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A discourse concerning the nature and certainty of Sir Isaac Newton's Methods of fluxions, and of prime and ultimate ratios. By Benjamin Robins, F.R.S
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INTRODUCTION.

            
            
            FROM many propositions dispersed through
the writings of the ancient geometers, and
more especially from one whole treatise, it
appears, that the process, by which they
investigated the solutions of their problems, was for
the most part the reverse of the method, whereby
they demonstrated those solutions. But what they
have delivered upon the tangents of curve lines, and
the mensuration of curvilinear spaces, does not fall
under this observation; for the analysis, they made
use of in these cases, is no where to be met with in
their works. In later times, indeed, a method for
investigating such kind of problems has been introduced,
by considering all curves, as composed of
an infinite number of indivisible streight lines, and
curvilinear spaces, as composed in the like manner
of parallelograms. But this being an obscure and indistinct
conception, it was obnoxious to error.

            SIR Isaac Newton therefore, to avoid the imperfection,
with which this method of indivisibles was
justly charg'd, instituted an analysis for these problems
upon other principles. Considering magnitudes
not under the notion of being increased by a
repeated accession of parts, but as generated by a
continued motion or flux; he discovered a method
to compare together the velocities, wherewith

homogeneous magnitudes increase, and thereby has
taught an analysis free from all obscurity and indistinctness.

            MOREOVER to facilitate the demonstrations for
these kinds of problems, he invented a synthetic form
of reasoning from the prime and ultimate ratios of the
contemporaneous augments, or decrements of those
magnitudes, which is much more concise than the
method of demonstrating used in these cases by the
ancients, yet is equally distinct and conclusive.

            OF this analysis, called by Sir Isaac Newton his
method of fluxions, and of his doctrine of prime and
ultimate ratios, I intend to write in the ensuing discourse.
For though Sir Isaac Newton has very distinctly
explained both these subjects, the first in his
treatise on the Quadrature of curves, and the other in
his Mathematical principles of natural philosophy;
yet as the author's great brevity has made a more
diffusive illustration not altogether unnecessary; I
have here endeavoured to consider more at large
each of these methods; whereby, I hope, it will
appear, they have all the accuracy of the strictest
mathematical demonstration.

         

OF FLUXIONS.

            
            
            IN the method of fluxions geometrical magnitudes
are not presented to the mind, as
compleatly formed at once, but as rising
gradually before the imagination by the motion
of some of their extremes *.

            THUS the line AB may be conceived to be traced
out gradually
by a point moving on
from A to B, 
either with an equable motion, or
with a velocity in any manner varied. And the
velocity, or degree of swiftness, with which this
point moves in any part of the line, AB, is called
the fluxion of this line at that place.

            AGAIN, suppose two lines AB and AC to form
a space unbounded
toward BC; and
upon AB a line DE
to be erected.

            

            NOW, if this
line DE be put in motion (suppose so
as to keep always parallel to itself,) as soon as it

            
               
has passed the point A, a space bounded on all sides
will begin to appear between these three lines. For
instance, when DE is
moved into the situation
FG, these three
lines will include the
space AFH. 
Here
it is evident, that this
space will increase faster
or slower, according
to the degree
of velocity, wherewith
the line DE shall
move. It is also evident,
that though the
line DE should move
with an even pace, the
space AFH would
not for that reason increase
equably; but where the line AC was farthest distant from AB,
the space AFH would increase fastest. Now the
velocity or celerity, wherewith the space AFH
at all times increases, is called the fluxion of that
space.

            HERE it is obvious, that the velocity, wherewith
the space augments, is not to be understood literally
the degree of swiftness, with which either the
line FG, or any other line or point appertaining
to the curve actually moves; but as this space, while
the line FG moves on uniformity, will increase
more, in the same portion of time, at some places,
than at others; the terms velocity and celerity are

applied in a figurative sense to denote the degree,
wherewith this augmentation in every part proceeds.

            BUT we may divest the consideration of the fluxion
of the space from this figurative phrase, by causing
a point so to pass over any streight line IK,
that the length IL measured out, while the line
DE is moving from A to F, shall augment in the
same proportion with the space AFH. For
this line being thus described faster or slower in
the same proportion, as the space receives its augmentation;
the velocity or degree of swiftness,
wherewith the point describing this line actually
mores, will mark out the degree of celerity, wherewith
the space every where increases. And here
the line IL will preserve always the same analogy
to the space AFH, in so much, that, when the line
DE is advanced into any other situation MNO,
if IP be to IL in the proportion of the space
AMN to the space AFH, the fluxion of the space
at MN will be to the fluxion thereof at FH, as
the velocity, wherewith the point describing the
line IK moves at •, to the velocity of the same
at L. And if any other space QRST be described
along with the former by the like motion, and at
the same time a line VW, so that the portion VX
shall always have to the length IL the same proportion,
as the space QRST bears to the space AFH;
the fluxion of this latter space at TS will be to the
fluxion of the former at FH, as the velocity, wherewith
the line VW is described at X, to the velocity,
wherewith IK is described at L. It will hereafter
appear, that in all the applications of fluxions to geometrical
problems, where spaces are concerned, nothing

more is necessary, than to determine the velocity
wherewith such lines as these are described *.

            IN the same manner may a solid space be conceived
to augment with a continual flux, by the motion
of some plane, whereby it is bounded; and
the velocity of its augmentation (which may be estimated
in like manner) will be the fluxion of that
solid.

            FLUXIONS then in general are the velocities,
with which magnitudes varying by a continued
motion increase or diminish; and the magnitudes
themselves are reciprocally called the fluents
of thse fluxions **.

            AND as different fluents may be understood to
be described together in such manner, as constantly
to preserve some one known relation to each
other; the doctrine of fluxions teaches, how to
assign at all times the proportion between the velocities,
wherewith homogeneous magnitudes, varying
thus together, augment or diminish.

            THIS doctrine also reaches on the other hand,
how from the relation known between the fluxions,
to discover what relation the fluents themselves,
bear to each other.

            IT is by means of this proportion only, that
fluxions are applied to geometrical, uses;, for this

doctrine never requires any determinate degree of
velocity to be assigned for the fluxion of any one
fluent. And that the proportion between the fluxions
of magnitudes is assignable from the relation
known between the magnitudes themselves, I now
proceed to shew.

            IN the first place, let us suppose two lines AB and
CD to be described together
by two
points, 
one
setting out
from A, and the other from C, and to move in such
manner, that if AE and CF are lengths described
in the same time, CF shall be analogous to some
power of AE, that is, if AE be denoted by the
letter x, then CF shall always be denoted by 〈 math 〉;
where a represents some given line, and n any number
whatever. Here, I say, the proportion between
the velocity of the point moving on AB to
the velocity of that moving on CD, is at all times
assignable.

            FOR let any other situations, that these moving
points shall have at the same instant of time, be taken,
either farther advanced from E and F, as at
G and H, or short of the same, as at I and K;
then if EG be denoted by e, CH, the length
passed over by the point moving on the line CD,
while the point in the line AB has passed from A

to G, will be expressed by 〈 math 〉; and if EI be
denoted by e, CK, the length passed over by the
point moving on the line CD, while the point moving
in AB has got only to I, will be denoted by
〈 math 〉: or reducing each of these terms into a
series, CH will be denoted by 〈 math 〉 and CK by 〈 math 〉. Hence all the
terms of the former series, except the first term, viz.
               〈 math 〉 will denote FH;
and all the latter series, except the first term. viz.
               〈 math 〉 will denote KF.

            WHEN the number n is greater than unite,
while the line AB is described with a uniform motion,
the point, wherewith CD is described, moves
with a velocity continually accelerated; for if IE
be equal to EG, FH will be greater than KF.

            NOW here, I say, that neither the proportion
of FH to EG, nor the proportion of KF
to IE is the proportion of the velocity, which the
point moving on CD has at F, to the uniform

velocity, wherewith the point moves on the line
AB. For, while that point is advanced from E
to G,
 the point moving
on CD has passed
from F
to H, and has moved through that space with a
velocity continually accelerated; therefore, if it
had moved during the same interval of time with
the velocity, it has at F, uniformly continued, it
would not have passed over so long a line; consequently
FH bears a greater proportion to EG,
than what the velocity, which the point moving on
CD has at F, bears to the velocity of the point
moving uniformly on AB.

            IN like manner KF bears to IE a less proportion
than that, which the velocity of the point in
CD has at F, to the velocity of that in AB. For
as the point in CD, in moving from K to F, proceeds
with a velocity continually accelerated; with
the velocity, it has acquired at F, if uniformly continued,
it would describe in the same space of time
a line longer than KF.

            IN the last place I say, that no line whatever,
that shall be greater or less than the line represented
by the second term of the foregoing series (viz.
the term 〈 math 〉) will bear to the line denoted
by e the same proportion, as the velocity, wherewith
the point moves at F, bears to the velocity of
the point moving in the line AB; but that the velocity
at F is to that at E as 〈 math 〉 to e, or as
〈 math 〉 to 〈 math 〉.

            
               
IF possible let the velocity at F bear to the velocity
at E a greater ratio than this, suppose the ratio
of p to q.
            

            IN the series, whereby CH is denoted, the line
e can be taken so small, that any term proposed
in the series shall exceed all
the following
terms together;

so that
the double of
that term shall be greater than the whole collection of
that term, and all that follow. Again, by diminishing
e, the ratio of the second term in this series to twice
the third, that is, of 〈 math 〉 to 〈 math 〉 or
the ratio of x to 〈 math 〉, shall be greater than any,
that shall be proposed; consequently the line e may be
taken so small, that twice the third term, that is
〈 math 〉, shall be greater than all the terms
following the second, and also, that the ratio of
〈 math 〉 to e shall less exceed the
ratio of 〈 math 〉 to e, than any other ratio, that
can be proposed. Therefore let the ratio of 〈 math 〉 to e be less than the ratio of
p to q; then, if 〈 math 〉 be also greater

than the third and all the following terms of the
series, the ratio of the series 〈 math 〉 to e, that is, the ratio of FH to EG shall
be less than the ratio of p to q, or of the velocity
at F to the velocity at E, which is absurd; for it
has above been shewn, that the first of these ratios
is greater than the last. Therefore the velocity at
F cannot bear to the velocity at E any greater
proportion than that of 〈 math 〉 to e.
            

            ON the other hand, if possible, let the velocity
at F bear to the velocity at E a less ratio than
that of 〈 math 〉 to e: let this lesser ratio be that of
r to s.
            

            IN the series whereby CK is denoted, e may be
taken so small, that any one term proposed shall
exceed the whole sum of all the following terms,
when added together. Therefore let e be taken so
small, that the third term 〈 math 〉 exceed
all the following terms 〈 math 〉,
〈 math 〉, &c. added together.
But e may also be so small, that the ratio of
〈 math 〉 to 〈 math 〉, the double of
the third term, shall be greater than any ratio,

that can be proposed; and the ratio of 〈 math 〉
to e shall come less short of the
ratio of 〈 math 〉 to e, than any other ratio, that can
be named. Therefore let this ratio exceed the ratio
of r to s; then the term 〈 math 〉 exceeding
the whole sum of all the following
terms in the series denoting CK, the whole
series 〈 math 〉 or
KF, will in every case bear to e, or EI a greater ratio
than that of r to s, or of the velocity at F to the
velocity at E, which is absurd. For it has above been
shewn, that the first of these ratios is less than the
last.

            IF n be less than unite, the point in the line CD
moves with a velocity continually decreasing; and
if 
                  •
                be a negative number, this point moves backwards.
But in all these cases the demonstration
proceeds in like manner:

            THUS have we here made appear, that from
the relation between the lines AE and CF, the
proportion between the velocities, wherewith they
are described, is discoverable; for we have shewn,
that the proportion of 〈 math 〉 to 〈 math 〉 is the true
proportion of the velocity, wherewith CF, or
〈 math 〉 augments, to the velocity, wherewith AE,
or x is at the same time augmented.

            
               
AGAIN, in the three lines AB, CD, EF,
where the points A, C, E are given, let us suppose
G, H and I to be three contemporary positions of
the points, whereby the three lines AB, CD, EF
are respectively described; and let the motion of the
point describing the line EF be so regulated with
regard to the motion of the other two points, that


the rectangle under EI and some given line may
be always equal to the rectangle under AG and
CH. Here from the velocities, or degrees of swiftness,
wherewith the points describing AB and CD
move, the degree of swiftness, wherewith the point
describing EF moves, may be determined.

            THE points moving on the lines AB, CD
may either move both the same way, or one forwards
and the other backwards.

            
               
IN the first place suppose them to move the same
way, advancing forward from A and C; and since
some given line forms with EI a rectangle equal to
that under AG and CH, suppose QT × EI
= AG × CH: then, if K, L, M are contemporary
positions of the points moving on the lines AB,
CD, EF, when advanced forward beyond G, H and
I; and N, O, P, three other contemporary positions
of the same points, before they are arrived at
G, H and I; QT × EM will also be = AK × CL,
and QT × EP = AN × CO; therefore the rectangle
under IM (the difference of the lines EI and
EM) and QT will be = AK × HL + CH × GK,
and IP × QT = AN × HO + CH × GN.

            HERE the proportion of the velocity, which the
point moving on AB has at G, to that, which the point
moving on CD has at H, may either keep always
the same or continually vary, and one of these velocities,
suppose that of the point moving on the
line CD, have to the other a proportion gradually
augmenting; that is, if NG and GK are equal,
HL shall either be equal to OH or greater. Here,
since IM × QT is = AK × HL + CH × GK,
and IP × QT = AN × HO + CH × GN,
where CH × GK is = CH × GN and AK × HL
in both cases greater than AN × HO, IM will
be greater than IP; in so much that in both these
cases the velocity of the point, wherewith the line
EF is described, win have to velocity of the
point moving on AB a proportion, gradually
augmenting. Here therefore the line IM will bear to
GK a greater proportion, than the velocity of the
point moving on the line EF, when at I,
bears to the velocity of the point moving on the

line AB, when at G: and the line PI will have a
less proportion to NG, than the velocity, which
the point moving on the line EF, has at I, to the
velocity, which the point moving on the line AB has at G.

            NOW let R be to S as the velocity, which the
point moving on AB has at G, to the velocity,
which the point moving on CD has at H; then I
say, that the velocity, which the point moving on
EF has at I, will be to the velocity, which the
point moving on AB has at G, as AG × S
+ CH × R to QT × R.

            

            IF possible let the velocity, which the point moving
on EF has at I, be to the velocity, which the point
moving on AB has at G, as AG × S + CH × R to
the rectangle under R and some line QV less than QT.

            
               
TAKE W to GK in the ratio of S to R; then
will AG × S + CH × R be to R × QV as AG × W
+ CH × GK to QV × GK. Here, because the ratio
of the velocity of the point moving on the line CD to
the velocity of the point moving on AB either remains
constantly the same, or gradually augments, W is
either equal to HL or less; but when it is less, by
diminishing HL the ratio of W to HL may become
greater than any ratio, that can be proposed,
short of the ratio of equality. The like is true of
die ratio of AG to AK by the diminution of
GK. Therefore let GK and HL be so diminished,
that the ratio of AG × W to AK × HL shall
be greater than the ratio of QV to QT; then the
ratio of AG × W + CH × GK to AK × HL
+ CH × GK, that is, to QT × IM is greater
than the ratio of QV to QT or of QV × IM to
QT × IM; therefore AG × W + CH × GK is
greater than QV × IM; and the ratio of AG × W
+ CH × GK to QV × GK is greater than the
ratio of QV × IM to QV × GK, or of IM to
GK; but the ratio of IM to GK is greater than
that of the velocity, which the point moving on EF
has at I, to the velocity, which the point moving
on AB has at G; therefore the ratio of AG × W
+ CH × GK to QV × GK, or that of AG × S
+ CH × R to QV × R, still more exceeds the ratio
of the velocity at I to the velocity at G; and consequently
the ratio of the velocity at I to the velocity
at G is not greater than that of AG × S
+ CH × R to QT × R.

            AGAIN, if possible let the velocity, which the
point moving on EF has at I, be to the velocity,

which the point moving on AB has at G, as
AG × S + CH × R to the rectangle under R and
some line QX greater than QT.

            HERE let Y be to NG as S to R; then will
AG × S + CH × R be to R × QX as AG × Y
+ CH × NG to QX × NG. But Y will be either
greater than HO, or equal to it, and when greater,
by diminishing HO, the ratio of Y to HO may
become less than any ratio, that can be proposed,
greater than the ratio of equality. The like is


true of the ratio of AG to AN by the diminution
of NG. Therefore let NG and HO be so diminished,
that the ratio of AG × Y to AN × HO shall
be less than the ratio of QX to QT; then the
ratio of AG × Y + CH × NG to AN × HO
+ CH × NG, that is, to QT × IP, is less than the
ratio of QX to QT, or of QX × IP to

QT × IP. Consequently AG × Y + CH × NG
is less than QX × IP, and the ratio of AG × Y
+ CH × NG to QX × NG is less than the ratio
of QX × IP to QX × NG, or of IP to NG. But
the ratio of IP to NG is less than that of the velocity,
which the point moving on EF has at I, to
the velocity, which the Point moving on AB has
at G. Therefore the ratio of AG × Y + CH × NG
to QX × NG, or that of AG × S + CH × R to
QX × R, is also less than the ratio of the velocity
at I to the velocity at G. Consequently, the ratio
of the velocity at I to the velocity at G is not
less than that of AG × S + CH × R to QT × R.

            If the points describing AB and CD move
backwards together, the velocity at I will be the
same, and the demonstration will proceed in like
manner.

            BUT if one of the points, as that moving on
CD, recedes, while the other on AB advances forward,
take in CD any fix'd point at pleasure Z;
then the point on CD in respect of Z moves also
forward. Again, take in the line EF, EΓ to AG
as CZ to QT; then AG × CZ is = QT × EΓ;
and AG × CH being = QT × EI, AG × HZ
will be = QT × ΓI; and by the preceeding case
AG × S + ZH × R will be to QT × R as the velocity,
wherewith the point moving on EF separates
from Γ, when at I, to the velocity, which
the point moving on AB has at G. But as AG
is continually increasing, and EΓ keeps always in
the same proportion to AG; the point Γ will itself
be in motion, and the velocity of the point Γ

will be to the velocity at G, as the line EΓ to
AG, that is, as CZ to QT, or as CZ × R to
QT × R; therefore the velocity, wherewith the
point moving on EF, when at I, separates from Γ,
being to the velocity of the point moving on AB,
when at G, as AG × S + ZH × R to QT × R;
the absolute velocity, which the point moving on
EF has at I, will be to the absolute velocity, which
the point moving on AB has at G, as AG × S
∽ CH × R to QT × R; moving backwards, when


it separates from Γ swifter than the point Γ itself
moves, that is, when AG × S + ZH × R is greater
than CZ × R, or AG × S greater than CH × R;
and when the point moving on EF, at I separates
from Γ with a slower motion, than that wherewith
Γ moves, that is, when CZ × R is greater than
AG × S + ZH × R, or AG × S less than CH × R,
the point moving on EF, at I advances forward.

            
               
WE have in our demonstrations only considered
the fluxions of lines; but by these the fluxions of
all other quantities are determined. For we have
already observed, that the fluxions of spaces, whether
superficial or solid, are analogous to the velocities,
wherewith lines are described, that augment
in the same proportion with such spaces.

            THUS we have attempted to prove the truth
of the rules, Sir Isaac Newton has laid down, for
finding the fluxions of quantities, by demonstrating
the two cases, on which all the rest depend, after
a method, which from all antiquity has been
allowed as genuine, and universally acknowledged
to be free from the least shadow of uncertainty.

            WE shall hereafter endeavour to make manifest,
that Sir Isaac Newton's own demonstrations are
equally just with these, we have here exhibited.
But first we shall prove, that in all the applications
of this doctrine to the solution of geometrical
problems, no other conception concerning fluxions
is necessary, than what we have here given. And
for this end it will be sufficient to shew, how fluxions
are to be applied to the drawing of tangents to
curve lines, and to the mensuration of curvilinear
spaces.

            IF upon the line AB be erected in any angle another
streight line AC, and it be put in motion
upon the line AB towards B keeping always parallel

to itself, and proceeding on with a uniform
velocity: if
a point also
moves on the
line AC with
a velocity in
any manner
regulated;

this point
will describe within the angle under CAB some third line DE,
which will be a curve, unless the point moves in the
line AC likewise with a uniform motion.

            HERE, I say, the line AC being advanced to
any situation FG, by what has already been written
on the nature of fluxions, without any adventitious
consideration whatever, a tangent may be
assigned to the curve at the point G.

            WHEN the point moves on the line AC with
an accelerating velocity, the curve DE will be convex
to the abscisse DB. Now if two other situations
HI and KL of the line AC be taken, one
on each side FG, and MGN be drawn parallel to
AB; while the line AC is moving from the situation
HI to FG, the point in it will have moved
through the length IM, and while the same line
AC moves from FG to KL, the point in it will
have passed over the length NL. And since the
point moves with an accelerated velocity, IM will
be less, and NL greater than the space, which
would have been described in the same time by the
velocity, the point has at G.

            
               
LET FO be taken to FG in the proportion of
the velocity, wherewith the point F moves on the
line AB, 
to the
velocity, which
the point moving
on the line
FP has at G,
and the streight
line OGQ be
drawn, cutting HI in R, and KL in S; then FH will be to
MR, and FK to NS in the same proportion.
Therefore, from what has been said above, MR
will be greater than MI, and NS less than NL;
so that the line OQ, which unites with the curve
at the point G, lies on both sides the point G, on
the same side of the curve; that is, it does not
cross, or cut the curve (as geometers speak) but
touches it only at the point G.

            WHEN the point moves on the line AC with
a velocity gradually decreasing, the curve will be
concave towards the abscisse; but in this case the
method of reasoning will be still the same.

            IF the curve DE be the conical parabola, the
latus rectum being T, and T × FG = DFq, or
FG = 〈 math 〉; the fluxion of DF will be to the
fluxion of 〈 math 〉 (that is, the fluxion of FG) as
T to 2DF; therefore OF is to FG in the same
proportion of T to 2DF, or of DF to 2FG,
and OF is half DF.

            
               
IN like manner by the consideration of these velocities
only may the mensuration of curvilinear
spaces be effected.

            SUPPOSE the curvilinear space ABC to be generated
by the parallel motion of the line BC upon the
line AD with a uniform velocity, within the space
comprehended between the streight line AD and


the curve line AZ; and let the parallelogram
AEFB be generated with it by the motion of
BF accompanying BC. Suppose another parallelogram

            
               
GHIK to be generated at the same time by
the motion of the line GH equal to AE or BF, insisting
on the line GL in an angle equal to that under
CBD; and let the motion of GH be so regulated, that
the parallelogram GHIK be always equal to the
curvilinear space ABC. Then it is evident, by
what has been said above in our explanation of the
nature of fluxions, that the velocity, wherewith
the parallelogram EABF increases, is to the velocity,
wherewith the parallelogram GHIK, or
wherewith the curvilinear space ABC increases;
as the velocity, wherewith the point B moves, to
the velocity, wherewith the point K moves.

            Now I say, the velocity of the point B is to
the velocity of the point K as BF to BC.

            SUPPOSE the curve line ACZ to recede farther
and farther from AD; then it is evident, that
while the parallelogram EABF augments uniformly,
the curvilinear space ABC will increase faster
and faster; therefore in this case the point K moves
with a velocity continually accelerated.

            HERE, if possible, suppose the velocity of the
point B to bear a less proportion to the velocity of the
point K, than the ratio of BF to BC; that is, let
the velocity of B be to the velocity of K, as BF to
some line M greater than BC. Then it is possible to
draw within the curve ACZ towards D a line, as
ON, parallel to BC, which, though it exceed BC,
shall be less than M; and will the ratio of the velocity
of the point B to the velocity of the Point K,

be less than the ratio of BF to NO, or than the
ratio of the parallelogram BP to the parallelogram
BO; therefore still less than the ratio of the
parallelogram BP to the space BCON. Farther
let the parallelogram KIRQ be taken equal to the
space BCON, then will the point K have moved
from K to Q in the time, that the point B has


moved from B to N. Now the parallelogram BP
is to the parallelogram KR as BN to KQ, that is,
as the velocity, wherewith the point B passes over
BN, to the velocity, wherewith KQ would be
described in the same time with a uniform motion.
But as the point K moves with a velocity continually

accelerated, its velocity at K is less than
this uniform velocity now spoken of; therefore the
velocity of the point B bears a greater proportion
to the velocity of the point K than the parallelogram
BP bears to the parallelogram KR; that is,
than the parallelogram BP bears to the space BCON;
but the first of these ratios was before found less than
the last; which involves an absurdity. Therefore
the velocity of B bears not to the velocity of K a
less proportion than that of BF to BC.

            

            AGAIN, if possible, let the velocity of B bear
to the velocity of K a greater proportion than that

of BF to BC, that is, the proportion of BF to
some line S less than BC; and let the line TV be
drawn parallel to CB, and greater than S, and the
parallelogram TB be compleated. Here the ratio
of the velocity of the point B to the velocity of the
Point K will be greater than the ratio of BF to
TV, or than the ratio of the parallelogram BW
to the parallelogram BT, therefore still greater
than the ratio of the parallelogram BW to the curvilinear
space VTCB. Now if the parallelogram
XYIK be taken equal to the space VTCB, that
the point describing the line GL may have moved
from X to K, while VT has moved to BC; since
the parallelogram BW is to the parallelogram XI
as VB to XK, that is, as the velocity, wherewith
the point B has passed over VB, to the velocity,
wherewith XK would be described in the same time
with a uniform motion, the velocity of the point
B bears a less proportion to the velocity of the point
K, than the parallelogram BW bears to the parallelogram
XI, because XK is described with an
accelerating velocity: that is, the velocity of the
point B bears a less proportion to the velocity of the
point K, than the parallelogram BW bears to the
space VTCB. But the first of those ratios was
before found greater than the last. Therefore the
velocity of B does not bear to the velocity of K a
greater proportion than that of BF to BC.

            IF the curve line ACZ were of any other form,
the demonstration would still proceed in the same manner.

            
               
HENCE it appears, that nothing more is necessary
towards the mensuration of the curvilinear space
ABC, than to find a line GK so related to AB,
that, while they are described together, the velocity
of the point, wherewith AB is described, shall
bear the same proportion at any place B to the velocity,
wherewith the point describing the other
line GK moves at the correspondent place K, as
some given line AE bears to the ordinate BC of
the curve ACZ.

            THE method of finding such lines is the subject
of Sir Isaac Newton's Treatise upon the Quadrature
of Curves.

            FOR example, if ACZ be a conical parabola
as before, and Γ × BC = ABq; taking GK =
〈 math 〉, the parallelogram HK = 〈 math 〉, =
⅓ AB × BC, is equal to the space ABC; for GK
being equal to 〈 math 〉, the fluxion of GK or
the velocity, wherewith it is described at K, will be
to the fluxion of AB, or the velocity, wherewith B moves, as 〈 math 〉 or BC to GH or AE.

            HAVING thus, as we conceive, sufficiently
explained, what relates to the proportions between
the velocities, wherewith magnitudes are generated;
nothing now remains, before we proceed to the second
part of our present design, but to consider

the variations, to which these velocities are subject.

            WHEN fluents are not augmented by a uniform
velocity, it is convenient in many problems
to consider how these velocities vary This variation
Sir Isaac Newton calls the fluxion of the fluxion,
and also the second fluxion of the fluent; distinguishing
the fluxions, we have hitherto treated
of, by the name of the first fluxions. These second
fluxions may also vary in different magnitudes of
the fluent, and the variation of these is called the third fluxion of
the fluent. Fourth fluxions are the
changes to which the third are subject, and so
on *.

            IN the two fluents AE and CF, whose fluxions
we compared at page 7, &c. where AE being denoted
by x, CF was equal to
〈 math 〉, and the
fluxion of AE bore to the fluxion of CF the proportion of 〈 math 〉
to 〈 math 〉. 
Here it is evident, that the antecedent
〈 math 〉 of this proportion being a fix'd quantity, and
the consequent 〈 math 〉 a variable one; the fluxion
of AE does not bear to the fluxion of CF always
the same proportion. If n be the number 2, the
fluxion of AE is to the fluxion of CF as a to the

variable quantity 2x; and if n be the number 3,
the fluxion of AE to that of CF will be as a
               2 to
3x
               2. Therefore if AE be described with an uniform
velocity, when n is any number greater than
unite, CF is so described with a velocity continually
accelerating, that when n is = 2, this velocity augments
in the same proportion as CF itself increases;
and when n is = 3, it augments in the duplicate of
that proportion, &c.

            HERE therefore we see, that while one quantity
flows uniformly, the other is described with a
varying motion; and the variation in this motion
is called the second fluxion of this quantity.

            IT is evident farther, that in this instance, when
n is = 2, the variation of the velocity is uniform:
for the velocity keeping always in the same proportion
to x, while x increases uniformly, the velocity
must also increase after the same manner. But when n
is = 3; since the velocity is every where as x
               2, and x
               2
does not increase uniformly; neither will the velocity
augment uniformly. So that it appears by this
example, that the variation in the velocity, wherewith
magnitudes increase, may also vary, and this
variation is called the third fluxion of the magnitude.

            IN the same manner may the fluxions of the following
orders be conceived; each order being the
variation found in the preceeding one. And the
consideration of velocities thus perpetually varying,
and their variation itself changing, is a useful speculation;
for most, if not all, the bodies, we have

any acquaintance with, do actually move with velocities
thus modified.

            A STONE, for instance, in its direct fall towards
the earth has its velocity perpetually augmented;
and in Galileo's Theory of falling Bodies, when
the whole descent is performed near the surface of
the earth, it is supposed to receive equal augmentations
of velocity in equal times. In this case
therefore the velocity augments uniformly, and the
second fluxion of the line described by the falling body
will in all parts of that line be the same; so that
third fluxions cannot take place in this instance;
since the variation of the velocity suffers no change,
but is every where uniform.

            BUT if the stone be supposed to have its gravity
at the beginning of its fall less than at the surface
of the earth, the variation of its velocity at first
will then be less than the variation at the end of
its motion; or in other words, the second fluxions
in the beginning and end of its fall would be unequal;
consequently, third fluxions would here take
place, since the variation would be swifter, as the
body in its fall approached the earth.

            THE stone in this last instance then not only
moves with a velocity perpetually varying, as in
the preceeding example, but this variation continually
changes. In the true theory of falling bodies,
neither this last variation nor any subsequent
one can ever be uniform; so that fluxions of every
order do here actually exist.

            
               
THE same is true of the motion of the planets
in their elliptic orbs; of the motion of light at the
confines of different mediums, and of the motion
of all pendulous bodies.

            IN short, an uniform unchangeable velocity is
not to be met with in any of those bodies, that
fall under our cognisance; for in order to continue
such a motion as this, it is necessary, that they
should not be disturbed by any force whatever, either
of impulse or resistance; but we know of no spaces,
in which at least one of these causes of variation
does not operate.

            HAVING thus explained the general conception
of second, third, and following fluxions; and
having shewn, that they are applicable to the circumstances,
which do really occur in all motion,
we are acquainted with; we will now endeavour to
declare the manner of assigning them.

            AND in the first place second fluxions may be
compared together, as follows. Suppose any line
to be so described by motion, that it always preserve
the same analogy to the first fluxion of any
magnitude; then the velocity, wherewith this line
is described, that is, the fluxion of this line, will
be analogous to the second fluxion of the aforesaid
magnitude. For it is evident, that this line will
perpetually alter in magnitude in the same proportion,
as the fluxion, to which it is analogous, varies.

            
               
SUPPOSE AB to be a fluent described with a
varying motion; the second fluxion at any one point
C may be compared with the second
fluxion at any
other point D, 
by
causing the line EF to be described by the motion
of a point, so as to keep always the same analogy to
the first fluxion of the fluent AB. Suppose EG
be to EH, as the first fluxion at C to the first
fluxion at D; then the second fluxion at C will be
to the second fluxion at D, as the first fluxion of the
line EF at G, to the first fluxion of the same at H.

            IN like manner, if another fluent IK be generated
along with the former fluent AB, and also described
with a variable motion; 
the
second fluxion of
this latter fluent
IK at any place L may be compared with the second
fluxion at any part of the former fluent AB,
by describing the line MN with such a motion, as
always to preserve the same analogy to the first
fluxion of the fluent IK, as the line EF bore to the
first fluxion of AB. Suppose MO to be to EG,
as the first fluxion of IK at L to the first fluxion
of AB at C; then the second fluxion at L will be to
the second fluxion at C, as the velocity, wherewith
the line MN is described at O, to the velocity,
wherewith the line EF is described at G.

            
               
In the same manner if a line be described analogous
to the second fluxion of any magnitude, the
fluxion of this line will express the third fluxion of
that magnitude, and so of all the other orders of
fluxions.

            IN the next place the relation, in which the
several orders of fluxions stand with regard to each
other, will appear by the following proposition.

            LET the line AB be described by the motion
of the point C moving with a varying velocity,
and let a series of lines be adapted to this line AB
in such manner, that the point D, moving upon
the first line of this series at the same time with the
point C, may ever terminate a line ED analogous


to the velocity of the point C; the point F at the
same time terminating upon the second line of this series
a line GF analogous to the velocity of the point
D; and HI upon the third line being by the motion

of the point I made ever analogous to the velocity
of the point F; &c.

            IF now another line KL be described by the motion
of the point M, and if a series of lines be adapted
to this line KL in the like analogy by the
motion of the points N, O, P, so that QN be to
ED as the velocity of the point M to the velocity
of the point C, RO to GF as the velocity of the
point N to that of the point D, and SP to HI
as the velocity of the point O to that of F; I say,
that if the velocity of the point C has to the velocity
of the point M always the same proportion at
equal distances from A and K, that then the velocity
of D to that of N will be in the duplicate of
that proportion; the velocity of F to that of O in
the triplicate of that proportion; the velocity of I
to that of P in the quadruplicate of that proportion,
and so on in the same order, as far as these series of
lines are extended.

            SUPPOSE the velocity of the point C be always
to the velocity of the point M, as the line T to the
line V, when these points are at equal distances
from A and K. Then, since the times, in which
equal lines are described, are reciprocally as the velocities
of the describing points; the time, in which
AC receives any additional increment, will be to
the time, in which KM shall have received an equal
increment, as V to T.

            NOW ED is always to QN in the proportion
of T to V. Therefore the variation, by increase or
diminution that ED shall receive to the like variation,

which QN shall receive; while the lines
AC, KM are augmented by equal increments, will
be also as T to V. But the time, wherein ED
will receive that variation, to the time, wherein QN
will receive its variation, will be as V to T. Consequently,
since the velocities, wherewith different
lines are described, are as the lines themselves directly,
and as the times of description reciprocally,
the velocity of the point D to that of the point N
will be in the duplicate ratio of T to V.

            AGAIN, the velocity of D being to the velocity
of N, when AC and KM are equal, always in the
same duplicate ratio of T to V, and GF being always


to RO as the velocity of the point D to the
velocity of the point N, the variation, by increase
or diminution, of the line GF to the like variation
of RO, while AC and KM receive equal augmentation,
will also be as the velocity of D to the
velocity of N, that is in the duplicate ratio of T to V.
But the time, in which the line GF receives its
variation, will be to the time, in which RO receives
its variation, as V to T. Hence the velocity

of the point F will be to the velocity of the point
O in the triplicate ratio of T to V.

            AFTER the same manner, the velocity of the
point I will appear to have to the velocity of the
point P the quadruplicate of the ratio of T to V.

            BUT from what we have said above, it is evident,
that the velocity of the point D is to the velocity
of the point N, as the second fluxion of AC
to the second fluxion of KM; the velocity of the
point F to the velocity of the point O, as the
third fluxion of AC to the third fluxion of KM;
and the velocity of the point I to the velocity of
the point P, as the fourth fluxion of AC to the
fourth fluxion of KM. And hence appears the
truth of Sir Isaac Newton's observation at the end of
the first proposition of his book of Quadratures, that
a second fluxion, and the second power of a first
fluxion, or the product under two first fluxions; a
third fluxion, and the third power of a first, or
the product under a first and second, and so on;
are homologous terms in any equation. For, as it
appears by this proposition, that if the velocity,
wherewith any fluent is augmented, be in any proportion
increased; its second fluxion will increase
in the duplicate of that proportion, the third fluxion
in the triplicate, and the fourth fluxion in the
quadruplicate of that same proportion; it is manifest,
that the terms in any equation, that shall involve
a second fluxion, will preserve always the
same proportion to the terms involving the second
power of a first fluxion, or the product of two first

fluxions; the terms involving a third fluxion will
preserve the same proportion to the terms involving
the third power of a first, or the product of a
first and second, or the product of three first fluxions;
and the terms containing a fourth fluxion will
keep the same proportion to the terms containing
the fourth power of a first, the product of a second
and the second power of a first, the second power
of a second, or the product of a first and third; &c.
however be increased or diminished the first fluxion,
or the velocity, wherewith the fluents augment.

            IN the problems concerning curve lines, which
relate to the degree of curvature in any point of
those curves, or to the variation of their curvature
in different parts, these superior orders of fluxions
are useful; for by the inflexion of the curve, whilst
its abscisse flows uniformly, the fluxion of the ordinate
must continually vary, and thereby will be
attended with these superior orders of fluxions.

            FOR example, were it required to compare the
different degrees of curvature either of different
curves, or of the same curve in different parts, and
in order thereto a circle should be sought, whose
degree of curvature might be the same with that
of any curve proposed, in any point, that should
be assigned; such a circle may be found by the
help of second fluxions. When the abscisses of
two curves flow with equal velocity; where the
ordinates have equal first fluxions, the tangent;
make equal angles with their respective ordinates.
If now the second fluxions of these ordinates are also
equal, the curves in those points must be equally

deflected from their tangents, that is, have equal
degrees of curvature. Upon this principle such
circles, as have here been mentioned, may be found
by the following method.

            THE curve ABC being given, let it be required
to find a circle equally incurvated with this curve at
the point B. Suppose EFG to be this circle, in which
the tangent FH at the point F makes with the ordinate
FI the same angle, as the tangent BK, drawn
to the other curve ABC at the point B, makes with


the ordinate BL of that curve. Now if the two abscisses
AL and EI are described with equal velocities,
the first fluxion of the ordinates LB and IF will
be equal; and therefore, if the two curves are equally
incurvated at the points B and F, the second fluxions
of these ordinates will be also equal. If M be

the center of the circle EFG, and ME be denoted
by a and MI by x, IF will be = 〈 math 〉;
and, by the rules for finding fluxions, the first
fluxion of IF will be to the fluxion of MI, or of
x, as x to 〈 math 〉.

            Now suppose the line NO to be so described,
that the fluxion of MI, or of x, shall be to the
first fluxion of IF, as some given line e to NP in
the line NO, then will NP be = 〈 math 〉.
Suppose likewise the lines QR to be so described,
that the fluxion of AL in the curve ABC shall be
to the first fluxion of LB, as the same given line e
to QS in the line QR. Here the first fluxions
of IF and LB being equal, NP and QS are equal.
And since the second fluxions of IF and LB are
equal, the fluxions of NP and QS are also equal.
But NP was = 〈 math 〉, and by the rules for
finding fluxions, the fluxion of NP will be to the
fluxion of MI as eaa to 〈 math 〉, that is, as
e × EMq to IFc. Therefore in the curve ABC
the fluxion of QS to the fluxion of AL will be in
the same proportion of e × EMq to IFc. Hence
by finding first QS, then its fluxion, from the equation
expressing the nature of the curve ABC, the
proportion of e × EMq to IF c will be given. Consequently
the proportion of e to IF will be also
given, because the ratio of EMq to IF q is the
same with the given ratio of HFq to HIq, or of
KBq to KLq. And hereby the circle EFG will

be given, whose curvature is equal to the curvature
of the curve ABC at the point B.

            SUPPOSE the curve ABC to be the conical parabola,
where ALq shall be equal to γ × LB, γ being
the latus rectum of the axis. Here e will be to
QS as γ to 2 AL; for that is the ratio of the fluxion
of AL to the fluxion of BL: therefore QS is


= 〈 math 〉 AL, and consequently the fluxion of QS
to the fluxion of AL (that is e × EMq to IFc)
as 2e to γ, or as 2 e × EMq to γ × EMq; in
so much that IFc is = ½ γ × EMq, and the given
ratio of IFq to EMq (namely the ratio of KLq
to KBq) is the same with the ratio of ½ γ to IF:
that is, IF is equal to half the latus rectum appertaining

to the diameter of the parabola, whose vertex
is the point B.

            THIS is all we think necessary towards giving
a just and clear idea of the nature of fluxions,
and for proving the certainty of the deductions
made from them. For it must now be manifest to
every reader, that mathematical quantities become
the proper object of this doctrine of fluxions, whenever
they are supposed to increase by any continued
motion of prolongation, dilatation, expansion or
other kind of augmentation, provided such augmentation
be directed by some general rule, whence
the measure of the increase of these quantities may
from time to time be estimated. And when different
homogeneous magnitudes increase after this manner
together, one may vary faster than another. Now
the velocity of increase in each quantity, is the
fluxion of that quantity. This is the true interpretation
of Sir Isaac Newton's appellation of fluxions,
Incrementorum velocitates. For this doctrine
does not suppose the fluents themselves to have
any motion. Fluxions are not the velocities, with
which the fluents, or even the increments, which
those fluents receive, are themselves moved; but
the degrees of velocity, wherewith those increments
are generated. Subjects incapable of local motion,
such as fluxions themselves, may also have their
fluxions. In this we do not ascribe to these fluxions
any actual motion; for to ascribe motion, or
velocity to what is itself only a, velocity, would
be wholly unintelligible. The fluxion of another
fluxion is only a variation in the velocity, which is

that fluxion. In short, light, heat, sound, the motion
of bodies, the power of gravity, and whatever
else is capable of variation, and of having that variation
assigned, for this reason comes under the
present doctrine; nothing more being understood
by the fluxion of any subject, than the degree of
such its variation.

            TO assign the velocities of variation or increase
in different homogeneous quantities, it is necessary
to compare the degrees of augmentation, which those
quantities receive in equal portions of time; and in
this doctrine of fluxions no farther use is made of
such increments: for the application of this doctrine
to geometrical problems depends upon the knowledge
of these velocities only. But the consideration
of the increments themselves may be made
subservient to the like uses upon other principles;
the explanation of which leads us to the second part
of our design.

         
Notes
* Newt. Introd ad Quad. Curv.
 ↵
* Page 23.
 ↵
** M••••…
 vel incrementorum velocitates nominando fluxiones, & quantitates genitas nominando fluentes. Newton. Introd. ad Quadr. Curv.
 ↵
* Fluxionum (scilicet primarum) fluxiones seu mutationes magis aut minus celeres fluxiones secundas nominare licet, &c. Newt. Quadr. Curv. in Princip.
 ↵


OF PRIME and ULTIMATE RATIOS.

            
            
            THE primary method of comparing together
the magnitudes of rectilinear spaces is by laying
them one upon another: thus all the right lined
spaces, which in the first book of Euclide are proved
to be equal, are the sum or difference of such
spaces, as would cover one another. This method
cannot be applied in comparing curvilinear spaces
with rectilinear ones; because no part whatever of
a curve line can be laid upon a streight line, so as
wholly to coincide with it. For this purpose therefore
the ancient geometers made use of a method
of reasoning, since commonly called the method of
exhaustions; which consists in describing upon the
curvilinear space a rectilinear one, which though not
equal to the other, yet might differ less from it
than by any the most minute difference whatever,
that should be proposed; and thereby proving, the
two spaces, they would compare, could be neither
greater nor less than each other.

            
               
FOR example, in order to prove the equality between
the space comprehended within the circumference
of a circle, and a triangle, whose base should
be equal to the circumference of that circle, and
its altitude to the semidiameter, Archimedes takes this
method. About the circle he describes a polygon
as ABC, and makes it appear, that by multiplying
the sides of this polygon, there may at length be


described such an one, as shall exceed the circle less
than by any difference, that shall be proposed, how
minute soever that difference be. By this means it
was easy to prove, that the triangle DEF, whose
base EF should be equal to the circumference of
the circle, and altitude ED equal to the semidiameter,
is not greater than the circle. For were it
greater, how small soever be the excess, it were possible
to describe about the circle a polygon less than
the triangle; but the circumference of the polygon
is greater than the circumference of the circle, therefore
the polygon can never be less, but must be
always greater than the triangle; for the polygon

is equal to a triangle, whose altitude is the semidiameter
of the circle, and base equal to the circumference
of the polygon. It appears therefore impossible for
the triangle DEF to be greater than the circle.

            THUS far Archimedes makes use of the polygon
circumscribing the circle and no farther: but inscribing
another within the circle he proves, by a similar


process of reasoning, that it is impossible for the
triangle to be less than the circle; whereby at
length it becomes certain, that the triangle DEF
is neither greater nor less than the circle, but equal
to it.

            HOWEVER, the triangle may be proved not to
be less than the circle by the circumscribed polygon
also. For were it less, another triangle DEG,
whose base EG is greater than EF, might be taken,
which should not be greater than the circle.
But a polygon can be circumscribed about the circle,
the circumference of which shall exceed the
circumference of the circle by less than any line, that

can be named, consequently by less than FG, that
is, the circumference of the polygon shall be less than
EG, and the polygon less than the triangle DEG;
therefore it is impossible, that this triangle should
not exceed the circle, since it is greater than the
polygon: consequently the triangle DEF cannot be less than the circle.

            THUS the circle and triangle may be proved
to be equal by comparing them with one polygon
only, and Sir Isaac Newton has instituted upon
this principle a briefer method of conception and
expression for demonstrating this sort of propositions,
than what was used by the ancients; and his ideas
are equally distinct, and adequate to the subject,
with theirs, though more complex. It became the
first writers to choose the most simple form of
expression, and the least compounded ideas possible.
But Sir Isaac Newton thought, he should oblige
the mathematicians by using brevity, provided he
introduced no modes of conception difficult to be
comprehended by those, who are not unskilled in
the ancient methods of writing.

            THE concise form, into which Sir Isaac Newton
has cast his demonstrations, may very possibly
create a difficulty of apprehension in the minds of
some unexercised in these subjects. But otherwise
his method of demonstrating by the prime and
ultimate ratios of varying magnitudes is not only
just, and free from any defect in itself; but easily
to be comprehended, at least by those who have
made these subjects familiar to them by reading the
ancients.

            
               
IN this method any fix'd quantity, which some
varying quantity, by a continual augmentation
or diminution, shall prepetually approach, but never
pass, is considered as the quantity, to which
the varying quantity will at last or ultimately become
equal; provided the varying quantity can be
made in its approach to the other to differ from
it by less than by any quantity how minute soever,
that can be assigned *.

            UPON this principle the equality between the
fore-mentioned circle and triangle DEF is at once
deducible. For since the polygon circumscribing
the circle approaches to each according to all the
conditions above set down, this polygon is to be
considered as ultimately becoming equal to both,
and consequently they must be esteemed equal to
each other.

            THAT this is a just conclusion, is most evident.
For if either of these magnitudes be supposed less
than the other, this polygon could not approach
to the least within some assignable distance.

            RATIOS also may so vary, as to be confined
after the same manner to some determined limit,
and such limit of any ratio is here considered as that,
with which the varying ratio will ultimately coincide **.

            
               
FROM any ratio's having such a limit, it does
not follow, that the variable quantities exhibiting
that ratio have any final magnitude, or even limit,
which they cannot pass.

            FOR suppose two magnitudes, B and B + A,
whose difference shall be A, are each of them perpetually
increasing by equal degrees. It is evident,
that if A remains unchanged, the proportion of
B + A to B is a proportion, that tends nearer and
nearer to the proportion of equality, as B becomes
larger; it is also evident, that the proportion of
B + A to B may, by taking B of a sufficient magnitude,
be brought at last nearer to the proportion
of equality, than to any other assignable proportion;
and consequently the ratio of equality is to be
considered as the ultimate ratio of B + A to B.
The ultimate proportion then of these quantities is
here assigned, though the quantities themselves
have no final magnitude.

            THE same holds true in decreasing quantities.

            THE quadrilateral ABCD bears to the quadrilateral
EBCF the proportion of AB + DC to
BE + CF, provided the two lines AE and DF are
parallel. Now if the line DF be drawn nearer to
AE, this proportion of AB + DC to BE + CF
will not remain the same, unless the lines DA,
CB, FE produced will meet in the same point;
and this proportion, by diminishing the distance between

DF and AE may at last be brought nearer
to the proportion of AB
to BE, than to any other
whatever. 
Therefore the
proportion of AB to BE
is to be considered as the
ultimate proportion of
AB+DC to BE+CF,
or as the ultimate proportion
of the quadrilateral ABCD to the quadrilateral
EBCF.

            HERE these quadrilaterals can never bear one
to the other the proportion between AB and BE,
nor have either of them any final magnitude, or
even so much as a limit, but by the diminution of
the distance between DF and AE they diminish
continually without end: and the proportion between
AB and BE is for this reason called the
ultimate proportion of the two quadrilaterals, because
it is the proportion, which those quadrilaterals
can never actually have to each other, but
the limit of that proportion.

            THE quadrilaterals may be continually diminished,
either by dividing BC in any known proportion
in G drawing HGI parallel to AE, by dividing
again BG in the like manner, and by continuing
this division without end; or else the line
DF may be supposed to advance towards AE
with an uninterrupted motion, 'till the quadrilaterals
quite disappear, or vanish. And under this
latter notion these quadrilaterals may very properly

be called vanishing quantities, since they are now
considered, as never having any stable magnitude,
but decreasing by a continued motion, 'till they come
to nothing. And since the ratio of the quadrilateral
ABCD to the quadrilateral BEFC, while
the quadrilaterals diminish, approaches to that of
AB to BE in such manner, that this ratio of AB
to BE is the nearest limit, that can be assigned to
the other; it is by no means a forced conception to
consider the ratio of AB to BE under the notion
of the ratio, wherewith the quadrilaterals vanish;
and this ratio may properly be called the ultimate
ratio of two vanishing quantities.

            THE reader will perceive, I am endeavouring
to explain Sir Isaac Newton's expression Ratio ultima
quantitatum evanescentium; and I have rendered
the Latin participle evanescens, by the English
one vanishing, and not by the word evanescent,
which having the form of a noun adjective, does
not so certainly imply that motion, which ought
here to be kept carefully in mind. The quadrilaterals
ABCD, BEFC become vanishing quantities
from the time, we first ascribe to them this
perpetual diminution; that is, from that time they
are quantities going to vanish. And as during their
diminution they have continually different proportions
to each other; so the ratio between AB and
BE is not to be called merely Ratio harum quantitatum
evanescentium, but Ultima ratio *.

            
               
SHOULD we suppose the line DF first to coincide
with the line AE, and then recede from it,
by that means giving birth
to the quadrilaterals; 
under
this conception the ratio
of AB to BE may
very justly be considered
as the ratio, wherewith
the quadrilaterals by this
motion commence; and
this ratio may also properly be called the first or
prime ratio of these quadrilaterals at their origine.

            HERE I have attempted to explain in like manner
the phrase Ratio prima quantitatum nascentium;
but no English participle occuring to me, whereby
to render the word nascens, I have been obliged
to use circumlocution. Under the present conception
of the quadrilaterals they are to be called nascantes,
not only at the very instant of their first production,
but according to the sense, in which such
participles are used in common speech, after the
same manner, as when we say of a body, which
has lain at rest, that it is beginning to move,
though it may have been some little time in motion:
on this account we must not use the simple
expression Ratio quantitatum nascentium; for by
this we shall not specify any particular ratio; but to
denote the ratio between AB and BE we must call
it Ratio prima quadrilaterûm nascentium *.

            
               
WE see here the same ratio may be called sometimes
the prime, at other times the ultimate ratio
of the same varying quantities, as these quantities
are considered either under the notion of vanishing,
or of being produced before the imagination by an
uninterrupted motion. The doctrine under examination
receives its name from both these ways of
epxpression.

            THUS we have given a general idea of the
manner of conception, upon which this doctrine is
built. But as in the former part of this discourse we
confirmed the doctrine of fluxions by demonstrations
of the most circumstantial kind; so here, to
remove all distrust concerning the conclusiveness of
this method of reasoning, we shall draw out its
first principles into a more diffusive form.

            FOR this purpose, we shall in the first place
define an ultimate magnitude to be the limit, to
which a varying magnitude can approach within
any degree of nearness whatever, though it can
never be made absolutely equal to it.

            THUS the circle discoursed of above, according
to this definition, is to be called the ultimate
magnitude of the polygon circumscribing it; because
this polygon, by increasing the number of its
sides, can be made to differ from the circle, less
than by any space, that can be proposed how small

soever; and yet the polygon can never become either
equal to the circle or less.

            IN like manner the circle will be the ultimate
magnitude of the polygon inscribed, with this difference
only, that as in the first case the varying
magnitude is always greater, here it will
be less than the ultimate magnitude, which is its
limit.

            AGAIN the triangle DEF is the ultimate magnitude
of the triangle DEG; because the base EG,
being always equal to the circumference of the polygon,


will constantly be greater than the base EF,
equal to the circumference of the circle only, and
yet EG may be made to approach EF nearer than
by any difference, that can be named.

            UPON this definition we may ground the following
proposition; That, when varying magnitudes

keep constantly the same proportion to each
other, their ultimate magnitudes are in the same
proportion.

            LET A and B be two varying magnitudes,
which keep constantly in the same proportion to
each other; and let C be the ultimate magnitude
of A, and D the ultimate magnitude of B. I say
that C is to D in the same proportion.

            AS A is a varying magnitude continually approaching
to C, but can never become equal to it,
A may be either always greater or always less than
C. 
In the first place suppose it
greater. When A is greater than
C, in approaching to C it is continually
diminished; therefore B
keeping always in the same proportion
to A, B in approaching
to its limit D is also continually diminished.

            NOW, if possible, let the ratio of C to D be
greater than that of A to B, that is, suppose C to
have to some magnitude E, greater than D, the
same proportion as A has to B. Since C is the ultimate
magnitude of A in the sense of the preceeding
definition, A can be made to approach nearer
to C than by any difference, that can be proposed,
but can never become equal to it, or less. Therefore,
since C is to E as A to B, B will always exceed
E; consequently can never approach to D so
near as by the excess of E above D: which is absurd.
For since D is supposed the ultimate magnitude

of B, it can be approached by B nearer than
by any assignable difference.

            AFTER the same manner, neither can the ratio
of D to C be greater than that of B to A.

            IF the varying magnitude A be less than C, it
follows, in like manner, that neither the ratio of C
to D can be less than that of A to B, nor the ratio
of D to C less than that of B to A.

            IT is an evident corollary from this proposition,
that the ultimate magnitudes of the same or equal
varying magnitudes are equal.

            NOW from this proposition the fore-mentioned
equality between the circle and triangle DEF will
again readily appear. For the circle being the ultimate
magnitude of the polygon, and the triangle
DEF the ultimate magnitude of the triangle
DEG; since the polygon and the triangle DEG
are equal, by this proposition the circle and triangle
DEF will be also equal.

            IF the preceeding proposition be admitted, as a
genuine deduction from the definition, upon which
it is grounded; this demonstration of the equality
of the circle and triangle cannot be excepted to.
For no objection can lie against the definition itself,
as no inference is there deduced, but only the sense
explained of the term defined in it.

            
               
THE other part of this method, which concerns
varying ratios, may be put into the same form by
defining ultimate ratios as follows.

            IF there be two quantities, that are (one or both)
continually varying, either by being continually
augmented, or continually diminished; and if the
proportion, they bear to each other, does by this
means perpetually vary, but in such a manner, that
it constantly approaches nearer and nearer to some
determined proportion, and can also be brought at
last in its approach nearer to this determined proportion
than to any other, that can be assigned,
but can never pass it: this determined proportion
is then called the ultimate proportion, or the ultimate
ratio of those varying quantities.

            TO this definition of the sense, in which the
term ultimate ratio, or ultimate proportion is to
be understood, we must subjoin the following proposition:
That all the ultimate ratios of the same
varying ratio are the same with each other.

            SUPPOSE the ratio of A to B continually varies
by the variation of one or both of the terms A and
B. If the ratio of C to D be the ultimate ratio of
A to B, and the ratio of E to F be likewise the
ultimate ratio of the same; I say, the ratio of C
to D is the same with the ratio of E to F.

            
               
IF possible, let the ratio of E to F differ from
that of C to D. Since the ratio of C to D is the
ultimate ratio of A to B, the ratio of A to B, in its
approach to that of C to D, can be brought at last
nearer to it, than to any other whatever. Therefore
if the ratio of E to F differ from that of C to D,
the ratio of A to B will either pass that of E to F,
or can never approach so near to it, as to the ratio
of C to D: in so much that the ratio of E to F
cannot be the ultimate ratio of A to B, in the sense
of this definition.

            THE two definitions here set down, together
with the general propositions annexed to them, comprehend
the whole foundation of this method, we
are now explaining.

            WE find in former writers some attempts toward
so much of this method, as depends upon the first
definition. Lucas Valerius in a most excellent treatise
on the Center of gravity of solid bodies, has
given a proposition nothing different, but in the
form of the expression, from that we have subjoined
to our first definition; from which he demonstrates
with brevity and elegance his propositions concerning
the mensuration and center of gravity of the
sphere, spheroid, parabolical and hyperbolical conoids.
This author writ before the doctrine of indivisibles
was proposed to the world. And since,
Andrew Tacquet, in his treatise on the Cylindrical
and annular solids, has made the same proposition,
though something differently expressed, the basis

of his demonstrations at the same time very judiciously
exposing the inconclusiveness of the reasonings
from indivisibles. However, the consideration
of the limits of varying proportions, when the quantities
expressing those proportions have themselves
no limits, which renders this method of prime and
ultimate ratios much more extensive, we owe intirely
to Sir Isaac Newton. That this method, as
thus compleated, is applicable not only to the subjects
treated by the ancients in the method of exhaustions,
but to many others also of the greatest
importance, appears from our author's immortal
treatise on the Mathematical principles of natural
philosophy.

            HOWEVER, we shall farther illustrate
this doctrine in applying it to the same general problems
as those, whereby the use of fluxions was
above exemplified.

            WE have already given one instance of its use in
determining the dimensions of curvilinear spaces; we
shall now set forth the same by a more general example.

            LET ABC be a curve line, its abscisse AD, and
an ordinate DB. If the parallelogram EFGH,
formed upon the given line EF under the same
angle, as the ordinates of the curve make with its
abscisse, be in all parts so related to the curve, that
the ultimate ratio of any portion of the abscisse
AD to the correspondent portion of the line EH,
shall be that of the given line EF to the ordinate
of the curve at the beginning of that portion of the

abscisse then will the curvilinear space ADB be
equal to the parallelogram EG.

            IN the curve let the abscisse AD be divided into
any number of equal parts AI, IL, LN, ND,
and let the ordinates IK, LM, NO be drawn,
and also in the parallelogram EG the correspondent


lines PQ, RS and TV. In the curve compleat
the parallelograms IW, LX, NY, and in the
parallelogram EG make the parallelogram PZ equal
to the parallelogram IW, the parallelogram

RΓ equal to LX, and the parallelogram TΔ equal
to NY: then the whole figure IKWMXOYD
will be equal to the whole Figure PZΓΔH.
But in the curve, by increasing the number and diminishing
the breadth of these parallelograms, the
figure IKWMXOYD will approach nearer and
nearer in magnitude to the curvilinear space ADB;
in so much that their difference may be reduced to
less than any space, that shall be assigned; therefore
the curvilinear space ADB is the ultimate
magnitude of the figure IKWMXOYD. Farther,
since the parallelogram EG is in all parts so
related to the curve, that the ultimate ratio of every
portion, as LN, of the abscisse AD to RT, the
correspondent portion of EH, is the same with
the ratio of EF or RS, to LM; the ultimate
ratio of the parallelogram LX, or its equal RΓ,
to the parallelogram RV, is the ratio of equality.
This is also true of all the other correspondent parallelograms;
therefore, the ultimate ratio of the
figure PZΓΔH to the parallelogram PG is the
ratio of equality; that is, the figure PZΓΔH, by
increasing the number of its parallelograms, can
be brought nearer to the parallelogram PG than
by any difference whatever, that may be proposed.
Moreover, by increasing of the number of ordinates
in the curve, the residuary portion AI of
the abscisse can be reduced to less than any magnitude,
that shall be proposed; whereby the parallelogram
EQ, corresponding to this portion of
the abscisse, may be also reduced to less than any
magnitude, that can be proposed; and the parallelogram
PG be brought to differ less from EG than by any assignable magnitude. Since therefore the

figure PZΓΔH can be brought nearer to the parallelogram
PG than by any difference, that can be
assigned; the Figure PZΓΔH can be brought also


nearer to the parallelogram EG than by any difference,
that can be assigned. Consequently the parallelogram
EG is the ultimate magnitude of the
figure PZΓΔH. Therefore the figures PZΓΔH
and IK WMXOYD being equal varying magnitudes,
and the ultimate magnitudes of equal
varying magnitudes being equal, the curvilinear
space ADB is equal to the parallelogram EG.

            
               
SUPPOSE the curve ABC were a cubical parabola
convex to the abscisse, that is, suppose Θ
a given line, and Θq × LM = AL c. If EH be
= 〈 math 〉 × EF, then the parallelogram EG will
be equal to the space ADB.

            As EH is = 〈 math 〉, ER will be = 〈 math 〉
and ET = 〈 math 〉, consequently RT = 〈 math 〉.
Therefore the parallelogram EG is here so related
in all parts to the curve, that LN is to RT as Θq × EF
to ALc + ¼ ALq × LN + AL × LNq + ¼ LNc.
Now it is evident, that the ratio of LN to RT can
never be so great as the ratio of Θq × EF to ALc;
but yet, by diminishing LN, the ratio of LN to
RT may at last be brought nearer to this ratio
than to any other whatever, that should be proposed.
Consequently by the preceeding definition of
what is to be understood by an ultimate ratio, the
ratio of Θq × EF to ALc is the ultimate ratio of
LN to RT. But ALc being = Θq × LM,
Θq × EF is to ALc as EF to LM. Therefore
the ratio of EF to LM is the ultimate ratio of
LN to RT. Consequently, by the preceeding general
proposition, the parallelogram EG is equal
to the curvilinear space ADB. And this parallelogram
is equal to ¼ AD × DB.

            
               
AGAIN this method is equally useful in determining
the situation of the tangents to curve lines.

            IN the curve ABC, whose abscisse is AD, let
EB be a tangent at the point B. Let BF be the
ordinate at the same point B, and GH another ordinate
parallel
to it, which shall
meet the tangent
in I, and
the line BK,
parallel to
the abscisse
AD, in K.

Here the ratio
of HK, the difference of the ordinates, to BK
can never be the same with the ratio of BF to FE,
unless by the figure of the curve the tangent chance
to cut it in some point remote from B; this ratio of
BF to FE being the same with that of IK to
KB. But it is farther evident, that the nearer GH
is to FB, the ratio of KH to KB will approach
so much the nearer to the ratio of IK to KB;
and the angle, which the curve BC makes with
the tangent BI being less than any right-lined angle,
it is manifest, that GH may be made to approach
towards FB, 'till the ratio of HK to KB,
shall at last approach nearer to the ratio of IK to
KB, or of BF to FE, than to any other ratio
whatever, that shall be proposed; that is, the ratio
of BF to FE is the ultimate ratio of HK to

KB. Therefore, if from the properties of the
curve ABC the ratio of HK to KB be determined,
and from thence their ultimate ratio assigned; this
ratio thus assigned will be the ratio of BF to FE;
because all the ultimate ratios of the same variable
ratio are the same with each other.

            SUPPOSE the curve ABC again to be a cubical
parabola, where BF is = 〈 math 〉, and GH =
〈 math 〉. Here HK will be = 〈 math 〉;
therefore HK is to FG, or BK, as 3 AF × AG +
FGq to Zq. Consequently the ratio of HK to BK
can never be so small as the ratio of 3AFq to Zq;
but by diminishing BK it may be brought nearer to
that ratio, than to any other whatever; that is, the
ratio of 3AFq to Zq is the ultimate ratio of HK
to KB. Therefore, if BF bear to FE the ratio of 3AFq to Zq, the line BE will touch the curve
in B: and EF will be equal to ⅓ AF.

            AFTER the situation of the tangent has been
thus determined, the magnitude of HI, the part
of the ordinate intercepted between the tangent and
the curve, will be known. For example, in this
instance since BF is to FE, that is IK to FG, as
3AFq to Zq, IK will be = 〈 math 〉, and
HK being = 〈 math 〉, HI will

be = 〈 math 〉.
Now by this line HI may the curvature of curve
lines be compared.

            LET the streight line AB touch the curve CBD
in the point B; CE being the abscisse of the curve,
and BF the ordinate at B. Take any other point
G in the curve, and through the points G, B describe
the circle BGH, that shall touch the line AB


in B; lastly, draw IKGL parallel to FB. Here are
two angles formed at the point B with the circle, one
by the line BK, the other by the curve; and the proportion
of the first of these angles to the second will
be different in different distances of the point G from
the point B. And by the approach of G to B the
angle between the circle and curve will be diminished,
even so much as at length to bear a less proportion
to the angle between the circle and tangent,
than any, that can be proposed. That is, by the

approach of the point G to B the angle between the
tangent and circle may be brought nearer to the angle
between the tangent and the curve, than by any
difference how minute soever homogeneous to those
angles; therefore the magnitude of the circle being
continually varied by the gradual approach of G to
B, and the angle between the tangent and circle
thereby also varied; the angle between the tangent
and curve is the ultimate magnitude of these angles.
That is, the ultimate of these circles determines the
degree of curvature of the curve CBD at the point
B. But in the circle the rectangle under LKG is
equal to the square of BK. And whereas the magnitude
of KL will perpetually vary by the approach
of the point G towards B; if BM taken in
FB produced be the ultimate magnitude of KL,
the circle described through M and B to touch the
tangent AK in B will be the circle, by which the curvature
of the curve CBD in B is to be estimated.

            SUPPOSE the curve CBD to be the cubical parabola
as before, where Zq × FB is = CFc, then
KG will be = 〈 math 〉. Hence LK
(= 〈 math 〉) is = 〈 math 〉. But it
is evident, that in a given situation of the tangent
AB the ratio of BKq to FIq is given; therefore
LK will be reciprocally as 3CF + FI, and will
continually increase, as the point G approaches to
the point B, but can never be so great, as to equal
〈 math 〉; yet by the near approach of G
to B, LK may be brought nearer to this quantity

than by any difference, that can be proposed.
Therefore, by our former definition of ultimate
magnitudes, 〈 math 〉 is the ultimate magnitude
of LK. Consequently, if BM be taken
equal to this 〈 math 〉, the circle described
through M is that required.

            WE have now gone through all, we think needful
for illustrating the doctrine of prime and ultimate
ratios; and by the definitions, we have given of
ultimate magnitudes and proportions, compared with
the instances, we have subjoined, of the application
of this doctrine to geometrical problems, we hope
our readers cannot fail of forming so distinct a conception
of this method of reasoning, that it shall
appear to them equally geometrical and scientific
with the most unexceptionable demonstration.

            THEREFORE we shall in the next place proceed
to consider the demonstrations, which Sir Isaac
Newton has himself given, upon the principles of
this method, of his precepts for assigning the fluxions
of flowing quantities.
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OF
Sir ISAAC NEWTON'S
METHOD
Of demonstrating his Rules for finding
FLUXIONS.

            
            
            SIR Isaac Newton has comprehended his directions
for computing the fluxions of quanties
in two propositions; one in his Introduction to
his treatise on the Quadrature of curves; the other
is the first proposition of the book itself. In the
first he assigns the fluxion of a simple power, the
latter is universal for all quantities whatever.

            FOR determining the fluxion of a simple power
suppose the line
AB to be denoted

by x, and
another line
CD to be denoted
by 〈 math 〉, or by considering a as unite, CD
will be denoted by x
               n.

            

            
               
SUPPOSE the points B and D to move in equal
spaces of time into two other positions E and F;
then DF will be to BE in the ratio of the velocity,
wherewith DF would be described with an uniform
motion, to the velocity, wherewith BE will be described
in the same time with an uniform motion. But
if the point describing the line
AB moves uniformly;
the velocity,
wherewith
the line CD is described, will not be uniform.

Therefore the space DF is not described with a
uniform velocity; in so much that the velocity,
wherewith DF would be uniformly described, is
never the same with the velocity at the point D.
But by diminishing the magnitude of DF, the uniform
velocity, wherewith DF would be described,
may be made to approach at pleasure to the velocity
at the point D. Therefore the velocity at the
point D is the ultimate magnitude of the velocity,
wherewith DF would be uniformly described.
Consequently the ratio of the velocity at D to the
velocity at B is the ultimate ratio of the velocity,
wherewith DF would be uniformly described, to
the velocity, wherewith BE is uniformly described.
But DF being to BE as the velocity, wherewith
DF would be uniformly described, to that, wherewith
BE is uniformly described, the ultimate ratio
of DF to BE is also the ultimate ratio of the first
of these velocities to the last; because all the ultimate
ratios of the same varying ratio are the same
with each other. Therefore the ratio of the velocity

at D to the velocity at B, that is, of the fluxion
of CD to the fluxion of AB, is the same with
the ultimate ratio of DF to BE.

            IF now the augment BE be denoted by o, the
augment DF will be denoted by
〈 math 〉. And here
it is obvious, that all the terms after the first taken
together may be made less than any assignable part
of the first. Consequently the proportion of the
first term 〈 math 〉 to the whole augment may be
made to approach within any degree whatever of
the proportion of equality; and therefore the ultimate
proportion of
〈 math 〉 to o, or of DF to
BE, is that of 〈 math 〉 only to o, or the proportion
of 〈 math 〉 to 1.

            AND we have already proved, that the proportion
of the velocity at D to the velocity at B is the same
with the ultimate proportion of DF to BE; therefore
the velocity at D is to the velocity at B, or the
fluxion of x
               n to the fluxion of x, as 〈 math 〉 to 1.

            IN the first proposition of the treatise of Quadratures
the author proposes the relation betwixt
three varying quantities x, y, and z to be expressed
by this equation 〈 math 〉. Suppose
these qnantities to be augmented by any contemporaneous

increments great or small. Let us also
suppose some quantity o to be described at the
same time by some known velocity, and let that
velocity be denoted by m; the velocity, wherewith
the augment of x would be uniformly described in
that time be denoted by ẋ; the velocity, wherewith
the augment of y would be uniformly described in
the same time by ẏ; and lastly the velocity, wherewith
the augment of z would be uniformly described
in the same time by ż. Then 〈 math 〉, 〈 math 〉, and
〈 math 〉 will express the contemporaneous increments
of x, y, and z respectively. Now when x is become 〈 math 〉, y is become 〈 math 〉 and z become 〈 math 〉;
the former equation will become
〈 math 〉. Here, as the first of these equations exhibits
the relation between the three quanties x, y, z,
as far as the same can be expressed by a single equation;
so this second equation, with the assistance of
the first, will express the relation between the augments
of these quantities. But the first of these equations
may be taken out of the latter; whence will
arise this third equation 〈 math 〉
               
               〈 math 〉; which also expresses the
relation between the several increments; and likewise
if o be a given quantity, this equation will equally
express the relation between the velocities,
wherewith these several increments are generated
respectively by a uniform motion. And this equation
being divided by o will be reduced to more
simple terms, and yet will equally express the relation
of these velocities; and then the equation will
become 〈 math 〉.
Now let us form an equation out of the terms of
this, from which the quantity o is absent. This equation
will be 〈 math 〉; and this equation multiplied by m becomes
〈 math 〉. It is evident, that
this equation does not express the relation of the
forementioned velocities; yet by the diminution of
o this equation may come within any degree of
expressing that relation. Therefore, by what has
been so often inculcated, this equation will express
the ultimate relation of these velocities. But the
fluxions of the quantities x, y, z are the ultimate
magnitudes of these velocities; so that the ultimate
relation of these velocities is the relation of the
fluxions of these quantities. Consequently this last

equation represents the relation of the fluxions of
the quantities x, y, z.
            

            IT is now presumed, we have removed all difficulty
from the demonstrations, which Sir Isaac
Newton has himself given, of his rules for finding
fluxions.

            IN the beginning of this discourse we have endeavoured
at such a description of fluxions, as might
not fail of giving a distinct and clear conception of
them. We then confirmed the fundamental rules
for comparing fluxions together by demonstrations
of the most formal and unexceptionable kind. And
now having justified Sir Isaac Newton's own demonstrations,
we have not only shewn, that his
doctrine of fluxions is an unerring guide in the solution
of geometrical problems, but also that he
himself had fully proved the certainty of this method.
For accomplishing this last part of our undertaking
it was necessary to explain at large another
method of reasoning established by him, no
less worthy consideration; since as the first inabled
him to investigate the geometrical problems, whereby
he was conducted in those remote searches into
nature, which have been the subject of universal
admiration, so to the latter method is owing the
surprizing brevity, wherewith he has demonstrated
those discoveries.

         

CONCLUSION.

            
            
            THUS we have at length finished the
whole of our design, and shall therefore put
a period to this discourse with the explanation of
the term momentum frequently used by Sir Isaac
Newton, though we have yet had no occasion to
mention it.

            AND in this I shall be the more particular, because
Sir Isaac Newton's definition of momenta,
That they are the momentaneous increments or decrements
of varying quantities, may possibly be
thought obscure. Therefore I shall give a fuller
delineation of them, and such a one, as shall agree
to the general sense of his description, and never
fail to make the use of this term, in every proposition,
where it occurs, clearly to be understood.

            IN determining the ultimate ratios between the
contemporaneous differences of quantities, it is often
previously required to consider each of these differences
apart, in order to discover, how much of
those differences is necessary for expressing that
ultimate ratio. In this case Sir Isaac Newton distinguishes,
by the name of momentum, so much

of any difference, as constitutes the term used in expressing
this ultimate ratio.

            THUS in page 71, where BE is = o, and DF
equal to 〈 math 〉 the ultimate ratio of DF to BE being
the ratio of

〈 math 〉 to o, such a part only
of DF as is denoted
by 〈 math 〉,

without the addition of any of the following terms
of the series, constitutes the whole of the momentum
of the line CD; but the momentum of AB
is the same as the whole difference BE, or o.
            

            IN like manner, if A and B denote varying
quantities, and their contemporaneous increments
be represented by a and b; the rectangle under any
given line M and a is the contemporaneous increment
of the rectangle under M and A, and
A × b + B × a + a × b is the like increment of the
rectangle under A, B. And here the whole increment
M × a represents the momentum of the rectangle
under M, A; but A × b + B × a only, and
not the whole increment A × b + B × a + a × b, is
called the momentum of the rectangle under A, B;
because so much only of this latter increment is required
for determining the ultimate ratio of the
increment of M × A to the increment of A × B, this
ratio being the same with the ultimate ratio of
M × a to A × b + B × a; for the ultimate ratio of
A × b + B × a to A × b + B × a + a × b is the ratio

of equality. Consequently the ultimate ratio of
M × a to A × b + B × a differs not from the ultimate
ratio of M × a to A × b + B × a + a × b.
            

            THESE momenta equally relate to the decrements
of quantities, as to their increments,
and the ultimate ratio of increments, and of decrements
at the same place is the same; therefore
the momentum of any quantity may be determined,
either by considering the increment, or the decrement
of that quantity, or even by considering both
together. And in determining the momentum of
the rectangle under A and B▪ Sir Isaac Newton has
taken the last of these methods; because by this
means the superfluous rectangle is sooner disengaged
from the demonstration.

            HERE it must always be remembred, that the
only use, which ought ever to be made of these
momenta, is to compare them one with another,
and for no other purpose than to determine the
ultimate or prime proportion between the several
increments or decrements, from whence they are
deduced *. Herein the method of prime and ultimate
ratios essentially differs from that of indivisibles;
for in that method these momenta are considered
absolutely as parts, whereof their respective
quantities are actually composed. But though these
momenta have no final magnitude, which would
be necessary to make them parts capable of compounding


a whole by accumulation; yet their ultimate
ratios are as truly assignable as the ratios between
any quantities whatever. Therefore none
of the objections made against the doctrine of indivisibles
are of the least weight against this method:
but while we attend carefully to the observation
here laid down, we shall be as secure against error,
and the mind will receive as full satisfaction, as in
any the most unexceptionable demonstration of Euclide.

            WE shall make no apology for the length of
this discourse: for as we can scarce suspect, after
what has been above written, that our readers will
be at any loss to remove of themselves, whatever
little difficulties may have arisen in this subject from
the brevity of Sir Isaac Newton's expressions; so
our time cannot be thought misemployed, if we
shall at all have contributed, by a more diffusive
phrase, to the easier understanding these extensive,
and celebrated inventions.

         
Notes
* Neque spect.••••
 magnitudo momentorum, sed prima nascentium
proportio. Newt. Princ. Phil. Lib. II. Lem. 2.
 ↵


ERRATA.

            
            PAGE 9. l. pen. read 〈 math 〉. p. 10. l. 15. r. 〈 math 〉.
p. 24. l. pen. dele will. p. 25. l. 1. r. will be.
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