also like to thank the members of the entire VBA development team,
especially Theresa Venhuis, David Holmes, Tom Quinn, and Russell Spence, who
not only are the ones responsible for the technology but were also gracious enough
to put up with our nitpicky questions. We’d also like to thank all the companies
that provided samples, demos, and information for the book’s CD-ROM.

Finally, Greg Reddick and Paul Litwin deserve special thanks. Paul not only
provided ideas and spiritual and moral support, he also graciously granted per-
mission for us to use some of the work he did for our sister book, Access 2000
Developer’s Handbook, also published by Sybex. Greg laboriously updated his nam-
ing conventions for Office 2000 and VBA, and we’ve included this document as
Appendix A.

ABOUT THE AUTHORS

Ken Getz

Ken Getz is a senior consultant with MCW Technologies, focusing on the Microsoft
suite of products. He has received Microsoft’s MVP award (for providing online
technical support) every year since 1993 and has written several books on devel-
oping applications using Microsoft products. Ken is a technical editor for Access-
Office-VB Advisor magazine, which is published by Advisor Media, Inc. He is also
a contributing editor for Microsoft Office & Visual Basic for Applications Developer
magazine, published by Informant Communications Group, Inc. Currently, Ken
spends a great deal of time traveling around the country for Application Devel-
oper’s Training Company, presenting training classes for Access and Visual Basic
developers. He also speaks at many conferences and trade shows throughout the
world, including Microsoft’s Tech*Ed, Advisor Publication’s DevCon, and Infor-
mant’s Microsoft Office and VBA Solutions conference. You can reach Ken at
kgetz@developershandbook.com.

Mike Gilbert

Mike Gilbert works at Microsoft as a program manager designing object models for
business productivity and Web collaboration products. Prior to joining Microsoft,
he was a senior consultant with MCW Technologies, specializing in application
development using Microsoft Access, Visual Basic, SQL Server, and Microsoft
Office. He writes for several periodicals and is a contributing editor to Microsoft
Office &Visual Basic for Applications Developer magazine. He is also a regular speaker
at conferences such as Microsoft Tech*Ed and the Microsoft Office and VBA Solu-
tions conference. You can reach Mike at mgiTbert@developershandbook.com.

CONTENTS AT A GLANCE

Introduction
Chapter 1: Manipulating Strings
Chapter 2: Working with Numbers
Chapter 3: Working with Dates and Times
Chapter 4: Using VBA to Automate Other Applications
Chapter 5: Creating Your Own Objects with VB Class Modules
Chapter 6: Advanced Class Module Techniques
Chapter 7: Searching and Sorting in VBA
Chapter 8: Creating Dynamic Data Structures Using Class

Modules

Chapter 9: Retrieving and Setting System Information
Chapter 10: Managing Windows Registry Data
Chapter 11: The Windows Networking API
Chapter 12: Working with Disks and Files
Chapter 13: Adding Multimedia to Your Applications
Chapter 14: Using the Scripting Runtime Library Objects
Chapter 15: Writing Add-Ins for the Visual Basic IDE

Appendix A: The Reddick VBA Naming Conventions, Version 6

Index

xx1

93
143
223
271
305
369

431
485
597
633
701
809
879
931
999

1025

TABLE OF CONTENTS

Chapter

1

Introduction

Manipulating Strings
How Does VBA Store Strings?
Unicode versus ANSI
Using Built-In String Functions
Comparing Strings
Converting Strings
Creating Strings: The Space and String Functions
Calculating the Length of a String
Formatting Data
Reversing a String
Justifying a String
Searching for a String
Working with Portions of a String
Replacing Portions of a String
Search and Replace in Strings
Working with Arrays of Strings
ANSI Values
Working with Bytes
Putting the Functions Together
Searching for and Replacing Text
Replacing Any Character in a List with Another Character
Removing All Extra White Space
Removing Trailing Null and Padding from a String
Replacing Numbered Tokens within a String
Gathering Information about Strings
Determining the Characteristics of a Character
Counting the Number of Times a Substring Appears
Counting the Number of Tokens in a Delimited String
Counting the Number of Words in a String
Converting Strings
Converting a Number into a String with the Correct
Ordinal Suffix
Converting a Number into Roman Numerals
Performing a “Smart” Proper Case Conversion
Encrypting/Decrypting Text Using XOR Encryption

xxi

SNON W =

10
11
12
12
18
19
21
24
26
27
28
35
36
38
39
39
43
44
46
49
49
53
55
57
58

59
60
63
71

xii Table of Contents

Chapter 2

Chapter 3

Returning a String Left-Padded or Right-Padded
to a Specified Width

Using Soundex to Compare Strings
Working with Substrings

Returning a Specific Word, by Index, from a String

Retrieving the First or Last Word in a String

Converting a Delimited String into a Collection of Tokens
Summary

Working with Numbers

How Does VBA Store Numeric Values?
Whole Numbers
Floating-Point Numbers and the Errors They Can Cause
Scaled Integers

Using Built-In Numeric Functions
Mathematical and Trigonometric Functions
Numeric Conversions and Rounding
Random Numbers
Financial Functions
Base Conversions

Custom Math and Numeric Functions
Mathematical Functions
Geometric Calculations
Statistics

Summary

Working with Dates and Times

What Is a Date, and How Did It Get There?
An Added Benefit
Supplying Date Values
The Built-In VBA Date Functions
Exactly When Is It?
What If You Just Want One Portion of a Date/Time Value?
Pulling the Pieces Apart
Performing Simple Calculations
Odd Behaviors
Displaying Values the Way You Want
Beyond the Basics
Finding a Specific Date
Finding the Beginning or End of a Month
Finding the Beginning or End of a Week
Finding the Beginning or End of a Year

75
77
81
82
86
88
92

93

94

97

98
102
105
105
109
116
120
125
129
130
132
136
142

143

144
145
146
147
147
149
149
153
159
160
167
168
169
170
172

Table of Contents Xiii
Finding the Beginning or End of a Quarter 173
Finding the Next or Previous Weekday 176
Finding the Next Anniversary 178
Finding the nth Particular Weekday in a Month 180
Working with Workdays 182
Finding the Next, Previous, First, or Last
Workday in the Month 186
Manipulating Dates and Times 190
How Many Days in That Month? 190
How Many Mondays in June? 192
Is This a Leap Year? 194
Rounding Times to the Nearest Increment 196
Converting Strings or Numbers to Real Dates 199
Working with Elapsed Time 203
Finding Workdays between Two Dates 203
Calculating Age 207
Formatting Elapsed Time 209
Formatting Cumulative Times 214
Handling Time Zone Differences 217
Using the SystemTimeInfo Class 218
Summary 221
Chapter 4 Using VBA to Automate Other Applications 223
Automation Basics 224
Terminology 225
What’s the Value of Automation? 226
Object Classes 227
Type Libraries: The Key to Classes 228
Browsing Objects with Object Browser 230
Creating Object Instances 232
Early Binding and Late Binding 233
A Simple Early Binding Example 233
When to Instantiate 236
CreateObject and GetObject 237
Understanding Class Instancing 240
Controlling Other Applications 243
Learning an Application’s Object Model 243
Differences in Application Behavior 245
Memory and Resource Issues 246
Creating Automation Solutions with Microsoft Office 246
The Office Object Models 247
Example: Word as a Report Writer 253
Creating the Word Template 253

Xiv Table of Contents

Chapter 5

Chapter 6

Building the Invoice
Example: Populating an Excel Worksheet
Using an Existing File
Our Scenario
Creating an Object from an Existing Document
Updating the Worksheets and Chart
Tapping into Events Using WithEvents
What Is WithEvents?
Using WithEvents
Summary

Creating Your Own Objects with VB Class Modules

Why Use Class Modules?
Encapsulate Data and Behavior
Hide Complex Processes from Other Developers
Making Development Easier
How Class Modules Work
Class Modules Are Like Document Templates
Class Instances Are the Documents
A Simple Example: A Text File Class
Creating an Object Class
Creating a Property
Creating a Method
Using the Object Class
Using Property Procedures
What Are Property Procedures, and Why Use Them?
Retrieving Values with Property Get
Setting Values with Property Let
Read-Only and Write-Only Properties
Creating Object Properties
Creating Enumerated Types
Defining an Enumerated Type
Using Enumerated Types with Methods and Properties
Applying Class Module Techniques to the Windows API
Working with the Clipboard
Designing the Clipboard Class
Testing the Clipboard Class
Summary

Advanced Class Module Techniques

Object Model Design Principles
Determining Class Requirements
Specifying Class Members

255
260
260
260
262
263
266
266
267
270

271

273
273
276
276
277
277
277
278
278
280
281
284
289
289
289
290
292
292
294
294
295
296
297
297
303
303

305

307
308
310

Table of Contents XV

Object Model Naming 312
Modeling Class Relationships 314
Developing Object Hierarchies 315
Creating a Parent Property 317
Self-Referencing 319
Collections of Objects 319
Collection Basics 319
Creating Your Own Collections 322
Creating a Collection Class 324
Collection Class Tricks 333
Creating and Using Custom Events 339
Defining Custom Events 339
Raising an Event 340
Responding to Events 342
Using Forms with WithEvents 345
Custom Events Caveats 347
Interface Classes and the Implements Keyword 347
Interface Inheritance 348
When to Inherit 348
Interface Inheritance Example: Callbacks 349
Other Advanced Considerations 356
Error Handling in Classes 356
Circular Reference Issues 360
Shared Classes 365
Summary 367
Chapter 7 Searching and Sorting in VBA 369
Timing Is Everything 371
Introducing the StopWatch Class 371
Using the StopWatch Class 373
Using Arrays 374
What Is an Array, Anyway? 374
Creating an Array 377
Using Data in an Array 377
Sizing an Array 378
Using a Variant to Point to an Array 380
Sorting Arrays 384
How Does Quicksort Work? 385
Watching Quicksort Run 396
Using Quicksort 398
Speed Considerations 399
Sorting Collections 401

Sorting Other Types of Data 408

XVi Table of Contents

Chapter

8

Searching
Why Use the Binary Search?
How Does Binary Search Work?
Using Binary Search

Summary

Creating Dynamic Data Structures Using
Class Modules

Dynamic versus Static Data Structures
Simple Dynamic Structures
Recursive Dynamic Structures

How Does This Apply to VBA?

Retrieving a Reference to a New Item

Making an Object Variable Refer to an Existing Item
What If a Variable Doesn’t Refer to Anything?
Emulating Data Structures with Class Modules
Creating a Header Class

Creating a Stack
Why Use a Stack?

Implementing a Stack
The StackItem Class

Creating a Queue
Why Use a Queue?

Implementing a Queue

Creating Ordered Linked Lists
The ListItem Class
The List Class

Creating Binary Trees
Traversing Binary Trees
What'’s This Good For?
Implementing a Binary Tree

The Tree Class

Adding a New Item

Adding a New Node: Walking the Code

Traversing the Tree

Traversing a Tree: Walking the Code
Optimizing the Traversals

The Sample Project

What Didn’t We Cover?

Summary

420
420
421
428
430

431

433
434
434
435
436
437
437
438
439
439
440
440
441
448
448
449
456
456
456
469
469
470
472
473
473
476
477
479
481
481
482
483

Table of Contents XVii

Chapter 9 Retrieving and Setting System Information 485
VBA and System Information 487
The API Functions 490

Using the GetSystemMetrics Function 491
Using the SystemParametersInfo Function 492
Functions That Require Data Structures 496
Computer and Operating System Information 501
Using the SystemlInfo Class 506
Windows Accessibility 527
Using the Accessibility Class 541
Creating the Accessibility Class 542
Keyboard Information 545
Using the Keyboard Class 546
Creating the Keyboard Class 551
Memory Status 553
Using the MemoryStatus Class 554
Creating the MemoryStatus Class 555
Mouse Information 558
Using the Mouse Class 561
Non-Client Metrics 565
Using the NonClientMetrics Class 567
Creating the NonClientMetrics Class 570
Power Status 577
Using the PowerStatus Class 580
Screen and Window Information 583
Using the ScreenInfo Class 589
Creating the ScreenInfo Class 590
System Colors 591
Using the SystemColors Class 592
Creating the SystemColors Class 594
Summary 596

Chapter 10 Managing Windows Registry Data 597

Registry Structure 599
Referring to Registry Keys and Values 601
VBA Registry Functions 601
Windows Registry Functions 604
Opening, Closing, and Creating Keys 605
Working with Registry Values 609
Enumerating Keys and Values 613
An Object Model for the Registry 617

An Overview 618

Xviii Table of Contents

Chapter 11

Chapter 12

Implementing the Classes
Using the Registry Objects
Summary

The Windows Networking API

Basic Network Functionality
Using Common Network Dialogs
Handling Network Resources Yourself
Disconnecting from a Network Resource
Retrieving Information about Network Resources

Advanced Networking Functionality
Retrieving Universal Name Information
Enumerating Network Resources
Putting It All Together
The LAN Manager API

Summary

Working with Disks and Files

The Built-In VBA Disk and File Functions
The Dir Function Explained
Using File Attributes
Doing the Disk File Shuffle
Some File Information: FileLen and FileDateTime
Directory Management
File I/O If You Must
Getting a Handle on Files
Using the Open Function
Manipulating File Position
Statements for Reading and Writing
The Windows API: Where the Real Power Is
Comparing API Functions with VBA Functions
Getting Disk Information
Fun with Paths
A Replacement for Dir
Windows Notification Functions
Searching for Files
Procuring Temporary Filenames
Getting a (Windows) Handle on Files
Windows API Dates and Times
Working with File Times
Using the Windows Common File Dialogs
Using the CommonDIg Class

620
629
632

633

635
635
642
647
650
656
657
663
674
681
699

701

703
703
705
710
711
711
716
716
717
720
721
730
730
732
743
749
756
763
772
773
778
782
788
788

Table of Contents Xix

Using the Windows File Open/Save Common Dialogs 795
Summary 808
Chapter 13 Adding Multimedia to Your Applications 809
An Introduction to Windows Multimedia 811
Multimedia Services and MCI 811
One-Step Multimedia 815
Beeping Away 816
MessageBeep: One Step Better 816
Playing Waveform Audio with PlaySound 817
Understanding the Media Control Interface 829
Working with MCI Devices 829
The MCI Command String Interface 834
The MCI Command Message Interface 837
Putting MCI to Work 847
Playing Audio CDs 848
Recording and Playing Waveform Audio 857
Putting Digital Video in a Window 869
Summary 877
Chapter 14 Using the Scripting Runtime Library Objects 879
Why Is This Chapter Different? 881
Referencing and Using SCRRUN.DLL 882
The FileSystemObject Object 884
Testing the Simple FileSystemObject Methods 890
Copying and Moving Files and Folders 891
The Drives Collection 893
The Drive Object 894
The Folder Object 897
Navigating through Folders 900
The Files Collection 902
The File Object 903
Methods of File Objects 905
Retrieving a Specific File Object 908
Modifying Attributes 909

The TextStream Object 913
Opening a TextStream 914
Making the TextStream Object Work 915
Properties of the TextStream Object 917
Using the TextStream Object 918
Working with the Dictionary Object 920
Taking the Dictionary for a Spin 922

XX Table of Contents

Chapter 15

Appendix A

A Simple Example
Why Is a Dictionary Better Than a Collection?
Summary

Writing Add-Ins for the Visual Basic IDE

Working with the IDE Object Model
The Class Hierarchies
Working with Windows
Working with VBA Projects
Modifying Project Components
Manipulating Code Modules
Putting It Together: An Alternative Object Model
Examining Our Object Model
Using Our Object Model
COM Add-Ins
Using the COM Add-Ins Dialog
Exploring IDTExtensibility2
Building a COM Add-In for the VBA IDE
Using the COM Add-In Designer
Specifying Add-In Load Behavior
Adding the Type Library Reference
Coding the Add-In
Using Our Object Model
Debugging, Compiling, and Distributing
The Add-Ins Collection
Summary

The Reddick VBA Naming Conventions, Version 6

Changes to the Conventions
An Introduction to Hungarian
Tags
Creating Data Types
Constructing Procedures
Prefixes
Suffixes
Filenames

Host Application and Component Extensions to the

Conventions
Summary

Index

924
928
930

931

934
934
937
943
949
959
970
971
975
978
978
979
982
983
987
987
988
991
993
996
997

999

1000
1001
1002
1004
1006
1007
1009
1010

1010
1024

1025

INTRODUCTION

Visual Basic for Applications (VBA) started its life as a tool that would allow
Excel, and then other Microsoft Office applications, to control their own environ-
ment programmatically and would work with other applications using OLE
Automation. In 1996, the VBA world exploded when Microsoft allowed other
vendors to license the VBA language engine and environment for their own prod-
ucts. At the time of this writing, hundreds of vendors have licensed this exciting
technology, making it possible for users of many products to control their applica-
tions and any Automation server using VBA.

The best part about all this for the VBA developer is that the skills you learn in
one product will carry directly to any other VBA host. The programming environ-
ment is the same, the debugging tools are the same, and the language is the same.
Finally, Basic programmers (after all, VBA is still a variant on the original BASIC
language) are getting some respect. Using tools that end-users can appreciate and
work with, you can write applications that they can live with, modify, and extend.

Here’s what Microsoft doesn’t make clear: VBA is a language, a development
environment, and a forms package. This book is only about one part of that trium-
virate: the language. We’ve attempted to dig into details of VBA, the language,
that you won’t find elsewhere. We’ve not made any attempt to discuss the forms
package that’s part of VBA, nor have we spent any time discussing the develop-
ment environment.

What this means is that this book applies to anyone using VBA 6, and that
includes Office 2000, Visual Basic 6, and the myriad of other products that have
licensed the VBA 6 technology. In essence, this book is host-agnostic, and all the
code runs equally well in VB6 or Access 2000.

About the Book

VBA has become the glue that ties together the various pieces of multi-platform
solutions, and many new programmers are being tossed into situations in which
they need programming help. In this book, you'll find creative solutions to many
programming problems.

Is this book a replacement for the VB or VBA programmer’s reference manuals?
Not even close! Nor does it intend to provide you with a complete reference. This
book is about ideas, about solutions, and about learning. We’ve taken our com-
bined years of Basic programming; come up with a list of topics that we think are
interesting and that provide challenges to many developers; and created a book
that, we hope, collates all the information in useful and interesting ways.

Xxii Introduction

First and foremost, this book is ot product specific. That is, whether you're using
Microsoft Office 2000 or any other product that hosts VBA 6 or later, you'll be able to
take advantage of the code in this book. Because we’ve provided the code in three for-
mats (as Microsoft Access 2000 databases, Microsoft Excel 2000 workbooks, and as
separate text files with VB6 project files), anyone who has a CD-ROM reader can
immediately make use of this code. We'll say it again: Although we used Office 2000
in developing this book, the code provided here should work in any product that hosts VBA 6.

For these reasons, we’ve focused on code, not the user interface, so you'll find
very few examples in the book that actually look like anything much. For the most
part, the examples involve calling code from the Immediate window. Don’t expect
lots of pretty examples with forms you can dig into—that wasn’t our goal at all.
We've provided the tools; now you provide the spiffy interface!

Our goal in writing this book was both to provide useful code and to explain
that code so you can modify and extend it if you need to add more or different
functionality. We’ve covered a broad range of topics but haven’t even made an
attempt to be the absolute final word on these, or any, topics. Doing so would
require a book ten times the size of this one. No, this book is meant as a starting
place for explorations into new topics, in addition to providing a ton of useful code.

Is This Book for You?

This book is aimed squarely at the legions of developers, both new to, and experi-
enced with, VB and VBA development, who need help with specific coding situa-
tions. But if you're looking for a description of how the If...Then construct works
or for someone to hold your hand while you write your first VBA procedure, per-
haps this isn’t the right book for you. On the other hand, if you want to work
through a great deal of code, copy and paste code and complete modules from our
samples directly into your applications, and work through the code line by line,
you've come to the right place.

This book will appeal to three separate audiences:

VBA beginner to intermediate You've written a few procedures and are try-
ing to put together an application. You need help writing specific procedures; stop-
ping to figure out the code on your own would be an insurmountable task. You can
copy and paste code from the book right into your modules, skip the boring part
where we describe how the code works, and get back to work on your application.

VBA advanced You've written a lot of code and are facing more and greater
coding challenges. You need specific procedures written and could do it your-
self, but there are other pressing needs (like getting your application finished
yesterday). You can take the routines from this book, modify them to exactly

Introduction Xxiii

meet your needs, and work through the explanations provided here to add to
your working knowledge about the use of VBA.

VBA expert Even if you're among the most experienced of VBA program-
mers, there are some procedures you'll need and just haven’t written yourself.
You can take the code provided here as a starting point and embellish and fine-
tune to your heart’s content. Of course, you may find a better way to rewrite the
code we’ve provided; if so, we’d love to hear from you!

If you find yourself in any one of these three categories, have we got some code
for you!

What You Need to Know

To make it possible to stuff as much code as possible into this book, we’ve had to
dispense with material specifically geared for beginners. If you're not sure where to
put the code, how to create a module, or even what the different variable types are
in VBA, perhaps you'd do best to put this book aside for a week or so and study the
reference materials provided with the VBA host you're working with. Make sure
you have a good grasp of the following topics before jumping into this book:

e Creating modules
¢ Creating procedures
e Using variables and their data types

e Using VBA syntax (including If...Then, For...Next, and other control
structures)

If you take the time to review these concepts before delving into this book,
you’ll get a great deal more out of the material here.

Conventions Used in the Book

Having worked on a number of projects together, we’ve found that a consistent
style and defined conventions make it much simpler for multiple programmers to
work together on a project. To make it easier for you to understand our code (and
for us to understand each other’s), we’ve adopted a naming standard, which
we’ve stuck to both throughout this book and in all our professional work.

We've used version 6 of the Reddick VBA (RVBA) naming conventions for the
naming of objects, which have been accepted by many VB and VBA developers as
the naming standard to follow. Greg Reddick, a noted Access and Visual Basic
developer and trainer, developed the standard, which bears his name. Even if you
don’t subscribe to the RVBA standard, you'll likely appreciate the fact that it has
been used consistently throughout this book. These conventions, which were first
published in Smart Access, are included in their entirety in Appendix A.

XXiv Introduction

In addition to following the RVBA standard, we’ve prefaced all Public func-
tions, subroutines, and user-defined types that you may wish to use for your own
code, with the “dh” prefix (which stands for Developer’s Handbook). Also, we have
aliased all Public Windows API declarations using a “dh_api” prefix, and we have
prefixed all Public constants with “dhc”. These conventions should avoid naming
conflicts with any existing code in your applications. However, if you import mul-
tiple modules from various chapters’ samples into a single application, you may
find naming conflicts as a result of our using consistent naming throughout the
chapters. In that case, you'll need to comment out any conflicting API declarations
or user-defined types.

A note about error handling: When writing utility procedures, such as those
found in this book, it’s always a toss-up whether to include extensive error han-
dling. We decided, both for the sake of simplicity and because we both hate using
service routines that display error messages, to include very little error handling,
except in cases where the procedures need it for their own use. This means that
your code, calling our procedures, will need to trap and handle errors that bubble
up from the code provided here. Of course, if you’d rather, you can simply add
your own error handling to the procedures you import. For more information on
using error handling, please see Appendix C, which is included on the CD-ROM
that accompanies this book.

Appendices

In addition to the fifteen chapters, we’ve included four appendices. Appendix A is
included in the book. Appendices B, C, and D are included on the CD-ROM that
accompanies this book.

e Appendix A contains the complete Reddick VBA naming conventions.

¢ Appendix B contains a chapter borrowed from our “sister” book (Access
2000 Developer’s Handbook: Desktop Edition, also from Sybex), which intro-
duces the use of the Windows API in VBA applications. If you've never
looked into how VBA apps can use the Windows AP, you'll want to at least
skim this appendix before working with the code in Chapters 9 through 13.

e Appendix C focuses on writing bulletproof, well-tuned VBA applications,
including handling errors, creating event logs, and creating a procedure-
tracking stack for your applications. Because many of this book’s readers
already have the concepts presented in this appendix under their belts,
we’ve moved this from being a full chapter into the appendix territory for
this edition of the book.

Introduction XXV

e Appendix D contains a Folder and File object model—that is, a set of classes you
can use for modeling the file system. This code was originally in Chapter 12.
However, we noticed that in this edition, Chapter 14’s coverage of the FileSyste-
mObject made this home-grown set of classes (perhaps) redundant. On the
other hand, there’s something to be said for having modifiable source code, so
we’ve included this as an appendix. Feel free to dig in if you're interested.

Using the Chapter Samples

The CD-ROM includes an Installer (Setup.exe) that will install the chapter projects
on your hard drive in a folder named vbadh. Within the vbadh folder, there is a
folder for each chapter that has code examples. In these folders, you'll find all the
example files used in the book. We’ve provided each chapter’s examples in at least
three formats. First, each chapter’s folder includes a Microsoft Excel 2000 work-
book containing all the modules discussed in the chapter, ready for you to experi-
ment with. In addition, we’ve provided each module as a separate BAS or CLS file
(along with a Visual Basic VBP file), so you can import these into your projects in
whatever VBA host you're using. Finally, to make it simpler for Microsoft Access
2000 developers, we've created one database file for each of the chapters, with all
the modules imported for you.

Tell Us Who You Are

In order to make it easy for us to contact you with information about updates to
the book and other useful information about VB and VBA development, we’ve set
up a Web site that you can visit: http://www.developershandbook.com. At this
Web site, you can fill out a form with information about yourself so we can let you
know about changes, errata, enhanced examples, and other updates. Be the first
person on your block to know about updates to VBA Developer’s Handbook. Visit
and sign up now.

How to Use This Book

We can think of two ways in which you might want to use this book. You may just
want to start at the beginning and plow straight through until you've reached the
other side. That’s fine, but keep some sticky notes at hand so you can mark interesting
code as it goes by. Otherwise, you'll never remember where all the fun stuff was.

However, it’s more likely that you'll peruse this Introduction, browse through a
few chapters, and then use the book as a reference when you need it. That’s fine,
too. Just do us two favors:

¢ If you're not comfortable with class modules, work your way through Chapter
5, at least, to find out how they work and what they bring to the VBA “party.”

XXVi Introduction

e If you've never used Windows API calls, be sure to visit Appendix B on the
CD-ROM that accompanies this book. This appendix introduces ways in
which the Windows API can contribute to your programming efforts and
explains how to use this valuable technique.

Both of these topics are crucial to a complete understanding of much of the rest
of the book, and attempting to work through the remaining chapters without an
understanding of at least these prerequisites will make for a steep climb.

Focusing on Business Logic

In 1991, Microsoft released Windows 3, the first widely adopted version of Win-
dows, and ushered in the era of the graphical user interface (the efforts of compa-
nies like Xerox and Apple notwithstanding). At the time, the only way to create
Windows applications was by using the C language and DOS-based tools like
Microsoft C 7. To make Windows more accessible to the legions of programmers
who grew up on Microsoft’s BASIC offerings, the company released Visual Basic 1
in 1992. VB 1 was heralded as revolutionary in terms of Windows development
tools because it insulated the programmer from most of the tedious details of Win-
dows programming, like memory allocation and message loops, and let them
focus instead on an application’s business logic.

The race was on to adapt VB technology to other programming tasks, such as
automating applications through a “macro” language. Programmers saw many
variations on this theme throughout the early 1990s, including WordBasic, Project
Basic, and Access Basic, all with their own idiosyncrasies in syntax and capabili-
ties. It quickly became apparent that a common syntax was needed if BASIC was
to maintain its importance in the realm of Windows development. Microsoft
responded to this need in 1993 with the introduction of Visual Basic for Applica-
tions (VBA) in Excel 5 for Windows. It wasn’t long until the entire Microsoft Office
product line had adopted VBA as the automation language of choice. By 1995,
VBA had become a common component for Access, Word, and Excel, sharing its
core technology (and source code) with Microsoft Visual Basic.

At the same time, other companies in the software industry were recognizing
the importance of providing an automation language along with a program’s core
functionality. The mid-1990s saw the introduction of a number of embedded lan-
guage technologies, most based on BASIC. During this period, Microsoft created a
version of the VBA development environment and run-time engine (version 5)
that could be factored out of Office and offered to third-party software develop-
ers. The first company to license VBA from Microsoft was Visio Corporation.
Visio released the first VBA 5—-enabled product, Visio 4.5, in late 1996. Ironically,
Microsoft acquired Visio in 1999. Today, more than 100 companies have licensed

Introduction XXVii

VBA from Microsoft, making it one of the most widely adopted programming
technologies in the world. For the latest information on VBA, you can visit the
VBA Web site at http://msdn.microsoft.com/vba/.

A Language Is about Data

By looking at the differences between VB 1 and, say, QuickBasic, you can begin to
understand what makes up the core language and what belongs to the particular
platform and development environment. At the heart of any programming lan-
guage is the ability to model, store, and manipulate data. After all, that’s the goal of
most computer programs—accept input, perform calculations, and produce output.
All BASIC variants enable you to do this using variables, operators, and keywords.

Of course, unless you or your user can supply a program with data input or
view, the program’s output is not of much use. That’s why each implementation
of a language includes functions for obtaining and displaying data. Therefore, the
question is whether or not these functions are really part of the language. The
approach we’ve adopted in this book is that, for the most part, the Visual Basic
language is not about input or output but strictly about data manipulation. Adopting
this approach has enabled us to present examples that work in any recent variant
of the language, regardless of development environment.

What this means is that we don’t cover functions that deal with capturing user
input, monitoring the keyboard or mouse, drawing user interfaces, or printing.
We also don't cover the object models of VB or other VBA hosts, like Access or
Excel. Instead, we focus on manipulating variables and data structures to accom-
plish common tasks, like computing dates, writing to disks, controlling other
applications through Automation, and reading system information. For the most
part, input and output in this book’s samples is limited to the Visual Basic equiva-
lent of a command line, the Immediate window.

The Visual Basic Family

Microsoft often refers to the current lineup of BASIC derivatives as the Visual
Basic family. There are currently three family members, Visual Basic, VBA, and
VBScript, each with their own role to play in enabling software development
using the Visual Basic language.

Visual Basic is the senior member of the group and represents the stand-alone
programming system that ships as part of Microsoft’s Visual Studio development
suite, as well as a separate product. The role of Visual Basic (or just VB) is to pro-
vide software developers with a tool for creating stand-alone components and
applications. Even though VB’s initial appeal was the ease with which developers

XXViii

Introduction

could create graphical interfaces, you can use VB to create pure, code-only compo-
nents. This has become an attractive way to factor a program’s functionality, lead-
ing to pieces that can easily be reused.

Visual Basic consists of a graphical development environment that enables you to
design your user interface, write program logic, and compile and debug your applica-
tion using the same tool. While it appears to the user as integrated, there are actually a
number of separate components that make up the VB development experience:

Development environment Provides the user interface components for
viewing and editing code and creating forms. It also provides interactive win-
dows for debugging tasks. The development environment is also extensible,
enabling third parties to create add-ins that assist developers in working with VB
projects and designers that create components that become an integral part of a
compiled application.

Visual Basic forms engine Provides all the user interface functionality and
is an inextricable part of the VB experience. In addition to the native capability
to display windows with primitive controls, like labels and text boxes, the forms
engine is responsible for supporting the ActiveX control architecture that pro-
vides developers with a rich set of interface options. Many developers have
wished for the ability to use VB forms in other products, but the truth is that the
two are so closely related that this is impossible.

Visual Basic language engine Is responsible for parsing and compiling
source code. It translates variables, keywords, and operators into a proprietary
set of operation codes (op-codes) and performs optimizations for constructs like
For Next loops. Some people still think Visual Basic is an interpreted language.
It isn’t. The language engine has almost no knowledge of any of the user inter-
face or other components that make up a typical VB application, although there
are a few exceptions, such as keywords for primitive drawing operations held
over from earlier versions of the language.

Run-time engine Acts as a counterpart to the language engine and is charged
with executing the op-codes generated by the language engine. The run-time
engine also provides debugging capability and implements the hooks necessary
to interact with the development environment’s user interface.

Automation infrastructure Opens up the development environment to
external components and mediates communication among them. Many of the
capabilities you associate with VB, such as database access, are actually pro-
vided by separate components. VB uses COM Automation as the glue that ties
these components together. This infrastructure also enables you to create your
own components and is the foundation for VBA class modules.

Introduction XXix

Native code compiler Is the most critical aspect of Visual Basic as a distinct
member of the VB family. After the language engine compiles source code into
op-codes that the run-time engine can execute, the native code compiler turns
these into machine instructions, producing a Windows executable or COM DLL.
In fact, VB uses the same compiler and linker as Visual C++. Visual Basic is the
only member of the VB family that can create stand-alone executable programs.

The other two family members, VBA and VBScript, inherit their features
(and, to some extent, their source code) from Visual Basic. Visual Basic for
Applications was designed as a hosted component to provide automation ser-
vices to any COM-based application. It uses the VB environment, Automation
infrastructure, language, and run-time engines to deliver these capabilities. It is
important to understand this if you are to overcome skepticism regarding the
power of VBA. It has the same core components as VB; the only thing it lacks is the
forms engine (although it does have its own) and the ability to create stand-alone
components. In every other respect, the language engine is just as powerful. In a
sense, VB could be described as VBA plus a forms engine and compiler. That’s
why we chose to write this book in the first place, and why we still refer to lan-
guage constructs as belonging to VBA rather than VB.

At the other end of the spectrum from VB, VBScript was designed to offer light-
weight automation capabilities and is optimized for Web-based applications. It
was subject to a very different set of design constraints than VB and VBA; thus, it
lacks many of their features and, it could be argued, some of their power. For
instance, VBScript is just one implementation of a script engine using Microsoft’s
ActiveX Scripting technology framework. ActiveX Scripting is a framework that
enables an application like Internet Explorer to host any number of different script
languages simply by installing a separate language component. JScript and Perl
are two examples of languages that have been implemented using this technol-
ogy. Furthermore, VBScript was designed to be installed over the Internet, which
placed tight constraints on the size of the script engine. For this reason, it has no
integrated development environment or debugging tools and is just a subset of
the complete VB language; although this is rapidly changing to include more and
more core language features.

Because VBA is a “universal” language, all the code examples in this book
should operate equally well in Office 2000, Office XP, VB6, and any other host
product that includes VBA 6 (including Visio, AutoCad, and myriad other
products that have licensed this technology from Microsoft). The file formats
for Office 2000 and Office XP remain essentially unchanged (Access 2002 does
provide a new file format, but it’s able to transparently load and work with

XXX Introduction

Access 2000 files, and that’s the format we’ve chosen to use here), so all the exam-
ples work equally well in both products.

Why This Book Is Useful

We hope it’s now clear what the Visual Basic language is and what this book cov-
ers. Simply stated, the Visual Basic language is the core syntax, compiler, and run-
time engine shared by all members of the Visual Basic family (with small excep-
tions for VBScript). It does not concern itself with particular user interface imple-
mentations or host environments. In focusing on the pure language, this book
attempts to be a valuable resource for all developers wishing to get the most out of
their development tools, be those VB, VBA in Office, or third-party applications.

We leave it up to you to understand how to create forms or take advantage of the
object model provided by your particular VB language host. Although we must delve
into these areas occasionally, such as in our discussion of Automation, we make no
claim to be even a reasonable resource for this information. This book is meant to
complement any other material you discover that is geared directly toward your
development tool. If you keep this volume side-by-side with your VB, Access, Excel,
or Internet Explorer books and consult it as often, then we’'ve succeeded in our efforts
to deliver to you valuable knowledge on what we call the Visual Basic language.

Manipulating Strings

Understanding how string values are stored and
used in VBA

Using the built-in VBA string-handling functions
Searching for and replacing text

Gathering information about strings
Converting strings

Working with substrings

chapter

Chapter 1 ¢ Manipulating Strings

Almost any VBA application will need t o handle string (text) data at one
point or another. VBA itself provides a useful set of string-handling functions, but
the functionality of other functions as a whole is not nearly as full-featured as that
provided by other, more text-centric programming languages. This chapter first
makes a quick pass through the existing functions and then provides many useful
routines to add to your string-handling bag of tricks. Surely, no chapter on this
topic could cover every possible combination of useful functions, but the ones we’'ve
provided here should give you a good start in writing your own VBA solutions.

The sample files you'll find on the CD-ROM that accompanies this book are
listed in Table 1.1:

TABLE 1.1: String-Handling Functions

Filename Description

STRINGS.XLS Excel file with sample functions

STRINGS.BAS Text file with sample functions

TESTSTR.BAS Text file with test procedures

PROPER.MDB Access 2000 database, containing sample for dhProperLookup

PROPER.TXT Text version of sample for dhProperLookup

PROPER. XML XML-based recordset for dhProperLookup

STRINGS.VBP Visual Basic project with sample code

STRINGS.MDB Access 2000 database, containing sample functions
WARNING

Because the modules for this chapter take advantage of ADO, you'll need to make
sure your own project includes a reference to the Microsoft ActiveX Data Object 2.1
Library before you import the StringsBAS module into the project. Use the Tools >
References menu (or Project » References menu, in Visual Basic) to add the neces-
sary reference. Otherwise, your code will not compile once you've added the
Strings module to your project.

How Does VBA Store Strings? 3

How Does VBA Store Strings?

A VBA string is simply a collection of bytes. To make it easier for VBA to work
with strings, each string also maintains its own information about its length. In
addition, unlike other programming languages, VBA takes care of creating,
destroying, and resizing string buffers. You needn’t worry about how VBA finds
strings in memory, whether they’re contiguous in memory, or how or when VBA
reclaims the memory of the string used once you're done with it.

VBA provides two types of strings: fixed-length and dynamic. Fixed-length
strings are those you declare with a fixed size, like this:

Dim strFixed As String * 100

In this case, strFixed will always contain exactly 100 characters, no matter how
many characters you've placed into it. When VBA first creates the variable, at run-
time, it fills the variable with 100 spaces. From then on, if you attempt to retrieve
the length of the string, the output will always be 100:

Debug.Print Len(strFixed)

VBA fills the extra positions with spaces. You'll need to use the Trim function in
order to use the string in any other expression (see the section “Working with Por-
tions of a String” later in this chapter for more information). Fixed-length strings
can be no longer than 65,526 characters.

TIP

Online help for VBA states that a fixed-length string can be up to 2'® (or
65,536) characters long. Not so—if you attempt to create one with more than 65,526
characters, VBA won't compile your code.

Dynamic strings, on the other hand, have no fixed size. As you add or remove
characters from these objects, VBA takes care of locating memory in which to
place the text and allocates and deallocates memory as necessary for your text. To
declare a dynamic string, you use a declaration like this:

Dim strDynamic As String

In this case, if you retrieve the length of the string, the result will accurately reflect
the amount of text you've placed into the variable. Dynamic strings can contain
up to around two billion characters.

4 Chapter 1 ¢ Manipulating Strings

How do you decide which type of string to use? Dynamic strings require a bit
more processing effort from VBA and are, accordingly, a bit slower to use. On the
other hand, you make up the time by not needing to use the Trim function to remove
excess space every time you use the string. As you'll see by working through the
examples in this chapter, we use fixed-length strings only when it’s necessary.
When working with a single character at a time, it makes sense to use a fixed-length
string declared to contain a single character. Because you know you’ll always
have only a single character in the string, you’ll never need to trim off excess
space. You get the benefits of a fixed-length string without the extra overhead.

Unicode versus ANSI

The 32-bit Windows “universe” supports two character storage mechanisms:
ANSI and Unicode. The ANSI storage standard uses a single byte for every char-
acter, with only 256 different characters allowed in any ANSI character set. If you
want to display characters from a different set of 256, you must load a separate
code page. This limitation makes it difficult to create internationalized applica-
tions. Windows 95 and Windows 98 use this approach for compatibility with pre-
vious versions of Windows. The Unicode standard allows for 65,536 characters,
each taking up two bytes. The Unicode character set includes just about all the
known written characters and ideograms in a single entity. In this way, an appli-
cation that embraces the Unicode standard can support (once its text has been
translated) just about any written language. Windows NT and Windows 2000
support the Unicode standard.

No matter what operating system you're using, VBA stores strings internally in
Unicode format. That is, every character takes up two bytes of space. When VBA
needs to communicate with Windows 95 or Windows 98 (when you include Win-
dows API calls in your code, for example), it must first convert strings to ANSI
format. This happens automatically when you use the ANSI version of a Win-
dows API call that involves strings. The only other time you’ll care about how
VBA stores strings is when you want to convert a string into an array of bytes—a
useful technique that we’ll take advantage of a few times in this chapter. In this
case, a string containing five characters becomes an array of bytes containing ten
bytes. For example, a string containing the text Hello would contain the following
ten bytes, once converted to a byte array:

72 0 101 O 108 O 108 O 111 O

Unicode versus ANSI 5

Each pair of bytes (72 and 0 for the H, for example) represents the Unicode stor-
age for a single character. However, if you were running Microsoft Excel in Korea,
for example, and were entering text in your native language, the second byte
wouldn’t be 0. Instead, it would be a value that combined with the first byte to
represent the character you’d typed.

Using Strings and Byte Arrays

Because it's often faster and simpler to work with arrays of bytes than to work with indi-
vidual characters in a string (and you'll find some examples in this chapter that use this
technique), VBA provides a simple way to convert strings into byte arrays and back. Simply
assigning a string to a byte array variable causes VBA to copy the data into the array.
When you're done working with the array, you can assign it right back into the string vari-
able. For example, the following code fragment copies data from a string into a byte array,
performs processing on the array, and then copies the array back into the string:

Sub StringToByteArray()
Dim strText As String
Dim aByt() As Byte
Dim intI As Integer
strText = "Hello"
' VBA allows you to assign a string into
' a byte array and then back again.
aByt() = strText
For intI = LBound(aByt) To UBound(aByt)
Debug.Print aByt(intI);
Next intI
Debug.Print
strText = aByt()
Debug.Print strText
End Sub

Although you won't use this technique often, if you need to process each byte of a string,
it's the best solution.

6 Chapter 1 ¢ Manipulating Strings

WARNING |, previous versions of Basic, many programmers used string variables to contain

binary data (that is, non-textual data, such as bitmaps, sound files, and so on). In
VBA, this isn't necessary, nor is it advisable. Instead, use arrays of bytes for non-
textual data. Because VBA performs ANSI-to-Unicode conversions on the fly,
you're almost guaranteed that your non-text data will be ruined once you place it
into a string variable.

Using Built-In String Functions

VBA provides a large number of string-handling functions. This section intro-
duces many of those functions, broken down by the area of functionality, and dis-
cusses the most useful of the built-in functions. The remainder of the chapter
provides techniques that combine the built-in functions to perform tasks for
which you would otherwise need to write custom code.

Comparing Strings

VBA provides three ways for you to compare the contents of one string with
another: comparison operators (such as =, <, and so on), the Like operator, and the
StrComp function. In addition, you can specify the method of comparison for each
module using the Option Compare statement in the declarations area.

Option Compare

The Option Compare statement, if it's used at all, must appear in a module before
any procedures, and it tells VBA how you want to make string comparisons
within the module. The choices are as follows:

Option Compare Binary Comparisons are made based on the internal sort
order of the characters, using their binary representation. In this situation, char-
acters are treated case sensitively (that is, A isn’t the same as a).

Option Compare Text Comparisons are made based on the text sort order of
the current locale. Characters are treated, at least in English, case insensitively.

Option Compare Database Is available only in Microsoft Access. Compar-
isons are made based on the locale ID of the current database.

Using Built-In String Functions 7

TIP

If you don’t specify an Option Compare setting, VBA uses Option Compare Binary.
In that case, if you attempt to perform a simple comparison between A and g,
you'll get a False return value. If you're working with strings and performing
comparisons, make sure you're aware of the Option Compare setting for the

module.

Comparison Operators

You can use the simple logical operators to compare two strings, like this:

If strTextl < strText2 Then...

In this case, VBA performs a character-by-character comparison according to the
Option Compare setting in force in the current module. The result of the compari-
son will most likely change, based on that setting. You can use the set of simple
comparison operators shown here.

Operator

<>

Description
Less than
Less than or equal to

Greater than or
equal to

Equal to
Not equal to

In addition, VBA supplies the Like operator for comparing two strings. This
operator allows you to specify wildcards, character lists, and character ranges in
the comparison string, not just fixed characters. The following is a listing of all the
options for the comparison string using the Like operator:

Characters in Pattern Matches in String

?

#
[charlist]
[!charlist]

Any single character

Zero or more characters

Any single digit (0-9)

Any single character in charlist

Any single character not in charlist

Chapter 1 ¢ Manipulating Strings

TiP The string containing the wildcard information must be on the right-hand side of
the Like operator. That is, unlike many mathematical operators, this one is not
commutative: The order of the operands is significant.

For example, the following code fragment would compare a string with a
template that checks for valid Canadian Postal codes:
strTemp = "W1F 8G7"
If strTemp Like "[A-Z]#[A-Z] #[A-Z]#" Then
" You know strTemp is a valid Canadian Postal Code
End If
To check whether the single character in strTemp was a vowel, you could use
this expression:
If strTemp Like "[AEIOUaeiou]*" Then
" You know the first character in strTemp is a vowel
End If
If you want to see whether the word stored in strTemp doesn’t start with a
vowel, you could use an expression like this:
If strTemp Like "[!AEIOUaeiou]*" Then
" You know the word in strTemp doesn't start with a vowel
End If
You'll find the Like operator to be invaluable when you need to validate input.
Rather than parse the string yourself, you can use wildcards to allow various
ranges of characters.

NOTE The behavior of the Like operator depends on the Option Compare setting. Unless
you specify otherwise, each module uses Option Compare Binary (case-sensitive
comparisons).

TIP

There are a number of issues you need to be aware of when using the Like
operator (sorting, order of the characters within the range, and so on). Be sure to
check out the online help for this topic for more information.

Using Built-In String Functions 9

Using the StrComp Function

The StrComp function provides a way for you to compare strings, overriding the
Option Compare statement within a given module. To use StrComp, you specify
the two strings and a comparison method (binary, text, or database), and the func-
tion returns a value indicating how the two strings compared. In general, you call
StrComp like this:

intRetVal = StrComp(strTextl, strText2, CompareOption)

The two text strings can be any string expressions. The CompareOption value
should be one of the items from Table 1.2 or a locale ID integer that specifies a
local sort order for comparisons. Depending on the parameters, StrComp returns
one of the values from Table 1.3.

Tip The CompareOption parameter for StrComp is optional. If you omit it, VBA uses
the option selected by the Option Compare setting for the module. If you omit the
Option Compare, of course, VBA will use binary comparisons (vbBinaryCompare).
WARNING

Online help incorrectly supplies a fourth value, not shown in Table 1.2 (vbUse-
CompareOption, —1). This value doesn’t appear to work in the current version of
VBA. For any function that takes a comparison option as a parameter, you may not
use the vbUseCompareOption value. (No matter what the online help tells you.)

TABLE 1.2: Compare Options for StrComp

Constant Option Compare Equivalent
vbBinaryCompare Option Compare Binary

vbDatabaseCompare Option Compare Database (Microsoft Access only)
vbTextCompare Option Compare Text

TABLE 1.3: ReturnValuesfor StrComp

If StrComp Returns
strText1 is less than strText -1
strText1 is equal to strText 0

strText1 is greater than strText2 1

10

Chapter 1 ¢ Manipulating Strings

Using the StrComp function, even if you normally perform case-sensitive com-
parisons, you can override that requirement for one comparison:

If StrComp(strTextl, strText2, vbTextCompare) = 0 Then
" You know that strTextl and strText2 are the same, as far
' as the text comparison goes.

End If

Converting Strings

Rather than provide individual functions to convert strings from one format to
another, VBA includes the single StrConv function. This function allows you to
specify a string, as well as a conversion parameter indicating the conversion you'd
like to make. In general, you call the function like this:

strOutput = StrConv (strInput, Conversion, [LocaleID])

where strlnput is the string to be converted; Conversion is a value from the follow-
ing table; and LocaleID (optionally) specifies the Windows LocalelD to use for the
conversion. (If you don’t specify a locale ID, VBA will use the current locale’s
information in order to perform the conversion.) StrConv returns the converted
string as its return value.

Constant Description

vbUpperCase Converts the string to uppercase characters.
vbLowerCase Converts the string to lowercase characters.
vbProperCase Converts the first letter of every word in the string

to uppercase.

vbUnicode Converts the string to Unicode using the default
code page of the system.

vbFromUnicode Converts the string from Unicode to the default
code page of the system.

As you can see, the StrConv function performs two basic tasks: converting the
case (upper, lower, proper) of strings and converting strings from ANSI to Uni-
code and back.

TIP If you're working in a Japanese or other Far East locale, you'll want to check out
the options for StrConv that are available only in those locales. See the VBA online
help for more information.

Using Built-In String Functions 11

Creating Strings: The Space and String Functions

VBA provides two functions that make it easy for you to create specific strings.
The Space function lets you create a string consisting only of spaces; you indicate
the number of spaces, and VBA does the rest. The general syntax looks like this:

strOut = Space(IngSpaces)

Although this function has many uses, we’ve used it most often in two particu-
lar situations:

e Creating string buffers when calling external DLLs (the Windows API, in
particular)

e Padding strings so they’re left or right justified within a buffer of a particu-
lar size

You can use an expression like this to create a 10-character string of spaces:
strTemp = Space(10)

If you need more flexibility, you can use the String function to create a string of
any number of a specified character. For this function, you specify the number of
characters you need and the specific character or ANSI value to repeat:

strOut = String(IngChars, strCharToRepeat)
" or
strOut = String(IngChars, intCharToRepeat)

For example, either of the following fragments will return a string containing 10
occurrences of the letter a. (The ANSI value for a is 97.)

strout
strout

String(10, "a")
String(10, 97)

Although you're unlikely to need this particular string, the following code frag-
ment creates a string consisting of one A, two Bs, three Cs, and so on.

Dim intI As Integer
Dim strOut As String
For intI = 1 To 26
strOut = strOut & String(intI, Asc("A") + intI - 1)
Next intI

12 Chapter 1 ¢ Manipulating Strings

Calculating the Length of a String

Simple yet crucial, the Len function allows you to determine the length of any string
or string expression. To use the function, pass it a string or string expression:

TngCharCount = Len(strIn)

Certainly, you'll often need to find the length of a string expression. But the Len
function also has an extra benefit: It’s fast! VBA stores strings with a long integer
preceding the string that contains the length of the string. It’s very simple for VBA
to retrieve that information at runtime. For example, what if you need to know
whether a particular string currently contains no characters? Many programmers
write code like this to check for an empty string:

If strTemp = "" Then
" You know strTemp is empty
End If

Because VBA can calculate string lengths so quickly, you're better off using code
like this to find out if a string is empty:

If Len(strTemp) = 0 Then
" You know strTemp is empty
End if

Performing one non-optimized comparison isn’t going to make any difference in
the speed of your application, but if you check for empty strings often, consider
using the Len function instead.

Formatting Data

VBA allows you to format the output display of a string using placeholders that rep-
resent single characters from the input string. In addition, you can use the Format
function to convert an input string to upper- or lowercase. The placeholders and
conversion characters shown in Table 1.4 allow you to reformat an input string.

For example, if strTemp contains the string “8364928”, the following fragment
returns “()836-4928":

strOut = Format("8364928", "(@@@)&&&-&&&&")
This fragment returns “()836-4928":
strOut = Format("8364928", "(&&&)&&&-&&&&")

Using Built-In String Functions 13

TABLE 1.4: Placeholdersand Conversion Characters for the Format Function

Character Description

@ Character placeholder for a character or a space. If the input string has a character in
the position where the At symbol (@) appears in the format string, display it; otherwise,
display a space in that position.

& Character placeholder for a character or nothing. If the input string has a character in
the position where the ampersand (&) appears, display it; otherwise, display nothing.

< Displays all characters in lowercase format.
> Displays all characters in uppercase format.

! Forces left to right fill of placeholders. The default is to fill placeholders from right to
left. The character can be placed anywhere in the format string.

In addition, the Format function allows you to format normal strings one way
and empty or null strings another. Every character following the symbol will be
converted. For example, you may want to indicate an empty value differently
from a value with data. To do this, use two sections in the placeholder string sepa-
rated with a semicolon (;). The first section will apply to non-empty strings, and
the second will apply to empty strings. That is, the following statement places a
formatted phone number into strOut if strIn contains a non-empty string, or it
places “No phone” into strOut if strIn is an empty string or Null:

strOut = Format(strIn, "(@@@)&&&-&&&&;No phone")

To convert text to upper- or lowercase as it’s formatted, add the > or < character
to the format string. (It doesn’t matter where you place the > or < character within
the string. If it’s in there, VBA formats the string correctly.) Every character fol-
lowing the symbol will be converted. For example, the following fragment con-
verts the input text to uppercase and inserts a space between letters:

Format("hello there"', > @ @ @ @ @ @ @ @ @ @")

TiP Although it's beyond the scope of this chapter, the Format function can also
provide user-defined formatting for dates and numeric values. Check out Chapter 2
for more information on using Format with date values.

VBA also supplies two simple functions, UCase and LCase, that you can use to
convert your functions to upper- and lowercase. Pass the function the string you

14 Chapter 1 e Manipulating Strings

want converted, and its output will be the converted string. The following example
places the word “HELLO” into strOut:

strOut = UCase("hello")

TIP

This chapter presents three ways to convert text to upper- or lowercase: the UCase/
LCase functions, the > and < characters in the Format function, and the
vbUpperCase and vbLowerCase constants with the StrConv function. Use the technique
that's most comfortable for you.

Because using the Format function can be overkill in some circumstances, VBA
also supplies simpler, special-case functions for situations when you simply need
to format a date, a number, or a percent.

FormatCurrency, FormatNumber, FormatPercent

The FormatCurrency, FormatNumber, and FormatPercent functions each accept a
numeric expression and optional parameters that specify how you want the out-
put value to be formatted. The obvious differences between the functions are that
the FormatCurrency function formats its output as currency, while the other two
functions simply format their output as a numeric value. FormatPercent also mul-
tiplies its result by 100 and tacks on a percent (%) sign. However, no matter what
choices you make, the output value from all of these functions is always a string.
Table 1.5 lists the parameters for the FormatCurrency, FormatNumber, and For-
matPercent functions. (All display options other than those shown in Table 1.5 are
controlled by the Windows regional settings.) These parameters make it simple to
format currency, numeric, and percent values.

NOTE

Several of these functions include parameters that would appear to be Boolean
values (True or False) but, in fact, support three values: True, False, or Use Default.
That is, you can set these options to be either True or False specifically, or you can
use the default value specified in the Windows regional settings. To make it easier
for you to specify which of these three values you'd like to use, VBA provides an
enumerated type, vbTriState. All functions that can accept one of these three
values allow you to choose from the constants vbTrue (1), vbFalse (0), or
vbUseDefault (-2).

Using Built-In String Functions 15

TABLE 1.5: Formatting Function Parameters

Parameter Required/ Data Type Default Description
Optional
Expression Required Numeric Numeric value to be formatted.
NumDigitsAfterDecimal Optional Numeric -1 (Useregional ~ Number of places after the decimal
settings.) to be displayed. Use -1 to force

regional settings.

IncludeLeadingDigit Optional vbTriState vbUseDefault Display leading O for fractional
values?

UseParensForNegativeNumbers Optional vbTriState vbUseDefault Display parentheses around

negative numbers?

GroupDigits Optional vbTriState vbUseDefault Group digits. In the United States,
this means to group every three
digits from the right with a comma
separator to indicate groupings of
thousands?

None of these functions does much that the more generic Format function can’t.
But they’re a lot simpler to use (no character masks to memorize). Figure 1.1
shows a session in the Immediate window, trying out various parameters for the
FormatCurrency and FormatPercent functions. (FormatNumber would return
similar results, but without the currency symbol.)

FIGURE 1.1
You can use the Immediate
window to test out the
FormatCurrency and
FormatPercent functions.

16 Chapter 1 ¢ Manipulating Strings

FormatDateTime

The FormatDateTime provides a simple-to-use, but very limited, technique for
formatting dates and times. It lacks the flexibility and power of the built-in Format
function, but it is quite simple to use. It accepts a date/time value and, optionally,
a formatting specifier, and returns a string formatted as a date and/or time. Table 1.6
lists the parameters for the FormatDateTime function. Table 1.7 lists all the possible
date formatting constants. Choose from these values when formatting a date.

TABLE 1.6: Parameters forthe FormatDateTime Function

Parameter Required/ Data Type Default Description
Optional
Expression Required Numeric Numeric value to

be formatted

NamedFormat Optional Numeric vbGeneralDate (0) Named format,
selected from the
values shown in
Table 1.7,
indicating how
you want the
date formatted

TABLE 1.7: DateFormatting Constants

Constant Value Description

vbGeneralDate 0 Return date and/or time. If there is a date part, include a
short date. If there is a time part, include a long time.
Include both date and time parts if both are available.

vbLongDate 1 Return a date using the long date format specified by your
computer’s regional settings.

vbShortDate 2 Return a date using the short date format specified by your
computer’s regional settings.

vbLongTime 3 Return a time using the time format specified by your
computer’s regional settings.

vbShortTime 4 Return a time using the 24-hour format (hh:mm).

Figure 1.2 shows a short debugging session, demonstrating the range of format-
ting possibilities with the FormatDateTime function.

Using Built-In String Functions 17

FIGURE 1.2
The FormatDateTime
function is simple, but lim-
ited, as you can see from
this debugging session.

MonthName and WeekdayName

Although seemingly simple, these two functions don’t have counterparts in previ-
ous versions of VBA. In VBA 5, if you need to find the name of a month, given its
number, you might resort to writing a function like the MonthName shown here.
(Actually, this is a complete replacement for the VBA 6 function, in case you need
such a function in the previous version of VBA. And yes, you could use a simple
Select Case statement, based on the Month value, but how would you get your
function to work in other languages if you did that?)

Function MonthName(Month As Long, _
Optional Abbreviate As Boolean = False) As String

Dim strFormat As String

If Abbreviate Then

strFormat = "mmm"
Else

strFormat = "mmmm"
End If

MonthName = Format(DateSerial(2000, Month, 1), strFormat)

End Function

But you needn’t write or call this function: VBA 6 includes a built-in MonthName
function. Given a month number and a Boolean value indicating whether you
want to abbreviate the name, MonthName returns the localized month name.

18 Chapter 1 ¢ Manipulating Strings

WeekDayName fills the same need, but instead returns the name of the day of
the week corresponding to a numeric value (1 through 7, or vbSunday through
vbSaturday). The syntax for WeekDayName looks like this:

strName = WeekdayName(weekday, [abbreviate], [firstdayofweek])
where the various parts are

weekday The day of the week, as a number. Normally, 1 corresponds with
Sunday, and 7 corresponds with Saturday, although the firstdayofweek parame-
ter (and the local settings) can alter this behavior.

abbreviate Optional Boolean value that allows you to abbreviate the output
weekday name. The default is False, which means that the weekday name isn’t
abbreviated.

firstdayofweek Optional numeric value indicating the first day of the week.
You can use vbUseSystem (0) to use the system value, or you can specify a par-
ticular day using the constants vbSunday (1) through vbSaturday (7).

Figure 1.3 shows a sample debugging session using these two functions.

FIGURE 1.3
You can use the Immediate
window to test out Month-
Name and WeekDayName.

Reversing a String

StrReverse returns the string you send it, with the order of the characters reversed.
We're having a hard time finding a real use for this (except for writing your own
InstrRev function, but that’s built into VBA now, too). Perhaps this is a good use:

Public Function IsPalindrome(strTest As String) As Boolean
" Is strTest a palindrome (the same forwards as backwards)?
IsPalindrome = (StrComp(_
strTest, StrReverse(strTest), vbTextCompare) = 0)
End Function

Using Built-In String Functions 19

It’s not clear how often you’ll need to know if a given string is the same forward
and backward (that’s what a palindrome is: a string that’s the same in both direc-
tions), but should you ever need to know, this function does the work. For example,
one of the famous palindromes “Madam, I'm Adam” works correctly in IsPalin-
drome, but only if you supply the value correctly. This function call returns True:

? IsPalindrome("madamimadam")

StrReverse does exactly what it was intended to do, for those who need this
functionality.

Justifying a String

VBA provides two statements, LSet and RSet (note that these aren’t functions) that
allow you to justify a string within the space taken up by another. These state-
ments are seldom used in this context but may come in handy. In addition, LSet
gives you powerful flexibility when working with user-defined data types, as
shown later in this section.

LSet and RSet allow you to stuff a new piece of text at either the beginning or the
end of an existing string. The leftover positions are filled with spaces, and any text
in the new string that won't fit into the old string is truncated.

For example, after running the following fragment, the string strOut1 contains
the string “Hello ” (“Hello” and three trailing spaces) and strOut2 contains
“ Hello” (three leading spaces and then “Hello”).

strOutl = "ABCDEFG"
strOut2 = "ABCDEFG"
LSet strOutl = "Hello"
RSet strOut2 = "Hello"

TIP

Let's face it: Most programmers don’t really take much advantage of LSet and
RSet with strings. They're somewhat confusing, and you can use other string
functions to achieve the same result. However, using LSet with user-defined types
is key to moving data between different variable types and is discussed in the
following paragraphs.

LSet also supplies a second usage: It allows you to overlay data from one user-
defined type with data from another. Although the VBA help file recommends

20

Chapter 1 ¢ Manipulating Strings

against doing this, it's a powerful technique when you need it. Simply put, LSet
allows you to take all the bytes from one data structure and place them on top of
another, not taking into account how the various pieces of the data structures are
laid out.

Imagine that you're reading fixed-width data from a text file. That is, each of the
columns in the text file contains a known number of characters. You need to move
the columns into a user-defined data structure, with one field corresponding to
each column in the text file. For this simple example, the text file has columns as
described in the following list.

Column Width
Name

FirstName 10
LastName 10
ZipCode 5

To work with the data from the text file, you've created a user-defined data structure:

Type TextData
FirstName As String * 10
LastName As String * 10
ZipCode As String * 5
End Type

You've used the various file-handling functions (see Chapter 5 for class mod-
ules to help work with text files) to retrieve a line of text from the file, and a String
variable named strTemp now contains the following text:

"Peter Mason 90064"

How do you get the various pieces from strTemp into a TextData data structure?
You could parse the characters out using other string-handling functions, but you
needn’t—LSet can do the work for you.

The only limitation of this technique is that you cannot use LSet to move data
between a simple data type and a user-defined data type. It works only with two
simple data elements (the technique shown earlier in this section) and with two
user-defined data types. Attempting to write code like the following will fail:

Dim typText As TextData
" This won't work
LSet typText = strTemp

Using Built-In String Functions 21

To cause LSet to coerce data from one type to another, you'll need to copy your
text data into yet another user-defined type. However, all this takes is a data type
with a single fixed-length string, like this:

Type TextTemp
strText As String * 25
End Type

Given that data type, it takes just one extra step to perform the conversion. You
must copy the text into the strText member of the TextTemp data type. With the
text there, you can use LSet to copy the bytes from the temporary data structure
on top of the real data structure.

Dim typTest As TextData

Dim typTemp As TextTemp

' Copy the data into the temporary data structure,
' and from there into the real data structure.
typTemp.strText = strText

LSet typTest = typTemp

' Test the data and see if it arrived OK.
Debug.Print typTest.FirstName

Debug.Print typTest.LastName

Debug.Print typTest.ZipCode

As you can see, LSet provides a very specific usage, but it can save you many
lines of code if you've got to move a large number of fields from a text string into a
data structure.

WARNING e just barely scratched the surface of all the interesting, and potentially dan-
gerous, tricks you can play with LSet. Beware that VBA does no checking for you
when you use LSet to move data from one data structure to another.

Searching for a String

In many of the solutions presented later in this chapter, procedures will need to
search a string for the inclusion of another string. The InStr function can deter-
mine whether one string contains another, and it can start looking at a specified
location in the string. In addition, you can optionally specify whether the search
should be case sensitive.

In general, the syntax for the InStr function looks like this:

IngLocation = InStr([IngStart,] strSearched, strSought[, Compare])

22 Chapter 1 ¢ Manipulating Strings

Table 1.8 explains the parameters and their return values.

TABLE 1.8: Parameters forthe InStr Function

Part Description

IngStart Optional. Sets the starting position for each search. If omitted, the search begins
at the first character position. The IngStart argument is required if you specify
the Compare argument.

strSearched Required. String expression being searched.
strSought Required. String expression sought.
Compare Optional. Specifies the type of string comparison. The compare argument can

be omitted, or it can be one of the values from Table 1.2. If Compare is omitted,
the Option Compare setting for the module determines the type of comparison.
If specified, you must also specify intStart (normally, use a value of 1 for that
parameter).

Return value 0 if strSought is not found in strSearched; character position where the first
occurrence of strSought begins (1 through the length of strSearched) if
strSought is found; intStart (or 1, if intStart is omitted) if strSought is zero-length

For example, the following example returns 3:
TngPos = InStr("This is a test", "is")
This example, which starts looking later in the string, returns 6:

TngPos = InStr(4, "This is a test", "is")

Finding the Last Occurrence of a Substring

At one time or another, you've likely written a function that needs to know the
location of the final backslash in a full path. Most likely, you either looped back-
ward through the string, one character at a time, searching for the final backslash.
Or, perhaps you used InStr, looking forward until you didn’t find any more matches.
Both approaches work, and both are inefficient. The InStrRev function works sim-
ilarly to the InStr function, locating the position of one string within another.
Instead of looking from left to right for the sought string, InStrRev looks from
right to left. Just as with InStr, you can specify the starting position and the com-
parison mode. The only difference is the direction of the search. One more differ-
ence is that if you don't specify a starting position, the search begins at the final
character, not the first character. If you want to explicitly specify a starting position,

Using Built-In String Functions 23

you can do that. You can also pass —1 for the starting position, to indicate that you
want to start at the end of the string. Whether you omit the parameter or specify
-1, you don’t need to calculate the length of the string before performing a search
that starts at the final character of the string.

The syntax for calling InstrRev looks like this:
IngLocation = InstrRev(stringcheck, stringmatch|, start[, compare]])

Table 1.9 describes each of the parameters and the return value.

TABLE 1.9: Parameters for the InStRev Function

Part Description

stringcheck Required. String expression being searched.

stringmatch Required. String expression sought.

start Optional. Sets the starting position for each search. If omitted, the search

begins at the final character position. Use —1 (or omit) to indicate you want the
search to start at the final character.

compare Optional. Specifies the type of string comparison. The compare argument can
be omitted, or it can be one of the values from Table 1.2. If compare is omitted,
the Option Compare setting for the module determines the type of comparison.
If specified, you must also specify intStart (normally, use a value of 1 for that
parameter).

Return value 0 if stringmatch is not found in stringcheck; character position where the first
occurrence of stringmatch begins (1 through the length of stringcheck) if
stringmatch is found; start (or the length of stringcheck, if start is omitted, or
start is —1) if stringmatch is zero-length.

Figure 1.4 shows two instances of calling InStrRev, searching for “\” within a
string containing a file path. Use the numbers on the figure to help verify the
return values.

FIGURE 1.4
InStrRev searches within
one string for another,
starting at the right.

0 1 2 3
: 12345678901234567890123456789012345678
?zInstrREV("C:\W’INN‘T\SYSTEI‘-‘IEZ\LOGFI LES\LOGFILE,TXT", "\

? InstrRev("'C:\WINNT\SYSTEM32\LOGFILES\LOGFILE.TXT", "\", 26)
18

24 Chapter 1 ¢ Manipulating Strings

Working with Portions of a String

Many string operations involve extracting a chunk of a string, and VBA makes
this task simple by providing a series of functions that let you retrieve any portion
of a string. Combined with the InStr function (see the previous section), you'll be
able to find substrings and then extract them as necessary.

VBA supplies three simple functions for working with substrings: Left, Mid,
and Right. The Left function allows you to extract the left portion of a string:

strOut=Left(strIn, IngChars)

and returns the first IngChars characters from strIn. For example, this fragment
returns the first two letters of the specified string:

strLeft2 = Left("This is a test", 2)
The following fragment returns the first word from strIn:

' This code fails miserably if there's no space in strln.
" You can't ask Left for the first -1 characters in a string!
strWord = Left(strIn, InStr(strIn, " ") - 1)

The Right function performs the same trick, but takes characters from the right
side of the string instead. The following fragment appends a backslash (\) to the
filename stored in strFileName, if it’s not already there:

If Right(strFileName, 1) <> "\" Then
strFileName = strFileName & "\"
End If

The Mid function is a bit more complex because it does more. It allows you to
retrieve any specified piece of a string. You supply the string, the starting location,
and (optionally) the number of characters to retrieve, and VBA does the rest. If
you don'’t specify the number of characters to retrieve, you get the rest of the char-
acters. The formal syntax for Mid looks like this:

strOut = Mid(strIn, IngStart|, IngLen])
For example, after running the following line of code:
strOut = Mid('This is a test", 6, 2)

strOut will contain the text “is”. The following example places all the text of strn,
after the first word, into strRest:

strRest = Mid(strIn, InStr(strIn, " ") + 1)

Using Built-In String Functions 25

Tip Don‘'t ever do what we've done in these examples! That is, never pass an

unchecked value to Left, Right, or Mid unless you've included error handling in
your procedure. In the examples that retrieved the first word, or all text after the
first word, it's quite possible that the variable didn’t actually contain a space, and
InStr will return 0. In that case, you'll be passing —1 to the Left or Mid, and the
functions won't take kindly to that. In cases like this, make sure you've checked
the value returned from InStr before you call Left or Mid. For more information on
slicing a word from a multi-word string, see the section “Working with
Substrings” later in this chapter.

One common use of the Mid function is to loop through a string, one character
at a time, working with each character. For example, the following loop prints
each character in a string:

Dim strTest As String

Dim intI as Integer

strTest = "Look at each character"

For intI = 1 To Len(strTest)
Debug.Print Mid(strTest, intI, 1)

Next intI

In addition to using the Left, Mid, and Right functions to extract portions of a
string, you may need to remove leading or trailing white space from an existing
string. VBA provides the LTrim, RTrim, and Trim functions to take care of these
tasks. Each of these simple functions does one thing: LTrim removes leading spaces,
RTrim removes trailing spaces, and Trim removes both leading and trailing spaces.
The following fragment demonstrates the usage and results of these functions:

Dim strTest As String

strTest " This is a test "
strTest = RTrim(strTest)

' strTest is now " This is a test"
strTest = LTrim(strTest)

' strTest is now "This is a test"

[

strTest This is a test "

strTest = Trim(strTest)

' strTest is now "This is a test"

" You could use LTrim(RTrim(strTest))

' to replace the call to Trim, if you have the urge!

26

Chapter 1 ¢ Manipulating Strings

TIP

None of the Trim, LTrim, or RTrim functions removes white space from within a
string. If you want to remove extraneous spaces (and, optionally, tabs) from within
a string, see the dhTrimAll function, described in the section titled “Removing All
Extra White Space” later in the chapter.

Replacing Portions of a String

Although you'll find several routines later in this chapter that make it easy to
replace various portions of a string with other text, VBA includes a single state-
ment that implements much of the functionality you'll need. The Mid statement
(yes, it has the same name and parameters as the Mid function) allows you to
replace text within a string with text supplied by another string.

To replace a substring within a string, use the Mid statement on the left-hand side
of a line of code. The syntax for the Mid statement is as follows:

Mid(strText, IngStart[, IngLength]) = strReplace

The IngStart value indicates where in strText to start replacing. The IngLength
value indicates how many characters from strReplace to place in strText at intStart.

For example, after calling the following code:

Dim strText As String
strText = "That car is fast."
Mid(strText, 6, 3) = "dog"

the variable strText will contain the text “That dog is fast.” Although the Mid
statement has its uses, it’s rather limited because you can’t control how much of
the original string is replaced. You can control only how much of the replacement
string is used. That is, if you try the following code:

Dim strText As String
strText = "That car is fast."
Mid(strText, 6, 4) = "fish"

there’s no way to tell VBA to replace the word car with the word fish. Because the
words are of differing lengths, you'll end up with “That fishis fast.” The Replace
function, discussed in the next section, can perform a search and replace operation
within a VBA string for you.

Using Built-In String Functions 27

Search and Replace in Strings

New in VBA 6, the VBA Replace function allows you to replace one substring
within another string a certain number of times, starting anywhere within the
string, case sensitive or not. You just have to wonder how many developers have
written their own version of this function over the years. (We’ve certainly written
it a number of times ourselves.) Replace is built into VBA, and it works well.
Table 1.10 lists and describes the parameters for the Replace function.

The syntax for the Replace function looks like this:

modifiedString = Replace(expression, find, replace], start[, count[, compare]]])

TABLE 1.10: ParametersforReplace

Parameter Required/Optional Data Type Description

expression Required. String String to search in.

find Required. String Substring being searched for.

replace Required. String Replacement substring.

start Optional. Defaultis 1, Long Position within expression where
indicating that the search substring search is to begin.

should start at the beginning.

count Optional. Default is -1, Long Number of substring substitutions
indicating that you want all to perform.
substitutions made.

compare Optional. Default is Long Kind of comparison to use when
vbBinaryCompare. evaluating substrings. Choose
one of vbBinaryCompare,
vbDatabaseCompare, or
vbTextCompare, or supply a
Windows locale ID. See Table 1.2
for more information.

WARNING g\ el If you specify a value for Start, that's where the output string starts. The
output from Replace may not contain the entire input string with replacements
made if you specify a value for the Start parameter. This certainly took us by sur-
prise, but it's documented as working this way.

28

Chapter 1 ¢ Manipulating Strings

Figure 1.5 shows some examples using the Replace function. Note the effect of
each of the parameters on the output string.

allows you to replace one

string within another. thXo00C 30000 a test of how THIS works

FIGURE 1.5
The Replace function 7 Replace("this is a test of how THIS works", "§s", "™ -

thXxXX XXXX a test of how THIS works

2 Replace("this 95 a test of how THIS works", "9s", "Xxxx'", Count:=2)

? Replace("this is a test of how THIS works", "4s", "o, start:=3)

O X000 a test of how THIS works

7 Replace(‘this is a test of how THIS works", "dis", "}x", Compare:=vhTextCompare]
Thiodos X0 a test of how THOXX works -

) i Al

However, Replace does have its limitations. It can only replace a single sub-
string with another substring. What if you want to replace one character at a time
from an input map with the corresponding character in an output map? For exam-
ple, what if you want to convert from text-based telephone numbers (1-800-CAR-
TALK) into the corresponding string of digits (1-800-227-8255). You know how
much of a pain that conversion is, manually. (And it turns out that in many coun-
tries telephones don’t even have the letters printed on the buttons anymore!)
What you need is a function that uses Replace for each character in an input
string, mapping that character to the corresponding character in another string.
The dhTranslate function, shown later in this chapter, provides this capability
(without using the Replace function).

You'll find the Replace function to be useful in your development efforts. If you
need to replace a single string with a single replacement string, you can’t beat it.
Many of the examples from the second half of this chapter use it, and others could
use it but don’t. It turns out that in many cases, you can handcraft code that runs
faster. That’s exactly what we’ve done in several cases, including the dhTranslate
function.

Working with Arrays of Strings

The three string functions, Split, Join, and Filter, all work with arrays of strings.
(And they’re all new in VBA 6.) They're all useful and are all somewhat tricky to
write on your own. The next few sections outline how to use each of these func-
tions and provide examples of why you might want to use them.

Using Built-In String Functions 29

Split a String into an Array

The Split function takes a string and a delimiter, and returns an array full of the
pieces of the string. For example, the following function, GetLastWord, splits the
input string up into an array of words and returns the final word in the array.

Public Function GetLastWord(strText As String) As String
Dim astrWords() As String

If Len(strText) = 0 Then
GetLastWord = strText

Else
astrWords = Split(strText, " ")
GetLastWord = astrWords(UBound(astrWords))
End If

End Function

TIP

The GetlLastWord function, shown here, is somewhat limited. We've created a
more full-featured version, dhLastWord, discussed later in the chapter.

The syntax for the Split function is as follows:
outputArray = Split(expression|, delimiter[, limit[, compare]]])

Table 1.11 describes the parameters for the function.

TABLE 1.11: Parameters for the Split Function

Parameter Required/Optional Data Type Description

expression Required. String String expression containing
substrings and delimiters.

delimiter Optional. Default is “ ". String String character used to identify
substring limits.
count Optional. Defaultis—1, indicating Long Number of substrings to be
you want all the substrings. returned.
compare Optional. Default is vbCompare Numeric value indicating the kind
vbBinaryCompare. Method of comparison to use when

evaluating substrings. See Table
1.2 for a list of values.

30

Chapter 1 ¢ Manipulating Strings

Some things to note about the Split function:

If the input string is an empty string, the output value will be a simple vari-
ant, not an array. Therefore, you must always check the input value (as does
the GetLastWord function, shown previously) and handle that special case
individually.

If your input string contains multiple delimiters next to each other, or ends
with a delimiter, the output array will contain empty elements correspond-
ing to those delimited items. Be aware that Split isn’t terribly smart—it takes
what it gets and splits the input string based on the parameter you specify. If
your input string contains extra delimiters, you’ll get extra elements in the
output array.

If the Delimiter parameter is an empty string, the function returns an array
with one element: the entire input string. (We do wish that there were some
way to get the output array to contain an array of all the characters in the
input string, one character per array element. But, there’s no such way. As a
matter of fact, there’s no easy way to do that at all in VBA. You must loop
through each character in turn. You could copy the string into a byte array,
but that’s even uglier.)

The documentation specifies that you could use -1 (vbUseCompareOption)
for this and other functions to specify the compare mode. This value is not
allowed by any of the functions at runtime. You might check your version of
Office 2000 or Visual Basic to see if this parameter value works as it’s docu-
mented, or if they removed it from the documentation altogether. (You may
have a later version than we did when writing this text.)

Perhaps you've had a need to extract a particular token from within a string (for
example, to find the fourth token in a string like “Name | Address | City | State | Zip”,
with the delimiter “ | 7). The Extract function, shown in Listing 1.1, does this work
for you. It allows you to specify an input string, the particular item you need, and
a string containing a delimiter character. It returns the particular substring you
requested. If you specify a substring that’s out of range (that is, asking for the six-
tieth substring from a string with only four words), it returns an empty string. For
example, the following expression returns the value “Los Angeles”:

Debug.Print _

Extract("Joe Clark|123 Smith Street|Los Angeles|CA[90065", 3, "|")

Using Built-In String Functions 31

Feel free to analyze how Extract does its work, but that’s not the point here—it
counts on Split to do its work and would be more complex without the availability
of that useful VBA function.

Tip Although Extract is useful, it's still more limited than you might like. We've provided
the dhExtractString function, discussed later in the chapter, which is more powerful.

Listing 1.1: A Simple Function to Extract a Single Substring Using Split

Function Extract(_

Byval strIn As String, _

ByVal intPiece As Integer, _

Optional ByVal strDelimiter As String = " ") As String

Dim astrItems() As String
On Error GoTo HandleErrors

If Len(strDelimiter) = 0 Then
" No delimiter supplied. Return
' the entire input string.
Extract = strln
Else
" Split the string into
' an array, and return the requested piece.
' Don't forget that the array returned by Split
" is always 0-based.
astrItems = Split(_
Expression:=strln, _
Delimiter:=strDelimiter, _
Compare:=vbTextCompare)
Extract = astrItems(intPiece - 1)
End If

ExitHere:
Exit Function

32

Chapter 1 ¢ Manipulating Strings

HandleErrors:
Select Case Err.Number
Case 9 ' Subscript out of range.

' The caller asked for a token that doesn't
" exist. Simply return an empty string.
Resume ExitHere
Case Else
Err.Raise Err.Number, Err.Source, _
Err.Description, Err.HelpFile, Err.HelpContext
End Select
End Function

Join Array Elements Back into a String

The Join function does just the opposite of the Split function, and it’s a lot simpler.
It takes an array containing string values, along with a delimiter value, and creates
an output string with the values concatenated. For example, the combination of
the Split and Join functions allows you to take a string, split it apart into tokens
(normally, into words), do something to each word in turn, and then put it back
together. Perhaps you’d like to convert text to pig latin. Of course, that requires
working with each word individually. That’s exactly what the pair of Split and
Join was meant for. The ToPigLatin function shown in Listing 1.2 uses both to
accomplish its high-minded goals.

Listing 1.2: Convert Text to Pig Latin Using the Split and Join
Functions

Public Function ToPiglLatin(strText As String) As String
Dim astrWords() As String
Dim i As Integer
If Len(strText) > 0 Then
' Break the string up into words.
astrWords = Split(strText)
For i = LBound(astrWords) To UBound(astrWords)
' Convert each word to pig latin.
Warning: you may not agree with these conversion
" rules. We didn't make them up! (And the
' exact conversion isn't our point here.)

Using Built-In String Functions

33

" 1. If a word begins with a consonant,

' the first Tetter is moved to the end

' of the word, and 'ay' is added.

' Example: The word 'bridge' would become 'ridgebay'.

' 2. If a word begins with an vowel, the

" first letter 1is moved to the end,

"and 'ey' is added.

' ExampTle: The word 'anchor' would become 'nchoraey'.

' 3. Exception to rule #2: if the vowel is
'‘an 'e', use 'ay' instead of 'ey'.
' ExampTle: The word 'elevator' would become 'levatoreay'.

Select Case LCase(Left$(astrWords(i), 1))
Case "a", "i", "o", "u"
astrWords(i) = Mid$(astrWords(i), 2) & _
Left(astrWords(i), 1) & "ey"
Case "a" To "z"
' Most vowels have been caught already, do it doesn't
" hurt to have cases for them again. Don't
' change the order of the cases, however!
astrWords(i) = Mid$(astrWords(i), 2) & _
Left(astrWords(i), 1) & "ay"
End Select
Next i
ToPiglLatin = Join(astrWords)
End If
End Function

WARNING

In case you were planning on taking this translator to the big time, note that it
doesn’t work on hyphenated words (“next-door” should be converted to “extnay-
oorday”, but it won't be—Split is only looking for spaces as its delimiters. To get
this right, you'd want to modify ToPiglLatin so that it accepts an optional delimiter
(defaulting to a space, of course) as one of its parameters. Then, you'd have to
look at each word for hyphens, and call Split once again, splitting each word into
sub-words. Then, you could call ToPigLatin recursively, passing in the hyphen
delimiter. We'll leave this as an exercise for the reader, although it’s not difficult at all.

34 Chapter 1 ¢ Manipulating Strings

Filter an Array, Looking for Specific Values

The Filter function allows you to filter an array of strings, returning a subset array
of strings, that either contains or doesn’t contain the text you're searching for. If
you've used Split to create an array of strings, you can then use Filter to return an
array containing just the strings that contain a specified substring. You might
need to look hard to find a pressing need for this function, but it seems like it
could be useful, in the right circumstances. That is, should you ever need to create
a new string from all the words containing a particular substring within a larger
string, Split, Join, and Filter make a great team.

Table 1.12 contains the parameters you pass into the Filter function. The syntax
for the Filter function looks like this:

result = Filter(sourcearray, matchl, include[, compare]])

TABLE 1.12: Parametersforthe Filter Function

Parameter Required/Optional Data Type Description

sourcearray Required Array of strings One-dimensional array of
strings to be searched.

match Required String String to find within each
element of the InputStrings
value.

include Optional Boolean Should Filter return an array of

strings that contain Value, or
those that don't? If True,
returns those that do. If False,
returns those that don't.

compare Optional Long Numeric value indicating the
kind of string comparison to
use. See Table 1.2 for a list of
values.

For example, the WordsContaining function, shown in Listing 1.3, uses the
Split, Join, and Filter functions to return a new string consisting of all the words
from the input string that contain the requested substring. Figure 1.6 shows a
small debugging session testing out the WordsContaining function.

Using Built-In String Functions 35

FIGURE 1.6 o &
The WordsContaining func- 7 WordsContaining("The quick brown fox jumped over the Tazy dog", "o™) =
. o . brown fox over do
tion does its job, returning ? wordsconta‘rn'ing%"‘rha quick brown fox jumped over the lazy dog", "d")
subsets of words. Jumped.dog

Listing 1.3: Find Words Containing a Substring Using the Split, Join,
and Filter Functions

Public Function WordsContaining(_
strIn As String, strFind As String) As String
' Return a string containing all the words
" in the input string containing a supplied substring.
Dim astrItems() As String
Dim astrFound() As String

If Len(strIn) > 0 And Len(strFind) > 0 Then
astrItems = Split(strIn)
astrFound = Filter(astrItems, strFind, True, vbTextCompare)
WordsContaining = Join(astrFound)

Else
WordsContaining = strln

End If

End Function

ANSI Values

It’s the job of the operating system’s character set to map numbers representing
text characters to those characters. When using the ANSI character set, Windows
maps the values 0 through 255 to the 256 different characters that are available in
each Windows code page. (When using Unicode, Windows NT does the same sort
of mapping, with values from 0 to 65535.) Each individual character represents a
value between 0 and 255, and VBA provides two functions, Asc and Chr, to con-
vert back and forth between the values and the characters themselves. These func-
tions are inverses of each other—that is, using both functions on a value returns
the original value.

36

Chapter 1 ¢ Manipulating Strings

The Asc function returns the character code corresponding to the first character
of the string expression you pass it. The Chr function returns a character corre-
sponding to the numeric value you pass it. For example, the following code frag-
ment demonstrates the use of these two functions:

Dim intCh as Integer

Dim strCh as String * 1

intCh = Asc('This is a test")

" intCh now contains 84, the value corresponding to

' the "T" character.

strCh = Chr(intCh)

" strCh now contains "T", the Tetter corresponding to
' the value 84.

Speed Considerations with the Asc and Chr Functions

The following two logical expressions are equivalent:

If Asc(strChar) = intANSIValue Then
" and
If strChar = Chr(intANSIValue) Then

However, you'll want to use the first construct because it's actually quite a bit more effi-
cient to compare two numeric values than it is to compare two strings. If you're comparing
a large number of characters to specific ANSI values, make sure you convert the character
to ANSI rather than convert the ANSI value into a character. This optimization can save you
considerable processor time if you use it often.

Working with Bytes

In addition to all the functions VBA provides for working with standard strings,
you'll find a set of functions for working with bytes within the strings and a set for
working directly with the characters in Unicode strings.

If you want to work with the bytes that make up a string, you can use the LeftB,
RightB, MidB, LenB, AscB, InStrB, and ChrB functions. Each of these functions
does what its normal relative does, but each works on bytes instead of characters,
as shown in Figure 1.7. For example, for a 10-character string, Len returns 10, but
LenB returns 20 (each character takes two bytes). The first fragment in Listing 1.4

Using Built-In String Functions 37

loops through all the characters in a string, printing each to the Debug window.
The second loop in the fragment works through all the bytes in the string and lists
each one. In this case, the output will include a 0 between bytes because the alter-
nate bytes are 0 for English characters.

Listing 1.4: Loop through Characters and Bytes

Sub DumpBytes()
' Dump the characters, and then bytes, of
' the text "Hello" to the Debug window.
Dim intI As Integer
Dim strTest As String
strTest = "Hello"
For intI = 1 To Len(strTest)
Debug.Print Asc(Mid(strTest, intI, 1));
Next intI
Debug.Print
For intI = 1 To LenB(strTest)
Debug.Print AscB(MidB(strTest, intI, 1));

Next intI
Debug.Print
End Sub

TiP Generally, you won’t write code using MidB, like that shown in Listing 1.4.

Instead, you'll convert the string into a byte array and work with each element of
the byte array. However, the other byte functions are necessary in order to extract
just the bytes you need from the string.

FIGURE 1.7
Looping through bytes as
opposed to characters

38 Chapter 1 ¢ Manipulating Strings

About the Functions Ending in $

VBA supplies all the functions that return strings in two formats—one with a dollar sign ($)
at the end and one without. Why did they bother? The versions without $s return variants,
and the ones with $s return strings. The variant versions are able to propagate a null value
through an expression; the string functions cannot. That is, if the input value is a variant
containing Null, the variant functions return Null, and the string functions trigger a run-
time error. The string functions, on the other hand, are faster; because they don’t need to
perform any data type conversions, they can do their work faster.

How do you decide which version to use? If you're concerned about wringing the best
performance out of your application and you can ensure that you won't be sending null
values to these functions, by all means, use the string-specific version of any function you can.

Putting the Functions Together

Now that you've seen all the basic string-handling functions, you can start to put
them together in various combinations to tackle more complex situations. The
remainder of this chapter, which provides a number of techniques for use in real-
world situations built up from our personal function libraries, is broken into four
sections:

e Searching for and Replacing Text
¢ Gathering Information about Strings
¢ Converting Strings

e Working with Substrings

Using Optional Parameters

Many of the procedures in the following sections accept one or more optional parameters.
In each case, if you don't specify the parameter in your function call, the receiving function
assigns that parameter a value.

When you use optional parameters, you have two basic choices:

e Use a Variant parameter and check for the parameter using the IsMissing function.

Searching for and Replacing Text 39

e Use a strongly typed parameter and assign a default value in the formal declaration.

We've opted for the second alternative because this allows for type-checking when calling
the procedure. On the other hand, it also removes the possibility of using the IsMissing
function to check for the omission of the parameter.

Searching for and Replacing Text

In this section, you'll find techniques for finding and replacing text within strings.
Although these procedures require more code than almost any other procedures
in the chapter, they’re used by many of the later solutions, so it makes sense to
present them first.

In particular, this section includes solutions to performing the following tasks:
e Replace any character in a specified list with a single other character.

¢ Remove all white space, leaving one space between words.

e Remove trailing Null and padding from string.

e Replace tokens within a string (by position in an array passed in).

Replacing Any Character in a List with Another
Character

Editing text often involves replacing any one of a list of characters with another
single character. For example, if you want to count the number of words in a sen-
tence, you may need to take the input sentence, replace all the punctuation charac-
ters with spaces, and then count the spaces. Or you may want to just remove all
extraneous characters. For example, you might want to convert a phone number
in the format (213) 555-1212 into the format 2135551212. The function provided in
this section, dhTranslate, makes both these tasks simple. (See Listing 1.5 for the
entire function.)

Using dhTranslate, you could replace all punctuation characters with spaces,
like this:

strText = dhTranslate(strText, " ,.!:;<?", " ")

40

Chapter 1 ¢ Manipulating Strings

To remove extraneous characters, you could call dhTranslate like this:
strText = dhTranslate("(213)555-1212", "(O)-", "")

But dhTranslate does more than that: If you specify a mapping between the set
of search characters and the set of match characters, it will replace characters in a
one-to-one correspondence. That is, imagine you want to replace letters in a
phone number with the corresponding digit. You know, someone says to call
1-800-CALLKEN, but you really want to store just the digits to be dialed. You can
use dhTranslate to map specific characters to digits, like this:

strPhone = dhTranslate("1-800-CALLKEN", _
"ABCDEFGHIJKLMNOPRSTUVWXY", _
"222333444555666777888999")

That function call will replace each letter with its appropriate digit.

If the replacement string is shorter than the search string, dhTranslate pads it to
make it the same width as the search string. That is, when you call dhTranslate
with a short replacement string:

strText = dhTranslate(strText, " ,.!:;<>?", " ")

the function converts the third parameter into a string with the same number of
characters as the second parameter, internally, so it’s as though you’d called the
function like this:

strText = dhTranslate(strText, " ,.!:;<>?", " ")

That way, each character in the second string has been mapped to a space for its
replacement character.

To call dhTranslate yourself, pass three required parameters and one optional
parameter, like this:

strText = dhTranslate(strIn, strMapIn, strMapOut[, TngCompare])
The parameters for dhTranslate are as follows:
e strin is the string to be modified.
e strMapln is the string containing characters to find.

e strMapOut is the string containing 0 or more characters to replace the corre-
sponding characters from strMapln. If this string is shorter than strMapln, the
function pads the string with its final character to match the length of strMaplIn.

o IngCompare is optional. Select a comparison value from Table 1.2 (as you
have with many other functions in this chapter) to determine how the func-
tion compares strings. If you don’t specify a value, the function assumes you
want to use binary comparisons (vbBinaryCompare).

Searching for and Replacing Text 41

The function’s return value is a copy of the original string (strIn) with the
requested modifications.

Listing 1.5: Translate One Set of Characters to Another Set
Public Function dhTranslate(_
Byval strIn As String, _
ByVal strMapIn As String, _
ByVal strMapOut As String, _
Optional TngCompare As VbCompareMethod = vbBinaryCompare) As String

Dim 1ngI As Long

Dim TngPos As Long

Dim strChar As String * 1
Dim strOut As String

" If there's no list of characters
' to replace, there's no point going on
" with the work in this function.
If Len(strMapIn) > 0 Then
" Right-fill the strMapOut set.
If Len(strMapOut) > 0 Then
strMapOut = Left$(strMapOut & String(Len(strMapIn), _

Right$(strMapOut, 1)), Len(strMapIn))
End If

For TngI = 1 To Len(strIn)
strChar = Mid$(strIn, IngI, 1)
TngPos = InStr(1, strMapIn, strChar, TngCompare)
If TngPos > 0 Then
" If strMapOut is empty, this doesn't fail,
' because Mid handles empty strings gracefully.
strOut = strOut & Mid$(strMapOut, IngPos, 1)
Else
strOut = strOut & strChar
End If
Next TngI
End If
dhTranslate = strOut
End Function

42 Chapter 1 ¢ Manipulating Strings

Before it does any other work, dhTranslate checks to make sure strMaplIn actu-
ally contains some text. If not, there’s no work to do, and the function quickly
exits.

Next, dhTranslate ensures that the strMapOut parameter contains as many
characters as strMapIn. To do that, it takes the right-most character of strMapOut,
creates a string of that character as wide as strMapln, appends it to strtMapOut,
and then truncates the string to the same width as strMaplIn:

' Right-fill the strMapOut set.

If Len(strMapOut) > 0 Then
strMapOut = Left$(strMapOut & String(Len(strMapIn), _
Right$(strMapOut, 1)), Len(strMapIn))

End If

For example, if strMapln is “1234567890” and strMapQOut is “ABCDE”, the code
creates a string of Es that is 10 characters long (the same length as strMapln),
appends it to the end of strMapOut (so it becomes “ABCDEEEEEEEEEEE”), and
then truncates the entire string to the length of strMapIn (10 characters, or
“ABCDEEEEEE”). This mechanism makes it possible to replace a series of charac-
ters, supplied in strMapIn, with a single character, supplied in strtMapOut.

Finally, dhTranslate performs the replacements, using brute force. For each charac-
ter in the input string, dhTranslate attempts to find that character in strMapIn:

strOut = strln

For TngI = 1 To Len(strOut)
strChar = Mid$(strIn, TngI, 1)
TngPos = InStr(1, strMapIn, strChar, IngCompare)
' The code continues...

Next TngI

If the InStr search found a match, IngPos will be greater than 0. dhTranslate finds
the appropriate matching character in strMapOut and replaces that character in the
output string.

If intPos > 0 Then
" If strMapOut is empty, this doesn't fail,
' because Mid handles empty strings gracefully.
strOut = strOut & Mid$(strMapOut, intPos, 1)
Else
strOut = strOut & strChar
End If

Searching for and Replacing Text 43

In this way, one character at a time, dhTranslate uses either the character from
the input string or its replacement from strMapOut. Either way, it returns strOut
as its return value.

Many other functions within this chapter count on dhTranslate to do their work
for them. You'll surely find many uses for it in your own applications, as well.

Removing All Extra White Space

If you need to remove all extraneous white space from a string (and certainly, the
dhCountWords function later in this chapter that counts the number of words in a
string has reason to need this functionality), the dhTrimAll function will help.
This function traverses a string and makes a new output string, copying over only
a single space every time it finds one or more spaces inside the string. You can
optionally request dhTrimAll to remove tabs, as well.

For example, the following function call:

strout = dhTrimA11(" This is a test" & _
! of how this works")

places “This is a test of how this works” into strOut. By default, the function
removes tabs as well as spaces. If you want the function to disregard tabs and
remove only spaces, send a False value for the second parameter. Listing 1.6
shows the entire dhTrimAll function.

Listing 1.6: Remove All White Space from a String
Function dhTrimAT1(_
ByVal strInput As String, _
Optional b1nRemoveTabs As Boolean = True) As String

Const conTwoSpaces = " "
Const conSpace = " "

strInput = Trim$(strInput)
If binRemoveTabs Then

strInput = Replace(strInput, vbTab, conSpace)
End If

44

Chapter 1 ¢ Manipulating Strings

Do Until InStr(strInput, conTwoSpaces) = 0
strInput = Replace(strInput, conTwoSpaces, conSpace)
Loop
dhTrimAl11l = strInput
End Function
How does dhTrimAll do its work? It starts by calling the Trim function to

remove any leading or trailing spaces. Then, it continues by replacing all the tabs
with spaces, if necessary, using the built-in Replace function:

If bTnRemoveTabs Then
strInput = Replace(strInput, vbTab, conSpace)
End If

The rest of the procedure is a simple loop: the code checks to see if the input
string contains two contiguous spaces, and if so, replaces the pair with a single
space. It continues this same action until the input string contains no pairs of
spaces, side by side. Once that condition is true, the function has done its job and
can return the output string.

Do Until InStr(strInput, conTwoSpaces) = 0
strInput = Replace(strInput, conTwoSpaces, conSpace)
Loop

Removing Trailing Null and Padding from a String

Although you’ll probably need the dhTrimNull function only if you're working
with the Windows API], it’s invaluable when you do. API functions don’t know
what the source of the string is, and they tend to place null-terminated strings into
the buffers you send them. Unfortunately, VBA needs to have the length of the
string set explicitly, so you need to find the first null character (Chr$(0), or vbNull-
Char) in the string and truncate the string there using the Left function. Examples
in later chapters will use this function, and it’s important to have it ready to go
when you need it.

The dhTrimNull function, in Listing 1.7, accepts a single string and returns the
same string, truncated at the first null character.

Searching for and Replacing Text

45

Listing 1.7: Trim Strings at the First Null Character

Public Function dhTrimNul1(ByVal strValue As String) As String
Dim TngPos As Long

TngPos = InStr(strValue, vbNullChar)
Select Case 1ngPos
Case 0
" Not found at all, so just
" return the original value.
dhTrimNull = strValue
Case 1
' Found at the first position, so return
' an empty string.
dhTrimNull = vbNull1String
Case Is > 1
" Found in the string, so return the portion
" up to the null character.
dhTrimNu1l = Left$(strvalue, IngPos - 1)
End Select
End Function

To doits work, dhTrimNull calls the InStr function, passing it the original string
to search in and the constant vbNullChar to search for. Depending on the return

value of InStr (stored in IngPos), the function does one of three things:

o IfIngPos is 0, the function returns the original string. There weren’t any null

characters in the string to begin with.

e IfIngPosis 1, the first character was null, so the function returns an empty

string.

e IfIngPos is greater than 1, the function uses the Left function to pull out the

part up to, but not including, the null character.

Using all three cases removes any possibility that you'll attempt to pass an illegal

starting position to the Left function.

46 Chapter 1 ¢ Manipulating Strings

Replacing Numbered Tokens within a String

If you're creating text resources that need to be translated to local languages, or if
you just need to replace a series of tokens in a string with a series of text strings,
the function shown in Listing 1.8 will help you out. This function allows you to
pass in a list of text strings to replace numbered tokens (%1, %2, and so on) in a
larger text string.

If you separate the text for your application from the application’s user inter-
face, it’s far easier to prepare the application for international use. However, it’s
inevitable that some of your strings will need to contain replaceable parameters.
Using dhTokenReplace makes it simple to perform those replacements at runtime.
For example, running the following fragment:

strText = dhTokenReplace('Unable to add file %1 to %2", _
"C:\AUTOEXEC.BAT", "C:\F00.ZIP")

would place the text “Unable to add file C:\AUTOEXEC.BAT to C:\FOO.ZIP”
into strText. (The assumption here is that the resource string “Unable to add...” is
coming from a table, a resource file, or some other source external to your applica-
tion and is translated for use in countries besides your own.) But what if, in a par-
ticular language, the correct phrasing would be (translated back into English)
“C:\FOOQO.ZIP is unable to contain C:\AUTOEXEC.BAT”? In that case, the transla-
tor could modify the resource to be “%2 is unable to contain %1”, and your code
would still function correctly.

Even if you're not producing internationalized applications, dhTokenReplace
will make your work simpler. Being able to replace multiple substrings in one
pass can make your applications run faster and certainly will make them code
faster.

Using ParamArray to Pass an Array of Parameters

Although the ParamArray construct has been available in the past few versions of VBA,
few programmers have run across it. It's not used often, but when you need it, it's indis-
pensable. In this case, being able to pass a virtually unlimited number of parameters to a
function makes it possible to write one function that can handle unlimited situations.

To use this feature, you declare your function to accept a ParamArray parameter, like this:

Public Function dhTokenReplace(ByVal strIn As String, _
ParamArray varItems() As Variant) As String

Searching for and Replacing Text 47

Then, when you call the function, you can pass as many items as you like after the required
parameter(s), and VBA will convert them into an array and pass them to the procedure.
Your procedure receives the array in the parameter you declared as ParamArray, and you
can use any array-handling technique to work with the parameters.

The rules? The ParamArray parameter must be

e The final parameter
e Not mixed with the Optional, ByVal, or ByRef keyword

e Declared as an array of variants

Listing 1.8: Replace Numbered Tokens in a String

Public Function dhTokenReplace(ByVal strIn As String, _
ParamArray varItems() As Variant) As String
On Error GoTo HandleErr

Dim TngPos As Long
Dim strReplace As String
Dim intI As Integer

For intI = UBound(varItems) To LBound(varItems) Step -1
strReplace = "%" & (intI + 1)
TngPos = InStr(1l, strIn, strReplace)
If TngPos > 0 Then
strIin = Left$(strIn, IngPos - 1) & _
varItems(intI) & Mid$(strIn, 1ngPos + Len(strReplace))
End If
Next intI

ExitHere:
dhTokenReplace = strln
Exit Function

HandleErr:
" If any error occurs, just return the
' string as it currently exists.

48 Chapter 1 ¢ Manipulating Strings

Select Case Err.Number
Case Else
' MsgBox "Error: " & Err.Description & _
" " (" & Err.Number & ")"
End Select
Resume ExitHere
End Function

To do its work, dhTokenReplace loops through all the elements of the input
array, from the upper bound back down to the lower bound:

For intI = UBound(varItems) To LBound(varItems) Step -1
' (Code removed)
Next intl

NOTE

If dhTokenReplace didn’t work its way backward through its tokens, it would have
trouble if you specified more than 10 parameters. It would replace “%1" with
some replacement text, and that would also replace the “%1"” in “%10",
rendering each of the two-digit replacement values inoperative. By working
backward, this problem won’t occur.

For each item in the array, the code builds a new item number (such as “%1”,
“%2”, and so on) and then searches for the string within the text:

strReplace = "%" & (intl + 1)
TngPos = InStr(1, strIn, strReplace)

If InStr found a match (that is, IngPos is greater than 0), dhTokenReplace modifies
the input string to contain all the text before the match, then the replacement text,
and then all the text after the match:

If TngPos > 0 Then

strIn = Left$(strIn, IngPos - 1) & _

varItems(intI) & Mid$(strIn, 1ngPos + Len(strReplace))
End If

That's it! Repeating the steps for each item in the input array ends up with all
the tokens replaced with text.

Gathering Information about Strings 49

WARNING ;e sure you call the dhTokenReplace function correctly. That is, supply a single

text string, containing text and “%x", with values to be replaced. Follow that
string with individual text parameters, containing the strings to be placed into
each of the replacement tokens. If you're an advanced developer, it may be
tempting to supply a string and an array of replacements, but that technique
won't work with this function. If you like, you could modify the function to work
that way, but we like the simplicity provided by the ParamArray modifier.

Gathering Information about Strings

In this section, you'll find techniques for retrieving information about an existing
string, including:

e Determining whether a character is alphanumeric

e Determining whether a character is alphabetic

¢ Determining whether a character is numeric

¢ Counting the number of times a substring appears in a string
e Counting the number of tokens in a delimited string

e Counting the number of words in a string

Determining the Characteristics of a Character

When validating text, you may want to check the contents of each individual char-
acter in a string. You may want to know whether any specific character is alpha-
betic (A-Z, in English), alphanumeric (A-Z, 0-9 in English), or just numeric (0-9).
The first two tests are most quickly accomplished using API calls, and the final
one can be accomplished a few different ways.

NOTE

Although the examples in this section focus only on the ANSI character set, the
examples on the CD-ROM also take into account the Unicode character set. See
the sidebar “Working with Wide Character Sets” later in this chapter for more
information.

50 Chapter 1 ¢ Manipulating Strings

Is This Character Alphabetic?

Should you need to verify that a given character is alphabetic (and not numeric,
punctuation, a symbol, and so on), you might be tempted to just check the charac-
ter and see whether it’s in the range of A—Z or a-z. This would be a mistake for
two reasons:

e If you want your application to be able to be localized for countries besides
your own, this code is almost guaranteed to break in any other language.

e Using VBA to handle this task is almost certainly the slowest way possible.

A better bet is to let Windows handle this task for you. Using the IsCharAlpha
API function, you can allow Windows to decide whether the selected character is
alphabetic. That way, the test runs faster, and you needn’t worry about interna-
tionalization issues—Windows will know, for the local environment, whether a
given character is alphabetic.

To use the API function, you must first declare the function. (This declaration is
included in the sample code for this chapter.)

Private Declare Function IsCharAlphaA Lib "USER32" _
(ByVal bytChar As Byte) As Long

To use the IsCharAlphaA API function, you can call the dhlsCharAlpha function:

Function dhIsCharAlpha(strText As String) As Boolean
' Is the first character of strText an alphabetic character?
dhIsCharAlpha = CBool(IsCharAlphaA(Asc(strText)))

End Function

This simple wrapper function converts the first letter of the text you pass to a
numeric value (using the Asc function), calls IsCharAlphaA, and converts the
result to a Boolean value.

TIP

The function you'll find in the sample project is a bit more complex than this
representation because it attempts to handle both ANSI and Unicode character
sets. See the “Working with Wide Character Sets” for more information. This
applies to the next few functions, as well.

Gathering Information about Strings 51

To verify that the first letter of a value a user supplies is alphabetic, you might
use dhlsCharAlpha like this:

If dhIsCharAlpha(strText) Then
" You know the first letter of strText is alphabetic.
End If

Is This Character Alphanumeric?

Expanding on the previous function, if you need to know whether a character is
either alphabetic or numeric, Windows provides a simple function for this test, as
well. You can use the IsCharAlphaNumericA API function, declared like this:

Private Declare Function IsCharAlphaNumericA Lib "USER32" _
(ByVal byChar As Byte) As Long

Just as before, we’ve provided a simple wrapper function for the API function,
making it easier to call:

Function dhIsCharAlphaNumeric(strText As String) As Boolean
" Is the first character of strText an alphanumeric character?
dhIsCharAlphaNumeric = CBool(IsCharAlphaNumericA(Asc(strText)))
End Function

This function will return True if the first character of the value you pass it is either
a letter or a digit.

Is This Character Numeric?

Although the task of determining whether a character is numeric could be quite
simple, finding the best approach took a few iterations. We ended up with two
techniques that are almost identical in their performance, and you'll need to
choose one based on your own preferences.

The first technique uses the two previous solutions—that is, a character is
numeric if it’s alphanumeric but not alphabetic. Therefore, dhIsCharNumeric per-
forms the first determination.

Function dhIsCharNumeric(strText As String) As Boolean
" Is the first character of strText a numeric character?
dhIsCharNumeric = dhIsCharAlphaNumeric(strText) _
And Not dhIsCharAlpha(strText)

End Function

52

Chapter 1 ¢ Manipulating Strings

An alternative technique is to use the Like operator, discussed in the section
“Comparison Operators” earlier in this chapter. If you're checking only to see
whether a character is numeric, this is the best solution; it involves no API calls
and no declarations. If you're already using the other two API-reliant functions,
you might as well use them here. This alternative checks the first character of the
string you send it, comparing it to “[0-9]*":

Function dhIsCharNumericl(strText As String) As Boolean
' Is the first character numeric?
' Almost identical in speed to calling the two API functions.
dhIsCharNumericl = (strText Like "[0-9]*")

End Function

Working with Wide Character Sets

Unfortunately, the two technigues shown here that call the Windows API will fail if your
version of Windows uses wide (two-byte) characters or if you want your solutions to run
on machines that use wide characters. In these cases, you'll need to take extra steps.

The simplest solution is to determine the maximum character width in the selected charac-
ter set and choose the correct API function to call based on that determination. (The code
examples on the CD-ROM do take these extra steps.) The 32-bit Windows API specification
includes two versions of most functions that involve strings: one for the ANSI environment
and one for DBCS and Unicode environments. In the examples shown here, we've used
the ANSI solution because that solution works for English text.

To determine whether you need to use the alternate API calls, you can use the dhis-
CharsetWide function. Once you've got the return value from that function, you can
decide whether to call the ANSI or the Unicode version of the API functions, like this:

Function dhIsCharAlphaNumeric(strText As String) As Boolean
If dhIsCharsetWide() Then
dhIsCharAlphaNumeric = _
CBool(IsCharAlphaNumericW(AscW(strText)))

Gathering Information about Strings 53

Else

dhIsCharAlphaNumeric = _

CBool1(IsCharAlphaNumericA(Asc(strText)))
End If

End Function

Note that you must also call the AscW function when working with the “wide” versions of
the API functions.

Counting the Number of Times a Substring Appears

The InStr built-in VBA function can tell you whether a particular string appears
within another string (InStr returns a position within the string if the substring is
there and 0 if it’s not), but it can’t tell you how many times the substring appears.
If you want to count occurrences (and several of the other functions in this chapter
will need to do this), you can use the dhCountIn function, shown in Listing 1.9.

Listing 1.9: Find the Number of Occurrences of a Substring

Public Function dhCountIn(strText As String, strFind As String,
Optional TngCompare As VbCompareMethod = vbBinaryCompare) As Long

Dim TngCount As Long
Dim TngPos As Long

" If there's nothing to find, there surely can't be any
' found, so return 0.
If Len(strFind) > 0 Then
TngPos = 1
Do
TngPos = InStr(1ngPos, strText, strFind, 1ngCompare)
If TngPos > 0 Then
TngCount = TngCount + 1
TngPos = TngPos + Len(strFind)
End If
Loop While 1ngPos > 0
Else
TngCount = 0

54 Chapter 1 e Manipulating Strings

End If
dhCountIn = TngCount
End Function

Of course, if there’s nothing to find, the function just returns 0:

If Len(strFind) > 0 Then

' the real code goes here
Else

intCount = 0
End If

To perform the search, the code loops through the input text, looking for the
search string, until it no longer finds any matches (that is, until the return value
from InStr is 0). Along the way, if it finds a match, it increments the value of
intCount and moves the start position to the character after the end of the sought
string in the input text. This not only speeds up the search (why look for the text at
the very next character after you just found it if the text you're looking for is, say,
four characters long?), it also avoids finding overlapping matches. Here’s the code
fragment that does the major portion of the work:

TngPos = 1
Do
TngPos = InStr(lngPos, strText, strFind, TngCompare)
If TngPos > 0 Then
TngCount = TngCount + 1
TngPos = 1ngPos + Len(strFind)
End If
Loop While TngPos > 0

To find the number of vowels in a string, you might write code like this:

intVowels = dhCountIn(strText, "A") + dhCountIn(strText, "E") + _
dhCountIn(strText, "I") + dhCountIn(strText, "0") + _
dhCountIn(strText, "U")

TP The dhCountin function, like all the functions in this chapter that perform

searching, is case sensitive by default. If you want to perform case-insensitive
searches, either modify the source code or pass in the appropriate optional
parameter value (vbTextCompare).

Gathering Information about Strings 55

Counting Vowels Revisited

You could use the dhCountln function to count vowels, as shown in the previous example. You
might also take advantage of the dhTranslate and Split functions to do the same job. That
is, you can have dhTranslate replace all vowels with a single vowel, and then use the Split
function to split the text, based on that single vowel. The size of the array returned from
Split tells you how many vowels you have. For example, you might write the code this way
(see the next section for more information on using dhTranslate in this manner):

Public Function CountVowels(ByVal strIn As String) As Long
' An alternative way to calculate vowels in a piece of text.
Dim astrItems() As String

strIn = dhTranslate(strIn, "AEIOU", "A", vbTextCompare)
astrItems = Split(strIn, "A")
CountVowels = UBound(astrItems) - LBound(astrItems)

End Function

Counting the Number of Tokens in a Delimited String

The dhCountTokens function, shown in Listing 1.10, is a general-purpose func-
tion that allows you to find out how many “chunks” of text there are in a string,
given text delimiters that you supply. The function interprets any one of the char-
acters in your list of delimiters as a token separator, so

Debug.Print dhCountTokens("'This is a test", " ")
returns 4, as does
Debug.Print dhCountTokens('This:is!a test", ": !"

Because every delimiter character must delimit a token, the following example
returns 10:

Debug.Print dhCountTokens('This:!:is:!:a:!:test", ": !")
You'll have to look carefully to see them, but the individual tokens are

Th'iS, uu’ nu’ .is, uu' uu’ a, uu, |v||’ test

56 Chapter 1 ¢ Manipulating Strings

Listing 1.10: Count the Number of Tokens in a String

Public Function dhCountTokens(ByVal strText As String, _
ByVal strDelimiter As String, _
Optional TngCompare As VbCompareMethod = vbBinaryCompare) As Long

Dim strChar As String * 1

' If there's no search text, there can't be any tokens.
If Len(strText) = 0 Then
dhCountTokens = 0
ElseIf Len(strDelimiter) = 0 Then
" If there's no delimiters, the output
' is the entire input.
dhCountTokens = 1
Else
strChar = Left$(strDelimiter, 1)

" Flatten all the delimiters to just the first one in
" the Tist.
If Len(strDelimiter) > 1 Then
strText = dhTranslate(strText, strDelimiter, _
strChar, TngCompare)
End If
" Count the tokens. Actually, count
' delimiters, and add one.
dhCountTokens = dhCountIn(strText, strChar) + 1
End If
End Function

The dhCountTokens function is somewhat tricky—it uses the dhCountIn func-
tion, which can count the occurrence of only a single item. Rather than call
dhCountIn multiple times, once for each different delimiter, dhCountTokens “flat-
tens” the delimiters in the input text. That is, it first calls the dhTranslate function
to map all the different delimiters to the first character in your list of delimiters:

strChar = Left$(strDelimiter, 1)

" Flatten all the delimiters to just the first one in
' the Tist.
If Len(strDelimiter) > 1 Then
strText = dhTranslate(strText, strDelimiter, strChar)
End If

Gathering Information about Strings 57

That is, if you called dhCountTokens as
Debug.Print dhCountTokens('This:!:is:!:a:!:test", ": I")

after the code fragment listed previously, strText would contain
"This:::is:::a:::test"

Now it’s just a matter of counting the number of times the first delimiter appears

in the string and adding 1. (If there are four delimiters, there must be five tokens.)
dhCountTokens = dhCountIn(strText, strChar) + 1

That’s all there is to it. The next section shows a typical reason to call dhCountTokens.

Counting Vowels Re-Revisited

Now that you've got the dhCountTokens function ready to use, you could rewrite the
CountVowels function discussed in the previous section, like this:

Public Function CountVowels2(ByVal strIn As String) As Long
' An alternative way to calculate vowels in a piece of text.
CountVowels2 = _
dhCountTokens(strIn, "aeiou", vbTextCompare) - 1
End Function
For example, if a string breaks down into 16 tokens, it must contain 15 vowels. This simple
function shows the power of the parsing functions included in this chapter.

Counting the Number of Words in a String

Although the dhCountTokens function provides you with total flexibility, you're
more often going to want to count specific types of delimited objects. Counting
words is a typical task, and dhCountWords uses techniques similar to those used
in dhCountTokens to make the task simple. The code, shown in Listing 1.11, takes
the following steps:

1. Checks the length of the input text. If it’s 0, there’s not much point in con-
tinuing.
2. Calls dhTranslate to convert all the delimiters to spaces. The function uses a

standard set of delimiters, declared as follows:

Const dhcDelimiters As String = " ,.!:;<O7?"

58 Chapter 1 ¢ Manipulating Strings

3. Calls dhTrimAll to remove leading and trailing spaces and converts all
groups of spaces to a single space within the text.

4. Calls dhCountIn to count the spaces in the string and adds 1 to the result.

For example, calling dhCountWords like this:
dhCountWords("Hi there, my name is Cleo, what's yours?")

returns 8, the number of words in the string.

Listing 1.11: Count the Number of Words in a String
Public Function dhCountWords(ByVal strText As String) As Long
If Len(strText) = 0 Then
dhCountWords = 0

Else
' Get rid of any extraneous stuff, including delimiters and

' spaces. First convert delimiters to spaces, and then
' remove all extraneous spaces.
strText = dhTrimA11(dhTranslate(strText, dhcDelimiters, " "))
" If there are three spaces, there are
" four words, right?
dhCountWords = dhCountIn(strText, " ") + 1
End If
End Function

Converting Strings

This section presents a series of techniques for performing common tasks involv-
ing the conversion of a string from one form to another. The section includes the

following topics:
¢ Converting a number into a string with the correct ordinal suffix
e Converting a number to roman numerals
e Performing a “smart” proper case conversion
¢ Encrypting/decrypting text using XOR password encryption
¢ Returning a string left-padded or right-padded to a specified width

¢ Using Soundex to compare strings

Converting Strings 59

Another common string conversion trick is the conversion from a numeric value
into written text (as you might when writing a check, for example). You'll find a
procedure that does this work for you in Chapter 2.

Converting a Number into a String with the Correct
Ordinal Suffix

If you want to be able to represent a numeric value as its ordinal position in a set,
you’ll need to write a function that, when provided with an integer, returns a
string containing the value and its suffix as a string. The simple dhOrdinal func-
tion, shown in Listing 1.12, does what you need; it takes in a numeric value and
returns a string containing the ordinal representation of that value. For example:

dhOrdinal(34)
returns “34th”, and

dhOrdinal(1)
returns “1st”.

The dhOrdinal function counts on standard rules to calculate the suffix (once
it’s removed all but the final two digits, using the Mod operator:

e All values between 11 and 19, inclusive, use “th”.
Otherwise:

e Numbers that end in 1 use “st”.

e Numbers that end in 2 use “nd”.

e Numbers that end in 3 use “rd”.

e Allnumbers that haven’t yet been claimed use “th”.

Listing 1.12: Convert a Value to Its Ordinal Suffix
Public Function dhOrdinal(IngItem As Long) As String
Dim intDigit As Integer
Dim strOut As String * 2
Dim intTemp As Integer

60 Chapter 1 ¢ Manipulating Strings

" A1l teens use "th"
intTemp = TngItem Mod 100
If intTemp >= 11 And intTemp <= 19 Then
strOut = "th"
Else
' Get that final digit
intDigit = TngItem Mod 10
Select Case intDigit
Case 1
strOut = "st"
Case 2
strOut
Case 3
strOut = "rd"
Case Else
strOut = "th"
End Select
End If
dhOrdinal = TngItem & strOut
End Function

n nd n

The code first uses the Mod operator to retrieve the final two digits and checks
for values between 11 and 19—these should all use the “th” suffix. For other val-
ues, the code looks at the “ones” digit because that’s all it takes to determine
which suffix to use. To find the digit that ends each number, the code uses the
Mod operator, which returns the remainder when you divide by the second oper-
and. For example:

41 Mod 10

returns 1, the remainder you get when you divide 41 by 10.

TP The dhOrdinal function would need to be completely overhauled for any language

besides English; it's not clear that the ordinal suffixes would even group the same
way in any other language. If you intend to distribute applications globally, be
sure to allot time for rewriting this function for each localized language.

Converting a Number into Roman Numerals

If you're creating legal documents programmatically, or if your job involves copy-
right notifications (well, it is somewhat difficult coming up with compelling sce-
narios for this one), you're likely to require the capability to convert integers into

Converting Strings 61

roman numerals. Although this need may not come up often, when it does, it’s
tricky enough that you'll want to avoid having to write the code yourself.

The dhRoman function, in Listing 1.13, can accept an integer between 1 and
3999 (the Romans didn’t have a concept of 0), and it returns the value converted
into roman numerals. For example:

Debug.Print dhRoman(1997)
displays “MCMXCVII”, and

Debug.Print dhRoman(3999)
displays “MMMCMXCIX".

WARNING Attempting to convert a number greater than 3999 or less than 1 will raise a run-

time error in dhRoman.

Listing 1.13: Convert Numbers to Roman Numerals
Public Function dhRoman(ByVal intValue As Integer) As String

Dim varDigits As Variant
Dim TngPos As Integer
Dim intDigit As Integer
Dim strTemp As String

" Build up the array of roman digits
varDigits = Array("'I", "Vv", 'X", "'L", "C", "D", "M")
TngPos = LBound(varDigits)
strTemp = "'
Do While intValue > 0
intDigit = intValue Mod 10
intValue = intValue \ 10
Select Case intDigit

Case 1

strTemp = varDigits(1ngPos) & strTemp
Case 2

strTemp = varDigits(lngPos) & _

varDigits(IngPos) & strTemp

62 Chapter 1 ¢ Manipulating Strings

Case 3
strTemp = varDigits(1ngPos) & _
varDigits(IngPos) & varDigits(1lngPos) & strTemp
Case 4
strTemp = varDigits(1ngPos) & _
varDigits(IngPos + 1) & strTemp

Case 5

strTemp = varDigits(lngPos + 1) & strTemp
Case 6

strTemp = varDigits(lngPos + 1) & _

varDigits(IngPos) & strTemp
Case 7
strTemp = varDigits(lngPos + 1) & _
varDigits(IngPos) & varDigits(1lngPos) & strTemp
Case 8
strTemp = varDigits(lngPos + 1) & _
varDigits(IngPos) & varDigits(IngPos) & _
varDigits(IngPos) & strTemp
Case 9
strTemp = varDigits(1ngPos) & _
varDigits(lngPos + 2) & strTemp
End Select
TngPos = TngPos + 2
Loop
dhRoman = strTemp
End Function

How does dhRoman do its work? As you probably know, all numbers built in
roman numerals between 1 and 3999 consist of the seven digits I, V, X, L, C, D, and
M. The I, X, C, and M digits represent 1, 10, 100, and 1000; V, L, and D represent 5,
50, and 500, respectively. The code loops through all the digits of your input value
from right to left, using the Mod operator to strip them off one by one:

Do While intValue > 0
intDigit = intValue Mod 10
intValue = intValue \ 10
' (Code removed)
intPos = intPos + 2
Loop

Converting Strings 63

At each point in the loop, intDigit contains the right-most digit of the value, and
intValue keeps getting smaller, one digit at a time. For example, the following
table shows the values of the two variables while dhRoman tackles the value 1234:

intValue intDigit intPos Character
123 4 0 I

12 2 X

1 2 4 C

0 1 6 M

In addition, intPos indicates which array element to use in building the string as
the code moves through the ones, tens, hundreds, and thousands places in the
value.

Based on the value in intDigit, the code uses a Select Case construct to choose
the characters to prepend to the output string. (That’s right—prepend. dhRoman
constructs the output string from right to left, adding items to the left of the string
as it works.) For example, for the value 1234, dhRoman finds the digit 4 when int-
Pos is 0. The code says to use

strTemp = varDigits(intPos) & _
varDigits(intPos + 1) & strTemp

in this case. Because intPos is 0, the output is IV (varDigits(0) & varDigits(1)). If
the 4 had been in the hundreds place (imagine you're converting 421 to roman
numerals), then intPos would be 2, the expression would say to use varDigits(4) &
varDigits(5), and the output would be “CD” for this digit.

You won't use this function every day. However, when you do need to convert
a value to roman numerals, it will be waiting.

Performing a “Smart” Proper Case Conversion

Although VBA provides the built-in StrConv function to convert words to proper
case, it does just what a brute-force hand-coded solution would do: It converts the
first letter of every word to uppercase and forces the rest of each word to lower-
case. This doesn’t help much for articles (a, the, and so on) or prepositions (of, for,
and so on) or for handling proper names like MacDonald or Port of Oakland. Writ-
ing code to handle all the special cases would be prohibitively difficult, but if a

64 Chapter 1 ¢ Manipulating Strings

“smart” proper-casing routine were to look up the exceptions to the rules in a
table, the routine might work a bit better than through code alone.

One possible solution, dhProperLookup (in Listing 1.14), walks through the text
you pass it, building up “words” of alphabetic characters. As soon as it finds a
non-alphabetic character, it checks out the most current word it’s collected and
looks it up in a table. If it’s there, it uses the text it finds in the table. If not, it per-
forms a direct conversion of the word to proper case. The code then continues the
process with the rest of the text. Once it hits the end of the string, it handles the
final word and returns the result.

Listing 1.14: A “Smart” Proper Case Function

Public Function dhProperLookup(_

ByVal strIn As String, _

Optional blnForceToLower As Boolean = True, _
Optional rst As ADODB.Recordset = Nothing, _
Optional strField As String = "") As Variant

Dim strOut As String
Dim strWord As String
Dim 1ngI As Long

Dim strC As String * 1

On Error GoTo HandleErr

strOut = vbNullString
striWord = vbNullString

If bIinForceTolLower Then
strIn = LCase$(strIn)
End If

For TngI = 1 To Len(strIn)
strC = Mid$(strIn, TngI, 1)
If dhIsCharAlphaNumeric(strC) Or strC = "'" Then
strWord = strWord & strC

Converting Strings 65

Else
strOut = strOut & dhFixWord(strWord, rst, strField) & strC
' Reset strWord for the next word.
striWord = vbNul1String
End If
NextChar:
Next TngI

' Process the final word.
strOut = strOut & dhFixWord(strWord, rst, strField)

ExitHere:
dhProperLookup = strOut
Exit Function

Hand1eErr:
" If there's an error, just go on to the next character.
' This may mean the output word is missing characters,
" of course. If this bothers you, just change the Resume
' statement to resume at "ExitHere.'
Select Case Err
Case Else
' MsgBox "Error: " & Err.Description & _
" " (" & Err.Number & ")"
End Select
Resume NextChar

End Function

To call dhProperLookup, you can pass the following set of parameters:
e strin (required) is the text to be converted.

e binForceToLower (optional; default = True) causes the function to convert all
the text to lowercase before performing the proper case conversion. If you
set the parameter to False, dhProperLookup won't affect any characters
except the first character of each word.

e rst (optional; default = Nothing) is an open ADO recordset, containing the
list of special cases. This recordset can come from a database, from an XML
file, or from any other source of an ADO recordset. The recordset must have
been opened using some cursor type besides the default, which doesn’t
allow for random access within the recordset.

66

Chapter 1 ¢ Manipulating Strings

strField (optional; default = “”) is a string expression containing the name of
the field to be used for lookups in the recordset referred to by rst. If you
specify the recordset, you must also specify this field name.

WARNING

Because of an anomaly in the current version of ADO, the dhFixWord function
(the function that retrieves special cases from the recordset) will fail if your special
case text includes more than one apostrophe.

For example, suppose you have a database named PROPER.MDB containing a

table named tblSpecialCase. In that table, a field named Lookup contains special
cases for spelling. The sample code shown in Listing 1.15 opens the database, cre-
ates a recordset, and calls the dhProperLookup function.

Listing 1.15: Test the dhProperLookup Function
Sub TestProperMDB()

' Test procedure for dhProperLookup
Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset
rst.Open "tb1SpecialCase", _
"Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source = " & ActiveWorkbook.Path & "\Proper.MDB", _
adOpenKeyset

Debug.Print dhProperLookup(_

"headline: cruella de ville and old macdonald eat dog's food", _
True, rst, "Lookup")

End Sub

TIP

The examples in this chapter assume that you're running them from within the

sample Excel workbook. As you can see, this particular example uses Active-

Workbook.Path, a property of the current Excel workbook that's only valid for a
saved workbook. If you use this sample code in another application, or in a new

Excel workbook, you'll need to take this into account. This issue is already handled
in the Access and VB versions of the samples on the CD-ROM.

Converting Strings 67

If tblSpecialCase contains at least the words a, and, de, and MacDonald, the out-
put from the call to dhProperLookup would be

Headline: Cruella de Ville and O1d MacDonald Eat a Dog's Food

If you don’t supply recordset and field name parameters for dhProperLookup,
it performs the same task as would a call to StrConv, although it does its work
somewhat less efficiently than the built-in function. (In other words, unless you
intend to supply the recordset, you're probably better off calling the built-in func-
tion.) To do its work, dhProperLookup starts by checking the biInForceToLower
parameter and converting the entire input string to lowercase if the parameter’s
value is True:

If binForceToLower Then
strIn = LCase$(strIn)
End If

To work its way through the input string, dhProperLookup performs a loop, visit-
ing each character in turn:

For TngI = 1 To Len(strIn)
strC = Mid$(strIn, TngI, 1)
" (Code removed)

Next TngI

The code examines each character. If the character is alphanumeric or an apos-
trophe, it’s appended to strWord. If not, the loop has reached the end of a word, so
the code calls the dhFixWord procedure to perform the conversion and then tacks the
word and the current (non-word) character onto the end of the output string.

If dhIsCharAlphaNumeric(strC) Or strC = "'" Then
striord = strWord & strC
Else
strOout = strOut & dhFixWord(strWord, rst, strField) & strC
' Reset strWord for the next word.
striord = vbNull1String
End If

TIP

Rather than setting strwWord to be “”, the code uses vbNullString instead. This
optimization allows your code to run a tiny bit faster. Because this code executes
for each character you're converting, you need all the help you can get! VBA
provides the vbNullString constant, and although this constant’s value is not really
“" (it contains a reference to a known, “null” string pointer), when you assign it
to a string variable, VBA converts it into its value, “”. You can use vbNullString in
any situation where you might otherwise use “" in your code.

68 Chapter 1 ¢ Manipulating Strings

Once the loop has concluded, one final step is necessary: Unless the text ends
with a character that’s not part of a word, the code will never process the final
word. To make sure that last word ends up in the output string, dhProperLookup
calls dhFixWord one last time, with the final word:

" Process the final word.
strOut = strOut & dhFixWord(strWord, rst, strField)

The dhFixWord function, shown in Listing 1.16, does its work using a recordset
containing the special cases for specific words’ spellings passed in from dhProper-
Lookup. Supplying that information is up to you, and the function presented here
counts on your having created an ADO recordset object filled with the rows of
special names. If you have not supplied the recordset and field name, dhFixWord
simply capitalizes the first letter of the word you’ve sent it and then returns.

Listing 1.16: dhFixWord Converts a Single Word to Proper Case

Private Function dhFixWord(_

ByvVal strWord As String, _

Optional rst As ADODB.Recordset = Nothing, _
Optional strField As String = "") As String

" "Properize" a single word
Dim strOut As String

On Error GoTo HandleErr

If Len(strWord) > 0 Then
' Many things can go wrong. Just assume you want the
' standard properized version unless you hear otherwise.
strOout = UCase(Left$(strWord, 1)) & Mid$(strWord, 2)
" Did you pass in a recordset? If so, lookup
" the value now.
If Not rst Is Nothing Then
If Len(strField) > 0 Then
rst.MoveFirst
rst.Find strField & " = " & _
"'" & Replace(strWord, "'", "''") & "'"
If Not rst.EOF Then
strOut = rst(strField)
End If

Converting Strings 69

End If
End If
End If

ExitHere:
dhFixWord = strOut
Exit Function

HandTleErr:
" If anything goes wrong, anything, just get out.
Select Case Err.Number
Case Else
' MsgBox "Error: " & Err.Description & _
" " (" & Err.Number & ")"
End Select
Resume ExitHere
End Function

The dhFixWord function does the bulk of its work in a few simple lines of code:

rst.MoveFirst
rst.Find strField & " = " & _
"'" & Replace(strWord, "'", "''") & """
If Not rst.EOF Then
strOut = rst(strField)
End If

It uses the recordset’s FindFirst method to look up a string in the format

Lookup = 'macdonald'’

If it finds a match in the table, it replaces the output string with the word it found.
In this case, it would replace the value of strOut with the text “MacDonald”. (The
rest of the code in dhFixWord simply validates input and prepares the lookup
string.)

What's missing from this solution? First of all, it’s not terribly smart. It can work
only with the specific words you've added to the list. If you've added McGregor
but not MacGregor, there’s no way for the code to know how to handle the word
that’s not there. It’s not possible to work with proper names that contain spaces
(such as de Long, for example), although you could add many of the proper name
prefixes to the lookup table to avoid their being capitalized incorrectly. The code
checks only for alphabetic characters and apostrophes as legal characters in words.
You may find you need to add to the list of acceptable characters. In that case, you

70 Chapter 1 ¢ Manipulating Strings

may want to create a list of acceptable characters as a constant and use the InStr
function to see whether strC is in the list. For example, to treat apostrophes and
hyphens as valid word characters, you could declare a constant:

Const conWordChars = "'-"
and modify the check for characters like this:

If dhIsCharAlphaNumeric(strC) Or _
(InStr(conWordChars, strC) > 0) Then

Where Does the Recordset Come From?

In this example (and others throughout this book), you may need to supply an ADO record-
set as a parameter value. In the traditional sense, a recordset normally comes from a table
in some database. However, using ADO, a recordset can come from many different places.
You can read data from a standard database, or from a text file, or from an XML file; or
you can even create the recordset on-the-fly, with no connection to stored data. If you're
distributing an application, you may find it easiest to distribute your lookups for the
dhProperLookup as a text file rather than as a full MDB file. We actually tried this out, cre-
ating a recordset from tblSpecialCase and then calling the Save method to create an XML
file, like this:

Sub CreateProperXML()
' Create XML file for recordset.

Dim rst As ADODB.Recordset
Dim strPath As String
Dim strFile As String

strPath = ActiveWorkbook.Path

Set rst = New ADODB.Recordset

rst.Open "tblSpecialCase", _
"Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source = " & strPath & "\Proper.MDB", _
adOpenKeyset

On Error Resume Next
strFile = strPath & "\Proper.xml"
Kill strFile

Converting Strings A

rst.Save strFile, adPersistXML

rst.Close
Set rst = Nothing
End Sub

Then, to test this out, you can try code like this:

Public Sub TestProperXML()
' Test procedure for dhProperLookup

Dim rst As ADODB.Recordset
Dim strText As String

' You don't even need a database. You can use a

' saved XML file.

Set rst = New ADODB.Recordset

rst.Open ActiveWorkbook.Path & "\Proper.xml", , _
adOpenKeyset, adLockReadOnly, Options:=adCmdFile

strText = _
"headline: cruella de ville and old macdonald " & _
"eat dog's food"

Debug.Print dhProperLookup(strText, True, rst, "Lookup")

rst.Close
Set rst = Nothing
End Sub

As you can see, this technique requires that you supply only a single text file (Proper.xml) in
order to open a recordset—no need to bring along a big database, just to use dhProper-
Lookup. You may find it interesting to open Proper.xml in a text editor—it’s simply a text
file, containing all your data.

Encrypting/Decrypting Text Using XOR Encryption

If you need a simple way to encrypt text in an application, the function provided in
this section may do just what you need. The dhXORText function, in Listing 1.17,
includes code that performs both the encryption and decryption of text strings.
That’s right—it takes just one routine to perform both tasks.

72 Chapter 1 ¢ Manipulating Strings

To encrypt text, pass dhXORText the text to encrypt and a password that sup-
plies the encryption code. To decrypt the text, pass dhXORText the exact same
parameters again. For example:

dhXORText(dhXORText("This is a test", "Password"), "Password")

returns “This is a test”, the same text encrypted and then decrypted.

Listing 1.17: Use the XOR Operator to Encrypt Text

Public Function dhXORText(strText As String, strPWD As String)
As String

" Encrypt or decrypt a string using the XOR operator.

Dim abytText() As Byte

Dim abytPWD() As Byte

Dim intPWDPos As Integer

Dim intPWDLen As Integer

Dim intChar As Integer

abytText = strText

abytPWD = strPWD

intPWDLen = LenB(strPWD)

For intChar = 0 To LenB(strText) - 1
' Get the next number between 0 and intPWDLen - 1
intPWDPos = (intChar Mod intPWDLen)
abytText(intChar) = abytText(intChar) Xor _
abytPWD(intPWDPos)

Next intChar

dhXORText = abytText

End Function

The dhXORText function counts on the XOR operator to do its work. This built-
in operator compares each bit in the two expressions and uses the following rules
to calculate the result for each bit:

If Bitl is And Bit2 is The result is
1 1 0

1 0 1
0 1 1
0 0 0

Converting Strings 73

Why XOR? Using this operator has a very important side effect: If you XOR two
values and then XOR the result with either of the original values, you get back the
other original value. That’s what makes it possible for dhXORText to do its work.
To try this, imagine that the first byte of your text is 74 and the first byte of the
password is 110.

74 XOR 110
returns 36, which becomes the encrypted byte. Now, to get back the original text,
36 XOR 110

returns 74 back. Repeat that for all the bytes in the text, and you've encrypted and
decrypted your text.

To perform its work, dhXORText copies both the input string and the password
text into byte arrays. Once there, it’s just a matter of looping through all the bytes
in the input string’s array, repeating the password over and over until you run out
of input text. For each byte, XOR the byte from the input string and the byte from
the password to form the byte for the output string.

Figure 1.8 shows a tiny example, using “Hello Tom” as the input text and “ab”
as the password. Each byte in the input string will be XOR’d with a byte from the
password, with the password repeating until it has run out of characters from the
input string.

FIGURE 1.8
XOR each byte from the
input string and the pass-
word, repeated.

The code loops through each character of the input string—that’s easy!

For intChar = 0 To LenB(strText) - 1
" (Code removed)
Next intChar

74 Chapter 1 e Manipulating Strings

The hard part is to find the correct byte from the password to XOR with the
selected byte in the input string: The code uses the Mod operator to find the cor-
rect character. The Mod operator returns the remainder, when you divide the first
operand by the second, which is guaranteed to be a number between 0 and one
less than the second operand. In short, that corresponds to rotating through the
bytes of the password, as shown in Table 1.13 (disregarding the null bytes). If the
password were five bytes long, the “Position Mod 2” (“Position Mod 5”, in that
case) column would contain the values 0 through 4, repeated as many times as
necessary.

' Get the next number between 0 and intPWDLen - 1
intPWDPos = (intChar Mod intPWDLen)
abytText(intChar) = abytText(intChar) Xor abytPWD(intPWDPos)

TABLE 1.13: Stepsinthe Encryption of the Sample Text

Char from Position Position Mod 2 Char from XOR
Input Password

H (72) 0 0 a(97) 41
e (101) 1 1 b (98) 7
[(108) 2 0 a97) 13
[(108) 3 1 b (98) 14
o(111) 4 0 a(97) 14
(32) 5 1 b (98) 66
T(84) 6 0 a97) 53
o(111) 7 1 b (98) 13
m (109) 8 0 a97) 12

TiP As you can probably imagine, passwords used with dhXORText are case sensitive,

and you can't change that fact. Warn users that passwords in your application will
need to be entered exactly, taking upper- and lowercase letters into account.

Converting Strings 75

WARNING

Although no XOR-based algorithm for encryption is totally safe, the longer your
password, the better chance you have that a decryption expert won't be able to
crack the code. The previous example, using “ab” as the password, was only for
demonstration purposes. Make sure your passwords are at least four or five char-
acters long—the longer, the better.

Returning a String Left-Padded or Right-Padded to a
Specified Width

If you're creating a phone-book listing, you may need to left-pad a phone number
with dots so it looks like this:

............ (310) 123-4567
.................. 555-1212

Or you may want to left-pad a part number field with Os (zeros), so “1234”
becomes “001234”, and all part numbers take up exactly six digits. You may want
to create a fixed-width data stream, with spaces padding the fields. In all of these
cases, you need a function that can pad a string, to the left or to the right, with the
character of your choosing. The two simple functions dhPadLeft and dhPadRight,
in Listing 1.18, perform the work for you.

To call either function, pass a string containing the input text, an integer indicat-
ing the width for the output string, and, optionally, a pad character. (The func-
tions will use a space character if you don’t provide one.)

For example:
dhPadLeft("Name", 10, ".")
returns “......Name” (the word Name preceded by six periods).
dhPadRight("Hello", 10)

returns “Hello 7 (Hello followed by five spaces).

NOTE

Neither dhPadLeft nor dhPadRight will truncate your input string. If the original
string is longer than you indicate you want the output string, the code will just
return the input string with no changes.

76 Chapter 1 ¢ Manipulating Strings

Listing 1.18: Pad with Characters to the Left or to the Right

PubTlic Function dhPadLeft(strText As String, intWidth As Integer, _
Optional strPad As String = " ") As String

If Len(strText) > intWidth Then
dhPadLeft = strText
Else
dhPadLeft = Right$(String(intWidth, strPad) & _
strText, intWidth)
End If
End Function

Public Function dhPadRight(strText As String, intWidth As Integer, _
Optional strPad As String = " ") As String

If Len(strText) > intWidth Then
dhPadRight = strText
Else
dhPadRight = Left$(strText & _
String(intWidth, strPad), intWidth)
End If

End Function

Both functions use the same technique to pad their input strings: They create a
string consisting of as many of the pad characters as needed to fill the entire out-
put string, append or prepend that string to the original string, and then use the
Left$ or Right$ function to truncate the output string to the correct width. For
example, if you call dhPadLeft like this:

dhPadLeft("123.45", 10, "$")

the code creates a string of 10 dollar signs and prepends that to the input string.
Then it uses the Right$ function to truncate:

Right$("$$$$5$$$$$$123.45", 10)
" returns "$$$$123.45"

Converting Strings 77

Using Soundex to Compare Strings

Long before the advent of computers, people working with names knew it was
very difficult to spell surnames correctly and that they needed some way to group
names by their phonetic spelling rather than by grammatical spelling. The algo-
rithm demonstrated in this section is based on the Russell Soundex algorithm, a
standard technique used in many database applications.

WARNING e 5oundex algorithm was designed for, and works reliably with, surnames only.

You can use it with any type of string, but its effectiveness diminishes as the text
grows longer. It was intended to make it possible to match various spellings of last
names, and its discriminating power is greatest in short words with three or more
consonants.

The Soundex algorithm is based on these assumptions:
e Many English consonants sound alike.

e Vowels don’t affect the overall sound of the name as much as the consonants
do.

e The first letter of the name is most significant.
¢ A four-character representation is optimal for comparing two names.

For example, all three of the following examples return “P252”, the Soundex
representation of all of these names:

dhSoundex("Paszinslo")
dhSoundex("Pacinslo")
dhSoundex("Pejinslo")

All three provide very distinct spellings of the difficult name, yet all three return
the same Soundex string. As long as the first letters match, you have a good
chance of finding a match using the Soundex conversion.

The concept, then, is that when attempting to locate a name, you’d ask the user
for the name, convert it to its Soundex representation, and compare it to the Soun-
dex representations of the names in your database. You’d present a list of the pos-
sible matches to the user, who could then choose the correct one.

The Soundex algorithm follows these steps:

1. Use the first letter of the string, as is.

78 Chapter 1 ¢ Manipulating Strings

2. Code the remaining characters, using the information in Table 1.14.

3. Skip repeated values (that is, characters that map to the same value) unless
they’re separated by one or more separator characters (characters with a
value of 0).

4. Once the Soundex string contains four characters, stop looking.
The full code for dhSoundex, in Listing 1.19, follows these steps in creating the

Soundex representation of the input string.

TABLE 1.14: Valuesfor Charactersin a Soundex String

Letter Value Comment
W,H Ignored
AELOUY 0 Although removed from the output string, these letters act as

separators between significant consonants
B,P,F.V 1

C.GJK QS XZ 2

D, T 3
L 4
M,N 5
R 6

Listing 1.19: Convert Strings to Their Soundex Equivalent
Const dhclLen = 4

Public Function dhSoundex(ByVal strIn As String) As String

Dim strOut As String

Dim intI As Integer

Dim intPrev As Integer
Dim strChar As String * 1
Dim intChar As Integer

Converting Strings 79

Dim bInPrevSeparator As Boolean
Dim intPos As Integer

strOut = String(dhcLen, "0")
strIn = UCase(strIn)
bTnPrevSeparator = False

strChar = Left$(strIn, 1)
intPrev = CharCode(strChar)
Mid$(strOut, 1, 1) = strChar

intPos = 1
For intI = 2 To Len(strIn)
" If the output string is full, quit now.
If intPos >= dhclLen Then
Exit For
End If
' Get each character, in turn. If the
' character's a letter, handle it.
strChar = Mid$(strIn, intI, 1)
If dhIsCharAlpha(strChar) Then
' Convert the character to its code.
intChar = CharCode(strChar)

" If the character's not empty, and if it's not
' the same as the previous character, tack it
' onto the end of the string.
If (intChar > 0) Then
If binPrevSeparator Or (intChar <> intPrev) Then
intPos = intPos + 1
Mid$(strOut, intPos, 1) = intChar
intPrev = intChar
End If
End If
b1nPrevSeparator = (intChar = 0)
End If
Next intIl
dhSoundex = strOut
End Function

Now that you've found the Soundex string corresponding to a given surname,
what can you do with it? You may want to provide a graduated scale of matches.

80

Chapter 1 ¢ Manipulating Strings

That is, perhaps you don’t require an exact match but would like to know how
well one name matches another. A common method for calculating this level of
matching is to use a function such as dhSoundsLike, shown in Listing 1.20. To use
this function, you supply two strings, not yet converted to their Soundex equiva-
lents, and dhSoundsLike returns a number between 0 and 4 (4 being the best
match) indicating how alike the two strings are. (If you'd rather, you can pass in
two Soundex strings, and dhSoundsLike won't perform the conversion to Soun-
dex strings for you. In that case, set the optional bInlsSoundex parameter to True.)

Listing 1.20: Use dhSoundsLike to Compare Two Soundex Strings

Public Function dhSoundsLike(ByVal strIteml As String, _
ByVal strItem2 As String, _
Optional bIinIsSoundex As Boolean = False) As Integer

Dim intI As Integer

If Not binIsSoundex Then
strIteml = dhSoundex(strIteml)
strIitem2 = dhSoundex(strItem2)
End If
For intI = 1 To dhclLen
If Mid$(strIteml, intI, 1) <> Mid$(strItem2, intI, 1) Then
Exit For
End If
Next intI
dhSoundsLike = (intI - 1)
End Function

It’s hard to imagine a lower-tech technique for performing this task. dhSounds-
Like simply loops through all four characters in each Soundex string. As long as it
finds a match, it keeps going. Like a tiny game of musical chairs, as soon as it finds
two characters that don’t match, it jumps out of the loop and returns the number
of characters it found that matched; the more characters that match, the better the
rating.

To test out dhSoundsLike, you could try
Debug.Print dhSoundsLike("Smith", "Smitch")

Working with Substrings 81

which returns 3, or
Debug.Print dhSoundsLike("S125", "S123", True)

which returns 3, as well. Of course, you're not likely to call dhSoundsLike with
string literals. More likely, you’d call it passing in two string variables and com-
pare their contents.

NOTE There are variants of this algorithm floating around that aren’t as effective as the

one used here. Those (admittedly simpler) algorithms don‘t notice repeated
consonants that are separated by a vowel and therefore oversimplify the creation
of the Soundex string for a given name. The algorithm presented here is more
complex but yields more reliable results.

Working with Substrings

To finish off the chapter, this section provides a few techniques for parsing and
extracting substrings from a longer string. Specifically, you'll find out how to per-
form these tasks:

e Return a specific word, by index, from a string.
e Retrieve the first or last word in a string.

¢ Convert a delimited string into a collection of tokens.

Returning a Specific Word, by Index, from a String

Of all the functions in this chapter, the function in this section, dhExtractString,
has received the most use in our own applications. It allows you to retrieve a
chunk of a string, given a delimiter (or multiple delimiters), by the position within
the string. Rather than write laborious code to parse a string yourself, you can use
dhExtractString to pull out just the piece you need. For example, if you need to
take the following string:

ItemsToBuy=Milk,Bread,Peas

82 Chapter 1 ¢ Manipulating Strings

and retrieve the item names individually, you could either write the code to parse
the string or call dhExtractString in a loop:

Public Sub TestExtract(strIniText As String)
' Test sub for dhExtractString

Dim intI As Integer
Dim strText As String

intl = 2
Do While True
strText = dhExtractString(strIniText, intI, "=,")
If Len(strText) = 0 Then
Exit Do
End If

Debug.Print strText
intl = intI + 1
Loop
End Sub

NOTE

You might wonder why you would use dhExtractString rather than the built-in
Split function. You can easily retrieve an array of strings from the Split function.
Then you can retrieve just the item you need from that array. Our function
provides two benefits over Split (whether they're benefits or detriments depends
on your exact needs): dhExtractString allows you to specify more than one
alternate character as a delimiter (Split allows only a single delimiter), and Split
splits up the entire string, even if you need only the first piece of the string. When
you need only the second word of a paragraph, there’s no point asking Split to do
its work, splitting up the entire paragraph into words so you can retrieve the
second word. In timing tests, dhExtractString was often significantly faster than Split
because dhExtractString stops working as soon as it retrieves the item you need.

You can be creative with dhExtractString: You can call it once with one set of
delimiters and then again with a different set. For example, you might have tack-
led the previous problem by first parsing the text to the right of the equal sign as a
single chunk:

strvals = dhExtractString(strIniText, 2, "=")

Then you could pull the various comma-delimited pieces out of strVals:

strIteml = dhExtractString(strvals, 1, ",") ' Returns "Milk"
stritem2 = dhExtractString(strvals, 2, ",") ' Returns "Bread"
strItem3 = dhExtractString(strvals, 3, ",") ' Returns "Peas"

Working with Substrings 83

As you can see, you can supply a single delimiter character or a list of them. That
is, you could also parse the previous expression using code like this:

strIteml = dhExtractString(strIniText, 2, ",=") ' Returns "Milk"
strItem2 = dhExtractString(strIniText, 3, ",=") ' Returns "Bread"
strItem3 = dhExtractString(strIniText, 4, ",=") ' Returns "Peas"

You'll find the full listing for dhExtractString in Listing 1.21.

WARNING 1 retyrn value from dhExtractString can be somewhat misleading. If the input
string contains two contiguous delimiter characters, dhExtractString sees that as
an empty string delimited by those two characters. This means that you cannot
loop, calling dhExtractString, until it returns an empty string (unless you're sure
the string contains no contiguous delimiters). You'll need to call dhCountlin first,
find out how many substrings there are, and then iterate through the string that
many times. See the section “Converting a Delimited String into a Collection of
Tokens” later in this chapter for an example of using this technique.

TiP If you don't supply dhExtractString with a delimiter or a list of delimiters, it will
default to using the standard text delimiters in the dhcDelimiters constant. Of
course, you can change those default values simply by modifying the constant in
the code.

Listing 1.21: Extract a Specified Substring

Public Function dhExtractString(ByVal strIn As String, _
ByVal intPiece As Integer, _
Optional ByVal strDelimiter As String = dhcDelimiters) As String

Dim TngPos As Long
Dim TngPosl As Long
Dim TngLastPos As Long
Dim intLoop As Integer

TngPos = 0
TngLastPos = 0
intLoop = intPiece

84 Chapter 1 ¢ Manipulating Strings

' If there's more than one delimiter, map them
" all to the first one.
If Len(strDelimiter) > 1 Then
strIn = dhTranslate(strIn, strDelimiter, _
Left$(strDelimiter, 1))
End If
strIin = dhTrimA11l (strlIn)
Do While intLoop > 0
TngLastPos = TngPos
TngPosl = InStr(IngPos + 1, strIn, Left$(strDelimiter, 1))
If IngPosl > 0 Then
TngPos = TngPosl
intLoop = intLoop - 1
Else
TngPos = Len(strIn) + 1
Exit Do
End If
Loop
' If the string wasn't found, and this wasn't
' the first pass through (intLoop would equal intPiece
' in that case) and intLoop > 1, then you've run
" out of chunks before you've found the chunk you
" want. That is, the chunk number was too large.
" Return "' in that case.
If (IngPosl = 0) And (intLoop <> intPiece) And (intLoop > 1) Then
dhExtractString = vbNull1String

Else
dhExtractString = Mid$(strIn, IngLastPos + 1, _

TngPos - TnglLastPos - 1)
End If
End Function

The first thing dhExtractString does is to “flatten” multiple delimiters down to
the first item in the list. That is, if you pass a group of delimiters, such as a comma,
a space, and a hyphen, the function first replaces all of these with a comma charac-
ter (,) in the input string:

If Len(strDelimiter) > 1 Then
strIn = dhTranslate(strIn, strDelimiter, Left$(strDelimiter, 1))
End If

Working with Substrings 85

Next, dhExtractString loops through the string until it’s found the delimiter it
needs. If you've asked for the fourth token from the input string, it will loop until
it finds the third instance of the delimiter. It also keeps track of the last position at
which it found a delimiter (IngLastPos) and the position of the delimiter it’s just
found (IngPos). If the current search for a delimiter using InStr fails (it returns 0),
the loop indicates that the current position is one character past the end of the
input string and just exits the loop:

Do While intLoop > 0O
TngLastPos = TngPos
TngPosl = InStr(IngPos + 1, strIn, Left$(strDelimiter, 1))
If IngPosl > 0 Then
TngPos = TngPosl
intLoop = intlLoop - 1
Else
TngPos = Len(strIn) + 1
Exit Do
End If
Loop

The logic for determining whether to return an empty string or a chunk of the
input string is complex (perhaps too complex). There are three conditions that
must all be met in order for dhExtractString to return an empty string:

IngPos1 =0 This indicates that the input string ran out of delimiters before it
stopped looking for tokens. This could happen, of course, if you requested the
final token from a string—there wouldn’t be a delimiter after that token, so
IngPos1 would be 0.

intLoop <> intPiece The intLoop variable counts down, starting at the
value of intPiece, as it loops through the delimiters in the input string. If intLoop
is the same as intPiece, this indicates there was only one token to begin with,
and no delimiters at all. In such a case, dhExtractString returns the entire input
string, not an empty string.

intLoop > 1 If intLoop is 0, it indicates that the loop progressed through all
the delimiters in the string, and you may have selected the final token in the
input string. It also may indicate that you asked for a token past the number of
tokens in the string. (That is, perhaps you asked for the sixth word in a sentence
that contains only four words. In that case, the function should return an empty
string, and it will because the other two conditions will also be true.)

86 Chapter 1 ¢ Manipulating Strings

Unless all three of these conditions are met, the code extracts the string starting
at IngLastPos + 1 and takes IngPos — IngLastPos — 1 characters:

If (IngPosl = 0) And (intLoop <> intPiece) And (intLoop > 1) Then
dhExtractString = vbNull1String
Else
dhExtractString = Mid$(strIn, IngLastPos + 1, _
TngPos - TngLastPos - 1)
End If

TiP Remember that dhExtractString treats consecutive delimiters as though there was
an empty token between them. Requesting the second token from “This;;is;a;test”,
using “ ;" as the delimiter, you'll receive an empty string as the return value.

'

You'll see that several of the other functions in this section use dhExtractString
to do their work. We’re sure you'll find this extremely useful parsing function
invaluable in any code you write that extracts portions of text strings.

Retrieving the First or Last Word in a String

Each of the two functions presented in this section, dhFirstWord and dhLast-
Word, breaks its input string into two pieces: the selected word and, optionally,
the rest of the string. Calling dhFirstWord (see Listing 1.22) returns the first word
of the input string and fills an optional parameter with the rest of the string. Call-
ing dhLastWord (see Listing 1.23) returns the final word of the input string and
fills an optional parameter with the first portion of the string. For example:

Dim strRest As String
Dim strReturn As String
strReturn = dhFirstWord("First words are mighty important", strRest)

returns “First” and places “ words are mighty important” (note the leading space)
into strRest. On the other hand:

Dim strRest As String
Dim strReturn As String
strReturn = dhLastWord("First words are mighty important", strRest)

returns “important” and places “First words are mighty ” (note the trailing space)
into strRest.

Working with Substrings 87

Listing 1.22: Return the First Word from a String

Public Function dhFirstWord(_
ByVal strText As String, _
Optional ByRef strRest As String = "") As String

Dim strTemp As String

" This is easy!
' Get the first word.
strTemp = dhExtractString(strText, 1)

' Extract everything after the first word,
" and put that into strRest.
strRest = Mid$(strText, Len(strTemp) + 1)

' Return the first word.
dhFirstWord = strTemp
End Function

Listing 1.23: Return the Final Word from a String
Public Function dhLastWord(_
ByvVal strText As String, _
Optional ByRef strRest As String = "") As
String

Dim intCount As Integer
Dim strTemp As String

" Find the number of words, and then

' extract the final word.

intCount = dhCountWords(strText)

strTemp = dhExtractString(strText, intCount)

' Extract everything before the last word,

' and put that into strRest.

strRest = Trim(Left$(strText, Len(strText) - Len(strTemp)))
dhLastWord = strTemp

End Function

Chapter 1 ¢ Manipulating Strings

The dhFirstWord function is simple because it can use the dhExtractString func-
tion discussed earlier in this chapter. It first pulls out the first word:

strTemp = dhExtractString(strText, 1)
Then it places the rest of the string into strRest:

strRest = Mid$(strText, Len(strTemp) + 1)

NOTE The dhFirstWord and dhLastWord functions needn’t make any explicit check to

see whether you've passed in a variable for the strRest parameter. If you haven't
specified the parameter, VBA uses only the local copy of the value and just doesn’t
pass anything back. No harm done, and it saves adding logic to check the status of
that parameter.

The dhLastWord function is bit more complex, because the code must first find
the number of words in the string, and then extract the correct one:

intCount = dhCountWords(strText)
strTemp = dhExtractString(strText, intCount)

Once it has the final word, it can extract the previous portion of the string and
place it into strRest:

strRest = Left$(strText, Len(strText) - Len(strTemp))

Of course, once you have as many string functions under your belt as you do by
now, you can probably create several alternatives to either of these tasks. You may
find it interesting to pursue other methods, and perhaps your solutions will be
even more efficient!

Converting a Delimited String into a Collection of
Tokens

VBA provides support for easy-to-use, variable-sized Collection objects, and you
may want to parse a string into a collection of words. The function in this section,
dhExtractCollection, lets you specify input text and, optionally, the delimiters to use
in parsing the text. It returns a collection of strings, filled in from your input text.

Working with Substrings 89

For example, the following code parses a text string and then prints each word
to the Immediate window:

Function TestExtractCollection()
Dim varText As Variant
Dim colText As Collection
Set colText = dhExtractCollection(_
"This string contains a bunch of words")
For Each varText In colText
Debug.Print varText
Next varText
TestExtractCollection = colText.Count
End Function

The collection returned from dhExtractCollection has all the properties and meth-
ods of any other collection in VBA. The example routine uses a simple For...Next
loop to visit each item in the returned collection, and the Count property to
inspect the number of items in the collection. Listing 1.24 includes the full listing
of dhExtractCollection.

Listing 1.24: Return a Collection Filled with Substrings

Public Function dhExtractCollection(ByVal strText As String, _
Optional ByVal strDelimiter As String = dhcDelimiters) As Collection

Dim colWords As Collection
Dim 1ngI As Long

Dim strTemp As String

Dim strChar As String * 1
Dim astrItems() As String

Set colWords = New Collection

" If there's more than one delimiter, map them
" all to the first one.
If Len(strDelimiter) = 0 Then
colWords.Add strText
Else
strChar = Left$(strDelimiter, 1)
If Len(strDelimiter) > 1 Then
strText = dhTranslate(strText, strDelimiter, strChar)
End If

Chapter 1 ¢ Manipulating Strings

astrItems = Split(strText, strChar)

" Loop through all the tokens, adding them to the
" output collection.
For 1ngI = LBound(astrItems) To UBound(astrItems)
colWords.Add astrItems(1ngI)
Next TngI
End If

' Return the output collection.
Set dhExtractCollection = colWords
End Function

Given the rest of the routines in this chapter, dhExtractCollection is simple. Its
first step, after declaring a local collection object to contain all the strings, is to
“flatten” the list of delimiters to a single delimiter character so the built-in Split
function can return an array filled with tokens from the input string:

Dim colWords As Collection
Set colWords = New Collection
" (Code removed)
strChar = Left$(strDelimiter, 1)
If Len(strDelimiter) > 1 Then
strText = dhTranslate(strText, strDelimiter, strChar)
End If
astrItems = Split(strText, strChar)

Next, the function loops through the number of words in the input string, using
the LBound and UBound functions to control the loop. For each word it finds, it
adds the word to a local collection:

For TngI = LBound(astrItems) To UBound(astrItems)
colWords.Add astrItems(1ngI)
Next TngIl

Finally, the function sets its return value to the local collection, returning that
collection to the function’s caller:

Set dhExtractCollection = colWords

Note that there’s no reason not to use dhExtractCollection to find a particular
word in a string, if that’s what you need. For example, either

Summary 91

dhExtractCollection("This 1is a test").Item(2)

or

dhExtractCollection("This 1is a test")(2)

will return the word “is”. You'll get the same result calling

dhExtractString("This is a test", 2)

and dhExtractString is a bit more efficient. But there’s no reason besides speed not
to call dhExtractCollection, and you may find its syntax easier to use.

Summary

VBA programs seem unable to avoid working with strings as part of each and
every application. This chapter has provided an overview of the built-in VBA
functions and a long laundry list of additional procedures that provide additional
functionality. Specifically, this chapter covered

e How VBA stores and uses strings

e Many of the built-in string functions and options for:

Comparing strings

Converting strings

Creating strings

Calculating the length of a string

Formatting a string

Justifying a string

Searching for a string

Working with and replacing portions of a string

Using ANSI values and bytes

92 Chapter 1 ¢ Manipulating Strings

e Additional functions for:
e Searching and replacing text
¢ Gathering information about strings
e Converting strings
e Working with substrings

For similar chapters covering dates and numbers, see Chapters 2 and 3,
respectively.

chapter

Working with Numbers

Understanding how numeric values are stored
in VBA

Using the built-in VBA numeric functions
Generating random numbers

Using custom numeric functions

94 Chapter 2 ¢ Working with Numbers

At some point in the development process of your application, you're most
likely going to need to work with numbers. You’'ll be faced with choosing how to
store the numeric values you're working with, and you'll probably want to use
some of the built-in numeric functions. You may find that you need to create your
own functions to expand the functionality VBA provides.

This chapter explains how VBA stores and computes numbers and takes a look
at the built-in numeric functions. The remainder of the chapter provides and
explains several advanced functions using mathematical algorithms.

The sample files you'll find on the CD-ROM that accompanies this book are
listed in Table 2.1.

TABLE 2.1: SampleFiles

Filename Description

NUMBERS.XLS Excel 2000 workbook containing sample code
NUMBERS.MDB Access 2000 database containing sample code
NUMBERS.VBP VB6 project containing sample code
NUMBERS.BAS Numeric functions listed in this chapter
TEST.BAS Test functions listed in this chapter
QUICKSORT.BAS Quicksort procedure from Chapter 7

How Does VBA Store Numeric Values?

As human beings, we count things in base 10, mainly because we have 10 fingers.
The earliest mathematicians found that fingers made handy counting tools, and it
was easier to group larger numbers of items in groups of 10 than in groups of
eight, two, or any other arbitrary number. However, your computer, not having
10 fingers, does not group things by 10s; it uses a base 2, or binary, representation
of numbers to store and track information. Because a base-2 system requires only
two digits, 0 and 1, it’s convenient for mapping numbers to electronic circuits,
where open and closed switches can represent 1s and 0s.

How Does VBA Store Numeric Values? 95

NOTE

A convenient way of indicating the base of any particular number is to place the
base as a subscript to the number, so decimal 10 could be shown as 10, and
binary 10 could be shown as 10,. In the following chapter the subscript will be
used in the body text for any number that is not base 10.

Our counting system relies on two factors: The first is the value of the digit used
and the second is the placing of the digit. So, for example, the number 111 uses
only the digit 1, but that digit has three separate meanings due to the three posi-
tions where it is placed within the number.

NOTE

The position of a digit within a number is directly related to the concept of powers
of the base, and those positions start numbering from 0, moving from right to left
within a number. Therefore, the number 123 is another way of saying (1 * 10%) +
2 *10") + (3 * 109). (In case you've forgotten your high-school algebra, 10 to the
0 poweris 1, 10 to the 1 power is 10, and 10 to the 2 power is 100.)

Just as each position in a decimal number can contain any digit from 0 to 9, each
position in a binary number, called a bit, can contain only a 0 or a 1. Bits are usu-
ally grouped in packages of eight, called bytes. One byte can hold 256 combina-
tions of Os or 1s and can therefore be used to represent only 256 different numbers.
To represent larger ranges of numbers, more bytes are required.

NOTE

In a similar way to decimal numbers, each position in a binary number represents a
power of the base, so 100, is the same as 22, 10, is the same as 21 and 15 is the
same as 2°.

You need to take two factors into account when considering numbers you want
to store in a variable in VBA. First, how big do the numbers need to be? If you're
counting stars in the universe, you need to be able to store larger numbers than if
you are counting legs on a pig. The second factor is precision. When counting
stars in the universe, you may accept being off by a few million, but your leg count
needs to be exactly right. The question of precision becomes especially tricky
when you're dealing with very large numbers and numbers that include fractions;
the fact that you're counting in base 10 and your computer uses base 2 for storage
can create pitfalls for the unwary.

96

Chapter 2 e Working with Numbers

VBA supports several data types for storing numeric values in variables. Which
one you choose for a particular variable will depend on how large the numbers
you're working with can become and on how much precision is needed.

The general rule of thumb when choosing a variable’s data type is to choose the
smallest possible one that will fit the task and, if possible, avoid the floating-point
data types (Single and Double). For example, if you're counting bovine append-
ages, which rarely exceed four per animal and never go less than zero, you might
use a Byte variable (it can hold values from 0 up to 255). If you need fractions only
because you're working with money, use the Currency data type. If you use a
Double just to be on the safe side (because it seems to cover the largest possible
range and precision), you could run into unanticipated complications when your
base-2 computer tries to store or manipulate floating-point numbers. (We’ll have
more on that later.)

The available data types for storing numeric values are summarized in Table 2.2.

TABLE 2.2: VBA Numeric Data Types

Data Type Storage Size Range

Byte 1 byte 0to 255

Integer 2 bytes -32,768 t0 32,767

Long (long integer) 4 bytes -2,147,483,648 t0 2,147,483,647

Single (single-precision 4 bytes —3.402823E38 to —1.401298E-45 for negative

floating-point) values; 1.401298E-45 to 3.402823E38 for positive
values

Double (double-precision 8 bytes —-1.79769313486232E308 to —

floating-point) 4.94065645841247E-324 for negative

values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values

Currency (scaled integer) 8 bytes -922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal (available only as a 14 bytes +/-79,228,162,514,264,337,593,543,950,335

Variant subtype) with no decimal point;

+/-7.9228162514264337593543950335
with 28 places to the right of the decimal;
smallest nonzero number is +/—
0.0000000000000000000000000001

Variant (with numbers) 16 bytes Any numeric value up to the range of a Double

How Does VBA Store Numeric Values? 97

The data types summarized in Table 2.2 and the ranges they support are exam-
ined in detail in the following sections. They can be divided into three groups:
those that can hold only whole numbers, those that can hold fractions using float-
ing-point mathematics, and a hybrid group, called scaled integers, that uses whole
numbers to store fractions.

NOTE You can use the Variant data type to store values of any of the other data types.
VBA provides a function, TypeName, that returns the data type of any value or
variable that is passed to it. If a Variant is passed to TypeName, the subtype of the
variant is returned. The use of TypeName is demonstrated in the section “Floating-
Point Numbers and the Errors They Can Cause” later in this chapter.

NOTE

No matter what it appears that we're saying here, be wary about using Byte
variables to hold small values. If you actually were keeping track of pigs’ legs, in
code, we'd recommend that you use an Integer, not a Byte. VBA handles Byte
values specially, because they're really meant for storing bytes in an array of bytes
(see Chapter 1 for more information on byte arrays). You'll pay a price in terms of
performance if you use a Byte variable for anything but working with arrays of
bytes.

Whole Numbers

The Byte data type is the most straightforward, and the most limited, of the numeric
data types. It is simply stored as an 8-bit binary number. For example, the number 10
would be stored as 00001010,, which represents 1 times 2 to the first power @l=2),
plus 1 times 2 to the third power (23 = 8). No negative numbers can be stored in a
Byte, and the largest number that can be stored is 11111111,, or 255.

To understand the ranges of the other data types, you need to know about
another important difference between decimal and binary numbers. In addition to
the digits 0 through 9, the decimal system uses two special symbols that are essen-
tial for representing certain values: the decimal point and the minus sign. Since
binary numbers are so useful precisely because numeric values can be represented
using only Os and 1s, ways have been developed to represent fractions and nega-
tive numbers without the use of any special symbols.

98

Chapter 2 e Working with Numbers

For example, the Integer data type, which uses 16 bits of storage, employs one of
these bits to indicate the sign, positive or negative. This leaves 15 bits to represent
the absolute value of the number. The largest number that can be represented with
15 bits is 21° - 1, or 32,767. The reason it’s 215_ 1 and not simply 215 is that one num-
ber is needed to represent 0. Because there’s no need for a negative 0, one extra neg-
ative number can be represented, which is why the range starts at 32,768 (—1 * 219).

The Long data type stores only whole numbers, just as the Byte and Integer data
types do. With the storage size increased to 4 bytes (32 bits), the largest possible
number becomes 23! — 1 (approximately 2 billion), and the lowest possible nega-
tive number is 23

TIP

To use computer memory most efficiently, always choose one of the whole
number data types, if possible. The only time you should consider one of the
floating-point data types to store whole numbers is when the numbers you are
working with could exceed 2 billion (the largest Long value), or if you need to work
with fractional data. In the section “The ‘Hidden’ Decimal Data Type” later in this
chapter, you'll learn how to use this new data type to store large numbers more
safely.

Floating-Point Numbers and the Errors They Can Cause

The two floating-point data types that cause developers headaches are Single and
Double. To understand why those headaches come about, you need to know a little
about how the floating-point data types use binary digits to store potentially large
numbers and fractions.

The Single data type uses the same number of bytes as the Long data type (4 bytes),
but it uses these 32 binary digits in a completely different way. The method used
for both Single and Double data types is an industry standard that was developed by
the Institute of Electrical and Electronics Engineers (IEEE). (Coincidentally, the
acronym is also the sound most people make when trying to understand this con-
cept, “Eye-Eeeeeeee!”) A full explanation of floating point mathematics is beyond the
scope of this book, but the basic strategy behind it is quite simple.

Floating-point numbers are similar to scientific notation in that they express a
number as the product of two other numbers. For example, the decimal number
1500 can be expressed in scientific notation as 1.5 * 103, or 1.5E3, and the number .0015
can be expressed as 1.5 * 107, or 1.5E-3. This way of expressing numbers consists

How Does VBA Store Numeric Values? 99

of two parts. The first part is a multiplier, called the mantissa. The second part is an
exponent. Positive exponents are used for whole numbers and negative exponents
for fractions. The number of digits allowed in the mantissa determines the level of
precision, and the maximum size of the exponent determines the range.

In binary floating-point numbers, the bits that are available get divided between
those that represent the mantissa and those that represent the exponent. For example,
a Double uses 1 bit for the sign (positive or negative), 11 bits for the exponent, and
52 bits for the mantissa for a total of 64 bits, or 8 bytes.

As you can see in Table 2.2, Single and Double data types can hold some huge
positive and negative numbers and some tiny fractions. However, unlike the Inte-
ger and Long data types, the floating-point data types cannot store every possible
number within their ranges. Some of the numbers within that range, including
some large whole numbers, cannot be represented exactly, so they get rounded to
the nearest available value. Since there is an infinite number of possible fractional
values within any given range, there will always be an infinite number of precise
fractions that will also have to be rounded.

Another reason floating-point numbers get rounded is that binary (base 2) num-
bers cannot represent all fractions exactly. Of course, decimal numbers are also
unable to exactly represent certain fractions. For example, the fraction ! /s cannot
be exactly represented by any combination of powers of 10. The decimal represen-
tation of /3, .3333333, does not exactly equal ! /3, and no matter how many more 3s
are added on after the decimal point, it never will. Similarly, some fractional num-
bers that can be exactly represented in decimal notation, like 0.0001, can never be
precisely stored as binary values. There is just no exact combination of powers of 2
that can accomplish the task. This rounding that sometimes occurs with floating-
point numbers can cause errors, as you can see in the procedure shown in Listing 2.1.

More on Binary Inaccuracy

To understand why a binary representation of a value has problems with numbers such as
0.0001, you need to dig a bit deeper into the concept of positional representation of digits
within a value. Earlier we noted that (using binary) 1, = 2% and that 10, = 2"; carrying on
the trend we can see that 0.1, = 27" and 0.01, = 272 and so on.

100

Chapter 2 e Working with Numbers

If 10, = 22 (which is equalto4)and 1, = 29 (which is equal to 1), then 0.1, = 27" (which is
equal to 0.5) and 0.01, = 272 (which is equal to 0.25).

If you tried to convert 0.00014¢ to binary, you would get a number something like
0.0001100110011001100110011001100110011001100110011001100110011001,
(note the repeating groups), at which point it would still not be resolved. If you convert
this binary value back to decimal, you actually get the value
0.0000999999999999999907031652,¢. Although it's close to 0.0001, it's not exactly
right.

Listing 2.1: Demonstrating Floating-Point Errors
Public Sub TestFloatingPoints()

Dim intI As Integer
Dim sngSum As Single
Dim db1Sum As Double

Debug.Print "Both results should be 1.0"
For intI = 1 To 10000
sngSum = sngSum + 0.0001

Next intI

'This prints "Single: 1.000054"
Debug.Print TypeName(sngSum) & ":"; sngSum

For intI = 1 To 10000
db1Sum = db1Sum + 0.0001

Next 1intI

'This prints, "Double: .999999999999906"

Debug.Print TypeName(dbTSum) & ":"; db1Sum
End Sub

The TestFloatingPoints procedure, in Listing 2.1, sums the value 0.0001 in a
loop, repeating 10,000 times. The code attempts this first using a Single variable,
and then again using a Double. The result, in a perfect world, would be 1.0 in both
cases. As you find, if you run the procedure, the result for the Single variable is a
little greater than 1, and the result for the Double variable is a little less than 1. If

How Does VBA Store Numeric Values? 101

nothing else, this procedure demonstrates two ways errors can occur. The first
problem is that rounding can cause mathematical operations to produce incorrect
results. The second problem is that the same operation can produce different
results depending on the floating-point data type that is used. Not only did the
use of Single and Double data types both produce wrong numbers, but the wrong
numbers were not even the same wrong numbers! This means that if you compare
a Single number to a Double number and test for equality, the test may fail even if
the numbers seem like they should be equal.

To make this situation even more maddening, some floating-point rounding
errors can remain completely hidden when the numbers are displayed, and some
equality test results can defy the laws of logic. For example, in the code shown in
Listing 2.2, dbl1 equals sng1, sngl equals sng2, sng2 equals dbl2, but dbl1 does not
equal dbl2!

Listing 2.2: Rounding Errors Cause Erroneous Inequality

Public Sub TestEquality()
Dim sngl As Single
Dim sng2 As Single
Dim db11l As Double
Dim db12 As Double

sngl = 69.82
sng2 = 69.2 + 0.62
db11 = 69.82
db12 = 69.2 + 0.62

'This prints: "sngl = 69.82, sng2 = 69.82"
Debug.Print "sngl = " & sngl & ", sng2 = " & sng2

'This prints: "db1l
Debug.Print "dbl1l = '

69.82, db12 = 69.82"
& db1l1 & ", db12 = " & dbl2

'This prints: "db1l = sngl: True"

Debug.Print "db1l = sngl: "; (db1l = sngl)
'This prints: "sngl = sng2: True"
Debug.Print "sngl = sng2: "; (sngl = sng2)

'This prints: "sng2 = db12: True"

102

Chapter 2 e Working with Numbers

Debug.Print "sng2 = db12: "; (sng2 = dbl12)

'This prints: "db1l = db12: False" !!!
Debug.Print "db1l = db12: "; (db1l = db12)

" Strip off the whole number portion.

db11 = db11l - 69
db12 = dbl12 - 69
sngl = sngl - 69
sng2 = sng2 - 69

" You'll be amazed!
" This prints: "sngl: 0.8199997 "
Debug.Print "sngl: "; sngl

' This prints: "sng2: 0.8199997"

' No wonder the inequality fails!
Debug.Print "sng2: "; sng2

" This prints: "db11l: 0.819999999999993"
Debug.Print "db1l: "; dbll

" This prints: "db12: 0.820000000000007"
' No wonder the inequality fails!
Debug.Print "dbl12: "; dbl2

End Sub

In the section “Rounding Numbers” later in this chapter, you'll find algorithms
you can use to round floating-point numbers to the level of precision you need. By
using these functions, you can avoid the hidden rounding errors that were dis-
cussed in this section. Another way to avoid these errors is to use the scaled inte-
ger data types whenever possible, as described in the next section.

Scaled Integers

Rounding errors can occur when you're working with decimal fractions that don’t
have exact binary equivalents. The Currency and Decimal data types use a method
called integer scaling to avoid these errors. This method relies on the fact that all

decimal whole numbers do indeed have exact binary equivalents. Even though the
same can’t be said for fractions in base 10, any decimal integer value can be exactly
represented as some combination of powers of 2. Scaled integers convert decimal

How Does VBA Store Numeric Values? 103

fractions to whole numbers before storing them in binary form, by multiplying
them by a number large enough to eliminate the decimal point.

The Currency Data Type

You can use the Currency data type to store any number that falls within its range
and has no more than four decimal places. The number is multiplied internally by
10,000, thereby eliminating the need for the decimal point, and then stored in
binary form as an integer. This prevents the rounding errors that can occur when
decimal fractions are stored as binary floating-point numbers. The procedure
shown in Listing 2.3 demonstrates how using the Currency data type can solve
problems with floating-point data types.

Listing 2.3: Solve Rounding Errors with the Currency Data Type

Sub TestCurrency()
Dim intI As Integer
Dim dbT1Sum As Double
Dim curSum As Currency

For intI = 1 To 10000
db1Sum = db1Sum + 0.0001

Next intI
'This prints "Double: .999999999999906"
Debug.Print TypeName(dbTSum) & ":"; db1Sum

For intI = 1 To 10000
curSum = curSum + 0.0001

Next intl

'This prints "Currency: 1"

Debug.Print TypeName(curSum) & ":"; curSum
End Sub

The “Hidden"” Decimal Data Type

Although it’s not easy to find, VBA includes one more numeric data type: Deci-
mal. The Decimal data type was introduced in version 5.0 of VBA and still hasn’t
reached full data type standing. As you'll see, you cannot declare a variable “As
Decimal.”

104

Chapter 2 e Working with Numbers

Using 12 bytes, the Decimal data type extends the advantages of the Currency
data type to numbers that can be much larger and more precise than Currency val-
ues. The range of values you can store using the Decimal data type is variable and
depends on the number of decimal places of precision you need. As more decimal
places are required, the available range gets smaller. At one extreme, you can
store a number with 28 decimal places, but the number would have to fall within
the very narrow range between approximately —8 and 8. At the other extreme, if
you're working with whole numbers that require no decimal places, huge positive
and negative values can be stored. At this time, you can use the Decimal data type
only with variables that are declared as Variants, which can hold anything you
care to stuff into them. It’s not now possible to directly declare a variable as Deci-
mal: You must use the CDec function to specifically cast a Variant value into this
particular data type. The procedure shown in Listing 2.4 illustrates how you can
use the CDec function to create a Decimal Variant and avoid floating-point errors.

Listing 2.4: Use the New Decimal Variant Subtype
Public Sub TestDecimal()
Dim intI As Integer
Dim dbT1Sum As Double
Dim varDb1Sum As Variant
Dim varDecSum As Variant

For intI = 1 To 10000
db1Sum = db1Sum + 0.0001

Next intI
'This prints, "Double: .999999999999906"
Debug.Print TypeName(dbTSum) & ":"; db1Sum

For intI = 1 To 10000
varDb1Sum = varDb1Sum + 0.0001

Next intI
'This prints, "Variant Double: 0.999999999999906"
Debug.Print "Variant " & TypeName(varDb1Sum) & ":"; varDb1Sum

For intI = 1 To 10000
varDecSum = varDecSum + CDec(0.0001)

Next 1intI
'This prints,"Variant Decimal: 1"
Debug.Print "Variant " & TypeName(varDecSum) & ":"; varDecSum

End Sub

Using Built-In Numeric Functions 105

Tip Because of the hidden errors floating-point data types can introduce, you should

always use the scaled integer data types when you can. They are slightly less
efficient in their use of memory because they need more bytes of storage, but
your code will be more efficient if you avoid the need to use special code to
handle rounding.

Using Built-In Numeric Functions

VBA provides a large variety of built-in numeric functions. This section presents
these functions, broken into several categories. The remainder of the chapter pro-
vides techniques and algorithms for performing more complex computations and
a few tasks that are not covered by the built-in functions.

NOTE In addition to functions that manipulate numeric values, VBA also includes functions

for formatting numeric data (FormatNumber, FormatCurrency, and so on).
Chapter 1 covers these in detail.

Mathematical and Trigonometric Functions

Table 2.3 lists the built-in VBA mathematical and trigonometric functions. Each of
these takes an argument, called number in the table, which can be any valid
numeric expression.

TABLE 2.3: Mathematical and Trigonometric Functions in VBA

Function Description Syntax

Atn Returns a Double specifying the angle Atn(number), where number is the ratio
that is the arctangent of a number in between two sides of a right triangle
radians

Cos Returns a Double specifying the ratio Cos(number), where number is an angle
that is the cosine of an angle in radians

Sin Returns a Double specifying the ratio Sin(number), where number is an angle

that is the sine of an angle in radians

106

Chapter 2 e Working with Numbers

TABLE 2.3: Mathematical and Trigonometric Functions in VBA (continued)
Function Description Syntax
Tan Returns a Double specifying the ratio Tan(number), where number is an angle
that is the tangent of an angle in radians
Exp Returns a Double specifying e (the base Exp(number). If the value of number
of natural logarithms) raised to a power exceeds 709.782712893, an error
sometimes referred to as the
antilogarithm occurs.
Log Returns a Double specifying the natural Log(humber), where number is any valid
logarithm of a number expression greater than 0
Sar Returns a Double specifying the square Sgr(number), where number is any valid
root of a number expression greater than or equal to 0
Sgn Returns a Variant (integer) indicating the ~ Sgn(number), where number is any valid

sign of a number

numeric expression

Trigonometry is the mathematics of right triangles. It allows you to calculate
angles by knowing the ratio between the lengths of two sides of a right triangle
or to calculate the ratios by knowing the angles. VBA uses radians as the unit of
measure for angles. Because 180 degrees equal = (pi) radians (r being roughly
3.14159265358979), you can convert degrees to radians by multiplying degrees by
7/180, and you can convert radians to degrees by multiplying radians by 180/7.
The functions we created to handle these conversions are shown in Listing 2.5 and use
areasonably precise approximation of 7. Note the explicit conversion of the argument
to the Decimal Variant subtype. This increases the accuracy of the calculation.

Listing 2.5: Radian-to-Degree Conversion Functions

Public Function dhDegToRad(varDegrees As Variant) As Variant
' Converts degrees to radians
Const PI = 3.14159265358979
dhDegToRad = (CDec(varDegrees) / 180) * PI

End Function

Public Function dhRadToDeg(varRadians As Variant) As Variant
' Converts radians to degrees
Const PI = 3.14159265358979
dhRadToDeg = (CDec(varRadians) / PI) * 180

End Function

Using Built-In Numeric Functions 107

Logarithmic Functions

VBA's logarithmic functions use natural logarithms. The natural logarithm is the
logarithm to the base ¢, where the constant e is approximately 2.718282. You can
calculate base-n logarithms for any number x by dividing the natural logarithm of
x by the natural logarithm of # as follows:

Logn(x) = Log(x) / Log(n)

The following function, dhLogN, converts any decimal number to a logarithm
with any base. Of course, because base 10 is the most common logarithmic scale,
the base is optional and defaults to 10:

Public Function dhLogN(varDecimal As Variant, _
Optional varLogBase As Variant = 10) As Variant

dhLogN = CDec(Log(varDecimal) / Log(varLogBase))
End Function

TIP

In case the theory of logarithms has escaped you temporarily, Logg(x) returns the
power you'd have to raise 10 to, in order to end up with x. For example,
Logq¢(100) is 2, and Log;¢(1000) is 3. In the same vein, Logg(64) is 2, and Logga(8)
is 0.5. The dhLogN function performs these types of calculations for you.

Just as VBA’s Log function returns the natural log of a number (that is, the power
you’d need to raise the value e to, in order to end up with the argument), it also
provides the inverse function, Exp. The Exp function returns the value e to the
specified power. For example, Exp(2) returns e * e, or 7.38905609893065. When
working with advanced trigonometric formulas, or working with chemistry or
physics, these functions can be important.

Determining Sign

The Sgn function returns an integer indicating whether its argument is positive,
negative, or 0. It returns +1 if its argument was positive, —1 if its argument was neg-
ative, or 0 (if its argument was 0). For example, Sgn(3) returns 1, Sgn(-3) returns -1,
and Sgn(3 - 3) returns 0.

WARNING s \,ith any of the mathematical functions that take numeric expressions as argu-

ments, if you pass Sgn a null value, you'll get back a runtime error (error 94,
“Invalid use of Null”).

Chapter 2 e Working with Numbers

Derived Trigonometric Functions

VBA doesn’t supply every possible useful trigonometric function, but you can
combine the built-in trigonometric functions to create more complex functions.
Table 2.4 shows the formulas you can use to derive these more complex functions
from the ones VBA provides.

TABLE 2.4: Derived Trigonometric Functions

Function Derived Equivalents

Secant Sec(X) =1/ Cos(X)

Cosecant Cosec(X) = 1/ Sin(X)

Cotangent Cotan(X) = 1/ Tan(X)

Inverse Sine Arcsin(X) = Atn(X/ Sgr(-X * X + 1))

Inverse Cosine

Inverse Secant

Inverse Cosecant

Inverse Cotangent
Hyperbolic Sine

Hyperbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant

Inverse Hyperbolic Cotangent

Arccos(X) = Atn(=X / Sqr(-X * X + 1)) + 2 * Atn(1)

Arcsec(X) = Atn(X / Sqr(X * X = 1)) + Sgn((X) — 1) * (2 * Atn(1))
Arccosec(X) = Atn(X / Sqr(X * X — 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Arccotan(X) = Atn(X) + 2 * Atn(1)

HSin(X) = (Exp(X) — Exp(-X)) / 2

HCos(X) = (Exp(X) + Exp(~X)) / 2

HTan(X) = (Exp(X) — Exp(=X)) / (Exp(X) + Exp(=X))

HSec(X) = 2 / (Exp(X) + Exp(-X))

HCosec(X) = 2 / (Exp(X) - Exp(=X))

HCotan(X) = (Exp(X) + Exp(=X)) / (Exp(X) — Exp(-X))

HArcsin(X) = Log(X + Sqr(X * X + 1))

HArccos(X) = Log(X + Sqr(X * X — 1))

HArctan(X) = Log((1 + X) / (1 = X))/ 2

HArcsec(X) = Log((Sqr(-X * X + 1) + 1)/ X)

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1)/ X)

HArccotan(X) = Log((X + 1)/ (X=1))/ 2

Using Built-In Numeric Functions 109

Here’s an example of how you can use the formulas in Table 2.4 to create your
own custom trigonometric functions:

Public Function dhHyperbolicSine(ByVal dbTNumber As Double) As Variant
" Calculates hyperbolic sine using the Exp function
dhHyperbolicSine = (CDec(Exp(dbINumber)) - CDec(Exp(-dbTNumber))) _
/ 2

End Function

Numeric Conversions and Rounding

As mentioned earlier in this chapter, the various numeric data types differ in the
levels of precision they support. Therefore, rounding often occurs automatically
when you convert a number from one data type to another. Sometimes that’s the
reason you want to convert to a different data type—to round the number. How-
ever, there are other ways of rounding, and sometimes you'll want to use them
without having to resort to converting the number to a different data type. This
section describes the built-in numeric conversion functions VBA provides, how
you can use them for rounding, and how you’ll sometimes need other rounding
algorithms to get the results you want.

Conversion Functions

Table 2.5 lists the VBA functions that perform numeric conversions from one data
type to another. Decimal to hexadecimal and decimal to octal conversions are dis-
cussed in the section “Base Conversions” later in this chapter.

TABLE 2.5: Numeric Conversion Functions

Function Returns Rounding

CByte(expression) Byte (range 0-255) To whole number; 0.5 rounded to nearest even
number

Clnt(expression) Integer To whole number; 0.5 rounded to nearest even
number

CLng(expression) Long Integer To whole number; 0.5 rounded to nearest even
number

CCur(expression) Currency To four decimal places; rounding to five decimal

places is undocumented (See the “Rounding
Numbers” section for more information.)

110

Chapter 2 e Working with Numbers

TABLE 2.5: Numeric Conversion Functions (continued)

Function Returns Rounding

CDec(expression) Decimal Variant To a variable number of decimal places
depending on the size of the number

CSng(expression) Single To the nearest floating-point number in the
range

CDbl(expression) Double To the nearest floating-point number in the
range

CVar(expression) Variant Double if numeric; Same as Double for numeric values

Variant Date/Time if
delimited by #; Variant
String otherwise

The expression argument that’s passed to any of the numeric conversion func-
tions can be any valid numeric or string expression. String expressions must be
interpretable as numbers using the conventions of the installed locale. For example,
CLng(“-34,734.687”) would return -34735 in locales that use commas as thousand
separators. If expression doesn’t fall within the acceptable range for that data type,
a runtime error occurs (error 13, “Type mismatch,” or error 6, “Overflow”).

WARNING v can also use another VBA function, Val, to convert expressions to numbers.

However, there’s an important disadvantage to using Val for this purpose. Unlike
the conversion functions in Table 2.5, Val does not provide internationally aware
conversions. Different decimal separators, thousands separators, and currency
options will be correctly recognized by the conversion functions according to the
locale setting of your computer. However, Val doesn’t have the ability to use the com-
puter’s locale setting and therefore may not recognize numbers that were typed
using standards other than those used in the United States.

Rounding Numbers

The CInt and CLng functions, used to convert to the Integer and Long Integer data
types, round fractions to whole numbers. They’ll sometimes round up and some-
times round down when passed numbers ending in .5. The rounding in these
cases will always result in an even number. For example, CInt(1.5) evaluates to 2,
and CInt(2.5) also evaluates to 2.

Using Built-In Numeric Functions 111

The CCur function, which converts a number to the Currency data type, rounds
numbers to four decimal places of precision. Unfortunately, Microsoft hasn’t doc-
umented the rule used in rounding Currency values that have five digits to the
right of the decimal place, where the fifth digit is a 5. Sometimes these numbers
are rounded up, and sometimes they’re rounded down. The examples in Table 2.6
demonstrate that there is no clear pattern to this undocumented rounding behavior.

TABLE 2.6: Unpredictable Currency Rounding

Type in Immediate Window Result
?CCur(.00005) 0.0001
?CCur(.00015) 0.0001
?CCur(.00025) 0.0003
?CCur(.00035) 0.0003
?CCur(.00045) 0.0004
?CCur(.00095) 0.0009
?CCur(.00995) 0.01
?CCur(.00895) 0.0089
?CCur(.01895) 0.019

Because such seemingly random rounding behavior might not be reliable enough
for your computations, you may want to round numbers yourself to a specified
number of decimal places instead of letting VBA do it with the CCur function. A
little later in this section, you'll see the dhRound custom function, which you can
use to round values predictably to a specified number of decimal places.

Two VBA functions, Int(number) and Fix(number), remove the fractional part of
anumber. They don’t round the number; they just chop off the part to the right of
the decimal place. Both functions return an Integer if the result falls within the
Integer range (-32,768 to 32,767) and a Long if the result is outside the Integer
range but within the Long range (-2,147,483,648 to 2,147,483,647). It doesn’t mat-
ter which of these functions you use for positive numbers, but for negative num-
bers, you have to remember that Int returns the first negative Integer less than or
equal to number, whereas Fix returns the first negative Integer greater than or equal
to number. Table 2.7 shows the output of Int and Fix in the Immediate window.

112

Chapter 2 e Working with Numbers

TABLE 2.7: UsingIntand Fix

Type in Immediate Window Result
2Int(-9.4) -10
?Fix(-9.4) 9
?Int(9.6) 9
?Fix(9.6) 9

NOTE

Fix(number) is equivalent to Sgn(number) * Int(Abs(number)).

Beware of using Int with expressions. Doing so will sometimes yield unantici-
pated results. For example, Int((1.55 * 10) + 0.5) evaluates to 16, as you would expect.
However, Int((2.55 * 10) + 0.5) evaluates to 25, even though you would expect it to
evaluate to 26. (Why? It turns out that 2.55 * 10 is actually slightly less than 25.5,
because of binary round-off issues. Then, when you add 0.5, the result is slightly
less than 26. The Int function truncates the result, which ends up being 25.) For this
reason, it’s best to set your expression equal to a variable first and then pass the
variable to Int, as the procedure shown in Listing 2.6 illustrates.

Listing 2.6: Use a Variable to Control the Int Function

Sub TestInt()
Dim dbTNumber As Double

" Prints: "25"
Debug.Print Int((2.55 * 10) + 0.5)

db1Number = (2.55 * 10) + 0.5

" Prints: "26"
Debug.Print Int(dbI1Number)
End Sub

As discussed earlier in this chapter, rounding often presents problems with
floating-point numbers because some decimal numbers are rounded unpredict-
ably when converted to floating-point binary numbers. VBA has finally added a

Using Built-In Numeric Functions 113

Round function, in the most current incarnation of the language, but it still has a
few flaws:

Numbers supposedly round to the nearest even value. That is, Round(9.585,
2) is supposed to return 9.58, and Round(9.595, 2) is supposed to return 9.60.
Contrary to what everyone thinks a Round function should do, this one uses
the IEEE standard, which dictates that the function should round to the
nearest even value.

Unless you supply the number to be rounded using the Decimal data type,
you can’t be guaranteed that the function will work correctly (such as that is,
given the previous bullet point). To demonstrate this, see Figure 2.1. In that
debugging session, the request to round 9.575 to two decimal places
returned (incorrectly) 9.57. Rounding 9.585 to two decimal places also fails,
but testing with 9.595 works fine. On the other hand, if you always convert
the number to be rounded into a Decimal data type first, VBA’s Round func-
tion always rounds correctly. (Again, taking into account that “correctly”
means “to the nearest even value.”)

The VBA Round function does not correctly handle rounding to tens, or
hundreds, and so on. The way we learned how to round numbers, if you ask
to round to -2 places, your number is rounded to the 100s. That is, rounding
1234 to -1 decimals returns 1230, and rounding 1234 to -2 decimals returns
1200. The built-in Round function simply doesn’t allow you to specify nega-
tive values for the number of decimals.

FIGURE 2.1
The built-in Round function
performs somewhat
erratically.

What's going on here? Why isn’t Round working as it should? It turns out that
unless you specify otherwise, Round assumes that you're passing it a Double. In
its use of that Double, Round must convert the value to binary and back, and in

114

Chapter 2 e Working with Numbers

doing so, causes some inaccuracies in the least-significant decimal places. If
you've ever studied computer science, you've most likely seen the standard algo-
rithm for rounding a value to a specific number of decimal places. Listing 2.7
shows a working Round function that uses the algorithm we learned in school.
(This version also allows you to pass in a True value as a third parameter indicat-
ing that you want it to use IEEE-style rounding. This way, you get the round-to-
the-nearest-even-value behavior, and the function takes care of the conversion to
Decimal type for you.)

Listing 2.7: A Generic Rounding Function
Public Function dhRound(_
ByVal Number As Variant, NumDigits As Long, _
Optional UseIEEERounding As Boolean = False) As Double
' Rounds a number to a specified number of decimal
" places. 0.5 1is rounded up

Dim dbTPower As Double
Dim varTemp As Variant
Dim intSgn As Integer

If Not IsNumeric(Number) Then
' Raise an error indicating that
" you've supplied an invalid parameter.
Err.Raise 5

End If

dbTPower = 10 ~ NumDigits

' Is this a negative number, or not?

" intSgn will contain -1, 0, or 1.

intSgn = Sgn(Number)

Number = Abs(Number)

' Do the major calculation.
varTemp = CDec(Number) * dblPower + 0.5

' Now round to nearest even, if necessary.
If UseIEEERounding Then
If Int(varTemp) = varTemp Then
" You could also use:
" varTemp = varTemp + (varTemp Mod 2 = 1)
' instead of the next If ...Then statement,

Using Built-In Numeric Functions 115

' but we hate counting on True == -1 in code.
If varTemp Mod 2 = 1 Then
varTemp = varTemp - 1
End If
End If

End If

" Finish the calculation.

dhRound = intSgn * Int(varTemp) / dblPower

End Function

TIP

You can round numbers to whole digit places (for example, round 1234 to 1200)
by specifying a negative value for the number of places. That is, specifying O for
NumDigits rounds to the ones place, —1 rounds to tens, —=2 rounds to hundreds,
and -3 rounds to thousands.

NOTE

If you don't care about IEEE rounding, we've also included a simplified version of
dhRound in the basNumbers module (dhRoundSimple). You can use this version, if
you'd rather.

Subtracting Floating-Point Numbers While Maintaining
Precision

You might assume that VBA wouldn’t have problems with simple subtraction,
because the result of subtraction can’t have more decimal places than either of the
two numbers involved, but you would be wrong. Table 2.8 shows some of the sur-
prising results in the Immediate window for subtracting various decimal values,
all of which look like they ought to result in 0.1. To avoid errors in subtraction,
you need to first prepare your values, either by rounding to the correct number of
digits, or by using the CDec function to convert to the special Decimal data type.

TABLE 2.8: Errorsin Floating-Point Subtraction

Type in Immediate Window Result
?100.8-100.7 9.99999999999943E-02
?10.8-10.7 0.1700000000000001

?1.8-1.7 0.1

116

Chapter 2 e Working with Numbers

You can safely subtract one floating-point value from another by using the Dec-
imal data type. We created a subtraction function, shown in Listing 2.8, that over-
comes the rounding error.

Listing 2.8: Use Decimal Variants for Subtraction
Public Function dhSubtract(varVall As Variant, _
varVal2 As Variant) As Double
dhSubtract = CDec(varVall) - CDec(varVal2)
End Function

Random Numbers

The subject of generating random numbers often causes confusion. First, there’s
the Randomize statement:

Randomize [number]

Then there’s the Rnd function:
Rnd[(number)]

Why two functions? Which one do you use?

VBA generates random numbers by starting with a seed value and then running
that seed through a proprietary algorithm that creates a number greater than or
equal to 0 and less than 1. Starting with a particular seed will always result in
exactly the same “random” number. The VBA Randomize statement initializes the
Rnd function by creating a new seed value. If you don’t use the optional argument
for Randomize, the new seed value is based on the system timer.

If you elect not to use Randomize at all and just call the Rnd function with no
arguments, Rnd always uses the same number as a seed the first time it’s called.
Each subsequent time Rnd is called during that session, it uses the number that
was generated by the last call as its new seed. So, unless you use Randomize or
supply an argument to Rnd, you'll always get the same sequence of numbers. The
number argument passed to Rnd affects the value that’s returned, as summarized
in Table 2.9.

Using Built-In Numeric Functions 117

TABLE 2.9: PassanArgumenttoRnd

Rnd Argument Number Generated by Rnd

<0 The same number every time, depending on the negative argument used
>0 Next random number in the sequence, regardless of the positive argument used
=0 Repeats the most recently generated number

Not supplied Next random number in the sequence (same as with a positive argument)

The number returned by Rnd is a Single value that’s greater than or equal to 0
and less than 1. If you want to create random integers within a certain range of
values, you can use the following formula:

i = Int((<high number> — <low number> + 1) * Rnd) + <low number>

For example, if you want to create a random number between 1 and 10, the
expression would look like this:

i=1Int((10 -1+ 1) *Rnd) +1

Using 10 as the upper bound won't give you a very wide range of numbers, and
after running this procedure a few times, you’ll run into duplicates. There’s a mis-
conception that using the Randomize function in front of Rnd will eliminate
duplicates, but this is not true. Randomize will only reset the random number
generator so that it starts at a different place in the set of numbers it generates;
nothing keeps it from returning duplicates in a given sequence. The following
procedure generates a set of random numbers:

Dim i As Integer
Randomize
For i = 1 To 10
Debug.Print Int(Rnd * 10) + 1;
Next i

The output from the Immediate window when run five times might return
results like these:

2 7 1 2 104 1 105 7
6 2 8 1 8 5 2 2 8 7
6 9 7 2 3 106 104 2
5 96 8 54 4 101 6
9 59 3 3 7 2 9 5 6

118

Chapter 2 e Working with Numbers

What this means is that if you want to avoid duplicates in a list of integers, you
have to keep track of them yourself. We've provided the procedure shown in List-
ing 2.9 to shuffle numbers from 1 to 10, producing a random list of the 10 integers
with no duplicates.

Listing 2.9: Generate Random Numbers with No Duplicates
Pub1ic Function dhRandomShuffle(Optional TngItems As Long = 10) _
As Long()
Dim alngValues() As Long
Dim i As Long
Dim TngPos As Long
Dim TngTemp As Long

ReDim alngValues(l To TngItems)

" Fi11 in the original values.

For i = 1 To IngItems
alngvValues(i) = i

Next i

" Loop through all the items except the Tast one.
' Once you get to the last item, there's no point
' using Rnd, just get it.
For i = TngItems To 2 Step -1
' Get a random number between 1 and i
TngPos = Int(Rnd * i) + 1
TngTemp = alngValues(IngPos)
alngValues(1ngPos) = alngValues(i)
alngValues(i) = IngTemp
Next i
dhRandomShuffle = alngValues()
End Function

The dhRandomShuffle procedure creates an array large enough for the number
of items you've requested and fills the array with the numbers from 1 up to your
requested value. The procedure works its way from the end of the array back to
the beginning, picking a random number between 1 and the current location in the
array, and swaps the value at the selected location with the value at the current
location. By the time the function has reached the beginning of the array, the numbers

Using Built-In Numeric Functions 119

are in random order, and the function returns the array as its return value. Table 2.10
simulates shuffling a 10-item array.

TABLE 2.10: Simulation of Shuffling an Array (Iltems Swapped in the Current Step
Marked in Bold)

Selected 1 2 3 4 5 6 7 8 9 10
Item

4 1 2 3 10 5 6 7 8 9 4
4 1 2 3 9 5 6 7 8 10 4
1 8 2 3 9 5 6 7 1 10 4
3 8 2 7 9 5 6 3 1 10 4
2 8 6 7 9 5 2 3 1 10 4
3 8 6 5 9 7 2 3 1 10 4
2 8 9 5 6 7 2 3 1 10 4
2 8 5 9 6 7 2 3 1 10 4

To test the dhRandomShuffle procedure, we’ve provided the TestShuffle proce-
dure, shown below. This procedure calls dhRandomShuffle, requesting 10 items.
It takes the return value from dhRandomShuffle and iterates through all its items,
printing them to the Immediate window.

Sub TestShuffle()
Dim alngItems() As Long
Dim i As Long

alngItems = dhRandomShuffle(10)

For i = LBound(alngItems) To UBound(alngItems)
Debug.Print Right$(Space(4) & alngItems(i), 4);
Next i
Debug.Print
End Sub

120

Chapter 2 e Working with Numbers

Financial Functions

VBA provides a number of built-in functions you can use for performing financial
calculations. These are divided into three basic groups: depreciation functions,
annuity functions, and cash-flow functions, as described in the following sections.

Depreciation Functions

The depreciation functions are used in accounting to calculate the amount of mone-
tary value a fixed asset loses over a period of time. For example, a business that
owns a truck needs to calculate the amount the truck depreciates each year to deter-
mine the current value of the truck at any point in time. Because depreciation affects
taxes, governments often mandate the depreciation formulas that can be used. For
example, the double-declining method of depreciation uses the following formula:

Depreciation over period = ((cost —salvage) * 2) / life

Table 2.11 summarizes the VBA depreciation functions and their arguments,
and Table 2.12 describes the arguments used in depreciation functions.

TABLE 2.11: Depreciation Functions

Function Description

DDB(cost, salvage, life, period|, factor]) Returns a Double specifying the depreciation of an asset for
a specific time period using the declining balance method

SLN(cost, salvage, life) Returns a Double specifying the straight-line depreciation of
an asset for a single period

SYD(cost, salvage, life, period) Returns a Double specifying the sum-of-years’ digits
depreciation of an asset for a specified period

TABLE 2.12: Arguments Used in Depreciation Functions

Argument Description

Cost Initial cost of the asset

Salvage Value of the asset at the end of its useful life

Life Length of the useful life of the asset; must be in the same unit of measure as Period
Period Period for which asset depreciation is calculated

[Factor] Optional rate at which the balance declines; if omitted, 2 (double-declining method)

is assumed

Using Built-In Numeric Functions 121

Annuity Functions

An annuity is a series of payments that represents either the return on an invest-
ment or the amortization of a loan. Negative numbers represent monies paid out,
like contributions to savings or loan payments. Positive numbers represent mon-
ies received, like dividends. Tables 2.13 and 2.14 summarize the VBA annuity
functions and their arguments.

TABLE 2.13: Annuity Functions

Function Description

FV(rate, nper, pmt], pvi, typell) Returns a Double specifying the future value of an annuity
based on periodic fixed payments and a fixed interest rate

Rate(nper, pmt, pvl, v, typel, guess]]) Returns a Double specifying the interest rate per period for

an annuity

NPer(rate, pmt, pvi, fvl, typell) Returns a Double specifying the number of periods for an
annuity

IPmt(rate, per, nper, pvi, fvl, typell) Returns a Double specifying the interest payment for a

given period of an annuity
Pmt(rate, nper, pvl, fv], typell) Returns a Double specifying the payment for an annuity

PPmt(rate, per, nper, pvi, fi, typell) Returns a Double specifying the principal payment for a
given period of an annuity

PV(rate, nper, pmt], fvi, typell) Returns a Double specifying the present value of an annuity
based on periodic fixed payments to be paid in the future at
a fixed interest rate

TABLE 2.14: ArgumentsUsed in Annuity Functions

Argument Description

Rate Interest rate per period; must use the same unit for Period as used for Nper

Nper Total number of payment periods in the annuity

Pmt Payment to be made each period

Pv Present value (or lump sum) that a series of payments to be paid in the future is worth now
[Fv] Optional value of the annuity after the final payment has been made (if omitted, 0 is

assumed, which is the usual future value of a loan)

[Type] Optional number indicating when payments are due: O if payments are due at the end
of the payment period and 1 if payments are due at the beginning of the period; if
omitted, 0 is assumed

122 Chapter 2 ¢ Working with Numbers

We created a procedure, shown in Listing 2.10, that uses the Pmt function to cal-
culate the monthly payment on a loan.

Listing 2.10: Calculate the Payment on a Loan
Public Function dhCalcPayment(ByVal db1Rate As Double, _
ByVal intNoPmts As Integer, _
ByVal curPresentValue As Currency, _
Optional varFutureVal As Variant = 0, _
Optional varWhenDue As Variant = 0) As Double
' Calculates payments using Pmt function
If varWhenDue <> 0 Then
' set to only other possible value
" of 1 indicating payment to occur
' at beginning of period
varWhenDue = 1
End If
dhCalcPayment = Pmt((dblRate / 12), intNoPmts, _
-CDb1(curPresentValue), varFutureVal, varWhenDue)
End Function

Cash-Flow Functions

The cash-flow functions perform financial calculations based on a series of peri-
odic payments and receipts. As with the annuity functions, negative numbers rep-
resent payments and positive numbers represent receipts. However, unlike the
annuity functions, the cash-flow functions allow you to list varying amounts for
the payments or receipts over the course of the loan or investment. Payments and
receipts can even be mixed up within the cash-flow series.

Tables 2.15 and 2.16 summarize the VBA cash-flow functions and their arguments.

TABLE 2.15: Cash-Flow Functions

Function Description

IRR(values()[, guess]) Returns a Double specifying the internal rate of return for a series of
periodic cash flows

MIRR(values(), finance_rate, Returns a Double specifying the modified internal rate of return for a
reinvest_rate) series of periodic cash flows

NPV(rate, values()) Returns a Double specifying the net present value of an investment
based on a series of periodic cash flows and a discount rate

Using Built-In Numeric Functions 123

TABLE 2.16: ArgumentsUsed in Cash-Flow Functions

Argument Description

Values() Array of cash-flow values; the array must contain at least one negative value (a
payment) and one positive value (a receipt)

Rate Discount rate over the length of the period, expressed as a decimal

Finance_rate Interest rate paid as the cost of financing

Reinvest_rate Interest rate received on gains from cash reinvestment

[Guess] Optional value you estimate will be returned; if omitted, Guess is 0.1 (10 percent)

In order to look at how Net Present Value (NPV) and Internal Rate of Return
(IRR) work, you must understand how Discount Rate works. Take an example
where the rate of interest for a particular investment is 20 percent. The discount
rate is 1/(1 + 20/100) or 0.8333 in the first year; in the second year it would be
(1/(1 +20/100)) " 2 or 0.6944.

The NPV function, in effect, gives an evaluation of the profitability of an invest-
ment. Imagine that a company was looking at buying a machine for $17,000, they
predicted the machine would make money for them at the rate of $6,000 per year,
and they expect a yield of 20 percent from their investment. This would produce
results as shown in Table 2.17.

TABLE 2.17: CashFlowsforan NPV Exercise

Year Cash Flow Discount Rate NPV of Cash Flows
(20% Interest)

1 6000 0.833333333333333 5000

2 6000 0.694444444444444 4166.66666666666
3 6000 0.578703703703703 3472.22222222222
4 6000 0.482253086419752 2893.51851851851
5 6000 0.40187757201646 2411.26543209876
Totals 30000 17943.672839506

This tells them that purchasing the machine would be a profitable exercise
(because 17943 — 17000 is greater than 0). If, on the other hand, the machine had

124

Chapter 2 e Working with Numbers

cost $18,000, the company would have lost money in the future (because 17943 —
18000 is less than 0). The function provided in Listing 2.11 illustrates how you can
use the NPV function to calculate the net present value of a business investment.

Listing 2.11: Calculate the Net Present Value of an Investment

Public Function dhNetPresentValue(ByVal dbTRate As Double, _
ParamArray varCashFlows()) As Double

' Calculates net present value

Dim varElement As Variant

Dim i As Integer

Dim TngUBound As Long

Static db1Values() As Double

' get upper bound of ParamArray

TngUBound = UBound(varCashFTows)

' size array to ParamArray

ReDim db1Values(1ngUBound)

i=0

' place elements of ParamArray into Array

For Each varElement In varCashFlows
db1Values(i) = varElement
i=1+1

Next

dhNetPresentValue = NPV(dbTRate, dblValues())

End Function

The IRR cash-flow function uses multiple iterations to arrive at its final return
value. It starts with the value, Guess, and continues running calculations until it
achieves a result that’s accurate to within 0.00001 percent. If a satisfactory result
hasn’t been reached after 20 attempts, the function fails.

The IRR function takes the cash-flow information provided in the Values array
and attempts to find the discount rate where cash-flow-in matches cash-flow-out.
The higher the discount rate returned by IRR, the more profitable the investment.

As an example of this, imagine that a firm was considering the purchase of two
different machines (Machine D and Machine E): Machine D costs $80,000 to pur-
chase, and Machine E costs $90,000 to purchase.

Table 2.18 shows the predicted cash flows for the two machines and the dis-
count rate returned by the IRR function, based on the predicted cash flows.

Using Built-In Numeric Functions 125

TABLE 2.18: CashFlowsforan IRR Exercise

Machine D Machine E
Purchase -80000 -90000
Year 1 40000 40000
Year 2 30000 40000
Year 3 30000 35000
Year 4 25000 30000
Year 5 5000 8000
IRR 0.2384 (23.84%) 0.2527 (25.27%)

This indicates that although Machine E costs more, its profitability outweighs
that of Machine D and would therefore be the better purchase.

Base Conversions

To convert numbers between base 16 (hexadecimal), base 8 (octal), and base
10 (decimal), your best bet is to use the built-in VBA functions Hex, Oct, and
CLng, which are summarized in Table 2.19.

TABLE 2.19: Base Conversion Functions

Function Description
Hex(number) Returns a String representing the hexadecimal value of a number
Oct(number) Returns a Variant representing the octal value of a number, up to 11 octal

characters. Returns Null if the number is Null, 0 if the number is Empty (Only a
Variant that has not been initialized is Empty.)

CLng(string) Returns Double numeric values that are contained in a string, including
Hexadecimal and Octal values that use the radix prefixes, &H and &0

Hexadecimal and Octal Conversion

The Hex and Oct functions return a string with the hexadecimal or octal value in

it. However, the radix prefixes, &H and &O, are not added to the string. For example,
Hex(255) returns “FF,” not “&HFF,” which is how you would represent the number
in code. If you ever want to convert to hexadecimal or octal and then back to decimal,

126 Chapter 2 ¢ Working with Numbers

be sure to add the prefix that a VBA conversion function like CLng will need to
recognize the number, as illustrated in Table 2.20.

TABLE 2.20: Convertingto Hex and Back to Decimal

Type in Immediate Window Result

?Hex(255) FF

?CLng(Hex(255)) Error 13 (type mismatch)
?CLng("&H" & Hex(255)) 255

NOTE

The Hex function rounds fractions to the nearest whole number before performing
the conversion. For example, Hex(256) returns 100, and Hex(256.4) also returns
100. Although it's possible to represent fractional data in hexadecimal format (see
the dhDecToHex function in the sample), there’s no practical reason to do so. VBA
conversion functions like CLng recognize only whole hexadecimal numbers.

Binary Conversions

VBA doesn’t include any built-in binary conversion functions. The custom func-
tions shown in Listing 2.12 can be used to convert hexadecimal numbers to binary
(base 2) numbers, to convert binary to hexadecimal, and to convert decimal num-
bers to binary.

Each of these functions does its work in a slightly different manner:

¢ The dhHexToBinary function works its way through each “digit” of the Hex
value and uses a Select Case statement to convert each digit (0 through F)
into its corresponding four binary bits.

¢ The dhBinaryToHex function does the opposite. Once it’s padded the origi-
nal binary string with enough leading zeros so that the number of digits is
divisible by four, it takes each four-digit chunk and uses Select Case to con-
vert the chunk back to the corresponding hex digit.

¢ The dhBinaryToDec function takes advantage of the dhBinaryToHex func-
tion. Once the input value’s converted to Hex, the procedure uses the CLng
function to convert from hex to decimal.

e The dhDecToBinary function first uses the built-in Hex function to convert
the decimal value to Hex. Then, it calls the dhHexToBinary procedure to
convert to binary and removes any leading zeros.

Using Built-In Numeric Functions 127

Listing 2.12: Binary Conversion Functions

Public Function dhHexToBinary(strNumber As String) As String
Dim strTemp As String
Dim strOut As String
Dim i As Integer
For i = 1 To Len(strNumber)
Select Case Mid(strNumber, i, 1)

Case "0"

strTemp "0000"
Case "1"

strTemp "0001"
Case "2"

strTemp "0010"
Case "3"

strTemp "0011"
Case "4"

strTemp "0100"
Case "5"

strTemp "0101"
Case "6"

strTemp "0110"
Case "7"

strTemp "0111"
Case "8"

strTemp "1000"
Case "9"

strTemp "1001"
Case "A"

strTemp "1010"
Case "B"

strTemp "1011"
Case "C"

strTemp "1100"
Case "D"

strTemp "1101"
Case "E"

strTemp "1110"
Case "F"

strTemp "1111"

Case Else

128 Chapter 2 ¢ Working with Numbers

' This can't happen, right?

strTemp = ""
End Select
strOut = strOut & strTemp

Next i
dhHexToBinary = strOut
End Function

Public Function dhBinarytoHex(ByVal strNumber As String) As String
Dim strTemp As String
Dim intI As Integer
Dim intLen As Integer
Dim strOut As String
" First, pad the value to the left, with "0".
' To do this, find the Tength of the string
" rounded to the next highest multiple of 4.
intLen = Len(strNumber)
' Find the next higher multiple of 4:
intLen = Int((intLen - 1) / 4 + 1) * 4
strNumber = Right$(String(intLen, "0") & strNumber, intLen)
" Now walk through each group of 4 digits, converting each
' to hex.
For intI = 1 To intlLen Step 4
Select Case Mid(strNumber, intI, 4)

Case "0000"
strTemp = "0"
Case "0001"
strTemp = "1"
Case "0010"
strTemp = "2"
Case "0011"
strTemp = "3"
Case "0100"
strTemp = "4"
Case "0101"
strTemp = "5"
Case "0110"
strTemp = "6"
Case "0111"
strTemp = "7"
Case "1000"
strTemp = "8"
Case "1001"

strTemp = "9"

Custom Math and Numeric Functions 129

Case "1010"
strTemp
Case "1011"
strTemp
Case "1100"
strTemp
Case "1101"
strTemp
Case "1110"
strTemp
Case "1111"
strTemp

End Select
strOut = strOut

Next intI

dhBinarytoHex = strOut

End Function

TAY

"B

Hclr

hE

TE"

=

strTemp

Public Function dhBinaryToDec(ByVal strNumber As String) As Long
dhBinaryToDec = CLng("&H" & dhBinarytoHex(strNumber))

End Function

Public Function dhDecToBinary(ByVal TngNumber As Long) As String

Dim strTemp As String

Dim intI As Integer

strTemp = Hex(TngNumber)
strTemp = dhHexToBinary(strTemp)

" Rip off Tleading Os.

Do While Left(strTemp, 1) = "0"
strTemp = Mid(strTemp, 2)

Loop

dhDecToBinary = strTemp

End Function

Custom Math and Numeric Functions

In this section we’ve provided several handy custom functions that perform basic
mathematical and statistical calculations. You'll also find a function that converts
numbers to text. These functions will save you time if you ever need the calcula-
tions they perform, but the programming techniques employed are pretty straight-
forward, so the functions are presented with little additional comment.

130 Chapter 2 ¢ Working with Numbers

Mathematical Functions

Several mathematical functions have already been presented in this chapter.
These were mostly built-in VBA functions and combinations thereof. Here are a
few more that you can use in specialized situations.

Finding the Greatest Common Factor (GCF) of Two
Integers

The greatest common factor (GCF) of two numbers is the largest number that will
evenly divide into each. The function shown in Listing 2.13 accepts two argu-
ments and computes their GCF.

Listing 2.13: Compute the Greatest Common Factor of Two
Numbers

Public Function dhGreatestCommonFactor(_
ByVal 1ngX As Long, ByVal TngY As Long) As Long

Dim TngTemp As Long
TngX = Abs(1ngX)
TngY = Abs(1ngY)
TngTemp = TngX Mod TngY
Do While IngTemp > 0
TngX = TngY
TngY = IngTemp
TngTemp = TngX Mod TngY
Loop
dhGreatestCommonFactor = 1ngY
End Function

Finding the Lowest Common Multiple (LCM) of Two
Integers

A similar numeric relationship between two numbers is the lowest common multiple
(LCM). The LCM of two numbers is the smallest number of which the two num-
bers are factors. Listing 2.14 shows a function that computes this.

Custom Math and Numeric Functions 131

Listing 2.14: Compute Two Numbers’' Lowest Common Multiple
Public Function dhLowestCommonMultiple(_
ByVal intX As Integer, ByVal intY As Integer) As Long
' Returns the smallest number of which both
" intX and intY are factors
intX = Abs(intX)
intY = Abs(intY)
dhLowestCommonMuTtiple = _
intY * (intX \ dhGreatestCommonFactor(intX, intY))
End Function

Is This Number Prime?

Prime numbers can be divided evenly only by themselves and by 1. There are
many algorithms for figuring out whether a number is prime. Listing 2.15 illus-
trates a function that employs one of the more commonly used methods. It uses
several If statements to eliminate common cases like 0, 1, 2, and other even numbers.
It then uses a For...Next loop to determine the “primeness” of other numbers. Be
aware that for large numbers, this function can take a bit of time to run.

Listing 2.15: Determine Whether a Number Is Prime
Public Function dhIsPrime(ByVal 1ngX As Long) As Boolean
" Find out whether a given number is Prime.
' Treats negative numbers and positive numbers
" the same.

Dim intI As Integer
Dim db1Temp As Double
dhIsPrime = True
TngX = Abs(1ngX)

If TngX = 0 Or IngX = 1 Then

dhIsPrime = False
ElseIf TngX = 2 Then

" dhIsPrime is already set to True.
ElseIf (TngX Mod 2) = 0 Then

dhIsPrime = False

132 Chapter 2 ¢ Working with Numbers

Else
For intI = 3 To Int(Sqr(IngX)) Step 2
db1Temp = IngX / intl
If dblTemp = IngX \ intI Then
dhIsPrime = False
Exit Function
End If
Next intI
End If
End Function

Geometric Calculations

There’s a whole host of problems involving geometry that you can solve using VBA
(computing the surface area of a sphere, for instance). If you paid attention during
junior high geometry class, you probably already know how to write the required
VBA code. If, on the other hand, that’s just a distant memory, we’ve provided you
with some code that will do the trick. Listing 2.16 shows these functions.

Listing 2.16: Miscellaneous Geometry Functions
Const PI = 3.14159265358979

Public Function dhAreaofCircle(ByVal dbl1Radius As Double) As Double
' Return the area of a circle
dhAreaofCircle = PI * dblRadius ~ 2

End Function

Public Function dhAreaOfSphere(ByVal db1Radius As Double) As Double
' Return the area of a sphere
dhAreaOfSphere = 4 * PI * dbTRadius ~ 2

End Function

Public Function dhAreaOfRectangle(ByVal dblLength As Double, _
ByvVal db1Width As Double) As Double

' Return the area of a rectangle

dhAreaOfRectangle = dblLength * dblWidth
End Function

Public Function dhAreaOfTrapezoid(Byval dbTHeight As Double,

Custom Math and Numeric Functions 133

ByvVal db1Sidel As Double, _
ByVal db1Side2 As Double) As Double
' Return the area of a trapezoid
dhAreaOfTrapezoid = dblHeight * (db1Sidel + db1Side2) / 2
End Function

Public Function dhVolOfPyramid(ByVal db1Height As Double, _
ByVal db1BaseArea As Double) As Double
' Return the volume of a pyramid
dhVol10fPyramid = dblHeight * db1BaseArea / 3
End Function

Public Function dhVol0fSphere(ByVal db1Radius As Double) As Double
" Return the volume of a sphere
dhVo10fSphere = PI * (dblRadius *~ 3) * 4 / 3

End Function

Converting Currency Numbers to Text

If you're programming an application that writes checks, you may need to trans-
late numbers to a textual description. For example, the value $149.56 would be
translated as “one hundred forty-nine and fifty-six hundredths.” The dhNum-
ToStr function shown in Listing 2.17 demonstrates how to do this by using some
of the built-in numeric functions, as well as some string functions, which were dis-
cussed in Chapter 1. Listing 2.17 also shows the dhHandleGroup function, which
dhNumToStr calls.

WARNING 1pc ghNumToStr function uses zero-based arrays. For it to work properly, make

sure you don't use the Option Base 1 statement in any module where you place
this function.

Listing 2.17: Convert a Number to Descriptive Text

Public Function dhNumToStr(ByVal varValue As Variant) As String
On Error GoTo HandleErrors

Dim intTemp As Integer
Dim varNames As Variant

134 Chapter 2 ¢ Working with Numbers

Dim TngDollars As Long
Dim intCents As Integer
Dim strOut As String
Dim strTemp As String
Dim intI As Integer

If Not IsNumeric(varValue) Then Exit Function

' 999,999,999.99 is the largest possible value.
If varValue > 999999999.99 Then Exit Function
varNames = Array("", "Thousand", "Million")

varValue = Abs(varValue)
TngDol1lars = Int(varValue)
intCents = (varValue - TngDollars) * 100

If IngDollars > 0 Then
" Loop through each set of three digits,
" first the hundreds, then thousands, and then
"'millions.
Do
intTemp = TngDollars Mod 1000
TngDollars = Int(IngDollars / 1000)
" Prepend spelling of new triplet of digits to the
' existing output.
If intTemp <> 0 Then

strOut = dhHandleGroup(intTemp) & " " & _
varNames(intI) & " " & strOut
End If

intI = intl + 1
Loop While IngDollars > 0O
' Handle the cents.
strOut = RTrim(strOut) & " and " & _
Format$(intCents, "00") & "/100"
End If

ExitHere:
dhNumToStr = strOut
Exit Function

Custom Math and Numeric Functions 135

HandleErrors:
' Handle all errors by returning an empty string
strQut = "'
Resume ExitHere

End Function

Private Function dhHandleGroup(ByVal intValue As Integer) As String
" Called by dhNumToStr
Static varOnes As Variant
Static varTens As Variant
Dim strOut As String
Dim intDigit As Integer

If IskEmpty(varOnes) Then

varOnes = Array("", "One", "Two", "Three", "Four", "Five", _
"Six", "Seven", "Eight", "Nine", "Ten", _
"Eleven", "Twelve", "Thirteen", "Fourteen', "Fifteen", _
"Sixteen", "Seventeen', "Eighteen', "Nineteen", "Twenty")
End If

If IskEmpty(varTens) Then
" Elements 0 and 1 in this array aren't used.
varTens = Array(""', "", "Twenty", "Thirty", "Forty", _
"Fifty", "Sixty", "Seventy", "Eighty", "Ninety")
End If

' Get the hundreds digit, and then the rest.
intDigit = intValue \ 100
intValue = intValue Mod 100

" If there's a hundreds digit, add that now.
If intDigit > 0 Then strOut = varOnes(intDigit) & " Hundred'

' Handle the tens and ones digits.
Select Case intValue
Case 1 To 20
strOut = strOut & varOnes(intValue)
Case 21 To 99
intDigit = intValue \ 10
intValue = intValue Mod 10
If intDigit > 0 Then
strOut = strOut & " " & varTens(intDigit)
End If

136 Chapter 2 ¢ Working with Numbers

If intvalue > 0 Then
strOut = strOut & "-" & varOnes(intValue)
End If
End Select

dhHandTeGroup = strOut
End Function

Statistics

This section presents several useful statistical functions, including functions to
calculate factorials, to compute various types of averages and standard deviation,
and to find minimum and maximum values.

Factorials

Statistical functions often make use of factorial calculations. You can use the two
functions shown in Listing 2.18 to calculate recursive and nonrecursive factorials.
You may have a preference for one over the other (some people find recursion
confusing or upsetting), but they both return the same values.

Listing 2.18: Compute Recursive and Nonrecursive Factorial
Expressions

Public Function dhFactorialRecursive(intX As Integer) As Double
If intX < 0 Or intX > 170 Then
dhFactorialRecursive = 0
ElseIf intX = 0 Then
dhFactorialRecursive
Else
dhFactorialRecursive = intX * _
dhFactorialRecursive(intX - 1)
End If
End Function

I
=

Public Function dhFactorial(intX As Integer) As Double
Dim i As Integer
Dim db1X As DoubTle

If intX < 0 Or intX > 170 Then
dhFactorial = 0

Custom Math and Numeric Functions 137

Else
db1X =1
For i = 2 To intX
db1X = db1X * i
Next i
dhFactorial = dbl1X
End If
End Function

Mean, Median, Mode, and Standard Deviation of an Array

The most common statistical functions are those that determine the mean,

median, mode, and standard deviation of a series of numbers. The mean is noth-
ing more than the arithmetic average of the series. The median, on the other hand,

is the number that occurs in the “middle” of the series. The mode is the number

that occurs most frequently. It’s usually close to the mean, but since it’s one of the

numbers in the series, it might not be exact. Finally, the standard deviation is a

measurement of how closely numbers in the series are gathered around the mean.

Listing 2.19 shows four functions that compute these values based on an array
passed as an argument.

NOTE The dhArrayMedian and dhModeOfArray functions use the dhQuickSort function
from Chapter 7 to sort the array prior to determining the mode. For a complete
discussion of sorting, see Chapter 7.

Listing 2.19: Mean, Median, Mode, and Standard Deviation
Functions

Public Function dhArrayAverage(varArray As Variant) As Variant
Dim varItem As Variant
Dim varSum As Variant
Dim TngCount As Long

If IsArray(varArray) Then
For Each varItem In varArray
varSum = varItem + varSum
TngCount = TngCount + 1

138 Chapter 2 ¢ Working with Numbers

Next

dhArrayAverage = varSum / TngCount
Else

dhArrayAverage = Null
End If

End Function

Public Function dhArrayMedian(varArray As Variant) As Variant

Dim varItem As Variant

Dim varTemp As Variant

Dim varMedian As Variant

Dim intI As Integer

Dim TngTemp As Long

Dim TngLBound As Long

Dim TngElements As Long

If IsArray(varArray) Then
' Sort the array
Call dhQuickSort(varArray)
' Compute the number of array elements
" and the index of the "middle" one

TngLBound = LBound(varArray)
TngElements = (UBound(varArray) - IngLBound + 1)
" Find the midpoint in the array. For an odd
" number of elements, this 1is easy (it's the
" middle one)...
If (IngElements Mod 2) = 1 Then
dhArrayMedian = varArray(1ngLBound + _
(IngElements \ 2))
Else
" For an even number of elements, it's the
" midpoint between the two middle values...
TngTemp = ((IngElements - 1) \ 2) + TngLBound
dhArrayMedian = ((varArray(IngTemp + 1) - _
varArray(lngTemp)) / 2) + varArray(lngTemp)
End If
Else
dhArrayMedian = Null
End If
End Function

Custom Math and Numeric Functions 139

Public Function dhArrayStandardDeviation(varArray As Variant) As Double
Dim TngN As Long
Dim dbT1SumX As Double
Dim dbT1SumX2 As Double
Dim dbTVar As Double
Dim intCounter As Integer

TngN = 0
db1SumX = 0
dbTSumX2 = 0
For intCounter = LBound(varArray) To UBound(varArray)
If Not IsNull(varArray(intCounter)) Then
TngN = TngN + 1
db1SumX = db1SumX + varArray(intCounter)
db1SumX2 = db1SumX2 + varArray(intCounter) *~ 2
End If
Next intCounter

dblvar = 0

If TngN > 0 Then
db1Var = (IngN * db1SumX2 - db1SumX ~ 2) / (IngN * (IngN - 1))
If dblvar > 0 Then

dhArrayStandardDeviation = Sqr(dbl1Var)

End If

End If

End Function

Public Function dhArrayMode(varArray As Variant) As Variant
Dim varItem As Variant
Dim varLast As Variant
Dim TngCount As Long
Dim 1ngOccur As Long
Dim TngLastOccur As Long
Dim TngTotalOccur As Long

If IsArray(varArray) Then
" Sort the array so elements are in order
Call dhQuickSort(varArray)

' Capture the first item
varItem = varArray(LBound(varArray))

Loop through all the elements

140 Chapter 2 ¢ Working with Numbers

For TngCount = LBound(varArray) To UBound(varArray)
" Increment the occurrence counter
TngOccur = IngOccur + 1

" If the value is not the same as the Tlast one,
' see if the occurrences of the last value
exceed the current maximum
If varArray(IngCount) <> varlast Then
If TnglLastOccur >= TngTotalOccur Then
" If so, make it the new maximum and
' capture the prior value
TngTotalOccur = InglLastOccur
varItem = varArray(IngCount - 1)
End If

' Record this element as the last one visited
varLast = varArray(TngCount)

' Reset the counter
TngOccur = 0
End If

TngLastOccur = IngOccur
Next

" Return the value with the most occurrences
' (make sure to check the final value)
If IngOccur > IngTotalOccur Then

dhArrayMode = varArray(IngCount - 1)

Else
dhArrayMode = varItem
End If
Else
dhArrayMode = Null
End If

End Function

Finding Minimum and Maximum Values

Surprisingly, VBA does not include functions for determining the minimum or
maximum values in a series of numbers. It’s relatively easy, however, to construct
a function to do this using an array. Listing 2.20 shows two functions we’ve cre-
ated that compute the minimum or maximum values, given an array.

Custom Math and Numeric Functions

141

Listing 2.20: Custom Maximum and Minimum Functions

Function dhArrayMax(varArray As Variant) As Variant
" Return the maximum value from an array

Dim varItem As Variant
Dim varMax As Variant
Dim i As Long

If IsArray(varArray) Then
If UBound(varArray) = -1 Then
dhArrayMax = Null
Else
varMax = varArray(UBound(varArray))
For i = LBound(varArray) To UBound(varArray)
varItem = varArray(i)
If varItem > varMax Then
varMax = varItem
End If
Next i
dhArrayMax = varMax
End If
Else
dhArrayMax = Null
End If
End Function

Function dhArrayMin(varArray As Variant) As Variant
" Return the minimum value from an array

Dim varItem As Variant
Dim varMin As Variant
Dim i As Long

If IsArray(varArray) Then
If UBound(varArray) = -1 Then
dhArrayMin = Null
Else
varMin = varArray(LBound(varArray))
For i = LBound(varArray) To UBound(varArray)
varltem = varArray(i)

142 Chapter 2 ¢ Working with Numbers

If varItem < varMin Then
varMin = varItem

End If
Next 1
dhArrayMin = varMin
End If
Else
dhArrayMin = varArray
End If

End Function

Summary

VBA has many useful functions for handling numbers, but there are problems in
using these functions that are not apparent on the surface. This chapter has provided
an overview of the built-in functions, as well as some of the problems inherent in
floating-point data types and rounding. Several handy custom functions for perform-
ing numeric calculations were also presented. Specifically, this chapter covered

¢ How VBA stores and computes numbers:
e Understanding the different data types in VBA
e Problems with floating-point numbers and how to solve them
e Built-in numeric functions:
e Mathematical
e Type conversion and rounding
e Generating random numbers
e Financial
e Base conversions
e Custom functions:
e Mathematical
e Geometric
e Converting numbers to text
e Statistics

For similar chapters covering strings and dates, see Chapters 1 and 3, respectively.

chapter

Working with Dates and
Times

Understanding how date/time values are stored
in VBA

Using the built-in VBA date/time functions

Extending the built-in functions with new
generalized procedures

Using the Windows APl to manage system time and
time zone issues

Chapter 3 e Working with Dates and Times

This chapter is devoted to providing solutions to common problems involving
date and time values, including manipulating date values, finding a particular
date, and working with elapsed times. Although VBA supplies a rich set of func-
tions that help you work with date/time values, their use can be confusing, and
there are many programmatic questions that require functions other than those
supplied by the built-in VBA date-handling functions.

Table 3.1 lists the sample files you'll find on the accompanying CD-ROM.

TABLE 3.1: SampleFiles

Filename

Description

DATETIME.XLS
DATETIME.MDB
DATETIME.BAS
DATETIMEADO.BAS
HOLIDAYS.MDB
HOLIDAYS.TXT
HOLIDAYS. XML

SYSTEMTIMEINFO.CLS

TESTDATETIME.BAS

DATETIME.VBP

Excel 2000 workbook with sample functions (contains all the modules)
Access 2000 database with sample functions (contains all the modules)
Text file with sample functions

Sample functions, using ADO recordsets

Access 97 database containing tblHolidays

Exported text version of tblHolidays

XML file containing sample holiday recordset

Class module containing system time and time zone information
properties

Module containing test procedures

Visual Basic 6 project containing demo code

What Is a Date, and How Did It Get There?

All other definitions aside, to VBA, a date is an 8-byte floating-point value that can
contain information indicating a specific point in time. In particular, the integer
portion of the value contains a number of days since December 30, 1899. The frac-
tional portion of the date value represents the portion of the day stored in the value.
For example, if the current date is 5/22/97 at 3:00 P.M., VBA stores the value inter-
nally as 35572.625. That is, the current date is 35572 days after 12/30/1899, and
3:00 P.M. is 625/1000th of a full day. In general, you don’t have to care about the
storage mechanism; VBA handles the conversions gracefully to and from the
internal floating-point format and the external date display.

What Is a Date, and How Did It Get There? 145

Tip Note that a date/time value to VBA represents only a point in time, not an elapsed
time. If you want to work with elapsed times, you'll need to write some code.
We've provided procedures, discussed later in this chapter, that allow you to
calculate and format elapsed times. You should never treat VBA date/time values
as anything but what they are, however: simply, a point in time.

NOTE Perhaps it seems odd that the O date, to VBA, is 12/30/1899. This means that day
11is 12/31/1899, and day 2 is 1/1/1900. Why the odd numbering? The story we
heard (and this may be totally apocryphal, so don’t hold us to this) is that some
other company—to remain unnamed—released an extremely popular
spreadsheet product before Microsoft's first spreadsheet. This other spreadsheet
stored dates in the same fashion as described here, and Microsoft wanted to
provide a compatible date format. The other company had designated 12/31/
1899 as day 0, and 1/1/1900 as day 1. Unfortunately, the other company had
neglected to notice that 1900 wasn't a leap year. (See the section titled “Is This a
Leap Year?” later in the chapter for more information on why 1900 wasn't a leap
year.) Microsoft developers, working on their first spreadsheet, worked to find a
way so that their dates, correctly taking into account the fact that 1900 wasn't a
leap year, could coincide with the dates used by their competitor. Their solution?
Back up the 0 date one day, so that only the days before March 1, 1900 would be
different from the competitors’. Maybe it's true; maybe it's not. It makes a good
story.

An Added Benefit

Because VBA stores dates internally as serial values, you get the added benefit of
being able to treat dates as numeric values in expressions if you want. Although
VBA supplies the DateAdd function, covered in more detail in the section “Per-
forming Simple Calculations” later in this chapter, you needn’t use it if you're
adding a number of days to a given date value. For example, to get tomorrow’s
date, you could just add 1 to today’s date, like this:

dtmTomorrow = Date + 1

Date is a built-in VBA function that returns the date portion (the integer part) of
the current date and time retrieved from Windows. Adding 1 to that value returns
a date that represents the next day.

146

Chapter 3 e Working with Dates and Times

The same mechanism works for subtracting two dates. Although VBA supplies
the DateDiff function for finding the interval spanned by two date/time values, if
you just need to know the number of days between the two dates, you can simply
subtract one from the other. For example, to find the number of days between
5/22/97 and 1/10/97, you could use an expression like this:

intDays = #5/22/2000# - #1/10/2000#

Afterward, intDays will contain the value 133, the number of days between May 22
and January 10 in a leap year.

Supplying Date Values

Like some weird date-munching omnivore, VBA’s expression engine can “eat”
dates in any of several formats. As long as you enclose date literals within number
signs (#) and format the literal in some reasonable, unambiguous way, VBA should
be able to understand what you mean.

VBA understands any of the following formats (if you're running a VBA host in
the United States, that is):

#January 1, 1998#
#Jan 1 1998#
#1-Jan-98#

#1 Jan 1998#

#1 1 98#

TIP

VBA uses your Windows international settings to determine how to parse the
value you've entered. This does, of course, cause trouble with dates entered with
nothing differentiating days and months. (How is VBA supposed to know, unless
you tell it otherwise, that #5/1/98# represents May 1 and not January 5?) To be
completely unambiguous, especially in cases in which your application must run in
various localized VBA hosts, you might consider abandoning date literals in code
altogether and using the DateSerial function instead. This function, discussed in
the section “Putting the Pieces Together” later in this chapter, takes three distinct
values representing the year, month, and day portions of a date and returns a date
value representing the selected date. Using this mechanism, you'll never have any
issues with localized versions of your code parsing date literals differently than
you'd expected.

The Built-In VBA Date Functions 147

When converting from other data types into dates, VBA stores the portion to the left
of the decimal point (the whole number part) as the date and the portion to the right of
the decimal point as the time. For example, if you were to write code like this:

Dim db1 As Double
Dim dtm As Date
db1 3005 / 12.6
dtm = dbl

Debug.Print dbl
Debug.Print dtm

the output would be

238.492063492063
8/25/1900 11:48:34 AM

Judging from the results, it looks like 8/25/1900 is 238 days after 12/30/1899, and
4920634... is about 11:48:34 A.M.

The Built-In VBA Date Functions

Although VBA provides a large number of built-in functions, there aren’t many
logical groups as tightly entwined as the VBA functions handling date and time
manipulations. The next few sections provide details and examples of using the
intrinsic functions to solve simple problems. The remainder of the chapter pro-

vides more complex solutions that, in each case, use these basic building blocks.

Exactly When Is It?

VBA provides three functions enabling you to determine the current date and

time set in your computer’s hardware. These functions—Now, Date, and Time—
check your system clock and return all or part of the current setting. None of these
functions requires any parameters, and the functions can be summarized simply:

Function Return Value
Now Returns the current date and time
Date Returns the date portion of the current date and time

Time Returns the time portion of the current date and time

148 Chapter 3 ¢ Working with Dates and Times

Although these functions seem somewhat redundant, they do each have their
purpose. For example, if you want to display only the current time without the
date portion, it’s simpler to call the Time function than to call the Now function
and remove the date portion.

TiP You can use the Date and Time statements to set the current date and time as
well. Placing either keyword on the left-hand side of an equal sign allows you to
assign a new value to the system date and time.

For example, the following fragment checks the current time, and if it’s past 1:00
P.M., executes some code.
If Time > #1:00 PM# Then
' Only execute this code if it's after 1 PM.
End if
On the other hand, the following comparison wouldn’t make any sense in this
context because the value in Now (a value like 34565.2345) is guaranteed to be
greater than #1:00 PM# (the value 0.5416666667):
If Now > #1:00 PM# Then
' Only execute this code if it's after 1 PM.
End if
NOTE Unlike most other functions, Now, Date, and Time don't require trailing parentheses.
In fact, if you enter the parentheses, VBA often politely removes them for you.
TIP

You may run across the Date$ and Time$ functions if you're reading other people’s
code. These functions represent special cases of the Date and Time functions. In
each case, the string version (Date$ and Time$) returns a string representing the
date or time. Date$ always returns a string in the format mm-dd-yyyy; Time$
always returns a string in the format hh:mm:ss.

The Built-In VBA Date Functions 149

What If You Just Want One Portion of a Date/Time
Value?

To retrieve just the date portion of a date/time value, use the built-in DateValue
function. This function, discussed in the section “Converting Text to Date/Time
Format” later in this chapter, takes in either a string or a date value and returns
only the date portion. Using DateValue, you can compare the date portion of a
Date variable to a specific date value, like this:

If DateValue(dtmSomeDate) = #5/14/70# Then
" You know the date portion of dtmSomeDate is 5/14/70
End If

On the other hand, if you need just the time portion of a date variable, you can
use the TimeValue function. Using this function, you could write code that checks
the time portion of a date variable against a particular time, like this:

If TimeValue(dtmSomeDate) > #1:00 PM# Then
" You know the date variable contained a time portion
" with a time after 1:00 PM.

End If

Pulling the Pieces Apart

Of course, if you're working with dates, you're also working with years, months,
days, hours, minutes, and seconds. You might also like to work with a date in
terms of its placement within the year, or which quarter it’s in, or which day of the
week it is. VBA provides simple and useful functions for retrieving all this infor-
mation, and more.

Retrieving Just the Part You Need

To start with, you’ll find the functions listed in Table 3.2 to be helpful in extracting
simple information from a date value. Each of these functions accepts a date param-
eter and returns an integer containing the requested piece of information. (You
can also use the DatePart function, described in the section “One Function Does It
All” later in this chapter, to retrieve any of these values. It’s simpler to call the
functions in Table 3.2 if you just need one of the values listed.)

150

Chapter 3 e Working with Dates and Times

TABLE 3.2: Simple Date/Time Functions

Function Return Value

Year Year portion of the date
Month Month portion of the date
Day Day portion of the date
Hour Hour portion of the date
Minute Minutes portion of the date
Second Seconds portion of the date

You can use any of these functions to retrieve a portion of a date value. For
example, the following fragment displays the current year value:

MsgBox "The current year is " & Year(Now)
and the following fragment displays the month and day of a date variable:

Dim dtmDate As Date
dtmDate = #1/15/1947#
MsgBox "Month: " & Month(dtmDate) & " Day: " & Day(dtmDate)

The following fragment checks the current time and allows you to take an action
at1:12 p.M.:
If Hour(Time) = 13 And Minute(Time) = 12 Then

" You know 1it's 1:12 PM
End If

WARNING ¢ try sending the Date function to functions that return time portions of a
date/time value. Because the return value from the Date function doesn’t include
any time information (its fractional portion is 0), the Hour, Minute, and Second
functions will all return 0. The same warning applies to the Day, Month, and Year
functions: Don’t send them the Time function, because the return value from that
function doesn’t include any date information.

What Day of the Week Is This?

In addition to working with months and days, you may need to know the day of
the week represented by a date value. Of course, you could calculate this yourself

The Built-In VBA Date Functions 151

(there are published algorithms for calculating the day of a week, given a date),
but why bother? VBA knows the answer and can give it to you easily, using the
built-in WeekDay function. (You can also use the DatePart function, discussed in
the next section, to retrieve the same information.)

To determine the day of the week represented by any date value, use the Week-
Day function. Supply it with a date value, and it will return the day of the week on
which that date falls. For example,

Debug.Print WeekDay(#5/16/1956#)

returns 4, indicating that May 16 fell on a Wednesday in 1956.

Sunday Isn’t Always the First Day of the Week

Online help indicates that you can pass a second parameter to WeekDay, indicating the
first day of the week. In some countries, Monday is considered the first day of the week, so
most of the VBA date functions allow you to specify what you consider to be the first day
of the week. If you don’t specify a value, VBA uses the Windows setting for your local
country. If you specify a constant (vbSunday through vbSaturday) for this parameter, VBA
treats that day as the first day of the week and offsets the return value accordingly. If you
supply the constant value vbUseSystemDayOfWeek, the function uses its default, the value
supplied by Windows.

For example, the following lines represent a sample session in the Immediate window (run
in the United States, where Sunday is the first day of the week):

? WeekDay(#5/1/98#)

6

? WeekDay(#5/1/98#, vbUseSystemDayOfWeek)
6

? WeekDay(#5/1/98#, vbMonday)

5

Note that as you change the value of the FirstDayOfWeek parameter, the return value
changes as well. You need to be aware that WeekDay (and the corresponding functional-
ity in the DatePart function) doesn’t return a fixed value but, rather, a value relative to the
local first day of the week.

Of course, if you want a fixed value, no matter where your code runs, simply specify the
first day of the week. The following example returns 6 no matter where you run it:

? WeekDay(#5/1/98#, vbSunday)

152

Chapter 3 e Working with Dates and Times

One Function Does It All

In addition to the functions described in the previous sections, VBA supplies the
DatePart function. This function allows you to retrieve any portion of a date/time
value and also performs some simple calculations for you. (It can retrieve the
quarter of the year containing your date value, as well as all the other, simpler
information.)

To call DatePart, pass to it a string indicating which information you want returned
and a date value. The function returns the requested piece of information from the
date value you send it. Table 3.3 lists the possible values for the DatePart func-
tion’s Interval argument.

TABLE 3.3: Valuesforthe Interval Argument of the DatePart Function

Setting Description
yyyy Year

q Quarter

m Month

y Day of year
d Day

w Weekday
wWw Week

h Hour

n Minute

S Second

For example, the following two lines of code are equivalent:

Debug.Print Day(Date)
Debug.Print DatePart('d", Date)

But these two lines have no simple alternatives:

' Return the ordinal position of the current day within the year.
Debug.Print DatePart('y", Date)

' Return the quarter (1, 2, 3, or 4) containing today's date.
Debug.Print DatePart('q", Date)

The Built-In VBA Date Functions 153

DatePart allows you to optionally specify the first day of the week (just as you
can do with the WeekDay function) in its third parameter. It also allows you to
optionally specify the first week of the year in its fourth parameter. (Some coun-
tries treat the week in which January 1st falls as the first week of the year, as does
the United States. Other countries treat the first four-day week as the first week,
and still others wait for the first full week in the year and call that the first week.)

Performing Simple Calculations

VBA supplies two functions, DateAdd and DateDiff, which allow you to add and
subtract date and time intervals. Of course, as mentioned above, if you're just
working with days, you don’t need these functions—you can just add and sub-
tract the date values themselves. The following sections describe each of these
important functions in detail.

Adding Intervals to a Date

The DateAdd function allows you to add any number of intervals of any size to a
date/time value. For example, you can calculate the date 100 days from now or
the time 35 minutes ago. The function accepts three required parameters, as shown
in Table 3.4. Table 3.5 lists the possible values for the Interval parameter.

TABLE 3.4: Parameters for the DateAdd Function

Parameter Description
Interval A string expression indicating the interval of time to add
Number Number of intervals to add. It can be positive (to get dates in the future) or

negative (to get dates in the past)

Date Date to which the interval is added

TABLE 3.5: Possible Interval Settings for DateAdd

Setting Description
yyyy Year
q Quarter

m Month

154 Chapter 3 ¢ Working with Dates and Times

TABLE 3.5: Possible Interval Settings for DateAdd (continued)

Setting Description
y Day of year

d Day

w Weekday
ww Week

h Hour

n Minute

S Second

For example, to find the date one year from the current date, you could use an
expression like this:

DateAdd("yyyy", 1, Date)

rather than add 365 days to the current date (a common, although incorrect, solu-
tion). What about calculating the time two hours from now? That’s easy, too:

DateAdd("h", 2, Now)

DateAdd will never return an invalid date, but if you try to add a value that
would cause the return date to be before 1/1/100 or after 12/31/9999, VBA trig-
gers a runtime error.

WARNING Watch out! The abbreviation for adding minutes to a date/time value is “n,” not
“m,"” as you might guess. (VBA uses “m" for months.) Many VBA developers have
used “m” inadvertently and not noticed the error until the program was in use.

Subtracting Dates

If you need to find the number of intervals between two dates (where the interval
can be any item from Table 3.5), use the DateDiff function. Table 3.6 lists the
parameters for this function.

The Built-In VBA Date Functions 155

TABLE 3.6: Parametersforthe DateDiff Function

Parameter Required? Data Type Description

Interval Yes String Interval of time used to calculate the
difference between Date1 and Date2

Date1, Date2 Yes Date The two dates used in the calculation

FirstDayOfWeek No Integer constant The first day of the week. If not
specified, Sunday is assumed.

FirstWeekOfYear No Integer constant The first week of the year. If not
specified, the first week is assumed to
be the week in which January 1 occurs.

For example, to calculate the number of hours that occurred between two date
variables, dtmValuel and dtmValue2, you could write an expression like this:

DateDiff("h", dtmValuel, dtmValue2)
DateDiff’s return value can be confusing. In general, it performs no rounding at
all, but the meaning of the difference varies for different interval types. For example,
DateDiff("h", #10:00#, #12:59:59#)
returns 2 because only two full hours have elapsed between the two times.
When working with months or years, DateDiff returns the number of month or
year borders that have been crossed between the dates. For example, you might

expect the following expression to return 0 (no full months have been traversed),
yet the function returns 1 because a single month border has been crossed:

DateDiff("m", #11/15/2000#, #12/1/2000#)

The same goes for the following expression, which returns 1 even though only a
single day has transpired:

DateDiff("yyyy", #12/31/2000#, #1/1/2001#)

When working with weeks, DateDiff becomes, well, strange. VBA treats the “w”
(weekday) and “ww” (week) intervals differently, but both return (in some sense)
the number of weeks between the two dates. If you use “w” for the interval, VBA
counts the number of the day on which Datel falls until it hits Date2. It counts
Date2 but not Datel. (This explanation requires visual aids, so consult Figure 3.1
for an example to work with.) For example,

DateDiff("w", #12/5/2000#, #12/18/20004#)

156 Chapter 3 e Working with Dates and Times

returns 1 because there’s only one Wednesday following 12/5/2000 before stop-
ping at 12/18. On the other hand,

DateDiff("w", #12/5/2000#, #12/19/20004)
returns 2 because there are two Wednesdays (12/6 and 12/13) in the range.

Using “ww” for the range, DateDiff counts calendar weeks. (That is, every time
it hits the first day of the week, it bumps the count.) Therefore, the previous two
examples both return 2, using the “ww” interval; in both cases, there are two Sun-
days between the two dates. Just as with the “w” interval, VBA counts the end
date if it falls on a Sunday, but it never includes the starting date, even if it is a
Sunday. Given that caveat, DateDiff should return the same answer for either the
“w” or “ww” interval if Datel is a Sunday.

FIGURE 3.1
A visual aid for DateDiff

calculations

TIP

If you use date literal values (like #5/1/2001#), VBA uses the exact date you specify
in its calculations. If, on the other hand, you use a string that contains only the
month and date (like “5/1"), VBA inserts the current year when it runs the code.
This allows you to write code that works no matter what the year is when you run
it. Of course, this makes it difficult to compare dates from two different years
because there’s no way to indicate any year except the current one. But if you
need to perform a calculation comparing dates within the current year, this
technique can save you time.

Converting Text to Date/Time Format

Sometimes your code needs to work with date values that are stored as strings.
Perhaps you've received data from some outside source and need to convert it to
date format, or perhaps the user has entered a value into a text box somewhere
and you now need to work with it as a date. VBA provides four functions to help

The Built-In VBA Date Functions 157

you make the necessary conversions: IsDate, DateValue, TimeValue, and CDate.
Each of these functions accomplishes a slightly different task, and their differences
aren’t apparent from the online help.

The IsDate function takes in a single value (a string or a date value) and deter-
mines if VBA can correctly interpret the value as a date. If so, the function returns
True; otherwise, False. For example, each of the following expressions returns
True when run in the Immediate window (in the United States):

? IsDate(#12/30/2000%#)
? IsDate("12/30/2000")
? IsDate("30/12/2000")
? IsDate(#12-30-2000%#)
? IsDate('December 30 2000")

Obviously, VBA is quite lenient in terms of what it accepts as a date, and it will
attempt to convert the value to a date using the CDate function shown below. You
should note, however, that VBA may return True when you’'d expect it to return
False. In the preceding examples, the date value “30/12/2000” returned True,
even though the string represents an invalid date in the current locale. Under the
covers, VBA determined that if it swapped the month and day, this would be a
legal date, and it attempts to do this for you. You may not like this behavior, but
that’s how it works.

WARNING The IsDate function does not validate a date/time value. All it does is determine if,

by some means, no matter how much effort it takes, VBA can manage to interpret
the data you send it as a date. It may not be a valid date or a reasonable one, but
VBA will be able to convert it into some type of date value. For example, try pass-
ing “3a1-2-3" to IsDate—it returns True. Then try passing the same value to the
DateValue and TimeValue functions—you may be surprised at the results.

DateValue and TimeValue each accept a single argument (usually a string expres-
sion) and convert that value into either a date or a time. (As mentioned earlier in
this chapter, you can also use these functions to extract just the time or date por-
tion of a combined date/time value.) DateValue can convert any string that matches
the internal date formats and any recognizable text month names as well. If the
value you send it includes a time portion, DateValue just removes that informa-
tion from the output value.

158

Chapter 3 e Working with Dates and Times

For example, all of the following expressions return the same value (assuming
the variable intDate contains the value 30):

DateValue("12 30 2001")
DateValue("December 30 2001")
DateValue("December " & intDate & " 2001")
DatevValue("12/30/01 5:00 PM")
DateValue("30/12/2001")

The final example returns December 30 no matter where you are, of course, only
because the date is unambiguous. Try that with a date like “12/1/2001,” and
you’ll get the date as defined in your international settings (December 1 in the
United States, January 12 in most of the rest of the world).

The TimeValue function works similarly to the DateValue function. You can
send it a string containing any valid expression, and it returns a time value. If
you send TimeValue a string containing date information, it disregards that
information as it creates the output value.

For example, all of the following return the same time value:

TimeValue("5:15 PM")
TimeValue("17:15")
TimeValue("12/30/2001 5:15 PM")

The CDate function coerces any value it can get its hands on into a date/time
value, if it can. Unlike the TimeValue and DateValue functions, it returns a full
date/time value, with all the information it was sent intact. In addition, it can con-
vert numeric values into dates. For example, all of the following examples return
the same value. (The last example is redundant, of course, but it works.)

CDate("12/30/2001 5:15 PM")
CDate(37255.71875)
CDate(#12/30/97 5:15 PM#)

Most often, you'll use CDate to convert text into a full date/time value, and you'll
use DateValue and TimeValue to convert text into a date or a time value only.

Putting the Pieces Together

What if, rather than text, you’ve got the pieces of a date or a time as individual
numeric values? In that case, although you could use any of the functions in the
previous section to perform the conversion (building up a complex string expres-
sion and then calling the function), you're better off using the DateSerial and
TimeSerial functions in this case. Each of these functions accepts three values—

Odd Behaviors 159

DateSerial takes year, month, and day, in that order; TimeSerial takes hour, min-
utes, and seconds, in that order—and returns a date or a time value, much like the
DateValue and TimeValue functions did with a single expression as input. Many
of the functions presented in the remainder of this chapter use the DateSerial or
TimeSerial function to create a date from the three required pieces.

For example, what if you need to know the first day of the current month? The
simplest solution is to write a function that uses an expression like this:

FirstDayInCurrentMonth = DateSerial(Year(Date), Month(Date), 1)

As you'll see, this is exactly the technique the dhFirstDayInMonth function, dis-
cussed later in this chapter, uses. By creating a new date that takes the year portion
of the current date, the month portion of the current date, and a day value of 1, the
function returns a new date that corresponds to the first day in the current month.

The TimeSerial function works just the same way. You pass it hour, minutes,
and seconds values, and it creates the appropriate time value for you. You'll use
both functions together to build a full date/time value if you've got six values
containing the year, month, day, hour, minutes, and seconds. That is, you might
find yourself with an expression like this:

DateSerial(intYear, intMonth, intDay) + _
TimeSerial(intHour, intMinutes, intSeconds)

Because a date/time value is simply the sum of a whole number representing
days and a fraction representing time, you can use both functions together to cre-
ate a full date/time value.

One useful feature of VBA’s built-in date functions is that they never return an
invalid date. For example, asking for DateSerial(2000, 2, 35), which certainly
describes a date that doesn'’t exist, politely returns 3/6/2000. If you use an expres-
sion such as DateSerial(1999, 12, 0), DateSerial happily returns the Oth day of
December. From a computer’s point of view, that date is 11/30/1999. We'll actu-
ally use these features to our benefit, as you'll see in the section “Is This a Leap
Year?” later in this chapter.

Odd Behaviors

DateSerial and TimeSerial both have some behaviors that you might consider odd,
unless you really stop and think about them. First, consider what this expression
should return:

DateSerial(0, 0, 0)

160 Chapter 3 o Working with Dates and Times

On first trying this, we expected this function call to return the zero date (12/30/
1899). But it doesn’t; it returns 11/30/1999. After some discussion, the result
became clearer. DateSerial saw the year 0 and attempted to interpret that as a
valid year. If you supply the value 75 for the year, DateSerial assumes you mean
1975, and if you supply 23 for the year, DateSerial assumes you mean 2023. (The
choices made here are based on the built-in cutoff for interpreting two-digit years,
as discussed in the sidebar, “The Turn of the Century Approacheth and Passeth”
later in the chapter.) If you've entered 0 for the year, DateSerial assumes you mean
the year 2000. Then, you've asked for the Oth month in 2000. Because January is
month number 1, month 0 is December 1999. Then, you've asked for day 0 within
the selected month. Because day 1 would be 12/1/1999, day 0is 11/30/1999. And
so it goes.

As another interesting example, try this expression:
TimeSerial(0, -60, 0)

You might expect this to return a value corresponding to 11:00 P.M. on 12/29/1899.
That is, because you've not specified a date, the expression uses the zero date,
12/30/1899, and because you've requested a value of -60 minutes, you might
assume you’d get a value 60 minutes before midnight. That’s not the way Time-
Serial works, however. Remember that a time is a fractional portion of a date/time
value, and the date is the whole number portion of the value. When you enter
TimeSerial(0, -60, 0), VBA converts the expression into its corresponding date value:
—0.0417 (that is, 1/24th of a day). But, because VBA interprets that value as a date/
time pair, the date part, -0, might as well be 0. The time part is 0.0417 (positive)
either way. That is, the result would be the same, using either of these expressions:

TimeSerial(0, -60, 0)
TimeSerial(0, 60, 0)

This may not be what you expect, but it is the way it works. (It’s interesting to note
that the DateAdd function does handle negative time intervals the way you might
expect. See the section “Adding Intervals to a Date” earlier in the chapter for more
information.)

Displaying Values the Way You Want

In your applications, you most likely will want to display dates in a variety of for-
mats. VBA supplies the Format function, which you can use to format date values
just the way you need. (You can also use the Format function to format numeric

Displaying Values the Way You Want 161

values, and string values as well. See the VBA online help for more information on
the specifics of using Format with other data types.)

When you use the Format function, you supply an expression to be formatted (a
date/time value, in this case) and a string expression containing a format speci-
fier. Optionally, you can also supply both a constant representing the first day of
the week you want to use and a constant representing the manner in which you
want to calculate the first week of the year. (For more information on these two
parameters, see Table 3.6 earlier in this chapter.)

The format specifier can be either a built-in, supplied string or one you make up
yourself. Table 3.7 lists the built-in date/time formats.

TABLE 3.7:

Named Date/Time Formats for the Format Function

Format Name

Description

Use Local Settings

General Date

Long Date

Medium Date

Short Date

Long Time

Medium Time

Short Time

Displays a date and/or time, depending on the value in
the first parameter, using your system'’s Short Date
style and the system'’s Long Time style

Displays a date (no time portion) according to your
system’s Long Date format

Displays a date (no time portion) using the Medium
Date format appropriate for the language version of
the host application

Displays a date (no time portion) using your system'’s
Short Date format

Displays a time (no date portion) using your system’s
Long Time format; includes hours, minutes, seconds

Displays time (no date portion) in 12-hour format using
hours and minutes and the AM/PM designator

Displays a time (no date portion) using the 24-hour
format; for example, 17:45

Yes

Yes

No

Yes

Yes

Yes

Yes

To test out these formats, we took a field trip to a fictional country. The region’s
time settings for Windows are displayed in Figure 3.2, and their date settings are
shown in Figure 3.3. The screen in Figure 3.4 shows some tests, using the Format
function, with the various date and time formats.

162 Chapter 3 e Working with Dates and Times

FIGURE 3.2
Regional settings for times
in a fictitious environment.

(Screen shot taken in

Regional Options 2] %]

Eene(ali Numbersl Currency Time:]Date |Fru)\.1t|.ncalas|

T |2

sample
Windows 2000.) Time sample: [2@50@58 19

Tirne foarnat: Ih@mm@ss It - I

Time zeparatcs: !@ > I

&b symbot £t -

Pt symbok oy >

Tirne fomiat notaticn

h=how m=moue ==second = amorpm

h =12 hour

H =24 haur

b, mm, sz = leading zem

b, m, £ = no leading 28

oK I Cancel S0P

FIGURE 3.3

Regional settings for

dates in the same fictitious
environment. (Screen shot
taken in Windows 2000.)

Regional Options kY|

Eene(aﬂ Numbetsl Curency | Tme Date IFr‘u:th analesl

—Calendar

‘wihen & two-digit Year iz erdered, mterpret as a year between:

[e o =

~ Shoit date
Shoit date sample: |8@1 D@9

Shat date fomst: [M@d@yy =1 |
Date separatorn |@ -I
- Long date————

Lang date sample: |10/August. 1993

Lorig date format: —[dd MMMM, sy |

oK. Cancal | A |

Displaying Values the Way You Want

163

FIGURE 3.4

Test of regional date for-
mats in the Microsoft Excel
Immediate window

7 Format(= .1.2/15/200].
12@15@01 1@15Q@00 vy
7 Format(=12/15/2001

15 pecember, 2001
15-Dec-01
12@15@01

1@15@00 y

01ais

13@15

T

7 Format(=12/15/2001

? Format(=12/15/2001

1
b
1
? Forma.t(12/15/2001 1:
p
7 Format(12;"15/2001 1

1

Yy
7 Format(=12/15/2001

s 15
115
=15

15

+15
115
=15

PHz,
M=,
PM=,
PH=,
PM=,
PM=,

PME,

“"General Date')

"Long Date')

"Medium Date™)
"short Date')
"Long Time")

"Medium Time')

"short Time™)

o

Back from your field trip, if you're feeling creative, or hampered by the limita-
tions of the named time and date formats, you can create your own formats using
the options shown in Table 3.8. If you build a string containing combinations of
these characters, you can format a date/time value any way you like. Figure 3.5
demonstrates a few of the formats you can create yourself, using the characters
listed in Table 3.8.

FIGURE 3.5
Use the Format function
with user-defined formats
for complete control.

Immediate

7 Format(#12/15/2000 1:15 PM=,
13:15:00 pec 15, 2000

7 Format(#12/15/2000 1:15 PME
Fri, 15 December, 2000

; ddd, dd mmmm, yyyy")

"hhimm:ss mmm dd, yyyy') B

Ix

s

TABLE 3.8: User-Defined Time/Date Formats for the Format Function
Character Description Use Comments
Regional
Settings?

() Time separator. Separates Yes In some locales, this character may
hours, minutes, and seconds have been translated and may not be
when time values are a colon (:). Output value is determined
formatted by local settings.

) Date separator. Separatesthe Yes In some locales, this character may

day, month, and year when
date values are formatted

have been translated and may not be
a slash (/). Output value is determined
by local settings.

164 Chapter 3 ¢ Working with Dates and Times

TABLE 3.8: User-Defined Time/Date Formats for the Format Function (continued)
Character Description Use Comments
Regional
Settings?
C Displays the date as ddddd Yes Same as the named General Date
and displays the time as ttttt, format
in that order
d Displays the day as a number ~ No
without a leading 0 (1-31)
dd Displays the day as a number ~ No
with a leading 0 (01-31)
ddd Displays the day as an Yes
abbreviation (Sun-Sat)
dddd Displays the day as a full Yes
name (Sunday-Saturday)
ddddd Displays the date as a Yes Same as the named Short Date format
complete date (including day,
month, and year)
dddddd Displays a date as a complete Yes Same as the named Long Date format
date (including day, month,
and year)
W Displays the day of the week No Output depends on the setting of the
as a number (1 for Sunday FirstDayOfWeek parameter.
through 7 for Saturday)
ww Displays the week of theyear ~ No Output depends on the
as a number (1-54) FirstWeekOfYear parameter.
m Displays the month as a No If “m" follows “h" or “hh,” displays
number without a leading 0 minutes instead
(1-12)
mm Displays the month as a No If “mm* follows “h"” or “hh,” displays
number with a leading 0 minutes instead
(01-12)
mmm Displays the month as an Yes
abbreviation (Jan-Dec)
mmmm Displays the month as a full Yes

month name (January—
December)

Displaying Values the Way You Want 165

TABLE 3.8: User-Defined Time/Date Formats for the Format Function (continued)
Character Description Use Comments
Regional
Settings?
q Displays the quarter of the No
year as a number (1-4)
y Displays the day of the year No
as a number (1-366)
vy Displays the year as a two- No
digit number (00-99)
yyyy Displays the full year (100- No
9999)
h Displays the hour as a No
number without leading
zeros (0-23)
hh Displays the hour as a No
number with leading zeros
(00-23)
n Displays the minute as a No
number without leading
zeros (0-59)
nn Displays the minute as a No
number with leading zeros
(00-59)
s Displays the second as a No
number without leading
zeros (0-59)
sS Displays the second as a No
number with leading zeros
(00-59)
tttt Displays a time as a complete Yes Same as the named Long Time format
time (including hour, minute,
and second)
AM/PM Uses the 12-hour clock No Use “AM" for times before noon and
“PM" for times between noon and
11:59 P.M.
am/pm Uses the 12-hour clock No Use “am” for times before noon and

“pm” for times between noon and
11:59 p.m.

166 Chapter 3 o Working with Dates and Times

TABLE 3.8: User-Defined Time/Date Formats for the Format Function (continued)

Character Description Use Comments
Regional
Settings?
A/P Uses the 12-hour clock No Use “a” for times before noon and
“p" for times between noon and
11:59 p.m.
alp Uses the 12-hour clock No Use “A" for times before noon and
“P" for times between noon and
11:59 p.M.

AMPM Uses the 12-hour clock and Yes The case of the AM/PM string is
displays the AM/PM string determined by system settings
literal as defined by your
system

If you want to include literal text in your format string, you have two choices.
You can do either of the following:

e Precede each character with a backslash (\).
¢ Enclose the block of text within quotes inside the string.

The first method becomes quite tedious and difficult to read if you have more
than a few characters. The second method requires you to embed a quote inside a
quoted string, and that takes some doing on its own.

For example, if you want to display a date/time value like this:
May 22, 2002 at 12:01 AM

you have two choices. With the first method, you could use a format string
including \ characters:

Format(#5/22/2002 12:01 AM#, "mmm dd, yyyy \a\t h:mm AM/PM")
Using the second method, you must embed quotes enclosing the word “at” into
the format string. To do that, you must use two quotes where you want one in the
output. VBA sees the two embedded quotes as a single literal quote character and
does the right thing:

Format(#5/22/2002 12:01 AM#, "mmm dd, yyyy ""at"' h:mm AM/PM")

Either way, the output is identical.

Beyond the Basics 167

The Turn of the Century Approacheth and Passeth

How does VBA handle the year 2000 issue? Actually, quite gracefully. Normally, users are
accustomed to entering two-digit year values, and this, of course, is what has caused the
great, late 20th-century computer controversy. VBA interprets two-digit years in a some-
what rational manner: If you enter a date value with a two-digit year between 1/1/00 and
12/31/29, VBA interprets that as a date that begins with “20.” If you enter a date with a
two-digit year between 1/1/30 and 12/31/99, VBA interprets that as being a date that begins
with “19." If you're using Windows 98 or Windows 2000, you can modify this “window”
in the Regional settings Control Panel applet. The following list summarizes how VBA
treats date values entered with a two-digit year value, by default:

e Date range 1/1/00 through 12/31/29: treated as 1/1/2000 through 12/31/2029

e Date range 1/1/30 through 12/31/99: treated as 1/1/1930 through 12/31/1999

TiP If you want to make things simpler, you can also use the FormatDateTime
function, discussed in Chapter 1, to format your date and time values. Because
the function outputs strings, its description fell into that chapter. It could just as
easily have ended up here.

Beyond the Basics

Once you get the built-in date-handling functions under your belt, you’ll find
innumerable other tasks you need to solve involving dates and times. The remain-
der of this chapter presents a series of solutions to common problems that require
stand-alone procedures, grouped by their functionality. The three sections deal
with three types of date/time issues:

¢ Finding a specific date

e Manipulating dates and times

e Working with elapsed time

168 Chapter 3 o Working with Dates and Times

Finding a Specific Date
In this section, you'll find solutions to many simple problems that involve locating
a date. Specifically, the routines include
¢ Returning the first or last day of a specified month
e Returning the first or last day of the week, given a date
¢ Returning the first or last day of the year, given a date
e Returning the first or last day of the quarter, given a date
¢ Returning the next or previous specific weekday, given a date
¢ Finding the next anniversary date

¢ Returning the date of the nth particular weekday (Monday, Tuesday, and so
on) of a month

e Returning the next or previous working day, given a date

e Returning the first or last working day of a specified month

Using Optional Parameters

Many of the procedures in the following sections accept one or more optional parameters.
In each case, if you don’t specify the parameter in your function call, the receiving function
assigns that parameter a value. In most cases, this allows you to omit the date parameter,
and the function assumes the current date when it runs.

When you use optional parameters, you have two basic choices:

e Use a Variant parameter, and check for the parameter using the IsMissing function.
e Use a strongly typed parameter, and assign a default value in the formal declaration.

We've opted for the second alternative because this allows for type checking when calling
the procedure. On the other hand, this technigque also removes the possibility of using the
IsMissing function to check for the omission of the parameter. Because the value you
assign to the parameter in the formal declaration can only be a constant, not a function
value, our solution when working with dates was to use the value 0 to indicate that you'd
omitted the date parameter. For example, you'll see declarations like this:

Function dhFirstDayInMonth(Optional dtmDate As Date = 0) As Date

Finding a Specific Date 169

This requires the procedure to check for the 0 value and replace it with the current date:

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

We assumed you would be very unlikely to ever actually use the date 0 (12/30/1899) as a
parameter to one of these procedures. If you do attempt to send 12/30/1899 to any of the
procedures that accept an optional date parameter, the procedure will treat your input as
though you'd entered the current date. If you must allow that date as input, you'll need to
either remove the optional parameter or find some other workaround.

TIP

Unless specified otherwise, all the procedures that follow are saved in the sample
module named DateTime.

Finding the Beginning or End of a Month

Finding the first day in a specific month is easy: Use the DateSerial function,
breaking out the year and month portions of the specified date, asking for the day
value 1. The dhFirstDayInMonth function, in Listing 3.1, performs this function
call after first checking the incoming parameter and converting it to the current
date if necessary. Calling the function as

dhFirstDayInMonth(#5/7/70#)

returns 5/1/70, of course.

Determining the last day in the month requires using an obscure, but docu-
mented, detail of the DateSerial function. It turns out that any (or all) of the three
parameters to the DateSerial function can be numeric expressions. Because VBA
will never return an invalid date, you can request the day before the first day of a
month by incrementing the month value by 1 and decrementing the day by 1. The
dhLastDayInMonth function in Listing 3.1 does just that. Using this expression:

DateSerial(Year(dtmDate), Month(dtmDate) + 1, 0)

it finds the Oth day of the following month, which is, of course, the final day of the
requested month.

170 Chapter 3 e Working with Dates and Times

Listing 3.1: Find the First or Last Day in a Month

Public Function dhFirstDayInMonth(Optional dtmDate As Date = 0) As Date
' Return the first day in the specified month.

' Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dhFirstDayInMonth = DateSerial(_
Year(dtmDate), Month(dtmDate), 1)
End Function

Public Function dhLastDayInMonth(Optional dtmDate As Date = 0) As Date
' Return the last day in the specified month.

' Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dhLastDayInMonth = DateSerial(_
Year(dtmDate), Month(dtmDate) + 1, 0)
End Function

Finding the Beginning or End of a Week

Finding the first or last day in a week counts on the fact that you can subtract inte-
gers from a date value and end up with another date value. If the specified date
was a Sunday, to find the first day of the week (assuming Sunday was the first day
of the week), you'd subtract 0 from the date. If the date was a Monday, you'd sub-
tract 1; if Tuesday, you’d subtract 2, and so on. Because the WeekDay function
returns a number between 1 and 7, all you need to do is subtract the WeekDay
return value from the date and then add 1. The dhFirstDayInWeek function, in
Listing 3.2, does this work for you.

Finding a Specific Date 171

NOTE

To be completely correct, the dhFirstDayinWeek and dhlLastDayinWeek functions
specify the first day of the week for the WeekDay function, using the vbUse-
SystemDayOfWeek constant. This way, the first and last days in the week
correspond to the local settings.

The dhLastDayInWeek function in Listing 3.2 uses the same concepts. This time,
however, you want to add 6 to the first day of the week. That is (assuming you're
in the United States), if the date in question is a Wednesday, you subtract the
Weekday return value (4), which takes you to Saturday. Adding 1 takes you to the
first day of the week, and adding 6 more takes you to the last day of the week.

Listing 3.2: Find the First or Last Day in a Week

Public Function dhFirstDayInWeek(Optional dtmDate As Date = 0) As Date
' Returns the first day in the week specified by the
' date in dtmDate. Uses localized settings for the first
' day of the week.

' Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dhFirstDayInWeek = dtmDate - _
Weekday(dtmDate, vbUseSystemDayOfWeek) + 1
End Function

Public Function dhLastDayInWeek(Optional dtmDate As Date = 0) As Date
' Returns the Tast day in the week specified by the
' date in dtmDate.
' Uses localized settings for the first day of the week.

' Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

172 Chapter 3 e Working with Dates and Times

dhLastDayInWeek = dtmDate - _
Weekday(dtmDate, vbUseSystemDayOfWeek) + 7
End Function

To call dhFirstDaylnWeek and dhLastDayInWeek, pass a date value to specify a
date, or pass no parameter to use the current date. For example, the following
code calculates the first and last day in two different weeks:

Debug.Print "First day in the current week: " _

& dhFirstDayInWeek()
Debug.Print "Last day in the current week: " & dhLastDayInWeek()

Debug.Print _
"First day in the week of 1/1/98: " & dhFirstDayInWeek(#1/1/98#)

Debug.Print _
"Last day in the week of 1/1/98: " & dhLastDayInWeek(#1/1/98#)

Finding the Beginning or End of a Year

Finding the first or last day in a year is simple, compared to the other functions in
this section. Once you understand the DateSerial function, it’s just a matter of
building up a date value that’s January 1 or December 31 in the specified year.
Because those dates are fixed as the first and last days in the year, no more calcula-
tion is necessary. The dhFirstDayInYear and dhLastDayInYear functions, in List-
ing 3.3, show all that’s necessary.

Listing 3.3: Find the First or Last Day in a Year

Public Function dhFirstDayInYear(Optional dtmDate As Date = 0) As Date
' Return the first day in the specified year.

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dhFirstDayInYear = DateSerial(Year(dtmDate), 1, 1)
End Function

Public Function dhLastDayInYear(Optional dtmDate As Date = 0) As Date
' Return the last day in the specified year.

Finding a Specific Date 173

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dhLastDayInYear = DateSerial(Year(dtmDate), 12, 31)
End Function

To call either of these functions, either pass no value (to work with the current
year) or pass a date value indicating the year. The functions will each return the
requested date. For example, the following code fragment calculates the first and
last days in two ways:

Debug.Print "First day in the current year: " & _
dhFirstDayInYear()

Debug.Print "Last day in the current year: " & dhLastDayInYear()

Debug.Print _
"First day in the next year: " & _
dhFirstDayInYear(DateAdd("yyyy", 1, Date))

Debug.Print _
"Last day in the previous year: " & _
dhLastDayInYear(DateAdd("yyyy", -1, Date))

Finding the Beginning or End of a Quarter

Finding the beginning or end of a quarter takes a bit more effort than do the other
functions in this section because there’s little support for working with quarters
(January though March, April through June, July through September, October
through December) in the VBA function library. Listing 3.4 shows the functions
that solve this problem, dhFirstDayInQuarter and dhLastDayInQuarter.

Listing 3.4: Find the First and Last Day in a Quarter

Public Function dhFirstDayInQuarter(Optional dtmDate As Date = 0) _
As Date

' Returns the first day in the quarter specified by the

' date in dtmDate.

174 Chapter 3 ¢ Working with Dates and Times

Const dhcMonthsInQuarter As Integer = 3
Dim intMonth As Integer

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

' Calculate the first month in the quarter.
intMonth = Int((Month(dtmDate) - 1) / dhcMonthsInQuarter) * _
dhcMonthsInQuarter + 1

dhFirstDayInQuarter = DateSerial(Year(dtmDate), intMonth, 1)
End Function

Public Function dhLastDayInQuarter(Optional dtmDate As Date = 0) _

As Date
' Returns the last day in the quarter specified by the
' date in dtmDate.

Const dhcMonthsInQuarter As Integer = 3
Dim intMonth As Integer

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

' Calculate the last month in the quarter.
intMonth = Int((Month(dtmDate) - 1) / dhcMonthsInQuarter) * _
dhcMonthsInQuarter + (dhcMonthsInQuarter + 1)

dhLastDayInQuarter = DateSerial(Year(dtmDate), intMonth, 0)
End Function

Certainly, once you know how to find the first day in the quarter, you know how
to find the last; that’s just a matter of adding three months and subtracting one day.
But how do you find the first day in the quarter containing a specified date? You
know the year portion of the date (it’s the same as the date you've specified) and the

Finding a Specific Date 175

day portion (which has to be 1), but what month do you use? You could, of course,
use the brute-force technique, with a Select Case statement like this:

Select Case Month(dtmDate)

Case 1, 2, 3
intMonth = 1
Case 4, 5, 6
intMonth = 4
' etc.
End Select

But you just know there has to be a better way! This is one situation in which it’s
worth pulling out some paper and thinking through what'’s really going on. You
may find it useful to create a table listing the input and output of a proposed cal-
culation, in this case, to convert from any month to the first month in that quarter:

Month First Month of Quarter
1

2 1
3 1
4 4
5 4
6 4
7 7
8 7
9 7
10 10
11 10
12 10

Remember, you're looking for a mathematical relationship between the two col-
umns. (Reminds you of high school algebra, right?) It looks as though each output
“step” is a multiple of 3, plus 1. After much scribbling, you might come up with
the following algebraic relation between the two columns, which turns out to be the
exact solution dhFirstDayInQuarter uses:

First Month of Quarter = Int((Month - 1) / 3) * 3 + 1

176

Chapter 3 e Working with Dates and Times

This expression finds, for each month value, the largest multiple of 3 less than or
equal to the number, multiplies the result by 3, and then adds 1. This calculation,
based on the value in the first column, returns the value in the second column in
every case. Therefore, rather than asking VBA to perform a lookup and a jump for
each call to the function, it performs a moderately simple calculation.

Once dhFirstDayInQuarter has found the first month in the quarter, finding the
first day is simple: The function calls DateSerial, building a date from the supplied
year, the calculated month, and the day value 1. To find the last day in the quarter,
dhLastDayInQuarter repeats the calculation from dhFirstDayInQuarter, adds 1 to
the month it calculated to move to the next month, and then uses 0 for the day
value. As discussed in the section “Finding the Beginning or End of a Month” ear-
lier in this chapter, supplying 0 for the Day parameter to DateSerial returns the
final day of the previous month, which is exactly what you want in this context.

Finding the Next or Previous Weekday

In many financial calculations, you’ll need to know the next specific weekday
after a given date. For example, you might need to know the date of the Friday
immediately following April 30, 2002, or the Monday immediately preceding the
same date. As when finding the first or last day in a week, calculating these dates
counts on the fact that you can subtract an integer from a date value and end up
with another date value.

In this case, it seems simplest to just calculate the beginning of the week contain-
ing the specified date and then add on enough days to get to the requested date.
That code, from the procedures in Listing 3.5, looks like this:

dtmTemp = dtmDate - Weekday(dtmDate) + TngDOW

Say you're looking for the Thursday before 10/7/97 (a Tuesday). In this case,
Weekday(dtmDate) will be 3 (Tuesday’s day of the week) and IngDOW will con-
tain 5 (Thursday’s day of the week). The expression

dtmDate - Weekday(dtmDate) + intDOW
' the same as:
" #10/7/97# - 3 + 5

Finding a Specific Date 177

will return the date 10/9/1997. This, clearly, is not the Thursday before 10/7/97,
but the Thursday after. The final step of the calculation, then, is to subtract one
week, if necessary. The entire set of statements looks like this:

dtmTemp = dtmDate - Weekday(dtmDate) + TngDOW
If dtmTemp >= dtmDate Then

dtmTemp = dtmTemp - 7
End If

When would you not need to subtract 7 to move to the previous week? Reverse
the dates in the example. If you're looking for the Tuesday before 10/9/97, the
expression would be

dtmDate - Weekday(dtmDate) + 1ngDOW
' the same as:
' #10/9/97# - 5 + 3

which returns #10/7/1997#, the correct answer. There’s no need to subtract 7 to
move to the previous week. The same logic applies to calculating the following
weekday, but reversed. In this case, you may need to add 7 to move to the next
week if the day you were looking for has already occurred in the current week.

Listing 3.5: Find the Previous or Next Specific Weekday

Public Function dhPreviousDOW(1ngDOW As VbDayOfWeek, _
Optional dtmDate As Date = 0) As Date

" Find the previous specified day of week before

' the specified date.

Dim dtmTemp As Date

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dtmTemp = dtmDate - Weekday(dtmDate) + TngDOW
If dtmTemp >= dtmDate Then
dtmTemp = dtmTemp - 7
End If
dhPreviousDOW = dtmTemp
End Function

178 Chapter 3 e Working with Dates and Times

PubTlic Function dhNextDOW(1ngDOW As VbDayOfWeek, _
Optional dtmDate As Date = 0) As Date
" Find the next specified day of week after the specified date.

Dim dtmTemp As Date

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dtmTemp = dtmDate - Weekday(dtmDate) + TngDOW
If dtmTemp <= dtmDate Then
dtmTemp = dtmTemp + 7
End If
dhNextDOW = dtmTemp
End Function

The following examples demonstrate calling the two functions:

Debug.Print "The Monday before 12/25/2000 is " & _
dhPreviousDOW(vbMonday, #12/25/2000#)
Debug.Print "The Friday after 12/25/2000 is " & _
dhNextDOW(vbFriday, #12/25/2000#)
Debug.Print "It's " & Date & _
". The next Monday is " & dhNextDOW(vbMonday)

Finding the Next Anniversary

Often, when working with dates, you have stored away a birthday or a wedding
date and need to find out the next occurrence of the anniversary of that date. The
function in this section, dhNextAnniversary (Listing 3.6), will do that chore for
you. Given a date, it finds the next anniversary of that date, taking into account
the current date.

Finding the Next Anniversary 179

Listing 3.6: Find the Next Anniversary of a Date

PubTic Function dhNextAnniversary(dtmDate As Date) As Date
' Given a date, find the next anniversary of that date.

Dim dtmThisYear As Date

" What's the corresponding date in the current year?
dtmThisYear = DateSerial(Year(Now), Month(dtmDate), Day(dtmDate))

" If the anniversary has already occurred, then add 1 to the year.
If dtmThisYear < Date Then
dtmThisYear = DateAdd('yyyy", 1, dtmThisYear)
End If
dhNextAnniversary = dtmThisYear
End Function

This one’s actually quite easy. The code follows these steps:
1. Finds the date corresponding to the anniversary in the current year
2. If the date has already passed in the current year, adds one year to the date

To find the anniversary date in the current year, the code uses this expression:
dtmThisYear = DateSerial(Year(Now), Month(dtmDate), Day(dtmDate))

To correct the result if the date has already passed in the current year, the function
uses this fragment:

If dtmThisYear < Date Then
dtmThisYear = DateAdd('yyyy"', 1, dtmThisYear)
End If

Either way, dtmThisYear contains the next occurrence of the anniversary.

To try out the procedure, you might use code like the following fragment. Given
that the current date is 12/15/2001,

dhNextAnniversary(#5/16/56#)
returns 5/16/2002 because that date has already passed in 2001.

180 Chapter 3 o Working with Dates and Times

Finding the nth Particular Weekday in a

Month

Perhaps your application needs to find the third Tuesday in November, 1997. The
function presented here, dhNthWeekday, in Listing 3.7, solves this puzzle for you.
The function accepts three parameters:

e A date specifying the month and year to start in
e Aninteger greater than 1 that specifies the offset into the month

¢ Along integer specifying the day of week to retrieve (Use the vbSunday...
vbSaturday constants, defined as part of the VbDayOfWeek enumeration.)

The function returns a date representing the nth specific weekday in the month. If
you pass an invalid day of week value or an invalid offset, the function returns the
date you passed it.

Listing 3.7: Find the nth Specific Weekday in a Month

Public Function dhNthWeekday(dtmDate As Date, intN As Integer, _
TngDOW As VbDayOfWeek) As Date

" Find the date of the specified day within the month. For
' example, retrieve the 3rd Tuesday's date.

Dim dtmTemp As Date

If (IngDOW < vbSunday Or TngDOW > vbSaturday) _
Or (intN < 1) Then

" Invalid parameter values. Just

' return the passed-in date.

dhNthWeekday = dtmDate

Exit Function
End If

' Get the first of the month.
dtmTemp = DateSerial(Year(dtmDate), Month(dtmDate), 1)

' Get to the first 1ngDOW including or after the first
' day of the month.
dtmTemp = dtmTemp + ((IngDOW - Weekday(dtmTemp) + 7) Mod 7)

Finding the nth Particular Weekday in a Month 181

" Now you've found the first TngDOW in the month.
" Just add 7 for each intN after that.
dhNthWeekday = dtmTemp + ((intN - 1) * 7)

End Function

The function is moderately simple. To do its work, it must:

1. Verify the parameters

2. Find the first day of the specified month

3. Move to the first specified weekday in the month

4. Add enough weeks to find the nth occurrence of the specified weekday

If either the day of the week value or the number of weeks to skip is invalid, the
function returns the passed-in starting date. The code that handles the verification
looks like this:

If (IngDOW < vbSunday Or TngDOW > vbSaturday) _
Or (intN < 1) Then

" Invalid parameter values. Just

' return the passed-in date.

dhNthWeekday = dtmDate

Exit Function
End If

Finding the first day of the specified month is, as you know by now, simple. It
takes one line of code:

dtmTemp = DateSerial(Year(dtmDate), Month(dtmDate), 1)

Moving to the first specified weekday requires a bit more work. This procedure
uses logic similar to that shown in the section “Finding the Next or Previous
Weekday” earlier in this chapter. In this case, the procedure uses the Mod opera-
tor to verify that the code never adds more than 6 to the current day. Mod returns
the remainder when you divide a value by Mod’s second operand, and in this
case, using Mod 7 returns a value between 0 and 6, which is exactly what you
need:

dtmTemp = dtmTemp + ((IngDOW - Weekday(dtmTemp) + 7) Mod 7)

Finally, to move to the nth occurrence of the weekday, you just need to add the
correct multiple of 7 to the date:

dhNthWeekday = dtmTemp + ((intN - 1) * 7)

182 Chapter 3 o Working with Dates and Times

For example, to find the date of the third Tuesday in March, 1998, you could call
the function like this:

dtm = dhNthWeekday(#3/98#, 3, vbTuesday)
The return value will be the date #3/17/1998#, the third Tuesday in March, 1998.

Working with Workdays

Many calculations involve the five typical workdays (Monday through Friday),
but VBA doesn’t provide any support for this subset of dates. The functions in this
section provide information about the next and previous workday and finding the
first and last workday in a month. Skipping weekend days is simple and not wor-
thy of much explanation. The hard part is dealing with the other factor affecting
these calculations: holidays. VBA is blissfully unaware of the real world and
knows nothing of national and religious holidays. Supplying that information is
up to you, and the functions presented here count on your having created an ADO
recordset object filled with the rows of information about holidays. You needn’t
supply a recordset if you don’t need this functionality; the recordset parameter to
the functions shown here is optional. If you do supply a reference to an open
recordset, you must also pass in the name of the field containing holiday date
information so the code knows the field in which to search.

TIP

We've stored all the procedures in this section in the module named
DateTimeADO. Because these procedures require a reference to ADO 2.1 (or
higher) in your projects, it's important that we kept them separate from the
procedures that don’t require a special reference. If you want to use these procedures
in your own applications, import DateTimeADO into your project, and use the
Tools » References menu to locate and select Microsoft ActiveX Data Objects 2.1
(or higher, if you've installed a product that supplies a later version—2.1 was
current at the time of this book’s writing).

Because all the functions in this section count on the same support routines, it
makes sense to explain these underlying procedures first. The first routine, IsWeek-
end, shown in Listing 3.8, accepts a date parameter and returns True if the date
falls on a weekend and False otherwise.

Working with Workdays 183

Listing 3.8: Indicate Whether a Date Falls on a Weekend

Private Function IsWeekend(dtmTemp As Date) As Boolean
" If your weekends aren't Saturday (day 7)
' and Sunday (day 1), change this routine
' to return True for whatever days
" you DO treat as weekend days.
Select Case WeekDay(dtmTemp)
Case vbSaturday, vbSunday
IsWeekend = True
Case Else
IsWeekend = False
End Select
End Function

The second support function, SkipHolidays (shown in Listing 3.9), takes a refer-
ence to a recordset, a field to search in, a date value, and the number of days to
skip (normally +1 or —1). It skips over weekend days and holidays until it finds a
date that is neither a weekend nor a holiday. It skips past increments of the
parameter passed in, so the same code can be used to skip forward or backward.

Listing 3.9: Move a Date Value over Holidays and Weekends

Private Function SkipHolidays(_
rst As ADODB.Recordset, strField As String, _
dtmTemp As Date, intIncrement As Integer) As Date
' Skip weekend days, and holidays in the recordset
" referred to by rst.
Return dtmTemp + as many days as it takes to get to
' a day that's not
' a holiday or weekend.

Dim strCriteria As String
Dim strFieldName As String
On Error GoTo HandleErr

' Move up to the first Monday/last Friday, if the first/last
of the month was a weekend date. Then skip holidays.
Repeat this entire process until you get to a weekday.
Unless rst contains a row for every day in the year (!)
this should finally converge on a weekday.

184 Chapter 3 ¢ Working with Dates and Times

Do
Do While IsWeekend(dtmTemp)
dtmTemp = dtmTemp + intIncrement
Loop
If Not rst Is Nothing Then
If Len(strField) > 0 Then
strFieldName = strField
If Left$(strField, 1) <> "[" Then
strFieldName = "[" & strFieldName & "]"

End If
rst.MoveFirst
Do
strCriteria = strFieldName & " = " & _
"#" & Format(dtmTemp, "mm/dd/yyyy") & "#"
rst.Find strCriteria, , adSearchForward

If Not rst.EOF Then
dtmTemp = dtmTemp + intIncrement
End If
Loop Until rst.EOF
End If
End If
Loop Until Not IsWeekend(dtmTemp)

ExitHere:
SkipHolidays = dtmTemp
Exit Function

HandTleErr:
" No matter what the error, just
' return without complaining.
' The worst that could happen is that we
" include a holiday as a real day, even if
" qt's 1in the table.
Resume ExitHere
End Function

The code starts out by skipping over any weekend days. If you send it a date
that falls on a weekend, this first bit of code will loop until it lands on a non-week-
end date:

Do While IsWeekend(dtmTemp)
dtmTemp = dtmTemp + intIncrement
Loop

Working with Workdays 185

Its next task is to ensure that the recordset variable is instantiated, that it points
to something, and that the field name has been supplied. Once that happens, if the
field name doesn’t include a leading [character, the code adds leading and trail-
ing brackets. This guards against problems that can occur if the field name
includes spaces.

If Not rst Is Nothing Then
If Len(strField) > 0 Then
strFieldName = strField
If Left$(strField, 1) <> "[" Then
strFieldName = "[" & strFieldName & "]"
End If

Finally, the code enters the loop shown below, checking for a match in the
recordset against the current value of dtmTemp. If the code finds a match in the
table, it moves to the next day and tries again. It continues in this way until it no
longer finds a match in the table. Most of the time, however, this code will execute
only once. (There are few, if any, occurrences of consecutive holidays.) Normally,
there won't be any match, and the code will drop right out. If the code finds a
match in the table, there’s rarely more than one. Unless you add a row to the table
for each day of the year, this code should be quite fast.

Do
strCriteria = strFieldName & " = " & _
"#" & Format(dtmTemp, "mm/dd/yyyy") & "#"
rst.Find strCriteria, , adSearchForward
If Not rst.EOF Then
dtmTemp = dtmTemp + intIncrement
End If
Loop Until rst.EOF

Because this step could drop you off on a weekend date, the entire process
repeats until you run out of holidays and don’t end up on a weekend date. Of
course, the outer loop most likely is never going to be used, but it takes care of an
important problem.

NOTE

There are many ways to create an ADO recordset, and the examples later in the
chapter show two different ways to do it. You might want to peruse the example
procedures in the TestDateTime module to see how you can create the necessary
recordsets. For more information on using ADO, we recommend both our “sister”
book, Access 2000 Developer’'s Handbook (Sybex, 1999), and Visual Basic
Developer’s Guide to ADO by Mike Gunderloy (Sybex, 1999).

186 Chapter 3 o Working with Dates and Times

Finding the Next, Previous, First, or Last Workday in
the Month

Once you've got the routines to skip holidays, the rest is simple. If you need to
find the previous or next workday, it’s just a matter of skipping weekends and
holidays until you find another workday. For example, the procedures in Listing 3.10
find the next or previous workday simply by calling the SkipHolidays function. In
each case, the function accepts three optional parameters:

¢ A date, indicating the month in which to search. If this parameter is omitted,
the code uses the current date.

¢ Anopen recordset, containing holiday information. If this parameter is
omitted, the code skips just weekends, not holidays. If it is supplied, you
must supply the field name in the next parameter.

e A string containing the name of a field to be searched in the open recordset.
This parameter is used only if the recordset parameter isn’t omitted, and it is
required if you supply the recordset.

As you can see from the code in Listing 3.10, there’s not much to these routines,
given the workhorse procedure, SkipHolidays.

Listing 3.10: Find the Next or Previous Workday

Public Function dhNextWorkday(Optional dtmDate As Date = 0, _
Optional rst As ADODB.Recordset = Nothing, _
Optional strField As String = "") As Date

' Return the next working day after the specified date.
" If you want to look up holidays in a table, pass in
' an ADO recordset object containing the rows.

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dhNextWorkday = SkipHolidays(rst, strField, dtmDate + 1, 1)
End Function

Working with Workdays 187

Public Function dhPreviousWorkday(Optional dtmDate As Date = 0, _
Optional rst As ADODB.Recordset = Nothing, _
Optional strField As String = "') As Date

' Return the previous working day before the specified date.
" If you want to look up holidays in a table, pass in
' an ADO recordset object containing the rows.

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dhPreviousWorkday = SkipHolidays(rst, strField, dtmDate - 1, -1)
End Function

If you want to find the first or last workday in a given month, all you need to do
is maneuver to the first or last day in the month and then skip holidays forward or
backward. For example, the dhFirstWorkdayInMonth function, shown in Listing 3.11,
handles this for you. The function accepts the same three optional parameters as
the previous examples.

The dhFirstWorkdayInMonth function first finds the first day in the month,
using the same code as in other procedures in this chapter. Once it gets to the first
day, it calls SkipHolidays, passing the recordset, the field name, the starting date,
and the increment (1, in this case). The date returned from SkipHolidays will be
the first working day in the month.

Listing 3.11: Find the First Workday in a Given Month

Public Function dhFirstWorkdayInMonth(Optional dtmDate As Date = 0, _
Optional rst As ADODB.Recordset = Nothing, _
Optional strField As String = "") As Date

" Return the first working day in the month specified.
" If you want to Took up holidays in a table, pass in

' an ADO recordset object containing the rows.

Dim dtmTemp As Date

188

Chapter 3 e Working with Dates and Times

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dtmTemp = DateSerial(Year(dtmDate), Month(dtmDate), 1)
dhFirstWorkdayInMonth = SkipHolidays(rst, strField, dtmTemp, 1)

End Function

Finding the last workday in the month is very similar. In dhLastWorkdayInMonth,
shown in Listing 3.12, the code first finds the final day of the month, using code dis-
cussed earlier in this chapter, and then calls the SkipHolidays function to move back-
ward through the month until it finds a day that is neither a weekend nor a holiday.

Listing 3.12: Find the Last Workday in a Given Month

Pub1ic Function dhLastWorkdayInMonth(Optional dtmDate As Date = 0, _
Optional rst As ADODB.Recordset = Nothing, _
Optional strField As String = "") As Date

" Return the last working day in the month specified.
" If you want to look up holidays in a table, pass in
' an ADO recordset object containing the rows.

Dim dtmTemp As Date

' Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dtmTemp = DateSerial(Year(dtmDate), Month(dtmDate) + 1, 0)
dhLastWorkdayInMonth = SkipHolidays(rst, strField, dtmTemp, -1)

End Function

To work with these procedures, you might write a test routine like the one shown in
Listing 3.13 (from the module TestDateTime). This procedure assumes the following:

¢ You have OLEDB and ADQ installed on your machine.
¢ You have a reference set to the ADO 2.1 or higher type library in your project.

Working with Workdays 189

¢ You have an XML file named HOLIDAYS. XML available (and you've modi-
fied the code to point to the actual location of HOLIDAYS.XML). You can
use the CreateHolidaysXML procedure to create this XML file, based on tbl-
Holidays in the supplied Jet 4 MDB file, Holidays.MDB. (In order for this to
work, you must have the Jet 4 OLEDB provider installed on your machine. If
you've installed ADO 2.1 or higher, you have this. If not, you'll need to
download the most current ADO providers from Microsoft’s Web site at
http://www.microsoft.com/data.)

e tblHolidays, in Holidays.MDB, includes a date/time field named Date, con-
taining one row for each holiday you want tracked.

Tip Make sure to run the CreateHolidaysXML procedure after you modify the data in
tbIHolidays, or this test procedure won't “see” the changes you've made.

NOTE You needn't use an XML file for transporting your recordset around. You could
place your table containing holiday information into any database that OLEDB can
open and read from, including MDB files and SQL Server databases. But it's a lot
simpler to include a simple text file (that is, the XML file) instead of carting around
a big MDB file or installing data into a client’s SQL Server installation.

Listing 3.13: Test Routine for the SkipHolidays Function

Sub TestSkipHoTlidays()
Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

" You'll need to modify the path in the next line, to point
" to your sample XML file. Use the CreateHolidaysXML

' procedure to create the necessary XML file.

rst.Open ActiveWorkbook.Path & "\Holidays.xml", , _
adOpenKeyset, adlLockReadOnly, Options:=adCmdFile

Debug.Print dhFirstWorkdayInMonth(#8/1/1999#, rst, "Date")
Debug.Print dhLastWorkdayInMonth(#12/31/1999#, rst, "Date')
Debug.Print dhNextWorkday(#12/30/1999#, rst, "Date")
Debug.Print dhNextWorkday(#5/27/1999#, rst, 'Date")
Debug.Print dhPreviousWorkday(#1/1/2000#, rst, "Date')
Debug.Print dhPreviousWorkday(#5/23/1999#, rst, "Date")

End Sub

190 Chapter 3 o Working with Dates and Times

If you don’t have ADO installed, or you just don’t care about holidays, you
could also call these routines like this:

Debug.Print dhFirstWorkdayInMonth(#1/1/97#)

or

Debug.Print dhLastWorkdayInMonth(#12/31/97#)

In this case, the procedure calls would just skip weekend days, if necessary, to
return the first and last workday, respectively.

TIP

The sample CD with this book includes HOLIDAYS.MDB (which contains tblHolidays)
that you can use as a start for preparing your list of holidays. If you have any
product that can work with Access databases, you're ready to start filling in your own
list of holidays for use with these routines. If not, we've included HOLIDAYS.TXT, a
text file you can import into your own database program for use with these samples. If
you want to use HolidayssMDB and export a recordset to XML, see the
CreateHolidaysXML procedure in the TestDateTime module. This procedure opens
the Holidays.MDB database, creates a recordset based on tblHolidays, and saves the
recordset as an XML file. From then on, all you need is the XML file (a small text file)
in order to reopen the recordset on a client’s machine.

Manipulating Dates and Times

This section provides solutions to five common date manipulation issues:

Finding the number of days in a specified month

Counting the number of iterations of a specific weekday in a month
Determining whether a specified year is a leap year

Rounding time to a specified increment

Converting numbers or strings to dates, given an input format specification

In each case, we’ve provided a VBA function or two, as well as some examples
showing the usage of the function, to help get you started.

How Many Days in That Month?

Although there’s no built-in function to determine the number of days in a speci-
fied month, it’s not a difficult task. There are many ways to accomplish this. You

Manipulating Dates and Times 191

could create a Select Case statement and, knowing the month and year, look up
the length of the month. This requires, of course, knowing the year, because leap
years affect February’s length.

An alternative is to let VBA do as much of any calculation as possible. Because
you can subtract one date value from another to determine the number of days
between the dates, you can use the DateSerial function to find the first day in the
specified month and the first day in the next month and then subtract the first
value from the second.

The dhDaysInMonth function, in Listing 3.14, performs the necessary calcula-
tions. You send it a date, and it calculates the number of days in the month repre-
sented by that date. In this function, as in many others, if you don’t pass a date at
all, the function assumes you want to use the current date and finds the number of
days in the current month.

Listing 3.14: Calculate the Days in a Given Month

Public Function dhDaysInMonth(Optional dtmDate As Date = 0) As Integer
' Return the number of days in the specified month.

" Did the caller pass in a date? If not, use
' the current date.
If dtmDate = 0 Then
dtmDate = Date
End If

dhDaysInMonth = _
DateSerial(Year(dtmDate), Month(dtmDate) + 1, 1) - _
DateSerial(Year(dtmbDate), Month(dtmDate), 1)

End Function

TiP Although this tip applies to many functions in this chapter, it is key to this
particular function. VBA accepts dates in many formats, as you've seen. One that
we haven’t mentioned is the #mm/yy# format. That is, you can pass just a month
and year as a date, and VBA will assume you mean the first of that month. With
the dhDaysInMonth function, it’s useful to be able to just send in the month and
year portion if you don’t care to handle the day portion as well. That is, you could
pass either #12/31/20014# or #12/2001# as a parameter to this function, and it
would return the same value either way.

192

Chapter 3 e Working with Dates and Times

How Many Mondays in June?

If your application needs to know how many occurrences there are of a particular
weekday in a given month, the dhCountDOWInMonth function is for you. This
function, shown in Listing 3.15, allows you to specify a date and, optionally, a spe-
cific day of the week. It returns the number of times the specified day of the week
occurs in the month containing the date. If you don’t pass a day of the week value,
the function counts the number of times the day indicated by the date parameter
occurs within its own month.

Listing 3.15: Count the Number of Specific Weekdays in a Month

Public Function dhCountDOWInMonth(ByVal dtmDate As Date, _
Optional TngDOW As VbDayOfWeek = 0) As Integer

Dim dtmFirst As Date
Dim intCount As Integer
Dim intMonth As Integer

If (IngDOW < vbSunday Or 1ngDOW > vbSaturday) Then
" Caller must not have specified DOW, or it
" 'was an invalid number.
TngDOW = Weekday(dtmDate)

End If

intMonth = Month(dtmDate)

" Find the first day of the month
dtmFirst = DateSerial(Year(dtmDate), intMonth, 1)

' Get to the first TngDOW including or after the first
' day of the month.
dtmFirst = dtmFirst + ((1ngDOW - Weekday(dtmFirst) + 7) Mod 7)

Now, dtmFirst is sitting on the first day
of the requested number in the month.

There are either 4 or 5 of each weekday in each month.
Assume there are 5. If that gives you a date outside
the month, there are only 4. If there are 5 of a
given day within a month, the 5th one will be

' 28 days after the first.

Manipulating Dates and Times 193

intCount = 5
If (Month(dtmFirst + 28) <> Month(dtmFirst)) Then
intCount = 4
End If
dhCountDOWInMonth = intCount
End Function

The dhCountDOWInMonth function takes four simple steps to do its work. It
must do the following:

1. Verify the parameters.
2. Find the first day of the specified month.

3. Move forward within the month to the first day matching the day of week
you're interested in.

4. Calculate the number of matching days in the month. The month must con-
tain either four or five instances of a given weekday. Assume there are five.
Add 28 days to the starting date, and if the date you get is in a different
month than the starting date, set the result to be four.

To verify the parameters, the code checks the IngDOW parameter, making sure
the value is between vbSunday and vbSaturday. If not, it overrides the value and
uses the day of the week represented by the dtmDate parameter:

If (IngDOW < vbSunday Or 1ngDOW > vbSaturday) Then
" Caller must not have specified DOW, or it
' 'was an invalid number.
TngDOW = WeekDay(dtmDate)

End If

Finding the first day of the month requires yet another call to the DateSerial
function:

" Find the first day of the month
dtmFirst = DateSerial(Year(dtmDate), intMonth, 1)

Finding the day matching the required day of the week takes just a single line,
using the same logic shown in several earlier procedures:

' Get to the first TngDOW including or after the first
' day of the month.
dtmFirst = dtmFirst + ((1ngDOW - Weekday(dtmFirst) + 7) Mod 7)

194 Chapter 3 ¢ Working with Dates and Times

Finally, assume the result is five, check the date four weeks later, and see if the
months match. If not, set the result to be four:

intCount = 5

If (Month(dtmFirst + 28) <> Month(dtmFirst)) Then
intCount = 4

End If

dhCountDOWInMonth = intCount

To test this function, you might write code like this:

If dhCountDOWInMonth(#12/1999#, vbFriday) > 4 Then
MsgBox "There are more than four Fridays in December 1999!"
End If

Is This a Leap Year?

Although VBA provides very rich date and time support, it includes no built-in
function that will tell you whether a given year is a leap year. Calculating this
answer is actually more complex than checking to see whether the year is evenly
divisible by four. If that’s all it took, you could just check like this:

" (Assuming that intYear holds the year in question)
' MOD returns the remainder when you divide, so

' the following expression will return True if

" intYear is evenly divisible by 4.

If intYear MOD 4 = 0 Then

But that’s not all there is. The year is defined as the length of time it takes to pass
from one vernal equinox to another. If the calendar gains or loses days, the date
for the equinox shifts. Because the physical year isn’t exactly 365.25 days in length
(as the calendar says it should be), the current calendar supplies three too many
leap years every 385 years. To make up for that, years divisible by 100 aren’t leap
years unless they’re a multiple of 400. Got all that? (In case you're concerned, this
schedule will result in an error of only three days in 10,000 years. Not to worry...)
This means that 1700, 1800, and 1900 weren’t leap years, but 2000 is.

Yes, you could write the code to handle this yourself, and it’s not all that diffi-
cult. But why do it? VBA is already handling the algorithm internally. It knows
that the day after February 28 (in all but a leap year) is March 1 but in a leap year
it’s February 29. To take advantage of this fact, dhIsLeapYear (shown in Listing 3.16)
calculates the answer for you.

Manipulating Dates and Times 195

Listing 3.16: Is the Specified Year a Leap Year?

Public Function dhIsLeapYear(Optional varDate As Variant) As Boolean
" Is the supplied year a leap year?
' Check the day number of the day
' after Feb 28 to find out.

' Missing? Use the current year.
If IsMissing(varDate) Then
varDate = Year(Date)

" Is it a date? Then use that year.
ElseIf VarType(varDate) = vbDate Then
varDate = Year(varDate)

" Is it an integer? Use that value, if it's value.
' Otherwise, use the current year.
ElseIf VarType(varDate) = vbInteger Then
' Only years 100 through 9999 are allowed.
If varDate < 100 Or varDate > 9999 Then
varDate = Year(Date)
End If

" If it's not a date or an integer, just use the
' current year.
Else
varDate = Year(Date)
End If
dhIsLeapYear = (Day(DateSerial(varDate, 2, 28) + 1) = 29)

End Function
Almost all the code in dhlsLeapYear handles the “optional” parameter; because
you can pass either a date or an integer representing a year, you need a larger
amount of error-checking code than normal. If you pass nothing at all, the code
uses the current year:

If IsMissing(varDate) Then
varDate = Year(Date)

If you pass a date, the function uses the year portion of the date:

' Is it a date? Then use that year.
ElseIf VarType(varDate) = vbDate Then
varDate = Year(varDate)

196 Chapter 3 o Working with Dates and Times

If you pass an integer, the code treats that integer as the year to check. Because
VBA can only process years between 100 and 9999, it verifies that your integer
falls in that range. If you pass a value that’s neither a date nor an integer, it uses
the current year:

ElseIf VarType(varDate) = vbInteger Then
' Only years 100 through 9999 are allowed.
If varDate < 100 Or varDate > 9999 Then
varDate = Year(Date)
End If
" If it's not a date or an integer, just use the
' current year.
Else
varDate = Year(Date)
End If

After performing all that parameter checking, the code that calculates the return
value is simple: It checks the Day function’s return value for the day after the 28th
of February in the specified year. If the value is 29, you've got a leap year. If it’s
something else (hopefully 1, otherwise VBA is in bad shape), it’s not a leap year:

dhIslLeapYear = (Day(DateSerial(varDate, 2, 28) + 1) = 29)
You might try calling the procedure in any of these three ways:

If dhIsLeapYear() Then

" You know the current year is a leap year.
If dhIsLeapYear(1956) Then

" You know 1956 was a leap year.
If dhIsLeapYear(#12/1/92#) Then

" You know 1992 was a leap year.

The moral of this story (if there is one) is to let VBA do as much work as possible
for you. Although you could have written the dhIsLeapYear function to take into
account the algorithm used by the Gregorian calendar, what’s the point? The VBA
developers have done that work already. You'll get better performance (and fewer
bugs) by taking advantage of the work that’s already been done.

Rounding Times to the Nearest Increment

If you're writing a scheduling application, you may need to round a time to a
specified number of minutes. For example, given a time, you may need to find the
nearest 5-, 10-, 15-, 20-, or 30-minute interval. The solution isn’t trivial, and the
code shown in Listing 3.17 takes care of this problem.

Manipulating Dates and Times 197

To call dhRoundTime(), pass it a date/time value and an interval to round to.
(You must use any divisor of 60, but you'll most likely use 5, 10, 15, 20, 30, or 60.)
For example,

? dhRoundTime(#12:32:15#, 5)
returns

12:30:00 PM
and

? dhRoundTime(#12:32:35#, 5)
returns

12:35:00 PM

If you pass dhRoundTime a full date and time value, it will preserve the date
portion and just modify the time part.

Listing 3.17: Round Time Values to the Nearest Interval

Public Function dhRoundTime(_
dtmTime As Date, intInterval As Integer) As Date

" Round the time value in varTime to the nearest minute
" dinterval in intInterval

Dim decTime As Variant
Dim intHour As Integer
Dim intMinute As Integer
Dim Tngdate As Long

' Get the date portion of the date/time value
Tngdate = DateValue(dtmTime)

' Get the time portion as a number Tike 11.5 for 11:30.
decTime = CDec(TimeValue(dtmTime) * 24)

' Get the hour and store it away. Int truncates,
" CInt rounds, so use Int.
intHour = Int(decTime)

198

Chapter 3 e Working with Dates and Times

' Get the number of minutes, and then round to the nearest
' occurrence of the interval specified.

intMinute = CInt((decTime - intHour) * 60)

intMinute = CInt(intMinute / intInterval) * intInterval

" Build back up the original date/time value,
" rounded to the nearest interval.
dhRoundTime = CDate(lngdate + _
((intHour + intMinute / 60) / 24))
End Function

This procedure is probably the most complex in this chapter, at least in terms of
the calculations it performs. Its first step is to store away the date portion of the
original date/time value so it can preserve the value, which will never be altered
by the function:

' Get the date portion of the date/time value
Tngdate = DateValue(dtmTime)

Next, the procedure retrieves the time portion of the parameter and converts it
into a decimal number, multiplying the value by 24:

' Get the time portion as a number Tike 11.5 for 11:30.

decTime = CDec(TimeValue(dtmTime) * 24)
Because the time portion of a date/time value is the fraction of a full day repre-
sented by the time, taking a value representing 12:32:15 P.M. (0.522395833333333)
and multiplying it by 24 will result in the value 12.5375. Once you have the time in
a format like that, you can round it as needed.

TIP

Note the use of the CDec function in this example. Because you do want to preserve
the accuracy of the calculation, you want to reduce rounding errors. The Decimal
data type (discussed in more detail in Chapter 2) doesn’t cause any rounding errors,
and although it’s not likely that multiplication will cause any rounding problems, it
can't hurt to preserve accuracy when possible.

Once the function knows the time, it can tuck away the hour portion, because
that value will also never change.
' Get the hour and store it away. Int truncates,

" CInt rounds, so use Int.
intHour = Int(decTime)

Manipulating Dates and Times 199

The next step is to pull off just the fractional portion (representing the minutes)
and multiply by 60 to find the number of minutes involved. Using the example of
12.5375, multiplying the fractional part by 60 and converting to an integer would
return 32, which is the number of minutes involved:

' Get the number of minutes, and then round to the nearest
' occurrence of the interval specified.
intMinute = CInt((decTime - intHour) * 60)

The crucial step involves rounding the number of minutes to the correct interval:
intMinute = CInt(intMinute / intInterval) * intInterval

Once you’ve rounded the value, the final step is to reconstruct the full date/time
value. The following line of code adds the hour portion to the minute portion

divided by 60, divides the entire time portion by 24 to convert to the appropriate
fraction, adds the result to the preserved date value, and returns the entire value:

dhRoundTime = CDate(Tngdate + _
(CintHour + intMinute / 60) / 24))

You may find it useful to single-step through this procedure, checking the value
of various variables as it runs. Try calling dhRoundTime from the Immediate win-
dow, passing in various times and divisors of 60 as intervals. Once you get the
hang of what dhRoundTime is doing, you'll find it useful in many applications
that involve time and scheduling.

Converting Strings or Numbers to Real Dates

The world of data isn’t perfect, that’s for sure, and data can come to your applica-
tion in many formats. Dates are particularly troublesome because there are so
many ways to display and format them. If you routinely need to gather informa-
tion from outside sources, you'll appreciate the two functions in this section. The
first, dhCNumDate (Listing 3.18), attempts to convert dates stored in numeric val-
ues into true Date format. The second function, dhCStrDate (Listing 3.19), per-
forms the same sort of task, but with formatted strings as input.

Some computer systems, for example, store dates as integers such as 19971231
(representing #12/31/1997#) or 52259 (representing #5/22/1959%#). The code in
dhCNumDate can convert those values into real VBA date/time format, as long as
you tell it the layout of the number coming in. For example, to perform the first
conversion, you might use

dtmBirthday = dhCNumDate(19971231, "YYYYMMDD")

200 Chapter 3 o Working with Dates and Times

The function, knowing how the date number was laid out, could pull out the vari-
ous pieces.

The dhCStrDate function does similar work but with string values as its input.
For example, if all the dates coming in from your mainframe computer were in the

format “MMDDYYYY,” you could use

' strOldDate contains "05221959"
dtmNewDate = dhCStrDate(strOldDate, "MMDDYYYY")

to convert the string into a real date.

Listing 3.18: Convert Formatted Numbers to Real Dates

Public Function dhCNumDate(ByVal Tngdate As Long, _

ByVal strFormat As String) As Variant
' Convert numbers to dates, depending on the specified format
' and the incoming number. In this case, the number and the
' format must match, or the output will be useless.

Dim intYear As Integer
Dim intMonth As Integer
Dim intDay As Integer

Select Case strFormat
Case "MMDDYY"
intYear = Ingdate Mod 100
intMonth = Tngdate \ 10000
intDay = (Ingdate \ 100) Mod 100

Case "MMDDYYYY"
intYear = Ingdate Mod 10000
intMonth = Tngdate \ 1000000
intDay = (Ingdate \ 10000) Mod 100

Case "DDMMYY"
intYear = Tngdate Mod 100
intMonth = (Ingdate \ 100) Mod 100
intDay = 1ngdate \ 10000

Case "DDMMYYYY"
intYear = Ingdate Mod 10000
intMonth = (Ingdate \ 10000) Mod 100
intDay = Tngdate \ 1000000

Manipulating Dates and Times 201

Case "YYMMDD", "YYYYMMDD'
intYear = Tngdate \ 10000
intMonth = (Ingdate \ 100) Mod 100
intDay = Tngdate Mod 100

Case Else
' Raise an error and get out.
" Error 5 normally indicates an invalid parameter.
Err.Raise 5, "dhCNumDate", "Invalid parameter"
End Select
dhCNumDate = DateSerial(intYear, intMonth, intDay)

End Function

TIP

You'll find an interesting code technique in dhCNumDate. Given a number like
220459 (#4/22/594 in date format), retrieving the month portion requires some
effort. The code accomplishes this by first using integer division (the \ operator),
resulting in 2204. Then, to retrieve just the month portion, the code uses the Mod
operator to find the remainder you get when you divide 2204 by 100. You'll find
the integer division and the Mod operator useful if you want to retrieve specific
digits from a number, as we did in dhCNumDate.

Listing 3.19: Convert Formatted Strings to Real Dates

Public Function dhCStrDate(_
strDate As String, Optional strFormat As String = "") As Date

' Given a string containing a date value, and a format
' string describing the information in the date string,
' convert the string into a real date value.

!

Dim strYear As String

Dim strMonth As String

Dim strDay As String

Select Case strFormat
Case "MMDDYY", "MMDDYYYY"
strYear = Mid$(strDate, 5)
strMonth = Left$(strDate, 2)
strDay = Mid$(strDate, 3, 2)

202 Chapter 3 o Working with Dates and Times

Case "DDMMYY", "DDMMYYYY"
strYear = Mid$(strDate, 5)
strMonth = Mid$(strDate, 3, 2)
strDay = Left$(strDate, 2)

Case "YYMMDD'
strYear = Left$(strDate, 2)
strMonth = Mid$(strDate, 3, 2)
strDay = Right$(strDate, 2)

Case "YYYYMMDD"
strYear = Left$(strDate, 4)
strMonth = Mid$(strDate, 5, 2)
strDay = Right$(strDate, 2)

Case "DD/MM/YY", "DD/MM/YYYY'"
strYear = Mid$(strDate, 7)
strMonth = Mid$(strDate, 4, 2)
strDay = Left$(strDate, 2)

Case "YY/MM/DD"
strYear = Left$(strDate, 2)
strMonth = Mid$(strDate, 4, 2)
strDay = Right$(strDate, 2)

Case "YYYY/MM/DD"
strYear = Left$(strDate, 4)
strMonth = Mid$(strDate, 6, 2)
strDay = Right$(strDate, 2)

Case Else
" If none of the other formats were matched, raise
' an error and get out.
Err.Raise 5, "dhCStrDate", "Invalid parameter"
End Select
dhCStrDate = DateSerial(Val(strYear), Val(strMonth), Val(strDay))
End Function

There’s no doubt about it—the code in both these functions relies on brute force.
Given the examples already in the functions, you should find it easy to add your
own new formats, should the need arise. In each case, it’s just a matter of using the
correct mathematical or string functions to perform the necessary conversions.

Working with Elapsed Time 203

Working with Elapsed Time

No matter how much you’d like VBA date/time values to be able to track elapsed
time, they’re not built that way. As designed, VBA date/time values store a partic-
ular point in time, not a span of time, and there’s no way to store more than 24
hours in a given date/time variable. If you want to work with elapsed times,
you’ll generally have to do some conversion work, storing the elapsed times in a
numeric data type and converting them back to a formatted output for display.
Other elapsed time issues simply return an integer value indicating the number of
elapsed units (year, days, months) between two dates.

This section covers several standard issues when dealing with elapsed times,
including these topics:

¢ Finding the number of workdays between two dates
e Returning a person’s age, in years, given the birth date
¢ Formatting elapsed time using a format specification string

e Formatting cumulative times

Finding Workdays between Two Dates

Many applications require you to calculate the number of days between two dates
(and you can simply use DateDiff or subtract the first date value from the second,
if that’s all you need). In addition, many business applications need to know the
number of workdays between two dates, and that’s a bit more complex. The func-
tion in this section, dhCountWorkdays, uses the SkipHolidays and IsWeekend
procedures presented previously (see the section “Working with Workdays”) to
skip holidays and weekends. Listing 3.20 shows the entire function. (You can find
the dhCountWorkdays function in the module named DateTimeADO. It’s grouped
in this module because it relies on ADO to find holidays, as discussed previously
in the chapter.)

Listing 3.20: Count the Number of Workdays between Two Dates

Public Function dhCountWorkdays(_

ByVal dtmStart As Date, ByVal dtmEnd As Date, _
Optional rst As ADODB.Recordset = Nothing, _
Optional strField As String = "") _

204

Chapter 3 e Working with Dates and Times

As Integer

" Count the business days (not counting weekends/holidays) in
' a given date range.

Dim intDays As Integer
Dim dtmTemp As Date
Dim intSubtract As Integer

' Swap the dates if necessary.

If dtmEnd < dtmStart Then
dtmTemp = dtmStart
dtmStart = dtmEnd
dtmEnd = dtmTemp

End If

' Get the start and end dates to be weekdays.
dtmStart = SkipHolidays(rst, strField, dtmStart, 1)
dtmeEnd = SkipHolidays(rst, strField, dtmEnd, -1)
If dtmStart > dtmEnd Then
" Sorry, no Workdays to be had. Just return O.
dhCountWorkdays = 0
Else
intDays = dtmknd - dtmStart + 1

' Subtract off weekend days. Do this by figuring out how
' many calendar weeks there are between the dates, and

" multiplying the difference by two (because there are two
' weekend days for each week). That is, if the difference
" is 0, the two days are in the same week. If the

' difference is 1, then we have two weekend days.
intSubtract = (DateDiff("ww", dtmStart, dtmEnd) * 2)

' The answer to our quest is all the weekdays, minus any
' holidays found in the table.

" If rst is Nothing, this call won't subtract any dates.
intSubtract = intSubtract + _

CountHolidays(rst, strField, dtmStart, dtmEnd)

dhCountWorkdays = intDays - intSubtract
End If

End Function

Working with Elapsed Time 205

To call dhCountWorkdays, pass it two dates (the starting and ending dates). In
addition, if you want to take holidays into account, pass it a reference to an open
ADO recordset and the name of the field within the recordset containing the holi-
day date information. For more information on working with this type of func-
tion, see the section “Working with Workdays” earlier in this chapter. Unlike the
functions presented there, however, this one requires a bit of effort to find the
right answer.

There are, of course, many ways to solve this problem. The solution we came up
with takes these steps:

1. Move the starting date forward, skipping weekend and holiday dates, until
it finds a workday:

dtmStart = SkipHolidays(rst, strField, dtmStart, 1)

2. Take the same step with the ending date, moving backward.
dtmEnd = SkipHolidays(rst, strField, dtmEnd, -1)
3. If the starting date is now past the ending date, there are no workdays in the
interval, so just return 0:

If dtmStart > dtmEnd Then
" Sorry, no workdays to be had. Just return O.
dhCountWorkdays = 0

4. Calculate the difference between the dates so far:

intDays = dtmEnd - dtmStart + 1

Now for the tricky part, the final three steps:

5. Subtract the number of weekend days. DateDiff, using the “ww” interval
specifier, gives you the number of weeks, and there are two weekend days
per weekend:

intSubtract = (DateDiff('ww", dtmStart, dtmEnd) * 2)
6. Subtract the number of holiday days. If you've not supplied a recordset vari-

able, the CountHolidays function returns without doing any work, report-
ing no holidays in the interval:

intSubtract = intSubtract + _
CountHolidays(rst, strField, dtmStart, dtmEnd)

206

Chapter 3 e Working with Dates and Times

7. Finally, return the total number of workdays in the interval:

dhCountWorkdays = intDays - intSubtract

To work with these procedures, you might write a test routine like the one
shown in Listing 3.21 (from the TestDateTime module). This procedure makes
these assumptions:

You have OLEDB and ADO installed on your machine.

You have a reference set to the ADO 2.1 or higher type library in your
project.

You have an XML file named HOLIDAYS. XML available (and you've modi-
fied the code to point to the actual location of HOLIDAYS.XML). You can
use the CreateHolidaysXML procedure to create this XML file, based on tbl-
Holidays in the supplied Jet 4 MDB file, Holidays.MDB. (In order for this to
work, you must have the Jet 4 OLEDB provider installed on your machine. If
you've installed ADO 2.1 or higher, you have this. If not, you'll need to
download the most current ADO providers from Microsoft’s Web site at
http://www.microsoft.com/data.)

tblHolidays, in Holidays.MDB, includes a date/time field named Date, con-
taining one row for each holiday you want tracked.

Listing 3.21: Test Procedure for dhCountWorkdays
Sub TestCountWorkdays()

Dim rst As ADODB.Recordset

" You'll need to modify the path in the next line, to point
' to your sample database.

Set rst = New ADODB.Recordset

rst.Open ActiveWorkbook.Path & "\Holidays.xml", , _
adOpenKeyset, adLockReadOnly, Options:=adCmdFile

Debug.Print dhCountWorkdays(#7/2/2000#, #7/5/2000#, rst, "Date")
Debug.Print dhCountWorkdays(#7/2/2000#, #7/5/2000#)

Debug.Print dhCountWorkdays(#12/27/19994#, #1/2/2000#, rst, "Date")
Debug.Print dhCountWorkdays(#12/27/1999#, #1/2/2000#)

End Sub

Working with Elapsed Time 207

Calculating Age

Calculating someone’s age, given that person’s birth date, is a commonplace need
in data manipulation. Unfortunately, VBA doesn’t give a complete and correct
method for calculating a person’s age.

You might be tempted to use this formula:
Age = DateDiff('yyyy", Birthdate, Date)

to calculate age, but this doesn’t quite work. If the birth date hasn’t yet occurred
this year, the Age value will be off by 1. For example, imagine your birthday is
December 31, and you were born in 1950. If today is October 1, 2000, subtracting
the year portions of the two dates (2000 — 1950) would indicate that you were 50 years
old. In reality, by the standard way of figuring such things, you're still only 49.
(And you’d better take advantage of it while you can!)

To handle this discrepancy, the dhAge function in Listing 3.22 not only sub-
tracts one Year portion of the dates from the other, it checks whether the birth date
has already occurred this year. If it hasn’t, the function subtracts 1 from the calcu-
lation, returning the correct age.

In addition, dhAge allows you to pass an optional second date: the date on which
to calculate the age. If you pass nothing for the second parameter, the code assumes
you want to use the current date as the ending date. That is, if you use a call like this:

intAge = dhAge(#5/22/59%)

you'll find the current age of someone born on May 22, 1959. If you call the func-
tion like this:
intAge = dhAge(#5/22/59#, #1/1/20104#)

you’ll find out how old the same person will be on the first day of 2010.

Listing 3.22: One Solution for Calculating Age

Public Function dhAge(dtmBD As Date, _
Optional dtmDate As Date = 0) As Integer

Dim intAge As Integer

If dtmDate = 0 Then
' Did the caller pass in a date? If not, use
' the current date.
dtmDate = Date

End If

208

Chapter 3 e Working with Dates and Times

intAge = DateDiff("yyyy", dtmBD, dtmDate)
If dtmDate < DateAdd('yyyy", intAge, dtmBD) Then
intAge = intAge - 1
End If
dhAge = intAge
End Function

TIP

You might also be tempted to solve this problem by dividing the difference
between the two dates, in days, by 365.25. This works for some combinations of
dates, but not for all. It's just not worth the margin of error. The functions
presented here are simple enough that they're a reasonable replacement for the
simple division that seems otherwise intuitive.

If you're looking for the smallest possible solution, perhaps at the expense of

readability, you could use the version in Listing 3.23 instead. It relies on the fact
that a true expression is equal to the value -1 and a false expression is equal to 0.
The function adds -1 or 0 to the year difference, depending on whether the speci-
fied birth date has passed.

Listing 3.23: A Second Solution for Calculating Age

Public Function dhAgel(dtmBD As Date, _
Optional dtmDate As Date = 0) As Integer

Dim intAge As Integer

If dtmDate = 0 Then
" Did the caller pass in a date? If not, use
' the current date.
dtmDate = Date

End If

intAge = DateDiff("yyyy", dtmBD, dtmDate)

dhAgel = intAge + _

(dtmDate < DateAdd("yyyy", intAge, dtmBD))
End Function

Working with Elapsed Time 209

Formatting Elapsed Time

VBA provides no support for elapsed times or for displaying formatted elapsed
times. You'll have to take steps on your own if you want to take two dates, find
the difference between them, and display the difference formatted the way you
want it. The function in this section, dhFormatInterval, in Listing 3.24 (certainly
the longest procedure in this chapter), allows you to specify two dates and an
optional format specifier and returns a string representing the difference. As the
function is currently written, you can use any of the format specifiers listed in
Table 3.9. You are invited, of course, to add your own specifiers to the list by mod-
ifying the source code. (For information on retrieving the time delimiter program-
matically, see the section “Formatting Cumulative Times” later in this chapter.)

TABLE 3.9: Available Format Specifications for dhFormatinterval

Format Example

DH 3 Days 3 Hours

DHM 3 Days 2 Hours 46 Minutes

DHMS 3 Days 2 Hours 45 Minutes 45 Seconds

D H:MM 3 Days 2:46

D HH:MM 3 Days 02:46

D HH:MM:SS 3 Days 02:45:45

HM 74 Hours 46 Minutes

H:MM 74:46 (leading 0 on minutes, if necessary)
H:MM:SS 74:45:45

MS 4485 Minutes 45 Seconds

M:SS 4485:45 (leading 0 on seconds, if necessary)

Listing 3.24: Format the Interval between Two Dates

Public Function dhFormatInterval(dtmStart As Date, datend As Date, _
Optional strFormat As String = "H:MM:SS") As String

' Return the difference between two times,

" formatted as specified in strFormat.

210 Chapter 3 o Working with Dates and Times

Dim TngSeconds As Long
Dim decMinutes As Variant
Dim decHours As Variant
Dim decDays As Variant

Dim intSeconds As Integer
Dim intMinutes As Integer
Dim intHours As Integer

Dim intRoundedHours As Integer
Dim intRoundedMinutes As Integer

Dim strDay As String
Dim strHour As String
Dim strMinute As String
Dim strSecond As String
Dim strOut As String

Dim TngFullDays As Long
Dim TngFullHours As Long
Dim TngFullMinutes As Long

Dim strDelim As String

Const dhcDays As String = "Days"

Const dhcHours As String = "Hours"
Const dhcMinutes As String = "Minutes"
Const dhcSeconds As String = "Seconds"

Const dhcDay As String = "Day"

Const dhcHour As String = "Hour"
Const dhcMinute As String = "Minute"
Const dhcSecond As String = "Second"

' If you don't want to use the local delimiter,

' but a specific one, replace the next line with
' this:

" strDelim = ":"

strDelim = GetTimeDelimiter()

Working with Elapsed Time

211

' Calculate the full number of seconds in the interval.

" This Timits the calculation to 2 billion seconds (68 years
' or so), but that's not too bad. Then calculate the

' difference in minutes, hours, and days, as well.
TngSeconds = DateDiff("s", dtmStart, datend)

decMinutes = CDec(1ngSeconds / 60)

decHours = CDec(decMinutes / 60)

decDays = CDec(decHours / 24)

" Get the full hours and minutes, for later display.
TngFullDays = Int(decDays)

TngFullHours = Int(decHours)

TngFullMinutes = Int(decMinutes)

' Get the incremental amount of each unit.

intHours = Int((decDays - TngFullDays) * 24)
intMinutes = Int((decHours - TngFullHours) * 60)
intSeconds = CInt((decMinutes - TngFullMinutes) * 60)

" In some instances, time values must be rounded.
' The next two Tines depend on the fact that a true statement
' has a value of -1, and a false statement has a value of 0.

' The code needs to add 1 to the value if the following expression

' is true, and 0 if not.
intRoundedHours = intHours - (intMinutes > 30)
intRoundedMinutes = intMinutes - (intSeconds > 30)

" Assume all units are plural, until you find otherwise.
strDay = dhcDays

strHour = dhcHours

strMinute = dhcMinutes

strSecond = dhcSeconds

If TngFullDays = 1 Then strDay = dhcDay
Select Case strFormat
Case "D H"
If intRoundedHours
strOut = _
TngFullDays & " " & strDay & " " & _
intRoundedHours & " " & strHour

1 Then strHour = dhcHour

212 Chapter 3 o Working with Dates and Times

Case "D H M"
If intHours = 1 Then strHour = dhcHour
If intRoundedMinutes = 1 Then strMinute = dhcMinute

strOout = _
TngFullDays & " " & strDay & " " & _
intHours & " " & strHour & " " & _
intRoundedMinutes & " " & strMinute

Case 'DHMS"
If intHours = 1 Then strHour = dhcHour
If intMinutes = 1 Then strMinute = dhcMinute
If intSeconds 1 Then strSecond = dhcSecond

strOout = _
TngFullDays & " " & strDay & " " & _
intHours & " " & strHour & " " & _
intMinutes & " " & strMinute & " " & _
intSeconds & " " & strSecond
Case "D H:mm" " 3 Days 2:46"
strOut = TngFullDays & " " & strDay & " " & _

intHours & strDelim & Format(intRoundedMinutes, "00")

Case "D HH:MM" ' 3 Days 02:46"
strOut = TngFullDays & " " & strDay & " " & _
Format(intHours, "00") & strDelim & _
Format(intRoundedMinutes, "00")

Case "D HH:MM:SS" ' 3 Days 02:45:45"
strOut = IngFullDays & " " & strDay & " " & _
Format(intHours, "00") & strDelim & _
Format(intMinutes, "00") & strDelim & _
Format(intSeconds, "00")

Case "H M" ' 74 Hours 46 Minutes"
If TngFullHours = 1 Then strHour = dhcHour
If intRoundedMinutes = 1 Then strMinute = dhcMinute

strOut = IngFullHours & " " & strHour & " " & _
intRoundedMinutes & " " & strMinute
Case "H:MM" ' 74:46 (leading 0 on minutes, if necessary)

strOut = IngFullHours & strDelim & _
Format(intRoundedMinutes, "00")

Working with Elapsed Time

213

Case

Case "M

"H:
strOut =
Format(intMinutes,
Format(intSeconds,

MM:SS" ' 74:45:45"

n 00 ")

Sll

TngFullHours & strDelim & _
"00") & strDelim & _

' 4485 Minutes 45 Seconds

If TngFullMinutes = 1 Then strMinute = dhcMinute

If intSeconds =

1 Then strSecond = dhcSecond

strOut = TngFullMinutes & " " & strMinute & " " & _
intSeconds & " " & strSecond
Case "M:SS" ' 4485:45 (leading 0 on seconds)"
strOut = IngFulIMinutes & strDelim & _
Format(intSeconds, "00")
Case Else
strOut = vbNullString
End Select
dhFormatInterval = strOut

End Function

For example, to test out the function, you might write a test routine like the sample
shown in Listing 3.25 (from the module named TestDateTime). This sample exer-
cises all the predefined format specifiers.

Listing 3.25: Test Routine for dhFormatinterval

Sub TestInterval()
Dim dtmStart As Date
Dim dtmEnd As Date

dtmStart =

#1/1/97 12:00:00 PM#

dtmEnd = #1/4/97 2:45:45 PM#

Print
Print
Print
Print
Print
Print
Print
Print

Debug.
Debug.
Debug.
Debug.
Debug.
Debug.
Debug.
Debug.

dhFormatInterval(dtmStart,
dhFormatInterval(dtmStart,
dhFormatInterval(dtmStart,
dhFormatInterval(dtmStart,
dhFormatInterval(dtmStart,
dhFormatInterval(dtmStart,
dhFormatInterval(dtmStart,
dhFormatInterval(dtmStart,

dtmEnd,
dtmEnd,
dtmEnd,
dtmEnd,
dtmEnd,
dtmEnd,
dtmEnd,
dtmEnd,

"D
"D
"D
"D
"D

H")

HM")
HMS")
H:MM")
HH:MM")

"D HH:MM:SS")
"H M")
"H:MM")

214

Chapter 3 e Working with Dates and Times

Debug.Print dhFormatInterval(dtmStart, dtmEnd, "H:MM:SS")

Debug.Print dhFormatInterval(dtmStart, dtmEnd, "M S")

Debug.Print dhFormatInterval(dtmStart, dtmEnd, "M:SS")
End Sub

Let’s face it: The dhFormatInterval function defines the term brute force.
Although we attempted to make this routine as simple as possible, it requires sev-
eral steps to provide all this flexibility.

How does it work? The function first calculates the difference between the two
dates in seconds and then calculates the total number of days, hours, minutes, and
seconds. In addition, it calculates the number of leftover hours, minutes, and sec-
onds so it can display those, too. Finally, it also calculates rounded values for
hours and minutes. That way, if you choose not to display seconds, the minutes
value will be rounded accordingly. The same goes for hours: If you decide not to
display minutes, the hours value must be rounded to the nearest full hour. Once
the routine has those values, it uses a large Select Case statement to determine
which type of output string to create and takes the steps to create the correct
result.

WARNING Because dhFormatinterval calculates the difference between the two dates in sec-

onds and places that value in a long integer, you're limited to around 68 years
between the two dates. Most likely that won't be a terrible limitation, but you
should be aware of it before using this function in a production application.

Formatting Cumulative Times

As we've already stated, VBA has no way of storing, or measuring, elapsed times
in its date/time fields. When you assign 8:30 to a Date variable, you may think
you're entering the number of hours someone worked, but you're actually enter-
ing a specific time: 8:30 A.M. on December 30, 1899. VBA has no qualms about per-
forming aggregate calculations on date/time fields—they’re stored internally as
floating-point values, so there’s no problem performing the calculation—but the
result will not be what you had in mind.

The task, then, is to allow you to enter time values as you’ve become accus-
tomed. You'll need to convert them to some simple value for calculations and then
format the output as a standard time value for display. To make all this happen,
you’ll need the two functions included here, dhCMinutes and dhCTimeStr. The

Working with Elapsed Time 215

dhCMinutes function accepts a date/time value as a parameter and returns the
time portion, converted to the corresponding number of minutes. Given that
value, you can easily sum up a series of time values. Then, when you're ready to
display your sum, you'll need the dhCTimeStr function. This one, given a number
of minutes, returns a string representing the total, in hh:mm format.

For example, imagine you need to find the sum of 8:30, 12:30, and 13:25 (in each
case, a span of time). To sum the three time values and convert that sum back into
a time format, you could use an expression like this:

dhCTimeStr(dhCMinutes(#8:30#) + dhCMinutes(#12:30#) + _
dhCMinutes(#13:25#))

The result of that expression would be the string “34:25.”

Each of the functions consists of just a few lines of code. The dhCMinutes func-
tion, shown in Listing 3.26, uses the TimeValue function to extract the time por-
tion of the date and multiplies the resulting fraction by 24*60, resulting in the
number of minutes represented by the fractional portion.

Listing 3.26: Convert a Date/Time Value into Elapsed Minutes

Public Function dhCMinutes(dtmTime As Date) As Long
' Convert a date/time value to the number of
" minutes since midnight (that is, remove the date
' portion, and just work with the time part.) The
" return value can be used to calculate sums of
' elapsed time.

' Subtract off the whole portion of the date/time value
' and then convert from a fraction of a day to minutes.
dhCMinutes = TimeValue(dtmTime) * 24 * 60

End Function

The function that converts the number of minutes back to a string formatted as a
time value, dhCTimeStr (Listing 3.27), is just as simple. It takes the number of
minutes and performs an integer division (using the \ operator) to get the number
of hours. Then it uses the Mod operator to find the number of minutes (the
remainder when you divide by 60). The function formats each of those values and
concatenates them as a string return value.

216

Chapter 3 e Working with Dates and Times

Listing 3.27: Convert Elapsed Minutes into a Formatted String

Public Function dhCTimeStr(IngMinutes As Long) As String
' Convert from a number of minutes to a string
' that Tooks 1ike a time value.
' This function is not aware of international settings.

dhCTimeStr = Format(lngMinutes \ 60, "0") & _

GetTimeDelimiter() & Format(IngMinutes Mod 60, "00")
End Function

There’s just one small wrinkle here: Not everyone uses the same time delimiter
character. The built-in VBA formatting specifiers take that into account, but in this
case, you're supplying your own formatting. The solution is to ask Windows for
the local time delimiter, of course. Although you can retrieve the information
directly from the Registry, that requires much more work and isn’t the recom-
mended method. The answer is to use the Windows API], calling the GetLocale-
Info function. This function requires you to specify a LocalelD value (a number
representing the current “locale” that’s being used on your computer) and a con-
stant indicating which locale-specific information you want to retrieve. It digs into
the registry for you, finds the information you need, and returns it. (In order to
determine your current LocalelD value, the function first calls the GetSystemDefault-
LCID function.)

The function GetTimeDelimiter (Listing 3.28) does the work for you, so any
function needing to format time values can use the native delimiter.

TIP

You'll find the GetLocalelnfo function invaluable if you want to do any work requiring
localized settings. Visit http://msdn.microsoft.com for more information on
this and all the other Windows API functions.

Listing 3.28: Retrieve the Local Time Delimiter

Private Function GetTimeDelimiter() As String
' Retrieve the time delimiter. Use the GetLocaleInfo
' API function to return information about the current
' user's settings.

Handling Time Zone Differences 217

Dim TngLCID As Long
Dim TngLen As Long
Dim strBuffer As String
Const MAX_CHARS = 4

TngLCID = GetSystemDefaultLCID()
strBuffer = Space(MAX_CHARS + 1)
TngLen = GetLocaleInfo(1ngLCID, LOCALE_STIME, _
strBuffer, Len(strBuffer))
" InglLen includes the trailing Null character.
GetTimeDelimiter = Left$(strBuffer, IngLen - 1)
End Function

WARNING you use the GetTimeDelimiter function in your own applications, you'll also need

to copy the associated API declarations into your application as well. Be careful
when copying functions that use API calls out of their sample modules. You may
find that you must copy the API information as well.

Handling Time Zone Differences

Perhaps you’ve noticed, but it’s not the same time all over the world. When it’s
midnight in Los Angeles, it’s eight in the morning in London. In some applica-
tions, you may need to have some way to compare exact times, taking into
account the time zone differences between the locations where events occurred.
Perhaps you want to know whether a sales order from California came in before
an order for the same item in London, but all you have are local times when the
orders were placed.

In order to make it possible to retrieve information about absolute times, Win-
dows stores times internally as an absolute value, based on the time in Greenwich,
England, home of the prime meridian. (Think back, hard, to third grade. It will all
come back to you.) This coordinated universal time (oddly abbreviated as UTC
within Windows documentation) allows code to be able to compare times and
dates based on some absolute, as opposed to local times. For every earthly loca-
tion Windows is aware of, you can determine the bias (the number of minutes the
current locale is removed from Greenwich, England), the state of daylight saving
time, and the dates daylight saving time starts and stops.

218

Chapter 3 e Working with Dates and Times

Working with these values requires a bit of Windows API manipulation, and to
keep things simple, we wrapped up all the workings in a simple class module. Yes,
class modules won't be covered until Chapter 5, so we won’t dwell here on how
this class works—instead, we'll focus on how you can use it in your own code.

Using the SystemTimelnfo Class

You can think of the SystemTimelnfo class, provided with the chapter samples,
just as you might think of any other object you work with in VBA. That is, just as
you might program a form, a control, or an ADO recordset, you can program an
instance of the SystemTimelnfo class. It has several properties, some read /write,
some read-only. (It doesn’t have any methods, or events, but it could.) In order to
use the SystemTimelnfo class, it must exist as part of your project, and you must
write code to get it into memory so you can use it (much like an ADO recordset
object):

Dim sti As SystemTimeInfo

Set sti = New SystemTimeInfo

Once you've created the object, you can work with its various properties, like
this:

Debug.Print "The current time zone name is " & sti.CurrentTimeZoneName
Debug.Print "The current time zone bias is " & sti.Bias

In this chapter, we won’t delve into how the SystemTimelnfo class works—for
information on creating and using class modules, see Chapter 5. We’'ve skipped
ahead a little because it just makes sense, given the particular API calls, to create a
class module here. (For more info on using the Windows API in general, see
Appendix B, located on the CD-ROM.)

In general, a class module contains public property procedures (procedures that
run when you attempt to set or retrieve the value of a property of the object) and
public procedures (treated as methods of the object). In this case, the System-
Timelnfo class contains the properties listed in Table 3.10. Once you've created an
instance of a SystemTimelnfo object, you can use any of these properties to deter-
mine (or, in some cases, change) the time zone behavior of the machine running
your code. Although you won't need this function in every application, if you
ever do need to be able to compare times and dates in different locales, you may
find this class useful.

Handling Time Zone Differences 219

TABLE 3.10: PropertiesProvided by the SystemTimelnfo Class

Property

Data Type

Description

Bias

CurrentTimeZoneName

DaylightBias

DaylightTimeZoneName

StandardBias

Long

String * 32

Long

String * 32

Long

Read-only long representing the number of minutes
between the UTC and the current time. Takes into
account daylight saving time. For example, Pacific
daylight time has a bias of 420 minutes, meaning that
UTC time is local time + 420 minutes. The standard bias
for this region is 480 minutes, but when daylight saving
time is active, you must subtract 60 minutes. The class
module handles all these issues for you. For a particular
bias (standard or daylight), see the appropriate property,
StandardBias or DaylightBias.

Read-only string containing the name of the current
time zone. The name may be different in different times
of the year. For example, the name may be Pacific
standard time, or Pacific daylight time, depending on
whether daylight saving time is active. For a particular
time zone name, see the appropriate property,
StandardTimeZoneName or DaylightTimeZoneName.

Read/write long containing the number of minutes
between UTC time and local time, if daylight saving time
is currently active. Normally, this value is either -60 or 0.
That is, when daylight saving time is active, the local
clock has normally been set ahead one hour (making the
offset between UTC and local time 60 minutes less).
Some states (Arizona, for example) don't use daylight
saving time, so this value is O in that state. If you want to
retrieve the current bias, taking into account daylight
saving time, see the Bias property.

Read/write string containing the name of the time zone,
if daylight saving time is currently active. To retrieve the
current name, whether daylight saving time is active or
not, see the CurrentTimeZoneName property.

Read/write long containing the number of minutes
between UTC time and local time, if daylight saving time
is not currently active. When daylight saving time is not
active, you can use a formula such as UTC = local time +
StandardBias to calculate times. (Daylight saving time
normally adds 60 minutes from the local time,
subtracting 60 minutes from the bias.) If you want to
retrieve the current bias, taking into account daylight
saving time, see the Bias property.

220 Chapter 3 o Working with Dates and Times

TABLE 3.10: PropertiesProvided by the SystemTimelnfo Class (continued)

Property Data Type Description

StandardTimeZoneName String * 32 Read/write string containing the name of the current
time zone, if daylight saving time is not currently active.
To retrieve the current name, whether daylight saving
time is active or not, see the CurrentTimeZoneName
property.

SystemDateTime Date Read/write date value, allowing you to set or retrieve the
system date/time value, which corresponds to UTC time.
(That is, the SystemDateTime property minus the Bias
property will give you the current date/time. You can use
an expression like this, should you need to perform this
calculation: DateAdd("n", -sti.Bias,
sti.SystemDateTime).) If you need to know the local

date/time, use the Now function instead.

The following procedure demonstrates all the properties of the SystemTimelnfo
class:

Sub TestSystemTimeInfo()
Dim sti As SystemTimeInfo
Set sti = New SystemTimeInfo

Debug.Print "Current time zone name is : " & _
sti.CurrentTimeZoneName

Debug.Print "Current time zone bias is : " & _
sti.Bias

Debug.Print "Daylight time zone name is: " & _

sti.DaylightTimeZoneName
Debug.Print "Daylight time zone bias is: " &
sti.DaylightBias

Debug.Print "Standard time zone name is: " & _
sti.StandardTimeZoneName
Debug.Print "Standard time zone bias is: " & _

sti.StandardBias

Debug.Print "System date/time (UTC) is : " &
sti.SystemDateTime
Set sti = Nothing
End Sub

Summary 221

NOTE Windows provides many more time and date handling functions, most of which

work with file dates and times. Chapter 12 covers many of these in its coverage of
working with disk files. See that chapter if you're interested in working with file
dates and times. For more information on working with classes and class modules,
see Chapter 5.

Summary

Almost any VBA application will sooner or later need to work with date values,
and this chapter has provided solid coverage of the built-in date functions, as well
as many procedures that use those functions to provide more general functionality.
Specifically, we covered these topics:

e How dates are represented in VBA
e All the built-in date functions:
e Date, Time, Now
e DatePart, WeekDay, Year, Month, Day, Hour, Minute, Second
e DateAdd, DateDiff
e DateValue, TimeValue, CDate
e DateSerial, TimeSerial
e Format
e Additional extended functions, for:
e Finding a specific date
e Manipulating dates and times
e Working with elapsed time
e Working with Windows system date and time, and time zone information

Given the functions presented in this chapter and the information about writing
your own additional functions, you should be ready to handle any date/time
challenge facing you in your own applications. For similar chapters covering text
and numbers, see Chapters 1 and 2, respectively.

This page intentionally left blank

chapter

Using VBA to Automate
Other Applications

Understanding how Automation works
Writing simple Automation code

Creating integrated solutions with Microsoft
Office 2000

Creating event sinks to monitor other applications

224 Chapter 4 e Using VBA to Automate Other Applications

The term Automation refers to a technology that allows two separate applica-
tion components to communicate with each other. Communication can take the
form of data exchanges or commands issued by one component for another to
carry out. The driving force behind the creation and exploitation of this technol-
ogy is the desire to combine numerous independent software components into a
single integrated solution. Almost since its beginning, the Visual Basic language
has supported the programming interfaces that make Automation possible. In this
chapter, we explain the basics of Automation and explore ways to use it to create
integrated solutions using applications like those found in Microsoft Office. After
reading this chapter, you should have an understanding of how the pieces of the
Automation puzzle fit together and how you can use them to your advantage.

Table 4.1 lists the sample files included on the CD-ROM for this chapter.

TABLE 4.1: SampleFiles

Filename Description

AUTOMATE.XLS Excel file with sample functions
AUTOMATE.MDB Access 2000 database with sample functions
AUTOMATE.BAS General Automation functions
AUTOMATE.VBP Visual Basic project file with sample functions
EXCEL.BAS Excel Automation functions

GLOBALS.BAS Global constants

WORD.BAS Word Automation functions
WORDEVNT.CLS Word WithEvents class module
INVOICE.DOT Sample Word document template
MAIN.FRM Start-up form for the Visual Basic project
STATREQ.XLS Sample Excel workbook

Automation Basics

Under the covers, Automation is a very complex technology that involves numer-
ous programming interfaces. Fortunately, VBA has encapsulated those interfaces

and made Automation relatively simple to implement. Its greatest strength is that
it lets you work with objects from other applications using the same techniques

Automation Basics 225

you use now with objects built into VBA or those you create using class modules.
Before beginning to write integrated solutions using Automation, you should be
familiar with the basics. In this section, we explain the terminology we’ll be using,
where Automation information is stored, and how to examine an Automation
component’s objects, properties, and methods.

Terminology

There have been some changes in Automation terminology since we began writing
about it in earlier books and magazine articles. In addition, some of the terms used in
this book have meanings that differ when taken outside the context of Automation. In
both cases, it's important that you understand the specific meanings of these terms.

Changes in Terminology

In the beginning, Microsoft created Object Linking and Embedding and it saw
that it was good. But the masses cried, “That’s too much to remember! Give us a
three-letter acronym!” So Microsoft decried that Object Linking and Embedding
would be henceforth known as OLE and it saw that that was also good. And OLE
grew and prospered and before long it encompassed much and so Microsoft cre-
ated ActiveX, which it said was OLE but with much greatness. And the custom-
ers rejoiced, yea, the programmers were confused. And then there came the
Internet with much promise and mystery. So Microsoft created COM and pro-
claimed that COM was supreme and forever and that Object Linking and Embed-
ding, and OLE, and ActiveX had never been. And Microsoft rejoiced, yea, the
customers and programmers were confused.

Well, if there’s one thing Microsoft can’t be accused of, it’s letting its names for
technology get stale. Over the past decade, we’ve seen a number of technologies
designed to enable software to work better together. As this book was being writ-
ten, the nom du jour was COM, short for Component Object Model. (And COM+ is
right around the corner!) COM is the all-encompassing term for everything we
once knew as Object Linking and Embedding, OLE, and ActiveX. (Despite this,
the term ActiveX is still used for some subset technologies.) The following list pro-
vides both the old and new terms for some of the technologies involved.

e OLE Automation is now COM Automation or simply Automation.
¢ OLE Automation components are now COM components.
e OLE custom controls or OLE controls are now ActiveX controls.

e OLE document objects are now ActiveX documents.

226 Chapter 4 e Using VBA to Automate Other Applications

Terminology Used in This Chapter
Now, let’s clarify some common terms used in this chapter.

Automation requires a client (sometimes called a controller) and a server. The
server is the application or component that provides services to the client. It may
exhibit behaviors independently of the client, but, for the most part, it depends on
the client’s giving it commands to do things. The client, on the other hand, is the
application that uses the services of an Automation server. In a narrow context, a
client application is one that implements a development language that allows you
to write code that controls a server. (Of course, you could create your own client
from scratch using C++ as the development tool.) Automation clients include
Microsoft Visual Basic, Excel, Word, PowerPoint, and Outlook. In fact, any appli-
cation that supports VBA has Automation client capabilities. An Automation
client need not be a development tool, but development tools such as Access and
Visual Basic are the ones of most interest here.

In addition to understanding clients and servers, you should be familiar with
the difference between object classes and objects. Object classes are the types of
objects that an Automation server makes available for you to control. Object
classes have a defined set of properties, methods and, in some cases, events that
dictate how instances of that object class look and act. When you write Automa-
tion code, you manipulate objects—particular instances of object classes. The same
holds true for VBA class modules and the instances you create and manipulate.
(For more information on class modules, see Chapter 5.) You can think of objects
and object classes as being similar to variables and data types. VBA supports a
fixed set of data types, but you can declare and use as many variables of a single
type as you wish. In this chapter, when we discuss a server application’s object
model, we are talking about its set of object classes. When you write VBA code,
you're using instances of those classes, which are called objects.

What's the Value of Automation?

Automation’s biggest benefit is its capacity to let you use pre-built, robust, and
debugged software components in your applications. Just imagine having to build
your own spreadsheet module instead of using Microsoft Excel. Obviously, for
simple tasks, you may decide to “roll your own,” but as the complexity of a com-
ponent increases, the benefits of using off-the-shelf software increase, as well.
Automation takes component reuse one step further by allowing you to control
objects using your own code, extending whatever built-in intelligence the objects

Automation Basics 227

may have. Finally, the architecture of Automation lets you do this unobtrusively.
That is, you control objects using Automation the same way you control them in
VBA, by using sets of properties, methods, and events. With a few extensions to
your current understanding of VBA and its objects, you can start controlling other
applications’ objects, such as those found in Microsoft Office (Access, Excel,
Word, PowerPoint, FrontPage, and Outlook) and ActiveX controls.

Object Classes

Before you can start controlling objects, you need to understand which objects are
available to you. As you install applications and ActiveX controls, these compo-
nents will make entries in the Windows Registry that mark them as controllable to
Windows. (Technically speaking, Automation servers are those applications that
support the IDispatch programming interface.) Because each application may
make more than one object class available to Automation clients, you need to
know not only the application name, but the object type, as well. This information
is encapsulated in the program identifier, or ProgID, for the particular object class.
ProglIDs are expressed as follows:

ApplicationName.ObjectClass

For example, Microsoft Excel exports a controllable Chart class that has an asso-
ciated ProgID of Excel.Chart. Furthermore, this convention lets you append a ver-
sion number to the ProglID to restrict manipulation of the object to a particular
version of the software. Excel.Chart.5 refers to a Chart object that is manipulated
by Excel version 5. Most applications register a pointer to the latest version
installed on your computer, so leaving off the version number will force VBA to
use the latest version.

WARNING 15 software versions are released at an ever-increasing pace, it occasionally

becomes necessary to have multiple versions of a particular program installed on
your computer. Furthermore, sometimes you will install an older version of a pro-
gram on a computer that already has a newer version installed. When this hap-
pens with an Automation component, the older version sometimes overwrites the
Registry information so that an unqualified ProgID (one with no version number
appended) will point to the older version. Automation clients that use this ProgID
and depend on features that exist only in the newer version will no longer work.
When this happens, you should reinstall the newer version. This should restore the
Registry settings. However, as a precaution, you can use qualified ProgIDs if you
depend on certain features that aren’t available in all versions.

228 Chapter 4 e Using VBA to Automate Other Applications

While it is not always the case, most applications that feature a user interface (as
opposed to “Ul-less” servers, which operate transparently behind the scenes) reg-
ister an Application class. Normally, this object represents the highest-level object
in the application’s object model, and from it you can derive most other object
types. As we discuss the examples in this chapter, the use of ProgIDs should
become clear.

Type Libraries: The Key to Classes

These days, almost all COM components implement type libraries. Type libraries
are databases that list the objects, methods, properties, and events offered by a
server application. Automation clients, such as VBA, can use the information
stored in a library to “learn” about another application. Type libraries offer a
number of benefits:

e VBA does not actually have to run the server application to interrogate its
object model.

¢ The VBA editor and interpreter can use type libraries to perform syntax
checking on your Automation code.

¢ You can obtain context-sensitive help for another application’s keywords.

Type libraries can exist as separate files or be implemented as part of an applica-
tion EXE or DLL. Most components’ type libraries that exist as separate files have
a TLB or OLB (for object library) file extension, and you use them in your VBA
project by adding them to the list of references in the References dialog. Most
well-behaved components make the proper Registry entries to make this happen
automatically. However, occasionally you must add it to the references list your-
self. To do this, follow these steps:

1. Open the Visual Basic development environment.

2. Select the References command from either the Project menu (VB) or the
Tools menu (VBA). You should see a list of references similar to the ones
shown in Figure 4.1.

3. Check the box next to the reference you want to add.

4. If the reference is not listed, click the Browse button and locate the type
library or executable file of the component you want to use.

Automation Basics

229

FIGURE 4.1
References dialog showing
loaded and available refer-

ences

Once you've loaded a type library, you can use the objects, properties, and
methods in your VBA code. VBA will be able to correctly verify syntax, as well as
provide context-sensitive help for the server component’s keywords. One impor-
tant issue is that the complete path to the type library is stored with your VBA
project. If you move the type library or install your application on another com-
puter, you will need to reestablish the link to the type library.

References - Chi12 x|
Available Referances:

] visuial Basic For Applicatians H Cancel
[Microsclt fccess 9,0 Object Library

¥l Microsoft Calendar Contral 2,0

|| Microscft Outlook 9.0 Object Libkary Browse:
M._rusoft Word 9.0 Obect Librar

Mcmsm‘t Office 9.0 Elb):ct lelar,’
Microsoft PawerPoint 9.0 Object Library Pritrity.
| OLE Autamation telp
Il Microsoft Yisual Basic for Applications Extensibdity 5.2 i!
'u‘- Microsoft Activel Data Objects 2,1 Library

LI 1A5 Helper COM Component, 1.0 Type Library
| 1AS RADILS Protocol 1.0 Type Library

I

(\ccessMontor
4

r Wicrasaft Excel 9.0 Object Library:
Location: E:\Program Fles\Microsoft Cfficel Office\EXCEL9.0LE
Language; Standard

NOTE

Type libraries are also essential to early binding, the preferred approach to
Automation, described in the following sections.

Type Libraries, References, and Broken Apps

In the many years we've been writing, teaching, and speaking on Automation, a few
issues regarding server applications and references have been raised again and again. A
common one is, “If | use Automation to control Application X, do my users need Applica-
tion X in order to run my solution?” The answer, of course, is yes. Automation does not
magically compile a server application’s functionality into your program; it merely controls
the application at runtime. The server application must be installed in order for your pro-
gram to work.

230

Chapter 4 o Using VBA to Automate Other Applications

Another common question is, “What happens if the application isnt installed and a user
tries to run my program?” The answer depends on whether you've used a type library ref-
erence or not. If not, and your code is running in a VBA host like Access, the first time you
try to start an Automation session, VBA will raise a run-time error that you can trap and
handle as you see fit. However, if you have used a type library, it's a bit trickier since VBA
tries to resolve type library references prior to executing code. However, in this case, you
can be proactive and run code to validate references. Fortunately the VBA project informa-
tion is available through the object model at runtime, and you can fix up any broken links.

To do this, you must completely separate the code that uses Automation servers from the
code that checks for valid references in different code modules. This is necessary because
of VBA's demand load behavior. VBA loads and compiles modules only as needed but will
preload modules when they contain procedures referenced by a loaded module. (Of
course, this is necessary to compile the requested module completely.) By having a com-
pletely separate module that runs a start-up procedure to check references, you have the
opportunity to find missing type library references before getting a compile error.

However, if you're running your code in a compiled VB application, you're out of luck. You
cannot change the project information (and thus references) at runtime. You should make
sure you have very robust error handling to account for code that won't be able to run due
to the missing Automation server.

Browsing Objects with Object Browser

Once you've added references to an Automation component’s type library, you
can use the VBA Object Browser to view a list of the component’s classes, proper-
ties, methods, and events. To make Object Browser available, open the Visual
Basic environment and press the F2 key, click the Object Browser toolbar button or
select the View » Object Browser menu command. Figure 4.2 shows Object
Browser open to the Application class of Microsoft Excel’s type library.

When Object Browser first opens, it displays a list of all the classes exposed by
every referenced Automation component, including the current VBA project. You
can use the Project/Library drop-down list at the top left of the screen to select a
single component, thus making the list of classes a bit more manageable. Object
Browser changes the contents of the Classes and Members lists to reflect the
change. The Classes list shows all the object classes available from the Automation
component. Selecting any one of them causes Object Browser to display the meth-
ods and properties for that class in the right-hand list. Icons denote various ele-
ments of the type library, such as constants, classes, properties, and methods.

Automation Basics 231

Note that collections are also shown in the left-hand (object) list. When you select
a collection, usually denoted as the plural form of the object class name, Object
Browser displays the methods and properties for the collection, not the object.

e GURE 4.2 obienoomser —imix
!ECt rowse’-r S| OWIIng '?'-‘el—_ﬂ N I By 3_]
details on Excel’s Applica- = LR
tion object _| X #l 4
|Clazses Members of ‘Application’
@ =globals= =||:» DDERequest =
&4 Addin j = DDETerminate
2 Addins <% DeleteCharthutoFarmat
aaA =% DeleteCustomlist
A £ |® DoubleClick
& Areas % Evaluate
& AutoComact % ExecuteExceldMacro
&1 AutoFilter 2 FindFile
&l pues & GetCustormbistiContents
& pois & GelCustarmbistMum
&3 AusTille = GelOpenFilename
& Border & GelPhanetic
<% Borders & GelSaveAsFilename
& CalculatedFields .3
& Calculateditems =& Help -j
& CalloutFormat & InchesToPoints
& Characters A InputBox
&) Chart # Infersect
&) Chartbrea 2 MacroOptions
P ChantalneF nmmat L] B Maill neinff 1"
| Bub Gota({[Reference], [Scroif)
| ember of Exeel Application

If you're not sure of the exact name of a property or method, you can use Object
Browser’s search engine. Enter a text string in the text box just below the list of
libraries and click the Find button (the one with binoculars on it). After searching
the selected type libraries, Object Browser opens the Search Results pane, as shown
in Figure 4.3. You can collapse the pane by clicking the button with the up arrows.

Figures 4.2 and 4.3 also show the Application object’s Goto method highlighted
in the right-hand list. Note the syntax example at the bottom of the dialog. Object
Browser shows you the calling syntax of the property or method, including any
arguments. You can highlight any portion of the syntax and use the Copy button
to copy the highlighted portion to the clipboard for subsequent pasting into a
module. If you don’t highlight any of the syntax, the Copy button simply copies
the method or property name to the clipboard. If the type library being viewed
supports a help file, pressing the Help button (the one with a question mark) or
pressing F1 opens that file to the proper page for the displayed property or method.

232 Chapter 4 e Using VBA to Automate Other Applications

FIGURE 4.3 =101
ject Browser displaying et 5] <] | Bf%| 2]
search results
Search Rasults

|| Libra | Member
BN Ecel il catlon e Gotn

= HBuillinDialog = #DialogFammulaGoto

|Classes Memhbers of ‘Application”

@ =globals= ﬁf B GetCustomListhum ;l
&) Addin & GelOpenFilename

&4 Addins =& GetPhonetic

& Adiustrments - GeiSaveAsFilename

23 Application P [=ico

&) Areas Help

& AutoComect & InchesToPoints

21 AutoFilter S InputBox

& fues & Intersect -
& s & MacroOplions

& AnisTitle ~| & MaillLogoff =

| Bub Goto([Referance], [Scroif)
Wember of Exeel Application
|

Object Browser can be especially helpful when you're using an Automation
component for the first time. It gives you a class-by-class overview of the object
model, allowing you to browse the individual classes and their properties and
methods. As you become more familiar with a component, you’ll be able to write
Automation code from memory, but until then, Object Browser is a good place to
start learning about what’s available and how to use it.

Creating Object Instances

All Automation sessions begin with the client application creating an instance of a
server object. By creating an object instance, we mean establishing a conversation
with the server application and telling it which of its objects you wish to control.
The result of this creation process is a pointer to an instance of the server’s object
stored in an object variable. Using this object variable, you can control the server
application’s object using the same techniques you use to control VBA objects—by
manipulating their methods and properties.

Creating Object Instances 233

Early Binding and Late Binding

There are two approaches to creating instances of Automation component objects:
early binding and late binding. Each approach has its own pros and cons.

With early binding, you add a reference to a component’s type library at design
time to inform VBA about the Automation server and its objects. This technique is
called early binding because VBA knows which object classes the component sup-
ports (along with all their properties and methods) before you execute your code.

On the other hand, late binding does not require a reference to a type library. Instead,
you instantiate objects at runtime. This approach is known as late binding because
VBA has no way of knowing what type of object will be created until runtime.

Most Automation components support early binding, and you should use early
binding whenever possible. Early binding offers several benefits:

Speed Because you tell VBA about a component in advance, it does not need to
worry that a particular property or method might not be supported. With late bind-
ing, extra communication takes place to determine whether the server supports a
given property or method with each line of code! This decreases performance.

VBA editor support When you use early binding, VBA can perform syntax
checking on your source code and provide developer IntelliSense features like
statement completion.

Online help Early binding gives you context-sensitive help for components
that have help files. Just highlight any member name and press F1.

However, early binding has a drawback. Since you must use a reference to a
type library, if the type library or application is not installed on a user’s worksta-
tion, your solution will not compile or run. Late binding, at least, lets your code
compile and run because it does not require a reference in the first place. (How-
ever, statements that reference the Automation server’s objects, properties, and
methods will still fail.) In general, you should use late binding only when an
Automation component does not support early binding.

A Simple Early Binding Example

Controlling Automation components using early binding is extremely simple and
very similar to the way you work with built-in VBA components and custom
classes constructed using VBA class modules. To demonstrate early binding,
we’ve created a simple example that uses Microsoft Excel as an Automation

234 Chapter 4 e Using VBA to Automate Other Applications

server. If you already know everything there is to know about early binding, you
can skip to the next section. Otherwise follow these steps:

1.

o1l Bk ® D

Create a new project in your favorite VBA development tool. (You can even
use Excel if you like.)

Open the Visual Basic environment.
Add a new module to the project.
Open the References dialog by selecting the References menu command.

Locate “Microsoft Excel 9.0 Object Library” in the list and mark the check
box. Click OK to close the dialog.

Enter the VBA code shown in Listing 4.1 in the new module. (If you're using
VB, it’s probably easier to put the code in the Form_Load procedure of the
project’s start-up form.)

Highlight any line of code in the TestXL procedure and press E8 to step
through the code.

Listing 4.1: A Simple Procedure Demonstrating Automation Basics

Sub TestXL

Dim objXL As Excel.Application

' Create a new instance of Excel
Set objXL = New Excel.Application

' Reference a few properties

MsgBox objXL.Name & " " & objXL.Version
objXL.Visible= True
objXL.Quit

Set objXL = Nothing

End Sub

NOTE

Notice that we prefaced the object class (Application) with the name of the server
(Excel). It's good practice to qualify the object class with the server name whenever
the object class might be ambiguous. (Other Automation servers also have an
Application object.) If you're unsure of the server name to use, look at the list of
libraries in Object Browser. Object Browser uses the name of each component,
which is what you should use to qualify objects exported by that component.

Creating Object Instances 235

As you step through the code, you'll notice several things happen. First, you'll
observe a slight delay and some disk activity as you execute the New statement.
This is because a new instance of Excel is being launched. After the new instance
loads, VBA continues executing code and displays the dialog announcing Excel’s
name and version.

At this point, a new copy of Excel will be running, but you won’t be able see it.
That’s because when Excel is launched in response to a request from an Automa-
tion client, it makes its main window invisible. This behavior is application-spe-
cific. For more information on how the other Microsoft Office applications react,
see the section “Differences in Application Behavior” later in this chapter.

To make Excel’s main window visible, execute the next statement. Excel’s
Application object has a Visible property that controls this behavior. Changing the
property to True displays Excel’s main window.

Executing the next statement (objXL.Quit) terminates Excel. You'll notice
another slight delay as Excel shuts down. The final statement, which sets the
object variable to the intrinsic constant Nothing, is a housekeeping task that frees
any memory VBA was using to manage the Automation session.

What Happens When You Say “New” Anyway?

Another question might be, “Why do my Automation solutions seem so fragile?” The
answers to both guestions can be found by looking at how Windows manages Automa-
tion servers—through the system registry.

The registry entries required to support Automation were actually designed to make using
Automation easier by abstracting attributes like the physical location of an Automation
server. However, sometimes these entries get altered or corrupted and nothing seems to
work, so it makes sense to understand a bit how this abstraction happens.

In this chapter, we've discussed using an Automation server’s ProglD to initiate an Auto-
mation session. In fact, this is a convenience designed for us humans. In reality, COM
Automation is based on each server having its own Globally Unique Identifier (GUID),
which is a 64-bit integer, normally expressed in hexadecimal notation. For example, Excel
2000's GUID is 00024500-0000-0000-C000-000000000046. Easy to remember, right?

236

Chapter 4 o Using VBA to Automate Other Applications

The registry lists all Automation components by GUID under the HKEY_LOCAL_MACHINE\
Software\Classes\CLSID key. For instance, if you look up Excel’s GUID, you'll find a key
with the GUID’s name containing a number of subkeys, such as LocalServer32, ProgID,
and VersionIndependentProgID. LocalServer32 contains a value that is the path to
EXCEL.EXE on your machine. (The path also includes the \automation command line
switch.) If this doesn’t point to the location where Excel is really installed, you're in trou-
ble! The other two subkeys, ProgID and VersionindependentProgID, contain the strings
Excel.Application.9 and Excel.Application, respectively, and exist so that given a GUID, you
can determine the ProgID.

But VBA works in the reverse fashion, taking the ProgID and looking up the GUID. How
does this work? Well, if you look at the HKEY_LOCAL_MACHINE\Software\Classes key,
you'll see there are probably hundreds of ProgID keys, Excel.Application being one of
them. Digging into this key reveals, you guessed it, a CLSID subkey containing the match-
ing GUID. So, you can see how a tool like VBA can easily find the right GUID and pass it to
the COM Automation functions in Windows to provide you with a pointer to a running
Automation server. You should also be able to see how chaos can result if any of these
many registry keys and values are corrupted. So, if you ever get Automation errors where
Windows can‘t find or start Automation servers, you should first check to make sure your
registry isn’t messed up.

When to Instantiate

In the previous example, you saw how a new instance of Excel was created when
you executed a New statement. This forced VBA to create a new instance of Excel

explicitly. As an alternative (and just like VBA class modules), if you declare an

object variable using the New keyword, the object is instantiated the first time you

reference one of its properties or methods. For instance, you could modify the

prior example shown in Listing 4.1 to make it look like the one shown in Listing 4.2.

Listing 4.2: Using Implicit Instantiation to Launch Excel

Sub TestXLDelayed()
Dim objXL As New Excel.Application

' Excel is started on the next line automatically

MsgBox objXL.Name & " " & objXL.Version
objXL.Visible= True
objXL.Quit

Set objXL = Nothing
End Sub

Creating Object Instances 237

In this case, Excel will be launched automatically the first time VBA references a
property or method, in this case, by the Name property in the MsgBox statement.
However, in general, we don’t recommend this technique, even though it saves
you typing one line of code. The reason is that in a complex application, it may not
be obvious (as it is here) when the object becomes instantiated. This can make
debugging Automation problems more difficult. Therefore, you should always
use explicit instantiation.

NOTE

You cannot use a specific Automation server version (such as Excel.Application.9)
with the New keyword. If you need access to version-specific objects, you must
use the CreateObject or GetObject functions described in the next section.

CreateObject and GetObject

CreateObject and GetObject are VBA functions (as opposed to a keyword, like
New) used to instantiate Automation component objects. Both return pointers to
an instantiated object that you must store in an object variable. You can declare a
variable using the generic Object data type, or you can use a server-specific data
type if you have added a reference to the server’s type library to your VBA project.
For example:

" If you don't want to use the type Tlibrary, do this:
Dim objExcel As Object

" If you are using the type library you can do this:
Dim objExcel As Excel.AppTlication

Both CreateObject and GetObject are essential to working with late-bound
Automation servers (those that don’t use a type library) but can also be used with
early binding.

Using CreateObject

CreateObject accepts two arguments: a string containing a component object’s
ProglD, as described in the section “Object Classes” earlier in this chapter, and an
optional machine name for use with remote servers (see the sidebar “Using Dis-
tributed COM with Automation Servers”). When you call CreateObject, VBA
attempts to create an object of the type specified using the application specified. If
it cannot create the object, perhaps because the application is not installed or does
not support the object type, it fails with a run-time error.

238 Chapter 4 e Using VBA to Automate Other Applications

If you want to try a simple example of late-bound Automation using CreateOb-
ject, create the procedure shown in Listing 4.3 and walk through it.

Listing 4.3: Instantiating Excel without Using a Type Library

Sub TestXLLateBound()
Dim objXL As Object

' This creates a new instance
Set objXL = CreateObject("Excel.Application.9")

' The rest is pretty much the same as before
MsgBox objXL.Name & " " & objXL.Version
objXL.Visible = True
objXL.Quit
Set objXL = Nothing

End Sub

You'll notice that this is almost the same code as in the prior examples, except
that we’ve used a generic Object variable to store the pointer to Excel’s Applica-
tion object. If you don’t include a reference to a component’s type library, you
must use the Object data type. We've also used CreateObject to instantiate the
object variable rather than the New keyword. Note that the ProgID (Excel. Appli-
cation.9) is passed as text. We could have stored this in a variable that VBA could
evaluate at runtime. This is something that is not possible if you use the New key-
word because the ProgID must be hard coded as part of the New statement.

Using Distributed COM with Automation Servers

Distributed COM (or DCOM for short) is an extension to standard COM that enables you
to control applications and components installed on other workstations than the one your
code runs on. It is an extremely powerful technology that supports application features like
fault tolerance and load balancing. Prior to VBA 6, support for DCOM was available only
through the operating system, and VBA had no knowledge of it. When DCOM was
enabled (through a complex set of steps involving machine name/automation server map-
ping and security administration), calls from VBA to Automation servers were intercepted
and routed over the network via remote procedure calls (RPCs). While complex to set up,
when DCOM worked, it worked well.

Creating Object Instances 239

VBA 6 makes using DCOM even easier by letting you simply select the machine name
where an Automation server is located in the CreateObject function call. For example, sup-
pose you wanted to launch a copy of Excel on a remote workstation called myserver. You
would write code like this:

Set objXL = CreateObject("Excel.Application", "myserver")

Of course, you still need to enable DCOM on the remote workstation and set up security
attributes. (After all, you wouldn’t want someone launching applications on your machine,
would you?) But, if you have need for advanced application features, the effort may be
worth it.

Using GetObject

GetObject is similar to CreateObject, but instead of accepting a single argument
for ProglD, it allows for two optional arguments: a document name and/or a
ProglID. The general form of a GetObject statement is

Set objectvariable = GetObject([docname], [ProgID])

Note that both arguments are optional, but you must supply at least one of them.
GetObject is a more flexible function that you can use to create an object from an
application’s document (an Excel workbook file, for example) or from an existing
instance of an application. The flexibility of GetObject is revealed by the combina-
tion of arguments used. Table 4.2 explains the results of these combinations.

TABLE 4.2: Various Uses of the GetObject Function

Combination Example Results
Document name only Set objAny = The application associated with the
GetObject(”C:\BOOK1.XLS") document type is launched and used

to open the specified document. If
the application supports it, an
existing instance will be used. If the
document is already open, the object
pointer will refer to that instance.

Object class only Set objAny = GetObject (, If the server application is running,
"Excel.Application”) an object pointer is created for the

running instance. Otherwise,
GetObiject returns a run-time error.

240 Chapter 4 e Using VBA to Automate Other Applications

TABLE 4.2: Various Uses of the GetObject Function (continued)

Combination Example Results
Object class and empty Set objAny = GetObject (" ", Same behavior as CreateObject.
document name “Excel.Application™) Opens a new instance of the
application.
Both document name Set objAny = Same behavior as passing only the
and object class GetObject("C:\BOOK1.XLS","Exc document name, except you can
el. Application”) pass document names that aren’t

normally associated with the server
(as determined by the file extension).

As you can see, GetObject is more complex than CreateObject, although it does
offer the benefit of using running instances of applications rather than launching
new copies each time your Automation code runs. This is especially critical on
low-memory computers.

Understanding Class Instancing

In the preceding examples using the Application class, a new copy of Microsoft
Excel is launched each time VBA requests a new instance of the class. This is
because the Application class is, by default, a single-use class. Automation server
classes fall into two broad categories: single-use and multiple-use.

Single-Use Classes

Single-use classes cause a new instance of the application to launch when a client
application instantiates them. We've illustrated this in Figure 4.4. Each instance of
the Application class created by client applications references an Application
object created by a separate copy of Excel.

FIGURE 4.4 :
Single-use classes are each Client App 1 EXCEL.EXE
hosted by a different copy objExcelApp Excel.Application
of the application.

Client App 2 EXCEL.EXE
objExcelApp1 Excel.Application |
objExcelApp2

Excel.Application |

Creating Object Instances 241

Multiple-Use Classes

On the other hand, multiple-use classes allow multiple Automation client applica-
tions to share the same instance of the class. An example of a multiple-use class is
Microsoft Outlook’s Application class. Only one instance of the class can exist at
any given time. Figure 4.5 illustrates this type of class. Even though client applica-
tions might instantiate the class using the New keyword or CreateObject, all refer-
ences point to the same instance in the server application. Applications that expose
multiple-use classes are typically those that allow you to launch only one instance
from the Windows shell.

FIGURE 4.5 -
Multiple-use classes are all U ApLD OUTLOOK.EXE
hosted by a single copy of objOutlookApp :
the application. Outlook.Application
Client App 2
objOutlookApp1
objOutlookApp2

What's more, classes that are single-use by default can sometimes be used like a
multiple-use class, as illustrated in Figure 4.6. For example, you can use Excel’s
Application class as though it were a multiple-use class, even though it is single-
use by default. To accomplish this, you must first ensure that a copy of the appli-
cation is already running. Then, instead of using the New keyword or CreateObject
function to instantiate an object, use a normal Set statement or the GetObject func-
tion. The code in Listing 4.4 demonstrates this.

FIGURE 4.6 -
Using a single-use class as CtI)IeEnt As_{) 1 EXCEL EXE
; e objExce Fati
though it were multiple-use (Crea!ted it ,\r"e‘\)’v) | Excel.Application
Client App 2 EXCEL.EXE
objExcelApp1 r—
(Created with New) | Excel.Application
objExcelApp2 |
(Created without New)

242 Chapter 4 e Using VBA to Automate Other Applications

While you can use most single-use classes in the multiple-use role, the converse
is not true. Each time you request a new instance of a multiple-use class, you
receive a new reference to a pre-existing instance if one exists. Only the first
request results in a copy of the application being launched. Therefore, you should
be careful about programmatically terminating a multi-use server because other
clients (or users) might be using it.

Listing 4.4: Using GetObject to Attach to a Running Instance of

Excel

Sub TestXLExisting()

Dim objXL As Excel.Application

' Use an existing instance (this will fail

" if Excel disn't running!)
Set objXL = GetObject(,"Excel.Application.9")

' The rest is the same

MsgBox objXL.Name & " " & objXL.Version

objXL.Visible = True

objXL.Quit

Set objXL = Nothing

End Sub

Table 4.3 lists the programs in Microsoft Office 2000 and indicates whether they
are single-use or multiple-use by default.

TABLE 4.3:

Single-Use and Multiple-Use Office 2000 Applications

Application

Default Behavior

Multiple-Use?

Access
Excel
FrontPage
Outlook
Publisher
PowerPoint

Word

Single-use
Single-use
Multiple-use
Multiple-use
N/A
Multiple-use

Single-use

Yes

Yes

N/A

N/A

N/A

N/A

Yes

Controlling Other Applications 243

Reference Counting and Server Termination

When working with multiple references to object instances, you need to be aware
of reference counting by the server application. Every time you ask a server applica-
tion for an object instance using New, CreateObject, or GetObject, the server appli-
cation increments an internal counter. Conversely, when you destroy an object
reference by setting it equal to Nothing (or when the object variable goes out of
scope), the server decrements the counter. With multiple-use classes, this can lead
to problems if you're not careful.

Most Automation servers terminate automatically when the internal reference
count reaches zero. Furthermore, some will not terminate unless the count is zero.
For this reason, you should take care when creating multiple references to a single
Automation class in your program. If you must do this for whatever reason, be
sure to destroy all references to the server when your application terminates. There
is no way to determine a server’s internal reference count using VBA code.

Some applications will not terminate automatically when the reference count
reaches zero if you've done something that enabled the user to interact with the
application. For example, displaying Excel’s main window will prevent Excel
from terminating if the user creates a new workbook.

Controlling Other Applications

Now that you understand the basics of Automation, you're ready to start writing
code to control Automation components. The rest of this chapter explains how you
can write code like this, using several applications in Microsoft Office to illustrate.

Learning an Application’s Object Model

The techniques involved in using another component’s objects through Automa-
tion are the same as those for manipulating VBA objects; the only difference is the
set of objects themselves. Before beginning to write Automation client code, you
must familiarize yourself with the server component’s object model. Unfortu-
nately, the availability and quality of documentation vary enormously, even among
Microsoft products. As a general rule, those applications that have their own
development language (such as VBA in Microsoft Excel, Outlook, Word, FrontPage,
and PowerPoint) have better documentation than those that don’t (for example,

244

Chapter 4 o Using VBA to Automate Other Applications

MapPoint). Resources are available that you can use to learn another application’s

object model. Two of them are listed here:

The Microsoft Office 2000/Visual Basic Programmer’s Guide is included with

As mentioned earlier, you can also use Object Browser to interrogate a compo-
nent’s object model. Even with online help, this tends to be a trial-and-error method

Microsoft Office 2000 Developer, as well as separately from Microsoft Press,

and contains information on creating integrated solutions with Microsoft
Office, including object model descriptions.

The Microsoft Developer Network Library is an online and CD-ROM resource
for those developing solutions with any type of Microsoft technology. You
can access a portion of the library (as well as sign up for a paid membership

that includes quarterly CD mailings) at http://msdn.microsoft.com/.

that does not offer the supplementary information that other documentation
sources do.

Perhaps one of the most productive ways to get an overview of an object model
is by inspecting a graphical view of the relationships between objects. Office 2000
includes help files for each application that include a diagram like the one shown

in Figure 4.7. However, finding the diagram can be tricky.

FIGURE 4.7
Office 2000 includes help
files with object model
diagrams.

Murrmnlk Fiial Hasic Help

Slaatisd
o Ducel Ysual Dasic Nelae

antYoud Far

& Telmnn
1 4 Micosat Daie Ancess Ubests 26D |DA0)
= @ MicootJe: SOL “almence

e
1 Foa o F10 Ttk paas

Microsalt Fxeel Objeds

[fwication

L_M Mddie k] |
MEbmztthan) b MAwdoComeet |
({BucumantPropscting ocansntPropests) | HAssstan

(i Canhe: (FroCacks] |
{Sipine: [Sipte] |

e e

|
[MAdde (oMl |

H Commaruifars {Crmmaanlfar] |

Hi iy aynialiings

P [Parm] |
HFrmmes el |
{Bniles g |

[Pulilizilleads [Puldisd B] |

LRt]

Legend

= aject anc solectior

=l aajet anly

| P Clics 2rvou to cxpana thart

S e L
HIALE wm IDAEE |]

HDeloWahliprions =

Controlling Other Applications 245

First, you need to make sure you've installed the VBA help files. (They’re an
optional component of the standard install.) Then, the easiest way to locate the
diagrams is to do the following:

1. Launch the Visual Basic development environment.
2. Setareference to an application’s type library.

3. Open the Object Browser and select the application’s type library from the
drop-down list.

4. Click the Help button.

The application’s object model diagram should appear as the default help topic.
If you don’t see it, you should be able to select it from the help browser’s topic list.
It would be nice if it were easier than this but, alas, the perky Office Assistant
seems woefully unaware of object models.

Differences in Application Behavior

When creating Automation objects, be aware that component applications exhibit
unique behavior when used as Automation servers. Differences in an applica-
tion’s behavior will dictate how you use it in your Automation client code. Table
4.4 lists differences in behavior of the Application object among the programs that
make up Microsoft Office 2000. The table explains four facets of Office application
behavior:

¢ Does the application open as a hidden window when launched through
Automation?

¢ Does the application include a Visible property for toggling the visible state
of the main window?

e Does the application terminate automatically when its internal reference
count equals zero?

¢ Does the application have a UserControl property to indicate that the user
has interacted with the application?

As you use other Automation components, you may want to note how they
behave in respect to the list provided.

246 Chapter 4 e Using VBA to Automate Other Applications

TABLE 4.4: Differencesin Behavior among Microsoft Office 2000 Applications

Application Opens Hidden? Visible Property? Terminates UserControl
When Ref Property?

Count = 0?"

Access Yes Yes Yes Yes
Excel Yes Yes Yes Yes
PowerPoint Yes Yes No No
Outlook Yes No3 No No
Word Yes Yes No Yes

1. Assumes user has not interacted with the application.
2. Does not always work correctly. You may want to use the Windows APl ShowWindow function instead.
3. You must use the Windows API ShowWindow function to change the visible state.

Memory and Resource Issues

One very important piece of information to keep in mind when creating inte-
grated solutions using Automation is how controlling multiple applications at the
same time will affect the overall performance of a user’s system. Large server
applications, such as Excel and Word, consume a lot of memory. While it is now
more difficult to produce the dreaded “Out of System Resources” error, thanks to
better memory management in Windows 9.x and N'T, RAM is still an issue. Due to
disk swapping, computers with fewer than 32 megabytes of RAM may perform
poorly when many large applications are running. If low memory is a problem,
you may want to consider closing each server after using it.

The other side of the coin is the time it takes to start and stop large applications.
If you frequently use large applications as Automation servers, you may want to
leave them open despite the effect this will have on memory consumption. In
other words, you will likely have to experiment to get the right mix of perfor-
mance and memory utilization.

Creating Automation Solutions with
Microsoft Office

Statistically speaking, if you are reading this book, you probably already own a
copy of Microsoft Office or have access to one. This gives you an opportunity to

Creating Automation Solutions with Microsoft Office 247

leverage the vast functionality in those applications by creating integrated solu-
tions based on Automation. To get you started, we’ll spend a good portion of this
chapter demonstrating several sample applications that use Office components.
You'll be able to see examples of how each can be controlled from VBA. We'll also
point out some of the minor differences and idiosyncrasies that still exist in this
supposedly integrated suite of products.

Specifically, we'll illustrate Automation using two moderately simple examples:
e Creating and manipulating documents and tables using Microsoft Word
e Charting database data using Microsoft Excel

Each of the two examples will highlight a slightly different aspect of using
Automation. First, the Word application demonstrates the basics of controlling an
Automation component and shows how to work with a document-oriented
server. The Excel example shows how to use existing documents as the target of
Automation commands.

TIP

You can find more examples of using other Automation servers in Microsoft Office
in Access 2000 Developer’s Handbook: Volume |, Desktop Edition, from Sybex.

The Office Object Models

While we don’t have nearly enough room in this chapter to fully explain the object
models of Office applications, we can describe some of their more significant
aspects. This will provide a good basis for explaining the sample applications in
the rest of the chapter. We've included diagrams from the Office help files that
illustrate abridged versions of the object models. They include just a few of the
applications’ classes. Table 4.5 lists the classes that are exposed to Automation cli-
ents. All the other classes implemented by the applications are available through
collections, methods, and properties of the exposed classes.

TABLE 4.5: ObjectClasses Exposed by Microsoft Office 97 Applications

Server Name Class Name Description
Access Application Pointer to an instance of Microsoft Access.
Excel Application Pointer to an instance of Microsoft Excel.
Chart Pointer to a new Chart object. Launches Excel and

opens a new workbook if necessary.

248 Chapter 4 e Using VBA to Automate Other Applications

TABLE 4.5: Object Classes Exposed by Microsoft Office 97 Applications (continued)

Server Name Class Name Description

Sheet Pointer to a new Worksheet object. Launches Excel
and opens a new workbook if necessary.

FrontPage Application Pointer to an instance of Microsoft FrontPage.
Outlook Application Pointer to an instance of Microsoft Outlook.
PowerPoint Application Pointer to an instance of Microsoft PowerPoint.
Word Application Pointer to an instance of Microsoft Word.
Document Pointer to a new Document object. Launches Word

if necessary.

Excel

Excel has what might be described as the granddaddy of Office object models. It
was the first application to integrate VBA (with version 5 in 1993), and with that
came a very rich object model that allowed developers complete control over
Excel worksheet-based applications. Figure 4.8 illustrates a small portion of the
object model.

FIGURE 4.8 :
A very small portion of the ’ Application
Excel object model
|—>‘ Workbook

|—>‘ Worksheet

T
I Obtained using methods
1
R >’ Range
Legend —>‘ Shape
l Object only l |—
=| ChartObject
| Object and collection I
=| QueryTable
:I PivotTable

Creating Automation Solutions with Microsoft Office 249

As you can see in Figure 4.8, Excel’s object model follows its user interface
design very closely. Its top-level class, Application, represents the main Excel
application. Descending from that is a Workbooks collection representing all open
workbooks (XLS files). And contained within each workbook is a collection of
Worksheets.

Within each worksheet are collections of objects representing embedded charts,
lines, pictures, and so on. What you won't see is any collection symbolizing data
in individual cells. This is because implementing a Cells collection, for example,
would require managing 16,777,216 objects (because an Excel worksheet is 256
columns wide by 65,536 rows deep)! Instead, you use methods to return refer-
ences to data. These references are stored using a generic Range object. A range
can be a single cell, a block of cells, a discontinuous group of cells, or an entire row
or column. You'll find numerous methods designed to return Range objects—for
example, Cells, Range, Column, Row, Union, and Intersect. Once you have a valid
Range object, you can use some of its more than 160 properties and methods to
manipulate data, change formats, and evaluate results.

Word

Word 97 was the first version of Microsoft’s flagship word processor to have an
exposed object model. While it has been an Automation component since version 2,
prior versions have exposed only a single class, Word.Basic, representing Word’s
macro interpreter. You used this class to execute WordBasic commands against
the current instance of Word. Without a rich object model, writing Automation
code was cumbersome. WordBasic macros operate only on the currently selected
text or object, so it took a great deal of code to ensure that the proper element was
selected before you could execute a command that modified it.

Fortunately, this limitation became history with Word 97, and Microsoft has
extended the object model in Word 2000. Figure 4.9 illustrates a small portion of
Word’s object model.

Word'’s object model shares a number of similarities with that of Excel. At its
root is the Application object, which contains a collection of Document objects,
one for each open document. Each Document object has several properties that
allow you to manipulate text, including Sections, Paragraphs, Sentences, and
Words. Each property returns a pointer to a Range object. Word Range objects are
similar in concept to those in Excel in that they give you access to the contents and
formatting of blocks of text.

250 Chapter 4 e Using VBA to Automate Other Applications

FIGURE 4.9
Highlights of Word's object ’ Application

model
L»r Document

T
I Obtained using methods/properties
1
- >’ Range
Legend —>‘ MailMerge
l Object only I |
> | Style
| Object and collection I
> r Shape
> I TableOfContents

PowerPoint

While PowerPoint has had an object model since PowerPoint 95, it wasn’t until
Microsoft integrated the VBA development environment in PowerPoint 97 that
developers really began taking advantage of its functionality. PowerPoint has a
rich object model that, like Excel and Word, is aimed at managing the contents of
documents. (In Excel, workbooks are the “documents.”) However, PowerPoint’s
document paradigm deals with presentations and slides. Figure 4.10 shows a por-
tion of the PowerPoint object model, which should look familiar to you by now. It
features the requisite Application object and Presentations and Slides collections.

Manipulating textual information in PowerPoint is a bit more convoluted than
in Word or Excel because of the unstructured, free-form nature of PowerPoint
slides. Each Slide object has a collection of Shapes representing the various graph-
ical components placed on the slide. For those shapes that can contain text, there is
a TextFrame object, which controls how contained text is displayed (margins, ori-
entation, and so on). Finally, the TextFrame object contains a TextRange object
with text and formatting properties and methods.

Creating Automation Solutions with Microsoft Office 251

FIGURE 4.10 —
PowerPoint's object model ’ Application

deals with Presentation and
Slide objects. L»r Presentation

—>’ SlideShowSettings

—P‘ Slide

—>’ ColorScheme

—>’ SlideShowTransition

—>‘ Shape
Legend
[objectony | —»’ TextFrame I
r Object and collection I ’ TextRange

Outlook

Microsoft added an object model to Outlook in its first release, Outlook 97, and
made minor enhancements in Qutlook 98, an interim release. With Outlook 2000,
Microsoft has added new members to the object model, as well as greatly expand-
ing Outlook’s support of events. However, Outlook’s object model is unlike any of
the other Office products primarily because it does not follow the same docu-
ment-centric metaphor. The data it manipulates is far less structured and, like its
predecessor Schedule+, the object model can be difficult to learn and use. Further-
more, Outlook is designed to be an integral part of your electronic messaging sys-
tem and, as such, must cope with various service providers, addressing schemes,
storage mechanisms, and electronic mail functions.

Figure 4.11 illustrates the Outlook object model, which may at first appear less
complex than that of the other applications. It has an Application class at its root,
but that’s where similarities end.

252 Chapter 4 e Using VBA to Automate Other Applications

FIGURE 4.11
Outlook’s object model is
quite different from other

Office applications.

’ Application

i Obtained using GetNamespace method

1
C -A Namespace

|—>‘ Folder

Each Item will be one of:
Appointmentltem
Legend —>‘ Item Contactitem
Journalltem
Object only I | Mailltem
;| Folder Noteltem
-) - Postltem
Object and collection I 3 Taskltem
---» and so on...

First, Outlook requires that you create a reference to what it calls a Namespace
class. This represents one of the messaging service provider layers that Outlook
depends on for data storage (although MAPI is the only type of namespace Out-
look supports). MAPI (Messaging Application Programming Interface) imple-
ments persistent data storage using a hierarchical folder metaphor similar to disk
subdirectories. Outlook’s Namespace class contains a Folders collection repre-
senting the top-level folder of each installed storage system. Each of these, in turn,
contains a Folders collection with members for each subfolder (Inbox, Outbox,
and so on). Every folder object has a Folders collection, allowing for infinite nest-
ing of data storage.

Data in folders is represented by an Items collection. Each element of this collec-
tion can be one of a variety of object classes that represent such things as mail mes-
sages, appointments, journal entries, contacts, and tasks. It is this uncertainty
about what a folder contains that makes programming with Outlook challenging.

Office Objects

Finally, Microsoft Office implements a set of objects that individual programs
share. These include the Office Binder, Office Assistant, command bars, a file
search tool, PhotoDraw, and Microsoft Graph. You'll find information about these
objects in online help.

Example: Word as a Report Writer 253

Example: Word as a Report Writer

It might seem odd to suggest using Word as a report writer given the other
options available to developers these days. Word documents are often more flexi-
ble and certainly more powerful than many reports created using specialized
tools, since a user can take the output and modify it further. They are also more
portable and produce richer HTML output for Web applications. For this reason
(and because it’s a great demonstration of basic Word Automation techniques),
we’ve chosen to create a sample that accomplishes the following tasks:

e Launches Microsoft Word if it is not already running.

¢ Creates a new Invoice document based on a Word template with several
bookmarks defined.

e Copies customer and order data from an Access database to the invoice
header in Word.

¢ Copies line item data from an ADO recordset to a Word table.

e Previews the document using Word’s print preview mode.

NOTE

To run this sample, you'll need to have Word installed on your computer and have
the sample template INVOICE.DOT in the same directory as the sample database,
AUTOMATE.MDB. You will also need to modify the conPath constant in
basAutomation to reflect the directory where you copied the sample files from this
chapter.

Creating the Word Template

The sample application code relies on the existence of a Microsoft Word template
file with predefined bookmarks. Figure 4.12 shows the template open in Microsoft
Word. The vertical gray bars on the left side of the document are Word book-
marks. The sample uses the bookmarks to denote where to insert text. Consider
creating Word templates containing static elements and bookmarks for your
applications rather than creating entire documents from scratch.

You define a bookmark by setting the insertion point at the spot in the docu-
ment where you want to create the bookmark and then choosing the Insert »
Bookmark command. Figure 4.13 shows the dialog that appears. It lists any exist-
ing bookmarks, and you can click the Go To button to go to the point in the document

254 Chapter 4 e Using VBA to Automate Other Applications

marked by the bookmark. To create a new bookmark or redefine an existing one,
enter the name of the bookmark in the text box and click the Add button.

FIGURE 4.12

o ~Iofx)
TI etsamp T) 'n\:(o'ce EET' | B Edf View [nsert Formab Toolks Table Window Help |
P defne dta et DFHS SR L L@ I0- - [WBOEDES[E T o -0

| Inside Address = Arial

points.

-n0-lBzyulEEEEEEFEFEO-2-A-.

R AL B 10 el . A - B

L

S R

v et A

T Invoice Data: May 31,1999
. Order Mumber. T
Order Date: T
Bill To: T
I

H Qw4

| Page 1 Sac 1

|
i [at 31" In® <ol 3 7= ey B B T3

FIGURE 4.13
Word's Bookmark dialog,
showing bookmarks
defined in the sample
template

Example: Word as a Report Writer 255

You can see in Figure 4.13 that our sample template has a number of bookmarks
already defined. We'll use these bookmarks to drive the data transfer process.

Building the Invoice

Once you've copied the invoice template to your hard disk, you can test our appli-
cation by running the PrintInvoiceWithWord procedure. (Remember: Make sure
INVOICE.DOT is in the same directory as AUTOMATE.MDB). The procedure is
contained in basWord, and it creates the invoice in three steps:

e Loads the template in Word.
e Adds header information.

e Builds the details table.

NOTE We've included the code for PrintinvoiceWithWord in several chunks in the next few
sections. For a complete listing, open the procedure yourself in the Visual Basic Editor.

NOTE To try this example you'll need to call the PrintinvoiceWithWord function and pass
an order number that exists in the sample database. You can choose any order
contained in the Orders table in AUTOMATE.MDB. Order number 10250 is a safe
choice. For your convenience we've also provided a test routine, Testinvoice, in
basWord.

Loading the Template in Word

The first step is to launch Microsoft Word and load a new document based on the
invoice template. Word implements a Documents collection representing all open
documents, and you create new ones by calling the collection’s Add method.
Here’s the code that does it (objWord is declared as a Word Application object):

' Launch Word and Toad the invoice template
Set objWord = New Word.Application
objWord.Documents.Add _

conPath & "\Invoice.dot"

objWord.Visible = True

The Add method accepts as its first argument the name of a document template
to base the new document on. You can see we’ve provided a complete path to
INVOICE.DOT contained in the same folder as the sample database. If you omit
the path, Word looks in the standard Office template folders. You can also omit the

256 Chapter 4 e Using VBA to Automate Other Applications

template entirely, in which case, Word will base the new document on the default
template, NORMAL.DOT.

Adding Header Information

Once Word creates the new document, you can begin adding text to it. Our sam-
ple procedure uses bookmarks to control the location of inserted text. While you
can insert text at any point in a document using objects and collections like Para-
graphs, Sentences, Words, and Characters, you'll find it much easier to use pre-
defined bookmarks. Bookmarks retain the same relative location in a document as
additional content is added or removed. The aforementioned collections change,
and this often makes it hard to position text at a precise location. Listing 4.5 shows
the Automation code that copies the invoice header from an ADO Recordset
object to the Word document.

TIP

A complete coverage of ADO is beyond the scope of this book. For a more in-
depth discussion of database access and query processing using ADO, we
encourage you to check out Visual Basic Developer’s Guide to ADO or Access
2000 Developer's Handbook, VVolume 1: Desktop Edition, both from Sybex.

Listing 4.5: Copying the Invoice Header from an ADO Recordset

' Add header information using predefined bookmarks

With objWord.ActiveDocument.Bookmarks
.Item("OrderID").Range.Text = rst!OrderID
.Item("OrderDate").Range.Text = rst!OrderDate
.Item("CompanyName").Range.Text = rst!CompanyName
.Item("Address").Range.Text = rst!Address

.Item("Address2").Range.Text = rst!City & ", " & _
rst!Region & " " & rst!Country & " " & _
rst!PostalCode

End With

The code in Listing 4.5 shows how to reference individual bookmarks using the
Document’s Bookmarks collection. Bookmark objects implement a Range method
that returns a reference to a text range enclosed by the bookmark. In our example,
this is a simple insertion point, although, bookmarks can span blocks of text and
other objects.

Once the procedure has a reference to a bookmark’s Range object, it’s a simple
matter to set the Text property to a value from the Recordset object.

Example: Word as a Report Writer 257

Building the Details Table

The final stage in the process is to add invoice details based on the currently selected
order. This involves querying the database for the required information, transfer-
ring the data to Word, and building and formatting a Word table. Listing 4.6
shows the code that accomplishes these tasks.

Listing 4.6: Constructing a Word Table from Recordset Data

" Build SQL string for details

strSQL = "SELECT [Product Name], [Unit Price], Quantity, " & _
"Disc, Extended FROM [Order Details Formatted] " & _

"WHERE OrderID = " & 1ngOrderID

' Get details from database and create a table

' 1in the document

Set rst = New Recordset

rst.Open strSQL, cnn

With CreateTableFromRecordset(_
objWord.ActiveDocument.Bookmarks ("Details") .Range, rst, True)

" Apply formatting
.AutoFormat wdTableFormatProfessional
.AutoFitBehavior wdAutoFitContent

" Fix up paragraph alignment
.Range.ParagraphFormat.Alignment = wdAlignParagraphRight

.Columns(1).Select
objWord.Selection.ParagraphFormat.Alignment = wdAlignParagraphLeft

objWord.Selection.MoveDown
End With

Getting the data is pretty straightforward—we simply use a predefined query,
Order Details Formatted, to create an ADO Recordset object.

After creating the Recordset, our procedure calls a custom function called Cre-
ateTableFromRecordset (see Listing 4.7). CreateTableFromRecordset is a very use-
ful generic function that builds a table in a Word document given an ADO Recordset.
PrintInvoiceWithWord takes the table returned by CreateTableFromRecordset,
applies some formatting, and then fixes up paragraph alignment of the columns
containing numeric data—it’s a pretty simple task.

258 Chapter 4 e Using VBA to Automate Other Applications

Listing 4.7: A Generic Table-Building Function

Function CreateTableFromRecordset(_

rngAny As Word.Range, _

rstAny As ADODB.Recordset, _

Optional fIncludeFieldNames As Boolean = False) _
As Word.Table

Dim objTable As Word.Table
Dim f1dAny As ADODB.Field

Dim varData As Variant

Dim strBookmark As String

Dim cField As Long

' Get the data from the Recordset
varData = rstAny.GetString(Q)

' Create the table
With rngAny

' Creating the basic table is easy,
' just insert the tab-delimted text
' add convert it to a table
.InsertAfter varData

Set objTable = .ConvertToTable()

" Field names are more work since
' you must do them one at a time
If fIncludeFieldNames Then

With objTable

" Add a new row on top and make it a heading
.Rows .Add(.Rows (1)) .HeadingFormat = True

' Iterate through the fields and add their
' names to the heading row
For Each f1dAny In rstAny.Fields
cField = cField + 1
.CeT1(1, cField).Range.Text = _
f1dAny.Name
Next
End With
End If
End With
Set CreateTableFromRecordset = objTable
End Function

Example: Word as a Report Writer 259

CreateTableFromRecordset works like this: First it calls the recordset’s Get-
String method, which returns the recordset’s data as a tab and carriage return
delimited string. Once we have the data, we copy it to the Word document using
the InsertAfter method of the Word Range object passed to the procedure. The
Range object indicates where in the document you want to create the table. Next,
the procedure calls the Range object’s ConvertToTable method to morph the
newly inserted text into a table. This technique of creating a table from delimited
text is the fastest way to create tables in Word using Automation—far faster than
copying data one row and column at a time.

From here, it’s relatively simple to add field names to the table by inserting a
new row in the table and iterating through recordset fields, copying their names
to each newly added cell. Once the process is complete, the function returns a
pointer to the newly created table.

Figure 4.14 shows the completed document. Even though this was a relatively
simple example, it illustrated two techniques for automating Word and manipu-
lating bookmarks and tables, which you will find useful in your applications.

FIGURE 4.14 T EE— iy

A completed invoice [e i iswy eset Foemsk Gools Table ndon, el _ x|
created using Automation DERagly | 2Rd o- - |WEOE=S By we - 3|e.
to control Microsoft Word BodyTest v Aflal cu- B rl === EEat | 0-2-A-.

Northwind Traders iy

Invoice Date: November 4, 1999
Ordar Mumber: 10250
Order Date: T/81996 =

Eill Ta: Hanaui Camnes
Rua do Page, 67
Rio de Janeiro, RJ Brazil 05454 876

Product Name Unit Price Quantity Disc Extended
Louisiana Fiery Hot Pepper Sauce §16.80 16| 1500% ($214.20
tanpmup Oned Apples §42.40 35 | 15.004% | $1,251.40
Jack's Mew England Clam Chowdar §7.70 10 0.00% $77.00

Terms: Met 20 days

|«jo ~|1

TPage || el Wi~ (m4E ini5 cal Tl O R e

260 Chapter 4 e Using VBA to Automate Other Applications

Example: Populating an Excel Worksheet

Microsoft Excel is probably one of the most satisfying Automation servers you can
work with. It has a rich, well-documented object model that lets you control just
about every element of an Excel worksheet, right down to individual character
formatting within a cell. In this section, we show you how to update a simple
worksheet and chart with data in an Access database. We’ve already discussed
most of what you need to know about using Automation servers, so we'll keep
this section brief.

TIP

To run this sample, you'll need to modify the conPath constant in basAutomation
to reflect the directory where you copied the sample files from this chapter.

Using an Existing File

What we haven't discussed is using an Automation server to manipulate an exist-
ing document. Manipulating existing documents is a technique that becomes criti-
cal when you need to retrieve data from a file that was edited by another process
or even a (gasp!) human being. Because you don’t have complete control over it,
you must be careful when altering and saving it to make sure you don’t inadvert-
ently overwrite another person’s changes. Using existing files is also a good com-
promise between completely manual and completely automated creation of
documents. For example, the VBA code required to create a complex Excel chart
can be quite long. It is often better to use an existing chart and modify only a few
properties.

From a programming standpoint, you can approach this problem in one of two
ways. You can either create an instance of Excel’s Application object and use it to
open an existing file, or you can use the GetObject function, which will return a
reference directly to the workbook. In this example, we've used GetObject to dem-
onstrate how to use it with existing documents. GetObject lets you specify a docu-
ment name and path instead of a ProgID. As long as the file type is correctly
registered, Windows will start the appropriate Automation component applica-
tion (if it’s not already running) and load the specified file.

Our Scenario

The scenario for our sample Excel application involves a fictitious airline.
AUTOMATE.MDB contains a table of airport codes (tblAirports) and a table filled

Example: Populating an Excel Worksheet 261

with randomly generated lost-luggage rates (tblLostCount) for each North Ameri-
can airport for the months of January 1999, January 2000, January 2001, and January
2002. (The sample code is written to use a date in January of the current year so if
you're still using the sample code in 2003 you'll either need to add more data or
change the code).

In our example, we’ve also created an Excel workbook called STATREQ.XLS
that allows users to request data on any given airport. You might think of it as a
query form a user could fill out and send to someone else for processing. The
workbook contains two worksheets. The Query worksheet, shown in Figure 4.15,
lets the user fill in an airport code (the standard, three-character code assigned by
the International Air Transport Association) in a cell. Our example procedure will
query the database and, based on the current date, return information on month-
to-date lost-luggage rates. The second worksheet in STATREQ.XLS, Results, pro-
vides a table of data and a chart. In our example, we show you how to perform the
following steps using Automation to control Excel:

1. Open the workbook.

Retrieve the airport code from the Query worksheet.

2

3. Query the Access database.

4. Return the results to the worksheet.
5

. Redefine the data range the chart uses to reflect new data.

FIGURE 4.15 EAMicrosolt Excel - Statrequls = =10] =]
Query worksheet in |E] fie B Wew Tnsert Fomat Took Debs Widaw beb . 18]
STATREQXLS DEEs @Ry smm- (6= 58l g 7 um cu < nru[s(s.A 7
k21 =] =
AB[C =] E £ X e e i T
1
2 | Enter Airport Code RIC
3
4 | Reported Date Range
6 Start 1/1/99
'8 | End 1/31/99
9
}f_! Last Updated 5/31/99 10:43 AM
12
13
[Fh
{15
| 16 |
L
| 18
19

414k bl guery { Pasiks f [l
i e =

262 Chapter 4 e Using VBA to Automate Other Applications

Creating an Object from an Existing Document

There is no user interface for our simple example function. Rather, we’ve created
one procedure, called UpdateAirportStats, in basExcel, which handles all the pro-
cessing. BasExcel, in AUTOMATE.MDB on the companion CD-ROM, shows the
entire subroutine. We’ve saved space by printing only the relevant portions here.
If you view the module in Design view, you can see from the variable declarations
that we use quite a few Excel object variables in the procedure.

The first thing the procedure does is call GetObject, passing it the path to the
STATREQ.XLS file:

Set objXLBook = GetObject(_
conPath & "STATREQ.XLS")

As long as Excel is installed correctly and the path is valid, GetObject should
return a reference to an Excel workbook. This differs from the other examples
we’ve discussed so far, which used the Application object of each Automation
server. Keep this in mind as you create object references to documents. The object
you create will be somewhere in the middle of the object hierarchy, not at the top,
as is the case with Application objects.

Because we will want to manipulate Excel’s Application object in addition to a
Workbook object, we need a way to create a reference to it. Fortunately, rather
than using another call to GetObject or CreateObject, we can use the Parent prop-
erty of Excel objects to return a reference to the object immediately above the cur-
rent object in the object hierarchy. Using the Parent property, we can create
references to the Application object using the following code:

Set objXLApp = objXLBook.Parent

WARNING it pxcel 97, Microsoft has made a change to the way an XLS file is referenced

using GetObject. Passing an XLS file now returns a Workbook object. In prior ver-
sions, GetObject returned a Worksheet object representing the first worksheet in
the XLS file. This will undoubtedly break some existing applications. If you have
existing VBA code that uses GetObiject in this fashion, be sure to take note of this
change in behavior.

Example: Populating an Excel Worksheet 263

Updating the Worksheets and Chart

The bulk of the processing in UpdateAirportStats involves running a query
against the tblLostCount table and poking the results into the Results worksheet
in STATREQ.XLS. We do this by first querying the data and placing the results in
a Variant array using the GetRows method of an ADO Recordset object:

" Run our query (note that it has

' parameters we need to set)

strSQL = "SELECT tblLostCount.Datelost,"
& " tblLostCount.LostCount" _

" FROM tblLostCount" _

" WHERE (((tbTLostCount.DatelLost)" _

" Between [pStart] And [pEnd]) AND ((" _

" tbT1LostCount.IATACode)=[pIATACode]))"

Qo Qo o Qo

Set cnnLost = New ADODB.Connection
cnnLost.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=" & conPath & "AUTOMATE.MDB"
Set cmdLost = New Command
With cmdLost
.ActiveConnection = cnnLost

.CommandText = strSQL
.Prepared = True

.Parameters(" [pIATACode]") = varIATACode
.Parameters("[pStart]") = varStart
.Parameters("[pEnd]") = varEnd

Set rstLost = .Execute()
End With

' Snag all the results into an array using GetRows
"and a large (2 ~ 15) row count to get all rows
varResults = rstLost.GetRows(2 ~ 15)

rstLost.Close

We then clear any existing data using the Clear method of a Range object corre-
sponding to the data shown in Figure 4.16. This figure also shows the Chart object,
which we will update once all the data has been copied.

264

Chapter 4 o Using VBA to Automate Other Applications

FIGURE 4.16

i microsoft Excel - Statrequls - = =3l
Results worksheet showing [i B Ve et Fomet Tk D Wi ek : s
a data table and chart MEHﬁfmvdmﬁllgfﬁmu@ﬂmN s s ru|=|aA. 7
WEE = [
BB R o Y] = | R K|
4
2 te Count.
4 [:31 199 5 Lost Luggage Counts
5 1/2/39 1
B 1/3/99 1
&E 1/4/99 1
N 1/5/99 3 (I
9| 1/6/% 4 | g -
10 1/7/99 z |aE
| 11 1/8/99 4
|12 1/9/99 4
13| 1/10/99 4
14| 1711799 4
15| 1/12/99 5
16 | 1/13/99 0 Date
17| 1/14/99 4
|4 T4] ¥iF ey Results] | p— E——
Rlaady ! !

The code that clears the existing data is shown here. Notice that we use the
worksheet’s Range method with a named cell range.

objResultsSheet.Range("rngDataAll").Clear

We can now copy the results of our query into the Excel worksheet. The sim-
plest and fastest way to do this is to construct a Range object that refers to the
block of cells where the data belongs and set its FormulaArray property equal to
the query results stored in our Variant array. The other alternative, iterating through
each cell in the range, is extremely slow because Excel is running as an out-of-pro-
cess server. (If you want to know more, see the sidebar “In-Process versus Out-of-
Process Servers” later in the chapter.) The following code demonstrates how to
use the FormulaArray property. Note that we need to use Excel’s Transpose func-
tion because the array returned by GetRows is not oriented correctly.

Set objXLRange = objResultsSheet. _
Range("B4:C" & 4 + UBound(varResults, 2))

objXLRange.FormulaArray =
objXLApp.Transpose(varResults)

The last task remaining once the data is on the worksheet is to redefine the
source for the chart to reflect the current amount of data. We use Excel’s Union
method (a method of the Application object) to combine the data range computed
in the prior step with cells B2 and C2, which contain the headings for the data and

Example: Populating an Excel Worksheet 265

chart. We use this with the ChartWizard method of the Chart object on the Results
worksheet to set the new data source equal to the existing data set:

objResultsSheet.ChartObjects(1l). _
Chart.ChartWizard Source:=objXLApp. _
Union(objResultsSheet.Range("B2:C2"), _
objXLRange)

NOTE If you run the UpdateAirportStats from the example Excel project, Excel will load

STATREQ.XLS in the same application instance as AUTOMATE.XLS. This just
proves that an application can be run interactively and as an Automation server
simultaneously.

In-Process versus Out-of-Process Servers

Automation components can be grouped into two categories that describe how the oper-
ating system treats their program code. In-process servers are loaded into the same mem-
ory address space (or process space) as the client application. ADO is an example of an in-
process server, as are ActiveX controls. For example, when you reference an ADO object,
you're communicating with an instance of ADO loaded into Access's process space using
Automation. You can also create your own in-process servers using Visual Basic, where
they are called COM DLLs.

On the other hand, out-of-process servers are loaded into their own address space. All the
Microsoft Office applications, as well as normal Automation servers you create in Visual
Basic, are out-of-process servers.

From a practical standpoint, the biggest difference between the two types of servers is the
rate at which communication takes place between them and your client application. As a
rule, in-process servers are much faster than out-of-process servers. This is because Win-
dows does not need to manage data and communications between two separate pro-
cesses and address spaces.

While you can’t control what type of server an Automation server is, you can modify your
code when using out-of-process servers. Try to avoid repeated references to objects, prop-
erties, and methods. In our example, we've taken advantage of the fact that you can insert
several cells” worth of data into an Excel worksheet with a single statement. We avoided
referencing individual cells one at a time.

266 Chapter 4 e Using VBA to Automate Other Applications

Tapping into Events Using WithEvents

You've just seen how you can control other applications using Automation. This is
a powerful capability but very one-sided. That is, your code tells the Automation
server to do something and that’s it. What if the server could tell your code things
without your code having to ask? Wouldn’t that be handy sometimes? Well, servers
can by exposing events that you can “listen to” using a feature called WithEvents.

NOTE

WithEvents is also explained in Chapter 6 in regard to custom VBA class modules.

What Is WithEvents?

WithEvents is a VBA keyword used in conjunction with an object variable declara-
tion. It signals to VBA that, in addition to exposing the object’s properties and
methods, you want VBA to notify you of any events that that object exposes.
WithEvents is most useful when using Automation components like those in
Microsoft Office or with your own custom class modules (see Chapter 6 for more
information on the latter). But, in theory, you can use WithEvents with any Auto-
mation component that exposes events.

NOTE

WithEvents uses the same mechanism that AcitveX controls use to send events
to forms.

How do you know if an Automation component exposes events? The easiest
way to find out is by looking at the component’s entries in Object Browser. When
you select a class that exposes events, Object Browser lists them along with prop-
erties and methods, marking them with a lightning bolt icon. Figure 4.17 shows
Object Browser displaying information on Microsoft Word’s Application class.
Near the bottom of the Members list, you can see the events exposed by the class.

Tapping into Events Using WithEvents 267

FIGURE 4.17

el

Object Browser displaying
events exposed by Word's
Application class

|Classes
@ =globals= fi
&4 Addin

&) Addins

& Adiustments
Pt

&
&1 AutaCaptions

& AutaCorrect

& AutaCarreciEntries
& AutoCarrectEntry

Members of ‘Application®
S SubstituteFont

=% Togglekeyboard
DocumentBeforeClose
DocumentBeforePrint
DocumentBeforeSave
DocumentChange

Documentdpen
MewDacurnent
G

F windowActivate

W R

& AutoTexiEntries F windowBeforeDoubleClick

& AutoTexiEntry # WindowBeforeRightClick

& Bookmark F WindowDeactivate

& Bookmarks F WindowSelectionChange j
21 Anrriar =l =

| Evant DocimeitOpen| Doc AsDociunent)
i Member o1 Ward Applieation
!

Using WithEvents

You use WithEvents in a variable declaration. However, there are a couple of
catches. You can use it only in a class module (including form modules), and it
must appear in the declarations section. You can’t declare a variable using With-
Events in the body of a procedure. We’ve included a class module called
clsWordEvents in the sample database, which contains the following declaration:

Private WithEvents mobjWordApp As Word.Application

Note that the WithEvents keyword is listed before the object variable name.
When you add a declaration using WithEvents to the declarations section of a
class module, VBA adds an entry to the Object drop-down list that corresponds to
the variable name. Selecting that entry from the list displays the object’s events
in the Procedure list. Figure 4.18 shows clsWordEvents open in Design view with
the DocumentChange event procedure selected. You can see that we've responded
to the event by opening a dialog that displays the name of the current active
document.

268 Chapter 4 e Using VBA to Automate Other Applications

FIGURE 4.18

A URE ; _inixl
Edltlng mobjWordApp S Fﬂhi\%l AP =| [pocumentChange _;I
DocumentChange event Private sub mobjwordapp_Documentchange ()] =

procedure Onh Error Resume Next

Debug.Print "Document change. New document is " &
mobjwordApp. ActiveDocument.Name
End sub

Private sub mobjwordApp_Documentopen(Byval Doc As Word.D
4 Debug.Print "Document being opened: " & Doc.Name
End Sub

Private sub mobjwordApp_NewDocument(Byval Doc As Word.Do
Debug.Print "Document being created: " & Doc.Name
End sub

Before you can begin using the event functionality exposed by an Automation
component, you must do two things that are normally taken care of for you when
using ActiveX controls. You need to instantiate the Automation component class,
and you need to create an instance of the VBA class where the component class
variable is declared.

We satisfied the first requirement in the Initialize event of our class using the
following code:

Private Sub Class_Initialize()
Set mobjWordApp = New Word.Application
mobjWordApp.Visible = True

End Sub

To satisfy the second requirement, you need to create a new instance of the
clsWordEvents class. We have included an example in basAutomation:

Global gobjWordEvents As clsWordEvents

Sub InitWordEvents()
Set gobjWordEvents = New clsWordEvents
End Sub

That’s all you need to create a custom event sink for Microsoft Word. Note that
we’ve declared the object variable as Global. If we had declared it in the body of
the InitWordEvents procedure, it would have been destroyed, along with our
event sink, when the procedure terminated.

NOTE If you declare a variable using WithEvents in a module belonging to a user interface

object, like a VBA form, the event sink will be created as soon as you open the object.

Tapping into Events Using WithEvents 269

Figure 4.19 illustrates how event sinking with VBA works. Our object variable,
gobjWordEvents, points to an instance of our VBA class, clsWordEvents. The class
instance, in turn, contains another pointer (mobjWordApp) that references an
instance of Word’s Application class. As the Application class generates events,
Word calls our VBA event procedures defined in clsWordEvents. The gobjWordE-
vents variable is required only to give our event sink “life.”

FIGURE 4.19
How VBA event sinking
works Word.Application

WINWORD.EXE

clsWordEvents

Pointer to

Word.Application instance
Word events trigger
procedures in clsWordEvents

mobjWordApp

mobjWordApp_Quit

basTest A

Pointer to
clsWordEvents instance

gobjWordEvents

To see WithEvents in action, run InitWordEvents and open the Immediate win-
dow. Then open, close, activate, and save several documents in the Microsoft
Word instance that appears. You'll see messages printed to the Immediate win-
dow as each event fires, as shown in Figure 4.20.

FIGURE 4.20
Monitoring events in
Microsoft Word

270 Chapter 4 e Using VBA to Automate Other Applications

WARNING ot procedures created using WithEvents are nothing more than functions that

an Automation component calls when an event occurs. Just as with normal func-
tions, the Automation component cannot continue processing until an event pro-
cedure finishes. Beware of anything that could prevent or delay the completion of
an event procedure.

Summary

In this chapter, we’ve explored the basic concepts behind Automation, including:

¢ Therole of Automation clients and servers, the use of type libraries, and the
creation of objects in another application

¢ The similarities between Automation code and the VBA code you write
every day

¢ How to manipulate other applications using objects, properties, and meth-
ods, just as you do VBA objects

We used several sample applications that demonstrated how to use the other
programs in the Microsoft Office suite in integrated solutions. In each example,
we stressed the similarities between Automation code and plain VBA code.

You can use VBA to control other applications. Automation can also help you
become more productive by giving you the tools to integrate other robust, feature-
filled applications into a customized solution.

chapter

Creating Your Own Objects
with VB Class Modules

Exploring class modules and how they work
Creating your own object classes

Implementing custom properties and methods

272 Chapter 5 e Creating Your Own Objects with VB Class Modules

With the introduction of Visual Basic 4 in 1993, Microsoft endowed Basic
developers with a new tool: class modules. While other Basic dialects (prior ver-
sions of Visual Basic and Access Basic, as examples) had already introduced object-
oriented constructs, class modules gave you the ability to create and manipulate
your own classes of objects. If you have programmed in other object-oriented lan-
guages, such as SmallTalk or C++, you are familiar with the benefits this ability
provides. If you haven’t, we hope to surprise you with the power they give you as
a programmer. We make heavy use of class modules in this book to do everything
from implementing data structures such as linked lists to abstracting Windows
API functions. This chapter explains what class modules are and how they work
and provides some examples of how you can use them in your applications.

TIP

If you purchased the first edition of this book or are familiar with the basics of
class module usage, you might find it expeditious to skip ahead to Chapter 6,
where we discuss more advanced class module topics.

Since this chapter deals with creating your own objects, it assumes you are
familiar with using objects provided by VBA or a host application. That is, you
should be comfortable with concepts such as properties and methods, as well as
how to declare and use object variables.

Table 5.1 lists the sample files included on the CD-ROM. You'll find all the sam-
ple code discussed in the chapter in these files.

TABLE 5.1: SampleFiles

Filename Description

CLASSES.XLS Excel workbook containing sample code
CLASSES.MDB Access 2000 database containing sample code
CLASSES.VBP Visual Basic project containing sample code
TEXT1.CLS TextFile class module

CLIP.CLS Clipboard class module

TEST.BAS Test procedures for class modules

Why Use Class Modules? 273

Tip Trying to understand object-oriented programming (OOP) techniques for the first

time can be a daunting task. Many people find the line that distinguishes OOP
from procedural programming very fine. If you fit this description, you may find it
helpful to work through the examples as we present them in this chapter.

Why Use Class Modules?

If you've been developing applications or routines using Basic for any length of
time, you might be asking yourself, “Why use class modules anyway? I've been
getting along without them for some time.” Well, like any product feature, class
modules have their benefits and costs. The primary cost is the learning curve required
to understand them so you can use them effectively. While many VBA program-
mers take working with built-in objects (such as the Debug and Err objects) for
granted, they find the idea of creating their own object types difficult to compre-
hend. We hope that after reading this chapter you won't feel that way.

Once you’ve mastered the basics of class modules, the benefits become clear.
They make your code more manageable, self-documenting, and easier to main-
tain, especially if you deal with complex sets of related data. The sections that fol-
low examine some reasons for using class modules.

Encapsulate Data and Behavior

One of the primary benefits of object-oriented programming in general, and VBA
class modules in particular, is the ability to encapsulate data and behavior in high-
level programming constructs. What does this really mean? It means you associ-
ate all the variables and procedures that are conceptually linked to some “thing”
and make it part of a programmable entity. This entity is easily manipulated using
VBA code and remains a discreet part of your application, never mingling its data
or behavior with other entities. In essence, class modules allow you to create and
use your own object types in your application. Why would you want to do this?
Well, imagine you want to write an application that tracks information on employ-
ees in your company. Using traditional Basic, you might create separate variables
to store each employee’s name, manager, and salary, among other things. If you're
really clever, you might create an array of user-defined data types, and you might
also write procedures to handle such tasks as hiring or transferring an employee

274 Chapter 5 e Creating Your Own Objects with VB Class Modules

or giving an employee a raise. The problem with this approach is that there is
nothing inherent in the program or the language that ties together all these bits of
information and processes. Figure 5.1 illustrates this situation. All the data and all
the processes are free floating. It's up to you, the programmer, to ensure that each
element is used correctly, and the task increases in difficulty if there are many
developers working on the source code.

FIGURE 5.1 Variables Procedures
Managing data using

traditional Basic constructs IngSSN i
strName i
strPosition i AdjustSalary
curSalary i
datStartDate i

With nothing enforcing relationships among the items in Figure 5.1, chaos can
result. For example, suppose two or more separate procedures modify the salary
data using a particular set of rules. Changes to the rules necessitate changes to the
program logic in several places.

Encapsulating these data and program components in an object makes the man-
agement task much easier. First of all, any references to data (properties) must be
associated with a particular object, so you always know what “thing” it is you're
operating on. Second, processes that operate on an object are defined as part of
that object. In other words, the processes are defined as methods of the object. The
consumers of the object (other procedures in your program) are insulated from
the inner workings of each method and cannot modify properties directly unless
you allow them to. This “shield” enforces a degree of control over data that the
object represents. Finally, since each property and method is defined in one place
(the object type’s definition), any code modifications need be implemented only
once. An object’s consumers will benefit automatically from the change. Figure 5.2

Why Use Class Modules? 275

represents this type of object-oriented development. All data and processes are
defined as part of the object, and the application program interacts with them
through a central point, a reference to an instance of the object.

FIGURE 5.2 D EE...,FPP btEiLL.
Managing data using Properties Methods

object-oriented techniques 1 :
SocSecNo
Transfer
Name i
Position i

Salary i
Promote
StartDate i

Employee Object

Is VBA Really Object Oriented?

At this point many of you who have experience in other object-oriented languages are
probably thinking, “What are they talking about? VBA isn’t really object oriented!” While
we concede that VBA does not exhibit some of the characteristics of a “true” object-ori-
ented language, such as polymorphism and implementation inheritance, we believe that it
just doesn’t matter. So what if VBA isn't as feature rich as C++ or SmallTalk? For most
people, it's much easier to understand than those languages, and what's really important
is that VBA offers a way for developers to think about applications in terms of a group of
related objects, not as masses of disparate data structures.

276

Chapter 5 e Creating Your Own Objects with VB Class Modules

Hide Complex Processes from Other Developers

If you find the idea of encapsulating data and processes within an object compel-
ling, you'll be even more excited about another benefit of using class modules: the
ability to abstract complex processes, hiding their detail from other developers (or
even yourself). Suppose you are trying to create an application that manages
internal purchases within an organization. Determining the amount to charge one
department for goods or services received from another (called the transfer price)
can be a complicated task. With traditional programming techniques, the logic for
computing the transfer price might be an integral component of the application.
Not only does it make the program code harder to maintain, it means you must
understand the logic.

By using object-oriented techniques, on the other hand, you could create object
classes for each good or service being transferred, making the transfer-price com-
putation logic part of each object class. This makes the application code easier to
understand and write. You need only know that there is an object being trans-
ferred and that the object knows how to compute the transfer price. The logic for
computing that price is maintained separately, perhaps by another programmer
more familiar with the intricacies of transfer pricing theory.

When you create an object, you define an interface to that object. This isn’t a user
interface but a list of the object’s properties, methods, and collections. This is all
that users of the object (other programmers) need to know to use the object. It’s
then up to you to implement each feature in the object’s source code using VBA
class modules.

Making Development Easier

In the preceding example, another programmer was charged with the task of
maintaining the transfer pricing logic encapsulated in the object being transferred.
This brings up a continual challenge facing development managers: how to coor-
dinate large, complex programming projects. Object-oriented techniques (which
include using VBA class modules) can make managing projects easier. Because
objects are autonomous entities that encapsulate their own data and methods, you
can develop and test them independent of the overall application. Programmers can
create custom objects using VBA class modules and then test them using only a small
amount of generic Basic code. Once a programmer has determined that a custom
object behaves as desired, you can merge it into the overall project by including
the appropriate class modules.

How Class Modules Work 277

How Class Modules Work

Have we convinced you that object-oriented techniques in general, and VBA class
modules in particular, are worth learning about? If so, you're ready for this sec-
tion of the chapter, which explains how VBA class modules work by discussing
the difference between object classes and object instances. (If we haven’t yet, just
bear with us. It'll be worth it.)

Class Modules Are Like Document Templates

VBA class modules define the properties and methods of an object but cannot, by
themselves, be used to manipulate those properties. In other words, when you
create a new class module and declare, let’s say, a procedure within it, you cannot
just call that procedure from elsewhere in your code. This differs from standard
modules. An object’s definition is called an object class. You can think of VBA
class modules, and thus object classes, as being similar to document templates in
applications like Microsoft Word, Excel, PowerPoint, and FrontPage. A document
template defines what a new document will look like when you create one from it.
It may include a set of defined styles or boilerplate text. It may even contain some
macros, thus implementing its own behavior.

In the case of VBA class modules, you don’t create boilerplate text or styles but
instead define a set of properties, including their data types and whether they are
read-only or read/write, and methods, including the data type returned (if any)
plus any parameters they might require. You'll see how to add a class module to
your VBA project and use it to define properties and methods in the next section.

Class Instances Are the Documents

To make use of an object class, you must create a new instance of that class. In our
analogy, object instances are the documents you create from a template. Each has
the set of properties and methods defined by the class, but you can also manipu-
late class instances individually as real programming entities just as you can edit,
save, and print individual documents separately from the template. When you
create a new instance of a class, you can change its properties independent of any
other instance of the same class.

278 Chapter 5 e Creating Your Own Objects with VB Class Modules

A Simple Example: A Text File Class

To demonstrate the basic techniques required to create and use class modules, this
section shows you how to create a class that represents a text file. It will include
properties that let you manipulate the filename and contents, as well as methods
for reading and writing the contents from and to disk. Not only will this relatively
simple example illustrate class module concepts, but you'll find it a useful class to
add to your VBA projects that must work with text files as an alternative to the
Scripting Runtime component described in Chapter 14.

NOTE

You'll find the sample code for this section in CLASSES.XLS and CLASSES.MDB. If
you don’t have a copy of Microsoft Access or Excel, look in the individual files
TEXT1.CLS and TEST.BAS.

Creating an Object Class

Before you can start working with your own custom objects, you must create the
object class from which they will be fabricated. You do this by adding a new class
module to your project.

Inserting a New Class Module

To add a new class module to your VBA project, select Class Module from the
Insert menu (or select Add Class Module from the Project menu, if you're using
VB). VBA opens a new module window and adds a reference to the new class to
the Project Explorer window. You edit class modules pretty much the same way
you do normal code modules. The only difference is that class modules have two
events, Initialize and Terminate, associated with the creation and destruction of a class
instance. (See the section “The Initialize and Terminate Events” later in this chapter.)

Naming Your Class

All class modules have a Name property that is integral to the definition of an
object class: It determines the class name. The class name is what appears when
you look in the Object Browser. VB, VBA, and countless applications and compo-
nents define classes you can use in your applications. Figure 5.3 shows the Object
Browser open in the sample project. The Classes list on the left-hand side lists all
the classes available to you (or you can filter them by library using the drop-down
list), with the ones you've implemented using class modules shown in bold.

A Simple Example: A Text File Class 279

FIGURE 5.3
Browsing classes available
in the sample project

To name a class module, select the class module’s code window or its reference
in the Project Explorer window and open the Properties window. Set the Name
property, being sure to assign the name you want to use in any VBA programs
that use the class. Figure 5.4 shows the Properties window for one of the classes
introduced in this chapter.

FIGURE 5.4
Setting the Name property
of a class module

280

Chapter 5 e Creating Your Own Objects with VB Class Modules

NOTE

The other class property shown in Figure 5.4, Instancing, is used in Visual Basic
programs that act as COM Automation servers—a topic not discussed in this
book—and to share classes with other VBA projects, a topic we discuss in Chapter 6.

Normally you’ll want to choose a name that is both unique and emblematic of
the class module’s purpose (e.g., TextFile). A more extensive discussion of class
naming can be found in Chapter 6.

Creating a Property

Now you know how to create a new class in your project. Yippee. Most classes are
not very useful unless they have properties you can set and retrieve. Properties
store values representing characteristics of the object. While we have seen classes
that implement methods for setting and returning values, we don’t recommend
this approach; methods are normally used to symbolize actions an object takes.

NOTE

For a more in-depth discussion of when to use properties and methods, see “Specifying
Class Members” in Chapter 6.

There are two ways to create a property. The simplest approach is to create a
Public variable in the declarations section of the class module. (For the second
approach, see the section “Using Property Procedures” later in this chapter.) Consum-
ers of your class will then be able to set and retrieve a value stored in that variable. (In
other words, the property is read /write.) The variable’s name determines the name of
the property used by other parts of your program, so, as with class names, choose
something with symbolic or literal meaning. Our sample class defines a property
called AutoCreate using the following statement in the declarations section:

Public AutoCreate As Boolean

The AutoCreate property controls whether a new file is automatically created if
it doesn’t already exist.

While using Public variables to define properties is the simplest approach, it
does have several drawbacks:

¢ Your class has no way of knowing when an outside process has changed the
value of the property. This may be critical to your object for, say, restricting val-
ues to a given range or taking other actions in response to a change in value.

A Simple Example: A Text File Class 281

¢ You can't restrict property values or perform other data validation. For
example, you might want to restrict a property representing a person’s age
to positive real numbers.

e You can't create read-only properties. Often it’s important for your program
to retrieve property values but not to set them, especially if they are calcu-
lated based on other data.

To overcome these drawbacks, you'll have to use Property procedures, a topic
discussed in the section “Using Property Procedures” later in this chapter.

TIP You can declare Private variables in your class modules. Just as with standard

modules, these become available only to procedures within the module.

Creating a Method

Just as declaring a Public variable creates a property, declaring a Public procedure
creates a method. You can create Public functions and Public subs, the only differ-
ence being that a Public function can return a value to the calling process. Our
class implements, among other things, a FileOpen method that carries out the task
of opening the file specified by the Path property of the class. Listing 5.1 shows the
VBA code that makes up the FileOpen method. Pay close attention to the Select
Case statement that calls the VBA Open statement.

NOTE We would have liked simply to call our method Open, but this conflicted with a

reserved word of our host application, Visual Basic. You may find that VBA reports
a syntax error when declaring methods or properties. In these cases, make sure
you haven't inadvertently used a reserved word, and change the method or
property name if necessary.

Listing 5.1: FileOpen Method of the TextFile Class

Public Function FileOpen() As Boolean
On Error GoTo HandleError

" If a file is already open, close it
If Me.IsOpen Then

Me.FileClose
End If

282

Chapter 5 e Creating Your Own Objects with VB Class Modules

' Get next available file handle
mhFile = FreeFile

" Open file based on file open mode property
Select Case Me.OpenMode
Case tfOpenReadOnly
If Me.AutoCreate Then
Open Me.Path For Binary Access Read As mhFile
Else
Open Me.Path For Input Access Read As mhFile
End If
Case tfOpenReadWrite
Open Me.Path For Binary Access Read Write As mhFile
Case tfOpenAppend
Open Me.Path For Append Access Read Write As mhFile
Case Else
' Bad value of OpenMode, throw an error
Err.Raise conErrInvalidProcCall
End Select

Set IsOpen property variable and return value
mfIsOpen = True
FileOpen = True

' Read first line into buffer
Me.ReadNext
ExitProc:
Exit Function
HandleError:
FileOpen = False
Resume ExitProc
End Function

While the code shown in Listing 5.1 is not earth shattering by any standard (it
uses low-level file I/O functions that have been around for years), you should be
able to see the benefits of encapsulating the code in a class. You no longer have to
remember all the various forms of the Open statement. All you need to do is set
the object’s Path and OpenMode properties and call its FileOpen method. The
code encapsulated in the class does the rest, including error handling!

One item of note in Listing 5.1 is the use of the reserved word Me (for example,
“Select Case Me.OpenMode”). You use Me in class modules to refer to the current

A Simple Example: A Text File Class 283

instance of that class. You may already be used to using Me in Visual Basic and
Access form modules. In fact, the module behind a VB or Access form, Access
report, or Office document is a class module! While you could refer to variables or
procedures directly, using Me lets you use the same object-oriented coding style
that external consumers of your object use.

TIP

Using the Me object has another benefit. If you've implemented a property using
a property procedure (described later in the chapter), VBA will call the procedure.
If you simply refer to the variable directly, you won't be referencing the property
value the same way external processes do.

Table 5.2 lists all the properties and methods of the TextFile class. You may find
it useful to look through the class module and see how all the methods and prop-
erties have been declared.

TABLE 5.2: Methodsand Properties of the Simple TextFile Class

Member Description

AutoCreate property If True, then a new file is created during the Open method if one
does not already exist

EOF property Returns True if you've reached the end of the text file (read-only)

Exists method Determines whether the file exists, based on a directory search.
Returns True or False

FileClose method Closes the text file

FileOpen method Opens the requested file, once you've supplied the Path (and
optionally, the OpenMode) property. If you don’t supply an
OpenMode value, the code assumes you want read-only access.

Handle property Contains the operating system file handle for the opened file (read-
only)

IsOpen property Contains True if the file is currently open, False if not (read-only)

OpenMode property Contains the file open mode:

0 for read-only

1 for read/write

2 for append

3 for read-only (fails if file does not exist)

(Read/write until the file is open, read-only after that)

284 Chapter 5 e Creating Your Own Objects with VB Class Modules

TABLE 5.2: Methodsand Properties of the Simple TextFile Class (continued)

Member Description

Path property Contains the path of the text file (read/write until the file has been
opened, read-only after that)

ReadNext method Reads the next line of text into the internal buffer. Use the Text
property to retrieve the value.

Text property Contains the text of the current line from the text file (read-only)

Using the Object Class

Once you've defined a class and given it a few properties and methods, you can
use it in other VBA procedures. The first step in using a class is creating a new
instance of the class. As we mentioned earlier, you can’t simply refer to variables
or call procedures the way you would with a standard module. If you don’t believe
us, try running the following code from the Immediate window with the sample
project active:

Call FileOpen

VBA reports a compile error, “Sub or function not defined,” because it can’t
locate the procedure name in its global namespace. It remains “hidden” until you
create a new instance of the TextFile class, and then you may call it only as a
method of the class instance you create.

Creating New Class Instances

To create a new class instance, declare an object variable based on the class. You'll
use it to store a reference to a new class instance. Variables referencing custom
classes adhere to the same rules as those referencing VBA or host application objects.
You can declare them using the Dim, Private, Public, or Global reserved word. For
example, the following code fragment declares a variable called objFile that will
hold an instance of the TextFile class:

Dim objFile As TextFile

NOTE

Note that the data type in this example is the class name we defined earlier.

A Simple Example: A Text File Class 285

The next step is to create a new instance of the object and store a reference to it in
the variable. To do this, you use the Set statement in conjunction with the New
keyword, as in:

Set objFile = New TextFile

Although the syntax might seem redundant, you must use the New keyword in
the Set statement to create a new instance of the object. If you don’t, VBA will gen-
erate an “Object variable or With block variable not set” runtime error if you try to
use any of the properties or methods of the class. Simply declaring an object vari-
able with a Dim statement is not enough to create a new object instance.

Save a Line of Code, but at What Cost?

It is possible to create a new instance along with the variable declaration by adding the
New keyword to the variable declaration. For example,

Dim objFile As New TextFile

Immediately after declaring an object variable in this manner, you can start using the object’s
properties and methods without first using Set. The first time VBA encounters the object
variable it will automatically instantiate the object. We don’t recommend this approach,
however. Why not?

This method of implicit instantiation saves one line of code, but it does have a drawback—
in a complex application it may not be clear where and when VBA instantiates the object.
Knowing when an object is instantiated could be crucial while debugging an application.
For this reason we recommend you use explicit instantiation—that is, use a separate Set
New statement—in your applications.

Using Properties and Methods

Once you've got a variable storing a reference to a new class instance, you can use
the properties and methods defined by the class module. Listing 5.2 shows some

sample code that uses the TextFile class to open a file (we’ve used AUTOEXEC.BAT
in this case because it’s on most people’s PCs) and print each line using the prop-
erties (Path, EOF, Text) and methods (FileOpen, ReadNext, FileClose) of the class.

286 Chapter 5 e Creating Your Own Objects with VB Class Modules

NOTE Although we have not included full listings of class modules in this chapter, you

can find them in the VBA projects on the accompanying CD-ROM.

Listing 5.2: Print a File’'s Contents Using the TextFile Class

" Create new instance of TextFile class
Set objFile = New TextFile

' Set the Path property
objFile.Path = "C:\AUTOEXEC.BAT"

" Try to open the file--if successful,
" read until the end of the file,
' printing each Tline
If objFile.FileOpen() Then
Do Until objFile.EOF
Debug.Print objFile.Text
objFile.ReadNext
Loop
objFile.FileClose
End If

' Destroy class instance
Set objFile = Nothing

Now, isn’t this code better than including the low-level I/O routines themselves
in your code? In fact, if you've used DAO or ADO in VB, Access, or VBA, the code

should look very familiar. It’s similar to the way you manipulate database data
using Recordset objects.

So What Have We Done?

The few lines of code in Listing 5.2 have accomplished a number of things. First,
the code created a new instance of the object and stored a reference to it in the

object variable objFile. Then it used the reference to call the object’s properties and
methods.

A Simple Example: A Text File Class 287

NOTE

The reference stored would be called a pointer in other languages such as Pascal
and C++. A pointer is an integer that holds the memory address of another piece
of data. In other words, it points to the other piece of data. VBA doesn’t expose
the actual value of the pointer, as other languages do, but you don't really need it.
All you need to know is that it points to some object you've defined and you can
use it to access that object’s properties and methods. We use the terms pointer
and reference interchangeably in this chapter to refer to the contents of an object
variable. The only time you need to think pointers is in terms of reference counting
and termination, which we describe in detail in Chapter 6.

One important point to remember is that you can have more than one pointer to
the same object. As long as an object has at least one pointer to it, VBA will keep it
in memory. For example, the code in Listing 5.3 demonstrates how you can create
two pointers to the same object by setting a second pointer variable equal to the
first. You can tell whether two pointers refer to the same object by using the Is
operator in a conditional statement.

Listing 5.3: Create Multiple Pointers to the Same Class Instance

Dim objFirst As TextFile
Dim objSecond As TextFile

' Create new instance of TextFile class
Set objFirst = New TextFile

' Create a second pointer to the new instance
Set objSecond = objFirst

' Compare the two pointers
If objFirst Is objSecond Then

' Both pointers refer to same object
End If

In a sense, VBA keeps the object alive until nothing points to it—until it is no
longer needed. When does this happen? It can happen when the object variable
pointing to the object goes out of scope. You can also explicitly break the connec-
tion between a pointer and the object it points to by setting the pointer variable to
the intrinsic constant Nothing. That’s what we did in Listing 5.2. While this was
unnecessary because our pointer was local in scope, it is good programming style

288 Chapter 5 e Creating Your Own Objects with VB Class Modules

to explicitly release objects you no longer need rather than relying on the rules of
variable scope to do it for you.

WARNING 1here are cases when even setting the variable to Nothing does not destroy the

pointer. This normally happens only if you have circular references. We describe
what these are and how to correct them in the section “Circular Reference Issues”
in Chapter 6.

The Initialize and Terminate Events

It is important to consider when an object instance is created and destroyed, because
you have the opportunity to run VBA code in response to each event. Unlike regu-
lar VBA modules that have no events, class modules have Initialize and Terminate
events that are triggered, respectively, when an instance of the class is first created
and when the last pointer to it is released or destroyed. You can use the Initialize
event to do such things as setting default property values and creating references
to other objects. Use the Terminate event to perform cleanup tasks.

Listing 5.4 shows the Initialize and Terminate event code for the TextFile class.
During processing of the Initialize event, the code sets the default open mode prop-
erty. In the Terminate event, the code checks to see whether a file is still open (if you
have not explicitly called the FileClose method) and then closes it. If you want a
more obvious example of when these events are triggered, try inserting a MsgBox
statement in each and watching what happens as you use instances of the class.

Listing 5.4: TextFile’s Initialize and Terminate Events

Private Sub Class_Initialize()
' Set default file open mode property
Me.OpenMode = tfOpenReadOnly

End Sub

Private Sub Class_Terminate()
" If a file is still open then close it
' before terminating
If Me.IsOpen Then
Me.FileClose
End If
End Sub

Using Property Procedures 289

Using Property Procedures

You now know the basic techniques for creating and using class modules in VBA.
If you've looked at the complete source code for the sample TextFile class, how-
ever, you will have noticed some things that we’ve not yet discussed. The remain-
der of this chapter is devoted to some of these, beginning with the second way to
implement custom properties, Property procedures. Chapter 6 builds on what
we’ve described here with a discussion of more advanced techniques.

What Are Property Procedures, and Why Use Them?

You've already seen how to implement properties simply by declaring a Public
variable in the declarations section of a class module. Consumers of your class can
then reference that property using the syntax object.property. We also mentioned
that the one major drawback to this approach is that your class has no way of
knowing when the value of the property has changed. Property procedures solve
this problem. Property procedures are VBA procedures that are executed when a
property is set or retrieved. During the processing of a property procedure, you
can take action regarding the property.

Property procedures come in three varieties: Property Get, Property Let, and
Property Set. Property Get procedures retrieve (or get) the values of class instance
properties. Property Let and Property Set procedures, on the other hand, set the
values of properties. The distinction between the two is that Property Let is used
for scalar values (Integer, String, and so on), while Property Set is used for object
data types. The sections that follow explain each of these in detail.

Retrieving Values with Property Get

The Property Get procedure is probably the easiest of the three types of property
procedures to understand. In its basic form, it consists of a declaration, which
includes the property name and data type, and a body, just like a normal function.
It’s up to you to return a property value by setting the procedure name equal to
the return value. For example, the following code is the Property Get procedure
for the Path property of the sample class:

Property Get Path() As String
' Return the path of the file from the
" Private class variable
Path = mstrPath

End Property

290 Chapter 5 e Creating Your Own Objects with VB Class Modules

The name of the Property procedure, Path, defines the property name, and the
return type (String, in this case) defines the property’s data type. When another
procedure references the property using code like this:

Debug.Print objFile.Path

VBA calls the procedure, and the value of a Private class module variable (mstr-
Path) is returned. Of course, you can do anything within a Property procedure
that you can within any VBA procedure (such as perform a calculation or query a
database), so how you arrive at the value to be returned is completely up to you.

Going beyond the simple example shown above, you can create Property Get
procedures that accept arguments, although it is rather unconventional (normally
only methods accept arguments). Property procedure arguments are declared just
like arguments of normal VBA procedures. You could use parameters to imple-
ment multivalued properties. For example, suppose your application required
you to compute weekly payroll dates. You might create a class with a PayDay
property that accepts a week number and returns the associated payroll date. The
declaration of that property might look like this:

Property Get PayDay(ByVal intWeek As Integer) As Date
" Compute the appropriate payroll date
PayDay = datSomeDate

End Property

Your program could then access the property by passing the arguments inside
parentheses, after the property name:

datPayDay = objPayRol11.PayDay(12)

NOTE

In practice there are very few properties that accept parameters, even though it is
possible to create them. Normally developers use methods instead, adding a verb
to the member name, as in GetPayDay(number) and SetPayDay(number).

Setting Values with Property Let

The counterpart to Property Get is Property Let. You create Property Let proce-
dures to allow consumers of an object to change the value of a property. Listing
5.5 shows the Property Let procedure for the Path property of the sample class.

Using Property Procedures 291

Listing 5.5: Property Let Procedure for the Path Property

Property Let Path(ByVal strPath As String)
' Set the path property of the file--
" If a file is already open, close it
If Me.IsOpen Then
Me.FileClose
End If
mstrPath = strPath
End Property

Notice that the code in Listing 5.5 uses the same name (Path) as the Property Get
procedure. Property procedures are the only VBA procedures that can have the
same name within a single module. Notice also the argument to the procedure,
strPath. VBA passes the value set by the object’s consumer in this argument. For
example, if another VBA procedure used a statement like this:

objFile.Path = "C:\AUTOEXEC.BAT"

VBA would pass the string “C:\AUTOEXEC.BAT"” to the Property procedure in
the strPath argument.

NOTE This syntax takes a little getting used to. Normally parameter values are not passed

to a procedure using an assignment statement, but Property Let (and Property Set)
procedures are the exception.

Like Property Get procedures, Property Let procedures can accept additional
parameters. In this case, the last argument in the list is the property value set by
the calling procedure. Continuing the above example, suppose your VBA pro-
gram allowed procedures to set the payday of a given week. Your Property Let
procedure might look like this:

Property Let PayDay(ByVal intWeek As Integer, _
ByVal datPayDay As Date)
' Change the appropriate payroll date
End Property

You could then set the property value using code like this:

objPayRol11.PayDay(12) = #3/22/2000#

292 Chapter 5 e Creating Your Own Objects with VB Class Modules

The date value (in this case, March 22, 2000) is passed to the Property procedure in the
last argument, datPayDay. The week number is passed to the procedure in intWeek.

The two primary benefits of using a Property Let procedure rather than a Public
variable are (1) taking action in response to a property value change and (2) per-
forming data validation. The Path Property Let demonstrates the first benefit,
closing an existing file before allowing the property value to be changed. For an
example of data validation, see the OpenMode Property Let statement described
in the section “Creating Enumerated Types” later in this chapter.

Read-Only and Write-Only Properties

You need not have Property Get and Property Let procedures for each property
you wish to implement. By defining only a Property Get procedure, you create, in
effect, a read-only property—one that can be retrieved but not set. Likewise,
defining only a Property Let procedure produces a write-only property (although
these are rare in practice).

We make heavy use of read-only properties in our sample TextFile class for
properties like Handle, which makes no sense to set directly as it’s derived from
the operating system. While consumers of the class can’t set the value of read-only
properties, procedures inside the class can by writing directly to the Private vari-
ables that store the property values.

Creating Object Properties

The Property Set procedure, designed to let you create object properties, is a vari-
ation of the Property Let procedure. Object properties are properties that are them-
selves pointers to objects, rather than scalar values. For example, suppose you
wanted to create a property of one class that was itself a pointer to an instance of
another class. You would need to define a Property Set procedure to allow con-
sumers of the first class to set the property value.

The code in Listing 5.6 defines a Property Set procedure called SaveFile that
might be part of a class representing text documents. The class stores a pointer to
the TextFile object used for persistent storage of the document’s contents.

Using Property Procedures 293

Listing 5.6: Property Set Procedure for an Object Property, SaveFile

' Private variable used to store a reference
' to the TextFile object associated with this class
Private mobjSaveFile As TextFile

Property Set SaveFile(objFile As TextFile)
' Make the private class variable point
' to the TextFile object passed to the procedure
Set mobjSaveFile = objFile

End Property

VBA procedures could then set the pointer defined by the SaveFile property to
point to another instance of the TextFile class. (Important: note the use of the Set
reserved word.)

Set objDoc.SaveFile = New TextFile

Once the reference has been established, the procedure could then manipulate
properties and call methods of the TextFile object pointed to by the document
object’s SaveFile property:

objDoc.SaveFile.Path = "C:\AUTOEXEC.BAT"

objDoc.SaveFile.FileOpen

At this point you might be wondering, “If I use Property Set to set the value of
an object property, how do I retrieve its value?” As it turns out, you can use Prop-
erty Get procedures for both scalar values and object pointers. You just need to
declare the return value as an object data type. For instance, if you wanted to write
the corresponding Property Get procedure for the SaveFile property, it might look
like this:

Property Get SaveFile() As TextFile
' Return the pointer contained in the
' private class variable
Set SaveFile = mobjSaveFile

End Property

Again, notice the use of the Set reserved word in all assignment statements
involving object pointers.

294 Chapter 5 e Creating Your Own Objects with VB Class Modules

Creating Enumerated Types

Often when developing custom classes you'll find yourself needing to define a
series of constants for a given property or method. The OpenMode property of
our TextFile class is a good example. There are only three discrete values that
OpenMode can have and these are represented by constant values. While normal
VBA constants are useful, you can provide even more usability by defining an
enumerated type for a set of constants. Enumerated types provide you with enhanced
developer IntelliSense features when using your class. We've created an enumer-
ated type for OpenMode constants that provides the pop-up list of possible values
while coding, shown in Figure 5.5.

FIGURE 5.5 %: Classes.xls - basTest (Code) =101 x|
. An erfumerated type orarall ~| [TestTentFile |
defines the list of constants -
Sub TestTextFile() Ej

displayed while
writing code.

Dim ohjFile As TextFile

! Create new instance of TextFile class
Set okjFile = New TextFile

Set the Path propercty
okbjFile.Path = "C:\AUTOEXREC.EBAT"™
objifile.Opentode =

@
=) ffOpenReadOnly
=) fiOpenReadWrite

Defining an Enumerated Type

You create an enumerated type just like a user-defined type—using a multiline
structure. Here’s the definition for the enumerated type used by the OpenMode
property:
' Enumeration for file open mode
Public Enum TextFileOpenMode
tfOpenReadOnly
tfOpenReadWrite
tfOpenAppend
End Enum

Creating Enumerated Types 295

As you can see, the code block begins with the Enum keyword (optionally mod-
ified by Public or Private keywords) and a unique name for the type. Unless you
declare the type as Private, the type name must be unique with respect to the
scope of the entire project. End Enum terminates the code block. The lines in
between represent each enumerated constant value. You'll notice in our exam-
ple that we’ve included only constant names and no values. This is perfectly valid,
and VBA will assign each constant a long integer value starting at zero and incre-
menting by one. Therefore tfOpenReadOnly evaluates to 0, tfOpenReadWrite is 1,
and tfOpenAppend is 3. We’ve omitted values since we only need to distinguish
between different constants—the actual numeric values have no intrinsic mean-
ing. If you want or need to, however, you can assign specific values, as in this
example:

' This uses some specific values

Public Enum TextFileOpenMode
tfOpenReadOnly = -1
tfOpenReadWrite = 1
tfOpenAppend

End Enum

In this case the first two constants have explicitly assigned values. The other
constant is assigned an incrementing value starting at the last explicit value (i.e.,
the number 2).

NOTE Enumerated type constants are limited to long integers. You cannot create enumerated
types using other data types.

Using Enumerated Types with Methods and Properties

Once you've defined an enumerated type, you use it just as you would any other
data type, for example, in variable, argument, and return type definitions. It’s this
usage that provides the IntelliSense features in the editor. The OpenMode prop-
erty of our TextFile class uses the TextFileOpenMode type as its return and argu-
ment data types:

Property Get OpenMode() As TextFileOpenMode
' Retrieve the open mode of the file
OpenMode = mlngOpenMode
End Property
Property Let OpenMode(ByVal IngMode As TextFileOpenMode)

296 Chapter 5 e Creating Your Own Objects with VB Class Modules

If Not Me.IsOpen Then
Select Case TngMode
Case tfOpenReadOnly, tfOpenReadWrite, tfOpenAppend
mlngOpenMode = TngMode
Case Else
Err.Raise conkErrInvalidProcCall
End Select
End If
End Property

Whenever you use an enumerated type in place of a normal data type, VBA dis-
plays the list of constant values when it detects that you're editing an assignment
or comparison statement. This makes it very easy to remember which choices
apply and is extremely helpful for other developers using your classes.

WARNING Simply defining an argument or variable using an enumerated type does not limit
the values to those defined as part of the enumerated type. VBA treats the vari-
able or argument internally as a long integer, and thus you can substitute any long
integer value in place of one of the constants. That's why our code uses a Select
Case statement to ensure that the parameter is one of the allowable values. If it's
not, the procedure raises runtime error 5, “Invalid procedure call or argument.”

Applying Class Module Techniques to the
Windows API

The Windows API (Application Programming Interface) is an extremely powerful
library of functions from which all Windows applications are created. Numbering
in the thousands, API functions let Windows programmers do everything from
creating new application windows to managing memory to obtaining critical
operating information, such as free disk space. Through VBA’s ability to call
external library functions, including those in the Windows API (WinAPI for
short), you can tap into this power. Traditionally, however, calling WinAPI func-
tions has been a complex undertaking, requiring knowledge of internal Windows
architecture and the C programming language, the lingua franca of Windows
developers. By taking advantage of VBA class modules, though, you (or someone
else) can encapsulate Windows API functionality in easy-to-use object classes. In

Applying Class Module Techniques to the Windows API 297

this section we suggest one example, creating a class module containing Windows
clipboard functions, as a way of proving the usefulness of class modules. Other
chapters of this book explore the Windows API in more depth, and you'll find we
use class modules extensively.

Working with the Clipboard

The Windows clipboard is an ideal candidate for our example class for two rea-
sons. First, working with the clipboard is complex, requiring no fewer than 12 API
functions to move text to and from it. Second, with the exception of Visual Basic,
there is no way to interact with it using VBA alone. In this example we show you
how to create a VBA class with methods to copy text to the clipboard and back.

Before discussing the required functions, let’s look at what needs to be done to
put a text string onto the clipboard:

1. Allocate a block of global memory to hold the text.

2. Lock the memory so Windows doesn’t move it while you're working with it.
3. Move the text from VBA’s memory into the global memory block.
4

. Unlock the global memory block. (You can’t send the clipboard locked
memory.)

@

Empty the current contents of the clipboard.
6. Open the clipboard. This gives you access to it.

7. Point the clipboard at your global memory block. This is, in effect, what
“copies” the data to the clipboard.

8. Close the clipboard.
9. Free the global memory.

And that’s just getting the text there! Getting it back involves a similar number
of steps.

Designing the Clipboard Class

To make things simpler, we’ve created a Clipboard class that implements three
methods and one property, as described in Table 5.3.

298 Chapter 5 e Creating Your Own Objects with VB Class Modules

TABLE 5.3: Methodsand Properties of the Clipboard Class

Member Description

Text property Sets or retrieves text from the clipboard

GetText method Retrieves text from the clipboard

SetText method Places text on the clipboard

GetErrorText Returns the textual description of a clipboard error given an error code

NOTE

You might be asking yourself why we implemented seemingly redundant
methods, GetText and SetText, when the class has a Text property. The reason is
that even though using a property like Text is more intuitive, the Clipboard object
implemented by Visual Basic uses methods. By implementing both we make it
easy to copy code from a VB project that uses the built-in clipboard object to a
VBA project that uses our custom class. For new VBA projects you can simply use
the Text property (which itself calls the methods).

Listing 5.7 shows the code that makes up the property and methods. Note the
relative complexity of GetText and SetText.

Listing 5.7: Contents of the Clipboard Class Module

Function SetText(Text As String) As Variant
Dim varRet As Variant
Dim fSetClipboardData As Boolean
Dim hMemory As Long
Dim TpMemory As Long
Dim TngSize As Long

varRet = False
fSetClipboardData = False

' Get the Tlength, including one extra for a CHR$(0)

' at the end.

TngSize = Len(Text) + 1

hMemory = GlobalAlloc(GMEM_MOVABLE Or _
GMEM_DDESHARE, TngSize)

Applying Class Module Techniques to the Windows API 299

If Not CBool(hMemory) Then
varRet = CVErr(ccCannotGlobalAlTloc)
GoTo SetTextDone

End If

' Lock the object into memory

TpMemory = GlobalLock(hMemory)

If Not CBool(1pMemory) Then
varRet = CVErr(ccCannotGloballLock)
GoTo SetTextGlobalFree

End If

' Move the string into the memory we locked
Call MoveMemory(1pMemory, Text, 1ngSize)

' Don't send clipboard Tocked memory.
Call GlobalUnlock(hMemory)

' Open the clipboard

If Not CBool(OpenClipboard(0&)) Then
varRet = CVErr(ccCannotOpenClipboard)
GoTo SetTextGlobalFree

End If

' Remove the current contents of the clipboard
If Not CBool(EmptyClipboard()) Then
varRet = CVErr(ccCannotEmptyClipboard)
GoTo SetTextCloseClipboard
End If

' Add our string to the clipboard as text

If Not CBool(SetClipboardData(CF_TEXT, _
hMemory)) Then
varRet = CVErr(ccCannotSetClipboardData)
GoTo SetTextCloseClipboard

Else
fSetClipboardData = True

End If

SetTextCloseClipboard:
" Close the clipboard

300 Chapter 5 e Creating Your Own Objects with VB Class Modules

If Not CBool(CloseClipboard()) Then
varRet = CVErr(ccCannotCloseClipboard)
End If

SetTextGlobalFree:

If Not fSetClipboardData Then
'If we have set the clipboard data, we no Tonger own
" the object--Windows does, so don't free it.
If CBool(GlobalFree(hMemory)) Then

varRet = CVErr(ccCannotGlobalFree)

End If

End If

SetTextDone:
SetText = varRet
End Function

Public Function GetText() As Variant
Dim hMemory As Long
Dim 1pMemory As Long
Dim strText As String
Dim TngSize As Long
Dim varRet As Variant

varRet = "'

" Is there text on the clipboard? If not, error out.

If Not CBool(IsClipboardFormatAvailable _
(CF_TEXT)) Then
varRet = CVErr(ccClipboardFormatNotAvailable)
GoTo GetTextDone

End If

' Open the clipboard

If Not CBool(OpenClipboard(0&)) Then
varRet = CVErr(ccCannotOpenClipboard)
GoTo GetTextDone

End If

' Get the handle to the clipboard data
hMemory = GetClipboardData(CF_TEXT)

Applying Class Module Techniques to the Windows API 301

If Not CBool(hMemory) Then
varRet = CVErr(ccCannotGetClipboardData)
GoTo GetTextCloseClipboard

End If

" Find out how big it is and allocate enough space
" in a string

TngSize = GlobalSize(hMemory)

strText = Space$(IngSize)

" Lock the handle so we can use it
TpMemory = GlobalLock(hMemory)
If Not CBool(1pMemory) Then
varRet = CVErr(ccCannotGloballLock)
GoTo GetTextCloseClipboard
End If

' Move the information from the clipboard memory
' dinto our string
Call MoveMemory(strText, 1pMemory, 1ngSize)

" Truncate it at the first Null character because
' the value reported by 1ngSize is erroneously large
strText = Left§(strText, InStr(1l, strText, Chr$(0)) - 1)

' Free the Tlock
Call GlobalUnlock(hMemory)

GetTextCloseClipboard:
' Close the clipboard
If Not CBool(CloseClipboard()) Then
varRet = CVErr(ccCannotCloseClipboard)
End If

GetTextDone:
If Not IsError(varRet) Then
GetText = strText
Else
GetText = varRet
End If
End Function

302 Chapter 5 e Creating Your Own Objects with VB Class Modules

Property Get Text() As String
" Wrapper for GetText method

Dim varRet As Variant

varRet = Me.GetText
If IsError(varRet) Then

Err.Raise vbObjectError + varRet, , GetErrorText(CLng(varRet))
Else

Text = CStr(varRet)
End If

End Property

Property Let Text(strText As String)
' Warpper for SetText method

Dim varRet As Variant

varRet = Me.SetText(strText)
If IsError(varRet) Then

Err.Raise vbObjectError + varRet, , GetErrorText(CLng(varRet))
End If

End Property

You can see from the comments in the code that it follows the steps listed in the
previous section.

NOTE Note the use of Err.Raise in the Text property procedures to raise a custom runtime

error. Handling errors inside class modules is discussed in the section “Error
Handling in Classes” in Chapter 6.

Summary 303

Testing the Clipboard Class

Using our Clipboard class is about as easy as understanding the code in Listing 5.7 is
difficult! To place text on the clipboard, all you have to do is declare a new instance of
the class and call its Text property. Similarly, to retrieve text from the clipboard,
retrieve the Text property value. The following code illustrates these steps:

Sub TestClip()
Dim objClip As Clipboard

' Instantiate the object
Set objClip = New Clipboard

' Put some text on the clipboard
objClip.Text = "Test String"

' Take it off
Debug.Print objClip.Text
End Sub

If this example doesn’t convince you of the value of class modules, we doubt
anything will. We’ve encapsulated several pages of complex API source code into
a single, simple property. As you use VBA and the Windows API together, you'll
likely see other functions that would benefit from encapsulation in this manner—
in fact, you'll find a great deal more in other chapters of the book!

Summary

This chapter has provided you with the basic information necessary to begin
using VBA class modules, one of the most powerful features of VBA. By encapsu-
lating complex functionality and code in class modules, you can develop applica-
tions that are easier to program and maintain. Of course, it all starts with thinking
about the problem you're trying to solve in terms of object classes. Once you've
identified the components, it is relatively easy to model them using class modules.
Simply create one class for each “thing” you want to model.

304 Chapter 5 e Creating Your Own Objects with VB Class Modules

This chapter also explored class module coding techniques. We showed you
how to create a class, its properties, and methods and how to create and use an
instance of that class. Finally, we presented a useful class example for manipulat-
ing the Windows clipboard.

When deciding how to take advantage of VBA class modules, you are limited
only by your imagination. Just keep the following tips in mind:

e Create one class for each “thing” you want to model.

e Use Property procedures when you need to control how property values are
set and retrieved.

o Use enumerated types to help yourself (and others) use your classes.

Chapter 6 continues our discussion of class modules by looking at more advanced
techniques like collections, object models, and error handling.

chapter

Advanced Class Module
Techniques

Establishing a hierarchy of object classes
Creating and managing collections of objects
Developing interface classes

Enabling classes with custom events

306

Chapter 6 e Advanced Class Module Techniques

Once you've mastered the basics of using VBA class modules, there’s still a lot
more to learn about these powerful tools. As your classes get more complex and as
their numbers increase, it becomes more important to know how to use them most
effectively. This chapter continues what Chapter 5 started by discussing a number
of advanced topics. By reading this chapter, you'll learn about creating object
model hierarchies, a required skill for developing complex, class-based applica-
tions. Creating collections of objects is another required skill, and you’ll see how
to use VBA class modules to create collections far more useful than VBA’s built-in
collection object. We also discuss a number of other topics that will round out
your knowledge of class modules, including error handling, interface classes and
the Implements keyword, and custom events. Before diving into source code, we
begin the chapter by taking a look at the design principle around object models
and class hierarchies.

Table 6.1 lists the sample files included on the CD-ROM. You'll find all the sample
code discussed in the chapter in these files.

TABLE 6.1: SampleFiles

Filename Description

ADVCLASS . XLS Excel workbook containing sample code
ADVCLASS.MDB Access 2000 database containing sample code
ADVCLASS.VBP Visual Basic project containing sample code
TEXT2.CLS TextFile2 class module

TEXT3.CLS TextFile3 class module

TEXT4.CLS TextFile4 class module

LINE.CLS Line class module

LINES.CLS Lines collection class module

TEST.BAS Test functions

CUST.CLS Sample Customer class

INVOICE.CLS Sample Invoice class

EVENTS.CLS Custom events test class

ICALLBACK.CLS

IWCALL.CLS

Callback interface class

Immediate window callback class

Object Model Design Principles 307

Object

TABLE 6.1: SampleFiles (continued)

Filename Description

LBCALL.CLS List box callback class

REF1.CLS Circular reference test class

REF2.CLS Circular reference test class

MAIN.FRM Start-up form for the Visual Basic project
EVENTS.FRM/EVENTS.FRX Custom events test form
IMPL.FRM/IMPL.FRX Callback test form

REF.XLS Project reference test project

Model Design Principles

In this chapter, we show you how to take multiple classes and link them together
in what’s known as an object model. An object model expresses the relationships
between classes. Usually, a natural hierarchy is formed by object relationships.
Consider the diagram in Figure 6.1, which graphically depicts the object model for
a fictitious accounting application.

FIGURE

6.1

The object model for a Invoice

fictitious accounting

application

Customer l Payment l

You can see from Figure 6.1 that a relationship exists between invoice and cus-
tomer and between invoice and payment. It is generally a good idea to create a
sketch like the one in Figure 6.1 before beginning to program an application. It
makes it very clear what object classes exist and how they relate to one another.

The exact way in which the classes are arranged, plus the way each class itself is
designed, determines how useful the object model is and how easy it is for other

308

Chapter 6 e Advanced Class Module Techniques

developers to understand. Therefore, it makes sense to spend some time thinking
about the overall design before you begin writing code. There are several factors
you should consider when designing an object model for an application:

e What classes are you going to need?

¢ What members (properties, methods, events, etc.) will each class require?

e How should you name your classes and members?

¢ Are there relationships between classes, and how will you represent them?
e Are any relationships one-to-many?

In this and the next sections, we’ll provide guidelines and coding examples that
should help you address these factors in your applications.

Determining Class Requirements

Not surprisingly, the first question you need to ask yourself revolves around the
classes you require to effectively model your application. There is no fixed rule
that adequately serves every situation, but there are guidelines that you can fol-
low that should help you. As you become more experienced in creating objects,
you'll take these guidelines into account implicitly.

Conceptual Data Objects

Perhaps the easiest way to begin is by examining the different data entities in your
application. For example, if you were to create a customer management applica-
tion, you might model customers, accounts, salespeople, and promotions as data
objects. These are all candidates for representing as classes since they all have things
that describe them (properties), and they all have things that they do or have done
to them (methods). Data classes are also pretty easy to define since they map closely to
any database schema you create, usually having a one-to-one relationship with
the main data tables you define.

User Interface Constructs

Another area of your application to look at is the user interface (UI). Often it makes
sense to model your user interface using classes, even if you're using a tool like
Visual Basic that provides object-based Ul tools. The reason is that classes let you

Object Model Design Principles 309

extend the interfaces of built-in UI objects to add additional business logic. The
same holds true for Office documents programmatically exposed through VBA.
For example, suppose you are developing an expense-reporting application using
Microsoft Excel and using Excel worksheets as your main user interface element.
Your code could manipulate instances of the Worksheet class directly but it’s
likely that expense reports, being a particular type of worksheet, have additional
business logic associated with them. The solution is to either extend the Work-
sheet class by adding additional properties and methods, or to create a new class
that “wraps” the Worksheet class and exposes its own interface.

Application Processes

A third area of your application to examine for the potential to apply class module
techniques are processes that operate on data or services that your application
provides. These are processes not necessarily linked to a particular data object,
like a customer, but more generic services like disk storage or memory allocation.
For instance, take the example of an application that writes disparate types of data
to a single data store like Microsoft Exchange. An alternative to encoding the logic
for reading and writing data in each data object class would be to create a single
class to manage storage that could operate on any data object passed to it. The
advantage to this approach is that if you decide to add or change the data storage
mechanism, you need to add or change a single class containing the specific code.
Your data classes remain unchanged.

Remember: Draw Strict Boundaries

Above all, when developing your list of classes, remember to draw very clear
boundaries between classes. The key to proper encapsulation and the long-term
capacity for reuse is making sure each class implements very discrete areas of
functionality. For example, avoid defining a class that represents both customers
and invoices unless you're sure that’s the best way to model your application. It
will be unlikely that you could use the class for other applications later on that
need only one or the other data object. And, never mix user interface logic with
data logic. This ties the class to a particular user interface implementation and
makes it difficult or impossible to reuse it in other applications that use different
technology.

310

Chapter 6 e Advanced Class Module Techniques

Specifying Class Members

Once you've decided what classes your application will need, you can specify the
exact properties, methods, and events each one will have. While this might seem like
an obvious step, it’s important to approach it with just as much care as any other part
of the design process. The members you decide to implement (and, just as important,
those you don’t) determine the usefulness of your class. Once again, there is no set
rule for defining members, except a set of guidelines that you can follow.

Keep It Simple

The first, and most important, rule for deciding what properties, methods, and
events a class needs is to start simple and try to keep it that way. You don’t neces-
sarily have to implement everything someone would want to do with a class in
the class itself. After all, you and other developers need to write some code that
uses the class; otherwise, programming an application would be very boring! Fur-
thermore, once you implement and start using a class, it becomes nearly impossible
to change it because developers and applications depend on the initial interface
you define. In other words, it’s very easy to add new members over time in response
to experience and feedback, but it’s very difficult to remove or change existing ones.

Choose Properties for Values and Methods for Actions

When designing a custom class, it’s entirely up to you to decide which members
should be represented as properties and which as methods. Under the covers, in the
COM world, there is no difference—everything’s a function call—but properties
and methods are closer conceptually to object-oriented principles. Traditionally,
properties are used to represent simple values implemented using single variables
or calculations based on in-memory data. On the other hand, methods usually
denote an implementation requiring non-trivial amounts of code and indicate some
appreciable measure of “work” required to achieve the desired result.

Sometimes it is necessary to implement as a method what would normally be
considered a property. You might do this because retrieving or setting the value
requires more work than referencing a variable, and you want to imply this in the
object model. (For example, a property that determines if a printer is functioning
properly might require several, possibly time-consuming, steps. So, you might
choose to implement this as a method instead.) This approach also applies when
changing a property setting requires more than one value. In this case, a method
with multiple arguments is more appropriate.

Object Model Design Principles 311

Tip Whenever you choose to implement a method when a property might also make

sense, a good way to call this out in the object model is to prefix Get and/or Set to
the name, as in SetThreeDFormat and GetSetting.

Don’t Reinvent the Wheel

One common urge felt by application designers when designing classes is to come
up with a better way to implement existing functionality. You can even see this
“not invented here” attitude reflected in software from large commercial compa-
nies like Microsoft. For example, for years the accepted way to determine the
number of items in a collection was to inspect the Count property. However,
recently, Microsoft’s Internet technologies (IE, MSHTML, MSXML) implemented
object models in which collection items were inventoried using a property called
length. Developers making the transition from applications like VB and Office to
Web technologies have had to deal with this difference. While we’re sure someone
thought there was a good reason for this, we use it as an example of how changing
the way common tasks are performed usually serves no purpose but to annoy and
confuse developers. If you're implementing commonly recognized functionality,
do your customers a favor and just design it the way everybody’s used to.

Avoid Overusing Computed Properties

Another common urge, and one that violates the first rule of simplicity, is to add a
large number of computed properties to a class. A computed property is one
that’s derived from other property values. A good example would be the Total
property of an invoice line item. Chances are it’s a read-only property based on
the Price and Quantity properties and, therefore, is something the consumer of
your class could derive herself. The question you should ask yourself is, “How
often will someone need to compute this property?” In our example, the Total
property is probably used often, and, therefore, it makes sense to include it as an
intrinsic class property. On the other hand, something like IsQuantityGreater-
ThanTwelve is probably not worth implementing in the class because it won’t be
used that often. Okay, we're being a little extreme in this case, but only to make a
point. Remember that the developers using your class can always compute what-
ever value they need. You don’t have to do it all for them.

Help the Developer

That’s not to say you shouldn’t add members that help the developer perform
tasks that would be inconvenient, difficult, or impossible otherwise. The Total

312

Chapter 6 e Advanced Class Module Techniques

property, mentioned in the last section, is one example because it’s used often.
Therefore, not implementing it would only make needless work for the developer.
Another example commonly found in object hierarchies is the Parent property of
an object. Parent provides a pointer to the object immediately above the current
one in the hierarchy and makes it easy for a developer to write code that navigates
the entire tree. Microsoft Office object models feature this property extensively.

Other examples include active object properties. These properties, such as Active-
Window, ActiveForm, or ActiveControl, are found in user interface object models
and return pointers to objects that have the input focus, or appear at the top of the
three-dimensional on-screen Z-order. If your application maintains state informa-
tion internally, it often makes sense to expose things like the active window as
properties of a class. And it’s not limited to user interface objects, either. Data
properties, like ActiveConnection and CurrentUser, are other examples.

Extend Your Classes Using Events

One tool that aids in keeping your classes simple is the ability to create custom
events, a subject we cover in detail later in this chapter. Events are your way to let
other developers take action in response to things you do inside the class’s code.
They relieve you of the burden of trying to figure out in advance everything a
developer might want your class to do. Consider the example of a data class that
implements a method for deleting a record from a database. In developing the
class, you might ask yourself, “I wonder if the developer would want to write to a
log file that the record was deleted. Should I add this to the class’s code?” By imple-
menting the right events, such as BeforeDelete and AfterDelete, you let the devel-
oper decide what additional action needs to be taken. Again, you don’t need to
think of everything yourself, and your class is kept simple.

Object Model Naming

Believe it or not, what you name your classes and their members can be a very
controversial issue. That’s because, like everything else involved in the design
process, the decisions you make affect the general usability of the object model.
Here’s what you should think about when deciding on a name.

NOTE

Many of the example names in this section come from Microsoft Excel’s object model.

Object Model Design Principles 313

Say What It Does

The most important consideration is to choose names that represent the function-
ality of the class and its members. Typically, this means brief, English word
descriptions like Form, Workbook, Visible, Caption, etc.

NOTE

Even if you localize your application class, member names should remain in English
to accommodate scripting languages that rely on names to access properties and
methods.

When necessary, you can use short phrases to describe members. But be careful
not to make them too long because this quickly becomes inconvenient for other
developers. Also, use abbreviations when necessary—for example, PromptFor-
SummarylInfo, ActivateMicrosoftApp, WorkbookBeforeSave.

Prefixing

It’s common practice when writing code to prefix names with letters that indicate
the data type and other information. You can apply the same rules to classes, but

you should keep in mind how the classes will be used. Classes exposed to VB and
VBA applications normally don’t include prefixes on class, member, or argument
names because this makes it easier to read the declarations in the Object Browser

and editor IntelliSense prompts.

One suggested exception is an inferface class. An interface class defines the interface
for an object but not for its implementation. You normally use interface classes with
one or more implementation classes by adding the Implements keyword to an imple-
mentation class’s declarations section. Interface class names are often prefixed with a
capital I to indicate that they define the interface only and have no intrinsic functional-
ity. We explain interface classes and the Implements keyword later in this chapter.

NOTE

Occasionally, you will see object models where every non-interface class is
prefixed with a capital C. While this does distinguish an implementation class from
the interface class it's based on, unless you have a large number of interface
classes, the Cis redundant, and you're better off omitting it.

Capitalization

Traditionally, object models have featured class, member, and argument names that
begin with capital letters and include other capital letters at word breaks when the

314

Chapter 6 e Advanced Class Module Techniques

name is made up of more than one word (for example, Workbook, ActiveWindow).
Recently, Microsoft’s Web technologies have adopted a naming convention that
changed the initial letter to lowercase, referred to as “camel case” (for example, length,
parentWindow). Now that there are two precedents, the convention you choose
depends on what realm your application belongs in and who your developers are. If
you are developing a traditional Windows application and the developers using your
object model are VB or VBA programmers, you should stick to the traditional initial-
caps convention. On the other hand, if you're developing components for Web appli-
cations, follow those guidelines. In either case, be consistent across your object model.

Verbs, Nouns, and Adjectives

Another choice you need to make is whether to use verbs, nouns, or adjectives in
your member names. Normally, nouns and adjectives are used to denote proper-
ties, and verbs are used to denote methods. While this is a subtle difference, verbs
imply more substantial action than simply to “set or retrieve this value.” Exam-
ples of noun and adjective properties include Worksheets, Visible, Height, and
Name. Common verbs include Calculate, Undo, and CopyPicture.

For Boolean properties, consider prefixing property names with the word Is to
imply a True or False value (for example, IsOpen, IsCalculated). Unfortunately,
the Microsoft object models are not consistent in this regard, but it is a useful sug-
gestion nonetheless.

Event naming is also inconsistent in Microsoft object models. Traditional object
models, like those in Microsoft Office, simply use the name of the event as a verb,
as in Activate, Close, and Calculate. When the state context is important, it's added
to the beginning of the name (for example, BeforeDelete, AfterDelConfirm). Web-
based object models use a slightly different approach, beginning each event with
the word on, as in onload, onfocus, and onclick. (Note, too, that these are all lower-
case words.) This makes it easy to distinguish events from methods, something
that can be unclear otherwise. (For instance, Excel’s Workbooks have both an Acti-
vate method and an Activate event.) Again, which convention you choose should
be driven by consistency with your focus and developer base, although a hybrid
approach is also possible—for instance, combining the on prefix with mixed case.

Modeling Class Relationships

Almost without exception, whenever you have an object model with more than a
few classes, there will be natural relationships between classes. (If there aren’t,

Developing Object Hierarchies 315

perhaps you haven’t factored each class correctly.) One of the final steps in object
model design is identifying and properly modeling these relationships.

Containment

The most common type of relationship is containment, where one class can be
viewed as being contained within, or subordinate to, another. An obvious example,
because of its user interface implications, is the relationship between Excel Work-
sheet and Workbook classes. Just by looking at the user interface, it’s easy to see
that a Worksheet is contained within a Workbook. Therefore, it should appear
subordinate to the Workbook class in the object model.

NOTE This also implies a parent-child relationship, meaning that the Worksheet class

should implement a Parent property that holds a pointer to the Workbook that it's
contained within.

Another, non-UI example is the relationship between an Excel add-in and the
Application class. An add-in is a feature of the application and, therefore, is subor-
dinate to it in the object model, even though there is no user interface to provide
this guideline.

One-to-Many Relationships

Both of the previous examples, worksheets and add-ins, are one-to-many relation-
ships. That is, one workbook can contain one or more worksheets, and there may
be one or more add-ins loaded in the application. In these cases, you'll need to
implement a collection of objects, and it is the collection class, not the individual
object class, that becomes the subordinate object. For example, Excel’s Workbook
class actually implements a property that returns a pointer to a Worksheets collec-
tion. The individual object class then becomes subordinate to the collection class.
We show you how to create collections and collection classes later in this chapter.

Developing Object Hierarchies

Now that we’ve covered the theory behind designing object models, its time to
show you the techniques you use in VBA to implement them. Since Chapter 5 cov-
ered the basics of individual class design, we pick up where it left off and discuss

316 Chapter 6 ¢ Advanced Class Module Techniques

implementing object model hierarchies. For the first few examples, refer back to
Figure 6.1, which depicted a fictitious accounting object model involving custom-
ers, invoices, and payments.

TIP Visual Basic includes a wizard (the Class Builder Wizard) that can assist you in

creating classes and object models. It's available from the VB Add-in Manager. It
features a menu-driven and tree-view interface but gives you no control over the
code it produces. If you aren’t particular about coding style or naming conventions,
you might find this tool useful.

Once you have an object model that represents your application, you can begin
constructing class modules—one for each object in the diagram. To represent rela-
tionships between objects, declare pointers to child objects in the declarations sec-
tion of the parent class module. For example, to model the relationship between
invoice and customer (assuming classes named Invoice and Customer, respec-
tively), you would create a Customer property of the Invoice class that returned a
pointer to a Customer class instance:

Private mobjCustomer As Customer

Property Get Customer() As Customer
' Return pointer to Customer instance
Set Customer = mobjCustomer

End Property

TIP Note that you can, in fact, declare object variables and properties with the same

name as the class they are based on.

As with any class, you need to create a new instance of the Customer class. Nor-
mally, the correct place to do this is in the Invoice class’s Initialize event:

Private Sub Class_Initialize()
' Create a new Customer instance
Set mobjCustomer = New Customer
End Sub

Developing Object Hierarchies 317

By placing the code here, a Customer class instance is automatically created
when you create a new instance of the Invoice class. You can then use the invoice
object to set properties of the customer instance, as the following code fragment
demonstrates:

Dim objInvoice As Invoice

Set objInvoice = New Invoice

Set objInvoice.Customer.FirstName = "Jane"
Set objInvoice.Customer.LastName = "Smith"
' and so on...

The ability to create object hierarchies using class-level pointer variables is an
extremely powerful feature of VBA. It lets you develop and test objects, like the
Customer object in this example, separately and then assemble them into a robust,
object-oriented representation of your application.

NOTE

The technigue just described works great for one-to-one relationships, but what
about one-to-many relationships? For example, what if an invoice could have a
number of customers associated with it? In this situation, you need to use a collection,
as discussed in the section “Creating Your Own Collections” later in this chapter.

Creating a Parent Property

In many object models, classes within the hierarchy implement a property that
contains a pointer to the instance of the class immediately above it in the hierar-
chy. This makes it convenient to traverse the hierarchy using VBA code. Tradition-
ally, this property is named Parent, representative of the parent-child relationship
between classes. For example, the Excel Worksheet class implements a Parent prop-
erty that points to the Workbook instance in which the worksheet is contained.

You can implement a Parent property in your own classes by creating Property
Set and Property Get procedures in the child class. For example, suppose you
want to be able to reference the Invoice object from the Customer object it con-
tains. Listing 6.1 shows you how to do this.

318 Chapter 6 ¢ Advanced Class Module Techniques

Listing 6.1: Implement a Parent Property

' Private variable to store pointer to parent
Private mobjParent As Invoice

Property Set Parent(objParent As Invoice)
" If property hasn't been set yet, do so
If mobjParent Is Nothing Then

Set mobjParent = objParent
End If
End Property

Property Get Parent() As Invoice
' Return the pointer stored in mobjParent
Set Parent = mobjParent

End Property

In this case, Parent is a write-once property. That is, after you set the value of the
property, it cannot be set again. This prevents you from changing an object’s par-
ent after establishing the initial value. (Imagine how you would've felt as a child if
someone had changed your parents after you were initialized!) You set the value
after creating a new object instance by using the Me object to refer to the instance
of the parent class. The best place to do this is in the parent class’s Initialize event
because it sets up the parent-child relationship right away. Here’s the updated
code from the Invoice class’s Initialize event:

Private Sub Class_Initialize()
' Create a new Customer instance
Set mobjCustomer = New Customer

' Establish the parent-child relationship
Set mobjCustomer.Parent = Me
End Sub

It would be nice if there were a way to declaratively define the relationship so
that you didn’t have to write the code yourself. This would ensure that it always
got populated with a value, but there is currently no mechanism in VBA for one
class to know which instance of another class created it.

Collections of Objects 319

NOTE In this example, we've declared the Property procedures to accept and return a
specific object type: Invoice. If you are creating a class that might be used by a number
of other classes (and thus have different types of parents), you can use the generic
Object data type or the Implements keyword (described later), if all parents are
derived from the same base type.

Self-Referencing

One type of relationship you can model using VBA class modules is the relation-
ship between one instance of a class module and another instance of the same
class. Consider the case of a class representing a person. You could use the class to
model a variety of interpersonal relationships (parent-child, employee-manager,
and so on).

Self-referencing is simply a specialized type of hierarchy. In the declarations
section of a class module, just create a pointer to an instance of the same class.
When an instance of the class is created by a VBA procedure, you can instantiate
the pointer or leave it with its default value, Nothing.

NOTE In Chapter 8, we'll use VBA's ability to create self-referencing classes to model
data structures, such as linked lists and queues.

Collections of Objects

Often, when creating an object model for an application, you will find that the
relationship between two objects is one-to-many. That is, one instance of a class
relates to many instances of another class. The set of related objects is called a col-
lection, and, like a single child object, the parent object contains the set. Fortu-
nately, VBA includes a Collection class that you can use to create and manipulate
your own custom collections.

Collection Basics

This section begins by discussing collections in general and then shows you how
to use VBA’s Collection object to create your own. If you're already familiar with

320

Chapter 6 e Advanced Class Module Techniques

the way collections work, you might want to skip ahead to the section “Creating
Your Own Collections.”

Using Collections

It’s likely that you are already familiar with collections from your experience
using VBA or other Microsoft Basic dialects. For example, Microsoft Excel imple-
ments a Workbook object representing the data stored in an XLS file. This object,
in turn, contains a collection of unique Worksheet objects. Each Worksheet object
represents an individual worksheet tab within the workbook file.

If you're familiar with how collections of objects work, you already know that
you refer to objects in a collection using the collection name along with the name
of one of the objects it contains. You can also use the relative position of the object
in the collection by specifying a numeric index. For example, to print the Visible
property of a particular worksheet in the active workbook, you could use either of
these statements:

Debug.Print ActiveWorkbook.Worksheets("Sheetl").Visible
Debug.Print ActiveWorkbook.Worksheets(1l).Visible

NOTE

In some aspects, collections are similar to arrays in that both contain a set of
similar objects, and each can be referenced using a numeric index. Collections are
much more robust when dealing with sets of objects because a collection
implements built-in methods for adding, removing, and referencing objects. You
must write your own procedures for manipulating arrays.

Collection Properties and Methods

As an object, a collection implements a number of methods and properties designed
to help you put other objects into the collection, take them out, and reference par-
ticular ones. Unfortunately, not all products and components implement these
properties and methods the same way. For example, to add a new worksheet to an
Excel workbook, you call the Add method of the Worksheets collection. On the
other hand, to add a new table to a database using ADOX, you first create a new
instance of the Table class. After setting properties of the new Table object, you
call the Append method of the Catalog class’s Tables collection.

Collections of Objects 321

Sound confusing? Don’t worry. If you're interested only in creating your own
collections of objects using VBA, you’ll need to know about only three methods
and one property:

The Add method Adds objects to a collection. You pass a pointer to the
object and an optional unique identifier as parameters.

The Remove method Removes objects from a collection. You pass an
object’s unique identifier (or position in the collection) as a parameter.

The Item method References a particular object in a collection and returns a
pointer to it. You pass an object’s unique identifier (or position in the collection)
as a parameter.

The Count property Returns the number of objects in the collection.

We'll revisit these in the section “Creating Your Own Collections” later in this
chapter.

Manipulating Objects in a Collection

Once an object is in a collection, you manipulate its properties and methods directly
by referring to its place in the collection using either a unique identifier (or key) or
its numeric position. An earlier example in this chapter demonstrated this tech-
nique using the Visible property of an Excel worksheet. You can also capture a
pointer to the object in a variable. For example:

Dim wks As Worksheet
Set wks = ActiveWorkbook.WorkSheets(1)

Both techniques have been available in Microsoft Basic since the introduction of
its object-oriented features. VBA added two new ways to work with objects and
collections. The first, the With statement, is not limited to collections, but it can
make working with complex object models much easier. The With statement lets
you specify an object and then work with that object’s properties or methods simply
by starting each line with the dot separator character. Consider the following
example from Microsoft Excel:

With Workbooks("BOOK1.XLS"). _
Worksheets("Sheetl").ChartObjects("Chartl").Chart
.Rotation = 180
.Elevation = 30
.HaslLegend = True
End With

322

Chapter 6 e Advanced Class Module Techniques

This method of referring to the Chart object embedded on Sheetl of BOOK1.XLS
is certainly easier, not to mention faster, than repeating the collection syntax over
and over!

Another VBA feature specific to collections is the For Each loop. Like a regular
For loop, a For Each loop uses a “counter” variable to iterate through a series of
values. However, each value in the series is a pointer to an object in a collection.
To use a For Each loop, you first declare a variable of the appropriate object type.
You then use it in the For Each statement, along with a reference to the collection
you want to loop through. During each iteration of the loop, the variable is reset to
point to successive objects in the collection. For example, to display all the work-
sheets in an Excel workbook, you could use code like this:

Dim wksEach As Worksheet

For Each wksEach In ActiveWorkbook.Worksheets
wksEach.Visible = True

Next

You can use both of these constructs with collections you create using VBA’s Col-
lection class.

Creating Your Own Collections

VBA allows you to create your own collections using a special Collection class. An
instance of the VBA Collection class contains pointers to other objects.

Instantiating a Collection and Adding Objects

To use the VBA Collection class, you must create a new instance of it in your VBA
code. For example:

Dim SomeObjects As Collection

Set SomeObjects = New Collection

You can then add objects to the collection using the object’s Add method. Assum-
ing the variable objSomething contained a pointer to an object, you could use a
statement like this:

SomeObjects.Add objSomething

However, when you add an object to a collection in this manner, the only way to
refer back to it is by its position in the collection. Typically, you don’t want to rely

Collections of Objects 323

on an object’s position; it might change as other objects are added or removed.
Instead, specify an alphanumeric key as the second parameter to the Add method:

SomeObjects.Add objSomething, "Objectl"

Once you've done this, you can refer to the object later by either its position or
the unique key:
Set objSomething = SomeObjects(1l)
" or
Set objSomething

SomeObjects("Objectl")

Selecting unique key values for objects can be tricky. For more information, see
the section “Setting Unique Object Keys” later in this chapter.

NOTE

Collections created using VBA's Collection object are one based, and there is no
way to change this. The first object added is object 1, the second is object 2, and
so on. As objects are removed from the middle of the collection, higher numbers
are adjusted downward to maintain continuity. You can also add objects to a
collection at a specific point by specifying either the optional before or after
parameters of the Add method. (See online help for more information.) It is for
these reasons that you should not depend on an object’s position in a collection.

You can represent one-to-many relationships in your object model by creating a
collection as a property of an object class. For example, suppose the SomeObjects col-
lection in the previous example was declared as a Public variable of a class called
Application. To add an object to the collection, you would use a statement like this
(assuming objApp contained a pointer to an instance of Application):

objApp.SomeObjects.Add objSomething, "Objectl"

Likewise, referring back to the object would require you to include a reference to
the parent class:

Set objSomething = objApp.SomeObjects("Objectl")

While simple to implement, this approach does have its drawbacks. To find out
what these are, as well as how to overcome them, see the section “Creating a Col-
lection Class” a little later in this chapter.

324

Chapter 6 e Advanced Class Module Techniques

Collections and Pointer Lifetime

It’s important to note that adding an object to a collection creates a new pointer to
the object. The new pointer is stored as part of the collection. Consider the follow-
ing code fragment:

Dim objSomething As SomeObject
Dim colObjects As Collection

' Instantiate the collection
Set colObjects = New Collection

' Create a new object and add it to the collection
Set objSomething = New SomeObject
colObjects.Add objSomething

' Destroy the object pointer
Set objSomething = Nothing

What happens to the new instance of SomeObject after the objSomething pointer
is set to Nothing? The answer is nothing. Even though the code explicitly destroyed
the pointer contained in objSomething, an implicit pointer exists as part of the
colObjects collection. Therefore, the new object instance is not terminated until it
is removed from the collection.

Also, pay attention to where you declare the Collection object variable. As a
variable, it obeys VBA’s rules concerning scope and lifetime. For instance, if you
declare a Collection object variable in the body of a procedure, it will disappear
when the procedure terminates, destroying all the object pointers it contains! Typ-
ically, collections are declared as module or global variables if they’re needed else-
where in a program.

TIP

You can use this behavior to your advantage. Suppose you wanted to clear out a
collection by destroying all the object pointers it contained. You could loop
through each object and remove it individually from the collection, but an easier
approach would be to set the Collection variable to Nothing.

Creating a Collection Class

VBA makes it simple to create your own collections using the Collection object.
The Collection object does have one serious drawback, however: There is no way

Collections of Objects 325

to limit the type of objects placed into a VBA collection. Traditionally, collections
contain similar objects, but you can place pointers to any object type in a VBA col-
lection. Unless you are extremely careful, this could lead to problems, especially
in large development projects where you might have many people working on the
same source code.

To demonstrate the potential for problems, consider this example, which refers
to an object’s properties or methods using collection syntax:

SomeObjects(1l).Amount = 10

But what happens if the object represented by SomeObjects(1) doesn’t have an
Amount property? VBA generates a run-time error. To control the type of objects
placed into a collection, you must create a collection class.

A collection class is a VBA class that defines a Private Collection object and
implements methods to add, remove, retrieve, and count objects in the collection.
Since the Collection object is Private, you don’t have to worry about external pro-
cedures cluttering it up with invalid object pointers. Using a class also gives you
the ability to create custom replacements for the standard Add, Remove, and Item
methods.

Normally, you create two classes to represent a collection of objects in this man-
ner. One defines the object that will be contained in the collection, and the other
defines the collection itself.

To demonstrate this, we've created a new version of the TextFile class intro-
duced in Chapter 5, called TextFile2. Rather than reading one line of text at a time,
the TextFile2 class implements a collection containing all the lines in a file and
reads them all in at one time. Listing 6.2 shows the module that defines the Line
class, which represents a single line of text.

Listing 6.2: The Line Class Module
Option Explicit

" Private variables for Tine of text
Private mstrText As String

' Private ID variable
Private mstrID As String

326

Chapter 6 e Advanced Class Module Techniques

' Public variable for changed flag
Pub1ic Changed As Boolean

Property Get Text() As String
' Return value of private variable
Text = mstrText

End Property

Property Let Text(ByVal strText As String)
' Change private variable and set changed flag
mstrText = strText
Me.Changed = True

End Property

Property Get Length() As Long
' Use Len function to return string length
Length = Len(mstrText)

End Property

Property Get ID() As String
' Return value of private variable
ID = mstrID

End Property

Private Sub Class_Initialize()
' Set the object's ID property to a random string
mstrID = TypeName(Me) & CLng(Rnd * (2 ~ 31))

End Sub

Listing 6.3 shows the module code for the Lines collection class. Note the Pri-
vate Collection object in the module’s declarations section. Note also the Add,
Remove, and Item methods implemented as Public procedures, and the Count
Property Get procedure.

TIP

The code in Listing 6.3 also implements a Changed property that indicates whether
any of the lines in the collection have been modified. This illustrates another
reason for using collection classes: You can create custom properties and methods
of your collection, something not possible with standard VBA Collection objects.

Collections of Objects 327

Listing 6.3: The Lines Collection Class Module
Option Explicit

' Private collection to store Lines
Private mcolLines As Collection

Private Sub Class_Initialize()
" Initialize the collection
Set mcolLines = New Collection
End Sub

PubTic Sub Add(Byval strText As String, _
Optional ByVal varBefore As Variant)

' Declare new Line object
Dim objLine As New Line

' Set Text property to passed string

objLine.Text = strText

" Add to private collection, using object's

' ID property as unique index

mcolLines.Add objLine, objLine.ID, varBefore
End Sub

Public Sub Remove(ByVal varID As Variant)
' Call Remove method of private collection object
mcolLines.Remove varID

End Sub

Public Function Item(ByVal varID As Variant) As Line
' Set return value of property to item within
' the private collection object specified by
' the passed index value (Note the return type!)
Set Item = mcolLines.Item(varID)

End Function

Property Get Count() As Long
' Return Count property of private collection
Count = mcolLines.Count

End Property

328

Chapter 6 e Advanced Class Module Techniques

Property Let Changed(ByVal fChanged As Boolean)
Dim objLine As Line

' Set Changed property of each Line to value
For Each objLine In mcollLines
objLine.Changed = fChanged
Next
End Property

Property Get Changed() As Boolean
Dim objLine As Line
" Loop through all Line objects in collection--
" if any Changed property is True then the
' Changed property of the collection is True
For Each objLine In mcollLines
If objLine.Changed Then
Changed = True
Exit For
End If
Next
End Property

NOTE

For simplicity, we've omitted error-handling code from our examples. You should
add error handling to your own procedures to catch possible errors, such as calling
the Item method with a key value that doesn’t exist.

Implementing the Remove method and the Count property in our custom col-
lection class is straightforward. They are simple wrappers around the Collection
class’s method and property. However, our Add method is a bit more complex.
Rather than being a simple wrapper, it has been declared to accept a string param-
eter representing a line of text and, optionally, an index of an existing Line object
before which to insert the new line. After creating a new instance of the Line class,
the code sets the Line’s Text property to the string passed to the Add method and
then adds the object to the Private Collection object, using the new Line’s ID prop-
erty as the unique index.

This is where the magic protection of the collection class comes into play. Since
the Add method has strong type parameters, only specific data can be used to
create the Line object. When accessing the collection, you can now be sure it con-
tains nothing but valid Lines.

Collections of Objects 329

Lastly, the Item method returns a particular object from the collection using an
index passed to it.

NOTE

The arguments to the Item and Add methods that represent an object’s index are
declared as variants. This is necessary because the index could be either an
object’s unique alphanumeric identifier or its ordinal position in the collection.

Using a Collection Class

Using a collection class is similar to using any object class. You create a new instance
of it and then manipulate its properties and methods. In the case of our Lines class,
we’ve declared a new instance of it in the declarations section of the TextFile2 class
module. We made this a Private declaration and added a Property Get method to
return a reference to it:

Private mobjLines As Lines

Property Get Lines() As Lines
Set Lines = mobjLines
End Property

We can then use the properties and methods of the class to add new instances of
Line objects to the collection as the code reads each line of text from the file. List-
ing 6.4 shows a portion of the FileOpen method of the class. After reading a line of
text into the local variable strLine, the code adds a new object to the Lines collection.

Listing 6.4: Add Lines of Text from a File to a Collection

Dim strLine As String
' ... other statements to open file

' Read all Tines into the Lines collection
Set mobjLines = New Lines
If LOF(mhFile) > 0 Then
Do Until EOF(mhFile)
Line Input #mhFile, strLine
Me.Lines.Add strLine
Loop
End If

330 Chapter 6 ¢ Advanced Class Module Techniques

Once the collection of lines has been established, printing each one becomes
trivial. You simply loop through each element in the collection. Listing 6.5 demon-
strates this.

NOTE You can find the sample code in the TestTF2 procedure in basTest. The procedure

reads in a text file (AUTOEXEC.BAT), strips out all blank lines, and saves the file.

Listing 6.5: Use the Collection to Print Each Line

Dim cLines As Long
' Assume objFile is an open TextFile2 object
For cLines = 1 To objFile.Lines.Count

Debug.Print objFile.Lines.Item(cLines).Text
Next

WARNING e our example shows a loop that simply accesses each element of the collec-

tion using the Item method, be careful when using the Remove method inside a
loop. If you use a For loop, as we do in our examples, you will encounter a run-
time error as the loop reaches its halfway point. That's because, as you remove
items from the collection, the initial Count property value is no longer valid. To
remedy this problem, loop backward from the initial Count to 1.

The Downside to Collection Classes

While collection classes give you an added level of safety and flexibility, there is a
downside to using them. This is because, by default, VBA treats your class as a
normal object, not a collection, resulting in the loss of two very handy collection
operators.

First, with true collections, you normally don’t need to specify the Item method
when referring to objects within the collection. That’s because Item is a collection’s
default member. For example, using VBA with Microsoft Excel, the following two
statements are equivalent:

Debug.Print Workbooks.Item(1).Name
Debug.Print Workbooks(1).Name

Collections of Objects 331

However, when using a collection class, you must always specify the Iltem method
because, by default, no property or method is marked as the default member.

NOTE

In the C++ world of COM, a class’s default member is the one listed first in the
vtable or with its dispid set to 0.

The second feature that will not work with collection classes is the For Each loop
because VBA can’t find a special enumeration method that a collection class must
implement. If you wish to enumerate all the objects in your collection, you must
use a standard For loop with a numeric variable. Use the Count property to deter-
mine the number of objects in the collection, and loop from 1 to this number.

If you want to support these features with your collections, you need to do a lit-
tle more work. How much work depends on whether you're using Visual Basic or
the VBA IDE. Later in the chapter, we explain what you need to do in the section
“Collection Class Tricks.”

Setting Unique Object Keys

Having said earlier that you should set a unique key for objects added to collec-
tions, we should point out that it is not always intuitive or easy to do this. First, an
object’s key cannot be numeric, making the generation of arbitrary, incrementing
keys cumbersome. Second, once you set the key value, you cannot change it.
Doing so requires destruction of the object.

Ideally, you would want to use a property of the object being added. For exam-
ple, the unique key for Excel Worksheet objects is the name of the worksheet. Intu-
itive, is it not? Unfortunately, you cannot mimic this feature in VBA without
writing some code because the name of the object might change. If your object has
a property that will not change, great—use that. Otherwise, you have two options.
The first and easiest option is to create an arbitrary property of objects added to
collections (for example, one called ID) to hold the unique key. Set the value of
this property to a random value during the Initialize event of the class. For exam-
ple, this code fragment sets the value of a Private variable to a random alphanu-
meric value:

Private Sub Class_Initialize()
' Set the object's ID property to a random string
mstrID = TypeName(Me) & CLng(Rnd * (2 ~ 31))

End Sub

332

Chapter 6 e Advanced Class Module Techniques

TIP

We use the TypeName function, passing in an instance of the class, to return the
class name. Therefore, in this example taken from the sample Line class, the ID
property would be set to something like “Line521448990". Using TypeName instead
of hard-coding the class name makes the code very portable to other classes.

By setting this value in the Initialize event, you ensure that it will always have a
value, since Initialize is always triggered when an instance of the class is created.
You can then use the value as the object’s unique index in a collection. Consider
the code shown in Listing 6.6. A new instance of the Line class is created and then
added to a collection named mcolLines. The new ID property of the Line property
is used as the unique key.

Listing 6.6: Use an Object's Unique ID Property as a Collection Key

Public Sub Add(Byval strText As String, _
Optional ByVal varBefore As Variant)

' Declare new Line object
Dim objLine As New Line

' Set Text property to passed string
objLine.Text = strText

' Add to private collection, using object's

' ID property as unique index

mcolLines.Add objLine, objLine.ID, varBefore
End Sub

The second and more complicated approach is to build on the first method by
allowing referencing by name by doing a search inside the Item method. Consider
the code shown in Listing 6.7. It iterates through the Lines collection looking for
one where the Name property matches the text that is passed in. If the procedure
finds a match, it returns the object to the calling function. (Of course, this is a con-
trived example because our Line class doesn’t have a Name property, but you
should be able to apply the concept to other collection classes that you create.)

Collections of Objects 333

Listing 6.7: Allowing Item Referencing by Name

Public Function Item(ByVal varNameOrID As Variant) As Line
Dim objLine As Line
Dim cLine as Long

" If text was passed in try to find the object by it's name
If Not IsNumeric(varNameOrID) Then
For cLine = 1 To mcolLines.Count
If mcolLines.Item(cLine).Name = varNameOrID Then
Set Item = mcolLines.Item(cLine)
Goto ExitHere
End If
Next
End If

" If we reached this point we haven't found it so
" try by index or ID
Set Item = mcollLines.Item(varNameOrID)

ExitHere:

End Function

If no match is found, the method simply reverts to its normal behavior, using
the numeric position in the collection or unique ID property to return an object.
While this approach requires more code and may be a bit less efficient with large
collections, it does give you the flexibility of referencing objects in collections by
an updateable property like Name.

Collection Class Tricks

If you're going to go to the trouble of creating a collection class, you’ll probably
want it to work like other collections. Making it do so requires a little extra work
to define a default Item function and enumeration method. This section explains
how to do that.

TIP

Default methods or properties are not only useful for collection classes but for
other classes, as well. Typically, the most commonly used property or method
(such as Name, Value, and so on) is a good candidate for the default. Follow the
steps in the next section to create them in your classes.

334 Chapter 6 ¢ Advanced Class Module Techniques

Specifying Default Members

Specifying a class’s default member requires you to set a procedure attribute that
has special meaning to VBA. If you use VB, you can do this simply by opening a
dialog box and making a few selections. In the VBA IDE, it takes a little more
effort. We'll discuss VB first and then show you the workaround for VBA.

The Visual Basic IDE features a Procedure Attributes dialog that contains all the
settings you need to create a default member or enumeration method. To access
the dialog box, select Procedure Attributes from the Tools menu, making sure the
module containing the procedure you want to modify is active. You should see a
dialog box like the one in Figure 6.2.

FIGURE 6.2
The Visual Basic Procedure
Attributes dialog box

You need to change the Procedure ID property. This field that is located in the
Advanced section of the dialog box. Click the Advanced button and you should
see the dialog box expand, as in Figure 6.3.

FIGURE 6.3
Advanced Procedure
Attributes

Collections of Objects 335

To create a default property or method, first make sure the name of the member
is selected in the Name drop-down list. Then select (Default) from the Procedure
ID combo box. When you click OK to commit your change and look at the class
module in the Object Browser, you should see a little blue marble next to the mem-
ber name, indicating that it's the default one. Figure 6.4 shows the Lines class.
Note that the Item method is listed as the default member both in the Members list
and in the description at the bottom of the dialog box.

FIGURE 6.4
Viewing the default
member using the
Object Browser

Setting Procedure Attributes in VBA

For some reason, Microsoft chose not to include the Procedure Attributes dialog in
the latest version of the VBA IDE, even though VBA will recognize these attributes
if they exist. How do you get VBA to recognize them? The only way we’ve found
is to import a module containing the attribute information along with the source
code. There are two options for doing this, either by importing the module into
Visual Basic and using its Procedure Attributes dialog or by making the changes
manually.

In either case, you must start by exporting and removing the module from your
VBA project. The simplest way to do this is by selecting the module in the Project
Explorer window and choosing the File » Remove menu command. When asked

336 Chapter 6 ¢ Advanced Class Module Techniques

whether you want to save the file before removing it, choose Yes (if you choose
No, you'll lose all your code) and then provide a filename using the subsequent
dialog.

NOTE If you export the file and don’t remove it from the project, you'll get a duplicate

module when you re-import it. So be sure to remove the module as, or after, you
export it.

Once you've exported the module from the VBA project, if you have a copy of
VB, just open the module in the VB IDE by double-clicking the .CLS file in Win-
dows Explorer. (Or you can add it to an open project by choosing the Project >
Add File menu command.) You can now use the Procedure Attributes dialog dis-
cussed in the last section. Once you've set the Procedure ID property, save the file
and re-import it back into your VBA project. It’s not pretty, but it works.

If you don’t have a copy of VB, you'll have to make the changes to the exported
file manually. Open it in a text editor, like Notepad, and find the method you're
interested in (Item in our example). Just after the procedure declaration, add a line
of text like the one highlighted here:

Public Function Item()
Attribute Item.VB_UserMemId = 0

' Other code here...

End Function

Make sure that the name of the procedure appears in the Attribute statement
and that the attribute value is set to zero. Now, just re-import as before, and VBA
will accept the procedure as the default. Perhaps in a future version of the VBA IDE,
Microsoft will include the Procedure Attributes dialog, and you’ll no longer have
to jump through these hoops.

WARNING you're using VBA in Access 2000, make sure you import the module using the

VBA IDE, not Access's Import dialog. Otherwise, the attribute won't be recognized.

Collections of Objects 337

Creating Enumeration Methods

You create an enumeration method in much the same manner, but you must first
start by writing code for the method itself. The method must conform to a specific
interface that forwards the method call on to the underlying VBA Collection class
instance.

TIP

You may find it helpful when writing this code to turn on display of hidden class
members in the Object Browser and IntelliSense features. To do this, open the
Object Browser, right-click in its window, and select Show Hidden Members from
the pop-up menu. Hidden class members are displayed in lists using light gray text.

An enumeration method is a special function implemented by VBA’s Collection
class, called _NewEnum (note the underscore). The function is marked with a Pro-
cedure ID of —4. You need to create a wrapper function for _NewEnum. Listing 6.8
shows the function we’ve created for the Lines class. When creating enumeration
methods for your own class, you should copy this function exactly as it’s shown
here; the only change you must make is the name of the Collection variable (mcol-
Lines in our case).

Listing 6.8: Enumeration Method for the Lines Class

Public Function NewEnum() As IUnknown
" Pass call to Collection's enumeration function
Set NewEnum = mcolLines.[_NewEnum]

End Function

You'll notice two unique aspects of the function. First, the return type is declared
using the COM data type IUnknown. This is the class from which all other COM
classes are derived, and it enables the function to return any type of object. Sec-
ond, the method call to _NewEnum is enclosed in square brackets. This is neces-
sary because an underscore is not a valid initial character for names in VBA. The
editor adds the brackets automatically when you use the IntelliSense features. Fig-
ure 6.5 shows an example of selecting _NewEnum from a pop-up list of methods.

NOTE

You'll only see the _NewEnum method if hidden members are visible.

338 Chapter 6 ¢ Advanced Class Module Techniques

FIGURE 6.5

- ; 4, ADVCLASS.XLS - Lines (Code) > _1a x|
Selecting the hidden
Ill’;enenl} l] IIIewEn:lm :J
_NewEnum method ___f
-

! Privete collection to Store Lines

Private mcolLines As Collection

Public Function MewEnum() As IUnknown

' Pass call to Collection's enumeration function

Het WNewEnum = mcolLines.I
End Function

3 tem
& NewEnum
“» Remaove

= S . L 977

The last step is to mark this as an enumeration method by setting its Procedure ID to
—4. It’s this attribute, not the name of the procedure, that enables VBA to use it with
For Each loops. In fact, the name of the VBA procedure is completely irrelevant.

Follow the steps outlined in the previous section to set the Procedure ID attribute.
That is, for VBA, export the module, add the attribute, and re-import the module
back into your VBA project. Note that if you use the VB IDE and Procedure
Attributes dialog, there is no entry in the drop-down list for enumeration. You'll
have to type —4 in the combo box yourself. Alternatively, if you make manual
changes to the .CLS file, you should add an Attribute line to the procedure with a
value of —4, as in this example:

Public Function NewEnum() As IUnknown

Attribute NewEnum.VB_UserMemId = -4
' Pass call to Collection's enumeration function
Set NewEnum = mcolLines.[_NewEnum]

End Function

You should now be able to use your custom collection class just like you would
use VBA’s built-in Collection class. If you examine the sample Lines class in the
Object Browser, you'll see that we’ve already done this.

WARNING pocequre attributes may be discarded by VBA if you move, edit, or rename proce-

dures. For this reason, we recommend setting these attributes as the final step in
designing the procedures.

Creating and Using Custom Events 339

NOTE While we've set the attributes on the Lines collection class, we have not used the
default tem method or For Each loops in our sample testing code (for the reason
described previously). If you'd like to test these functions, try editing the TestTF2
procedure in basTest to use For Each loops instead of For Next loops.

Creating and Using Custom Events

We'’ve spent the bulk of this chapter (as well as Chapter 5) discussing how to create
properties and methods for your custom classes. It’s now time to discuss another
very powerful feature of VBA—custom events. Events are so powerful because
they provide a way for you to extend your classes, opening them to other develop-
ers. For example, before writing a line of text to a file using our TextFile2 class, we
could raise an event that said, conceptually, “I'm about to write this line of test to
the file. Do you want to do anything with it first?” Furthermore, events provide a
way for you to separate the data and user interface components of an application.
Data components raise events that user interface components respond to. In this
way, it’s easy to replace one user interface implementation with another because
no Ul logic is contained in the data class. This section explains how to declare,
raise, and respond to custom events using three relatively new VBA keywords:
Event, RaiseEvent, and WithEvents.

Defining Custom Events

The first thing you'll need to do is decide on what events your class will support
and declare them in the class module’s declarations section using the Event key-
word. You declare events in a manner similar to procedures, providing a name
and parameters, if any. For the purposes of demonstration, we’ve created another
version of the TextFile class, TextFile3, which declares a number of events. Here’s
the applicable code from TextFile3’s declarations section:

' Event declarations

Public Event ReadLine(ByVal Text As String)

Public Event WriteLine(Text As String, Skip As Boolean)
Public Event AfterOpen()

Public Event BeforeClose(Cancel As Boolean)

340 Chapter 6 ¢ Advanced Class Module Techniques

Note that all events are declared as Public. Even though this is the only level of
scope for class modules, we’ve included the Public keyword for clarity. You can-
not create Private events. Table 6.2 describes the purpose of each event.

TABLE 6.2: EventsSupported by the TextFile3 Class

Event Description

ReadLline Raised when a line of text is read and before adding it to the Lines collection. The
Text argument contains the text and can be changed by the event listener.

WriteLine Raised before a line of text is written to a file. The Text argument contains the text
and can be changed by the event listener. If the Skip argument is set to True, the
line is skipped and not written to the file.

AfterOpen Raised after a file has been opened and all the lines have been read into the Lines
collection.

BeforeClose Raised before a file is closed. If the Cancel argument is set to True, the file is not
closed.

Declaring events using the Event keyword is only the first step in creating events.
It only defines what events a class has, not when each is raised. For that, you need
to use the RaiseEvent keyword described in the next section.

Raising an Event

To raise an event, you use the RaiseEvent keyword at the point in your code where
you want the event to happen. While you declare an event once using the Event
keyword in a class module’s declaration section, you can use RaiseEvent as many
times as you need to in the class’s functions and subroutines. As an example, List-
ing 6.9 shows a portion of TextFile3’s FileOpen method. Note that the ReadLine
event is raised as each line of text is read, and the AfterOpen event is raised after
all lines have been read.

Listing 6.9: Raising Events when a File Is Opened

' Read all 1ines into the Lines collection
Set Lines = New Lines
If LOF(mhFiTe) > 0 Then
Do Until EOF(mhFile)
Line Input #mhFile, strLine

Creating and Using Custom Events 341

' Raise ReadlLine event
RaiseEvent ReadLine(strLine)

Me.Lines.Add strLine
Loop
End If

' Reset the changed property of all Tines
Me.Lines.Changed = False

" Fire event
RaiseEvent AfterOpen

Using RaiseEvent to trigger custom events is similar to using the Call keyword
to execute a procedure. You include the event name and any event parameters in
parentheses.

Furthermore, just like VBA procedures, unless you declare an argument using
the ByVal keyword, VBA passes the argument to the event listener by reference.
This means the listener can change its value, and your code will see the change.
That’s why it’s important to pass a variable, rather than a literal value. For instance,
the ReadLine event passed a string variable, strLine, that contains the line of text
just read. The event listener is given the opportunity to change the value before
it’s added to the Lines collection. Another example is the WriteLine event raised
in the FileSave method, a portion of which is shown in Listing 6.10.

Listing 6.10: Raising an Event before Saving a Line of Text

" Write Lines collection to new file
hFile = FreeFile
Open strPath For Output Access Write As hFile
For cLine = 1 To Me.Lines.Count
strText = Me.Lines.Item(cLine).Text

' Raise WritelLine event
fSkip = False
RaiseEvent WriteLine(strText, fSkip)

If Not fSkip Then
Print #hFile, strText
End If
Next
Close hFile

342

Chapter 6 e Advanced Class Module Techniques

In the case of WriteLine, we declared a Boolean variable, {Skip, which we reset
to False each time through the For Next loop. After raising the event, we check the
variable’s value, and only if it’s still False do we write the line of text to the file.

So how do you create something that “listens” to your events and responds to
them? For that, you need one more keyword, WithEvents, which is described in
the next section.

Responding to Events

The final piece of the event puzzle is creating an event procedure that can listen to
events generated by an object. Doing this is simple. All you need to do is modify a
normal object variable declaration by adding the WithEvents keyword. There is a
catch, though. You can only use WithEvents with variables declared at the mod-
ule level and only within class modules. The reason for this is that VBA uses COM
to supply your project with events, and COM requires that both event generators
and event listeners be objects, thus the need for class modules.

We've included a class module in the sample project called TestEvents that
establishes an event hook for the TextFile3 class. Here’s the declaration that tells
VBA to hook into TextFile3’s events:

" WithEvents declaration to establish event hook
Private WithEvents mobjFile As TextFile3

It looks just like a regular variable declaration except for the addition of the With-
Events keyword. Once you add this keyword to a declaration, the object (mobj-
File, in this case) exposes its events through the standard VBA mechanism: event
procedures. Figure 6.6 shows the Module window for TestEvents. Notice that
mobijFile is displayed in the object list, and all of its events are listed in the proce-
dure drop-down list.

FIGURE 6.6 _ioix]

Selecting event procedures
for a custom class

ImohiFi{e ~| |Readline =|
[flerCpen
[BeforeCloze

Oprion Explicic

NichEvencs declaracion to est fteling
Private WithBvents mobiFile s TEXEFiles

Private Jub mobjFile Resdline (ByVal Text As Scring)

End Sub

Creating and Using Custom Events 343

To respond to an event, simply select it from the list and write some code in the
event procedure that VBA generates. For example, TestEvents responds to the
ReadLine event by writing the line of text to the Immediate window. This is
shown in Listing 6.11, along with the rest of the code in the module.

NOTE Notice that, as with any other object that exposes events, the event procedure is
named using the object name, an underscore, and the event name (i.e., mobijFile_
ReadLine).

Listing 6.11: Code from the TestEvents Class

Private Sub Class_Initialize()
" Create a new instance of TextFile3 and open a file
Set mobjFile = New TextFile3
mobjFile.Path = "C:\AUTOEXEC.BAT"
mobjFile.FileOpen
End Sub

Private Sub Class_Terminate()
" Close the file
If mobjFile.IsOpen Then
mobjFile.FileClose
End If

' Destroy the object pointer
Set mobjFile = Nothing
End Sub

Private Sub mobjFile_ReadLine(ByVal Text As String)
" Write the text to the immediate window
Debug.Print Text

End Sub

Of course, nothing is going to happen until a new instance of the TextFile3 class
is created. That’s what the code in TestEvents’ Initialize event does. You can see
this in Listing 6.11.

Finally, there’s one last thing to do—instantiate the TestEvents class. We accom-
plish this using a procedure in basTest, as shown in Listing 6.12.

344 Chapter 6 ¢ Advanced Class Module Techniques

Listing 6.12: Instantiating the TestEvents Class

Sub TestFileEvents()

Dim objEvents As TestEvents

' Create new instance--this will open a file
Set objEvents = New TestEvents

" We're all done so just destroy the pointer
Set objEvents = Nothing

End Sub

When you run the procedure, you should see the contents of AUTOEXEC.BAT
printed in the Immediate window. Why is there seemingly so little code in the
TestFileEvents procedure? Because most of the work is done in TestEvents and
TextFile3. If you step through the code, you can see this happen. Code execution
follows this path:

1.
2.

10.

Code in TestFileEvents creates a new instance of TestEvents (objEvents).

Code in TestEvents Initialize event creates a new instance of TextFile3
(mobijFile), sets its Path property, and calls its FileOpen method.

Code in the FileOpen method reads a line of text and fires the ReadLine
event.

TestEvents is “listening” to this event and calls the event procedure
mobjFile_ReadLine.

Code in the event procedure writes the line of text (stored in the Text param-
eter) to the Immediate window.

Steps 3 through 5 repeat until every line of text is read, at which point con-
trol returns to TestEvents Initialize event.

There’s nothing left to do in the Initialize event, so control returns to Test-
FileEvents.

Code in TestFileEvents destroys the pointer to objEvents by setting it equal
to Nothing.

This triggers the Terminate event, which closes the file and destroys the
mobjFile object pointer.

Finally, control returns to TestFileEvents, and the procedure terminates.

Creating and Using Custom Events 345

If this seems like a complex process, it is, but one that’s easily understood after
you study it for a while. We can represent the process graphically using the illus-
tration in Figure 6.7.

FIGURE 6.7
A graphical look at how Private WithEvents mobjFile _
WithEvents works As TextFile3

v

basTest Module TestEvents Class | 2 pointer
to object

objEvents mobijFile FileOpen method
="l | ="]
—>=| mobjFile_ReadLine [=€

1. Pointer to class module I I 3. Object events trigger

procedures in class

module.
Sub mobjFile_ReadLine(_
Text As String)

TextFile3 Class

End Sub

Once you've declared a variable using WithEvents and written code to respond
to event procedures, you must “give life” to the class by instantiating it. Our sam-
ple code does this using a variable called objEvents, which, in turn, creates and
holds a pointer to the TextFile3 class in mobjFile. The entire structure is now “live,”
and any events generated by the FileOpen method will be captured by code in
TestEvents.

Using Forms with WithEvents

If you plan on hooking up events to your user interface using forms in Visual
Basic, VBA, or Access, the process is a little simpler. That’s because form modules
are class modules and are instantiated automatically when you open the form. In
this case, you don’t need to create and instantiate an additional class in order to
respond to events. We’ve demonstrated this by creating a simple form that dis-
plays the contents of a text file (see Figure 6.8).

346 Chapter 6 ¢ Advanced Class Module Techniques

FIGURE 6.8 x
A form that uses Hie:] EATOEYEE BT - :
WithEvents to display gl C: ' [Open |
file contents @ECHO OFF

REM C:\WINDOWS\COMMAND\MSCDEX.EXE /D:TO
PATH=C:\Windows;C!\Windows\System;C:\PROGR#
SET INOCULAN=C:\PROGRA~1\CHEYENNE\ANTIVL

C:\PROGRA~1\CHEYENNE\ANTIVI~1\EXAMINE, EXE
PATH=Y%PATHY%;

The form’s class module takes the place of the TestEvents class in the previous
example. That means the WithEvents declaration and event procedures appear in
the form’s module. Listing 6.13 shows the code in frmEvents.

Listing 6.13: Event-Handling Code in frmEvents
Option Explicit

" WithEvents declaration to establish event hook
Private WithEvents mobjFile As TextFile3

Private Sub cmdOpen_Click()
' Reinitialize the class instance
Set mobjFile = New TextFile3

" Clear the 1ist box
Me.lstLines.Clear

' Open the file
mobjFile.Path = Me.txtFile.Text
mobjFile.FileOpen

' Destroy the pointer
Set mobjFile = Nothing
End Sub

Interface Classes and the Implements Keyword 347

Private Sub mobjFile_ReadlLine(ByVal Text As String)
" Add the Tine to the Tist
Me.lstlLines.AddItem Text

End Sub

This code should look very familiar because it’s nearly identical to the code in
TestEvents. If you set a breakpoint in the cmdOpen_Click procedure and run the
form, you can step through the code and see how it works.

Custom Events Caveats

The capability to create custom events is a powerful one, but it does have its draw-
backs. The most significant (although it’s not often a problem in practice) is that a
class raising event is at the mercy of those objects responding to events, in the
sense that it must wait until those objects finish before continuing code execution.
If one of the responding objects causes execution to halt, say, by raising a dialog or
experiencing a run-time error, there is no way for the initial class to regain control.
Furthermore, there is no way for the class-generating events to know what other
objects are listening, a sometimes useful piece of information to have. Overcoming
these drawbacks requires using custom callback methods instead of events. We
explain callbacks in the next section as one use of interface inheritance and the
Implements keyword.

Interface Classes and the Implements
Keyword

In our discussion of using class modules throughout this chapter (and Chapter 5),
we’ve combined two concepts that are normally treated separately: interfaces and
implementations. An interface is simply a list of properties, methods, and events
supported by a given class. On the other hand, an implementation is the code that
makes up each of these and determines how a class actually works. VBA insulates
you from having to know the difference. When you create a class module, you cre-
ate its interface implicitly by writing code in Public procedures and by declaring
Public variables and events. In other words, you create its interface at the same
time as its implementation. C++ programmers treat these separately, creating at
least two separate source files for each class: an interface definition file (using
something called Interface Definition Language or IDL) and an implementation in

348

Chapter 6 e Advanced Class Module Techniques

the form of C++ source code and header files. Why is it important to know this?
Because VBA offers you a way to do the same thing, enabling some interesting
and powerful capabilities. But instead of creating IDL and source files, you must
create two different classes.

Interface Inheritance

An interface class takes the place of an IDL file and enables interface inheritance—the
ability for one class to inherit the interface defined by another. The interface class
contains only property, method, and event declarations. It does not contain any
source code. On the other hand, an implementation class contains all the code for a
given interface. So how does the implementation class know what interface to
inherit? You tell it which interface to inherit from by using the Implements key-
word in the class module’s declaration’s section.

After inheriting an interface, you must provide an implementation for each of
the interface’s properties and methods. These appear as Private procedures in the
implementation class in a way similar to WithEvents declarations. In addition to
providing implementations for the inherited interface, you can also add your own
methods and properties to the class, thus extending the implementation. You can
also have multiple levels of inheritance, for example, with class C inheriting from
class B, which inherits from class A.

What VBA does not provide in this version is implementation inheritance. As you
can probably guess, implementation inheritance enables you to use the implemen-
tation of an inherited class as the default implementation for any class that inher-
its from it. Only if you want to define a new implementation do you need to
override the default. This powerful feature of C++ and other object-oriented lan-
guages reduces the amount of extra implementation code you need to write when
inheriting from multiple classes. Perhaps in a future version, VBA will also sup-
port this functionality.

As we explore the examples in this section, the use and usefulness of interface
inheritance should become clear.

When to Inherit

At this point, you might be asking when interface inheritance is useful, especially
if you have to go to extra trouble to implement it. To understand the answer, you

Interface Classes and the Implements Keyword 349

need to keep in mind that an interface is like a contract. It defines the exact proper-
ties and methods a class must support (although it might define more) and thus
how a class can be communicated with and used. Therefore, anywhere you need
to enforce a communications contract between classes and you don’t control the
implementation, you can define an interface class to define the properties and
methods you expect. For example:

¢ Youneed to develop a procedure to operate on different types of tabular data
(for example, Word tables and Excel spreadsheets). You might define an inter-
face class to represent a common view of tabular data and different imple-
mentation classes that map different data types to the common interface.

¢ You need to develop a data manipulation component that updates an
unknown user interface with status information. You might define an inter-
face class that defines a set of status properties. Then, any user interface that
wants to be informed of status updates need only implement that interface.

We’ve chosen an example that illustrates the second scenario here, and we
describe it in the next section.

Interface Inheritance Example: Callbacks

To illustrate one use of interface inheritance, we’ve created another version of our
friend the TextFile class, this time replacing events with callback methods. You'll
recall from the last section that custom events have the drawback of halting the
event generator while the event listener deals with an event. An alternative is cus-
tom callback methods, where one class, TextFile4 in our case, calls methods in
another class rather than simply and blindly broadcasting events.

Defining the Interface

Because we're turning the event model described earlier on its head, we need to
define a custom interface that maps procedures to the events we created earlier in
the TextFile3 class. We’'ve done this in a VBA class module named ITextFileCall-
back, shown in Listing 6.14. Notice that it contains no code, only declarations.

NOTE

Traditionally, interface class names begin with a capital /.

350 Chapter 6 ¢ Advanced Class Module Techniques

Listing 6.14: The ITextFileCallback Interface Class

" Called when a 1line of text is read
Public Function ReadLine(Text As String) As Boolean

End Function

' Called before a 1line of text is written
Public Function WritelLine(Text As String) As Boolean

End Function

' Called after a file 1is opened
Public Sub AfterOpen()

End Sub

' Called before a file is closed
Public Function BeforeClose() As Boolean

End Function

The interface is roughly equivalent to the event structure defined in TextFile3,
except the “events” are modeled as functions and subroutines. Methods in TextFile4
will call these procedures using an object passed into the class instance by another
class module. Where appropriate, we’ve declared functions using Boolean return
values to hold a success indicator. We can now create any number of implementa-
tion classes that inherit from this interface to handle different kinds of display tasks.

Creating Implementation Classes

Remember that an interface is like a contract. Similar to contracts, you can use
interface classes with any number of “clients” to provide different implementa-
tions of the interface. We’ve created two classes: one that handles output to the
Immediate window (ImmWndCallback) and one that handles output to a list box
(ListBoxCallback). The first step in each case was to establish the correct inherit-
ance using the Implements keyword.

If you examine each class module, you'll see they both have the following line of
code in their declarations sections:

Implements ITextFileCallback

Interface Classes and the Implements Keyword 351

This tells VBA that the class will provide an implementation for all the proper-
ties and methods defined by the ITextFileCallback interface. Furthermore, as with
the WithEvents keyword, using Implements in a class module adds an entry to the
Object drop-down list that matches the specified interface. Selecting this entry
causes the IDE to list all the interface’s properties and methods in the Procedure
drop-down list. Figure 6.9 illustrates this.

Fi G u RE 6. 9, &, ADYCLASS.¥LS - ImmWndCallback (Code) = =0 x|
Selectlng an interface’s W :] IReadLine LI

properties and methods

Option Explicic

' ImmimdCallback class — an imp lemejgg

Implements ITextFileCallback
Private Function ITextFileCallback Readline {Text As String) As Boolean

End Function

== 267

Listing 6.15 shows the code in the InmWndCallback class module. Notice that
every method defined by ITextFileCallback is represented. If you don’t provide at
least a procedure stub for each interface member, VBA will generate an error. The
only method that really does anything useful is ITextFileCallback_ReadLine, which
writes a line of text to the Immediate window.

Listing 6.15: Code in the ImmWndCallback Class Module
Implements ITextFileCallback

Private Sub ITextFileCallback_AfterOpen()
" This method has no implementation
End Sub

Private Function ITextFileCallback_BeforeClose() As Boolean
" This method has no implementation--just return True
ITextFileCallback_BeforeClose = True

End Function

352

Chapter 6 e Advanced Class Module Techniques

Private Function ITextFileCallback_ReadLine(_
Text As String) As Boolean

" Write a line to the Immediate Window
Debug.Print Text

' Return success
ITextFileCalTlback_ReadLine = True
End Function

Private Function ITextFileCallback_WriteLine(_
Text As String) As Boolean

' This method has no implementation--just return True
ITextFileCallback_WriteLine = True
End Function

The other implementation class, ListBoxCallback, provides an alternative imple-
mentation for the interface, adding items to a list box instead of writing text to the
Immediate window. The code for ListBoxCallback is shown in Listing 6.16. You'll
also notice that it defines an additional property, a pointer to the list box control
used by the class to display items.

Listing 6.16: Code in the ListBoxCallback Class Module
Implements ITextFileCallback

' Property that determines what 1list box to write to
Public TargetList As MSForms.ListBox

Private Function ITextFileCallback_ReadLine(_
Text As String) As Boolean

' Add a Tline of text to the Tist
If Not TargetList Is Nothing Then
TargetList.AddItem Text

' Return success
ITextFileCallback_ReadLine = True
End If
End Function

Interface Classes and the Implements Keyword 353

Private Sub ITextFileCallback_AfterOpen()
' This method has no implementation
End Sub

Private Function ITextFileCallback_BeforeClose() As Boolean
' This method has no implementation--just return True
ITextFileCallback_BeforeClose = True

End Function

Private Function ITextFileCallback_WriteLine(_
Text As String) As Boolean

' This method has no implementation--just return True
ITextFileCallback_WritelLine = True
End Function

Using the Implementation Class

So far, we’ve shown you how to create an interface class and two implementation
classes that inherit from it. The next step is to modify the TextFile class to use the
implementation classes. In our scenario, we will replace the event code with calls
to methods of the callback classes. But, how do we tell VBA which class to use
since it could be either one? That’s where the magic of interface inheritance comes
in. Wherever you want to pass an instance of an implementation class, use a refer-
ence to the interface class instead.

In our example, the TextFile4 class implements a property called Callback,
which accepts a pointer to one of our callback classes, InmWndCallback or List-
BoxCallback. However, the property is defined using the interface class, ITextFile-
Callback. Here’s the property declaration, defined as a Public variable:

' Callback pointer
Public Callback As ITextFileCallback

In essence, this says that the Callback property can be set to an instance of the
ITextFileCallback or any class that inherits from it. That’s the power of interface
inheritance. Now, wherever we use the TextFile4 class, we need to instantiate one
of the callback classes and set it into the Callback property. For example, Listing 6.17
shows the code from frmImplements. In addition to declaring and using an instance
of TextFile4, the code also declares and uses an instance of ListBoxCallback.

354 Chapter 6 ¢ Advanced Class Module Techniques

TIP

You can use an interface class reference anywhere you can use a regular class,
including procedure arguments and object variables.

Listing 6.17. Code from frmimplements That Uses a Callback Class

Private Sub cmdOpen_Click()

Dim objFile As TextFile4
Dim objLBCallback As ListBoxCallback

" Initialize the text file class
Set objFile = New TextFile4

' Initialze and set up the callback class
Set objLBCallback = New ListBoxCallback
Set objLBCallback.TargetList = Me.lstLines

' Set TextFile4's callback object
Set objFile.Callback = objLBCallback

" Clear the 1ist box
Me.lstLines.Clear

' Open the file
objFile.Path = Me.txtFile.Text
objFile.FileOpen

' Destroy the pointer
Set objFile = Nothing

End Sub

Figure 6.10 illustrates how this mechanism works.

1.

Code in the form’s module creates a new instance of the TextFile4 class and
stores it in objFile.

Code in the form’s module then creates a new instance of the ListBoxCallback
class (that inherits from ITextFileCallback) and stores it in objLBCallback.

Code in the form’s module sets objFile’s Callback property to the instance of
the callback class it just created, objLBCallback.

Interface Classes and the Implements Keyword 355

4. Code in the form’s module calls objFile’s FileOpen method, and FileOpen
calls the ReadLine method in the callback object.

5. Finally, code in the callback object’s ReadLine method adds a new item to
the form’s list box.

FIGURE 6.10

Illustrating how our TextFile4 Class 4. Object calls procedures
callback mechanism works in callback.
| FileOpen method I
Callback property
Form Module '
1. Pointer 3. Form sets TextFiled’s

| obiFile I to object Callback property.
| objLBClass I

2. Pointer
to callback

Y

ListBoxCallback Class

> ReadLine method | €———
|

5. Callback adds items
to list box.

Implements L’
[TextFileCallback -

v

ListBoxCallback 7 i

ITextFileCallback Class

You'll probably find it helpful to step through the code to see the call chain as it
happens.

NOTE Don’t confuse our specific callback example with general interface inheritance

techniques. Creating multiple callback classes from a single interface class is just
one use of interface inheritance.

In summary, interface inheritance depends on creating an interface class that
defines a set of properties and methods. You then create one or more implementation

356 Chapter 6 ¢ Advanced Class Module Techniques

classes that provide code to go along with the definitions. You can even have mul-
tiple levels of inheritance to represent increasing levels of class complexity,
although you'll need to provide implementations at each level since VBA does not
yet support implementation inheritance.

So How Is This Better Than Custom Events?

In this section, we presented the callback example as an alternative to using custom events
implemented using Event, RaiseEvent, and WithEvents. So how is this better? As you'll
recall, the main problem with custom events is that the object generating event has no
control over the objects responding to events. Specifically, it has to wait until every event
listener is finished processing the event before code can continue executing. Furthermore,
it has no control over the order in which event listeners are processed.

With callback classes, the object calling back to all the other objects is in control. In can
choose if, when, and in what order to call back to the objects waiting for its “events.” In
truth, our example is very simple in that the TextFile4 class only makes a provision for a sin-
gle callback object. In practice, you'll likely want to implement a collection of callback
objects and call them each in turn for each event. You can even decide not to call back to
certain objects if they take too long to process or if you're just feeling feisty.

Other Advanced Considerations

We complete this chapter with a look at some additional considerations you
should be aware of when working with custom classes in VBA. While not critical
to custom class design, all of the following issues are worth knowing about as
more of your development shifts from traditional, procedural programming to
object-oriented implementation.

Error Handling in Classes

We have not discussed error handling in class modules in this chapter or Chapter
5 primarily to keep the examples simple and because, by now, most developers
understand the basics of the On Error statement. Class modules add just a bit of
extra complexity, and so it makes sense to mention them now.

Other Advanced Considerations 357

The main thing to keep in mind is that classes cannot exist on their own; they
need other code to instantiate and use them. Therefore, they should never display
error information on their own. They should always delegate this task to the code
that calls them. Trying to handle errors inside a class module and displaying a
dialog box directly also has the effect of irrevocably binding the class to a given
user interface implementation, something you should normally avoid. Of course,
if run-time errors occur, you can’t simply let them go unhandled or ignore them.
So, how do you deal with run-time errors in class modules?

Calling Err.Raise

The answer is to use the Raise method of VBA'’s Err object to propagate errors to
the calling procedure. This holds true for errors generated by VBA or custom
errors you create to denote certain failure conditions. In the first case, consider the
FileOpen method in the same text file classes. It includes an error handler that
traps run-time Error 62, which indicates that VBA has reached the end of the file,
and ignores it. For all other errors, it uses the Raise method to trigger any error
handler in the calling procedure. Here’s the relevant snippet of code:

ExitProc:
Exit Function
HandleError:
Select Case Err.Number
Case 62 ' Input passed EOF
' Just ignore this
Case Else
FileOpen = False
Err.Raise Err.Number, Err.Source, Err.Description
End Select
Resume ExitProc

Notice how the procedure uses information about the current error (number,
source, and description) as arguments to the Raise method. This simply propa-
gates the error to the next level in the call chain. The Raise method accepts up to
five arguments for the error number, source (procedure name), description, Help
file, and help context ID. We’ve chosen not to include the help information in our
example.

TIP

If you want to test this, modify the TestTF2 procedure in basTest to pass an invalid
filename to the class’s Path property.

358

Chapter 6 e Advanced Class Module Techniques

Raising Custom Errors

Custom errors are subtly different in that they are not generated by the VBA runtime
but are triggered by your procedure. As such, there is no information contained in
the Err object—you need to make it up by supplying the number, description, and
so on. As an example, consider the following code snippet that represents a possible
error condition for the text file class’s Path Property Let statement:

Property Let Path(ByVal strPath As String)
If Len(strPath) = 0 Then
Err.Raise vbObjectError + 12345, "TextFile2::Path (Let)", _
"Path cannot be blank."
End If
If Me.IsOpen Then
Me.FileClose
End If
mstrPath = strPath
End Property

In this case, the procedure passes the Raise method three pieces of data that rep-
resent a logic error: a blank path. Let’s look at each piece in turn.

The first (and only required) piece of information is the error number. It's defined
by an expression, vbObjectError + 12345. Because other error handlers will be
using this number to decide on a course of action, it’s critical to use a number that
will be unique among all other errors the code might encounter. VBA helps you
somewhat by supplying a constant, vbObjectError, which represents a very large
number (-2,147,221,504 or hexidecimal 80040000)—one beyond the range of all
built-in VBA run-time errors. To this, you add a number that uniquely identifies
your custom error. You should also choose a large number to avoid conflicts with
other classes or components the application might use.

TIP

If you need to compute your custom error number in an error handler, just subtract
vbObjectError from the value returned by Err.Number.

The second argument to Raise is the source of the error. The example uses a string
that encodes the module name and procedure. Logic in an error handler can use this
to determine where the error occurred and possibly display this to the user.

Lastly, the example passes a description of the error as a text string. VBA returns
this information in the Description property of its Err object.

Other Advanced Considerations 359

Tip While we've included the literal string inside the procedure, it's a better practice to
use constants or other mechanisms for text strings. This makes it easier to modify
or localize them.

Breaking on Errors in VBA

One last issue involving error handling in class modules concerns a debugging
setting in the Options dialog. Figure 6.11 shows the IDE’s Options dialog and the
various options for handling run-time errors.

FIGURE 6.11
Error-handling options
displayed in the Options
dialog box

Figure 6.11 shows the option set to its default, Break on Unhandled Errors. This
causes VBA to display its standard run-time error dialog box (see Figure 6.12)
only when there is no other error handler in the call chain. Normally, this is the
behavior you want because it respects your error handlers (and lets you easily
spot where you might have forgotten to add one).

FIGURE 6.12
VBA's standard run-time
error dialog box

360

Chapter 6 e Advanced Class Module Techniques

On the other hand, either of the other two settings overrides your error han-
dlers. Break on All Errors, as the text implies, causes VBA to always override your
error handlers. Likewise, Break in Class Module overrides your error handlers
only in class modules but not in regular modules. Obviously, circumventing your
error handlers in not something you’ll likely want in production applications.

Fortunately, you can check, if not readily change, these settings using the Win-
dows Registry. These settings map to two values in the HKEY_CURRENT_USER\
Software\Microsoft\VBA\6.0\Common key. Visual Basic maintains separate set-
tings for these values in the HKEY_CURRENT_USER\Software\Microsoft\VBA\
Microsoft Visual Basic key. The two values are named BreakOnAllErrors and
BreakOnServerErrors. When BreakOnAllErrors is set to 1, VBA halts on all run-
time errors. Similarly, when BreakOnServerErrors is set to 1, VBA breaks on
errors in class modules. When both values are set to 0, only unhandled errors
cause VBA to enter break mode. You can inspect these settings using the Registry
functions described in Chapter 10. And while you can also change the settings via
the Registry, the changes don’t take effect until you restart the IDE.

Circular Reference Issues

In the earlier section on constructing a class hierarchy, we showed you how to ref-
erence an instance of one class from another. While this is a powerful capability of
the language, you must also implement it carefully to avoid potentially difficult-
to-diagnose errors. Trouble arises when class instances maintain circular refer-
ences; that is, when an instance of one class holds a pointer to another, which
holds a pointer back to the first instance. Since the rules of COM dictate that class
instances cannot be destroyed until all pointers to them are released, this some-
times leads to instances that never terminate. This can lead to cleanup code never
being called and memory leakage.

This is much easier to visualize with an example. We’ve created two classes,
Refl and Ref2, which have a simple purpose: to maintain pointers to each other.
Using these classes, we can easily illustrate circular references. For illustrative
purposes, each of these classes also contains code to generate a unique instance
identifier and print debugging information to the Immediate window. Three pro-
cedures, TestRef1, TestRef2 and TestRef3, demonstrate three different reference
scenarios. You will likely find it helpful to step through these examples as we dis-
cuss each of the three scenarios.

Other Advanced Considerations 361

Delayed Termination

The first test case involves class instances that terminate in a delayed fashion. This
occurs when you maintain a pointer to a class instance in your code and that class
instance, in turn, maintains a pointer to another class instance. Listing 6.18 shows
the code from TestRefl, which illustrates this case.

Listing 6.18: Delayed Termination Due to Internal Pointers

Sub TestRefl()
' Both objects terminate at same time

Dim objRefl As Refl
Dim objRef2 As Ref2

' Instantiate variables
Set objRefl = New Refl
Set objRef2 = New Ref2

' Set a reference to one from the other
Set objRef2.Link = objRefl

" Destroy the Tocal references
Set objRefl = Nothing
Set objRef2 = Nothing

End Sub

If you step through the code, you'll see that it begins by creating an instance of
each of the two test classes, Refl and Ref2. Code in each class’s Initialize events
prints a message to the Inmediate window. The procedure then sets up an inter-
nal pointer from the objRef2 to objRefl by setting its Link property. This writes
another message to the Inmediate window. You should now see something like
what’s illustrated in Figure 6.13.

Internally, the pointer structure looks like Figure 6.14. Code in TestRefl main-
tains two pointers, one to each class instance, and the instance of Ref2 maintains a
pointer to the instance of Ref1.

362 Chapter 6 ¢ Advanced Class Module Techniques

FIGURE 6.13
Ref2 is now maintaining a
pointer to Ref1.

FIGURE 6.14
Maintaining a unidirectional Ref1 Class

chain of pointers
basTest Module mobjLink
| objRef1 I A
objRef2

Y

| mobjLink |

Ref2 Class

Y

If you now continue to step through code, executing the line of code that sets
objRefl equal to Nothing, you'll see that nothing is written to the Immediate win-
dow. In reality, the procedure has destroyed its pointer to Refl, but since a pointer
is also maintained in objRef2, Refl cannot terminate. Only after executing the final
line of code does Refl terminate, at the